High-resolution HLA class II sequencing of Swedish multiple sclerosis patients

Omar Akel1 | Lue Ping Zhao2 | Daniel E Geraghty2 | Alexander Lind1

1Department of Clinical Sciences Malmö, Clinical Research Centre, Lund University, Skåne University Hospital SUS, Malmö, Sweden
2Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States

Correspondence
Alexander Lind, Department of Clinical Sciences Malmo, Clinical Research Centre, Lund University, Jan Waldenstroms gata 35, 21428 Malmö, Sweden
Email: Alexander.lind@med.lu.se

Abstract
Multiple sclerosis (MS) is a chronic neurological disease believed to be caused by autoimmune pathogenesis. The aetiology is likely explained by a complex interplay between inherited and environmental factors. Genetic investigations into MS have been conducted for over 50 years, yielding >100 associations to date. Globally, the strongest linkage is with the human leukocyte antigen (HLA) HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype.

Here, high-resolution sequencing of HLA was used to determine the alleles of DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1 as well as their extended haplotypes and genotypes in 100 Swedish MS patients. Results were compared to 636 population controls.

The heterogeneity in HLA associations with MS was demonstrated; among 100 patients, 69 extended HLA-DR-DQ genotypes were found. Three extended HLA-DR-DQ genotypes were found to be correlated to MS; HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01 haplotype together with
(A) HLA-DRB4*01:01:01:01/DRB4*01:01:01:01-DRB1*07:01:01-DQA1*02:01:01//02:01:01-DQB1*06:02:01,
(B) HLA-DRB5*nul-DRB1*08:01:01-DQA1*04:01:01-DQB1*04:02:01, and
(C) HLA-DRB5*01:01:02:01-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01.

At the allelic level, HLA-DRB3*01:01:02 was considered protective against MS. However, when combined with HLA-DRB3*01:01:02-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01, this extended haplotype was considered a predisposing risk factor.

This highlights the limitations as included with investigations of single alleles relative to those of extended haplotypes/genotypes.

In conclusion, with 69 genotypes presented among 100 patients, high-resolution sequencing was conducted to underscore the wide polymorphisms present among MS patients. Additional studies in larger cohorts will be of importance to define MS among the patient group not associated with HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01.
1 | INTRODUCTION

Multiple sclerosis (MS) is the most common inflammatory disease affecting the central nervous system. Epidemiological findings suggest a gene–environment interaction, and the pathogenesis of MS is widely assumed to be of autoimmune origin (Filippi et al., 2018). Overall, the strongest genetic factor associated with MS is the human leukocyte antigen (HLA)-DRB1*15:01 allele (Allen et al., 1994; Mack et al., 2019; Marrosu et al., 2001; Sawcer et al., 2005; Schmidt et al., 2007). Among individuals with European origin, HLA-DRB1*15:01 is inherited in almost complete linkage disequilibrium (LD) with HLA-DQB1*06:02. Studies in African-Americans, among whom the HLA-DQB1*06:02 allele is not found on HLA-DRB1*15:01 haplotypes, has attributed the risk of MS to HLA-DRB1*15:01. Additional HLA-DRB1-DQB1 alleles and haplotypes associated with MS include

A. HLA-DRB1*03:01-DQA1*05:01-DQB1*02:01 (Mack et al., 2019; Marrosu et al., 2001; Marrosu et al., 1998; Moutsianas et al., 2015; Sanna et al., 2010; The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2, 2011),

B. HLA-DRB1*04:05-DQA1*05:01-DQB1*03:01 (Marrosu et al., 2001; Marrosu et al., 1998),

C. HLA-DRB1*04:05-DQB1*03:02 (Marrosu et al., 2001; Moutsianas et al., 2015),

D. HLA-DRB1*13:03-DQB1*03:01 (Marrosu et al., 2001; Moutsianas et al., 2015; The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2, 2011) and

E. HLA-DRB1*08:01 (Barcellos et al., 2006; Moutsianas et al., 2015).

A recent family-study used high-resolution sequencing to report a novel predisposing association to MS for HLA-DRB1*104:01, independent of HLA-DRB1*15:01 haplotype. High-resolution sequencing also conferred negative MS association to HLA-DRB1*01:01:01, HLA-DQB1*03:01 and HLA-DQB1*03:03 (Osoegawa et al., 2021) and HLA-DRB1*14:04:01 (Vinoy et al., 2021).

