A Fuzzy-Social Network Multi-criteria Group Decision-Making Framework for Selection of Renewable Energy Project: A Case of China

Weihua Su 1 · Le Zhang 1 · Shouzhen Zeng 1,2 · Huanhuan Jin 1

Received: 25 February 2021 / Revised: 5 July 2021 / Accepted: 20 September 2021 / Published online: 22 November 2021
© Taiwan Fuzzy Systems Association 2021

Abstract The proper selection of a renewable energy project (REP) is the key to give play to regional resource advantages and optimize the energy consumption structure. As a complex multi-criteria group decision-making (MCGDM) problem, the choice of REP involves many influencing factors such as economy, society, and environment. To solve this problem, this paper proposes a social network MCGDM framework based on social network analysis (SNA) and hesitant probabilistic fuzzy set (HPFS). Firstly, the HPFS is introduced into the social network and constructs the hesitant probabilistic fuzzy trust function to represent the trust relationship between decision-makers. Secondly, the trust propagation operator of the hesitant probabilistic fuzzy trust function is constructed using the idea of conditional probability; then a dual feedback mechanism including opinion modification and weight adjustment is proposed to improve the group consensus level. On this basis, a social network MCGDM framework for REP selection is further proposed, and the SNA method is applied to the selection of REP for the first time. Following this, a case in Zhejiang Province, China, is presented to prove the rationality and effectiveness of the framework. The results show that the proposed hesitant probabilistic fuzzy trust function can better reflect the trust relationship between decision-makers and better describe the process of trust transmission, which is of great significance for solving the MCGDM problems such as REP selection.

Keywords Renewable energy project · Multi-criteria group decision-making · Social network analysis · Consensus adjustment · Trust propagation · Hesitant probabilistic fuzzy set

1 Introduction

As an indispensable and important resource for human survival and production, energy occupies a unique position. With the expansion of the world economy and the rise of plentiful developing countries, energy consumption will continue to increase in the future. According to The World Energy Outlook 2018, published by authoritative organization the International Energy Agency (IEA), with the increase of per capita income and population growth, the emergence of the global total primary energy demand will grow by more than 25% by 2040, and renewable energy consumption as a proportion will obviously be improved, being expected to reach more than 20% [1]. Significantly different from fossil energy, renewable energy has the characteristics of being reproducible with low environmental harm, and even harmless. The development of renewable energy has a positive impact on environmental protection; so, it is gradually being promoted and will play a more important role in the global energy consumption market. Global biomass and other renewable energy...
sources are expected to grow at an average annual rate of about 1.1–7.4% between 2015 and 2040, respectively, due to economic expansion in developing countries and demand expectations from Japan, according to OPEC [2].

However, the proportion of renewable energy in global energy consumption is still inadequate. Renewable energy consumption accounted for only about 10% of the total energy consumption in 2019. Moreover, the energy consumption structure varies significantly among different regions. The proportion of renewable energy consumption in developing countries is generally lower than that in developed countries, and so the structure needs to be optimized and upgraded. In particular, the COVID-19 epidemic since 2020 has affected the efficiency of the global transportation of fossil energy. The development of renewable energy is of great significance for all countries in the world to improve the rate of energy self-sufficiency and ensure energy supply, so renewable energy will have a broad space for utilization and market prospects. Hence, the rational development of renewable energy will become a hot spot in the global energy consumption market.

The accurate choice of a renewable energy project (REP) for exploitation and utilization is crucial, but the choice of REP is complex. Firstly, there are various types of renewable energy, including wind energy, hydro energy, biomass power, tidal energy, geothermal energy, and other types. Each type has different characteristics in terms of natural conditions, construction cost, supply capacity, and operation efficiency. This makes it difficult for policymakers and investors to directly make appropriate choices and judgments. Secondly, energy is related to economic operation and residents’ lives. The process of utilization of renewable energy will have different degrees of impact on the economy, ecology, society, and other aspects. Therefore, the choice of REP is a complicated multi-criteria group decision-making (MCGDM) process.

Meanwhile, because of the vague thinking in the decision-making process, decision-makers (DMs) express the fuzzy and hesitant characteristics frequently found when choosing or evaluating an REP. These characteristics are embodied in: (1) Factors influencing REP decision-making (such as economic level, ecological environment, social benefits) have the interactional contact [3]. Information on economy, society, and ecology is troublesome to measure and quantify accurately. DMs tend to make qualitative evaluations in the face of this situation, but it is difficult to give accurate evaluation information such as numbers and ratings, which makes the evaluation information appear ambiguous. This not only increases the difficulty of information integration in the final decision, but also easily leads to a lack of accuracy of the REP decision. (2) Because of the important position of energy in human production and life, the REP choice has a far-reaching influence. Therefore, DMs are faced with great decision-making pressure and forced to do evaluation work by themselves. However, facing with many factors affecting decision-making, especially the existence of qualitative factors, DMs often find it difficult to give decisive evaluation information. On the contrary, in order to reflect their own evaluation information more accurately, DMs tend to waver between two or more scores, ratings, or numbers, which increases the degree of hesitation in DMs’ evaluations.

There are numerous solutions to this MCGDM problem of hesitation and ambiguity, and these REP selection methods can be roughly divided into two categories. (1) A REP selection method based on MCGDM methods. Constructing a decision-making framework for REP selection is the general approach to this class method. The influential factors are considered in the process of REP choice. By building the evaluation criteria system, the method provides the standard basis for decision-making. Composed of professional members invited to evaluate alternative REPs, the method can reflect comprehensive information and the merit and demerit of each REP. Eventually, the REPs are sorted by VIKOR, TOPSIS, and other methods to provide objective decision results. This method has been widely used in clean energy systems [4, 5], clean energy technology [6, 7], and selection of a renewable energy power system [8, 9]. (2) A REP selection method based on a financial analysis method. This method mainly analyzes and compares the capital flow, operational risk, and profit of REPs from the financial perspective, so as to select the REP with the overall dominant financial benefit: net present value (NPV) and real options analysis (ROA) are more representative. NPV is a standard technique used in REP evaluation to determine the expected benefits of a REP by discounting the long-term economic benefits of the project and converting them into present value [10]. It has been widely used in the investment evaluation of REP [11, 12]. Different from NPV’s practice of assigning project risks to the discount rate, ROA reflects the project risks in each phase in the form of calculating equivalent, which provides an effective tool for DMs to better observe cash flow and solve the REP investment decision problem [13]. In general, the second method focuses more on the economic benefits and risks of REP. It uses relevant methods in the financial field to select those projects with the greatest economic benefits, but gives less consideration to ecological, social, and other factors generated after the implementation of a project.

From the perspective of MCGDM methods, there is room for further improvement in the existing REP selection methods. First, although some fuzzy sets are currently being used to solve the problem of selection, such as two-dimensional uncertain variables, interval type-2 fuzzy sets,
and hesitant fuzzy sets [14], and these improvements provide effective means to solve the problems of fuzzy evaluation information and hesitation in the evaluation process, there is room for further improvement in the description of fuzziness and hesitation. In addition, the relationship between DMs has not been considered in previous MCGDM methods. However, in the actual decision-making, there are different degrees of connection between DMs. This kind of connection cannot be ignored, especially when there are opinion leaders among DMs. Ignoring the relationship among DMs will lead to deviation of the decision result [15]. Hence, it is of great significance to improve the decision accuracy and optimize the decision process by taking the social network relationship among DMs into consideration in the MCGDM of REP selection.

To this end, we take hesitant probabilistic fuzzy set (HPFS) as a manifestation of the trust relationship between DMs and evaluation information. Furthermore, we combine HPFS with social network analysis (SNA) to propose a social network MCGDM (SN-MCGDM) framework under the HPFT social network (HPFT-SN) for the choice of REP. The innovations included in this paper are as follows.

(1) This paper constructs an HPFT-SN, introduces the concept of HPFS into the social network, and solves the shortcomings of current SNA, such as ambiguous trust relationships and difficulty quantifying trust propagation.

(2) A trust propagation operator under HPFT-SN is proposed, which provides a new way to quantify the trust propagation network.

(3) A SN-MCGDM framework based on the proposed HPFT-SN is applied to the MCGDM process of REP selection to solve the problem whereby current relevant research fails to consider the social relations between DMs.

The rest of this paper is organized as follows. Section 2 constructs the comprehensive criteria system for REP assessment and offers a preliminary explanation of the fundamental concepts of the SNA and HPFS. We propose the concept of the HPFT function and construct HPFT-SN in Sect. 3, and propose a trust propagation operator. Subsequently, the consensus-reaching process under the HPFT-SN is put forward in Sect. 3. Section 4 creates a fuzzy SN-MCGDM framework to solve REP selection based on the HPFT-SN constructed in this paper. A case study conducted in Zhejiang Province, China, is presented in Sect. 5, and the effect of the framework is proved by comparative analysis. Section 6 presents the conclusion of this paper.

2 Materials

This section explains the fundamental concepts of the SNA and the conception of the HPFS, and then constructs the comprehensive criteria system for REP.

