Modeling and Analysis of a Coupled SIS Bi-Virus Model ♠

Sebin Gracy**, Philip E. Paré**, Ji Liu**, Henrik Sandberg**, Carolyn L. Beck**, Karl Henrik Johansson**, Tamer Başar**

**Department of Electrical and Engineering and Computer Science, South Dakota School of Mines and Technology, SD, USA, sebin.gracy@sdsmt.edu

School of Electrical and Computer Engineering, Purdue University, IN, USA, philipare@purdue.edu

Department of Electrical and Computer Engineering, Stony Brook University, j.liu@stonybrook.edu

Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, and Digital Futures, Stockholm, Sweden. hsan@kth.se, kallej@kth.se

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign. beck3@illinois.edu, basar1@illinois.edu

Abstract

The paper deals with the setting where two viruses (say virus 1 and virus 2) coexist in a population, and they are not necessarily mutually exclusive, in the sense that infection due to one virus does not preclude the possibility of simultaneous infection due to the other. We develop a coupled bi-virus susceptible-infected-susceptible (SIS) model from a 4-state Markov process, where is the number of agents (i.e., individuals or subpopulation) in the population. We identify a sufficient condition for both viruses to eventually die out, and a sufficient condition for the existence, uniqueness and asymptotic stability of the endemic equilibrium of each virus. We establish a sufficient condition and multiple necessary conditions for local exponential convergence to the boundary equilibrium (i.e., one virus persists, the other one dies out) of each virus. Under mild assumptions on the healing rate, we show that there cannot exist a coexisting equilibrium where for each node there is a nonzero fraction infected only by virus 1; a nonzero fraction infected only by virus 2; but no fraction that is infected by both viruses 1 and 2. Likewise, assuming that healing rates are strictly positive, a coexisting equilibrium where for each node there is a nonzero fraction infected by both viruses 1 and 2, but no fraction is infected only by virus 1 (resp. virus 2) does not exist. Further, we provide a necessary condition for the existence of certain other kinds of coexisting equilibria. We show that, unlike the competitive bivirus model, the coupled bivirus model is not monotone. Finally, we illustrate our theoretical findings using an extensive set of simulations.

Keywords: Spreading processes, Epidemics, Coupled bi-virus spread, Stability analysis

1. Introduction

The phenomenon of spreading processes has been a key facet of human civilization. Several manifestations of this phenomenon are witnessed in the present day too, including the spread of opinions in social networks, diseases in contact networks, viruses in computer networks, products in markets, etc. Given the various ramifications of such processes, researchers across diverse disciplines such as physics (Newman et al., 2002), ecology (Muñoz and Fouchier, 2009), epidemiology (Bailey et al., 1975), computer science (Wang et al., 2003), and economics (Bloom et al., 2018) have devoted significant attention to the same.

This paper deals with the spread of viruses in human contact networks. The first model to capture the spread of a virus was proposed by Daniel Bernoulli in the 18th century to calculate the gain in life expectancy at birth if smallpox were to be eliminated as a cause of death (Bernoulli, 1760). As a discipline in its own right, mathematical epidemiology witnessed enormous growth in the 20th century, with (Bailey et al., 1975; Hethcote, 2000) being some of the key works. One of the fundamental research objectives in mathematical epidemiology revolves around analyzing the system equilibria and determining the convergence behavior of epidemic processes in the vicinity of isolated equilibria. Leveraging such analysis enables the design of mitigation (or eradication) strategies. To this end, various models have been studied in the literature: susceptible-infected-recovered (SIR) (Mei et al., 2017); susceptible-exposed-infected-recovered (SEIR) (Arcede et al., 2020); susceptible–asymptomatic–infected–recovered susceptible (SAIRS) (Rothe et al., 2020; Paré et al., 2020a); susceptible-infected (SI) (Matouk, 2020); and susceptible-infected-susceptible (SIS) (Van Mieghem et al., 2009; Khanfer et al., 2016) being some of the notable ones.

The focus of this paper is on the susceptible-infected-susceptible (SIS) model. In particular, we are interested

Preprint submitted to Automatica July 12, 2024
in networked SIS models. Very briefly, in a networked SIS model, a population of individuals is partitioned into subpopulations, called agents (or nodes). The interconnection between various agents can be represented by a (possibly) directed graph. Supposing that there is a virus prevalent in the population, it can spread both between individuals in a subpopulation and also between individuals belonging to different subpopulations. If none of the individuals in a subpopulation are infected, then this subpopulation is said to be in the susceptible state; otherwise, it is said to be in the infected state. Note that when a subpopulation is in the infected state it does not mean that every individual in this subpopulation is infected. An individual is either in the susceptible state or in the infected state. An otherwise susceptible individual getting infected is conditional on this individual coming into contact with infected neighbors and its own infection rate. An infected individual, depending on its healing rate, recovers from the infection, and becomes susceptible to the virus again. A susceptible individual, as a consequence of coming in contact with infected neighbors and its own infection rate, gets infected with the virus. A key feature of the (networked) SIS model is that recovering from the virus does not necessarily confer permanent immunity. Networked SIS models have been extensively studied in the literature; see, for instance, (Fall et al., 2007; Khanaler et al., 2016; Paré et al., 2020a).

Note that none of the aforementioned papers account for settings where multiple strains of a virus could be simultaneously active within a population. The dynamics in the multi-virus setting are far richer than those in the single-virus setting. More specifically, suppose that there are two viruses, say virus 1 and virus 2, prevalent; then these viruses could be either a) competitive (Ahn et al., 2006); or b) co-operative, e.g., human immunodeficiency virus (HIV) and syphilis (resp. herpes simplex virus type 2 (HSV-2)) (Beutel et al., 2012; Castillo-Chavez et al., 1989); or, at the same time, by both (i.e., viruses 1 and 2) or by neither. To better capture the possibilities with respect to simultaneous infection by both viruses 1 and 2, we introduce a coupling parameter ϵ ($m \geq 0$), where $m = 1, 2$. Specifically, if $\epsilon > 1$ for $m = 1, 2$ then infection with virus 1 (resp. virus 2) increases the possibility of infection with virus 2 (resp. virus 1). Such a scenario is observed with respect to infection with human immunodeficiency virus (HIV) and syphilis (resp. herpes simplex virus type 2 (HSV-2)) (Newman and Ferrario, 2013; Chen et al., 2013). Similarly, if $\epsilon^{(1)} > 1$ and $\epsilon^{(2)} < 1$ then infection with virus 2 increases the possibility of simultaneous infection with virus 1, but infection with virus 1 decreases the possibility of simultaneous infection with virus 2, e.g., the spread of malicious pathogens and growth of immune cells in living organisms (Ahn et al., 2006). Likewise, if $\epsilon^{(m)} < 1$ for $m = 1, 2$, then infection with virus 1 (resp. virus 2) decreases the possibility of infection with virus 2 (resp. virus 1). Such a scenario corresponds to the simultaneous circulation of multiple strains of influenza viruses in a community, where the presence of the strain from a previous year(s) (resp. the current year) decreases the possibility of
also being simultaneously infected with the strain from the current year (resp. previous years) [Krauland et al., 2022]. We classify the equilibria into the following classes: a) the healthy state (both viruses are eradicated), b) single-virus endemic equilibrium (the endemic equilibrium corresponding to that of virus 1 (resp. virus 2) if only virus 1 (resp. virus 2) were prevalent in the population), c) boundary equilibria (one virus is eradicated, the other one is persistent, fraction of population infected by both is zero), and d) coexisting equilibria (both viruses simultaneously infect possibly same fractions of the population). It turns out that our model generalizes the competitive networked bi-virus model; see Remark 1.

A particular class of nonlinear systems is monotone dynamical systems. Very briefly, a nonlinear system \(\dot{x} = f(x) \) is monotone, if, for two initial states \(x_0 \) and \(y_0 \), \(x_0 \leq y_0 \) implies \(x(t) \leq y(t) \) for all \(t \in \mathbb{R}_+ \). It is well known that monotone systems, assuming they generically have a finite number of equilibria, converge to a stable equilibrium point (assuming one exists) for almost all choices of system parameters, and that any limit cycle (if it exists) is non-attractive; see Smith [1988], Hirsch [1988]. In the context of epidemiology, the notion of monotone dynamical systems plays a key role in the following sense: supposing that the model governing the spread of a disease is monotone and that it has a finite number of equilibria, then the typical behavior that a policymaker will have to contend with is that of convergence to some equilibrium point (disease-free, endemic, coexistence, etc.). More pertinent, it says that existence of limit cycles (i.e., the occurrence of waves of epidemic) is less likely. Furthermore, even if a limit cycle were to exist, it would be non-attractive [Ye et al., 2022]. More complicated behavior such as chaos could be definitively ruled out [Sontag, 2007]. On the contrary, if the system is not monotone, then no dynamical behavior, including chaos, can be definitively ruled out without additional analysis [Sontag, 2007]. Note that the competitive bi-virus model is monotone [Ye et al., 2022]. However, it is not known if the coupled bi-virus model is monotone.

Our main contributions in this paper are as follows:

i) We derive the coupled bi-virus model starting with a 4-state Markov process; see equations (8)-(10) in Section 2.

ii) We provide a sufficient condition which ensures that, irrespective of the initial state of the network (i.e., healthy or sick), both viruses eventually die out; see Theorem 1.

iii) We provide a sufficient condition for the existence, uniqueness, and asymptotic stability of a single-virus endemic equilibrium; see Theorem 2.

iv) We identify a sufficient condition for local exponential stability of the boundary equilibria (i.e., one

2The term “generically” is to be understood as follows: the choices of system parameters for which convergence to a stable equilibrium does not happen lies on a set of measure zero.

v) We show that the coupled bi-virus model is not monotone; see Theorem 3. Consequently, one cannot use the existing tools in the literature on competitive bivirus systems, which are deeply rooted in monotone dynamical systems (see Hirsch [1988], Smith [1988]), to study the limiting behavior of our model.

Additionally, we provide a necessary and sufficient condition for the healthy state to be the unique equilibrium of the system; see Corollary 1. Assuming both viruses pervade the network, we establish a lower bound on the number of equilibria for the coupled bi-virus system; see Corollary 2. We identify multiple necessary conditions for local exponential convergence to the boundary equilibria; see Proposition 5. Assuming the healing rates are strictly positive, we show that a point in the 3n-dimensional state space, where for each node there is a nonzero fraction infected only by virus 1 (resp. virus 2) but no fraction that is infected by both viruses 1 and 2, cannot be an equilibrium point; see Proposition 3. Likewise, under mild assumptions on the healing rates, a point, where for each node there is a nonzero fraction infected by both viruses 1 and 2, but no fraction is infected only by virus 1 (resp. virus 2), cannot be an equilibrium; see Proposition 4. We establish a necessary condition for the existence of a co-existing equilibrium wherein the fraction of each node infected by only virus 2 is zero and the rest (i.e., the fraction infected by only virus 1 and the fraction infected by both viruses 1 and 2) are strictly positive; see Proposition 5. Finally, we identify a condition that rules out a given point in the state space as a coexisting equilibrium where each node has i) a fraction that is infected only by virus 1; ii) a fraction that is infected only by virus 2; and iii) a fraction that is infected by both viruses 1 and 2; see Proposition 6.

Some of the material in this paper was partially presented earlier in an American Control Conference (ACC) paper [Paré et al., 2018]; the present paper provides a more comprehensive treatment of the work, and considers a more general model. Specifically, the paper provides:

i) an expansion of the model to the case of virus-dependent coupling parameters that can be greater than 1. However, most of our findings rely on the assumption that \(\epsilon^{(m)} \in [0, 1] \) for \(m = 1, 2 \); ii) complete proofs of all the results;

iii) a derivation of the coupled bi-virus model from a 4n-state Markov process; see Section 2.

iv) stability results for the boundary equilibria; see Theorem 3.

ev) existence results for coexisting equilibria; see Propositions 3, 4, 5 and 6.

vi) a result establishing that the coupled bivirus system is not monotone; see Theorem 5 and

vii) additional illustrative simulations in Section 8, none of which were included in [Paré et al., 2018].
The paper is organized as follows. The derivation of the coupled bi-virus model from a 4-state Markov process is provided in Section 2. The problems of interest and standing assumptions are formally stated in Section 3. The main results for the model developed in Section 2 are split across the next three sections: analysis of the disease-free equilibrium (DFE) is given in Section 4; persistence of a virus in the population is given in Section 5; analysis of various coexisting equilibria are provided in Section 6; and non-monotonicity of the coupled bivirus model is shown in Section 7. The theoretical findings are illustrated in Section 8. A summary of the results of the paper, and some questions of possible interest to the wider community are given in Section 9.

We conclude this section by introducing all the notations to be used in the rest of the paper.

