Revisiting the Spectroscopy of Water Dimer in Jets

ABSTRACT: Laser spectroscopy in jets is one of the main sources of structural data from molecular aggregates. Consequently, numerous and sophisticated experimental systems have been developed to extract precise information, which is usually interpreted in the light of quantum mechanical calculations. However, even with the most sophisticated experiments, it is sometimes difficult to interpret the experimental results. We present here the example of water dimer and how after almost 70 years, the assignment of its mass-resolved IR spectrum still generates controversy that extends toward the mechanism of ionization of water aggregates.

The combination of laser spectroscopy with supersonic expansions has proven to be a powerful method to obtain information on the structure of molecules and aggregates formed by noncovalent interactions. The cooling conditions of the expansion provide a suitable environment for the efficient formation of aggregates, while the high photon flux of the laser boosts the detection of the species formed. Introduction of the REMPI (resonance-enhanced multiphoton ionization) technique in tandem with mass spectrometers brought in two key features: the sensitivity of ion detection and mass resolution. Since then, REMPI methods have been applied to a myriad of systems, starting from the simplest aromatic rings to large aggregates and biological molecules. REMPI adds mass resolution to the traditional IR spectroscopy, enabling the disentanglement of the IR spectra of each isomer of a given stoichiometry from the complex mixture of species formed in the supersonic expansions. The technique has evolved into sophisticated setups that use up to four lasers to tackle the spectroscopy of even the most complicated system. The only condition that the system must fulfill to be studied by this method is to have a chromophore with an optically accessible electronic state with a reasonably long lifetime (longer than a few picoseconds). This condition is necessary for the multiphoton absorption to take place in a resonant manner, substantially increasing the ion yield and the final signal.

Despite the many molecules that fulfill such conditions, there are paradigmatic systems that are forbidden to the IR-REMPI combination. Therefore, there have been many techniques developed to take the mass-resolved IR spectroscopy to the realm of the systems without a chromophore, although the main principle behind them is to find a way to circumvent the stepping stone of the intermediate electronic state. An additional drawback that limits the extraction of mass-selective IR spectra is the appearance, upon ionization, of cations that result from the fragmentation of the initially formed cluster ions. The coexistence in the beam of species of different size and the typical reduction in the ionization energy threshold that accompanies cluster growth make avoiding this fragmentation difficult. Thus, the IR spectra of the targeted species may appear in different mass-channels, strongly complicating the assignment of the spectra. In this context, the search for ionization sources and ionization schemes able to minimize and/or identify fragmentation patterns has been another key element in the evolution of the instrumentation in the field.

One of the subjects that has guided such developments has been the study of water aggregates and in particular the simplest one: the water dimer. It represents the paradigm of a system attached by a pure O=H···O hydrogen bond, and it is a key step in the understanding of the behavior of water. Characterization of its structure goes back to the studies by Pimentel’s group in the 1950s in N2 matrices and has motivated numerous studies using a collection of spectroscopic techniques, although IR optical spectroscopy has been the main tool applied to probe the structure of the neutral cluster. For an excellent review on the matter, see ref 19. Despite its small size, the dimer has a complex spectroscopy due to the presence of three tunneling pathways that lead to several splittings of the energy levels. Furthermore, the sticky nature of water makes it difficult to control the formation of the

Received: October 1, 2020
Accepted: January 15, 2021
Published: February 4, 2021

https://dx.doi.org/10.1021/acs.jpclett.0c03001
J. Phys. Chem. Lett. 2021, 12, 1316−1320
aggregated of choice, and therefore, dimer formation is usually accompanied by the presence of trimers, tetrabers, or even larger aggregates. Ionization of water clusters avoiding fragmentation or secondary reactions in the ion is far from being a simple matter. Upon ionization, the (H2O)n+ ions undergo very fast intracuster reactions. The most favored products of the IR spectrum of water dimer. The spectrum, recorded in the H3O+ channel, exhibited, among other relevant features, a band at 3545 cm−1 as being assigned to the stretch of the donor OH. As we will see below, the assignment of this peak to the dimer, which is essential in the development of the actual knowledge about the structure of the dimer and larger clusters.

