Development, Characterization and Application Potential of Bio-composites: A Review

Mohammad Zahid Rayaz Khan¹ and S K Srivastava²

¹Research Scholar, MED, M. M. M. University of Technology, Gorakhpur, UP 273010, INDIA
²Professor, MED, M. M. M. University of Technology, Gorakhpur, UP 273010, INDIA
E-mail: zahidkhan010@gmail.com

Abstract. Sustainable development of bio-composites is the solution for current ecological imbalance caused by the petroleum based synthetic materials. Synthetic fibers of conventional polymer composites are replaced by natural/biodegradable fiber resulting into bio-composites. The paper presents an overview about the development steps, manufacturing methods and characterization parameters of bio-composites. Popular manufacturing methods of bio-composites such as hand layup, injection molding, compression molding etc. have been covered briefly. It includes characterization based on mechanical, thermal and morphological parameters. The commercial and industrial application potential of bio-composites is also included.

1. Introduction

The conventional fiber reinforced polymer composites are generally made up of inorganic and organic materials reinforced into thermosetting and thermoplastic polymers. These composites had high application potential due to its better mechanical, morphological, thermal properties. However, their usage and disposal are major challenges because they are non-biodegradable. In recent years, this problem has been overcome by using fully/partial biodegradable composite materials reinforced with the natural fiber in place of conventional fossil based fiber[1]. The researchers are being carried out in this area for the sustainable development of bio-composites which fulfill the demands of legislative authorities related to their recycling and environmental friendly products.

Natural fibers such as kenaf, sisal, jute, banana, rice hucks are used as reinforcement in the polymers for the development of bio-composites. Bio-composites are fully green, if polymer and fiber both are derived from plant or biodegradable material; however, composites are partial green if anyone out of polymer/fiber is biodegradable or obtained from the natural plant. Natural fibers are economical, low density, good specific strength properties, and biodegradability. Bio composites are suitable for delicate consumer products, packaging, disposable consumer products, and suitable for light weight applications[2][3][4][5].

In this paper, a brief review on the recent research and development carried out, characterization and application of bio-composites is presented. It includes a brief description on the various manufacturing methods based on the types of natural fibers, polymers, their geometrical properties, mechanical properties etc. A brief discussion on the characterization of bio-composites based on different destructive and non-destructive testing methods is also included. Bio-composites have
shown wide potential in the development of automotive components, agricultural equipment, cabinet and cosine of different electrical and electronic equipment, and packaging etc.

2. Development of Bio-composites

The processes involved in the development of NFRP composites are: fiber and polymer preparation and amalgamation of prepared fiber and polymer by different fabrication techniques. Several methods can be used for the processing of natural fibers such as mechanical processing (for stiff and rough fibers), chemical processing (for soft, contains property of both synthetic and natural), & biological degumming[6] etc.

2.1. Basic Steps

The following four steps are generally used in the development of bio-composites such as impregnation, layup, consolidation and solidification [7].

![Figure 1: Steps for Development of Bio-Composites](image)

2.2. Manufacturing Methods

There are different manufacturing methods for the successful development of NFRP composites such as injection molding for short fiber reinforced thermoplastics, open mold process (spray and hand layup), liquid composite molding process, compression molding including film staking, automated process[8][9]. The selection of particular manufacturing process depends upon the type of polymers (whether thermoplastic or thermosets) used for the development of NFRP composites [10]. Thermosets are firstly used around 1940s. Fabrication of thermosetting composite is easy because of the low tooling cost, better wettability of fiber, less heat and pressure required during curing process. In 1998, thermoplastic polymer based composite products capture around 25% markets of polymer-based composites. Thermoplastic composites are very popular in the field of aerospace and automobile industries. Few manufacturing processes are common for both types of polymers like pultrusion process, compression molding, injection molding, autoclave process, etc. Table 1 shows different manufacturing methods, processing techniques and characteristics of bio-composites.

