Growth and production of Cilembu sweet potatoes (*Ipomoea batatas* L.) varieties in the highlands with potassium fertilizer and pruning treatments

Y Hasanah¹,²*, N Rahmawati¹,² and K H Nasution¹

¹Faculty of Agriculture, Universitas Sumatera Utara, Medan, Indonesia.
²Centre of Roots and Tuber Study, Universitas Sumatera Utara, Medan, Indonesia.

E-mail: *yaya@usu.ac.id

Abstract. The efforts to increase the productivity of sweet potatoes is applying of potassium and pruning treatments. The objective of the study was to evaluate the effect of potassium fertilizer and pruning treatments on the growth and production of Cilembu sweet potato varieties in the highlands (1.340 m above sea level). The study was conducted at “Balai Penelitian Tanaman Sayuran” (*Vegetable Crops Research Institute*), Tongkoh Village, Berastagi – Tanah Karo on September 2018 - March 2019, using a factorial randomized block design. The first factor was potassium fertilizer (0; 7; 14 and 21 g KCl/plant) and the second factor was pruning (without pruning; pruning till 3 tendrils; pruning till 2 tendrils and pruning till 1 tendril). The result of the research showed the treatment of potassium (7-21 g/plant) significantly increased the tuber size compared to without potassium fertilizer. The combination of 7 g KCl/plant and pruning till 2 tendrils treatments significantly increased the length of the main tendrils at 10-11 week after planting and tuber length per sample. While the combination of 14 g KCl/plant and pruning till 3 tendrils treatments produced the highest tuber weight per plot.

1. Introduction

Sweet potato (*Ipomoea batatas* L.) is classified as food plant that high economic value and has many benefits, because it contains high carbohydrates and nutrients such as vitamin A (especially in cultivars with orange tuber), thiamin, riboflavin, vitamin C, vitamin E, β-carotene, iron (Fe), calcium (Ca), phosphorus (P) and potassium (K) which is very useful for health. Sweet potatoes also contain protein and fat in low concentrations in tubers, while the leaves are rich in protein, vitamins and minerals [1].

Sweet potato can grow in various soil conditions, so it is good developed in various marginal areas as a support for food diversification. Data from the Central Bureau of Statistics showed that sweet potato production in Sumatera Utara in 2016 was 91,531 ton with a harvest area of 6,378 ha and productivity of 14.35 ton/ha, an increase from 2015 of 4.7%. However, there was a decline in total production and the harvested area which previously amounted to 122,362 ton with a harvest area of 8,952 ha. Sweet potato production can be increased by fertilizing. Fertilizer application with proper in the composition and implementation is very influential for increasing plant production [2].

The main problems in production of sweet potato are generally due to inaccurate cultivation techniques, application of cropping patters and crop distribution processes. Selection of sweet potato
varieties and fertilizers are alternatives to increase the production and quality of sweet potatoes. Until now, sweet potatoes are generally used as food, therefore the quality of the plant, yield and adaptation have been given more attention. Several superior adaptive clones have been released, such as Sari, Cilembu, Beta 1, Antin-1, Daya, A82, Jago, and others [3].

Cilembu is one of the special types of sweet potato because of the tuber, when it baked, will emit a kind of sticky, sweet, and honey-sugar liquid. Therefore, Cilembu tubers are also called "honey" tubers. The tubers, in general, are sweet, but the sweet taste of Cilembu tubers is sweeter and stickier with honey sugar compared with other clones [4].

One of the inorganic fertilizers needed by sweet potato plants that can improve growth and development, especially tubers, is potassium (K). Potassium is one of the essential nutrients that play a very important role in the photosynthesis process to form new organic compounds which will be translocated to the tuber/storage organ [5].

Besides applying K fertilizer, improving cultivation techniques by pruning is an effort to increase sweet potato production. Pruning is an effort to reduce unimportant plant parts to optimize plant parts that are important for growth and production [6]. Stem pruning aims to inhibit the continuous vegetative growth of plants hence the assimilate which produced by plants will be more concentrated on the generative development of plants [7]. Previous research stated that the pruning treatment on sweet potato plants has an effect in increasing stem length, number and length of secondary branches, number and length of primary branches, and number of shoot cuttings measuring 25 cm [8].

