On the Feasibility and Implications of
Self-Contained Search Engines in the Browser

Jimmy Lin
University of Maryland, College Park
jimmylin@umd.edu

ABSTRACT

JavaScript engines inside modern browsers are capable of running sophisticated multi-player games, rendering impressive 3D scenes, and supporting complex, interactive visualizations. Can this processing power be harnessed for information retrieval? This paper explores the feasibility of building a JavaScript search engine that runs completely self-contained on the client side within the browser—this includes building the inverted index, gathering terms statistics for scoring, and performing query evaluation. The design takes advantage of the IndexedDB API, which is implemented by the LevelDB key-value store inside Google’s Chrome browser. Experiments show that although the performance of the JavaScript prototype falls far short of the open-source Lucene search engine, it is sufficiently responsive for interactive applications. This feasibility demonstration opens the door to interesting applications in offline and active search capabilities. The interesting applications and architectural possibilities enabled by the in-browser concept promises to open up many interesting possibilities. However, browser-based search engines provide interesting opportunities for information retrieval, both from the perspective of enabling novel applications and opening up the design space of search architectures. These possibilities are detailed in Section 2.

In addition to discussing the implications of a browser-based JavaScript search engine, this paper describes the design and implementation of JScene (pronounced “jay-seen”, rhymes with Lucene), an open-source proof-of-concept that illustrates the feasibility of these ideas. JScene takes advantage of the IndexedDB API, which is supported by a few modern web browsers and implemented using LevelDB in Google’s Chrome browser—the result is a completely self-contained search engine that executes entirely on the client side without any external dependencies. The design of the prototype, detailed in Section 3, highlights the challenges of performing (relatively) large-scale data manipulations inside the browser as well as the idiosyncrasies and limitations of JavaScript for implementing standard information retrieval algorithms. The focus of experiments in Section 4 is to evaluate the feasibility of the idea in terms of index scalability and query latency.

As a reference, JScene is compared against the popular open-source Java search engine Lucene; it should not be a surprise that JScene falls short of Lucene in performance, but results nevertheless demonstrate that a pure JavaScript implementation is sufficiently responsive to support interactive search capabilities. The interesting applications and architectural possibilities enabled by the in-browser concept suggests that such designs merit additional exploration, especially since advances in browser-based technologies will continue to narrow the performance gap between in-browser and native applications.

1. INTRODUCTION

In nearly all deployments, search engines handle the vast bulk of processing (e.g., document analysis, indexing, query evaluation) on the server side; the client is mostly relegated to results rendering and interface manipulations. This approach vastly under-utilizes the tremendous processing capabilities of clients. For example, web browsers today embed powerful JavaScript engines capable of running real-time collaborative tools, powering online multi-player games, rendering impressive 3D scenes, supporting complex, interactive visualizations, enabling offline applications, and even running first-person shooters. These applications take advantage of HTML5 standards such as WebGL, WebSocket, and IndexedDB, and therefore do not require additional plug-ins (unlike with Flash).

Can we apply this processing power for information retrieval in interesting new ways? This paper explores the feasibility of building a JavaScript search engine that runs completely self-contained in the browser—this includes parsing documents, building the inverted index, gathering terms statistics for scoring, and performing query evaluation.

Is such a design merely a curiosity, or does it offer advantages over traditional client–server architectures? Even as a curiosity, this work explores how far browser technologies have advanced in the previous decade or so, where they have emerged as a viable platform for delivering rich user experiences. However, browser-based search engines provide interesting opportunities for information retrieval, both from the perspective of enabling novel applications and opening up the design space of search architectures. These possibilities are detailed in Section 2.

2. DESIGN IMPLICATIONS

Suppose it were possible to build an in-browser JavaScript search engine that is fully self-contained and delivers reasonable performance: so what? More than a technical curiosity, such a design promises to open up many interesting possibilities in terms of applications and search architectures, detailed below.
2.1 Applications

There are at least three advantages of self-contained, in-browser search engines that enable interesting applications:

Offline access. One obvious advantage of this design is that the user doesn’t need to be connected to the internet, so that documents are available for searching offline. One can imagine a background process that continuously ingests web pages that the user has visited in the recent past and updates an index of these documents—search capabilities would then be available even if the computer were disconnected from the network. Previous studies have shown that a significant fraction of users’ search behavior on the web consists of “refinding” [13], or searching for pages they had encountered before. Thus, a reasonably-sized local index might achieve good coverage of many user queries. While building and maintaining the index, there is no reason why pages themselves can’t be cached locally to provide direct access to content offline. Note that such an application sidesteps the typical issues associated with maintaining data consistency in a networked environment: the pages are read only and users are already accustomed to artifacts of page caching in modern search environments (e.g., content divergence between live and cached copies).

