Unexplained abdominal pain as a driver for inappropriate therapeutics: An audit on the use of intravenous proton pump inhibitors

Background:
Proton pump inhibitors (PPIs) are currently the most effective agents for acid-related disorders. However, studies show that 25-75% of patients receiving intravenous PPIs had no appropriate justification, indicating high rates of inappropriate prescribing.

Objective:
To examine the appropriate use of intravenous PPIs in accordance with guidelines and the efficacy of a prescribing awareness intervention at an Asian teaching institution.

Setting:
Prospective audit in a tertiary hospital in Malaysia

Method:
Every 4th intravenous PPI prescription received in the pharmacy was screened against hospital guidelines. Interventions for incorrect indication/dose/duration were performed. Patients’ demographic data, medical history and the use of intravenous PPI were collected. Included were all adult inpatients prescribed intravenous PPI. Main outcome measure: Proportion of appropriate IV PPI prescriptions

Results:
Data for 106 patients were collected. Most patients were male [65(61.3%)], Chinese [50(47.2%)], with mean age±SD=60.3±18.0 years. Most intravenous PPI prescriptions were initiated by junior doctors from the surgical [47(44.3%)] and medical [42(39.6%)] departments. Only 50/106(47.2%) patients had upper gastrointestinal endoscopy/surgery performed to verify the source of bleeding. Unexplained abdominal pain [81(76.4%)] was the main driver for prescribing intravenous PPIs empirically, out of which 73(68.9%) were for suspected upper gastrointestinal bleed. Overall, intravenous PPI was found to be inappropriately prescribed in 56(52.8%) patients for indication, dose or duration. Interventions...
on the use of intravenous PPI were most effective when performed by senior doctors (100%), followed by ward pharmacists (50%), and inpatient pharmacists (37.5%, p=0.027).

Conclusion: Inappropriate intravenous PPI usage is still prevalent despite the enforcement of hospital guidelines. The promotion of prescribing awareness and evidence-based prescribing through education of medical staff could result in more judicious use of intravenous PPI and dose-optimization.
Unexplained abdominal pain as a driver for inappropriate therapeutics: An audit on the use of intravenous proton pump inhibitors

Pauline Siew Mei Lai¹,², Yin Yen Wong², Yong Chia Low², Hui Ling Lau², Kin-Fah Chin³, Sanjiv Mahadeva⁴

¹Department of Primary Care Medicine, ²Department of Surgery, ³Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
²Pharmacy Department, University Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia

Number of words of the article: 2971
Number of words of the abstract: 344
Number of references: 21

Address for correspondence:
Dr Pauline Siew Mei LAI
Department of Primary Care Medicine
University of Malaya, 50603 Kuala Lumpur, Malaysia.
Office: +60379493920, Fax no: + 60379577941
email: plai@ummc.edu.my
Abstract

Background:
Proton pump inhibitors (PPIs) are currently the most effective agents for acid-related disorders. However, studies show that 25-75% of patients receiving intravenous PPIs had no appropriate justification, indicating high rates of inappropriate prescribing.

Objective:
To examine the appropriate use of intravenous PPIs in accordance with guidelines and the efficacy of a prescribing awareness intervention at an Asian teaching institution.

Setting:
Prospective audit in a tertiary hospital in Malaysia

Method:
Every 4th intravenous PPI prescription received in the pharmacy was screened against hospital guidelines. Interventions for incorrect indication/dose/duration were performed. Patients’ demographic data, medical history and the use of intravenous PPI were collected. Included were all adult inpatients prescribed intravenous PPI.

