X-RAY EMISSION OF GAMMA-RAY BURSTS
M. TAVANI
Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027
Received 1996 September 3; accepted 1996 October 28

ABSTRACT

X-ray emission can provide a crucial diagnostic of gamma-ray bursts (GRBs). We calculate the X-ray and gamma-ray spectra of impulsive acceleration episodes related to GRB pulses. We use the synchrotron shock model (SSM) as a basis of our calculations. We show that the current data on soft-to-hard emission ratios of GRB pulse emission are in agreement with the SSM. In particular, GRB averaged pulse emission detected by Ginga is in agreement with the SSM low-energy spectra. We deduce that Ginga detected the majority of bright GRBs detectable by BATSE. These results indicate that the physical environment surrounding the GRB emission site is optically thin to X-ray photon energies for a large fraction of burst duration. We also calculate emission ratios in the Einstein, ROSAT, Satellite per Astronomia raggi X (SAX), and HETE energy bands, and discuss how future information on simultaneous soft/hard GRB emission can contribute to distinguishing different emission models. Two different components of X-ray emission may simultaneously exist in a fraction of GRBs. One component is clearly associated with the individual GRB pulses, and an additional component may be related to the pulse X-ray spectral upturns and/or the precursors/tails occasionally observed. We also show that a meaningful search of GRB-driven X-ray flashes in Andromeda (M31) can be carried out with existing ROSAT PSPC data and future SAX WFC observations.

Subject headings: gamma rays: bursts — radiation mechanisms: nonthermal — X-rays: bursts

1. INTRODUCTION

Gamma-ray bursts (GRBs) are characterized by a relatively low fluence in the X-ray band as compared to the hard X-ray/gamma-ray band (Trombka et al. 1974; Wheaton et al. 1973; Katoh et al. 1984; Laros et al. 1984; Yoshida et al. 1989, hereafter Y89; Murakami et al. 1991). The soft/hard energy ratio (e.g., 1–10 keV/30–1000 keV) of GRB fluences is of order of a few percent. The “X-ray paucity” feature is a fundamental characteristic of GRBs and a well-established observational fact.

We calculate in this paper the X-ray spectrum of GRBs using the synchrotron shock model (SSM), which has been recently shown to successfully reproduce the broadband spectra of bright GRBs (Tavani 1995; Tavani 1996a, 1996b, 1996c, hereafter T96a, T96b, T96c). We show that in the absence of absorption processes (because of opacity and/or synchrotron self-absorption) in the X-ray band or spectral distortions due to inverse Compton scattering, the X-ray/gamma-ray emission ratios can be reliably computed. The observed emission ratios are dependent on the underlying particle energy distribution function, and we calculate the X-ray/gamma-ray emission ratios for different spectral assumptions.

We compare our results with the previously determined simultaneous X-ray/gamma-ray emission ratios from the joint data of the XMOS P78-1 and the Pioneer Venus Orbiter (PVO) instruments (Laros et al. 1984), the Ginga GRB monitor (Y89), and the WATCH instrument (Castro-Tirado 1994). We also calculate observable emission ratios appropriate to current high-energy missions: BATSE, ROSAT, Satellite per Astronomia raggi X (SAX), and HETE.

This paper is organized as follows. § 2 provides a summary of the GRB emission model used here and a discussion of the most relevant theoretical points addressed in the analysis.

A first goal of our paper is to use simultaneous soft/hard emission ratios to constrain the GRB emission mechanism.

We show in § 3 that a definite correspondence between X-ray/gamma-ray emission ratios and peak energy of the vE_{γ} spectrum (E_{γ}) can be established. Simultaneous broad-band spectroscopy of GRBs detected by different instruments can provide useful information to test the SSM.

Our second goal is to discuss the possible existence of an additional low-energy component in the GRB spectrum (§ 4). This extra component, most likely observable in the X-ray energy range, might be easily detectable as a low-energy excess during the GRB pulse emission or as a component preceding or following GRB main pulses. Our analysis allows to easily identify spectral components additional to the SSM pulse emission.

We discuss in § 5 attenuation and absorption processes possibly affecting the detection of X-ray from GRBs.

