Vitamin D₃ supplementation on plasma antioxidant enzymes in D₃ deficient patients with COPD - a randomized controlled trial

Salma Anjum¹, Taskina Ali¹, Kazi Saifuddin Bennoor², Md. Ali Hossain³, Md. Saiful Islam¹, Maksuda Bintey Mahmud¹, Samia Hassan¹, Salsa Bil Nahar¹, Sharkia Khanam Rosy¹, Naznin Sultana¹, Khalada Akter¹

¹. Department of Physiology, Bangabandhu Sheikh Mujib Medical University, Dhaka.
². Department of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka.

Abstract

Background: Free radical is a crucial factor for progression of COPD. Antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT) have been well known to reduce morbidity of chronic disease. Vitamin D₃ has antioxidant effect in human body. Objectives: To assess the effects of D₃ supplementation on plasma SOD and CAT levels in D₃ deficient COPD patients. Method: A double blinded placebo controlled randomized clinical trial was carried out on 30 vitamin D₃ deficient male, smoker and stable COPD patients of age >40 years. All the patients were randomly allocated to ‘Study’ (n=15) or ‘Control’ (n=15) and their baseline plasma SOD and CAT were measured. Study patients received 80,000 IU (2 oral capsules) of D₃ per week for first 13 weeks. Subsequently, after checking their serum 25(OH)D or Ca²⁺, they received 40,000 IU (1 oral capsule) of D₃ either per 1 week or per 2 weeks or per 6 weeks or no further supplementation for next 13 weeks. All the ‘Control’ patients received two oral capsules of placebo weekly for consecutive 26 weeks. Additionally, all patients of both groups were also advised to have sunlight exposure (within 11 to 14 hrs) at least for 5 to 15 minutes daily. After 26 weeks of follow up, both enzymes, serum 25(OH)D or Ca²⁺ of all patients were measured by spectrophotometry. Data were analyzed by
Introduction

One of the major causes of chronic morbidity and mortality throughout the world is Chronic obstructive pulmonary Disease (COPD).[^1] It is characterized by persistent respiratory symptoms and airflow limitation due to airway and/or alveolar abnormalities usually caused by significant exposure to noxious particles or gases[^1].

This respiratory ailment is currently fourth leading cause of death in the world but it is projected to be third leading cause of death by 2020[^1]. In Bangladesh, prevalence of COPD among people greater than 40 years is 21.6% and overall prevalence in general population is 4.32%.[^2]

Lungs are continuously exposed to free radicals originated from air pollution or cigarette smoke and excess oxidants can cause destruction of the lung.[^3-4] Therefore, body antioxidants from different sources protect our body from the damaging effect of these exogenous or endogenous free radicals.[^5] Several antioxidant enzymes in our body provide the first line defense by neutralizing these free radicals. Among these antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) are important for respiratory organs.[^5] Previous studies reported decreased SOD and CAT activity in COPD patients compared to healthy control.[^7-8]

Vitamin D₃ deficiency is a recent rising problem in general population throughout the world.[^9] In respiratory health, vitamin D₃ deficiency has been shown to increase the risk of active tuberculosis[^10] and upper respiratory tract infections.[^11] It is believed that patients with COPD are at greater risk of vitamin D₃ deficiency.[^12] In addition, research evidence indicate positive correlation between serum vitamin D₃ and erythrocyte SOD and CAT activity.[^13] Furthermore, vitamin D₃ supplementation increased both (SOD and CAT) in diabetic mice[^14], hemodialysis patient[^15], preeclamptic women[^16] as well as in vitamin D₃ deficient patients with stable asthma-COPD overlap patients.[^17]

Nevertheless, the volume of information regarding the role of vitamin D₃ supplementation (as an antioxidant) on plasma antioxidant enzymes status is very scarce for any conclusive remarks.

Therefore, this study was designed to observe the effect of vitamin D₃ supplementation on plasma SOD and CAT level in vitamin D₃ deficient stable COPD patients.

Method

Study design, setting, time:

This randomized double blinded placebo controlled trail was conducted in the Department of Physiology, Bangabandhu Sheikh Mujib...
D₃ supplementation on antioxidant enzymes in D₃ deficient COPD. Anjum et al.

Medical University (BSMMU) and National Institute of the Diseases of Chest and Hospital (NIDCH), Dhaka from March, 2019 to February, 2020. This clinical trial was registered at www.clinicaltrials.gov, ID: NCT04011930 and approved by Institutional Review Board of BSMMU.

