CR-quadrics with a symmetry property

WILHELM KAUP

1. Introduction

A well studied class of CR-submanifolds in a complex linear space consists of the quadrics, that is, of real quadratic submanifolds of the form

\[Q = \{ (w, z) \in \mathbb{C}^{k+n} : w + \overline{w} = h(z, z) \}, \]

where \(h : \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{k} \) is a non-degenerate hermitian form such that the image of \(h \) spans all of \(\mathbb{C}^{k} \). It is well known and easy to see that the group \(\text{Aff}(Q) \) of all (complex affine) transformations leaving \(Q \) invariant acts transitively on \(Q \). Besides these global CR-automorphisms of \(Q \), in general there exist also non-affine local CR-automorphisms (between domains) of \(Q \), which cannot be extended to global CR-automorphisms of \(Q \). By [1] every such local (smooth) CR-isomorphism is real-analytic and by [10] extends to a birational transformation of \(\mathbb{C}^{k+n} \). All birational transformations obtained this way generate a group that we denote by Bir\((Q)\) in the following. It is by no means evident, but shown in [6], that \(g(Q \cap \text{reg}(g)) = Q \cap \text{reg}(g^{-1}) \) holds, where \(\text{reg}(g) \subset \mathbb{C}^{k+n} \) is the Zariski open subset of all regular points of the birational transformation \(g \) with \(Q \cap \text{reg}(g) \) being a dense domain in \(Q \).

Up to CR-isomorphism there exists a unique homogeneous real-analytic CR-manifold \(\hat{Q} \) containing \(Q \) as open dense CR-submanifold in such a way that every CR-isomorphism between domains in \(Q \) extends to a global CR-automorphism of \(\hat{Q} \). In particular, the group Bir\((Q)\) can be canonically identified with the CR-automorphism group \(\text{Aut}(\hat{Q}) \) of the extended quadric \(\hat{Q} \). The group \(G := \text{Aut}(\hat{Q}) \) has no center and can be realized as closed subgroup \(G \subset \text{SL}_N(\mathbb{C}) \) for some integer \(N \geq 2 \) is such a way that \(\hat{Q} \) is a \(G \)-orbit in the complex projective space \(Z := \mathbb{P}(\mathbb{C}^N) \). In fact, there are complex-algebraic subvarieties \(A \subset B \subset Z \) such that the \(G \)-orbit \(\hat{Q} \) is a closed CR-submanifold of \(Z \setminus A \) and \(Q = \hat{Q} \setminus B \) (for all this and further details compare [6]). In particular, the group \(G \) inherits a Lie group structure from \(\text{SL}_N(\mathbb{C}) \) and with it is a transitive real-analytic transformation group on \(\hat{Q} \). It can be shown that \(G \) has only finitely many connected components.

A convenient method for the study of a Lie group action is given by the associated infinitesimal action in terms of vector fields. For every domain \(D \subset Q \) let \(\mathfrak{h} \mathfrak{o} \mathfrak{l}(D) \) be the real Lie algebra of all real-analytic infinitesimal CR-transformations on \(D \) (that is of all real-analytic vector fields on \(D \) whose local flows consist of CR-transformations). By [2] every vector field in \(\mathfrak{h} \mathfrak{o} \mathfrak{l}(D) \) extends to a (complex) polynomial vector field of degree \(\leq 2 \) on \(\mathbb{C}^{k+n} \). This implies, in particular, that \(\mathfrak{g} := \mathfrak{h} \mathfrak{o} \mathfrak{l}(Q) \) has finite dimension and that for every domain \(D \subset Q \) the restriction operator \(\mathfrak{g} \rightarrow \mathfrak{h} \mathfrak{o} \mathfrak{l}(D) \) is an isomorphism of real Lie algebras. Furthermore, \(\mathfrak{g} \) is in a canonical way the Lie algebra of the Lie group \(G = \text{Aut}(\hat{Q}) \). The vector field \(\zeta := 2w \frac{\partial}{\partial w} + z \frac{\partial}{\partial z} \in \mathfrak{g} \) gives a canonical grading

\begin{equation}
\mathfrak{g} = \mathfrak{g}^{-2} \oplus \mathfrak{g}^{-1} \oplus \mathfrak{g}^0 \oplus \mathfrak{g}^1 \oplus \mathfrak{g}^2
\end{equation}

into the \(\text{ad}(\zeta) \)-eigenspaces, where the Lie algebra \(\text{aff}(Q) := g^{-2} \oplus g^{-1} \oplus g^0 \subset \mathfrak{g} \) is the Lie subalgebra of the subgroup \(\text{Aff}(Q) \subset G \). The affine subalgebra \(\text{aff}(Q) \) has an explicit description in terms of the hermitian
form h, see (2.4), whereas it seems to be unknown how big the nilpotent Lie subalgebra $\mathfrak{g}^+ := \mathfrak{g}^1 \oplus \mathfrak{g}^2$ can be in terms of k, n (it can definitely be zero). Once \mathfrak{g}^+ is explicitly known also the nilpotent closed subgroup $G^+ := \exp(\mathfrak{g}^+) \subset G$ is explicitly known - indeed, \mathfrak{g}^+ is ad-nilpotent so that $\exp: \mathfrak{g}^+ \rightarrow G^+$ is a polynomial homeomorphism. The group G is generated by the connected subset $\exp(\mathfrak{g})$ together with the linear subgroup $GL(Q) \subset \text{Aff}(Q)$. The Lie algebras \mathfrak{g}^k and hence \mathfrak{g} itself can be explicitly determined by solving certain linear equations, a comparatively much easier task than the explicit determination of the linear group $GL(Q)$, where high order polynomial equations have to be solved.

