Random antagonistic matrices

Giovanni M Cicuta1 and Luca Guido Molinari2,3

1 Dip. Fisica, Univ. Parma, Parco Area delle Scienze 7A, I-43100 Parma, Italy
2 Physics Department, Università degli Studi di Milano and I.N.F.N. sez. Milano, Via Celoria 16, I-20133 Milano, Italy
E-mail: giovanni.cicuta@fis.unipr.it and luca.molinari@unimi.it

Received 30 May 2016, revised 11 July 2016
Accepted for publication 25 July 2016
Published 24 August 2016

Abstract
The ensemble of antagonistic matrices is introduced and studied. In antagonistic matrices the entries A_{ij} and A_{ji} are real and have opposite signs, or are both zero, and the diagonal is zero. This generalization of antisymmetric matrices is suggested by the linearized dynamics of competitive species in ecology.

Keywords: antagonistic matrices, random matrices, May paradox, competitive species

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past 60 years the theory of random matrices had an impressive development in theoretical physics and in a variety of disciplines. Further progress and usefulness of random matrices will be linked to the ability of a specific class of random matrices to encode the relevant properties of a specific problem.

For instance, random matrices with entries that vanish outside a band around the diagonal have been studied for decades as models for the crossover between a strongly disordered insulating regime, with localized eigenfunctions and weak eigenvalue correlations, and a weakly disordered metallic regime, with extended eigenfunctions and strong eigenvalue repulsion [1–3]. Such crossover is believed to occur in the spectra of certain random partial differential (or difference) operators as the spectral parameter (energy) is changed. A review is [4].

A very different case, which deserves much study, is the network of neurons. In several models the interconnections are represented by a synaptic matrix with elements drawn randomly. The distribution of eigenvalues of this matrix is useful in the study of spontaneous activity and evoked responses. It was pointed out by Rajan and Abbott [5] that each node in a synaptic conductivity network is either purely excitatory or inhibitory (Dale’s Law), which

3 Author to whom any correspondence should be addressed.
leads to constraints on the signs of the matrix elements: all entries in a row describing an
excitatory neuron must be positive or zero, and all entries in an inhibitory row must be
negative or zero. Little is known of the generic properties of this ensemble of random
matrices [6].

In this paper we study a new class of matrices, here called antagonistic matrices. They
are characterized by real entries \(A_{ij} \) and \(A_{ji} \) having opposite signs, for all \(i < j \), or both zero,
and \(A_{ii} = 0 \). As such, they are a generalization of real antisymmetric matrices. An example
of order 4 is

\[
A = \begin{pmatrix}
0 & 5.3 & 0 & -1.7 \\
-3.2 & 0 & 2.3 & 2.0 \\
0 & -8.7 & 0 & -6.3 \\
1.1 & -1.8 & 1.9 & 0
\end{pmatrix}
\]

The reason for the name and the interest of such matrices is their possible relevance in models
for competitive species (predator–prey) and for the complexity–stability debate or paradox in
theoretical ecology [7], which is here summarized.

In a large island, a large number \(n \) of species live. Let \(n_i(t) \) be the number of living
individuals of species \(i = 1, \ldots, n \) at time \(t \). Let us suppose that the interactions are described
by the model

\[
\frac{d n_i(t)}{dt} = h_i(n_1(t), \ldots, n_n(t)), \quad i = 1, \ldots, n.
\]

A stationary feasible configuration, also called equilibrium point, is a configuration such that
for all species:

\[
h_i(n_1^*, \ldots, n_n^*) = 0, \quad n_i^* > 0.
\]

Let \(x_i(t) = n_i(t) - n_i^* \) represent the deviation from the equilibrium point. For small
deviations the dynamics is linearized about the equilibrium point \(\{n_1^*, \ldots, n_n^*\} \):

\[
\frac{d x_i(t)}{dt} \approx \sum_{j=1}^{n} M_{ij} x_j(t), \quad M_{ij} = \left. \frac{\partial h_i}{\partial n_j} \right|_{n_j = n_j^*}.
\]

Linear stability of the equilibrium point requires that all the eigenvalues of the matrix \(M \)
should have negative real part.

In general, the matrix \(M \) is huge and the entries are almost impossible to quantify. Robert
May [8] considered a model where the diagonal elements are all equal, \(M_{kk} = -\mu, \mu > 0 \),
and the matrix \(\tilde{M} \) of off-diagonal elements is a real \(n \times n \) random matrix. He chose the
entries as independent identically distributed (i.i.d.) random variables, the single probability
density \(p(M_{ij}) \) having zero mean and variance \(\sigma^2 \). In the limit \(n \to \infty \), with proper
assumptions on the moments of the probability law, the density of eigenvalues of the matrix
\(\tilde{M} \) converges weakly to the uniform distribution on the disk \(\{z \in \mathbb{C}, |z| \leq \sigma \sqrt{n}\} \). This is
known as the circular law; a survey is [9].

Provided that \(-\mu + \sigma \sqrt{n} \leq 0\), the eigenvalues of \(M \) are predicted with large probability
to have negative real part. However, with a fixed value \(\mu \), a more complex system (that is
increasing the number \(n \) of interacting species) will have an increasing number of eigenvalues
with positive real part, and will be linearly unstable.