Study population:
For this purpose, 30 (thirty) male, smoker, stable patients with COPD of age ≥40 years were enrolled by purposive sampling. Diagnosis was done by pulmonologists through clinical, physical and radiological signs of chronic airway disease, usually with spirometric evidence of chronic airflow limitation (post bronchodilator FEV₁/FVC<0.7)₁, but its absence did not absolutely exclude COPD. Duration of COPD (1 to 5 years), duration of smoking (>10 pack years)₁₈, body mass index (18.5 to 24.9 kg/m²)₁₉, serum total calcium (8.5 to 10.5 mg/dl)²₀, serum inorganic phosphate (2.3 to 4.7 mg/dl)²₀ and serum parathormone (10 to 65 pg/ml)²₀ were inclusion criteria. In addition, patients with uncontrolled diabetes mellitus (fasting blood sugar ≥7 mmol/l and/or HbA₁c ≥7%)²¹, uncontrolled systemic hypertension (systolic blood pressure ≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg, with anti-hypertensive medication)²², dyslipidemia (total cholesterol ≥240 mg/dl and/or HDL<40 mg/dl and/or LDL≥160 mg/dl and/or triglyceride≥200 mg/dl and/or with use of any lipid lowering drug)²₃, renal insufficiency (serum creatinine >1.36 mg/dl)²₄ as well as history of any pulmonary, liver, endocrine or cardiac disease, malignancy or with consumption of any drug known to affect vitamin D metabolism (phenytoin, carbamazepine, clotrimazole, rifampicin, nifedipine, spironolactone) within 1 month prior to study, were excluded.

Randomization:
The final selection of vitamin D₃ deficient ACO patients (after screening) were done by principal investigator. Then a code was provided to each of them (to hide their identity) and with the help of a computer-generated random table, all were randomly allocated into vitamin D supplemented group (n=26) or placebo treated group (n=25) (Figure 1). Both the randomization and blinding were done by a third party, not member of the research team. Neither the principal investigator nor the patients were aware about the grouping. Before the data analysis, grouping of the patient was disclosed.

Intervention:
Study patients received 80,000 IU (2 oral capsules) of vitamin D₃ per week for first 13 weeks. Detail of the dose schedule for D₃ supplementation for last 13 weeks²⁵ are shown in Table I. In this study design, all the ‘Control’ patients received two oral capsules of placebo weekly for consecutive 26 weeks. Additionally, all the patients of both groups were also advised to have sunlight exposure (within 11 am to 2 pm)²₆ only for 5 to 15 minutes daily.²₇ During the follow up after 13 weeks, if serum 25(OH)D level was found <10 ng/ml (severely deficiency)²₅ in any patient, then he was discarded (Figure 1) from the study (for ethical purpose). Ingredients of vitamin D₃ capsules were cholecalciferol (40,000 IU), microcrystalline cellulose (58.1 gm), butylatedhydroxy toluene (0.2 mg), magnesium stearate (3 mg), gelatin capsule shell (1 mg). Placebo was identical in all aspect to that of vitamin D₃ and ingredients of placebo were same as vitamin D₃ except Cholecalciferol. Vitamin D₃ and placebo capsules were prepared and supplied by Beximco Pharmaceuticals Limited, Bangladesh. After explaining the dose schedule and possible side effects of drug (vitamin D₃ or placebo) the patient consumed the first dose, given by the investigator and then followed the subsequent doses as instructed throughout the intervention period. Patients were advised to continue the standard pharmacological treatment...
of COPD (according to GOLD criteria) throughout the intervention period.

Data collection.
An informed written consent was taken from each preliminarily selected patient and their serum 25(OH)D level was estimated. Patients with 25(OH)D level between 10-30 ng/ml was finally enrolled as vitamin D₃ deficient and. Before administration of vitamin D₃ or placebo the baseline plasma level of SOD and CAT of all patients were measured and at the end of 26 weeks follow up, both the enzyme levels and vitamin D₃ level of both groups were again measured.

Serum 25(OH)D was assessed by Chemiluminescent microparticle immunoassay (CMIA) method (Abbot Laboratory, Ireland). Plasma SOD and CAT enzyme levels were assessed by colorimetric method using SOD assay kit (Elabscience, USA) and CAT assay kit (Elabscience, USA).

