A Thouless pump transports an integer amount of charge when pumping adiabatically around a singularity. We study the splitting of such a critical point into two separate critical points by adding a Hubbard interaction. Furthermore, we consider extensions to a spinful Rice-Mele model, namely a staggered magnetic field or an Ising-type spin coupling, further reducing the spin symmetry. The resulting models additionally allow for the transport of a single charge in a two-component system of spinful fermions, whereas in the absence of interactions, zero or two charges are pumped. In the SU(2)-symmetric case, the ionic Hubbard model is visited once along pump cycles that enclose a single singularity. Adding a staggered magnetic field additionally transports an integer amount of spin while the Ising term realizes a pure charge pump. We employ real-time simulations in finite and infinite systems to calculate the adiabatic charge and spin transport, complemented by the analysis of gaps and the many-body polarization to confirm the adiabatic nature of the pump. The resulting charge pumps are expected to be measurable in finite-pumping speed experiments in ultra-cold atomic gases, for which the SU(2) invariant version is the most promising path. We discuss the implications of our results for a related quantum-gas experiment by Walter et al. [arXiv:2204.06561].

I. INTRODUCTION

The advent of ultra-cold quantum-gas experiments [1–3] has opened the possibility of directly probing quantum many-body systems on lattice models to a high precision. Strongly interacting systems can give rise to many exotic phases that often arise due to the competition between different energy scales [4]. An open question in condensed matter theory is the precise interplay between many-body physics and topology. Thouless charge pumps [5–7] provide a practical framework to study interacting topological systems in a reduced spatial dimension due to their highly controllable experimental realizations. Experimentally, Thouless pumps have been realized in ultra-cold atoms for both bosons [8] and fermions [9–11], as well as in photonic systems [12].

In a Thouless pump, an integer amount of charge is pumped per pump cycle when adiabatically changing parameters such that a degeneracy (or critical point) is enclosed without closing a gap. The prototypical model for a non-interacting charge pump, the Rice-Mele model [13], has a single degeneracy at the origin as seen in Fig. 1(a). Δ is the strength of a staggered potential and δ is the hopping modulation. For finite interactions, one charge is pumped along C_1 instead. Along C_2, two charges are pumped still, while along \tilde{C}_2, zero charges are pumped, as no singularity is encircled.

Theoretical, both bosonic [5–7,14–18] and fermionic [19–23] topological charge pumps have been studied. Due to their readily available experimental realization, the interplay of Hubbard interactions and Thouless pumps in a two-component fermionic system is a key area of research. Recent works include theoretical studies of instantaneous topological measures for quantum many-body phases [24], the theoretical [20] and experimental [11] study of the breakdown of topological pumping due to interactions and interaction-induced topological pumping [21,25]. Another direction concerns the study of charge pumps in the presence of disorder [26–32].

Here, we address the question whether it is possible...
to split the degeneracy of the non-interacting Rice-Mele model into two separate ones by adding a repulsive onsite interaction, as is sketched in Fig. [1](b). In this case, going along the path \(C_1 \) pumps a single charge for a finite interaction strength. With this scheme, it becomes possible to change the amount of charge pumped from zero to one by solely changing the Hubbard interaction strength. Keeping an origin-centered pumping path instead, encircling no singularities at sufficiently large \(U \) (\(E_2 \) in Fig. [1](b)), leads to a topologically protected pumped charge of zero.

We show that this splitting is possible in three distinct situations that differ by their symmetries: (a) an SU(2) symmetric fermionic model with Hubbard interactions, which can be viewed as an ionic Hubbard model (IHM) with additional alternating hopping amplitudes; (b) a model with an easy-axis spin symmetry, and (c) a model with broken \(Z_2 \) symmetry. The three cases vary in the degree of adiabaticity that manifests itself in the nature of the gaps along the zero-dimerization line connecting the two critical points: The SU(2) symmetric model has a vanishing many-body gap on this line, as the Mott phase of the IHM is realized between the critical points (\(\delta = 0 \) and \(-\Delta_s \leq \Delta < \Delta_s \), where \(\pm \Delta_s \) are the values of \(\Delta \) at the spin transitions discussed in Sec. [IV](c) [33, 34]. In the easy-axis case, a two-fold degenerate ground-state is obtained along this line (and in a finite region around \(\delta = \Delta = 0 \) in the thermodynamic limit) that is well separated from the rest of the spectrum. Finally, the \(Z_2 \)-broken case has a non-degenerate ground-state separated by a robust gap from the rest of the spectrum everywhere apart from the critical points. We realize these three cases via (a) a Rice-Mele Hubbard model, which we take as a base model, (b) an additional Ising-type term, and (c) via an additional staggered magnetic field added to the Rice-Mele Hubbard model, respectively. This is realized by three Hamiltonians, \(\hat{H}_{IH} \), \(\hat{H}_{IHZ} \) and \(\hat{H}_{IHB} \), respectively.

Conceptually, the \(Z_2 \) broken Hamiltonian \(\hat{H}_{IHB} \) has the most robust topology at the price of introducing a non-zero quantized spin current. The dimerized ionic Hubbard model \(\hat{H}_{IH} \) does not feature a strict topological protection since along the pump cycle \(C_1 \), points exist with a vanishing spin gap. The charge gap remains open in all three cases.

As our main result, we show that we can achieve integer-quantized charge pumping around a single degenerate point. We demonstrate, via finite-time calculations, that \(\hat{H}_{IHB} \) and \(\hat{H}_{IHZ} \) allow for robust quantized charge pumping of a single charge per pump cycle around a single critical point. For \(\hat{H}_{IH} \), we pump through a many-body gapless phase. Still, for appropriately chosen pump cycles, the pumped charge is practically quantized on the accessible time scales, which is confirmed via time-dependent numerical methods. In Sec. [IV] we present our results by starting with time-dependent simulations for the pumped charge, subsequently discussing energy gaps and concluding with the Berry phases. We conclude in Sec. [V] with a summary and discuss implications for a recent experimental [11] and a related theoretical [20] study on the breakdown of topological pumping in interacting systems.