Coker et al.27 used a color center laser and a cryogenic bolometer as a detector to record the IR spectrum of the dimer. Despite the careful design of the experiment, the authors were not able to avoid interference from larger clusters in the spectrum of what they took as the water dimer. On the basis of previous reports26,31 and in their theoretical analysis, they also assigned the 3532 cm−1 band to the stretch of the donor OH. Several years later, the same group published a second paper on the spectroscopy of water dimer, using higher resolution.32 Still, they maintained the assignment of the band at 3532 cm−1 to the water dimer, despite it being less resolved than the other bands in the spectrum. A substantially more sophisticated experimental setup allowed Huisken et al. to correct the established assignment of the dimer’s IR spectrum.26 They used a crossed molecular beam apparatus, in which a secondary rare gas beam was employed to disperse the cluster beam. Detecting the scattered species with different angles, a sort of mass selectivity could be achieved. Although they were not able to avoid interference from the trimer and tetramer, this technique allowed the authors to identify a relatively weak band in the spectrum at 3561 cm−1 as the stretch of the donor OH and the band at 3532 cm−1 as being due to the trimer.

A different approach was used by Zwier’s group, which used benzene to nucleate water clusters.30 In theory, the aromatic ring should introduce only subtle perturbations in the structure of the aggregates. Furthermore, it acts as a chromophore, enabling the use of IR-REMPI spectroscopy. Despite this latter advantage, the authors reported extensive cascade fragmentation, precluding a clear assignment of the spectral features. Once more, the experimental observations favored the assignment of a band at 3550 cm−1 as the stretch of the hydrogen-bonded OH, although the authors warned that such assignment should be taken with caution because of the existence of fragmentation. The same group recently revisited the spectroscopy of benzene–water aggregates, conducting new experiments with an improving s/n ratio and using sophisticated quantum mechanical computations to rationalize the results.35 Unfortunately, the authors did not offer explicit values for the vibrations, but it is clear from the experimental

Table 1. Values (in cm−1) Reported by Several Authors for the Vibrations of Water Dimer and Trimer

mode	proposed assignments
	Coker et al.27
	Page et al.29
	Huisken et al.31
	Zhang et al.26
	Leon et al.30
	this work
	Kuyanov-Prozumet et al.
	Pribble et al.33
donor stretch	3730 ± 3
(free OH)	3730
acceptor asymmetric	3723 ± 3
stretch	3714
acceptor symmetric	3600 ± 3
stretch	3600
donor stretch (bonded	3532 ± 3
OH)	3545
trimer	3400 ± 5
tetramer	3357 ± 3
donor bend overtone	3215 ± 5
acceptor bend overtone	3170 ± 5
technique	IR with a cryogenic bolometer
	IR + electron bombardment
	crossed molecular beam
	IR-tunable VUV
	IRns–IRfs
	IRns–IRfs
	He droplets
	IDIRS in benzene–water aggregates

aRef 27. bRef 26. cRef 33. dRef 13. eRef 29. bRef 34. Computed value. fπ-bonded OH stretch. gAccording to the authors, these values may be affected by fragmentation.
The Journal of Physical Chemistry Letters

The first work to fully establish the frequencies of the four OH stretching bands of the dimer was published by Vilesov’s group.\(^\text{29}\) The water clusters were formed in He droplets, and their spectra were registered in the 3580–3820 cm\(^{-1}\) region. Although the authors did not extend their measurements to the region of the controversial band at \(\sim3540\) cm\(^{-1}\), they were able to detect and assign, with the help of calculations, all the OH stretches of the dimer. Remarkably, the excellent agreement with that from Kuyanov-Prozument et al.\(^\text{29}\) Comparison of these values with those from other techniques highlights that the He atoms introduce a small shift in the position of the bands, certainly smaller than the perturbation introduced by the benzene ring in the work from Zwier’s group.