Secondary HLA-DRB loci, including HLA-DRB3, DRB4 and DRB5, have been less defined for MS. HLA-DRB5*01:01 is found in linkage disequilibrium with HLA-DRB1*15:01 and therefore found in increased frequency among MS patients. Both HLA-DRB5*01:01 and HLA-DRB1*15:01 present peptides in heterodimer pocket-formation with non-polymorphic HLA-DRα. HLA-DRB5*01:01 has been indicated to modulate the presumed disease promoting HLA-DRB1*15:01 antigen-presentation since rare HLA-DRB5*null haplotypes among HLA-DRB1*15:03 African-American MS patients correlated with an increased risk of developing severe secondary progressive MS (Caillier et al., 2008).

Sweden has one of the highest prevalence of MS worldwide (Ahlgren et al., 2014; Ahlgren et al., 2012), partly explained by the high frequency of the HLA-DRB1*15:01-DQB1*06:02 haplotype in the population.

The aim of the studies was to define HLA genetics among MS patients not associated with HLA-DRB5*01:01-01:DRB1*15:01-01: DQA1*01:02:01-DQB1*06:02:01. Here, we used high-resolution sequencing to determine the associations between MS and HLA-DRB3, DRB4, DRB5, DRB1, DQA1, DQB1, DPA1 and DPB1. This kind of typing offers substantial advantages over methods of imputation and, therefore, more accurately captures the polymorphic complexity of the HLA region.

2 | METHODS AND MATERIALS

2.1 | Study population

The MS Malmö cohort (n = 100) included blood samples collected from the Neurology Department of the Skåne University Hospital in Malmö. The MS diagnosis of the patients was validated by treating physician (Table 1) (McDonald et al., 2001; Thompson et al., 2018). Controls (n = 636) included in the HLA Next Generation Sequencing (NGS) analysis were obtained as previously described (Lind et al., 2019). These controls were obtained as two different study groups: (A) Swedish general population (GP) controls (n = 448) and (B) LifeGene controls (n = 188; https://www.lifegene.se/For-scientists/About-LifeGene) (Lind et al., 2019; Zhao et al., 2016). Sample collection and HLA typing was performed at different time-points; the two different control groups were verified to be harmonize (no statistical differences for any HLA alleles, haplotypes or genotypes) before put together as one larger group of general population controls. General population controls refer to a large enough and randomly selected group of individuals, which represent the HLA genotypes present in the Swedish population.

The study was approved by the regional ethics board in Lund, Sweden (dnr 2015/257 with amendment 2017/670).

2.2 | HLA high-resolution typing

DNA was extracted using Qiagen Blood Maxi Kit according to manufacturer’s protocol and as previously described (Lind et al., 2019). In brief, blood clots were lysed through addition of protease (Qiagen protease) and lysis buffer (AL buffer, Qiagen). Next, incubation of sample-mixtures was at 70°C for 10 min. Addition of 99.5% ethanol was followed by sample-mixture addition to binding-columns (QiAamp maxiprep columns). Centrifugation was at 4000 rpm for 3 min. The columns
were washed with buffers (AW1 followed by AW2, Qiagen) and the DNA was extracted by addition of elution buffer (Buffer AE, Qiagen).

