Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Anaphylaxis rates associated with COVID-19 vaccines are comparable to those of other vaccines

Helena C. Maltezou, Cleo Anastassopoulou, Sophia Hatziantoniou, Gregory A. Poland, Athanasios Tsakris

Directorate of Research, Studies and Documentation, National Public Health Organization, Athens, Greece

Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece

Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece

Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States

Abstract

We retrieved data on 8940 anaphylaxis cases post-COVID-19 vaccination from the US Vaccine Adverse Event Reporting System and the European EudraVigilance from week 52/2020 through week 31/2021 and compared them with those of other vaccines. Overall, 837,830,000 COVID-19 vaccine doses were delivered in the US and Europe during the study period, for which the vaccine name was known. The mean anaphylaxis rate was estimated at 10.67 cases per 106 doses of COVID-19 vaccines (range: 7.99-19.39 cases per 106 doses depending on the vaccine). COVID-19 vaccines ranked fifth in reported anaphylaxis rates, behind rabies, tick-borne encephalitis, measles-mumps-rubella-varicella, and human papillomavirus vaccines (70.77, 20, 19.8, and 13.65 cases per 106 vaccine doses, respectively). COVID-19 vaccines are within the range of anaphylaxis rates reported across several common vaccines in these two passive reporting systems. These data should be communicated to reassure the general population about the safety profile of COVID-19 vaccines.

1. Introduction

Almost one year after the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the declaration of the coronavirus disease 2019 (COVID-19) pandemic, the first COVID-19 vaccines were developed and granted emergency use authorization [1]. Currently there are several COVID-19 vaccines in use globally as the key countermeasure to reduce the health, societal, and economic consequences of the pandemic and accelerate return to normality [2]. Nevertheless, in several countries the expected benefits of COVID-19 vaccines were hampered by vaccine hesitancy, some of which were driven by safety concerns and mistrust of authorities on the basis of the rapid deployment and approval of COVID-19 vaccines [2,3], the newness of the vaccine platforms, and other issues. Adverse events including anaphylaxis were reported post-COVID-19 vaccination, presumably due to the polyethylene glycol component of the novel mRNA vaccines, and received significant attention in social media [4,5]. However, adverse events following vaccination with commonly administered vaccines are not infrequent and most cases are not serious. Conversely, serious, life-threatening anaphylaxis cases and associated fatal outcomes are extremely rare post-vaccination [6]. Herein, we estimated the anaphylaxis rates following COVID-19 vaccination, as reported to EudraVigilance and the Vaccine Adverse Event Reporting System (VAERS) [7,8], and we compare them with those of other commonly administered vaccines.

2. Methods

The United States (US) VAERS is an early warning system co-managed by the US Centers for Disease Control and Prevention (CDC) and Food and Drug Administration (FDA) that records and analyzes possible adverse events post-vaccination [7]. EudraVigilance is the European Medicine Agency system for monitoring and analyzing suspected adverse reactions to medicines, including vaccines [8]. Healthcare professionals, patients, and others can report adverse events to VAERS and EudraVigilance. Both systems are passive reporting systems, and are therefore subject to misreporting biases. However, reported adverse events are subject to internal evaluation, including detection and merge of duplicated
Reported numbers of anaphylactic reaction and anaphylactic shock cases post COVID-19 vaccination that occurred from week 52/2020 through week 31/2021 were collected for all licensed COVID-19 vaccines from EudraVigilance and VAERS [7,8]. In particular, the following vaccines were included: Spikevax® (Moderna mRNA-1273 vaccine), Comirnaty® (Pfizer-BioNTech mRNA BNT162b2 vaccine), and Janssen® (Johnson & Johnson recombinant viral vector adenovirus vaccine), which are available in the US and Europe, and Vaxzevria® (Oxford/Astra Zeneca ChAdOx1-S vaccine), which is licensed in Europe only. The corresponding total numbers of administered COVID-19 vaccine doses as of August 6 or 7, 2021 were retrieved from the European Centre for Disease Prevention and Control for Europe and from the CDC for the US [10,11]. These numbers were used as denominators to estimate anaphylaxis rates per 10^6 doses for each vaccine. The mean anaphylaxis rate for these COVID-19 vaccines was calculated by summing all anaphylactic reaction and anaphylactic shock cases post COVID-19 vaccination reported to EudraVigilance and VAERS for all COVID-19 vaccines, and then dividing by the corresponding total number of administered doses [9,10]. We retrieved anaphylaxis rates for other licensed routine and travel vaccines as reported by Sampath et al. and McNeil et al. [6,12] and estimated the mean anaphylaxis rates and their ranges per vaccine. When only ranges of anaphylactic rates of other vaccines were available, we estimated the mean anaphylaxis rate and its standard deviation from the mean. The estimated mean anaphylaxis rate of COVID-19 vaccines was compared to the mean anaphylaxis rates of other vaccines.