The next band to the red at 3730.1 cm\(^{-1}\) was assigned as the free OH stretch of the donor water molecule. Interestingly, the authors also reported a band due to larger water clusters at \(3718\) cm\(^{-1}\) (value estimated from the figure in their paper). Following to the red, a very weak feature appeared at 3654 cm\(^{-1}\), corresponding to the symmetric stretch of the acceptor water molecule. Next to the red, the donor OH stretch was assigned to a prominent band at 3597 cm\(^{-1}\), in full agreement with Huisken et al.\(^\text{28}\) Thanks to this new experimental setup, we recorded the mass-resolved IR spectrum of molecules without a chromophore.\(^\text{13–16}\) The fundamentals behind this technique were that using 800 nm fs pulses with intensities on the edge of the barrier-suppression regime, it was possible to ionize the molecules while minimizing the fragmentation by fine-tuning the intensity of the probe laser and the conditions of the expansion. In those cases in which some fragmentation persisted, it was possible to introduce a second nanosecond IR laser to record isomer-specific mass-selected IR spectra. Thanks to this new experimental setup, we recorded the spectrum in Figure 1a, which was collected directly in the (H\(_2\)O\(_2\))\(^+\) channel, avoiding interference from larger species. Therefore, it may be taken as the first report on the mass-resolved IR spectrum of the water dimer without contribution from larger aggregates.\(^\text{13}\) The spectrum contains only two clear bands and some additional features to the blue, instead of the four bands one would expect for water dimer, namely: H-bonded and free OH stretches of the donor molecule and symmetric and antisymmetric stretches of the acceptor molecule. The assignment adopted was in perfect agreement with that from Kuyanov-Prozument et al.\(^\text{29}\) and was based on the absence of the band corresponding to the symmetric stretch of the acceptor molecule, for which the calculations conducted at the M06-2X/6-311++G(d,p) level predicted a very low intensity. Such an absence may be one of the sources of confusion that led several authors to incorrectly assign the band at 3601 cm\(^{-1}\) as the symmetric stretch of the acceptor molecule. It is important to note that the lower resolution of the spectrum in Figure 1 and the reduced s/n ratio compared with that of Vilesov’s group,\(^\text{29}\) precluded a more accurate assignment of the antisymmetric stretch of the acceptor water molecule.

As mentioned above, probably the main controversial aspect in the interpretation of the IR spectrum of water dimer is the identity of the band’s system located by the different studies in the 3532–3550 cm\(^{-1}\) interval, which has been attributed alternatively to the donor OH stretch of the dimer\(^\text{26,27,34}\) or to fragmentation from larger clusters. The attribution of a peak in the 3529–3532 cm\(^{-1}\) interval to the trimer has been proposed by a number of authors employing different techniques: gas-phase IR spectroscopy,\(^\text{13,19,28,30,36,37}\) cold matrices,\(^\text{2,3,8,35}\) or He droplets.\(^\text{29,40}\) There is a compilation of the assignments proposed for that band in ref 37. This feature is often accompanied by additional peaks in the region that have been associated to the trimer or larger clusters. Our own data also show that the double band located at \(\sim3543\) cm\(^{-1}\) was present in the spectrum recorded in the mass channel of the trimer (Figure 1b). Summarizing, the accepted view in the field is that the IR spectrum of the dimer OH stretches extends from the bonded donor stretch at \(\sim3600\) cm\(^{-1}\) to the antisymmetric acceptor stretch features at \(\sim3750\) cm\(^{-1}\), while the bands observed in the 3529–3535 cm\(^{-1}\) are associated to the trimer or larger clusters.

In a recent paper, Zhang et al.\(^\text{33}\) revisited the IR spectroscopy of the water dimer formed in a He supersonic expansion, by means of a double-resonance technique that employed tunable VUV radiation from a free-electron laser.
(FEL) as ionization source. The use of one VUV photon ionization has already been explored by several authors, assuming the absence of fragmentation followed that proposed by Coker et al. and attributing the doublet at ~3543 cm⁻¹ to the donor H-bonded OH, and consequently, the band at ~3600 cm⁻¹ was associated with the symmetric stretch of the acceptor molecule, as in the works by the above-mentioned authors. This interpretation is in clear contradiction with the most recent studies reported on the dimer and trimer that have been described above (Table 1).

