DIAMETER 2 PROPERTIES AND CONVEXITY

TROND A. ABRAHAMSEN, PETER HÁJEK, OLAV NYGAARD, JARNO TALPONEN,
AND STANIMIR TROYANSKI

Abstract. We present an equivalent midpoint locally uniformly rotund (MLUR) renorming X of $C[0,1]$ on which every weakly compact projection P satisfies the equation $\|I - P\| = 1 + \|P\|$ (I is the identity operator on X). As a consequence we obtain an MLUR space X with the properties D2P, that every non-empty relatively weakly open subset of its unit ball B_X has diameter 2, and the LD2P+, that for every slice of B_X and every norm 1 element x inside the slice there is another element y inside the slice of distance as close to 2 from x as desired. An example of an MLUR space with the D2P, the LD2P+, and with convex combinations of slices of arbitrary small diameter is also given.

1. Introduction

Let X be a Banach space. We say that X (or its norm $\| \cdot \|$) is midpoint locally uniformly rotund [MLUR] (resp. weak midpoint locally uniformly rotund [weak MLUR]) if every x in the unit sphere S_X of X is a strongly extreme point (resp. strongly extreme point in the weak topology), i.e. for every sequence (x_n) in X, we have that $x_n \to 0$ in norm (resp. $x_n \to 0$ weakly) whenever $\|x + x_n\| \to 1$.

Let $x^* \in S_{X^*}$ and $\varepsilon > 0$. By a slice of the unit ball B_X of X we mean a set of the form

$S(x^*, \varepsilon) := \{ x \in B_X : x^*(x) > 1 - \varepsilon \}$.

Over the latest 15 years quite much has been discovered concerning Banach spaces with various kinds of diameter 2 properties (see e.g. [20], [2], [11], [12], [5], [6] to mention a few).

Definition 1.1. A Banach space X has the

a) local diameter 2 property (LD2P) if every slice of B_X has diameter 2.

b) diameter 2 property (D2P) if every non-empty relatively weakly open subset of B_X has diameter 2.

c) strong diameter 2 property (SD2P) if every finite convex combination of slices of B_X has diameter 2.

By [9, Lemma II.1 p. 26] c) implies b) and of course b) implies a). Non of the reverse implications hold (see [5] Theorem 2.4] and [11] Theorem 1] or
However, note Proposition 1.3 below which is an immediate consequence of Choquet’s lemma (see e.g. [8, Lemma 3.69 p. 111]).

Lemma 1.2 (Choquet). Let C be a compact convex set in a locally convex space X. Then for every $x \in \text{ext}(C)$, the extreme points in C, the slices of C containing x form a neighborhood base of x in the relative topology of C.

Proposition 1.3. If X is weak MLUR then the LD2P implies the D2P.

Proof. Simply recall that the points in B_X which are strongly extreme in the weak topology are exactly the extreme points which continue to be extreme in B_X^{**} (see e.g. [10]) and then use Lemma 1.2 on B_X^{**} given the weak $*$ topology. □

It is not evident that weak MLUR spaces with the LD2P exist, but indeed they do. The quotient $C(T)/A$, where $C(T)$ is the space of continuous functions on the complex unit circle T and where A is the disc algebra, is such an example. Another example can be constructed as follows: Let Φ be a function on c_0, the space of real valued sequences which converges to 0, defined by $\Phi(x_n) = \sum_{n=1}^{\infty} x_n^2$. Define then a norm on c_0 by $|x| = \inf\{\lambda > 0 : \Phi(x/\lambda) \leq 1\}$ for every $x \in c_0$. Then the space $(c_0, |\cdot|)$ can be seen to be weak MLUR and to have the LD2P.

The two examples mentioned motivates the following question which we will address in this paper: How rotund can a Banach space be and still have diameter 2 properties? In [13, Remarks 4) p. 286] it is pointed out that $C(T)/A$ is M-embedded and that its dual norm is smooth (see also [19] and [14, p. 167]). Recall that X is M-embedded provided we can write $X^{***} = X^* \oplus_1 X^\perp$ where $X^\perp \subset X^{***}$ is the annihilator of X (a good source for the available theory of M-embedded spaces is the book [14]). It is well known that M-embedded spaces have the SD2P [2], and so $C(T)/A$ actually furnishes an example of a weak MLUR space with the SD2P. On can prove also that the space $(c_0, |\cdot|)$ mentioned above have the same properties. For still more examples see [23]. The unit ball of an M-embedded space cannot, however, contain strongly extreme points [14], so no MLUR M-embedded space exists. Still, one can ask if there exists an MLUR space with the LD2P (=D2P in this case). Until now, no such example has been known. But, in Section 5 of this paper we construct an equivalent MLUR renorming X of $C[0,1]$ for which every slice S of B_X and every $x \in S \cap S_X$ there exists $y \in S$ of distance as close to 2 from x as we want, i.e. X has the local diameter 2 property + (LD2P+). In particular this renorming has the LD2P and thus the D2P as it is MLUR. Using this renorming we also construct in Section 2 an example of an MLUR space which has the D2P, the LD2P+, and has convex combinations of slices with arbitrary small diameter.

In Section 5 we characterize the property LD2P+. We show that a space X has the LD2P+ if and only if the dual has the weak* LD2P+ if and only if the equation $\|I - P\| = 1 + \|P\|$ holds for every weakly compact projection on P on X. It is also proved that the LD2P+ is inherited by ai-ideals (see p. 11 for the definition of this concept).

In Section 4 we show that if a Banach lattice contains a strongly extreme point x which can be approximated by finite rank projections at x, then x is already a denting point. From this we see that it might not be so easy to construct an equivalent MLUR norm on c_0 with the D2P.

Section 5 contains a list of open questions.
The notation we use is mostly standard and is, if considered necessary, explained as the text proceeds.

2. MLUR renormings of $C[0, 1]$ with the D2P

Let $D = (D_n)_{n=1}^\infty$ be a base of neighborhoods in $[0, 1]$. For each $x \in C[0, 1]$ put $\|x\|_n = \sup_{d \in D_n} |x(d)|$ and note that each $\| \cdot \|_n$ defines a semi-norm on $C[0, 1]$. Now define a norm on $C[0, 1]$ by

$$\|x\|_D := \left(\sum_{n=1}^\infty 2^{-n}\|x\|_n^2\right)^{1/2}.$$

By compactness there exists $b > 0$ such that $b\|x\|_\infty \leq \|x\|_D \leq \|x\|_\infty$ so the norm $\| \cdot \|_D$ is equivalent to the max-norm $\| \cdot \|_\infty$ on $C[0, 1]$. The idea to introduce this norm goes back to [17].