We finally discuss in § 6 the feasibility of a search for GRB-driven X-ray flashes from other galaxies and in particular from Andromeda. We consider ROSAT archival data and future SAX observations of Andromeda as examples of data usable for this search.

2. THE SSM MODEL

The SSM is based on optically thin synchrotron emission of rapidly accelerated relativistic particles (electrons and/or e^{\pm} pairs) radiating in the presence of a weak to moderate magnetic field (to avoid magnetic absorption processes) (Tavani 1995, T96a, T96b). A target “nebular” medium, able to reprocess the relativistic energy of the flow and to trigger rapid acceleration processes, is necessary. The ultimate origin of GRB magnetized relativistic particle flows can be compact star coalescences at cosmological distances or compact star outbursts in an extended Galactic halo (for a recent review, see Fishman 1996). The target medium can be the interstellar medium, gaseous circumstellar material, or self-generated gaseous environments. SSM can be applied in its generality to both the cosmological and Galactic interpretations of GRBs, even though important differences between these two models arise in the radiation
processes and overall dynamics (Tavani 1997, hereafter T97). An MHD wind is assumed to interact in an optically thin environment with magnetic turbulence or hydro-magnetic shocks leading to rapid particle acceleration and to the formation of a prominent suprathermal component. The SSM relevant physical quantities are the particle pre-acceleration “temperature,” or average Lorentz factor \(\gamma^* \), and the local magnetic field at the acceleration site \(B_s \). The relativistic synchrotron critical energy of emitted photons \(E_{\text{crit}} = h\nu^* \) (with \(h \) Planck’s constant and \(\nu^* \) the critical synchrotron frequency) turns out to be proportional to the combination \(\gamma^* B_s^2 \). A rapid acceleration mechanism of timescale shorter than the dynamic flow and cooling timescales modifies an otherwise quasi-Maxwellian particle energy distribution (PED).

The postacceleration PED, \(N(\gamma) \) (with \(\gamma \) the particles’ Lorentz factor), turns out to be a combination of a relativistic Maxwellian\(^1\) and a power-law component of index \(\delta \) for energies below and above \(\nu^* \gamma \), respectively. Depending on the efficiency of the acceleration mechanism, the PED can have different shapes \(T96a, T96b \). A maximally efficient acceleration mechanism is characterized by the nonthermal power-law component of the postacceleration particle energy distribution joining the low-energy Maxwellian at the top of the distribution.\(^2\) The SSM results in a dimensionless spectral function given by

\[
\mathcal{F}(w) \equiv \int_0^{\nu_c} y^2 e^{-y} F\left(\frac{w}{y^2}\right) dy + y^2 e^{-y_c} \times \int_{y_c}^{\nu_{\text{m}}} \left(\frac{y}{y_c}\right)^{-\delta} F\left(\frac{w}{y^2}\right) dy ,
\]

(1)

where we defined \(w = \nu/(\nu^* \sin \alpha) \), \(\gamma = \gamma' \gamma^* \), \(\nu_{\text{m}} = \gamma_m \gamma^* \), with \(\nu^*_m = (3/4\pi q B_s/m_e c) \gamma^*_m \) the critical frequency of particles of mass \(m \) and charge \(q \) radiating in a local magnetic field \(B_s \), \(\alpha \) the average pitch angle, \(\gamma_c \) a critical value of the dimensionless energy variable \(y \), \(\gamma_m \) the upper cutoff of the postacceleration distribution function, and

\[
F(x) \equiv \int_x^{\infty} K_{5/3}(x') dx'
\]

(2)

the familiar synchrotron spectral function, with \(K_{5/3}(x) \) the modified Bessel function of order 5/3. By integrating over the solid angle and emission volume, and after dividing by the square of the distance, we obtain the differential energy flux \(F_{\nu^*} \), i.e.,

\[
F_{\nu^*} \propto \mathcal{F}(\nu/\nu^*)[\nu^*, \delta, \gamma_c] ,
\]

(3)

where we made explicit the dependence on the quantities \(\nu^*, \delta, \gamma_c \) (we assumed the relation \(\gamma_m \gg \gamma_c \), \(T96a, T96b \)). In the following, we use \(h = E \) for the emitted photon energy.

