The Impact of Non-coding RNAs in the Epithelial to Mesenchymal Transition

Bashdar Mahmud Hussen¹, Hamed Shoorei², Mahdi Mohaqiq³, Marcel E. Dinger⁴, Haiza Jamal Hidayat⁵, Mohammad Taheri⁶* and Soudeh Ghafouri-Fard⁷*

¹ Pharmacognosy Department, College of Pharmacy, Hawler Medical University, Erbil, Iraq, ² Department of Anatomy, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran, ³ Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States, ⁴ School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia, ⁵ Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq, ⁶ Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, ⁷ Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Epithelial to mesenchymal transition (EMT) is a course of action that allows polarized epithelial cells to undertake numerous biochemical alterations that allow them to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly higher-order formation of extracellular matrix elements. EMT has important roles in implantation and gastrulation of the embryo, inflammatory reactions and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability. Regarding the importance of EMT in the invasive progression of cancer, this process has been well studied in this context. Non-coding RNAs (ncRNAs) have been shown to exert critical function in the regulation of cellular processes that are involved in the EMT. These processes include regulation of some transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, modulation of chromatin configuration, alternative splicing, and protein stability and subcellular location of proteins. In this paper, we describe the influence of ncRNAs including microRNAs and long non-coding RNAs in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.

Keywords: lncRNA, miRNA, epithelial to mesenchymal transition, expression, biomarker

INTRODUCTION

Epithelial to mesenchymal transition (EMT) is a course of action that permits polarized epithelial cells, that typically interrelate with basement membrane through their basal facet, to undertake numerous biochemical alterations that allow them to adopt features of mesenchymal cells such as high migratory ability, invasive properties, resistance to apoptosis, and importantly the higher-order formation of extracellular matrix elements (Kalluri and Neilson, 2003). The EMT process is completed by the destruction of the basement membranes and development of mesenchymal cells that are able to roam from their original epithelial layer (Roche, 2018). Induction and establishment of the EMT program is associated with activation of several transcription factors...
and cell-surface markers, reformation and activation of cytoskeletal proteins, synthesis of ECM-degenerating enzymes, and alteration in the expressions of several non-coding RNAs (ncRNAs) (Kalluri and Neilson, 2003; Roche, 2018). At least three types of EMT are recognized. These distinct types are involved in the processes of implantation and gastrulation of embryos, inflammatory responses and fibrosis, and transformation of cancer cells, their invasiveness and metastatic ability, respectively (Kalluri and Neilson, 2003).

EMT IN PHYSIOLOGICAL PROCESSES

Epithelial to mesenchymal transition has critical roles in generation of various tissues in the course of development of organisms. Importantly, EMT has an indispensable role in the gastrulation of metazoans and delamination of neural crest cells in vertebrate embryos (Thiery et al., 2009). EMT also partakes in wound healing (Kim et al., 2014). In addition, EMT regulates function of embryonic stem cells through various routes (Kim et al., 2014). Conversion of epithelial cells to mesenchymal cells has been detected in the course of differentiation of embryonic stem cells. In humans, differentiation of these cells is achieved through up-regulation of N-cadherin instead of E-cadherin, enhancement of vimentin levels, over-expression of E-cadherin-suppressing molecules including Snail and Slug, and activation of gelatinase and upsurge in motility of cells (Kim et al., 2014).

EMT IN CANCER

In the context of cancer, EMT is activated by several factors such as hypoxia, cytokines, and growth factors. These molecules are produced by numerous cells that are present in the tumor milieu in response to metabolic alteration, innate and adaptive immune reactions, and administration of antitumor drugs (Roche, 2018). EMT is associated with comprehensive changes in the expression profile of genes. This expression switch is accomplished through an integrative regulatory network that consists of a number of transcription factors namely SNAI1 and SNAI2, ZEB1 and ZEB2, Twist, and E12/E47, ncRNAs, and other factors that modulate chromatin configuration, alternative splicing, and protein stability and subcellular location (De Craene and Berx, 2013). The most important feature of EMT is the over-expression of N-cadherin and the subsequent downregulation of E-cadherin (Loh et al., 2019). This process has important implications in the design of anticancer therapeutic agents (Marcucci et al., 2016) and, moreover, has fundamental roles in the metastatic potential of cancer cells, a process whose reversion is critical in cancer treatment (Roche, 2018). Thus, identification of the molecular pathways that control EMT process is a prerequisite for development of novel anticancer therapies. In the current paper, we describe the role of ncRNAs including microRNAs (miRNAs) and long non-coding RNAs (IncRNAs) in the EMT process and their application as biomarkers for this process and cancer progression and their potential as therapeutic targets.

