How is a chordal graph like a supersolvable binary matroid?

Raul Cordovil, David Forge and Sulamita Klein

To the memory of Claude Berge

Abstract. Let G be a finite simple graph. From the pioneering work of R. P. Stanley it is known that the cycle matroid of G is supersolvable if G is chordal (rigid): this is another way to read Dirac’s theorem on chordal graphs. Chordal binary matroids are not in general supersolvable. Nevertheless we prove that, for every supersolvable binary matroid M, a maximal chain of modular flats of M canonically determines a chordal graph.

1. Introduction and notations

Throughout this note M denotes a matroid of rank r on the ground set $[n] := \{1, 2, \ldots, n\}$. We refer to [7, 9] as standard sources for matroid theory. We recall and fix some notation of matroid theory. The restriction of M to a subset $X \subseteq [n]$ is denoted $M|_X$. A matroid M is said to be simple if all circuits have at least three elements. A matroid M is binary if the symmetric difference of any two different circuits of M is a union of disjoint circuits. Graphic and cographic matroids are extremely important examples of binary matroids. The dual of M is denoted M^*. Let $C = C(M)$ [resp. $C^* = C^*(M) = C(M^*)$] be the set of circuits [resp. cocircuits] of M. Let $C_\ell := \{C \in C : |C| \leq \ell\}$. In the following the singleton $\{x\}$ is denoted by x. We will denote by

$$cl(X) := X \cup \{x \in [n] : \exists C \in C, C \setminus X = x\},$$

the closure in M of a subset $X \subseteq [n]$. We say that $X \subseteq [n]$ is a flat of M if $X = cl(X)$. The set $F(M)$ of flats of M, ordered by inclusion, is a geometric lattice. The rank of a flat $F \in F$, denoted $r(F)$, is equal to m if there are $m + 1$ flats in a maximal chain of flats from \emptyset to F.

2000 Mathematics Subject Classification: Primary: 05B35, Secondary: 05CXX. Keywords and phrases: chordal binary matroids, cliques, supersolvable matroids.

The first author’s research was supported in part by FCT/FEDER/POCTI (Portugal) and the project SAPIENS/FEDER/36563/00. The third author was partially supported by CNPq, MCT/FINEP PRONEX Project 107/97, CAPES (Brazil)/COFECUB (France), project number 213/97, FAPERJ.
The flats of rank 1, 2, 3 and \(r - 1 \) are called points, lines, planes, and hyperplanes respectively. A line \(L \) with two elements is called trivial and a line with three elements is called nontrivial (a binary matroid has no line with more than three points). Given a set \(X \subseteq [n] \), let \(r(X) := r(\text{cl}(X)) \). A pair \(F, F' \) of flats is called modular if
\[
 r(F) + r(F') = r(F \lor F') + r(F \land F').
\]
A flat \(F \in \mathcal{F} \) is modular if it forms a modular pair with every other flat \(F' \in \mathcal{F} \).

Definition 1.1. A matroid \(M \) on \([n]\) of rank \(r \) is supersolvable if there is a maximal chain of modular flats \(\mathcal{M} \)
\[
\mathcal{M} := F_0(= \emptyset) \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r(= [n]).
\]
We call \(\mathcal{M} \) an \(M \)-chain of \(M \). To the \(M \)-chain \(\mathcal{M} \) we associate the partition \(\mathcal{P} \) of \([n]\)
\[
\mathcal{P} := F_1 \uplus \cdots \uplus (F_i \setminus F_{i-1}) \uplus \cdots \uplus (F_r \setminus F_{r-1}).
\]
We call \(\mathcal{P} \) an \(M \)-partition of \(M \).

We recall that a graph \(G \) is said chordal (or rigid or triangulated) if every cycle of length at least four has a chord. Chordal graphs are treated extensively in Chapter 4 of [6]. The notion of a “chordal matroid” has also been recently explored in the literature, see [2].

Definition 1.2 ([1] p. 53). Let \(M \) be an arbitrary matroid (not necessarily simple or binary). A circuit \(C \) of \(M \) has a chord \(i_0 \) if there are two circuits \(C_1 \) and \(C_2 \) such that \(C_1 \cap C_2 = i_0 \) and \(C = C_1 \Delta C_2 \). In this case, we say that the chord \(i_0 \) splits the circuit \(C \) into the circuits \(C_1 \) and \(C_2 \). We say that a matroid is \(\ell \)-chordal if every circuit with at least \(\ell \) elements has a chord. A simple matroid \(M \) is chordal if it is 4-chordal.

