Variation at the capsule locus,cps, of mistyped and non-typable Streptococcus pneumoniae isolates

S. J. Salter,1 J. Hinds,2 K. A. Gould,2 L. Lamberts,3 W. P. Hanage,4 M. Antonio,5 P. Turner,6,7 P. W. M. Hermans,8 H. J. Bootsma,8 K. L. O’Brien9 and S. D. Bentley1

1Wellcome Trust Sanger Institute, Hinxton, UK
2St George’s, University of London, UK
3Statens Serum Institut, Copenhagen, Denmark
4Harvard School of Public Health, Boston, MA, USA
5Medical Research Council Laboratories, Fajara, The Gambia
6Shoklo Malaria Research Unit, Mae Sot, Thailand
7Centre for Tropical Medicine, University of Oxford, UK
8Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
9Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

The capsule polysaccharide locus (cps) is the site of the capsule biosynthesis gene cluster in encapsulated Streptococcus pneumoniae. A set of pneumococcal samples and non-pneumococcal streptococci from Denmark, the Gambia, the Netherlands, Thailand, the UK and the USA were sequenced at the cps locus to elucidate serologically mistyped or non-typable isolates. We identified a novel serotype 33B/33C mosaic capsule cluster and previously unseen serotype 22F capsule genes, disrupted and deleted cps clusters, the presence of aliB and nspA genes that are unrelated to capsule production, and similar genes in the non-pneumococcal samples. These data provide greater understanding of diversity at a locus which is crucial to the antigenic diversity of the pathogen and current vaccine strategies.

INTRODUCTION

Streptococcus pneumoniae is a widespread nasopharyngeal commensal and pathogen of humans, causing a range of conditions, including otitis media, sinusitis, pneumonia, septicaemia and meningitis, and is usually associated with disease in infants, the elderly and immunocompromised individuals. In the year 2000, an estimated 14.5 million cases of severe pneumococcal disease occurred worldwide in children aged under 5 years, causing approximately 11% of all deaths in that age group (O’Brien et al., 2009). The polysaccharide capsule, which has a variable structure divided into more than 90 serotypes, is the major known virulence factor, being important for survival in the blood and strongly associated with antiphagocytic activity (Kim et al., 1999). The capsule induces protective antibodies, and is the basis for the 23-valent polysaccharide and 7-valent conjugate vaccines (pneumococcal conjugate vaccines; PCVs) that are licensed in over 70 countries, as well as the recently licensed 10- and 13-valent conjugate vaccines.

Some serotypes have been found to be more likely to occur in cases of invasive disease, relative to exposure through carriage (Brueggemann et al., 2004; Hanage et al., 2005). Before the use of the 7-valent conjugate vaccine in children, serotype 14 was the most common cause of invasive pneumococcal disease (IPD) globally (Johnson et al., 2010). There is some evidence that certain capsule structures better enable survival in carriage and infection (Melin et al., 2010; Weinberger et al., 2009), although disease outcome can be independent of serotype in capsular switch experiments (Mizrachi Nebenzahl et al., 2004). Since the introduction of the 7-valent vaccine among infants, cases of IPD attributable to vaccine serotypes have reduced, but other types persist in causing disease such as serotype 1 across Europe, Asia, Latin America and Africa (Kirkham et al., 2006), or multidrug-resistant 19A in Spain (Muñoz-Almagro et al., 2009), Israel (Dagan et al., 2009), across Asia (Shin et al., 2011) and in the USA (Beall et al., 2011; Moore et al., 2008).

Abbreviations: array CGH, array comparative genomic hybridization; NT, non-typable; RUP element, repeat unit of pneumococcus element.

Two supplementary tables are available with the online version of this paper.
In all but two serotypes, biosynthesis of the capsule is mediated by the Wzx/Wzy-dependent pathway encoded by genes at the cps (capsular polysaccharide synthesis) locus. The cps locus is located between the glucan 1,6-α-glucosidase gene dexB and the oligopeptide ABC transporter gene aliA, which are not involved in capsule synthesis. The Wzx/Wzy-dependent pathway involves several transferases that create a polysaccharide subunit which is polymerized and translocated across the membrane (Bentley et al., 2006). Each serotype possesses a unique combination of cps genes or alleles. The alternative synthase pathway is found in two serotypes, 3 and 37. A single synthase gene is responsible for the production of these capsule types (Llull et al., 1999; Paton & Morona, 2007).

Changes at the cps locus can affect capsule expression by several mechanisms. Slipped-strand mispairing causes a gene truncation, which is the root of the difference between serotypes 15B and 15C (van Selm et al., 2003). The phenomenon of serotype switching refers to cases of recombination leading to the replacement of either a part or the entirety of the cps locus with the homologous region from a strain of another serotype. Serotype switching has been observed many times in nature (Croucher et al., 2011) and demonstrated in the laboratory (Weinberger et al., 2009). These variations have implications for serotype-specific vaccines, and several studies have shown switched clones arising in vaccinated times in nature (Croucher et al., 2011; Brueggemann et al., 2007; Temime et al., 2008). As well as variation in capsule production during infection (Hammerschmidt et al., 2005), spontaneous loss of capsule has been observed in vitro, where a single culture may sequentially lose and regain capsule production (Waite et al., 2003), and may therefore be inconsistently reactive to typing sera.