miRNAs AND EMT

miRNAs are transcripts with sizes around 22 to 24 nucleotides. They are principally bind with the 3’ UTR of selected transcripts to suppress their translation or degrade them via slicer-dependent route (Macfarlane and Murphy, 2010). Several miRNAs influence the EMT process in different cancer types. In lung cancer, miR-451a has a central role in blocking EMT and conferring sensitivity to doxorubicin through this mechanism. miR-451a decreases expressions of N-cadherin and Vimentin, whereas it surges expression of E-cadherin. Functional studies show that the direct interaction between miR-451a and c-Myc contributes in blocking EMT and chemoresistance in lung cancer cells (Tao et al., 2020). The well-known oncogenic miRNA miR-21 has a noticeable role in induction of EMT through modulation of the PTEN/Akt/GSK3 beta pathway and regulation of transcription of E-cadherin, vimentin, snail, slug and β-catenin (Dai L. et al., 2019). In prostate cancer patients, expression of miR-210-3p is increased in bone metastatic specimens compared with non-bone metastatic specimens. Up-regulation of this miRNA is associated with PSA concentrations in serum, Gleason grade and metastatic probability to bone in these patients. In vitro experiments show the effect of miR-210-3p in augmentation of EMT, invasion and migration of prostate cancer cells. Notably, animal studies show that miR-210-3p knockdown decreases bone metastasis of PC-3 cells. This miRNA preserves the constant induction of NF-κB signaling through modulating expression of SOCS1 and TNIP1 (Ren et al., 2017). Expression of miR-23a is augmented in metastatic breast cancer cells and in patients with lymph node involvement. Notably, expression of this miRNA is increased after treatment of breast cancer cells with TGF-β1. Importantly, both cell line assays and in vivo tests show that miR-23a silencing suppressed TGF-β1-stimulated EMT, migration, invasiveness and metastatic probability. The role of miR-23a in EMT is exerted via its binding with CDH1, a critical gene in EMT process. Remarkably, Wnt/β-catenin signaling is also engaged in miR-23a facilitated progression of EMT (Ma et al., 2017). In colorectal cancer, expression of miR-330 has been down-regulated parallel with up-regulation of HMG2 levels and poor clinical outcome. Stable up-regulation of miR-330 in these cell lines has decreased HMG2 levels, enhanced apoptosis and decreased migratory potential and viability of these cells. Notably, this miRNA has also reduced expressions of EMT markers including Snail-1, E-cadherin and VEGF as well as some other oncogenic proteins namely SMAD3 and AKT (Mansoori et al., 2020). In colorectal cancer, miR-145-5p, miR-3622a-3p, miR-205 and miR-200b inhibit EMT through targeting CDCA3, SALL4, MDM4 and HIF-1α, respectively (Shang et al., 2017; Chang et al., 2020; Chen et al., 2020; Fan and Wang, 2020).

Figure 1 depicts the impacts of miRNAs in the EMT process in non-small cell lung cancer (NSCLC).

Supplementary Table 1 displays the role of individual miRNAs in the EMT process in diverse human cancers. As EMT has a central part in the progression of cancer, EMT-associated miRNAs have prominent roles in the determination of patients’ survival. For instance, over-expression of miR-200c-3p, miR-99a and miR-92b is linked with prolonged survival in lung...
miR-34a is decreased in non-small cell lung cancer (NSCLC). miR-34a blocks expression of PAI. PAI has a role in suppression of PIAS3 expression and blocking its effects on STAT3. STAT3 enhances expression of EMT-related genes (Wang D.X. et al., 2017). In addition, miR-770 and miR-590-5p are decreased in these patients. These miRNA suppress expression of JMJD6 and SOX2, respectively. Under-expression of these miRNAs leads to over-expression of EMT genes.

cancer, ovarian cancer and breast cancer patients (Li Y.Y. et al., 2019; Zhang L. et al., 2019; Wang H.Y. et al., 2020). Conversely, up-regulation of miR-199b-5p and miR-210-3p is linked with poor survival in prostate cancer patients (Ren et al., 2017; Zhao et al., 2019). Table 1 shows the result of studies that have appraised the prognostic role of EMT-associated miRNAs in diverse cancers.

miRNA ROLES IN EMT IN NON-CANCEROUS CONDITIONS

Expression of miR-29b has been decreased by silica and has affected the mesenchymal-epithelial transition (MET) in RLE-6TN cells. Besides, up-regulation of miR-29b can suppress silica-induced EMT in animals, precluding lung fibrosis, and enhancing respiratory function. Therefore, miR-29b has been suggested as a negative modulator of silicosis fibrosis, possibly through enhancing MET and inhibiting EMT in the lung (Sun et al., 2019). Moreover, miR-200b/c-3p have been shown to modulate epithelial plasticity and suppress skin wound healing through affecting TGF-β-mediated RAC1 signaling (Tang et al., 2020).

LncRNAs AND EMT

LncRNAs are regulatory transcripts with diverse sizes ranging from 200 nucleotides to more than thousands nucleotides. These transcripts regulate expression of genes through altering chromatin configuration, acting as enhances, sponging diverse molecules particularly miRNAs and altering stability of transcripts (Fang and Fullwood, 2016). Through modulation of activity of several cancer-related signaling cascades, LncRNAs modulate metastatic potential of tumor cells (Ghafouri-Fard et al., 2021a,b). Several LncRNAs play a part in the modulation of EMT processes. For instance, expression of NEAT1 is augmented in cervical cancer tissues in correlation with poor survival of patients. This LncRNA directly inhibits expression of miR-361, a miRNA that suppresses HSP90 to impede the invasion and EMT phenotype. Thus, NEAT1 is regarded as a pro-EMT LncRNA in cervical cancer (Xu D. et al., 2020). MALAT1 enhances the EMT features and cisplatin resistance of oral squamous cell
Numerous miRNAs and lncRNAs have been shown to regulate EMT process influencing activity of several signaling pathways such as NF-κB, TGF-β, Wnt/β-catenin, Akt/mTOR, PIK3R3 and EGFR. The Wnt/β-catenin pathway is the target of several miRNAs such as miR-6838-5p, miR-770, miR-23a, miR-27a, miR-125b, miR-375, miR−516a−3p, miR-630, miR-330-3p, miR-147, miR-138 and miR-3622a-3p. Moreover, lncRNAs UCA1, SNHG7, GATA6-AS1, CRNDE and FEZF1-AS1 exert their regulatory roles on EMT through modulation of this signaling pathway. Thus, the Wnt/β-catenin pathway can be regarded as a focal point for organization of EMT-associated ncRNAs. This important position potentiates this pathway as a therapeutic target in reversing the EMT process. As the Wnt/β-catenin pathway has been implicated in the progression of EMT during tumor evolution (Basu et al., 2018), it is predicted that ncRNAs contribute to the fine-tuning of activity of this pathway to confer different degrees of EMT.

