The aim of the present study was to investigate the associations of baseline and longitudinal changes in leukocyte counts with incident cardiovascular disease (CVD).

Methods: We conducted a prospective study to investigate the associations of baseline and 5-year changes in leukocyte counts with incident CVD and its subtypes in middle-aged and elderly Chinese. We estimated the hazard ratios (HRs) and 95% confidence intervals (CIs) for CVD using the Cox proportional-hazards models.

Results: In the analyses of baseline total leukocyte count of 26,655 participants, compared with the lowest quartile (<4.71×10^9/L), participants in the fourth quartile (>6.70×10^9/L) had 11% higher risk for CVD. Consistent with total leukocyte count, neutrophil count also exhibited a significant positive association with the risk of CVD. In the analyses of 5-year changes in total leukocyte count of 11,594 participants, the changes in leukocyte count were categorized into three groups, i.e., the decreased group (<25%), stable group (25%–75%), and increased group (>75%). Compared with participants in the stable group (−1.18 to 0.44×10^9/L), participants in the increased group (>0.44×10^9/L) had 14% higher risk for CVD. We also observed significant positive associations of the changes in neutrophil and monocyte counts with the risk of CVD. Furthermore, the total leukocyte count in the second or third tertile at the first follow-up with a 5-year increase was related to higher CVD risk.

Conclusion: High baseline total leukocyte count and a 5-year increase in total leukocyte count were related to higher CVD risk.

Key words: Leukocyte counts, Change, Prospective cohort, Cardiovascular disease
studies found that high total leukocyte count was associated with greater risk of coronary heart disease (CHD) or stroke incidence\ref{12,22}, whereas others failed to find any significant association\ref{23, 24}. Meanwhile, evidence on the relation of total leukocyte count with acute coronary syndrome (ACS) incidence is scarce, although ACS is one of the life-threatening subtypes of CHD. Results of the relation between leukocyte counts and stroke, such as ischemic stroke (IS) and hemorrhagic stroke (HS), were also inconsistent\ref{20, 25, 26}.

Conversely, limited prospective studies have reported conflicting relation of differential leukocyte counts with CVD incidence. Several studies demonstrated that higher neutrophil count increased the risk of CVD incidence\ref{27-29}, and monocyte count was also reported as a risk factor for CVD, CHD, and IS\ref{15, 30, 31}. However, eosinophil and lymphocyte counts were reported to be inversely associated with the risk of CVD\ref{32}. Moreover, the neutrophil-to-lymphocyte ratio (NLR) is a systemic inflammation biomarker that could balance the opposite effects of innate immunity (neutrophils) and adaptive immunity (lymphocytes) on arterial atherosclerosis\ref{33}. Elevated NLR was reported to be linked to CHD incidence\ref{34}. Together, associations of total and differential leukocyte counts with incident CVD and its subtypes remain to be elucidated.

Furthermore, different leukocyte subtypes exhibit lifespans varying from several hours to decades\ref{35-38}, which may change in response to age, sex, obesity, lifestyles such as smoking and drinking, and environmental factors\ref{39-41}, thus accelerating or decelerating CVD progression. To date, few studies have prospectively assessed the relationship of long-term changes in total leukocyte count with the risk of CVD events\ref{42-44}, and existing studies only reported significant associations of leukocyte count changes with incident CHD and mortality\ref{42, 44}. Studies on the associations of longitudinal changes in total and differential leukocyte counts with other CVD subtypes are still lacking.

Therefore, in the present study, we aimed to investigate the independent associations of baseline and 5-year changes in total and differential leukocyte counts with incident CVD and its subtypes. We further explored whether total leukocyte count at the first follow-up and 5-year changes in total leukocyte count were jointly associated with CVD events in middle-aged and elderly Chinese population.

Materials and Methods

Study Population
This study was based on the Dongfeng-Tongji (DFTJ) cohort in Shiyan City, China. As described elsewhere\ref{45}, the DFTJ cohort is a prospective cohort to investigate the causes and progression of chronic diseases. The cohort enrolled 27,009 retirees at baseline from the Dongfeng Motor Corporation during September 2008 to June 2010 and then newly recruited 14,120 retirees at the first follow-up in 2013. Finally, questionnaires and blood samples of 41,129 participants at baseline or the first follow-up were collected when they joined the cohort for the first time. Among the 41,129 participants, we excluded participants who were diagnosed with CHD \((n=5,468)\), stroke \((n=1,972)\), cancer \((n=2,182)\), and severely abnormal electrocardiogram \((n=674)\) when they first joined the cohort and who were lost to follow-up \((n=709)\). Since some of the participants may simultaneously have two or more diseases that were described above, we finally excluded 9,378 participants in this step. We further excluded 5,096 participants with missing data of total leukocyte count \((n=5,088)\), with total leukocyte count \(>20 \times 10^9/L\) \((n=4)\), and with total leukocyte count \(<2 \times 10^9/L\) \((n=4)\). Finally, we enrolled 26,655 participants in the analyses of baseline total leukocyte count (including participants at baseline and the first follow-up when they first joined the cohort). Furthermore, the baseline characteristics were similar between the overall 26,655 participants and the 5,096 participants who were excluded due to missing and extreme values of total leukocyte count (Supplementary Table 1). For the 24,175 individuals who participated in both the baseline and the first follow-up of the DFTJ cohort, we excluded those with self-reported CHD, stroke, cancer, or severely abnormal electrocardiogram at or prior to the first follow-up \((n=5,737)\). Participants with missing information on total leukocyte count, with total leukocyte count \(<2 \times 10^9/L\), and with total leukocyte count \(>20 \times 10^9/L\) were also excluded \((n=6,844)\). Finally, 11,594 participants were incorporated into the analyses of the association of the changes in total leukocyte count with incident CVD and its subtypes (Supplementary Fig. 1).

Written informed consent was obtained from all participants, and this study was reviewed and approved by the Ethics and Human Subject Committee of Tongji Medical College, Huazhong University of Science and Technology (2012-10) and Sinopharm Dongfeng General Hospital.

Measurement of Leukocyte Counts
Total and differential leukocyte counts were measured at two time points (baseline survey during 2008–2010 and the first follow-up in 2013) with an average interval of 4.60 years using a fully automated
follow-up 47). ACS diagnosis was confirmed according to transluminal coronary angioplasty during coronary artery bypass graft or percutaneous coronary revascularization for unstable angina, or coronary revascularization for CHD, nonfatal myocardial infarction, stable and unstable angina. Changes in total and differential leukocyte counts were categorized into three groups according to the 25th and 75th percentiles, i.e., the decreased group (< 25%), stable group (25%–75%), and increased group (> 75%).

Ascertainment of Outcomes

The outcomes in this study were defined and classified based on the International Classification of Diseases (ICD) codes of the World Health Organization 46. The outcome of interest was incident CVD, including CHD (ICD-10: I20-I25) and stroke (ICD-10: I60-I61, I63-I64, I69.0-I69.1, and I69.3-I69.4), which firstly occurred from baseline to the end of follow-up (31 Dec 2018). The Dongfeng Motor Corporation healthcare system covered all the retired employees and allowed us to track incident CVD through medical insurance information. We defined incident CHD as the first occurrence of fatal CHD, nonfatal myocardial infarction, stable and unstable angina, or coronary revascularization (coronary artery bypass graft or percutaneous transluminal coronary angioplasty) during follow-up 47. ACS diagnosis was confirmed according to the diagnostic criteria for acute myocardial infarction and unstable angina 48, 49. Stroke was defined as sudden or rapid onset of a typical neurological deficit of vascular origin that persisted for more than 24 h or death from stroke 50. Based on the evidence from computed tomography and/or magnetic resonance imaging, stroke was further classified into IS or HS by expert physicians 51.

Assessment of Covariates

Baseline information (demographic characteristics, lifestyles, family history of CVD, and medication usage) of the DFTJ cohort was obtained using semi-structured questionnaires. Anthropometric indices, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were measured by trained personnel. Body mass index (BMI) was calculated as weight (kg) divided by height (m²). Participants who had been smoking at least one cigarette per day for at least 6 months were defined as current smokers. Participants who had been drinking at least one time per week for more than 6 months were regarded as current drinkers. Physical activity was identified as regular exercise more than five times per week and at least 30 min per time for more than 6 months. Education status was coded as primary school or below, junior high school, senior high school, or higher. Hypertension was defined as a self-reported physician diagnosis of hypertension, SBP ≥ 140 mmHg, DBP ≥ 90 mmHg, or intake of anti-hypertensive medications. Hyperlipidemia was defined as total cholesterol ≥ 6.22 mmol/L, triglycerides > 2.26 mmol/L, high-density lipoprotein cholesterol < 1.04 mmol/L, low-density lipoprotein cholesterol ≥ 4.14 mmol/L, intake of lipid-lowering medications, or a self-reported physician diagnosis of hyperlipidemia. Diabetes mellitus was defined as self-reported physician diagnosis of diabetes mellitus, fasting glucose ≥ 7.0 mmol/L, or intake of anti-diabetic medications (oral hypoglycemic medication or insulin). Estimated glomerular filtration rate (eGFR) was calculated using the Modification of Diet in Renal Disease equation 52.