Main outcome measure:
Proportion of appropriate IV PPI prescriptions

Results:
Data for 106 patients were collected. Most patients were male [65(61.3%)], Chinese [50(47.2%)], with mean age±SD=60.3±18.0 years. Most intravenous PPI prescriptions were initiated by junior doctors from the surgical [47(44.3%)] and medical [42(39.6%)] departments. Only 50/106(47.2%) patients had upper gastrointestinal endoscopy/surgery performed to verify the source of bleeding. Unexplained abdominal pain [81(76.4%)] was the main driver for prescribing
intravenous PPIs empirically, out of which 73(68.9%) were for suspected upper gastrointestinal bleed. Overall, intravenous PPI was found to be inappropriately prescribed in 56(52.8%) patients for indication, dose or duration. Interventions on the use of intravenous PPI were most effective when performed by senior doctors (100%), followed by ward pharmacists (50%), and inpatient pharmacists (37.5%, p=0.027).

Conclusion: Inappropriate intravenous PPI usage is still prevalent despite the enforcement of hospital guidelines. The promotion of prescribing awareness and evidence-based prescribing through education of medical staff could result in more judicious use of intravenous PPI and dose-optimization.
Introduction

Proton pump inhibitors (PPIs) are currently the most effective agents for acid-related disorders. The high degree of acid suppression by PPIs make these drugs an ideal option in the treatment of various gastrointestinal disorders, where acid suppression promotes recovery (Brett 2005; Metz 2000). This is achieved by the formation of quarternary anionic structures, which then inhibits the secretion of hydrochloric acid into the stomach lumen by inhibiting the $\text{H}^+\text{K}^+\text{ATPase}$ of gastric parietal cells (Leontiadis et al. 2005). Continuous intravenous PPIs enables maintenance of an intragastric pH \geq6, which minimizes peptic activity and concurrently; platelet function is optimized and fibrinolysis is inhibited (Leontiadis et al. 2005). These actions help stabilize clot formation over the ulcer, thus making intravenous PPIs the drug of choice for peptic ulcer haemorrhage. Studies have shown that treatment with a PPI reduces the risk of ulcer re-bleeding, thus reducing the need for surgery; but has no benefit on overall mortality (Leontiadis et al. 2005).

Intravenous PPIs are indicated in the treatment of perforated gastric/duodenal ulcers, peptic ulcer disease, grade III/IV oesophagitis with bleeding and stress ulcer prophylaxis (in ventilated, critically ill patients) (Vanderhoff & Tahboub 2002). With these new recommendations, a dramatic increase in both oral and intravenous PPI use has been observed across the globe over recent years (Gingold et al. 2004; Hoover et al. 2009; Slattery et al. 2007a). However, several studies have demonstrated that 25-75% of patients receiving PPIs, particularly intravenous preparations, had no appropriate indication (Craig et al. 2010; Hoover et al. 2009; Slattery et al. 2007a). This emerging trend is worrisome as it reflects high rates of
inappropriate prescribing of PPIs in hospitals, leading to drug wastage which could have otherwise been prevented (Forgacs & Loganayagam 2008; Nasser et al. 2010).

Several audits on the appropriateness of intravenous PPIs have been conducted in the United States (Hoover et al. 2009; MacLaren et al. 2006), Canada (Afif et al. 2007), Europe (Craig et al. 2010; Slattery et al. 2007b) and the Middle East (Alsultan et al. 2010). Some studies were retrospective (Afif et al. 2007; Chavez-Tapia et al. 2008; MacLaren et al. 2006; Naunton et al. 2000), whilst others were prospective (Alsultan et al. 2010; Sebastian et al. 2003; Slattery et al. 2007b) in study design. In addition, two qualitative studies explored the barriers and perceptions of healthcare professionals in the use of intravenous PPIs (Grime et al. 2001; Hayes et al. 2010). To date, little is known about the prescribing practice of IV PPI in Malaysia.

In one tertiary hospital in Malaysia, guidelines on the use of intravenous PPIs have been set up by the Hospital’s Drugs and Therapeutics (D&T) Committee (Figure 1).

Although pharmacists in this hospital screen all intravenous PPI prescriptions upon its receipt in the inpatient pharmacy, little is known about the usage of intravenous PPIs, nor the effectiveness of this screening process. Our hypothesis is that there may still be a proportion of intravenous PPI prescriptions that may not be prescribed according to guidelines.

