Color-tunable up-conversion emission in $Y_2O_3:Yb^{3+}, Er^{3+}$ nanoparticles prepared by polymer complex solution method

Vesna M Lojpur¹, Phillip S Ahrenkiel² and Miroslav D Dramičanin¹*

Abstract

Powders of Y_2O_3 co-doped with Yb³⁺ and Er³⁺ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb³⁺/Er³⁺ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties.

Keywords: Luminescence, Up-conversion, Nanoparticles, Rare earth, Combustion

PACS: 42.70.-a, 78.55.Hx, 78.60.-b

Background

Up-conversion materials have the ability to convert lower energy near-infrared radiations into higher energy visible radiations. These materials have gained considerable attention because of their use in a wide range of important applications, from solid compact laser devices operating in the visible region and infrared quantum counter detectors to three-dimensional displays, temperature sensors, solar cells, anti-counterfeiting, and biological fluorescence labels and probes [1-6]. Further efforts in development of methods for preparation of up-conversion (UC) materials are therefore justified with aims of enhancing their UC efficiency and reducing production costs. In addition, methods for UC nanoparticle (UCNP) synthesis are of particular interest for use in two-photon bio-imaging, sensitive luminescent bio-labels, and GaAs-coated highly efficient light-emitting diodes [7].

Lanthanide-based UC materials and UCNPs are of special interest due to unique spectroscopic properties of rare-earth ions like sharp intra-4f electronic transitions and existence of abundant, long-living electronic excited states at various energies that facilitate electron promotion to high-energy states [8]. In principal, lanthanide-based UC materials and UCNPs consist of three components: a host matrix, a sensitizer, and an activator dopant. The choice of the host lattice determines the distance between the dopant ions, their relative spatial position, their coordination numbers, and the type of anions surrounding the dopant. The properties of the host lattice and its interaction with the dopant ions therefore have a strong influence on the UC process [9]. It has been shown that UC emission efficiency depends strongly on host phonon energy, where in low-phonon-energy hosts, multi-phonon relaxation processes are depressed and efficiency-enhanced [10]. Because of their excellent chemical stability, broad transparency range, and good thermal conductivity, rare-earth sesquioxides are well-suited host materials [11]. Their phonon energy (ca. 560 cm⁻¹) is higher compared to the most UC-efficient fluoride materials (ca. 350 cm⁻¹), but lower compared to other host types (phosphates, vanadates, molybdates, titanates, zirconates, silicates, etc.). In addition, easy doping can be achieved with RE ions because of similarity in ionic radius and charge. For sensitizer dopant, Yb³⁺ has as simpler energy levels structure with two levels and a larger absorption cross section compared to other trivalent rare-earth ions. The energy separation of Yb³⁺ $2F_{7/2}$ ground state and $2F_{5/2}$ excited state match-up well the transitions of an activator dopant ion, which has
easy charge transfer between its excited state and activator states. For visible emission, Er\(^{3+}\), Tm\(^{3+}\), Ho\(^{3+}\), and Pr\(^{3+}\) are commonly used as activator dopants [12-16]. UC emission of different colors can be obtained in a material with different activators and their combinations. Er\(^{3+}\)-doped materials emit green and red light, Tm\(^{3+}\) blue, Ho\(^{3+}\) green, and Pr\(^{3+}\) red.