However, in addition, the result itself challenges some well-established ideas in the field.

First, the authors were able to record the IR spectrum of the dimer directly in the (H₂O)₂⁺ channel. The assignment of the dimer’s OH stretches by Zhang et al. assuming the presence of intermediate states, making it suitable for virtually any molecular system. As an additional advantage, the use of tunable VUV radiation permits, in principle, to precisely reach the ionization threshold, minimizing the appearance of dissociation processes in the formed ions.

On the basis of these ideas, by carefully adjusting the conditions of the expansion and the VUV source (wavelength and pulse energy), the authors were able to record the IR spectrum of the dimer directly in the (H₂O)₂⁺ channel. The assignment of the dimer’s OH stretches by Zhang et al. assuming the absence of fragmentation followed that proposed by Coker et al. and attributing the doublet at ~3543 cm⁻¹ to the donor H-bonded OH, and consequently, the band at ~3600 cm⁻¹ was associated with the symmetric stretch of the acceptor molecule, as in the works by the above-mentioned authors. This interpretation is in clear contradiction with the most recent studies reported on the dimer and trimer that have been described above (Table 1).

However, in addition, the result itself challenges some well-established ideas in the field.

First, the authors were able to record the IR spectrum of the dimer directly in the (H₂O)₂⁺ mass channel, and their mass spectra also show the unprotonated trimer ion (H₂O)₃⁺. Furthermore, in a recent work employing the same method, they reported the IR spectra of (H₂O)ₙ⁺ (n = 3–6), recorded in their own mass channels. If this result is confirmed, it will be the first time that water clusters larger than the dimer are detected in their own mass channel, using a VUV ionization source. The general consensus in the field dictates that the vertical ionization brings the cluster to a region of the potential energy surface of the ion above the barrier for reaction 1, dissociating a water molecule into a proton and an *OH radical. The calculations demonstrate that the *OH radical forms weaker hydrogen bonds than water, and therefore, it is the most weakly attached moiety and the radical forms weaker hydrogen bonds than water, and consequently, the band at ~3600 cm⁻¹ was associated with the symmetric stretch of the acceptor molecule, as in the works by the above-mentioned authors. This interpretation is in clear contradiction with the most recent studies reported on the dimer and trimer that have been described above (Table 1).

However, in addition, the result itself challenges some well-established ideas in the field.

First, the authors were able to record the IR spectrum of the dimer directly in the (H₂O)₂⁺ mass channel, and their mass spectra also show the unprotonated trimer ion (H₂O)₃⁺. Furthermore, in a recent work employing the same method, they reported the IR spectra of (H₂O)ₙ⁺ (n = 3–6), recorded in their own mass channels. If this result is confirmed, it will be the first time that water clusters larger than the dimer are detected in their own mass channel, using a VUV ionization source. The general consensus in the field dictates that the vertical ionization brings the cluster to a region of the potential energy surface of the ion above the barrier for reaction 1, dissociating a water molecule into a proton and an *OH radical. The calculations demonstrate that the *OH radical forms weaker hydrogen bonds than water, and consequently, the band at ~3600 cm⁻¹ was associated with the symmetric stretch of the acceptor molecule, as in the works by the above-mentioned authors. This interpretation is in clear contradiction with the most recent studies reported on the dimer and trimer that have been described above (Table 1).

Second, the presence in the dimer IR spectrum recorded by Zhang et al. of features (the doublet at ~3549 cm⁻¹) that are associated with larger clusters imply the formation of unprotonated (H₂O)₂⁻ fragments from (H₂O)ₙ⁻ ions. Although this channel should be accessible for the 98.1 nm radiation employed (12.64 eV) which is 0.9 eV above the adiabatic ionization threshold estimated for the trimer, it should be suppressed by the thermodynamically favored formation of protonated dimers or monomers according to reaction 2. Once more, the evidence presented in ref 33 demands a reinvestigation of the reaction mechanisms proposed for the ionization of water aggregates.

