Smart energy systems and smart metering systems in them

Yu N Zatsarinaya1,3 and M O Grigoreva2

1Department of Power stations named after V.K. Shibanov, Kazan State Power Engineering University, Krasnoselskaya str., 51, Kazan, 420066, Russia
2Department of Power stations named after V.K. Shibanov, Kazan State Power Engineering University, Krasnoselskaya str., 51, Kazan, 420066, Russia
3Corresponding author: waysubbota@gmail.com

Abstract. The authors of the article evaluated the level of digitalization and the achieved effects during using digital technologies by means of the digitalization index at present and its predicted values. Tools were given to support and stimulate prosumers as active participants in smart energy systems. The integration into the power supply system of 2 prosumers is considered – a logging plant and a shopping center. Their consumption of electricity from the network is analyzed in the case when the generation of electricity from its own sources is insufficient from 2018-2019. The calculations were carried out in several price categories. The calculations showed that in the conditions of accurate planning, in the absence of emergency situations, prosumers who are legal entities can save. To switch to these calculations, it is necessary to install metering devices that allow you to measure hourly consumption. Thus, the smart energy system allows the consumer to choose a price category that suits him based on the energy consumption data of previous months.

1. Problem statement
Energy companies consider smart grids as the basis for their sustainable development, which is based on innovation. According to the Regulation of PJSC ROSSETI “On a Unified Technical Policy in the Electric Grid Complex”, approved by the Board of Directors of the company (Protocol No. 378 of 11.08.2019), one of the purposes of the technical policy is the transition to risk-based management based on the introduction of digital technologies and big data analysis.

A distinctive feature of equipment, materials technology and integrated systems is the availability of smart electronic devices. This also applies to electric energy metering systems. The purpose of the technical policy in this area is the formation of unified approaches to the creation of automated electricity metering systems.

A smart energy system is understood to mean an electric power network consisting of producers, consumers, prosumers, capable of smartly integrating the actions of all users, to ensure reliable and safe electricity supply. The smart energy system is controllable, automated, compatible with existing systems [1]. To create such systems in the Russian energy sector, its transition to digital technologies is necessary. In smart energy systems, a new role appears for already familiar participants – the role of the prosumer, transforming the familiar role of the consumer to create new services for the electricity market.

The link that binds the automation levels of the technological model of digital smart grids is the CIM model. The Common Information Model is a standard that enables the interchange of information for managing elements regardless of their supplier or manufacturer. This is a single information model.

2. Current level of electric grids Digitalization in Russia and its perspectives
According to calculations carried out by the largest Russian transmission and distribution system operator PJSC ROSSETI the digitalization index for Russian power grid has amounted to 14.5%, which indicates the scale of the forthcoming digitalization as about 85.5%. In addition, during the
digital transformation, the planned values of key performance indicators should be reviewed. Fig. 2 shows the current and calculated forecast values for digitalization index I_D corresponding to the digitalization of technological information systems, corporate systems and cybersecurity systems, and digitalization index I_{DT} as a component of I_D corresponding to digitalization of technological information systems and directly related to smart energy system infrastructure [2,3].

![Digitalization index forecast](image)

Figure 1. Current and forecast values of the digitalization index for power grid in Russia.

The concept of the development of digital technologies is relevant not only for Russia, but also for the EU countries. The state structures of these countries consider Smart Grid as the ideology of national programs for the development of the electric power industry, borrowed funds with a low interest rate are attracted to implement these technologies, as a rule, and there are no talks about payback periods in this case.

In Russia, the digital transformation is based on three strategic planning documents: Decree of the President of the Russian Federation dated 05.05.2018 No. 204, the Digital Economy of the Russian Federation Program, and the Strategy for Scientific and Technological Development of the Russian Federation.

At the value level in society, as well as at the level of state policy, in comparison with the EU and the USA Russia lacks the main message of the digital transformation which is decarbonization. Taking into account the total amount of power based on renewable energy sources, Russia in comparison with other countries is an outsider in this direction. Therefore, it is not necessary to link together all types of energy sources in the country. It’s more rational to install solar power plants, wind farms, hydroelectric or geothermal power plants only in areas with a large number of energy sources to develop distributed generation [4]. The introduction of Smart Grid technology will solve the problem of inefficient use of power lines and the capacity of transformers [5, 6]. In particular, according to the statistics the actual load of the grid transformers today does not exceed 30% of their nominal capacity.

