Evaluation of band-selective HSQC and HMBC Methodological validation on the cyclosporin cyclic peptide and application for poly(3-hydroxyalkanoate)s stereoregularity determination
E. Caytan, R. Ligny, J.-F. Carpentier, Sophie M. Guillaume

To cite this version:
E. Caytan, R. Ligny, J.-F. Carpentier, Sophie M. Guillaume. Evaluation of band-selective HSQC and HMBC Methodological validation on the cyclosporin cyclic peptide and application for poly(3-hydroxyalkanoate)s stereoregularity determination. Polymers, 2018, 10 (5), pp.533. 10.3390/polym10050533. hal-01809143

HAL Id: hal-01809143
https://hal-univ-rennes1.archives-ouvertes.fr/hal-01809143
Submitted on 31 Aug 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluation of Band-Selective HSQC and HMBC: Methodological Validation on the Cyclosporin Cyclic Peptide and Application for Poly(3-hydroxyalkanoate)s Stereoregularity Determination

Elsa Caytan *, Romain Ligny, Jean-François Carpentier and Sophie M. Guillaume

Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes—UMR6226, F-35000 Rennes, France; romain.ligny.1@univ-rennes1.fr (R.L.); jean-francois.carpentier@univ-rennes1.fr (J.-F.C.); sophie.guillaume@univ-rennes1.fr (S.M.G.)

* Correspondence: elsa.caytan@univ-rennes1.fr; Tel.: +33-2-23-23-73-93

Received: 19 April 2018; Accepted: 15 May 2018; Published: 16 May 2018

Abstract: Band-selective (bs) HSQC, improving spectral resolution by restriction of the heteronuclear dimension without inducing spectral folding, has been recently used for polymer tacticity determination. Herein is reported an evaluation of various bs-HSQC and bs-HMBC sequences, first from a methodological point of view (selectivity, dependence to INEPT interpulse delay or relaxation delay), using the cyclic peptide cyclosporin selected as a model compound, and then from an applicative approach, comparing tacticity determined from bs-HSQC and bs-HMBC experiments to the one obtained from 1D 13C{1H} on poly(3-hydroxyalkanoate)s samples. For HSQC sequences, the 13C selectivity scheme consisting in substituting a 13C broadband refocalization by a selective one revealed itself problematic, with unwanted aliased signals, whereas the insertion of double pulsed field gradients spin-echo (DPFGSE) or the use of opposite sign gradients bracketing a selective refocalization gave satisfactory results. Determination of the probability of syndiotactic enchainments, P_s, by bs-HSQC is fully consistent and no precision loss was observed when decreasing acquisition time (37 min vs. 106 min for 1D 13C{1H}). Bs-HMBC, although not straightforwardly applicable for tacticity determination, could provide (after a calibration step) an alternative for compounds of which only 13C carbonyl signals are resolved enough for discriminating between syndiotactic and isotactic configurations.

Keywords: 2D NMR; HSQC; HMBC; band-selective; tacticity determination; stereoregular polyesters

1. Introduction

Since the early 1980s, microstructural control during polymerization reactions has gained much attention and more recently the concept of sequence controlled polymers has appeared [1–3]. The control of tacticity or of monomer sequence in the polymer chain can lead to unprecedented properties (thermal, mechanical, solubility, self-assembling, etc.) and allows access to diversified, valuable, sometimes unique polymer materials.

Stereoselective ring-opening polymerization (ROP) of chiral cyclic esters is one of the most effective routes for the synthesis of stereoregular or monomer sequence-controlled polyesters. Initially, much work has been devoted to the ROP of racemic lactide (the cyclic dimer of lactic acid) to obtain polylactide (PLA)—an alternative to common petrochemical-based plastics—with a variety of microstructures: heterotactic, isotactic, or stereoblock enchainments [4–13].
ROP of \(\beta \)-lactones is much less documented because this family of four-membered cyclic esters is inherently more reluctant to ring open and even more in a stereoselective fashion [14]. Some of us have shown that yttrium catalysts stabilized by non-chiral tetradentate amino-alkoxy or diamino-bisphenolate dianionic ligands \([\text{ONXO}]^{2-} (X = \text{O}, \text{N})\) (Scheme 1) can provide high chain-end-stereocontrol during polymerization of racemic mixtures of such chiral \(\beta \)-lactones. Applying these catalysts to different families of \(\beta \)-lactones revealed different stereoselective abilities (iso-/syndio-selectivity) simply by changing the nature of the R substituent at the ortho position of the phenolate ligand. In the ROP of racemic \(\beta \)-butyrolactone, high probability for syndiotactic enchainment \((P_s)\) in the resulting poly(3-hydroxybutyrate) has been achieved upon using sterically bulky aryl-type substituents \((R = \text{CMe}_2 \text{Ph} \text{ or CPh}_3; P_s = 0.91 \text{ and } 0.95, \text{ respectively})\) [15–18]. On the other hand, for the ROP of racemic alkyl \(\beta \)-malolactonates \((\text{MLA}^{R}, R' = \text{allyl} (\text{All}) \text{ or benzyl (Bn)}), \text{syndioselectivity in the main chain of poly}(\beta\)-malolactonate) has been observed specifically upon using ortho-chlorinated phenolates \((P_s > 0.95)\) [19,20]. More recently, for the ROP of another family of \(\beta \)-lactones, namely racemic 4-alkoxyethylene-\(\beta \)-propiolactones \((\text{BPL}^{\text{OR}}, R' = \text{Me, All or Bn})\), we evidenced that bulky aryl-containing R ortho-substituents in the phenolate ligand also induce high syndioselectivity \((P_i > 0.90)\) in the resulting alkoxy-functionalized poly(3-hydroxyalkanoates) \((\text{PHB}^{\text{OR}})\) (Scheme 1). More remarkably, an unprecedented complete switch of the catalyst selectivity from syndiotactic iso-selectivity \((P_i > 0.90)\) was observed upon using ortho-halogenated ligands [21].

