Transporting mitochondria in neurons [version 1; referees: 2 approved]

Meredith M. Course¹,², Xinnan Wang¹

¹Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
²Neurosciences Graduate Program, Stanford University, Stanford, CA, USA

Abstract

Neurons demand vast and vacillating supplies of energy. As the key contributors of this energy, as well as primary pools of calcium and signaling molecules, mitochondria must be where the neuron needs them, when the neuron needs them. The unique architecture and length of neurons, however, make them a complex system for mitochondria to navigate. To add to this difficulty, mitochondria are synthesized mainly in the soma, but must be transported as far as the distant terminals of the neuron. Similarly, damaged mitochondria—which can cause oxidative stress to the neuron—must fuse with healthy mitochondria to repair the damage, return all the way back to the soma for disposal, or be eliminated at the terminals. Increasing evidence suggests that the improper distribution of mitochondria in neurons can lead to neurodegenerative and neuropsychiatric disorders. Here, we will discuss the machinery and regulatory systems used to properly distribute mitochondria in neurons, and how this knowledge has been leveraged to better understand neurological dysfunction.
Introduction

The transport of mitochondria is critical to a neuron’s health. Although frequently referred to as “the powerhouse of the cell”, mitochondria do much more than produce ATP. In addition to being the cell’s major energy provider, mitochondria are responsible for storing and buffering Ca2+, detoxifying ammonia, and producing some steroids, heme compounds, heat, and reactive oxygen species. They are vital to the metabolism of neurotransmitters glutamate and gamma-aminobutyric acid (GABA), and send signals for apoptosis, proliferation, and cell survival1. They even boast their own DNA and protein synthesis machinery as a vestige of their previous life as bacteria. It is thus unsurprising to learn that precise control of mitochondrial number, health, and distribution is especially critical to the neuron, which is a complex cell with high energy and regulatory demands.

Several features distinguish neurons from other cells. First, they have a long, thin axon—the longest axon in the human body can extend over one meter—and contain many areas of sub-specialization, like the pre-synapse, post-synapse, growth cones, and nodes of Ranvier2, each with different metabolic needs. Second, as the carriers of synaptic information, neurons have ever-changing energy and Ca2+ buffering demands, especially at their terminals. Finally, because neurons are post-mitotic and will stay with the organism for the duration of its life, they must be protected from excitotoxicity and kept in a state of homeostasis as long as possible. The appropriate allocation and sustenance of mitochondria are essential to fulfilling the many demands of the neuron, and keeping it in good health.

To meet the vacillating needs of neurons, about 30% to 40% of these spry organelles are in motion at any given time2,4. Properly distributing mitochondria throughout a neuron, however, is complicated by the fact that mitochondria are primarily produced in the soma, with most of their proteins encoded by nuclear DNA, but are needed as far away as the synaptic terminal. Static mitochondria pool at or near synapses, which may be important for rapid neuronal firing, while passing mitochondria may be recruited to support prolonged energy needs and repetitive neuronal firing5,6,12. Additionally, damaged mitochondria produce reactive oxygen species, which can be toxic to the cell, and these dysfunctional mitochondria must be repaired by fusing with new mitochondria transported from the soma, be returned to the soma for degradation in a process termed mitophagy, or be cleared through mitophagy in neurites \textit{in situ}13. Whether providing a service to the neuron, or needing clearance to prevent damage to the neuron, mitochondria must travel long distances and know precisely where and when to stop. When their transport machinery breaks down or signals regulating this machinery cannot be relayed, the consequence can be injury to or even death of the neuron5,14-17. Here we will review the molecular mechanisms underlying mitochondrial transport in neurons, and what happens when they are disrupted.

Transport machinery

Much like a train, organelle transport requires a track, a motor, and a cargo. For mitochondria—the cargo—the overwhelming majority of their tracks are microtubules, which in mammalian neurons have their plus ends oriented toward the axon terminal, and their minus ends toward the soma (although this homogeneity is not the case in dendrites)16-20. This uniform polarity makes neuronal axons an especially useful model for studying organelle transport. The motors used to transport mitochondria depend on the direction in which they need to travel. In general, mitochondria move in the anterograde direction (away from the soma) using a family of kinesin motors, and move in the retrograde direction (toward the cell body) using the dynein motor21. While kinesins and dynein are also used to carry other cargos, the motor adaptors that anchor the motor and cargo together are cargo-specific, allowing for the regulation of movement by particular cellular signals. In addition to microtubules, mitochondrial movement can be powered along actin filaments by myosin motors, a process that is required for short-range movement, and for opposing movement along the microtubules22-24.

