Optimistic and pessimistic biases: a primer for behavioural ecologists
Melissa Bateson

To address the adaptive value of optimism/pessimism an operational definition is required. I define a behavioural decision as relatively optimistic if it is consistent with the animal having either, a higher expectation of reward, or a lower expectation of punishment (threat), than the same animal in a different state (or a different animal). Pessimism is the inverse of optimism. Such relative behavioural biases can arise from various cognitive mechanisms, and do not require inaccurate (i.e. biased) cognitive representations of the probabilities of either rewards or punishers. Normative models show that optimistic and pessimistic behavioural biases can be adaptive in the face of risk or uncertainty. Empirical evidence from a range of species can be interpreted as supporting predictions of these models. Behavioural biases are hypothesised to be a key component of affective states, whose evolutionary function is to prioritise the allocation of resources towards the currently most important fitness-relevant activities.

Address
Institute of Neuroscience/Centre for Behaviour and Evolution, Newcastle University, United Kingdom

Corresponding author: Bateson, Melissa (melissa.bateson@ncl.ac.uk)

Introduction
Optimistic and pessimistic biases belong to a group of decision-making phenomena referred to collectively as cognitive biases. These phenomena were first documented by psychologists and behavioural economists studying human judgement and decision making, but have more recently captured the interest of evolutionary biologists and researchers studying non-human animals.1 Interest in optimistic biases has its origins in two findings from humans. The first is that healthy subjects are, on average, optimistic in their future expectations [1], and moreover, that they tend to rate their expectations as better than they objectively are [2]. The second is that there are consistent individual differences in optimism, with more anxious and/or depressed subjects typically being less optimistic than healthy subjects [3,4]. The link between optimism and affective state in humans has inspired applied ethologists and psychopharmacologists interested in identifying behavioural correlates of affective state to develop behavioural tasks for assessing optimism in animals. The result is a growing body of literature on optimistic/pessimistic biases in animals [5,6,7–9].

The above findings have sparked the interest of behavioural ecologists, because cases of apparent irrationality and unexplained individual differences in behaviour are challenges for adaptationist accounts of behaviour [10,11†]. However, attempts to explain the adaptive value of optimism are currently hindered by confusion over the precise phenomenon under discussion: optimism is defined differently by different constituencies of researchers.

A cognitive bias has recently been defined as, ‘A consistent deviation from an accurate perception or judgement of the world’ [12†]. However, this definition is an unsatisfactory starting point for an exploration of the adaptive value of optimism in animals (and probably also humans). The definition focuses on biases in perception and judgement (cognitive processes), but natural selection acts directly on behavioural output, and the patterns of responses recorded in animal judgement and decision-making experiments are behavioural responses, not cognition. As I will show below, there is no simple mapping between biases in cognitive representations and behaviour (Figure 1). Furthermore, the implication that optimistic biases involve flawed decision-making is inapplicable to the measures of optimism obtained from the tasks currently used in animals in which there is no objectively accurate response. Therefore, we need operational definitions of optimism at the level of observed behaviour that are applicable to the data collected on animals.

In the following sections I aim to clarify: first, the set of behavioural phenomena measured in human and animal subjects included under the umbrella of ‘optimistic cognitive biases’, second, the role of cognitive mechanisms in

1 Henceforth I refer only to optimism and optimistic biases. Pessimism is simply the inverse of optimism — a human or animal that is more optimistic is simultaneously less pessimistic.

2 Henceforth, animals.
the generation of observed optimistic biases and finally whether optimistic biases can be adaptive.

What are optimistic cognitive biases?

Unrealistic optimistic biases

In popular usage, a bias implies a judgement or decision that is inaccurate. Bias is therefore an appropriate descriptor of the finding that humans are on average unrealistically optimistic when asked to report the likelihood of future events (e.g. their probability of winning a lottery or being diagnosed with cancer) [2]. Data are obtained by requiring subjects to estimate the absolute probability of a future event or to estimate their probability of experiencing a future event compared to an average person [13]. Given that it is possible to obtain estimates of a subject’s true probability of experiencing an event or true position on a distribution, subjects can be classified as unrealistically optimistic or pessimistic. Unrealistic optimism has not been measured in animals because of the difficulty of finding a behavioural measure that reflects a cognitive representation that is just one element of the cognitive machinery underlying decision-making (Figure 1).

