LATTICE POLYTOPES HAVING h^*-POLYNOMIALS WITH GIVEN DEGREE AND LINEAR COEFFICIENT

BENJAMIN NILL

Abstract. The h^*-polynomial of a lattice polytope is the numerator of the generating function of the Ehrhart polynomial. Let P be a lattice polytope with h^*-polynomial of degree d and with linear coefficient h^*_1. We show that P has to be a lattice pyramid over a lower-dimensional lattice polytope, if the dimension of P is greater or equal to $h^*_1(2d + 1) + 4d - 1$. This result has a purely combinatorial proof and generalizes a recent theorem of Batyrev. As an application we deduce from an inequality due to Stanley that the volume of a lattice polytope is bounded by a function depending only on the degree and the two highest non-zero coefficients of the h^*-polynomial.

1. Introduction and main results

Let M be a lattice, and $P \subseteq M_\mathbb{R} = M \otimes \mathbb{Z} \mathbb{R}$ be an n-dimensional lattice polytope, i.e., the set of vertices of P, here denoted by $\mathcal{V}(P)$, is contained in the lattice M. Throughout, the normalized volume $\text{Vol}(P)$ with respect to M is referred to as the volume of P. Moreover, two lattice polytopes $P \subseteq M_\mathbb{R}$ and $P' \subseteq M'_\mathbb{R}$ are called isomorphic, if there is an affine lattice isomorphism $M \cong M'$ mapping $\mathcal{V}(P)$ onto $\mathcal{V}(P')$.

Due to Ehrhart and Stanley [4, 10, 11] the generating function enumerating the number of lattice points in multiples of P is a rational function of the following form:

$$\sum_{k \geq 0} |(k\Delta) \cap M| \cdot t^k = \frac{h^*_0 + h^*_1 t + \cdots + h^*_n t^n}{(1 - t)^{n+1}},$$

where h^*_0, \ldots, h^*_n are non-negative integers satisfying the conditions $h^*_0 = 1$, $h^*_1 = |P \cap M| - n - 1$ and $h^*_0 + \cdots + h^*_n = \text{Vol}(P)$.

Definition 1.1. The polynomial $h^*_P(t) := h^*_0 + h^*_1 t + \cdots + h^*_n t^n$ is called the h^*-polynomial of P (see [11, 22, 13]) or δ-polynomial (see [8]). The degree of $h^*_P(t)$, i.e., the maximal $i \in \{0, \ldots, n\}$ with $h^*_i \neq 0$, is called the degree $\text{deg}(P)$ of P. We define the codegree of P as $\text{codeg}(P) := n + 1 - \text{deg}(P)$.
The geometric meaning of the codegree, introduced by Batyrev in \cite{1}, is given by the following observation:

\[\text{codeg}(P) = \min(k \geq 1 : kP \text{ has interior lattice points}) \].

The notion of the degree of a lattice polytope was defined in \cite{2}, where it was noted that \(\text{deg}(P) \) should be considered as the "lattice dimension" of \(P \). This interpretation of the degree was motivated by the following three basic properties: First, \(\text{deg}(P) = 0 \) if and only if \(\text{Vol}(P) = 1 \). So the unimodular simplex is the only lattice polytope with degree zero. Second, by Stanley’s monotonicity theorem \cite{13} it holds \(h^*_Q(t) \leq h^*_P(t) \) coefficientwise for lattice polytopes \(Q \subseteq P \). In particular this implies that the degree is monotone with respect to inclusion. For the third property let us recall the notion of lattice pyramids \cite{1}:

Definition 1.2. Let \(B \subseteq \mathbb{R}^k \) be a lattice polytope with respect to \(\mathbb{Z}^k \). Then \(\text{conv}(0, B \times \{1\}) \subseteq \mathbb{R}^{k+1} \) is a lattice polytope with respect to \(\mathbb{Z}^{k+1} \), called the \((1\text{-fold})\) standard pyramid over \(B \). Recursively, we define for \(l \in \mathbb{N}_{\geq 1} \) in this way the \(l\text{-fold} \) standard pyramid over \(B \). As a convention, the 0-fold standard pyramid over \(B \) is \(B \) itself.