Based on these backgrounds, this research aimed to evaluate the effect of potassium fertilizer and pruning treatments on the growth and production of Cilembu sweet potato in the highlands.

2. Materials and methods

2.1. Research site and materials
The research was conducted at Tongkoh Vegetable Research Institute, Berastagi, Sumatera Utara (± 1340 meters above sea level) from October 2018 to March 2019. The result of soil analysis were presented in table 1.

Parameter	Result analysis	Unit	Analysis method
Ca-exch	4.76	me/100g	Ammonium Acetate pH 7
CEC	16.49	me/100g	Ammonium Acetate pH 7
K-exch	0.90	me/100g	Ammonium Acetate pH 7
Mg-exch	1.36	me/100g	Ammonium Acetate pH 7
Na-exch	0.16	me/100g	Ammonium Acetate pH 7
P-Bray	80.21	mg/kg	Spectrophotometry
C-Org	2.94	%	Walkley & Black
N-Kjehl	0.51	%	Kjehl - Spectrophotometry
pH-H2O	5.80	%	Electrometry

Source: PT. Socfin Indonesia -Medan (2020)

The materials used were sweet potato shoot cuttings of Cilembu variety, KCl, Urea and TSP fertilizers, water and other materials that support this research. The tools used are hoes, knives/cutters, samples labels, gauges, analytical scales, watering can, and other supporting tools.

2.2. Design experiment and management of crop
The research use a factorial randomized block design with 2 factors. The first factor was K fertilizer dose, consists of 4 levels (K₀: 0 g KCl/plant (control); K₁: 7 g KCl/plant (220 kg KCl/ha); K₂: 14 g
KCl/plant (440 kg KCl/ha); K3: 21 g KCl/plant (660 kg KCl/ha). The second factor was pruning, consists of P0: without pruning; P1: pruning till 3 tendrils; P2: pruning till 2 tendrils; P3: pruning till 1 tendril.

The research was started with soil cultivation to a depth of 20 cm, then a plot was made with a length of 200 cm, 100 cm wide, a height of 30 cm with 50 cm spacing between blocks and a distance between the plots of 30 cm. A drainage ditch as deep as 30 cm was made around the area to avoid stagnant water around the research area. The land that had been made of treatment plots was then mixed with compost (5 t/ha).

The seedlings used were sweet potato shoot cuttings of Cilembu variety, originating from Tiga Raja Village with a length of 20-25 cm and relatively the same seed size. KCl fertilizer was given based on the dose by burying it about 5 cm near the plant and covered with soil. Fertilization was carried out at 2 and 5 weeks after planting (WAP) the sweet potato cuttings.

Basic fertilization was carried out one week after planting. Fertilizer was applied based on the recommendation of the Indonesian Agricultural Research and Development Center according to the recommended dosage for sweet potato fertilizer, namely Urea 200 kg/ha (40 g/plot) and TSP 100 kg/ha (20 g/plot). Fertilization is done by burying and covered again with the soil.

Shoot cuttings were planted perpendicular to the base of the cuttings immersed (1/3 of the cuttings) hence 2/3 of the cuttings were above the ground, the spacing used was 30 cm. Each hole was planted with 1 cutting, each bed was planted with 6 sweet potato cuttings. Pruning was carried out according to the treatment at 8 WAP and kept under control hence new tendrils did not appear again. Plant maintenance included watering, stitching, lifting stems, weeding, controlling the pests and diseases and also harvesting. Watering was done every day, at morning or evening depending on weather conditions. Stitching was carried out on 1 WAP, with the aim of replacing damaged/non-growing cutting. Lifting the stem aimed to prevent the formation of small tubers was carried out every week of observation. Weeding was done to control weeds around the plots and blocks. Weeding was carried out according to the conditions in the field at 2,5,7 and 11 WAP.