Relative optimistic biases

In many cognitive bias studies, subjects are required to respond to questions or stimuli to which there is ostensibly no objectively accurate response. There are at least three bodies of such research relevant to optimism, each using different methods.

The first approach involves measuring a personality trait called dispositional optimism using questionnaires such as the life orientation test (LOT), in which subjects indicate their degree of agreement with statements such as, ‘In uncertain times, I usually expect the best’ [3,14]. The second approach involves studying responses to ambiguous linguistic stimuli. For example, assessing spelling of homophones (e.g. die/dye), priming effects of homographs (e.g. batter) or interpretation of ambiguous sentences (e.g. ‘The doctor examined Emily’s growth’) [15]. The third approach also requires subjects to respond to ambiguous stimuli, but differs in not being dependent on language, because simple response latencies [16,17,18], go/no-go responses [19,20] or choices [21–25] are measured.

Due to the lack of a requirement for language, this third approach is the only one currently developed for use in animals, and the only one for which analogous tasks exist in humans and animals [26,27]. In the most common form, known as judgement bias tasks [8,28], subjects are required to respond to ambiguous cues that are intermediate between two anchor cues on some continuous stimulus dimension (e.g. tone frequency [24,25,29], roughness of substrate [21,23], colour saturation [17,19,30], spatial location [31,32]; Figure 2a). The anchors differ in the valence of an associated outcome (typically positive and negative or positive and less positive/neutral), and these valences have been learned during a prior discrimination training phase. The reinforcers used for positive outcomes are typically food (but see [33,34] for the use of conspecific contact), whereas the punishers used for the negative outcomes include unpleasant noises [35], bitter tastes [16,17,36], exposure to potential predators [32,37], water spray [38] or electric shocks [25,39]. In a simpler variant of these tasks, the anchor cues are biologically meaningful to the subjects and require no prior training (e.g. a smiling versus sad face [27,40] or a con-specific image versus a predator image [34]; Figure 2b). Ambiguous cues in these latter tasks are morphed intermediates between the valenced anchors.
Figure 2

Methodology used in standard judgement bias tasks with animal subjects. (a) A task (based on [17,30]) in which there is an arbitrary association between the cues used and the associated outcomes. In such tasks a training phase is required in which subjects learn the cues associated with reward (R) and punishment (P). Subjects are tested by presenting the two trained cues (R and P) and typically three additional ambiguous cues designated NR for near reward, Amb for maximally ambiguous and NP for near punishment. Ambiguous cues are presented at low frequency during the test phase only, and are typically neither rewarded nor punished. (b) A task (based on [33]) in which the cues used are biologically meaningful to the subjects (in this case domestic chicks) and require no training because chicks are attracted to conspecifics but frightened by predators (in this case, an owl). (c) Example data derived from such tasks. The measured variable is typically either the proportion of go responses (shown) or latency to respond. The figure shows two alternative results: the green solid line corresponds to an optimistic subject that responds to NR, Amb and NP similarly to R, whereas the red dotted line corresponds to a pessimistic subject that responds to NR, Amb and NP similarly to P.

Judgement bias tasks typically produce smooth generalisation gradients between the two anchor cues that can be used to measure optimism (Figure 2c).

Since there is no objectively accurate response in any of the above tasks, biases can only be defined relative to the performance of a specified control group. Thus, an animal is defined as relatively optimistic if it displays a greater expectation of reward or a reduced expectation of punishment than, either the same animal in a different state, or another group of animals. Absolute measures of optimism can be obtained from all the above tasks (although these will only be at the group level in tasks where it is necessary to counter-balance the association between cues and valences across individuals [41]), but they are hard to interpret (what does it mean that the 50% morph between a sad and smiling face is classified as sad? [40]). It is debatable whether the phenomena discussed in this section should be called biases at all [42], but the use of the term is now firmly established in the animal literature [8].

Few studies have directly compared different measures of relative optimism within subjects. One study on humans found that dispositional optimism is positively correlated with priors about expectation of reward computed from choices on a novel behavioural task in which probability of reward was relatively uncertain [43**].

Relationships between unrealistic and relative biases
Few studies have directly compared measures of unrealistic optimism and relative optimism within subjects. There is some evidence in humans that unrealistic comparative optimism and dispositional optimism are uncorrelated, suggesting that they are different phenomena [44,45].

What mechanisms cause optimistic biases?