![Scheme 1. Synthesis of syndio- or iso-PHBOR from the ROP of racemic BPLOR with Y[ONXOR2](N(SiHMe\textsubscript{2})\textsubscript{2})/(THF)/iPrOH catalyst systems, illustrated with the ROP of rac-BPLAll](image)

The chemical shifts of some carbons in a polymer chain are sensitive to the relative stereochemistry of nearby stereocenters. This proves to be of particular importance for investigating the microstructure of stereoregular polymers since it allows the observation of the different monomer sequences because the respective resonances are split. Tactility of the synthetic polymers is mostly assessed by \(^{13}\text{C}[^{1}\text{H}] \) NMR because of the large chemical shift dispersion. Unfortunately, \(^{13}\text{C}[^{1}\text{H}] \) NMR spectroscopy requires long experiment times to give spectra with adequate signal-to-noise ratio (SNR). Consequently, \(^{1}\text{H}\)-detected 2D heteronuclear NMR experiments such as HSQC or HMBC enable reducing the acquisition time provided that \(^{13}\text{C} \) spectral resolution can be kept high enough for resolving the different \(^{13}\text{C} \) signals [22].

Band-selective (bs) heteronuclear 2D NMR experiments were first introduced to enable restriction of the heteronuclear chemical shift domain (thereby improving the spectral resolution) without inducing spectral folding [23–25]. Improved spectral resolution found applications in structure elucidation of compounds exhibiting crowded spectral regions, such as peptides [23,24,26] or oligosaccharides [25,27–30]. More recently, bs-HSQC has been used for studying \(^{35,37}\text{Cl} \) isotope shift for \(^{13}\text{C} \) [31–34] and for quantifying purposes; its improved sensitivity (compared to direct \(^{13}\text{C} \)
acquisition) allows studying the relative abundance of triad signals in polyacrylonitrile samples [22] or even isotopomers signals in halogenated natural products [33].

13C selectivity was first obtained using “soft pulses”: soft 90° or 180° 1H pulses (low power rectangular pulses), manipulating only Hα in peptides and observing C(=O) [23,24], or soft 180° 13C pulse (DANTE pulse train) in the first INEPT step of HSQC, transferring magnetization only to the desired 13C [25]. After 1993, 13C soft pulses (DANTE pulse train, Gaussian or REBURP shaped pulses) were combined with 1H spin-lock and adequate phase cycling to obtain the desired 13C selectivity [27, 28,30]. Opposite sign gradients were used in 1995, bracketing a selective 180° refocalization pulse [35], and this selectivity “sandwich” was implemented in numerous homonuclear or heteronuclear bs experiments. Pulsed Field Gradient Spin-Echoes (PFGSE) were first introduced for solvent signal suppression [36,37] and were used in bs-heteronuclear experiments, either for direct 13C selectivity in HSQC or HMBC experiments [26,29], or for elimination of unwanted peptide protecting group resonances (DPFGSE applied on the 1H region of protecting groups) [38]. Recently, band-selectivity in HSQC-related experiments was obtained using highly selective shaped pulses (Gaussian cascade [39,40]) for 13C refocalization during the reverse-INEPT step in place of the adiabatic pulses used for uniform broadband refocalization [31–34], or using them in a DPFGSE inserted in the HSQC sequence [22].

Herein, we describe an evaluation of bs-HSQC and HMBC experiments as quantitative tools. In a first part, cyclosporin was used as a model compound for studying the quantitative response of bs-HSQC and HMBC variants when varying experimental parameters: influence of 13C selective pulse offset, INEPT interpulse delay or relaxation delay were observed. In a second part, these bs experiments were used on poly(3-hydroxyalkanoates) (PHB ORs) samples for tacticity determination, which is commonly determined by 1D 13C{1H} spectra. The decrease of the experimental time when using bs-HSQC methods instead of 1D 13C{1H} did not alter the precision or values of Ps (probability of syndiotactic enchainment between BPL OR units). Bs-HMBC methods could be used when the carbonyl region is the only one presenting enough signal dispersion, but verification is still to be made concerning the linear relation between Ps value obtained by HMBC and 1D 13C{1H} on the carbonyl region.

2. Materials and Methods

2.1. NMR Acquisition Parameters

1D and 2D NMR spectra were recorded on a 500 MHz Bruker Av III HD spectrometer (Billerica, MA, USA), fitted with a direct broadband 5 mm probehead (BBO) carefully tuned on both 1H and 13C channels. Sample temperature was set to 298 K. The cyclosporin sample was a sealed sample containing 50 mg of cyclosporin A in 0.5 mL of C6D6. Polymer samples were prepared by dissolving about 35 mg of solid in ca. 0.5 mL of CDCl3. 1D 13C spectra were acquired using Bruker standard zgpg30 sequence (30° flip angle, bilevel 1H Waltz-16 decoupling). Acquisition time was 1.05 s and relaxation delay D1 2.00 s. Bs 2D HSQC and HMBC spectra were acquired using following parameters: 1H spectral window was 9.2 or 8.0 ppm for cyclosporin and polymer samples, respectively, resulting in acquisition time of 0.44 or 0.51 s, respectively (TD 4096). 13C spectral window was 12 or 4 ppm for cyclosporin and polymer sample, respectively, and 256 t1 increments were used. For HSQC spectra, broadband decoupling during acquisition was obtained with the standard GARP scheme, and unless otherwise specified interpulse INEPT delay was optimized for a 145 Hz J value for the cyclosporin sample and 132 Hz for polymer samples. For both HSQC and HMBC spectra, unless otherwise specified, relaxation delay D1 was set to 1.5 s.

For HSQC experiments, five sequences were used (Supplementary Materials, Figure S1):

- Standard Bruker hsqctgpsisp2.2 (from which the following are derived);
- Standard Bruker shsqctgpsisp2.2: first 13C adiabatic refocalization pulse was replaced by a selective 180° refocalization pulse bracketed by gradients of opposite sign [35];
- hsqctgpsisp2.2-REFOC: 13C adiabatic refocalization of the reverse INEPT was replaced by a selective 180° refocalization pulse [31–34];
• hsqcetgpsisp2.2-DPFGSE: a double pulsed field gradients spin-echo (DPFGSE) using selective 180° inversion pulse was added after the t₁ evolution period [29]; and
• hsqcetgpsisp2.2-DPFGSESYM: one PFGSE using selective 180° inversion pulse was inserted before the t₁ evolution period and another one after t₁ evolution period [29].