Let \(P, Q \subseteq M_{\mathbb{R}} \) be lattice polytopes with \(Q \subseteq P \). We say \(P \) is a **lattice pyramid** over \(Q \), if \(P \subseteq M_{\mathbb{R}} \) is isomorphic to the \((\dim(P) - \dim(Q))\)-fold standard pyramid over a lattice polytope \(B \), where this isomorphism maps \(Q \) onto \(B \).

Now, for lattice polytopes \(Q \subseteq P \) we observe that \(P \) is a lattice pyramid over \(Q \) if and only if \(\text{Vol}(P) = \text{Vol}(Q) \), or equivalently, \(h^*_P(t) = h^*_Q(t) \). This implies as a third property the invariance of the degree under lattice pyramid constructions.

In \cite{1} Batyrev showed the following theorem:

Theorem 1.3 (Batyrev). Let \(P \subseteq M_{\mathbb{R}} \) be an \(n\)-dimensional lattice polytope of volume \(V \) and degree \(d \). If

\[n \geq 4d \left(\frac{2d + V - 1}{2d} \right), \]

then \(P \) is a lattice pyramid over an \((n-1)\)-dimensional lattice polytope.

Recursively, we see that any lattice polytope \(P \) is a lattice pyramid over a lattice polytope \(Q \) with \(h^*_P(t) = h^*_Q(t) \), where the dimension of \(Q \) is bounded by a function depending only on the degree and the volume of \(P \). Since by \cite{9} there is up to isomorphisms only a finite number of
n-dimensional lattice polytopes with volume V, if n and V is fixed, we get the following corollary:

Corollary 1.4 (Batyrev). There is only a finite number of lattice polytopes of fixed degree d and fixed volume V up to isomorphisms and lattice pyramid constructions.

Here, we improve the bound in Batyrev’s theorem to the presumably correct asymptotic behaviour:

Proposition 1.5. Let $P \subseteq \mathbb{M}_\mathbb{R}$ as in Theorem 1.3. If

$$n \geq (V - 1)(2d + 1),$$

then P is a lattice pyramid over an $(n - 1)$-dimensional lattice polytope.

Note that for $d = 1$ this yields the assumption $n \geq 3(V - 1)$, while Batyrev’s theorem needs $n \geq 2(V + 1)V$. Since all lattice polytopes of degree one were classified in [2], it could be observed in [1, Prop. 4.1] that $n \geq V + 1$ is the optimal bound.

Example 1.6. Here is an example of a lattice polytope with degree $d \geq 2$, volume $V = 2$, and dimension $n = 2d - 1$ that is not a lattice pyramid: the simplex with vertices $e_0 - e_n, e_1 - e_n, \ldots, e_{n-1} - e_n, e_0 + \cdots + e_{n-1} + (3 - 2d)e_n$, where e_0, \ldots, e_n is a lattice basis of \mathbb{Z}^{n+1}. The h^*-polynomial equals $1 + t^d$. Though this example does not show that the bound given in Proposition 1.5 is sharp, we see again that the asymptotics seems to have the right order.

While Batyrev’s proof involved commutative and homological algebra, our methods are elementary and purely combinatorial.

The main result of this paper shows that the qualitative statement of Theorem 1.3 still holds, when we fix instead of the volume of P only the ”relative” number of vertices $|V(P)| - n - 1$, which is an invariant depending only on the combinatorics of P:

Theorem 1.7. Let $c, d \in \mathbb{N}$. Let $P \subseteq \mathbb{M}_\mathbb{R}$ be an n-dimensional lattice polytope having $\leq c + n + 1$ vertices and degree $\leq d$. If

$$n \geq c(2d + 1) + 4d - 1,$$

then P is a lattice pyramid over an $(n - 1)$-dimensional lattice polytope.
Note that for \(d = 1 \) this yields the assumption \(n \geq 3(c + 1) \), while the optimal bound is \(n \geq 3 \) for \(c = 0 \) and \(n \geq c + 2 \) for \(c > 0 \) by the classification \([2]\).