2.1 Social Network Analysis

The concept of social networks was first proposed by sociologist Simmel, and was subsequently studied in depth in academic circles. Usually, a social network refers to a stable network system composed of social relationships between individuals. As nodes in a social network, individuals can be experts, DMs, organizations, or countries. Ties connect network members indirectly or directly [16]. Thus, it is essential to face and deal with the network relationship among DMs when we study group decision-making.

Generally, V is used to represent the set of nodes in the network, and E is used to represent the set of edges between nodes. The nodes in Fig. 1 represent individuals in the network, and edges represent trust relationships between individuals. Directed edges between nodes indicate the direction of the trust relationship between individuals. The degree of centrality of node e_i is one of the important attributes reflecting node characteristics: it represents the number of all adjacent nodes of any node e_i, and its calculation method is as follows:

$$C_B(e_i) = \sum A_{ij},$$

where A_{ij} represents the edge’s weight between nodes e_i and e_j. If there is a connection between the two nodes, $A_{ij} = 1$; otherwise, $A_{ij} = 0$ [17]. This can reflect the importance and status of the node in the whole network. Based on this concept, this paper will define the method of determining the weight of the node.

SNA analyzes the relationship between individuals in the social network, reflecting the relationships between individuals. It mainly studies the structure of the relationship between different social units, which enables us to
examine the status of each individual in the network as well as the mechanism of propagation of trust relationships in the network. Therefore, the examination and analysis of trust relationships is also carried out in SNA [18]. The emergence of social network technology provides a powerful means for dealing with complex social network relationships among DMs [19], and it is gradually being widely used in MCGDM. This paper applies SNA to REP selection and proposes a SN-MCGDM framework.

2.2 Hesitant Probabilistic Fuzzy Set

HPFS was proposed by Xu and Zhou [20]. As a kind of expansion form of fuzzy sets, the HPFS not only considers the DMs’ ambiguity in the process of evaluation, but also takes into account the hesitation of evaluation information given by DMs. The characteristics of HPFS make it an ingenious way to solve uncertainty and reflect the hesitation of DMs in the process of REP selection. The concept of HPFS is shown as follows:

Definition 1 Let \(X \) be a set containing \(x_i \). Then, the HPFS \(H_p \) is defined as:

\[
H_p = \{ \{x_i, h(p_x)\} | x_i \in X \},
\]

where \(h(p_x) = \{\gamma^i|p^i| \mid i = 1, 2, \ldots, l\} \) denotes a set of some hesitant probabilistic fuzzy elements; \(l \) denotes the number of elements in \(h(p_x) \); \(\gamma^i \) denotes the possible membership degree of \(x_i \), where \(\gamma^i \in [0, 1] \); and \(p^i \) represents the probability of \(\gamma^i \), where \(p^i \in [0, 1] \) and \(\sum_{i=1}^{l} p^i = 1 \). For convenience, we call \(h(p_x) \) an HPFN and \(H_p \) the set of all HPFNs.

For any HPFNs among \(h(p), h(p_1), \) and \(h(p_2) \), the following operational laws should be satisfied [21]:

(i) \(z_{h(p)} = \bigcup_{\gamma^i|p^i| \in (h(p))} \{1 - (1 - \gamma^i)^x|p^i| \} \), \(\alpha \in R \),

(ii) \((h(p))^x = \bigcup_{\gamma^i|p^i| \in (h(p))} \{\gamma^i|p^i| \} \), \(\alpha \in R \),

(iii) \(h(p_1) \oplus h(p_2) = \bigcup_{\gamma^i|p^i| \in (h(p_1) \oplus h(p_2))} \{\gamma^i_1 + p^i_1 - \gamma^i_2|p^i_2| \}, \)

(iv) \(h(p_1) \otimes h(p_2) = \bigcup_{\gamma^i|p^i| \in (h(p_1) \otimes h(p_2))} \{\gamma^i_1|p^i_1| \}, \)

(v) \(h^c(p) = \bigcup_{\gamma^i|p^i| \in (h(p))} \{(1 - \gamma^i)|p^i| \}. \)

HPFS can obtain the evaluation information comprehensively from DMs. At present, HPFS is widely used in project evaluation and green supply chain selection [22, 23], product and personnel evaluation [24, 25], and other different MCGDM problems [26].

2.3 Comprehensive Criteria System for REP

As a source of power for production and life, REP is closely related to the economy, ecology, and society. Therefore, the criteria system of most current studies starts from the perspectives of economic strength [8, 27], technical level [28, 29], social impact [30, 31], and environmental impact [32, 33]. Based on the review of existing studies, this paper constructs the comprehensive evaluation criteria system as shown in Table 1.

Capital cost (EC1): a certain amount of capital investment is needed in the construction and operation of new energy projects. EC1 is used to reflect the investment costs required in the construction process of REP, including the cost of renewable energy equipment installation, supporting facilities construction, operation, maintenance.

Operational life (EC2): REP faces the problem of service life after being completed. EC2 is used to reflect the life-time of projects after they are put into operation. Generally, the longer the service life, the greater the long-term potential of the project and the more lasting the economic benefits.

Maturity (TE1): technological maturity is used to reflect the maturity, stability, and reliability of the existing technologies in REP. That is, TE1 is used to measure whether the existing technological achievements are mature enough to support the construction of projects efficiently.

Efficiency of the supply (TE2): renewable energy is different from traditional fossil energy in terms of efficiency and stability. TE2 is used to measure the supply capacity of renewable energy in terms of efficiency, stability, and sustainability, and examine its substitution effect and substitution capacity for fossil energy.

Job creation (SO1): REP has a role to play in creating jobs. SO1 is used to reflect the scale and capacity of different projects to increase jobs, measuring the social benefits of the projects and reflecting their ability to make social contributions.

Social acceptance (SO2): social acceptance refers to residents’ support for the REP, which is key to the implementation of projects. SO2 measures residents’ acceptance of implementing the REP.

Land requirement (EN1): REP needs to occupy part of the land during the construction process. EN1 is used to reflect the amount of land required for the construction of the project.

Emissions (EN2): one advantage of renewable energy is that it reduces emissions of pollutants. Therefore, EN2 is used to measure the impact of a project on the emission of pollutants in the region after its implementation.
3 Hesitant Probabilistic Fuzzy Trust (HPFT) Social Network

A trust relationship is a reliable source to evaluate the importance degree of experts, so it is usually studied in an SNA [36, 37]. In this section, we construct the HPFT function to express the trust relationship. Then, the corresponding trust propagation operator, aggregation operator, and consensus-reaching process are also established.

3.1 Hesitant Probabilistic Fuzzy Trust Function and Social Network

We first introduce the definition of HPFS into the social network to express the trust relationship between DMs and their evaluation information, and further propose the concept of HPFT function.

Definition 2 Let \(h(p_{AB}) = \cup \{ (\gamma^l | p^l) \}, \lambda = 1, 2, \ldots, l \) be a hesitant probabilistic fuzzy trust function, where \(AB \) means that the function reflects the trust relationship between A and B. \((\gamma^l | p^l) \) represents a set of trust relationship strengths (TRSs). \(\gamma^l \) represents the strength of the trust relationship from A to B. \(\gamma^l \in [0, 1] \); the larger \(\gamma^l \) is, the stronger the trust relationship from A to B. Any \(\gamma^l \) in \(h(p_{AB}) \) must satisfy \(\gamma^l \times \gamma^{l+1} \); that is, the TRSs in \(h(p_{AB}) \) are arranged in ascending order. \(p^l \) is the probability value corresponding to \(\gamma^l \), \(p^l \in [0, 1] \), and \(\sum_{l=1}^{l} p^l = 1 \).

To integrate the different HPFT functions and the evaluation information between different DMs, we propose a geometrically weighted average integration operator.

Definition 3 Let \(h(p_i) = \cup \{ (\gamma^l_i | p^l_i) \}, i = 1, 2, \ldots, l \} \) be a set of HPFT functions, and \(\theta_i \) the corresponding weight. The definition of the HPFT geometric weighted average integration (HPFT-GWA) operator is as follows:

\[
\text{HPFT-GWA}\{h(p_i)\} = \bigcup_{i=1}^{n} \left(\prod_{l=1}^{n} \left(\gamma^l_i \right)^{\theta_i} \frac{1}{n} \sum_{i=1}^{n} p^l_i \right),
\]

where \(\lambda_i = 1, 2, \ldots, l \). In particular, when the amount of TRSs contained in different HPFT functions is inconsistent—that is, \(l_i \neq l_{i+1} \)—we supplement the shorter function to make it equal to the longer one. The replenishment principle of TRS is as follows: select the smallest of all TRSs in the path (or group) to fill the shorter, and accordingly the corresponding probability value is 0 for the replenished TRSs.

The degree of trust is a common indicator used to measure the trust status of DMs and evaluation objects in social networks. We extend this concept to HPFT functions and further propose the ranking rules.

Definition 4 Let \(h(p_{AB}) = \cup \{ (\gamma^l | p^l) \}, \lambda = 1, 2, \ldots, l \) be a set of HPFT functions. Its degree of trust can be obtained as follows:

\[
TD = E(h(p_{AB})) = \sum_{l=1}^{l} \gamma^l \cdot p^l.
\]

In general, two randomly different HPFT, \(h(p_1) \) and \(h(p_2) \), are sorted according to their degree of trust. The greater the degree of trust corresponding to the function, the more important the expert is in the social network, or the higher the performance of the evaluated object. If and only when these conditions are met,

(i) \(TD_1 > TD_2 \),
(ii) \(TD_1 = TD_2 \), and \(\max\{\gamma^l_1\} = \max\{\gamma^l_2\} \).