For HMBC experiments, three sequences were used (Supplementary Materials, Figure S2):
• Standard Bruker hmbcctetgpl2nd (from which the following are derived);
• Standard Bruker shmbcctetgpl2nd: 13C adiabatic refocalization was replaced by a selective 180° refocalization pulse; and
• hmbcctetgpl2nd-SPFGSE: a single pulsed field gradient spin-echo (SPFGSE) using selective 180° inversion pulse was inserted after the t₁ evolution period [26,29].

13C selective 180° pulses were designed using the Q3.1000 Bruker standard shape [39], covering a 600 Hz bandwidth, resulting in pulse duration of 5.747 or 5.683 ms for refocalization or inversion, respectively (durations calculated in the Bruker Shapetool program). Pulse powers were calculated in the Bruker Prosol program.

2.2. NMR Spectra Processing

1D and 2D spectra were processed using Topspin software (Bruker Biospin, Billerica, MA, USA). 1D 13C spectra were processed using zero-filling from 64 to 128 k, line broadening 1 Hz, manual phase correction and five-degree polynomial baseline correction on the whole spectral window. 2D spectra were processed using zero filling from 256 to 1024 in F1 dimension, squared sine-bell apodization (SSB 2) in both dimensions, manual phase correction (for HSQC only since HMBC are magnitude mode spectra), and five-degree polynomial baseline correction on the whole spectral window in both dimensions. HSQC spectra acquired using the hsqcetgpsisp2.2-DPFGSESYM sequence had to be reversely Fourier-transformed in the F1 dimension due to the presence of a 13C inversion pulse before t₁ evolution period which inverts the apparent evolution frequency of 13C magnetization [29].

1D and 2D peaks integration was performed using MNova software (Mestrelab Research, Santiago de Compostela, Spain). Integral regions were saved so that integration was always performed with the same settings for a given signal.

2.3. Polymerization Procedure

The PHB OR samples used for tacticity determination were synthesized according to the reported literature [21].

3. Results

The methodological study on cyclosporin (Scheme 2) consisted in evaluating the influence of several NMR acquisition parameters on the integral value of HSQC/HMBC peaks. Repeatability of the whole measurement (NMR spectrometer settings, data acquisition, process and integration) has been evaluated for the four bs-HSQC sequences (Table 1), indicating a good precision for all of them (less than 3% standard deviation), and even better for hsqcetgpsisp2.2-REFOC (less than 2%).

Table 1. Repeatability of integral value measurement for the CH₃ γ Me-Val 11 peak of cyclosporin (with selective pulse offset = 0 Hz, relaxation delay D₁ = 1.5 s, INEPT interpulse delay set for J = 145 Hz).

NMR Sequence	Number of Measurements	Mean Integral Value (A.U.)	Standard Deviation of Integral Value (A.U.)	Relative Standard Deviation (%)
shsqcetgpsisp2.2	7	688.2	15.0	2.2%
hsqcetgpsisp2.2-REFOC	6	622.5	10.4	1.7%
hsqcetgpsisp2.2-DPFGSE	7	666.1	15.6	2.3%
hsqcetgpsisp2.2-DPFGSESYM	6	654.7	15.7	2.4%
For the cyclosporin sample, a few representative peaks (Scheme 2) were chosen to study the influence of carbon multiplicity, T_1 or $J_{1\text{CH}}$, on the integration value (Table 2). For the following studies, measurements were not replicated.

Table 2. Selected peaks of cyclosporin.

Attribution	$\delta^{13}\text{C}$	$\delta^{1}\text{H}$	$T_1^{13}\text{C}$	$T_1^{1}\text{H}$	$J_{1\text{CH}}$
Abu-CO	173.71	-	1.44	-	-
CH α Me-Leu 10	57.84	5.34	0.29	0.38	134
CH$_2$ β Me-Leu 10	41.55	2.41/1.29	0.17	0.40	126/132
CH$_3$ N Me-Leu 10	29.98	2.84	1.13	0.86	139
CH$_3$ γ Me-Val 11	18.87	0.96	0.28	0.37	125

3.1. Spectra Quality: Selectivity and Aliasing

Bs-HSQC spectra differed according to the sequence used (Figure 1): selectivity was much sharper for hsqctgpsisp2.2-DPFGSESYM, with only the signals resonating below 350 Hz from the ^{13}C carrier frequency being visible. It can be noticed that, for the hsqctgpsisp2.2-REFOC sequence, selectivity was also sharp, as the signals of carbons resonating more than 500 Hz away from the ^{13}C carrier frequency are not pure phase, but unwanted signals (intense CH$_2$) were observed as aliased signals. These artifacts certainly are due to 180° pulse imperfection, since band-selective pulse powers were calculated and not manually calibrated. Miscalibration of the selective 180° pulse could be compensated by bracketing gradients in other pulse sequences, but not in this one.

It can be seen in Figure 1 that all HSQC experiments were sensitive and revealed minor compounds that were difficult to observe in ^{1}H or ^{13}C spectra (e.g., $\delta^{13}\text{C}$ 19.2 ppm and $\delta^{1}\text{H}$ 0.91 ppm).

For HMBC spectra, the two sequences (shmbctetgpl2nd and hmbctgpl2nd-SPFGSE) gave comparable spectra, except for a 20% sensitivity loss for the sequence including SPFGSE. The increased sequence duration due to SPFGSE insertion probably induces significant magnetization losses due to relaxation.
It can be seen in Figure 1 that all HSQC experiments were sensitive and revealed minor compounds that were difficult to observe in 1H or 13C spectra (e.g., δ^{13}C 19.2 ppm and δ^1H 0.91 ppm).

Figure 1. Bs-HSQC spectra recorded for CH$_3$γ Me-Val 11 signal of the cyclosporin sample, using the same 13C selective pulse (Q3.1000) in different sequences: shsqcetgpsisp2.2 (a); hsqcetgpsisp2.2-REFOC (b); hsqcetgpsisp2.2-DPFGSE (c); and hsqcetgpsisp2.2-DPFGSESYM (d).

