Effect of Rhizosphere on Sediment Microbial Numbers in Phytoremediation Process of Decabromodiphenyl Ether Contaminated Sediment

Liangyuan Zhao*, Weijie Guo, Weihua Zhao, Qingyun Li and Wei Li

Basin Water Environmental Research Department, Yangtze River Scientific Research Institute, Wuhan 430010, China

*Corresponding author e-mail: zhaoliangyuannew@163.com

Abstract. In order to investigate the rhizosphere effect caused by the aquatic macrophyte Scirpus validus during the phytoremediation process of decabromodiphenyl ether contaminated sediment, the sediment microbial number changes in three typical sediment rhizosphere, including bacteria, fungi and actinomycetes were examined. The results showed that the number of microorganisms in sediments was significantly increased by planting and the number of bacteria and fungi increased by 2-12 times and 1-4 times in the respective rhizosphere sediment. No obvious difference of quantity of actinomycetes was observed between rhizosphere and non-rhizosphere in silt and clay sediments except for sand sediment. The results suggested that the numbers of microorganisms can be stimulated by the presence of S. validus and the rhizosphere effect was obvious.

1. Introduction

Rhizosphere is the micro region environment, influenced by plant roots and its activities in soil or sediments[1]. The rhizosphere environment is a few millimeters area around the plant root, which is different from the original soil environment due to its special physical, chemical and biological characteristics[2]. At present, a number of research have been demonstrated that microbial degradation is one of the major mechanisms for the phytoremediation of organic pollutants contaminated soil. Microbes, especially plant rhizosphere microbes, play a crucial role in the remediation process of organic contaminated soils.

In plant rhizosphere micro-ecosystems, the well-developed root system of plants provides an environment for the microorganism, transports nutrients and oxygen to the roots, promotes the growth and metabolism capability of the rhizosphere microorganisms, thus enhance the biological transformation capacity of microorganisms [3]. Root exudates such as carbohydrates, organic acids, phenols, amino acids and other organic matter can be used as C source and N source for the growth of pollutant-degrading bacteria and maintain long-term survival of bacteria[4-5]. Therefore, the rhizosphere environment possess a high level of microbial activity, diversity and biomass, which plays an important role in increasing the degradation rate of pollutants in soil. The ability of rhizosphere microorganisms to degrade many organic pollutants is well-known.

In this study, the changes of microbial numbers in rhizosphere and non-rhizosphere sediments of aquatic macrophyte Scirpus validus during the phytoremediation of sediment contaminated with BDE-
209 were analyzed. The dynamic characteristics of rhizosphere microorganisms and the rhizosphere effect caused by microorganisms in the process of phytoremediation can provide some theoretical basis for revealing the mechanism involved in phytoremediation of decabromodiphenyl ether (BDE-209) contaminated sediment.

2. Materials and methods

2.1. Chemicals and plants
Decabromodiphenyl ether (BDE-209, C_{12}OBr_{10}) was purchased from Alfa Aesar (Johnson Matthey, USA) with 99% chemical purity (GC). Standard of BDE-209 was purchased from Sigma-Aldrich (Sigma-Aldrich, Inc., St. Louis, MO).

S. validus used in the experiment were collected from the Tangxun Lake in Wuhan, Hubei Province, China. Plants with initial height of 30-50 cm were cultured in the artificial pond for 10 days before experiments.

2.2. Experimental set-up
Three typical types of sediments (silt, clay, and sand) were collected from the 0-20 cm surface sediments at a local lake in Wuhan, Hubei Province, China. All collected sediments were then air-dried, and passed through a 2-mm sieve. BDE-209 contaminated sediments were prepared by the sprinkling method[6-7], and finally BDE-209 concentration was approximately 2 mg kg^{-1}.

For the experiment, 15 kg of contaminated dry sediments (approximately 2 mg kg^{-1}) were loosely packed into cultivation box, each treatment had triplicates and 20 individuals of *S. validus* with initial plant height of about 40 cm were transplanted into each box. Tap water was then added and kept at the level 4 cm above the sediment surface. The experiment was carried out in natural conditions. Three treatments were established for each type of sediment as follows: original sediments; sediments with BDE-209 at 2 mg kg^{-1}; sediments planted with *S. validus*; sediments with BDE-209 at 2 mg kg^{-1} and *S. validus*.

