MicroRNAs (miRNAs or miRs) are a family of small non-coding RNA species that have been implicated in the control of many fundamental cellular and physiological processes such as cellular differentiation, proliferation, apoptosis and stem cell maintenance. miRNAs regulate gene expression by the sequence-selective targeting of mRNAs, leading to translational repression or mRNA degradation. Some microRNAs have been categorized as "oncomirs" as opposed to "tumor suppressor miRs". Modulating the miRNA activities may provide exciting opportunities for cancer therapy. This review highlights the latest discovery of miRNAs involved in carcinogenesis as well as the potential applications of miRNA regulations in cancer treatment. Several studies have demonstrated the feasibility of restoring tumor suppressive miRNAs and targeting oncogenic miRNAs for cancer therapy using in vivo model systems.

Keywords: microRNA, miRNA, Cancer, Oncogene, Tumor suppressor, Therapy

MicroRNAs and cancer

More than half of the miRNAs genes are located in cancer-associated genomic regions or in fragile sites. Specific miRNA signatures have been associated with distinct subsets of solid tumors and hematological malignancies. miRNAs can act as tumor suppressors when their function loss can initiate or contribute to the malignant transformation of a normal cell. The loss of function of a miRNA could be due to several mechanisms, including genomic deletion, mutation, epigenetic silencing, and/or miRNA processing alterations. On the other hand, miRNAs can act as oncogenic...
microRNAs by targeting mRNAs encoding tumor suppressor proteins.

The let-7 family of miRNAs is a typical tumor suppressor and is therefore downregulated in many tumors, including lung and breast cancer [20,21]. Many of the let-7 family members are located in fragile genomic areas associated with lung, breast, and cervical cancer [22]. Furthermore, let-7 family members functionally inhibit the miRNAs of well-characterized oncogenes, such as RAS [23,24], HMG2 [25], and c-Myc [26]. The miR-29 family comprises three isoforms arranged in two clusters: miR-29b-1/miR-29a in chromosome 7q32 and miR-29b-2/miR-29c in chromosome 1q23. miR-29 family members have been shown to be downregulated in chronic lymphatic leukemia (CLL), acute myeloid leukemia (AML), lung cancer, breast cancer, and cholangiocarcinoma [17,20,21,27,28].

miR-155 was one of the first described oncogenic miRNAs [29,30] and it is highly expressed in a variety of tumors [17,20,21,28-31]. The miR-155 gene is located in chromosome 21q23 embedded in a host noncoding RNA named the B cell integration cluster (BIC) [32]. BIC is known to cooperate with c-Myc in oncogenesis. Another widely expressed miRNA in hematopoietic and solid tumors is miRNA-21 [17,28,31,33-35]. miR-21 targets several tumor suppressor genes such as phosphatase and tensin homolog (PTEN) [34], programmed cell death 4 (PDCD4) [36], and tropomyosin 1 (TPM1) [37]. The miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, miR-92-1) is located at 13q31.3 in a region that is frequently amplified in follicular lymphoma and diffuse large B cell lymphomas [38]. Members of the miR-17-92 cluster are highly expressed in a variety of solid tumors and hematological malignancies [39]. Interestingly, the miR-17-92 cluster is transactivated by c-Myc, a frequently activated oncogene in cancer [40].

Recently, miRNAs have been found to foster tumor progression by the mediation of inflammation processes through regulation of components of the innate immune system. Two recent studies described the miRNAs miR-21 and miR-29a to serve as ligands for Toll-like receptor (TLR) activation. Fabbri et al. showed that tumor-originating extracellular miRNA could bind to murine TLR7 and human TLR8 to cause a proinflammatory response leading to tumor progression both in vitro and in vivo [41]. In a separate study, Lehmann et al. showed that extracellular let-7 could activate TLR7 to induce neurodegeneration [42]. These off-target effects might be overcome by chemical modifications and improved delivery systems as discussed in one of the subsequent paragraphs.