3.2. Selectivity According to Carbon Multiplicity

As formerly described [29], the selectivity profiles are modified by the action of one or more heteronuclear couplings: the more coupled 1H, the sharper the selectivity profile (Figure 2). Among the studied sequences, shsqcetgpsisp2.2 and hsqctgsisp2.2-DGPGE showed similar selectivity profiles. The symmetrical hsqcetgpsisp2.2-DPFGSESYM sequence, where a PFGSE is inserted before the t_1 evolution period, is notably more selective than the non-symmetrical sequence (all theoretical selectivity profiles were calculated in the Nuzillard et al. paper [29]). An unexpected behavior of hsqcetgpsisp2.2-REFOC sequence can be seen in the case of CH$_2$: outside from the sharp region where the observed peak is positive the integral value can become negative instead of just tending towards zero. This “oscillating” selectivity profile may explain the appearance of mix-phase or aliased signals for 13C resonating far from the carrier frequency.

For both bs-HMBC sequences, the integral value (measured on the Abu-CO peak at 173 ppm) showed a selectivity profile quite flat from −200 to +200 Hz (Supplementary Materials, Figure S3).
Figure 2. Influence of the 13C selective pulse offset on the bs-HSQC signal for three representative signals of cyclosporin sample: CH α Me-Leu 10 (a); CH β Me-Leu 10 (b); and CH γ Me-Val 11 (c). Four series are plotted for the following sequences: shsqcetgpsisp2.2 (\ast); hsqcetgpsisp2.2-REFOC (×); hsqcetgpsisp2.2-DPFGSE (□); and hsqcetgpsisp2.2-DPFGSESYM (∆). Selective pulse (Q3.1000) was calculated for a 600 Hz selectivity.

3.3. Influence of INEPT Interpulse Delay Setting

HSQC related sequences are constituted of two INEPT blocks: the first INEPT transfers magnetization from 1H to 13C, and after the t_1 evolution period, magnetization is transferred back to 1H by a reverse INEPT. The interpulse delay of these INEPT blocks is usually set to 1/4 of the evolution period, with $J = 145$ Hz, a commonly admitted mean value for 1CH.

It can be seen in Figure 3a that the integral value of CH γ Me-Val 11 signal of cyclosporin clearly was maximum when the interpulse delay was set with the accurate value $J_{CH} = 125$ Hz. All four bs-HSQC sequences showed the same dependence to J_{CH} value. For CH βN Me-Leu 10 signal, the optimum value should be $J_{CH} = 139$ Hz, but this was only visible for the shsqcetgpsisp2.2 sequence; for the three others, the optimum value seems to be ca. 130–135 Hz. For both studied signals, the most intense integral values were obtained for shsqcetgpsisp2.2 and hsqcetgpsisp2.2-DPFGSE sequences.

Figure 3. Influence of the chosen J_{CH} value for the INEPT interpulse delay setting on the bs-HSQC signal for two representative signals of cyclosporin sample: CH γ Me-Val 11 ($J_{CH} = 125$Hz) (a); and CH βN Me-Leu 10 ($J_{CH} = 139$ Hz) (b). Four series are plotted for the following sequences: shsqcetgpsisp2.2 (\ast); hsqcetgpsisp2.2-REFOC (×); hsqcetgpsisp2.2-DPFGSE (○); and hsqcetgpsisp2.2-DPFGSESYM (∆).
3.4. Relaxation Delay D1

Relaxation delay D1 is a long recycle delay (some seconds of duration, according to the existing T1 ¹H relaxation times) to allow the recovery of the ¹H magnetization to a pre-equilibrium state just before starting the sequence.

As expected, integral values of bs-HSQC signals variations relative to the relaxation delay D1 used in the sequence are much more important for a slow relaxing ¹H (CH₃N Me-Leu 10, T1 ¹H = 0.86 s, see Figure 4b) than for a rapid relaxing ¹H (CH₃ γ Me-Val 11, T1 ¹H = 0.37 s, Figure 4a). It can be noticed that the sequence shsqcetgpsisp2.2 seems to be more sensitive in both cases to this relaxation delay effect than the other three.

![Figure 4. Influence of the relaxation delay D1 on the bs-HSQC signal for two representative signals of cyclosporin sample: CH₃ γ Me-Val 11 (T1 ¹H = 0.37 s) (a); and CH₃N Me-Leu 10 (T1 ¹H = 0.86 s) (b). Four series are plotted for the following sequences: shsqcetgpsisp2.2 (•); hsqcetgpsisp2.2-REFOC (×); hsqcetgpsisp2.2-DPFGSE (□); and hsqcetgpsisp2.2-DPFGSESYM (Δ).](image)

For bs-HMBC sequences, relaxation delay effect is averaged because plotted signals are the sum of correlation peak’s integrals obtained for slow and quick relaxing ¹H (Supplementary Materials, Figure S4).

3.5. Application to the Microstructural Determination of PHB_{OAll}

As previously reported, the stereoselective ROP of rac-BPL_{OAll} by diamino-bis(phenolate) yttrium catalyst provides different microstructures of PHB_{OAll} depending on the ortho-substituent group on the ligand [21] (Scheme 1), as assessed by ¹³C{¹H} analysis.

The probability of syndiotactic enchainment between BPL_{OR} units, Pₛ (note: Pₛ = 1 − Pᵣ, Pᵣ = probability of isotactic enchainment), is determined as follows:

\[Pₛ = \frac{Iₛ}{Iₛ + Iᵣ}, \]

with Iₛ and Iᵣ being the integral values of peaks assigned to syndiotactic or isotactic diads, respectively. Figure 5 shows the regions of the 1D ¹³C{¹H}, bs-HSQC and bs-HMBC spectra and the integration regions of a PHB_{OAll} sample prepared with a non-stereoselective catalyst (1a, R = Me; Pₛ ≈ Pᵣ ≈ 0.5).
measurement, standard deviation can sometimes be incidentally low. To be highly syndiotactic, measure poor S/N ratio.

For all spectra, precision of CH\(_2\) region observed by bs-HSQC (Figure 5) and carbonyl region observed by bs-HMBC (b).

Table 3. \(P_s\) (probability of syndiotactic enchainment between BPL\(_{OAII}\) units) determined by different NMR sequences on PHB\(_{OAII}\) samples prepared with complexes 1a–c (bearing R = Me, tBu and CMe\(_2\)Ph substituents, respectively; Scheme 1). Each measurement was replicated three times for mean and standard deviation calculation.