The degree of trust of \(h(p_1) \) is better than \(h(p_2) \).

Furthermore, we apply the HPFT function proposed to the construction of social networks and propose the concept of HPFT-SN.

Definition 5 When a social network is used for group decision-making, the nodes in Fig. 1 represent each DM and the directional edges in Fig. 1 represent the trust relationship between each DM. The arrows indicate that the former has a trust relationship with the latter. Specifically, the HPFT function is used to represent the degree of trust.
between DMs. That is, the trust relationship information between nodes expressed by the HPFT function is assigned to the edges, which creates conditions for objectively reflecting the trust situation between nodes.

3.2 Trust Propagation Under HPFT Functions

In a social network, a trust relationship can be divided into direct trust relationship and an indirect trust relationship. A trust relationship in the social network has the characteristics of transmissibility [38]. When there is no direct trust relationship between nodes, the trust relationship between non-adjacent nodes will be transmitted through trusted third partners (TTPs), rather than the impossibility of a trust relationship between two nodes [39].

In the process of trust propagation, there are two kinds of trust path between non-adjacent nodes: single path propagation and multi-path propagation as shown in Figs. 2 and 3. In this paper, the idea of conditional probability in probability theory holds that trust presents the changing trend of conditional probability in the process of trust propagation. In view of the different paths of trust propagation, the following trust propagation operators are proposed.

3.2.1 Single Path Propagation

Single path propagation refers to the fact that there is an exclusive path between two nodes that are not adjacent to each other, as shown by A and C in Fig. 2. Since there is only one path, only the trust relationship between two adjacent nodes on the path should be considered.

Definition 6 Between any two non-adjacent nodes A and B, there is only one trust transfer path, which has n different TTPs. Let \(h(p_i) \) represent the trust function of the \(i \)th node to the \((i+1) \)th node, and the following trust propagation operator is constructed:

\[
P(A, B) = \bigcup \left\{ \prod_{j=1}^{n} \frac{\sum_{i=1}^{n-1} P_i^j}{n} \right\},
\]

\(\sum_{j=1}^{m} \theta_j \left(\prod_{j=1}^{m} \frac{1}{l_j} \right) \sum_{j=1}^{m} P_j^i \}
\]

where \(\theta_j \) is the weight of the \(j \)th path in the integration process. It is calculated as follows:

\[
\theta_j = \frac{1/l_j}{\sum_{j=1}^{m} 1/l_j},
\]

where \(l_j \) represents the length of the \(j \)th path—that is, the number of edges contained in the path. Specifically, when a trust relationship strength of 0 occurs in a trust delivery path, the overall result of the delivery will be affected by this as well. In other words, when there is no direct trust relationship between two members A and C indirectly through B, then B’s strength of trust relationship to C is 0: that is, when B completely distrusts C, A will also completely distrust C under the influence of B. Such a provision is more in line with the actual situation in reality.

3.2.2 Multi-path Propagation

Multi-path propagation refers to the existence of multiple transfer paths simultaneously between two non-adjacent nodes, as shown by A and E in Fig. 3. There are several different paths, and the number of TTPs contained in each path is also different. According to the length of each path, the weighted way is adopted to carry out multi-path integration. In general, the shorter the propagation path, the less trust information is lost, so the more important the weight of the path is in the integration process.

Definition 7 Between any two non-adjacent nodes A and B, there are \(g \) different transfer paths, and \(n_i \) different TTPs exist each trust transfer path. Let \(h(p_i) \) represent the trust function of the \(i \)th node to the \((i+1) \)th node. The trust propagation operator for multi-path propagation can be built as follows:

\[
P(A, B) = \bigcup \left\{ \prod_{j=1}^{m} \frac{\sum_{i=1}^{n-1} P_i^j}{n} \right\},
\]

where \(\theta_j \) is the weight of the \(j \)th path in the integration process. It is calculated as follows:

\[
\theta_j = \frac{1/l_j}{\sum_{j=1}^{m} 1/l_j},
\]
3.3 Determine the Weights of Nodes

In a social network, there are different degrees of connection between nodes. In order to determine the weight of each node, the degree of centrality of each node is usually used to determine the weight. The specific steps are as follows.

1. Compute the degree centrality \(C(e_j) \) of nodes.
 The HPFT-GWA operator proposed in this paper is used to calculate the degree of centrality of each node. Let \(h(p_{ij}) \) be the trust function of node \(i \) to node \(j \); then the degree of centrality of node \(j \) is:
 \[
 C(e_j) = \prod_{i=1,i\neq j}^{n} h(p_{ij})
 \]
 \[
 = \bigcup \left\{ \prod_{i=1,i\neq j}^{n} \left(\frac{
 \left(\sum_{i=1}^{n} \left(\frac{1}{\sum_{j=1}^{m} P_{ij}^{g}} \right) \right)
 \right) \right\}.
 \] (13)
 Where \(n \) refers to the number of nodes that have a trust relationship to node \(j \) throughout the social network.

2. Obtain the degree of centrality \(C(g) \) of groups.
 Based on the degree of centrality of nodes, the degree of centrality of groups can be calculated as follows:
 \[
 C(g) = \prod_{j=1}^{m} C(e_j) = \bigcup \left\{ \prod_{j=1}^{m} \left(\frac{1}{\sum_{j=1}^{m} P_{ij}^{g}} \right) \right\},
 \] (14)
 Where \(m \) refers to the number of nodes in the social network.

3. Compute the distance between \(C(e_j) \) and \(C(g) \).
 \[
 d(C(e_j), C(g)) = \sum_{j=1}^{l} |p_{ij}^{g} - p_{ij}^{x}|.
 \] (15)

4. Determine the weights of nodes.
 Let \(\sigma_j = 1 - d(C(e_j), C(g)) \). The weight of node \(j \) can be determined by the following formula:
 \[
 w_j = \frac{\sigma_j}{\sum_{j=1}^{m} \sigma_j}.
 \] (16)

3.4 Consensus-Reaching Process Under HPFT-SN

A consensus-reaching process (CRP) can reduce the dispersions in MCGDM problems through experts discussing and modifying their evaluation information to avoid conflict and obtain a common solution [40, 41]. It is an important part of SN-MCGDM to improve the group consensus level. In this section, we will construct three-layer consensus measures and corresponding identification indexes. Furthermore, the dual feedback mechanism is constructed from two aspects of DMs’ opinions modification and weight adjustment.

Firstly, a three-layer consensus measure composed of an evaluation elements layer, an alternatives layer, and a decision matrixes layer is constructed.

1. The consensus measure of evaluation elements. Using the distance between the evaluation information of DMs and the average level of the group to measure their own consensus level, the \(CE_{ij} \) is constructed to reflect the consensus level of DMs \(e_h \) under each criterion on alternative \(x_i \):
 \[
 CE_{ij} = 1 - d(h(p), \bar{h}(p)).
 \] (17)

2. The consensus measure of alternatives. Based on the \(CE_{ij} \), we can calculate the consensus of alternatives:
 \[
 CA_{i} = \frac{1}{n} \sum_{i=1}^{n} CE_{ij}.
 \] (18)

3. The consensus measure of decision matrixes. The consensus level of member \(e_h \) relative to the group in the decision matrix is further obtained, and the calculation method is as follows:
 \[
 CI_{i} = \frac{1}{m} \sum_{i=1}^{m} CA_{i}.
 \] (19)

In the process of SN-MCGDM, the original opinions of DMs often have deviations and differences. In order to improve further the decision-making efficiency and consensus level of the group, a consensus adjustment is needed. As the basis of adjustment, the consensus identification is significant. The consensus identification is carried out based on the three-layer consensus measure:

1. The DMs identified below the consensus threshold. According to the threshold \(\rho \) set before the decision-making, the consensus level of each member is identified at the decision matrixes layer, and the members below the threshold are revealed.
 \[
 \text{ExpC} = \{ h | CI_{i} < \rho \}.
 \] (20)

2. The alternatives identified below the consensus threshold. On the basis of the DMs identified below \(\rho \), the consensus level on which alternative the DMs failing to reach the target are further identified below the given threshold.
 \[
 \text{AltC} = \{ (h, i) | h \in \text{ExpC} \cap CA_{i} < \rho \}.
 \] (21)

3. The evaluation element identified below the consensus threshold. The consensus level of evaluation
elements is identified, and the evaluation elements that do not meet the threshold \(\rho \) are determined:

\[
\text{EvaC} = \{(h, i, j)| (h, i) \in \text{AltC} \cap C^j_q < \rho\}. \quad (22)
\]

After the consensus identification, what needs to be done is to make consensus adjustment for DMs who do not meet the threshold. In the process of consensus adjustment, some DMs are willing to modify their original opinions, while some DMs insist on their original opinions and are unwilling to modify them [41, 42]. In view of this situation, we propose a dual feedback mechanism.

For DMs who are willing to modify their original opinions, we propose a concept based on the degree of consensus deviation, which is used as the basis for determining consensus adjustment parameters.

