Senescent cells: A therapeutic target for osteoporosis

Tiantian Wang1,2 | Shishu Huang3 | Chengqi He1,2

1Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
2Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan, China

Correspondence
Tiantian Wang and Chengqi He, Rehabilitation Medicine Center, West China Hospital, Sichuan University, No 37 Guoxue Xiang, Chengdu, Sichuan 610041, China. Email: tiantianwang@scu.edu.cn and hxkfcq2015@126.com
Shishu Huang, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China. Email: h0794062@scu.edu.cn

Abstract

\textbf{Background:} Osteoporosis (OP) is a prevalent disorder characterized by the loss of bone mass and the deterioration of bone microarchitecture. OP is attributed to various factors, including menopause (primary), ageing (primary) and the adverse effects of medications (secondary). Recently, cellular senescence has been shown to have a crucial role in the maintenance of cellular homeostasis and organ function. The purpose of this review is to summarize recent findings regarding the roles of bone cellular senescence and senescence-associated secretory phenotype (SASP) in OP.

\textbf{Methods:} A comprehensive search of the PubMed database from inception to July 2022 was performed regarding the molecular mechanism of bone cell senescence in OP progression.

\textbf{Results:} We describe the pathophysiology of senescent bone cells and SASP, and how each contributes to OP. We also provide new options for treating OP by targeting cellular senescence pathways.

\textbf{Conclusion:} Cellular senescence plays an important role in bone homeostasis, with variations based on the different types of OP. These variations are associated with pathogenic factors, bone turnover rate and systemic metabolism. Understanding the molecular relationship between bone cells and senescence provides for the possible targeting of senescence as a means by which to treat OP.

1 INTRODUCTION

Osteoporosis (OP) is the classic cause of low bone mass and is characterized by the deterioration of bone tissue, which increases bone fragility and leads to other serious conditions resultant from low bone mineral density (BMD).1,2 In Europe, nearly 22 million women and 5.5 million men are estimated to suffer from OP.3 In the United States, 10 million individuals are estimated to have OP, with the expectation that this number will continue to increase.4 Ageing is closely related to OP in individuals over 50 years of age.5 Oestrogen deficiency is a common cause of primary OP, especially among postmenopausal women. Secondary OP is induced by certain medications and medical conditions.5-7 For example, glucocorticoid-induced OP (GIOP) caused by long-term usage of glucocorticoids (GCs) is the most common form of secondary OP.7,8 Disease pathology is complex, heterogeneous and ill identified. Moreover, the underlying causative disease mechanism is not fully understood, and no disease-modifying treatments are currently available.

Cellular senescence is a cell state implicated in various physiological processes and has been associated with a wide range of...
age-related diseases, with senescent cells and heterogeneous cellular states associated with senescence-associated secretory phenotype (SASP) of particular interest. Targeting senescent bone cells and SASP has been shown to alleviate OP. Although promising, the mechanistic relationships among cellular senescence, SASP and OP pathology are unclear.

The purpose of this review is to summarize recent findings regarding the roles of bone cellular senescence and SASP in OP. We discuss results demonstrating the effect of cellular senescence alteration on primary and secondary OP, which may provide new translational medicine options for treating OP.

2 | BIOLOGICAL ROLES FOR CELLULAR SENESCENCE

The term ‘senescence’ was first described by Hayflick and Moorhead over 50 years ago, when normal human fibroblasts lost replicative potential, only remaining alive and metabolically active for approximately 50 cellular divisions. To date, replicative senescence has been observed after multiple cell divisions of normal cells. The shortening of telomeres as a consequence of multiple cell divisions of non-transformed cells contributes to this type of senescence. After several cellular divisions, telomeres become critically short and no longer protect structural DNA, which initiates DNA damage. Response to DNA damage arrests the cell cycle, due to posttranslational modification of several cell cycle proteins related to cellular senescence. In addition to replicative senescence, another type of senescence termed, stress-induced premature senescence (SIPS), is caused by other stimuli, such as DNA damage, oxidative stress, toxins, hyperglycaemia, inflammation and ultraviolet radiation. Persistent stress induces cells to lose their ability to repair DNA, which causes permanent cell cycle arrest. Two major pathways, the p53/p21 and p16INK4a/rubinoblastoma (Rb) pathways, contribute to senescence. For example, blockade of p53 function in senescent human fibroblasts induces a reversion to a ‘young’ morphology.

Inactivation of p21, a cell cycle inhibitor targeted to p53, facilitates normal diploid human fibroblasts to bypass senescence despite the expression of p16. Further, accelerated clearance of p16INK4a-positive senescent cells in various mouse tissues has been shown to reduce age-related pathologies including preservation of muscle function as well as decreased eye senescence. These results suggest that activation of the p16 signalling pathway directly contributes to senescence and tissue degeneration.

Transient induction of cellular senescence has been shown to activate the immune system, which eliminates damaged cells and facilitates tissue regeneration. Conversely, persistent senescence due to ageing or other persistent stimuli is detrimental. Senescent cells exhibit genomic and subcellular signalling pathway alterations in anti-apoptotic pathways (SCAPs), including B-cell lymphoma 2 family inhibitors (BCL-2, BCL-XL and BCL-W), phosphoinositide 3 kinase (PI3K)/AKT, p53/p21Cip1/serpin pathways, dependence receptors/tyrosine kinases, hypoxia-induced factor 1 alpha (HIF-1α) and heat shock protein (HSP90). Such cells are resistant to apoptosis and have been used to study biological regeneration and degeneration.

Despite the identification of pathways that mediate senescent cell cycle arrest, biomarkers of senescent cells have not been identified. There is no commonly used biomarker that is specific or universal for all senescent cell types, making the detection of senescent cells challenging. The most commonly used biomarker for senescence is senescence-associated β-galactosidase (SA-β-gal) activity. In normal cells, it is mainly found in lysosomes (approximately pH 4) and accumulates in senescent cells at a higher pH (pH 6). Other markers, such as p21, p53, p16 and γH2AX, are associated with the DNA damage response and a shift in optimum pH for SA-β-gal. However, none of these markers are specific or universal for all senescent cell types, with ample evidence that senescent cells express most of these markers.

Senescent cells secrete hundreds of factors termed the SASP, which include inflammatory and immune-modulatory cytokines and chemokines. The SASP can be beneficial or detrimental within tissue micro-environments. The SASP is protective by provoking immune surveillance of senescent cells, resulting in elimination. For example, ‘classically activated’ M1 macrophages have a natural role in pathogen defence and tumour protection, whereas ‘alternatively activated’ M2 macrophages can promote angiogenesis and tissue remodelling. In a fibrosis-associated liver cancer model, SASP facilitated macrophage polarization to an M1 state, capable of attacking senescent cells in culture, contributing to an antitumor micro-environment. In contrast, the persistent presence of SASP factors is harmful and promotes tumorigenesis, inducing chronic inflammation. For example, co-culture of senescent cells with young cells caused premature cellular senescence of the young cells via SASP factors and gap junction-mediated cell–cell contact. Indeed, the composition of the SASP is highly cell-specific and varies substantially in the same cell type with dependence upon the type of senescence and stimulus origin. Several common factors of the SASP include tumour necrosis factor α (TNF-α), interleukin (IL)-1, IL-6 and matrix metalloproteinase (MMP) 13, all of which are known mediators of OP. Many studies have shown that the SASP is typically connected to the DNA damage response (DDR), possibly independent of cell cycle arrest, although the signalling pathway involved is unclear. Therefore, a further understanding of SASP regulation is essential to senescence research.

Interestingly, it has been reported that senescent cells display both beneficial and detrimental effects on tissues that rely on their SASP. Transiently increased senescent cells secrete SASP factors that activate the immune system and clear damaged cells, playing beneficial roles in wound healing. Embryogenesis, cancer prevention, and ageing tissue regeneration. For example, senescent cells release MMPs to limit liver injury fibrosis and skin injury, which benefit wound healing. Likewise, IL-6 secreted by senescent cells promotes skeletal muscle repair following injury in vivo. Detrimental effects may contribute to age-associated diseases, including diabetes, hypertension, and atherosclerosis. Further, injection of senescent preadipocytes (representing <1% of cells) results in...
widespread physical dysfunction in young mice.\(^{58}\) p16INK4a is highly expressed in insulin-producing β cells of the pancreas, with loss of p16INK4a associated with enhanced β cell replication in ageing mice. Ageing individuals are at increased risk for type 2 diabetes because of higher levels of senescent β cells.\(^{59}\) Further, removal of senescent cells attenuates the ageing phenotype in human and mouse cells.\(^{31}\) Inducible depletion of p16INK4a cells in the BubR1 progeroid mouse model delayed tissue dysfunction of adipose, skeletal muscle, and eye tissue.\(^{31}\)

3 | SENESCENCE IN BONE CELLS

Bone is a metabolically active tissue involved in the physiological processes of locomotion, providing structural support, calcium and phosphate regulation and storage, as well as a location for the bone marrow\(^{60}\) (Figure 1). Bone is composed of various cell types that undergo continuous remodelling.\(^{60}\) The maintenance of bone metabolism includes bone formation by osteoblasts and resorption by osteoclasts.\(^{60}\) Osteoclasts are terminally differentiated multinucleated cells expressing receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) and macrophage colony-stimulating factor (M-CSF).\(^{61}\) Osteoclasts are derived from mononuclear cells (macrophages) of the hematopoietic stem cell lineage. Mature osteoclasts, multinuclear cells generated from the fusion of tartrate-resistant acid phosphatase-positive (TRAP\(^+\)) mononuclear cells, are primarily responsible for bone matrix resorption.\(^{61,62}\) TRAP\(^+\) mononuclear cells are the major source of platelet-derived growth factor (PDGF)-BB that induces type H vessel (CD31\(^+\)Emcn\(^+\)) formation, coupling osteogenesis with angiogenesis in the bone marrow, which promotes bone formation.\(^{63,65}\) Bone marrow stem cells (BMSCs) are progenitors of osteoblasts and adipocytes, which are modulated by Wnt signalling pathways and bone morphogenetic proteins (BMPs).\(^{66}\) Osteocytes are terminally differentiated osteoblasts embedded in the bone matrix. They are closely associated with other cells and are a major source of sclerostin (SOST) and RANKL, which regulate osteoblast formation and osteoclast formation, respectively.\(^{67,68}\) Osteocytes also deposit minerals and form the collagen-enriched bone matrix that converts mechanical stimuli into biochemical signals.\(^{69}\) With physiological conditions, a balance between bone resorption and formation exists naturally. When this balance is broken, increasing osteoclast activity decreases osteoblast function, ultimately resulting in bone loss and OP.\(^{70}\)