Circular RNAs are another group of ncRNAs that participate in carcinogenesis (Su et al., 2019). However, their role in the EMT process has been less studied. High-throughput transcript sequencing as a new method can be applied to identify EMT-associated circRNAs. This strategy has led to identification of 7 up-regulated circRNAs and 16 down-regulated circRNAs in breast cancer cells with EMT phenotype. CircSCYL2 has been among underexpressed circRNAs in breast cancer tissues and cell lines. Up-regulation of circSCYL2 has suppressed migration and invasion (Yuan et al., 2020).

Several therapeutic modalities such as short hairpin RNAs and engineered antibodies have been designed to reverse the
discussion

Several therapeutic modalities such as short hairpin RNAs and engineered antibodies have been designed to reverse the
carcinoma cells through regulation of the PI3K/AKT/mTOR signaling (Wang R. et al., 2020). In lung and esophageal cancers, MALAT1 exerts similar functions through modulating miR-124 expression and Ezh2/Notch1 axis, respectively (Chen et al., 2018; Wu et al., 2018). On the other hand, MEG3 enhances level of epithelial marker E-cadherin and suppresses mesenchymal markers vimentin and fibronectin in gastric carcinoma cells, influencing activity of several signaling pathways such as NF-κB, TGF-β, Wnt/β-catenin, Akt/mTOR, PIK3R3 and EGFR. The Wnt/β-catenin pathway is the target of several miRNAs such as miR-6838-5p, miR-770, miR-23a, miR-27a, miR-125b, miR-375, miR−516a−3p, miR-630, miR-330-3p, miR-147, miR-138 and miR-3622a-3p. Moreover, lncRNAs UCA1, SNHG7, GATA6-AS1, CRNDE and FEZF1-AS1 exert their regulatory roles on EMT through modulation of this signaling pathway. Thus, the Wnt/β-catenin pathway can be regarded as a focal point for organization of EMT-associated ncRNAs. This important position potentiates this pathway as a therapeutic target in reversing the EMT process. As the Wnt/β-catenin pathway has been implicated in the progression of EMT during tumor evolution (Basu et al., 2018), it is predicted that ncRNAs contribute to the fine-tuning of activity of this pathway to confer different degrees of EMT.

Circular RNAs are another group of ncRNAs that participate in carcinogenesis (Su et al., 2019). However, their role in the EMT process has been less studied. High-throughput transcript sequencing as a new method can be applied to identify EMT-associated circRNAs. This strategy has led to identification of 7 up-regulated circRNAs and 16 down-regulated circRNAs in breast cancer cells with EMT phenotype. CircSCYL2 has been among underexpressed circRNAs in breast cancer tissues and cell lines. Up-regulation of circSCYL2 has suppressed migration and invasion (Yuan et al., 2020).

Several therapeutic modalities such as short hairpin RNAs and engineered antibodies have been designed to reverse the
discussion

Numerous miRNAs and lncRNAs have been shown to regulate EMT process influencing activity of several signaling pathways such as NF-κB, TGF-β, Wnt/β-catenin, Akt/mTOR, PIK3R3 and EGFR. The Wnt/β-catenin pathway is the target of several miRNAs such as miR-6838-5p, miR-770, miR-23a, miR-27a, miR-125b, miR-375, miR−516a−3p, miR-630, miR-330-3p, miR-147, miR-138 and miR-3622a-3p. Moreover, lncRNAs UCA1, SNHG7, GATA6-AS1, CRNDE and FEZF1-AS1 exert their regulatory roles on EMT through modulation of this signaling pathway. Thus, the Wnt/β-catenin pathway can be regarded as a focal point for organization of EMT-associated ncRNAs. This important position potentiates this pathway as a therapeutic target in reversing the EMT process. As the Wnt/β-catenin pathway has been implicated in the progression of EMT during tumor evolution (Basu et al., 2018), it is predicted that ncRNAs contribute to the fine-tuning of activity of this pathway to confer different degrees of EMT.

Circular RNAs are another group of ncRNAs that participate in carcinogenesis (Su et al., 2019). However, their role in the EMT process has been less studied. High-throughput transcript sequencing as a new method can be applied to identify EMT-associated circRNAs. This strategy has led to identification of 7 up-regulated circRNAs and 16 down-regulated circRNAs in breast cancer cells with EMT phenotype. CircSCYL2 has been among underexpressed circRNAs in breast cancer tissues and cell lines. Up-regulation of circSCYL2 has suppressed migration and invasion (Yuan et al., 2020).

Several therapeutic modalities such as short hairpin RNAs and engineered antibodies have been designed to reverse the
discussion

Numerous miRNAs and lncRNAs have been shown to regulate EMT process influencing activity of several signaling pathways such as NF-κB, TGF-β, Wnt/β-catenin, Akt/mTOR, PIK3R3 and EGFR. The Wnt/β-catenin pathway is the target of several miRNAs such as miR-6838-5p, miR-770, miR-23a, miR-27a, miR-125b, miR-375, miR−516a−3p, miR-630, miR-330-3p, miR-147, miR-138 and miR-3622a-3p. Moreover, lncRNAs UCA1, SNHG7, GATA6-AS1, CRNDE and FEZF1-AS1 exert their regulatory roles on EMT through modulation of this signaling pathway. Thus, the Wnt/β-catenin pathway can be regarded as a focal point for organization of EMT-associated ncRNAs. This important position potentiates this pathway as a therapeutic target in reversing the EMT process. As the Wnt/β-catenin pathway has been implicated in the progression of EMT during tumor evolution (Basu et al., 2018), it is predicted that ncRNAs contribute to the fine-tuning of activity of this pathway to confer different degrees of EMT.

Circular RNAs are another group of ncRNAs that participate in carcinogenesis (Su et al., 2019). However, their role in the EMT process has been less studied. High-throughput transcript sequencing as a new method can be applied to identify EMT-associated circRNAs. This strategy has led to identification of 7 up-regulated circRNAs and 16 down-regulated circRNAs in breast cancer cells with EMT phenotype. CircSCYL2 has been among underexpressed circRNAs in breast cancer tissues and cell lines. Up-regulation of circSCYL2 has suppressed migration and invasion (Yuan et al., 2020).

