FsFKS1, the 1,3-β-Glucan Synthase from the Caspofungin-Resistant Fungus Fusarium solani

Young-sil Ha, Sarah F. Covert, and Michelle Momany

Department of Plant Biology, University of Georgia, Athens, Georgia 30602, and Warnell School of Forest Resources, University of Georgia, Athens, Georgia 30602

Received 1 February 2006/Accepted 2 May 2006

Fungal infections are a frequent cause of death among immunocompromised patients, and the increasing number of immunosuppressed patients has spurred development of new antifungals (30). Because the cell wall protects the fungus and because humans lack many cell wall components, the fungal cell wall is an attractive drug target. Caspofungin acetate (CFA), an inhibitor of the cell wall biosynthetic enzyme β(1,3)-β-glucan synthase, is effective against the major human pathogens Candida albicans and Aspergillus fumigatus (2, 23). However, some less common fungal pathogens of humans, including Fusarium spp., are resistant to clinically relevant levels of CFA (24). Fusariosis is increasing among immunocompromised patients, with Fusarium solani identified as the causative agent in roughly half the cases (10, 12). More than 15 species of Fusarium have now been reported to cause human and animal infections, with F. solani being the most frequent agent (11). The resistance of Fusarium species to CFA is puzzling, since β(1,3)-glucan is thought to be an essential component of all fungal cell walls. It is not clear whether caspofungin resistance is a property of the Fusarium 1,3-β-glucan synthase or of some other factor such as transport or modification of the drug by the fungus. Fusarium species are commonly found in soil and as pathogens of plants. F. solani is the designator for the anamorphic (asexual) form of the pathogen. We used a telemorphic (sexual) strain of F. solani f. sp. pisi (telomorph: Nectria hematococca mating population VI) for our studies of 1,3-β-glucan synthase.

The cell wall, a mesh of carbohydrates and proteins, shapes and protects the fungal cell. The enzyme responsible for the synthesis of one of the main components of the fungal wall, 1,3-β-glucan synthase, is targeted by the antifungal caspofungin acetate (CFA). Clinical isolates of Candida albicans and Aspergillus fumigatus are much more sensitive to CFA than clinical isolates of Fusarium species. To better understand CFA resistance in Fusarium species, we cloned and sequenced FsFKS1, which encodes the Fusarium solani f. sp. pisi β(1,3)-β-glucan synthase, used RNA interference to reduce its expression and complemented deletion of the essential fks gene of the CFA-sensitive fungus A. fumigatus with FsFKS1. Reduction of the FsFKS1 message in F. solani f. sp. pisi reduced spore viability and caused lysis of spores and hyphae, consistent with cell wall defects. Compensating for the loss of A. fumigatus fks1 with FsFKS1 caused only a modest increase in the tolerance of A. fumigatus for CFA. Our results suggest that FsFKS1 is required for the proper construction of F. solani cell walls and that the resistance of F. solani to CFA is at best only partially due to resistance of the FsFKS1 enzyme to this antifungal agent.

Fungal infections are a frequent cause of death among immunocompromised patients, and the increasing number of immunosuppressed patients has spurred development of new antifungals (30). Because the cell wall protects the fungus and because humans lack many cell wall components, the fungal cell wall is an attractive drug target. Caspofungin acetate (CFA), an inhibitor of the cell wall biosynthetic enzyme β(1,3)-β-glucan synthase, is effective against the major human pathogens Candida albicans and Aspergillus fumigatus (2, 23). However, some less common fungal pathogens of humans, including Fusarium spp., are resistant to clinically relevant levels of CFA (24). Fusariosis is increasing among immunocompromised patients, with Fusarium solani identified as the causative agent in roughly half the cases (10, 12). More than 15 species of Fusarium have now been reported to cause human and animal infections, with F. solani being the most frequent agent (11). The resistance of Fusarium species to CFA is puzzling, since β(1,3)-glucan is thought to be an essential component of all fungal cell walls. It is not clear whether caspofungin resistance is a property of the Fusarium 1,3-β-glucan synthase or of some other factor such as transport or modification of the drug by the fungus. Fusarium species are commonly found in soil and as pathogens of plants. F. solani is the designator for the anamorphic (asexual) form of the pathogen. We used a telemorphic (sexual) strain of F. solani f. sp. pisi (telomorph: Nectria hematococca mating population VI) for our studies of 1,3-β-glucan synthase. N. hematococca 156-30-6 was first isolated as a plant pathogen and has not been shown to cause disease in humans or mouse models; however, we chose to use it for our studies because it has a well-defined sexual cycle and many molecular tools are available for its manipulation (4, 32). For simplicity we will refer to the strain by the asexual designation F. solani f. sp. pisi isolate 156-30-6. The β(1,3)-β-glucan synthase genes were identified in Saccharomyces cerevisiae by complementation of a mutation conferring hypersensitivity to the immunosuppressant FK506 (fks1-1) (7, 21). In S. cerevisiae, β(1,3)-glucan is made by one of two synthase complexes containing either Fks1p or Fks2p (the catalytic subunit) and Rholp (regulator) (5, 7). The two catalytic subunits have different roles but can partially substitute for each other. Disruption of both FKS1 and FKS2 is lethal (18, 28, 29). In C. albicans, there are also two FKS genes (6). In Schizosaccharomyces pombe, there are four FKS genes, although it is not yet clear which of them is responsible for glucan synthase activity (13). Single-copy FKS genes have also been identified in Neurospora crassa (27), Aspergillus nidulans (14), Aspergillus fumigatus (1), Cryptococcus neoformans (33), Paracoccidioides brasiliensis (22) and Yarrowia lipolytica (15). All fungal FKS enzymes so far examined have highly conserved amino acid sequences, and single-copy FKS genes are essential. To better understand CFA resistance in Fusarium spp., we cloned and sequenced the F. solani f. sp. pisi gene encoding the 1,3-β-glucan synthase (FsFKS1), used RNA interference (RNAi) to reduce its expression, and complemented the deletion of the essential fks gene of the CFA-sensitive fungus A. fumigatus with FsFKS1.