The assertion that the increasing complexity of the ecological system leads to its
instability was (and is) considered false in view of evidence. The critical analysis of May’s
paradox may be found in [10–15].
The extreme simplicity of May’s argument is challenging. Is it possible that all the eigenvalues of a matrix $M = D + \tilde{M}$ with structure plausible to describe an ecological population, have negative real part?

In the mathematical literature, a matrix is said to be stable if its spectrum lies in the open left half-plane (a survey is [16]). However, the conditions on the principal minors make this approach of little use for matrices of large order. The location of eigenvalues in the complex plane may be bounded by constraining norms of the matrix or matrix rows or columns [17]. Every norm increases as the size of the matrix increases, suggesting a larger region for the location of eigenvalues.

For real symmetric random matrices, the probability distribution of the largest eigenvalue allows to discuss in great detail the stability transition [18].

An interesting analysis of the dynamics (1) was done by Fyodorov and Khoruzhenko [19]. Instead of brute linearization, they consider an appropriate nonlinear form of the driving forces $h(t,\vec{x})$, modelled by \vec{x}-dependent random matrices. They evaluate the average number of minima γ_μ for large n and observe a sharp transition between a single minimum and a very large number of minima, stable and unstable, as the parameter μ crosses a critical value. Therefore the dynamics could be not as May’s catastrophe, but a meandering between minima.

In this paper we pursue a route suggested by empirical evidence. The extensive literature on models of real systems of many species points to three features which increase the stability of the system: (1) the species have a competitive (i.e. antagonistic) interaction: the signs in every pair M_{ij} and M_{ji} are opposite4; (2) there are weak couplings among several species; (3) the matrix is sparse. The ensemble of random antagonistic matrices may accommodate the three features.

Random antagonistic matrices are related to random real antisymmetric matrices and to the elliptic ensembles, whose properties are summarized in section 2. In section 3 the new set of antagonistic matrices is introduced, with a discussion of single-matrix properties as well as ensemble properties, with examples. The last section 4 is devoted to 'almost antagonistic’ matrices, where the spectral goal of negative real part of eigenvalues is achieved and the matrices become strictly antagonistic in the large n limit.

Notation. In this paper M indicates a matrix $n \times n$ with real entries, D, S, A and \mathcal{A} indicate respectively a real diagonal, symmetric, antisymmetric and antagonistic matrix (see section 3).

2. Antisymmetric ensemble, elliptic ensemble, dilute matrices

2.1. The antisymmetric ensemble

We recall elementary properties of the eigenvalues of a real antisymmetric matrix A. The non-vanishing eigenvalues are pairs of opposite imaginary numbers. If n is odd, zero is always an eigenvalue (with odd multiplicity) and $\det A = 0$. If n is even and if zero is not an eigenvalue, then $\det A > 0$. We shall find that expectation values of the determinant of random antagonistic matrices reproduce these properties.

Let us consider matrices $M = D + A$, where A is real antisymmetric and D is a real diagonal matrix, with entries in an interval, $a \leq d_j \leq b$.

4 Several species have a mutualistic or cooperative interaction: the signs of the pair M_{ij} and M_{ji} are both positive. The stability of large systems of mutualistic species seems to be related to a very different structure of the matrix. Mutualistic interactions are ignored in this paper.
It is known that the eigenvalues z_k of any matrix Z are in the rectangle $\Re z_k \in \sigma_1, \Im z_k \in \sigma_2$ where σ_1 is the range of $\frac{1}{2}(Z + Z^T)$ and σ_2 is the range of $\frac{1}{2}(Z - Z^T)$ (Bendixson, see for ex. [20]). It follows that the eigenvalues z_k of the matrix M are in the rectangular region $a \leq \Re z_k \leq b, -\beta \leq \Im z_k \leq \beta$, where $\pm i\beta$ are the extreme eigenvalues of A. Since the result holds for any matrix $M = D + A$, we have:

Proposition 2.1. Let D be diagonal real random matrices with elements d_j drawn with a probability law such that $a \leq d_j \leq b$ for every $j = 1, \ldots, n$. Let A be any real antisymmetric matrix. The eigenvalues of $M = D + A$ are in the strip $a \leq \Re z \leq b$.

A simple simulation exhibits the relevant features. The eigenvalues5 of a random matrix $M = D + gA$ of order $n = 500$, $g = 0.01, 0.08, 0.5$, are depicted in figure 1. The panel shows the evolution from the diagonally dominant case to the case where merely the bary-center $x = -6$ of the diagonal matrix affects the dominant antisymmetric component.

Figure 2 again depicts the eigenvalues of $M = D + gA$, with the same choice for the entries of D and A, but with g fixed to 1 and increasing values of the order n. Only the vertical spread of the eigenvalues increases with n.

Clearly, the random matrices $M = D + gA$ satisfy the stability requirement that all eigenvalues have negative real part, independent of the size of the matrix and of the size of the entries of the antisymmetric component. However they would provide a model too rigid to describe a realistic community.