Aim of the study

To assess if the usage of intravenous PPIs was in accordance with guidelines, factors associated with its use and the effectiveness of a pharmacy-led intervention.
Method

This prospective study was conducted from May to August 2010 in a tertiary hospital in Malaysia. Study patients included adult inpatients prescribed intravenous pantoprazole (Nycomed GmbH, Konstanz, Germany) since pantoprazole was the only intravenous PPI available during the period of study. Patients aged <15 years old and those prescribed only oral PPIs were excluded. Approval from the hospital’s Medical Ethics Committee was obtained prior to the commencement of this study.

Procedure

All manual prescriptions for intravenous pantoprazole received in the inpatient pharmacy were screened by pharmacists to determine if they were in accordance with hospital guidelines (Figure 1). Interventions were performed either face-to-face by clinical pharmacists; or via the telephone by inpatient pharmacists (for areas not serviced by clinical pharmacists). During the period of study, every 4th case of a recent hospital admission prescribed intravenous pantoprazole was selected and followed-up during the duration of their stay in the hospital. Both the medication charts and clinical notes were examined to determine the rationale for prescription. Patients’ demographic data, past and current medical history and use of intravenous pantoprazole were collected using a structured data collection form. Patients were classified into two groups: those with suspected UGIB or those without (non-UGIB). All patients who had an upper gastrointestinal endoscopy (UGIE) or surgery had their reports reviewed. Stigmata of recent haemorrhage were defined as per Forrest classifications.

Definitions
The use of intravenous PPI was classified as appropriate if the diagnosis or findings (confirmed by UGIE or surgery) corresponded to the approved indications as shown in Figure 1. If intravenous PPI was discontinued within 72 hours for unapproved indications, its use was also classified as appropriate. (This decision was made by the D&T Committee to provide clinicians some flexibility). For UGIB, intravenous PPI use was considered appropriate if there was presence of recent haemorrhage at UGIE or surgery, defined as above. Appropriate intravenous PPI dosing was defined as 80 mg bolus of pantoprazole, followed by pantoprazole infusion at 8mg/h for 72 hours\cite{Ghassemi2009}. Suboptimal dosing regimens such as twice daily bolus intravenous pantoprazole were considered inappropriate. Use of intravenous PPI was considered inappropriate in patients with isolated variceal bleeding\cite{MacLaren2006} and in patients too well to undergo UGIE or where UGIE was considered not necessary. For patients who were haemodynamically unstable, with haematemesis, melaena or haematochezia, the use of intravenous PPI was considered appropriate.

For non-UGIB, intravenous PPI use was considered appropriate for stress ulcer prophylaxis in critically ill patients or patients previously on oral PPI (provided they were nil by mouth). The appropriate dose would be 40mg bolus once daily. Use of intravenous PPI in patients with abdominal pain or vomiting was considered inappropriate unless if the patient had another reason for intravenous PPI use and could not tolerate oral medications.

Each patient was followed-up until discharge or death. The following data were collected: haemodynamic status, time to initial UGIE, when UGIE was performed,
operative record, duration and dose of intravenous PPI use, as well as discharge oral PPI use. Factors predicting inappropriate use were also examined: patient age, gender, ethnicity, speciality of the prescriber and prescriber status.

Statistical analysis

Data were entered into the Statistical Package for Social Sciences (SPSS) version 18 (Chicago, II, USA). Continuous data were expressed as mean ± SD. Categorical variables were expressed as absolute (number) and relative frequencies (percentage). Categorical data were analysed using chi-squared tests. A p-value of <0.05 was considered as statistically significant.

