Characteristics of kappa-casein gene polymorphism in cows of Swiss breed and their productive qualities at a large dairy

S. G. Pishchan, K. A. Sylchenko
Dnipro State Agrarian and Economic University, Dnipro, Ukraine

Introduction

Today, Ukraine, like other countries, is demonstrating an increased concern about the scientific approach to increasing and improving the quality of agricultural products. This is especially true for the development of the dairy industry, because milk and dairy products are the most in-demand food products for both children and adults (Moshkovska, 2019; Shevchenko & Tabachuk, 2019). The State Statistics Service of Ukraine currently lists 1,667,000 head of cattle in the country and about 428,500 cows of various breeds are kept in the agricultural sector, but scientists and livestock experts are now striving to stabilize the number of cows and further increase it, especially at large-scale dairy units (Prokopenko, 2019). Therefore, contemporary studies by well-known researchers are now devoted to determining allelic variants of certain genes or genotypes of cows of highly productive breeds, which will allow selection of animals taking into account their genetic potential of high milk productivity, the implementation of which depends heavily on their yarding, feed quality and health conditions (Yoshida et al., 2009; Alim et al., 2014; Krupin et al., 2017). The studied kappa-casein gene (CSN3) is associated with milk protein and process milk properties (Sel'sgov et al., 2013; Zepeda-Bastida et al., 2017). It is known that allele A of the kappa-casein gene is associated with increased milk yield in cows, and allele B is associated with a high fat and protein content in milk and better technological performance for the production of hard cheeses (Kopylov, 2010; Huism et al., 2018). Therefore, the milk of cows with the genotype BB and AB capa-casein is characterized by a higher protein content and under the influence of enzyme rennet coagulates faster than the milk of cows with AA genotype (Pazzola et al., 2020; Doosti et al., 2011). Thus, to date, according to the literature, it is known that in Ukraine genetic study of cows was carried out by Suprovych & Mokhnachova (2017), who studied the polymorphism of kappa-casein (CSN3) genes in cows of the grey Ukrainian breed. The researchers found that in cows of the grey Ukrainian breed the incidence of A allele of the kappa-casein CSN3 gene associated with increased milk yield was 60.7% and was significantly higher than the incidence of B allele associated with high protein content in milk and the best technological indicators for the production of hard cheeses were found in 39.3% of the population of this cow. But according to foreign literature data in the meta-analysis of the study of the influence of alleles A and B of the kappa-casein gene on milk yield and milk composition, it was found that selection based on allele B of kappa-casein can be used to improve the percentage of milk fat in dairy cows (Bangar et al., 2021). Thus, an increase in the population of the allelic variant B of capa-casein makes it possible to obtain a higher yield of protein-dairy products, and the milk of such animals is desirable when used in the production of high-quality hard cheeses (Dolmatova & Ilyasov, 2011).

Kappa-casein of cattle is a phospho-protein with 169 amino acids encoded by a single polymorphic gene (CSN3) located on chromosome 6 of the genome of cows of different breeds (Samorè, 2012; Dolmatova & Va-
only two A and B allelic variants are used to analyze the kappa casein gene polymorphism because they occur in all breeds of cows. Variant B of the kappa-casein gene is the result of two point mutations – at positions 136 and 148, which lead to amino acid substitutions of Tyr-Is0 and Ala-Asp (Suprovych & Mokhrachova, 2017). Nowadays, the study of milk productivity of cows associated with alleles or genotypes of specific genes responsible for the productive properties of cattle is topical and relevant. This will allow us to predict the lifetime milk productivity of cows, the quality of dairy products, to improve the selection work at large-scale dairy units (Volkandari et al., 2017; Barbosa et al., 2019; Ladyka et al., 2021). In addition, this work should confirm or refute the hypothesis that a certain genotype of the kappa-casein gene in the breed Swiss cows is associated with certain economically useful traits, such as high milk yields or protein and fat content. Therefore, the study of the regularity of distribution of kappa-casein gene genotype polymorphism in mothers and daughters of the Swiss breed cows, taking into account their milk productivity, is relevant.

Materials and Methods

The study is based on the principles the bioethics of according to the observance of the International Principles of the “European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes” (Strasbourg, 1985) accepted by the of Dnipro State Agrarian and Economic University’s Bioethics Commission. The study of kappa-casein gene polymorphism (CSN3) was performed on 111 cows of the Swiss breed, which were kept under intensive operating conditions at a large-scale dairy unit “Ekaterinoslavsky” in Dnipropetrovsk region. The observation group I included 51 cow-mothers of the Swiss breed; group II – 60 cow-daughters of the Swiss breed.

Molecular-and-genetic studies on the genotyping of cattle were performed by the standard method of polymerase chain reaction using cows’ venous blood, collected in vacuum tubes with EDTA. Genotyping was performed by the polymerase chain reaction method using the equipment 7500 Fast Real-Time System (Applied Biosystems, USA). The study used the total DNA samples isolated from whole venous blood using probes and primers TaqMan® Assay. Analysis of the study results was performed using the software 7500 Fast Real-time PCR Software (Applied Biosystems, USA).

