Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions
Ørum, Christian Mac; Kroger, Bjorn; Nielsen, Morten L.; Colmenar, Jorge

Published in:
Proceedings of the National Academy of Sciences of the United States of America

DOI:
10.1073/pnas.1821123116

Publication date:
2019

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Ørum, C. M., Kroger, B., Nielsen, M. L., & Colmenar, J. (2019). Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7207-7213. https://doi.org/10.1073/pnas.1821123116
Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions

Christian M. Ø. Rasmussenab,1, Björn Krögerb, Morten L. Nielso, and Jorge Colmenara

approaches to calculate a biodiversity curve that also considers taphonomy and sampling biases with four times better resolution of previous estimates. Our method reveals a stepwise biodiversity increase with distinct Cambrian and Ordovician radiation events that are clearly separated by a 50-million-year-long period of slow biodiversity accumulation. The Ordovician Radiation is confined to a 15-million-year phase after which the Late Ordovician extinctions lowered generic richness and further delayed a biodiversity rebound by at least 35 million years. Based on a first-differences approach on potential abiotic drivers controlling richness, we find an overall correlation with oxygen levels, with temperature also exhibiting a coordinated trend once equatorial sea surface temperatures fell to present-day levels during the Middle Ordovician Darrwilian Age. Contrary to the traditional view of the Late Ordovician extinctions—lowered generic richness and further delayed a biodiversity increase during the earliest Cambrian, initiated by the Cambrian Explosion,” followed by a more sustained radiation known as the Great Ordovician Biodiversification Event (GOBE) (2–6). However, the precise timing and duration of these events, or indeed whether or not they represent the same extended diversification pulse, are not sufficiently resolved as estimates of their timing differ by tens of millions of years (2, 6–8). In addition, there are diverging opinions regarding what happened after the GOBE: Did it mark the start of a Paleozoic biodiversity plateau only punctuated by one major mass extinction event during the Early Paleozoic (5, 6)? Or, did the diversification continue through the Silurian with only a minor disruption during the latest Ordovician (2, 3)? These inconsistencies in richness estimates originate due to different approaches to taxon counting. Whereas the classic work of Sepkoski (6, 9, 10) focused strictly on generic first and last appearances, Alroy et al. (2, 3) used genus-level occurrences to address sampling and preservation bias in a temporal binning framework of equal duration (Fig. 1). However, this latter approach came at the cost of the temporal resolution, which was then lowered from Sepkoski’s stage level binning (5 My) to an 11-My binning scheme. We complement these earlier works by providing a synthesis on biodiversity change during the first 120 My of the Phanerozoic partitioned into time slices with an average duration of 2.3 My.

We base our study on fossil occurrences compiled within the Paleobiology Database (PaleoDB), the data source that also served as the framework for the studies of Alroy et al. (2, 3). Entries in the PaleoDB consist of published taxon occurrences in specific strata and localities. Depending on the stratigraphic resolution of the published sources, it is possible to bin the occurrences in time intervals. Because time binning is not trivial and high-resolution chronostratigraphic bins are not available for the Early Paleozoic, these problems have been addressed previously by creating long ranging time slices in which generic ranges could be binned (2–4). To overcome these limitations, we established a set of 53 time slices through the entire Early Paleozoic based on biozones that can be correlated on a global scale by applying published chronostratigraphic schemes (11–15). We binned the PaleoDB

The first 120 million years of Phanerozoic life witnessed significant changes in biodiversity levels. Attempts to correlate these changes to potential short-term environmental drivers have been hampered by the coarse temporal resolution of current biodiversity estimates. We present a biodiversity curve for the Early Paleozoic with high temporal precision. It shows that once equatorial sea-surface temperatures fell to present-day levels during the late Mid Ordovician, marine biodiversity accumulation accelerated dramatically. However, this acceleration ceased as increased volcanism commenced during the mid-Late Ordovician. Since biodiversity levels were not restored for at least ~35 million years, this finding redefines the nature of the end Ordovician mass extinctions and further reframes the Silurian as a prolonged recovery interval.