Targeting microRNAs in cancer

General aspects of miRNA therapeutics

Every miRNA has multiple target sites in different genes (on average about 500 for each miRNA family). Reciprocally, about two third of all mRNAs have one or more evolutionarily conserved sequences that are predicted to interact with miRNAs [43-46]. The rationale for using miRNAs as therapeutic agents is based on the two following criteria. (1) miRNA expression is dysregulated in cancer compared to normal tissues and (2) the cancer phenotype can be changed by targeting miRNA expression [16,20,21,24,28,47-50]. Compared to other strategies, miRNA-based therapeutics have several advantages, as for example the fact that miRNAs as therapeutic agents have the ability to target multiple genes, frequently in the context of a network. The challenges for microRNA-based therapies are the same as the challenges for small interfering RNA therapeutics and include issues of delivery, potential off-target effects and safety. One of the major obstacles for the use of miRNA therapeutics is the tissue-specific delivery [51,52]. Moreover, the fact that one miRNA targets multiple genes is also a drawback as the potential off-target effects may cause toxic phenotypes [51,53]. The fact that some biological functions of miRNAs may be partially redundant, or cell-type dependent, is another relevant issue in the development of miRNA therapeutics [54]. Although successful delivery is an obstacle to effective miRNA-based therapeutics, new findings from recent trials and the rapid advances in systemic drug delivery systems provide an optimistic perspective on the progress in this field [55].

In general, miRNA therapeutic approaches can be divided into two different categories: (1) miRNA inhibition therapy when the target miRNA is overexpressed and (2) miRNA replacement therapy when the miRNA is repressed. Therapeutic targeting of microRNAs can be accomplished either by direct inhibition or replacement of miRNAs or by targeting specific genes and therefore regulating the expression of specific miRNAs. For this purpose small-interfering RNAs (siRNAs) and genetically encoded expression vectors encoding small hairpin RNAs (shRNAs) are used [56].

microRNA modifications

There are different hurdles to develop miRNA-based treatment approaches. One is that RNAs in general have low stability in vivo. Thus, miRNA introduced into mice via the tail vein is cleared from the circulatory system within 30 minutes [57]. Unmodified RNAs undergo degradation by RNases and then rapid renal excretion [58]. Therefore, the plasma half-life of RNAs needs to be increased for clinical use of miRNA-based therapeutic approaches. An improvement could be reached by higher miRNA stability or by protection from RNases. By using chemically modified oligonucleotides the stability of the antisense sequences is augmented [59,60]. In the following established chemical modifications are listed: locked nucleic acid (LNA) oligonucleotides [61], phosphorothioate containing oligonucleotides [62], 2′-O-methyl-
It is possible that with nucleic acid delivery the use of liposomes for delivery of therapeutic substances is still evolving. A complete understanding of the best liposomal design for delivery of miRNAs, siRNAs, shRNAs, plasmid DNA, and pro-drugs is required to improve stability and reduce hydrolysis and excretion, the development of improved delivery systems leads to enhanced stability and more predictable delivery of miRNAs. miRNAs can be conjugated to a cholesterol moiety, increasing stability in the circulation and facilitating cell entry [75]. A further mechanism of protection is to enclose miRNA mimics or LNAs into nanoparticles to form micelle-like structures. Liposome nanoparticles are phospholipid structures that are capable of incorporating various types of nucleic acids and charged small molecules, such as microRNAs, siRNAs, shRNAs, plasmid DNA, and protein, within the aqueous core of the liposome [76]. The major drawback of liposomes are nonspecific uptake and inactivation of immune response [77]. Polycationic liposome-hyaluronic acid (LPH) nanoparticles have also been used as miRNA carriers [78]. Using LPH particles as a carrier for miR-34a significantly reduced lung metastases in a murine melanoma model [76]. It has been shown that systemic administration of positively charged lipid nanoparticles in vivo is toxic and stimulates inflammatory response by elevating both Th1 and Th17 cytokines and interferon responsive genes [79]. Clearly, a complete understanding of the best liposomal design for delivery of therapeutic substances is still evolving. It is possible that with nucleic acid delivery the use of a neutral lipid, such as 1,2-Dioleoyl-sn-glycero-3-phosphaditylcholine (DOPC) will have several advantages [80]. Other delivery systems used for microRNAs are polyethyleneimine (PEI)-based systems [81-83], dendrimers [84-86], poly(lactide-co-glycolide) (PLGA) particles [87,88], protamine [89], atelocollagen [90-92], as well as inorganic materials (e.g. gold [93,94] and silica-based nanoparticles [95]).