HLA NGS was performed by Scisco Genetics (Seattle, USA). Samples (50 ng/μl, 20 μl) were sent blindly to the investigators. HLA NGS makes use of PCR-based HLA amplification and sequencing with Illumina MiSeq technology, as described in previous studies (Nelson et al., 2015; Smith et al., 2014; Zhao et al., 2016). The alleles of MiSeq technology, as described in previous studies (Nelson et al., 2015; Smith et al., 2014; Zhao et al., 2016). The alleles of MiSeq technology, as described in previous studies (Nelson et al., 2015; Smith et al., 2014; Zhao et al., 2016).

Calculations for HLA NGS analysis were performed using R-studios 2.3 and the function 'haplo.stats/index.html,' as previously described (Lind et al., 2019). Calculations for HLA NGS analysis were performed using R-studios 2.3 and the function 'haplo.stats/index.html,' as previously described (Lind et al., 2019).

The significance threshold for all hypothesis testing was unadjusted and set to .05. Correction for multiple testing was applied using the Benjamini–Hochberg Procedure (Benjamini & Hochberg, 1995).

The complete results and associations for all the different haplotypes found in the study are reported in Supplementary Table S2. The complete results and associations for all the different haplotypes found in the study are reported in Supplementary Table S2.

A reference haplotype with a similar frequency between the study groups was selected in HLA DRB3'03:01:01-DRB1*13:02:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*02:01/02:01:01-DQB1*02:01 (Table 2).

A reference haplotype with a similar frequency between the study groups was selected in HLA DRB3'03:01:01-DRB1*13:02:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*02:01/02:01:01-DQB1*02:01 (Table 2).

3.2 HLA-DRB3, DRB4 and DRB5-DRB1-DQA1-DQB1 haplotypes

In total, in the study, 122 different HLA-DRB3, DRB4 and DRB5-DRB1-DQA1-DQB1 haplotypes were found. The complete results and associations for all the different haplotypes found in the study are reported in Supplementary Table S2.

A reference haplotype with a similar frequency between the study groups was selected in HLA DRB3'03:01:01-DRB1*13:02:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*02:01/02:01:01-DQB1*02:01 (Table 2).

A reference haplotype with a similar frequency between the study groups was selected in HLA DRB3'03:01:01-DRB1*13:02:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*01:02:01-DRB1*07:01:01-DQA1*02:01/02:01:01-DQB1*02:01 (Table 2).

3.3 Alleles

In total, in the study, 18 different HLA-DRB3, DRB4, and DRB5 alleles, 47 different HLA-DRB1 alleles, 23 different HLA-DQA1 alleles, 24 different HLA-DQB1 alleles, 14 HLA-DPA1 and 30 HLA-DPB1 alleles were found. The complete results and associations for all the different alleles found in the study are reported in Supplementary Table S3. Selected alleles with a comparable frequency in patients...
and controls were used as reference. Those alleles included HLA-DRB3*03:01 (4.0%, 4.4%), HLA-DRB1*03:01 (11.5%, 12.0%), HLA-DQA1*03:01 (12.5%, 12.7%), HLA-DQB1*02:01 (11.5%, 11.3%), HLA-DPA1*01:03 (84.3%, 84.0%), and HLA-DPB1*02:01 (14.0%, 14.5%). Based on the Haplo-Score, 9 alleles with positive and 7 alleles with negative association for MS patients in comparison to population controls were identified (Table 3).

4 | DISCUSSION

For simplified reading of the discussion section, significant haplotypes are presented as the following abbreviations:

A. HLA-DR15-DQ6 is HLA-DRB5*01:01:01-DRB1*15:01:01-DQA1*01:02:01-DQB1*06:02:01;
B. HLA-DRB3*01-DR3-DQ2 is HLA-DRB3*01:01:02:01-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01;
C. HLA-DRB3*02-DR3-DQ2 is HLA-DRB3*02:02:01-DRB1*03:01:01-DQA1*05:01:01-DQB1*02:01:01;
D. HLA-DR7-DQ2 is HLA-DRB4*01:01:01/DRB4*01:01:01-DRB1*07:01:01-DQA1*02:01/02:01-DQB1*02:02:01 and
E. HLA-DR8-DQ4 is HLA-DRBX*null-DRB1*08:01:01-DQA1*01:01:01-DQB1*04:02:01.

