THE ANNALS
of
PROBABILITY

AN OFFICIAL JOURNAL OF THE
INSTITUTE OF MATHEMATICAL STATISTICS

Articles

Universality for critical KCM: Finite number of stable directions
IVA ILOHARTSKY, FABIO MARTINELLI AND CRISTINA TONINELLI 2141

Symmetries of stochastic colored vertex models PAVEL GALASHIN 2175

The height of Mallows trees LOUIGI ADDARIO-BERRY AND BENOÎT CORSINI 2220

Frozen percolation on the binary tree is nonendogenous
BALÁZS RÁTH, JAN M. SWART AND TAMÁS TERPAI 2272

Metastability and exit problems for systems of stochastic reaction–diffusion equations
MICHAEL SALINS AND KONSTANTINOS SPILOPOULOS 2317

On stochastic equations with drift in L_d N.V. KRYLOV 2371

Sharp threshold for the Ising percolation model CHANGJI XU 2399

A geometric representation of fragmentation processes on stable trees . PAUL THÉVENIN 2416

Characterization of Brownian Gibbsian line ensembles
EVENI DIMITROV AND KONSTANTIN MATETSKI 2477

Chase-escape with death on trees ERIN BECKMAN, KEISHA COOK,
NICOLE EIKMEIER, SARAI HERNANDEZ-TORRES AND MATTHEW JUNGE 2530

Small ball probabilities and a support theorem for the stochastic heat equation
SIVA ATHREYA, MATHEW JOSEPH AND CARL MUELLER 2548

Polarity of almost all points for systems of nonlinear stochastic heat equations in the
critical dimension ROBERT C. DALANG, CARL MUELLER AND YIMIN XIAO 2573

Moment estimates for some renormalized parabolic Anderson models
XIA CHEN, AURÉLIEN DEYA, CHENG OUYANG AND SAMY TINDEL 2599

To fixate or not to fixate in two-type annihilating branching random walks
DANIEL AHLBERG, SIMON GRIFFITHS AND SVANTE JANSON 2637

Errata

Second errata to “Distance covariance in metric spaces” RUSSELL LYONS 2668

Vol. 49, No. 5—September 2021
UNIVERSITY FOR CRITICAL KCM: FINITE NUMBER OF STABLE DIRECTIONS

BY IVAILO HARTARSKY1,*, FABIO MARTINELLI2 CRISTINA TONINELLI1,†

1 CEREMADE, CNRS, UMR 7534, Université Paris–Dauphine, PSL University, *hartarsky@ceremade.dauphine.fr; †toninelli@ceremade.dauphine.fr
2 Dipartimento di Matematica e Fisica, Università Roma Tre, martin@mat.uniroma3.it

In this paper, we consider kinetically constrained models (KCM) on \mathbb{Z}^2 with general update families \mathcal{U}. For \mathcal{U} belonging to the so-called “critical class,” our focus is on the divergence of the infection time of the origin for the equilibrium process as the density of the facilitating sites vanishes. In a recent paper (Probab. Theory Related Fields 178 (2020) 289–326), Marêché and two of the present authors proved that if \mathcal{U} has an infinite number of “stable directions,” then on a doubly logarithmic scale the above divergence is twice the one in the corresponding \mathcal{U}-bootstrap percolation.

Here, we prove instead that, contrary to previous conjectures (Comm. Math. Phys. 369 (2019) 761–809), in the complementary case the two divergences are the same. In particular, we establish the full universality partition for critical \mathcal{U}. The main novel contribution is the identification of the leading mechanism governing the motion of infected critical droplets. It consists of a peculiar hierarchical combination of mesoscopic East-like motions.

REFERENCES

[1] ASELAH, A. and DAI PRA, P. (2001). Quasi-stationary measures for conservative dynamics in the infinite lattice. Ann. Probab. 29 1733–1754. MR1880240 https://doi.org/10.1214/aop/1015345770
[2] BALISTER, P., BOLLOBÁS, B., PRZYKUCKI, M. and SMITH, P. (2016). Subcritical \mathcal{U}-bootstrap percolation models have non-trivial phase transitions. Trans. Amer. Math. Soc. 368 7385–7411. MR3471095 https://doi.org/10.1090/tran/6586
[3] BERTHIER, L. and BIORLI, G. (2011). Theoretical perspective on the glass transition and amorphous materials. Rev. Modern Phys. 83 587–645.
[4] BLONDEL, O., CANCRINI, N., MARTINELLI, F., ROBERTO, C. and TONINELLI, C. (2013). Fredrickson–Andersen one spin facilitated model out of equilibrium. Markov Process. Related Fields 19 383–406. MR3156958
[5] BOLLOBÁS, B., DUMINIL-COPIN, H., MORRIS, R. and SMITH, P. (2021). Universality of two-dimensional critical cellular automata. Proc. Lond. Math. Soc. To appear.
[6] BOLLOBÁS, B., SMITH, P. and UZZELL, A. (2015). Monotone cellular automata in a random environment. Combin. Probab. Comput. 24 687–722. MR3350030 https://doi.org/10.1017/S0963548315000012
[7] CANCRINI, N., MARTINELLI, F., ROBERTO, C. and TONINELLI, C. (2008). Kinetically constrained spin models. Probab. Theory Related Fields 140 459–504. MR2365481 https://doi.org/10.1007/s00440-007-0072-3
[8] CHUNG, F., DIACONIS, P. and GRAHAM, R. (2001). Combinatorics for the East model. Adv. in Appl. Math. 27 192–206. MR1835679 https://doi.org/10.1006/aama.2001.0728
[9] FREDRICKSON, G. H. and ANDERSEN, H. C. (1984). Kinetic Ising model of the glass transition. Phys. Rev. Lett. 53 1244–1247.
[10] GARRAHAN, P., SOLLICH, P. and TONINELLI, C. (2011). Kinetically constrained models. In Dynamical Heterogeneities in Glasses, Colloids and Granular Media and Jamming Transitions (L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti and W. van Saarloo, eds.). International Series of Monographs on Physics 150 341–369. Oxford Univ. Press, Oxford.
[11] HARRIS, T. E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56 13–20. MR0115221

[12] HARTARSKY, I. (2021). Refined universality for critical KCM: Upper bounds. In preparation.

[13] HARTARSKY, I. and MARÊCHÉ, L. (2020). Refined universality for critical KCM: Lower bounds. ArXiv E-Prints.

[14] HARTARSKY, I., MARÊCHÉ, L. and TONINELLI, C. (2020). Universality for critical KCM: Infinite number of stable directions. Probab. Theory Related Fields 178 289–326. MR4146539 https://doi.org/10.1007/s00440-020-00976-9

[15] HARTARSKY, I., MARTINELLI, F. and TONINELLI, C. (2020). Sharp threshold for the FA-2f kinetically constrained model. ArXiv E-Prints.

[16] JÄCKLE, J. and EISINGER, S. (1991). A hierarchically constrained kinetic Ising model. Z. Phys. B, Condens. Matter 84 115–124.

[17] LEVIN, D. A., PÉRES, Y. and WILMER, E. L. (2009). Markov Chains and Mixing Times. Amer. Math. Soc., Providence, RI. MR2466937 https://doi.org/10.1090/mbk/058

[18] LIGGETT, T. M. (2005). Interacting Particle Systems. Classics in Mathematics. Springer, Berlin. Reprint of the 1985 original. MR2108619 https://doi.org/10.1007/b138374

[19] MARÊCHÉ, L., MARTINELLI, F. and TONINELLI, C. (2020). Exact asymptotics for Duarte and supercritical rooted kinetically constrained models. Ann. Probab. 48 317–342. MR4079438 https://doi.org/10.1214/19-AOP1362

[20] MARTINELLI, F., MORRIS, R. and TONINELLI, C. (2019). Universality results for kinetically constrained spin models in two dimensions. Comm. Math. Phys. 369 761–809. MR3962008 https://doi.org/10.1007/s00220-018-3280-z

[21] MARTINELLI, F. and TONINELLI, C. (2019). Towards a universality picture for the relaxation to equilibrium of kinetically constrained models. Ann. Probab. 47 324–361. MR3909971 https://doi.org/10.1214/18-AOP1262

[22] MORRIS, R. (2017). Bootstrap percolation, and other automata. European J. Combin. 66 250–263. MR3692148 https://doi.org/10.1016/j.ejc.2017.06.024

[23] RITORT, F. and SOLLICH, P. (2003). Glassy dynamics of kinetically constrained models. Adv. Phys. 52 219–342.
SYMMETRIES OF STOCHASTIC COLORED VERTEX MODELS

BY PAVEL GALASHIN

Department of Mathematics, University of California, Los Angeles, galashin@math.ucla.edu

We discover a new property of the stochastic colored six-vertex model called flip-invariance. We use it to show that for a given collection of observables of the model, any transformation that preserves the distribution of each individual observable also preserves their joint distribution. This generalizes recent shift-invariance results of Borodin–Gorin–Wheeler. As limiting cases, we obtain similar statements for the Brownian last passage percolation, the Kardar–Parisi–Zhang equation, the Airy sheet and directed polymers. Our proof relies on an equivalence between the stochastic colored six-vertex model and the Yang–Baxter basis of the Hecke algebra. We conclude by discussing the relationship of the model with Kazhdan–Lusztig polynomials and positroid varieties in the Grassmannian.

REFERENCES

[1] Alcaraz, F. C., Droz, M., Henkel, M. and Rittenberg, V. (1994). Reaction-diffusion processes, critical dynamics, and quantum chains. Ann. Physics 230 250–302. MR1268278 https://doi.org/10.1006/aphy.1994.1026
[2] Amir, G., Angel, O. and Valkó, B. (2011). The TASEP speed process. Ann. Probab. 39 1205–1242. MR2857238 https://doi.org/10.1214/10-AOP561
[3] Angel, O., Holroyd, A. and Romik, D. (2009). The oriented swap process. Ann. Probab. 37 1970–1998. MR2561438 https://doi.org/10.1214/09-AOP456
[4] Barraquand, G. and Corwin, I. (2017). Random-walk in beta-distributed random environment. Probab. Theory Related Fields 167 1057–1116. MR3627433 https://doi.org/10.1007/s00440-016-0699-z
[5] Bazhanov, V. V. (1985). Trigonometric solutions of triangle equations and classical Lie algebras. Phys. Lett. B 159 321–324. MR0806529 https://doi.org/10.1016/0370-2693(85)90259-X
[6] Bergeron, N. and Billey, S. (1993). RC-graphs and Schubert polynomials. Exp. Math. 2 257–269. MR1281474
[7] Björner, A. and Brenti, F. (2005). Combinatorics of Coxeter Groups. Graduate Texts in Mathematics 231. Springer, New York. MR2133266
[8] Borodin, A. and Bufetov, A. (2019). Color-position symmetry in interacting particle systems.
[9] Borodin, A., Gorin, V. and Wheeler, M. (2019). Shift-invariance for vertex models and polymers.
[10] Borodin, A. and Wheeler, M. (2018). Coloured stochastic vertex models and their spectral theory.
[11] Brown, K. A., Goodearl, K. R. and Yakimov, M. (2006). Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space. Adv. Math. 206 567–629. MR2263715 https://doi.org/10.1016/j.aim.2005.10.004
[12] Brubaker, B., Buciumas, V., Bump, D. and Gustafsson, H. P. A. (2021). Colored five-vertex models and Demazure atoms. J. Combin. Theory Ser. A 178 105354, 48. MR4165627 https://doi.org/10.1016/j.jcta.2020.105354
[13] Buciumas, V., Scrimshaw, T. and Weber, K. (2020). Colored five-vertex models and Lascoux polynomials and atoms. J. Lond. Math. Soc. (2) 102 1047–1066. MR4186121 https://doi.org/10.1112/jlms.12347
[14] Bufetov, A. (2020). Interacting particle systems and random walks on Hecke algebras.
[15] Bump, D. and Nakasuji, M. (2019). Casselman’s basis of Iwahori vectors and Kazhdan–Lusztig polynomials. Canad. J. Math. 71 1351–1366. MR4028461 https://doi.org/10.4153/cjm-2018-011-1
[16] Cantini, L. (2017). Asymmetric simple exclusion process with open boundaries and Koornwinder polynomials. Ann. Henri Poincaré 18 1121–1151. MR3626299 https://doi.org/10.1007/s00023-016-0540-3

MSC2020 subject classifications. Primary 82C22; secondary 60K35, 14M15, 05E99.