II. MODEL

We consider a class of models of correlated fermions with a staggered potential \(\Delta \), hopping dimerization \(\delta \), a staggered magnetic field of strength \(b \) and an Ising-type term of strength \(J_z \):

\[
\hat{H} = \hat{H}_{IH}(\delta, \Delta) + \hat{H}_B + \hat{H}_Z, \tag{1}
\]

where

\[
\hat{H}_{IH}(\delta, \Delta) = -J \sum_{j=1}^{L} \sum_{\alpha=\uparrow,\downarrow} (1 + \delta (-1)^j) \left(\hat{c}_{j,\alpha}^\dagger \hat{c}_{j+1,\alpha} + \text{h.c.} \right) \\
+ \Delta \sum_{j=1}^{L} \sum_{\alpha=\uparrow,\downarrow} (-1)^j \hat{c}_{j,\alpha}^\dagger \hat{c}_{j,\alpha} \\
+ U \sum_{j=1}^{L} \hat{c}_{j,\uparrow}^\dagger \hat{c}_{j,\uparrow} \hat{c}_{j,\downarrow}^\dagger \hat{c}_{j,\downarrow} \tag{2}
\]

is the dimerized ionic Hubbard model,

\[
\hat{H}_B = b \sum_{j=1}^{L} (-1)^j \hat{S}_j^z \tag{3}
\]
is a staggered magnetic field and
\[\hat{H}_Z = J_z \sum_{j=1}^{L} \hat{S}_j^z \hat{S}_{j+1}^z \] (4)

is an Ising spin coupling. Here, \(\hat{c}_{j,\alpha}^\dagger \) creates a fermion of spin \(\alpha \in \uparrow, \downarrow \) on site \(j \). The spin operators are given as \(\hat{S}_j^z = 1/2 \left(\hat{c}_{j,\uparrow}^\dagger \hat{c}_{j,\uparrow} - \hat{c}_{j,\downarrow}^\dagger \hat{c}_{j,\downarrow} \right) \). \(L \) is the number of sites.

For \(b = J_z = \delta = 0 \), the ionic Hubbard model (IHM) is recovered.

The time evolution along path \(C_1 \) for all three models goes through a phase with non-zero BOW order parameter. In particular, \(\hat{H}_{\text{IH}} \) passes through the MI phase of the IHM at \(\delta = 0 \), surrounded by the BOW phase as soon as \(\delta \neq 0 \). The same happens in recent theoretical [20] and experimental [11] work for the path \(C_2 \), for which a breakdown of the quantized charge transport was reported. Using a canonical transformation valid for small \(J \) and \(|\delta| \) and known results for a Heisenberg chain with alternating exchange, we see that at the MI-BOW transition, the spin gap opens as \(|\delta|^{2/3} \) while the change in polarization and the BOW order parameter behave as \(\delta^{1/3} \) for small \(|\delta| \). The details are in App. A.

The three phases in the IHM can be distinguished via the behavior of various many-body gaps. To distinguish the physics of the three models defined above, we introduce the following energy gaps. We define the internal gap
\[\Delta E_{\text{int}} = E_1(N, S_z = 0) - E_0(N, S_z = 0) \] (6)
as the first excitation energy keeping the total number of particles \(N \) and the total spin projection \(S_z = 0 \) constant. We also define the charge gap
\[\Delta E_C = [E_0(N + 2, S_z = 0) + E_0(N - 2, S_z = 0) - 2E_0(N, S_z = 0)]/2, \] (7)
the spin gap
\[\Delta E_S = E_0(N, S_z = 1) - E_0(N, S_z = 0) \] (8)
and the second internal gap
\[\Delta E_2 = E_2(N, S_z = 0) - E_0(N, S_z = 0). \] (9)

III. METHODS AND OBSERVABLES

A. Instantaneous measures

For the instantaneous measures, we use the Lanczos method for a finite system with periodic boundary conditions up to \(L = 12 \). The charge and spin gaps are calculated by searching for the lowest energy in the respective symmetry sectors. For the internal gap calculation, several low-lying eigenstates are computed.

The charge [spin] pumping is related to the charge [spin-] Berry phases [33]:

\[\gamma_{C,S} = -\lim_{N \to \infty} \Im \left\{ \ln \prod_{r=0}^{N-2} \langle g(\Phi_r, \pm \Phi_r) | g(\Phi_{r+1}, \pm \Phi_{r+1}) \rangle \right\} \times \langle g(\Phi_{N-1}, \pm \Phi_{N-1}) | g(2\pi, \pm 2\pi) \rangle \] (10)

with \(|g(2\pi, \pm 2\pi)\rangle = \exp[i2\pi/L \sum_j (\hat{n}_j \pm \hat{n}_{j+1})] |g(0, 0)\rangle \), where \(N \) is the number of discretization steps for twisted
boundary conditions, $\Phi_r = 2\pi r/N$ and $|g(\Phi, \Phi')|$ is the ground state of the Hamiltonian in which the hopping J for spin up (down) has been changed by a factor $\exp(i\Phi/L) [\exp(i\Phi'/L)]$. Notice that the charge (spin-) Berry phase $\gamma_{C,S}$ depends on the pump parameter θ because the ground states $|g(\Phi, \Phi')|$ do. The pumped charge (spin) after one pump cycle in the quasi-adiabatic limit is given by:

$$\Delta Q_{C,S} = \frac{1}{2\pi} \int_0^{2\pi} d\theta \partial_\theta \gamma_{C,S}(\theta).$$

(11)

The parameters Δ and δ depend on a geometrical variable θ [see Eq. (5)] which in turn depends on time t. In the quasi-adiabatic limit under a cyclic evolution in which θ returns to its original value, the charge transport is purely geometrical and does not depend on the explicit time dependence of θ.