From the present study, we first report that previously found HLA-associations to MS, most prominently to DR15-DQ6, can be confirmed in 100 MS patients from Southern Sweden. The three genotypes with increased frequency in MS included the HLA-DR15-DQ6 haplotype together with previously reported HLA-DRB1*08:01 (HLA-DR8-DQ4), HLA-DRB3*01-DR3-DQ2, while the association with HLA-DR7-DQ2 appear novel.

Lastly, we report heterogeneity in HLA associations to MS given that, among 100 patients, 69 different extended HLA-DR-DQ genotypes were identified. Approximately half of all genotypes (36 of 69) and two-thirds of all patients (68 of 100) encompassed haplotypes of either HLA-DR15-DQ6, HLA-DRB3*01-DR3-DQ2 or HLA-DRB3*02-DR3-DQ2. A substantial number of studies over the last 50 years have associated HLA genetics to MS (Hollenbach & Oksenberg, 2015). The
TABLE 3 Estimated allelic frequencies of HLA-DRB3, DRB4, DRB5, -DRB1, -DQA1, -DQB1, -DPA1 and -DPB1, estimated odds ratios (OR) of individual alleles, estimated H-score (HS) measuring associations and associated p values

Allele	Control n (%)	MS n (%)	OR	HS	p Value
HLA-DRB3, DRB4, DRB5					
DRB3*01:01:02	204 (16.0)	18 (9.0)	0.64	−2.58	9.83E-03
DRB4*01:03:01	307 (24.1)	32 (16.0)	0.76	−2.52	1.17E-02
DRB5*01:01:01	205 (16.1)	63 (31.5)	2.30	5.25	1.52E-07
DRB5*02:02/DRB5*02:02:01	16 (1.3)	8 (4.0)	3.38	2.75	5.88E-03
HLA-DRB1					
DRB1*04:02:01	7 (0.6)	6 (3.0)	4.45	3.46	5.45E-04
DRB1*13:01:01	92 (7.2)	5 (2.5)	0.32	−2.57	1.02E-02
DRB1*15:01:01	202 (15.9)	61 (30.5)	1.99	5.03	4.94E-07
DRB1*16:01:01	16 (1.3)	8 (4.0)	2.81	2.75	5.88E-03
HLA-DQA1					
DQA1*01:01:01	160 (12.6)	9 (4.5)	0.43	−3.20	1.38E-03
DQA1*01:01:02	4 (0.3)	5 (2.5)	9.21	3.70	2.18E-04
DQA1*01:02:01	265 (20.8)	70 (35.0)	1.85	4.46	8.15E-06
DQA1*01:02:02	18 (1.4)	9 (4.5)	3.15	2.94	3.28E-03
DQA1*01:03:01	101 (7.9)	8 (4.0)	0.53	−2.02	4.35E-02
HLA-DQB1					
DQB1*03:03:02	49 (3.9)	1 (0.5)	0.14	−2.38	1.75E-02
DQB1*05:02:01	16 (1.3)	12 (6.0)	4.36	4.30	1.71E-05
DQB1*06:02:01	201 (15.8)	56 (28.0)	1.64	4.21	2.52E-05
DQB1*06:03:01	98 (7.7)	7 (3.5)	0.37	−2.19	2.87E-02