Equation (1) has a clear interpretation in terms of synchrotron radiation of impulsively accelerated particles by a maximally efficient mechanism. The main property of particle acceleration is reflected in the value of the critical dimen-

\[\text{1 We assume a three-dimensional Maxwellian distribution valid for a randomly oriented magnetic field configuration. It can be shown that a two-dimensional distribution leads to results similar to those presented here for a randomly oriented magnetic field (T96b).}

\[\text{2 It can be shown that any other combinations of low-energy thermal and suprathermal components will lead to synchrotron/IC spectra in contradiction with the current GRB broadband data (T96a, T96b).}

\[\text{---}

Fig. 1.—Calculated (unattenuated) SSM spectra for models A and B with \(\delta = 5 \): solid curves, model A for \(\gamma_c = 1 \); dashed curves, model B for \(\gamma_c = 7 \).
energy depends on the underlying model for the spectral “curvature” determined by the underlying PED. As a reference model of emission, we choose a SSM model with assumptions regarding the postacceleration PED. Even though the ultimate interpretation of in terms of the physical quantity \([\gamma^2 B^*]\) is subject to a model-dependent factor, characterizes the observed GRB spectra in a useful way. In the following, we will show the calculated emission ratios as a function of the observable \(E_p\).

3. GRB X-RAY EMISSION RATIOS

We calculated GRB X-ray emission ratios for a variety of assumptions regarding the postacceleration PED. As a reference model of emission, we choose a SSM model with \(\delta = 5\) and \(y_r = 1\) (model A). A different choice of PED parameters would result in softness ratios differing at most by a factor of a few tens of a percent compared to those shown in all the figures except for Figure 4.

Figure 2 shows the results of a calculation of softness energy flux ratios (SRs) for energy bands appropriate to several X-ray instruments, i.e., \(\textit{Ginga}\) \([\text{SR}_{\text{Ginga}} = f(1.5-10\ \text{keV})/(1.5-375\ \text{keV})]\) (Y99), the XMOS NRL/Los Alamos experiment \([\text{SR}_{\text{XMOS}} = f(3-10\ \text{keV})/(30-2000\ \text{keV})]\) (Laros et al. 1984), the WATCH instrument \([\text{SR}_{\text{WATCH}} = f(6-15\ \text{keV})/(15-100\ \text{keV})]\) (Castro-Tirado 1994), \(\textit{Einstein}\) \([\text{SR}_{\text{Einstein}} = f(0.15-3.5\ \text{keV})/(50-300\ \text{keV})]\), \(\textit{ROSAT}\) \([\text{SR}_{\text{ROSAT}} = f(0.1-2.4\ \text{keV})/(50-300\ \text{keV})]\), the wide-field cameras (WFCs) of \(\textit{SAX}\) \([\text{SR}_{\text{WFC@BATSE}} = f(2-30\ \text{keV})/(50-300\ \text{keV})]\), and the GRB wide-field X-ray monitor (WXM) of \(\textit{HETE}\) \([\text{SR}_{\text{WXM@BATSE}} = f(2-25\ \text{keV})/(50-300\ \text{keV})]\). The quantity \(f\) is the (arbitrarily normalized) integrated differential energy flux \(F\), for the indicated extremes of integration. Note that the calculated emission ratios here and in the following are idealized quantities that do not take into account possible spectral distortions due to detector responses. We also neglect X-ray Galactic absorption in our calculations of SRs. X-ray absorption has a negligible effect for emission above 2 keV as detected by GRB monitors.

The calculated SRs can be used to represent the softness ratios as a function of the average peak energy \(E_p\) corresponding to the GRB emission under investigation. For example, the SRs can be representative of the emission near the peak of a GRB pulse, or of the total fluence. (In the latter case, \(E_p\) represents the average peak energy throughout the whole burst.) Also, the time evolution of the SRs can be related with the change of \(E_p\).