Statistical Analysis. The data were expressed as mean±SD and the data were analyzed by SPSS (Version 20), and for statistical analysis, Shapiro-Wilk test, independent sample ‘t’ test as well as paired sample ‘t’ test were used as applicable. In the interpretation of results, p≤0.05 was accepted as significant.

Figure 1: CONSORT (Consolidated Standards of Reporting Trials) diagram; COPD: Chronic obstructive pulmonary disease
Results
A total of 30 patients were initially randomized and 20 of them ultimately completed the study (7 patients from study group and 3 patients from control groups were dropped out) (Figure 1).

Both the groups (with vitamin D₃ and placebo) at their baseline status were comparable, as there were no significant differences of the confounding variables (age, duration of COPD, duration of smoking, BMI, socioeconomic status, fasting blood sugar, lung function Serum 25(OH)D, parathormone, total calcium, inorganic phosphate serum glycated hemoglobin, systolic and diastolic blood pressure) between them (Table II).

There was no significant difference in the baseline characteristics including antioxidant enzymes (SOD and CAT) between study and control groups (Figure 2). However, the mean plasma SOD (p≤0.01) as well as CAT (p≤0.001) significantly increased after 26 weeks of follow-up.

Table I: D₃ supplementation schedule for D₃ deficient COPD patients

At 1st visit / at day 1:
Vitamin D₃ 80,000 IU (2 capsules of 40,000 IU) / week, for consecutive 13 weeks

At 2nd visit / after 13 weeks:

Condition	Dosage	Notes
Serum 25(OH)D ≥ 80 ng/ml and/or Serum Ca²⁺ ≥ 8.5-10.5 mg/dl	Stop taking drug and symptom analysis	No dose for further 13 weeks
50-80 ng/ml and/or 8.5-10.5 mg/dl	1 cap (40,000 IU) / 6 weeks	
<80 ng/ml and/or <8.5-10.5 mg/dl	no dose for further 13 weeks	
>150 ng/ml and/or >8.5-10.5 mg/dl	Close monitoring and ask for – feeling sick or being sick • poor appetite or loss of appetite • feeling very thirsty • passing urine often • constipation or diarrhea • abdominal pain • muscle weakness • pain • bone pain • feeling confused • feeling tired	

At 3rd visit / after 26 weeks:
Patients were referred to pulmonologist and suggested to follow the above mentioned schedule.
Table II: Baseline characteristics of COPD patient in both groups (N=30)

Characteristics	Study (n=15)	Control (n=15)	p value
Age (years)	61.73±8.31	58.13±7.97	0.23
	(43-78)	(45-70)	
Duration of COPD (years)	3.46±1.30	3.40±1.35	0.89
	(1-5)	(1-5)	
Duration of smoking (pack years)	15.54±4.66	16.70±5.50	0.53
	(10-25)	(10-25)	
Socioeconomic status (score)	2.00±0.00	2.00±0.00	1
	(10-25)	(10-25)	
Body mass index (kg/m²)	20.64±2.15	20.95±2.72	0.73
	(17.84-24.90)	(16.90-24.90)	
FEV1/FVC ratio (%)	55.60±9.85	55.33±8.78	0.93
	(43-65)	(42-69)	
FEV1 (% of predicted value)	44.07±14.97	48.35±16.37	0.46
	(20.10-76.40)	(17.60-74.90)	
Serum 25(OH)D (ng/ml)	19.44±4.05	20.08±4.94	0.93
	(15-28)	(15-28.90)	
Serum parathormone (pg/ml)	53.72±9.42	46.76±14.07	0.12
	(31.30-64.80)	(18.10-65)	
Serum total calcium (mg/dl)	9.26±0.21	9.35±0.34	0.37
	(8.90-9.56)	(8.90-9.95)	
Serum inorganic phosphate (mg/dl)	3.18±0.44	3.37±0.58	0.31
	(2.39-3.90)	(2.25-4.30)	
FBS (mmol/l)	5.63±1.08	5.52±0.85	0.75
	(3.90-6.90)	(4-6.90)	
Serum HbA1c (%)	6.56±0.50	6.40±0.39	0.34
	(5.70-6.50)	(5.60-6.90)	
Systolic blood pressure (mm Hg)	118.67±10.60	116.67±8.16	0.56
	(100-140)	(100-130)	
Diastolic blood pressure (mm Hg)	76.00±5.07	76.66±4.87	0.71
	(70-80)	(70-80)	

