Сочетанная анестезия на основе ксенона и эпидуральной блокады при оперативном устранении деформаций суставов нижних конечностей у детей с церебральным параличом

Е. А. Адкина1, В. Л. Айзенберг2, Е. С. Яковлева1, О. Н. Гудилина1, А. В. Диордиев1,3

1 Научно-практический центр детской психоневрологии Департамента здравоохранения г. Москвы, Россия, 119602, г. Москва, Мичуринский пр-т, д. 74
2 Морозовская детская городская клиническая больница Департамента здравоохранения г. Москвы, Россия, 119049, г. Москва, 4-й Добрынинский переулок, д. 1/9
3 Российский национальный исследовательский медицинский университет им. Н. И. Пирогова Минздрава России, Россия, 117997, г. Москва, ГСП-7, ул. Островитянова, д. 1

Цель исследования. Сравнительная оценка методов сочетанной анестезии на основе ксенона и эпидуральной анестезии у детей с церебральным параличом.

Материалы и методы. Сочетанную ксеноновую анестезию с эпидуральной блокадой провели у 50 детей с церебральным параличом в возрасте от 3 до 17 лет. Пациентов разделили на группы по методу поддержания анестезии: у 30 пациентов использовали ксенон, у 20 — ксенон с парами севофлюрана. Оценивали особенности течения анестезии, интраоперационную гемодинамику и когнитивные функции до и после операции.

Результаты. Использование ксенона при всех изученных вариантах анестезии приводило к увеличению показателей производительности сердца и стабильному гемодинамическому профилю на всех этапах анестезии, несмотря на депрессивное влияние эпидуральной блокады на гемодинамику. Психологическое тестирование показало отсутствие отрицательного влияния анестезии ксеноном на когнитивные функции у детей с церебральным параличом. Выявили недостаточную анальгетическую активность ксенона, его эметогенные свойства, способность искажать параметры спирометрии, сложности в поддержании параметров нормовентиляции у детей младшей возрастной группы. Сочетание ксенона с парами севофлюрана нивелировало недостатки его изолированного применения.

Заключение. Кардиостимулирующие свойства ксенона позволяют компенсировать отрицательное действие на гемодинамику эпидуральной анестезии и общих анестетиков, а отсутствие нейротоксичности является значимым преимуществом ксеноновой анестезии у детей с исходно поврежденной ЦНС. Ксеноновая анестезия является перспективным направлением в развитии анестезиологической помощи детям с церебральным параличом.

Ключевые слова: эпидуральная анестезия; дети; церебральный паралич; ксенон; гемодинамика; когнитивные функции

Objectives. The objective of this study is to compare different methods of combination general and regional anesthesia based on xenon.

Materials and methods. Xenon anesthesia combined with epidural block was performed in 50 children with cerebral palsy aged 3–17 years. In 30 patients xenon was used to maintain anesthesia, in 20 children xenon was combined with sevoflurane. We compared the process of anesthesia, the intraoperative hemodynamic parameters and cognitive status before surgery and after it.

Results. The use of xenon in all studied anesthesia methods increased the cardiac performance and was associated with a stable hemodynamic profile at all stages of anesthesia despite the depressive effect of epidural

Адрес для корреспонденции:
Елена Александровна Адкина
E-mail: ad_el@rambler.ru

Correspondence to:
Elena A. Adkina
E-mail: ad_el@rambler.ru
blockade on hemodynamics. Psychological testing revealed that xenon anesthesia has no negative effect on cognitive functions in children with cerebral palsy.

Conclusion. Xenon anesthesia is a promising trend in anesthesia care for children with cerebral palsy. Xenon can compensate the hemodynamic depression caused by epidural anesthesia due to its cardiac stimulating property, with no neurotoxicity being a significant benefit for children with initial damage of CNS. However, anesthesia with xenon turned out to have some disadvantages. In our study, xenon showed insufficient analgesic properties, had emetic properties and was associated with spirometric abnormalities. It was more difficult to maintain normal ventilation parameters in young children when using xenon. Several adverse events were noted in the recovery period. These disadvantages can be partially reduced by using a combination of xenon and sevoflurane.

Keywords: epidural anesthesia; children; cerebral palsy; xenon; hemodynamics; cognitive function

Introduction

Surgical correction of joint deformities in lower extremities is an important part of rehabilitation of children with cerebral palsy (CP) as it improves their mobility and self-care thus facilitating the patient care. An alternative to general anesthesia during surgery is combined general and epidural anesthesia with strong analgesic and antispastic effect which allows reducing the drug load for general anesthesia and promoting the accelerated recovery of consciousness and early activation of the patient. Due to the epidural anesthesia, patients with CP do not experience pain and spastic painful muscle contraction during the postoperative period.

However, the epidural lumbar anesthesia has several disadvantages. One of them is the sympathetic block which can cause dilatation of capillary vessels of lower limbs resulting in a decrease of circulatory volume, which is most severe in patients with CP and preexisting hypovolemia [1]. Moreover, drugs used in general anesthesia can further impair the hemodynamic parameters [2]. To maintain cardiac output when using a combination epidural anesthesia in patients with CP a high volume fluid therapy can be used. However, the current intraoperative fluid management concepts consider the so-called «liberal» approach to administering fluid therapy as unreasonable and associated with a higher risk of perioperative complications [4, 5].

Another problem concerning general anesthesia is the impact of the anesthetic drugs on neural structures. Animal studies show the direct injury effect on central nervous system (CNS) of most inhaled and non-inhaled anesthetics now in use [6, 7]. Clinical trials demonstrate the ability of general anesthesia to cause delayed cognitive impairment and behavioral disorders of various intensity and duration, particularly in patients with immature CNS [8, 9].

The risk of postoperative cognitive dysfunction (POCD) is increased not only in young children but also in patients with pre-existing higher mental function disorders which worsen after surgery performed under general anesthesia [10, 11]. The use...
используемых ингаляционных и неингаляционных анестетиков [7]. Клинические исследования показывают способность общей анестезии вызывать отсроченные когнитивные и поведенческие нарушения различной продолжительности и выраженности, особенно у детей в возрасте до 1 год, а также у пациентов с незрелой ЦНС [8, 9]. Риск развития послеоперационной когнитивной дисфункции повышен не только у детей раннего возраста, но и при исходных нарушениях высших психических функций [10], которые усугубляются после проведения оперативных вмешательств в условиях общей анестезии [11].