MATERIALS AND METHODS

Strains, media, and growth conditions. F. solani f. sp. pisi isolate 156-30-6 (Nectria hematococca MPVI, 156-30-6, ATCC 204495), purchased from the Fungal Genetics Stock Center, was grown and maintained on potato dextrose agar medium at room temperature (25°C). For the RNAi study, F. solani f. sp. pisi transformants were cultured in minimal medium (140 mM NaNO3, 14 mM KCl, 4 mM MgSO4, 19m M KH2PO4, 2m M K2HPO4 [pH 7.5 with NaOH]) supplemented with 100 mg/ml hygromycin B and either 0.1 M glycerol and 0.3 M ethanol for induction or 2% glucose and 0.5% yeast extract for repression. Aspergillus fumigatus AF293.1 is a clinical isolate provided by Gregory May (M.D. Anderson Health Science Center, Texas). It was grown and maintained on

* Corresponding author. Mailing address: Department of Plant Biology, University of Georgia, Athens, GA 30602. Phone: (706) 542-2014. Fax: (706) 542-1805. E-mail: momany@plantbio.uga.edu.
Mag medium (2% malt extract, 2% dextrose, and 0.2% peptone with 1 ml vitamin mixture) containing 10 mM uracil and 5 mM uridine with or without 1.6% agar. The vitamin mixture contains 0.01 g biotin, 0.01 g pyridoxine HCl, 0.01 g thiamine HCl, 0.01 g riboflavin, 0.01 g p-aminobenzoic acid, and 0.01 g nicotinic acid (or niacin) per 100 ml. *A. fumigatus* transformants were selected on complete medium (2.5% glucose, 0.5% yeast extract, and 1.5% agar with 2 ml vitamin mixture) with 10 mM uracil, 5 mM uridine, and 150 mg/ml hygromycin B. Escherichia coli XLI-Blue and TOP 10 cells (Stratagene) were used for cloning.

PCR and screening of genomic library. To amplify FKS probes, PCRs were performed using the same degenerate oligonucleotide primers used to clone FKS1 from *Yarrowia lipolytica* (15): FSG3, 5'-GGG TTG TTY MGR GAY WSY ATG MGM AAY ATG-3'; FSGS, 5'-CGG GAG AAG AAC TCG TCA AAG G-3'; FSGD, 5'-GAY YTN CCA TGY TAY TGY AIN GGN YTG TAA-3'; and FSGR, 5'-TAA RCT NYY CCA NCG RAA YTG RTG NGE RATT-3' (R is A or G; Y is C or T; N is A, C, G, or T; and D is A, G, or T). PCR mixtures contained 10 ng of *F. solani* sp. psi genomic DNA, 10 ng of each primer (FGS1 plus FGS3 and FGSD plus FGSR), 0.2 mM deoxynucleoside triphosphates, 1.5 mM magnesium acetate, 20 mM Tris (pH 8.8), 85 mM potassium acetate, 8% dextrose, and 2.5 U of Taq polymerase in a reaction volume of 50 μl. PCR was carried out at 94°C for 5 min, followed by 30 cycles of 94°C for 1 min, 56°C for 1 min, and 72°C for 2 min. PCR products were analyzed in a 0.8% agarose gel. PCR products of the expected size (1 to 2 kb) were isolated from the gel by using a gel extraction kit (QIAKEN), cloned into pGEM-Easy vector (Promega), and sequenced using the T7 sequencing primer. Probes were labeled with [α-32P]dCTP by using Rediprime II (Amersham Pharmacia Biotech) and used to screen a cosmid library of *N. hemato- coccum* strain 156-30-6 (4). Hybridizations were performed using standard methods (26). Sequencing of the entire cosmid clone containing the FKS1 gene was performed using the GPST-1 genome priming system (New England Biolabs). To obtain the full-length sequence of FKS1, rapid amplification of cDNA ends (RACE) was performed using the GeneRacer kit (Invitrogen). For 5' RACE, primer 5'-AAA GAA GCG CCT GGT TGG GGG TC-3' was used as a reverse primer in combination with the GeneRacer 5' primer provided in the kit. For 3' RACE, primer 5'-ATG CTG TTC GGG CCT-3' was used as a forward primer with the GeneRacer 3' primer.

DNA manipulations. Standard molecular biology techniques were used throughout for DNA manipulation and transformation in *E. coli* (26). To delete FksFS1, the lph cassette was flanked by 1 kb upstream and downstream of FksFS1, which was amplified by PCR using the cosmid clone 16C3 as a template. To construct the RAI vector (pYHI4), pMRM 78.1 (19) was modified. pMRM 78.1 was digested with EcoRI and SacI to remove 1 kb of the gpd promoter, followed by ligation with the acl4 promoter flanked by EcoRI and SacI. The rest of the gpd promoter was removed by SacI and NotI digestion, and a 500-bp fragment of FksFS1 (positions +2279 to +2778) was inserted right before 260 bp of green fluorescent protein linker. Finally, the same fragment was ligated into the pRHI-HindIII vector to introduce the deletion of FksFS1 after the green fluorescent protein linker as an inverted promoter.