In recent times, a lot of effort is directed towards UC color tuning to obtain a material with characteristic emission usually by combining two or more activator ions [17] or by utilizing electron–electron and electron–phonon interactions in existing one-activator systems [18,19]. In this research we showed that color tuning from green to red can be achieved in Yb\(^{3+}\)/Er\(^{3+}\) UCNPs systems on account of changes of Yb\(^{3+}\) sensitizer concentration. For this purpose we prepared Y\(_2\)O\(_3\) NPs, the most well-known rare-earth sesquioxide host, co-doped with different Yb\(^{3+}\)/Er\(^{3+}\) ratios. Nanosized phosphors offer a number of potential advantages over traditional, micro-scale ones in optical properties, such as high-resolution images and high luminescence efficiency [20,21]. However, Vetrone et al. showed that CO\(_3^{2-}\) and OH\(^-\) species are frequently adsorbed on the surface of sesquioxide nanoparticles [22]. Their high vibrational energies (about 1,500 and 3,350 cm\(^{-1}\) for CO\(_3^{2-}\) and OH\(^-\), respectively) decrease the UC efficiency through multi-phonon relaxations. For this reason we applied polymer complex solution (PCS) synthesis [23] since we found earlier that the PCS method provides sesquioxides with low surface area and defects and no adsorbed species on the surface [24-26].

Methods

Sample fabrication

Polymer complex solution method is a modified combustion method where instead of classical fuel (urea, glycine, carbohydrazide) an organic water-soluble polymer (in our case polyethylene glycol (PEG)) is used. The utility of this polymeric approach comes from the coordination of metal cations on the polymer chains during gelation process, resulting in very low cation mobility. Polymer precursor works both as a chelating agent and as an organic fuel to provide combustion heat for the calcination process. In this way PCS provides mixing of constituting elements at the atomic level and allows homogeneous control of very small dopant concentration. The first step in the PCS method is preparation of an aqueous solution containing metal salts and PEG. In the second step, removal of the excess water forces polymer species into closer proximity, converting the system into a resin-like gel. Upon ignition, an oxide powder is obtained, while considerable resin mass is lost as the polymer matrix is burned away.

Using this procedure, three Y\(_2\)O\(_3\) samples doped with 0.5 at.% of Er\(^{3+}\) and 1, 2.5, and 5 at.% of Yb\(^{3+}\) ions were synthesized. In brief, appropriate stoichiometric quantities of yttrium oxide (Y\(_2\)O\(_3\)), erbium oxide (Er\(_2\)O\(_3\)), and ytterbium oxide (Yb\(_2\)O\(_3\)) (all Alfa Aesar, 99.9%, Ward Hill, MA, USA) were mixed and dissolved in hot nitric acid. In the obtained solutions, PEG (M\(_w\) = 200, Alfa Aesar) was added in 1:1 mass ratio. The formed

![Figure 1 XRD pattern of Y\(_{1.97}\)Yb\(_{0.02}\)Er\(_{0.01}\)O\(_3\) UCNPs. Diffraction peaks are indexed according to PDF card #87-2368 (cubic bixbyite Y\(_2\)O\(_3\) crystal structure).](image1)

![Figure 2 TEM data from Y\(_{1.97}\)Yb\(_{0.02}\)Er\(_{0.01}\)O\(_3\) sample. (a) Bright-field image showing nanoparticle cluster. (b) [110] lattice image of a single particle. The 004 planes are indicated. Inset: FFT of image (indicated spot corresponds to 004 periodicity). (c) Selected-area diffraction pattern of nanoparticle cluster. Prominent planes are indexed.](image2)
metal-PEG solution was stirred at 80°C, resulting in a metal-PEG solid complex which was further fired at 800°C in air. The powders were additionally annealed at 800°C for 2 h in order to decompose the residual PEG and nitrite ions and to obtain pure crystal phase.

Characterization methods

Crystal structures of samples are checked by X-ray diffraction (XRD) measurements. Measurements are performed on a Rigaku SmartLab system (Shibuya-ku, Japan) operating with Cu Kα1,2 radiation at 30 mA and 40 kV, in the 2θ range from 15° to 100° (using continuous scan of 0.7°/s). Transmission electron microscopy (TEM) is conducted using a JEOL-JEM 2100 instrument (Akishima-shi, Japan) equipped with LaB6 cathode and operated at 200 kV.