Возможно, решением, позволяющим инве- лировать гемодинамическую нестабильность и уменьшить нейротоксичность во время сочетан- ной эпидуральной анестезии у пациентов с ЦП, может стать применение ксенона. Инертный газ ксенон обладает минимальным воздействием на гемодинамику, функцию миокарда и нейрогуморо- ральный ответ [12], даже в условиях сердечной недостаточности [13]. Также у ксенона отсутству- ет нейротоксичность [14]. Напротив, данные экспериментальных и клинических исследований показали наличие у ксенона нейропротективных свойств [15, 16]. Исследования маркеров нейрального повреждения при общей анесте- зии ксенона показали, что ксенон не вызывает поражения ЦНС даже при длительном примене- нии [17, 18]. Продемонстрировано, что ксенон оказывает кардио- и нейропротективные эффекты уже в субанестетических концентра- циях (0,25–0,5 МАК), в том числе и в комбинации с другими ингаляционными анестетиками, с сохранением его положительного влияния на гемодинамику и ЦНС [19].

Исследования, подтверждающие эффективность и безопасность анестезии ксеноном у детей, впервые в мире были проведены в нашей стране. В результате чего в 2014 году в Институте медицинскому применению препарата КсеМед® Минздравом России были внесены изменения, разрешающие его применение при общей анестезии ксенона нейропротективных свойств [15, 16]. Исследования маркеров нейронального повреждения при общей анестезии ксенона показали, что ксенон не вызывает поражения ЦНС даже при длительном применении [17, 18]. Продемонстрировано, что ксенон оказывает кардио- и нейропротективные эффекты уже в субанестетических концентрациях (0,25–0,5 МАК), в том числе и в комбинации с другими ингаляционными анестетиками, с сохранением его положительного влияния на гемодинамику и ЦНС [19].

Исследования, подтверждающие эффективность и безопасность анестезии ксеноном у детей, впервые в мире были проведены в нашей стране. В результате чего в 2014 году в Институте медицинскому применению препарата КсеМед® Минздравом России были внесены изменения, разрешающие его применение при общей анестезии ксенона нейропротективных свойств [15, 16]. Исследования маркеров нейронального повреждения при общей анестезии ксенона показали, что ксенон не вызывает поражения ЦНС даже при длительном применении [17, 18]. Продемонстрировано, что ксенон оказывает кардио- и нейропротективные эффекты уже в субанестетических концентрациях (0,25–0,5 МАК), в том числе и в комбинации с другими ингаляционными анестетиками, с сохранением его положительного влияния на гемодинамику и ЦНС [19].

Цель исследований — сравнительную оценку методов сочетанной анестезии на осно- ве ксенона и эпидуральной анестезии у детей с ЦП. Ксенона и эпидуральной анестезии у детей с ЦП. Ксенона и эпидуральной анестезии у детей с ЦП. Ксенона и эпидуральной анестезии у детей с ЦП.

Материал и методы

В исследовании включили 50 детей в возрасте от 3 до 17 лет с церебральным параличом в форме спастической диплегии или спастического тетрапа-
В основе анестезии использовали ксенон (КсеМед®). Пациентов разделили на 2 группы, сопоставимые по возрасту и полу. Па- тIENTS OPERATIONS ON BONES, MUSCLES AND TENDONS RAZA. PHYSICAL STATUS CORRESPONDED TO THE ASSESSMENT ON THE BASIS OF THE KSENOX OXYGEN RATIO OF 50–52% : 40–45% WITH VAPORS OF THE SEVORULLAN ВОВ СЕВО-ФЛУРАН. ДЛЯ ТАБЛ. 1–2: YOUNGER — Mладшие; SENIOR — Старшие; YRS/YEARS — Лет; MALE/FEMALE — Пол; M/ЖЕН.; AGE — Возраст; WEIGHT — Вес; AVERAGE ANESTHESIA TIME — СРЕДНЕНЕ ВРЕМЯ ОПЕРАЦИИ/АНЕСТЕЗИИ. * — МЕЖГРУППОВОЕ РАССЕЯНИЕ НЕ ОСУЩЕСТВЛЯЕТСЯ (P<0.1).

Примечание. Для табл. 1–4: параметры — параметры; значения в группах — значение в группах. Для табл. 1–5: КХЕН — ксенон; Sev — севофлуран. Для табл. 1–2: younger — младшие; senior — старшие; yrs/years — лет; male/female — пол; муж/жен.; age — возраст; weight — вес; average surgery/anesthesia time — среднее время операции/операции. * — межгрупповое различие не отсутствует (P>0.1).

Таблица 1. Характеристика исследуемых групп (M±m).

Parameters	Values of parameters in groups	Xe (n=30)	Xe+Sev (n=20)
Age, years		4.0±0.29	11.7±2.06
Weight, kg		18.01±1.15	33.32±2.43
Average surgery time, min		148.32±14.84	133.8±20.4
Average anesthesia time, min		214.25±15.41	187.47±22.5

Note. * — no between-group difference (P>0.1).

В 1-й группе пациентов в качестве общего компонента анестезии использовали ксенон (КсеМед®). Во 2-й группе пациентов использовали комбинацию ксенон/севофлуран. Внутри каждой исследуемой группы проводили статификацию больных на 2 подгруппы по возрасту: от 3 до 8 лет и от 9 до 17 лет. Премедикацию у всех больных проводили по единой схеме, принятой в НПЦ детской психоневрологии [20]. Она включала атропин в дозе 0,01 мг/кг и мидазолам в дозе 0,25±0,01 мг/кг.

В связи с доказанной аэтометогенностью ксенон проводил профилактику послеоперационной тонноты и рвоты (ПОТР). В зависимости от оценки по шкале POVC [21] при среднем риске развития ПОТР (2 балла) назначали дексаметазон в дозе 0,1±0,01 мг/кг, при высоком риске (3 балла) использовали комбинацию дексаметазона и ондансетрона в дозе 0,1±0,001 мг/кг.

Во 2-й группе пациентов использовали комбинацию в качестве общего компонента анестезии использовали ксенон (КсеМед®). Во 2-й группе пациентов (КХЕН+Севофлюран) индукцию анестезии проводили в дозе 3,1±0,2 мг/кг, фентанил — (4,1±0,13 мкг/кг) и рокурония — (0,66±0,01 мг/кг). После интубации трахеи и перевода пациента на аппаратную вентиляцию проводили профилактику послеоперационной тошноты и рвоты (ПОТР). В зависимости от оценки по шкале POVOC [21] при среднем риске развития ПОТР (2 балла) назначали дексаметазон в дозе 0,1±0,01 мг/кг, при высоком риске (3 балла) использовали комбинацию дексаметазона и ондансетрона в дозе 0,1±0,001 мг/кг.

