Towards ‘Verifying’ a Water Treatment System

Jingyi Wang13, Sun Jun1, Yifan Jia14, Shengchao Qin23, Zhiwu Xu3

1 Singapore University of Technology and Design
2 School of Computing, Media and the Arts, Teesside University
3 College of Computer Science and Software Engineering, Shenzhen University
4 TUV-SUD Asia Pacific Pte Ltd, Singapore

Abstract. Modeling and verifying real-world cyber-physical systems is challenging, which is especially so for complex systems where manually modeling is infeasible. In this work, we report our experience on combining model learning and abstraction refinement to analyze a challenging system, i.e., a real-world Secure Water Treatment system (SWaT). Given a set of safety requirements, the objective is to either show that the system is safe with a high probability (so that a system shutdown is rarely triggered due to safety violation) or not. As the system is too complicated to be manually modeled, we apply latest automatic model learning techniques to construct a set of Markov chains through abstraction and refinement, based on two long system execution logs (one for training and the other for testing). For each probabilistic safety property, we either report it does not hold with a certain level of probabilistic confidence, or report that it holds by showing the evidence in the form of an abstract Markov chain. The Markov chains can subsequently be implemented as runtime monitors in SWaT.

1 Introduction

Cyber-physical systems (CPS) are ever more relevant to people’s daily life. Examples include power supply which is controlled by smart grid systems, water supply which is processed from raw water by a water treatment system, and health monitoring systems. CPS often have strict safety and reliability requirements. However, it is often challenging to formally analyze CPS since they exhibit a tight integration of software control and physical processes. Modeling CPS alone is a major obstacle which hinders many system analysis techniques like model checking and model-based testing.

The Secure Water Treatment testbed (SWaT) built at Singapore University of Technology and Design [28] is a scale-down version of an industry water treatment plant in Singapore. The testbed is built to facilitate research on cyber security for CPS, which has the potential to be adopted to Singapore’s water treatment systems. SWaT consists of a modern six-stage process. The process begins by taking in raw water, adding necessary chemicals to it, filtering it via an Ultrafiltration (UF) system, de-chlorinating it using UV lamps, and then feeding it to a Reverse Osmosis (RO) system. A back-wash stage cleans the membranes in UF using the water produced by RO. The cyber portion of SWaT consists of a layered communications network, Programmable Logic Controllers (PLCs), Human Machine Interfaces (HMIs), Supervisory Control and Data
Acquisition (SCADA) workstation, and a Historian. Data from sensors is available to the SCADA system and recorded by the Historian for subsequent analysis. There are 6 PLCs in the system, each of which monitors one stage using a set of sensors embedded in the relevant physical plants and controls the physical plants according to predefined control logics. SWaT has a strict set of safety requirements (e.g., the PH value of the water coming out of SWaT must be within certain specific range). In order to guarantee that the safety requirements are not violated, SWaT is equipped with safety monitoring devices which trigger a pre-defined shutdown sequence. Our objective is thus to show that the probability of a safety violation is low and thus SWaT is reliable enough to provide its service.

One approach to achieve our objective is to develop a model of SWaT and then apply techniques like model checking. Such a model would have a discrete part which models the PLC control logic and a continuous part which models the physical plants (e.g., in the form of differential equations). Such an approach is challenging since SWaT has multiple chemical processes. For example, the whole process is composed of pre-treatment, ultrafiltration and backwash, de-chlorination, reverse osmosis and output of the processed water. The pre-treatment process alone includes chemical dosing, hydrochloric dosing, pre-chlorination and salt dosing. Due to the complexity in chemical reactions, manual modeling is infeasible. Furthermore, even if we are able to model the system using modeling notations like hybrid automata [11], the existing tools/methods [23,9,22] for analyzing such complicated hybrid models are limited.

An alternative approach which does not require manual modeling is statistical model checking (SMC) [35,16,7]. The main idea is to observe sample system executions and apply standard techniques like hypothesis testing to estimate the probability that a given property is satisfied. SMC however is not ideal for two reasons. First, SMC treats the system as a black box and does not provide insight or knowledge of the system on why a given property is satisfied. Second, SMC requires sampling the system many times, whereas starting/restarting real-world CPS like SWaT many times is not viable.

Recently, there have been multiple proposals on applying model learning techniques to automatically ‘learn’ system models from system executions and then analyze the learned model using techniques like model checking. A variety of learning algorithms have been proposed (e.g., [25,24,4,22]), some of which require only a few system executions. These approaches offer an alternative way of obtaining models, when having a model of such complex systems is a must. For instance, in [19,33,32], it is proposed to learn a probabilistic model first and then apply Probabilistic Model Checking (PMC) to calculate the probability of satisfying a property based on the learned model.

It is however far from trivial to apply model learning directly on SWaT. Existing model learning approaches have only been applied to a few small benchmark systems. It is not clear whether they are applicable or scalable to real-world systems like SWaT. In particular, there are many sensors in SWaT, many of which generate values of type float or double. As a result, the sensor readings induce an ‘infinite’ alphabet which immediately renders many model learning approaches infeasible. In fact, existing model learning approaches have rarely discussed the problem of data abstraction. To the best of our knowledge, the only exception is the LAR method [32], which proposes a method of combining model learning and abstraction/refinement. However, LAR requires many
system executions as input, which is infeasible in SWaT. In this work, we adapt the
LAR method so that we require only two long sequences of system execution logs (one
for training and the other for testing) as input. We successfully ‘verified’ most of the
properties for SWaT this way. For each property, we either report that the property is
violated with a certain confidence, or report that the property is satisfied, in which case
we output a model in the form of an abstract Markov chain as evidence, which could
be further validated by more system runs or expert review. Note that in practice these
models could be implemented as runtime monitors in SWaT.

The remainders of the paper are organized as follows. Sec. 2 presents background
on SWaT, our objectives as well as some preliminaries. Sec. 3 details our learning ap-
proach. We present the results in Sec. 4 and conclude with related work in Sec. 5.

2 Background

In this section, we present the target SWaT system and state our motivation and goals.