Now, since \(|V(P)| - n - 1 \leq |P \cap M| - n - 1 = h_1^* \), we see that the implication in Theorem \([1.7]\) holds for \(c = h_1^* \). This result motivates the following more general conjecture:

Conjecture 1.8. Let \(c, d, \) and \(i \in \{1, \ldots, d\} \) be fixed. Then there is a function \(f_i \) depending only on \(c \) and \(d \) such that any \(n \)-dimensional lattice polytope \(P \) with \(h_i^* = c \) and degree \(\deg(P) = d \) is a lattice pyramid over an \((n-1)\)-dimensional lattice polytope, if \(n \geq f_i(c, d) \).

Remark 1.9. For \(i = 1 \), the conjecture holds, as we have just seen. For \(i = 2, \ldots, d-1 \), the conjecture would follow from the inequalities \(h_i^* \leq h_i^* \). In the case of \(d = n \), these were proven by Hibi \([3]\). The author is not aware of any counterexamples for arbitrary degree.\(^1\)

For \(i = d \), this conjecture is equivalent to Conjecture 4.2 in \([1]\), saying that \(\text{Vol}(P) \) should be bounded by a function in \(d \) and \(h_d^* \). To see this equivalence we note that \(h_d^* > 0 \) equals the number of interior lattice points in \(\text{codeg}(P)P \), and due to Hensley \([7]\) the volume of any \(n \)-dimensional lattice polytope with \(l > 0 \) interior lattice points is bounded by a function depending only on \(n \) and \(l \). Actually, by a result of Lagarias and Ziegler \([9]\), already mentioned above, there is up to isomorphisms only a finite number of \(n \)-dimensional lattice polytopes with \(l > 0 \) interior lattice points, if \(n \) and \(l \) is fixed.

An indication towards Conjecture \([1.8]\) is the following generalization of Corollary \([1.4]\). It follows immediately from the previous remark and an inequality due to Stanley \([12, \text{Prop.4.1}]\):

\[
1 + h_1^* \leq h_{d-1}^* + h_d^*.
\]

Corollary 1.10. There is only a finite number of lattice polytopes of fixed degree \(d \) and with fixed \(h_{d-1}^* \) and \(h_d^* \), up to isomorphisms and lattice pyramid constructions. In particular, the volume of any lattice polytope of degree \(d \) is bounded by a function depending only on \(d \), \(h_{d-1}^* \) and \(h_d^* \).

The paper is organized in three sections:

In the second section we deal with lattice simplices of degree \(d \), showing that they are lattice pyramids over lower-dimensional lattice simplices, if their dimension is larger than \(4d - 2 \). Based on this result we prove in the third section Theorem \([1.7]\) and Proposition \([1.5]\)

\(^1\)In the meantime Henk and Tagami provided a counterexample \([6]\).
Acknowledgments: The author would like to thank Christian Haase and Andreas Paffenholz of the Research Group Lattice Polytopes at the Freie Universität Berlin for discussions and joint work on this subject.

2. Lattice simplices with fixed degree

In this section we prove Theorem 1.7 for $c = 0$:

Theorem 2.1. Any lattice simplex of degree $\leq d$ and dimension $n \geq 4d - 1$ is a lattice pyramid over an $(n - 1)$-dimensional lattice simplex.

The bound $4d - 1$ is sharp for $d \leq 1$, see [2].

Through the whole section let $M = \mathbb{Z}^{n+1}$, and $P = \text{conv}(v_0, \ldots, v_n)$ be an n-dimensional lattice simplex of degree d, embedded in $M_\mathbb{R} = \mathbb{R}^{n+1}$ on the affine hyperplane $\mathbb{R}^n \times \{1\}$. We define the half-open parallelepiped

$$\Pi(P) := \left\{ \sum_{i=0}^n \lambda_i v_i : \lambda_i \in [0, 1[\right\}.$$

Moreover, for $x = \sum_{i=0}^n \lambda_i v_i \in \Pi(P) \cap M$ we define its support

$$\text{supp}(x) := \{i \in \{0, \ldots, n\} : \lambda_i \neq 0\},$$

and its height as the last coordinate of x

$$\text{ht}(x) := \sum_{i=0}^n \lambda_i \in \mathbb{N}.$$

It is well-known [3 Cor.3.11] that h^*_i equals the number of lattice points in $\Pi(P)$ of height i. From this observation, we derive the following result:

Lemma 2.2. Let $m \in \Pi(P) \cap M$. Then $|\text{supp}(m)| \leq 2d$.