2.3. Analysis of bacterial in sediment
The bacterial abundance of sediment samples were enumerated by the 4′, 6′- diamidino-2-phenylindole (DAPI) direct count method and cells counted on an epifluorescence microscope (Laphot, Nikon, Japan).

2.4. Analysis of fungi in sediment
1.0 g of fresh sediment of each sample was diluted with sterile water to prepare a dilution of 10^1, 10^2, 10^3 sediment concentration. 200μL of sediment solution was inoculated in culture dish with Martin-Bangladesh red medium. Three replicates were set for each concentration gradient and incubated at constant temperature (28°C) for 3-4 days. The number of microorganisms is calculated as log_{10} of the number of fungi per gram of sediment (dw). The cultivation substrate components for fungi is displayed in table 1.

Table 1. The cultivation substrate components for fungi
Ingredient
Glucose
MgSO_{4}·7H_{2}O
KH_{2}PO_{4}
Agar
Peptone
Rose Bangal
Streptomycin (1%)
Distilled water
2.5. Analysis of actinomycetes in sediment

1.0 g of fresh sediment of each sample was diluted with sterile water to prepare a dilution of 10^{-1}, 10^{-2}, 10^{-3} sediment concentration. 200μL of sediment solution was inoculated in culture dish with actinomycetes culture medium. Three replicates were set for each concentration gradient and incubated at constant temperature (28°C) for 7-10 days. The number of microorganisms is calculated as log10 of the number of fungi per gram of sediment (dw). The cultivation substrate components for actinomycetes is displayed in table 2.

![Table 2. The cultivation substrate components for actinomycetes](image)

3. Results and discussions

The changes of bacteria, fungi, and actinomycete in the rhizosphere and non-rhizospheric of three typical sediments during the phytoremediation process are shown in table 3. The microbial numbers in the silt, clay and sand sediments planted with *S. validus* were significantly higher than those in sediment control in the phytoremediation except for actinomycete. The bacteria and fungi numbers of rhizosphere fractions in silt, clay and sand sediments were almost 2-12 times and 1-4 times more than the corresponding sediment controls, respectively. The above results clearly demonstrated that the microbial populations were significantly enhanced by growth of *S. validus*, the rhizosphere effect is obvious. For actinomycete, although the number of actinomycetes in the initial rhizosphere sediment was higher than that in the non-rhizosphere in the silt and clay experimental group, the number of actinomycete did not increase significantly at the late stage. However, for sandy sediment, the number of actinomycetes in the rhizosphere sediments was higher than that in the whole phytoremediation and 97.73%~215.79% of actinomycetes were increased, indicating that the planting of *S. validus* can greatly promote the amount of actinomycetes in sand sediments. The above results show that the planting of aquatic macrophyte *S. validus* can greatly increase the number of actinomycetes in three typical sediments, and its rhizosphere effect is obvious.

Rhizosphere is biologically active soil region where macrophyte roots interact with sediment and microbes and roots provide suitable habitats for the growth of the microorganisms[8]. Furthermore, plant exudation and root sloughing can also affect the activities of microbes and changes in exudates released resulting in associated effects on biodegradation and microbial populations[9-10]. The result showed that the microbial populations were significantly increased upto 5-12 times as those in unplanted controls in the rizosphere sediments, indicating that the growth of microorganisms was stimulated by the presence of *S. validus*.
Table 3. Changes of bacterial amounts in three typical sediments