Statistical Analysis

Cox proportional-hazards regression models were employed to assess the associations of baseline and 5-year changes in total and differential leukocyte counts with CVD events. The outcomes of interest were followed up until 31 Dec 2018, and the results were expressed as hazard ratios (HRs) and 95% confidence intervals (CIs). In the analyses of the associations between baseline leukocyte counts and incident CVD, potential covariates in the multivariable models were collected at the time when the participants were first recruited (baseline or the first follow-up), including age, sex, BMI, smoking status, drinking status, physical activity, education, hyperlipidemia, hypertension, diabetes mellitus, family history of CVD/CHD/stroke, and medications that may affect leukocyte counts (antibiotics or aspirin), and we additionally adjusted for admission batch (baseline or the first follow-up) in the models. In the analyses of the associations between 5-year changes in leukocyte counts and incident CVD, potential covariates in the multivariable models were collected at the first follow-up in 2013, including age, sex, BMI, smoking status, drinking status, physical activity, education, hyperlipidemia, hypertension, diabetes mellitus, family history of CVD/CHD/stroke, and medications that may affect leukocyte counts (antibiotics or aspirin), and we additionally adjusted for baseline leukocyte counts in the models. Missing data of covariates were filled using imputation methods. For continuous variables, the median values were employed to assess the associations of baseline and 5-year changes in total and differential leukocyte counts with CVD events. The outcomes of interest were followed up until 31 Dec 2018, and the results were expressed as hazard ratios (HRs) and 95% confidence intervals (CIs). In the analyses of the associations between baseline leukocyte counts and incident CVD, potential covariates in the multivariable models were collected at the time when the participants were first recruited (baseline or the first follow-up), including age, sex, BMI, smoking status, drinking status, physical activity, education, hyperlipidemia, hypertension, diabetes mellitus, family history of CVD/CHD/stroke, and medications that may affect leukocyte counts (antibiotics or aspirin), and we additionally adjusted for admission batch (baseline or the first follow-up) in the models. In the analyses of the associations between 5-year changes in leukocyte counts and incident CVD, potential covariates in the multivariable models were collected at the first follow-up in 2013, including age, sex, BMI, smoking status, drinking status, physical activity, education, hyperlipidemia, hypertension, diabetes mellitus, family history of CVD/CHD/stroke, and medications that may affect leukocyte counts (antibiotics or aspirin), and we additionally adjusted for baseline leukocyte counts in the models. Missing data of covariates were filled using imputation methods. For continuous variables, the median values...
were used as replacement of the missing values, and we additionally adjusted for a binary variable indicating whether the observation is a missing value, whereas for categorical variables, an extra group was added to replace the missing values. Person-years was calculated from the date of recruitment until the date of the first onset of CVD event, the date of death, or the end of follow-up, whichever came first. Interaction and stratified analyses were separately conducted by age (<60, ≥60 years), sex (men, women), BMI (<24, ≥24 kg/m²), current smoker (yes, no), current drinker (yes, no), hypertension (yes, no), hyperlipidemia (yes, no), and diabetes mellitus (yes, no). To avoid the effect of baseline inflammatory diseases on leukocyte counts, sensitivity analyses were conducted by excluding participants with baseline total leukocyte count. The CVD incidence was slightly higher than that in other Chinese populations, mainly due to the high mean age among the participants and the relatively comprehensive ascertainment of incident CVD through medical insurance documents, hospital records, and death certificates. As presented in Table 2, after multivariate adjustment for potential confounders, total leukocyte count was associated with incident CVD (HR, 1.03; 95% CI, 1.01–1.05), CHD (HR, 1.03; 95% CI, 1.01–1.05), ACS (HR, 1.05; 95% CI, 1.02–1.08), stroke (HR, 1.04; 95% CI, 1.01–1.08), and IS (HR, 1.06; 95% CI, 1.02–1.10) per 10^9/L increase in total leukocyte count; however, the association was not significant for HS (HR, 0.99; 95% CI, 0.92–1.07).

In stratified Cox proportional-hazards regression models, we found that the CVD risk of increased total leukocyte count was significantly higher among men and current smokers (the P values for interaction were 0.05 and 0.03, respectively; Supplementary Fig. 2). Therefore, we stratified the analyses of the associations between baseline total leukocyte count and the risk of CVD events by sex. High total leukocyte count was associated with incident CVD (HR, 1.04; 95% CI, 1.02–1.06), CHD (HR, 1.03; 95% CI, 1.01–1.06), ACS (HR, 1.05; 95% CI, 1.01–1.08), stroke (HR, 1.05; 95% CI, 1.01–1.09), and IS (HR, 1.07; 95% CI, 1.02–1.12) per 10^9/L increase in total leukocyte count in men, whereas in women, high total leukocyte count was only associated with incident CVD (HR, 1.02; 95% CI, 1.00–1.04) and ACS (HR, 1.06; 95% CI, 1.02–1.10). Restricted cubic spline plots also demonstrated significant linear associations of baseline total leukocyte count with CVD, CHD, and stroke (Fig. 1). Compared with participants in the lowest quartile of total leukocyte count (<4.71×10^9/L), the HRs (95% CIs) of those in the highest quartile (>6.70×10^9/L) were 1.11 (1.03–1.19) (P_trend=0.001) for CVD, 1.10 (1.02–1.19) (P_trend=0.023) for CHD, 1.21 (1.07–1.38) (P_trend=0.002) for ACS, and 1.22 (1.02–1.10) (P_trend=0.001) for IS.
Table 1. Basic characteristics of study participants for baseline total leukocyte count and changes in total leukocyte count

Characteristics	Quartiles of total leukocyte count, ×10^9/L	Changes in total leukocyte count, ×10^9/L	P value						
	<4.71	4.71–5.60	5.61–6.70	>6.70	<−1.18	−1.18 to 0.44	>0.44	P value	
N	6802	6542	6865	6446	2792	5973	2829		
Age (years)	60.1±7.9	61.2±8.0	62.0±8.1	62.8±8.1	<0.001	65.9±7.6	65.7±7.3	65.5±7.3	0.118
Men (%)	2335 (34.3)	2693 (41.2)	3238 (47.2)	3496 (54.2)	<0.001	1436 (51.4)	3511 (58.8)	1702 (60.2)	<0.001
BMI (kg/m^2)	23.4±3.1	24.0±3.2	24.4±3.2	24.9±3.5	<0.001	24.0±3.4	24.1±3.3	24.2±3.4	0.063
Education (%)									
Primary school or below	1272 (18.7)	1432 (21.9)	1569 (22.9)	1584 (24.6)	<0.001	806 (28.9)	1678 (28.1)	872 (30.8)	0.187
Middle school	2382 (35.0)	2355 (36.0)	2560 (37.3)	2573 (36.8)	<0.001	1038 (37.2)	2237 (37.5)	1052 (37.2)	
High school or beyond	3112 (45.8)	2702 (41.3)	2693 (39.2)	2442 (37.9)	<0.001	925 (33.1)	2013 (33.7)	883 (31.2)	
Smoking status (%)									
Current smokers	798 (11.7)	1063 (16.2)	1391 (20.3)	1850 (28.7)	<0.001	530 (19.0)	862 (14.4)	395 (14.0)	<0.001
Former smokers	532 (7.8)	648 (9.9)	700 (10.2)	717 (11.1)	<0.001	344 (12.3)	721 (10.4)	300 (10.6)	
Never smokers	5445 (80.0)	4808 (73.5)	4750 (69.2)	3863 (59.9)	<0.001	1889 (67.7)	4421 (74.0)	2098 (74.2)	
Drinking status (%)									
Current drinkers	1524 (22.4)	1560 (23.8)	1793 (26.1)	1730 (26.8)	<0.001	761 (27.3)	1481 (24.8)	734 (22.4)	0.001
Former drinkers	241 (3.5)	298 (4.4)	299 (4.4)	357 (5.5)	<0.001	154 (5.5)	276 (4.6)	136 (4.8)	
Never drinkers	5024 (73.9)	4671 (71.4)	4767 (69.4)	4350 (67.5)	<0.001	1846 (66.1)	4145 (69.4)	2028 (71.7)	
Physical activity (%)	4810 (70.7)	4698 (71.8)	4903 (71.4)	4528 (70.2)	<0.001	2073 (74.2)	4383 (73.4)	2074 (73.3)	0.050
Anticorruption use (%)	593 (8.7)	496 (7.6)	500 (7.3)	463 (7.2)	<0.001	222 (8.0)	459 (7.7)	193 (7.8)	
Aspirin use (%)	573 (8.4)	618 (9.4)	677 (9.9)	713 (11.1)	<0.001	352 (12.6)	761 (11.1)	318 (11.2)	0.076
Family history of CVD (%)	943 (13.9)	752 (11.5)	715 (10.4)	617 (9.6)	<0.001	218 (7.8)	528 (8.8)	217 (7.7)	0.098
Hyperlipidemia (%)	2176 (32.0)	2554 (39.0)	3008 (43.8)	3258 (50.5)	<0.001	1100 (39.4)	2410 (40.3)	1201 (42.5)	0.054
Hypertension (%)	2844 (41.8)	3183 (48.7)	3550 (51.7)	3898 (60.5)	<0.001	1761 (63.1)	3707 (62.1)	1801 (63.7)	0.417
Diabetes mellitus (%)	763 (11.2)	933 (14.3)	1224 (17.8)	1535 (23.8)	<0.001	566 (20.3)	1066 (17.8)	582 (20.6)	0.008

Abbreviation: BMI, body mass index; CVD, cardiovascular disease.
Continuous variables were described as mean ± SD if normally distributed, or median (interquartile range) if skewed distributed. Categorical variables were described as number (%).