In summary, the data presented in this Viewpoint demonstrate that even small and apparently simple systems such as water dimer and trimer still hold relevant and deep questions. Perhaps one of the problems associated with revealing the true mechanism underlying these fundamental processes is that there is no single technique that can give the answer, and therefore, it is necessary to accumulate evidence from different experimental techniques, each of them adding a small piece to the puzzle. Still, it is very often difficult to fit those pieces in place. Understanding the whole picture can be accomplished only through the work of multiple research groups.

Iker León
Raül Montero
Asier Longarte
José A. Fernández

AUTHOR INFORMATION

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpcl.0c03001

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank MICIU (PGC2018-098561-B-C21) and the Basque Government (IT1162-19) for financial support. Computational and laser resources of the SGiker (UPV/EHU) were used in this work.

REFERENCES

(1) Hobza, P.; Muller-Dethlefs, K. In Non-Covalent Interactions; RCS Publishing: Cambridge, 2010.
(2) Bouteiller, Y.; Perchard, J. P. The vibrational spectrum of (H₂O)₂: comparison between anharmonic ab initio calculations and neon matrix infrared data between 9000 and 90 cm⁻¹. Chem. Phys. 2004, 305, 1–12.
(3) Lubman, D. M.; Kronick, M. N. Mass spectrometry of aromatic molecules with resonance-enhanced multiphoton ionization. Anal. Chem. 1982, 54, 660–665.
(4) Schermann, J. P. In Spectroscopy and modelling of biomolecular building blocks, 1st ed.; Elsevier: Amsterdam, 2008.
(5) Zwier, T. S. The Spectroscopy of Solvation in Hydrogen-Bonded Aromatic Clusters. Annu. Rev. Phys. Chem. 1996, 47, 205–241.
(6) Weiler, M.; Bartl, K.; Gerhards, M. Infrared-ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states. J. Chem. Phys. 2012, 136, 114202–114206.
(7) León, I.; Usabiaga, I.; Millán, J.; Cocinero, E. J.; Lesarri, A.; Fernández, J. A. Mimicking aesthetic-receptor interactions in jets: the propofol-isopropanol cluster. Phys. Chem. Chem. Phys. 2014, 16, 16968–16975.
(8) Schermann, J. P. In Spectroscopy and modelling of biomolecular building blocks, 1st ed.; Elsevier: Amsterdam, 2008.
(9) Weiler, M.; Bartl, K.; Gerhards, M. Infrared-ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states. J. Chem. Phys. 2012, 136, 114202–114206.
(10) Yatsyna, V.; Mallat, R.; Gorn, T.; Schmitt, M.; Feifel, R.; Rijz, A. M.; Zhaunerchyk, V. Competition between folded and extended
structures of alanylalaine (Ala-Ala) in a molecular beam. Phys. Chem. Chem. Phys. 2019, 21, 14126–14132.

(11) Yatsyna, V.; Mallat, R.; Gorn, T.; Schmitt, M.; Feifel, R.; Rijs, A. M.; Zhauerchyk, V. Conformational Preferences of Isolated Glycylglycine (Gly-Gly) Investigated with IRMPD-VUV Action Spectroscopy and Advanced Computational Approaches. J. Phys. Chem. A 2019, 123, 862–872.

(12) Fu, H. B.; Hu, Y. J.; Bernstein, E. R. IR-vacuum ultraviolet (118 nm) nonresonant ionization spectroscopy of methanol monomers and clusters: Neutral cluster distribution and size-specific detection of the OH stretch vibrations. J. Phys. Chem. 2006, 124, 024302.