3.1 | Senescence in bone marrow mesenchymal stem cells

Bone tissue is a metabolically active connective tissue undergoing constant remodelling.\(^{60}\) The two complementary processes: formation of new bone by osteoblasts and the resorption of old and damaged tissues by osteoclasts maintains bone homeostasis.\(^{60}\) BMSCs play a crucial role in dynamic bone balance by differentiation into osteoblasts and recruitment to sites of bone resorption, mediated by the transforming growth factor-β (TGF-β) 1 signalling pathway.\(^{71,72}\) Mesenchymal stem cells (MSCs) also maintain hematopoietic stem cells (HSC) function.\(^{73}\) After serial passage, MSCs have a reduced capacity to differentiate into osteogenic lineages and downregulate alkaline phosphatase (ALP), collagen type 1 (Col I), Runx2 and steric.\(^{74,77}\) These MSCs upregulate adipogenesis CEBP\(_{\alpha}\), CEBP\(_{\beta}\), CEBP\(_{\gamma}\), and peroxisome proliferator-activated receptor (PPAR)\(_{\gamma}\).\(^{78,79}\) This phenotype...
reinforces a pro-adipogenic micro-environment found during ageing. However, irradiation-mediated senescence of BMSCs decreases levels of both osteogenic differentiation and adipogenic differentiation, which results in eventual bone loss.

Increased energy is needed for stem cell differentiation, which is dependent on increased anabolism, protein turnover, lysosome-mediated degradation, and autophagy. Autophagy is a tightly orchestrated process that sequesters misfolded proteins, damaged or aged organelles, and mutated proteins into double-membrane vesicles. Autophagy is a suitable energy-refuelling process required for cell differentiation. Cellular senescence has been reported to restrict autophagy activation of BMSCs, consistent with similar results for stem cells. Further, impaired osteogenic differentiation of human (h) BMSCs is attributed to defective autophagy in response to cellular senescence. Rapamycin (RAP) is a specific inhibitor of mammalian target of rapamycin (mTOR), which increases autophagy. 3-MA is a commonly used inhibitor of autophagosome formation, which decreases autophagy. RAP elevated autophagy levels enhance the osteogenic differentiation of hBMSCs, while 3-MA decreases the osteogenic differentiation of senescent hBMSCs. Mitophagy, the selective degradation of mitochondria through autophagy, maintains cell and mitochondrial homeostasis by specifically degrading damaged mitochondria. Mounting evidence has shown that mitophagy activation inhibits the senescence of BMSCs, inhibits adipogenic differentiation, and facilitates osteogenic differentiation of senescent BMSCs.

Furthermore, senescent BMSCs regulate bone metabolism via differentiation (Figure 2). An increase in osteo-adipogenic transdifferentiation of senescent MSCs increases bone marrow adipose tissue (BMAT), which is considered an endocrine organ. BMAT regulates bone remodelling through both its intrinsic properties via exosomes and indirectly through regulation of haematopoiesis, with BMAT exerting detrimental effects on osteoblastogenesis. In vitro studies have shown that co-culture with bone marrow adipocyte media dramatically impairs osteoblast proliferation and differentiation. BMAT is also involved in osteoclastogenesis. Bone marrow adipose lineage cell-derived RANKL causes excess osteoclast formation and bone resorption in bone loss diseases that have increased bone marrow adiposity. In mice, ageing leads to the expansion of the adipogenic potential of a stem-cell-like subpopulation within the bone marrow, which in turn alters haematopoiesis through excessive production of dipeptidyl peptidase-4 (DPP4). BMAT secretes a variety of proinflammatory cytokines and adipokines that generate an inflammatory environment within bone, which aggravates ageing and metabolic-related disease.

In addition to influence on differentiation potential, senescent MSCs have been reported to regulate bone metabolism through the SASP (Figure 2). It has been shown that BMSCs from donors of old age produce higher levels of IL-6 (one of the most recognized SASP factors) than BMSCs from younger donors, which induces osteoclastogenesis and suppresses osteoblast differentiation. A deficiency of IL-6 significantly enhances Runx2 and collagen type I (col1a) gene expression in osteoblasts while decreasing the expression of osteoclast-related genes such as TRAP, MMP9, and cathepsin K. IL-6 deficiency alleviates BMSC senescence and prevents bone loss induced by a high-fat diet. Moreover, soluble mediators of the SASP are released into the circulation, exacerbating chronic inflammation. However, the specific SASP factors derived from senescent MSCs are not known, and further study is required to compare whole-transcriptome datasets from different types of senescent MSCs.

FIGURE 2 Senescence in bone marrow mesenchymal stem cells. Cellular senescence in MSCs during bone remodelling. MSCs become senescent in response to stress stimulus. Osteoadipogenic transdifferentiation in senescent MSCs has been found to increase BMAT content. BMAT exerts detrimental effects on osteoblastogenesis and positively regulates osteoclastogenesis. In addition, senescent MSCs have been reported to suppress osteoblastogenesis and stimulate osteoclastogenesis by secreting SASP. Senescent MSCs are unable to maintain haematopoietic stem cells in bone marrow. Another mechanism of senescent MSCs in osteoporosis is the negative impact of derived exosomes on healthy neighbouring cells. BMAT, bone marrow adipose tissue; MSC, mesenchymal stem cell; SASP, senescence-associated secretory phenotype.
MSCs, in order to identify a set of genes that are differentially expressed in senescent MSCs.

Another mechanism of MSC-mediated OP senescence is the negative impact of extracellular vehicles (EVs) on healthy neighbouring cells (Figure 2). These vesicles act as signals, triggering senescence in healthy cells or influencing the differentiation of MSCs by secreting microRNAs (miRNAs). For example, the levels of miR-335 are increased in aged human MSCs (hMSCs), with overexpression of miR-335 resulting in early senescence-like alterations, abolished osteogenic differentiation potential, and enhanced development of SASP. Moreover, induced by ageing BMSCs, results in increased adipogenic differentiation and inhibits osteoblastic differentiation of healthy BMSCs. Moreover, miR-31a-5p, derived from aged MSCs, decreases osteogenesis by BMSCs and increases osteoclastogenesis. Furthermore, antagonir-31a-5p administration to bone marrow prevented age-associated bone loss, suggesting a potential therapeutic treatment for age-related OP. To date, specific EVs and contents for MSCs involved in OP are unknown. Targeting miRNAs may reverse the senescent phenotype of MSCs, reducing the production of the SASP and preserving bone metabolism. Future studies are needed to clarify the signalling pathways of senescence cells induced by adjacent senescent MSCs.

In summary, senescent BMSCs are crucial for OP progression; thus, transplantation of young MSCs may be an effective therapy for OP. Importantly, MSCs can be isolated from various tissues and organs of the body, e.g. adipose tissue and bone marrow. Currently, with the advanced development of single-cell RNA sequencing (scRNAseq), we have a comprehensive transcriptomic landscape of heterogeneous MSCs at single-cell resolution. Several studies have shown that MSCs from different tissues have obvious differences in biological function, with MSCs from the same tissue exhibiting heterogeneity after adherent culture. Therefore, future investigations should focus on identification of an MSC population that is suitable for research and/or specific treatment of OP based on biological function.

3.2 Senescence in osteocytes

The multi-dendritic structure of osteocytes is an essential characteristic closely related to the osteocyte physiological function of crosstalk with other cells at the bone surface. Osteocytes comprise >90% of all bone cells, functioning in mechanical induction and providing a key role for osteocytes in bone metabolism. Mounting evidence has shown that osteocyte senescence is involved in the disruption of bone metabolism during ageing and other pathological conditions.

For instance, p16 and p21 mRNA levels are increased significantly in osteocytes from 24-month-old mice compared to 6-month-old mice, which is consistent with in vitro findings. Primary osteocytes from old mice exhibit a senescence phenotype, as judged by high levels of impaired DNA damage markers that are associated with cellular senescence. The basis for osteocyte senescence during ageing may be attributed to mitochondrial dysfunction and proteostasis disturbance. Specifically, osteocytes express two autophagy marker genes, Atg7 and Map1lc3a (commonly known as LC3), which are lower in older mice, indicating autophagy dysfunction (mitophagy). Impaired mitophagy disturbs the balance between mitochondrial biogenesis and turnover, leading to the accumulation of dysfunctional, damaged mitochondria, resulting in more reactive oxygen species (ROS) generation, and senescence. Moreover, at the molecular level, it has been proposed that loss of proteostasis and mitochondrial dysfunction may contribute to age-related bone dysfunction. Further, proteolytic activity and the rate of protein turnover decline in aged animals and in ageing humans, which may be one mechanism of cellular senescence. Decreased autophagy of osteocytes is linked to impaired protein homeostasis or proteostasis, which may contribute to cellular senescence. At present, the relationship between oestrogen deficiency-induced OP and osteocyte senescence is unclear. Increased expression of senescence markers and SASP components has been found in cortical bone (contains abundant osteocytes) in an ovariec-tomized (OVX) mouse model. However, another study found no indication of senescent osteocytes postmenopausal in either humans or mice. Moreover, DNA damage was found in irradiation-mediated osteocyte senescence, as judged by significantly increased accumulation of γH2AX in osteocytes that was accompanied by increased expression of SA-β-gal, p16 and p21. These findings indicate that at least a subset of osteocytes become senescent with age and pathological conditions, which may eventually result in bone loss. However, it is not clear whether senescent osteocytes are the primary trigger for OP, with further study needed for the breeding of conditional gene knockout mice to clarify this possibility.