Notation: For any positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use 0 and 1 to denote the vectors whose entries all equal 0 and 1, respectively, and I to denote the identity matrix, while the dimensions of the vectors and matrices can be inferred from the context. For any vector x ∈ R^n, we use x^T to denote its transpose and diag(x) or X to denote the n × n diagonal matrix whose ith diagonal entry equals x_i. The notation 1_{a=b} is used as an indicator function which takes the value one if a equals b; and zero otherwise. For 1_{A=B}, where A is a matrix, the result is a binary matrix of the same dimensions as A with entries 1_{a_i=b_i}. For any two sets A and B, we use A \ B to denote the set of elements in A but not in B. For any two real vectors a, b ∈ R^n, we write a ≥ b if a_i ≥ b_i for all i ∈ [n], a > b if a_i ≥ b_i and a_i ≠ b_i, and a ≃ b if a_i > b_i for all i ∈ [n]. Likewise, for any two real matrices A, B ∈ R^{n_1×n_2}, we write A ≥ B if A_{ij} ≥ B_{ij} for all i ∈ [n_1], j ∈ [n_2], and A > B if A ≥ B and A ≠ B. For a real square matrix M, we use s(M) to denote the largest real part among the eigenvalues of M, and ρ(M) to denote the spectral radius, i.e., ρ(M) = max{|λ| : λ ∈ σ(M)}, where σ(M) denotes the spectrum of M.

A real square matrix A is said to be Metzler if all of its off-diagonal entries are nonnegative. A real square matrix A is said to be a Z-matrix if all of its off-diagonal entries are nonpositive. A Z-matrix is an M-matrix if all its eigenvalues have nonnegative real parts. Furthermore, if an M-matrix has an eigenvalue at the origin, then we say that it is singular; if each of its eigenvalues have strictly positive parts, then we say that it is nonsingular.

2. The Model

Consider two viruses spreading over a network of n agents. Each agent may be infected with either or both viruses at the same time. Specifically, each agent can be infected if one of its neighbors is infected. The neighbor relationships among the n agents are described by an n-vertex directed graph. A directed edge from node j to node i means that agent i can be infected by agent j, i.e., agent j is a neighbor of agent i. We use N^c_i to denote the set of neighbors of agent i. The two viruses may spread through different neighbors in the network. We use N^{(m)}_i to denote the set of neighbors of agent i from which virus m spreads, m ∈ {1, 2}. Clearly, N^{(1)}_i ∪ N^{(2)}_i = N^c_i for all i ∈ [n].

For each virus m ∈ {1, 2}, each agent i has its curing rate δ^{(m)}_i and infection rates β^{(m)}_{ij} when i ∈ N^{(m)}_j. The former means that if agent i is infected by virus m, it is cured with rate δ^{(m)}_i, and the latter means that if agent i is infected by virus m and its neighbor j is not, agent i can infect agent j at rate β^{(m)}_{ij}. The two viruses can simultaneously infect the same node, but not independently. Specifically, they are coupled in the following manner. Let i and j be any pair of integers in [n] such that agent j is a neighbor of agent i. If agent j has been infected by only one virus, say virus 1, and agent i is infected by the other virus, virus 2, then, irrespective of whether (or not) it is infected by virus 1, agent i can infect agent j with virus 2 at a rate ϵ^{(m)}β^{(m)}_{ij}. See Figure 1 for a depiction of the model. It is worth noting that there is no transition link from state I^{(1,2)} (infected by both viruses) to state S (healthy state), as the probability that the two viruses are cured at the same time is zero. We call ϵ^{(m)} the **coupling parameter** between the viruses, and assume that each ϵ^{(m)} takes a nonnegative value. If ϵ^{(m)} ∈ (0, 1), that means if a node is infected with virus m, it is less susceptible to the other virus. If ϵ^{(m)} > 1 that means if a node is infected with virus m, it is more likely to become infected with the other virus. If ϵ^{(m)} = 1 for all m, then the two viruses are independent. If ϵ^{(m)} = 0 for all m, then the two viruses are competitive. We will discuss these last two special cases in-depth in Remark 3.

Let B^{(m)} = [β^{(m)}_{ij}] for m ∈ {2}. The spread of the two viruses across the population can be represented by a two-layer graph, where the vertices of the graph correspond to the population nodes. Each layer contains a set of directed
edges, $E^{(m)}$, specific to virus k; there exists a directed edge from agent j to agent i in $E^{(m)}$ if, assuming agent j is infected with virus k, it can directly infect agent i. Note that there is a one-to-one correspondence between the notations $E^{(m)}$ and $B^{(m)}$ for $m \in [2]$. That is, $(i, j) \in E^{(m)}$ if, and only if, $B^{(m)}_{ij} \neq 0$. It is worth emphasizing that the two viruses may spread along different routes, that is, the layers corresponding to $B^{(1)}$ and $B^{(2)}$ are not necessarily the same. We call the layers corresponding to $B^{(1)}$ and $B^{(2)}$ as the spreading graphs of viruses 1 and 2, respectively.

For completeness, we provide here a full description of the 4-base Markov process. Each state, $X_k(t)$, corresponds to a string s of length n, where $s_i = S$, $s_i = I^{(1)}$, $s_i = I^{(2)}$, or $s_i = I^{(1,2)}$ indicate that the ith agent is either susceptible, or infected with virus 1, or infected with virus 2, or infected with both viruses 1 and 2, respectively. The generator matrix [Norris 1998], Q, is defined by

$$q_{st} = \begin{cases}
\delta^{(1)}_{ij} & \text{if } s_i = I^{(1)}, k = l + 4^{i-1} \\
\delta^{(2)}_{ij} & \text{if } s_i = I^{(2)}, k = l + 2(4^{i-1}) \\
\sum_{j=1}^{4^n} (1)_{s_j = I^{(1)}} + 1_{s_j = I^{(1,2)}} & \text{if } s_i = S, k = l - 4^{i-1} \\
\sum_{j=1}^{4^n} (2)_{s_j = I^{(2)}} + 1_{s_j = I^{(1,2)}} & \text{if } s_i = S, k = l - 2(4^{i-1}) \\
\varepsilon^{(2)} \sum_{j=1}^{4^n} (1)_{s_j = I^{(1)}} + 1_{s_j = I^{(1,2)}} & \text{if } s_i = I^{(1,2)}, k = l - 4^{i-1} \\
\varepsilon^{(1)} \sum_{j=1}^{4^n} (2)_{s_j = I^{(2)}} + 1_{s_j = I^{(1,2)}} & \text{if } s_i = I^{(1)}, k = l - 2(4^{i-1}) \\
-\sum_{j=1}^{4^n} q_{st} & \text{if } k = l \\
0 & \text{otherwise,}
\end{cases}$$

for $i \in [n]$. Here virus 1 and 2 are propagating over a network whose infection rates are given by $\beta_{ij}^{(1)}$ and $\beta_{ij}^{(2)}$, respectively (nonnegative with $\beta_{ij}^{(1)} = \beta_{ij}^{(2)} = 0$, $\forall j$), $\delta_{ij}^{(1)}$ and $\delta_{ij}^{(2)}$ are the respective healing rates of the ith agent, and, again, $s_i = S$, $s_i = I^{(1)}$, $s_i = I^{(2)}$, or $s_i = I^{(1,2)}$ indicate that the ith agent is either susceptible, or infected with virus 1, or infected with virus 2, or infected with both viruses 1 and 2, respectively. The state vector $y(t)$ is defined as

$$y_k(t) = Pr[Y_k(t) = k],$$

with $\sum_{k=1}^{4^n} y_k(t) = 1$. The Markov process evolves as

$$\frac{dy^T(t)}{dt} = y^T(t)Q.$$

Let $v^{(1)}_i(t) = Pr[X_i(t) = I^{(1)}], v^{(2)}_i(t) = Pr[X_i(t) = I^{(2)}]$, and $v^{(1,2)}_i(t) = Pr[X_i(t) = I^{(1,2)}]$, where $X_i(t)$ is the random variable representing whether the ith agent is susceptible or infected with virus 1, or 2, or both. Then, for $i \in \{(1), (2), (1,2)\}$

$$(v^{i})^T(t) = y^T(t)M^{(i)}$$

where the ith columns of $M^{(1)}$, $M^{(2)}$, $M^{(1,2)}$ indicate the states in the Markov process where agent i is infected with virus 1, virus 2, and both (all the strings where $s_i = I^{(1)}$, $s_i = I^{(2)}$, and $s_i = I^{(1,2)}$, respectively, that is, $M^i = 1_{M=1}$ for $i \in \{(1), (2), (1,2)\}$, where $M \in \mathbb{R}^{4^n \times n}$ has rows of lexicographically-ordered ternary numbers, bit reversed.

Therefore, $v^{(1)}_i(t)$, $v^{(2)}_i(t)$, and $v^{(1,2)}_i(t)$ reflect the summation of all probabilities where $s_i = I^{(1)}$, $s_i = I^{(2)}$, and $s_i = I^{(1,2)}$. Note that the first state of the process, which corresponds to $s_i = S$, the healthy state, for $\delta^{(1)}, \delta^{(2)} > 0 \forall i$, is the absorbing or sink state of the process. That is, once in the healthy state, the Markov process will never escape it. Moreover, since the healthy state is the only absorbing state, the system will converge to it with probability one [Norris 1998].

We derive the model in (5)-(7) using a mean-field type approximation by considering the probability that node i is healthy ($X_i(t) = S$) or infected with virus 1 ($X_i(t) = I^{(1)}$), or virus 2 ($X_i(t) = I^{(2)}$), or both ($X_i(t) = I^{(1,2)}$) at time $t + \Delta t$. From (1), we have

$$\begin{align*}
Pr(X_i(t + \Delta t) = S | X_i(t) = I^{(1)}(1), X_i(t) = I^{(2)}(1,2)) = & \delta^{(1)}(t) \Delta t + o(\Delta t) \\
Pr(X_i(t + \Delta t) = S | X_i(t) = I^{(1)}(2), X_i(t) = I^{(2)}(1,2)) = & \delta^{(2)}(t) \Delta t + o(\Delta t) \\
Pr(X_i(t + \Delta t) = I^{(1)}(2) | X_i(t) = X_i(t) = I^{(2)}(1,2)) = & \delta^{(1,2)}(t) \Delta t + o(\Delta t) \\
Pr(X_i(t + \Delta t) = I^{(2)}(1) | X_i(t) = X_i(t) = I^{(1,2)}(1,2)) = & \delta^{(1,2)}(t) \Delta t + o(\Delta t) \\
\end{align*}$$

Letting Δt go to zero and taking expectations of $1_{X_i(t) = I^{(1)}}(1,2)$, $X_i(t) = I^{(1)}(2)$, and $X_i(t) = I^{(1,2)}(1,2)$ gives

$$\frac{dE[1_{X_i(t) = I^{(1)}}(1,2)]}{dt} = -\delta^{(1)}(t)E[1_{X_i(t) = I^{(1)}}(1,2)]$$

+ $E\left\{1_{X_i(t) = S} \sum_{j=1}^{4^n} (1)_{s_j = I^{(1)}}(1_{X_j(t) = I^{(1)}}(1,2) + 1_{X_j(t) = I^{(1,2)}}(1,2))\right\}$

$$\frac{dE[1_{X_i(t) = I^{(1)}}(1,2)]}{dt} = -\delta^{(2)}(t)E[1_{X_i(t) = I^{(1)}}(1,2)]$$

+ $E\left\{1_{X_i(t) = S} \sum_{j=1}^{4^n} (2)_{s_j = I^{(2)}}(1_{X_j(t) = I^{(1)}}(1,2) + 1_{X_j(t) = I^{(1,2)}}(1,2))\right\}$

$$\frac{dE[1_{X_i(t) = I^{(1)}}(1,2)]}{dt} = -\delta^{(1,2)}(t)E[1_{X_i(t) = I^{(1)}}(1,2)]$$

+ $E\left\{1_{X_i(t) = S} \sum_{j=1}^{4^n} (1,2)_{s_j = I^{(1,2)}}(1_{X_j(t) = I^{(1)}}(1,2) + 1_{X_j(t) = I^{(1,2)}}(1,2))\right\}$

$$\frac{dE[1_{X_i(t) = I^{(1)}}(1,2)]}{dt} = -\delta^{(1,2)}(t)E[1_{X_i(t) = I^{(1)}}(1,2)]$$

+ $E\left\{1_{X_i(t) = S} \sum_{j=1}^{4^n} (1,2)_{s_j = I^{(1,2)}}(1_{X_j(t) = I^{(1)}}(1,2) + 1_{X_j(t) = I^{(1,2)}}(1,2))\right\}$

$\text{Matlab code: } M = f提示(dec2base(0 : (4^n) - 1, 4, ' 0')$
Using the above equations, \(\Pr(z) = E(1) \),
\[
\dot{x}_1(t) = \Pr(X_i(t) = I^{(1)}) - \Pr(X_i(t) = I^{(2)}) = z_i(t) = \Pr(X_i(t) = I^{(1)}),
\]
\(\dot{x}_2(t) = \Pr(X_i(t) = I^{(2)}) - \Pr(X_i(t) = I^{(1)}) = z(t) + z_j(t) \),
\[
\dot{x}_3(t) = \Pr(X_i(t) = I^{(3)}) - \Pr(X_i(t) = I^{(1)}) = z_i(t) + z_j(t).
\]
Continuously changing variable values between 0 and 1. Further, it is assumed that each subpopulation is well mixed/connected, which is the same assumption as in classical single-population epidemic models.