Complex Used to Prepare PHB\(_{OAII}\)	Sequence	Observation of Carbonyl Signal (δ 169 ppm)	Observation of Side Chain CH\(_2\) (δ 35 ppm)
		\(P_s\) (Mean) S.D.	\(P_s\) (Mean) S.D.
1a	zgp	0.504 0.006	0.504 0.004
	hsqetgpsi2p2.2	0.499 0.001	0.499 0.001
	shsqetgpsi2p2.2	0.503 0.003	0.503 0.003
	hsqetgpsi2p2.2-REFOC	0.507 0.005	0.507 0.005
	hsqetgpsi2p2.2-DPFGSE	0.501 0.007	0.501 0.007
	hsqetgpsi2p2.2-DPFGSESYM	0.503 0.003	0.503 0.003
	shmbctetmpl2nd	0.410 0.002	0.410 0.002
	hmbcctetmpl2nd-SPFGSE	0.440 0.004	0.440 0.004
1b	zgp	0.822 0.019	0.784 0.001
	hsqetgpsi2p2.2	0.795 0.007	0.795 0.007
	shsqetgpsi2p2.2	0.797 0.014	0.797 0.014
	hsqetgpsi2p2.2-REFOC	0.800 0.011	0.800 0.011
	hsqetgpsi2p2.2-DPFGSE	0.791 0.004	0.791 0.004
	hsqetgpsi2p2.2-DPFGSESYM	0.827 0.011	0.827 0.011
	shmbctetmpl2nd	0.702 0.012	0.702 0.012
	hmbcctetmpl2nd-SPFGSE	0.676 0.002	0.676 0.002
1c	zgp	0.857 0.008	0.812 0.004
	hsqetgpsi2p2.2	0.837 0.005	0.837 0.005
	shsqetgpsi2p2.2	0.834 0.008	0.834 0.008
	hsqetgpsi2p2.2-REFOC	0.839 0.005	0.839 0.005
	hsqetgpsi2p2.2-DPFGSE	0.828 0.001	0.828 0.001
	hsqetgpsi2p2.2-DPFGSESYM	0.863 0.009	0.863 0.009
	shmbctetmpl2nd	0.766 0.001	0.766 0.001
	hmbcctetmpl2nd-SPFGSE	0.711 0.003	0.711 0.003
It can be noticed that the P_s value obtained from 1D 13C(1H) can differ according to the observed region (carbonyl or side chain CH$_2$). This seems to be the case when P_s is higher, maybe because additional signals which could be assigned to triads become visible when the “iso” peak decreases, and the integration limits are therefore no longer suitable in both regions.

For 1D 13C(1H) and HSQC, the comparison of integral values from syndiotactic and isotactic signals can be readily made, because they differ only in the relative stereochemistry of nearby nuclei. Carbon multiplicity being identical, relaxation rates and J_{CH} are expected to be very similar and off-resonance effect are negligible since the two peaks are resonating very close from each other, and the 13C carrier frequency is set in the middle. Indeed, as can be seen in Table 3, P_s values calculated from bs-HSQC sequences and 1D 13C(1H) for the 35 ppm region were similar. Standard deviations were satisfactory (<1.5%, <1% in most cases) for all sequences. The total acquisition time was 106 min for the 1D 13C(1H) and 37 min for the HSQC experiments. Note that we used the non-selective HSQC sequence in addition to the four bs-HSQC sequences, because in this compound no aliased signal can interfere with the integral value measurement of the studied signal, since δ^1H are really different.

For bs-HMBC sequences, the P_s values obtained from bs-HMBC (40 min duration) really differed from those obtained from the carbonyl region of 1D 13C(1H). A possible explanation could be small variations of J_{CH} involved in HMBC correlations between the various stereo-configurations (whereas J_{CH} values involved in HSQC are quite stable), inducing differences in the relative integral values measured for syndiotactic or isotactic signals. However, we noticed that, for the three studied PHB-OAll samples (prepared with complexes 1a–c bearing R = Me, tBu and CMe$_2$Ph substituents, respectively; Scheme 1), a linear relation between the two sets of P_s values could be considered (Figure 6). Standard deviations were satisfactory, maybe even better for bs-HMBC sequences than for 1D 13C(1H) (slow relaxing carbonyl signals have a lower S/N ratio than CH$_2$, and this sensitivity effect could be compensated by the 1H detection of multiple signals in bs-HMBC).

![Plot of P_s values of PHB-OAll samples prepared with complexes 1a–c, obtained from bs-HMBC with the shmbctetgpl2nd sequence (¶) and with the hmbctetgpl2nd-SPFGSE sequence (©) against P_s values obtained from 1D 13C(1H) (carbonyl region). Error bars represent standard deviation.](image)

Figure 6. Plot of P_s values of PHB-OAll samples prepared with complexes 1a–c, obtained from bs-HMBC with the shmbctetgpl2nd sequence (¶) and with the hmbctetgpl2nd-SPFGSE sequence (©) against P_s values obtained from 1D 13C(1H) (carbonyl region). Error bars represent standard deviation.

4. Discussion

As expected, methodological study on the cyclosporin sample showed that bs-HSQC signal intensity is really dependent of carbon multiplicity, relaxation delay and (to a lower extent) INEPT interpulse delay setting: this will prevent in most cases the use of such sequences for quantitative purposes. When similar signals are to be compared, however, bs-HSQC can provide a shorter duration alternative to 1D 13C(1H), even in cases with small δ^{13}C dispersion.
For bs-HSQC sequences, all methods used for introducing selectivity are not technically quite the same: selectivity is sharper for the sequence using symmetric DPGFSE (hsqetgpsisp2.2-DPFGSESYM), and for the observation of CH$_3$ signals, off-resonance effects must be taken in account, which can induce a 50% signal loss for only a 200 Hz offset when the selective pulse had been designed for a 600 Hz bandwidth. Selectivity observed for standard Bruker shsqcetgpsisp2.2 and for the sequence including a DPFGSE (hsqetgpsisp2.2-DPFGSE) after t_1 evolution period, even if dependent on carbon multiplicity, is consistent with the bandwidth value chosen for selective pulse design. In contrast, sequence using a selective refocalization pulse in the reverse INEPT step (hsqetgpsisp2.2-REFOC) showed a peculiar selectivity profile, with a sharp region of pure phase signals, mixed phase signals for peaks resonating on the edges of the selective pulse bandwidth and even unwanted aliased signals for intense peaks resonating far away. This could be due to 180° selective pulse miscalibration, not compensated in this pulse sequence because of the absence of bracketing gradients. Aliasing of signals resonating outside of the chosen selectivity zone is obviously a problem for both quantification applications (in case an aliased signal would be superimposed with a studied signal) and structural studies where bs-HSQC is used for improving 13C resolution. This problem does not seem to have been reported by previous authors using this selectivity method [31–34].

