Subfactors, Planar Algebras and Rotations

by

Michael Burns

B.Sc.(Hons) (University of Canterbury) 1996

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the GRADUATE DIVISION of the UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Vaughan F. R. Jones, Chair
Professor Marc A. Rieffel
Professor Martin B. Halpern

Spring 2003
Abstract

Subfactors, Planar Algebras and Rotations

by

Michael Burns

Doctor of Philosophy in Mathematics

University of California at BERKELEY

Professor Vaughan F. R. Jones, Chair

Growing out of the initial connections between subfactors and knot theory that gave rise to the Jones polynomial, Jones’ axiomatization of the standard invariant of an extremal finite index II_1 subfactor as a spherical C^*-planar algebra, presented in [16], is the most elegant and powerful description available.

We make the natural extension of this axiomatization to the case of finite index subfactors of arbitrary type. We also provide the first steps toward a limited planar structure in the infinite index case. The central role of rotations, which provide the main non-trivial part of the planar structure, is a recurring theme throughout this work.

In the finite index case the axioms of a C^*-planar algebra need to be weakened to disallow rotation of internal discs, giving rise to the notion of a rigid C^*-planar algebra. We show that the standard invariant of any finite index subfactor has a rigid C^*-planar algebra structure. We then show that rotations can be re-introduced with associated correction terms entirely controlled by the Radon-Nikodym derivative of the two canonical states on the first relative commutant, $N' \cap M$.

By deforming a rigid C^*-planar algebra to obtain a spherical C^*-planar algebra and lifting the inverse construction to the subfactor level we show that any rigid C^*-planar algebra arises as the standard invariant of a finite index II_1 subfactor equipped with a conditional expectation, which in general is not trace preserving. Jones’ results thus extend completely to the general finite index case.

We conclude by applying our machinery to the II_1 case, shedding new light on the rotations studied by Huang [11] and touching briefly on the work of Popa [29].
In the case of infinite index subfactors there are obstructions to having a full planar algebra theory. We constructing a periodic rotation operator on the L^2-spaces of the standard invariant of an approximately extremal, infinite index II_1 subfactor. In the finite index case we recover the usual rotation. We also show that the assumption of approximate extremality is necessary and sufficient for rotations to exist on these L^2-spaces.

The potential complexity of the standard invariant of an infinite index subfactor is illustrated by the construction of a II_1 subfactor with a type III central summand in the second relative commutant, $N' \cap M_1$. The restriction to L^2-spaces does not see this part of the standard invariant and Izumi, Longo and Popa’s [13] examples of subfactors that are not approximately extremal provide a further challenge to move beyond the L^2-spaces in the construction of rotation operators. The present construction is simply an initial step on the road to a planar structure on the standard invariant of an infinite index subfactor.
Contents

1 Introduction

2 Finite Index Subfactors of Arbitrary Type
 2.1 General Finite Index Subfactors
 2.1.1 Operator-valued weights
 2.1.2 Hilbert A-modules and the relative tensor product
 2.1.3 Background material from Kosaki
 2.1.4 Computational tools
 2.1.5 Modular theory
 2.1.6 The rotation operator
 2.2 The Planar Algebra of a Finite Index Subfactor
 2.2.1 Rigid planar algebras
 2.2.2 Subfactors give rigid planar algebras
 2.2.3 Modular structure
 2.2.4 From rigid to spherical and back again
 2.2.5 Planar algebras give subfactors
 2.3 Finite index II_1 subfactors
 2.3.1 Huang's two rotations for a nonextremal II_1 subfactor
 2.3.2 A two-parameter family of rotations
 2.3.3 Additional results on finite index II_1 subfactors

3 Infinite Index Subfactors of Type II
 3.1 Background on Infinite Index Subfactors
 3.1.1 Bases
 3.1.2 The basic construction
 3.2 The II_1 Case
 3.2.1 Odd Jones projections and conditional expectations
 3.2.2 Properties of the isomorphisms θ_k
 3.2.3 Bases revisited
 3.3 Extremality and Rotations
 3.3.1 Extremality
 3.3.2 N-central vectors
 3.3.3 Rotations
Acknowledgements

I would like to thank my advisor, Vaughan Jones, a mathematician who exemplifies the highest standards in every aspect of the profession, from research and exposition to teaching and mentoring students. His enthusiasm for mathematics is infectious and his ability to produce and expound elegant mathematics have served as an inspiration to me. It has been a pleasure to work with him and I thank him for his limitless patience and for having more faith in me than I sometimes had in myself.

My colleagues and fellow students have been invaluable in their advice and feedback. In particular I would like to thank Dietmar Bisch, Zeph Landau and Hsiang-Ping Huang, who were always eager to talk about subfactors. Michel Enock and Ryszard Nest’s beautiful paper paved the way for the results on infinite index subfactors.

To the many people in the Cal Hiking Club, CHAOS, who helped me avoid working on my thesis I owe a debt of gratitude for keeping things in perspective and for adding immeasurably the quality of my life. In particular Jeremy Schroeder and Mark Miller were steadfast partners and great friends in many vertical adventures.
Chapter 1

Introduction

The study of subfactors was initiated by Jones’ startling results on the index for subfactors in [15]. His work gave rise to a powerful invariant of a subfactor known as the standard invariant. This invariant has many equivalent descriptions, including Ocneanu’s paragroups, bimodule endomorphisms and 2-C*-tensor categories. Popa’s axiomatization of the standard invariant of a finite index II_1 subfactor in terms of standard λ-lattices, [28], was a major advance in the field. Jones’ [16] planar algebra axiomatization for extremal finite index II_1 subfactors builds on this to produce a diagrammatic formulation in which the standard invariants “seem to have now found their most powerful and efficient formalism” (quoting Popa [29]).

The present work is concerned with extensions of the planar algebra machinery to wider classes of subfactors than those considered in Jones [16] and a recurring theme will be the properties of rotation operators. After these introductory remarks in chapter one, the second chapter is concerned with extending Jones’ subfactor-planar algebra correspondence from extremal finite index II_1 subfactors to the general finite index case and proving some results with this machinery. Chapter three concerns infinite index subfactors and defining rotations on their standard invariants as a step towards a restricted planar structure on them. There are obstructions to a full planar algebra structure in the infinite index case.

Before embarking on a chapter by chapter summary we present a quick overview of the area. The reader is referred to Jones and Sunder [14] for basic material on subfactors, with a focus on the finite index II_1 case.

Let $N \subset^{E} M$ be an inclusion of factors equipped with a normal conditional expectation E of finite index. The Jones’ basic construction yields a factor M_1, generated
by M and the first Jones’ projection e_1, together with a normal conditional expectation $E_M : M_1 \to M$. Iterating this procedure we obtain a tower of factors and conditional expectations, $N \subset M \subset M_1 \subset M_2 \subset \cdots$. The standard invariant of $N \subset M$ is the lattice of relative commutants obtained from this tower:

$$
\mathbb{C} = N' \cap N \subset N' \cap M \subset N' \cap M_1 \subset N' \cap M_2 \subset N' \cap M_3 \subset \cdots
$$

$$
\mathbb{C} = M' \cap M \subset M' \cap M_1 \subset M' \cap M_2 \subset M' \cap M_3 \subset \cdots
$$

together with the conditional expectations. The algebras $M_i' \cap M_j$ are all finite dimensional C*-algebras (multi-matrix algebras). The standard invariant is a powerful invariant of the subfactor and it is a complete invariant in the case of amenable II$_1$ subfactors (Popa [27]).

The case where M (and hence N) is a II$_1$ factor and E is the unique trace-preserving conditional expectation from M onto N is the most extensively studied. A special case of this is when the subfactor is extremal, which is to say that the trace tr on M and the unique trace tr' on N' agree on $N' \cap M$. In [28] Popa axiomatized the standard invariant of an extremal II$_1$ subfactor, proving that the standard invariant of an extremal II$_1$ subfactor forms an extremal standard λ-lattice and conversely any extremal standard λ-lattice arises in this way. The general finite index II$_1$ case, a simple generalization of the proof in [28] and known to Popa, first appears in print in [29].

In [16] Jones characterizes the standard invariant of an extremal II$_1$ subfactor as a spherical C*-planar algebra: loosely speaking, a sequence of finite dimensional vector spaces V_i with an action of the operad of (planar isotopy classes) of planar tangles as multilinear maps, consistent with composition of tangles, equipped also with an involution \ast and satisfying certain positivity conditions and an additional spherical isotopy invariance.

The proof that every spherical C*-planar algebra arises from an extremal II$_1$ subfactor is an application of Popa’s standard λ-lattice result. The construction of the planar algebra of an extremal II$_1$ subfactor is the main result of Jones [16] and a key ingredient is the periodicity of the rotation operator which, after the result has been proved, can be realized as the tangle below, illustrated in the case of $V_4 = N' \cap M_3$.
The planar algebra machinery has been a powerful tool in proving results on the combinatorial structure of the standard invariant and obtaining obstructions on the possible principal graphs and standard invariants of subfactors. See for example the work of Bisch and Jones [2, 3, 4, 17, 18].

Extending the planar algebra formalism to the general II_1 case begins with proving the periodicity of the rotation operator. In [11] Huang defines two rotation operators on the standard invariant of a II_1 subfactor and proves that each is periodic.

The case of infinite index subfactors is first taken up by Herman and Ocneanu in [10]. The results that they announced were proved and expanded upon by Enock and Nest [8], where the basic results for infinite index subfactors are laid down. This paper also characterizes the subfactors arising as cross-products by discrete type Kac algebras and compact type Kac algebras.

The tower and standard invariant can still be constructed in the case of an infinite index inclusion, but the process becomes much more technical. Operator-valued weights must be used in place of conditional expectations and the relative commutants need no longer be finite dimensional. Even in the simplest case of an infinite index inclusion of II_1 factors, only the odd Jones' projections exist, implementing conditional expectations, and the other half of the maps in the tower are operator-valued weights. The standard invariant does not form a planar algebra in this case.

In the following chapter we discuss the finite index case. Background material on general finite index subfactors is presented and a small number of technical results developed before we turn our attention to extending Jones' planar algebra results.

Rigid planar algebras are defined in almost the same way as the planar algebras of Jones except that we do not allow rotations of internal discs. After proving basic results
about rigid C*-planar algebras, including the central role of Radon-Nikodym derivatives, we construct a rigid C*-planar algebra structure on the standard invariant of any finite index subfactor.

Every rigid C*-planar algebra is shown to have a modular extension in which discs can be rotated provided we insert correction terms involving the Radon-Nikodym derivatives. We then go on to deform the modular extension so as to remove the correction terms, in essence by incorporating them already in the action of the tangles. We thus obtain a spherical C*-planar algebra and thus an extremal II$_1$ subfactor.

Finally we lift the inverse construction to the level of subfactors and are able to prove that every rigid C*-planar algebra arises as the standard invariant of a finite index subfactor, in fact a subfactor of type II$_1$, though the expectation may not be trace-preserving.

We then apply the planar algebra machinery that we have developed to the rotations studied by Huang [11] and illuminate some of Popa’s constructions in [29] in our context.

Chapter 3 is concerned with infinite index II$_1$ subfactors. After some initial material describing the basic construction in this setting we take advantage of the additional structure provided by the requirement that the first two factors in the tower be of type II$_1$. We thus have half of the Jones projections still at our disposal and are able to construct an orthonormal basis for M over N. These tools allow us to extend the notion of extremality to the infinite index case and show that it has the usual properties.

Motivated by some of our work in the finite index case we can formally define rotation operators on the L^2-spaces of the standard invariant. The existence of these operators is then shown to be equivalent to approximate extremality of the initial subfactor.

We conclude with an result indicating the potential complications that arise once we move to finite index subfactors. We construct of a II$_1$ subfactor with a type III central summand in the second relative commutant, $N' \cap M_1$.
Chapter 2

Finite Index Subfactors of Arbitrary Type

In this chapter we extend Jones’ subfactor-planar algebra correspondence in [10] from extremal finite index II$_1$ subfactors to the general finite index case.

We begin in sections 2.1.1 and 2.1.2 with a review of the machinery of operator-valued weights and relative tensor products as a prelude to the discussion of index and the basic construction in section 2.1.3.

A number of tedious, but necessary, computational results are proved in Section 2.1.4. We connect the bimodule and relative tensor product structure on the algebras M_k with that on the Hilbert modules $L^2(M_k)$, before concluding with further results on the multi-step basic construction.

Section 2.1.5 is concerned with modular theory. We prove that relative commutants lie in the domains of the operators of modular theory and that these operators leave the relative commutants invariant. We also show that the actions of these operators are compatible with inclusions in the tower of higher relative commutants.

The rotation operator enters the picture in Section 2.1.6 and we prove that it is quasi-periodic: $(\rho_k)^{k+1} = \Delta_k^{-1}$.

In Section 2.2 we define a more general notion of a planar algebra. In a rigid planar algebra we restrict attention to isotopies of tangles under which internal boxes only undergo translations. Every rigid C*-planar algebra has a modular extension in which general planar isotopies are allowed, but rotations of boxes change the action of the tangle.
There are two canonical states φ and φ' on a rigid C*-planar algebra given by capping off boxes to the left or to the right. The Radon-Nikodym derivative w or φ' with respect to φ controls the effect of rotations in the following way. Any string along which the total angle changes after isotopy must be modified by inserting a 1-box defined in terms of w and the total angle change.

In Section 2.2.2 we show that the standard invariant of a finite index subfactor has a rigid planar algebra structure. Section 2.2.3 describes the construction of the modular extension to a rigid C*-planar algebra and Section 2.2.4 contains the construction of an associated spherical C*-planar algebra from a rigid C*-planar algebra. This recovers a result of Izumi that for any finite index subfactor there is a II$_1$ subfactor with the same algebraic standard invariant.

We conclude in Section 2.2.5 by showing that any rigid C*-planar algebra arises as the standard invariant of a finite index subfactor.

Moving on to the specific case of a (not necessarily extremal) finite index II$_1$ subfactor, in Section 2.3.1 we establish the connection between Huang’s two rotations [11]. We show that the two rotations are the same if and only if the subfactor is extremal. The method of proof allows a very simple alternative proof of periodicity in the II$_1$ case which will generalize to infinite index II$_1$ subfactors in Chapter [3]. We go on to prove some other results for general finite index II$_1$ subfactors using the planar algebra machinery. Section 2.3.2 sees a two-parameter family of rotations defined on the standard invariant of a finite index II$_1$ subfactor, while Section 2.3.3 makes contact with the work of Popa in [29].
2.1 General Finite Index Subfactors

While most of our work on finite index subfactors can proceed without direct reference to the machinery of operator-valued weights and relative tensor products, there are occasions when this material is necessary. We present a summary of technical results in Sections 2.1.1 and 2.1.2. The reader who wishes to avoid this material can skip these two sections and take as a starting point the results of Kosaki quoted in Section 2.1.3.

In Chapter 3 we will make heavy use of operator-valued weights.

2.1.1 Operator-valued weights

Here we summarize some key definitions and results from Haagerup’s foundational paper [9].

Definition 2.1.1. Let M be a von Neumann algebra. The extended positive part \hat{M}_+ of M is the set of “weights on the predual of M”, namely \hat{M}_+ is the set of maps $m : M^*_+ \to [0, \infty]$ such that m is lower semi-continuous and $m(\lambda \varphi + \mu \psi) = \lambda m(\varphi) + \mu m(\psi)$ for all $\lambda, \mu \in [0, \infty], \varphi, \psi \in M^*_+$.

Note that M_+ embeds in \hat{M}_+ by $x \mapsto m_x$ where $m_x(\varphi) = \varphi(x)$.

Addition and positive scalar multiplication are defined on \hat{M}_+ in the obvious way. For $a \in M$, $m \in \hat{M}_+$ define a^*ma by $(a^*ma)(\varphi) = m(\varphi(a^* \cdot a))$. For $S \subset \hat{M}_+$ define $\sum_{m \in S} m$ pointwise.

Proposition 2.1.2 (Haagerup [9] 1.2, 1.4, 1.5, 1.6, 1.9). There are several alternative characterizations of \hat{M}_+, including:

(i) Any pointwise limit of an increasing sequence of bounded operators in M_+ is in \hat{M}_+ and every element of \hat{M}_+ arises this way.

(ii) $m \in B(H)\hat{\otimes}$ is in \hat{M}_+ iff it is affiliated with M ($u^*mu = m$ for all unitary elements $u \in M'$).

(iii) Let M be represented on a Hilbert space H. Let $p \in M$ and let A be a positive self-adjoint operator (possibly unbounded) on pH affiliated with M. Define $m \in B(H)\hat{\otimes}$ by

$$m(\omega_\xi) = \begin{cases} \|A^{1/2}\xi\|^2 & \xi \in D(A^{1/2}) \\ \infty & \text{otherwise} \end{cases}$$
where $\omega_\xi = \langle \cdot, \xi, \xi \rangle$. Then $m \in \hat{M}_+$. Every element of \hat{M}_+ arises this way.

(iv) Every $m \in \hat{M}_+$ has a unique spectral resolution

$$m(\varphi) = \int_0^\infty \lambda d\varphi(e_\lambda) + \infty \varphi(p) \varphi \in M_+^*$$

where $\{e_\lambda\}_{\lambda \in [0, \infty)}$ is an increasing family of projections in M, strongly continuous from the right and with $p = 1 - \lim e_\lambda$. In addition $e_0 = 0$ iff $m(\varphi) > 0$ for all nonzero $\varphi \in M_+^*$ and $p = 0$ iff $\{\varphi : m(\varphi) < \infty\}$ is dense in M_+^*.

Proposition 2.1.3 (Haagerup [9] 1.10). Any normal weight φ on M has a unique extension (also denoted φ) to \hat{M}_+ such that: (i) $\varphi(\lambda m + \mu n) = \lambda \varphi(m) + \mu \varphi(n)$ for all $\lambda, \mu \in [0, \infty], m, n \in \hat{M}_+$ and (ii) if $m_i \not\succ m$ then $\varphi(m_i) \not\succ \varphi(m)$.

Definition 2.1.4. Let $N \subset M$ be von Neumann algebras. An operator-valued weight from M to N is $T : M_+ \to \hat{N}_+$ satisfying

1. $T(\lambda x + \mu y) = \lambda T(x) + \mu T(y)$ for all $\lambda, \mu \in [0, \infty], x, y \in M_+$.
2. $T(a^* xa) = a^* T(x)a$ for all $a \in N, x \in M_+$.

T is normal if

3. $x_i \not\succ x$ implies $T(x_i) \not\succ T(x)$.

Remarks 2.1.5.

- A normal operator-valued weight $T : M_+ \to \hat{N}_+$ has a unique extension $T : \hat{M}_+ \to \hat{N}_+$ also satisfying 1, 2 and 3 above.
- T is a conditional expectation iff $T(1) = 1$.

Definition 2.1.6. As for ordinary weights define

$$n_T = \{x \in M : ||T(x^* x)|| < \infty\}$$

$$m_T = n_T^* n_T = \text{span}\{x^* y|x, y \in n_T\}$$

[In the case when T is a trace Tr these are the Hilbert-Schmidt and Trace Class operators respectively.]

Note that n_T is a left ideal, n_T and m_T are $N - N$ bimodules and T has a unique extension to a map $m_T \to N$. For $x \in m_T$, $a, b \in N$, $T(AXB) = aT(x)b$.

Definition 2.1.7. T is **faithful** if $T(x^*x) = 0$ implies $x = 0$. T is **semifinite** if n_T is σ-weakly dense in M. n.f.s. will be used to denote “normal faithful semifinite”.

Proposition 2.1.8 (Haagerup [9] 2.3). Let T be an operator-valued weight from M to N and let φ be a weight on N. If T and φ are normal (resp. n.f.s.) then $\varphi \circ T$ is normal (resp. n.f.s).

Theorem 2.1.9 (Haagerup [9] 2.7). Let $N \subset M$ be semifinite von Neumann algebras with traces Tr_N and Tr_M. Then there exists a unique n.f.s. operator-valued weight $T : M_+ \to \hat{N}_+$ such that $\text{Tr}_M = \text{Tr}_N \circ T$ (Tr_N on the right side of the equality denotes the extension of Tr_N to \hat{N}_+).

Remark 2.1.10. In the proof of Theorem 2.1.9 Haagerup shows that, for $x \in M_+$, $T(x)$ is the unique element of \hat{N}_+ such that

$$\text{Tr}_M(y^{1/2}xy^{1/2}) = \text{Tr}_N(y^{1/2}T(x)y^{1/2})$$

for all $y \in M_+$.

2.1.2 Hilbert A-modules and the relative tensor product

The material in this section on general Hilbert A-modules is taken from Sauvageot [30] which also draws on Connes [6]. We make considerable use of the Tomita-Takesaki Theory (see Takesaki [31]).

Definition 2.1.11. Let A be a von Neumann algebra. A left-Hilbert-A-module $A\mathcal{K}$ is a nondegenerate normal representation of A on a Hilbert space \mathcal{K}, while a right-Hilbert-A-module \mathcal{H}_A is a left-Hilbert-A^{op}-module.

Let φ be an n.f.s. weight on A. Given a left-Hilbert-A-module $A\mathcal{K}$, the set $D(A\mathcal{K}, \varphi)$ (also denoted $D(\mathcal{K}, \varphi)$ or $D(A\mathcal{K})$) of right-bounded vectors consists of those vectors $\xi \in \mathcal{K}$ such that $\hat{a} \mapsto a\xi$ extends to a bounded operator $R(\xi) = R^{\varphi}(\xi) : L^2(A, \varphi) \to \mathcal{K}$. For a right-Hilbert-$A$-module \mathcal{H}_A, the set $D(\mathcal{H}_A, \varphi) = D(\mathcal{H}_A)$ of left-bounded vectors consists of those vectors $\xi \in \mathcal{H}$ such that $J\hat{a} \mapsto \xi a^*$ extends to a bounded linear operator $L(\xi) = L^\varphi(\xi) : L^2(A, \varphi) \to \mathcal{H}$.

Remark 2.1.12. The left-bounded vectors in \mathcal{H}_A can equivalently be defined as $D(\mathcal{H}, \varphi^{\text{op}})$, the set of right-bounded vectors for \mathcal{H} considered as an A^{op}-module by defining $\pi(a)\xi = \xi a$. In other words by requiring the boundedness of the maps $R^{\varphi^{\text{op}}}(\xi) : L^2(A^{\text{op}}, \varphi^{\text{op}}) \to \mathcal{H}$ defined by $\hat{a} \mapsto \pi(a)\xi = \xi a$.
Relative Tensor Product

Given a left-Hilbert-A-module $A\mathcal{K}$ and right-bounded vectors $\eta_1, \eta_2 \in D(A\mathcal{K}, \varphi)$ note that $R(\eta_1)^* R(\eta_2) \in A' \cap B(L^2(A, \varphi)) = JAJ$ and so defines an element of A

$$A \langle \eta_1, \eta_2 \rangle = JR(\eta_1)^* R(\eta_2)J.$$

Similarly, given a right-Hilbert-A-module $\mathcal{H}A$ and left-bounded vectors $\xi_1, \xi_2 \in D(\mathcal{H}A, \varphi)$ note that $\langle \xi_1, \xi_2 \rangle_A \overset{\text{def}}{=} L(\xi_1)^* L(\xi_2) \in (JAJ)' = A$.

Although both of these pairings satisfy $\langle \zeta_1, \zeta_2 \rangle^* = \langle \zeta_2, \zeta_1 \rangle$ and $\langle \zeta, \zeta \rangle \geq 0$, in general they are not A-valued inner products in the regular sense as they are not A-linear in either component. However, we have the following result.

Lemma 2.1.13. Recall the definition of the modular automorphism group, $\sigma^\varphi_t = \Delta^t \varphi \cdot \Delta^{-t} \varphi$ ($t \in \mathbb{R}$). $D(A\mathcal{K}, \varphi)$ is stable under elements of $D(\sigma^\varphi_{i/2})$ and

$$A \langle a \eta_1, \eta_2 \rangle = (a \eta_1) \sigma^\varphi_{i/2}(a) \sigma^\varphi_{i/2}(a).$$

$D(\mathcal{H}A, \varphi)$ is stable under elements of $D(\sigma^\varphi_{-i/2})$ and

$$\langle \xi_1, \xi_2 a \rangle_A = (\xi_1, \xi_2) \sigma^\varphi_{i/2}(a).$$

Lemma 2.1.14 (Sauvageot [30] 1.5).

(i) $\varphi(\langle a \eta_1, \eta_2 \rangle) = \langle \eta_1, \eta_2 \rangle$, $\varphi(\langle \xi_1, \xi_2 \rangle_A) = \langle \xi_2, \xi_1 \rangle$.

(ii) $A \langle \eta_1, \eta_2 \rangle, \langle \xi_1, \xi_2 \rangle_A \in n_\varphi$ and

$$\langle A(\eta_1, \eta_2) \rangle = JR(\eta_1)^* \eta_2, \quad (\langle \xi_1, \xi_2 \rangle_A) = L(\xi_2)^* \xi_1.$$

(iii) $\langle \langle \xi_2, \xi_1 \rangle_A \eta_1, \eta_2 \rangle = \langle \xi_2, \xi_1 A \langle \eta_1, \eta_2 \rangle \rangle$.

Definition 2.1.15 (Relative tensor product). Given Hilbert A-modules $\mathcal{H}A$ and $A\mathcal{K}$ define the relative tensor product $\mathcal{H} \otimes^\varphi \mathcal{K}$ (sometimes denoted $\mathcal{H} \otimes_A \mathcal{K}$ when the choice of φ is clear) to be the Hilbert space completion of the algebraic tensor product $D(\mathcal{H}A) \otimes D(A\mathcal{K})$ equipped with the inner product

$$\langle \xi_1 \ominus \eta_1, \xi_2 \ominus \eta_2 \rangle = \langle \langle \xi_2, \xi_1 \rangle_A \eta_1, \eta_2 \rangle = \langle \eta_1, \eta_2 \rangle$$

(2.1)
First quotient by the space of length-zero vectors, then complete. The image of $\xi \otimes \eta$ in $\mathcal{H} \otimes_A \mathcal{K}$ is denoted $\xi \otimes_A \eta$ or $\xi \otimes_\varphi \eta$. If \mathcal{H} is a B-A bimodule and \mathcal{K} an A-C bimodule then $\mathcal{H} \otimes_A \mathcal{K}$ is naturally a B-C bimodule.

Remark 2.1.16. $\mathcal{H} \otimes_A \mathcal{K}$ is also the completion of $D(\mathcal{H}_A) \otimes_A \mathcal{K}$ using (2.1) or the completion of $\mathcal{H} \otimes_A D(\mathcal{A}\mathcal{K})$ using (2.2). The relative tensor product is not A-middle-linear, but we have the following result.

Lemma 2.1.17. For $\xi \in \mathcal{H}, \eta \in D(\mathcal{K}, \varphi), a \in D(\sigma_{-i/2}^\varphi)$ we have

$$\xi a \otimes_\varphi \eta = \xi \otimes_\varphi \sigma_{-i/2}^\varphi (a) \eta.$$

Notation 2.1.18.

1. For $\eta_1, \eta_2 \in D(\mathcal{A}\mathcal{K}, \varphi)$ define

$$\theta^\varphi (\eta_1, \eta_2) = R(\eta_1)R(\eta_2)^* \in A' \cap B(\mathcal{K}).$$

2. For $\xi \in D(\mathcal{H}_A)$ let $L_\xi : \mathcal{K} \to \mathcal{H} \otimes_A \mathcal{K}$ denote the map $L_\xi : \eta \to \xi \otimes \eta$.

For $\eta \in D(\mathcal{A}\mathcal{K})$ let $R_\eta : \mathcal{H} \to \mathcal{H} \otimes_A \mathcal{K}$ denote the map $R_\eta : \xi \to \xi \otimes \eta$.

By (2.1) and (2.2) L_ξ and R_η are bounded and $L_\xi^* L_\xi = \langle \xi, \xi \rangle_A$, $R_\eta^* R_\eta = A \langle \xi, \xi \rangle$.

Remark 2.1.19. In the case of a semifinite von Neumann algebra A with trace Tr we have $J\hat{a} = \hat{a}^*$ so $D(\mathcal{H}_A) = \{ \xi \in \mathcal{H} : \hat{a} \mapsto \xi a \text{ is bounded} \}$ and $L(\xi)\hat{a} = \xi a$. The modular automorphisms are trivial and hence $\langle \cdot, \cdot \rangle_A$ is right-A-linear and $\langle \cdot, \cdot \rangle_A$ is left-A-linear.

2.1.3 Background material from Kosaki

Let $N \subset M$, sometimes denoted $(N \subset M, E)$, be an inclusion of $(\sigma$-finite) factors with a normal conditional expectation $E : M \to N$. We recall some material from Kosaki [21, 22] on index and the basic construction in this general setting.

Index

Let $P(M, N)$ denote the set of all normal faithful semi-finite (n.f.s.) operator-valued weights from M to N. Let M be represented on \mathcal{H}. By Haagerup [9] there is a bijection between
$P(M, N)$ and $P(N', M')$. In [21] Kosaki constructs this bijection in a canonical way, so that there is a unique n.f.s. operator valued weight $E^{-1} : (N')_+ \rightarrow (M'_+)$. such that

$$\frac{d(\varphi \circ E)}{d\psi} = \frac{d\varphi}{d(\psi \circ E^{-1})}$$

for all n.f.s. weights φ on N and all n.f.s weights ψ on M', where the derivatives are Connes’ spatial derivatives (6). We have the following alternative characterization of E^{-1}

Lemma 2.1.20 (Kosaki [22] 3.4). *Whenever both sides are defined,*

$$E^{-1}(\theta^\varphi (\xi, \xi)) = \theta^{\varphi \circ E}(\xi, \xi).$$

The index of E is defined to be $\text{Ind}(E) = E^{-1}(1) \in Z(M)_+ = [0, \infty]$ and is independent of the Hilbert space \mathcal{H} on which M is represented. We will use τ to denote $\text{Ind}(E)^{-1}$ (note that Kosaki uses λ rather than τ).

Basic Construction

We will assume henceforth that the index is finite, in which case $E' = \tau E^{-1} : N' \rightarrow M'$ is a normal conditional expectation.

The basic construction is performed as follows. Take any faithful normal state φ on N and extend it to M by $\varphi \circ E$. Let $\mathcal{H} = L^2(M, \varphi)$ and denote the inclusion map of M into $L^2(M, \varphi)$ by either $x \mapsto \hat{x}$ or $x \mapsto \Lambda(x)$. The inner product on $L^2(M, \varphi)$ is $\langle \hat{x}, \hat{y} \rangle = \varphi(y^* x)$ for $x, y \in M$. Define the Jones’ projection e_1 by

$$e_1 \hat{x} = \overline{E(x)}.$$

e_1 extends to a projection in N' and one defines M_1 to be the von Neumann algebra $<M, e_1>$ generated by M and e_1. The usual properties are satisfied

Proposition 2.1.21 (Kosaki [21] Lemma 3.2).

(i) $e_1 x e_1 = E(x)e_1$ for all $x \in M$.

(ii) $N = M \cap \{e_1\}'$.

(iii) $Je_1J = e_1$ where $J = J_0 = J_\varphi$.

(iv) $M_1 = JN'J$.
(v) $M_1 = \text{span}(Me_1M) = \text{span}\{ae_1b : a, b \in M\}$.

There is a canonical conditional expectation $E_M = E_M : M_1 \to M$ given by

$$E_M(x) = J_0E'(J_0xJ_0)J_0$$

and one has $\text{Ind}(E_M) = \text{Ind}(E) = \tau^{-1}$ and $E_M(e_1) = \tau$. In addition, we have

Lemma 2.1.22 (Pull-down Lemma). $M_1e_1 = Me_1$. For $z \in M_1$ we have $ze_1 = xe_1$ where $x = \tau^{-1}E_M(xe_1)$.

Iterating the construction as usual we obtain a sequence of Jones' projections $\{e_i\}_{i \geq 1}$ and a tower of factors

$$N \subset M \subset M_1 \subset M_2 \subset \ldots$$

The state φ is extended to the entire tower via $\varphi \circ E \circ E_M \circ E_{M_1} \circ \cdots E_{M_k}$ and will simply be denoted φ. We will use \sim or Λ_k to denote the inclusion of M_k in $L^2(M_k, \varphi)$ and π_k to denote the representation of M_k on $L^2(M_k, \varphi)$ by left multiplication. Reference to Λ_k will be suppressed when it is clear that we are considering an element of M_k in $L^2(M_k, \varphi)$. Reference to π_k will often be suppressed when the representation is clear.

We have the following additional properties:

Proposition 2.1.23.

(i) $E_M(e_{i+1}) = \tau$;

(ii) $e_ie_{i+1}e_i = \tau e_i$ and $[e_i, e_j] = 0$ for $|i - j| \geq 2$;

(iii) e_i is in the centralizer of φ on M_j for all $j \geq i$ (i.e. $\varphi(e_i a) = \varphi(ae_i)$ for all $a \in M_j$);

(iv) hence φ is a trace on $\{1, e_1, e_2, \ldots, e_j\}'$ which forces the usual restrictions on the value of the index originally found in Jones [13].

Notation 2.1.24. Following Jones [16] let $\delta = \tau^{-1/2} = (\text{Ind}(E))^{1/2}$, $E_k = \delta e_k$, $v_k = E_kE_{k-1} \ldots E_1$. Note that:

$$E_k^2 = \delta E_k,$$

$$E_kE_{k+1}E_k = E_k,$$

$$v_kv_k^* = \delta E_k,$$

$$v_k^*v_k = \delta E_1,$$

$$v_kxv_k^* = \delta E_N(x)E_k$$

for $x \in M$.
The Multi-step Basic Construction

Use $E_{M_j}^{M_k}$ to denote the conditional expectation $E_{M_j}E_{M_{j+1}} \cdots E_{M_{k-1}} : M_k \to M_j$. When k is clear from context we will sometimes abuse notation and use E_{M_j} to denote $E_{M_j}^{M_k}$. We have the following result, originally proved in the II_1 case by Pimsner and Popa \cite{Pimsner:1986} and found as 4.3.6 of Jones and Sunder \cite{Jones:1997}. The proof only involves properties of the Jones projections found in Propositions 2.1.21 and 2.1.23 and thus holds in the general finite index case.

Theorem 2.1.25. For all $-1 \leq i < j < k = 2j - i$ let $m = j - i$ and let $f_{[i,j]}$ be the Jones projection for $(M_i \subset M_j, E_{M_i}^{M_j})$. Let $F_{[i,j]} = \text{Ind} \left(E_{M_i}^{M_j}\right)^{1/2} f_{[i,j]} = \delta^m f_{[i,j]}$ and let $< M_j, f_{[i,j]} >$ be the factor resulting from the basic construction. Then there is a unique isomorphism $\pi^k_j : < M_j, f_{[i,j]} > \to M_k$ which is the identity on M_j and such that

$$\pi^k_j(f_{[i,j]}) = \delta^{m(m-1)}(e_{i+1} e_j \cdots e_{i+2})(e_{j+2} \cdots e_{i+3}) \cdots (e_k \cdots e_{j+1})$$

or, equivalently,

$$\pi^k_j(F_{[i,j]}) = (E_{j+1}E_j \cdots E_{i+2})(E_{j+2} \cdots E_{i+3}) \cdots (E_k \cdots E_{j+1})$$

Note that we could express this theorem as saying that for $j < k \leq 2j + 1$ there is a unique representation π^k_j of M_k on $L^2(M_j, \varphi)$ such that M_j acts as left multiplication and $e_{[i,j]}$ acts as expectation onto M_i ($i = 2j - k$). In fact we can be more explicit in our description of π^k_j.

Proposition 2.1.26 (Bisch \cite{Bisch:1996} 2.2). For $z \in M_k$, $y \in M_j$ we have

$$\pi^k_j(z)\tilde{y} = \tau^{j-k}E_{M_j}^{M_k}(zye_{[i,j]}) = \delta^{k-j}E_{M_j}^{M_k}(zyE_{[i,j]}).$$

Proof. For $k = 2j + 1$ the same proof as in Prop 2.2 of Bisch \cite{Bisch:1996} yields

$$\pi^{2j+1}_j(z)\tilde{y} = \tau^{-j+1}E_{M_{j+1}}^{M_2}(zye_{[-1,j]}) = \delta^{j+1}E_{M_j}^{M_{j+1}}(zyE_{[-1,j]}).$$

Applying this to the tower obtained from $M_{2j-k} \subset M_{2j-k+1}$ we get

$$\pi^k_j(z)\tilde{y} = \tau^{j-k}E_{M_j}^{M_k}(zye_{[i,j]}) = \delta^{k-j}E_{M_j}^{M_k}(zyE_{[i,j]}).$$

for $z \in M_k$, $y \in M_j$.
For more on the multi-step basic construction see Section 2.1.4, Proposition 2.1.35, and Proposition 2.1.37.

Local index; Finite dimensional relative commutants

As in the II$_1$ case there is a local index formula which implies the finite dimensionality of the relative commutants arising from a finite index subfactor. Given $p \in N' \cap M$ define $E_p : pMp \to Np$ by

$$E_p(x) = E(p)^{-1}E(x)p.$$

Then one has

- If $\sigma_t^E(p) = p$ for all $t \in \mathbb{R}$ then

 $$\text{Ind}(E_p) = E(p)E^{-1}(p) = \text{Ind}(E(p))E'(p)$$

- In general

 $$\text{Ind}(E_p) \leq E(p)E^{-1}(p) = \text{Ind}(E(p))E'(p)$$

This proves the finite dimensionality of $N' \cap M$ exactly as in Jones and Sunder [14] 2.3.12 (originally in Jones [15]).

Basis; relative tensor product

As in the type II$_1$ case there exists a (right-module) basis for M over N. That is, there exists a finite set $B = \{b_i\}_{i \in I} \subset M$ such that $\sum_{b \in B} b e_1 b^* = 1$. In fact there exists an orthonormal basis, one in which $E_N(b^* \tilde{b}) = \delta_{b \tilde{b}} q_b$ where q_b are projections in N.

It is worth noting that in the type III case this basis can be chosen to have one element u with $ue_1u^* = 1$ and $E_N(u^*u) = 1$.

Also following the II$_1$ case we have $M_{i+1} \cong M_i \otimes_{M_{i-1}} M_i$ via $xE_{i+1}y \mapsto x \otimes_{M_{i-1}} y$, where $x, y \in M_i$. Hence there exists an isomorphism $\theta = \theta_k : \otimes_{N}^{k+1}M \to M_k$ given by

$$\theta \left(x_1 \otimes x_2 \otimes \cdots \otimes x_{k+1} \right) = x_1 v_1 x_2 v_2 \cdots v_k x_{k+1} = x_1 v_k^* x_1 v_{k-1}^* \cdots v_1^* x_{k+1}.$$. (2.3)

Note that as in Jones and Sunder [14] 4.3.4 we have:
Lemma 2.1.27.

(i) If B is a basis for $N^E \subset M$ and \tilde{B} is a basis for $M^\tilde{E} \subset P$, then $\tilde{B}B = \{\tilde{b}b : b \in B, \tilde{b} \in \tilde{B}\}$ is a basis for $N^{E \circ \tilde{E}} \subset P$.

(ii) $Bv_i^* = \{bv_i^* : b \in B\}$ is a basis for M_i over M_{i-1}

(iii) $B_k = \{\theta(b_{i_1} \otimes \cdots \otimes b_{i_{k+1}}) : i_j \in I\}$ is a basis for M_k over N.

Proof.

(i) Simply note that for all $x \in P$

\[x = \sum_{\tilde{b}} b\tilde{E}(\tilde{b}^* x) = \sum_{\tilde{b}} \sum_b b\tilde{E}(b^* \tilde{E}(\tilde{b}^* x)) = \sum_{\tilde{b}, b} \tilde{b}b\tilde{E}(\tilde{E}(b^* \tilde{b}^* x)). \]

(ii) $\sum bv_i^* e_{i+1} v_i b^* = \sum \delta^{-2} bv_{i+1}^* v_i + b^* = \sum be_1 b^* = 1$.

(iii) Using (ii) and iterating (i) we obtain the basis $Bv_k^* Bv_{k-1}^* \cdots Bv_1 B = B_k$.

\[\square \]

Finally, the basis can be used to implement the conditional expectation from N' onto M'. This result is proved in the II_1 case in Bisch [1] 2.7.

