D-TITIN: a Giant Protein with Dual Roles in Chromosomes and Muscles

Cristina Machado and Deborah J. Andrew

Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196

Abstract. Previously, we reported that chromosomes contain a giant filamentous protein, which we identified as titin, a component of muscle sarcomeres. Here, we report the sequence of the entire titin gene in Drosophila melanogaster, D-Titin, and show that it encodes a two-megadalton protein with significant colinear homology to the NH2-terminal half of vertebrate titin. Mutations in D-Titin cause chromosome undercondensation, chromosome breakage, loss of diploidy, and premature sister chromatid separation. Additionally, D-Titin mutants have defects in myoblast fusion and muscle organization. The phenotypes of the D-Titin mutants suggest parallel roles for titin in both muscle and chromosome structure and elasticity, and provide new insight into chromosome structure.

Key words: chromosome condensation • Drosophila melanogaster • myoblast fusion • sarcomere • titin

Introduction

Chromosomes are highly ordered, elastic structures that maintain their integrity throughout the physically strenuous process of cell division. Each human chromosome contains a single DNA molecule of 50–250 × 106 base pairs, which would extend from 1.7–8.5 cm if uncoiled (Alberts et al., 1994). Chromosomal DNA must be compacted to fit inside the cell nucleus, which measures only ~5–20 μm. Chromosomes are further compacted by 5–10-fold during mitosis, reaching an overall 10,000-fold compaction, ensuring that tangles between sister chromatids or between neighboring nonhomologous chromosomes are eliminated and that chromosomes do not get trapped in the cleavage furrow during cytokinesis. Compaction is not random, since each mitotic chromosome within a given cell type has a fixed axial diameter and length, and each chromosome gives a reproducible banding pattern when stained with DNA dyes. Fluorescence in situ hybridization (FISH)1 experiments indicate that specific DNA probes localize to reproducible positions on the chromosomes (for review see Koshland and Strunnikov, 1996).

Several models have been proposed for the structure of mitotic chromosomes, including the formation of a simple solenoid structure (Thoma et al., 1979), the formation of a cross-linked unorganized gel (McDowell et al., 1986), a hierarchical folding of chromatin (Sedat and Manuelidis, 1978; Manuelidis, 1990), and the attachment of chromatin loops to a central scaffold (Paulson and Laemmli, 1977; Gasser et al., 1986; Boy de la Tour and Laemmli, 1988). A new model for chromosome structure has been proposed based on elasticity measurements, specifically the longitudinal deformability and bending rigidity of whole chromosomes. This model proposes that the condensed mitotic chromosome is formed by one or a few thin rigid elastic axes, built of titin-like molecules, surrounded by a soft envelope of chromatin (Houchmandzadeh and Dimitrov, 1999).

To fully understand mitotic chromosome structure, it is necessary to identify the protein components of the chromosome and to learn the role each protein plays in chromosome architecture. Several proteins required for chromosome condensation have been identified, including histones, topoisomerase II (topo II), and the structural maintenance of chromosomes (SMCs). The SMCs comprise the condensin and cohesin complexes, which mediate condensation and sister chromatid cohesion, respectively (for review see Koshland and Strunnikov, 1996; Warburton and Earnshaw, 1997; Hirano, 1999; Strunnikov and Jessberger, 1999).

We identified titin as a chromosomal protein in both human cells and Drosophila embryos (Machado et al., 1998). Titin, a protein more generally known for its structural and elastic roles in muscle, is the largest protein so far identified; single titin molecules span half a sarcomere, with their amino and carboxy termini anchored in the Z-disc and M-line, respectively (for review see Gregorio et al., 1999). Vertebrate titins are highly modular, comprised mostly of Ig-like and fibronectin type 3 (FN3)-like domains arranged in tandem (Trinick and Tskhovrebova,
titin also contain an elastic region rich in proline (P), glutamic acid (E), valine (V), and lysine (K) residues, termed the PEVK domain, and a carboxy-terminal serine kinase domain. Titin transcripts are differentially spliced, particularly in regions encoding the tandem-lg and PEVK domains, giving rise to many isoforms with different extensible properties (Labeit and Kolmerer, 1995). Titin is responsible for the elasticity of striated muscle and is believed to function as a molecular scaffold specifying the correct assembly of myofibrils (for review see Gregorio et al., 1999; Trinick and Tkshovrebova, 1999). The elastic properties of purified titin correspond well to the elastic properties of chromosomes from living cells and chromosomes assembled in vitro (Houchmandzadeh et al., 1997; Houchmandzadeh and Dimitrov, 1999). Here, we show that mutations in the *Drosophila* *titin* gene, *D-Titin*, result in both muscle and chromosomal defects, suggesting that titin provides an elastic structural scaffold for both muscles and chromosomes.

Materials and Methods

Fly Stocks

Genetic abbreviations are used according to Lindsey and Zimm (1992). *Five dre8* ethyl methanesulfonate (EMS)-induced alleles (*Titin* through *Titin*) and *four dre8* γ-ray-generated alleles (*Titin* through *Titin*) were provided by T. Sliter (University of Texas Southwestern, Dallas, TX; Sliter et al., 1989); the *sal illus* allele of *Titin* (*D-Titin*) was provided by J. Kennison (National Institutes of Health, Bethesda, MD); the P-element insertions *l(3)j1D7* and *l(3)6265* were provided by A. Spradling (Carnegie Institute, Baltimore, MD); the lethal P-element insertion *l(3)j1D7* (*Titin*) was generated in the laboratory of H. Jan (University of California, San Francisco, San Francisco, CA) and was provided by the Bloomington Stock Center. The *Df(3L)A prt* deficiencies were provided by J. Mason (NIEHS, Research Triangle Park, NC; Wang et al., 1994).

Excisional mutagenesis was carried out as described in Hamilton and Zinn (1994) with two P-element insertions in *D-Titin*: the *l(3)j1D7*/*Titin* insertion allele and the viable P-element insert, *l(3)j4860*. We obtained both lethal (28 lines) and viable (16 lines) independent *w* excision derivatives of *l(3)j1D7/*Titin* and concluded that the P-element insertion was the cause of the loss-of-*D-Titin* function in the *Titin* stock. We obtained both lethal (eight lines) and viable (six lines) independent *ry* and *ry* excision derivatives of *l(3)j4860*.

Molecular Biology

Plasmid, phage, and genomic DNA isolation, the labeling of radioactive probes and polymerase chain reactions were performed as described in Mariati et al. (1989). *Drosophila* genomic DNA flanking the P-element insertions *l(3)4860* and *l(3)j1D7* was isolated by plasmid rescue as described in Hamilton and Zinn (1994). Quantitative Southern blots were used, in addition to polytene chromosome in situ of *D-Titin*; the *l(3)j1D7/*Titin* insertion allele and the viable P-element insert, *l(3)j4860*. We obtained both lethal (28 lines) and viable (16 lines) independent *w* excision derivatives of *l(3)j1D7/*Titin* and concluded that the P-element insertion was the cause of the loss-of-*D-Titin* function in the *Titin* stock. We obtained both lethal (eight lines) and viable (six lines) independent *ry* and *ry* excision derivatives of *l(3)j4860*.