P values were derived from ANOVA tests for continuous variables, and Chi-square test for the category variables.

Presented in Supplementary Tables 2–3.

Associations of Longitudinal Changes in Total and Differential Leukocyte Counts with CVD Events
During a median follow-up of 5.69 years (IQR, 4.81–5.71 years) from the first follow-up in 2013, we identified 2,971 incident CVD cases, including 2,461 CHD (916 ACS) and 510 stroke (404 IS and 106 HS) cases among 11,594 participants. Within a 4.60-year period between baseline and the first follow-up, the participants experienced a decrease of 0.37 × 10^9/L in total leukocyte count on average, and the reproducibility of measurements at baseline and the first follow-up was moderate for total leukocyte count (ICC=0.58), neutrophil count (ICC=0.53), 1.45) (P_{trend}=0.001) for IS. When we restrict the analyses to men, the HRs (95% CIs) of those in the highest quartile were 1.17 (1.06–1.30) (P_{trend}=0.002) for CVD, 1.17 (1.05–1.32) (P_{trend}=0.008) for CHD, 1.26 (1.05–1.52) (P_{trend}=0.013) for ACS, and 1.31 (1.04–1.64) (P_{trend}=0.001) for IS; however, when we restrict the analyses to women, no significant association was observed.

In sensitivity analyses, after excluding participants with gout, major rheumatic diseases, and end-stage renal disease, the associations of total leukocyte count with incident CVD, CHD, and stroke did not materially change (Supplementary Fig. 2). The associations between other differential leukocyte counts and the risk of CVD events are presented in Supplementary Tables 2–3.
Table 2. Adjusted HRs (95% CIs) of cardiovascular events according to quartiles of total leukocyte count in men and women

Quartiles of total leukocyte count, × 10^9/L	Q1 (<4.71)	Q2 (4.71–5.60)	Q3 (5.61–6.70)	Q4 (>6.70)	P for trend	Per 10^9/L increase
CVD						
All Cases/person-years HR (95% CI)	1464/47376	1673/46946	1953/49467	2195/45921	0.001	1.03 (1.01–1.05)
Men Cases/person-years HR (95% CI)	597/15396	785/18551	1045/22400	1289/24026	0.002	1.04 (1.02–1.06)
Woman Cases/person-years HR (95% CI)	867/31980	888/28395	908/27067	906/21895	0.390	1.02 (1.00–1.04)
CHD						
All Cases/person-years HR (95% CI)	1187/48405	1375/47810	1539/50665	1688/47360	0.023	1.03 (1.01–1.05)
Men Cases/person-years HR (95% CI)	445/15930	609/19040	799/23166	933/25009	0.008	1.03 (1.01–1.06)
Woman Cases/person-years HR (95% CI)	742/32475	766/28771	760/27499	755/22351	0.581	1.02 (0.99–1.04)
ACS						
All Cases/person-years HR (95% CI)	409/43460	528/42562	654/44985	739/40991	0.002	1.05 (1.02–1.08)
Men Cases/person-years HR (95% CI)	169/14063	258/16903	349/20374	429/21508	0.013	1.05 (1.01–1.08)
Woman Cases/person-years HR (95% CI)	240/29396	270/25659	305/24610	310/19483	0.084	1.06 (1.02–1.10)
Stroke						
All Cases/person-years HR (95% CI)	277/51317	298/51547	414/54683	507/51577	0.006	1.04 (1.01–1.08)
Men Cases/person-years HR (95% CI)	152/16822	176/20574	266/24977	356/27032	0.007	1.05 (1.01–1.09)
Woman Cases/person-years HR (95% CI)	125/34495	122/30974	148/29706	151/24545	0.338	1.03 (0.97–1.09)
IS						
All Cases/person-years HR (95% CI)	203/51003	224/51201	337/54311	406/51110	0.001	1.06 (1.02–1.10)
Men Cases/person-years HR (95% CI)	108/16645	136/20387	214/24746	291/26734	0.001	1.07 (1.02–1.12)
Woman Cases/person-years HR (95% CI)	95/34358	88/30814	123/29565	115/24376	0.319	1.04 (0.97–1.10)
HS						
All Cases/person-years HR (95% CI)	74/50433	74/50490	77/53097	101/49473	0.938	0.99 (0.92–1.07)
Men Cases/person-years HR (95% CI)	44/16351	40/19912	52/23987	65/25733	0.764	0.99 (0.90–1.09)
Woman Cases/person-years HR (95% CI)	30/34082	34/30578	25/29110	36/24009	0.840	1.00 (0.88–1.12)

Abbreviation: CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute coronary syndrome; IS, ischemic stroke; HS, hemorrhagic stroke. P for trend was calculated when we assigned the median value to each quartile and entered this as a continuous variable in Cox regression models to test its linear effect. Models were adjusted for age, sex, admission batch, BMI, smoking status, drinking status, education, physical activity, hypertension, diabetes mellitus, hyperlipidemia, family history of CVD/CHD/stroke, and intake of antibiotics or aspirin. Sex-stratified analyses were conducted without adjusting for sex.
Joint Effects of Total Leukocyte Count at the First Follow-Up and 5-Year Changes in Total Leukocyte Count on the Risk of CVD Events

We examined the joint effects of total leukocyte count at the first follow-up and 5-year changes in total leukocyte count on incident CVD and its subtypes. As can be seen from Fig. 2, compared with participants with low total leukocyte count at the first follow-up (<4.83 × 10^9/L) and who experienced stable changes (−1.18 to 0.44 × 10^9/L) in total leukocyte count, participants with high levels at the first follow-up (>6.00 × 10^9/L) and experienced increased changes (>
Table 3. Adjusted HRs (95% CIs) of cardiovascular events according to total leukocyte count changes in men and women

	< -1.18 x 10^9/L	-1.18 to 0.44 x 10^9/L	> 0.44 x 10^9/L
CVD			
All			
Cases/person-years	711/13629	1481/29488	779/13624
HR (95% CI)	0.94 (0.85–1.04)	1.00 (ref)	1.14 (1.04–1.24)
Men			
Cases/person-years	366/6521	701/11831	347/5248
HR (95% CI)	0.87 (0.76–1.01)	1.00 (ref)	1.15 (1.01–1.31)
Woman			
Cases/person-years	345/7108	780/17658	432/8376
HR (95% CI)	1.01 (0.88–1.16)	1.00 (ref)	1.14 (1.01–1.28)
CHD			
All			
Cases/person-years	592/13910	1235/30033	634/13981
HR (95% CI)	0.95 (0.85–1.06)	1.00 (ref)	1.11 (1.01–1.22)
Men			
Cases/person-years	293/6702	551/12109	264/5444
HR (95% CI)	0.90 (0.76–1.05)	1.00 (ref)	1.10 (0.95–1.28)
Woman			
Cases/person-years	299/7209	684/17924	370/8538
HR (95% CI)	1.01 (0.87–1.17)	1.00 (ref)	1.12 (0.99–1.27)
ACS			
All			
Cases/person-years	233/12607	467/27110	216/12436
HR (95% CI)	0.91 (0.77–1.08)	1.00 (ref)	1.02 (0.87–1.20)
Men			
Cases/person-years	124/6042	245/10896	101/4786
HR (95% CI)	0.81 (0.63–1.03)	1.00 (ref)	0.96 (0.76–1.21)
Woman			
Cases/person-years	109/6566	222/16214	115/7650
HR (95% CI)	1.05 (0.82–1.35)	1.00 (ref)	1.09 (0.86–1.37)
Stroke			
All			
Cases/person-years	119/15113	246/32396	145/15201
HR (95% CI)	0.88 (0.69–1.12)	1.00 (ref)	1.26 (1.03–1.55)
Men			
Cases/person-years	73/7204	150/13046	83/5905
HR (95% CI)	0.77 (0.56–1.05)	1.00 (ref)	1.27 (0.97–1.67)
Woman			
Cases/person-years	46/7909	96/19350	62/2926
HR (95% CI)	1.10 (0.75–1.61)	1.00 (ref)	1.25 (0.90–1.73)
IS			
All			
Cases/person-years	93/15044	197/32234	114/15110
HR (95% CI)	0.84 (0.64–1.10)	1.00 (ref)	1.24 (0.98–1.57)
Men			
Cases/person-years	60/7168	121/12956	65/5851
HR (95% CI)	0.76 (0.54–1.07)	1.00 (ref)	1.24 (0.91–1.68)
Woman			
Cases/person-years	33/7875	76/19277	49/9260
HR (95% CI)	0.99 (0.63–1.54)	1.00 (ref)	1.22 (0.85–1.77)
HS			
All			
Cases/person-years	26/14835	49/31808	31/14896
HR (95% CI)	1.07 (0.64–1.82)	1.00 (ref)	1.37 (0.87–2.15)
Men			
Cases/person-years	13/7034	29/12686	18/5711
HR (95% CI)	0.80 (0.39–1.66)	1.00 (ref)	1.45 (0.80–2.63)
Woman			
Cases/person-years	13/7801	20/19122	13/9185
HR (95% CI)	1.54 (0.71–3.36)	1.00 (ref)	1.32 (0.65–2.67)