Proposition 2.1.28. Let B be a basis for M over N. Then $E' : N' \to M'$ is given by

\[E'(x) = \tau \sum_{b \in B} bxb^*. \]

Proof. Let $\Phi(x) = \sum bxb^*$. It is equivalent to show that $E^{-1}(x) = \Phi(x)$. Note that if $\xi \in D(\mathcal{H}, \varphi)$ then for $x \in M$,

\[||x\xi|| = \left|\left| \sum bE(b^* x)\xi \right|\right| \]

\[\leq \sup ||b|| \sum_b \left|\left| E(b^* x) \right|\right|_2 ||R\varphi(\xi)|| \]

\[\leq \sup ||b|| \left(\sum_b \varphi(E(x^* b)E(b^* x)) \right)^{1/2} K^{1/2} ||R\varphi(\xi)|| \]

\[= \sup ||b|| \varphi(E(x^* x))^{1/2} K^{1/2} ||R\varphi(\xi)|| \]

where K is the cardinality of B. Hence $R^{\varphi \circ E}(\xi)$ is bounded and so $\xi \in D(\mathcal{H}, \varphi \circ E)$.
By Connes [6] Prop 3, \(\text{span}\{\theta^\varphi(\xi, \xi) : \xi \in D(\mathcal{H}, \varphi)\} \) is weakly dense in \(N' \). As both \(E^{-1} \) and \(\Phi \) are weakly continuous, it suffices to show that \(\Phi(\theta^\varphi(\xi, \xi)) = E^{-1}(\theta^\varphi(\xi, \xi)) \).

For \(a \in M \) define \(L(a) : L^2(N) \to L^2(M) \) by \(L(a)\widehat{x} = \widehat{ax} \). Then \(L(a)L(a)^* = ae_1a^* : L^2(M) \to L^2(M) \). Also note that for \(x \in N, bR^\varphi(\xi)\widehat{x} = bx\xi = R^{\varphi\circ E}(\xi)L(b)\widehat{x}, \) so \(bR^\varphi(\xi) = R^{\varphi\circ E}(\xi)L(b) \). Hence

\[
\Phi(\theta^\varphi(\xi, \xi)) = \sum_b bR^\varphi(\xi)R^\varphi(\xi)^* b^* = \sum_b R^{\varphi\circ E}(\xi)L(b)L(b)^* R^{\varphi\circ E}(\xi)^*
= R^{\varphi\circ E}(\xi)R^{\varphi\circ E}(\xi)^*
= \theta^{\varphi\circ E}(\xi, \xi)
= E^{-1}(\theta^\varphi(\xi, \xi))
\]

by Lemma 2.1.20. Hence \(\Phi = E^{-1} \).

\[\square \]

2.1.4 Computational tools

Here we discuss the relationship between the bimodule structure and relative tensor products of the algebras \(M_k \) and those of the Hilbert modules \(L^2(M_k) \). We then look at the conditional expectation in terms of the isomorphism theta taking \(M_{k-1} \) to the \(k \)-fold algebraic relative tensor product of \(M \) over \(N \). Finally we take another look at the multi-step basic construction.

Proposition 2.1.29. There is an isomorphism of bimodules \(L^2(M_k) \cong \otimes_N^{k+1} L^2(M) \) given by \(u_k : \theta(x_1 \otimes_N \cdots \otimes_N x_{k+1}) \mapsto \widehat{x_1 \otimes_N \cdots \otimes_N x_{k+1}} \).

Remark 2.1.30. This is not immediately obvious. The bimodule structure on \(L^2(M_k) \) does not restrict to that on the algebra \(M_k \). The right action of \(N \) on \(L^2(M_k) \) is \(J_k n^*J_k \), not right multiplication \(S_k n^*S_k \) which may be unbounded. However, by Lemma 2.1.17

\[
\widehat{x} \otimes_N n\widehat{y} = \widehat{x} \cdot \sigma_{i/2}(n) \otimes_N \widehat{y} = J(\Delta^{-1/2}n\Delta^{1/2})^*J\widehat{x} \otimes_N \widehat{y} = Sn^*S\widehat{x} \otimes_N \widehat{y} = \widehat{xn} \otimes \widehat{y}.
\]

Lemma 2.1.31. \(L^2(M_1) \cong L^2(M) \otimes_N L^2(M) \) via \(\theta(x \otimes_N y) \mapsto (x E_1 y) \mapsto \widehat{x} \otimes_N \widehat{y} \).

Remark 2.1.32. Note that, although \(y \) is not necessarily in \(D_N(L^2(M)) \), \(x \) is in \(D(L^2(M)_N) \) because \(L(\widehat{x}) : J_{-1} \widehat{n} \mapsto \widehat{x} \cdot n^* = J_0 n J_0 \widehat{x} \) is bounded. To see this note that \(J_0|_{L^2(N)} = J_{-1} \) and

\[
J_0 n J_0 \widehat{x} = J_0 n J_0 x J_0 \Omega = J_0 J_0 x J_0 n \Omega = x J_0 \widehat{n} = x J_{-1} \widehat{n}.
\]
Proof of Lemma.

Both sides have dense span, so it suffices to check that the map preserves the inner product:

\[
\langle \hat{x} \otimes y, \hat{x} \otimes y \rangle_N = \langle \hat{x} \otimes y, \hat{x} \otimes y \rangle_N = \langle E_N(x^* x')y, y \rangle = \varphi(y^* E_N(x^* x')y') = \delta^2 \varphi(y^* E_N(x^* x')e_1' y') = \delta^2 \varphi(y^* e_1 x' e_1 y') = \langle (x' E_1 y')^\sim, (x E_1 y)^\sim \rangle.
\]

\[\square\]

Proof of Prop 2.1.29.

The proposition is true for \(k = 0, 1 \). Suppose the result is true for some \(k \geq 1 \).
Applying this to \((M \subset M_1, E_M)\) we have \(L^2(M_{k+1}) \cong \otimes_M^{k+1} L^2(M_1) \) via

\[
(A_1 E_2 A_2 E_3 E_2 \cdots A_k E_{k+1} E_k \cdots E_2 A_{k+1}) \mapsto \hat{A}_1 \otimes_M \cdots \otimes_M \hat{A}_{k+1}.
\]
Note that \(L^2(M) \otimes_M L^2(M) \cong L^2(M) \) via \(m : \hat{x} \otimes_M \hat{y} \mapsto \hat{x} \hat{y} \), so \(\otimes_M^{k+1} L^2(M_1) \cong \otimes_N^{k+2} L^2(M) \) via \(V = (\text{id} \otimes_N (\otimes_M^k m) \otimes_N \text{id}) \circ (\otimes_M^{k+1} u_1) \).
Let \(A_1 = x_1 E_1 x_2, A_i = E_{i} x_{i+1}, 2 \leq i \leq k + 1 \). Then

\[
(A_1 E_2 A_2 E_3 E_2 \cdots A_k E_{k+1} E_k \cdots E_2 A_{k+1})^\sim = \theta(x_1 \otimes_N \cdots \otimes_N x_{k+2})^\sim,
\]
and

\[
V(\hat{A}_1 \otimes_M \cdots \otimes_M \hat{A}_{k+1}) = V(x_1 E_1 x_2 \otimes_M E_1 x_3 \otimes_M \cdots \otimes_M E_1 x_{k+2}) = \hat{x}_1 \otimes_N \cdots \otimes_N \hat{x}_{k+2}.
\]

\[\square\]

Proposition 2.1.33. Let \((N \subset M, E)\) be a finite index subfactor. Let \(a_i \in M \ (i \geq 0) \). Then

\[
E_{M_{k-1}}(\theta(a_1 \otimes_N \cdots \otimes_N a_{k+1})) = \begin{cases}
\delta^{-1} \theta(a_1 \otimes_N \cdots \otimes_N a_r a_{r+1} \cdots \otimes_N a_{k+1}) & k = 2r - 1 \\
\theta(a_1 \otimes_N \cdots \otimes_N a_r E(a_{r+1}) \cdots \otimes_N a_{k+1}) & k = 2r
\end{cases}
\]

Proof. Note that if \(X_i = y_i E_1 z_i \), then

\[
\theta(X_1 \otimes_M \cdots \otimes_M X_k) = X_1 E_2 X_2 E_3 E_2 \cdots X_{k-1} E_k \cdots E_3 E_2 X_k
\]
\[
= y_1 E_1 z_1 y_2 E_2 z_2 y_3 E_3 E_2 E_1 \cdots z_{k-1} y_k E_k \cdots E_2 E_1 z_k
\]
\[
= \theta(y_1 \otimes_N z_1 y_2 \otimes_N \cdots z_{k-1} y_k \otimes_N z_k).
\]
In particular
\[
\theta \left(A_1 \otimes \cdots \otimes A_{k-1} \otimes \overline{A}_k \right) = \theta \left(a_1 \otimes \cdots \otimes a_{k+1} \right),
\]
where \(A_i = a_i E_1 \) and \(\overline{A}_k = a_k E_1 a_{k+1} \).

For \(k = 0 \), \(E_{M-1}(a_1) = E(a_1) \). Assume the result holds for some \(k \geq 0 \). Note that \(A_r A_{r+1} = a_r E_1 a_{r+1} E_1 = \delta_{a_r} E(a_{r+1}) E_1 \) and \(A_r E_M((A_{r+1})) = a_r E_1 E_M(a_{r+1} E_1) = \delta^{-1} a_r E_1 a_{r+1} \).

Hence, with the first of the two cases denoting \(k = 2r - 1 \) and the second \(k = 2r \),
\[
E_{M_k} \left(\theta \left(a_1 \otimes \cdots \otimes a_{k+2} \right) \right) = E_{M_k} \left(\theta \left(A_1 \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1} \right) \right)
= \begin{cases}
\delta^{-1} \theta \left(A_1 \otimes \cdots \otimes A_r A_{r+1} \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1} \right) \\
\theta \left(A_1 \otimes \cdots \otimes A_r E_M(A_{r+1}) \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1} \right) \\
\theta \left(a_1 \otimes \cdots \otimes a_{r-1} \otimes a_r E(a_{r+1}) \otimes a_{r+2} \otimes \cdots \otimes a_{k+2} \right) \\
\delta^{-1} \theta \left(a_1 \otimes \cdots \otimes a_r \otimes a_{r+1} a_{r+2} \otimes a_{r+3} \otimes \cdots \otimes a_{k+2} \right)
\end{cases}
\]

\(\square \)

Remarks 2.1.34. We could have proved many other properties of \(\theta \) with almost identical arguments to those in Prop 3.2.12 but the result above is all that we require here.

We conclude with some further results on the multi-step basic construction of Theorem 2.1.25. We first clarify a certain compatibility of the representations \(\pi^j_k \).

Proposition 2.1.35. Let \(j \leq k \leq 2j \) and let \(z \in M_k \). Then \(\pi^k_j(z) = \pi^{k+1}_j(z) \).

Proof. Using the explicit formula for \(\pi^{k+1}_j(z) \) from Proposition 2.1.26 this is basically just a long exercise in simplifying words in the \(E_i \)'s. Here are the details.

Without loss of generality we may assume that \(k = 2j \) (just use \(M_{2j-k-1} \subset M_{2j-k} \) in place of \(N \subset M \)). For \(r \geq s \) let \(V_{r,s} = E_r E_{r-1} \cdots E_s \) and for \(r < s \) let \(V_{r,s} = 1 \). Note that
\[
E_{[a,b]} = V_{b+1,a+2} V_{b+2,a+3} \cdots V_{2b-a,b+1}.
\]

We will make two very simple observations and then prove the lemma. First note that for \(a \geq d > b, c \geq d + 2, d \geq e \) we have
\[
V_{a,b} V_{c,d+2} V_{d,e} = V_{a,d} V_{d-2,b} V_{c,d+2} V_{d-1,e}.
\]
This may be paraphrased as follows. Think of $V_{c,d+2}V_{d,e}$ as $V_{c,e}$ with a missing term, or gap, at $d + 1$. We could similarly talk or larger gaps with more terms missing. Then the equation above says that a gap in one V propagates to the left into the previous V and leaves a bigger gap in the original V. More succinctly we could say “gaps propagate left leaving bigger gaps”. The proof is quite simple:

\[
V_{a,b}V_{c,d+2}V_{d,e} = V_{a,b}V_{c,d+2}E_dV_{d-1,e} \\
= V_{a,b}E_dV_{c,d+2}V_{d-1,e} \\
= (E_aE_{a-1} \cdots E_dE_{d-1}E_dE_{d-2}E_{d-3} \cdots E_b) V_{c,d+2}V_{d-1,e} \\
= (E_aE_{a-1} \cdots E_dE_{d-2}E_{d-3} \cdots E_b) V_{c,d+2}V_{d-1,e} \\
= V_{a,d}V_{d-2,b}V_{c,d+2}V_{d-1,e}.
\]

Second note that for $a \geq b \geq d$, $c \geq b + 2$ we have

\[
V_{a,b}V_{c,b+2}V_{b-1,d} = V_{b,d}V_{c,b+2}.	ag{2.6}
\]

which follows directly from the fact that the second and third terms on the left commute.

With these preliminary results we can now begin the main proof.

\[
\delta E_{M_{2j}} (E_{[-1,j]}) = \delta E_{M_{2j}} (V_{j+1,1}V_{j+2,2} \cdots V_{2j+1,j+1}) \\
= V_{j+1,1}V_{j+2,2} \cdots V_{2j+2,j+1}[V_{2j+1,j}V_{2j+2,j+1}] \\
= V_{j+1,1}V_{j+2,2} \cdots V_{2j+2,j+1}[V_{2j+1,j-1}V_{2j+2,j}V_{2j+1,j+1}] \\
= V_{j+1,1}V_{j+2,2} \cdots V_{2j+2,j+1}[V_{2j+1,j-2}V_{2j+2,j}V_{2j+1,j+1}] \\
= \vdots \\
= (V_{j+1,2})(V_{j+2,4})(V_{j+3,6}V_{3,3})(V_{j+4,8}V_{5,4}) \cdots \\
\cdots (V_{2j-2,2j-4}V_{2j-7,2j-2})\cdots (V_{2j-1,2j-2}V_{2j-5,j-1})(V_{2j,2j}V_{2j-3,j})V_{2j-1,j+1}.
\]
Iterating \cite{2.6} from left to right,

\[
\delta E_{M_j}(E_{[-1,j]}) = V_{j+1,2}[V_{j+2,4}V_{j+3,6}V_{3,3}](V_{j+4,8}V_{5,4}) \cdots \\
\cdots (V_{2j-2,2j-1}V_{j-7,j-2})(V_{2j-1,2j-2}V_{j-5,j-1})(V_{2j,2j}V_{j-3,j})V_{j-1,j+1} \\
= V_{j+1,2}[V_{j+2,3}V_{j+3,6}](V_{j+4,8}V_{5,4}) \cdots \\
\cdots (V_{2j-2,2j-1}V_{j-7,j-2})(V_{2j-1,2j-2}V_{j-5,j-1})(V_{2j,2j}V_{j-3,j})V_{j-1,j+1} \\
= V_{j+1,2}V_{j+2,3}[V_{j+3,6}V_{j+4,8}V_{5,4}] \cdots \\
(V_{2j-2,2j-1}V_{j-7,j-2})(V_{2j-1,2j-2}V_{j-5,j-1})(V_{2j,2j}V_{j-3,j})V_{j-1,j+1} \\
\vdots \\
= V_{j+1,2}V_{j+2,3}V_{j+3,4} \cdots V_{j-1,j}V_{j-1,j+1} \\
= E_{[0,j]}
\]

Hence, for \(y \in M_j \),

\[
\pi_j^{2j+1}(z)\hat{y} = \delta^{j+1} E_{M_j}^{M_j+1}(zyE_{[-1,j]}) = \delta^{j} E_{M_j}^{M_j}(zyE_{M_j}(E_{[-1,j]})) \\
= \delta^{j} E_{M_j}^{M_j}(zyE_{[0,j]}) = \pi_j^{2j}(z)\hat{y}
\]

\(\Box \)

Notation 2.1.36. From lemma \cite{2.1.35} we see that if \(x \in M_k, \ k \leq 2j+1 \), then \(\pi_j^k(x) = \pi_j^l(x) \) for all \(k \leq l \leq 2j+1 \) and hence we will use \(\pi_j \) to denote this representation, with no reference to the algebra \(M_k \) that is acting.

Proposition 2.1.37. For \(R \in M_{2j+1}, \ \pi_{j+t}(R) = \pi_j(R) \otimes_N (\text{id}_{L_2(M)})^k \).

Proof. It suffices to prove the result for \(t = 1 \) and then iterate. Note that \(E_{[-1,j]}v_j = v_{j+1}E_{[1,j+1]} \). Simply observe

\[
E_{[-1,j]}v_j = V_{j+1,1}V_{j+2,2}V_{j+3,3} \cdots V_{2j,2}V_{j+1,1}E_{j}E_{j-1} \cdots E_1 \\
= V_{j+1,2}E_{1}V_{j+2,3}E_{2}V_{j+3,4}E_{3} \cdots V_{2j,2j}E_{J}V_{2j+1,2}E_{j}E_{j-1} \cdots E_1 \\
= V_{j+1,2}V_{j+2,3}V_{j+3,4} \cdots V_{2j,j+1}V_{2j+1,j+2}E_{1}E_{2} \cdots E_{j-1}E_{j+1}E_{j+1}E_{j-1} \cdots E_1 \\
= V_{j+1,2}E_{[1,j+1]}E_1 \\
= v_{j+1}E_{[1,j+1]}.
\]
Now
\[
\left(\pi_j(R) \otimes \text{id} \right) \left(x_1 \otimes \cdots \otimes x_{j+2} \right) =
\delta_{j+1}^{M_{j+1}} E_{M_j}^{M_{j+1}} \left(R x_1 x_2 v_2 \cdots v_j x_{j+1} E_{[-1,j]} \right) v_{j+1} x_{j+2}
\]
\[
= \delta_{j+2}^{M_{j+1}} E_{M_j}^{M_{j+1}} \left(R x_1 x_2 v_2 \cdots v_j x_{j+1} E_{[-1,j]} \right) e_{j+1} v_{j+1} x_{j+2}
\]
\[
= \delta_j^{M_{j+1}} E_{M_j}^{M_{j+1}} \left(R x_1 x_2 v_2 \cdots v_j x_{j+1} E_{[-1,j]} \right) E_{[-1,j]}^{\cdots} v_{j+1} x_{j+2}
\]
\[
= \delta_{j+1}^{M_{j+1}} E_{M_j}^{M_{j+1}} \left(R x_1 x_2 v_2 \cdots v_j x_{j+1} E_{[-1,j]} \right) E_{[-1,j]}^{\cdots} v_{j+1} x_{j+2}
\]
\[
= \pi_{j+1}(R) \left(x_1 \otimes \cdots \otimes x_{j+2} \right),
\]
where we use the Pull-down Lemma (Lemma 2.1.22) to obtain the fourth line and the initial observation that \(E_{[-1,j]} v_j = v_{j+1} E_{[1,j+1]} \) to obtain the sixth line.

Corollary 2.1.38. \(\pi_j^k \) could be alternatively defined as follows. For \(R \in M_k, j \leq k \leq 2j+1 \), define \(\pi_j^k(R) \in \mathcal{B}(L^2(M_j)) \) by
\[
\pi_j^k(R) \otimes (\text{id}_{L^2(M_j)})^{\otimes k-j-1} = \pi_{k-1}^j(R)
\]
where \(\pi_{k-1}^j \) is the defining representation of \(M_k \) on \(L^2(M_{k-1}) \). This is the definition coming from the multi-step basic construction as described in Enock and Nest [8] (see Prop 3.1.7 for details in the infinite index \(\Pi_1 \) case).

Proof. \(R \in M_{2j+1} \), so \(\pi_{k-1}(R) = \pi_{j+(k-j-1)}(R) = \pi_j(R) \otimes (\text{id})^{\otimes k-j-1} \).

2.1.5 Modular theory

The construction of planar algebras will not require all of the modular theory that we discuss here and it therefore possible to skip the next two sections and go immediately to section 2.2. However, the following theorem is necessary to know that the modular operators on the finite dimensional relative commutants that arise in section 2.2 are in fact the restrictions of the modular operators on the spaces \(L^2(M_k, \varphi) \).

Modular theory involves a number of unbounded operators. However, the relative commutants are invariant under the operators of the modular theory and finite dimensionality implies that the restrictions of these operators to the relative commutants are bounded. We collect these and other technical results below.
Theorem 2.1.39. Let S_k be the operator $\widehat{x} \mapsto \widehat{x^*}$ on $\widehat{M}_k \subset L^2(M_k, \varphi)$, $\Delta_k = S_k^*S_k$ the modular operator. Then

(i) $N' \cap \widehat{M}_k$ is in the domain of S_k, S_k^* and Δ_k^t for all $t \in \mathbb{C}$. $N' \cap \widehat{M}_k$ is invariant under all of these operators, and also invariant under J_k.

(ii) $\Delta_k(\widehat{x}) = (\sum b E_N(xb^*))^\sim$ and $\Delta_k^{-1}(\widehat{x}) = (\sum b E_N(bx)b^*)^\sim$ where B is any basis for M over N.

(iii) S_{k+1}, S_{k+1}^*, J_{k+1} and Δ_{k+1}^t ($t \in \mathbb{C}$) restrict to S_k, S_k^*, J_k and Δ_k^t respectively on $N' \cap \widehat{M}_k$, and hence will be denoted S, S^*, J and Δ^t.

(iv) $S_k \pi_k(N' \cap M_{2k+1}) S_k = \pi_k(N' \cap M_{2k+1})$. More precisely, for $z \in N' \cap M_{2k+1}$, $S_k \pi_k(z^*) S_k$ has dense domain in $L^2(M_k, \varphi)$ and extends to a bounded operator on $L^2(M_k, \varphi)$ given by $\pi_k(R_k(z))$ where $R_k(z) \in N' \cap M_{2k+1}$ is given by

$$R_k(z) = \tau^{-k-1} \sum_{\eta \in \mathcal{B}} E_{M_k}(\overline{\eta \cdot \xi}) \overline{e^z}$$

where $e = e_{[1,k]}$ implements the conditional expectation $E_{M_k}^\sim$ and \mathcal{B} is any basis for M_k over N.

Consequently $S_k \cdot S_k$, $S_k^* \cdot S_k^*$ and $J_k \cdot J_k$ are all conjugate-linear automorphisms of the vector space $\pi_k(N' \cap M_{2k+1})$ and $\Delta_k^{-1/2} \cdot \Delta_k^{1/2}$, $\Delta_k^{1/2} \cdot \Delta_k^{-1/2}$ are linear automorphisms of $\pi_k(N' \cap M_{2k+1})$.

(v) In addition to (iv), $S_k \cdot S_k$, $S_k^* \cdot S_k^*$, $\Delta_k^{-1/2} \cdot \Delta_k^{1/2}$, $\Delta_k^{1/2} \cdot \Delta_k^{-1/2}$ and $J_k \cdot J_k$ all map $\pi_k(N' \cap M_k)$ onto $\pi_k(M_k' \cap M_{2k+1})$.

Proof.

(i) Let $x \in N' \cap M_k$. Then $S_k(\widehat{x}) = \widehat{x^*} \in N' \cap \widehat{M}_k$.

For all $y \in M_k$

$$\langle \widehat{x}, \widehat{y^*} \rangle = \varphi(yx) = \sum b \varphi(b E_N(b^*y)x) = \sum b \varphi(bx E_N(b^*y))$$

$$= \sum b \varphi(E_N(bx)b^*y) = \sum b \langle \widehat{y}, (b E_N(x^*b^*))^\sim \rangle.$$
Hence $\hat{x} \in D(S^*_k)$ and $S^*_k(\hat{x}) = (\sum_b bE_N(x^*b^*))^-$ which is thus independent of the basis B. Given any $v \in \mathcal{U}(N)$, vB is also a basis for M_k over N and hence

$$v \left(\sum_b bE_N(x^*b^*) \right) v^* = \sum_b (vb)E_N(x^*(b^*v^*)) = \sum_b bE_N(x^*b^*)$$

so that $\sum_b bE_N(x^*b^*) \in N' \cap M_k$. Consequently \hat{x} is in the domain of $\Delta_k = S_kS^*_k$ and $\Delta_k(\hat{x}) \in N' \cap M_k$.

The fact that $N' \cap M_k$ is in the domain of Δ^i_k and invariant under it is a basic exercise in spectral theory. There exists a measure space (X, μ), a positive function F on X and a unitary operator $v : L^2(X, \mu) \to L^2(M_k, \varphi)$ such that $v^*\Delta_k v = M_F$, the operator of multiplication by F. As $v^*(N' \cap M_k)$ is finite dimensional and invariant under M_F, it has a basis $\{f_1, \ldots, f_n\}$ of eigenvectors of M_F. Thus there exist $\lambda_i > 0$ such that $Ff_i = \lambda_i f_i$ and hence $F = \lambda_i$ a.e. on the support of f_i. This implies that $F^i = \lambda^i_i$ a.e. on the support of f_i and hence $v^*(N' \cap M_k) = \text{span}\{f_1, \ldots, f_n\}$ is in the domain of $(M_F)^i$ and invariant under it.

Lastly, $J_k = S_k\Delta^{-1/2}_k$ so $N' \cap M_k$ is invariant under J_k.

(ii) From above

$$\Delta_k(\hat{x}) = S_kS^*_k\hat{x} = \left(\sum_b bE_N(xb^*) \right)^-$$

$$\Delta^{-1}_k(\hat{x}) = S^*_kS_k\hat{x} = \left(\sum_b E_N(bx)b^* \right)^-.$$

(iii) Let $x \in N' \cap M_k$. Obviously $S_k\hat{x} = \hat{x}^* = S_{k+1}\hat{x}$. To see that $S^*_k\hat{x} = S^*_k\hat{x}$ observe that for all $y \in M_{k+1}$

$$\langle S^*_k\hat{x}, \hat{y} \rangle = \langle S^*_k\hat{x}, E_{M_k}(\hat{y}) \rangle = \langle E_{M_k}(\hat{y})^*, \hat{x} \rangle = \langle E_{M_k}(y^*), \hat{x} \rangle = \langle \hat{y}^*, \hat{x} \rangle = \langle S^*_k\hat{x}, \hat{y} \rangle.$$

From the above $\Delta_{k+1}\hat{x} = \Delta_k\hat{x}$. The spectral theory argument in (i) implies that $\Delta^i_{k+1}\hat{x} = \Delta^i_k\hat{x}$. Finally $J_{k+1}\hat{x} = S_{k+1}\Delta^{-1/2}_{k+1}\hat{x} = S_k\Delta^{-1/2}_k\hat{x} = J_k\hat{x}$.

(iv) It suffices to prove this in the case $k = 0$. Let b be a basis for M over N. Since $B_1 e_1$ is a basis for M_1 over M, there exist $x_b \in M$ with $z = \sum_b b e_1 x_b$. Then for all $y \in M$
we have
\[S_0 z^* S_0 \hat{y} = \sum_b S_0 x_b^* E_N(b^* y^*) = \sum_b (E_N(yb)x_b)^{\sim}, \quad (2.7) \]
which demonstrates that \(S_0 z^* S_0 \) has domain \(\hat{M} \) which is of course dense in \(L^2(M, \varphi) \).

Next observe that
\[
\sum_b E_M(e_1bz) e_1 b^* \hat{y} = \sum_b E_M(e_1bz) E_N(b^* y) = \sum_b (E_M(e_1bz E_N(b^* y)))^{\sim} = \sum_b (E_M(e_1bz E_N(b^* y)z))^{\sim} = \sum_b (E_M(e_1y e_1x_b))^{\sim} = \sum_b (E_M(E_N(yb)e_1x_b))^{\sim} = \tau \sum_b (E_N(yb)x_b)^{\sim}
\]
so that the bounded operator \(R_0(z) = \tau^{-1} \sum_b E_M(e_1bz) e_1 b^* \) agrees with \(S_0 z^* S_0 \) on its domain. \(R_0(z) \in N' \) because \(\hat{M} \) is clearly \(N \)-linear in \(y \). Since \(S_0^2 = 1 \), \(z \mapsto S_0 z^* S_0 \) is an automorphism of \(N' \cap M_1 \).

Taking adjoints, using the fact that \(J_0(N' \cap M_1)J_0 = N' \cap M_1 \) in addition to \(\overline{S_0} = J_0 \Delta_0^{1/2} = \Delta_0^{-1/2} J_0 \) and \(S_0^* = J_0 \Delta_0^{-1/2} = \Delta_0^{1/2} J_0 \) the second part of (iv) is reasonably clear. However, a little care must be taken with domains.

For \(\xi \in D(S_0^*) \) and \(y \in D(S_0) = \hat{M} \) we have
\[
\langle S_0 \hat{y}, z S_0^* \xi \rangle = \langle \xi, S_0 z^* S_0 \hat{y} \rangle = \langle \xi, R_0(z) \hat{y} \rangle = \langle R_0(z)^* \xi, \hat{y} \rangle
\]
so that \(z S_0^* \xi \in D(S_0^*) \) and \(S_0^* z S_0^* \xi = R_0(z)^* \xi \). Hence \(D(S_0^* z S_0^*) = D(S_0^*) \) and \(S_0^* z S_0^* \) extends to the bounded operator \(R_0(z)^* \), which is in \(N' \cap M_1 \). Since \((S_0^*)^2 = 1 \), \(z \mapsto S_0^* z S_0^* \) is a conjugate-linear automorphism of \(N' \cap M_1 \).

For \(\xi \in D(\Delta_0^{1/2}) = D(S_0) \) and \(\eta \in D(\Delta_0^{-1/2}) = D(S_0^*) \) we have
\[
\langle \Delta_0^{-1/2} \eta, z \Delta_0^{1/2} \xi \rangle = \langle J_0 S_0^* \eta, z J_0 \overline{S_0} \xi \rangle = \langle J_0 z J_0 S_0^* \eta, S_0^* \xi \rangle = \langle S_0 \xi, (J_0 z^* J_0) S_0^* \eta \rangle = \langle S_0^* (J_0 z^* J_0) S_0^* \eta, \xi \rangle = \langle R_0(J_0 z J_0)^* \eta, \xi \rangle = \langle \eta, R_0(J_0 z J_0) \xi \rangle
\]
so that \(z \Delta_0^{1/2} \xi \in D(\Delta_0^{1/2}) \) and \(\Delta_0^{-1/2} z \Delta_0^{1/2} \xi = R_0(J_0 z J_0) \xi \).

Hence \(D(\Delta_0^{-1/2} z \Delta_0^{1/2}) = D(\Delta_0^{1/2}) \) and \(\Delta_0^{-1/2} z \Delta_0^{1/2} \) extends to the bounded operator \(R_0(J_0 z J_0) \), which is in \(N' \cap M_1 \).
A similar argument shows that \(\mathcal{D}(\Delta_0^{-1/2} z \Delta_0^{-1/2}) = \mathcal{D}(\Delta_0^{-1/2}) \) and \(\Delta_0^{1/2} z \Delta_0^{-1/2} \) extends to the bounded operator \(R_0(J_0 z^* J_0)^* \), which is in \(N' \cap M_1 \).

In detail,

\[
\langle \Delta_0^{1/2} \xi, z \Delta_0^{-1/2} \eta \rangle = \langle J_0 S_0 \xi, z J_0 S_0^* \eta \rangle = \langle J_0 z J_0 S_0^* \eta, S_0 \xi \rangle = \langle J_0 z J_0 S_0^* \eta, \overline{S_0 \xi} \rangle = \langle R_0(J_0 z^* J_0)^* \eta \rangle
\]

so that \(z \Delta_0^{-1/2} \eta \in \mathcal{D}(\Delta_0^{1/2}) \) and \(\Delta_0^{1/2} z \Delta_0^{-1/2} = R_0(J_0 z^* J_0)^* \eta \).

Finally, since the two maps \(z \mapsto \Delta_0^{-1/2} z \Delta_0^{1/2} \) and \(z \mapsto \Delta_0^{1/2} z \Delta_0^{-1/2} \) are inverse to each other, they are linear automorphisms of \(N' \cap M_1 \).

(v) First note that \(J_0(N' \cap M)J_0 = M' \cap M_1 \) and so these two spaces have the same dimension. Next let \(x \in N' \cap M \). Since \(S_0 x S_0 \) is right multiplication by \(x^* \), which commutes with the (left) action of \(M \) on \(L^2(M, \varphi) \), we have \(S_0 x S_0 \in M' \cap M_1 \). This map is injective and hence, by a dimension count, also surjective. The other maps can all be expressed in terms of these two and adjoints, so also map \(N' \cap M \) onto \(M' \cap M_1 \).

\[\Box \]

Remark 2.1.40. We will use \(S_k(x), S_k^*(x) = \Lambda_k^{-1}(S_k(\Lambda_k(x))) \), \(\Lambda_k^{-1}(S_k^*(\Lambda_k(x))) \) and \(\Lambda_k^{-1}(\Lambda_k(x)) \) respectively. Note that this is quite different to the operator product, for example \(S_k x \) (more precisely denoted \(S_k \pi_k(x) \)).

2.1.6 The rotation operator

Exactly as in Jones [16] 4.1.12 we define a rotation operator on the relative commutants. We prove that the rotation is quasi-periodic, namely \(\rho_k^{k+1} = \Delta_k^{-1} \). We will obtain this result again as a consequence of our work on planar algebras, but we include a self-contained proof in this section.

Note that in the extremal \(\Pi_1 \) case of [16] \(E_{M'} \) below can be taken to be the trace preserving conditional expectation onto \(M' \cap M_{k+1} \), but in the non-extremal type \(\Pi_2 \) case one must use the commutant trace preserving expectation. In the full generality presented here such choices do not occur and the correct path is clearer.
Definition 2.1.41 (Rotation). On $N' \cap M_k$ define an operator ρ_k by

$$\rho_k(x) = \delta^2 E_{M_k}(v_{k+1}E_{M'}(xv_{k+1})).$$

Given a basis B for M over N, define r^B_k on M_k by

$$r^B_k(x) = \sum_{b \in B} E_{M_k}(v_{k+1}bxv_{k+1}b^*),$$

where $x = \theta(x_1 \otimes_N x_2 \otimes_N \cdots \otimes_N x_{k+1})$. By Prop 2.1.28, $\rho_k(x) = r^B_k(x)$ for $x \in N' \cap M_k$.

Lemma 2.1.42. For $x = \theta \left(\frac{x_1 \otimes_N x_2 \otimes_N \cdots \otimes_N x_{k+1}}{N} \right)$ and B any basis for M over N we have

$$r^B_k(x) = \sum_{b \in B} \theta \left(E_N(bx_1)x_2 \otimes_N \frac{x_3 \otimes_N \cdots \otimes_N x_{k+1} \otimes_N b^*}{N} \right).$$

Proof. The proof is exactly the same as Jones [16] 4.1.14:

$$xv_{k+1} = (x_1v_{2}v_2 \cdots v_kx_{k+1})v_{k+1} = \theta \left(\frac{x_1 \otimes_N \cdots \otimes_N x_{k+1}}{N} \otimes_N 1 \right) = x_1v_{k+1}x_2v^*_1 \cdots x_{k+1}v^*_1 1$$

so that

$$r^B_k(x) = \sum_{b \in B} E_{M_k}(v_{k+1}bx_1v^*_kx_2v^*_2 \cdots x_{k+1}v^*_1b^*)$$
$$= \sum_{b \in B} E_{M_k}(\delta_{k+1}E_N(bx_1)x_2v^*_k \cdots x_{k+1}v^*_1b^*)$$
$$= \sum_{b \in B} E_N(bx_1)x_2v^*_k \cdots x_{k+1}v^*_1b^*$$
$$= \sum_{b \in B} \theta \left(E_N(bx_1)x_2 \otimes_N x_3 \otimes_N \cdots \otimes_N x_{k+1} \otimes_N b^* \right)$$

Theorem 2.1.43. The rotation is quasi-periodic: $\rho_k^{k+1} = \Delta_k^{-1}$.

Proof.

(i) First note that if $x = \theta(x_1 \otimes_N x_2 \otimes_N \cdots \otimes_N x_{k+1})$ and $y = \theta(y_{k+1} \otimes_N y_k \otimes_N \cdots \otimes_N y_1)$, then $E_N(xy) = E_N(x_1E_N(x_2 \cdots E_N(x_{k+1}y_{k+1}) \cdots y_2)y_1)$.

Proceed by induction. The result is true for $k = 0$. Suppose it is true for $k - 1$. Let $\tilde{x} = \theta(x_1 \otimes_N x_2 \otimes_N \cdots \otimes_N x_k)$ and let $\tilde{y} = \theta(y_k \otimes_N y_{k-1} \otimes_N \cdots \otimes_N y_1)$. Then
$x = \tilde{x}v_k x_{k+1}$ and $y = y_{k+1}v_k^* \tilde{y}$. Note that $v_k x_{k+1} y_{k+1} v_k^* = \delta E_k E_N(x_{k+1} y_{k+1})$ and hence $E_{M_{k-1}}(v_k x_{k+1} y_{k+1} v_k^*) = E_N(x_{k+1} y_{k+1})$. Thus

$$E_N(xy) = E^{M_{k-1}}_N(\tilde{x} E_{M_{k-1}}(v_k x_{k+1} y_{k+1} v_k^*) \tilde{y})$$

$$= E^{M_{k-1}}_N(\tilde{x} E_N(x_{k+1} y_{k+1}) \tilde{y})$$

$$= E_N(x_1 E_N(x_2 \cdots E_N(x_{k+1} y_{k+1}) \cdots y_2) y_1)$$

(ii) Let B be a basis for M over N. By Lemma 2.1.27 $B_k = \{\theta(b_i \otimes_N \cdots \otimes_N b_{i_{k+1}}) : i_j \in I\}$ is a basis for M_k over N. Let $x \in N' \cap M_k$. Then we can write x as

$$x = \sum_{c \in B_k} c n_c = \sum_{i_1, \ldots, i_{k+1}} \theta \left(b_{i_1} \otimes_N \cdots \otimes_N b_{i_{k+1}} \right) n_{i_1, \ldots, i_{k+1}}$$

where n_c (or $n_{i_1, \ldots, i_{k+1}}$) are in N. Hence

$$\rho_k(x) = \sum_{i_1, \ldots, i_{k+1}, j_1} \theta \left(E(b_{j_1} b_{i_1}) b_{i_2} \otimes_N \cdots \otimes_N b_{i_{k+1}} n_{i_1, \ldots, i_{k+1}} \otimes_N b_{j_1} \right)$$

$$(\rho_k)^{k+1}(x) = \sum_{i_1, \ldots, i_{k+1}, j_1, \ldots, j_{k+1}} \theta \left(E(b_{j_{k+1}}) E(b_{j_k} \cdots E(b_{j_2} E(b_{j_1} b_{i_1}) \cdots b_{i_2}) \cdots b_{i_{k+1}}) n_{i_1, \ldots, i_{k+1}} \right) \theta \left(b_{j_1}^* \otimes_N \cdots \otimes_N b_{j_{k+1}}^* \right)$$

$$= \sum_{i_1, \ldots, i_{k+1}, j_1, \ldots, j_{k+1}} E_N \left(\theta \left(b_{j_{k+1}} \otimes_N \cdots \otimes_N b_{j_1} \right) \theta \left(b_{i_1} \otimes_N \cdots \otimes_N b_{i_{k+1}} \right) n_{i_1, \ldots, i_{k+1}} \right) \theta \left(b_{j_1}^* \otimes_N \cdots \otimes_N b_{j_{k+1}}^* \right)$$

$$= \sum_{c \in B_k} E_N(cx) c^*$$

$$= \Delta_k^{-1}(x),$$

where the last equality comes from Theorem 2.1.39.

\square
2.2 The Planar Algebra of a Finite Index Subfactor

We are now in a position to define the planar algebra associated to a finite index subfactor. By Theorem 2.1.43 the rotation is not quite periodic in the general case and this requires us to change the axioms of a planar algebra slightly. We will first define a *rigid C*-planar algebra in which boxes cannot be rotated, which then gives rise to an induced *modular extension* in which boxes can be rotated, but this changes the action of the tangle in a specified way.

We show that the standard invariant of a finite index subfactor forms a rigid C*-planar-algebra. Along the way we will see that the (quasi-)periodicity of the rotation is a trivial consequence of the rigid planar algebra structure.

We show that any rigid C*-planar algebra gives rise to a spherical C*-planar algebra. As a corollary we see that for any finite index subfactor there exists an extremal II$_1$ subfactor with the same (algebraic) standard invariant, which recovers a result originally due to Izumi.

Finally we consider the inverse construction from a spherical C*-planar algebra with some additional data to a rigid C*-planar algebra. Lifting this construction to the subfactor level we show that any rigid C*-planar algebra arises from a finite index subfactor.

These results justify the focus on II$_1$ subfactors rather than more general inclusions, at least as far as the study of the standard invariant of finite index subfactors is concerned. We see all possible standard invariants of finite index subfactors by considering II$_1$ subfactors and if our interest lies only in the algebraic structure without reference to Jones projections and conditional expectations we need only consider II$_1$ extremal subfactors with the trace-preserving conditional expectation.