The study tested the distribution of genotypes and allelic genes of the kappa-casein gene (CSN3) in cow-mothers and cow-daughters of the Swiss breed. It was proved that in both cow-mothers and cow-daughters of the Swiss breed, allele B was more often registered than allele A. So, in the cow-mothers, the frequency of allele B was recorded 2.6 times less than allele A. The cow-daughters of the Swiss breed had the allele B, which recorded 2.3 times less than allele A (Table 1). Accordingly, the milk of the Swiss breed cows with such genetic markers should be protein-containing, from which better quality hard cheeses can be made.

Table 1

Groups of Swiss cows	Allele A incidence	Allele B incidence	Observed heterozygosity	Expected heterozygosity	χ²	P
Cow-mothers (n = 51)	0.725	0.275	0.431	0.399	0.040	0.841
Cow-daughters (n = 60)	0.300	0.700	0.367	0.420	0.140	0.708

To assess genetic diversity, the observed heterozygosity and less sensitive to the sample size expected heterozygosity index were determined in the groups of cow-mothers and cow-daughters of the Swiss breed. According to Hardy-Weinberg’s law, the absence of a significant difference between the observed and expected heterozygosity for the kappa-casein gene in both observation groups of cow-mothers and cow-daughters of the Swiss breed indicates the presence of an equilibrium between the incidences of homoygous and heterozygous which is passed on from generation to generation, and polymorphism of kappa casein is almost at the population level. At the same time, conditions of paupnicxia, absence of mutational pressure and selection pressure remain. That is, crossbreeding in the population or in the studied groups of the Swiss breed cows can be considered random or free, and selective pressure on alleles A or B can be considered absent. At the same time, the Selender's coefficient in the cow-mothers of the Swiss breed was 0.08, which indicated an excess of heterozygotes, and in the cow-daughters of the Swiss breed was -0.126 and the negative value of this coefficient still indicated a deficit of heterozygotes associated with selection measures in a group of the Swiss breed cow-daughters.

The study tested the distribution of genotypes and allelic genes of the kappa-casein gene (CSN3) in cow-mothers and cow-daughters of the Swiss breed. The homozygous genotype of BB in cow-mothers was recorded 8.6 times more often than the homozygous genotype of AA, but only in once more than the heterozygous genotype of AB. Otherwise, the homozygous genotype of AB in cow-mothers was found almost 10 times more than the homozygous genotype of AA in cow-daughters of the Swiss breed, the homozygous genotype of BB also prevailed. This is the genotype of BB was recorded four times more often than the homozygous genotype of AA and almost once more than the heterozygous genotype of AB. Also, in the cow-daughters, the AB genotype was recorded almost 7 times more than the homozygous genotype of AB (Table 2).

Subsequently, the milk productivity of the Swiss breed cows was analyzed depending on the polymorphism of the kappa-casein gene. Among the studied groups of cows of the Swiss breed, regardless of genotypes, cow-mothers, of course, had a longer period of industrial use and productive longevity and at the time of the survey had 5.1 ± 0.2 lactation, and their cow-daughters of the Swiss breed had 1.8 ± 0.1 lactation.

Regul. Mech. Biosyst., 2021, 12(5)
The analysis of the data obtained indicated that there was a longer duration of lactation in cows of the Swiss breed with the AA genotype of the kappa-casein gene than those with AB and BB (244 and 240 milking days or 71.3% and 68.9%, Table 3). The results of this work proved that in cow-mothers of the Swiss breed, the AA genotype was associated with significantly higher milk yield per lactation, exceeding by 43.0% and 35.7% milk the yields of cows with AB and BB genotypes. The lowest milk yield was registered in cow-mothers of heterozygotes with AB genotype, but the milk yield per lactation was only 5.4% lower than in homozygotes with BB genotype.

Table 3

Genotype (n)	Number of lactations (quantity)	Lactations duration (actual days milking)	Milk yield per lactation, kg	Milk yield for 305 days of the standard lactation, kg
AA (n=23)	5.60 ± 1.00	587 ± 47	1363 ± 600	1040 ± 831
AB (n=22)	5.36 ± 0.23	345 ± 21	9520 ± 600	8749 ± 373
BB (n=26)	4.88 ± 0.22	347 ± 13	10003 ± 350	9215 ± 247

Note: different letters indicate values which reliably differed one from another within one table according to the Bonferroni correction.

A trend to longer duration of lactation is registered in cow-daughters with genotype AA compared to those of genotypes AB and BB (longer by 18.1% and 12.8%, respectively, Table 4). No such dependence was observed in cow-daughters of the Swiss breed, but higher milk yields per lactation were registered in cow-daughters with genotype AB: only 1.5% more than milk yields per lactation of cow-daughters with AA genotype and 2.3% more than those with BB genotype.

Table 4

Genotype (n)	Number of lactations (quantity)	Lactations duration (days)	Milk yield per lactation, kg	Milk yield for 305 days of the standard lactation, kg
AA (n=7)	3.31 ± 0.56	417 ± 63	9971 ± 523	9216 ± 412
AB (n=23)	2.64 ± 0.145	353 ± 21	10125 ± 409	9320 ± 448
BB (n=31)	1.90 ± 0.20	370 ± 15	9893 ± 279	9251 ± 211

Note: see Table 3.