Индукцию анестезии в 1-й группе (КХЕН) проводили без применения ингаляционных аnestетиков и осуществляли блюстимым введением профопола в дозе 3,1±0,2 мг/кг, фентанила — (4,1±0,13 мкг/кг) и рокурония — (0,66±0,01 мг/кг). После интубации трахеи и перевода пациента на аппаратную вентиляцию переходили к этапу денитрогенезации. Поддержание анестезии до введения ксенона в контур наркозно-дыхательного аппарата (НДА) осуществляли периодическими блюстимыми введениями профопола в разовой дозе 1 мг/кг при значениях BIS-метода более 55. По окончании денитрогеназного этапа насыщения и на всех последующих этапах ингаляционной анестезии осуществляли с газотоком O2 по метаболической потребности (метаболический режим), но не ниже 0,15 л/мин, что было обусловлено заводскими настройками НДА, не позволяющими снизить поток кислорода менее указанного значения.

Таблица 1. Характеристика исследуемых групп (M±m).

Parameters	Values of parameters in groups	Xe (n=30)	Xe+Sev (n=20)
Age, years		4.0±0.29	11.7±2.06
Weight, kg		18.01±1.15	33.32±2.43
Average surgery time, min		148.32±14.84	133.8±20.4
Average anesthesia time, min		214.25±15.41	187.47±22.5

Note. * — no between-group difference (P>0.1).

Во 2-й группе пациентов (КХЕН+Севофлюран) индукцию анестезии проводили севофлураном по блюстимной методике, фентанилом (3,9±0,14 мкг/кг) и рокуро-
вакаина в дозе 0,1–0,2 мг/кг/час. Янной эпидуральной инфузией 0,2% раствора ропивакаина получали продленное обезболивание постопациента в послеоперационную палату, где все больные 8 баллов по Aldrete [22] осуществляли перевод вегательное дыхание. После достижения уровня созна- ния 50–52%: O2 40–45% с парами се- вофлурана в концентрации 0,5–0,766% (0,2–0,3 МАК) в течение всего оперативного вмешательства.

На этапе денитрогенизации больным обеих групп проводили функцию и катехизацию эпидурального пространства с помощью одноразовых эпидуральных наборов BBraun Perifix (Германия), Rajuni Epilong (Гер- мания). После установки и фиксации эпидурального катетера вводили 0,2% ропивакаина (Ропивакаин-Каби Fresenius, Нидерланды) в дозе 1,68±0,08 мг/кг.

Инфузионную поддержку в обеих группах осу- ществляли полноценным солевым раствором Юно- стеирол 1/13 в объеме 12,9±0,77 мл/кг/час.

Все операции выполняли в условиях ИВЛ с управлением по давлению (PCV) и поддержанием нормовентиляции через ротаходметр Nihon Kohden LifeScope Monitor (Япония). Измерения вентиляции проводились по системе Инфузионная поддержка в обеих группах осуществлялась полноценным солевым раствором Юностеирол 1/13 в объеме 12,9±0,77 мл/кг/час.

End of anesthesia procedure was stopped and the oxygen flow was increased up to 6 l/min. After the appearance of adequate spontaneous breath, the patients were transferred to the postoperative room where all of them got the prolonged anesthesia by continuous epidural infusion of ropivacaine 0.2% in a dose of 0.1–0.2 mg/kg/h.

The day before surgery, on the first and the third day after anesthesia, memory, attention and thinking were estimated by a clinical psychologist in 20 patients, 13 patients from the Xe group and 7 patients from the Xe+Sev group. The differences were considered significant with the probability value (p) not exceeding 0.05. The results obtained are presented as M±m.

Results and Discussion

Xenon analgesic properties assessment. In literature xenon is described as a medicine with a strong analgesic potential [23, 24], however, it does not provide the sufficient level of analgesia in children [25]. Our experience also suggests low efficacy of xenon as an analgesic agent. This became obvious when during surgery the patients position on the operating table had to be radically changed, which was followed by an abruptly accelerated blood circulation and additional opioids were required.
Результаты и обсуждение

Оценка анальгетических свойств ксенона. В литературе ксенон описывается как препарат с выраженным анальгетическим потенциалом [23, 24], однако у детей анестезия этим инертным газом не обеспечивает достаточного уровня анальгезии [25]. Мы также отметили недостаточную эффективность ксенона как анальгетика. Это отчетливо проявилось, когда в ходе операции требовалось радикально изменить положение пациента на операционном столе, и этот маневр сопровождался выраженной гиперпневмации кровообращения и требовал дополнительного обезболивания опиоидами. Расхождение данных о свойствах ксенона как анальгетика может быть обусловлено различной минимальной альвеолярной концентрацией (МАК) ксенона у взрослых и детей. Если у взрослых пациентов MAC ксенона составляет 63–71%, то у детей она неизвестна в связи с ограниченным мировым опытом применения ксенона в этой возрастной группе. По данным W. W. Mapleson [26], MAC ксенона у детей старше 1 года предположительно составляет 92% и может быть снижена путем комбинации с другими ингаляционными анестетиками, в частности, севофлураном.

В нашем исследовании комбинации ксенона с севофлураном характеризовалась более выраженным анальгетическим эффектом, чем моноанестезия ксенона. Это проявилось в снижении потребности в фентаниле в группе Xe+Sev. В группе Xe дополнительно обезболивание фентанилом потребовалось у 20 пациентов (67%) в средней дозировке 2,3±0,15 мкг/кг/ч, а в группе Xe+Sev фентанил использовался лишь у 7 пациентов (35%). При этом дозы фентанила были достоверно ниже (p<0,001), чем в группе Xe — 1,34±0,14 мкг/кг/ч. Сочетание ксенона с севофлураном в минимальной концентрации на вдохе не только контрастировало использование программы SPIKE 7.0. Выполняли расчет среднего значения вычислений стандартной ошибкой среднего (m). Для оценки достоверности различий при сравнении связанных групп данных использовали критерий Вилкоксона, при сравнении независимых групп — критерий Манна–Уитни. Различия признались достоверными при вероятности ошибки (p) не менее 0,05. Результаты представлены в формате M±m.

Controversial data on analgesic properties of xenon can be explained by different minimal alveolar concentration (MAC) of xenon in adults and children. The MAC of xenon for adults is 63–71%, but in children it is not defined because the international experience of xenon use in this age group is very limited. According to Mapleson W. [26], the MAC of xenon in children aged 1 year and older is estimated at 92% and can be reduced by a combination with other inhalation anesthetics, for instance, with sevoflurane.