Anterograde movement with the kinesin heavy chain complex

The best-characterized mitochondrial transport complex to date uses kinesin heavy chain (KHC, a member of the kinesin-1 family) as its motor, and Miro and milton as its motor adaptors. Miro stands for “mitochondrial Rho” and belongs to the atypical Rho (Ras homolog) family of GTPases (RhoT1/2 in mammals). Miro is anchored to the outer mitochondrial membrane (OMM) via its carboxy-terminus transmembrane domain. Miro binds to milton (trafficking protein, kinase-binding, or TRAK1/2 in mammals), which in turn binds to the carboxy-terminus of KHC25-27. Milton was identified in a \textit{Drosophila} screen for blind flies and was named after the great poet and polemicist John Milton, who was also blind28. Together, Miro and milton facilitate anterograde mitochondrial movement along microtubules by connecting mitochondria to KHC (Figure 1a). When either Miro or milton is mutated in animal models, mitochondria are trapped in the soma and lose the ability to move out into the axons29-31.

Miro and milton are not the only adaptors that can link mitochondria and KHC. Syntabulin can bind directly to the OMM and KHC, and disruption of syntabulin function has been shown to inhibit the anterograde transport of mitochondria in neurons32. Similarly, disrupting fasciculation and elongation protein zeta-1 (FEZ1), and RAN-binding protein 2 (RANBP2) also affects mitochondrial distribution because of their association with kinesins, possibly KIF3A and KIF5B/C, respectively30-34.

Mutations in KHC have been shown to reduce anterograde mitochondrial movement but do not eliminate it entirely, which suggests that other kinesin motors may also play a role in anterograde mitochondrial motility21. For example, kinesins from the Kinesin-3 family KIF1B\textalpha and KLP6 may interact with KIF1 binding protein (KBP) to transport mitochondria35-38. KIF1B can transport mitochondria along microtubules \textit{in vitro}, and mutations in Klp6 inhibits anterograde mitochondrial motility into neurites; however, the roles of these other kinesins await further clarification.

Retrograde movement with the dynein complex

Dynein is thought to act as the retrograde motor for microtubule-based mitochondrial movement, although far less is known about the mechanisms underlying its action. In contrast to the host of
kinesins available for anterograde transport, there is only one identified dynein motor; however, dynein’s larger and more complex structure has made it difficult to study. Dynein has been shown to form a complex with dynactin, and this complex has been shown to also interact with milton/TRAK2 and with Miro39, which lends support to dynein’s role in mitochondrial transport (Figure 1b). Interestingly, dynein movement is also thought to depend on kinesin-1, as mutation in kinesin-1 reduces retrograde movement of mitochondria21.

Actin-based movement with myosin complexes

A small though not insignificant number of mitochondria are also transported along actin filaments22. This is more common in actin-enriched neuronal compartments, like growth cones, dendritic spines, and synaptic boutons. Myosins are actin-based motors, and the myosin Myo19 has been shown to anchor directly to the OMM, and regulate mitochondrial motility24,40. Myosins V and VI have also been shown to play a role in mitochondrial motility by opposing microtubule-based mitochondrial transport23, although whether these myosin motors attach directly to mitochondria or require a motor adaptor remains unknown (Figure 1c). WAVE1 (WAS family verprolin homologous protein 1), which regulates actin polymerization, has been shown to be critical for mitochondrial transport in dendritic spines and filopodia—areas that are actin-rich—and therefore may be involved in the actin-based transport of mitochondria41.