However, the milk yield of cow-mothers of the Swiss breed with AA genotype exceeded the cow-daughters of the same breed with AA genotype by 36.5% (P < 0.05). At the same time, for 305 days of standardized lactation, only at the level of trends, was an excess of milk yield in cow-mothers of the Swiss breed with AA genotype noted (by 14.8%), which is more than in cow-mothers with AB genotype and only by 9.0% more than in cow-mothers of the Swiss breed with the BB genotype. Among heterozygous cow-daughters of the Swiss breed with AB genotype, for 305 days of standardized lactation, milk yields slightly exceeded milk yields of homozygous cow-daughters with AA genotype – by 1.13%, and with BB genotype – by 0.74%.

The quality of the Swiss breed cows' milk, taking into account the genotypes of the kappa-casein gene in cow-mothers and their daughters, was assessed, respectively, by relative and absolute indicators of fat, protein and their ratio in milk. Thus, it was found that in cow-mothers of the Swiss breed with homozygous AA genotype, the fat values significantly exceeded the same indicators of the cow-mothers with the AB genotype (by 327 kg or 86.9%) and only trend – with BB genotype (by 302 kg or 75.3%, Table 5).

Table 5

Genotype (n)	Fat, %	Protein, %	Products, kg		
			Fat, kg	Protein, kg	Fat + protein, units
AA (n=3)	5.22 ± 0.95	3.83 ± 0.11	703 ± 107	447 ± 98	1150 ± 206, 1.65 ± 0.14
AB (n=22)	3.82 ± 0.12	3.83 ± 0.11	376 ± 38	328 ± 28	704 ± 57, 1.16 ± 0.04
BB (n=20)	3.71 ± 0.12	3.11 ± 0.06	401 ± 21	332 ± 13	773 ± 33, 1.20 ± 0.04

Note: see Table 3.

Also in the group of cow-mothers of the Swiss breed with the AA genotype, the production of fat and protein had a trend to exceeded by 446 kg (63.3%) and 417 kg (56.9%) the same indicators in cow-mothers with AB genotypes and BB genotypes. The ratio of fat to protein in cattle with AA genotype exceeded by 40.5% and 35.8% the same indicators in the groups of cows-mothers with AB and BB genotypes. At the level of the trend, the highest relative fat index was registered in cow-mothers of the Swiss breed with AA genotype, which was 1.3 times higher when compared with AB and BB genotypes. In contrast, the highest fat content in milk (by 6.2% — when compared with AA genotype and only by 1.8% — when compared with AB genotype) was registered in daughters of the Swiss breed with BB genotype (Table 6).

Table 6

Genotype (n)	Fat, %	Protein, %	Products, kg		
			Fat, kg	Protein, kg	Fat + protein, units
AA (n=7)	3.73 ± 0.13	3.36 ± 0.06	371 ± 21	337 ± 18	708 ± 34, 1.11 ± 0.06
AB (n=22)	3.89 ± 0.16	3.34 ± 0.07	391 ± 25	337 ± 17	727 ± 40, 1.16 ± 0.04
BB (n=31)	3.96 ± 0.17	3.43 ± 0.06	392 ± 16	321 ± 11	713 ± 27, 1.22 ± 0.02

Note: see Table 3.

Analysis of absolute data of the fat content in milk indicated that the production of fat in dairy cows with BB genotype only slightly exceeded these values in the groups with the AA genotype, by 21 kg. The ratio of fat to protein in cow-daughters with BB genotype exceeded the indicators registered in cow-daughters with AA and AB genotypes by 9.9% and 5.2% respectively. Accordingly, the indicators of fat production and the ratio of fat to protein in the milk of cow-mothers of the Swiss breed with AA genotype were by 89.4% (P < 0.05) and 46.9% (P < 0.05) higher in cow-daughters with AB and BB genotypes than in cow-daughters with AA genotype. At the same time, the analysis of indicators characterizing the intensity of milk secretion indicated that both in cow-mothers and cow-daughters of the Swiss breed with AA genotype of kappa-casein gene polymorphism, the amount of milk per 1 day of lactation and per 1 day of calving interval was lower than in the respective groups of animals with AB and BB genotypes. That is, in the Swiss breed cow-mothers homozygous for allele A, the amount of milk per 1 day of lactation were lower by 8 kg or 50.3% (P < 0.05) and by 9 kg or 55.4% (P < 0.05) when compared with heterozygotes BB and homozygous genotype of BB. The milk yield per 1 day of calving interval was lower by 7 kg or 44.0% (P < 0.05) – when compared AA genotype of BB genotype (Tables 7).

Table 7

Genotype (n)	Milk quantity (kg) per 1 lactation day, kg	1 day of calving interval, kg
	Adaptation index, units	
AA (n=3)	18 ± 3	-0.59 ± 0.185
AB (n=22)	26 ± 1	-0.080 ± 0.071
BB (n=26)	27 ± 1	-0.126 ± 0.040

Note: see Table 3.

However, in cow-daughters homozygous for A allele, only one trend was noted as to the amount of milk per one day of lactation and per one day of calving interval, being lower by 15.2% and 13.9% when compared with AB heterozygotes and by 9.7% and by 8.9% when compared...
with animals with BB genotype (Tables 8). The adaptability of Swiss cows was indicated by the adaptation index, and its value and negative sign indicated that the imbalance between the environment and the body of cattle was more pronounced in animals with homozygous AA genotype, especially in cow-mothers.

