Sickle Cell Disease and Infections in High- and Low-Income Countries

Giovanna Cannas, Salima Merazga and Emilie Virot.

Hospices Civils de Lyon, Hôpital Edouard Herriot, Médecine Interne, Centre de Référence Constitutif: Syndromes Drépanocytaires Majeurs, Thalassémies at Autres Pathologies Rares du Globule Rouge et de l’Erythropoïèse; Lyon, France.

Competing interests: The authors have declared that no competing interests exist.

Abstract. Infections, especially pneumococcal septicemia, meningitis, and Salmonella osteomyelitis, are a major cause of morbidity and mortality in patients with sickle cell disease (SCD). SCD increased susceptibility to infection, while infection leads to SCD-specific pathophysiological changes. The risk of infectious complications is highest in children with a palpable spleen before six months of age. Functional splenectomy, the results of repeated splenic infarctions, appears to be a severe host-defense defect. Infection is the leading cause of death, particularly in less developed countries. Defective host-defense mechanisms enhance the risk of pneumococcal complications. Susceptibility to Salmonella infections can be explained at least in part by a similar mechanism. In high-income countries, the efficacy of the pneumococcal vaccine has been demonstrated in this disease. A decreased in infection incidence has been noted in SCD patients treated prophylactically with daily oral penicillin. Studies in low-income countries suggest the involvement of a different spectrum of etiological agents.

Keywords: Sickle cell disease; Infections; Prognosis; Prophylaxis; Socio-economics.

Citation: Cannas G., Merazga S., Virot E. Sickle cell disease and infections in high- and low-income countries. Mediterr J Hematol Infect Dis 2019, 11(1): e2019042, DOI: http://dx.doi.org/10.4084/MJHID.2019.042

Published: July 01, 2019 Received: March 4, 2019 Accepted: May 21, 2019

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Correspondence to: Giovanna Cannas, M.D. Hospices Civils de Lyon; Hôpital Edouard Herriot; Centre de Référence Constitutif: Syndromes Drépanocytaires Majeurs, Thalassémies et Autres Pathologies Rares du Globule Rouge et de l’Erythropoïèse; Médecine Interne, Pav.O; 5, place d’Arsonval 69437 Lyon cedex 03, France. Tel.: +33 (0)472117413, Fax: +33 (0)472117308. E-mail: giovanna.cannas@chu-lyon.fr

Introduction. Sickle cell disease (SCD) represents an increasing global health problem. It corresponds to an autosomal recessive disorder in which structurally abnormal hemoglobin (HbS) leads to chronic hemolytic anemia and a variety of severe clinical manifestations. This disorder is caused by a point mutation. A single DNA base change leads to substitution of valine for glutamic acid at the 6th position on beta globin chain. SCD is one of the most common monogenic disorder. SCD is mainly widespread throughout most of the African continent, the Middle East and India, and in localized areas in Mediterranean countries because of a selective advantage conferred by this disorder in protecting against Plasmodium falciparum malaria infection in heterozygotes. Because population movements, the distribution of SCD has spread far beyond non-endemic regions with an increase in the prevalence and genetic heterogeneity of hemoglobinopathies across the world. The increase of inherited hemoglobin disorders will represent a severe global health burden for the future, both in high-income and lower-income countries. In high-income countries, this increase is in part related to significant gains in life expectancy with a significant decrease in childhood mortality because of better newborn screening, antibiotic prophylaxis, and hydroxyurea therapy. Clinical outcomes have gradually improved over the years, mostly as a result of developments in supportive care and treatment with hydroxyurea, for
many years the sole approved pharmacologic therapy for SCD. Hydroxyurea has multiple beneficial effects for patients with SCD. Hydroxyurea causes an increase in HbF, which interferes with the polymerization of HbS and reduces the frequency and severity of the painful crisis. Hydroxyurea also lowers the leucocyte and platelet counts and improves blood rheology. Vaso-occlusion typically causes acute complications, including ischemic damage of tissues. With growing evidence of the safety and efficacy of hydroxyurea, its use has increased in high- and lower-income countries, but it continues to be underused. Alongside hydroxyurea, novel therapeutic agents inducing HbF are currently under investigations. The survival of children with SCD approaches that of unaffected children. However, this does not always apply to patients in lower-income countries because disease management remains costly, with full access to care only for the most privileged. Life expectancy among African people with SCD is probably less than 20 years. Although over the last decade childhood mortality has been reduced, mortality among children younger than five years remains as high as 90%. Increased early mortality in Africa among children with SCD is primarily due to increased risk of infection. The lack of basic health care infrastructures often limits in most of these countries the development of management and prevention of the disease. Furthermore, a much more severe course of the disease is usually observed in patients living in low-income countries compared to genetically similar patients living in the northern hemisphere because of environmental factors. This short review summarizes published data regarding infections in SCD, including interactions with environmental factors, and their specificities according to patients living in high- or low-income countries in order to improve patients’ care and to guide future areas for research.

Environmental Determinants SCD and Infections.

