A preliminary assessment of odonate diversity along the river Tirthan, Great Himalayan National Park Conservation Area, India with reference to the impact of climate change

Amar Paul Singh¹, Kritish De¹, Virenda Prasad Uniyal² & Sambandam Sathyakumar³

Abstract: A total of 19 species of odonates, including eight species of Anisoptera (dragonflies) and 11 species of Zygoptera (damsel flies), were recorded along the Tirthan River, Great Himalayan National Park Conservation Area (GHNPCA), Himachal Pradesh. Among these species, 17 were reported from the area for the first time. With the addition of these new records the number of odonates known from the GHNPCA is increased to 23 species representing 18 genera and eight families. Indothemis carnatica, Argiogonemesis femina, and Argiogonemesis rubescens are reported for the first time from the western Himalayan region. The study found a significant change in the species composition of odonates over a period of 18 years in the area, which may be due to changes in microhabitat conditions associated with climate change.

Keywords: Dragonfly, damselfly, GHNPCA, Himachal Pradesh, new records, western Himalaya.

Globally, 6,256 species in 686 genera of odonates (order Odonata) are known (Paulson & Schorr 2020) and most of them are restricted to the tropics, especially to forests, where the group has the greatest diversity (Kalkman et al. 2008). The Odonata of India is represented by 488 species and 27 subspecies in 154 genera and 18 families (Kalkman et al. 2020). The suborder Zygoptera (Damsel flies) comprise 211 species in 59 genera & nine families; Anisogzyoptera one species in one genus & one family; and Anisoptera (Dragonflies) 276 species in 94 genera & eight families (Subramanian & Babu 2017).

The odonates are among the most effective bioindicators of environmental health (Kutch & Bried 2014; Miguel et al. 2017), and can be used to assess water quality (Kutch & Bried 2014), changes in the habitat structure (Yang et al. 2017), success of wetland restoration (D’Amico et al. 2004), ecological condition of streams (de Oliveira-Junior et al. 2015), and environmental quality (Júnior et al. 2015). Odonate diversity of Himachal Pradesh has been studied by various authors (Kumar 1982, 2000; Uniyal et al. 2000; Babu & Mehta 2009; Babu & Nandy 2010; Babu & Mitra 2011; Subramanian & Babu 2018). Uniyal et al. (2000) reported six species of dragonflies from the Great Himalayan National Park.

The Great Himalayan National Park Conservation Area (GHNPCA) is a World Heritage site designated by UNESCO, situated in Kullu district of Himachal Pradesh and traversed by three tributaries of river Beas—Tirthan, Parvati, and Sainj. The Park extends from the Himalayan foothills to the alpine zone ranging from 1,300m to 6,000m of altitudinal gradient. The present study was...
carried out in order to update our understanding of the diversity of odonates in the GHNPCA and to assess the changes of species composition, if any, over the period of 18 years since the previous survey (Uniyal et al. 2000).

Materials and Methods

The work was carried out along a length of about 28km of the river Tirthan (a tributary of Beas River), from Nagini village (31.640 lat. 77.398 long., 1,475m to Chalocha (31.685 lat., 77.513 long., 2,450m) monthly from June to December, 2018. The area lies near the boundary within the GHNPCA (Figure 1) located in the western Himalaya in the state of Himachal Pradesh. It was declared as a national park in 1999 and a world heritage site by UNESCO in 2014. The area comes under the ‘Western Himalayan broadleaf forests’ ecoregion (UNESCO 2020).

We surveyed odonate diversity following the methods of Giugliano et al. (2012). Adults were surveyed between 0930 h and 0500 h by walking slowly along the edge of the water body three times a month; and with the help of binoculars notes were made of all species observed. Most species were identified without capture. When necessary, a telescopic sweep net was used to catch odonates for identification. Species were identified using published literature (Andrew et al. 2008; Subramaniam 2009; Nair 2011) and web resources (Joshi et al. 2019).