Immunostaining of Embryos

Embryo fixation and staining were performed as described in Reuter et al. (1990). Primary antibodies were used as follows: rat polyclonal α-**D-TITIN**-**KZ** (1:5,000; Machado et al., 1998), rat monoclonal α-KET3 (1:200; MAC155; Lakey et al., 1993), and rabbit α-MHC (1:500; Kiehart and Feghali, 1986). Antibody-stained embryos were visualized and photographed using Nomarski optics on a Zeiss Axiohot microscope. Royal Gold ASA 100 print film was used for photography.

Cytological Analysis of Mitotic Chromosomes

The cytology of mitotic chromosomes was investigated in larval neuroblasts. Squashed third instar larval brains stained with acetone-orcein were prepared as described in Gatti and Goldberg (1991), with incubation of the brains in colchicine and treatment in hypotonic solution. Untreated mitotic chromosomes were prepared for Hoechst staining as described in Gatti et al. (1994). Mitotic chromosome preparations were scored and photographed on a Zeiss Axiohot microscope, under phase contrast. Kodak PanFilm-ESTAR-AH or Kodak Ektachrome 400 were used for photography.

Results

*D-Titin Encodes a Two-Megadalton Protein**

In previous work, we showed that *D-TITIN* (a) has significant homology to vertebrate titins, (b) is expressed in all striated muscle, (c) localizes to chromosomes and to sarcomeres, and (d) migrates as a megadalton (MDA)-sized polypeptide on SDS-PAGE (Machado et al., 1998). We reported a partial sequence of the *D-Titin* gene encoding 1608 residues, corresponding to a small fraction of the entire open reading frame (ORF). We also mapped the gene to cytological region 62C1-2.

The Berkeley Drosophila Genome Project (BDGP) and Celera Genomics recently released sequence from the 62C region that allowed us to assemble a 290-kb contig that includes the entire *D-Titin* gene (Fig. 1 A). This large contig is composed of seven overlapping contigs that span the ~110 kb of genomic DNA corresponding to the *D-Titin* gene, plus almost 100 kb of sequence both upstream and downstream of *D-Titin*. Our assembly of these contigs has been confirmed by Celera Genomics; *D-Titin* spans position 293742 through 182959 in Celera contig AE003473.1 (Table I). We determined the orientation on *D-Titin* chromosome; the 5' end of *D-Titin* is closer to the centromere (proximal) and the 3' end is closer to the telomere (distal). We mapped the proximal breakpoint of the deficiency *Df(3L)A p rt123* to the most 3' clone in the series (contig AC017241) (Fig. 1 A). *Df(3L)A p rt123* genetically defines the boundary between the *D-Titin* gene (see be-
low) and its nearest known distal neighbor, mutator2 (mu2) (Kasravi et al., 1999). Consistent with our mapping, the mu2 sequence is included in the AC017241 contig. We also independently obtained genomic DNA sequence linking several previously identified D-Titin fragments using a PCR-based cloning strategy (see Materials and Methods).

To identify sequences corresponding to D-Titin within the large contig, we searched for ORFs that were both larger than 150 bp and flanked by consensus splice acceptor/donor sequences for Drosophila (Mount, 1982; Mount et al., 1992). The conceptual translation of such sequences was used to search the GenBank/EMBL/DDBJ database,

Exon # (nt)	Position in genomic sequence	cDNAs	Amino acids	Domains
1 (1–1249)	AE003473.1 (293742–292494)	LP06352	1–416	Ig 1
2 (1250–1410)	AE003473.1 (292429–292269)	GH05716*	417–470	Ig 2 (C)
3 (1411–3202)	AE003473.1 (290753–288962)	GH05716*	471–1067	Ig 3 (N)
4 (3203–3409)	AE003473.1 (287955–287749)	GH05716*	1068–1136	Ig 4–7
5 (3410–3585)	AE003473.1 (287398–287223)	GH05716*	1137–1195	Ig 8 (N)
6 (3586–5347)	AE003473.1 (286929–285168)	GH05716*	1196–1781	Ig 8 (C)

Exon # (nt)	Position in genomic sequence	cDNAs	Amino acids	Domains
7 (5348–6931) (=KZ exon 3)	AE003473.1 (265929–264246)	GH05716*	1782–2310	Ig 9–12
8 (6932–8260)	AE003473.1 (263987–262659)	GH05716*	2311–2753	Ig 13–16
9 (8261–11059)	AE003473.1 (262558–259760)	GH05716*	2754–3686	Ig 17–23
10 (11060–16618)	AE003473.1 (259679–254121)	GH05716*	3687–5539	Ig 24–37

Exon # (nt)	Position in genomic sequence	cDNAs	Amino acids	Domains
11 (16619–16906)	AE003473.1 (254055–253768)	GH25930	5540–5635	Ig 38 (N)
12 (16907–17158)	AE003473.1 (253702–253471)	GH25930	5636–5713	Ig 38 (C)
13 (17159–17310)	AE003473.1 (253374–253203)	GH25930	5714–5770	Ig 39 (N)
14 (17311–17496)	AE003473.1 (253142–252957)	GH25930	5771–5832	Ig 39 (C)
15 (17497–17846)	AE003473.1 (252163–251816)	GH25930	5833–5949	Ig 39 (C)
16 (17847–19158)	AE003473.1 (251754–250443)	GH25930	5950–6386	Ig 40–42
17 (19159–24543)	AE003473.1 (246263–240879)	GH25930	6387–8181	Ig 43 (C)

Exon # (nt)	Position in genomic sequence	cDNAs	Amino acids	Domains
18 (24544–25744)	AE003473.1 (240558–239395)	GH25930	8182–8581	Ig 44
19 (25745–26805)	AE003473.1 (237157–236097)	GH25930	8582–8935	Ig 45–47
20 (26806–32470)	AE003473.1 (234931–229267)	GH25930	8936–10823	Ig 48–49
21 (32471–34180)	AE003473.1 (226335–224626)	GH25930	10824–11393	Ig 49–50
22 (34181–41905)	AE003473.1 (223703–215979)	GH25930	11394–13968	Ig 50
23 (41906–46219)	AE003473.1 (215460–214827)	GH25930	13969–14206	Ig 51
24 (46260–47748)	AE003473.1 (214168–209036)	GH25930	14207–14903	Ig 52

Exon # (nt)	Position in genomic sequence	cDNAs	Amino acids	Domains
25 (47749–48016)	AE003473.1 (208697–208430)	GH25930	14904–15916	Ig 53
26 (48017–48756)	AE003473.1 (208087–207368)	GH25930	15917–16005	Ig 54
27 (48737–50316)	AE003473.1 (207288–205705)	GH25930	16006–16245	Ig 55