Pest and plant disease control was carried out manually by removing the existing pests on plants and replacing plants which affected by the disease with transplanting plants, while plants which affected by disease before harvesting were not replaced with transplanting plants. Insecticides and fungicides spraying were not carried out because the pests in the field were classified as 'having not reduced production yields' or were not detrimental. Pest controls was done manually. Spraying of insecticides and fungicides is not carried out because the pest in the field are not classified as reducing production yields or are harmful. Harvesting was done when the sweet potato reached 20 WAP (5 months) old with the harvest criteria can be seen with the color of the leaves starting to turn yellow and then falling off. Sweet potato plants can be harvested when the yams are old (physiologically ripe).

The observed variables included length of the main tendrils, length of tubers/sample, shoot dry weight, tuber weight per sample, tuber weight average and tuber grading. The average tuber weight is calculated by dividing the tuber weight by number of tubers. Fresh tuber grading refers to SNI 01-4493-1998 with the following criteria: class A (tuber weight > 200 g/tuber); class B (tuber weight > 100 - 200 g/tuber); class C (tuber weight 75-100 g/tuber).

2.3. Data analysis
Data were analyzed using the Analysis of Variance. If the Analysis of Variance results showed a significant effect, then proceed with the Mean Difference Test based on the Duncan Multiple Range Test (DMRT) at the level of α = 5%.
3. Results and discussion

3.1. Results

3.1.1. Main tendril length. The interaction of potassium fertilizer and pruning treatments had a significant effect on the length of the main tendrils at 10 and 11 WAP. The combination of 7 g KCl/plant fertilizer with pruning till 2 tendrils treatments (K1P2) was the best treatment combination in increasing the length of the Cilembu sweet potato main tendrils at 10 and 11 WAP, 58.52 cm and 65.51 cm, respectively. While the combination of 21 g KCl/plant fertilizer with pruning till 1 tendril treatments (K3P1) was the lowest treatment combination in increasing the length of the main sweet potato tendrils at 10 and 11 WAP (Table 2).

Table 2. Main tendril length of sweet potato 10-11 WAP with application of potassium fertilizer and pruning

WAP	Potassium fertilizer (g KCl/plant)	Pruning	Main tendril length (cm)	Mean		
	Without pruning (P0)	Pruning till 3 tendrils (P1)	Pruning till 2 tendrils (P2)	Pruning till 1 tendril (P3)		
10	K0(0)	46.50def	52.58abcd	47.79def	42.03fg	47.22
	K1(7)	48.44def	44.68efg	58.52a	57.15ab	52.20
	K2(14)	47.71def	46.41def	50.86bcde	39.64g	46.16
	K3(21)	56.31abc	49.81cde	51.35abcde	50.09cde	51.89
Mean	49.74	48.37	52.13	47.23		
11	K0(0)	52.84cde	56.21bcd	51.46cde	46.45ef	51.74
	K1(7)	55.00bcd	48.30def	65.51a	63.53ab	58.08
	K2(14)	54.38bcde	48.14def	54.18bcde	41.63f	49.58
	K3(21)	60.13abc	53.94cde	52.78cde	51.18cde	54.51
Mean	55.58	51.65	55.98	50.70		

Note: The number followed by the same letter and time of observation shows that it is not significantly different based on Duncan Multiple Range Test (DMRT) at the level of α = 5%

This is because pruning sweet potato plants can break apical dominance, so that the development of the plant stems is inhibited. While the application of 7 g KCl/plant increased the length of the tendrils because potassium plays a role in the photosynthesis process which affects plant growth as indicated by the increase in the length of main tendrils.

This is in line with Novianti [8]; Jayanti et al. [9]; Netsay et al [10] which stated that pruning resulted in shorter average growth of stem than without pruning and vice versa. Pruning sweet potato plants can break the apical dominance. Thus inhibiting the development of the plant stem. The main stem of the plant contains food reserves hence plants with a higher main stem will have more food reserves. This food reserve is a source of energy; hence plants with more food reserves will have better plant growth.

