Local field effect as a function of pulse duration

Denis V. Novitsky

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Nezavisimosti Avenue 68, 220072 Minsk, Belarus.

(Dated: August 17, 2010)

In this note we give semiclassical consideration of the role of pulse duration in observation of local field effects in the regime of optical switching. We show that the main parameter governing local field influence is the ratio of peak Rabi frequency corresponding to medium inversion and Lorentz frequency of the medium. To obtain significant local field effect, this parameter should be near unity that is valid only for long enough pulses. We also discuss the role of relaxation and pulse shape in this processes.

PACS numbers: 42.65.Pc, 42.25.Bs, 42.65.Sf

The concept of local field was introduced in the second half of the nineteenth century by Hendrik Antoon Lorentz and Ludvig Valentin Lorenz [1]. They demonstrated that the microscopic (local) electric field E_L acting on atoms or molecules of the medium is different from the macroscopic applied field E. This difference is due to polarization of the medium P and describes the near dipole-dipole (NDD) interactions between atoms or molecules. The well-known expression for the local field in the case of isotropic homogeneous media is

$$E_L = E + \frac{4\pi}{3} P. \tag{1}$$

Utilization of this relation leads to the classic Clausius-Mossotti equation between microscopic (molecular polarizability) and macroscopic (dielectric permittivity) parameters of the medium [2]. Local field correction (1) is a good approximation in the case of nonresonant dense gases, liquids and solids. Moreover, it can be used to determine refractive index even for such quantum medium as Bose-Einstein condensate [3, 4] including the effects of atomic correlations.

It turned out that it leads to some fundamental effects if one considers radiation interacting with a dense collection of resonant two-level atoms. This system known as a dense resonant medium should contain many atoms within a cubic resonant wavelength. The strength of NDD interactions between atoms of this medium is measured by value of the Lorentz frequency $\omega_L = 4\pi \mu^2 C/3h$, where μ is a transition dipole moment, C is atom concentration per unit volume, h is the Planck constant. The most studied effect induced by presence of local field is the intrinsic optical bistability which results in two-valued dependence of population difference between ground and excited states on light intensity in stationary regime. This effect was predicted theoretically [7] and then observed experimentally [8]. The condition of bistability existence can be formulated as an inequality $b = \omega_L T_2 > 4$ [9], where T_2 is the transverse relaxation time. Realistic estimates of value of b show that, as a rule, it does not exceed several units, i.e. $b \leq 10$. For example, for gaseous media with typical parameters $\mu^2 = 10^{-38}$ erg cm3, $T_2 = 10^{-9}$ s$^{-1}$, $C = 10^{20}$ cm$^{-3}$ [10] we have $b \approx 4$.

Condensed matter, e.g. excitonic media, possesses substantially greater dipole moments, but they are compensated by relatively small atomic concentrations [11].

Local field correction results in some remarkable effects on pulse propagation in resonant medium. Some of them are connected with new solitary wave properties, such as distinctions of soliton form from standard hyperbolic secant envelope and its area from 2π [12]. NDD interactions play crucial role in generation of the so-called “incoherent” solitons [11]. They influence soliton formation in the so-called resonantly absorbing Bragg reflectors [13], pattern formation in lasers [14] and ultrashort, few-cycle pulse propagation in dense resonant medium [15, 16]. The authors of Ref. [17] considered ultrashort optical switching of the medium between ground and excited states due to action of a coherent pulse, i.e. a pulse which duration is much less than relaxation times of the medium, $t_p << T_1, T_2$. Switching was obtained for the pulses with peak Rabi frequencies $\Omega_p = \mu E_p/h$ (E_p is the peak amplitude of electric field) approximately equal to Lorentz frequency of the medium, i.e. $\Omega_p/\omega_L \approx 1$. This is valid independently of pulse area, however, if the pulse is very short, it contains only a small fraction of π and, obviously, cannot excite the medium. Therefore, this switching effect holds true only for pulses long enough, namely, for $\omega_L t_p > 1$. This condition can be rewritten as $bt_p/T_2 > 1$ and, taking into account pulse coherence, gives $b >> 1$, that seems not to be realistic. In the next paper [18] more moderate condition was considered, $\omega_L t_p \leq 1$, together with taking into account propagation effects. The results of that work were obtained for pulses of picosecond durations. On the other hand, in femtosecond regime, the influence of NDD interactions on pulse propagation was reported to be negligible, at least for realistic values of b and ω_L [19].