Several therapeutic modalities such as short hairpin RNAs and engineered antibodies have been designed to reverse the
discussion

Numerous miRNAs and lncRNAs have been shown to regulate EMT process influencing activity of several signaling pathways such as NF-κB, TGF-β, Wnt/β-catenin, Akt/mTOR, PIK3R3 and EGFR. The Wnt/β-catenin pathway is the target of several miRNAs such as miR-6838-5p, miR-770, miR-23a, miR-27a, miR-125b, miR-375, miR−516a−3p, miR-630, miR-330-3p, miR-147, miR-138 and miR-3622a-3p. Moreover, lncRNAs UCA1, SNHG7, GATA6-AS1, CRNDE and FEZF1-AS1 exert their regulatory roles on EMT through modulation of this signaling pathway. Thus, the Wnt/β-catenin pathway can be regarded as a focal point for organization of EMT-associated ncRNAs. This important position potentiates this pathway as a therapeutic target in reversing the EMT process. As the Wnt/β-catenin pathway has been implicated in the progression of EMT during tumor evolution (Basu et al., 2018), it is predicted that ncRNAs contribute to the fine-tuning of activity of this pathway to confer different degrees of EMT.

Circular RNAs are another group of ncRNAs that participate in carcinogenesis (Su et al., 2019). However, their role in the EMT process has been less studied. High-throughput transcript sequencing as a new method can be applied to identify EMT-associated circRNAs. This strategy has led to identification of 7 up-regulated circRNAs and 16 down-regulated circRNAs in breast cancer cells with EMT phenotype. CircSCYL2 has been among underexpressed circRNAs in breast cancer tissues and cell lines. Up-regulation of circSCYL2 has suppressed migration and invasion (Yuan et al., 2020).

Several therapeutic modalities such as short hairpin RNAs and engineered antibodies have been designed to reverse the
TABLE 2 | Diagnostic and prognostic role of EMT-associated IncRNAs in cancer (ACTs: adjacent control tissues, OS: overall survival).

Sample number	Area under curve	Sensitivity	Specificity	Kaplan-Meier analysis	Multivariate cox regression	References
50 pairs of SOC and ACTs	-	-	-	High expression of FLVCR1-AS1 was linked with poor OS.	High expression of FLVCR1-AS1 was associated with lymphatic metastasis and distant metastasis.	Yan et al., 2019
50 pairs of CCA and ACTs	-	-	-	High expression of LINC00261 was linked with poor OS.	High expression of LINC00261 was associated with large tumor size, positive lymph node metastasis, advanced TNM stages, and higher post-operative recurrence.	Gao et al., 2020
76 pairs of GC and ACTs	-	-	-	High expression of TP73-AS1 was linked with poor OS.	High expression of TP73-AS1 was associated with depth of invasion and TNM stages.	Zhang et al., 2018c
18 pairs of GC and ACTs	-	-	-	Low expression of HRCEG was linked with poor OS.	-	Wu Q. et al., 2020
162 pairs of GC and ACTs	-	-	-	High expression of SNHG7 was linked with poor OS.	High expression of SNHG7 was associated with TNM stage, depth of invasion, lymph-node metastasis, and distant metastasis.	Wu S. et al., 2020
84 pairs of GC and ACTs	-	-	-	High expression of HCP5 was linked with poor OS.	High expression of HCP5 was associated with the size of the tumor, lymph nodes metastasize, and the severity of the disease.	Zhang et al., 2020
78 pairs of GC and ACTs	-	-	-	High expression of SNHG6 was linked with poor OS.	High expression of SNHG6 was associated with invasion depth, lymph node metastasis, distant metastasis, and TNM stage.	Yan et al., 2017
92 pairs of CRC and ACTs	-	-	-	High expression of HIF1A-AS2 was linked with poor OS.	High expression of HIF1A-AS2 was associated with TNM stages.	Lin et al., 2018
338 pairs of CRC and ACTs	-	-	-	High expression of SNHG1 was linked with poor OS.	-	Bai et al., 2020
124 pairs of CRC and ACTs	-	-	-	High expression of PANDAR was linked with poor OS.	High expression of PANDAR was associated with tumor diameter, histological differentiation, TNM stage, lymph node metastasis, depth of invasion.	Lu et al., 2017
82 pairs of BC and ACTs	-	-	-	High expression of TP73-AS1 was linked with poor OS.	-	Ding et al., 2019
TCGA database	-	-	-	High expression of PVT1 was linked with poor OS.	-	Chang et al., 2018
40 pairs of HC and ACTs	-	-	-	High expression of SNHG7 was linked with poor OS.	-	Yao et al., 2019
134 pairs of HCC and ACTs	-	-	-	High expression of SBF2-AS1 was linked with poor OS.	High expression of SBF2-AS1 was associated with vein invasion and TNM stage.	Zhang et al., 2018e
54 pairs of HCC and ACTs	-	-	-	High expression of LOC105372579 was linked with poor OS.	High expression of LOC105372579 was associated with tumor size and TNM stage.	Changyong et al., 2019
HCC tissues (n = 38), normal liver tissues (n = 21)	-	-	-	High expression of HULC was linked with poor OS.	High expression of HULC was associated with clinical stage and intrahepatic metastases.	Li et al., 2016
76 pairs of HCC and ACTs	-	-	-	High expression of HOXA−AS3 was linked with poor OS.	-	Tong et al., 2019
76 pairs of OSCC and ACTs	-	-	-	High expression of ADAMTS9-AS2 was linked with poor OS.	High expression of ADAMTS9-AS2 was associated with tumor size, clinical stage, and lymph node metastasis.	Li Y. et al., 2019
123 OSCC tissues and 50 adjacent non-tumor tissues	-	-	-	High expression of H19 was linked with poor OS.	-	Zhang et al., 2017a
128 pairs of BLC and ACTs	-	-	-	High expression of TP73-AS1 was linked with poor OS and PSF rates.	-	Tuo et al., 2018

(Continued)
EMT process in cancer cells. Moreover, a number of natural agents have been demonstrated to suppress EMT through modulation of the important EMT-associated molecules or pathways (Loh et al., 2019). NcRNAs have been involved in the therapeutic efficiency of both conventional and natural anticancer drugs (Dong Y. et al., 2019; Tao et al., 2020). Thus, modulation of expression of EMT-associated ncRNAs is a promising strategy for enhancement of the response of patients to anti-cancer drugs.