Definition 8 The degree of consensus deviation is based on the level of consensus of DMs at the decision matrices level, and the consensus adjustment parameters \(\mu_h \) (\(0 \leq h \leq m \)) are determined by the degree of deviation between the consensus level of decision matrices and the consensus threshold of DMs.

\[
\mu_h = 1 - \frac{\rho - CI_h}{\sum (\rho - CI^k)}. \quad (23)
\]

The feedback mechanism can be further obtained of DMs’ opinions which do not meet the consensus threshold:

\[
h_{ij}(p) = \mu_h \cdot h_{ij}(p) + (1 - \mu_h) \cdot T_{ij}(p). \quad (24)
\]

When the gap between the DMs’ consensus level and the threshold is large, the consensus adjustment parameters are correspondingly small, and the original degree of information retention of members is also lower in the process of opinion modification. By investigating the degree of deviation, we can avoid using a single constant parameter in the adjustment process. Especially when the constant parameter is too small (large), the results of adjustment may be indistinctive (too great).

Among DMs who do not meet the threshold, inevitably there are some DMs who insist on their original opinions and do not want to change them. In the case of such members, we should give due weight to their views [42, 43]. This paper allows them to stick to their original opinion but reduces the weight as the cost of sticking to their opinion.

Based on the consensus adjustment parameters \(\mu_h \) in Eq. (23), assuming that there are \(S \) members in this class, the weight adjustment coefficient \(\mu_k^w \) of this member can be determined (\(0 \leq k \leq s \leq m \)):

\[
\mu_k^w = 1 - \frac{\rho - CI_k}{\sum (\rho - CI^k)}. \quad (25)
\]

Then the adjusted weight of the class member is determined by:

\[
w_k' = \mu_k^w \cdot w_k^0, \quad (26)
\]

where \(w_k' \) is the adjusted weight of member \(k \), and \(w_k^0 \) is the original weight of member \(k \).

For the reduced weight \((1 - \mu_k^w)w_k \) of member \(k \), the RIM (monotonically increasing quantifier) method is adopted for differential allocation among all members that meet the threshold and are willing to modify their opinions [39]. Firstly, we rank the other members according to the consensus level of the decision matrices layer, and then calculate their proportion in obtaining the reduced weights \((1 - \mu_k^w)w_k \)

\[
p_i = Q\left(\frac{i}{m - s}\right) - Q\left(\frac{i - 1}{m - s}\right), \quad (27)
\]

where \(p_i \) represents the proportion obtained from \((1 - \mu_k^w)w_k \) by the \(i \)th largest member of the consensus level at the decision matrices layer, and \(Q(r) = r^a(0 \leq a \leq 1) \). The member’s weight will become:

\[
w_i' = w_i^0 + p_i \cdot \sum_{k=0}^{s} (1 - \mu_k^w)w_k, \quad (28)
\]

where \(w_i' \) is the adjusted weight of the \(i \)th largest member of the consensus level at the decision matrices layer, and \(w_i^0 \) is the corresponding original weight.

When the consensus level of DMs is lower, the weight adjustment coefficient will be smaller—that is, the degree of weight adjustment will be larger, and the DMs have to pay a higher price for sticking to their opinion. However, adjusting the weight of this class of DM will make them unable to meet the requirements of the consensus threshold. With their original opinion, under the premise of not amending, when other DMs in the group modify their opinions, opinions at the group level will be more focused, and there will be more deviation for DMs who are reluctant to change their opinion. In the case of reducing the weight of DMs who are reluctant to revise their opinions, calculation of the individual consensus level will decrease accordingly. However, the overall consensus level will be improved, which is also confirmed in our case.

After \(t (T \geq 1) \) consensus adjustments using the above dual feedback mechanism, the consensus adjustment process can be withdrawn when either of the following conditions is met:

1. The number of adjustments reaches the predetermined upper limit.
Except for those members who are unwilling to modify their own opinions, the others all meet the threshold of requirement for consensus.

4 A Fuzzy SN-MCGDM Framework for REP Selection

As an intricate decision-making problem, REP selection is affected by multiple criteria, and an inevitable social network relationship exists among the DMs. The MCGDM can be used to comprehensively evaluate the benefits of REP. Considering the social network relationship among DMs can optimize the decision-making process and improve the group decision-making effect. Hence, based on the proposed HPFT-SN, this paper combines MCGDM and SNA to solve the problem of REP selection. To this end, a fuzzy SN-MCGDM framework based on HPFT-SN is proposed, as shown in Fig. 4. It includes seven steps.

Step 1. Construct the HPFT-SN for DMs.

Based on the HPFT function proposed in this paper, as a means to express the strength of trust relationships among DMs, the social network relationship among DMs is examined. We can construct the social network HPFT-SN$_0$ among DMs.

Step 2. Replenish the social network using the trust propagation operator.

The trust propagation operator proposed in this paper is used to calculate the indirect trust relationships among DMs to obtain the improved social network HPFT-SN$_1$.

Step 3. Determine the weights of DMs.

After the perfect social network HPFT-SN$_1$ is obtained, the weights of each DM can be calculated according to the trust information. The method proposed in this paper is utilized to determine the weights w_j.

Step 4. Collect and integrate DMs’ evaluation information.

The evaluation information of each DM about the evaluated object is collected in the form of HPFT function and the individual decision information matrix R^i is formed. Then the HPFT-GWA operator is used to integrate the evaluation information of each DM and the group decision matrix is obtained.

Step 5. Measure consensus of DMs.

Based on the matrixes R^i and R, the consensus level of each DM is measured and compared with the given threshold value. If there are DMs who do not meet the threshold, proceed to the next step. If all the members meet the requirements of the threshold, then go directly to Step 7.

Step 6. Consensus adjustment among DMs.

For DMs who do not meet the threshold, if they are willing to modify their original evaluation opinions, they will be modified according to the feedback mechanism in this paper. If the DMs are not willing to modify their original opinions, their weights should be adjusted according to the weight adjustment mechanism in this paper. Repeat Steps 5 and 6 after the consensus adjustment is completed.

Step 7. Ranking and selection.

According to the sorting rules in this paper, the decision information under the HPFT environment is sorted and the optimal alternative is finally selected.

5 Case Study and Discussion

5.1 Practical Problem Description

As China’s economic powerhouse, Zhejiang Province is a huge consumer of energy. According to China’s National Bureau of Statistics, Zhejiang’s total energy consumption in 2017 was 210 million tons of standard coal, which is a leading level in China. However, reserves of exploitable fossil energy in Zhejiang Province are low, with inadequate self-sufficiency and a high degree of external dependence. Moreover, consumption of fossil energy such as oil and coal accounts for a high proportion of energy use. The energy consumption of Zhejiang Province is similar to the characteristics of China. At the same time, Zhejiang Province has multiple types of renewable energy, and it started early in construction so that rich development experience has been accumulated [44]. Therefore, the study of REP in Zhejiang Province is of great reference value and significance to solve the problem in China and even other parts of the world.

In recent years, Zhejiang Province has attached great importance to the supply and security of energy, striving to optimize the energy consumption structure and promote construction of the energy market. In 2019, Zhejiang Province completed a total investment of 66.52 billion yuan in major energy projects. During the period of the 14th Five-Year Plan, Zhejiang Province further proposed to explore the market-oriented reform of energy commodities vigorously to create an excellent market environment for energy enterprises. It plans to invest no less than 50–70 billion yuan a year to promote the new energy infrastructure. Zhejiang Province set up a special fund for renewable energy development in 2015, and counties demonstrating renewable energy can receive up to 18 million yuan in financial subsidies to actively guide and promote the construction of REP.

Attracted by both the policy and the market prospect, an energy company is planning to build an REP in Zhejiang...
Province. Due to the limited scale and technological level of the company, it plans to concentrate funds to develop a REP in the initial stage of entering Zhejiang to seize market share and lay a foundation for the later development of diversified projects. Hence, the enterprise needs to select the optimal REP for construction based on the current main renewable energy categories and distribution in Zhejiang Province. According to the preliminary market survey, Zhejiang Province mainly has the following five kinds of renewable energy.

1. Wind power (A_1)
 Located on the East China Sea coast of Zhejiang Province in the subtropical monsoon climate zone, with a 2253 km long coastline and rich mainland wind resources in the province, especially in the eastern coastal cities of Wenzhou, Taizhou, and Zhoushan, wind resources are abundant. The main distribution of wind resources in Zhejiang Province is shown in Fig. 5. With an average wind speed in the coastal area of more than 5 m/s and average annual effective wind speed hours of 6000 h, the province has the natural conditions for exploitation and utilization of wind energy [45]. In the 14th Five-year Plan of Zhejiang Province, the installed capacity is set to reach 6 million kW by 2025, with a broad market prospect.

Fig. 4 A fuzzy SN-MCGDM framework under HPFT-SN

Fig. 5 The main distribution of wind power
However, the price of offshore wind turbines is relatively high. The basic cost of a single wind turbine is between 13 and 20 million yuan, which means high investment costs and a large amount of engineering. In addition, typhoons, strong convection, and other meteorological disasters occur frequently in coastal areas of Zhejiang Province, which pose a certain threat to the operation of generator sets and further increase the costs of operation and maintenance in the later stage of the project.