Pneumococci designated non-typable (NT) may possess a capsule for which there are no typing antisera, they may produce the capsule erratically, or they may be non-encapsulated. Non-typable pneumococci are widely found in carriage studies and non-invasive disease episodes (Marsh et al., 2010) but rarely in IPD. NT S. pneumoniae are poorly characterized compared with encapsulated strains, despite their common occurrence and potential for acting as a reservoir of genetic variety in the nasopharynx. The objective of this study was to investigate the cps gene content of pneumococci which are not serologically typable or which were shown by microarray analysis to possess non-standard capsular gene clusters. Isolates referred from a molecular typing array included those with non-standard combinations of identifiable cps genes, suspected deletions or novel genes, and other streptococci which appeared to possess pneumococcal-like genes.

METHODS

Isolates. Fifty-eight isolates, described in Tables 1 and S1, were obtained from Denmark (two S. pneumoniae, three non-pneumococcus), the Gambia (five S. pneumoniae, three non-pneumococcus), the Netherlands (nine S. pneumoniae, one non-pneumococcus), Thailand (18 S. pneumoniae, one non-pneumococcus), the UK (three S. pneumoniae, three non-pneumococcus) and the USA (10 S. pneumoniae). All isolates had been examined by capsular reaction test at the time of isolation, and DNA extracts were then analysed on the BpG@S SP-CPS v1.3.0 molecular serotyping array (Brugger et al., 2010; Turner et al., 2011) using standard Agilent 8 x 15K format array comparative genomic hybridization (array CGH) enzymic labelling and hybridization protocols. Fourteen pneumococcal isolates had no identifiable cps genes and no positive serological result, 30 had an incomplete list of genes and no serotype, three possessed genes that differed from their serological result, and 11 non-pneumococcal streptococci had pneumococcal cps genes.

Species identification. Strains used in this study were identified at the time of isolation as S. pneumoniae or other streptococcal species by standard microbiological methods such as optochin sensitivity and bile solubility. The assigned species were confirmed by array CGH analysis of the S. pneumoniae genome backbone component of the molecular serotyping array, then further verified by sequencing of 16S rRNA genes and manual analysis of the V2, V4 and V5 hypervariable regions compared with a reference set of streptococcal sequences from the Ribosomal Database Project (RDP) (Cole et al., 2007). The non-pneumococcal isolates in the study were included to follow up the detection of cps genes during blind-test analysis on the serotyping array.

PCR of the cps region. All PCRs were performed using the TaKaRa LA PCR kit in 50 μl final volumes sealed with mineral oil, according to the manufacturer’s instructions. Amplification of the complete cps region was achieved using primers within the flanking genes dexB and aliA (Table 2). Where the products were of unknown length, a touchdown PCR program was used, varying the annealing temperature from 68 to 60 °C (decreasing over eight cycles), and then the extension time from 22 to 31 min (increasing over 27 cycles). For cases where the size of the product was known to be 10 kb or under, a simple PCR program using a 60 °C annealing temperature and 10 min, 72 °C extension was used. Products were checked by gel electrophoresis before sequencing.

Screening primers for genes of interest were generated from the established sequence, and used to assess the content of the remaining sample set where full cps PCR was not successful (see Table 2 for primers, and Table S2 for supplementary primers and screening protocols).

Sequencing. For large PCR products, short insert libraries were created (McMurray et al., 1998) and sequenced by capillary. Small PCR products (under 1.5 kb) were end-sequenced by capillary (Sanger et al., 1977).

Analysis. The sequence data were aligned and manipulated in Gap4 (Bonfield et al., 1995), genes were predicted using Glimmer3 (Delcher et al., 1999) and visualized and curated in Artemis (Rutherford et al., 2000), and conserved domains were identified using MotiScan (Hulo et al., 2008). Insertion sequences were identified using the IS Finder database (Sigier et al., 2006). Alignments and trees were constructed using Muscle (Edgar, 2004) and Seaview (Gouy et al., 2010), respectively. Trees were created using the Bio-NJ Jukes–Cantor distance method.

RESULTS

Sequencing results are shown in Table S1 and divided into five groups: functional cps clusters producing a polysaccharide capsule but with genes different to the reference strains (Bentley et al., 2006) (Fig. 1a), complete or partial
Table 1. Summary of isolates

