Inhibition of virulence-promoting disulfide bond formation enzyme DsbB is blocked by mutating residues in two distinct regions

Received for publication, December 2, 2016, and in revised form, February 9, 2017. Published, Papers in Press, February 23, 2017, DOI 10.1074/jbc.M116.770891

Cristina Landeta, Brian M. Meehan, Laura McPartland, Linda Ingendahl, Feras Hatahet, Ngoc Q. Tran, Dana Boyd, and Jon Beckwith

From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115

Edited by Ruma Banerjee

Disulfide bonds contribute to protein stability, activity, and folding in a variety of proteins, including many involved in bacterial virulence such as toxins, adhesins, flagella, and pili, among others. Therefore, inhibitors of disulfide bond formation enzymes could have profound effects on pathogen virulence. In the Escherichia coli disulfide bond formation pathway, the periplasmic protein DsbA introduces disulfide bonds into substrates, and then the cytoplasmic membrane protein DsbB reoxidizes DsbA’s cysteines regenerating its activity. Thus, DsbB generates a protein disulfide bond de novo by transferring electrons to the quinone pool. We previously identified an effective pyridazinone-related inhibitor of DsbB enzymes from several Gram-negative bacteria. To map the protein residues that are important for the interaction with this inhibitor, we randomly mutagenized by error-prone PCR the E. coli dsbB gene and selected dsbB mutants that confer resistance to this drug using two approaches. We characterized in vivo and in vitro some of these mutants that map to two areas in the structure of DsbB, one located between the two first transmembrane segments where the quinone ring binds and the other located in the second periplasmic loop of DsbB, which interacts with DsbA. In addition, we show that a mutant version of a protein involved in lipopolysaccharide assembly, LptDAsv, is synthetically lethal with the deletion of dsbB as well as with DsbB inhibitors. This finding suggests that drugs decreasing LptD assembly may be synthetically lethal with inhibitors of the Dsb pathway, potentiating the antibiotic effects.

Protein disulfide bonds are sulfur-sulfur chemical bonds that result from an oxidative process in which two electrons are removed from a protein, linking non-adjacent cysteines of the protein. Disulfide bonds contribute to protein stability, activity, and folding (1, 2). In bacteria, proteins containing structural disulfide bonds are rarely, if at all, found in cytoplasmic compartments; they are usually present in the cell envelope or the extracellular milieu (1). Many proteins involved in bacterial virulence (such as toxins, adhesins, flagella, fimbriae, pili, and types II and III secretion systems) require disulfide bonds (3). Pathways involved in catalyzing disulfide bond formation are therefore attractive targets for identifying small molecule inhibitors, because loss of such systems can undermine the activity of numerous bacterial virulence factors as do null mutations of the genes for these enzymes (4–11).

The enzymes that promote formation of protein disulfide bonds in Gram-negative bacteria are in the cell envelope. The periplasmic enzyme DsbA, a member of the thioredoxin family, oxidizes pairs of cysteines in substrate proteins through its Cys-Xaa-Xaa-Cys active site (12). The resulting reduced DsbA is reoxidized by the cytoplasmic membrane protein DsbB, regenerating DsbA’s activity (13). DsbB itself is reoxidized by membrane-embedded quinones, from which electrons are transferred to the electron transport chain (14). However, in many of the Actinobacteria and Cyanobacteria the membrane protein VKOR (vitamin K epoxide reductase) instead of DsbB is required for the reoxidization of DsbA (15). Although VKOR has no overall amino acid sequence homology with DsbB, both proteins encode two extracytoplasmic soluble domains containing essential pairs of cysteines and are capable of reoxidizing DsbA fundamentally by the same mechanism (15, 16).

We have previously generated a methodology for identifying specific inhibitors of both bacterial DsbBs and a VKOR that is based on the functional homology between the two proteins (17). The assay for inhibition of disulfide bond formation utilizes a disulfide-sensitive β-galactosidase (β-GalAsvä)4 assay. This approach allowed us to identify inhibitors of either enzyme by a single high-throughput screening procedure. By this approach, we have found a family of pyridazinone-related molecules that are effective inhibitors of DsbB proteins of sev-

1 Supported in part by a Consejo Nacional de Ciencia y Tecnología (CONACYT) postdoctoral fellowship.
2 Supported by a Ruth L. Kirschstein National Research Service Award.
3 To whom correspondence should be addressed. E-mail: Jon_Beckwith@hms.harvard.edu.
eral Gram-negative bacteria but do not inhibit a bacterial VKOR.

Because we have sought to develop DsbB inhibitors as anti-

virulents/antibiotics, we wanted to understand how resistance
to these compounds might arise in vivo as well as how pyridazi-

nones inhibit DsbB. To this end, we report here mutants of

DsbB that confer resistance to that inhibition. We used two

methods for direct selection of spontaneous mutants of DsbB

resistant to one of the strongest pyridazinone inhibitors. These

selections have failed to yield any mutants that have altered

DsbB. However, when we randomly mutagenize by error-prone

PCR a dsbB gene, which is carried on a high copy number plas-

mid, DsbB mutants resistant to our inhibitors can be isolated.

Characterization of these DsbB mutant proteins shows that

they all exhibit lower affinity toward ubiquinone and menadi-

one, and two of them show higher turnover numbers. Our stud-

ies suggest that resistance of DsbB to pyridazinone inhibitors is
difficult to obtain by spontaneous selections perhaps due to the

effects of inhibitor-resistant mutations on the normal function-

ing of DsbB. The location within the DsbB protein of the amino

acid changes that do confer resistance provides suggestions as
to the mechanism of inhibition and regions of the protein that

influence quinone binding.

Results

Selection of mutations that confer resistance to compound 12,
a pyridazinone inhibitor of DsbB

We have developed a genetic selection for mutants resistant
to inhibitors of DsbB that uses an Escherichia coli strain further

sensitized to the inhibitor by the presence of an additional

mutation (lptD4213). In Gram-negative bacteria, a set of lpt

genes encodes proteins required for the transport and assembly

of lipopolysaccharides (LPS) into the outer leaflet of the outer

membrane. LptD is an outer membrane β-barrel protein, which requires
two disulfide bonds for its proper assembly and function, and it

is involved in the last steps of LPS assembly (Fig. 1A) (18).
Despite the essentiality of LptD, strains lacking a functional disulfide bond formation pathway remain viable under aerobic conditions presumably because background oxidation can lead to sufficient spontaneous disulfide bond formation in LptD and other essential proteins (19). We considered the possibility that a strain carrying the \textit{lptD} \textit{dsbB} mutant allele (\textit{lptD} \textit{dsbB}) \textit{CL380} strain encoding the \textit{lptD} \textit{dsbB} allele (CL337 strain). We then attempted to transduce a deletion of the genomic copy of \textit{dsbB} into the \textit{lptD} \textit{dsbB} strain. Although \textit{ΔdsbB} transductants were readily obtained when a second copy of \textit{dsbB} was present, we were not able to isolate transductants in the strain encoding only one copy of \textit{dsbB} unless cystine was added to the medium, which yielded a lower frequency than having two \textit{dsbB} copies. Cystine is an oxidant that can mediate disulfide bond formation in the absence of the disulfide bond formation pathway (13). Furthermore, the strain carrying the plasmid with \textit{dsbB} under an arabinose promoter (\textit{lptD} \textit{dsbB} \textit{PBAD} \textit{CL380} strain) was able to grow on LB, although it did not grow on minimal media unless 0.2% arabinose was added (Fig. 1B). Thus, \textit{dsbB} and \textit{lptD} \textit{dsbB} are synthetically lethal combinations.