In this note we carefully examine the role of pulse duration in appearance of local field effects. We assume the pulse to be intensive enough to excite the medium, i.e. the regime of ultrafast switching is considered. There-

Electronic address: dvnovitsky@tut.by
fore the main dimensionless parameter of our research is
\(\psi = \Omega_0 / \omega_L \), where \(\Omega_0 \) is the characteristic peak Rabi
frequency corresponding to the pulse that switches the
medium. \(\Omega_0 \) can be found due to the conception of pulse
area. Indeed, if we take the equality
\[
2 \frac{\mu}{h} \int_{-\infty}^{\infty} E dt = 2\pi \tag{2}
\]
and assume the pulse to have Gaussian shape \(E = E_0 \exp(-t^2/2\tau_p^2) \), we obtain
\[
\Omega_0 = \sqrt{\frac{\mu}{2 \omega_L \tau_p}}. \tag{3}
\]
So, the main parameter is
\[
\psi = \frac{\Omega_0}{\omega_L} = \sqrt{\frac{\mu}{2 \omega_L \tau_p}}. \tag{4}
\]
This value allows us to say whether local field correction
is significant or not. It is seen that \(\psi \) is dependent on pulse duration.

Our main thesis is that local field effects can be ob-
erved when the ratio \(\psi \) is near unity (relatively long pulses), while they can be neglected in the case \(\psi >> 1 \)
(short pulses). Further we prove this statement directly
by numerical simulations of pulse propagation inside a
dense two-level medium. The model used is based on the
semiclassical Maxwell-Bloch system for population dif-
ference \(W \), microscopic polarization \(R \), and electric field
amplitude \(\Omega' = \Omega / \omega = (\mu / h \omega) E \) (in dimensionless form)
\[R \tag{19 \[20]}. \]
\[
\frac{dR}{d\tau} = i\Omega' W + iR(\delta + \epsilon W) - \gamma_2 R, \tag{5}
\]
\[
\frac{dW}{d\tau} = 2i(\Omega' R - R' \Omega') - \gamma_1 (W - 1), \tag{6}
\]
\[
\frac{\partial^2 \Omega'}{\partial\xi^2} = \frac{-\partial^2 \Omega'}{\partial\tau^2} + 2i \frac{\partial \Omega'}{\partial\xi} + 2i \frac{\partial \Omega'}{\partial\tau} \nonumber = 3\epsilon \left(\frac{\partial^2 R}{\partial\tau^2} - 2i \frac{\partial R}{\partial\tau} - R \right), \tag{7}
\]
where \(\tau = \omega t \) and \(\xi = k z \) are dimensionless
arguments; \(\delta = \Delta \omega / \omega \) is the normalized detuning of the
field carrier (central) frequency \(\omega \) from atomic resonance;
\(\gamma_1 = (\omega T_1)^{-1} \) and \(\gamma_2 = (\omega T_2)^{-1} \) are the rates of longitudi-
nal and transverse relaxation, respectively; \(\epsilon = \omega_L / \omega \)
is the normalized Lorentz frequency; \(k = \omega / c \) is the
wavenumber, and \(c \) is the light speed in vacuum. Here
we assume that the background dielectric permittivity of
the medium is unity (two-level atoms in vacuum). Equa-
tions \[13-20\] are derived in the framework of the rotating
wave approximation (RWA) which requires \(\Omega' << 1 \) \[21\].
This condition is satisfied throughout the paper. In Eq.
\[7\] we do not use slowly-varying envelope approxima-
tion (SVEA) which cannot hold true even for thin films of
the medium as noted in Ref. \[18\]. Description based on Eqs.
\[5-6\] does not take into account such processes as mul-
tiple scattering, radiation reabsorption and spontaneous
emission which result in quantum corrections of Lorentz-
Lorenz relation \[22-23\]. However, many usual effects of
light propagation such as self-induced transparency can be
correctly treated in semiclassical approximation \[21\].