Expression levels of EMT-associated miRNAs and lncRNAs has been linked to the survival of cancer patients. Therefore, it is possible that a panel of EMT-associated miRNAs and lncRNAs predict disease progression and therapeutic response with clinically relevant accuracy. However, there is no consensus set of ncRNAs to facilitate the design of such diagnostic tools as yet. Thus, future studies should focus on the integration of data provided by single studies to propose a diagnostic/prognostic panel consisting of EMT-associated lncRNAs and miRNAs. As discussed above, lncRNAs and miRNAs have functional interactions to modulate EMT. System biology methods are useful in recognition of such interactions and depicting the interaction network to identify the most important modules. Identification of these modules not only facilitates design of diagnostic panels, but also help in design of targeted therapies.

Moreover, a number of natural agents have been demonstrated to suppress EMT through modulation of the important EMT-associated molecules or pathways (Loh et al., 2019). NcRNAs have been involved in the therapeutic efficiency of both conventional and natural anticancer drugs (Dong Y. et al., 2019; Tao et al., 2020). Thus, modulation of expression of EMT-associated ncRNAs is a promising strategy for enhancement of the response of patients to anti-cancer drugs.

Expression levels of EMT-associated miRNAs and lncRNAs has been linked to the survival of cancer patients. Therefore, it is possible that a panel of EMT-associated miRNAs and lncRNAs predict disease progression and therapeutic response with clinically relevant accuracy. However, there is no consensus set of ncRNAs to facilitate the design of such diagnostic tools as yet. Thus, future studies should focus on the integration of data provided by single studies to propose a diagnostic/prognostic panel consisting of EMT-associated lncRNAs and miRNAs. As discussed above, lncRNAs and miRNAs have functional interactions to modulate EMT. System biology methods are useful in recognition of such interactions and depicting the interaction network to identify the most important modules. Identification of these modules not only facilitates design of diagnostic panels, but also help in design of targeted therapies. Systems biology methods have been successfully used to integrate modeling and experimental data, leading to identification of several intermediate states participating in the EMT process (Hong et al., 2015). Moreover, construction of model of the miRNA-based coupled chimeric modules has led to identification of the role of miR-200/ZEB module in switching between epithelial and mesenchymal features and in establishment of a hybrid phenotype with assorted features of collective cell migration, as documented in physiological processes (Lu et al., 2013). Moreover, system biology methods have been used to find the main regulatory network which controls TGF-β-induced EMT (Tian et al., 2013).

Taken together, ncRNAs are associated with important features in invasive and metastatic cancers, i.e., the EMT process. Therapeutic interventions that modulate expression of these transcripts can improve survival of cancer patients.

Although the role of ncRNAs in regulation of EMT in cancer has been extensively appraised, less is known about their contribution in the regulation of this process in non-cancerous context.