Fungal transformations. pYHI4 was introduced into *F. solani* 156-30-6 by transformation of protoplasts as described previously (31) to produce RNAi transformants. *A. fumigatus* AF293.1 was transformed according to the method described by May (16) with several modifications. Germinated conidia from a 50-ml overnight culture were harvested and digested with 125 mg β-glucanase G (InterSpec) and 85 mg β-glucuronidase G (Sigma) to generate protoplasts. Transformants were selected on minimal medium supplemented with uridine/uracil containing 300 μg/ml of hygromycin for 3 days at 37°C.

For the introduction of FksFS1 into *A. fumigatus*, the cosmid clone 16C3, which contained the entire 5.3 kb FksFS1 gene within its 26-kb insert, was used. The hygromycin-resistant transformants were collected for further characterization. The pF4 vector used for the disruption of the endogenous *A. fumigatus fka* gene was the gift of Anne Beauvis and Jean-Paul Latge (Institut Pasteur). It contains a 2.3-kb KpnI internal fragment of *fka* and two fungal markers: lph, which confers hygromycin resistance, and pyg, which confers uridine/uracil prototrophy (9).

Southern and Northern analyses. For Southern analysis, 40 μg genomic DNA of *F. solani* or *A. fumigatus* was digested with restriction enzymes, and the resulting fragments were separated by electrophoresis in 0.8% agarose gels, transferred to MagnaGraph nylon filters (MSI), and hybridized by standard methods. For Northern analysis, 30-μg aliquots of total RNA were mixed with 0.5 μg ethidium bromide, 3.2 μl formaldehyde, 3 μl 10X MOPS buffer (0.2 M 3-N-morpholinopropane sulfonic acid [MOPS], 50 mM sodium acetate [pH 7], and 10 mM EDTA), and 3 μl staining dye in a 30-μl volume, heated at 75°C for 5 min, and electrophoresed in 1% agarose gels containing 5.4 ml formaldehyde in 1X MOPS buffer. RNA was blotted onto MagnaGraph nylon filters (MSI) and hybridized by standard methods. Radiolabeled signal was detected by exposing X-ray film (Kodak) at ~80°C for 1 to 3 days. The 17S rRNA gene visualized by ethidium bromide was used as an internal control to ensure equivalent loading.

Caspofungin assay. The sensitivity of fungal strains to caspofungin was measured as previously described (25). Caspofungin stock solutions in distilled water were prepared at 10 times the strength of the final concentrations. The fungal strains were inoculated onto agar plates and incubated at room temperature for 5 days. The spores were collected by flooding the plate with distilled water, pipetting or scraping the surface with a spreader, and then withdrawing the resulting suspension with sterile pipette tips. The number of spores in suspension was counted using a hemacytometer and adjusted to 3 × 10^6 spores/ml. Working spore suspensions were made by adding 0.1 ml of spore suspension in potato dextrose broth to 0.8 ml potato dextrose broth and mixed with 0.1 ml of caspofungin stock. For the growth control, 0.9 ml of spore suspension was mixed with 0.1 ml of drug-free medium. All tubes were incubated without agitation at 30°C for 72 h as described by Pfaller et al. (24). The turbidity was measured at 580 nm every 24 h for the determination of *F. solani* sp. psi isolate 156-30-6 caspofungin sensitivity and at 24 h postinoculation for the *A. fumigatus* FksFS1 transformants. Each experiment was repeated four or five times. MIC values of *A. fumigatus* transformants bearing FksFS1 were assessed using SAS (version 7.0) to test whether increased resistance of *A. fumigatus* transformants is statistically significant. *P* values were calculated from *T* distributions for individual transformants and wild-type *A. fumigatus* AF293.1 (degree of freedom, 2; tail, 2). All *P* values were statistically significant (*P* < 0.005).

Microscopy. All microscopic observation was performed using a Zeiss Axioplan microscope and digital camera.

Nucleotide sequence accession number. The FksFS1 sequence has been deposited in GenBank (accession number DQ351540).

RESULTS

F. solani sp. psi 156-30-6 is resistant to caspofungin. To determine whether the plant pathogenic isolate *F. solani* sp. psi 156-30-6 shows the same resistance to caspofungin as clinical *F. solani* isolates, spore suspensions were grown in medium containing various concentrations of caspofungin and incubated at 30°C. Based on culture turbidity at 580 nm at 24 h postinoculation, caspofungin at 40 mg/liter inhibited 90% of *F. solani* sp. psi 156-30-6 growth (Table 1). This MIC₉₀ of each transformant was compared to those of all other transformants. All MIC₉₀ values were statistically significant (**P** < 0.005).

F. solani sp. psi contains a 1,3-β-glucan synthase (FKS) ortholog. All glucan synthases have highly homologous catalytic domains of 818 amino acids. Previously, degenerate primers were used to clone the 5' and central regions of the

Organism (no. of isolates tested)	Geometric mean	Range	Reference
F. solani sp. psi (1)	40.2	34.9–45.4	This study
F. solani (5)	59.46	50–100	17
F. oxysporum (5)	75.78	50–100	17
H. capsulatum (20)	16.6	8–32	14a
N. fumigatus (10)	>16	16–16	8a
A. fumigatus (13)	2.15	0.5–16	24
A. albicans (40)	0.5	0.25–0.5	23

* Concentration of caspofungin causing 90% growth inhibition compared to a no-drug culture. MIC₉₀ values were statistically significant (**P** < 0.05).