In practice, with a number of points $N \sim 10$, one has a very accurate result for $\gamma_{C,S}$. In addition, although with a slower convergence with system size L, the exponential position operator can be used to arrive at the many-body polarization $\gamma_{C,S}$, which is the one-point approximation of Eq. (10). The position operator defined in Ref. 37 cannot be used for interacting systems with fractional filling but can easily be extended Δ. The extension to γ_S has been introduced in Ref. 39. We use the following form of the charge- and spin-polarization:

$$P_C(\theta) = \frac{1}{2\pi} \text{Im} \ln \left\langle \Psi(\theta) \left| \hat{X}_C^\dagger \right| \Psi(\theta) \right\rangle,$$

$$P_S(\theta) = \frac{1}{2\pi} \text{Im} \ln \left\langle \Psi(\theta) \left| \hat{X}_S^\dagger \right| \Psi(\theta) \right\rangle,$$

(12) (13)

with $\hat{X}_C^\dagger = \exp[\imath(2\pi/L)\sum_j \hat{n}_j]$, $\hat{X}_S^\dagger = \exp[\imath(2\pi/L)\sum_j \hat{n}_j \pm \hat{n}_j']$. Δ $2\pi P_{C,S}$ is equivalent to $\gamma_{C,S}$.

The thermodynamic phases of the IHM are distinguished by their values of the charge- and spin-Berry phases γ_C and γ_S [34]. More precisely, the Berry phases (γ_C, γ_S) are quantized due to inversion symmetry and have the values (π, π), $(\pi, 0)$, and $(0, 0)$, respectively. These quantized Berry phases arise in our models for $\delta = 0$. Additionally, due to a spin-rotation symmetry of π around any axis perpendicular to the z-axis in spin space for all values of δ and Δ, H_{IHZ} and H_{IH} can only have spin-Berry phases of 0 or π, whereas H_{IHB} breaks this symmetry, allowing for arbitrary spin-Berry phases.

For all finite-system calculations, we use open-shell boundary conditions (periodic boundary conditions for a number of sites L multiple of four, antiperiodic for even L not a multiple of four) to allow for the resolution of gap closings.

B. Real-time calculations

For the finite-time calculation, we parameterize the pump cycles with the time t as

$$\theta = \frac{2\pi}{T} t,$$

(14)

where T is the pump period. The accumulated pumped charge [spin] at time t is calculated via

$$Q_{|S|}(t) = \int_0^t dt' \langle \hat{J}_{|S|}(t') \rangle,$$

(15)

where the total particle and spin currents, averaged over two links are

$$\dot{J}_C = \frac{i}{2} \sum_{j=1,2,\alpha=\uparrow,\downarrow} \left(J_j \hat{c}_j^\dagger \hat{c}_{j+1,\alpha} - \text{h.c.} \right),$$

(16)

$$\dot{J}_S = \frac{i}{2} \sum_{j=1,2,\alpha=\uparrow,\downarrow} \left(\sigma_{\alpha,\alpha}^z J_j \hat{c}_j^\dagger \hat{c}_{j+1,\alpha} - \text{h.c.} \right),$$

(17)

where $J_j = J(1 + \delta(-1)^j)$. In order to minimize transient non-adiabatic effects, the pumping is first started slowly via a quadratic ramp-up of the driving [51]. We use a pumping period of $TJ = 50$, which is enough to ensure quasi-adiabaticity for the IHB and IHZ models. For the IH model, strong finite-size effects [52] make Lanczos calculations unfeasible. We therefore also use infinite-system density matrix renormalization group (DMRG) methods [53, 54] to calculate the pumped charge in time-dependent simulations. The ground state is calculated via the variational uniform matrix-product state (VUMPS) method [55]. The time-evolution is carried out via infinite time-evolving block decimation (iTEBD) [55]. For the IH model, we use a period of $TJ = 1000$ and a maximum bond dimension of $\chi = 200$. All DMRG calculations are done using the ITensor library for Julia [56].

IV. RESULTS

A. Real-time calculations

First, we consider a finite pumping period and demonstrate the quantized particle pumping in a time-dependent calculation of the integrated current for finite systems. For H_{IHB} and H_{IH}, the results for the pumped charge after one period along pump cycle C_1 from Fig. 1(a) are shown in Fig. 1(a) for a system size of $L = 12$ and $TJ = 50$. Both models show an integer-quantized pumping of a single charge. We have checked convergence with respect to the system size L for both models. In Fig. 1(b), the pumped spin of the same models and pumping path is shown. H_{IHZ} pumps no spin and is therefore a pure charge pump. H_{IHB} shows an integer-quantized pumping of a single spin along C_1.

In contrast, for H_{IH} along C_1, finite-system calculations are not sufficient to overcome the large finite-size effects that arise from pumping through a gapless phase [52]. We therefore employ infinite-system size calculations for this model. For a period of $TJ = 1000$ and a maximum bond dimension of $\chi = 200$, the results are presented in Fig. 2 for C_1. We observe approximate integer charge pumping and no spin pumping. However, local spin oscillations...
arise when reaching the gapless point between the two critical points for $t/T = 0.75$. This leads to an oscillatory behavior of the pumped charge. Interestingly, the envelope of these oscillations reaches a quantized value of one. The calculations converge with increasing bond dimension until the gapless point. Beyond this, the local spin and charge oscillations show a strong dependence on both the bond dimension χ and the pumping period T. This suggests that in the thermodynamic limit, the quantized pumping may break down. This limit is only recovered for $\chi \to \infty$ in infinite-system size DMRG. Along C_2, all models exhibit quantized pumping of two particles and zero spin for $TJ = 50$, which is shown for $L = 10$ in Fig. 3.