Methods	Operation	Characteristics
Hand Lay-Up Method[11][10]	Mixture of fiber-matrix is placed manually into open mould, mild pressure is applied by roller for the removal of entrapped air, better compatibility with thermosets.	low cost, no size constraints, suitable for academic and R&D work, mild surface finish, air pockets and long curing time are the limitation.
Filament Winding Process[10][12]	Resin impregnated continues fiber are wound on rotating mandrel, manual, computer controlled, controlled fibre orientation.	Hallow Tube like structures, continues fiber and thermoplastic resin are the constraints, high fiber volume fraction.
Pultrusion Process [13]	Resin soaked fibers are pulled out though a die of desired shape, Shape of the product depends on the die cross section.	Overall cost is low, suitable for thermosets and thermoplastics, limited for continues cross section.
Compression Moulding[10]	Fiber- resin mixture is placed into the heated closed mould; compressive load is applied through the upper half of the mould.	High production rate, good Surface finish, multiple part development, thermosets polymer, large automobile parts.
Liquid Transfer Moulding Process[14] Resin is injected into the fiber carrying closed mould, mould cavity has vacuumed pressure or atmospheric pressure. product having complex geometry, high fiber volume fraction, good surface finish, Resin injection, curing, and heat transfer are the major constraints.

Hybrid transfer moulding[10] Mixture of two different resin is injected into mould containing fiber. Low fiber volume fraction, complex shapes, thermosets polymer.

Injection Moulding[15] Require amount of fiber resin mixture are injected into mould cavity, extruder is used. Compatibility with both type of resin, high production rate, less curing time, different automobile parts.

Tape Winding[16][17][18] Commingled fibers are wound on the heated mandrel for melting and strengthening of thermoplastics. Suitable for thermoplastics polymers, single step process.

Hot Press [19] Thermoplastic prepreg are piled up together between the heated moulds and compressed. No need of secondary operation, popular in R&D.

Autoclave Processing[20][21] Automatic process, prepregs are lay down in mould and entire assembly vacuumed bagged and placed for curing inside autoclave. Higher fiber volume fraction, proper amalgamation of composite constituents, no air pockets, good interfacial adhesion, aircraft parts, both type of polymers.

Diaphragm forming [22] Thermoplastic prepregs sheets are placed between the flexible diaphragms, diaphragms placed into the mould for curing. only suitable for part having constant thickness and non-uniform fiber distribution.

3. Characterization Parameters
There are different tests for the mechanical characterization of bio-composites such as tensile test, flexural test; impact test, dynamic mechanical analysis etc. The scanning electron microscopy, XRD, EDX, FTIR tests are conducted for the morphology analysis of bio-composites. Table 2 shows the possible number of tests, purpose, machine used (brand name), approximate cost along with capacity for the characterization of bio composites.

Experiments	Properties	Machine, Brands and Capacity (Cost)
Tensile Test [23]	Maximum tensile load carrying capacity, young's modulus	Universal testing machine
		Brands: Instron, Tinius Olsen, Zwick
		Capacity: 5, 15, 30, 100 KN
		Approx. Cost: 10-20 lakhs
Three Point Bending Test[24]	Flexural strength, maximum load at failure, flexural modulus	Pendulum impact test machine
		Brands: Instron, Tinius Olsen, Zwick, WPM Leipzig, Haida
		Capacity:11-300J
		Approx. Cost: 3-10 lakhs
Impact Test (Charpy / Izod)[25]	Impact strength	Hardness testing machine
		Brands: Instron, Zwicky, Buchler
		Capacity:10 to 150 Kg
		Approx. Cost: 1.5-4 lakhs
Hardness [26]	Hardness	Hardness testing machine
		Brands: Instron, Zwicky, Buchler
		Capacity:10 to 150 Kg
		Approx. Cost: 1.5-4 lakhs
Dynamic Mechanical Thermal Analysis (DMA) [27]	Fatigue strength, glass transition temperature, storage modulus	DMA analyser
		Brands: Instron, NETZSCH
		Capacity:25N to 500N
		Approx. Cost:10-25 lakhs
Thermogravimetric Analysis	Thermal properties, thermal	Thermogravimetric analyser