In what follows let $X_D = (C[0, 1], \| \cdot \|_D)$.

Proposition 2.1. For any base $D = (D_n)_{n=1}^\infty$ of neighborhoods in $[0, 1]$ the space X_D is MLUR.

Proof. Let x and $(y_k)_{k=1}^\infty$ be such that $\lim_{k \to \infty} \|x \pm y_k\|_D = \|x\|_D$. We will show that $\|y_k\|_D \to 0$ to establish that $\| \cdot \|_D$ is MLUR. By a convexity argument (see e.g. [17] Fact II. 2. 3) we have

$$(1) \lim_{k \to \infty} \|x \pm y_k\|_n = \|x\|_n, \quad n = 1, 2, \ldots$$

Let $\varepsilon > 0$. We will first make three simple observations:

a) By uniform continuity of x, we can find $\delta = \delta(\varepsilon) > 0$ such that the oscillation over A, sup$_{t, s \in A} (x(t) - x(s))$, is less than ε whenever $A \subset [0, 1]$ is of length less then δ.

b) Proceeding with the δ above, since $(D_n)_{n=1}^\infty$ is a base for the topology on the compact space $[0, 1]$, there is a finite subset $M \subset \mathbb{N}$ such that $\bigcup_{m \in M} D_m$ covers $[0, 1]$ and the length of any $D_m, m \in M$ is less than δ.

c) Proceeding with M and δ as above, having in mind [11] which of course is true for each $m \in M$, we can find $K \in \mathbb{N}$ such that $\|x \pm y_k\|_m \leq \|x\|_m + \varepsilon$ whenever $k \geq K$ and $m \in M$.

We are now ready to finish the proof. To this end, let t_0 be an arbitrary point in $[0, 1]$. We will show that $|y_k(t_0)| \leq 2\varepsilon$ for $k \geq K$. Choose σ_k from $\{-1, 1\}$ such that

$$|x(t_0) + \sigma_k y_k(t_0)| = |x(t_0)| + |y_k(t_0)|.$$

Since $\bigcup_{m \in M} D_m$ covers $[0, 1]$ there is $m' \in M$ such that $t_0 \in D_{m'}$. Now remember that the length of all the D_m’s are $< \delta$, such that the oscillation of x over $D_{m'}$ is less than ε. We get

$$|y_k(t_0)| = |x(t_0) + \sigma_k y_k(t_0)| - |x(t_0)|$$

$$\leq \sup_{t \in D_{m'}} |x(t) + \sigma_k y_k(t)| - |x(t_0)|$$

$$\leq \|x + \sigma_k y_k\|_{m'} - (\|x\|_{m'} - \varepsilon)$$

$$\leq \|x\|_{m'} + \varepsilon - \|x\|_{m'} + \varepsilon = 2\varepsilon,$$

provided $k \geq K$.

\[\Box\]
Definition 2.4. For a Banach space \(X \) we say that (the norm on) \(X \) is

\[
\text{MLUR and has the D2P and the LD2P+}.\]

Theorem 2.3. For any base \(D = (D_n)_{n=1}^\infty \) of neighborhoods in \([0,1]\) the space \(X_D \) has the LD2P+.

Proof. We know that the dual of \(X \) is isomorphic to \(rca[0,1] \), the space of regular and countably additive Borel measures on \([0,1]\). Let \(\lambda \in rca[0,1] \) be the Lebesgue measure. By Lebesgue’s decomposition theorem, any measure \(m \in rca[0,1] \) can be decomposed as \(m = \mu + \nu \), where \(\mu \) is absolutely continuous with respect to \(\lambda \) and \(\nu \) and \(\lambda \) are singular.

Now, let \(m \in S_{X^*} \), \(\varepsilon > 0 \), and denote by \(S \) the slice

\[
\{ x \in B_X : \int_{[0,1]} x \, dm > 1 - \varepsilon \}.\]

Let \(x \in S \) and find \(1 - \|x\| \leq \delta < \varepsilon \) and \(N \in \mathbb{N} \) such that

\[
\left(\sum_{n=1}^{N} 2^{-n} \|x\|_n^2 \right)^{1/2} > 1 - \delta > 1 - \varepsilon.
\]

There exist open intervals \(E_n = (r_n, t_n) \) inside \(D_n \) with \(s_n = \frac{r_n + t_n}{2} \) such that

a) \(E_i \cap E_j = \emptyset \) for every \(i \neq j \),

b) \(\langle \sum_{n=1}^{N} 2^{-n} |x(e_n)|^2 \rangle^{1/2} > 1 - \delta \) whenever \(e_n \in E_n \),

c) \(\nu(\{s_n\}) = 0 \) for every \(1 \leq n \leq N \),

d) \(b^{-1} \sum_{n=1}^{N} m(E_n) < \eta \) where \(E = \bigcup_{n=1}^{N} E_n \), and \(\int_{[0,1] \setminus E} x \, dm - \eta > 1 - \varepsilon \).

Now, define a continuous function \(y \) on \([0,1]\) by letting \(y(r_n) = x(r_n) \), \(y(s_n) = -x(s_n) \), \(y(t_n) = x(t_n) \), linear on \((r_n, s_n)\) and \((s_n, t_n)\), and otherwise equal to \(x \). Then \(y \in X \) with \(\sup_{d \in E_n} |y(d)| \leq \sup_{d \in E_n} |x(d)| \) and \(y(d) = x(d) \) for every \(d \in [0,1] \setminus E \). Therefore \(\|y\| \leq \|x\| \leq 1 \). Moreover, we have

\[
\int_{[0,1]} y \, dm = \int_{[0,1] \setminus E} y \, dm + \int_{E} y \, dm
\]

\[
\geq \int_{[0,1] \setminus E} x \, dm - \sum_{n=1}^{N} b^{-1} m(E_n) > \int_{[0,1] \setminus E} x \, dm - \eta > 1 - \varepsilon,
\]

and

\[
\|x - y\| \geq \left(\sum_{n=1}^{N} 2^{-n} \|x - y\|_n^2 \right)^{1/2}
\]

\[
\geq \left(\sum_{n=1}^{N} 2^{-n} |x(s_n) - y(s_n)|^2 \right)^{1/2} = 2 \left(\sum_{n=1}^{N} 2^{-n} |x(s_n)|^2 \right)^{1/2} > 2 - 2\delta.
\]

From the propositions 2.1, 2.2 and 1.3 we obtain the following result.