Results

During the period of the study, a total of 409 patients were prescribed intravenous PPI. Only 106 patients were collected according to the methodology described. Baseline demographics and clinical details are shown in Table 1. Most patients were male [n=65(61.3%)] and Chinese [50(47.2%)], with a mean age of 60.3±18.0 years [range=15-96]. A total of 83(78.3%) patients had concurrent illness upon admission, with hypertension [n=50(47.2%)], diabetes [n=31(29.2%)] and heart disease [n=24(22.6%)] being the most common problems. Sixty two (58.5%) patients were on aspirin [n=26(25.5%)], clopidogrel [n=12(11.3%)] and enoxaparin [n=10(9.4%)]. The majority of intravenous PPI prescriptions were initiated by doctors from the surgical [47(44.3%)] and medical [42(39.6%)] departments; most of whom were junior doctors (medical officers without postgraduate qualifications) [n=73(68.9%)] (Table 1). Unexplained abdominal pain [81(76.4%)] was the main presenting symptom for these patients and was the driver for prescribing intravenous PPIs empirically.
Procedure to verify source of bleeding
Only 50/73 (68.5%) patients had either an UGIE [n=44/50 (88.0%)] or surgery [n=6/50 (12.0%)] performed to verify the source of bleeding (Table 1). UGIE for other patients with suspected UGIB was not performed for the following reasons: not clinically significant UGIB: n=29 (27.4%), critically ill: n=20 (18.9%), early mortality: n=3 (2.8%), recent endoscopy performed: n=3 (2.8%), and no consent obtained: n=1 (0.9%).

Among the 44 patients who had UGIE, 27 (61.4%) cases were performed within 24 hours and a further 17 (38.6%) within 48 hours. Only 1 (2.1%) UGIE was performed after office hours. Most patients [n=5 (83.3%)] also had their surgery performed within 24 hours from admission.

Appropriateness of intravenous PPI use, dose and duration
Overall, intravenous PPI was found to be inappropriately prescribed in 56 (52.8%) patients for indication, dose or duration. However individually, 34 (32.1%) patients were prescribed for an incorrect indication, 34 (32.1%) were prescribed an incorrect dose and 38 (35.8%) were prescribed an incorrect duration. A total of 73 (68.9%) prescriptions were initiated for suspected UGIB. Within the non-UGIB group (n=33), stress induced ulcer [n=9 (27.3% of non-UGIB cases)], abdominal pain [n=8 (24.2%)] and post operation prophylaxis [n=3 (9.1%)] were the most frequent indications. There was no difference between the UGIB and the non-UGIB group with regards to the inappropriateness of intravenous PPI use [UGIB=21 (26.9%) versus non-UGIB=13 (46.4%); \(\chi^2 = 3.598, p = 0.058 \).
Intravenous PPI prescriptions among patients with an UGIB who had undergone UGIE or surgery were less appropriate than those who had not (62.2% vs 89.3%, p=0.012) [Figure 2]. Similarly, with respect to the dose & duration, there was less appropriate prescribing amongst patients who had undergone UGIE or surgery compared to those who had not (42.2% vs 85.7%, p<0.001 and 48.9% vs 89.3%, p<0.001, respectively).

Interventions on the use of intravenous PPIs

A total of 28 prescribing interventions were performed on the use of intravenous PPI: incorrect indication, incorrect dose and incorrect duration (Figure 3). In one patient, pantoprazole was prescribed as an intravenous bolus dose of 40mg three times daily. Both the inpatient pharmacist and the senior doctor intervened, but the dosage was only corrected after the senior doctor’s intervention. Interventions by senior doctors were most effective [5/5(100%)] compared to those provided by the clinical or inpatient pharmacists, respectively [8/16(50.0%) and 3/8(37.5%)], and this difference was statistically significant (χ^2=4.91, p=0.027).

There were other issues that required intervention: intravenous PPI was prescribed in 34/106(32.1%) patients where its use was not justified, but interventions were only performed in 20/34(58.8%) patients. Three patients were started on the incorrect dose of intravenous pantoprazole: (i) 40 mg bolus loading dose (ii) 40 mg bolus dose administered three times daily and (iii) an incorrect dilution of 80 mg in 40mL normal saline at 8mL/hour for the high infusion dose. Prescribers also failed to convert 55(51.9%) patients from intravenous to oral PPI once the patient was clinically well to start oral intake.
Discussion

This study was conducted in a tertiary hospital over a 14-week period to assess the usage of intravenous PPI and its adherence to hospital guidelines. It was found that intravenous PPI was inappropriately prescribed in 52.8% patients, affirming our initial hypothesis that a number of doctors were prescribing intravenous PPI defensively in situations where unexplained abdominal pain was the main driver for inappropriate therapeutics. This could be due to the fear of liability arising from allegations of under-treatment, creating an error of commission rather than an error of omission. However, there is a price to be paid for defensive prescribing. The cause of the abdominal pain may not be as thoroughly investigated and unnecessary use of intravenous PPIs escalates total cost.