Table 8
The intensity of milk secretion in the cow-daughters of the Swiss breed, depending on the polymorphism genotypes of the kappa-casein gene (κ± ± SE)

Genotype	Milk quantity per: 1 lactation day, kg	1 day of calving interval, kg	Adaptation index, units
AA (n = 7)	24 ± 2a	20 ± 1a	-0.318 ± 0.165a
AB (n = 22)	27 ± 1a	23 ± 1a	-0.105 ± 0.074a
BB (n = 31)	26 ± 1a	22 ± 1a	-0.194 ± 0.050a

Note: see Table 3.

The subsequent correlation analysis reflected the presence or absence of associations between genotypes of the kappa-casein gene and economic traits of cow-mothers and cow-daughters of the Swiss breed. According to our calculations, the values of the correlation coefficients (r) fluctuated within moderate and weak correlation.

The system of relationships between genotypes and indicators of milk productivity and reproductive capacity in the Swiss breed cows was characterized by the following associative connections. Thus, the AA genotype of the kappa-casein gene in cow-mothers of the Swiss breed had positive relationships with the duration of lactation or the number of active days (r = 0.58 ± 0.12, P < 0.05) and indicators of milk yield per lactation (r = 0.37 ± 0.13, P < 0.05), milk fat production (r = 0.32 ± 0.14, P < 0.05) and fat content (r = 0.41 ± 0.13, P < 0.05) and protein (r = 0.36 ± 0.13, P < 0.05) in milk. At the same time, in cow-daughters of the Swiss breed, the AA genotype was only not a reliable and a weak trend with the duration of lactation (r = 0.20 ± 0.13). The BB genotype in the Swiss breed cow-daughters had only not a reliable and a weak negative tendency with the relative protein content in milk (r = -0.20 ± 0.13).

Discussion

Further, we compared the obtained data on the distribution of genotypes of the studied kappa-casein gene in cows of the Swiss breed with the known results of studies by contemporary researches, which have great variability. Thus, according to foreign research from Turkey, which studied the polymorphism of the kappa-casein gene in cows of the Swiss breed kept in Ankara, Kayseri, Nevşehir, Yozgat, it was only in Ankara, the incidence of alleles A and B was detected as 0.444 and 0.556, respectively. In cows of the Swiss breed from Ankara, the incidence distribution of alleles A and B was also 0.443 and 0.557. In this case, the distribution of genotypes of the polymorphism of the kappa-casein gene had the following pattern: AA = 0.140, BB = 0.295, AB = 0.605 (in the Swiss breed from Ankara only AA = 0.182, BB = 0.295, AB = 0.523). The observed heterozygosity was 0.607, and the expected heterozygosity was 0.496, in the Swiss breed cows kept in Ankara only observed heterozygosity was 0.523, while the expected heterozygosity was 0.499 (Bilal et al., 2012, 2014). However, in our study, the incidence of allele A was recorded almost 1.6 times less than in cow-mothers and 1.5 times less than in cow-daughters of the Swiss breed. Accordingly, the incidence of allele B in our study, on the contrary, was registered almost 1.3 times more often in both cow-mothers and cow-daughters. However, according to our results, both in cow-mothers and in cow-daughters of the Swiss breed, BB genotype was registered two times more often, and the incidence of AA genotype was close to the above literature data. And only AB genotype registered in cow-mothers was met 1.4 times less frequently, and in cow-daughters – almost 1.7 times less frequently than in cows of the Swiss breed kept in Turkey. According to our data, the observed heterozygosity indicator was also lower (1.4 times in cow-mothers and almost 1.8 times in cow-daughters) and only the expected heterozygosity in cow-daughters of the Swiss breed was close to the values provided in literature data. However, in their recent studies, Munad Gusnes et al, who also studied the kappa-casein gene polymorphism in the Swiss breed cows kept in Ceylanpinar, Karakoy and Sultansoyu state farms of Turkey, reported the following: A and B alleles incidences were equal to 0.357 and 0.643; the incidence of AA – AB – BB genotypes was 0.152 – 0.410 – 0.438, and the observed heterozygosity index was 0.410, the expected heterozygosity index was 0.459 (Gunes et al., 2018).