We can compare our results with the GRB detections in the X-ray band of \(\textit{Ginga}\) and XMOS. The energy fluence ratios \(\text{SR}_{\text{XMOS}}\) of bursts detected between 1979 March and July are in the range 0.0096–0.034 (Laros et al. 1984). From

3 Obviously, SRs for \(\textit{Einstein}\) and \(\textit{ROSAT}\) may be strongly affected by Galactic absorption. Our calculations reported in Fig. 2 assume unattenuated X-ray flux. The reported SRs are therefore upper limits to the true ratios.

4 WATCH softness ratios are currently not corrected for the aspect of the detector (Castro-Tirado 1994), and a proper use of these data requires more analysis.
Figure 2 we deduce a range for the average value of E_p throughout the bursts, $200 \text{ keV} \lesssim E_p \lesssim 500 \text{ keV}$. Y89 report values of SR_{Ginga} referring to the peak of the 10 GRB bursts detected with good signal-to-noise ratios during the period of 1987 March through 1988 March. They report values in the range $0.03 \lesssim SR_{\text{Ginga}} \lesssim 0.09$ (with the exception of one burst, 870319, with $SR_{\text{Ginga}} = 0.46$ that would require an “unusual” $E_p \approx 10 \text{ keV}$). From Figure 2 we therefore deduce a range of average E_p for the bursts detected by Ginga: $90 \text{ keV} \lesssim E_p \lesssim 300 \text{ keV}$.

Three points are worth mentioning here. The ranges of deduced E_p’s for both the XMOS and Ginga detections are in good agreement with the expected average GRB E_p’s as determined by BATSE (Band et al. 1993). We deduce that the time-averaged pulse emission of these bursts is in agreement with the SSM expectations, with no necessity of additional spectral components for the majority of bursts. Only the burst 870319 detected by Ginga (Y89) appears to have a SR substantially larger than those expected from SSM spectra with $E_p \gtrsim 100 \text{ keV}$. A detailed spectral analysis can determine whether this burst has either an anomalously low E_p, a prominent additional low-energy component, or the typical shape of a soft gamma-ray repeater event. A spectral analysis of the 870319 burst is strongly encouraged in light of what is discussed below.

The other important point to note here is that the 23 GRB detections by Ginga for a total exposure factor of 1.8 sr yr$^{-1}$ (Teegarden 1995) are consistent with the detection of the majority of bright GRBs detectable by BATSE (i.e., bursts with typical peak fluxes above $F_p = 2.5 - 3$ photons cm$^{-2}$ s$^{-1}$ averaged over 256 ms time bins, see Fishman et al. 1994; Band et al. 1993; Meegan et al. 1995). This can be derived from a comparison with BATSE, which during the first 2.1 yr live-time period detected 244 GRBs of spectroscopic quality for an exposure factor of ~ 18 sr yr$^{-1}$ (e.g., Teegarden 1995). The ratio of the number of spectroscopic quality bursts to exposure is approximately the same for Ginga and for the first 2.1 years of BATSE live time. This is an important result, indicating that X-ray energy tails to GRBs are ubiquitous and have flux on the average consistent with the SSM expectations.

The third important consequence of these results is that the environment surrounding the GRB emission site is demonstrated to be optically thin to X-ray photon energies. There is no evidence of absorption processes in the X-ray energy range for the majority of GRBs (see also Preece et al. 1996a). There is also no evidence for synchrotron self-absorption or substantial inverse Compton distortions of the spectrum in the X-ray range. These features are of great importance in constraining theoretical models (T96d).

Figure 3 shows the calculated hardness ratios (HRs) relevant for the BATSE energy channels 2 and 3, i.e., the energy flux $HR_p = f(100-300 \text{ keV})/f(50-100 \text{ keV})$, and the photon flux $HR_p = f_p(100 - 300 \text{ keV})/f_p(50 - 100 \text{ keV})$ with f_p the integrated photon flux F_p/ν. We notice that the majority of GRBs detected by BATSE have average fluence HRs (e.g., Kouveliotou et al. 1993, 1996) in agreement with the SSM calculated ratios. Figure 3 shows the dependence of emission ratios on the nonthermal high-energy tail. We find that BATSE hardness ratios are not crucially dependent on the PED.