Data were expressed as mean±SD; Values in parentheses indicate ranges; Statistical analysis was done by Independent sample t test; COPD: Chronic obstructive pulmonary disease; N: number of patients in both groups; A1: COPD patients with vitamin D₃ supplementation on day 1; B1: COPD patients with placebo supplementation on day 1; n: number of patients in each group; ns: non significant; Pack year: (number of cigarette smoked per day ÷ 20) X no. of year smoked; FEV1: forced expiratory volume in first second; FVC: forced vital capacity; 25(OH)D: serum 25-hydroxycholecalciferol; FBS: fasting blood sugar; HbA1c: glycated hemoglobin.
D₃ supplementation on antioxidant enzymes in D₃ deficient COPD. Anjum et al.

Discussion

The present study has been undertaken to observe the effects of vitamin D₃ supplementation on plasma antioxidant enzymes in vitamin D₃ deficient stable patients with COPD.

In this study, both the plasma SOD and CAT levels in the D₃ deficient stable male patients with COPD, at their baseline status, were almost similar to those reported by others¹³,¹⁵.

In this study, plasma SOD and CAT significantly increased in D₃ deficient patients with COPD after 26 weeks of vitamin D₃ administration in comparison to their baseline status. Similar observation in SOD and CAT level were found in erythrocytes of patients with atopic dermatitis after 60 days of vitamin D₃ supplementation¹³.

Moreover these antioxidant enzymes were found to be increased in serum after 8 weeks¹⁶ as well as in plasma after 26 weeks¹⁷ of vitamin D₃ supplementation in patients with preeclampsia and asthma-COPD overlap patients, respectively.

In addition, in the current study, after 26 weeks of follow up, SOD and CAT were significantly higher in plasma of our COPD patients with vitamin D₃ supplementation in comparison to that of patients with placebo. Similar observation was found in erythrocytes of atopic dermatitis patients on 60th day²¹ in liver tissue of diabetic rats on 28th day²⁸, in serum of preeclamptic pregnant women after 8 weeks¹⁶ and in plasma of vitamin D₃ deficient asthma-COPD overlap patients on 26th week¹⁷ after different dose schedule of vitamin D₃ supplementation.

Moreover, SOD was higher in plasma of neonates with hypoxic-ischemic encephalopathy on 5th day²⁹ in cardiac tissue of obese rat on 5th week³⁰ of vitamin D₃ supplementation.

In addition, CAT was also found higher in hippocampus of vitamin D₃ supplemented rats with multiple sclerosis on 21st day of follow up³¹.

Figure 2: Antioxidant enzyme levels on pre and post intervention in both groups; Each bar symbolizes mean±SD of stable COPD patients; Study1: Patients with vitamin D₃ on day 1; Study2: Patients with vitamin D₃ after 26th week; Control1: Patients with placebo on day 1; Control2: Patients with placebo after 26th week; ***: p<0.001 in A1 vs A2; ###: p<0.001 in A2 vs B2; **: p<0.01 in A1 vs A2.
From the present study, the exact cause of increment of SOD and CAT after vitamin D$_3$ supplementation in COPD patients is uncertain. However, being a steroid through its genomic effect, vitamin D$_3$ might induce the mRNA gene expression of the antioxidant enzymes, SOD and CAT through Sirtuin1 (SIRT1) expression.\footnote{Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture; how should you do it and what do the results mean? Br J Pharmacol 2004; 142(2):231-55. doi: 10.1038/sj.bjp.0705776}

Conclusion
The outcome of this trial reveals that vitamin D$_3$ supplementation increases the antioxidant enzymes in D$_3$ deficient COPD patients.

Limitation
In this trial both of diabetes mellitus and hypertension were included which would cause oxidative stress, we intended to exclude the COPD patients with these two co-morbidities. But it could not be possible, due to patients unavailability and time constraint.

Therefore, similar study is recommended in nondiabetic as well as normotensive male COPD patients. In addition, other antioxidant enzymes should be assessed with different dose and follow up schedule of this fat soluble vitamin supplementation in D$_3$ deficient COPD patients to ascertain our findings.

Conflict of interest
None

Acknowledgement
This study was supported by an unrestricted educational grant from BeximcoPharmaceuticals Ltd. Bangladesh.