We then asked whether the \textit{lptD} \textit{dsbB} mutant strain was sensitive to a particularly potent \textit{E. coli} \textit{dsbB} inhibitor, compound 12 (4,5-dichloro-2-[2-chlorophenyl]methylpiridazin-3-one, Fig. 1C). We have shown that compound 12 forms a covalent bond with the second cysteine of \textit{dsbB} (Cys-44) (17). Ordinarily, quinones, the direct source of oxidation of \textit{dsbB}, form a charge-transfer complex with Cys-44 of \textit{dsbB} during the process of electron transfer between \textit{DsbA} and \textit{DsbB} (25). We have proposed that the inhibition of \textit{DsbB} activity by pyridazinone compounds, including compound 12, results from the competition with quinone for the quinone-binding site leading to the covalent reaction with Cys-44, thus inactivating the protein (17). We observed that, unlike the strain with wild type \textit{lptD}, the \textit{lptD} \textit{dsbB} strain was highly sensitive to compound 12 as demonstrated by the inhibition of growth in a concentration-dependent manner (black circles, Fig. 1D). Because we have demonstrated that compound 12 targets \textit{DsbB} (by interfering with \textit{dsbB} reduction, exhibits a decrease in motility and an increase in the disulfide bond-sensitive β-galactosidase) (17), these data also indicated that the combination of the \textit{lptD} \textit{dsbB} and \textit{dsbB} inhibition results in a synthetic lethal interaction. In addition, the conditionally lethal strain \textit{lptD} \textit{dsbB} \textit{dsbB} \textit{PBAD} was even more sensitive to compound 12 when no arabinose was present in liquid minimal media where disulfide bond formation is partly dependent on air oxidation (red circles, Fig. 1D).

The findings above suggested that selecting for growth of a strain that contains the \textit{lptD} \textit{dsbB} allele and is exposed to the \textit{DsbB} inhibitor, compound 12, could yield inhibitor-resistant mutants. We therefore plated the \textit{lptD} \textit{dsbB} strain on M63 minimal media with 10 μM compound 12, a concentration of drug ~10-fold higher than the minimal inhibitory concentration (MIC). Although mutants were obtained at a very low frequency (~10^{-9}) when exposed to the compound, none of them mapped to the \textit{dsbB} gene but rather to the gene \textit{bamB}. Twenty two of 51 colonies analyzed by PCR yielded a larger than expected product for the \textit{bamB} region, and the sequence of all these indicated an insertion of an IS1 element in the gene. Whole-genome sequencing was performed in three of the colonies in which the \textit{bamB} product was similar in size to wild type. Two of these encoded mutations within \textit{bamB} (BamB_{1240} and BamB_{252-255}). Both mutations, \textit{bamB}:SI1 and BamB_{252-255} are known to be loss of function mutants of BamB that confer similar phenotypes (22). Therefore, these mutations most likely inactivated the outer membrane lipoprotein BamB, a scenario known to bypass the assembly defect of \textit{lptD} \textit{dsbB} (22, 26–28).

Selection of mutations that confer resistance to compound 12 by PCR mutagenesis of the \textit{dsbB} gene

Because our initial selection for \textit{dsbB} mutants resistant to compound 12 did not yield any mutations in that gene, we decided to use the same \textit{lptD} \textit{dsbB} strain to select for mutants resistant to compound 12 using a randomly mutagenized \textit{dsbB} library. To do this, we mutagenized \textit{dsbB} via error-prone PCR and cloned the resultant PCR products into a plasmid in which \textit{dsbB} expression is under the control of an IPTG-inducible promoter. This pool of plasmids was then transformed into the conditionally lethal strain \textit{lptD} \textit{dsbB} \textit{dsbB} \textit{PBAD} selecting for the presence of the plasmid using the antibiotic marker. The transformation yielded ~4,500 independent colonies carrying both a plasmid with an arabinose-inducible wild type \textit{dsbB} and a plasmid with an IPTG-inducible mutated \textit{dsbB}. The colonies were scraped up, pooled together, and plated on selection plates of M63 glucose with 10 μM compound 12, which is ~10-fold higher than the MIC observed for the strain carrying the two plasmids expressing wild type \textit{dsbB}. Because glucose represses transcription of wild type \textit{dsbB} from the \textit{PBAD} promoter, these conditions select for resistant \textit{DsbB}s expressed from the mutant library. We obtained 20 colonies and sequenced only the mutagenized \textit{dsbB} gene from the IPTG-inducible plasmid (see “Materials and methods”). We found that 9 of 20 colonies (45%) had mutations in \textit{dsbB} (Fig. 2A) and 6 of these 9 colonies encoded a change of Leu-25 to Pro in combination with a second change of Cys-44 to Pro (see “Materials and methods”). We found that 9 of 20 colonies (45%) had mutations in \textit{dsbB} (Fig. 2A) and 6 of these 9 colonies encoded a change of Leu-25 to Pro in combination with a second change of Cys-44 to Pro (see “Materials and methods”). We found that 9 of 20 colonies (45%) had mutations in \textit{dsbB} (Fig. 2A) and 6 of these 9 colonies encoded a change of Leu-25 to Pro in combination with a second change of Cys-44 to Pro (see “Materials and methods”).
DsbB mutations resistant to pyridazinone-related molecules

- Compound 12 inhibits anaerobic growth of an E. coli wild type strain at 1 μM (17). We therefore sought to isolate mutants resistant to this inhibitor using a selection for anaerobic growth in the presence of 2 μM compound 12. We again observed that spontaneous resistant mutations arose at a very low frequency (<10⁻⁷), and none of them mapped to the dsbB gene. However, whole-genome sequencing of four of these resistant mutants indicated that all of them encoded mutations in the gene encoding thioredoxin reductase (TrxBP16L, TrxBD287Y, TrxBS143F, and TrxB231–236, V237I). TrxB is a critical component in the disulfide bond isomerization pathway, and mutations in this pathway have been shown to partially restore disulfide bond formation (30).

We again made use of the same library of plasmids containing the PCR-mutagenized dsbB and transformed them into an E. coli dsbB strain, selecting aerobically for the presence of the plasmid using the antibiotic marker. The transformation yielded ~3,000 independent colonies. This mutant pool was plated anaerobically on solid media containing M63 glucose with 40 mM fumarate, 2 μM compound 12 and solidified with 1% agarose. This concentration of compound 12 is twice the MIC normally seen under these conditions. From this selection, we isolated 82 resistant colonies and sequenced the dsbB gene of each (Fig. 2A). Most (92%) encoded mutant dsbB alleles. The most frequently isolated mutation was DsbBL25P similar to our lptD selection, which could indicate a mutational hot spot that caused enrichment for this mutant in our library or a more effective resistance.

Characterization of five DsbB mutants

We observed that the mutations encoding resistance to compound 12 localized to two regions in the structure of DsbB, the quinone-binding site in the region of the first two transmembrane helices of DsbB and a segment of the periplasmic loop of the protein that interacts with DsbA during DsbA-DsbB complex formation (Fig. 2B).

We selected five of the mutants to study further (Fig. 3A) as follows: L25P (which was found in two different selections), A29V, K39E, P100S, and F106L, which included alterations of the two distinct regions, i.e. near the cysteines that bind to quinone and near the cysteines that bind to DsbA located in the periplasmic loop. We assessed the DsbB levels in the mutants to verify that the resistance to the drug was not due to an increased amount of DsbB. Four of the five mutants showed no difference in the amount of DsbB expression when 1 mM IPTG is added (Fig. 2C). The K39E mutant exhibited a 2-fold increase in DsbB levels for reasons that are not clear.