2.2.1 Rigid planar algebras

In essence the only difference between a planar algebra and a rigid planar algebra is that we use rigid planar isotopy classes of tangles in place of (full) planar isotopy classes of tangles. A rigid planar isotopy is one under which the internal discs undergo no rotation. The set of rigid planar isotopy classes of tangles forms the rigid planar operad \mathbb{P}^r. A rigid planar algebra is an algebra over \mathbb{P}^r in the sense of May [23], that is to say a set of vector spaces V_k^+, V_k^- $(k \geq 0)$ and a morphism of colored operads from \mathbb{P}^r to Hom, the operad of linear maps between tensor products of the V_k^\pm’s. We describe these ideas in detail below.
Definition 2.2.1 ((Rigid) planar k-tangle). A planar k-tangle is defined exactly as in Jones [16], except that we require the boundary points of the discs to be evenly spaced, the strings to meet the discs normally and the distinguished boundary segments can be either white or black. Thus the definition below follows Jones almost verbatim. For simplicity when drawing tangles we will often draw the boundary points so that they are not evenly spaced. In general diagrams will be drawn with the distinguished boundary segment on the left. When this is not the case we will denote the distinguished segment with a star.

A planar k-tangle will consist of the unit disc $D(=D_0)$ in \mathbb{C} together with a finite (possibly empty) set of disjoint subdiscs D_1, D_2, \ldots, D_n in the interior of D. Each disc D_i, $i \geq 0$, will have an even number $2k_i \geq 0$ of evenly spaced marked points on its boundary (with $k = k_0$). Inside D there is also a finite set of disjoint smoothly embedded curves called strings which are either closed curves or whose boundaries are marked points of the D_i's. Each marked point is the boundary point of some string, which meets the boundary of the corresponding disc normally. The strings all lie in the complement of the interiors D_i^c of the D_i, $i > 0$. The connected components of the complement of the strings in $D^c \setminus \bigcup_{i=1}^n D_i$ are called regions and are shaded black and white so that regions whose closures meet have different shadings. The shading is part of the data of the tangle, as is the choice, at every D_i, $i \geq 0$, of a region whose closure meets that disc, or equivalently: a distinguished arc between consecutive marked points (the whole boundary of the disc if there are no marked points); or a distinguished point which we will call p_i at the midpoint of the arc. Define σ_i, the sign of D_i, to be $+$ if the distinguished region is white and $-$ if it black.

A rigid planar k-tangle is a planar k-tangle such that for every point p_i, $i \geq 0$, the phase relative to the center x_i of D_i is the same. In other words the angle between the line from p_i to x_i and a ray in the positive x-direction emanating from x_i is the same for all i.

We will call a (rigid) planar k-tangle, with σ_0 the sign of D, a (rigid) planar (σ_0, k)-tangle.

Composition of tangles is defined as follows. Given a planar k-tangle T, a k'-tangle S, and an internal disc D_i of T with $k_i = k'$ and $\sigma_i(T) = \sigma_0(S)$ we define the k-tangle $T \circ_i S$ by radially scaling S, then rotating and translating it so that its boundary, together with the distinguished point, coincides with that of D_i. The boundary of D_i is then removed to obtain the tangle $T \circ_i S$.

Note: We will often use 0 and 1 in place of the signs + and − respectively. Sometimes we will drop the sign completely in the case of $\sigma = +$ and use a \sim to denote a disc with $\sigma = −$.

Definition 2.2.2 ((Rigid) planar operad). A planar isotopy of a tangle T is an orientation preserving diffeomorphism of T, preserving the boundary of D. A rigid planar isotopy is a planar isotopy such that the restriction to D_i, $i > 0$, only scales and translates the disc D_i.

The (full) planar operad \mathbb{P} is the set of all planar isotopy classes of planar k-tangles, k being arbitrary. The rigid planar operad \mathbb{P}^r is the set of all rigid planar isotopy classes of planar k-tangles. Clearly composition of tangles passes to the planar operad and to the rigid planar operad.

Remark 2.2.3. In a rigid planar tangle the phase of the external distinguished point p_0 is not important, only the relative position of the internal distinguished points. Thus we could require that p_0 is the leftmost point of D (relative to some underlying orthogonal coordinate system for the plane) and the condition could then be stated as: for all $i > 0$, p_i is the leftmost point of D_i.

The use of discs in the definition of tangles and planar operads is convenient, but we could contract the internal discs to points and formulate the definitions in these terms, or use boxes (with p_i on the left edge) in place of discs which would lead to another reformulation. We will use these descriptions interchangeably.

Definition 2.2.4 (Rigid planar algebra). A rigid planar algebra (Z, V) is an algebra over \mathbb{P}^r. That is to say we have a disjoint union V of vector spaces V^+_k, V^-_k (sometimes denoted V^0_k, V^1_k respectively), $k \geq 0$, and a morphism of colored operads from $Z : \mathbb{P}^r \to \text{Hom}(V)$, the operad of linear maps between tensor products of the V^\pm_k’s. In other words, for every (equivalence class of) rigid planar k-tangle T in \mathbb{P}^r there is a linear map $Z(T) : \otimes_{i=1}^n V^\sigma_{k_i} \to V^\sigma_0$ (which is thus unchanged by rigid planar isotopy). The map Z satisfies $Z(T \circ_i S) = Z(T) \circ_i Z(S)$.

For any tangle T with no internal discs, the empty tensor product is just \mathbb{C} and $Z(T) : \mathbb{C} \to V^\pm_k$ and is thus just multiplication by some element of V^\pm_k. We will also use $Z(T)$ to denote this element.

We also require finite dimensionality ($\dim(V^\pm_k) < \infty$ for all k), $\dim(V^\pm_0) = 1$ and $Z\left(\begin{array}{c} \square \\ \square \end{array}\right), \quad Z\left(\begin{array}{c} \square \\ \square \end{array}\right) \neq 0$. (note that these tangles are a white disc with one closed string and a black disc with one closed string respectively - we have drawn the discs as boxes to make this clear). Finally, we require that Z(annular tangle with $2k$ radial strings) be the identity (for each k there are two such tangles, either $\sigma_0 = 0$ or $\sigma_0 = 1$).

Remarks 2.2.5. Without the last condition in the definition we would only know that Z(annular tangle with $2k$ radial strings) is some idempotent element e^+_k in $\text{End}(V^\pm_k)$. How-
ever, by inserting this annular tangle around the inside of any internal k-disc and the outside of any k-tangle it is clear that the planar algebra would never “see” $(1 - e_k^\pm)V_k^\pm$. Thus we may as well replace V_k^\pm with $e_k^\pm V_k^\pm$ and then the annular radial tangles act as the identity.

V_k^\pm becomes an algebra under the multiplication given by the tangle below. The thick black string represents k regular strings.

![Figure 2.1: The multiplication tangle](image)

For example, for $k = 3$ we have the following tangles (for V_3^+ and V_3^- respectively). The marked points have been evenly spaced in this example as they should be, but for simplicity we will usually draw the marked points with uneven spacing.

![Image of tangles](image)

The multiplicative identity in V_k^\pm is just the image of the tangle below (more precisely Z of this tangle applied to $1 \in \mathbb{C}$, the empty tensor product).

![Image of identity tangle](image)

Note that V_0^\pm is now a 1-dimensional algebra with identity given by Z(empty disc) (the picture above with no strings), hence V_0^\pm may be identified with \mathbb{C} with Z(empty disc) = 1.

With V_0^\pm thus identified with \mathbb{C}, $Z(\begin{array}{l}
\end{array}) = \delta_1$ and $Z(\begin{array}{l}
\end{array}) = \delta_2$ for some
δ₁, δ₂ ∈ \mathbb{C}\{0\}. Unless stated otherwise, we will require δ₁ = δ₂ \overset{\text{def}}{=} δ (one can always “rescale” to achieve this).

The fact that δ ≠ 0 implies that \(\iota_k^± : V_k^± → V_{k+1}^± \), defined by adding a string on the right, is injective. Similarly \(\gamma_k^± : V_k^± → V_{k+1}^\mp \) by adding a string on the left is injective.

Definition 2.2.6 (Rigid planar \(*\)-algebra). For a (rigid) \(k \)-tangle \(T \) define \(T^* \) to be the tangle obtained by reflecting \(T \) in any line in the plane (well-defined up to rigid planar isotopy). A rigid planar \(*\)-algebra is a rigid planar algebra \((\mathcal{Z}, V)\) equipped with a conjugate linear involution \(* \) on each \(V_k^\pm \) such that \(\mathcal{Z}(T)(v_1 \otimes \cdots \otimes v_n)^* = \mathcal{Z}(T^*)(v_1^* \otimes \cdots \otimes v_n^*) \).

Definition 2.2.7 (Rigid \(C^*\)-planar algebra). A rigid \(C^*\)-planar algebra is a rigid \(*\)-planar algebra \((\mathcal{Z}, V)\) such that the map \(\Phi = \Phi_k^± : V_k^± → \mathbb{C} \) given below is positive definite on \(V_k^\pm \), i.e. \(\Phi(x^*x) > 0 \) for \(0 \neq x ∈ V_k^\pm \).

\[
\Phi = \mathcal{Z} \begin{pmatrix} * \\ \circ \end{pmatrix}
\]

As usual the thick string represents \(k \) strings and we have suppressed the outer 0-disc.

Remark 2.2.8. Let \((\mathcal{Z}, V)\) be a rigid \(*\)-planar algebra. Note that if \(\Phi_k^+ \) is positive definite then so too is \(\Phi_k^- \) by adding a string on the left and applying \(\Phi_{k+1}^+ \). Hence it suffices to check that \(\Phi_k^+ \) is positive definite.

Every \(V_k^\pm \) is semi-simple since for any nonzero ideal \(N \) take nonzero \(x ∈ N \), then \(x^*xx^*x = (x^*x)^*(x^*x) ∈ N^2 \) and is nonzero by positive definiteness of \(\Phi \). Hence every \(V_k^\pm \) is a direct sum of matrix algebras over \(\mathbb{C} \) or, equivalently, a finite dimensional \(C^*\)-algebra.

Definition 2.2.9. Define \(\Phi_k^' : V_k^± → \mathbb{C} \) by

\[
\Phi' = \mathcal{Z} \begin{pmatrix} \circ \\ \end{pmatrix}
\]
Define $\mathcal{J}_k^{(r)} = Z(TJ_k^{(r)}) : V_k^{(r)} \to V_k^{(r+k)}$ where $TJ_k^{(r)}$ is the following tangle ($r = 0, 1$)

\[TJ_k = \begin{array}{c}
\end{array} \]

Remarks 2.2.10. Note that $\mathcal{J}_k^{(r)}$ is invertible, with inverse $Z\left((TJ_k^{(r+k)})^*\right)$. \mathcal{J} has the following properties. Let $x \in V_k^{(r)}$. Then, with indices suppressed,

- $\mathcal{J}(xy) = \mathcal{J}(y)\mathcal{J}(x);
- (\mathcal{J}(x))^* = \mathcal{J}^{-1}(x^*);
- \Phi(\mathcal{J}(x)) = \Phi(\mathcal{J}^{-1}(x)) = \Phi'(x);
- \Phi'(\mathcal{J}(x)) = \Phi'(\mathcal{J}^{-1}(x)) = \Phi(x);
- \Phi(xy) = \Phi'(\mathcal{J}(x)\mathcal{J}^{-1}(y)), \Phi'(xy) = \Phi(\mathcal{J}^{-1}(x)\mathcal{J}(y))$ because

\[\Phi(\mathcal{J}^{-1}(x)\mathcal{J}(y)) = \begin{array}{c}
\end{array} = \begin{array}{c}
\end{array} = \Phi'(xy) \]

Lemma 2.2.11. Let (Z, V) be a rigid C^*-planar algebra. Then $\Phi' = \Phi'_k : V_k^\pm \to \mathbb{C}$ is positive definite.

Proof. For nonzero $x \in V_k^\pm$ let $y = \mathcal{J}(x) \neq 0$, then

\[0 < \Phi(y^*y) = \Phi((\mathcal{J}(x))^*\mathcal{J}(x)) = \Phi(\mathcal{J}^{-1}(x^*)\mathcal{J}(x)) = \Phi'(x^*x). \]

\[\square \]
Remarks 2.2.12. The requirement that an annular tangle with $2k$ radial strings act as the identity in the definition of a rigid planar algebra is not necessary for a rigid C*-planar algebra. Let $\alpha = Z(\text{annular tangle with } 2k \text{ radial strings}).$ Then $\Phi(x\alpha(y)) = \Phi(xy)$ for all $x \in V^\pm_k$ and $\alpha(x) = x$ by the positive definiteness of $\Phi.$

\[
\varphi_k = \delta^{-k}\Phi_k \quad \text{and} \quad \varphi'_k = \delta^{-k}\Phi'_k.
\]
are normalized so that $\varphi_k(1) = \varphi'_k(1) = 1$ and both φ and φ' are compatible with the inclusions $\iota : V^+_k \to V^+_k$ and $\gamma : V^+_k \to V^+_k.$

Notation 2.2.13. For $r = 0, 1$ let $V_{j,k}^{(r)} = \gamma_{k-1}^{(r)} \gamma_{k-2}^{(r)} \cdots \gamma_{k-j}^{(r)} V_{k-j}^{(r+j)}$ denote the subspace of $V_k^{(r)}$ obtained by adding j strings to the left of $V_{k-j}^{(r+j)}$ (where all upper indices are computed mod 2). In other words the image of the map defined by

Call this map the shift by $j.$

Let $w_{j,k}^\pm$ denote the Radon-Nikodym derivative of $(\varphi')^\pm$ with respect to φ^\pm on $V_{i,k}^\pm.$ Thus $w_{j,k}^\pm$ is the unique element in $V_{j,k}^\pm$ such that $\varphi'(x) = \varphi(w_{j,k}^\pm x)$ for all $x \in V_{j,k}^\pm.$ $w_{j,k}^\pm$ exists because $V_{j,k}^\pm$ is finite dimensional and φ is positive definite. By the positive definiteness of φ', $w_{j,k}^\pm$ is positive and invertible.

Let $w_{k}^\pm = w_{k-1,k}^\pm$ and $z_{k}^\pm = w_{0,k}^\pm.$ As mentioned earlier we will sometimes suppress the + index and use ~ in place of -. Set $w = w_1 = w_1^+, \bar{w} = \bar{w}_1 = w_1^-.$ Then w_{2r+1} is just w with $2r$ strings to the left and w_{2r} is \bar{w} with $2r - 1$ strings to the left. i.e. $w_{2r+1} = (\gamma^+\gamma^-)^r(w)$ and $w_{2r} = (\gamma^+\gamma^-)^{r-1}\gamma^-(\bar{w}).$

Lemma 2.2.14.

1. $\bar{w} = (\mathcal{J}_1)^{-1}(w^{-1}) = \begin{array}{c} w^{-1} \end{array}$
2. $z_k = w_1 w_2 \cdots w_k$ and is thus given by

\[z_k = w_1 \overline{w}_1 w_2 \overline{w}_2 \cdots w_k \overline{w}_k \Rightarrow w_1 \overline{w}_1 \overline{w}_2 \cdots \overline{w}_k \]

\[= w_1 w^{-1}_1 w_2 w^{-1}_2 \cdots w_k w^{-1}_k \]

Proof.

1. For $x \in V_1^-$, $\overline{\varphi}_1(\mathcal{J}_1^{-1}(w^{-1})x) = \varphi'_1(w^{-1}\mathcal{J}_1^{-1}(x)) = \varphi_1(\mathcal{J}_1^{-1}(x)) = \overline{\varphi}'_1(x)$ and hence $\overline{w} = (\mathcal{J}_1)^{-1}(w^{-1})$.

2. Let $y = w_1 w_2 \cdots w_k$

Then, for $x \in V_k^+$,

\[\Phi(yx) = \]

\[= \]

\[= \]

\[= \Phi'(x) \]
Definition 2.2.15. Define $\Delta^\pm_k : V^+_k \to V_k^+$ by $\Delta = J^2$. More precisely $\Delta^{(r)}_k = J^{(r+k)}_k \circ J^{(r)}_k$.

$$\Delta(x) = \begin{array}{c}
\end{array}$$

Lemma 2.2.16. For all $x, y \in V^+_k$,

$$\varphi(xy) = \varphi(y \Delta(x)) = \varphi(\Delta^{-1}(y)x),$$

$$\varphi'(xy) = \varphi'(y \Delta^{-1}(x)) = \varphi'((\Delta)(y)x).$$

Proof. First

$$\varphi(xy) = \varphi'(J(x)J^{-1}(y)) = \varphi(J(J(x)J^{-1}(y))) = \varphi(yJ^2(x))$$

and because $\varphi \circ J^2 = \varphi' \circ J = \varphi$ we also have $\varphi(xy) = \varphi(J^{-2}(y)x)$.

Secondly

$$\varphi'(xy) = \varphi(J^{-1}(x)J(y)) = \varphi(yJ^2(x)) = \varphi'(J^{-2}(y)x).$$

Remark 2.2.17. This result shows that Δ is in fact the modular operator for (V^+_k, φ) and Δ^{-1} the modular operator for (V^+_k, φ').

Corollary 2.2.18. $\Delta^{(r,h)}_k$ is a positive definite operator on $L^2(V^+_k, \varphi)$ and for $x \in V^+_j$ and $t \in \mathbb{R}$, $\Delta^{(r,h)}_k(t) = \left(\frac{t^2}{2} x w_j^2 \right)^{1/2}$.

Proof. Δ^+_k is positive definite because, for nonzero $x \in V^+_k$,

$$\langle \Delta(x), x \rangle = \varphi(x^* J^2(x) x) = \varphi'(J(x)J^{-1}(x^*)) = \varphi'((J(x)(J(x))^*) > 0.$$

Let $W = w_{j,k}$. The result is true for $t = 2$ because for all $x, y \in V^+_j$,

$$\varphi(Wxy) = \varphi'(xy) = \varphi'(y \Delta^{-1}(x)) = \varphi(Wy \Delta^{-1}(x)) = \varphi(\Delta^{-2}(x)y),$$

using Lemma 2.2.16 twice. Hence $Wx = \Delta^{-2}(x)W$ so that $\Delta^{-2}(x) = WxW^{-1}$ and also $\Delta^2(x) = W^{-1}xW$.

To prove the result for general \(t \) we will first show that \(x \mapsto W^{-s}xW^{s} \) is a positive operator on \(L^2(V_{j,k}^{+}, \varphi) \) for \(s \in \mathbb{R} \). Note that \(\Delta^2 \hat{W}^s = W^{-1}(W^{s})W = W^s \) so that \(\hat{W}^s \) is an eigenvector of eigenvalue 1 for \(\Delta^2 \) and hence also for all \(\Delta^r \) since \(\Delta \) is positive. Therefore \(W^s \) is in the centralizer of \(\varphi \) on \(V_{k}^{+} \) since, for all \(x \in V_{k}^{+} \),

\[
\varphi(W^s x) = \varphi(x \Delta(W^s)) = \varphi(x W^s) .
\]

This implies that for \(s \in \mathbb{R} \), \(A_s : x \mapsto W^{-s}xW^{s} \) is a positive operator on \(L^2(V_{j,k}^{+}, \varphi) \):

\[
\langle W^{-s}xW^{s}, x \rangle = \varphi(x^*W^{-s}xW^{s}) = \varphi(W^{s/2}x^*W^{-s}xW^{s/2}) \geq 0 .
\]

Thus \(\{ A_s \} \) is a continuous one-parameter family of positive operators on \(L^2(V_{j,k}^{+}, \varphi) \), and \(\Delta^2 = A_1 \). A simple spectral theory argument implies that \(\Delta^r = A_{r/2} \) for all \(r \in \mathbb{R} \) and so \(\Delta^t(x) = W^{-t/2}xW^{t/2} \).

Corollary 2.2.19. If \(\varphi \) is tracial then \(\Delta = \text{id}, \varphi' \) is tracial and the rotation operator \(\rho_k : V_{k}^{\pm} \to V_{k}^{\pm} \) defined below is periodic.

\[
\rho_k = Z
\]

2.2.2 Subfactors give rigid planar algebras

In this section we extend Jones’ [16] result that the standard invariant of an extremal finite index \(\text{II}_1 \) subfactor has a spherical \(\text{C}^* \)-planar algebra structure.

Theorem 2.2.20. Let \((N, M, E) \) be a finite index subfactor. Let \(V_{k}^{+} = N' \cap M_{k-1} \) and \(V_{k}^{-} = M' \cap M_{k} \). Then \(V \) has a rigid \(\text{C}^* \)-planar algebra structure \(Z(N,M,E) \) satisfying:

1. \(\delta_1 = \delta_2 = \delta \overset{\text{def}}{=} \text{Ind}(E)^{1/2} \).
2. The inclusion maps \(\iota_{k}^{\pm} : V_{k}^{\pm} \to V_{k+1}^{\pm} \) are the usual inclusion maps \(N' \cap M_{k-1} \hookrightarrow N' \cap M_{k} \) and \(M' \cap M_{k} \hookrightarrow M' \cap M_{k+1} \).
3. The map \(\gamma_{k}^{-} : V_{k}^{-} \to V_{k+1}^{+} \) is the inclusion map \(M' \cap M_{k} \hookrightarrow N' \cap M_{k} \). The map \(\gamma_{k}^{+} : V_{k}^{+} \to V_{k+1}^{-} \) is the shift map \(\text{sh} : N' \cap M_{k-1} \to M_{k}' \cap M_{k+1} \) defined by \(R \in \text{End}_{N'-*}(L^2(M_j)) \mapsto \text{id} \otimes N R \in \text{End}_{M_{k+1}-*}(L^2(M_{j+1})) \).
(4) The multiplication given by the standard multiplication tangles agrees with the multiplication on the algebras $N' \cap M_k$.

(5) \[\begin{array}{c}
\begin{array}{c}
\includegraphics{multiplication}\n\end{array}
\end{array} = \delta e_k = E_k \]

(6) \[\begin{array}{c}
\begin{array}{c}
\includegraphics{projection}\n\end{array}
\end{array} = \delta E_{M_{k-1}} : N' \cap M_k \to N' \cap M_{k-1} \]

(7) \[\begin{array}{c}
\begin{array}{c}
\includegraphics{projection2}\n\end{array}
\end{array} = \delta E_{M'_j} \quad \text{and in general} \quad \begin{array}{c}
\begin{array}{c}
\includegraphics{projection3}\n\end{array}
\end{array} = \delta^{j+1} E_{M'_j} \]

The rigid C*-planar algebra structure on V is uniquely determined by properties (4), (5), (6) and (7) (for $j = 1$).

Remark 2.2.21. As a consequence of (6) and (7) we see that φ and φ' coming from the planar algebra structure agree with those already defined on the standard invariant.

Proof of Theorem 2.2.20.

Given a k-tangle T with internal k_i-discs D_1, \ldots, D_n and elements $v_i \in V_{k_i}$, we need to define $Z(T) (v_1 \otimes \cdots \otimes v_n) \in V_{k}$ and show that the element we define is independent of rigid isotopy of T. Finally we need to show that Z is a morphism of colored operads.

Our line of proof will be very close to that of Jones [16], Section 4.2, although our construction will differ slightly. The advantages of this construction are an explicit description of the action on $L^2(M_i)$ and the fact that the construction will also apply to the case of bimodule homomorphisms $\text{Hom}_{s-s'}(L^2(M_j), L^2(M_k))$ rather than just endomorphisms $\text{End}_{s-s'}(L^2(M_i))$.

Consider first the case of a $(+,k)$-tangle T. We will define $Z(T) (v_1 \otimes \cdots \otimes v_n) \in \text{End}_{N-M_{-t}}(L^2(M_r)) \cong N' \cap M_{2r+t}$, where $k = 2r + t$, $t = 0, 1$.
We will say that a tangle is in *standard form* if it is a vertical concatenation of basic tangles of the following three types:

\[TI_{k,p} = \]

\[TE_{k,p} = \]

\[TS_{k,l,p} = \]

Any rigid planar (+,k)-tangle can be put in standard form by rigid planar isotopy.

Note that the basic tangles have a different number of marked points at the top and bottom of the box. A tangle with sign \(\sigma \), \(j \) marked points at the bottom and \(k \) marked points at the top will be called a \((\sigma,j,k)\)-tangle.

It may seem that we are introducing more general types of tangles here, but we are really just used a variety of “multiplication” tangles rather than just the standard one in Figure 2.1. A \((\sigma,j,k)\)-tangle can be considered as a \((\sigma,j+k/2)\)-tangle together with additional data given by \(j \). The additional data determines the type of multiplication to be used. For example multiplication of a \((5,1)\)-tangle and a \((3,5)\)-tangle is given by

In order to define \(Z(T) \) for a general rigid tangle we will first define it for the basic tangles. Given a basic \((+,2j+1+t,2k+1+t)\)-tangle \((t = 0,1)\), \(Z(T) \) will be an element of \(\text{Hom}_{\mathbb{N}-M_{-t}}(L^2(M_j), L^2(M_k)) \). We first need a preparatory lemma.
Lemma 2.2.22. Define $\alpha: L^2(M) \to L^2(M_1)$ to be δ times the inclusion map. Identifying $L^2(M_1)$ with $L^2(M) \otimes_N L^2(M)$ using u_1 from Proposition 2.1.29 allows us to write α as $\alpha(x) = \sum_b x b \otimes_N b^* = \sum_x b \otimes_N b^* x$.

Define maps $\beta, \bar{\beta} : L^2(M) \to L^2(M_1)$ by $\beta : x \mapsto x \otimes_N 1 = x E_1, \bar{\beta} : x \mapsto 1 \otimes_N x = E_1 x$ (note that $\text{id} \otimes_N \bar{\beta} = \beta \otimes_N \text{id}$). Then $\alpha, \beta, \bar{\beta}$ are all continuous, $\alpha \in \text{Hom}_{M-M} \left(L^2(M), L^2(M_1) \right)$, $\beta \in \text{Hom}_{M-N} \left(L^2(M), L^2(M_1) \right)$, $\bar{\beta} \in \text{Hom}_{N-M} \left(L^2(M), L^2(M_1) \right)$ and $\alpha^* = \delta e_2 : x \otimes_N y \mapsto xy$

$\beta^* : x \otimes_N y \mapsto x E(y)$

$\bar{\beta}^* : x \otimes_N y \mapsto E(x)y$

Proof. As we noted above, α is just δ times the inclusion map, so α is continuous and $\alpha^* = \delta e_2$. $\delta e_2(xe_1) = \delta^2 E_1 x e_1 = x y$. $\alpha \in \text{Hom}_{M-M} \left(L^2(M), L^2(M_1) \right)$ because inclusion $L^2(M) \hookrightarrow L^2(M_1)$ preserves left multiplication by M and also the right action of M (since $J_1|_{L^2(M)} = J_0$).

β is continuous because $\varphi(x^* x E_1) = \varphi(x E_1) = \varphi(x^* x)$. $\beta^*(x \otimes_N y) = x E(y)$ because $\langle x \otimes_N y, z \otimes_N 1 \rangle = \varphi(x^* y) = \varphi(z^* x y) = \langle x E(y), z \rangle$.

β is clearly left M-linear. To show right N-linearity observe that

$\hat{x} n \otimes \hat{1} = (J_0 n^* J_0 \hat{x}) \otimes \hat{1} = J_1 \left(\hat{1} \otimes n^* J_0 \hat{x} \right) = J_1 \left(n^* \otimes J_0 \hat{x} \right) = J_1 n^* J_1 \left(\hat{x} \otimes \hat{1} \right)$.

$\bar{\beta} = J_1 \beta J_0$ and hence $\bar{\beta}$ is continuous and $N - M$ linear. $\bar{\beta}^*(x \otimes_N y) = E(x) y$ because

$\langle x \otimes_N y, 1 \otimes z \rangle = \varphi(z^* E(x)y) = \langle E(x)y, z \rangle$.

We can now define the elements of $\text{Hom}_{-\ast, \ast} \left(L^2(M_j), L^2(M_k) \right)$ associated to each basic tangle.

$Z(T I_{2i,p}) = \delta^{-1/2} \left(\text{id} \otimes_N^i \alpha \otimes \text{id} \otimes \text{id} \otimes \cdots \otimes \text{id} \right)$

$Z(T I_{2i-1,p}) = \delta^{1/2} \left\{ \begin{array}{ll}
\bar{\beta}^* \otimes_N \text{id} \otimes \text{id} \otimes \cdots \otimes \text{id} \\
\left(\text{id} \otimes_N^{i-2} \beta^* \otimes \text{id} \otimes \cdots \otimes \text{id} \right) \end{array} \right. i = 1,

i \geq 2$

$Z(T E_{k,p}) = Z(T I_{k,p})^*$

$Z(T S_{2i+i,k,p}) (R) = (\text{id} \otimes_N^i \otimes R \otimes \text{id} \otimes \cdots \otimes \text{id})$
Letting \(x = x_1 \otimes x_2 \otimes \cdots \otimes x_k \) \((p = 2k \text{ or } 2k+1)\) we can see these maps explicitly as

\[
Z(TI_{2i,p}) : x \mapsto \delta^{-1/2} x_1 \otimes \cdots \otimes x_{i-1} \otimes x_i b \otimes b^* \otimes x_{i+1} \otimes \cdots \otimes x_k \\
= \delta^{-1/2} x_1 \otimes \cdots \otimes x_{i-1} b \otimes b^* x_i \otimes x_{i+1} \otimes \cdots \otimes x_k
\]

\[
Z(TI_{2i-1,p}) : x \mapsto \begin{cases} \\
\delta^{1/2} x_1 \otimes x_2 \otimes \cdots \otimes x_k & i = 1, \\
\delta^{1/2} x_1 \otimes \cdots \otimes x_{i-1} \otimes 1 \otimes x_i \otimes \cdots \otimes x_k & i \geq 2
\end{cases}
\]

\[
Z(TE_{2i,p}) : x \mapsto \delta^{-1/2} x_1 \otimes \cdots \otimes x_{i-1} \otimes x_i x_{i+1} \otimes x_{i+2} \otimes \cdots \otimes x_k
\]

\[
Z(TE_{2i-1,p}) : x \mapsto \begin{cases} \\
\delta^{1/2} E(x_1) x_2 \otimes x_3 \otimes \cdots \otimes x_k & i = 1, \\
\delta^{1/2} x_1 \otimes \cdots \otimes x_{i-2} \otimes x_{i-1} E(x_i) \otimes x_{i+1} \otimes \cdots \otimes x_k & i \geq 2
\end{cases}
\]

\[
Z(TS_{2i,2j-t,p}) (R) : x \mapsto x_1 \otimes \cdots \otimes x_{i-1} \otimes \pi_j(R) \left(x_{i+1} \otimes \cdots \otimes x_{i+j} \right) \otimes x_{i+j+1} \otimes \cdots \otimes x_k
\]

\[
Z(TS_{2i+1,2j+t,p}) (R) : x \mapsto x_1 \otimes \cdots \otimes x_{i} \otimes \pi_j(R) \left(x_{i+1} \otimes \cdots \otimes x_{i+j+1} \right) \otimes x_{i+j+2} \otimes \cdots \otimes x_k
\]

where \(t = 0 \) or \(1 \).

Finally let us check that a basic tangle with \(2k-t \) lower strings and \(2k-t \) or \(2k-t+2 \) upper strings defines an element of \(\text{End}_{N-M-t} (L^2(M_k)) \) or \(\text{Hom}_{N-M-t} (L^2(M_k), L^2(M_{k+1})) \) respectively (recall that we are currently only considering the case of tangles with \(\sigma_0 = + \)).

All of these maps are left-\(N\)-linear and all are right \(M\)-linear except for three cases. \(Z(TE_{2i-1}) = (\text{id})^{\otimes_{N-2}} \otimes_N \beta \) and \(Z(TI_{2i-1}) = (\text{id})^{\otimes_{N-2}} \otimes_N \beta^* \) are both \(N\)-linear only on the right, but this is all that is required since both have an odd number of strings. \(Z(TS_{2i+t,2j-t,p}) (R) = (\text{id})^{\otimes_N} \otimes_N R \) is also \(N\)-linear only on the right, but again has an odd number of strings.

Now, given a rigid planar (+, 2r + t)-tangle \(T \) (where \(t = 0, 1 \)) we can define \(Z(T)(v_1 \otimes \cdots \otimes v_n) \in \text{End}_{N-M-t} (L^2(M_r)) \cong N' \cap M_{2r+t} \) by putting \(T \) in standard form by rigid planar isotopy and then composing the maps we get from the basic tangles in the standard form. We need to show that the element of \(\text{End}_{N-M-t} (L^2(M_r)) \) that we obtain is independent of the particular standard picture we chose. Then the map \(Z \) will not only be well-defined on a tangle \(T \), but invariant under rigid isotopy as any two isotopic tangles can be put in the same standard form.

At this point our argument starts to closely resemble that of Jones. If we have two standard pictures that are equivalent by a rigid planar isotopy \(h \) then, by contracting the
internal discs to points and putting the isotopy in general position, we see that the isotopy results in a finite sequence of changes from one standard form to another. These changes happen in one of two ways

(i) The y-coordinate of some string has a point of inflection and the picture, before and after, looks locally like one of the following.

(ii) The y-coordinates of two internal discs, or maxima/minima of strings (which we will refer to as caps/cups respectively), coincide and change order while the x-coordinates remain distinct.

In case (i) note that $\alpha^* \beta = \alpha^* \tilde{\beta} = \beta^* \alpha = \tilde{\beta}^* \alpha = \text{id}$. Then

1. This is either $\left(\alpha^* \tilde{\beta}\right) \otimes_N (\text{id}) \otimes^i_N = \text{id}$ ($i = 0$), or ($i \geq 1$),

\[
(id) \otimes^{i-1}_N \left[(id \otimes_N \alpha^*) \left(\beta \otimes_N \text{id} \right) \right] \otimes_N (id) \otimes^i_N = \left(id\right) \otimes^i_N \otimes_N \alpha^* \tilde{\beta} \otimes_N (id) \otimes^i_N = \text{id}.
\]

2. $\left(id\right) \otimes^i_N \otimes_N \beta^* \alpha \otimes (id) \otimes^i_N = \text{id}$.

3. $\left(id\right) \otimes^i_N \otimes_N \alpha^* \beta \otimes_N (id) \otimes^i_N = \text{id}$.

4. If $i = 0$ then $\left(\tilde{\beta}^* \alpha\right) \otimes_N (id) \otimes^i_N = \text{id}$. For $i \geq 1$,

\[
(id) \otimes^{i-1}_N \left[\left(\tilde{\beta}^* \otimes_N \text{id} \right) \left(\text{id} \otimes_N \alpha \right) \right] \otimes_N (id) \otimes^i_N = \left(id\right) \otimes^i_N \otimes_N \tilde{\beta}^* \alpha \otimes_N (id) \otimes^i_N = \text{id}.
\]

In case (ii) we have two cups, two caps or a cap and a cup passing each other. It is trivial to see that the two compositions of maps from the basic tangles are the same in cases when
the caps/cups are separated and affect different parts of the tensor product. Otherwise one uses associativity of the tensor product and the fact that $\sum b \otimes_N b^* = \sum b \otimes_N b^* x$.

In the case of one box and one cap/cup the maps again affect different parts of the tensor product except for the following two cases (and their adjoints).

\[(i) \quad R \quad (ii) \quad R \]

In case (i) we may assume that there is at most one string to the left of the box since any other strings involve parts of the tensor product where the tangles act as the identity. Then the first map is $R(x_1 \otimes_N \cdots \otimes_N x_i-1 \otimes_N x_i x_{i+1})$ while the second is $R(x_1 \otimes_N \cdots \otimes_N x_i)x_{i+1}$. The two expressions are the same since $R \in \text{End}_{-M}$. In (ii) we can similarly assume that $i = 0$. Then $R(x_1 x_2 \otimes_N x_3 \otimes_N \cdots \otimes_N x_j) = x_1 R(x_2 \otimes_N x_3 \otimes_N \cdots \otimes_N x_j)$ because $R \in \text{End}_{M-}$.

The last case to consider is that of two boxes. The only case which does not involve distinct parts of the tensor product is the following.

\[\cdots S \quad R \quad \cdots \]

Using the previous cases we see that the following pictures represent the same linear maps.
This completes our argument that $Z(T)$ does not depend on the choice of standard picture for T and is thus also rigid isotopy invariant. For $(−,k)$-tangles just add a string to the left and hence obtain an element of $N′ ∩ M_i$. Choose a standard picture for T which leaves this string straight up. Then the set of basic tangles which make up T cannot include $TI_{1,*}$, $TE_{1,*}$ or $TS_{0,*,*}$. But these are the only basic tangles defining maps that are not M-linear. Hence we have an element of $M' ∩ M_i$.

Z is thus a map from \mathbb{P}^r to Hom(V_i). It is clearly an operad morphism as we have defined Z by composition of linear maps. The *-planar algebra property is also obvious from the way we have defined Z. Thus (Z, V) is a rigid *-planar algebra. It remains to prove that properties (1) through (6) are satisfied.

(1) $δ_1 = δ$ because $Z(\begin{array}{c} n \\ \end{array}) = Z(\begin{array}{c} n \\ \end{array}) (δ^{1/2} n) = δE_N(n) = δn$ ($n ∈ N$).

Similarly $δ_2 = δ$ because $Z(\begin{array}{c} n \\ \end{array}) ∈ \text{End}_{M-M} (L^2(M))$ is given by

$$Z(\begin{array}{c} n \\ \end{array}) = Z(\begin{array}{c} n \\ \end{array}) = Z(\begin{array}{c} n \\ \end{array}) (δ^{1/2} \sum_b x b ⊗ b^*) = δ^{-1} \sum_b x b b^* = δ x.$$

(2) $ι_{2k+1}^+ : N' ∩ M_{2k} → N' ∩ M_{2k+1}$ is the usual inclusion map by construction (both $(2k+1)$- and $(2k+2)$-boxes are defined by their action on $L^2(M_k)$).

$ι_{2k+2}^± : N' ∩ M_{2k+1} → N' ∩ M_{2k+2}$ involves an additional tensoring with the identity on the right, but by Prop 2.1.37, this just changes the representation $π_k$ on $L^2(M_k)$ to $π_{k+1}$ on $L^2(M_{k+1})$. Hence $ι_{2k+2}^+$ is also the usual inclusion.

The result for $ι_k^-$ is then immediate.

(3) $γ_k^- : V_k^- → V_k^{++}$ is the inclusion map $M' M_k → N' M_k$ by construction.

$γ_k^+$ maps $R \in N' M_{k−1}$ to $id ⊗ N R$. By Prop 2.1.37, $π_{j+1}(M_1) = π_0(M_1) ⊗ N (id)^{⊗k}$ and hence $id ⊗ N R \in M_1^{j+1} M_{k+1}$.

(4) By construction stacking boxes is multiplication of the corresponding linear maps.

(5) We want to show that $Z(TI_{k,k+1})Z(TE_{k,k+1}) = E_k$. By (2) it suffices to show that $Z(TI_{k,2k})Z(TE_{k,2k}) = π_{k−1}(E_k)$. Let $x = x_1 ⊗ N ⋯ ⊗ N x_k$. Note that by definition

$$Z(TE_{k,2k}) = \begin{cases} δ^{1/2} x_1 N ⋯ ⊗ x_{r−1} N E(x_r N ⋯ ⊗ x_k N & k = 2r−1 \\
δ^{−1/2} x_1 N ⋯ ⊗ x_r x_{r+1} N ⋯ ⊗ x_k N & k = 2r \end{cases}$$
so that \(Z(TE_{k,2k}) \) is simply \(\delta^{1/2}E_{M_k-2} \), using Proposition 2.1.33. The map \(Z(TI_{k,2k}) \) is the adjoint of \(Z(TE_{k,2k}) \), which is just \(\delta^{1/2} \) times the inclusion map. Hence
\[
Z(TI_{k,2k})Z(TE_{k,2k}) = \delta\pi_{k-1}(e_k) = \pi_{k-1}(E_k).
\]

(6) Using (5) we have
\[
\begin{aligned}
E_{k+1}x_{E_{k+1}} &= \delta E_{k+1}E_{M_k-1}(x) = \delta \\
\end{aligned}
\]
We then apply a tangle to both sides to close up the caps and cups, which simply yields \(\delta^2 \). After dividing by \(\delta^2 \) we obtain
\[
\begin{aligned}
\delta E_{M_k-1}(x) &= \delta^2
\end{aligned}
\]

(7) Let \(R \in N' \cap M_{2k} \) or \(N' \cap M_{2k+1} \). Then (adding a string on the right if necessary)
\[
\begin{aligned}
Z(R) &= Z(TE_{2,2k+2}) \left(id_\otimes R \right) Z(TI_{2,2k+2}) \\
&= \delta E_{M_k}(R)
\end{aligned}
\]
Calling this element \(S \) and letting \(x = x_1 \otimes_N \cdots \otimes_N x_{k+1} \) we have
\[
\begin{aligned}
S\hat{x} &= Z(TE_{2,2k+2}) \left(id_\otimes R \right) \left(\delta^{-1/2} \sum_b b \otimes b^* x_1 \otimes x_2 \otimes \cdots \otimes x_{k+1} \right) \\
&= Z(TE_{2,2k+2}) \left(\delta^{-1/2} \sum_b b \otimes R \left(b^* x_1 \otimes x_2 \otimes \cdots \otimes x_{k+1} \right) \right) \\
&= \delta^{-1} \sum_b bR \left(b^* x_1 \otimes x_2 \otimes \cdots \otimes x_{k+1} \right) \\
&= \delta^{-1} \sum_b bRb^* \hat{x} = \delta E_{M'}(R)\hat{x}
\end{aligned}
\]
which proves that \(S = \delta E_{M'}(R) \) as required.