Remark 1 We consider two special cases of the model.
First, let \(\epsilon^{(1)} = \epsilon^{(2)} = 0 \), and \(\delta^{(1)} + \delta^{(2)} > 0 \) for all \(i \in [n] \). Then, the system defined by (8)-(10) simplifies to
\[
\dot{z}^{(1)}(t) = -D^{(1)}z^{(1)}(t) + D^{(2)}z(t) + z(t),
\]
\[
\dot{z}^{(2)}(t) = -D^{(2)}z^{(2)}(t) + D^{(1)}z(t) + z(t),
\]
where \(z^{(1)}(t) \), \(z^{(2)}(t) \), and \(z(t) \) are the column vectors obtained by stacking \(x_1^{(1)}(t) \), \(x_2^{(1)}(t) \), and \(z_i(t) \), respectively, \(B^{(1)} \), \(B^{(2)} \) are the matrices of \(\beta^{(1)}_{ij} \), \(\beta^{(2)}_{ij} \) respectively, \(X^{(1)}(t) = \text{diag}(x_1^{(1)}(t)) \), \(X^{(2)}(t) = \text{diag}(x_2^{(2)}(t)) \), \(Z(t) = \text{diag}(z(t)) \), \(D^{(1)} = \text{diag}(\delta^{(1)}) \), and \(D^{(2)} = \text{diag}(\delta^{(2)}) \). For completeness, to illustrate the effectiveness of the first-order approximation, we compare (11)-(14) and (8)-(10) via simulations in Section 5.

Note that an agent \(i \) could be interpreted as either an individual or a subpopulation \(i \). The two interpretations are equivalent, since the group model that we employ in this paper can also be derived from a group model interpretation of the original stochastic model; see [Parc et al. 2020b]. In particular, the former models the probability of each individual being infected over time, whereas the latter models the fraction of a subpopulation being infected. Thus, there are no abrupt transitions from a susceptible state to one of the infected states for an entire subpopulation. The states of each subpopulation are continuously changing variable values between 0 and 1. Further, it is assumed that each subpopulation is well mixed/connected, which is the same assumption as in classical single-population epidemic models (Kermack and McKendrick 1927).

Remark 1 We consider two special cases of the model.
First, let \(\epsilon^{(1)} = \epsilon^{(2)} = 0 \), and \(\delta^{(1)} + \delta^{(2)} > 0 \) for all \(i \in [n] \). Then, the system defined by (8)-(10) simplifies to
\[
\dot{z}^{(1)}(t) = -D^{(1)}z^{(1)}(t) + D^{(2)}z(t) + z(t),
\]
\[
\dot{z}^{(2)}(t) = -D^{(2)}z^{(2)}(t) + D^{(1)}z(t) + z(t),
\]
where \(z^{(1)}(t) \), \(z^{(2)}(t) \), and \(z(t) \) are the column vectors obtained by stacking \(x_1^{(1)}(t) \), \(x_2^{(1)}(t) \), and \(z_i(t) \), respectively, \(B^{(1)} \), \(B^{(2)} \) are the matrices of \(\beta^{(1)}_{ij} \), \(\beta^{(2)}_{ij} \) respectively, \(X^{(1)}(t) = \text{diag}(x_1^{(1)}(t)) \), \(X^{(2)}(t) = \text{diag}(x_2^{(2)}(t)) \), \(Z(t) = \text{diag}(z(t)) \), \(D^{(1)} = \text{diag}(\delta^{(1)}) \), and \(D^{(2)} = \text{diag}(\delta^{(2)}) \). For completeness, to illustrate the effectiveness of the first-order approximation, we compare (11)-(14) and (8)-(10) via simulations in Section 5.

Note that an agent \(i \) could be interpreted as either an individual or a subpopulation \(i \). The two interpretations are equivalent, since the group model that we employ in this paper can also be derived from a group model interpretation of the original stochastic model; see [Parc et al. 2020b]. In particular, the former models the probability of each individual being infected over time, whereas the latter models the fraction of a subpopulation being infected. Thus, there are no abrupt transitions from a susceptible state to one of the infected states for an entire subpopulation. The states of each subpopulation are continuously changing variable values between 0 and 1. Further, it is assumed that each subpopulation is well mixed/connected, which is the same assumption as in classical single-population epidemic models (Kermack and McKendrick 1927).

3. **Problem Formulation**

In this section, we formally state the problems of interest, and the key assumptions needed for ensuring that the model introduced in Section 2 is well defined.

3.1. Problem Statements

With respect to the model in (8)-(10), we consider the following questions:

(i) Can we identify a sufficient condition under which, irrespective of the initial state, the dynamics converge asymptotically to the healthy state?

(ii) Can we identify a sufficient condition for virus \(m \), such that for any \(x^{(m)}(0) \neq 0 \) the dynamics asymptotically converge to the single-virus endemic equilibrium of virus \(m \), for \(m = 1, 2 \)?

(iii) Can we identify a sufficient condition for local exponential convergence to the boundary equilibrium of virus \(m \), for \(m = 1, 2 \)?
(iv) Can we provide necessary condition(s) for local exponential convergence to the boundary equilibrium of virus m, for $m = 1, 2$?

(v) Is it possible for equilibria of the kind (a) $(\hat{x}(1), \hat{x}(2), 0)$ with $\hat{x}(1), \hat{x}(2) > 0$, and (b) $(0, 0, \hat{z})$ with $\hat{z} > 0$, to exist?

(vi) Can we identify a necessary condition for the existence of the coexisting equilibria (a) $(\hat{x}(1), 0, \hat{z})$, with $\hat{x}(1), \hat{z} > 0$, or (b) $(0, \hat{x}(2), \hat{z})$, with $\hat{x}(2), \hat{z} > 0$?

(vii) Can we identify a condition that rules out an arbitrary point $(\hat{x}(1), \hat{x}(2), \hat{z})$ with $\hat{x}(1), \hat{x}(2), \hat{z} > 0$ as a coexisting equilibrium?

(viii) Is the system monotone?

3.2. Key Assumptions and Preliminaries

We make the following assumptions on the model to ensure that it is well defined.

Assumption 1 For all $i \in [n]$, we have $x_i(1)(0), x_i(2)(0), z_i(0), (1 - x_i(1)(0) - x_i(2)(0) - z_i(0)) \in [0, 1]$.

Assumption 2 For all $i \in [n]$, we have $\delta_i(1), \delta_i(2) \geq 0$. The matrices $B(1)$ and $B(2)$ are nonnegative and irreducible.

Assumption 1 guarantees that the initial infection level with respect to each virus m ($m \in [2]$) in each node $i \in [n]$ lies in the set $[0, 1]$, whereas Assumption 2 ensures that the healing and infection rates are nonnegative, and that the spreading graphs for virus 1 and 2 are strongly connected.

Define the set

$$D := \{(x(1), x(2), z) \mid x(1) \geq 0, x(2) \geq 0, z \geq 0, (x(1) + x(2)) + z \leq 1\}$$

The following lemma establishes that the set D is positively invariant with respect to the system defined by (8)-(10).

Lemma 1 Under Assumptions 1 and 2, $x_i(1)(t), x_i(2)(t), z(t), x_i(2)(t) + x_i(2)(t) + z(t) \in [0, 1]$ for all $i \in [n]$ and $t \geq 0$.

Proof: Suppose that at some time τ, $x_i(1)(\tau), x_i(2)(\tau), z_i(\tau), x_i(2)(\tau) + x_i(2)(\tau) + z_i(\tau) \in [0, 1]$ for all $i \in [n]$. Consider an index $i \in [n]$. If $x_i(1)(\tau) = 0$, then from (2) and Assumption 2, $x_i(1)(\tau) \geq 0$. The same holds for $x_i(2)(\tau), z_i(\tau)$ and $(x_i(2)(\tau) + x_i(2)(\tau) + z_i(\tau))$. If $x_i(1)(\tau) = 1$, then from (6) and Assumption 2, $x_i(1)(\tau) \leq 0$. The same holds for $x_i(1)(\tau), z_i(\tau)$ and $(x_i(2)(\tau) + x_i(2)(\tau) + z_i(\tau))$. It follows that $x_i(1)(t), x_i(2)(t), z_i(t), x_i(2)(t) + x_i(2)(t) + z_i(t)$ will be in $[0, 1]$ for all times $t \geq \tau$. Since the above arguments hold for all $i \in [n]$, $x_i(1)(t), x_i(2)(t), z_i(t), x_i(2)(t) + x_i(2)(t) + z_i(t)$ will be in $[0, 1]$ for all $i \in [n]$ and $t \geq \tau$. Since by Assumption 1, $x_i(1)(0), x_i(2)(0), z_i(0), x_i(2)(0) + x_i(2)(0) + z_i(0) \in [0, 1]$ for all $i \in [n]$, it follows that $x_i(1)(t), x_i(2)(t), z_i(t), x_i(2)(t) + x_i(2)(t) + z_i(t)$ will be in $[0, 1]$ for all $i \in [n]$ and $t \geq 0$.

Lemma 1 implies that the set

$$D = \{(x(1), x(2), z) \mid x(1) \geq 0, x(2) \geq 0, z \geq 0, (x(1) + x(2)) + z \leq 1\}$$

is positively invariant with respect to the system defined by (8)-(10). Since $x_i(1), x_i(2), z_i$ denote the probabilities of sickness of agent i, or fractions of group i, infected by virus 1, 2, and both 1 and 2 simultaneously, respectively, and $1 - x_i(1) - x_i(2) - z_i$ denotes the probability of agent i, or fraction of group i that is healthy, it is natural to assume that their initial values are in the interval $[0, 1]$, since otherwise the values will be devoid of any physical meaning for the spread model considered here.

Let $(\hat{x}(1), \hat{x}(2), \hat{z})$ be an equilibrium of system (8)-(10).

Then, the Jacobian matrix of the equilibrium, denoted by $J(\hat{x}(1), \hat{x}(2), \hat{z})$, with $\hat{B}(i) = \text{diag}(B(i)(\hat{x}(i) + \hat{z}))$, $Z(\hat{x}) = Z\text{diag}(B(i)1)$, $i \in [2]$, and $W = (I - \hat{X}(1) - \hat{X}(2) - \hat{Z})$, is as given in [10], where

$$J_{1, 1} = WB(1) - D(1) - \hat{B}(1) - \epsilon(1)\hat{B}(2)$$
$$J_{2, 2} = WB(2) - D(2) - \hat{B}(2) - \epsilon(2)\hat{B}(1)$$
$$J_{3, 3} = -\hat{D}(1) + \hat{D}(2) + \epsilon(1)\hat{X}(1)\hat{B}(2) + \epsilon(2)\hat{X}(2)\hat{B}(1).$$

4. Analysis of the Disease-Free Equilibrium

In this section, we analyze the system defined by (8)-(10). It is easy to see that $(0, 0, 0)$ is an equilibrium of the system defined by (8)-(10). We call it the DFE, or the healthy state. We focus on identifying conditions under which the healthy state is stable. The following proposition provides a necessary and sufficient condition for local exponential convergence to the healthy state.

Proposition 1 Consider system (8)-(10) under Assumptions 1 and 2. The healthy state is locally exponentially stable if, and only if, $s(-D(1) + B(1)) < 0$, $s(-D(2) + B(2)) < 0$, and $\delta_i(1) + \delta_i(2) > 0$ for all $i \in [n]$. If $s(-D(1) + B(1)) > 0$ or $s(-D(2) + B(2)) > 0$, then the healthy state is unstable.

Proof: From (16), we have

$$J(0, 0, 0) = \begin{bmatrix} B(1) - D(1) & 0 & B(1) + B(2) \\ 0 & B(2) - D(2) & B(2) + D(1) \\ 0 & 0 & -D(1) - D(2) \end{bmatrix}. \tag{20}$$

Thus, from [Khalil 2002] Theorem 4.15 and Corollary 4.3), the healthy state is locally exponentially stable if, and only if, $s(-D(1) + B(1)) < 0$, $s(-D(2) + B(2)) < 0$, and $\delta_i(1) + \delta_i(2) > 0$ for all $i \in [n]$. Note that if $s(-D(1) + B(1)) > 0$ or $s(-D(2) + B(2)) > 0$, then $s(J(0, 0, 0)) > 0$. The claim on instability then follows from [Khalil 2002] Theorem 4.7. □

Note that, on the one hand, the guarantees provided by Proposition 1 are limited in the sense that they concern trajectories that originate in a small neighborhood of the healthy state. On the other hand, no restrictions, besides nonnegativity, are imposed on $\epsilon(m)$, $m = 1, 2$. Simulations, as we see in Section 3.2, indicate that the region of attraction for the healthy state depends on the choices of $\epsilon(m)$, $m = 1, 2$. In particular, if the initial state of system (8)-(10) is very close to the healthy state, then, even for a...
larger value of $\epsilon^{(m)}$, $m = 1, 2$, the dynamics converge to the healthy state. If the initial state of system (8)-(10) is not too close to the healthy state, then for large values of $\epsilon^{(m)}$, the dynamics do not converge to the healthy state; see Figure 3 in Section 5.2.