Results and Discussion

A total of 19 species of odonates representing 16 genera were recorded; these comprised eight species of dragonflies (Anisoptera) and 11 species of damselflies (Zygoptera) (Table 1, Image 1–19). Among the dragonflies, the family Libellulidae was represented by six species in four genera, and the families Aeshnidae and Gomphidae by one species each (Figure 2). Among the damselflies, the family Coenagrionidae was represented by five species in four genera, the families Chloroclyphiidae and Platycnemididae by two species each, and the families Lestidae and Calopterygidae by only one species each (Figure 2).

Among these odonates, one dragonfly *Indothemis carnatica* Fabricius, 1798 and two damselflies, namely, *Agriocnemis femina* Brauer, 1868 and *Argiocnemis rubescens* Selys, 1877, are reported for the first time from Himachal Pradesh, these being the westernmost records in the Himalaya. Rank abundance tests revealed that Libellulidae was the dominant family in the river followed by Coenagrionidae and Lestidae was the least dominant family (Figure 3).

Uniyal et al. (2000) reported the presence of six species of odonates from the GHNPCA. The present study reports another 17 species from the area which increases the total number of odonate species from the area to 23 species in 18 genera and eight families. The present study failed to register *Anax guttatus*, *Orthetrum japonicum*, *Pantala flavescens*, and *Sympetrum commixtum*, which were recorded from the area by Uniyal et al. (2000). The present work reported *Indothemis carnatica*, *Agriocnemis femina*, and *Argiocnemis rubescens* for the first time from the western Himalayan region, these species having previously been reported from the east within the Himalayan region (Subramanian & Babu 2018), however, *Indothemis carnatica* was previously reported from Andaman & Nicobar Island, Maharashtra, Goa, Karnataka, Kerala, Tamil Nadu, Andhra Pradesh, Odisha, West Bengal (Subramanian et al. 2018; Payra et al. 2020) and has been recently recorded from Punjab (Singh et al. 2021).

Compared with Uniyal et al. (2000) that recorded six species, the present study was conducted more systematically along 28 km of the Tirthan River using standardised methods. Grassy, stagnant water, running water, and rocky habitats were preferred by different species (Image 20 and 21). *Orthetrum triangulare* and *Orthetrum taeniolatum* were the most common species found throughout the stretch from 1,475 m elevation.
Odonate diversity along the river Tirthan, India

Singh et al.

J TT

19613

up to 2,450 m. There was higher species richness at lower elevations. Calicnemia eximia, Ischnura rubilio, and Agriocnemis femina preferred grassy habitat near the banks of stagnant ponds at a lower elevation range from 1,475–1,600 m. Anax nigrofasciatus, Crocethemis servilia, Orthetrum pruinorum, Orthetrum triangulare, Amphilagama parvum, Ceriagrion coromandelianum, Ischnura forcipata, Polopopleura sexmaculata, Libellago lineata, and Copera vittata were found at stagnant or slow running grassy water channels from 1,475–1,700 m. Indolestes cyaneus was very rare in the region and was found away from the river under forest canopy cover at an elevation of 1,495 m. Aristocypha quadrimalculata and Indolestes cyaneus preferred rocky water channels from 1,475–2,000 m. However, Paragomphus lineatus was found in agricultural areas near the river from 1,475–1,600 m and Neurobasis chinesis was collected from fast running water at 1,475 m.

The Himalayan ecosystem is a sensitive and fragile ecosystem with rich biodiversity that provides major ecosystem services (Kumar et al. 2019). As climate change phenomena become a threat to this ecosystem, monitoring climatic indicator species helps us understand the change of ecosystem functions caused by climate change. Odonates have for some time been used successfully as model organisms to study climate change (Hassall & Thompson 2008; Parr 2010; Jaeschke et al. 2013; Bush et al. 2014; Hassall 2015; Termaat et al. 2019). Studies by Flenner & Sahlén (2008) has shown that species composition and abundance may change over as short a time span as 10 years due to environmental changes as dragonflies react rapidly to climate change. The present study found significant changes in the odonate species composition relative to that found by Uniyal et al. (2000), as only two species were re-recorded with the addition of 17 new species to the region. These changes in species

Table 1. List of odonates recorded from Tirthan River, Great Himalayan National Park Conservation Area.

