Tabanez do Nascimento, Leandra; Bevilacqua, Maria Cecília
Avaliação da percepção da fala com ruído competitivo em adultos com implante coclear
Brazilian Journal of Otorhinolaryngology, vol. 71, núm. 4, julho-agosto, 2005, pp. 432-438
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=392437752006
Aim: to evaluate the effects of different signal-to-noise ratios on speech recognition obtained by the use of cochlear implant (CI); to compare the speech recognition in noise with different types of multichannel cochlear implants (CIs) and to evaluate the degree of difficulty for speech understanding in noise in daily life situations. Study design: cohort transversal. Material and Method: Forty adults with post-lingual hearing loss implanted with Nucleus 22, Nucleus 24, Combi 40, Combi 40+ and Clarion. We evaluated the recognition for CPA sentences in quiet and in S/N +15, +10 and +5 dB. We also applied the Social Hearing Handicap Index (SHHI) questionnaire for self-assessment in daily life. Results and Conclusion: All the implanted adults presented a significant reduction in the scores for sentences recognition as the S/N decreased. The medians’ curve for sentence recognition reached 50% in the signal-to-noise ratio of +10 dB. There was no statistically significant difference in sentences’ recognition scores and difficulty scores obtained with the SHHI, for all types of implants. The difficulties of implanted adults were rare in quiet and occasional in noisy situations according to SHHI questionnaire.
INTRODUÇÃO

O avanço tecnológico tem permitido um aprimoramento nas estratégias de codificação do sinal da fala nos implantes cocleares multicanais. No entanto, a queixa mais frequente dos pacientes tem sido reconhecer e compreender o sinal da fala na presença do ruído.

As condições de audição, no dia-a-dia, variam grandemente em relação às condições ideais e ruidos ambientais competitivos são frequentes em casa, no trabalho, escola, lazer e em outros ambientes. Os implantados comentam sobre as dificuldades de compreensão em locais públicos, como restaurantes e festas, ou mesmo numa conversa entre três ou mais pessoas, quando elas falam ao mesmo tempo.

A comunicação em situações ruidosas tem sido relatada como extremamente estressante e a leitura orofacial é essencial nessas condições.

As explicações para a dificuldade de entender a fala no ruído, para pacientes com perda auditiva sensorineural, são: o ruído, que funciona como um mascaramento; a perda da integração biaural, que aumenta a relação sinal/ruído em 3 dB ou mais; as dificuldades na resolução temporal e de freque

cências; a diminuição do campo direcional da audição e o efeito de mascaramento da energia das baixas frequências sobre os limiares das médias e altas frequências, ou seja, os sons de fala de baixa frequência (vogais) são mais intensos e interferem na percepção dos segmentos de alta frequência (consoantes).

Para os indivíduos que usam aparelho auditivo, este transmite um sinal acústico processado e amplificado para a orelha danificada. A integridade do sistema após a cóclea é predominantemente em relação às condições ideais e ruídos ambientais competitivos, que favorecem a compreensão da fala dos usuários de implante coclear em situações ruidosas.

A influência negativa do ruído na percepção da fala dos usuários de implante coclear pode ser justificada pelos seguintes fatores: o processador da fala codifica o sinal acústica
temente processado para um padrão de estimulação do elétrodo. Nesse caso, a integridade do processador da fala e seus algoritmos têm um fator determinante para a habilidade do usuário separar o sinal da fala na presença do ruído.

MATERIAL E MÉTODO

Este estudo foi realizado no Centro de Pesquisas Audiológicas (CPA) do Hospital de Reabilitação de Anomalias Craniofaciais (HRAC) da Universidade de São Paulo (USP) - Bauru e aprovado pelo Comitê de Ética em Pesquisa desta instituição.

Foram selecionados 40 adultos com deficiência auditiva pré-lingual, experiência de mais de 6 meses de uso do implante coclear multicanal e reconhecimento de fala em ambiente ruidoso. Os sujeitos foram divididos em 5 grupos (Tabela 1).