Unrealistic biases
Unrealistic optimistic biases are attributed to inaccurate (overconfident) cognitive representations of the probability of positive events occurring, because this is what subjects are asked to report [46]. Thus an unrealistic optimistic bias can be thought of as a representational bias. However, this assumption should be treated with caution. It has not been proven that people can accurately report the content of their cognitive representation of the probability of an event in isolation of their cognitive
representations of its payoffs. Since behavioural decisions should be informed by the expectation of an event, which is the product of its probability and payoff, it is possible that we do not have access to the contents of the separate representations feeding into decision-making, and hence report expectations as opposed to probabilities (see Figure 1). A more profound criticism of this literature shows that unrealistic optimistic biases can arise as a statistical artefact of sampling procedures, and questions whether they are real biological phenomena at all [47].

Relative biases
Differences in relative optimistic bias typically cannot be attributed to a specific cognitive mechanism (for a misunderstanding of this point see [48]). A change in behavioural output can be due to changes in any of the cognitive mechanisms via which animals acquire, store and utilise information in decision making (Figure 1; [8]), and from studying behaviour alone, it is therefore not straightforward to infer the cognitive process or processes responsible for an optimistic bias [49**] (although see [43**] for a promising approach). A relative optimistic bias could be produced by greater attention to more positive stimuli or positive features of stimuli [24], higher estimates of the probability of a positive outcome or increased pay-off attached to a positive outcome [8]. Recent studies using pharmacological manipulations [22,32,50,51,52] and brain imaging techniques [53] are starting to shed some light on the neurobiological mechanisms underlying cognitive biases in animals.

Can optimistic biases be adaptive?
Many definitions of cognitive bias describe them as flawed or irrational, and this has led to the assumption by some authors that they are, by definition, evolutionarily maladaptive [10]. However, recent theoretical work suggests that biases at both the representational level (e.g. the representational biases assumed to underlie unrealistic optimism) and the behavioural level (e.g. relative optimistic biases) can potentially be adaptive.

Representational biases
Bayesian decision theory shows that optimal decisions should be based on unbiased (i.e. accurate) estimates of the probability of outcomes and their payoffs [49**]. On the face of it, this suggests that biased representations of probability will result in sub-optimal decisions, and be maladaptive. However, theoretical work from the growing evo-mechio field of research, which seeks to find adaptive explanations for cognitive mechanisms [54,55], has shown that this is not necessarily the case. Biased representations of the probability of events, also referred to as self-deception, could evolve given specific assumptions [49**]. For example, it has been argued that self-deception could be a less cognitively costly alternative, particularly when selection pressure exists for animals to deceive each other [56–58]. A recent model that addresses criticisms of previous work in this area [49**,59**] suggests that self-deception can indeed evolve in certain circumstances [60*].

Behavioural biases
Normative models exist for predicting how animals should behave when faced with situations involving risk and uncertainty (see [10] for a review of applications to optimism). Although there is no objectively optimal response in the judgement bias tasks used to assess optimism in animals, it is reasonable to assume that animals will respond in such tasks using evolved cognitive mechanisms for tackling risk and uncertainty. Following this logic, the decision about how to respond to an ambiguous cue perceptually intermediate between two cues associated with punishment and reward can be modelled using an area of Bayesian decision theory known as signal detection theory (SDT; [61]). Consider a test trial in a standard go/no-go judgement bias task in which one anchor (R) is associated with food reward and the other (P) with punishment of some type (Figure 2a). On the basis of the evidence available (the similarity of the cue to each of the anchors) the animal must decide whether to approach (go) or stay put/retreat (no-go). The four possible outcomes for the animal given its decision and the true state of the world (whether reward or punishment actually obtains) are shown in Table 1. SDT shows that the optimal decision depends on: first, the strength of the evidence provided by the cue that the true state of the world is rewarding, second, the animal’s estimates of the prior probabilities that reward and punishment will occur, and finally, the payoffs (benefit or cost) for the animal of the four possible outcomes [42,49**]. Each of these quantities must be estimated by the subject via perception of the current environment, prior learning or evolution. Less evidence of reward is required for a go response to be optimal the higher the prior probability of reward and the higher the payoff from reward relative to the costs of punishment. Under this model, a pessimist can be thought of as an animal with a bias towards the no-go response, whereas an optimist is an animal with a bias towards the go response (Figure 3).