Remark 2.2. Let us consider again the matrix $M = D + gA$, where the entries of the diagonal matrix are negative, $a \leq d_j \leq b < 0$ for all j, A is any real antisymmetric matrix. The eigenvalues of M are in the strip $a \leq \Re z_j \leq b$. If O is an orthogonal matrix, consider the new matrix

5 The eigenvalues in figures 1–6 were evaluated by using Wolfram Mathematica.
where \bar{D} is the diagonal part and \tilde{S} is the off-diagonal part of the symmetric matrix ODO^{-1}. The entries of D are bounded:

$$a \leq d_j = \sum_k O^2_{j,k} d_k \leq b.$$

This suggests a possible structure for a real matrix M with the desired spectral properties: the antisymmetric part $(M - M^T)/2$ is arbitrary and the symmetric part $S = (M + M^T)/2 = \bar{D} + \tilde{S}$ is diagonally dominant. A simple way to achieve it is to choose the diagonal elements $d_j = S_{jj}$ in the interval (a, b) and the off-diagonal elements $S_{ij} = O(1/j^2)$. This example is made explicit in section 4.

2.2. The elliptic ensemble

The best known elliptic ensemble is a model of random real matrices J_{ik} with Gaussian probabilities [21]:

$$P(J) = \frac{1}{Z} \exp \left[-\frac{n}{2(1-\tau^2)} \text{Tr}(J J^T - \tau J J) \right] \prod_{ij} dJ_{ij}, \quad |\tau| \leq 1. \quad (3)$$

By writing $J = S + A$ with $S = \frac{1}{2}(J + J^T)$ and $A = \frac{1}{2}(J - J^T)$ one evaluates $\text{Tr}(J J^T) = \text{Tr}(S^2 - A^2)$ and $\text{Tr}(J J) = \text{Tr}(S^2 + A^2)$. Then

$$P(S + A) = \frac{1}{Z} \left[\prod_{i=1}^n e^{-\frac{1}{2(1+\tau^2)}(S_{ii})^2} \prod_{i=1}^n \prod_{k>i} e^{-\frac{1}{2(1+\tau^2)}(S_{ik})^2} \right] \left[\prod_{i=1}^n \prod_{k>i} e^{-\frac{n}{2(1-\tau^2)}(A_{ik})^2} \right]$$

where

$$Z = \left(\frac{\pi}{n} \right)^n [2(1 + \tau)]^n [1 - \tau^2]^{n(n-1)/2}.$$

The set of n^2 random real variables is partitioned into three sets of independent central normal random variables: n variables S_{ij} with $\sigma^2 = (1 + \tau)/n$, $\frac{n(n-1)}{2}$ variables S_{ik} ($i < k$) with $\sigma^2 = (1 + \tau)/(2n)$, and $\frac{n(n-1)}{2}$ variables A_{ik} ($i < k$) with $\sigma^2 = (1 - \tau)/(2n)$. One evaluates

$$\mathbb{E}[J_{ik}] = 0, \quad \mathbb{E}[J_{ik} J_{ik}] = \frac{\tau}{n}, \quad \mathbb{E}[(J_{ik})^2] = \frac{1}{n}.$$

In the limit $n \to \infty$, the distribution of the eigenvalues of J_{ik} converges to the uniform distribution on the elliptic region with semi-axes $a = (1 + \tau)/\sqrt{n}$, $b = (1 - \tau)/\sqrt{n}$.

Some decades of progress are evident in the more recent works [22, 23]. The following theorem is a generalization of the circular theorem, by Girko and Ginibre, and is important for the present discussion.

Theorem 2.3 (Elliptic theorem). Let M be a real random matrix such that:

(a) pairs (M_{ij}, M_{ji}), $i \neq j$, are i.i.d. random vectors and

$$\mathbb{E}(M_{1,2}, M_{2,1}) = \rho, \quad |\rho| \leq 1$$

(b) $\mathbb{E}(M_{1,2}) = \mathbb{E}(M_{2,1}) = 0$, $\mathbb{E}(M_{1,2}^2) = \mathbb{E}(M_{2,1}^2) = 1$, $\mathbb{E}(M_{1,2}^4), \mathbb{E}(M_{2,1}^4) \leq C$;

(c) The diagonal entries M_{ii} are i.i.d. random variables with

$$\mathbb{E}(M_{i,1}) = 0, \quad \mathbb{E}(M_{i,1}^2) < \infty.$$

Then the distribution of the eigenvalues \(x_k + iy_k \) of the matrix \(\frac{1}{\sqrt{n}} M \) converges, in the limit \(n \to \infty \), to the uniform distribution on the ellipse

\[
\frac{x^2}{(1 + \rho)^2} + \frac{y^2}{(1 - \rho)^2} \leq 1.
\]

2.3. Dilute matrices

In realistic models the different species do not have all-to-all connectivity. We should expect most of the matrix elements of \(M \) to vanish. As one introduces an increasing number of zero entries, the circular law continues to hold, up to a point.

Let us suppose that the \(n^2 \) real entries \(M_{ij} \) of the matrix \(M \) are i.i.d. random variables with a probability \(1 - Q_n \) to be zero:

\[
P(M_{ij}) = Q_n \pi(M_{ij}) + (1 - Q_n) \delta(M_{ij}),
\]

where \(\pi(M_{ij}) \) is a probability distribution with variance \(\sigma^2 \).