We have checked the quantization for the first 20 pump cycles and find a very robust quantization for C_2 for all models as expected. In the infinite system, calculations for multiple pump cycles around C_1 indicate a significant deviation from quantization from the second pump cycle onward for \hat{H}_{IHB} and \hat{H}_{IHZ}. For a finite system, the pumped charge for both \hat{H}_{IHB} and \hat{H}_{IHZ} is integer-quantized for the first 20 pump cycles within experimental accuracies [results not shown here].

B. Energy gaps

In order to understand the real-time simulations, we consider instantaneous measures for all models. We calculate the lowest 50 eigenenergies for all three models in the symmetry sectors $S_z = 0$ and $S_z = 1$ for $L = 12$ along the path C_1. The results are shown in Fig. 1 for $\theta \in [\pi, 2\pi]$ which corresponds to half a pump cycle C_1 of Fig. 1. At $\theta = 3\pi/2$, the path is in between the two critical points along the $\delta = 0$ line.

The ground state of \hat{H}_{IHB} is non-degenerate for all values of θ and separated from the rest of the spectrum by a robust gap. The ground state of \hat{H}_{IHZ} is twofold-degenerate for $L \to \infty$ in the MI phase, which extends to a region around $\Delta = \delta = 0$. Proceeding as in App. A, the ground state energy becomes

$$E_{MI} = -J_z/4 - 4\tilde{U}J^2(1 + \delta^2)/(\tilde{U}^2 - 4\Delta^2),$$

(18)

for both Néel-like states, where $\tilde{U} = U + 3J_z/4$. However, the two crossing levels that make up this ground-state manifold are separated from the rest of the spectrum. The real-time simulations indicate that this is sufficient to ensure quantized particle transport for at least the first few pump cycles. In contrast, \hat{H}_{IH}, which becomes the regular ionic Hubbard model at $\delta = 0$, becomes fully gapless in the thermodynamic limit, since the spin gap vanishes in the MI at $\delta = 0$ [45]. We therefore expect that in the thermodynamic limit, the pumping will ultimately break down in the IH case, consistent with [20]. In this sense, we believe that for a finite system, which is relevant for ultra-cold atomic gas experiments, the finite-size gap can be used to protect the pumping of an integer amount of particles for a few pump cycles.

In Fig. 5, the energy gaps defined in Sec. I are shown along the $\delta = 0$ line, where we expect a gapless phase between the two critical points of the IHM. The gaps are calculated for various system sizes and shown for $L = 12$. For all three models, the charge gap is finite for all system sizes, which is a necessary condition for quantized charge transport. For \hat{H}_{IHB}, all gaps are finite except at the critical points. The spin gap becomes the smallest gap between the critical points and is on the order of the staggered magnetic field term, which is independent of the system size. Therefore, the topologically protected charge pumping in this model is robust for all system sizes.

The internal gap of \hat{H}_{IHZ} vanishes between the two critical points, as was already observed in Fig. 4. This is due to a twofold-degenerate ground-state manifold between a Néel-like state ($\uparrow \downarrow \uparrow \downarrow \ldots$) and an anti-Néel like one ($\downarrow \uparrow \downarrow \uparrow \ldots$) in the thermodynamic limit, which is unaffected by the Ising term. The second internal gap stays finite, which shows that the ground-state manifold is separated by a gap from the rest of the spectrum.

For \hat{H}_{IH}, the internal gap is of the order of a finite-size gap and converges very slowly with system size. The internal gap vanishes at the MI to SDI transition, but remains finite in the SDI phase, which has been shown...
in \mathbb{R}^3. The SDI to MI transition is characterized by a crossing of excited energy levels. The excited even singlet crosses with the excited odd triplet, which has less energy in the MI phase \mathbb{R}^3. Specifically, the internal gap becomes the spin gap in the MI phase. This is due to a crossing of energy levels with opposite inversion symmetry. An odd singlet is the ground state in the SDI and MI phases, while in the BI, the ground state is an even singlet \mathbb{R}^3. According to conformal field theory, the spin gap scales as $2\pi v_s/L$, where v_s is the spin velocity \mathbb{R}^3. Therefore, the IHM becomes gapless in the thermodynamic limit.

![Diagram](image.png)

FIG. 3. Lanczos calculation of the pumped charge along C_2 in a finite system. (a): All models show integer-quantized charge pumping of two particles per cycle. (b): \hat{H}_{IHBB} displays a finite spin current but a net-zero pumped spin. Calculated for $L = 12$, $U/J = 4$, $TJ = 50$, $R_\Delta/J = 4$ and $R_9 = 0.9$.

![Diagram](image.png)

FIG. 4. Energy levels along C_1. The lowest 50 energy levels along the path C_1 are plotted for the $S_z = 0$ and $S_z = 1$ subspaces. \hat{H}_{IHBB} has a non-degenerate ground state that is separated from the rest of the spectrum. \hat{H}_{IHZZ} has a twofold-degenerate ground state at $\theta = \pi/2$ that is separated from the rest of the spectrum. \hat{H}_{IH} becomes fully gapless for $L \rightarrow \infty$. Calculated for $L = 12$, $U/J = 4$, $R_\Delta/J = 2$, $R_9 = 0.9$ and $\Delta_s/J = 2.24$.