The following theorem guarantees global convergence to the healthy state, but with the following caveats: i) the speed of convergence is slower, and ii) more restrictions on $\epsilon^{(m)}$, $m = 1, 2$, have to be imposed.

Theorem 1 Under Assumptions 1 and 2, if $\epsilon^{(1)}, \epsilon^{(2)} \in [0, 1]$, $s(B^{(1)} - D^{(1)}) \leq 0$ and $s(B^{(2)} - D^{(2)}) \leq 0$, then the healthy state is the unique equilibrium of system (8)-(10), and the endemic equilibrium is not guaranteed. As such, in the rest of this section we will focus on identifying a sufficient condition (resp. some weaker necessary conditions) for local exponential stability of the single-virus endemic equilibrium corresponding to virus 1. An analogous result holds for virus 2.

Proof: See the Appendix.

Theorem 1 answers Question (ii) raised in Section 3.1.

5. Persistence of Viruses

We call an equilibrium $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$ an endemic equilibrium if it is not the healthy state, $(0, 0, 0)$. It turns out that if either (or both) of the spectral abscissa conditions in Theorem 1 are violated, then at least one of the viruses pervades the population. We detail the same in the rest of this section.

5.1. Existence, Uniqueness and Stability of the Single Virus Endemic Equilibria

We consider the scenario in which either $s(B^{(1)} - D^{(1)})$ or $s(B^{(2)} - D^{(2)})$ is greater than zero. Without loss of generality, we assume that $s(B^{(1)} - D^{(1)}) > 0$, $\epsilon^{(1)} \in [0, 1]$, and $s(B^{(2)} - D^{(2)}) \leq 0$. We denote by $\hat{x}^{(1)}$ (resp. $\hat{x}^{(2)}$) the single-virus endemic equilibrium corresponding to virus 1 (resp. virus 2). We have the following result.

Theorem 2 Under Assumptions 1 and 2, if $s(B^{(1)} - D^{(1)}) > 0$, $\epsilon^{(1)} \in [0, 1]$, and $s(B^{(2)} - D^{(2)}) \leq 0$, then system (8)-(10) has a unique endemic equilibrium $(\hat{x}^{(1)}, \hat{x}^{(2)}, 0)$ with $x^{(1)} > 0$, and the system asymptotically converges to the endemic equilibrium for any initial state in $D \setminus \{(0, \hat{x}^{(2)}, 0) | 0 \leq \hat{x}^{(2)} \leq 1\}$, where D is defined in (15).

Proof: See the Appendix.

Theorem 2 establishes the existence, uniqueness, and asymptotic stability of the single-virus endemic equilibrium corresponding to virus 1. An analogous result holds for virus 2; details of which are omitted in the interest of space. Theorem 2 answers Question (iii) raised in Section 3.1. Note that, for a single virus system, assuming that the existence of the endemic equilibrium is guaranteed, an exact characterization of the same has been provided in (Mei et al. 2017, Theorem 4.3, statement (iii)(b)).

Combining Theorems 1 and 2, we obtain a necessary and sufficient condition for the healthy state to be the unique equilibrium of the coupled bi-virus system, as stated below.

Corollary 1 Consider system (8)-(10) under Assumptions 1 and 2. Suppose further that $\epsilon^{(1)}, \epsilon^{(2)} \in [0, 1]$. The healthy state is the unique equilibrium if, and only if, each of the following conditions are satisfied: i) $s(B^{(1)} - D^{(1)}) \leq 0$ and ii) $s(B^{(2)} - D^{(2)}) \leq 0$.

5.2. Both Viruses Pervading the System

Note that Theorem 2 accounts for the case where exactly one of the viruses pervades the system, or, in other words, exactly one of the spectral abscissa conditions in Theorem 1 is violated. However, what happens when both the spectral abscissa conditions in Theorem 1 are violated? The following corollary answers this question.

Corollary 2 Consider system (8)-(10) under Assumptions 2 and 3. Suppose further that $\epsilon^{(1)} = \epsilon^{(2)} = \epsilon \in [0, 1]$. If $s(B^{(1)} - D^{(1)}) > 0$ and $s(B^{(2)} - D^{(2)}) > 0$, then system (8)-(10) has at least three equilibria, namely, the healthy state $(0, 0, 0)$, which is unstable; the single virus endemic equilibrium corresponding to virus 1 $(\hat{x}^{(1)}, 0, 0)$; and the single virus endemic equilibrium corresponding to virus 2 $(0, \hat{x}^{(2)}, 0)$.

Proof: See the Appendix.

The equilibria of the kind $(\hat{x}^{(1)}, 0, 0)$ and $(0, \hat{x}^{(2)}, 0)$ are hereafter referred to as the boundary equilibria. Note that $\hat{x}^{(1)}$ and $\hat{x}^{(2)}$ are asymptotically stable in the single virus (i.e., one of the two viruses has died out) systems corresponding to virus 1 and virus 2, respectively; when both viruses pervade the network, the stability of $(\hat{x}^{(1)}, 0, 0)$ and $(0, \hat{x}^{(2)}, 0)$, in even the local (let alone global) sense, is not guaranteed. As such, in the rest of this section we will focus on identifying a sufficient condition (resp. some necessary conditions) for local exponential stability of the boundary equilibria.

We need the following assumption, which is slightly stronger than Assumption 2.
Assumption 3 For all $i \in [n]$, we have $\delta_1^{(1)}, \delta_2^{(2)} > 0$. The matrices $B^{(1)}$ and $B^{(2)}$ are nonnegative and irreducible.

The following theorem provides a sufficient condition for local exponential stability of the boundary equilibrium $(\hat{x}^{(1)}, 0, 0)$.

Theorem 3 Consider system $(6, 10)$ under Assumptions 4 and 5. Suppose that i) $\epsilon^{(1)} = \epsilon^{(2)} = \epsilon \in [0, 1]$, ii) $s(-D^{(1)} + B^{(1)}) > 0$, and iii) $s(-D^{(2)} + B^{(2)}) > 0$. The equilibrium point $(\hat{x}^{(1)}, 0, 0)$ is locally exponentially stable if

1. $s(-D^{(2)} + (1 - \hat{x}^{(1)})B^{(2)}) < 0$; and
2. $s\left((-D^{(1)} - D^{(2)} + \epsilon \hat{x}^{(1)}B^{(2)}) - (\epsilon B^{(1)} + \epsilon \hat{x}^{(1)}B^{(2)})(-D^{(2)}) + (I - \hat{x}^{(1)})B^{(2)} - \epsilon B^{(1)})^{-1}((I - \hat{x}^{(1)})B^{(2)} + D^{(1)})\right) < 0$.

Proof: See the Appendix.

Theorem 3 answers Question (iii) raised in Section 3.1.

The following proposition provides necessary conditions for local exponential stability of the boundary equilibrium $(\hat{x}^{(1)}, 0, 0)$.

Proposition 2 Consider system $(6, 10)$ under Assumptions 4 and 5. Suppose that $\epsilon^{(1)} = \epsilon^{(2)} = \epsilon \in [0, 1]$, and that $s(-D^{(1)} + B^{(1)}) > 0$. The equilibrium point $(\hat{x}^{(1)}, 0, 0)$ is locally exponentially stable only if each of the following conditions are satisfied

1. $s(-D^{(2)} + (1 - \hat{x}^{(1)})B^{(2)} - \epsilon B^{(1)}) < 0$; and
2. $s\left((-D^{(1)} - D^{(2)} + \epsilon \hat{x}^{(1)}B^{(2)}) - (\epsilon B^{(1)} + \epsilon \hat{x}^{(1)}B^{(2)})(-D^{(2)}) + (I - \hat{x}^{(1)})B^{(2)} - \epsilon B^{(1)})^{-1}((I - \hat{x}^{(1)})B^{(2)} + D^{(1)})\right) < 0$.

Proof: See the Appendix.

Proposition 2 answers Question (iv) raised in Section 3.1.

Remark 2 Note that, in general, there is a gap between the sufficient condition in Theorem 3 and the necessary conditions in Proposition 3. However, if $\epsilon^{(m)} = 0$ for $m = 1, 2$, the sufficient condition in Theorem 3 and the necessary conditions in Proposition 3 coincide to yield a necessary and sufficient condition for local exponential convergence to $(\hat{x}^{(1)}, 0, 0)$. Further, by Assumption 4, $\phi^{(1)} > 0$ and $\delta^{(2)} > 0$ for each $i \in [n]$. Hence, if $\epsilon^{(m)} = 0$ for $m = 1, 2$, then condition i) in both Theorem 3 and Proposition 3 is always satisfied. As a consequence, condition i) in Theorem 3 becomes a necessary and sufficient condition, which is consistent with Ye et al. (2022) Theorem 3.10.

Remark 3 Theorem 3 pertains to local exponential stability of the boundary equilibrium $(\hat{x}^{(1)}, 0, 0)$. It is of interest to know when the boundary equilibrium $(\hat{x}^{(1)}, 0, 0)$ can be globally stable. A partial answer is as follows: Suppose that the conditions in Theorem 3 are satisfied. Suppose that $\epsilon^{(1)} = \epsilon^{(2)} = 0$. Then if the system $(6, 10)$ has no coexistence equilibria (guaranteed by, for instance, $B^{(2)} > B^{(1)}$ (Janson et al., 2020, Corollary 2)), then the boundary equilibrium $(\hat{x}^{(1)}, 0, 0)$ is globally asymptotically stable; see Ye et al. (2022, Corollary 3.16).

We next present a result for instability of the boundary equilibrium $(\hat{x}^{(1)}, 0, 0)$.

Corollary 3 Consider system $(6, 10)$ under Assumptions 4 and 5. Suppose that $\epsilon^{(1)} = \epsilon^{(2)} = \epsilon \in [0, 1]$, and that $s(-D^{(1)} + B^{(1)}) > 0$. If $s(-D^{(1)} - D^{(2)} + \epsilon \hat{x}^{(1)}B^{(2)}) > 0$, then the equilibrium $(\hat{x}^{(1)}, 0, 0)$ is unstable.

Proof: See the Appendix.

Note that by suitably changing the notations of Theorem 3, Proposition 2, and Corollary 3, we can obtain a sufficient condition, necessary conditions, and a condition for instability, respectively, for the boundary equilibrium $(0, \hat{x}^{(2)}, 0)$.

6. Analysis of Coexisting Equilibria

Equilibria of the kind $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$ with at least any two of $\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}$ being non-zero vectors, are referred to as coexisting equilibria. In this section, we show that certain kinds of coexisting equilibria cannot exist, and we focus on identifying necessary conditions for the existence of certain other kinds of coexisting equilibria.

6.1. Impossibility of Existence of a Certain Kind of Coexisting Equilibria

It is well known that for the competitive bivirus case (i.e., $\epsilon^{(m)} = 0$ for $m = 1, 2$), one of the possible equilibria is the so-called coexistence equilibrium, where separate fractions of each node is infected by virus 1 and virus 2 (Liu et al., 2019; Ye et al., 2022; Janson et al., 2020). More formally, these are equilibria of the kind $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$ with $0 \leq \hat{x}^{(1)} < 1, 0 \leq \hat{x}^{(2)} < 1$ and $\hat{x}^{(1)} + \hat{x}^{(2)} < 1$. It is natural to wonder whether similar equilibria could exist even when $\epsilon^{(m)} > 0$ for $m = 1, 2$. It turns out, however, that such coexistence equilibria do not exist for coupled bivirus systems. The following proposition formalizes this.

Proposition 3 Consider system $(6, 10)$ under Assumptions 4 and 5. Suppose that $\epsilon^{(m)} > 0$ for some $m \in [2]$. There does not exist a coexisting equilibrium of the form $(\hat{x}^{(1)}, \hat{x}^{(2)}, 0)$ with $\hat{x}^{(1)}, \hat{x}^{(2)} > 0$.

Proof: See the Appendix.

In a similar vein to Proposition 3, the following proposition states that the coupled bivirus system cannot have an equilibrium where a fraction of each node is infected by both viruses at the same time, but that no fraction of any node is infected only by one of the viruses.

Proposition 4 Consider system $(6, 10)$ under Assumptions 4. There does not exist an equilibrium of the form $(0, 0, \hat{z})$, where $\hat{z} > 0$.
Proof: See the Appendix. ■

Taken together, Propositions 3 and 4 answer, in the negative, Question [v] raised in Section 3.1. In so doing, Propositions 3 and 4 restrict the set of possible endemic equilibria for the coupled bivirus system.

6.2. Necessary Conditions for Existence of Certain Kinds of Coexisting Equilibria

While Subsection 6.1 has dealt with the impossibility of existence of certain kinds of coexisting equilibria, in this subsection we are interested in identifying some necessary conditions for the existence of certain other kinds of coexisting equilibria. We begin by presenting a necessary condition for the existence of a coexisting equilibrium where for each node the fraction infected only by virus 1 is non-zero, by both viruses 1 and 2 is non-zero, but only by virus 2 is zero.