Sample name [GenBank accession no.]	Species	Country of origin	Serotype*	Non-typable group
557B [HE651321]	*S. pneumoniae*	Denmark	33C	Serotype and microarray results differ
L2008-01622 [HE651300]	*S. pneumoniae*	USA	22F	
1772-40b [HE651318]	*S. pneumoniae*	Denmark	22F	
2489-06 [HE651319]	*S. pneumoniae*	USA	Non-encapsulated	Group NT1: *cps* deletion
GM90852 [HE651312]	*S. pneumoniae*	The Gambia	Non-encapsulated	
GM108225 [HE651315]	*S. pneumoniae*	Non-encapsulated		
L2008-01621 [HE651299]	*S. pneumoniae*	USA	Non-encapsulated	
L2008-01629 [HE651301]	*S. pneumoniae*	USA	Non-encapsulated	
L2008-01630 [HE651302]	*S. pneumoniae*	USA	Non-encapsulated	
L2008-01636 [HE651303]	*S. pneumoniae*	USA	Non-encapsulated	
GM96650 [HE651314]	*S. pneumoniae*	The Gambia	Non-encapsulated	Group NT2: putative surface protein NspA
07B00725 [HE651278]	*S. pneumoniae*	Thailand	Non-encapsulated	
07B00751 [HE651279]	*S. pneumoniae*	Thailand	Non-encapsulated	
07B00782 [HE651280]	*S. pneumoniae*	Thailand	Non-encapsulated	
07B00890 [HE651283]	*S. pneumoniae*	Thailand	Non-encapsulated	
07B00933 [HE651286]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01575 [HE651297]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B00936 [HE651287]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01425 [HE651289]	*S. pneumoniae*	Thailand	Non-encapsulated	
RUNMC819 [HE651281]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
07B00830 [HE651282]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B00930 [HE651285]	*S. pneumoniae*	Thailand	Non-encapsulated	
RUNMC2437 [HE651308]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
0900-07 [HE651316]	*S. pneumoniae*	USA	Non-encapsulated	Group NT3: *aliB* genes
3039 [HE651275]	*S. pneumoniae*	UK	Non-encapsulated	
07-047 [HE651276]	*S. pneumoniae*	UK	Non-encapsulated	
RUNMC1664 [HE651304]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
RUNMC1988 [HE651307]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
RUNMC3306 [HE651310]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
2566-06 [HE651320]	*S. pneumoniae*	USA	Non-encapsulated	
RUNMC1437 [HE651290]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
RUNMC2945 [HE651309]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
625 [HE651277]	*S. pneumoniae*	UK	Non-encapsulated	
RUNMC1897 [HE651306]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
L2008-01618 [HE651298]	*S. pneumoniae*	USA	Non-encapsulated	
1878-08 [HE651317]	*S. pneumoniae*	USA	Non-encapsulated	
08B00915 [HE651284]	*S. pneumoniae*	Thailand	Non-encapsulated	
07B00945 [HE651288]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01481 [HE651292]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01482 [HE651293]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01463 [HE651291]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01483 [HE651294]	*S. pneumoniae*	Thailand	Non-encapsulated	
08B01531 [HE651296]	*S. pneumoniae*	Thailand	Non-encapsulated	
RUNMC1739 [HE651305]	*S. pneumoniae*	The Netherlands	Non-encapsulated	
08B01484 [HE651295]	*S. pneumoniae*	Thailand	Non-encapsulated	
GM15912 [HE651311]	*S. pneumoniae*	The Gambia	Non-encapsulated	
GM99067 [HE651313]	*S. pneumoniae*	The Gambia	Non-encapsulated	
IOPR 1791 [HE651264]	*S. pseudopneumoniae*	UK	Non-encapsulated	Non-pneumococcal streptococci
IOPR 5427 [HE651265]	*S. pseudopneumoniae*	UK	Non-encapsulated	
V510 [HE651271]	*S. mitis*	UK	Non-encapsulated	
07B00902 [HE651266]	*S. pseudopneumoniae*	Thailand	Non-encapsulated	
RUNMC2031 [HE651272]	*S. mitis*	The Netherlands	Non-encapsulated	
GM56393 [HE651267]	*S. pseudopneumoniae*	The Gambia	Non-encapsulated	
deletions in the \textit{cps} region rendering the cluster non-functional (group NT1) (Fig. 1b, c), \textit{cps} containing a novel putative surface protein gene (group NT2) (Fig. 1e), \textit{cps} containing a conserved \textit{aliB} gene cluster (group NT3) (Fig. 1f), and non-pneumococcal streptococci with a similar \textit{aliB} gene cluster. These five groups are summarized below.

Three samples were referred from array analysis as they produced a capsule which conflicted serologically with the array prediction. Strain 557B (GenBank accession no. HE651321) is serotype 33C by Quellung reaction, with a mixture of 33B- and 33C-like genes as designated by array. Sequencing of the entire region confirmed that this isolate has a mosaic \textit{cps} cluster of 33B and 33C genes with a divergent \textit{wzx} and \textit{wzy}. Samples 1772-40b and L2008-01622 (accession nos HE651300 and HE651318) are serotype 22F but with two genes absent according to array result. Targeted sequencing of the expected location of these genes showed two novel genes, predicted to serve the same function as those in the reference sequence.

Three non-encapsulated samples (accession nos HE651312, HE651315, HE651319) had no \textit{cps} genes when tested with the array and upon sequencing were found to have had the entire cluster deleted. A further five samples (accession nos HE651299, HE651301, HE651302, HE651303, HE651314) were shown to have undergone partial deletions of the capsule biosynthesis cluster, rendering them non-functional.

In addition to the three isolates with complete \textit{cps} deletions, 12 samples that had no genes represented on the array were sequenced and found to possess a putative novel surface protein gene (\textit{nspA}) at the locus along with a variety of intact and disrupted IS elements (accession nos HE651278–83, HE651285–7, HE651289, HE651297, HE651308). The \textit{nspA} gene itself showed high levels of conservation in some areas but with a hypervariable repeat region: no two isolates were identical.