In our research the combination of xenon and sevoflurane showed stronger analgesic effect than xenon alone. It resulted in a reduced need of fentanyl in the Xe+Sev group. In the Xe group additional fentanyl administration was required in 20 patients (67%) in an average dose of 2.3±0.15 µg/kg/h, while in the Xe+Sev group fentanyl was used only in 7 patients (35%), in doses significantly lower (P<0,001) than in the Xe group, the mean being 1.34±0.14 µg/kg/hour.

Not only did the combination of xenon and sevoflurane in its minimal inhaled concentration provided stronger intraoperative analgesia but also it appeared to be more cost-effective allowing to significantly reduce the xenon flow (P<0,01) at all the stages of anesthesia in both age subgroups and thus decrease the general consumption of xenon by 14% (P<0.01) in the younger age subgroup and by 18% (P<0.05) in the senior one, respectively (table 2).

The combination of xenon and sevoflurane also helped reduce the dose of rocuronium bromide which was 0.11±0.04 mg/kg/h in the Xe+Sev group vs 0.23±0.02 mg/kg/h in the Xe group (P<0.01).

The BIS indices showed the depth of anesthesia to be appropriate and sufficient for surgical anesthesia in both cases.

Impact of xenon on the parameters of mechanical ventilation. As xenon is a noble gas it doesn’t influence the central regulation of breath and the muscular tone of bronchi. However, due to its high density and viscosity it can change the breathing mechanics and rheological properties of the breathing gas mixture. Supplying xenon in the breathing mix caused changes in the mechanical ventilation parameters which are presented in table 3.

The xenon added to the respiratory mix caused increase of the breathing volume with constant inspiratory pressure in all patients. This was due to the indication error of the flowmeter of the anesthesia apparatus which is poorly adapted for working with xenon. However, the patients in Xe group showed both increase of breathing volume and a trend to hypercapnia which required using the hyperventilation mode by increasing inspiratory pressure to eliminate carbon dioxide.

The younger subgroup revealed more prominent changes. As a matter of fact, small children naturally had narrow bronchial lumen and mechanical ventilation was done through a small diameter
обеспеченительно более выраженную интраоперационную анальгезию, но и являлось экономичным, так как позволяло достоверно (p<0,01) снизить поток ксенона на всех этапах анестезии в обеих возрастных подгруппах, и, следовательно, уменьшить общий расход ксенона на 14% (p<0,01) в младшей возрастной подгруппе и на 18% (p<0,05) — в старшей (табл. 2).

Комбинация ксенона и севофлюрана также привела к снижению расхода рокуромии — 0,11±0,006 мг/кг/час в группе Xe+Sev против 0,23±0,02 мг/кг/час в группе Xe (p<0,01).

Глубина анестезии по показателям БИС — монитора при использовании ксенона и комбинации ксенона с севофлюраном соответствовала хирургическому этапу наркоза и являлась достаточной для проведения оперативного вмешательства.

Влияние ксенона на параметры ИВЛ. Ксенон, в связи с химической инертностью, не влияет на центральную регуляцию дыхания и тонус мускулатуры бронхов. Но за счет высокой плотности и вязкости он может изменять механику дыхания и реологические свойства газонапорной смеси. При подаче ксенона в дыхательную смесь мы наблюдали изменения параметров ИВЛ, которые отражены в табл. 3.

Ксенон, добавленный в дыхательную смесь, приводил к увеличению ДО при неизменном PINS на всех пациентах. Это связано с погрешностью показателей флюометров (4–5,5 мм) эндотрахеального тубуса (ETT), которое вызвало увеличение аэродинамической плотности воздуха в часе вентиляции при высоком концентрации ксенона. В эндотрахеальном тубусе было меньшее изменение PINS в сравнении с группой на 14% (p<0,01)

Таблица 2. Расход ксенона при различных вариантах анестезии (M±m).

Parameters	Values of parameters in groups			
Xe (n=30)	Xe+Sev (n=20)			
younger	senior	younger	senior	
(3–8 yrs, n=17)	(9–17 yrs, n=13)	(3–8 yrs, n=12)	(9–17 yrs, n=8)	
Wash-in phase Xe, l	5.2±0.27*	5.2±0.27*	3.3±0.26*	3.3±0.26*
Maintenance of anesthesia Xe, l	19.8±1.84*	19.8±1.89*	13.6±1.3*	14.7±1.43*
Xe flow during maintenance, l/min	0.11±0.006*	0.11±0.004*	0.07±0.003*	0.07±0.009*
Total consumption Xe, l/hour	8.8±0.28*	10.04±0.6*	7.2±0.41*	8.2±0.49*
Anesthesia time Xe, hour	2.9±0.26	2.65±0.34	2.56±0.24	2.62±0.32

Note. Between-group difference: * — p<0,01; * — p<0,05.

Примечание. Wash-in phase — насыщение, l; maintenance of anesthesia — поддержание анестезии; flow during maintenance — поток ... погрешности показателей флюометров.
НДА, не приспособленных для работы с ксеноном. Однако у пациентов группы Xe возрастал не только ДО, но также уменьшался суправегратеральную гипокапнию, для устранения которой приходилось прибегать к режиму гипервентиляции путем увеличения Pinsp. Изменения были более выражены в младшей подгруппе. Это объясняется тем, что детям младшего возраста проводили ИВЛ через эндотрахеальную трубку (ЭТТ) относительно небольшого диаметра — 4–5,5 мм. Это, а также возрастная узость просвета бронхов, приводило к возрастанию аэродинамического сопротивления дыхательных путей при вентиляции плотной ксенон-кислородной смесью. В старшей подгруппе Xe также была тенденция к повышению ДО и Pinsp, но в меньшей степени, что обусловлено большим просветом ЭТТ и бронхального дерева, и, соответственно, меньшим сопротивлением в дыхательных путях. У детей группы Xe+Sev изменения параметров ИВЛ были не столь выраженными, как в группе Xe, что объясняется меньшим содержанием ксенона в газонаркотической смеси, и, соответственно, ее более низкой плотностью. Таким образом, комбинация ксенона с севофлюраном позволила снизить плотность дыхательной смеси за счет уменьшения концентрации ксенона, и сделала параметры ИВЛ более рациональными, что особенно актуально для пациентов младшего возраста.

Сравнение гемодинамики при различных видах анестезии ксеноном. Показатели исследуемых параметров гемодинамики представлены в табл. 4. До индукции анестезии гемодинамические профили были сходны между возрастными подгруппами обеих групп и статистически не отличались.