Key words and phrases. Six-vertex model, flip-invariance, Hecke algebra, last passage percolation, KPZ equation, Airy sheet, directed polymers, Kazhdan–Lusztig polynomials, positroid varieties.
[47] Lenart, C., Robinson, S. and Sottile, F. (2006). Grothendieck polynomials via permutation patterns and chains in the Bruhat order. *Amer. J. Math.* 128 805–848. MR2251587

[48] Marsh, R. J. and Rietsch, K. (2004). Parametrizations of flag varieties. *Represent. Theory* 8 212–242. MR2058727 [https://doi.org/10.1090/S1088-4165-04-00230-4]

[49] Muller, G. and Speyer, D. E. (2016). Cluster algebras of Grassmannians are locally acyclic. *Proc. Amer. Math. Soc.* 144 3267–3281. MR3503695 [https://doi.org/10.1090/proc/13023]

[50] Noumi, M. and Yamada, Y. (2004). Tropical Robinson–Schensted–Knuth correspondence and birational Weyl group actions. In *Representation Theory of Algebraic Groups and Quantum Groups*. Adv. Stud. Pure Math. 40 371–442. Math. Soc. Japan, Tokyo. MR2074600 [https://doi.org/10.2969/aspm/04010371]

[51] O'Connell, N. and Ortmann, J. (2015). Tracy–Widom asymptotics for a random polymer model with gamma-distributed weights. *Electron. J. Probab.* 20 no. 25, 18. MR3325095 [https://doi.org/10.1214/EJP.v20-3787]

[52] O'Connell, N. and Yor, M. (2001). Brownian analogues of Burke’s theorem. *Stochastic Process. Appl.* 96 285–304. MR1865759 [https://doi.org/10.1016/S0304-4149(01)00119-3]

[53] Postnikov, A. (2006). Total positivity, Grassmannians, and networks.

[54] Quastel, J. and Spohn, H. (2015). The one-dimensional KPZ equation and its universality class. *J. Stat. Phys.* 160 965–984. MR3373647 [https://doi.org/10.1007/s10955-015-1250-9]

[55] Tracy, C. A. and Widom, H. (1993). Level-spacing distributions and the Airy kernel. *Phys. Lett. B* 305 115–118. MR1215903 [https://doi.org/10.1016/0370-2693(93)91114-3]

[56] Tracy, C. A. and Widom, H. (1994). Level-spacing distributions and the Airy kernel. *Comm. Math. Phys.* 159 151–174. MR1257246

[57] Weigandt, A. (2020). Bumpless pipe dreams and alternating sign matrices. Available at [arXiv:2003.07342v1](https://arxiv.org/abs/2003.07342v1).
THE HEIGHT OF MALLOWS TREES

BY LOUIGI ADDARIO-BERRY* AND BENOÎT CORSINI†

Department of Mathematics and Statistics, McGill University, *louigi.addario@mcgill.ca; †benoit.corsini@mail.mcgill.ca

Random binary search trees are obtained by recursively inserting the elements \(\sigma(1), \sigma(2), \ldots, \sigma(n) \) of a uniformly random permutation \(\sigma \) of \([n] = \{1, \ldots, n\} \) into a binary search tree data structure. Devroye (J. Assoc. Comput. Mach. 33 (1986) 489–498) proved that the height of such trees is asymptotically of order \(c^* \log n \), where \(c^* = 4.311 \ldots \) is the unique solution of \(c \log((2e)/c) = 1 \) with \(c \geq 2 \). In this paper, we study the structure of binary search trees \(T_{n,q} \) built from Mallows permutations. A Mallows(q) permutation is a random permutation of \([n] = \{1, \ldots, n\} \) whose probability is proportional to \(q^{\text{Inv}(\sigma)} \), where \(\text{Inv}(\sigma) = |\{i < j : \sigma(i) > \sigma(j)\}| \). This model generalizes random binary search trees, since Mallows(q) permutations with \(q = 1 \) are uniformly distributed. The laws of \(T_{n,q} \) and \(T_{n,q^{-1}} \) are related by a simple symmetry (switching the roles of the left and right children), so it suffices to restrict our attention to \(q \leq 1 \).

We show that, for \(q \in [0, 1] \), the height of \(T_{n,q} \) is asymptotically \((1 + o(1))(c^* \log n + n(1 - q)) \) in probability. This yields three regimes of behaviour for the height of \(T_{n,q} \), depending on whether \(n(1 - q)/\log n \) tends to zero, tends to infinity or remains bounded away from zero and infinity. In particular, when \(n(1 - q)/\log n \) tends to zero, the height of \(T_{n,q} \) is asymptotically of order \(c^* \log n \), like it is for random binary search trees. Finally, when \(n(1 - q)/\log n \) tends to infinity, we prove stronger tail bounds and distributional limit theorems for the height of \(T_{n,q} \).

REFERENCES

[1] ADDARIO-BERRY, L. and REED, B. (2009). Minima in branching random walks. Ann. Probab. 37 1044–1079. MR2537549 https://doi.org/10.1214/08-AOP428

[2] AIDÉKON, E. (2013). Convergence in law of the minimum of a branching random walk. Ann. Probab. 41 1362–1426. MR3098680 https://doi.org/10.1214/12-AOP750

[3] ANGEL, O., HOLROYD, A. E., HUTCHCROFT, T. and LEVY, A. (2018). Mallows permutations as stable matchings. arXiv preprint arXiv:1802.07142.

[4] BASU, R. and BHATNAGAR, N. (2017). Limit theorems for longest monotone subsequences in random Mallows permutations. Ann. Inst. Henri Poincaré Probab. Stat. 53 1934–1951. MR3729641 https://doi.org/10.1214/16-AIHP777

[5] BENJAMINI, I., BERGER, N., HOFFMAN, C. and MOSSÉL, E. (2005). Mixing times of the biased card shuffling and the asymmetric exclusion process. Trans. Amer. Math. Soc. 357 3013–3029. MR2135733 https://doi.org/10.1090/S0002-9947-05-03610-X

[6] BHATNAGAR, N. and PELED, R. (2015). Lengths of monotone subsequences in a Mallows permutation. Probab. Theory Related Fields 161 719–780. MR3334280 https://doi.org/10.1007/s00440-014-0559-7

[7] BIGGINS, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 446–459. MR0420890 https://doi.org/10.2307/1426138

[8] BROUTIN, N., DEVROYE, L., MCLEISH, E. and DE LA SALLE, M. (2008). The height of increasing trees. Random Structures Algorithms 32 494–518. MR2422392 https://doi.org/10.1002/rsa.20202

[9] CHAUVIN, B., KLEIN, T., MARCKERT, J.-F. and ROUAULT, A. (2005). Martingales and profile of binary search trees. Electron. J. Probab. 10 420–435. MR2147314 https://doi.org/10.1214/EJP.v10-257
R EED , B. (2003). The height of a random binary search tree. *Random Structures Algorithms* **53** 417–447. MR3854041 https://doi.org/10.1002/rsa.20776

DEVROYE, L. (1986). A note on the height of binary search trees. *J. Assoc. Comput. Mach.* **33** 489–498. MR0849025 https://doi.org/10.1145/5925.5930

DIACONIS, P. and RAM, A. (2000). Analysis of systematic scan Metropolis algorithms using Iwahori–Hecke algebra techniques. *Michigan Math. J.* **48** 157–190. Dedicated to William Fulton on the occasion of his 60th birthday. MR1786485 https://doi.org/10.1307/mmj/1030132713

DRMOTA, M. (2003). An analytic approach to the height of binary search trees. II. *J. ACM* **50** 333–374. MR2146358 https://doi.org/10.1145/765568.765572

DRMOTA, M. (2009). The height of increasing trees. MR2566888 https://doi.org/10.1016/0022-247X(84)90141-0

EVANS, S. N., GRÜBEL, R. and WAKOLBINGER, A. (2012). Trickle-down processes and their boundaries. MR1436042 https://doi.org/10.2307/2324242

GLADKICH, A. and PELED, R. (2018). On the cycle structure of Mallows permutations. *Ann. Probab.* **46** 1114–1169. MR3773382 https://doi.org/10.1214/17-AOP1202

GNEDIN, A. and OLSHANSKI, G. (2010). The two-sided infinite extension of the Mallows model for random permutations. *Adv. in Appl. Math.* **48** 615–639. MR2920835 https://doi.org/10.1016/j.aam.2012.01.001

HAMMERSLEY, J. M. (1974). Postulates for subadditive processes. *Ann. Probab.* **2** 652–680. MR0370721 https://doi.org/10.1214/aop/1176996611

HE, J. (2020). A central limit theorem for descents of a Mallows permutation and its inverse. arXiv preprint arXiv:2005.09802.

KINGMAN, J. F. C. (1975). The first birth problem for an age-dependent branching process. *Ann. Probab.* **3** 790–801. MR0400438 https://doi.org/10.1214/aop/1176996266

MALLOWS, C. L. (1957). Non-null ranking models. I. *Biometrika* **44** 114–130. MR0087267 https://doi.org/10.1093/biomet/44.1-2.114

MEAD, D. G. (1992). Newton’s identities. MR1786485 https://doi.org/10.1307/mmj/1030132713

MUELLER, C. and STARR, S. (2013). The length of the longest increasing subsequence of a random Mallows permutation. *J. Theoret. Probab.* **26** 514–540. MR3055815 https://doi.org/10.1007/s10959-011-0364-5

MUKHERJEE, S. (2016). Fixed points and cycle structure of random permutations. *Electron. J. Probab.* **21** Paper No. 40, 18. MR3515570 https://doi.org/10.1214/16-EJP4622

PINSKY, R. (2019). Permutations avoiding a pattern of length three under Mallows distributions. Preprint.