All four bs-HSQC sequences showed similar dependence to the $^{1}J_{CH}$ value chosen for INEPT interpulse delay setting. Variations of signal integral value observed when varying relaxation delay D1 were also equivalent for three of them, with a loss of sensitivity induced using a too short delay. This, as expected, is more important for slow relaxing hydrogens. We can note that the standard Bruker sequence shsqcetgpsisp2.2 is more sensitive to this relaxation delay effect. Consequently, this sequence should be avoided for a quantitative purpose when large variations of relaxation times are observed in the compound.

For bs-HMBC, the only difference observed between the two sequences (selectivity obtained by a selective refocalization pulse or by a SPFGSE included after the t_1 evolution period) is a decrease of 20% in sensitivity for the longer sequence (hmbctetgpl2nd-SPFGSE), probably due to magnetization losses owing to relaxation.

Concerning the application of bs-HSQC sequences for determining tacticity of alkoxy-functionalized poly(3-hydroxyalkanoate)s (PHB$_{OR}$s), the method’s accuracy seems satisfactory since the P_s values obtained from bs-HSQC acquisitions were very similar to those obtained from 1D 13C{$_{\text{1H}}$} on the same region (side-chain CH$_2$). We ensured that a faster acquisition (37 or 40 min vs. 106 min for 1D 13C{$_{\text{1H}}$} spectrum, respectively) did not lead to a loss of measurements precision. The reduction in time to accurately determine the tacticity of the PHB$_{OR}$s using this bs-HSQC experiment is of the same extent as that reported by Coates and co-workers. [22] Indeed, the pentad stereosequences of atactic polypropylene and the triad stereosequences of atactic polyacrylonitrile were determined in 20 and 9 min from the 2D bs-HSQC, as compared to the 270 and 56 min total experiment time using the quantitative direct-observed 13C NMR spectrum, respectively, on a similar narrow chemical shift window [22]. The observed standard deviations were very satisfactory, with a precision of about 0.1% on P_s determination. This result was obtained on challenging compounds, since the syndiotactic and isotactic signals are only separated by about 0.2 ppm. No significant difference could be made between the four bs-HSQC sequences for this study of PHB$_{OR}$s tacticity.

Bs-HMBC could be useful for tacticity studies when only the carbonyl 13C signals are resolved enough for discriminating between syndiotactic and isotactic configurations. However, this experiment cannot be used straightforwardly for P_s determination: we believe that changes in bond angles, induced by stereochemistry differences, give rise to variations of $^{1}J_{CH}$ values involved in HMBC, and that such variations affect signal intensities between syndiotactic and isotactic configurations. A linear relation between P_s obtained from bs-HMBC and P_s obtained from 1D 13C{$_{\text{1H}}$} of the same region (carbonyl) was observed for polymer samples prepared from complexes 1a–c. This linear relation would need to be confirmed in a future work. If so, for a given polymer, a calibration could be performed with samples of varying tacticity, allowing the use of bs-HMBC sequence for further polymer tacticity
screening (e.g., when testing catalysts for stereoregular polymerization). It can be pointed out that standard deviations of P_s values obtained from bs-HMBC sequences were smaller than those of P_s values obtained from 1D $^{13}\text{C}[^1\text{H}]$ spectra; in this case, the fastest acquisition seems to be also the most precise.

5. Conclusions

In conclusion, we have described the use of 2D bs-HSQC and bs-HMBC NMR experiments as a technique for rapidly evaluating the tacticity of some PHBs. The methodological study on cyclosporin showed a better selectivity profile and a lower sensitivity to relaxation delay shortening for bs-HSQC sequence including a DPFGSE as ^{13}C selectivity scheme and we are thus confident this is the suitable sequence for quantitative applications. These methods can be applied with a good accuracy to resolve high-order stereosequences as exemplified with the triads of some poly(3-hydroxyalkanoate)s. A significant acquisition time benefit can be gained while maintaining a high resolution, ultimately enabling P_s determination with a precision of about 0.1%. We believe the bs-HSQC NMR tool may be valuably developed for the routine and rapid recording of well-resolved narrow-spectral window ^{13}C NMR spectra, as well as for the general assessment of the tacticity of polymers. Future work will address the larger exploration of the bs-HMBC NMR tool on related polymers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/5/533/s1, Figure S1: HSQC sequences: Standard Bruker hsqctgpsisp2.2, Figure S2: HMBC sequences: Standard Bruker hmbcctetgpl2nd, Figure S3: Influence of the ^{13}C selective pulse offset on the bs-HMBC signal of Abu-CO in cyclosporin sample, Figure S4: Influence of the relaxation delay D1 on the bs-HMBC signal of Abu-CO in cyclosporin sample, Figure S5: Full $^{13}\text{C}[^1\text{H}]$ spectrum of a PHB$^{\text{OAll}}$ sample, Figures S6–S8: ^1H NMR spectra of PHB$^{\text{OAll}}$ samples prepared from the ROP of rac-BPL$^{\text{OAll}}$ with the 1a-c/iPrOH (1:1) systems.

Author Contributions: R.L. initiated the study and prepared the polymer samples. E.C. designed the study and performed the NMR experiments. E.C. and R.L. interpreted the experiments and wrote the manuscript. S.M.G. and J.-F.C. helped in co-supervision of the study and manuscript writing.