If \(0 < Q_n < 1 - \frac{1}{n^{2\alpha}} \), \(0 < \alpha \leq 1 \), the eigenvalues of \(M \) converge to the uniform distribution on a disk of radius \(\sigma \sqrt{n Q_n} \) [24].

If \(Q_n = p/n \), the graph associated to the matrix typically decomposes into a giant cluster \((p = 1 \text{ is a percolation transition}) \) and a large number of small clusters, mostly trees. The spectral density of eigenvalues shows spikes corresponding to the eigenvalues of trees [25–30].

Neri and Metz [31] obtained the analytic form of the spectrum of diluted random matrices with entries \(\{M_{ij}, M_{ji}\} \) that take values \((a, b), (b, a) \) or \((0, 0) \) according to a tuneable hierarchic structure of the graph of the matrix. In the dense limit it recovers the elliptic distribution.

Allesina and Tang [7] correctly argued that to consider elliptic ensembles (with the antisymmetric part greater than the symmetric part) with an amount of dilution increases the stability of the system. Still the axes of the ellipse are proportional to \(\sqrt{n} \) and, for sufficiently large \(n \) and if the center of the ellipse is kept fixed at a real negative value, the elliptic domain will not be confined to the left complex half-plane.

3. Antagonistic matrices

The goal of this investigation is to explore a class of real matrices useful to describe an ecological community, such that the real part of all the eigenvalues of the matrix is negative despite \(n \) being large, in order to evade the stability–complexity paradox.

Definition 3.1. An antagonistic matrix \(A \) is a real \(n \times n \) matrix such that \(A_{ii} = 0 \) and, for every pair \(i < j \), the entries \(A_{ij} \) and \(A_{ji} \) have opposite sign or are both zero.

Remark 3.2. If \(A \) is an antagonistic matrix, also \(-A\) and \(A^T\) are antagonistic. If \(D \) is real diagonal then \(DAD^{-1} \) is antagonistic. If \(P \) is a permutation matrix\(^6\), also \(P^TAP \) is antagonistic, with same eigenvalues.

In [32] it was shown by standard perturbation methods that the non-degenerate spectrum of a real symmetric matrix perturbed by an antisymmetric matrix is squeezed to a narrower rectangle in the complex plane. We show a similar result:

\(^6\) In a permutation matrix there is exactly one entry equal to 1 in each row and in each column, all other entries are zero.
Proposition 3.3. Let D be a real diagonal matrix with entries $d_1, ..., d_n$, with non degenerate extremal values $d_M = \max\{d_1, ..., d_n\}$ and $d_m = \min\{d_1, ..., d_n\}$, and let A be an antagonistic matrix. For small ϵ and at leading order, the eigenvalues of $M(\epsilon) = D + \epsilon A$ are in the strip

$$d_m + \epsilon^2 \frac{|A_{m,m}|}{d_M - d_m} < \Re z < d_M - \epsilon^2 \frac{|A_{M,M}|}{d_M - d_m},$$

(4)

Proof. Let us expand in ϵ the characteristic polynomial:

$$P(z, \epsilon) = \det(z - D - \epsilon A) = P(z, 0) \exp[\text{tr} \log(1 - \epsilon (z - D)^{-1} A)] = P(z, 0) \left[1 - \frac{\epsilon^2}{2} \sum_{i,j} \frac{A_{i,j} A_{j,i}}{(z - d_i)(z - d_j)} + \mathcal{O}(\epsilon^3) \right].$$

(5)

The term linear in ϵ is zero because $A_{i,j} = 0$. To leading order, the extremal eigenvalues of the perturbed matrix $M(\epsilon)$ are:

$$\lambda_{\max} = d_M - \epsilon^2 \sum_{j = M} \frac{|A_{M,j} A_{j,M}|}{d_M - d_j}, \quad \lambda_{\min} = d_m + \epsilon^2 \sum_{j = m} \frac{|A_{m,j} A_{j,m}|}{d_j - d_m}.$$ (6)

The result follows by a simple inequality. \qed

Proposition 3.4. With the same setting of proposition 3.3, let the lowest eigenvalue d_{\min} of D have degeneracy h. Then a pair of eigenvalues of $M(\epsilon)$ are complex conjugate, and $h - 2$ are unperturbed at order ϵ.