Abbreviation: CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute coronary syndrome; IS, ischemic stroke; HS, hemorrhagic stroke. Models were adjusted for age, sex, BMI, education, smoking status, drinking status, physical activity, hypertension, diabetes mellitus, hyperlipidemia, family history of CVD/CHD/stroke, intake of antibiotics or aspirin and baseline total leukocyte count. Sex-stratified analyses were conducted without adjusting for sex.
higher risk of CVD events. In addition, high total leukocyte count at the first follow-up with a 5-year increase in total leukocyte count was associated with higher risk of CVD, stroke, and IS. Consistent with our findings, the positive associations of increased total leukocyte count with elevated risk of ischemic CVD have been previously reported in different ethnic, age, and sex groups\textsuperscript{15, 16, 19, 34, 56). Our results indicated that the association of total leukocyte count with CVD was mostly explained by its relations with ACS and IS, and this study additionally suggested that participants with high total leukocyte count had a greater risk of ACS than CHD. ACS is considered to be the most serious clinical type of CHD, with serious thrombotic complications on the basis of atherosclerosis and activated immune cells contributing to plaque rupture and endothelial erosion of this process\textsuperscript{57). Friedman \textit{et al.} \textsuperscript{58) measured the total leukocyte count at the first follow-up and 5-year changes in total leukocyte count on the risk of incident CVD events

Joint effect of total leukocyte count at the first follow-up and 5-year changes in total leukocyte count on the risk of incident CVD (a), CHD (b), ACS (c), stroke (d), IS (e), and HS (f). Hazard ratios and 95% CIs were obtained by using Cox proportional-hazards regression model, adjusting for age, sex, BMI, smoking status, drinking status, physical activity, education, hyperlipidemia, hypertension, diabetes mellitus, family history of CVD/CHD/stroke, intake of antibiotics or aspirin at the first follow-up of the DFTJ cohort. Total leukocyte count at the first follow-up was categorized into tertiles (low, moderate, and high). Five-year changes in leukocyte count were categorized into three groups, i.e., the decreased group (<25%), stable group (25%–75%), and increased group (>75%). Abbreviation: CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute coronary syndrome; IS, ischemic stroke; HS, hemorrhagic stroke.

Discussion

In this large prospective cohort comprised of middle-aged and elderly Chinese individuals, we found that high total and differential leukocyte counts as well as their 5-year changes were associated with higher risk of CVD events. In addition, high total leukocyte count at the first follow-up with a 5-year increase in total leukocyte count was associated with higher risk of CVD, stroke, and IS.

Consistent with our findings, the positive associations of increased total leukocyte count with elevated risk of ischemic CVD have been previously reported in different ethnic, age, and sex\textsuperscript{15, 16, 19, 34, 56). Our results indicated that the association of total leukocyte count with CVD was mostly explained by its relations with ACS and IS, and this study additionally suggested that participants with high total leukocyte count had a greater risk of ACS than CHD. ACS is considered to be the most serious clinical type of CHD, with serious thrombotic complications on the basis of atherosclerosis and activated immune cells contributing to plaque rupture and endothelial erosion of this process\textsuperscript{57). Friedman \textit{et al.} \textsuperscript{58) measured the total leukocyte count at the first follow-up and 5-year changes in total leukocyte count on the risk of incident CVD events

Joint effect of total leukocyte count at the first follow-up and 5-year changes in total leukocyte count on the risk of incident CVD (a), CHD (b), ACS (c), stroke (d), IS (e), and HS (f). Hazard ratios and 95% CIs were obtained by using Cox proportional-hazards regression model, adjusting for age, sex, BMI, smoking status, drinking status, physical activity, education, hyperlipidemia, hypertension, diabetes mellitus, family history of CVD/CHD/stroke, intake of antibiotics or aspirin at the first follow-up of the DFTJ cohort. Total leukocyte count at the first follow-up was categorized into tertiles (low, moderate, and high). Five-year changes in leukocyte count were categorized into three groups, i.e., the decreased group (<25%), stable group (25%–75%), and increased group (>75%). Abbreviation: CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute coronary syndrome; IS, ischemic stroke; HS, hemorrhagic stroke.
leukocyte count 16.8 months before the onset of myocardial infarction and demonstrated that the total leukocyte count was a predictor of myocardial infarction. Furthermore, the Women’s Health Initiative study, in which 72,242 participants (701 cases) were enrolled, suggested that women in the upper quartile of total leukocyte count had a 40% higher risk of nonfatal myocardial infarction. Similarly, this present study measured the leukocyte counts several years before the onset of ACS and suggested that the upper quartile of total leukocyte count had a 21% higher risk of ACS.

In line with previous studies, we found significant associations of total leukocyte count with incident IS. The Honolulu Heart Program reported that increased total leukocyte count was an independent predictor of stroke and IS, but not HS, among 3,342 elderly Japanese-American men, a finding that is in agreement with the results of this study. Moreover, the non-significant association between total leukocyte count and incident HS may be attributed to the fact that there were only 326 cases of HS. Nonetheless, data from the Malmö Diet and Cancer Study indicated that the total leukocyte count was inversely related to the risk of HS, at marginal significance (P for trend = 0.046). However, high NLR was found to be independently associated with greater risk of stroke, IS, and HS in the present study, and the prospective relation between NLR and risk of HS has not been reported before.

In the sex-stratified analyses of baseline and 5-year changes in total leukocyte count, the main results were consistent among men. However, the baseline total leukocyte count among women only indicated a linear correlation with incident CVD and ACS. This can be explained by different lifestyles, estrogen bioactivity, and medication usage, such as hormone replacement therapy or oral contraceptives, in different sexes.

The design of this cohort study enabled us to investigate the 5-year changes in total leukocyte count with the risk of CVD events. A previous study found that change in total leukocyte count was an independent predictor of CHD, a finding consistent with the results of this study. In addition, we reported that longitudinal change in total leukocyte count was related to increased risk of CVD and stroke in the general population. However, no significant associations were observed between 5-year changes in total leukocyte count and subtypes of CHD or stroke. The risk may be underestimated in these analyses as most severe cases had higher baseline total leukocyte count but lower total leukocyte count during the first follow-up. This is also why we conducted joint analyses to further investigate the joint associations of total leukocyte count at the first follow-up and 5-year changes in total leukocyte count with CVD risk. The Metabolic, Lifestyle and Nutrition Assessment in Young Adults study among Israeli army young adults found that a persistently high total leukocyte count was significantly associated with CHD incidence. Furthermore, we reported that high total leukocyte count at the first follow-up with a 5-year increase in total leukocyte count was related to higher risk of CVD. The findings in these analyses indicate that serial measurements of total leukocyte count might help monitor the health status of middle-aged and elderly individuals; therefore, we could prevent CVD in time.