Гемодинамический профиль анестезии на этапах индукции и депентригезации отличался снижением параметров центральной гемодинамики, урежением ЧСС и повышением индекса перфузии, что объясняется кардиодепрессивным и вазодилатирующим воздействием препаратов для общей анестезии на фоне исходной гиповолемии, свойственной пациентам с ЦЦГ [3]. Однако там, где для индукции и поддержания анестезии использовали севофлюран, АДср. было достоверно ниже. В группе Xe отмечали дальнейшее уменьшение ЧСС и АДср., вследствие симпатолитического эффекта эпидуральной блокады. Однако введение ксенона в газонаркотическую смесь привело к выраженному, статистически значимому повышению УИ. В подгруппе Xe младшие УИ повысились на 45,7% от исходных значений, а в подгруппе Xe старшие — на 26,4% (р<0,01). В группе Xe+Sev у детей старшего возраста УИ достиг исходных значений, а у младших детей значительно ниже.

At the stage of skin incision the stabilization of heart rate and mean arterial pressure values was observed, with SVI and CI steadily increasing in both groups of patients due to the xenon-induced cardiac stimulation. In the Xe+Sev group this effect was less noticeable. Even when used in the 50% concentration, xenon successfully corrected the hemodynamic depression associated with epidural anesthesia and elevated the cardiac performance indices to the original values.

The terminal anesthesia and patient awakening stage was characterized by the HR and MAP rising to the reference values. The SVI grew significantly due to the increase of HRF. Thus, the hemodynamic profile at the awakening stage was stable with no tachycardia, hypertension and peripheral spasm observed. Hemodynamic profiles of different types of xenon anesthesia in children from different age groups are presented on figure.

As seen from the curves presented, xenon provided a stable hemodynamic profile of anesthesia both when used alone and in combination with sevoflurane. Xenon-associated cardiac stimulation appears to compensate the negative impact of epidural block on hemodynamics.

Recovery period assessment. With stopping the supply of xenon and sevoflurane into the breathing circuit of the anesthesia machine, recovery of spontaneous breath and awakening of patients was fast. The time from the end of the inhaled anesthetics supply to extubation was about 3.1±0.4 min in patients of the Xe group. The time of recovery of consciousness up to the level of 8 points according to the Aldrete scale was 5.46±0.52 min, that of up to 10 points being 7.9±0.81 min. Awakening occurred immediately to clear consciousness with no remaining sedation observed.

In the Xe+Sev group, the time till extubation was 3.14±0.38 min, which did not differ from the Xe group. Awakening in this group of patients took sig-
Клинические исследования и практика

Таблица 4. Изменения гемодинамики на основных этапах анестезии (M±m).

Parameters	Type of anesthesia	Before anesthesia	Induction to anesthesia	Denitrogenisation stage	Wash-in phase	CI	SVI	MAP	HR
	Xeyoung	131.7±3.85	117.0±7.34*	105.9±2.64*	101.8±2.25*	101.5±2.59*	99.0±3.1*	120.3±4.8*	
	Xesenior	104.9±3.42	99.0±2.66	86.6±3.07*	79.4±4.62	79.9±4.62	81.2±4.07	103.4±5.45	
Xe+Sevyoung	101.7±5.22	102.9±5.33	91.6±4.05*	92.3±3.76	90.0±3.65	91.7±3.75	112.7±7.35		
Xe+Sevsevsev	101.7±5.22	102.9±5.33	85.7±2.72*	86.1±2.78	85.5±2.78	81.5±2.78	110.6±2.94		
MAP	Xeyoung	83.1±1.82	66.6±1.91*	68.9±2.23*	61.7±2.27*	64.9±2.25*	77.3±1.90*		
	Xesenior	85.4±3.81	72.0±3.46*	70.3±2.50*	69.8±2.70*	67.9±2.55	72.2±1.7*	86.0±2.89	
Xe+Sevyoung	77.0±3.74	63.5±2.16*	60.7±3.45*	64.5±3.11*	60.8±2.00*	60.7±2.68*	69.0±2.19		
Xe+Sevsevsev	81.9±4.82	66.2±3.75*	59.7±2.31*	63.7±2.93*	67.5±2.32	66.7±2.43*	83.5±4.3		
SVI	Xeyoung	33.3±1.97	37.5±2.19	41.8±2.65	48.6±3.26*	51.0±4.23*	55.9±5.84	49.1±3.58*	
	Xesenior	39.0±5.11	35.6±3.46	40.0±5.19	39.4±6.34	33.3±6.36	31.8±5.66	46.8±3.85	
Xe+Sevyoung	41.2±5.70	34.5±3.85	35.6±3.46	45.6±4.03	48.3±4.65	52.5±4.11	52.1±4.78		
Xe+Sevsevsev	37.8±5.45	33.7±3.38	30.7±2.04	37.3±3.55	41.3±2.1	42.7±1.3	45.8±3.3		
CI	Xeyoung	4.0±0.23	3.3±0.28	4.4±0.33	4.7±0.38	4.8±0.42	5.1±0.45	5.8±0.66	
	Xesenior	3.5±0.04	3.5±0.40	3.4±0.37	3.7±0.43	4.2±0.45	4.6±0.45	4.9±0.45	
Xe+Sevyoung	4.4±0.43	4.1±0.38	3.8±0.29	4.2±0.34	4.2±0.34	4.7±0.41	5.6±0.67		
Xe+Sevsevsev	3.5±0.31	3.2±0.29	2.7±0.27	3.1±0.30	3.5±0.21	3.5±0.21	4.3±0.45		
PRV	Xeyoung	2351±156	1984±154	2012±158	1708±150*	1711±154*	1659±120*	1850±174*	
	Xesenior	39.0±5.11	35.6±3.46	40.0±5.19	39.4±6.34	33.3±6.36	31.8±5.66	46.8±3.85	
Xe+Sevyoung	41.2±5.70	34.5±3.85	35.6±3.46	45.6±4.03	48.3±4.65	52.5±4.11	52.1±4.78		
Xe+Sevsevsev	37.8±5.45	33.7±3.38	30.7±2.04	37.3±3.55	41.3±2.1	42.7±1.3	45.8±3.3		

Note. * — significant difference of variables compared with baseline values (p<0.05); # — between-group difference on the similar stages (p<0.05).