![Diagram](image.png)

FIG. 5. Energy gaps along the $\delta = 0$ line. (a): In the center between the two critical points, \hat{H}_{IHBB} is fully gapped with the smallest gap being the spin gap. (b): For \hat{H}_{IHZZ}, the second internal gap approaches the finite spin gap. The internal gap vanishes due to the twofold-degenerate ground state. (c): For \hat{H}_{IH} the spin gap is equivalent to the internal gap, which becomes zero in the thermodynamic limit. The charge gap is finite for all models. Calculated for $L = 12$ and $U/J = 4$.

C. Berry phase and many-body polarization

We now address the topology of the three models. In particular, we are interested in the charge- and spin-Berry phases, which give information on the pumped charges and spins in a quasi-adiabatically driven system. We use the many-body polarization in Eq. (13) to calculate the Berry phases for a finite system of $L = 10$. The results for the charge- [spin-] Berry phases are shown in Fig. 6 (a,c,e) [(b,d,f)]. For all models, the charge-Berry phases are well-defined and smooth everywhere except for the two critical points. Notice that the branch cuts that emerge from the critical points are $\Delta_{C,S} = \pm 2\pi$ and therefore well-defined. The position of the branch cuts can be changed via a gauge transformation. Physically relevant information is only encoded in the total Berry phase picked up along a closed path.

\hat{H}_{IHBB} has a well-defined and smooth spin-Berry phase. Notice that around the upper singularity, the sign of the spin-Berry phase is opposite to the charge-Berry phase. This means that encircling one critical point pumps both spin and charge. More specifically, pumping around the upper [lower] critical point pumps only a single spin down [up] particle.
The spin-Berry phase for \hat{H}_{HZ} and \hat{H}_{IH} only has the values $\gamma_S \in \{0, \pi\}$. The value of π is realized between the critical points for both models as expected for the IHM. For $\gamma_S = \pi$, the ground state is in the MI phase. The quantization arises due to the spin-rotation symmetry in these two models which maps $\gamma_S \rightarrow -\gamma_S$. For \hat{H}_{IH}, the spin-Berry phase is expected to be nonzero only for $\delta \neq 0$ in the thermodynamic limit, since a finite δ breaks the inversion symmetry and leads to a finite BOW order parameter (see App. A). The small lentil shape as seen in Fig. 6 (f) is therefore likely a finite-size effect. For \hat{H}_{HZ} and the IH model, the transition between dimerized phase and Mott phase happens at finite δ. A similar transition has recently been observed in dimerized XXZ Hamiltonians \[57\]. The value of δ where the transition happens decreases with increasing system size for small systems (not shown here). Perturbation theory along the lines of App. A [see Eq. (18)] indicates that this region remains finite, though. In real-time simulations, the jump in γ_S has no effect on the quantization of pumped charge for the IHZ model. We therefore argue that quantized particle pumping without spin pumping is possible around a single critical point in this model.

Figure 7 shows the charge- [spin-] Berry phases γ_C [\(\gamma_S\)] for both paths C_1 and C_2 for all three models as the angular variable in a polar plot [26]. This is done because the winding of the Berry phase is equal to the pumped charge. The charge-Berry phase shows an integer winding for both C_1 and C_2 for all models, which mirrors the results from Fig. 6. The spin-Berry phase only shows a well-defined winding of one in the case of C_1 and zero for C_2 for \hat{H}_{HZ}. This is consistent with an interacting Rice-Mele pump that pumps one charge per species and no spins. For C_2, the IHZ and as IH models show a smooth spin-Berry phase with no winding as well, as long as the lentil shape of $\gamma_S = \pi$ is surrounded completely. The C_1 paths inevitably go through the spin-transition and therefore show a discontinuity in the spin-Berry phase. This means that the spin-Berry phase no longer has a well-defined winding and no adiabatic spin-transport should be possible in an infinite-system. However, in practice, we see that in real-time simulations, \hat{H}_{HZ} effectively behaves as if γ_S has a well-defined zero winding, at least for the first pump cycle. This is true for both finite-size and infinite-system calculations (the latter not shown here). We therefore expect this model to be well-behaved in ultra-cold atom experiments with finite particle numbers.
We showed that it is possible to split up the degeneracy of a two-component Rice-Mele model via a Hubbard interaction term. We presented three concrete models to achieve this that are based on an interacting two-component Rice-Mele model with a shifted pump cycle: A spin-SU(2) symmetric model, which realizes the ionic Hubbard model during the pump cycle (IH), a model with an additional staggered magnetic field (IHB), and a model with an additional Ising term (IHZ). We confirmed the quantization of the pumped charge via finite and infinite-system real-time calculations and instantaneous measures for periodic boundary conditions.

The quantization is most robust in the IHB case, which is robustly gapped everywhere. As a consequence, both charge- and spin-Berry phases are well-defined everywhere except at the critical points. However, the staggered field leads to an additional non-zero quantized spin-pumping.

For IHZ, quantization holds for the first couple of pump cycles for experimentally relevant time scales in a finite system, despite the twofold-degenerate ground-state. While the charge-Berry phase is well-defined as in the IHB case, the spin-Berry phase jumps at a finite value of the hopping modulation.

The ionic Hubbard model, which is visited during pump cycles in the IH case, features a Mott phase with a vanishing spin gap to a continuum of excitations that we pump through, which should lead to an eventual breakdown of quantized particle transport. However, a clear remnant of the underlying topology is preserved and the pumped charge is quantized approximately in the first cycle. This is consistent with the well-defined charge-Berry phase in this case. The spin-Berry phase shows a jump similar to the IHZ case, which is only expected at zero hopping modulation in the thermodynamic limit. Unlike the IHB, the spin current is manifestly zero for the IH and IHZ.

