Tracking a Fast-Moving Disease: Longitudinal Markers, Monitoring, and Clinical Trial Endpoints in ALS

Rangariroyshe Hannah Chipika, Eoin Finegan, Stacey Li Hi Shing, Orla Hardiman and Peter Bede

Computational Neuroimaging Group, Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland

Amyotrophic lateral sclerosis (ALS) encompasses a heterogeneous group of phenotypes with different progression rates, varying degree of extra-motor involvement and divergent progression patterns. The natural history of ALS is increasingly evaluated by large, multi-time point longitudinal studies, many of which now incorporate presymptomatic and post-mortem assessments. These studies not only have the potential to characterize patterns of anatomical propagation, molecular mechanisms of disease spread, but also to identify pragmatic monitoring markers. Sensitive markers of progressive neurodegenerative change are indispensable for clinical trials and individualized patient care. Biofluid markers, neuroimaging indices, electrophysiological markers, rating scales, questionnaires, and other disease-specific instruments have divergent sensitivity profiles. The discussion of candidate monitoring markers in ALS has a dual academic and clinical relevance, and is particularly timely given the increasing number of pharmacological trials. The objective of this paper is to provide a comprehensive and critical review of longitudinal studies in ALS, focusing on the sensitivity profile of established and emerging monitoring markers.

Keywords: motor neuron disease, amyotrophic lateral sclerosis, biomarkers, magnetic resonance imaging, neuroimaging

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a clinically, genetically, and pathologically heterogeneous neurodegenerative condition (1–3). Clinical heterogeneity in ALS is multidimensional owing to variations in upper motor neuron (UMN) and lower motor neuron (LMN) involvement, extra-motor symptoms, age of onset, survival, and progression-rates. Disease heterogeneity hinders biomarker development (3, 4) which in turn impedes the reliable assessment of candidate drugs in clinical trials (1). Current clinical trials recruit relatively heterogeneous cohorts of symptomatic patients, despite the notion that considerable pathological changes can already be detected at the time of diagnosis (5, 6). The considerable variability in progression rates in ALS is another confounding factor in clinical trial designs (1, 7–10). Imaging and electrophysiological markers have been repeatedly proposed as candidate monitoring markers (11, 12), but it is increasingly clear that a panel of several “wet” and “dry” biomarkers may be required to capture subtle changes over short periods of time (13, 14). The objective of this paper is the comprehensive and critical review of longitudinal studies in ALS, focusing on study designs, statistical power, clinical correlations, the sensitivity profile of proposed monitoring markers and their applicability to clinical trials.
METHODS

A formal literature search was performed on PubMed using the core search terms “amyotrophic lateral sclerosis” and “longitudinal” combined with each of the following keywords separately: “staging,” “monitoring,” “outcomes,” “clinical,” “clinical trials,” “electrophysiology,” “neuropsychology,” “electromyography,” “transcranial magnetic stimulation,” “motor unit number estimation,” “motor unit number index,” “position emission tomography,” “single photon emission computed tomography,” “magnetic resonance imaging,” “neuroimaging,” “imaging,” “blood,” “urine,” “cerebrospinal fluid,” “saliva,” and “muscle.” A supplementary search combined the core search terms with the following keywords: “presymptomatic,” “asymptomatic,” and “post-mortem.” Inclusion criteria included longitudinal studies investigating imaging, neuropsychological, clinical, or biofluid biomarkers in ALS. Animal studies, review papers, opinion pieces, editorials, case reports, and case series were excluded. Only articles written in English and published between January 1980 and August 2018 were reviewed. Based on the above criteria a total of 118 original research papers were selected and reviewed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations.

RESULTS

Neuroimaging

The sample size characteristics, study design features, follow-up intervals of longitudinal neuroimaging, neuropsychology, and clinical studies are summarized in Table 1. Whilst most longitudinal imaging studies in ALS evaluate cerebral alterations (10), a number of promising spinal studies have now also been published. Spinal imaging has gradually overcome the technical challenges of physiological motion, small cross-sectional dimensions and susceptibility gradients (19, 110–118). The majority of longitudinal studies in ALS are single-center studies eliminating the need for cross-platform MR sequence harmonization and inter-rater reliability tests. Given the low incidence of certain phenotypes such as primary lateral sclerosis (PLS), progressive muscular atrophy (PMA), and spinal and bulbar muscular atrophy (SBMA) however, multisite collaboration is often necessary (119). The infrastructure, funding and governance of such multicenter collaborations are now established via international consortia like the Neuroimaging Society in Amyotrophic Lateral Sclerosis (NISALS) or the Northeast ALS Consortium (NEALS) (16, 23, 120, 121). The need to include disease-controls in addition to healthy controls to describe ALS-specific changes

Neuron; ROA2, Heterogeneous nuclear ribonucleoproteins A2/B1; RSA, relative surface area; rsMRI, resting state functional magnetic resonance imaging; SCA, spinocerebellar ataxia; SBMA, spinal and bulbar muscular atrophy; SEIQL-DW, Schedule for the Evaluation of the Individual Quality of Life-Direct Weighting; SF-36, 36-Item short form health survey; SMA, spinal muscular atrophy; SMUAP, spinal and bulbar muscular atrophy; SPECT, single photon emission computed tomography; SPO2, peripheral capillary oxygen saturation; SVC, spinocerebellar ataxia; TA, tibialis anterior; TBP-43, TAR DNA-binding protein 43; TIM, Telehealth in Motor Neuron disease; TMS, transcranial magnetic stimulation; TNF, tumor necrosis factor; TUG, timed up and go test; Tw Pdi, twitch trans-diaphragmatic pressure; TWBC, total white blood cell count; UMN, upper motor neuron; VC, vital capacity; WALS, Western ALS Consortium; WVFI, Written Verbal Fluency Index.
Author(s) and year of publication	Follow-up interval (months)	Number of patients/Number or controls	Clinical assessment batteries/Functional rating scales	Imaging data	Main study findings
IMAGING STUDIES					
Floeter et al. (15)	6–18	28/28	ALSFRS-R, letter fluency, FBI, MMSE	DWI, structural (T2)	- progression and propagation detected (DTI measures) over 6 months - DTI measures correlated with ALSFRS-R, King’s stage and cognitive measures
Kassubek et al. (16)	6	67/31	ALSFRS-R	DTI	- progression detected at group level and 27% of individual patients (DTI measures) - FA correlated with ALSFRS-R
Stampfl et al. (17)	3–6	21/13	ALSFRS-R	T1, DWI	- progression detected (FD values)
Baldaranov et al. (18)	26	6/6	ALSFRS-R	DTI	- progression detected (FA, AD/RD values) and correlated with progression on ALSFRS-R
Bede et al., 2017 (14)	4	32/69	ALSFRS-R	structural, DTI	- progression detected (GM)
de Albuquerque et al. (19)	8	27/27	ALSFRS-R, UMN scale	structural (T1, T2)	- progression detected (AD, MD) - correlation with ALSFRS-R change
Menke et al. (20)	24	16/0	ALSFRS-R	T1, DTI, rs-Fmri	- progression detected - correlation with ALSFRS-R decline
Simon et al. (21)	3–6	21/13	ALSFRS-R, MRCSS-LL, MUNE	DTI, structural (T1)	- progression detected (FA values) - correlations with ALSFRS-R change, MUNE, functional disability and strength
Floeter et al. (22)	6	49/28	ALSFRS-R, FBI, MDRS-2, letter fluency, MMSE, D-KEFS	structural (T1)	- progression detected (ventricular volume)
Schulthess et al. (23)	6	135/56	ALSFRS-R	rs-Fmri, DTI	- progression detected (functional connectivity) - correlation with physical disability
McMillan et al. (24)	12	20/25	neuropsychology	structural (T1)	- hypermethylation protective against progression, correlation with protection of some components of neuropsychological assessment
Steinbach et al. (25)	3	16/16	ALSFRS-R, neuropsychology	DTI	- progression detected
Westenen et al. (26)	5.5	112/60	ALSFRS-R	structural (T1)	- progression detected (volume measures) - correlation with ALSFRS-R
Merke et al. (4)	6	60/36	ALSFRS-R, ACE-R	structural (T1), DTI	- progression detected (GM)
Schuster et al. (27)	3–15	77/60	ALSFRS-R	structural (T1)	- progression detected (cortical thickness)
Stoppel et al. (28)	3	40/42	ALSFRS-R, MRC, neuropsychology	structural, Fmri	- progression detected - correlation with ALSFRS-R and MRC
Verstraete et al. (29)	5.5	24/19	ALSFRS-R	DTI, structural (T1)	- no progression detected - propagation detected
Ignjatovic et al. (30)	6	46/26	ALSFRS-R	structural (T1, T2, FLAIR)	- progression detected (hypointensities in PGGM)
Kwan et al. (31)	1.26–2.08 years	45/19	ALSFRS-R, finger tapping	T1, DTI	- progression detected (cortical thickness, GM volume)
Keil et al. (32)	6	24/24	ALSFRS-R, SF36, FAB, MMSE	DTI, structural (T1, T2)	- progression detected (FA values) - correlations with ALSFRS-R, physical and executive function
Merke et al. (33)	6	24/0	ALSFRS-R	DTI	- progression detected (AD)
Ichikawa et al. (34)	NA	6/NA	ALSFRS-R	NA	- progression detected, correlated to neuropsychology assessment
van der Graaff et al. (35)	NA	48/12	ALSFRS-R, finger tapping	DWI	- progression detected
Zhang et al. (36)	8	17/19	ALSFRS-R	structural (T1), DTI	- progression detected (FA)

(Continued)
TABLE 1 | Continued

Author(s) and year of publication	Follow-up interval (months)	Number of patients/Number or controls	Clinical assessment batteries/Functional rating scales	Imaging data	Main study findings
Agosta et al. (37)	9	16/10	ALSFRS	structural (T1)	- progression detected (GM)
Agosta et al. (38)	9	17/20	ALSFRS	DWI, structural	- progression detected (cord area, cord average FA)
Avants et al. (39)	5.3	4/4	0	structural (T1)	- progression detected (cortical atrophy)
Lule et al. (40)	6	25/15	ALSFRS-R	Fmr, structural (T1)	- progression detected (activity)
Uhrath et al. (41)	6	11/0	ALSFRS	MRS, T1	- progression detected (NAA, NAA/Cr+Cho)
Suhy et al. (42)	Every 3 months	28/12	0	MRS, T1, T2	- progression detected (NAA, Cr, Cho)
Block et al. (43)	24	33/20	0	MRS	- progression detected
Irwin et al. (44)		143/0	MMSE, LGVF, structural VBM	- no progression on MRI reported	
Kolind et al. (45)	42	30/12	ALSFRS-R, R, ACE, mcDESPOT	- progression detected in PLS only	
Verstraete et al. (46)	6	45/25	ALSFRS-R	structural (T1)	- no progression reported
Blain et al. (47)	6–12	23/25	ALSFRS-R, ALSS	structural (T2), DWI	- no significant progression detected (DTI measures)
Rule et al. (48)	3–12	45/17	0	MRS, structural (T1, T2)	- no clear pattern of progressive change over time (NAA rations)