When estimating the genetic polymorphism of the kappa-casein gene in the Romanian brown breed cows, it was found that the most common allele in the CSN3 locus was B allele (0.694) and A allele (0.3060) was rarer. The distribution of AA – AB – BB genotypes corresponded to 0.0746 – 0.4627 – 0.4627 (lie et al., 2017). This data was partially close to our results. Thus, in our study, the incidence of alleles A and B in mothers-cows was as follows: 0.275 and 0.725 and in daughter-cows: 0.300 and 0.700; incidence of genotypes AA – AB – BB in cows of the Swiss breed was equal to: 0.059 – 0.431 – 0.510 with indicators of observed heterozygosity 0.431 and expected heterozygosity 0.399 in cow-daughters of the Swiss breed: 0.117 – 0.367 – 0.516, with indicators of observed heterozygosity 0.367 and expected heterozygosity 0.420. Suprovych & Mokhnachova (2017) studied the polymorphism of kappa-casein (CSN3) genes in grey cows and showed that the incidence of homozygous cows AA was 36.9%, BB – 15.5%, and heterozygous AB – 47.6% (almost half of the animals), but no significant differences between these indicators were registered. Indicators of the observed heterozygosity and expected heterozygosity were 0.476 and 0.477, respectively (Suprovych & Mokhnachova, 2017). In our study, on the contrary, the incidence of allele A significantly exceeded (more than two times) the incidence of allele B in both cow-mothers and cow-daughters of the Swiss breed, but the incidence of heterozygous genotype AB in cow-mothers was recorded with incidence of 43.1% with actual or observed heterozygosity 0.431, which was close to the results of the above study. In grey cows of the Ukrainian breed from the farm of State Enterprise Research Center “Polyvavrivka”, Dnipropetrovsk region, for the CSN3 kappa-casein gene, on the contrary, allele A was registered in 35% and allele B in 65% and this data approached the incidence of allele A distribution (27.5% in cow-mothers and 30.0% in cow-daughters) and allele B (72.5% in cow-mothers and 70.0% in cow-daughters) of the Swiss breed, which were kept at a large-scale dairy unit “Ekaterinolavsky”, which is also located in the Dnipropetrovsk region. In this case, homozygous type AA was only in 2.5% of animals, homozygous type BB – in 32.5%, heterozygous genotype AB was in 65% of animals, with a statistically significant difference, while the observed heterozygosity and expected heterozygosity was 0.650 and 0.455 (Kostyurnina et al., 2011; Suprovych & Mokhnachova, 2017). Comparing this data with the results of our study, it can be stated that the incidence of AA genotypes was registered two times more often in cow-mothers of the Swiss breed and almost five times more often in cow-daughters of the Swiss breed. Also, the homozygous BB genotype of the kappa-casein gene was registered in cattle of the Swiss breed almost 1.5 times more often, both in cow-mothers and cow-daughters, and the heterozygous AB genotype, on the contrary, was registered 1.5 times less often in cow-mothers and 1.8 times less often than cow-daughters of the Swiss breed. Also, the indicators of actual heterozygosity were 1.5 and 1.8 times lower in cow-mothers and cow-daughters of the Swiss breed, but with almost the same indicator of the expected heterozygosity in cow-daughters.

Kopylov (2010), Ukraine, found that for the kappa-casein gene in the black-spotted dairy breed the incidence of the AA genotype was 0.664 (66.4%), that is, much more often than in cow-mothers and cow-daughters of the Swiss breed (AB – 0.312 (31.2%), BB – 0.024 (2.4%)). Cows of Ukrainian red-spotted dairy breed had the following distribution of genotypes by the gene of kappa-casein (AA – 0.778 (77.8%), AB – 0.222 (22.2%), and animals with BB genotype were not detected. In Simmentals, the AA genotype was in 0.467 (46.7%) of cases, AB – 0.425 (42.5%), BB – 0.108 (10.8%). In Holstein cows, homozygous AA variant was recorded in 0.793 (79.3%) of animals, heterozygous AB – 0.207 (20.7%), homozygous BB – was not detected (Kopylov, 2010). The genotypic characteristics of Holstein cows from Ukraine were close to the results of a study by foreign researchers that evaluated the effects of genetic polymorphism of the Kappa-casein gene on milk productivity of Holstein cattle in Slovakia and established their genotypic population structure with determining allele and genotype incidences. Thus, it was found that in the Holstein cattle from Slovakia all three genotypes were identified – AA
(69.5%), AB (27.6%) and BB (2.9%), and the incidence of allele A was 83.3%, and allele B – 16.7% (Miluchová et al., 2018). It should be noted that when studying the polymorphism of the kappa-casein gene in Holstein cows from Turkey and Macedonia, the researchers also registered the results that were close to the above values of the genotypes incidence, namely: AA (72.5% and 54.7%), AB (22.7% and 36%) and BB (4.5% and 9%), and the incidence of allele A was 84.1% and 72.7%, and B allele – 15.9% and 27.3% (Bilal et al., 2012; Adamov et al., 2020).

In Indian cows, the calculated allele incidences for A and B were also 0.79 and 0.21, respectively (Deb et al., 2014). Analysis of literature data indicated that in Ukraine genetically similar breeds based on allele A were: Ukrainian black-spotted dairy breed (incidence of A allele was 82%, Ukrainian red-spotted dairy breed (incidence of A allele – 88.8%), Holstein breed (incidence of A allele – 89.6%) (Kopylova, 2010). This data coincided with the results of Bangar et al. (2021), who conducted a meta-analysis of the incidence of alleles of the kappa-casein gene in 5,715 genotyped cows in a random effects model and proved that allele A predominated with an incidence of 0.71 (95% CI: 0.65, 0.76). At the same time, according to the results of our research, the Swiss breed cows, on the contrary, genetically differed from them in the incidence of distribution of allelic genes A and B of the kappa-casein gene both in cow-mothers (27.5% and 72.5%) and in cow-daughters (30.0% and 70.0%). Kopylova et al. (2010) with colleagues, as well as in our study, did not find a significant difference between the observed actual and expected heterozygosity in cows of red dairy breed, which were kept on two different breeding farms: observed heterozygosity – 0.444–0.611, expected heterozygosity – 0.384–0.424.

