Influence of water resources in Xinjiang on exploitation of coal resources and measures for their use

Chunyan Cheng¹,², Yan Zhang¹,², Qiang Yan¹,², Fengying Zhou¹,², Tianming Gao¹,², Baojun Hou³, Songtao Zhang⁴, Mei Song⁵ and Qingwei Wang¹,⁵,⁶

¹Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
²Research Center for Strategy of Global Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
³Shanxi Water Resources Management Center, Taiyuan 030001, China;
⁴Energy Information Institute, China University of Mining and Technology, Beijing 100083, China;
⁵College of Earth Sciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
⁶Email:qingweiwang@126.com

Abstract. Xinjiang is rich in coal resources, but the extremely shortage of water resource in some regions has significant impact on coal exploitation. Water is required in coal exploitation, as well as cleaning, utilization and upgrading of coal, so the shortage of water resource is impacting the fate of coal directly. Xinjiang area is the 14th coal base of our country, a foothold of the strategy of West-Development in China, and a support point of national strategic layout of the Belt and Road Initiative. If the problem of coal and water is solved, the problem of energy safety and nationality will be solved. Based on the comprehensive analysis of coal geological conditions and water resources conditions in Xinjiang, we have studied the spatial distribution relationship between coal resources and water resources in this paper, and find that the whole water resource is short in regions of Xinjiang with rich coal resource. In this paper, some feasible suggestions have been put forward to solve the problem of asymmetric distribution of water and coal resources as the key problem at present, in order to provide reference for departments of resource development and planning.

1. Introduction

Coal is the food for industry, supports the healthy and sustainable development of national economy in our country. The current situation of energy is lacking in oil and gas but rich in coal, which urges us to base on coal, the most economical, stable, reconcilable and safe main energy [1,2]. However, coal exploitation is restrained by geological conditions [3] and water resources [2,4], wherein the problem of geological conditions could be solved through technical progress in engineering, but the shortage of water, in particular in western region, is so serious that the coal reduces to soil if there is no water along with it. Whether the mining water for coal exploitation is sufficient matters the safety of coal mine, as well as miner's life and production environment. Because water is required for dust removal and reduction of impurities in coal during coal exploitation, let alone domestic and environmental water [5]. At present, most coal mining areas in China mainly rely on pumping underground water
resources and comprehensive utilization of mine water, water shortages are common, the contradiction between water supply and demand inevitably becomes an important restriction factor for the exploitation and utilization of coal resources in central and western China [2,6]. Xinjiang is the 14th coal base of our country, its premeasured amount of coal resource is as high as 2190 billion tons [7], and its significant regional differences in water resources make it difficult to get water for coal exploitation. Key laboratory of terrestrial water circulation and surface processes of INSTITUTE OF GEOGRAPHIC SCIENCES AND NATURAL RESOURCES RESEARCH, CAS has predicted in 2012 that mining water consumption will reach $4.90 \times 10^8 \text{m}^3$ [8] in 2020 only in Xinjiang, as we can see there is a big difference between supply and demand. If combined with coal chemical industry, power generation and other water demand in comprehensive utilization of coal, the gap is even an astronomical figure. Some Suggestions on Further Promoting Economic and Social Development of Xinjiang made by the State Council in 2007 proposed to accelerate the development of coal energy bases in Xinjiang, "steadily build large coal bases, enhance the strategic position of coal in Xinjiang, and actively promote the exploration, development, processing and transformation of coal-bed gas and the orderly development of the coal-bed gas industry" [9], which is of great strategic and practical significance for revitalizing the development of the autonomous region, improving the living conditions of the people in the remote areas with minorities, and ensuring prosperity, stability and national security. Therefore, in addition to the in-depth study of the characteristics of coal resources of Xinjiang, more attention should be paid to the matching relationship between coal resources & water resources. Besides, in a sense, water resources in some areas of Xinjiang are more significant than coal resources themselves.

2. Conditions of coal resources in Xinjiang

2.1. Geological conditions

2.1.1. Coal-bearing strata. Many early and middle Jurassic coal accumulation basins are widely distributed in Xinjiang, containing abundant coal resources [10,11]. Coal accumulation occurred from carboniferous to Jurassic in Xinjiang, the characteristics of coal accumulation in early, late carboniferous, early Permian, late Triassic and early-middle Jurassic are consistent with the main coal accumulation period in China, wherein coal accumulating basins in early-middle Jurassic developed extensively, which is main coal accumulation stage in the region. The coal bearing strata at other stages are less distributed in Xinjiang and much have no industrial mining value. The coal bearing strata in early-middle Jurassic developed extensively in Jungar, Barkol-Santanghu, Yili basin, Turpan-Hami Basin, etc., also with these characteristics. The coal bearing strata in Jungar coal bearing area includes Xishanyao Formations (J_{2x}) and Badaowan Formations (J_{1b}), wherein Badaowan Formations (J_{1b}) is fluvio-lacustrine swamp facies coal bearing deposit, carbonaceous mudstone interbedded coal; Xishanyao Formations (J_{2x}) is mainly a set of fluvio-lacustrine facies swamp deposit, grayish-black carbonaceous mudstone interbedded coal and siderite thin strata, which is the main coal bearing strata formations in this area. The coal bearing strata in the northern margin of Tarim basin are lower-middle Jurassic Karasu group (J_{1-2k}), wherein Tariq Formations (J_{1t}), Yen-gisar Formations (J_{1y}) and Kezilenur Formations (J_{2k}) contain coal, Tariq Formations (J_{1t}) are swamp facies deposit, containing A coal formation; Kezilenur Formations (J_{2k}) are lacustrine swamp facies deposit, containing C coal formation. The coal bearing strata in the south and southwest margin of Tarim basin are Yarkant group (J_{1-2y}), wherein Kangsu Formations (J_{1k}) and Yang ye Formations (J_{2y}) contain coal, Kangsu Formations (J_{1k}) are lacustrine swamp facies deposit, and coal bearing strata formations, the coal strata in Kangsu area is the best; Yang ye Formations (J_{2y}) are lacustrine swamp facies, the coal strata is mainly distributed in the Kucherapu and Kalatuzi mining areas. In the Karamilan area in the west of east Kunlun, the coal bearing strata is the same as the southern margin of Tarim basin as the Yarkant group (J_{1-2y}), the lower Jurassic Bagunblanca group (J_{1b}) in the Karakoram region is the interactive marine and terrestrial deposit, the coal bearing property is bad; the
Zhongtong Longshan Formations (J2l) is neritic facies carbonate clastic rocks deposit, basically containing no coal.