Different leukocyte subtypes play a role in inflammation and immune response, and atherosclerosis is an immune-mediated inflammatory disease that involves both innate and adaptive immunities. Monocyte-derived macrophage is the main innate immunity cell in the atherosclerotic plaque. The plasma lipoproteins beneath the endothelial cell recruit monocytes and trigger monocytes, which differentiate into macrophages or foam cells and further form atherosclerotic plaques. Neutrophils and eosinophils might contribute to the emergence of atherosclerosis and thrombosis through an interplay with platelets and overactivity of extracellular traps. Neutrophils can also release myeloperoxidase and matrix metalloproteinase, which leads to endothelial dysfunction and atherosclerotic plaque instability. Eosinophil degranulation and basophil activation are involved in the progression and rupture of coronary plaque. Moreover, different lymphocyte subtypes play both pro-atherogenic and anti-atherosclerotic roles in the process of atherosclerosis. This study suggested a significant association between high levels of baseline NLR and the risk of CVD, ACS, and the two stroke subtypes, especially HS. In addition, we found that decreased lymphocyte count was related to higher risk of HS, which indicates that lymphocyte-mediated adaptive immunity, together with innate immunity, is involved in the pathogenesis of HS. A potential explanation might be that regulatory T-cell-mediated immunosuppression could balance the adverse effects of excessive inflammation and plays a positive role in the pathogenesis of HS.

This study was mainly strengthened by its large sample size, prospective design, and inclusion of a wide range of established risk factors of CVD as covariates. The cohort study design enabled us to evaluate the relations of total and differential leukocyte counts with the subtypes of CHD and stroke in one
general population. In addition, two measurements over time allowed us to investigate the longitudinal changes in total and differential leukocyte counts with incident CVD and its subtypes, and serial monitoring of total and differential leukocyte counts could better reflect the long-term inflammatory state and help in the prevention of CVD. Furthermore, the results in this study confirmed the important role of innate and adaptive immunities in the pathogenesis of different CVD subtypes. This suggests that controlling and balancing the innate and adaptive immune responses might be preventive measures for different CVD subtypes. However, this study has several limitations. Although we carefully adjusted for a wide range of potential confounding factors, residual confounding may still be present. As the study population was comprised of middle-aged and elderly Chinese individuals without CVD or cancer, caution needs to be taken when applying findings in this study to populations of other age, ethnicity, or health condition groups. Finally, medication usage and baseline inflammatory diseases may have an impact on leukocyte counts. However, we adjusted for medications that may affect leukocyte counts (antibiotics or aspirin) and conducted sensitivity analyses by excluding baseline inflammatory diseases, and the results were materially unchanged.

In conclusion, high total and differential leukocyte counts as well as their changes were associated with elevated risk of CVD events in middle-aged and elderly Chinese population. Our findings further confirm that monitoring longitudinal changes in leukocyte markers may help provide an avenue for the primary prevention of future cardiovascular events.

Acknowledgements

The authors thank all Dongfeng-Tongji cohort participants, staff and investigators for their contribution to the study.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFC0900800), the National Natural Science Foundation of China (81930092), the Fundamental Research Funds for the Central Universities (2019kyXMBZ015), the 111 Project and the Program for Changjiang Scholars and Innovative Research Team in University.

Competing Interests

The authors declare no competing interests.

References

1) Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol, 2019; 16: 203-212
2) Fernandez-Ruiz I. Immune system and cardiovascular disease. Nat Rev Cardiol, 2016; 13: 503
3) Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med, 2011; 17: 796-808
4) Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med, 2005; 352: 1685-1695
5) Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol, 2017; 13: 368-380
6) Sasaki K, Shoji T, Kabata D, Shintani A, Okute Y, Tsuchikura S, Shimomura N, Tsujimoto Y, Nakatani S, Mori K, Shioi A, Inaba M, Emoto M. Oxidative stress and inflammation as predictors of mortality and cardiovascular events in hemodialysis patients: the DREAM cohort. J Atheroscler Thromb, 2021; 28: 249-260
7) Lin JS, Evans CV, Johnson E, Redmond N, Coppola EL, Smith N. Nontraditional risk factors in cardiovascular disease risk assessment: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA, 2018; 320: 281-297
8) Kaptoe S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, Walker M, Thompson A, Sarwar N, Caslake M, Butterworth AS, Amouyel P, Assmann G, Bakker SJ, Barr EL, Barrett-Connor E, Benjamin EJ, Björkelund C, Brenner H, Brunner E, Clarke R, Cooper JA, Cremer P, Cushnahan M, Dagenais GR, D’Agostino RB Sr, Dankner R, Davey-Smith G, Deeg D, Dekker JM, Engström G, Folsom AR, Fowkes FG, Gallacher J, Gaziano JM, Giampoli S, Gillum RF, Gudnason V, Kaptoge S, Kitamura A, Kiyohara Y, Koenig W, Kromhout D, Kuller LH, Lawlor DA, Meade TW, Nissinen A, Nordestgaard BG, Onat A, Panagiotakos DB, Psaty BM, Rodriguez B, Rosengren A, Salomaa V, Kauhanen J, Salonen JT, Shafer JA, Shea S, Ford I, Strehouwer CD, Strandberg TE, Tipping RW, Tosetto A, Waserthiel-Smoller S, Wennberg P, Westendorp RG, Whincup PH, Wilhelmsen L, Woodward M, Lowe GD, Wareham NJ, Khaw KT, Sattar N, Packard CJ, Gudnason V, Ridker PM, Pepys MB, Thompson SG, Danesh J. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med, 2012; 367: 1310-1320
9) Matsuo Y, Kumakura H, Kanai H, Iwasaki T, Ichikawa S. The geriatric nutritional risk index predicts long-term survival and cardiovascular or limb events in peripheral arterial disease. J Atheroscler Thromb, 2020; 27: 134-143
10) Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJ, Cornet JH, Pias P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z,
11) Zheng SL, Roddick AJ. Association of aspirin use for primary prevention with cardiovascular events and bleeding events: A systematic review and meta-analysis. JAMA, 2019; 321: 277-287

12) Gillum RF, Ingram DD, Makuc DM. White blood cell count, coronary heart disease, and death: the NHANES I Epidemiologic Follow-up Study. Am Heart J, 1993; 125: 855-863

13) Madjid M, Awan I, Willerson JT, Casscells SW. Leukocyte count and coronary heart disease: implications for risk assessment. J Am Coll Cardiol, 2004; 44: 1945-1956

14) Li C, Engström G, Hedblad B. Leukocyte count is associated with incidence of coronary events, but not with stroke: a prospective cohort study. Atherosclerosis, 2010; 209: 545-550

15) Lee CD, Folsom AR, Nieto FJ, Chambless LE, Shahar E, Wolfe DA. White blood cell count and incidence of coronary heart disease and ischemic stroke and mortality from cardiovascular disease in African-American and white men and women: atherosclerosis risk in communities study. Am J Epidemiol, 2001; 154: 758-764

16) Margolis KL, Manson JE, Greenland P, Rodabough RJ, Bray PF, Safford M, Grimm RH Jr, Howard BV, Assaf AR, Prentice R. Women's Health Initiative Research Group. Leukocyte count as a predictor of cardiovascular events and mortality in postmenopausal women: the Women's Health Initiative Observational Study. Arch Intern Med, 2005; 165: 500-508

17) Wheeler JG, Mussolino ME, Gillum RF, Danesh J. Associations between differential leucocyte count and incident coronary heart disease: 1764 incident cases from seven prospective studies of 30,374 individuals. Eur Heart J, 2004; 25: 1287-1292

18) Rana JS, Boekholdt SM, Ridker PM, Jukema JW, Luben R, Bingham SA, Day NE, Wareham NJ, Kastelijn JJ, Khaw KT. Differential leucocyte count and the risk of future coronary artery disease in healthy men and women: the EPIC-Norfolk Prospective Population Study. J Intern Med, 2007; 262: 678-689

19) Karino S, Willcox BJ, Fong K, Lo S, Abbott R, Masaki KH. Total and differential white blood cell counts predict eight-year incident coronary heart disease in elderly Japanese-American men: the Honolulu Heart Program. Atherosclerosis, 2015; 238: 153-158

20) Huh JY, Ross GW, Chen R, Abbott RD, Bell C, Willcox B, Launer L, Petrovitch H, Kaya B, Masaki K. Total and differential white blood cell counts in late life predict 8-year incident stroke: the Honolulu Heart Program. J Am Geriatr Soc, 2015; 63: 439-446

21) Welsh C, Welsh P, Mark PB, Celis-Morales CA, Lewsey J, Gray SR, Lyall DM, Illidromiti S, Gill JMR, Pelf J, Jhund PS, Sattar N. Association of total and differential leukocyte counts with cardiovascular disease and mortality in the UK Biobank. Arterioscler Thromb Vasc Biol, 2018; 38: 1415-1423

22) Li J, Imano H, Yamagishi K, Tanaka M, Cui R, Muraki I, Umesawa M, Hayama-Terada M, Ohira T, Kiyama M, Okada T, Sankai T, Tanigawa T, Kitamura A, Iso H; CIRCS Investigators. Leukocyte count and risks of stroke and coronary heart disease: the Circulatory Risk in Communities Study (CIRCS). J Atheroscler Thromb, 2022; 29: 527-535