Family	Scientific name	Elevation range (m)	No. of individuals observed
Anisoptera			
Aeshnidae	Anax nigrofasciatus	1475–1700	8
Gomphidae	Paragomphus lineatus	1475–1600	12
Libellulidae	Crocethemis servilia	1475–1700	18
4	Indolestes cyaneus	1475–2000	26
5	Orthetrum pruinorum	1475–1700	22
6	Orthetrum taeniogatum	1475–2450	25
7	Orthetrum triangulare	1475–2450	38
8	Polopopleura sexmaculata	1475–1700	4
Zygoptera			
9	Agriocnemis femina	1475–1600	2
10	Amphilagama parvum	1475–1700	6
11	Ceriagrion coromandelianum	1475–1700	35
12	Ischnura forcipata	1475–1700	18
13	Ischnura rubilio	1475–1600	2
14	Aristocypha quadrimalculata	1475–2000	2
15	Libellago lineata	1475–1700	2
16	Neurobasis chinesis	1475	4
17	Indolestes cyaneus	1495	1
18	Calicnemia eximia	1475–1600	32
19	Copera vittata	1475–1700	6

and Indolestes cyaneus preferred rocky water channels from 1,475–2,000 m. However, Paragomphus lineatus was found in agricultural areas near the river from 1,475–1,600 m and Neurobasis chinesis was collected from fast running water at 1,475 m.

The Himalayan ecosystem is a sensitive and fragile ecosystem with rich biodiversity that provides major ecosystem services (Kumar et al. 2019). As climate change phenomena become a threat to this ecosystem, monitoring climatic indicator species helps us understand the change of ecosystem functions caused by climate change. Odonates have for some time been used successfully as model organisms to study climate change (Hassall & Thompson 2008; Parr 2010; Jaeschke et al. 2013; Bush et al. 2014; Hassall 2015; Termaat et al. 2019). Studies by Flenner & Sahlén (2008) has shown that species composition and abundance may change over as short a time span as 10 years due to environmental changes as dragonflies react rapidly to climate change. The present study found significant changes in the odonate species composition relative to that found by Uniyal et al. (2000), as only two species were re-recorded with the addition of 17 new species to the region. These changes in species
Image 20. *Anax nigrofasciatus* in stagnant and grassy water habitat.

Image 21. Rocky, grassy, and fast running water habitat.

Images 1–19: 1—*Anax nigrofasciatus* | 2—*Paragomphus lineatus* | 3—*Crocothemis servilia* | 4—*Indothemis carnatica* | 5—*Orthetrum pruinatum* | 6—*Orthetrum taeniolum* | 7—*Orthetrum triangulum* | 8—*Palpopleura sexmaculata* | 9—*Agriocnemis femina* | 10—*Amphiallagma parvum* | 11—*Ceriagrion coromandelianum* | 12—*Ischnura forcipata* | 13—*Ischnura rubilio* | 14—*Aristocypha quadrimaculata* | 15—*Libellago lineata* | 16—*Neurobasis chinensis* | 17—*Indolestes cyaneus* | 18—*Calicnemia eximia* | 19—*Copera vittata*. © Amar Paul Singh
composition may have occurred because of changes in microhabitat factors due to climate changes in the Himalayan region or due to the sampling efforts in the region.

Dragonflies have been shown to be useful for ecosystem monitoring and conservation, and recently an increased effort is being made to make information on dragonflies available to both scientists and policymakers (Kalkman et al. 2008). So, it is indispensable to document the status of diversity and ecology of odonates as well as other entomofauna from the Great Himalayan National Park Conservation Area to understand changing ecological conditions in the context of climate change.

REFERENCES

Andrew, R.J., K.A. Subramaniam & A.D. Tiple (2008). Common Odonates of Central India. E-book for “The 18th International Symposium of Odonatology”, Hislop College, Nagpur, India, 50pp.

Babu, R. & H.S. Mehta (2009). Insecta: Odonata, pp. 21–28. In: Faunal Diversity of Simbalbara Wildlife Sanctuary. Conservation Area Series No. 41. Zoological Survey of India, Kolkata.

Babu, R. & A. Mitra (2011). A record of Gomphidia t-nigrum Selys from Himachal Pradesh, India (Anisoptera: Gomphidae). Notulae odonatologicae 7(8): 75–76.