Table 1: Anaphylactic reaction and anaphylactic shock cases to licensed COVID-19 vaccines reported in EudraVigilance and VAERS, week 52/2020 through week 31/2021.

COVID-19 vaccines	Administered doses (×10^6)	Anaphylactic reaction cases (N)	Anaphylactic shock cases (N)	Total anaphylaxis cases (N)	Fatal cases	
EudraVigilance³	Spikevax⁵	48.16	856	113	969	3
	Comirnaty⁶	360.19	4259	581	4840	28
	Vaxzevria⁷	67.72	1118	195	1313	10
	Janssen⁸	12.29	79	27	106	2
Subtotal 1		488.36	6312	916	7228	43
VAERS⁴	Spikevax⁵	139.97	579	67	646	4
	Comirnaty⁶	195.90	895	70	965	5
	Janssen⁸	13.60	87	14	101	0
Subtotal 2		349.47	1561	151	1712	9
Total		837.83	7873	1067	8940	52
Rates per 10^6 doses)		9.39	1.27	1.07	0.06	

COVID-19: coronavirus disease 2019; VAERS: Vaccine Adverse Event Reporting System.

1. Numbers of doses per COVID-19 vaccine were retrieved from [7,8].
2. Anaphylaxis-associated fatal cases.
3. Data (up to August 7, 2021) retrieved from [8].
4. Data (up to August 6, 2021) retrieved from [7].
5. Spikevax®: Moderna mRNA-1273 vaccine
6. Comirnaty®: Pfizer-BioNTech mRNA BNT162b2 vaccine.
7. Vaxzevria®: Oxford/Astra Zeneca ChAdOx1-S vaccine.
8. Janssen®: Johnson & Johnson recombinant viral vector adenovirus vaccine.

3. **Results**

From week 52/2020 through week 31/2021 there were a total of 349,790,000 doses of COVID-19 vaccines administered in the US and 496,518,433 doses of COVID-19 vaccines in Europe [7,8]. Overall, 837,830,000 doses of COVID-19 vaccines have been delivered in the US and Europe during the study period, for which the vaccine name was known [7,8].

4. **Discussion**

Post-licensure surveillance constitutes an essential element of safety procedures to promptly detect serious or life-threatening adverse events associated with vaccines, given that sample size is limited in phase 3 vaccine trials. Adverse event notification is imperative when emergency use authorization of vaccines is granted in the context of major public health threats such as the current pandemic [14]. The generated post-licensure safety data should be promptly communicated to vaccine policy makers and healthcare professionals in order to inform the general population and to increase vaccine confidence.

We studied post-COVID-19 vaccination anaphylaxis cases reported to VAERS and EudraVigilance from week 52/2020 through week 31/2021 and estimated the mean anaphylaxis rates of several routine or travel vaccines (Fig. 1) but within the range of mean anaphylaxis rates of most commonly administered vaccines (1 to 10.67 per 10^6 vaccine doses).
weeks 31/2021. During the eight-month study period more than 0.8 billion doses of COVID-19 vaccines were delivered in the US and Europe. To the best of our knowledge, no other vaccine has been administered in such large numbers within less than a year. Mass vaccination gave us the opportunity to study the safety profile of COVID-19 vaccines in a short time period, in contrast to other common vaccines introduced in the market under routine licensure procedures.