The decision to prescribe is influenced by many factors, such as the doctor’s perceptions of the patient’s social background, beliefs, attitudes and expectations, as well as the uncertainty of the diagnosis(Greenhalgh & Gill 1997). In addition, the lack of knowledge of the specifics on how to manage UGIBs and limited belief in the value of guidelines especially in areas where evidence is lacking (eg: in Intensive Care Units) may influence a clinician’s decision to prescribe inappropriately. Variability of knowledge and skills of junior and senior healthcare professionals together with a limited concern regarding cost or side effect implications could potentially be the other barriers(Hayes et al. 2010).

Overall, the inappropriate use of intravenous PPI in the present study (52.8%) were lower than findings from other studies which ranged from 57-78%(Afif et al. 2007; Craig et al. 2010; Hoover et al. 2009), One possible reason could be because there
were no existing guidelines in the other hospitals whereas an existing guideline plus a pharmacy-led intervention was already in place in our present study. Inappropriate use was most common in non UGIBs (Craig et al. 2010), but we did not find this difference in our present study (which may be due to the small sample size). The leniency of our definition of "appropriateness", whereby a leeway of prescribing intravenous PPI empirically for 3 days before discontinuation, may have influenced our data. Some studies have also shown that inappropriate intravenous PPI prescribing was strongly associated with surgical admissions (Craig et al. 2010; Hoover et al. 2009) and prescriptions initiated by junior doctors (Craig et al. 2010). However, it is a practice in our hospital that most junior doctors are prescribing based on advice given by the senior doctor, indicating that a gap of knowledge exists at both levels.

This audit found higher rates of inappropriate intravenous PPI use among patients with an UGIB who had undergone UGIE than those who did not (62.2% versus 89.3%, p=0.012). These findings are contrary to other studies which showed that there was higher association between appropriate uses of IV PPI with respect to UGIE (Alsultan et al. 2010). The high rate of inappropriate use in the present study was due to the doctor’s failure to stop intravenous PPI therapy once findings were confirmed to be Forest 3 gastric/duodenal ulcers (90.0%), variceal bleeds (62.5%) and negative UGIE outcomes (54.5%). Intravenous PPI was also prescribed at an incorrect dose and duration more often in patients who had undergone UGIE or surgery compared to those who had not (42.2% vs 85.7%, p<0.001). These findings are higher than expected when compared to other studies (Afif et al. 2007). As most of these cases had UGIB, the complete intravenous PPI regimen for UGIB (bolus
loading dose of 80 mg, followed by a high dose infusion at 8mg/h for 72 hours) was not prescribed. The number of patients who received the loading dose followed by intravenous infusion was very low. The lack of the intravenous 80mg bolus dose in these patients could have delayed acid suppression and might constitute a possible dosing error (Brunner et al. 1997). In patients who did not undergo UGIE, most patients were prescribed 40mg bolus twice daily – the most commonly prescribed intravenous PPI dose. These were appropriate doses as these patients did not have suspected UGIB.

Early UGIE allows for safe and prompt discharge of low risk patients, improves outcomes for high risk patients and reduces resource use (Hayes et al. 2010). This audit revealed that UGIE/surgery was only performed in 50 (47.2%) cases with suspected UGIB. Whilst some of the reasons for withholding UGIE appeared valid (i.e. too critically ill or early mortality), a number of patients had no evidence of clinically significant UGIB, usually a suspected benign condition like Mallory-Weiss tears. Whilst the clinicians managing these patients were confident enough to withhold an UGIE, the continuation of intravenous PPI in these cases suggested their lack of experience in managing these cases.