Table 2: Various tests for Bio-Composites Characterization
Test Method	Description	Brands	Approx. Cost
(TGA) [28][29]	degradation temperature, percentage weight loss, variation in chemical and physical properties	Brands: Perkin Elmer, Torbal	15-25 lakhs
Differential Scanning Calorimetry (DSC)	Observe the glass transition temperature of the polymers Tg, crystallization and melting temperatures	Thermo- Modulated calorimeter	
Thermal Conductivity Test [31]	Insulation performance of materials	Manually	
Thermomechanical Analysis [32]	Thermomechanical stability, coefficient of thermal expansion,	Thermomechanical analyser	
Pin-on- Disc Test [33]	Friction and wear properties of material	Tribometer	5-8 lakhs
Erosion Test [34]	Erosion wear properties	Air jet erosion test rig	
Fragility Test [31]	Mass loss from the surface abrasion and Impact damage	Manually	
Scanning Electron Microscopy (SEM) [35][36]	Surface morphology, examine the surface of sample after deformation, physio-mechanical properties, micrographs of fractured surface	Scanning electron microscope Brands: Hitachi, JEOL, ZEISS, FEI	
X-Ray Photoelectron Spectroscopy [29][28]	Identify the crystal structure and molecule arrangement, strain, composition of material	X-Ray diffractometer Brands: PANalytical, Philips, Siemens	
FTIR [37][28]	Amount of component in the mixture	FTIR spectrometer Brands: Nicolet, PerkinElmer, Bruker	
CT Scan Analysis [38]	Fiber distribution in the matrix	CT Scanner Approx. Cost: 15 lakhs	
Elemental Dispersive X-Ray Analysis [39]	Elemental composition of composites	Nano scanning electron microscope Brands: Hitachi, ZEISS	
Transmission electron microscopy Analysis (TEM) [39]	Morphology and particle size distribution in particulate composites	Transmission electron microscope Brands: CRAIC, JEOL	
Atomic Force Microscopy [32]	Surface morphology	Atomic force microscope Brands: Veeco, RMC	
Polarized Optical Microscopy [40]	Crystallization behaviour	Polarized optical microscope Brands: Motic, Olympus, Nikon	
Soil Burial test [28][41]	Biodegradability of Bio-Composite, weight loss	Manual Process	

4. Applications

The bio-composites materials have wide domestic and industrial applications. The different types of natural fibers such as sisal, hemp, wood saw particles, bamboo, kenaf, oil palm, bagasse, animal hair etc. and polymers such as epoxy, polyester, polylactic acid(PLA), etc. are used for the sustainable development of bio-composites. Bio-composites are largely used in automobile industries, structural components, packaging, electronics industries, electrical appliances, sports, aerospace structures, etc. for the last two to three decades because it possesses high strength to weight ratio, substantially low cost, corrosion resistant, high fatigue strength, biodegradability, good surface finish, etc. These composites have the demerits such as poor hydrophilic resistance, moderate temperature sustainability and ageing effect [42]. Major industrial applications of bio-composites are summarized in table 3.
Table 3 : Applications of Bio-Composites

Area	Applications	Company
Automobile	Rear storage shelf/panel, door panels, spare tyre lining, noise insulation	Opel, Volkswagen, Audi, BMW, General Motors, Toyota, Volvo, Mercedes,
Industries	panels, boot lining, seat backs, internal engine cover, sun visor, bumper,	Renault, Mitsubishi, Rover, Lotus
	wheel box and other parts of automobiles	
Packaging	Cosmetics, laptop casings, bottles, food and beverages, mobile casings,	FS Korea, Rexam, lp, Apple, Thomson Lamp Bulb
	electronic goods packaging, laptop and mobile packaging, projector and voltage	
	stabilizer cover	
Sports	Safety helmets, surfing boards, rackets, polo balls, bicycle frame	-
Construction	Door panels, decking, railing, window frames	-

5. Conclusions
The waste disposal problem, limited resources and unbalance among the ecology, technology and economy associated with the conventional polymer composites led to the development of nonconventional, viz. natural and biodegradable composites (bio-composites). The paper describes different manufacturing methods for the sustainable development of bio-composites. It covers the discussion on major characterization parameters and application potential of bio-composites in different areas of engineering components. There is always a good scope for designing and exploring the new biodegradable fiber/polymer which competes with non-biodegradable fiber/polymer.

