Clonal Clusters, Molecular Resistance Mechanisms and Virulence Factors of Gram-Negative Bacteria Isolated from Chronic Wounds in Ghana

Denise Dekker 1,2,* , Frederik Pankok 3, Thorsten Thye 1, Stefan Taudien 3, Kwabena Oppong 4, Charity Wiafe Akenten 4, Maike Lamshöft 1,2, Anna Jaeger 1, Martin Kaase 3, Simone Scheithauer 3, Konstantin Tanida 5, Hagen Frickmann 5,6, Jürgen May 1,2,7* and Ulrike Loderstädt 3

1 Department Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; thye@bnitm.de (T.T.); lamshoett@bnitm.de (M.L.); anna.jaeger@bnitm.de (A.J.); may@bnitm.de (J.M.)
2 German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck- Borstel-Riems, 38124 Braunschweig, Germany
3 Institute for Infection Control and Infectious Diseases, University Medical Center Göttingen, 37075 Göttingen, Germany; frederik.pankok@med.uni-goettingen.de (F.P.); stefan.taudien@med.uni-goettingen.de (S.T.); martin.kaase@med.uni-goettingen.de (M.K.); simone.scheithauer@med.uni-goettingen.de (S.S.); ulrike.loderstaedt1@med.uni-goettingen.de (U.L.)
4 Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), South-End, Asuogyaa Road, Kumasi 030-5928, Ghana; oppong@kccr.de (K.O.); danquah@kccr.de (C.W.A.)
5 Department of Microbiology and Hospital Hygiene, Bundeswehr Hospital Hamburg, External Site at the Bernhard Nocht Institute for Tropical Medicine Hamburg, 20359 Hamburg, Germany; konstantintanida@bundeswehr.org (K.T.); frickmann@bnitm.de (H.F.)
6 Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany
7 University Medical Center Hamburg-Eppendorf (UKE), Tropical Medicine II, 20251 Hamburg, Germany
* Correspondence: dekker@bnitm.de; Tel.: +49-40-4281-8535

Abstract: Wound infections are common medical problems in sub-Saharan Africa but data on the molecular epidemiology are rare. Within this study we assessed the clonal lineages, resistance genes and virulence factors of Gram-negative bacteria isolated from Ghanaian patients with chronic wounds. From a previous study, 49 Pseudomonas aeruginosa, 21 Klebsiella pneumoniae complex members and 12 Escherichia coli were subjected to whole genome sequencing. Sequence analysis indicated high clonal diversity with only nine P. aeruginosa clusters comprising two strains each and one E. coli cluster comprising three strains with high phylogenetic relationship suggesting nosocomial transmission. Acquired beta-lactamase genes were observed in some isolates next to a broad spectrum of additional genetic resistance determinants. Phenotypical expression of extended-spectrum beta-lactamase activity in the Enterobacterales was associated with bla\textsubscript{CTX-M-15} genes, which are frequent in Ghana. Frequently recorded virulence genes comprised genes related to invasion and iron-uptake in E. coli, genes related to adherence, iron-uptake, secretion systems and antiphagocytosis in P. aeruginosa and genes related to adherence, biofilm formation, immune evasion, iron-uptake and secretion systems in K. pneumonia complex. In summary, the study provides a piece in the puzzle of the molecular epidemiology of Gram-negative bacteria in chronic wounds in rural Ghana.

Keywords: wounds; Gram-negative bacteria; colonization; infection; clonal lineages; resistance genes; virulence factors

1. Introduction

The microbiology of chronic infected wounds, also on a molecular level, is poorly understood in sub-Saharan Africa (SSA) [1]. However, studies highlight the importance of antibiotic resistant Gram-negative bacteria [2–6].
From other parts in the world, in particular from industrialized countries, information on the microbiology and the role of biofilm-forming microorganisms causing such infections are well established [7–10].

In chronic wounds, *Pseudomonas aeruginosa* is amongst the most frequently isolated Gram-negative bacteria, associated with biofilm formation [11,12]. Tightly adhering biofilms pose a challenge in the diagnosis of *P. aeruginosa* using standard culturing methods [13].

In comparison, the role of Enterobacterales in chronic wounds has been much less characterized [14–17]. Studies have shown that geography seems to play a role in the estimation of their etiological relevance [18]. It was shown that skin colonization with Gram-negative bacteria is frequent in resource-limited (sub)tropical settings [19–21], in contrast to skin colonization of individuals from industrialized countries, where Gram-positive bacteria dominate [19]. Temperature and moisture have been discussed as likely reasons for the difference seen [22].

Isolation of potentially pathogenic bacteria from non-sterile sites like wounds does not necessarily indicate clinical relevance, which poses challenge to clinical interpretation.

In a recent study that focused on the overall bacterial composition of chronic wound infections in Ghana, from which the isolates for the present molecular analysis were taken, Enterobacterales and *Pseudomonas aeruginosa* constituted the majority of isolated bacterial strains [23]. A moderate proportion of ESBL-positive Enterobacterales suggests lower frequencies of antibiotic resistance [23] than what was recorded from other Ghanaian hospitals [5,24].

Within this study, we aim at characterizing clonal lineages, resistance-associated genetic elements and virulence genes of *P. aeruginosa*, the *Klebsiella pneumoniae* complex and *Escherichia coli*, which were recently isolated from chronic wounds of Ghanaian adult patients [23]. The molecular epidemiology of dominating clonal lineages and associated resistance genes will be assessed. Further, analysis of highly abundant virulence factors will be conducted.

2. Results

2.1. Clustering Based on Core Genome Multilocus Sequence Typing (cgMLST) Results

Of the 49 *P. aeruginosa* analyzed, a total of nine clusters comprising isolates without any recorded differences (n = 2) or with one or two alleles difference (n = 7) were found, suggesting closely related phylogeny (Figure 1). In addition to the clusters, 31 singletons with differences ranging from 80 to 3584 alleles were observed. MLST sequence types (ST) are indicated in Figure 1 and Tables A1 and A2. Cluster sequence types included the following: ST244, ST245, ST381, ST554, ST856, ST1485, ST2033, ST3227 and ST3590.

No clusters were identified among the 21 assessed *K. pneumonia* complex members, which were all singletons with differences ranging from 647 to 2244 alleles. *K. pneumoniae* complex sequence types are summarized in Figure 2. From the 12 *E. coli* isolates, three isolates in a cluster of close phylogenetic relationship were found (1 × no allelic differences, 1 × 1 allele difference) (Figure 3). In addition to the cluster observed, nine singletons with differences ranging from 41 to 2365 alleles were recorded. The sequence type of the cluster was ST132 (Pasteur MLST scheme). Sequence types of all *E. coli* isolates are illustrated in Figure 3.
2.2. Identified Molecular Resistance Mechanisms in Correlation to Previous Phenotypic Antibiotic Resistance

Table 1 summarizes acquired antimicrobial resistance determinants for *E. coli* and acquired genes mediating tolerance to disinfectants. Data for *P. aeruginosa* and *K. pneumoniae* are presented in Tables A1 and A2. Tables A3–A8 summarize the phenotypic resistance results as previously recorded [23].
Figure 2. Minimum spanning tree of *K. pneumoniae* complex based on 2358 targets (core genome). Isolate numbers are found within the nodes, and the numbers between the nodes indicate the number of different alleles. Colors demonstrate the MLST sequence type of the isolates.
In the present study, phylogenetically identical or almost identical isolates also carried the same resistomes. All *E. coli* strains harbored acquired beta-lactamase genes with the majority coding for small spectrum beta-lactamases such as *bla*_{TEM-1} or *bla*_{OXA-1}. Only four strains carried the gene for an ESBL, in all cases *bla*_{CTX-M-15}. Among the *K. pneumoniae* complex strains, two belonged to the species *K. variicola*, one to the species *K. quasipneumoniae* and the remaining to the species *K. pneumoniae* sensu stricto as reflected by intrinsic *bla*_{LEN}, *bla*_{OKP} and *bla*_{SHV-1} like, respectively. Genes coding for ESBL (*bla*_{CTX-M-15}) were found solely in four out of 18 *K. pneumoniae* sensu stricto strains that also displayed resistance to oxyimino cephalosporins. In addition, several *K. pneumoniae* complex strains harbored *bla*_{TEM-1}, single strains also contained *bla*_{OXA-1} and *bla*_{SCO-1}.

With respect to *P. aeruginosa*, only one strain harbored acquired beta-lactamase genes (*bla*_{TEM-1} and *bla*_{SCO-1}). Increased minimum inhibitory concentrations (MICs) for carbapenems as observed in some *P. aeruginosa* strains were neither explained by matching acquired carbapenemase genes nor by full sequence analysis of the oprD gene. The associated amino acid sequences are shown in Figure A1. As indicated, the complete oprD gene was found in all 49 *P. aeruginosa* isolates; there was no evidence of protein truncation by premature stop of translation. The 49 isolates could be divided into 7 subgroups according to the protein sequence of the oprD protein, which differ in a total of 30 individual amino acid exchanges and in a single 12aa/10aa-stretch. Therefore, genotypic assessment could not identify the reason for the single carbapenem-resistant *P. aeruginosa* isolate 088 (ST 1682).
Table 1. Analysis of antimicrobial resistance determinants, ordered by strain and MLST type, of the assessed *E. coli* isolates. ST = Sequence type.

Sample ID	ST-Type	Acquired Resistance Determinants Against	Beta lactams	Sulfonamids	Trimethoprim	Makrolids	Tetracyclins	Fluoroquinolones	Chloramphenicol	Aminoglycosides	Efflux pumps	Amino acid exchanges due to point mutations	Disinfectant resistance genes *
041	ST 2	**bla**_{TEM-1B}, **bla**_{CTX-M-15}, **bla**_{OXA-1}, **bla**_{TEM-1B}, **bla**_{TEM-1B}, **bla**_{TEM-1B}, **sul1**, **dfra17**, **mhp(A)**, **tet(B)**, **acc(6′)-Ib-cr, acc(6′)-Ib-cr**	**sul1**	**dfra17**	**mhp(A)**	**tet(B)**	**acc(6′)-Ib-cr, acc(6′)-Ib-cr**	**catB3, catA1**	**acc(3)-IId, acc(6′)-Ib-cr, aadA5, acc(6′)-Ib-cr**	**mdfr(A)**	**parE p.S458A, gyrA p.S83L, gyrA p.D87N, parC p.S80I**	**sitABCD, qacE**	
049	ST 3	**bla**_{TEM-1B}, **sul2**, **sul1**, **dfra12**, **mhp(A)**, **tet(A)**, **aadA2, aphp(3′)-Ib, aphp(6)-Id**	**tet(A)**	**mhp(A)**	**tet(A)**	**mhp(A)**	**tet(A)**	**aadA2, aphp(3′)-Ib, aphp(6)-Id**	**mdfr(A)**	**sitABCD-like, qacE**	**sitABCD-like, qacE**		
068	ST 632	**bla**_{TEM-1B}, **sul3**, **dfra12**, **mhp(A)**, **tet(A)**, **cmrA1**	**tet(A)**	**cmrA1**	**tet(A)**	**cmrA1**	**tet(A)**	**cmrA1**	**aadA1, aadA2**	**mdfr(A)**-like	**parE p.S458A, gyrA p.S83L, gyrA p.D87N, parC p.S80I**	**sitABCD-like, qacE**	
117	ST 4	**bla**_{TEM-1B}, **sul1**, **sul2**, **dfra7**, **tet(A)**, **catA1**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**catA1**	**mdfr(A)**-like	**sitABCD-like, qacE**		
152	ST 22	**bla**_{CARB-2}, **bla**_{TEM-1B}, **sul1**, **dfra1**, **ere(B)**, **tet(B)**, **catA1**	**tet(A)**	**ere(B)**	**tet(B)**	**ere(B)**	**tet(B)**	**ere(B)**	**catA1**	**mdfr(A)**-like	**gyrA p.S83L, qacE, sitABCD**		
176	ST 132	**bla**_{TEM-1B}, **sul1**, **dfra7**, **tet(A)**, **catA1**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**catA1**	**mdfr(A)**-like	**qacE, sitABCD**		
221	ST 132	**bla**_{TEM-1B}, **sul1**, **dfra7**, **tet(A)**, **catA1**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**catA1**	**mdfr(A)**-like	**qacE, sitABCD**		
222	ST 132	**bla**_{TEM-1B}, **sul1**, **sul2**, **dfra7**, **tet(A)**, **catA1**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**tet(A)**	**dfra7**	**catA1**	**mdfr(A)**-like	**qacE, sitABCD**		
225	ST 506	**bla**_{TEM-1D}, **bla**_{CTX-M-15}, **sul1**, **sul2**, **dfra17**, **mhp(A)**, **tet(A)**, **catA1**	**tet(A)**	**dfra17**	**mhp(A)**	**tet(A)**	**dfra17**	**mhp(A)**	**catA1**	**mdfr(A)**-like	**gyrA p.S83L, parE p.1529L, sitABCD-like, qacE**		
245	ST 2	**bla**_{TEM-1B}, **sul1**, **dfra12**, **mhp(A)**, **tet(B)**, **gyrA4 (neu)**, **catA1**	**tet(B)**	**dfra12**	**mhp(A)**	**tet(B)**	**dfra12**	**mhp(A)**	**catA1**	**mdfr(A)**-like	**parE p.S458A, gyrA p.S83L, gyrA p.D87N, parC p.S80I, qacE**		
270	ST 2	**bla**_{CTX-M-15}, **tet(B)**	**tet(B)**	**tet(B)**	**tet(B)**	**tet(B)**	**tet(B)**	**tet(B)**	**catA1**	**mdfr(A)**-like	**gyrA p.S83L, gyrA p.D87N, parE p.5458A, parE p.580I**		
299	ST 1018	**bla**_{TEM-1B}, **sul3**, **dfra14**, **tet(A)**, **qnrS1**	**tet(A)**	**dfra14**	**tet(A)**	**dfra14**	**tet(A)**	**dfra14**	**catA1**	**mdfr(A)**-like	**qacE**		