Extended HLA-DR15-DQ6 haplotype is consistently reported, both here and elsewhere, as the major genetic contributor to MS. Some suggestions of the presence of this extended haplotype at the age at onset (Hensiek et al., 2002; Masterman et al., 2000; The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2, 2011), but not during the clinical course of MS, have been suggested (Barcellos et al., 2006). Although a dose effect may explain the data (Barcellos et al., 2006; Barcellos et al., 2003), our study failed to corroborate this finding, as the prevalence of HLA-DR15-DQ6 homozygosity in Swedish population controls was found to be fairly high [2.5% (16/636 controls) as compared to 6% (6/100 MS patients). There are conflicting reports as to whether the predisposition to MS stems from the HLA-DR or DQ region. For example, strong linkage disequilibrium within the HLA-II region among European populations has made it difficult to establish separate influences of DRB1*1501 and DQB1*0602 in the extended HLA-DR15-DQ6 haplotype. Studies with inclusion of African American populations with diverse patterns of linkage disequilibrium found a selective association to DRB1*1501, independent of DQB1*0602 (McElroy et al., 2010; Oksenberg et al., 2004).

The group of non-DR15-DQ6 associated MS patients (44 out of 100 patients) is of interest, complementary triggers and pathways of autoimmunity could be present. It cannot be excluded that environmental factors are different between MS patients negative for HLA-DR15-DQ6 but positive for HLA-DR7-DQ2. Studies in larger and diversified cohorts would be needed to define MS in this group of patients.

Historically, the HLA-DRB1*03:01 allele has been associated with MS. An increased risk was reported when the HLA-DRB1*03:01 allele is homozygous (Moutsianas et al., 2015). In contrast our study found a similar frequency at the allelic level (patients 11.5%–12.0% controls), and there were no MS homozygous patients present [MS patients; 0/100 (0%) and controls; 10/636 (1.6%)]. Combining HLA-DRB1 and HLA-DRB345 alleles into haplotypes revealed a risk associated with HLA-DRB3*02-DR3-DQ2, while HLA-DRB3*01-DR3-DQ2 was associated with MS at a genotypic level. This exemplifies that risk associations and protective associations do not necessarily agree at the allelic, haplotypic and genotypic level.

The total of six MS-associated extended HLA-DR-DQ haplotypes found in the studies means that other haplotypes than DR15-DQ6 may contribute to MS. However, combined into genotypes, three MS-associated variants were found in the HLA-DR15-DQ6 haplotype combined with HLA-DRB8-DQ4, HLA-DRB3*01-DR3-DQ2, HLA-DR7-DQ2. A plausible explanation for this outcome is the greater depth afforded by high-resolution sequencing, causing a more accurate reflection of the wide polymorphism found in the HLA region. Another plausible explanation is a less dominant effect of a few specific HLA genes. The notion of smaller influences by many genes has been supported by low
large-family linkage studies (Sawcer et al., 2014). The high-resolution HLA typing makes it possible to further dissect the possible contribution of other alleles, perhaps haplotypes, to the risk of MS.

A weakness of our study was the fact that the HLA-DPA1 and HLA-DPB1 alleles could not be assigned to extended haplotypes and genotypes. This was largely attributed to the very high frequency of HLA-DPA1*01:03:01 (> 80%) among both patients and controls, which precluded computation of the other rare allele variants among the families that were used as templates (Lind et al., 2019). Another limitation was the missing information of age at first symptom and family history of MS, these parameters would have been of importance especially among non-HLA-DR15-DQ6 patients.

It appears overly simplistic to characterize MS as having a single aetiology and pathogenesis. The heterogeneous clinical presentation, variable clinical course, inconsistency in genetic markers, unpredictable therapeutic response and diverse histopathological findings may be indicative of divergence in the demyelination pathways (Luchinetti et al., 2000; McFarland & Martin, 2007). The high-resolution HLA as presented here would represent an important tool aetiology and pathogenesis in the future.

In summary, we have confirmed previous HLA associations to MS, while also offering plausible explanations to help guide future research. Using high-resolution sequencing, we have highlighted the widespread polymorphisms as 69 distinct genotypes present among 100 Swedish MS patients and further studies in a larger number of patients will be needed to further delineate MS not associated with HLA-DR15-DQ6.2.