The screening process by the pharmacy department for intravenous PPI prescription was inadequate in this study. A number of prescriptions for intravenous PPI arrived after office hours and bypassed the usual screening process by pharmacists. The pharmacy technician on duty supplied one day’s treatment of intravenous PPI. The prescription should then have been sent to the inpatient pharmacy the following day to be screened in the usual manner. However, these prescriptions are sometimes
“lost” in a paper trail and pharmacists may fail to screen these prescriptions. The knowledge and application of guidelines may not be optimally monitored in a hospital for different reasons: the healthcare professionals’ lack of awareness of a monitoring process, a lack of formalized monitoring process, or the unwillingness of some pharmacists to challenge a doctor’s prescribing behavior (Hayes et al. 2010). Interventions on the use of intravenous PPI were most effective when performed by senior doctors (100%), followed by wards pharmacists (50.0%), and least effective when performed by inpatient pharmacists (42.9%). This finding was as expected, as junior doctors were more likely to follow the advice of their seniors. In the UMMC, only 7/33 (21.2%) wards have clinical pharmacists. Ward pharmacists are more effective in their interventions as they have face-to-face contact and a working relationship with doctors on the ward. Inpatient pharmacists were intervening over the phone. This type of intervention is impersonal and tends to be ineffective. Possible solutions to this problem include an order template, to have more clinical pharmacists to cover wards.

This study has several limitations. Although systematically selected, our cases for study may have not been entirely representative of all patients administered intravenous PPI in this institution. Only one out of every fourth prescription was selected due to time constraints. Data collection over a longer period of time (either 6 or 12 months) would have minimised this limitation. Secondly, definitions of appropriateness used in this study may not have been entirely consistent with other publications on this topic. Our definitions were derived largely from decision made by the D&T committee.
Conclusion

Inappropriate intravenous PPI usage is still prevalent despite the enforcement of hospital guidelines. The promotion of prescribing awareness and evidence-based prescribing through education of medical staff could result in more judicious use of intravenous PPI, not only in terms of approved hospital indications but also in dose-optimization according to indication. Ward-based pharmacists have a role, but have less of an impact on changing prescribing errors when compared to senior doctor intervention.

COMPETING INTERESTS

Financial competing interests: none
Non-financial competing interests: none

The author's certify that this material is not under review by any other publication, has not been previously published except as an abstract for the Asian Pacific Digestive Week, 1-4 October 2011, Singapore, Journal Gastroenterology and Hepatology 26(Suppl 5): 265.

AUTHORS' CONTRIBUTIONS

PSM Lai made substantial contributions to the conception and design, analysed and interpreted the data, contributed to the discussion and wrote the manuscript; YY Wong, YC Low, HL Lau acquired the data, analysed and interpreted the data and contributed to the discussion, Kin-Fah Chin analysed and interpreted the data and contributed to the discussion, Sanjiv Mahadeva made substantial contributions to the conception and design, analysed and interpreted the data, contributed to the discussion and wrote the manuscript.

All authors reviewed and edited the final manuscript.
ACKNOWLEDGEMENTS

We would like to thank Siew Chen Lim, Huey Shean Lee, Han Chen Low and the nursing staff (of the surgical and medical wards) for their assistance in data collection.

Funding for this research: none
REFERENCES

Afif W, Alsulaiman R, Martel M, and Barkun AN. 2007. Predictors of inappropriate utilization of intravenous proton pump inhibitors. *Aliment Pharmacol Ther* 25:609-615.

Alsultan MS, Mayet AY, Malhani AA, and Alshaikh MK. 2010. Pattern of intravenous proton pump inhibitors use in ICU and Non-ICU setting: a prospective observational study. *Saudi J Gastroenterol* 16:275-279.

Brett S. 2005. Science review: The use of proton pump inhibitors for gastric acid suppression in critical illness. *Crit Care* 9:45 - 50.