Proposition 5 Consider system (8)-(10) under Assumption 3. Suppose that i) $\rho((D^{(1)})^{-1}B^{(1)}) > 1$, and ii) $\rho((D^{(2)})^{-1}B^{(2)}) > 1$. Then, there exists an equilibrium $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$ with $\hat{x}^{(1)}(\neq 0)$ only if $\rho((D^{(1)})^{-1}B^{(2)}) > 1$.

Proof: See the Appendix. ■

By following analogous arguments as in the proof of Proposition 5, it can be shown that there exists an equilibrium $(0, \hat{x}^{(2)}, \hat{z})$ only if $\rho((D^{(2)})^{-1}B^{(1)}) > 1$. Thus, Proposition 5 conclusively answers Question [vi] raised in Section 3.1.

Next, we present a condition that rules out a given point in the state space as a coexisting equilibrium where each node has i) a fraction that is infected only by virus 1; ii) a fraction that is infected only by virus 2; and iii) a fraction that is infected by both viruses 1 and 2. To this end, we need the following assumption.

Assumption 4 The healing and infection rates are the same for each virus. That is, $\delta^{(1)} = \delta^{(2)}$ for all $i \in [n]$, and $\beta^{(2)}_{ij} = \beta^{(2)}_{ji}$ for all $i = j \in [n]$ and $(i, j) \in \mathcal{E}$.

In words, Assumption 4 states that two identical homogeneous viruses spread over the same graph. This implies that $D^{(1)} = D^{(2)} = D$, and $B^{(1)} = B^{(2)} = B$. With Assumption 4 in place, we have the following result.

Proposition 6 Consider system (8)-(10) under Assumptions 3, 3 and 4. Suppose further that $\rho^{(1)} = \rho^{(2)} = \rho > 0$. Then, there exists an equilibrium $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$, where $\hat{x}^{(1)}(\neq 0)$, $\hat{x}^{(2)}, \hat{z} > 0$, only if $\rho((I - X^{(1)} - X^{(2)} - Z)D^{-1}B) < 1$.

Proof: See the Appendix. ■

Proposition 6 answers Question [vii] raised in Section 3.1. Note that Proposition 6, in itself, is not a necessary condition. That is, if, a given point $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$, where $\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z} > 0$, were to not fulfill the condition in Proposition 6, it does not mean that there cannot exist another point, say, $(\tilde{x}^{(1)}, \tilde{x}^{(2)}, \tilde{z})$, where $\tilde{x}^{(1)}, \tilde{x}^{(2)}, \tilde{z} > 0$, that satisfies the condition in Proposition 6. Of course, if every point in the state space violates the aforementioned condition, then no equilibrium of the form $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})$, $\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z} > 0$, can exist.

7. Monotonicity (or lack thereof) of the coupled bivirus system

The discussion heretofore has centered around existence, uniqueness and stability of certain specific equilibria. It is natural to seek a more general perspective on the coupled bi-virus model, which is the main focus of this section.

With $\epsilon^{(1)} = \epsilon^{(2)} = 0$ (i.e., the competitive bivirus case), the system defined by (8)-(10) is monotone; see Ye et al. 2022 Lemma 3.3). This section seeks to answer whether the same holds for the case when $\epsilon^{(1)} > 0$ and/or $\epsilon^{(2)} > 0$. To this end, first we introduce a graph structure, and then use this graph to provide a conclusive answer.

7.1. Construction of the graph associated with the Jacobian of a non-linear system

Consider a system $\dot{x} = f(x)$, and let $J(\cdot)$ denote the Jacobian of this system. It turns out that we can construct a graph associated with $J(\cdot)$; call this graph G. The construction follows the outline provided in (Sontag, 2007). More specifically, the number of nodes in the graph G equals the number of rows (resp. columns) of $J(\cdot)$, whereas the edges of G are drawn based on the entries in $J(\cdot)$. If, independent of the argument of $J(\cdot)$, $J(\cdot)_{ij} \leq 0$ for $i \neq j$, then we draw an edge from node j to node i labeled with a “−” sign; if, independent of the argument of $J(\cdot)$, $J(\cdot)_{ij} \geq 0$ for $i \neq j$, then we draw an edge labeled with a “+” sign. If $J(\cdot)_{ij} \leq 0$ for some argument, and $J(\cdot)_{ij} \geq 0$ for some other argument then from node j to node i we draw an edge labeled with a “−” sign, and also an edge labeled with a “+” sign. Furthermore, if from node j to node i, there are edges with a “−” sign and with a “+” sign, then we introduce a node between i and j, say i' such that there is an edge with a “+” sign from i to i'; an edge with a “−” sign from i' to j; the edge with a “−” sign from j to i is retained; see (Sontag, 2007) Figure 3). We refer to the graph constructed with the addition of such nodes as \hat{G}. Thus, \hat{G} is a signed graph. Note that \hat{G} has no self-loops.

We will also be requiring the following notion from graph theory. A signed graph is said to be consistent if every undirected cycle in the graph has a net positive sign, i.e., it has an even number of “−” signs (Sontag, 2007).

7.2. The coupled bivirus system is not monotone

We now show that the coupled bivirus system is not monotone.

Theorem 4 Under Assumptions 1 and 2, system (8)-(10) is not monotone.
Proof: First, note that the Jacobian $J(x^{(1)}, x^{(2)}, z)$, as in (16), has $3n$ rows (resp. $3n$ columns). Hence, the graph G constructed with respect to the Jacobian in (16) has $3n$ nodes. Next, observe that the 12 and 21 blocks of $J(x^{(1)}, x^{(2)}, z)$ are, due to Assumptions 1 and 2, negative matrices, which implies that for any node i, the edge from node i (resp. $i + n$) to node $i + n$ (resp. i) has a “−” sign. Similarly, the 31 and 32 blocks of $J(x^{(1)}, x^{(2)}, z)$ are, due to Assumptions 1 and 2, positive matrices, which implies that for any node i, the edge from node i (resp. $i + n$) to node $i + 2n$ has a “+” sign.

Note that the 13 block of J can change its sign depending on the argument. Hence, it is clear that, for any node i, there is an edge from node $i + 2n$ to i with a “−” sign, and an edge with a “+” sign. Therefore, we introduce n additional nodes, and label these $3n + 1, 3n + 2 \ldots 4n$. Similarly, since the 23 block of $J(x^{(1)}, x^{(2)}, z)$ can change its sign depending on the argument, it follows that for any node i, there is an edge from node $i + 2n$ to $i + n$ with a “−” sign, and an edge with “+” sign. Therefore, we introduce further n additional nodes, and label those $4n + 1, 4n + 2 \ldots 5n$. The edges corresponding to the nodes labeled $3n + 1, 3n + 2 \ldots 4n$, and $4n + 1, 4n + 2 \ldots 5n$ are assigned as outlined in Section 7.1; thus obtaining the corresponding graph G.

In graph G, the loop starting from node i traversing through node $i + 3n$, node $i + 2n$, node $i + n$ and back to node i is a 4-length cycle that has an odd number (namely, one) of negative signs. Therefore, from (Sontag, 2007, page 62), the signed graph G is not consistent. Consequently, from (Sontag, 2007, page 63), it follows that the system (8)-(10) is not monotone.

Theorem 4 answers Question (viii) raised in Section 3.1. Furthermore, Theorem 4 implies that we cannot leverage the rich literature on monotone dynamical systems Smith (1988), Hirsch (1988) to study the limiting behavior of system (8)-(10). In general, for non-monotone systems, no dynamical behavior, including chaos, can be definitively ruled out (Sontag, 2007). Therefore, novel tools are needed to study coupled bivirus systems more in-depth. The development of such tools is beyond the scope of this paper.

8. Simulations

This section presents a comparison of the 4^n-state Markov process in (1)-(4) to (8)-(10) via simulation, and also provides a set of simulations of the coupled virus model on a small- and large-scale networks, whose exact parameter values used along with the MATLAB code used are available via github.4

8.1. Comparison to Full Probabilistic Model

We compare the model in (1)-(4) to the full probabilistic 4^n-state model in (8)-(10) via simulations to illustrate the effectiveness of the approximation. We set $\epsilon^{(1)} = \epsilon^{(2)} = 3$, and use line graphs, star (hub–spoke) graphs, and complete graphs. For examples of each type of graph, see Figure 2. All adjacency matrices for these graphs are symmetric and binary-valued, and both viruses spread over the same graph. In the star graph, the central node is the first agent. Each simulation was run for 10,000 time steps (final time $T = 10,000$), with three initial conditions: 1) the first node is infected by virus 1 and the second node is infected by virus 2, $x^{(1)}(0) = [1 \ 0 \ \cdots \ 0]^T$, $x^{(2)}(0) = [0 \ 1 \ \cdots \ 0]^T$ (21) $z(0) = 0$;

2) the first node is infected by virus 1, the second node is infected by virus 2, and the third node is infected by both virus 1 and virus 2, $x^{(1)}(0) = [1 \ 0 \ \cdots \ 0]^T$, $x^{(2)}(0) = [0 \ 1 \ \cdots \ 0]^T$, $z(0) = [0 \ 0 \ 1 \ \cdots \ 0]^T$; (22)

and 3) the first node is infected by virus 1, the second node is infected by virus 2, and the remaining nodes are

![Figure 2: Graph structures: a) line, b) star, c) complete.](image)

![Figure 3: A plot of $\|x_1(T); x_2(T); x_3(T)\| - \|x_1(T); x_2(T); z(T)\|$ for the line graph, $T = 10.000$. Results from using the different initial conditions (21), (22), and (23) are depicted by the blue lines, red dashed lines, and black dash-dot lines, respectively.](image)
infected by both virus 1 and virus 2,
\[
\begin{align*}
 x^{(1)}(0) &= [1 \ 0 \ \cdots \ 0]^T \\
 x^{(2)}(0) &= [0 \ 1 \ 0 \ \cdots \ 0]^T \\
 z(0) &= [0 \ 0 \ 1 \ \cdots \ 1]^T.
\end{align*}
\] (23)

In these tests we explore identical homogeneous viruses, \((\beta, \delta) = (\beta^{(1)}, \delta^{(1)}) = (\beta^{(2)}, \delta^{(2)}) = (\beta^{(3)}, \delta^{(3)})\). The \((\beta, \delta)\) pairs are \((0.1, 1), (0.215, 1), (0.464, 1), (0.5, 0.5), (1, 0.464), (1, 0.215), (1, 0.1)\) and the numbers of agents are \(n = 4, 6\). We limited simulations to these \(n\) values since mean field approximations are typically worse for small values of \(n\) and there is a computational limitation due to the size of the 4\(^n\)-state Markov model.

The results are given in Figures 3 and 5 in terms of the 2-norm of the difference between the states of \(\text{(8)-(10)}\) at the final time \([x^{(1)}(T); x^{(2)}(T); z(T)]\), and the means of the three states in the 4\(^n\)-state Markov model at the final time \(\langle [v^{(1)}(T); v^{(2)}(T); v^{(3)}(T)] \rangle\) as defined by \([1]\).

The accuracy of the approximation appears to be very similar to the single virus case [Mieghem et al. 2009] and to the two-virus case [Liu et al. 2019]. Since the model in \(\text{(8)-(10)}\) is an upper bounding approximation, the results show that the two models converge to the healthy state for the smaller values of \(\beta\), resulting in small errors between the two models. For many of the larger values of \(\beta\), the model in \(\text{(8)-(10)}\) again performs quite well since it is at an epidemic state and the 4\(^n\)-state Markov model does not appear to reach the healthy state in the finite time considered in the simulations \((T = 10,000)\). Therefore, for certain values of \(\beta\) and certain time scales, the model in \(\text{(8)-(10)}\) is a sufficient approximation of the 4\(^n\)-state Markov model. For values of \(\beta\) that are near 1, the models are quite different, similar to the single- and bi-virus cases.

The 4\(^n\)-state Markov model appears, in most cases, to be at or close to the healthy state while the model in \(\text{(8)-(10)}\) is at an epidemic state, resulting in large errors.
We consider a network of \(n = 15 \) nodes. The binary matrices \(A^{(1)} \) and \(A^{(2)} \) are populated in correspondence, respectively, to the black and green edges depicted in Figure 6. The initial condition of the network is shown in Figure 6. The elements of diagonal matrices \(D^{(1)} \) and \(D^{(2)} \) are chosen uniformly at random from \([0,1]\). Let \(b^{(1)} \) be a vector whose elements are chosen uniformly at random from \([0,1]\). Let \(B^{(1)} = \text{diag}(b^{(1)}/6)A^{(1)} \). Vector \(b^{(2)} \) is chosen analogous to \(b^{(1)} \). Then, let \(B^{(2)} = \text{diag}(b^{(2)}/11)A^{(2)} \). Let \(\epsilon^{(1)} = \epsilon^{(2)} = \epsilon \), and fix \(\epsilon = 0.5 \). Given that the matrices involved are of dimension \(15 \times 15 \), in the interest of space, we refrain from providing exact values. With these choices of model parameters, it turns out that \(s(-D^{(1)} + B^{(1)}) = -0.0037 < 0 \) and \(s(-D^{(2)} + B^{(2)}) = -0.0013 < 0 \). Consistent with Proposition 1 (and since \(\epsilon \in (0,1) \), also consistent with Theorem 1), both the viruses die out; see Figure 7a. Next, with the same model parameters and initial condition as before, we set \(\epsilon = 2 \). Again, consistent with Proposition 1, the dynamics converge to the healthy state, albeit the rate of convergence is slower than that with \(\epsilon = 0.5 \); see Figure 7b. Once again, with the same model parameters and initial condition as before, we set \(\epsilon = 1000 \). Although \(s(-D^{(1)} + B^{(1)}) = 1.4904 > 0 \) and \(s(-D^{(2)} + B^{(2)}) = -0.0013 < 0 \), consistent with Theorem 1, virus 2 dies out, virus 1 becomes endemic in the population, and no fraction of any node is infected by both viruses 1 and 2 simultaneously; see Figure 7c.