Results and discussion

The representative XRD pattern for the Y1.97Yb0.02Er0.01O3-doped sample is shown in Figure 1. The XRD analysis confirms the presence of a cubic bixbyite Y2O3 crystal structure with space group $Ia-3$ (no. 206), with diffraction peaks indexed according to the PDF card #87-2368. No other phases were detected and the small peak shifts in Figure 3

UC spectra of NPs for all dopant compositions and photograph of pellets prepared from UCNPs. (a) UC spectra of $Y_{1.97}Yb_{0.02}Er_{0.01}O_3$ (green line), $Y_{1.94}Yb_{0.05}Er_{0.01}O_3$ (yellow line), and $Y_{1.89}Yb_{0.10}Er_{0.01}O_3$ (red line) NPs. (b) Photograph of pellets prepared from UCNPs with different Yb$^{3+}$ concentrations taken under 978-nm excitation.

The up-conversion luminescence emissions and decays are measured upon excitation with 978-nm radiation (OPO EKSPLA NT 342, 5.2-ns pulse, Vilnius, Lithuania) on a Horiba Jobin-Yvon Model FHR1000 spectrofluorometer system (Kyoto, Japan) equipped with an ICCD Jobin-Yvon 3771 detector. For measurements of up-conversion emission intensity dependence on excitation power, a continuous-wave laser is used (980-nm radiation).

Results and discussion

The representative XRD pattern for the $Y_{1.97}Yb_{0.02}Er_{0.01}O_3$ doped sample is shown in Figure 1. The XRD analysis confirms the presence of a cubic bixbyite Y2O3 crystal structure with space group $Ia-3$ (no. 206), with diffraction peaks indexed according to the PDF card #87-2368. No other phases were detected and the small peak shifts in

Figure 4 UC spectra of NPs in UV-blue spectral region after excitation with 978-nm radiation. $Y_{1.97}Yb_{0.02}Er_{0.01}O_3$ (green line), $Y_{1.94}Yb_{0.05}Er_{0.01}O_3$ (blue line), and $Y_{1.89}Yb_{0.10}Er_{0.01}O_3$ (red line).

Figure 5 Schematic energy level diagram showing the UC mechanism of $Y_2O_3:Er^{3+}, Yb^{3+}$.
respect to pure Y2O3 are observed, indicating that Er3+ and Yb3+ ions have been effectively incorporated into the host lattice. An average crystallite size in the range of 21 nm is found by Halder-Wagner method analysis of all major diffraction peaks.

The presence of nitrate, water, and carbon species on nanoparticle surfaces is checked by Fourier transform infrared (FT-IR) spectroscopy. Only Y-O stretching vibrations of the host lattice at 560 cm\(^{-1}\) are noted (see Additional file 1: Figure S1 for the FT-IR spectrum of Y1.97Yb0.02Er0.01O3 sample). This is favorable for efficient emission since the high phonon energy of species adsorbed on the surface of nanoparticles may enhance significantly nonradiative de-excitation [13,22].

The UCNPs are further investigated by transmission electron microscopy, and representative images are given in Figure 2. One can see highly agglomerated crystalline nanoparticles with irregular, polygonal-like shapes having a size in the range of 30 to 50 nm with boundary lines observed clearly in some regions (Figure 2a). Strong particle agglomeration is a main drawback of the PCS synthesis method. It is a consequence of an extremely high temperature gradient that occurs while firing metal-PEG complex. At that instance a large amount of high-pressure vapors is produced in the sample that strongly press particles onto each other. On the other hand, high-temperature gradients and pressure facilitate production of well-crystallized powder. An examination at higher magnifications (Figure 2b) reveals that grain boundaries are without any irregularities and that the surface of observed crystals is free of defects and without any amorphous layers. The spotty ring selected-area electron diffraction pattern (Figure 2c) confirms that Y2O3 powder is polycrystalline and is related to the fact that the constituent crystallites have a size of about 20 nm.