In our calculations we use Gaussian pulses with peak
amplitudes \[3\] and central wavelength \(\lambda = 0.5 \mu m \). We
consider the case of strict resonance, i.e. \(\delta = 0 \). Initially
(before pulse incidence) the medium is in the ground state,
i.e. \(W = 1, R = 0 \). Thickness of the layer of the
medium is \(L = 5 \lambda \). NDD interactions between two-levels
atoms provide Lorentz frequency \(\omega_L = 10^{11} \text{ s} \) (note, that \(\omega_L << \omega \)). This value is believed to be high enough
according to the typical parameters above.

First, we consider the case of coherent pulses, i.e. for
phenomenological relaxation terms in Eqs. \[5-6\] we as-
sume \(\gamma_1 = \gamma_2 = 0 \). This allows to study pure effect of
local field without any side effects connected with re-
laxation. As one can see in Figs. \[1(i)-(ii)\], influence
of NDD interactions on dynamics of pulses with dura-
tions \(t_p = 0.1 \) and \(1 \) ps \((\psi = 125 \text{ and } 12.5, \text{ respec-
tively}) \) is negligible. For shorter (femtosecond) pulses this
is valid as well, in accordance with the results of
Ref. \[19\]. Such pulses act as usual 2\(\pi \)-ones, first in-
verting the medium and then returning it exactly into
the ground state. Transmitted pulses demonstrate shape
transformation resulting in pulse compression \[19\], while
reflected radiation is almost absent. This situation can
be treated as self-induced transparency (SIT) regime.

When we further make pulse duration greater, for
\(t_p = 5 \) and \(10 \) ps \((\psi = 2.5 \text{ and } 1.25 \), Figs. \[1(iii)-(iv)]\), local
field effects become apparent. Inversion of the medium
is reached later in comparison with the case of absence
of NDD interactions. At the same time, the transmit-
ted pulse is decreasing, while the reflected one is getting
more intensive. At \(t_p = 10 \) ps almost entire initial energy
of radiation is transformed into the reflected pulse. Per-
haps, this is connected with the effect of coherent internal
reflection which was studied in stationary regime earlier
\[21-22\]. However, local field results in larger transmit-
tance as compared with the case when it is absent [see
Fig. \[1(iv)\]].

Now let us add phenomenological relaxation. We take
typical parameters \(T_1 = 1000 \text{ ps} \) and \(T_2 = 100 \text{ ps} \), so that
NDD interactions parameter is \(b = \omega_L T_2 = 1 \). For pulse
durations \(t_p = 0.1 \) and \(1 \) ps the results are almost the same
as in relaxation-free case, see Figs. \[1(i)-ii)\). But
for longer pulses we have to take into account relaxation.
It is seen in Fig. \[2(i)] that for \(t_p = 5 \) ps relaxation results
in energy conservation inside the medium for a long time
(population difference does not reach unity) and, hence,
the output (transmitted and reflected) radiation is only a
small fraction of incident one [compare with Fig. \[1(iii)]].
For the pulse with \(t_p = 10 \) ps [Fig. \[2(ii)]], relaxation of
population difference on the entrance of the medium is
slow, too. However, this results in strong reflection rather
than trapping of pulse energy. The time shift of both
FIG. 1: (Color online) (a) Population difference on the entrance of the medium, (b) transmitted and (c) reflected radiation at different pulse durations: (i) $t_p = 0.1$ ps, (ii) $t_p = 1$ ps, (iii) $t_p = 5$ ps, (iv) $t_p = 10$ ps. Relaxation is absent. Results correspond to calculations without local field correction (LFC) (solid lines) and with it (dashed lines) in Eq. (5).

