Blow-up criterion for the chemotaxis-fluid equations in a 3D unbounded domain with mixed boundary conditions

Yingping Peng
School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
Email: yingping_peng@163.com

Abstract. In this paper, we consider a coupled chemotaxis-fluid system in a 3D unbounded domain with mixed boundary conditions. A blow-up criterion for such a system is established by using the proper elliptic estimates and Stokes estimates under some assumptions on the chemotactic sensitivity function.

1. Introduction
It is well known that the chemotaxis phenomena of organisms have been attracted the attention of a large number of scholars recently. Massive properties of the solutions have been obtained, e.g., see [1-3] and the references therein.

In recent decades, since a lot of organisms live in a viscous fluid with chemical stimulation in it, the coupled chemotaxis-fluid systems which is firstly proposed by Tuval et al. [4] have been intensively studied in bounded or unbounded domain. For instance, Duan et al. [5] firstly established the global strong solutions of the chemotaxis-Navier-Stokes system near a constant equilibrium and obtained some temporal decay estimates of the resulting solutions in \(\mathbb{R}^3 \), in the same paper, they also proved the global weak well-posedness of the chemotaxis-Stokes system in \(\mathbb{R}^2 \). When considering the domain to be bounded with smooth boundary, Wang et al. [6] investigated the small-convection limit of chemotaxis-(Navier-)Stokes system. More results on the coupled chemotaxis-fluid system, we refer to [7-10] for the Cauchy problems in whole spaces and [11-14] for initial-boundary problems in bounded domains.

In this paper, we consider the following coupled chemotaxis-fluid equations (see [15,16])

\[
\begin{align*}
\partial_t n + u \cdot \nabla n &= \Delta n - \nabla \cdot (\chi c) n \nabla c \\
\partial_t c + u \cdot \nabla c &= \Delta c - f(c) n n' \\
\partial_t u + u \cdot \nabla u + \nabla P &= \Delta u - n \nabla \phi \\
\nabla \cdot u &= 0
\end{align*}
\]

in \(\Omega \times (0, \infty) \) with \(c \in \mathbb{R}_+ \) and \(\Omega := \{ x = (x', x_3) \in \mathbb{R}^3 \mid x' = (x_1, x_2) \in \mathbb{R}^2, 0 \leq x_3 \leq 1 \} \) around the equilibrium state \((0, c_{\text{sat}}, 0) \). Here, the unknowns are \(n, c, u \) and \(P \), denoting the cell density, the oxygen concentration, the velocity of fluid and the associated pressure, respectively. \(\chi, f, \phi \) are given functions depicting the chemotactic sensitivity, the consumption rate of the oxygen by cells, and the potential produced by some physical mechanisms, respectively. For simplicity, we denote the
boundary as \(\partial \Omega = \{(x', x_3) \in \mathbb{R}^3 \mid x' \in \mathbb{R}^2, x_3 = 1\} \cup \{(x', x_3) \in \mathbb{R}^3 \mid x' \in \mathbb{R}^2, x_3 = 0\} : = \Gamma_T \cup \Gamma_B \). In order to match the experiment and the numerical analysis [4, 17-19], we impose the following mixed boundary conditions [16]:

\[
(\nabla n - \chi(c_{\text{satur}}) n \nabla c) \cdot v = 0, \quad c = c_{\text{satur}} \quad \text{and} \quad u \cdot v = (\nabla \times u) \cdot r = 0 \quad \text{on} \quad \Gamma_T
\]

and

\[
\nabla n \cdot v = \nabla c \cdot v = 0 \quad \text{and} \quad u = 0 \quad \text{on} \quad \Gamma_B,
\]

where \(c_{\text{satur}} \geq 0 \) stands for the oxygen concentration at the water-air interface. The initial conditions are set as \(n(x, 0) = n_0(x) \), \(\phi(x, 0) = \phi_0(x) \), and \(\mathbf{u}(x, 0) = \mathbf{u}_0(x) \) with \(x \in \Omega \).