References
[1] Goda K and Cao Y 2007 Research and development of fully green composites reinforced with natural fibers Journal of Solid Mechanics and Materials Engineering 1 1073-1084.
[2] Mohanty A K et al 2000 Influence of chemical surface modification on the properties of biodegradable jute fabrics polyester amide composites Composites Part A: Applied Science and Manufacturing 31 143-150.
[3] Mohanty A K et al 2000 Surface modification of jute and its influence on performance of biodegradable jute-fabric/ Biopol composites Composites Science and Technology 60 7115-1124.
[4] Li X H et al 2004 Completely biodegradable composites of poly(propylene carbonate) and short, lignocellulose fiber Hildegardia populifolia J of Polymer Science: Part B 42 666-675.
[5] Shibata M et al 2003 Biocomposites made from short abaca fiber and biodegradable polyesters Macromolecular Materials and Engineering 288 35-43.
[6] Fu J et al 2012 Bio-processing of bamboo fibres for textile applications: a mini review Biocatalysis and Biotransformation 30 141-153.
[7] Pakmer R J and Moore W E 2017 Resin impregnation process for producing a resin-fiber composite . [Online]. Available: https://google.com/patents/us5281388.
[8] Summerscales J and Grove S 2014 Manufacturing methods for Natural fiber composites Natural fiber Composites: materials, processes and properties Woodhead Publishing Limited 176-215.
[9] Bajpai P K et al 2017 Processing and characterization of biocomposites Handbook of Ecomaterials 1-18.
[10] Mazumdar S K 2002 Composites Manufacturing Materials, Product, and Process Engineering.
[11] Cairns D S and Shramstad J D 2017 Evaluation of hand lay-up and resin transfer molding in composite wind turbine blade manufacturing 2000. [Online]. Available: http://montana.edu/composites/documents/jon skramstad thesis.pdf. [Accessed 23 11 2017].
[12] Cohen D 1997 Influence of filament winding parameters on composite vessel quality and strength Composites Part A: Applied Science and Manufacturing 28 1035-1047.
[13] Fairuz A M et al. 2014 Polymer composite manufacturing using a pultrusion process: a review American Journal of Applied Sciences 11 1798-1810.
[14] Oliveira R D et al. 2013 Resin transfer molding process: a numerical and experimental investigation The International Journal of Multiphysics 7 125-136.
[15] Kauﬀmann A J et al. 1987 Apparatus for injection molding fiber-reinforced thermostet plastic articles [Online]. Available: http://google.com/patents/us4752201. [Accessed 2 12 2017].
[16] Mazumdar S K and Hoa S V 1996 Determination of manufacturing conditions for hot-gas-aided
thermoplastic tape winding, *Journal of Thermoplastic Composite Materials* 9 35-53.

[17] Royre D S et al 1989 Test methodology for the determination of optimum fusion welding conditions of polyethylene *Journal of Applied Polymer Science* 38 147-162.

[18] Mazumdar S K and Hoa S V 1995 Manufacturing of non-axisymmetric thermoplastic composite parts by tape winding technique *Materials and Manufacturing Processes* 10 47-56.

[19] Chang I and Lees J 1988 Recent development in thermoplastic composites: a review of matrix systems and processing methods *Journal of Thermoplastic Composite Materials* 1 277-296.

[20] Hubert P 201 2Autoclave processing for composites. [Online]. Available: http://sciedirect.com/science/article/pii/b9780857090676500134. [Accessed 2 12 2017].

[21] Drakonakis V M et al 2013 Curing pressure influence of out-of-autoclave processing on structural composites for commercial aviation *Advances in Materials Science and Engineering* 2013 1-14.