3.1.2. Tuber length, shoot dry weight, tuber weight per plot, average tuber weight. The interaction between potassium fertilizer and pruning treatments had a significant effect on tuber length and tuber weight per plot. Potassium fertilizer and pruning treatments and also the combination between them had no significant effect on tuber length, shoot dry weight, tuber weight per plot and average tuber weight. The combination of K fertilizer (7 g KCl/plant) and pruning till 2 tendrils treatments resulted in the highest tuber length per sample (table 3).
This fact shows that there is a link between potassium fertilizers and pruning in increasing the production of Cilembu sweet potato. K fertilizer in plants plays a role in increasing cell turgor activity to help the process of closing and opening the stomata and translocation of photosynthate from leaves to all parts of the plant, which ultimately affects plant weight [11].

In this research, the highest tuber weight per plot was obtained at 14 g KCl/ha of K fertilizer and pruning till 3 tendrils treatments. This is reasonable because the application of K as much as 14 g KCl/plant will have an impact on increasing the rate of photosynthesis, following the function of K which plays an important role in photosynthesis, and assimilate translocation. Pruning till 3 tendrils

Table 3. Tuber length, shoot dry weight, tuber weight per plot, average tuber weight of Cilembu sweet potato tuber with application of potassium fertilizer and pruning

Treatment	Tuber length (cm)	Shoot dry weight (g)	Tuber weight per plot (g)	Average tuber weight (g)
Potassium fertilizer (g KCl/plant)				
K₀ (0)	24.78	96.96	3666.88	133.96
K₁ (7)	27.33	119.72	4391.25	156.72
K₂ (14)	23.93	118.89	4576.25	155.89
K₃ (21)	25.52	125.77	4348.63	162.77
Pruning (P)				
P₀ (without pruning)	24.87	117.70	4295.50	154.70
P₁ (pruning till 3 tendrils)	26.15	103.05	4138.75	140.05
P₂ (pruning till 2 tendrils)	26.37	125.55	4557.50	162.55
P₃ (pruning till 1 tendrils)	24.16	115.04	3991.25	152.04
K x P				
K₀P₀	23.20cd	117.37	3197.50 d	154.37
K₀P₁	28.13ab	89.06	4160.00 abc	126.06
K₀P₂	25.81abcd	94.41	4280.00 abc	131.41
K₀P₃	21.97d	87.00	3030.00 d	124.00
K₁P₀	23.34cd	99.11	4420.00 abc	136.11
K₁P₁	28.21ab	99.34	3310.00 cd	136.34
K₁P₂	29.08a	146.80	5135.00 a	183.80
K₁P₃	28.70a	133.63	4700.00 ab	170.63
K₂P₀	23.75bcd	118.01	5020.00 a	155.01
K₂P₁	23.73bcd	115.11	5220.00 a	152.11
K₂P₂	26.60abc	136.97	4530.00 abc	173.97
K₂P₃	21.65d	105.48	3535.00 bcd	142.48
K₃P₀	29.20a	136.31	4544.50 ab	173.31
K₃P₁	24.54abcd	108.71	3865.00 abc	145.71
K₃P₂	23.99bcd	124.04	4285.00 abc	161.04
K₃P₃	24.34bcd	134.04	4700.00 ab	171.04

Note: The number followed by the same letter and column shows that it is not significantly different based on Duncan Multiple Range Test (DMRT) at the level of α = 5%
allow the sweet potato plant to produce enough leaves hence the photosynthetic capacity increases [12].

Therefore, there is a link between the role of K and pruning. K is also a nutrient that functions to form and stimulate protein synthesis, translocation of carbohydrates, stimulate root growth and development, increase root turgor pressure, increase nutrient absorption. N metabolism, carbohydrate metabolism, regulate the utilization of various main nutrients, and activate various enzymes [5,13-17].