Sediment	Treatments	Remediation time (d)				
	30	60	90	120	150	180
Silt						
Silt	8.702±0.157	8.818±0.048	8.887±0.055	8.87±0.091	8.765±0.096	8.686±0.150
Silt+BDE-209	8.793±0.022	8.857±0.076	8.920±0.043	8.906±0.0132	8.804±0.036	8.688±0.086
Silt+S. validus Vahl	9.315±0.134	9.598±0.160	9.715±0.082	9.622±0.048	9.655±0.147	9.416±0.122
Silt+BDE-209+S. validus Vahl	9.372±0.121	9.683±0.115	9.638±0.059	9.685±0.041	9.719±0.098	9.460±0.151
Clay	8.322±0.318	8.472±0.170	8.507±0.235	8.550±0.120	8.454±0.278	8.406±0.203
Clay+BDE-209	8.551±0.278	8.757±0.298	8.524±0.282	8.565±0.186	8.509±0.249	8.410±0.283
Clay+S. validus Vahl	9.397±0.085	9.590±0.148	9.550±0.130	9.504±0.131	9.456±0.199	9.390±0.068
Clay+BDE-209+S. validus Vahl	9.294±0.156	9.472±0.159	9.519±0.062	9.405±0.165	9.518±0.050	9.322±0.186
Sand	7.449±0.087	7.615±0.266	7.744±0.182	7.746±0.150	7.715±0.112	7.636±0.236
Sand+BDE-209	7.706±0.085	7.754±0.179	7.753±0.257	7.799±0.208	7.724±0.152	7.667±0.217
Sand+S. validus Vahl	8.407±0.077	8.657±0.075	8.869±0.044	8.812±0.065	8.808±0.082	8.702±0.022
Sand+BDE-209+S. validus Vahl	8.506±0.115	8.722±0.170	8.902±0.123	8.848±0.179	8.755±0.163	8.727±0.142

Table 4. Changes of actinomycetic amounts in three typical sediments

Sediment	Treatments	Remediation time (d)				
	30	60	90	120	150	180
Silt						
Silt	4.272±0.124	4.508±0.119	4.793±0.118	4.753±0.193	4.865±0.084	4.742±0.097
Silt+BDE-209	4.339±0.179	4.638±0.268	4.902±0.131	4.929±0.089	4.959±0.109	4.592±0.109
Silt+S. validus Vahl	4.730±0.140	4.997±0.093	5.036±0.0136	5.989±0.107	5.053±0.182	4.941±0.102
Silt+BDE-209+S. validus Vahl	4.668±0.083	4.923±0.229	4.944±0.104	5.903±0.142	4.763±0.167	4.710±0.134
Clay	4.455±0.168	4.719±0.127	5.016±0.114	4.938±0.168	4.841±0.177	4.571±0.110
Clay+BDE-209	4.644±0.144	4.893±0.127	5.016±0.114	4.938±0.168	4.841±0.177	4.571±0.110
Clay+S. validus Vahl	4.973±0.145	5.102±0.088	5.170±0.109	5.105±0.066	5.094±0.011	4.903±0.127
Clay+BDE-209+S. validus Vahl	4.973±0.217	5.153±0.037	5.320±0.026	5.337±0.027	5.322±0.067	5.037±0.137
Sand	3.708±0.369	4.006±0.138	4.111±0.088	4.058±0.094	4.094±0.108	3.871±0.152
Sand+BDE-209	3.834±0.101	4.095±0.064	4.215±0.043	4.184±0.151	4.159±0.093	3.962±0.166
Sand+S. validus Vahl	4.145±0.103	4.422±0.127	4.519±0.106	4.489±0.151	5.453±0.111	4.423±0.097
Sand+BDE-209+S. validus Vahl	4.191±0.073	4.487±0.128	4.541±0.119	4.473±0.138	4.471±0.063	4.468±0.125
Table 5. Changes of fungi amounts in three typical sediments