Predictions from the SDT model are broadly supported by empirical results derived from judgement bias tasks mainly published within the applied ethology literature,

Table 1
Payoffs of possible outcomes in a go/no-go judgement bias task.
Decision
Payoff

Where b is the fitness benefit derived from obtaining the reward and c is the fitness cost suffered as a result of being punished.
Optimistic and pessimistic biases are hypothesised to be a key component of affective states, whose evolutionary function is hypothesised to be to prioritise the allocation of resources towards the current most important fitness-relevant activities [42,66]. The link between optimistic biases and affect is strengthened by results showing that optimistic biases measured using judgement bias tasks correlate with established measures of subjective mood in human subjects [26,27].

Conclusions
Different methods are used to measure optimism in human and animal subjects, and different claims are made about what is measured. It is important to distinguish between optimistic biases in the cognitive representations of quantities, such as the probability of obtaining a future reward (representational biases), and optimistic biases in observable behaviour (behavioural biases). Behavioural biases are hard to define in absolute terms since there is no objectively accurate response in the tasks used to measure them. However, a relative definition is possible, with an animal being defined as relatively optimistic if it makes behavioural decisions consistent with it having either, a higher expectation of reward, or a lower expectation of punishment, than either the same animal in a different state, or a different animal. Thus far, only behavioural biases have been measured in animals and the evidence for representational biases in humans is weak.

Theoretical modelling has demonstrated that both representational biases and behavioural biases can be adaptive. The adaptive account of behavioural biases is supported by empirical results from experiments in which either the past experiences or current environments of animals are manipulated and predicted shifts in optimism are measured. However, a formal meta-analysis of published results is needed to test these associations properly, because not all results are in line with predictions [24,67].

Behavioural biases are hypothesised to be a key functional component of affective states and play a role in allocating behavioural decisions towards the most important terms. For example, manipulating an animal’s early developmental experience of food availability might alter its priors about the availability of food in the world, and hence reduce optimism that ambiguous cues predict food [17*,23]. Reducing feather condition might impair flight and increase the costs of dealing with a predation attempt, and hence increase pessimism that ambiguous cues predict punishment [62]. In general, it appears that a wide range of manipulations that are likely to either alter perceived prior probabilities of punishment and reward and/or alter the state of the animals so as to alter their payoffs from reward and punishment, produce predicted shifts in optimism (for recent examples see [17*,19,20,25,29,31,32,36–38,41,63–65]).

Although few papers discuss their results within this framework (see [17*] for an exception). As predicted, the proportion of ‘go’ responses increases as the ambiguous cue becomes more similar to R yielding the smooth generalisation gradients typical in judgement bias results (Figure 2c). Although most existing experiments in the applied ethology literature do not explicitly manipulate either, the prior probabilities of reward or punishment or, the payoffs of reward and punishment, many of the manipulations conducted can be construed in these

![Figure 3](https://www.sciencedirect.com)
current fitness-relevant priorities [42, 65]. Thus far, there are only a few cases where comparable judgement bias tasks to those used in animals have been applied to human subjects [26, 27]. Further work of this type is needed to clarify the links between the subjective components of affective states measurable only in humans and the objective measures of optimistic behavioural bias measurable across species.

Conflict of interest
Nothing declared.

Acknowledgements
I thank James Marshall, Daniel Nettle and Juan Ramirez for helpful discussion. My research is supported by grants from the UK’s Biotechnology and Biological Sciences Research Council (BB/J016446/1) and the National Centre for the 3Rs (NI/K008092/1).

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

1. Carver CS, Scheier MF, Segerstrom SC: Optimism. Clin Psychol Rev 2010, 30:879-890.
2. Shepperd JA, Waters EA, Weinstein ND, Klein WMP: A primer on unrealistic optimism. Curr Dir Psychol Sci 2015, 24:232-237.
3. Scheier MF, Carver CS, Bridges MW: Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and self-esteem): a reevaluation of the Life Orientation Test. J Pers Soc Psychol 1994, 67:1063-1078.
4. Aue T, Okon-Singer H: Expectancy biases in fear and anxiety, and their link to biases in attention. Clin Psychol Rev 2015, 42:83-95.
5. Bethell EJ: A "how-to" guide for designing judgment bias studies to assess captive animal welfare. J Appl Anim Sci 2015, 18:S18-542.
6. Gyger L: The A to Z of statistics for testing cognitive judgement bias. Anim Behav 2014, 95:59-68.