Since 2019, each subsidiary of ROSSETI should constitute at least 20% of the entire investment program annually as tools to support and stimulate the digitalization of the electric grid complex of Russia. Thus, the budget, which is aimed at these goals, is formed from tariffs for the transmission of electric energy and differs depending on the region. Indirectly, these investments can be increased by using equipment manufactured on the territory of the said region to build power grid infrastructure. Since the seller of the products, in this case, returns part of the funds in the form of a tax to the budget of the region, from which in the future, in particular, the investment program of the company purchasing the products is formed [7].

Expensive power is the main challenge for the Russian power industry, which is determined by the constant costs for the operation of the power system. The total cost does not depend on the volume of consumption and includes not only the payments for generating capacity but also the payment for the
maintenance of electrical networks. The growth of forecast values indicates the scale of the upcoming digitalization.

3. Integration of prosumers in the power supply system
However, the strategic integration of prosumers in the power supply system is currently a problem for Russia. Firstly, the mass installation of smart metering systems is necessary, for which Federal Law No. 522 of 27.12.2018, “On Amending Certain Legislative Acts of the Russian Federation in Connection with the Development of Electricity (Power) Metering Systems in the Russian Federation,” was passed. Secondly, it is necessary to carefully consider an effective tariff setting for the prosumer. This will make it possible to get additional profit and adjust its consumption, and will also contribute to the emergence of a competitive retail energy market (REM) [8-10]. The authors of the article suggest calculating the electricity tariff options for a prosumer on the REM by analogy with the calculation of legal entities in the wholesale market of electric energy and power (WMEP) [11, 12]. Table 1 presents the characteristics of price categories for the consumers of the WMEP.

Price category	Metering	Consumption planning	Transmission tariff
1	Month	Don't need to plan	Single-rate tariff
2	Zones of the day	Don't need to plan	Single-rate tariff
3	Hour	Don't need to plan	Two-rate tariff
4	Hour	Don't need to plan	Two-rate tariff
5	Hour	Need to plan	Single-rate tariff
6	Hour	Need to plan	Two-rate tariff

In calculating prices, it is not profitable for a prosumer to use price categories for which independent planning of consumption by the enterprise is provided (fifth and sixth), because it is not possible to plan hourly consumption for a day ahead with a 100% probability, resulting in deviations from the declared volume, which must be paid to the energy supplier [13, 14].

Table 2 presents the electricity and power consumption of the shopping center. The main costs of electrical energy are due to the costs of lighting, air conditioning and ventilation. In the period from November 2018 to October 2019, the power regime was 196-297 thousand kWh and 315-497 kW of active power per month.

Year	Month	Electricity, kWh	Power, kW
2019	January	270527	452
2019	February	232461	414
2019	March	256972	410
2019	April	237720	371
2019	May	248856	453
2019	June	268374	497
2019	July	196352	360
2019	August	197063	315
2019	September	245148	398
Table 3 presents the electricity and power consumption of the logging plant. The main costs are due to lighting and technical equipment. In 2018, the power regime amounted to 448-667 thousand kWh and 857-1106 kW of active power per month.

Month	Electricity, kWh	Power, kW
January	592 415	1 071
February	472 250	1 086
March	506 548	1 089
April	542 744	1 006
May	490 239	1 048
June	515 535	1 006
July	506 686	938
August	533 470	857
September	527 574	909
October	584 756	913
November	447 758	1 004
December	666 589	

Both legal entities are consumers with a relatively even load. Based on the analysis of data for several years, it is possible to predict the schedule of consumption of electric energy and power [15, 16]. This will allow the consumer to switch to calculating the costs in 5 or 6 price categories.

In terms of accurate planning, in the absence of emergency situations, this will help legal entities save. To switch to these calculations, it is necessary to install metering devices that allow you to measure hourly consumption [17, 18]. Thus, the smart energy system allows the consumer to choose a price category that suits him based on the energy consumption data of previous months.