The galactopyranose mutase gene \textit{gli} was seen in 24 pneumococcal samples (accession nos HE651275–7, HE651284, HE651288, HE651290–6, HE651298, HE651304–7, HE651309–11, HE651313, HE651316–7, HE651320) alongside a conserved gene cluster with \textit{aliB}-like genes, similar to that described elsewhere in non-encapsulated lineages (Hathaway et al., 2004).

In 14 cases a putative toxin–antitoxin system was also present (strains marked as ‘cluster 1’ and ‘cluster 2’ in Table S1).

Eleven non-pneumococcal isolates (accession nos HE651264–74) were referred from the array as positive for \textit{gli}. All were shown also to have \textit{aliB} genes very similar to non-encapsulated

Table 1. cont.

Sample name [GenBank accession no.]	Species	Country of origin	Serotype*	Non-typable group
GM66782 [HE651268]	\textit{S. pseudopneumoniae}	The Gambia	Non-encapsulated	
GM73924 [HE651269]	Unidentified (\textit{S. pneumoniae} or \textit{S. pseudopneumoniae})	The Gambia	Non-encapsulated	
1071-01 [HE651273]	\textit{S. mitis}	Denmark	Non-encapsulated	
1298-02 [HE651274]	\textit{S. mitis}	Denmark	Non-encapsulated	
958-02 [HE651270]	\textit{S. pseudopneumoniae}	Denmark	Non-encapsulated	

*Serotype according to Quellung reaction.

Table 2. Screening primer sequences for groups NT1, NT2 and NT3

See Table S2 for details of use and product sizes.

Primer and application	Sequence (5’–3’)
\(\text{Cps}_\text{F}\)	GACCAAGAATACCGCGAAAA
\(\text{Cps}_\text{R}\)	AACATCCTTCCATTCACCC
\(\text{nspA}_\text{F}\)	GATGAGTTTGGCAAGCGTGG
\(\text{nspA}_\text{R}\)	AAGCAAGTGCAACATTGTCC
\(\text{aliB1}_\text{F}\)	AAAGTGGCTCTTAGGAGCAGG
\(\text{aliB1}_\text{R}\)	TTGCCARTTRTTGAAGGC
\(\text{aliB2}_\text{F}\)	GATGGTTTGYTWGAAAATGAC
\(\text{aliB2}_\text{R}\)	AGAGARTTRTCAATCATCAAGGC
\(\text{aliB}_\text{R}\)	TTGCCARTTRTTGAAGGC
pneumococci. The aliB gene sequences of these and the pneumococci do not cluster according to the species or geographical location of isolation.

DISCUSSION

Conflicts between serotyping and microarray

Isolate 557B (Fig. 1a) is serologically type 33C, reacting with antiserum 33e, but has a mosaic cps cluster made up of 33B-like and 33C-like genes. wcjG, wciN, wcRO and the first half of wcRC are similar to the 33C reference sequence (99 % nucleotide identity), while the second half of wcRC, and wciD, wciE and wciF, are similar to 33B (99 % nucleotide identity). The polymerase and flippase wzy and wzx are not similar to any known serotypes, which is consistent with their function transporting and polymerizing a different subunit structure. Following wzx are 33C-like glf and wcYO (98 % nucleotide identity).

Predicting the structure using the association of function with protein families (Aanensen et al., 2007) suggests that most of the polysaccharide repeat subunit of 557B is 33B-like, with the exception of the 33C-like glycosyltransferase WciN, which may or may not be functional in serotype 33C. As the structure of 33C has not been elucidated, the acetylation pattern brought about by WcyO cannot be inferred. The Wzy-mediated linkage cannot be predicted from the DNA sequence.

The sequence of 557B has greater than 99 % nucleotide identity with partial sequences of an unpublished pneumococcal strain described as a new serogroup 33 member, 33E (gi: 46277554, 158454747, 158454749), including the divergent wzx and wzy genes. Discriminatory serum development is ongoing: currently this appears similar to antiserum 33e, having a positive reaction to 33C and a weak reaction to 33F.

Isolate L2008-01622 is serologically type 22F but does not have the glycosyl and acetyltransferases wcWA and wcWC according to array analysis. In their places are divergent genes that contain conserved glycosyltransferase domains and acetyltransferase hexapeptide repeats, respectively. More work is needed to confirm the function of these genes.

Further investigation into the reference strain for 22F (Bentley et al., 2006) led us to discover that the published sequence for this type is not representative of the genes present at its cps locus. The genes in place of wcWA and wcWC, reported here as strain 1772-40b, are identical to those of L2008-01622. These genes have not been reported elsewhere and so may not be present in all 22F isolates; however, they are present in the reference strain.

The presence of serotypable isolates that do not possess the expected cps genes demonstrates the diversity that may exist within a serotype and the importance of screening all capsule biosynthesis genes when attempting to infer serotype by DNA-based methods.

Deletion of genes at the cps locus: group NT1

Isolates GM90852, GM108225 and 2489-06 have a complete loss of the cps gene cluster, as illustrated in Fig. 1(b). At the locus the first has a putative IS1202 and truncated glf, while the last two show only IS1202. The insertion sequence itself is truncated at the 3’ end by a RUP (repeat unit of pneumococcus) element (Oggoni & Claverys, 1999) in GM90852 and GM108225. These latter two isolates represent independent deletion events, as the 300–700 bp of flanking DNA is different in each. Non-typable pneumococci with a complete loss of cps genes can be identified by PCR screening, as described in Table S2.