Significance

Author contributions: C.M.Ø.R. and B.K. designed research; C.M.Ø.R., B.K., M.L.N., and J.C. performed research; C.M.Ø.R. and B.K. analyzed data; and C.M.Ø.R. and B.K. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. L.S. is a guest editor invited by the Editorial Board. This open access article is distributed under a Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The dataset and code reported in this paper have been deposited in Zenodo, https://doi.org/10.5281/zenodo.2586976.

1To whom correspondence should be addressed. Email: christian@snm.ku.dk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1821213116/-/DCSupplemental.

Published online March 25, 2019.

www.pnas.org/cgi/doi/10.1073/pnas.1821213116

PNAS | April 9, 2019 | vol. 116 | no. 15 | 7207–7213

The greatest relative changes in marine biodiversity accumulation occurred during the Early Paleozoic. The precision of temporal constraints on these changes is crude, hampering our understanding of their timing, duration, and links to causal mechanisms. We match fossil occurrence data to their lithostratigraphical ranges in the Paleobiology Database and correlate this inferred taxon range to a constructed set of biostratigraphically defined high-resolution time slices. In addition, we apply capture-recapture modeling approaches to calculate a biodiversity curve that also considers taphonomy and sampling biases with four times better resolution of previous estimates. Our method reveals a stepwise biodiversity increase with distinct Cambrian and Ordovician radiation events that are clearly separated by a 50-million-year-long period of slow biodiversity accumulation. The Ordovician Radiation is confined to a 15-million-year phase after which the Late Ordovician extinctions lowered generic richness and further delayed a biodiversity rebound by at least 35 million years. Based on a first-differences approach on potential abiotic drivers controlling richness, we find an overall correlation with oxygen levels, with temperature also exhibiting a coordinated trend once equatorial sea surface temperatures fell to present-day levels during the Middle Ordovician Darrwilian Age. Contrary to the traditional view of the Late Ordovician extinctions, our study suggests a protracted crisis interval linked to intense volcanism during the middle Late Ordovician Katian Age. As richness levels did not return to prior levels during the Silurian—a time of continental amalgamation—we further argue that plate tectonics exerted an overarching control on biodiversity accumulation.

Critical transitions in the state of the Earth that forced global ecosystems to adjust to changes in the physical environment fundamentally impacted Phanerozoic biodiversity levels (1). The Phanerozoic record of metazoan life denotes multiple events of abrupt change that affected the planet’s ability to sustain life. However, temporally highly resolved estimates of biodiversity change through geological time are lacking, making it difficult to assess when and how biotic or abiotic changes affected biodiversity in deep time.

The Early Paleozoic, and notably the Ordovician Period with its dramatic fluctuations in taxonomic richness, is a particularly relevant interval of the fossil record to test whether thresholds in the physical environment affect biodiversity accumulation. Previous richness curves through the Early Paleozoic show a modest increase during the earliest Cambrian, initiated by the Cambrian “Explosion,” followed by a more sustained radiation known as the Great Ordovician Biodiversification Event (GOBE) (2–6).
Fig. 1. Comparison of previous estimates on Early Paleozoic richness. The red shading (Sepkoski (9)) shows range interpolated presence/absence data partitioned into global stages; the green shading after Alroy (2) shows the sample standardized trend separated into 11-My time bins. Note that the y axis is arbitrary due to different estimates, with Ordovician peak in GOBE used to scale the two curves. Hence, this figure only shows the trends and relative timing of events.

The Cambrian

The temporal resolution applied herein reveals a first-order stepwise rise in richness through the Cambro–Ordovician periods with the Cambrian Explosion and the GOBE being two separate diversification events. As such, the Cambrian Explosion not only marks a phylum-level expansion in biodiversity, but also a substantial increase in generic richness during a short burst in the earliest Cambrian Epoch 2. This follows the global stage-level data on invertebrate fossils (4), but our estimate shows a more significant rise in generic richness that is further sustained for ~50 My despite the intervention of significant mass extinction events. This Cambrian–Early Ordovician biodiversity plateau, however, is low in comparison with the GOBE, which according to the current study took place during a narrow phase spanning just 15 My. This is in line with Sepkoski’s original definition of the Ordovician Radiation, as well as Miller and Foote (23), who used sample standardized, regional series-level data of Laurentia to calibrate the timing of this event. Since those early studies, opinions on the onset and duration of the events during the Cambro–Ordovician periods became more blurred, with some studies suggesting a late Cambrian onset of the GOBE (2, 3, 8). In our view, this opinion of a late Cambrian start of the GOBE more possibly reflects the longer time binning of previous richness studies (2, 3) and a lack of consensus as to what “biodiversity” refers to within the concept of the GOBE. There is undoubtedly an increase of abundance (as in number of specimens) from the Early Ordovician onwards (24), but that does not necessarily reflect an increase in richness. Although a few higher clades originate during this interval, such as certain groups within the primary producers (8), in our view this does not justify expanding the timing of the GOBE into the Cambrian.