Proof. Let σ be the set of h indices such that $d_j = d_{\min}$. The expansion (5) is

$$P(z, \epsilon) = P(z, 0) \left[1 - \frac{\epsilon^2}{2} \sum_{i,j \in \sigma} \frac{A_{i,j} A_{j,i}}{(z - d_{\min})^2} - \epsilon^2 \sum_{i,j \notin \sigma} \frac{A_{i,j} A_{j,i}}{(z - d_{\min})(z - d_j)} + \cdots \right].$$

The solution of $P(z, \epsilon) = 0$ for $z = d_{\min} + \epsilon \delta_1 + \epsilon^2 \delta_2 + \cdots$ shows that $h - 2$ minimal eigenvalues remain unchanged and two become complex:

$$\lambda = d_{\min} \pm \frac{1}{\sqrt{2}} \left(\sum_{i,j \in \sigma} |A_{i,j} A_{j,i}| + \epsilon^2 \sum_{i,j \notin \sigma} \frac{A_{i,j} A_{j,i}}{d_{\min} - d_j} + \mathcal{O}(\epsilon^3) \right).$$

Note that $\delta_2 > 0$. A similar result would hold for a degenerate highest eigenvalue. \qed

3.1. Random antagonistic ensembles

The simplest model of an ensemble of random antagonistic matrices has a joint probability density for the $n^2 - n$ matrix entries $A_{i,j}$ in the form of a product of joint probability densities for the pairs, i.e. the pairs are independent random vectors, like in the elliptic ensemble:

$$P(A) = \prod_{i < j} f_{i,j}(A_{i,j}, A_{j,i}),$$

(7)

where $f_{i,j}(x, y) = P(A_{i,j} = x, A_{j,i} = y)$. If $f_{i,j}(x, y) = f_{j,i}(y, x)$, the resulting marginal probabilities $p(A_{i,j} = x)$ and $p(A_{j,i} = y)$ are equal.
The support of each pair density f_{ij} is a subset in (x, y) plane where $xy \leq 0$. This constraint increases the stability of the model because it increases the weight of the antisymmetric component versus the symmetric component.

If $\pm A$ belong to the ensemble with the same probability, it follows that if z belongs to the spectrum of the ensemble, then the four points $\pm z$ and $\pm z^*$ belong to it with same probability.

Remark 3.5. If the independent random pairs are chosen to be identically distributed and the random antagonistic model satisfies the conditions of theorem 2.3 then, in the large n limit, the eigenvalues converge to a (slim) ellipse.

For the purpose of stability it is necessary to choose different probability distribution for the pairs.

The following proposition is reminiscent of the known property of a real antisymmetric matrix A: $\det A = 0$ (n odd), $\det A = (\text{pf} [A])^2 = (-1)^{n/2} \text{pf} [A] \cdot \text{pf} [A^T] \ (n \text{ even})$.

We recall the notion of Pfafian. Let n be even. Given a triangular array $a = \{a_{ij}\}$, $1 \leq i < j \leq n$,

$$\text{pf} [a] = \sum_P \epsilon_P a_{i_1j_1} a_{i_2j_2} \cdots a_{i_{n}j_{n}},$$

where the sum is on all permutations $P = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}$ such that

$$i_1 < i_2, i_3 < i_4, \ldots, i_{n-1} < i_n, \quad \text{and} \quad i_1 < i_3 < i_5 < \ldots < i_{n-1}$$

ϵ_P is the sign of the permutation. If n is odd, $\text{pf} [a] = 0$ by definition.

In the case of a square matrix M, $\text{pf} [M]$ is a multinomial in the entries of the triangular array $\{M_{ij}\}$, $1 \leq i < j \leq n$. If A is a real antisymmetric matrix, $\text{pf} [A] = (-1)^{n/2} \text{pf} [A^T] \ (n \text{ even}).$

Proposition 3.6. Let A belong to a random antagonistic ensemble where the joint probability density of the entries is the product of probabilities of independent pairs, as in equation (5) and the average of each entry is zero, $\mathbb{E}[A_{ij}] = 0$. Then:

$$\mathbb{E}[\det A] = 0 \quad \text{n odd}$$
$$\mathbb{E}[\det A] = (-1)^{n/2} \mathbb{E}[\text{pf} [A] \cdot \text{pf} [A^T]] > 0 \quad \text{n even.}$$

The expectation of the characteristic polynomial $\mathbb{E}(\det[z I - A])$ is a polynomial in z^2 with positive coefficients. In particular, $\mathbb{E}\{\sum_{i} \lambda_i^2\} = \mathbb{E}(\text{tr}[A^2]) = -\sum_{i} \epsilon_{ij} \theta_{ij}$ where $\theta_{ij} = -\mathbb{E}(A_{ij}A_{ij}) > 0$.

The proofs with the explicit expressions of the average Pfafian or characteristic polynomial are given in the appendix, with two different techniques.

3.2. Simple probability measures and spectral domains

We briefly describe some simple probability densities for random antagonistic matrices, yielding the most common marginal probabilities. In the first three examples the independent pairs are identically distributed, $f_{ij}(x, y) = f(x, y)$.
3.2.1. Gaussian marginal probability.

\[f(x, y) = \frac{1}{\pi} e^{-\frac{1}{2}(x^2+y^2)} \theta(-xy). \]

The marginal probabilities are standard normal

\[f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dy \ e^{-\frac{1}{2}(x^2+y^2)/2} \theta(-xy) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \]

and \(\mathbb{E}[A_{ij}] = 0, \mathbb{E}[(A_{ij})^2] = 1, \mathbb{E}[A_{ij}A_{kl}] = -\frac{2}{\pi}. \)

3.2.2. Uniform marginal probability.

\[f(x, y) = \begin{cases} 1/2 & \text{if } x \in (0, 1) \text{ and } y \in (-1, 0) \\ 1/2 & \text{if } x \in (-1, 0) \text{ and } y \in (0, 1) \\ 0 & \text{otherwise.} \end{cases} \]