Figure 4 shows one of the main results of this paper, i.e., the SSM calculated ratio $SR_{\text{SAX}} = f(2-30 \text{ keV})/f(60-600 \text{ keV})$ for a variety of PEDs. Because of the relatively large energy span, SR_{SAX} depends on whether the PED is truncated near γ_e with $\gamma_e \sim 1$ or quasithermal with $\gamma_e \gtrsim 5$. For the same SR_{SAX}, the peak energies E_p deduced from models A and B differ by a factor ~ 2. Simultaneous broadband spectral information in the X-ray/soft gamma-ray energy range can lead to a determination of the postacceleration PED. We note that our calculated softness ratios for the WFCs can also be used to compare HETE’s WXM data and BATSE data. The SAX WFCs and HETE’s WXM may detect several GRBs per year, and we can expect events detected simultaneously by any two of SAX, HETE, and BATSE. The broadband spectral information of these bursts will be of great importance.

We note that a further test of the SSM is provided by a comparison of GRB “pulse durations” τ_p for different energy bands. A simple realization of the SSM predicts the relation $\tau_p \propto E^{-1/2}$. This relation is in approximate agreement with autocorrelation analyses of pulse durations by BATSE (Link, Epstein, & Priedhorsky 1993; Fenimore et al. 1995). Future data in the X-ray energy range can further constrain the energy dependence of GRB pulse durations and accurately measure possible deviations from simple SSM predictions. Note that the GRB pulse duration can be quite different from the duration of the extra X-ray component discussed below.

4. ADDITIONAL X-RAY COMPONENTS

We have shown that past and current X-ray observations of GRBs are on the average in agreement with the SSM expectations. However, a few exceptions were previously reported. Of particular relevance here is the possible existence of extra X-ray components in addition to the SSM underlying spectrum. One extra component occasionally
shows up as an “X-ray excess” during part of the bursts (e.g., Preece et al. 1995, 1996a, 1996b). The existence of X-ray precursors and tails (with possibly different spectra compared to the most intense part of the bursts) was also reported for the GRBs detected by Ginga (Y89; Murakami et al. 1991). It is not clear if the X-ray excess detected by BATSE and the precursor/tail detected by Ginga have the same origin. An analysis of the BATSE spectroscopy detector (SD) data low-energy channel is consistent with the presence of a statistically significant excess in the 5–10 keV band in 12 out of 86 strong bursts (Preece et al. 1996a, 1996b). The existence of GRBs with relatively large cumulative softness ratios was also noted in ~10% of the bursts detected by WATCH (Castro-Tirado 1994). The limited spectral information of the BATSE SD and of WATCH and the statistics of the events detected by Ginga do not as yet allow a precise determination of the spectrum of this additional X-ray component. It is possible that GRBs imaged by HETE’s WXM and the WFCs on board SAL can further constrain this low-energy component. GRBs with extra low-energy component(s) would show softness ratios substantially larger than those calculated for the SSM in Figures 2 and 4.

A low-energy additional component of the GRB spectrum can have different physical origins, including: (1) the existence of a quasithermal extra component of temperature in the keV range, (2) substantial spectral hard-to-soft evolution to peak energies $E_p \lesssim 10$ keV, and (3) the effect of opacity surrounding the central source for Compton attenuation models (Brainerd 1994). Only future detailed (time-resolved) spectroscopy in the X-ray range can resolve this issue. We emphasize here that the presence of an extra component may be crucial in order to distinguish different theoretical models. Cosmological blast-wave scenarios may lead to observable quasithermal X-ray precursors and discrete X-ray emission episodes, depending on geometry and interaction of forward and reverse shocks (T97). Surface reemission of irradiated compact stars in extended-halo Galactic models can also produce a quasithermal X-ray component that might be delayed in time with respect to the main GRB pulse emission. A detailed discussion of models for these extra X-ray components in GRBs will be presented elsewhere.