Disruption or partial deletion of the cps locus is a common inactivator of capsule biosynthesis, for example making up 13 % of the non-typable isolates in an Australian carriage
Putative novel surface protein NspA: group NT2

Twelve isolates (Tables 1 and S1) from Thailand and the Netherlands have no cps genes at the locus, but instead contain a gene predicted to produce a novel surface protein, nspA (non-typable pneumococcal surface protein). nspA is of variable length, ranging from approximately 1.1 to 1.7 kb among these isolates.

Upstream of nspA are −10 and −35 promoter sequences. Analysis of the predicted amino acid sequence suggests that there is a cleavable signal peptide, an LPXTG surface anchor motif, and a variable-length glutamic acid-rich helical repeat region from 3 to 27 repeats. Excluding the repeat region, the encoded protein differs by 4% of the amino acids among all sequenced isolates. Half of these differences are present in only two isolates: RUNMC819 and 07B00830. There is an identical frameshift in four samples (RUNM C819, 07B00830, 08B00930 and 08B01575), confirmed by resequencing, caused by a single base deletion that affects codon 134/135.

The predicted protein contains a conserved KRNYPT motif that may indicate a human polymeric Ig receptor (hplgR) binding function similar to that of the pneumococcal CbpA (Elm et al., 2004). plgR is an integral membrane glycoprotein of mucosal epithelial cells, crucial in the release of secretory IgA into the mucosal secretions. The extracellular region has five Ig-like domains, D1–5, of which D3 and D4 have been shown to interact with the YRNYPT motif of CbpA. CbpA–hplgR binding in vitro leads to adhesion to the epithelium and internalization (Elm et al., 2004), and NspA may have a similar function.

nspA is flanked by combinations of intact and disrupted IS elements, illustrated in Fig. 1(c). All sequenced samples contain a partial IS1202 truncated by a RUP element identical to that seen in the cps deletions (group NT1), and a putative IS66-family sequence with 93% nucleotide identity to IS66 element ORF1, 2 and 3 in TIGR4. In sample RUNMC2437, the IS66-like sequence contains a RUP element that disrupts ORF3, at the same site as in TIGR4 and in published encapsulated sequences such as serotype 43.

Four samples also contain an intact IS1167, similar at 93% nucleotide identity to TIGR4 IS1167, while in eight other samples only the 3′ end of IS1167 is present. As well as IS1202 and IS66, sample 07B00890 contains a novel IS30-family insertion sequence, ISSp n9, similar to Streptococcus mitis B6 16S mSmI3 (94% nucleotide identity).

There are a variety of insertion sequences flanking nspA, some of which are found in typable cps loci and may therefore provide potential recombination points, facilitating the spread of the gene between pneumococcal lineages. It is consistent with the observation that the MLST data for these strains (Table S1) show clearly that nspA is not restricted to a single lineage of closely related pneumococci, but is instead found in isolates that appear to be distantly related. This, taken together with the source of these strains from locations as distant as Thailand and the Netherlands, also indicates that strains bearing this gene are quite successful.

Authors’ note: after the acceptance of this manuscript, the nucleotide sequences of other examples of this gene were released, named pspK. To our knowledge, pspK has not yet been described, but it leads us to conclude that the recent grouping ‘NT group II clade I’ (Yu et al., 2011) is similar to NT2.

aliB-like genes in S. pneumoniae: group NT3

Twenty-four samples have a well-conserved aliB gene cluster (Fig. 1f). The non-encapsulated sequence types 448 and 449 are among these, lineages which circulate internationally, and can make up 11% of non-typable isolates in carriage (Marsh et al., 2010) and have been associated with conjunctivitis in the USA for more than 20 years (Hanage et al., 2006). For 14 samples (‘cluster 1’ and ‘cluster 2’; Table 1) the locus is almost identical to that described in strain 110.58...
(Hathaway et al., 2004), comprising two non-identical aliB genes, a glf pseudogene and a putative toxin–antitoxin system. A further two pneumococcal isolates have only one aliB. AliB has been shown to aid colonization in two knockout studies (Hathaway et al., 2010; Kerr et al., 2004), affecting uptake of glutamic acid and early growth rates in a mouse model.

The sequence of cluster 1 is identical to published strain 110.58 [gi: 50540968]. Cluster 2 is similar, but the genes are preceded by a novel IS110-family insertion sequence, ISSpn10, and the second aliB gene is disrupted by a premature stop codon in all cases.

The putative toxin–antitoxin system of cluster 1 and cluster 2, ntaA and ntaB (non-typable toxin-antitoxin gene A, antitoxin, and B, toxin), is similar to two Lactobacillus salivarius UCC118 genes [gi: 90821554, gi: 90821553] and their flanking sequences with 87% nucleotide identity. ntaB contains a conserved Fic/DOC domain. The presence of a maintenance system such as this may contribute to the persistence of this gene cluster in temporally and geographically distant isolates, and provide some explanation for the divergence of the identical aliB sequences in this clade compared with pneumococcal and non-pneumococcal aliB clusters that lack ntaAB (Fig. 2).