PITMAN, J. (1997). Some probabilistic aspects of set partitions. *Amer. Math. Monthly* **104** 201–209. MR1436042 https://doi.org/10.2307/2324242

PITTEL, B. (1984). On growing random binary trees. *J. Math. Anal. Appl.* **103** 461–480. MR0762569 https://doi.org/10.1016/0022-247X(84)90141-0

REEED, B. (2003). The height of a random binary search tree. *J. ACM* **50** 306–332. MR2146357 https://doi.org/10.1145/765568.765571

SHI, Z. (2015). *Branching Random Walks. Lecture Notes in Math.* **2151**. Springer, Cham. Lecture notes from the 42nd Probability Summer School held in Saint Flour, 2012, École d’Eté de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. MR3444654 https://doi.org/10.1007/978-3-319-25372-5

STARR, S. (2009). Thermodynamic limit for the Mallows model on S_n. *J. Math. Phys.* **50** 095208, 15. MR2566888 https://doi.org/10.1063/1.3156746

STARR, S. and WALTERS, M. (2018). Phase uniqueness for the Mallows measure on permutations. *J. Math. Phys.* **59** 063301, 28. MR3817550 https://doi.org/10.1063/1.5017924
In frozen percolation, i.i.d. uniformly distributed activation times are assigned to the edges of a graph. At its assigned time an edge opens provided neither of its end vertices is part of an infinite open cluster; in the opposite case it freezes. Aldous (Math. Proc. Cambridge Philos. Soc. 128 (2000) 465–477) showed that such a process can be constructed on the infinite 3-regular tree and asked whether the event that a given edge freezes is a measurable function of the activation times assigned to all edges. We give a negative answer to this question, or, using an equivalent formulation and terminology introduced by Aldous and Bandyopadhyay (Ann. Appl. Probab. 15 (2005) 1047–1110), we show that the recursive tree process associated with frozen percolation on the oriented binary tree is nonendogenous. An essential role in our proofs is played by a frozen percolation process on a continuous-time binary Galton–Watson tree that has nice scale invariant properties.

REFERENCES

[1] ABLERG, D., DUMINIL-COPIN, H., KOZMA, G. and SIDORAVICIUS, V. (2015). Seven-dimensional forest fires. Ann. Inst. Henri Poincaré Probab. Stat. 51 862–866. MR3365964 https://doi.org/10.1214/13-AIHP587

[2] ABLERG, D., SIDORAVICIUS, V. and TYKESSON, J. (2014). Bernoulli and self-destructive percolation on non-amenable graphs. Electron. Commun. Probab. 19 no. 40, 6. MR3233202 https://doi.org/10.1214/ECP.v19-2611

[3] ALDOUS, D. and STEELE, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1–72. Springer, Berlin. MR2023650 https://doi.org/10.1007/978-3-662-09444-0_1

[4] ALDOUS, D. J. (1999). Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5 3–48. MR1673235 https://doi.org/10.2307/3318661

[5] ALDOUS, D. J. (2000). The percolation process on a tree where infinite clusters are frozen. Math. Proc. Cambridge Philos. Soc. 128 465–477. MR1744108 https://doi.org/10.1017/S0305004199004326

[6] ALDOUS, D. J. and BANDYOPADHYAY, A. (2005). A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 1047–1110. MR2134098 https://doi.org/10.1214/105051605000000142

[7] ATHREYA, K. B. and NEY, P. E. (1972). Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 196. Springer, New York. MR0373040

[8] BAK, P. (1996). How Nature Works: The Science of Self-Organized Criticality. Copernicus, New York. MR1417042 https://doi.org/10.1007/978-1-4757-5426-1

[9] BANDYOPADHYAY, A. (2004). Bivariate uniqueness and endogeny for recursive distributional equations: Two examples. Preprint. Available at arXiv:math/0407175.

[10] BANDYOPADHYAY, A. (2006). A necessary and sufficient condition for the tail-triviality of a recursive tree process. Sankhyā A 68 1–23. MR2301562

[11] BENJAMINI, I. and SCHRAMM, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6 no. 23, 13. MR1873300 https://doi.org/10.1214/EJP.v6-96

[12] CRANE, E. (2018). Steady state clusters and the Ráth–Tóth mean field forest fire model. Preprint. Available at arXiv:1809.03462.

MSC2020 subject classifications. Primary 82C27; secondary 60K35, 82C26, 60J80.

Key words and phrases. Frozen percolation, self-organised criticality, recursive distributional equation, recursive tree process, endogeny, near-critical percolation, branching process.
[39] VAN DEN BERG, J., KISS, D. and NOLIN, P. (2018). Two-dimensional volume-frozen percolation: Deconcentration and prevalence of mesoscopic clusters. Ann. Sci. Éc. Norm. Supér. (4) 51 1017–1084. MR3861568 https://doi.org/10.24033/asens.2371

[40] VAN DEN BERG, J. and NOLIN, P. (2017). Boundary rules and breaking of self-organized criticality in 2D frozen percolation. Electron. Commun. Probab. 22 Paper No. 65, 15. MR3734104 https://doi.org/10.1214/17-ECP98

[41] VAN DEN BERG, J. and NOLIN, P. (2017). Two-dimensional volume-frozen percolation: Exceptional scales. Ann. Appl. Probab. 27 91–108. MR3619783 https://doi.org/10.1214/16-AAP1198

[42] VAN DEN BERG, J. and TÓTH, B. (2001). A signal-recovery system: Asymptotic properties, and construction of an infinite-volume process. Stochastic Process. Appl. 96 177–190. MR1865354 https://doi.org/10.1016/S0304-4149(01)00113-2

[43] VAN DER HOFSTAD, R. (2017). Random Graphs and Complex Networks. Vol. 1. Cambridge Series in Statistical and Probabilistic Mathematics 43. Cambridge Univ. Press, Cambridge. MR3617364 https://doi.org/10.1017/9781316779422

[44] VAN DER HOFSTAD, R. (2017). Random Graphs and Complex Networks. Vol. II. Available at https://www.win.tue.nl/~rhofstad/NotesRGCN.html.
METASTABILITY AND EXIT PROBLEMS FOR SYSTEMS OF STOCHASTIC REACTION–DIFFUSION EQUATIONS

BY MICHAEL SALINS* AND KONSTANTINOS SPILOPOULOS†

Department of Mathematics and Statistics, Boston University, *msalins@bu.edu; †kspiliop@bu.edu

In this paper we develop a metastability theory for a class of stochastic reaction–diffusion equations exposed to small multiplicative noise. We consider the case where the unperturbed reaction–diffusion equation features multiple asymptotically stable equilibria. When the system is exposed to small stochastic perturbations, it is likely to stay near one equilibrium for a long period of time but will eventually transition to the neighborhood of another equilibrium. We are interested in studying the exit time from the full domain of attraction (in a function space) surrounding an equilibrium and, therefore, do not assume that the domain of attraction features uniform attraction to the equilibrium. This means that the boundary of the domain of attraction is allowed to contain saddles and limit cycles. Our method of proof is purely infinite dimensional, that is, we do not go through finite dimensional approximations. In addition, we address the multiplicative noise case, and we do not impose gradient type of assumptions on the nonlinearity. We prove large deviations logarithmic asymptotics for the exit time and for the exit shape, also characterizing the most probable set of shapes of solutions at the time of exit from the domain of attraction.

REFERENCES

[1] BARRET, F. (2015). Sharp asymptotics of metastable transition times for one dimensional SPDEs. Ann. Inst. Henri Poincaré Probab. Stat. 51 129–166. MR3300966 https://doi.org/10.1214/13-AIHP575
[2] BERGLUND, N., DI GESÚ, G. and WEBER, H. (2017). An Eyring–Kramers law for the stochastic Allen–Cahn equation in dimension two. Electron. J. Probab. 22 Paper No. 41. MR3646067 https://doi.org/10.1214/17-EJP60
[3] BERGLUND, N. and GENTZ, B. (2013). Sharp estimates for metastable lifetimes in parabolic SPDEs: Kramers’ law and beyond. Electron. J. Probab. 18 no. 24. MR3035752 https://doi.org/10.1214/EJP.v18-1802
[4] BOVIER, A., ECKHOFF, M., GAYRARD, V. and KLEIN, M. (2004). Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. (JEMS) 6 399–424. MR2094397 https://doi.org/10.4171/JEMS/14
[5] BOVIER, A., GAYRARD, V. and KLEIN, M. (2005). Metastability in reversible diffusion processes. II. Precise asymptotics for small eigenvalues. J. Eur. Math. Soc. (JEMS) 7 69–99. MR2120991 https://doi.org/10.4171/JEMS/22
[6] CERRAI, S. (1999). Smoothing properties of transition semigroups relative to SDEs with values in Banach spaces. Probab. Theory Related Fields 113 85–114. MR1670729 https://doi.org/10.1007/s004400050203
[7] CERRAI, S. (2003). Stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Related Fields 125 271–304. MR1961346 https://doi.org/10.1007/s00440-002-0230-6
[8] CERRAI, S. (2009). A Khasminskii type averaging principle for stochastic reaction–diffusion equations. Ann. Appl. Probab. 19 899–948. MR2537194 https://doi.org/10.1214/08-AAP560
[9] CERRAI, S. and RÖCKNER, M. (2004). Large deviations for stochastic reaction–diffusion systems with multiplicative noise and non-Lipschitz reaction term. Ann. Probab. 32 1100–1139. MR2044675 https://doi.org/10.1214/aop/1079021473

MSC2020 subject classifications. 60F10, 60H15, 35R60, 60G40.

Key words and phrases. Stochastic partial differential equations, stochastic reaction–diffusion equation, metastability, small noise, large deviations, exit time, exit place.
[10] CHENAL, F. and MILLET, A. (1997). Uniform large deviations for parabolic SPDEs and applications. *Stochastic Process. Appl.* 72 161–186. MR1486551 https://doi.org/10.1016/S0304-4149(97)00091-4

[11] DA PRATO, G., PRITCHARD, A. J. and ZABCZYK, J. (1991). On minimum energy problems. *SIAM J. Control Optim.* 29 209–221. MR1088228 https://doi.org/10.1137/0329012

[12] DAY, M. (1990). Large deviations results for the exit problem with characteristic boundary. *J. Math. Anal. Appl.* 147 134–153. MR1044691 https://doi.org/10.1016/0022-247X(90)90389-W

[13] DEBUSSCHE, A., HÖGELE, M. and IMKELLER, P. (2013). *The Dynamics of Nonlinear Reaction–Diffusion Equations with Small Lévy Noise.* Lecture Notes in Math. 2085. Springer, Cham. MR3100484 https://doi.org/10.1007/978-3-319-00828-8

[14] DEMBO, A. and ZEITOUNI, O. (1998). *Large Deviations Techniques and Applications*, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036 https://doi.org/10.1007/978-1-4612-5320-4

[15] FARIS, W. G. and JONA-ŁASINIO, G. (1982). Large fluctuations for a nonlinear heat equation with noise. *J. Phys. A* 15 3025–3055. MR0684578

[16] FREIDLIN, M. I. (1988). Random perturbations of reaction–diffusion equations: The quasideterministic approximation. *Trans. Amer. Math. Soc.* 305 665–697. MR0924775 https://doi.org/10.2307/2000884

[17] FREIDLIN, M. I. and WENTZELL, A. D. (1998). *Random Perturbations of Dynamical Systems*, 2nd ed. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 260. Springer, New York. Translated from the 1979 Russian original by Joseph Szücs. MR1652127 https://doi.org/10.1007/978-1-4612-0611-8