The authors in [15] proved that the chemotaxis-Navier-Stokes system is strongly, globally and uniquely solvable near a constant equilibrium, while the chemotaxis-Stokes system is weakly solvable when the boundary conditions are all assumed to be like (1.3) on both \(\Gamma_T \) and \(\Gamma_B \). For the problem of mixed boundary condition (1.1)-(1.3), the authors [16] proved the global existence of strong solutions near the equilibrium \((0, c_{\text{satur}}, 0)\) and obtained some convergence rate. In this paper, the author will consider the blow-up criterion for system (1.1)-(1.3) with \(\chi \equiv 0 \). As far as I know, this is the first work considering the additional influence of mixed boundary conditions to the coupled chemotaxis-fluid system of blow-up mechanisms. The main difficulty is the appearance of the mixed boundary conditions. Throughout this paper, we assume that \(\chi, f \) and \(\phi \) are smooth functions satisfying

\[
f(0) = 0, \quad f'(s) \geq 0 \quad \text{for all} \quad s \in \mathbb{R}, \quad \text{and} \quad \sup_{x \in \Omega} \phi(x) \left(|\nabla \phi(x)| + |\nabla^2 \phi(x)| \right) < \infty \tag{1.4}
\]

with \(\phi(x) = (1 + |x'|)(1 + \ln(1 + |x'|)) \).

The rest of this paper is organized as follows. In section 2, some basic lemmas are given. Section 3 is devoted to proving the blow-up criterion which is the main result.

2. Preliminaries

In this section, we will recall the local-in-time existence result of system (1.1)-(1.3). Its detailed proof can be found in [16].

Lemma 2.1. Let \(\chi \geq 2 \), \(c_{\text{satur}} \geq 0 \) and (1.4) hold. Assume that the initial data satisfies \(n_0 \geq 0 \), \(c_0 \in [0, c_{\text{satur}}] \), \(n_0 \in L^1(\Omega) \) and \((n_0, c_0 - c_{\text{satur}}, u_0) \in (H^2(\Omega))^3 \). There exist positive constants \(\varepsilon_1, T_0 \) and \(K \) such that if \(\|n_0, c_0 - c_{\text{satur}}, u_0\|_{H^1} \leq \varepsilon_1 \), then the solution \((n, c - c_{\text{satur}}, \mathbf{u})\) of system (1.1)-(1.3) is well-defined in \((C([0, T_0]; H^2(\Omega))^3)\) and satisfies the uniform estimates

\[
\sup_{0 \leq t \leq T} \left\| (n, c - c_{\text{satur}}, \mathbf{u})(\cdot, t) \right\|_{H^2}^2 + \int_0^T \left\| \nabla n, \nabla (c - c_{\text{satur}}), \nabla \mathbf{u}(\cdot, t) \right\|_{H^1}^2 \, dt \leq K. \tag{2.1}
\]

Remark 2.1. We can infer from the local existence result Lemma 2.1 that if \(T_0 \) is the maximal time of existence with \(T_0 < \infty \), then

\[
\limsup_{t \nearrow T_0} \int_0^T \left\| (n, c - c_{\text{satur}}, \mathbf{u})(\cdot, t) \right\|_{H^2}^2 + \int_0^T \left\| \nabla n, \nabla (c - c_{\text{satur}}), \nabla \mathbf{u}(\cdot, t) \right\|_{H^1}^2 \, dt \, ds = \infty.
\]

3. Blow-up criterion

In this section, the blow-up criterion for system (1.1)-(1.3) with \(\chi \equiv 0 \) is established. The main theorem of this paper is stated as follows.

Theorem 3.1. Let \(\chi \equiv 0 \) and all conditions in Lemma 2.1 hold. If \(T_0 \), the maximal time existence in Lemma 2.1, is finite, then

\[
\int_0^{T_0} \left(\|\mathbf{u}(\cdot, t)\|_{L^p}^p + \|\nabla (c - c_{\text{satur}})(\cdot, t)\|_{L^p}^p \right) dt = \infty \quad p \geq 3.
\]
Remark 3.1. The blow-up criterion in Theorem 3.1 is coincide with the one in [10]:
\[\int_0^T \left[\|u\|_{L^p(\mathbb{R}^3)}^p + \|\nabla n\|_{L^{p'}(\mathbb{R}^3)}^{p'} \right] \, dt = \infty, \quad \frac{3}{\beta} + \frac{2}{\gamma} = 1, \quad 3 < \beta \leq \infty. \]
The slightly difference between the above two blow-up criterion is somehow due to the appearance of the mixed boundary conditions.