The marginal probabilities are uniform in \((-1, 1):\)

\[f(x) = \int_{-1}^{1} f(x, y) \, dy = \begin{cases} 1/2 & \text{if } x \in (-1, 1) \\ 0 & \text{otherwise.} \end{cases} \]

Each random variable \(A_{ik} \) is identically distributed, with \(\mathbb{E}[A_{ij}] = 0, \mathbb{E}[(A_{ij})^2] = \frac{1}{5}, \mathbb{E}[(A_{ij})^4] = \frac{1}{5} \) and, for every pair, \(\mathbb{E}[A_{ij}A_{kl}] = -\frac{4}{5}. \)

3.2.3. Marginal probability with support on two symmetric intervals. If the joint probability density for a pair has support on strips, the marginal probability has support on two disjoint intervals.

For example, let us define the function

\[g_w(x) = \begin{cases} \frac{1}{2w} & \text{if } -w < x < w \\ 0 & \text{otherwise.} \end{cases} \]

and the joint probability density of the pair

\[f(x, y) = \frac{1}{2} [g_w(x + 1) g_w(y - 1) + g_w(x - 1) g_w(y + 1)]. \]

Then \(\mathbb{E}[A_{ij}A_{kl}] = -1. \) The marginal densities are \(f(x) = \frac{1}{2} [g_w(x - 1) + g_w(x + 1)], \) that is, the probability density of any \(A_{ik} \) has support on the union of two intervals, \((-1 - w, -1 + w) \cup (1 - w, 1 + w), \) with \(\mathbb{E}[A_{ij}] = 0, \mathbb{E}[(A_{ij})^2] = 1 + \frac{w^2}{3}. \)

Remark 3.7. The three models agree with the conditions in theorem 2.3. The parameter \(\rho \) describing the elliptic domain of the spectrum in the limit \(n \to \infty \) of the random antagonistic matrix is
3.3. Independent pairs not-identically distributed

A useful probability density for the antagonistic matrix is

\[
\rho = \begin{cases}
- \frac{2}{\pi} & \text{Gaussian} \\
- \frac{3}{4} & \text{uniform} \\
- \frac{3}{3 + \alpha^2} & \text{two intervals.}
\end{cases}
\]

4. ‘Small’ symmetric plus ‘big’ antisymmetric

A simple way to define an ensemble of real random matrices with eigenvalues that with high probability are in the left complex half-plane, is to consider real matrices
where the symmetric matrix S has zero diagonal and is ‘small’ compared to the antisymmetric matrix A, and D is a properly chosen diagonal matrix.

If the entries S_{ij}, for $i > j$, are i.i.d. with zero mean and variance σ_S^2, most of the eigenvalues of the matrix S/\sqrt{n} are, for large n, in the interval $(-2\sigma_S, 2\sigma_S)$.

If the entries A_{ij}, for $i > j$, are i.i.d. with zero mean and variance σ_A^2, most of its eigenvalues, for large n, are in the interval $(-2i\sigma_A\sqrt{n}, 2i\sigma_A\sqrt{n})$.

Therefore, for large n, the eigenvalues of the matrix $\frac{1}{\sqrt{n}}S + A$ are with high probability inside the rectangular box with fixed horizontal side $-2\sigma_S < x < 2\sigma_S$ and increasing vertical side $-2i\sigma_A\sqrt{n} < y < 2i\sigma_A\sqrt{n}$.

Figure 5 shows 800 eigenvalues of a matrix $S/\sqrt{n} + A$ with entries S_{ij} ($i > j$) uniformly distributed in $(-30, 30)$ (then $\sigma_S = 30/\sqrt{3}$), and A_{ij} ($i > j$) uniformly distributed in $(-10, 10)$ (then $\sigma_A = 10/\sqrt{3}$).

Already for $n = 200$ the eigenvalues appear to be confined in a rectangular domain with sides 20×160, much smaller than the estimated rectangular domain with sides $\left(\frac{120}{\sqrt{3}} \approx 69.2\right) \times \left(\frac{40\sqrt{200}}{\sqrt{3}} \approx 326.6\right)$.

Furthermore the right panel in figure 5 shows that the horizontal side of the domain decreases for increasing values of n. This shrinking effect is analogous to that shown in section 2.1 for the matrix $D + gA$.

One may also remark that with the above distribution for S_{ij} and A_{ij} the random matrix $\frac{1}{\sqrt{n}}S + A$ is not antagonistic, but it is antagonistic if the distribution of the A_{ij} is chosen to have
Finally we add a diagonal matrix: \(D + \frac{1}{\sqrt{n}} S + A \). With proper choice of \(D \), the domain is shifted so that all eigenvalues are, with high probability in the left part of the complex plane. Figure 6 shows the eigenvalues for \(n = 800 \), with \(\frac{1}{\sqrt{n}} S + A \) having the above distribution and the diagonal entries \(d_j \) being uniformly distributed in \((-10, -5) \cup (1.5, 10)\). All the eigenvalues of the simulation have the real part in the interval \(-12.58 < x < -3.246\). It is reasonable to expect that for greater values of \(n \) the eigenvalues would be confined into a more narrow strip centered around \(x \sim -7.5 \).