[18] GAUTIER, E. (2005). Uniform large deviations for the nonlinear Schrödinger equation with multiplicative noise. *Stochastic Process. Appl.* 115 1904–1927. MR2178501 https://doi.org/10.1016/j.spa.2005.06.011

[19] GAUTIER, E. (2008). Exit from a basin of attraction for stochastic weakly damped nonlinear Schrödinger equations. *Ann. Probab.* 36 896–930. MR2408578 https://doi.org/10.1214/07-AOP344

[20] HÖGELE, M. A. (2019). The first exit problem of reaction–diffusion equations for small multiplicative Lévy noise. *ALEA Lat. Am. J. Probab. Math. Stat.* 16 665–709. MR3949274 https://doi.org/10.30757/alea.v16-24

[21] KALLIANPUR, G. and XIONG, J. (1996). Large deviations for a class of stochastic partial differential equations. *Ann. Probab.* 24 320–345. MR1387638 https://doi.org/10.1214/aop/1042644719

[22] LIPSHUTZ, D. (2018). Exit time asymptotics for small noise stochastic delay differential equations. *Discrete Contin. Dyn. Syst.* 38 3099–3138. MR3809077 https://doi.org/10.3934/dcds.2018135

[23] SALINS, M., BUDHIRAJA, A. and DUPUIS, P. (2019). Uniform large deviation principles for Banach space valued stochastic evolution equations. *Trans. Amer. Math. Soc.* 372 8363–8421. MR4029700 https://doi.org/10.1090/tran/7872

[24] SOWERS, R. B. (1992). Large deviations for a reaction–diffusion equation with non-Gaussian perturbations. *Ann. Probab.* 20 504–537. MR1143433
ON STOCHASTIC EQUATIONS WITH DRIFT IN L_d

BY N.V. KRYLOV

School of Mathematics, University of Minnesota, nkrylov@umn.edu

For the Itô stochastic equations in \mathbb{R}^d with drift in L_d, several results are discussed, such as the existence of weak solutions, the existence of the correspondent Markov process, the Aleksandrov type estimates of their Green’s functions, which yield their summability to the power of $d/(d - 1)$, the Fabes–Stroock type estimates, which show that Green’s functions are summable to a higher degree, the Fanghua Lin type estimates, which are one of the main tools in the W^2_p-theory of fully nonlinear elliptic equations, the fact that Green’s functions are in the class A_∞ of Muckenhoupt and a few other results.

REFERENCES

[1] AMON, S., DOUGLIS, A. and NIRENBERG, L. (1959). Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl. Math. 12 623–727. MR0125307 https://doi.org/10.1002/cpa.3160120405
[2] ALEKSANDROV, A. D. (1963). Uniqueness conditions and bounds for the solution of the Dirichlet problem. Vestn. Leningr. Univ., Mat. Meh. Astron. 18 5–29 in Russian; English translation in Amer. Mat. Soc. Transl., Vol. 68 (1968), No. 2, 89–119. MR0164135
[3] CABRÉ, X. (1995). On the Alexandroff–Bakel‘man–Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations. Comm. Pure Appl. Math. 48 539–570. MR1329831 https://doi.org/10.1002/cpa.3160480504
[4] CHIARENZA, F., FRASCA, M. and LONGO, P. (1993). $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336 841–853. MR1088476 https://doi.org/10.2307/2154379
[5] DYNKIN, E. B. (1963). Markov Processes. Fizmatgiz, Moscow. In Russian; English translation in Grundlehren Math. Wiss., Vols. 121, 122, Springer, Berlin, 1965.
[6] FABES, E. B. and STROOCK, D. W. (1984). The L^p-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations. Duke Math. J. 51 997–1016. MR0771392 https://doi.org/10.1215/S0012-7094-84-05145-7
[7] FOK, K. (1998). A nonlinear Fabes–Stroock result. Comm. Partial Differential Equations 23 967–983. MR1632776 https://doi.org/10.1080/03605309808821375
[8] GEHRING, F. W. (1973). The L^p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 265–277. MR0402038 https://doi.org/10.1007/BF02392268
[9] GIACQUinta, M. and MODICA, G. (1979). Regularity results for some classes of higher order nonlinear elliptic systems. J. Reine Angew. Math. 311(312) 145–169. MR0549962
[10] GILBARG, D. and TRUDINGER, N. S. (1983). Elliptic partial differential equations of second order. 2nd ed. Springer, Berlin. Corr. 3rd printing 1998, 2001.
[11] GRUBER, M. (1984). Harnack inequalities for solutions of general second order parabolic equations and estimates of their Hölder constants. Math. Z. 185 23–43. MR0724044 https://doi.org/10.1007/BF01214972
[12] KRYLOV, N. V. (2020). On stochastic Itô processes with drift in L_d. http://arxiv.org/abs/2001.03660.
[13] KRYLOV, N. V. (1969). On Itô’s stochastic integral equations. Teor. Veroâtn. Ee Primen. 14 340–348. In Russian; English transl. in Theory Probab. Appl., Vol. 14, No. 2 (1969), 330–336; Addendum: Vol. 17 (1972), No. 2, 392-393.
[14] KRYLOV, N. V. (1973). The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes. Izv. Akad. Nauk Ser. Mat. 37 691–708 in Russian; English translation in Math. USSR Izvestija, Vol. 7 (1973), No. 3, 691–709. MR0339338

MSC2020 subject classifications. Primary 60H10, 60H20; secondary 69H30, 60J60.

Key words and phrases. Itô equations, weak uniqueness, higher summability of Green’s functions.
SHARP THRESHOLD FOR THE ISING PERCEPTRON MODEL

BY CHANGJI XU

Center of Mathematical Sciences and Applications, Harvard University, cxu@cmsa.fas.harvard.edu

Consider the discrete cube \([-1, 1]^N\) and a random collection of half spaces which includes each half space \(H(x) := \{ y \in \{-1, 1\}^N : x \cdot y \geq \kappa \sqrt{N} \} \) for \(x \in \{-1, 1\}^N\) independently with probability \(p\). Is the intersection of these half spaces empty? This is called the Ising perceptron model under Bernoulli disorder. We prove that this event has a sharp threshold, that is, the probability that the intersection is empty increases quickly from \(\epsilon\) to \(1 - \epsilon\) when \(p\) increases only by a factor of \(1 + o(1)\) as \(N \to \infty\).

REFERENCES

[1] BOURGAINE, J. (1999). Sharp thresholds of graph properties, and the \(k\)-sat problem. *J. Amer. Math. Soc.* 12 1017–1054. Appendix to the main paper. MR1678031 https://doi.org/10.1090/S0894-0347-99-00305-7

[2] BOURGAINE, J., KAHN, J., KALAI, G., KATZNELSON, Y. and LINIAL, N. (1992). The influence of variables in product spaces. *Israel J. Math.* 77 55–64. MR1194785 https://doi.org/10.1007/BF02808010

[3] DING, J. and SUN, N. (2019). Capacity lower bound for the Ising perceptron. In STOC’19—*Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing* 816–827. ACM, New York. MR4003386 https://doi.org/10.1145/3313276.3316383

[4] FORTUIN, C. M., KASTELEYN, P. W. and GINIBRE, J. (1971). Correlation inequalities on some partially ordered sets. *Comm. Math. Phys.* 22 89–103. MR0309498

[5] FRIEDGUT, E. (1998). Boolean functions with low average sensitivity depend on few coordinates. *Combinatorica* 18 27–35. MR1645642 https://doi.org/10.1007/PL00009809

[6] FRIEDGUT, E. (1999). Sharp thresholds of graph properties, and the \(k\)-sat problem. *J. Amer. Math. Soc.* 12 1017–1054. MR1678031 https://doi.org/10.1090/S0894-0347-99-00305-7

[7] GARDNER, E. (1987). Maximum storage capacity in neural networks. *Europhys. Lett.* 4 481.

[8] GARDNER, E. and DERRIDA, B. (1988). Optimal storage properties of neural network models. *J. Phys. A* 21 271–284. MR0939731

[9] HATAMI, H. (2012). A structure theorem for Boolean functions with small total influences. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing* 816–827. ACM, New York. MR4003386 https://doi.org/10.1145/3313276.3316383

[10] KAHN, J., KALAI, G. and LINIAL, N. (1988). The influence of variables on Boolean functions. In *Analysis of Boolean Functions*.

[11] KRAUTH, W. and MÉZARD, M. (1989). Storage capacity of memory networks with binary couplings. *J. Phys.* 50 3057–3066.

[12] MARGULIS, G. A. (1974). Probabilistic characteristics of graphs with large connectivity. *Problem Peredachi Informatsii* 10 101–108. MR0472604

[13] MÉZARD, M. (1989). The space of interactions in neural networks: Gardner’s computation with the cavity method. *J. Phys. A: Math. Gen.* 22 2181–2190. MR1004920

[14] O’DONNELL, R. (2014). *Analysis of Boolean Functions*. Cambridge Univ. Press, New York. MR3443800 https://doi.org/10.1017/CBO9781139814782

[15] RUSSO, L. (1981). On the critical percolation probabilities. *Z. Wahrsch. Verw. Gebiete* 56 229–237. MR0618273 https://doi.org/10.1007/BF00535742

[16] RUSSO, L. (1982). An approximate zero-one law. *Z. Wahrsch. Verw. Gebiete* 61 129–139. MR0671248 https://doi.org/10.1007/BF00537230

[17] SHCHERBINA, M. and TIROZZI, B. (2003). Rigorous solution of the Gardner problem. *Comm. Math. Phys.* 234 383–422. MR1964377 https://doi.org/10.1007/s00220-002-0783-3

MSC2020 subject classifications. Primary 60K35, 28A35; secondary 60F99, 60G99.

Key words and phrases. Sharp threshold, Ising perceptron.
[19] Stoïnic, M. (2013). Discrete perceptrons. arXiv preprint. Available at arXiv:1306.4375.

[20] Talagrand, M. (1993). Regularity of infinitely divisible processes. *Ann. Probab.* **21** 362–432. MR1207231

[21] Talagrand, M. (1994). On Russo’s approximate zero-one law. *Ann. Probab.* **22** 1576–1587. MR1303654

[22] Talagrand, M. (1999). Intersecting random half cubes. *Random Structures Algorithms* **15** 436–449. MR1716771 https://doi.org/10.1002/(SICI)1098-2418(199910/12)15:3<436::AID-RSA11>3.0.CO;2-5

[23] Vershynin, R. (2018). *High-Dimensional Probability: An Introduction with Applications in Data Science*. Cambridge Series in Statistical and Probabilistic Mathematics **47**, Cambridge Univ. Press, Cambridge. With a foreword by Sara van de Geer. MR3837109 https://doi.org/10.1017/9781108231596
A GEOMETRIC REPRESENTATION OF FRAGMENTATION PROCESSES ON STABLE TREES

BY PAUL THÉVENIN

Department of Mathematics, Uppsala University, paul.thevenin@math.uu.se

We provide a new geometric representation of a family of fragmentation processes by nested laminations which are compact subsets of the unit disk made of noncrossing chords. We specifically consider a fragmentation, obtained by cutting a random stable tree at random points, which split the tree into smaller subtrees. When coding each of these cutpoints by a chord in the unit disk, we separate the disk into smaller connected components, corresponding to the smaller subtrees of the initial tree. This geometric point of view allows us in particular to highlight a new relation between the Aldous–Pitman fragmentation of the Brownian continuum random tree and minimal factorizations of the n-cycle, that is, factorizations of the permutation (1 2 ⋅⋅⋅ n) into a product of (n − 1) transpositions, proving this way a conjecture of Féray and Kortchemski. We discuss various properties of these new lamination-valued processes, and we notably show that they can be coded by explicit Lévy processes.