Current data indicate the existence of two different X-ray spectra components, one associated with the GRB pulses (and successfully modeled by the SSM over a broad energy range), and an extra component. The latter component can occasionally modify only part of the GRB emission (as in the case of the accumulated spectra of 3B920517 near its pulse peak from 7.6 to 8.8 s after trigger, Preece et al. 1996a, 1996b) or manifest itself as a precursor/tail of relatively soft spectrum (Y89).

5. ATTENUATION AND ABSORPTION OF X-RAYS FROM GRBS

Two effects may suppress the observable X-ray emission of GRBs: (1) attenuation of X-rays resulting from propagation from source to the Earth, and (2) opacity and synchrotron self-absorption effects at the source.

In previous sections, we assumed that the effect of X-ray propagation in our Galaxy is negligible. This is justified for column densities below 5×10^{22} cm$^{-2}$ and photon energies well above 2 keV. However, X-ray propagation through dense regions of the Galactic disk may substantially affect the low-energy spectrum of GRBs. Figure 5 shows a typical SSM spectrum for $E_p = 150$ keV and $\delta = 5, y_p = 1$ attenuated at low energies by photoionization of neutral gas through column densities in the range $10^{21} - 5 \times 10^{22}$ cm$^{-2}$.

Detecting GRBs below 2 keV may result in valuable information for distinguishing Galactic and extragalactic models of emission (see also Schaefer 1994). The existence of strong photoelectric absorption for GRBs occurring near the Galactic plane would be strongly suggestive of a remote origin in an extended halo or at cosmological distances. On the other hand, unattenuated GRB spectra down to, say, 0.1 keV would be highly problematic for cosmological models.

Neutral gas may exist near the GRB source, and the propagation of X-rays can be affected by the presence of un-ionized gas surrounding the source of high-energy emission. Time-variable photoelectric absorption may then occur in GRB sources of large initial column densities of neutral gas. As energy from the GRB source is progressively absorbed by cold surrounding material, the absorption cutoff will be shifted to lower photon energies in a distinctive way. Figure 5 shows that the effective column density at the source must be larger than 10^{22} cm$^{-2}$ to affect the GRB spectrum above 2 keV. From the absence of substantial X-ray absorption in the available Ginga and XMM data (see §3), we deduce that typical average values of N_H are constrained below 10^{22} cm$^{-2}$. Time-resolved spectral X-ray information will be valuable in further constraining the gaseous surrounding of GRB sources. Figure 5 can be used to predict the time evolution of the low-energy spectrum as the column density of photoionizing material evolves.

Synchrotron self-absorption may also suppress X-ray emission of GRBs. By equating the (comoving) spectral intensity I_ν with the Rayleigh-Jeans part of a blackbody
6. SEARCH FOR X-RAY FLASHES IN ANDROMEDA AND OTHER GALAXIES

X-ray flashes associated with GRBs from other galaxies might be detectable by X-ray instruments. If GRBs originate in a Galactic extended halo, it is plausible to expect the detection of X-ray flashes related to GRBs in the halos of nearby galaxies, since X-ray detectors are typically more sensitive than those employed at higher energies (e.g., Gotthelf, Hamilton, & Helfand 1996; Hamilton, Gotthelf, & Helfand 1996). Indeed, the detection or lack of detection of X-ray flashes in nearby galaxies such as Andromeda may provide a crucial test to establish the nature of GRBs (see also Li, Fenimore, & Liang 1996).