Author(s) and year of publication	Follow-up interval (months)	Total number of patients/Total number of controls	Neurophysiology modality	Target muscle	Key study findings
NEUROPHYSIOLOGY STUDIES					
Escorcio-Bezerra et al. (49)	4.3	21/21	MUNIX	tibialis anterior (TA), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles	- progression detected (mean MUNIX)
de Carvalho et al. (50)	3–6	73/37	FP, MUPs, fibs-sw, jitter-MU physiology	tibialis anterior	- progression detected
Boekestien et al. (51)	8	18/24	MUNIX, HD-MUNE, CMAP, MUSIX	thenar	- progression detected (MUNE, MUNIX)
Cheah et al. (52)	3	37/0	CMAP, axonal excitability	abductor pollicis brevis muscles	- progression detected (CMAP)
Ahn et al. (53)	NA	135/NA	NA	abductor digit minimi and ulnar nerve	- asymmetric progression (MUNE)
Cheah et al. (54)	3	58/NA	NI, CMAP	abductor digit minimi muscles	- progression detected (NI)
de Carvalho et al. (55)	6	28/0	NI, CMAP, MUNE	abductor digit minimi muscles	- progression detected (CSP)
Neuwirth et al. (56)	15	7/8	MUNIX, CMAP	abductor pollicis brevis (APB), abductor digit minimi (ADM), abductor hallucis brevis (AHB), extensor digitorum brevis (EDB)	- progression detected (MUNIX)
Floyd et al. (57)	18	60/33	TMS, CMCT, MEP	abductor digit minimi (ADM) and tibialis anterior (TA)	-linear progression detected (TMS threshold, CMCT, TMS amplitude corrected)
Gooch et al. (58)	NA	64/NA-1	TMS, MUNE,	NA	-progression detected (MUNE)
Liu et al. (59)	12	112/12	MUNE, CMAP	Abductor pollicis brevis (APB) and abductor digit quinti (ADQ)	- progression detected (MUNE), correlated to ALSFRS descent
Albrecht et al. (60)	11.5	10/25	MUNE, S-MUAP	extensor digitorum brevis	- progression detected (MUNE)

(Continued)
TABLE 1 | Continued

Author(s) and year of publication	Follow-up interval (months)	Total number of patients/Total number of controls	Neurophysiology modality	Target muscle	Key study findings
Wang et al. (61)	12	20/70	MUNE, SMUP, CMAP, MU loss	thenar	- progression detected - (Thenar MUNE, CMAP)
Chan et al. (62)	24	NA	motor units	thenar	- progression detected
Felice et al. (63)	12	NA	MUNE	thenar	- progression detected (MUNE)
Yuen et al. (64)	6	NA	CMAP, MUNE	abductor digit minimi	- progression detected (MUNE, fiber density)
Vucic et al. (65)	7–100 days	25/30, 35	cortical and axonal excitability- MEP, CMAP- TMS	abductor pollicis brevis	- aim to determine effect of riluzole
Aggarwal et al. (66)	36	31/57	MUNE	tibialis anterior, abductor pollicis brevis (APB), deltoid, and first dorsal interosseous muscles	- no progression reported
Arasaki et al. (67)	NA	NA	MUNE, extensor digitorum brevis (EDB)	- no progression reported	
de Carvalho et al. (68)	11.6	NA	CMAP, MEP, TMS	NA	- no progression detected
Swash et al. (69)	NA	14/NA	single fiber EMG	NA	- no definite progression detected

Author(s) and year of publication	Follow-up interval (months)	Number of patients/Number of controls	Clinical assessment batteries/Functional rating scales	Summary of findings
Thakore et al. (70)	NA	3367/0	ALSFRS-R, ALSFRS, bloods-creatinine, uric acid, CK, albumin, sodium bicarbonate, hematocrit, TWBC	- ALSFRS-R progression detected, pre-slope and post-slope have effects on survival
Rooney et al. (71)	NA	407/0	ALSFRS-R	- progression detected in ALSFRS-R subscores progression detected (ALSFRS-R), associated with motor and pulmonary function
*ACTS trial. (72)	NA	75/NA	ALSFRS	
Floeter et al. (73)	18	NA	ALSFRS-R, letter fluency, FBI	- progression detected (ALSFRS-R, FBI, letter fluency)
Elamin et al. (74)	NA	186/NA	cognitive testing	- progression detected (cognitive function)
Roberts-South et al. (75)	24	16/12	neuropsychology, language, discourse sampling, perfusion computerized transaxial tomography, pulmonary, clinical	- progression detected (cognitive language deficits)
*Duning et al. (76)	3	10/32	ALSFRS, clinical neuropsychological battery, imaging	- progression detected (DTI)
Poletti et al. (77)	24	168/0	ECAS	- no progression detected, ECAS scores improved over time
Xu et al. (78)	6	108/60	ACE-3, FAB, ECAS executive, MoCA, ALSFRS-R, ALS-FTD-Q, MIND-B	- no progression detected
Gillingham et al. (79)	9	20/36	ALS-CFB, ALSFRS-R	- no progression reported
Moshii et al. (80)	6	79/53	MIND-B- apathy, disinhibition, stereotypical behavior, ACE-R, ALSFRS-R	- no progression reported
Jakobsson Larsson et al. (81)	24	36/0	SEIQoL-DW, ALSFRS-R, HADS	- anxiety decreased over time, depression correlated to QOL, QOL remained stable despite physical deterioration

CLINICAL STUDIES | |

ALSFRS-R

Thakore et al. (70) | 3367/0 | ALSFRS-R, ALSFRS, bloods-creatinine, uric acid, CK, albumin, sodium bicarbonate, hematocrit, TWBC | - ALSFRS-R progression detected, pre-slope and post-slope have effects on survival |

Rooney et al. (71) | 407/0 | ALSFRS-R | - progression detected in ALSFRS-R subscores progression detected (ALSFRS-R), associated with motor and pulmonary function |

Cognitive and behavior assessments | |

Floeter et al. (73) | 18/12 | ALSFRS-R, letter fluency, FBI | - progression detected (ALSFRS-R, FBI, letter fluency) |

Elamin et al. (74) | 186/NA | cognitive testing | - progression detected (cognitive function) |

Roberts-South et al. (75) | 16/12 | neuropsychology, language, discourse sampling, perfusion computerized transaxial tomography, pulmonary, clinical | - progression detected (cognitive language deficits) |

*Duning et al. (76) | 10/32 | ALSFRS, clinical neuropsychological battery, imaging | - progression detected (DTI) |

Poletti et al. (77) | 168/0 | ECAS | - no progression detected, ECAS scores improved over time |

Xu et al. (78) | 108/60 | ACE-3, FAB, ECAS executive, MoCA, ALSFRS-R, ALS-FTD-Q, MIND-B | - no progression detected |

Gillingham et al. (79) | 20/36 | ALS-CFB, ALSFRS-R | - no progression reported |

Moshii et al. (80) | 79/53 | MIND-B- apathy, disinhibition, stereotypical behavior, ACE-R, ALSFRS-R | - no progression reported |

Quality of life assessments | |

Jakobsson Larsson et al. (81) | 36/0 | SEIQoL-DW, ALSFRS-R, HADS | - anxiety decreased over time, depression correlated to QOL, QOL remained stable despite physical deterioration |
TABLE 1 | Continued

Author(s) and year publication	Follow-up interval (months)	Number of patients/Number of controls	Clinical assessment batteries/Functional rating scales	Summary of findings
BMI and other clinical assessments				
Beck et al. (82)	6	78/39	skin water loss	- progression detected (skin water loss)
Garruto et al. (83)	NA	31/66	bone mass (wrist radiograph)	- progression detected (bone loss)
Ioannides et al. (84)	6	44/29	FM-ADP, BMI, BAI, ALSFRS-R	- BMI and BAI not accurate measures of fat mass in ALS
Peter et al. (85)	3	393/791	BMI, ALSFRS-R	- alterations in body weight present in ALS patients decades before manifestation of symptoms
Nunes et al. (86)	3	37/0	BMI, serum albumin, transferrin, total cholesterol	- no progression reported
Jablecki et al. (87)	NA	NA	clinical scores	- no progression reported
Respiratory and muscle assessments				
Andres et al. (88)	4–21	100/0	ATLIS, ALSFRS, VC	- ATLIS more sensitive to change than ALSFRS and VC
de Bie et al. (89)	12	10/0	RSA, ALSFRS-R, FVC	- progression detected (RSA and ALSFRS-R)
Shellikeri et al. (90)	NA	33/13	kinematic measures of tongue and jaw movement, speaking rate, intelligibility, ALSFRS-R	- progression detected (tongue movement size and speed)
Londral et al. (91)	2–20	19/26	typing activity, ALSFRS-R	- progression detected (typing activity)
Panitz et al. (92)	12	51/0	fatigue severity scale (FSS), CIST20-R, subjective fatigue experience, concentration, motivation, activity, ALSFRS-R, MRC, SVC	- progression detected (FSS, CIST20-R), correlated to ALSFRS-R, and ALSFRS-R progression
Atassi et al. (93)	NA	8635/0	ALSFRS-R, VC	- PRO-ACT database- progression detected (ALSFRS-R and VC)
Watanabe et al. (94)	1.7 years	451/0	ALSFRS-R, MRC, MMT	- progression detected (ALSFRS-R)
Leonardis et al. (95)	every 3 months	NA/0	ALSFRS-R, Norris-r, AGA, FVC, MIP, MEP, SNIP	- progression detected (respiratory measures)
Mahajan et al. (96)	NA	362/0	VC	- progression detected (VC)
Pinto et al. (97)	4–6	49/0	Diaphragm amplitude, ALSFRS-R, MIP, FVC, SNIP, SPO2	- progression detected (Diaphragm amplitude, ALSFRS-R, respiratory measures)
Montes et al. (98)	6	31/0	TUG, ALSFRS-R, FVC, MMT	- linear progression detected (TUG) - associated with ALSFRS-R, MMT
Vender et al. (99)	NA	139/0	FVC	- progression detected (FVC)
Wilson et al. (100)	NA	55/NA	respiratory- FVC, FEV1, PEFT	- linear progression detected (PEFT)
Poloni et al. (101)	NA	NA	VC, Motley index, FEV1	- progression detected (respiratory measures)
Andersen et al. (102)	6–59	20/0	respiratory- SVC, cough peak flow, max inspiratory muscle strength, SNIP, max insufflation capacity	- no progression reported
Quaranta et al. (103)	NA	NA	respiratory function	- no progression reported
Proudfoot et al. (104)	24	61/39	eye tracking- anti saccadic, trail making, visual search tasks, ALSFRS-R, ACE-R, UMN, imaging	- no progression detected
*Lenglet et al. (105)	18	512/0	ALSFRS-R, MMT, SVC	- clinical trial
Yamauchi et al. (106)	Every 6 months	43/30	ALSFRS-R, phrenic nerve conduction study (DCMAP), respiratory function tests (SNIP, FVC), nocturnal pulsed oximetry, MMT	- no progression reported
Mendoza et al. (107)	NA	161/0	MIP, FVC	- no progression reported
Marti-Fabregas et al. (108)	NA	NA	FVC	- no progression detected
Palmowski et al. (109)	NA	NA	electro-oculography	- not well-defined progression

