1. Introduction

Fly ash presence in cement result in modification of the rheological properties of cement pastes, which means the influence on the rheological properties of the fresh concrete mixes and mortars [1-4].

Analysis of studies of many authors concerning the influence of the fly ash on the rheological properties of cement paste shows, that the addition of fly ashes to cement can have the result in improvement or deterioration of rheological properties [5-9]. Different rheological reactions have been observed of cement pastes from cement with additions of fly ash and are the summary of influence of many factors superposition [10-11]. They are mainly such factors as type and quantity of fly ash in cement, particle size, shape and porosity of grains of ash and also contents of unburned coal in ash.

In this study the researches were carried out aiming at the defining the role of factors which have influence on rheological properties of pastes from cement including fly ash.

2. Experimental

2.1. Materials

Low-calcium fly ashes (A, B) from the bituminous coal combustion were used. The chemical composition of the materials used is given in table 1.

The phase composition of fly ashes was characterized by XRD. The following crystalline phases have been detected: quartz, mullite, hematite.

2.2. Preparation of the samples

Fly ash - cement blends designed for rheological studies were obtained by homogenizing the components. The ashes A and B were applied in the raw state (A, B) and the B fly ash was ground in a laboratory mill to obtain a larger Blain’s specific surface area (B1, B2). The fly ash content in cement was 20, 40,
60 and 80 percent wt. The Blain’s specific area of the fly ash used are given in table 2.

2.2. Methods

The rheological measurements were carried out using the rotative viscosimeter type Rheotest RV - 2.1, with the modified surfaces of both cylinders. All the cement - fly ash samples were prepared and measured following the same procedure and in the same conditions. The tests were performed at a constant temperature 21 °C and at a constant water to solid ratio 0.4. Measurements started 10 minutes after mixing with water. The rheological properties of pastes with fly ashes were determined from the flow curves at growing and reduced rates of shearing in the range from 0 to 146 s⁻¹. The yield value and plastic viscosity were determined from the descending part of flow curve, according to the Bingham’s model.

The particle size analysis of fly ash was made by the laser analyser type LAU -10.32 fractions were determined in range 0.5 - 200 μm, according to the Bingham’s model.

Yield value \(\tau_0 \) [Pa] and plastic viscosity \(\eta_p \) [Pa · s] of cement pastes containing fly ashes A, B, B-1, B-2. Table 3 presents calculated parameters characterising particles of the fly ashes.

No	Composition of cement - fly ash mixtures	A	B	B-1	B-2		
		\(\tau_0 \)	\(\eta_p \)	\(\tau_0 \)	\(\eta_p \)	\(\tau_0 \)	\(\eta_p \)
0	100 % C	69.1	0.83	69.1	0.83	69.1	0.83
1	80 % C + 20 % FA	30.0	0.45	57.6	0.89	33.2	0.60
2	60 % C + 40 % FA	25.1	0.43	32.4	0.92	29.4	0.61
3	40 % C + 60 % FA	16.3	0.39	23.6	0.82	21.5	0.58
4	20 % C + 80 % FA	13.1	0.39	15.6	0.58	15.6	0.57

Conventional diameters \(D \) of particles were defined basis on the function of cumulative fly ash grains distribution. They characterise the conventional diameters of fly ash grains equal to the value of cumulative curve distribution 0.25; 0.50; 0.75 and are defined D25, D50, D75 respectively \[12\].

3. Results of analyses

In table 3 the values of yield value \((\tau_0) \) and plastic viscosity \((\eta_p) \) of analysed pastes are presented. Figures 6 - 10 show the particle size distribution in percent wt. of particular fractions of fly ash in range 0 - 200 μm and cumulative curve fly ash A and B raw and grinded B-1 and B-2. Table 4 presents calculated parameters characterising particles of the fly ashes.

![Fig. 1 Particle size distribution and cumulative curve of fly ash A](image)

Analysis of the results shows, that content of fly ash from bituminous coal in cement causes the decreasing of the yield value and plastic viscosity of pastes. Moreover, it was stated that the cement pastes including low-calcium fly ash A an B with the similar chemical contents and specific surface display significant differences of rheological properties (tab. 3). In aim to explain those differences the size analysis was made of fly ash by the laser diffraction method.
On the base of the calculated parameters of size analysis it can be stated, that the average size of fly ash particles A is 77.2 μm, 25 percent of grains in fly ash has he diameter less than 7.7 μm, 50 percent of grains has the diameter less than 18.2 μm and 75 percent has less than 66.1 μm. The average size of particles B is 109 μm, 25 percent of grains in fly ash B have the diameter less than 12.8 μm, 50 percent of them - less than 49.4 μm and 75 percent has the diameter less than 88.1 μm. Participation of grains less 24 μm is 34.3 percent in case of B ash, while in A ash it is 53.1 percent. The conclusion is, that the fly ash A are cha-