AUTHOR CONTRIBUTIONS

MT and SG-F wrote the draft and revised it. HS, MM, MD, and HH collected the data, designed the tables and figures. All the authors approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmolb.2021.665199/full#supplementary-material
Huang, J., He, Y., McLeod, H. L., Xie, Y., Xiao, D., Hu, H., et al. (2017). miR-...J. Biosci. 20, 23. doi: 10.1186/s12867-019-0140-0
Lei, H., Gao, Y., and Xu, X. (2017). LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim. Biophys. Sin. 49, 588–597. doi: 10.1039/cbsmr0447
Li, F., Wang, Y., Yang, H., Xu, Y., Zhou, X., Zhang, X., et al. (2019). The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol. Biol. 20:23. doi: 10.1186/s12867-019-0140-0
Li, J., Zhang, B., Cui, J., Liang, Z., and Liu, K. (2019). miR-203 inhibits the invasion and EMT of gastric cancer cells by directly targeting annexin A4. Oncol. Res. 27, 789–799. doi: 10.3727/095933819x685632
Li, S.-P., Xu, H.-X., Yu, Y., He, J.-D., Wang, Z., Xu, Y.-J., et al. (2016). LncRNA HULC enhances epithelial-mesenchymal transition to promote tumorgenesis and metastasis of hepatocellular carcinoma via the miR-200a-3p/ZEB1 signaling pathway. Oncotarget 7:42431. doi: 10.18632/oncotarget.9883
Li, W., Jia, G., Qu, Y., Du, Q., Liu, B., and Liu, B. (2017). Long non-coding RNA (LncRNA) HOXA11-AS promotes breast cancer invasion and metastasis by regulating epithelial-mesenchymal transition. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 23:3393. doi: 10.12659/msm.904892
Li, X., Hou, L., Yin, L., and Zhao, S. (2020). LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. J. Biosci. 45:45.
Li, Y., Wan, Q., Wang, W., Mai, L., Sha, L., Mashrah, M., et al. (2019). LncRNA ADAMTS9-AS2 promotes tongue squamous cell carcinoma proliferation, migration and EMT via the miR-600/EZH2 axis. Biomed. Pharmacother. 112:108719. doi: 10.1016/j.biopha.2019.108719
Li, Y. Y., Zheng, X. H., Deng, A. P., Wang, Y., Liu, J., Zhou, Q., et al. (2019). MiR-92b inhibited cells EMT by targeting Gabra3 and predicted prognosis of triple negative breast cancer patients. Eur. Rev. Med. Pharmacol. Sci. 23, 10433–10442.
Li, Z., Li, Y., and Wang, Y. (2019). miR-19a promotes invasion and epithelial to mesenchymal transition of bladder cancer cells by targeting RhOB. J BUON. 24, 797–804.
Li, Z., Tang, Y., Xing, W., Dong, W., and Wang, Z. (2018). LncRNA CRDNE promotes osteosarcoma cell proliferation, invasion and migration by regulating Notch1 signaling and epithelial-mesenchymal transition. Exp. Mol. Pathol. 104, 19–25. doi: 10.1016/j.yexmp.2017.12.002
Liang, H., Yu, M., Yang, R., Zhang, L., Zhang, L., Zhu, D., et al. (2020). A PTAR-miR-101-FN1 axis promotes EMT and invasion-metastasis in serous ovarian cancer. Mol. Ther. Oncolyt. 16, 33–62. doi: 10.1016/j.omto.2019.12.002
Liang, H., Yu, T., Han, Y., Jiang, H., Wang, C., You, T., et al. (2018). LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding mir-101-3p to regulate ZEB1 expression. Mol. Cancer 17, 1–13.
Lin, J., Shi, Z., Yu, Z., and He, Z. (2018). LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DMR13A. Biomed. Pharmacother. 98, 433–439. doi: 10.1016/j.biopharm.2017.12.058
Liu, Z., Chen, Z., and Fan, Y. (2017). LncRNA GHET1 promotes esophageal squamous cell carcinoma cell growth, invasion and migration via EMT regulation. Mol. Med. Rep. 20, 2685–2693.
Liu, T., Zhang, Y., and Zhang, T. (2020). MiR-524-5p suppresses migration, invasion, and EMT progression in breast cancer cells through targeting FSTL1. Cancer Radiother. Radioprot. 35, 789–801. doi: 10.1097/cbr.2019.3046
Jing, L., Bo, W., Yourong, F., Tian, W., Shixuan, W., and Mingfu, W. (2019). Sema4C mediates EMT inducing chemotherapeutic resistance of miR-31-3p in cervical cancer cells. Sci. Rep. 9, 17727.
Kalluri, R., and Neilson, E. G. (2003). Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Investig. 112, 1776–1784. doi: 10.1172/jci200320530
Kim, Y.-S., Yi, B.-R., Kim, N.-H., and Choi, K.-C. (2014). Role of the epithelial–mesenchymal transition and its effects on embryonic stem cells. Exp. Mol. Med. 46:e108. doi: 10.1038/emm.2014.44
Kong, J., Sun, W., Li, C., Wan, L., Wang, S., Wu, Y., et al. (2016). Long non-coding RNA LINC0133 inhibits epithelial-mesenchymal transition and metastasis in colorectal cancer by interacting with SRSP6. Cancer Lett. 380, 476–484. doi: 10.1016/j.canlet.2016.07.015
Kumar, K. J. S., Vani, M. G., Hsieh, H. W., Lin, C. C., and Wang, S. Y. (2019). Anticn-A modulates epithelial-to-mesenchymal transition and inhibits migratory and invasive potentials of human breast cancer cells via p53-Mediated miR-200c activation. Planta Med. 85, 755–765. doi: 10.1055/a-0942-2087
Lei, H., Gao, Y., and Xu, X. (2017). LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim. Biophys. Sin. 49, 588–597. doi: 10.1039/cbsmr0447
Li, F., Wang, Y., Yang, H., Xu, Y., Zhou, X., Zhang, X., et al. (2019). The effect of BACE1-AS on β-amyloid generation by regulating BACE1 mRNA expression. BMC Mol. Biol. 20:23. doi: 10.1186/s12867-019-0140-0
Mu, Y., Li, N., and Cui, Y.-L. (2018). The lncRNA CCAT1 upregulates TGF

Marcucci, F., Stassi, G., and De Maria, R. (2016). Epithelial–mesenchymal

Qian, W., Huang, T., and Feng, W. (2020). Circular RNA HHPK3 promotes EMT of cervical cancer through sponging miR-338-3p to up-regulate HIF-1alpha.

Qian, W., Ren, Z., and Lu, X. (2019). Knockdown of long non-coding RNA TUG1 suppresses nasopharyngeal carcinoma progression by inhibiting epithelial-mesenchymal transition (EMT) via the promotion of miR-384. Biochem. Biophys. Res. Commun. 509, 56–63. doi: 10.1016/j.bbrc.2018.12.011

Qin, C., and Zhao, F. (2017). Long non-coding RNA TUG1 can promote proliferation and migration of pancreatic cancer cell via EMT pathway. Eur. Rev. Med. Pharmacol. Sci. 21, 2377–2384.

Qiu, J., Li, X., Tang, X. Y., Zheng, T. T., Zhang, X. Y., and Hua, K. Q. (2020). Long noncoding RNA TC0101441 induces epithelial-mesenchymal transition in epithelial ovarian cancer metastasis by downregulating KiSS1. Int. J. Cancer 146, 2588–2598. doi: 10.1002/ijc.32692

Ren, D., Yang, Q., Dai, Y., Guo, W., Du, H., Song, L., et al. (2017). Oncogenic miR-210-5p promotes prostate cancer cell EMT and bone metastasis via NF-kappaB signaling pathway. Mol. Cancer 16:177.

Ren, P., Zhang, H., Chang, L., Hong, X., and Xing, L. (2020). LncRNA NR2F1-AS1 promotes proliferation and metastasis of ESCC cells via regulating EMT. Eur. Rev. Med. Pharmacol. Sci. 24, 3686–3693.

Ren, Y., Huang, W., Weng, G., Cui, P., Liang, H., and Li, Y. (2019). IncRNA PVT1 promotes proliferation, invasion and epithelial–mesenchymal transition of renal cell carcinoma cells through downregulation of mir-16-5p. OncoTargets Ther. 12:2563. doi: 10.2147/ott.s190239

Roche, J. (2018). The epithelial-to-mesenchymal transition in cancer. Cancers 10:52.