In this paper we always suppose that the edges of a graph \(G \) are labelled with the integers of \([n]\). If nothing else is indicated we suppose \(G \) is a connected graph. Let \(\mathcal{M}(G) \) be the cycle matroid of the graph \(G \): i.e., the elementary cycles of \(G \), as subsets of \([n]\), are the circuits of \(\mathcal{M}(G) \). In the same way, the minimal cutsets of a connected graph \(G \) (i.e., a set of edges that disconnect the graph) are the circuits of a matroid on \([n]\), called the cocycle matroid of \(G \). A matroid is graphic (resp. cographic) if it is the cycle (resp. cocycle) matroid of a graph. The cocycle matroid of \(G \) is dual to the cycle matroid of \(G \) and both are binary. The cocycle matroids of the complete graph \(K_5 \) and of the
complete bipartite graph $K_{3,3}$ are examples of binary but not graphic matroids; see Section 13.3 in [7] for details. The Fano matroid is an example of a supersolvable binary matroid that is neither graphic nor cographic. Finally, note that an elementary cycle C of G has a chord iff C seen as a circuit of the matroid $M(G)$ has a chord.

Example 1.3. Consider the chordal graph $G_0 = G_0(V, [7])$ in Figure 1 and the corresponding cycle matroid $M(G_0)$. It is clear that

$$M := \emptyset \subsetneq \{1\} \subsetneq \{1, 2, 3\} \subsetneq \{1, 2, 3, 4, 5\} \subsetneq [7]$$

is an M-chain. The associated M-partition is

$$\mathcal{P} := \{1\} \cup \{2, 3\} \cup \{4, 5\} \cup \{6, 7\}.$$

The linear order of the vertices is such that for every i in $\{2, 3, 4, 5\}$ the neighbors of the vertex v_i contained in the set $\{v_1, \ldots, v_{i-1}\}$ form a clique; this is Dirac’s well known characterization of chordal graphs (see [5, 6]). This is also a characterization of graphic supersolvable matroids (see Proposition 2.8 in [8]). That is, a graphic matroid $M(G)$ is supersolvable iff the vertices of G can be labeled as v_1, v_2, \ldots, v_m such that, for every $i = 2, \ldots, m$, the neighbors of v_i contained in the set $\{v_1, \ldots, v_{i-1}\}$ form a clique. We say that a linear order of the vertices of G with the above properties is an S-label of the vertices of G.

Ziegler proved that every supersolvable binary matroid without a Fano submatroid is graphic (Theorem 2.7 in [10]). In the next section we answer the following natural question:

\circ For a generic binary matroid, what are the relations between the notions of “chordal” and “supersolvable”?

2. CHORDAL AND SUPERSOLVABLE MATROIDS

Lemma 2.1. Let M be a simple binary matroid. The following two conditions are equivalent for every circuit C of M:

(2.1) $C \subsetneq \text{cl}(C)$,
(2.1.2) \(C \) has a chord.

For nonbinary matroids only the implication (2.1.2) \(\Rightarrow \) (2.1.1) holds.

Proof. If \(i \in \text{cl}(C) \setminus C \), then there is a circuit \(D \) such that \(i \in D \) and \(D \setminus i \not\subseteq C \). As \(M \) is binary \(D' = D \setminus C \) is also a circuit of \(M \). So \(i \) is a chord of \(C \). If \(i \) is a chord of \(C \), then clearly \(i \in \text{cl}(C) \). Finally, in the uniform rank-two nonbinary matroid \(U_{2,4} \), the set \(C = \{1, 2, 3\} \) is a circuit without a chord but \(C \not\subseteq \text{cl}(C) = [4] \). \(\square \)

Theorem 2.2. A binary supersolvable matroid \(M \) is chordal but the converse does not hold in general.

Proof. Let \(M := \emptyset \subsetneq \cdots \subsetneq F_{r-1} \subsetneq F_r = [n] \) be an \(M \)-chain of \(M \). Suppose by induction that the restriction of \(M \) to \(F_{r-1} \) is chordal. The result is clear in the case that \(C^* := [n] \setminus F_{r-1} \) is a singleton. Suppose that \(|C^*| > 1 \) and consider a circuit \(C \) of \(M \) not contained in the modular hyperplane \(F_{r-1} \). Then there are two elements \(i, j \in C \cap C^* \) and the line \(\text{cl}\{i, j\} \) meets \(F_{r-1} \). So \(C \not\subseteq \text{cl}(C) \) and we know from Lemma 2.1 that \(C \) has a chord.