2.2. Coalfield structure

Xinjiang is located in the Tethys tectonic domain, the circum-siberian tectonic domain and the Cenozoic composite orogenic region, forming a complex basin-mountain structure, the basin is embedded in or inside of Kunlun orogenic belt, Qilian orogenic belt, Tianshan-Xingmeng orogenic belt, Altay orogenic belt and Altun fracture belt, orogenic belt (or fracture belt) has a regional controlling effect on the development and evolution of basin structure, there are differences in basin types and tectonic deformation characteristics[12]. The overall framework of Xinjiang coalfield structure is composed of "three belts" and "three blocks" (Table 1), that is: the first belt: Altay Caledonian fold belt; the second belt: Tianshan Wallissie fold belt; the third belt: Kunlun Wallissie indo-Chinese fold belt. The first block: Jungar stable block (basin), Turpan-Hami micro block (basin); the second block: Tarim stable block (basin); the third block: Ili-Middle Tianshan micro block. The general rule of tectonic deformation in coal bearing basins is that the deformation intensity of thrust nappe, compact fold, wide and slow fold or fault block decreases successively from the basin margin to the inside. Therefore, both the basin and coal measure have the characteristics of concentric ring deformation with strong basin margin and weak basin interior, which were strengthened and shaped in the Himalayan period.

Table 1. Abridged table of tectonic structure units division in Xinjiang.

Primary structural unit	Secondary structural unit	Structural properties
Altay-Irtysh Block	Altay Caledonian fold belt	Altay-Ertiz fold belt
	Ertiz Wallissie fold belt	
	Western Jungar Caledonian-Wallissie fold belt	
	Eastern Jungar Caledonian-Wallissie fold belt	
Kazakhstan-Jungar block	Jungar block	Stable block
	North Tianshan Wallissie fold belt	
	Turpan-Hami micro block	Tianshan fold belt
	Ili-Middle Tianshan micro block	
	Middle Tianshan Caledonian fold belt	
	South Tianshan Wallissie fold belt	
Tarim block	Tarim block	Stable block
	East Kunlun North belt (Caledonian fold belt)	
	East Kunlun Middle belt	Kunlun fold belt

Western Jungar Caledonian-Wallissie fold belt presents a belt shape extending from north east to south west, a small faulted or depressed basin is developed in the Caledonian-Wallissie fold belt, accepting Jurassic coal-bearing rock measures, formed a coalfield with industrial value, such as Hoboksar-Fuhai coalfield, Tori-Hoxtolgay coalfield, etc.

Eastern Jungar Caledonian-Wallissie fold belt presents a belt shape extending from north west to south east, a depressed basin is developed in the Caledonian-Wallissie fold belt, formed a Jurassic coalfield with industrial value, such as Kamster coalfield, Barkol coalfield, Santanghu coalfield, Naomaohu coalfield, etc.

Jungar block is a central block type compound superimposed basin. Under the conditions of paleostructure, paleogeography, paleoclimate and paleovegetation suitable for coal formation, the coal-bearing construction was formed in the early-middle Jurassic period, its function of coal accumulation is extensive and strong, and is characterized by the repeated occurrence of extremely thick single layer coal strata.

Turpan-Hami micro block is located in the eastern section of the north Tianshan fold belt; coal-bearing construction was accepted in early - middle Jurassic, abundant coal resources exist in the Ewirgol coal district, Tokesen coalfield, Shanshan coalfield, Turpan coalfield, Shaerhu coalfield, Hami coalfield, Dananhu-Wutong wowzi coalfield and Yemaquan coal mine.
Ili-Middle Tianshan micro block was located in the western section of the middle Tianshan fold belt, the main coalfields include Yining coalfield, Nyerke coalfield, Xinyuan-Gongliu coalfield, Zhaosu-Tex coalfield, etc. Tarim basin is a stable landmass with ancient basement of pre-Changchengian Period and Precambrian, the main coalfields are distributed in the periphery of Tarim basin, such as Wensu-baozi east coalfield, Kuqa-Baicheng coalfield, Yangxia coalfield, Lop Nor coalfield and so on in the north margin, Wuqia coalfield, Aktaw coalfield and Shache-Yecheng coalfield in southwest margin and Minfeng-Qiemo coalfield in southeast margin.

2.3. Coal seam

Table 2. Coal bearing characteristics of Badaowan Formations in Jungar coal bearing area.

Coalfield	Thickness of coal seam (m)	Number of exploitable layers	Exploitable Thickness (m)	Coalfield	Thickness of coal seam (m)	Number of exploitable layers	Exploitable Thickness (m)
Tori-Hoxtol gay coalfield	9.0~41.8	2~15	2.9~30.2	Southern Jungar coalfield	2~69.8	1~15	1.5~66.3
Karamay coalfield	0.8~30	2~6	2.7~9.8	East Jungar coalfield	0.3~26.7	1~8	0.8~7.7
Kunes coal district	14.8	3	9.3	Yining coalfield	18.0~74.0	6~10	18.4~73.2
Houxia coalfield	7.7~19.8	3~7	6.8~19.4	Nyerke coalfield	6.5~131.0	6~8	9.3~98.7
Dabancheng coalfield	0.5			Shanshan coalfield	0~10.6	1	0.7~10.6
Ewirgol coal district	3.6~81.9	12	1.0~75.6	Hami coalfield	0~33.6	2~4	0.7~27.8
Tokesen coalfield	0.8~28.8	1~10	0.8~29.5	Kamster coalfield	7.0~17.4	2~9	7.7~14.4

Note: The data comes from the exploration data of Xinjiang Uygur Autonomous Region Coal Geology Bureau.