Table 1. In vitro activity of CFA on fungal isolates
catalytic domain of the 1,3-β-glucan synthase (FKS1) from *Yarrowia lipolytica* (15). We used the same degenerate primers to amplify *F. solani* f. sp. *pisi* 156-30-6 genomic DNA. The resulting 2.0-kb and 1.3-kb amplicons were radiolabeled and used to probe 4,300 colonies from an *F. solani* genomic library (4). Among the seven clones that strongly hybridized to both probes, the clone (16C3) that displayed the largest insert based on restriction mapping and Southern hybridization was selected (data not shown). The entire 16C3 cosmid was sequenced using transposon sequencing. BLAST analysis of the 28-kb insert identified a 5,350-bp 1,3-β-glucan synthase domain in the middle of the insert. To identify the translational start and stop codons, 5′ and 3′ RACE was performed on RNA isolated from *F. solani* f. sp. *pisi* 156-30-6. The results of the RACE experiments revealed an ATG codon (759 bp upstream of the predicted 1,3-β-glucan synthase domain), a translation stop codon (bp +5911), and two short introns (50 to 55 bp), one near the ATG codon (+177 to +231) and one upstream of the translation termination codon (+5533 to +5583) (Fig. 1B).

Since the rest of the sequence predicts a protein that aligns with other *FKS1* genes with no reading frame shifts, these two are likely the only introns. The sequence encodes a predicted protein of 1,935 amino acids with a molecular mass of 220,77 kDa and a pI of 8.36. A search using the NCBI conserved-domain database returned only 818 amino acids of a 1,3-β-glucan synthase domain. The sequence displayed a high degree of similarity (75% to 88%) to the *FKS* homologs from *N. crassa* (ncu06871.1), *P. brasiliensis* (AF148715), *A. fumigatus* (AAB58492), and *S. cerevisiae* (U08459). We designated the sequence from *F. solani* f. sp. *pisi* Fks1. *F. solani* f. sp. *pisi* DNA probed with radiolabeled Fks1 at low stringency showed a single strong band and several much weaker bands (Fig. 1A). These results suggest that there is at least one *FKS1* gene in *F. solani* f. sp. *pisi*.

The predicted Fks1 protein from *F. solani* f. sp. *pisi* is highly similar to 1,3-β-glucan synthases from other fungi. However, the previously identified 8-amino-acid echinocandin binding domain (5) is modified in *F. solani* f. sp. *pisi*. All CFA-sensitive FKS proteins so far identified contain a Phe at the start of this domain, while in *F. solani* f. sp. *pisi* there is a Tyr (position 682).

A decrease in Fks1 mRNA reduces germination and causes cell lysis. To address the function of Fks1 in *F. solani* f. sp. *pisi*, we attempted disruption of the gene by homologous integration. *F. solani* f. sp. *pisi* was transformed with a hygromycin cassette flanked by 1 kb upstream and downstream of the *FKS1* coding region. PCR analysis of 150 hygromycin-resistant transformants showed no homologous integration of the hygromycin cassette at the *FKS1* gene locus (data not shown), suggesting that Fks1 is essential. Therefore, we attempted to silence the *FKS1* gene by using an inducible RNAi construct.

A vector previously developed for RNAi in *A. nidulans*, pTMH78.1 (19), was modified by the addition of the hph gene and the alcA promoter, which is induced by 0.3 M ethanol and/or 0.1 M glyceral and repressed by 2% glucose (35). The 500-bp *FKS1* conserved region (positions +2279 to +2778) was introduced as an inverted repeat under the regulation of the alcA promoter, yielding vector pYH47 (20). pYH47 was transformed into *F. solani* f. sp. *pisi* 156-30-6, and 20 hygromycin-resistant colonies that were indistinguishable from the wild type on solid repression medium were selected for further analysis. When the spores from these transformants were inoculated onto solid alcA induction medium, the transformants did not display an obvious phenotype. However, when spores from the RNAi transformants were inoculated into liquid alcA induction medium, the germination rates ranged from 0% to 10% (*n* > 300) (Table 2). The germination rates of spores from wild-type *F. solani* f. sp. *pisi* in liquid induction or repression medium and of spores from RNAi transformants in liquid repression medium were >98% (*n* > 300). Microscopic observation of the RNAi transformants inalcA induction medium showed lysis of most ungerminated spores and the release of intracellular contents (Fig. 2 and data not shown). Interestingly, in lysed spores, cell debris was always visible at the poles where the initial germ tubes emerge (Fig. 2B). In the few spores that did not lyse, germ tubes were approximately 3 times wider than in the wild type, and some cell compartments were swollen (Fig. 2C). These results suggest that a reduction of 1,3-β-glucan in transformants weakens the cell walls of spores and young germlings, especially in areas of new growth.

To determine the function of Fks1 in later hyphal growth, RNAi transformants were cultured in repression medium for 48 h and transferred to induction medium for 8 h. The wild-type strain continued normal hyphal growth (Fig. 2D). However, the RNAi transformants displayed swelling, lysis, and release of intracellular contents at about half of their hyphal tips and branch points (*n* = 100) (Fig. 2E and F). These results suggest that the reduction of 1,3-β-glucan weakens the cell walls of mature hyphae, especially in areas of new growth.