System Overview The system under analysis is the Secure Water Treatment (SWaT)
built at the iTrust Center in Singapore University of Technology and Design [20]. It is
a testbed system which scales down but fully realized the functions of a modern water
treatment system in cities like Singapore. It enables researchers to better understand
the principles of cyber-physical Systems (CPS) and further develop and experiment with
smart algorithms to mitigate potential threats and guarantee its safety and reliability.

SWaT takes raw water as input and executes a series of treatment and output recy-
cled water eventually. The whole process contains 6 stages as shown in Figure 1. The
raw water is taken to the raw water tank (P1) and then pumped to the chemical tanks.
After a series of chemical dosing and a static mixer (P2), the water is filtered by an
Ultra-filtration (UF) system (P3) and UV lamps (P4). It is then fed to a Reverse Osmo-
sis (RO) system (P5) and a backwash process cleans the membranes in UF using the
water produced by RO (P6). For each stage, a set of sensors are employed to monitor
the system state. Meanwhile, a set of actuators controlled by the programming logic
controller (PLC) are built in to manipulate the state of the physical process. The read-
ings of sensors are collected and sent periodically to the PLC, while the PLC returns a
set of actuators values according to the control logics and the current sensor values. For
instance, the sensor LIT101 is used to monitor the water level of the Raw Water Tank.
The PLC reads its value and decides whether to set a new value to the actuators. For
example if LIT101 is beyond a threshold, the PLC may deactivate the valve MV101 to
stop adding water into the tank.

SWaT has many built-in safety mechanisms enforced in PLC. Each stage is con-
trolled by local dual PLCs with approximately hundreds of lines of code. In case one
PLC fails, the other PLC takes over. The PLC inspects the received and cached sensor
values and decides the control strategy to take. Notice that the sensor values are ac-
cessible across all PLCs. For example, the PLC of tank 1 may decide whether to start
pump P101 according to the value of LIT301, i.e., the water level of tank 3. In case
the controller triggers potential safety violations of the system according to the current
values of the sensors, the controller may shut down the system to ensure the safety. The
system then needs to wait for further inspection from technicians or experts. Shutting down and restarting SWaT however is highly non-trivial, which takes significant costs in terms of both time and resource, especially in the real-world scenario. Thus, instead of asking whether a safety violation is possible, the question becomes: how often a system shutdown is triggered due to potential safety violations?

In total, SWaT has 25 sensors (for monitoring the status) and 26 actuators (for manipulating the plants). Each sensor is designed to operate in a certain safe range. If a sensor value is out of the range, the system may take actions to adjust the state of the actuators so that the sensor values would go back to normal. Table 1 shows all the sensors in the 6 plants, their operation ranges. The sensors has 3 categories distinguished by their prefixes. For instance, AITxxx stands for Analyzer Indicator/Transmitter; DPITxxx stands for Differential Pressure Indicator/Transmitter; FITxxx stands for Flow Indicator Transmitter; LITxxx stands for Level Indicator/Transmitter.

SWaT is also equipped with a historian which records detailed system execution log, including all sensor readings and actuator status. Table 2 shows a truncated system log with part of sensors. Each row is the sensor readings at a time point and each row is collected every millisecond. Notice that different sensors may have different collection period. The table is filled such that a sensor keeps its old value if no new value is collected, e.g., AIT202 in Table 2. A dataset of SWaT has been published by the iTrust lab in Singapore University of Technology and Design [27,10]. The dataset contains the execution log of 11 consecutive days (i.e., 7 days of normal operations and another 4 days of the system being under various kind of attacks [27,10]).

![Fig. 1: Six stages of water treatment in SWaT [20].](image-url)
Table 1: Safety properties.

Plant	Sensor	Description	Operating range points
P1	FIT101	Flow Transmitter (EMF)	2.5 – 2.6m3/h
	LIT101	Level Transmitter (Ultrasonic)	500 - 1100mm
P2	AIT201	Analyser (Conductivity)	30 - 260µS/cm
	AIT202	Analyser (pH)	6-9
	AIT203	Analyser (ORP)	200 - 500mV
	FIT201	Flow Transmitter (EMF)	2.4 - 2.5m3/h
P3	DPIT301	DP Transmitter	0.1 - 0.3 Bar
	FIT301	Flow Transmitter (EMF)	2.2 - 2.4m3/h
	LIT301	Level Transmitter (Ultrasonic)	800 - 1000mm
P4	AIT401	Analyser (Hardness)	5-30ppm
	AIT402	Analyser	150 - 300mV
	FIT401	Flow Transmitter (EMF)	1.5 - 2m3/h
	LIT401	Level Transmitter (Ultrasonic)	800 - 1000mm
P5	AIT501	Analyser (pH)	6-8
	AIT502	Analyser (ORP)	100-250mV
	AIT503	Analyser (Cond)	200- 300µS/cm
	AIT504	Analyser (Cond)	5-10µS/cm
	FIT501	Flow Transmitter	1-2m3/h
	FIT502	Flow Transmitter (Paddlewheel)	1.1 - 1.3m3/h
	FIT503	Flow Transmitter (EMF)	0.7 - 0.9m3/h
	FIT504	Flow Transmitter (EMF)	0.25 - 0.35m3/h
	PIT501	Pressure Transmitter	2-3 Bar
	PIT502	Pressure Transmitter	0-0.2 Bar
	PIT503	Pressure Transmitter	1-2 Bar

Objectives As discussed above, each sensor reading is associated with a safe range, which constitutes a set of safety properties (i.e., reachability). We remark that we focus on safety properties concerning the stationary behavior of the system in this work rather than those properties concerning the system initializing or shutting down phase. In general, a stationary safety property (refer to [6] for details) takes the form $S_{\leq r}(\phi)$ (where r is the safety threshold and ϕ is an LTL formula). In our particular setting, the property we are interested in is that the probability that a sensor is out of range (either too high or too low) in the long term is below a threshold. Our objective is to ‘verify’ whether a given set of stationary properties are satisfied or not.