Theorem 2.3. For any base \(D = (D_n)_{n=1}^\infty \) of neighborhoods in \([0,1]\) the space \(X_D \) is MLUR and has the D2P and the LD2P+.

In [12] dual characterizations of the diameter 2 properties in Definition 1.1 were obtained. To formulate these we need to introduce some concepts.

Definition 2.4. For a Banach space \(X \) we say that (the norm on) \(X \) is
Definition 2.5. A dual Banach space X is a Banach space X^*.

Theorem 2.6. The set of the form $D = \{ x^* \in X^* : x^*(x) > 1 - \varepsilon \}$.

Definition 2.5. A dual Banach space X^* has the

a) **locally octahedral** if for every $\varepsilon > 0$ and every $x \in S_X$ there exists $y \in S_X$ such that $\|x \pm y\| > 2 - \varepsilon$.

b) **octahedral** if for every $\varepsilon > 0$ and every finite set of points $(x_i)_{i=1}^n \subset S_X$ there exists $y \in S_X$ such that $\|x_i + y\| > 2 - \varepsilon$ for every $1 \leq i \leq n$.

For a Banach space X, $x \in S_X$, and $\varepsilon > 0$ we mean by a weak*-slice of B_{X^*} a set of the from $S(x, \varepsilon) := \{ x^* \in B_{X^*} : x^*(x) > 1 - \varepsilon \}$.

Theorem 2.6. [12, Theorems 3.1, 3.3, and 3.5] For a Banach space X we have

a) X is locally octahedral \iff X^* has the weak*-LD2P.

b) X is octahedral \iff X^* has the weak*-SD2P.

It follows from Theorem 2.3, Theorem 3.6 below, and Theorem 2.6 that for any base $D = (D_n)_{n=1}^\infty$ of neighborhoods in $[0,1]$ the space X_D is locally octahedral. However, every such space X_D fails to be octahedral. To see this we will use the following lemma.

Lemma 2.7. Let u and v be continuous functions on the unit interval. Suppose $\|u\|_n = \|v\|_n$ for every $n \in \mathbb{N}$. Then $|u(t)| = |v(t)|$ for every $t \in [0,1]$.

Proof. Let $\varepsilon, \delta > 0$ such that

\[|u(s') - u(s'')| < \varepsilon \text{ and } |v(s') - v(s'')| < \varepsilon \]

whenever $|s' - s''| < \delta$. Fix $t \in [0,1]$. There exists $n \in \mathbb{N}$ such that t belongs to D_n and diam$(D_n) < \delta$. Now find t', t'' in D_n such that $\|u\|_n - |u(t')| < \varepsilon$ and $\|v\|_n - |v(t'')| < \varepsilon$. Then $|u(t')| - |v(t'')| < 2\varepsilon$, and thus by (2) we have $|u(t)| - |v(t)| < 4\varepsilon$.

Proposition 2.8. For any base $D = (D_n)_{n=1}^\infty$ of neighborhoods in $[0,1]$ the space X_D fails to be octahedral.

Proof. Choose two different non negative norm 1 functions u and v in X_D. Assume there exists a sequence $(y_k)_{k=1}^\infty \subset S_X$ such that

\[\lim_{k \to \infty} \|u + y_k\|_D = 2 \quad \text{and} \quad \lim_{k \to \infty} \|v + y_k\|_D = 2. \]

Using (3) and [7, Fact II. 2.3] we have for every $n \in \mathbb{N}$ that

\[\|u\|_n = \lim_k \|y_k\|_n = \|v\|_n. \]

Now we get from Lemma 2.7 a contradiction as u and v are non negative and different.

The final part of this section will be devoted to showing that there exists a Banach which is MLUR, has the D2P, the LD2P+, and has convex combinations of slices with arbitrarily small diameter. First we will show that for any given $\delta > 0$ there exists a base $D = (D_n)_{n=1}^\infty$ of neighborhoods in $[0,1]$ for which B_{X_D}
contains convex combinations of slices with diameter < \delta. In that respect the following lemma will come in to use.

Let \(t \in [0, 1] \). Put \(J(t) = \{ n : t \in D_n \} \) and let \(w(t) = \sum_{n \in J(t)} 2^{-n} \).

Lemma 2.9. Let \(D = (D_n)_{n=1}^{\infty} \) be a base of neighborhoods in \([0, 1], t \in [0, 1], \) and \(\delta_t \) the point measure in \(X_D^* \). If \(\overline{D}_n \cap \{ t \} = \emptyset \) for every \(n \notin J(t) \), then

\[
\| \delta_t \|_{D} = \frac{1}{\sqrt{w(t)}},
\]

where \(\| \cdot \|_{D} \) is the norm in \(X_D^* \).

Proof. Let \(x \in X_D \) with norm 1. Then

\[
1 = \sum_{n=1}^{\infty} 2^{-n} \| x \|_n^2 \geq \sum_{n \in J(t)} 2^{-n} |x(t)|^2 = w(t) \| \delta_t \| (x)^2.
\]

Thus \(\| \delta_t \|_{D} \leq \frac{1}{\sqrt{w(t)}} \). Moreover, by the assumptions it is always possible to find for \(i \notin J(t) \) an open set which contains \(t \) and which does not intersect \(\overline{D}_i \). Thus we can always find an \(x \in S_{X_D} \) which takes its maximum value at \(t \) and which is zero on \(D_i \). From this it follows that for any \(\varepsilon > 0 \) we can find \(x \in S_{X_D} \) which takes its maximum value at \(t \) such that \(\sum_{n \notin J(t)} 2^{-n} \| x \|_n^2 < \varepsilon \). From the inequality

\[
1 = \| x \|_D = \sum_{n \in J(t)} 2^{-n} x(t)^2 + \sum_{n \notin J(t)} 2^{-n} \| x \|_n^2 < \sum_{n \in J(t)} 2^{-n} x(t)^2 + \varepsilon
\]

we get that \(\delta_t^2(x) > \frac{1 - \varepsilon}{w(\delta)} \). Thus we can conclude that \(\| \delta_t \|_{D} = \frac{1}{\sqrt{w(t)}} \). \(\square \)