Dos 40 adultos avaliados, 19 eram do sexo masculino e 21 do feminino, com idade média de 43 anos e 6 meses na época da avaliação (mediana = 44 anos e 11 meses, variando de 31 anos e 9 meses a 62 anos e 11 meses), tempo médio de surdez de 5 anos e 10 meses (mediana = 2 anos e 8 meses, variando de 6 meses a 25 anos) e tempo médio de uso do implante coclear de 2 anos (mediana = 1 ano e 9 meses, variando de 6 meses a 5 anos e 11 meses).
Na Figura 1 observa-se a distribuição dos sujeitos quanto à etiologia da deficiência auditiva. Em 20 sujeitos a deficiência auditiva foi progressiva e nos demais, súbita. Quanto ao tipo de inserção, apenas 1 dos sujeitos apresentou inserção parcial dos eletrodos; e 2 sujeitos apresentaram deficiência visual.

Foi avaliado o reconhecimento das sentenças CPA gravadas em fita cassete e apresentadas utilizando um audiómetro de dois canais conectado a um amplificador em campo livre e uma caixa acústica, a 0º azimute, na intensidade de fixa de 70 dBA, com o sujeito a 1 metro do alto-falante, no silêncio (lista 2) e com ruído competitivo (ruído de festa) ipsilateral gravado em um disco compacto digital nas relações sinal/ruído de +15dB (lista 3), +10 dB (lista 4) e +5 dB (lista 5). Todo procedimento foi realizado em cabina acústica.

Para a auto-avaliação do desempenho com o implante coclear em situações do dia-a-dia foi utilizado o questionário Social Hearing Handicap Index (SHHI)\(^{11,12}\) contendo 10 questões sobre a habilidade auditiva em situações de silêncio (componente da deficiência auditiva - DA) e 10 questões sobre a habilidade auditiva com ruído ambiental (componente da seletividade).

Na avaliação estatística para a comparação entre os grupos (diferentes tipos de implante cocleares) quanto ao índice de reconhecimento das sentenças CPA dentro da mesma situação de audição e quanto aos escores de dificuldade obtidos no mesmo componente do questionário SHHI, foi utilizado o teste não paramétrico de Kruskal-Wallis para grupos independentes. Na comparação das situações de audição no mesmo grupo foi empregado o teste não paramétrico de Friedman para medidas repetidas e para comparação dos escores de dificuldade nos componente da DA e seletividade do questionário SHHI no mesmo grupo foi utilizado o teste não paramétrico de Wilcoxon. Em todos os testes foi considerado resultado significante \(p<0.05\) (5%).

Para avaliar a influência das características dos sujeitos (tempo de surdez, tempo de uso do IC e progressão da surdez) nos índices de reconhecimento das sentenças CPA em cada situação de audição foi ajustado o modelo logístico usando o procedimento Genmod do software estatístico SAS para Windows, versão 6.12.

RESULTADOS

Na Figura 2 observa-se a mediana dos índices de reconhecimento das sentenças CPA, nas situações de audição de relação S/R de +5 dB, +10 dB, +15 e silêncio, com os

![Figura 1. Distribuição dos sujeitos quanto à etiologia da deficiência auditiva.](image1)

![Figura 2. Mediana dos índices de reconhecimento das sentenças CPA com os implantes cocleares Nucleus 22, Nucleus 24, Combi 40, Combi 40+ e Clarion, nas situações de audição de relação S/R de +5 dB, +10 dB, +15 dB e silêncio.](image2)
implantes cocleares Nucleus 22 (estratégia SPEAK), Nucleus 24 (estratégia ACE), Combi 40, Combi 40+ e Clarion (estratégia CIS).

Nota-se na Figura 2 uma diminuição da mediana dos índices de reconhecimento das sentenças CPA, em função da diminuição da relação S/R em todos os tipos de implantes cocleares. A mediana dos índices de reconhecimento das sentenças CPA foi maior com o implante Nucleus 24 (estratégia ACE) em todas as situações de audição.

Na comparação de grupos, o teste Kruskal-Wallis revelou que não houve diferença significante (p>0,05) entre as medianas dos índices de reconhecimento das sentenças CPA obtidos com os diferentes implantes cocleares em todas as situações de audição avaliadas.

Na comparação entre as situações de audição em cada grupo, o teste Friedman revelou que a mediana dos índices de reconhecimento das sentenças CPA obtida no silêncio foi significativamente melhor do que as obtidas em todas as situações de audição com ruído; a mediana obtida na relação S/R +10 dB foi significativamente melhor que nas relações S/R +15 dB e a mediana obtida na relação S/R +10 dB foi significativamente melhor do que na relação S/R +5 dB.

Na Figura 3 observa-se a mediana, o mínimo e o máximo dos índices de reconhecimento das sentenças CPA em todas as situações de audição para os 40 sujeitos analisados, independente do tipo de implante coclear.