Beyond “vanilla” web pages, it should be possible, via lightweight connectors, to build integrated search capabilities over a multitude of web-based services that are ubiquitous today. This would make it possible to index content of email (from web-based email services), online documents (e.g., Google Docs), calendar entries, contacts, to-do lists, etc., providing what we call “desktop search” today completely within the browser.

Private search. Another advantage of a search engine that resides completely self-contained within the browser is that there is no third party logging queries, clicks, and other interactions. This is particularly useful when a user has a collection of documents she wishes to search privately—for example, when researching a medical condition, some stigmatized activity, or other sensitive topics. This scenario would be operationalized by coupling the in-browser search engine with a focused crawler: the user would, for example, direct the crawler at a collection of interest (e.g., a website with medical information), and the search engine would then ingest documents according to crawl settings. In practice, this might happen overnight while the computer is otherwise idle, and the index would be ready for searching the next day. An external party might still be able to infer search intent based on the documents gathered, but the degree of privacy can be controlled by the breadth of the crawl (for example, crawling a site hosting medical information in its entirety would hide the exact aliment). This represents a time (and space) vs. privacy tradeoff that the user can determine based on personal preferences.

Multi-platform execution. Although the application scenarios described above could be accomplished via native applications or browser plug-ins, the primary advantage of a pure JavaScript implementation is the ubiquity of the browser and the use of HTML5 standards. Although in reality the situation is far more nuanced, the use of standards means that applications are able to execute in any compliant browser. It is true today that support for newer standards varies, but maturity in terms of implementation will improve over time. Thus, a browser-based application promises seamless execution across operating systems and devices (laptops, tablets, mobile phones).

Building on HTML5 APIs also simplifies multi-device synchronization. Since the search engine manages index structures locally, providing a seamless experience as the user moves from device to device requires a mechanism for synchronizing data. One can imagine a cloud-based mechanism for accomplishing this, which would also double as a backup service—this is fundamentally no different from services today that synchronize bookmarks and other browser-resident information across different devices.

One might argue that a cloud-based backend would defeat the privacy advantage of the design, but it would be reasonably straightforward to layer encryption on top of the synchronization and storage infrastructure. The implementation would be similar to third party services today that provide encryption for data stored in public clouds (e.g., Amazon’s S3).

2.2 Architectures

In addition to enabling new types of applications, the in-browser search engine concept opens the door to a number of novel search architectures:

Load shedding. From the perspective of a commercial search engine company, which needs to continuously invest billions in building datacenters, in-browser search capabilities are appealing from the perspective of reducing server load. However, “dispatching” queries for local execution on the client’s machine may eliminate the opportunity to generate revenue (i.e., via ad targeting), but this is an optimization problem that search engine companies can solve. Although the coverage of a local index would be miniscule compared to the centralized index of a commercial search engine, for particular classes of queries (such as the “refinding” queries discussed above), the local collection might be adequate (and it is possible that refinding queries provide fewer ad targeting opportunities anyway). The type of query, properties of the local index (summarized perhaps via some content digest), current query load on the servers, network latency, and even time of day may factor into the decision of whether query evaluation is best performed on the server or in the client’s browser.