Proof.
For simplicity, we firstly take change of variables \(\sigma = c_{\text{sat}} - c \). Thus, we can rewrite the system (1.1)-(1.3) as following since the assumption \(\chi(s) = 0 \) for all \(s \in \mathbb{R} \):

\[
\begin{aligned}
\partial_t n + u \cdot \nabla n &= \Delta n \\
\partial_t \sigma + u \cdot \nabla \sigma &= \Delta \sigma + f(c_{\text{sat}} - \sigma)n' \\
\partial_t u + u \cdot \nabla u + \nabla P &= \Delta u - n \nabla \phi \\
\nabla \cdot u &= 0
\end{aligned}
\]

with the corresponding initial-boundary conditions

\[
\begin{aligned}
\partial_t n &= \sigma = 0, \quad \partial_t u_1 = \partial_t u_2 = u_3 = 0 \quad \text{on } \Gamma_T \\
\partial_t \sigma &= \partial_t \sigma = 0 \quad \text{on } \Gamma_B \\
n(x,0) = n_0(x), \quad \sigma(x,0) = \sigma_0(x), \quad u(x,0) = u_0(x) \quad \text{in } \Omega
\end{aligned}
\]

Now, we will get the \(L^\infty \)-estimate of \(n \). Multiplying (3.1) by \(p n^{p-1} \) \((p \geq 2) \) and integrating the resulting equation over \(\Omega \), one has

\[
\frac{d}{dt} \|n\|_{L^p}^p + \frac{4(p-1)}{p} \|\nabla n^{p/2}\|_{L^p}^2 = 0,
\]

which implies that

\[
\|n\|_{L^p} \leq \|n_0\|_{L^p} \quad \text{and} \quad \|n\|_{L^p} \leq \|n_0\|_{L^p}
\]

by letting \(p \to \infty \) for the later inequality.

Next, we are going to obtain the \(L^2 \)-estimate of \((n,\sigma,u) \). Taking the \(L^2 \)-inner product of (3.1i)-(3.1ii) with \(n, \sigma, \text{ and } u \), respectively, one has

\[
\begin{aligned}
\frac{1}{2} \frac{d}{dt} \|n\|_{L^2}^2 + \|\nabla n\|_{L^2}^2 &= 0, \\
\frac{1}{2} \frac{d}{dt} \|\sigma\|_{L^2}^2 + \|\nabla \sigma\|_{L^2}^2 &= \int_\Omega f(c_{\text{sat}} - \sigma) \sigma n' \, dx \leq C \|\sigma\|_{L^{p}} \|\nabla \sigma\|_{L^2} \|n\|_{L^{p}} \leq C \|\sigma\|_{L^{p}} \left(\|\sigma\|_{L^2}^2 + \|n\|_{L^2}^2 \right), \\
\frac{1}{2} \frac{d}{dt} \|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2 &= -\int_\Omega u \cdot n \nabla \phi \, dx \leq C \left(\|n\|_{L^2}^2 + \|u\|_{L^2}^2 \right).
\end{aligned}
\]

Combining (3.3)-(3.5) , one has

\[
\begin{aligned}
\frac{d}{dt} \|(n,\sigma,u)\|_{L^2}^2 + 2 \|(\nabla n, \nabla \sigma, \nabla u)\|_{L^2}^2 &\leq C \left(1 + \|n\|_{L^p}^{p-1} \right) \|(n,\sigma,u)\|_{L^2}^2.
\end{aligned}
\]

Then, we deal with the \(L^2 \)-estimate of \((\nabla n, \nabla \sigma, \nabla u) \). Firstly, taking the \(L^2 \)-inner product of (3.1i) with \(\partial_t n \) and integrating by parts, one has

\[
\begin{aligned}
\frac{1}{2} \frac{d}{dt} \|\nabla n\|_{L^2}^2 + \|\partial_t n\|_{L^2}^2 &= -\int_\Omega \partial_t n \, u \cdot \nabla n \, dx \leq \frac{1}{2} \|\partial_t n\|_{L^2}^2 + \frac{1}{2} \|u\|_{L^2}^2 \|\nabla n\|_{L^2}^2,
\end{aligned}
\]

which implies that

\[
\frac{1}{2} \frac{d}{dt} \|\nabla n\|_{L^2}^2 + \frac{1}{2} \|\partial_t n\|_{L^2}^2 \leq \frac{1}{2} \|u\|_{L^2}^2 \|\nabla n\|_{L^2}^2.
\]