A number of studies have found a first-order correlation of richness to outcrop area and number of formations (25, 26). More strata deposited and preserved during times of high sea level would yield higher biodiversity levels because more habitats would be available in the first place and at the same time, the rock volume would be available for the fossil record [the so-called “common-cause hypothesis” (27, 28)]. With the Ordovician probably representing the greatest transgressed rock-volume preserved of the Phanerozoic (29) and the early Katian part of the Late Ordovician possibly representing a Phanerozoic sea level maximum (30, 31), we expected higher biodiversity accumulation at this time. We tested for a correlation of the first differences between our Dcr and a modified compilation of published sea level curves (30, 32) and the number of formations extracted from the PaleoDB (SI Appendix, Fig. S1). The analysis supports this expectation. The first difference in richness correlates with first differences in sea level (r = 0.8366; P < 0.001) and a smoothed five-bin averaged sea level curve (r = 0.616; P < 0.001) (see SI Appendix for details). This is in accordance with previous analyses and with the common-cause hypothesis (25–28). The richness increase is associated with an increase in rock volume, but at the same time, the most drastic increase in richness, observed during the Middle Ordovician, occurs against a background of major sea level fall (Fig. 2). Cooling climate, as expressed in temperature estimates (33, 34) and rising oxygen levels (35, 36) may have been key factors for the diversification during this time (see further discussion on abiotic drivers below).

The Late Ordovician–Silurian Interval. We find the highest biodiversity levels of the entire Early Paleozoic to be reached during the Sandbian–early Katian interval, but hereafter a three-phased fall in richness levels starts that ended during the earliest Silurian Rhuddanian Age (time slice Rhud2). This 10- to 12-My-long extinction interval does not follow the traditional view of a swiftly operating, two-phased end Ordovician mass extinction event confined to the Hirnantian Age (37).

Based on our estimates, the main drop in richness occurs during the earliest to mid-Katian. This is in contrast to previous estimates (38) and challenges the traditional link that is made to greenhouse–icehouse–greenhouse shifts (37). Evidence for icehouse conditions during the Hirnantian is well documented and undisputed (38, 39), but the timing of the onset of the biodiversity decrease seems to be diachronous based on the best resolved datasets, which arguably come from brachiopods (40) and graptolites (41). These analyses show peak diversities at different points in the late Katian. Our overall net loss in genus richness suggests an earlier onset of the extinctions and, thus, a prolonged survival interval compared with the classic perception of an approximately 1-My-long crisis phase during the Hirnantian Age (37). This implies that the global late Katian climatic optimum known as the Boda Event (42), as well as the regionally well-developed Richmondian Invasion (43), should...
be included in the crisis interval of the end Ordovician mass extinctions. These events were characterized by faunal dispersal and immigration, notably toward Laurentia, but also with enhanced migration at much higher latitudes where invading taxa regionally increased richness (44, 45). This broadening of generic geographic ranges enabled immigrants, not new species, to fill niches that had become vacant regionally. Thus, overall global biodiversity accumulation started to fall during the Katian (46). Dispersal (and migration) continued extensively during the terminal Ordovician Hirnantian Age, notably with the shelly benthos being characterized by the coldwater Hirnantia and Dalmanitina faunas reaching lower latitudes (47).

