The complete mitogenome of the *Chionoecetes opilio* (Crustacea: Decapoda: Oregoniidae) and its unique characteristics

Jin-Hyeop Jeonga, Seongho Rymb and Won Kim∗a

aSchool of Biological Sciences, Seoul National University, Seoul, Korea; bSoonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan, Korea

ABSTRACT

The complete mitochondrial genome of *Chionoecetes opilio* is a 16,067 bp long, circular molecule which contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (rRNAs). Its gene contents and organization are generally similar to other majoide mitogenomes. However, the mitogenome shows unique characteristics; long terminal amino acids, loss or addition of 3 PCGs, a 1216 bp long putative D-loop region, and peculiar secondary structures of 5 tRNAs. The concatenated amino acid sequences of 13 PCGs were used to analyze the phylogenetic tree, which well supported the monophyly of brachyuran clades of Majoidea, Heterotremata, Thoracotremata, and Eubrachyura.

ARTICLE HISTORY

Received 20 May 2020
Accepted 6 June 2020

KEYWORDS

Mitogenome; Decapoda; Majoidea; Chionoecetes opilio; atypical tRNAs

CONTACT

Won Kim (wonkim@plaza.snu.ac.kr) School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Seongho Ryu (ryu@sch.ac.kr) Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Chonan-Si, Republic of Korea

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
C. japonicus and Damithrax spinosissimus show the almost identical synteny, there is a gene order rearrangement from Maja crispata and Maja squinado genomes (putative translocation of nd6-cytb-trns2 segment between trnE and nd1).

The complete mitogenomes of 10 Brachyura species (4 Majoids, 2 non-majoid Heterotremes, 2 Thoracotremes, 2 Raninoids), and one outgroup (Clibanarius infraspinatus) were downloaded from the GenBank and used to reconstruct their phylogenetic relationships. The concatenated amino acid sequences of 13 PCGs were analyzed by RAxML 8.2.12 (Stamatakis 2006) using the maximum-likelihood (ML) method and MrBayes 3.2.7 (Ronquist et al. 2012) using Bayesian inference (BI) analysis. The consensus tree based on both ML and BI analyses results supports the monophyly of the Majoidea, Heterotremata, Thoracotreamata, Eubrachyura, and Raninoidea with 100% bootstrap values and 1.00 posterior possibilities (Figure 1).

Figure 1. The phylogenetic tree showing relationships between Chionoecetes opilio and 11 brachyuran species with an outgroup taxon (Clibanarius infraspinatus). The tree was reconstructed from the concatenated amino acid sequences of 13 PCGs using RAxML 8.2.12 and MrBayes 3.2.7 applications based on the ML method. The bootstrap value above 50% in the ML analysis and posterior probability above 0.90 from the BI analysis are indicated at the bases of the each node. The distance based on the BI analysis is indicated above each node. GenBank accession number for each species is indicated with its respective scientific name. The species of interest of this study, C. opilio is marked with a reversed triangle.

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov/nuccore/MT335860.

References

Alvsvåg J, Agnalt A-L, Jørstad KE. 2009. Evidence for a permanent establishment of the snow crab (Chionoecetes opilio) in the Barents Sea. Biol Invasions. 11(3):587–595.

Basso A, Babbucci M, Pauletto M, Emilio R, Patarnello T, Negrisolo E. 2017. The highly rearranged mitochondrial genomes of the crabs Maja crispata and Maja squinado (Majidae) and gene order evolution in Brachyura. Sci Rep. 7(1):4096–4017.

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.

FAO Fisheries and Aquaculture Department. 2019. Species fact sheets – Chionoecetes opilio (O. Frabricius, 1788). http://www.fao.org/fishery/species/2644/en.

Karagözlu MZ, Barbon MM, Dinh TD, Demayo CG, Kim C-B. 2018. Complete mitochondrial genome of Atergatisintegerimirus (Decapoda, Xanthidae) from the Philippines. Mitochondrial DNA Part B. 3(1):205–206.

Kim HS, Kim K-Y, Lee S-H, Hong S-S, Cho I-Y, Yi CH, Kim IH, Yoon M, Kim M-S. 2019. The complete mitochondrial genome of Pseuodohelicesubquadrate (Dana, 1851) (Crustacea: Decapoda: Varunidae). Mitochondrial DNA Part B. 4(1):103–104.

Márquez EJ, Hurtado-Alarcón JC, Isaza JP, Alzate JF, Campos NH. 2016. Mitochondrial genome of the Caribbean king crab Damithrax spinosissimus (Lamarck, 1818) (Decapoda: Majidae). Mitochondrial DNA Part A. 27(3):1724–1725.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by the Collaborative Genome Program and the Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Ocean and Fisheries, Korea (MOF) [No. 20180430, 20170431].
Meng G, Li Y, Yang C, Liu S. 2019. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47(11):e63.

Ng PKL, Guinot D, Davie PJF. 2008. Systema Brachyrorum: part I. An annotated checklist of extant Brachyuran crabs of the world. Raffles Bull Zool. Suppl. 17:1–286; pp. 97-98, 124.

Pisani D, Carton R, Campbell LI, Akanni WA, Mulville E, Rota-Stabelli O. 2013. An overview of arthropod genomics, mitogenomics, and the evolutionary origins of the arthropod proteome. In: Minelli A, Boxshall G, Fusco G, editors. Arthropod Biology and Evolution. Berlin, Heidelberg: Springer; p. 41–61.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 61(3):539–542.

Shi G, Cui Z, Hui M, Liu Y, Chan T-Y, Song C. 2015. The complete mitochondrial genomes of Umalia orientalis and Lyreidus brevifrons: the phylogenetic position of the family Raninidae within Brachyuran crabs. Mar Genom. 21:53–61.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22(21):2688–2690.