The earliest evidence for mechanically delivered projectile weapons in Europe

Katsuhiro Sano†14, Simona Arrighi23, Chiaramaria Stani4, Daniele Aureli35, Francesco Boschin13, Ivana Fiore6, Vincenzo Spagnolo3, Stefano Ricci3, Jacopo Crezzini3, Paolo Bosco3, Monica Gala6, Antonio Tagliacozzo6, Giovanni Birarda4, Lisa Vaccari4, Annamaria Ronchitelli3, Adriana Moroni3 and Stefano Benazzi27

Microscopic analysis of backed lithic pieces from the Uluzzian technocomplex (45–40 thousand yr ago) at Grotta del Cavallo (southern Italy) reveals their use as mechanically delivered projectile weapons, attributed to anatomically modern humans. Use-wear and residue analyses indicate that the lithics were hunting armatureshafted with complex adhesives, while experimental and ethnographic comparisons support their use as projectiles. The use of projectiles conferred a hunting strategy with a higher impact energy and a potential subsistence advantage over other populations and species.

The Uluzzian was traditionally recognized as one of the Middle Upper Palaeolithic transitional cultures in southern Europe (that is, Italy and Greece), but has been recently redefined as an Early Upper Palaeolithic culture1. Grotta del Cavallo (Fig. 1), excavated by A. Palma di Cesnola and P. Gambassini between 1963 and 1986, is a pivotal site for the Uluzzian because its stratigraphic sequence includes three main Uluzzian layers, EII (archaic Uluzzian), EII-I (evolved Uluzzian) and D (final Uluzzian) (Supplementary Fig. 1), sandwiched by the tephra Y-6 at 45.5 ± 1.0 thousand years ago (ka)2 and Y-5 (Campanian Ignimbrite) at 39.85 ± 0.14 ka (refs. 3–5).

The Uluzzian technocomplex exhibits features that are typically associated with modern human assemblages (Supplementary Information 2) and characterized by the presence of ornaments, bone implements6, colouring substances7 and crescent-shaped backed pieces made on small blades or bladelets1. These crescent-shaped backed pieces (also referred to as lunates or segments) are a hallmark8,9 of the Uluzzian and exhibit no techno-morphological link to the Mousterian or Initial Upper Palaeolithic assemblages in Europe before the Uluzzian. Similar backed pieces on bladelets have been observed in East Africa, although there is no archaeological evidence indicating a route from East Africa into Europe9. To better understand the differences between the Uluzzian and earlier lithic traditions, as well as the importance of the emergence of this new technocomplex in Europe, it is crucial to identify the function of the backed pieces.

The Uluzzian pieces were used for functions other than hunting (cutting and scraping). Out of the 146 backed pieces, 26 show 55 diagnostic impact fractures (DIFs), which form only when stone tips hit an animal target (Fig. 2). Among them, 9 backed pieces (34.6%) bear DIFs only at a single location, while 17 (65.4%) yield multiple DIF types (Supplementary Table 2 and Supplementary Fig. 2). As several projectile trials resulted in no fractures or only non-diagnostic ones9,10, the number of DIFs indicates the minimum number of specimens used as hunting weapons. Six pieces showed microscopic linear impact traces (MLITs) as well (Fig. 2a,f), proving that they were securely used as hunting armatures.

Most of the Uluzzian backed pieces showed residues on the back, suggesting that this portion was covered by a type of adhesive (Supplementary Fig. 3). We therefore performed Fourier transform-infrared (FTIR) spectromicroscopy on these pieces to characterize the chemical nature of the residues and identified them as a mixture of both organic and inorganic components, mainly ochre, a plant/tree gum and beeswax. The main absorption bands attributed to the organic fraction are highlighted by the grey shaded areas in Fig. 2o (see Methods for more details). In addition, FTIR spectroscopy analyses of several red deposit and soil samples recovered from Grotta del Cavallo enabled us to rule out the presence of organic contaminants from the burial environment and to confirm the presence of ochre as a mixture of silicate and iron oxides by correlating scanning electron microscopy/energy dispersive X-ray (SEM/EDX) measurements (see Supplementary Figs. 4 and 5). Together, the results allowed us to postulate that the three adhesive components had been intentionally mixed, as known in the middle Upper Palaeolithic context9.

