Online Supplement to

“An Empirical Comparison of Multiple Imputation Methods for Categorical Data”

Olanrewaju Akande, Fan Li and Jerome Reiter

This is a supplementary material to the paper. It contains tables describing the variables used in the simulation, coverage rates and relative mean squared errors from the sensitivity analysis for the $n = 10000$ and 30% MCAR scenario as well as the $n = 10000$ and 10% MCAR scenario, and median coverage rates across all scenarios.
1. VARIABLES USED IN SIMULATION

Table 1 provides a summary of the variables used in the simulation studies.

Table 1. Variables from the 2012 ACS used in the simulation studies

ACS variable	Description	Categories	Variable Type
ACR	Lot size of house	4	Ordinal
AGS	Yearly sales of agricultural products	7	Ordinal
BATH	Bathtub or shower	2	Binary
BDSP	Number of bedrooms	15	Discrete
BLD	Units in structure	10	Nominal
BUS	Business or medical office on property	3	Nominal
HHL	HH language	5	Nominal
HHT	HH/family type	5	Nominal
HUGCLNPP	Grandparent headed HH with no parent present	3	Nominal
HUPAC	HH presence and age of children	4	Nominal
HUPAOC	HH presence and age of own children	4	Nominal
HUPARC	HH presence and age of related children	4	Nominal
LNGI	Number of HH members – 14 and over – who speak English only or very well	2	Binary
MULTG	Multigenerational HH	2	Binary
MV	When occupants moved into house	7	Ordinal
NP	Number of persons in HH	19	Discrete
NR	Presence of nonrelative in household	2	Binary
PARTNER	Unmarried partner HH	5	Nominal
PSF	Presence of subfamilies in HH	2	Binary
R18	Presence of persons under 18 (unweighted)	2	Binary
R65	Presence of persons 65 years and over (unweighted)	3	Ordinal
REFR	Refrigerator	2	Binary
RMSP	Number of rooms	23	Discrete
RWAT	Hot and cold running water	2	Binary
SINK	Sink with a faucet	2	Binary
SRNTVAL	Specified rent or value owner unit	3	Nominal
STOV	Stove or range	2	Binary
TEL	Telephone	3	Nominal
TEN	Tenure	4	Nominal
TOIL	Flush toilet	2	Binary
VEH	Vehicles available	7	Ordinal
WIF	Workers in family during the past 12 months	5	Discrete
WKEXREL	Work experience of householder and spouse	16	Nominal
WORKSTAT	Work status of householder or spouse	16	Nominal
YBL	When structure was first built	16	Ordinal

HH = Household
2. MORE RESULTS FROM REPEATED SAMPLING EVALUATIONS

2.1 Sensitivity analysis for the $n = 10000$ and 30% MCAR scenario

We present the results from the sensitivity analysis for the $n = 10000$ and 30% MCAR scenario. For the first sensitivity analysis, we remove the seven variables with probabilities near one, and perform an independent simulation of 200 runs on the remaining variables. We have 83 marginal probabilities, 2590 bivariate probabilities and 37216 trivariate probabilities. As evident in the top panels of Figure 1 and Table 2, the overall patterns are similar to those in presented in the paper. MI-GLM is more competitive with MI-CART although MI-CART continues to result in slightly better coverage rates overall. MI-DPM yields median coverage rates around or slightly above 95%; however, it continues to have longer left tails than the other methods for bivariate and trivariate probabilities. The large values of Rel.MSE still correspond to low probability events in the population; for example, the probability of having no children in the household and having one or more persons under 18 present in the household in the population is nearly zero.

As a final sensitivity analysis, we add in the seven variables with more than ten categories, and perform an independent set of 200 simulations comparing MI-CART and MI-DPM only. We continue to exclude the variables with probabilities near one. As a result, the comparison focuses on 28 variables with 177 marginal probabilities, 9049 bivariate probabilities and 180218 trivariate probabilities. As evident in the bottom panels of Figure 1 and Table 2, including the variables with ten levels does not fundamentally change the conclusions about MI-CART and MI-DPM.
Figure 1. Simulated coverage rates for other MCAR scenarios with $n = 10000$ and 30% missing data rate. Top panel is for MI-GLM, MI-CART and MI-DPM for the scenario with $p = 21$, where we exclude the seven variables with marginal probabilities near one and the seven variables with more than ten levels, and bottom panel is for MI-CART and MI-DPM for the scenario with $p = 28$, where we only exclude the seven variables with marginal probabilities near one.

2.2 Sensitivity analysis for the $n = 10000$ and 10% MCAR scenario

We also present the results from the sensitivity analysis for the $n = 10000$ and 10% MCAR scenario. We remove the seven variables with probabilities near one and the seven variables with...
more than ten categories, and perform an independent simulation of 200 runs on the remaining variables. As evident in Figure 2 and Table 3, the overall patterns are again similar to those for other scenarios. Coverage rates are similar for all three methods, although MI-DPM continues to have longer left tails than the other methods for bivariate and trivariate probabilities. The similarities between the three methods are evident in the Rel.MSEs in Table 3.

2.3 Median coverage rates across all scenarios

Finally, we present the median coverage rate across all scenarios in Tables 4 to 10.

Table 2. Distributions of relative mean squared errors for other MCAR scenarios with \(n = 10000 \) and 30% missing data rate. Top panel is for MI-GLM, MI-CART and MI-DPM for the scenario with \(p = 21 \), where we exclude the seven variables with marginal probabilities near one and the seven variables with more than ten levels, and bottom panel is for MI-CART and MI-DPM for the scenario with \(p = 28 \), where we only exclude the seven variables with marginal probabilities near one.