A counterexample of the converse is \(M^*(K_{3,3}) \), the cocycle matroid of the complete bipartite graph \(K_{3,3} \). It is easy to see from its geometric representation that it is chordal but not supersolvable (see 10 and page 514 in 7 for its geometric representation). \(\square \)

Definition 2.3 (4). Let \(M \) be an arbitrary matroid and consider an integer \(\ell \geq 2 \). The matroid \(M \) is \(\ell \)-closed if the following two conditions are equivalent for every subset \(X \subseteq [n] \):

(2.3.1) \(X \) is closed,

(2.3.2) for every subset \(Y \) of \(X \) with at most \(\ell \) elements we have \(\text{cl}(Y) \subseteq X \).

We note that Condition (2.3.2) is equivalent to:

(2.3.2') for every circuit \(C \) of \(M \) with at most \(\ell + 1 \) elements

\[|C \cap X| \geq |C| - 1 \implies C \subseteq X. \]

Definition 2.4. Let \(C' \) be a subset of \(C \), the set of circuits of \(M \). Let \(\text{cl}_\Delta(C') \) denote the smallest subset of \(C \) such that:

(2.4.1) \(C' \subseteq \text{cl}_\Delta(C') \),

(2.4.2) whenever a circuit splits into two circuits \(C_1 \) and \(C_2 \) that are in \(\text{cl}_\Delta(C') \) then \(C \) is also in \(\text{cl}_\Delta(C') \).

Theorem 2.5. For every simple binary matroid \(M \) the following three conditions are equivalent:

(2.5.1) \(M \) is \(\ell \)-closed,
Proposition 2.6. Let M be a supersolvable matroid and
\[\mathcal{M} := F_0 \subseteq \cdots \subseteq F_{r-1} \subseteq F_r \]
an M-chain. Let F be a flat of M. Then $M|F$, the restriction of M to the flat F, is a supersolvable matroid and \{ $F_i \cap F : F_i \in \mathcal{M}$ \} is the set of (modular) flats of an $M|F$-chain. \hfill \Box

Definition 2.7. Let $\mathcal{P} = P_1 \uplus \cdots \uplus P_r$ be an M-partition of a supersolvable matroid M. We associate to (M, \mathcal{P}) a graph $G_\mathcal{P}$ such that:

- $V(G_\mathcal{P}) = \{ P_i : i = 1, 2, \ldots, r \}$ is the vertex set of $G_\mathcal{P}$,
- $\{ P_i, P_j \}$ is an edge of $G_\mathcal{P}$ iff there is a nontrivial line L of M meeting P_i and P_j.

We call $G_\mathcal{P}$ the S-graph of the pair (M, \mathcal{P}).

Note that every nontrivial line L of the binary supersolvable matroid M meets exactly two P_i’s and if L meets P_i and P_j, with $i < j$, necessarily $|P_i \cap L| = 1$ and $|P_j \cap L| = 2$. Indeed $F_{j-1} = \bigcup_{i=1}^{j-1} P_i$ is a modular flat disjoint from P_j, so $|F_{j-1} \cap L| = 1$. This simple property
will be used extensively in the proof of Theorem 2.10. Given a chordal graph G with a fixed S-labeling, we get an associated supersolvable matroid $M(G)$ and an associated M-partition P. We say that G_P, the S-graph determined by $(M(G), P)$, is the derived S-graph of G for this S-labeling.

Remark 2.8. Note that the derived S-graph G_P of a chordal graph G is a subgraph of G. Indeed set $V(G_P) = \{P_1, \ldots, P_m\}$ and consider the map $P_\ell \to v_{\ell+1}$, $\ell = 1, \ldots, m$. Let $\{P_i, P_j\}$, $1 \leq i < j \leq m$, be an edge of G_P. From the definitions we see that $\{v_{i+1}, v_{j+1}\}$ is necessarily an edge of G.

Example 2.9. Consider the S-labeling of the graph G_0 given in Figure 1 and the associated M-partition P (see Example 1.3). The derived S-graph G_P is a path from P_1 to P_4. Consider now the M-partition of $M(G_0)$:

$$P' := \{4\} \cup \{3, 5\} \cup \{1, 2\} \cup \{6, 7\}.$$

In this case the corresponding S-graph G'_P is $K_{1,3}$ with P_2 being the degree-3 vertex. It is easy to prove that for any M-partition P of the cycle matroid of the complete graph K_ℓ, the S-graph G_P is the complete graph $K_{\ell-1}$.

Our main result is:

Theorem 2.10. Let M be a simple binary supersolvable matroid with an M-partition P. Then the S-graph G_P is chordal.