Na comparação entre grupos, o teste Kruskal-Wallis mostrou que não houve diferença estatisticamente significante entre as medianas dos escores de dificuldade do questionário SHHI no total e nos componentes entre os diferentes tipos de implante coclear.

Na comparação dos escores de dificuldade nos componentes do questionário SHHI em cada grupo, o teste de Wilcoxon indicou que as medianas dos escores de dificuldade no componente da seletividade foram significativamente maiores (p<0,05) do que no componente da deficiência auditiva em todos os tipos de implantes cocleares.

Considerando que não houve diferença entre os tipos de implantes cocleares quanto aos índices de reconhecimento das sentenças CPA, a influência das características dos sujeitos (tempo de surdez, tempo de uso do IC e progressão da surdez) na percepção da fala foi analisada independentemente do tipo de implante coclear.

A análise estatística revelou que o tempo de surdez influenciou significativamente (p<0,05) nos índices de reconhecimento das sentenças CPA nas situações de audição de relação de audição S/R +5 dB, +10 dB e +15 dB, ou seja, nas situações, quanto maior o tempo de surdez, menor os índices de reconhecimento das sentenças CPA.

O tempo de uso do implante coclear influenciou significativamente (p<0,05) na situação de audição de relação S/R +15 dB e no silêncio: quanto maior o tempo de uso, maior os índices de reconhecimento das sentenças CPA nessa situação.

A progressão da surdez influenciou significativamente (p<0,05) nos índices de reconhecimento das sentenças CPA em todas as situações de audição avaliadas. No silêncio, os sujeitos com surdez progressiva têm 1,3719 vezes mais chance de acerto do que os com surdez súbita. Nas situações S/R +15, +10 e +5, os sujeitos com surdez progressiva têm, respectivamente, 1,3356, 2,1876 e 1,2907 vezes mais chance de acerto do que os sujeitos com surdez súbita.

Na Figura 4 observa-se a mediana dos escores de dificuldade nos componentes da deficiência auditiva (DA), seletividade e no total do questionário SHHI com os diferentes implantes cocleares.

Nota-se na Figura 4 que os usuários de todos os tipos de implante coclear raramente apresentaram dificuldades no silêncio e, quando presentes, essas dificuldades foram ocasionais nas situações que envolveram a seletividade entre a fala e o ruído ambiental.

Na comparação entre grupos, o teste Kruskal-Wallis mostrou que não houve diferença estatisticamente significante entre as medianas dos escores de dificuldade do questionário SHHI no total e nos componentes entre os diferentes tipos de implante coclear.

Na comparação dos escores de dificuldade nos componentes do questionário SHHH em cada grupo, o teste de Wilcoxon indicou que as medianas dos escores de dificuldade no componente da seletividade foram significativamente maiores (p<0,05) do que no componente da deficiência auditiva em todos os tipos de implantes cocleares.
DISCUSSÃO

Os resultados obtidos na avaliação do reconhecimento das sentenças CPA nas situações de audição de relação S/R de +5 dB, +10 dB e +15 dB e no silêncio, revelaram não haver diferença significativa entre os implantes cocleares e as estratégias de codificação da fala utilizadas neste estudo (Figura 2).

Apesar de a estratégia CIS apresentar alta velocidade de estimulação (813 pps por canal no implante Clarion e 1515 pps nos implantes Combi 40 e Combi 40+), os resultados da avaliação da percepção da fala com esta estratégia foram equivalentes aos resultados com a estratégia SPEAK (250 Hz no implante Nucleus 22) e com a estratégia ACE (Nucleus 24). Esta última une a eficiência da estratégia SPEAK e a habilidade de estimulação da estratégia CIS, em altas velocidades, enfatizando, ao mesmo tempo, as pistas espectrais e temporais. Estes resultados concordam com os achados de estudos anteriores que não encontraram diferenças entre o reconhecimento de sentenças no silêncio e no ruído com o implante Nucleus 22 (estratégia SPEAK) e implante Ineraid (estratégia CIS)\(^{13}\), e entre o implante coclear Nucleus 22 (estratégia SPEAK) e o implante coclear Combi 40 (estratégia CIS)\(^{2}\).