3.1.3. Tuber grading. K fertilizer treatment significantly increased tuber grading for class A and C. while pruning treatment had no significant effect on tuber grading. K fertilizer treatment as much as 7-21 g KCl/ha significantly increased the grading of tuber grade A, but decreased tuber grade C (table 4).

Grade	Potassium fertilizer (g KCl/plant)	Pruning	Mean			
	Without pruning (P0)	Pruning till 3 tendrils (P1)	Pruning till 2 tendrils (P2)	Pruning till 1 tendrils (P3)		
Grade A	K0 (0)	2.50	3.00	2.50	2.00	2.50b
	K1 (7)	3.50	3.50	4.00	4.00	3.75a
	K2 (14)	5.00	3.00	2.50	2.50	3.25ab
	K3 (21)	4.50	4.00	3.50	3.50	3.88a
Mean	3.88	3.38	3.13	3.00		
Grade B	K0 (0)	1.50	2.50	3.00	1.50	2.13
	K1 (7)	3.00	1.00	2.00	1.50	1.88
	K2 (14)	1.50	3.00	2.50	1.00	2.00
	K3 (21)	2.50	2.00	2.00	2.50	2.25
Mean	2.13	2.13	2.38	1.63		
Grade C	K0 (0)	2.00	2.50	2.00	3.00	2.38a
	K1 (7)	1.50	2.00	1.00	1.50	1.50b
	K2 (14)	1.50	1.50	1.50	1.50	1.50b
	K3 (21)	1.00	1.00	1.50	1.00	1.13b
Mean	1.50	1.75	1.50	1.75		

Note: The number followed by the same letter and column at the same parameter shows that it is not significantly different based on Duncan Multiple Range Test (DMRT) at the level of α = 5%

This is because tuber grading is carried out based on the height of the tuber weight. while tuber weight describes the ability of a plant to translocate assimilate to the storage organ portion of the total assimilate obtained. K fertilizer plays a very important role in carbohydrate metabolism which determines the size of the tubers [17]. K nutrient plays a very vital role in influencing tuber formation and weight because it serves to stimulate the formation of protein and carbohydrates as important constituents of tubers (sweet potatoes) and root development for plants [18]. Therefore, in this research, the grade A tuber grading increased along with the increase in K fertilization.

4. Conclusions
The treatment of potassium (7-21 g/plant) significantly increased the tuber size compared to without potassium fertilizer. The combination of 7 g KCl/plant and pruning till 2 tendrils treatments significantly increased the length of the main tendrils at 10-11 week after planting and tuber length per
sample. While the combination of 14 g KCl/plant and pruning till 3 tendrils treatments produced the highest tuber weight per plot.

References

[1] Pattikawa AB, Suparno A and Prabawardani S 2012 Analisis nutrisi umbi ubi jalar (Ipomoea batatas (L.) Lam.) untuk konsumsi bayi dan anak-anak suku Dani di distrik Kurulu Kabupaten Jayawijaya [Nutritional analysis of sweet potato tuber (Ipomoea batatas (L.) Lam.) consumer by infant and children of Dani tribe in Kurulu District] Jayawijaya) Jurnal AGROTEK 3 2 pp 30-6

[2] Pianto A 2016 Efektivitas pupuk NPK dan Organik Terhadap Pertumbuhan dan Hasil Ubi Jalar (Ipomoea batatas) [The effectiveness of NPK and Organic Fertilizer on the Growth and Yield of Sweet Potato (Ipomoea batatas)] (Surakarta: Universitas Sebelas Maret)

[3] Arga MD 2011 Respons Pertumbuhan dan Produksi Ubi Jalar (Ipomoea batatas L.) terhadap Pemberian Berbagai Dosis Pupuk Organik dan Anorganik [Response of Growth and Production of Sweet Potatoes (Ipomoea batatas L.) with Application of Various Dose Combinations of Organic and Inorganic fertilizers] (Medan: Universitas Sumatera Utara)