In the study of cattle productive properties, depending on the polymorphism of the kappa-casein gene, in the studies of scientists, it was proved that cows of the black-spotted breed with homozygous AA genotype of the kappa-casein gene had a higher milk yield, as well as fat content, and these data coincide with the results of our study, which are reliably confirmed in cows of the Swiss breed (Kostyuchina et al., 2011; Pivlachuk & Dyman, 2015). When studying the relationship between the milk yield of Holstein cows in Slovakia and their genetic characteristics of the kappa-casein gene polymorphism (CSN3), it was established that the AA genotype of the kappa-casein gene was associated with higher milk yield (850, 165 kg) and fat production, while the protein production in milk, in contrast, was higher in Holstein cows with the BB genotype, which significantly reduced their breeding value (Miluchová et al., 2018). But in our study, there was a correlation between AA genotype and higher values of not only milk yield and fat but also protein production in cow-mothers of the Swiss breed, while higher milk yield and fat production were registered in the group of animals with AB genotype, fat in milk – in cow-daughters of Swiss breed with BB genotype, and vice versa, higher protein production was registered in animals with AA genotype. In the study of Swiss cows from Turkey, a trend to form a relationship between the AA genotype and higher milk yields (4401 ± 185 kg) was also noted, while the BB genotype was associated with significantly higher protein content (3.478 ± 0.0449%) and the trend to higher fat content (4.417 ± 0.290%) in milk (Gurses et al., 2018). But in cows of Indian origin, the studied association of genotypes of the kappa-casein gene with certain traits of milk productivity proved that, conversely, only heterozygous AB genotype has a significant (P < 0.05) effect on milk yield, compared with AA genotype (Deb et al., 2014). Also, the polymorphism of the kappa-casein gene (CSN3) with the assessment of milk productivity by milk yield, milk fat and milk protein, was studied in black-and-white breed cows and Bestuzhev and Simmental breeds. At the same time, the highest rates of milk yield and milk protein belonged to animals with B allele of kappa-casein (Dolmatova & Valitov, 2015).

At the same time, such a pattern was not recorded in our study in mothers and daughters of the Swiss breed. The cow-daughters of the Swiss breed tested in the study had the highest milk yield in heterozygotes AB genotype of kappa-casein gene. The higher content of fat and protein in milk was registered in cows-mothers of the Swiss breed (5.22 ± 0.95% and 4.03 ± 0.53%) with a homozygous AA genotype of the kappa-casein gene. The cow-daughters of the Swiss breed did not demonstrate such a pattern. Dairy cows of the Holmogorsk breed of Tatarstan type with the AA genotype of the kappa-casein gene (CSN3) had the largest increase in milk productivity, fat content (3.73 ± 0.09%), as in our study in cow-mothers of the Swiss breed, and with genotypes AB and BB – protein in milk up to 3.73 ± 0.02% and 3.31 ± 0.04%, respectively. Energy content of 670 kcal was characteristic of animals with AA and BB genotypes (Gribanova & Kurak, 2012). It was also found that cows of Ukrainian dairy breed with homozygous BB genotype for the kappa-casein gene had higher mean milk yields at 1, II and III lactations than with AB and AA genotypes, which contradicted the data obtained in both cow-mothers and cow-daughters of the Swiss breed in accordance with the results of our study. The milk fat content in Ukrainian dairy cows, as well as in cows of the Swiss breed according to our data, was also the highest in the group of animals with the AA genotype, but in the cows of the Swiss breed in our study, the highest fat content in milk (3.96 ± 0.112%) was registered in a group of animals with BB genotype (Dolmatova & Ilyasov, 2011). In general, at the present stage, some scientists propose to improve the technological properties of milk by selecting cows with B alleles of milk proteins by the kappa-casein gene (Dolmatova & Valitov, 2015; Suprovych & Mokhrasnovitch, 2017).

However, this data does not coincide with the results of our study and with some of the above literature data. Thus, cow-mothers of the Swiss breed had more positive correlations, and the positive dependencies can be considered more stable than the only trends registered in cow-daughters. Comparison of our study results with data from the literature testified to different associative relationships between certain genotypes of cows of both the Swiss and other breeds with indicators of their productive qualities, which in the future, substantiates the need for further research in this area.

Conclusion

Molecular-genetic study of the distribution patterns of allelic genes and genotypes of the polymorphism of the kappa-casein (CSN3) gene in the cow-mothers and cow-daughters of the Swiss breed showed that the frequency of occurrence of the B allele was significantly higher than the A allele (72.5% and 70.0% vs. 27.5% and 30.0%, respectively). In this case, the homozygous BB genotype was registered most often (51.0% and 51.6%); heterozygous genotype AB (43.1% and 36.7%) – rarely registered and homozygous AA (5.9% and 11.7%) – very rarely registered. The homozygous AA genotype of the kappa-casein gene in the cow-mothers is associated with the higher milk yields during lactation (13613 ± 600 kg), fat (703 ± 107 kg) and the ratio of fat to protein (1.63 ± 0.14 units). Among homozygous cow-daughters of the Swiss breed with BB genotype the production of fat in milk slightly exceeded fat of homozygous cow-daughters with AA genotype of the kappa-casein gene (by 5.7%). The correlation analysis test of the genotypes of the kappa-casein (CSN3) gene polymorphism can be used for prognosis of lactation duration, milk yield, fat and protein in milk for improvement of breeding and productive qualities of cows of Swiss breed. It is recommended to continue the study tests to increase the productive longevity of cows of the Swiss breed and improve their economic and useful traits, which are controlled by the gene described.

The performed study is a fragment of the scientific and research work of the Department of Technology of Livestock Production of Dniprovsk State Agrarian and Economic University on the topic “Improvement of breeding and productive qualities of farm animals” (state registration number 0115.004096), Ministry of Education and Science.