Anchoring mitochondria

If 30\% to 40\% of mitochondria are in motion at any given time, then more than half of mitochondria are static. While understanding of how stationary pools of mitochondria are generated is still nascent, one protein, syntaphilin, stands out. Syntaphilin serves as a molecular brake, docking mitochondria by binding to both the mitochondrial surface and to the microtubule42. Both kinesin-1 and the dynein light chain component LC8 have been shown to regulate this mechanism43,44. Intriguingly, a recent study using optogenetics has shown that the mitochondrial dance between mobility and stabilization depends on the balance of forces between motors and anchors, rather than all-or-none switching45.

Regulation of the kinesin heavy chain/milton/Miro complex

\textbf{Ca2+}

The ability of mitochondria to temporarily stop where they are needed is just as important as their ability to move. When cytosolic \textbf{Ca2+} concentration is elevated, \textbf{Ca2+} binds to the EF hands of Miro and triggers a transient and instantaneous conformational change in the KHC/milton/Miro complex. This conformational change causes dissociation of either the whole complex from microtubules9, or KHC from mitochondria17, which arrests movement of mitochondria. When \textbf{Ca2+} concentration is lowered, \textbf{Ca2+} is removed from Miro, and mitochondria are reattached to microtubules by the complex and can start moving again. The sensitivity of mitochondrial movement to \textbf{Ca2+} is likely a means by which mitochondria can be recruited to areas of high metabolic demand or low local ATP, like post-synaptic specializations and growth cones. During glutamate receptor activation, mitochondria are recruited where \textbf{Ca2+} influx is increased, which confers neurons with resistance to excitotoxicity9,17. Interestingly, brain-derived
neurotrophic factor (BDNF) has recently been shown to arrest mitochondrial motility via Ca\(^{2+}\) binding to Miro1 in cultured hippocampal neurons\(^{46}\).

Glucose

Glucose has recently been shown to influence mitochondrial motility via the KHC/milton/Miro complex. The small sugar UDP-GlCNAC is derived from glucose through the hexamine biosynthetic pathway. UDP-GlCNAC is affixed to milton by O-GlcNAc transferase (OGT), in a process called O-GlcNAcylation\(^{47}\). Extracellular glucose concentration or OGT activity can modulate mitochondrial motility through O-GlcNAcylation of milton. This mechanism links nutrient availability to mitochondrial distribution, which could be a mechanism by which neurons maintain a balanced metabolic state.

PINK1/Parkin

When mitochondria are severely damaged, they undergo mitophagy, a crucial cellular mechanism that eliminates depolarized mitochondria through autophagosomes and lysosomes. Damaged mitochondria must be stopped prior to the initiation of mitophagy. To accomplish this, mitochondrial depolarization activates PINK1 (PTEN-induced putative kinase 1)-mediated phosphorylation of Miro\(^{48,49}\), which subsequently triggers Parkin-dependent proteasomal degradation of Miro, thus releasing the mitochondria from its microtubule motors\(^{50,51}\). It is likely that stopping mitochondria in this manner is an early step in the quarantine of damaged mitochondria before degradation. In fact, this PINK1-mediated phosphorylation of Miro has been shown to protect dopaminergic neurons in vivo in Drosophila\(^{52}\). PINK1 and Parkin can also work in concert to remove damaged mitochondria through local mitophagy in distal axons, which would obviate the need for the mitochondria to be transported all the way back to the soma, and instead require the recruitment of autophagosomes to the damaged mitochondria\(^{11}\). How a cell chooses between transporting a mitochondrion back to the soma or using local mitophagy when it is damaged in the axon remains an outstanding question.

The dynamics of mitochondrial fission and fusion also plays a central role in PINK1/Parkin-mediated mitophagy. For example, mitofusin, a large GTPase that regulates mitochondrial fusion, is a target of the PINK1/Parkin pathway. Degradation of mitofusin prevents mitochondria from being able to fuse, and they instead fragment, a critical step prior to mitophagy\(^{51,53}\). An in-depth discussion of the role of mitochondrial dynamics in quality control merits its own review, and an excellent F1000 Faculty Review and two others are recommended in the References section\(^{56,59}\).

Other milton/Miro regulators

In humans, milton is encoded by two different genes: TRAK1 and TRAK2. It has been reported that TRAK1 binds to both kinesin-1 and dynein, while TRAK2 predominantly favors dynein\(^6\). In Drosophila, milton has several splicing variants, one of which (milton-C) does not bind to KHC\(^{53}\). These varying forms of milton may play an important role in regulating the KHC/milton/Miro complex.