Taking the \(L^2 \)-inner product of (3.1ii) with \(\partial_t \sigma \) and using the Hölder inequality, one has
\[
\frac{1}{2} \frac{d}{dt} \|\nabla \sigma\|_{L^2}^2 + \|\partial_t \sigma\|_{L^2}^2 = -\int_\Omega \partial_t \sigma \cdot \nabla \sigma \, dx + \int_\Omega f(c_{sat} - \sigma) \partial_t \sigma \, n^i \, dx
\]
\[
\leq \frac{1}{2} \|\nabla \sigma\|_{L^2}^2 + \frac{1}{2} \|\partial_t \sigma\|_{L^2}^2 + \int_\Omega \nabla \sigma \cdot (\nabla \sigma + \sigma u) \, dx
\]
which implies that
\[
\frac{1}{2} \frac{d}{dt} \|\nabla \sigma\|_{L^2}^2 + \frac{1}{2} \|\partial_t \sigma\|_{L^2}^2 \leq C \left(\|\nabla \sigma\|_{L^2}^2 + \|\sigma \|_{L^\infty}^2 \right) \left(\|\nabla \sigma\|_{L^2}^2 + \|\partial_t \sigma\|_{L^2}^2 \right).
\] (3.8)

Similarly for \(u \), we obtain that
\[
\frac{1}{2} \frac{d}{dt} \|\nabla u\|_{L^2}^2 + \frac{1}{2} \|\partial_t u\|_{L^2}^2 = -\int_\Omega \partial_t u \cdot (u \cdot \nabla u) \, dx - \int_\Omega \partial_t u \cdot n \nabla \phi \, dx \leq \frac{1}{2} \|\partial_t u\|_{L^2}^2 + \|u\|_{L^2}^2 \|\nabla u\|_{L^2}^2 + C \|n\|_{L^2}^2
\]
which implies that
\[
\frac{1}{2} \frac{d}{dt} \|\nabla u\|_{L^2}^2 + \frac{1}{2} \|\partial_t u\|_{L^2}^2 \leq \|u\|_{L^2}^2 \|\nabla u\|_{L^2}^2 + C \|n\|_{L^2}^2.
\] (3.9)

Combining (3.7)-(3.9), one can conclude that
\[
\frac{1}{2} \frac{d}{dt} \|\nabla n, \nabla \sigma, \nabla u\|_{L^2}^2 + \|\partial_t \sigma, \sigma, \partial_t \sigma, \sigma, \partial_t u\|_{L^2}^2
\]
\[
\leq C \left(1 + \|u\|_{L^2}^2 + \|n\|_{L^\infty}^2 \right) \left(\|n\|_{L^2}^2 + \|\nabla n, \nabla \sigma, \nabla u\|_{L^2}^2 + \|\partial_t \sigma\|_{L^2}^2 \right).
\] (3.10)

For the \(L^2 \)-estimate of \(\partial_t n, \partial_t \sigma, \partial_t \sigma, \partial_t u \). Firstly, applying \(\partial_t \) to (3.1), taking the \(L^2 \)-inner product of the resulting equation with \(\partial_t n \), and integrating by parts, one has
\[
\frac{1}{2} \frac{d}{dt} \|\partial_t n\|_{L^2}^2 + \|\nabla \partial_t n\|_{L^2}^2 = -\int_\Omega \partial_t n \partial_t (u \cdot \nabla n) \, dx = \int_\Omega n \nabla \partial_t n \cdot \partial_t u \, dx \leq \frac{1}{2} \|\nabla \partial_t n\|_{L^2}^2 + \frac{1}{2} \|u\|_{L^2}^2 \|\partial_t u\|_{L^2}^2,
\]
which implies that
\[
\frac{1}{2} \frac{d}{dt} \|\partial_t n\|_{L^2}^2 + \frac{1}{2} \|\nabla \partial_t n\|_{L^2}^2 \leq \frac{1}{2} \|u\|_{L^2}^2 \|\partial_t u\|_{L^2}^2.
\] (3.11)