*Studies detecting progressive changes are listed first followed by studies not capturing longitudinal changes.
*indicates clinical trial.
is increasingly recognized (30, 43, 44). With few exceptions (122–124), most ALS imaging studies use 3 Tesla platforms and 7 Tesla systems are more commonly used in post-mortem studies (125, 126). Disease progression has been detected across a range of MR imaging metrics including structural (22, 26), diffusion (16, 18), functional (28, 40), and spectroscopy (41, 42) measures. As the majority of studies have a two-timepoint design, it is often unclear if specific imaging metrics show linear or exponential changes. The few existing multi-timepoint studies suggest that pathological change is not linear (10). The revised ALS functional rating scale (ALSFRS-r) is the most commonly reported clinical measure (16, 18–20), with only few imaging studies reporting associations with staging (15) or neuropsychological performance (15, 24).

Neurophysiology

Most longitudinal neurophysiology studies are single center studies, reducing the risk of inter-rater and inter-center variability (127). As presented in Table 1, follow-up interval ranges between 7 days (65) and 3 years (66), and up to 7 follow-up time-points have been included in some studies (57, 60). Surprisingly few studies include disease controls such as peripheral neuropathy (60) or benign fasciculation syndrome (50). Clinical assessments performed in conjunction with neurophysiology typically include ALSFRS-r (51), forced vital capacity (FVC) (55), slow vital capacity (SVC) (56), grip strength (64), pinch strength (58), and manual muscle testing (MMT) (58), however, correlations between neurophysiological measures and clinical assessments are seldom reported. The majority of longitudinal neurophysiological studies focus on upper limb muscles, e.g., abductor pollicis brevis, deltoid, first dorsal interosseous, extensor digitorum brevis, abductor digiti minimi (51, 52, 55, 60, 61) with relatively few studies evaluating lower limb muscles such as abductor hallucis brevis and tibialis anterior (50, 56, 57, 66). The most commonly reported longitudinal neurophysiological indices include compound muscle action potential (CMAP) (51, 52), single motor unit action potential (SMUAP) (60), MUNE (55, 59), MUNIX (49, 56), neurophysiology index (NI) (54, 55), TMS measures (57, 58), and axonal excitability (52). Progressive neurophysiological changes have been detected by MUNIX (49, 51, 56), MUNE (51, 58, 60), CMAP (52, 61), NI (54), and TMS measures (57) and allowing for study-design limitations, the consensus is that degenerative changes are not linear.

Clinical Biomarkers and Instruments

Robust clinical longitudinal studies in ALS have up to 6 follow-up time points (88, 89, 91), the interval between the assessments can be as short as 3 months (95) and the sample size can be as big as several thousands (70, 93) (Table 1). Few multi-timepoint studies include disease controls such as motor neuropathies (91), alternative neuromuscular diseases (78), or neurodegenerative conditions (83). Large, multi-timepoint longitudinal studies invariably suffer from considerable attrition rates, but these are rarely explicitly reported in the manuscript abstracts (10). Detailed genotyping is only available in a minority of longitudinal studies (15, 77, 79, 94). The most widely utilized rating scale in longitudinal studies is the ALSFRS-r (70, 71, 128) which provides a composite score of bulbar, limb and respiratory dysfunction, and is invariably evaluated in clinical trials (72, 105). Quality of life (QoL) in ALS is increasingly evaluated by disease-specific instruments such as the 40-item ALS assessment questionnaire (ALSAQ-40) or the revised ALS-specific Quality of Life questionnaire (ALSSQoL-R) (129–131). A number of symptom-specific instruments are also commonly used such as the Center for Neurologic Study-Bulbar Function Scale (CNS-BFS), a 21-item self-report scale of bulbar function, and the Center for Neurologic Study-Lability Scale (CNS-LS), a 7-item self-report scale of pseudobulbar affect (PBA) (132). Tapping rates, composite reflex scores, The Penn UMN Score (133), the Modified Ashworth scale (MAS) are often used as proxies of UMN degeneration (132).

In clinical trials, muscle strength is often estimated by handheld dynamometry (HHD) (134), manual muscle testing (MMT) (105), scoring systems such as the Medical Research Council (MRC) Scale for muscle strength (135) and some studies also report limb circumference (136). Respiratory function in ALS is typically monitored by sniff nasal inspiratory pressure (SNIP), SVC, or FVC in addition to measures such as early morning arterial blood gas (ABG) and overnight pulse-oximetry (137, 138). Measures of typing ability (91), tongue movements (90), vital capacity (VC) (96), FVC (99), SNIP (97), and diaphragm amplitude (97) all show progressive longitudinal changes. Nutritional markers such as body mass index (BMI) and lipid profile are now identified as a new diagnostic indicator (139, 140). Cognitive and behavioral domains are routinely assessed thanks to the availability of validated screening instruments such as the Edinburgh Cognitive and Behavioral ALS Screen (ECAS) (141), the Beaumont Behavioral Inventory (BBI) (142) and the ALS Cognitive Behavioral Screen (ALS-CBS) (143). In contrast to the relentlessly progressive motor deficits of ALS, the trajectory of cognitive and behavioral deficits is less clear due to considerable individual variations, genotype-associated profiles (144, 145), differences in assessment strategies and practice-effects (146). Several longitudinal neuropsychology studies do not detect progression (77, 147, 148), progressive behavioral impairment has been noted in the absence of cognitive change (149), and some studies report improved performance as a result of practice effects (77).

Wet Biomarkers

The findings, study design characteristics, and follow-up intervals of longitudinal biofluid studies are summarized in Table 2. Phosphorylated neurofilament heavy chain (pNFH), neurofilament light chain (NF-L), progranulin (PGRN), cytokines, TAR DNA-binding protein 43 (TDP-43), cystatin C, creatinine, micro-RNAs (miRNAs), chitotriosidase-1 (CHIT1), chitinase-3-like protein 1 (CHI3L1), chitinase-3-like protein 2 (CHI3L2) have been evaluated in both research studies (152, 153, 157, 158, 162, 164, 168, 171) and clinical trials (150, 156, 157, 160, 161). Markers of iron metabolism and ferroptosis are relatively recent domains of ALS biomarker research (172, 173). Most biofluid studies are either serum (150, 157) or CSF studies (152, 167), but urine (155) and skeletal
Author(s) and year of publication	Follow-up interval (months)	Number of patients / number of controls	Candidate biomarker evaluated	Biofluid	Assessment method used	Summary of conclusion
*Okada et al. (150)	12	57/0	creatinine	serum	NA	progression detected
Raheja et al. (151)	NA	NA	microRNAs	serum	NA	
Thompson et al. (152)	30	49/52	chitotriosidase (CHIT1), chitinase-3-like protein 1 (CHI3L1), and chitinase-3-like protein 2 (CHI3L2), (phosphorylated neurofilament heavy chain) Pnfh	CSF	nano ultra-high performance liquid chromatography tandem mass spectrometry (nUHPLC LC-MS/MS), ELISA	progression detected
Di Pietro et al. (153)	NA	14/24	micro-RNAs- MIR206, MIR208B, MIR499	skeletal muscle	quantitative real time PCR, Western blot analysis	progression detected
Murdoch et al. (154)	Every 6–12 months	119/35	leukocytes	blood	flow cytometry	progression detected
Shepheard et al. (155)	NA	54/45	urinary p75ECD	urine	sandwich ELISA	progression detected
van Eijk et al. (156)	NA	1241/0	creatinine	plasma	NA	
Waller et al. (157)	3	22/0	microRNAs, miR-17-5p, miR-223-3p, miR-24	serum	Qiagen miScript-based QPCR	progression detected
McCombe et al. (158)	27	98/61	pNFH	serum	NA	
Lu et al. (159)	36	136/39	neurofilament heavy chain-phosphoform	plasma	ELISA	progression detected
*Levine et al. (160)	6	28/0	tau, pNFH	CSF	ELISA	progression detected
*Levine et al. (161)	12	20/0	tau, pNFH	CSF	ELISA	progression detected
Wilson et al. (162)	24	44/60	cystatin C	CSF, plasma	quantitative enzyme linked immunosorbent assay (ELISA)	progress detected
Gaiani et al. (163)	36	94/82	ALSFRS-R, NFL	CSF	enzyme-linked immunosorbent assay (UmanDiagnostics AB)	- NLF may have role as a biomarker
Lu et al. (164)	48	95/88	CK, ferritin, tumor necrosis factor (TNF)-a, and interleukin (IL)-1b, IL-2, IL-8, IL-12p70, IL-4, IL-6, IL-10, and IL-13, IL-6, IFN-Y	plasma	multiplex electrochemiluminescence immunooassay	- no defined progression
Steinacker et al. (165)	24	125/28	neurofilament light chain (NFL), progranulin (PGPN), S100	serum, CSF (baseline only)	ELISA, electrochemiluminescence (ECL) immunooassay, ECLIA Elecsys (Roche, Penzberg, Germany)	- no progression reported
Gibson et al. (166)	12	80/0	CK	NA	NA	- no progression detected
Gray et al. (167)	24	41/14	CSF- glucose, lactate, citric acid, ethanol	CSF	H-NMR	- no progression reported
Lu et al. (168)	36	167/78	neurofilament light chain (NFL)	serum, blood, CSF	electrochemiluminescence immunooassay	- no progression detected
Verstraete et al. (169)	NA	219/100	TDP-43	plasma	sandwich ELISA	- no defined progression
Nardo et al. (170)	6	94/64	PrDX2, GSTO1, OLIC1, HSC70, CypA, PDI, Erp57, CALR, Pa28a, IRAK4, FUBP1, ROA2, actinNT, TDP-43	blood PBMC	2D-DIGE, mass spectometry	- no progression reported