Another hurdle in the design and application of miRNA therapeutics is to ensure tumor-specific delivery. Due to the fact that most miRNAs target many different mRNAs, off-target effects are a substantial problem. Targeted delivery to specific tissues can be achieved by binding tumor-specific ligands to nanoparticles, which can be directed to tumor cells via active or passive targeting. Active targeting is achieved by conjugation with different compounds that have a specific affinity to tumors. As an example, cancer cell receptors (EGFR, HER-2) or hyaluronic acid could be used [96-98]. Hyaluronic acid is a polysaccharide that binds to the cancer stem cell marker CD44, which is overexpressed in various tumor cells [99].

miRNA inhibition therapy

Oncogenic microRNAs could be therapeutically targeted by repression and therefore inhibition of the interaction between miRNA and mRNA. A simple method to inhibit miRNAs is the use of oligonucleotides complementary to the mature miRNA (antagomiRs). These oligonucleotides disrupt the miRISC complex and therefore prevent the degradation of the mRNA which can then be translated. miRNA sponges have been developed to inhibit the activity of miRNA families sharing a common seed sequence. miRNA sponges work with multiple complementary 3'UTR mRNA sites of a specific miRNA and saturate the miRISC complex repressing the activity toward natural mRNA [100]. A major drawback of miRNA sponges is the limited homogeneity of transcripts expression and therefore miRNA sponges could lead to serious side effects [101]. Another approach to more specifically inhibit the miRNA function is the use of miRNA masks which are complementary to the binding sites in the 3'UTR of the target mRNA [15]. This method allows a more specific inhibition of the miRNA targeted by a specific miRNA.

microRNA replacement therapy

miRNA replacement therapy aims at substitution of tumor suppressive miRNAs expressed at lower levels by using oligonucleotide mimics containing the same sequence as the mature endogenous miRNA. As double stranded miRNA mimics have a much higher potency as single stranded miRNA mimics they are most often used [102]. The guide strand contains a sequence identical to the mature miRNA and the passenger strand sequence is complementary to the mature miRNA. Additionally to
miRNA mimics containing the same sequence as the endogenous miRNA, synthetic miRNA precursor mimics with longer sequences are used [103].

MicroRNA therapeutics

Using a luciferase reporter assay to screen small molecule libraries for a compound that could inhibit the expression of specific oncogenic miRNAs has recently been successful.

OncomiRs

The expression of microRNA miR-122 is confined to the liver, where it constitutes 70% of the total miRNA population [3]. Within the liver, miR-122 has been implicated in cholesterol and lipid metabolism, and was identified as a regulator for systematic iron homeostasis [7,8]. Moreover, miR-122 has also been demonstrated to be necessary for the replication and infectious production of hepatitis C virus (HCV). Binding of miR-122 to the 5′ noncoding region of the HCV genome upregulates expression, causing accumulation of viral RNA in liver cells [9]. HCV infection is one of the major causes of liver disease worldwide, including cirrhosis and hepatocellular carcinoma [9]. The essential interaction between miR-122 and HCV suggests that miR-122 could be an excellent therapeutic target for the treatment of HCV infections. Anti-miR-122 is the only miRNA-based treatment tested in human beings so far. In 2010, data from a drug trial of an intravenously delivered anti-miR-122 LNA in chimpanzees were reported [104]. Anti-miR-122 LNA given to chronically infected chimpanzees once a week for 12 weeks led to a reduction in viral load in the serum and the liver. Based on these results, a phase 1 trial in 77 healthy volunteers demonstrated the safety of anti-miR-122 application in humans. In the subsequent phase 2 trial the safety and efficacy of the treatment was confirmed [105]. The discovery of small molecule inhibitors of miR-122 function demonstrates a novel approach to inhibit HCV replication in liver cells [10]. A recent publication describes the development of an assay for the discovery of small molecule regulators of miR-122, and ultimately HCV therapeutics [106].

miR-21 is an oncogene and therefore frequently highly expressed in solid tumors and hematological malignancies [21,107-116]. Inhibition of miR-21 resulted in reduced cell proliferation accompanied by increased apoptosis in breast and glioblastoma cell lines [117,118]. Again by performing luciferase reporter assay an inhibitor of miR-21 has been identified. This agent was able to inhibit miR-21 expression and elicit antitumoral effects [119]. miR-21 transfection leads to the downregulation of PTEN and increased signaling through the PI3K-AKT pathway [34].