The intention of this short note is to discuss several classes of examples for Q as above where $\mathfrak{g}^+ = \mathfrak{g}^1 \oplus \mathfrak{g}^2$ is 'big' and has a simple description. For that we introduce the Property (S): There exists a transformation $\gamma = \gamma^{-1} \in G = \text{Aut}(Q) \cong \text{Bir}(Q)$ such that $\text{Ad}(\gamma)(\zeta) = -\zeta$ for the adjoint representation $\text{Ad}: G \rightarrow \text{Aut}(\mathfrak{g})$. Then, if such a γ is obtained in a concrete situation (by guess-work or any other form of computation) the obvious formula $\mathfrak{g}^k = \text{Ad}(\gamma)(\mathfrak{g}^{-k})$ allows to immediately write down $\mathfrak{g}^+ = \mathfrak{g}^1 \oplus \mathfrak{g}^2$ explicitly. The same holds with $G^+ = \gamma H \gamma$, where $H := \exp(\mathfrak{g}^{-2} \oplus \mathfrak{g}^{-1})$ is the Heisenberg group. As indicated above, the determination of $GL(Q)$ is more involved.

The paper is organized as follows: After the necessary preliminaries in Section 2 we introduce in Section 3 the symmetry Property (S) and present with Example 3.4 our basic class of quadrics having this property. In Section 4 we obtain for every Q from the basic class by tensoring with an arbitrary unital (associative) complex *-algebra A of finite dimension a new quadric $Q(A)$ that also has Property (S). In the final section we briefly explain how from the classification of irreducible bounded symmetric domains of non-tube type further quadrics with Property (S) can be obtained.

2. Preliminaries

Let W, Z be complex vector spaces of finite positive dimension. Suppose that on W a conjugation $w \mapsto \overline{w}$ is given and put $V := \{w \in W : \overline{w} = w\}$. Then for every sesquilinear form $h: Z \times Z \rightarrow W$ (complex linear in the first and conjugate linear in the second variable) the real-algebraic subset

$$Q = Q_h = \{(w, z) \in W \times Z : w + \overline{w} = h(z, z)\}$$

is called a standard quadric in the following, provided

(i) $h(z, z') = 0$ for all $z' \in Z$ implies $z = 0$ (non-degeneracy),

(ii) V is the linear span over \mathbb{R} of all vectors $h(z, z), z \in Z$ (minimality).

It is clear that Q is invariant under the two 1-parameter groups of linear transformations

$$(w, z) \mapsto (e^{2t}w, e^t z) \text{ and } (w, z) \mapsto (w, e^{it}z), \quad t \in \mathbb{R}.$$

Therefore $\mathfrak{g} := \mathfrak{hol}(Q)$ contains the commuting linear vector fields

$$\zeta := 2w \partial/\partial w + z \partial/\partial z \quad \text{and} \quad \chi := iz \partial/\partial z,$$

and $\mathfrak{g} + i \mathfrak{g}$ contains the Euler field $\eta = (\zeta - i\chi)/2$.

Denote by \mathfrak{P} the complex Lie algebra of all (complex) polynomial vector fields on $E := W \oplus Z$. The vector field $\zeta \in \mathfrak{g} \subset \mathfrak{P}$ induces a \mathbb{Z}-grading

$$\mathfrak{P} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{P}^k, \quad [\mathfrak{P}^k, \mathfrak{P}^\ell] \subset \mathfrak{P}^{k+\ell} \text{ for } \mathfrak{P}^k := \{\xi \in \mathfrak{P} : [\zeta, \xi] = k\xi\}$$
of \(\mathfrak{P} \) with \(\mathfrak{P}^k = 0 \) if \(k < -2 \) and induces also the grading (1.1) with \(g^k := \mathfrak{g} \cap \mathfrak{P}^k \), compare [2]. The subalgebra \(\mathfrak{g}^{-2} \oplus \mathfrak{g}^0 \oplus \mathfrak{g}^2 \) is the kernel of \(\text{ad}(\chi) \), while the restriction of \(\text{ad}(\chi) \) to the invariant subspaces \(\mathfrak{g}^{-1}, \mathfrak{g}^1 \) has the eigenvalues \(\pm i \). The following is well known and easily verified:

\[
\begin{align*}
\mathfrak{g}^{-2} &= \{ a \partial/\partial w : a \in i \mathbb{V} \}, \\
\mathfrak{g}^{-1} &= \{ h(z, c) \partial/\partial w + c \partial/\partial z : c \in \mathbb{Z} \}, \\
\mathfrak{g}^0 &= \{ aw \partial/\partial w + bz \partial/\partial z : a \in \mathfrak{gl}(V), b \in \mathfrak{gl}(Z) \text{ with } ah(z, z) = h(bz, z) + h(z, bz) \}.
\end{align*}
\]

The derived algebra \(\mathfrak{d} := [\mathfrak{g}, \mathfrak{g}] \) is an ideal in \(\mathfrak{g} \) and has the grading \(\mathfrak{d} = \bigoplus_{|k| \leq 2} \mathfrak{g}^k \), where

\[
\mathfrak{d}^k = \begin{cases}
\mathfrak{g}^k & k \neq 0 \\
[\mathfrak{g}^{-2}, \mathfrak{g}^2] + [\mathfrak{g}^{-1}, \mathfrak{g}^1] + [\mathfrak{g}^0, \mathfrak{g}^0] & k = 0.
\end{cases}
\]

Furthermore, \(\mathfrak{g}^{-} := \mathfrak{g}^{-2} \oplus \mathfrak{g}^{-1} \) and \(\mathfrak{g}^{+} := \mathfrak{g}^1 \oplus \mathfrak{g}^2 \) are nilpotent Lie algebras of step 2.