Babu, R. & S. Nandy (2010). New Odonata records from Himachal Pradesh, India. Notulae odonatologicae 7(6): 55–57.

Bush, A.A., D.A. Nipperess, D.E. Duursma, G. Theischinger, E. Turak & L. D’Amico, F., S. Darblade, S. Avignon, S. Blanc-Manel & S.J. Ormerod (2015). The effects of environmental warming on Odonata: a review. Ecological Indicators 5: 127. https://doi.org/10.3897/ecolind.5.846

Jaeschke, A., T. Bittner, B. Reineking & C. Beierkuhnlein (2013). Can other entomofauna from the Great Himalayan region or due to the sampling efforts in the eastern Amazon.

Júnior, C.D.S.M., L. Juen & N. Hamada (2015). Dragonflies as candidates for biodiversity and conservation. Austral Ecology 40(6): 733–744. https://doi.org/10.1111/aec.12242

Kalkman, V.J., R. Babu, M. Bedjanič, K. Conniff, T. Gyeltshen, M.K. Khan, K.A. Subramaniam, A. Zia & A.G. Orr (2020). Checklist of the dragonflies and damselflies (Insecta: Odonata) of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. Zootaxa 4849(1): 001–084. https://doi.org/10.11646/zootaxa.4849.1.1

Kumar, A. (1982). An annotated list of Odonata of Himachal Pradesh. Indian Journal of Physical and Natural Sciences 2(1): 55–59.

Kumar, A. (2000). Odonata, pp. 45–53. In: Fauna of Renuka Wetland (Western Himalaya: Himachal Pradesh). Wetland Ecosystem Series No. 2. Zoological Survey of India, Calcutta.

Kumar, M., H. Singh, R. Pandey, M.P. Singh, N.H. Ravindranath & N. Kalra (2019). Assessing vulnerability of forest ecosystem in the Indian Western Himalayan region using trends of net primary productivity. Biodiversity and Conservation 28(6–8): 2163–2182. https://doi.org/10.1007/s10531-018-1363-2

Kutcher, T.E. & J.T. Bried (2014). Adult Odonata conservatism as an indicator of freshwater wetland condition. Ecological Indicators 38: 31–39. https://doi.org/10.1016/j.ecolind.2013.10.028

Nair, M.V. (2011). Dragonflies & Damselflies of Orissa and Eastern India. Wildlife Organisation, Forest & Environment Department, Government of Orissa, 252pp.

Parr, A. (2010). Monitoring of Odonata in Britain and possible insights into climate change. BioRisk 5: 127. https://doi.org/10.3897/biorisk.5.846

Paulson, D. & M. Schorr (2020). World Odonata List. https://wpsu.soton.ac.uk/academics/academic-resources/slater-museum/biodiversity-resources/dragonflies/world-odonata-list2 Accession date: 28/07/2019

Payra, A., S.K. Dash, H.S. Palei, A.D. Tiple, A.K. Mishra, R.K. Mishra & S.D. Rout (2020). An updated list of Odonata species from Athgarh Forest Division, Odisha, eastern India (Insecta: Odonata). Mongolian Journal of Biological Sciences 18(1): 55–64.

Singh, A.P., A. Chandra, V.P. Uniyal & B.S. Adhikari (2021). Catalogue of selected insect groups of Lalwan Community Reserve and Ranjit Sagar Conservation Reserve, Punjab, India. Journal of Threatened Taxa 13(3): 18020–18029. https://doi.org/10.11609/jott.5669.13.18020-18029

Subramaniam, K.A. (2009). Dragonflies of India: A Field Guide. Vigyan Prasar, Noida, 168pp.

Subramaniam, K.A., K.G. Emiliyamma, R. Babu, C. Radhakrishnan & S.S. Talmaie (2018). Atlas of Odonata (Insecta) of the Western Ghats. Zoological Survey of India, Kolkata, 417pp.

Subramaniam, K.A. & R. Babu (2018). Insecta: Odonata, pp. 227–240. In: Faunal Diversity of Indian Himalaya. Zoological Survey India, Kolkata.