Members of the miRNA-29 family (miR-29a, miR-29b, and miR-29c) are known to be highly expressed in normal tissues and downregulated in different types of cancer, including neuroblastoma, sarcoma, glioma, high-risk chronic lymphatic leukemia (CLL), invasive breast cancer, cholangiocarcinoma and lung cancer.(35–40) miR-29a has been shown to reduce invasiveness and proliferation of human carcinoma cell lines.(41) The miR-29 family members also target DNA methyltransferases (DNMT3A and DNMT3B), and can thereby restore patterns of DNA methylation and expression of silenced tumor suppressor genes.(31) We recently showed that inhibition of endogenous miR-29b by stable transduction of a lentiviral vector containing an antisense nucleotide in human lung cancer cells caused increased release of inhibitor of differentiation 1 (ID1) and Matrix-Metalloproteinase-9 (MMP9), and enhanced matrigel invasion [120]. On the contrary side, stable over-expression of miR-29b caused decreased ID1 and MMP9 and significantly decreased invasion [120]. In a further study we observed a reciprocal association between miR-381 and ID1 in lung cancer cell lines and primary adenocarcinomas [121]. Our results also provide first evidence that ectopic expression of miR-381 reduced ID1 mRNA and protein levels, and significantly decreased lung cancer cell migration and invasion.(reviewed in [122]).

The use of antagoniRs against miR-10b in an animal model of breast tumor-bearing mice was associated with reduced metastasis, both in vitro and in vivo [123]. The silencing of miR-10b with antagoniRs significantly decreased dmiR-10b levels and increased the levels of a functionally important miR-10b target, Hoxd10. The use of this antagoniRs in mice bearing highly metastatic breast cancer cells did not reduce primary mammary tumor growth but markedly suppressed the formation of lung metastases. The therapy was well tolerated by mice. miR-155 was found to be overexpressed in different types of solid cancers as well as lymphomas [20,124-133] miR-155 is a negative prognostic factor in pancreatic and lung cancer patients [20,131]. In malignant glioma the downregulation of the GABA-A receptor was shown to correlate with the grade of the tumor. The knockdown of miR-155 involves the re-expression of GABRA 1 protein in vivo and therefore controlling proliferation and signaling pathways regulated by the GABA-A receptor [134].

The inhibition of the MYC-driven miR-9 using a miRNA sponge could reduce the development of lung metastases in a breast cancer mouse model [135]. On the other hand, the inhibition of the tumor suppressive miR-31 with sponge miRNAs in a breast cancer model induced the development of lung metastases [136].

Tumor suppressor miRNAs

The let-7 family is one of the best described tumor suppressor miRNAs [24,137-141] and is frequently downregulated in tumor tissue [142]. In xenograft models, tumor burden was reduced by intratumoral delivery of let-7b [143]. By
intranasal delivery of let-7a using lentivirus in a lung cancer xenograft model the tumor burden was significantly reduced [57]. One emerging concept for miRNA regulation is based on functional polymorphisms in the target miRNA 3'UTR interfering with miRNA binding and function. Target polymorphisms in the 3'UTR of KRAS interfere with the function of let-7 and are associated with outcomes in breast and lung cancer [144,145]. The miR-34 family has been reported as direct p53 transcriptional target. Overexpression of miR-34 family member induces apoptosis and cell cycle arrest [146,147]. The correlation between downregulation of miR-34 and various tumor types has been demonstrated [148-151] miR-34 incorporated in a lipid-based particle was able to block tumor growth in a mouse model of non-small cell lung cancer [57] miR-34a accumulated in the tumor tissue, resulting in downregulation of its direct targets. Similar results were obtained in a second study of non-small cell lung cancer with the delivery of miR-34a or let-7 mimics [57]. Based on these results, miR-34 as a liposomal miR-34 mimic (MRX34, Mirna Therapeutics Inc.) is investigated in clinical trials [152].

miR-16 conjugated to atelocollagen has been shown to reduce bone metastases in a xenografts model of prostate cancer [153]. Atelocollagen is a collagen solubilized by protease with similar physical properties to those of natural, insolubilized collagen [92].