Exon # (nt)	Position in genomic sequence	cDNAs	Amino acids	Domains
28 (50317–50932)	AE003473.1 (205088–204473)	GH25930	16246–16772	Ig 56
29 (50933–51353)	AE003473.1 (200121–199697)	GH25930	16773–16977	Ig 57
30 (51354–52611)	AE003473.1 (188467–184577)	GH25930	16978–17117	Ig 58
31 (52612–53709)	AE003473.1 (184055–182959)	GH25930	17118–17903	Ig 59

Column 1 indicates exons included in longest putative D-Titin transcript. KZ exons 1/2 correspond to the 5’ end of an alternative D-Titin splice form. Column 2 indicates the position of each exon relative to the Celera Contig in the region. Column 3 includes cDNAs that correspond to one or more D-Titin exon(s). Column 4 indicates the amino acids encoded by each exon. Column 5 indicates where the 56 immunoglobulin-like domains (Ig) and the two PEVK-rich regions are found in the protein. N, NH2-terminal; C, COOH-terminal. The insertion sites of both the viable and lethal P-element insertions are indicated. *Indicates cDNAs that span more than one exon and cDNAs in bold font have been sequenced in their entirety.
Figure 1. Molecular characterization of the D-Titin gene. (A) Molecular map of the region in 62C containing D-Titin. A series of seven overlapping contigs span the entire D-Titin gene and link previously isolated D-Titin clones (KZ, NB, LG, JT) and four new D-Titin cDNAs (GH05716, CK340, CK55, LD28564). D-Titin spans from nucleotide (nt) 293742 (5'9) to nt 182959 (3'9) in Celera contig AE003473.1. The ORF in the LG clone was completely contained within the large contig, however; LG is a chimeric genomic clone that also includes noncoding sequences from cytological region 62B. The kettin sequence (Hakeda et al., 2000; Kolmerer et al., 2000) is entirely included within the D-Titin gene. Three P-element insertions in D-Titin, l(3)rL182, v(3)04860, and l(3)j1D7, are indicated, as well as the flanking DNA, isolated by plasmid rescue (PR4860 and PRj1D7). l(3)6265 is a P-element insertion used to clone flanking genomic DNA and map the proximal breakpoint of Df(3L)Aprt123. Df(3L)Aprt123 deletes the neighboring distal gene (mu2) but does not affect D-Titin function. (B) Protein expression profiles detected by an antibody against D-TITIN (a-KZ) (a–f) and an antibody against KET (Lakey et al., 1993) (g–l). Identical expression is detected in all the somatic (sm), visceral (vm), and pharyngeal muscles (ph) and their precursors during embryogenesis with both antibodies. (a and g) Stage 11 embryos, ventral view. (b and h) Stage 13 embryos, ventral view. (c and i) Stage 16 embryos, ventral view. (d and j) Stage 11 embryos, lateral view. (e and k) Stage 13 embryos, lateral view. (f and l) Stage 16 embryos, lateral view. All embryos are oriented with anterior to the left. For embryos shown in lateral view, dorsal is up. (C) D-Titin transcripts detected by whole-mount in situ hybridization. Genomic and cDNA clones mapping throughout the D-Titin gene (see gray lines in A) detected identical expression patterns throughout embryogenesis in all striated muscles and their precursors. Shown in a–d are embryos hybridized with the JT cDNA, which encodes a portion of the PEVK-2 domain. (a) ventral view of stage 13 embryo; (b) lateral view of stage 14 embryo; (c) ventral view of early stage 15 embryo; (d) lateral view of stage 16 embryo. (D) Domain structure and sarcomeric layout of the Z-disc and I-band region of human elastic (soleus) titin and predicted alignment with the Drosophila TITIN protein. Immunoglobulin-like domains (blue), interdomain sequences (red), and the FN3 domains (white) are shown. The single elastic PEVK domain (yellow) of the human titin consists of 70% proline (P), glutamic acid (E), valine (V), and lysine (K). PEVK-1 (yellow) of D-TITIN (1,240 residues) consists of 58.5% P, E, V, and K; PEVK-2 (yellow) of D-TITIN (5,065 residues) consists of 52.4% P, E, V, and K.
using the BLASTp program (Altschul et al., 1990). Through this analysis, we identified 31 exons that, when translated, showed high homology to all titin family members for which sequence is available (Table I and Fig. 1 A). The total number of residues predicted to be encoded by the putative D-Titin exons is 17903, which would correspond to a 1.9–2-MDa polypeptide. This size is consistent with that revealed by immunoblots incubated with either of two antibodies against distinct D-TITIN domains: α-KZ, which was raised against a D-TITIN fragment spanning residues 1784–2411, and α-LG, which was raised against residues 10879–11042 (Machado et al., 1998). Our predicted D-Titin gene organization is largely consistent with that determined using the Gene Finder program (Smith et al., 1996). We identified 19 D-Titin cDNAs, 6 of which (GH05716, KZ, CK340, CK55, NB, and JT) were completely sequenced either in this or previous work (Machado et al., 1998); only 5′ and/or 3′ end-run sequence is available for the remaining 13 cDNAs. Several of the cDNAs spanned more than one exon, and corresponded to exons not predicted by the Gene Finder program but that were included in our predicted sequence.

A BLAST search of the entire D-Titin ORF revealed significant homology to human elastic and cardiac titin (E values = e^{-160} and $3e^{-93}$, respectively), to chicken and rabbit skeletal titin (E values = e^{-111} and $2e^{-79}$, respectively), and to the Caenorhabditis elegans UNC-89 protein (E value = e^{-132}). D-TITIN contains some, but not all, of the structural domains found in human titin, including 56 immunoglobulin-like repeats and two large domains rich in P, E, V, and K residues (PEVK-1 and PEVK-2; Table I and Fig. 1 D). The most NH$_2$-terminal region of D-TITIN is predicted to align with the most NH$_2$-terminal region of vertebrate titin, which localizes to the Z-disc and binds to α-actinin (Linke et al., 1997; Trombitas and Granzier, 1997; Trombitas et al., 1997). The large COOH-terminal portion of D-TITIN is most homologous to the region of vertebrate titin that localizes to the I-band. This homology and the relative arrangement of the Ig and PEVK domains suggest that the COOH-terminal portion of D-TITIN localizes to the I-band. The characteristic domains found in the A-band and M-line regions of vertebrate titin, which include FN3 repeats flanking additional Ig domains and the serine kinase domain, were not found in D-TITIN.

Figure 1 (continued)
A sequence recently reported for a *Drosophila kettin* (*ket*) gene (Hakeda et al., 2000; Kolmerer et al., 2000) is contained entirely within a 20-kb region of the *D-Titin* gene (Fig. 1 A). KET was originally discovered as a Z-disc “mini-titin” in adult *Drosophila* flight muscle, and was proposed to function as a scaffolding protein in the Z-disc (Lakey et al., 1993). Our data suggest that KET is either a proteolytic cleavage product of *D-TITIN*, or is encoded by an alternative splice form of *D-Titin*. Antibodies directed against KET and D-TITIN revealed identical expression patterns in embryos (Fig. 1 B). Since only the larger MDa-sized polypeptide is detected on immunoblots of embryonic extracts incubated with two D-TITIN antibodies, one directed to a region shared with KET and another to the PEVK-2 region (Machado et al., 1998), we conclude that *D-TITIN* is the major protein form expressed during embryogenesis. We detected *D-Titin* transcripts by whole-mount in situ hybridization using genomic and cDNA fragments corresponding to exons that map both upstream and downstream of *ket*. The expression patterns were identical to those detected with probes from the region of overlap between *D-Titin* and *ket* (Fig. 1 C; Machado et al., 1998).