Let \((\varepsilon_n)_{n=1}^{\infty}\) (with \(\varepsilon_1 \) small!) be a strictly decreasing sequence of positive real numbers converging fast to 0. For each \(i \in \mathbb{N} \) let us define a base of neighborhoods \((D_i,n)_{n=1}^{\infty}\) in \([0, 1] \): Let \(i = 1 \) and

\[
D_{1,1} = [0, 2^{-1} + \varepsilon_1], D_{1,2} = (2^{-1} - \varepsilon_2, 1].
\]

We call this the first level. For the second level put

\[
D_{1,3} = [0, 2^{-2} + \varepsilon_3], D_{1,4} = (2^{-2} - \varepsilon_4, 2 \cdot 2^{-2} + \varepsilon_4),
\]

\[
D_{1,5} = (2 \cdot 2^{-2} - \varepsilon_5, 3 \cdot 2^{-2} + \varepsilon_5), D_{1,6} = (3 \cdot 2^{-2} - \varepsilon_6, 1].
\]

Continue in this fashion to obtain the base \((D_{1,n})_{n=1}^{\infty}\) consisting of open intervals in \([0, 1] \). Finally let \(D_i = (D_{i,n})_{n=1}^{\infty} \) be the base of \([0, 1] \) consisting of the intervals in \((D_{1,n})_{n=1}^{\infty}\) starting from level \(i \).

We will prove that for \(i \geq 2 \) the space \(X_{D_i} \) fails to have the SD2P. In fact, we will prove the following.

Proposition 2.10. For each \(i \geq 2 \) let \(X_{D_i} \) be the space \(C[0, 1] \) with the norm \(\| \cdot \|_{D_i} \). Then for every \(\varepsilon > 0 \) there exists finite convex combinations of slices of \(B_{X_{D_i}} \) with diameter at most \(\frac{\sqrt{1+\varepsilon}}{i} \).
Proof. First suppose $i = 2$ and choose $t_1 = 0$ and $t_2 = 1$ and note that $J(t_1) \cap J(t_2) = \emptyset$, $\{t_1\} \cap D_n = \emptyset$ for every $n \notin J(t_1)$, and $\{t_2\} \cap D_n = \emptyset$ for every $n \notin J(t_2)$. Put $M = \sup \{\|x\|_\infty : x \in B_{X_{D_2}}\} < \infty$. By a similar argument as in the last part of the proof of Lemma 2.9 it is possible to choose, for any $\varepsilon > 0$, a $\eta > 0$ such that
\[
\sum_{n \notin J(t_1)} 2^{-n}(2M\|x\|_2,n + \|x\|_2^2,n) < \varepsilon/3, \quad \sum_{n \notin J(t_2)} 2^{-n}(2M\|y\|_2,n + \|y\|_2^2,n) < \varepsilon/3,
\]
and
\[
\sum_{n \notin J(t_1) \cup J(t_2)} 2^{-n}(\|x\|_2^2,n + 2\|x\|_2,n\|y\|_2,n + \|y\|_2^2,n) < \varepsilon/3.
\]
whenever x and y are elements in the slices $S(\delta_1/\|\delta_1\|_D^1, \eta)$ and $S(\delta_2/\|\delta_2\|_D^2, \eta)$ of $B_{X_{D_2}}$, respectively. Now, if we put $h = \frac{1}{2}x + \frac{1}{2}y$ we get
\[
2^2\|h\|_D^2 = \sum_{n=1}^{\infty} 2^{-n}\|x + y\|_2^2,n
\]
\[
\leq \sum_{n \notin J(t_1)} 2^{-n}(\|x\|_2^2,n + 2\|x\|_2,n\|y\|_2,n + \|y\|_2^2,n)
\]
\[
+ \sum_{n \notin J(t_2)} 2^{-n}(\|x\|_2^2,n + 2\|x\|_2,n\|y\|_2,n + \|y\|_2^2,n)
\]
\[
+ \sum_{n \notin J(t_1) \cup J(t_2)} 2^{-n}(\|x\|_2^2,n + 2\|x\|_2,n\|y\|_2,n + \|y\|_2^2,n)
\]
\[
\leq 2 + \varepsilon.
\]
For an arbitrary $i \geq 2$ we can in $[0,1]$ choose i points $(t_k)_{k=1}^i$ such that $J(t_j) \cap J(t_k) = \emptyset$ for any $j \neq k$ and such that $\{t_k\} \cap D_n = \emptyset$ for every $n \notin J(t_k)$. Using a similar argument as for $i = 2$ we get that for any $\varepsilon > 0$ there exists for every $k = 1, \ldots, i$ a slice $S(\delta_k, \eta)$ of $B_{X_{D_k}}$ such that the convex combination
\[
\sum_{k=1}^i \frac{1}{i} S(\delta_k, \eta)
\]
has diameter at most $\frac{2\varepsilon}{i}$. \qed

Theorem 2.11. The space $\ell_2 - \bigoplus_{i=1}^\infty X_{D_i}$ is MLUR, has the D2P, the LD2P+, and has convex combinations of slices of arbitrary small diameter.