Then, applying \(\partial_t \) to (3.1), taking the \(L^2 \)-inner product of the resulting equation with \(\partial_t \sigma \), and using the Sobolev embedding inequality, one obtain that
\[
\frac{1}{2} \frac{d}{dt} \|\partial_t \sigma\|_{L^2}^2 + \|\nabla \partial_t \sigma\|_{L^2}^2
\]
\[
= -\int_\Omega \partial_t \sigma \partial_t \sigma \cdot \nabla \sigma \, dx - \int_\Omega f(c_{sat} - \sigma) \partial_t \sigma \partial_t \sigma^i \, dx + \gamma \int_\Omega f(c_{sat} - \sigma) \partial_t \sigma \partial_t \sigma^i \partial_t n \, dx
\]
\[
\leq \|\partial_t \sigma\|_{L^2} \|\partial_t \sigma\|_{L^2} \|\nabla \sigma\|_{L^2} + C \|\partial_t \sigma\|_{L^2} \|n\|_{L^\infty} \|\partial_t n\|_{L^2}
\]
\[
\leq \mu_t \|\partial_t \sigma\|_{L^2} + C \|\nabla \sigma\|_{L^2} \|\partial_t \sigma\|_{L^2} + C \|n\|_{L^\infty} \|\partial_t \sigma\|_{L^2} \|\partial_t n\|_{L^2},
\]
which implies by choosing \(\mu_t \) to be small enough that
\[
\frac{1}{2} \frac{d}{dt} \|\partial_t \sigma\|_{L^2}^2 + \frac{1}{2} \|\nabla \partial_t \sigma\|_{L^2}^2 \leq \mu_t \|\partial_t \sigma\|_{L^2}^2 + C \|\nabla \sigma\|_{L^2} \|\partial_t \sigma\|_{L^2} + C \|n\|_{L^\infty} \|\partial_t \sigma\|_{L^2} \|\partial_t n\|_{L^2}^2,
\] (3.12)

where \(\frac{1}{p} + \frac{1}{q} = \frac{1}{2} \) and \(1 \leq q \leq 6 \) in the above inequalities. For the estimate of \(\|\nabla \partial_t u\|_{L^2} \), we deduce that
\[
\frac{1}{2} \frac{d}{dt} \|\nabla \partial_t u\|_{L^2}^2 + \|\nabla \partial_t u\|_{L^2}^2 = -\int_\Omega \partial_t u \cdot (\partial_t u \cdot \nabla \partial_t u) \, dx - \int_\Omega \partial_t u \cdot \partial_t u \cdot n \nabla \phi \, dx
\]
\[
\leq \frac{1}{2} \|\nabla \partial_t u\|_{L^2}^2 + C \|\partial_t u\|_{L^2} \|\partial_t \sigma\|_{L^2} + C \|\partial_t \sigma\|_{L^2} \|\partial_t u\|_{L^2}^2,
\]
which implies that
\[\frac{1}{2} \frac{d}{dt} \| \sigma_n \|_{L^2}^2 + \frac{1}{2} \| \nabla \sigma_n \|_{L^2}^2 \leq C \| \sigma_n \|_{L^2}^2 + C \| (\partial_n, \sigma, n) \|_{L^2}^2. \]

(3.13)

Combing (3.11)-(3.13), one can conclude that
\[\frac{d}{dt} \left(\| (n, \sigma, u) \|_{L^2}^2 + \| (\partial_n, \sigma, \nabla \sigma, \partial_u) \|_{L^2}^2 \right) \]
\[\leq C \left(\| n \|_{L^2}^2 + \| \sigma \|_{L^2}^2 + \| u \|_{L^2}^2 \right) \left(\| \partial_n, \sigma, \partial_u \|_{L^2}^2 \right). \]

(3.14)