FIG. 2: (Color online) (a) Population difference on the entrance of the medium, (b) transmitted and (c) reflected radiation at different pulse durations: (i) $t_p = 5$ ps, (ii) $t_p = 10$ ps. Relaxation times $T_1 = 1000$ ps, $T_2 = 100$ ps. Results correspond to calculations without local field correction (LFC) (solid lines) and with it (dashed lines) in Eq. (5).

population difference and peak of reflected radiation in the case of local field correction is seen as well. Therefore, one can say that local field effects appear in the regime of internal reflection rather than in the regime of self-induced transparency.

Finally, we should discuss the question of pulse shape.
and duration $t_p = 10$ ps is really less deformed as compared with Gaussian pulse of the same duration. However, all other peculiarities (e.g. predominant reflection) are still valid in this case. The same statement is true for qualitative properties of the effect of local field correction on pulse propagation in the dense two-level medium considered.

In conclusion, in this note we considered the case of pulse propagation in a dense two-level medium in the regime of optical switching. It is clearly demonstrated by direct numerical calculations that local field effect on pulse propagation in such media is dependent on pulse duration. The governing parameter ψ is the ratio of peak Rabi frequency (characteristic for medium switching) and Lorentz frequency of the medium. For short (femtosecond) pulses this ratio is large, and we have the regime of self-induced transparency without any significant influence of local field. In other words, as pulse duration is decreasing, one need to have much greater Lorentz frequencies (that seems not to be realistic) to obtain any local field effect. On the other hand, when Lorentz frequency is increasing as medium is getting more dense, one has to take into account the processes of multiple scattering (and, hence, radiation trapping) which was ignored in our study. For long (picosecond) pulses, such that $\psi \sim 1$, the influence of local field becomes apparent, while SIT regime transforms into the regime of coherent internal reflection. On the other hand, the relaxation processes (just as pulse shape) can be sufficient in the case of long pulses. The results obtained may be used for proper choice of the parameters of experiments dealing with local field observation (at least, in some special experimental geometries).

![Population difference on the entrance of the medium for different pulse shapes: hyperbolic secant and Gaussian. Pulse duration $t_p = 10$ ps. Relaxation and local field correction is absent.](image)

One can see in Fig. 1a(iv) that behavior of population difference for long pulse with $t_p = 10$ ps is different from that in Figs. 1a(i)-(ii) even in the case when local field correction is absent. This is due to Gaussian shape of such a long pulse. For comparison we take the invariant pulse with hyperbolic secant shape, $E = E_0 \text{sech}(t/t_p)$. The condition (8) leads in this case to the peak Rabi frequency

$$\Omega_0 = \frac{1}{t_p}. \tag{8}$$

Figure 3 demonstrates that the curve of population difference for hyperbolic secant pulse with peak amplitude E_0 and duration $t_p = 10$ ps is really less deformed as compared with Gaussian pulse of the same duration. However, all other peculiarities (e.g. predominant reflection) are still valid in this case. The same statement is true for qualitative properties of the effect of local field correction on pulse propagation in the dense two-level medium considered.