Non-genetic factors have been shown to influence the outcome of SCD. Potential relevant environmental factors include the climate and air quality, housing and socio-economic status, physical activities, each of which being able to impact on SCD outcome. However, study results are confusing and sometimes conflicting because of the complex relationships between environmental factors and potential infections. The rate of HbS polymerization is dependent on hypoxia, pH, temperature, and patient’s hydration, which could be altered by environmental factors. However, inconsistencies among studies, especially according to high- or lower-income countries, may reflect differences in housing and social factors. Cold weather can cause increased infections and peripheral vasoconstriction leading to higher deoxygenation. Increased blood viscosity and cold diuresis could participate in increased sickle pain in cold winter months. However, if studies conducted in both high-income countries and lower-income countries reported a relationship between cold weather and acute pain, this was not confirmed by others. Conversely, fresh accommodation may be important in tropical countries by protecting patients from the effects of extreme heat. Similarly, higher wind speeds have been associated with increased hospital admissions for pain. Both high and low humidity have also been associated with increased hospital admissions for pain. Increased episodes of pain were reported during the rainy season under tropical climates, but not in Western countries with rainy climates. Air pollution has also been reported as a leading cause of illness in SCD. There is also evidence of a relationship between tobacco smoke and SCD through infections, inflammation, oxidative stress and endothelial dysfunction. Socio-economic factors influence the course of SCD. Increased poverty is associated with a worse outcome in which infections may play significant part. Deficiencies in micronutrients could affect immune function and contribute to susceptibility to infection. Suppressed cell-mediated immunity with zinc deficiency and decreased nucleoside phosphorylase activity has been described in SCD. Giving supplementation has been shown to increase levels of IL-2, a cytokine needed for expansion and maintenance of T cells, and reduce the incidence of bacterial infections.

Impaired Splenic Function in SCD and Infections.

The spleen performs several essential host defense functions and plays a key role in the increased susceptibility to certain bacterial infections in SCD. As a phagocytic filter, it can nonspecifically survey and present intravascular antigen to T and B cells that reside in or transit through this lymphoid organ. The spleen is also an important site of IgM production and memory B-cell differentiation during primary humoral responses. It is responsible for generating antibody responses to polysaccharide antigens. Increased susceptibility to infections is observed in individuals undergoing splenectomy and in those with nonfunctioning spleens. In these situations, slow flow is created, enabling splenic macrophages to remove defective red blood cells and bacteria and to present antigen to lymphocytes. A deficient opsonization due to a defect in the alternative pathway of complement has been demonstrated. Impaired antibody formation may be the central factor responsible for the observed serum opsonizing defects. While macrophages directly recognize opsonized bacteria, poorly opsonized bacteria are only cleared effectively by the spleen. Such pathogens include encapsulated bacteria. The hyposplenic state observed in individuals with SCD is
initially reversible, then with repeated episodes of sickling and ischemic damage spleen shrinks to a small remnant and the individual is rendered asplenic.

Interactions Between SCD and Infections. SCD increased susceptibility to infection, while infection leads to SCD-specific pathophysiological changes (Figure 1). SCD can create an environment supporting infections. The vast majority of SCD patients live in low-income countries with high prevalence and transmission rates of infections. The potential mechanisms leading red cell sickling and vaso-occlusive crisis in SCD patients with infections have been recently reviewed focusing on the challenging issue of infectious diseases given the background immunodeficiency associated with SCD and the high prevalence of infections in underdeveloped countries. Areas of necrotic bone act as foci for infection. Salmonella is the most common agent of cases of acute osteomyelitis in SCD (42% to 57%), followed by *Staphylococcus aureus*, and then Gram-negative enteric bacteria. Most of Salmonella infections were *Salmonella typhimurium*. Infarctions of bowel secondary to microvascular occlusion favor gut bacteria to enter the bloodstream. *Edwardsiella tarda* is an enterobacterium that has been reported with increased incidence in SCD. SCD also carries an increased risk of severe respiratory infections involving particularly *Mycoplasma* and *Chlamydia*. Reversely, infection is one of the most common factors susceptible to induce crisis in SCD. Infection can lead to a range of complications in SCD. During infections, changes occurring at a cellular level predispose to crises. Circulating leukocytes and the levels of inflammatory cytokines increase. Adhesion molecule expressions increase on both the vascular endothelium and leukocytes. Leukocyte adhesion may be the initiating event in vaso-occlusive episodes, as microvascular occlusion occurs in post-capillary venules. Cytotoxic proteins are produced and generate reactive O₂ radicals leading to oxidative damage. The sickling process is initially reversible when HbS is re-oxygenated, but dehydration increases HbS concentration leading to extensive polymerization and irreversible membrane damage. In addition, infections increase the risk of sickling by non-specific effects through fever, anorexia, nausea, vomiting, and diarrhea, which all contribute to dehydration.

Infections with Specific Pathogens in SCD.