Let \(\tilde{Q} \) be the extended quadric and \(G := \text{Aut}(\tilde{Q}) \), compare Section 1. Then \(\mathfrak{g} = \mathfrak{hol}(Q) \) can also be identified canonically with \(\mathfrak{hol}(\tilde{Q}) \). Consider the following subgroups of \(G \)

\[
\begin{align*}
G_0 &= \{ g \in G : g(0) = 0 \} \\
G^\pm &= \text{exp}(\mathfrak{g}^\pm) \\
\text{GL}(Q) &= \{ g \in \text{GL}(E) : g(Q) = Q \} \\
\text{Aff}(Q) &= \{ g \in \text{Aff}(E) : g(Q) = Q \} = \text{GL}(Q) \times G^-
\end{align*}
\]

with \(\text{Aff}(E) \) the group of all complex affine automorphisms of \(E \). Then

\[
\text{GL}(Q) = \{(f \times g) \in \text{GL}(V) \times \text{GL}(Z) \subset \text{GL}(E) : fh(z, z) = h(gz, gz)\}
\]

is a real algebraic subgroup of \(\text{GL}(E) \) with Lie algebra \(\mathfrak{gl}(Q) := \mathfrak{g}^0 \subset \mathfrak{gl}(E) \) and, in particular, has only finitely many connected components. Every \(G^\pm \) is a connected nilpotent closed subgroup of \(G \) with Lie algebra \(\mathfrak{g}^\pm \). For instance, \(G^- = \text{exp}(\mathfrak{g}^-) \text{exp}(\mathfrak{g}^1) \) is the group of all affine transformations of the form

\[
(w, z) \mapsto (w + a + h(z, b), z + b), \quad (a, b) \in Q,
\]

which acts simply transitively on \(Q \) and is called the Heisenberg group.

Every \(g \in G = \text{Aut}(\tilde{Q}) \) acts on its Lie algebra \(\mathfrak{g} \) by \(\text{Ad}(g) \in \text{Aut}(\mathfrak{g}) \), here given in terms of vector fields by

\[
\text{Ad}(g)(f(z) \partial/\partial z) = h(z) \partial/\partial z \quad \text{with} \quad h(g(z)) = g'(z)(f(z)),
\]

where \(g'(z) \in \text{End}(E) \) is the derivative of \(g \) at \(z \). The group \(G \) has no center, that is, the group homomorphism \(\text{Ad} : G \to \text{Aut}(\mathfrak{g}) \) is injective.

The following result will not be used later but may be of independent interest.

2.7 Lemma. For every standard quadric \(Q \) the extended quadric \(\tilde{Q} \) is simply connected.

Proof. Denote by \(\pi : \tilde{Q} \to \tilde{Q} \) the universal covering of \(\tilde{Q} \). Then by [6] there exists a complex manifold \(X \), containing \(\tilde{Q} \) as generic real-analytic submanifold, together with a complex-analytic subset \(A \subset X \) such that \(Q = \tilde{Q} \setminus A \). There exists a complex manifold \(\tilde{X} \), containing \(\tilde{Q} \) as generic real-analytic submanifold, in such a way that \(\pi \) extends to a holomorphic map \(\pi : \tilde{X} \to X \). This implies that \(A := \pi^{-1}(A) \) is complex-analytic in \(\tilde{X} \) and hence that \(\pi^{-1}(Q) = \tilde{Q} \setminus \tilde{A} \) is connected by Lemma 2.2 in [5]. Since \(Q \) is simply connected the covering map \(\pi : \tilde{Q} \to \tilde{Q} \) must be a homeomorphism.

\[\Box\]
3. The symmetry property

With the notation of Section 2 fix a standard quadric \(Q \) and consider the following symmetry property:

Property (S) There exists an automorphism \(\gamma = \gamma^{-1} \in G = \text{Aut}(\hat{Q}) \) with \(\text{Ad}(\gamma)(\zeta) = -\zeta \).

We call \(\gamma \) also a symmetry of the quadric \(Q \). There may not exist a fixed point of \(\gamma \) in the extended quadric \(\hat{Q} \), insofar \(\gamma \) is not necessarily a CR-symmetry of \(\hat{Q} \) in the sense of [7].

If the symmetry property (S) is satisfied with \(\gamma \) then \(\text{Ad}(\gamma) \in \text{Aut}(\mathfrak{g}) \) permutes the eigenspaces of \(\text{ad}(\zeta) \) in \(\mathfrak{g} \), more precisely,

\[
\text{Ad}(\gamma)(\mathfrak{g}^k) = \mathfrak{g}^{-k} \quad \text{for all } k, \quad \text{in particular,}
\dim(\mathfrak{g}^k) = \dim(\mathfrak{g}^{-k}) \quad \text{for all } k \quad \text{and} \quad [\mathfrak{g}^1, \mathfrak{g}^1] = \mathfrak{g}^2.
\]

The symmetry \(\gamma \) is not uniquely determined, every \(g\gamma g^{-1} \) with \(g \in \text{GL}(Q) \) is also a symmetry of \(Q \). Using (3.1) the spaces \(\mathfrak{g}^1 \) and \(\mathfrak{g}^2 \) can be explicitly computed from (2.4). In Section 4 we given an example of this method. This also works on the group level. Indeed, the inner automorphism \(\text{Int}(\gamma) \) of \(G \) defined by \(g \mapsto g\gamma g^{-1} \) (note that \(\gamma^{-1} = \gamma \) by definition) satisfies

\[
G^+ = \gamma G^{-}\gamma \quad \text{and} \quad G_0 = \text{GL}(Q) \ltimes G^+ = \gamma \text{Aff}(Q) \gamma.
\]

As a consequence we state

3.3 Proposition. The group \(G \) is generated by the subgroup \(\text{Aff}(Q) \) and \(\gamma \).

In the following we give some examples of standard quadrics having a symmetry. We start with the case of hyperquadrics.