To gain insights into the resistance displayed by DsbB mutants, we purified the proteins and analyzed their enzyme kinetics using an ubiquinone reduction assay (31). We observed that although the affinity toward ubiquinone (Km) of the wild do not grow. Compound 12 inhibits anaerobic growth of an E. coli wild type strain at 1 μM (17). We therefore sought to isolate mutants resistant to this inhibitor using a selection for anaerobic growth in the presence of 2 μM compound 12. We again observed that spontaneous resistant mutations arose at a very low frequency (~10⁻⁷), and none of them mapped to the dsbB gene. However, whole-genome sequencing of four of these resistant mutants indicated that all of them encoded mutations in the gene encoding thioredoxin reductase (TrxBP16L, TrxBD287Y, TrxBS143F, and TrxB231–236, V237I). TrxB is a critical component in the disulfide bond isomerization pathway, and mutations in this pathway have been shown to partially restore disulfide bond formation (30).

We again made use of the same library of plasmids containing the PCR-mutagenized dsbB and transformed them into an E. coli dsbB strain, selecting aerobically for the presence of the plasmid using the antibiotic marker. The transformation yielded ~3,000 independent colonies. This mutant pool was plated anaerobically on solid media containing M63 glucose with 40 mM fumarate, 2 μM compound 12 and solidified with 1% agarose. This concentration of compound 12 is twice the MIC normally seen under these conditions. From this selection, we isolated 82 resistant colonies and sequenced the dsbB gene of each (Fig. 2A). Most (92%) encoded mutant dsbB alleles. The most frequently isolated mutation was DsbBL25P similar to our lptD selection, which could indicate a mutational hot spot that caused enrichment for this mutant in our library or a more effective resistance.

Characterization of five DsbB mutants

We observed that the mutations encoding resistance to compound 12 localized to two regions in the structure of DsbB, the quinone-binding site in the region of the first two transmembrane helices of DsbB and a segment of the periplasmic loop of the protein that interacts with DsbA during DsbA-DsbB complex formation (Fig. 2B).

We selected five of the mutants to study further (Fig. 3A) as follows: L25P (which was found in two different selections), A29V, K39E, P100S, and F106L, which included alterations of the two distinct regions, i.e. near the cysteines that bind to quinone and near the cysteines that bind to DsbA located in the periplasmic loop. We assessed the DsbB levels in the mutants to verify that the resistance to the drug was not due to an increased amount of DsbB. Four of the five mutants showed no difference in the amount of DsbB expression when 1 mM IPTG is added (Fig. 2C). The K39E mutant exhibited a 2-fold increase in DsbB levels for reasons that are not clear.

To gain insights into the resistance displayed by DsbB mutants, we purified the proteins and analyzed their enzyme kinetics using an ubiquinone reduction assay (31). We observed that although the affinity toward ubiquinone (Km) of the wild
DsbB mutations resistant to pyridazinone-related molecules

We also measured the inhibition of DsbB by compound 12 using an in vitro assay with purified components in the ubiquinone reduction assay (Table 1, 8th column). DsbB_{A29V} displayed a 50-fold increase in the IC_{50}, whereas DsbB_{L25P} and DsbB_{K39E} showed a 5- and 2-fold increase, respectively, under saturating concentrations of ubiquinone and DsbA. Under these conditions, neither DsbB_{P100S} nor DsbB_{F106L} showed an increase in the IC_{50} (see under “Discussion”).

Mutations isolated anaerobically conferred resistance aerobically to LptD_{4213} strain

We then asked whether the DsbB mutants obtained in the anaerobic selection also conferred resistance when tested in our aerobic model using the LptD_{4213} strain. We transformed the IPTG-inducible dbsB mutant plasmids obtained anaerobically into the lptD_{4213}ΔdbsB strain carrying a plasmid with an arabinose-inducible wild type dbsB. We then determined...

DsbB mutations resistant to pyridazinone-related molecules

Table 1

Mutant	Ubiquinone	Menadione	Ubiquinone	Menadione	Ubiquinone	Menadione	Ubiquinone	Menadione
	K_{cat}	K_{m}	K_{cat}	K_{m}	K_{cat}	K_{m}	K_{cat}	K_{m}
DsbB_{WT}	2.8 ± 0.07	1.9 ± 0.05	0.94 ± 0.1	35.8 ± 2.8	2.99	5.3 × 10⁻²	0.033 (0.029–0.039)	1.14 (1.09–1.18)
DsbB_{ΔH11003}	2 ± 0.03	0.54 ± 0.05	2.3 ± 0.1	174 ± 25	0.88	0.31 ± 10⁻²	0.173 (0.157–0.192)	4.06 (3.84–5.52)
DsbB_{ΔH11006}	3 ± 0.2	1.4 ± 0.05	10.8 ± 1.5	90.5 ± 6.5	0.28	1.5 × 10⁻²	1.697 (1.54–1.79)	1.47 (1.39–1.56)
DsbB_{ΔH11007}	5.5 ± 0.2	0.8 ± 0.1	3 ± 0.4	201 ± 38	1.81	0.39 × 10⁻²	0.071 (0.065–0.079)	3.01 (2.75–3.30)
DsbB_{ΔH11009}	2.1 ± 0.06	0.66 ± 0.03	3.6 ± 0.4	47 ± 5.1	0.58	1.4 × 10⁻²	0.033 (0.030–0.037)	2.01 (1.93–2.1)
DsbB_{ΔH11016L}	6.2 ± 0.09	0.69 ± 0.08	3.6 ± 0.2	61.8 ± 15	1.73	1.1 × 10⁻²	0.035 (0.049–0.063)	1.2 (1.05–1.37)

^a K_{cat} expressed as nanomoles of ubiquinone-1 or menadione per nmol of DsbB per s.

^b K_{m} values represent ubiquinone-1 or menadione concentrations.

^c In vitro inhibition was measured using 10 nM DsbB, 10 μM ubiquinone-1, and 20 μM reduced DsbB.

^d In vivo inhibition was measured by growth inhibition of strain ltpD_{ΔdsbB}dsbBP_{ΔH11004} (CL409 – 410, CL416 – 417, and L118 –19 strains) in the presence of drugs.

whether these mutants were able to support growth of ltpD_{ΔdsbB} strain by curing the plasmid encoding the arabinose-inducible wild type dsbB (see “Materials and methods”). All DsbB mutants were able to support growth of ltpD_{ΔdsbB} strain indicating that the mutants selected anaerobically are also functional aerobically. These strains were then tested for growth in the presence or absence of compound 12 in minimal medium. The results are shown in Table 1 (9th column). DsbB_{L25P} and DsbB_{K39E} exhibited a 3–4-fold increase in the IC₅₀ for growth in the presence or absence of compound 12 in minimal medium. The results are shown in Table 1 (9th column).

In the oxidation pathway that introduces disulfide bonds into proteins in the bacterial periplasm, DsbA cysteines need to be reoxidized to start a new catalytic cycle. The cytoplasmic membrane protein DsbB performs this task. DsbB is a cellular machine that generates a protein disulfide bond de novo at the expense of electrons to be transferred to ubiquinone (14, 32). During the transfer and interaction of DsbA with DsbB, the latter undergoes conformational changes (29). In this work, we have selected DsbB mutants that confer resistance to a pyridazinone inhibitor and are located in two prominent areas in the structure of DsbB, one located between the two first transmembrane segments where the quinone ring fits. These mutants, DsbB_{L25P}, DsbB_{A29V} and DsbB_{F106L} showed an almost 2-fold increase in the IC₅₀ for at least two of the inhibitors tested (Table 4). Thus, we observed at least some level of cross-resistance to pyridazinones for all DsbB mutants.