* sitABCD = peroxides resistance, qacE = quaternary ammonium compounds resistance.
Other frequently detected resistance genes in *P. aeruginosa* were the fosfomycin resistance gene *fosA*, the chloramphenicol resistance gene *catB7*, the aminoglycoside resistance gene *aph(3′)-IIb* and the fluoroquinolone-resistance gene *crpP*. In the *Klebsiella pneumoniae* complex isolates, single amino acid exchanges and the fosfomycin resistance gene *fosA* were frequent. Various fluoroquinolone resistance genes and disinfectant tolerance mediating genes also quantitatively dominated. Finally, a broad spectrum of acquired genes causing resistance to the assessed classes of antimicrobial drugs and tolerance to disinfectants was observed in the *E. coli* strains.

2.3. Identified Molecular Virulence Mechanisms

Table 2 summarizes the analysis of virulence-related genes in *E. coli* (without genes mediating enteropathogenicity). Data for *P. aeruginosa* and *K. pneumoniae* are presented in Tables A9 and A10.

Table 2. Analysis of virulence determinants, ordered by strain and MLST type, of the assessed *E. coli* isolates. ST = Sequence type.

Sample ID	ST-Type	Adherence	Invasion	Pathogenicity Factor Groups	Iron Uptake	Protease
041	ST 2	fdeC	aslA, ompA	entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG,		
049	ST 3	aslA, kpsC, kpsD, kpsE, kpsF, kpsM, kpsS-like, ompA	chuS, chuU, chuV, chuW, chuY, entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG			
068	ST 632	ompA		entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG		
117	ST 4	aslA, kpsC, kpsD, kpsE, kpsF, kpsM, kpsS-like, ompA	hlyB, hlyC, hlyD, tcpC	chuA, chuS, chuT, chuU, chuV, chuW, chuX, chuY, entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG, hlyA, iroN, pic, sat, vat		
152	ST 22	sfaB, sfaC, sfaD, sfaE, sfaG, sfaH, sfaS, sfaX, sfaY	aslA, kpsC, kpsD, kpsE, kpsF, kpsM, kpsS-like, ompA	craf1, hlyA, hlyB, hlyC, hlyD, tcpC	chuA, chuS, chuT, chuU, chuV, chuW, chuX, chuY, entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG, iroN,	vat
176	ST 132	aslA, kpsC, kpsD, kpsE, kpsF, kpsM, kpsS-like, ompA		entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG,		sat
221	ST 132	aslA, kpsC, kpsD, kpsE, kpsM, kpsS-like, ompA		entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG,		sat
Table 2. Cont.

Sample ID	ST-Type	Adherence	Invasion	Toxin	Immune Evasion	Iron Uptake	Protease
222 ST 132	aslA, kpsC, kpsD, kpsE, kpsF, kpsM, kpsU; kpsS-like, ompA	entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG, sat					
225 ST 506	aslA, kpsC, kpsD, kpsE, kpsF, kpsM, kpsU; kpsS-like, ompA	chuA, chuS, chuT, chuU, chuV, chuW, chuX, chuY, entA-like, entB, entC, entE, entF, entS, fepA, fepB, fepC, fepD, fepG, sat					
245 ST 2	aslA, ompA	entA-like, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG					
270 ST 2	aslA, ompA	entA-like, entB, entC, entE, entS, fepA, fepB, fepC, fepD, fepG					
299 ST 1018	ompA	entA-like, entB, entC, entE, entF, fepA, fepB, fepD, fepG					

The virulence-associated gene exoU, which has been described in association with the P. aeruginosa high-risk clone ST 135 [25], was recorded three times, associated with ST 135 (sample ID 296), ST 532 (sample ID 310) and ST 2483 (sample ID 22), respectively. Based on a Kleborate assessment, a positive virulence score was calculated for 7 out of 21 K. pneumoniae strains, comprising the known high-risk clones ST 17 (sample IDs 177, 199) and ST 152 (sample ID 100) [26], next to the clones ST 4 (sample ID 146), ST 6 (sample ID 214), ST 36 (sample ID 267) and ST 39 (sample ID 73), respectively. With focus on some important virulence associated genes in Klebsiella spp., ybt genes were detected in the abovementioned 7 samples, iroE was recorded in all 21 strains, while clb or rpmA genes were not detected.

Iron-uptake-related genes were numerous in all analyzed bacterial strains. For P. aeruginosa and K. pneumoniae, various secretion system-associated genes were found. Immune evasion-related genes were highly abundant in K. pneumoniae but not in E. coli isolates. Adherence-related genes were numerous in P. aeruginosa and in K. pneumoniae but not in E. coli.

Numerous invasion-associated genes were detected in E. coli, antiphagocytosis-associated genes were found in P. aeruginosa, and biofilm-associated genes in K. pneumoniae.

Less frequently detected were: toxin genes in E. coli and K. pneumoniae, protease genes in E. coli and P. aeruginosa, regulation genes in P. aeruginosa and K. pneumoniae, biosurfactant and pigment genes in P. aeruginosa and nutrition factor, efflux pumps and serum resistance genes in K. pneumoniae.

3. Discussion
Within this study, we aimed at filling information gaps on the molecular epidemiology of Gram-negative bacteria from chronic infected wounds in rural Ghana. Phylogenetic analyses based on core genome comparison indicated a high clonal diversity of the wound-associated isolates. Clonal clusters were restricted to nine P. aeruginosa clusters and one E. coli cluster, most likely indicating nosocomial transmission, which has most likely occurred in the wound dressing room that patients' visit on a weekly basis.
ST 135 and ST 244, which are among the worldwide top 10 \textit{P. aeruginosa} high-risk clones [25], were found among the \textit{P. aeruginosa} wound isolates. In detail, one ST 135 \textit{Pseudomonas aeruginosa} isolate was detected, carrying the beta-lactamase-encoding genes \textit{bla}_{TEM-1B} and \textit{bla}_{SCO-1} and an \textit{exoU} gene, next to five ST 244 without acquired beta-lactamases. Focusing on known pathogenic \textit{K. pneumoniae} clones [26], two ST 17 strains, a clone reported to be associated with carbapenem-resistance, and one ST 152 strain, a clone known from the Caribbean as common carrier of multiple resistance genes, were detected. Strains carrying the \textit{ybt} and \textit{iro} genes were also identified as high-risk clones by the Kleborate software. From the observed \textit{E. coli} ST types, none have been previously reported as being associated with pathogenic clones so far [27].

In line with the phenotypical antibiotic resistance results previously published [23], numerous acquired resistance determinants were detected in the bacterial strains under investigation. Focusing on the few observed clusters, comparable resistome compositions point towards recent nosocomial transmission. The gene \textit{bla}_{CTX-M-15} was identified as the determinant of the detected extended spectrum beta-lactamase (ESBL) expression in ESBL positive Enterobacterales [23]. This is in line with previous reports from both human and livestock-associated ESBL positive Enterobacterales in Ghana [28–34]. In \textit{P. aeruginosa} and \textit{K. pneumoniae}, \textit{bla}_{SCO-1}, which has initially been described from an \textit{Acinetobacter baumannii} isolate from Argentina [35], was observed. Beta-lactamases with high hydrolytic effects on carbapenems were lacking, the same applies to protein truncation by premature stop of translation of the \textit{oprD} gene in \textit{P. aeruginosa}. Accordingly, the genetic background of carbapenem resistance of a single \textit{P. aeruginosa} strain could not be resolved, although downregulation of \textit{oprD} expression due to mutations outside of the gene or \textit{ampC} (class C betalactamase) overexpression could not be excluded as likely reasons.

Substance-specific genes and genes encoding efflux pumps mediating tolerance to disinfectants were observed in Enterobacterales. Therefore, further monitoring of the spread of disinfectant tolerance-associated genes and the effects of their abundance on disinfectant-based skin and wound decolonization strategies [36] seem advisable.

The importance of highly abundant virulence factors like iron-uptake- and secretion system-related genes in \textit{P. aeruginosa} is comprehensively described in the literature [37,38]. Other genes reported in the literature like regulation-associated virulence genes, recently reported, were less frequently observed in our isolates [39,40]. However, due to lacking information on the individual etiological relevance of each isolate, any association with clinical effects remains speculative.

Further limitations of this study include a rather small sample size and the lack of a comparison strain collection containing isolates from other clinical specimens and environmental strains. Accordingly, the interpretation of the etiological relevance of individual strains remains challenging and is clearly beyond the scope of this work.

In summary, a broad spectrum of Gram-negative clones was isolated from the chronic wounds of the Ghanaian patients. Thereby, known high-risk clones [25–27] played only a minor role. Observed resistance patterns and mechanisms were in line with the spectrum expected from previous reports [23,28–34].

4. Materials and Methods

4.1. Sample Collection, Bacterial Culture and Antibiotic Susceptibility Testing

Single patient strains of \textit{P. aeruginosa}, \textit{E. coli} and \textit{K. pneumoniae} complex were isolated from patients ≥15 years with an infected chronic wound at the Outpatient Department (OPD) of the Agogo Presbyterian Hospital, in the Asante Akim North District of rural Ghana. Patients typically visit the wound dressing room of the OPD on a weekly basis. Sampling was performed from January 2016 to November 2016. Sample collection and microbiological investigations were reported previously [23]. Antibiotic susceptibility was tested by the disk diffusion method and interpreted following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines v.6.0 (http://www.eucast.org)
(accessed on 15 January 2016). Bacterial strains and antibiotic susceptibility were confirmed using the VITEK2 System. Those data have been published before [23].

4.2. DNA Isolation and Whole Genome Sequencing

Bacterial DNA was isolated using the MasterPure Complete DNA and RNA Purification Kit (LGC standards GmbH, Wesel, Germany) and sent for whole genome sequencing (WGS) to BGI Europe, Denmark, Copenhagen. A BGISEQ-500 device was used for sequencing, generating 2×150 bp paired-end reads with an aimed coverage of $100 \times$. Original raw data were upload for public use to the short-read archive (SRA, NCBI) under the accession number PRJNA699140. Details on the strain-specific SRA accession numbers are provided in Table A11.

4.3. Whole Genome Sequencing and Data Analysis

All raw data passed quality control using FASTQC v.0.11.4 [41] and were used for further analysis. Taxonomic classification and contamination check of raw-reads was performed using KRACKEN2 v.2.0.8-beta [42]. Phylogenetic analysis based on core genome multi locus sequence typing (cgMLST) analysis was performed using the commercial software SeqSphere+ v. 7.2.0 (Ridom GmbH, Münster, Germany) [43]. The software pipeline included assessment of read data and adapter control using FASTQC followed by genome assembly using the internally provided assembler Velvet, applying default settings. The reference genomes NC_000913.3 (E. coli), NC_002516.2 (P. aeruginosa) and NC_01273.1 (K. pneumoniae species complex) were used for cgMLST analyses. Only samples with a ration of “good cgMLST targets” higher than 90% were included in the phylogenetic analysis. Novel cgMLST-based complex types (CT) were automatically assigned by the SeqSphere software. Unknown alleles and profiles of MLST genes were submitted to pubmlst.org or Institute Pasteur to establish novel sequence types (ST). Isolates were defined to be clonally identical with allele differences less than four. Moreover, raw data were assembled with SPAdes v3.13.11 [44] using the careful option. Scaffolds shorter than 500 bp or with a coverage smaller than ten were sorted out, using an in-house script. Abricate v.0.9.9 [45] was used to screen for resistance and virulence genes in SPAdes assembly files, using NCBI AMRFinderPlus [46] and VFDB [47] as reference databases (both updated 6 November 2020), respectively. Additionally, SPAdes assemblies were uploaded to ResFinder4.1 [48] to obtain WGS predicted phenotypes against different antimicrobials by using default settings (%ID > 90, minimum length > 60%) and to Kleborate to predict virulence genes in Klebsiella isolates.