Split execution. Instead of purely server-side or client-side query execution, there are possibilities for split execution where query evaluation is performed cooperatively. One attractive possibility is search personalization, where search results are specifically tailored to a user’s interests (e.g., consider the query “Impala” coming from a car enthusiast vs. a database researcher). Architecturally, search personalization might be conceived as a two step process: first, retrieve a set of “generic” results, and then reweight or rerank those results based on user-specific features such as query and browsing history [3], social bookmarks [10], or the user’s ego-centric social network (in the case of social search on Facebook, LinkedIn, Twitter, etc.) [14] [7]. In this setup, the generic search results might be computed by a centralized service, and the client would handle personalization. The types of features and signals needed for personalization are exactly those that could be gathered by an in-browser search engine. In fact, this design has additional advantages in being able to leverage more intimate aspects of a user’s profile, features that the user would not be comfortable sharing with a third party.
Another possible architecture could implement a recent conception of search as progressive refinement, for example, the cascade model [5]. The general idea is that search proceeds in stages, starting with “cheap” features (e.g., simple boolean term matching) to progressively more “expensive” features (e.g., analyzing phrase relationships). The increased cost of each stage is offset by considering a progressively smaller set of documents until the final results are returned to the user. It might be possible to offload the later stages of such a ranking model to the client, where the joint optimization considers the size of intermediate results, how expensive the features are, server load, and other factors.

Distributed search marketplace. Synthesizing the ideas discussed above, one possible future scenario is the emergence of a marketplace for hybrid models of centralized and distributed search where optimization decisions are arrived at jointly by rational economic actors driven by incentives.

For example, a commercial search engine company might offer an incentive for a user to execute all or part of a search locally, in the form of a micropayment or the promise of privacy (e.g., not storing the queries and interactions). From the search engine company perspective, the value of the incentive can be computed from the capital and operating costs of running datacenters, revenue opportunities from ad targeting, etc. Commercial search engine companies have a clear sense of which searches are “money-makers” (rich ad targeting opportunities) and which aren’t. Yet, all searches currently cost the companies money. From the users’ perspective, they can control in a fine-grained manner their preferences for privacy and resource usage. The marketplace determines when the incentives on both ends align. To the extent that “money-loser” queries overlap with the types of queries that can be handled locally, such transactions are mutually beneficial.

This scenario describes a possible market-driven solution to issues of privacy and concerns over data mining by internet services. Current attempts at addressing these issues via legal and policy tools cannot escape unintended consequences, and a market-based solution with explicit incentives may be more effective. The key idea is for all parties involved to clearly articulate their utility functions with respect to privacy, latency requirements, coverage, resource usage, etc., and let market mechanisms determine the conditions under which transactions occur. The expression of these preferences and tradeoffs could be as fine-grained as individual queries or as coarse-grained as generic “search profiles”, depending on the context of the search.

3. FEASIBILITY STUDY

Having discussed the interesting applications and architectural possibilities of self-contained, in-browser search engines, it is now time to address the practical question: Is such a design actually feasible? Note that the goal of JScene, the proof-of-concept prototype described in this paper, is to show that it is possible to build a pure JavaScript in-browser search engine with reasonable performance—within users’ latency tolerance for interactive search. Of course, the performance of the system will not come close to a custom-built search engine (e.g., Lucene), but that’s not the point; a feasibility demonstration confirms that this general concept warrants further exploration. To facilitate follow-on work, the JScene prototype is released under an open-source license and available to anyone interested [6].

At the storage layer, JScene depends on LevelDB, an on-disk key–value store built on the same basic design as the Bigtable tablet stack [4]. It is implemented in C++ and was open-sourced by Google in 2011. The key–value store provides the Chrome implementation of the Indexed Database (IndexedDB) API, which is formally a W3C Candidate Recommendation (July 2013) [7]. LevelDB supports basic put, get, and delete operations on collections called “stores”. Keys are maintained in sorted order, and the API supports forward and backward iteration over keys (i.e., range queries). Data are automatically compressed using the Snappy compression library, which is optimized for speed as opposed to maximum compression. The upshot is that inside every Chrome browser, there is a modern key–value store accessible via JavaScript. The JScene prototype takes advantage of LevelDB, as exposed via the IndexedDB API, to store all index structures.

3.1 Index Construction

Nearly all keyword search engines rely on an inverted index, which maps terms to postings lists. Each posting in a postings list corresponds to a document that contains the relevant term and typically holds other information such as the term frequency or term positions (to enable phrase queries). The biggest challenge of an in-browser JavaScript-based search engine is implementing the inverted index using the provided APIs.

The IndexedDB API is built around key–value pairs, where values can be complex JavaScript objects and keys can be JavaScript primitives, a field inside the value object, or auto generated. In JScene, the postings are held in a store called `postings`, where the key is a concatenation of the term and the docid containing the term, and the value is the term frequency. For example, if the term “hadoop” were found twice in document 2842, the key would be “hadoop+2842” (with “+” as the delimiter) with a value of 2. In the tweet search demo application (see Section 4), tweet ids can be used directly as docids, but in the general case, docids can be sequentially assigned as documents are ingested. A postings list corresponds to a range of keys in the `postings` store, and thus query evaluation can be translated into range scans, which are supported by IndexedDB.