In conclusion, in this note we considered the case of pulse propagation in a dense two-level medium in the regime of optical switching. It is clearly demonstrated by direct numerical calculations that local field effect on pulse propagation in such media is dependent on pulse duration. The governing parameter ψ is the ratio of peak Rabi frequency (characteristic for medium switching) and Lorentz frequency of the medium. For short (femtosecond) pulses this ratio is large, and we have the regime of self-induced transparency without any significant influence of local field. In other words, as pulse duration is decreasing, one need to have much greater Lorentz frequencies (that seems not to be realistic) to obtain any local field effect. On the other hand, when Lorentz frequency is increasing as medium is getting more dense, one has to take into account the processes of multiple scattering (and, hence, radiation trapping) which was ignored in our study. For long (picosecond) pulses, such that $\psi \sim 1$, the influence of local field becomes apparent, while SIT regime transforms into the regime of coherent internal reflection. On the other hand, the relaxation processes (just as pulse shape) can be sufficient in the case of long pulses. The results obtained may be used for proper choice of the parameters of experiments dealing with local field observation (at least, in some special experimental geometries).

[1] H.A. Lorentz, Ann. Phys. 245, 641 (1880); L. Lorenz, Ann. Phys. 247, 70 (1880).
[2] J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).
[3] O. Morice, Y. Castin, and J. Dalibard, Phys. Rev. A 51, 3896 (1995).
[4] J. Ruostekoski and J. Javanainen, Phys. Rev. A 56, 2056 (1997).
[5] J. Ruostekoski and J. Javanainen, Phys. Rev. A 55, 513 (1997).
[6] C.M. Bowden and J.P. Dowling, Phys. Rev. A 47, 1247 (1993).
[7] F.A. Hopf, C.M. Bowden, and W.H. Louissell, Phys. Rev. A 29, 2591 (1984); Y. Ben-Aryeh, C.M. Bowden, and J.C. Englund, Phys. Rev. A 34, 3917 (1986).
[8] M.P. Hohen, H.U. Güdel, Q. Shu, J. Ral, S. Rai, and S.C. Rand, Phys. Rev. Lett. 73, 1103 (1994).
[9] R. Friedberg, S.R. Hartmann, and J.T. Manassah, Phys. Rev. A 40, 2446 (1989).
[10] A.A. Afanas’ev, R.A. Vlasov, N.B. Gubin, and V.M. Volkov, J. Opt. Soc. Am. B 15, 1160 (1998); A.A. Afanas’ev, A.G. Chernyv, and R.A. Vlasov, Opt. Quant. Electron. 31, 605 (1999).
[11] A.A. Afanas’ev, R.A. Vlasov, O.K. Khasanov, T.V. Smirnova, and O.M. Fedorova, J. Opt. Soc. Am. B 19, 911 (2002).
[12] C.M. Bowden, A. Postan, and R. Inguva, J. Opt. Soc. Am. B 8, 1081 (1991).
[13] J. Cheng and J. Zhou, Phys. Rev. E 66, 036606 (2002).
[14] O.G. Calderon, E. Cabrera, M. Anton, and J.M. Guerra, Phys. Rev. A 67, 043812 (2003).
[15] K. Xia, S. Gong, C. Liu, X. Song, and Y. Niu, Opt. Express 13, 5913 (2005).
[16] X.-T. Xie and M.A. Macovei, Phys. Rev. Lett. 104, 073902 (2010).
[17] M.E. Crenshaw, M. Scalora, and C.M. Bowden, Phys. Rev. Lett. 68, 911 (1992).
[18] M. Scalora and C.M. Bowden, Phys. Rev. A 51, 4048 (1995).
[19] D.V. Novitsky, Phys. Rev. A 79, 023828 (2009).
[20] M.E. Crenshaw, Phys. Rev. A 54, 3559 (1996).
[21] L. Allen and J.H. Eberly, Optical Resonance and Two-Level Atoms, (Wiley, New York, 1975).
[22] M. Fleischhauer and S.F. Yelin, Phys. Rev. A 59, 2427.
[23] M. Fleischhauer, Phys. Rev. A 60, 2534 (1999).
[24] V. Malyshev and E.C. Jarque, J. Opt. Soc. Am. B 14, 1167 (1997).
[25] D.V. Novitsky and S.Yu. Mikhnevich, J. Opt. Soc. Am. B 25, 1362 (2008).