Rogers, T. J., Christenson, J. L., Greene, L. I., O’Neill, K. I., Williams, M. M., Gordon, M. A., et al. (2019). Reversal of triple-negative breast cancer EMT by miR-200c decreases tryptophan catabolism and a program of immunosuppression. Mol. Cancer Res. 17, 30–41. doi: 10.1158/1541-7786.mcr-17-0303

Romo, H., Zhang, L., Li, L., Zhao, R., and Yang, X. (2020). Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nat. Rev. Drug Discov. 15:311. doi: 10.1038/s41573-015-0001

Mansoori, B., Mohammadi, A., Naghizadeh, S., Gjerstorff, M., Shanehbandi, D., Shirjag, S., et al. (2020). miR-330 suppresses EMT and induces apoptosis by downregulating HMG2A in human colorectal cancer. J. Cell Physiol. 235, 920–931. doi: 10.1002/jcp.29007

Manvati, S., Mangalharra, K. C., Kalairasan, P., Chopra, R., Agarwal, G., Kumar, R., et al. (2019). miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int. 19:230.

Marcucci, F., Stassi, G., and De Maria, R. (2016). Epithelial–mesenchymal transition: a new target in anticancer drug discovery. Nat. Rev. Drug Discov. 15, 1029–1039. doi: 10.1038/nrd.5145

Mody, H. R., Hung, S. W., Pathak, R. K., Griffin, J., Cruz-Monserrate, Z., and Govindarajan, R. (2017). miR-202 diminishes TGFbeta receptors and attenuates TGFbeta1-induced EMT in pancreatic cancer. Mol. Cancer Res. 15, 1029–1039. doi: 10.1158/1541-7766.mcr-16-0327

Mu, Y., Li, N., and Cui, Y. L. (2018). The IncRNA CCAT1 upregulates TGFβR1 via sponging miR-490-3p to promote TGFβ1-induced EMT of ovarian cancer cells. Cancer Cell Int. 18:145.

Nie, J., Jiang, H. C., Zhou, Y. C., Jiang, B., He, W. J., Wang, Y. F., et al. (2019). MiR-125b regulates the proliferation and metastasis of triple negative breast cancer cells via the Wnt/beta-catenin pathway and EMT. Biosci. Biotechnol. Biochem. 83, 1062–1071. doi: 10.1007/s10529-019-0359-5

Ning, X., Wang, C., Zhang, M., and Wang, K. (2019). Ectopic expression of miR-147 inhibits stem cell marker and epithelial–mesenchymal transition (EMT)-Related protein expression in colon cancer cells. Oncol. Rep. 27, 399–406. doi: 10.3829/00950-014x15179675206495

Pan, J., Fang, S., Tian, H., Zhou, C., Zhao, H., Tian, H., et al. (2020). IncRNA JXIP/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/beta-catenin signaling. Mol. Cancer 19, 1–17.

Pan, Q., Meng, L., Ye, J., Wei, X., Shang, Y., Tian, Y., et al. (2017). Transcriptional repression of miR-200 family members by Nanog in colon cancer cells induces epithelial–mesenchymal transition (EMT). Cancer Lett. 392, 26–38. doi: 10.1016/j.canlet.2017.01.039

Pan, Q., Huang, T., and Feng, W. (2020). Circular RNA HHPK3 promotes EMT of cervical cancer through sponging miR-338-3p to up-regulate HIF-1alpha. Cancer Manag. Res. 12, 177–187. doi: 10.2147/cmar.s232235
Tang, H., Wang, X., Zhang, M., Yan, Y., Huang, S., Ji, J., et al. (2020). MicroRNA-200b/c-3p regulate epithelial plasticity and inhibit cutaneous wound healing by modulating TGF-β-mediated RAC1 signaling. Cell Death Dis. 11, 1–17.

Tao, L., Shu-Ling, W., Jing-Bo, H., Ying, Z., Rong, H., Xiang-Qun, L., et al. (2020). MiR-451a attenuates doxorubicin resistance in lung cancer via suppressing epithelial-mesenchymal transition (EMT) through targeting c-Myc. Biomed Pharmacother. 125:109962. doi: 10.1016/j.biopha.2020.109962

Thierry, J. P., Acloque, H., Huang, R. Y., and Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890. doi: 10.1016/j.cell.2009.11.007

Tian, X.-J., Zhang, J., and Xue, W. (2018). LncRNA TP73-AS1 predicts the prognosis and overall survival of gastric cancer patients. Cancer Biomark. Oncol Res. 15, 5865–5870. doi: 10.1016/j.cancergen.2019.12.007

Xiang, Y., Liao, X. H., Yu, C. X., Yao, A., Qin, H., Li, J. P., et al. (2017). MiR-93-5p inhibits the expression of breast cancer cells via targeting MKL-1 and STAT3. Exp Cell Res. 357, 137–144. doi: 10.1016/j.yexcr.2017.05.007

Xiao, C., Wu, C., and Hu, H. (2016). LncRNA UCA1 promotes epithelial-mesenchymal transition (EMT) of breast cancer cells via enhancing Wnt/beta-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 20, 2819–2824.

Xiong, T., Huang, C., Li, J., Yu, S., Chen, F., Zhang, Z., et al. (2020). LncRNA NRON promotes the proliferation, metastasis and EMT process in bladder cancer. J. Cancer 11, 1751–1760. doi: 10.7150/jca.37958

Xu, D., Dong, P., Xiong, Y., Yue, J., Konno, Y., Iihara, K., et al. (2020). MicroRNA-361-mediated inhibition of HSP90 expression and EMT in cervical cancer is counteracted by oncogenic lncRNA NEAT1. Cells 9:632. doi: 10.3390/cells9060363

Xue, D., Liu, S., Zhang, L., and Song, L. (2017). MiR-211 inhibits invasion and epithelial-to-mesenchymal transition (EMT) of cervical cancer cells via targeting MUC4. Biochem. Biophys. Res. Comm. 485, 556–562. doi: 10.1016/j.bbrc.2016.12.020

Xu, Y., Pan, Z. G., Shu, L., and Li, Q. J. (2018). Podocalyxin-like, targeted by miR-138, promotes colorectal cancer cell proliferation, migration, invasion and EMT. Eur. Rev. Med. Pharmacol. Sci. 22, 8664–8674.