Embora não haja diferença estatisticamente significante entre os implantes cocleares, nos resultados da avaliação da percepção da fala, as medianas dos índices de reconhecimento das sentenças CPA nas relações de S/R de +5 dB, +10 dB e +15 dB, foram maiores com o implante coclear Nucleus 24 (estratégia ACE) (Figura 2). Estes resultados concordam com estudos anteriores que mostraram que os usuários do implante coclear Nucleus 24 utilizando a estratégia ACE apresentaram melhor desempenho do que com as estratégias CIS e SPEAK no reconhecimento das sentenças no silêncio e no ruído, embora esta diferença não tenha sido estatisticamente significante\(^{14,15}\).

Na Figura 2 observa-se ainda que o melhor desempenho foi obtido na situação de silêncio e o pior na situação de relação S/R de +5 dB, em todos os tipos de implantes cocleares utilizados neste estudo.

A introdução do ruído competitivo no ambiente de teste provocou uma diminuição significativa do desempenho, para todas as situações de audição avaliadas, mesmo em situações consideradas mais favoráveis, como a relação S/R +15 dB, na qual o nível do sinal da fala está 15 dB acima do nível do ruído, como constatado em estudos anteriores\(^{16,17}\).

Notou-se uma diminuição dos índices de reconhecimento das sentenças, em função do aumento dos níveis de ruído (Figura 3), com a curva das medianas dos índices de reconhecimento das sentenças CPA alcançando 50% na relação S/R de +10 dB para os usuários do implante coclear, sendo que em outro estudo a curva de reconhecimento de sentenças para usuários de implante coclear atingiu 50% na relação de +12,5 dB\(^{18}\), enquanto que para os sujeitos com audição normal este valor foi alcançado na relação de -7 dB\(^{19}\) (Nascimento 2002).

Características dos sujeitos, como tempo de surdez, tempo de uso do IC e progressão da surdez, influenciaram significativamente os índices de reconhecimento das sentenças CPA. Quanto maior o tempo de surdez, menores os índices de reconhecimento das sentenças CPA nas relações S/R de +5 dB, +10 dB e +15 dB, evidenciando que o tempo de surdez é um dos indicadores mais importantes do desempenho no pós-cirúrgico\(^{17,18}\).

Quanto maior o tempo de uso do implante, maiores os índices de reconhecimento das sentenças CPA no silêncio e na relação S/R +15 dB, pois ocorre uma melhora significativa no reconhecimento e compreensão da fala com o decorrer do tempo de uso, principalmente durante o primeiro ano\(^{19,20}\).

A progressão da surdez influenciou significativamente nos índices de reconhecimento das sentenças CPA, já que em todas as situações de audição avaliadas, os sujeitos com surdez progressiva tiveram mais chances de acerto do que aqueles com surdez súbita. Isto pode ser justificado pelo fato de que a perda auditiva súbita, de grau profundo, ocasiona uma mudança drástica nas habilidades auditivas, enquanto na perda auditiva progressiva, as habilidades auditivas mudam gradativamente, permitindo uma adaptação e existe um período de benefício com o aparecimento auditivo\(^{21}\).

As medianas dos escores de dificuldade obtidos no questionário SHHI no total e nos componentes da deficiência auditiva e seletividade revelaram não haver diferença estatisticamente significativa entre os implantes cocleares utilizados (Figura 4); confirmando os resultados da avaliação clínica, que não evidenciaram diferenças significativas entre os implantes cocleares quanto à percepção da fala no silêncio e nas relações S/R de +5 dB, +10 dB e +15 dB.

As medianas dos escores de dificuldade no componente da seletividade foram significativamente maiores do que no componente da deficiência auditiva, em todos os tipos de implantes cocleares e as dificuldades foram raras no silêncio e ocasionais nas situações que envolveram o ruído ambiental (Figura 4). Achados que concordam com a avaliação clínica, que demonstrou uma piora no reconhecimento da fala quando o ruído competitivo foi introduzido no ambiente de teste.

A maior dificuldade dos usuários de implante coclear no dia-a-dia é a compreensão da fala no ruído, independentemente do tipo de implante coclear multicanal utilizado\(^{1}\).

É importante ressaltar que os altos índices de reconhecimento da fala e o desempenho no dia-a-dia dos usuários de implante coclear nas situações com ruído competitivo relatados neste estudo refletem os critérios
rigorosos de indicação do implante coclear na avaliação pré-cirúrgica13; no entanto, os seus índices de reconhecimento da fala foram menores e as dificuldades no dia-a-dia, maiores do que para os sujeitos com audição normal19.