(2) Tidal power (A_2)
Depending on the unique coastal location advantage, Zhejiang Province’s tidal power potential is sufficient for exploitation as shown in Fig. 6. According to the data, the average tidal range in coastal areas is 4.29 m [46], the theoretical reserve of tidal energy in the whole province is about 86.3 billion kWh, and the theoretical installed capacity is about 2897×10^4 kW [47], with great potential. At the same time, Zhejiang Province has built the earliest tidal power station in China, which has a long history of development and has accumulated abundant experience.

However, the reservoir is prone to siltation, and this is likely to have adverse effects on the water body and the surrounding ecological environment, increasing the difficulty of energy construction and social pressure.

(3) Biomass power (A_3)
Zhejiang Province has a large population and high population density, generating a huge amount of household garbage every day. In recent years, Zhejiang Province has attached great importance to the reuse of household garbage and the development of bio-energy [44]. The main distribution of biomass power in Zhejiang Province is shown in Fig. 7. In 2019, Zhejiang produced 37.94 million tons of household garbage, ranking third in China. To make full use of household garbage, Zhejiang has set a target of installing 3.5 million kW of biomass power by 2035. By the end of 2018, 56,800 tons/day of waste incineration had been put into operation in Zhejiang Province. The heat generated from the incineration is used to generate electricity, but the current capacity utilization rate is relatively deficient. In addition, crop straw in rural areas can be used to produce livestock manure biogas, and other biomass energy is also relatively rich.

Biomass has the characteristics of being a stable source with strong sustainability, but it has the problem of a small market size and easy saturation, lacking stable long-term investment benefits.

(4) Hydropower (A_4)
With dense rivers, the upper and middle reaches of the main river basins in Zhejiang Province mostly flow through hilly and mountainous areas, with a large water drop [44]. The hydropower resource in Zhejiang Province is 6.06 million kW, providing favorable conditions for the development of hydropower resources as shown in Fig. 8. Compared with wind power and solar power, water energy is characterized by continuous stability, cost-effectiveness, and a long lifecycle, and is an important part of renewable energy. During the period of the 14th Five-year Plan, nine pumped storage power stations

\[\text{Fig. 6} \quad \text{The main distribution of tidal power} \]

\[\text{Fig. 7} \quad \text{The main distribution of biomass power} \]
are expected to be built in Zhejiang Province. However, the hydropower resources in Zhejiang Province are relatively widely dispersed, and there are as many as 140 rivers with more than 10,000 kW of hydropower resources, so the income scale of a single project is limited.

Solar power (A5)
Zhejiang Province is located in the middle and low latitudes of the Northern Hemisphere (27° 10’ N–31°31’ N), where hours of sunshine are relatively sufficient, with an annual average of 1710–2100 h. The total annual solar radiation in each region is 4091–4604 MJ/m² [48]. The main utilization mode of solar energy, photovoltaic power generation, is priced between 7 and 10 yuan/W. Meanwhile, photovoltaic power generation projects in Zhejiang Province can enjoy government subsidies of 0.18 yuan/W, with a life-span of 25–30 years. The overall rate of return can reach 20–28%, with considerable market benefits.

However, as shown in Fig. 9, the temporal distribution of solar energy resources in Zhejiang Province is significantly uneven. Due to the influence of climate, the amount of solar radiation is high in spring and summer, but low in autumn and winter, which to a certain extent affects the stable and continuous supply of energy.

5.2 The SN-MCGDM Process

In order to solve the problem of REP, the company invited five well-known experts and scholars (e1–e5) in the industry to evaluate five alternative projects using the framework proposed in this paper. The initial social network relationship among the DMs is shown in Fig. 10. The threshold value of consensus is set in advance at 0.9. If the weight of some DMs needs to be adjusted, the amount of adjustments is set as 2. The weights of the criteria are w = (0.11, 0.13, 0.14, 0.16, 0.09, 0.12, 0.11, 0.14)T agreed upon by the DMs.

Step 1. Construction of the HPFT-SN for DMs
The HPFT function proposed in this paper is used to represent the social network trust relationship among members, and the HPFT-SN0 can be obtained as shown in Table 2.

Step 2. Replenish the social network using the trust propagation operator
Take DM e1 as an example. Except for e2, e1 does not have a direct trust relationship with other members, but trust relationship is transmitted through the social network. There is an indirect trust relationship between e1, e3, e4, and e5, which is calculated as follows:

There is only one trust propagation path between e1 and e5, and e1 and e4 severally, so according to Eq. (9), the trust relationships are respectively:

For path 1, \(P(e_1, e_5) = \{0.170|0.43, 0.280|0.43, 0.430|14\} \),
\(P(e_1, e_4) = \{0.420|0.5, 0.560|0.35, 0.720|0.15\} \).

There are two paths between e1 and e5, and the trust relationship can be obtained using the multi-path propagation operator:

For path 1, \(P^1(e_1, e_5) = \{0.210|0.47, 0.340|0.37, 0.500|16\} \);

For path 2, \(P^2(e_1, e_5) = \{0.420|0.5, 0.560|0.35, 0.720|0.15\} \).
According to Eq. (12), the weights of paths 1 and 2 are \(\theta_1 = 0.57 \) and \(\theta_2 = 0.43 \), respectively.

The trust relationship between the two paths can be integrated to further derive the trust relationship between e1 and e5: \(P(e_1, e_5) = \{0.17|0.45, 0.30|0.39, 0.47|0.16\} \) by Eq. (11).

Fig. 8 The main distribution of hydropower

Fig. 9 The main distribution of solar power
Using similar methods, we can replenish the trust relationship among all DMs. The calculation results are shown in Table 3.

Step 3. Determine the weights of DMs

Firstly, according to Eq. (13), the degree of centrality of each DM in the group is calculated, and the results are as follows:

\[C(e_1) = \{0.120, 0.320, 0.440\}, \]
\[C(e_2) = \{0.220, 0.290, 0.430\}, \]
\[C(e_3) = \{0.180, 0.260, 0.390\}, \]
\[C(e_4) = \{0.280, 0.380, 0.530\}, \]
\[C(e_5) = \{0.370, 0.510, 0.660\}. \]

The degree of centrality of the group can be further obtained by Eq. (14), as follows:

\[C(g) = \{0.220, 0.340, 0.480\}. \]

Then the distance between each degree of centrality of DM and the group is calculated by Eq. (15).

\[d(C(e_1), C(g)) = 0.1222, \]
\[d(C(e_2), C(g)) = 0.0299, \]
\[d(C(e_3), C(g)) = 0.0846, \]
\[d(C(e_4), C(g)) = 0.0695, \]
\[d(C(e_5), C(g)) = 0.15. \]

Finally, the weights of each DM can be obtained from Eq. (16), shown in Table 4.

Step 4. Collect and integrate DMs’ evaluation information

According to the comprehensive criteria system for REP constructed in this paper, five DMs are invited to evaluate five projects in Zhejiang Province. They are asked to evaluate the alternatives from the perspective of the appropriateness of each criterion in the form of HPFT function. The specific evaluation information is shown in Tables 5, 6, 7, 8 and 9.

After the evaluation information of the DMs is obtained, the HPFT-GWA proposed in Eq. (8) is used to integrate the evaluation information. The weights of the DMs have been obtained in Step 3. The group integration evaluation information is shown in Table 10.

Step 5. Consensus identification of DMs

The consensus level among DMs is calculated using Eq. (17), and the consensus level in the alternatives is obtained by Eq. (18), and shown as Table 11.

Furthermore, the consensus level of the decision matrixes can be obtained using Eq. (19), and shown in Table 12.

According to the above calculation results, we can identify that the degree of consensus among members \(e_1, e_3, \) and \(e_5 \) is lower than the threshold value of 0.9 previously set, so the original opinions of the three members need to be adjusted. After preliminary understanding, we learn that \(e_1 \) and \(e_5 \) are willing to modify their initial opinions, while \(e_3 \) refuses to modify their initial opinion.

For members \(e_1 \) and \(e_5 \), the consensus is further identified to the evaluation elements level by Eqs. (20)–(22). The results are as follows: (1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 1, 4), (1, 1, 5), (1, 1, 6), (1, 1, 7), (1, 1, 8), (1, 1, 9), (1, 1, 10), (1, 1, 11), (1, 1, 12), (1, 1, 13), (1, 1, 14), (1, 1, 15), (1, 1, 16), (1, 1, 17), (1, 1, 18), (1, 1, 19), (1, 1, 20).

Step 6. Consensus adjustment

Among the DMs whose consensus levels do not meet the threshold there are DMs who are unwilling to modify their initial opinions; the consensus adjustment process is therefore divided into two parts by the dual feedback mechanism.