Now, we are in the position to get the H^2-estimate of (n, σ, u). Firstly, according to the above estimates, we can claim by combing (3.6), (3.10), and (3.14) that
\[\frac{d}{dt} \left(\| (n, \sigma, u) \|_{L^2}^2 + \| (\partial_n, \sigma, \nabla \sigma, \partial_u) \|_{L^2}^2 \right) \]
\[\leq C \left(\| n \|_{L^2}^2 + \| \sigma \|_{L^2}^2 + \| u \|_{L^2}^2 \right) \left(\| \partial_n, \sigma, \partial_u \|_{L^2}^2 \right). \]

(3.15)

By Gronwall’s inequality, we note that $\| (n, \sigma, u) \|_{L^2(0, T, L^2)}$ and $\| (\partial_n, \sigma, \partial_u) \|_{L^2(0, T, L^2)}$ are uniformly bounded if $\int_0^T \| \nabla \sigma \|_{L^2}^2 + \| \sigma \|_{L^2}^2 \ dt$ $(3 \leq p \leq \infty)$ is bounded.

Next, we will close the energy in the framework of H^2-norm and obtain the boundedness of $\| (n, \sigma, u) \|_{L^2(0, T, L^2)}$ and $\| \nabla n, \nabla \sigma, \nabla u \|_{L^2(0, T, L^2)}$ by applying the elliptic estimates. To this end, we can testify by recalling the boundary condition for n in (3.2) and using integration by parts and the Hölder inequality that
\[\| \nabla n \|_{L^2}^2 = \sum_{i,j=1}^3 \int_{\Omega} \partial_i n \partial_j n \ dx - \sum_{i,j=1}^3 \int_{\partial \Omega} \partial_i n \partial_j n \nu_i \ ds + \sum_{i,j=1}^3 \int_{\Omega} \partial_i n \partial_j n \ dx = \sum_{i,j=1}^3 \int_{\Omega} \partial_i n \partial_j n \ dx - \sum_{i,j=1}^3 \int_{\partial \Omega} \partial_i n \partial_j n \nu_i \ dx = \| \Delta n \|_{L^2}^2. \]

and
\[\| u \cdot \nabla n \|_{L^2}^2 = \int_{\Omega} (u \cdot \nabla n) (u \cdot \nabla n) \ dx \leq \| u \|_{L^2}^2 \| \nabla n \|_{L^2} \| \nabla n \|_{L^2} \leq C \| u \|_{L^2}^2 \| \nabla n \|_{L^2} \| \nabla n \|_{L^2}. \]

Thus, we deduce from (3.1), that
\[\| \nabla n \|_{L^2}^2 \leq \| u \|_{L^2}^2 \| \nabla n \|_{L^2}^2 + \| \sigma \|_{L^2}^2 + \frac{1}{2} \| \nabla n \|_{L^2}^2 + C \left(\| \sigma \|_{L^2}^2 + \| \sigma \|_{L^2}^2 \right) \| \nabla n \|_{L^2}^2, \]

which implies that $\| \nabla n \|_{L^2}^2 \leq C \| \sigma \|_{L^2}^2 + C \left(\| \sigma \|_{L^2}^2 + \| \sigma \|_{L^2}^2 \right) \| \nabla n \|_{L^2}^2$, and thus we have $\| \nabla n \|_{L^2(0, T, L^2)}$ is bounded. Due to the mixed boundary conditions in (3.2) for σ, we rewrite (3.1) as
\[-\Delta \sigma = -\partial_i \sigma - u \cdot \nabla \sigma + f (c_{\text{sat}} - \sigma) n'. \]

(3.16)

and compute that
\[\| \nabla \sigma \|_{L^2}^2 = \int_{\Omega} \Delta \sigma \sigma + u \cdot \nabla \sigma \ dx - \int_{\Omega} \partial_i \sigma f (c_{\text{sat}} - \sigma) n' \ dx \]
\[\leq \frac{1}{2} \| \nabla \sigma \|_{L^2}^2 + \| \sigma \|_{L^2}^2 + \mu_2 \| \nabla \sigma \|_{L^2}^2 + C \left(\| \sigma \|_{H^1}^2 + \| \sigma \|_{L^2}^2 \right) \| \nabla \sigma \|_{L^2}^2 + C \| \sigma \|_{L^2}^2 \| \nabla \sigma \|_{L^2}^2, \]

which implies that
\[\| \nabla \sigma \|_{L^2}^2 \leq 2 \| \sigma \|_{L^2}^2 + \mu_2 \| \nabla \sigma \|_{L^2}^2 + C \left(\| \sigma \|_{H^1}^2 + \| \sigma \|_{L^2}^2 \right) \| \nabla \sigma \|_{L^2}^2 + C \| \sigma \|_{L^2}^2 \| \sigma \|_{L^2}^2. \]