Proof. Let $m = \sum_{i=0}^s \lambda_i v_i$ with $\lambda_i \neq 0$ for $i = 0, \ldots, s$. We define $P' := \text{conv}(v_0, \ldots, v_s)$. Then m is a lattice point in the relative interior of $\text{ht}(m) \cdot P'$, so $s + 1 - \text{deg}(P') = \text{codeg}(P') \leq \text{ht}(m)$, hence $s + 1 \leq \text{ht}(m) + \text{deg}(P')$. Since $m \in \Pi(P) \cap M$, we have $\text{ht}(m) \leq d$, and by monotonicity $\text{deg}(P') \leq d$. Therefore $|\text{supp}(m)| = s + 1 \leq 2d$. \qed

Let us define the support of P as

$$\text{supp}(P) := \bigcup_{m \in \Pi(P) \cap M} \text{supp}(m) \subseteq \{0, \ldots, n\}.$$

The relation of this notion to lattice pyramids is straightforward:
Lemma 2.3. Let $i \in \{0, \ldots, n\}$. Then P is a lattice pyramid with apex v_i if and only if $i \not\in \text{supp}(P)$.

Proof. Let $P' := \text{conv}(v_j : j = 0, \ldots, n, j \neq i)$. Then P is a lattice pyramid over P' if and only if $\text{Vol}(P) = \text{Vol}(P')$. Now, the statement follows from $\text{Vol}(P) = |\Pi(P) \cap M| \geq |\Pi(P') \cap M| = \text{Vol}(P')$. \hfill \Box

Now, we can give the proof of Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.3 it is enough to show

$$|\text{supp}(P)| \leq 4d - 1.$$

Let $m_0 \in \Pi(P) \cap M$ with $I_0 := \text{supp}(m_0)$ maximal. Now, we choose successively in a ”greedy“ manner lattice points $m_0, m_1, \ldots, m_k \in \Pi(P) \cap M$ such that $|I_k|$ is maximal, where

$$I_k := \text{supp}(m_k) \setminus \left(\bigcup_{j=0}^{k-1} \text{supp}(m_j) \right).$$

Claim: For $k \in \mathbb{N}$ we have $|I_k| \leq \frac{2d}{2^k}$.

Assume that the claim were already proven. Then, since $|\Pi(P) \cap M| = \text{Vol}(P)$ is finite, the construction yields

$$|\text{supp}(P)| = \left| \bigcup_{k=0}^{\infty} \text{supp}(m_k) \right| < \sum_{k=0}^{\infty} \frac{2d}{2^k} = 4d.$$

This proves the theorem. It remains to show the claim:

The claim holds for $k = 0$ by Lemma 2.2. Let it be true for $k - 1 \in \mathbb{N}$. We set $J_k := I_{k-1} \cap \text{supp}(m_k)$. This implies

$$J_k \cup I_k \subseteq \text{supp}(m_k) \setminus \left(\bigcup_{j=0}^{k-2} \text{supp}(m_j) \right).$$