Firstly, the DMs who are willing to modify their opinions do so. According to Eq. (23), the adjustment coefficients of \(e_1 \) and \(e_5 \) can be calculated as 0.6287 and 0.5571, respectively. According to these coefficients and Eq. (24), the evaluation information of the evaluation elements level that

Table 2 Initial HPFT relationship HPFT-SN_0

	\(e_1 \)	\(e_2 \)	\(e_3 \)	\(e_4 \)	\(e_5 \)
\(e_1 \)	–	[0.710, 0.810]			\{0.310, 0.410\}
\(e_2 \)	[0.610, 0.710]	–		\{0.410, 0.510, 0.601\}	
\(e_3 \)		–	\{0.701, 0.810, 0.910\}	–	
\(e_4 \)		\{0.810, 0.910, 1.010\}	–	\{0.510, 0.610, 0.710\}	–
\(e_5 \)	\{0.810, 0.910\}	–			–
After opinion adjustment, the consensus levels of members e_1 and e_5 reach 0.9204 and 0.9132, respectively, both of which meet the required consensus level threshold, and the consensus adjustment process can be ended.

Because e_3 refuses to modify his/her opinions, we need to adjust his/her weight. According to Eq. (25), the weight adjustment coefficient of e_3 is 0.8141, and the first round of adjustment is carried out according to this coefficient. We can get the new weights of all DMs after the first round of weight adjustment by Eqs. (26)–(28). Due to limited space, the consensus measure process is omitted here. The weights and consensus levels of decision matrices after adjustment are shown in Table 13.

On the basis of the first round of adjustment, we carry out the second round of weight adjustment: 0.8141 is taken as the adjustment coefficient and the weight is adjusted again according to Eqs. (26)–(28). After the second round of adjustment, the weights and consensus levels of decision matrices are shown in Table 14.

As shown in Fig. 11, after the dual feedback, the consensus level of DMs has been improved by varying degrees, and the overall consensus level has also been improved, except for e_3, who is not willing to modify his/her initial opinions.

Step 7. Ranking and selection

After the above consensus, the assessment information, the integrated evaluation matrix, and the weights of members are changed. The weights of members become $w = (0.2144, 0.2254, 0.1335, 0.2284, 0.1983)^T$. The final group integration evaluation matrix is shown in Table 15.

Given the weight of each criterion, the HPFT-GWA operator in Eq. (7) is used to integrate the HPFT information of each alternative. Table 16 shows us the results.

Table 3 Improved HPFT relationship HPFT-SN

e_1	e_2	e_3	e_4	e_5
$0.110.32, 0.200.46, 0.330.22$	$0.710.4, 0.800.6$	$0.150.18, 0.250.55, 0.370.27$	$0.300.8, 0.400.2$	
$0.600.4, 0.700.4, 0.800.2$	$0.250.24, 0.340.45, 0.490.31$	$0.080.26, 0.150.51, 0.270.23$	$0.180.0, 0.210.6, 0.320.2$	
$0.1700.43, 0.2800.43, 0.430.14$	$0.2800.45, 0.400.45, 0.540.1$	$0.400.3, 0.500.6, 0.600.1$	$0.0500.32, 0.0800.53, 0.1700.15$	
$0.4200.5, 0.5600.35, 0.7200.15$	$0.700.6, 0.800.3, 0.900.1$	$0.1700.34, 0.2600.41, 0.430.25$	$0.100.33, 0.1700.5, 0.2900.17$	
$0.1700.45, 0.3000.39, 0.4700.16$	$0.2900.47, 0.4300.38, 0.590.15$	$0.8000.4, 0.9000.3, 100.3$	$0.500.4, 0.600.4, 0.700.2$	

Table 4 The weights of each DM

e_1	e_2	e_3	e_4	e_5
0.8778	0.9701	0.9154	0.9305	0.8500
0.1932	0.2135	0.2015	0.2048	0.1870

Table 5 Evaluation information of e_1

A_1	A_2	A_3	A_4	A_5	
EC1	[0.800.6, 0.900.4]	[0.500.7, 0.610.3]	[0.710.7, 0.800.3]	[0.400.3, 0.500.7]	[0.800.4, 0.900.6]
EC2	[0.600.5, 0.700.5]	[0.500.3, 0.610.7]	[0.610.4, 0.710.6]	[0.700.4, 0.810.6]	[0.610.4, 0.710.6]
TE1	[0.400.6, 0.500.4]	[0.700.5, 0.800.5]	[0.500.6, 0.600.4]	[0.400.6, 0.500.4]	[0.700.6, 0.800.4]
TE2	[0.500.7, 0.600.3]	[0.400.3, 0.500.7]	[0.810.7, 0.900.3]	[0.600.7, 0.710.3]	[0.700.4, 0.800.6]
SO1	[0.700.6, 0.800.4]	[0.700.6, 0.800.4]	[0.710.8, 0.800.2]	[0.500.2, 0.610.8]	[0.800.7, 0.900.3]
SO2	[0.300.8, 0.400.2]	[0.600.7, 0.710.3]	[0.810.4, 0.900.6]	[0.800.7, 0.900.4]	[0.800.6, 0.900.4]
EN1	[0.500.6, 0.600.4]	[0.400.6, 0.500.4]	[0.500.7, 0.600.3]	[0.500.6, 0.610.4]	[0.400.7, 0.500.3]
EN2	[0.800.4, 0.900.6]	[0.500.6, 0.600.4]	[0.800.6, 0.900.4]	[0.800.6, 0.900.4]	[0.700.3, 0.800.7]
Based on the integrated evaluation information of alternatives, the degree of trust of each alternative can be calculated according to Eq. (9):

\[
\begin{align*}
TD_{A1} &= 0.5937, & TD_{A2} &= 0.6153, & TD_{A3} &= 0.6069, \\
TD_{A4} &= 0.5857, & TD_{A5} &= 0.6572.
\end{align*}
\]

According to the corresponding sorting rules, we can get alternative \(A_5 \)—solar energy is the company’s best choice.

5.3 Comparative Analysis and Discussion

In order to solve the problem of REP selection, this paper introduces the social network into multi-criteria decision-making of REP for the first time. It also combines hesitant probabilistic fuzzy trust with the social network for the first time, and proposes the HPFT-SN decision-making framework. Compared with the current main fuzzy social network methods, the HPFT-SN proposed in this paper has the following advantages.

1. Trust relationships are expressed with greater precision. Intuitionistic fuzzy sets (IFSs), interval IFSs, and linguistic numbers are commonly used in social networks, but these fuzzy sets all have shortcomings in the expression of the trust relationship. Intuitive fuzzy sets have been widely used to describe trust relationships in social networks [49], however, the trust relationships are expressed in the form of a discrete value when describing the trust relationship, and the expression form is single, so it is difficult to depict the trust relationship comprehensively. Interval IFSs can be used to describe the trust relationship.
through the interval form, avoiding use of the discrete value, relaxing the formal restriction of information expression, and playing a salient role in comprehensively reflecting the trust relationship \[42, 50\]. However, the form of interval makes representation of the strength of the trust relationship imprecise, increasing the difficulty of comparing the strength of trust relationships. In addition, linguistic number can be directly reflected in the transformation of intuitive trust information \[8, 51, 52\]. However, the linguistic number mostly appears in the discrete form, which simplifies the collection of trust information but makes the trust propagation between nodes differ greatly from the actual situation. Compared to the main fuzzy numbers in current social network relationships, the HPFS used in this paper can describe DMs’ evaluation information through multiple consecutive numbers rather than

Table 9	Evaluation information of \(e_5\)				
A_1	A_2	A_3	A_4	A_5	
EC_1	0.504, 0.606	0.606, 0.710	0.510, 0.604	0.710, 0.810	0.410, 0.504
EC_2	0.607, 0.710	0.710, 0.810	0.710, 0.810	0.410, 0.504	0.607, 0.710
TE_1	0.604, 0.710	0.810, 0.910	0.610, 0.710	0.507, 0.610	0.506, 0.610
TE_2	0.710, 0.810	0.710, 0.810	0.810, 0.910	0.310, 0.410	0.810, 0.910
SO_1	0.206, 0.310	0.608, 0.710	0.410, 0.504	0.608, 0.710	0.710, 0.810
SO_2	0.806, 0.910	0.506, 0.610	0.710, 0.810	0.710, 0.810	0.610, 0.710
EN_1	0.606, 0.710	0.410, 0.504	0.507, 0.610	0.607, 0.810	0.710, 0.810
EN_2	0.410, 0.504	0.507, 0.610	0.604, 0.710	0.410, 0.504	0.610, 0.710

Table 10	Group integration evaluation information—\(R\)				
A_1	A_2	A_3	A_4	A_5	
EC_1	0.610, 0.710	0.540, 0.640	0.571, 0.671	0.490, 0.600	0.600, 0.710
EC_2	0.560, 0.660	0.530, 0.630	0.571, 0.680	0.490, 0.590	0.660, 0.760
TE_1	0.510, 0.610	0.620, 0.720	0.490, 0.600	0.571, 0.670	0.550, 0.650
TE_2	0.580, 0.690	0.520, 0.630	0.610, 0.710	0.560, 0.670	0.640, 0.740
SO_1	0.400, 0.510	0.680, 0.780	0.520, 0.630	0.590, 0.690	0.671, 0.770
SO_2	0.530, 0.630	0.550, 0.650	0.671, 0.770	0.590, 0.690	0.690, 0.790
EN_1	0.550, 0.650	0.478, 0.570	0.540, 0.640	0.490, 0.600	0.578, 0.670
EN_2	0.610, 0.710	0.590, 0.690	0.600, 0.710	0.550, 0.650	0.590, 0.700