*indicates clinical trial.
Current clinical trials only recruit symptomatic cases despite accruing evidence that ALS has a long presymptomatic phase (5), imaging studies of asymptomatic mutation carriers have consistently confirmed disease-specific cerebral and spinal cord changes prior to symptom onset (181–184) indicating that this disease-phase may represent a crucial window for therapeutic or neuroprotective intervention. The majority of presymptomatic studies assess a single time-point, as opposed to the longitudinal tracking of asymptomatic carriers of ALS-causing mutations (15). While the overwhelming majority of presymptomatic studies focus on C9orf72 hexanucleotide carriers (183, 185–187), no prognostic markers have been validated to predict whether single patients will develop ALS or FTD. Compared to imaging studies, strikingly few presymptomatic neurophysiology studies have been undertaken (66). Studies of asymptomatic ALS-causing mutation carriers have enormous potential for academic research and may pave the way for asymptomatic pharmaceutical trials (5, 181).

DISCUSSION

Clinical trials currently evaluate the efficacy of candidate drugs using the revised ALS functional rating scale (ALSFRS-r), muscle strength assessment tools such as manual muscle testing (MMT), respiratory function indices such as forced vital capacity (FVC), slow vital capacity (SVC) and sniff nasal inspiratory pressure (SNIP), neurophysiological measures and survival (102, 116, 120, 188, 189). These measures however primarily reflect late-stage functional impairment and are not indicative of early stage pathology. Brain and spinal cord imaging has been evaluated as early-stage biomarkers with both diagnostic and monitoring potential (116, 120, 190). The core neuroimaging signature of ALS, irrespective of the disease-stage, includes corticospinal tract (191, 192), corpus callosum (193) and motor cortex degeneration (194). Atrophy in frontaltemporal regions has been primarily associated with neuropsychological deficits (195–197) and linked to hexanucleotide repeats in C9orf72 (145, 198). Longitudinal imaging studies are superior to cross-sectional studies as they readily detect dynamic structural and functional changes and may elucidate compensatory processes (10, 14, 23, 28, 40, 120, 199). The emergence of multi-timepoint study designs (14, 20) enable the characterization of anatomical propagation patterns (200) and provide invaluable temporal insights into the disease trajectory of late-stage ALS. Interscan intervals as short as 3 months can detect longitudinal changes (14, 18, 120). Many longitudinal studies make use of multiple magnetic resonance (MR) metrics which is particularly useful in establishing an optimal panel of monitoring markers (120). Several longitudinal studies have indicated that white matter degeneration can be detected relatively early in the course of ALS with restricted further progression over time, whereas gray matter pathology shows relentless progression in the symptomatic phase of the disease (4, 14, 120). In addition to structural imaging studies, connectivity-based, metabolic, peripheral nerve, and, whole body muscle imaging have contributed to our understanding of longitudinal changes (20, 201–203).

Needle electromyography and nerve conduction studies play an important clinical role in ruling out alternative conditions and confirming a suspected diagnosis of ALS. Despite variations in local protocols, neurophysiological tests are recognized as objective, reliable and cost-effective tests of neuromuscular dysfunction, and have also been repeatedly proposed as longitudinal markers (55, 204). CMAP is generated by depolarization of muscle fibers through the stimulation of a single nerve, where amplitude reductions are interpreted as
loss of motor axons (205, 206). While CMAP measurements capture longitudinal decline, it is confounded by variations in temperature, limb positioning and electrode placement (56, 207). CMAP-derived measures such as MUNE and MUNIX are now extensively utilized to characterize progressive changes in ALS. MUNE estimates motor neuron numbers, and may detect the rate of motor neuron loss, making it a more reliable method of appraising disease progression than CMAP (208, 209). However, its early-phase sensitivity has been questioned, as its use is limited to distal muscles, and the technique requires considerable training, especially for inter-rater and multi-site comparisons (205, 210). TMS allows the characterization of upper motor neuron dysfunction, and may be particularly useful in detecting progressive changes (57, 205).

Functional rating-scales are often the monitoring instruments of choice in clinical trials (55), as they are easy to administer, cost-effective to utilize and have acceptable inter- and intra-rater reliability profiles (7). The most widely used rating scale in clinical longitudinal studies is the ALSFRS-r. Despite its ease of administration, it has considerable limitations, as it may be disproportionately influenced by LMN dysfunction, does not account for laterality or asymmetry of symptoms, omits cognitive impairment, and may be affected by medications (14, 128, 188, 211).

Proteomics, metabolomics and lipidomics have seen significant advances in ALS research and CSF and serum markers are now used in longitudinal academic and pharmacological studies (172). Potential biomarkers for the detection of disease progression include serum and plasma biomarkers such as creatinine (150, 156), pNFH (158, 159), and micro-RNAs (157), CSF biomarkers such as CH3LI (152), tau (160, 161), and cystatin-C (162), and urinary (155) and skeletal muscle (153) biomarkers.

Prediction Analyses

Age at symptom onset (212), BMI (139), bulbar involvement (213), cognitive impairment (214), C9orf72 genotype status (144), respiratory insufficiency (215), “definite ALS” by the El Escorial criteria (216), and functional disability (217) are the most commonly cited determinants of poor prognosis in ALS. SNIP (218) and less commonly used measures such as twitch trans-diaphragmatic pressure (Tw Pdi) (219) and maximal static expiratory mouth pressure (MEP) were shown to be good predictors of ventilator-free survival (219). A combined panel of several clinical, wet, and dry biomarkers is likely to offer the most accurate prognostic information (115, 120, 216, 217, 220). While cerebral (217, 221, 222) and spinal (115) imaging measures have been repeatedly linked to survival outcomes, these have not been utilized in a clinical setting. Neurophysiological variables, such as phrenic nerve stimulation outcomes (223) and biofluid markers, such as pNFH and NFL (165, 168, 224–226) are also thought to be accurate predictors.

Patient Stratification

Attempts to enroll patients in the early stages of the disease are hampered by the universally long diagnostic delay in ALS (227). Patient stratification in trials is typically based on site of onset (228), instead of other variables which have an established prognostic impact (138, 229). Admixed patient cohorts within a trial may hamper the ability to detect how different phenotypes and genotypes may exhibit a different response to a candidate drug (230–232). The stratification of heterogeneous cohorts is now aided by the development of validated staging systems, such as the King’s (233), Milano-Torino (MITOS) (234) or the Fine’itl 9 (FT9) (235) staging systems. The King’s Staging system is based on the number of body regions affected, and the presence of nutritional or respiratory failure (233). The MITOS staging system is based on the ALSFRS-r, and is particularly sensitive to changes in later stages of the disease (236, 237). However, none of these staging systems account for cognitive or behavioral changes (236). Pathological staging systems suggest a four-stage model of ALS based on anatomical patterns of pTDP-43 load (238, 239). This system has now been validated by in vivo neuroimaging studies (240) and signals that accurate pathological staging and patient stratification may be possible based on neuroimaging (199, 240).

International Consortia

Only few ALS centers maintain dedicated biobanking facilities to store and process molecular markers in human biofluid locally. Similarly, relatively few centers are in a position to generate sufficient number of MRI and neurophysiology data sets of rare phenotypes to make meaningful inferences in a single center setting. Brain and tissue banks are also challenging to establish, maintain and fund, despite their invaluable contribution to ALS research (241–243).

Biospecimen samples are also often collected during clinical trials, and discarded after negative outcomes, despite their enormous potential for biomarker discovery (172). One of the most important achievements of biomarker development efforts is the establishment of national and international research consortia such as Association pour la recherche sur la SLA (ARSLA), Neuroimaging Society in ALS (NISALS), Research Motor Neuron (RMN), Canadian ALS Neuroimaging Consortium (CALSNIC), EU Joint Programme for Neurodegenerative Disease Research (JPND), European multidisciplinary ALS network identification to cure motor neurone degeneration (EUROMOTOR) which maintain vital biobanking facilities, registries, data repositories for multicenter data interpretation (121, 244). Clinical trial networks are also increasingly recognized as valuable platforms for multisite data collection and interpretation as they operate with carefully standardized protocols. Consortia such as the European Registry of ALS (EURALS) Consortium, the Western ALS (WALS) Consortium and the Northeast ALS (NEALS) Consortium are other examples (245). NEALS is one of the largest consortia with over 100 member sites from the US, Canada, Mexico, Italy, Lebanon and Australia (246). EURALS coordinates research studies and clinical trials relying on population-based European registries and include centers from Scotland, England, Netherlands, Spain, Ireland, Serbia, Italy, France, and Germany (241, 247, 248). ALS research consortia promote patient-oriented research, maintain biofluid, imaging and DNA banks, and have
the potential to translate scientific advances into pragmatic clinical interventions.

Telehealth

Novel trends in longitudinal data collection include telemedicine-based technologies, wearable sensors and mobile phone applications (230). The continuous collection of data via telephone or telemedicine applications such as the Telehealth in Motor Neuron disease (TiM) system circumvent the inconvenience of patients and caregivers traveling long distances for research appointments (249). Once local data-protection and governance guidelines are complied with, information uploaded from these systems can be made available to healthcare professionals of multidisciplinary teams in real time (249). The feasibility of telehealth for ALS patients via live video-conferencing has also been evaluated (250) and is considered a particularly promising clinical and research platform (249, 250).