Conclusions
microRNAs represent critical regulators of tumor cell differentiation, proliferation, cell cycle progression, invasion and metastasis. Based on microRNA arrays various miRNAs have been described as oncogenes or tumor suppressors and many of them are used for diagnosis and as prognostic or predictive tools [122].

Emerging evidence suggests that inhibition of overexpressed oncogenic miRNAs or substitution of tumor suppressive miRNAs could become a novel treatment strategy in cancer therapy. The optimization of the stability of miRNAs, the improvement in delivery systems and targeted drug delivery as well as the understanding and control of off-target effects of miRNA therapeutics are challenges for the future development.

Competing interest
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 11 October 2013 Accepted: 29 January 2014
Published: 4 March 2014

References
1. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75:843–854.
2. Garzon R, Calin GA, Croce CM: MicroRNAs in Cancer. Annu Rev Med 2009, 60:167–179.
3. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23:4051–4060.
4. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415–419.
5. Derlin AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature 2004, 432:231–235.
6. Bohnsack MT, Czapinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10:185–191.
7. Lund E, Gutttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science 2004, 303:95–98.
8. Hutvagner G, Zamoore PD: A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297:2056–2060.
9. Hammond SM, Bernstein E, Beach D, Hannon GJ: An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404:293–299.
10. Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740–744.
11. Diederichs S, Haber DA: Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007, 131:1097–1108.
12. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281–297.
13. Orom UA, Nielsen FC, Lund AH: MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008, 30:460–471.
14. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J, Jin Y: miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One 2010, 5:e9429.
15. Garzon R, Marcucci G, Croce CM: Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010, 9:775–789.
16. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aalder H, Rattan R, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002, 99:15524–15529.
17. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NJ, Fabbri M, et al: A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005, 353:1793–1801.
18. Nakamura T, Canaani E, Croce CM: Oncogenic ALL1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci USA 2007, 104:10980–10985.
19. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006, 9:435–443.
20. Yanaihara N, Caplen N, Bowman E, Selke M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006, 9:189–198.
21. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005, 65:7065–7070.
22. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yeadonari S, Shimizu M, Rattan R, Bullrich F, Negrini M, Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004, 101:2999–3004.
23. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ: RAS is regulated by the let-7 microRNA family. Cell 2005, 120:555–647.
24. Akao Y, Nakagawa Y, Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biochem Biophys Acta 2006, 29:903–906.
25. Lee YS, Dutta A: The tumor suppressor microRNA let-7a represses the HMGA2 oncogene. Genes Dev 2007, 21:1025–1030.
26. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Sotopoulos P, Petrelli NJ, Dunn SP, Krueger LJ: MicroRNA let-7a down-regulates MYC and reverts
MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007, 67:9762–9770.

27. Mott JL, Kobayashi S, Bronk SF, Gores GJ: mir-29 regulates Md-1 protein expression and apoptosis. Oncogene 2007, 26:6133–6140.

28. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbrini M, Czitroms K, Alder H, Nakamura T, et al: MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008, 111:3183–3189.

29. Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A: BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005, 207:243–249.

30. Metzler M, Wild M, Busch K, Viehmann S, Borkhardt A: High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004, 39:167–169.

31. Volinia S, Calin GA, Liu CG, Ambros V, Petrocca F, Iorio MV, Fabbri M, Coombes K, Alder H, Nakamura T, et al: MicroRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006, 103:2257–2262.

32. Tam W, Hughes SH, Hayward WS, Besmer P: Avian bican, a gene isolated from a common retroviral site in avian leukemia virus-induced lymphomas that encodes a noncoding RNA, cooperates with c-myc in lymphomagenesis and erythroleukemogenesis. J Virol 2002, 76:4275–4286.

33. Garzon R, Garofalo M, Martelli MP, Briesevitz R, Wang L, Fernandez-Cymering C, Volinia S, Liu CG, Schnittger S, Hafelech T, et al: Distinctive microRNA signature of acute myeloid leukemia bearing cytotoxic mutated nucleophosmin. Proc Natl Acad Sci USA 2008, 105:3945–3950.

34. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133:647–658.