4.4. Ethical Considerations

The Committee on Human Research, Publications and Ethics, School of Medical Science, Kwame Nkrumah University of Science and Technology in Kumasi, Ghana, approved this study (approval number CHRPE/AP/078/16).

5. Conclusions

In conclusion, this study provides a molecular insight into the epidemiology of Gram-negative bacteria isolated from chronic wound infections from patients in rural Ghana. Epidemiological data that focus on the distribution and spread of antimicrobial resistance determinants and associated virulence factors in resource-limited settings are scarce. Although the study is a small cross-sectional assessment, which cannot replace continuous surveillance programs, it might provide a glimpse of prevailing Gram-negative bacteria isolated from wound infections in this area of Ghana. Considering the ongoing need for resistance and virulence surveillance in tropical regions, larger future studies are desirable.
Author Contributions: U.L., D.D. and J.M. designed and coordinated this study. T.T., F.P. and S.T. performed bioinformatic analysis. M.L. supported the management of this study. A.J. managed the data collection. H.F., D.D. and U.L. wrote the first draft of this manuscript. K.O. conducted and supervised fieldwork. C.W.A. and K.T. conducted and supervised lab work. M.K. and S.S. supported the interpretation of the results, writing and editing the manuscript. All authors read and approved the final manuscript.

Funding: This study was funded by institutional funds of the Bernhard Nocht Institute for Tropical Medicine (BNITM).

Institutional Review Board Statement: The study was conducted according to guidelines of the Declaration of Helsinki. The Committee on Human Research, Publications and Ethics, School of Medical Science, Kwame Nkrumah University of Science and Technology in Kumasi, Ghana, approved this study (approval number CHRPE/AP/078/16).

Informed Consent Statement: Informed consent was obtained from all study participants.

Data Availability Statement: All relevant data have been provided in the paper and its Appendix A materials. Raw data are available applying the links as indicated in the methods chapter and can also be provided by the authors on reasonable request.

Acknowledgments: We thank all patients that participated in this study and the staff at the Agogo Presbyterian Hospital. Without their support, this research study would not have been possible. We thank the team of curators pubmlst.org and the Institute Pasteur MLST and whole genome MLST databases for curating the data and making them publicly available at http://bigsdb.pasteur.fr/ (accessed on 22 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

Red frames: 30 single amino acid differences between the groups were identified (16, 8 and 6 with strong, weak and no similarity, respectively *)

Blue frame: A 12 aa stretch is changed into a differing 10 aa stretch in groups 6 and 7

*) similarities:
** indicates a site belonging to a group exhibiting strong similarity.
* indicates a site belonging to a group exhibiting weak similarity.
The criterion for distinguishing strong from weak similarity is as follows: Strong similarity corresponds to a PAM250 MATRIX score between amino acids of greater than 0.5, while weak similarity corresponds to a score of 0.5 or less.

Figure A1. Clustal omega multiple alignment of oprD proteins—one example for the 7 detected subgroups.
Table A1. Analysis of antimicrobial resistance determinants, ordered by strain and MLST type, of the assessed *P. aeruginosa* isolates. ST = Sequence type.

Sample ID	ST-Type	Beta-Lacatams	Sulfonamids	Fosfomycin	Trimethoprim	Makrolides	Tetracyclins	Fluoroquinolones	Chloramphenicol	Rifampicin	Aminoglycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes
017	ST 381	fosA												
022	ST 2483	fosA												
032	ST 3587	sul1, fosA	dfrA15	tet(G)										
069	ST 360	fosA				catB7								
081	ST 244	fosA				catB7								
082	ST 514	fosA				catB7								
088	ST 1682	fosA				catB7								
099	ST 244	fosA				catB7								
106	ST 1521	fosA				catB7								
114	ST 244	fosA				catB7								
137	ST 3014	fosA				catB7								
144	ST 245	fosA				catB7								
147	ST 245	fosA				catB7								
149	ST 381	fosA				catB7								
153	ST 704	fosA-like				catB7-like								
154	ST 244	fosA				catB7								
157	ST 2616	fosA				catB7-like								
160	ST 170	fosA-like												
Table A1. Cont.

Sample ID	ST-Type	Beta Lacatams	Sulfonamids	Fosfomycin	Trimethoprim	Makrolides	Tetracyclines	Fluoroquinolones	Chloramphenicol	Rifampicin	Amino-glycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes
162	ST 274	fosA												
180	ST 856	fosA												
183	ST 244	fosA												
186	ST 3588	fosA-like												
190	ST 871	fosA												
195	ST 988	fosA												
196	ST 2475	fosA												
198	ST 2476	fosA												
204	ST 639	fosA												
208	ST 132	fosA												
218	ST 856	fosA												
229	ST 270	fosA												
233	ST 3227	fosA												
236	ST 266	fosA												
238	ST 3589	fosA-like												
242	ST 3590	fosA-like												
243	ST 3590	fosA-like												
Table A1. Cont.

Sample ID	ST-Type	Acquired Resistance Determinants Against												
		Beta Lacatams	Sulfonamids	Fosfomycin	Trimethoprim	Makrolides	Tetracyclins	Fluoroquinolones	Chloramphenicol	Rifampicin	Aminoglycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes
272	ST 2033	fosA	catB7-like											
274	ST 2033	fosA	catB7-like											
278	ST 988	fosA	crpP-like	catB7-like										
282	ST 554	fosA	crpP-like	catB7										
285	ST 554	fosA	crpP-like	catB7										
289	ST 1485	fosA	catB7											
290	ST 1485	fosA	catB7											
296	ST 235	fosA	tet(G)	catB7-like										
298	ST 3227	fosA	catB7											
301	ST 3593	fosA-like	catB7-like											
302	ST 1755	fosA	catB7											
309	ST 3592	fosA-like	crpP-like	catB7-like										
310	ST 532	sulI												
312	ST 381	fosA												

Acquired resistance genes for macrolides, rifampicin, resistance-associated point mutations, genes for efflux pumps or genes mediating tolerance against disinfectants were not detected.
Table A2. Analysis of antimicrobial resistance determinants, ordered by strain and MLST type, of the assessed *K. pneumoniae* isolates. ST = Sequence type.

Sample ID	ST-Type	Beta-Lactamases	Sulfonamides	Fosfomycin	Trimethoprim	Macrolides	Tetracyclines	Fluoroquinolones	Chloramphenicol	Rifampicin	Aminoglycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes *
044	ST 327												ompK37 p.I70M, ompK37 p.I128M, ompK37 p.I128M, ompK36 p.L59V, ompK36 p.L191S, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232R, ompK36 p.T254S, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	oqxB, oqxA
060	ST 5379	blTEM-1C	sul1, sul2	fosA	dfrA12	mph(A)							acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	oqxA, oqxB, oqxE, oqxB
Sample ID	ST-Type	Beta Lacatams	Sulfonamids	Fosfomycin	Trimethoprim	Macrolides	Tetracyclines	Fluoroquinolones	Chloramphenicol	Rifampicin	Amino-glycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes *
-----------	---------	---------------	-------------	-------------	--------------	------------	---------------	----------------	----------------	------------	------------------	-------------	--	----------------------------------
073	ST 39	blaTEM-1B, blaCTX-M-15	sulI, fosA	dfrA27	erm(B), mphp(A)	tet(D)	oqxB, qpxA, aac(6’)-Ib-cr, qnrB2, aac(6’)-Ib-cr	catA2-like	ARR-3	aac(6’)-Ib-cr, aadA16, aac(3)-Ia, aac(6’)-Ib-cr, aph(3’)-Ib-cr, aac(6’)-Ib-cr, aph(3’)-Ib-cr, aac(3)-Ib-cr, aac(6’)-Ib-cr, aph(3’)-Ib-cr, aac(6’)-Ib-cr, aph(3’)-Ib-cr	oqxB, oqxA, qacE			
100	ST 152	blaCTX-M-15, blaoxa-1, blaTEM-1B	sul2, sulI	fosA	dfrA1, dfrA27	mphp(A)	tet(D)	aac(6’)-Ib-cr, qnrB6, oqxA, aac(6’)-Ib-cr, qnrB2, aac(6’)-Ib-cr	catB3, catA1, catB3	ARR-3	aac(3)-Ia, aadA1, aadA16, aph(3’)-Ia, aac(6’)-Ib-cr, aph(3’)-Ib-cr, aac(6’)-Ib-cr, aph(3’)-Ib-cr, aac(6’)-Ib-cr, aph(3’)-Ib-cr, aac(6’)-Ib-cr, aph(3’)-Ib-cr	ompK36 p.N495, ompK36 p.L59V, ompK36 p.G189T, ompK36 p.F198Y, ompK36 p.F207Y, ompK36 p.A217S, ompK36 p.D222L, ompK36 p.E232R, ompK36 p.N304E, acrR p.L195V, acrR p.F197I, acrR p.K201M, ompk36 p.L70M, ompk36 p.L1228M, ompk36 p.N230G		
Table A2. Cont.

Sample ID	ST-Type	Acquired Resistance Determinants Against	Efflux Pumps	Disinfectant Resistance Genes *
		Beta-Lactams		
		Sulfonylamids		
		Fosfomycin		
		Trimethoprim		
		Macrolides		
		Tetracyclines		
		Fluoroquinolones		
		Chloramphenicol		
		Rifampicin		
		Aminoglycosides		
		Efflux Pumps		

| 102 | ST 514 | fosA | tet(C) | oqxAB, oqxA, catA1 | ompK36 p.N49S, ompK36 p.L59V, ompK36 p.L191S, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232R, ompK37 p.T254S, ompK37 p.I70M, ompK37 p.I128M, ompK37 p.N230G, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M |

| 124 | ST 399 | fosA | oqxA, oqxB | catA1 | ompK36 p.N49S, ompK36 p.L59V, ompK36 p.G189T, ompK36 p.F207Y, ompK36 p.A217S, ompK36 p.T222I, ompK36 p.D223G, ompK36 p.E232R, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.F197I, acrR p.K201M |

| 146 | ST 4 | sul2 | tet(D) | oqxA, oqxB, catA2-like | oqxA, oqxB |
Sample ID	ST-Type	Acquired Resistance Determinants Against	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes *
177	ST 17	sul1, sul2, fosA, dfrA15, tet(A), oqxA, oqxB-like, catA1, aadA1, aph(3’)-Ib, aph(6)-Id		ompK37 p.I70M, ompK37 p.I128M, acrR p.F161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M, ompK36 p.N495, ompK36 p.L59V,ompK36 p.L191S, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232RompK36 p.T254S	qacE, oqxB-like, oqxA
181	ST 5380	fosA, oqxA, oqxB		ompK36 p.N495, ompK36 p.L59V, ompK36 p.L191S, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232RompK36 p.T254SompK37 p.I70M, ompK37 p.I128M, acrR p.F161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	qacA, oqxB
Table A2. Cont.

Sample ID	ST-Type	Acquired Resistance Determinants Against	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes
184	ST 5381	fosA, oqxA-like, oqxB-like	ompK37 p.L70M, ompK37 p.I128M, ompK36 p.N38S, ompK36 p.L59V, ompK36 p.L191Q, ompK36 p.F198Y, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.Q227N, ompK36 p.L229V, ompK36 p.N304E, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	oqxA-like, oqxB-like
199	ST 17	sul2, fosA-like, dfrA16	acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M, ompK37 p.L70M, ompK37 p.I128M, ompK36 p.N49S, ompK36 p.L59V, ompK36 p.L191Q, ompK36 p.F198Y, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.Q227N, ompK36 p.L229V, ompK36 p.N304E, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	oqxA, oqxB, qacE
Table A2. Cont.