Table 4: Calculated parameters of particles of fly ashes

Fly ash	average diameter of particle [μm]	D25 [μm]	D50 [μm]	D75 [μm]	spherical shape coefficient Ψ	contents of grains less then 24 μm [% wt.]
A	77.2	7.7	18.2	66.1	0.245	53.1
B	109.0	12.8	49.4	88.1	0.170	34.3
B-1	80.8	6.6	19.7	54.6	0.194	53.3
B-2	47.9	5.3	14.3	41.7	0.237	55.3
The above explains why the pastes containing fly ash with the similar chemical composition and specific surface show differences in rheological properties of cement pastes.

Figure 7 presents the influence of spherical shape coefficient Ψ of fly ash grains and their quantities in cement on yield value of paste. Grinding of ashes results in the growth of participation of fine fractions and increase of spherical shape coefficient of fly ash grains (tab. 4), this explains the improvement of rheological properties of pastes with these ashes (tab. 3).

4. Conclusions

- Content of fly ash from bituminous coal in cement has the result in decrease of yield value and plastic viscosity of pastes - the more significant, the greater is contents of fly ashes in cement.
- Rheological properties of pastes including fly ash from bituminous coal depend mainly on the participation of fine fractions in ashes and on shape of particles of fly ashes. The level of fluidity of cement-ash pastes is more visible at the greater number of fine fractions $< 24 \mu$m in ashes and the more spherical shape of fly ash particles.

5. Literature - References

[1] ALONSO, J. L., WESCHE, K.: Characterization of Fly Ash, in Fly Ash in Concrete, Ed.: K. Wesche, E & FN SPON, London, 1991, pp. 3-23.
[2] REHSI, S. S.: Portland Fly Ash Cement, in Mineral Admixtures in Cement and Concrete, Ed.: S. N. Ghosh, ABI Books Pvt. Ltd., New Delhi, 1995, pp. 158-173.
[3] BANFILL, P.F.G.: An experimental study of the effect of PFA on the rheology of fresh concrete and cement paste. International Symposium. The use of PFA in Concrete, Leeds 1982, pp. 161 - 171.
[4] ROY, D. M., SKALNY, J., DIAMOND, S.: Effects of Blending Materials on the Rheology of Cement Pastes and Concretes. Proceedings Annual Meeting of Material Research Society, M4.4, Boston 1982, Concrete Rheology, pp. 152-173.
[5] COSTA, U., MASSAZZA, F.: Rheological properties of fly ash cement pastes. Il Cemento, nr 4, 1986, pp. 397-414.
[6] GRZESZCZYK, S., LIPOWSKI, G.: Effects of Low-Calcium Fly Ash on The Rheology of Fresh Cement Pastes. Applied Mechanics and Engineering, vol. 3, nr 4, 1998, pp. 589-600.
[7] GRZESZCZYK, S., LIPOWSKI, G.: Effect of Content and Particle Size Distribution of High-Calcium Fly Ash on The Rheological Properties of Cement Pastes. Cement Concrete Research, vol. 27, nr 6, 1997, pp. 907-916.
[8] HOBBBS, D. W.: The effect of pulverized/fuel ash upon the workability of cement paste and concrete. Magazine of Concrete Research, vol. 32, nr 113, 1980, pp. 219 - 226.
[9] MASSIDDA, L., Sanna, U.: Rheological behaviour of portland cement pastes containing fly ash. Il cemento, nr 4, 1982, pp. 317-322.
[10] JIANG, W., ROY, D. M.: Rheology in hydration and setting. Proceedings of the RILEM Workshop on Hydration and Setting of Cement. Ed. A Nonat, F. N. Spon, London 1992, pp. 333-340.
[11] UCHIKAWA, H.: Effect of blending component on hydration and structure formation. Journal of Research of the Onoda Cement Company, 1986, vol. XXXVIII, nr 115, pp. 1-77.
[12] KOCH, R., NOWORYTA, A.: Procesy mechaniczne w inżynierii chemicznej. Wydawnictwo Naukowo Techniczne, Warszawa, 1992.