	Marginal	Bivariate	Trivariate						
	GLM	CART	DPM	GLM	CART	DPM	GLM	CART	DPM
Results with \(p = 21 \)									
Min.	1.0	1.0	1.0	0.8	0.7	0.6	0.7	0.6	0.4
1st Qu.	1.3	1.1	1.2	1.4	1.2	1.2	1.2	1.1	1.1
Median	1.5	1.3	1.4	1.5	1.3	1.4	1.4	1.3	1.3
3rd Qu.	1.7	1.5	1.7	1.8	1.5	1.6	1.7	1.5	1.6
Max.	4.2	3.0	8.0	27.5	12.3	205.3	34.8	23.0	200.8

Results with \(p = 28 \)									
Min.	–	1.0	1.0	–	0.6	0.5	–	0.5	0.4
1st Qu.	–	1.2	1.3	–	1.1	1.1	–	1.0	0.9
Median	–	1.3	1.5	–	1.2	1.3	–	1.1	1.2
3rd Qu.	–	1.5	1.9	–	1.4	1.6	–	1.3	1.5
Max.	–	2.2	10.8	–	10.6	771.1	–	19.9	796.9
Figure 2. Simulated coverage rates for the MCAR scenario with \(n = 10000 \) and 10\% missing data rate. We exclude the seven variables with marginal probabilities near one and the seven variables with more than ten levels, resulting in \(p = 21 \) variables for imputation and analysis.

Table 3. Distributions of relative mean squared errors for the MCAR scenario with \(n = 10000 \) and 10\% missing data rate. We exclude the seven variables with marginal probabilities near one and the seven variables with more than ten levels, resulting in \(p = 21 \) variables.

	Marginal	Bivariate	Trivariate						
	GLM	CART	DPM	GLM	CART	DPM	GLM	CART	DPM
Min.	1.0	0.9	0.8	0.8	0.8	0.7			
1st Qu.	1.0	1.0	1.0	1.0	1.0	1.0			
Median	1.1	1.1	1.1	1.1	1.1	1.1			
3rd Qu.	1.1	1.1	1.2	1.1	1.1	1.1			
Max.	1.3	1.2	1.6	54.2	1.4	17.9	75.1	2.0	18.2

Table 4. Median simulated coverage rates for MI-GLM, MI-CART, MI-DPM, and the pre-missing data intervals when \(n = 10000 \) with 30\% values MCAR. We exclude seven variables with more than ten levels, resulting in \(p = 28 \) variables.

Median Coverage Rate	MICE	CART	DP	NO
Marginal	92.7	94.3	95.1	95.3
Bivariate	93.8	94.8	95.8	95.3
Trivariate	94.8	95.3	96.4	94.8
Table 5. Median simulated coverage rates for MI-GLM, MI-CART, MI-DPM, and the pre-missing data intervals when $n = 10000$ with 30% values MCAR. We exclude seven variables with more than ten levels and seven variables with marginal probabilities near one, resulting in $p = 21$ variables.

	MICE	CART	DP	NO
Marginal	93.3	94.4	94.9	95.5
Bivariate	94.4	94.9	95.5	94.9
Trivariate	95.5	96.1	96.6	94.9

Table 6. Median simulated coverage rates for MI-CART, MI-DPM, and the pre-missing data intervals when $n = 10000$ and 30% values MCAR. We exclude seven variables with marginal probabilities near one, resulting in $p = 28$ variables.

	CART	DP	NO
Marginal	94.0	94.0	95.5
Bivariate	96.0	96.5	95.0
Trivariate	97.0	97.0	94.5

Table 7. Median simulated coverage rates for MI-GLM, MI-CART, MI-DPM, and the pre-missing data intervals when $n = 10000$ and 45% values MCAR. We exclude seven variables with more than ten levels and seven variables with marginal probabilities near one, resulting in $p = 21$ variables.

	MICE	CART	DP	NO
Marginal	89.0	93.0	94.5	95.0
Bivariate	92.5	93.5	95.5	95.0
Trivariate	94.5	95.5	96.0	94.5

Table 8. Median simulated coverage rates for MI-GLM, MI-CART, MI-DPM, and the pre-missing data intervals when $n = 1000$ and 30% values MCAR. We exclude seven variables with more than ten levels and seven variables with marginal probabilities near one, resulting in $p = 21$ variables.

	MICE	CART	DP	NO
Marginal	91.0	93.1	95.8	94.7
Bivariate	93.7	94.2	95.8	94.7
Trivariate	93.7	94.7	95.8	94.2
Table 9. Median simulated coverage rates for MI-GLM, MI-CART, MI-DPM, and the pre-missing data intervals when $n = 10000$ with 10% values MCAR. We exclude seven variables with more than ten levels and seven variables with marginal probabilities near one, resulting in $p = 21$ variables.

	Median Coverage Rate			
	MICE	CART	DP	NO
Marginal	95.0	95.0	95.5	95.0
Bivariate	95.0	95.0	95.5	95.0
Trivariate	95.5	95.5	96.0	95.0

Table 10. Median simulated coverage rates for MI-GLM, MI-CART, MI-DPM, and the pre-missing data intervals when $n = 10000$ and 30% values MAR. We exclude seven variables with more than ten levels and seven variables with marginal probabilities near one, resulting in $p = 21$ variables.

	Median Coverage Rate			
	MICE	CART	DP	NO
Marginal	93.5	94.5	94.5	95.5
Bivariate	94.0	95.0	95.5	95.0
Trivariate	95.0	95.5	96.0	95.0