References
1. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of COPD [Internet]. 2019 [cited 2019 Mar 29]. Available from: https://www.goldcopd.org/2019-gold-initiative-report/
2. Biswas RS, Chowdhury FK. Risk factors of COPD among rural women, Chittagong, Bangladesh. Egypt J Bronchol 2017; 11(3):188-92. doi: 10.4103/1687-8426.211395
3. MacNee W. Treatment of stable COPD: antioxidants. Eur Respir Rev 2005; 14(94):12-22. doi: 10.1183/09058180.05.00009402
4. Boukhenouna S, Wilson MA, Bahmed K, Kosmider B. Reactive oxygen species in chronic obstructive pulmonary disease. Oxid Med Cell Longev 2018; 2018(ID5730395):1-9. doi: 10.1155/2018/5730395
5. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture; how should you do it and what do the results mean? Br J Pharmacol 2004; 142(2):231-55. doi: 10.1038/sj.bjp.0705776
6. Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Med J 2018; 54(4):287-93. doi: 10.1016/j.amjmed.2017.09.001
7. Arja C, Surapaneni KM, Raya P, Adimoolam C, Balisetty B, Kanala KR. Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology 2013; 18(7):1069-75. doi: 10.1111/resp.12118
8. Mohammed A, Gutta V, Ansari MS, Venkata RS, Jamil K. Altered antioxidant enzyme activity with severity and comorbidities of chronic obstructive pulmonary disease (COPD) in South Indian population. COPD Res Pract 2017; 3(1):4(1-11). doi: 10.1186/s40749-017-0023-z
9. Lee JH, O’Keefe JH, Bell D, Hensrud DD, Holick MF. Vitamin D deficiency: an important, common, and easily treatable cardiovascular risk factor. JACC 2008; 52(24):1949-56. doi: 10.1016/j.jacc.2008.08.050
10. Nnoaham KE, Clarke A. Low serum vitamin D levels and tuberculosis: a systematic review and meta-analysis. Int J Epidemiol 2008; 37(1):113-9. doi: 10.1093/ije/dyam247
11. Ginde AA, Mansbach JM, Camargo CA. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third national health and nutrition examination survey. Arch Intern Med 2009; 169(4):384-90. doi: 10.1001/archinternmed.2008.560
12. Boucher BJ. The problems of vitamin d insufficiency in older people. Aging Dis 2012; 3(4):313-29. PMID: 23185713
13. Javanbakht MH, Keshavarz SA, Mirshafiey A, Djalali M, Siassi F, Eshraghian MR, Firooz AR, Seirafi H, Ehsani AH, Chamari M. The effects of vitamins E and D supplementation on erythrocyte superoxide dismutase and catalase in atopic dermatitis. Iran J
D₃ supplementation on antioxidant enzymes in D₃ deficient COPD.

Anjum et al.

Public Health 2010; 39(1):57-63. PMID: 23112990

14. GrehA. Effects of vitamin E, C and D supplementation on inflammation and oxidative stress in streptozotocin-induced diabetic mice. Int J Vitam Nutr Res 2013; 83(3):168-75. doi: 10.1024/0300-9831/a000156

15. Izquierdo MJ, Cavia M, MuñizP, de Francisco AL, Arias M, Santos J, Aibaig P. Paricalcitol reduces oxidative stress and inflammation in hemodialysis patients. BMC Nephrol 2012; 13(1):159. doi: 10.1186/1471-2369-13-159

16. Sonuga AA, Asaolu MF, Oyeyemi AO, Sonuga OO. Effects of vitamin D₃ supplementation on antioxidant status and lipid peroxidation product in pre eclamptic women. J Gynecol2019; 4(1): 000169(1-8). doi: 10.23880/oajg-16000169

17. Mahmud MB, Ali T, Bennoor KS, Hossain MA, Rahman M, Khan MAS, Islam MS, Hassan S, Nahar SB, Rosy SK, Sultana N, Anjum S. Does Vitamin D₃ supplementation affect antioxidant enzymes of D₃ deficient patients with asthma COPD overlap (ACO)? – A randomized controlled trial. J Bangladesh SocPhysiol 2019; 14(2): 89-98. doi: 10.3329/ jbsp.v14i2.44790

18. Janssens W, Bouillon R, Claes B, Carremans C, Lehouck A, Buysschaert I, CoolenI,Mathieu C,Deacremer M, Lamberchts D. Vitamin D deficiency is highly prevalent in COPD and correlates with variants in the vitamin D-binding gene. Thorax 2010; 65(3):215-20. doi: 10.1136/thx.2009.120659

19. World Health Organization. The Asia pacific perspective: redefining obesity and its treatment. [Internet]Regional office for the Western Pacific;2000 [cited 2019 Mar 29]. Available from:https:// apps.who.int/iris/handle/10665/206936

20. Risteli J, Winter WE, Kleeerkooper M, Risteli L. Bone and mineral metabolism. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. USA: Saunders Elsevier; 2012. p.1733-1806.