Discussion

In the oxidation pathway that introduces disulfide bonds into proteins in the bacterial periplasm, DsbA cysteines need to be reoxidized to start a new catalytic cycle. The cytoplasmic membrane protein DsbB performs this task. DsbB is a cellular machine that generates a protein disulfide bond de novo at the expense of electrons to be transferred to ubiquinone (14, 32). During the transfer and interaction of DsbA with DsbB, the latter undergoes conformational changes (29). In this work, we have selected DsbB mutants that confer resistance to a pyridazinone inhibitor and are located in two prominent areas in the structure of DsbB, one located between the two first transmembrane segments where the quinone ring fits. These mutants, DsbB_{L25P}, DsbB_{A29V} and DsbB_{F106L} show a higher K_{m} value for quinones as one might expect given that they are in the region of the quinone binding (Fig. 2B). Surprisingly, the other area is located in the second periplasmic loop of DsbB known to interact with DsbA. It has been shown that this segment from Pro-100 to Phe-106 is accommodated deep in the hydrophobic groove of DsaA’s structure (29, 33). The fact that we find mutants in this region and that DsbB_{P100S} and DsbB_{F106L} mutants exhibit an increase in the K_{m} value for quinone despite not being located within the quinone-binding site suggests that this region also shapes the DsbB-quinone interaction. This model is in agreement with the fact that this segment of DsbB has to be mobile because it contains the Cys-104 residue that must to be mobile because it contains the Cys-104 residue that participates in the exchange of disulfides with Cys-41–Cys-44 of DsbA and oxidize DsbA (34).

Levels of DsbB were assessed in the mutants to demonstrate that the resistance to compound 12 is not due to changes in DsbB amount (Fig. 2C). Although levels remained unchanged
in four of the five mutants, due to unknown reasons DsbB_{K39E} showed a 2-fold increase in DsbB. Although we cannot rule out the possibility that the increase in DsbB levels may contribute to the resistance of DsbB_{K39E}, the purified mutant displayed significantly different kinetics than the wild type enzyme, suggesting that the resistance conferred by the mutation is at least partially due to its effects on enzyme activity. This study highlights the decrease in quinone affinity rendering the mutants less susceptible to inhibition. The mutations may selectively inhibit access of the compound to Cys-44 while allowing limited passage of quinone. However, two mutants DsbB_{K39E} and DsbB_{F106L} also show an increase in \(k_{cat} \) implying that the reac-

TABLE 2

ID Number	Structure	Inhibition Ratio (\(IC_{50 \text{ Compound} 12/IC_{50 \text{ Compound} 4} \))	\(IC_{50} \) Compound 12 (M)
36 (G1-4)		6.4	121
12		1	17
37 (G1-7)		0.55	10
38 (G1-3)		0.5	10
39 (G1-8)		0.11	10
40 (G1-9)		0.05	10
41 (G1-10)		0.022	10
42 (G1-11)		0.019	10
43 (G1-12)		0.015	10
44 (G1-13)		0.011	10
45 (G1-14)		0.008	10
46 (G1-15)		0.005	10
47 (G1-16)		0.00002	10

* The \(IC_{50} \) values were obtained using \(\beta \)-galactosidase activity, which is a measure of the inhibition of DsbB in E. coli expressing \(\beta \)-Gal^{act}. The more DsbB inhibition of a drug the more \(\beta \)-galactosidase activity will be observed in cells, so one can calculate the concentration that gives 50% of inhibition (\(IC_{50} \)) of the total activity observed in a \(\Delta \text{dbsB} \) strain and use that concentration to get the fold-increase by dividing the \(IC_{50} \) of compound 12 (0.16 \(\mu \text{M} \), 95% confidence interval 0.13–0.20 \(\mu \text{M} \)) between the \(IC_{50} \) of the tested drug. Thus, a drug more potent than compound 12 will have a higher ratio and vice versa. The results were obtained using data of at least three independent experiments.

TABLE 2—continued

ID Number	Structure	Inhibition Ratio (\(IC_{50 \text{ Compound} 12/IC_{50 \text{ Compound} 4} \))	\(IC_{50} \) Compound 12 (M)
48 (G1-6)		<0.00001	1
49 (G1-8)		<0.00001	1
50 (G1-10)		<0.00001	1
51 (G1-12)		<0.00001	1
52 (G1-14)		<0.00001	1
53 (G1-16)		<0.00001	1
54 (G1-18)		<0.00001	1
55 (G1-20)		<0.00001	1

TABLE 3

Compound	Structure	Compound's MW (Da)	Measured MW of DsbB_{K39E} complex	Mass increase upon incubation with compound (Da)	Mass loss (Da)
No compound	-	-	43184.5 ± 3.2	-	-
12		289.5	43437.1 ± 1.7	252.8	36.7
36		378.44	43481.8 ± 2.2	297.5	80.9
37		333.99	43437.0 ± 2.0	252.6	81.4
38		333.99	43481.5 ± 2.3	297.2	36.8
DsbB mutations resistant to pyridazinone-related molecules

ID	Structure	In vivo IC₅₀ (mM)	In vitro IC₅₀ (mM)
36	DsbB	0.31	0.91
	DsbB_DsbA	0.98	0.45
	DsbB	0.35	0.35
	DsbB_DsbA	0.35	0.35
	DsbB	0.39	0.39
	DsbB_DsbA	0.39	0.39
37	DsbB	0.61	1.35
	DsbB_DsbA	0.58	1.58
	DsbB	0.64	0.64
	DsbB_DsbA	0.64	0.64
38	DsbB	0.42	2.2
	DsbB_DsbA	0.45	2.45
	DsbB	0.45	0.45
	DsbB_DsbA	0.45	0.45
45	DsbB	23.02	>64
	DsbB_DsbA	23.28	23.79
	DsbB	23.39	23.39
	DsbB_DsbA	23.39	23.39
42	DsbB	41.97	>100
	DsbB_DsbA	39.43	46.67
	DsbB	46.67	46.67
	DsbB_DsbA	46.67	46.67
40	DsbB	3.48	8.69
	DsbB_DsbA	2.13	7.0
	DsbB	3.87	10.73
	DsbB_DsbA	3.87	10.73
41	DsbB	10.09	22.76
	DsbB_DsbA	8.96	20.34
	DsbB	11.36	25.47
	DsbB_DsbA	11.36	25.47
43	DsbB	25.43	>100
	DsbB_DsbA	23.63	54.67
	DsbB	27.36	97.70
	DsbB_DsbA	27.36	97.70

* In vivo inhibition was measured by growth inhibition of strain lptD4213 ΔdsbB
dsbBrov205 (CL409–10, CL416–7 and LI18–19 strains) in the presence of drugs.

In vivo resistance was measured as a 2- to 4-fold increase in the IC₅₀ for the DsbB protein compared with wild type. Underlined numbers have 1.8–1.9-fold increase of IC₅₀, and boldface numbers have more than a 2-fold increase. From the 52 DsbB protein sequences analyzed (that share 90% or greater identity), the five residues presented in this work were conserved and similar to wild type DsbB (data not shown). One additional observation is that these two mutants conferred in vivo resistance to the lptD4213 strain to compounds that are less potent inhibitors than compound 12, with the exception of compound 38 (Table 4).