A number of cognitive-behavioral screening tools have also been adapted for phone administration (251) including modified versions of the ALS Cognitive Behavior Screen (ALS-CBS), the Controlled Oral Word Association Test (COWAT), the Center for Neurologic Study-Lability Scale (CNS-LS) and found to be statistically equivalent to face-to-face assessments (251). Performance on other tests however, such as the telephone versions of the ALS-Frontal Behavioral Inventory (ALS-FBI) caregiver interview and the Written Verbal Fluency Index (WVFI) was not equivalent to clinic-based assessments (251). The continued development of telephone and internet-enabled devices are likely to provide further insights to longitudinal physical, cognitive and behavioral changes (251).

CONCLUSIONS

While clinical indicators of disease progression remain indispensable, neuroimaging, neurophysiology, and biofluid measures are particularly promising, objective, quantitative biomarker candidates. The validation of combined “wet” and “dry” biomarker panels will not only enable the detection of subtle progressive changes in ALS, but allow precision stratification of heterogeneous patient cohorts in clinical trials and improve existing prediction algorithms.

AUTHOR CONTRIBUTIONS

The manuscript was drafted by RC. EF, SL, OH and PB contributed to the conceptualization, editing, and revision of this paper.

FUNDING

This work was supported by the Andrew Lydon Scholarship, the Health Research Board (HRB–Ireland; HRB E1A-2017-019), the Irish Institute of Clinical Neuroscience (IICN)–Novartis Ireland Research Grant, the Iris O’Brien Foundation, the Perrigo Clinician-Scientist Research Fellowship, and the Research Motor Neuron (RMN–Ireland) Foundation.

REFERENCES

1. Katyal N, Govindarajan R. Shortcomings in the current amyotrophic lateral sclerosis trials and potential solutions for improvement. Front Neurol. (2017) 8:321. doi: 10.3389/fneur.2017.00321

2. Miller. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. (2002) 14:CD001447. doi: 10.1002/14651858.CD001447

3. Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH. The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol. (2012) 124:339–52. doi: 10.1007/s00401-012-1022-4

4. Menke RA, Korner S, Filippini N, Douaud G, Knight S, Talbot K, et al. Widespread grey matter pathology dominates the longitudinal cerebral MRI and clinical landscape of amyotrophic lateral sclerosis. Brain. (2014) 137(Pt 9):2546–55. doi: 10.1093/brain/awu162

5. Eisen A, Kiernan M, Mitsumoto H, Swash M. Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry. (2014) 85:1232–8. doi: 10.1136/jnnp-2013-307135

6. Benatar M, Wuu J. Presymptomatic studies in ALS: rationale, challenges, and approach. Neurology. (2012) 79:1732–9. doi: 10.1212/WNL.0b013e31826e9b1d

7. Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. (2014) 13:1127–38. doi: 10.1016/S1474-4422(14)70129-2

8. Beghi E, Chio A, Courratier P, Esteban J, Hardiman O, Logroscino G, et al. The epidemiology and treatment of ALS: focus on the heterogeneity of the disease and critical appraisal of therapeutic trials. Amyotroph Lateral Scler. (2011) 12:1–10. doi: 10.3109/17482968.2010.502940

9. de Carvalho M, Swash M. Can selection of rapidly progressing patients shorten clinical trials in amyotrophic lateral sclerosis? Arch Neurol. (2006) 63:557–60. doi: 10.1001/archneur.63.4.557

10. Schuster C, Elamin M, Hardiman O, Bede P. Presymptomatic and longitudinal neuroimaging in neurodegeneration—from snapshots to motion picture: a systematic review. J Neurol Neurosurg Psychiatry. (2015) 86:1089–96. doi: 10.1136/jnnp-2014-309888

11. Turner MR, Agosta F, Bede P, Govind V, Lule D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med. (2012) 6:319–37. doi: 10.2217/bmm.12.26

12. Bede P, Hardiman O. Lessons of ALS imaging: pitfalls and future directions - a critical review. NeuroImage Clin. (2014) 4:436–43. doi: 10.1016/j.nicl.2014.02.011

13. Bowser R, Turner MR, Shefner J. Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations. Nat Rev Neurol. (2011) 7:631–8. doi: 10.1038/nrneurol.2011.151

14. Bede P, Hardiman O. Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration. Amyotroph Lateral Scler Frontotemporal Degener. (2018) 19:232–41. doi: 10.1080/21678421.2017.1407795

15. Floeter MK, Danialien LE, Braun LE, Wu T. Longitudinal diffusion imaging across the C9orf72 clinical spectrum. J Neurol Neurosurg Psychiatry. (2018) 89:53–60. doi: 10.1136/jnnp-2017-316799

16. Kassubek J, Muller HP, Del Tredici K, Lule D, Gorges M, Braak H, et al. Imaging the pathoanatomy of amyotrophic lateral sclerosis in vivo: targeting a propagation-based biological marker. J Neurol Neurosurg Psychiatry. (2018) 89:374–81. doi: 10.1136/jnnp-2017-316365

17. Stampfl P, Sommer S, Czel D, Kozerke S, Neuwirth C, Weber M, et al. Investigation of neurodegenerative processes in amyotrophic lateral sclerosis using white matter fiber density. Clin Neurophysiol. (2018). doi: 10.1016/j.clinph.2018.06.070-8. [Epub ahead of print]

18. Baldranov D, Khoemenko A, Kobor I, Bogdahn U, Gorges M, Kassubek J, et al. Longitudinal diffusion tensor imaging-based assessment of tract alterations: an application to amyotrophic lateral...
sclerosis. *Front Hum Neurosci.* (2017) 11:567. doi: 10.3389/fnhum.2017.00567

19. de Albuquerque M, Branco LM, Rezende TJ, de Andrade HM, Nucci A, Franca MC Jr. Longitudinal evaluation of cerebral and spinal cord damage in Amyotrophic Lateral Sclerosis. *NeuroImage Clin.* (2017) 14:269–76. doi: 10.1016/j.nicl.2017.01.024

20. Menke RAL, Proudfoot M, Talbot K, Turner MR. The two-year progression of structural and functional cerebral MRI in amyotrophic lateral sclerosis. *NeuroImage Clin.* (2018) 17:953–61. doi: 10.1016/j.nicl.2017.12.025

21. Simon NG, Lagopoulos J, Paling S, Pflugner C, Park SB, Howells J, et al. Peripheral nerve diffusion tensor imaging as a measure of disease progression in ALS. *J. Neurovirol.* (2017) 26:882–90. doi: 10.1007/s00415-017-4843-x

22. Floeter MK, Bagac D, Danielian LE, Braun LE, Traynor BJ, Kwan JY. Longitudinal imaging in C9orf72 mutation carriers: relationship to phenotype. *NeuroImage Clin.* (2016) 12:1035–43. doi: 10.1016/j.nicl.2016.10.014

23. Schulthess I, Gorges M, Muller HP, Lude D, Del Tredici K, Ludolph AC, et al. Functional connectivity changes resemble patterns of pTDP-43 pathology in amyotrophic lateral sclerosis. *Sci Rep.* (2016) 6:38391. doi: 10.1038/srep38391

24. McMillan CT, Russ J, Wood EM, Irwin DJ, Grossman M, McCluskey L, et al. C9orf72 promoter hypermethylation is neuroprotective: neuroimaging and neuropathologic evidence. *Neurology.* (2015) 84:1622–30. doi: 10.1212/WNL.000000000001495

25. Steinbach R, Loewe K, Kaufmann J, Machts J, Kollewe K, Petri S, et al. Structural hallmarks of amyotrophic lateral sclerosis progression revealed by probabilistic fiber tractography. *J. Neurovirol.* (2015) 26:2257–70. doi: 10.1007/s00415-015-7841-1

26. Westeneng H-J, Verstraete E, Walhout R, Schmidt R, Hendrikse J, Veldink JH, et al. Subcortical structures in amyotrophic lateral sclerosis. *Neurobiol Aging.* (2015) 36:1075–82. doi: 10.1016/j.neurobiolaging.2014.09.002

27. Schuster C, Kasper E, Machts J, BITTNER D, KAUFMANN J, Benecke R, et al. Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. *J. Neurovirol.* (2014) 26:1871–80. doi: 10.1007/s00415-014-7426-4

28. Stoppe CM, Vielhaber S, Eckart C, Machts J, Kaufmann J, Heinze HJ, et al. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. *NeuroImage Clin.* (2014) 5:277–90. doi: 10.1016/j.nicl.2014.07.007

29. Verstraete E, Veldink JH, van den Berg LH, van den Heuvel MP. Structural brain network imaging shows expanding disconnection of the motor system in amyotrophic lateral sclerosis. *Hum Brain Mapp.* (2015) 35:1351–61. doi: 10.1002/hbm.22258

30. Ignjatovic A, Stevic Z, Lavrnic S, Dakovic M, Bajcic G. Brain iron MRI: a diffusion tensor imaging study. *Amyotroph Lateral Scler Frontotemporal Degener.* (2012) 13:141. doi: 10.1186/1471-2202-13-141

31. Kwan JY, Meoded A, Danielian LE, Wu T, Floeter MK. Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. *NeuroImage Clin.* (2012) 2:151–60. doi: 10.1016/j.nicl.2012.12.003

32. Keil C, Prell T, Peschel T, Hartung V, Dengler R, Grosskreutz J. Longitudinal diffusion tensor imaging in amyotrophic lateral sclerosis. *BMC Neurosci.* (2012) 13:141. doi: 10.1186/1471-2202-13-141

33. Menke RA, Abraham I, Thiel CS, Filippini N, Knight S, Talbot K, et al. Fractional anisotropy in the posterior limb of the internal capsule and prognosis in amyotrophic lateral sclerosis. *Arch. Neurol.* (2012) 69:1493–9. doi: 10.1001/archneur.2012.80:53–5. doi: 10.1136/jnnp.2008.154252

34. Antvans B, Khan A, McCluskey I, Elman L, Grossman M. Longitudinal cortical atrophy in amyotrophic lateral sclerosis with frontotemporal dementia. *Arch. Neurol.* (2009) 66:138–9. doi: 10.1001/archneurol.2008.542

35. Lude D, Diekmann V, Kassubej I, Kurt A, Birbaumer N, Ludolph AC, et al. Cortical plasticity in amyotrophic lateral sclerosis: motor imagery and function. *Neuropsychabil. Neuro Repair.* (2007) 21:518–26. doi: 10.1177/15596830700698