Table 3. Coal-bearing characteristics of Xishanyao Formations in Jungar coal-bearing area.

Coalfield	Thickness of coal seam (m)	Number of exploitable layers	Exploitable Thickness (m)	Coalfield	Thickness of coal seam (m)	Number of exploitable layers	Exploitable Thickness (m)
Tori-Hoxtol gay coalfield	15.0~45.1	7~13	12.8~37.9	Houxia coalfield	17.1~55.2	5~9	15.1~40.7
Qinghe coal mine	0.7~8.0	1~5	1.5~6.9	Dabancheng coalfield	6.1~37.5	5~14	8.5~29.3
Kamster coalfield	7.1~27.8	2~5	5.5~24.0	Tokesen coalfield	10~28.8	4	4.0~18.9
Southern Jungar coalfield	11.4~188.6	3~47	10.9~184.1	Shanshan coalfield	3~88.3	4~6	4~31.8
East Jungar coalfield	0.4~111.4		1.1~87.3	Turpan coalfield	12.6~27.8	1~2	5.7~20.5
Barkol coalfield	13.0~154.7	12	28.0~52.2	Shaer lake coalfield	7.2~314.5	8~25	2.0~314.5
Santanghu coalfield	1.3~89.9	4~26	7.8~71.3	Dananhu~Wutong wowzi coalfield	36.5~148.7	20	28.5~133.1
Naomaohu coalfield	1.1~56.6	2	17.6	Nyerke coalfield	0.3~100.2	5	22.5~69.9
Yining coalfield	26.3~55.4	3~6	19.5~43.1	Zhaosu ~ Tex coalfield	2.5~10.4	5	5.8~10.1

Note: The data comes from the exploration data of Xinjiang Uygur Autonomous Region Coal Geology Bureau.
There are 26 Jurassic coalfields (coal district and coal mining spots) in the coal-bearing areas of Xinjiang, and the coal-bearing strata are lower Badaowan Formations (J1b) and middle Xishanyao Formations (J2x)\[12-14\]. Xishanyao Formations and Badaowan Formations are widely developed in Tianshan-Jungar, Tarim, Turpan-hami, Santanghu-Naomaohu, Yanqi, Ili and other large coal bearing basins in Xinjiang, the coal-bearing properties of Urumqi, Shaer lake and Danan lake in Jungar basin are very good (Table 2, 3), containing 5-30 layers of super thick coal seams with total thickness of 174-182m; Yining contains coal of 6-13 layers with thickness of 40-47m. The early-middle Jurassic coal seam was stable then relatively stable.

2.4. Conditions of coal quality
Jurassic coal seams in Xinjiang are widely distributed, with good coal quality and abundant resources, and unique chemical characteristics and technological properties, through making full use of these characteristics, its broad use prospects can be greatly increased [10,12-14].

In the Jurassic coal seam of the whole Xinjiang, the coal seams of low, medium and high rank are distributed, among which low rank bituminous coal is the main one, followed by medium and high rank bituminous coal. Young bituminous coal is a good power fuel; gas coal is an ideal blended coal for coking; High volatile long-flame coal is the main raw material for comprehensive utilization of tar; gas-fat coking coal is used for coal-coking or blended coal for coking [14]. Details are as follows:

Ash yield of raw coal in coal seam of Badaowan Formations is 4.7-27.24%, referring to ultra-low ash coal-medium ash coal; total sulfur is 0.2-0.93%, 0.44% on average, referring to ultra-low sulfur coal-medium sulfur coal, relying on ultra-low sulfur coal-low sulfur coal mainly, phosphorus content of raw coal is 0.00-0.064%, 0.01% on average, referring to ultra-low phosphorus coal, chlorine content of raw coal is 0.00-0.059%, 0.035% on average, referring to ultra-low chlorine coal, arsenic content of raw coal is 0.00-0.02%, 0.0056% on average, referring to grade I coal containing arsenic, Grade I and II coal containing arsenic; the coal of Badaowan Formations is No.41 long-flame coal. See Table 4 for details.

Table 4. Characteristics of raw coal quality of Badaowan Formations in East Jungar coalfield.

Project	Wucaiwan mine	Dajing mine	Xiheishan mine	Region-wide average content	Grade
Ad(%)	5.12-0.63	5.2-9.98	4.7-27.24		
St.d(%)	0.2-0.93	0.3-0.41	0.2-0.32	0.44	ultra-low sulfur coal
Pd(%)	0.00-0.064	0.00-0.003	0.00-0.06	0.01	ultra-low phosphorus coal
Cld(%)	0.03-0.038	0.04-0.059	0.00-0.034	0.035	ultra-low chlorine coal

Note: The data comes from the exploration data of Xinjiang Uygur Autonomous Region Coal Geology Bureau.

Ash yield of raw coal in coal seam of Xishanyao Formations is 4.7-27.74%, 11.48% on average, referring to low ash coal-ultra-low ash coal, relying on ultra-low ash coal mainly; total sulfur is 0.2-0.88%, 0.51% on average, referring to ultra-low sulfur coal-low sulfur coal; phosphorus content is 0.01-0.040%, 0.024% on average, referring to low phosphorus coal; chlorine content is 0.04-0.070%; 0.055% on average, referring to low chlorine coal; arsenic content is 2.0-2.82ug, 2.48ug on average, referring to grade I coal containing arsenic, fluorine content is 22.644.28ug, 34.89ug on average; the coal of Xishanyao Formations is No.31 non-caking coal, No.41 long-flame coal can be founded in local individual points. See Table 4 for details.