Proof. Let $P = P_1 \cup \cdots \cup P_r$. We claim that P_r is a simplicial vertex of G_P. Suppose that $\{P_i, P_j\}$ and $\{P_r, P_j\}$, $i < j$, are two different edges of G_P and that there are two nontrivial lines $L_1 := \{x, y, z\}$ and $L_2 := \{x', y', z'\}$ where $x, y, x', y' \in P_r$ and $z \in P_i$, $z' \in P_j$. We will consider two possible cases:

- Suppose first that two of the elements x, y, x', y' are equal; w.l.o.g., we can suppose $x = x'$. As M is binary the elements x, y, y' can’t be colinear, so $\text{cl}(\{x, y, y'\})$ is a plane. From modularity of F_{r-1}, we know that $\text{cl}(\{x, y, y'\}) \cap F_{r-1}$ is a line. So the line $\text{cl}(\{y, y'\})$ meets the modular hyperplane F_{r-1} in a point a. Now the line $\{z, z', a\}$ is a nontrivial line which meets P_i and P_j. Then by definition $\{P_i, P_j\}$ is an edge of G_P.

- Suppose now that the elements x, y, x', y' are different. Then as M is binary we have $r(\{x, y, x', y'\}) = 4$. From modularity of F_{r-1}, we know that $r(\text{cl}(\{x, y, x', y'\}) \cap F_{r-1}) = 3$. Then the six lines $\text{cl}(\{\alpha, \beta\})$, for α and β in $\{x, y, x', y'\}$ meet F_{r-1} in six coplanar
points; let these points be labelled as in Figure 2. Let P_ℓ be the set that contains a. We will consider three subcases.

- Suppose first that $i < j < \ell$. From the property given immediately after Definition 2.7, we have that c is also in P_ℓ. Consider the modular flat $F_{\ell-1} = \bigcup_{h=1}^{\ell-1} P_h$. We know that the plane $\text{cl} \{a, c, z, z'\}$ meets $F_{\ell-1}$ in a line, so $\text{cl} \{z, z'\}$ is a non-trivial line meeting P_i and P_j and so $\{P_i, P_j\}$ is an edge of $G_\mathcal{P}$.

- Suppose now that $\ell < i < j$. Then the nontrivial line $\{a, d, z\}$ meets P_i and P_ℓ and we have $d \in P_i$. So the nontrivial line $\{c, d, z'\}$ meets P_i and P_j and $\{P_i, P_j\}$ is an edge of $G_\mathcal{P}$.

- Suppose finally that $i \leq \ell \leq j$. The nontrivial line $\{a, d, z\}$ meets P_ℓ and P_i so $d \in P_\ell$. The nontrivial line $\{c, d, z'\}$ meets P_ℓ and P_j and necessarily we have $c \in P_j$. We conclude that the nontrivial line $\{b, c, z\}$ meets P_i and P_j and $\{P_i, P_j\}$ is an edge of $G_\mathcal{P}$.

By induction we conclude that $G_\mathcal{P}$ is chordal.

We say that two M-chains

$$\mathcal{M} := \emptyset \subset \cdots \subset F_{r-1} \subset F_r = [n]$$

and

$$\mathcal{M}' := \emptyset \subset \cdots \subset F'_{r-1} \subset F'_r = [n]$$

are
are related by an elementary deformation if they differ by at most one flat. We say that two M-chains are equivalent if they can be obtained from each other by elementary deformations.

Proposition 2.11. Every two M-chains of the same matroid M are equivalent.

Proof. We prove it by induction on the rank. The result is clear for $r = 2$. Suppose it true for all matroids of rank at most $r - 1$. Consider two different M-chains $M := \emptyset \subset \cdots \subset F_{r-1} \subset F_r = [n]$ and $M' := \emptyset \subset \cdots \subset F'_{r-1} \subset F'_r = [n]$.

Let F_ℓ be the flat of highest rank of the M-chain M contained in F'_{r-1}. We know that $F_j \cap F'_{r-1}$, $j = 0, 1, \ldots, r$, is a modular flat of the matroid M and that $r(F_j \cap F'_{r-1}) = j - 1$, for $j = \ell + 2, \ldots, r - 1$.

Let $M_0 := M$ and for i from 1 to $r - 1 - \ell$, let M_i be the M-chain $\emptyset \subset \cdots \subset F_\ell \subset F_{\ell+2} \cap F'_{r-1} \subset \cdots \subset F_{\ell+i+1} \cap F'_{r-1} \subset F_{\ell+i+1} \cdots \subset [n]$.