35. Caffe A, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Paracc MG: Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005, 334:1351–1358.

36. Frankel LB, Christofferson NR, Jacobsen A, Lindow M, Krogh A, Lund AH: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA-21 in breast cancer cells. J Biol Chem 2008, 283:1026–1033.

37. Zhu S, Si ML, Wu H, Mo YJ: microRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 2007, 282:14326–14336.

38. Oka A, Tagawa H, Kaman S, Tsusuki S, Karpas A, Tsuzuki S, Kira S, Yoshida Y, Seto M: Identification and characterization of a novel gene, C13orf25, as a target conserved of microRNAs. J Biol Chem 2008, 283:E1389–E1397.

39. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, et al: Mutated nucleophosmin. J Biol Chem 2008, 283:D149–D153.

40. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, Petri R, Tapner JH, et al: Combinatorial microRNA target predictions. Nat Genet 2005, 37:495–500.

41. Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36:D149–D153.

42. Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian microRNAs target genes conserved targets of microRNAs. Genome Res 2009, 19:922–929.

43. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Hanada H, Tatsuno T, Yasuda M, Nakamura Y: MicroRNA-21 expression and clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 miRNA family. Clin Cancer Res 2008, 14:2334–2340.
inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res 2011, 13:R2.

74. Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, Fu C, Lindow M, Stenvang J, Stairs OA, et al. Silencing of microRNA families by seed-targeting tiny RNAs. Nat Genet 2011, 43:371–378.

75. van Solingen C, Seghers L, Bijkerk R, Duijs J, Rozenk MT, van Oeveren-Redrijk AM, Siedel HJ, Monge M, Vos J, de Boer HC, et al. Antagonist-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 2009, 13:1577–1585.

76. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and micrRNA for cancer therapy. Mol Ther 2010, 18:1650–1656.

77. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006, 114:109–120.

78. Medina OP, Zha Y, Kairemo K. Targeted liposomal drug delivery in cancer. Curr Pharm Des 2004, 10:2981–2989.

79. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 2010, 31:6865–6872.

80. Peer D. Immunotoxicity derived from manipulating leukocytes with lipid-based nanoparticles. Adv Drug Deliv Rev 2012, 64:1738–1748.

81. de Fougerolles A, Vornlocher HP, Maraganore J, Lieberman J. Therapeutic interdiction of polymeric gene delivery systems. Adv Drug Deliv Rev 2006, 58:467–486.

82. Ren Y, Zhuo X, Mei M, Yuan XB, Lan W, Wang GX, Jia ZF, Xu P, Pu PY, Kang CS. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. Mol Ther 2010, 18:1362–1368.

83. Dutta T, Jain NK, McMillan NA, Paulink HS. Dendrimer nanocarriers as versatile vectors in gene delivery. Nanomedicine 2010, 6:35–34.

84. Hong S, Bellinisa AU, Mecke A, Keszler B, Shi X, Balogh L, Orr BG, Baker JR, Banaszkow HWM. Interaction of polyamidoamine dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 2004, 15:774–782.

85. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, Slack FJ. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA 2012, 109:E1695–E1704.

86. Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm 2012, 9:1481–1488.

87. Suh JS, Lee JY, Choi YS, Chong PC, Park YJ. Interfering microRNA in a miRNA sponge miR-122 promotes hepatocellular carcinoma growth in vitro. Mol Ther 2010, 18:1308–1313.

88. Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 2011, 71:5124–5229.

89. Park TG, Jeong JH, Kim SW. Current status of polymeric gene delivery systems. Adv Drug Deliv Rev 2006, 58:467–486.

90. Ren Y, Zhou X, Mei M, Yuan XB, Lan W, Wang GX, Jia ZF, Xu P, Pu PY, Kang CS. MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol. Mol Ther 2010, 18:1362–1368.

91. Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N, Mano M, Minakuchi Y, Takeshita F, Kosaka N, Sasaki H, Yamamoto Y, Kouno M, Honma K, Nagahara S, Hanai K, Sano A, et al. Interfering miR-34a expression in non-small cell lung cancer by quantitative real-time RT-PCR. J Thorac Cardiovasc Surg 2008, 135:1656–1663.