Bacteria. Local infections can become systemic. High fever is a medical emergency in patients with SCD.
since it can be the first sign of bacteremia, and a broad-spectrum parenteral antibiotic should be given without delay after obtaining samples for blood cultures. A wide variety of organisms have been reported to cause overwhelming sepsis, but the pneumococcus accounts for 50-70% of such infections, with the bulk of the remainder being accounted for Neisseria meningitidis, Haemophilus influenza, and to a lesser extent Escherichia coli. The typical presentation is that of septic shock, disseminated intravascular coagulopathy, and respiratory distress syndrome occurring in the absence of a primary site of infection.\(^39\) Mortality can reach 35% to 50% from septicemia, and 10% in meningitis with a risk confined almost exclusively to young children. Additional immune deficits, including complement system deficit and reduced leukocyte function, are present and also predispose to bacterial infections.\(^40-42\) These infections include Escherichia coli urinary tract infections, Mycoplasma pneumonia respiratory infections, dental infections, and cholecystitis caused by anaerobes. Polymorphisms of genes involved in the immune response also contribute to increased susceptibility to infection in SCD. Particular HLA II subtypes, polymorphisms of the FcR receptor, mannose-binding lectin, insulin-like growth factor 1 receptor, genes from the TGFβ/ bone morphogenetic protein pathway have been involved in an increased risk of bacteremia.\(^43\)

Pneumococcal infections in patients with splenectomy follow a rapidly fatal clinical course. Disseminated intravascular coagulopathy may occur in these patients, and organisms can be demonstrated in peripheral blood smears. The first presentation of the disease may be sudden death due to overwhelming sepsis. The pneumococcus is the most common cause of bacteremia and meningitis in children with SCD. The incidence of invasive pneumococcal disease is 300-500 times higher in SCD than in the general population because of the loss of splenic filter function due to infarction. Prophylactic oral penicillin reduced the risk of invasive pneumococcal disease by 84% in children aged less than three years.\(^44\) Fatal pneumococcal sepsis is now therefore rare in children with SCD in developed countries.\(^45\) However, vigilance is still required because of the recent emergence of non-vaccine serotypes of Streptococcus pneumonia.\(^46\) Acute chest syndrome is the second most common cause of hospital admission in SCD and is responsible for 25% of deaths, particularly in early childhood.\(^47\) Infection is one of the triggers of acute chest syndrome. Evidence of infection was found in one-third of cases, with a demonstration of isolated pathogens or sometimes found in combination.\(^38\) Acute chest syndrome is common in young children in whom it is associated with viral respiratory infections. Acute chest syndrome could involve Chlamydia pneumoniae (14%), Mycoplasma pneumoniae (9%), and viruses in all patients with SCD regardless of age.

SCD predisposes to osteomyelitis, which results from secondary infection of the ischemic or avascular bone. It is often challenging to differentiate thrombotic marrow crisis from osteomyelitis in patients with SCD because they produce similar findings on radiographs, scans, and magnetic resonance imaging. Clinical features are mainly a single focus of pain, fever, and bacteremia.\(^48\) However, children with SCD may have multiple sites of bone infection simultaneously. Early cultures of blood and stool offer the only clue to the correct diagnosis. There is no standardized approach to antibiotic therapy, and treatment is likely to vary from country to country.\(^49\) Presumptive antibiotic therapy should include agents effective against Salmonella.\(^50\) Indeed, the infecting organisms were mainly gram-negative rods. Salmonella species accounted for approximately 80%. Other microorganisms included Staphylococcus aureus and Mycobacterium tuberculosis. Empiric therapy should be directed against Salmonella and Staphylococcus until an organism is identified.

Studies on the etiological agents responsible for bacteremia in patients with SCD in African low-income countries are few. They, however, reveal a different spectrum of organisms than that observed in other parts of the world. In Africa, bacteremia was found in 14% to 32% in children with SCD.\(^51-54\) This was much higher than the incidence observed in high-income countries.\(^55,56\) Reversely, to what is observed in Western countries, pneumococcal infection in Africa does not contribute significantly to the morbidity and mortality of children with SCD because of the involvement of other infections, rendering preventive measures inappropriate.\(^57\) Gram-negative bacteremia constitute more than 60% of all isolates, while the predominant isolates were Klebsiella pneumonia (25%), Staphylococcus aureus (25%), and Salmonella species.\(^51,52,54,58-62\) One given explanation for these discrepancies in terms of patterns of bacterial isolates was the unregulated use of antibiotics (mainly penicillins or penicillin derivatives) before hospital admission in some African countries, which could affect the results of bacterial cultures.\(^51,63\) Increased resistance to commonly used antibiotics has been reported, but treatment with ciprofloxacin and some third-generation cephalosporin is still active.\(^51,64\) Because infections by these agents are not vaccine-preventable, it has been suggested that disparity in terms of vaccinations among low-income and high-income countries may not account for the higher incidence of bacteremia in Africa, but could be explained by differences in terms of patient’s immunity and environment.\(^51,65\) In Africa, patients with SCD were shown to be at increased risk of contracting tuberculosis. They were shown to have significantly lower hematocrit and a higher level of circulating...
sickle cells those patients without tuberculosis.66