[22] Mallon P and Bradigh C O’ 1988 Development of a pilot autoclave for polymeric diaphragm forming of continuous fibre-reinforced thermoplastics *Composites* 19 37-47.

[23] Shah P, Prajapati R and Singh P 2017 Enrichment of mechanical properties of biodegradable composites containing waste cellulose fiber and thermoplastic starch *European Journal of Advances in Engineering and Technology* 4 282-286.

[24] Graupner N, Labonate D and Mussig J 2017 Rhubarb petioles inspire biodegradable cellulose fiber-reinforced PLA composites with impact strength *Composite: Part A* 98 218-226.

[25] Senthilkumar P and Ravi S 2017 The effect of alkali treatment on the mechanical properties of sisal fiber reinforced epoxy composites *International Journal of Advanced Scientific Research & Development* 4 31-39.

[26] Xia C et al 2017 Natural fiber and aluminum sheet hybrid composites for high electromagnetic interference shielding performance *Composites Part B* 114 121-127.

[27] Dayo A Q et al 2017 Natural hemp fiber reinforced polybenzoxazine composites: Curing behavior, mechanical and thermal properties *Composites Science and Technology* 144 114-124.

[28] Prachayawarakorn J and Hwansanoet W 2012 Effect of silk protein fibers on properties of thermoplastic rice starch *Fibers and Polymers* 13 606-612.

[29] Haque P et al 2010 Influence of compatibilizing agent molecular structure on the mechanical properties of phosphatase glass fiber-reinforced pla composites *Journal of Polymer Science: Part A Polymer Chemistry* 48 3082-3094.

[30] Berthet M A et al 2017 Sorting natural fibres: A way to better understand the role of fibre size polydispersity on the mechanical properties of biocomposites *Composites: Part A* 95 12-21.

[31] Ma Y et al 2017 Effect of fiber surface treatments on the properties of wood fiber- phenolic foam composites *BioResources* 12 4722-4736.

[32] Jang Y H et al 2013 Pretreatment effects of seaweed on the thermal and mechanical properties of seaweed/polypolypropylene biocomposites *Composite Part A* 47 83-90.

[33] Bajpai P K et al 2013 Tribological behavior of natural fiber reinforced PLA composites *Wear* 297 829-840.

[34] Latha P S et al 2015 Evaluation of mechanical and tribological properties of bamboo-glass hybrid fiber reinforced polymer composite *Journal of Industrial Textile* 0 1-16.

[35] Mathew L and Joseph R 2007 Mechanical properties of short-isora-fiber-reinforced natural rubber composites: effects of fiber length, orientation, and loading; alkali treatment; and bonding agent *Journal of Applied Polymer Science* 103 1640-1650.

[36] Ramachandran M et al 2015 Analysis of bamboo fiber composite with polyester and epoxy resin *International Journal on Textile Engineering and Processes* 1 2395-3578.

[37] Li M E and Alabdulkareem A 2017 On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers *Construction and Building Materials* 138 276-284.

[38] Danso H D et al 2017 Mechanisms by which the inclusion of natural fibres enhance the properties of soil blocks for construction *Journal of Composite Materials* 0 1-11.

[39] N. Saba et al 2017 Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites *International Journal of Biological Macromolecules* 97 190-200.

[40] Yao L Y et al 2017 Thermal properties and crystallization behaviors of polylactide/ redwood flour or bamboo fiber composites *Iran Polym J* 26 161-168.

[41] Sukhtesarae A and Hosseini S B 2016 Effect of Silicon carbide and pulping processes on physical and mechanical properties of pulp plastic composites (PPCs) *Journal of Asian Ceramic Societies* 4 112-119.
[42] Gallo E et al 2013 Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate Composites Part B-engineering 44 112-119.

[43] Mohanty A K et al Natural fibers, biopolymers, and biocomposites: An Introduction 35-50.

[44] Fazita M R N et al 2016 Green composites made of bamboo fabric and poly (lactic) acid for packaging applications-A Review Materials 9 1-29.

[45] Khalil H P S A et al 2012 Bamboo fibre reinforced biocomposites: A review Materials & Design 42 353-368.