In [20], Nakagawa et al. theoretically study the same model and interpret their results in terms of a breakdown of quantized particle pumping due to the repulsive Hubbard interaction. For open boundary conditions, the many-body polarization shows a quantized jump due to the emergence of edge states in an OBC system [61]. For finite interaction strength, these edge-state contributions are shown to split up along the pump cycle which eventually leads to a breakdown of quantized pumping. In our context of splitting degenerate points, the breakdown in the interacting two-component Rice-Mele model is seen when the splitting of the single degeneracy at $\Delta = 0$ into two critical points at $\pm \Delta$, due to the Hubbard interaction, surpasses the Δ-radius of the origin-centered pumping path in the $\delta - \Delta$ plane. Therefore, the pumping path $\tilde{\mathcal{C}}_2$ chosen by Nakagawa et al. indeed encounters a gapless phase between the two spin-critical points $\pm \Delta_G$ twice but most importantly, does not encircle an isolated singularity and hence no charge is pumped. We argue that this primarily constitutes a transition from pumping a quantized number of two to zero particles during initial pump cycles, while the breakdown due to the spin-gapless line will manifest itself after sufficiently many pump cycles.

We believe that the same mechanism of this interaction-induced splitting of the degeneracies while keeping the pump cycle fixed is at the heart of the results reported in the recent experimental work by Walter et al. [11] as well. Of course, the SU(2) symmetric model possesses a gapless line, which in principle should prevent quantized pumping altogether. Our numerical results, however, show that this source of a breakdown is very unlikely to manifest itself on initial pump cycles or finite systems even for a uniform system. In a system with an open charge gap but a vanishing spin gap somewhere along the pump cycle, one first expects spin excitations. A heating up of the charge sector may not immediately occur. How exactly the breakdown of quantized pumping due to gapless spin excitations behaves as a function of system size and which time scales are relevant is an open question and demands further research. With regards to the interpretation of the experiment by Walter et al., one should also stress that their system confines particles in a harmonic trap and, as a consequence, arbitrarily slow pumping will not lead to quantized pumping anyway, because the metallic edges will hybridize and hence be coupled by a finite tunneling rate [62].

We would further like to emphasize that the realization of a Mott insulator per se does not preclude the possibility of quantized pumping, which is supported by our results for the IHB and IHZ models and the results for pumping in a bosonic MI [14]. Furthermore, it should be noted that based on our results for the IH model, which is most easily realized experimentally, quantized transport around a single critical point may require considerably slower pumping than is currently possible in ultra-cold atom experiments.

Interesting results are expected when pumping through the SDI phase directly. For example, Nakagawa et al. report on the possibility of fractional pumping in this case [20]. In the present work, we do not see any effect on the pumping when going through the SDI phase. However, we have not further pursued this question due to the problem of pumping close to the degeneracies and consequently large inherent finite-size effects.

ACKNOWLEDGMENTS

We are grateful to Jan Albrecht and Michael Fleischhauer for fruitful discussions and we thank Masaya Nakagawa for comments on a previous version of the manuscript. This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Research Unit FOR 2414 under project number 277974659 and by PICT 2017-2726 and PICT 2018-01546 of the ANPCyT, Argentina. A.A.A. thanks the Alexander von Humboldt Foundation for support.
Appendix A: Spin gap, polarization and bond order parameter of the IHM for small hopping

We write the Hamiltonian in the form

\[
\hat{H}_{tH} = \hat{H}_0 + \hat{H}_J, \\
\hat{H}_0 = \sum_i [\Delta (-1)^i \hat{n}_i + U \hat{n}_i \hat{n}_{\uparrow} \hat{n}_{\downarrow}], \\
\hat{H}_J = -J \sum_{i \sigma} [1 + (-1)^i \delta] \left(\hat{c}_{i \sigma}^\dagger \hat{c}_{i \sigma} + \text{H.c.} \right),
\]

where \(\hat{n}_{\sigma} = \hat{c}_{i \sigma}^\dagger \hat{c}_{i \sigma}\) and \(\hat{n}_i = \hat{n}_{\uparrow} + \hat{n}_{\downarrow}\). The calculations below correspond to the static situation.

We describe the calculation of the polarization \(P_C\) and the order parameter of the BOW phase to lowest non-trivial order in \(\hat{H}_J\) for a ring of \(L\) sites, starting from either the BI or MI phases. The SDI phase is out of the reach of the validity of the present perturbative treatment.

We perform a canonical transformation similar to the one that transforms the Hubbard model at half filling to a Heisenberg model. To second order in \(\hat{H}_J\), the transformed Hamiltonian is

\[
\hat{\tilde{H}} = \hat{P} e^{-\hat{S} \hat{\tilde{H}} \hat{P}} \\
= \hat{P} \left[\hat{\tilde{H}} + \left[\hat{\tilde{H}}, \hat{\tilde{S}} \right] + \frac{1}{2} \left[\left[\hat{\tilde{H}}, \hat{\tilde{S}} \right], \hat{\tilde{S}} \right] + \ldots \right] \hat{P} \\
\simeq \hat{P} \left[\hat{H}_0 + \left[\hat{H}_J, \hat{\tilde{S}} \right] \right] \hat{P},
\]

where \(\hat{P}\) is the projector over the ground state \(|g_0\rangle\) of \(\hat{H}_0\) and in the last equality we have used

\[
\hat{H}_J + \left[\hat{H}_0, \hat{S} \right] = 0, \tag{A3}
\]

to eliminate terms linear in \(\hat{H}_J\) in \(\hat{\tilde{H}}\). Using this equation, the matrix elements of \(\hat{S}\) between eigenstates of \(\hat{H}_0\) are easily determined:

\[
\langle n | \hat{S} | m \rangle = \frac{\langle n | \hat{H}_J | m \rangle}{E_n - E_m}. \tag{A4}
\]

Note that \(\hat{S}\) is anti-hermitian \((\langle m | \hat{S} | n \rangle^* = -\langle n | \hat{S} | m \rangle\)).