5. Conclusions

This paper introduces the notion of antagonistic matrices and ensembles of antagonistic matrices. The original motivation arises from the stability–complexity paradox in a community of many species with predator/prey relation. It is likely that this class of matrices may prove useful in other contexts because of their controlled spectral properties. Some basic properties of the ensemble are proved exactly or perturbatively, whereas others are supported
by numerical simulations. Some analytic statements show a correspondence between certain functions of antisymmetric matrices and analogous functions of antagonistic matrices. Certainly the subject deserves to be investigated more thoroughly.

Acknowledgments

Amos Maritan suggested GMC to study this problem and Enrico Onofri helped with simulations and relevant remarks.

Appendix

We present the proofs of proposition 3.6 with two different techniques.
Proof 1 (Combinatorial). \(\mathbb{E}[\det A] = \sum_{\epsilon \rho} \epsilon \rho \mathbb{E}[A_{i_1 \cdots A_{n_k}}] \). In analogy with Wick’s theorem, the expectation of each term of the sum factorizes and is non-zero only if \(n \) is even, and if for every factor \(A_{i_1 n_k} \) there is the symmetric factor \(A_{n_k i_1} \). For example, for \(n = 4 \) the non-zero terms are:

\[
\mathbb{E}[\det A] = \mathbb{E}[A_{1,2}A_{2,1}A_{3,4}A_{4,3} + A_{1,3}A_{2,4}A_{3,1}A_{4,2} + A_{1,4}A_{2,3}A_{3,2}A_{4,1}] > 0.
\]

The expectation is non-vanishing only for the permutations which are products of \(n/2 \) cycles of length two. The number \(c_n \) of terms that contribute to the expectation value of \(\det[A] \) is\(^7\)

\[
c_n = (n - 1)(n - 3) \cdots 3 \cdot 1 = \frac{(n)!}{2^{n/2}(\frac{n}{2})!}.
\]

The sign of such permutations is\(^8\) \(\epsilon \rho = (-1)^{\text{perm}} \).

For an antagonistic matrix, the Pfaffian is multilinear in the entries of the upper triangular part of the matrix, \(A_{i,j} \) with \(i < j \). For example (\(n = 4 \)):

\[
\text{pf}[A] = A_{1,2}A_{3,4} - A_{1,3}A_{2,4} + A_{1,4}A_{2,3}, \quad \text{pf}[A^T] = A_{2,1}A_{4,3} - A_{2,3}A_{4,1} + A_{2,4}A_{3,2}.
\]

If \(n \) is even, the number of terms in \(\text{pf}[A] \) is \(c_n \).

In the evaluation of the average \(\mathbb{E}[\text{pf}[A] \cdot \text{pf}[A^T]] \) the only non-zero terms are the \(c_n \) terms that are product of entries symmetric with respect of the matrix diagonal. \(\square \)

Proof 2 (Grassmann integral). We compute the ensemble average of the characteristic polynomial \(p(z) = \mathbb{E}[\det(z I_n - A)] \), via a representation of the determinant of a matrix as a Gaussian integral on anti-commuting variables \(\tilde{\psi}_i, \psi_i, i = 1, \ldots, n \).

\[
\det(z I_n - A) = \int \prod_{k=1}^{n} (d\tilde{\psi}_k d\psi_k) e^{\sum_{i<j} \tilde{\psi}_i \tilde{\psi}_j (z I - A)_{i,j}}
\]

\[
= \int \prod_{k=1}^{n} (d\tilde{\psi}_k d\psi_k) e^{z \sum_{i<j} \tilde{\psi}_i \tilde{\psi}_j + \sum_{i<j} \tilde{\psi}_i A_{i,j} \psi_j}
\]

\[
= \int \prod_{k=1}^{n} (d\tilde{\psi}_k d\psi_k) \prod_{r=1}^{n} (1 + z \tilde{\psi}_r \psi_r)
\]

\[
\times \prod_{i<j} (1 - \tilde{\psi}_i A_{i,j} \psi_j - \tilde{\psi}_i A_{i,j} \psi_j + \tilde{\psi}_i \psi_j A_{i,j} A_{i,j}).
\]

The ensemble average is taken, with \(\theta_{i,j} = -\mathbb{E}[A_{i,j} A_{j,i}] \geq 0 \):

\[
p(z) = \int \prod_{k=1}^{n} (d\tilde{\psi}_k d\psi_k) \prod_{r=1}^{n} (1 + z \tilde{\psi}_r \psi_r) \prod_{i<j} (1 + \tilde{\psi}_i \psi_j A_{i,j} \theta_{i,j})
\]

\[
= z^n + z^{n-2} \sum_{i<j} \theta_{i,j} + z^{n-4} \sum_{i<j} \theta_{i,j} \theta_{i,j} + \cdots
\]

\[
+ z^{n-6} \sum_{i<j,k<l} \theta_{i,j} \theta_{k,l} \theta_{k,l} + \cdots.
\]

\(^7\) See for example R P Stanley, Enumerative Combinatorics, vol 1, Cambridge University Press, page 18.