Manual modeling of SWaT is infeasible, with 6 water tanks interacting with each other, plenty of chemical reactions inside the tanks and dozens of valves controlling the flow of water. A group of experts from Singapore’s Public Utility Board have attempted to model SWaT manually but failed after months of effort because the system is too complicated. We remark that without a system model, precisely verifying the system is impossible. As discussed above, while statistical model checking (SMC) is another op-
Table 2: A concrete system log with the last column being the abstract system log after predicate abstraction with predicate \(\text{LIT}^{101} > 1100 \).

\(\text{FIT}^{101} \)	\(\text{FIT}^{101} \)	\(MV^{101} \)	\(P^{101} \)	\(P^{102} \)	\(AIT^{201} \)	\(AIT^{202} \)	\(AIT^{203} \)	\(\text{FIT}^{201} \)	\(\text{LIT}^{101} > 1100 \)
2.470294	261.5804	2	1	244.3284	8.19008	306.101	2.471278	0	
2.457163	261.1879	2	1	244.3284	8.19008	306.101	2.468587	0	
2.439548	260.9131	2	1	244.3284	8.19008	306.101	2.467305	0	
2.428338	260.285	2	1	244.3284	8.19008	306.101	2.466536	0	
2.424815	259.8925	2	1	244.4245	8.19008	306.101	2.466536	0	
2.425456	260.0495	2	1	244.5847	8.19008	306.101	2.465127	0	
2.472857	260.2065	2	1	244.5847	8.19008	306.101	2.464742	0	

Thus, in this work, we aim to verify the system by means of model learning. That is, given a safety property, either we would like to show that the property is violated with certain level of confidence or the property is satisfied with certain evidence. Ideally, the evidence is in the form of a small abstract model, at the right level-of-abstraction, which could be easily shown to satisfy the property. The advantage of presenting the model as the evidence is that the model could be further validated using additional data or through expert review. Furthermore, the models can serve other purposes. Firstly, the models could be implemented as runtime monitors to detect potential safety violations at runtime. Secondly, we could also prevent future safety violations by predictive analysis based on the model and take early actions.

3 Our approach

We surveyed existing model learning algorithms (for the purpose of system verification through model checking) and found most existing model learning approaches [19,6,33] are inapplicable in our setting. The reason is that the real-typed (float or double) variables in SWaT lead to an infinite alphabet. The only method which seems feasible is the recently proposed model learning approach called LAR (short for learning, abstraction and refinement) documented in [32], which allows us to abstract sensor readings in SWaT and automatically learn models at a proper level of abstraction based on a counterexample guided abstraction refinement (CEGAR) framework. However, LAR was designed to take many independent execution logs as input whereas we have only few long system logs of SWaT. We thus adapt LAR to sLAR which learns system models from a single long system log instead. In the following, we briefly explain how sLAR works. Interested readers are referred to [32] for the detailed explanation of LAR.

Our overall approach is shown in Fig. 2. Given a training log and a safety property, we first construct an abstract log through predicate abstraction and use a learner to learn a model based on the abstract log. Then, the safety property is verified against the learned model. If the verification returns true, we report true and output the learned model as evidence. Otherwise, we test the property using a validator on the testing log. If the validator finds that the property is violated, we report safety violation together with
the level of confidence we achieve. Otherwise, we use a refiner to refine the abstraction and start over from the learner. Although sLAR is based on LAR, our goal of this case study is to verify stationary properties of SWaT and construct a stationary probabilistic model from one single long system log, which is different from LAR. Consequently, the procedures to verify the property and validate the result of the verifier are different. In the following, we present each part of our approach in details.

3.1 The model

From an abstract point of view, SWaT is a system composed of \(n \) variables (including sensors, actuators as well as those variables in the PLC control program) which capture the system status. A system observation \(\sigma \) is the valuation of all variables at a time point \(t \). A system log \(L = \sigma_{t_0}\sigma_{t_1}\cdots\sigma_{t_k} \) is a sequence of system observations collected from time point \(t_0 \) to \(t_k \). Given a system log \(L \), we write \(L(t) = \sigma_t \) to denote the system observation at time \(t \) and \(L_p(t) \) to denote the system observations before \(t \), i.e., from \(t_0 \) to \(t \). In this case study, we use \(L \) and \(L_t \) to denote the training log and testing log respectively. We also use \(T_1 \) and \(T_2 \) to denote their lasting time respectively.

Several machine learning algorithms exist to learn a stationary system model from a single piece of system log \([6,24,33]\). However, applying these algorithms directly is infeasible because of the real-typed (float or double) variables in SWaT, since system observations at different time points are almost always different and thus the input alphabet for the learning algorithms is ‘infinite’. To overcome this problem, our first step is to abstract the system log through predicate abstraction \([29]\). Essentially, a predicate is a Boolean expression over a set of variables. Given a system log and a set of predicates, predicate abstraction turns the concrete variable values to a bit vector where each bit represents whether the corresponding predicate is true or false. For example, given a predicate \(LIT101 > 1100 \), the concrete system log on the left of Table 2 becomes the abstract system log on the right.

The models we learn from the log are in the form of discrete-time Markov Chain (DTMC), which is a widely used formalism for modeling stochastic behaviors of complex systems. Given a finite set of states \(S \), a probability distribution over \(S \) is a function
\(\mu : S \rightarrow [0, 1] \) such that \(\sum_{s \in S} \mu(s) = 1 \). Let \(\text{Distr}(S) \) be the set of all distributions over \(S \). Formally,

Definition 1. A DTMC \(M \) is a tuple \(\langle S, \text{init}, Pr \rangle \), where \(S \) is a countable, nonempty set of states; \(\text{init} : S \rightarrow [0, 1] \) is the initial distribution s.t. \(\sum_{s \in S} \text{init}(s) = 1 \); and \(Pr : S \rightarrow \text{Distr}(S) \) is a transition function such that \(Pr(s, s') \) is the probability of transiting from state \(s \) to state \(s' \).