An immediate consequence is that \(E_2 \left(id_{\mathbb{L}^2(M)} \otimes_N R \right) E_2 = E_2 \left(id_\otimes \delta E_{M'}(R) \right) \), as we see below.
Applying this to $N \subset M_j$ we obtain

$$E_{[j,2j+1]} \left(\text{id}_{L^2(M_j)} \otimes R \right) E_{[j,2j+1]} = E_{[j,2j+1]} \left(\text{id}_{L^2(M_j)} \otimes \delta^{j+1} E_{M_j'}(R) \right)$$

(2.8)

where $E_{[j,2j+1]}$ is one of the (scaled) multi-step Jones projections from Theorem 2.1.25.

Multiplying out the expression defining $E_{[j,2j+1]}$ in terms of E_i’s we obtain

Writing a thick string for $j + 1$ regular strings, equation (2.8) yields

and hence

which completes the proof of (7).

The proof of uniqueness is exactly the same as that in Jones [16] 4.2.1. The only difference is that our property (4) is not required by Jones because it is built into his axioms.

□
Remark 2.2.23. The method of proof in (7) yields more general results. In fact any equation involving diagrams that holds for a general finite index subfactor will also hold with thick strings (i.e. multiple strings) in place of regular strings. Let us loosely describe the procedure. By introducing extra caps and cups at top and bottom and by inserting additional closed loops we may assume that any tangle has a standard form made up of shifted boxes, TS, and Temperly-Lieb tangles. Note that the process of inserting closed loops can be accommodated simply by dividing by δ and addition of caps/cups at top and bottom can be inverted by applying an annular tangle to turn these into closed loops.

We can thus write an equivalent equation in terms of shifts (i.e. tensoring with the identity) and Jones projections, with no reference to tangles. Applying this to $N \subset M_j$ we can then convert back to an equation in terms of tangles, but a shift by 2 becomes a shift by $2j$ and the Jones projections are

$$\begin{array}{ccc}
\hat{x} & \mapsto & \hat{y} \\
\hat{x} & \mapsto & \hat{y}^* \\
\hat{x} & \mapsto & \hat{y} \\
\hat{x} & \mapsto & \hat{y}^*
\end{array}$$

We thus obtain the result for thick strings.

Proposition 2.2.24. For $R \in N' \cap M_{2k+1} = V_{2k+2}^+$,

$$\mathcal{J}_{2k+2}(R) = S_k^* R^* S_k, \quad \mathcal{J}_{2k+2}^{-1}(R) = S_k R^* S_k,$$

where S_k on $L^2(M_k)$ is the (in general unbounded) operator defined by $\hat{x} \mapsto \hat{x}^*$.

Proof. For $k = 0$

$$\mathcal{J}_{2}^{-1}(R)\hat{x} = Z \begin{pmatrix} R \end{pmatrix} \hat{x} = Z \begin{pmatrix} 0 \end{pmatrix} \left[\left(\sum_b x \otimes R(b) \right) \otimes b^* \right] = \sum_b E_N(x R(b)) b^*.$$

Now for any $R = c e_1 d \in M_1$,

$$\sum_b E_N(x R(b)) b^* = \sum_b E_N(x c E_N(db)) b^* = E_N(x c) d = \left(R^* \hat{x}^* \right)^* = S_0 R^* S_0 \hat{x}.$$

Hence $\mathcal{J}_{2}^{-1}(R) = S_0 R^* S_0$. Since $S^2 = 1$ we also have $\mathcal{J}_2(R) = S_0^* R^* S_0^*$. The general result follows, as described in the previous remark, by amplifying to the j-string case. \qed
Remark 2.2.25. This extends the result of Bisch and Jones \[4\] Prop 3.3 that $\mathcal{J}(R) = JR^*J$ in the finite index extremal II$_1$ case.

Corollary 2.2.26. *The shift map is also given by*

\[
sh(R) = \mathcal{J}_{2k+4}\mathcal{J}_{2k+2}(R) = S_{k+1}(S_kRS_k)S_{k+1}, \quad R \in N' \cap M_{2k+1}.
\]

Proof. The first equality follows from

and the second is then immediate by Prop 2.2.24.

Finally we show that our two definitions of the rotation agree.

Lemma 2.2.27. *The rotation defined in Corollary 2.2.19 agrees, in the case of a rigid C*-planar algebra coming from a finite index subfactor, with that in Definition 2.1.41.*

Proof. Simply draw the appropriate tangle for $\delta^2 E_{M_k}(v_{k+1}E_{M'}(xv_{k+1}))$. First note that v_k is given by

and hence

\[
\delta^2 E_{M_k}(v_{k+1}E_{M'}(xv_{k+1})) =
\]
2.2.3 Modular structure

Let \((Z^r, V)\) be a rigid \(C^*\)-planar algebra. We will extend \(Z\) to the full planar operad \(P\). Let \(T\) be a \(k\)-tangle with internal discs \(D_1, \ldots, D_n\). Take any planar isotopy \(h_t\) taking \(T\) to a rigid planar \(k\)-tangle \(T_0\). Let \(\theta_i\) be the amount of rotation of \(D_i\) under \(h_t\). Define

\[
Z(T) \left(v_1 \otimes_N \cdots \otimes_N v_n \right) = Z^r(T_0) \left(\Delta_{\sigma_1,k_1}^{-\theta_1/2\pi}(v_1) \otimes_N \cdots \otimes_N \Delta_{\sigma_n,k_n}^{-\theta_n/2\pi}(v_n) \right).
\]

Proposition 2.2.28. \(Z(T)\) is independent of the choice of \(h\) and \(T_0\).

Proof. We use the same argument as in Jones [16]. We can surround each internal disc \(D_i\) with a larger disc \(\tilde{D}_i\) such that for all \(t \in [0, 1]\) the images of these larger discs under \(h_t\) are disjoint and do not intersect any closed strings. Let \(x_i\) be the center of \(D_i\). Then there exists \(r > 0\) such that \(D(h_t(x_i), r) \subset h_t(D_i)^o\) for all \(t\). Define a rigid planar isotopy \(g\) in three steps

1. Radially shrink \(D_i\) to \(D(x_i, r)\) while keeping \(\mathbb{R}^2 \setminus \tilde{D}_i^o\) fixed.

2. Take \(h_t\) on \(\mathbb{R}^2 \setminus \tilde{D}_i^o\) and translation by \(h_t(x_i) - x_i\) on \(D(x_i, r)\) and interpolate in any way in between.

3. Radially expand \(D(x_i, r) + h_t(x_i) - x_i\) to \(h_1(D_i)\) while keeping \(\mathbb{R}^2 \setminus h_1(\tilde{D}_i)^o\) fixed.

Then \(Z^r(g^{-1}(T_0)) = Z^r(T_0)\), so following \(h\) with \(g^{-1}\) we may assume without loss of generality that \(h\) is the identity outside \(\tilde{D}_i^o\).

Suppose we have another such isotopy \(\tilde{h}\) taking \(T\) to a rigid planar tangle \(\til{T}_0\). Then the rotation of \(D_i\) under \(\til{h}\) is \(\til{\theta}_i = \theta_i + 2\pi l_i\) for some \(l_i \in \mathbb{Z}\).

\(\til{h}^{-1}\) followed by \(\til{h}\) is a planar isotopy taking \(T_0\) to \(\til{T}_0\) that is the identity outside \(\til{D}_i^o\) and that rotates \(D_i\) by \(2\pi l_i\). The mapping class group of diffeomorphisms of the annulus that are the identity on the boundary is generated by a single Dehn twist of \(2\pi\). Hence the difference between \(\til{T}_0\) and \(T_0\) is \(\Delta_{(\sigma, k)}^{l_i}\) inside \(D_i\), so

\[
\til{T}_0 = (T_0 \circ_1 \Delta_{(\sigma_1,k_1)}^{l_1}) \circ_2 \Delta_{(\sigma_2,k_2)}^{l_2} \cdots \circ_n \Delta_{(\sigma_n,k_n)}^{l_n},
\]

and hence

\[
Z^r(T_0) \left(\Delta_{(\sigma_1,k_1)}^{-\til{\theta}_1/2\pi}(v_1) \otimes_N \cdots \otimes_N \Delta_{(\sigma_n,k_n)}^{-\til{\theta}_n/2\pi}(v_n) \right) = Z^r(T_0) \left(\Delta_{(\sigma_1,k_1)}^{-\theta_1/2\pi}(v_1) \otimes_N \cdots \otimes_N \Delta_{(\sigma_n,k_n)}^{-\theta_n/2\pi}(v_n) \right)
\]

\[
= Z^r(T_0) \left(\Delta_{(\sigma_1,k_1)}^{-\theta_1/2\pi}(v_1) \otimes_N \cdots \otimes_N \Delta_{(\sigma_n,k_n)}^{-\theta_n/2\pi}(v_n) \right).
\]
Remark 2.2.29. Now that Z is well-defined, considering any two tangles T and T_0 connected by a planar isotopy that rotates the internal disc D_i by θ_i, we have

$$Z(T) \left(v_1 \otimes \cdots \otimes v_n \right) = Z(T_0) \left(\Delta_{(\sigma_1,k_1)}^{-\theta_1/2\pi} (v_1) \otimes \cdots \otimes \Delta_{(\sigma_n,k_n)}^{-\theta_n/2\pi} (v_n) \right).$$

The extended map Z is a mapping the set of all planar k-tangles, modulo rigid planar isotopy, to $\text{Hom}(V)$. We still need to establish that Z is an operad morphism.

Proposition 2.2.30. For $r \in \mathbb{R}$,

$$\left(\Delta_{(\sigma_0,k)} \right)^r Z(T) \left(v_1 \otimes \cdots \otimes v_n \right) = Z(T) \left(\left(\Delta_{(\sigma_1,k_1)} \right)^r v_1 \otimes \cdots \otimes \left(\Delta_{(\sigma_n,k_n)} \right)^r v_n \right).$$

Proof. Since $\left(\Delta_{(\sigma_1,k_1)} \right)^r \left(\Delta_{(\sigma_i,k_i)} \right)^{-\theta_i/2\pi} v_i = \left(\Delta_{(\sigma_1,k_1)} \right)^{-\theta_i/2\pi} \left(\Delta_{(\sigma_i,k_i)} \right)^r v_i$, it suffices to prove the result for $T \in \mathbb{P}^r$. Recall that $\left(\Delta_{(\sigma_1,k_1)} \right)^r = (z_{(\sigma_1,k_1)})^{-r/2} (\cdot) (z_{(\sigma_1,k_1)})^{r/2}$ and hence it suffices to check the result for basic tangles, with Δ^r replaced by $(z_{(\sigma,k)})^{-r/2} (\cdot) (z_{(\sigma,j)})^{r/2}$ for a (σ,j,k)-tangle. Assume that $\sigma = +$. Recall that $z_k = w_1 \cdots w_k$ and that the w_i’s commute, so $z_k^s = w_1^s \cdots w_k^s$. Let $s = r/2$. Then
so $z^s_{p+2}TI_{2i-1,p}z^s_p = TI_{2i-1,p}$ and similarly $z^s_{p+2}TI_{2i,p}z^s_p = TI_{2i,p}$. Taking adjoints gives the result for $TE_{k,p}$. For $TS_{k,l,p}$ the result is trivial. The result for $(-, k)$-tangles follows by symmetry. □

Corollary 2.2.31. Z is an operad morphism: $Z (S \circ_i T) = Z(S) \circ_i Z(T)$.

Definition 2.2.32. We call the map Z the modular extension of the rigid planar algebra (Z^r, V).

Remark 2.2.33. The modular extension (Z, V) is not a planar algebra because tangles that are planar isotopy equivalent need not define the same linear maps, but the difference comes down to rotations of the interior discs and is thus controlled by the modular operators Δ. In turn all the modular operators are controlled by w, the Radon-Nikodym derivative of ϕ with respect to ϕ' on V_1^+.

Corollary 2.2.34. If ϕ is tracial (for example in the case of $(Z^{(N,M,E)}, V^{(N,M,E)})$ for a finite index II_1 subfactor with trace-preserving conditional expectation E) then $\Delta = 1$, ϕ' is tracial and Z is invariant under full planar isotopy so that we have a true planar algebra structure on the standard invariant.

2.2.4 From rigid to spherical and back again

From a rigid C*-planar algebra we have seen how to form the modular extension where we are allowed to rotate the boxes in a tangle but must pay a price in terms of Δ for doing so. We will now see how to modify Z to obtain a spherical C*-planar algebra.

Let (Z^r, V) be a rigid C*-planar algebra, (Z, V) its modular extension. Given a planar tangle T and a string $s : [0, 1] \rightarrow \mathbb{R}^2$ in T define $\Theta(s)$ to be the total angle along s, with s parameterized so that s bounds a black region on its right. $\Theta(s)$ may be computed as $\Theta(s) = \int_0^1 \frac{\phi'(t)}{\pi} dt$ where $\phi(t)$ is the angle at $s(t)$, or as $\Theta(s) = \int_0^L \kappa dl$ where L is the length of the curve, κ the curvature and dl the length element. For example the string below has $\Theta(s) = \pi$.

![Diagram](image-url)
For a planar tangle T presented using boxes, define a *spherically averaged tangle* $\mu(T)$ to be a tangle obtained from T as follows: on every string s insert a $(+,1)$-box containing $w^{-\Theta(s)/4\pi}$. Then define $Z^{\text{sph}} : \mathbb{P} \to \text{Hom}(V)$ by $Z^{\text{sph}}(T) = Z(\mu(T))$.

Note that $\mu(T)$ is not unique, but $T \mapsto Z(\mu(T))$ is well-defined because the position of the inserted $(+,1)$-box does not affect $Z(\mu(T))$. To see this observe that moving the box along the string may change the angle of the box by some amount θ, but

$$\Delta_{+,1}^{-\theta/2\pi} \left(w^{-\Theta(s)/4\pi} \right) = w^{-\theta/2\pi} w^{-\Theta(s)/4\pi} w^{\theta/2\pi} = w^{-\Theta(s)/4\pi}.$$

Remark 2.2.35. Note that it is important that we use boxes rather than discs at this point. If we defined Z^{sph} as above, but used discs rather than boxes, we would introduce a multitude of complications. For example the multiplication tangle would be different under Z^{sph} and would not be invariant under the standard embeddings of V_i in V_{i+1}. Of course we could formulate a definition in terms of discs, the essence of which would be using not $\Theta(s)$ but the difference between $\Theta(s)$ and what it “ought to be” for a string joining those two points, but the book-keeping is much cleaner with boxes.

Theorem 2.2.36. (Z^{sph},V) is a spherical C^*-planar algebra with $\delta^{\text{sph}} = \lambda \delta$ where $\lambda = \varphi(w^{1/2})$.

Proof. Z^{sph} is invariant under rigid planar isotopy since the total angle along a string does not change under rigid planar isotopy. If the initial angle is θ_{init} and the final angle is θ_{fin} then the total angle is $\theta_{\text{fin}} - \theta_{\text{init}} + 2\pi l$ for some $l \in \mathbb{Z}$. Under a rigid isotopy θ_{init} and θ_{fin} are constant. Since the total angle must vary continuously under isotopy, the total angle must also be constant.

Z^{sph} is an operad morphism because, when we compose tangles T and S to form $T \circ_i S$, the total angle is additive for strings from T and S that meet at ∂D_i to form a single string in $T \circ_i S$. Multiplying powers of w is of course also additive in the exponent. It is worth noting at this point that we are using the fact that strings meet discs normally.

(Z^{sph},V) is in fact a rigid planar $*$-algebra. Reflection changes orientation and in doing so reverses the direction in which the string is parameterized, but each of these two changes multiplies the total angle by -1, so there no net change to the total angle.

Let $x \in V_1^+$. Then
Thus $\Phi_{\text{sph}} = (\Phi_{\text{sph}})'$ and so $\delta_{1}^{\text{sph}} = \Phi_{\text{sph}}(1) = (\Phi_{\text{sph}})'(1) = \delta_{2}^{\text{sph}}$. In addition all Radon-Nikodym derivatives are 1, $\Delta = 1$ and φ_{sph} is tracial. $\text{Tr} = \Phi_{\text{sph}}$ is positive definite because

$$
\text{Tr}(x^*x) = Z \begin{pmatrix}
\frac{w}{2} \\
x^*x
\end{pmatrix} = Z \begin{pmatrix}
\frac{w}{2} \\
x^*x
\end{pmatrix} = \Phi\left(\frac{w}{2}x^*x\right),
$$

where we have used the fact that w^r can move along strings without changing Z. Note that $\text{Tr}(x^*x) = 0$ iff $xw^{1/4} = 0$ iff $x = 0$. Hence (Z_{sph},V) is a spherical C^*-planar algebra.

Finally note that $\delta_{\text{sph}} = \Phi_{\text{sph}}(1) = \Phi\left(\frac{w}{2}\right) = \delta\varphi\left(\frac{w}{2}\right) = \lambda\delta$.

\textbf{Corollary 2.2.37.} Let (N,M,E) be a finite index subfactor. Then there exists an extremal Π_1 subfactor $\widetilde{N} \subset \widetilde{M}$ with a lattice of higher relative commutants that is algebraically isomorphic to that of (N,M,E) (although of course the conditional expectations and Jones projections may differ).
Proof. Let \((Z,V)\) be the rigid planar algebra constructed on the standard invariant of \((N,M,E)\). Then apply Popa [28] in the form of Jones [16] Theorem 4.3.1 to \((Z^{\text{sph}},V)\) to obtain the extremal II\(_1\) subfactor \(\tilde{N} \subset \tilde{M}\).

Remark 2.2.38. It is well known that, algebraically (i.e. without reference to the conditional expectations), all standard invariants of finite index subfactors can be realized using II\(_1\) subfactors. One can tensor \(N \subset M\) with a III\(_1\) factor (this leaves the standard invariant the same) to obtain a III\(_1\) subfactor. Taking the crossed product with the modular group one obtains a finite index inclusion of II\(_\infty\) factors that splits as a II\(_1\) subfactor tensored with a I\(_\infty\) factor. Izumi [12] shows that this type II inclusion has the same principal graph, and hence the same algebraic standard invariant, as the original III\(_1\) inclusion. We thank Dietmar Bisch for bringing this to our attention.

Remarks 2.2.39. The idea of the construction of \(Z^{\text{sph}}\) is to insert powers of \(w\) to cancel the effects of rotations (implemented by \(\Delta\)). One might ask what would happen to a (non-spherical) \(C^*\)-planar algebra under this procedure, since \(\Delta = 1\) and we already have full planar isotopy invariance. Certainly we change the action of tangles, but the only additional isotopy invariance we gain is the ability to move strings past the point at infinity. Let us examine the effects of isotopy on \(Z^{\text{sph}}\) in this case.

Suppose we rotate a box labeled with \(x\) by an angle \(\theta\). The change in total angle for the upper strings is the negative of the corresponding change for the lower strings.

Hence there is no change in \(x\) because \(z_k^{-\theta/4\pi}xz_k^{\theta/4\pi} = x\) (since \(z_k\) is central in \(V_k\)).

Considering strings alone, rigid planar isotopies to not change the total angle. Only spherical isotopy moving a string past the point at infinity can change the total angle. For example
The total angle changes by -4π, so the difference in Z^{sph} is the insertion of an additional w^1 which we know is the necessary correction to change φ' to φ.

We can reverse the construction of (Z^{sph}, V, w) from (Z, V) as we see below. Note that in (Z^{sph}, V, w) we have $\text{tr}(w^{1/2}) = \lambda^{-1} \varphi'(w^{-1/2}w^{1/2}) = \lambda^{-1}$ and $\text{tr}(w^{-1/2}) = \lambda^{-1} \varphi(w^{1/2}w^{-1/2}) = \lambda^{-1}$.

Theorem 2.2.40. Let (Z, V) be a spherical C*-planar algebra with modulus δ^{sph} and let w be a positive, invertible element of V_1^+ with $\text{tr}(w^{1/2}) = \text{tr}(w^{-1/2}) = \lambda^{-1}$.

For a planar tangle T define the $\nu(T)$ to be the tangle obtained from T as follows: on every string s insert a $(+, 1)$-box containing $w^{\Theta(s)/4\pi}$. Define $Z^{\text{mod}} : \mathbb{P}^r \to \text{Hom}(V)$ by $Z^{\text{mod}}(T) = Z(\nu(T))$. Let Z^{rigid} be the restriction of Z^{mod} to rigid planar tangles.

Then (Z^{rigid}, V) is a rigid C*-planar algebra with $w^{\text{rigid}} = w$ and $\delta = \lambda \delta^{\text{sph}}$.

Proof. Note that the position of the inserted $(+, 1)$-box on a string does not affect Z because (Z, V) is spherical. As in the proof of Theorem 2.2.36 we have: (i) rigid planar isotopy does not change the total angle along a string; (ii) the total angle is additive under composition; (iii) the total angle in invariant under reflection. Hence (Z^{rigid}, V) is a rigid *-planar algebra.

Let $\text{Tr} = \Phi^{(Z, V)}$ and $\text{tr} = \varphi^{(Z, V)}$. As in Theorem 2.2.36 $\Phi^{\text{rigid}}(x) = \text{Tr}(w^{-1/2}x)$ which is positive definite and $\delta_1^{\text{rigid}} = \Phi^{\text{rigid}}(1) = \text{Tr}(w^{-1/2}x) = \lambda^{-1} \delta^{\text{sph}} \text{tr}(w^{-1/2}) = \lambda^{-1} \delta^{\text{sph}}$. Similarly $\delta_2^{\text{rigid}} = \delta^{\text{sph}} \text{tr}(w^{1/2}) = \lambda^{-1} \delta^{\text{sph}}$.

Finally, $(\Phi^{\text{rigid}})'(x) = \text{Tr}(w^{1/2}x) = \text{Tr}(w^{-1/2}(wx)) = \Phi^{\text{rigid}}(wx)$ so $w^{\text{rigid}} = w$. \square

Remarks 2.2.41. The condition $\text{tr}(w^{1/2}) = \text{tr}(w^{-1/2})$ is only used to make sure that $\delta_1^{\text{rigid}} = \delta_2^{\text{rigid}}$. Given any positive invertible w in V_1^+ we can scale w by $\text{tr}(w^{-1/2})/\text{tr}(w^{1/2})$ to obtain \overline{w} with $\text{tr}(\overline{w}^{1/2}) = \text{tr}(\overline{w}^{-1/2})$.

The two constructions $(Z, V) \mapsto (Z^{\text{sph}}, V, w)$ and $(Z, V, w) \mapsto (Z^{\text{rigid}}, V)$ are obviously inverse to each other.

2.2.5 Planar algebras give subfactors

Consider the two main results of the previous section. Starting with a rigid C*-planar algebra (Z^*, V) we can construct the associated spherical C*-planar algebra (Z^{sph}, V, w) with distinguished element w and then construct the rigid C*-planar algebra $((Z^{\text{sph}})^{\text{rigid}}, V)$.
This two part construction simply reproduces \((Z^r, V)\). By Popa’s standard lattice result \cite{28}, applied in Jones \cite{16} Theorem 4.3.1, there exists a subfactor with standard invariant \((Z^{\text{sph}}, V)\). If we can “lift” the second part of the planar algebra construction to the subfactor level then we will have a subfactor with \((Z^{(N,M,E)}, V^{(N,M,E)}) \cong (Z^r, V)\).

\[
(N, M, E_{\text{tr-preserving}}) \xrightarrow{?} (N, M, ?) \\
\downarrow \quad \downarrow \\
(Z^r, V) \rightarrow (Z^{\text{sph}}, V, w) \rightarrow ((Z^{\text{sph}})^{\text{rigid}}, V) \cong (Z^r, V)
\]

Theorem 2.2.42. Let \((Z, V)\) be a rigid C*-planar algebra. Then there exists a finite index \(\text{II}_1\) subfactor \((N, M, E)\) such that \((Z^{(N,M,E)}, V) \cong (Z, V)\). In other words, there exists an isomorphism \(\Psi : V \to V^{(N,M,E)}\) such that for all \(T \in \mathbb{P}^r\),

\[
\left(Z^{(N,M,E)}(T) \right) \circ (\Psi_{(\sigma_1, k_1)} \otimes \cdots \otimes \Psi_{(\sigma_n, k_n)}) = \Psi_{(\sigma_0, k)} \circ Z(T).
\]

Proof As noted in the discussion preceding the statement of the theorem, we can assume that we have an extremal, finite-index \(\text{II}_1\) subfactor \(N \subset M\) giving rise to the associated spherical C*-planar algebra \((Z, V) = (Z^{(N,M,E_N)}, V^{(N,M,E_N)})\), where \(E_N\) is the trace-preserving conditional expectation. We also have a positive, invertible element \(w \in N' \cap M = V_1^+\) satisfying \(\text{tr}(w^{1/2}) = \text{tr}(w^{-1/2}) = \lambda^{-1}\) for some \(\lambda > 0\). We want to show that the rigid planar algebra \((Z^r, V)\) constructed using Theorem 2.2.40 can be realized as \((Z^{(N,M,E)}, V^{(N,M,E)})\) for some new conditional expectation \(\overline{E} : M \to N\).

Let \(w_i\) denote the Radon-Nikodym derivatives in \((Z^r, V)\). From Theorem 2.2.40, \(w_1 = w\). Recall from Lemma 2.2.14 that

\[
w_2 = Z^r \left(\begin{array}{c}
|w^{-1/4}|
\end{array} \right) = Z \left(\begin{array}{c}
|w^{-1/4}|
\end{array} \right) = Z \left(\begin{array}{c}
|w|
\end{array} \right)
\]

where we have used the fact that the extra \(w^{-1/4}\) and \(w^{1/4}\) terms, involved in going from \(Z^r\) to \(Z\), will cancel.
In general

\[
\begin{align*}
 w_{2i} &= Z \begin{pmatrix} \cdots & w \end{pmatrix} \\
 w_{2i+1} &= Z \begin{pmatrix} \cdots & \bar{w} \end{pmatrix}
\end{align*}
\]

By Proposition 2.2.24 for \(R \in N' \cap M_{2k+1} \)

\[
J_{2k+2}(R) = Z \begin{pmatrix} \cdots & R \end{pmatrix} = Z \begin{pmatrix} \cdots & \delta \end{pmatrix} = J_k R^* J_k
\]

where the thick string as usual represents \(2k + 2 \) regular strings. So, with \(R = w^{-1} \) or \(\bar{w}^{-1} \) and suppressing mention of \(Z \),

\[
J_{k-1} w_{k-1} J_{k-1} = J \begin{pmatrix} \cdots & R \end{pmatrix} = \begin{pmatrix} \cdots & H \end{pmatrix} = w_{k+1}
\]

Lemma 2.2.43. Let \(N \subset M \) be a II_1 subfactor with index \([M : N] = (\delta^{\text{sph}})^2\) and let \(w_1 = w \in N' \cap M \) be a positive invertible element with \(\text{tr}(w^{1/2}) = \text{tr}(w^{-1/2}) = \lambda^{-1} \), for some \(\lambda > 0 \). Let \(E_N \) denote the trace-preserving conditional expectation from \(M \) onto \(N \) and define \(\overline{E} : M \to N \) by

\[
\overline{E}(x) = \lambda E_N \left(w^{-1/2} x \right).
\]

Then \(\overline{E} \) is a conditional expectation with \(\text{Ind}(\overline{E}) = \delta^2 \), where \(\delta = \lambda^{-1} \delta^{\text{sph}} \).

Take the state \(\overline{\varphi} = \text{tr} \) on \(N \) and extend it to \(M \) by \(\overline{\varphi} \circ \overline{E} = \lambda \text{tr} (w^{-1/2} \cdot) \). For \(x \in M \) write \(x \) for the standard action on \(L^2(M, \text{tr}) \) by left multiplication. Write \(\pi(x) \) for the action on \(L^2(M, \overline{\varphi}) \) by left multiplication. Let \(\overline{\sigma}_1 \) be the projection in \(\mathcal{B}(L^2(M, \overline{\varphi})) \) given by \(\overline{E} \). Let \(\overline{M}_1 \) denote the result of the basic construction applied to \((N, M, \overline{E}) \), i.e.

\[
\overline{M}_1 = \overline{J}_0 \pi(N) \overline{J}_0 = \pi(M) \overline{\sigma}_1 \pi(M).
\]
Then there exists a unitary operator $U : L^2(M, \text{tr}) \rightarrow L^2(M, \overline{\varphi})$ such that

1. $\pi(x) = U x U^*$.
2. $U^* M_1 U = M_1$.
3. $U^* E_M^M (U \cdot U^*) U = \lambda E_M \left(w_2^{-1/2} \right)$, where $w_2 = J_{L^2(M, \text{tr})} w^{-1} J_{L^2(M, \text{tr})}$.

Proof. Note that for any $y \in N' \cap M$, $E_N(xy) = E_N(yx)$ because for all $n \in N$

$$\langle xy, n \rangle = \langle x, ny^* \rangle = \langle x, y^* n \rangle = \langle yx, n \rangle.$$

Thus $E(x) = \lambda E_N \left(w^{-1/2} \right) = \lambda E_N \left(w^{-1/4} x w^{-1/4} \right)$ is positive. E is N-linear on the left and the right, and $E(1) = \lambda E_N \left(w^{-1/2} \right) = \lambda \text{tr}(w^{-1/2}) = 1$. Hence E is a conditional expectation.

Take tr as the state on N. Then the state $\overline{\varphi}$ on M is

$$\overline{\varphi}(x) = \text{tr} \left(E(x) \right) = \lambda \text{tr} \left(E_N \left(w^{-1/2} \right) \right) = \lambda \text{tr}(w^{-1/2}).$$

Define the unitary operator $U : L^2(M, \text{tr}) \rightarrow L^2(M, \overline{\varphi})$ by defining a bijection from M to M by $x \mapsto \lambda^{-1/2} x w w^{-1/4}$ and noting that this map is isometric

$$\| \lambda^{-1/2} x w w^{-1/4} \|_{L^2(M, \overline{\varphi})}^2 = \lambda^{-1} \overline{\varphi} \left(w^{1/4} x^* x w^{-1/4} \right) = \text{tr} \left(w^{-1/2} w^{1/4} x^* x w^{-1/4} \right) = \text{tr}(x^* x) = \| x \|_{L^2(M, \text{tr})}^2.$$

Observe that $U^* = U^{-1} : x \mapsto \lambda^{1/2} x w^{1/4}$ and $U x U^* = \pi(x)$ for $x \in M$. Also,

$$U^* \overline{\text{e}}_1 U : x \mapsto \lambda^{1/2} E \left(\lambda^{-1/2} x w^{1/4} \right) w^{-1/4} = \lambda w^{-1/4} E \left(x w^{1/4} \right) = \lambda w^{-1/4} E_N \left(w^{-1/2} x w^{1/4} \right) = \lambda w^{-1/4} E_N \left(w^{-1/4} x \right),$$

so $U^* \overline{\text{e}}_1 U = \lambda w^{-1/4} e_1 w^{-1/4}$. Thus, if $\{b\}$ be a basis for M over N with respect to E_N, then $\overline{b} = \lambda^{-1/2} b w^{1/4}$ is a basis for M over N with respect to E. Now let us compute the index
of E. Using Lemma 2.1.20

\[
\text{Ind}(E) = E^{-1}(1) = E^{-1} \left(\sum b \bar{c}_1 \bar{b}^* \right) = \sum E^{-1} \left(\theta^{\pi} \left(\bar{b}, \bar{b} \right) \right) = \sum \theta^{\pi} \left(\bar{b}, \bar{b} \right) = \sum \bar{b} b^* = \lambda^{-1} \sum b w^{1/2} b^* = \lambda^{-1} E^{-1}(w^{1/2}) = \lambda^{-1} \left(\delta_{\text{sph}} \right)^2 \text{tr}(w^{1/2}) = \lambda^{-2} \left(\delta_{\text{sph}} \right)^2 = \delta^2.
\]

Now $M_1 = \pi(M) \bar{c}_1 \pi(M)$ so

\[
U^* M_1 U = \pi(M) U^* \bar{c}_1 U \pi(M) = M \left(\lambda w^{-1/4} e_1 w^{-1/4} \right) M = M e_1 M = M_1.
\]

To show (3) note that for $a, b \in M$, $E_M(a \bar{c}_1 b) = \frac{1}{\delta^2} ab$ and

\[
\lambda E_M \left(w_2^{-1/2} \left(U^* a \bar{c}_1 b U \right) \right) = \lambda^2 E_M \left(w_2^{-1/2} a w^{-1/4} e_1 \right) w^{-1/4} b = \lambda^2 E_M \left(a w^{-1/4} e_1 w_2^{-1/2} \right) w^{-1/4} b = \lambda^2 a w^{-1/4} \left(e_1 w_2^{-1/2} \right) w^{-1/4} b
\]

where we have used the fact that $w_2 \in M' \cap M_1$ to write $E_M (w^r \cdot) = E_M (\cdot w^r)$.

Now

\[
E_M \left(e_1 w_2^{-1/2} \right) = \frac{1}{(\delta_{\text{sph}})^2} Z \left(\begin{array}{ccc}
\frac{1}{2} & b_1 + b_2 \\
\frac{1}{2} & b_1
\end{array} \right)
\]

So

\[
\lambda E_M \left(w_2^{-1/2} \left(U^* a \bar{c}_1 b U \right) \right) = \left(\frac{\lambda}{\delta_{\text{sph}}} \right)^2 a w^{-1/4} w^{1/2} w^{-1/4} b = \frac{1}{\delta^2} ab.
\]

Lemma 2.2.43 says that we have an isomorphism of the (short) towers which fixes M and is given by
Corollary 2.2.44. There exists an isomorphism of towers $E : \{M_i\}_{i \geq -1} \rightarrow \{M_i\}_{i \geq -1}$ such that

1. $E|_{M_i} : M_i \rightarrow M_i$ is a $*$-algebra isomorphism.
2. $E \circ E_{M_i} \circ E^{-1} = \lambda E_{M_i} \left(w_{i+1}^{-1/2} \cdot \right)$ where $w_1 = w$, $w_{i+1} = J_{i-1} w_i J_{i-1}$.

Proof. By Lemma 2.2.43 we have isomorphism up to $i = 1$ given by $E_1 = U^* \cdot U$. Suppose we have such an isomorphism E_i at level i. Recalling that the basic construction is independent of the state, take the state $\phi = \text{tr} \circ E_i$ on M_{i-1}. Then

$$
\begin{array}{ccc}
(M_{i-1}, \phi) & \subset & E_{M_{i-1}} \\
\downarrow & \cong via E_i \\
(M_{i-1}, \text{tr}) & \subset & (E_{M_{i-1}})^{\sim} M_i
\end{array}
$$

So E_i extends to an isomorphism E_i^{ext} of the basic constructions. Combining this with Lemma 2.2.43 we have
So we let $E_{i+1} = \text{Ad}(U^*_i) \circ E^\text{ext}_i$ and note that E_{i+1} restricts to E_i on \overline{M}_i. E is just the direct limit of the E_i’s. \hfill \qed

Restrict E to $N' \cap \overline{M}_i$ to obtain an isomorphism $\Psi : V^{(N,M,\overline{E})} \to V^{(N,M,E_N)} = V$. Let \overline{Z} be defined by

$$\overline{Z}(T) = \Psi \circ \left(Z^{(N,M,E)}(T) \right) \circ \left(\Psi_{(\sigma_1,k_1)}^{-1} \otimes \cdots \otimes \Psi_{(\sigma_n,k_n)}^{-1} \right).$$

We want to show that \overline{Z} is just the rigid C^*-planar algebra Z^r. By the uniqueness part of Theorem 2.2.20 it suffices to check that properties (4) through (7) are true. Property (4) is obvious because Ψ is an algebra isomorphism and the multiplication tangles are unchanged by the constructions of Section 2.2.4.

Before proving the other properties, consider the Radon-Nikodym derivatives. On $N' \cap M$, $\overline{\varphi} = \overline{E} = \lambda \text{tr} \left(w^{-1/2}\cdot\right)$. Meanwhile

$$\overline{E}'(x) = \frac{1}{\delta^2} \sum \overline{b}xb = \frac{\lambda^{-1}}{\delta^2} \sum bw^{1/4}xw^{1/4}b^* = \left(\frac{\delta^{\text{sph}}}{\delta}\right)^2 \lambda^{-1}E' \left(w^{1/4}xw^{1/4}\right) = \lambda E' \left(w^{1/2}x\right) \quad (2.9)$$

so that $\overline{\varphi}'(x) = \lambda \text{tr}' \left(w^{1/2}x\right) = \lambda \text{tr} \left(w^{1/2}x\right)$ and hence $w^{(N,M,\overline{E})} = w$.

Similarly, using part 2 of Corollary 2.2.44 and the construction of a basis in Lemma 2.2.33 we obtain $\Psi \left(w_k^{(N,M,\overline{E})} \right) = w_k$. Thus the Radon-Nikodym derivatives for \overline{Z} are the same as those for Z^r. Now
(5) Consider k odd (for k even just use \tilde{w} in place of w in the second diagram).

\[
\begin{pmatrix}
\vdots \\
k & k+1 \\
\vdots
\end{pmatrix}
\overset{\text{Z}^{\text{sp}}}{\longrightarrow}
\begin{pmatrix}
\vdots \\
\frac{1}{w_k^{1/4}} & \frac{1}{w_{k+1}^{1/4}} \\
\vdots
\end{pmatrix}
= \begin{pmatrix}
\vdots \\
\frac{1}{w_k} & \frac{1}{w_{k+1}} \\
\vdots
\end{pmatrix}
\]

\[
= \delta w_k^{1/4} \Psi (\tau_k) w_k^{1/4}
= \delta \lambda w_k^{1/4} \left(w_k^{-1/4} e_k w_k^{-1/4} \right) w_k^{1/4}
= \delta^{\text{sp}} e_k
\]

(6) Consider k even (for k odd use \tilde{w} in place of w in the second diagram).

\[
\begin{pmatrix}
\vdots \\
x \\
\vdots
\end{pmatrix}
\overset{\text{Z}^{\text{sp}}}{\longrightarrow}
\begin{pmatrix}
\vdots \\
\frac{1}{w_k^{1/2}} \\
\vdots
\end{pmatrix}
= \begin{pmatrix}
\vdots \\
x \\
\vdots
\end{pmatrix}
\]

\[
= \delta \Psi \left(E_{M_k-1}^{-1} \left(\Psi^{-1} \left(w_k^{1/2} x \right) \right) \right)
= \delta \Psi \left(w_k^{-1/2} \left(w_k^{1/2} x \right) \right)
= \delta^{\text{sp}} E_{M_k-1} \left(x \right)
\]

using Corollary 2.2.44 part 2.

(7)

\[
\begin{pmatrix}
\vdots \\
x \\
\vdots
\end{pmatrix}
\overset{\text{Z}^{\text{sp}}}{\longrightarrow}
\begin{pmatrix}
\vdots \\
\frac{1}{w_k^{1/2}} \\
\vdots
\end{pmatrix}
= \begin{pmatrix}
\vdots \\
x \\
\vdots
\end{pmatrix}
\]

\[
= \delta \Psi \left(E' \left(\Psi^{-1} \left(w_{-1/2} x \right) \right) \right)
= \delta \Psi \left(w^{1/2} \left(w_{-1/2} x \right) \right)
= \delta^{\text{sp}} E' \left(x \right)
\]

using equation [2.9] in the third line. Hence $\overline{Z} = Z'$ and Ψ is an isomorphism of (Z', V) with $(Z^{(N,M,E)}, V^{(N,M,E)})$.

□
2.3 Finite index II_1 subfactors

Here we consider the case of a finite index II_1 subfactor $N \subset M$ with the unique trace preserving conditional expectation E_N. Recall,

Definition 2.3.1 (Extremal). A finite index II_1 subfactor $N \subset M$ is called *extremal* if the unique traces tr' and tr on N' and M respectively coincide on $N' \cap M$ (where N' is calculated on any Hilbert space on which M acts with finite M-dimension).

Remark 2.3.2. Note that in particular an irreducible finite index II_1 subfactor ($N' \cap M = \mathbb{C}$) is extremal. In [24] and [25] Pimsner and Popa show that if $N \subset M$ is extremal then $\text{tr}' = \text{tr}$ on all $N' \cap M_i$.

We will show that the two rotations defined in Huang [11] are the same if and only if the subfactor is extremal, and illuminate the connection between these two rotations in the general case. Our approach will yield a new proof of the periodicity of the rotation and provide the correct formulation to generalize to the infinite index II_1 case in Chapter 3.