A avaliação clínica e subjetiva da percepção da fala em situações com ruído competitivo contribuiu para trazer um perfil mais real do desempenho do usuário do implante coclear no dia-a-dia e a partir desses dados de base, o fonoudólogo poderá orientar seus pacientes quanto ao uso de sistemas supressores de ruído, disponíveis em seus processadores de fala e indicar recursos tecnológicos, como o sistema de frequência modulada, uso do AASI no ouvido não-implantado. Outra possibilidade é o implante coclear bilateral, que já demonstrou promover melhora na compreensão da fala na presença do ruído24,25.

CONSIDERAÇÕES FINAIS

Os implantes cocleares apresentaram avanços significativos nas últimas décadas em relação às estratégias de codificação da fala como aqui relatado, mas os dispositivos atuais ainda não restauram a percepção normal da fala, principalmente em situações adversas como na presença do ruído e de vários falantes ao mesmo tempo. Novas perspectivas quanto à percepção da fala são esperadas a partir de estudos sobre o uso combinado da estimulação elétrica e acústica, implante coclear bilateral e estratégias de codificação da fala mais próximas do processamento de fala da cóclea normal.

Para uma atuação clínica visando à otimização da percepção da fala de cada usuário de implante coclear é fundamental o domínio do conhecimento científico e tecnológico disponíveis para o diagnóstico da deficiência auditiva, indicação e programação do implante coclear, de aparelhos de amplificação sonora individual e de sistemas de frequência modulada, treinamento das habilidades auditivas e estratégias de comunicação associado ao conhecimento das variáveis intervenientes na percepção da fala.

CONCLUSÕES

- Os usuários de implante coclear apresentaram uma redução significativa dos índices de reconhecimento das sentenças CPA, em função da diminuição da relação S/R;
- Os melhores índices de reconhecimento das sentenças CPA com o implante coclear, na presença de ruído competitivo, foram na relação S/R de $+15\, \text{dB}$, sendo que o reconhecimento das sentenças CPA alcançou 50% na relação S/R de $+10\, \text{dB}$;
- Não houve diferenças significativas no reconhecimento das sentenças CPA com os implantes cocleares Nucleus 22 (estratégia SPEAK), Nucleus 24 (estratégia ACE), Combi 40, Combi 40+ e Clarion (estratégia CIS), no silêncio e nas relações S/R de $+5\, \text{dB}$, $+10\, \text{dB}$ e $+15\, \text{dB}$;
- Quanto maior o tempo de surdez, menores os índices de reconhecimento das sentenças CPA nas relações S/R de $+5\, \text{dB}$, $+10\, \text{dB}$ e $+15\, \text{dB}$;
- Quanto maior o tempo de uso, maiores os índices de reconhecimento das sentenças CPA no silêncio e na relação S/R de $+15\, \text{dB}$;
- Os usuários de implante coclear com surdez progressiva tiveram mais chances de acerto do que os com surdez súbita, em todas as situações de avaliação;
- Os usuários de implante coclear apresentaram escores de dificuldade mais altos no componente da seletividade (ruído) do que no componente da deficiência auditiva (silêncio) do questionário SIHI;
- As dificuldades dos usuários de implante coclear foram raras nas situações de silêncio e ocasionais nas situações com ruído competitivo no dia-a-dia;
- Não houve diferenças significativas nos escores do questionário SIHI com os implantes cocleares Nucleus 22 (estratégia SPEAK), Nucleus 24 (estratégia ACE), Combi 40, Combi 40+ e Clarion (estratégia CIS).