We denote a path starting with \(s_0 \) by \(\pi^{s_0} = \langle s_0, s_1, s_2, \ldots, s_n \rangle \), which is a sequence of states in \(M \), where \(Pr(s_i, s_{i+1}) > 0 \) for every \(0 \leq i < n \). Furthermore, we write \(\text{Path}_{\text{fin}}(M) \) to denote the set of finite paths of \(M \) starting with \(s \). We say that \(s_j \in \pi^{s_0} \) if \(s_j \) occurs in \(\pi^{s_0} \). In our setting, we use a special form of DTMC, called stationary DTMC (written as sDTMC) to model the system behaviors in the long term. Compared to a DTMC, each state in an sDTMC represents a steady state of the system and thus there is no prior initial distribution over the states.

Definition 2. An sDTMC is irreducible if for every pair of states \(s_i, s_j \in S \), there exists a path \(\pi^{s_i} \) such that \(s_j \in \pi^{s_i} \).

Intuitively, an sDTMC is irreducible if there is a path between every pair of states. For an irreducible sDTMC, there exists a unique stationary probability distribution which describes the average time a Markov chain spends in each state in the long run.

Definition 3. Let \(\mu_j \) denote the long run proportion of time that the chain spends in state \(s_j \): \(\mu_j = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} I\{X_m = s_j|X_0 = s_i\} \) with probability 1, for all states \(s_i \). If for each \(s_j \in S \), \(\mu_j \) exists and is independent of the initial state \(s_i \), and \(\sum_{s_j \in S} \mu_j = 1 \), then the probability distribution \(\mu = (\mu_0, \mu_1, \cdots) \) is called the limiting or stationary or steady-state distribution of the Markov chain.

In this work, we ‘learn’ a stationary and irreducible sDTMC to model the long term behavior of SWaT. By computing the steady-state distribution of the learned sDTMC, we can obtain the probability that the system is in the states of interests in the long run.

3.2 Learning algorithm

After predicate abstraction, the training log becomes a sequence of bit vectors, which is applicable for learning. We then apply an existing learning algorithm in [24] to learn a stationary system model. The initial learned model is in the form of a Probabilistic Suffix Automata (PSA) as shown in Figure 3, where a system state in the model is identified by a finite history of previous system observations. A PSA is an sDTMC by definition. Each state in a PSA is labeled by a finite memory of the system. The transition function between the states are defined based on the state labels such that there is a transition \(s \times \sigma \rightarrow t \) iff \(l(t) \) is a suffix of \(l(s) \cdot \sigma \), where \(l(s) \) is the string label of \(s \). A walk on the underlying graph of a PSA will always end in a state labeled by a suffix of the sequence. Given a system log \(L_p(t) \) at \(t \), a unique state in the PSA can be identified by matching the state label with the suffixes of \(L_p(t) \). For example, \(\cdots 010 \) is in state labeled by 0 and if we observe 1 next, the system will go to state labeled by 01.
Algorithm 1: Learn PST

1: Initialize T to be a single root node representing $\langle \rangle$;
2: Let $S = \{ \sigma | fre(\sigma, \alpha) > \epsilon \}$ be the candidate suffix set;
3: while S is not empty do
4: Take any π from S; Let π' be the longest suffix of π in T;
5: (B) If $fre(\pi, \alpha) \cdot \sum_{\sigma \in \Sigma} Pr(\pi, \sigma) \cdot \log \frac{Pr(\pi, \sigma)}{Pr(\pi', \sigma)} \geq \epsilon$
 add π and all its suffixes which are not in T to T;
6: (C) If $fre(\pi, \alpha) > \epsilon$, add $\langle e \rangle \cdot \pi$ to S for every $e \in \Sigma$ if $fre(\langle e \rangle \cdot \pi, \alpha) > 0$;
7: end while

To learn a PSA, we first construct an intermediate tree representation called Probabilistic Suffix Tree (PST), namely $tree(L) = (N, root, E)$ where N is the set of suffixes of L; $root = \langle \rangle$; and there is an edge $(\pi_1, \pi_2) \in E$ if and only if $\pi_2 = \langle e \rangle \cdot \pi_1$. Based on different suffixes of the execution, different probabilistic distributions of the next observation will be formed. The central question is how deep should we grow the PST. A deeper tree means that a longer memory is used to predict the distribution of the next observation. The detailed algorithm is shown in Algorithm 1. The tree keeps growing as long as adding children to a current leaf leads to a significant change (measured by K-L divergence) in the probability distribution of the next observation (line 5). After we obtain the PST, we transform it into a PSA by taking the leaves as states and define transitions by suffix matching. We briefly introduce the transformation here and readers are referred to Appendix B of [24] for more details. For a state s and next symbol σ, the next state s' must be a suffix of $s \sigma$. However, this is not guaranteed to be a leaf in the learned T. Thus, the first step is to extend T to T' such that for every leaf s, the longest prefix of s is either a leaf or an internal node in T'. The transition functions are defined as follows. For each node s in $T \cap T'$ and $\sigma \in \Sigma$, let $Pr'(s, \sigma) = Pr(s, \sigma)$. For each new nodes s' in $T' - T$, let $Pr'(s', \sigma) = Pr(s, \sigma)$, where s is deepest ancestor of s' in T. An example PST and its corresponding PSA after transformation is given in Fig. 3. Readers are referred to [24] for details.
3.3 Verification

Once we learn an sDTMC model, we then check whether the learned model satisfies the given safety property. To do so, we first compute the steady-state distribution of the learned model. There are several methods we could use for the calculation including power methods, solving equations or finding eigenvector [2]. The steady-state distribution tells the probability that a state occurs in the long run. Once we obtain the steady-state distribution of the learned model, we could then calculate the probability that the system violates the safety property in the long run by summing up the steady-state probability of all unsafe states. Assume μ is the steady-state distribution, S_u is the set of unsafe states in the learned model and P_u is the probability that the system is in unsafe states in the long run. We calculate the probability of unsafe states as $P_u = \sum_{s_i \in S_u} \mu\{s_i\}$. We then check whether the learned model satisfies the safety property by comparing whether P_u is beyond the safety threshold r. Take the PSA model in Figure 3 as example. The steady-state distribution over states $[1, 00, 10]$ is $[0.4, 0.31, 0.29]$. States 1 is the unsafe state. The steady-state probability that the system is in unsafe states is thus 0.4.