Proof. The properties of being MLUR, having the D2P, and having the LD2P+ are all stable by taking ℓ_2-sums (see [2, Theorem 3.2] and [15, Theorem 3.2] for the latter two). Thus the space $\ell_2 - \bigoplus_{i=1}^\infty X_{D_i}$ has to possess all these properties as well since each X_{D_i} does. So, what is left to prove is that the unit ball of $\ell_2 - \bigoplus_{i=1}^\infty X_{D_i}$ has finite convex combinations of slices with arbitrary small diameter. To this end let $Z = X_{D_i} \oplus_2 Y_i$ where $Y_i = \ell_2 - \bigoplus_{k \neq i} X_{D_k}$. Let $x_i^* \in S_{X_{D_i}}, S_i(x_i^*, \delta)$ a slice of $B_{X_{D_i}}$, and let $0 < \delta < \eta$. Now, if (x_i,y_i) is in the slice $S((x_i^*,0), \delta)$ of B_Z, then $x_i^*(x_i) > 1 - \delta$, and so $\|x_i\| > 1 - \delta$. Thus $\|y_i\|^2 \leq 2\delta - \delta^2$. But this means that
\[
S((x_i^*,0), \delta) \subset S_i(x_i^*, \delta) \times (2\delta - \delta^2)^{1/2} B_{Y_i}.
\]
From this we see that if \(z \in \sum_{j=1}^i \frac{1}{i} S_j(B_Z, (x_{i,j}^*, 0), \delta) \), then we can write \(z = x + y \) where \(x \in \sum_{j=1}^i \frac{1}{i} S_i,j(B_{X_{D_i}}, x_{i,j}^*, \delta) \) and \(y \in (2\delta - \delta^2)^{1/2} B_{Y_i} \). Now, if the convex combination \(\sum_{j=1}^i \frac{1}{i} S_i,j(B_{X_{D_i}}, x_{i,j}^*, \delta) \) is chosen so that its diameter is at most \(\frac{\sqrt{2}}{i} \), which is possible by Proposition 2.10, we get that \(\|x\| \leq \frac{\sqrt{2}}{i} \) and \(y \in (2\delta - \delta^2)^{1/2} B_{Y_i} \). As \(\|z\| \leq \|x\| + \|y\| \) and \(i \) can be chosen as big as desired and \(\delta > 0 \) as small as desired, we are done. \(\square \)

3. The local diameter 2 property +

Let \(X \) be a Banach space and \(I \) the identity operator on \(X \). Recall that \(X \) has the Daugavet property if the equation

\[
\|I + T\| = 1 + \|T\|
\]

holds for every rank 1 operator \(T \) on \(X \). The Daugavet property can be characterized as follows (see [24] or [21]):

Theorem 3.1. Let \(X \) be a Banach space. Then the following statements are equivalent.

a) \(X \) has the Daugavet property.

b) The equation \(\|I + T\| = 1 + \|T\| \) holds for every weakly compact operator \(T \) on \(X \).

c) For every \(\varepsilon > 0 \), every \(x \in S_X \), and every \(x^* \in S_{X^*} \), there exists \(y \in S(x^*, \varepsilon) \) such that \(\|x + y\| \geq 2 - \varepsilon \).

d) For every \(\varepsilon > 0 \), every \(x^* \in S_{X^*} \), and every \(x \in S_X \), there exists \(y^* \in S(x, \varepsilon) \) such that \(\|x^* + y^*\| \geq 2 - \varepsilon \).

e) For every \(\varepsilon > 0 \) and every \(x \in S_X \) we have \(B_X = \overline{\text{conv}}(\Delta_x(x)) \) where \(\Delta_x(x) = \{ y \in B_X : \|x - y\| \geq 2 - \varepsilon \} \).

Let us recall from the Introduction the definition of the LD2P+ and at the same time introduce its weak* version.

Definition 3.2. We say that a Banach space \(X \) has the local diameter 2 property + (LD2P+) if for every \(x^* \in S_{X^*} \), every \(\varepsilon > 0 \), every \(\delta > 0 \), and every \(x \in S(x^*, \varepsilon) \cap S_X \) there exists \(y \in S(x^*, \varepsilon) \) with \(\|x - y\| > 2 - \delta \). If \(X \) is a dual space and the above holds for weak* slices \(S(x^*, \varepsilon) \), then \(X \) is said to have the weak* local diameter 2 property + (weak*-LD2P+).

From [15, Theorem 1.4] and [24, Open problem (7) p. 95] the following is known.

Theorem 3.3. Let \(X \) be a Banach space. Then the following statements are equivalent.

a) The equation \(\|I - P\| \leq 2 \) holds for every norm-1 rank-1 projection \(P \) on \(X \).

b) For every \(\varepsilon > 0 \), every \(x^* \in S_{X^*} \) and every \(x \in S(x^*, \varepsilon) \) there exists \(y \in S(x^*, \varepsilon) \cap S_X \) with \(\|x - y\| > 2 - \varepsilon \).

c) For every \(x \in S_X \) and every \(\varepsilon > 0 \) we have \(x \in \overline{\text{conv}}(\Delta_x(x)) \) where \(\Delta_x(x) = \{ y \in B_X : \|x - y\| > 2 - \varepsilon \} \).

From Lemma 3.1 of Kadets and Ivakhno (see [15, Lemma 2.1]) stated below it is clear that the LD2P+ is equivalent to the statements in Theorem 3.3. Therefore
every Daugavet space has the LD2P+. Note, however, that the converse is not true as the LD2P+ is stable by taking unconditional sums of Banach spaces which fails for spaces with the Daugavet property (see e.g. [15, Corollary 3.3]).

Lemma 3.4 (Kadets and Ivakhno). Let \(\varepsilon > 0 \) and \(x^* \in S_{X^*} \). Then for every \(x \in S(x^*, \varepsilon) \cap S_X \) and every positive \(\delta < \varepsilon \) there exist \(y^* \in S_{X^*} \) such that \(x \in S(y^*, \delta) \) and \(S(y^*, \delta) \subset S(x^*, \varepsilon) \).

In the proof of Proposition 3.6 below we will need the following weak*-version of Lemma 3.4. Its proof is more or less verbatim to that of Lemma 3.4 and will therefore be omitted.

Lemma 3.5. Let \(\varepsilon > 0 \) and \(x \in S_X \). Then for every \(x^* \in S(x, \varepsilon) \cap S_{X^*} \) which attains its norm and every positive \(\delta < \varepsilon \) there exist \(y \in S_X \) such that \(x^* \in S(y, \delta) \) and \(S(y, \delta) \subset S(x, \varepsilon) \).

We will now add to the list of statements in Theorem 3.3 statements similar to b) and d) in Theorem 3.1.

Theorem 3.6. Let \(X \) be a Banach space. Then the following statements are equivalent:

a) \(X \) has the LD2P+.

b) For every \(x \in S_X \), every \(\varepsilon > 0 \), every \(\delta > 0 \), and every \(x^* \in S(x, \varepsilon) \cap S_{X^*} \), there exists \(y^* \in S(x, \varepsilon) \) with \(\|x^* - y^*\| > 2 - \delta \).

c) The equation \(\|I - P\| = 1 + \|P\| \) holds for every weakly compact projection \(P \) on \(X \).