Subramaniam, K.A. & R. Babu (2017). Checklist of Odonata (Insecta) of India. Version 3.0. https://www.zsi.gov.in/WriteReadData/userfiles/file/Checklist/Odonata%20V3.pdf. Accession date: 24/06/2019

UNESCO (2020). Great Himalayan National Park Conservation Area. https://whc.unesco.org/en/list/1406

Uniyal, V.P., A. Mitra & P.K. Mathur (2000). Dragonfly fauna (Insecta: Odonata) in Great Himalayan National Park, western Himalaya. Annals of Forestry 8(1): 116–119.

Yang, G., Z. Li & C. Fan (2017). The effect of ecological rehabilitation of the Erhai lake side on Odonata species richness and abundance. Aquatic Insects 39(4): 231–238. https://doi.org/10.1080/01612225.2017.1414851
Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSQO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to: The Managing Editor, JoTT, c/o: Wildlife Information Liaison Development Society, No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Reviewers 2018–2020

Due to paucity of space, the list of reviewers for 2018-2020 is available online.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2021 | Vol. 13 | No. 11 | Pages: 19431-19674

Date of Publication: 26 September 2021 (Online & Print)
DOI: 10.11609/jott.2021.13.11.19431-19674

Articles

Understanding human-flying fox interactions in the Agusan Marsh Wildlife Sanctuary as basis for conservation policy interventions
– Sherry L. Paz & Juan Carlos T. Gonzalez, Pp. 19421–19447

Argentinian odonates (dragonflies and damselflies): current and future distribution and discussion of their conservation
– A. Nava-Bolaños, D.E. Vrech, A.V. Peretti & A. Córdoba-Aguilar, Pp. 19448–19465

Communications

The diel activity pattern of small carnivores of Western Ghats, India: a case study at Nelliamputties in Kerala, India
– Devika Sangamithra & P.O. Nameer, Pp. 19466–19474

Distribution and threats to Smooth-Coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae) in Shuklaphanta National Park, Nepal
– Gopi Krishna Joshi, Rajeev Joshi & Bishow Poudel, Pp. 19475–19483

Wildlife hunting practices of the Santal and Oraon communities in Rajshahi, Bangladesh
– Azizul Islam Barkat, Fahmida Tasnim Liza, Sumaiya Akter, Ashikur Rahman Shome & M. Fazle Rabbe, Pp. 19484–19491

Ethnozoological use of primates in northeastern India
– Deborah Daolagupu, Nazimur Rahman Talukdar & Parthankar Choudhury, Pp. 19492–19499

Factors influencing the flush response and flight initiation distance of three owl species in the Andaman Islands
– Shanmugavel Sureshramamithu, Santhanakrishnan Babu, Honnavalli Nagaraj Kumara & Nagaraj Rajeshkumar, Pp. 19500–19508

Birds of Barandabhar Corridor Forest, Chitwan, Nepal
– Saneer Lamichhane, Babu Ram Lamichhane, Kapil Pokharel, Pramod Raj Regmi, Tulasi Prasad Dahal, Santosh Bhattarai, Chiranjibi Prasad Pokheral, Pabitra Gotame, – Saneer Lamichhane, Babu Ram Lamichhane, Kapil Pokharel, Pramod Raj Regmi, Tulasi Prasad Dahal, Santosh Bhattarai, Chiranjibi Prasad Pokheral, Pabitra Gotame, Trishna Rayamajhi, Ram Chandra Kandel & Aashish Gurung, Pp. 19509–19526

On some additions to the amphibians of Gunung Inas Forest Reserve, Kedah, Peninsular Malaysia
– Shahriza Shahrudin, Pp. 19527–19539

Reviews

A review of research on the distribution, ecology, behaviour, and conservation of the Slender Loris Loris lydekkerianus (Mammalia: Primates: Lorisidae) in India
– Mewa Singh, Mridula Singh, Honnavalli N. Kumara, Shanthala Kumar, Smithi D. Gnanadiviu & Ramamoorthy Sasi, Pp. 19540–19552