There are two kinds of results. One is that P_u is below the threshold r, which means the learned model under current abstraction level satisfies the safety requirement. Then, we draw the conclusion that the system is ‘safe’ and present the learned model as evidence. The soundness of the result can be derived if the learned abstract model simulates the actual underlying model [12]. However, since the model is obtained through learning from limited data, it is not guaranteed that the result is sound. Nevertheless, the model can be further investigated by validating it against future system logs or reviewed by experts, which we leave to future works. The other result is that the learned model does not satisfy the safety requirement, i.e., the probability of the system being in an unsafe state in the steady-state is larger than the threshold. In such a case, we move to the next step to validate whether the safety violation is introduced by inappropriate abstraction [32] or not.

3.4 Abstraction refinement

In case we learn a model which shows that the probability of the system being in unsafe states in long term is beyond the safety threshold, we move on to validate whether the system is indeed unsafe or the violation is spurious due to over-abstraction. For spuriousness checking, we make use of a testing log which is obtained independently and compute the probability of the system being in unsafe states, which is denoted by P_u^t. The testing log has the same format with the training log. We estimate P_u^t by calculating the frequency that the system is in some unsafe states in the testing log. If P_u^t is larger than the threshold r, we report the safety violation together with a confidence by calculating the error bound [26]. Otherwise, we conclude that the violation is caused by too coarse abstraction and move to the next step to refine the abstraction.

Let N be the total number of states, and n be the number of unsafe states in the testing log. Let $Y = X_1 + X_2 + \cdots + X_N$, where X_i is a Bernoulli random variable on whether a state is unsafe. The confidence of the safety violation report is then calculated as $\alpha = 1 - P\{Y = n|P_u < r\}$. For example, for property LIT101 > 1000, if we
Algorithm 2: Algorithm CountST(\mathcal{M}_P, L_t)

1: Augment each transition (s_i, s_j) in \mathcal{M}_P with a number $\#(s_i, s_j)$ recording how many times we observe such a transition in L_t and initialize them to 0;

2: Let t_0 be the first time that $suffix(L_t(t_0))$ matches a label of a state in \mathcal{M}_P and a time pointer $t = t_0$;

3: while $t < T_2$ do

4: Refer to \mathcal{M}_P for the current state s_t;

5: Take $L_t(t + 1)$ from L_t and refer to \mathcal{M}_P to get the next state s_{t+1};

6: Add $\#(s_t, s_{t+1})$ by 1, add t by 1;

7: end while

observe 1009 times (n) that LIT101 is larger than 1000 and the total length of the testing log is 100000 (N), then the estimated P_u is $1009/100000 = 0.01009$.

If we conclude that the current abstraction is too coarse, we continue to refine the abstraction by generating a new predicate following the approach in [32]. The predicate is then added to the set of predicates to obtain a new abstract system log based on the new abstraction. The algorithm then starts over to learn a new model based on the new abstract log. Next, we introduce how to generate a new predicate in our setting.

Finding spurious transitions
A spurious transition in the learned model is a transition whose probability is inflated due to the abstraction. Further, a transition (s_i, s_j) is spurious if the probability of observing s_i transiting to s_j in the actual system $P_M(s_i, s_j)$ is actually smaller than $P_{M_P}(s_i, s_j)$ in the learned model [32]. Without the actual system model, we estimate the actual transition probability based on the testing log. Given the learned model \mathcal{M}_P and the testing log L_t, we count the number of times s_i is observed in L_t (denoted by $\#(s_i)$) and the number of times the transition from s_i to s_j in is observed L_t (denoted by $\#(s_i, s_j)$) using Alg. 2. The actual transition probability $P(s_i, s_j)$ is estimated by $\hat{P}_M(s_i, s_j) = \#(s_i, s_j)/\#s_i$. Afterwards, we identify the transitions satisfying $P_{M_P}(s_i, s_j) - \hat{P}_M(s_i, s_j) > 0$ as spurious transitions and order them according to the probability deviation.

Predicate generation
After we obtain a spurious transition (s_i, s_j), our next step is to generate a new predicate to eliminate the spuriousness. The generated predicate is supposed to separate the concrete states of s_i which transit to s_j (positive instances) from those which do not (negative instances). We collect the dataset for classification in a similar way to Alg. 2 by iterating the testing log. If s_i is observed, we make a decision on whether it is a positive or negative instance by telling whether its next state is s_j. With the labeled dataset, we then apply a supervised classification technique in machine learning, i.e., Support Vector Machines (SVM [5,1]) to generate a new predicate. Then, we add the predicate for abstraction and start a new round.

3.5 Overall algorithm

The overall algorithm is shown as Alg. 3. The inputs of the algorithm are a system log L for training, a system log L_t for testing, a property in the form of $S_{\leq r}(\varphi)$. During each
Algorithm 3: Algorithm sLAR($L, L_t, S_{≤r}(\varphi)$)

1 let P be the predicates in φ;
2 while true do
3 construct abstract trace L_P based on training log L and P;
4 apply Alg. 1 to learn a stationary model M_P based on L_P;
5 check M_P against φ;
6 if $M_P \models \varphi$ then
7 report φ is verified, the model M_P;
8 return;
9 use the testing log L_t to validate the property violation;
10 if validated then
11 report φ is violated with confidence;
12 return;
13 identify the most spurious transitions $\langle s, s' \rangle$ in M_P;
14 collect labeled dataset $D^+(s, M_P, L_t)$ and $D^-(s, M_P, L_t)$;
15 apply SVM to identify a predicate p separating the two sets;
16 add p into P;

iteration of the loop from line 2 to 16, we start with constructing the abstract trace based on L and a set of predicates P. The initial set of predicates for abstraction is the set of predicates in the property. Next, an abstract sDTMC M_P is learned using Algorithm 1. We then verify M_P against the property. If the property is verified, the system is verified and M_P is presented as the evidence. Otherwise, we validate the verification result using a testing log L_t at line 9. If the test passes, we report a safety violation together with the confidence. Otherwise, at line 13, we identify the most spurious transition and obtain a new predicate at line 15. After adding the new predicate into P, we restart the process from line 2. If SVM fails to find a classifier for all the spurious transitions, Alg. 3 terminates and reports the verification is unsuccessful. Otherwise, it either reports true with a supporting model as evidence or a safety violation with confidence.