Xuan, W., Zhou, C., and You, G. (2020). LncRNA LINCO00668 promotes cell proliferation, migration, invasion and EMT process in hepatocellular carcinoma by targeting miR-532-3p/YY1 axis. Biochim. Biophys. Acta. 1862, 140952.

Xia, K., Tian, J., Shi, W., Xia, H., and Zhu, Y. (2017). LncRNA SNHG6 is associated with risk of coronary artery disease. Mol. Med. Rep. 15, 404–411. doi: 10.4103/1301-0772.190000
Yingping, L., and Jinglong, C. (2019). miR-425 suppresses EMT and the development of TNBC (triple-negative breast cancer) by targeting the TGF-

Zeng, T., Ni, H., Yu, Y., Zhang, M., Wu, M., Wang, Q., et al. (2019). BACE1-AS prevents BACE1 mRNA degradation through the sequestration of BACE1-
targeting miRNAs. J. Chem. Neuroanat. 98, 87–96. doi: 10.1016/j.jchemneu.2019.04.001

Zhai, W., Li, S., Zhang, J., Chen, Y., Ma, J., Kong, W., et al. (2018). Sunitinib-suppressed miR-452-5p facilitates renal cancer cell invasion and metastasis through modulating SMAD4/SMAD7 signals. Mol. Cancer 17:157.

Zhang, D.-M., Lin, Z.-Y., Yang, Z.-H., Wang, Y.-Y., Wan, D., Zhong, J.-L., et al. (2019). miR-99a suppressed EMT and metastasis of colorectal cancer cells by targeting FOXO1. Cancer Biomark. 21, 3598–3604.

Zhang, S., Xiao, J., Chai, Y., Yang, Z., Liu, Z., Huang, K., et al. (2017e). LncRNA-CCAT1 promotes migration, invasion, and EMT in intrahepatic cholangiocarcinoma. J. Cell. Biochem. 118, 163–171.

Zhang, L. Y., Chen, Y., Jia, J., Zhu, X., He, Y., and Wu, L. M. (2019). MiR-27a targets CDK15/NR3C2. Biomed Pharmacother. 117, 525–534. doi: 10.1080/15384101.2019.1699753

Zhang, Z., Che, X., Yang, N., Bai, Z., Wu, Y., Zhao, L., et al. (2017). miR-133b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother. 96, 1341–1348. doi: 10.1016/j.biopha.2017.11.074

Zhang, Z., Yang, Z., and Zhang, X. (2017). MiR-770 inhibits tumorigenesis and EMT by targeting JMD6 and regulating WNT/beta-catenin pathway in non-small cell lung cancer. Life Sci. 188, 163–171. doi: 10.1016/j.lfs.2017.09.002

Zhao, H., Diao, C., Wang, X., Xie, Y., Liu, Y., Gao, X., et al. (2018). LncRNA BDNF-AS inhibits proliferation, migration and EMT in oesophageal cancer cells by targeting miR-214. J. Cell. Mol. Med. 22, 3729–3739. doi: 10.1111/jcmm.13558

Zhao, L., Sun, H., Kong, H., Chen, Z., Chen, B., and Zhou, M. (2017). The LncRNA-TUG1/EZH2 axis promotes pancreatic cancer cell proliferation, migration and EMT phenotype formation through sponging Mir-382. Cell. Physiol. Biochem. 42, 2145–2158. doi: 10.1159/000479990

Zhao, S., Luo, L., Xiang, Q., Zhu, Z., Wang, J., Liu, Y., et al. (2019). Cancer-derived exosomal miR-199b-5p inhibits distant metastases of prostate cancer by counteracting the DDR1-MAPK/ERK-EMT pathway. EBioMedicine [Preprint]. doi: 10.21231/ssrn.3475571

Zheng, F., Li, J., Ma, C., Tang, X., Tang, Q., Wu, J., et al. (2020). Novel regulation of miR-34a-5p and HOXA1 by the combination of berberine and gefitinib leading to inhibition of EMT in human lung cancer. J. Cell. Mol. Med. 24, 5578–5592. doi: 10.1111/jcmm.15214

Zhou, J., Zou, L., and Zhu, T. (2020). Long non-coding RNA LINC00665 promotes metastasis of breast cancer cells by triggering EMT. Eur. Rev. Med. Pharmacol. Sci. 24, 3097–3104.

Zhou, W., Ye, X. L., Xu, J., Cao, M. G., Fang, Z. Y., Li, L. Y., et al. (2017). The IncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR-200b/c and let-7b. Sci. Signal. 10.eaa9557. doi: 10.1126/scisignal.aak9557

Zhu, L., Yang, N., Du, G., Li, C., Liu, G., Liu, S., et al. (2018). LncRNA CRNDE promotes the epithelial-mesenchymal transition of hepatocellular carcinoma cells by enhancing the Wnt/beta-catenin signaling pathway. J. Cell. Biochem. 120, 1156–1164. doi: 10.1002/jcb.26762

Zoi, P., Marco, F., Christoph, R., Martin, G., and Nikos, K. K. (2020). miR-200b restrains EMT and aggressiveness and regulates matrix composition depending on ER status and signaling in mammary cancer. Matrix Biol. Plus 6-7, 100024. doi: 10.1016/j.mblplus.2020.100024

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Hussan, Shoorei, Mohaqiq, Ding, Hidayat, Tahirri and Ghafouri-Fard. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.