A useful review and discussion of the different methods used to analyse data derived from judgment bias tasks and a proposal for a more coherent approach. But see [17] for a critique of the analysis approach suggested in this paper.

7. Hales CA, Stuart SA, Anderson MH, Robinson ESJ: Modelling cognitive affective biases in major depressive disorder using rodents. Br J Pharmacol 2014, 171:4524-4538.
8. Mendl M, Burman OHP, Parker RMA, Paul ES: Cognitive bias as an indicator of animal emotion and welfare: emerging evidence and underlying mechanisms. Appl Anim Behav Sci 2009, 118:161-181.
9. Baciadonna L, Mcolligott AG: The use of judgement bias to assess welfare in farm livestock. Anim Welf 2015, 24:81-91.
10. Houston AI, Trimmer PC, Fawcett TW, Higginson AD, Marshall JAR, McNamara JM: Is optimism optimal? Functional causes of apparent behavioural biases. Behav Process 2012, 89:172-178.
11. Fawcett TW, Fallenstein B, Higginson AD, Houston AI, Mallpress DEW, Trimmer PC, McNamara JM: The evolution of decision rules in complex environments. Trends Cogn Sci 2014 http://dx.doi.org/10.1016/j.tics.2013.12.012. A review of the theoretical literature that discusses how biases that may on first inspection appear maladaptive can make evolutionary sense when we take into account key properties of real-world environments.
12. Fawcett TW, Fallenstein B, Higginson AD, Houston AI, Mallpress DEW, Trimmer PC, McNamara JM: The evolution of decision rules in complex environments. Trends Cogn Sci 2014, 18:153-161.
13. A review of the theoretical literature that discusses how biases that may on first inspection appear maladaptive can make evolutionary sense when we take into account key properties of real-world environments.
14. Shepperd JA, Klein WMP, Waters EA, Weinstein ND: Taking stock of unrealistic optimism. Perspect Psychol Sci 2013, 8:395-411.
15. Carver CS, Scheier MF: Dispositional optimism. Trends Cogn Sci 2014, 18:293-299.
16. Blanchette I, Richards A: The influence of affect on higher level cognition: a review of research on interpretation, judgement, decision making and reasoning. Cogn Emot 2010, 24:561-595.
17. Bateson M, Emmerson M, Ergün G, Monaghan P, Nettle D: Opposite effects of early-life competition and developmental telomere attrition on cognitive biases in juvenile European starlings. PLOS ONE 2015, 10:e0132902.

The first study showing that developmental telomere attrition (an integrative cellular biomarker of developmental stress) predicts judgment biases in juvenile animals. Interestingly, birds with more telomere attrition indication of greater stress were more optimistic as juveniles. This paper proposes a statistical method for analysing judgment bias data and questions the use of judgment bias tasks involving reinforcement with food in animals that are likely to differentially hungry.
18. Richter SH, Schick A, Hoyer C, Lankisch K, Gass P, Vollmayr B: A glass full of optimism: enrichment effects on cognitive bias in a rat model of depression. Cogn Affect Behav Neurosci 2012, 12:527-542.
19. Neave HW, Daros RR, Costa JHC, Von Keyserlingk MAG, Weary DM: Pain and pessimism: dairy calves exhibit negative judgment bias following hot-iron disbudding. PLOS ONE 2013, 8:8-13.
20. Nogueira SSDC, Fernandes IK, Costa TSO, Nogueira-Filho SLG, Mendl M: Does stepping influence decision-making under ambiguity in white-tailed peccary (Tayassu pecari)? PLOS ONE 2015, 10:e0127868.
21. Brydges NM, Hall L, Nicolson R, Holmes MC, Hall J: The effects of juvenile stress on anxiety, cognitive bias and decision making in adulthood: a rat model. PLoS ONE 2012, 7:e48143.
22. Anderson MH, Munafò MR, Robinson ESJ: Investigating the psychopharmacology of cognitive affective bias in rats using an affective tone discrimination task. Psychopharmacology (Berl) 2013, 226:601-613.
23. Chaby LE, Cavigelli SA, White A, Wang K, Braithwaite VA: Long-term changes in cognitive bias and coping response as a result of chronic unpredictable stress during adolescence. Front Hum Neurosci 2013, 7:328.
24. Parker RMA, Paul ES, Burman OHP, Browne WJ, Mendl M: Housing conditions affect rat responses to two types of ambiguity in a reward-reward discrimination cognitive bias task. Behav Brain Res 2014, 274:73-83.
25. Kriegel J, Golebiowska J, Popik P, Rygula R: Dopamine induces an optimism bias in rats – pharmacological proof for the translational validity of the ambiguous-cue interpretation test. Behav Brain Res 2016, 297:84-90.
26. Anderson MH, Hardcastle C, Munafò MR, Robinson ESJ: Evaluation of a novel translational task for assessing emotional biases in different species. Cogn Affect Behav Neurosci 2012, 12:373-381.
27. Paul ES, Cuthill I, Kuroso G, Norton V, Woodgate J, Mendl M: Mood and the speed of decisions about anticipated resources and hazards. Evol Hum Behav 2011, 32:21-28.
28. Roelofs S, Boele H, Nordquist R, Staay Van Der FJ: Making decisions under ambiguity: judgment bias tasks for assessing emotional state in animals. Front Behav Neurosci 2016, 10:1-16. An excellent review of judgment bias tasks covering both theoretical and
methodological aspects.