Sample ID	ST-Type	Acquired Resistance Determinants Against	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes *
214	ST 6	sulI, fosA-like, dfrA14, oqxB-like, oqxA	*ompK37 p.I70M, ompK37 p.I128M, ompK37 p.N49S, ompK36 p.L59V, ompK36 p.G189T, ompK36 p.F198Y, ompK36 p.F207Y, ompK36 p.T222L, ompK36 p.D223G, ompK36 p.E232R, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	oqxB-like, oqxA
217	ST 3154	sulI, sulII, fosA, dfrA12, dfrA14, tet(A)	*ompK37 p.I70M, ompK37 p.I128M, ompK37 p.N49S, ompK36 p.L59V, ompK36 p.G189T, ompK36 p.F198Y, ompK36 p.F207Y, ompK36 p.T222L, ompK36 p.D223G, ompK36 p.E232R, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M	acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M

Sample ID: 214 and 217
ST-Type: ST 6 and ST 3154
Acquired Resistance Determinants Against: Beta-Lactams, Sulfonamids, Fosfomycin, Trimethoprim, Macrolides, Tetracyclines, Fluoroquinolones, Chloramphenicol, Rifampicin, Aminoglycosides, Efflux Pumps
Efflux Pumps: Efflux Pumps
Amino Acid Exchanges Due to Point Mutations: *ompK37 p.I70M, ompK37 p.I128M, ompK37 p.N49S, ompK36 p.L59V, ompK36 p.G189T, ompK36 p.F198Y, ompK36 p.F207Y, ompK36 p.T222L, ompK36 p.D223G, ompK36 p.E232R, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K201M
Disinfectant Resistance Genes *: oqxB-like, oqxA

*a: AcrA, aceE, oqxB-like
Table A2. Cont.

Sample ID	ST-Type	Acquired Resistance Determinants Against	Amino Acid Exchanges Due to Point Mutations	Efflux Pumps	Disinfectant Resistance Genes *									
		Beta Laclatams	Sulfoxanmids	Fosfomycin	Trimethoprim	Macrolides	Tetracyclines	Fluoroquinolones	Chloramphenicol	Rifampicin	Aminoglycosides	Efflux Pumps		
220	ST 5382			fosA-like										ompK37 p.I70M, ompK36 p.L191S, ompK36 p.L228V, ompK36 p.F207W, acrR p.F197I, acrR p.K201M
234	ST 109			fosA										ompK37 p.I70M, ompK36 p.L191S, ompK36 p.L228V, ompK36 p.F207W, acrR p.F197I, acrR p.K201M

*For sample 220 ST 5382, the resistance genes include fosA-like, oqxA-like, and catA1. For sample 234 ST 109, the resistance genes include oqxA, oqxB-like.
Sample ID	ST-Type	Acquired Resistance Determinants Against			
		Beta Lacatams Sulfoxanamids Fosfomycin Trimethoprim Macrolides Tetacyclines Fluoroquinolones Chloramphenicol Rifampicin Aminoglycosides Efflux Pumps	Disinfectant Resistance Genes		
240	ST 5383	fosA-like	tet(D)	oqxA, oqxB-like	ompK36 p.N49S, ompK36 p.L59V, ompK36 p.L191S, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232R, ompK37 p.I70M, ompK37 p.I128M, acrR p.I161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197L, acrR p.K201M
248	ST 5384	fosA-like	tet(A)	oqxB-like, oqxA-like, catA1	ompK36 p.N49S, ompK36 p.L59V, ompK36 p.L191S, ompK36 p.F198Y, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232R, ompK37 p.I70M, ompK37 p.I128M, acrR p.I161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197L, acrR p.K201M
Table A2. Cont.

Sample ID	ST-Type	Beta-Lactams	Sulphonamids	Fosfomycin	Trimethoprim	Macrolides	Tetracyclines	Fluoroquinolones	Chloramphenicol	Rifampicin	Aminoglycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes *
252 ST 607	blαTEM-1B, sul2, sul1 fosA-like dfrA7	tet(A) oqxB-like, oqxA catA1	aph(3”)-Ib, aph(6)-Id	ompK37 p.I70M, ompK37 p.I128M, ompK37 p.N230G, ompK36 p.N495S, ompK36 p.L29V, ompK36 p.L191S, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.L228V, ompK36 p.E232R, ompK36 p.T254S, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K190M	oqxB-like, oprA, qacE									
267 ST 36 blαCTX-M-15, blαTEM-1B	sul2, sul1 fosA dfrA27	tet(D) aac(6’)-Ib-cr, oqxA, oqxB catA2-like ARR-3	aph(6)-Id, aph(3”)-Ib, aac(6’)-Ib-cr, aadA16, aac(3)-Ib-cr, aac(6)-Ib-cr, catA1	ompK36 p.N495S, ompK36 p.L59V, ompK36 p.T184P, ompK37 p.I70M, ompK37 p.I128M, ompK37 p.N230G, acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.R173G, acrR p.L195V, acrR p.F197I, acrR p.K190M	oprA, qacE, oqxB									
Table A2. Cont.

Sample ID	ST-Type	Beta Lacatams	Sulphonamids	Fosfomycin	Trimethoprim	Macrolides	Tetracyclines	Fluoroquinolones	Chloramphenicol	Rifampicin	Aminoglycosides	Efflux Pumps	Amino Acid Exchanges Due to Point Mutations	Disinfectant Resistance Genes *
277	ST 530	blaTEM-35	sul2	fesA-like	dfrA14	tet(D)	oqxA, oqxB-like						acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.L195V, acrR p.L1915, oqxA, oqxB p.N495, ompK36 p.L59V, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.E232R, ompK36 p.T2545, ompK36 p.L70M, ompK37 p.I128M	acrA, oqxB-like
279	ST 5385	fesA					oqxA, oqxB						acrR p.P161R, acrR p.G164A, acrR p.F172S, acrR p.L195V, acrR p.F1971, acrR p.K201M, ompK36 p.N495, ompK36 p.L59V, ompK36 p.F207W, ompK36 p.A217S, ompK36 p.N218H, ompK36 p.D224E, ompK36 p.E232R, ompK36 p.T2545, ompK36 p.L70M, ompK37 p.I128M	oqxA, oqxB

* qacE = quaternary ammonium compounds resistance and oqxB and oqxA = efflux pumps mediating resistance against disinfectants.
Table A3. Phenotypic resistance the *P. aeruginosa* strains. Data are missing for strains 198, 218 and 312, due to loss during subcultivation. MIC = minimum inhibitory concentration. N.a. = value missing due to loss of strain or failed reaction.

Sample ID	Piperacillin MIC	Interpretation	Piperacillin/Tazobactam MIC	Interpretation	Ceftrazidime MIC	Interpretation	Cefepime MIC	Interpretation	Imipenem MIC	Interpretation	Meropenem MIC	Interpretation	Gentamicin MIC	Interpretation
17	≤ 4	S	≤ 4	S	≤ 1	S	≤ 1	S	≤ 0.25	S	≤ 0.25	S	≤ 1	S
22	≤ 4	S	≤ 4	S	≤ 1	S	≤ 0.25	S	≤ 0.25	S	≤ 1	S		
32	≤ 4	S	8	S	2	S	2	1	S	≤ 0.25	S	≤ 1	S	
69	≤ 4	S	≤ 4	S	4	S	2	1	S	≤ 0.25	S	≤ 1	S	
81	≤ 4	S	8	S	2	S	≤ 1	S	1	S	1	S	≤ 1	S
82	16	S	8	S	4	S	2	2	S	≤ 0.25	S	≤ 1	S	
88	≥ 128	R	≥ 128	R	≥ 64	R	32	R	≥ 16	R	4	I	≤ 1	S
99	8	S	8	S	4	S	2	2	S	1	S	≤ 1	S	
106	≤ 4	S	8	S	2	S	2	2	S	1	S	≤ 1	S	
114	≤ 4	S	8	S	2	S	≤ 1	2	S	1	S	≤ 1	S	
137	16	S	8	S	4	S	2	2	2	S	≤ 1	S		
144	16	S	8	S	4	S	2	2	1	S	≤ 1	S		
147	8	S	≤ 4	S	4	S	8	S	2	0.5	S	4	S	
149	8	S	8	S	4	S	2	S	≤ 0.25	S	≤ 0.25	S	≤ 1	S
153	≤ 4	S	8	S	2	S	≤ 1	S	1	S	≤ 0.25	S	≤ 1	S
154	64	R	≤ 4	S	≤ 1	S	≤ 1	S	2	S	0.5	S	≤ 1	S
157	16	S	8	S	4	S	4	2	S	≤ 0.25	S	2	S	
160	≥ 128	R	32	R	16	R	32	R	8	1	8	1	8	R
162	64	R	32	R	8	S	8	S	2	S	1	S	2	S
180	16	S	8	S	4	S	2	2	S	0.5	S	≤ 1	S	
183	8	S	8	S	4	S	2	2	S	0.5	S	≤ 1	S	
186	16	n.a.	n.a.	S	4	S	2	2	S	≤ 0.25	S	≤ 1	S	
190	16	S	8	S	4	S	2	2	S	0.5	S	≤ 1	S	
195	8	S	8	S	4	S	≤ 1	2	S	≤ 0.25	S	≤ 1	S	
196	≤ 4	S	≤ 4	S	2	S	≤ 1	S	2	S	0.5	S	≤ 1	S
198	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

Table continued...
Sample ID	Piperacillin MIC	Interpretation	Piperacillin/Tazobactam MIC	Interpretation	Ceftrazidime MIC	Interpretation	Cefepime MIC	Interpretation	Imipenem MIC	Interpretation	Meropenem MIC	Interpretation	Gentamicin MIC	Interpretation
204	8	S	8	S	≤1	S	2	≤0.25	S	≤1	S			
208	8	S	8	S	2	S	2	≤0.25	S	≤1	S			
218	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.			
229	8	S	8	S	2	S	1	≤0.25	S	≤1	S			
233	≥128	R	≥128	R	32	R	8	1	4	1	≤1	S		
236	16	S	16	S	4	S	2	2	S	0.5	S	2	S	
238	8	S	16	S	4	S	2	S	≤0.25	S	≤1	S		
242	8	S	8	S	4	S	2	1	S	≤0.25	S	≤1	S	
243	16	S	8	S	4	S	2	1	S	≤0.25	S	≤1	S	
272	64	R	64	R	8	S	4	2	S	1	S	≤1	S	
274	16	S	8	S	4	S	2	S	0.5	S	≤1	S		
278	≤4	S	≤4	S	2	S	≤1	S	2	≤0.25	S	≤1	S	
282	≤4	S	≤4	S	≤1	S	≤1	S	2	S	1	S	≤1	S
285	≤4	S	≤1	S	≤1	S	2	1	S	≤1	S			
289	≤4	S	≤1	S	≤1	S	2	1	S	≤1	S			
290	8	S	8	S	≤1	S	≤1	S	1	S	≤1	S		
296	≥128	R	≥128	R	64	R	4	8	1	S	≥16	R		
298	≥128	R	≥64	R	8	S	8	4	1	4	≤1	S		
301	16	S	8	S	4	S	2	S	0.5	S	≤1	S		
302	8	S	8	S	4	S	≤1	S	2	S	0.5	S	≤1	S
309	16	S	8	S	4	S	2	S	1	S	≤1	S		
310	32	R	16	S	4	S	4	S	2	S	1	S	≤1	S
312	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.			
Table A4. Phenotypic resistance of *P. aeruginosa* strains. Data are missing for strains 198, 218 and 312 due to loss during subcultivation. MIC = minimum inhibitory concentration. N.a. = value missing due to loss of strain or failed reaction.