Table 5. Characteristics of raw coal quality of Xishanyao Formations in East Jungar coalfield.

Project	Wucaiwan mine	Dajing mine	Xiheishan mine	Laojunmiao mine	Region-wide average content	Grade
Ad (%)	10.9	10.1	10.9	14.1	11.5	low ash coal
Cl.d(%)	0.0	0.0	0.1	0.1	0.1	low chlorine coal
As.d(ug)	2.6	2.0	2.8	2.5	grade I coal containing arsenic	
St.d(%)	0.5	0.4	0.3	0.9	0.5	low sulfur coal

Note: The data comes from the exploration data of Xinjiang Uygur Autonomous Region Coal Geology Bureau.
Ash yield of raw coal in coal seam of Shishugou Group is 5.0-26.38%, 14.91% on average, relying on low ash coal mainly; sulfur content is 0.4-12.27%, 3.92% on average, referring to high-sulfur coal; phosphorus content is 0.00-0.056%, 0.022% on average, referring to low sulfur coal; chlorine content is 0.03-0.057%, 0.04% on average, referring to ultra-low chlorine coal; arsenic content is 125ug, referring to grade II-IV coal containing arsenic; the coal of Shishugou Group is No.41 long-flame coal. See Table 5 for details.

2.5. Condition of resource distribution

Xinjiang is rich in coal resources. The total amount of coal resources is about 1.9 trillion tons, wherein a total of 0.23 trillion tons of coal reserves have been discovered, the total resources are estimated at 1.67 trillion tons (Table 6) [14], and the coal resources are concentrated and uneven[10,12]. There are mainly distributed in the coal-bearing basins in Jungar and Tianshan mountains, also distributed in the northern margin of Tarim basin, less or sporadically around other areas. In space, it is mainly distributed in the middle and lower Jurassic period, accounting for more than 99%, few coal seams at other times. With the quickening pace of Western Development and the positioning of the 14th large national base, the state has increased the investment in exploration of Xinjiang. In 2009, the coal pre-inspection results of Xinjiang "358" project in the coalfields of IRA-Ayding lake, Kumutage-Shaer lake, Dananhu-Yemaquan, Santanghu and Naomaohu,etc. submitted the overall report on the investigation of coal resources in east Xinjiang Uygur Autonomous Region, getting the 334 resource volume of 231.792 billion tons. An investigation was carried out in the Xinyuan-Gongliu coalfield and it was determined that no coal was found at a depth of 1000 meters. In 2010, another investigation was carried out in Lop Nor, no coal resource was found. In 2011, exploration was carried out in Santanghu, the Bayanbulak coalfield in Hejing County and the three prefectures of Kashgar, Hotan and Aksu in southern Xinjiang [12]. By the end of 2014, the proved reserves of Xinjiang reached 367.8 billion tons [15], accounting for 24% of that in the whole country, which is second only to Inner Mongolia.

Table 6. Resources in Xinjiang coal mining area [14].

Mine (coalfield)	Retained resource reserve (10 thousand tons)	Resource reserve (10,000 tons)	Reserve (10,000 tons)	Mine (coalfield)	Retained resource reserve (10 thousand tons)	Resources (10,000 tons)	Reserve (10,000 tons)
Tori-Hoxtolgay coalfield	19681.2	19681.2		Yining coalfield	1099588.8	859423.89	1657.2
Southern Jungar coalfield	32519.88	31573.55	271.94	Nyerke coalfield	9570.92	7727.38	739.3
Dabancheng coalfield	4398.8	2864.21	257.83	Zhaosu-Tex coalfield	681.7	222.6	99.5
Houxia coalfield	194228.91	178170.74	6389.28	Ewirgol coal district	51086.71	5640.92	18030.92
East Jungar coalfield	2828	2828		Shanshan coalfield	5113.56	4184.84	504.97
Qinghe coal mine	242.03	193.63		Hami coalfield	41447.04	7947.5	13665.75
Barkol coalfield	8759	3742		Turpan coalfield	317648		317648
Santanghu coalfield				Shaer lake coalfield			
Naomaohu coalfield							
…							

2.6. Production scale and layout

In terms of production scale, by the end of 2014, there were 349 production mines in the whole region, with a certified production capacity of 96.73 million tons/year [16]. In 2014, coal output in the whole region reached 143 million tons, 53 million tons more than in 2010, the average annual increase was
13.25 million tons, with average annual growth rate of 12.3 percent, 8 percentage points higher than the national average. In 2014, coal consumption in whole region was 129 million tons, 39 million tons more than in 2010, with an average annual growth rate of 10.3 percent. There are 29 coal mines under construction in the whole region, with a production capacity of 50 million tons per year; Forty-seven projects have received "passes" with a total size of 220 million tons per year. At present, 42 overall plans for mining areas has been formulated or are compiled in the whole region, a total of 368 planned wells (mines) fields, with a planned total capacity of 1.79 billion tons per year, reserving a large number of million tons, ten million tons of large, super large coal mine projects.

In terms of industrial layout, coal power and coal chemical industry will be developed on the scale of 12.4 billion tons of proven reserves in Ili coalfield; coal power (west-east transportation) and coal chemical industry will be developed on the scale of 61.5 billion tons of proven reserves in East Jungar coalfield; coal transportation (supply for southern Xinjiang); coal power (west-east transportation) and coal chemical industry will be developed on the scale of 44.8 billion tons of proven reserves in Turpan-Hami coalfield. By the end of 2015, there were 73 entrepreneurs with coal chemical industry scale or above in Xinjiang, among which 66 were traditional coal chemical industry and 7 were modern coal chemical industry, forming a modern coal chemical industry chain with characteristics of coal-based natural gas, coal-based olefin, coal-based oil, coal-based dimethyl ether, coal-based glycol and coal utilization according to quality. Coal-based natural gas of 1.375 billion cubic meters per year, coal-based ethylene glycol of 50,000 tons per year and coal-based dimethyl ether of 600,000 tons per year has been built. By the end of 2014, the installed capacity of coal power in Xinjiang had reached 54.64 million kw; In terms of lines, 17911 km of 220kv line, 166Km of ±800 uhv dcline and 3940 km of 750v line has completed in Xinjiang, wherein the 750Kv power transmission and transformation project line from Ili to Kuqa of Tianshan west looped network has been partially completed in northern and southern Xinjiang. In terms of consumption and output scale, 80 million tons of coal was consumed by the power industry; In terms of output scale, coal shipped out in Xinjiang exceeded 20 million tons for the first time in 2011, 30 million tons in 2013; In 2014, the coal market outside the region was weak, and transfer volume in Xinjiang dropped to 23.4 million tons, mainly transferred to Gansu Jiayuguan, Jinchang Jiuquan and other western regions of Lanzhou. However, compared with the current production capacity of 360 million tons, there was a serious surplus of coal capacity.