Примечание. На этапах анестезии — на этапах анестезии; type — вид; before — до; induction to — индукция; denitrogenisation stage — денитрогенация; wash-in phase — насыщение; skin incision — кожный разрез; the main stage — основной этап; the end — окончание; HR — ЧСС; MAP — АДср; SVI — УИ; CI — СИ; PRV — ОПСС. * — достоверность различий с исходными значениями (p<0.05); # — достоверность различий между группами на аналогичных этапах (p<0.05).

незначительно превысил их. Также в этой группе отмечали рост АДср. и СИ от значений предшествующих. Этап окончания анестезии и пробуждения характеризовался повышением ЧСС значимо увеличился СИ. Таким образом, гемодинамический профиль был не столь выраж. Однако и в концентрации 50% ксенон также устранял депрессию гемодинамики, вызванную эпидуральной анестезией с использованием ксенона у детей разных возрастных групп представили на рис.

Как видно из представленных графиков, ксенон обеспечивал стабильный гемодинамический профиль анестезии как в качестве единственного ингаляционного аnestетика, значительно: the time to reach 8 points Aldrete scale was 7.11±0.61 min. and the time to reach 10 points was 11.18±0.79 min (p<0.05). Sevoflurane in low concentration does not depress breathing and thus does not prolong time till extubation. But since it has higher gas/blood solubility index as compared to xenon, elimination of the former from the body occurs more slowly, which provided a longer and more smooth recovery of consciousness in the Xe+Sev patients.

Though the xenon association with the postoperative agitation syndrome is considered uncommon, we have repeatedly faced this adverse event in the early postoperative period when using xenon in practice. The intensity of this syndrome was estimated according to the Watcha scale [27]. The syndrome of postoperative agitation scoring 2 points and more was found in 6 patients (20%) of Xe group (1 of the elder subgroup and 5 of the younger one). Frequent postoperative agitation is probably due to the pre-existing cognitive and emotional disorders typical of CP. Abrupt awakening to clear consciousness may be stressful for such patients and provoke postoperative agitation. Recovery of consciousness in the Xe+Sev group occurred more slowly and postoperative sedation was more common, which explains the postoperative agitation syndrome being observed only in two patients of this group (10%). Postoperative sedation is responsible for smooth recovery of patients with CP and in this case may be regarded as a benefit.
Hemodynamic changes during different types of xenon anesthesia in children 3–8 (a) and 9–17 years old (b), % of baseline ones.

Note. 1 — before anesthesia; 2 — induction to anesthesia; 3 — denitrogenisation stage; 4 — wash-in phase Xe; 5 — skin incision; 6 — the main stage of anesthesia; 7 — termination of anesthesia

Примечание. 1 — до анестезии; 2 — индукция; 3 — денитрогенизация; 4 — насыщение ксеноном; 5 — кожный разрез; 6 — основной этап; 7 — окончание анестезии; HR — ЧСС; MAP — АДср; SVI — УИ; CI — СИ; PVR — ОПСС.

In the postoperative period, the postoperative vomiting (POV) was a common adverse effect. Antiemetic drugs involved in premedication could not fully prevent the vomiting. Postoperative vomit was uncommon among younger children, but was frequently seen in teenage girls, which corresponds to the data available [28]. The incidence of POV in groups with different types of anesthesia differed insignificantly: it was seen in 6 patients (20%) in the Xe group and 3 patients (15%) in the Xe+Sev group. Laryngospasm during extubation developed in 2 patients (6.6%) in the Xe group and in 1 patient (5%) in the Xe+Sev group.
буждение в группе Хе происходило сразу до ясного сознания, без эффекта остаточной седации.

В группе Хе+Сев врея до экстубации практически не отличалось от времени в группе Хе и составило 3,14±0,38 мин. Пробуждение в этой группе происходило достоверно дольше: до 8 баллов по Aldrete за 7,11±0,61 мин, до 10 баллов — за 11,18±0,79 мин (p<0,05). Севофлюран в низких концентрациях не угнетает дыхание и, следовательно, не продлевает время до экстубации. Но за счет более высокого коэффициента растворимости газ/кровь севофлюрана его элиминация из организма происходит медленнее, чем элиминация ксенона, что обеспечило более длительное и плавное восстановление сознания в группе Хе+Сев.

Хоть ксенон характеризуется как анестетик, редко вызывающий синдром посленаракозной ажитации, в своей практике мы неоднократно сталкивались с этим неблагоприятным явлением раннего послеоперационного периода при использовании ксенона. Выраженность возбуждения оценивали по шкале Watcha [27]. В группе Хе синдром посленаракозного возбуждения с оценкой 2 и более балла отмечали у 6 пациентов (20%), из них 1 — в старшей подгруппе и 5 — в младшей. Частое посленаракозное возбуждение, вероятно, связано с исходными когнитивными нарушениями, которые присущи пациентам с ДЦП, в том числе расстройствами эмоциональной сферы. Резкое пробуждение до состояния практически ясного сознания может явиться стрессовым фактором для таких пациентов и спровоцировать посленаракозную ажитацию. Восстановление сознания в группе Хе+Сев происходило дольше, сохранялся эффект посленаракозной седации, поэтому синдром посленаракозного возбуждения отмечался лишь у двух больных этой группы (10%). Для пациентов с ДЦП это скорее преимущество, чем недостаток, так как делает пробуждение более гладким.

В послеоперационном периоде частым неблагоприятным явлением был синдром посленаракозной рвоты. Несмотря на включение в премедикацию антисеквестов, полностью предотвратить развитие ПОТР не удалось. Это явление редко возникало у детей раннего возраста, и чаще отмечалось у девочек-подростков, что соответствует данным литературы [28]. Частота возникновения ПОТР в группах с различными видами анестезии отличалась незначительно: у 6 больных (20%) — в группе Хе и у 3 больных (15%) — в группе Хе+Сев. Ларингоспазм при экстубации возник у 2 больных (6,6%) — в группе Хе и у 1 пациента (5%) — в группе Хе+Сев.

Когнитивные функции оценивали у 13 больных из группы Хе и у 7 больных из группы Хе+Сев. Мы оценивали когнитивные функции на постоперационном периоде до состояния практически ясного сознания в группе Хе+Сев.

We estimated cognitive functions of 13 patients from the Xe group and 7 patients from the Xe+Sev group. Memory, attention and thinking indices were assessed as percentage of the age-appropriate normal values. Reduced indices of memory, attention and thinking with respect to the average age values were initially found in 12 patients (60%). The average deficiency of these highest mental functions was 28.1% (table 5).