To reconstruct the hafting modes of Uluzzian backed pieces, the frequency of the DIF types (Supplementary Fig. 2) was compared with those obtained by projectile experiments with backed piece replicas10,11. The projectile experiments indicated that hafting as barbs resulted less often in multiple DIFs, compared with when the pieces were hafted as tips. Among the multiple DIF types, the type a2m (flute-like, burin-like or transverse fractures from bidirectional ends) was dominant in the Cavallo backed pieces (Fig. 2b–f) and occurred only in experiments with tip hafting (straight/oblique hafting). We do not rule out the possibility that some Uluzzian backed pieces were hafted as barbs because of the relatively
high frequency of type a2 (burin-like fracture from steep angle) (Fig. 2a), which occurred in barb hafting as well. However, the frequency of the DIF types suggests that several Uluzzian backed pieces were attached on the tip of a wooden shaft.

Uluzzian backed pieces are notably small: complete or almost complete backed pieces with DIFs measured an average of 27.1 mm in length, 10.5 mm in width and 4.6 mm in thickness (Supplementary Fig. 6a). The tip cross-sectional area (TCSA) and tip cross-sectional perimeter (TCSP) of Cavallo backed pieces with DIFs were compared with those of ethnographic North American dart tips and arrowheads12,13. The box plots of the TCSA and TCSP of the Uluzzian backed pieces with DIFs fell within the range of those of North American ethnographic arrowheads, but were concentrated on a smaller range (Supplementary Fig. 6b,c). The Uluzzian backed pieces are significantly smaller than the ethnographic dart tips in terms of TCSA and TCSP (TCSA: $t = -9.414$, $P < 0.05$; TCSP: $t = -13.650$, $P < 0.05$), and even smaller than the ethnographic arrowheads (TCSA: $t = -2.773$, $P < 0.05$; TCSP: $t = -5.709$, $P < 0.05$). The extremely small dimensions of the Uluzzian backed pieces suggest that they are suitable for neither thrusting nor throwing spear tips (Supplementary Fig. 7a,b).

Despite the small size, the DIFs found on Cavallo backed pieces are relatively large: the largest DIF measures 24.7 mm in length, and 9 DIFs are larger than 10 mm. Several pieces show a significant reduction in the body due to impact damage (Fig. 2b,d,e). Even if specimens retain almost their original length, they often bear elongated DIFs along the side or on the surface. The lengths of several elongated DIFs (flute- and burin-like fractures) exceed 20% of the entire length of the backed pieces, and four DIFs have a length greater than half the entire length of the specimens (Supplementary Table 3). The relatively large dimensions of DIFs suggest that the backed pieces were delivered at high impact velocities.

As several Uluzzian backed pieces were hafted on the tip of a wooden shaft, the small dimensions of the backed pieces must reflect the small diameter of the shaft. If a thinner shaft is used, the total size of the hunting weapon is smaller. Therefore, large DIFs, as well as multiple DIF types, occur only when the impact velocity is as high as is found for mechanical delivery, such as by a spearthrower or bow8. Although the TCSA and TCSP values indicate that the projectile capability of the Uluzzian backed pieces is closer to that of the North American arrowheads than to that of dart tips, we do not have sufficient information to discriminate between them. Nonetheless, because of the assumed velocity based on the DIF pattern, it is more plausible that the Uluzzian backed pieces were projected using either a spearthrower or a bow.

A higher impact energy, however, requires more stable hafting, since otherwise, stone tips can easily be displaced. A complex mixture, characterized by the addition of beeswax and ochre, increases the mechanical properties of the adhesive, making it less brittle4,14. The use of the complex adhesive demonstrated by FTIR spectroscopy in this study suggests that hunters at Grotta del Cavallo used advanced hafting technology for projectiles with a higher impact velocity.

While the mechanical projectile system enables a higher impact velocity and long-range shooting, fletching to the base of the shaft is necessary to propel armatures in a straight trajectory. The discovery of cut marks due to the removal of feathers from bird remains
The multiple findings, such as use-wear patterns, significant smallness of the Uluzzian backed pieces and complex adhesives, for Grotta del Cavallo samples dated between 45 ka and 40 ka constitute...
Brief Communication: Nature Ecology & Evolution

Humans. In particular, the two deciduous teeth retrieved from the Middle Palaeolithic site of Sterkfontein, South Africa suggests that modern humans innovated mechanically by throwing, but not mechanically projected. Conversely, evidence from Africa suggests that modern humans innovated mechanically delivered projectile weapons before they expanded out of Africa. Although the association between the Uluzzian technocomplex and modern humans has been challenged, the information currently available from Grotta del Cavallo links the Uluzzian to modern humans. In particular, the deciduous teeth retrieved from the Uluzzian layers of Grotta del Cavallo were attributed to modern humans, and their association with the Uluzzian materials has been recently confirmed by excavation field notes (Supplementary Information 1) and the stratigraphic sequence.