Motivated by the relationship between the two rotations, we produce a two-parameter family of rotations. We conclude with a collection of results on general finite index II_1 subfactors including a new proof of some of Pimsner and Popa’s characterizations of extremality in [24].

2.3.1 Huang’s two rotations for a nonextremal II_1 subfactor

In [11] Huang defines two rotations on the standard invariant of a finite index II_1 subfactor, shows that each is periodic and conjectures that the two are equal. One is the rotation ρ_k defined in [2.1.41] The other is defined as follows:

Definition 2.3.3. Define $\tilde{\rho}_k : M_k \to N' \cap M_k$ by defining its action on basic tensors $x = x_1 \otimes_N x_2 \otimes_N \cdots \otimes_N x_{k+1}$ as

$$
\tilde{\rho}_k(x) = P_c \left(x_2 \otimes_N x_3 \otimes_N \cdots \otimes_N x_{k+1} \otimes_N x_1 \right),
$$

where P_c is the orthogonal projection onto the N-central vectors in $L^2(M_k, \text{tr})$, which is just the finite dimensional subspace $N' \cap M_k$. P_c above could thus be replaced by $E_{N' \cap M_k}$, the unique trace-preserving conditional expectation from (M_k, tr) to $(N' \cap M_k, \text{tr})$.
Remark 2.3.4. In the extremal case Jones [16] shows that $\rho = \tilde{\rho}$ and periodicity of ρ follows from that of $\tilde{\rho}$. As we have already mentioned, in the nonextremal case Huang [11] shows that ρ and $\tilde{\rho}$ are periodic.

We begin by formulating another equivalent definition of the rotation ρ.

Lemma 2.3.5. For $x \in N' \cap M_k$,

$$\hat{\rho} = \sum_{b \in B} R_b^*(L_b^*)^* \hat{x},$$

where $L_b, R_b : L^2(M_{k-1}, tr) \rightarrow L^2(M_k, tr)$ by $L_b \xi = \hat{b} \otimes_N \xi$ and $R_b \xi = \xi \otimes_N \hat{b}$.

Proof. From 2.1.18, $(L_b)^* (\hat{c} \otimes_N \eta) = (L_b)^* L_b \eta = E_N(b^* c) \eta$ (for $\eta \in L^2(M_{k-1})$). Hence

$$\rho_k(x) = \sum_{b \in B} \sum_i E_N(b x^{(i)}_1) x^{(i)}_2 \otimes_N \cdots \otimes_N x^{(i)}_{k+1} \otimes_N b^*$$

$$= \sum_{b \in B} R_b^* (L_b^*)^* x.$$

Proposition 2.3.6. For all $x \in N' \cap M_k$ and for all $y_i \in M$,

$$\langle \rho_k(x), y_1 \otimes_N y_2 \otimes_N \cdots \otimes_N y_{k+1} \rangle = \langle x, y_{k+1} \otimes_N y_1 \otimes_N \cdots \otimes_N y_k \rangle$$

where the inner product is that on $L^2(M_k, tr)$.

Proof.

$$\langle \rho_k(x), y \rangle = \sum_b \langle x, L_b^* (R_b^*)^* y \rangle = \sum_b \langle x, b^* \otimes_N y_1 \otimes_N \cdots \otimes_N y_k E_N(y_{k+1} b) \rangle$$

$$= \sum_b \langle x E_N(y_{k+1})^* b^* \otimes_N y_1 \otimes_N \cdots \otimes_N y_k \rangle = \sum_b \langle E_N(y_{k+1})^* x, b^* \otimes_N y_1 \otimes_N \cdots \otimes_N y_k \rangle$$

$$= \sum_b \langle x, E_N(y_{k+1}) b^* \otimes_N y_1 \otimes_N \cdots \otimes_N y_k \rangle = \langle x, y_{k+1} \otimes_N y_1 \otimes_N \cdots \otimes_N y_k \rangle.$$

Corollary 2.3.7. ρ_k is periodic, $(\rho_k)^{k+1} = \text{id}$. On $L^2(N' \cap M_k, tr)$ $\tilde{\rho}_k = (\rho_k^{-1})^*$ (and hence $\tilde{\rho}_k$ is also periodic, $(\tilde{\rho}_k)^{k+1} = \text{id}$).
Corollary 2.3.8. \(\tilde{\rho}_0 = \rho_0 = \text{id} \) and for \(k \geq 1 \) and \(y \in N' \cap M_k \), \(\tilde{\rho}_k(y) = \rho_k(y)z_1 = \rho_k(z_1^{-1}y) \) (recall \(z_1 \) is the Radon-Nikodym derivative of \(\text{tr}' \) with respect to \(\text{tr} \) on \(N' \cap M_1 \), so \(\text{tr}'(x) = \text{tr}(z_1x) \) for all \(x \in N' \cap M_1 \)).

Proof. Prop 2.3.6 implies that \((\rho_k(x^*))^* = \rho_k^{-1}(x) \) for \(x \in N' \cap M_k \). To see this note that for \(y = y_1 \otimes_N \cdots \otimes_N y_{k+1} \),

\[
\langle \rho_k(x^*), y \rangle = \left\langle y_{k+1}^* \otimes_N y_k^* \cdots \otimes_N y_1^*, \rho_k(x^*) \right\rangle = \left\langle y_1^* \otimes_N y_{k+1}^* \otimes_N \cdots \otimes_N y_2^*, x^* \right\rangle \]

\[
= \left\langle x, y_2^* \otimes_N \cdots \otimes_N y_{k+1} \otimes_N y_1 \right\rangle = \langle \rho_k^{-1}(x), y \rangle.
\]

Let \(y \in N' \cap M_k \). Then, writing a thick string to represent \(k - 1 \) regular strings,

\[
\delta^{k+1} \text{tr}(x^* \tilde{\rho}_k(y)) = \delta^{k+1} \langle \tilde{\rho}_k(y), x \rangle = \delta^{k+1} \langle y, \rho_k^{-1}(x) \rangle = \delta^{k+1} \langle y, (\rho_k(x^*))^* \rangle
\]

\[
= \delta^{k+1} \text{tr}(\rho_k(x^*)y)
\]

Hence \(\tilde{\rho}_k(y) = \rho_k(y)z_1 = \rho_k(z_1^{-1}y) \). \(\square \)
2.3.2 A two-parameter family of rotations

In fact we can extend the relationship between ρ and $\tilde{\rho}$ to define a two-parameter family of rotations (periodic automorphisms of the linear space $N' \cap M_k$ of period $k + 1$).

Definition 2.3.9. For $r, s \in \mathbb{R}$ define $\rho_k^{(r,s)} : N' \cap M_k \to N' \cap M_k$ by

$$\rho_k^{(r,s)}(x) = w_{k-2}^r \rho_k(x) w_{-1,1}^s,$$

where (recall) $w_{i,j}$ is the Radon-Nikodym derivative of tr' with respect to tr on $M_i' \cap M_j$.

Proposition 2.3.10. $\left(\rho_k^{(r,s)}\right)^{k+1} = id$.

Proof.

First note that for k odd (so an even number of strings),

For k even just switch w^r and \tilde{w}^r (resp. w^{-r} and \tilde{w}^{-r}).

We could describe $\rho_k^{(r,s)}$ by saying that every time we pull a string down on the left-hand side we put w^s or \tilde{w}^s (whichever makes sense) on the end of the string away from
the central box, or alternatively \tilde{w}^{-s} or w^{-s} at the end of the string near the box. On the right-hand side we put w^r or \tilde{w}^r on the end of the string away from the box, or alternatively \tilde{w}^{-r} or w^{-r} at the end of the string near the box.

$\left(\rho_{(r,s)}^{(r,s)}\right)^{k+1}$ will pull every string through a full counter-clockwise rotation back to its starting point and every string will pick up two boxes with powers of w. We obtain the following

$$
\left(\rho_{(r,s)}^{(r,s)}\right)^{k+1}(x) =
$$

where the last line uses the fact that z_k is central.

2.3.3 Additional results on finite index II$_1$ subfactors

Lemma 2.3.11. $E_{M'\cap M_1}(e_1) = \tau w_1$ where $E_{M'\cap M_1}$ is the unique tr-preserving conditional expectation onto $M' \cap M_1$ and w_1 is the Radon-Nikodym derivative of tr' with respect to tr on $M' \cap M_1$.

Proof. For $x \in M' \cap M_1$

$$
\begin{align*}
\text{tr}(e_1 x) &= \text{tr}'(J_0 e_1 x J_0) = \text{tr}'(e_1 J_0 x J_0) \\
&= \text{tr}'(e_1 E_N(J_0 x J_0)) = \text{tr}'(e_1 \text{tr}(J_0 x J_0)) \\
&= \text{tr}'(e_1) \text{tr}'(x) = \tau \text{tr}(w_1 x)
\end{align*}
$$

\[\Box \]

Proposition 2.3.12. Let $N \subset M$ be a finite index II$_1$ subfactor. Then the following are equivalent:
(i) \(N \subset M \) is extremal (\(\text{tr} = \text{tr}' \) on \(N' \cap M \))

(ii) \(\text{tr} = \text{tr}' \) on all \(N' \cap M_k \)

(iii) \(E_{M' \cap M_1}(e_1) = \tau \) where \(E_{M' \cap M_1} \) is the unique \(\text{tr} \)-preserving conditional expectation onto \(M' \cap M_1 \).

(iv) \(\rho_k = \tilde{\rho}_k \) for all \(k \geq 0 \)

(v) \(\rho_k = \tilde{\rho}_k \) for some \(k \geq 1 \)

Proof. The equivalence of (i) and (ii) is proved in Pimsner-Popa [24], but follows easily from our knowledge of Radon-Nikodym derivatives. \(N \subset M \) is extremal iff \(\text{tr} = \text{tr}' \) on \(N' \cap M \), iff \(z_0 = w_0 = 1 \), iff \(z_k = 1 \) for all \(k \geq 0 \) (by Lemma 2.2.14), iff \(\text{tr} = \text{tr}' \) on all \(N' \cap M_k \). Equivalence with (iii) follows from the preceding corollary.

If \(N \subset M \) is extremal then \(z_1 = 1 \) and \(\rho = \tilde{\rho} \). If \(\rho_k = \tilde{\rho}_k = \rho_k(\cdot)z_1 \) then, since \(\rho_k : N' \cap M_k \to N' \cap M_k \) is periodic and hence surjective, \(z_1 = 1 \) and hence \(N \subset M \) is extremal.

Proposition 2.3.13. For \(j \geq 1 \) let \(\tilde{e}_i = w_i^{-1/2}e_i w_i^{-1/2} \). Then \(\{\tilde{e}_i\} \) are also Jones projections and \(E_{M' \cap M_1}(\tilde{e}_1) = \tau \) (\(\text{tr} \)-preserving conditional expectation).

Proof. We need to check that \(\tilde{e}_i^2 = \tilde{e}_i \), that \(\tilde{e}_i\tilde{e}_{i \pm 1} = \tau \tilde{e}_i \) and \([e_i, e_j] = 0 \) for \(|i-j| > 1 \). With the tools we have developed this could be done simply by drawing the appropriate tangles, but can be obtained with a little more insight as we see below.

Applying the construction of the spherical \(C^* \)-planar algebra in Section 2.2.4 we obtain new Jones projections \(\overline{\epsilon}_j \) of \(\tilde{\epsilon}_j = \lambda^{-1}w_{j-1}^{1/4}e_j w_j^{-1/4} = \lambda^{-1}w_j^{-1/4}w_{j-1}^{1/4} \), with \(\delta \) changed to \(\delta_{\text{sph}} = \delta \lambda \), where \(\lambda = \text{tr}(w^{1/2}) \). For example

\[
\overline{E}_1 = Z \begin{pmatrix} \mathbb{C} & 0 \\ 0 & \mathbb{C} \end{pmatrix} = Z_{\text{sph}} \begin{pmatrix} \mathbb{C} & 0 \\ 0 & \mathbb{C} \end{pmatrix} = Z_{\text{sph}} \begin{pmatrix} \mathbb{C} & 0 \\ 0 & \mathbb{C} \end{pmatrix} = Z_{\text{sph}} \begin{pmatrix} \mathbb{C} & 0 \\ 0 & \mathbb{C} \end{pmatrix}
\]
so \(E_1 = w^{1/4}E_1w^{1/4} = \bar{w}^{-1/4}E_1\bar{w}^{-1/4} \), which we could also write as \(E_1 = w_1^{1/4}E_1w_1^{1/4} = w_2^{-1/4}E_1w_2^{-1/4} \).

We have produced a spherical \(C^* \)-planar algebra \((Z^{\text{sph}}, V, w)\) with distinguished element \(w \). Take instead the triple \((Z^{\text{sph}}, V, w^{-1})\) and apply the construction of a rigid \(C^* \)-planar algebra in Theorem 6.1.40 to obtain \((\bar{Z}, V)\) (in fact an ordinary \(C^* \)-planar algebra).

Then, using the fact that \(\text{tr}((w^{-1})^{1/2}) = \text{tr}(w^{-1/2}) = \text{tr}(w^{1/2}) = \lambda \),

\[
\bar{e}_1 = \lambda w^{1/4} \left(\lambda^{-1} w^{1/4} e_1 w^{1/4} \right) w^{1/4} = w^{1/2}e_1w^{1/2}
\]

and the Jones projections \(\bar{e}_i \) are those given above. Also note that \(\bar{\delta} = \lambda^{-1}\delta^{\text{sph}} = \delta \) so that \(\bar{\tau} = \tau \).

Finally, for all \(x \in M' \cap M_1 \)

\[
\text{tr}(\bar{e}_1x) = \text{tr}(e_1w_1^{-1/2}xw_1^{-1/2}) = \text{tr}(e_1xw_1^{-1}) = \text{tr}'(e_1J_0xJ_0J_0w_1^{-1}J_0) = \text{tr}'(e_1J_0xJ_0w_0) = \text{tr}'(e_1E_N(J_0xJ_0w_0)) = \text{tr}'(e_1\text{tr}(J_0xJ_0w_0)) = \text{tr}'(e_1)\text{tr}'(J_0xJ_0) = \tau\text{tr}(x).
\]

and hence \(E_{M' \cap M_1}(\bar{e}_1) = \tau \).

\textbf{Remark 2.3.14.} By changing \(w \) to \(w^{-1} \) in the triple \((Z^{\text{sph}}, V, w)\) and then constructing \((\bar{Z}, V)\) we have essentially switched the roles of \(\text{tr} \) and \(\text{tr}' \).

This is more than just an interesting trick. We can do the same thing for any \(C^* \)-planar algebra. Because the trace preserving conditional expectation onto \(V_{1,2} \) of \(\bar{e}_1 \) is a scalar (a property that \(e_1 \) does not possess) one can show that, even in the nonextremal case, the horizontal limit algebras constructed from a \(\lambda \)-lattice in Popa \[28\] form a tunnel with index \(\tau^{-1} \) and the proof in \[28\] is valid in general, with a small number of modifications.

These sort of ideas appear in a small part of \[29\] where Popa refines his axiomatization of the standard invariant of a finite index \(II_1 \) subfactor in terms of \(\lambda \)-lattices. See Lemma 1.6 where the element \(a' \) is nothing other than the Radon-Nikodym derivative \(w \) and the conditional expectations constructed are simply those in \((\bar{Z}, V)\).
Chapter 3

Infinite Index Subfactors of Type II

Most the literature on subfactors is concerned with finite index subfactors, particularly II_1 extremal subfactors. The study of infinite index subfactors really began with Herman and Ocneanu [10]. The results that they announced were proved and expanded upon by Enock and Nest [8], where the basic results for infinite index subfactors are laid down, although the main purpose of their paper is to characterize the subfactors arising as cross-products by Kac algebras of discrete or compact type.

We begin in Section 3.1 with some background material on Hilbert-module bases before giving a summary of results from Enock and Nest [8] on the basic construction.

In Section 3.2 we exploit the additional structure present for an infinite index inclusion of II_1 factors to develop computational tools based on the k-fold relative tensor product of M that sits densely in M_{k-1}.

After defining extremality and showing that our definition possesses the usual properties in Section 3.3.1 followed by a brief diversion into N-central vectors in Section 3.3.2 we are ready for the main results. Motivated by the finite index case we define the rotation operators on the N-central vectors in $L^2(M_k)$ in Section 3.3.3 and in Section 3.3.4 show that the rotations exist iff the subfactor is approximately extremal.

Cross products by outer actions of an infinite discrete groups are extremal and provide the simplest examples. The restriction to the L^2-spaces avoids the sort of pathologies that we see in Section 3.4. However, as the example of Izumi, Longo and Popa [13] shows, there exist irreducible subfactors which are not approximately extremal. Future work involves defining a rotation on a certain subspace of $N' \cap M_k$ for any infinite index II_1 subfactor.
3.1 Background on Infinite Index Subfactors

We will make heavy use of the material on operator-valued weights, Hilbert A-modules and relative tensor products described in Sections 2.1.1 and 2.1.2. The reader is advised to reacquaint themself with those sections before proceeding. In this section we add some additional results about bases before introducing the basic construction, where we mostly follow Enock and Nest [8]. They consider arbitrary inclusions of factors equipped with normal faithful semifinite (n.f.s.) weights. We will generally stick to inclusions $P \subset Q$ of arbitrary type II factors, with traces Tr_P and Tr_Q respectively.

3.1.1 Bases

Definition 3.1.1. An $A\mathcal{H}$-basis is a set $\{\xi_i\} \subset D(A\mathcal{H})$ such that

$$\sum_i R(\xi_i)R(\xi_i)^* = 1_{\mathcal{H}}.$$

An $\mathcal{H}A$-basis is $\{\xi_i\} \subset D(\mathcal{H}A)$ such that

$$\sum_i L(\xi_i)L(\xi_i)^* = 1_{\mathcal{H}}.$$

A \mathcal{H}_A- (resp. $A\mathcal{H}$-) basis is called orthogonal if $L(\xi_i)L(\xi_j)^*$ (resp. $R(\xi_i)R(\xi_j)^*$) are pairwise orthogonal projections. Equivalently: $L(\xi_i)^*L(\xi_j) = \delta_{i,j}p_i$ (resp. $R(\xi_i)^*R(\xi_j) = \delta_{i,j}p_i$) for some projections $p_i \in A$. If $p_i = 1$ for all i we say that the basis is orthonormal.

Remark 3.1.2. The existence of an $A\mathcal{H}$-basis or an $\mathcal{H}A$-basis is proved by Connes, Prop 3(c) of [6]. Given a conjugate-linear isometric involution J on \mathcal{H}, JAJ is isomorphic to A^{op}, so that \mathcal{H} has a natural right-Hilbert-A-module structure, which we will denote $\mathcal{H}A$. In this case, if $\{\xi_i\}$ is an $A\mathcal{H}$- (resp. $\mathcal{H}A$-) basis then $\{J\xi_i\}$ is an $\mathcal{H}A$- (resp. $A\mathcal{H}$-) basis.

Lemma 3.1.3. Let Q be a type II factor represented on a Hilbert space \mathcal{H}. Let $\xi \in D(Q\mathcal{H})$ and let $\{\xi_i\}$ be a $Q\mathcal{H}$-basis. Then

(i) $\text{Tr}'_{Q' \cap B(L^2(Q))} (R(\xi)^*R(\xi)) \overset{\text{def}}{=} \text{Tr}_Q (J_Q R(\xi)^*R(\xi) J_Q) = \|\xi\|^2.$

(ii) $\sum_i \langle R(\xi_i)R(\xi_i)^*, \xi_i \rangle = \|\xi\|^2.$

(iii) For $x \in (Q' \cap B(\mathcal{H}))_+$, $\sum_i \langle x\xi_i, \xi_i \rangle$ is independent of the basis used and, up to scaling,

$$\text{Tr}'_Q = \sum_i \langle \cdot, \xi_i, \xi_i \rangle.$$
Proof. Let $\psi' = \text{Tr}'_{Q' \cap B(L^2(Q))}$.

(i) This is simply Lemma 4 of Connes [6]. In the type II case the proof is particularly simple: Take projections $p_i \in n_{\text{Tr}Q}$ with $p_i \not\rightarrow 1$. Then $\text{Tr}_Q = \lim_i < \cdot \hat{p}_i, \hat{p}_i >$ and hence

$$\text{Tr}_Q(J_Q R(\xi)^* R(\xi) J_Q) = \lim_i \|R(\xi)\hat{p}_i\|^2 = \lim_i \|p_i \xi\|^2 = \|\xi\|^2.$$

(ii) Let $x \in (Q')_+$. Using (i),

$$\langle x\xi_i, \xi_i \rangle = \|x^{1/2} \xi_i\|^2 = \psi'\left(R(x^{1/2} \xi_i)^* R(x^{1/2} \xi_i)\right)$$

$$= \psi'\left(R(\xi_i)^* x R(\xi_i)\right). \quad (3.1)$$

Hence

$$\sum_i \langle R(\xi) R(\xi)^* \xi_i, \xi_i \rangle = \sum_i \psi'\left(R(\xi_i)^* R(\xi_i) R(\xi_i)^* R(\xi_i)\right)$$

$$= \sum_i \psi'\left(R(\xi_i)^* R(\xi_i) R(\xi_i)^* R(\xi_i)\right)$$

$$= \psi'\left(R(\xi_i)^* R(\xi_i)\right) = \|\xi\|^2.$$

(iii) Given a basis $\Xi = \{\xi_i\}$ define a normal weight ϕ'_Ξ on $(Q' \cap B(H))_+$ by $\phi'_\Xi = \sum_i \langle \cdot \xi_i, \xi_i \rangle$. For bases Ξ and $\tilde{\Xi}$ and $x \in Q' \cap B(H)$, use (3.1) to obtain

$$\phi'_\Xi(x^* x) = \sum_i \psi'\left(R(\xi_i)^* x^* 1_{H} x R(\xi_i)\right)$$

$$= \sum_i \sum_j \psi'(R(\xi_i)^* x^* R(\tilde{\xi}_j)) (R(\xi_i)^* x R(\xi_i)))$$

$$= \sum_j \sum_i \psi'(R(\tilde{\xi}_j)^* x R(\xi_i) R(\xi_i)^* x R(\tilde{\xi}_j))$$

$$= \sum_j \psi'(R(\tilde{\xi}_j)^* x x^* R(\tilde{\xi}_j))$$

$$= \phi'_\Xi(x x^*)$$

Hence ϕ'_Ξ is tracial (taking $\tilde{\Xi} = \Xi$) and $\phi'_\Xi = \psi'_\Xi$. By (ii) $\psi'_\Xi \neq \infty$ and so by uniqueness of the trace on a type II factor (up to scaling in the Π_∞ case), $\psi'_\Xi = \text{Tr}_{Q'}$.

\[\square\]
Definition 3.1.4. Let Q be a type II factor with trace Tr_Q. Given $Q\mathcal{H}$ there is a canonical choice of scaling for the trace on $Q' \cap \mathcal{B} (\mathcal{H})$ given by

$$\text{Tr}_{Q' \cap \mathcal{B} (\mathcal{H})} = \sum_i \langle \cdot, \xi_i \rangle$$

where $\{\xi_i\}$ is any $Q\mathcal{H}$-basis. [Note that if Q' is a II$_1$ factor this may not be the normalized trace on Q'].

Corollary 3.1.5. For all $x \in (Q' \cap \mathcal{B} (\mathcal{H}))(\widehat{\mathcal{H}})$ we have

$$\text{Tr}_{Q'} (x) = \sum_i x(\omega_{\xi_i})$$

where $\text{Tr}_{Q'}$ now denotes the extension of the trace on Q' to $(Q')(\widehat{\mathcal{H}})$.

Proof. Let $x \in (Q' \cap \mathcal{B} (\mathcal{H}))(\widehat{\mathcal{H}})$. Take $x_k \in (Q' \cap \mathcal{B} (\mathcal{H}))_+$ with $x_k \nearrow x$ (Prop 2.1.2). Then

$$\text{Tr}_{Q'}(x) = \lim_k \text{Tr}_{Q'}(x_k)$$

by Prop 2.1.3

$$= \lim_k \sum_i <x_k \xi_i, \xi_i >$$

by Lemma 3.1.3

$$= \sum_i \lim_k <x_k \xi_i, \xi_i >$$

since x_k is increasing

$$= \sum_i \lim_k x_k(\omega_{\xi_i})$$

$$= \sum_i x(\omega_{\xi_i})$$

by definition. \qed

3.1.2 The basic construction

Definition 3.1.6. Let $P \subset Q$ be an inclusion of type II factors. The basic construction applied to $P \subset Q$ is $P \subset Q \subset Q_1$, where

$$Q_1 = J_Q P' J_Q.$$

Enock and Nest [8] show in 2.3 that an alternative description of the basis construction is

$$Q_1 = \{ L(\xi)L(\eta)^* : \xi, \eta \in D(L^2(Q)P) \}''.$$
Proposition 3.1.7 (Enock and Nest [8] 10.6, 10.7). Let $T : Q_+ \to \hat{P}_+$ be the unique trace-preserving operator-valued weight. Then

- $n_T \cap n_{TQ}$ is weakly dense in Q and also dense in $L^2(Q)$.
- For $x \in n_T$ there is a bounded operator $\Lambda_T(x) \in \text{Hom}_P(L^2(P), L^2(Q))$ defined by
 \[
 \Lambda_T(x)\hat{a} = \hat{xa}
 \]
 for all $a \in n_{TP}$.
 (in addition $xa \in n_T \cap n_{TQ}$).
- The adjoint of $\Lambda_T(x)$ satisfies
 \[
 \Lambda_T(x)^*z = \hat{T}(x^*z)
 \]
 for all $z \in n_T \cap n_{TQ}$.
- For $x, y \in n_T$,
 \[
 \Lambda_T(x)^*\Lambda_T(y) = T(x^*y).
 \]
- $Q_1 = \{\Lambda_T(x)\Lambda_T(y)^* : x, y \in n_T\}'$
- The n.f.s trace-preserving operator valued weight $T_Q : (Q_1)_+ \to Q_+ \hat{Q}$ satisfies
 \[
 T_Q(\Lambda_T(x)\Lambda_T(y)^*) = xy^*.
 \]

Notation 3.1.8. Herman and Ocneanu [10] use the notation $x \otimes_P y^*$ for the operator $\Lambda_T(x)\Lambda_T(y)^*$ because $\Lambda_T(x)\Lambda_T(y)^*$ is clearly P-middle-linear and, for $z \in n_T \cap n_{TQ}$,

\[
(x \otimes_P y^*)\hat{z} = \hat{xT}(y^*z),
\]

so that in the finite index II$_1$ case $x \otimes_P y^*$ is simply xe_1y^* which is $x \otimes_P y^*$ under the isomorphism $Q_1 \cong Q \otimes_P Q$.

The basic construction can be iterated to obtain a tower

\[
P^{TP} Q^{TQ} Q_1^{TQ_1} Q_2 \cdots
\]

and many results from finite index carry over to the general case.

Proposition 3.1.9.

- $L^2(Q_1) \cong L^2(Q) \otimes_P L^2(Q)$ via $L(\xi)L(\eta)^* \to \xi \otimes_P J_Q \eta$. Note that for $x, y \in n_T \cap n_{TQ}$
 this agrees with Herman and Ocneanu’s \otimes_P notation.
Consequently there is a unitary operator $\theta_k : \otimes_{P}^{k+1}L^2(Q) \to L^2(Q_k)$ such that

$$\theta_k^* J_k \theta_k \left(\xi_1 \otimes \cdots \otimes \xi_{k+1} \right) = J_0 \xi_{k+1} \otimes J_0 \xi_k \otimes \cdots \otimes J_0 \xi_1$$

\[\theta_k^* x \theta_k = \pi_{k-1}(x) \otimes \text{id}, \]

where $x \in Q_k$ acts by left multiplication on $L^2(Q_k)$ and $\pi_{k-1}(x)$ is the (defining) representation of Q_k on $L^2(Q_{k-1})$.

Multi-step basic construction: $P \subset Q_i \subset Q_{2i+1}$ is also a basic construction. In more detail, represent Q_{2i+1} on $L^2(Q_i) \otimes_P L^2(Q_{i-1})$ using $u = (\theta_i \otimes_P \theta_{i-1}) \theta_{2i}^* : L^2(Q_{2i}) \to L^2(Q_i) \otimes_P L^2(Q_{i-1})$, then

\[u Q_{2i+1} u^* = J_i P' J_i \otimes \text{id}. \]

By using Q_j in place of P we obtain a representation of Q_k ($i+1 \leq k \leq 2i+1$) on $L^2(Q_i)$. Denote this representation π_i^k or simply π_i if k is clear.

Shifts: By the above multi-step basic construction $j_i \overset{\text{def}}{=} J_i (\cdot)^* J_i$ gives anti-isomorphisms $j_i : N' \cap M_{2i+1} \to N' \cap M_{2i+1}$, $j_i : M' \cap M_{2i+1} \to M' \cap M_{2i+1}$, $j_i : N' \cap M_2 \to M' \cap M_{2i+3}$, $sh_i : N' \cap M_2 \to M'_1 \cap M_{2i+2}$, $sh_i : M' \cap M_{2i+1} \to M'_2 \cap M_{2i+3}$, $sh_i : M' \cap M_2 \to M'_2 \cap M_{2i+2}$.

Remark 3.1.10. Prop 3.1.9 (i) is Theorem 3.8 of Enock-Nest [8], which is a reformulation of 3.1 of Sauvageot [30]. Their general result includes the spatial derivative, in this case $d\text{Tr}_{Q_1}/d\text{Tr}_{P_{op}}$, but $\text{Tr}_{Q_1}(L(\xi)L(\xi)^*) = ||\xi||^2$ by Lemma 3.1.3 and hence $d\text{Tr}_{Q_1}/d\text{Tr}_{P_{op}} = 1$.

We remark once again that for a finite index inclusion of II$_1$ factors the canonical trace on M_i is not the normalized trace. If one wishes to use normalized traces then Prop 3.1.9 and many other results here will need to be modified with appropriate constants.
3.2 The II₁ Case

We now consider the special case of an inclusion $N \subset M$ of II₁ factors with $[M : N] = \infty$. We will reserve $N \subset M$ for inclusions of type II₁ factors and use tend to use $P \subset Q$ for general type II inclusions. For $N \subset M$ additional structure is provided by the existence of some of the Jones projections and the embedding of M in $L^2(M)$. We prove some technical lemmas leading up to existence of the odd Jones projections. We then give explicit definitions of the isomorphisms θ_k from Prop 3.1.9 and establish a number of useful properties of these maps.

We conclude this section by constructing a basis for M over N, which will also allow us to construct bases for M_j over M_k.

3.2.1 Odd Jones projections and conditional expectations

Lemma 3.2.1. Let $P \subset Q$ be an inclusion of type II factors and let $P \subset Q \subset Q_1$ be the basic construction. Then:

(i) For $\eta \in D(L^2(Q)_P)$

$$\text{Tr}_{Q_1} (L(\eta)L(\eta)^*) = \text{Tr}_P (L(\eta)^*L(\eta)) = ||\eta||^2.$$

(ii) Hence, for ξ also in $D(L^2(Q)_P)$, $L(\eta)L(\xi)^*$ is trace-class and

$$\text{Tr}_{Q_1} (L(\eta)L(\xi)^*) = <\eta, \xi>.$$

(iii) For $x \in n_T$

$$\text{Tr}_{Q_1} \left(\frac{x \otimes x^*}{p} \right) = \text{Tr}_Q(xx^*).$$

Proof. (i) This is just Lemma 3.1.3 with P in place of Q and a right-module in place of a left-module.

(ii) This is the usual polarization trick and the fact that the product of two Hilbert-Schmidt operators is trace-class.
(iii) Let \(\{\xi_i\} \) be a \(L^2(Q)_P \)-basis and \(p_j \) a sequence of projections in \(P \) increasing to 1. Then

\[
\text{Tr}_{Q_1}(\Lambda_T(x)\Lambda_T(x)^*) = \sum_i \langle \Lambda_T(x)\Lambda_T(x)^*\xi_i,\xi_i \rangle_{L^2(Q)}
\]

\[
= \sum_i \text{lim}_{j} \langle L(\xi_i)\Lambda_T(x)\Lambda_T(x)^*L(\xi_i)p_j,\pi_j \rangle_{L^2(P)}
\]

\[
= \sum_i \text{Tr}_P(\Lambda_T(x)^*L(\xi_i)L(\xi)^*\Lambda_T(x))
\]

\[
= \text{Tr}_P(\Lambda_T(x)^*\Lambda_T(x))
\]

\[
= \text{Tr}_P(T(x^*x)) = \text{Tr}_Q(xx^*).
\]

Lemma 3.2.2. Let \(P \subset Q \) be type II factors, \(P \subset Q_1 \subset Q_2 \subset \cdots \) the tower. Suppose \(\text{Tr}_{Q_1}(Q_+^0) = \{0,\infty\} \). Then \(\text{Tr}_{Q_3}((Q_2)_+) = \{0,\infty\} \).

Proof. Take a \(L^2(Q)_P \)-basis \(\{\xi_i\} \). Then \(\{\xi_i \otimes_P \xi_j\} \) is an \(L^2(Q_1)_P \)-basis (Theorem 3.15 of [8]). Let \(x \geq 0 \) be an element of \(Q_2 = \text{End}_{-Q}(L^2(Q_1)) \). Then

\[
\text{Tr}_{Q_3}(x) = \sum_{i,j} \langle x\xi_i \otimes_P \xi_j,\xi_i \otimes_P \xi_j \rangle_{L^2(Q_1)}
\]

\[
= \sum_{i,j} \langle (L\xi_i)^*xL\xi_j,\xi_j \rangle_{L^2(Q)}
\]

\[
= \sum_i \text{Tr}_{Q_1}((L\xi_i)^*xL\xi_i) \in \{0,\infty\},
\]

where we have used the fact that \((L\xi_i)^*xL\xi_i \in \text{End}_{-Q}(L^2(Q)) = Q \), so each term in the sum is either 0 or \(\infty \). \(\square \)

Lemma 3.2.3. Let \(P \subset Q \) be an inclusion of type II factors with \(\text{Tr}_Q|_P = \text{Tr}_P \). Let \(T : Q_+ \to P_+ \) be the trace-preserving operator-valued weight. Let \(e \) denote orthogonal projection from \(L^2(Q) \) onto \(L^2(P) \). Then

(i) \(T \) is in fact a conditional expectation, which we will denote \(E \).

(ii) \(e\tilde{x} = E(x) \) for \(x \in n_{\text{Tr}_Q} \).

(iii) \(exe = E(x)e \) for \(x \in Q \).

(iv) \(e \in P' \cap Q_1 \).
(v) For \(x, y \in \mathfrak{n}_T \), \(x \otimes_P y^* = xey^* \).

Proof. (i) \(\text{Tr}_Q(a_1a^*) = \text{Tr}_P(a_1a^*) \) for all \(a \in P \). Hence \(T_P(1) = 1 \) so that \(T_P \) is a conditional expectation.

(ii) Let \(x \in \mathfrak{n}_{\text{Tr}_Q} \). Then for all \(y \in \mathfrak{n}_{\text{Tr}_P} \):

\[
\langle \hat{E}(x), \hat{y} \rangle = \text{Tr}_P(E(x)y^*) = \text{Tr}_P(E(xy^*)) = \text{Tr}_Q(xy^*) = \langle \hat{x}, \hat{y} \rangle = \langle e\hat{x}, \hat{y} \rangle.
\]

To justify the third equality note that \(xy^* \) is trace-class and hence a linear combination of positive trace-class elements. For each of these positive elements \(a \), \(\text{Tr}_P(E(a)) = \text{Tr}_Q(a) \) and hence \(\text{Tr}_P(E(xy^*)) = \text{Tr}_Q(xy^*) \).

(iii) Let \(a \in \mathfrak{n}_{\text{Tr}_Q} \). Then \(exe\hat{a} = ex\hat{E}(a) = E(x\hat{E}(a)) = E(x)e\hat{E}(a) = E(x)\hat{e}a \).

(iv) For \(x \in \mathfrak{n}_{\text{Tr}_Q} \), \(a, b \in P \), \(e(axb) = \hat{E}(axb) = a\hat{E}(x)b = a(e\hat{x}) \cdot b \). Hence \(e \in \text{End}_{P-p}(L^2(Q)) = P' \cap Q_1 \).

(v) For \(z \in \mathfrak{n}_T \cap \mathfrak{n}_{\text{Tr}_Q} \), \((x \otimes_P y^*)z = (xT(y^*)z) \hat{z} = xey^* \hat{z} \).

Proposition 3.2.4.

(i) \(\text{Tr}_{2i}|_{M_{2i-1}} = \text{Tr}_{2i-1} \) so that \(T_{M_{2i-1}} : (M_{2i})_+ \rightarrow (M_{2i-1})_+ \) is in fact a conditional expectation, which we will denote \(E_{M_{2i-1}} \).

As \(\text{Tr}_{2i}|_{M_{2i-1}} = \text{Tr}_{2i-1} \), let \(e_{2i+1} \) denote the orthogonal projection from \(L^2(M_{2i}) \) onto the subspace \(L^2(M_{2i-1}) \). Then \(e_{2i+1} \in M'_{2i-1} \cap M_{2i+1} \) and \(E_{M_{2i-1}} \) is implemented by \(e_{2i+1} \), i.e.

\[
e_{2i+1}xe_{2i+1} = E_{M_{2i-1}}(x)e_{2i+1} \quad \quad x \in M_{2i}.
\]

(ii) \(\text{Tr}_{2i+1}|_{M_{2i}} \neq \text{Tr}_{2i} \). In fact \(\text{Tr}_{M_{2i+1}}((M_{2i})_+) = \{0, \infty\} \). Hence \(T_{M_{2i}} : (M_{2i+1})_+ \rightarrow (M_{2i})_+ \) is not a conditional expectation.

(iii) \(T_{M_{2i}}(e_{2i+1}) = 1 \) and

\[
e_{2i+1} \otimes_{M_{2i}} e_{2i+1} = e_{2i+1}.
\]

(iv) \(\text{Tr}_{2i+1}(e_1e_3 \cdots e_{2i+1}) = 1 \).
Proof. (i) By Lemma 3.2.3 we simply need to show that $\text{Tr}_{2i}|_{M_{2i-1}} = \text{Tr}_{2i-1}$ for $i \geq 0$. Let $\text{tr}_M = \text{tr}_N$ so the result is true for $i = 0$. Suppose this is true for some i. Let $P = M_{2i-1}$, $Q = M_{2i}$ so that $Q_1 = M_{2i+1}$ and $Q_2 = M_{2i+2}$. Let $\{\xi_i\}$ be a $L^2(Q)_P$-basis. Take projections $q_k \in Q$ with $\sum_k q_k = 1$ and $\text{Tr}_Q(q_k) < \infty$. Then $\{q_k\}$ is an $L^2(Q)_Q$-basis and $\{\xi_i \otimes P \hat{q}_k\}$ is an $L^2(Q_1)_Q$-basis (easily checked since $L(\xi_i \otimes P \hat{q}_k) = L\xi_qk$). Now, for $x \in (M_{2i+1})_+$,

$$\text{Tr}_{2i+2}(x) = \sum_{i,k} (x\xi_i \otimes P \hat{q}_k, \xi_i \otimes P \hat{q}_k)_{L^2(Q_1)} = \sum_{i,k} (\xi_i \otimes P \hat{q}_k, \xi_i \otimes P \hat{q}_k)_{L^2(Q_1)}$$

$$= \sum_{i,k} (\xi_i \xi_i)_{L^2(Q)} = \sum_{i,k} (\xi_i \xi_i)_{L^2(Q_1)} = \sum_i (\xi_i \xi_i)_{L^2(Q)}$$

$$= \text{Tr}_{2i+1}(x).$$

(ii) Note that M_1 is a II$_\infty$ factor, hence $\text{Tr}_{M_1}(1) = \infty$. For any nonzero projection in M there is a finite set of similar projections in M with sum dominating 1 and hence infinite trace in M_1. Thus $\text{Tr}_{M_1}(p) = \infty$ for all nonzero projections p in M. By spectral theory this implies that $\text{Tr}_{M_1}(x) = \infty$ for all nonzero x in M_+. Using the preceding lemma we see that $\text{Tr}_{M_{2i+1}}((M_{2i})_+) = \{0, \infty\}$. Hence for nonzero $a \in M_{2i}$

$$\infty = \text{Tr}_{2i+1}(a^*a) = \text{Tr}_{2i}(TM_{2i}(a^*a)) = \text{Tr}_{2i}(a^*TM_{2i}(1)a),$$

so that $T_{M_{2i}}(1) \notin \mathbb{C}1$ and so $T_{M_{2i}}$ is not a conditional expectation and not a multiple of a conditional expectation.

(iii) Note that $n_{T_{2i-1}} = n_{E_{2i-1}} = M_{2i}$. By Lemma 3.2.1 $\text{Tr}_{2i+1}(xe_{2i+1}x^*) = \text{Tr}_{2i}(xx^*)$ for all $x \in M_{2i}$. Thus $T_{M_{2i}}(e_{2i+1}) = 1$.