3. Conditions of water resources in Xinjiang

3.1. Surface water resources

According to the calculation of Xinjiang hydrological station [17], there are 570 rivers of different sizes in Xinjiang, with 76.5 billion m3 of surface runoff and 2.79 billion m3 of mountain spring flow. The annual runoff in China is 79.3 billion m3, and the average annual inflow runoff from abroad is about 9.087 billion m3, so the runoff of Xinjiang rivers is about 88.4 billion m3 (Table 7). Among them, small rivers are in the majority, with small amount of water and short process. There are 487 rivers with annual runoff of less than 100 million m3, accounting for 85% of the total number of rivers, and 8.25 billion m3 of runoff, accounting for 9.4% of the total runoff in Xinjiang; There were 18 rivers with annual runoff of more than 1 billion m3, accounting for 3% of the total, and the runoff of 53.4 billion m3, accounting for 60.4% of the total runoff in Xinjiang. The main sources of runoff in Xinjiang rely on glacier melt water, seasonal snow cover and rainfall mainly [8]. Glacial melt-water, especially in the Kunlun Mountains, has the largest proportion of river and glacial melt-water supply. Lanzhou institute of glacial permafrost, Chinese Academy of Sciences, estimated that the total area of glaciers in Xinjiang is 24,479.3 m2, accounting for 42% of the total area of glaciers in China; glacier reserves are 2,583.57 billion m3, accounting for 50 percent of the country's total glacier reserves; glacier melt water is 17.86 billion m3, accounting for 32% of the total glacier melt water in China. Among them, the melting amount of Tianshan glacier was the largest, which was 9.59 billion m3.

7
accounting for 53.70% of the total melting amount [8]. The dynamic part of glacier water resources is glacier melting, accounting for 0.64% of the total glacier reserves in Xinjiang every year, the total runoff of the river, accounting for about 20% of the total runoff, is one of the important sources of runoff in Xinjiang.

Table 7. Annual runoff of rivers which reach over 1 billion m3 in Xinjiang [17].

Water reticulation system	River Name	Name of hydrographic station	Area of water catchment (km2)	Annual runoff (100 million m3)
Ili River	Tekes River	Kapuchi sea station	27402	78.4
	Kashi River	Tuohai station	8656	38.3
	Kunes River	Zeketai station	4123	20.2
	Burqin River	Qiafu station	1307	
	Karakirtshy River	Qunkule station	8422	42.0
				17.9
Eerqisi River	Kurirtys River	Kuwei station	2494	14.9
		Fuyun station	1965	
		Kelatashi station	6111	21.4
Manasi River	Manasi River	Hongshanzu station	5156	12.6
Ulungur River	Ulungur River	Santai station	18375	9.8
Aksu River	Queenmalick river	Xiehela station	12816	46.1
Hotan River	Taushgan Darya	Shariqelankane station	19166	25.7
	Yurungkash River	Tonggusilock station	14575	22.4
	Karakash River	Ulurwati station	19983	21.8
		Kaqun station	50248	64.6
Yerqiang river station				
Kaxgar River	Kezi River	Karabelli station	13700	20.5
	Gaizi River	Klerk station	9753	9.5
Weigan River	Muzhati River	Pochengzi station	2845	14.6
Kaidu River	Kaidu River	Dashankou station	19022	32.9
Tarimi River	Tarim River	Alear station		47.9

Table 8. Water resources in all administrative regions of Xinjiang [18].

Region	Total amount of water resources	Surface water resources	Underground Water Resources	The coincident amount between surface water and groundwater	Total amount of water consumption
Tuscaloosa area	64	59	32	27	43
Altay	113	109	46	41	33
Bortala prefecture	27	24	16	13	16
Bayingolin prefecture	142	135	76	69	55
Aksu region	79	72	69	62	108
Kyzyl prefecture	69	68	44	42	12
Kashi Prefecture	79	73	80	74	119
Urumqi city	13	13	6	5	11
Karamay city	1	0	1	0	6
Shihzei city	0	0	1	1	6
Turpan city	10	9	5	4	13
Hami region	15	13	10	8	11
Changji Hui autonomous prefecture	40	36	24	20	45
Ili prefecture	161	158	75	72	53
Hotan region	118	112	62	55	46

Note: the unit is 100 million cubic meters

3.2. Underground water resources

In 2015, the total amount of underground water resources in Xinjiang was 57.949 billion m3 (table 8)[18], wherein the amount of underground water was 37.092 billion m3 in hilly area, 37.255 billion m3 in plain area, 37.013 billion m3 in plain area, the repeated amount of underground water in hilly
area and plain area was 16.156 billion m³, and the recoverable amount of underground water was 23.586 billion m³. The total recharge modulus of Xinjiang plain area is 67,000 m³/a•km², and the recoverable modulus is 4.28 m³/a•km². The amount of surface water and underground water in Xinjiang comes from natural precipitation. In 2014, for example, precipitation in mountainous areas reached 209 billion m³, accounting for more than 80% of the total precipitation in Xinjiang that year, the mountainous area was the runoff formation area, and the bedrock fissure water supplies the river; the plain area was the area of runoff loss, and the surface water was transformed into underground water through various infiltration ways after coming out of the mountain pass, its conversion amount accounted for 75% of the total underground water supply in the plain area, natural underground water supplies accounted for only 17%.