This result suggests that the entire 110-kb *D-Titin* gene is transcribed during embryogenesis. The processed *D-Titin* mRNA is predicted to be at least 54 kb, not including potential 5’ and 3’ UTR sequences. Therefore, it is not surprising that we have been unable to detect *D-Titin* transcripts by standard Northern analysis (data not shown).

Identification of *D-Titin* Mutations

D-Titin maps to 62C1-2, a region for which a saturation mutagenesis has been done (Sliter et al., 1989; Wang et al., 1994). Through a combination of genomic Southernss and in situ hybridization to polytene chromosomes, we localized *D-Titin* to a chromosomal interval that contains only a single known gene, formerly known as *dre8* (Fig. 2). *dre8* mutations disrupt *D-Titin* function. In genomic Southernss with internal *D-Titin* probes, we detected DNA polymorphisms in two of the *dre8* γ-ray alleles that were not present in other *dre8* alleles or in a *drel* allele that were generated on the same parental chromosome (data not shown). The lethal P-element, l(3)j1D7, inserted at position 210591 in AE003473.1 into an exon encoding part of the PEVK-2 domain of *D-TITIN*, in a region that is down-
Table II. Complementation Tests Among dre8/Titin Alleles and Local Deficiencies

Df (3L)	Dre8 (dre8⁶)	Titin⁴ (dre8⁴)	Titin¹ (dre8¹)	Titin³ (dre8³)	Titin⁹ (dre8⁹)	Titin⁵ (dre8⁵)	Titin¹⁰ (dre8¹⁰)	Titin¹¹ (l(3)j1D7)	Titin¹² (l(3)rL182)							
Aprt 143	139:0	80:34	100:54	283:0												
Aprt 123	117:0	90:23	101:48	165:0	150:0											
Aprt 126	136:0	89:35	102:30	173:0	71:0	154:0										
Dre8⁶	92:0	81:48	96:30	109:1	84:0	111:26	89:0									
Dre8²²	98:0	69:33	67:25	107:0	80:0	135:0	120:1	45:0								
Dre8⁶⁰	121:0	46:32	108:38	131:0	151:0	117:0	42:0	117:0	115:0							
Dre8⁹⁰	82:0	100:44	113:41	21:0	83:0	38:0	77:0	71:0	74:0	40:0						
Dre8⁹⁰	96:0	70:31	80:19	29:0	96:0	46:0	89:0	52:0	93:32	39:0	26:0					
Dre8²⁷	84:0	81:33	115:55	52:3	125:0	135:0	48:0	155:0	92:0	46:20	64:0	80:1				
Dre8⁵	476:0	153:101	70:16	251:0	87:0	73:0	139:22	82:0	107:0	97:0	98:0	96:0	267:0			
Dre8¹⁰	159:0	--	--	--	42:0	--	80:0	31:0	74:0	--	--	162:0	140:0	203:0		
Dre8¹¹	105:33	40:28	104:64	45:26	--	99:14	--	--	60:5	63:32	39:12	71:57	75:18	49:16		
Dre8¹²	219:0	--	--	--	--	--	--	--	--	--	--	101:0	149:0	92:0	164:0	
Dre8¹³	51:4	60:30	46:20	72:24	64:18	--	--	--	--	87:20	45:36	--	93:18	33:10	53:22	124:3
Dre8¹⁵	94:0	--	--	--	--	--	--	--	--	--	--	53:0	59:0	86:0	88:0	82:0
Dre8¹	41:14	29:19	106:48	109:30	--	--	--	--	--	--	--	86:22	43:22	89:11	55:28	66:47
Dre8¹	97:0	88:48	63:20	124:0	92:0	119:0	125:0	187:0	111:0	42:0	95:0	92:0	116:0	--	--	--

*Titin¹ through Titin¹² are EMS-induced alleles. Titin⁴ through Titin⁹ are γ-ray-induced alleles. Titin¹⁰ is a lethal P-element insertion allele. Ti*in¹¹ through Titin¹² are unstable excision alleles of dre8/D-Titin derived from the viable P-element insertion l(3)j1D7, which are inserted into an intron of the D-Titin gene. Previous allele names are indicated in parentheses below the Titin allele designation. The excision alleles initially failed to complement two Titin alleles and Df(3L)Aprt143, a deficiency that removes Titin DNA (top numbers in rows 11–13). Complementation tests done several months later revealed that these unstable Titin alleles complemented all other tested Titin alleles and Df(3L)Aprt143 (bottom numbers in rows 11–13). The symbol ‘‘−’’ indicates crosses that were not done either when the excision mutants were first generated or several months later. Titin¹¹ is an EMS-induced allele of a gene also known as salimus (sls), which was first identified as a dominant suppressor of Polycomb mutations (Kennison and Tamkun, 1988).

stream of, and not included in, the putative *ket* gene (Fig. 1 A and Table I). We showed that the lethality and disruption of *D-Titin/dre8* function in the l(3)j1D7 stock is due to the P-element insertion, rather than a second independent mutation on the same chromosome, by excising the P-element and restoring viability and *D-Titin/dre8* function, i.e., the viable excisions complemented an EMS-induced allele of *D-Titin* (*D-Titin²). Finally, we generated three new *D-Titin/dre8* alleles by excisional mutagenesis of a viable P-element insertion, l(3)j4860, that had inserted into an intron near the 5’-region of the *D-Titin* gene (Fig. 1 A). Because the l(3)j4860 excision alleles were unstable, we did not rely solely on the characterization of these lines to determine *D-Titin* function. Despite their instability, these mutants had DNA polymorphisms in the 5’ *D-Titin* coding region that were detectable by genomic Southern blotting (data not shown) and produced phenotypes that were indistinguishable from those of animals carrying stable *D-Titin* mutations (see below).

The colocalization of *D-Titin* DNA to the *dre8* gene interval, together with the mapping of *dre8* mutations and P-element insertions within the *D-Titin* coding region, indicate that *dre8* mutations disrupt the *D-Titin* gene. This finding is consistent with results from Kolmerer et al. (2000), who showed that l(3)j1D7 fails to complement l(3)rL182, a P-element insertion at position 267011 in AE003473.1, which is within the *kettin* region (Hakeda et al., 2000; Kolmerer et al., 2000). l(3)rL182 also fails to complement the two *dre8* alleles tested by Kolmerer et al. (2000). The finding that different *D-Titin/dre8* mutations mapping over 56-kb apart (and mapping both inside and outside the *ket* contig) fail to complement indicates that the large ORF encoding 17903 residues corresponds to a single gene, *D-Titin*.