To show that $e_{2i+1} \otimes M_{2i}, e_{2i+1} = e_{2i+1}$ let $z = ae_{2i+1}b$ where $a, b \in n_{T_{2i}}$ (and hence $z \in n_{T_{2i+1}} \cap n_{TQ_{2i}}$ because $z^*z = b^*E_{M_{2i-1}}(a^*a)e_{2i+1}b$). Then

$$\left(e_{2i+1} \otimes M_{2i}, e_{2i+1}\right) \hat{z} = [e_{2i+1}TM_{2i}(e_{2i+1}z)] \hat{z} = [e_{2i+1}TM_{2i}(E_{M_{2i-1}}(a)e_{2i+1}b)] \hat{z}$$

$$= [e_{2i+1}E_{M_{2i-1}}(a)b] \hat{z} = e_{2i+1}\hat{z}. $$

Since the span of such elements z is dense in $L^2(M_{2i+1})$ we have shown $e_{2i+1} \otimes M_{2i}, e_{2i+1} = e_{2i+1}$.

(iv) The proof is by induction. \(\text{Tr}_1(e_1) = \text{tr}(T(e_1)) = \text{tr}(1) = 1 \) and

\[
\begin{align*}
\text{Tr}_{2i+1} (e_1 \cdots e_{2i+1}) &= \text{Tr}_{2i} (T_{M_{2i}}(e_1 \cdots e_{2i+1})) = \text{Tr}_{2i} (e_1 \cdots e_{2i-1} T_{M_{2i}}(e_{2i+1})) \\
&= \text{Tr}_{2i} (e_1 \cdots e_{2i-1}) = \text{Tr}_{2i-1} (e_1 \cdots e_{2i-1}).
\end{align*}
\]

\[
\square
\]

3.2.2 Properties of the isomorphisms \(\theta_k \)

In this section we explicitly define the isomorphisms \(\theta_k : \otimes_{N}^{k+1} L^2(M) \to L^2(M_k) \).

Definition 3.2.5. Given \(P \subset Q \) an inclusion of type II factors. For \(r \geq 1 \) define \(J = J_{Q,P,r} : \otimes^r_P L^2(Q) \to \otimes^r_P L^2(Q) \) by

\[
J \left(\frac{\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_r}{P} \right) = J_{Q} \xi_r \otimes \cdots \otimes J_{Q} \xi_1.
\]

\(J \) is a conjugate-linear isometry onto \(\otimes^r_P L^2(Q) \).

Notation 3.2.6. Let \(\upsilon_{k+1} : L^2(Q_k) \otimes_{Q_k-1} L^2(Q_k) \to L^2(Q_{k+1}) \) denote the isomorphism defined by

\[
\frac{\xi \otimes J_{Q_{k-1}} \eta}{Q_{k-1}} \mapsto L(\xi)(L(\eta))^* \quad \xi, \eta \in D(L^2(Q_k)_{Q_{k-1}}).
\]

Let \(\iota_k : L^2(Q_k) \otimes_{Q_k} L^2(Q_k) \to L^2(Q_k) \) denote the isomorphism defined by

\[
\frac{\hat{x} \otimes \hat{y}}{Q_k} \mapsto \hat{x}\hat{y} \quad x, y \in \mathfrak{n}_{\text{Tr}_k}.
\]

Note that both of these maps are \(Q_k \)-\(Q_k \) bimodule maps and both preserve \(J \), i.e.

\[
J_{k+1} \upsilon_{k+1} = \upsilon_{k+1} J_{Q_k, Q_{k-1}, 2} \\
J_k \iota_k = \iota_k J_{Q_k, Q_{k}, 2}
\]

Definition 3.2.7. Define a \(Q_k \)-\(Q_k \) bimodule isomorphism

\[
\psi_{k,r+1} : \otimes_{Q_k-1}^{r+1} L^2(Q_k) \to \otimes_{Q_k}^r L^2(Q_{k+1})
\]

by

\[
\psi_{k,r+1} = \left(\otimes_{Q_k}^r \upsilon_{k+1} \right) \circ \left(\text{id}_k \otimes \left(\otimes_{Q_k-1}^{r-1} \iota_k^* \right) \otimes \text{id}_k \right)
\]
\[L^2(Q_k) \otimes L^2(Q_k) \otimes \cdots \otimes L^2(Q_k) \otimes L^2(Q_k) \]
\[\downarrow \]
\[L^2(Q_k) \otimes \left(L^2(Q_k) \otimes L^2(Q_k) \right) \otimes \cdots \otimes \left(L^2(Q_k) \otimes L^2(Q_k) \right) \otimes L^2(Q_k) \]
\[\| \]
\[\left(L^2(Q_k) \otimes L^2(Q_k) \right) \otimes \cdots \otimes \left(L^2(Q_k) \otimes L^2(Q_k) \right) \]
\[\downarrow \]
\[L^2(Q_{k+1}) \otimes \cdots \otimes L^2(Q_{k+1}) \]

Definition 3.2.8. Define a \(Q \)-\(Q \) bimodule isomorphism \(\theta_r : \otimes^{r+1} L^2(Q) \to L^2(Q_r) \) by
\[\theta_r = \psi_{r-1,2} \circ \psi_{r-2,3} \cdot \cdots \cdot \psi_{0,r+1}. \]

i.e.
\[L^2(Q) \otimes L^2(Q) \otimes L^2(Q) \otimes \cdots \otimes L^2(Q) \otimes L^2(Q) \otimes L^2(Q) \]
\[\downarrow \]
\[L^2(Q_1) \otimes L^2(Q_1) \otimes \cdots \otimes L^2(Q_1) \otimes L^2(Q_1) \]
\[\downarrow \]
\[\vdots \]
\[L^2(Q_{r-2}) \otimes L^2(Q_{r-2}) \otimes L^2(Q_{r-2}) \]
\[\downarrow \]
\[L^2(Q_{r-1}) \otimes L^2(Q_{r-1}) \]
\[\downarrow \]
\[L^2(Q_r) \]

In general define \(\theta^i_r : \otimes^{r+1} L^2(Q_i) \to L^2(Q_{i+r}) \) by
\[\theta^i_r = \psi_{i+r-1,2} \circ \psi_{i+r-2,3} \cdot \cdots \cdot \psi_{i,r+1}. \]
Note that the maps ψ and hence θ also preserve J, because V and ι do. Hence

$$J_r \theta_r \left(\xi_1 \otimes \cdots \otimes \xi_{r+1} \right) = \theta_r \left(J_0 \xi_{r+1} \otimes \cdots \otimes J_0 \xi_1 \right).$$

Also note that $\theta_{k+1} = \theta_{k+1}^0 = \theta_k^1 \circ \psi_{0,k+2}$.

Lemma 3.2.9. Let $P \subset Q$ be an inclusion of type II factors. Let $T = T_p^Q$. Any element $x \in m_T \cap m_{T_Q}$ can be written as $x = y^* z$ for some $y,z \in n_T \cap n_{T_Q}$.

Proof. Consider the polar decomposition $x = u|y|$ and let $y = u|x|^{1/2}$, $z = |x|^{1/2}$. Then $z^* z = x$ and $y^* y = |x|^2 u^* u |x|^{1/2} \leq |x|$. Hence $z^* z, y^* y \in m_T \cap m_{T_Q}$ and $z,y \in n_T \cap n_{T_Q}$.

Lemma 3.2.10. Let $P \subset Q$ be an inclusion of type II factors. Let $T = T_p^Q$. Let $a,b \in n_T \cap n_{T_Q}$. Then

$$a \otimes b^* \in m_{T_Q}^1 \cap m_{T_Q^1}.$$

Proof. Note that $L(\hat{a}) = \Lambda_T(a)$, $L(\hat{b}) = \Lambda_T(b)$, so $a \otimes_P b^* = L(\hat{a}) L(\hat{b})^* \in m_{T_Q^1}$ by Lemma 3.2.1 (ii). In addition $a \otimes_P b^* = \Lambda_T(a) \Lambda_T(b)^* \in m_{T_Q^1}$ by Prop 10.7 of $[$83$]$.

Remark 3.2.11. Note $m_T \cap m_{T_Q} \subset n_T \cap n_T^* \cap n_{T_Q}$. Hence for $x \in m_T \cap m_{T_Q}$, $\hat{x} \in D(L^2(Q)_P) \cap D(pL^2(Q))$ and $\Lambda_T(x) = L(\hat{x})$, $J_Q \Lambda_T(x^*) J_P = R(\hat{x})$.

Proposition 3.2.12. Let $P \subset Q$ be an inclusion of type II factors. Let $T = T_p^Q$ and let $\bar{Q} = m_T \cap m_{T_Q}$. Let $a_i, b_i \in \bar{Q}$, $i = 1,2,\ldots$. Let $s_j \in P$ be defined inductively by $s_0 = 1$, $s_{j+1} = T(a_{j+1}^* s_j b_{j+1})$, $j \geq 0$. Then

(i) $$\theta_k \left(\hat{a}_1 \otimes \cdots \otimes \hat{a}_{k+1} \right) \in \left(m_{T_{Q^k}} \cap m_{T_Q^k} \right)^*$$

and hence defines an element of Q_k which we will denote $a_1 \otimes_P \cdots \otimes_P a_{k+1}$. In the case $k = 1$ this is the same element as that represented in the Herman-Ocneanu notation by $a_1 \otimes_P a_2$.

(ii) $$\left(a_1 \otimes a_2 \otimes \cdots \otimes a_{k+1} \right)^* = a_{k+1}^* \otimes a_k^* \otimes \cdots \otimes a_1^.$$
By Lemma 3.2.9 there exist $w^*, x_i, y_i^*, z_i \in \mathfrak{n}_T \cap \mathfrak{m}_{Q_1}$ such that

For $j \geq 2$ let $A_i = x_i \otimes_P w_i$, $B_i = y_i \otimes_P y_i$ and for $i \geq 2$ let $A_i = x_i \otimes_P w_i$, $B_i = z_i \otimes_P y_i$. For $j \geq 1$ let $\overline{A}_j = x_j \otimes_P a_{j+1}$, $\overline{B}_j = z_j \otimes_P y_{j+1}$. By Lemma 3.2.10 $A_i, B_i, \overline{A}_i, \overline{B}_i \in \mathfrak{m}_{Q_1} \cap \mathfrak{m}_{Q_1}$.

Let $S_0 = 1, S_{j+1} = T_{Q_1}^j(A_{j+1}^*S_jB_{j+1})$ for $j \geq 0$. We claim that $S_j = w_{j+1}^* s_j y_{j+1}$ for $j \geq 1$. For $j = 1$, use the fact that $\Lambda_T(a_1^*a_T(b_1)) = T(a_1^*b_1)$ from Prop 3.1.7 to obtain

$$A_1^*B_1 = \left(w_2^* \otimes_P a_1^* \right) \left(b_1 \otimes_P y_2 \right) = w_2^* T(a_1^*b_1) \otimes_P y_2 = w_2^* s_1 \otimes_P y_2.$$
Hence $S_1 = T_Q(A_1^*B_1) = w_2^*s_1y_2$. In general, if the result holds for $j \geq 1$ then
\[
S_{j+1} = T_Q(A_{j+1}^*S_jB_{j+1}) \\
= T_Q\left(w_{j+2}^*x_j^*y_j+1 \otimes y_{j+2}\right) \\
= T_Q\left(w_{j+2}^*T(x_j^*w_{j+1}^*s_jy_j+1z_j+1) \otimes y_{j+2}\right) \\
= w_{j+2}^*T(a_{j+1}^*s_jb_{j+1})y_{j+2} \\
= w_{j+2}^*s_{j+1}y_{j+2}.
\]

(i) The result is trivially true for $k = 0$. For $k = 1$, $\theta_1 = \psi_{0,2} = v_1$ and we have, from the definition of v_1,
\[
\begin{align*}
\theta_1 &\left(\hat{a}_1 \otimes \hat{a}_2 \otimes \cdots \otimes \hat{a}_{k+2}\right) \\
&= \theta_1 \left(\hat{a}_1 \otimes \hat{w}_2x_2 \otimes \cdots \otimes \hat{w}_{k+1}x_{k+1} \otimes \hat{a}_{k+2}\right) \\
&= \theta_k \circ \psi_{0,k+2} \left(\hat{a}_1 \otimes \hat{w}_2x_2 \otimes \cdots \otimes \hat{w}_{k+1}x_{k+1} \otimes \hat{a}_{k+2}\right) \\
&= \theta_k \left(\hat{A}_1 \otimes \hat{A}_2 \otimes \cdots \otimes \hat{A}_{k+1}\right) \\
&\in m_{T_Qk} \cap m_{T_{Q+1}k+1}
\end{align*}
\]
by assumption (and the fact that if $C = Q$ and $D = Q_1$ then the tower obtained from $C \subset D$ satisfies $D_j = Q_{j+1}$).

Note that in addition we have shown that
\[
a_1 \otimes a_2 \otimes \cdots \otimes a_{k+2} = A_1 \otimes A_2 \otimes \cdots \otimes A_k \otimes \hat{A}_{k+1}.
\]
(ii) Simply observe that
\[J_k \theta_k \left(\frac{a_1 \otimes \cdots \otimes a_{k+1}}{p} \right) = \theta_k \left(J_0 a_{k+1} \otimes \cdots \otimes J_0 a_1 \right) = \theta_k \left(\frac{a_{k+1} \otimes \cdots \otimes a_1}{p} \right) \]

(iii) For \(k = 0 \), \(a_1^* s_0 \otimes_p b_1 = a_1^* \otimes_p b_1 \). For \(k = 1 \), from the proof of (i),
\[a_2^* \otimes a_1^* s_0 b_1 \otimes b_2 = a_2^* \otimes a_1^* b_1 \otimes b_2 \]
\[= \left(\frac{a_2^* \otimes a_1^*}{p} \right) \left(b_1 \otimes b_2 \right) \]
\[= \left(\frac{a_1 \otimes a_2}{P} \right) \left(b_1 \otimes b_2 \right) . \]

Assume the result is true for some \(k \geq 1 \). Note that
\[
A_r^* S_{r-1} B_r = \left(w_{r+1}^* \otimes x_r^* \right) w_r^* s_{r-1} y_r \left(z_r \otimes y_{r+1} \right) \\
= w_{r+1}^* T(x_r^* w_r^* s_{r-1} y_r z_r) \otimes y_{r+1} \\
= w_{r+1}^* s_r \otimes y_{r+1} \\
A_{r+1}^* S_r = w_{r+2} \otimes x_{r+1}^* w_r^* s_r y_{r+1} \\
= w_r^* \otimes a_{r+1}^* s_r y_{r+1} .
\]

Hence, with the first of the two cases always denoting \(k = 2r - 1 \) and the second \(k = 2r \),
\[
\left(\frac{a_1 \otimes \cdots \otimes a_{k+2}}{p} \right)^* \left(\frac{b_1 \otimes \cdots \otimes b_{k+2}}{p} \right) \\
= \left(\frac{A_1 \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1}}{Q} \right)^* \left(\frac{B_1 \otimes \cdots \otimes B_k \otimes \overline{B}_{k+1}}{Q} \right) \\
= \left\{ \begin{array}{c} \overline{A}_{k+1} \otimes A_k \otimes \cdots \otimes A_{r+1}^* S_r B_r \otimes \cdots \otimes B_k \otimes \overline{B}_{k+1} \\
\overline{A}_{k+1} \otimes A_k \otimes \cdots \otimes A_{r+1}^* S_r \otimes B_{r+1} \otimes \cdots \otimes B_k \otimes \overline{B}_{k+1} \\
\end{array} \right. \\
= \left\{ \begin{array}{c} a_{k+2}^* \otimes \cdots \otimes a_{r+2}^* \otimes x_{r+1}^* w_{r+1}^* s_r \otimes y_{r+1} z_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+2} \\
a_{k+2}^* \otimes \cdots \otimes a_{r+3}^* \otimes x_{r+2}^* w_{r+2}^* a_{r+1}^* s_r y_{r+1} z_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+2} \\
\end{array} \right. \\
= \left\{ \begin{array}{c} a_{k+2}^* \otimes a_{k+1}^* \otimes \cdots \otimes a_{r+1}^* s_r \otimes b_{r+1} \otimes \cdots \otimes b_{k+2} \\
a_{k+2}^* \otimes a_{k+1}^* \otimes \cdots \otimes a_{r+1}^* s_r b_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+2} \\
\end{array} \right. \\
\]

Hence the result is true for \(k + 1 \) and the general result follows by induction.
(iv) For $k = 0$, $T_{Q_1}^{Q_0}(a_1) = T(a_1)$. Assume the result holds for some $k \geq 0$. Note that

$$A_r A_{r+1} = x_r T(w_{r+1} x_{r+1}) \otimes w_{r+2} = x_r T(a_{r+1}) \otimes w_{r+2}$$

$$A_r T_{Q_1}^{Q_1}(A_{r+1}) = x_r \otimes w_{r+1} x_{r+1} w_{r+2} = x_r \otimes a_{r+1} w_{r+2}.$$

Hence, with the first of the two cases once again denoting $k = 2r - 1$ and the second $k = 2r$,

$$T_{Q_k}^{Q_{k+1}} \left(a_1 \otimes \cdots \otimes a_{k+2} \right) = T_{Q_k}^{Q_{k+1}} \left(A_1 \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1} \right)$$

$$= \begin{cases} A_1 \otimes \cdots \otimes A_r A_{r+1} \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1} \\ A_1 \otimes \cdots \otimes A_r T_{Q_1}^{Q_1}(A_{r+1}) \otimes \cdots \otimes A_k \otimes \overline{A}_{k+1} \end{cases}$$

$$= \begin{cases} a_1 \otimes \cdots \otimes a_{r-1} \otimes w_r x_r T(a_{r+1}) \otimes w_{r+2} x_{r+2} \otimes a_{r+3} \otimes \cdots \otimes a_{k+2} \\ a_1 \otimes \cdots \otimes a_{r-1} \otimes w_r x_r \otimes a_{r+1} w_{r+2} x_{r+2} \otimes a_{r+3} \otimes \cdots \otimes a_{k+2} \\ a_1 \otimes \cdots \otimes a_{r-1} \otimes a_r T(a_{r+1}) \otimes a_{r+2} \otimes \cdots \otimes a_{k+2} \\ a_1 \otimes \cdots \otimes a_{r-1} \otimes a_r \otimes a_{r+1} \otimes a_{r+2} \otimes a_{r+3} \otimes \cdots \otimes a_{k+2} \end{cases}$$

(v) We use the fact that $T_Q(x \otimes y) = xy$ combined with (iii) and (iv). Once again, let the first of the two cases denote $k = 2r - 1$ and the second $k = 2r$.

$$\left(a_1 \otimes \cdots \otimes a_{k+1} \right)^* \left(b_1 \otimes \cdots \otimes b_{k+1} \right)$$

$$= T_{Q_k}^{Q_{k+1}} \left(\left(a_1 \otimes \cdots \otimes a_{k+1} \right)^* \otimes \left(b_1 \otimes \cdots \otimes b_{k+1} \right) \right)$$

$$= \begin{cases} T_{Q_k}^{Q_{k+1}} \left(a_{k+1}^* \cdots a_{r+1}^* a_r^* \otimes a_{r-1}^* b_r \otimes \cdots \otimes b_{k+1} \right) \\ T_{Q_k}^{Q_{k+1}} \left(a_{k+1}^* \cdots a_{r+1}^* a_r^* b_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+1} \right) \end{cases}$$

$$= \begin{cases} a_{k+1}^* \cdots a_{r+1}^* T(a_r^* s_{r-1} b_r) \otimes b_{r+1} \otimes \cdots \otimes b_{k+1} \\ a_{k+1}^* \cdots a_{r+1}^* s_r b_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+1} \end{cases}$$

$$= \begin{cases} a_{k+1}^* \cdots a_{r+1}^* s_r b_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+1} \\ a_{k+1}^* \cdots a_{r+1}^* b_{r+1} \otimes b_{r+2} \otimes \cdots \otimes b_{k+1} \end{cases}$$
(vi) Let $j = 2i - k$. We will induct on j. For $j = -1$ ($k = 2i + 1$, $i \geq 0$), let $u = (\theta_i \otimes_p \theta_{i-1}) \theta_{2i}^*$. From Prop \[3.1.9\]

\[
\left[\pi_i^{2i+1} \left(a_1 \otimes_p \ldots \otimes a_{2i+2} \right)^* \left(b_1 \otimes_p \ldots \otimes b_{i+1} \right) \right] \otimes_p \left(c_1 \otimes_p \ldots \otimes c_i \right) = u \left(a_1 \otimes_p \ldots \otimes a_{2i+2} \right)^* \left(b_1 \otimes_p \ldots \otimes b_{i+1} \otimes c_1 \otimes_p \ldots \otimes c_i \right) = u \left(a_{2i+2}^* \otimes_p \ldots \otimes a_{i+2}^* \otimes b_{i+1} \otimes c_1 \otimes_p \ldots \otimes c_i \right) = \left(a_{2i+2}^* \otimes_p \ldots \otimes a_{i+2}^* \otimes b_{i+1} \right) \otimes_p \left(c_1 \otimes_p \ldots \otimes c_i \right).
\]

Suppose (vi) holds for some \tilde{j} (and all $i > j$). Let $j = \tilde{j} + 1$, $i > j$ and $k = 2i - j$. Set $\bar{i} = i - 1$, $\bar{k} = 2\bar{i} - \bar{j} = k - 1$. Let $\bar{P} = Q$, $\bar{Q} = Q_1$ and $\bar{\pi}$ denote the representations constructed from Prop \[3.1.9\] applied to $\bar{P} \subset \bar{Q}$. Then

\[
\pi_i^k \left(a_1 \otimes_p \ldots \otimes a_{k+1} \right)^* \left(b_1 \otimes_p \ldots \otimes b_{i+1} \right)^* \bar{\pi}^k \left(A_{k+1} \otimes_p \ldots \otimes A_{\bar{k}+1} \otimes \bar{A}_{\bar{k}+1} \right)^* \left(B_1 \otimes_p \ldots \otimes B_{\bar{i}+1} \right)^* = \begin{cases} \left(A_{k+1}^* \otimes_p \ldots \otimes A_{\bar{k}+1}^* \bar{S}_{\bar{k}+2} \otimes B_{\bar{k}+1} \otimes_p \ldots \otimes B_{\bar{i}+1} \right)^* & \bar{k} = 2\bar{i} - 1 \\ \left(\bar{A}_{\bar{k}+1}^* \otimes_p \ldots \otimes \bar{A}_{\bar{k}+1}^* \bar{S}_{\bar{k}+2} \otimes \bar{B}_{\bar{k}+1} \otimes_p \ldots \otimes \bar{B}_{\bar{i}+1} \right)^* & \bar{k} = 2\bar{i} \end{cases}
\]

\[
= \begin{cases} \left(a_{k+1}^* \otimes_p \ldots \otimes a_{\bar{k}+1}^* \bar{S}_{\bar{k}+2} \otimes b_{\bar{k}+1} \otimes_p \ldots \otimes b_{i+1} \right)^* & k = 2\bar{i} \\ \left(a_{k+1}^* \otimes_p \ldots \otimes a_{\bar{k}+1}^* \otimes b_{\bar{k}+2} \otimes \ldots \otimes b_{i+1} \right)^* & k = 2\bar{i} + 1 \end{cases}
\]

\[
= \begin{cases} \left(a_{k+1}^* \otimes_p \ldots \otimes a_{\bar{k}+1}^* \bar{S}_{\bar{k}+2} \otimes b_{\bar{k}+1} \otimes_p \ldots \otimes b_{i+1} \right)^* & k = 2\bar{i} \\ \left(a_{k+1}^* \otimes_p \ldots \otimes a_{\bar{k}+1}^* \otimes b_{\bar{k}+1} \otimes \ldots \otimes b_{i+1} \right)^* & k = 2\bar{i} - 1 \end{cases}
\]

\[\square\]

Notation 3.2.13. Let $\tilde{Q}_k = \text{span}\{a_1 \otimes_p \ldots \otimes_p a_{k+1} : a_i \in \bar{Q}\}$ (not to be confused with $(Q_k) = m_{\bar{Q}_k} \cap \pi_{\bar{V}_k}$).

Corollary 3.2.14. Let $N \subset M$ be an inclusion of II$_1$ factors. Then

(i)

\[
\begin{array}{c}
\frac{1}{N} \otimes \frac{1}{N} \otimes \frac{1}{N} = e_1 e_3 \cdots e_{2r-1}.
\end{array}
\]
(ii) For \(a_1, a_2, \ldots, a_{2r} \in M\)

\[
a_1 \otimes \cdots \otimes a_r \otimes 1 \otimes a_{r+1} \otimes \cdots \otimes a_{2r} = a_1 \otimes \cdots \otimes a_{2r}.
\]

(iii) \(\tilde{M}_k\) is dense in \(L^2(M_k)\).

Proof. (i) First note that \(1 = 1, 1 \otimes 1 = 1e_1 = e_1\). Suppose that

\[
1 \otimes 1 \otimes 1 \cdots \otimes 1 = e_1e_3 \cdots e_{2r-1}.
\]

Then, by Prop 3.2.12 (iii),

\[
\begin{align*}
1 \otimes 1 \otimes 1 \cdots \otimes 1 = & \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \otimes \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \\
& \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \otimes \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \\
& = (e_1e_3 \cdots e_{2r-1}) \otimes (e_1e_3 \cdots e_{2r-1}) \\
& = (e_1e_3 \cdots e_{2r-1}) e_{2r-1} \otimes (e_1e_3 \cdots e_{2r-1}) e_{2r-1} \\
& = (e_1e_3 \cdots e_{2r-1}) e_{2r-1} (e_1e_3 \cdots e_{2r-1}) \\
& = e_1e_3 \cdots e_{2r-1},
\end{align*}
\]

using Prop 3.2.4 (iii). Also

\[
\begin{align*}
1 \otimes 1 \otimes 1 \cdots \otimes 1 = & \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \otimes \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \\
& \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \otimes \left(1 \otimes 1 \otimes 1 \cdots \otimes 1 \right) \\
& = (e_1e_3 \cdots e_{2r-1}) e_{2r+1} + (e_1e_3 \cdots e_{2r-1}) \\
& = e_1e_3 \cdots e_{2r-1} e_{2r+1}.
\end{align*}
\]

The result now follows by induction.

(ii) Let \(X\) denote \(a_1 \otimes_N \cdots \otimes_N a_r\) and let \(Y\) denote \(a_{r+1} \otimes_N \cdots \otimes_N a_{2r}\). Using part (i) and
Prop \[3.2.12\] (iii) and then (v),

\[
\begin{align*}
& a_1 \otimes \cdots \otimes a_r \otimes 1 \otimes a_{r+1} \otimes \cdots \otimes a_{2r} \\
= & \left(X \otimes 1 \otimes \cdots \otimes 1 \right) \otimes_{M_{2r-2}} \left(1 \otimes \cdots \otimes 1 \otimes Y \right) \\
= & \left[\left(X \otimes 1 \otimes \cdots \otimes 1 \right) \otimes_{2r} \left(1 \otimes \cdots \otimes 1 \otimes Y \right) \otimes_{M_{2r-2}} \left(1 \otimes \cdots \otimes 1 \otimes Y \right) \right] \\
= & \left(X \otimes 1 \otimes \cdots \otimes 1 \right) \otimes_{2r+1} \left(1 \otimes \cdots \otimes 1 \otimes Y \right) \\
= & \left(X \otimes 1 \otimes \cdots \otimes 1 \right) \otimes_{r} \left(1 \otimes \cdots \otimes 1 \otimes Y \right) \\
= & a_1 \otimes \cdots \otimes a_{2r}.
\end{align*}
\]

(iii) \(\widetilde{M} = M\) is dense in \(L^2(M)\). The general result follows from the following claim:

Claim 3.2.15. Suppose \(\widetilde{\mathcal{H}} \subset D(\mathcal{H}_B)\) is dense in \(A\mathcal{H}_B\) and \(\widetilde{\mathcal{K}} \subset D(\mathcal{K}_C)\) is dense in \(\mathcal{K}_C\). Then \(\text{span}\{\xi \otimes_B \eta : \xi \in \mathcal{H}, \eta \in \mathcal{K}\}\) is dense in \(\mathcal{H} \otimes_B \mathcal{K}\).

Proof. Given \(\xi \in D(\mathcal{H}_B)\) and \(\eta \in D(\mathcal{K}_C)\) take \(\eta_n \in \mathcal{K}\) with \(\eta_n \to \eta\). Then

\[
||\xi \otimes_B \eta - \xi \otimes_B \eta_n||^2 = ||\xi \otimes_B \eta||^2 + ||\xi \otimes_B \eta_n||^2 - 2\text{Re} \left< \xi \otimes_B \eta, \xi \otimes_B \eta_n \right> \\
= \left< \langle \xi, \xi \rangle_B \eta, \eta \right> + \left< \langle \xi, \xi \rangle_B \eta_n, \eta_n \right> - 2\text{Re} \left< \langle \xi, \xi \rangle_B \eta_n, \eta_n \right> \\
\to 0,
\]

so we can approximate \(\xi \otimes_B \eta\) by \(\xi \otimes \eta_0\) for some \(\eta_0 \in \mathcal{K}\). Similarly we can approximate \(\xi \otimes_B \eta_0\) by \(\xi_0 \otimes_B \eta_0\) for some \(\xi_0 \in \mathcal{H}\). \(\square\)
The result now follows by induction because $\tilde{M}_k \subset m_{T_N^k} \cap m_{T_k}$ by iterating Prop 3.2.12 (iv) and $m_{T_N^k} \cap m_{T_k} \subset D(L^2(M_k)_N)$.

\[\Box\]

3.2.3 Bases revisited

Definition 3.2.16. Let $P \subset Q$ be an inclusion of type II factors. A Q_P-basis (also called a basis for Q over P) is $\{b\} \subset n_T \cap n_{T_Q}$ such that

$$\sum_b b \otimes b^* = 1.$$

A P_Q-basis is $\{b\} \subset n_T^* \cap n_{T_Q}$ such that

$$\sum_b b^* \otimes b = 1.$$

Remark 3.2.17. Note that a Q_P-basis is a special case of a $L^2(Q)_P$-basis. We define orthogonal and orthonormal Q_P- and P_Q-bases as in 3.1.1.

If $\{b\}$ is a Q_P- (resp. P_Q-) basis, then $\{b^*\}$ is a P_Q- (resp. Q_P-) basis.

We will show that for a II$_1$ inclusion $N \subset M$ there exists an orthonormal basis for M over N and orthogonal bases for all M_k over M_j. We will then relate bases for Q over P to the commutant operator-valued weight.

Existence

We begin with the infinite index version of the so-called pull-down lemma.

Lemma 3.2.18 (Pull-down lemma). Let $z \in n_T^*$. Then $ze_1 = T(ze_1)e_1$.

Proof. Since $ze_1, T(ze_1)e_1 \in n_{T_{r_1}}$ equality is proved by taking inner products against ae_1b, where $a, b \in M$:

$$\text{Tr}_1(ze_1ae_1b) = \text{Tr}_1(ze_1E_N(a)b) = \text{tr}(T(ze_1)E_N(a)b) = \text{Tr}_1(T(ze_1)e_1E_N(a)b) = \text{Tr}_1(T(ze_1)e_1ae_1b).$$

\Box

Proposition 3.2.19. Let $N \subset M$ be a II$_1$ subfactor of infinite index. Then there exists an orthogonal M_N-basis.
Proof. Let \(T = T^M_{M_1} \). Take an \(L^2(M)_N \)-basis \(\{ \xi_\beta \} \) with \(L(\xi_\beta)L(\xi_\beta)^* \) pairwise orthogonal projections (by 2.2 of Enock-Nest [S]). In particular

\[
L^2(M) = \bigoplus_\beta L(\xi_\beta)L^2(N)
\]

For \(\xi \in D(L^2(M)_N) \), \(T(L(\xi)L(\xi)^*) \) has finite trace and so has spectral decomposition

\[
T(L(\xi)L(\xi)^*) = \int_0^\infty \lambda dq_\lambda.
\]

Let \(f_1 = q_1, f_{n+1} = q_{n+1} - q_n \). Let \(z_n = f_nL(\xi)e_1 \in M_1 \). Then \(z_n \in n^*_T \) since

\[
T(z_n z_n^*) = T(f_nL(\xi)e_1L(\xi)^*f_n) = f_nT(L(\xi)L(\xi)^*)f_n
\]

which has norm less than \(n \). By the Pull-down Lemma (Lemma 3.2.18) \(z_n = b_ne_1 \) for some \(b_n \in M \). \(L(\xi)e_1 = \sum_n f_nL(\xi)e_1 = \sum b_ne_1 \) and so

\[
L(\xi)L^2(N) = \bigoplus_n b_nL^2(N).
\]

Applying this procedure to each \(\xi_\beta \) we obtain a decomposition of \(L^2(M) \) as

\[
L^2(M) = \bigoplus_\alpha b_\alpha L^2(N)
\]

where \(b_\alpha \in M \).

For \(b \in M \) let \(p \) be the orthogonal projection onto \(bL^2(N) \). Consider the spectral decomposition of \(be_1b^* \)

\[
be_1b^* = \int_0^K \lambda dq_\lambda
\]

Let \(p_n = \chi_{(K/((n+1)/K/n)}(be_1b^*) = q_{K/n} - q_{K/(n+1)} \). Note that \(\chi_{[0]}(be_1b^*) \) is orthogonal projection onto \(\text{Ker}(be_1b^*) = \text{Ker}(e_1b^*) = (\text{Range}(be_1))^\perp \) so that \(\sum p_n = 1 - \chi_{[0]}(be_1b^*) = p \).

Let

\[
z_n = \int_{(K/n+1)}^{K/n} \lambda^{-1/2} dq_\lambda,
\]

so that \(z_n be_1b^* z_n^* = p_n \). Note that \(z_n \leq ((n + 1)/K)^{3/2} be_1b^* \) so \(z_n \in m_T \subset n^*_T \). By the Pull-down Lemma there exists \(b_n \in M \) with \(z_n be_1 = b_n e_1 \). Then

\[
\sum_n b_n e_1 b_n^* = \sum_n z_n be_1b^* z_n^* = \sum_n p_n = p.
\]
Applying this procedure to each b_α we obtain a collection of elements b_i in M with

$$\sum_i b_i e_1 b_i^* = 1$$

and $b_i e_1 b_i^*$ pairwise orthogonal projections.

Proposition 3.2.20. Let $N \subset M$ be a II$_1$ subfactor of infinite index. Then there exists an orthonormal M_N-basis.

Proof. Consider $N \subset M \subset M_1$, $T = T_M$. By Prop 3.2.19 there exists a sequence of projections $p_i \in m_T$ with $\sum p_i = 1$. Observe that $\sum \Tr_1(p_i) = \Tr_1(1) = \infty$. By adding finite sets of projections and taking subprojections, operations under which m_T is closed, we may assume that $\Tr_1(p_i) = 1$ for all i. Thus p_i is equivalent in M_1 to e_1, so there exist $v_i \in M_1$ with $v_i v_i^* = p_i$, $v_i^* v_i = e_1$. $v_i^* = v_i^* p_i \in n_T$, so $v_i \in n_T^*$ and by the Pull-down Lemma there exists $b_i \in M$ with $v_i = v_i e_1 = b_i e_1$. Then $b_i e_1 b_i^* = v_i v_i^* = p_i$ so that $\sum_i b_i e_1 b_i^* = 1$. In addition

$$e_1 E_N(b_i^* b_j) = e_1 b_i^* b_j e_1 = v_i^* v_j = \delta_{i,j} e_1,$$

so, applying T, $E_N(b_i^* b_j) = \delta_{i,j} 1$.

Remark 3.2.21. In the proof of Prop 3.2.20 the only fact we use from Prop 3.2.19 is the existence of a set of projections $\{p_i\} \subset m_T$ with $\sum_i p_i = 1$. Herman and Ocneanu claim the existence of such a partition of unity for any semi-finite factors $N \subset M$ on a separable Hilbert space (Prop 2 of [10]), however no proof is available for this result.

Lemma 3.2.22. Let $B = \{b_i\}$ be an M_N-basis. Then $B_r = \{b_i \otimes_N \cdots \otimes_N b_{j_r+1}\}$ is an $(M_r)_N$ basis. If B is orthonormal then so is B_r.

Proof.

$$L \left(b_{j_1} \otimes_N \cdots \otimes_N b_{j_{r+1}} \right) = L_{b_{j_1}} \cdots L_{b_{j_r}} L \left(b_{j_{r+1}} \right)$$

so that

$$\sum L \left(b_{j_1} \otimes_N \cdots \otimes_N b_{j_{r+1}} \right) L \left(b_{j_1} \otimes_N \cdots \otimes_N b_{j_{r+1}} \right)^* = \sum L_{b_{j_1}} \cdots L_{b_{j_r}} L \left(b_{j_{r+1}} \right) L \left(b_{j_{r+1}} \right)^* L_{b_{j_r}} \cdots L_{b_{j_1}} = \delta_{b,\tilde{b}} 1$$

If B is orthonormal then $L(b_j)^* L(b_i) = L_{b_j}^* L_{b_i} = \delta_{i,j} 1$, so from equation (3.2) $L(b)^* L(\tilde{b}) = \delta_{b,\tilde{b}} 1$ for $b, \tilde{b} \in B_r$. \qed
Lemma 3.2.23. Let \(\{b_i\} \) be an orthonormal \(M_N \)-basis. Let \(k = 2r - 1 \) or \(2r \). Define \(p_{j_1,\ldots,j_r} \in M_k \) by
\[
p_{j_1,\ldots,j_r} = \begin{cases} b_{j_1} \otimes \cdots \otimes b_{j_r} \otimes b_{j_1}^* \otimes \cdots \otimes b_{j_r}^*, & k = 2r - 1 \\ b_{j_1} \otimes \cdots \otimes b_{j_r} \otimes 1 \otimes b_{j_1}^* \otimes \cdots \otimes b_{j_r}^*, & k = 2r. \end{cases}
\]
Then \(p_{j_1,\ldots,j_r} \) are orthogonal projections with sum 1.

Proof. For \(k = 2r - 1 \) note that by Lemma 3.2.22 \(B_{r-1} = \{b_{j_1} \otimes \cdots \otimes b_{j_r}\} \) is an orthonormal basis and hence \((b_{j_1} \otimes \cdots \otimes b_{j_r}) \otimes (b_{j_1} \otimes \cdots \otimes b_{j_r})^* \) are orthogonal projections with sum 1.

For \(k = 2r \) simply note that
\[
b_{j_1} \otimes \cdots \otimes b_{j_r} \otimes 1 \otimes b_{j_1}^* \otimes \cdots \otimes b_{j_r}^* = b_{j_1} \otimes \cdots \otimes b_{j_r} \otimes b_{j_1}^* \otimes \cdots \otimes b_{j_r}^*
\]
by Corollary 3.2.14. \(\square \)

Proposition 3.2.24. Let \(\{b_i\} \) be an orthonormal \(M_N \)-basis. Then for \(-1 \leq k \leq l\) an orthogonal \((M_{l})_{M_k}\)-basis is given by:
\[
b_{j_1,\ldots,j_r, i_{l-k}} = \begin{cases} b_{i_1} \otimes \cdots \otimes b_{i_{l-k}} \otimes b_{j_1} \otimes \cdots \otimes b_{j_r} \otimes b_{j_1}^* \otimes \cdots \otimes b_{j_r}^*, & k = 2r - 1 \\ b_{i_1} \otimes \cdots \otimes b_{i_{l-k}} \otimes b_{j_1} \otimes \cdots \otimes b_{j_r} \otimes 1 \otimes b_{j_1}^* \otimes \cdots \otimes b_{j_r}^*, & k = 2r. \end{cases}
\]

Proof. Note that
\[
L \left(b_{i_1,\ldots,i_{l-k}} \right) = \mathcal{L}_{b_{i_1}} \cdots \mathcal{L}_{b_{i_{l-k}}} p_{j_1,\ldots,j_r}.
\]
Hence
\[
\sum L \left(b_{i_1,\ldots,i_{l-k}} \right) L \left(b_{i_1,\ldots,i_{l-k}} \right)^* = \sum \mathcal{L}_{b_{i_1}} \cdots \mathcal{L}_{b_{i_{l-k}}} \mathcal{L}_{b_{j_1}^*} \cdots \mathcal{L}_{b_{j_r}^*} = 1
\]
and the terms in the sum are orthogonal projections. \(\square \)

Corollary 3.2.25. Let \(\text{Tr} \) be the canonical trace on \(M'_k \cap B(L^2(M_l)) \) (definition 3.1.4). Then \(\text{Tr} \left(J_1 \left(\cdot \right)^* J_1 \right) = \text{Tr}_{2l-k} \).
Proof. Let $\text{Tr} = \text{Tr}' (J_l (\cdot) J_l)$. Note that by uniqueness of the trace up to scaling, Tr is a multiple of Tr_{2l-k}. Let $f_i = 1 \otimes_N \cdots \otimes_N 1$ ($i + 1$ terms). $\text{Tr}_{2l-k} (f_{2l-k}) = 1$ so we simply need to show that $\text{Tr} (f_{2l-k}) = 1$.