Hence, by the choice of m_{k-1} with I_{k-1} maximal we get

$$|J_k| + |I_k| \leq |I_{k-1}|. \quad (2.1)$$

On the other hand, let $m_{k-1} = \sum_{i=0}^{n} \lambda_i v_i$ and $m_k = \sum_{i=0}^{n} \mu_i v_i$. Now, we translate $m_{k-1} + m_k$ into $\Pi(P)$:

$$m := \sum_{i=0}^{n} \{\lambda_i + \mu_i\} v_i \in \Pi(P) \cap M,$$
where \(\{\gamma\} \in [0, 1[\) denotes the fractional part of \(\gamma \in \mathbb{R} \). By construction, \(\mu_i = 0 \) and \(\{\lambda_i + \mu_i\} = \lambda_i > 0 \) for \(i \in I_{k-1} \setminus J_k \), as well as \(\lambda_i = 0 \) and \(\{\lambda_i + \mu_i\} = \mu_i > 0 \) for \(i \in I_k \). This implies
\[
(I_{k-1} \setminus J_k) \cup I_k \subseteq \text{supp}(m) \setminus \left(\bigcup_{j=0}^{k-2} \text{supp}(m_j) \right).
\]
Again, by the maximality of \(|I_{k-1}| \) we get
\[
|I_{k-1}| - |J_k| + |I_k| \leq |I_{k-1}|.
\]
Combining equations (2.1) and (2.2) yields
\[
|I_k| \leq |J_k| \leq |I_{k-1}| - |I_k|.
\]
Hence, \(|I_k| \leq |I_{k-1}|/2 \leq \frac{2d}{2^k} \) by induction hypothesis. This proves the claim.

\[\Box\]

3. Proof of Theorem 1.7 and Proposition 1.5

Throughout, let \(P \subseteq M_{\mathbb{R}} \) be a lattice polytope of dimension \(n \) and degree \(\leq d \). The proofs here are based on induction. For the induction step we need the notion of a circuit:

Definition 3.1. An affinely dependent subset \(C \subseteq V(P) \) is called circuit in \(P \), if any proper subset of \(C \) is affinely independent.

The importance of this notion lies in the fact that \(P \) is combinatorially a pyramid with apex \(v \in V(P) \) if and only if \(v \) is not contained in any circuit in \(P \).

The following observation [5, Lemma 2.1] is joint work with Christian Haase and Andreas Paffenholz:

Lemma 3.2. Any circuit in \(P \) consists of \(\leq 2d + 2 \) elements.

Proof. We may assume as in the previous section that \(P \) is embedded in \(\mathbb{R}^{n+1} \) on the affine hyperplane with last coordinate 1. In this case, there is a linear relation
\[
\sum_{v \in C_1} z_v v = \sum_{w \in C_2} z_w w
\]
for \(C = C_1 \cup C_2 \) and \(z_v, z_w \in \mathbb{N}_{>0} \). Let \(Q := \text{conv}(C) \). The dimension of \(Q \) equals \(|C_1| + |C_2| - 2 \). We observe that \(\sum_{v \in C_1} v \) is a lattice point in the relative interior of \(C_1 \cdot Q \). Thus, \(\text{codeg}(Q) \leq |C_1| \), so by monotonicity \(d \geq \deg(Q) = \dim(Q) + 1 - \text{codeg}(Q) \geq |C_2| - 1 \). Hence \(|C_2| \leq d + 1 \). Symmetrically, \(|C_1| \leq d + 1 \). This proves the statement.

Using this lemma we can prove Theorem 1.7.
Proof of Theorem 1.7. First, let us define $n(c, d) := c(2d + 1) + 4d - 1$. Now, we prove by induction on $c \geq 0$ that any n-dimensional lattice polytope $P \subseteq \mathbb{M}_\mathbb{R}$ having $\leq c + n + 1$ vertices and degree $\leq d$ is a lattice pyramid over a lattice polytope of dimension $< n(c, d)$.

So, let P be given in this way, and $n \geq n(c, d)$. If $c = 0$, then $|V(P)| = n + 1$, so P is a simplex, and the statement follows from Theorem 2.1, since $n(0, d) = 4d - 1$.

Let $c \geq 1$. Since P is not a simplex, there is a vertex $v \in V(P)$ such that $Q := \text{conv}(V(P) \setminus \{v\})$ is an n-dimensional lattice polytope. Since $\left(|V(Q)| - n - 1\right) < \left(|V(P)| - n - 1\right) \leq c$, the induction hypothesis yields that Q is a lattice pyramid over a lattice polytope B with $\dim(B) < n(c - 1, d)$.