We asked whether there exist variants of DsbB enzymes that might be resistant to pyridazinones by doing a bioinformatic search among the different E. coli-sequenced genomes available. From the 52 DsbB protein sequences analyzed (that share 90% or greater identity), the five residues presented in this work were conserved and similar to wild type DsbB (data not shown). We also looked at the conservation of these five residues among other DsbB proteins from Gram-negative bacteria, specifically the ones that we know from our previous work are inhibited by pyridazinone-related molecules (17). The identity between DsbB proteins from Salmonella enterica sv. typhimurium, Klebsiella pneumoniae, Vibrio cholerae, and Haemophilus influenzae ranges from 85 to 41% when compared with E. coli DsbB. Among these organisms, four of the five residues were conserved overall when aligned to wild type E. coli DsbB, except for Lys-39. However, DsbB proteins from Pseudomonas aeruginosa, Acinetobacter baumannii, and Francisella tularensis, which share ~20% of identity with E. coli DsbB, demonstrated little or no conservation in the five residues studied. Moreover, P. aeruginosa DsbB1 encodes a Val-29 variant; similarly, P. aeruginosa DsbB2 and A. baumannii DsbB encode a Glu-39-resistant variant studied in this work. Nevertheless, we have shown that these proteins are still sensitive to compound 12 and related pyridazinones (17). Thus, it is possible that each enzyme may have slight differences in the structure and therefore differences in
binding to pyridazinone drugs, which is in agreement with our previous observation that the extent of inhibition changes among different pyridazinone inhibitors (17).

All mutant DsbBs were able to functionally complement the lptD₄₂₁₃ΔdsbB[−] strain for growth, indicating that the mutants are functional enzymes not only anaerobically but also aerobically. Similarly, the DsbB mutants were also able to complement two other dsbB[−] phenotypes. They restored motility of the dsbB mutant, and they also lacked β-galactosidase activity when the β-Gal^{dsbB} is expressed in the strain (data not shown). However, all of the mutants obtained displayed lower catalytic efficiencies than the wild type enzyme.

Our finding that the combination of an lptD₄₂₁₃ mutation and a dsbB null mutation are synthetically lethal leads us to suggest that any mutation or drug that decreases LptD assembly may also be synthetic lethal with the Dsb pathway (dsbA or dsbB mutants). Consequently, this finding suggests that combinations of drugs that target these two pathways can potentiate their antibiotic effect. This also suggests that inhibitors of the Dsb pathway may help to study LptD assembly by searching for mutations that confer resistance to these small molecules in order to identify additional genetic factors involved in LptD assembly (22).

The mutants studied here have a modest level of resistance (2–5-fold increase in IC₅₀) to pyridazinone molecules in E. coli growth. It may be that greater changes in resistance are costly to the enzyme and thus to bacterial growth. Two different spontaneous genetic selections for resistance to the pyridazinone inhibitor, anaerobic selection for growth and growth of the lptD₄₂₁₃ mutant, indicate that the frequency with which resistance arises is quite low. Obtaining such mutations was only made possible by PCR mutagenesis of a plasmid-encoded dsbB, which artificially increased the mutation rate. Although the environment in infections may generate different conditions for selection, these initial results raise the possibility that resistance problems during infections may possibly be avoided. Our findings may provide insights to the development of more effective pyridazinone drugs that do not bind covalently and are also important for understanding the nature of resistance, which may also hold some clinical relevance. This suggests that further development of pyridazinones as potential antivirulents/antibiotics may be warranted.

Materials and methods

Bacterial strains and growth conditions

The strains and plasmids used in this study are listed in Tables 5 and 6, respectively. Standard molecular biology techniques and P1 transduction were used for the construction of strains and expression vectors (37, 38). All strains were grown in LB Miller agar or in M63 0.2% glucose liquid and agar media at 37 °C. Minimal M63 with 0.2% glucose and 40 mM fumarate solidified with 1% agarose plates were prepared for anaerobic growth experiments by placing in a Coy anaerobic chamber (85% N₂, 10% H₂, 5% CO₂) to equilibrate for several days before use. The antibiotic concentrations used were as follows: ampicillin 100 μg/ml (for plasmid copy), 25 μg/ml (for chromosomal copy), or 10 μg/ml (for LptD₄₂₁₃ strain), kanamycin 40 μg/ml, tetracycline 10 μg/ml, and chloramphenicol 10 μg/ml.

dsbB mutagenesis and construction of mutant library

A mutagenic PCR of the dsbB gene using primers CI13 and CI14 was generated using the first seven mutagenic conditions of Diversify mutagenesis kit (Clontech) that on average generates 2–5.8 mutations/kb. The amplification conditions used were 94 °C (30 s) as denaturing temperature, 55 °C (30 s) as annealing, and 68 °C (30 s) as extension repeated for 25 cycles. The products were reamplified using Taq platinum (Thermo Fisher Scientific) to produce more of the PCR product. PCR products of all reactions were then mixed, column-purified, Ncol-Sacl-digested, and ligated to a digested pDSW204 plasmid (39). 1 μl of the ligation reaction was transformed into highly competent XL1-Blue cells (Agilent Technologies). A sample of the colonies obtained after selection on ampicillin plates was collected for plasmid preparation used to confirm efficiency of ligation by PCR and digestion. Given that 9 of 10 colonies did have the expected insert, the rest of the ligation reaction (49 μl) was transformed into DH10β highly competent cells (New England Biolabs). The transformation yielded ~3,000 colonies, which were scraped up and grown overnight in M63 glucose for plasmid preparation. Plasmid preparations were frozen at −20 °C until use.

Construction of a conditionally lethal strain lptD₄₂₁₃ΔdsbB

lptD₄₂₁₃ (amino acid deletion from 330–352) mutant was constructed in E. coli MC1000 strain by transducing the mutation from the MC4100 strain, NR698 (22). First, the lptD gene was linked to a tetracycline resistance cassette (at carB gene, 20–25% linkage) by making a P1 lysate from the GC208 strain (40). This lysate was then used to infect the NR698 strain (lptD₄₂₁₃ mutation) selecting for transductants in tetracycline plates. The lptD₄₂₁₃ transductants linked to tetracycline cassette were verified by the size of the PCR product of part of lptD gene (1.5 kb), and the mutants have a 68-bp smaller PCR product due to the deletion of 23 amino acids using primers CI84 and CI85. It was also noticed that all small colonies had lptD₄₂₁₃ mutation, and the regular size colonies had wild type lptD. Thus, this was used in later selections to distinguish between them. A P1 lysate from one verified transductant in the previous step was prepared to infect HK295 (MC1000) strain. After verifying the presence of lptD₄₂₁₃ mutation in HK295 strain, the tetracycline cassette linker was removed from the strain by P1 transduction of wild type strain and selecting on minimal M63 media, because the carB mutation makes the cells arginine and uracil auxotrophs on minimal media (41). The colonies that grew in minimal glucose media were again verified by PCR and sequenced to have the lptD₄₂₁₃ mutation; one colony was selected for further experiments (CL337 strain).

To construct the conditionally lethal strain lptD₄₂₁₃ΔdsbB ΔdsbB_{PRAD} first a plasmid expressing dsbB under the regulation of arabinose promoter (pCL67) was transformed into the lptD₄₂₁₃ strain (CL337). The deletion of dsbB gene from HK310 strain was then P1-transduced to the lptD₄₂₁₃ strain selecting on LB kanamycin plates supplemented without or with 0.2%
arabinose. Kanamycin-resistant colonies were obtained in both cases, and the transduction of the dsbB deletion was verified by PCR using primers Cl55–56; all checked colonies did have the correct product size (1-kb dsbB_{WT} versus 1.6-kb dsbB_{:Km}). This result indicated that the basal levels of expression from arabinose promoter were enough to complement growth in rich medium. One colony with confirmed deletion was isolated and used for further work (CL380 strain). When the dsbB deletion was transduced to lptD₄₂₁₃ with no other copy of the dsbB gene, no colonies with the correct deletion of dsbB were obtained unless the transductants were plated on LB with 1 mM dsbB.

The growth of CL380 strain was tested in minimal media plates. M63 glucose with 0.2% arabinose allowed growth of the CL380 strain, whereas the strain was not able to grow on M63 minimal media plates lacking arabinose. However, this strain is able to grow in liquid M63 minimal media with no arabinose under shaking conditions where oxygen may contribute to background oxidation.