For the next simulation, \(D^{(1)}, D^{(2)}, b^{(1)}, \) and \(b^{(2)} \) are the same as before. Let \(B^{(1)} = \text{diag}(b^{(1)})A^{(1)} \). and let \(B^{(2)} = \text{diag}(b^{(2)}/11)A^{(2)} \). Choose \(\epsilon = 0.5 \). With these choices of model parameters, it turns out that \(s(-D^{(1)} + B^{(1)}) = 1.4904 > 0 \) and \(s(-D^{(2)} + B^{(2)}) = -0.0013 < 0 \). Consistent with Theorem 2, virus 2 dies out, virus 1 becomes endemic in the population, and no fraction of any node is infected by both viruses 1 and 2 simultaneously; see Figure 8.

Next, \(D^{(1)}, D^{(2)}, b^{(1)}, \) and \(b^{(2)} \) take the same values as before. Let \(B^{(1)} = \text{diag}(b^{(1)}/2)A^{(1)} \) and let \(B^{(2)} = \text{diag}(b^{(2)/10}A^{(2)}). \) We choose \(\epsilon = 0.5 \). With such a choice, we obtain \(s(-D^{(1)} + B^{(1)}) = 0.5026 > 0 \), thus ensuring the existence of an endemic equilibrium \(\hat{x}^{(1)} \). We also have \(s(-D^{(2)} + B^{(2)}) = 0.0063 \). Further, we have that \(\epsilon\hat{X}^{(1)}(B^{(2)}) = -0.0210 < 0 \), and \(s\left((-D^{(1)} - D^{(2)} + \epsilon\hat{X}^{(1)}(B^{(2)}) - (\epsilon\hat{X}^{(1)} + \epsilon\hat{X}^{(1)}B^{(2)}) - (-D^{(2)} + (I - \hat{X}^{(1)})B^{(2)} - \epsilon B^{(1)})^{-1}(I - \hat{X}^{(1)})B^{(2)} + D^{(1)})\right) < 0.0259 < 0 \). Hence, in line with the result in Theorem 3, the dynamics converge to \((\hat{x}^{(1)}, 0, 0) \) exponentially fast; see Figure 11.

8.3. Large-Scale Network

Next, we test the mean-field model on a large-scale net-work. Specifically, we run simulations on a graph of adjacent counties in the contiguous United States of America \((n = 3109)\), using the same adjacency matrix as (Paré et al. 2020b) for both infection graphs, \(A^{(1)} \) and \(A^{(2)} \).

Specifically, the adjacency matrix (dimension \(3109 \times 3109 \)) is calculated using the adjacency of counties, that is,

\[
a_{ij} = \begin{cases}
1, & \text{if county } i \text{ and county } j \text{ share a border,} \\
1, & \text{if } i = j, \\
0, & \text{otherwise,}
\end{cases}
\]

and is depicted in Figure 12. The colors of the nodes indicate the initial condition of the network.

The elements of diagonal matrices \(D^{(1)} \) and \(D^{(2)} \), and that of vector \(b^{(1)} \) and \(b^{(2)} \) are chosen as in the simulation for Figure 7a. Let \(B^{(1)} = \text{diag}(D^{(1)}/8)A^{(1)} \) and, let \(B^{(2)} = \text{diag}(b^{(2)/21})A^{(2)} \). Let \(\epsilon^{(1)} = \epsilon^{(2)} = \epsilon \), and fix \(\epsilon = 0.5 \). With these choices of model parameters, it turns out that \(s(-D^{(1)} + B^{(1)}) = -0.0037 < 0 \) and \(s(-D^{(2)} + B^{(2)}) = -0.0013 < 0 \). Consistent with Proposition 1 (and since \(\epsilon \in (0,1) \), also consistent with Theorem 1), both viruses die out; see Figure 13. Next, with the same model parameters and initial condition as used for the simulation in Figure 13, we set \(\epsilon = 2 \). It turns out that consistent with Proposition 1, the dynamics converge to the healthy state, albeit the rate of convergence is slower than that with \(\epsilon = 0.5 \); see Figure 14. Next, using the same set of parameters as for the simulations in Figure 13 with the exception that \(\epsilon^{(1)} = 2 \) and \(\epsilon^{2} = 0.5 \), we check the conditions in Proposition 1. It seems that even with the aforementioned choice of \(\epsilon^{(m)} \) for \(m = 1, 2 \), the conditions in Proposition 1 guarantee eradication of both viruses; see Figure 15. Once again, with the same model parameters and initial condition used in the simulation for Figure 13, we set \(\epsilon = 1000 \). Even though \(s(-D^{(1)} + B^{(1)}) = -0.1848 < 0 \) and \(s(-D^{(2)} + B^{(2)}) = -0.0081 < 0 \), because of the effect of the large value of \(\epsilon \), the dynamics do not die out; see Figure 16.

For the next simulation, \(D^{(1)}, D^{(2)}, b^{(1)}, \) and \(b^{(2)} \) are chosen to be the same as in the simulation for Figure 13. Let \(B^{(1)} = \text{diag}(b^{(1)})A^{(1)} \) and \(B^{(2)} = \text{diag}(b^{(2)/21})A^{(2)} \). Choose \(\epsilon = 0.5 \). With these choices of model parameters, it turns out that \(s(-D^{(1)} + B^{(1)}) = 4.2619 > 0 \) and \(s(-D^{(2)} + B^{(2)}) = -0.0081 < 0 \). In line with the result in Theorem 2, virus 2 dies out, virus 1 stays endemic in the population, and no fraction of any node is infected by both viruses 1 and 2 simultaneously; see Figure 17.

Next, \(D^{(1)}, D^{(2)}, b^{(1)}, \) and \(b^{(2)} \) take the same values as before. Let \(B^{(1)} = \text{diag}(b^{(1)/2})A^{(1)} \), and let \(B^{(2)} = \text{diag}(b^{(2)})A^{(2)} \) and \(B^{(2)} = \text{diag}(b^{(2)/20})A^{(2)} \). We choose \(\epsilon = 0.5 \). Such a choice yields \(s(-D^{(1)} + B^{(1)}) = 1.7209 > 0 \), thus ensuring the existence of an endemic equilibrium \(\hat{x}^{(1)} \). We also have \(s(-D^{(2)} + B^{(2)}) = 0.0067 \). Further, we have that \(s(-D^{(2)} + (I - \hat{X}^{(1)})B^{(2)}) = -0.2045 < 0 \), and \(s\left((-D^{(1)} - D^{(2)} + (I - \hat{X}^{(1)})B^{(2)})\right) < 0 \).
9. Conclusion

We have addressed the problem of simultaneous infection of an individual (resp. subpopulation) by possibly two viruses. We derived a coupled bi-virus model from a 4^n-state Markov process. We identified a condition that leads to the extinction of both viruses; likewise a condition that causes one of the viruses to become endemic in the population. Subsequently, we provided a sufficient condition and two necessary conditions for local exponential convergence of boundary equilibria. With respect to coexistence equilibria, we conclusively ruled out the existence of such states.
Figure 13: The red line indicates the average infection level of the population with respect to virus 1; the blue line with respect to virus 2; and the yellow line with respect to both viruses 1 and 2. We set with $\epsilon = 0.5$.

Figure 14: The red line indicates the average infection level of the population with respect to virus 1; the blue line with respect to virus 2; and the yellow line with respect to both viruses 1 and 2. We set with $\epsilon = 2$.

Figure 15: The parameters are chosen so as to fulfill the conditions in Proposition 1, with the exception that $\epsilon^{(1)} = 0.5$ and $\epsilon^{(2)} = 2$. The dynamics still converge to the healthy state.

Figure 16: The parameters chosen fulfill the conditions in Proposition 1, but since $\epsilon = 1000$ is quite large the dynamics do not converge to the healthy state.

Figure 17: Virus 1 becomes endemic; virus 2 has died out completely, and no fraction of any node is infected by both viruses 1 and 2.

Figure 18: Average infection level with respect to virus 1, virus 2, and virus 1 and virus 2 using the initial condition in Figure 12.

of the following types of coexisting equilibria: i) a point in the state space where for each node there is a non-trivial fraction infected only by virus 1, a non-trivial fraction infected only by virus 2, but no fraction that is infected by both viruses 1 and 2; and ii) a point in the state space where for each node there is a fraction that is infected simultaneously by both viruses 1 and 2, but no fraction is infected only by virus 1 (resp. virus 2). We provided a necessary condition for the existence of certain other kinds of coexisting equilibria. Finally, we showed that the coupled bi-virus model is not monotone.

The fact that the coupled bivirus system is not monotone makes its stability analysis harder. However, one could leverage the theory of singular perturbations for monotone systems [Wang and Sontag, 2006] to possibly draw conclusions on the generic convergence of the coupled bivirus system, whereas one could possibly take recourse to the Lyapunov techniques espoused in [Shuai and van den Driessche, 2013] to establish global asymptotic stability of boundary equilibria. Other problems of further interest include identifying condition(s) for stability (local or global) of various coexisting equilibria.

Acknowledgements

We thank Prof. Wendy Anne Beauvais (Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University) for discussions regarding co-infection in animal populations that have contributed to the design of our model. We also thank the anonymous reviewers whose feedback has improved the paper.

References

Ahn, Y.-Y., Jeong, H., Masuda, N., and Noh, J. D. (2006). Epidemic dynamics of two species of interacting particles on scale-free networks. Physical Review E, 74(6):066113.

Alemu, A., Shiferaw, Y., Addis, Z., Mathewos, B., and Birhan, W. (2013). Effect of malaria on HIV/AIDS transmission and progression. Parasites & Vectors, 6(1):1–8.

Arcede, J. P., Caga-Anan, R. L., Mentuda, C. Q., and Mammeri, Y. (2020). Accounting for symptomatic and asymptomatic in a SEIR-type model of COVID-19. Mathematical Modelling of Natural Phenomena, 15:34.

Arzt, J., Fish, I. H., Bertram, M. R., Smoliga, G. R., Hartwig, E. J., Pauszek, S. J., Holinka-Patterson, L., Diaz-San Segundo, F. C., Sitt, T., Rieder, E., et al. (2021). Simultaneous and staggered foot-and-mouth disease virus coinfection of cattle. Journal of Virology, 95(24):e01650–21.

Bailey, N. T. et al. (1975). The Mathematical Theory of Infectious Diseases and Its Applications. Charles Griffin & Company Ltd, Bucks, U.K.
Berman, A. and Plemmons, R. J. (1994). Nonnegative Matrices in the Mathematical Sciences. SIAM.

Bernoulli, D. (1760). Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Histoire de l’Acad. Roy. Sci. (Paris) avec Mem. des Math. et phys. et Mem. de l’Acad. Roy. Sci. (Paris), pages 1–45.

Beutel, A., Prakash, B. A., Rosenfeld, R., and Faloutsos, C. (2012). Interacting viruses in networks: Can both survive? In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 426–434. ACM.

Bhat, S., James, J., Sadeyen, J.-R., Mahmood, S., Everest, H. J., Chang, P., Walsh, S. K., Byrne, A. M., Mollett, B., Lean, F., et al. (2022). Coinfection of chickens with H9N2 and H7N9 avian influenza viruses leads to emergence of reasserted H9N9 virus with increased fitness for poultry and a zoonotic potential. Journal of Virology, 96(5):e01856–21.

Bloom, D. E., Cadarette, D., and Sevilla, J. (2018). Epidemics and Economics. Finance & Development, 55(002).

Briot, C. (2017). Sign properties of Metzler matrices with applications. Linear Algebra and its Applications, 515:53–86.

Castillo-Chavez, C., Hethcote, H. W., Andreasen, V., Levin, S. A., and Liu, W. M. (1989). Epidemiological models with age structure, proportionate mixing, and cross-immunity. Journal of Mathematical Biology, 27(5):253–258.

Chen, L., Ghanbarnejad, F., Cai, W., and Grassberger, P. (2013). Outbreaks of coinfections: The critical role of cooperativity. EPL (Europhysics Letters), 104(5):50001.

Chu, C.-J. and Lee, S.-D. (2008). Hepatitis B virus/Hepatitis C virus coinfection: Epidemiology, clinical features, viral interactions and treatment. Journal of Gastroenterology and Hepatology, 23(4):512–520.