Now, since $\dim(Q) = \dim(P)$, there is a circuit in P containing vertices v, w_1, \ldots, w_l, where $w_j \in V(Q)$ (for $j = 1, \ldots, l$), and $l \leq 2d + 1$ by Lemma 3.2. In particular, $v \in \text{aff}(w_1, \ldots, w_l)$. We set $D := \text{conv}(B, w_1, \ldots, w_l) \subseteq Q$. Hence, Q is a lattice pyramid over the lattice polytope D, whose dimension satisfies

$$\dim(D) \leq \dim(B) + l \leq (n(c - 1, d) - 1) + (2d + 1) = n(c, d) - 1.$$

Since $\text{aff}(D) = \text{aff}(D, v)$, also P is a lattice pyramid over the lattice polytope $\text{conv}(D, v)$ of dimension $\dim(D) < n(c, d)$.

□

The proof of Proposition 1.5 is analogous:

Proof of Proposition 1.5. The proof is by induction on $V \geq 1$. Let $P \subseteq \mathbb{M}_\mathbb{R}$ be a lattice polytope having volume V, degree d, and $\dim(P) = n \geq (V - 1)(2d + 1)$.

If $V = 1$, the statement is trivial. So, let $V \geq 2$.

First, let P be a lattice simplex. If $V \geq 3$, then $n \geq 4d + 2$, so the statement follows from Theorem 2.1. If $V = 2$, then there exists in the notation of the previous section precisely one lattice point $0 \neq m \in \Pi(P) \cap M$. Hence, $|\text{supp}(P)| = |\text{supp}(m)| \leq 2d$ by Lemma 2.2, so P is a lattice pyramid over an $(n - 1)$-dimensional lattice simplex by Lemma 2.3 since $n \geq 2d + 1$.

Therefore, we can assume that P is not a simplex. Now, the remaining induction step proceeds precisely as in the proof of Theorem 1.7. ■
REFERENCES

[1] Batyrev, V.V.: Lattice polytopes with a given h^*-polynomial, In: C.A. Athanasiadis (ed.) et al., Algebraic and geometric combinatorics, Proceedings of a Euroconference in Mathematics, Anogia, Crete, Greece, August 20–26, 2005, AMS, Contemp. Math. 423, 1–10, 2007

[2] Batyrev, V.V.; Nill, B.: Multiples of lattice polytopes without interior lattice points, Moscow Math. J. 7, 25–37 (2007)

[3] Beck, M.; Robins, S.: Computing the Continuous Discretely. Springer, 2006

[4] Ehrhart, E.: Polynômes arithmétiques et méthode des polyédres en combinatoire. International Series of Numerical Mathematics, Vol. 35, Birkhäuser Verlag, 1977

[5] Haase, C.; Nill, B.; Paffenholz, A.: A combinatorial study of lattice polytopes with given h^*-polynomial, unpublished manuscript, 2007

[6] Henk, M.; Tagami, M.: Lower bounds on the coefficients of Ehrhart polynomials, Preprint, arXiv:0710.2665, 2007

[7] Hensley, D.: Lattice vertex polytopes with interior lattice points, Pacific J. Math. 105, 183–191 (1983)

[8] Hibi, T.: A lower bound theorem for Ehrhart polynomials of convex polytopes, Adv. Math. 105, 162–165 (1994)

[9] Lagarias, J.C.; Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice, Can. J. Math. 43, 1022–1035 (1991)

[10] Stanley, R.P.: Decompositions of rational convex polytopes, Ann. Discr. Math. 6, 333–342 (1980)

[11] Stanley, R.P.: Enumerative Combinatorics, Vol. I. Wadsworth & Brooks/Cole, 1986

[12] Stanley, R.P.: On the Hilbert function of a graded Cohen-Macaulay domain, J. Pure Appl. Algebra 73, 307–314 (1991)

[13] Stanley, R.P.: A monotonicity property of h-vectors and h^*-vectors, Eur. J. Comb. 14, 251–258 (1993)

RESEARCH GROUP LATTICE POLYTOPES, FU BERLIN, GERMANY

E-mail address: nill@math.fu-berlin.de