Starting from the BI phase, \(\hat{H}\) is trivial and reduces to the projector on the non-degenerate ground state \(|g_0\rangle\). Instead, starting from the MI phase, \(|g_0\rangle\) is degenerate and \(\hat{H}\) takes the form of a Heisenberg chain with alternating exchange parameters \(J_1(2) = 4J(1 + \delta)^2U/(U^2 - 4\Delta^2)\). This effective model can be written in the form

\[
\hat{H}_{\text{Heis}} = \sum_i \left[J_{\text{Heis}} + (-1)^i x \right] \hat{S}_{i+1} \cdot \hat{S}_i. \tag{A5}
\]

with \(J_{\text{Heis}} = (J_1 + J_2)/2\) and \(x = 4J\delta \Delta U/(U^2 - 4\Delta^2)\). Using previous results on this model using bosonization \(\text{Ref. [63]}\), one knows that a gap proportional to \(\delta^{2/3}\) opens for small \(\delta \neq 0\).

The expectation values of the occupancies can be calculated in the new basis as

\[
\langle \hat{n}_i \rangle = \langle g | \hat{n}_i | g \rangle = \langle g | e^{\hat{S} - \hat{S}} \hat{n}_i e^{-\hat{S}} | g \rangle = \langle g_0 | \hat{n}_i | g_0 \rangle, \tag{A6}
\]

where \(|g\rangle = e^{\hat{S}} |g_0\rangle\) and to second order in \(\hat{H}_J\)

\[
\hat{n}_i = \hat{P} e^{-\hat{S}} \hat{n}_i e^{\hat{S}} \hat{P} \simeq \hat{P} \left\{ \hat{n}_i + \left[\hat{n}_i, \hat{S} \right] + \frac{1}{2} \left[\left[\hat{n}_i, \hat{S} \right], \hat{S} \right] \right\} \hat{P}, \tag{A7}
\]

Since \(\langle g_0 | \hat{S} | g_0 \rangle = 0\) and \(\hat{n}_i |g_0\rangle = \langle \hat{n}_i^0 | g_0 \rangle\), the second term between brackets does not contribute and then

\[
\langle \hat{n}_i \rangle = \langle \hat{n}_i^0 \rangle + \langle g_0 | \left\{ \langle \hat{n}_i^0 \rangle \hat{S}^2 - \hat{S} \hat{n}_i \hat{S} \right\} | g_0 \rangle. \tag{A8}
\]

Taking matrix elements of the second term, it is clear that only excited states for which \(n_i \neq \langle \hat{n}_i^0 \rangle\) contribute to it.

1. Polarization in the band insulating phase.

In the BI phase, \(\langle \hat{n}_i^0 \rangle = 0\) or 2 and all intermediate states have \(n_i = 1\). Then, Eq. (A8) leads to

\[
\langle \hat{n}_i \rangle = \langle \hat{n}_i^0 \rangle + (1 - \langle \hat{n}_i^0 \rangle) \sum_k \frac{|\langle k | \hat{H}_J | g_0 \rangle|^2}{(E_k - E_0)^2}, \tag{A9}
\]

where the sum is restricted to the two excited states \(|k\rangle\) of \(\hat{H}_0\) obtained after applying \(\hat{H}_J\) to \(|g_0\rangle\) for which \(n_i = 1\). One realizes that for positive \(\Delta\) there are \(L/2\) hops to the right for each spin with matrix element \(-J(1 - \delta)\) and \(L/2\) hops to the left for each spin with matrix element \(-J(1 + \delta)\). For negative \(\Delta\), the situation is the opposite. Therefore, the change in polarization with respect to the BI phase for \(\hat{H}_J = 0\) is

\[
\Delta P_{\text{BI}}^C = -\frac{4J \delta \sgn(\Delta)}{(2\Delta - U)^2}. \tag{A10}
\]

To compare with numerical calculations of the charge Berry phase, we have chosen \(U = 0, \Delta = 10, J = 1, \delta = 0.1\). Eq. (A10) gives \(\Delta P_{\text{BI}}^\text{PBC} = -10^{-3}\). The numerical calculation for \(L = 6, 8\) and 10 gives \(\Delta P_{\text{PBC}} = (-9.83 \pm 0.01) \times 10^{-4}\). Both results differ by less than 2%.

2. Polarization near the Mott insulating phase.

The calculation of the polarization in this case is more difficult due to the spin structure of \(|\gamma_0\rangle\). In particular, there can’t be any nearest-neighbor hopping if the spins of the electrons of the sites involved are parallel. Therefore the result depends on spin correlation functions. From Eq. (A8), one realizes that the contribution of the state in which an electron is displaced from site 1 to 2 is proportional to the probability that the spins of sites 1 and 2 form a singlet, since this hopping is not possible for triplets. The projector on the singlet state is \((1/2 - \hat{S}_1 \cdot \hat{S}_2)\), and the matrix element for the singlet has a factor \(\sqrt{2}\). Explicitly:

\[
-J(1-\delta) \sum \sigma \left(\frac{1}{\sqrt{2}} \left(c_{2\sigma}^\dagger c_{1\sigma} - c_{1\sigma}^\dagger c_{2\sigma} \right) |0\right) \]
\[
= -\sqrt{2}J(1-\delta)(c_{1\uparrow}^\dagger c_{2\downarrow} - c_{2\downarrow}^\dagger c_{1\uparrow})|0\right). \tag{A11}
\]