If further studies confirm the attribution of the Uluzzian to modern humans, we suggest that modern humans equipped themselves with new projectile technology when they migrated into Europe at around 45 ka. Zooloarchaeological data on faunal remains from Grotta del Cavallo indicate more intensive exploitation of young horses at the Uluzzian levels than that seen at the late Mousterian (Supplementary Information 4). Considering the fact that young horses are protected by stallions, the intensive hunting of young horses may reflect skilled long-range hunting in the Uluzzian. As mechanically delivered armatures allow more accurate hunting while keeping a greater distance from potentially dangerous prey than hand-delivered hunting (but see ref. 29), this new projectile technology could have offered modern humans an advantage in subsistence strategies.

Methods

Functional analysis. A use-wear analysis was undertaken via a low-power approach and a high-power approach. Out of the 146 backed pieces, 34 pieces were recovered from layer EIII, 60 pieces from layer EII-I, 30 pieces from split E-D and 22 pieces from layer D. Traces were observed using a Hirox KH7700 digital microscope at magnifications ranging from x20 to x50 for macrotraces and from x140 to x800 for microwear traces. DIFs were analysed using projectile experiments with backed pieces. The DIFs observed on archaeological materials were recorded using the microscope mode of the Olympus TG-4 digital camera. Besides DIFs, 11 backed pieces exhibited possible impact fractures, but we cannot rule out the possibility that they formed accidentally due to knapping, retouching or post-depositional processes. For instance, pseudo-impact fractures, including tiny flute- and burin-like fractures smaller than 5 mm, can occur throughout production and post-depositional processes. We therefore did not define these fractures as DIFs.

The use of the bipolar technique on an anvil in retouching the Uluzzian backed pieces may create specific pseudo-impact fractures. We therefore conducted an experiment on the production of Uluzzian backed pieces to avoid the risk of misidentifying bipolar pseudo-impact scars as DIFs. After the careful observation of experimental backed pieces, we confirmed that although bipolar retouching sometimes produces mimetic DIFs, we can distinguish these from real DIFs using the presence of a negative bulb of percussion and the position of the fracture initiation (Supplementary Fig. 8). The collection of experimentally produced DIFs was microscopically observable impact scars on lithic surfaces. They comprise clusters of linear polishes running parallel to one another, exhibiting long shining stripes. Although little is known about the process of MLIT formation, they probably formed through contact with fragments detached from stone tips or the bones of animal targets. Similar linear polishes can occur through knapping by a hammer (Supplementary Fig. 8) and contact with other stone artifacts during transport or storage. However, it is possible to distinguish MLITs from the other linear polishes on the basis of attributes characterized by long, stripe-like linear polishes running in a specific direction with other linear polishes. The MLITs were recorded using a Hirox microscope at magnifications between x140 and x800.

Residue analysis. FTIR analyses were performed at the Chemical and Life Sciences beamline of the Sincrotrone Trieste, Italy. Ten backed pieces were analysed by FTIR spectromicroscopy (100a from layer D; 106 from split E-D; 75, 1, 34, 64, 45 and 52 from layer EII-I; and 21 and 23 from layer EII). A few grains of the adherent residues were gently scraped from each backed piece using the tip of a needle under a stereomicroscope. Collected grains were not subjected to any manipulation, except for some grains were pressed by S.T. Japan, clear aperture 2 mm) to flatten them to a thickness suitable for FTIR transmission measurements. Owing to the heterogeneous nature of the samples, 10–15 spectra for each were acquired in transmission mode half compression cell with a Vis-IR Bruker Hyperion 3000 microscope coupled with the Vertex 70v interferometer in the MidIR range (MCT-A detector, 4,000–750 cm⁻¹). For each spectrum, 512 scans were averaged at 4 cm⁻¹ spectral resolution. Setting the lateral resolution at 50×50 µm⁻² to select the most diagnostic sample regions according to the observable differences in colour.