We estimated a mean anaphylaxis rate of 10.67 cases per 10^6 COVID-19 vaccine doses, which differed by COVID-19 vaccine. This finding indicates that anaphylaxis is a rare adverse event following COVID-19 vaccination. Early studies found as low as 4.2 anaphylactic cases per 10^6 doses of the two authorized for emergency use mRNA COVID-19 vaccines [15], a rate which was two to seven times higher for persons with a prior history of allergies and/or anaphylaxis, respectively [15]. In addition, an interim analysis of population-based safety surveillance data from Vaccine Safety Datalink found an incidence of 4.8 (95% confidence interval, 3.2–6.9) anaphylaxis cases per 10^6 doses of Comirnaty vaccine and 5.15 (95% confidence interval, 3.3–7.6) anaphylaxis cases per 10^6 doses of Spikevax vaccine [16]. Further studies are needed to elucidate the underlying mechanisms of these differences [17,5]. Compared with other routine and travel vaccines, the COVID-19 vaccines ranked fifth regarding post-vaccination anaphylaxis rates [12]. In the International Consensus Document on Allergic Reactions to Vaccines published under the auspices of the World Allergy Organization, American and European allergy and immunology scientific societies, it was reported that anaphylaxis rates for most commonly administered vaccines range from 1 per 10^6 to 10 per 10^6 depending on the vaccine [13]. The estimated mean anaphylaxis rate post-COVID-19 vaccination in the current study was within this range [13], despite the limitation that in a passive reporting system some cases could have been reported more than once and/or may not represent true cause and effect. The increased awareness of healthcare professionals regarding adverse events of COVID-19 vaccines in the context of emergency use may partially account for the increased anaphylaxis rates compared with other commonly used vaccines [12], as well as the likelihood that highly allergic patient or those with prior anaphylaxis likely avoided receipt of a COVID-19 vaccine. However, even severe anaphylaxis can be promptly mitigated with appropriate preparation and medication, while most patients with a self-reported history of suspected drug or vaccine allergies can safely get vaccinated following careful risk-assessment, stratification, and in some cases desensitization [5,18]. It is important to establish background rates for adverse events to serve as reference in the assessment of COVID-19 vaccine safety [19]. Overall, there were 0.06 fatal anaphylaxis cases per 10^6 COVID-19 vaccine doses, indicating an extremely rare event.

A clear strength of the current study is the use of data retrieved from the two largest reporting systems on vaccine-associated adverse events globally, namely VAERS and EudraVigilance. Nevertheless, both systems rely on passive reporting. While passive reporting systems can rapidly detect a potential safety problem and specifically rare adverse events, there is the limitation of potential reporting bias which could under- or over-estimate true anaphylaxis rates under the attention of mass media. However, in our opinion this was not the case the first eight months of COVID-19 vaccine administration and before licensure was granted by FDA and other regulatory authorities. Vaccine policy makers and healthcare professionals were highly sensitized about any possible COVID-19 vaccine-associated adverse event in a period of enhanced COVID-19 vaccine safety scrutiny, given the mass vaccination strategies implemented around the world. Furthermore, the sensitivity of VAERS for capturing anaphylaxis following vaccination is comparable to previous estimates for detecting important adverse events following vaccination [20]. Another limitation is the lack of a true denominator of vaccine doses administered in both reporting systems. Finally, passive reporting systems data generally cannot determine cause and effect. Another limitation is the fact that we compared to other vaccines that might be given for the most part to children while COVID-19 vaccines were given.
mostly to adults. The fact that we estimated anaphylaxis rates based on data on COVID-19 vaccines retrieved from VAERS and EudraVigilance and we compared them with data on other vaccines retrieved from two recent reviews is also a possible limitation. In addition, there might be differences between the VAERS and EudraVigilance. Finally, AstraZeneca vaccine is not used in the US.

In conclusion, we studied a large number of anaphylaxis cases post-COVID-19 vaccination retrieved from the largest adverse events reporting systems of VAERS and EudraVigilance. We found that during the first eight months of emergency use authorization, COVID-19 vaccines had an anaphylaxis safety profile which was within the range of other commonly administered vaccines. The generated data should be communicated to healthcare professionals in order to reassure the general population about the safety profile of COVID-19 vaccines as a key public health measure to contain the COVID-19 pandemic and accelerate the return to normality.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Lythgoe MP, Middleton P. Comparison of COVID-19 vaccine approvals at the US Food and Drug Administration, European Medicines Agency, and Health Canada. JAMA Network Open 2021;4(6):e2114531. https://doi.org/10.1001/jamanetworkopen.2021.14531.