3.3. Underground water resources of coal district

Region	Mine	Aquifer	Permeability coefficient K (m/d)	Unit water inflow q (L/s·m)	Mine water inflow Q m³/h	Potential for exploitation
Urumqi coalfield East Jungar coalfield	Jiangou coal mine	Jurassic Xishanyao Formations aquifer	0.0001~0.009	0.0089~0.001	150	Smaller
	Kalassay West Minefield		0.007	0.005 ~ 0.0051	269	Medium
Southern Jungar coalfield	Kuanggou coal mine	Jurassic Xishanyao Formations aquifer	0.132~0.296	0.235 ~ 0.247	350	Medium
Yining North coalfield	Sulesayi Minefield	Jurassic Xishanyao Formations aquifer	0.036	0.013	492.23	Medium
Turpan-Hami basin	No. 3 mine in Dananhu west area	Jurassic Xishanyao Formations aquifer	4.44~6.77	1.18	1368	Bigger
	No. 1 mine in Dananhu east area	Neogene Grape Valley Formations aquifer	2.8~17.8	4.2	1146	Bigger
	Strip mine in Shanshan county	Jurassic Xishanyao Formations aquifer	0.004~0.038	0.0013 ~ 0.0028	40	Small
	Mine in Aydingkol Lake No. 1 area	Lower Jurassic Sangonghe Formations aquifer	0.034~0.036	0.029~0.037	37	Smaller

Due to the different times of coal formation, the types of aquifers accompanying coal seams are significantly different [2]. The Cenozoic tertiary coal seam was dominated by pore water, followed by fissure water and karst water; The Mesozoic Jurassic coal seam was dominated by fracture water, followed by karst water and pore water; The Paleozoic carboniferous-Permian coal seam was dominated by karst water, followed by fracture water and pore water. According to the assemblage relationship between coal seam and aquifer in Xinjiang, the aquifer groups related to coalfield mining are divided into quaternary pore aquifer and Jurassic fractured aquifer. Quaternary pore aquifers are mainly composed of coarse sand, medium sand and gravel of diluvial, alluvial and aeolian deposits with different thickness. Unit water inflow is 0.035-9.5l/s.m, water-abundance is weak to strong, salinity < 1 g L⁻¹, and water quality is HCO₃⁻ + SO₄²⁻·Ca⁺ +Mg type. The fractured aquifer of Jurassic system is composed of brick red clastic rocks, wherein sandstone and conglomerate form the aquifer, while mudstone and argillaceous siltstone form the water-resisting layer. Water-abundance of upper Jurassic was medium with unit water inflow of 0.26-0.378l/s.m, salinity < 1 g L⁻¹, and water quality of SO₄²⁻ + Cl⁻ - Na⁺ +Ca type. Water-abundance of middle Jurassic was weak with unit water inflow of 0.001-0.0044l/s.m, salinity <1-2 g L⁻¹, and water quality of SO₄²⁻+Cl⁻-Na⁺+Ca type. Water-abundance of lower Jurassic was weak with unit water inflow of 0.06-0.08l/s.m, salinity >1 g L⁻¹, and water quality of Cl⁺+SO₄²⁻+HCO₃⁻-Na⁺+Ca⁺+Mg type, the lower part is the main coal-bearing rock formation with unit water inflow of 0.0094l/s.m. Hydrogeological reference is made by means of pumping test [19].
through observing the water level recovery process in the observation hole, field pumping test and hydrogeological data were obtained, the evaluation results of major coalfields in Xinjiang are shown in Table 9. It can be seen that most of the mines in Xinjiang are water-deficient and water-abundance of aquifers is weak under bad recharge conditions, so there is no potential for exploitation and utilization, however, because of the special hydrogeological conditions, water-abundance of aquifers in this area is strong and has great potential for exploitation. Some mine aquifers have a certain potential for exploitation under the condition of sufficient recharge.

3.4. Water resources supply

Water is the source of life, but the whole water resource in China is deficient and unevenly distributed. In order to achieve the full and reasonable utilization of water resource, China is vigorously implementing the strictest water resource management system, establishing three red lines of water resource development and utilization control, water use efficiency control and water functional area pollution limit. In 2013, the General Office of the State Council issued the measures for assessing the implementation of the strictest water resources management system, and identified three red line control index for water resources management in various provinces and regions. The control index of Xinjiang is 51.6 billion cubic meters and 52.67 billion cubic meters respectively in 2020 and 2030 [20]. By the end of 2015, the total water resources in Xinjiang were 93.04 billion cubic meters (Table 8), and the total amount of water resources changed little from 2000 to 2015 (Figure 1), then compared with water resources in 2015 (Table 10), the existing water resources in Xinjiang are sufficient. However, as the coal development strategy moves westward and the western development strategy continues to advance, both industrial and residential water use will increase significantly, and the red line of 51.6 billion cubic meters is expected to be overreached by 2020. In order to keep water consumption within the red line, water saving and water diversion will be the solution (Table 10). In terms of water saving, considering the existing water use model for agriculture and animal husbandry in Xinjiang, it is the most effective way to increase the area of high-efficiency water saving and reduce the area of farmland returned to forest. According to statistics, about 4.7 billion cubic meters of water can be saved by saving water, and about 8.3 billion cubic meters of agricultural water can be withdrawn by returning farmland to forests. In terms of water diversion, given the imbalance of water resources in Xinjiang, and water resources are mostly distributed in mountainous areas, it is possible to transfer water within the region, according to relevant planning, annual outflow water volume of Eerqisi River is 9.5 billion cubic meters, accounting for 80%, and the water diversion capacity is 2.5 billion to 3 billion cubic meters; Through the Ili river diversion project, about 2.6 billion cubic meters of water can be diverted. It can be seen that through the implementation of the above-mentioned schemes, the red line of water consumption in Xinjiang can be ensured. Therefore, Xinjiang has sufficient potential for water supply as a whole.