Spectra of red deposits from layers E and D and soil samples from several stratigraphic units belonging to Grotta del Cavallo (see Supplementary Fig. 1) were also measured by FTIR spectromicroscopy in the sample compartment of the Vertex 70v interferometer, in the closed diamond compression cell, using a 5 multiplication focusing unit (AS524/Q, Bruker Optics) and the Bruker wide range components (that is, beamsplitter and DTGS detector) for covering FIR (far-infrared) and MIR (mid-infrared) spectral regions in a single scan. Each spectrum was collected averaging 256 scans at 4 cm⁻¹. Extending the spectral range from 4,000 to 150 cm⁻¹ allowed better highlighting of the presence of metal-organic spectral features. To identify a specific material adhered on lithics, all of the acquired FTIR spectra were compared with those reported in the literature and IR spectral libraries (Kimmel Center for Archaeological Science Infrared Standards Library and IRUG Spectral Database). In addition, samples 1 and 106 were peeled off with a blade and a tape from the culet of a diamond under an infrared microscope. FTIR spectromicroscopy analysis and SEM/EDX measurements were performed. Two red deposits (one from layer D and one from layer EII-I) and a sample of soil from layer DII were also characterized from a mineralogical perspective. All measurements were performed using a Zeiss Supra 40 field emission gun, an SEM equipped with a Gemini column and an in-lens secondary electron detector operated at 10 kV. EDX analyses were performed using a LN2-free X-Act Silicon Drift Detector (Oxford X-ray detection system, Aztec EDS). SEM/EDX measurements were performed at the IOM-CNR laboratories.

Among the 10 backed pieces analysed by FTIR spectromicroscopy, only 6 (1, 34, 64, 106, 100a and 75) showed clear infrared features indicative of an organic fraction (Fig. 2a). The organic fraction was verified by FTIR spectromicroscopy measurement in the range 3,000–2,800 cm⁻¹, which were assigned to methyl and methylene asymmetric and symmetric stretching modes at ~2,956 and ~2,872 cm⁻¹, and ~2,930 and ~2,860 cm⁻¹, respectively. At ~1,460 and ~1,378 cm⁻¹, the bending modes of the same moieties can be observed. The aforementioned stretching and bending modes are characteristic of compounds containing long aliphatic chains. In addition, carbonyl (C=O) bands can be detected at around 1,740 cm⁻¹ for all the selected six samples, and an extra shoulder centred at about 1,715 cm⁻¹ can be seen for samples 34, 64, 75 and 100a. Typically, carbonyl stretching modes of esters and carboxylic acids fall in this spectral region. Samples 75, 106 and 100a (Fig. 2c) are characterized by two broad bands in the 1,650–1,550 cm⁻¹ and 1,450–1,350 cm⁻¹ spectral regions. The two aforementioned contributions may derive from asymmetric and symmetric stretching of carbonyl groups usually identified as diagnostic of gum (see the next paragraph for more details). These contributions are less intense for samples 1, 34 and 64 (Fig. 2b), allowing the peak centred at about 1,630 cm⁻¹ to arise. All the aforementioned spectral ranges are indicated by the shaded areas in Fig. 2a.

The collected data led to postulations that the organic fraction is a mixture of two main components: tree or plant gum and beeswax. In particular, the broad peaks in the 1,650–1,550 and 1,450–1,350 cm⁻¹ spectral regions can be associated with carboxylate fractions from plant or tree gum, a natural biopolymer composed mostly of polysaccharides and, to a much lesser extent, glycoproteins. This hypothesis was proven by the spectral comparison of samples 75, 106 and 100a with the reference spectrum of tree gum (Fig. 2d) and several other spectra found in the IR databases (see, for example, spectra IDs ICBO0011, ICBO0012, ICBO0013 and ICBO0038 in the IRUG database). Pure and fresh gum spectra are characterized by narrower bands in the aforementioned spectral regions. Nevertheless, it is well known that the peak position of the asymmetric and symmetric modes of carbonyl groups are strongly dependent on the coordinated cations; therefore, band broadening in our samples reflects the complex mineral
Two of the analysed red deposits. It is possible to identify peaks centred at about the same stratigraphic units (layers E and D) as the analysed backed pieces (see Supplementary Fig. 4a,d,g), revealing that the iron content of the samples is much higher than the iron oxides. The collected spectra can be correlated with the IRUG ochre spectrum (Archaeologica Venatoria, Institut für Ur- und Frühgeschichte der Universität Tübingen, 1981).