REFERENCES

[1] ABRAHAM, R. and DELMAS, J.-F. (2008). Fragmentation associated with Lévy processes using snake. Probab. Theory Related Fields 141 113–154. MR2372967 https://doi.org/10.1007/s00440-007-0081-2

[2] ABRAHAM, R. and DELMAS, J.-F. (2014). Local limits of conditioned Galton–Watson trees: The infinite spine case. Electron. J. Probab. 19 no. 2, 19. MR3164755 https://doi.org/10.1214/ejp.v19-2747

[3] ABRAHAM, R., DELMAS, J.-F. and VOISIN, G. (2010). Pruning a Lévy continuum random tree. Electron. J. Probab. 15 1429–1473. MR2727317 https://doi.org/10.1214/EJP.v15-1802

[4] ABRAHAM, R. and SERLET, L. (2002). Poisson snake and fragmentation. Electron. J. Probab. 7 no. 17, 15. MR1943890 https://doi.org/10.1214/EJP.v7-116

[5] ALDOUS, D. (1994). Triangulating the circle, at random. Amer. Math. Monthly 101 223–233. MR1264002 https://doi.org/10.2307/2975599

[6] ALDOUS, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812–854. MR1434412 https://doi.org/10.1214/aop/1024404421

[7] ALDOUS, D. and LIMIC, V. (1998). The entrance boundary of the multiplicative coalescent. Electron. J. Probab. 3 no. 3, 59. MR1491528 https://doi.org/10.1214/EJP.v3-25

[8] ALDOUS, D. and PITMAN, J. (1998). The standard additive coalescent. Ann. Probab. 26 1703–1726. MR1675063 https://doi.org/10.1214/aop/1022855879

[9] ATHREYA, S., LOHR, W. and WINTER, A. (2017). Invariance principle for variable speed random walks on trees. Ann. Probab. 45 625–667. MR3630284 https://doi.org/10.1214/15-AOP1071

[10] BERTOIN, J. (2010). Asymptotic regimes for the partition into colonies of a branching process with emigration. Ann. Appl. Probab. 20 1967–1988. MR2759725 https://doi.org/10.1214/10-AAP678

[11] BERTOIN, J. (2010). Limit theorem for trees of alleles in branching processes with rare neutral mutations. Stochastic Process. Appl. 120 678–697. MR2603059 https://doi.org/10.1016/j.spa.2010.01.017

[12] BETTINELLI, J. (2018). Convergence of uniform noncrossing partitions toward the Brownian triangulation. Sém. Lothar. Combin. 80B Art. 38, 12. MR3940613

MSC2020 subject classifications. Primary 60C05, 60F17; secondary 05A05.

Key words and phrases. Random trees, fragmentation processes, stable tree, scaling limit, lamination of the disk, permutation, minimal factorization, Lévy process.
[42] LE GALL, J.-F. and LE JAN, Y. (1998). Branching processes in Lévy processes: The exploration process. *Ann. Probab.* **26** 213–252. MR1617047 https://doi.org/10.1214/aop/1022855417

[43] LE GALL, J.-F. and PAULIN, F. (2008). Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. *Geom. Funct. Anal.* **18** 893–918. MR2438999 https://doi.org/10.1007/s00039-008-0671-x

[44] MARCKERT, J.-F. and WANG, M. (2019). A new combinatorial representation of the additive coalescent. *Random Structures Algorithms* **54** 340–370. MR3912100 https://doi.org/10.1002/rsa.20775

[45] MIERMONT, G. (2001). Ordered additive coalescent and fragmentations associated to Levy processes with no positive jumps. *Electron. J. Probab.* **6** no. 14, 33. MR1844511 https://doi.org/10.1214/EJP.v6-87

[46] MIERMONT, G. (2003). Self-similar fragmentations derived from the stable tree. I. Splitting at heights. *Probab. Theory Related Fields* **127** 423–454. MR2018924 https://doi.org/10.1007/s00440-003-0295-x

[47] MIERMONT, G. (2005). Self-similar fragmentations derived from the stable tree. II. Splitting at nodes. *Probab. Theory Related Fields* **131** 341–375. MR2123249 https://doi.org/10.1007/s00440-004-0373-8

[48] MOSZKOWSKI, P. (1989). A solution to a problem of Dénes: A bijection between trees and factorizations of cyclic permutations. *European J. Combin.* **10** 13–16. MR0977175 https://doi.org/10.1016/S0195-6698(89)80028-9

[49] NEVEU, J. (1986). Arbres et processus de Galton–Watson. *Ann. Inst. Henri Poincaré Probab. Stat.* **22** 199–207. MR0850756

[50] OJEDA, G. B. and HOLMGREN, C. (2020). Invariance principle for fragmentation processes derived from conditioned stable Galton–Watson trees. Preprint. Available at arXiv:2010.07880.

[51] PITMAN, J. (2002). Combinatorial stochastic processes. Technical report 621, Dept. Statistics, UC Berkeley, 2002. Lecture notes for St. Flour course.

[52] SHI, Q. (2015). On the number of large triangles in the Brownian triangulation and fragmentation processes. *Stochastic Process. Appl.* **125** 4321–4350. MR3385605 https://doi.org/10.1016/j.spa.2015.07.002

[53] SLACK, R. S. (1968). A branching process with mean one and possibly infinite variance. *Z. Wahrsch. Verw. Gebiete* **9** 139–145. MR0228077 https://doi.org/10.1007/BF01851004

[54] THEVENIN, P. (2020). Random stable type minimal factorizations of the n-cycle. Preprint. Available at arXiv:2002.12027.

[55] TOMEK, D. (2008). Growth of integral transforms and extinction in critical Galton–Watson processes. *J. Appl. Probab.* **45** 472–480. MR2426845 https://doi.org/10.1239/jap/1214950361

[56] VOISIN, G. (2011). Dislocation measure of the fragmentation of a general Lévy tree. *ESAIM Probab. Stat.* **15** 372–389. MR2870521 https://doi.org/10.1051/ps/2010006
CHARACTERIZATION OF BROWNIAN GIBBSIAN LINE ENSEMBLES

BY EVGENI DIMITROV* AND KONSTANTIN MATETSKI†

Department of Mathematics, Columbia University, *edimitro@math.columbia.edu; †matetski@math.columbia.edu

In this paper we show that a Brownian Gibbsian line ensemble is completely characterized by the finite-dimensional marginals of its top curve, that is, the finite-dimensional sets of the top curve form a separating class. A particular consequence of our result is that the parabolic Airy line ensemble is the unique Brownian Gibbsian line ensemble, whose top curve is the parabolic Airy_2 process.

REFERENCES

[1] BARYSHNIKOV, YU. (2001). GUEs and queues. Probab. Theory Related Fields 119 256–274. MR1818248 https://doi.org/10.1007/PL00008760
[2] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York. MR1700749 https://doi.org/10.1002/9780470316962
[3] BORODIN, A. AND CORWIN, I. (2014). Macdonald processes. Probab. Theory Related Fields 158 225–400. MR3152785 https://doi.org/10.1007/s00440-013-0482-3
[4] BORODIN, A., CORWIN, I., FERRARI, P. AND VETÓ, B. (2015). Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18 41 Art. 20. MR3366125 https://doi.org/10.1007/s11040-015-9189-2
[5] BORODIN, A., CORWIN, I. AND FERRARI, P. L. (2018). Anisotropic (2 + 1)d growth and Gaussian limits of \(q \)-Whittaker processes. Probab. Theory Related Fields 172 245–321. MR3851833 https://doi.org/10.1007/s00440-017-0809-6
[6] CALVERT, J., HAMMOND, A. AND HEDGE, M. (2019). Brownian structure in the KPZ fixed point. Preprint. Available at arXiv:1912:00992.
[7] CORWIN, I. (2012). The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1 1130001. MR2930377 https://doi.org/10.1142/S201032631100014
[8] CORWIN, I. AND DIMITROV, E. (2018). Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall–Littlewood Gibbsian line ensembles. Comm. Math. Phys. 363 435–501. MR3851820 https://doi.org/10.1007/s00220-018-3139-3
[9] CORWIN, I. AND HAMMOND, A. (2014). Brownian Gibbs property for Airy line ensembles. Invent. Math. 195 441–508. MR3152753 https://doi.org/10.1007/s00222-013-0462-3
[10] CORWIN, I. AND HAMMOND, A. (2016). KPZ line ensemble. Probab. Theory Related Fields 166 67–185. MR3547737 https://doi.org/10.1007/s00440-015-0651-7
[11] CORWIN, I., O’CONNELL, N., SEPPÄLÄINEN, T. AND ZYGOURAS, N. (2014). Tropical combinatorics and Whittaker functions. Duke Math. J. 163 513–563. MR3165422 https://doi.org/10.1215/00127094-2410289
[12] CORWIN, I. AND SUN, X. (2014). Ergodicity of the Airy line ensemble. Electron. Commun. Probab. 19 no. 49. MR3246968 https://doi.org/10.1214/ECP.v19-3504
[13] DAUVERGNE, D., NICI, M. AND VIRÁG, B. (2019). Uniform convergence to the Airy line ensemble. Preprint. Available at arXiv:1907.10160.
[14] DEFOSSEUX, M. (2010). Orbit measures, random matrix theory and interlaced determinantal processes. Ann. Inst. Henri Poincaré Probab. Stat. 46 209–249. MR2641777 https://doi.org/10.1214/09-AIHP314
[15] DIMITROV, E. (2018). KPZ and Airy limits of Hall–Littlewood random plane partitions. Ann. Inst. Henri Poincaré Probab. Stat. 54 640–693. MR3795062 https://doi.org/10.1214/16-AIHP817
[16] DIMITROV, E. (2020). Six-vertex models and the GUE-corners process. Int. Math. Res. Not. IMRN 6 1794–1881. MR4089435 https://doi.org/10.1093/imrn/rny072
[17] DIMITROV, E. (2020). Two-point convergence of the stochastic six-vertex model to the Airy process. Preprint. Available at arXiv:2006.15934.

MSC2020 subject classifications. Primary 82C22; secondary 60J65.
Key words and phrases. Airy process, Airy line ensemble, Gibbs measures.
CHASE-ESCAPE WITH DEATH ON TREES

BY ERIN BECKMAN¹, KEISHA COOK², NICOLE EIKMEIER³, SARAI HERNANDEZ-TORRES⁴ AND MATTHEW JUNGE⁵

¹Department of Mathematics & Statistics, Concordia University, erin.beckman@concordia.ca
²Department of Mathematics, Tulane University, kcook7@tulane.edu
³Department of Computer Science, Grinnell College, eikmeier@grinnell.edu
⁴Department of Mathematics, Industrial Engineering & Management, Technion—IIT, sarai.h@campus.technion.ac.il
⁵Department of Mathematics, Baruch College, matthew.junge@baruch.cuny.edu

Chase-escape is a competitive growth process in which red particles spread to adjacent uncolored sites, while blue particles overtake adjacent red particles. We introduce the variant in which red particles die and describe the phase diagram for the resulting process on infinite d-ary trees. A novel connection to weighted Catalan numbers makes it possible to characterize the critical behavior.