36. Unrath A, Ludolph AC, Kassubej I. Brain metabolites in definite amyotrophic lateral sclerosis. A longitudinal proton magnetic resonance spectroscopy study. *J. Neurovirol.* (2007) 25:1099–106. doi: 10.1007/s00415-006-0495-2

37. Cheah BC, Vucic S, Krishnan AV, Boland RA, Kiernan MC. Progessive axonal dysfunction and clinical impairment in amyotrophic lateral sclerosis. *J. Neurol Neurosurg Psychiatry.* (2013) 84:163–9. doi: 10.1136/jnnp-2012-303507
55. de Carvalho M, Swash M. Sensitivity of electrophysiological tests for upper and lower motor neuron dysfunction in ALS: a six-month longitudinal study. Muscle Nerve. (2010) 41:208–11. doi: 10.1002/mus.21495

56. Neuworth C, Nandekar S, Stalberg E, Weber M. Motor unit number index (MUNI): a novel neurophysiological technique to follow disease progression in amyotrophic lateral sclerosis. Muscle Nerve. (2010) 42:379–84. doi: 10.1002/mus.21707

57. Floyd AG, Yu QP, Piboolnurak P, Tang MX, Fang Y, Smith WA, et al. Transcranial magnetic stimulation in ALS: utility of central motor conduction tests. Neurology. (2009) 72:498–504. doi: 10.1212/01.wnl.0000341933.97883.a4

58. Gooch CL, Pullman SL, Shungu DC, Ulug AM, Chan S, Gordon PH, et al. Motor unit number estimation (MUNE) in diseases of the motor neuron: utility and comparative analysis in a multimodal biomarker study. Suppl Clin Neurophysiol. (2009) 69:153–62. doi: 10.1016/S1567-424X(08)00015-9

59. Liu XX, Zhang J, Zheng J, Zheng S, Xu XS, Kang DX, et al. Stratifying disease stages with different progression rates determined by electrophysiological tests in patients with amyotrophic lateral sclerosis. Muscle Nerve. (2009) 39:304–9. doi: 10.1002/mus.21144

60. Albrecht E, Kuntzer T. Number of Edb motor units estimated using an adapted multiple point stimulation method: normal values and longitudinal studies in ALS and peripheral neuropathies. Clin Neurophysiol. (2004) 115:557–63. doi: 10.1016/j.clineuro.2003.11.001

61. Wang FC, Bosquiaux O, De Pasqua V, Delwaide PJ. Changes in motor unit numbers in patients with ALS: a longitudinal study using the adapted multiple point stimulation method. Amyotroph Lateral Scler Other Motor Neurol Disord. (2002) 3:31–8. doi: 10.1080/1466023021000756516

62. Chan KM, Stashuk DW, Brown WF. A longitudinal study of the pathophysiological changes in single human tenuor motor units in amyotrophic lateral sclerosis. Muscle Nerve. (1998) 21:1714–23.

63. Felce KJ. A longitudinal study comparing tenuor motor unit number estimates to other quantitative tests in patients with amyotrophic lateral sclerosis. Muscle Nerve. (1997) 20:179–85.

64. Yuen EC, Olney RK. Longitudinal study of fiber density and motor unit number estimate in patients with amyotrophic lateral sclerosis. Neurology. (1997) 49:573–8. doi: 10.1212/WNL.49.2.573

65. Vucic S, Lin CS, Cheah BC, Murray J, Menon P, Krishnan AV, et al. Riluzole and functional improvement in SOD1 mutation carriers using motor unit number estimation. Neurology. (2002) 59:200–6. doi: 10.1212/01.wnl.0000035861.25048.93

66. de Carvalho M, Miranda PC, Luís ML, Duda-Saeres E. Cortical muscle representation in amyotrophic lateral sclerosis patients: changes with disease evolution. Muscle Nerve. (1999) 22:1684–92.

67. Swash M, Schwartz MS. A longitudinal study of changes in motor units in motor neuron disease. J Neurol Neurosurg Psychiatry. (1993) 56:185–97. doi: 10.1136/jnnp.56.2.185

68. Aggarwal A, Nicholson G. Detection of preclinical motor neuron loss in SOD1 mutation carriers using motor unit number estimation. J Neurol Neurosurg Psychiatry. (2002) 73:199–201. doi: 10.1136/jnnp.73.2.199

69. Arasaki K, Kato Y, Hyodo A, Ushijima R, Tamaki M. Longitudinal study of functional spinal alpha motor neuron loss in amyotrophic lateral sclerosis. Muscle Nerve. (2002) 25:520–6. doi: 10.1002/mus.10067

70. de Carvalho M, Miranda PC, Luís ML. Evaluation of upper extremity reachable workspace in ALS by Kinect 3D motion capture. J Neuroeng Rehabil. (2013) 10:57. doi: 10.1186/1743-0003-10-57

71. Rooney J, Burke T, Vajda A, Heverin M, Hardiman O. What does the Motor unit number estimate in patients with amyotrophic lateral sclerosis. Muscle Nerve. (2017) 55:115–20. doi: 10.1002/mus.25586

72. Roberts-South A, Findlater K, Strong MJ, Orange JB. Longitudinal changes in discourse production in amyotrophic lateral sclerosis. Semin Speech Lang. (2012) 33:79–94. doi: 10.1055/s-0033-1301165

73. Floeter MK, Traynor BJ, Farren J, Braun LE, Tierney M, Wiggs EA, et al. Disease progression in C9orf72 mutation carriers. Neurology. (2017) 89:234–41. doi: 10.1212/WNL.0000000000004115

74. Elamin M, Bede P, Byrne S, Jordan N, Gallagher L, Wynn B, et al. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology. (2013) 80:1590–7. doi: 10.1212/WNL.0b013e3182f181ac

75. Poletti B, Solca F, Carelli L, Faini A, Madotto F, Lafronza A, et al. Cognitive-behavioral longitudinal assessment in ALS: the Italian Edinburgh Cognitive and Behavioral ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener. (2018) 19:387–95. doi: 10.1080/21678421.2018.1473443

76. Xiao Z, Alruwaili ARS, Henderson RD, McCombe PA. Screening for cognitive and behavioural impairment in amyotrophic lateral sclerosis: frequency of abnormality and effect on survival. J Neurol Sci. (2017) 376:16–23. doi: 10.1016/j.jns.2017.02.061

77. Gillingham SM, Yanusova Y, Ganda A, Rogoveva E, Black SE, Stuss DT, et al. Assessing cognitive functioning in ALS: a focus on frontal lobe processes. Amyotroph Lateral Scler Frontotemporal Degener. (2018) 17:182–92. doi: 10.1080/21678421.2016.1248977

78. Mioshi E, Hisieh S, Caga J, Ramsey E, Chen K, Lillo P, et al. A novel tool to detect behavioural symptoms in ALS. Amyotroph Lateral Scler Frontotemporal Degener. (2014) 15:298–304. doi: 10.3109/21678421.2014.986927

79. Jakobsson Larsson B, Ozzane AG, Nordin K, Nygren I. A prospective study of quality of life in amyotrophic lateral sclerosis patients. Acta Neurol Scand. (2013) 136:631–4. doi: 10.1111/j.1600-0404.2012.12774.x

80. Beck M, Giess R, Magnus T, Puls I, Reiners K, Toyka KV, et al. Progressive sudomotor dysfunction in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. (2010) 71:68–70. doi: 10.1136/jnnp.2007.163845

81. Jakobsson Larsson B, Ozzane AG, Nordin K, Nygren I. A prospective study of quality of life in amyotrophic lateral sclerosis patients. Acta Neurol Scand. (2013) 136:631–4. doi: 10.1111/j.1600-0404.2012.12774.x

82. Beck M, Giess R, Magnus T, Puls I, Reiners K, Toyka KV, et al. Progressive sudomotor dysfunction in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. (2010) 71:68–70. doi: 10.1136/jnnp.2007.163845

83. Panitz S, Kornhuber M, Hanisch F. The checklist individual strength (CIS20-R). Acta Neurol Scand. (2015) 132:277–80. doi: 10.1111/ane.12774

84. Arasaki K, Kato Y, Hyodo A, Ushijima R, Tamaki M. Longitudinal study of functional spinal alpha motor neuron loss in amyotrophic lateral sclerosis. Muscle Nerve. (2002) 25:520–6. doi: 10.1002/mus.10067

85. Beck M, Giess R, Magnus T, Puls I, Reiners K, Toyka KV, et al. Progressive sudomotor dysfunction in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. (2010) 71:68–70. doi: 10.1136/jnnp.2007.163845

86. Poletti B, Solca F, Carelli L, Faini A, Madotto F, Lafronza A, et al. Cognitive-behavioral longitudinal assessment in ALS: the Italian Edinburgh Cognitive and Behavioral ALS screen (ECAS). Amyotroph Lateral Scler Frontotemporal Degener. (2018) 19:387–95. doi: 10.1080/21678421.2018.1473443

87. Atassi N, Berry J, Shui A, Zach N, Sherman A, Sinani E, et al. The PRO-ACT database: design, initial analyses, and predictive features. Neurology. (2014) 83:1719–25. doi: 10.1212/WNL.0000000000000951
94. Watanabe H, Atsuta N, Nakamura R, Hirakawa A, Watanabe H, Ito M, et al. Factors affecting longitudinal functional decline and survival in amyotrophic lateral sclerosis patients. *Amyotrophic Lateral Scler Frontotemporal Degener*. (2015) 16:230–6. doi: 10.3109/21678421.2014.990036

95. Leonards L, Dolenc Groselj L, Vidmar G. Factors related to respiration influencing survival and respiratory function in patients with amyotrophic lateral sclerosis: a retrospective study. *Eur J Neurol*. (2012) 19:1518–24. doi: 10.1111/j.1468-1331.2012.03754.x

96. Mahajan KR, Bach JR, Saporton L, Perez N. Diaphragm pacing and noninvasive respiratory management of amyotrophic lateral sclerosis/motor neuron disease. *Muscle Nerve*. (2012) 46:851–5. doi: 10.1002/mus.23663

97. Pinto S, Geraldes R, Vaz N, Pinto A, de Carvalho M. Changes of the phrenic nerve motor response in amyotrophic lateral sclerosis: longitudinal study. *Clin Neurophysiol*. (2009) 120:2082–5. doi: 10.1016/j.clinph.2009.08.025