The up-conversion luminescence spectra of NPs, for all Yb/Er dopant compositions, are measured upon excitation with 978-nm radiation. The main red and green emissions are shown in Figure 3a. They originate from Er\(^{3+}\) \(f\rightarrow f\) electronic transitions \(4F_{9/2} \rightarrow 4I_{15/2}\) (red emission) and \(2H_{11/2}, 4S_{3/2} \rightarrow 4I_{15/2}\) (green emission) and are facilitated by the two-photon UC process. Weak emissions from higher photon order UC processes can be observed in the blue spectral (410 nm, \(2H_{9/2} \rightarrow 4I_{15/2}\) transition) and UV (390 nm, \(4G_{11/2} \rightarrow 4I_{15/2}\) transition) regions shown in Figure 4. These higher photon order emission diminishes in NPs with lower Yb\(^{3+}\) content (Y1.97Yb0.02Er0.01O3). The variation in Yb\(^{3+}\) concentration alters the red-to-green emission ratio (see Figure 3a), and consequently overall UC color of NPs is changed (see Figure 3b). The highest Yb\(^{3+}\) concentration of 5 at.\% produces red color, and yellow is obtained with 2.5 at.\% and green with 1 at.\%.

The energy level diagram of Yb\(^{3+}\) and Er\(^{3+}\) is shown in Figure 5 and illustrates the energy transfer from Yb\(^{3+}\) to Er\(^{3+}\) which generates up-conversion in a following manner: population of \(4F_{7/2}\) level in Er\(^{3+}\) leads to an intermediate non-radiative relaxation to the \(2H_{11/2}\) and \(4S_{3/2}\) levels and further to two partially overlapped green emissions at 522 and 563 nm due to the radiative relaxations to the \(4I_{15/2}\) level. Alternatively, the \(4F_{7/2}\) level can partially non-radiatively relax to the \(4I_{13/2}\) level from which the additional population of the \(4F_{9/2}\) level occurs through energy transfer.

Table 1 Emission decay times for Y\(_2\)O\(_3\):Yb\(^{3+}\), Er\(^{3+}\) nanoparticles upon 978-nm excitation
Green emission lifetime (ms)
Y\(_{1.97}\)Yb\(_{0.02}\)Er\(_{0.01}\)O\(_3\)
Y\(_{1.94}\)Yb\(_{0.05}\)Er\(_{0.01}\)O\(_3\)
Y\(_{1.89}\)Yb\(_{0.10}\)Er\(_{0.01}\)O\(_3\)
The population of the $^{2}H_{9/2}$ level is realized by the excited state absorption from $^{4}I_{13/2}$ and $^{4}F_{9/2}$ levels. Blue up-conversion emission occurs by its radiative de-exitations to the $^{4}I_{15/2}$ level. Power dependence of UC emissions, given in Figure 6, confirms that two-photon processes are responsible for green and red UC emissions. The observed slopes are similar for 1 and 2.5 at.% Yb$^{3+}$-doped samples and slightly higher for 5 at.% Yb$^{3+}$ doping.

Changes in red-to-green emission ratio with Yb$^{3+}$ concentration increase in Y$_2$O$_3$:Er$^{3+}$ bulk and NPs are discussed by Vetrone et al. [22]. They observed this phenomenon to be much more pronounced in NPs compared to bulk. They concluded that a cross-relaxation mechanism of $^{4}F_{7/2} \rightarrow ^{4}F_{9/2}$ and $^{4}F_{9/2} \rightarrow ^{4}I_{11/2}$ is partly responsible for the red enhancement, but phonons of ligand species present on the NP surface enhance the probability of $^{4}F_{9/2}$ level population from the $^{4}I_{13/2}$ level. However, in the present case, no adsorbed species on the NPs are detected, as in other cases of NPs prepared with the PCS method. TEM images in Figure 2 and the Stark splitting of emission clearly demonstrate the crystalline nature of NPs. Also, the values of UC emission decays, given in Table 1, are much larger compared to those from [22], indicating in this way the absence of a strong ligand influence on UC processes. Silver et al. [27] noticed that the Yb$^{3+}$ $^{2}F_{5/2}$ excited level may also receive electrons from higher energy levels of nearby Er$^{3+}$ ions, back transferring energy from Er$^{3+}$ to Yb$^{3+}$, similar to that of $^{2}H_{9/2}$ back transferring energy from Er$^{3+}$ to Yb$^{3+}$.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
VL carried out the material synthesis. PA performed the TEM study. VL and MD carried out the X-ray diffraction and luminescence analysis. MD supervised the research activity. VL and MD wrote the manuscript. All authors discussed and commented on the manuscript. All authors approved the final manuscript.