Another regulator that merits mentioning is HUMMR (hypoxia up-regulated mitochondrial movement regulator), whose expression is induced by hypoxic conditions. HUMMR has been shown to interact with the KHC/milton/Miro complex, and increases the ratio of anterograde to retrograde movement of mitochondria\(^{57}\). Similarly, a family of proteins encoded by an array of armadillo (Arm) repeat-containing genes has been shown to bind to milton/Miro and regulate mitochondrial motility\(^{60}\).

It is worthwhile to note that mitochondrial fission and fusion also affect mitochondrial motility. The same mitofusin mentioned previously also binds to milton/Miro, and knockdown of mitofusin 2 has been shown to inhibit mitochondrial motility\(^{61}\). Additionally, transient fusion has been shown to promote mitochondrial movement\(^{62}\).

Other regulators

The list of possible mitochondrial transport regulators burgeons daily, although thorough mechanisms remain scarce. For example, nerve growth factor can cause accumulation of mitochondria to its site of application\(^{54,55}\). Another growth factor, lysophosphatidic acid, can inhibit mitochondrial movement\(^{56}\). Intracellular ATP levels regulate mitochondrial motility, which decreases when close to synapses, and local production of ADP can recruit more mitochondria to areas requiring more ATP\(^{57,58}\). Increased cAMP can increase mitochondrial motility\(^{59}\). Pharmacological activation of AMP-activated protein kinase (AMPK) can promote anterograde movement of mitochondria for the formation of axon branches\(^{60}\). Activation of the serotonin receptor increases mitochondrial movement via the AKT-GSK3β (Akt-glycogen synthase kinase 3β) pathway\(^6\), and conversely, dopamine and activation of the dopamine receptor D2 can inhibit mitochondrial movement via the same AKT-GSK3β pathway\(^{60,61}\). One recent study shows that GSK-3β directly regulates dynemin\(^7\), while another study shows that it promotes anterograde movement\(^{62}\). This list of molecules likely skims the surface of all the signals and sensors involved in mitochondrial motility, which are yet to be uncovered.

Implications for neurological disorders

Because mitochondria are critical for energy production, calcium buffering, and cell survival pathways, it is not surprising to learn that impaired mitochondrial movement has been linked to neuronal dysfunction and neurological disorders\(^1,2,7,75\). The long distance travelled by mitochondria in neurons, as compared to in other cells, may account for the fact that neurons are more vulnerable to impairments in mitochondrial transport. Altered mitochondrial motility may provide an early indication of neuronal pathology prior to cell death, either because motility is directly affected or because it is altered as a consequence of other mitochondrial malfunctions.

Neurodegenerative diseases

Aging itself has been shown to decrease neuronal mitochondrial motility in mice, and several age-dependent neurodegenerative diseases have been linked to mitochondrial motility defects\(^5\). Mutations in the previously mentioned PINK1 and Parkin are
both causes of familial Parkinson’s disease (PD)77,79. In individuals lacking either functional PINK1 or Parkin, a failure to isolate, stop, and remove the damaged mitochondria may contribute to neuronal cell death. Unpublished work using patients’ samples from our laboratory also suggests that neurodegeneration in non-PINK1/Parkin-related PD cases may arise in a similar manner, and that stopping damaged mitochondrial motility is neuroprotective. This finding highlights the broader implications of mitochondrial motility in neuronal health and pathology.

The pathological forms of amyloid beta and tau, the chief markers of Alzheimer’s disease (AD), have both been shown to inhibit mitochondrial motility in several AD models70-81. Superoxide dismutase 1, soluble (SOD1), fused in sarcoma (FUS), C9orf72, and TAR DNA-binding protein 43 (TDP-43) mutations, which cause familial amyotrophic lateral sclerosis (also called Lou Gehrig’s disease), have also been shown to impair mitochondrial transport in mice, flies, and cultured neuronal models84-91. Mutant huntingtin protein, with the polyglutamine expansions characteristic of Huntington’s disease etiology, can act to “jam traffic” by mechanical obstruction, and may also bind to Milton or even to the mitochondria itself to disrupt mitochondrial motility92,94. Mutations in mitofusin 2 causing Charcot-Marie-Tooth disease alter mitochondria movement95, and finally, mitochondrial motility defects have also been observed in models of hereditary spastic paraplegia, a disease characterized by axonal degeneration96,97.