A few alternative designs were considered, but then rejected (at least for this prototype): it seemed more natural to map each individual posting onto a key–value pair as opposed to accumulating a list as the value of a single key (the term), since in that case the indexer would need to rewrite the value every time a term was encountered. Of course, it is possible to batch data and perform term–document inversion in memory, but this adds considerable complexity that is perhaps not necessary for a proof of concept. In many retrieval engines, terms are mapped to unique integer ids, which allows the postings to be more compactly encoded. Since with IndexedDB the keys are strings, this doesn’t seem like much help. Another design might be to store the hash

3 Admittedly, this solution leaves aside the issue of how to solicit preferences from lay users and help them understand the implications of their decisions. However, consumer education is already a problem today, so this proposed marketplace solution doesn’t make anything “worse”.

http://jscene.io/
http://www.w3.org/TR/IndexedDB/
value of the term, thus creating uniform-length keys. However, this would require separately storing the actual term in the value (to handle hash collisions), which would take up too much space.

Given this design, the indexer operation is fairly straightforward. Each document is represented as a JSON object and the entire collection is stored in an array. The indexer processes each document in turn and generates key–value pair insertions corresponding to the inverted index design described above. All transactions in IndexedDB are asynchronous, where the caller supplies an `onsuccess` callback function which is executed once the transaction completes. Thus, a naïve indexer implementation based on a for loop that iterates over the documents would simply queue potentially millions of transactions, completely overwhelming the underlying store. Instead, the indexer is implemented using a chained callback pattern—the `onsuccess` callback function of a transaction to insert a key–value pair initiates the next insertion, iterating through all tokens in a document and then proceeding to the next document, until the entire collection has been processed. This style of programming, although foreign in languages such as C/C++ or Java, is common in JavaScript.

Separately, the index also needs to store document frequencies (the number of documents that a term appears in) for scoring purposes. These statistics are held in a separate store, aptly named `df`. The document frequencies are first computed by iterating over the entire collection and keeping track of term statistics in a JavaScript object (i.e., used essentially as a hash map). Once all documents have been processed, all entries in the object are inserted into the store, with the term as the key and the document frequency as the value. Once again, the chained callback pattern described above is used for these operations.

3.2 Query Evaluation

Once an inverted index is constructed, query evaluation algorithms traverse postings in response to user queries to generate a top *k* ranking of results. Query evaluation for keyword search, of course, is a topic that has been extensively studied (see [16] for a survey). In the context of this work, the goal is to explore the feasibility of in-browser keyword search, of course, is a topic that has been extensively studied. In the context of disjunctive (OR) query evaluation. Finally, this approach provides a method that advances the current implementation, so a smaller sub-collection was created via random sampling (more details below). Of course, JScene is capable of working with arbitrary text collections, although Twitter presents a compelling application scenario.

Experiments were conducted on a 2012-generation MacBook Pro, with a quad-core Intel Core i7 processor running at 2.7 GHz with 16 GB RAM and a 750 GB SSD. The laptop contained all available upgrades at the time it was purchased, and can be characterized as high-end consumer-grade. The machine ran Mac OS X 10.9.2 with Google Chrome version 33.0.1750.146.

As a point of reference, JScene was compared to the open-source Java-based Lucene search engine (version 4.7.0). To provide a fair comparison, the Lucene queries were formulated to specify the same constraints as in JScene (e.g., documents must contain the first query term), although Lucene uses a document-at-a-time query evaluation algorithm that operates differently. To ensure that both systems were processing the same content, for JScene the collection was first tokenized with the Lucene tools provided as a reference implementation in the TREC evaluations.¹

¹http://twittertools.cc/
the resulting tokens were then re-materialized as strings to create the JSON documents. At indexing time, JScene simply split these strings by whitespace without performing any additional processing, which ensured consistent tokenization with Lucene.