Proof. a) \(\Rightarrow \) b). By the Bishop-Phelps theorem we can assume without loss of generality that \(x^* \in S(x, \varepsilon) \cap S_{X^*} \) attains its norm. Let \(0 < \eta < \min\{\varepsilon, \delta/2\} \) and find by Lemma 3.4 \(y \in S_X \) such that \(x^* \in S(y, \eta) \) and \(S(y, \eta) \subset S(x, \varepsilon) \). Note that \(y \in S(x^*, \eta) \) and thus, since \(X \) has the LD2P+, we can find \(z \in S(x^*, \eta) \) such that \(\|y - z\| > 2 - \eta \). Hence there is \(y^* \in S_{X^*} \) such that \(y(y^*) - z(y^*) = (y - z)(y^*) > 2 - \eta \).

From this we have \(y(y^*) > 1 - \eta \) and \(z(y^*) > 1 - \eta \). It follows that \(y^* \in S(x, \varepsilon) \) as \(S(y, \eta) \subset S(x, \varepsilon) \). Moreover, using that \(z \in S(x^*, \eta) \) and b), we have

\[
\|x^* - y^*\| \geq (x^* - y^*)(z) \\
= x^*(z) - y^*(z) \\
> 1 - \eta + 1 - \eta > 2 - \delta.
\]

b) \(\Rightarrow \) a). The proof is identical to the proof of the converse except that one does not have to use the Bishop-Phelp’s theorem and that one uses [13, Lemma 2.1] in place of Lemma 3.5.

a) \(\Rightarrow \) c). The proof is similar to that of [16, Theorem 2.3].

c) \(\Rightarrow \) a). This is clear as c) trivially implies a) in Theorem 3.3. \(\square \)

Note that \(c_0 \) does not have the LD2P+ as \(e_1 \in S(e_1, \varepsilon) \cap S_{c_0} \) for every \(1 \geq \varepsilon > 0 \), but every point in \(S(e_1, \varepsilon) \) is of distance 1 or less from \(e_1 \). \(c_0 \) is the prototype of an M-embedded space. Since the dual is an M-embedded space has the RNP (see e.g. [14, III.3 Corollary 3.2]) we actually get from Proposition 3.6 that every M-embedded space fails the LD2P+.

Corollary 3.7. M-embedded spaces fail the LD2P+.
It is known that all the diameter 2 properties in Definition 1.1 as well as the Daugavet property are inherited by certain subspaces called ai-ideals (see [3] and [1]). We will end this section by showing that this is true for the LD2P+ as well.

A subspace X of a Banach space Y is called an ideal in Y if there exists a norm 1 projection P on Y^* with $\ker P = X^\perp$. X being an ideal in Y is in turn equivalent to the X being locally 1-complemented in Y, i.e. for every $\varepsilon > 0$ and every finite-dimensional subspace $E \subset Y$ there exists $T : E \to X$ such that

a) $Te = e$ for all $e \in X \cap E$.

b) $\|Te\| \leq (1 + \varepsilon)\|e\|$ for all $e \in E$.

Following [3] a subspace X of a Banach space Y is called an almost isometric ideal (ai-ideal) in Y if X is locally 1-complemented with almost isometric local projections, i.e., for every $\varepsilon > 0$ and every finite-dimensional subspace $E \subset Y$ there exists $T : E \to X$ which satisfies a) and

b’) $(1 - \varepsilon)\|e\| \leq \|Te\| \leq (1 + \varepsilon)\|e\|$ for all $e \in E$.

Note that an ideal X in Y is an ai-ideal if $P(Y^*)$ is a 1-norming subspace of X. Ideals X in Y for which $P(Y^*)$ is a 1-norming subspace for X are called strict ideals. An ai-ideal is, however, not necessarily strict (see [3]).

Proposition 3.8. Let Y have the LD2P+ and assume X is an ai-ideal in Y. Then X has the LD2P+.

Proof. For $\delta > 0$, Z a subspace of Y, and $x \in S_Z$ put

$$
\Delta^Z_\delta(x) = \{y \in B_Z : \|x - y\| > 2 - \delta\}.
$$

Let $x \in S_X$, $\varepsilon > 0$, and $\alpha > 0$. We will show that there exists $z \in \text{conv}\Delta^X_\varepsilon(x)$ with $\|x - z\| < \alpha$. First, since Y enjoys the LD2P+, we know that for any positive $\beta < \varepsilon$ and any positive $\gamma < \alpha$ we can find $y = \sum_{n=1}^N \lambda_n y_n \in \text{conv}\Delta^X_\beta(x)$ with $(y_n)_{n=1}^N \subset \Delta^Y_\gamma(x)$ such that $\|x - y\| < \gamma$. Now let $E = \text{span}\{y_1, \ldots, y_N, x\}$ and pick a local projection $T : E \to X$ such that T is a $(1 + \eta)$-isometry with $\eta > 0$ so small that $(1 + \eta)\gamma + \eta < \alpha$, and $(1 - \eta)(2 - \beta) - \eta > 2 - \varepsilon$. Put $z_n = \frac{Ty_n}{\|Ty_n\|}$ and $z = \sum_{n=1}^N \lambda_n z_n$. As $Tx = x$ we get

$$
\|x - z\| \leq \|x - Ty\| + \|Ty - z\|
\leq \|T(x - y)\| + \sum_{n=1}^N \lambda_n \left|1 - \|Ty_n\|\right|
\leq (1 + \eta)\gamma + \max_{1 \leq n \leq N} \left|1 - \|Ty_n\|\right|
\leq (1 + \eta)\gamma + \eta < \alpha.
$$
Moreover for every $1 \leq n \leq N$ we have
\[
\|x - z_n\| = \|T(x - \frac{y_n}{\|Ty_n\|})\|
\geq (1 - \eta)\|x - \frac{y_n}{\|Ty_n\|}\|
\geq (1 - \eta)(\|x - y_n\| - \|y_n - \frac{y_n}{\|Ty_n\|}\|)
\geq (1 - \eta)(2 - \beta - \frac{\eta}{1 - \eta}) > 2 - \varepsilon,
\]
Thus $(z_n)_{n=1}^N \subset \Delta_\varepsilon(x)$ and as $\alpha > 0$ is arbitrarily chosen, we are done. □

4. The difficulty of finding an MLUR norm on c_0 with the D2P

This section is motivated by the question whether it is possible to construct an MLUR norm on c_0 with the D2P. Actually this turns out to be much harder than in $C[0,1]$. From Proposition 4.2 below we see that if such a norm exists, it cannot be a lattice norm.