Viruses. In SCD, Parvovirus B19 commonly causes a transient aplastic crisis which occurs in 65% to 80% of infections. It specifically infects erythroid progenitor cells resulting in a temporary cessation of erythropoiesis leading to severe anemia.67 Although most children recover within two weeks, most of them require a blood transfusion. The aplastic crisis is uncommon after 15 years old.68 Parvovirus aplastic crisis does not recur due to long-lasting humoral immunity. However, infections are observed among other household members in about 50% of cases because of the highly contagious features of the virus.69

HIV prevalence in SCD patients varies between 0% and 11.5% in published studies.70 Few data are available regarding the impact of coexistent HIV infection and SCD. However, this represents a challenge, particularly in Africa, where both conditions are highest, and resources are low. Both diseases have a common risk for stroke, splenic dysfunction, avascular necrosis, and pulmonary arterial hypertension. HIV infection increases the risk of sepsis and bacterial infection, mainly of pneumococcal infection.71 However, both diseases seem to interact closely. HIV infection tends to decrease the risk of vaso-occlusive crisis while SCD seems to improve the frequency of HIV long-term non-progressors.72 Interactions of antiretroviral therapy with SCD have been demonstrated. A better understanding of the interactions between these diseases would lead to better treatment approaches, especially in regions of co-prevalence.

At least 10% of adult sickle cell patients are hepatitis C-virus (HCV) positive and often have liver dysfunction.73 Although the incidence of transfusion-acquired infection has decreased; the risk is still present. The HCV antibody positivity is directly related to the number of transfusions given.74 Iron overload following blood transfusions is additive to the liver damage caused by HCV infection. The standard of care for patients with chronic HCV infection combines interferon and ribavirin. Ribavirin (a guanosine nucleoside analog used to treat HCV) can also increase hemolysis in patients with SCD. In order to decrease the severity of ribavirin-related hemolysis, it has been suggested to pre-treat HCV patients with hydroxyurea to increase HbF.75 Transfusions may not be the primary route of HCV transmission in lower-income countries.76 Practices, such as circumcision and medicinal and other scarifications, may be additional risk factors.

Parasites. The tropical environment within which most of the SCD patients live has a very high prevalence of parasitic diseases. Malaria is a significant pathogen in SCD. It contributes to excess mortality among patients with SCD in Africa.77,78 Immunological deficiencies due to SCD render children with SCD particularly vulnerable to malaria. Although homozygous SCD is known to confer higher resistance to malaria, the coexistence of SCD and malaria is associated with increased morbidity and mortality. Malaria is the most common cause of crisis via a massive release of inflammatory cytokines. The parasite is both erythrocytotropic and erythrocytopathic. Infected red cells stick as a result of metabolic changes induced by the replicating parasites with cells becoming extremely adherent to the vascular endothelium promoting stasis and vaso-occlusive crisis.79 In Africa, the tropical rainy season has been shown to be associated with increased frequency of vaso-occlusive crisis in relationship with increased stagnant surface waters ideal for reproduction and survival of mosquito vectors for the malaria parasites.79 Splenectomized individuals with Plasmodium falciparum have reduced clearance of parasitized red blood cells and can cause dyserthropoiesis and chronic hemolysis leading to folate-deficiency anemia.80 Long-term prophylaxis has been shown to lower the incidence of crisis and to reduce mortality.81

A higher prevalence of protozoan and helminthic intestinal parasites in SCD patients has been reported as a result of their weak immune response to infection.82 A study from Nigeria showed that anemia in SCD patients might be exacerbated by intestinal parasites, and suggested that these patients should have regular stool examinations.83 Infections were predominantly due to soil-transmitted helminths and protozoans, strongly associated with poverty and poor hygiene. In addition, intestinal parasites may cause iron deficiency, which could favor cell aggregation.

Pneumonitis-induced hypoxia and increased eosinophil counts due to tropical parasitic diseases may increase cell adhesion to vascular endothelium predisposing to red cell sickling and vaso-occlusive crisis.79 This condition includes Loffler's syndrome in ascariasis and ancylostomiasis, schistosomiasis, filariasis, and larva migrans in toxocariasis.

Urinary schistosomiasis is a major cause of chronic illness endemic in Africa in both rural and urban communities with significant socioeconomic and public health burden. A Nigerian study showed that urinary schistosomiasis adversely affected the severity and prognosis of SCD.84 SCD patients with schistosomiasis had lower hematocrit and higher reticulocyte count due to hematuria. Higher reticulocyte, leucocyte, and thrombocyte counts increase viscosity and account for the higher frequency of vaso-occlusive crisis. Schistosomiasis was also associated with a higher prevalence of secondary urinary tract infections including Salmonella species, Escherichia coli, Klebsiella and Staphylococcus species.
Prophylactic Therapy. Screening programs have been established in high-income countries, and begin to be developed in lower-income countries with a very high prevalence of SCD. However, even if diagnostic tests can be quickly introduced in these lower-income countries, preventive interventions not always follow, 85 including penicillin prophylaxis in children 84 and pneumococcal vaccine.86 Such interventions, currently used in high-income countries, could save millions of lives if implemented in lower-income countries.