![Figure 1. Change of total water resources during 2000-2015.](image1)

![Figure 2. The distribution of water resources and water consumption in Xinjiang (Note: data from Xinjiang Statistical Yearbook 2016).](image2)
Table 10. Water consumption in Xinjiang in 2015.

Region	Agriculture sector	Industry sector	Service sector	Lives of residents	Ecological environment
Urumqi city	6.3	1.5	0.3	1.5	1.0
Karamay city	3.6	0.2	0.1	0.2	1.2
Shihezi city	4.5	0.2	0.0	0.2	0.3
Altay area	31.9	0.3	0.1	0.3	0.1
Bortala prefecture	15.4	0.2	0.1	0.2	0.2
Bayingolin prefecture	51.8	0.6	0.5	0.6	0.6
Aksu region	105.8	0.7	0.7	0.7	0.0
Kyzyl prefecture	11.7	0.3	0.1	0.3	0.1
Kashgaria Prefecture	116.3	1.5	0.2	1.5	0.4
Turpan city	12.5	0.3	0.0	0.3	0.2
Hami region	9.2	0.5	0.1	0.5	0.2
Changji Hui autonomous prefecture	41.6	0.8	0.2	0.8	0.5
Ili Prefecture	49.3	1.5	0.2	1.5	0.5
Tuscaloosa area	41.8	0.7	0.0	0.7	0.1
Hotan region	44.8	0.7	0.2	0.7	0.5

Note: data from Xinjiang Statistical Yearbook 2016

4. Research on matching relationship

4.1. Reverse distribution of water resources and coal resources

As can be seen from the above-mentioned situation of water resources in section 2.1, 2.2 and 2.4, Xinjiang has sufficient potential for water supply as a whole. However, by comparing the distribution of surface water resources in section 2.1, coal resources data of coal mining areas in Xinjiang in section 1.3, and the proved reserves and development positioning of major coal mines in section 1.4, it can be known:

(1) Regional differences in water resources distribution are significant

The distribution of water resources in Xinjiang is different in time and space (Table 10). Water resources are mainly distributed in Ili, Altay and Hotan, accounting for 15%, 17% and 14% of the total amount. Water resources are relatively scarce in Hami and Changji regions. Average surface water resources for many years in Changji prefecture is 3.882 billion m³, only 1.065 billion m³ in Hami. Average underground water resources for many years in Changji prefecture is 2.21 billion m³, only 0.859 billion m³ in Hami. In terms of the development of surface water resources, the utilization rate of Ili in 2011 was 4.5%, with great potential; 65.38% in Changji, exceeding 60% of the warning line; 72.79% in Hami, apparently higher than the warning line. In terms of groundwater, the utilization rates of Ili, Changji and Hami were 4.6%, 73.2% and 86.2% respectively, wherein the potential of groundwater exploitation in Ili area is great, but the groundwater in Changji and Hami area is in the stage of overexploitation.

(2) The overall distribution of coal resources and water resources is unbalanced

Coal resources in Xinjiang are mainly distributed in Ili, Southern Jungar, and Eastern Jungar and Turpan-Hami basin regions, with significant spatial differences. But the point is that there is an inverse distribution between the differences in water distribution and coal distribution (Figure 1 and 2), that is, the Southern Jungar region with more coal resources is relatively short of water resources, other coal mines such as Changji and Hami also have serious water shortages, only Ili area has relatively balanced and abundant water resources and coal resources. Even so, on a whole, water resources in the major coal mines of Xinjiang are extremely scarce (Table 9 and 10). If measures such as water saving, water weight replacement and water diversion are not taken reasonably and efficiently, the development of coal power and chemical industry will be greatly limited in the future.

(3) Solution of water shortage in different mining areas is different
The characteristics of water resources in Xinjiang are as follows: the distribution of underground water resources and surface water resources is not uniform (Table 9). Although Hami and other coal mining areas are located in a region where surface water is relatively scarce, water-abundance in coal-bearing rock series is relatively high, the underground water recharge sources are mainly precipitation and snowmelt in mountain areas, the water quality is good, the available potential is huge, the comprehensive supply can reach 1.35 billion cubic meters. For example, in the Turpan-Hami basin, the No. 3 mine in Dananhu west area and No. 1 mine in Dananhu east area have great water resource potential, and the water inflow of single mine of the former can reach 1368 m³/h. The use of underground water and the improvement of water-use efficiency should be taken as the main solution. Similarly, the East Jungar region, which is short of water but rich in coal, could be considered to transfer water from Eerqisi River due to its proximity to Ulungur River. However, in Changji prefecture, the solution of water consumption scheme should not only rely on the excavation of underground water, but also consider the transfer of water from the outside. If combined with the positioning of coal mining mode in Xinjiang coal mines, for example, most of the coal mines in Xinjiang are integrated production of coal and electricity, equipped with corresponding pithead power plants, and most of them are located in desert areas, with long water transfer radius and other factors, water for production and domestic use is transported long distance by pipelines, therefore, the cost of water consumption in the mine is very high, and the average cost is 6-9 Yuan/ton, bringing huge burden to the production of mine. Therefore, the only way is to improve the utilization efficiency of existing water resources, especially underground water resources, focusing on water resources in coal-bearing strata.