98. Montes J, Cheng B, Diamond B, Doorish C, Mitsumoto H, Gordon PH. The Timed Up and Go test: predicting falls in ALS. *Amyotrophic Lateral Scler*. (2007) 8:292–5. doi: 10.1080/1748296070145931

99. Vender RL, Maugther D, Walsh S, Alams Z, Simmons Z. Respiratory systems abnormalities and clinical milestones for patients with amyotrophic lateral sclerosis with emphasis upon survival. *Amyotrophic Lateral Scler*. (2007) 8:36–41. doi: 10.1080/17482960600836951

100. Wilson SR, Quantz MA, Strong MJ, Ahmad D. Increasing peak expiratory flow time in amyotrophic lateral sclerosis. *Chest*. (2005) 127:156–60. doi: 10.1378/chest.127.1.156

101. Poloni M, Mento SA, Mascherpa C, Ceroni M. Value of spirometric investigations in amyotrophic lateral sclerosis. *Ital J Neurol Sci*. (1983) 4:39–46. doi: 10.1007/BF02043436

102. Andersen TM, Sandnes A, Fondevæs O, Nilsen RM, Tysnes OB, Gjerde OB. It is possible to define a critical point in the forced expiratory flow time in amyotrophic lateral sclerosis. *Respir Care*. (2018) 63:538–49. doi: 10.4187/respcare.05924

103. Yamauchi R, Imai T, Tsuda E, Hozuki T, Yamamoto D, Shimohama S. Factors affecting longitudinal functional decline and survival in amyotrophic lateral sclerosis patients. *Amyotroph Lateral Scler*. (2015) 16:230–6. doi: 10.3109/17482968.2014.995516

104. El Mendili MM, Chen R, Tiret B, Villard N, Trunet S, Pelegrini-Issac M, et al. Variation in the neurophysiological examination of amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener*. (2013) 14:340–8. doi: 10.3109/17482968.2012.701308

105. Bede P, Bokde AL, Byrne S, Elamin M, Fagan AJ, Hardiman O. Spinal cord markers in ALS: diagnostic and biomarker considerations. *Amyotrophic Lateral Scler*. (2012) 13:407–15. doi: 10.3109/17482968.2011.649760

106. El Mendili MM, Cohen-Adad J, Pelegrini-Issac M, Rossignol S, Moritz-Koutulis R, Marchand-Pauvert V, et al. Multi-parametric spinal cord MRI as potential progression marker in amyotrophic lateral sclerosis. *PLoS ONE*. (2014) 9:e995516. doi: 10.1371/journal.pone.0099516

107. Quaranta VN, Carratu P, Damiani MF, Dragonieri S, Capozzolo A, Benali H, et al. Spinal cord multi-parametric magnetic resonance imaging for survival prediction in amyotrophic lateral sclerosis. *Eur J Neurol*. (2017) 24:1040–6. doi: 10.1111/ejn.13329

108. Grolez G, Moreau C, Dané-Brunaud V, Delmaire C, Lopes R, Pradat PF, et al. The value of magnetic resonance imaging as a biomarker for amyotrophic lateral sclerosis: a systematic review. *BMC Neurol*. (2016) 16:155. doi: 10.1186/s12883-016-0676-2

109. Stroman PW, Wheeler-Kingshott C, Bacon M, Schwab JM, Bosma R, Brooks J, et al. The current state-of-the-art of spinal cord imaging: methods. *NeuroImage*. (2014) 84:1070–81. doi: 10.1016/j.neuroimage.2013.04.124

110. Verma T, Cohen-Adad J. Effect of respiration on the B0 field in the human spinal cord at 3T. *Magan Reson Med*. (2014) 72:1629–36. doi: 10.1002/mrm.25077

111. Finegan E, Chipika RH, Shing SLH, Hardiman O, Bede P. Primary lateral sclerosis: a distinct entity or part of the ALS spectrum? *Amyotrophic Lateral Scler Frontotemporal Degener*. 2019:1–13. doi: 10.1080/17482968.2018.1550518

112. Bede P, Querin G, Pradat PF. The changing landscape of motor neuron disease imaging: the transition from descriptive studies to precision clinical tools. *Curr Opin Neurol*. (2018) 31:431–8. doi: 10.1097/WCO.0000000000000569

113. Muller HP, Turner MR, Grosskreutz J, Abrahams S, Bede P, Govind V, et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. *J Neurol Neurosurg Psychiatry*. (2016) 87:570–9. doi: 10.1136/jnnp-2015-313195

114. Atassi N, Xu M, Triantafyllou C, Keil B, Lawson R, Cernasov P, et al. Ultra high-field (7tesla) magnetic resonance spectroscopy in Amyotrophic Lateral Sclerosis. *PLoS ONE*. (2015) 12:e0177680. doi: 10.1371/journal.pone.0177680

115. Verstraete E, Biessels GJ, van Den Heuvel MP, Visser F, Luijten PR, van Den Berg LH. No evidence of microbleeds in ALS patients at 7 Tesla MRI. *Amyotrophic Lateral Scler*. (2010) 11:555–7. doi: 10.3109/17482968.2010.513053

116. Dimond D, Ishaque A, Chenji S, Mah D, Chen Z, Seers P, et al. White matter structural network abnormalities underlie executive dysfunction in amyotrophic lateral sclerosis. *Hum Brain Mapp*. (2017) 38:1249–68. doi: 10.1002/hbm.23452

117. Cardenas AM, Sarfis JE, Kwan JY, Bageac D, Gala ZS, Danielian LE, et al. Pathology of callosal damage in ALS: an ex-vivo, 7 T diffusion tensor MRI study. *NeuroImage Clin*. (2017) 15:200–8. doi: 10.1016/j.nicl.2017.04.024

118. De Reuck J, Devos D, Moreau C, Auger F, Durieux N, Deramecourt V, et al. Topographic distribution of brain iron deposition and small cerebrovascular lesions in amyotrophic lateral sclerosis and in frontotemporal lobar degeneration: a post-mortem 7.0-tesla magnetic resonance imaging study with neuropathological correlates. *Acta Neurol Belg*. (2017) 117:873–8. doi: 10.1007/s13760-017-0832-5

119. Pudgal K, Fuglsang-Frederiksen A, Johnsen B, Tankisi H, de Carvalho M, Fawcett PRW, et al. A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. *Amyotroph Lateral Scler*. (2015) 16:155. doi: 10.1186/s12883-016-0672-6

120. Petrén D, Mansfield C, Moussy A, Hermine O. ALS clinical trials review: 20 Years of failure. Are we any closer to registering a new treatment? *Front Aging Neurosci*. (2017) 9:688. doi: 10.3389/fnagi.2017.00068
130. Jenkinson C, Harris R, Fitzpatrick R. The Amyotrophic Lateral Sclerosis Assessment Questionnaire (ALSAQ-40): evidence for a method of imputing missing data. *Amyotroph Lateral Scler.* (2007) 8:90–5. doi: 10.1080/148294606008989343

131. Aggarwal SP, Zipprer S, Simpson E, McKinley J, Jackson KE, Pinto P, et al. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. *Lancet Neurology.* (2010) 9:481–8. doi: 10.1016/S1474-4422(10)70068-5

132. Smith R, Pioro E, Myers K, Sirdofsky M, Goslin K, Meekins G, et al. Enhanced bulbar function in amyotrophic lateral sclerosis: the nuedxta experiment trial. *Neurotherapeutics.* (2017) 14:762–72. doi: 10.1007/s13311-016-0508-5

133. Woo JH, Wang S, Melhem ER, Gee JC, Cucchiara A, McCluskey L, et al. Linear associations between clinically assessed upper motor neuron disease and diffusion tensor imaging metrics in amyotrophic lateral sclerosis. *PLoS ONE.* (2014) 9:e105753. doi: 10.1371/journal.pone.0105753

134. Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, et al. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: results of a multi-stage, randomised, double-blind, placebo-controlled, phase 3 study. *Lancet Neurology.* (2014) 13:1083–91. doi: 10.1016/S1474-4422(14)70222-4

135. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. *N Engl J Med.* (1994) 330:585–91. doi: 10.1056/NEJM199403033300901

136. Kim S, Kim JK, Son MJ, Kim D, Song B, Son I, et al. Mecasin treatment in amyotrophic lateral sclerosis. *Ann Neurol.* (2018) 83:258–68. doi: 10.1002/ana.25143

137. Di Pietro L, Baranzini M, Berardinelli MG, Lattanzi W, Monforte M, Tasca G, et al. Potential therapeutic targets for ALS: MIR206, MIR208h and MIR499 are modulated during disease progression in the skeletal muscle of patients. *Sci Rep.* (2017) 7:9538. doi: 10.1038/s41598-017-10161-z

138. Okada M, Yamashita S, Ishizaki M, Maeda Y, Ando Y. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis. *cNeurologicalSci.* (2018) 11:11–4. doi: 10.1016/j.cns.2018.05.001

139. Shefner JM, Liu D, Leitner ML, Schoenfeld D, Johns DR, Ferguson T, et al. Potential therapeutic targets for ALS: MIR206, MIR208h and MIR499 are modulated during disease progression in the skeletal muscle of patients. *Sci Rep.* (2017) 7:9538. doi: 10.1038/s41598-017-10161-z

140. Cudkowicz ME, Titus S, Kearney M, Yu H, Sherman A, Schoenfeld D, et al. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: results of a multi-stage, randomised, double-blind, placebo-controlled, phase 3 study. *Lancet Neurology.* (2014) 13:1083–91. doi: 10.1016/S1474-4422(14)70222-4

141. Woolley S, Goetz R, Factor-Litvak P, Murphy J, Hupf J, Lomen-Hoerth C, et al. Longitudinal screening detects cognitive stability and behavioral deterioration in ALS patients. *Behav Neurol.* (2018) 2018:5969137. doi: 10.1155/2018/5969137

142. Christidi F, Karavasilis E, Rentzos M, Kelekis N, Evdokimidis I, Bede P, et al. Longitudinal assessment of the Edinburgh Cognitive and Behavioural Amyotrophic Lateral Sclerosis Screen (ECAS): lack of practice effect in ALS patients? *Amyotroph Lateral Scler Frontotemporal Degener.* (2017) 18:202–9. doi: 10.1080/21678421.2017.1283418

143. Woolley S, Goetz R, Factor-Litvak P, Murphy J, Hupf J, Lomen-Hoerth C, et al. Longitudinal screening detects cognitive stability and behavioral deterioration in ALS patients. *Behav Neurol.* (2018) 2018:5969137. doi: 10.1155/2018/5969137