23) Weijenborg MP, Feskens EJ, Kromhout D. White blood cell count and the risk of coronary heart disease and all-cause mortality in elderly men. Arterioscler Thromb Vasc Biol, 1996; 16: 499-503

24) Gillum RF, Mussolino ME, Madans JH. Counts of neutrophils, lymphocytes, and monocytes, cause-specific mortality and coronary heart disease: the NHANES-I epidemiologic follow-up study. Ann Epidemiol, 2005; 15: 266-271

25) Wu TH, Chien KL, Lin HJ, Hsu HC, Su TC, Chen MF, Lee YT. Total white blood cell count or neutrophil count predict ischemic stroke events among adult Taiwanese: report from a community-based cohort study. BMC Neurol, 2013; 13: 7

26) Zia E, Melander O, Björkbacka H, Hedblad B, Engström G. Total and differential leucocyte counts in relation to incidence of stroke subtypes and mortality: a prospective cohort study. J Intern Med, 2012; 272: 298-304

27) G Hartaigh B, Bosch JA, Thomas GN, Pizz L, Loerbroks A, Kleber ME, Grammer TB, Fischer JE, Boehm BO, Mærz W. Which leukocyte subsets predict cardiovascular mortality? From the LUDwigshafen Rsk and Cardiovascular Health (LURIC) Study. Atherosclerosis, 2012; 224: 161-169

28) Shah AD, Denaxas S, Nicholas O, Hingorani AD, Hemingway H. Neutrophil counts and initial presentation of 12 cardiovascular diseases: a CALIBER cohort study. J Am Coll Cardiol, 2017; 69: 1160-1169

29) Madjid M, Fatemi O. Components of the complete blood count as risk predictors for coronary heart disease: in-depth review and update. Tex Heart Inst J, 2013; 40: 17-29

30) Olivares R, Ducimetière P, Claude JR. Monocyte count: a risk factor for coronary heart disease? Am J Epidemiol, 1993; 137: 49-53

31) SahBandar IN, Ndhlou LC, Saiki K, Kohorn LB, Peterson MM, D’Antoni ML, Shiramizu B, Shikuma CM, Chow DC. Relationship between circulating inflammatory monocytes and cardiovascular disease measures of carotid intimal thickness. J Atheroscler Thromb, 2020; 27: 441-448

32) Nicholas O, Shah AD, Hemingway H, Denaxas S, Hingorani AD. Low eosinophil and low lymphocyte counts and the incidence of 12 cardiovascular diseases: a CALIBER cohort study. Open Heart, 2016; 3: e000477

33) Fan I, van der Willik KD, Bos D, Leening MJG, Koudstaal PJ, Rijzopoulos D, Ruitter R, Stricker BHC, Kavousi M, Ikram MA, Ikram MK. The association of innate and adaptive immunity, subclinical atherosclerosis, and cardiovascular disease in the Rotterdam Study: A prospective cohort study. PLoS Med, 2020; 17: e1003116

34) Kim S, Eliot M, Koester DC, Wu WC, Kelsey KT. Association of neutrophil-to-lymphocyte ratio with mortality and cardiovascular disease in the Jackson Heart Study and modification by the Duffy antigen variant.
JAMA Cardiol, 2018; 3: 455-462
35) Liew PX, Kubes P. The Neutrophil's role during health and disease. Physiol Rev, 2019; 99: 1223-1248
36) Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol, 2014; 5: 491
37) Seifert M, Küppers R. Human memory B cells. Leukemia, 2016; 30: 2283-2292
38) Yoshida K, French B, Yoshida N, Hida A, Ohishi W, Kasakovski D, Xu L, Li Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J Hematol Oncol, 2018; 11: 91
39) Yoshida K, French B, Yoshida N, Hida A, Ohishi W, Kusunoki Y. Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: the Adult Health Study of atomic bomb survivors. Br J Haematol, 2019; 185: 107-115
40) Fisch IR, Freedman SH. Smoking, oral contraceptives, and obesity. Effects on white blood cell count. JAMA, 1975; 234: 500-506
41) Nakanishi N, Yoshida H, Okamoto M, Matsuo Y, Suzuki K, Tatara K. Association of alcohol consumption with white blood cell count: a study of Japanese male office workers. J Intern Med, 2003; 253: 367-374
42) Grimm RH, Jr., Neaton JD, Ludwig W. Prognostic importance of the white blood cell count for coronary, cancer, and all-cause mortality. JAMA, 1985; 254: 1932-1937
43) Ruggiero C, Metter EJ, Cherubini A, Maggio M, Sen R, Najjar SS, Windham GB, Ble A, Senin U, Ferrucci L. White blood cell count and mortality in the Baltimore Longitudinal Study of Aging. J Am Coll Cardiol, 2007; 49: 1841-1850
44) Twig G, Afek A, Shamiss A, Derazne E, Tzur D, Gordon B, Tirosch A. White blood cell count and the risk for coronary artery disease in young adults. PloS One, 2012; 7: e47183
45) Wang F, Zhu J, Yao P, Li X, He M, Liu Y, Yuan J, Chen W, Zhou L, Min X, Fang W, Liang Y, Wang Y, Wei S, Liu J, Miao X, Lang M, Jiang X, Zhang P, Li D, Lu C, Wang X, Shi W, Zheng J, Guo H, Zhang X, Yang H, Hu FB, Wu T. Cohort profile: the Dongfeng-Tongji cohort study of retired workers. Int J Epidemiol, 2013; 42: 731-740
46) Eisfeld J. International classification of diseases and related health problems, tenth revision (ICD-10). 2014; 1: 107-110
47) Luepker RV, Apple FS, Christenson RH, Crow RS, Fortmann SP, Goff D, Goldberg RJ, Hand MM, Jaffe AS, Julian DG, Levy D, Manolio T, Mendis S, Mensah G, Pajak A, Prineas RJ, Reddy KS, Roger VL, Rosamond WD, Shahar E, Sharrett AR, Sorlie P, Tunstall-Pedoe H; AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; Centers for Disease Control and Prevention; National Heart, Lung, and Blood Institute. Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation, 2003; 108: 2543-2549
48) Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology committee for the redefinition of myocardial infarction. J Am Coll Cardiol, 2000; 36: 959-969
49) Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey DE Jr, Chavey WE 2nd, Fesmire FM, Hochman JS, Levin TN, Lincoff AM, Peterson ED, Theroux P, Wenger NK, Wright RS, Jneid H, Ettinger SM, Ganiats TG, Lincoff AM, Philipides GJ, Zidar JP; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 2013; 127: e663-e828
50) Robins M, Baum HM. The national survey of stroke. Stroke, 1981; 12: 145-157
51) Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, Elkind MS, George MG, Hamad AD, Higashida RT, Hoh BL, Janis LS, Kase CS, Kleindorfer DO, Lee JM, Moseley ME, Peterson ED, Turan TN, Valderrama AL, Vinters HV; American Heart Association Stroke Council, Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular and Stroke Nursing; Council on Epidemiology and Prevention; Council on Peripheral Vascular Disease; Council on Nutrition, Physical Activity and Metabolism. An updated definition of stroke for the 21st century a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 2013; 44: 2064-2089
52) Ma YC, Zuo L, Chen JH, Luo Q, Yu XQ, Li Y, Xu JS, Huang SM, Wang LN, Huang W, Wang M, Xu GB, Wang HY. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol, 2006; 17: 2937-2944
53) Lv J, Yu C, Guo Y, Bian Z, Yang L, Chen Y, Tang X, Zhang W, Qian Y, Huang Y, Wang X, Chen J, Chen Z, Qi L, Li L; China Kadoorie Biobank Collaborative Group. Adherence to healthy lifestyle and cardiovascular diseases in middle-aged and older Chinese adults. J Am Coll Cardiol, 2017; 69: 1116-1125
54) Li H, Zheng D, Li Z, Wu Z, Feng W, Cao X, Wang J, Gao Q, Li X, Wang W, Hall BJ, Xiang YT, Guo X. Association of depressive symptoms with incident cardiovascular diseases in middle-aged and older Chinese adults. JAMA Netw Open, 2019; 2: e1916591
55) Huang K, Liang F, Yang X, Liu F, Li J, Xiao Q, Chen J, Liu X, Cao J, Shen C, Yu L, Lu F, Wu X, Zhao L, Wu X, Li Y, Hu D, Huang J, Liu Y, Lu X, Gu D. Long term exposure to ambient fine particulate matter and incidence of stroke: prospective cohort study from the China-PAR...
56) Horne BD, Anderson JL, John JM, Weaver A, Bair TL, Jensen KR, Renlund DG, Muhlestein JB; Intermountain Heart Collaborative Study Group. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol, 2005; 45: 1638-1643
57) Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med, 2013; 368: 2004-2013
58) Friedman GD, Klatsky AL, Siegelaub AB. The leukocyte count as a predictor of myocardial infarction. N Engl J Med, 1974; 290: 1275-1278
59) Suh B, Shin DW, Kwon HM, Yun JM, Yang HK, Ahn E, Lee H, Park JH, Cho B. Elevated neutrophil to lymphocyte ratio and ischemic stroke risk in generally healthy adults. PloS One, 2017; 12: e0183706
60) Shah PK, Chyu K-Y, Dimayuga PC, Nilsson J. Vaccine for atherosclerosis. J Am Coll Cardiol, 2014; 64: 2779-2791
61) Borissoff JL, ten Cate H. From neutrophil extracellular traps release to thrombosis: an overshooting host-defense mechanism? J Thromb Haemost, 2011; 9: 1791-1794
62) Marx C, Novotny J, Salbeck D, Zellner KR, Nicolai L, Pekayvaz K, Kilani B, Stockhausen S, Bürgener N, Kupka D, Stocker TJ, Weckbach LT, Pircher J, Moser M, Joner M, Desmet W, Adriaenssens T, Neumann FJ, Gerschlick AH, Ten Berg JM, Lorenz M, Stark K. Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood, 2019; 134: 1859-1872
63) Döring Y, Drechsler M, Soehnlein O, Weber C. Neutrophils in atherosclerosis: from mice to man. Arterioscler Thromb Vasc Biol, 2015; 35: 288-295
64) Niccoli G, Montone RA, Sabato V, Crea F. Role of allergic inflammatory cells in coronary artery disease. Circulation, 2018; 138: 1736-1748
65) Hansson GK, Hermansson A. The immune system in atherosclerosis. Nature immunol, 2011; 12: 204-212
Supplementary Table 1. A comparison of the basic characteristics between the included participants and participants who were excluded due to missing and extreme values of the total leukocyte count