4 Case study results

In the following, we present our findings on applying the method documented in Section 3 to SWaT. Given the 11 day system log \cite{10}, we take the 7 day log under normal system execution and further split it into two parts for training (4 days) and testing (3 days) respectively. The main reason we split them into training and testing log is to avoid over-fitting problem without the testing data. Note that the historian makes one record every second. The training log and testing log contains 288000 and 208800 system observations respectively. The properties we verified are whether the steady-state probability that a sensor runs out of its operating range is beyond or below a threshold. Let P_{train}, P_{learn} and P_{test} be the probability that a sensor is out of operating range in the training log, learned models and the testing log respectively. In our study, we set the threshold r in each property as 20 percent larger than the probability observed in the
The experiment results of all sensors are summarized in Table 3. The detailed implementation and models are available in [30]. The first column is the plant number. Column 2 and 3 are the sensors and their properties to verify which are decided by their operating ranges. The following 4 columns show the probability that a sensor value is out of operating range in the training log, the safety threshold, the probability in the learned model and the probability in the testing log respectively. Column ‘result’ is the verification result of the given safety properties. ‘SUC’ means the property is successfully verified. ‘FAL’ means the property is not verified. ‘VIO’ means the property is violated. Column ‘model size’ is the number of states in the learned model. Column ϵ is the parameter we use in the learning parameter. The last column is the running time.

Summary of results In total, we managed to evaluate 47 safety properties of 24 sensors. Notice that the sensor from P6 is missing in the dataset. Among them, 19 properties are never observed to be violated in the training log. We thus could not learn any models regarding these properties and conclude that the system is safe from the limited data we learn from. This is reasonable as according to the dataset, the probability violating the property is 0. For the rest 28 properties, we successfully verified 24 properties together with a learned abstract Markov chain each and reported 4 properties as safety violation with a confidence.

We have the following observations from the results. For those properties we successfully verified, we managed to learn stationary abstract Markov chains which closely approximate the steady-state probability of safety violation (evaluated based on the probability computed based on the testing log). It means that in these cases, sLAR is able to learn a model that is precise enough to capture how the sensor values change. Examples are $FIT_{101} > 2.6$, $LIT_{301} > 1000$, $LIT_{301} < 800$ and $LIT_{401} > 1000$. Besides, it can be observed that the learned abstract models are reasonably small, i.e., usually with less than 100 states and many with only a few states. This is welcomed since a smaller model is easier to comprehend and thus more meaningful for expert review or to be used as a runtime monitor. An underlying reason (why a small model is able to explain why a property is satisfied) is perhaps the system is built such that the system modifies its behavior way before a safety violation is possible. Besides, we identify two groups of states which are of special interest. One of them are $FIT_{401} < 1.5$, $FIT_{502} < 1.1$, $FIT_{503} < 0.7$ and $FIT_{504} < 0.25$. The 4 properties have the same probability 0.0117 of safety violation in the training log and 0 in the testing log. We learn the same models for all of them and P_{learn} equals 0 which is the same as the testing log. We could observe that these sensors have tight connections with each other. Moreover, these sensors are good examples that our learned models generalize from the training data and are able to capture the long run behaviors of the system with P_{learn} equals P_{test}, which is 0. The same goes for the other group of properties, i.e., $FIT_{501} < 1$, $PIT_{501} < 20$ and $PIT_{503} < 10$.

For those properties we reported as safety violations, i.e., $AIT_{401} > 100$, $PIT_{501} > 30$, $PIT_{502} > 0.2$ and $PIT_{503} > 20$, a closer look reveals that these sensors all have high probability of violation (either 0.7156 or 0.989) in the training log. Our learned...
models report that the probability of violation in the long term is 1, which equals the probability in the testing log in all cases. This shows that our learned models are precise even though the properties are not actually satisfied.

Discussions

1) We give a 20% margin for the safety threshold in the above experiments. In practice, the actual safety threshold could be derived from the system reliability requirement. In our experiments, we observe that we could increase the threshold to obtain a more abstract model and decrease the threshold to obtain a more detailed model. For instance, we would be more likely to verify a property with a loose threshold. 2) The parameter ϵ in Algorithm 1 effectively controls the size of learned model. A small ϵ used in the model learning algorithm leads to a learned model with more states by growing a deeper tree. However, it is sometimes non-trivial to select a good ϵ [33]. In our experiment, we use 0.01 as the basic parameter. If we cannot learn a model (the tree does not grow), we may choose a more strict ϵ. Examples are $LIT401 > 1000$ and $AIT504 > 10$. This suggests one way to improve existing model learning algorithms.

3) Each sensor has a different collection period and most of them are changing very slowly, thus the data is not all meaningful to us and we only take a data point from the dataset every minute to reduce the learning cost. 4) One possible reason for the safety violation cases is that the system has not exhibited stationary behaviors within 7 days as the probability of safety violations is 1 in the testing data for all these cases.

Limitation and future work

Model learning will correctly learn an underlying model in the limit [18,24]. However, since our models are learned from a limited amount of data from a practical point of view, they are not guaranteed to converge to the actual underlying models. One of our future work is how to further validate and update the learned models from more system logs. In general, it is a challenging and interesting direction to derive a confidence for the learned model (as a machine learning problem) or the verification results based on the learned models (as a model checking problem) given specific training data. Or alternatively, how can we derive a requirement on the training data to achieve a certain confidence. Some preliminary results on the number of samples required to achieve an error bound are discussed in [13].

5 Conclusion and related work

In this work, we conducted a case study to automatically model and verify a real-world water treatment system testbed. Given a set of safety properties of the system, we combine model learning and abstraction refinement to learn a model which 1) describes how the system would evolve in the long run and 2) verifies or falsifies the properties. The learned models could also be used for further investigation or other system analysis tasks such as probabilistic model checking, simulation or runtime monitoring.