The authors have no conflict of interest.

References

Adamov, N., Atanasov, B., Ilievskva, K., Nikolovski, M., Dovenka, M., Petkov, V., & Dovenski, T. (2020). Allele and genotype frequencies of the kappa-casein (CSN3) locus in Macedonian Holstein-Friesian cattle. Macedonian Veterinary Review, 43(1), 45–54.

Alim, M. A., Dong, T., Xie, Y., Wu, X. P., Zhang, Y., Zhang, S., & Sun, D. (2014). Effect of polymorphisms in the CSN3 (j-casein) gene on milk production traits in Chinese Holstein cattle. Molecular Biology Reports, 41, 7585–7593.

Bangar, Y. C., Magotra, A., Chauhan, A., & Yadav, A. (2021). Genetic polymorphisms of kappa casein gene and its association with milk and composition traits in cows: An updated meta-analysis. Meta Gene, 30, 100948.

Regul. Mech. Biosyst., 2021, 12(3)
Barbosa, S., Araújo, Í., Martins, M., Silva, E., Jacopini, L., Batista, Â., & Silva, M. (2019). Genetic association of variations in the kappa-casein and β-lactoglobulin genes with milk traits in girolando cattle. Revista Brasileira de Saúde e Produção Animal, 20, 1–12.

Behna, N. (2018). Vykortystannya kormiv [Use of feed]. Porohy, Dnipro (in Ukrainian).

Bilal, A., & Mehmood, U. (2014). Analysis of prolactin and kappa-casein genes polymorphism in four cattle breeds in turkey. Arabian Journal of Animal Science, 14(4), 799–806.

Bilal, A., Ozgucak, D., & Olkan, E. (2012). Genetic polymorphism of kappa-casein, growth hormone and prolactin genes in Turkish native cattle breeds. International Journal of Dairy Technology, 65(1), 38–44.

Dh, R., Singh, U., Rana, S., Raj, S., Charan, G., & Sharma, A. (2014). Genetic polymorphism and association of kappa-casein gene with milk production traits among Frieswal (HF × Sahiwal) cross breed of Indian origin. Iranian Journal of Veterinary Research, 15(4), 406–408.

Dolmatova, I., & Byasov, A. (2011). Polimorfizm gena gormona rosta krupnogo rogatogo skota po markernym genam [Assessment of the genetic potential of cattle by marker genes]. Bulletin of the Balkhur University, 203, 850–853 (in Russian).

Dolmatova, I., & Valtov, F. (2015). Otsenka geneticheskogo potentsiala krupnogo rogatogo skota po markernym genam [Assessment of the genetic potential of cattle by marker genes]. Bulletin of the Institute of Agriculture of the Steppe Zone of National Academy of Agrarian Sciences of Ukraine, 11, 151–159 (in Ukrainian).

Grigor'ev, A., Shemesh, V., & Zernov, V. (2012). Polimorfizm gena alfa-laktalbumina i yego vliyanie na molechnuyu produktivnost' [Polymorphism of the bovine growth hormone gene in connection with milk production]. Genetics, 47(6), 1–7 (in Russian).

Huiarn, M., Elthair, S., & Hamza, A. (2018). Molecular characterization of genetic variability among Sudanese Baggara Cattle within kappa casein CSN3 gene (exon V). Molecular Biology, 17, 196.

Ilie, D., Neamț, R., Popescu, C., & Saplacan, G. (2017). Preliminary report on CSN3 and LGB genes polymorphism among two romanian cattle breeds. Animal Science and Biotechnologies, 50(1), 69–73.

Kopylov, K. (2010). Polimorfizm hen' na lokal'nykh zavodiakh po hena hεmατοδοτικος [Polymorphism of genes associated with economically useful traits (QTL) in different breeds of cattle]. Scientific Bulletin of Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Liviv, 45, 52–58 (in Ukrainian).

Kopylova, K., Kopylov, K., Polupan, Y., Arnaut, K., & Metlyts'ka, O. (2010). Tychna struktura ukrayinskoji chervonoji molochnoji porody za lokusamy kalkusyni [Genetic structure of Ukrainian red dairy breed by loci of quantitative traits (QTL)]. Bulletin of Agrarian Science, 2, 40–45 (in Ukrainian).

Kostynina, O., Bakay, A., Bushova, G., Lepeshkina, T., & Glad'ya, Y. (2011). Vlyyanie genotipov po DNA-markernam na pokazateli molechnoy produktivnosti korov cherno-pestroj porody [The influence of genotypes for DNA markers on milk productivity of black-and-white cows]. Achievements of Science and Technology of the Agro-Industrial Complex, 10, 33–34 (in Russian).

Krupyn, Y., Shakirov, S., & Tagiryn, M. (2017). Molechnaya produktivnost' i kachestvo molechnoj korov v zavisimosti ot genotypa [Dairy productivity and quality of cows depending on genotype]. Far Eastern Agrarian Bulletin, 44, 120–125 (in Russian).

Ladylka, V., Sklyarenko, J., & Pavlenko, J. (2021). Analiz molechnoi produktivnosti korov ukrajins'koji buroji molochnoj porody riznykh genotypiv za kapa-kaseinom [Analysis of dairy productivity of cows of ukrainian brown dairy breed of different genotypes by kappa-casein]. Technology of Production and Processing of Livestock Products, 1, 74–81 (in Ukrainian).