Neuropsychiatric disorders

A few psychiatric disorders have also been linked to mitochondrial motility defects. Mutations in disrupted in schizophrenia 1 (DISC1) may contribute to both schizophrenia and some forms of depression98. DISC1 complexes with TRAK1/milton and Miro1 to modulate anterograde transport of mitochondria99,100, and its interactors NDE1 and GSK3β have recently been shown to associate with TRAK1/milton and similarly play a role in mitochondrial motility98. DISC1 also interacts with the previously mentioned FEZ1101, which binds to kinesins35,28. Among several causes, depression can be attributed to a loss of serotonin102. Interestingly, the application of serotonin to cultured hippocampal neurons has been shown to increase mitochondrial motility7.

Closing remarks

The proper transport of mitochondria in neurons is critical to the homeostasis of the cell. Many questions in this field, however, remain to be answered. On a basic level of investigation, a more thorough understanding of the machinery—like the dynein motor, myosin motors, and the signals and adaptors that regulate this complex system—is still desperately needed.

A significant higher-level question is: how does the cell decide what to do with a damaged mitochondrion in the distal segment of an axon? The cell has several options: return the mitochondria to the soma for lysosomal degradation, which requires long-distance retrograde transport; degrade the mitochondrion via local mitophagy, which requires recruitment of autophagosomes to mitochondria and fusion of autophagosomes with lysosomes in the axon; or send a healthy mitochondrion from the soma via anterograde transport to repair the damage by fusing with the unhealthy mitochondrion. Could this decision be made on the basis of the nature or severity of the damage to the mitochondrion? Does this decision take into account the relative energy expended? What are the signals and molecules that execute this decision? These actions must also be influenced by the local metabolic state, de novo protein synthesis, and neuronal activity in extremities far from the cell body.

It is also crucial to explore the translational implications of these findings. What of this knowledge can be leveraged for therapeutic benefit? Perhaps mitochondrial motility could be used as a novel phenotypic readout to screen for more effective treatments for neurological disorders, as well as a way to diagnose the disease and monitor its progression. A more comprehensive understanding of the molecular mechanisms underlying mitochondrial transport will prove invaluable as it provides novel targets, like the KHC/milton/Miro complex, for diagnostic innovation and therapeutic intervention.

Most knowledge of mitochondrial movement in neurons has been uncovered using cultured rodent neurons. The application of emerging in vivo models will shed light on the physiological significance of the regulation of mitochondrial motility98,103,104. Therefore, imaging mitochondria in living animals, especially during development and aging, as well as under disease conditions, will be an important step for the field.

Finally, given the inseparable relationship between neuronal function and metabolism, and mitochondrial motility and distribution, their underlying regulatory mechanisms must be interwoven. How do action potentials, neuronal signaling molecules like dopamine and serotonin, or metabolites like glucose, fatty acids, nd amino acids influence mitochondrial motility and distribution? And how do mitochondrial motility and function reciprocally control neuronal homeostasis? Answers to these questions will reveal how neurons respond to changes in their activities and environments by regulating this cellular linchpin.

Competing interests

The authors declare that they have no competing interests.

Grant information

This work was supported by the Alfred P. Sloan Foundation (Xinnan Wang), the Klingenstein Foundation (Xinnan Wang), the California Institute of Regenerative Medicine (Xinnan Wang), the National Institutes of Health (RO1NS089583) (Xinnan Wang), and the Graduate Research Fellowship Program of the National Science Foundation (Meredith M. Course).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
1. Rossier MF. T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium. 2006; 40(2): 155–64.

2. Oh-hama T. Evolutionary consideration on 5-aminolevulinate synthase in nature. Orig Life Evol Biosph. 1997; 27(4): 405–12.