(3.17)

Noticing that (3.16) also can be rewritten as
\[-\partial_t^2 \sigma = \Delta_x \sigma - \partial_x \sigma - \mathbf{u} \cdot \nabla \sigma + f (\sigma_{\text{can}} - \sigma) n', \tag{3.18}\]

Thus, we further deduce that
\[
\|\partial_t^2 \sigma\|_{L^2} \leq C \|\Delta_x \sigma\|_{L^2} + C \|\partial_x \sigma\|_{L^2} + \|\mathbf{u} \cdot \nabla \sigma\|_{L^2} + C \|\n\|_{L^2} \|\sigma\|^{(y-1)}_{L^2}.
\]

Taking a linear combination of (3.17) and (3.19), rearranging the resulting coefficients carefully, and choosing μ_2 to be suitably small, one has
\[
\|\n\|_{L^2} \leq C \|\partial_t \sigma\|_{L^2} + C \left(\|u\|_{H^1} + \|u\|_{H^1}\right) \|\n\|_{L^2} + C \|\sigma\|_{L^2} + C \|\mu_2\|_{L^2} \|\sigma\|^{(y-1)}_{L^2},
\]

which implies that $\|\n\|_{L^2(t_0,T,t')}$ (1). Analogously, for the velocity \mathbf{u}, we employ the Stokes estimates (refer to Lemma 3.1 in [1] for details) to obtain that
\[
\|\n\|_{L^2(t_0,T,t')} \leq C \|\partial_t \vo\|_{L^2} + C \left(\|u\|_{H^1} + \|u\|_{H^1}\right) \|\n\|_{L^2} + C \|\vo\|_{L^2} + C \|\mu_2\|_{L^2} \|\vo\|^{(y-1)}_{L^2},
\]

which implies that
\[
\|\n\|_{L^2(t_0,T,t')} \leq C \|\partial_t \vo\|_{L^2} + C \left(\|u\|_{H^1} + \|u\|_{H^1}\right) \|\n\|_{L^2} + C \|\vo\|_{L^2} + C \|\mu_2\|_{L^2} \|\vo\|^{(y-1)}_{L^2},
\]

and thus $\|\n\|_{L^2(t_0,T,t')}$. Now we will prove that $\|\n\|_{L^2(t_0,T,t')}$. Firstly we deduce from integration by parts that
\[
\|\n\|_{L^2(t_0,T,t')} = \|\n\|_{L^2(t_0,T,t')} \leq C \|\partial_t \n\|_{L^2} + C \|\sigma\|_{L^2} + C \|\mu_2\|_{L^2} \|\sigma\|^{(y-1)}_{L^2},
\]

which entails that $\|\n\|_{L^2(t_0,T,t')}$. For the equation of σ in (3.16), integration by parts also leads to
\[
\|\partial_t \n\|_{L^2} = \|\n\|_{L^2(t_0,T,t')} \leq C \|\partial_t \sigma\|_{L^2} + C \|\sigma\|_{L^2} + C \|\n\|_{L^2} + C \|\n\|_{L^2} \|\sigma\|^{(y-1)}_{L^2}. \tag{3.20}\]

Then, we apply ∂_t to (3.18) and similarly compute that
\[
\|\partial_t \sigma\|_{L^2} \leq C \|\partial_t \sigma\|_{L^2} + C \|\sigma\|_{L^2} + C \|\n\|_{L^2} + C \|\n\|_{L^2} \|\sigma\|^{(y-1)}_{L^2}, \tag{3.21}\]