(13) León, I.; Montero, R.; Castaño, F.; Longarte, A.; Fernández, J. A. Mass-Resolved Infrared Spectroscopy of Complexes without Chromophore by Nonresonant Femtosecond Ionization Detection. J. Phys. Chem. A 2012, 116, 6798–6803.

(14) León, I.; Montero, R.; Longarte, A.; Fernández, J. A. IR mass-resolved spectroscopy of complexes without chromophore: Cyclohexanol–(H2O)n, n = 1–3 and cyclohexanol dimer. J. Chem. Phys. 2013, 139, 174312.

(15) Montero, R.; León, I.; Fernández, J. A.; Longarte, A. Femtosecond Excited State Dynamics of Size Selected Neutral Molecular Clusters. J. Phys. Chem. Lett. 2016, 7, 2797–2802.

(16) Montero, R.; Lamas, I.; León, I.; Fernández, J. A.; Longarte, A. Excited state dynamics of aniline homoclusters. Phys. Chem. Chem. Phys. 2019, 21, 3098–3105.

(17) Matsuda, Y.; Mikami, N.; Fujii, A. Vibrational spectroscopy of size-selected neutral and cationic clusters combined with vacuum-ultraviolet one-photon ionization detection. Phys. Chem. Chem. Phys. 2009, 11, 1279–1290.

(18) Nosenko, Y.; Kunitski, M.; Riehn, C.; Harbach, P. H. P.; Dreuw, A.; Brutschy, B. The structure of adenine monohydrates studied by femtosecond multiphoton ionization detected IR spectroscopy and quantum chemical calculations. Phys. Chem. Chem. Phys. 2010, 12, 863–870.

(19) Mukhopadhyay, A.; Cole, W. T. S.; Saykally, R. J. The water dimer I: Experimental characterization. Chem. Phys. Lett. 2015, 633, 13–26.

(20) Van Thiel, M.; Becker, E. D.; Pimentel, G. C. Infrared Studies of Hydrogen Bonding of Water by the Matrix Isolation Technique. J. Chem. Phys. 1957, 27, 486–490.

(21) Shinohara, H.; Nishi, N.; Washida, N. Photoionization of water clusters at 11.83 eV: Observation of unprotonated cluster ions of (H2O)n; (H2O)n+, (H2O)nH+ and (H2O)nH+ in supersonic jets. Chem. Phys. Lett. 1987, 141, 7–11.

(22) Rudi, P. P.; Beaud, P.; Franck, D.; Frey, H.-M.; Gerber, T.; Mischler, B.; Tzanis, A.-P. Femtosecond photoionization of (H2O)n and (D2O)n clusters. J. Chem. Phys. 1999, 111, 512–518.

(23) Dong, F.; Heinbuch, S.; Rocca, J. J.; Bernstein, E. R. Dynamics and fragmentation of van der Waals clusters: (H2O)n (CH3OH)n and (NH3)n), upon ionization by a 26.5eV soft x-ray laser. J. Chem. Phys. 2006, 124, 224319.

(24) Belou, L.; Wilson, K. R.; Seone, S. R.; Ahmed, M. Vacuum Ultraviolet (VUV) Photoionization of Small Water Clusters. J. Phys. Chem. A 2007, 111, 10075–10083.

(25) Page, R. H.; Frey, J. G.; Shen, Y. R.; Lee, Y. T. Infrared Predissociation Spectra of Water Dimer in A Supersonic Molecular-Beam. Chem. Phys. Lett. 1984, 106, 373–376.

(26) Coker, D. F.; Miller, R. E.; Watts, R. O. The Infrared Predissociation Spectra of Water Clusters. J. Chem. Phys. 1985, 82, 3554–3562.

(27) Huisken, F.; Kaloudis, M.; Kulkke, A. Infrared spectroscopy of small size-selected water clusters. J. Chem. Phys. 1996, 104, 17–25.

(28) Kuyanov-Prozument, K.; Choi, M. Y.; Vilseov, A. F. Spectrum and infrared intensities of OH-stretching bands of water dimers. J. Chem. Phys. 2010, 132, 014304.