144. Woolley S, Goetz R, Factor-Litvak P, Murphy J, Hupf J, Lomen-Hoerth C, et al. Longitudinal screening detects cognitive stability and behavioral deterioration in ALS patients. *Behav Neurol.* (2018) 2018:5969137. doi: 10.1155/2018/5969137

145. Okada M, Yamashita S, Ishizaki M, Maeda Y, Ando Y. Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis. *cNeurologicalSci.* (2018) 11:11–4. doi: 10.1016/j.cns.2018.05.001

146. Shefner JM, Liu D, Leitner ML, Schoenfeld D, Johns DR, Ferguson T, et al. Potential therapeutic targets for ALS: MIR206, MIR208h and MIR499 are modulated during disease progression in the skeletal muscle of patients. *Sci Rep.* (2017) 7:9538. doi: 10.1038/s41598-017-10161-z
166. Gibson SB, Kasarskis EJ, Hu N, Pulst SM, Mendiondo MS, Matthews DE, et al. Relationship of creatine kinase to body composition, disease state, and longevity in ALS. Amyotroph Lateral Scler Frontotemporal Degener. (2015) 16:473–7. doi: 10.3109/21678421.2015.1056345

167. Gray E, Larkin JR, Claridge TD, Talbot K, Sibson NR, Turner MR. The longitudinal cerebrospinal fluid metabolic profile of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. (2015) 16:456–63. doi: 10.3109/21678421.2015.1053490

168. Lu CH, Macdonald-Wallis C, Gray E, Pearce N, Petzold A, Norgren E, et al. Neurofilament light chain: a prognostic biomarker in amyotrophic lateral sclerosis. Neurology. (2015) 84:2247–57. doi: 10.1212/WNL.000000000001642

169. Verstraete E, Kuiper PJ, van Blitterswijk MM, Veldink JH, Schelhas HJ, van den Berg LH, et al. TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. (2012) 13:446–51. doi: 10.3109/17482968.2012.703208

170. Nardo G, Pozzi S, Pignataro M, Lauranzano E, Spano G, Garbelli S, et al. Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells. PLoS ONE. (2011) 6:e25545. doi: 10.1371/journal.pone.0025545

171. Steinacker P, Huss A, Mayer B, Grehl T, Grosskreutz J, Borck G, et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not programlin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener. (2017) 18:112–9. doi: 10.1080/21678421.2016.1241729

172. Blasco H, Patin F, Descat A, Garcon G, Corcias P, Gele P, et al. A pharmaco-metabolomics approach in a clinical trial of ALS: identification of predictive markers of progression. PLoS ONE. (2018) 13:e0198116. doi: 10.1371/journal.pone.0198116

173. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. (2018) 133:221–33. doi: 10.1016/j.freeradbiomed.2018.09.033

174. Van Weemen BK, Schuurs AH. Immunoassay using antigen-173. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C. Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med. (2018) 133:221–33. doi: 10.1016/j.freeradbiomed.2018.09.033

175. Boylan K, Yang C, Crook J, Overstreet K, Heckman M, Wang Y, et al. Increased functional connectivity common to symptomatic amyotrophic lateral sclerosis and those at genetic risk. Neurology. (2016) 87:580–8. doi: 10.1212/WNL.0000000000011642

176. Gray E, Larkin JR, Claridge TD, Talbot K, Sibson NR, Turner MR. The longitudinal cerebrospinal fluid metabolic profile of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. (2015) 16:456–63. doi: 10.3109/21678421.2015.1053490

177. Strong MJ, Kesavapany S, Pant HC. The pathobiology of amyotrophic lateral sclerosis. J Neuropathol Exp Neurol. (2015) 74:668–70. doi: 10.1002/jn.24210

178. Ranganathan S, Williams E, Ganchev P, Gopalakrishnan V, Lacomics D, Mathus LJ, et al. Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology. (2017) 89:1256–64. doi: 10.1212/WNL.000000000001493

179. Kollew K, Mauss U, Krampl K, Petr S, Dengler R, Mohammad B. ALSFRS-R score and its utility as a prognostic tool for ALS-progression. J Neurol Sci. (2008) 275:69–73. doi: 10.1016/j.jns.2008.07.016

180. Rudnicki SA, Berry JD, Ingersoll E, Archibald D, Cudkowicz ME, Kerr DA, et al. Despreximpecolle effects on functional decline and survival in subjects with amyotrophic lateral sclerosis in a Phase II study: subgroup analysis of demographic and clinical characteristics. Amyotroph Lateral Scler Frontotemporal Degener. (2013) 14:44–51. doi: 10.3109/17482968.2012.73723

181. Bede P, Iyer PM, Finegan E, Omer T, Hardiman O. Virtual brain biopsies in amyotrophic lateral sclerosis: diagnostic classification based on in vivo pathological patterns. NeuroImage Clin. (2017) 15:653–8. doi: 10.1016/j.nicl.2017.06.010

182. Bede P, Elamin M, Byrne S, McLaughlin RL, Kenna K, Vajda A, et al. Patterns of cerebral and cerebellar white matter degeneration in ALS. J Neurol Neurosurg Psychiatry. (2015) 86:668–70. doi: 10.1136/jnnp-2014-308172

183. Schuster C, Elamin M, Hardiman O, Bede P. The segmental diffusivity profile of amyotrophic lateral sclerosis associated white matter degeneration. Eur J Neurolog. (2016) 23:1361–71. doi: 10.1111/ene.13038

184. Ng MC, Ho JT, Ho SL, Lee R, Li G, Cheng TS, et al. Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation. J Magn Reson Imaging. (2008) 27:8–13. doi: 10.1002/jmri.21217

185. Wang L, Zhang H, Alexander DC, Durrieulman S, Routier A, Rinaldi D, et al. Neurite density is reduced in the presymptomatic phase of C9orf72 disease. J Neurol Neurosurg Psychiatry. (2018). doi: 10.1136/jnnp-2018-318994. [Epub ahead of print].

186. Bertrand A, Wen J, Rinaldi D, Houot M, Sayah S, Camuzat A, et al. Early cognitive, structural, and microstructural changes in presymptomatic C9orf72 carriers younger than 40 Years. JAMA Neurol. (2018) 75:236–45. doi: 10.1001/jamaneurol.2017.4266

187. Papma JM, Fiskoot LC, Panman JL, Dopper EG, den Heijer T, Donker Kaat L, et al. Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion. Neurology. (2017) 89:1256–64. doi: 10.1212/WNL.000000000001493

188. Chipika et al. Longitudinal and Monitoring Markers of MND
238. Braak H, Brettschneider J, Ludolph AC, Lee VM, Trojanowski JQ, Del Tredici K. Amyotrophic lateral sclerosis—a model of corticofugal axonal spread. *Nat Rev Neurol.* (2013) 9:708–14. doi: 10.1038/nrneurol.2013.221

239. Brettschneider J, Del Tredici K, Toledo JB, Robinson JL, Irwin DJ, Grossman M, et al. Stages of pTDP-43 pathology in amyotrophic lateral sclerosis. *Ann Neurol.* (2013) 74:20–38. doi: 10.1002/ana.23937

240. Kassubek J, Muller HP, Del Tredici K, Brettschneider J, Pinkhardt EH, Lule D, et al. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology. *Brain.* (2014) 137(Pt 6):1733–40. doi: 10.1093/brain/awu090

241. Sherman AV, Gubitz AK, Al-Chalabi A, Bedlack R, Berry J, Conwit R, et al. Infrastructure resources for clinical research in amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener.* (2013) 14(Suppl. 1):53–61. doi: 10.3109/21678421.2013.779058

242. Sherman A, Bowser R, Grasso D, Power B, Milligan C, Jaffa M, et al. Proposed BioRepository platform solution for the ALS research community. *Amyotroph Lateral Scler.* (2011) 12:11–6. doi: 10.3109/17482968.2010.539233

243. Otto M, Bowser R, Turner M, Berry J, Brettschneider J, Connor J, et al. Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS. *Amyotroph Lateral Scler.* (2012) 13:1–10. doi: 10.3109/17482968.2011.627589

244. Turner MR, Grosskreutz J, Kassubek J, Abrahams S, Agosta F, Benatar M, et al. Towards a neuroimaging biomarker for amyotrophic lateral sclerosis. *Lancet Neurol.* (2011) 10:400–3. doi: 10.1016/S1474-4422(11)70049-7

245. Johnston MV, Adams HP, Fatemi A. *Neurobiology of Disease.* Oxford: Oxford University Press (2016).

246. Northeast ALS Consortium. NEALS Member Sites. Available online at: https://www.neals.org/about-us/neals-member-sites/

247. Beghi E. 127th ENMC International Workshop: implementation of a European registry of ALS. Naarden, The Netherlands, 8-10 October 2004. *Neuromuscul Disord.* (2006) 16:46–53. doi: 10.1016/j.nmd.2005.10.004

248. Beghi E, Logroscino G, Chio A, Hardiman O, Mitchell D, Swingler R, et al. The epidemiology of ALS and the role of population-based registries. *Biochim Biophys Acta.* (2006) 1762:1150–7. doi: 10.1016/j.bbadis.2006.09.008

249. Hobson EV, Baird WO, Partridge R, Cooper CL, Mawson S, Quinn A, et al. The TiM system: developing a novel telehealth service to improve access to specialist care in motor neurone disease using user-centered design. *Amyotroph Lateral Scler Frontotemporal Degener.* (2018) 19:351–61. doi: 10.1080/21678421.2018.1440408

250. Geronimo A, Wright C, Morris A, Walsh S, Snyder B, Simmons Z. Incorporation of telehealth into a multidisciplinary ALS Clinic: feasibility and acceptability. *Amyotroph Lateral Scler Frontotemporal Degener.* (2017) 18:555–61. doi: 10.1080/21678421.2017.1338298

251. Christodoulou G, Jennings C, Hupf J, Factor-Litvak P, Murphy J, Goetz RR, et al. Telephone based cognitive-behavioral screening for frontotemporal changes in patients with amyotrophic lateral sclerosis (ALS). *Amyotroph Lateral Scler Frontotemporal Degener.* (2016) 17:482–8. doi: 10.3109/21678421.2016.1173703

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Chipika, Finegan, Li Hi Shing, Hardiman and Bede. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.