Characteristics	Included	Excluded
N	26655	5096
Age (years)	61.5 ± 8.1	62.6 ± 7.7
Men (%)	11762 (44.1)	2216 (43.5)
BMI (kg/m²)	24.2 ± 3.3	24.5 ± 3.4
Education (%)		
Primary school or below	5857 (22.1)	1084 (21.4)
Middle school	9670 (36.5)	1773 (35.0)
High school or beyond	10949 (41.4)	2202 (43.5)
Smoking status (%)		
Current smokers	5102 (19.2)	931 (18.5)
Former smokers	2597 (9.8)	480 (9.5)
Never smokers	18866 (71.0)	3629 (72.0)
Drinking status (%)		
Current drinkers	6607 (24.8)	1088 (21.4)
Former drinkers	1195 (4.5)	232 (4.6)
Never drinkers	18812 (70.7)	3764 (74.0)
Physical activity (%)	18939 (71.1)	3344 (65.6)
Antibiotics use (%)	2052 (7.7)	427 (8.4)
Aspirin use (%)	2581 (9.7)	459 (9.0)
Family history of CVD (%)	2849 (10.7)	509 (10.0)
Hyperlipidemia (%)	10996 (41.3)	1433 (28.1)
Hypertension (%)	13475 (50.6)	2409 (47.3)
Diabetes mellitus (%)	4455 (16.7)	562 (11.0)

Abbreviation: BMI, body mass index; CVD, cardiovascular disease.

Continuous variables were described as mean ± SD if normally distributed, or median (interquartile range) if skewed distributed. Categorical variables were described as number (%).

Data were incomplete for these variables. For totally 26655 participants included in the analysis, 357 (1.3%), 179 (0.7%), 90 (0.3%) and 41 (0.2%) of participants had missing data for BMI, education, smoking status and drinking status, respectively. The other variables included in the analyses did not have missing data. For the 5096 participants who were excluded due to missing and extreme values of total leukocyte count, 1585 (31.1%), 37 (0.7%), 56 (1.1%), and 12 (2.4%) of participants had missing data for BMI, education, smoking status and drinking status, respectively.
Supplementary Fig. 1. Flow chart of participants ultimately included in this study

Abbreviation: DFTJ, Dongfeng-Tongji cohort; CHD, coronary heart disease; CVD, cardiovascular disease; ACS, acute coronary syndrome; IS, ischemic stroke; HS, hemorrhagic stroke.

Severely abnormal electrocardiogram included myocardial infarction, atrial fibrillation/flutter, frequent premature ventricular contractions, pacemaker rhythm and pre-excitation syndrome.

Supplementary Fig. 2. Adjusted HRs (95% CIs) of incident CVD, CHD and stroke according to total leukocyte count in subgroups

Adjusted HRs (95% CIs) for incident CVD/CHD/Stroke in the highest compared with the lowest total leukocyte count quartiles in subgroups stratified by age, sex and other cardiovascular risk factors; The models in Table 2 were used in these analyses. P value was tested by including the respective multiplicative interaction terms between these characteristics and total leukocyte count on incident CVD/CHD/stroke; Because of missing values for BMI (n=357), smoking status (n=90) and drinking status (n=41) hence not the same total number for each stratification characteristics. The sensitivity analysis excluded baseline diseases including gout, major rheumatic diseases and end-stage renal disease (estimated glomerular filtration rate < 30 ml/min).
Supplementary Table 2. Adjusted HRs (95% CIs) of incident CVD, CHD and ACS according to quartiles of differential leukocyte counts and neutrophil-to-lymphocyte ratio

Neutrophil count	CVD	CHD	ACS	
Q1 (<2.601, ×10^9/L)	14245/43934 1.00 (ref)	1167/44840 1.00 (ref)	427/40058 1.00 (ref)	
Per 10^9/L increase	1.03 (1.01–1.05)	1.01 (0.99–1.04)	1.05 (1.01–1.09)	
Lymphocyte count	Q1 (<1.461, ×10^9/L)	1449/39467 1.00 (ref)	1152/40111 1.00 (ref)	436/36270 1.00 (ref)
Per 10^9/L increase	1.02 (0.98–1.05)	1.03 (0.99–1.08)	1.03 (0.96–1.09)	
Monocyte count	Q1 (<0.281, ×10^9/L)	921/28218 1.00 (ref)	787/28650 1.00 (ref)	267/26129 1.00 (ref)
Per 10^9/L increase	1.10 (0.92–1.32)	1.09 (0.93–1.13)	1.14 (0.85–1.54)	
Eosinophil count	Q1 (<0.061, ×10^9/L)	1038/31636 1.00 (ref)	844/32226 1.00 (ref)	324/29221 1.00 (ref)
Per 10^9/L increase	1.18 (0.99–1.41)	1.27 (1.05–1.53)	1.08 (0.78–1.51)	
Basophil count	Q1 (<0.047, ×10^9/L)	996/28409 1.00 (ref)	813/28897 1.00 (ref)	282/26334 1.00 (ref)
Per 10^9/L increase	1.08 (0.88–1.32)	1.19 (0.96–1.48)	1.00 (0.66–1.54)	
Neutrophil-to-lymphocyte ratio	Q1 (<1.34)	1588/43431 1.00 (ref)	1306/44362 1.00 (ref)	511/39074 1.00 (ref)
Per one unit increase	1.03 (1.00–1.06)	1.02 (0.99–1.05)	1.07 (1.02–1.11)	

Abbreviation: CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute coronary syndrome; CI, confidence interval; HR, hazard ratio.

HRs were adjusted for age, sex, admission batch, BMI, smoking status, drinking status, education, physical activity, hypertension, diabetes mellitus, hyperlipidemia, family history of CVD/CHD, and intake of antibiotics or aspirin.