On the first day of the postoperative period all the patients demonstrated increased exhaustion of attention and emotional lability. Productive operating time with the psychologist averaged 17.25±0.42 min. During the first day a non-significant rise in cognitive deficiency was noted based on a small decrease in memory indices in the Xe+Sev group and attention parameters in the Xe group of Xe. On Day 3 all the indicators of the cognitive status were nearly similar to the baseline, and thinking indices in the Xe group exceeded the baseline ones by 4.2%, which was considered as minor reduction of cognitive deficiency. Meanwhile, the cognitive assessment in children with CP after combination anesthesia with sevoflurane and epidural block showed considerable negative influence of this intraoperative anesthesia on postoperative cognitive functions [11]. Particularly, the overall cognitive deficiency was seen in 44.6% patients the morning after surgery. However, on Day 3 after the operation these abnormalities disappeared in 75% of patients, but persisted in 25% of them with the severity even superior to the baseline.

The data obtained in neuropsychological testing indicate no neurotoxic properties of xenon both as a single anesthetic agent and in combination with sevoflurane.

Conclusion

The use of xenon as part of combined anesthesia in children with CP provides stable hemodynamic parameters during the entire intervention, quick recovery of consciousness, and does not affect the cognitive functions. The cardiovascular effect of xenon compensates the negative hemodynamic effect of epidural block. However, anesthesia with xenon has some disadvantages. Analogic effect of xenon is insufficient in pediatric anesthesia. When using xenon in the respiratory mix it is difficult to ensure normal ventilation in younger children and proper respiratory monitoring. In our study the following undesirable effects of xenon anesthesia in the recovery period were noted: post-extubation laryngospasm, postoperative agitation syndrome, postoperative nausea and vomiting. High xenon consumption in the absence of specialized anesthesia equipment leads to a significant increase in cost of anesthesia.

The combination of xenon with low concentrations of sevoflurane enhances the analgesic component of anesthesia, makes mechanical ven-
Хе+Sev. Исследовали показатели памяти, внимания и мышления в процентах от возрастной нормы. У 12 пациентов (60%) исходно отмечали снижение показателей памяти, внимания и мышления относительно средних возрастных показателей. В среднем дефицит этих высших психических функций составил 28,1% (табл. 5).

В послеоперационном периоде у всех пациентов в первые сутки отмечали повышенную истощаемость внимания и психоэмоциональную лабильность. Продуктивное время работы с психологом составило в среднем 17,25±0,42 мин. В течение первых суток отмечали небольшое, статистически малозначимое нарастание когнитивного дефицита, проявившегося в незначительном снижении показателей памяти в группе Хе+Sev и внимания в группе Хе. На третий день после операции все показатели когнитивного статуса практически не отличались от исходных, а показатели мышления в группе Хе превышали исходные на 4,2%, что привело к незначительному уменьшению когнитивного дефицита. В свою очередь, исследования когнитивных функций, проведенные у детей с ЦП после сочетанной анестезии на основе севорана и эпидуральной блокады, показали значительное отрицательное влияние этой схемы интраоперационного обезболивания на послеоперационные когнитивные функции [11]. В частности, общий когнитивный дефицит наутро после операции составлял 44,6%, однако на третий день после операции у 75% больных выявленные нарушения прерывались, но у 25% пациентов нарушения сохраняли выраженный характер, превышая исходный уровень.

Таким образом, данные, полученные в результате нейропсихологического тестирования, свидетельствуют об отсутствии нейротоксических свойств ксенона как в качестве единичного ингаляционного анестетика, так и в сочетании с парами севофлюрана.

Заключение
Применение ксенона в составе сочетанной анестезии у детей с ЦП обеспечивает стабильную гемодинамику в течение всего вмешательства, быстрое восстановление сознания, отсутствие влияния анестезии на когнитивные функции. Кардиостимулирующие эффекты ксенона компенсируют отрицательное влияние эпидуральной блокады на гемодинамику. Тем не менее, анестезия ксеноном имеет и отрицательные стороны. Аналгетическая активность ксенона недостаточна для проведения анестезии у детей; при добавлении ксенона в газовую смесь возникают сложности в обеспечении нормовентиляции у детей младшей возрастной группы и искажаются данные респираторного мониторинга. При применении ксенона отмечали следующие нежелательные эффекты анестезии в посленаркозный период: постэкстубационный ларингоспазм, синдром посленаркозной ажитации, послеоперационная тошнота и рвота. Высокий расход ксенона при отсутствии специализированной наркозной аппаратуры приводит к значительному удороожанию стоимости анестезии.

Сочетание ксенона с низкими концентрациями паров севофлюрана способствует увеличению анальгетического компонента анестезии, делает ИВЛ более управляемой, а пробуждение гладким и комфортным для пациента. Кардиостимулирующие свойства ксенона в сочетании с севофлюраном позволяют обеспечить стабильную гемодинамику на протяжении всего оперативного вмешательства. Кроме того, добавление паров севофлюрана уменьшает частоту развития нежелательных явлений послеоперационного периода: ажитации, ларинго-
спазма, тошнота и рвота, делает анестезию не более экономичной за счет снаряжения графо-формантом апестетика ксенон. Ксенобио- вая анестезия во всех исследованных вариантах ее применения не оказывала значимого влияния на когнитивные функции пациентов с церебральным параллелизмом.

Полученные данные показали перспективность применения анестезии на основе ксенона у детей с церебральным параллелизмом.