Definition 4.1. Let X be a Banach lattice. A projection $P : X \to X$ is said to be a **lattice projection** if u and v are disjoint whenever $u \in P(X)$ and $v \in \ker P$, the kernel of P.

We say that the identity can be approximated by finite rank lattice projections at a point $x \in X$ if for all $\varepsilon > 0$ there exists a lattice projection P with finite rank such that $\|x - Px\| < \varepsilon$.

Proposition 4.2. Let X be a Banach lattice and $x \in B_X$ a strongly extreme point. If the identity can be approximated by finite rank lattice projections at x, then x is a denting point.

To prove this we will use the following lemma.

Lemma 4.3. Let $\varepsilon > 0$. Then there exists $\delta > 0$ such that for any lattice projection $P : X \to X$, the condition $\|x - Px\| < \delta$, $u \in \ker P$, and $\|Px + u\| \leq 1 + \delta$ imply $\|u\| < \varepsilon$.

Proof. Since $x \in B_X$ is strongly extreme, there exists $\eta > 0$ such that $\|y\| < \varepsilon$ whenever $\|x \pm y\| \leq 1 + \eta$. Put $\delta = \eta/3$ and suppose P, x, and u satisfy the assumptions. As P is a lattice projection we have
\[
\|Px + u\| = \|Px - u\|.
\]
Thus
\[
\|x \pm u\| \leq \|Px \pm u\| + \|x - Px\| \leq 1 + 3\delta = 1 + \eta
\]
and hence $\|u\| \leq \varepsilon$. □

Corollary 4.4. Let $\varepsilon, \delta > 0$, let P satisfy the assumptions in Lemma 4.3, and let
\[
W = \{w \in X : \|P(x - w)\| < \delta\}.
\]
Then
\[
diam(W \cap B_X) < 2\varepsilon + \delta.
\]
Proof. Pick \(w \in W \cap B_X \) and put \(u = w - Pw \). Then
\[
\|P(x + u)\| = \|P(x - w)\| + \|w\| \leq 1 + \delta.
\]
From Lemma 4.3 we get \(\|u\| < \varepsilon \). Thus
\[
\|x - w\| = \|x + u - Pw\| \leq \|P(x - w)\| + \|x - Px\| + \|u\| \leq 2\delta + \varepsilon,
\]
and so we are done. \(\square \)

Proof of Proposition 4.2. If \(\dim(PX) < \infty \), we get that \(W \) is weak open. This implies that \(x \) is a point of continuity for \(B_X \). Since every point of weak to \(\| \cdot \| \) continuity which is extreme is a denting point \cite{18} Theorem\], we get that \(x \) is denting. \(\square \)

5. Questions

Let us end the paper with some questions that is suggested by the current work:

Question 1. Does there exist an equivalent MLUR norm on \(c_0 \) with LD2P?

Question 2. Does there exist a Banach space with the LD2P and which is weakly locally uniformly rotund?

Regarding this question we note that there does exist a Banach space \(X \) which is weakly uniformly rotund (wUR) and which has the property that for every \(\varepsilon > 0 \) and every \(\text{weak}^{*} \) null sequence \((f_n) \subset S_X \), the diameter of the slices \(S(f_n, \varepsilon) \) tends to 2. Such a Banach space can be constructed as follows: Let \(1 < p_1 < p_2 < \ldots \) a sequence such that
\[
\prod_{i \in \mathbb{N}} \|I: \ell_\infty(2) \to \ell_{p_i}(2)\| < 2
\]
(operator norms of the formal identity mappings between 2-dimensional \(\ell_p \) spaces). Then one can form a Banach sequence space as follows:
\[
X = \mathbb{R} \oplus_{p_1} (\mathbb{R} \oplus_{p_2} (\mathbb{R} \oplus_{p_3} (\ldots \ldots)))
\]
where \(\mathbb{R} \) is considered a 1-dimensional Banach space and the space is normed by first defining semi-norms in finite-dimensional initial parts according to the above schema and then taking a limit of the semi-norms in a similar way as in the construction of the variable exponent spaces introduced in [22]. We will now show that this space \(X \) has the above mentioned properties.

Proof. Put \(Y = \text{span}(e_n: n \in \mathbb{N}) \subset X \) and \(Y_k := \text{span}(e_n: n \in \mathbb{N}, n \geq k) \subset X \). It can be seen from arguments in [22] that \(X \) and \(Y \) are isomorphic to \(\ell_\infty \) and \(c_0 \) respectively. Also the tail spaces \(Y_k \) become asymptotically isometric to \(c_0 \), i.e. for each \(\varepsilon > 0 \) there is \(k \in \mathbb{N} \) such that the tail spaces \(Y_j, j \geq k \), are \(1 + \varepsilon \)-isomorphic to \(c_0 \) via a linear mapping which identifies the canonical unit vector bases of \(Y_j \) and \(c_0 \).

The wUR part. Let \((x_n), (y_n) \in B_Y \) be such that \(\|x_n + y_n\|_Y \to 2 \). Denote by \(P_n \) the basis projection to the first \(n \)-coordinates and let \(Q_n = I - P_n \) be the
coprojection to the rest of the coordinates. Then according to the definition of the space

\[(|P_1(x_n + y_n)|^{p_1} + \|Q_1(x_n + y_n)\|^{p_1})^{\frac{1}{p_1}} \to 2,\]

so by the triangle inequality

\[((|P_1(x_n)| + |P_1(y_n)|)^{p_1} + (\|Q_1(x_n)\| + \|Q_1(y_n)\|)^{p_1})^{\frac{1}{p_1}} \to 2,\]

and by the uniform convexity of $\ell_{p_1}(2)$ we get that

\[(|P_1(x_n)| - |P_1(y_n)| \to 0, \quad \|Q_1(x_n)\| - \|Q_1(y_n)\| \to 0).\]

By inspecting (6) we obtain $|P_1(x_n - y_n)| \to 0$. By continuing inductively, using the right-hand side of (7), we get that $P_k(x_n - y_n) \to 0$ for each k. Recall that Y is isomorphic to c_0, thus Y^* is isomorphically ℓ_1. Therefore $x_n - y_n \to 0$ weakly.