Creighton, S., Tentor-Flowers, M., Taylor, C. B., Miller, R., and Low, N. (2003). Co-infection with gonorrhoea and chlamydial: How much is there and what does it mean? International Journal of STD & AIDS, 14(2):109–113.

de Souza, A. J. S., Gomes-Gouveia, M. S., Soares, M. d. C. P., Pinho, J. R. R., Malheiro, A. P., Carneiro, L. A., dos Santos, D. R. L., and Pereira, W. L. A. (2012). HEV infection in swine from Eastern Brazilian Amazon: Evidence of co-infection by different subtypes. Comparative Immunology, Microbiology and Infectious Diseases, 35(5):477–485.

Dupont-Rouzyrol, M., O’Connor, O., Calvez, E., Daures, M., John, M., Grangeon, J.-P., and Gourinat, A.-C. (2022). Analysis, estimation, and validation of discrete-time epidemic processes. IEEE Transactions on Control Systems Technology, 28(1):79–93.

Hirsch, M. W. (1988). Stability and convergence in strongly monotone dynamical systems. Journal für die reine und angewandte Mathematik.

Janson, A., Gracy, S., Paré, P. E., Sandberg, H., and Johansson, K. H. (2020). Networked multi-virus spread with a shared resource: Analysis and mitigation strategies. arXiv preprint arXiv:2011.05769.

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of London. Series A, Containing papers of a mathematical and physical character, 115(772):700–721.

Khalil, H. (2002). Nonlinear Systems. Prentice Hall.

Khanana, A., Bašar, T., and Gharesifard, B. (2016). Stability of epidemiological models over directed graphs: A positive systems approach. Automatica, 74:126–134.

Krauland, M. G., Galloway, D. D., Raviotta, J. M., Zimmerman, R. K., and Roberts, M. S. (2022). Impact of low rates of influenza on next-season influenza infections. American Journal of Preventive Medicine, 62(4):503–510.

Liu, J., Paré, P. E., Nedić, A., Tang, C. Y., Beck, C. L., and Basar, T. (2016). On the analysis of a continuous-time bi-virus model. In Proceedings of the 55th IEEE Conference on Decision and Control, pages 290–295.

Liu, J., Paré, P. E., Nedić, A., Tang, C. Y., Beck, C. L., and Basar, T. (2019). Analysis and control of a continuous-time bi-virus model. IEEE Transactions on Automatic Control, 64(12):4891–4906.

Matsouk, A. (2020). Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance. Chaos, Solitons & Fractals, 140:110257.

Mei, W., Mohagheghi, S., Zampieri, S., and Bullo, F. (2017). On the dynamics of deterministic epidemic propagation over networks. Annual Reviews in Control, 44:116–128.

Meyer, C. (2000). Matrices Analysis and Applied Linear Algebra. Other Titles in Applied Mathematics. SIAM.

Mieghem, P. V., Omic, J., and Kooij, R. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking, 17(1):1–14.

Mulsen, V. and Fouchier, R. (2009). Avian influenza virus: Of virus and bird ecology. Vaccine, 27(45):6340–6344.

Newman, M. E. J., Forrest, S., and Balthrop, J. (2002). Email networks and the spread of computer viruses. Physical Review E, 66(3):056101.

Norris, J. R. (1998). Markov Chains. Cambridge University Press.

Pawloski, A., Jansson, M., Sköld, M., Rottenberg, M. E., and Källenius, G. (2012). Tuberculosis and HIV co-infection. PLoS Pathogens, 8(2):e1002464.

Plemmons, R. J. (1977). M-matrix characterizations. I–nonsingular M-matrices. Linear Algebra and its Applications, 18(2):175–188.

Paré, P. E., Liu, J., Beck, C. L., and Basar, T. (2018). A coupled bi-virus spread model in networked systems. In Proceedings of the American Control Conference, pages 4414–4419.

Paré, P. E., Liu, J., Beck, C. L., Kirwan, B. E., and Basar, T. (2020b). Analysis, estimation, and validation of discrete-time epidemic processes. IEEE Transactions on Control Systems Technology, 28(1):79–93.

Pawlowski, A., Jansson, M., Sköld, M., Rottenberg, M. E., and Källenius, G. (2012). Tuberculosis and HIV co-infection. PLoS Pathogens, 8(2):e1002464.

Qu, Z. (2009). Cooperative control of dynamical systems: Applications to autonomous vehicles. Springer Science & Business Media.

Rantzer, A. (2011). Distributed control of positive systems. In Proceedings of the 50th IEEE Conference on Decision and Control, pages 6608–6611.

Rogers, M. (2019). Covid: Woman aged 90 died with double variant infection. BBC.

Rothe, C., Schunk, M., Sothmann, P., Bretzel, G., Froeschl, G., Wallrauch, C., Zimmer, T., Thiel, V., Janke, C., Guggemos, W., et al. (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. New England Journal of Medicine, 382(10):970–971.

Sahebeh, F. D. and Scoglio, C. (2014). Competitive epidemic spreading over arbitrary multilayer networks. Physical Review E, 89(6):062817.

Santos, A., Mora, J. M. F., and Xavier, J. M. F. (2015). Bi-virus SIS epidemic models over directed graphs: A positive systems approach. Automatica, 74:126–134.
Since \(x(1) = x(2) = z_1 = z_2 = 0 \), the dynamics of all \(x_i(t) \) in (3) simplify to the single-virus network SIS model. The theorem is then a direct consequence of (Khalil 2002 Lemma 4.7) and (Lin et al. 2019 Proposition 3).

Proof of Corollary 2. Consider system (3)-(10). Note that, by the definition of equilibrium, the healthy state \((0, 0, 0)\) is an equilibrium point, regardless of whether (or not), for \(m \in [2] \), \(s(B(m) - D(m)) \leq 0 \). Since, by assumption, for \(m \in [2] \), \(s(B(m) - D(m)) > 0 \), instability of \((0, 0, 0)\) follows from the proof of Proposition 1. The existence and uniqueness of the equilibrium points \((\hat{x}(1), 0, 0)\) and \((0, \hat{x}(2), 0)\) follow from the proof of Theorem 2.

We need the following lemmas to prove the remaining main results in this paper.

Lemma 2 (Lin et al. 2019 Proposition 1) Suppose that \(A \) is a negative diagonal matrix and \(N \) is an irreducible nonnegative matrix. Let \(M \) be the irreducible Metzler matrix \(M = A + N \). Then, \(s(M) < 0 \) if and only if, \(\rho(-A^{-1}N) < 1, s(M) = 0 \) if and only if \(\rho(-A^{-1}N) = 1 \), and \(s(M) > 0 \) if and only if, \(\rho(-A^{-1}N) > 1 \).

Lemma 3 (Meyer 2000, Chapter 8.3) (Varga 1999, Theorem 2.7) Suppose that \(N \) is an irreducible nonnegative matrix. Then,

(i) \(r = \rho(N) \) is a simple eigenvalue of \(N \).

(ii) There is an eigenvector \(\zeta \gg 0 \) corresponding to the eigenvalue \(r \).

(iii) \(x > 0 \) is an eigenvector only if \(Nx = rx \) and \(x \gg 0 \).

(iv) If \(A \) is a nonnegative matrix such that \(A < N \), then \(\rho(A) = \rho(N) \).

Lemma 4 (Varga 1999, Lemma 2.3) Suppose that \(M \) is an irreducible Metzler matrix. Then \(r = s(M) \) is a simple eigenvalue of \(M \), and if \(MC = rC \), then \(\zeta \gg 0 \).

Lemma 5 Suppose that Assumptions 7 and 8 hold and that \(\delta^{(1)}(\hat{x}), \delta^{(2)}(\hat{x}) > 0 \) for all \(i \in [n] \). If \((\hat{x}(1), \hat{x}(2), \hat{z}) \) is an equilibrium of system (3)-(10) such that \(\hat{z}_i > 0 \) for at least one \(i \in [n] \), then \(\hat{x}(1), \hat{x}(2), \hat{z} \gg 0 \).

Proof: Suppose that, to the contrary, there exists an \(i \in [n] \) such that \(\hat{x}_i = 0 \). From (5), it holds that \(\hat{z}_i = 0 \). It follows from (7) that \(\hat{x}_i^2(\hat{z}) \sum_{j=1}^{n} \beta^{(1)}_{ij}(\hat{x}^2_j + \hat{z}_j) = 0 \), which implies that \(\hat{x}_i^2(\hat{z}) \sum_{j=1}^{n} \beta^{(1)}_{ij}(\hat{x}^2_j + \hat{z}_j) = 0 \). If the latter is true, since \(\beta^{(1)}_{ij} > 0 \) whenever \(j \in N_i \), it holds that \(\hat{x}_i^2 = 0 \) and \(\hat{z}_j = 0 \) for all \(j \in N_i \). If \(\hat{x}_i^2 = 0 \), it follows from (5) that \(\sum_{j=1}^{n} \beta^{(1)}_{ij}(\hat{x}^2_j + \hat{z}_j) = 0 \), which also implies that \(\hat{x}_i^2 = 0 \) and \(\hat{z}_j = 0 \) for all \(j \in N_i \). By repeating this argument, since the graph of \(B^{(1)} \) is strongly connected, \(\hat{z}_i = 0 \) for all \(i \in [n] \), which is a contradiction. Therefore, \(\hat{x}^2_i = 0 \) for all \(i \in [n] \). Similarly, it holds that \(\hat{x}_i^2 > 0 \) for all \(i \in [n] \).

Now suppose that, to the contrary, there exists one \(i \in [n] \) such that \(\hat{z}_i = 0 \). From (7), it holds that \(\hat{x}_i^2(\hat{z}) \sum_{j=1}^{n} \beta^{(1)}_{ij}(\hat{x}^2_j + \hat{z}_j) = 0 \).
0, which respectively imply that $\hat{x}_1 = 0$ or $\hat{x}_2 = 0$ for all $j \in N_0$, and $\hat{x}_1 = 0$ or $\hat{x}_2 = 0$ for all $j \in N_0$. From the preceding discussion, each of these four cases implies that $\hat{z}_i = 0$ for all $i \in [n]$, which is impossible. Therefore, $\hat{z}_i > 0$ for all $i \in [n]$. This completes the proof.

Lemma 6 Consider system $[8]-[10]$ under Assumptions 4 and 5. If $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}) \in \mathcal{D}$ such that $\hat{x}^{(1)} > 0$, $\hat{x}^{(2)} > 0$, and $\hat{z} > 0$, then $0 < \hat{x}^{(1)} \ll 1$ or $0 < \hat{x}^{(2)} \ll 1$ or $0 \ll \hat{z} < 1$. Furthermore, $\hat{x}^{(1)} + \hat{x}^{(2)} + \hat{z} \ll 1$.

Proof: Suppose that $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}) \in \mathcal{D}$ is an endemic equilibrium of $[8]-[10]$ such that $\hat{x}^{(1)} > 0$, $\hat{x}^{(2)} > 0$, and $\hat{z} > 0$. Since (33) it is clear that the matrix $\hat{J}^{(1)}, 0, 0)$ is block upper triangular. Therefore, $s(\hat{J}^{(1)}, 0, 0) < 0$ if and only if the following conditions are satisfied: i) $s(D^{(1)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)}) = 0$, and ii) $s(\hat{J}) = 0$. Since $\hat{J}^{(1)}, 0, 0$), and $\hat{J} > 0$, it follows that $\hat{J}^{(1)} < 1$, $\hat{J}^{(2)} < 1$, and $\hat{z} < 1$.

It remains to be shown that if $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}) \in \mathcal{D}$ is an endemic equilibrium of $[8]-[10]$, then $0 < \hat{x}^{(1)} < 1$, $0 < \hat{x}^{(2)} < 1$, and $0 < \hat{z} < 1$. Suppose, by way of contradiction, that $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}) \in \mathcal{D}$ is an equilibrium point, from (8) we obtain:

$$0 = -\hat{x}_1^{(1)} - \hat{x}_1^{(2)}.$$

By Assumption 3, $\hat{x}_1^{(1)} > 0$ and $\hat{x}_1^{(2)} > 0$, it must be that $-\hat{x}_1^{(1)} - \hat{x}_1^{(2)} < 0$, which contradicts [31]. Hence, for each $i \in [n]$, $\hat{x}_1^{(1)} + \hat{x}_1^{(2)} + \hat{z}_i < 1$, which further implies that $\hat{x}_1^{(1)} + \hat{x}_1^{(2)} + \hat{z}_i < 1$. Consequently, since $(\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}) \in \mathcal{D}$, it follows that $\hat{x}_1^{(1)} < 1$, $\hat{x}_1^{(2)} < 1$.}

Lemma 7 In order to prove the claim in Theorem 3, we need the following lemma.