Литература

1. Дюридов А.В., Айзенберг В.Л., Виноградов А.В., Вайнштейн Д.П., Шагунин Р.Р. Анестезия при хирургическом лечении у больных с церебральным параллелизмом. Журнал неврологии и психиатрии им. С.С. Корсакова. 2012; 7 (2): 41–46.
2. Георгиев В.А., Диордиев А.В., Салмаси К.Ж. Реакция центральной гемодинамики на физическую нагрузку больных с детским церебральным параллелизмом как возможность выбора способа анестезии и прогнозирования ее течения. Анестезиология и реаниматология. 2009; 1: 14–17.
3. Айзенберг В.Л., Диордиев А.В. Коррекция гемодинамики у детей с церебральным параличом, оперированных в условиях общей и комбинированной эндотрахеальной анестезии. Анестезиология и реаниматология. 2012; 1: 10–11.
4. Navarro L.H., Bloomstone J.A., Auler J.O., Carnezzio M., Roca G.D., Gao T.J., Kinsky M., Magder S., Miller T.E., Mythen M., Perel A., Reuter D.A., Rinsky M.R., Kramer G.C. Perioperative fluid therapy: a statement from the International Fluid Optimization Group. Perioper. Med. 2015, 4: 3. DOI: http://10.1186/s13741-015-0014-z. PMID: 25897397
5. Corcoran T., Rhodes J.E., Clarke S., Mythes F.S., Ho K.M. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesthesia & Analgesia. 2012; 114 (3): 640–651. DOI: 10.1213/ANE.0b013e318240d6eb. PMID: 22253274
6. Liu J., Inoue M., Sanders R.D., Coburn M. and protective effects of inhaled anesthetics on the developing animal brain: systemic review and update of recent experimental work. Eur J Anaesth. 2014; 31 (12): 669–677. DOI: 10.1097/EJA.0000000000000673. PMID: 24922049
7. Lei X., Guo Q., Zhang J. Mechanistic insights into neurotoxicity induced by anesthetics in the developing brain. Int J Mol Sci. 2012; 13 (6): 6772–6799. DOI: 10.3390/ijms13066772. PMID: 22837663
8. Flick R.P., Katucsi S.K., Colligan R.C., Wilder R.T., Voigt R.G., Olson M.D., Sprung J., Weaver A.L., Schroeder D.R., Warner D.C. Cognitive and neurobehavioral outcomes after early exposure to anesthesia and surgery. Pediatrics. 2011; No 128: (5): e1053–61. DOI: 10.1542/peds.2011-0315. PMID: 21969289
9. Sun L. Early childhood general anaesthesia exposure and neurocognitive development. Br J Anaesth. 2010; 105 (1): 61–68. DOI: 10.1093/bja/aeq302. PMID: 25862287
10. Silverstein J.H., Steinmetz J., Reichenbach A., Harvey P.D., Rasmussen L.S. Postoperative cognitive dysfunction in patients with preoperative cognitive impairment: which domains are most vulnerable? Anesthesiology. 2007; 106: 431–435. PMID: 17325500. DOI: 10.1097/01.ANE.0000254260.20670500.0000673.
20. Дюордиев А.В., Алексеев В.Л., Иванова Е.С. Анестезия у больных с церебральным параличом. Регионарная анестезия и лечение острой боли. 2015; 3: 33–40.

21. Kranke P., Eberhart L.H., Toker H., Boeuer N., Wulf H., Kiefer P.A. Prospective evaluation of the POVOC score for the prediction of postoperative vomiting in children. Anesth Analg. 2007; 105 (6): 1592–1597. DOI: 10.1213/01.ane.0000287816.44124.03. PMID: 18042855

22. White P.F., Song D. New criteria for fast-tracking after outpatient anesthesia: a comparison with the modified Aldrete’s scoring system. Anesth Analg. 1999; 88 (5): 1069–1072. PMID: 10320170. DOI: 10.1213/01.ane.00000539-199905000-00018

23. Preckel B., Weber N.C., Sanders R.D., Maze M., Schlack W. Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology. 2006 Jul; 105 (1): 187–197. PMID: 16810011. DOI: 10.1097/00000542-200607000-00029

24. Burov N.E, Molchanov I.V., Nikolaev L.L. Xenon in medicine: the past, the present and the future. Klinicheskaya praktika. 2011; 2: 3–11. [In Russ.]

25. Bagno V.G., Devajkin E.V., Amcheslavskij V.G., Potapov V.N., Boyarskij S.N. Various types of xenon anesthesia using in children. Pediatriceskaya farmakologiya. 2012; 9 (1): 72–76. [In Russ.]

26. Mapleson W.W. Effect of age on MAC in humans: a meta-analysis. Br J Anaesth. 1996 Feb; 76 (2): 179–185. PMID: 8777094. DOI: 10.1093/bja/76.2.179

27. Nair S., Wolf A. Emergence delirium after paediatric anaesthesia: new strategies in avoidance and treatment. BJA Education, 18 (1): 30e33 (2018). DOI: 10.1016/j.bjae.2017.07.001

28. Guidelines on the prevention of post-operative vomiting in children. The Association of Paediatric Anaesthetists of Great Britain & Ireland. Autumn 2016. https://www.apagbi.org.uk

Уважаемые Авторы журнала «Общая реаниматология»!

Обращаем ваше внимание на обновление Правил для авторов.

Обновленные Правила для авторов в редакции 25 сентября 2018 г. содержат разъяснения по оформлению аффилиации авторов, рисунков и таблиц; дополнения в разделах «правовые и этические аспекты публикации рукописи», «отправка материалов для публикации», «структурные разделы статей и рекомендации по их описанию», «библиографии».

Обновленные Правила для авторов размещены на сайте журнала:

www.reanimatology.com

Поступила 24.06.19

21. Kranke P., Eberhart L.H., Toker H., Boeuer N., Wulf H., Kiefer P.A. Prospective evaluation of the POVOC score for the prediction of postoperative vomiting in children. Anesth Analg. 2007; 105 (6): 1592–1597. DOI: 10.1213/01.ane.0000287816.44124.03. PMID: 18042855

22. White P.F., Song D. New criteria for fast-tracking after outpatient anesthesia: a comparison with the modified Aldrete’s scoring system. Anesth Analg. 1999; 88 (5): 1069–1072. PMID: 10320170. DOI: 10.1213/01.ane.00000539-199905000-00018

23. Preckel B., Weber N.C., Sanders R.D., Maze M., Schlack W. Molecular mechanisms transducing the anesthetic, analgesic, and organ-protective actions of xenon. Anesthesiology. 2006 Jul; 105 (1): 187–197. PMID: 16810011. DOI: 10.1097/00000542-200607000-00029

24. Burov N.E, Molchanov I.V., Nikolaev L.L. Xenon in medicine: the past, the present and the future. Klinicheskaya praktika. 2011; 2: 3–11. [In Russ.]

25. Bagno V.G., Devajkin E.V., Amcheslavskij V.G., Potapov V.N., Boyarskij S.N. Various types of xenon anesthesia using in children. Pediatriceskaya farmakologiya. 2012; 9 (1): 72–76. [In Russ.]

26. Mapleson W.W. Effect of age on MAC in humans: a meta-analysis. Br J Anaesth. 1996 Feb; 76 (2): 179–185. PMID: 8777094. DOI: 10.1093/bja/76.2.179

27. Nair S., Wolf A. Emergence delirium after paediatric anaesthesia: new strategies in avoidance and treatment. BJA Education, 18 (1): 30e33 (2018). DOI: 10.1016/j.bjae.2017.07.001

28. Guidelines on the prevention of post-operative vomiting in children. The Association of Paediatric Anaesthetists of Great Britain & Ireland. Autumn 2016. https://www.apagbi.org.uk

Received 24.06.19