Brunner G, Luna P, Hartmann M, and Wurst W. 1997. Optimizing the Intragastric pH as a Supportive Therapy in Upper GI Bleeding. *Yale J Bio Med* 69:225-231.

Chavez-Tapia NC, Tellez-Avila FI, Garcia-Leiva J, and Valdovinos MA. 2008. Use and overuse of proton pump inhibitors in cirrhotic patients. *Med Sci Monit* 14:CR468-472.

Craig DGN, Thimappa R, Anand V, and Sebastian S. 2010. Inappropriate utilization of intravenous proton pump inhibitors in hospital practice—a prospective study of the extent of the problem and predictive factors. *QJM* 3:327-335.

Forgacs I, and Loganayagam A. 2008. Overprescribing proton pump inhibitors. *BMJ* 336:2-3.

Ghassemi K, Kovacs T, and Jensen D. 2009. Gastric acid inhibition in the treatment of peptic ulcer hemorrhage. *Curr Gastroenterol Rep* 11:462-469.

Gingold AR, Narasimhan G, Augello S, and Clain DJ. 2004. The Prevalence of Proton Pump Inhibitor Use in Hospitalized Patients. *Prac Gastroenterol* 30:24-36.

Greenhalgh T, and Gill P. 1997. Pressure to prescribe. *BMJ* 315:1482-1483.

Grime J, Pollock K, and Blenkinsopp A. 2001. Proton pump inhibitors: perspectives of patients and their GPs. *Br J Gen Pract* 51:703-711.

Hayes SM, Murray S, Dupuis M, Dawes M, Hawes IA, and Barkun AN. 2010. Barriers to the implementation of practice guidelines in managing patients with nonvariceal upper gastrointestinal bleeding: A qualitative approach. *Can J Gastroenterol* 24:289-296.
Hoover J, Schumaker A, and Franklin K. 2009. Use of Intravenous Proton-Pump Inhibitors in a Teaching Hospital Practice. *Dig Dis Sci* 54:1947-1952.

Leontiadis GI, Sharma VK, and Howden CW. 2005. Systematic review and meta-analysis of proton pump inhibitor therapy in peptic ulcer bleeding. *BMJ* 330:568.

MacLaren R, Obristsch MD, Sherman DS, Jung R, and Fish DN. 2006. Assessing adherence to an Intravenous Pantoprazole Guideline. *J Pharm Technol* 22:15-21.

Metz DC. 2000. Potential Uses of Intravenous Proton Pump Inhibitors to Control Gastric Acid Secretion. *Digestion* 62:73-81.

Nasser SC, Nassif JG, and Dimassi HI. 2010. Clinical and cost impact of intravenous proton pump inhibitor use in non-ICU patients. *World J Gastroenterol* 16:982-986.

Naunton M, Peterson GM, and Bleasel MD. 2000. Overuse of proton pump inhibitors. *J Clin Pharm Ther* 25:333-340.

Sebastian SS, Keman N, Qasim A, O'Morain CA, and Buckley M. 2003. Appropriateness of gastric antisecretory therapy in hospital practice. *Ir J Med Sci* 172:115-117.

Slattery E, Theyventhiran R, Cullen G, Kennedy F, Ridge C, Nolan K, Kidney R, O'Donoghue DP, and Mulcahy HE. 2007a. Intravenous proton pump inhibitor use in hospital practice. *European Journal of Gastroenterology & Hepatology* 19:461-464 10.1097/MEG.1090b1013e32810fd32888a.

Slattery E, Theyventhiran R, Cullen G, Kennedy F, Ridge C, Nolan K, Kidney R, O'Donoghue DP, and Mulcahy HE. 2007b. Intravenous proton pump inhibitor use in hospital practice. *Eur J Gastroenterol Hepatol* 19:461-464 10.1097/MEG.1090b1013e32810fd32888a.

Vanderhoff BT, and Tahboub RM. 2002. Proton Pump Inhibitors: An Update. *Am Fam Physician* 66.