Let B be an orthonormal M_N-basis and $B_{l,k}$ the resulting $(M_l)_{M_k}$-basis from Prop 3.2.24. $B_{l,k}^*$ is a $M_k (M_l)$-basis, so by Lemma 3.1.3

$$\text{Tr}' = \sum_{b \in B_{l,k}} \left\langle \cdot, \hat{b}, \hat{b}^* \right\rangle$$

and hence

$$\text{Tr} = \sum_{b \in B_{l,k}} \left\langle \cdot, \hat{b}, \hat{b}^* \right\rangle.$$ Take r such that $k = 2r - 1 + t$ ($t = 0$ or 1). Fix $i_1, \ldots, i_{t-k}, j_1, \ldots, j_r$. Let $c = b_{i_1} \otimes_N \cdots \otimes_N b_{i_{t-k}} \otimes_N b_{j_1} \otimes_N \cdots \otimes_N b_{j_r} \in M_{l-r-t}$ and let $b = b_{i_1}^* \otimes_N \cdots \otimes_N b_{i_{t-r}}. Then, from Prop 3.2.12,

$$\pi_{l-k}^{2l-k} (f_{2l-k}) \hat{b} = 1 \otimes_N \cdots \otimes_N 1 \otimes_N b_{j_1} \otimes N \cdots \otimes N b_{j_r}$$

where $s = E_N (1 \cdots E_N (1 \otimes_N (b_{i_1} b_{i_2}) \cdots b_{j_r}) = T_{l-r-t}^M (f_{l-r-t} c)$. Thus

$$\left\langle \pi_{l-k}^{2l-k} (f_{2l-k}) \hat{b}, \hat{b}^* \right\rangle = \left\langle f_{l-r-t}, c \otimes N \right\rangle = \left\langle f_{l-r-t}, c \otimes N \right\rangle = \left\langle f_{l-r-t}, c \otimes N \right\rangle$$

Finally

$$\text{Tr} (f_{2l-k}) = \sum_{b \in B_{l,k}} \left\langle \pi_{l-k}^{2l-k} (f_{2l-k}) \hat{b}, \hat{b}^* \right\rangle = \sum_{c \in B_{l-r-t}} \left\langle f_{l-r-t}, c T_{l-r-t}^M (c^* f_{l-r-t}) \right\rangle = \left\langle f_{l-r-t}, f_{l-r-t} \right\rangle = \text{Tr}_{l-r-t} (f_{l-r-t}) = 1.$$}

\hfill \Box

Commutant Operator-Valued Weight

The main result of this section is:

Theorem 3.2.26. Let $P \subset Q$ be type two factors represented on a Hilbert space \mathcal{H}. Suppose that there exists a Q_P-basis $B = \{ b \}$. Then the n.f.s trace-preserving operator-valued weight $T_{Q'} : (P')_+ \to Q'_+$ satisfies

$$T_{Q'} (x) = \sum_b b x b^* \quad x \in P'_+$$

Proposition 3.2.27. Let $P \subset Q$ be type two factors represented on a Hilbert space \mathcal{H}. Let $B = \{ b \}$ be a Q_P-basis. Then $\Phi_B (x) = \sum_b b x b^* \in (\mathcal{B} (\mathcal{H}))(\hat{\ })_+$ is affiliated with Q' and hence in $(Q')_+$. In addition Φ_B is independent of B and will hence be denoted simply Φ.

Proof. For $\xi \in \mathcal{H}$ define an unbounded operator $R(\xi) : L^2(Q) \to \mathcal{H}$ with domain $\mathfrak{n}_{1,2}$ by $R(\xi) \hat{a} = a \xi$. For $\eta \in D(QH)$ we see that $\eta \in D(R(\xi)^*)$:

$$< R(\xi) \hat{a}, \eta > = < a \xi, \eta > = < \xi, a^* \eta > = < a \xi, R(\eta)^* a^* > = < \hat{a}, J_Q R(\eta)^* \xi > .$$

Hence $D(R(\xi)^*)$ is dense so that $R(\xi)$ is pre-closed (Theorem 2.7.8 (ii) of [20]).

Let $x \in P' \cap B(\mathcal{H})$ and let $A = x^{1/2}R(\xi)$. Define $m \in P'_{\infty}$ by

$$m(\omega_{\eta}) = \begin{cases} \| (A^* A)^{1/2} \eta \|^2 & \eta \in D((A^* A)^{1/2}) \\ \infty & \text{otherwise} \end{cases}$$

(note that $A^* A$ is a positive, self-adjoint operator on $L^2(Q)$ and is affiliated with P' (a simple computation)).

Consider the polar decomposition $A = v(A^* A)^{1/2}$. Using Corollary 3.1.5

$$\text{Tr}_{P' \cap B(L^2(Q))}(m) = \sum_i m(\omega_{\eta_i})$$

$$= \sum_i \| (A^* A)^{1/2} \eta_i \|^2$$

$$= \sum_i \| A \hat{b}_i \|^2$$

$$= \sum_i \| x^{1/2} R(\xi) \hat{b}_i \|^2$$

$$= \sum_i \| x^{1/2} b_i^* \xi \|^2$$

$$= \sum_i < b_i x b_i^* \xi, \xi >$$

$$= (\Phi_B(x))(\omega_{\xi}).$$

Since any element of $(B(\mathcal{H}))_{\infty}^*$ is a sum $\sum \omega_{\xi_k}$, $\Phi_B(x)$ is thus independent of B. In particular, for $u \in \mathcal{U}(Q)$, $\Phi_B(x) = \Phi_{uB}(x) = u \Phi_B(x) u^*$, so that $\Phi_B(x)$ is affiliated with Q' and hence, by Prop 2.1.2 $\Phi_B(x) \in (Q')_{\infty}^*$. \qed

Proof of Theorem 3.2.36

Observe that since $\{b^*\}$ is a $pL^2(Q)$-basis, $\{b^* \xi_i\}$ is a $p\mathcal{H}$-basis: simply note that $R(b^* \xi_i) = R(\xi_i) R(b^*)$ is bounded and

$$\sum_{i,b} R(b^* \xi_i) R(b^* \xi_i)^* = \sum_{i,b} R(\xi_i) R(b^*) R(b^*)^* R(\xi_i)^* = \sum_i R(\xi_i) R(\xi_i)^* = 1_{\mathcal{H}}$$
Hence, by Lemma 3.1.3 we have, for $y \in (Q')_+$

$$\text{Tr}_{P'}(y^{1/2}xy^{1/2}) = \sum_i \sum_b \langle y^{1/2}xy^{1/2}b^*\xi_i, b^*\xi_i \rangle$$

$$= \sum_i \sum_b \langle by^{1/2}xy^{1/2}b^*\xi_i, \xi_i \rangle$$

$$= \sum_i \sum_b \langle y^{1/2}bxb^*y^{1/2}\xi_i, \xi_i \rangle$$

$$= \text{Tr}_{Q'}(y^{1/2}\Phi(x)y^{1/2})$$

so that $T_{Q'}(x) = \Phi(x)$.

For $x \in (P')_+$ take $x_k \in (P')_+$ with $\sum_k x_k = x$. Then

$$T_{Q'}(x) = \sum_k T_{Q'}(x_k) = \sum_k \sum_b bx_k b^* = \sum_b \sum_k bx_k b^* = \sum_b bxb^*.$$

\square

Corollary 3.2.28. For $P \subset Q \subset R$ and $x \in P' \cap R_+$, $T_{Q'}(x) \in (Q' \cap R)_+$ does not depend on the Hilbert space on which we represent R.
3.3 Extremality and Rotations

3.3.1 Extremality

Note that on $N' \cap M$ the traces coming from N' and from M are not equal or even comparable, $\pi(N)'$ being a type Π_∞ factor for any representation π of M, while M is a II$_1$ factor. This phenomenon continues up through the tower on all $M'_{2i-1} \cap M_{2i}$.

In the finite index case irreducibility ($N' \cap M = \mathbb{C}$) implies extremality. The example constructed by Izumi, Longo and Popa in [13] shows that this is not true for infinite index inclusions. They construct an irreducible II$_1$ subfactor of infinite index where the two traces on $N' \cap M_1$ are not even comparable.

All of this suggests that we should be looking only at $N' \cap M_{2i+1}$ when defining extremality for general II$_1$ inclusions. In this section we give the first definition of extremality in the infinite index case and show that this definition has as many of the desired properties as we can expect.

Definition 3.3.1 (Commutant Traces). Let $r = 0, 1$. On $N' \cap M_{2i+r}$ define a trace Tr_{2i+r}' by

$$\text{Tr}_{2i+r}'(x) = \text{Tr}_{2i+1}(J_i x^* J_i).$$

In general, on $M_j' \cap M_{2i+r}$ define a trace $\text{Tr}_{j,2i+r}'$ by

$$\text{Tr}_{j,2i+r}'(x) = \text{Tr}_{2i-j}(J_i x^* J_i).$$

Remark 3.3.2. Note that the traces defined above are simply those coming from representing M_j on $L^2(M_i)$ and using the fact that $J_i M_j' J_i = M_{2i-j}$ by the multi-step basic construction. Note that by Corollary 3.2.25, Tr_{2i+r}' is the canonical trace on $N' \cap B(L^2(M_i))$.

Finally note that $\text{Tr}_{2i+1}'(e_1 \cdots e_{2i+1}) = 1$. This is a consequence of the fact that
\[\text{Tr}_{2i+1} (e_1 \cdots e_{2i+1}) = 1 \] and \(J_i e_1 \cdots e_{2i+1} J_i = e_1 \cdots e_{2i+1} \):

\[
J_i \pi_i^{2i+1} (e_1 \cdots e_{2i+1}) J_i \left(a_1 \otimes_{N} \cdots \otimes_{N} a_{i+1} \right) - \\
= J_i \pi_i^{2i+1} \left(1 \otimes_{N} \cdots \otimes_{N} 1 \right) \left(a_{i+1}^{*} \otimes_{N} \cdots \otimes_{N} a_{1}^{*} \right) - \\
= J_i \left(1 \otimes_{N} \cdots \otimes_{N} 1 \right) \left(a_{i+1}^{*} \otimes_{N} \cdots \otimes_{N} a_{1}^{*} \right) - \\
= J_i \left(1 \otimes_{N} \cdots \otimes_{N} 1 \right) \left(a_{i+1}^{*} \otimes_{N} \cdots \otimes_{N} a_{1}^{*} \right) - \\
= \pi_i^{2i+1} (e_1 \cdots e_{2i+1}) \left(a_1 \otimes_{N} \cdots \otimes_{N} a_{i+1} \right)
\]

Hence we could define \(\text{Tr}_{2i+1} \) as the restriction of the unique trace on \(N' \cap \mathcal{B}(L^2(M_i)) \) scaled so that \(\text{Tr}_{2i+1} (e_1 e_3 \cdots e_{2i+1}) = 1 \).

Definition 3.3.3 (Extremality). Let \(N \subset M \) be an inclusion of II \(_1 \) factors. \(N \subset M \) is **extremal** if \(\text{Tr}'_1 = \text{Tr}_1 \) on \(N' \cap M_1 \). \(N \subset M \) is **approximately extremal** if \(\text{Tr}'_1 \) and \(\text{Tr}_1 \) are equivalent on \(N' \cap M_1 \) (i.e. there exists \(C > 0 \) such that \(C^{-1} \text{Tr}_1 \leq \text{Tr}'_1 \leq C \text{Tr}_1 \) on \(N' \cap M_1 \)).

Remark 3.3.4. We will abuse notation a little by writing \(\text{Tr}_{2j+1}' = \text{Tr}_{2j+1} \) when \(\text{Tr}_{2j+1}' = \text{Tr}_{2j+1} \) on \(N' \cap M_{2j+1} \) and similarly \(\text{Tr}_{2j+1}' \sim \text{Tr}_{2j+1} \) when \(\text{Tr}_{2j+1}' \) and \(\text{Tr}_{2j+1} \) are equivalent on \(N' \cap M_{2j+1} \).

Proposition 3.3.5.

(i) If \(N \subset M \) is extremal then \(\text{Tr}_{2i+1}' = \text{Tr}_{2i+1} \) for all \(i \geq 0 \).

(ii) If \(N \subset M \) is approximately extremal then \(\text{Tr}_{2i+1}' \sim \text{Tr}_{2i+1} \) for all \(i \geq 0 \).

(iii) If \(\text{Tr}_{2i+1}' = \text{Tr}_{2i+1} \) for some \(i \geq 0 \) then \(N \subset M \) is extremal.

(iv) If \(\text{Tr}_{2i+1}' \sim \text{Tr}_{2i+1} \) for some \(i \geq 0 \) then \(N \subset M \) is approximately extremal.

Lemma 3.3.6. For \(z \in (N' \cap M_j)^{\sim} \), \(T_{M_j}^{N'}(z) = \text{Tr}_j'(z) 1 \).

Proof. Assume \(z \in (N' \cap M_j)^{\sim} \) (in general take \(z_k \nearrow z \), \(z_k \in (N' \cap M_j)^{\sim} \)). \(T_{M_j}^{N'}(z) \in M_j' \cap M_j^{\sim} = [0, \infty] \), so \(T_{M_j}^{N'}(z) = \lambda 1 \) for some \(\lambda \in [0, \infty] \). Let \(i \) be an integer such that \(j = 2i \) or \(2i - 1 \). Let \(\text{Tr}' \) be the canonical trace on \(M_j' \cap \mathcal{B}(L^2(M_i)) \). By Corollary 3.2.25 \(\text{Tr}' (J_i (\cdot)^* J_i) = \text{tr} \) and hence \(\text{Tr}'(1) = 1 \). Thus

\[
\lambda = \text{Tr}' \left(T_{M_j}^{N'}(z) \right) = \text{Tr}_{N' \cap \mathcal{B}(L^2(M_i))}(z) = \text{Tr}_j'(z)
\]
Lemma 3.3.7.

(i) $\text{Tr}_{2i-1}(x) = \text{Tr}_{2i+1}(xe_{2i+1})$ for $x \in (M_{2i-1})^\perp$.

(ii) $\text{Tr}_{2i}(x) = \text{Tr}_{2i+1}(e_{2i+1}xe_{2i+1})$ for $x \in (M_{2i})^\perp$.

(iii) $\text{Tr}'_{2i-1}(x) = \text{Tr}'_{2i+1}(xe_{2i+1})$ for $x \in (N' \cap M_{2i-1})^\perp$.

Proof.

(i) $\text{Tr}_{2i+1}(e_{2i+1})$ is tracial on M_{2i} and hence a multiple of Tr_{2i-1}. The multiple is 1 because $\text{Tr}_{2i-1}(e_1 \cdots e_{2i-1}) = 1 = \text{Tr}_{2i+1}(e_1 \cdots e_{2i}e_{2i+1}).$

(ii) $e_{2i+1}xe_{2i+1} = E_{M_{2i-1}}(x)e_{2i+1}$ so by (i)

$\text{Tr}_{2i+1}(e_{2i+1}xe_{2i+1}) = \text{Tr}_{2i-1}(E_{M_{2i-1}}(x)) = \text{Tr}_{2i}(x)$.

(iii) First note that $T_{M_{2i-1}'}(e_{2i+1}) = 1$: take a basis $\{b_j\}$ for M_{2i} over M_{2i-1}. Then $\{b_j e_{2i+1}b_k\}$ is a basis for M_{2i+1} over M_{2i-1} and hence

$T_{M_{2i+1}'}(e_{2i+1}) = \sum_{j,k} b_j e_{2i+1} b_k e_{2i+1} b_k^* e_{2i+1} b_j^* = \sum_{j} b_j e_{2i+1} b_j^* = 1.$

Let $x \in (N' \cap M_{2i-1})_+$. Using Lemma 3.3.6

$\text{Tr}'_{2i+1}(xe_{2i+1}) 1 = T_{M_{2i+1}'}(xe_{2i+1})$

$= T_{M_{2i+1}'}(T_{M_{2i-1}'}(xe_{2i+1}))$

$= T_{M_{2i+1}'}(T_{M_{2i-1}'}(xe_{2i+1}))$

$= T_{M_{2i+1}'}(T_{M_{2i-1}'}(xe_{2i+1}))$

$= T_{M_{2i+1}'}(T_{M_{2i-1}'}(xe_{2i+1}))$

$= \text{Tr}'_{2i-1}(x) T_{M_{2i-1}'}(e_{2i+1})$

$= \text{Tr}'_{2i-1}(x) 1.$
Proof of Prop 3.3.5

In the finite index case the proof is easily accomplished using planar algebra machinery. Tr_{2i+1} is just closing up a $2i + 2$-box on the right, Tr'_{2i+1} is closing up a $2i + 2$-box on the left. Extremality means that a 2-box closed on the left is equal to the same box closed on the right. For a $2i + 2$-box just move the strings from right to left two at a time. This is the approach that we will take here, although of course we cannot use the planar algebra machinery and must proceed algebraically.

(i) Suppose $\text{Tr}_{2i-1} = \text{Tr'}_{2i-1}$. We will show that $\text{Tr}_{2i+1} = \text{Tr'}_{2i+1}$. Let $z \in (N' \cap M_{2i+1})_+$, then,

\[
\text{Tr}_{2i+1}(z) 1 \\
= \text{Tr}_{2i-1} \left(T_{M_{2i-1}}(z) \right) 1 \\
= \text{Tr'}_{2i-1} \left(T_{M_{2i-1}}(z) \right) 1 \\
= T^{N'}_{M_{2i-1}} \left(T_{M_{2i-1}}(z) \right) \\
= \sum b T_{M_{2i-1}}(zb) \quad \text{where} \quad \{b\} \quad \text{is a basis for} \quad M_{2i-1} \quad \text{over} \quad N \\
= \sum b T_{M_{2i-1}}(zb) \\
= T_{M_{2i-1}} \left(T^{N'}_{M_{2i-1}}(z) \right) \\
= j_i T^{N'}_{M_{i}} \left(j_i \left(T^{N'}_{M_{2i-1}}(z) \right) \right) \\
= \text{Tr'}_1 \left(j_i \left(T^{N'}_{M_{2i-1}}(z) \right) \right) 1 \\
= \text{Tr}_1 \left(j_i \left(T^{N'}_{M_{2i-1}}(z) \right) \right) 1 \\
= \text{Tr}_{M_{2i-1} \cap B(L^2(M_i))} \left(T^{N'}_{M_{2i-1}}(z) \right) 1 \\
= \text{Tr}_{N' \cap B(L^2(M_i))}(z) 1 \\
= \text{Tr'}_{2i+1}(z) 1
\]

(ii) and (iv) Similar to (i) and (iii) with inequalities and constants.
3.3.2 N-central vectors

Here we will show that the set of N-central vectors in $L^2(M_k)$ is $\overline{N' \cap n_{T_k}}$ (closure in $L^2(M_k)$). The proof is essentially an application of ideas from Popa [26].

Definition 3.3.8. $\xi \in L^2(M_k)$ is an N-central vector if $n\xi = \xi n$ for all $n \in N$. The set of N-central vectors in $L^2(M_k)$ is denoted $N' \cap L^2(M_k)$.

Lemma 3.3.9. Let M be a semifinite von Neumann algebras with n.f.s trace Tr. The 2-norm $||x||_2 = [\text{Tr}(x^*x)]^{1/2}$ is lower semi-continuous with respect to the weak operator topology.

Proof. Suppose $\{y_\alpha\}$ is a net in M converging weakly to y. Take a set of orthogonal projections $\{p_k\} \subset n_{T_k}$ with $\sum p_k = 1$. Then for $z \in n_{T_k}$ with $||z||_2 \leq 1$ one has $|<y_\alpha p_k, z>| \leq ||y_\alpha p_k||_2$ and hence

$$|<y_\alpha p_k, z>| = \lim_{\alpha} |<y_\alpha p_k, z>| \leq \liminf_{\alpha} ||y_\alpha p_k||_2$$

so that

$$||y_\alpha p_k||_2 = \sup\{|<y_\alpha p_k, z>| : z \in n_{T_k}, ||z||_2 \leq 1\} \leq \liminf_{\alpha} ||y_\alpha p_k||_2.$$

Finally, using Fatou’s lemma for the second inequality,

$$||y||_2^2 = \sum_k ||y_\alpha p_k||_2^2 \leq \sum_k \liminf_{\alpha} ||y_\alpha p_k||_2^2 \leq \liminf_{\alpha} \sum_k ||y_\alpha p_k||_2^2 = \liminf_{\alpha} ||y_\alpha||_2^2.$$

Remark 3.3.10. The fact that $||y||_2^2 = \sum_k ||y_\alpha p_k||_2^2$ even if $y \notin n_{T_k}$ is established as follows. Let $q_N = \sum_{k=1}^N p_k$ and note that $q_N \nrightarrow 1$. Hence $yq_N y^* \nrightarrow yy^*$ and so $\text{Tr}(q_N y^* y q_N) = \text{Tr}(y q_N y^*) \nrightarrow \text{Tr}(yy^*) = ||y||_2^2$ (even though $q_N y^* y q_N$ may not be increasing). Finally, $y^* y q_N \in n_{T_k}$ and $\text{Tr}(q_N y^* y q_N) = \sum_{k=1}^N \text{Tr}(y^* y p_k) = \sum_{k=1}^N ||y p_k||_2^2$.

The next lemma follows exactly the line of proof in Popa [26] 2.3.

Proposition 3.3.11. Let N be a von Neumann subalgebra of a semifinite von Neumann algebra M equipped with a n.f.s. trace Tr. Let $U(N)$ denote the unitary group of N. Let $x \in n_{T_k}$ and let $K_0 = \{\sum_{i=1}^n \lambda_i v_i x v_i^* : \lambda_i \in [0, \infty], \sum \lambda_i = 1, v_i \in U(N)\}$. Then $N' \cap n_{T_k} \cap \overline{K_0} \neq \emptyset$, where $\overline{K_0}$ denotes the weak closure of K_0.

Proof. Let $K = \overline{K_0}$. Observe that for $v_i \in \mathcal{U}(N)$ and $\lambda_i \in [0, \infty]$ such that $\sum \lambda_i = 1$, we have $||\sum_{i=1}^{n} \lambda_i v_i x v_i^*|| \leq \sum_{i=1}^{n} \lambda_i ||v_i x v_i^*|| = \sum_{i=1}^{n} \lambda_i ||x|| = ||x||$. Hence $K \subset B(0,||x||)$.

$(||y|| = \sup\{1 < y \xi, \eta > : \xi, \eta \in (\mathcal{H}_1)\}$, so if $y_n \to y$ and $||y_n|| \leq r$ for all α then $||y|| \leq r$.

Since K is bounded and weakly closed it is weakly compact. Let $\omega = \inf_K ||y||_2$ (note that $\omega < \infty$ since $x \in K$). Take $y_n \in K$ such that $||y_n||_2 \to \omega$. Since K is weakly compact there exists a weakly convergent subsequence. Hence we may assume that $\{y_n\}$ is weakly convergent. Let $y = \lim y_n$.

Since $|| \cdot ||_2$ is lower semi-continuous for the weak operator topology we have $\omega \leq ||y||_2 \leq \liminf ||y_n||_2 = \omega$ and hence $||y||_2 = \omega$.

Since K is convex y is the unique element of K such that $||y||_2 = \omega$, for if $||y||_2 = ||z||_2 = \omega$ then $\frac{1}{2}(y + z) \in K$ so

$$\omega^2 \leq \frac{1}{4}||y + z||^2 = \frac{1}{2}\omega^2 + \frac{1}{2}Re < y, z > \leq \frac{1}{2}\omega^2 + \frac{1}{2}||y||_2||z||_2 = \omega^2$$

with equality iff $y = z$.

Finally, note that for all $v \in \mathcal{U}(N)$ we have $vyv^* \in K$ and $||vyv^*||_2 = ||y||_2$ so that $vyv^* = y$. Hence $y \in N' \cap M$, and since $||y||_2 = \omega < \infty$, $y \in \text{nTr}$. \[\square\]

Corollary 3.3.12. Let N be a von Neumann subalgebra of a semifinite von Neumann algebra M equipped with a n.f.s. trace Tr and suppose that $x \in M$ and $||uxu^* - x||_2 \leq \delta$ for all $u \in \mathcal{U}(N)$. Then there exists $y \in N' \cap M$ with $||x - y||_2 \leq \delta$.

Proof. Let $v_i \in \mathcal{U}(N)$ and let $\lambda_i \in [0,1]$ such that $\sum \lambda_i = 1$. Then

$$||\sum \lambda_i v_i x v_i^* - x||_2 = ||\sum \lambda_i (v_i x v_i^* - x)||_2 \leq \sum \lambda_i ||v_i x v_i^* - x||_2 \leq \sum \lambda_i \delta = \delta$$

So $||x - z||_2 \leq \delta$ for all $z \in K_0$. By the previous lemma there exists $y \in N' \cap M$ and $\{y_n\}$ in K_0 with $y_n \to y$ weakly. Thus $x - y_n \to x - y$ weakly and by the lower semi-continuity of $|| \cdot ||_2$

$$||x - y||_2 \leq \liminf ||x - y_n||_2 \leq \delta.$$ \[\square\]

Theorem 3.3.13. Let N be a von Neumann subalgebra of a semifinite von Neumann algebra M equipped with a n.f.s. trace Tr. Then

(i) $N' \cap L^2(M) = \overline{N'} \cap \text{nTr}$.
(ii) \((N' \cap L^2(M))'\) is the (span of) the commutators in \(L^2(M)\). Hence
\[
L^2(M) = \overline{N' \cap \mathfrak{n}_{\mathcal{T}}} \oplus [\mathfrak{n}_{\mathcal{T}}', N'].
\]

Proof. (i) Clearly \(N' \cap \mathfrak{n}_{\mathcal{T}} \subseteq N' \cap L^2(M)\). Let \(\xi \in N' \cap L^2(M)\). Take \(\{x_m\}\) in \(\mathfrak{n}_{\mathcal{T}}\) with \(\hat{x}_m \to \xi\) in \(|| \cdot ||\). Then for all \(u \in \mathcal{U}(N)\)
\[
||ux_m u^* - x_m||_2 = ||ux_m - x_m u||_2 = ||u(x_m - \xi) - (x_m - \xi)u||_2
\]
\[
\leq ||u(x_m - \xi)||_2 + ||(x_m - \xi)u||_2 = 2||x_m - \xi||_2
\]

By Corollary 3.3.12 there are \(y_m \in N' \cap \mathfrak{n}_{\mathcal{T}}\) with \(||x_m - y_m|| \leq 2||x_m - \xi||\) and thus \(||y_m - \xi|| \leq 4||x_m - \xi||\). Then \(\xi \in N' \cap \mathcal{N}\), so \(N' \cap L^2(M) = \overline{N' \cap \mathfrak{n}_{\mathcal{T}}}\).

(ii) Simply note that \(<\xi, \hat{m}m - \hat{m}n> = <n^* \xi - \xi n^*, \hat{m}>, \) so \(\xi \in N' \cap L^2(M)\) iff \(\xi \perp [\mathfrak{N}, N]\).

\[\square\]

Corollary 3.3.14. If \(N \subset M\) is a finite index II\(_1\) subfactor then the \(N\)-central vectors in \(L^2(M_k)\) are precisely \(N' \cap M_k\).

Proof. \(\mathfrak{n}_{\mathcal{T}} = M_k\) and \(N' \cap M_k\) is finite dimensional so \(\overline{N' \cap M_k} = N' \cap M_k\). \[\square\]

Corollary 3.3.15. Let \(x \in \mathfrak{n}_{\mathcal{T}}\) and let \(K_0 = \{\sum_{i=1}^n \lambda_i v_i x v_i^* : \lambda_i \in [0, \infty], \sum \lambda_i = 1, v_i \in \mathcal{U}(N)\}\). Then \(P_{\mathcal{N} \cap \mathcal{L}^2(M)}(x)\) is in the strong closure of \(K_0\).

Proof. We will show that the element \(y \in N' \cap \mathfrak{n}_{\mathcal{T}} \cap \overline{K_0}\) whose existence is guaranteed by Prop 3.3.11 is \(P_{\mathcal{N} \cap \mathcal{L}^2(M)}(x)\). Since \(K_0\) is convex its weak and strong closures coincide.

Note that for all \(z \in N' \cap \mathfrak{n}_{\mathcal{T}}\),
\[
\sum_{i=1}^n (\lambda_i v_i x v_i^*, z) = \sum_{i=1}^n \lambda_i \langle x, v_i^* z v_i \rangle = \sum_{i=1}^n \lambda_i \langle x, z \rangle = \langle x, z \rangle.
\]

Take \(y_\alpha\) in \(K_0\) such that \(y_\alpha \to y\) weakly. Then for all \(z_1, z_2 \in N' \cap \mathfrak{n}_{\mathcal{T}}\)
\[
\langle y, z_1 z_2^* \rangle = \langle y \hat{z}_2, \hat{z}_1 \rangle = \lim_{\alpha} \langle y_\alpha \hat{z}_2, \hat{z}_1 \rangle = \lim_{\alpha} \langle y_\alpha, z_1 z_2^* \rangle = \langle x, z_1 z_2^* \rangle.
\]
Since \(\{z_1 z_2^* : z_i \in N' \cap \mathfrak{n}_{\mathcal{T}}\}\) is dense in \(N' \cap L^2(M)\), \(y = P_{\mathcal{N} \cap \mathcal{L}^2(M)}(x)\).

The density of \(\{z_1 z_2^* : z_i \in N' \cap \mathfrak{n}_{\mathcal{T}}\}\) in \(\overline{N' \cap \mathfrak{n}_{\mathcal{T}}}\) can be seen as follows. By Takesaki [32], Chapter V, Lemma 2.13, there exists a maximal central projection \(p\) of \(N' \cap M\) such that \(\text{Tr}\) is semifinite on \(p(N' \cap M)\) and \(\text{Tr} = \infty\) on \([(1 - p)(N' \cap M)]^* \setminus \{0\}\).

Let \(A = p(N' \cap M)\). Then \(\mathfrak{n}_{\mathcal{T}A} = N' \cap \mathfrak{n}_{\mathcal{T}}\) and \(L^2(A) = \overline{N' \cap \mathfrak{n}_{\mathcal{T}}}\). By Tomita-Takesaki theory applied to \((A, \text{Tr})\) we see that \(\{z_1 z_2^* : z_i \in \mathfrak{n}_{\mathcal{T}A}\}\) is dense in \(L^2(A)\).

\[\square\]
3.3.3 Rotations

Definition 3.3.16.

1. Let B be a M_N-basis. If $\sum_{b \in B} R_b^* (L_b^*)^* \tilde{x}$ converges for all $x \in N' \cap \mathfrak{n}_{T_k}$ and extends to a bounded operator from $N' \cap L^2(M_k)$ to $L^2(M_k)$ we define ρ^B_k to be this extension.

2. Let $P_c = P_{N' \cap L^2(M_k)}$. If

$$\left(x_1 \otimes x_2 \otimes \cdots \otimes x_{k+1} \right) \mapsto P_c \left(x_2 \otimes x_3 \otimes \cdots \otimes x_{k+1} \otimes x_1 \right)$$

extends to a bounded operator on all $L^2(M_k)$ we define $\tilde{\rho}_k$ to be this extension.

Theorem 3.3.17. If ρ^B_k and $\tilde{\rho}^B_k$ both exist then $\rho^B_k = \tilde{\rho}^B_k$.

If $\tilde{\rho}_k$ exists then for any orthonormal basis B, ρ^B_k exists. If ρ^B_k exists for some B then $\tilde{\rho}_k$ exists. In this case both operators map $N' \cap L^2(M_k)$ onto $N' \cap L^2(M_k)$. Restricted to $N' \cap L^2(M_k)$ both are periodic (with period $k+1$) and $(\rho^B_k)^* = (\tilde{\rho}_k)^{-1}$.

Proof. 1. If ρ^B_k exists then, as in the finite index case of Section 2.3, for $x \in N' \cap \mathfrak{n}_{T_k}$ and $y = y_1 \otimes \cdots \otimes y_{k+1}$,

$$\langle \rho^B_k(x), y \rangle = \sum_b \langle x, L_{b^*} (R_{b^*})^* y \rangle$$

$$= \sum_b \left\langle x, b^* \otimes y_1 \otimes \cdots \otimes y_k E_N(y_{k+1}b) \right\rangle$$

$$= \sum_b \left\langle x E_N(y_{k+1}b)^*, b^* \otimes y_1 \otimes \cdots \otimes y_k \right\rangle$$

$$= \sum_b \left\langle E_N(y_{k+1}b)^* x, b^* \otimes y_1 \otimes \cdots \otimes y_k \right\rangle$$

$$= \sum_b \left\langle x, E_N(y_{k+1}b)b^* \otimes y_1 \otimes \cdots \otimes y_k \right\rangle$$

$$= \left\langle x, y_{k+1} \otimes y_1 \otimes \cdots \otimes y_k \right\rangle.$$ (3.3)
Hence $\rho^B_k(x)$ is independent of the basis used. Note that for $u \in U(N)$

$$
\sum_{b \in B} R_{(ub)^*} (L_{(ub)^*})^* \tilde{x} = \sum_{b \in B} R_{b^*u^*} (L_{b^*u^*})^* \tilde{x} = \sum_{b \in B} R_{b^*u^*} u (L_{b^*})^* \tilde{x} = \sum_{b \in B} u R_{b^*u^*} (L_{b^*})^* \tilde{x} = \sum_{b \in B} u (R_{b^*} (L_{b^*})^* \tilde{x) \cdot u^* = u(\rho_k(\tilde{x})) \cdot u^*.
$$

So if ρ^B_k exists then $\rho^B_{k}^{\ast} \exists B$ and $u \rho^B_k(\tilde{x}) u^* = \rho^B_{k}^{\ast}(\tilde{x})$. Thus $\rho^B_k(\tilde{x}) \in N' \cap L^2(M_k)$. From (3.3), $(\rho^B_k)^{k+1} = id$.

In addition $P_c (y_2 \otimes_N \cdots \otimes_N y_{k+1} \otimes_N y_1) = \left((\rho^B_k)^{k} P_c\right)^{\ast} \tilde{y}$, so that $\tilde{\rho}_k$ exists. On $N' \cap L^2(M_k)$, $\rho_k = \left((\rho^B_k)^{-1}\right)^*$. Hence $(\tilde{\rho}_k)^{k+1} = id$ and $(\rho^B_k)^{*} = \tilde{\rho}^{-1}_k$.

2. If $\tilde{\rho}_k$ exists then let $\sigma_k = (P_c J_k \tilde{\rho}_k J_k P_c)^*$. Take an orthonormal basis \{\(b_i\)\}. Then, reversing the argument in (3.3), for $\xi \in N' \cap L^2(M_k)$,

$$
\langle \sigma_k(\xi), y \rangle = \sum_b \langle R_{b^*} (L_{b^*})^* \xi, y \rangle , \tag{3.4}
$$

Let $\eta = \sigma_k(\xi)$. Note that $\eta_i \equiv R_{b_i^*} (L_{b_i^*})^* \xi$ are pairwise orthogonal. For $y = y_1 \otimes_N y_2 \otimes_N \cdots y_k \otimes_N b_i^*$ the sum in (3.4) only has one term, so the equality extends by continuity to all $R_{b_i^*} \xi$ ($\xi \in L^2(M_{k-1})$) and in particular to η_i. Thus $\langle \eta, \eta_i \rangle = \langle \eta_i, \eta_i \rangle$ and so

$$
\sum_{i=1}^{K} ||\eta_i||^2 = \left< \eta, \sum_{i=1}^{K} \eta_i \right> \leq ||\eta|| \left< \sum_{i=1}^{K} |\eta_i| \right> = ||\eta|| \left< \sum_{i=1}^{K} ||\eta_i||^2 \right>^{1/2}
$$

which yields

$$
\left(\sum_{i=1}^{K} ||\eta_i||^2 \right)^{1/2} \leq ||\eta||.
$$

Hence $\sum_{i=1}^{K} ||\eta_i||^2$ is bounded, so $\sum_{i=1}^{K} \eta_i$ converges and by (3.3) converges to η. Hence ρ^B_k exists.

\[\square\]

Remark 3.3.18. In Corollary 3.3.23 we will see that if ρ^B_k exists for some basis B then it exists for all bases and we will then drop the reference to B and use the notation ρ_k.

3.3.4 Rotations and extremality

We prove that approximate extremality is necessary and sufficient for the rotations to exist.

Proposition 3.3.19.

(i) If $N \subset M$ is approximately extremal then ρ_k^B exists for all bases B and for all $k \geq 0$.

In this case we will use the notation ρ_k.

(ii) If $N \subset M$ is extremal then in addition to (i) ρ_k is a unitary operator on $N' \cap L^2(M_k)$.

Hence $\rho_k = \tilde{\rho}_k$.

Lemma 3.3.20.

(i) $L_1 (L_1)^* = e_1$.

(ii) $J_i e_1 J_i = e_{2i+1}$.

(iii) For $x \in (M' \cap M_k)_+$, $e_1 x e_1 = T^M_{M_1} (x) e_1$.

Proof. (i) With the usual notations established in the proof of Prop 3.2.12,

$$
e_1 \left(a_1 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim = e_1 \left(A_1 \otimes_M \cdots \otimes_M \overline{A}_i \right)^\sim$$

$$= \left(e_1 A_1 \otimes_M \cdots \otimes_M \overline{A}_i \right)^\sim$$

$$= \left(E_N(a_1) e_1 w_1 \otimes_M A_2 \otimes_M \cdots \otimes_M \overline{A}_i \right)^\sim$$

$$= \left(E_N(a_1) \otimes_N a_2 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim$$

$$= L_1 \left(E_N(a_1) a_2 \otimes_N a_3 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim$$

$$= L_1 (L_1^* L_{a_1}) \left(a_2 \otimes_N a_3 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim$$

$$= L_1 L_1^* \left(a_1 \otimes_N a_2 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim.$$
(ii) From (3.5), \(J_i e_1 J_i (a_1 \otimes_N \cdots \otimes_N a_{i+1})^\sim = (a_1 \otimes_N \cdots \otimes_N a_i \otimes_N E_N(a_{i+1}))^\sim \). Let \(\iota : L^2(M_{2i-1}) \to L^2(M_{2i}) \) be the inclusion map. From the definition of \(\pi_i^{2i+1} \),

\[
\begin{align*}
\left[\pi_i^{2i+1}(e_{2i+1}) \left(a_1 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim \right] \otimes_N \left(b_1 \otimes_N \cdots \otimes_N b_i \right)^\sim &= e_{2i+1} \left(a_1 \otimes_N \cdots \otimes_N a_{i+1} \otimes_N b_1 \otimes_N \cdots \otimes_N b_i \right)^\sim \\
&= \iota \left(E_{M_{2i-1}} \left(a_1 \otimes_N \cdots \otimes_N a_{i+1} b_1 \otimes_N \cdots \otimes_N b_i \right) \right)^\sim \\
&= \iota \left(a_1 \otimes_N \cdots \otimes_N a_i E_N(a_{i+1}) b_1 \otimes_N \cdots \otimes_N b_i \right)^\sim \\
&= \left(a_1 \otimes_N \cdots \otimes_N a_i E_N(a_{i+1}) \otimes_N 1 b_1 \otimes_N \cdots \otimes_N b_i \right)^\sim \\
&= \left[e_1 \left(a_1 \otimes_N \cdots \otimes_N a_{i+1} \right)^\sim \right] \otimes_N \left(b_1 \otimes_N \cdots \otimes_N b_i \right)^\sim.
\end{align*}
\]

(iii) For \(x \in (M' \cap M_k)_+ \),

\[
e_1 x e_1 = J_i e_{2i+1} J_i x J_i e_{2i+1} J_i = J_i E_{M_{2i-1}} (J_i x J_i) e_{2i+1} J_i = T^{M'}_{M_i}(x) e_1.
\]

\(\square \)

Proof of Prop 3.3.19

(i) First consider \(k = 2l + 1 \). Then, for \(x \in N' \cap \mathfrak{w}_{Tr_k} \),

\[
\left\| \sum_{i=r}^{s} R_{b_i^*} (L_{b_i^*})^* x \right\|^2 = \sum_{i=r}^{s} \sum_{j=r}^{s} \left\langle (R_{b_i^*})^* R_{b_i^*} (L_{b_i^*})^* x, (L_{b_i^*})^* x \right\rangle
\]

\[
= \sum_{i=r}^{s} \sum_{j=r}^{s} \left\langle (L_{b_i^*})^* x, E_N(b_i^* b_j) (L_{b_i^*})^* x \right\rangle
\]

\[
\leq \sum_{i=r}^{s} \left\langle (L_{b_i^*})^* x, (L_{b_i^*})^* x \right\rangle,
\]

because \([E_N(b_i^* b_j)]_{i,j=r,\ldots,s} \in M_{s-r+1}(N)\) is dominated by \(1 = \delta_{i,j} \) (basically because
the infinite matrix \([E_N(b_i^*b_j)]\) is a projection. Hence

\[
\left\| \sum_{i=r}^{s} R_{b_i^*} (L_{b_i^*})^* x \right\|^2 \leq \sum_{i=r}^{s} \| (L_{b_i^*})^* x \|^2
\]

\[
= \sum_{i=r}^{s} \| (b_i^* L_1)^* x \|^2
\]

\[
= \sum_{i=r}^{s} \langle L_1 (L_1)^* b_i x, b_i x \rangle
\]

\[
= \sum_{i=r}^{s} \langle e_1 b_i x, b_i x \rangle \quad \text{by Lemma 3.3.20}
\]

\[
= \sum_{i=r}^{s} \text{Tr}_k (e_1 b_i x x^* b_i^* e_1).
\]

\[
\sum_{i=1}^{s} b_i x x^* b_i^* \rightharpoonup T_{M_1}^{N'}(xx^*)
\]
and hence \(\sum_{i=1}^{s} e_1 b_i x x^* b_i^* e_1 \rightharpoonup E_{M_1}^{M'}(T_{M_1}^{N'}(xx^*)) e_1\), by Lemma 3.3.20. Thus,

\[
\sum_{i=1}^{s} \text{Tr}_k (e_1 b_i x x^* b_i^* e_1) \rightharpoonup \text{Tr}_k \left(e_1 T_{M_1}^{N'}(xx^*) \right)
\]

\[
\leq C \text{Tr}'_k \left(e_1 T_{M_1}^{N'}(xx^*) \right)
\]

\[
= C \text{Tr}_{2l+1} \left(j_1 \left(e_1 T_{M_1}^{N'}(xx^*) \right) e_{2l+1} \right)
\]

\[
= C \text{Tr}_{2l+1} \left(j_1 \left(T_{M_1}^{N'}(xx^*) \right) e_{2l+1} \right)
\]

\[
= C \text{Tr}_{2l+1} \left(T_{M_1}^{N'}(xx^*) \right) \quad \text{by Lemma 3.3.20}
\]

\[
= \text{Tr}_{N' \cap B(L^2(M_1))} \left(T_{M_1}^{N'}(xx^*) \right)
\]

\[
= \text{Tr}_k(\lambda xx^*)
\]

\[
\leq C^2 \text{Tr}_k(\lambda xx^*)
\]

\[
= C^2 \| x \|^2.
\]

(3.6)

Hence \(\sum_{i=r}^{s} \text{Tr}_k (e_1 b_i x x^* b_i^* e_1) \to 0\) and so \(\{ \sum_{i=1}^{s} R_{b_i^*} (L_{b_i^*})^* \hat{x} \}\) is Cauchy and hence converges. In addition \(\| \sum_{i=1}^{\infty} R_{b_i^*} (L_{b_i^*})^* \hat{x} \| \leq C \| \hat{x} \|\), so that \(\rho_k^B\) exists and \(\| \rho_k^B \| \leq C\).