We show here that the calculated and previously observed X-ray flux of GRBs can be used to strengthen the conclusions from these searches. As an example, we consider a search for GRB-driven X-ray flashes in Andromeda (M31) to be carried out with *ROSAT* archival data. We assume a fractional area of the halo including the Andromeda galaxy \(\eta = \eta_{-1} \times 10^{-4} \) for a \(1^\circ \times 1^\circ \) field of view, and a (cumulative) live time \(\tau_l = \tau_e \times 10^6 \) s. We can then estimate the ROSAT exposure of the Andromeda halo in the (unconventional) units of \(\text{"halo time'') as } 3 \times 10^{-5} \times \eta_{-1} \) yr. The ratio of this exposure with the *Ginga* exposure of the Galactic halo (reexpressed in the proper units as \(\sim 0.14 \) halo yr) is \(\sim 2 \times 10^{-2} \times \eta_{-1} \). We deduce that the number of events detectable by the PSPC would be below unity if the ROSAT detections were limited to the same fraction of the bright GRB population accessible to *Ginga*. However, this may not be the case. From Figure 1 we deduce that the fractional flux expected in the ROSAT band for a burst detected by BATSE in the 50–300 keV range (without an X-ray excess) is \(\xi_{\text{ROSAT}} = 10^{-2} \times \eta_{-1} \) for \(E_p \sim 200 \) keV (i.e., at the average value of the \(E_p \) distribution from BATSE data, Band et al. 1993). Typical peak luminosities in the BATSE energy band are \(10^{-6} \)–\(10^{-7} \) ergs cm\(^{-2}\) s\(^{-1}\). Displacing this population of bursts detected by BATSE by a factor in distance of \(\sim 4–5 \) (representing the approximate distance of the Galactic halo to Andromeda), we can estimate the peak luminosities in the ROSAT band in the range \(5 \times 10^{-10} \)–\(5 \times 10^{-11} \) ergs cm\(^{-2}\) s\(^{-1}\). For a typical absorption in the halo of Andromeda \(N_H \sim 10^{21} \) cm\(^{-2}\), e.g., Trinchieri, Fabiano, & Peres 1988) and a photon spectral index less than unity, we deduce PSPC count rates in the range 22.5–2.2 counts s\(^{-1}\). We therefore conclude that, depending on the burst duration and intensity, ROSAT can detect GRBs in Andromeda of intensity a factor of \(\sim 10 \) lower than the bright bursts detectable by BATSE and *Ginga*. Unless the (\(\log N \)–\(\log S \)) intrinsic fluence distribution of GRBs from Andromeda is drastically quenched for small fluences, the number of GRB-driven X-ray flashes may be up to a few (times \(\eta_{-1} \times 10^6 \times \xi_{-2} \)) in the current ROSAT PSPC data. The timing properties of these transient events can make them distinguishable against the background. By considering realistic values of \(\eta_{-1} \times 10^6 \times \xi_{-2} \) in the range 0.1–0.5 (taking into account limitations in the exposure and moderate X-ray absorption), we estimate the number of X-ray flashes expected in the ROSAT database of Andromeda to be of order unity. We also notice that ROSAT and similar instruments such as *Einstein* are not expected in this model to detect GRB-related flashes of galaxies at distances larger than 2–3 Mpc \([\tau_l/(10^6 \text{ s})]^{1/2} \).

We can also consider a search for GRB-driven X-ray flashes in Andromeda by the WFCs on board *SAX*. The typical WFC 5 \(\sigma \) detection above ~10 keV for a background of ~20 counts s\(^{-1}\) (Piro et al. 1995) gives ~40 counts s\(^{-1}\). This count rate, interpreted as a peak flux for an integration time of order of a few seconds, corresponds to an energy flux of ~0.2 crab, i.e., ~5 \times 10^{-9} \) ergs cm\(^{-2}\) s\(^{-1}\) in the 2–30 keV band. Typical peak fluxes for bright GRBs detected by BATSE \((F \geq F_c) \) can be translated at the Andromeda halo distance, giving energy fluxes \(\gtrsim (2.5–5) \times 10^{-8} \) ergs cm\(^{-2}\) s\(^{-1}\) in the 50–300 keV band. From Figure 2 we deduce that the calculated SSM fraction of the peak flux in the WFC vs. BATSE energy ranges is \(\xi_{\text{WFC}} \sim 0.2–0.15 \) for average peak energies in the range 200–300 keV. For bright bursts with values of \(E_p \) at their peaks in the range 200–300 keV (which is about half of the total number of bright bursts detected by BATSE, see Ford et al. 1995), we deduce an SSM flux estimate of \((0.5–1) \times 10^{-8} \) ergs cm\(^{-2}\) s\(^{-1}\) in the 2–30 keV energy band. These bursts might be detectable by the WFCs.\(^6\) We can estimate the necessary live time/exposure\(^6\) for WFC observations of Andromeda as a function of a required number of X-ray flashes, \(N_f \). If the Andromeda halo has a population of bright GRBs similar to that one accessible to *Ginga* in our Galaxy, we deduce a live time \(\tau_{\text{WFC}} \sim 30–40 \) days \((N_f/10) \). The hypothesis of an extended galactic halo origin for the GRBs can therefore be tested by long WFC observations of Andromeda. Other nearby spiral galaxies are outside the distance range accessible to the study proposed here.