Acknowledgments
The authors would like to acknowledge the support from the Ministry of Science, Education and Technological Development of the Republic of Serbia (grant no. 45020).

Published: 22 March 2013
Received: 10 February 2013 Accepted: 11 March 2013

References
1. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M: 980 nm excited upconversion in an Er-doped ZnO:TeO$_2$ glass. Appl Phys Lett 2002, 80(10):1752–1754.
2. Man SQ, Pun EYB, Chung PS: Upconversion luminescence of Er$^{3+}$ in alkaline bismuth gallate glasses. Appl Phys Lett 2000, 77(4):483–485.
3. Zhang HK, Kao CH, Zhou Y, Han XQ, Buddhudu S, Xiang Q, Lam YL, Chan YC: Green upconversion luminescence in Er$^{3+}$:Ba$_2$TiO$_3$ films. Appl Phys Lett 2000, 77(5):609–611.
4. Luo XX, Cao WH: Upconversion luminescence of holmium and ytterbium co-doped yttrium oxysulfide phosphor. Mater Lett 2007, 61(7):3698–3700.
5. Zhan J, Shen H, Gao W, Wang S, Zhu C, Xue F, Hou J, Su H, Yuan Z: An upconversion NaF$_2$:Yb$^{3+}$, Er$^{3+}$/TiO$_2$ core-shell nanoparticle photoelectrode for improved efficiencies of dye-sensitized solar cells. J Power Sources 2013, 226:47–53.
6. Ming C, Song F, Ren X: Color variety of up-conversion emission of Er$^{3+}$/Yb$^{3+}$ co-doped phosphate glass ceramics. Cer Am Phys Appl 2013, 132(5):531–534.
7. Lu C, Chen X: Spectroscopic properties of lanthanides in nanomaterials. In Handbook on the Physics and Chemistry of Rare Earths. Edited by Gschneidner KA Jr, Bünzli J-CG, Pecharsky VK. Amsterdam: Elsevier; 2007:99–80.
8. Sivakumar S, van Vegel FCJ, May PS: Near-infrared (NIR) to red and green up-conversion emission from silica sol–gel thin films made with La$_5$Al$_3$Yb$_{12}$Er$_{3}$(F$_{29}$O$_{88}$)$_{3}$ nanoparticles, hetero-looping-enhanced energy transfer (Hetere-LEET): a new up-conversion process. J Am Chem Soc 2007, 129(3):620–625.
9. Haase M, Schäfer H: Upconverting nanoparticles. Angew Chem Int Ed 2011, 50(26):5808–5820.
10. Zhang T, Yu L, Wang J, Wu J: Microstructure and up-conversion luminescence of Yb$^{3+}$ and Ho$^{3+}$ co-doped BST thin films. J Mater Sci 2010, 45(20):6189–6193.
11. Martinez A, Morales J, Diaz-Torres LA, Salas P, De La Rosa E, Oliva J, Desierea H: Green and red upconverted emission of hydrothermal synthesized Y$_2$O$_3$: Er$^{3+}$–Yb$^{3+}$ nanophosphors using different solvent ratio conditions. Mater Sci Eng B 2010, 174(1–3):164–168.
12. Yang Z, Yan L, Yan D, Song Z, Zhou D, Jin Z, Qui J: Color tunable upconversion emission in Yb, Er co-doped bismuth titanate inverse opal. J Am Chem Soc 2011, 134(8):2306–2310.
13. Capobianco JA, Boyer JC, Vetrone F, Speghini A, Bettinelli M: Optical spectroscopy and upconversion studies of Ho$^{3+}$-doped bulk and nanocrystalline Y$_2$O$_3$. Chem Mater 2002, 14(7):2915–2921.
14. Guyot Y, Moncorge R, Merleau LF, Pinto A, Mcintosh B, Verdun H: Luminescence properties of Y$_2$O$_3$ single crystals doped with Pr$^{3+}$ or Tm$^{3+}$ and codoped with Y$^{3+}$, Tm$^{3+}$ or Ho$^{3+}$ ions. Opt Mater 1996, 5(1–2):127–136.