3.4 Example. Suppose that in \(\mathbb{C}^{n+1} \) with coordinates \((w, z_1, \ldots, z_n) \) the quadric \(Q \) is given by

\[
Q = \left\{ (w, z) \in \mathbb{C}^{n+1} : w + \overline{w} = \sum_{1 \leq j \leq k} |z_j|^2 - \sum_{k < j \leq n} |z_j|^2 \right\},
\]

where \(0 \leq k \leq n \) is a fixed integer. Then \((w, z) \mapsto (w^{-1}, -w^{-1}z) \) defines a symmetry \(\gamma \) of \(Q \). Obviously, there is a fixed point \((1, z) \in Q \) of \(\gamma \), provided \(k > 0 \) (in case \(k = 0 \) the symmetry \((w, z) \mapsto (w^{-1}, -w^{-1}z) \) would have a fixed point \((-1, z) \in Q \). The Lie algebra \(\mathfrak{so}(Q) \) is isomorphic to \(\mathfrak{su}(p, q) \) with \(p = k+1 \) and \(q = n+1-k \). Clearly, replacing \(k \) by \(n-k \) gives a linearly equivalent quadric.

This example can be generalized to higher codimensions. For every matrix \(w \) we denote by \(w^* \) its adjoint (conjugate transpose).

3.5 Example. Let \(m, n \geq 1 \) be fixed integers. Then, for every hermitian matrix \(\beta \in \text{GL}_n(\mathbb{C}) \),

\[
Q := \left\{ (w, z) \in \mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n} : w + w^* = z\beta z^* \right\}
\]

is a standard quadric with CR-codimension \(m^2 \), and \((w, z) \mapsto (w^{-1}, -w^{-1}z) \) defines a symmetry \(\gamma \) of \(Q \). In case \(n < m \) there is no fixed point of \(\gamma \) in \(\hat{Q} \). On the other hand, in case \(n \geq m \) there exists a fixed point \((1, z) \in \hat{Q} \), provided \(k \geq m \) for the number \(k \) of positive eigenvalues of \(\beta \). The Lie algebra \(\mathfrak{so}(Q) \) is isomorphic to \(\mathfrak{su}(p, q) \) with \(p = k+m \) and \(q = n+m-k \). The extended quadric \(\hat{Q} \) can be realized as follows: Choose on \(\mathbb{C}^{2m+n} \) a non-degenerate hermitian form \(\psi \) of type \((p, q) \) and denote by \(\mathbb{G} \) the Grassmannian of all linear \(m \)-spaces in \(\mathbb{C}^{p+q} \). Then the compact real-analytic submanifold \(S := \{ L \in \mathbb{G} : \psi|_L = 0 \} \) of \(\mathbb{G} \) is CR-isomorphic to \(\hat{Q} \). In fact, \(S \) is the unique closed orbit of the unitary group \(\text{SU}(\psi) \cong \text{SU}(p, q) \) acting on the Grassmannian. For \(m = 1 \) we get back Example 3.4 (up to an affine transformation) and \(\mathbb{G} \) is the complex projective space \(\mathbb{P}(\mathbb{C}^{n+2}) \).

It is obvious that for every pair \(Q', Q'' \) of standard quadrics with Property (S) also the direct product \(Q := Q' \times Q'' \) is a standard quadric with Property (S). In the next section we describe a more interesting method to produce new standard quadrics out of known ones.
4. Tensoring with *-algebras

In the following we use the notion of a *-algebra, that is, a complex associative algebra A with product $(w, z) \mapsto wz$ and (conjugate linear) involution $z \mapsto z^*$ satisfying $z^{**} = z$ and $(zw)^* = w^*z^*$ for all $w, z \in A$. Then the self-adjoint part $A_{sa} := \{ z \in A : z^* = z \}$ is a real Jordan subalgebra with respect to the anti-commutator product $x \circ y := (xy + yx)/2$ and iA_{sa} is a real Lie subalgebra with respect to the commutator product $[x, y] = xy - yx$. Clearly $A = A_{sa} \oplus iA_{sa}$, and A_{sa} is an associative subalgebra of A only if A is commutative.

Here we assume without further notice that every *-algebra has finite dimension. In addition we also assume that A has a unit e, which then is contained in A_{sa}. The subgroup $G(A) \subset A$ of all invertible elements is Zariski open in A and a connected complex Lie group. In particular, $G(A) \subset GL(A)$ is generated by the image of the exponential map $\exp : A \to G(A)$. In case A is commutative, \exp is a surjective group homomorphism as well as a locally biholomorphic covering map.

Denote by

$$\text{Aut}(A, \star) := \{ g \in GL(A) : g(ac^*) = g(a)g(c)^* \}$$

the *-algebra automorphism group of A. Then $\text{Aut}(A, \star)$ is a real linear algebraic subgroup of $GL(A)$ leaving A_{sa} invariant and has Lie algebra

$$\mathfrak{der}(A, \star) := \{ \delta \in \mathfrak{gl}(A) : \delta(ac^*) = \delta(a)c^* + a\delta(c)^* \}.$$

In case that A is commutative, $\text{Aut}(A, \star)$ can be identified with the real algebra automorphism group of the associative algebra A_{sa} and $\mathfrak{der}(A, \star)$ can be identified with the derivation algebra of A_{sa}.