Table 11	The consensus level of DMs in alternatives				
\(e_1\)	\(e_2\)	\(e_3\)	\(e_4\)	\(e_5\)	
A_1	0.8526	0.9206	0.893	0.9276	0.8643
A_2	0.9355	0.8917	0.9002	0.9208	0.8828
A_3	0.8911	0.8925	0.8696	0.8715	0.9158
A_4	0.8970	0.9437	0.918	0.9129	0.8803
A_5	0.8798	0.8815	0.8971	0.9179	0.9043

Table 12	Consensus level of decision matrices			
\(e_1\)	\(e_2\)	\(e_3\)	\(e_4\)	\(e_5\)
0.8912	0.9060	0.8956	0.9101	0.8895

Table 13	Results of first round adjustment of weight				
\(e_1\)	\(e_2\)	\(e_3\)	\(e_4\)	\(e_5\)	
Original weight	0.1932	0.2135	0.2015	0.2048	0.1870
Adjusted weight	0.1992	0.2213	0.1640	0.2235	0.1920
Consensus level	0.9149	0.9115	0.8922	0.9124	0.9149

Table 14	Results of second round adjustment of weight				
\(e_1\)	\(e_2\)	\(e_3\)	\(e_4\)	\(e_5\)	
Original weight	0.1992	0.2213	0.1640	0.2235	0.1920
Adjusted weight	0.2144	0.2254	0.1335	0.2283	0.1983
Consensus level	0.9208	0.9133	0.8889	0.9125	0.9165
linguistic and interval values. This feature enables HPFS to reflect trust relationships more truly and aptly so that the trust relationships between each DM under the social network can be described in more detail, and the trust relationships can be better expressed quantitatively.

(2) The propagation of trust is more explicit. At present, t-norm (T) and t-conorm (S) are relatively suitable for constructing trust propagation operators and integration operators [53], and these have been popularized and applied in many different fuzzy environments in SNA [52, 54]. However, most of the existing research constructs the trust propagation operator by introducing or improving the theory of t-norm and t-conorm. Although they are suitable in nature for constructing trust propagation operators, their thinking and calculation make trust propagation, a complex human behavior, oversimplified and unified. Trust propagation shows linear change, which is different from the real trust relationship. In some forms of trust relationship, such as interval IFSs and linguistic numbers, such calculation is more likely to deviate from the actual situation.

In this paper, the trust propagation operator based on HPFT-SN is constructed without the commonly used t-norm and t-conorm theories. Instead, it starts directly from the trust relationship itself, introduces the idea of conditional probability in probability theory, and constructs the trust propagation operator, which ensures the nature of trust attenuation in the process of trust propagation. This operator is more in line with the actual situation where people deal with indirect trust. Therefore, the process of trust propagation can be more thoroughly reflected in HPFT-SN.

6 Conclusions

A series of severe challenges such as abnormal climate, environmental degradation, and intensified greenhouse effect are threatening the earth’s ecology, and ecological protection has to be attended to by all countries. As an energy source with low or even zero emissions of pollutants, renewable energy is gradually becoming the key

Table 15 The adjusted group integration evaluation information—R^g

	A_1	A_2	A_3	A_4	A_5
EC1	(0.60004, 0.70005)	(0.54004, 0.640034)	(0.56006, 0.660038)	(0.470060, 0.580040)	(0.600046, 0.710054)
EC2	(0.560050, 0.660050)	(0.53004, 0.630030)	(0.600054, 0.710046)	(0.490058, 0.590042)	(0.650054, 0.750046)
TE1	(0.510052, 0.610048)	(0.610058, 0.710042)	(0.500058, 0.600042)	(0.570062, 0.670038)	(0.540054, 0.640046)
TE2	(0.590058, 0.690042)	(0.520044, 0.620056)	(0.590050, 0.690050)	(0.590054, 0.690046)	(0.640044, 0.740056)
SO1	(0.400052, 0.500048)	(0.680062, 0.780038)	(0.500062, 0.600038)	(0.590054, 0.690046)	(0.660052, 0.760048)
SO2	(0.540058, 0.640042)	(0.560066, 0.660034)	(0.650052, 0.750048)	(0.600058, 0.700042)	(0.670066, 0.770034)
EN1	(0.540052, 0.640048)	(0.460050, 0.560050)	(0.540072, 0.640028)	(0.500056, 0.600044)	(0.590066, 0.690034)
EN2	(0.620052, 0.720048)	(0.580062, 0.680038)	(0.580056, 0.680044)	(0.550052, 0.650048)	(0.590060, 0.690040)

Table 16 The integrated evaluation information of alternatives

A_1	A_2	A_3	A_4	A_5
[0.545900535, 0.648700465]	[0.5517005725, 0.6538004275]	[0.5659005825, 0.6670004175]	[0.5413005675, 0.6440004325]	[0.613005525, 0.7139004475]
direction of future energy construction. The choice of REP is of profound and long-term significance to the improvement of regional ecological environments. This paper constructs a SN-MCGDM framework of REP based on HPET-SN, which provides a new method for the selection of REP. This model first introduces SNA into the selection process of REP, solves the problem of ignoring the relationship between DMs in previous methods, improves the group decision-making efficiency, and further optimizes the selection of REP. At the same time, this framework combines HPFS with social network for the first time, and proposes a new social network trust relationship. Furthermore, this paper offers further innovation and discussion on the propagation of the social trust relationship, which provides a new tool for enriching and developing social network theory and better solving practical decision-making problems. To verify the proposed framework, it was used in REP selection in Zhejiang Province, China. Through comparative analysis, the framework is characterized by more accurate expression of the trust relationship and more objective propagation of trust.

SN-MCGDM is being used more and more in comprehensive evaluation and decision-making. As a new form of social network, the HPFT-SN proposed in this paper has certain advantages, and it can be used to solve many other decision-making problems such as supplier selection and personnel arrangement.

However, the new form still needs to be improved. In the process of consensus adjustment, especially for members who do not wish to modify their opinions, we adopt the method of reducing weight. However, there may be misunderstandings in the evaluation information of some DMs, especially authoritative scholars. Hence, in the future we will continue to improve and explore the adjustment mechanism.

Acknowledgements The authors are very grateful to the anonymous referees for their valuable comments and suggestions. This work was supported by National Social Science Foundation of China (No. 18BTJ027, 20CTJ016, 21ATJ010). The First-Class Discipline of Zhejiang-A (Zhejiang Gongshang University—Statistics) also funded this research.