[2] Puthumana J, Egilman AC, Zhang AD, Schwartz JL, Ross JS. Speed, evidence, and safety characteristics of vaccine approvals by the US Food and Drug Administration. JAMA Intern Med 2021;181(4):559. https://doi.org/10.1001/jamainternmed.2020.2472.

[3] Joshi A, Kaur M, Kaur R, Grover A, Nash D, El-Mohandes A. Predictors of COVID-19 vaccine acceptance, intention, and hesitancy: a scoping review. Front Pubic Health 2021;9. https://doi.org/10.3389/fpubh.2021.6981110.5389.

[4] Hatziantoniou S, Maltezou HC, Tskris A, Poland GA, Anastassopoulou C. Anaphylactic reactions to mRNA COVID-19 vaccines: α call for further study. Vaccine 2021;39:2605–7.

[5] Warren CM, Snow TT, Lee AS, Shah MM, Heider A, Blomkalns A, et al. Assessment of allergic and anaphylactics reactions to mRNA COVID-19 vaccines with confirmatory testing in a US regional Health Center. JAMA Network Open 2021;4:e2125524.

[6] McNeil MM, DeStefano F. Vaccine-associated hypersensitivity. J Allergy Clin Immunol 2018;141(2):463–72.

[7] Vaccine Adverse Event Reporting System. Available at: https://vaers.hhs.gov/ [accessed 20 September 2021].

[8] European Medicines Agency. EudraVigilance system overview. Available at: https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance/eudravigilance-system-overview [accessed 20 September 2021].

[9] Kreimeyer K, Menschik D, Winiecki S, Paul W, Barash F, Woo EJ, et al. Probabilistic record linkage of structured and unstructured data to identify duplicate cases in spontaneous adverse event reporting systems. Drug Saf 2017;40:571–82.

[10] European Centre for Disease Prevention and Control. COVID-19 vaccine tracker. Available at: https://vaccinetracker.ecdc.europa.eu [accessed 20 September 2021].

[11] Our World Data. COVID-19 vaccine doses administered. Available at: https://ourworldindata.org/ [accessed 20 September 2021].

[12] Sampath V, Rabinowitz G, Shah M, Jain S, Diamant Z, Jesenak M, et al. Vaccines and allergic reactions: the past, the current COVID-19 pandemic, and future perspectives. Allergy 2021;76(6):1640–60.

[13] Dreskin SC, Halsey NA, Kelso JM, Wood RA, Hummell DS, Edwards KM, et al. International Consensus (ICON): allergic reactions to vaccines. World Allergy Organ J 2016;9:32. https://doi.org/10.1186/s40411-016-0170-5.

[14] Halsey NA, Griffioen M, Dreskin SC, Dekker CL, Wood R, Sharma D, et al. Immediate hypersensitivity reactions following monovalent 2009 pandemic influenza A (H1N1) vaccines: reports to VAERS. Vaccine 2013;31(51):6107–12.

[15] Desai AP, Desai AP, Loomis GJ. Relationship between pre-existing allergies and anaphylactic reactions post mRNA COVID-19 vaccine administration. Vaccine 2021;39(32):4407–9.

[16] Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA 2021;326(14):1390. https://doi.org/10.1001/jama.2021.15077.

[17] Cabanillas B, Novak N. Allergy to COVID-19 vaccines: a current update. Allergol Int 2021;70(3):313–8.

[18] Paolotti G, Racca F, Piona A, Melone G, Mergo M, Puggioni F, et al. Successful SARS-CoV-2 vaccine allergy risk-management: the experience of a large Italian university hospital. World Allergy Organ J 2021;14(5):100541. https://doi.org/10.1016/j.waojou.2021.100541.

[19] Black SB, Law B, Chen RT, Dekker CL, Sturkenboom M, Huang W-T, et al. The critical role of background rates of possible adverse events in the assessment of COVID-19 vaccine safety. Vaccine 2021;39(19):2712–8.

[20] Miller ER, McNeil MM, Moro PL, Duffy J, Su JR. The reporting sensitivity of the Vaccine Adverse Event Reporting System (VAERS) for anaphylaxis and for Guillain-Barré syndrome. Vaccine 2020;38:7458–63.