REFERENCES

[1] ALOUS, D. and KREBS, W. B. (1990). The “birth-and-assassination” process. Statist. Probab. Lett. 10 427–430. MR1078244 https://doi.org/10.1016/0167-7152(90)90024-2
[2] ALLEN, E. and GHEORGHICIUC, I. (2014). A weighted interpretation for the super Catalan numbers. J. Integer Seq. 17 Article 14.10.7, 9. MR3275875
[3] AUFFINGER, A., DAMRON, M. and HANSON, J. (2017). 50 Years of First-Passage Percolation. University Lecture Series 68. Amer. Math. Soc., Providence, RI. MR3729447 https://doi.org/10.1090/ulect/068
[4] BORDENAVE, C. (2008). On the birth-and-assassination process, with an application to scotching a rumor in a network. Electron. J. Probab. 13 2014–2030. MR2453554 https://doi.org/10.1214/EJP.v13-573
[5] BORDENAVE, C. (2014). Extinction probability and total progeny of predator–prey dynamics on infinite trees. Electron. J. Probab. 19 no. 20, 33. MR3167884 https://doi.org/10.1214/EJP.v19-2361
[6] DEIJFEN, M. and HÄGGSTRÖM, O. (2008). The pleasures and pains of studying the two-type Richardson model. In Analysis and Stochastics of Growth Processes and Interface Models 39–54. Oxford Univ. Press, Oxford. MR2603218 https://doi.org/10.1093/acprof:oso/9780199239252.003.0002
[7] DURRETT, R., JUNGE, M. and TANG, S. (2020). Coexistence in chase-escape. Electron. Commun. Probab. 25 Paper No. 22, 14. MR4089729 https://doi.org/10.1214/20-ecp302
[8] FLAJOLET, P. and GUILLEMIN, F. (2000). The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions. Adv. in Appl. Probab. 32 750–778. MR1788094 https://doi.org/10.1239/aap/1013540243
[9] FLAJOLET, P. and SEDGEWICK, R. (2009). Analytic Combinatorics. Cambridge Univ. Press, Cambridge. MR2483235 https://doi.org/10.1017/CBO9780511801655
[10] GOULDEN, I. P. and JACKSON, D. M. (1985). Combinatorial Enumeration. A Wiley-Interscience Publication. Wiley, New York. MR0702512
[11] HINSEN, A., JAHNEL, B., CALI, E. and WARY, J.-P. (2019). Phase transitions for chase-escape models on Gilbert graphs.
[12] KORDZAKHIA, G. (2005). The escape model on a homogeneous tree. Electron. Commun. Probab. 10 113–124. MR2150700 https://doi.org/10.1214/ECP.v10-1140
[13] KORTCHEMSKI, I. (2015). A predator–prey SIR type dynamics on large complete graphs with three phase transitions. Stochastic Process. Appl. 125 886–917. MR3303961 https://doi.org/10.1016/j.spa.2014.10.005
[14] KORTCHEMSKI, I. (2016). Predator–prey dynamics on infinite trees: A branching random walk approach. J. Theoret. Probab. 29 1027–1046. MR3540488 https://doi.org/10.1007/s10959-015-0603-2
[15] POSTNIKOV, A. and SAGAN, B. E. (2007). What power of two divides a weighted Catalan number? J. Combin. Theory Ser. A 114 970–977. MR2333145 https://doi.org/10.1016/j.jcta.2006.09.007

MSC2020 subject classifications. Primary 60K35, 60C05; secondary 05A15.

Key words and phrases. Growth process, phase transition.
[16] Richardson, D. (1973). Random growth in a tessellation. *Proc. Camb. Philos. Soc.* **74** 515–528. MR0329079 https://doi.org/10.1017/s0305004100077288

[17] Shader, S. and Liu, M. G. (2015). Weighted Catalan numbers and their divisibility properties. Ph.D. thesis.

[18] Stanley, R. P. (2015). *Catalan Numbers*. Cambridge Univ. Press, New York. MR3467982 https://doi.org/10.1017/CBO9781139871495

[19] Tang, S., Kordzakhia, G. and Lalley, S. P. (2018). Phase transition for the chase-escape model on 2D lattices. Preprint. Available at arXiv:1807.08387.

[20] Wall, H. S. (2018). *Analytic Theory of Continued Fractions*. D. Van Nostrand Company, Inc., New York. MR0025596
SMALL BALL PROBABILITIES AND A SUPPORT THEOREM FOR THE STOCHASTIC HEAT EQUATION

BY SIVA ATHREYA, MATHEW JOSEPH AND CARL MUELLER

We consider the following stochastic partial differential equation on $t \geq 0, x \in [0, J], J \geq 1$, where we consider $[0, J]$ to be the circle with end points identified,

$$\partial_t u(t, x) = \frac{1}{2} \partial^2_x u(t, x) + g(t, x, u) + \sigma(t, x, u) \dot{W}(t, x),$$

$\dot{W}(t, x)$ is 2-parameter d-dimensional vector valued white noise and σ is function from $\mathbb{R}^+ \times \mathbb{R} \times \mathbb{R}^d$ to space of symmetric $d \times d$ matrices which is Lipschitz in u. We assume that σ is uniformly elliptic and that g is uniformly bounded. Assuming that $u(0, x) \equiv 0$, we prove small ball probabilities for the solution u. We also prove a support theorem for solutions, when $u(0, x)$ is not necessarily zero.

REFERENCES

[1] Allouba, H. (1998). Different types of SPDEs in the eyes of Girsanov’s theorem. Stoch. Anal. Appl. 16 787–810. MR1643116 https://doi.org/10.1080/07362999808809562
[2] Bally, V., Millet, A. and Sanz-Solé, M. (1995). Approximation and support theorem in Hölder norm for parabolic stochastic partial differential equations. Ann. Probab. 23 178–222. MR1330767
[3] Bass, R. F. (1988). Probability estimates for multiparameter Brownian processes. Ann. Probab. 16 251–264. MR0920269
[4] Bass, R. F. (1995). Probabilistic Techniques in Analysis. Probability and Its Applications (New York). Springer, New York. MR1329542
[5] Da Prato, G. and Zabczyk, J. (2014). Stochastic Equations in Infinite Dimensions, 2nd ed. Encyclopedia of Mathematics and Its Applications 152. Cambridge Univ. Press, Cambridge. MR3236753 https://doi.org/10.1017/CBO9781107295513
[6] Dalang, R., Khoshnevisan, D., Mueller, C., Nualart, D. and Xiao, Y. (2009). A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math. 1962. Springer, Berlin. MR1500166
[7] Donsker, M. D. and Varadhan, S. R. S. (1975). Asymptotic evaluation of certain Markov process expectations for large time. I. II. Comm. Pure Appl. Math. 28 1–47; ibid. 28 (1975), 279–301. MR0386024 https://doi.org/10.1002/cpa.3160280102
[8] Kuelbs, J. and Li, W. V. (1993). Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 133–157. MR1237989 https://doi.org/10.1006/jfan.1993.1107
[9] Latata, R. and Matlak, D. (2017). Royen’s proof of the Gaussian correlation inequality. In Geometric Aspects of Functional Analysis. Lecture Notes in Math. 2169 265–275. Springer, Cham. MR3645127
[10] Li, W. V. and Shao, Q.-M. (2001). Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods. Handbook of Statist. 19 533–597. North-Holland, Amsterdam. MR1861734 https://doi.org/10.1016/S0169-7161(01)19019-X
[11] Lototsky, S. V. (2017). Small ball probabilities for the infinite-dimensional Ornstein–Uhlenbeck process in Sobolev spaces. Stoch. Partial Differ. Equ. Anal. Comput. 5 192–219. MR3640070 https://doi.org/10.1007/s40072-016-0085-y
[12] Martin, A. (2004). Small ball asymptotics for the stochastic wave equation. J. Theoret. Probab. 17 693–703. MR2091556 https://doi.org/10.1023/B:JOTP.0000040294.12188.cd
[13] Rao, A. R. and Bhimasankaram, P. (2000). Linear Algebra, 2nd ed. Texts and Readings in Mathematics 19. Hindustan Book Agency, New Delhi. MR1781860

MSC2020 subject classifications. Primary 60H15; secondary 60G17, 60G60.

Key words and phrases. Heat equation, white noise, stochastic partial differential equations, small ball, support.
[14] ROBEVA, R. S. and PITT, L. D. (2004). On the equality of sharp and germ σ-fields for Gaussian processes and fields. *Pliska Stud. Math. Bulgar.* **16** 183–205. MR2070315

[15] ROYEN, T. (2014). A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions. *Far East J. Theor. Stat.* **48** 139–145. MR3289621

[16] TALAGRAND, M. (1994). The small ball problem for the Brownian sheet. *Ann. Probab.* **22** 1331–1354. MR1303647

[17] TALAGRAND, M. (1995). Hausdorff measure of trajectories of multiparameter fractional Brownian motion. *Ann. Probab.* **23** 767–775. MR1334170

[18] WALSH, J. B. (1986). An introduction to stochastic partial differential equations. In *École D’été de Probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math.* **1180** 265–439. Springer, Berlin. MR0876085 https://doi.org/10.1007/BFb0074920
POLARITY OF ALMOST ALL POINTS FOR SYSTEMS OF NONLINEAR STOCHASTIC HEAT EQUATIONS IN THE CRITICAL DIMENSION

BY ROBERT C. DALANG¹, CARL MUELLER² AND YIMIN XIAO³

¹Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, robert.dalang@epfl.ch
²Department of Mathematics, University of Rochester, carl.e.mueller@rochester.edu
³Department of Statistics and Probability, Michigan State University, xiao@stt.msu.edu

We study vector-valued solutions $u(t, x) \in \mathbb{R}^d$ to systems of nonlinear stochastic heat equations with multiplicative noise,

$$\frac{\partial}{\partial t} u(t, x) = \frac{\partial^2}{\partial x^2} u(t, x) + \sigma(u(t, x)) \dot{W}(t, x).$$

Here, $t \geq 0$, $x \in \mathbb{R}$ and $\dot{W}(t, x)$ is an \mathbb{R}^d-valued space–time white noise. We say that a point $z \in \mathbb{R}^d$ is polar if

$$P\{u(t, x) = z \text{ for some } t > 0 \text{ and } x \in \mathbb{R}\} = 0.$$

We show that, in the critical dimension $d = 6$, almost all points in \mathbb{R}^d are polar.