Acknowledgments: This work was performed using the PRISM core facility (Biogenouest©, UMS Biosit, Université de Rennes 1—Campus de Villejean—35043 RENNES Cedex, FRANCE). This research was financially supported in part by the Region Bretagne (Ph.D. grant to R.L.).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Definition
BPL$^{\text{OR}}$	alkoxymethylene-β-propiolactones
bs	band-selective
DANTE	delays alternating with nutation for tailored excitation
DPFGSE	double pulsed field gradients spin-echo
GARP	globally-optimised, alternating phase rectangular pulses
HMBC	heteronuclear multiple bond correlation
HSQC	heteronuclear single quantum correlation
INEPT	insensitive nuclei enhanced by polarization transfer
MLA$^{\text{R}}$	alkyl β-malolactonate
PHB$^{\text{OR}}$	poly(3-hydroxyalkanoate)
PLA	polylactide
ROP	ring-opening polymerization

References

1. Lutz, J.-F.; Ouchi, M.; Liu, D.R.; Sawamoto, M. Sequence-controlled polymers. Science 2013, 341, 1238149. [CrossRef] [PubMed]
2. Lutz, J.-F. Defining the Field of Sequence-Controlled Polymers. Macromol. Rapid Commun. 2017, 38. [CrossRef] [PubMed]
3. Lutz, J.-F. Sequence-Controlled Polymers; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 978-3-527-34237-2.
4. Arnold, P.L.; Buffet, J.-C.; Blaudeck, R.P.; Sziekci, S.; Blake, A.J.; Wilson, C. C3-Symmetric Lanthanide Tris(alkoxide) Complexes Formed by Preferential Complexation and Their Stereoselective Polymerization of \(\text{rac} \)-Lactide. *Angew. Chem. Int. Ed.* 2008, 47, 6033–6036. [CrossRef] [PubMed]

5. Bakewell, C.; Cao, T.-P.-A.; Long, N.; Le Goff, X.F.; Auffrant, A.; Williams, C.K. Yttrium Phosphasalen Initiators for \(\text{rac} \)-Lactide Polymerization: Excellent Rates and High Iso-Selectivities. *J. Am. Chem. Soc.* 2012, 134, 20577–20580. [CrossRef] [PubMed]

6. Aluthge, D.C.; Patrick, B.O.; Mehrkhodavandi, P. A highly active and site selective indium catalyst for lactide polymerization. *Chem. Commun.* 2013, 49, 4295–4297. [CrossRef] [PubMed]

7. Bakewell, C.; White, A.J.P.; Long, N.J.; Williams, C.K. Metal-Size Influence in Iso-Selective Lactide Polymerization. *Angew. Chem. Int. Ed.* 2014, 53, 9226–9230. [CrossRef] [PubMed]

8. Jones, M.D.; Hancock, S.L.; McKeown, P.; Schäfer, P.M.; Buchard, A.; Thomas, L.H.; Mahon, M.F.; Lowe, J.P. Zirconium complexes of bipyrrrolidine derived salan ligands for the isoselective polymerisation of \(\text{rac} \)-Lactide. *Chem. Commun.* 2014, 50, 15967–15970. [CrossRef] [PubMed]

9. Mou, Z.; Liu, B.; Wang, M.; Xie, H.; Li, P.; Li, L.; Li, S.; Cui, D. Isoselective ring-opening polymerization of \(\text{rac} \)-Lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes. *Chem. Commun.* 2014, 50, 11411–11414. [CrossRef] [PubMed]

10. Jones, M.D.; Brady, L.; McKeown, P.; Buchard, A.; Schäfer, P.M.; Thomas, L.H.; Mahon, M.F.; Woodman, T.J.; Lowe, J.P. Metal influence on the iso- and hetero-selectivity of complexes of bipyrrrolidine derived salan ligands for the polymerisation of \(\text{rac} \)-Lactide. *Chem. Sci.* 2015, 6, 5034–5039. [CrossRef] [PubMed]

11. McKeown, P.; Davidson, M.G.; Kociok-Köhn, G.; Jones, M.D. Aluminium salalen vs. salans: “Initiator Design” for the isoselective polymerisation of \(\text{rac} \)-Lactide. *Chem. Commun.* 2016, 52, 4031–4034. [CrossRef] [PubMed]

12. Rosen, T.; Popowski, Y.; Goldberg, I.; Kol, M. Zinc Complexes of Sequential Tetradentate Monoanionic Ligands in the Isoselective Polymerization of \(\text{rac} \)-Lactide. *Chem. Eur. J.* 2016, 22, 11533–11536. [CrossRef] [PubMed]

13. Xu, T.-Q.; Yang, G.-W.; Liu, C.; Lu, X.-B. Highly Robust Yttrium Bis(phenolate) Ether Catalysts for Excellent Isoselective Ring-Opening Polymerization of Racemic Lactide. *Macromolecules* 2017, 50, 515–522. [CrossRef]

14. Carpentier, J.-F. Discrete Metal Catalysts for Stereoselective Ring-Opening Polymerization of Chiral Racemic \(\beta \)-Lactones. *Macromol. Rapid Commun.* 2010, 31, 1696–1705. [CrossRef] [PubMed]

15. Amgouné, A.; Thomas, C.M.; Ilinca, S.; Roisnel, T.; Carpentier, J.-F. Highly Active, Productive, and Syndiospecific Yttrium Initiators for the Polymerization of Racemic \(\beta \)-Butyrolactone. *Angew. Chem. Int. Ed.* 2006, 45, 2782–2784. [CrossRef] [PubMed]

16. Bouyahyi, M.; Ajellal, N.; Kirillov, E.; Thomas, C.M.; Carpentier, J.-F. Exploring Electronic versus Steric Effects in Stereoselective Ring-Opening Polymerization of Lactide and \(\beta \)-Butyrolactone with Amino-alkoxy-bis(phenolate)-Yttrium Complexes. *Chem. Eur. J.* 2011, 17, 1872–1883. [CrossRef] [PubMed]

17. Carpentier, J.-F. Rare-Earth Complexes Supported by Tri- and Tetradentate Bis(phenolate) Ligands: A Privileged Class of Catalysts for Ring-Opening Polymerization of Cyclic Esters. *Organometalics* 2015, 34, 4175–4189. [CrossRef]