ACKNOWLEDGEMENTS

We would like to acknowledge the study-participants for their contribution as well as the personal working at the neurological clinic SUS Malmö for help with blood sampling. We thank Dr Magnhild Sandberg Wollheim for the referral of the MS patients.

Helena Elding Larsson and Åke Lernmark is acknowledged for their contribution to the collection of, and funding for the HLA NGS typing of the control-material in the study. We thank Åke Lernmark for the critical review of the manuscript.

The study was funded by Stiftelsen för bistånd åt rörelsehindrade i Skåne, Strategic Research Area Exodiab Dnr 2009-1039 and the Swedish Foundation for Strategic Research Dnr IRC15-0067.

CONFLICT OF INTEREST

There are no conflicts of interest.

REFERENCES

Ahlgren, C., Oden, A., & Lycke, J. (2012). A nationwide survey of the prevalence of multiple sclerosis in immigrant populations of Sweden. *Multiple Sclerosis (Houndmills, Basingstoke, England)*, 18(8), 1099–1107.

Ahlgren, C., Oden, A., & Lycke, J. (2014). High nationwide incidence of multiple sclerosis in Sweden. *PLoS One*, 9(9), e108599.

Allen, M., Sandberg-Wollheim, M., Sjögren, K., Erlich, H. A., Petterson, U., & Gyllensten, U. (1994). Association of susceptibility to multiple sclerosis in Sweden with HLA class II DRB1 and DQB1 alleles. *Human Immunology*, 39(1), 41–48.

Alshiekh, S., Zhao, L. P., Lernmark, Å., Geraghty, D. E., Naaluai, Å. T., & Agardh, D. (2017). Different DRB1*03:01-DQB1*02:01 haplotypes confer different risk for celiac disease. *HLA, 90*(2), 95–101.

Barcellos, L. F., Oksenberg, J. R., Begovich, A. B., Martin, E. R., Schmidt, S., Vittinghoff, E., Goodin, D. S., Pelletier, D., Lincoln, R. R., Bucher, P., Swerdlin, A., Pericak-Vance, M. A., Haines, J. L., Hauser, S. L., & Multiple Sclerosis Genetics Group. (2003). HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. *American Journal of Human Genetics*, 72(3), 710–716.

Barcellos, L. F., Sawcer, S., Ramsay, P. P., Baranzini, S. E., Thomson, G., Briggs, F., Cree, B. C., Begovich, A. B., Villoslada, P., Montaño, X., Uccelli, A., Savettiler, G., Lincoln, R. R., DeLoa, C., Haines, J. L., Pericak-Vance, M. A., Compston, A., Hauser, S. L., & Oksenberg, J. R. (2006). Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. *Human Molecular Genetics*, 15(18), 2813–2824.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B (Methodological)*, 57(1), 289–300.

Caillier, S. J., Briggs, F., Cree, B. A., Baranzini, S. E., Fernandez-Viña, M., Ramsay, P. P., Khan, O., Royal, W. 3rd, Hauser, S. L., Barcellos, L. F., & Oksenberg, J. R. (2008). Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. *Journal of Immunology (Baltimore, Md: 1950)*, 181(8), 5473–5480.

Filippi, M., Bar-Or, A., Piehl, F., Preziosa, P., Solari, A., Vukusic, S., & Rocca, M. A. (2018). Multiple sclerosis. *Nature Reviews Disease Primers*, 4(1), 43.

Hensiek, A. E., Sawcer, S. J., Feakes, R., Deans, J., Mander, A., Akesson, E., Roxburgh, R., Coraddu, F., Smith, S., & Compston, D. A. (2002). HLA-DR 15 is associated with female sex and younger age at diagnosis in multiple sclerosis. *Journal of Neurology, Neurosurgery, and Psychiatry*, 72(2), 184–187.