[4] Balai Pengkajian Teknologi Pertanian Jawa Barat [West Java Agricultural Technology Research Center] 2015 Petunjuk Teknis Budidaya Ubi Cilembu Organik Badan Penelitian dan Perkembangan Pertanian [Technical guidelines for organic Cilembu cultivation of the Agricultural Research and Development Agency] (Bogor: Badan Litbang Pertanian)

[5] Sianturi D A and Ernita 2014 Penggunaan pupuk KCl dan bokashi pada tanaman ubi jalar (Ipomoea batatas) [use of kcl and bokashi on sweet potatoes (Ipomoea batatas)] Jurnal Dinamika Pertanian 29 1 pp 37-44

[6] Panggabean FDM, Mawami L and Nissa TC 2014 Respon pertumbuhan dan produksi bengkuang (Pachyrhizus erosus (L.) Urban) terhadap waktu pemangkasan dan jarak tanam [The response of growth and production of yam (Pachyrhizus erosus (L.) urban) to pruning time and spacing] Jurnal Online Agroekologi 2 2 pp 702-11

[7] Suminarti N E and Novrianti R 2017 Pengaruh defoliasi dan posisi penanaman stek batang pada pertumbuhan dan hasil tanaman ubi jalar (Ipomoea batatas L.) Lam. Var. Sari [Effect of defoliation and position of stem cuttings on growth and yield of sweet potato (Ipomoea batatas L.) Lam. Var. Sari] Jurnal Biojati 2 1 pp 21-9

[8] Novianti D 2016 Pengaruh pemangkasan pucuk dan jarak tanam terhadap pertumbuhan dan produksi bibit ubi jalar (Ipomoea batatas L.) [Effect of shoot trimming and spacing on growth and production of sweet potato seedlings (Ipomoea batatas L.)] (Bogor: Institut Pertanian Bogor)

[9] Jayantti A, Sunaryo and Widaryanto E 2016 (Ipomoea batatas L.) [Effect of defoliation level on growth and yield of three varieties of sweet potato (Ipomoea batatas L.) Jurnal Produksi Tanaman 4 7 pp 503-11

[10] Netsai N and Tuarira M M M 2019 Effect of cutting position and vine pruning level on yield of sweet potato (Ipomoea batatas L.) J. Aridland Agric 5 6 pp 01-05

[11] Paulus J M 2011 Pertumbuhan dan hasil ubi jalar pada pemupukan kalium dan penaaunga pada tumpangsari ubi jalar-jagung [Growth and yield of sweet potatoes on potassium fertilization and shade of sweet potato-corn intercropping] J. Agrivigor 10 3 pp 260–71

[12] Dukuh I G 2011 The effect of defoliation on the quality of sweet potato tubers Asian Journal of Agricultural Research 5 6 pp 300-5

[13] Wang M, Zheng Q, Shen Q and Guo S 2013 The critical role of potassium in plant stress Response Int. J. Mol. Sci. 14 pp 7370-90

[14] Hasanuzzaman M, Bluyan M H M B, Nahar K, Hossain M H, Al Mahmud J, Hossen M S, Masud A A C and Fujita M 2018 Potassium: a vital regulator of plant responses and tolerance to abiotic stresses Agronomy 8 31 pp 1-29

[15] Gobert A, Isayenkov S, Voelker C, Czempinski K and Maathuis F J M 2007 The two-pore channel TPK1 gene encodes the vacuolar K⁺ conductance and plays a role in K⁺ homeostasis Proc. Natl. Acad. Sci. U.S.A 104 pp 10726–31
[16] Bassil E, Tajima H, Liang Y C, Ohto M A and Ushijima K 2013 The arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development and reproduction Plant Cell 23 pp 3482–97

[17] Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández J A, Cubero B and Pardo J M 2012 Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis Plant Cell 24 3 pp 1127–42

[18] Ragel P, Raddatz N, Leidi E O, Quintero F J and Pardo J M 2019 Regulation of K+ Nutrition in Plants Front Plant Sci. 10 281 pp 1-29