Proof of Theorem 3 Consider the equilibrium point $(\hat{x}^{(1)}, 0, 0)$. The Jacobian matrix of this equilibrium point is as given in (32). Hence, we can rewrite $J(\hat{x}^{(1)}, 0, 0)$ as

$$J(\hat{x}^{(1)}, 0, 0) = \begin{bmatrix} -D^{(1)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)} & \hat{J} \\ 0 & \hat{J} \end{bmatrix}.$$

where $\hat{J} = \begin{bmatrix} -B^{(1)} - (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)} & -\hat{B}^{(1)} \\ -D^{(2)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)} & -\hat{B}^{(1)} \end{bmatrix}.$

From (33), it is clear that the matrix $J(\hat{x}^{(1)}, 0, 0)$ is block upper triangular. Therefore, $s(J(\hat{x}^{(1)}, 0, 0)) < 0$ if and only if the following conditions are satisfied: i) $s(D^{(1)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)}) = 0$, and ii) $s(\hat{J}) = 0$. Since $(\hat{x}^{(1)}, 0, 0)$ is an equilibrium point, from (8) we obtain:

$$s(\hat{J}^{(1)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)}) = 0.$$

Define $Q = D^{(1)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)}$. Since $-Q$ is an irreducible Metzler matrix, and since $\hat{x}^{(1)} > 0$, applying Lemma 4 to (35) yields $s(-Q) < 0$. Note that $-Q$ being Metzler implies that Q is an M-matrix, and since $s(-Q) < 0$ it follows that Q is an irreducible singular M-matrix. Since $B^{(1)}$ is nonnegative irreducible, and $\hat{x}^{(1)} > 0$, it follows that the matrix $\hat{B}^{(1)}$ has at least one diagonal element that is strictly positive. Therefore, due to (Qu 2009 Corollary 4.33), the matrix $Q + B^{(1)}$ is a non-singular M-matrix, which further implies that $s(-D^{(1)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)} < 0$.

From (34), it is immediate that \hat{J} is Metzler. We now prove, by using Lemma 2 that the matrix \hat{J} is also Hurwitz. Observe that $\hat{J} = D^{(2)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)}$. Since by Lemma 3, $\hat{x}_1^{(1)} \ll 1$, it follows that $\hat{x}^{(1)}$ is positive diagonal. Since by Assumption 2 $B^{(2)}$ is nonnegative irreducible, it is clear that $(I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)}$ is nonnegative irreducible, and hence \hat{J}_1 is Metzler. By assumption, $s(-D^{(2)} + (I - \hat{x}^{(1)}B^{(1)} - \hat{B}^{(1)} < 0$. Hence, by using similar arguments involved in showing that $s(-D^{(1)} + (I -
That is,\(s \) Hurwitz. Hence, from Lemma 7, it follows that \(\tilde{\mathfrak{e}} \) is not Hurwitz. The proof of Theorem 3. Since both \(-D^1 - D^2 + \epsilon(X(1)^{B(2)})\) and \(J/\tilde{J}_{11}\) are Metzler matrices, due to the assumption that \(-D^1 - D^2 + \epsilon(X(1)^{B(2)}) > 0\), it follows from [Varga 2009, Theorem 2.1] that \(s(J/\tilde{J}_{11}) > 0\). Consequently, it follows from Lemma 7 that the matrix \(J \) in (34) is not Hurwitz. Hence, \(s(J(x(1)^{0}, 0, 0)) > 0 \), which further implies from (Khalil 2002, Theorem 4.7) that the boundary equilibrium \((x(1)^{1}, 0, 0)\) is unstable.

\textbf{Proof of Proposition 3} \ Suppose, to the contrary, that there exists an equilibrium of the form \((\hat{x}(1), \hat{x}(2), 0)\) with \(\hat{x}(1), \hat{x}(2) > 0\) for system (3-10). By assumption \((\hat{x}(1), \hat{x}(2), 0)\) is a non-zero equilibrium point. Hence, from Lemma 8 it follows that \(0 < \hat{x}(1)\) and \(0 < \hat{x}(2)\). Since \((\hat{x}(1), \hat{x}(2), 0)\) is an equilibrium point, the equilibrium version of equation (10) reads as follows:

\begin{equation}
0 = \epsilon^1(\hat{x}(1)^{B(2)}\hat{x}(2) + \epsilon^2(\hat{x}(2)^{B(1)}\hat{x}(1)).
\end{equation}

Note that, by assumption, \(\epsilon(m) > 0\) for some \(m \in [2]\). By Assumption 2, the matrices \(B(1)\) and \(B(2)\) are nonnegative irreducible, thus, since \(\hat{x}(1)\) and \(\hat{x}(2)\) are strictly positive vectors, implying that either \(\epsilon^1(\hat{x}(1)^{B(2)}\hat{x}(2) > 0\) or \(\epsilon^2(\hat{x}(2)^{B(1)}\hat{x}(1) > 0\). As a consequence, \(\epsilon^1(\hat{x}(1)^{B(2)}\hat{x}(2) + \epsilon^2(\hat{x}(2)^{B(1)}\hat{x}(1) > 0\), which contradicts (36). Therefore, there does not exist a coexisting equilibrium of the form \((\hat{x}(1), \hat{x}(2), 0)\) with \(\hat{x}(1), \hat{x}(2) > 0\).

\textbf{Proof of Proposition 4} \ Suppose that, by way of contradiction, system (3-10) has an equilibrium of the form \((0, 0, \tilde{\mathfrak{e}})\), where \(\tilde{\mathfrak{e}} > 0\). Then, from (3-10), and, from the definition of equilibrium, we have the following:

\begin{equation}
0 = -(D^1 - D^2)\tilde{\mathfrak{e}}.
\end{equation}

Note that by Assumption 3 \(D^1\) and \(D^2\) are positive diagonal matrices, thus implying that all eigenvalues of \(-(D^1 - D^2)\) are strictly negative, and therefore non-zero. Hence, the matrix \(-D^1 + D^2\) has full rank, which further implies that \(\tilde{\mathfrak{e}}\) is satisfied only if \(\mathfrak{e} = 0\). By assumption, \(\mathfrak{e} > 0\), and hence we have a contradiction. Therefore, there does not exist an equilibrium of the form \((0, 0, \mathfrak{e})\), where \(\mathfrak{e} > 0\).

\textbf{Proof of Proposition 5} \ Suppose, by way of contradiction, that \(\rho((D^1 - D^2)^{-1}(B(2)) < 1\) and yet there exists an equilibrium point \((\hat{x}(1)^{1}, 0, \mathfrak{e})\).

Note that \(B(2)\) is nonnegative. Therefore, by noting that \(\epsilon \in (0, 1)\), and \(0 < \hat{x}(1)^{1} \ll 1\), it is clear that \(B(2) > \epsilon(X(1)^{B(2)})\). Since \(B(2) > \epsilon(X(1)^{B(2)})\), and since \((D^1 - D^2)^{-1}\) is a positive diagonal matrix, it follows that
\[(D^{(1)} + D^{(2)})^{-1}B^{(2)} > (D^{(1)} + D^{(2)})^{-1}\epsilon \hat{X}(1)B^{(2)}. \quad (38)\]

By Assumption 3, \(D^{(1)}\) and \(D^{(2)}\) are positive diagonal, thus implying that \((D^{(1)})^{-1}\) and \((D^{(1)} + D^{(2)})^{-1}\) exist. Note further that Assumption 3 also implies that \((D^{(1)})^{-1} > (D^{(1)} + D^{(2)})^{-1}\). Hence, we obtain
\[(D^{(1)})^{-1}B^{(2)} > (D^{(1)} + D^{(2)})^{-1}B^{(2)}. \quad (39)\]

From inequalities 38 and 39, it is immediately that
\[-(D^{(1)})^{-1}B^{(2)} > (D^{(1)} + D^{(2)})^{-1}\epsilon \hat{X}(1)B^{(2)}. \quad (40)\]

Since \((D^{(1)})^{-1}B^{(2)}\) and \((D^{(1)} + D^{(2)})^{-1}\epsilon \hat{X}(1)B^{(2)}\) are irreducible nonnegative matrices, it follows, from Lemma 5, that
\[\rho((D^{(1)})^{-1}B^{(2)}) > \rho((D^{(1)} + D^{(2)})^{-1}\epsilon \hat{X}(1)B^{(2)}). \quad (41)\]

The assumption \(\rho((D^{(1)})^{-1}(B^{(2)})) < 1\) and 41 imply that
\[\rho((D^{(1)} + D^{(2)})^{-1}\epsilon \hat{X}(1)B^{(2)}) < 1. \quad (42)\]

Since \((\hat{x}^{(1)}, 0, \hat{z})\) is an equilibrium of system 38-10, and since \(\epsilon^{(1)} = \epsilon\) by assumption, from 10, and from the definition of an equilibrium, we have the following:
\[0 = (- (D^{(1)} + D^{(2)}) + \epsilon \hat{X}(1)B^{(2)})\hat{z}. \quad (43)\]

Since \(\epsilon \in (0,1)\), and \(0 \ll \hat{x}^{(1)} \ll 1\), and \(B^{(2)}\) is nonnegative irreducible (by Assumption 2), it follows that the matrix \(\epsilon \hat{X}(1)B^{(2)}\) is nonnegative irreducible. Since \(-((D^{(1)} + D^{(2)})\) is a negative diagonal matrix, it follows that \(-((D^{(1)} + D^{(2)}) + \epsilon \hat{X}(1)B^{(2)})\) is an irreducible Metzler matrix. Consider 43, and note that \(\hat{z} \gg 0\). Hence, from Lemma 6, it follows that \(s((D^{(1)} + D^{(2)}) + \epsilon \hat{X}(1)B^{(2)}) = 0\), and, consequently, from Lemma 2, it is clear that
\[\rho((D^{(1)} + D^{(2)})^{-1}\epsilon \hat{X}(1)B^{(2)}) = 1. \quad (44)\]

Note that 44 contradicts 42, meaning that if we assume that \(\rho((D^{(1)})^{-1}(B^{(2)})) < 1\), then there cannot exist a coexisting equilibrium \((\hat{x}^{(1)}, 0, \hat{z})\), which concludes the proof. \(\blacksquare\)

Proof of Proposition 6

In order to prove Proposition 6, we need the following lemma.

Lemma 8 [Rantzer 2011 Proposition 2] Let \(A \in \mathbb{R}^{n \times n}\) be Metzler. Then, \(A\) is Hurwitz if, and only if, there exists an \(x \in \mathbb{R}^n\) such that \(x \gg 0\) and \(Ax \ll 0\).

Proof of Proposition 6

Suppose that by way of contradiction, there exists an equilibrium point \((\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}),\), yet \(\rho((I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})D^{-1}B) > 1\). Therefore, since by assumption \(\epsilon^{(1)} = \epsilon^{(2)} = \epsilon\), the equilibrium version of 38-10 can be written as follows:
\[0 = -D^1\hat{x}^{(1)} + D^2\hat{z} + (I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B(1)\hat{x}^{(1)} + \hat{z}) \quad (45)\]
\[0 = -D^2\hat{x}^{(2)} + D^1\hat{z} + (I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B(2)\hat{x}^{(2)} + \hat{z}) \quad (46)\]
\[0 = -(D^1 + D^2)\hat{z} + \epsilon\hat{x}^{(1)}B(1)\hat{x}^{(1)} + \hat{z}) + \epsilon\hat{x}^{(2)}B(1)\hat{x}^{(1)} + \hat{z}). \quad (47)\]

By Assumption 4, \(B^{(1)} = B^{(2)}\) and \(D^{(1)} = D^{(2)}\). Hence, by summing equations (45)-(47), we obtain
\[-D(\hat{x}^{(1)} + \hat{x}^{(2)} + (I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B) \quad (48)\]

Note that, by Assumption 3, \(D\) is a positive diagonal matrix. Furthermore, since we know by Lemma 6 that \(\hat{z} \gg 0\), it follows that \(2\hat{z} \gg 0\). Hence, we have the following:
\[-D(\hat{x}^{(1)} + \hat{x}^{(2)}) \gg -D(\hat{x}^{(1)} + \hat{x}^{(2)} + 2\hat{z}). \quad (49)\]

Therefore, adding the term \((I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B(\hat{x}^{(1)} + \hat{x}^{(2)} + 2\hat{z})\) to both sides of (49), and recalling (48), yields:
\[(D + (I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B)(\hat{x}^{(1)} + \hat{x}^{(2)} + 2\hat{z}) \ll 0. \quad (50)\]

We now show that \((-D + (I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B)\) is irreducible and Metzler. To this end, observe that since, by assumption, \((\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})\) is a nonzero equilibrium point, it follows from Lemma 6 that \(0 \ll \hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z}, \hat{x}^{(1)} + \hat{x}^{(2)} + \hat{z} \ll 1\). Hence, \((I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})\) is a positive diagonal matrix with every nonzero element in it being strictly less than one. Therefore, since \(B\) is nonnegative irreducible and \(D\) is positive diagonal, it is clear that \((-D + (I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})B)\) is an irreducible Metzler matrix. Note that, by Lemma 6, \(\hat{x}^{(1)} + \hat{x}^{(2)} + 2\hat{z} \gg 0\). Hence, applying Lemma 6 to vector inequality (50) yields \(\rho((I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})D^{-1}B) < 1\). However, notice that by assumption, \(\rho((I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})D^{-1}B) \geq 1\), which leads to a contradiction. Hence, if \((\hat{x}^{(1)}, \hat{x}^{(2)}, \hat{z})\) is an equilibrium point then \(\rho((I - \hat{x}^{(1)} - \hat{x}^{(2)} - \hat{z})D^{-1}B) < 1\), thus completing the proof. \(\blacksquare\)