Thus, proceeding as before, the change in polarization with respect to the MI phase with \(J = 0\) (with all \(n_i = 1\)) is

\[
\Delta P_C = \frac{8UJ^2}{(U^2 - 4\Delta^2)^2} \left\{ (1+\delta)^2 \left(1/4 - \langle \hat{S}_3 \cdot \hat{S}_2 \rangle \right) - (1-\delta)^2 \left(1/4 - \langle \hat{S}_3 \cdot \hat{S}_2 \rangle \right) \right\}. \tag{A12}
\]

For \(\delta \to 0\), the correlation functions for all links are the same and \(1/4 - \langle \hat{S}_i \cdot \hat{S}_{i+1} \rangle = \ln 2\) in the thermodynamic limit. Therefore, in this limit \(\delta \to 0\), \(L \to \infty\), the above expression can be simplified to

\[
\Delta P_C \simeq \frac{8UJ^2}{(U^2 - 4\Delta^2)^2} (4\delta \ln 2 + O_B),
\]

\[
O_B = \langle \hat{S}_1 \cdot \hat{S}_3 \rangle \cdot \hat{S}_2 \tag{A13}
\]

\(O_B\) is the dimer order parameter of \(\hat{H}_{\text{Heis}}\). Using the Hellman-Feynman theorem \(\partial E/\partial x = (L/2)O_B\), where \(E = \langle \hat{H}_{\text{Heis}} \rangle\). From bosonization and numerical results one knows that \(E \approx x^{4/3}\) and then \(O_B \sim \delta^{1/3}\). Therefore, the change in the dimer order parameter with \(\delta\) dominates \(\Delta P\) for very small \(\delta\).

For a comparison with numerical calculations we take \(J = 1, \ U = 10, \ \Delta = \delta = 0.1\). This leads to \(J_2/J_1 = 0.67\) for which \(O_B \approx 0.517\) according to Fig. 1 of Ref. 15. Approximating \(1/4 - \langle \hat{S}_1 \cdot \hat{S}_3 \rangle \cdot \hat{S}_2 \rangle = \ln 2 \pm O_B/2\), Eq. (A13) gives \(\Delta P = 5.24 \times 10^{-4}\). From the numerical calculation of the Berry phases we obtain \(\Delta P_C = z \times 10^{-4}\), with \(z = 4.73, 5.17\) and 5.38 for \(L = 6, \ 8\) and 10 respectively in reasonable agreement with the above estimation.

3. Bond-order parameter

The parameter of the bond-order wave (BOW) can be defined as

\[
O_{\text{BOW}} = \frac{1}{L} \sum (-1)^i \langle \hat{b}_i \rangle,
\]

\[
\hat{b}_i = c_{i+1\sigma}^\dagger c_{i\sigma} + \text{H.c.}, \tag{A14}
\]

where \(\langle \hat{b}_i \rangle\) is the expectation value of the hopping between sites \(i\) and \(i+1\). For \(\delta = 0\), odd and even bonds are equivalent and therefore \(O_{\text{BOW}} = 0\) for any finite system with an even number of bonds. In the thermodynamic limit within the SDI phase there is precisely a spontaneous symmetry breaking and the system “chooses” one of two possible degenerate states with opposite \(O_{\text{BOW}}\). The SDI phase is out of the reach of validity of the present perturbative treatment. For \(\delta \neq 0\), \(O_{\text{BOW}} \neq 0\) and therefore the bond-order parameter can be analyzed by perturbation theory in \(H_J\) starting from the BI and MI phases. Using Eq. (A7) for \(\hat{O} = \hat{b}_i\), it is easy to see that for both phases the first non-trivial contribution is the linear one in \(\hat{S}\) (the operator that acts first between \(\hat{b}_i\) and \(\hat{S}\) leads so some excited state and the other returns to the ground state). Thus

\[
\hat{b}_i \approx \hat{P} \left[\hat{b}_i, \hat{S} \right] \hat{P} \tag{A15}
\]

Doing the calculation for the non-degenerate ground state of the BI phase using Eq. (A4) one obtains

\[
\langle \hat{b}_i \rangle_{\text{BI}} = 4J \frac{1 + (-1)^i \delta}{2\Delta - U}. \tag{A16}
\]

Inserting this expression into Eq. (A14) we obtain

\[
O_{\text{BOW}}^{\text{BI}} = \frac{4\delta J}{2\Delta - U}. \tag{A17}
\]

In the other phases, the calculation is more complicated because of the structure of the ground state in which spin flips are possible. Proceeding in a similar way as in Ref. 15 and above, we obtain

\[
\langle \hat{b}_i \rangle = \left(1 - 4 \langle \hat{S}_1 \cdot \hat{S}_{i+1} \rangle \right) \frac{UJ^2}{U^2 - 4\Delta^2}. \tag{A18}
\]

Inserting this in Eq. (A14) one obtains

\[
O_{\text{BOW}} = \frac{2JUO_B}{U^2 - 4\Delta^2} + \frac{UJ\delta}{U^2 - 4\Delta^2} \left(1 - 2 \langle \hat{S}_3 \cdot \hat{S}_1 \rangle \right), \tag{A19}
\]

where \(O_B\) was discussed above. For \(\delta \to 0\), \(O_B \sim \delta^{1/3}\) and therefore, the first term is the leading one. This means that in this limit the bond-order parameter is proportional to the dimer order parameter of the Heisenberg chain with alternating exchange parameters.
[63] A. A. Aligia, Phys. Rev. B 69, 041101 (2004).
[64] M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).
[65] J. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131 (1962).
[66] K. Okamoto, H. Nishimori, and Y. Taguchi, Journal of the Physical Society of Japan 55, 1458 (1986).
[67] S. Paul, Condensed Matter Physics 20, 23701 (2017).