Selection of DsbB mutants using lptD₄₂₁₃ strain

For spontaneous resistant mutants, CL337 cells from over-night culture were washed twice with M63 minimal media, and ~10⁹ cells were plated in M63 glucose media plates with 10 µM compound 12 (10-fold higher the MIC). Plates were incubated for 2 days at 37 °C. 51 colonies were purified in M63 minimal media plates to characterize them. We amplified and sequenced of these gave a wild type sequence. We noticed that some of the selected mutants did confer resistance to bile salts, and because these mutations had been previously studied (21), we amplified and sequenced also 22 of 51 colonies analyzed by PCR did have a higher size product. Two of these did have mutations in the bamB gene, and the sequence of all these indicated an insertion of IS1 element in the gene. Whole-genome sequencing was performed in three of the colonies that did not indicate an insertion of IS1 element in the gene. The transformation gave around 4,500 independent colonies and sequencing of these gave a wild type sequence.

Table 5

Strain	Genotype	Reference
N6698	MC4100 LptD₄₂₁₃	22
GC208	MC4100 carB₁T₁n₁₀(T_C)	40
J6 (FSH94)	BL21 C43 (DE3) ΔdsbB (K_M)	42
J7 (FSH95)	BL21 C43 (DE3) ΔdsbB (K_M)	42
FSH69	Lemo21(DE3, C_M) pFL39 (6HisDsbA, K_M)	17
CL337	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pCL67 (dsbB_{pBAD}, C_M)	This study
CL380	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pCL23 (dsbB_{pBAD}, Ampr)	This study
CL410	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pBOM230 (DsbB_{2,5G} under P_{trc}, Ampr)	This study
CL417	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pBOM252 (DsbB_{2,5V} under P_{trc}, Ampr)	This study
CL19	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pBOM253 (DsbB_{2,5V} under P_{trc}, Ampr)	This study
CL416	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pBOM228 (DsbB_{2,5G} under P_{trc}, Ampr)	This study
CL409	HK295 LptD₄₂₁₃ ΔdsbB (K_M) pBOM231 (DsbB_{2,5G} under P_{trc}, Ampr)	This study
CL591	HK295ΔdsbB αatt::DsbB_{WT} (P_{trc}, Ampr)	This study
CL592	HK295ΔdsbB αatt::DsbB_{2,5G} (P_{trc}, Ampr)	This study
CL594	HK295ΔdsbB αatt::DsbB_{2,5V} (P_{trc}, Ampr)	This study
CL595	HK295ΔdsbB αatt::DsbB_{2,5V} (P_{trc}, Ampr)	This study
CL593	HK295ΔdsbB αatt::DsbB_{2,5G} (P_{trc}, Ampr)	This study
CL596	HK295ΔdsbB αatt::DsbB_{2,5G} (P_{trc}, Ampr)	This study

Plasmids

Plasmid	Description
pTrc99A	Expression vector, pBR322 origin, Amp⁺
pDSW204	Promoter down mutation in −35 of pTrc99A (P_{trc}), (Amp⁺)
pBAD45	Arabinose-inducible vector (P_{BAD}, pSC101 origin, Cm⁺)
pET28a	Expression vector, T7lac promoter, N-terminal and C-terminal His tag, EMD
pWM76	Expression vector, pBR322 origin, Km⁺, 6-His (Ampr)
pFL39	pET28a 6-His-DsbA cloned at NdeI-Xhol
pCl23	pDSW204-dsbB cloned at Ncol-Sacl, DsbB_{WT} (MV-DsbB_{2,5G}−₁₇₆)
pCL67	pBAD45-dsbB cloned at EcoRI-HindIII, DsbB_{pBAD}
pBOM228	pDSW204-dsbB_{2,5G} cloned at Ncol-Sacl, DsbB_{2,5G}
pBOM225	pDSW204-dsbB_{2,5V} cloned at Ncol-Sacl, DsbB_{2,5V}
pBOM253	pDSW204-dsbB_{2,5G} cloned at Ncol-Sacl, DsbB_{2,5G}
pBOM230	pDSW204-dsbB_{2,5G} cloned at Ncol-Sacl, DsbB_{2,5G}
pBOM231	pDSW204-dsbB_{2,5G} cloned at Ncol-Sacl, DsbB_{2,5G}
pLI1	pWM76-dsbB_{TRC} (P_{trc})
pLI2	pWM76-dsbB_{2,5G} (P_{trc})
pLI3	pWM76-dsbB_{2,5G} (P_{trc})
pLI4	pWM76-dsbB_{2,5G} (P_{trc})
pLI6	pWM76-dsbB_{2,5G} (P_{trc})
dent colonies, which were scraped and saved in glycerol stocks. After growing the library on LB broth, cells were washed twice with M63 minimal media, and 10^8 cells were plated on M63 glucose minimal media containing 10 mM compound 12 to select for resistant mutants. After 2 days of growth at 37 °C, colonies appeared and were purified on LB plates with no antibiotic. A PCR product of the mutagenized dsbB gene was amplified using primers Cl24–25 (prime only to pDSW204) to sequence.

Anaerobic selection of DsbB mutants

Purified plasmids from the mutagenized library were transformed into dsbB cells (HK320) and plated aerobically on LB with ampicillin. The transformation yielded around 3,000 colonies, which were scraped and saved as glycerol stocks to use for further selection. The mutant library obtained in dsbB mutant was grown aerobically in M63 0.2% glucose to an A600 of 0.6. Cells were washed, and 10^7 cells were plated on M63, 0.2% glucose, 40 mM fumarate, 1% agarose plates with 2 mM compound 12. Plates were then incubated at 37 °C in a Coy anaerobic chamber (85% N2, 10% H2, 5% CO2) for 3 days. The resistant colonies were purified under the same conditions and then cultured aerobically to isolate plasmids. Plasmids were transformed back into dsbB cells, and growth of the resultant transformants was tested anaerobically under selective conditions to confirm that the plasmid carried the resistance mutation. The dsbB gene was then sequenced with primers Cl24–Cl25 to identify the mutations.

Using lptD4213 strain to confirm resistance of the studied DsbB mutants

To confirm resistance of the five selected mutations, the plasmids pBOM228, -30, -31, -52, and -53 were used to transform the CL380 strain. The resultant strains were then plated on LB with 0.4% arabinose plates to select for cells cured of the plasmid with the wild type copy of dsbB (pCL67). Because the overexpression of dsbB causes cell toxicity, those cells able to grow under arabinose are most likely the cells that have lost the arabinose-inducible plasmid. Purified colonies were checked for loss of chloramphenicol resistance and were verified by PCR with primers Cl24 and Cl25 that prime only to pDSW204 but not to pBAD plasmid and with primers Cl6 and Cl8 that prime only to pBAD but not to pDSW204 plasmid. The dsbB mutations were confirmed by sequencing.