Sample ID	Ciprofloxacin	Moxifloxacin	Aztreonam	Amikacin	Tobramycin	Fosfomycin	Colistin
	MIC Interpretation						
17	≤0.25 S	1 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
22	≤0.25 S	1 R	2 I	≤2 S	≤1 S	128 R	1 S
32	≤0.25 S	2 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
69	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
81	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	≥256 R	≤0.5 S
82	≤0.25 S	1 R	16 I	≤2 S	≤1 S	128 R	≤0.5 S
88	2 R	≥8 R	32 R	≤2 S	≤1 S	128 R	≤0.5 S
99	≤0.25 S	2 R	16 I	≤2 S	≤1 S	128 R	≤0.5 S
106	2 R	1 R	8 I	≤2 S	≤1 S	≥256 R	≤0.5 S
114	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
137	≤0.25 S	1 R	16 I	≤2 S	≤1 S	≥256 R	≤0.5 S
144	≤0.25 S	2 R	4 I	≤2 S	≤1 S	≥256 R	≤0.5 S
147	≤0.25 S	2 R	4 I	8 S	≤1 S	≥256 R	≤0.5 S
149	≤0.25 S	1 R	16 I	≤2 S	≤1 S	≥256 R	≤0.5 S
153	≤0.25 S	2 R	4 I	≤2 S	≤1 S	≤16 R	≤0.5 S
154	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	≥256 R	≤0.5 S
157	≤0.25 S	1 R	16 I	≤2 S	≤1 S	≥256 R	≤0.5 S
160	1 R	≥8 R	≥64 R	16 I	≤1 S	64 R	≤0.5 S
162	0.5 S	2 R	32 R	4 S	≤1 S	128 R	≤0.5 S
180	≤0.25 S	1 R	16 I	≤2 S	≤1 S	≥256 R	≤0.5 S
183	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	≥256 R	≤0.5 S
186	≤0.25 S	1 R	16 I	≤2 S	≤1 S	32 R	≤0.5 S
190	≤0.25 S	1 R	16 I	4 S	≤1 S	32 R	≤0.5 S
195	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	64 R	≤0.5 S
196	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	64 R	≤0.5 S
198	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Sample ID	Ciprofloxacin	Moxifloxacin	Aztreonam	Amikacin	Tobramycin	Fosfomycin	Colistin
-----------	---------------	--------------	-----------	----------	------------	------------	---------
	MIC Interpretation						
204	≤0.25 S	1 R	2 I	≤2 S	≤1 S	32 R	2 S
208	≤0.25 S	1 R	8 I	≤2 S	≤1 S	128 R	≤0.5 S
218	n.a.						
229	≤0.25 S	1 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
233	≤0.25 S	2 R	16 I	≤2 S	≤1 S	64 R	≤0.5 S
236	≤0.25 S	1 R	16 I	8 S	≤1 S	64 R	≤0.5 S
238	≤0.25 S	2 R	8 I	≤2 S	≤1 S	128 R	≤0.5 S
242	≤0.25 S	1 R	8 I	≤2 S	≤1 S	128 R	≤0.5 S
243	≤0.25 S	2 R	16 I	≤2 S	≤1 S	64 R	≤0.5 S
272	≤0.25 S	2 R	32 R	≤2 S	≤1 S	128 R	≤0.5 S
274	≤0.25 S	2 R	16 I	≤2 S	≤1 S	256 R	≤0.5 S
278	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
282	≤0.25 S	1 R	2 I	≤2 S	≤1 S	128 R	≤0.5 S
285	≤0.25 S	1 R	2 I	≤2 S	≤1 S	128 R	≤0.5 S
289	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
290	≤0.25 S	0.5 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
296	≥4 R	≥8 R	32 R	≤2 S	≥16 S	64 R	≤0.5 S
298	≤0.25 S	2 R	16 I	≤2 S	≤1 S	16 R	≤0.5 S
301	≤0.25 S	2 R	16 I	≤2 S	≤1 S	16 R	≤0.5 S
302	≤0.25 S	1 R	4 I	≤2 S	≤1 S	128 R	≤0.5 S
309	≤0.25 S	1 R	4 I	≤2 S	≤1 S	16 R	≤0.5 S
310	≤0.25 S	2 R	16 I	≤2 S	≤1 S	128 R	≤0.5 S
312	n.a.						
Table A5. Phenotypic resistance of the *Klebsiella* strains. MIC = minimum inhibitory concentration. ESBL = signal in phenotypic testing for extended-spectrum beta-lactamases.

Sample ID	ESBL	Ampicillin	Ampicillin/Sulbactam	Piperacillin/Tazobactam	Cefuroxime	Cefuroxime Axetil	Cefpodoxime	Cefotaxime	Ceftrazidime
		MIC		Interpreta	MIC	Interpreta	MIC	Interpreta	MIC
44	negative	≥32	R		≤4	S	4	I	≤0.25
60	negative	≥32	R		≤4	S	≤1	I	≤1
73	positive	≥32	R		≥128	R	≥64	R	≥8
100	positive	≥32	R		≥128	R	≥64	R	≥8
102	negative	≥32	R	≤2	8	S	8	I	≤0.25
124	negative	≥32	R	≤2	8	S	2	I	≤0.25
146	negative	≥32	R	≤2	8	S	2	I	≤0.25
177	positive	≥32	R	≥32	≥128	R	≥64	R	≥8
181	negative	≥32	R	≤2	8	S	2	I	≤0.25
184	negative	≥32	R	≤2	8	S	2	I	≤0.25
199	positive	≥32	R	≥32	8	R	≥64	R	≥8
214	negative	≥32	R	≤2	8	S	2	I	≤0.25
217	negative	≥32	R	≥32	≥128	R	≥64	R	≥8
220	negative	≥32	R	≤2	8	S	4	I	≤0.25
234	negative	≥32	R	≤2	8	S	2	I	≤0.25
240	negative	≥32	R	≤2	8	S	2	I	≤0.25
248	negative	≥32	R	≤2	8	S	2	I	≤0.25
252	negative	≥32	R	16	8	S	2	I	≤0.25
267	positive	≥32	R	≥32	8	R	≥64	R	≥8
277	negative	≥32	R	≥32	8	R	2	I	≤0.25
279	negative	≥32	R	≤2	8	S	2	I	≤0.25
Table A6. Phenotypic resistance of the *Klebsiella* strains. MIC = minimum inhibitory concentration. ESBL = signal in phenotypic testing for extended-spectrum beta-lactamases.

Sample ID	ESBL	Eradapenem	Imipenem	Meropenem	Gentamicin	Ciprofloxacin	Moxifloxacin	Tigecycline	Trimethoprim/Sulfamethoxazole								
	MIC	Interpretation															
44	negative	≤0.5	S	≤0.25	S	≤0.5	S	≤20	S								
60	negative	≤0.5	S	≤0.25	S	≤0.25	S	≥16	R	1	R	2	R	≤0.5	S	≥320	R
73	positive	≤0.5	S	≤0.25	S	≤0.25	S	≥16	R	1	R	2	R	≤0.5	S	≥320	R
100	positive	≤0.5	S	≤0.25	S	≤0.25	S	≥4	R	≥8	R	≤0.5	S	≥320	R		
102	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	0.5	R	4	R	≤20	S		
124	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≥16	R	≥4	R	≤20	S		
146	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	1	S	≤20	S		
177	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	2	1	≥320	R		
181	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.5	S	≤20	S		
184	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.5	S	≤20	S		
199	positive	≤0.5	S	≤0.25	S	≤0.25	S	≥16	R	≤0.25	S	≤0.25	S	≤0.5	S	≥320	R
214	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.5	S	≥320	R		
217	negative	≤0.5	S	≤0.25	S	≤0.25	S	≥16	R	≤0.25	S	≤0.25	S	2	1	≥320	R
220	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	0.5	R	1	S	≤20	S		
234	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	0.5	R	1	S	≤20	S		
240	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.5	S	≤20	S		
248	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	2	1	≤20	S		
252	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	1	1	≥320	R		
267	positive	≤0.5	S	≤0.25	S	≤0.25	S	≥16	R	≤0.25	S	≤0.25	S	≤0.5	S	≥320	R
277	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	0.5	R	4	R	≤20	S		
279	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.25	S	≤0.5	S	≤20	S		
Table A7. Phenotypic resistance of *Escherichia coli* strains. MIC = minimum inhibitory concentration. ESBL = signal in phenotypic testing for extended-spectrum beta-lactamases.

Sample ID	ESBL	Ampicillin	Ampicillin/Sulbactam	Piperacillin/Tazobactam	Cefuroxime	Cefuroxime Axetil	Cefpodoxime	Cefotaxime	Ceftrazidime	MIC Interpretation							
41	positive	≥32	R	≥32	R	64	R	≥64	R	≥64	R	≥8	R	≥64	R	16	R
49	negative	≥32	R	16	R	≤4	S	4	I	4	S	≤0.25	S	≤1	S	≤1	S
68	negative	≥32	R	16	R	≤4	S	≤1	I	≤1	S	≤0.25	S	≤1	S	≤1	S
117	negative	≥32	R	≥32	R	64	R	4	I	4	S	≤0.25	S	≤1	S	≤1	S
152	negative	≥32	R	≥32	R	≥128	R	4	I	4	S	0.5	S	≤1	S	≤1	S
176	negative	≥32	R	≥32	R	≤4	I	2	I	2	S	≤0.25	S	≤1	S	≤1	S
221	negative	≥32	R	≥32	R	≤4	I	2	I	2	S	≤0.25	S	≤1	S	≤1	S
222	negative	≥32	R	≥32	R	≤4	I	4	I	4	S	≤0.25	S	≤1	S	≤1	S
225	positive	≥32	R	≥32	R	≤4	R	≥64	R	≥64	R	≥8	R	≥64	R	16	R
245	positive	≥32	R	≥32	R	16	I	16	R	16	R	1	S	2	I	≤1	S
270	positive	≥32	R	16	R	≤4	R	≥64	R	≥64	R	≥8	R	≥64	R	≥64	R
299	negative	≥32	R	≤2	I	≤4	S	4	I	4	S	≤0.25	S	≤1	S	≤1	S
Table A8. Phenotypic resistance of *Escherichia coli* strains. MIC = minimum inhibitory concentration. ESBL = signal in phenotypic testing for extended-spectrum beta-lactamases.