Additional file

Additional file 1: Figure S1. FT-IR spectrum of Y$_{1.98}$Yb$_{0.02}$Er$_{0.01}$O$_3$.
15. Wang X, Bu Y, Xiao S, Yang X, Ding JW: Upconversion in Ho3+-doped YbF3 particle prepared by coprecipitation method. J Appl Phys B 2008, 93(4):801–807.

16. Chen GY, Yang GH, Aghahadi B, Liang HJ, Liu Y, Li L, Zhang ZG: Ultraviolet-blue upconversion emissions of Ho3+ ions. J Opt Soc Am B 2010, 27(6):1158–1164.

17. Gong L, Mao M, Xu C, Li X, Wang S, Lin J, Yang Q: Multicolor upconversion emission of dispersed ultra small cubic Sr2LuF7 nanocrystals synthesized by a solvothermal process. J Lumin 2013, 134:718–723.

18. Chen Z, Gong W, Chen T, Li S, Wang D, Wang Q: Preparation and upconversion luminescence of Er3+/Yb3+ codoped Y2Ti2O7 nanocrystals. Mater Lett 2012, 68:137–139.

19. Xie M, Peng X, Fu X, Zhang J, Li G, Yu X: Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence. Scripta Mater 2009, 60(3):190–193.

20. Ye X, Zhang W, Hu Y, He T, Huang X, Liao C, Zhong S, Xu Z, Nie H, Deng G: Preparation, characterization, and optical properties of nano- and submicron-sized Y2O3:Eu3+ phosphors. J Phys Chem B 2009, 105(5):064302–064308.

21. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H: Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005, 4(6):435–446.

22. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M: Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals. J Appl Phys 2004, 96(1):661–667.

23. Lukić SR, Petrović DM, Dramićanin MD, Mitrić M, Djukanović L: Optical and structural properties of Zn0.5Sn0.5O2:Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol-gel method. Scripta Mater 2008, 58(8):655–658.

24. Andrić Ž, Dramićanin MD, Mitrić M, Jokanović V, Beslije A, Viana B: Polymer complex solution synthesis of (Y0.5Gd0.5)2O3:Eu3+ nanoparticles. Opt Mater 2008, 30(7):1023–1027.

25. Antić Ž, Krismanović R, Wojtowicz M, Zych E, Bártaová B, Dramićanin MD: Preparation, structural and spectroscopic studies of (Y1-xLu0.5)x2O3:Eu3+ nanoparticles. Opt Mater 2010, 32(12):1612–1617.

26. Krismanović R, Antić Ž, Bártaová B, Dramićanin MD: Characterization of rare-earth doped Lu2O3 nanoparticles prepared with polymer complex solution synthesis. J Alloy Compd 2010, 505(1):224–228.

27. Silver J, Martinez-Rubio MJ, Ireland TG, Fern GR, Withnall R: The effect of particle morphology and crystallite size on the upconversion luminescence properties of erbium and ytterbium co-doped yttrium oxide phosphors. J Phys Chem B 2001, 105(5):948–953.

doi:10.1186/1556-276X-8-131
Cite this article as: Lojpur et al.: Color-tunable up-conversion emission in Y2O3:Yb3+, Er3+ nanoparticles prepared by polymer complex solution method. Nanoscale Research Letters 2013, 8:131.