Loss of D-Titin Function Causes Embryonic Muscle Disorganization

We examined the muscles from all the *D-Titin* mutant alleles (Table II: *D-Titin¹* through *D-Titin¹³*) by staining with two antisera: α-KZ, which is directed against an NH₂-terminal region of D-Titin and detects protein very early in myogenesis (Machado et al., 1998), and α-MHC, which is directed against muscle myosin heavy chain and detects protein at later stages (Kiehart and Feghali, 1986). All except three of the *D-Titin* alleles expressed apparently normal levels of D-Titin compared with their heterozygous siblings (Fig. 3); the three exceptions were the insertion allele l(3)j1D7/D-Titin¹⁰, which showed reduced levels of protein, and two l(3)j4860 excision alleles, *D-Titin¹²* and *D-Titin¹³*), which were initially protein-null but several months later showed variable levels of expression. The levels of muscle myosin were normal in embryos homzygous for every *D-Titin* allele (data not shown). Consistent with previous studies showing nuclear D-TITIN throughout the cell cycle (Machado et al., 1998), the D-TITIN antibodies detected protein in the cytoplasm and nuclei of mus-
cle cells (Fig. 3), whereas MHC staining was excluded from nuclei (data not shown).

In stage 16 D-Titin mutant embryos, the muscles were very thin and spindly compared with WT muscles, and there were large populations of individual cells that stained for D-TITIN and muscle myosin that were not present in WT embryos (Fig. 3, a–c). Very similar phenotypes are observed in embryos mutant for myoblast city (mbc), blown fuse (blow), rolling stone (rost), and sticks and stones (sns); mutations affecting discrete steps in myoblast fusion (Paululat et al., 1995; Rushton et al., 1995; Doberstein et al., 1997, Erickson et al., 1997; Bour et al., 2000). Thus it appears that myoblast fusion is defective in D-Titin mutants. Indeed, transmission electron micrographs of stage 16 D-Titin mutant embryos revealed muscle cells with as few as one to three nuclei per cell whereas the corresponding muscle cells of WT embryos at a similar stage contained from 5 to 20 nuclei (data not shown). The other defect observed in the D-Titin mutants was a failure of the midgut constrictions to form (Fig. 3, e and f). This phenotype is also observed in a fraction of embryos mutant for the mbc gene (Erickson et al., 1997).

D-Titin Mutations Severely Disrupt Chromosome Structure and Mitosis

The uniform distribution of titin along condensed mitotic chromosomes suggested a role for titin in chromosome structure and elasticity, similar to its proposed function in muscle (Machado et al., 1998). In Drosophila, almost all cell divisions that give rise to the embryo and larva occur in the first 2.5 h of development and depend on maternally supplied gene products. Consequently, many mitotic mutants die at the late larval–pupal transition, when pre-adult cells normally begin to replace larval tissues (Gatti and Baker, 1989). Based on immunoblot analysis of 0–2 h total embryonic extracts, we know that D-TITIN is supplied maternally (Machado et al., 1998). Thus, chromosome defects due to the loss of zygotic D-Titin will, most likely, be revealed only in late larval stages of development, specifically in the mitotically active tissues of the larva. Most mutations in D-Titin are early lethal, a likely result of the requirement for D-Titin in muscle development. However, three D-Titin alleles (titin1, titin8, and titin11) survive until the larval–pupal transition (Sliter et al., 1989; Table II) allowing us to determine if D-Titin mutants have aberrant mitotic chromosome morphology and/or additional mitotic defects.

We first compared preparations of untreated chromosomes from titin1 homozygous larvae to those of wild-type larvae. Hoechts staining of wild-type neuroblasts revealed large fields of uniformly sized nuclei, with the vast majority of cells in interphase (Fig. 4, A and B). In contrast, there was considerable nuclear size variability in the titin1 mutants, with several cells in mitosis (Fig. 4, A–F). Most of the mitotic nuclei were polyploid and showed both chromosome fragmentation (Fig. 4, C and D) and/or irregular condensation (Fig. 4, C, E, and F).

To determine the primary defect in the titin mutants, we examined aceto-orcein squashes of third instar larval brains from larvae homozygous for each of the late larval titin mutations, and from larvae heterozygous for two combinations of mutations (titin1/titin8 and titin11/titin11). Brains were incubated in colchicine, to increase the number of cells in metaphase, and treated with hypotonic solution, to better visualize chromosome morphology and number.
The predominant mitotic defect observed in neuroblasts of all three D-Titin alleles and all heteroallelic combinations was chromosome undercondensation: ~30% of mutant cells showed very poorly condensed chromosomes, whereas only 7.8% of wild-type cells had poorly condensed chromosomes (Fig. 5, B, C, and E and Table III). The defect in chromosome condensation was not restricted to euchromatin, since several examples of undercondensation of only centromeric heterochromatin were also observed (Fig. 5 D). Chromosome undercondensation was often accompanied by additional mitotic defects, including premature sister chromatid separation, chromosome loss, polyploidy, and chromosome breakage (Fig. 5, E–H and Table III). We also examined neuroblasts of larvae heterozygous for the late lethal EMS mutation (Titin1) and the P-element induced embryonic lethal allele (Titin10) to determine if the early lethal mutations also affected chromosome structure and behavior. Indeed, chromosomes from titin1/titin10 larval neuroblasts showed the same range of defects observed in the titin1 homoyzogotes, although slightly fewer cells were affected (Fig. 5 C and Table III). Neuroblasts from titin1/+ larvae showed a minor increase in chromosome defects compared with those from wild-type larvae, although the defects seen were not nearly as severe as those in any of the mutant combinations (Table III). The increase in mitotic defects in these heterozygotes versus wild type suggests a mild haploinsufficiency for D-Titin function on chromosomes.

Polytene chromosomes from the salivary glands of the titin1 homozygotes were indistinguishable from wild type (data not shown), suggesting that either D-TITIN is not required in these “interphase-equivalent” chromosomes or that this allele has sufficient residual D-Titin activity to support normal chromosome function during interphase. Overall, the defects observed in D-Titin mutants strongly suggest roles for D-Titin in mitotic chromosome condensation, chromosome integrity and sister chromatid cohesion.

Discussion

D-Titin Encodes an MDa Protein with Structural Features Found in Vertebrate Titins

We identified D-TITIN as a protein associated with mitotic chromosomes, and cloned portions of the corresponding gene, D-Titin. Here, we report the sequence of the entire D-Titin gene, which links all of the previously identified D-Titin genomic and cDNA clones (Machado et al., 1998), as well as more recently isolated cDNAs. From our analysis, D-Titin begins with exons encoding ORFs
most homologous to the NH$_2$-terminal region of vertebrate titin, specifically sequence encoding the Z1-Z3 Ig domains, and ends 110-kb downstream with sequences most homologous to the COOH-terminus of the I-band region of vertebrate titin. The D-Titin gene is predicted to encode a 17,903-residue polypeptide accounting for a 1.9-to 2-MDa protein, which is consistent with the MDa-sized polypeptide detected on immunoblots using D-TITIN antisera (Machado et al., 1998).