Although only a relatively small proportion of osteocytes become senescent with ageing, these cells are likely to induce a bone inflammatory micro-environment by secretion of SASP factors (Figure 3). In ageing mice, it appears that senescent osteocytes and myeloid lineage cells are the main sources for SASP factors, contributing to the development of a proinflammatory local bone micro-environment. Previous studies reported that osteocytes regulate myeloid lineage cells by producing RANKL, which stimulates osteoclast development from myeloid progenitors. It is tempting to speculate that a subset of osteocytes is the primary trigger for cellular senescence and a SASP, leading to senescence of myeloid lineage cells and signal amplification. Certain factors that constitute the SASP, such as TNF-α, IL-1 and IL-6, not only contribute to the senescence of healthy neighbouring cells and disintegration of the extracellular matrix but also stimulate bone resorption and inhibit bone formation. For example, prematurely senescent osteocytes induced by irradiation can activate multiple SASP factors, such as TNF-α, IL-6, IL-1α and MMP13. RAW264.7 cells, a commonly used osteoclast precursor cell line, when co-cultured with osteocytes previously irradiated with 2, 4, or 8 Gy γ-rays and treated with 25 ng/ml RANKL, exhibited osteoclastogenesis. The authors reported that compared to non-irradiated osteocyte co-culture, irradiated osteocytes dramatically stimulated the differentiation of osteoclast precursors as evidenced
by TRAP staining, in a dose-dependent manner. In vitro experiments suggest that secreted factors (including IL-1α, IL-1β, IL-6, IL-17 and MCP1) in senescent osteocyte medium can reduce osteoprogenitor cell recruitment, disrupting subsequent bone formation, inhibiting osteoblast differentiation, and impairing mineralization. Moreover, senescent osteocyte-associated factors aggravate lipopolysaccharide (LPS) inhibitory effects on osteoblast differentiation and mineralization by regulating key osteogenic and mineralization genes, such as Runx2 and Osterix. Further, both osteogenic and adipogenic differentiation of BMSCs was significantly decreased when BMSCs were co-cultured with irradiated osteocytes. Bone areas of positive alkaline phosphatase, mineralized nodules stained with Alizarin Red S, and lipid droplets stained with Oil Red O were significantly decreased compared to controls. Interestingly, use of a 0.8 μM JAK1 inhibitor blocked SASP secretion from irradiated MLO-Y4 cells, which negated the inhibition of BMSC differentiation.

Therefore, senescent osteocytes can regulate bone metabolism through the SASP. However, the composition of the SASP derived from senescent osteocytes may differ with distinct stimuli. Further investigation is required to clarify this issue.

4 | CELLULAR SENESCENCE IN OP

4.1 | Cellular senescence in primary and postmenopausal OP

Oestrogen maintains bone homeostasis by balancing cell survival and death within bone. In menopausal women, approximately 20%–30% of trabecular bone and 5%–10% cortical bone are lost.

Postmenopausal bone loss occurs in two phases. The high bone turnover phase is characterized by the increased concurrent bone formation and resorption. This initial phase lasts 3–5 years. A deficiency of oestrogen stimulates rapid osteoclastogenesis, which induces bone resorption at the surface of trabecular bone. Oestrogen deficiency also induces osteocyte apoptosis and the release of RANKL, which stimulates osteoclasts and upregulates SOST. SOST inhibits WNT signalling, increasing osteoblast number, and decreasing the activity of osteoblasts. As a result, bone resorption outpaces bone formation, leading to rapid net bone loss. Bone loss is most significant in trabecular bone, with impairment of trabecular microstructure and loss of trabecular elements. The second phase of OP in postmenopausal women is associated with slow bone loss, which resembles senile OP that lasts 10–20 years.

Oestrogen is crucial for the survival and function of osteoblasts and osteocytes, and has the capacity to relieve senescence of osteoblasts and osteocytes. The mechano-sensation function of osteocytes is disrupted for a long period of time in postmenopausal OP, which may be attributed to the senescence of osteocytes. In OVX mice, osteocytes not only had higher percentages of p16 and β-galactosidase but also produced more SASP components, such as MMP-3, MMP-13, IL-6, IL-8, IL-1α and IL-1β. Further, exogenous oestrogen supplementation inhibited osteocyte senescence and the SASP, rescuing bone loss in OVX mice. Knocking out p16 in OVX mice decreased the proportion of β-gal-positive osteocytes and p21 protein levels in bony tissue, with prevention of bone loss compared to WT-OVX mice. These results indicate that oestrogen deficiency induces bone loss, partly through senescence of osteocytes. The means by which oestrogen exerts anti-senescent effects are not fully understood, although inhibition of Usp10 may be involved. Usp10, an important deubiquitination enzyme, which maintains the stability and function of p53, decreases the mRNA and protein levels of p53 and Usp10. The inhibition of Usp10 attenuates senescence in both the osteocyte cell line, MLO-Y4, and the osteoblast cell line, MC3T3-E1, by downregulation of p53 and p21, preventing bone loss in OVX mice.

Senescent BMSCs are found in OVX mice, as judged by increased dual staining with γH2AX and another BMSC marker, leptin receptor (LepR). Moreover, elevated SA-β-gal-positive cells and fewer Ki67 (cell proliferation marker)-positive cells were observed in BMSCs from OVX mice. Senescent BMSCs from OVX mice exhibit impaired osteogenesis, as judged by lower osteogenic markers (ALP, Runx2 and osteocalcin) and fewer mineralized nodules, as judged by Alizarin Red.

FIGURE 3 Senescence in osteocytes. A relatively small proportion of osteocytes become senescent under stress stimulus, and these cells are likely to cause an inflammatory microenvironment in bone by secreting SASP, disrupting bone formation and enhancing osteoblast function. Two main tumour suppressor-mediated signalling pathways, p53/p21CIP1 and p16INK4a/pRb, are responsible for the growth arrest of osteocytes. SASP, senescence-associated secretory phenotype.
staining. In vitro, 10−7 mol/L 17β-estradiol decreased senescence and restored osteogenic differentiation of BMSCs. Oestrogen reversed BMSC senescence by modulating the SASP and JAK2/STAT3. Further, decreased SASP is associated with decreased cellular senescence of BMSCs. OVX mice treated with a JAK inhibitor (25 mg/kg, drug/body weight) every other day for a 3-month period exhibited SASP inhibition with reduced BMSC senescence and bone loss.

However, one recent study of humans and mice found that oestrogen deficiency did not alter senescence biomarker levels or SASP components in bone. Treating INK-ATTAC mice with AP20187, eliminated p16INK4a-senescent cells, but did not prevent bone loss after OVX. Therefore, it is unknown whether oestrogen deficiency-induced bone loss depends on cellular senescence. Changes in the micro-environment can influence the progression of cellular senescence, which may be explained by alterations in the level of stress during pathological processes. Senescence progression is not only influenced by oestrogen but also determined by oxidative stress. Oestrogen deficiency can induce oxidative stress and reduce antioxidant level and activity, whereas 17β-estradiol supplementation can reduce oxidative stress by increasing antioxidant level and activity in OVX mice. Oestrogen deficiency induces ROS through downregulation of B lymphoma Mo-MLV insertion region 1 (Bmi1), which is a member of the polycomb family of transcriptional repressors that regulate cell cycling and senescence by downregulation of p16INK4a/Rb and p19AFR/p53 pathways. Thus, a complex relationship may exist among oestrogen, senescence, ROS and the micro-environment. This speculation warrants further investigation.

Overall, oestrogen may be essential to postmenopausal OP. However, data from the Women’s Health Initiative study indicated that oestrogen replacement increases the risk for breast cancer and cardiovascular disease. The findings of that study resulted in a considerable drop in the use of oestrogen. In addition to the regulation axis centred on the hypothalamus, other endocrine factors may also be involved in the ageing process. During ageing, hormone secretion by the hypothalamic–pituitary axis is altered and feedback sensitivity is modulated, contributing to pathological conditions. For example, the stability of blood calcium level is maintained by balanced secretion of parathyroid hormone (PTH) and calcitonin (CT). When the blood calcium levels are low, PTH levels are increased, enhancing renal tubule and small intestine uptake and absorption of calcium, which stimulates osteoclast activity. More bone calcium is decomposed and released into the blood, rapidly increasing blood calcium levels. At the same time, thyroid C cells increase CT secretion, reducing the uptake and absorption of calcium by the renal tubules and small intestine while inhibiting bone osteoclast activity such that blood calcium is fixed as bone calcium, thus reducing bone calcium levels. Specifically, short or intermittent PTH treatment can significantly increase osteoblast-mediated bone formation, while continuous high-dose PTH treatment stimulates greater bone resorption than bone formation, resulting in bone loss. Further, results have linked increased PTH serum levels and decreased levels of CT with age and possible bone loss. Moreover, oestrogen can protect against increased bone resorption induced by PTH infusion. PTH’s synthetic N-terminal teriparatide increases bone mass (with a slight increase in bone resorption) and has been approved by the FDA for clinical use. The IGF-1 signalling pathway plays an anabolic role in bone metabolism by increasing bone formation, with decreased levels of IGF-1 associated with advancing ageing and an increased risk for OP. Treatment of ageing animals with IGF-1 stimulates bone formation and regeneration in aged animal models. Moreover, glucose homoeostasis, which is under tight hormonal control by insulin, is dependent on a balance between glucose ingestion, utilization, and production. Advanced age is related to a redistribution of fat depots, increasing the percentage of total body fat, obesity (particularly visceral fat deposits) and lipid spillover into muscle. This redistribution decreases insulin action with advancing age, placing glucose homoeostasis into disequilibrium. Senile OP is a human, worldwide metabolic bone disorder with a high incidence that is characterized by the loss of both cortical and trabecular bone. Senescent BMSCs, including those that have stem-cell-like properties, alter the differentiation of osteogenic and adipogenic cells and contribute to senile OP. Further, mitophagy is markedly reduced during normal BMSCs ageing, which facilitates adipogenic differentiation at the expense of osteogenic differentiation. Decreased levels of autophagy, caused by ageing, are related to impaired BMSC osteogenic capacity during senile OP. LepR is a marker for bone BMSCs. Approximately 0.3% of bone marrow cells...
are LepR[−] and these cells are a major source of osteoblasts and adipocytes. In human BMSCs, LepR expression is upregulated with ageing. With age, a large proportion of LepR[−] cells become senescent, as judged by high levels of p16 in murine femurs.