Bivalves (Mollusca: Bivalvia) in Malaysian Borneo: status and threats
– Abdulla Al-Asif, Hadi Hamli, Abu Hena Mustafa Kamal, Mohd Hanafi Idris, Geoffrey James Gerusu, Johan Ismail & Muyassar H. Abulreesh, Pp. 19553–19565

Disentangling earthworm taxonomic stumbling blocks using molecular markers
– Azhar Rashid Lone, Samarendra Singh Thakur, Nalini Tiwari, Olusola B. Sokefun & Shweta Yadav, Pp. 19566–19579

A reference of identification keys to plant-parasitic nematodes (Nematoda: Tylenchida), Tylenchomorpha)
– Reza Ghaderi, Manouchehr Hosseinovand & Ali Eskandari, Pp. 19580–19602

A preliminary assessment of odonate diversity along the river Tirthan, Great Himalayan National Park Conservation Area, India with reference to the impact of climate change
– Amar Paul Singh, Kritish De, Virendra Prasad Uniyal & Sambandam Sathyakumar, Pp. 19611–19615

A checklist of orthopteran fauna (Insecta: Orthoptera) with some new records in the cold arid region of Ladakh, India
– M. Ali, M. Kamil Usmani, Hira Naz, Tajamul Hassan Baba & Mohsin Ali, Pp. 19616–19625

New distribution records of two Begoniaceae to the flora of Bhutan
– Phub Gyeltshen & Sherab Jamtho, Pp. 19626–19631

Rediscovery of Aponogeton laxonhensis A. Camus (Aponogetonaceae): a long-lost aquatic plant of India
– Debolina Dey, Shrirang Ramchandra Yadav & Nilakshree Devi, Pp. 19632–19635

Glyphaconia acuminata (Hask.) Clayton var. laevis (Poaceae): a new variety from central Western Ghats of Karnataka, India
– H.U. Abhijit & Y.L. Krishnamurthy, Pp. 19636–19639

A cytomorphological investigation of three species of the genus Sonchus L. (Asteraceae) from Punjab, India
– M.C. Sidhu & Rai Singh, Pp. 19640–19644

Dryopteris lunonanensis (Dryopteridaceae) - an addition to the pteridophytic diversity of India
– Chhandam Chanda, Christopher Roy Fraser-Jenkins & Vineet Kumar Rawat, Pp. 19645–19648

Notes

First record of Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) with photographic evidence in Meghalaya, India
– Papri Khatonier & Adrian Wansaindor Lyngdoh, Pp. 19649–19651

First record of the Eastern Cat Snake Boiga gocool (Gray, 1835) (Squamata: Colubridae) with photographic evidence in Meghalaya, India
– Amar Paul Singh, Kritish De, Virendra Prasad Uniyal & Sambandam Sathyakumar

First record of the genus Tibetanta (Lepidoptera: Eupterotidae: Janinae) from India
– Alka Vaidya & H. Sankararaman, Pp. 19657–19659

A presentation of the spicules of Armstrongia pedata (Asteraceae): an addition to the pteridophytic diversity of India
– Debolina Dey, Shrirang Ramchandra Yadav & Nilakshree Devi, Pp. 19632–19635

Aestrubostrus cardellinae (Mollusca: Gastropoda) from central Argentina: a rare, little-known land snail
– Sandra Gordillo, Pp. 19660–19662

Intestinal coccidiosis (Apicomplexa: Eimeriidae) in a Himalayan Griffon Vulture Gyps himalayensis
– Vimalraj Padayatchiar Govindan, Parag Madhukar Dhakate & Ayush Uniyal, Pp. 19663–19664

Two new additions to the orchid flora of Assam, India
– Pranab Kumar Bora, Pp. 19665–19670

Wildlife art and illustration – combining black and white ink drawings with colour: some experiments in Auroville, India
– Eric Ramanujam & Joss Brooks, Pp. 19671–19674

Short Communications

Catalogue of herpetological specimens from Meghalaya, India at the Salim Ali Centre for Ornithology and Natural History
– S.R. Chandramouli, R.S. Naveen, S. Sureshramamithu, S. Babu, P.V. Karunakaran & Honnavalli N. Kumara, Pp. 19603–19610