D-TITIN is only 54% the size of human elastic (soleus) titin, its most homologous vertebrate counterpart, and D-TITIN is most homologous to the NH$_2$-terminal half of the human protein (Fig. 1 D). Moreover, D-TITIN contains structural features (tandem or near-tandem Ig-like domains and PEVK-rich regions) that are found in the Z-disc and I-band of human titin, but does not contain the characteristic domains of A-band and M-line titin. Thus, we predict that D-TITIN will span the sarcomeric Z-disc and I-band, but not the A-band nor the M-line. We further predict that either there is a second molecule in Drosophila that encodes the true homologue of vertebrate titin, or that two (or more) titin-related proteins do the work of the one vertebrate protein. A TBLASTN search of the Drosophila genome, which is essentially complete in

Phenotype	+	+	+	+	+	+	+	+
Normal	87.4	72.7	35.1	45.8	57.8	30.0	44.3	36.4
Undercondensation (total):	7.8	13.3	33.7	30.0	23.7	32.7	28.8	31.8
Undercondensation only	6.3	12.1	24.4	23.6	22.5	23.5	24.3	24.2
+ Premature separation	0.3	0.4	1.8	3.4	0.2	2.5	1.8	1.5
+ Polyploidy	0.0	0.0	0.1	0.4	0.0	0.0	0.0	2.1
+ Aneuploidy	0.6	0.2	2.2	0.6	0.4	2.5	1.1	1.3
+ Centromere	0.6	0.8	3.7	2.0	0.6	4.2	1.6	3.7
Premature separation (total):	2.6	1.7	7.4	13.4	3.3	11.7	12.0	8.9
Premature separation only	2.6	1.7	4.8	12.8	3.3	5.0	9.6	6.4
+ Aneuploidy	0.0	0.0	2.6	0.6	0.0	6.7	2.4	2.5
Polyploidy only	0.0	0.5	6.1	2.4	4.4	8.4	4.2	4.0
Aneuploidy only	0.3	8.4	10.4	4.9	8.2	5.9	6.3	14.4
Breakage	0.0	0.0	2.2	3.1	0.4	4.2	2.3	0.8
Number of nuclei scored	553	709	512	930	615	1600		

Chromosomes were examined in orcein-stained brain squashes of third instar larvae. The number of nuclei scored per genotype corresponds to a total of five brains. All brains were incubated in colchicine and treated in a hypotonic solution for better visualization of chromosome abnormalities.

*Phenotypes of mutant combinations that include the D-Titin11 allele were scored shortly after the allele was first generated and when it still failed to complement Df(3L)Aprt143 and other D-Titin alleles.

Figure 5. Chromosomal defects in D-Titin mutants. Brains were treated with colchicine/hypotonic shock and stained with orcein. (A) Wild-type neuroblast showing well spread, condensed, diploid chromosomes characteristic of those treated with colchicine and hypotonic shock. (B) Two neuroblasts from a titin11 homozygous larva showing one cell with severe chromosome undercondensation (black arrow) and an adjacent cell with relatively normal levels of chromosome condensation (white arrow). (C) A neuroblast from a titin1/titin10 larva showing chromosome undercondensation. (D) Two neuroblasts from a titin11 homozygous larva showing one cell with undercondensation of the centromeric heterochromatin (black arrow) and another cell with relatively normal chromosomes. (E) A neuroblast from a titin8 homozygous larva showing chromosome decondensation and premature sister chromatid separation. The black arrow indicates one of the large autosomes where the two sister chromosomes have completely separated. (F) A neuroblast from a titin1 homozygous larva showing premature sister chromatid separation and decondensation of the centromeric heterochromatin (black arrow). (G) A neuroblast from a titin8 homozygous larva showing polyploidy, premature sister chromatid separation (for example the chromosomes indicated with the large black arrow) and decondensation of centromeric heterochromatin (small black arrows). (H) A neuroblast from a titin1/titin8 larva showing normal levels of condensation but missing the two sex chromosomes. Images were viewed and photographed under 100× objective, 10× eyepiece.
the euchromatic regions, with small fragments of human elastic titin (1,000–2,000 residues) revealed that the most homologous ORF to the first 15,000 residues was D-Titin. The most homologous ORF to the remaining 18,449 residues of human elastic titin was projectin. PROJECTIN is the homologue of C. elegans TWITCHIN, another so-called “mini-titin” that binds to myosin filaments in body wall muscles. TWITCHIN has the Ig/FN3 repeats and a serine kinase domain near the COOH terminus, but does not have a PEVK domain (Benian et al., 1989, 1996). Mutations in twitchin (unc-22) cannot develop or sustain muscle contractions, and can be suppressed by mutations in the myosin heavy chain gene (Waterston et al., 1980; Mermel et al., 1988). These phenotypes support a role for TWITCHIN in sarcomere function and provide evidence for a direct physical association between TWITCHIN and MYOSIN in the A-band. Mutations in projectin (bent mutations) cause early embryonic lethality but have apparently normal muscle contractions (Fyrberg et al., 1992; Ayme-Southgate et al., 1995). However, these mutations may not be null for projectin function. Based on the above findings, we favor a model in which two (or more) proteins in flies (D-TITIN and PROJECTIN) and worms (a D-TITIN homologue and TWITCHIN) combine to do the work of the single vertebrate titin protein. D-TITIN would function as a protein equivalent to the Z-disc/I-band region of vertebrate titin, whereas PROJECTIN and TWITCHIN would function as proteins equivalent to the A-band/M-line region of vertebrate titin.

Kettin Is Encoded by the D-Titin Gene

The sequence of the proposed Drosophila kett gene is contained entirely within a 20-kb region mapping near the 5’ end of D-Titin (Fig. 1A; Hakeda et al., 2000; Kolmerer et al., 2000). Zeugmatin, like KET, was first identified as a “smaller” 600–800-kD Z-disc associated protein in chicken cardiac muscle (Maher et al., 1985). However, recent studies suggest that the zeugmatin polypeptide is an NH2-terminal cleavage product of chicken titin (Turnacioglu et al., 1996, 1997a,b; Ayoob et al., 2000). KET may derive from an alternative splice form of D-Titin, since embryonic transcripts consistent with the size of KET have been reported (Hakeda et al., 2000). However, the smaller kettin mRNA does not appear to be translated during embryogenesis since a polypeptide of the corresponding size (500–700 kD) was not detected in immunoblots of embryonic extracts incubated with antibodies recognizing a shared domain of KETTIN and D-TITIN (Machado et al., 1998). These same immunoblots did detect the MDa-sized D-TITIN, as well as smaller polypeptides below 200 kD, which are likely to be degradation products of full-length D-TITIN (Machado et al., 1998). This finding suggests that only the larger MDa form of D-TITIN functions during embryogenesis. Thus, mutations reported to disrupt kett must be considered as mutations that disrupt D-Titin, and at least during embryogenesis, are likely to produce defects as a result of lesions in the D-TITIN protein.