The immune system is crucial to understanding bone homeostasis and bone pathology. Farr et al. found that not only osteocytes but also myeloid lineage cells, particularly macrophages (expressing p16^{INK4a}), are senescent and secrete SASP factors. Polarization of macrophages toward the M1 phenotype and cellular senescence are induced by p16^{INK4a}. Li et al. reported that proinflammatory and senescent neutrophils and macrophages accumulate in the bone marrow and induce skeletal ageing in rats and mice by secreting abundant quantities of granulin, which lowers bone turnover and increases bone marrow fat. Mechanistically, granulin was found to bind and inhibit plexin-b2 receptor signalling by BMSCs, decreasing osteogenesis and stimulating adipogenesis of BMSCs. In contrast, genetic deletion of granulin in neutrophils and macrophages or the use of granulin-neutralizing antibodies delayed skeletal ageing. Taken together, these results suggest that senescent immune cells are potential targets for age-related OP.

The results above suggest that an accumulation of senescent bone cells and a SASP may result in primary OP and it is therefore possible that the elimination of senescent cells will protect from age-related bone loss. Both genetic and pharmacological approaches have been used to eliminate senescent cells. AP20187 treatment, which eliminates p16⁺ cells in old INK-ATTAC mice, reduces age-related trabecular bone loss of the spine, increases cortical bone mass of the femur and improves bone strength at both sites. Pretreatment of whole mouse bone marrow with senescent osteocyte-conditioned medium increased osteoclast differentiation, indicating that SASP factors secreted from senescent cells promote osteoclast progenitor survival. Furthermore, old mice that received either 4 months of senolytic administration (which eliminates senescent cells) or a 2-month JAK inhibitor (which blocked the proinflammatory secretome of senescent cells), ‘senomorphic approach’ showed improved bone microarchitecture and strength compared to old male WT mice. Further, aged mice treated with tetrathymethylpazine (TMP), the bioactive component extracted from <i>Liguisticum wallochii</i> Franchat (Chuanxiong), had increased trabecular bone microarchitecture. A potential explanation for this phenomenon is that TMP eliminates the senescent phenotype of LepR[−] bone marrow stem/progenitor cells. Likewise, the administration of senomorphic drugs and ruxolitinib to old mice improved physical function and increased lifespan. These findings suggest that specific targeting of senescent MSCs or osteocytes may provide a novel therapeutic strategy by which to not only prevent bone loss but also alleviate frailty.

In the clinic, ageing cortical bone loss is more significant than trabecular bone loss, indicating that two different mechanisms underlie bone loss in these two compartments. With ageing, both the number of osteoclasts and the degree of bone resorption decrease in trabecular bone, while osteoclastogenesis increases in cortical bone. Effective killing of senescent osteocytes in the bones of aged mice has been shown to reduce IL-1α and <i>Tnfsf11</i> mRNA, decrease osteoclast number on the endo-cortical surface, and increase cortical bone mass. This may be due to <i>Tnfsf11</i>- and SASP-induced RANKL production by osteocytes of cortical bone, which stimulates osteoclastogenesis and bone loss. Another study confirmed this possibility. Treating p16-3MR mice with ganciclovir eliminated osteoclast progenitors but did not prevent cortical bone loss in aged mice. Further study is needed to determine the life span of osteocytes in trabecular and cortical bone.

4.3 Secondary OP Senescence and GC-induced OP

GCs are an effective treatment for a wide range of inflammatory diseases, such as rheumatoid arthritis (RA) and ankylosing spondylitis (AS). However, clinical experience has shown that in the first 3–6 months of treatment with daily dosages ranging from 2.5 to 7.5 mg, there is an increase in bone fragility and subsequent fracture, which results in OP, extensive medical issues, and socioeconomic burden. GIOP is a secondary form of OP, with an unknown mechanism of action. GCs have detrimental effects on bone cells. A high dose of GCs negatively regulates the osteogenic differentiation of MSCs. Exogenous GCs induce apoptosis of osteoblasts and osteocytes. Apoptotic osteocytes are the main source of SOST and RANKL, negatively regulating bone formation and positively regulating bone resorption.

Recently, cellular senescence has been shown to play a role in various cell types (e.g. MSCs) in response to GC treatment. For example, in young mice Nestin-expressing (Nestin⁺ cells) in postnatal bones are primarily of endothelial and osteoblast lineages, known to undergo GC mediated senescence. Further, decreased angiogenesis is responsible for rapid bone loss in paediatric GIOP. GC use induces endothelial cell senescence in the metaphysis of long bone resulting in bone loss, while blockade of endothelial senescence prevents bone loss. Moreover, ANG, a ribonuclease that is secreted by osteoclasts, is essential for senescence protection of neighbouring blood vessels through an ANG/PLXNB2-rRNA transcription signalling pathway. GC treatment induces blood vessel cell senescence by suppressing the formation of ANG-expressing osteoclasts in the metaphysis, which is accompanied by reduced angiogenesis-coupled osteogenesis.

In addition to young mice, LepR[−] MSCs of adult mice are also susceptible to GC treatment. Flow cytometry demonstrated LepR[−] cells to exhibit a senescent phenotype with increased p16^{INK4a}, p53 and p21 expression, confirming LepR[−] cellular senescence in GC-treated bone marrow. Clearance of senescent cells by dasatinib (D) + quercetin (Q) rescues GC-induced bone loss. DPP4, a membrane glycoprotein with exopeptidase activity, was recently reported to play an important role in the inflammatory macrophage profile associated with type 2 diabetes, obesity, and OP. DPP4 selectively cleaves alanine and proline from polypeptide substrates that result in substrate degradation of glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP). GC treatment upregulates DPP4 and downregulates GLP-1, resulting in LepR[−] MSC senescence.
and disrupted bone osteogenesis and angiogenesis. These observations identify cellular senescence as a new means by which GCs exert deleterious effects on bone microarchitecture, suggesting the DPP4/GLP-1 axis to be a regulator of GC-induced LepR+ cell senescence in adult mice. In the future, it is important to determine whether a decline or loss of DPP4/GLP-1 axis signalling in young or adult bone is due to the cellular senescence associated with advanced ageing and other pathological conditions (Figure 4).

4.4 | Senescence and inflammatory bone loss

Patients with inflammatory diseases are at high risk for bone loss. For example, Hauser et al. reported that patients suffering from rheumatoid arthritis had an overall OP prevalence of 26.5%, which was significantly higher than the prevalence of OP in a gender- and age-matched control cohort. LPS, a gram-negative bacterial outer membrane component, induces critical inflammatory factors including TNF-α, IL-1 and IL-6 that activate inflammation-induced bone resorption. These factors work with a multitude of cells that activate pre-osteoclasts, increasing the number of mature osteoclasts and the area of eroded surface through autocrine, paracrine, and endocrine mechanisms. These factors also inhibit osteoblast function, decreasing bone formation.

Repeated LPS exposure can induce senescence in microglia, dental pulp and pulmonary epithelial cells. Senescent osteocytes induced by LPS are responsible for inflammatory bone loss. LPS administration induces osteocyte senescence, as demonstrated by a significant increase in the expression of p16INK4a and p21 in alveolar bone, accompanied by increased γH2AX immunoreactivity. LPS exposure also enhances the production of proinflammatory factors, including intercellular cell adhesion molecule-1 (ICAM1), IL-6, monocyte chemotactic protein-1 (MCP1), MMP12 and MMP13. In an ex vivo model that mimics the in vivo situation, tissues and cells were morphologically positioned within the normal extracellular matrix. With exposure of alveolar bone to LPS, p53 was significantly increased but not p16INK4 or p21. Increased levels of IL-1α, IL-6 and TNF-α were observed as well. These data suggest that persistent LPS exposure induces senescence of alveolar-derived, osteocyte-like cells by promotion of DNA damage via p53 activation. Moreover, LPS has been shown to increase the production of IL-1α, IL-6 and TNF-α through p53-dependent activation of human gingival fibroblasts. In conclusion, LPS-triggered activation of p53, rather than p16, induces senescent osteocytes to secrete SASP factors in vivo, resulting in DNA damage.

5 | TARGETING CELLULAR SENESCENCE AS A PROMISING THERAPEUTIC STRATEGY FOR OP

Current treatment options for OP either suppress bone resorption or stimulate bone formation, but have limited benefit. Recent evidence has demonstrated a link between senescence and OP, providing for potentially exciting strategies by which to prevent and treat OP. Possible therapeutic treatments include senescent cell-targeting, SASP-targeting therapies, gene therapy to rejuvenate stem cells, and treatment with traditional Chinese medical herbs. In what follows, we describe the potential benefits of each of these and the mechanistic basis for each strategy.

5.1 | Selective elimination of senescent cells

Resistance to apoptosis is a significant hallmark of senescent cells. To achieve this protection, senescent cells upregulate several SCAPs. Therefore, targeting these networks directly and eliminating these cells may prevent the initiation and progression of OP. ABT263, a specific inhibitor of the anti-apoptotic proteins, BCL-2 and BCL-x, counteracts their anti-apoptotic function and has been widely used to eliminate senescent cells. Oral administration of ABT263 to either sub-lethally irradiated or normally aged mice effectively depletes senescent cells, as well as removes senescent muscle stem cells. Treating 24-month-old female mice with...
ABT263 for 5 days reduced levels of the DNA damage marker, H2AX, and the senescence markers, p16 and GATA4, in osteocyte-enriched bone.19,217 Surprisingly, a negative effect was observed in vivo for 24-month-old male and female mice treated with ABT263 for 2 weeks, with mice exhibiting trabecular bone loss in the proximal tibia, which contributed to impaired osteo-progenitor function.218 Further experiments are required to clarify the potential use of ABT263 for treatment of OP. The haematological toxicity of general inhibitors of BCL-2 has been evaluated for flavone, fisetin and the BCL-X\textsubscript{L} inhibitors A1331852 and A1155463.133,219 Fisetin exerts anti-inflammatory effects, promotes osteoblast differentiation, promotes osteogenesis,220,221 suppresses osteoclast activity,221 and antagonizes OP.220,221 Another flavonoid, fenofibrate, stimulates the differentiation of osteoblasts into osteogenic precursor cells through the induction of PPAR\textalpha-mediated BMP2 expression.222

Targeting senescence-specific pathways for depletion of senescent cells do appear to be effective as an OP treatment. Regulation of p53 is at the posttranscriptional and in particular the protein stability levels. This regulation is primarily controlled by the MDM2 E3 ubiquitin ligase that poly-ubiquinates and degrades p53.223 Inhibition of MDM2 blocks the interaction between MDM2 and p53, which elevates p53 and p21 expression.224 Transfection of hMSCs with an MDM2 overexpression plasmid successfully reduced the transcription and protein levels of p53 and increased osteogenic differentiation of the MDM2 plasmid-treated hMSCs compared to untreated control and empty vector-treated cells.225 These results indicate that MDM2 may act as an antagonist of OP by inducing p53 degradation.