As Silurian richness levels did not surpass the Late Ordovician levels, our estimate is consistent with the “Paleozoic Plateau” suggested by Sepkoski (6, 48). However, it does not support the marked richness increase in the middle–late part of the Silurian shown by Alroy (2). This discrepancy likely reflects the low temporal resolution of the Alroy curve where just two time slices constitute the bulk of the Silurian Period. Thus, the latest Silurian is binned together with the early Devonian that likely pulled late Silurian richness levels up in that study (SI Appendix, Fig. S4). More surprising in our results, is the lack of a biodiversity rebound during the Silurian. Given the robustness and high confidence level of our approach, we regard this signal as being
well supported. This suggests that the end Ordovician extinctions had a far longer lasting impact on global biodiversity than previously recognized. This is concurrent with a comparatively low-level ecological reorganization during the early Silurian Llandovery Epoch (41, 49, 50). Previous studies have shown that the ecological disruption succeeding the end Ordovician extinction events was of lower order than, for instance, after the end-Permian and end-Cretaceous mass extinctions (51, 52). Recovery intervals have been conceptualized as short intervals of a few million years with a geologically rapid reorganization of faunas where many clades adapted to the changing environments, conquered newly vacated ecospace and, as a consequence, radiated into new niches (48).

Here, we point out that the Silurian interval differs from these more drastic recovery intervals in being comparatively protracted. This is supported by clade-level studies on rhynchonelliform brachiopods that show a diachronic recovery phase with a strong paleogeographical and bathymetrical component (53, 54). Brachiopod faunas recovered much faster during the earliest Silurian on Laurentia (55) than seen globally (56). However, recovery in generic richness was, to a large extent, the result of taxa that moved into vacant niches in shallow-water, tropical settings, and then eventually evolved into new families (50, 57, 58).

The Role of Abiotic Drivers in Early Paleozoic Biodiversity Accumulation

The current study enables a better comparison with environmental covariates considered to control biodiversity accumulation through time (Fig. 2). We selected a number of potentially relevant covariates and conducted simple pairwise tests for correlation of first-differences estimates using Pearson’s r as a correlation coefficient (SI Appendix, Table S1).

On the longest term, plate tectonics are believed to control biodiversity accumulation through the changing cycles in breakup and amalgamation of continents (59). At times with many geographic entities, provinciality is high, leading to increased isolation of faunas, which then become more endemic. Such plate tectonic movements during the Phanerozoic scale to yield higher global biodiversity (59, 60), and this has also been invoked as causal mechanisms behind the GOBE (61, 62). We have tried to test this indirectly, by comparing our richness estimate to the secular trend in 87Sr/86Sr, but no dependencies can be detected. There are two explanations for this. First, the strontium trend operates over too long timescales to be reflected by the current highly resolved binning framework. A second possible explanation is that more than one determinant is acting in concert during certain intervals. Such plate tectonic cycles have been demonstrated on the Phanerozoic scale to yield overall good correlation, with time scales of a few million years (33). We do not observe a distinct and sudden richness drop but rather a long, three-phased interval characterized by successively reduced generic loss. This is a markedly different trend than previous estimates suggest (6), but further studies specifically focusing on an estimation of the turnover rates are needed to resolve exactly when the main taxonomic loss takes place. Our observation involves other causal drivers for the event than climate. Reviewing the published literature on Large Igneous Provinces (LIPs), and increased volcanism, shows a temporal correlation both to the early Cambrian Botomian Extinctions, as well as the early Katian drop in richness. Early Katian volcanic events have previously been suggested as a driver for this extinction event (69), but the temporal correlation was lacking. With the protracted crisis interval of our CR estimate, a volcanic driver no longer can be overlooked as a potential candidate for a causal determinant. This is further supported by increased weathering as implied by the Sr record suggesting less provinciality and the rapidly fluctuating 813C curve for the Late Ordovician. In fact, our review indicates a tendency for all major extinction intervals up through the Early Paleozoic to be slightly predated by large positive excursions in the carbon record. Positive excursions in 13C are generally believed to reflect increased primary production, as for example has been argued for in the case of the positive Middle Ordovician “Middle Darriwilian Isotopic Carbon Excursion” (MDICE) (34). However, as the MDICE is characterized by a slow increase toward heavier values, this contrasts with the repeated, abrupt positive pulses seen associated with the extinction intervals (Fig. 2). These, instead, could reflect rapidly increased atmospheric carbon events, indicating a hitherto-overlooked volcanic component in some of these Early Paleozoic extinction events, if not all. Therefore, a Late Ordovician scenario could be that increased volcanism triggered the extinctions with extreme warming and cooling phases, stressing
in some cases success-

do not hallucinate.