Sample ID	ESBL	Ertapenem	Imipenem	Meropenem	Gentamicin	Ciprofloxacin	Moxifloxacin	Tigecycline	Trimethoprim/ Sulfamethoxazole								
		MIC	Interpretation	MIC	Interpretation	MIC	Interpretation	MIC	Interpretation	MIC	Interpretation	MIC	Interpretation				
41	positive	≤0.5	S	≤0.25	S	≤0.25	S	≥16	R	≥4	R	≥8	R	<0.5	S	≥320	R
49	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≤0.25	S	≤0.25	S	<0.5	S	≥320	R
68	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≥4	R	≥8	R	<0.5	S	≥320	R
117	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≤0.25	S	≤0.25	S	<0.5	S	≥320	R
152	negative	≤0.5	S	≤0.25	S	≤0.25	S	2	S	1	R	2	R	<0.5	S	≥320	R
176	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≤0.25	S	≤0.25	S	<0.5	S	≥320	R
221	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≤0.25	S	≤0.25	S	<0.5	S	≥320	R
222	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≤0.25	S	≤0.25	S	<0.5	S	≥320	R
225	positive	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	0.5	I	1	R	<0.5	S	≥320	R
245	positive	≤0.5	S	0.5	S	≤0.25	S	≥16	R	≥4	R	≥8	R	<0.5	S	≥320	R
270	positive	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	≥4	R	≥8	R	<0.5	S	≤20	S
299	negative	≤0.5	S	≤0.25	S	≤0.25	S	≤1	S	0.5	I	2	R	<0.5	S	≥320	R
Table A9. Analysis of virulence determinants, ordered by strain and MLST type, of the assessed *P. aeruginosa* isolates. ST = Sequence type.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion
017	ST 381	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algP/algR3 algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdD, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
022	ST 2483	waaA, waaC, waaF, waaG, waaP, chpA, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
032	ST 3587	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algG, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchJ, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
069	ST 360	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchJ, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Sample ID	ST-Type	Pathogenicity Factor Groups								
-----------	---------	----------------------------								
		Adherence Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System	
081	ST 244	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptV, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
082	ST 514	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
088	ST 1682	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
-----------	---------	-----------	------------------	--------------	-------------	---------	---------	-------	------------	------------------
099	ST 244	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	algA, algB, algC, algD, algE, algF, algG, algH, algI, algK, algL, algM, algN, algO, algP, algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptB, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, phzM, phzS, aprA, lasA, plcH, lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ				
106	ST 1521	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	algA, algB, algC, algD, algE, algF, algG, algH, algI, algK, algL, algM, algN, algO, algP, algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptB, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, phzM, phzS, aprA, lasA, plcH, lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ				
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
114	ST 244	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, prdA, prdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
137	ST 3014	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/alr3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, prdA, prdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
144	ST 245	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchl, pchlR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
147	ST 245	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchl, pchlR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
-----------	---------	-----------	------------------	--------------	-------------	---------	----------	-------	------------	------------------
149	ST 381	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimV, pilA, pilB, pilD, pilE, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS, aprA, lasA, toxA, plcH, lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ			
153	ST 704	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS, aprA, lasA, plcH	last	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ		
154	ST 244	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS, aprA, lasA, toxA, plcH	last, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW like, xcpX, xcpY, xcpZ		
Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
-----------	---------	-----------	-------------------	---------------	-------------	---------	---------	------	------------	------------------
157	ST 2616	waaA, waaC, waaE, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimV, pilA, pilB, pilD, pilE, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, prdA, prdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
160	ST 170	waaA, waaC, waaE, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimV, pilA, pilB, pilD, pilE, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
162	ST 274	waaA, waaC, waaE, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimV, pilA, pilB, pilD, pilE, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
180	ST 856	waaA, waaC, waaF, waaG, waaP, chpA, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
183	ST 244	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW like, xcpX, xcpY, xcpZ
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
186	ST 3588	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algN, algO, algP, algQ, algR, algS, algT, algU, algV, algW, algX, algY, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, plcH, pchR, pchT, pchU, pchV, pchW, pchX, pchY, pchZ	phzM, phzS aprA, lasA lasI, rhlI				
190	ST 871	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algN, algO, algP/algR3, algQ, algR, algS, algT, algU, algV, algW, algX, algY, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, plcH, pchR, pchT, pchU, pchV, pchW, pchX, pchY, pchZ	phzM, phzS aprA, lasA toxA, plcH lasI, rhlI				
195	ST 988	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algN, algO, algP/algR3, algQ, algR, algS, algT, algU, algV, algW, algX, algY, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, plcH, pchR, pchT, pchU, pchV, pchW, pchX, pchY, pchZ	phzM, phzS aprA, lasA toxA, plcH lasI, rhlI				
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
196	ST 2475	**waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC, xcpA/pilD**	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	**rhlA, rhlB**	fptA, fptV, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
198	ST 2476	**waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC like, xcpA/pilD**	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	**rhlA, rhlB**	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
204	ST 639	**waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC like, xcpA/pilD**	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	**rhlA, rhlB**	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	rhlIl	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Sample ID	ST-Type	Adherence	Pathogenicity Factor Groups							
-----------	---------	-----------	-----------------------------							
208	ST 132	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algQ, algR, algI, algW, algX, algZ, mucA, mucB, mucC, rhlA, rhlB, phzM, phzS, aprA, lasA, toxA, plcH, lasI, rhlI, xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ							
218	ST 856	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algQ, algR, algI, algW, algX, algZ, mucA, mucB, mucC, rhlA, rhlB, phzM, phzS, aprA, lasA, toxA, plcH, lasI, rhlI, xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ							
229	ST 270	waaA, waaC, waaF, waaG, waaP, uex, uex, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algM, algQ, algR, algI, algW, algX, algZ, mucA, mucB, mucC, rhlA, rhlB, phzM, phzS, aprA, lasA, toxA, plcH, lasI, rhlI, xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ							
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
233	ST 3227	waaA, waaC, waaF, waaG, waaP, chapA, chapB, chapC, chapD, chapE, fimV, pilB, pilD, pilE, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
236	ST 266	waaA, waaC, waaF, waaG, waaP, chapA, chapB, chapC, chapD, chapE, fimT, fimU, fimV, pilB, pilD, pilE, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algV, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	
238	ST 3589	waaA, waaC, waaF, waaG, waaP, chapA, chapB, chapC, chapD, chapE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA	phzM, phzS	aprA, lasA	plcH	lasI, rhlI	

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System	
242	ST 3590	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP, algR3 like, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA	pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
243	ST 3590	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP, algR3 like, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA	pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
272	ST 2033	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ	
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
274	ST 2033	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algJ, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	ftpA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchL, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
278	ST 988	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algJ, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	ftpA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchL, pchR, pvdA	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Pathogenicity Factor Groups	Secretion System
282	ST 554	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchJ, pchK, pchL, pchM, pchN, pchO, pchP, pchQ, pchR, pchS, pchT, pchU, pchV, pchW, pchX, pchY, pchZ	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhII	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ	
285	ST 554	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilA like, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchJ, pchK, pchL, pchM, pchN, pchO, pchP, pchQ, pchR, pchS, pchT, pchU, pchV, pchW, pchX, pchY, pchZ	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhII	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ	
Sample ID	ST-Type	Pathogenicity Factor Groups									
-----------	---------	----------------------------									
289	ST 1485	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD									
		alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algH, algI, algJ, algK, algL, algM, algN, algO, algP, algQ, algR, algS, algT, algU, algV, algW, algX, algY, algZ, mucA, mucB, mucC									
		fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pchS, pchT, pchU, pchV, pchW, pchX, pchY, pchZ									
290	ST 1485	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD									
		alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algH, algI, algJ, algK, algL, algM, algN, algO, algP, algQ, algR, algS, algT, algU, algV, algW, algX, algY, algZ, mucA, mucB, mucC									
		fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pchS, pchT, pchU, pchV, pchW, pchX, pchY, pchZ									
296	ST 235	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD									
		alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algH, algI, algJ, algK, algL, algM, algN, algO, algP, algQ, algR, algS, algT, algU, algV, algW, algX, algY, algZ, mucA, mucB, mucC									
		fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, pchS, pchT, pchU, pchV, pchW, pchX, pchY, pchZ									
Table A9. Cont.

Sample ID	ST-Type	Adherence	Anti-Phagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
298	ST 3227	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimV, pilB, pilD, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilT, pilU, pilV, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algL1, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, plcH, plcM, plcS, aprA, lasA, toxA, lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ				
301	ST 3593	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ(algR3), algQ', algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchI, pchR, plcH, plcM, plcS, aprA, lasA, toxA, lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ				
302	ST 1755	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX pilY1, pilY2, pilC like, xcpA/pilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algL1, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchI, pchR, plcH, plcM, plcS, aprA, lasA, toxA, lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ				
Sample ID	ST-Type	Adherence	Antiphagocytosis	Biosurfactant	Iron Uptake	Pigment	Protease	Toxin	Regulation	Secretion System
-----------	---------	-----------	------------------	---------------	------------	---------	----------	------	------------	------------------
309	ST 3592	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimT, fimU, fimV, pilB, pilD, pilE, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilW, pilX pilY1, pilY2, pilC, xcpApilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchl, pchr, pvdA, pvdE	phzM, phzS	aprA, lasA	plcH	lasI, rhlI	xcpP, xcpQ, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
310	ST 532	waaA, waaC, waaF, waaG, waaP, chpA, chpB, chpC, chpD, chpE, fimV, pilB, pilD, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilC like, xcpApilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algQ, algR, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, fprA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchl, pchr, pvdA, pvdE	phzM, phzS	aprA lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
312	ST 381	waaA, waaC, waaF, waaG, waaP, wzy, wzz, chpA, chpB, chpC, chpD, chpE, fimV, pilB, pilD, pilF, pilG, pilH, pilI, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilC like, xcpApilD	alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR3, algU, algW, algX, algZ, mucA, mucB, mucC	rhlA, rhlB	fptA, pchA, pchB, pchC, pchD, pchE, pchF, pchG, pchH, pchl, pchr, pvdA, pvdE	phzM, phzS	aprA, lasA	toxA, plcH	lasI, rhlI	xcpP, xcpQ, xcpR, xcpS, xcpT, xcpU, xcpV, xcpW, xcpX, xcpY, xcpZ
Table A10. Analysis of virulence determinants, ordered by strain and MLST type, of the assessed *K. pneumoniae* isolates. ST = Sequence type.

Sample ID	ST-Type	Adherence	Biofilm Formation	Efflux Pump	Immune Evasion	Iron Uptake	Nutritional Factor	Regulation	Secretion System	Serum Resistance	Toxin
044	ST 327	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, ugd, wza like, wzi	entA, entB, entC, entD, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE like	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssF, tssG, vasE/tssK, vgrG/tssl, vipA/tssB, vioB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
060	ST 5379	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE like	rcsA, rcsB	impA/tssA, sciN/tssJ, tssF, tssG, vasE/tssK, vgrG/tssl, vipA/tssB, vioB/tssC			
073	ST 39	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, ugd, wza like, wzi	entA, entB, entC, entD, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA, sciN/tssJ, tle1, tle2, tle3, tssF, tssG, vasE/tssK, vgrG/tssl, vipA/tssB, vioB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
100	ST 152	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, ugd, wza like, wzi	entA, entB, entC, entD, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssF, tssG			
Table A10. Cont.

Sample ID	ST-Type	Adherence Factor Groups	Pathogenicity Factor Groups								
		Biofilm Formation	**Efflux Pump**	**Immune Evasion**	**Iron Uptake**	**Nutritional Factor**	**Regulation**	**Secretion System**	**Serum Resistance**	**Toxin**	
102	ST 514	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, wza, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssE, tssG, vasE/tssK, vgrG/tssI, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
124	ST 399	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkF, mrkH, mrkJ	acrA, acrB	cpsACP, galF, gnd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssE, tssG, vasE/tssK, vgrG/tssI, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
146	ST 4	fimA, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, wza, wzi	entA, entB, entC, entD, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssE, tssG, vasE/tssK, vgrG/tssI, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
177	ST 17	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkD, mrkF, mrkH, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, wza like, wzi	entA, entB, entC, entD, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssE, tssG, vasE/tssK, vgrG/tssI, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
Sample ID	ST-Type	Adherence	Biofilm Formation	Efflux Pump	Immune Evasion	Iron Uptake	Nutritional Factor	Regulation	Secretion System	Serum Resistance	Toxin
-----------	---------	-----------	------------------	-------------	---------------	-------------	-------------------	------------	------------------	----------------	-------
181	ST 5380	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkl, mrkJ	acrA, acrB	cpsACP, galF, gmd like, gnd, manB, manC, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	impA/tssA, sciN/tssF, tle1, tle2, tssE, tssG, tssK, vraE/tssI, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
184	ST 5381	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkl, mrkJ	acrA, acrB	cpsACP, galF, gmd like, gnd, wza like, wzi	entA, entB, entC, entD like, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE like	rcsA, rcsB	impA/tssA, sciN/tssF, tssG, vraE/tssK, vraG/tssL, vipA/tssB, vipB/tssC			
199	ST 17	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkl, mrkJ	acrA, acrB	cpsACP, galF, gmd like, manB, manC, ugd, wza, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA, sciN/tssF, tssG, vraE/tssK, vraG/tssL, vipA/tssB, vipB/tssC			
214	ST 6	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkB, mrkC, mrkD, mrkF, mrkH, mrkl, mrkJ	acrA, acrB	cpsACP, galF, gmd like, manB, manC, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, irp1, irp2, ybtA, ybtE, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA like, sciN/tssF, tssG, vraE/tssK, vraG/tssL, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
Sample ID	ST-Type	Adherence	Biofilm Formation	Efflux Pump	Immune Evasion	Iron Uptake	Nutritional Factor	Regulation	Secretion System	Serum Resistance	Toxin
-----------	---------	-----------	------------------	-------------	---------------	------------	-------------------	------------	-----------------	----------------	-------
217 ST 3154	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssF, tssG, tssE/tssK, tgrG/tssl, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
220 ST 5382	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	allA, allB, allC, allD, allR, allS	rcsA, rcsB			
234 ST 109	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB, impA/tssA, sciN/tssJ, tssF, tssG, tssE/tssK, tgrG/tssl, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt			
240 ST 5383	fimC, fimD, fimE, fimF, fimG, fimI, fimK	mrkF, mrkH, mrkI, mrkJ	mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	tssE/tssK, tgrG/tssl, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
248 ST 5384	fimC, fimD, fimE, fimF, fimG, fimI, fimK	mrkC, mrkD, mrkF, mrkH, mrkJ	mrkC, mrkD, mrkF, mrkH, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, ugd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	tssE/tssK, tgrG/tssl, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
252 ST 607	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkJ	mrkA, mrkB, mrkC, mrkD, mrkF, mrkH, mrkJ	acrA, acrB	cpsACP, galF, gnd, wza like, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	sciN/tssJ, tssF, tssG, tssE/tssK, tgrG/tssl, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
Sample ID	ST-Type	Adherence	Biofilm Formation	Eflux Pump	Immune Evasion	Iron Uptake	Nutritional Factor	Regulation	Secretion System	Serum Resistance	Toxin
-----------	---------	-----------	------------------	------------	---------------	-------------	------------------	------------	------------------	----------------	-------
267	ST 36	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkE, mrkF, mrkH, mrkI, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, ugd, wza, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE, irp1, irp2, ybtA, ybtB, ybtP, ybtQ, ybtS, ybtT, ybtU, ybtX	rcsA, rcsB	impA/tssA, sciN/tssJ, tle1, tli1, tssE, tssG, vgrG/tssK, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
277	ST 530	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkE, mrkF, mrkH, mrkJ	acrA, acrB	cpsACP, galF, gnd, manB, manC, ugd, wza, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB	impA/tssA like, sciN/tssJ, tssF, tssG, vusE/tssK, vgrG/tssK, vipA/tssB, vipB/tssC	glf, wbbM, wbbN, wbbO, wzm, wzt		
279	ST 5385	fimA, fimB, fimC, fimD, fimE, fimF, fimG, fimH, fimI, fimK	mrkA, mrkB, mrkC, mrkD, mrkE, mrkF, mrkH, mrkJ	acrA, acrB	cpsACP, galF, gnd, ugd, wza, wzi	entA, entB, entC, entE, entF, fepA, fepB, fepC, fepD, fepG, fes, ybdA, iroE	rcsA, rcsB, impA/tssA, sciN/tssJ, tle1, tli1, tssE, tssG, vusE/tssK, vgrG/tssK, vipA/tssB, vipB/tssC	wzm, wzt			
Table A11. Details on the strain-specific short-read archive (SRA) accession numbers.