Growth assays of lptD4213 dsbB mutants in the presence of various pyridazinone drugs

Strains were grown overnight in minimal M63 0.2% glucose media with 5 μM IPTG (Enzo Life Sciences Inc.) to induce the expression of dsbB. Overnight cultures of bacteria were diluted to an A600 of 0.02 in M63 0.2% glucose minimal media, and 200 μl of diluted cultures were aliquoted in 96-well plates (Thermo Fisher Scientific). Serial dilutions of the drug or DMSO were added in a volume of 2 μl (1% DMSO final concentration). The plates were covered with breathable films (VWR Scientific) and

Table 6

ID	Sequence	Restriction site
C6	ATGCCCATAGCATTTTATCC	NcoI
C8	GATTAACCTGTTGACTAGG	
C13	CTCAGCGGATTCGAGTGTGTTTTGCAACATAGTACGTATT	
C14	CGAGCTGAGGACCGACGAGATACC	
C24	GCCGACCTCCGGTCTGGAATATGG	
C25	GTCGACGGTAGTGCTGGAAAGCAGATGAGGTA	
C55	CATCCTCGCGCTGCCCTTATATG	
C56	GGGAATCCAGCAACAATGGCAGATGAA	
C84	TGAGTTCTACCTGCCATATTACTGG	
C85	TTTCGCCACCGTGACGATGAGGTA	
C105	CTGGTGAATTCGAGTGTGTTTTGCAACATAGTACGTATT	EcoRI
C110	CTGAACGGTTTTAAGCCAGAGATCAGTATT	HindIII
C118	GGGTGAAAGGOGGCGGCGATATTGGGGA	
C119	GTTGAGGTTTTTAGCGACGATGAGGTA	
C120	AGGAGCAGGATTATGGAATGCGCGG	
C129	TACTGCGGACACGAGGCTGGGA	
C130	GGAGAGCGGGAACGAGGGA	
C131	CTCCTCGCGCTGCCCTTATATG	
C132	GATGCGGTTCTACGGTCAAGATGATT	
C155	GCAACCGGGAACGAGGGA	
C165	CAGTCAATGCGCGCC	
K39E-f	AGTTTGATCAGTGGGGA	
K39E-r	GTCTGCGGACACGAGGCTGGGA	
P100S-f	CTAATCTCGGACGACGACG	
P100S-r	GCAGTTGACGACGACGACG	
F106L-f	GACAAGCGGGAACGAGGGA	
F106-r	GAACTGCGGGAACGAGGGA	
CI225	CGAGGTGACGACGACGACG	
CI226	CAAACGAGGTGACGACGACG	
CI230	CCAACGAGGTGACGACGACG	
CI231	GTCGACATTTTCTGACGATGAGGTA	
CI240	CCCGACAAAGGAGGTTGCGCCCTTG	

[J. Biol. Chem. (2017) 292(16) 6529 –6541](https://doi.org/10.1074/jbc.M116.780289)
DsbB mutations resistant to pyridazinone-related molecules

then incubated for 19 h at 37 °C and 900 rpm in an orbital shaker (Multitron ATR). The A₆₀₀ from at least three independent experiments was read to determine the growth, and this was used to calculate the IC₅₀ values (concentration that gives 50% inhibition of growth without drug) with 95% confidence intervals using GraphPad Prism (La Jolla, CA) in the function of non-linear regression (log inhibitor versus response with variable slope, normalized response).

Purification of DsbB proteins and enzyme kinetics

The five mutations in DsbB were generated by site-directed mutagenesis of plasmid pWM76 using the primers listed in Table 2. Then DsbB proteins were purified as described before (42). Purified proteins were at least 90% as judged from SDS-PAGE (supplemental Fig. 1). Determination of kinetic properties and IC₅₀ values was done as described before with slight changes (17). Briefly, various amounts of inhibitors were mixed with 10 nM DsbB in phosphate buffer (pH 6.5) containing 0.1% n-dodecyl-β-D-maltopyranoside (Affymetrix Inc.), 100 mM NaCl and ubiquinone-5 (Sigma, 1–50 μM for kinetic constants and 10 μM for inhibition assays) or menadione (Sigma, 0.5–128 μM). Reactions were started at room temperature by the addition of small amounts of highly concentrated DsbA solution to give a final concentration of 20 μM. Initial velocities of DsbB-catalyzed quinone reduction were measured at 275 nm for ubiquinone and 260 nm for menadione.

Structure-activity relationship approach of related pyridazinones

Given that a substructure analysis with pyridazinones helped us previously to identify more effective inhibitors such as compound 12 (17), we decided to explore more variations in the core of the drug to validate our understanding of the drug inhibition and to find more effective inhibitors. The molecules were designed first by substituting the chlorine atoms at positions 4 and 5 of the pyridazinone ring by other halogen atoms such as bromine and by other groups that unlike halogens could act as nucleophile (electron donor) rather than electrophile (electron acceptor), i.e. methyl groups. Second, we substituted the benzyl group at position 2 by different rings such as thiophene and naphthalene (2017) 292(16) 6529–6541 and to find more effective inhibitors. The molecules were synthesized by Sundia MediTech Co., Ltd. (China, purity over 95% analyzed by LC-MS). The chemical synthesis protocols are presented at the end of supplemental Information. Compound 12 was purchased from Enamine (Ukraine, purity over 95% analyzed by LC-MS).

To test inhibition, all compounds were tested in vitro with DsbB in minimal media with 1 mM IPTG until log phase. The lack of IPTG makes DsbB levels undetectable when dsbB is under trc204 promoter (data not shown). Proteins were TCA-precipitated, run on reducing SDS-PAGE, and immunoblotted against anti-DsbB (44). DTT was used for reducing disulfide bonds.

DsbB immunoblot

Each plasmid containing dsbB mutants was integrated into the chromosome of the strain HK320 by AlnCh method generating strains CL591–596 (43). To determine DsbB expression levels, strains CL591 to CL596 were grown aerobically in M63 minimal media with 1 mM IPTG until log phase. The lack of IPTG makes DsbB levels undetectable when dsbB is under trc204 promoter (data not shown). Proteins were TCA-precipitated, run on reducing SDS-PAGE, and immunoblotted against anti-DsbB (44). DTT was used for reducing disulfide bonds.

Author contributions—C. L. performed lptD and substructure experiments. B. M. M. performed anaerobic selection. L. M. and C. L. performed β-gal and growth assays. L. I. and F. H. purified proteins and performed in vitro and mass spectrometry assays. N. Q. T. purified a protein. D. B. performed bioinformatics analysis. C. L., B. M. M., D. B., and J. B. discussed the data. C. L. and J. B. wrote the paper.

Acknowledgments—We thank Su Chiang and Jinbo Lee for helpful advice on medicinal chemistry. We also thank Dan Kahne for helpful discussions and kindly providing LptD strains.

References

1. Kadokura, H., Katzen, F., and Beckwith, J. (2003) Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135
2. Kadokura, H., and Beckwith, J. (2010) Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid. Redox Signal. 13, 1231–1246
3. Heras, B., Shouldice, S. R., Totsika, M., Scanlon, M. J., Schembri, M. A., and Martin, I. L. (2009) Dsb proteins and bacterial pathogenicity. Nat. Rev. Microbiol. 7, 215–222
4. Lasica, A. M., Wyszynska, A., Szymanek, K., Majewski, P., and Jagusztyn-Krynicka, E. K. (2010) Campylobacter protein oxidation influences epithelial cell invasion or intracellular survival as well as intestinal tract colonization in chickens. J. Appl. Genet. 51, 383–393
5. Gonzalez, M. D., Lichtensteiger, C. A., and Virm, E. R. (2001) Adaptation of signature-tagged mutagenesis to Escherichia coli K1 and the infant-rat model of invasive disease. FEMS Microbiol. Lett. 198, 125–128
6. Miki, T., Okada, N., and Danbara, H. (2004) Two periplasmic bisulfide oxidoreductases, DsbA and SrgA, target outer membrane protein SpiA, a component of the Salmonella pathogenicity island 2 type III secretion system. J. Biol. Chem. 279, 34631–34642
7. Rosadini, C. V., Wong, S. M., and Akerley, B. J. (2008) The periplasmic disulfide oxidoreductase DsbA contributes to Haemophilus influenzae pathogenesis. Infect. Immun. 76, 1498–1508
8. Kim, S. H., Park, S. Y., Heo, Y. J., and Cho, Y. H. (2008) Drosophila melanogaster-based screening for multifruit virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect. Immun. 76, 4152–4162
9. Totsika, M., Heras, B., Wurpel, D. J., and Schembri, M. A. (2009) Characterization of two homologous disulfide bond systems involved in virulence factor biogenesis in uropathogenic Escherichia coli CFT073. J. Bacteriol. 191, 3901–3908
10. Himpsl, S. D., Lockatell, C. V., Hebel, J. R., Johnson, D. E., and Mobley, H. L. (2008) Identification of virulence determinants in uropathogenic Proteus mirabilis using signature-tagged mutagenesis. J. Med. Microbiol. 57, 1068–1078
11. Straskova, A., Pavkova, I., Link, M., Forslund, A. L., Kuoppa, K., Noppa, L., Kroca, M., Fucikova, A., Klimentova, I., Krocca, Z., Forsberg, A., and
DsbB mutations resistant to pyridazinone-related molecules