Since the end of the 80s, prophylactic oral penicillin V has been shown to reduce the risk of invasive pneumococcal disease by 84% in children aged less than three years, with minimal adverse reactions.44,87 This simple intervention was rapidly recommended with a beginning of administration at 3 months in children with homozygous state for βS (HbSS) and variants sickle-β0-thalassemia (HbSβ0) and doses of 62.5 mg twice daily until one year, 125 mg twice daily between one and 5 years, and 250 mg twice daily after 5 years old.88,89 Erythromycin is a suitable alternative in case of penicillin allergy. For children with heterozygous state sickle-hemoglobin C disease (HbSC) and variants sickle-β+ thalassemia (HbSB+), hyposplenism occurring later, practice varies among centers. However, penicillin prophylaxis is usually considered starting at age 4-5 years or for a history of pneumococcal sepsis or surgical splenectomy.90 The duration of penicillin prophylaxis remains controversial. The absence of significant benefit has been suggested to stop prophylaxis after five years,89 long-term administration being a potential source of resistance development.91 However, guidelines for asplenic patients recommend that penicillin prophylaxis be continued lifelong.92

Another major key in the prevention of infection is vaccination. Early studies with vaccination against pneumococcal bacteria suggested a 50% reduction of invasive pneumococcal disease.93 The current vaccines should protect against 75% of infections, with another 14% prevented via cross-protection. For all forms of SCD, the standard vaccine series of childhood should be considered, including the 13-valent pneumococcal conjugate vaccine. The 23-valent pneumococcal polysaccharide vaccine should also be given at two years (and 5-yearly after that) at least two months after the 13-valent vaccine. Other vaccines are lifesaving in children with SCD. The 4-valent meningococcal conjugate vaccine should be given at two years with re-immunization considered at 5-year intervals. Annual influenza immunization should be offered (Table 1).89 It is expected that Salmonella vaccines may be useful in people with SCD, especially in resource-poor settings.94 In addition, meningitis A and C vaccination and malaria prophylaxis should be recommended for travel to endemic areas.

Table 1. Immunization recommendations for all forms of SCD.

Vaccine	Age
Diptheria/tetanus/pertussis/Haemophilus influenza/polio 13-valent pneumococcal vaccine	2 months
Diptheria/tetanus/pertussis/Haemophilus influenza/polio Meningitis C	3 months
Diptheria/tetanus/pertussis/Haemophilus influenza/polio Meningitis C 13-valent pneumococcal vaccine	4 months
Hepatitis B Haemophilus influenza Meningitis C	12 months
Hepatitis B 13-valent pneumococcal vaccine Measles/mumps/rubella	13 months
Hepatitis B 23-valent pneumococcal vaccine	18 months
23-valent pneumococcal vaccine	2 years
23-valent pneumococcal vaccine	7 years
23-valent pneumococcal vaccine	12 years
23-valent pneumococcal vaccine	17 years
Influenza	Annually from 6 months

Conclusions. Infection is a major determinant of the outcome in patients with SCD. It represents the primary cause of premature deaths among children with SCD in Africa. A substantial proportion of invasive pneumococcal and Haemophilus influenza type B disease could be attributable to SCD.13 The burden of SCD in Africa warrants a strong emphasis on infection prevention, as recently stated by the World Health Organization, which pointed to “the urgent need to develop models of care appropriate to the management of SCD in sub-Saharan Afric”.95 While encapsulated bacterial agents are recognized as the most important microbes associated with severe illness, there is evidence that SCD increases the risk for several
other infections that warrant additional preventive measures. In this setting, better identification of risk factors could have, through the development of appropriate public health policies, an immediate impact in preventing complications in these patient populations. Simple measures such as better hygiene with hand-washing, avoidance of food contamination, nutritional supplementation can reduce infection risk. Although in a lesser extent, infections in high-income countries can also contribute to morbidity and mortality among patients with SCD, especially in children. However, with current multidisciplinary care, almost all children with SCD in developed countries now survive to adulthood. The burden of mortality has now shifted to adults. Early identification of infections and their prompt treatment can avoid severe complications. However, treatment of the most common bacterial infections in SCD is not based on the results of randomized controlled trials but based on consensus guidelines, clinical experience or adapting treatment applied on other diseases, leading to wide variations in treatment among institutions. Primary interventions, including penicillin prophylaxis and vaccinations, have led to substantial improvement in higher-income countries. Recent studies showed a different problematic in non-developed countries with a different spectrum of organisms involved in severe infections, and highlighted the rarity of Streptococcus pneumonia, adding to the debate regarding the need for pneumococcal vaccines in this setting.