29. Murphy E, Kraak L, van den Broek J, Nordquist RE, van der Staay FJ: Decision-making under risk and ambiguity in lowbirth-weight pigs. *Anim Cogn* 2014, 18:561-572.

30. Bateson M, Nettle D: Development of a cognitive bias methodology for measuring low mood in chimpanzees. *PeerJ* 2015, 3:e998.

31. Lückner S, Reese S, Erhard M, Währ A: Pasturing in herds following housing in horseboxes induces a positive cognitive bias in horses. *J Vet Behav* 2016, 11:50-55.

32. Doyle RE, Hinch GN, Fisher AD, Boissy A, Henshall JM, Lee C: Administration of serotonin inhibitor p-Chlorophenylalanine induces pessimistic-like judgement bias in sheep. *Psychoneuroendocrinology* 2011, 36:279-288.

33. Salmeto AL, Hymel KA, Carpenter EC, Brilot BO, Bateson M, Sufka KJ: Cognitive bias in the chick anxiety-depression model. *Brain Res* 2011, 1373:124-130.

34. Hymel KA, Sufka KJ: Pharmacological reversal of cognitive bias in the chick anxiety-depression model. *Neuropsychopharmacology* 2012, 62:161-166.

35. Harding EJ, Paul ES, Mendl M: Animal behavior – cognitive bias and affective state. *Nature* 2004, 427:312.

36. Bateson M, Desire S, Gartsdie SE, Wright GA: Agitated honeybees exhibit pessimistic cognitive biases. *Curr Biol* 2011, 21:1070-1073.

37. Doyle RE, Lee C, Deiss V, Fisher AD, Hinch GN, Boissy A: Measuring judgement bias and emotional reactivity in sheep following long-term exposure to unpredictable and aversive events. *Physiol Behav* 2011, 102:503-510.

38. Bajon S, Laforest JP, Schmitt O, Devillers N: The way humans behave modulates the emotional state of piglets. *PLOS ONE* 2015, 10:1-17.

39. Rygula R, Golębiowska J, Kregiel J, Kubik J, Popik P: Effects of optimism on motivation in rats. *Front Behav Neurosci* 2015, 9:1-9.

40. Münklker P, Rothirck M, Dalati Y, Schmack K, Sterzer P: Biased recognition of facial affect in patients with major depressive disorder reflects clinical state. *PLOS ONE* 2015, 10:e0129863.

41. Brydges NM, Leach M, Nicol K, Wright R, Bateson M: Environmental enrichment induces optimistic cognitive bias in rats. *Anim Behav* 2011, 81:169-175.

42. Nettle D, Bateson M: The evolutionary origins of mood and its disorders. *Curr Biol* 2012, 22:R712-R721.

43. Stankevicius A, Huys QJM, Kalra A, Series P: Optimism as a prior belief about the probability of future reward. *PLoS Comput Biol* 2014, 10:e1003605.

An empirical paper on humans that uses a novel learning task and normative modelling framework to assess how trait optimism, as measured by a questionnaire, is associated with prior beliefs about the likelihood of reward. The results show that optimism is positively associated with greater priors about reward. This paper is exciting because it provides a methodology that could potentially be adapted for non-human animals.

44. Geers AL, Wellman JA, Fowler SL: Comparative and dispositional optimism as separate and interactive predictors. *Psychol Health* 2013, 28:30-48.