Stulik, J. (2009) Proteome analysis of an attenuated Francisella tularensis dsbA mutant: identification of potential dsbA substrate proteins. J. Proteome Res. 8, 5336–5346

12. Bardwell, J. C., McGovern, K., and Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589

13. Bardwell, J. C., Lee, J. O., Jander, G., Martin, N., Belin, D., and Beckwith, J. (1993) A pathway for disulfide bond formation in vivo. Proc. Natl. Acad. Sci. U.S.A. 90, 1038–1042

14. Bader, M., Muse, W., Ballou, D. P., Gassner, C., and Bardwell, J. C. (1999) Oxidative protein folding is driven by the electron transport system. Cell 98, 217–227

15. Dutton, R. J., Boyd, D., Berkmen, M., and Beckwith, J. (2008) Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. U.S.A. 105, 11933–11938

16. Wang, X., Dutton, R. J., Beckwith, J., and Boyd, D. (2011) Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid. Redox Signal. 14, 1413–1420

17. Landeta, C., Blazyk, J. L., Hatahet, F., Meehan, B. M., Eser, M., Myrick, A., Bronstain, L., Minami, S., Arnold, H., Ke, N., Rubin, E. J., Furie, B. C., Furie, B., Beckwith, J., Dutton, R., and Boyd, D. (2015) Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nat. Chem. Biol. 11, 292–298

18. Ruiz, N., Chng, S.-S., Hiniker, A., Kehne, D., and Silhavy, T. J. (2010) Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. Proc. Natl. Acad. Sci. U.S.A. 107, 12245–12250

19. Meehan, B. M., Landeta, C., Boyd, D., and Beckwith, J. (2017) The essential cell division protein FtsN contains a critical disulfide bond in a non-essential domain. Mol. Microbiol. 103, 413–422

20. Sampson, B. A., Misra, R., and Benson, S. A. (1989) Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122, 491–501

21. Eggert, U. S., Ruiz, N., Falcone, B. V., Branstrom, A. A., Goldman, R. C., Silhavy, T. J., and Kahne, D. (2001) Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294, 361–364

22. Ruiz, N., Falcone, B., Kehne, D., and Silhavy, T. J. (2005) Chemical conditionality: A genetic strategy to probe organellar assembly. Cell 121, 307–317

23. Chng, S.-S., Xue, M., Garner, R. A., Kodourka, H., Boyd, D., Beckwith, J., and Kahne, D. (2012) Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337, 1665–1668

24. Lee, I., Xue, M., Wzorek, I. S., Wu, T., Grabowicz, M., Gronenberg, L. S., Sutterlin, H. A., Davis, R. M., Ruiz, N., Silhavy, T. J., and Kahne, D. E. (2016) Characterization of a stalled complex on the β-barrel assembly machine. Proc. Natl. Acad. Sci. U.S.A. 113, 8717–8722

25. Inaba, K., Takahashi, Y. H., Fujieda, N., Kano, K., Miyoshi, H., and Ito, K. (2004) DsbB Elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. J. Biol. Chem. 279, 6761–6768

26. Wu, T., Malinverni, J., Ruiz, N., Kim, S., Silhavy, T. J., and Kahne, D. (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121, 235–245

27. Yuong, P., Bennion, D., Mantei, J., Frost, D., and Misra, R. (2008) Analysis of YfgL and YaeT interactions through bioinformatic, mutagenesis, and biochemistry. J. Bacteriol. 190, 1507–1517

28. Telesz, R. Jr., and Misra, R. (2012) Substitutions in the BamA β-barrel domain overcome the conditional lethal phenotype of a ΔmamB ΔmamE strain of Escherichia coli. J. Bacteriol. 194, 317–324

29. Inaba, K., Murakami, S., Nakagawa, A., Iida, H., Kinjo, M., Ito, K., and Suzuki, M. (2009) Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J. 28, 779–791

30. Rietzsch, A., Belin, D., Martin, N., and Beckwith, J. (1996) An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 93, 13048–13053

31. Bader, M. W., Xie, T., Yu, C. A., and Bardwell, J. C. (2000) Disulfide bonds are generated by quinone reduction. J. Biol. Chem. 275, 26082–26088

32. Kobayashi, T., and Ito, K. (1999) Respiratory chain strongly oxidizes the CXXC motif of DsbB in the Escherichia coli disulfide bond formation pathway. EMBO J. 18, 1192–1198

33. Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., and Ito, K. (2006) Crystal structure of the DsbB–DsbA complex reveals a mechanism of disulfide bond generation. Cell 127, 789–801

34. Kadokura, H., and Beckwith, J. (2002) Four cysteines of the membrane protein DsbA act in concert to oxidize its substrate DsbA. EMBO J. 21, 2354–2363

35. Newton, N. A., Cox, G. B., and Gibson, F. (1971) The function of menaquinone (vitamin K2) in Escherichia coli K-12. Biochem. Biophys. Acta 244, 156–166

36. Shestopalov, A. L., Bogachev, A. V., Murtazina, R. A., Varyasov, M. B., and Skulachev, V. P. (1997) Aeration-dependent changes in composition of the quinone pool in Escherichia coli. Evidence of post-transcriptional regulation of the quinone biosynthesis. FEBS Lett. 404, 272–274

37. Miller, J. H. (1992) A short course in bacterial genetics and a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Press, Cold Spring Harbor, NY

38. Sambrook, J., and Russell, D. W. (eds) (2001) Molecular Cloning: A Laboratory Manual, Vols. 1–3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

39. Weiss, D. S., Chen, J. C., Ghigo, J. M., Boyd, D., and Beckwith, J. (1999) Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J. Bacteriol. 181, 508–520

40. Chimalakonda, G., Ruiz, N., Chng, S.-S., Garner, R. A., Kehne, D., and Silhavy, T. J. (2011) Lipoprotein LptD is required for the assembly of LptD by the β-barrel assembly machine in the outer membrane of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 108, 2492–2497

41. Gigot, D., Crabeel, M., Feller, A., Charlier, D., Lissens, W., Glansdorff, N., and Piérard, A. (1980) Patterns of polarity in the Escherichia coli carAB gene cluster. J. Bacteriol. 143, 914–920

42. Regeimbal, I., Gleiter, S., Trumpower, B. L., Yu, C. A., Diwakar, M., Ballou, D. P., and Bardwell, J. C. (2003) Disulfide bond formation involves a quinhydron-type charge-transfer complex. Proc. Natl. Acad. Sci. U.S.A. 100, 13779–13784

43. Boyd, D., Weiss, D. S., Chen, J. C., and Beckwith, J. (2000) Towards single-copy gene expression systems making gene cloning physiologically relevant: Lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J. Bacteriol. 182, 842–847

44. Kadokura, H., Bader, M., Tian, H., Bardwell, J. C., and Beckwith, J. (2000) Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 97, 10884–10889

45. Guzman, L. M., Belin, D., Carson, M. J., and Beckwith, J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose P(BAD) promoter. J. Bacteriol. 177, 4121–4130