critical in facilitating increased biodiversity accumulation. The Middle Ordovician Darrilwilian Age may represent one such exam-

e of a fundamental change in the state of the Earth as global temperature and Pacific Ocean temperatures dropped while oxygenation levels increased in the marine and atmospheric realms. This appears to have had a dra-

tic impact on the accumulation of biodiversity seen during the GOBE, but the underlying evolutionary rates of the changes in richness still need to be resolved. The possible link between continental amalgamation and the end Ordovician biodiversity loss deviates from the traditional view of climate-induced end Ordovician mass extinctions. This alone indicates that favorable environmental conditions are not the only prime factor controlling biodiversity accumulation through time.

faunas, and forcing them to migrate—in some cases success-

fully—but ultimately favoring those best adapted to either climate or facies. The stressed faunas during the prolonged survival phase were further challenged by the changing paleogeographic setting, most notably the configuration of continents during the latest Ordovician–Silurian interval. Decreasing provincialism and habitat destruction caused by amalgamating continents (70) further hindered a fast rebound of biodiversity accumulation during the earliest Silurian (56).

Conclusions

Our primary focus has been to produce a thoroughly tested Early Paleozoic richness estimate in high temporal resolution. In our view, this is needed to leverage the understanding of the effects of potential abiotic causal drivers in biodiversity accumulation through time. The associated intrinsic aspects of this accumu-

tion, such as turnover rates and the evolution of certain morphological features, are beyond the scope of the current study. The above discussion must, therefore, be carefully vetted and tested against such potential factors by future studies.

While controls on biodiversity change have been long discussed (71), better temporal precision on the chain of eco-evolutionary events and dating of the richness fluctuations themselves may resolve this debate. The two-step pulses of biodiversity in-

crease observed in our curve echoes the classic ideas of the kinetic model of taxonomic richness suggesting that an equilibrium was reached twice during the Early Paleozoic (10). With our approach, the results of Sepkoski’s analyses are revived. This paves the way for future discussions as it suggests that relatively sudden shifts in environmental conditions, such as temperature and pO₂, are critical in facilitating increased biodiversity accumulation. The Middle Ordovician Darrilwilian Age may represent one such exam-

e of a fundamental change in the state of the Earth as global temperature and Pacific Ocean temperatures dropped while oxygenation levels increased in the marine and atmospheric realms. This appears to have had a dra-

nice impact on the accumulation of biodiversity seen during the GOBE, but the underlying evolutionary rates of the changes in richness still need to be resolved. The possible link between continental amalgamation and the end Ordovician biodiversity loss deviates from the traditional view of climate-induced end Ordovician mass extinctions. This alone indicates that favorable environmental conditions are not the only prime factor controlling biodiversity accumulation through time.

Methods

Our analysis is based on a download of all Cambrian–Devonian (Lochkovian) fossil occurrences registered in the PaleoDB (downloaded September 14, 2017) resulting in a total number of 199,796 occurrences. We divided the Cambrian–Silurian into 53 time bins plus 1 for the Lochkovian to account for range interpolation during the latest Silurian Pridoli Epoch (SI Appendix, Table S2–S4). The absolute (numeric) geochronological time spans of the individual bins are adopted from Ogg et al. (11), which also formed the primary basis for the global biozonal correlations conducted herein. Excep-

tions from this are the lowermost Cambrian where we follow the biozonation used by Peng et al. (72), and for the Ordovician, where we used a modified time slice partitioning adopted from Bergström et al. (13) for the Lower–Middle Ordovician, and Ferretti et al. (14), in conjunction with Ogg et al. (11), for the Upper Ordovician. For the Silurian Period, we followed Cramer et al. (12) and Ogg et al. (11).