HSP90 plays an important role in various cell functions, including protein folding and stabilization, proteasomal degradation and the cellular stress response.226 Mice treated with HSP90 inhibitors exhibit decreased p16 and delayed onset of several age-related symptoms and increased lifespan.227 It is still unclear whether HSP90 inhibitors are a potential treatment for OP. Results regarding the role of HSP90 in osteoclastogenesis are controversial. SNX-2112, an HSP90 inhibitor, suppresses osteoclast formation in vivo and in vitro.228 Other studies have demonstrated that inhibition of HSP90 enhances osteoclastogenesis by activating Src kinase, which is a non-receptor tyrosine kinase that induces resistance to apoptosis.229,232 The role of HSP90 in osteoblast-mediated bone formation is unclear. One study reported that blockade of HSP90 attenuated GC-induced osteoblastogenesis and OP.233 In vitro, treatment with 17-AAG, an HSP90 inhibitor, of C3H10T1/2 and PCOB cells, stimulates osteoblastic differentiation.233 These data are consistent with the finding that administration of 17-AAG to mice promotes osteoblastogenesis rather than bone resorption, which increases bone mass during bone remodelling.233

Collectively, targeting senescent cells with natural products or other compounds appears to effectively alleviate OP. However, there are potential barriers to this form of treatment, including off-target effects, exhaustion of stem cells and failure to efficiently induce apoptosis in senescent cells. More precise targeting of specific senescent cells is needed to overcome these barriers.133,234 Immune system function declines with age, disrupting the clearance of senescent cells.235 Remodelling of the immune system may provide a more efficient means by which to decrease the number of senescent cells, reducing OP progression.

5.2 Rejuvenation of stem cells by gene therapy

Stem cell exhaustion can not only induce cellular senescence, but also cause a variety of diseases related to ageing, including OP. Therefore, stem cells may be a potential target for the prevention of OP.236 Further, factors that rejuvenate stem cells can prevent stem cell senescence and OP in mice.

Special AT-rich binding protein 2 (SATB2) plays a critical role in site-specific properties of BMSCs (stemness, anti-ageing capacity and osteoblastic differentiation) by upregulating the activity of other DNA-binding proteins (e.g., nuclear matrix proteins) that orchestrate chromatin organization and remodelling.237 Overexpression of SATB2 rejuvenates senescent BMSCs and promotes the osteogenic differentiation of these cells. Transplantation of BMSCs rejuvenated by SATB2 overexpression prevents oestrogen deficiency-related alveolar bone loss.238 Alpha-ketoglutarate (\textalpha KG), a crucial intermediate of the tricarboxylic acid cycle located between succinyl-CoA and isocitrate, was recently reported to have anti-ageing effects.239 Administration of \textalpha KG protects old mice from OP, decreases cellular senescence, and rejuvenates aged MSCs.240 \textalpha KG reduces overall H3K9me3 and H3K27me3 levels, which are two critical histone modifications that are closely related to cell senescence and organisam ageing.241,242 Histone lysine demethylase 4B (KDM4B) is an H3K9me3 demethylase. Knocking out KDM4B impairs MSC self-renewal and promotes MSC exhaustion, accelerating bone loss and marrow adiposity.236 Activation of KDM4B in MSCs may be an epigenetic rejuvenation strategy for the prevention or treatment of skeletal ageing.236 LRRc17, a vital orthotropic factor for bone metabolism,243 increases with age.244 Overexpression of LRRc17 accelerates the senescence of young mouse-derived BMSCs, favouring adipogenic differentiation of MSCs. Knockdown of LRRc17 not only restored the morphology of mitochondria but also effectively improved mitophagy, alleviating BMSC senescence during H\textsubscript{2}O\textsubscript{2} treatment.244 Transplantation of BMSCs, in which LRRc17 was knocked down, alleviated OVX-induced bone loss.244 Mitochondrial dynamics play a critical role in cellular senescence, with mitochondrial impairment a prominent risk factor for bone metabolic disease.245 Among these, the mitochondrial deacetylase, sirtuin 3 (Sirt3), localized to the mitochondria, has been reported to inhibit mitochondrial apoptosis.246,247 Sirt3-mediated mitochondrial homeostasis may rejuvenate the senescence of stem cells.248,249 In the SAMP6 mouse model of senile OP, injection of Sirt3-Flag for 4 weeks not only reversed BMSC senescence but also promoted the secretion of ALP and reduced the secretion of TRAP5b, a bone resorption marker, indicating that Sirt3 acts as an inhibitor of OP.249 Collectively, targeting stem cell rejuvenation may be a potential therapeutic strategy for OP. The identification of gero-protective factors and the appropriate targeting of such by gene therapy remains a challenge.
5.3 | SASP inhibition

Another therapeutic approach to OP is to target specific factors associated with the SASP of senescent cells. Components of SASP (e.g., proinflammatory cytokines, chemokines and growth factors), when targeted, may prevent bone dysfunction. These components could be blocked with TNF-α inhibitors,250 IL-1 receptor antagonists,251 or IL-6 antagonists.252 These drugs have effectively improved BMD for inflammation-associated disease. Unfortunately, it is still unclear whether these drugs prevent the progression of OP in the clinic. IL-17 may be a potential target for OP. IL-17 neutralizing antibodies have prevented bone loss and senescence of the immune system in a murine OVX model.253,254 Deletion of the principal IL-17 receptor protects mice from OVX-induced bone loss.255 To date, no clinical trials have been performed to evaluate the efficacy of the IL-17 antibody, secukinumab, in patients with OP. It is important that new technologies identify the specific SASP of OP so that effective drug therapy can be developed. This approach to treatment will require continual, possibly lifelong therapy to combat SASP. This is a distinct disadvantage and makes this approach difficult to translate into the clinic.

5.4 | Traditional Chinese medical herbs as possible cellular senescence-modulating therapies

Here are many advantages to traditional Chinese medical herbs, including lower cost, fewer side effects, and better feasibility for long-term application. Recently, some Chinese herbs have been shown to improve bone quality via regulation of cellular senescence. TMP, extracted from the Chinese herb Chuanxion, enhanced MSC viability and delayed the senescence of MSCs by suppressing the activity of NF-κB signalling and reducing the levels of the proinflammatory factors, TNF-α and IL-1β.256 Local delivery of TMP eliminated senescent LepR+ MSCs by epigenetically modulating Ezh2-H3K27me3, protecting trabecular bone mass in aged mice.183

Angelica polysaccharide (ASP), an acetone extracted polysaccharide from Chinese angelica, has various benefits, including antioxidant, antitumor, haematopoietic regulatory, immunomodulatory and radioprotective effects.257 ASP promotes MSC proliferation and osteoblast differentiation by enhancing the levels of Runx2, OCN, ALP and BMP-2 protein.258 In vivo results confirmed that ASP prevents OVX-induced OP by promoting bone formation in rats.258

Further research is required to explore the key components of traditional Chinese medical herbs that enhance the proliferation and attenuate senescence of bone cells, so that those components can be evaluated as clinical OP treatments.

6 | CLINICAL TRANSLATION OF CELLULAR SENESCENCE TARGETING

As summarized herein, senescent cells and the SASP are central to OP, with targeting or elimination of each a possible therapeutic approach for the treatment of OP. However, translation of this approach into clinical use is a challenge. For example, administration of the drug early in life to prevent ageing seems unlikely. Further, the time required for clinical trials would be prohibitive, and long-term use of such drugs may have side effects. Two clinical studies have begun to test the efficacy of senescent cell elimination for disease treatment in humans. One study (https://clinicaltrials.gov/ct2/show/NCT02848131) evaluated combination therapy of dasatinib (D) and quercetin (Q). Oral intake of 100 mg D and 1000 mg Q for 3 days decreased blood SASP components and reduced the number of senescent cells in patients with diabetic kidney disease.259 Another clinical study (https://clinicaltrials.gov/ct2/show/record/NCT04313634) investigated the effect of senolytics on skeletal health. One hundred and twenty elderly women were randomized into three groups. The first group received D (100 mg for 2 days) plus Q (1000 mg daily for 3 consecutive days starting every 28 days with five total dosing periods). The second group received 20 mg/kg of fisetin for 3 consecutive days on an intermittent schedule starting every 28 days (five total dosing periods). The third group did not receive any intervention. The per cent change in the serum C-terminal telopeptide of type 1 collagen (CTX) (bone resorption marker) and the amino-terminal propeptide of type I collagen (P1NP) (bone formation marker) for a 20-week period will be examined in this ongoing study. Results are not available.

7 | CONCLUSIONS AND FUTURE PERSPECTIVES

Cellular senescence plays an important role in bone homeostasis, with variations in cellular senescence based on the different types of OP. These variations are associated with pathogenic factors, bone turnover rate and systemic metabolism. Understanding the molecular relationship between bone cells and senescence provides for the possible targeting of senescence as a means by which to treat OP. However, there is no general consensus regarding the clinical efficacy of cellular senescence-associated pharmacological therapy for OP. There are several promising approaches, such as the elimination of senescent cells using senolytic agents or immunotherapy, the removal of specific SASP factors with senomorphics, rejuvenation of stem cells using gene therapy and Chinese herbal treatment. However, there are challenges to clinical intervention in humans. For example, the specific senescent cells and components of the SASP that result in the initiation and progression of OP have not been fully identified. Most senescence modulators are not specific to an individual target, and may affect not only senescent cells but also other cell populations. Much work is required to confirm the crosstalk between cellular senescence and OP in humans before preventive and therapeutic strategies can be applied in the clinic. Moreover, personalized therapies will be required because of differences in pathology, types of OP and bone turnover rates.

AUTHOR CONTRIBUTIONS

Tiantian Wang and Shishu Huang conceptualized and wrote the outline of the manuscript. All authors reviewed and edited the
manuscript. All authors have read and approved the final manuscript.