We have clearly by definition that for i from 0 to $r - 2 - \ell$, the M-chains M_i and M_{i+1} are equivalent. This sequence of equivalences shows that M is equivalent to $M_{r-1-\ell}$. Finally by the induction hypothesis we have that M' is equivalent to $M_{r-1-\ell}$ which concludes the proof. \qed

Remark 2.12. Proposition 2.11 can be used to obtain all the S-labels of a given chordal graph G from a fixed one. If G is doubly-connected the number of M-chains of $M(G)$ is equal to the half of the number of such labelings, see [8], Proposition 2.8.

It is natural to ask if, given a chordal graph G, there is a supersolvable matroid M together with an M-partition \mathcal{P} such that $G = G_\mathcal{P}$. Can the matroid M be supposed graphic? The next proposition gives a positive answer to these questions:

Proposition 2.13. Let $G = (V, E)$ be a chordal graph with an S-labeling v_1, \ldots, v_m of its vertices, and \tilde{G} the extension of G by a vertex v_0 adjacent to all the vertices, i.e.:

$$V_{\tilde{G}} = V_G \cup v_0 \quad \text{and} \quad E_{\tilde{G}} = E_G \cup \{v_i, v_0\}, \ i = 1, \ldots, m.$$

Then $G_\mathcal{P}$, the derived S-graph of \tilde{G} for the S-labeling v_0, v_1, \ldots, v_m is isomorphic to G.

Proof. As \(v_0 \) is adjacent to every vertex \(v_i, \ i = 1, \ldots, m \), it is clear that \(v_0, v_1, \ldots, v_m \) is an S-labeling of \(\tilde{G} \). Let \(\mathcal{P} \) and \(\tilde{\mathcal{P}} \) denote the corresponding \(M \)-partitions of the graphic matroids \(M(G) \) and \(M(\tilde{G}) \).

We have \(\mathcal{P} = P_1 \uplus \cdots \uplus P_{m-1} \) and \(\tilde{\mathcal{P}} = \tilde{P}_1 (=\{v_0,v_1\}) \uplus \tilde{P}_2 \uplus \cdots \uplus \tilde{P}_m \) with \(\tilde{P}_i = P_{i-1} \uplus \{v_0,v_i\} \), for \(i = 2, \ldots, m \). Now we can see that if \(\{v_i,v_j\}, \ 0 \leq i < j \leq m - 1 \), is an edge of \(G \) then \(\{\tilde{P}_i,\tilde{P}_j\} \) is an edge of \(G_{\tilde{\mathcal{P}}} \). From Remark 2.8 we get that reciprocally \(G_{\tilde{\mathcal{P}}} \) is a subgraph of \(G \). \(\square \)

Acknowledgements

The authors are grateful to the anonymous referees for their detailed remarks and suggestions on a previous version of this paper.

References

[1] Barahona, F.; Grötschel, M.: On the cycle polytope of a binary matroid. J. Combin. Theory Ser. B 40, no. 1, 40–60, 1986.
[2] Bonin, Joseph; de Mier, Anna: T-uniqueness of some families of \(k \)-chordal matroids. Adv. Appl. Math. 32, 10–30, 2004.
[3] Brylawski, T.: Modular constructions for combinatorial geometries. Trans. Amer. Math. Soc. 203, 1–44, 1975.
[4] Crapo, Henry: Erecting geometries, in Proc. of the second Chapel Hill Conference on Combinatorial Mathematics and Applications, University of North Carolina Press, Chapel Hill, NC 1970, 74–99, 1970.
[5] Dirac, G. A.: On rigid circuits graphs. Abl. Math. Univ. Hamburg 38, 71–76, 1961.
[6] Golumbic, Martin Charles: Algorithmic graph theory and perfect graphs. Academic Press, New York, 1980.
[7] Oxley, James G.: Matroid theory. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.
[8] Stanley, R. P.: Supersolvable lattices. Algebra Universalis 2, 197–217, 1972.
[9] White, Neil (ed.): Theory of matroids. Encyclopedia of Mathematics and its Applications, 26. Cambridge University Press, Cambridge-New York, 1986.
[10] Ziegler, G.: Binary supersolvable matroids and modular constructions, Proc. Am. Math. Soc. 113, no. 3, 817–829, 1991.

Departamento de Matemática,
INSTITUTO SUPERIOR TÉCNICO
AV. ROVISCO PAIS - 1049-001 LISBOA - PORTUGAL
E-mail address: cordovil@math.ist.utl.pt

LRI, UMR 8623, BATIMENT 490 UNIVERSITÉ PARIS-SUD
91405 ORSAY CEDEX, FRANCE
E-mail address: forge@lri.fr
Instituto de Matemática and COPPE-Sistemas, Universidade Federal do Rio de Janeiro, Caixa Postal 68511, 21945-970, Rio de Janeiro, RJ, Brasil
E-mail address: sula@cos.ufrj.br