Hollenbach, J. A., & Oksenberg, J. R. (2015). The immunogenetics of multiple sclerosis: A comprehensive review. *Journal of Autoimmunity*, 64, 13–25.

Johansson, A., Ingman, M., Mack, S. J., Erlich, H., & Gyllensten, U. (2008). Genetic origin of the Swedish Sami inferred from HLA class I and class II allele frequencies. *European Journal of Human Genetics: EJHG*, 16(11), 1341–1349.

Lampis, R., Morelli, L., Congia, M., Macis, M. D., Mulargia, A., Loddo, M., De Virgilis, S., Marrosu, M. G., Todd, J. A., & Cucca, F. (2000). The inter-regional distribution of HLA class II haplotypes indicates the suitability of the Sardinian population for case-control association studies in complex diseases. *Human Molecular Genetics*, 9(20), 2959–2965.

Lincoln, M. R., Ramagopal, S. V., Chao, M. J., Herrera, B. M., DeLuca, G. C., Orton, S.-M., Dyment, D. A., Sadовник, А. D., & Ebers, G. C. (2009). Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility. *Proceedings of the National Academy of Sciences*, 106(18), 7542–7547.

Lind, A., Akel, O., Wallenius, M., Ramelius, A., Maziarz, M., Zhao, L. P., Geraghty, D. E., Palm, L., Lernmark, Å., & Larsson, H. E. (2019). HLA high-resolution typing by next-generation sequencing in Pandemrix-induced narcolepsy. *PLoS One*, 14(10), e0222882.

Luchinetti, C., Bruck, W., Parisi, J., Scheithauer, B., Rodriguez, M., & Lassmann, H. (2000). Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. *Annals of Neurology*, 47(6), 707–717.

Mack, S. J., Udell, J., Cohen, F., Osoegawa, K., Hawbecker, S. K., Noonan, D. A., Ladner, M. B., Goodridge, D., Trachtenberg, E. A., Oksenberg, J. R., & Erlich, H. A. (2019). High resolution HLA analysis reveals independent class I haplotypes and amino-acid motifs protective for multiple sclerosis. *Genes and Immunity*, 20(4), 308–326.

Marrosu, M. G., Murr, R. M., Costa, G., Murr, R., Muntoni, F., & Cucca, F. (1998). DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. *Human Molecular Genetics*, 7(8), 1235–1237.

Marrosu, M. G., Murr, R., Murr, R. M., Costa, G., Zavattari, P., Whalen, M., Cocco, E., Mancuso, C., Schirru, L., Solli, E., Fadda, E., Melis, C., Porru, I., Rolesu, M., & Cucca, F. (2001). Dissection of the HLA association with
multiple sclerosis in the founder isolated population of Sardinia. Human Molecular Genetics, 10(25), 2907–2916.

Masterman, T., Ligers, A., Olsson, T., Andersson, M., Olerup, O., & Hillert, J. (2000). HLA-DR15 is associated with lower age at onset in multiple sclerosis. Annals of Neurology, 48(2), 211–219.

McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., Lublin, F. D., McFarland, H. F., Paty, D. W., Polman, C. H., Reingold, S. C., Sandberg-Wollheim, M., Sibley, W., Thompson, A., van den Noort, S., & Weinschenker, B. Y. (2001). Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of Neurology, 50(1), 121–127.

McElroy, J. P., Cree, B. A. C., Caillier, S. J., Gregersen, P. K., Herbert, J., Khan, O. A., Freudenberg, J., Lee, A., Bridges, S. L. Jr, Hauser, S. L., Oksenberg, J. R., & Gourraud, P. A. (2010). Refining the association of MHC with multiple sclerosis in African Americans. Human Molecular Genetics, 19(15), 3080–3088.

McFarland, H. F., & Martin, R. (2007). Multiple sclerosis: A complicated picture of autoimmunity. Nature Immunology, 8(9), 913–919.