Sample ID	Percentage of Good Targets (SeqSphere+)	Average Coverage (Assembled) (SeqSphere+)	Approximated Genome Size (Megabases) (SeqSphere+)	Species (Kraken2)	Sequence Type	Complex Type (SeqSphere+)	SRA Accession
Iso00017	99.4	105	6.7	*Pseudomonas aeruginosa*	381	1791	SRR13617317
Iso00022	99.4	102	6.9	*Pseudomonas aeruginosa*	2483	1792	SRR13617316
Iso00032	99.2	106	6.6	*Pseudomonas aeruginosa*	3587	1793	SRR13617305
Iso00041	99.4	97	5.0	*Escherichia coli*	2 (Pasteur)	11349	SRR13617294
Iso00044	99.7	116	5.1	*Klebsiella pneumoniae*	327	5462	SRR13617283
Iso00049	98.7	94	5.2	*Escherichia coli*	3 (Pasteur)	11350	SRR13617272
Iso00060	99.6	112	5.3	*Klebsiella pneumoniae*	5379	5463	SRR13617261
Iso00068	99.6	109	4.9	*Escherichia coli*	632 (Pasteur)	11351	SRR13617250
Iso00069	99.6	104	6.8	*Pseudomonas aeruginosa*	360	1794	SRR13617239
Iso00073	99.4	104	5.8	*Klebsiella pneumoniae*	39	5464	SRR13617236
Iso00081	98.7	108	6.6	*Pseudomonas aeruginosa*	244	1795	SRR13617315
Iso00082	99.4	112	6.3	*Pseudomonas aeruginosa*	514	1796	SRR13617314
Iso00088	97.8	105	6.8	*Pseudomonas aeruginosa*	1682	1797	SRR13617313
Iso00099	99.4	106	6.6	*Pseudomonas aeruginosa*	244	1798	SRR13617312
Iso00100	99.2	108	5.5	*Klebsiella pneumoniae*	152	5465	SRR13617311
Iso00102	99.2	111	5.4	*Klebsiella pneumoniae*	514	5466	SRR13617310
Iso00106	99.5	110	6.4	*Pseudomonas aeruginosa*	1521	1799	SRR13617309
Iso00114	99.4	105	6.7	*Pseudomonas aeruginosa*	244	1800	SRR13617308
Iso00117	99.2	95	5.3	*Escherichia coli*	4 (Pasteur)	11352	SRR13617307
Iso00124	99.4	112	5.3	*Klebsiella pneumoniae*	399	5467	SRR13617306
Iso00137	99.4	110	6.4	*Pseudomonas aeruginosa*	3014	1801	SRR13617304
Iso00144	99.6	109	6.5	*Pseudomonas aeruginosa*	245	1802	SRR13617303
Iso00146	99.4	110	5.5	*Klebsiella pneumoniae*	4	5468	SRR13617302
Iso00147	99.5	108	6.6	*Pseudomonas aeruginosa*	245	1802	SRR13617301
Table A11. Cont.

Sample ID	Percentage of Good Targets (SeqSphere+)	Average Coverage (Assembled) (SeqSphere+)	Approximated Genome Size (Megabases) (SeqSphere+)	Species (Kraken2)	Sequence Type	Complex Type (SeqSphere+)	SRA Accession
Iso00149	99.6	104	6.9	*Pseudomonas aeruginosa*	381	1803	SRR13617300
Iso00152	99.4	98	5.2	*Escherichia coli*	22 (Pasteur)	11353	SRR13617299
Iso00153	98.5	111	6.4	*Pseudomonas aeruginosa*	704	?	SRR13617298
Iso00154	99.4	102	7.0	*Pseudomonas aeruginosa*	244	1805	SRR13617297
Iso00157	99.6	114	6.3	*Pseudomonas aeruginosa*	2616	1806	SRR13617296
Iso00160	99.2	115	6.2	*Pseudomonas aeruginosa*	170	1807	SRR13617295
Iso00162	99.1	111	6.5	*Pseudomonas aeruginosa*	274	1808	SRR13617293
Iso00176	99.0	98	5.1	*Escherichia coli*	132 (Pasteur)	11354	SRR13617292
Iso00177	99.6	108	5.5	*Klebsiella pneumoniae*	17	5469	SRR13617291
Iso00180	99.8	110	6.5	*Pseudomonas aeruginosa*	856	1809	SRR13617290
Iso00181	99.9	107	5.6	*Klebsiella pneumoniae*	5380	5470	SRR13617289
Iso00183	99.5	107	6.7	*Pseudomonas aeruginosa*	244	1795	SRR13617288
Iso00184	98.3	104	5.6	*Klebsiella variicola subsp. variicola*	5381	5471	SRR13617287
Iso00186	98.7	113	6.3	*Pseudomonas aeruginosa*	3588	1810	SRR13617286
Iso00190	99.7	114	6.3	*Pseudomonas aeruginosa*	871	1811	SRR13617285
Iso00195	99.5	111	6.5	*Pseudomonas aeruginosa*	988	1812	SRR13617284
Iso00196	99.5	101	7.1	*Pseudomonas aeruginosa*	2475	1813	SRR13617282
Iso00198	99.6	112	6.4	*Pseudomonas aeruginosa*	2476	1814	SRR13617281
Iso00199	99.4	108	5.6	*Klebsiella pneumoniae*	17	5472	SRR13617280
Iso00204	99.5	104	6.9	*Pseudomonas aeruginosa*	639	1815	SRR13617279
Iso00208	99.7	109	6.5	*Pseudomonas aeruginosa*	132	1816	SRR13617278
Iso00214	99.7	108	5.5	*Klebsiella pneumoniae*	6	5473	SRR13617277
Iso00217	99.8	104	5.7	*Klebsiella pneumoniae*	3154	5474	SRR13617276
Iso00218	99.7	109	6.5	*Pseudomonas aeruginosa*	856	1809	SRR13617275
Table A11. Cont.

Sample ID	Percentage of Good Targets (SeqSphere+)	Average Coverage (Assembled) (SeqSphere+)	Approximated Genome Size (Megabases) (SeqSphere+)	Species (Kraken2)	Sequence Type	Complex Type (SeqSphere+)	SRA Accession
Iso00220	97.8	110	5.4	*Klebsiella quasipneumoniae* subsp. *similipneumoniae*	5382	5475	SRR13617274
Iso00221	99.0	94	5.1	*Escherichia coli*	132 (Pasteur)	11354	SRR13617273
Iso00222	99.0	96	5.1	*Escherichia coli*	132 (Pasteur)	11354	SRR13617271
Iso00225	99.1	99	5.2	*Escherichia coli*	506 (Pasteur)	11355	SRR13617270
Iso00229	99.6	109	6.5	*Pseudomonas aeruginosa*	270	1817	SRR13617269
Iso00233	97.8	114	6.1	*Pseudomonas aeruginosa*	3227	1818	SRR13617268
Iso00234	99.7	111	5.5	*Klebsiella pneumoniae*	109	5476	SRR13617267
Iso00236	99.7	112	6.4	*Pseudomonas aeruginosa*	266	1819	SRR13617266
Iso00238	98.7	108	6.6	*Pseudomonas aeruginosa*	3589	1820	SRR13617265
Iso00240	98.9	112	5.4	*Klebsiella pneumoniae*	5383	5477	SRR13617264
Iso00242	98.9	111	6.4	*Pseudomonas aeruginosa*	3590	1821	SRR13617263
Iso00243	98.9	111	6.4	*Pseudomonas aeruginosa*	3590	1821	SRR13617262
Iso00245	99.3	107	4.8	*Escherichia coli*	2 (Pasteur)	11356	SRR13617260
Iso00248	97.2	108	5.5	*Klebsiella quasivariicola*	5384	5478	SRR13617259
Iso00252	99.6	112	5.3	*Klebsiella pneumoniae*	607	5479	SRR13617258
Iso00267	99.6	103	5.7	*Klebsiella pneumoniae*	36	5480	SRR13617257
Iso00270	99.2	100	4.9	*Escherichia coli*	2 (Pasteur)	11358	SRR13617256
Iso00272	99.5	109	6.5	*Pseudomonas aeruginosa*	2033	1822	SRR13617255
Iso00274	99.4	109	6.5	*Pseudomonas aeruginosa*	2033	1822	SRR13617254
Iso00277	99.4	109	6.5	*Klebsiella pneumoniae*	530	5481	SRR13617253
Iso00278	99.6	110	6.5	*Pseudomonas aeruginosa*	988	1823	SRR13617252
Iso00279	99.7	111	5.5	*Klebsiella pneumoniae*	5385	5482	SRR13617251
Iso00282	99.3	108	6.6	*Pseudomonas aeruginosa*	554	1824	SRR13617249
Iso00285	99.3	109	6.5	*Pseudomonas aeruginosa*	554	1824	SRR13617248
Table A11. Cont.

Sample ID	Percentage of Good Targets (SeqSphere+)	Average Coverage (Assembled) (SeqSphere+)	Approximated Genome Size (Megabases) (SeqSphere+)	Species (Kraken2)	Sequence Type	Complex Type (SeqSphere+)	SRA Accession
Iso00289	99.6	112	6.3	*Pseudomonas aeruginosa*	1485	1825	SRR13617247
Iso00290	99.7	113	6.3	*Pseudomonas aeruginosa*	1485	1825	SRR13617246
Iso00296	99.7	106	6.7	*Pseudomonas aeruginosa*	235	1826	SRR13617245
Iso00298	97.8	116	6.1	*Pseudomonas aeruginosa*	3227	1818	SRR13617244
Iso00299	99.3	108	4.6	*Escherichia coli*	1018 (Pasteur)	11357	SRR13617243
Iso00301	98.6	112	6.3	*Pseudomonas aeruginosa*	3593	1827	SRR13617242
Iso00302	99.6	113	6.3	*Pseudomonas aeruginosa*	1755	1828	SRR13617241
Iso00309	98.6	109	6.5	*Pseudomonas aeruginosa*	3592	1829	SRR13617240
Iso00310	99.3	105	6.8	*Pseudomonas aeruginosa*	532	1830	SRR13617238
Iso00312	99.4	106	6.7	*Pseudomonas aeruginosa*	381	1791	SRR13617237
References

1. Lai, P.S.; Bebell, L.M.; Meney, C.; Valeri, L.; White, M.C. Epidemiology of antibiotic-resistant wound infections from six countries in Africa. BMJ Glob. Health 2018, 2 (Suppl. 4), e000475. [CrossRef]

2. Mama, M.; Abdissa, A.; Sewunet, T. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to alternative topical agents at Jimma University Specialist Hospital, South-West Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 14. [CrossRef] [PubMed]

3. Moreni, N.; Mushii, M.F.; Fidelis, M.; Chalya, P.; Mirambo, M.; Mshana, S.E. Predominance of multi-resistant gram-negative bacteria colonizing chronic lower limb ulcers (CLLUs) at Bugando Medical Center. BMC Res. Notes 2014, 7, 211. [CrossRef]

4. Kassam, N.A.; Damian, D.J.; Kajeguka, D.; Nyombi, B.; Kibiki, G.S. Spectrum and antibiogram of bacteria isolated from patients presenting with infected wounds in a Tertiary Hospital, northern Tanzania. BMC Res. Notes 2017, 10, 757. [CrossRef]

5. Janssen, H.; Janssen, I.; Cooper, P.; Kainyah, C.; Pellio, T.; Quintel, M.; Monnheimer, M.; Groß, U.; Schulze, M.H. Antimicrobial-Resistant Bacteria in Infected Wounds, Ghana, 2014. Emerg. Infect. Dis. 2018, 24, 916–919. [CrossRef] [PubMed]