In individual Fks1/RNAi transformants, the severity of germination inhibition in spores correlated with the severity of swelling and lysis in hyphae (Table 2). To determine if the
range of phenotypes in transformants was a reflection of the FsFKS1 transcript level. Northern analysis was performed. More FsFKS1 transcript was present in the transformants with less severe phenotypes (Fig. 3, lanes 2 and 3) than in those with more severe phenotypes (Fig. 3, lanes 4 and 5). These results in combination with the inducibility of the aberrant morphology suggest that the mutant phenotypes are a result of reduction in FsFKS1 transcript levels rather than disruption of some other gene by the RNAi vector.

FsFKS1 can replace A. fumigatus fks. We attempted to determine whether reducing the expression of FsFKS1 in RNAi transformants altered _F. solani_ f. sp. _pisi_ resistance to CFA by measuring the MIC₀₉ values for these strains, but they lysed almost completely during 24 h of incubation in induction medium without CFA, making the drug inhibition measurements impossible. As an alternate approach to determine the contribution of FsFKS1 to the CFA resistance of _F. solani_ f. sp. _pisi_, we transformed the 16C3 cosmid into a CFA-sensitive fungus, _A. fumigatus_ AF293.1. After 8 h of incubation on complete medium containing hygromycin, transformants were overlaid with complete medium top agar containing caspofungin. Thirty hours after overlay, _A. fumigatus_ transformed with empty vector had not grown through the top agar (Fig. 4A, panel 1), while _A. fumigatus_ transformed with FsFKS1 had grown through the top agar and conidiated (Fig. 4A, panels 2 to 6).

TABLE 2. Phenotypes of FsFKS1/RNAi transformants on alcA induction medium

Strain	% Germination (n > 300 spores)	Hyphal phenotype* (abundance of swollen hyphae)
156-30-6 (wild type)	>98	Normal
FsFKS1/RNAi 7801	>98	Normal
(empty vector)	1.0	Severe
FsFKS1/RNAi 2	1.9	Severe
FsFKS1/RNAi 3	0	Severe
FsFKS1/RNAi 4	7.7	Moderate
FsFKS1/RNAi 5	7.3	Moderate
FsFKS1/RNAi 6	7.5	Moderate
FsFKS1/RNAi 7	5.9	Moderate
FsFKS1/RNAi 8	9.9	Moderate
FsFKS1/RNAi 9	1.9	Severe
FsFKS1/RNAi 10	9.4	Moderate
FsFKS1/RNAi 11	8.2	Moderate
FsFKS1/RNAi 12	10.0	Moderate
FsFKS1/RNAi 13	9.7	Moderate
FsFKS1/RNAi 14	3.2	Severe
FsFKS1/RNAi 15	9.9	Moderate
FsFKS1/RNAi 16	9.8	Moderate
FsFKS1/RNAi 17	6.2	Moderate
FsFKS1/RNAi 18	1.6	Severe
FsFKS1/RNAi 19	0.0	Severe
FsFKS1/RNAi 20	9.7	Moderate

* Normal, no lysis of hyphae; moderate, lysis in ~20% of hyphae; severe, lysis in ~50% of hyphae.

FIG. 2. Spores, germ tubes, and hyphal morphology of wild-type and FsFKS1/RNAi transformants. (A and D) Wild type; (B, C, E, and F) FsFKS1/RNAi transformants. (A to C) Spores were inoculated into liquid induction medium and incubated for 18 h. (D to F) Cultures were grown in liquid repression medium for 48 h and transferred to induction medium for 24 h. Arrows indicate swollen cells and empty compartments.

FIG. 4. _A. fumigatus_ wild-type strain and FsFKS1 transformants on caspofungin-containing medium. (A) Colony phenotype and (B) Northern hybridization of FsFKS1 in wild-type _A. fumigatus_ and FsFKS1 transformants. (A) Wild-type _A. fumigatus_ and FsFKS1 transformants were inoculated in medium containing hygromycin as a selection marker. After colonies were visible, plates were overlaid with agar containing caspofungin. 1, _A. fumigatus_ containing empty vector pAN7-1; 2 to 6, _A. fumigatus_ transformed with FsFKS1, 2, _A. fumigatus_ FsFKS1-12; 3, _A. fumigatus_ FsFKS1-16; 4, _A. fumigatus_ FsFKS1-18; 5, _A. fumigatus_ FsFKS1-19; 6, _A. fumigatus_ FsFKS1-20; 7, _A. fumigatus_ FsFKS1-pF4 ectopic integrant 13 (A. fumigatus/FsFKS1-18 in which an AfFKS gene disruption construct was ectopically integrated); 8, _A. fumigatus_ FsFKS1-1 729 (A. fumigatus/FsFKS1-18 in which the AfFKS gene is disrupted); 7 and 8, colonies incubated on minimal medium containing hygromycin and caspofungin. (B) Lanes 1 to 6, as in panel A. The lower panel shows total RNA stained with ethidium bromide.
All *A. fumigatus* transformants carrying FsFKS1 consistently had two- to fourfold-higher MIC₉₀ values with CFA than the wild type (Table 3). Because the 40-kb FsFKS1 circular cosmid 16C3 was used to transform *A. fumigatus* and because the cosmid integration site was unknown, copy number analysis by the usual PCR or Southern strategies was not possible. However, Northern analysis showed that the FsFKS1 transcript was present in all *A. fumigatus* transformants at much lower levels than seen in *F. solani* f. sp. *pisi* (Fig. 4B).