The red colour of the residues on the backed pieces led us to hypothesize the presence of iron compounds. To verify this hypothesis, SEM/EDX analyses were performed for a soil sample from layer DII and samples 106 (from spit E-D) and 1 (from layer EII-I) after FTIR analysis (Supplementary Fig. 4a,h,c). The EDX measurements of the soil and sample 106 confirmed the presence of silicon, aluminium, magnesium, sodium, calcium, iron and phosphorus, which are all characteristic of silicates. The iron-to-silicon ratio increased from 0.37 ± 0.01 to 4.52 ± 2.01 from the soil to sample 106, reaching a value of 7.64 ± 0.45 in sample 1 (the standard deviation was calculated as the average of three measurements per sample). The positive trend of the iron-to-silicon ratio from the soil to sample 1 is consistent with a colour transition from light brown to intense red (Supplementary Fig. 5). As the Uluzzian backed pieces are extremely small and the tips, which require a massive shaft. If the Uluzzian backed pieces were inserted into the lateral sides of a shaft as in Magdalenian composite projectiles, the smallness of the stone artefacts would not necessarily relate to the diameter of the shaft. However, as the use-wear analysis suggested that a considerable number of Uluzzian pieces were attached to the tip of a shaft as a hunting armature, the small dimensions must reflect a thin shaft that is useful only for mechanically delivered spears, such as darts projected by a spearrthrower or arrows shot using a bow.

To further verify that ochre (also known as red earth) is the source of the red colour, some red soil deposits collected from Grotta del Cavallo were analysed by FTIR spectroscopy in the FIR-MIR region. These deposits belong to the same stratigraphic units (layers E-C and E-D) and 1 (from layer EII-I) after FTIR analysis (Supplementary Fig. 4b,e,h). This finding can be explained by the different percentages of the two organic fractions used to prepare the adhesive mixture, with further consideration of the different degrees of degradation and aging originating from long-term interaction of the organic material with the burial soil. The extent of adsorption with the burial soil is an indicator of the degree of degradation of the samples could have been influenced by differences in soil composition, pH, humidity or water percolation of the stratigraphic units where the ten backed pieces were buried for thousands of years.

Identification of the gum fraction would have been easier with access to the ~1,200–1,600 cm⁻¹ spectral region, where C=O-C-H stretching modes of diagnostic of polyketides are located. In this spectral region, very intense and structured bands can be seen for all 10 measured backed pieces. This feature, characterized by a main peak at 1,030 cm⁻¹, a shoulder at 1,080 cm⁻¹ and two distinctive peaks at 800 and 780 cm⁻¹ can be attributed to Si-O stretching modes of silicates, which are the main components of clays. Specifically, the sharp peaks at 3,694 and 3,622 cm⁻¹ are distinctive vibrational features of well-crystallized water molecules among the layers of kaolinite. The positive trend of the iron-to-silicon ratio from the soil to sample 1 is consistent with a colour transition from light brown to intense red (Supplementary Fig. 4a,d,g), revealing that the iron content of the samples is much higher than the iron oxides. The collected spectra can be correlated with the IRUG ochre spectrum (IMP00365 red earth made by kaolinite and hematite).

Pre-research design is available in the Nature Research Reporting Summary linked to this article.