The author thanks Jules Halpern and David Helfand for discussions. Research partially supported by NASA grant NAG 5-2729.

\(^6\) Note that bright bursts with relatively large values of \(E_p \) may not be detectable by the WFCs at the Andromeda distance. The softness ratio \(\xi_{\text{WFC}} \) is below 0.1 for \(E_p \geq 500 \) keV; see Fig. 2.

\(^6\) The large field of view of the WFCs \((20^\circ \times 20^\circ) \) ensures that the Andromeda halo can be monitored by single pointings. Therefore, in this case \(\eta = 1 \), and the exposure is equal to the live time.
REFERENCES

Band, D., et al. 1993, ApJ, 413, 281
Brainerd, J. J., 1994, ApJ, 428, 21
Castro-Tirado, A. 1994, Ph.D. thesis, Univ. Copenhagen
Fenimore, E. E., in D. Zand, J. J. M., Norris, J. P., Bonnell, J. T., & Nemiroff, R. J. 1995, ApJ, 448, L101
Fishman, G. J. 1996, in 3rd Huntsville Symp. on Gamma-Ray Bursts (New York: AIP), in press
Fishman, G. J., et al. 1994, ApJS, 92, 229
Ford, L. A., et al. 1995, ApJ, 439, 307
Gotthelf, E. V., Hamilton, T. T., & Helfand, D. J. 1996, ApJ, 466, 779
Hamilton, T. T., Gotthelf, E. V., & Helfand, D. J. 1996, ApJ, 466, 795
Katoh, M., et al. 1984, in AIP Conf. Proc. 115, High-energy Transients in Astrophysics, ed. S. E. Woosley (New York, AIP), 390
Kouveliotou, C., et al. 1993, ApJ, 413, L101
——. 1996, 3rd Huntsville Symp. on Gamma-Ray Bursts, (New York: AIP), in press
Laros, J. G., Evans, W. D., Fenimore, E. E., Klebesadel, R. W., Shulman, S., & Fritz, G. 1984, ApJ, 286, 681
Li, H., Fenimore, E. E., & Liang, E. P. 1996, ApJ, 461, L73
Link, B., Epstein, R. I., & Priedhorsky, W. C. 1993, ApJ, 408, L81
Meegan, C. A., et al. 1995, [3rd BATSE Catalog], ApJS, 106, 65
Murakami, T., et al. 1991, Nature, 350, 592
Piro, L., et al. 1995, SAX Observers' Handbook (Rome: ASI)
Preece, R., et al. 1995, Ap&SS, 231, 207
——. 1996a, ApJ, 473, 310
——. 1996b, in 3rd Huntsville Symp. on Gamma-Ray Bursts (New York: AIP), in press
Schaefer, B. E. 1994, in AIP Conf. Proc. 307, Gamma-Ray Bursts, 2nd Huntsville Workshop, ed. G. J. Fishman, J. J. Brainerd, & K. Hurley (New York: AIP), 341
Tavani, M. 1995, Ap&SS, 231, 181
——. 1996a, Phys. Rev. Lett., 76, 3478 (T96a)
——. 1996b, ApJ, 466, 768 (T96b)
——. 1996c, in 3rd Huntsville Symp. on Gamma-Ray Bursts (New York: AIP), in press (T96c)
Teegarden, B. J. 1995, Ap&SS, 231, 95
Trinchieri, G., Fabbiano, G., & Peres, G. 1988, ApJ, 325, 531
Trombka, J. I., et al. 1974, ApJ, 194, L27
Wheaton, W. A., et al. 1973, ApJ, 185, L57
Yoshida, A., et al. 1989, PASJ, 41, 509 (Y89)