All lower Paleozoic formational names were extracted together with the fossil occurrences from the PaleoDB (September 14, 2017). Initially, all re-

dundancies in formational names were removed. Hereafter, we partitioned the formational data into Cambrian (640 entries), Ordovician (1,650 entries), and Silurian (1,533 entries) datasets (Datasets S1–S4). Formations were assigned to our time slice partitions using the two latest renditions of The Geologic Time Scale (11, 15, 72, 73), as well as relevant literature covering regional stage names, and chronostratigraphic partitions no longer in use.

We manually time binned all PaleoDB lithological formation data (Datasets S1–S4) and filtered the occurrences for a resolution of two time bins or higher. Additionally, we used a PaleoDB download of all Ordovician fossil occurrences and a download of all Ordovician stratigraphic units from the RNames database (names.luomus.fi/) for an alternative automated time binning approach using the Ordovician time bins of SI Appendix, Table S3 and filtered the resulting list of occurrences for a resolution of two time bins or higher [see Kröger and Lintulaukso (22) for details on methods]. Both downloads are from September 14, 2017.

Subsequently, we filtered the two resulting datasets for taxonomic de-

terminations at genus level and higher. This accrued a total of 185,348 oc-

currences for the manually binned dataset and 188,850 for the combined automated and manually binned datasets for the combined occurrence counts of 25,298 and 25,597 occurrences, respectively, for the CR approach (see below). Based on these two different datasets we calculated richness trends using three different methods (SI Appendix):
i) The shareholder quorum subsampling approach (2), herein Dsub, using John Alroy’s R function, version 3.3 (bio.mq.edu.au/~jralroy/SQS-3-3.R), was used for the late Ordovician.

ii) The Shannon entropy Hill number (17, 21), herein Dhill, was calculated using the R Package nnext, version 2.0.12 (74).

iii) Additionally, the CR approach, herein DCR, was used for richness estimation. The method was transferred from ecology data to fossil data following the approach of Liow and Nichols (20), assuming that each genus is equivalent to a captured and recaptured organism, and that the total genus number is equivalent to the size of the population. A presence–absence matrix was constructed based on the filtered and binned PaleOB database for the time bins. This matrix served for the fitting of explicit models for richness estimation with time-varying probabilities of survival, sampling/preservation, and origination. We fitted the Jolly-Seber model following the POPAN formulation, also known as the “superpopulation approach” (75) (herein Dsuper). The CR estimates have been calculated using the program MARK (www.phidot.org/software/mark) and the R Package RMark, version 2.2 (76).

The first two approaches are very similar, because they both compare samples of equal completeness and not equal sample size, such as, for example, classical rarefaction and they are based on the concept of sample coverage (see ref. 21 for a review). These methods differ in that Dsub uses a unified sampling framework that seamlessly links rarefaction and extrapolation models operating on sample completeness, whereas DCR uses rarefaction exclusively.

The CR approach differs radically from the other methods in fitting explicit models for each dataset and extrapolating time specific probability-based diversities.

All data produced and analyzed by this study are available in SI Appendix, and the code, as well as associated R files, are available for download at https://doi.org/10.5281/zenodo.2586976.