For every integer $m \geq 1$ the matrix algebra $M := \mathfrak{M}^{m \times m}$ is a unital *-algebra with respect to the usual adjoint \star as involution, and M is even simple as complex algebra. Every other involution \star on M is of the form $z^* = \alpha z^* \alpha^{-1}$ for some $\alpha = \alpha^* \in GL_m(\mathbb{C})$. Also, the product algebra $M \times M$ becomes a simple *-algebra with respect to the involution $(a, b)^* := (b^*, a^*)$. By Wedderburn’s Theorem [8] every semi-simple complex unital algebra A (of finite dimension) is a unique direct product $A = \prod_{j \in J} A_j$ of simple unital algebras $A_j \cong \mathfrak{M}^{m_j \times m_j}$. To every involution \star of A, making it to a *-algebra, there is an involution $j \mapsto j^*$ of the index set J such that $(A_j)^* = A_{j^*}$ for every $j \in J$. Then, choosing a minimal subset $K \subset J$ with $J = K \cup K^*$, we get the representation $A = \prod_{j \in K} (A_j + A_{j^*})$ as direct product of simple *-algebras.

In general the algebra A has a radical (the intersection of all maximal left ideals in A). Every involution of A leaves $\text{rad}(A)$ invariant and makes the semi-simple algebra $A/\text{rad}(A)$ to a *-algebra. It can be shown that even in the commutative case there are uncountably many isomorphism classes of (finite dimensional) *-algebras.

Now consider for given W, Z, h the standard quadric $Q = Q_h$ defined as in (2.1) and fix a unital *-algebra A. Put $V := \{ w \in W : \overline{w} = w \}$ and also

$$W := W \otimes_{\mathbb{C}} A, \quad Z := W \otimes_{\mathbb{C}} A \quad \text{and} \quad V := V \otimes_{\mathbb{R}} A_{sa}. \quad (4.1)$$

Then there exists a unique conjugation $w \mapsto \overline{w}$ on W such that $\overline{w} = \overline{w} \otimes a^*$ for every $w = w \otimes a \in W$. The fixed point set of this conjugation is V, considered in a canonical way as \mathbb{R}-linear subspace of W. Also there exists a unique hermitian form $h : Z \times Z \to W$ satisfying $h(x \otimes a, y \otimes b) = h(x, y) \otimes ab^*$

defining the quadric

$$Q := Q(A) := \{ (w, z) \in W \times Z : w + \overline{w} = h(z, z) \}.$$
If we denote by \(e \in A \) its unit we realize \(V, W, Z \) as linear subspaces of \(V, W, Z \) by identifying every \(w \in W, z \in Z \) with \(w \otimes e, z \otimes e \) respectively. In this sense \(Q = Q \cap (W \times Z) \subset W \times Z \). Furthermore, for every pair \(A, B \) of unital \(* \)-algebras we have \(Q(A \times B) \cong Q(A) \times Q(B) \) and \(Q(A)(B) \cong Q(A \otimes B) \), where product and involution on \(A \otimes B \) are uniquely determined by \((a \otimes b)(c \otimes d) = (ac \otimes bd) \) and \((a \otimes b)^* = (a^* \otimes b^*)\).

Tensored Example 3.4: We consider Example 3.4 in the lowest possible dimension \(n = 1 \), that is without loss of generality,

\[
Q = \{(w, z) \in \mathbb{C}^2 : w + \overline{w} = z\overline{z}\}
\]

is the Heisenberg sphere in dimension 2. With \(A \) a fixed \(* \)-algebra of complex dimension \(d \) then

\[
(4.1) \quad Q = Q(A) = \{(w, z) \in A^2 : w + w^* = zw^*\}
\]

is a standard quadric of CR-codimension \(d \), and a symmetry is given by \(\gamma(w, z) = (w^{-1}, w^{-1}z) \).

4.2 Proposition. For \(Q \) in (4.1) and \(\text{hol}(Q) = g^{-2} \oplus g^{-1} \oplus g^0 \oplus g^1 \oplus g^2 \) we have

\[
\begin{align*}
g^{-2} &= \{a \partial/\partial w : a \in iA_{sa}\} \\
g^{-1} &= \{zc^* \partial/\partial w + c \partial/\partial z : c \in A\} \\
g^0 &= \{(aw + wa^*) \partial/\partial w + az \partial/\partial z : a \in A\} \times \{(\delta(w) \partial/\partial w + \delta(z) \partial/\partial z : \delta \in \text{der}(A,*)\} \\
g^1 &= \{zc^* w \partial/\partial w + (z^*c^* + wc) \partial/\partial z : c \in A\} \\
g^2 &= \{waw \partial/\partial w + waz \partial/\partial z : a \in iA_{sa}\}.
\end{align*}
\]

Proof. \(g^k \) for \(k < 0 \) is (2.4) and for \(k > 0 \) follows immediately by applying (3.1) to \(g^{-1}, g^{-2} \). For \(k = 0 \) the claim is a direct consequence of the following proposition.