21. American Diabetes Association. Classification and diagnosis of diabetes mellitus: standards of medicalcare in diabetes-2018. Diabetes Care 2018; 41(Suppl 1):S13-S27. Available form: http:// doi.org/10.2337/dc18-s002

22. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, FordES, Fox Cs, Fox CS, Fullerton HJ, Gillespie C,Hailpern SM, Heit JA, Howard VJ, Kissela BM,Kittner SJ, Lackland DT, Lichtman JH, LisabethLD, Makuc DM, Marcus GM, Marelly A, MatcharDB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorkle PD,Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woon D, Turner MB. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012;125(1):e2-e220.doi:10.1161/ CIR. 0b013e3 1823ac046

23. Expert Panel on detection, evaluation and treatment of high blood cholesterol in adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001;285(19):2486-97. doi: 10.1001/jama.285. 19.2486

24. Walker SW. Laboratory reference ranges. In: Walker BR, Collode NR, Ralston SH, Penman ID, editors. Davidson’s principles and practice of medicine. Edinburg: Churchill Livingstone; 2014. p. 1307-12.

25. Vitamin D Council. I tested my vitamin D level. What do my results mean? [Internet].2019 [cited 2019 Mar 25]. Available from: https://www. vitamin dcouncil.org/i-tested-myvitamin-d-level-what-do-my-results-mean/

26. Harinarayan CV, Holick MF, Prasad UV, Vani PS, Himabindu G. Vitamin D status and sun exposure in India. Dermatoendocrinol 2013; 5(1):130-41. doi: 10.4161/derm.23873

27. Fitzgerald MA. Musculoskeletal disorders. In: Rhyner S, editor. Nurse practitioner certification examination and practice preparation. Philadelphia: F A Davis company; 2017. p. 217-60.

28. Alatawi FS, Faridi UA, Alatawi MS. Effect of treatment with vitamin D plus calcium on oxidative stress in streptozotocin-induced diabetic rats. Saudi Pharm J 2018; 26(8):1208-13. doi: 10.1016/j.jsp.2018.07.012

29. MutluM, Sarýaydýn M, Aslan Y, Kader . Dereci S, Kart C, Yaman SÖ, Kural B. Status of vitamin D, antioxidant enzymes, and antioxidant substances in neonates with neonatal hypoxic-ischemic encephalopathy. J Matern Fetal Neonatal Med 2016; 29(14):2259-63. doi: 10.3109/14767058. 2015. 1081889

30. Farhangi MA, Nameni G, Hajiluian G, Mesgari-Abbasi M. Cardiac tissue oxidative stress and inflammation after vitamin D administrations in high fat- diet induced obese rats. BMC Cardiovasc Disord 2017;
D₃ supplementation on antioxidant enzymes in D₃ deficient COPD. Anjum et al.

31. Tarbali S, Khezri S. Vitamin D₃ attenuates oxidative stress and cognitive deficits in a model of toxic demyelination. Iran J Basic Med Sci 2016; 19(1):80-88. PMID: 27096068

32. Wiseman H. Vitamin D is a membrane antioxidant. FEBS Letters 1993; 326 (1-3):285-8. doi: 10.1016/0014-5793(93)81809-E

33. Cheng Y, Takeuchi H, Sonobe Y, Jin S, Wang Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Suzumura A. Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. J Neuroimmunol 2014; 269(1-2):38-43. doi: 10.1016/j.jneuroim.2014.02.001

34. Zhong W, Gu B, Gu Y, Groome LJ, Sun J, Wang Y. Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J Steroid BiochemMolBiol 2014; 140:56-62. doi: 10.1016/j.jsbmb.2013.11.017

35. Polidoro L, Properzi G, Marampon F, Gravina GL, Festuccia C, Di Cesare E, Scarsella L, Ciccarelli C, Zani BM, Ferri C. Vitamin D protects human endothelial cells from H₂O₂ oxidant injury through the Mek/Erk-Sirt1 axis activation. JCardiovascTransl Res 2013; 6:221–31. doi: 10.1007/s12265-012-9436-x