This work is inspired by the recent trend on adopting machine learning to automatically learn models for model checking. Various kinds of model learning algorithms have been investigated including continuous-time Markov Chain [25], DTMC [19,6,33,31,34] and Markov Decision Process [18,3]. In particular, this case study is closely related to the learning approach called LAR documented in [32], which combines model learning and abstraction refinement to automatically find a proper level of abstraction to treat the
problem of real-typed variables. Our algorithm is a variant of LAR, which adapts it to the setting of stationary probabilistic models [6].

This case study aims to formally and automatically analyze a real-world CPS by modeling and verifying the physical environment probabilistically. There are several related approaches for this goal. One popular way is to model the CPS as hybrid automata [11]. In [23], a theorem prover for hybrid systems is developed. dReach is another tool to verify the δ-complete reachability analysis of hybrid system [9]. Nevertheless, they both require users to manually write a hybrid model using differential dynamic logic, which is highly non-trivial. In [22], the authors propose to learn hybrid models from a sample of observations. In addition, HyChecker borrows the idea of concolic testing to hybrid system based on a probabilistic abstraction of the hybrid model and achieves faster detection of counterexamples [15]. sLAR is different as it is fully automatic without relying on a user-provided model. SMC is another line of work which does not require a model beforehand [7]. However, it requires sampling the system many times. This is unrealistic for our setting since shutting down and restarting SWaT yield significant cost. Besides, SMC does not provide insight on how the system works but only provides the verification result. Our learned models however can be used for other system analysis tasks.

Several case studies are related to our case study in some way. In [17], the authors applied integrated simulation of the physical part and the cyber part to an intelligent water distribution system. In [8], the authors use model learning to infer models of different software components for TCP implementation and apply model checking to explore the interaction of different components. In [14], a case study on self-driving car is conducted for the analysis of parallel scheduling for CPS. In [21], automata learning is applied in different levels of a smart grid system to improve the power management. As far as we know, our work is the first on applying probabilistic model learning for verifying a real-world CPS probabilistically.

Acknowledgement

The work was supported in part by Singapore NRF Award No. NRF2014NCR-NCR001-40, NSFC projects 61772347, 61502308, STFSC project JCYJ20170302153712968.
Plant	Sensor Property	Property	P_{train}	r	P_{learn}	P_{test}	Result	Model Size	ε	Time
P1	FIT101	>2.6	0.2371	0.2845	0.2371	0.233	SUC	26	0.01	300
		<2.5	0.5092	0.611	0.5092	0.5245	SUC	31	0.01	298
	LIT101	>800	0.1279	0.1535	0.1271	0.1141	SUC	130	0.01	4
		<500	0.1485	0.1782	0.147	0.0977	SUC	54	0.01	2
P2	AIT201	>260	0.6044	0.7253	0.647	1	SUC	2	0.01	31
		<250	0	–	–	–	–	–	–	–
	AIT202	>9	0	–	–	–	–	–	–	–
	AIT203	>500	0.0362	0.043	0.0363	0	SUC	2	0.01	27
		<420	0.7654	0.9185	0.7654	1	SUC	2	0.01	32
	FIT201	>2.5	0		–	–	–	–	–	–
		<2.4	0.2577	0.3092	0.2567	0.2529	SUC	59	0.01	4
P3	DPIT301	>30	0	–	–	–	–	–	–	–
	FIT301	>2.4	0	–	–	–	–	–	–	–
	LIT301	>1000	0.134	0.1608	0.135	0.1299	SUC	60	0.01	4
		<800	0.0877	0.1052	0.0876	0.0609	SUC	69	0.01	2
P4	AIT401	>100	0.7156	0.8587	1	1	VIO	2	0.002	35
		<5	0.2844	0.3413	0	1	SUC	2	0.01	33
	AIT402	>250	0	–	–	–	–	–	–	–
	AIT403	>150	0	–	–	–	–	–	–	–
	FIT401	>2	0	–	–	–	–	–	–	–
		<1.5	0.0117	0.014	0	0	SUC	2	0.01	37
	LIT401	>1000	0.0035	0.0042	0.0037	0.0034	SUC	208	0.002	455
		<800	0.1227	0.1472	0.123	0.079	SUC	70	0.01	2
P5	AIT501	>8	0	–	–	–	–	–	–	–
		<6	0	–	–	–	–	–	–	–
	AIT502	>250	0	–	–	–	–	–	–	–
	AIT503	>100	0	–	–	–	–	–	–	–
	AIT504	>300	0	–	–	–	–	–	–	–
	PIT501	>10	0.9983	1	0.9983	1	SUC	2	0.001	37
		<5	0	–	–	–	–	–	–	–
	FIT501	>2	0	–	–	–	–	–	–	–
		<1	0.0117	0.014	0	0	SUC	3	0.01	38
	FIT502	>1.3	0.0356	0.0427	0.0361	0.3241	SUC	9	0.01	15
		<1.1	0.0117	0.014	0	0	SUC	2	0.01	38
	FIT503	>0.9	0	–	–	–	–	–	–	–
		<0.7	0.0117	0.014	0	0	SUC	2	0.01	38
	FIT504	>0.35	0	–	–	–	–	–	–	–
		<0.25	0.0117	0.014	0	0	SUC	2	0.01	38
	PIT501	>30	0.989	1	1	1	VIO	3	0.01	38
		<20	0.011	0.0132	0	0	SUC	3	0.01	38
	PIT502	>0.2	0.989	1	1	1	VIO	3	0.01	38
	PIT503	>20	0.989	1	1	1	VIO	3	0.01	38
		<10	0.011	0.0132	0	0	SUC	3	0.01	38
References