5. Conclusions and exploitation suggestions
The whole coal resources and water resources in Xinjiang are relatively rich and concentrated, but imbalance and difference of regional distribution of coal resources and water resources exists, in addition, the ecological environment is very fragile, bringing great difficulties to coal mining. So, the exploitation planning positioning of coal resources must consider the factors of water resources, the key is to make good use of the available water resources - underground water (water in coal-bearing rock series), exploitation suggestions are as follows:

(1) Optimize the layout and plan the efficient ratio of coal and water resources
Water shortage has become the most critical problem restricting sustainable development in Xinjiang. According to the distribution rules of coal resources and water resources in Xinjiang, the relationship between coal resources and water resources is planned as a whole, so as to prove the solution of water shortage in water-deficient coal areas as a whole and realize the maximum economic and efficient utilization. For example, a large proportion of some coal chemical projects could be performed in Ili area, horse coal and electricity co-production projects could be performed in Changji, North Jungar and part of the Hami area, mining areas along the line with better transportation conditions, such as part of Hami coal mine, should rely on coal output mainly.

(2) Scientific mining gives priority to the development of coal mining under water-containing conditions.
In the practice of coal mining under water-containing conditions in northwest China, the key problem is the exploration of hydrogeological conditions and the relationship between the structure of water-conserving coal mining and the coal seam, and the plans and measures of coal mining under water-containing are developed to realize the protection of water resources. For example, the "underground reservoir concept" proposed by academician Gu Dazhao can be adopted, that is, the safety coal pillars are connected with the artificial dam body to form the reservoir body by using the pore of rock body in the goaf formed by coal mining, at the same time, mine water storage facilities and water intake facilities are constructed, and the natural purification effect of goaf rock mass on mine water is fully utilized to construct underground reservoir project of coal mine.

(3) Multiple measures should be taken simultaneously to solve the problem of water shortage
The shortage of water resources in Xinjiang is the shortage of regional difference, but not the shortage of water resources as a whole, which can be solved by means of tapping new resources and economizing on expense, allocation and water right replacement. Through water weight replacement and water diversion project construction and other measures, increase the amount of available water. For example, in Eastern Jungar and Turpan-Hami basin regions energy bases, by strengthening the construction of water conservancy projects, implement the projects of "diversion of the Eerqisi River water to Karamay City" and "diversion of the Eerqisi River water to Urumchi ", water diversion scale can reach 1.2 billion cubic meters; In Hami and Changji, agricultural water can be effectively reduced by building efficient farmland and converting low-end farmland; In the water-rich coal-bearing rock series in Eastern Jungar and Turpan-Hami basin regions, the mine with low salinity of aquifer can be exploited directly, for the mine with high salinity water, the underground water needs to be treated, and salinity can be reduced by hydrochemistry.

Acknowledgement
Ecological Configuration and Global Strategy of China Water Resources (DD20190652) , Comprehensive Evaluation and Information System Construction of National Special Coal Resources(DD20160189), The Influence of Water Resources and its Changing Law in Mining Activities in Coal Mining Areas in southern Qinshui, and Doctoral Talent Startup Fund(40559).

References
[1] Xie Kechang 2015 Study on the strategy of clean, efficient and sustainable development and utilization of coal in China [J] Engineering Sciences 17(9) 1-5
[2] Peng Suping, Zhangbo, Wangtong, etc. 2014 Coal resources and water resources [M] Science Press 7-8
[3] Yangqi 1987 Coal Geology Progress [M] Beijing:Science Press 33-41
[4] Liwei, Gao Jingjing, Liuwen 2012 Application research of water resource carrying capacity analysis in coal industry planning environmental assessment [J] Energy utilization and new energy development international BBS and the fourth China energy strategy high-level BBS corpus 126-131
[5] Qiu Lixin, Zhou Tianjun 2007 Water resource demand forecast and analysis of coal industry in five provinces and regions in northwest China [J] Coal economy research 4 20-23
[6] Peng Suping, Zhang Bo, Wang Tong, etc. 2015 Strategy research on sustainable development of coal [M] Coal industry press 1-5
[7] Wang Libin 2014 Total amount of China's coal resources reached 5.9 trillion tons [N]. Xinhuanet, February 3rd http://news.xinhuanet.com/fortune/2014-02/03/c_119206797.htm
[8] Key laboratory of terrestrial water circulation and surface processes, institute of geographic sciences and resources, Chinese Academy of Sciences. Coal swallowing water-Coal power base development and water resources research. Beijing: China Environmental Science Press, 2012: 8-21
[9] The State Council 2007 some suggestions on further promoting economic and social development in Xinjiang [Z]. No.23 document issued by the State Council,
[10] He Shenwei, Li Saige 2011 The law of coal resource occurrence and resource potential prediction in Xinjiang [J] Coal geology of China 23(8) 82-84+89
[11] Liu Luofu, Qi Xuefeng 2002 Evaluation of source rocks in Jurassic sequence stratigraphic framework in Jungar basin [J] Journal of sedimentary 20(4) 687-694
[12] Wang Tong, Shao Longyi 2013 Formation conditions and resource evaluation of Jurassic coal resources in northwest China [M] Beijing: Geology Press 21-24
[13] He Zhiping, Shao Longyi 2004 Analysis on controlling factors of coal accumulation in Badaowan Formations of Jurassic in Jungar basin [J] Journal of sedimentary 22(3) 449-454
[14] Coalfield geology bureau of Xinjiang Uygur Autonomous Region Coal resource potential evaluation report of Xinjiang Uygur Autonomous Region [R]. 2010, 400-408
[15] Editorial office of China mining yearbook, China mining yearbook 2015[M], Beijing: Geological press, 2015, 35-67
[16] Editorial office of China mining yearbook, China mining yearbook 2016[M], Beijing: Geological press, 2016, 42-69
[17] Wu Fuhuan, Guo Taishan, Overall view of Xinjiang [M], Xinjiang: Xinjiang People's Publishing House, 2006, 116-125
[18] Committee of yearbook, Xinjiang statistical yearbook 2015[M], China statistics press, 2016, 35-43
[19] Ministry of Coal Industry 1980 Rules for pumping test for geological exploration of coal resources [Z] (80) Meidizi No. 638
[20] General Office of the State Council 2013 The implementation of the strictest water resources management system [Z] issued by General Office of the State Council (2013) No.2