3. Kugler P, Baiar G. Mitochondrial enzymes related to glutamate and GABA metabolism in the hippocampus of young and aged rats: a quantitative histochemical study. Neurochem Res. 1992; 17(2): 179–85.

4. McBride HM, Neuipel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006; 16(14): R551–60.

5. Ohno N, Kidd GJ, Mahad D, et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci. 2011; 31(20): 7249–58.

6. Chen S, Owens GC, Crossin KL, et al. Serotonin stimulates mitochondrial transport in hippocampal neurons. Mol Cell Neurosci. 2007; 36(4): 472–83.

7. Overy CC, Riefl H, Hollenbeck PJ. Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci. 1996; 109(Pt 5): 971–80.

8. Waters J, Smith SJ. Mitochondria and release at hippocampal synapses. Pluggins Arch. 2000; 447(3): 363–70.

9. Wang X, Schwarz TL. The mechanism of Ca++-dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009; 136(1): 163–74.

10. Li Z, Okamoto K, Hayashi Y, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004; 119(6): 873–87.

11. Stowers RS, Megeath LJ, Gorska-Andrzejak J, et al. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron. 2002; 36(6): 1063–77.

12. Cho KI, Cai Y, Yi H, et al. Identification of FEZ1 as a protein that associates with mitochondria. J Biol Chem. 2005; 280(26): 24948–56.

13. Patil H, Cho KI, Les J, et al. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding 2. Open Biol. 2013; 3(3): 120183.

14. Cho KI, Cai Y, Yi H, et al. Association of the kinesin-binding domain of RanBP2 with tubulin and kinesin motor protein to transport mitochondria in neurites of NGF-stimulated PC12 cells. Biochem Biophys Res Commun. 2007; 361(3): 605–10.

15. Nangaku M, Sato-Yoshitake R, Okada Y, et al. Identification of FEZ1 as a protein that associates with mitochondria. J Cell Sci. 2011; 124(4): 2457–65.

16. Fujita T, Matura NA, Ikuta K, et al. Kinesin motor-dependent end-directed monomeric motor protein for transport of mitochondria. Cell. 1994; 79(1): 1209–20.

17. Tanaka K, Sugura Y, Ichishita R, et al. KLPL6: a newly identified kinesin that regulates the morphology and transport of mitochondria in neuronal cells. J Cell Sci. 2011; 124(Pt 4): 2457–65.

18. van Spriens M, Mikhaylova M, Lipka J, et al. Identification of FEZ1 as a protein that associates with mitochondria. J Cell Sci. 1996; 109(6): 3885–94.

19. Baas PW, Delch J, Black MM, et al. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc Natl Acad Sci U S A. 1988; 85(21): 8335–9.

20. Heidemann SR, Landers JM, Hamborg MA. Polarity orientation of axonal microtubules. J Cell Biol. 1989; 109(6 Pt 1): 3885–94.

21. Pilling AD, Horuchi D, Lively CM, et al. Kinesin-1 and Dynein are the primary motors for mitochondrial transport in Drosophila motor axons. Mol Biol Cell. 2006; 17(4): 2057–68.
62. Misko A, Jiang S, Wegorzewska I, Kornmann B, Ziviani E, Tao RN, Whitworth AJ: regulate mitochondrial trafficking in neurons and interact with Miro and Trak2. Nat Commun. 2009; 29(30): 9429–38. PubMed Abstract | Publisher Full Text

63. Chen Y, Sheng ZH: protein, alters mitochondrial distribution and transport. F1000Prime Rep. 2011; 2(3): e111. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

64. Sun J, Tian JH, Pan PY, et al.: Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell. 2008; 133(1): 137–48. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

65. van Bergen J, Patalas C, Heintz R, et al.: Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J Biol Chem. 2014; 289(3): 1213–26. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

66. Liu S, Sawada T, Lee S, et al.: Parkinson’s disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 2012; 8(3): e1002537. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

67. Tsai PI, Courses MM, Loves JR, et al.: PINK1-mediated phosphorylation of Miro inhibits synaptic growth and protects dopaminergic neurons in Drosophila. Sci Rep. 2014; 4: 6962. PubMed Abstract | Publisher Full Text | Free Full Text