6. Kazimoto, T.; Abdulla, S.; Bategereza, L.; Juma, O.; Mhimbira, F.; Weisser, M.; Utzinger, J.; von Müller, L.; Becker, S.L. Causative agents and antimicrobial resistance patterns of human skin and soft tissue infections in Bagamoyo, Tanzania. Acta Trop. 2018, 186, 102–106. [CrossRef]

7. Haiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z.J.; Moser, C.; Jensen, P.O.; Molin, S.; Givskov, M.; Tolker-Nielsen, T.; Bjarnsholt, T. The clinical impact of bacterial biofilms. Int. J. Oral. Sci. 2011, 3, 55–65. [CrossRef] [PubMed]

8. Percival, S.L.; Hill, K.E.; Williams, D.W.; Hooper, S.J.; Thomas, D.W.; Costerton, J.W. A review of the scientific evidence for biofilms in wounds. Wound Repair Regen. 2012, 20, 647–657. [CrossRef]

9. Rahim, K.; Saleha, S.; Zhu, X.; Hui, L.; Basit, A.; Franco, O.L. Bacterial Contribution in Chronicity of Wounds. Microb. Ecol. 2017, 73, 710–721. [CrossRef]

10. Xu, Z.; Hsia, H.C. The Impact of Microbial Communities on Wound Healing: A Review. Ann. Plast. Surg. 2018, 81, 113–123. [CrossRef] [PubMed]

11. Mulcahy, L.R.; Isabella, V.M.; Lewis, K. Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 2014, 68, 1–12. [CrossRef] [PubMed]

12. Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert. Rev. Anti. Infect. Ther. 2015, 13, 605–613. [CrossRef] [PubMed]

13. Kirketerp-Møller, K.; Jensen, P.O.; Fazli, M.; Madsen, K.G.; Pedersen, J.; Moser, C.; Tolker-Nielsen, T.; Haiby, N.; Givskov, M.; Bjarnsholt, T. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 2008, 46, 2717–2722. [CrossRef] [PubMed]

14. Kohler, J.E.; Hutchens, M.P.; Sadow, P.M.; Tavakkolizadeh, A.; Gates, J.D. Klebsiella pneumoniae necrotizing fasciitis and septic arthritis: An appearance in the Western hemisphere. Surg. Infect. 2007, 8, 227–232. [CrossRef]

15. Dana, A.N.; Bauman, W.A. Bacteriology of pressure ulcers in individuals with spinal cord injury: What we know and what we should know. J. Spinal Cord. Med. 2015, 38, 147–160. [CrossRef] [PubMed]

16. Washington, M.A.; Barnhill, J.C.; Duff, M.A.; Griffin, J. Recovery of Bacteria and Fungi from a Leg Wound. J. Spec. Oper. Med. 2015, 15, 112–116. [PubMed]

17. Vyas, K.S.; Wong, L.K. Detection of Biofilm in Wounds as an Early Indicator for Risk for Tissue Infection and Wound Chronicity. Ann. Plast. Surg. 2016, 76, 127–131. [CrossRef]

18. Witterslev, M.; Rose-Larsen, K.; Hansen-Schwert, J.; Steen-Andersen, J.; Møller, K.; Møller-Sørensen, H. Mechanism of injury and microbiological flora of the geographical location are essential for the prognosis in soldiers with serious warfare injuries. Dan. Med. J. 2013, 60, A4704. [PubMed]

19. Yun, H.C.; Murray, C.K.; Roop, S.A.; Hospenthal, D.R.; Gourdine, E.; Dooley, D.P. Bacteria recovered from patients admitted to a deployed U.S. military hospital in Baghdad, Iraq. Mil. Med. 2006, 171, 821–825. [CrossRef] [PubMed]

20. Michie, V.; Hogan, B.; Rakotoariveloo, R.A.; Rakotonzandrinanireny; R.; Razafimananosa, F.; Razafindraibe, T.; Rakotondrainiarivelo, J.P.; Crotius, S.; Poppert, S.; Schwarz, N.G.; et al. Identification of nasal colonization with β-lactamase-producing Enterobacteriaceae in patients, health care workers and students in Madagascar. Eur. J. Microbiol. Immunol. 2015, 5, 116–125. [CrossRef]

21. Frickmann, H.; Podbielski, A.; Kreikemeyer, B. Resistant Gram-Negative Bacteria and Diagnostic Point-of-Care Options for the Field Setting during Military Operations. Biomed. Res. Int. 2018, 2018, 9395420. [CrossRef]

22. McBride, M.E.; Duncan, W.C.; Knox, J.M. Physiological and environmental control of Gram negative bacteria on skin. Br. J. Dermatol. 1975, 93, 191–199. [CrossRef] [PubMed]

23. Krumkamp, R.; Oppong, K.; Hogan, B.; Strauss, R.; Frickmann, H.; Wiefe-Akenten, C.; Boahen, K.G.; Rickerts, V.; McCormick Smith, I.; Grob, U.; et al. Spectrum of antibiotic resistant bacteria and fungi isolated from chronically infected wounds in a rural district hospital in Ghana. PLoS ONE 2020, 15, e0237263. [CrossRef]

24. Codjoe, F.S.; Donkor, E.S.; Smith, T.J.; Miller, K. Phenytoin and Genotypic Characterization of Carbapenem-Resistant Gram-Negative Bacilli Pathogens from Hospitals in Ghana. Microb. Drug. Resist. 2019, 25, 1449–1457. [CrossRef] [PubMed]
25. Del Barrio-Toñio, E.; López-Causapé, C.; Oliver, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. *Int. J. Antimicrob. Agents* **2020**, *56*, 106196. [CrossRef] [PubMed]

26. Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of *Klebsiella pneumoniae*. *Nat. Rev. Microbiol.* **2020**, *18*, 344–359. [CrossRef] [PubMed]

27. Denamur, E.; Clermont, O.; Bonacorsi, S.; Gordon, D. The population genetics of pathogenic *Escherichia coli*. *Nat. Rev. Microbiol.* **2021**, *19*, 37–54. [CrossRef] [PubMed]

28. Eibach, D.; Belmar Campos, C.; Krumkamp, R.; De Man, H.M.; Dekker, D.; Boahe, K.G.; Kreuels, B.; Adu-Sarkodie, Y.; Aepfelbacher, M.; Park, S.E.; et al. Extended spectrum beta-lactamase producing *Enterobacteriaceae* causing bloodstream infections in rural Ghana, 2007–2012. *Int. J. Med. Microbiol.* **2016**, *306*, 249–254. [CrossRef]

29. Eibach, D.; Dekker, D.; Gyau Boahen, K.; Wiafe Akenten, C.; Sarpong, N.; Belmar Campos, C.; Berneking, L.; Aepfelbacher, M.; Krumkamp, R.; Owusu-Dabo, E.; et al. Extended-spectrum beta-lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in local and imported poultry meat in Ghana. *Vet. Microbiol.* **2018**, *217*, 7–12. [CrossRef] [PubMed]

30. Labi, A.K.; Bjerrum, S.; Enweronu-Laryea, C.C.; Ayibor, P.K.; Nielsen, K.L.; Marvig, R.L.; Newman, M.J.; Andersen, L.P.; Kurtzhals, J.A.L. High Carriage Rates of Multidrug-Resistant Gram-Negative Bacteria in Neonatal Intensive Care Units from Ghana. *Open Forum Infect. Dis.* **2020**, *7*, ofaa109. [CrossRef]

31. Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Amoako, D.G.; Allam, M.; Janice, J.; Pedersen, T.; Sundsfjord, A.; Essack, S. Genomic characterization of multidrug-resistant ESBL-producing *Klebsiella pneumoniae* isolated from a Ghanaian teaching hospital. *Int. J. Infect. Dis.* **2019**, *85*, 117–123. [CrossRef] [PubMed]

32. Falgenhauer, L.; Imirzalioglu, C.; Oppong, K.; Akenten, C.W.; Hogan, B.; Krumkamp, R.; Poppert, S.; Levermann, V.; Schwengers, O.; Sarpong, N.; et al. Detection and Characterization of ESBL-Producing *Escherichia coli* from Humans and Poultry in Ghana. *Front. Microbiol.* **2019**, *9*, 3358. [CrossRef] [PubMed]

33. Donkor, E.S.; Horlortu, P.Z.; Dayie, N.T.; Obeng-Nkrumah, N.; Labi, A.K. Community acquired urinary tract infections among adults in Accra, Ghana. *Infect. Drug. Resist.* **2019**, *12*, 2059–2067. [CrossRef] [PubMed]

34. Obeng-Nkrumah, N.; Labi, A.K.; Blankson, H.; Awuah-Mensah, G.; Oduro-Mensah, D.; Anum, J.; Teye, J.; Kwashie, S.D.; Bako, E.; Ayeh-Kumi, P.F.; et al. Household cockroaches carry CTX-M-15, OXA-48- and NDM-1-producing enterobacteria, and share beta-lactam resistance determinants with humans. *BMC Microbiol.* **2019**, *19*, 272. [CrossRef] [PubMed]

35. Poirel, L.; Corvec, S.; Rapoport, M.; Mugnier, P.; Petroni, A.; Pasteran, F.; Faccone, D.; Drugeon, H.; Cattoir, V.; et al. Identification of the novel narrow-spectrum beta-lactamase SCO-1 in *Acinetobacter baumannii*. *Antimicrob. Agents Chemother.* **2020**, *75*, 2179–2184. [CrossRef] [PubMed]

36. Münch, J.; Hagen, R.M.; Müller, M.; Kellert, V.; Wiemer, D.F.; Hinz, R.; Schwarz, N.G.; Frickmann, H. Colonization with Multidrug-Resistant Bacteria—On the Efficiency of Local Decolonization Procedures. *Eur. J. Microbiol. Immunol.* **2019**, *3*, 217–224. [CrossRef] [PubMed]

37. Corniel, P.; Dingemans, J. *Pseudomonas aeruginosa* adapts its iron uptake strategies in function of the type of infections. *Front. Cell. Infect. Microbiol.* **2013**, *3*, 75. [CrossRef] [PubMed]

38. Hasannejad-Bibalan, M.; Jafari, A.; Sabati, H.; Goswami, R.; Jafaryparvar, Z.; Sedaghat, F.; Sedigh Ebrahim-Saraie, H. Risk of type III secretion systems in burn patients with *Pseudomonas aeruginosa* wound infection: A systematic review and meta-analysis. *Burns* **2020**. [CrossRef]

39. Rumbaugh, K.P.; Griswold, J.A.; Hamood, A.N. Contribution of the regulatory gene lasR to the pathogenesis of *Pseudomonas aeruginosa* infection of burned mice. *J. Burn Care Rehabil.* **1999**, *20*, Pt 1, 42–49. [CrossRef]

40. Colmer-Hamood, J.A.; Dzvona, N.; Kruczek, C.; Hamood, A.N. In Vitro Analysis of *Pseudomonas aeruginosa* Virulence Using Conditions That Mimic the Environment at Specific Infection Sites. *Proc. Mol. Biol. Transl. Sci.* **2016**, *142*, 151–191. [CrossRef]

41. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 15 December 2020).

42. Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. *Genome Biol.* **2019**, *20*, 257. [CrossRef] [PubMed]

43. Jünemann, S.; Sedlazeck, F.J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Geosmann, A.; von Haeseler, A.; Stoye, J.; et al. Updating benchtop sequencing performance comparison. *Nature Biotechnol.* **2013**, *31*, 294–296. [CrossRef] [PubMed]

44. Prijibelski, A.; Antipov, D.; Melezhko, D.; Lapidus, A.; Korobeinikov, A. Using SPAdes de novo assembler. *Curr. Protoc. Bioinform.* **2020**, *70*, e102. [CrossRef] [PubMed]

45. Seemann, T. Abricate, Github. Available online: https://github.com/tseemann/abricate (accessed on 22 March 2021).

46. Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.H.; McDermott, P.F.; et al. Validating the AMRFinder Tool and Resistance Gene Database by Using Antimicrobial Resistance Genotype-Phenotype Correlations in a Collection of Isolates. *Antimicrob. Agents Chemother.* **2019**, *63*, e00483-19. [CrossRef] [PubMed]

47. Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. *Nucleic Acids Res.* **2016**, *44*, D694–D697. [CrossRef]

48. Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. *J. Antimicrob. Chemother.* **2020**, *75*, 3491–3500. [CrossRef]