45. Fowler SL, Geers AL: Dispositional and comparative optimism interact to predict avoidance of a looming health threat. *Psychol Health* 2014, 30:456-474.

46. Sharot T: The optimism bias. *Curr Biol* 2011, 21:R941-R945.

47. Harris AJL, Hahn U: Unrealistic optimism about future life events: a cautionary note. *Psychol Rev* 2011, 118:135-154.

48. Giurfa M: Cognition with few neurons: higher-order learning in insects. *Trends Neurosci* 2013, 36:285-294.

49. Marshall JAR, Trimmer PC, Houston AI, McNamara JM: On evolutionary explanations of cognitive biases. *Trends Ecol Evol* 2013, 28:469-473.

This paper makes the distinction between what the authors call cognitive biases (representational biases in the current paper) and what the authors call outcome biases (behaviour that fails to maximise fitness; maladaptive behaviour).

50. Rafa D, Kregiel J, Popik P, Rygula R: Effects of optimism on gambling in the rat slot machine task. *Behav Brain Res* 2016, 300:97-105.

51. Kregiel J, Malek N, Popik P, Starowicz K, Rygula R: Anandamide mediates cognitive judgement bias in rats. *Neuropsychopharmacology* 2016, 101:146-153.

52. Karagiannis CI, Burman OH, Mills DS: Dogs with separation-related problems show a “less pessimistic” cognitive bias during treatment with fluoxetine (Reconcile®) and a behaviour modification plan. *BMC Vet Res* 2015, 11:1-10.

53. Guldimann K, Vögel S, Wolf M, Wechsler B, Gyga X: Frontal brain deactivation during a non-verbal cognitive judgement test in sheep. *Brain Cogn* 2015, 93:35-41.

54. McNamara JM, Houston AI: Integrating function and mechanism. *Trends Ecol Evol* 2009, 24:670-675.

55. Trimmer PC, Houston AI: An evolutionary perspective on information processing. *Top Cogn Sci* 2014, 6:312-330.

56. Johnson DDP, Fowler JH: The evolution of overconfidence. *Nature* 2011, 477:317-320.

57. Johnson DDP, Fowler JH: Complexity and simplicity in the evolution of decision-making biases. *Trends Ecol Evol* 2013, 28:446-447.

58. von Hippel W, Trivers R: The evolution and psychology of self-deception. *Behav Brain Sci* 2011, 34:1-16 discussion 16-56.

59. Marshall JAR, Trimmer PC, Houston AI: Unbiased individuals use valuable information when making decisions: a reply to Johnson and Fowler. *Trends Ecol Evol* 2013, 28:444-445.

This paper makes the distinction between what the authors call cognitive biases (representational biases in the current paper) and what the authors call outcome biases (behaviour that fails to maximise fitness; maladaptive behaviour).

60. Ramírez JC, Marshall JAR: Self-deception can evolve under appropriate costs. *Curr Zool* 2015, 61:382-396.

The first formal model designed to investigate Trivers’ proposal that individuals should self-deceive in order to better deceive others. The model suggests that that representational biases (as defined in the current paper) can be adaptive.

61. Green DM, Swets JA: *Signal Detection Theory and Psychophysics*. Wiley; 1966.

62. Brilot BO, Bateson M: Water bathing alters threat perception in starlings. *Biol Lett* 2012, 8:379-381.

63. Douglas C, Bateson M, Walah C, Bédul A, Edwards SA: Environmental enrichment induces optimistic cognitive biases in pigs. *Appl Anim Behav Sci* 2012, 138:65-73.

64. Chaby LE, Cavigelli SA, White A, Wang K, Bratkhwaite VA: Long-term changes in cognitive bias and coping response as a result of chronic unpredictable stress during adolescence. *Front Hum Neurosci* 2013, 7:328.

65. Doyle RE, Fisher AD, Hinch GN, Boissy A, Lee C: Release from restraint generates a positive judgement bias in sheep. *Appl Anim Behav Sci* 2010, 122:28-34.

66. Mendl M, Burman OHP, Paul ES: An integrative and functional framework for the study of animal emotion and mood. *Proc R Soc B Biol Sci* 2010, 277:2895-2904.

67. Müller CA, Riemer S, Rosam CM, Schöllwender J, Range F, Huber L: Brief owner absence does not induce negative judgement bias in pet dogs. *Anim Cogn* 2012, 15:1031-1035.