Sediment	Treatments	Remediation time (d)					
		30	60	90	120	150	180
Silt							
	Silt	3.875±0.124	4.138±0.131	4.245±0.095	4.087±0.093	4.043±0.069	4.000±0.091
	Silt+BDE-209	3.802±0.247	4.081±0.080	4.153±0.091	4.004±0.132	4.011±0.075	3.911±0.090
	Silt+S. validus Vahl	4.035±0.073	4.323±0.032	4.363±0.052	4.331±0.103	4.150±0.148	4.211±0.211
	Silt+BDE-209+S. validus Vahl	4.081±0.062	4.281±0.056	4.387±0.053	4.277±0.065	4.232±0.086	4.181±0.168
Clay							
	Clay	3.413±0.194	3.644±0.158	3.758±0.048	3.582±0.128	3.548±0.061	3.506±0.105
	Clay+BDE-209	3.426±0.176	3.731±0.108	3.703±0.085	3.524±0.046	3.453±0.054	3.355±0.108
	Clay+S. validus Vahl	3.758±0.141	3.937±0.113	4.080±0.078	4.037±0.084	4.018±0.111	3.738±0.177
	Clay+BDE-209+S. validus Vahl	3.819±0.095	3.968±0.157	4.028±0.078	4.091±0.042	3.972±0.046	3.706±0.132
Sand							
	Sand	2.967±0.164	3.312±0.141	3.608±0.063	3.478±0.075	3.372±0.277	3.230±0.213
	Sand+BDE-209	3.026±0.081	3.411±0.188	3.661±0.136	3.393±0.195	3.392±0.1160	3.326±0.172
	Sand+S. validus Vahl	3.710±0.208	3.815±0.140	3.867±0.157	3.805±0.091	3.798±0.164	3.548±0.213
	Sand+BDE-209+S. validus Vahl	3.804±0.199	3.922±135	3.977±0.160	3.923±0.077	3.873±0.056	3.622±0.110

4. Conclusion
The rhizosphere effect caused by the aquatic macrophyte Scirpus validus during the phytoremediation process of decabromodiphenyl ether contaminated sediment was investigated, the sediment microbial number in three typical sediment rhizosphere, including bacteria, fungi were significantly increased due to the rhizosphere. No obvious difference of quantity of actinomycetes was observed between rhizosphere and non-rhizosphere in silt and clay sediments except for sand sediment. The results suggested that the numbers of microorganisms can be stimulated by the presence of S. validus and the rhizosphere effect was obvious. The results can provide data of theoretical basis for revealing the mechanism involved in phytoremediation of decabromodiphenyl ether (BDE-209) contaminated sediment.

Acknowledgments
The research was financially supported by National Key R&D Program of China (Grant No. 2016YFC0502201) and The State-level Public Welfare Scientific Research Institutes Basic Scientific Research Business Project of China (No. CKSF2017045+SH, CKSF2017062/SH, CKSF2017026/SH).

References
[1] HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review [J]. Plant & Soil, 2001, 237 (2): 173-195.
[2] Hinsinger P, Plassard C, Jaillard B. Rhizosphere: A new frontier for soil biogeochemistry [J]. Cheminform, 2006, 37 (47): 210-213.
[3] Sheridan C, Depuydt P, De R M, et al. Microbial Community Dynamics and Response to Plant Growth-Promoting Microorganisms in the Rhizosphere of Four Common Food Crops Cultivated in Hydroponics.[J]. Microbial Ecology, 2016, 73 (2): 1-16.
[4] Haichar F E Z, Santaella C, Heulin T, et al. Root exudates mediated interactions belowground
[5] Ai C, Liang G, Sun J, et al. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology & Biochemistry, 2013, 57 (3): 30-42.

[6] Zhao L, Zhu C, Gao C, et al. Phytoremediation of pentachlorophenol-contaminated sediments by aquatic macrophytes [J]. Environmental Earth Sciences, 2011, 64 (2): 581-588.

[7] Wei S, Pan S. Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species [J]. Journal of Soils & Sediments, 2010, 10 (5): 886-894.

[8] Jothibasu K, Chinnadurai C, Sundaram S, et al. Molecular profiling of rhizosphere bacterial communities associated with Prosopis juliflora and Parthenium hysterophorus[J]. J Microbiol Biotechnol, 2012, 22 (3): 301-310.

[9] Karene G, Huang X D, Bernardr G, et al. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges [J]. Plant Science, 2009, 176 (1): 20-30.

[10] Lu S, Teng Y, Wang J, et al. Enhancement of pyrene removed from contaminated soils by Bidens maximowicziana [J]. Chemosphere, 2010, 81 (5): 645-650.