Other streptococci

Eleven non-pneumococcal carriage isolates with glf genes identified by microarray also contain aliB genes. Six Streptococcus pseudopneumoniae, three S. mitis and one unidentified isolate have a single aliB, while one S. mitis contains two aliB genes (Table S1). Where a single gene is present, it is most similar to the second consecutive aliB of the group NT3 clusters. All of these aliBs are more similar to non-typable S. pneumoniae (97 and 94% nucleotide identity for the first and second aliB, respectively) than published S. mitis [gi: 92109246] 81 and 79%, respectively) or Streptococcus oralis sequences [gi: 92109243] 81 and 80%, respectively).

As shown in Fig. 2, the sequences of aliB do not cluster exclusively by species or geographical origin, in keeping with the known presence of inter-species recombination between nasopharyngeal streptococci (Donati et al., 2010). Isolates such as 0900-07 also fall into different groups when classified by the sequence of the first or second aliB (data not shown), suggesting that there may be a mosaic acquisition of these genes. Non-pneumococcal streptococci have capsule-like genes at the cps locus, such as the RPS (receptor polysaccharide) cluster in S. oralis (Yang et al., 2009) and S. mitis (Yoshida et al., 2006), and they have been shown to be functionally transferrable between species.
The occurrence of \textit{aliB} genes among several commensal species is further evidence that streptococci have a large reservoir of genetic material at their disposal.

Conclusion

The results described here reveal previously unknown variation at the \textit{cps} locus. As well as divergent genes directly involved in capsule synthesis, we have found others such as \textit{aliB} and \textit{nspA} that may be advantageous in carriage, and instances of capsule inactivation by deletion.

The mosaic acquisition of capsule biosynthesis genes from serotype 33B and 33C clusters in 557B demonstrates the potential for novel pneumococcal serotypes to be generated by recombination. Conversely, two 22F strains possess novel glycosyl and acetyltransferases that differ from the reference sequence, indicating that caution is required when DNA-based serotyping is reliant on few sequenced isolates.

Non-pneumococcal streptococci such as \textit{S. mitis} can have capsule-like genes at an equivalent locus to \textit{S. pneumoniae}. Pathogen and non-pathogen species are known to recombine with one another, and the ultimate origins and evolutionary history of the capsule loci may include recombination between the pneumococcus and other streptococcal species. Here we have shown that \textit{S. pneumoniae}-like \textit{aliB} genes are present in other species, do not cluster according to species or geographical provenance, and so may be circulating globally in the nasopharyngeal microbiota genetic pool.

The highly recombinogenic capsule locus is a straightforward PCR screening target because it is flanked by conserved \textit{dexB} and \textit{aliA} genes. Several novel genes and gene variants are described here with screening primers and expected results to facilitate others in exploring diversity at the \textit{cps} locus in non-typable pneumococci.

ACKNOWLEDGEMENTS

This work was supported by Wellcome Trust grant 076964. P.T. is supported by Wellcome Trust grant number 083735; W.P.H. has been supported by the Royal Society (University Research Fellowship) and National Institute of General Medical Sciences award number U54GM088538; H.J.B. is supported by European Community’s Seventh Framework Programme FP7/2007–2013 under grant agreement number HEALTH-F3-2009-222983 (Pneumopath project). We would like to thank the Sanger core sequencing team and Christa van der Gaast-de Jongh for technical assistance, and Nicholas Croucher for his comments on this manuscript.

REFERENCES

Aanensen, D. M., Mavroidi, A., Bentley, S. D., Reeves, P. R. & Spratt, B. G. (2007). Predicted functions and linkage specificities of the products of the \textit{Streptococcus pneumoniae} capsular biosynthetic loci. \textit{J Bacteriol} 189, 7856–7876.

Ansaldi, F., Canepa, P., de Florentiis, D., Bandettini, R., Durando, P. & Icardi, G. (2011). Increasing incidence of \textit{Streptococcus pneumoniae} serotype 19A and emergence of two vaccine escape recombinant ST695 strains in Liguria, Italy, 7 years after implementation of the 7-valent conjugated vaccine. \textit{Clin Vaccine Immunol} 18, 343–345.

Beall, B. W., Gertz, R. E., Hulkower, R. L., Whitney, C. G., Moore, M. R. & Brueggemann, A. B. (2011). Shifting genetic structure of invasive serotype 19A pneumococci in the United States. \textit{J Infect Dis} 203, 1360–1368.

Bentley, S. D., Aanensen, D. M., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L. & other authors (2006). Genetic analysis of the capsular biosynthetic locus from 90 pneumococcal serotypes. \textit{PLoS Genet} 2, e31.

Bonfield, J. K., Smith, K. F. & Staden, R. A. (1995). A new DNA sequence assembly program. \textit{Nucleic Acids Res} 23, 4992–4999.

Brueggemann, A. B., Peto, T. E. A., Crook, D. W., Butler, J. C., Kristinsson, K. G. & Spratt, B. G. (2004). Temporal and geographic stability of the serogroup-specific invasive disease potential of \textit{Streptococcus pneumoniae} in children. \textit{J Infect Dis} 190, 1203–1211.