Figure Legends

Figure 1
Guidelines on the use of intravenous proton pump inhibitors
Figure 2
Appropriateness of intravenous proton pump inhibitor use, dosing regimen and duration of therapy in patients with suspected upper gastrointestinal bleed

Figure 3
Interventions performed on the use of intravenous proton pump inhibitors
Figure 1

Image of current guidelines

Confirmation procedure

- Surgery
- UGIE
- None

Findings

UGIB:
- Stigmata of recent haemorrhage (+/- perforated gastric/duodenal ulcer)
- Grade III/IV oesophagitis with bleeding

Non-UGIB:
- Stress ulcer prophylaxis in ventilated, critically ill patients
- Patients who were fasted and were already taking oral PPI (with appropriate justification) prior to admission

Others
- Patients without stigmata of recent haemorrhage
- Isolated variceal bleeds
- Patients considered too well to undergo endoscopy or when endoscopy was considered unnecessary

Classification of use for intravenous PPI

- Appropriate
- Inappropriate

PPI=proton pump inhibitor; UGIE=upper gastrointestinal endoscopy; UGIB=upper gastrointestinal bleed
Figure 2

Image of appropriateness of PPI use

*clinically significant at p<0.05 using the chi-square test.

UGIB=upper gastrointestinal bleed; UGIE=upper gastrointestinal endoscopy
Suspected UGIB (n=73)

UGIE/surgery
45 (61.6%)

No procedure performed
28 (38.4%)

Appropriate use*
28 (62.2%)

Appropriate dose*
19 (42.2%)

Appropriate duration*
22 (48.9%)

Inappropriate use*
17 (37.8%)

Inappropriate dose*
26 (57.8%)

Inappropriate duration*
23 (51.1%)

Appropriate use*
25 (89.3%)

Appropriate dose*
24 (85.7%)

Appropriate duration*
25 (89.3%)

Inappropriate use*
3 (10.7%)

Inappropriate dose*
4 (14.3%)

Inappropriate duration*
3 (10.7%)
Figure 3

Flow chart of the interventions used with PPI

Interventions performed on the use of intravenous proton pump inhibitor [b]
Table 1 (on next page)

Table highlighting baseline demographics

Baseline demographics and clinical details of patients initiated on intravenous proton pump inhibitors
Characteristics	Number (%)	Number of appropriate intravenous PPI prescriptions (%)	p-value
Age (years)			
<60	40 (37.7)	26 (65.0)	0.616
>=60	66 (62.3)	46 (69.7)	
Gender			
Male	65 (61.3)	45 (69.2)	0.717
Female	41 (38.7)	27 (65.9)	
Ethnicity			
Chinese	50 (47.2)	34 (68.0)	0.669
Malay	30 (28.3)	21 (70.0)	
Indian	23 (21.7)	15 (65.2)	
Others (Indonesian, Nigerian, Bangladeshi)	3 (2.7)	2 (66.7)	
Speciality of prescriber			
Surgical	47 (44.3)	34 (72.3)	0.348
Medical	42 (39.6)	27 (64.3)	
Intensive Care	13 (12.3)	8 (61.5)	
Orthopaedics	3 (2.8)	3 (100.0)	
Obstetrics & Gynaecology	1 (0.9)	0	
Designation of prescriber			
Senior doctors (specialists)	33 (33.1)	24 (72.7)	0.476
Junior doctors (medical officers)	73 (68.9)	48 (65.8)	
Mean duration of hospital stay ± SD (days) [range]	20.6 ±19.9 [1-109]		
Mean haemoglobin levels at admission ± SD (g/L) [range]	10.2 ±2.7 [4.4-18.2]		
<8	21 (19.8)	16 (22.2)	0.663
8-10	32 (30.2)	21 (29.2)	
>10	53 (50.0)	35 (48.6)	
Procedure to verify source of bleeding			
Endoscopy	44 (41.5)	27 (61.4)	0.399
Surgery	6 (5.7)	5 (83.3)	
None	56 (52.8)	40 (71.4)	