68. Chan NC, Salazar AM, Pham AH, et al.: Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitochondrial function. Hum Mol Genet. 2011; 20(9): 1726–37. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

69. Chen Y, Dom Gw 2nd, et al.: Mitochondrial movement and positioning in axons: the role of growth factor signaling. J Exp Biol. 2003; 206(12): 1985–92. PubMed Abstract | Publisher Full Text | F1000 Recommendation

70. Minna AA, Kulik AV, Gyozea FK, et al.: Regulation of mitochondria distribution by RhOa and formins. J Cell Sci. 2006; 119(4): 659–70. PubMed Abstract | Publisher Full Text

71. Moronov SL: ADP regulates movements of mitochondria in neurons. Biophys J. 2007; 92(8): 2944–62. PubMed Abstract | Publisher Full Text | Free Full Text

72. Morin G, Szabenyi G, Elluru R, et al.: Glycogen synthase kinase 3 phosphoforms kinisin light chains and negatively regulates kinisin-based motility. EMBO J. 2002; 21(3): 281–93. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

73. Tao K, Matsuki N, Koyama R: AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev Neurobiol. 2014; 74(6): 557–73. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

74. Sasaki S, Iwata M: Mitochondrial quality control mediated by Parkin’s disease. Annu Rev Neurosci. 2008; 31: 151–73. PubMed Abstract | Publisher Full Text | Free Full Text

75. Morfini GA, Burns M, Binder Li, et al.: Axonal transport defects in neurodegenerative diseases. J Neurosci. 2009; 29(41): 12776–86. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

76. Dehechi S, Pasqualotto BA, et al.: Mitochondrial motility trafficking in neuropsychiatric diseases. Neurobiol Dis. 2013; 51: 66–71. PubMed Abstract | Publisher Full Text | Free Full Text

77. Gilley J, Seereeram A, Ando K, et al.: Age-dependent axonal transport and locomotor changes and tau hypophosphorylation in a “F30TL” tau knockin mouse. Neurobiol Aging. 2012; 33(3): 621.e1–621.e15. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

78. Valente EM, Abou-Sleiman PM, Caputo V, et al.: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004; 304(5674): 1158–60. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

79. Kitada T, Askakawa S, Hatton N, et al.: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998; 392(6676): 605–8. PubMed Abstract | Publisher Full Text | Free Full Text

80. Stokin GB, Lillo C, Falzone TL, et al.: Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science. 2005; 307(5713): 1283–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation

81. Rui Y, Tiwari P, Xie Z, et al.: Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci. 2006; 26(14): 3940–7. PubMed Abstract | Publisher Full Text | Free Full Text

82. Vossel KA, Zhang K, Brodbbeck J, et al.: Tau reduction prevents Abeta-induced defects in axonal transport. Science. 2010; 330(6001): 198. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

83. Calkins MJ, Reddy PH: Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease. Biochim Biophys Acta. 2011; 1812(4): 507–13. PubMed Abstract | Publisher Full Text | Free Full Text

84. Sasaki S, Iwata M: Impairment of fast axonal transport in the proximal axons of anterior horn neurons in amyotrophic lateral sclerosis. Neurology. 1996; 47(2): 529–40. PubMed Abstract | Publisher Full Text | F1000 Recommendation | Publisher Full Text | F1000 Recommendation

F1000Research 2016, 5(F1000 Faculty Rev):1735 Last updated: 18 JUL 2016

Page 8 of 10
85. De Vos KJ, Chapman AL, Tennant ME, et al.: Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Hum Mol Genet. 2007; 16(22): 2720–8.
PubMed Abstract | Publisher Full Text | Free Full Text

86. Magrané J, Herias I, Henning MS, et al.: Mutant SOD1 in neuronal mitochondria causes toxicity and mitochondrial dynamics abnormalities. Hum Mol Genet. 2009; 18(23): 4552–64.
PubMed Abstract | Publisher Full Text | Free Full Text

87. Baldwin KR, Godena VK, Hewitt VL, et al.: Axonal transport defects are a common phenotype in Drosophila models of ALS. Hum Mol Genet. 2016; pii: dtw105.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