REFERENCES

[1] BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory. Pure and Applied Mathematics 29. Academic Press, New York. MR0264757

[2] CHEN, L. and DALANG, R. C. (2014). Hölder-continuity for the nonlinear stochastic heat equation with rough initial conditions. Stoch. Partial Differ. Equ. Anal. Comput. 2 316–352. MR3255231 https://doi.org/10.1007/s40072-014-0034-6

[3] DA PRATO, G. and ZABCZYK, J. (2014). Stochastic Equations in Infinite Dimensions, 2nd ed. Encyclopedia of Mathematics and Its Applications 152. Cambridge Univ. Press, Cambridge. MR3236753 https://doi.org/10.1017/CBO9781107295513

[4] DALANG, R. C., KHOSHNEVISAN, D. and NUALART, E. (2007). Hitting probabilities for systems of nonlinear stochastic heat equations with additive noise. ALEA Lat. Am. J. Probab. Math. Stat. 3 231–271. MR2365643

[5] DALANG, R. C., KHOSHNEVISAN, D. and NUALART, E. (2009). Hitting probabilities for systems for nonlinear stochastic heat equations with multiplicative noise. Probab. Theory Related Fields 144 371–427. MR2496438 https://doi.org/10.1007/s00440-008-0150-1

[6] DALANG, R. C., KRSTIC, S., LEE, C. Y., MUELLER, C. and XIAO, Y. Multiple points of Gaussian random fields via polarity of points. In preparation.

[7] DALANG, R. C., LEE, C. Y., MUELLER, C. and XIAO, Y. (2021). Multiple points of Gaussian random fields, Electron. J. Probab. 26 1–25. https://doi.org/10.1214/21-EJP589

[8] DALANG, R. C., MUELLER, C. and XIAO, Y. (2017). Polarity of points for Gaussian random fields. Ann. Probab. 45 4700–4751. MR373922 https://doi.org/10.1214/17-AOP1176

[9] DALANG, R. C. and NUALART, E. (2004). Potential theory for hyperbolic SPDEs. Ann. Probab. 32 2099–2148. MR2073187 https://doi.org/10.1214/105051600000000685

[10] DALANG, R. C. and SANZ-SOLÉ, M. (2015). Hitting probabilities for nonlinear systems of stochastic waves. Mem. Amer. Math. Soc. 237 v+75. MR3401290 https://doi.org/10.1090/memo/1120

[11] DALANG, R. C. and SANZ-SOLÉ, M. (2021). Forthcoming book. To appear.

[12] DOOB, J. L. (2001). Classical Potential Theory and Its Probabilistic Counterpart. Classics in Mathematics. Springer, Berlin. Reprint of the 1984 edition. MR1814344 https://doi.org/10.1007/978-3-642-56573-1

MSC2020 subject classifications. Primary 60G15; secondary 60J45, 60G60.

Key words and phrases. Hitting probabilities, polarity of points, critical dimension, nonlinear stochastic partial differential equations.
[13] Herrera, R., Song, R., Wu, D. and Xiao, Y. (2020). Sharp space–time regularity of the solution to stochastic heat equation driven by fractional-colored noise. Stoch. Anal. Appl. 38 747–768. MR4112745 https://doi.org/10.1080/07362994.2020.1721301

[14] Khoshnevisan, D. (2002). Multiparameter Processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer, New York. MR1914748 https://doi.org/10.1007/b97363

[15] Khoshnevisan, D. (2009). A primer on stochastic partial differential equations. In A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math. 1962 1–38. Springer, Berlin. MR2508772 https://doi.org/10.1007/978-3-540-85994-9_1

[16] Khoshnevisan, D. and Shi, Z. (1999). Brownian sheet and capacity. Ann. Probab. 27 1135–1159. MR1733143 https://doi.org/10.1214/aop/1022677442

[17] Mueller, C. (2009). Some tools and results for parabolic stochastic partial differential equations. In A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math. 1962 111–144. Springer, Berlin. MR2508775 https://doi.org/10.1007/978-3-540-85994-9_4

[18] Mueller, C. and Tribe, R. (2002). Hitting properties of a random string. Electron. J. Probab. 7 no. 10, 29. MR1902843 https://doi.org/10.1214/EJP.v7-109

[19] Orey, S. and Pruitt, W. E. (1973). Sample functions of the N-parameter Wiener process. Ann. Probab. 1 138–163. MR0346925 https://doi.org/10.1214/aop/1176997030

[20] Talagrand, M. (1995). Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 767–775. MR1334170

[21] Talagrand, M. (1998). Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Related Fields 112 545–563. MR1664704 https://doi.org/10.1007/s004400050200

[22] Walsh, J. B. (1986). An introduction to stochastic partial differential equations. In École D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439. Springer, Berlin. MR0876085 https://doi.org/10.1007/BFb0074920
MOMENT ESTIMATES FOR SOME RENORMALIZED PARABOLIC ANDERSON MODELS

BY XIA CHEN¹, AURÉLIEN DEYA², CHENG OUYANG³ AND SAMY TINDEL⁴

¹Department of Mathematics, University of Tennessee, Knoxville, xchen@math.utk.edu
²Institut Elie Cartan, University of Lorraine, Aurelien.Deya@univ-lorraine.fr
³Department of Mathematics, Statistics and Computer Science, University of Illinois Chicago, couyang@uic.edu
⁴Department of Mathematics, Purdue University, stindel@purdue.edu

The theory of regularity structures enables the definition of the following parabolic Anderson model in a very rough environment:

\[\partial_t u_t(x) = \frac{1}{2} \Delta u_t(x) + u_t(x) \dot{W}_t(x), \]

for \(t \in \mathbb{R}_+ \) and \(x \in \mathbb{R}^d \), where \(\dot{W}_t(x) \) is a Gaussian noise whose space time covariance function is singular. In this rough context we shall give some information about the moments of \(u_t(x) \) when the stochastic heat equation is interpreted in the Skorohod as well as the Stratonovich sense. Of special interest is the critical case, for which one observes a blowup of moments for large times.

REFERENCES

[1] ALLEZ, R. and CHOUK, K. (2015). The continuous Anderson Hamiltonian in dimension two. Available at arXiv:1511.02718.
[2] BASS, R., CHEN, X. and ROSEN, J. (2009). Large deviations for Riesz potentials of additive processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 626–666. MR2548497 https://doi.org/10.1214/08-AIHP181
[3] CHEN, X. (2010). Random Walk Intersections: Large Deviations and Related Topics. Mathematical Surveys and Monographs 157. Amer. Math. Soc., Providence, RI. MR2584458 https://doi.org/10.1090/surv/157
[4] CHEN, X. (2014). Quenched asymptotics for Brownian motion in generalized Gaussian potential. Ann. Probab. 42 576–622. MR3178468 https://doi.org/10.1214/12-AOP830
[5] CHEN, X. (2017). Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime. Ann. Inst. Henri Poincaré Probab. Stat. 53 819–841. MR3634276 https://doi.org/10.1214/15-AIHP738
[6] CHEN, X. (2019). Parabolic Anderson model with rough or critical Gaussian noise. Ann. Inst. Henri Poincaré Probab. Stat. 55 941–976. MR3949959 https://doi.org/10.1214/18-AIHP904
[7] CHEN, X. (2020). Parabolic Anderson model with a fractional Gaussian noise that is rough in time. Ann. Inst. Henri Poincaré Probab. Stat. 56 792–825. MR4076766 https://doi.org/10.1214/19-AIHP983
[8] CHEN, X., DEYA, A., OUYANG, C. and TINDEL, S. (2020). A K-rough path above the space-time fractional Brownian motion. Preprint.
[9] CHEN, X., HU, Y., NUALART, D. and TINDEL, S. (2017). Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise. Electron. J. Probab. 22 Paper No. 65, 38. MR3690290 https://doi.org/10.1214/17-EJP83
[10] CHEN, X., HU, Y., SONG, J. and XING, F. (2015). Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat. 51 1529–1561. MR3414457 https://doi.org/10.1214/13-AIHP588
[11] CONUS, D., JOSEPH, M. and KHOSHNEVISAN, D. (2013). On the chaotic character of the stochastic heat equation, before the onset of intermittency. Ann. Probab. 41 2225–2260. MR3098071 https://doi.org/10.1214/11-AOP717
[12] CONUS, D., JOSEPH, M., KHOSHNEVISAN, D. and SHIU, S.-Y. (2013). On the chaotic character of the stochastic heat equation, II. Probab. Theory Related Fields 156 483–533. MR3078278 https://doi.org/10.1007/s00440-012-0434-3

MSC2020 subject classifications. 60L30, 60L50, 60F10, 60K37.

Key words and phrases. Parabolic Anderson model, regularity structures, Skorohod equation, Stratonovich equation, moment estimate, critical time.
[13] CONUS, D. and KHOSHNEVISAN, D. (2012). On the existence and position of the farthest peaks of a family of stochastic heat and wave equations. Probab. Theory Related Fields 152 681–701. MR2892959 https://doi.org/10.1007/s00440-010-0333-4

[14] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036 https://doi.org/10.1007/978-1-4612-5320-4

[15] DEYA, A. (2016). On a modelled rough heat equation. Probab. Theory Related Fields 166 1–65. MR3547736 https://doi.org/10.1007/s00440-015-0650-8

[16] DÉEY A, A. (2017). Construction and Skorohod representation of a fractional K-rough path. Electron. J. Probab. 22 Paper No. 52, 40. MR3666015 https://doi.org/10.1214/17-EJP69

[17] GU, Y. and XU, W. (2018). Moments of 2D parabolic Anderson model. Asymptot. Anal. 108 151–161. MR3817383 https://doi.org/10.3233/asy-171460

[18] HAIRER, M. (2014). A theory of regularity structures. Invent. Math. 198 269–504. MR3547736 https://doi.org/10.1007/s00222-014-0505-4

[19] HAIRER, M. and LABBÉ, C. (2018). Multiplicative stochastic heat equations on the whole space. J. Eur. Math. Soc. (JEMS) 20 1005–1054. MR3779690 https://doi.org/10.4171/JEMS/781

[20] HIDA, T., KUO, H.-H., POTTHOFF, J. and STREIT, L. (1993). White Noise: An Infinite-Dimensional Calculus. Mathematics and Its Applications 253. Kluwer Academic, Dordrecht. MR1244577 https://doi.org/10.1007/978-94-017-3680-0

[21] HU, Y., HUANG, J., NUALART, D. and TINDEL, S. (2015). Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency. Electron. J. Probab. 20 no. 55, 50. MR3354615 https://doi.org/10.1214/EJP.v20-3316

[22] HU, Y. and NUALART, D. (2009). Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143 285–328. MR2449130 https://doi.org/10.1007/s00440-007-0127-5

[23] HUANG, J., LÊ, K. and NUALART, D. (2017). Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise. Stoch. Partial Differ. Equ. Anal. Comput. 5 614–651. MR3736656 https://doi.org/10.1007/s40072-017-0099-0

[24] KHOSHNEVISAN, D. (2014). Analysis of Stochastic Partial Differential Equations. CBMS Regional Conference Series in Mathematics 119. Amer. Math. Soc., Providence, RI. MR3222416 https://doi.org/10.1090/cbms/119

[25] KÖNIG, W. (2016). The Parabolic Anderson Model: Random Walk in Random Potential. Pathways in Mathematics. Birkhäuser/Springer, Cham. MR3526112 https://doi.org/10.1007/978-3-319-33596-4

[26] LÊ, K. (2016). A remark on a result of Xia Chen. Statist. Probab. Lett. 118 124–126. MR3531492 https://doi.org/10.1016/j.spl.2016.06.004

[27] NUALART, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications (New York). Springer, Berlin. MR2200233

[28] NUALART, D. and ZAKAI, M. (1988). Generalized multiple stochastic integrals and the representation of Wiener functionals. Stochastics 23 311–330. MR0959117 https://doi.org/10.1080/17442508808833496
We study a model of competition between two types evolving as branching random walks on \(\mathbb{Z}^d \). The two types are represented by red and blue balls, respectively, with the rule that balls of different colour annihilate upon contact. We consider initial configurations in which the sites of \(\mathbb{Z}^d \) contain one ball each which are independently coloured red with probability \(p \) and blue otherwise. We address the question of fixation, referring to the sites and eventually settling for a given colour or not. Under a mild moment condition on the branching rule, we prove that the process will fixate almost surely for \(p \neq 1/2 \) and that every site will change colour infinitely often almost surely for the balanced initial condition \(p = 1/2 \).