To determine whether the *F. solani* f. sp. *pisi* FKS1 gene could substitute for the *A. fumigatus* fks gene, we exploited the pF4 vector, which was previously developed to disrupt fks in *A. fumigatus*. Using pF4, Firon et al. (9) disrupted fks in an *A. fumigatus* diploid by homologous recombination and through breakdown of the diploid showed that fks is an essential gene in *A. fumigatus*. We transformed an *A. fumigatus* haploid strain carrying FsFKS1 (A. fumigatus/FsFKS1-18) with pF4. PCR analysis revealed one transformant (A. fumigatus/FsFKS1-Afks disruptant 29) that produced the predicted 2.6-kb fragment amplified from the integration of pF4 at the fks locus (Fig. 5). Our ability to delete the essential fks gene shows that FsFKS1 functionally complements fks in *A. fumigatus*. *A. fumigatus/ FsFKS1-Afks disruptant 29 overlaid by caspofungin-containing top agar grew through the top agar and conidiated (Fig. 4A, panel 8) and showed a small decrease in the CFA MIC₉₀ relative to that of *A. fumigatus/FsFKS1-18* (Table 3).

These results show that the 1,3-β-glucan synthase from *F. solani* f. sp. *pisi* can substitute for the 1,3-β-glucan synthase from *A. fumigatus* and that at best it is only slightly more resistant to CFA.

DISCUSSION

There is at least one FKS isoform in *F. solani* f. sp. *pisi*. One possible explanation for the increased resistance of *F. solani* to CFA might be the presence of multiple FKS isoforms. We detected a single strong band in low-stringency hybridizations of *F. solani* DNA probed with radiolabeled FsFKS1, though several much weaker bands are also visible (Fig. 1A). All four PCR products amplified from *F. solani* by using fully degenerate FKS primers had identical sequences. Several filamentous fungi with complete genome sequences, including *N. crassa*, *A. nidulans*, *A. fumigatus*, and *C. neoformans*, have a single FKS gene. A search of the genome of *Fusarium graminearum*, the only *Fusarium* species whose whole genome has been sequenced, revealed a single FKS gene. Taken together, these data suggest that FsFKS1 is the only FKS gene in *F. solani* f. sp. *pisi*, though we cannot rule out the possibility that other FKS genes might be present.

FKS1 from *F. solani* f. sp. *pisi* is similar to FKS in CFA-sensitive fungi. Another possible explanation for the increased resistance of *F. solani* f. sp. *pisi* to CFA might be changes in key amino acid residues. The predicted FKS1 protein from *F. solani* f. sp. *pisi* is highly similar (75 to 88%) to 1,3-β-glucan synthases from other fungi in deduced amino acid sequence, predicted secondary structure, and intron positions (5). However, within a previously identified 8-amino-acid echinocandin binding domain (5, 8), Tyr₆₈₂ is a Phe in the equivalent position in the CFA-sensitive fungi *S. cerevisiae*, *C. albicans*, and *A. fumigatus*. However, this conservative Tyr-for-Phe substitution seems unlikely to be the source of CFA resistance of *F. solani* f. sp. *pisi*. *C. neoformans* and *Histoplasma capsulatum*, both of which are relatively resistant to CFA, have Phe at this position. In addition, genome searches show that the FKS1 ortholog in *F. graminearum* also contains Tyr in this position, raising the possibility that this is a genus-specific substitution.

The product of FsFKS1 is important for cell wall synthesis. Another possible explanation for the increased resistance of *F. solani* to CFA might be that FsFKS1 plays a different role or

TABLE 3. In vitro activity of CFA on A. fumigatus/FsFKS1 transformants

Strain	MIC₉₀ (mg/liter)	Geometric mean	Range
A. fumigatus AF293.1	0.54	0.49–0.58	
A. fumigatus/FsFKS1-12	1.52	1.48–1.55	
A. fumigatus/FsFKS1-18	2.21	2.07–2.33	
A. fumigatus/FsFKS1-19	1.21	1.05–1.29	
A. fumigatus/FsFKS1-20	0.95	0.89–1.04	
A. fumigatus/FsFKS1-pF4 ectopic integrant 13	1.72	1.59–1.79	
A. fumigatus/FsFKS1-Afks disruptant 29	2.00	1.93–2.01	

* Concentration of CFA causing 90% growth inhibition compared to a no-drug culture. MICs were obtained from turbidity measured at 24 h postinoculation. Results are based on four repetitions.
that its product, 1,3-\beta-glucan, is less important in the wall of this fungus. Many attempts to delete FsFKS1 by homologous integration of a marker were unsuccessful, suggesting that it might be an essential gene, as it is in A. fumigatus (9). We were able to recover FsFKS1 knockout strains by using RNAi with the inducible alcA promoter (35). This is the first reported use of the alcA promoter in Fusarium spp., though it has been used in other filamentous fungi (34, 35). When induced, FsFKS1 knockout strains showed swelling of hyphae, lysis of spores and hyphae, and a dramatic decrease in spore germination rates (Fig. 2; Table 2). The severity of phenotypes correlated with decreased FsFKS1 mRNA levels (Fig. 3). Swollen cells were found mostly at hyphal tips or branches, where cell wall is newly synthesized. The emergence of germ tubes from spores also requires cell wall synthesis. In lysed hyphae and spores, cell contents often appeared to leak from these areas of new cell wall growth. Similar results have been reported for A. fumigatus (2). Caspofungin-treated A. fumigatus germlocks showed more lysis at tips and branch points. Similarly, caspofungin-treated C. albicans cells lysed largely at the growing tips of buds (3). The apparent requirement for functional FsFKS1, the phenotypes of the FsFKS1 knockdown strains, and the similarity of those phenotypes to CFA-induced changes in other fungi all argue that the product of FsFKS1 is important for cell wall synthesis in F. solani f. sp. pisi, as it is in CFA-sensitive fungi.