Moutsianas, L., Jostins, L., Beecham, A. H., Dilthey, A. T., Xifara, D. K., Ban, M., McFarland, H. F., Paty, D. W., Polman, C. H., Reingold, S. C., Sandberg-Wollheim, M., Sibley, W., Thompson, A., van den Noort, S., & Weinschenker, B. Y. (2001). Recommended diagnostic criteria for multiple sclerosis: Guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of Neurology, 48(2), 211–219.

McElroy, J. P., Cree, B. A. C., Caillier, S. J., Gregersen, P. K., Herbert, J., Khan, O. A., Freudenberg, J., Lee, A., Bridges, S. L. Jr, Hauser, S. L., Oksenberg, J. R., & Gourraud, P. A. (2010). Refining the association of MHC with multiple sclerosis in African Americans. Human Molecular Genetics, 19(15), 3080–3088.

Sawcer, S., Franklin, R. J. M., & Ban, M. (2014). Multiple sclerosis genetics. The Lancet Neurology, 13(7), 700–709.

The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 476(7359), 214–219.

Schmidt, H., Williamson, D., & Ashley-Koch, A. (2007). HLA-DR15 haplotype and multiple sclerosis: A HuGE review. American Journal of Epidemiology, 165(10), 1097–1109.

Sanna, S., Pitzalis, M., Zoledziewska, M., Zara, I., Sidore, C., Murru, R., Whalen, M. B., Busonero, F., Maschio, A., Costa, G., Melis, M. C., Deidda, F., Poddie, F., Morelli, L., Farina, G., Li, Y., Dei, M., Lai, S., Mulas, A., ... Cucca, F. (2010). Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis. Nature Genetics, 42(6), 495–497.

Sawcer, S., Ban, M., Maranian, M., Yeo, T. W., Compston, A., Kirby, A., Daly, M., J. De Jager, P. L., Walsh, E., Lander, E. S., Rioux, J. D., Hafler, D. A., Ivinson, A., Rimmler, J., Gregory, S. G., Schmidt, S., Pericak-Vance, M. A., Akesson, E., Hillert, J., ... Haines, J. L. (2005). A high-density screen for linkage in multiple sclerosis. American Journal of Human Genetics, 77(3), 454–467.

Sawcer, S., Franklin, R. J. M., & Ban, M. (2014). Multiple sclerosis genetics. The Lancet Neurology, 13(7), 700–709.

The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. (2011). Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 476(7359), 214–219.

Schmidt, H., Williamson, D., & Ashley-Koch, A. (2007). HLA-DR15 haplotype and multiple sclerosis: A HuGE review. American Journal of Epidemiology, 165(10), 1097–1109.

Sanna, S., Pitzalis, M., Zoledziewska, M., Zara, I., Sidore, C., Murru, R., Whalen, M. B., Busonero, F., Maschio, A., Costa, G., Melis, M. C., Deidda, F., Poddie, F., Morelli, L., Farina, G., Li, Y., Dei, M., Lai, S., Mulas, A., ... Cucca, F. (2010). Variants within the immunoregulatory CBLB gene are associated with multiple sclerosis. Nature Genetics, 42(6), 495–497.

Sawcer, S., Ban, M., Maranian, M., Yeo, T. W., Compston, A., Kirby, A., Daly, M., J. De Jager, P. L., Walsh, E., Lander, E. S., Rioux, J. D., Hafler, D. A., Ivinson, A., Rimmler, J., Gregory, S. G., Schmidt, S., Pericak-Vance, M. A., Akesson, E., Hillert, J., ... Haines, J. L. (2005). A high-density screen for linkage in multiple sclerosis. American Journal of Human Genetics, 77(3), 454–467.

Sawcer, S., Franklin, R. J. M., & Ban, M. (2014). Multiple sclerosis genetics. The Lancet Neurology, 13(7), 700–709.