ACKNOWLEDGEMENTS
This study was supported by the National Natural Science Foundation (82102656); China Postdoctoral Science Foundation (2022T150452; 2021M692299); Postdoctoral Research Project, West China Hospital, Sichuan University (2021HXBH021); Department of Science and Technology of Sichuan Province (2022NSFC1392); Science & Technology Department of Sichuan Province & Chengdu (2021YFSY0003, 2018SZDZX0013, 2019-YF08-00186-GX); Health Commission of Sichuan Province (19PJ104). The authors thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript. The picture material comes from SMART: http://smart.servier.com.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study. cd_value_code="text"

ORCID
Tiantian Wang https://orcid.org/0000-0002-7623-7245
Shishu Huang https://orcid.org/0000-0002-5373-103X
Chengqi He https://orcid.org/0000-0002-5349-0571

REFERENCES
1. Buckley L. Update in osteoporosis. Arthritis Rheum. 2003;49(5):732-734.
2. Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther. 2022;237:108168.
3. Hennlund E, Svedbom A, Ivergård M, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the international osteoporosis foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013;8(1):136.
4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465-475.
5. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9772):1276-1287.
6. Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N Engl J Med. 2016;374(3):254-262.
7. Chotiyarnwong P, McCluskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 2020;16(8):437-447.
8. Buckley L, Humphrey MB. Glucocorticoid-induced osteoporosis. N Engl J Med. 2018;379(26):2547-2556.
9. Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813-827.
10. Wan M, Gray-Gaillard EF, Elissieff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021;9(1):41.
11. Wang T, Yang L, Liang Z, et al. Pulsed electromagnetic fields attenuate glucocorticoid-induced bone loss by targeting senescent LepR (-/-) bone marrow mesenchymal stromal cells. Mater Sci Eng C Mater Biol Appl. 2021;133:112635.
12. Wang T, Yang L, Liang Z, et al. Targeting cellular senescence prevents glucocorticoid-induced bone loss through modulation of the DPP4-GLP-1 axis. Signal Transduct Target Ther. 2021;6(1):143.
13. Khosla S, Farr JN, Monroe DG. Cellular senescence and the skeleton: pathophysiology and therapeutic implications. J Clin Invest. 2022;132(3):e154888.
14. Farr JN, Khosla S. Cellular senescence in bone. Bone. 2019;121:123-133.
15. Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci. 2020;21(1):349.
16. Farr JN, Rowsey JL, Eckhardt BA, et al. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: evidence in young adult mice and older humans. J Bone Miner Res. 2019;34(8):1407-1418.
17. Farr JN, Xu M, Weivoda MM, et al. Targeting cellular senescence prevents age-related bone loss in mice. Nat Med. 2017;23(9):1072-1079.
18. Farr JN, Fraser DG, Wang H, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31(11):1920-1929.
19. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585-621.
20. Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16(10):718-735.
21. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010;24(22):2463-2479.
22. Victorelli S, Passos JF, Telomeres and cell senescence – size matters not. EBioMedicine. 2017;21:14-20.
23. Dierick JF, Eilers F, Remacle J, et al. Stress-induced premature senescence and replicative senescence are different phenotypes, proteome evidence. Biochem Pharmacol. 2002;64(5-6):1011-1017.
24. Kida Y, Goligorsky MS. Senile osteoporosis: evidence in young adult mice and older humans. J Bone Miner Res. 2007;16(10):718-735.
25. Blasiak J. Senescence in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci. 2020;77(5):789-805.
26. Parrinello S, Sampere E, Krtolica A, Goldstein J, Melov S, Campisi J. Senescent cells: a coordinated tumor suppressor mechanism. Nat Cell Biol. 2003;5(8):741-747.
27. Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482-496.
28. McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217(1):65-77.
29. Gire V, Wynford-Thomas D. Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol Cell Biol. 1998;18(3):1611-1621.
30. Brown JP, Wei W, Sedivy JM. Bypass of senescence after disruption of p21CIPI/WAF1 gene in normal diploid human fibroblasts. Science. 1997;277(5327):831-834.
31. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16INK4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232-236.
32. Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med. 2020;288(5):519-536.
33. Khosla S, Farr JN, Tchekonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. *Nat Rev Endocrinol*. 2020;16(5):263-275.

34. Palmer AK, Tchekonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: a therapeutic opportunity. *Diabetes*. 2015;64(7):2289-2298.

35. Lee BY, Han JA, Im JS, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. *Aging Cell*. 2006;5(2):187-195.

36. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. *Nat Rev Mol Cell Biol*. 2007;8(9):729-740.

37. Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. *Nat Med*. 2015;21(12):1424-1435.

38. Forssmann U, Stoetzer C, Stephan M, et al. Inhibition of CD26/dipeptidyl peptidase IV enhances CCL11/eotaxin-mediated recruitment of eosinophils in vivo. *J Immunol*. 2008;181(2):1120-1127.

39. Kulinman T, Michaloglou C, Vredenbeld LCW, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. *Cell*. 2008;133(6):1019-1031.

40. Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis. *Cell*. 2008;134(4):657-667.

41. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. *Nature*. 2007;445(7128):656-660.

42. Lujambio A, Akkari L, Simon J, et al. Non-cell-autonomous tumor suppression by p53. *Cell*. 2013;153(2):449-460.

43. Shaked H, Lemmens K, Gevaert AB, De Meyer GRY, Segers VFM. Cellular senescence links aging and diabetes in cardiovascular disease. *Am J Physiol Heart Circ Physiol*. 2018;315(3):H448-H462.

44. Nelson G, Wordsworth J, Wang C, et al. A senescent cell bystander effect: senescence-induced senescence. *Aging Cell*. 2012;11(2):345-349.

45. Rodier F, Coppé JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. *Nat Cell Biol*. 2009;11(8):973-979.

46. Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN. “Social life” of senescent cells: what is SASP and why study it? *Acta Nat*. 2018;10(1):4-14.

47. Jun Ji, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. *Nat Cell Biol*. 2010;12(7):676-685.

48. Rajagopalan S, Long EO. Cellular senescence induced by CD158d peptidyl peptidase IV enhances CCL11/eotaxin-mediated recruitment of eosinophils in vivo. *J Immunol*. 2008;181(2):1120-1127.

49. Tchkonia T, Morbeck DE, Von Zglinicki T, et al. Fat tissue, aging, and cellular senescence. *Aging Cell*. 2010;9(5):667-684.

50. Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. *Nat Med*. 2009;15(9):1082-1087.

51. Minamino T, Komuro I. Vascular cell senescence: contribution to atherosclerosis. *Circ Res*. 2007;100(1):15-26.

52. Westhoff JH, Hijliger KF, Steinbach MP, et al. Hypertension induces somatic cellular senescence in rats and humans by induction of cell cycle inhibitor p16INK4a. *Hypertension*. 2008;52(1):123-129.

53. Xu M, Pirskhalava T, Farr JN, et al. Senolytics improve physical function and increase lifespan in old age. *Nat Med*. 2018;24(8):1246-1256.

54. Krishnamurthy J, Ramsey MR, Ligon KL, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. *Nature*. 2006;443(7110):453-457.

55. Li X, Xu J, Dai B, Wang X, Guo Q, Qin L. Targeting autophagy in osteoporosis: from pathophysiology to potential therapy. *Ageing Res Rev*. 2020;62:101098.

56. Xu F, Teitelbaum SL. Osteoclasts: new insights. *Bone*. 2013;1(1):11-26.

57. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. *Nature*. 2003;423(6937):337-342.

58. Chen H, Cui Z, Wang L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteosclerosis. *Nat Med*. 2014;20(11):1270-1278.

59. Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. *Nature*. 2014;507(7492):323-328.

60. Chen G, Dan Y, Wang R, et al. An antibody against Siglec-15 promotes bone formation and fracture healing by increasing TRAP+ mononuclear cells and PDGF-BB secretion. *Bone Res*. 2021;9(1):47.

61. Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? *Cell Death Differ*. 2016;23(7):1128-1139.

62. Goldring SR. The osteocyte: key player in regulating bone turnover. *RMD Open*. 2015;1(Suppl 1):e000049.

63. Wang T, Yu X, He C. Pro-inflammatory cytokines: cellular and molecular drug targets for glucocorticoid-induced osteoporosis via osteocyte. *Curr Drug Targets*. 2019;20(1):1-15.

64. Bidwell JP, Yang J, Robling AG. Is HMGB1 an osteocyte alarmin? *J Cell Biochem*. 2008;103(6):1671-1680.

65. Lefterova MI, Zhang Y, Steger DJ, et al. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. *Diabetes*. 2009;58(9):1877-1887.

66. Golding E, Millesi F, Weis JA, Miga MI, et al. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. *Stem Cells*. 2009;27(6):1887-1898.

67. Xie H, Cui Z, Wang L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteosclerosis. *Nat Med*. 2014;20(11):1270-1278.

68. Wang T, Yu X, He C. Pro-inflammatory cytokines: cellular and molecular drug targets for glucocorticoid-induced osteoporosis via osteocyte. *Curr Drug Targets*. 2019;20(1):1-15.

69. Bidwell JP, Yang J, Robling AG. Is HMGB1 an osteocyte alarmin? *J Cell Biochem*. 2008;103(6):1671-1680.

70. Lefterova MI, Zhang Y, Steger DJ, et al. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. *Diabetes*. 2009;58(9):1877-1887.
79. Massaro F, Corrilllon F, Stamatopoulos B, Meuleman N, Lagneaux L, Bron D. Aging of bone marrow mesenchymal stromal cells: hematopoiesis disturbances and potential role in the development of hematologic cancers. Cancers. 2020;13(1):168.

80. Alameda D, Saez B, Lara-Astiaso D, et al. Characterization of freshly isolated bone marrow mesenchymal stromal cells from healthy donors and patients with multiple myeloma: transcriptional modulation of the microenvironment. Haematologica. 2020;105(9):e470-e473.

81. Bai J, Wang Y, Wang J, Zhai J, He F, Zhu G. Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling. Am J Physiol Cell Physiol. 2020;318(5):C1005-C1017.

82. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature. 2010;466(7302):68-76.

83. Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: current status and challenges. Front Cell Dev Biol. 2020;8:364.