For \(k = 2l\) we begin as above. For \(x \in N' \cap \pi_{N} x_{\infty}\),

\[
\left\| \sum_{i=r}^{s} R_{b_i^*} (L_{b_i^*})^* x \right\|^2 \leq \sum_{i=r}^{s} \text{Tr}_k (e_1 b_i x x^* b_i^* e_1).
\]
By \([3.6]\) and Lemma \([3.3.7]\)

\[
\sum_{i=1}^{s} \text{Tr}_k \left(e_1 b_i x x^* b_i^* e_1 \right) = \sum_{i=1}^{s} \text{Tr}_k \left(e_1 b_i x e_{2l+1} x^* b_i^* e_1 \right) \\
\leq C^2 \text{Tr}_{2l+1} \left(e_{2l+1} x x^* e_{2l+1} \right) \\
= C^2 \text{Tr}_{2l}(x x^*),
\]

and the remainder of the argument proceeds exactly as in the \(k = 2l + 1\) case.

(ii) If \(N \subset M\) is extremal then \(C = 1\) so that \(\|\rho_k\| \leq 1\). As \(\rho_k\) is periodic this implies that \(\rho_k\) is a unitary operator.

\[\square\]

In order to establish the converse result we connect \(\rho_k\) to \(J \cdot J\).

Proposition 3.3.21.

(i) If either \(\rho^B_{2k-1}\) exists or \(\rho^B_{2k}\) exists then \(\sigma : L^2(M_{2k-1}) \rightarrow N' \cap L^2(M_{2k-1})\) defined by

\[
y_1 \otimes \cdots \otimes y_{2k} \mapsto P_c \left(y_{k+1} \otimes y_{k+2} \otimes \cdots \otimes y_{2k} \otimes y_1 \otimes y_2 \otimes \cdots \otimes y_k \right)
\]

exists (extends to a bounded operator, also denoted \(\sigma\)).

(ii) In that case let \(\mu = \left(\sigma|_{N' \cap L^2(M_{2k-1})} \right)^*\). Then \(\mu \left(N' \cap \mathfrak{w}_{\text{Tr}_{2k-1}} \right) = N' \cap \mathfrak{w}_{\text{Tr}_{2k-1}}\) and

\[
\mu(x) = J_{k-1} x^* J_{k-1} \quad \text{for } x \in N' \cap \mathfrak{w}_{\text{Tr}_{2k-1}}.
\]

Proof.

(i) If \(\rho^B_{2k-1}\) exists then by \([3.3]\) in the proof of Theorem \([3.3.17]\) \(\sigma = (\rho^B_{2k-1} \circ P_c)^*\). If \(\rho_{2k}\)
exists then, for \(x \in N' \cap \pi_{Tr_{2k-1}} \) and \(y = \sum_i y_1^{(i)} \otimes_N \cdots \otimes_N y_{2k}^{(i)} \),

\[
\left\langle x, \sum_i P_c \left(y_{k+1}^{(i)} \otimes_N \cdots \otimes_N y_{2k}^{(i)} \right) \right\rangle_{L^2(M_{2k-1})} = \left\langle x, \sum_i y_{k+1}^{(i)} \otimes_N \cdots \otimes_N y_{2k}^{(i)} \right\rangle_{L^2(M_{2k-1})}
\]

Letting \(z = \sum_i P_c \left(y_{k+1}^{(i)} \otimes_N \cdots \otimes_N y_{2k}^{(i)} \right) \),

\[
||z||_2 = \sup \{| < x, z > : x \in N' \cap L^2(M_{2k-1}), ||x||_2 = 1 \} \leq \left| \left| (L_1)^* \rho_{2k}^k \right| \right| ||y||_2 \leq ||\rho_{2k}||_k^k ||y||_2.
\]

Hence \(\sigma \) exists.

(ii) We proceed in four steps:

1. For \(y \in \pi_{Tr_{2k-1}} \) and for \(\xi, \eta \in L^2(M_{k-1}) \) satisfying either \(\xi \in D(L^2(M_{k-1})_N) \) or \(\eta \in D(L^2(M_{k-1})_N) \), we have

\[
\left\langle y, \xi \otimes J_{k-1} \eta \right\rangle_{L^2(M_{2k-1})} = \left\langle y\eta, \xi \right\rangle_{L^2(M_{k-1})}.
\]

This is easily established by first taking both \(\xi, \eta \in D(L^2(M_{k-1})_N) \), and the general result then follows by continuity. Using Lemma 3.2.1

\[
\left\langle \tilde{y}, \xi \otimes J_{k-1} \eta \right\rangle_{L^2(M_{2k-1})} = \left\langle y, L(\xi)L(\eta)^* \right\rangle_{L^2(M_{2k-1})} = \operatorname{Tr}_{2k-1}(yL(\eta)L(\xi)^*) = \operatorname{Tr}_{2k-1}(L(y\eta)L(\xi)^*) = \left\langle y\eta, \xi \right\rangle.
\]
(2) For $y \in N' \cap n_{Tr_{2k-1}}$ satisfying $J_{k-1}y^*J_{k-1} \in n_{Tr_{2k-1}}$ we have

$$\mu(y) = J_{k-1}y^*J_{k-1}.$$

To prove this first note that for $\xi \in N' \cap L^2(M_{2k-1})$ and $\eta, \zeta \in D(L^2(M_{k-1}))$, or $\eta, \zeta \in D(N' L^2(M_{k-1}))$,

$$\langle \mu(\xi), \eta \otimes \zeta \rangle_N = \langle \xi, \zeta \otimes \eta \rangle.$$

The result is true for $\eta = \hat{a}$, $\zeta = \hat{b}$, where $a, b \in \widetilde{M}_{k-1}$ and the general result follows by density.

Now, using the result from (1),

$$\langle J_{k-1}y^*J_{k-1}, \eta \otimes \zeta \rangle_{2k-1} = \langle J_{k-1}y^*J_{k-1}J_{k-1} \zeta, \eta \rangle_{k-1}$$

$$= \langle J_{k-1} \eta, y^* \zeta \rangle_{k-1}$$

$$= \langle yJ_{k-1} \eta, \zeta \rangle_{k-1}$$

$$= \langle y, \zeta \otimes \eta \rangle_{N} \langle \mu(y), \eta \rangle \langle \mu(y), \eta \otimes \zeta \rangle_{2k-1}.$$

Hence $J_{k-1}y^*J_{k-1} = \mu(y)$.

(3) Let p be the maximal central projection in $N' \cap M_{2k-1}$ such that Tr_{2k-1} is semifinite on $p(N' \cap M_{2k-1})$. Let $A = p(N' \cap M_{2k-1})$. We will show that if $x \in N' \cap n_{Tr_{2k-1}}$ then $\xi = \mu(\bar{x})$ is a bounded vector in A (i.e. in $D(L^2(A))$) and hence an element of A.

Let $a \in N' \cap n_{Tr_{2k-1}}$ and let $y = J_{k-1}a^*J_{k-1}x$. Note that y satisfies the conditions of (2). Now, with all supremums taken over $\sum \eta_i \otimes \zeta_i$ such that $\|\sum \eta_i \otimes \zeta_i\| = $
1, we have:
\[
||\xi a|| = \sup \left| \left\langle \xi a, \sum_{\eta_i} \eta_i \otimes \zeta_i \right\rangle \right|
= \sup \left| \left\langle \xi, J_{2k-1} a J_{2k-1} \eta_i \otimes \zeta_i \right\rangle \right|
= \sup \left| \left\langle \xi, J_{2k-1} \left(a J_{k-1} \zeta_i \otimes J_{k-1} \eta_i \right) \right\rangle \right|
= \sup \left| \left\langle \xi, J_{2k-1} \left(a J_{k-1} \zeta_i \otimes J_{k-1} \eta_i \right) \right\rangle \right|
= \sup \left| \left\langle \xi, J_{k-1} a J_{k-1} \zeta_i \right\rangle \right|
= \sup \left| \left\langle J_{k-1} a^* J_{k-1} x \zeta_i \otimes \eta_i \right\rangle \right|
= \sup \left| \left\langle y, \sigma \left(\eta_i \otimes \zeta_i \right) \right\rangle \right|
= \sup \left| \left\langle \mu(y), \eta_i \otimes \zeta_i \right\rangle \right|
= ||\mu(y)||_{L^2(M_{2k-1})}
= ||J_{k-1} y^* J_{k-1}||_2
= ||a^* J_{k-1} x J_{k-1}||_2
\leq ||a||_2 ||x||.
\]

Hence \(\xi\) is a bounded vector and thus an element of \(A\).

(4) Finally, let \(z \in N' \cap \pi_{\text{Tr}_{2k-1}}\) such that \(\mu(\widehat{x}) = \widehat{z}\). Then \(z = J_{k-1} x^* J_{k-1}\) because

\[
\left\langle J_{k-1} x^* J_{k-1} \eta, \zeta \right\rangle = \left\langle x J_{k-1} \zeta, J_{k-1} \eta \right\rangle
= \left\langle x, J_{k-1} \eta \otimes \zeta \right\rangle
= \left\langle \mu(x), \zeta \otimes J_{k-1} \eta \right\rangle
= \left\langle z, \zeta \otimes J_{k-1} \eta \right\rangle
= < z \eta, \zeta >.
\]

\(\square\)

Proposition 3.3.22. (i) If \(\rho_i^B\) exists then \(N \subset M\) is approximately extremal.
(ii) If ρ^B_i exists and is a unitary operator then $N \subset M$ is extremal.

Proof. (i) Let j be the largest odd number with $j \leq i$. By Prop 3.3.21 there exists $\mu : N' \cap L^2(M_j) \to N' \cap L^2(M_j)$ with $||\mu|| \leq ||\rho_i||^k$ (where $j = 2k - 1$) and $\mu(x) = J_{k-1}x^*J_{k-1}$ for $x \in N' \cap n_{Tr_j}$. We first show that $Tr'_j \leq ||\mu||^2 Tr_j$. Take $x \in N' \cap M_j$. If $Tr_j(x^*x) = \infty$ then we are done. Otherwise $x \in n_{Tr_j}$ and

$$Tr'_j(x^*x) = Tr_j(J_{k-1}x^*J_{k-1}J_{k-1}xJ_{k-1}) = Tr_j(\mu(x)\mu(x)^*) \leq ||\mu||^2 ||x||^2 \leq ||\mu||^2 Tr_j(x^*x).$$

Finally, $Tr_j = Tr'_j (J_{k-1} \cdot J_{k-1}) \leq ||\mu||^2 Tr_j (J_{k-1} \cdot J_{k-1}) = ||\mu||^2 Tr'_j$.

(ii) If ρ_i is unitary then $||\mu|| \leq 1$ so that $Tr_j \leq Tr'_j \leq Tr_j$ and hence $Tr_j = Tr'_j$. \qed

Corollary 3.3.23. If there exists a basis B such that ρ^B_k exists then for any basis \overline{B}, $\rho^\overline{B}_k$ exists and is independent of the basis used. Hence we will use ρ_k to denote ρ^B_k.

Proof. Suppose ρ^B_k exists. By Prop 3.3.22 the subfactor is approximately extremal. By Prop 3.3.19 $\rho^\overline{B}_k$ exists for any basis \overline{B}. By Theorem 3.3.17 ρ_k is independent of the basis used. \qed

The results of Sections 3.3.1 through 3.3.4 can be summarized as follows.

Theorem 3.3.24.

(i) The following are equivalent:

- $N \subset M$ is approximately extremal;
- $Tr'_{2i+1} \sim Tr_{2i+1}$ for all $i \geq 0$;
- $Tr'_{2i+1} \sim Tr_{2i+1}$ for some $i \geq 0$;
- ρ_k exists for all $k \geq 0$;
- ρ_k exists for some $k \geq 1$;
• \(\tilde{\rho}_k\) exists for all \(k \geq 0\);
• \(\tilde{\rho}_k\) exists for some \(k \geq 1\).

(ii) The following are equivalent:

• \(N \subset M\) is extremal;
• \(\text{Tr}'_{2i+1} = \text{Tr}_{2i+1}\) for all \(i \geq 0\);
• \(\text{Tr}'_{2i+1} = \text{Tr}_{2i+1}\) for some \(i \geq 0\);
• \(\rho_k\) (or \(\tilde{\rho}_k\)) exists for all \(k \geq 0\) and is unitary
• \(\rho_k\) (or \(\tilde{\rho}_k\)) exists for all \(k \geq 0\) and \(\rho = \tilde{\rho}\);
• \(\rho_k\) (or \(\tilde{\rho}_k\)) exists for some \(k \geq 1\) and is unitary
• \(\rho_k\) (or \(\tilde{\rho}_k\)) exists for some \(k \geq 1\) and \(\rho = \tilde{\rho}\);
3.4 A II$_1$ Subfactor With Type III Component in a Relative Commutant

Here we construct an infinite index type II$_1$ subfactor $N \subset M$ such that $N' \cap M_1$ has a type III central summand.

3.4.1 Outline

Let \mathbb{F}_∞ denote the free group on infinitely many generators. We take a suitably chosen type III factor representation $w : \mathbb{F}_\infty \to U(H_0)$ on a separable Hilbert space H_0. By tensoring this representation with the trivial representation on $l^2(\mathbb{N})$ we may assume that if w_γ is a Hilbert-Schmidt perturbation of the identity then w_γ must be the identity.

The corresponding Bogoliubov automorphisms of the canonical anti-commutation relation algebra $A = \text{CAR}(H_0)$ provide an action of \mathbb{F}_∞ on A. This action passes to an action α on the hyperfinite II$_1$ factor $R = \pi(A)'$ obtained via the GNS representation π on $\mathcal{H} = L^2(A, tr)$.

We conclude from Blattner’s Theorem, characterizing inner Bogoliubov automorphisms, that for each $\gamma \in \mathbb{F}_\infty$ either α_γ is outer or $\alpha_\gamma = \text{id}$.

Now we construct $M = R \rtimes_\alpha \mathbb{F}_\infty$ and $N = \mathbb{C} \rtimes_\alpha \mathbb{F}_\infty \cong vN(\mathbb{F}_\infty)$, the von Neumann algebra of the left regular representation of \mathbb{F}_∞. We show that M is a II$_1$ factor and that the basic construction for $N \subset M$ yields $M_1 = B(\mathcal{H}) \rtimes_\alpha \mathbb{F}_\infty \cong B(\mathcal{H}) \otimes vN(\mathbb{F}_\infty)$, a II$_\infty$ factor.

We show that by virtue of our choice of representation w we have $N' \cap M_1 = B(H)^{F_\infty}$ and finally we show that $B(H)^{F_\infty}$, while not a factor, has a type III central summand.

3.4.2 Preliminary results

We will use the following basic facts about von Neumann algebras:

Lemma 3.4.1. Let S be a von Neumann algebra with separable predual. Then there exists a countable set $\Lambda \subset \mathcal{U}(S)$ such that $\Lambda'' = S$.

Proof. Since S_* has separable predual there exists a countable dense subset $\{\phi_n\} \subset (S_*)_1$. Now the weak-* topology on $(S)_1$ (recall S is the dual of S_*) is metrizable by $d(x,y) =$
theorem is usually stated in terms of real Hilbert spaces, so we will briefly review the

Let \(Q \) be a von Neumann algebra, \(p \in Q \) such that \(pQ' \) is a factor. Let \(z(p) \) denote the central support of \(p \). Then \(z(p)Q' \) is also a factor.

Proof. Let \(q = z(p) \). If \(qQ' \) is not a factor then there exist projections \(q_1, q_2 \in Z(qQ') = qQ' \cap qQ = qZ(Q) \) such that \(q_1 \neq 0 \) and \(q_1 + q_2 = q \). Let \(p_i = pq_i \in pQ' \) and note that \(p_i = pq_i p \in pQ p \) so \(p_i \in pQ' \cap pQp = pQ' \cap (pQ')' = \mathbb{C}p \). Hence \(p_i = 0 \) or \(p_i = p \). WLOG \(p_1 = p \) and \(p_2 = 0 \), but then \(p \leq q_1 \) so \(q \) is not the central support of \(p \). Hence \(qQ' \) is a factor.

CAR algebra and Bogoliubov automorphisms

Let \(\mathcal{H} \) be a complex Hilbert space and let \(\mathcal{F}(\mathcal{H}) = \bigoplus_{n \geq 0} \wedge^n \mathcal{H} \) be the anti-symmetric Fock space of \(\mathcal{H} \). The canonical anticommutation relation algebra \(A = CAR(\mathcal{H}) \) is the C*-algebra generated by the creation and annihilation operators \(a(\xi), a^*(\xi) \ (\xi \in \mathcal{H}) \). \(A \) has a unique tracial state \(\text{tr} \), namely the quasi-free state of covariance \(\frac{1}{2} \). We have a representation \(\pi \) of \(A \) on \(L^2(A, \text{tr}) \) by left multiplication. It is well known that \(\pi(A)'' = \mathbb{R} \) the hyperfinite II\(_1\) factor.

Each unitary operator \(u \in U(\mathcal{H}) \) gives rise to an automorphism of the CAR algebra via \(a(\xi) \rightarrow a(u\xi) \). We call this the Bogoliubov automorphism induced by \(u \) and denote it \(Bog(u) : A \rightarrow A \).

By uniqueness of the tracial state on \(A \), any automorphism \(\alpha \) of \(A \) defines a unitary operator \(W \) on \(L^2(A, \text{tr}) \) by \(W\alpha = \alpha(x) \) for \(x \in A \). This unitary operator implements the automorphism \(\alpha \) in the representation \(\pi \):

\[
W\pi(x)W^*\tilde{y} = (\alpha(x\alpha^{-1}(y)))\tilde{y} \quad = (\alpha(x)y)\tilde{y} = \pi(\alpha(x))\tilde{y}.
\]

The automorphism \(\alpha \) can thus be extended to an automorphism \(\tilde{\alpha} \) of \(R = \pi(A)'' \) by \(\tilde{\alpha}(x) = W x W^* \). For a Bogoliubov automorphism \(Bog(u) \) we will also refer to \((Bog(u))\tilde{} \) as the Bogoliubov automorphism induced by \(u \) and denote it by \(\alpha_u \).

A theorem of Blattner [5] characterizes the inner Bogoliubov automorphisms. The theorem is usually stated in terms of real Hilbert spaces, so we will briefly review the
construction of the CAR algebra via a real Hilbert space and the Clifford algebra over it. For full details see for example de la Harpe and Plymen [7].

Let E be a real Hilbert space, $Cl(E)$ the Clifford algebra of the quadratic form $q(\xi) = \langle \xi | \xi \rangle = ||\xi||^2$ and $Cl(E)^\mathbb{C} = Cl(E) \otimes_{\mathbb{R}} \mathbb{C}$ its complexification. $Cl(E)^\mathbb{C}$ has a unique tracial “state” tr. The C^*-algebra generated by the left representation of $Cl(E)^\mathbb{C}$ on its Hilbert space completion is called the CAR algebra over E. As before, the von Neumann algebra generated by $Cl(E)^\mathbb{C}$ is the hyperfinite II_1 factor \mathbb{R} and we have the following theorem:

Theorem 3.4.3 (Blattner [5]). Let $v \in O(E)$, the orthogonal group of E. Then α_v is inner iff either (i) the eigenspace corresponding to eigenvalue -1 is even dimensional (or infinite) and v is a Hilbert-Schmidt perturbation of the identity; or (ii) the eigenspace corresponding to eigenvalue 1 is (finite) odd dimensional and $-v$ is a Hilbert-Schmidt perturbation of the identity.

Given a complex Hilbert space H we may construct $\text{CAR}(H)$ as the CAR algebra over $E = H_{\mathbb{R}}$ using the Clifford algebra approach – see [19] for details. When considered as an operator on $H_{\mathbb{R}}$, a unitary operator $u \in U(H)$ is clearly orthogonal. The eigenspaces of u are always even dimensional (if $u\xi = \lambda \xi$ then $u(i\xi) = \lambda(i\xi)$) and if $u = 1 + x$ for some $x \in B(H_{\mathbb{R}})$ then x must be \mathbb{C}-linear since both u and 1 are \mathbb{C}-linear. If x is a Hilbert-Schmidt operator on $H_{\mathbb{R}}$ then x is also a Hilbert-Schmidt operator on H (if $\{\xi_n\}$ is an orthonormal basis for H then $\{\xi_n\} \cup \{i\xi\}$ is an orthonormal basis for $H_{\mathbb{R}}$ and $||x||^2_{2-HS} = \sum(||x\xi_n||^2 + ||x(i\xi_n)||^2) = 2||x||^2_{2-HS}$). Thus, in the case of Bogoliubov automorphisms on the CAR algebra of a complex Hilbert space H constructed via creation and annihilation operators on anti-symmetric Fock space, Blattner’s Theorem may be stated as:

Theorem 3.4.4. Let H be a complex Hilbert space and $u \in U(H)$. Then α_u is inner iff u is a Hilbert-Schmidt perturbation of the identity.

3.4.3 The construction

Let $F_\infty = \langle a_n \rangle_{n=1}^\infty$ denote the free group on countably many generators, with $\{a_n\}_{n=1}^\infty$ a particular choice of generators. Fix a bijection $\phi : \{a_n\}_{n=1}^\infty \rightarrow \mathbb{N} \times F_\infty$. Let $p : \mathbb{N} \times F_\infty \rightarrow F_\infty$ be projection onto the second component, $p(n, \gamma) = \gamma$, and let $\varphi = p \circ \phi$. Since F_∞ is free, φ extends to a homomorphism $\overline{\varphi} : F_\infty \rightarrow F_\infty$.

Let S be a type III factor acting on a separable Hilbert space H_0. By Lemma 3.4.1 there exists a countable subset $\{v_n\}_{n=1}^{\infty}$ of $U(S)$ which is dense in the sense that it generates S as a von Neumann algebra.

Define a homomorphism $\psi : \mathbb{F}_\infty \to U(H_0)$ by letting $\psi(a_n) = v_n$. Then define a representation w of \mathbb{F}_∞ on H_0 by $w = \psi \circ \phi$. Note that $w(\mathbb{F}_\infty)^{''} = \{v_n\}^{''} = S$.

Let $A = CAR(H_0)$, $R = \pi(A)^{''}$ where π is the GNS representation of A on $H = L^2(A, \text{tr}) = L^2(R, \text{tr})$. As we saw in section 3.4.2 each w_γ induces a unitary operator W_γ on H and a Bogoliubov automorphism of R which we will denote $\alpha_\gamma = \text{Ad}(W_\gamma)$.

Thus we have a representation $W : \mathbb{F}_\infty \to H$ and an action $\alpha_\gamma = \text{Ad}(W_\gamma)$ on $B(H)$ which restricts to an action on R.

Replacing H_0 and w with $H_0 \otimes L^2(\mathbb{N})$ and $w \otimes 1$ respectively, we may assume that for each $\gamma \in \mathbb{F}_\infty$ either w_γ is the identity or w_γ is not a Hilbert-Schmidt perturbation of the identity. By Blattner’s Theorem, $\alpha_\gamma|_R$ is either outer or trivial.

Define:

- $N = \mathbb{C} \rtimes_\alpha \mathbb{F}_\infty \cong vN(\mathbb{F}_\infty)$
- $M = R \rtimes_\alpha \mathbb{F}_\infty$
- $M_1 = B(H) \rtimes_\alpha \mathbb{F}_\infty \cong B(H) \otimes vN(\mathbb{F}_\infty)$

We will show that $N \subset M$ has all the desired properties stated in the introduction.

Lemma 3.4.5. M is a II_1 factor.

Proof. Let $x = \sum x_\gamma u_\gamma \in Z(M)$. Then for all $y \in R$ we have

$$\sum_\gamma yx_\gamma u_\gamma = yx = xy = \sum_\gamma x_\gamma \alpha_\gamma(y)u_\gamma$$

which yields $yx_\gamma = x_\gamma \alpha_\gamma(y)$ for all $y \in R$ and all $\gamma \in \mathbb{F}_\infty$. Now, recall that either α_γ is outer, in which case $x_\gamma = 0$ since an outer action on a factor is automatically free, or $\alpha_\gamma = \text{id}$ in which case $x_\gamma \in Z(R) = \mathbb{C}$. Thus every x_γ is a scalar and so $x \in N$. But since $x \in Z(M)$ we have $x \in N \cap M' \subseteq N \cap N' = \mathbb{C}$. Thus M is a factor. M is infinite dimensional and has trace $\text{tr} \left(\sum_\gamma x_\gamma u_\gamma \right) = \text{tr}_R(x_e)$, so M is a II_1 factor. \qed

Lemma 3.4.6. $N \subset M \subset M_1$ is a basic construction.
Proof. In essence this is true because \(\mathbb{C} \subset R \subset \mathcal{B}(\mathcal{H}) = \mathcal{B}(L^2(R, \text{tr})) \) is a basic construction \((J_R(\mathbb{C}) \cup J_R = \mathcal{B}(L^2(R)))\). Let \(\overline{w}_1 \) be the Jones projection for \(\mathbb{C} \subset R \) and note that this is just the extension of \(\text{tr}_R \) to \(L^2(R) \).

Note that \(L^2(M) \cong L^2(R) \otimes I^2(\mathbb{F}_\infty) \) via \(U : \left(\sum_{x} x u_\gamma \right) \mapsto \sum x_\gamma \otimes \delta_\gamma \) and \(UL^2(N) = \mathbb{C} \otimes I^2(\mathbb{F}_\infty) \), so \(e_1 = \overline{w}_1 \otimes 1 \).

Let \(\pi = U \cdot U^* \) be the representation of \(M \) on \(L^2(R) \otimes I^2(\mathbb{F}_\infty) = \mathcal{H} \otimes I^2(\mathbb{F}_\infty) \). \(\pi(x) = x \otimes \text{id} \) for \(x \in R \) and \(\pi(u_\gamma) = w_\gamma \otimes \lambda_\gamma \) where \(\lambda \) is the left regular representation. \(M_1 \) is given by

\[
M_1 = (\pi(M) \cup \{ e_1 \})'' = ((\pi(R) \cup \{ e_1 \})'' \cup \{ \pi(u_\gamma) \})''
\]

and

\[
(\pi(R) \cup \{ e_1 \})'' = ((R \otimes \mathbb{C}) \cup \{ \overline{w}_1 \otimes \text{id} \})''
\]

\[
= (R \cup \{ \overline{w}_1 \})'' \otimes \mathbb{C}
\]

\[
= \mathcal{B}(L^2(R)) \otimes \mathbb{C}.
\]

Finally, for \(x \in \mathcal{B}(L^2(R)) = \mathcal{B}(\mathcal{H}) \), \(\pi(u_\gamma)(x \otimes 1)\pi(u_\gamma)^* = w_\gamma x w_\gamma^* \otimes 1 \). Thus \(M_1 = \mathcal{B}(\mathcal{H}) \times_0 \mathbb{F}_\infty \) and every element of \(M_1 \) can be written as \(\sum_{x_\gamma} (x_\gamma \otimes 1) \pi(u_\gamma) \). \(\square \)

Lemma 3.4.7. \(N' \cap M_1 = \mathcal{B}(\mathcal{H})^{\mathbb{F}_\infty} = W(\mathbb{F}_\infty)' \).

Proof. Suppose \(x = \sum x_\gamma u_\gamma \in N' \cap M_1 \), \(x_\gamma \in \mathcal{B}(\mathcal{H}) \). Then for all \(\rho \in \mathbb{F}_\infty \) we have

\[
\sum x_\gamma u_\gamma = x = u_\rho x u_\rho^{-1} = \sum \alpha_\rho(x_\gamma) u_\rho^{-1} \gamma_\rho u_\gamma = \sum \alpha_\rho(x_\rho^{-1} \gamma_\rho) u_\gamma
\]

which yields \(\alpha_\rho(x_\rho^{-1} \gamma_\rho) = x_\gamma \) for all \(\gamma, \rho \in \mathbb{F}_\infty \). We can rewrite this as

\[
x_\rho^{-1} \gamma_\rho = \alpha_\rho^{-1}(x_\gamma) \quad \forall \gamma, \rho \in \mathbb{F}_\infty
\]

(3.7)

In other words, the matrix entries of \(x \) are constant on conjugacy classes modulo a twist by the action of \(\mathbb{F}_\infty \).

Now suppose that there exists \(\gamma_0 \neq e \) (the identity element of \(\mathbb{F}_\infty \)) such that \(x_{\gamma_0} \neq 0 \), say \(\gamma_0 = a_{m_1}^{\pm 1} \ldots a_{m_2}^{\pm 1} \) in reduced form. Recall that \(\phi : \{ a_n \}_{n=1}^\infty \rightarrow \mathbb{N} \times \mathbb{F}_\infty \) is a bijection. Choose infinitely many distinct positive integers \(\{ n_i \}_{i \in \mathbb{N}} \) such that \(n_i \notin \{ m_1, m_2 \} \) and \(\varphi(a_{n_i}) = \overline{w}(\gamma_0) \). Then the elements \(\gamma_i = a_{n_i} \gamma_0^{-1} a_{n_i}^{-1} \) are all distinct and

\[
w_{\gamma_i} = \psi(\varphi(a_{n_i} \gamma_0^{-1} a_{n_i}^{-1})) = \psi(\varphi(\gamma_0)\overline{w}(\gamma_0)(\overline{w}(\gamma_0)^{-1}) = \psi(\varphi(\gamma_0)) = w_{\gamma_0}
\]
Hence \(\alpha_{\gamma_i} = \alpha_{\gamma_0} \).

Now take \(\xi \in \mathcal{H} \) such that \(\alpha_{\gamma_0}^{-2}(x_{\gamma_0})\xi \neq 0 \). Consider \(\xi \otimes \chi_e \in \mathcal{H} \otimes l^2(\mathbb{F}_\infty) \). Noting that \(\gamma_i^{-1}\gamma_0\gamma_i \) are all distinct, we have:

\[
\begin{align*}
x(\xi \otimes \chi_e) &= \left(\sum x_{\gamma} u_{\gamma} \right) (\xi \otimes \chi_e) \\
&= \sum \alpha_{\gamma^{-1}}(x_{\gamma}) \xi \otimes \chi_{\gamma}
\end{align*}
\]

\[
\Rightarrow \|x(\xi \otimes \chi_e)\|^2 = \sum \|\alpha_{\gamma^{-1}}(x_{\gamma})\| \xi \|^2
\]

\[
\geq \sum \|\alpha_{\gamma_i^{-1}\gamma_0^{-1}\gamma_i}(x_{\gamma_i^{-1}\gamma_0\gamma_i})\| \xi \|^2
\]

\[
= \sum \|\alpha_{\gamma_i^{-1}}(x_{\gamma_i^{-1}}\gamma_0)\| \xi \|^2
\]

\[
= \sum \|\alpha_{\gamma_i^{-1}}(x_{\gamma_i^{-1}}\gamma_0)\|^2
\]

\[
= \sum \alpha_{\gamma_0}^{-2}(x_{\gamma_0})\xi \|^2
\]

We conclude that \(x = x_e \in B(\mathcal{H}) \). Now \([x, u_\rho] = 0 \) iff \(\alpha_\rho(x) = x \), so \(N' \cap M_1 = B(\mathcal{H})^{F_\infty} = W(\mathbb{F}_\infty)' \).

Lemma 3.4.8. \(N' \cap M_1 = W(\mathbb{F}_\infty)' \) has a central summand which is a type III factor.

Proof. Let \(Q = W(\mathbb{F}_\infty)' \). There is a canonical embedding \(\iota : \mathcal{H}_0 \hookrightarrow \mathcal{H} = L^2(CAR(\mathcal{H}_0)) \) given by \(\iota(\xi) = \sqrt{2}a(\xi) \) (one has \(\langle \sqrt{2}a(\xi), \sqrt{2}a(\eta) \rangle = 2 \text{tr}(a^*(\xi)a(\eta)) = \langle \xi, \eta \rangle \) because \(\text{tr} \) is the quasi-free state of covariance \(\frac{1}{2} \)). The action of \(\mathbb{F}_\infty \) commutes with \(\iota \) so that \(\iota(\mathcal{H}_0) \) is invariant under \(W(\mathbb{F}_\infty) \). If \(p \) denotes the orthogonal projection onto \(\iota(\mathcal{H}_0) \) then \(p \in W(\mathbb{F}_\infty)' = Q \).

Let \(q = z(p) \), the central support of \(p \) in \(Q \). Then, using Lemma 3.4.2, \(qQ' \) is also a factor and \(p \in (qQ')' = qQ, \) so \(qQ' \equiv pqQ' = pW(\mathbb{F}_\infty)'' = w_\gamma'' = S \) the type III factor we started with. Hence the central summand \(qQ = (qQ')' \) is also a type III factor. \(\square \)

In summary:

Theorem 3.4.9. There exist infinite index II_1 subfactors \(N \subset M \) such that upon performing the basic construction \(N \subset M \subset M_1 \), the relative commutant \(N' \cap M_1 \) has a type III central summand.
Bibliography

[1] Dietmar Bisch. Bimodules, higher relative commutants and the fusion algebra associated to a subfactor. In *Operator algebras and their applications (Waterloo, ON, 1994/1995)*, pages 13–63. Amer. Math. Soc., Providence, RI, 1997.

[2] Dietmar Bisch and Vaughan Jones. Algebras associated to intermediate subfactors. *Invent. Math.*, 128(1):89–157, 1997.

[3] Dietmar Bisch and Vaughan Jones. A note on free composition of subfactors. In *Geometry and physics (Aarhus, 1995)*, pages 339–361. Dekker, New York, 1997.

[4] Dietmar Bisch and Vaughan Jones. Singly generated planar algebras of small dimension. *Duke Math. J.*, 101(1):41–75, 2000.

[5] Robert J. Blattner. Automorphic group representations. *Pacific J. Math.*, 8:665–677, 1958.

[6] Alain Connes. On the spatial theory of von Neumann algebras. *J. Funct. Anal.*, 35(2):153–164, 1980.

[7] Pierre de la Harpe and R. J. Plymen. Automorphic group representations: a new proof of Blattner’s theorem. *J. London Math. Soc. (2)*, 19(3):509–522, 1979.

[8] Michel Enock and Ryszard Nest. Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras. *J. Funct. Anal.*, 137(2):466–543, 1996.

[9] Uffe Haagerup. Operator-valued weights in von Neumann algebras. I. *J. Funct. Anal.*, 32(2):175–206, 1979.

[10] Richard Herman and Adrian Ocneanu. Index theory and Galois theory for infinite index inclusions of factors. *C. R. Acad. Sci. Paris Sér. I Math.*, 309(17):923–927, 1989.
[11] Hsiang-Ping Huang. *Commutators Associated to a Subfactor and its Relative Commutants*. PhD thesis, University of California at Berkeley, 2000.

[12] Masaki Izumi. On type II and type III principal graphs of subfactors. *Math. Scand.*, 73(2):307–319, 1993.

[13] Masaki Izumi, Roberto Longo, and Sorin Popa. A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. *J. Funct. Anal.*, 155(1):25–63, 1998.

[14] V. Jones and V. S. Sunder. *Introduction to subfactors*. Cambridge University Press, Cambridge, 1997.

[15] Vaughan Jones. Index for subfactors. *Invent. Math.*, 72(1):1–25, 1983.

[16] Vaughan Jones. Planar algebras I. xxx math.QA/9909027, to be published in the New Zealand Journal of Mathematics, 1999.

[17] Vaughan Jones. The planar algebra of a bipartite graph. In *Knots in Hellas ’98 (Delphi)*, volume 24 of *Ser. Knots Everything*, pages 94–117. World Sci. Publishing, River Edge, NJ, 2000.

[18] Vaughan Jones. The annular structure of subfactors. In *Essays on geometry and related topics, Vol. 1, 2*, volume 38 of *Monogr. Enseign. Math.*, pages 401–463. Enseignement Math., Geneva, 2001.

[19] Vaughan Jones and Pierre de la Harpe. An introduction to C^*-algebras. Lecture notes, Université de Genève, Section de Mathématiques, Case postale 240, CH - 1211 Genève 24 Switzerland, July 1995.

[20] Richard V. Kadison and John R. Ringrose. *Fundamentals of the theory of operator algebras. Vol. I*. American Mathematical Society, Providence, RI, 1997. Elementary theory, Reprint of the 1983 original.

[21] Hideki Kosaki. Extension of Jones' theory on index to arbitrary factors. *J. Funct. Anal.*, 66(1):123–140, 1986.

[22] Hideki Kosaki. *Type III factors and index theory*. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1998.
[23] J. May. Definitions: operads, algebras and modules. *Contemporary Mathematics*, 202:1–7, 1997.

[24] Mihai Pimsner and Sorin Popa. Entropy and index for subfactors. *Ann. Sci. École Norm. Sup. (4)*, 19(1):57–106, 1986.

[25] Mihai Pimsner and Sorin Popa. Iterating the basic construction. *Trans. Amer. Math. Soc.*, 310(1):127–133, 1988.

[26] Sorin Popa. On a problem of R. V. Kadison on maximal abelian ∗-subalgebras in factors. *Invent. Math.*, 65(2):269–281, 1981/82.

[27] Sorin Popa. Classification of amenable subfactors of type II. *Acta Math.*, 172(2):163–255, 1994.

[28] Sorin Popa. An axiomatization of the lattice of higher relative commutants of a sub-factor. *Invent. Math.*, 120(3):427–445, 1995.

[29] Sorin Popa. Universal construction of subfactors. *J. Reine Angew. Math.*, 543:39–81, 2002.

[30] Jean-Luc Sauvageot. Sur le produit tensoriel relatif d’espaces de Hilbert. *J. Operator Theory*, 9(2):237–252, 1983.

[31] M. Takesaki. *Theory of operator algebras. II*, volume 125 of *Encyclopaedia of Mathematical Sciences*. Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6.

[32] Masamichi Takesaki. *Theory of operator algebras. I*. Springer-Verlag, New York, 1979.