1. Thomas Abeel, Yves Van de Peer, and Yvan Saeys. Java-ml: A machine learning library. The Journal of Machine Learning Research, 10:931–934, 2009.
2. Richard F Bass. Stochastic processes, volume 33. Cambridge University Press, 2011.
3. Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelík, Vojtěch Forejt, Jan Krčtínký, Marta Kwiatkowska, David Parker, and Mateusz Ujma. Verification of markov decision processes using learning algorithms. In Automated Technology for Verification and Analysis, pages 98–114. Springer, 2014.
4. Rafael C Carrasco and José Oncina. Learning stochastic regular grammars by means of a state merging method. In International Colloquium on Grammatical Inference, pages 139–152. Springer, 1994.
5. Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.
6. Yingke Chen, Hua Mao, Manfred Jaeger, Thomas Dyhre Nielsen, Kim Guldstrand Larsen, and Brian Nielsen. Learning markov models for stationary system behaviors. In NASA Formal Methods, pages 216–230. Springer, 2012.
7. Edmund M Clarke and Paolo Zuliani. Statistical model checking for cyber-physical systems. In Automated Technology for Verification and Analysis, pages 1–12. Springer, 2011.
8. Paul Fiter˘au-Broștean, Ramon Janssen, and Frits Vaandrager. Combining model learning and model checking to analyze tcp implementations. In International Conference on Computer Aided Verification, pages 454–471. Springer, 2016.
9. Sicun Gao, Soonho Kong, Wei Chen, and Edmund Clarke. Delta-complete analysis for bounded reachability of hybrid systems. arXiv preprint arXiv:1404.7171, 2014.
10. Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A dataset to support research in the design of secure water treatment systems. In International Conference on Critical Information Infrastructures Security, pages 88–99. Springer, 2016.
11. Thomas A Henzinger. The theory of hybrid automata. In Verification of Digital and Hybrid Systems, pages 265–292. Springer, 2000.
12. Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic cegar. In Computer Aided Verification, pages 162–175. Springer, 2008.
13. Cyrille Jegourel, Jun Sun, and Jin Song Dong. Sequential schemes for frequentist estimation of properties in statistical model checking. In International Conference on Quantitative Evaluation of Systems, pages 333–350. Springer, 2017.
14. Junsung Kim, Hyoseung Kim, Karthik Lakshmanan, and Ragunathan Raj Rajkumar. Parallel scheduling for cyber-physical systems: Analysis and case study on a self-driving car. In Proceedings of the ACM/IEEE 4th International Conference on Cyber-Physical Systems, pages 31–40. ACM, 2013.
15. Pingfan Kong, Yi Li, Xiaohong Chen, Jun Sun, Meng Sun, and Jingyi Wang. Towards concolic testing for hybrid systems. In FM 2016: Formal Methods: 21st International Symposium, Limassol, Cyprus, November 9-11, 2016, Proceedings 21, pages 460–478. Springer, 2016.
16. Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model checking: An overview. RV, 10:122–135, 2010.
17. Jing Lin, Sahra Sedigh, and Ann Miller. Towards integrated simulation of cyber-physical systems: a case study on intelligent water distribution. In Dependable, Autonomic and Secure Computing, 2009. DASC’09. Eighth IEEE International Conference on, pages 690–695. IEEE, 2009.
18. Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D Nielsen, Kim G Larsen, and Brian Nielsen. Learning markov decision processes for model checking. arXiv preprint arXiv:1212.3873, 2012.
19. Hua Mao, Yingke Chen, Manfred Jaeger, Thomas D Nielsen, Kim G Larsen, and Brian Nielsen. Learning deterministic probabilistic automata from a model checking perspective. *Machine Learning*, 105(2):255–299, 2016.

20. Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training on ics security. In *Cyber-physical Systems for Smart Water Networks (CySWater), 2016 International Workshop on*, pages 31–36. IEEE, 2016.

21. Sudip Misra, P Venkata Krishna, Vankadara Saritha, and Mohammad S Obaidat. Learning automata as a utility for power management in smart grids. *IEEE Communications Magazine*, 51(1):98–104, 2013.

22. Oliver Niggemann, Benno Stein, Asmir Vodenicarevic, Alexander Maier, and Hans Kleine Büning. Learning behavior models for hybrid timed systems. In *AAAI*, volume 2, pages 1083–1090, 2012.

23. André Platzer. *Logical analysis of hybrid systems: proving theorems for complex dynamics*. Springer Science & Business Media, 2010.

24. Dana Ron, Yoram Singer, and Naftali Tishby. The power of amnesia: Learning probabilistic automata with variable memory length. *Machine learning*, 25(2-3):117–149, 1996.

25. Koushik Sen, Mahesh Viswanathan, and Gul Agha. Learning continuous time markov chains from sample executions. In *Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. First International Conference on the*, pages 146–155. IEEE, 2004.

26. Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-box probabilistic systems. In *CAV*, volume 3114, pages 202–215. Springer, 2004.

27. SUTD. Swat dataset website. https://itrust.sutd.edu.sg/dataset/.

28. SUTD. Swat website. http://itrust.sutd.edu.sg/research/testbeds/secure-water-treatment-swat/.

29. Bjorn Wachter, Lijun Zhang, and Holger Hermanns. Probabilistic model checking modulo theories. In *Fourth International Conference on the Quantitative Evaluation of Systems*, pages 129–140. IEEE, 2007.

30. Jingyi Wang. Ziqian website. https://github.com/wang-jingyi/Ziqian.

31. Jingyi Wang, Xiaohong Chen, Jun Sun, and Shengchao Qin. Improving probability estimation through active probabilistic model learning. In *International Conference on Formal Engineering Methods*, pages 379–395. Springer, 2017.

32. Jingyi Wang, Jun Sun, and Shengchao Qin. Verifying complex systems probabilistically through learning, abstraction and refinement. *CoRR*, abs/1610.06371, 2016.

33. Jingyi Wang, Jun Sun, Qixia Yuan, and Jun Pang. Should we learn probabilistic models for model checking? A new approach and an empirical study. In *International Conference on Fundamental Approaches to Software Engineering*, pages 3–21. Springer, 2017.

34. Jingyi Wang, Jun Sun, Qixia Yuan, and Jun Pang. Learning probabilistic models for model checking: an evolutionary approach and an empirical study. *International Journal on Software Tools for Technology Transfer*, pages 1–16, 2018.

35. H.L.S Younes. *Verification and Planning for Stochastic Processes with Asynchronous Events*. PhD thesis, Carnegie Mellon, 2005.