References
1. Moroni, A. et al. J. Anthr. Sci. 96, 125–160 (2018).
2. Zanchetta, G., Giaccio, B., Bini, M. & Sarti, L. J. Anthr. Sci. 182, 65–77 (2018).
3. Giaccio, B., Hajdas, I., Isia, R., Deino, A. & Nomade, S. Sci. Rep. 7, 45940 (2017).
4. d’Errico, F., Borgia, V. & Ronchitelli, A. Quat. Int. 259, 59–71 (2012).
5. Metz, L. in J. Anthr. Sci. 65–77 (2018).
6. Rust, A. in J. Anthr. Sci. 65–77 (2018).
7. Fischer, A., Hansen, P. V. & Rasmussen, P. J. Dan. Archaeol. 3, 19–46 (1984).
8. Sano, K. & Oba, M. J. Archaeol. Sci. 63, 13–23 (2015).
9. Bradtmöller, M., Sarmiento, A., Perales, U. & Zuluaga, M. C. J. Archaeol. Sci. Rep. 7, 1–13 (2016).
10. Varoshевич, A., Kaufman, D., Nazihuy, D., Bar-Yosef, O. & Weinstein-Evron, M. J. Archaeol. Sci. 37, 368–388 (2010).
11. Goldstein, S. T. & Shaffer, C. M. Anthr. Sci. 9, 1767–1778 (2018).
12. Thomas, A. in J. Anthr. Sci. 65–77 (2018).
13. Shott, M. J. Anthr. Sci. 62, 86–101 (1997).
14. Walley, L. J. Hum. Evol. 49, 587–601 (2005).
15. Cattelain, P. in J. Anthr. Sci. 65–77 (2018).
16. Rust, A. Die alt- und mittelsteinzeitlichen Funde von Stinnell (Karlo Wachholtz, 1943).
17. Stodieck, U. Zur Technologie der Jungpaläolithischen Spießschleuder: Eine Studie auf der Basis Archäologischer, Ethnologischer und Experimenteller Erkenntnis (Archaeologica Venatoria, Institut für Ur- und Frühgeschichte der Universität Tübingen, 1993).
18. Thieme, H. & Vell, S. Ldkr. Verden Kunde 36, 11–58 (1985).
19. Villa, P., Boscatto, P., Ranaldo, F. & Ronchitelli, A. J. Archaeol. Sci. 36, 850–859 (2009).
20. Shea, J. J. J. Archaeol. Sci. 33, 823–846 (2006).
21. Metz, L. in Le Troisième Homme Préhistoire de l’Altaï 156–160 (Muséum National de la préhistoire, 2017).
22. Slimak, L. Quat. Sci. Rev. 217, 330–339 (2019).
23. Villa, P. & Soriano, S. J. Anthropol. Res. 66, 38–58 (2010).
24. Walley, L. & Mohapi, M. J. Archaeol. Sci. 35, 2594–2605 (2008).
25. Zilhão, J., Banks, W. E., d’Errico, F. & Goria, P. PLoS ONE 10, e0131181 (2015).
26. Benazzi, S. et al. Nature 479, 525–528 (2011).
27. Heptner, V. G., Nasimovich, A. A. & Bannikov, A. G. Mammals of the Soviet Union Vol. 1 (Smithsonian Institution Libraries, National Science Foundation, 1988).
28. Lew-Levy, S., Reckin, R., Lavi, N., Cristóbal-Azkarate, J. & Ellis-Davies, K. J. Hum. Evol. 86, 3–59 (1997).
29. Milks, A., Parker, D. & Pope, M. Sci. Rep. 9, 820 (2019).
30. Tringham, R., Cooper, G., Odell, G., Voytek, B. & Whitman, A. J. Field Archaeol. 1, 171–196 (1974).
31. Odell, G. H. & Odell-Vereeken, F. J. Field Archaeol. 7, 87–120 (1980).
32. Odell, G. H. J. Field Archaeol. 8, 197–209 (1981).
Brief Communication

Acknowledgements

Author contributions

Competing interests

Additional information

Publisher’s note

© The Author(s), under exclusive licence to Springer Nature Limited 2019
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a

- Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

- The statistical test(s) used AND whether they are one- or two-sided

- Only common tests should be described solely by name; describe more complex techniques in the Methods section.

- A description of all covariates tested

- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

- Give P values as exact values whenever suitable.

- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

- Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

No software was used for data collection.

Data analysis

We used StataSE for data analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

The authors declare that the data supporting the findings of this study are available within the paper, Extended Data, and Supplementary Information.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
Study description
Study on projectile technology of the Uluzzian backed pieces from Grotta del Cavallo, Italy.

Research sample
A total of 146 backed pieces were analyzed.

Sampling strategy
All the backed pieces found from Grotta del Cavallo were analyzed.

Data collection
Use-wear data were collected by K.S. and S.A., and residue data were collected by C.S., G.B., and L.V.

Timing and spatial scale
Data collection was conducted between 2017 and 2018.

Data exclusions
We have analyzed all the Uluzzian backed pieces from Grotta del Cavallo.

Reproducibility
Use-wear and residue analyses were validated based on a series of previous experiments and our own experiments.

Randomization
Randomization is not relevant to this study.

Blinding
Blinding is not relevant to this study.

Did the study involve field work? Yes

Reporting for specific materials, systems and methods

Materials & experimental systems
- n/a
- Antibodies
- Eukaryotic cell lines
- Palaeontology
- Animals and other organisms
- Human research participants
- Clinical data

Methods
- n/a
- ChIP-seq
- Flow cytometry
- MRI-based neuroimaging