4. Conclusion
The Smart Energy system is intended to become a driver of the transformation of the traditional energy complex as well as its implementation involves the creation of single information space for the Russian energy sectors. In calculating prices, it is not profitable for a prosumer to use price categories for which independent planning of consumption by the enterprise is provided (fifth and sixth), because it is not possible to plan hourly consumption for a day ahead with a 100% probability, resulting in deviations from the declared volume, which must be paid to the energy supplier.

However, the commissioning of smart energy systems can help in this regard. Based on monthly data, a consumer with a relatively even load is able to predict their consumption. Thus, the smart energy system allows the consumer to choose a price category that suits him based on previous data.

References
[1] Sumper A 2019 Micro and Local Power Markets (Hoboken N J: John Wiley & Sons, Inc.) p 272
[2] ROSSETI 2018 Concept “Digital transformation 2030”, Moscow: PJSC Russian Networks
[3] The innovative development program of PJSC ROSSETI for the 2016–2020 years period with perspective until 2025 Moscow: PJSC “Russian Networks” 2019

[4] Eroshenko S A, Samoylenko V O and Pazderin A V 2016 Renewable energy sources for perspective industrial clusters development 2nd International Conference on Industrial Engineering, Applications and Manufacturing, Chelyabinsk, May 19-20, 2016 vol 1 (NY: Curran Associates) p 821

[5] Rogalev N D et al. 2013 Fundamentals of the Economics of the Fuel and Energy Complex Moscow: Publishing House MPEI

[6] Nikolaev M V, Ovsyannikov A Yu and Marchinsky I Yu 2016 Experience of using “smart grids” in Russia Smartgrid Technology Young Scientist 28 2 pp 63-68

[7] Staroverova N A, Shustrova M L, Satdarov M R 2019 Development of a cyber-physical system for the specialized on-track machine operators training Cyber-Physical Systems: Industry 4.0

[8] Dronova Yu V and Krasnova A O 2017 A new model of the retail electricity market: implications for the regional economy Bulletin of PNRPU Electrical engineering, information technology, control systems 2 pp 63-78

[9] Vaskovskay T, Thakurta P G and Bialek J 2018 Contribution of transmission and voltage constraints to the formation of locational marginal prices International Journal of Electrical Power & Energy Systems 101 pp 491-499

[10] Oganyan R G, Narakidze N D, Shaykhutdinov D V, Kirievskiy E V and Kostinskiy S S 2018 Digital substation conceptual model for the complex full-scale-model diagnostics IOP Conference Series: Materials Science and Engineering 441 pp 1-6

[11] Zatsarinnaya Yu, Logacheva A and Grigoreva M 2020 Electricity in retail markets as a commodity in smart energy systems IOP Conference Series: Materials Science and Engineering 1 pp 79

[12] Balzamov, Akhmetova I, Balzamova E, Oykina G, and Coman G 2019 An analysis of the viability of implementing steam screw machines at the facilities of energy generation enterprises to reduce the energy costs for their own need E3S Web of Conferences (SES-2019) 124 pp 1-4

[13] Bulatov Y N, Kryukov A V and Suslov K V 2017 Multi-agent technologies for control of distributed generation plants in the isolated power systems Far East Journal of Electrical and Communications 17(5) 1197

[14] Balobanov R N, Zaripov D K and Akhmadeev A A 2019 The device for monitoring the LED display high-voltage insulators state IOP Conference Series: Materials Science and Engineering 552 pp 1-9

[15] Mikhalkov A V 2011 Long-term forecasting of demand for capacity as an instrument of high-quality investment planning for the development of distribution electric networks of the subject of the Russian Federation St. Petersburg: JSC IDGC Holding

[16] Chernova A 2018 Designing database for decision support system for development of electrical grid International Ural Conference on Green Energy (UralCon, IEEE Conferences) Chelyabinsk pp 181 – 186

[17] Vaskovskay T, Thakurta P G and Bialek J 2018 Contribution of transmission and voltage constraints to the formation of locational marginal prices International Journal of Electrical Power & Energy Systems 101 pp 491-499

[18] Dmitriev A V, Dmitrieva O S and Zinurov V E 2018 Influence of elements thickness of separation devices on the finely dispersed particles collection efficiency International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018) Sevastopol 224 p 0207