88. Magrané J, Cortez C, Gan WB, et al.: Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum Mol Genet. 2014; 23(6): 1413–24.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

89. Shi P, Strom AL, Gal J, et al.: Effects of ALS-related SOD1 mutants on dynemin- and KIF5-mediated retrograde and anterograde axonal transport. Biochim Biophys Acta. 2010; 1802(9): 707–16.
PubMed Abstract | Publisher Full Text | Free Full Text

90. Shan X, Chang PM, Price DL, et al.: Altered distributions of Gemini of collared bodies and mitochondria in motor neurons of TDP-43 transgenic mice. Proc Natl Acad Sci U S A. 2010; 107(37): 16325–30.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

91. Bosco DA, Morfini G, Karabacak NM, et al.: Wild-type and mutant SOD1 share an aberrant conformation and a common pathological pathway in ALS. Nat Neurosci. 2010; 13(11): 1596–403.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

92. Trushina E, Dyer RB, Badger JD 2nd, et al.: Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol. 2004; 24(18): 8195–208.
PubMed Abstract | Publisher Full Text | Free Full Text

93. Chang DT, Rintoul GL, Pandit S, et al.: Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis. 2006; 22(2): 388–400.
PubMed Abstract | Publisher Full Text

94. Orr AL, Li S, Wang CE, et al.: N-terminal mutant huntingtin associates with mitochondrial and impairs mitochondrial trafficking. J Neurosci. 2008; 28(11): 2783–92.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

95. Baloh RH, Schmidt RE, Pestrunk A, et al.: Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofilin 2 mutations. J Neurosci. 2007; 27(2): 420–30.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

96. Ferreininha F, Quattrini A, Pirozzi M, et al.: Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest. 2004; 113(2): 231–42.
PubMed Abstract | Publisher Full Text | Free Full Text

97. Kashner PR, De Vos KJ, Wharton SB, et al.: Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem. 2009; 110(1): 34–44.
PubMed Abstract | Publisher Full Text

98. Millar JK, Wilson-Annan JC, Anderson S, et al.: Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000; 9(9): 1415–23.
PubMed Abstract | Publisher Full Text

99. Atkin TA, MacAskill AF, Brandon NJ, et al.: Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry. 2011; 16(2): 122–4, 121.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

100. Ogawa F, Malavaei EL, Crumie DK, et al.: DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet. 2014; 23(4): 906–19.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

101. Miyoshi K, Honda A, Baba K, et al.: Disrupted-In-Schizophrenia 1, a candidate gene for schizophrenia, participates in neurite outgrowth. Mol Psychiatry. 2003; 8(7): 685–94.
PubMed Abstract | Publisher Full Text

102. Belmaker RH, Agam G: Major depressive disorder. N Engl J Med. 2008; 358(1): 55–68.
PubMed Abstract | Publisher Full Text

103. Takahara Y, Inatani M, Eto K, et al.: In vivo imaging of axonal transport of mitochondria in the diseased and aged mammalian CNS. Proc Natl Acad Sci U S A. 2015; 112(33): 10515–20.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

104. Musgielo T, Kerschensteiner M, Bareyre FM, et al.: Imaging axonal transport of mitochondria in vivo. Nat Methods. 2007; 4(7): 559–61.
PubMed Abstract | Publisher Full Text

105. Boileau G, Gan WB, Manledi G, et al.: Imaging of mitochondrial dynamics in motor and sensory axons of living mice. Methods Enzymol. 2014; 547: 97–110.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

106. Wang X, Schwarz TL: Imaging axonal transport of mitochondria. Methods Enzymol. 2005; 407: 319–33.
PubMed Abstract | Publisher Full Text | Free Full Text

107. Plucinska G, Paquet D, Hruscha A, et al.: In vivo imaging of disease-related mitochondrial dynamics in a vertebrate model system. J Neurosci. 2012; 32(46): 16203–12.
PubMed Abstract | Publisher Full Text
Open Peer Review

Current Referee Status: ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

1. Eugenia Trushina, Department of Neurology, Mayo Clinic, Rochester, MN, USA
 Competing Interests: No competing interests were disclosed.

2. Michael B. Robinson, Children’s Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, USA
 Competing Interests: No competing interests were disclosed.