FsFKS1 makes A. fumigatus slightly more resistant to CFA. The increased resistance of F. solani f. sp. pisi to CFA could be derived from properties of the FsFKS1 enzyme or from other factors, such as efflux of the drug or detoxification by the fungus. To distinguish between the inherent properties of FsFKS1 and other factors, we transformed CFA-sensitive A. fumigatus AF293.1 with FsFKS1. All transformants assayed showed an improved ability to grow through CFA-containing top agar and a slight increase in MIC90, even when the endogenous A. fumigatus fks was deleted (Fig. 4; Table 3). Though we were unable to determine the precise number of FsFKS1 copies present, Northern blotting experiments showed that the A. fumigatus transformants had relatively low levels of FsFKS1 expression and that the expression level did not directly correlate with the CFA resistance level (Fig. 4B).

The modestly increased MIC90 of CFA for A. fumigatus carrying FsFKS1 is 20- to 40-fold lower than the MIC90 for the wild-type F. solani f. sp. pisi. Our results suggest, therefore, that the innate properties of FsFKS1 are not sufficient to account for the high resistance of F. solani f. sp. pisi to CFA. While this paper was in revision, the Nectria hematococca genome was made public (http://genome.gji-psf.org/Nectha1/Nectha1.home.html). In addition to FsFKS1, BLAST searches identified a second FKS with 63% identity to FsFKS1 and 95% identity to C. albicans GSK2. Though it is not clear whether this second FKS gene is transcribed, since no corresponding expressed sequence tag was found, a second FKS could potentially be responsible for the increased CFA resistance of F. solani f. sp. pisi. Other possible explanations for the resistance to CFA include low intracellular drug accumulation, factors such as melanin, or differences in cell wall repair via the cell wall integrity pathway. Future work will address these possibilities.

ACKNOWLEDGMENT

This work was funded by an Investigator-Initiated Studies Program grant to M.M. from Merck and Co. Inc.