Initial trials indicated that JScene would not be able to index the entire Tweets2011 collection (~16 million tweets) within a reasonable amount of time. Thus, for the experiments a smaller collection comprising 1.12m tweets was created by random sampling. In total, the documents contain 13.9m tokens with 1.74m unique terms, occupying 140 MB on disk uncompressed.

Performance was assessed using 109 queries from the Microblog evaluations at TREC 2011 and 2012. These queries represent information needs developed by NIST assessors, based on their conception of what users might want to search for on Twitter. A few examples are shown in Table 1. After stopword removal these queries average 2.9 terms, which is slightly longer than typical web search queries. In the actual TREC evaluations, the queries were associated with timestamps indicating the query time; these were ignored and search was conducted over the entire (sampled) collection. Note that without actual query logs from Twitter, it is impossible to test JScene on a “realistic” query load—but the TREC queries represent a widely-accepted evaluation benchmark by the information retrieval community.

The relevant metrics in these experiments are indexing and query evaluation speed. Evaluations did not include effectiveness (e.g., precision) for a few reasons: the smaller sampled collection means that there are fewer relevant documents, which introduces noise in early precision measurements (the typical effectiveness metrics for these types of tasks). Furthermore, state-of-the-art ranking algorithms apply machine learning to a candidate set of documents (e.g., from a basic tf-idf model); previous experiments have shown that end-to-end effectiveness is relatively insensitive to the quality of these intermediate results[1], which makes an isolated component-level evaluation less meaningful.

id	query
2	2014 FIFA soccer
36	Moscow airport bombing
41	Obama birth certificate
67	Boston Celtics championship
86	Joanna Yeates murder

Table 1: Sample queries.

5. RESULTS AND DISCUSSION

It took JScene 644 minutes (~10.7 hours) to build the inverted index for 1.12m tweets and another 152 minutes (~2.5 hours) to construct the document frequency table (both averaged over two trials). As hinted before, this is about the largest collection that can be reasonably indexed at once given the current implementation, corresponding to the user leaving the laptop on overnight (although there are other usage scenarios where the documents are indexed incrementally). While building the inverted index, the Mac OS X Activity Monitor showed CPU usage oscillating roughly between 15% and 25%, where the peaks correspond to LevelDB compaction events. These utilization levels suggest that the process is IO bound (even though the machine is equipped with an SSD). The LevelDB data for the postings occupy approximately 1.6 GiB on disk, and the document frequency table another 0.2 GiB.

Indexing results translate into a sustained write throughput of around 360 postings per second. However, these figures are not directly comparable with other performance evaluations of LevelDB because of at least two reasons: first, it is unclear how much overhead JavaScript and the IndexDB API introduce, and second, our chained callback implementation means that the insertions were performed sequentially (i.e., synchronously), which is known to be much slower than the standard asynchronous write mode[1].

For reference, Lucene took 27 minutes to index the same collection on a single thread (averaged over two trials). The on-disk index size is just 154 MiB. It is quite clear that JScene indexing throughput falls far short of Lucene, and that Snappy compression is far less effective than special-purpose compression schemes designed specifically for search. This should not be surprising.

Table 2 compares query latency of JScene and Lucene for the 109 queries from TREC 2011 and 2012: figures show mean, median, 90th-percentile, and max values (averaged over three trials). Results for both are with a warm cache and Lucene ran in a single thread. Note that in addition to per-query latencies reported in the table, Lucene has a one-time start-up cost of around 9ms for initializing index structures. In any realistic setup, of course, this cost is amortized over many queries and thus inconsequential. In terms of the mean, JScene is roughly two orders of magnitude slower than Lucene; the performance gap is about the same based on the other metrics. This is of course not surprising since Lucene uses specialized data structures and has received much attention from the open-source community in terms of performance tuning. However, JScene is nevertheless reasonably responsive, with query latencies within the range that users would expect for interactive systems. Note that these experiments do not account for network latencies that result from querying a remote service in a traditional client–service architecture; factoring in network latencies would narrow the performance gap between Lucene and JScene.

To further explore the performance of JScene, a set of terms were randomly sampled from the df store and treated as single-term queries. The performance of these queries are shown as solid squares in Figure 1. The figure focuses on terms with df less than 1000, but the linear relationship between df and query latency extends to all sampled terms. The solid squares give a sense of the lower bound of query latency, since any document-at-a-time query evaluation algorithm will need to scan all postings for a term. For comparison, the TREC queries are plotted as circles based on the df of their first query term. This plot illustrate two points: First, there remains much room for improvement in JScene’s query evaluation algorithm. Second, and more im-

Table 2: Query evaluation performance comparing JScene and Lucene; all values in milliseconds.
but co-exist with other players in a search marketplace.