4.3 Proposition. For \(Q \) in (4.1) and the subgroups \(\text{GL}(Q) \), \(G^+ \) of \(G = \text{Aut}(Q) \) as defined in Section 2 we have, where \(e \in A \) is the unit:

\[
\begin{align*}
\text{GL}(Q) &= \{(w, z) \mapsto (awa^*, az) : a \in G(A)\} \times \{g \times g : g \in \text{Aut}(A,*)\} \\
G^+ &= \{(w, z) \mapsto (e + wa + zc^*)^{-1}(w, z + wc) : (a, c) \in Q\}.
\end{align*}
\]

Proof. The second equation follows immediately with (3.2) applied to (2.6).

Next consider an arbitrary \(\varphi \in \text{GL}(Q) \). Then \(\varphi = f \times g \in \text{GL}(A_{sa}) \times \text{GL}(A) \) with \(f(xy^*) = (gx)(gy)^* \) for all \(x, y \in A \) by (2.5). We claim that \(g(e) \) is invertible in \(A \) (compare also Lemma 2.5 in [3]): Indeed, for \(x = e \) we have \(f(y) = (ge)(gy)^* \), and choosing \(y \) with \(f(y) = e \) we find \(e = (ge)(gy)^* \), that is, \(g(e) \in G(A) \).

Obviously the group \(K := \{(w, z) \mapsto (awa^*, az) : a \in G(A)\} \) is contained in \(\text{GL}(Q) \) and the group \(\{\beta \in \text{GL}(A) : (\alpha \times \beta) \in K \text{ for some } \alpha \in \text{GL}(A_{sa})\} \) acts simply transitively on \(G(A) \). We may therefore assume that \(g(e) = e \) for \(\varphi = f \times g \). For every \(x \in A_{sa} \), then \(f(x) = f(xe^*) = (gx)(ge)^* = gx \), that is \(f = g \). Finally, \(f(xy^*) = (gx)(gy)^* \) implies \(g \in \text{Aut}(A,*) \). This implies that \(K \) is normal in \(\text{GL}(Q) \) and that \(\text{GL}(Q) \) is a semi-direct product of the claimed form.

In [3] the notion of a Real Associative Quadric (RAQ for short) has been introduced and for every quadric \(Q \) of this type the subgroups \(\text{GL}(Q) \) and \(G^+ \) of \(\text{Aut}(Q) \) have been explicitly described. In our terminology, the RAQs are just the tensored quadrics \(Q(A) \) of type (4.1), where \(Q \subset \mathbb{C}^2 \) is the Heisenberg quadric in dimension 2 and \(A \) is a commutative \(* \)-algebra. In this special case of a commutative \(* \)-algebra \(A \) the group \(\text{Aut}(A,*) \) obviously can also be written in the following way:

\[
\text{Aut}(A,*) = \text{Aut}(R) \quad \text{for the commutative real algebra} \quad R = A_{sa}.
\]
For every \(a \in R \) we denote by \(L(a) \in \text{End}(R) \) the left multiplication \(x \mapsto ax \) and identify the algebra \(R \) with its image \(L(R) \subset \text{End}(R) \). Then the normalizer \(\{ g \in \text{GL}(R) : g L(R) = L(R) g \} \) is canonically isomorphic to \(\text{Aut}(R) \). Via this identification, for the commutative case the descriptions of \(\text{GL}(Q) \) and \(G^+ \) in Proposition 4.3 occur already in [3].

Tensored Example 3.5: For \(m, n \geq 1 \) and hermitian matrix \(\beta \in \text{GL}_n(\mathbb{C}) \) as in Example 3.5 we consider the tensored quadric \(Q = Q(A) \), where \(A \) is an arbitrary \(*\)-algebra, that is,

\[
Q = \{ (w, z) \in A^{m \times m} \times A^{m \times n} : w + w^* = z \beta z^* \},
\]

where for every matrix \(a = (a_{jk}) \in A^{r \times s} \) the adjoint \(a^* \in A^{s \times r} \) is the matrix \((a_{kj})^* \). Then \(Q \) is a standard quadric and, as before, \((w, z) \mapsto (w^{-1}, w^{-1} z) \) defines a symmetry. It is seen immediately that for \(G^+ \) and \(g = \text{hol}(Q) \) we have

\[
G^+ = \{ (w, z) \mapsto (e + wa + z\beta^* z^{-1})^{-1}(w, z + wc) : (a, c) \in Q \},
\]

\[
g^{-2} = \{ a \partial_{\partial w} : a \in A^{m \times m}, a + a^* = 0 \},
\]

\[
g^{-1} = \{ z\beta c^* \partial_{\partial w} + c \partial_{\partial z} : c \in A^{m \times n} \},
\]

\[
g^1 = \{ z\beta c^* w \partial_{\partial w} + (z\beta c^* z + wc) \partial_{\partial z} : c \in A^{m \times n} \},
\]

\[
g^2 = \{ wau \partial_{\partial w} + waz \partial_{\partial z} : a \in A^{m \times m}, a + a^* = 0 \},
\]

and a simple check reveals \([g^j, g^k] = g^{j+k} \) for all \(j, k \in \{ 0, \pm 1, \pm 2 \} \) with \(j + k \neq 0 \).