References:

1. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet 2010; 376:208-31. https://doi.org/10.1016/S0140-6736(10)61029-X
2. Piel FB, Patil A, Howel RS, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun 2010; 1:104. https://doi.org/10.1038/ncomms1104
PMid:21045822 PMCID:PMC3606623
3. Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med 2017; 376:1561-1573. https://doi.org/10.1056/NEJMra1510865
PMid:28423290
4. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010; 115:4331-4336. https://doi.org/10.1182/blood-2010-01-251348
PMid:20233970 PMCID:PMC2881491
5. Wong TE, Brando AM, Lim W, Lottenberg R. Update on the use of hydroxyurea therapy in sickle cell disease. Blood 2014; 124:3850-3857. https://doi.org/10.1182/blood-2014-08-435768
PMid:25287707 PMCID:PMC4271176
6. Cannas G, Poutrel S, Thomas X. Hydroxy carbamino: from an old drug in malignant hemopathies to a current standard in sickle cell disease. Mediterr J Hematol Infect Dis 2017; 9:e2017015. https://doi.org/10.4084/mjhid.2017.015
PMid:28293403 PMCID:PMC5333733
7. Mulaku M, Opiyo N, Karumabi J, et al. Evidence review of hydroxyurea for the prevention of sickle cell complications in low-income countries. Arch Dis Child 2013; 98:908-914. https://doi.org/10.1136/archdischild-2012-302387
PMid:23395076 PMCID:PMC3818272
8. Matte A, Zorzi F, Mazzi F, et al. New therapeutic options for the treatment of sickle cell disease. Mediterr J Hematol Infect Dis 2019; 11:e2019002. https://doi.org/10.4084/mjhid.2019.002
PMid:30671208 PMCID:PMC6328043
9. Telfer P, Coen P, Chakravorty S, et al. Clinical outcomes in children with sickle cell disease living in England: a neonatal cohort in East London. Haematologica 2007; 92:905-912. https://doi.org/10.3324/haematol.10937
PMid:17666440
10. Kauf TL, Coates TD, Huazhi L, et al. The cost of health care for children and adults with sickle cell disease. Am J Hematol 2009; 84:323-327. https://doi.org/10.1002/ajh.21408
PMid:19358302
11. Makani J, Cox SE, Soka D, et al. Mortality in sickle cell anemia in Africa: a prospective cohort study in Tanzania. PLoS One 2011; 6:e14699.
https://doi.org/10.1371/journal.pone.0014699
PMid:21358818 PMCID:PMC3040170
12. Grosse SD, Odame L, Atrash HK, et al. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am J Prev Med 2011; 41(suppl.4):S398-S405. https://doi.org/10.1016/j.amepre.2011.09.013
PMid:22093646 PMCID:PMC3078126
13. Ramakrishnan M, Moisi JC, Klugman KP, et al. Increased risk of invasive bacterial infections in African people with sickle-cell disease: a systematic review and meta-analysis. Lancet 2010; 10:329-337. https://doi.org/10.1016/S0140-6736(10)60055-4
14. Weatherall MW, Higgs DR, Weiss H, et al. Phenotype/genotype relationships in sickle cell disease: a pilot twin study. Clin Lab Haematol 2005; 27:384-390. https://doi.org/10.1111/j.1365-2257.2005.00731.x
PMid:16307540
15. Tewari S, Brousse V, Piel FB, et al. Environmental determinants of severity in sickle cell disease. Haematologica 2015; 100:1108-1116.
https://doi.org/10.3324/haematol.2014.120090
PMid:26341524 PMCID:PMC4806688
16. Amjad H, Bannerman RM, Judisch JM. Sicking pain and season. BMJ 1974; 2:54. https://doi.org/10.1136/bmj.2.5099.54
PMid:4821045 PMCID:PMC1601274
17. Konotey-Ahulu FI. Sicklelamic human hygrometers. Lancet 1965; 1:i-1003-1005. https://doi.org/10.1016/0140-6736(65)91224-9
18. Smith WR, Coyne P, Smith VS, Mercer R. B Temperature changes, temperature extremes, and their relationship to emergency department visits and hospitalization for sickle cell crisis. Pain Manag Nurs 2003; 4:106-111. https://doi.org/10.1016/S1524-9042(02)54211-9
19. Redwood AM, Williams EM, Desal P, Serjeant GR. Climate and painful crisis of sickle-cell disease in Jamaica. Br Med J 1976; 1:66-68.
https://doi.org/10.1136/bmj.1.6001.66
PMid:1244937 PMCID:PMC1638357
20. Secker RA. Non-seasonality of sickle-cell crisis. Lancet 1973; 2:743.
https://doi.org/10.1016/S1473-3099(10)70055-4
PMid:17606440 PMCID:PMC5133733