Brueggemann, A. B., Pai, R., Crook, D. W. & Beall, B. (2007). Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. \textit{PLoS Pathog} 3, e168.

Brugger, S. D. F., Frey, P., Aeby, S., Hinds, J. & Mühlmann, K. (2010). Multiple colonization with \textit{S. pneumoniae} before and after introduction of the seven-valent conjugated pneumococcal polysaccharide vaccine. \textit{PLoS ONE} 5, e1638.

Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M. (2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. \textit{Nucleic Acids Res} 35 (Database issue), D169–D172.

Croucher, N. J., Harris, S. R., Fraser, C., Quail, M. A., Burton, J., van der Linden, M., McGee, L., von Gottberg, A., Song, J. H. & other authors (2011). Rapid pneumococcal evolution in response to clinical interventions. \textit{Science} 331, 430–434.

Dagan, R., Givon-Lavi, N., Leibovitz, E., Greenberg, D. & Porat, N. (2009). Introduction and proliferation of multidrug-resistant \textit{Streptococcus pneumoniae} serotype 19A clones that cause acute otitis media in an unvaccinated population. \textit{J Infect Dis} 199, 776–785.

Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. (1999). Improved microbial gene identification with GLIMMER. \textit{Nucleic Acids Res} 27, 4636–4641.

Donati, C., Hiller, N. L., Tettelin, H., Muzzi, A., Croucher, N. J., Angiuoli, S. V., Ogioni, M., Dunning Hotopp, J. C., Hu, F. Z. & other authors (2010). Structure and dynamics of the pan-genome of \textit{Streptococcus pneumoniae} and closely related species. \textit{Genome Biol} 11, R107.

Edgar, R. C. (2004). \textit{MUSCLE}: multiple sequence alignment with high accuracy and high throughput. \textit{Nucleic Acids Res} 32, 1792–1797.

Elm, C., Braathen, R., Bergmann, S., Frank, R., Vaerman, J.-P., Kaelter, C. S., Chhatwal, G. S., Johansen, F.-E. & Hammerschmidt, S. (2004). Ecotodomains 3 and 4 of human polymeric immunoglobulin receptor (hIgR) mediate invasion of \textit{Streptococcus pneumoniae} into the epithelium. \textit{J Biol Chem} 279, 6296–6304.

Gouy, M., Guindon, S. & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. \textit{Mol Biol Evol} 27, 221–224.

Hammerschmidt, S., Wolff, S., Hocke, A., Rosseau, S., Müller, E. & Rohde, M. (2005). Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. \textit{Infect Immun} 73, 4653–4667.

Hanage, W. P., Kajjalainen, T. H., Syrjänen, R. K., Auranen, K., Leinonen, M., Mäkelä, P. H. & Spratt, B. G. (2005). Invasiveness of serotypes and clones of \textit{Streptococcus pneumoniae} among children in Finland. \textit{Infect Immun} 73, 431–435.
Capsule locus variation in the pneumococcus

Hanage, W. P., Kaijalainen, T., Saukkoriipi, A., Rickord, J. L. & Spratt, B. G. (2006). A successful, diverse disease-associated lineage of nontypeable pneumococci that has lost the capsule biosynthesis locus. J Clin Microbiol 44, 743–749.

Hathaway, L. J, Stutzmann Meier, P., Bättig, P., Aebi, S. & Mühlemann, K. (2004). A homologue of aliB is found in the capsule region of nonencapsulated Streptococcus pneumoniae. J Bacteriol 186, 3721–3729.

Hathaway, L. J, Bättig, P., Aebi, S., Reber, S., Brewin, H., Kadioglou, A. & Mühlemann, K. (2010). aliB-like ORF 1 aids growth by playing a role in the uptake of glutamic acid. In 7th International Symposium on Pneumococcal and Pneumococcal Diseases. Tel Aviv, Israel.

Hulo, N., Bairach, A., Bulliard, V., Cerutti, L., Cuche, B. A., de Castro, E., Lachaize, C., Langendijk-Genevaux, P. S. & Sigrist, C. J. A. (2008). The 20 years of PROSITE. Nucleic Acids Res 36 (Database issue), D245–D249.

Johnson, H. L., Deloria-Knell, M., Levine, O. S., Stoszek, S. K., Freimanis Hance, L., Reithinger, R., Muenz, L. R. & O’Brien, K. L. (2010). Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLoS Med 7, e1000348.

Kerr, A. R., Adrian, P. V., Estevão, S., de Groot, R., Allonge, G., Claverys, J.-P., Mitchell, T. J. & Hermans, P. W. M. (2004). The Ami-All/AliB permease of Streptococcus pneumoniae is involved in nasopharyngeal colonization but not in invasive disease. Infect Immun 72, 3902–3906.

Kim, J. O., Romero-Steiner, S., Sersen, U. B., Blom, J., Carvalho, M., Barnard, S., Carlone, G. & Weiser, J. N. (1999). Relationship between cell surface carbohydrates and intraspecies variation on opsonophagocytosis of Streptococcus pneumoniae. Infect Immun 67, 2327–2333.

Kirkham, L.-A. S., Jefferies, J. M. C., Kerr, A. R., Jing, Y., Clarke, S. C., Smith, A., & Mitchell, T. J. (2006). Identification of invasive serotype 1 pneumococcal isolates that express nonhemolytic pneumolysin. J Clin Microbiol 44, 151–159.