REFERENCES
1. Beauvais, A. J. M. Bruneau, P. C. Mol, M. J. Buitrago, R. Legrand, and J. P. Latge. 2001. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 183:2273–2279.
2. Bowman, J. C., P. S. Hicks, M. B. Kurtz, H. Rosen, D. M. Schmatz, P. A. Liberator, and C. M. Douglas. 2002. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob. Agents Chemother. 46:3001–3012.
3. Bozola, J. J., R. J. Mehta, L. J. Nisbet, and J. R. Valenta. 1984. The effect of aculeacin A and papulacandin B on morphology and cell wall ultrastructure in Candida albicans. Can. J. Microbiol. 30:857–863.
4. Corver, S. F., J. Enkerli, V. P. Hao, and H. D. Van Ertten. 1996. A gene for mammalian detoxification encoded chromosome of Nefta haemato- cocca. Mol. Gen. Genet. 251:397–406.
5. Douglas, C. M. 2001. Fungal beta,(1,3)-glucan synthesis. Med. Mycol. 39(Suppl. 1):55–66.
6. Durieux, C. M., J. A. D’Ippolito, G. J. Shei, M. Meinz, J. A. Manniran, W. Li, K. G. Abruzzo, A. Flattery, K. Bartzal, A. Mitchell, and M. B. Kurtz. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 41:2471–2479.
7. Douglas, C. M., F. Foer, J. A. Manniran, N. Morin, J. B. Nielsen, A. M. Drah, P. Mazur, W. Baginsky, W. Li, M. el-Sherebin, et al. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta D-glucan synthase. Proc. Natl. Acad. Sci. USA 91:12907–12911.
8. Douglas, C. M., J. A. Manniran, W. Li, and M. B. Kurtz. 1994. A Saccha- romyces cerevisiae mutant with echinocandin-resistant 1,3-beta-glucan synthase. J. Bacteriol. 176:586–596.
9. Espinel-Ingroff, A. 1998. Comparison of in vitro activities of the new triazole SCH56592 and the echinocandins MK-0991 (1-L743,872) and LY303366 against opportunistic filamentous and dimorphic fungi and yeasts. J. Clin. Microbiol. 36:2950–2956.
10. Firon, A., A. Beauvais, J. P. Latge, E. Couve, M. C. Grosgen-Cournoyer, and C. D’Enfer. 2002. Characterization of essential genes by parasexual genetics in the human fungal pathogen Aspergillus fumigatus: impact of genomic rearrange-ments associated with electroporation of DNA. Genetica 161:1077–1087.
11. Girman, C. J., L. Pagano, I. Civetta, L. Mele, A. del Favero, and P. Martino. 2000. The epidemiology of fusariosis in patients with haematological diseases. Br. J. Haematol. 111:272–276.
12. Guarro, J., and J. Gene. 1995. Opportunistic fusarial infections in humans. Microbiol. Infect. Dis. 14:741–754.
13. Gupta, A. K., R. Baran, and R. C. Summerbell. 2000. Fusarium infections of the skin. Curr. Opin. Infect. Dis. 13:121–128.
14. Ishiguro, J., A. Saithou, A. Duran, and J. C. Ribas. 1997. eps1, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J. Bacteriol. 179:7653–7662.
15. Kelly, R., E. Register, M. J. Hsu, M. Kurtz, and J. Nielsen. 1996. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus niger and purification of the corresponding protein. J. Bacteriol. 178:4381–4391.
16. Kohler, S., S. L. J. Wheat, P. Connolly, C. Schinzel-Bick, M. Durkin, M. Smedema, J. Goldberg, and E. Brizendine. 2000. Comparison of the echi- nocandin caspofungin with amphotericin B for treatment of histoplasmosis following pulmonary challenge in a murine model. Antimicrob. Agents Chemother. 44:1850–1854.
17. Leon, M., R. Sentandreu, and J. Zueco. 2002. A single FKS homologue in Yarrowia lipolytica is essential for viability. Yeast 19:1003–1014.
18. May, G. S. 1989. The highly divergent beta-tubulins of Aspergillus nigerus are functionally interchangeable. J. Cell Biol. 109:2267–2274.
19. Mayo, E., I. Pujol, and J. Guarro. 1999. Experimental pathogenicity of four opportunist Fusarium species in a murine model. J. Med. Microbiol. 48:363–366.
20. Mazur, P., N. Morin, W. Baginsky, M. el-Sherebin, J. A. Clemas, J. B. Nielsen, and F. Foer. 1995. Differential expression and function of two homologous subunits of yeast 1,3-beta-glucan synthase. Mol. Cell. Biol. 15:5671–5681.
21. McDonald, T., D. Brown, N. P. Keller, and T. M. Hammond. 2005. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol. Plant-Microbe. Interact. 18:539–545.
22. Mouyna, I., C. Henry, T. L. Doering, and J. P. Latge. 2004. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol. Lett. 237:517–524.
23. Parent, S. A., J. B. Nielsen, N. Morin, G. Chrebet, N. Ramadan, A. M. Dahl, M. J. Hsu, K. A. Bostian, and F. Foer. 1993. Calcineurin-dependent growth of an FKS6- and Csa-hypersensitive mutant of Saccharomyces cerevisiae. J. Gen. Microbiol. 139:2973–2984.
22. Pereira, M., M. S. Felipe, M. M. Brigido, C. M. Soares, and M. O. Azevedo. 2000. Molecular cloning and characterization of a glucan synthase gene from the human pathogenic fungus Paracoccidioides brasiliensis. Yeast 16:451–462.
23. Pfaller, M. A., D. J. Diekema, S. A. Messer, R. J. Hollis, and R. N. Jones. 2003. In vitro activities of caspofungin compared with those of fluconazole and itraconazole against 3,959 clinical isolates of Candida spp., including 157 fluconazole-resistant isolates. Antimicrob. Agents Chemother. 47:1068–1071.
24. Pfaller, M. A., F. Marco, S. A. Messer, and R. N. Jones. 1998. In vitro activity of two echinocandin derivatives, LY303366 and MK-0991 (L-743,792), against clinical isolates of Aspergillus, Fusarium, Rhizopus, and other filamentous fungi. Diagn. Microbiol. Infect. Dis. 30:251–255.
25. Puig, I., J. Guarro, C. Llop, L. Soler, and J. Fernandez-Ballart. 1996. Comparison study of broth macrodilution and microdilution antifungal susceptibility tests for the filamentous fungi. Antimicrob. Agents Chemother. 40:2106–2110.
26. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
27. Schimoler-O’Rourke, R., S. Renault, W. Mo, and C. P. Selitrennikoff. 2003. Neurospora crassa FKS protein binds to the (1,3)beta-glucan synthase substrate, UDP-glucose. Curr. Microbiol. 46:408–412.
28. Shematek, E. M., J. A. Braatz, and E. Cabib. 1980. Biosynthesis of the yeast cell wall. I. Preparation and properties of beta-(1→3)glucan synthetase. J. Biol. Chem. 255:888–894.
29. Shematek, E. M., and E. Cabib. 1980. Biosynthesis of the yeast cell wall. II. Regulation of beta-(1→3)glucan synthetase by ATP and GTP. J. Biol. Chem. 255:895–902.
30. Shoham, S., and S. M. Levitz. 2005. The immune response to fungal infections. Br. J. Haematol. 129:569–582.
31. Soliday, C. L., M. B. Dicks, and P. E. Kolattukudy. 1989. Structure of the cutinase gene and detection of promoter activity in the 5’-flanking region by fungal transformation. J. Bacteriol. 171:1942–1951.
32. Straney, D., R. Khan, R. Tan, and S. Bagga. 2002. Host recognition by pathogenic fungi through plant flavonoids. Adv. Exp. Med. Biol. 505:9–22.
33. Thompson, J. R., C. M. Douglas, W. Li, C. K. Joe, B. Pramanik, X. Yuan, T. H. Rude, D. L. Toffaletti, J. R. Perfect, and M. Kurtz. 1999. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol. 181:444–453.
34. Wang, G. Y., and J. D. Keasling. 2002. Amplification of HMG-CoA reductase production enhances carotenoid accumulation in Neurospora crassa. Metab. Eng. 4:193–201.
35. Waring, R. B., G. S. May, and N. R. Morris. 1989. Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130.