REFERÊNCIAS BIBLIOGRÁFICAS

1. Zhao F, Stephens SD, Sim SW, Meredith R. The use of qualitative questionnaires in patients having and being considered for cochlear implants. Clin Otolaryngol 1997; 22(5):254-9.
2. Kiefer J, Muller J, Pfenningdorf T, Schon F, Helms J, von Ilberg C et al. Speech understanding in quiet and in noise with the CIS speech coding strategy (Med-El Combi 40) compared to the multifrequency and spectral peak strategies. ORL J Otorhinolaryngol Relat Spec 1996; 58(3):127-35.
3. Hamacher V, Doering WH, Mauer G, Fleischmann H, Hennecke J. Evaluation of noise reduction systems for cochlear implant users in different acoustic environment. Am J Otol 1997; 186 Suppl:46-9.
4. Schum DJ. Speech understanding in background noise. In: Valente M. Hearing aids: standards, options, and limitations. New York: Thieme; 1996. p.56-106.
5. Margo V, Schweitzer C, Feinman G. Comparisons of Spectra 22 performance in noise with and without and additional noise reduction preprocessor. Semin Hear 1997; 18:405-15.
6. Ma RL, Liu SY, Huang WH, Huang TS. Evaluation of coding strategies under noisy environment by stimulating electrodes. Adv Otorhinolaryngol 1997; 52:100-2.
7. Wilson BS. Cochlear implant technology. In: Niparko JK, Kirk KL, Mellon NK, Robbins AM, Tucci DL, Wilson BS, editors. Cochlear implants: principles and practices. Philadelphia: Lippincott Williams, Wilkins; 2000. p.109-27.
8. Iglehart F. Speech perception by students with cochlear implants using sound-field systems in classrooms. Am J Audiol 2004; 13(1):62-72.
9. Chung TY, Incerti P, Hill M. Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear 2004; 25(1):9-21.
10. Valente SLOL. Elaboração de listas de sentenças construídas na língua portuguesa [Dissertação]. São Paulo: Pontifícia Universidade Católica de São Paulo; 1998.
11. Wiedel H von, Tegtmeyer W. How to seize and rate a social hearing handicap caused by hearing disorders. Laryngol Rhino Otol 1979; 58:945-9.
12. Wedel H von. Analysis and evaluation of the social hearing disability among persons by means of the “Social-Hearing-Handicap-index” (SHHI). Bull Audiophonol 1983; 16:207-18.

13. Loizou PC, Graham S, Dickirs J, Dorman M, Poroy O. Comparing the performance of the SPEAK strategy (Spectra 22) and the CIS strategy (Med-El) in quiet and in noise. In: Proceedings Conference on Implantable Auditory Prostheses; 1997; Asilomar, Estados Unidos. Disponível em http://giles.ualr.edu/asd/cimplants/cpubs.htm. Acessado em 14 de abril de 1999.

14. Frederigue NB; Bevilacqua MC. Otimização da percepção da fala em deficientes auditivos usuários do sistema de implante coclear multicanal. Rev Bras Oto 2003; 69(2):227-33.

15. Arndt P, Staller S, Arcaroli J, Hines A, Ebinger K. Whithin-subject comparison of advanced coding strategies in the Nucleus 24 cochlear implant. s.l. Cochlear Corporation; 1999.

16. Battmer RD, Feldmeier, Kohlenberg A, Lenarz T. Performance of the new Clarion speech processor 1.2 in quiet and in noise. Am J Otol 1997; 18 (6 Suppl):144-6.

17. Battmer RD, Reid JM, Lenarz T. Performance in quiet and in noise with the Nucleus Spectra 22 and the Clarion CIS/CA cochlear implant devices. Scand Audiol 1997; 26(4):240-6.

18. Hochmair-Desoyer I, Schulz E, Moser L, Schmidt M. the HSM sentence test as a tool for evaluating the speech understanding in noise of cochlear implant users. Am J Otol 1997; 186 Suppl:85.

19. Nascimento LT. Avaliação da percepção da fala com ruído competitivo em adultos com implante coclear [Dissertaçao]. Bauru: Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo; 2002.

20. Van Dijk JE, van Olphen AF, Langereis MC, Mens LHM, Brkx JPL, Smoorenburg GF. Predictors of cochlear implant performance. Audiology 1999; 38(2):109-16.

21. Blamey P, Arndt P, Bergeron F, Bredberg G, Brimacombe J, Facer G et al. Factors affecting auditory performance of postlinguistically deaf adults using cochlear implants. Audiol Neurootol 1996; 1(5):293-306.

22. Tyler RS, Summerfield AQ. Cochlear implantation: relationship with research on auditory deprivation and acclimatization. Ear Hear 1996; 17(3 Suppl):38-50.

23. Bevilacqua MC, Moret ALM. Reabilitação e implante coclear. In: Lopes Filho O. Tratado de fonocuidiologia. São Paulo: Roc; 1997. p. 401-14.

24. Wilson BS, Lawson DT, Muller JM, Tyler RS, Kiefer J. Cochlear implants: some likely next steps. Ann Rev Biomed Eng 2005; 5:207-49.

25. Tyler RS, Dunn CC, Witt SA, Preece JP. Update on bilateral cochlear implantation. Curr Opin Otolaryngol Head Neck Surg 2003; 11(5):388-93.