Lull, D., Muñoz, R., López, R. & Garcia, E. (1999). A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J Exp Med 190, 241–252.

Marsh, R., Smith-Vaughan, H., Hare, K. M., Binks, M., Kong, F., Warning, J., Gilbert, G. L., Morris, P. & Leach, A. J. (2010). The nonserotypable pneumococcus: phenotypic dynamics in the era of antcapsular vaccines. J Clin Microbiol 48, 831–835.

McMurray, A. A., Sulston, J. E. & Quail, M. A. (1998). Short-insert libraries as a method of problem solving in genome sequencing. Genome Res 8, 562–566.

Melin, M., Trzcinski, K., Meri, S., Käyhty, H. & Väkeväinen, M. (2010). The capsular serotype of Streptococcus pneumoniae is more important than the genetic background for resistance to complement. Infect Immun 78, 5262–5270.

Mizrahi Nebenzahl, Y., Porat, N., Lifshitz, S., Novick, S., Levi, A., Ling, E., Liron, O., Mordechai, S., Sahu, R. K. & Dagan, R. (2004). Virulence of Streptococcus pneumoniae may be determined independently of capsular polysaccharide. FEMS Microbiol Lett 233, 147–152.

Moore, M. R., Gertz, R. E., Jr Woodbury, R. L., Barkocy-Gallagher, G. A., Schaffner, W., Lexau, C., Gershman, K., Reingold, A., Farley, M. & other authors (2008). Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis 197, 1016–1027.

Muñoz, R., Mollerach, M., López, R. & Garcia, E. (1997). Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol Microbiol 25, 79–92.

Muñoz-Almagro, C., Esteva, C., de Sevilla, M. F., Selva, L., Gene, A. & Pallares, R. (2009). Emergence of invasive pneumococcal disease caused by multidrug-resistant serotype 19A among children in Barcelona. J Infect 59, 75–82.

O’Brien, K. L., Wolfson, L. J., Watt, J. P., Henkle, E., Deloria-Knell, M., McCall, N., Lee, E., Mulholland, K., Levine, O. S., Cherian, T. & Hib and Pneumococcal Global Burden of Disease Study Team (2009). Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374, 893–902.

Oggoni, M. R. & Claverys, J.-P. (1999). Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae. Microbiology 145, 2647–2653.

Paton, J. C. & Morona, J. K. (2007). Pneumococcal capsular polysaccharides: biosynthesis and regulation. In Molecular Biology of Streptococci, pp. 119–140. Edited by R. Hakenbeck & G. S. Chhatwal. Wymondham, UK: Horizon Bioscience.

Rutherford, K., Parkhill, J., Crook, J., Horsnell, T., Rice, P., Rajandream, M. A. & Barrell, B. (2000). Artemis: sequence visualization and annotation. Bioinformatics 16, 944–945.

Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.

Shin, J., Baek, J. Y., Kim, S. H., Song, J.-H. & Ko, K. S. (2011). Predominance of ST320 among Streptococcus pneumoniae serotype 19A isolates from 10 Asian countries. J Antimicrob Chemother 66, 1001–1004.

Siguer, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. (2006). iSfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34 (Database issue), D32–D36.

Temime, L., Boelle, P.-Y., Opatsowski, L. & Guillenot, D. (2008). Impact of capsular switch on invasive pneumococcal disease incidence in a vaccinated population. PLoS ONE 3, e3244.

Turner, P. H., Hinds, J., Turner, C., Jankhot, A., Gould, K., Bentley, S. D., Nosten, F. & Goldblatt, D. (2011). Improved detection of nasopharyngeal co-colonization by multiple pneumococcal serotypes by use of latex agglutination or molecular serotyping by microarray. J Clin Microbiol 49, 1784–1789.

van Selm, S., van Cann, L. M., Kolkman, M. A., van der Zijlst, B. A. M. & van Putten, J. P. M. (2003). Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect Immun 71, 6192–6198.

Waite, R. D., Penfold, D. W., Struthers, J. K. & Dowson, C. G. (2003). Spontaneous sequence duplications within capsule genes cap t t s control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149, 497–504.

Weinberger, D. M., Trzcinski, K., Lu, Y.-J., Bogaert, D., Brandes, A., Galagan, J., Anderson, P. W., Malley, R. & Lipsitch, M. (2009). Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog 5, e1000476.

Yang, J., Ritchey, M., Yoshida, Y., Bush, C. A. & Cisar, J. O. (2009). Comparative structural and molecular characterization of ribitol-5-phosphate-containing Streptococcus oralis coaggregation receptor polysaccharides. J Bacteriol 191, 1891–1900.

Yoshida, Y., Ganguly, S., Bush, C. A. & Cisar, J. O. (2006). Molecular basis of L-rhamnose branch formation in streptococcal coaggregation receptor polysaccharides. J Bacteriol 188, 4125–4130.

Yu, J., Lin, J., Kim, K.-H., Benjamin, W. H. Jr & Nahm, M. H. (2011). Development of an automated and multiplexed serotyping assay for Streptococcus pneumoniae. Clin Vaccine Immunol 18, 1900–1907.

Edited by: M. Killian