84. Wu L, Feng Z, Cui S, et al. Rapamycin upregulates autophagy by inhibiting the mTOR-ULK1 pathway, resulting in reduced podocyte injury. PLoS One. 2013;8(5):e63799.

85. Cheng NT, Meng H, Ma LF, et al. Role of autophagy in the progression of osteoarthritis: the autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis. Int J Mol Med. 2017;39(5):1224-1232.

86. Wen Y, Zhuo N, Li Y, Zhao W, Jiang D. Autophagy promotes osteogenic differentiation of human bone marrow mesenchymal stem cell derived from osteoporotic vertebrae. Biochem Biophys Res Commun. 2017;488(1):46-52.

87. Kerr JS, Adriaanse BA, Greig NH, et al. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40(3):151-166.

88. Wang Y, Liu Y, Chen E, Pan Z. The role of mitochondrial dysfunction in mesenchymal stem cell senescence. Cell Tissue Res. 2020;382(3):457-462.

89. Guo Y, Jia X, Cui Y, et al. Sirt3-mediated autophagy regulates AGES-induced BMSCs senescence and senile osteoporosis. Redox Biol. 2021;41:101915.

90. Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 2020;52:88-98.

91. Dong X, Bi L, He S, et al. FFAS-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie. 2014;101:123-131.

92. Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Stark R, Grzelak M, Hadfield M, RNA sequencing: the teenage years. Trends Genet. 2018;34(10):533-542.

93. Stark R, Grzelak M, Hadfield M. RNA sequencing: the teenage years. Trends Genet. 2018;34(10):533-542.

94. Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell. 2018;17(4):e12794.

95. Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: current status and challenges. Front Cell Dev Biol. 2020;8:364.

96. Wang T, He C. TNF-α and IL-6: the link between immune and bone system. Curr Drug Targets. 2020;21(3):213-227.

97. Zhu S, He H, Gao C, et al. Ovariectomy-induced bone loss in TNFα and IL6 gene knockout mice is regulated by different mechanisms. J Mol Endocrinol. 2018;60(3):183-198.

98. Liu Y, Lu L, Xie Y, et al. Interleukin-6 knockout inhibits senescence of bone marrow mesenchymal stem cells in high-fat diet-induced bone loss. Front Endocrinol. 2020;11:62950.

99. Katzik I, Adler M, Karin O, Mendelsohn-Cohen N, Mayo A, Alon U. Senescent cells and the incidence of age-related diseases. Aging Cell. 2021;20(3):e13314.

100. Sikora E, Bielak-Zmijewska A, Mosieniak G. Targeting normal and cancer senescent cells as a strategy of senotherapy. Aging Res Rev. 2019;55:100941.

101. Huang R, Qin C, Wang J, et al. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute lung injury. Aging. 2019;11(18):7999-8014.

102. Witwer KW, Van Balkom BW, Bruno S, et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J Extracell Vesicles. 2019;8(1):1609206.

103. Tomé M, Sepúlveda JC, Delgado M, et al. miR-335 correlates with senescence/agin in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells. 2014;32(8):2229-2244.

104. Li CJ, Cheng P, Liang MK, et al. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest. 2015;125(4):1509-1522.

105. Xu R, Shen X, Si Y, et al. MicroRNA-31a-5p from aging BMSCs links bone formation and resorption in the aged bone marrow microenvironment. Aging Cell. 2018;17(4):e12794.

106. Zhou P, Wu G, Zhang P, et al. SATB2-Navag axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone. Aging. 2016;8(9):2006-2011.

107. Lee KS, Lee J, Kim HK, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteopo-gerin and miR-21-5p. J Extracell Vesicles. 2021;10(12):e12152.

108. Ocarno Nde M, Boeloni JN, Jorgetti V, Gomes DA, Goes AM, Serakides R. Intra-bone marrow injection of mesenchymal stem cells improves the femur bone mass of osteoporotic female rats. Connect Tissue Res. 2010;51(6):426-432.

109. Stark R, Grzelak M, Hadfield M. RNA sequencing: the teenage years. Trends Genet. 2019;35(11):631-656.

110. Huang L, Li Q, Zhang K, et al. Single cell transcriptomic analysis of human mesenchymal stem cells reveals limited heterogeneity. Cell Death Dis. 2019;10(5):368.

111. Zhou W, Lin J, Zhao K, et al. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. Am J Sports Med. 2019;47(7):1722-1733.

112. Freeman BT, Jung JP, Ogle BM. Single-cell RNA-Seq of bone marrow-derived mesenchymal stem cells reveals unique profiles of lineage priming. PLoS One. 2015;10(9):e0136199.

113. Staines KA, Hopkinson M, Dillon S, et al. Conditional deletion of E11/Podoplanin in bone protects against ovariectomy-induced increases in osteoclast formation and activity. Biosci Rep. 2020;40(1):BSR20190329.

114. Ikpegbu E, Basta L, Clements DN, et al. FGF-2 promotes osteocyte differentiation through increased E11/podoplanin expression. J Bone Miner Res. 2015;30(6):1154-1165.

115. Kassem M, High-fat diet-induced obesity promotes expansion of bone marrow adipose tissue and impairs skeletal stem cell functions in mice. J Bone Miner Res. 2018;33(6):1154-1165.

116. Hardaway AL, Herroon MK, Rajagurubandara E, Podgorski I. Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases. Cancer Metastasis Rev. 2014;33(2-3):527-543.

117. Siegel G, Kluza T, Hermanutz-Klein U, Bieback K, Northoff H, Schäfer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11:146.
120. Dalle Pezze P, Nelson G, Otten EG, et al. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol. 2014;10(8):e1003728.

121. Hayashi T, Goto S. Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev. 1998;102(1):55-66.

122. Hwang JS, Hwang JS, Chang I, Kim S. Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci. 2007;62(5):490-499.

123. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem. 2009;78:959-991.

124. Takenaka Y, Inoue I, Nakano T, Ikeda M, Kakinuma Y. Prolonged disturbance of proteostasis induces cellular senescence via temporal mitochondrial dysfunction and subsequent mitochondrial accumulation in human fibroblasts. FEBS J. 2022;289(6):1650-1667.

125. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069-1075.

126. Geng Q, Gao H, Yang R, Guo K, Miao D. Pyrroloquinoline quinone prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. Int J Biol Sci. 2019;15(1):58-68.

127. Li J, Karim MA, Che H, Geng Q, Miao D. Deletion of p16 prevents estrogen deficiency-induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation. J Bone Miner Res. 2017;32(5):962-973.

128. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are associated in senescent cells. Genes Dev. 2007;21(5):525-530.

129. Tylicka SH, Gallagher JC. Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol. 2014;142:155-170.

130. van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with aging. Lancet Diabetes Endocrinol. 2018;6(8):647-658.

131. Wang Y, Xu L, Wang J, Bai J, Zhai J, Zhu G. Radiation induces p16IPK deletion in human fibroblasts. J Radiat Res. 2014;55(6):729-33.

132. Wang Y, Xu L, Wang J, Bai J, Zhai J, Zhu G. Radiation induces p16IPK deletion in human fibroblasts: restoration of normal level of p16IPK reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci. 2007;62(5):490-499.

133. Eastell R, O’Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Primers. 2016;2(11):1609.

134. Chen JR, Lazarenko OP, Haley RL, Blackburn ML, Badger TM, Ronis MJ. Ethanol impairs estrogen receptor signaling resulting in accelerated activation of senescence pathways, whereas estradiol attenuates the effects of ethanol in osteoblasts. J Bone Miner Res. 2009;24(2):221-230.

135. Wu W, Fu J, Gu Y, Wei Y, Ma P, Wu J. JAK2/STAT3 regulates estrogen-related senescence of bone marrow stem cells. J Endocrinol. 2020;245(1):141-153.

136. Xu M, Tchonkova T, Ding H, et al. JAK2 inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A. 2015;112(46):E6301-E6310.

137. Colavitti R, Finkel T. Reactive oxygen species as mediators of cellular senescence. JUBMB Life. 2005;57(4-5):277-281.

138. Li J, Wang Q, Yang R, et al. BMI-1 mediates estrogen-deficiency-induced bone loss by inhibiting reactive oxygen species accumulation and T cell activation. J Bone Miner Res. 2017;32(5):962-973.

139. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

140. Young G, Marcus R, Minkoff JR, Kim LY, Segre GV. Age-related rise in parathyroid hormone in man: the use of intact and midmolecule antisera to distinguish hormone secretion from retention. J Bone Miner Res. 1987;2(5):367-374.

141. Del Rio JP, Alliende MI, Molina N, Serrano FG, Molina S, Vigil P. Steroid hormones and their action in women’s brains: the importance of hormonal balance. Front Public Health. 2018;6:141.

142. Aquino-Martinez R, Eckhardt BA, Rowsley JL, et al. Senescent cells exacerbate chronic inflammation and contribute to periodontal disease progression in old mice. J Periodontol. 2021;92(10):1493-1495.

143. Xu L, Wang Y, Wang J, Zhai J, Ren L, Zhu G. Radiation induces p16IPK deletion in human fibroblasts: restoration of normal level of p16IPK reduces aging markers in fibroblasts from elderly persons. J Gerontol A Biol Sci Med Sci. 2007;62(5):490-499.

144. Del Rio JP, Alliende MI, Molina N, Serrano FG, Molina S, Vigil P. Steroid hormones and their action in women’s brains: the importance of hormonal balance. Front Public Health. 2018;6:141.

145. Riggs BL, Melton Iii LJ 3rd, Robb RA, et al. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol. 2014;10(8):e1003728.

146. Riggs BL, Robb RA, et al. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput Biol. 2014;10(8):e1003728.

147. Talmage RV, VanderWiel CJ, Matthews JL, Calcinonin and phosphate. Mol Cell Endocrinol. 1981;24(3):235-251.

148. Wallar R, Wallar D, et al. Population-based study of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23(2):205-214.

149. Bilezikian JP. Primary hyperparathyroidism. J Clin Endocrinol Metab. 2018;103(11):3993-4004.

150. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

151. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

152. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

153. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

154. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

155. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

156. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

157. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

158. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

159. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

160. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

161. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

162. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.

163. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signal in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121-132.
160. Kurland ES, Rosen CJ, Cosman F, et al. Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab. 1997;82(9):2799-2805.

161. Liu JM, Zhao HY, Ning G, et al. IGF-1 as an early marker for low bone mass or osteoporosis in premenopausal and postmenopausal women. J Bone Miner Metab. 2008;26(2):159-164.

162. Fowlkes JL, Thrailkill KM, Liu L, et al. Effects of systemic and local administration of recombinant human IGF-I (rhIGF-I) on de novo bone formation in an aged mouse model. J Bone Miner Res. 2006;21(9):1359-1366.

163. Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Kronenberg HM. Vasculature-associated cells expressing nestin in vasculature and osteoprogenitors have no effect on the age-associated loss of bone mass in mice. Aging Cell. 2011;17(1):e93771.

164. Addison O, Drummond MJ, LaStayo PC, et al. Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging. 2014;18(5):532-538.

165. Ponti F, Santoro A, Mercatelli D, et al. Aging and imaging assessment of body composition: from fat to facts. Front Endocrinol. 2019;10:861.

166. Conte M, Martucci M, Sandri M, Franceschi C, Salvioi S. The dual role of the pervasive “fattish” tissue remodeling with age. Front Endocrinol. 2019;10:114.

167. Addison O, Drummond MJ, LaStayo PC, et al. Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging. 2014;18(5):532-538.

168. Akazawa N, Kishi M, Hino T, et al. Intramuscular adipose tissue in the quadriceps is more strongly related to recovery of activities of daily living than muscle mass in older inpatients. J Cachexia Sarcopenia Muscle. 2021;12(4):891-899.

169. Wang T. Searching for the link between inflamming and sarcopenia. Ageing Res Rev. 2022;77:101611.

170. Reaven GM, Chen N, Hollenbeck C, Chen YD. Effect of age on glucose tolerance and glucose uptake in healthy individuals. J Am Geriatr Soc. 1989;37(8):735-740.

171. Broughton DL, Taylor R. Review: deterioration of glucose tolerance with age: the role of insulin resistance. Age Ageing. 1991;20(3):221-225.

172. Watanabe K, Hishiya A. Mouse models of senile osteoporosis. Aging Cell. 2005;26(3):221-231.

173. Chen H, Zhou X, Fujita H, Onozuka M, Kubo KY. Age-related changes in trabecular and cortical bone microstructure. Int J Endocrinol. 2013;2013:213234.

174. Kim HH, Xiong J, MacLeod RS, et al. Osteocyte RANKL is required for cortical bone loss with age and is induced by senescence. JCI Insight. 2020;5(19):e138815.

175. Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA. Matrix-embedded cells control osteoclast formation. Nat Med. 2011;17(10):1235-1241.

176. Kim HH, Chang J, Iyer S, et al. Elimination of senescent osteoclast progenitors has no effect on the age-associated loss of bone mass in mice. Aging Cell. 2019;18(3):e12923.

177. Scudeletti M, Musselli C, Lanza L, Peirano L, Puppo F, Indiveri F. The immunological activity of corticoestrogens. Recentl Prog Med. 1996;87(10):508-515.

178. Boling EP. Secondary osteoporosis: underlying disease and the risk for glucocorticoid-induced osteoporosis. Clin Ther. 2004;26(1):1-14.

179. Mazziotti G, Angeli A, Bilezikian JP, Canalis E, Giustina A. Glucocorticoid-induced osteoporosis: an update. Trends Endocrinol Metab. 2006;17(4):144-149.

180. Wang T, Liu X, He C. Glucocorticoid-induced apoptosis and apoptosis in bone. Apoptosis. 2020;25(3-4):157-168.

181. Shen G, Ren H, Shang Q, et al. Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cell Mol Life Sci. 2018;75(15):2683-2693.

182. Ono N, Ono W, Mizoguchi T, Nagasawa T, Frenette PS, Kronenberg HM. Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell. 2014;29(3):330-339.

183. Su J, Chai Y, Ji Z, Xie Y, Yu B, Zhang X. Cellular senescence mediates the detrimental effect of prenatal dexamethasone exposure on postnatal long bone growth in mouse offspring. Stem Cell Res Ther. 2020;11(1):270.

184. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016;18(6):782-796.

185. Gao B, Lin X, Jing H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell. 2018;17(3):e12741.

186. Wang T, Liu X, He C. Glucocorticoid-induced autophagy and apoptosis in bone. Aging Cell. 2020;19(3):e12923.
203. Wang CJ, McCauley LK. Osteoporosis and periodontitis. Curr Osteoporos Rep. 2016;14(6):284-291.
204. Hauser B, Riches PL, Wilson JR, Home AE, Ralston SH. Prevalence and clinical prediction of osteoporosis in a contemporary cohort of patients with rheumatoid arthritis. Rheumatology. 2014;53(10):1759-1766.
205. Suzuki K. Chronic inflammation as an immunological abnormality and effectiveness of exercise. Biomolecules. 2019;9(6):223.
206. Yu HM, Zhao YM, Luo XG, et al. Repeated lipopolysaccharide stimulation induces cellular senescence in BV2 cells. Neuroimmunomodulation. 2012;19(2):131-136.
207. Feng X, Feng G, Xing J, et al. Repeated lipopolysaccharide stimulation promotes cellular senescence in human dental pulp stem cells (DPSCs). Cell Tissue Res. 2014;356(2):369-380.
208. Kim CO, Huh AJ, Han SH, Kim JM. Analysis of cellular senescence induced by lipopolysaccharide in pulmonary alveolar epithelial cells. Arch Gerontol Geriatr. 2012;54(2):e35-e41.
209. Aquino-Martinez R, Rowsey JL, Fraser DG, et al. LPS-induced premature osteocyte senescence: implications in inflammatory alveolar bone loss and periodontal disease pathogenesis. Bone. 2020;132:115220.
210. Abubakar AA, Noordin MM, Azmi TI, Kaka U, Loqman MY. The use of novel anti-senescent agents in the treatment of bone loss and periodontal disease. J Periodontol. 2012;84(2):71-79.
211. Liu J, Zeng J, Wang X, Zheng M, Luan Q. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts. J Periodontol. 2018;89(9):1142-1151.
212. Coppé JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J. Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem. 2011;286(42):36396-36403.
213. Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21-28.
214. Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775-781.
215. Yang H, Chen C, Chen H, et al. Navitoclax (ABT263) reduces inflammation and promotes chondrogenic phenotype by clearing senescent osteoarthritic chondrocytes in osteoarthritis. Aging. 2020;12(13):12750-12770.
216. Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016;22(2):79-83.
217. He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020;11:1996.
218. Sharma AK, Roberts RL, Benson RD Jr, et al. The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impairs osteoprogenitor function in aged mice. Front Cell Dev Biol. 2020;8:354.
219. Zhu Y, Doomebal EJ, Pirtschlaha T, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging. 2017;9(3):955-963.
220. Molagoda IMN, Kang CH, Lee MH, et al. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis. Biochem Pharmacol. 2021;192:114676.
221. Léotoing L, Davicco MJ, Lebecque P, Witttrant Y, Coxam V. The flavonoid fisetin promotes osteoblast differentiation through Runx2 transcriptional activity. Mol Nutr Food Res. 2014;58(6):1239-1248.
222. Kim YH, Jiang WG, Oh SH, et al. Fenofibrate induces PPARα and BMP2 expression to stimulate osteoblast differentiation. Biochem Biophys Res Commun. 2019;520(2):459-465.
223. Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137(4):609-622.
245. Esteban-Martínez L, Sierra-Filardi E, McGreal RS, et al. Programmed mitophagy is essential for the glycolytic switch during cell differentiation. *EMBO J*. 2017;36(12):1688-1706.

246. Wang Z, Sun R, Wang G, et al. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. *Redox Biol*. 2020;28:101343.

247. Xin T, Lu C. Sirt3 activates AMPK-related mitochondrial biogenesis and ameliorates sepsis-induced myocardial injury. *Aging*. 2020;12(16):16224-16237.

248. Son MJ, Kwon Y, Son T, Cho YS. Restoration of mitochondrial NAD (+) levels delays stem cell senescence and facilitates reprogramming of aged somatic cells. *Stem Cells*. 2016;34(12):2840-2851.

249. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. *J Pathol*. 2010;221(1):3-12.

250. Croft M, Siegel RM. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. *Nat Rev Rheumatol*. 2017;13(4):217-233.

251. Witkin SS, Gerber S, Ledger WJ. Influence of interleukin-1 receptor antagonist gene polymorphism on disease. *Clin Infect Dis*. 2002;34(2):204-209.

252. Zerbini CAF, Clark P, Mendez-Sanchez L, et al. Biologic therapies and bone loss in rheumatoid arthritis. *Osteoporos Int*. 2017;28(2):429-446.

253. Tyagi AM, Mansoori MN, Srivastava K, et al. Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-α antibodies. *J Bone Miner Res*. 2014;29(9):1981-1992.

254. Deselm CJ, Zou W, Teitelbaum SL. Halofuginone prevents estrogen-deficient osteoporosis in mice. *J Cell Biochem*. 2012;113(10):3086-3092.

255. DeSelm CJ, Takahata Y, Warren J, et al. IL-17 mediates estrogen-deficient osteoporosis in an Act1-dependent manner. *J Cell Biochem*. 2012;113(9):2895-2902.

256. Song X, Dai J, Li H, et al. Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. *Biosci Rep*. 2019;39(6):BSR20190761.

257. Jin M, Zhao K, Huang Q, Xu C, Shang P. Isolation, structure and bioactivities of the polysaccharides from *Angelica sinensis* (Oliv.) Diels: a review. *Carbohydr Polym*. 2012;89(3):713-722.

258. Xie X, Liu M, Meng Q. Angelica polysaccharide promotes proliferation and osteoblast differentiation of mesenchymal stem cells by regulation of long non-coding RNA H19: an animal study. *Bone Joint Res*. 2019;8(7):323-332.

259. Hickson LJ, Langhi Prata LGP, Bobart SA, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. *EBioMedicine*. 2019;47:446-456.

How to cite this article: Wang T, Huang S, He C. Senescent cells: A therapeutic target for osteoporosis. *Cell Prolif*. 2022;55(12):e13323. doi:10.1111/cpr.13323