\(^{*} \) \(P \) for trend was calculated when we assigned the median value to each quartile and entered this as a continuous variable in the model to test its linear effect.
Supplementary Table 3. Adjusted HRs (95% CIs) of incident stroke, IS and HS according to quartiles of differential leukocyte counts and neutrophil-to-lymphocyte ratio

	Stroke Events/ Person-years	HR (95% CI)	Ischemic stroke Events/ Person-years	HR (95% CI)	Hemorrhagic stroke Events/ Person-years	HR (95% CI)
Neutrophil count						
Q1 (<2.601, × 10^9/L)	258/47903 1.00 (ref)					
Q2 (2.601–3.230, × 10^9/L)	276/45389 0.93 (0.79–1.11)					
Q3 (3.231–4.030, × 10^9/L)	362/46948 1.06 (0.90–1.24)					
Q4 (>4.030, × 10^9/L)	465/46781 1.20 (1.02–1.40)					
P for trend⁸	0.003	0.003				0.387
Per 10^9/L increase	1.08 (1.03–1.13)		1.08 (1.03–1.14)		1.08 (0.98–1.19)	
Lymphocyte count						
Q1 (<1.461, × 10^9/L)	297/43197 1.00 (ref)					
Q2 (1.461–1.810, × 10^9/L)	309/46884 0.94 (0.80–1.10)					
Q3 (1.811–2.250, × 10^9/L)	364/48177 1.03 (0.88–1.21)					
Q4 (>2.250, × 10^9/L)	392/48897 0.96 (0.82–1.12)					
P for trend⁸	0.792					0.515
Per 10^9/L increase	0.96 (0.89–1.05)		0.99 (0.91–1.09)		0.85 (0.71–1.02)	
Monocyte count						
Q1 (<0.281, × 10^9/L)	134/30663 1.00 (ref)					
Q2 (0.281–0.374, × 10^9/L)	210/36003 1.14 (0.91–1.42)					
Q3 (0.375–0.480, × 10^9/L)	282/37039 1.25 (1.01–1.56)					
Q4 (>0.480, × 10^9/L)	307/34614 1.17 (0.94–1.45)					
P for trend⁸	0.263					0.720
Per 10^9/L increase	1.20 (0.84–1.71)		1.26 (0.87–1.84)		0.96 (0.40–2.31)	
Eosinophil count						
Q1 (<0.061, × 10^9/L)	194/34377 1.00 (ref)					
Q2 (0.061–0.100, × 10^9/L)	225/35778 0.99 (0.81–1.20)					
Q3 (0.101–0.164, × 10^9/L)	249/33479 1.06 (0.87–1.28)					
Q4 (>0.164, × 10^9/L)	265/34701 0.96 (0.80–1.17)					
P for trend⁸	0.678					0.181
Per 10^9/L increase	0.86 (0.54–1.37)		1.01 (0.62–1.64)		0.37 (0.10–1.32)	
Basophil count						
Q1 (<0.047, × 10^9/L)	183/31037 1.00 (ref)					
Q2 (0.047–0.072, × 10^9/L)	251/38543 0.92 (0.76–1.13)					
Q3 (0.073–0.109, × 10^9/L)	286/37786 0.98 (0.81–1.20)					
Q4 (>0.109, × 10^9/L)	213/30789 0.92 (0.76–1.13)					
P for trend⁸	0.579					0.554
Per 10^9/L increase	0.67 (0.38–1.16)		0.69 (0.37–1.28)		0.61 (0.18–2.02)	
Neutrophil-to-lymphocyte ratio						
Q1 (<1.34)	282/47980 1.00 (ref)					
Q2 (1.34–1.79)	354/50088 1.16 (0.99–1.35)					
Q3 (1.80–2.37)	336/46939 1.11 (0.95–1.30)					
Q4 (>2.37)	391/42734 1.30 (1.12–1.52)					
P for trend⁸	0.002					<0.001
Per one unit increase	1.06 (1.01–1.12)		1.05 (0.99–1.11)		1.11 (1.01–1.23)	

Abbreviation: CI, confidence interval; HR, hazard ratio.
HRs were adjusted for age, sex, admission batch, BMI, smoking status, drinking status, education, physical activity, hypertension, diabetes mellitus, hyperlipidemia, family history of stroke, and intake of antibiotics or aspirin.

⁸P for trend was calculated when we assigned the median value to each quartile and entered this as a continuous variable in the model to test its linear effect.
Supplementary Table 4. Adjusted HRs (95% CIs) of incident CVD, CHD and ACS according to groups of 5-year changes in differential leukocyte counts

Changes (× 10⁹/L)	CVD Events/Person-years	HR (95% CI)	CHD Events/Person-years	HR (95% CI)	ACS Events/Person-years	HR (95% CI)
Neutrophil count change						
Q1 (< –0.65)	648/12900	0.96 (0.86–1.06)	539/13134	0.97 (0.86–1.08)	213/11946	0.98 (0.82–1.18)
Q2–Q3 (–0.65 to 0.49)	1349/26274	1.00 (ref)	1131/26789	1.00 (ref)	413/24074	1.00 (ref)
Q4 (> 0.49)	730/12561	1.10 (1.00–1.20)	596/12884	1.06 (0.96–1.18)	221/11497	1.08 (0.91–1.27)
Lymphocyte count change						
Q1 (< –0.56)	788/13870	0.98 (0.89–1.09)	662/14145	0.98 (0.88–1.09)	276/12730	1.13 (0.95–1.34)
Q2–Q3 (–0.56 to 0.07)	1275/24836	1.00 (ref)	1072/25320	1.00 (ref)	390/22819	1.00 (ref)
Q4 (> 0.07)	664/13073	0.99 (0.90–1.09)	532/13387	0.93 (0.84–1.04)	181/12015	0.88 (0.74–1.05)
Monocyte count change						
Q1 (< –0.26)	317/5550	1.02 (0.88–1.17)	263/5684	0.98 (0.84–1.15)	118/5145	1.01 (0.80–1.27)
Q2–Q3 (–0.26 to 0)	1142/22947	1.00 (ref)	975/23336	1.00 (ref)	393/21206	1.00 (ref)
Q4 (> 0)	332/5796	1.16 (1.03–1.32)	273/5931	1.12 (0.98–1.28)	96/5311	0.99 (0.79–1.24)
Eosinophil count change						
Q1 (< –0.08)	216/4298	0.89 (0.75–1.05)	184/4376	0.90 (0.75–1.08)	72/3986	0.87 (0.65–1.16)
Q2–Q3 (–0.08 to 0.06)	1358/26305	1.00 (ref)	1146/26806	1.00 (ref)	447/24264	1.00 (ref)
Q4 (> 0.06)	218/3676	1.03 (0.89–1.19)	182/3757	1.03 (0.88–1.21)	88/3394	1.26 (1.00–1.59)

Abbreviation: CVD, cardiovascular disease; CHD, coronary heart disease; ACS, acute coronary syndrome; CI, confidence interval; HR, hazard ratio.

HRs were adjusted for age, sex, BMI, education, smoking status, drinking status, physical activity, hypertension, diabetes mellitus, hyperlipidemia, family history of CVD/CHD, intake of antibiotics or aspirin, and baseline differential leukocyte counts.

Supplementary Table 5. Adjusted HRs (95% CIs) of incident stroke, IS and HS according to groups of 5-year changes in differential leukocyte counts

Changes (× 10⁹/L)	Stroke Events/Person-years	HR (95% CI)	Ischemic stroke Events/Person-years	HR (95% CI)	Hemorrhagic stroke Events/Person-years	HR (95% CI)
Neutrophil count change						
Q1 (< –0.65)	109/14215	0.91 (0.71–1.18)	90/14156	0.99 (0.74–1.32)	19/13929	0.64 (0.35–1.18)
Q2–Q3 (–0.65 to 0.49)	218/28969	1.00 (ref)	171/28823	1.00 (ref)	47/28468	1.00 (ref)
Q4 (> 0.49)	134/14048	1.23 (0.99–1.53)	106/13971	1.24 (0.97–1.59)	28/13755	1.20 (0.75–1.86)
Lymphocyte count change						
Q1 (< –0.56)	126/15457	1.03 (0.81–1.32)	97/15373	0.93 (0.70–1.23)	29/15173	1.59 (0.92–2.76)
Q2–Q3 (–0.56 to 0.07)	250/27512	1.00 (ref)	169/27414	1.00 (ref)	34/26994	1.00 (ref)
Q4 (> 0.07)	132/14312	1.30 (1.04–1.62)	101/14211	1.21 (0.94–1.55)	31/14035	1.75 (1.07–2.86)
Monocyte count change						
Q1 (< –0.26)	54/6190	1.12 (0.79–1.59)	42/6155	1.08 (0.73–1.61)	12/6066	1.27 (0.60–2.70)
Q2–Q3 (–0.26 to 0)	167/25313	1.00 (ref)	127/25205	1.00 (ref)	40/24925	1.00 (ref)
Q4 (> 0)	59/6477	1.37 (1.01–1.86)	50/6450	1.54 (1.10–2.16)	9/6327	0.85 (0.41–1.76)
Eosinophil count change						
Q1 (< –0.08)	32/4705	0.85 (0.55–1.31)	24/4680	0.78 (0.47–1.27)	8/4640	1.20 (0.49–2.97)
Q2–Q3 (–0.08 to 0.06)	212/29170	1.00 (ref)	167/29047	1.00 (ref)	45/28658	1.00 (ref)
Q4 (> 0.06)	36/4093	1.03 (0.72–1.49)	28/4071	0.99 (0.65–1.50)	8/4009	1.24 (0.58–2.67)

Abbreviation: CI, confidence interval; HR, hazard ratio.

HRs were adjusted for age, sex, BMI, education, smoking status, drinking status, physical activity, hypertension, diabetes mellitus, hyperlipidemia, family history of stroke, intake of antibiotics or aspirin, and baseline differential leukocyte counts.