\(^8\) See for example: M Mahajan, V Vinay, 1998, Determinant: old algorithms, new insights, Electronic Colloquium on Computational Complexity, Report 12 or G Rote, 2001, Division-Free algorithms for the determinant and the pfaffian: algebraic and combinatorial approaches, Computational Discrete Mathematics.
if n is even, the sum terminates with

$$ E[\det A] = \sum_{i_1 < i_2} \theta_{i_1} \cdots \theta_{i_{n/2}}, $$

(8)

The primed sums are restricted to have all indices different and $i_1 < i_2 < \ldots < i_k$. □

References

[1] Seligman T, Verbaarschot J and Zirnbauer M 1985 J. Phys. A: Math. Gen. 18 2751
[2] Casati G, Molinari L and Izrailev F 1990 Scaling properties of band random matrices Phys. Rev. Lett. 64 1851–4
[3] Casati G, Izrailev F and Molinari L 1991 J. Phys. A: Math. Gen. 24 4755
[4] Spencer T 2011 Random band matrices and random sparse matrices Handbook on Random Matrix Theory ed G Akemann et al (Oxford: Oxford University Press)
[5] Rajan K and Abbott L F 2006 Eigenvalue spectra of random matrices for neural networks Phys. Rev. Lett. 97 188104
[6] Amir A, Hatano N and Nelson D R 2015 Localization in non-Hermitian chains with excitatory/inhibitory connections arXiv:1512.05478
[7] Allesina S and Tang Si 2015 The stability–complexity relationship at age 40: a random matrix perspective Popul. Ecol. 57 63–75
[8] May R M 1972 Will a large complex system be stable? Nature 238 413–4
[9] Bordenave C and Chafaï D 2012 Around the circular law Probab. Surv. 9 1–89
[10] Hooper D U et al 2005 Effects of biodiversity on ecosystem functioning: a consensus of current knowledge Ecol. Monogr. 75 3–35
[11] Roberts A 1974 Stability of a feasible random system Nature 251 607–8
[12] Kirk P, Rolando D M Y, MacLean A L and Stumpf M P H 2015 Conditional random matrix ensembles and the stability of dynamical systems New J. Phys. 17 083025
[13] Haydon D T 2000 Maximally stable model ecosystem can be highly connected Ecology 81 2631–6
[14] McCann K S 2000 The diversity—stability debate Nature 405 228–33
[15] Fortuna M A, Stouffer D B, Olesen J M, Jordano P, Mouillot D, Krasnov B R, Poulin R and Bascompte J 2010 Nestedness versus modularity in ecological networks: two sides of the same coin? J. Animal Ecol. 79 811–7
[16] Hershkowitz D 1992 Recent directions in matrix stability Linear Algebr. Appl. 171 161–86
[17] Horn R A and Johnson C R 1985 Matrix Analysis (Cambridge: Cambridge University Press) ch 5 and 6
[18] Majumdar S N and Schehr G 2014 Top eigenvalue of a random matrix: large deviations and third order phase transition J. Stat. Mech. P01012
[19] Fyodorov Y V and Korzhenko B A 2016 A nonlinear analogue of May–Wigner instability transition Proc. Natl Acad. Sci. 113 6827–32
[20] Mehta M L 1989 Matrix Theory, Selected Topics and Useful Results (Les Ulis, France: Editions de Physique) ch 11
[21] Sommers H J, Crisanti A, Sompolinsky H and Stein Y 1988 Spectrum of large random asymmetric matrices Phys. Rev. Lett. 60 1895
[22] Naumov A 2012 Elliptic law for real random matrices arXiv:1201.1639
[23] Nguyen H H and O’Rourke S 2015 The elliptic law Int. Math. Res. Not. 2015 7620–89
[24] Matchett Wood P 2012 Universality and the circular law for sparse random matrices Ann. Probab. 22 1266–300
[25] Rodgers G J and Bray A J 1988 Density of states of a sparse random matrix Phys. Rev. B 37 3557
[26] Rodíguez Y V and Mirlin A D 1991 On the density of states of sparse random matrices J. Phys. A: Math. Gen. 24 2219
[27] Bauer M and Golinelli O 2001 Random incidence matrices: moments of the spectral density J. Stat. Phys. 103 301
[28] Semerjian G and Cugliandolo L F 2002 Sparse random matrices: the eigenvalue spectrum revisited
 J. Phys. A: Math. Gen. **35** 4837

[29] Kühn R 2008 Spectra of sparse random matrices *J. Phys. A: Math. Theor.* **41** 295002

[30] Rogers T 2010 New results on the spectral density of random matrices *PhD Thesis* Department of
 Math., King’s College London

[31] Neri I and Metz F L 2012 Spectra of sparse non-Hermitian random matrices: an analytical solution
 Phys. Rev. Lett. **109** 030602

[32] Bloch J, Bruckmann F, Meyer N and Schierenberg S 2012 Level spacings for weakly asymmetric
 real random matrices and application to two-color QCD with chemical potential *J. High Energy
 Phys. JHEP08(2012)066*