21. Slovis CM, Talley JD, Pitts RB. Non relationship of climatologic factors and painful sickle cell anemia crisis. J Chronic Dis 1986; 39:121-126.
https://doi.org/10.1016/0021-9681(86)90068-8
22. Jones S, Duncan ER, Thomas N, et al. Windy weather and low humidity are associated with an increased number of hospital admissions for acute pain and sickle cell disease in an urban environment with a maritime temperature climate. Br J Haematol 2005; 131:530-533.
https://doi.org/10.1111/j.1365-2457.2005.05799.x
PMid:16281945
23. Nolan VG, Zhang Y, Lash T, et al. Association between wind speed and the occurrence of sickle cell acute painful episodes: results of a case- crossover study. Br J Haematol 2008; 143:433-438. https://doi.org/10.1111/j.1365-2457.2008.07354.x
PMid:18729854 PMCID:PMC347894
24. Cohen RT, DeBaun MR, Blinder MA, et al. Smoking is associated with an increased risk of acute chest syndrome and pain among adults with sickle cell disease. Blood 2010; 115:3852-3854. https://doi.org/10.1182/blood-2010-01-265819
PMid:20448818 PMCID:PMC2919007
25. West DC, Romano PS, Azari R, et al. Impact of environmental tobacco smoke on children with sickle cell disease. Arch Pediatr Adolesc Med 2003; 157:1197-1201.
https://doi.org/10.1001/archpedi.157.12.1197
PMid:14662575
26. Fairer MD, Koshy M, Kinney TR. Cooperative study of sickle cell disease: demographic and socioeconomic characteristics of patients and families with sickle cell disease. J Chronic Dis 1985; 38:495-505.
https://doi.org/10.1016/0021-9681(85)90033-5
27. Ballester OF, Pasad AS. Anergy, zinc deficiency and decreased nucleoside phosphorylase activity in patients with sickle cell anemia. Ann Intern Med 1983; 98:180-182.
https://doi.org/10.7326/0003-4819-98-3-180
28. Prasad AS, Back FW, Kaplan J, et al. Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease. Am J Hematol 1999; 61:194-202.
of sickle cell disease. Blood 1994; 84:643-649.
48. Berger E, Saunders N, Wang L, et al. Sickle cell disease in children: differentiating osteomyelitis from vaso-occlusive crisis. Arch Pediatr Adolesc Med 2009; 163:251-255. https://doi.org/10.1001/archpediatrics.2008.545
PMid:19255393
49. Marti-Carvajal AJ, Agreda-Perez LH. Antibiotics for treating osteomyelitis in people with sickle cell disease. Cochrane Database Syst Rev 2016; 11:CD007175. https://doi.org/10.1002/14651858.CD007175.pub4
50. Hand WL, King NL. Serum opsonization of Salmonella in sickle cell anaemia. Am J Med 1978; 64:388-395. https://doi.org/10.1016/0002-9343(78)90217-6
PMid:4144343
51. Adewoye A, Nolan V, Ma Q, et al. Association of polymorphisms of IGF1R and genes in the TGFβ/BMP pathway with bacteraemia in sickle cell disease requiring admission. J Trop Paediatr 2015; 61:346-349. https://doi.org/10.4314/njp.v40i1.6
PMid:26804722 PMCid:PMC4744759
52. Bello N, Kudu ATD, Adetokun AB, et al. Characterization and antimicrobial susceptibility profile of betaeraemia causing pathogens isolated from febrile children with and without sickle cell disease in Kano, Nigeria. Med J Hematol Infect Dis 2018; 10:e2018016. https://doi.org/10.1016/j.mjhid.2018.016
PMid:29531653 PMCid:PMC5841934
53. Yanda ANA, Nansseu JRN, Awa HDM, et al. Burden and spectrum of bacterial infections among sickle cell disease children living in Cameroon. BMC Infect Dis 2017; 17:221. https://doi.org/10.1186/s12879-017-2317-0
PMid:28298206 PMCid:PMC5353947
54. Kataee DP, Kajumula H, Kaddu-Mulindwa DH, et al. Nasopharyngeal carriage rate of Streptococcus pneumonia in Ugandan children with sickle cell disease. BMC Res Notes 2012; 5:28. https://doi.org/10.1186/1756-0509-5-28
PMid:22243524 PMCid:PMC3283489
55. Mava Y, Bello M, Ambe JP, Zailani SB. Antimicrobrial sensitivity pattern of organisms causing urinary tract infection in children with
sickle cell anemia in Maiduguri, Nigeria. J Clin Pract 2012; 15:420-423.
https://doi.org/10.1016/j.jcpr.2013.11.007.104S15
PMid:23235819
65. Athale UH, Chintu C. Clinical analysis of mortality in hospitalized Zambian children with sickle cell anemia. East Afr Med J 1994; 71:388-391.