More involved is the linear group \(\text{GL}(Q) \). Notice that the group \(\text{GL}_n(A) \) acts by matrix multiplication from the right on \(A^{m \times n} \). A subgroup is the \(\beta \)-unitary group

\[
U_\beta(A) := \{ u \in \text{GL}_n(A) : u\beta u^* = \beta \} \quad \text{with Lie algebra} \quad u_\beta(A) := \{ u \in A^{n \times n} : u\beta + \beta u^* = 0 \}.
\]

For every matrix space \(A^{r \times s} \) we have the embedding \(\text{End}(A) \hookrightarrow \text{End}(A^{r \times s}) \) given by \(f a = (f(a_{jk})) \) for every \(a = (a_{jk}) \in A^{r \times s} \). Then a simple computation gives that

\[
B := \{ (w, z) \mapsto (a(g \cdot w)a^*, a(g \cdot z)u) : a \in \text{GL}_m(A), u \in U_\beta(A), g \in \text{Aut}(A, \ast) \}
\]

is a subgroup of \(\text{GL}(Q) \). In case \(A \) is a semi-simple, up to a permutation of its simple factors, every element of \(\text{Aut}(A, \ast) \) is an inner \(*\)-automorphism of the form \(a \mapsto wa u^* \) with \(u^* = u^{-1} \in G(A) \). In particular, \(\text{Aut}(\mathbb{C}, \ast) \) is the trivial group and it can be seen that \(B = \text{GL}(Q) \) holds in case \(A = \mathbb{C} \). Also \(B = \text{GL}(Q) \) in case \(m = n = 1 \) by Proposition 4.3.

We discuss briefly another local realization of the above tensored quadrics \(Q = Q(A) \): Fix integers \(r > m \geq 1 \) and a hermitian matrix \(\alpha \in \text{GL}_r(\mathbb{C}) \) having at least \(m \) positive eigenvalues. For fixed \(*\)-algebra \(A \) put \(E := A^{m \times r} \) and let \(1 \in \text{GL}_m(A) \) be the unit matrix. Then we call

\[
S := \{ z \in E : z \alpha z^* = 1 \}
\]

a **generalized sphere**. Without loss of generality we may assume that \(\alpha = 1 \times \beta \in \text{GL}_m(\mathbb{C}) \times \text{GL}_n(\mathbb{C}) \) for \(n := r - m \) and some hermitian matrix \(\beta \in \text{GL}_n(\mathbb{C}) \). Now put \(W := A^{m \times m}, Z := A^{m \times n} \). Then \(E = W \oplus Z \) in a canonical way and the quadric \(Q := \{(x, y) \in W \times Z : x + x^* y^{-1} = y \beta y^* \} \) is locally CR-isomorphic to \(S \). Indeed, consider the Cayley transformation \(\kappa \in \text{Bir}(E) \) defined on \(E \) by

\[
(4.4) \quad \kappa(x, y) = (1 - x)^{-1}(1 + x, \sqrt{2}y).
\]
Then \(\kappa^{-1}(x,y) = (x+1)^{-1}(x-1, \sqrt{2}y) \) and a simple computation shows that the birational transformation \(\kappa \) gives a CR-isomorphism

\[
\kappa : S \cap \text{reg}(\kappa) \to Q \cap \text{reg}(\kappa^{-1}).
\]

Since \(Q \cap \text{reg}(\kappa^{-1}) \) is connected by Lemma 2.2 in [5], also \(S \cap \text{reg}(\kappa) \) is connected. Consequently \(S \) is a connected generic real-analytic CR-submanifold of \(E \). Furthermore, \(\kappa \) induces an isomorphism between the real Lie algebras \(g = \mathfrak{hol}(Q) \) and \(\mathfrak{s} = \mathfrak{hol}(S) \). Since \(\kappa = \exp(\xi) \) for some \(\xi \in \mathfrak{l} := \mathfrak{g} + i\mathfrak{g} \), we have also \(\mathfrak{l} = \mathfrak{s} + i\mathfrak{s} \) and every vector field in \(\mathfrak{s} \) is polynomial of degree \(\leq 2 \) on \(E \). For every \(a \in E \) application of the vector field \(\xi := (a - za\sigma^* z) \partial/\partial z \) on \(E \) to the defining equation for \(S \) gives

\[
\xi(zaz^* - 1) = (a - za\sigma^* z)az^* + za(\sigma^* - a^*aaz^*) = (1 - za\sigma^*)aaaz^* + za\sigma^*(1 - za\sigma^*).
\]

This shows that \(\xi \) is tangent to \(S \) and we get the decomposition

\[
s = \mathfrak{k} \oplus \mathfrak{p} \quad \text{with} \quad \mathfrak{k} := \{ \xi \in \mathfrak{s} : \xi_0 = 0 \} \quad \text{and} \quad \mathfrak{p} := \{(a - za\sigma^* z) \partial/\partial z : a \in E \}.
\]

Notice that the evaluation map \(e_0 : \mathfrak{s} \to E \) at the origin induces an \(\mathbb{R} \)-linear isomorphism of \(\mathfrak{p} \) onto \(E \). The Lie subalgebra \(\mathfrak{k} \) contains the multiple \(\delta := iz\partial/\partial z \) of the Euler field, and \(\mathfrak{p} \) resp. \(\mathfrak{p} \) are the 0- resp. \(-1 \)-eigenspaces of \((ad \delta)^2 \) in \(\mathfrak{s} \). Also, every vector field in \(\mathfrak{k} \) is linear, and \(\mathfrak{t} = \mathfrak{gl}(\mathfrak{s}) \) is the Lie algebra of the linear algebraic group \(K := \text{GL}(\mathfrak{s}) = \{ g \in \text{GL}(E) : g(S) = S \} \). It is clear that the group \(U := U_1 \times U_\alpha \subset \text{GL}_m(A) \times \text{GL}_r(A) \) acts linearly on \(S \) via \(z \mapsto uzv^* \), and it can be seen that there is an open orbit in \(S \) for this action.