D-TITIN Is Required for Myoblast Fusion and Sarcomere Structure

Two prominent embryonic muscle phenotypes were common to all of D-Titin mutants: failure of myoblasts to fuse with existing myofibers and defects in the embryonic gut (Fig. 3). The myoblast fusion defects were similar to those caused by loss-of-function mutations in mbc, blow, rost, or sns (Paululat et al., 1995; Rushton et al., 1995; Doberstein et al., 1997; Bour et al., 2000), by the muscle-specific expression of a constitutively active form of Drac1 (Luo et al., 1994) and by mutations in mef2, which encodes a transcription factor that regulates the expression of several muscle-specific structural protein genes (Bour et al., 2000).

Each of these genes affects a discrete step in the fusion of myoblasts with either muscle pioneers (also known as founder myoblast cells) or existing myotubes (Doberstein et al., 1997). As with mbc (Erickson et al., 1997), D-Titin may not be directly involved in fusion but may instead be essential for a cytoskeletal rearrangement step required for fusion. For example, D-Titin may be required in the elongation step, which occurs after cell-cell recognition and adherence but before the formation of the prefusion complex (Doberstein et al., 1997).

Transmission electron microscopy (TEM) analyses reveal that the Z-discs of the body wall muscles fail to organize during late embryogenesis in ket mutants, whereas Z-discs have nearly completely formed in wild-type embryos (Hakeda et al., 2000). At later stages, the ket mutant embryos have completely disorganized sarcomeres with apparently randomly-arrayed myofilaments. Because the ket mutations also disrupt the D-Titin ORF, and because only the MDa form of D-TITIN (and not KET) is detected in embryos, the defects observed in embryos or in early larvae are more likely due to the absence of the larger form of the protein, D-TITIN. The ket/D-Titin mutant phenotypes are consistent with long-standing models that titin serves not only to provide elasticity to the sarcomere, but that it may also serve as the template for sarcomere organization and assembly. Thus, the muscle phenotypes described for the ket mutations are absolutely consistent with those expected for mutations in D-Titin.

Titin Is Required for Chromosome Structure and Mitosis

Based on our finding that titin localizes to chromosomes, and the proposed functions of titin in muscle, we proposed that titin has two functions on chromosomes: to organize during late embryogenesis in ket mutants, whereas Z-discs have nearly completely formed in wild-type embryos (Hakeda et al., 2000). At later stages, the ket mutant embryos have completely disorganized sarcomeres with apparently randomly-arrayed myofilaments. Because the ket mutations also disrupt the D-Titin ORF, and because only the MDa form of D-TITIN (and not KET) is detected in embryos, the defects observed in embryos or in early larvae are more likely due to the absence of the larger form of the protein, D-TITIN. The ket/D-Titin mutant phenotypes are consistent with long-standing models that titin serves not only to provide elasticity to the sarcomere, but that it may also serve as the template for sarcomere organization and assembly. Thus, the muscle phenotypes described for the ket mutations are absolutely consistent with those expected for mutations in D-Titin.

In muscle, titin is thought to act as a molecular scaffold for sarcomere assembly by specifying the precise position of its ligands within each half-sarcomere; this model is supported by the defects in D-Titin and ket mutants (Hakeda et al., 2000). The chromosome undercondensation phenotype of the D-Titin mutants suggests that titin has a critical role in establishing or maintaining higher-order chromosome compaction. Analogous to its role in muscle, titin may localize to chromosomes and provide a template for the correct binding and assembly of other proteins involved in chromosome condensation. These binding partners might include known proteins, such as the SMC pro-
The Journal of Cell Biology, Volume 151, 2000

Bigsby, S., and A.W. Murray 1999. Sister chromatid cohesion in mitosis. Curr. Opin. Genet. Dev. 9:230–236.

Bour, B.A., M. Chakravarti, J.M. West, and S.M. Abmayr. 2000. Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myofibril blast fusion. Genes Dev. 14:1498–1511.

Boy de la Tour, E., and U. Laemmli. 1988. The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell 55:87–94.

Claussen, U., A. Mazur, and N. Rubstov. 1994. Chromosomes are highly elastic and can be stretched. Cytogenet. Cell Genet. 66:120–125.

Doberstein, S.K., R.D. Fetter, A.Y. Mehta, and C.S. Goodman. 1997. Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the precocious fusion complex. J. Cell Biol. 136:1249–1261.

Erickson, M.R.S., B.J. Galletta, and S.M. Abmayr. 1997. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure and cytoskeleton organization. J. Cell Biol. 138:589–603.

Fyryberg, C.C., S. Labeit, B. Bullard, B. Leonard, and E. Fyryberg. 1992. Drosophila projectin: relatedness to titin and twitchin and correlation with lethal(4)102 Cd and bent-domain mutants. Proc. R. Lond. B. Biol. Sci. 249:53–80.

Gasser, S.M., T. Laroche, J. Falquet, E. Boy de la Tour, and U.K. Laemmli. 1986. Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol. 188:613–629.

Gatti, M., and B.S. Baker. 1989. Genes controlling essential cell-cycle functions in Drosophila melanogaster. Genes Dev. 3:438–453.

Gatti, M., and M. Goldberg. 1991. Mutations affecting cell division in Drosophila. Methods Cell Biol. 35:543–586.

Gatti, M., S. Bonaccorsi, and S. Pimpinelli. 1994. Looking at Drosophila mitotic chromosomes. In Drosophila melanogaster: Practical Uses in Cell and Molecular Biology. Academic Press, San Diego, CA. 372–391.

Gregorio, G., and G. Cattacchia. 1994. Kettin, a large modular protein in the Z-disc of insect muscles. FEBS Lett. 356:199–202.

Hirano, T. 1999. BM10-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev. 13:11–19.

Houchmandzadeh, B., and S. Dimitrov. 1999. Elasticity measurements show the existence of thin rigid cores inside mitotic chromosomes. J. Cell Biol. 145:215–223.

Houchmandzadeh, B., J.F. Marko, D. Chatenet, and A. Libchaber. 1997. Elasticity and structure of carkocyte chromosomes studied by micromanipulation and micropipette aspiration. J. Cell Biol. 139:1–12.

Kasravi, A., M.F. Walter, S. Brand, J.M. Mason, and H. Biessmann. 1999. Molecular cloning and tissue-specific expression of the mutator2 gene (mu2) in Drosophila melanogaster. Genetics. 152:1025–1035.

Kennison, J.A., and J.W. Tamkun. 1988. Dosage-dependent modifiers of Polycomb and Antennapedia mutations in Drosophila. Proc. Natl. Acad. Sci. USA. 85:8136–8140.

Kiehart, D.P., and R. Feghali. 1986. Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol. 103:1517–1525.

Koerner, B., J. Clayton, V. Benes, T. Allen, C. Ferguson, K. Leonard, U. Weber, M. Knecht, W. Ansorge, S. Labeit, and B. Bullard. 2000. Sequence and expression of the kettin gene in Drosophila melanogaster and Caenorhabditis elegans. J. Mol. Biol. 296:435–448.