In many application scenarios, document ingestion co-occurs where the system is presented with the collection all at once. In addition to query latency, index scalability (specifically, throughput) is another performance concern with the present prototype. However, keep in mind that the current limitations on indexing speed apply only to batch indexing, where the system is presented with the collection all at once. In many application scenarios, document ingestion co-occurs with user activity, which has a natural upper bound. Nevertheless, the optimizations discussed above will also improve the scalability of the index.

Given this feasibility demonstration, it would not be premature to start exploring some of the applications and architectures discussed in Section 2. Performance and scalability will continue to improve and become less and less of an issue—in the limit, local indexes have an inherent performance advantage in eliminating network latencies involved in communicating with remote hosts. Perhaps in time, centralized commercial search engines will no longer monopolize search-based access to information in the way they do today, but co-exist with other players in a search marketplace.

6. FUTURE WORK AND CONCLUSION

What can we conclude from these experiments? Results suggest that although a self-contained, in-browser JavaScript search engine is much slower than a custom native application (big surprise), the JavaScript implementation is sufficiently responsive for interactive querying. The current prototype is sufficiently performant to be deployed for searching (most) users’ timelines, i.e., all tweets that a user has ever read. From this perspective, the design is most definitely feasible and worthy of additional exploration.

These experimental results, however, reflect only a first attempt at realizing the general concept. The prototype reflects a fairly straightforward technical implementation, without applying any of the standard efficiency “tricks” that are available in every researcher’s toolbox. These include various types of compression, alternative schemas and storage layouts, optimizing data access patterns for better locality, etc. These techniques, coupled with future improvements in the IndexedDB implementation, will narrow the gap between in-browser and native search applications.

In addition to query latency, index scalability (specifically, throughput) is another performance concern with the present prototype. However, keep in mind that the current limitations on indexing speed apply only to batch indexing, where the system is presented with the collection all at once. In many application scenarios, document ingestion co-occurs with user activity, which has a natural upper bound. Nevertheless, the optimizations discussed above will also improve the scalability of the index.

7. REFERENCES

[1] N. Asadi and J. Lin. Effectiveness/efficiency tradeoffs for candidate generation in multi-stage retrieval architectures. SIGIR, 2013.
[2] N. Asadi and J. Lin. Fast candidate generation for real-time tweet search with Bloom filter chains. ACM TOIS, 31, 2013.
[3] P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey, F. Boris, and X. Cui. Modeling the impact of short- and long-term behavior on search personalization. SIGIR, 2012.
[4] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distributed storage system for structured data. OSDI, 2006.
[5] B. Chen and Z. Xu. A framework for browser-based multiplayer online games using WebGL and WebSocket. ICMT, 2011.
[6] J. Culpepper and A. Moffat. Efficient set intersection for inverted indexing. ACM TOIS, 20(4), 2010.
[7] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, S. Kumat, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang. Unicorn: A system for searching the social graph. VLDB, 2013.
[8] C. Gutwin, M. Lippold, and T. Graham. Real-time groupware in the browser: Testing the performance of web-based networking. CSCW, 2011.
[9] R. Leblon. Building advanced, offline web applications with HTML 5. Master’s thesis, Universiteit Gent, 2010.
[10] M. G. Noll and C. Meinel. Web search personalization via social bookmarking and tagging. The Semantic Web, 2007.
[11] I. Ounis, C. Macdonald, J. Lin, and I. Soboroff. Overview of the TREC-2011 Microblog Track. TREC, 2011.
[12] I. Soboroff, I. Ounis, C. Macdonald, and J. Lin. Overview of the TREC-2012 Microblog Track. TREC, 2012.
[13] S. K. Tyler and J. Teevan. Large scale query log analysis of re-finding. WSDM, 2010.
[14] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. De Castro Reis, and B. Ribeiro-Neto. Efficient search ranking in social networks. CIKM, 2007.
[15] L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. SIGIR, 2011.
[16] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys, 38(6):1–56, 2006.