66. Ahmed SG, Bakar AA, Jolayemi B. Hematological indices of sickle cell anemia patients with pulmonary tuberculosis in northern Nigeria. Mediterr J Hematol Infect Dis 2010; 2:e20100.
https://doi.org/10.4084/mjhid.2010.014
PMid:21415951
PMCid:PMC3033109
67. Smith-Whitley K, Zhao H, Hodinka RL, et al. Epidemiology of human parvovirus B19 in children with sickle cell disease. Blood 2004; 103:422-427.
https://doi.org/10.1182/blood-2003-01-0069
PMid:14525777
68. Serjeant BE, Hambleton IR. Haematological response to parvovirus B19 infection in homozygous sickle cell disease. Lancet 2001; 358:1779-1780.
https://doi.org/10.1016/S0140-6736(01)06007-6
69. Servey JT, Reamy BV, Hodge J. Clinical presentations of parvovirus B19 infection. Am Fam Physician 2007; 75:373-376.
70. Owusu ED, Visser BJ, Nagel IM, et al. The interaction between sickle cell disease and HIV infection: a systematic review. Clin Infect Dis 2015; 60:612-626.
https://doi.org/10.1093/cid/ciu832
71. Owusu ED, Visser BJ, Nagel IM, et al. The interaction between sickle cell disease and HIV infection: a systematic review. Clin Infect Dis 2015; 60:612-626.
https://doi.org/10.1093/cid/ciu832
72. Bagasra O, Steiner RM, Ballas SK, et al. Chronic hepatitis C in patients with sickle cell anemia. A J Gastroenterology 1996; 91:1204-1206.
73. Hasan MF, Marsh F, Posner G. Chronic hepatitis C in patients with sickle cell disease. Clin Infect Dis 1992; 15:327-329.
https://doi.org/10.1093/clinids/15.2.327
PMid:1520766
74. Bagasra O, Steiner RM, Ballas SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell disease. Am J Hematol 1998; 59:199-207.
https://doi.org/10.1002/(SICI)1096-8652(199811)59:3<199::AID-AJH43.0.CO;2-E
75. Hasan MF, Marš M, Posner G. Chronic hepatitis C in patients with sickle cell disease. A J Gastroenterology 1996; 91:1204-1206.
76. Swaim MW, Agarwak S, Rosse W. Successful treatment of hepatitis C in sickle-cell disease. Ann Intern Med 2000; 133:750-751.
https://doi.org/10.1093/ajdhp/133.9.750
77. Godeau B, Bachir D, Schaeffer A, et al. Severe pneumococcal sepsis and meningitis in HIV-infected adults with sickle cell disease. Clin Infect Dis 1992; 15:327-329.
https://doi.org/10.1093/clinids/15.2.327
PMid:1520766
78. Bagasra O, Steiner RM, Ballas SK, et al. Severe pneumococcal sepsis and meningitis in HIV-infected adults with sickle cell disease. Clin Infect Dis 1992; 15:327-329.
https://doi.org/10.1093/clinids/15.2.327
PMid:1520766
79. Hasan MF, Marš M, Posner G. Chronic hepatitis C in patients with sickle cell disease. A J Gastroenterology 1996; 91:1204-1206.
80. Swaim MW, Agarwak S, Rosse W. Successful treatment of hepatitis C in sickle-cell disease. Ann Intern Med 2000; 133:750-751.
https://doi.org/10.1093/ajdhp/133.9.750
78. Bagasra O, Steiner RM, Ballas SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell disease. Am J Hematol 1998; 59:199-207.
https://doi.org/10.1002/(SICI)1096-8652(199811)59:3<199::AID-AJH43.0.CO;2-E
75. Hasan MF, Marš M, Posner G. Chronic hepatitis C in patients with sickle cell disease. A J Gastroenterology 1996; 91:1204-1206.
80. Swaim MW, Agarwak S, Rosse W. Successful treatment of hepatitis C in sickle-cell disease. Ann Intern Med 2000; 133:750-751.
https://doi.org/10.1093/ajdhp/133.9.750
78. Bagasra O, Steiner RM, Ballas SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell disease. Am J Hematol 1998; 59:199-207.
https://doi.org/10.1002/(SICI)1096-8652(199811)59:3<199::AID-AJH43.0.CO;2-E
75. Hasan MF, Marš M, Posner G. Chronic hepatitis C in patients with sickle cell disease. A J Gastroenterology 1996; 91:1204-1206.
80. Swaim MW, Agarwak S, Rosse W. Successful treatment of hepatitis C in sickle-cell disease. Ann Intern Med 2000; 133:750-751.
https://doi.org/10.1093/ajdhp/133.9.750
78. Bagasra O, Steiner RM, Ballas SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell disease. Am J Hematol 1998; 59:199-207.
https://doi.org/10.1002/(SICI)1096-8652(199811)59:3<199::AID-AJH43.0.CO;2-E
75. Hasan MF, Marš M, Posner G. Chronic hepatitis C in patients with sickle cell disease. A J Gastroenterology 1996; 91:1204-1206.
80. Swaim MW, Agarwak S, Rosse W. Successful treatment of hepatitis C in sickle-cell disease. Ann Intern Med 2000; 133:750-751.
https://doi.org/10.1093/ajdhp/133.9.750
78. Bagasra O, Steiner RM, Ballas SK, et al. Viral burden and disease progression in HIV-1-infected patients with sickle cell disease. Am J Hematol 1998; 59:199-207.
https://doi.org/10.1002/(SICI)1096-8652(199811)59:3<199::AID-AJH43.0.CO;2-E
75. Hasan MF, Marš M, Posner G. Chronic hepatitis C in patients with sickle cell disease. A J Gastroenterology 1996; 91:1204-1206.