92. Hong S, Bielinska AU, Mecke A, Keszler B, Shi X, Balogh L, Orr BG, Baker JR, Banaszkow HWM. Interaction of polyamidoamine dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 2004, 15:774–782.

93. Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES. Prognostic value of mature microRNA-21 and microRNA-205 overexpression in human gastric carcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009, 49:1595–1601.

94. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, et al. miR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 2009, 15:3998–4008.

95. Beber A, Xi L, Lutticken JD, Pennathur A, Landreneau RJ, Wu M, Swanson SJ, Godfrey TE, Littte VR. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008, 135:255–260. discussion 260.

96. Chan SH, Wu CW, Li AF, Chi CW, Lin WC. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 2008, 28:307–911.

97. Connolly E, Melegrani L, Landgraf P, Tchakovsky T, Tennant BC, Slagle BL, Rogers LE, Zavoil M, Tuscher T, Rogers CE. Elevated expression of the miR-17-92 polycistron and miR-21 in hepatitis-virus-associated hepatocellular carcinoma contributes to the malignant phenotype. Am J Pathol 2008, 173:856–864.

98. Yuen ST, Chan TL, Kwong DL, Au GK. Tumor-suppressive miR-34a overexpressed in pancreatic cancer and a potential predictor of survival. Hepatology 2008, 48:1601–1611.

99. Orian-Rousseau V. miR-21 expression and O-6-methylguanine-DNA methyltransferase methylation status are associated with clinical outcome in glioblastoma patients. Cancer Sci 2011, 102:2180–2190.

100. Selaru FM, Dinaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R, et al. MiR-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009, 49:1595–1601.

101. Iliu J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, et al. miR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 2009, 15:3998–4008.

102. Beber A, Xi L, Lutticken JD, Pennathur A, Landreneau RJ, Wu M, Swanson SJ, Godfrey TE, Littte VR. MicroRNA expression profiles of esophageal cancer. J Thorac Cardiovasc Surg 2008, 135:255–260. discussion 260.

103. Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R, Shah K. Fluorescent nanocrystals for use in early cervical cancer detection. J Natl Cancer Inst 2010, 102:2171–2177.

104. Meier M, Neison JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007, 4:721–726.

105. Zhang Y, Wang Z. Progress in microRNA delivery. J Control Release 2014, 186:378–389.

106. Schwiers DS, Huttunen G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115:199–208.

107. Folini M, Gandellini P, Longoni N, Profrugo V, Callani M, Pennati M, Cordellia M, Supino R, Veneroni S, Salvioni R, et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer 2010, 9:12.

108. Jakobczyk A, Sarcevic M, Shi X, Sandberg M, Stenvang J, Straarup EM, Lindow M, Stenvang J. Targeted liposomal drug delivery in cancer. Curr Pharm Des 2011, 17:2171–2180.

109. Selaru FM, Dinaru AV, Kan T, David S, Cheng Y, Mori Y, Yang J, Paun B, Jin Z, Agarwal R, et al. MiR-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology 2009, 49:1595–1601.

110. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 2009, 15:3998–4008.
microRNA-29b is involved in the Src-ID1 signaling pathway and is dysregulated in human lung adenocarcinoma. Cancer Res 2010, 70:3122–3129.

Petitdidou O, Schmitt M, Moser D, Margue C, Nazarov P, Muller A, Valler L, Nishan D, Behrman I, Kreis S: Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 2010, 70:4163–4173.

White NM, Bao TT, Grigull J, Yousef YM, Girgis A, Diamandis M, Fatoohi E, White NM, Bao TT, Grigull J, Yousef YM, Girgis A, Diamandis M, Fatoohi E, Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O'Sullivan B, Waldron J, Rothschild SI: MicroRNA let-7a inhibits proliferation of human prostate cancer cells by targeting sex-determining region Y box 6 in hepatocellular carcinoma. Mol Cancer Ther 2010, 9:2479–2487.

Nashan D, Behrmann I, Kreis S: Potential of anti-cancer microRNA targeting in human glioblastoma cells. J Neuro-Oncol 2010, 91:107–117.

Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T: Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther 2010, 18:181–187.

http://www.molcelltherapies.com/content/2/1/7

Cite this article as: Rothschild: microRNA therapies in cancer. Molecular and Cellular Therapies 2014 2:7.