References

1. IEA. World Energy Outlook 2018. IEA (2018). https://webstore.iea.org/world-energy-outlook-2018 (cited Oct 2020)
2. OPEC. World Oil Outlook 2018. OPEC (2018). https://www.opec.org/opec_web/en/publications/340.htm (cited Oct 2020)
3. Li, J.W., Zhang, X.Y., Ali, S., Khan, Z.: Eco-innovation and energy productivity: new determinants of renewable energy consumption. J. Environ. Manag. 271, 1–7 (2020)
4. Pan, X.H., Wang, Y.M.: An enhanced technique for order preference by similarity to ideal solutions and its application to renewable energy resources selection problem. Int. J. Fuzzy Syst. 23(4), 1–15 (2020)
5. Buyukozkan, G., Guleryuz, S.: Evaluation of renewable energy resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations. Energy 123, 149–163 (2017)
6. Zhang, C.H., Wang, Q., Zeng, S.Z., et al.: Probabilistic multi-criteria assessment of renewable micro-generation technologies in households. J. Clean. Prod. 212, 582–592 (2019)
7. Afsordegan, A., Sánchez, M., Agell, N., et al.: Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives. Int. J. Environ. Sci. Technol. 13(6), 1419–1432 (2016)
8. Haddad, B., Liaizid, A., Ferreira, P.: A multi-criteria approach to rank renewables for the Algerian electricity system. Renew. Energy 107, 462–472 (2017)
9. Zhang, C.H., Chen, C., Streimikiene, D., Balezentis, T.: Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies. Appl. Soft Comput. 79, 410–423 (2019)
10. Owens, G.: Best Practices Guide: Economic and Financial Evaluation of Renewable Energy Projects. U.S. Agency for International Development, Washington, DC (2002)
11. Falconett, I., Nagasaka, K.: Comparative analysis of support mechanisms for renewable energy technologies using probability distributions. Renew. Energy 35(6), 1135–1144 (2010)
12. Torriti, J.: Multiple-project discount rates for cost–benefit analysis in construction projects: a formal risk model for microgeneration renewable energy technologies. Constr. Manag. Econ. 30(9), 739–747 (2012)
13. Kyeongseok, K., Hyoungbae, P., et al.: Real options analysis for renewable energy investment decisions in developing countries. Renew. Sustain. Energy Rev. 75, 918–926 (2017)
14. Colak, M., Kaya, I.: Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: a real case application for Turkey. Renew. Sustain. Energy Rev. 80, 840–853 (2017)
15. Ren, R.X., Tang, M., Liao, H.C.: Managing minority opinions in micro-grid planning by a social network analysis-based large scale group decision making method with hesitant fuzzy linguistic information. Knowl. Based Syst. 189, 1–14 (2020)
16. Li, M.N., Jia, Z.Q.: Review on the development and research progress of social network theory. China Manag. Inf. 17(03), 133–135 (2014)
17. Wolfe, A.W.: Social network analysis: methods and applications. Contemp. Sociol. 91(435), 219–220 (1995)
18. Wu, J., Chang, J.J., Cao, Q.W., et al.: A trust propagation and collaborative filtering based method for incomplete information in social network group decision making with type-2 linguistic trust. Comput. Ind. Eng. 127, 853–864 (2019)
19. Chen, X.H., Zhang, W.W., Xu, X.H.: Large group decision making method based on hesitation and consistency under social network context. Syst. Eng. Theory Pract. 40(05), 1178–1192 (2020)
20. Xu, Z.S., Zhou, W.: Consensus building with a group of decision makers under the hesitant probabilistic fuzzy environment. Fuzzy Optim. Decis. Mak. 16(4), 481–503 (2017)
21. Gao, J., Xu, Z.S., Liao, H.C.: A dynamic reference point method for emergency response under hesitant probabilistic fuzzy environment. Int. J. Fuzzy Syst. 19(5), 1261–1278 (2017)
22. He, Y., Xu, Z.S.: Multi-attribute decision making methods based on reference ideal theory with probabilistic hesitant information. Expert Syst. Appl. 118, 459–469 (2018)
23. Song, C.Y., Xu, Z.S., Zhao, H.: New correlation coefficients between probabilistic hesitant fuzzy sets and their applications in cluster analysis. Int. J. Fuzzy Syst. 21(2), 355–368 (2019)
24. Ding, Q.Y., Wang, Y.M., Goh, M.: TODIM dynamic emergency decision-making method based on hybrid weighted distance under probabilistic hesitant fuzzy information. Int. J. Fuzzy Syst. (2021). https://doi.org/10.1007/s40815-020-00978-8
25. Jin, F.F., Garg, H., Pei, L.D., Liu, J.P., Chen, H.Y.: Multiplicative consistency adjustment model and data envelopment analysis-driven decision-making process with probabilistic hesitant fuzzy preference relations. Int. J. Fuzzy Syst. 22(7), 2319–2332 (2020)
26. Zhang, L., Zhang, C.H., Su, W.H., et al.: A hesitant probabilistic fuzzy multi-criteria group decision making framework for urban land consolidation in China. IEEE Access 8, 182930–182942 (2020)
27. Sengul, U., Eren, M., Shiraz, S.E., et al.: Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew. Energy 75, 617–625 (2015)
28. Chatzimouratidis, A.I., Pilavachi, P.A.: Technological, economic and sustainability evaluation of power plants using the analytic hierarchy process. Energy Policy 37(3), 778–787 (2009)
29. Theodorou, S., Florides, G., Tassou, S.: The use of multiple criteria decision making methodologies for the promotion of RES through funding schemes in Cyprus, a review. Energy Policy 38(12), 7783–7792 (2010)
30. Amer, M., Daim, T.U.: Selection of renewable energy technologies for a developing country: a case of Pakistan. Energy Sustain. Dev. 15(4), 420–435 (2011)
31. Iskin, I., Daim, T., Kayakutlu, G., et al.: Exploring renewable energy pricing with analytic network process: comparing a developed and a developing economy. Energy Econ. 34(4), 882–891 (2012)
32. Al Garni, H., Kassem, A., Awasthi, A., et al.: A multicriteria decision making approach for evaluating renewable power generation sources in Saudi Arabia. Sustain. Energy Technol. Assess. 16, 137–150 (2016)
33. Malkawi, S., Al-Nimr, M., Azizi, D.: A multi-criteria optimization analysis for Jordan’s energy mix. Energy 127, 680–696 (2017)
34. Trolborg, M., Heslop, S., Hough, R.L.: Assessing the sustainability of renewable energy technologies using multi-criteria analysis: suitability of approach for national-scale assessments and associated uncertainties. Renew. Sustain. Energy Rev. 39(6), 1173–1184 (2014)
35. Bernhard, B., Missaoui, R.: Multi-criteria analysis of electricity generation mix scenarios in Tunisia. Renew. Sustain. Energy Rev. 39(6), 251–261 (2014)
36. Scott, H.P.: Social Network Analysis: A Handbook, Sage Publications Ltd., London (2000)
37. Wu, J., Chiclana, F.: A social network analysis trust consensus-based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations. Knowl. Based Syst. 59, 97–107 (2014)
38. Pei, F., He, Y.W., Yan, A., et al.: A consensus model for intuitionistic fuzzy group decision-making problems based on the construction and propagation of trust/distrust relationships in social networks. Int. J. Fuzzy Syst. 22(8), 1–16 (2020)
39. Wu, J., Xiong, R.Y., Chiclana, F.: Uninorm trust propagation and aggregation methods for group decision making in social network with four tuple information. Knowl. Based Syst. 96, 29–39 (2016)
40. Dong, Q.X., Zhu, K.Y., Cooper, O.: Gaining consensus in a moderated group: a model with a twofold feedback mechanism. Expert Syst. Appl. 71, 87–97 (2017)
41. Xie, X.Y., Liu, H.W., Zeng, S.Z., Lin, L.B., Li, W.: A novel progressively undersampling method based on the density peaks sequence for imbalanced data. Knowl. Based Syst. 213, 106689 (2021)
42. Xu, X.H., Zhang, Q.H.: Management of non-cooperative behavior in consensus-based large group emergency decision making in social network environment. Control Decis. 35(10), 2497–3256 (2020)
43. Zhang, C.H., Su, W.H., Zeng, S.Z., et al.: A two-stage subgroup decision-making method for processing large-scale information. Expert Syst. Appl. 171, 114586 (2021)
44. Wu, Y.J., Xie, Z.Y.: Evaluation of development potential of new energy resource and policy choice in Zhejiang Province. Ecol. Econ. 10, 98–101 (2009)
45. Fu, G.M., Sun, Z.D., Ji, J.: Construction of comprehensive evaluation system of island landscape energy resources. China Sci. Technol. Inf. 15, 215–216 (2011)
46. Liang, L., Jin, N.L., Ni, Y.Q.: Investigation and applied research of tidal energy resources in Zhejiang Province. Zhejiang Hydrotech. 41(4), 17–18 (2013)
47. Zhao, X.H.: Current status of tidal power utilization in Zhejiang Province. J. Mar. Sci. 2, 76–80 (1983)
48. Huang, Y., Cai, M., Yan, H.M.: The distributive character and compartment analysis of solar energy resources in Zhejiang Province. Bull. Sci. Technol. 30(5), 78–85 (2014)
49. Chen, X.H., Zhang, W., Xu, X.H.: Large group decision making method based on hesitation and consistency under social network context. System Eng. Theory Pract. 40(5), 1178–1192 (2020)
50. Mu, Z.M., Zeng, S.Z., Wang, P.Y.: Novel approach to multi-attribute group decision-making based on interval-valued Pythagorean fuzzy power Maclaurin symmetric mean operator. Comput. Ind. Eng. 155, 1–35 (2020)
51. Zhang, H.J., Xiao, J., Palomares, I.: Linguistic distribution-based optimization approach for large-scale GDM with comparative linguistic information: an application on the selection of wastewater disinfection technology. IEEE Trans. Fuzzy Syst. 28(2), 376–389 (2020)
52. Wu, J., Chiclana, F., Herrera-Viedma, E.: Trust based consensus model for social network in an incomplete linguistic information context. Appl. Soft Comput. 35, 827–839 (2015)
53. Zheng, Y.F., Xu, J.: A trust transitivity model for group decision making in social network with intuitionistic fuzzy information. Fac. Sci. Math. 32(5), 1937–1945 (2018)
54. Deschrijver, G., Kerre, E.E.: A generalisation of operators on intuitionistic fuzzy sets using triangular norms and conforms. Notes Inst. Fuzzy Sets 1(1), 19–27 (2002)
Le Zhang was born in Liaocheng, Shandong, China, in 1997. He received the B.S. Degree in Statistics from the Zhejiang Gongshang University, in 2019. He is currently pursuing the M.S. Degree with the College of Statistics and Mathematics, Zhejiang Gongshang University, China. His current research interests include the multiple-criteria decision-making methods, educational evaluation, and social networks.

Shouzhen Zeng was born in Ji’an, Jiangxi Province, China in 1981. He received the B.S. Degree in Mathematics from Jiangxi Normal University in 2002, the M.S. Degree in Applied Mathematics from Tianjin University in 2007, and Ph.D. Degree in Statistics from Zhejiang Gongshang University in 2013. Since 2019, he has been a Professor with the Business Department, Ningbo University. He is the author of more than 70 articles. His research interests include in group decision making, intuitionistic fuzzy sets analysis, etc.

Huanhuan Jin was born in Shengzhou, Zhejiang Province, China in 1988. She received the B.S. Degree in Mathematics and Applied Mathematics from Zhejiang Gongshang University in 2010, and Master Diploma from University of Rennes 1 in 2013. Since 2016, she has been a Teacher in Zhejiang Gongshang University Hangzhou College of Commerce. She has published more than 20 papers. Her current research interests include composite indicators, decision making, public heath, etc.