REFERENCES

[1] Ahlberg, D., Angel, O. and Kolesnik, B. In preparation.
[2] Ahlberg, D., Griffiths, S., Janson, S. and Morris, R. (2019). Competition in growth and urns. Random Structures Algorithms 54 211–227. MR3912095 https://doi.org/10.1002/rsa.20779
[3] Arratia, R. (1983). Site recurrence for annihilating random walks on \(\mathbb{Z}^d \). Ann. Probab. 11 706–713. MR0704557
[4] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Die Grundlehren der Mathematischen Wissenschaften 196 Springer, New York. MR0373040
[5] Biggins, J. D. (1976). The first- and last-birth problems for a multitype age-dependent branching process. Adv. in Appl. Probab. 8 446–459. MR0420890 https://doi.org/10.2307/1426138
[6] Biggins, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Probab. 14 25–37. MR0433619 https://doi.org/10.2307/3213258
[7] Bingham, N. H. and Doney, R. A. (1974). Asymptotic properties of supercritical branching processes. I. The Galton–Watson process. Adv. in Appl. Probab. 6 711–731. MR0362525 https://doi.org/10.2307/1426188
[8] Bingham, N. H. and Doney, R. A. (1975). Asymptotic properties of supercritical branching processes. II. Crump–Mode and Jirina processes. Adv. in Appl. Probab. 7 66–82. MR0378125 https://doi.org/10.2307/1425854
[9] Bovier, A. (2015). From spin glasses to branching Brownian motion—And back? In Random Walks, Random Fields, and Disordered Systems. Lecture Notes in Math. 2144 1–64. Springer, Cham. MR3382171 https://doi.org/10.1007/978-3-319-19339-7_1
[10] Bramson, M. and Gray, L. (1985). The survival of branching annihilating random walk. Z. Wahrsch. Verw. Gebiete 68 447–460. MR0772192 https://doi.org/10.1007/BF00535338
[11] Bramson, M. and Lebowitz, J. L. (1991). Asymptotic behavior of densities for two-particle annihilating random walks. J. Stat. Phys. 62 297–372. MR1105266 https://doi.org/10.1007/BF01020872
[12] Bramson, M. and Lebowitz, J. L. (1991). Spatial structure in diffusion-limited two-particle reactions. In Proceedings of the Conference on Models of Nonclassical Reaction Rates (Bethesda, MD, 1991) 65 941–951. MR1143114 https://doi.org/10.1007/BF01049591
[13] Bramson, M. D. (1978). Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 89–108. MR0510529 https://doi.org/10.1007/BF00715186
[14] Cabezas, M., Rolla, L. T. and Sidoravicius, V. (2018). Recurrence and density decay for diffusion-limited annihilating systems. Probab. Theory Related Fields 170 587–615. MR3773795 https://doi.org/10.1007/s00440-017-0763-3

MSC2020 subject classifications. 60K35, 60J80, 82C22, 82C27.

Key words and phrases. Branching random walk, competing growth, nonequilibrium dynamics.
[15] Damron, M., GraVner, J., Junge, M., Lyu, H. and Sivakoff, D. (2019). Parking on transitive uni-modal graphs. Ann. Appl. Probab. 29 2089–2113. MR3983336 https://doi.org/10.1214/18-AAP1443

[16] Erdős, P. and Ney, P. (1974). Some problems on random intervals and annihilating particles. Ann. Probab. 2 828–839. MR0373068 https://doi.org/10.1214/aop/1176996551

[17] Fontes, L. R., Schonmann, R. H. and Sidoravicius, V. (2002). Stretched exponential fixation in stochastic Ising models at zero temperature. Comm. Math. Phys. 228 495–518. MR1918786 https://doi.org/10.1007/s002200200658

[18] Griffeath, D. (1977/79). Annihilating and coalescing random walks on \mathbb{Z}^d. Z. Wahrsch. Verw. Gebiete 46 55–65. MR0512333 https://doi.org/10.1007/BF00535688

[19] Gut, A. (2013). Probability: A Graduate Course, 2nd ed. Springer Texts in Statistics. Springer, New York. MR2977961 https://doi.org/10.1007/978-1-4614-4708-5

[20] Jagers, P. (1975). Branching Processes with Biological Applications. Wiley Series in Probability and Mathematical Statistics—Applied Probability and Statistics. Wiley Interscience, London–New York–Sydney. MR0488341

[21] Kalenberg, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169 https://doi.org/10.1007/978-1-4757-4015-8

[22] Kingman, J. F. C. (1975). The first birth problem for an age-dependent branching process. Ann. Probab. 3 790–801. MR0400438 https://doi.org/10.1214/aop/1176996266

[23] Morris, R. (2011). Zero-temperature Glauber dynamics on \mathbb{Z}^d. Probab. Theory Related Fields 149 417–434. MR2776621 https://doi.org/10.1007/s00440-009-0259-x

[24] Ovchinnikov, A. A. and Zeldovich, Y. B. (1978). Role of density fluctuations in bimolecular reaction kinetics. Chem. Phys. 28 215–218.

[25] Protter, P. (1990). Stochastic Integration and Differential Equations: A New Approach. Applications of Mathematics (New York) 21. Springer, Berlin. MR1037262 https://doi.org/10.1007/978-3-662-02619-9

[26] Pruitt, W. E. (1966). Summability of independent random variables. J. Math. Mech. 15 769–776. MR0195135

[27] Shi, Z. (2015). Branching Random Walks. Lecture Notes in Math. 2151. Springer, Cham. MR3444654 https://doi.org/10.1007/978-3-319-25372-5

[28] Toussaint, D. and Wilczek, F. (1983). Particle–antiparticle annihilation in diffusive motion. J. Chem. Phys. 78 2642–2647.

[29] Zeitouni, O. (2016). Branching random walks and Gaussian fields. In Probability and Statistical Physics in St. Petersburg. Proc. Sympos. Pure Math. 91 437–471. Amer. Math. Soc., Providence, RI. MR3526836
SECOND ERRATA TO “DISTANCE COVARIANCE IN METRIC SPACES”

BY RUSSELL LYONS

Department of Mathematics, Indiana University, rdlyons@indiana.edu

There is a slight gap and error in Remark 3.4 of Ann. Probab. 41, no. 5 (2013), 3284–3305, that was not noticed before the first errata were published (Ann. Probab. 46, no. 4 (2018), 2400–2405). We take this opportunity to provide some additional updates as well.

REFERENCES

DEHLING, H., MATSUI, M., MIKOSCH, T., SAMORODNITSKY, G. and TAFAKORI, L. (2020). Distance covariance for discretized stochastic processes. Bernoulli 26 2758–2789. MR4140528 https://doi.org/10.3150/20-BEJ1206

GORIN, E. A. and KOLDUBSKII, A. L. (1987). On potentials of measures in Banach spaces. Sibirsk. Mat. Zh. 28 65–80, 225. MR0886854

JANSON, S. (2019). On distance covariance in metric and Hilbert spaces. Preprint. Available at https://arxiv.org/abs/1910.1338.

KLEBANOV, L. B. (2005). -indentation-Distances and Their Applications. The Karolinum Press, Charles University in Prague.

LI, H. and WESTON, A. (2010). Strict p-negative type of a metric space. Positivity 14 529–545. MR2680513 https://doi.org/10.1007/s11117-009-0035-2

LINDE, W. (1986a). On Rudin’s equimeasurability theorem for infinite-dimensional Hilbert spaces. Indiana Univ. Math. J. 35 235–243. MR0833392 https://doi.org/10.1512/iumj.1986.35.35014

LINDE, W. (1986b). Uniqueness theorems for measures in L_p and $C_0(\Omega)$. Math. Ann. 274 617–626. MR0848507 https://doi.org/10.1007/BF01458597

NICKOLAS, P. and WOLF, R. (2009). Distance geometry in quasihypermetric spaces. I. Bull. Aust. Math. Soc. 80 1–25. MR2520521 https://doi.org/10.1017/S0004972708000932

SCHOENBERG, I. J. (1938). Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 522–536. MR1501980 https://doi.org/10.2307/1989894

MSC2020 subject classifications. Primary 62H20, 62G20, 51K99; secondary 62H15, 30L05, 30L15.

Key words and phrases. Negative type, hypothesis testing, independence, distance correlation, Brownian covariance.
Articles

Conformal growth rates and spectral geometry on distributional limits of graphs
JAMES R. LEE

Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding
JASON MILLER AND SCOTT SHEFFIELD

Limits of sparse configuration models and beyond: Graphexes and MultiGraphexes
CHRISTIAN BORGES, JENNIFER T. CHAYES, SOUVIK DHARA AND SUBHABRATA SEN

Periodic homogenization of nonsymmetric Lévy-type processes
XIN CHEN, ZHEN-QING CHEN, TAKASHI KUMAGAI AND JIAN WANG

Optimization of mean-field spin glasses
AHMED EL ALAOUI, ANDREA MONTANARI AND MARK SELLKE

Multivariate normal approximation for traces of random unitary matrices
KURT JOHANSSON AND GAULTIER LAMBERT

On the real Davies’ conjecture
VISHESH JAIN, ASHWIN SAH AND MEHTAAB SAWHNEY

Scaling limits of the three-dimensional uniform spanning tree and associated random walk
O. ANGEL, D. A. CROYDON, S. HERNANDEZ-TORRES AND D. SHIRAISHI

Moments of the Riemann zeta function on short intervals of the critical line
LOUIS-PIERRE ARGUIN, FRÉDÉRIC OUIMET AND MAKSYM RADZIWILL

On strong solutions of Itô’s equations with $\sigma \in W^1_2$ and $b \in L^2$
N. V. KRYLOV

Convergence of the random Abelian sandpile
AHMED BOU-RABEE
A Basic Course in Measure and Probability: Theory for Applications

Ross Leadbetter, Stamatis Cambanis, and Vladas Pipiras

Originating from the authors’ own graduate course at the University of North Carolina, this material has been thoroughly tried and tested over many years, making the book perfect for a two-term course or for self-study. It provides a concise introduction that covers all of the measure theory and probability most useful for statisticians, including Lebesgue integration, limit theorems in probability, martingales, and some theory of stochastic processes. Readers can test their understanding of the material through the 300 exercises provided.

The book is especially useful for graduate students in statistics and related fields of application (biostatistics, econometrics, finance, meteorology, machine learning, and so on) who want to shore up their mathematical foundation. The authors establish common ground for students of varied interests which will serve as a firm ‘take-off point’ for them as they specialize in areas that exploit mathematical machinery.