5. Links with bounded symmetric domains

For the special case \(\beta = 1 \) in Example 3.5 the quadric \(Q \) coincides with the \(\check{\text{Silov}} \) boundary \(\check{D} \) of the symmetric Siegel domain

\[
D := \{ (w,z) \in \mathfrak{C}^{m \times m} \times \mathfrak{C}^{m \times n} : (w + w^* - zz^*) > 0 \},
\]

which is also the interior of the convex hull of \(Q \). The inverse Cayley transform \(\kappa^{-1} \), see (4.4), maps the Siegel domain \(D \) biholomorphically onto the bounded symmetric domain

\[
B := \{ (w,z) \in \mathfrak{C}^{m \times m} \times \mathfrak{C}^{m \times n} : (1 - ww^* - zz^*) > 0 \}
\]

and the quadric \(Q = \check{D} \) to an open dense part of the (compact) \(\check{\text{Silov}} \) boundary

\[
\check{B} = \{ (w,z) \in \mathfrak{C}^{m \times m} \times \mathfrak{C}^{m \times n} : (ww^* + zz^*) = 1 \}
\]

(called a generalized sphere above) of \(B \). The extended quadric \(\check{Q} \) is CR-isomorphic to \(\check{B} \).

Now consider the symmetry \(\sigma \in \text{Aut}(D) \) of \(D \) at the point \(e := (1, 0) \in D \). Then \(\sigma = \kappa \circ (-\text{id}) \circ \kappa^{-1} \) with \(-\text{id} \) being the symmetry of \(B \) at the origin. A simple computation shows \(\sigma(w,z) = (w^{-1}, -w^{-1}z) \). But \(\sigma \) extends to a symmetry of \(Q \) in the sense of Section 3 and is essentially the same (up to the sign in the second variable) as the symmetry \(\gamma \) we used before. Besides these bounded symmetric domains of type \(I \) and their variations from Example 3.5 there are two more non-tube types of irreducible bounded symmetric domains, all leading to symmetric standard quadrics, namely those of types \(II \) and \(V \) (for this and further details in the following see [9]).

Type II Fix an even integer \(m \geq 4 \) and let \(j := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \text{GL}_m(\mathbb{Z}) \). Also put

\[
W := \{ w \in \mathfrak{C}^{m \times m} : w^j = w \} \quad \text{and} \quad Z := \mathfrak{C}^{m \times 1},
\]
where \(w^J := jw'j^{-1} \) and \(w' \) is the transpose of \(w \). Then \(W \) is a complex unital Jordan subalgebra of \(\Phi_{m \times m}^{\oplus} \) with \(W = W^* \).

\[
Q := \{(w, z) \in W \oplus Z : w + w^* = zz^* + (zz^*)^J\},
\]

is a standard quadric with symmetry \(\sigma(w, z) = (w^{-1}, -w^{-1}z) \), and \(\mathfrak{hol}(Q) \cong \mathfrak{so}^*(2m+2) \).

Type V Let \(\Phi \) be the real Cayley division algebra and \(x \mapsto \sigma \) its canonical (real) involution. \(\Phi \) is an alternative algebra of dimension 8 over \(\mathbb{R} \) with \(\sigma = x \) if and only if \(x \in \mathbb{R} \cdot 1 \). Denote by \(\Phi^c \) the complexification of \(\Phi \) and extend the involution of \(\Phi \) to a conjugate linear involution \(z \mapsto \bar{z} \) of the complex alternative algebra \(\Phi^c \). Then \(\bar{wz} = \bar{z} \bar{w} \) for all \(w, z \in \Phi^c \) and

\[
Q := \{(w, z) \in \Phi^c \times \Phi^c : w + \bar{w} = zz^*\}
\]

is a standard quadric of CR-codimension 8 in \(\Phi^{16} \). Again, \(\sigma(w, z) = (w^{-1}, -w^{-1}z) \) is a symmetry of \(Q \). Notice that for every \(w, z \in \Phi^c \) with \(w \) invertible there is a unital associative complex subalgebra of \(\Phi^c \) containing \(w, w^{-1} \) and \(z \). Furthermore, \(\mathfrak{hol}(Q) \) is isomorphic to the exceptional real Lie algebra \(\mathfrak{e}_6(-14) \).

References

1. Baouendi, M.S., Jacobowitz, H., Treves F.: On the analyticity of CR mappings. Ann. of Math. 122, 365-400 (1985).
2. Beloshapka, V.: On holomorphic transformations of a quadric. Math. USSR Sb. 72, 189-205 (1992).
3. Ezhov, V., Schmalz, G.: A Matrix Poincaré Formula for Holomorphic Automorphisms of Quadrics of Higher Codimension. Real Associate Quadrics. J. Geom. Analysis 8, 27-41 (1998).
4. Ezhov, V., Schmalz, G.: Automorphisms of Nondegenerate CR-Quadrics and Siegel Domains. Explicit Description. J. Geom. Analysis 11, 441-467 (2001).
5. Fels, G., Kaup, W.: Local tube realizations of CR-manifolds and maximal abelian subalgebras. arXiv 0810.2019.
6. Isaev, A., Kaup, W.: Regularization of Local CR-Automorphisms of Real-Analytic CR-manifolds. arXiv:0906.3079.
7. Kaup W., Zaitsev, D.: On Symmetric Cauchy-Riemann Manifolds. Adv. Math. 149, 145-181 (2000).
8. Lang, S: Algebra. Graduate Texts in Mathematics 211, Springer 2005.
9. Loos, O.: Bounded symmetric domains and Jordan pairs, Mathematical Lectures. Irvine: University of California at Irvine 1977.
10. Tumanov, A., Finite-dimensionality of the group of CR automorphisms of a standard CR manifold, and proper holomorphic mappings of Siegel domains. Math. USSR. Izv. 32, 655–662 (1989).