The large slices part. First note that if $(f_n) \subset Y^*$ is a normalized sequence then $\|f_n\|_{\ell_1} \geq 1$ because $\|\cdot\|_{c_0} \leq \|\cdot\|_{Y}$. Fix $\varepsilon > 0$. Let $k \in \mathbb{N}$ be such that

\[\sum_{i=1}^{\infty} a_i e_{k+i} \mapsto \sum_{i=1}^{\infty} a_i e_i\]

defines a $(1 + \varepsilon/4)$-isomorphism $Y_k \to c_0$. Note that then

\[\frac{1}{(1 + \varepsilon/4)} \|f \circ Q_k\|_{\ell_1} \leq \|f \circ Q_k\|_{Y} \leq (1 + \varepsilon/4)\|f \circ Q_k\|_{\ell_1}, \quad f \in \ell_1.\]

Because (f_n) is weak-star null we may choose $m_0 \in \mathbb{N}$ such that sufficiently large part of the mass is supported on the domain of Q_k, more precisely,

\[\frac{1}{(1 + \varepsilon/3)} \|f_m \circ Q_k\|_{\ell_1} < \frac{1}{1 + \varepsilon/3}\]

for $m \in \mathbb{N}$, $m \geq m_0$.

Put $g = \frac{f_m \circ Q_k}{\|f_m \circ Q_k\|_{\ell_1}}$. Then

\[\left\{x \in c_0 : g(x) > \frac{1}{1 + \varepsilon/3}\right\} \subset \left\{x \in c_0 : (f_m \circ Q_k)(x) > 1 - \varepsilon\right\}.\]

Note that $\frac{1}{(1 + \varepsilon/4)}B_{c_0} \cap Y_k \subset B_{Y_k}$. Therefore the above inclusion yields that we may pick

\[x, y \in \{z \in B_{Y_k} : f_m(z) > 1 - \varepsilon\}\]

with

\[\|x - y\|_{Y} \geq \|x - y\|_{\infty} > \frac{2}{(1 + \varepsilon/3)}.\]

\[\square\]

Question 3. Does there exist a Banach space with the LD2P+ which fails the D2P?

Question 4. Does every Banach space with the LD2P+ contain a copy of ℓ_1?
References

[1] T. A. Abrahamsen, An improvement of a theorem of Heinrich, Mankiewicz, Sims, and Yost, (Submitted), available at arXiv:math/1411.0425.
[2] T. A. Abrahamsen, V. Lima, and O. Nygaard, Remarks on diameter 2 properties, J. Convex Anal. 20 (2013), no. 2, 439–452. MR 3098474
[3] T. A. Abrahamsen, Almost isometric ideals in Banach spaces, Glasgow Math. J. 56 (2014), no. 2, 395–407. MR 3187906
[4] M. J. Acosta, J. Becerra Guerrero, G. Lopez-Perez, and R. Zoca, Stability results of diameter two properties, J. Conv. Anal. (to appear).
[5] J. Becerra Guerrero, G. López-Pérez, and A. Rueda Zoca, Big slices versus big relatively weakly open subsets in Banach spaces, J. Math. Anal. Appl. 428 (2015), no. 2, 855–865. MR 3334951
[6] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011, The basis for linear and nonlinear analysis. MR 2766381 (2012h:46001)
[7] R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634 (94d:46012)
[8] B. V. Godun, Bor-Luh Lin, and S. L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. 114 (1992), no. 3, 673–675. MR 1070518 (92f:46014)
[9] R. Haller, Langemets J., Two remarks on diameter 2 properties, Proc. Est. Acad. Sci. 63 (2014), no. 1, 2–7.
[10] R. Haller, Langemets J., and M. Põldvere, On duality of diameter 2 properties.
[11] P. Harmand and T. S. S. R. K. Rao, An intersection property of balls and relations with M-ideals, Math. Z. 197 (1988), 277–290.
[12] P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 1993.
[13] V. Ivakhno and V. Kadets, Unconditional sums of spaces with bad projections, Available at ResearchGate.
[14] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and Dirk Werner, Banach spaces with the Daugavet property, Trans. Amer. Math. Soc. 352 (2000), no. 2, 855–873. MR 1621757 (2000c:46023)
[15] W. J. Guasch, G. Godefroy, B. Maurey, and W. Schachermayer, Some topological and geometrical structures in Banach spaces, Mem. Amer. Math. Soc. 70 (1987), no. 378, iv+116. MR 912637 (89h:46024)
[16] B. V. Godun, Bor-Luh Lin, and S. L. Troyanski, On the strongly extreme points of convex bodies in separable Banach spaces, Proc. Amer. Math. Soc. 114 (1992), no. 3, 673–675. MR 1070518 (92f:46014)
[17] D. Werner, Recent progress on the Daugavet property, Irish Math. Soc. Bull. (2001), no. 46, 77–97. MR 1856978 (2002i:46014)
(T. A. Abrahamsen) Department of Mathematics, University of Agder, Postbox 422, 4604 Kristiansand, Norway.
E-mail address: trond.a.abrahamsen@uia.no
URL: http://home.uia.no/trondaa/index.php3

(P. Hájek) Mathematical Institute, Czech Academy of Science, Žitná 25, 115 67 Prague 1, Czech Republic, and Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Zikova 4, 160 00, Prague.
E-mail address: hajek@math.cas.cz

(O. Nygaard) Department of Mathematics, University of Agder, Servicebox 422, 4604 Kristiansand, Norway.
E-mail address: Olav.Nygaard@uia.no
URL: http://home.hia.no/~olavn/

(J. Talponen) Department of Physics and Mathematics, University of Eastern Finland, Box 111, FI-80101 Joensuu, Finland.
E-mail address: talponen@iki.fi

(S. Troyanski) Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo (Murcia), Spain, and Institute of Mathematics and Informatics, Bulgarian Academy of Science, bl.8, acad. G. Bonchev str. 1113 Sofia, Bulgaria.
E-mail address: stroya@um.es