Taking a linear combination of (3.20) and (3.21) and rearranging the resulting coefficients carefully, one obtains that
\[
\|\n\|_{L^2(t_0,T,t')} \leq C \|\partial_t \sigma\|_{L^2} + C \|\sigma\|_{L^2} + C \|\n\|_{L^2} + C \|\n\|_{L^2} \|\sigma\|^{(y-1)}_{L^2}, \tag{3.22}\]

which shows that $\|\n\|_{L^2(t_0,T,t')}$. Recall the detailed Stokes estimates in the proof of Lemma 3.1 in [1], one can further obtain that
\[
\|\n\|_{L^2(t_0,T,t')} \leq C \|\partial_t \sigma\|_{L^2} + C \|\sigma\|_{L^2} + C \|\n\|_{L^2} + C \|\sigma\|^{(y-1)}_{L^2} + C \|\mu_2\|_{L^2} \|\sigma\|^{(y-1)}_{L^2},
\]

and this suggests that $\|\n\|_{L^2(t_0,T,t')}$. Consequently, by the above estimates, we can conclude that $(n,\sigma,\mathbf{u}) \in L^2(0,T;H^1) \cap L^2(0,T;H^3)$. This completes the proof of the Theorem.

Acknowledgments
The author is very grateful to Professor Zhaoyin Xiang for suggesting this problem.

References
[1] Bellomo N, Bellouquid A, Tao Y and Winkler M 2015 Toearc a mathematical theory of Keller-Segel models of pattern formation in biological tissues Models and Methods in Applied
Bellomo N and Winkler M 2017 Finite-time blow-up in a degenerate chemotaxis system with flux limitation Transactions of the American Mathematical Society, Series B 4 31-67

Tao Y and Winkler M 2012 Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant Journal of Differential Equations 252 2520-43

Tuval I, Cisneros L, Wolgemuth C, Kessler J and Goldstein R 2005 Bacterial swimming and oxygen transport near contact lines Proceedings of the National Academy of Sciences of the United States of America 102 2277-82

Duan R, Lorz A and Markowich P A 2010 Global solutions to the coupled chemotaxis-fluid equations Communications in Partial Differential Equations 35 1635-73

Wang Y, Winkler M and Xiang Z 2018 The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system Mathematische Zeitschrift 289 71-108

Duan R and Xiang Z 2014 A note on global existence for the chemotaxis-Stokes model with nonlinear diffusion International Mathematics Research Notices 2014 1833-52

Liu J and Lorz A 2011 A coupled chemotaxis-fluid model: global existence Annales De L’institut Henri Poincaré-Analyse Non Linéaire 28 643-652

Chae M, Kang K and Lee J 2012 Existence of smooth solutions to coupled chemotaxis-fluid equations Discrete and Continuous Dynamical Systems, Series A 33 2271-97

Chae M, Kang K and Lee J 2014 Global existence and temporal decay in Keller-Segel models coupled to fluid equations Communications in Partial Differential Equations 39 1205-35

Lorz A 2010 Coupled chemotaxis fluid equations Mathematical Models and Methods in Applied Sciences 20 987-1004

Duan R, Li X and Xiang Z 2017 Global existence and large time behavior for a two-dimensional chemotaxis-Navier-Stokes system Journal of Differential Equations 236 6284-6316

Winkler M 2012 Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops Communications in Partial Differential Equations 37 319-351

Winkler M 2014 Stabilization in a two-dimensional chemotaxis-Navier-Stokes system Archive for Rational Mechanics and Analysis 211 455-487

Peng Y, Xiang Z 2018 Global solutions to the coupled chemotaxis-fluids system in a 3D unbounded domain with boundary Mathematical Models and Methods in Applied Sciences 28 869-920

Peng Y, Xiang Z 2019 Global existence and convergence rates to a chemotaxis-fluids system with mixed boundary conditions Journal of Differential Equations 267 1277-1321

Chertock A, Fellner K, Kurganov A, Lorz A and Markowich P A 2012 Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach Journal of Fluid Mechanics 694 155-190

Deleuze Y, Chiang C, Thiriet M and Sheu T 2016 Numerical study of plume patterns in a chemotaxis-diffusion-convection coupling system Computers & Fluids 126 58-70

Lee H G and Kim J 2015 Numerical investigation of falling bacterial plumes caused by bioconvection in a three-dimensional chamber European Journal of Mechanics-B/Fluids 52 120-130