18. Ajellal, N.; Bouyahyi, M.; Amgouné, A.; Thomas, C.M.; Bondon, A.; Pillin, I.; Grohens, Y.; Carpentier, J.-F. Syndiotactic-Enriched Poly(3-hydroxybutyrate)s via Stereoselective Ring-Opening Polymerization of Racemic \(\beta \)-Butyrolactone with Discrete Yttrium Catalysts. *Macromolecules* 2009, 42, 987–993. [CrossRef]

19. Jaffredo, C.G.; Chapurina, Y.; Guillaume, S.M.; Carpentier, J.-F. From Syndiotactic Homopolymers to Chemically Tunable Alternating Copolymers: Highly Active Yttrium Complexes for Stereoselective Ring-Opening Polymerization of \(\beta \)-Malolactonates. *Angew. Chem. Int. Ed.* 2014, 53, 2687–2691. [CrossRef] [PubMed]

20. Jaffredo, C.G.; Chapurina, Y.; Kirillov, E.; Carpentier, J.-F.; Guillaume, S.M. Highly Stereocontrolled Ring-Opening Polymerization of Racemic Alkyl \(\beta \)-Malolactonates Mediated by Yttrium [Amino-alkoxy-bis(phenolate)] Complexes. *Chem. Eur. J.* 2016, 22, 7629–7641. [CrossRef] [PubMed]

21. Tiegs, B.J.; Sarkar, S.; Condo, A.M.; Keresztes, I.; Coates, G.W. Rapid Determination of Polymer Stereoregularity Using Band-Selective 2D HSQC. *ACS Macro Lett.* 2016, 5, 181–184. [CrossRef]
23. Davis, D.G. Proton detection of long-range couplings to carbon-13 using semiselective pulses. A high-resolution method for assigning amino acids in peptides. *J. Magn. Reson.* **1989**, *83*, 212–218. [CrossRef]

24. Led, J.J.; Abildgaard, F.; Gesmar, H. Phase correction of soft-pulse heteronuclear multiple-bond correlation spectra using backward linear prediction. *J. Magn. Reson.* **1991**, *93*, 659–665. [CrossRef]

25. Poppe, L.; van Halbeek, H. 13C-selective, 1H-detected 2D ^{1}H, 13C correlation spectra of oligosaccharides. *Magn. Reson. Chem.* **1991**, *29*, 848–851. [CrossRef]

26. Claridge, T.D.W.; Pérez-Victoria, I. Enhanced 13C resolution in semi-selective HMBC: A band-selective, constant-time HMBC for complex organic structure elucidation by NMR. *Org. Biomol. Chem.* **2003**, *1*, 3632–3634. [CrossRef] [PubMed]

27. Bernassau, J.M.; Nuzillard, J.M. Clean Selective Excitation of Heteronuclear Spin Systems. *J. Magn. Reson. A* **1993**, *104*, 212–221. [CrossRef]

28. Bernassau, J.M.; Nuzillard, J.M. Enhancement of F1-Selective HMQC and HSQC Experiments by Field-Gradient Pulses. *J. Magn. Reson. A* **1994**, *108*, 248–254. [CrossRef]

29. Gaillet, C.; Lequart, C.; Debeire, P.; Nuzillard, J.-M. Band-Selective HSQC and HMBC Experiments Using Excitation Sculpting and PFGSE. *J. Magn. Reson.* **1999**, *139*, 454–459. [CrossRef] [PubMed]

30. Bernassau, J.M.; Nuzillard, J.M. Selective HMBC Experiments Using Soft Inversion Pulses. *J. Magn. Reson. B* **1994**, *103*, 77–81. [CrossRef]

31. Saurí, J.; Reibarkh, M.; Zhang, T.; Cohen, R.D.; Wang, X.; Molinski, T.F.; Martin, G.E.; Williamson, R.T. Band-Selective 2D HSQMBC: A Universal Technique for Detection and Measurement of 35,37Cl Isotope Effects for 13C Nuclei. *Org. Lett.* **2016**, *18*, 4786–4789. [CrossRef] [PubMed]

32. Wang, X.; Duggan, B.M.; Molinski, T.F. Mollenynes B–E from the Marine Sponge Spirastrella mollis. Band-Selective Heteronuclear Single Quantum Coherence for Discrimination of Bromo–Chloro Regioisomerism in Natural Products. *J. Am. Chem. Soc.* **2015**, *137*, 12343–12351. [CrossRef] [PubMed]

33. Wang, X.; Duggan, B.M.; Molinski, T.F. Ultra-high resolution band-selective HSQC for nanomole-scale identification of chlorine-substituted 13C in natural products drug discovery. *Magn. Reson. Chem.* **2017**, *55*, 263–268. [CrossRef] [PubMed]

34. Milanowski, D.J.; Oku, N.; Cartner, L.K.; Bokesch, H.R.; Williamson, R.T.; Saurí, J.; Liu, Y.; Blinov, K.A.; Ding, Y.; Li, X.-C.; et al. Unequivocal determination of caulamidines A and B: Application and validation of new tools in the structure elucidation tool box. *Chem. Sci.* **2018**, *9*, 307–314. [CrossRef] [PubMed]

35. Dalvit, C. Semi-selective two-dimensional homonuclear and heteronuclear NMR experiments recorded with pulsed field gradients. *Magn. Reson. Chem.* **1995**, *33*, 570–576. [CrossRef]

36. Hwang, T.L.; Shaka, A.J. Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients. *J. Magn. Reson. A* **1995**, *112*, 275–279. [CrossRef]

37. Berger, S. NMR techniques employing selective radiofrequency pulses in combination with pulsed field gradients. *Prog. Nucl. Magn. Reson. Spectrosc.* **1997**, *30*, 137–156. [CrossRef]

38. Kövér, K.E.; Fehér, K.; Szilágyi, L.; Borbás, A.; Herczegh, P.; Lipták, A. 2D NMR spectra of oligosaccharides enhanced by band-selective suppression of unwanted signals. *Tetrahedron Lett.* **2000**, *41*, 393–396. [CrossRef]

39. Emsley, L.; Bodenhausen, G. Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. *J. Magn. Reson.* **1992**, *97*, 135–148. [CrossRef]

40. Emsley, L.; Bodenhausen, G. Gaussian pulse cascades: New analytical functions for rectangular selective inversion and in-phase excitation in NMR. *Chem. Phys. Lett.* **1990**, *165*, 469–476. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).