Miltachová, M., Gábor, M., Candrá, J., Trakovická, A., & Candráková, K. (2018). Association of HindIII-polymorphism in kappa-casein gene with milk, fat and protein yield in holstein cattle. Acta Biochimica Polonica, 65(3), 392–394 (in Ukrainian).

Mohkova'ska, O. (2019). Analiz suchasnoho stanu molekoloproduktivnoho pidkornomu kompleksu Ukrajini, problem yho rozvytkyu ta shlyakhiv yikh vyrishenya [Analysis of the modern state of the dairy sub-complex of Ukraine, problems of its development and ways of their solution]. Agrosvit, 18, 16–23 (in Ukrainian).

Patel, J., & Chauhan, J. (2018). Computational analysis of non-synonymous single nucleotide polymorphism in the bovine casein kappa-casein (CSN3) gene. Meta Gene, 15, 1–9.

Pozzola, M., Vacca G., Noce, A., Porcedda, M., Ornis, M., Marca, N., & Dettoni, M. (2020). Exploring the genotype at CSN3 gene, milk composition, coagulation and cheese-yield traits of the sardo-modicana, an autochthonous cattle breed from the Sardinia Region, Italy. Animals, 10(11), 1995.

Pischukh, I. (2016). Adaptatsiya ta vtvrty provody shlyhivky korovnyho riznom molekoloproduktivnoho pidkornomu [Adaptation and losses of products by swedish cows of different ecological origin on a large industrial complex in the steppe zone of Ukraine]. Bulletin of the Institute of Agriculture of the Steppe Zone of National Academy of Agrarian Sciences of Ukraine, 11, 799–806 (in Ukrainian).

Privatuch, O., & Dymar, T. (2015). Otsivuvannya molechnoi produktivnosti koriv u syvaku z polimorfizmom hena alfa-laktalbumina [Evaluation of milk productivity of cows in connection with polymorphism of the alpha-lactalbumin gene]. Technology of Production and Processing of Livestock Products, 2, 217–220 (in Ukrainian).

Prokopenko, O. (2019). Tuvryzyntstvo Ukrainy [Animal production of Ukraine]. State Statistics Service of Ukraine, Kyiv (in Ukrainian).

Rama, A., Caravas, F., Rossoni, A., & Bagnato, A. (2012). Genetics of casein content in Brown Swiss and Italian Holstein dairy cattle breeds. Italian Journal of Animal Science, 11(2), 196. N.PAG. 7.

Sel'bov, V., Kostynina, O., Zagorodnev, Y., & Glad'ya, Y. (2013). Otsenka molechnoi produktivnosti korov riznykh porod v syvaku z polimorfizmom po genu alfa-laktalbamina [Evaluation of milk productivity of cows of different breeds in connection with polymorphism in the alpha-lactalbumin gene]. Achievements of Science and Technology of the Agro-Industrial Complex, 3, 57–60 (in Russian).

Shevchenko, A., & Tabuchuk, N. (2019). Chynnyky stanu molechnoi produktivnosti ta zabezpechennia yii u uborkakh z uchýtiivosti ukrayinchoyi izastratosti Ukrajini [The current state of the dairy market and its quality assurance in the context of Ukraine's European integration]. Scientific Bulletin of Uzhhorod University, 27(2), 101–107 (in Ukrainian).

Sprovorev, T., & Mokhnachov, N. (2017). Polimorfizm hen' hospodar'ko-korystnýkh ozokr i vplyv na vzryvna ekonomichnoho pokhodu [Polymorphism of alleles of the BOLA-DRB3 gene on the productivity of Holstein cows in gray cattle breed]. The Animal Biology, 19(1), 111–118 (in Ukrainian).

Sprovorev, T., & Sprovorev, M. (2013). Polimorfizm aleliv hena BOLA-DRB3 na prykladi ukraїns'kyh chemo-rybali na chervonyo-nabjoj molechných pond [Polymorphism of alleles of the BOLA-DRB3 gene on the productivity of Ukrainian red-black and red-spotted dairy breeds]. Ukrainian Journal of Veterinary Sciences, 18(4), 193–203 (in Ukrainian).

Svezhentsev, A. (1998). Normativnoe kormlenie sel'skokhozyaistvennykh zhivotnykh [Normalization feeding off farm animals]. Nauka i Obrazovaniye, Dnepropetrovsk (in Russian).

Volkandari, S., Indraratna, I., & Margawati, E. (2017). Genetic polymorphism of kappa-casein gene in Friesian Holstein: A basic selection of dairy superior. Journal of the Indonesian Tropical Animal Agriculture, 42(4), 213–219.

Kondo, Y., Takehashi, S. N., Aida, Y., Kosugyarna, M., & Tomagane, H. (2009). Association of BovA-DRB3 alleles identified by a sequence-based typing method with mastitis pathogens in Japanese Holstein cows. Animal Science Journal, 80(S), 496–509.

Zepeda-Batista, J., Saez-Jimenez, L., Ruiz-Flores, A., Nieto-Dominguez, R., & Ramirez-Valverde, R. (2017). Potential influence of o-casein and β-lactoglobulin genes in genetic association studies of milk quality traits. Asian-Australasian Journal of Animal Sciences, 30(12), 1684–1688.