Kozland, D., and A. Strunnikov. 1996. Mitotic chromosome condensation. Ann. Rev. Cell Dev. Biol. 12:305–333.

Labeit, S., and B. Kolmerer. 1995. Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296.

Lacey, S., S. Labeit, M. Gaetel, J. Ferguson, D.P. Barlow, K. Leonard, and B. Bullard. 1993. Kettin, a large modular protein in the Z-disc of insect muscles. EMBO (Eur. Mol. Biol. Organ.) J. 12:2863–2871.

Lindsay, D.L., and G.G. Zimm. 1992. The genome of Drosophila melanogaster. Academic Press, San Diego, CA.

Linke, W.A., M. Ivemeyer, S. Labeit, H. Hinnen, J.C. Ruegg, and M. Gaetel. 1997. Actin-titin interaction in cardiac myofibril: probing a physiological role. Biophys. J. 73:930–915.

Lu, Y., Y. Liao, L.Y. Jan, and Y.N. Jan. 1994. Distinct morphogenetic functions of small similar GTPases: Drosophila Dracil is involved in axonal outgrowth and myoblast fusion. Genes Dev. 8:1787–1802.

Machado, C., C.E. Sunkel, and D.J. Andrew. 1998. Human autoantibodies reacting with projectin: relatedness to titin and twitchin and correlation with mutant projectin-specific CDa. In Drosophila melanogaster. J. Cell Biol. 138:589–603.

Manuelidis, L. 1990. The mitotic chromosome cycle: physical and molecular mechanisms. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Manuelidis, L. 1990. A view of interphase chromosome. Science. 250:1533–1540.

McDonald, A.W., J.M. Smith, and J. Dubochet. 1986. Cryo-electron microscopy of vitrified chromosomes in sesta. EMBO (Eur. Mol. Biol. Organ.) J. 5:1395–1402.

Note Added in Proof. In September of 2000, a paper by Zhang et al. (Zhang, Y., D. Featherstone, W. Davis, E. Rushton, and K. Broadie. 2000. J. Cell. Sci. 113:3103–3115) reported similar defects in myofibril blast fusion with mutations in D. Titin.

References

Alberts, B., Bray, D., Lewis, J., Raff, M.K., Roberts, and J.D. Watson. 1994. Molecular Biology of the Cell. Garland Publishing, Inc., New York. 1294 pp.

Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.

Ayme-Southgate, A., R. Southgate, J. Saide, G.M. Benian, and M.L. Pardue. 1995. Both synchronous and asynchronous muscle isoforms of projectin (the Drosophila bantam locus product) contain functional kinase domains. J. Cell Biol. 126:393–403.

Ayoob, J.C., K.K. Turnacioglu, B. Mittal, J.M. Sanger, and J.W. Sanger. 2000. The Journal of Cell Biology, Volume 151, 2000 650
Moerman, G.D., G.M. Benian, R.J. Barstead, L.A. Schrieffer, and R.H. Waterston. 1988. Identification and intracellular localization of the unc-22 gene product of Caenorhabditis elegans. Genes & Dev. 2:93–105.

Mount, S.M. 1982. A catalogue of splice junction sequences. Nucleic Acids Res. 10:459–472.

Mount, S.M., C. Burks, G. Hertz, G.D. Stormo, O. White, and C. Fields. 1992. Splicing signals in Drosophila: intron size, information content and consensus sequences. Nucleic Acids Res. 20:4255–4262.

Pardue, M.L. 1994. Looking at polytene chromosomes. In Drosophila melanogaster: Practical Uses in Cell and Molecular Biology. Academic Press, San Diego, CA. 333–351.

Paulson, J.R., and U.K. Laemmli. 1977. The structure of histone-depleted chromosomes. Cell. 12:817–828.

Paululat, A., S. Burchard, and R. Renkawitz-Pohl. 1995. Fusion from myoblasts to myotubes is dependent on the rolling stone gene (rost) of Drosophila. Development. 121:2611–2620.

Reuter, R., G.E.F. Panganiban, F.M. Hoffmann, and M.P. Scott. 1990. Homeotic genes regulate the spatial expression of putative growth factors in the visceral mesoderm of Drosophila embryos. Development. 110:1031–1040.

Rushton, E., R. Drysdale, S.M. Abmayr, A.M. Michelson, and M. Bate. 1995. Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development. 121:1979–1988.

Sedat, J., and L. Manuelidis. 1978. A direct approach to the structure of eukaryote chromosomes. Cold Spring Harbor Symp. Quant. Biol. 42:331–350.

Sliter, T.J., V.C. Henrich, R.L. Tucker, and L.I. Gilbert. 1989. The genetics of the Dra3-Roughened-ecdysoneless chromosomal region (62B3-4 to 62D3-4) in Drosophila melanogaster: analysis of recessive lethal mutations. Genetics. 123:327–336.

Smith, R.F., B.A. Wiese, M.K. Wojzynski, D.B. Davison, and K.C. Worely. 1996. BCM Search Launcher—an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 6:454–462.

Strunnikov, A.V., and R. Jessberger. 1999. Structural maintenance of chromosomes (SMC) proteins: conserved molecular properties for multiple biological functions. Eur. J. Biochem. 263:6–13.

Thoma, F., T. Koller, and A. Klug. 1979. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructure of chromatin. J. Cell Biol. 83:403–427.

Trinick, J., and L. Tskhovrebova. 1999. Titin: a molecular control freak. Trends Cell Biol. 9:377–380.

Trombitas, K., and H. Granzier. 1997. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am. J. Physiol. 273:662–670.

Trombitas, K., M.L. Greaser, and G.H. Pollack. 1997. Interaction between titin and thin filaments in intact cardiac muscle. J. Muscle Res. Cell Motil. 18:345–351.

Turnacioglu, K.K., B. Mittal, J.M. Sanger, and J.W. Sanger. 1996. Partial characterization of zeugmatin indicates that it is part of the Z-band region of titin. Cell Motil. Cytoskel. 34:108–121.

Turnacioglu, K.K., B. Mittal, G.A. Dabiri, J.M. Sanger, and J.W. Sanger. 1997a. An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofilament disassembly. Mol. Biol. Cell 8:705–717.

Turnacioglu, K.K., B. Mittal, G.A. Dabiri, J.M. Sanger, and J.W. Sanger. 1997b. Zeugmatin is part of the Z-band targeting region of titin. Cell Struct. Func. 22:73–82.

Wang, M., L.E. Champion, H. Biessmann, and J.M. Mason. 1994. Mapping a mutator, mu2, which increases the frequency of terminal deletions in Drosophila melanogaster. Mol. Gen. Genet. 245:598–607.

Warburton, P.E., and W.C. Earnshaw. 1997. Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. BioEssays. 19:97–99.

Waterston, R.H., J.N. Thomson, and S. Brenner. 1980. Mutants with altered muscle structure in Caenorhabditis elegans. Dev. Biol. 77:271–302.