ACKNOWLEDGMENTS. We thank the three anonymous reviewers who critically assessed and considerably improved the manuscript. We further thank Jon Fjeldså, James Connelly, and Arne Nielsen (Copenhagen) and David Harper (Durham) for constructive comments on earlier versions of the manuscript. B.K. is grateful to Lee Hsiang Liow (Oslo) for encouragement to conduct CR analysis and to Kari Lintulaakso (Helsinki) for support with the RN database. C.M.O.H. is grateful for funding received through the VILLUM Foundation’s Young Investigator Programme (Grant VKR023452) and GeoCenter Denmark (Grants 2015–5 and 3–2017). B.K. was funded by the Academy of Finland. This is official Paleobiology database publication number 338, and further a contribution to the IGCP Project 653 “The Origin of the Great Ordovician Biodiversification Event.”
58. Sheehan PM (2008) Did incumbency play a role in maintaining boundaries between Late Ordovician brachiopod realms? Lethaia 41:147–153.
59. Drosler M, Bottjer DJ, Sheehan PM, McGhee GR, Jr (2000) Decoupling of taxonomic and ecological severity of Phanerozoic marine mass extinctions. Geology 28:675–678.
60. Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci 34:127–155.
61. Finnegan S, Rasmussen CMØ, Harper DAT (2016) Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc Biol Sci 283:20160007.
62. Rasmussen CMØ, Harper DAT (2011) Interrogation of distributional data for the end Ordovician crisis interval: Where did disaster strike? Geol J 46:478–500.
63. Krug AZ, Patakiowsky ME (2004) Rapid recovery from the Late Ordovician mass extinction. Proc Natl Acad Sci USA 101:17605–17610.
64. Rasmussen CMØ, Harper DAT (2011) Did the amalgamation of continents drive the End Ordovician mass extinctions? Palaeogeogr Palaeoclimatol Palaeoecol 311:48–62.
65. Rasmussen CMØ, Ebbestad JOR, Harper DAT (2010) Unravelling a Late Ordovician pentameride (Brachiopoda) hotspot from the Boda limestone, Siljan district, central Sweden. GFF 132:133–152.
66. Rong Jy, Boucot AJ (1998) A global review of the Virginianides (Ashgillian–Llandovery, Brachiopoda, Pentameridea). J Paleontol 72:457–465.
67. Valentine JW, Moores EM (1970) Plate-tectonic regulation of faunal diversity and sea-level: A model. Nature 228:657–659.
68. Zaffos A, Finnegan S, Peters SE (2017) Plate tectonic regulation of global marine animal diversity. Proc Natl Acad Sci USA 114:5653–5658.
69. Miller AI, Mao S (1995) Association of organogenic activity with the Ordovician radiation of marine life. Geology 23:305–308.
70. McKenzie NR, Hughes NC, Gill BC, Myrow PM (2014) Plate tectonic influences on Neoproterozoic–early Paleozoic climate and animal evolution. Geology 42:127–130.
71. Trotter JA, Williams IS, Barnes CR, Mannik P, Simpson A (2016) New conodont 188O records of Silurian climate change: Implications for environmental and biological events. Palaeogeogr Palaeoclimatol Palaeoecol 443:34–48.
72. Dabard MP, et al. (2015) Sea-level curve for the Middle to early Late Ordovician in the Armorican Massif (western France): Icehouse third-order glacio-eustatic cycles. Palaeogeogr Palaeoclimatol Palaeoecol 436:96–111.
73. Turner BR, Armstrong HA, HoUt P (2011) Visions of ice sheets in the early Ordovician greenhouse environment: Evidence from the Peninsula formation, Cape Peninsula, South Africa. Sediment Geol 236:226–238.
74. Rasmussen CMØ, Nielsen AT, Harper DAT (2009) Ecosratigraphical interpretation of lower Middle Ordovician East Baltic sections based on brachiopods. Geol Mag 146:717–731.
75. Harper DAT (2006) The Ordovician biodiversification: Setting an agenda for marine life. Palaeogeogr Palaeoclimatol Palaeoecol 232:148–166.
76. Vandenbroucke JRA, et al. (2010) Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic icehouse. Proc Natl Acad Sci USA 107:14983–14986.
77. Rasmussen CMØ, Nielsen AT, Harper DAT (2011) Did intense volcanism trigger the first Late Ordovician icehouse? Geology 38:327–330.
78. Ebbestad JOR, Rasmussen CMØ, Harper DAT (2010) Interrogation of distributional data for the end Ordovician crisis interval: Where did disaster strike? Geol J 46:478–500.
79. Sheehan PM (2008) Did incumbency play a role in maintaining boundaries between Late Ordovician brachiopod realms? Lethaia 41:147–153.
80. Drosler M, Bottjer DJ, Sheehan PM, McGhee GR, Jr (2000) Decoupling of taxonomic and ecological severity of Phanerozoic marine mass extinctions. Geology 28:675–678.
81. Bambach RK (2006) Phanerozoic biodiversity mass extinctions. Annu Rev Earth Planet Sci 34:127–155.
82. Finnegan S, Rasmussen CMØ, Harper DAT (2016) Biogeographic and bathymetric determinants of brachiopod extinction and survival during the Late Ordovician mass extinction. Proc Biol Sci 283:20160007.
83. Rasmussen CMØ, Harper DAT (2011) Interrogation of distributional data for the end Ordovician crisis interval: Where did disaster strike? Geol J 46:478–500.