Extremes of order statistics of self-similar processes

凌成秀 and 彭作祥

Citation: 中国科学: 数学 46, 1139 (2016); doi: 10.1360/012016-15

View online: http://engine.scichina.com/doi/10.1360/012016-15

Published by the 《中国科学》杂志社

Articles you may be interested in

A risky asset model based on Lévy processes and asymptotically self-similar activity time processes with long-range dependence
SCIENCE CHINA Mathematics 56, 2353 (2013);

Asymptotics of the quantization errors for in-homogeneous self-similar measures supported on self-similar sets
SCIENCE CHINA Mathematics 59, 337 (2016);

SINGULARITIES IN SELF-SIMILAR COSMOLOGIES
Science in China Series A-Mathematics, Physics, Astronomy & Technological Science 25, 737 (1982);

The point wise dimension of self-similar measures
Chinese Science Bulletin 44, 2136 (1999);

Hausdorff dimension of self-similar sets with overlaps
Science in China Series A-Mathematics 52, 119 (2009);
自相似随机过程的顺序统计量的极值

凌成秀①②*，彭作祥③

①西南大学数学与统计学院, 重庆 400715;
②Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne, Lausanne 1015, Switzerland
E-mail: lcx98@swu.edu.cn, pzx@swu.edu.cn

摘要 设 \(\{X_i(t), t \geq 0\}\) 为独立且与随机过程 \(X(t), t \geq 0\) 具有相同的任意有限维分布的随机过程. 给定门限 \(u > 0\) 和第 \(r\) 个上端顺序统计量 \(X_r:n\), 定义第 \(r\) 个关联点集为 \(C_r(u) := \{t \in [0,1]: X_r:n(t) > u\}\). 计算 \(p_r(u) = P\{C_r(u) = \emptyset\}\) 在大脑图像处理和数字交互系统等领域中有广泛的应用背景. 本文考虑具有概率连续的样本轨道的自相似过程 \(X\), 满足一定的 Albin 条件, 当 \(u \to \infty\) 时 \(p_r(u)\) 的渐近式, 同时得到 \(X_r:n\) 超过递增门限的平均逗留时间的渐近式. 最后, 这些理论结果应用到广义偏 Gauss 自相似过程 (包括 \(\chi\) 过程、双分式 Brown 运动和子分式 Brown 运动) 等重要的自相似过程.

关键词 自相似过程 顺序统计过程 平均逗留时间 偏 Gauss 过程

MSC (2010) 主题分类 60G15, 60G70

1 引言

设 \(\{X(t), t \geq 0\}\) 为一个自相似实值随机过程, 具有自相似指数 \(\kappa > 0\) 和概率连续样本轨道, 即对任意 \(\lambda > 0\), 关于 \(X(\lambda t)\) 的任意有限维分布与 \(\lambda^\kappa X(t)\) 相同. 设 \(X_1, \ldots, X_n, n \in \mathbb{N}\) 个独立同 \(X\) 分布 (有限维分布同意义下), 定义第 \(r\) 个 (上端) 顺序统计过程 \(X_r:n\) (1 \(\leq r \leq n\)) 为

\[
X_{r:n}(t) \leq \cdots \leq X_{1:n}(t), \quad t \geq 0.
\]

（1.1）

顺序统计过程在许多统计应用中扮演着重要的角色, 例如, 记 \(X_i(t)\) 为第 \(i\) 个对象如信号或图像在时刻 \(t \in [0,1]\) 处的观测值. \(u\) 为一个给定的门限, 则第 \(r\) 个关联发生在时间集 \(C_r(u) := \{t \in [0,1]: X_{r:n}(t) > u\}\). 实践中的一个有趣的问题是如何计算 \(C_r(u)\) 不为空集的概率, 即

\[
p_r(u) := P\left\{ \sup_{t \in [0,1]} X_{r:n}(t) > u \right\}.
\]

（1.2）

可见, \(p_r(u)\) 是至少 \(r\) 个对象在时间区间 [0,1] 超过门限 \(u\) 的概率. 许多数值应用, 如关于功能性

英文引用格式: Ling C X, Peng Z X. Extremes of order statistics of self-similar processes (in Chinese). Sci Sin Math, 2016, 46: 1139–1148, doi: 10.1360/012016-15

© 2016《中国科学》杂志社

www.scichina.com mathcn.scichina.com

Downloaded to IP: 192.168.0.24 On: 2019-04-30 07:27:00 http://engine.scichina.com/doi/10.1360/012016-15
磁共振图像分析 (fMRI) 和机械工艺的表面粗糙度数据分析，都涉及 \(p_r(u) \) 的计算，参见文献 [1, 2]。文献 [3, 4] 分别讨论了关于某些平滑 Gauss 随机场和非 Gauss 随机场的 \(p_r(u) \) 的逼近。最近，文献 [5, 6] 考虑了平稳 (Gauss) 过程情形下 \(p_r(u) \) 的渐近性。众所周知，平稳随机场不能用于研究具有非平稳特性，如长记忆现象和数据的模型。这类情形常见于随机游动的极限理论，以及其他随机过程建模的各种现象，如电信、互联网流量、图像处理和数理金融。这些过程常可用自相似过程刻画。有关自相似过程的完善理论和实践方面的研究，参见文献 [7-12] 等。

鉴于一般不可能精确计算 \(p_r(u) \)，本文将考虑自相似过程 \(X \) 具有自相似系数 \(\kappa > 0 \) 和连续边际分布函数 \(G(x) = \mathbb{P}[X(1) \leq x] \) 的情形，推导 \(p_r(u) (u \to \infty) \) 的渐近式。为此，我们将要求 \(X \) 满足下述 Albin 条件，参见文献 [6, 13]。在下文中，记 \(\mathcal{F} = 1 - F \) 表示分布函数 \(F \) 的尾分布函数，函数 \(q(u) = Du^{-\alpha_0}(1+o(1)) (u \to \infty) \) 为单调增的正值函数，其中 \(D, \alpha_0 > 0 \)，记 \(\tilde{a} = 1/(2\sup_{u \in [0, \infty)} q(u)) \) > 0。

条件 A 假定分布函数 \(G \) 具有无穷右端点，且属于 Gumbel 最大值吸引场，即存在一个辅助函数 \(w(u) > 0 \) 使得

\[
\lim_{u \to \infty} \frac{\xi(u + x/w(u))}{G(u)} = e^{-x}, \quad x \in \mathbb{R},
\]

记为 \(G \in D_0(w(\cdot)) \)。进一步，假定存在一广义实值随机过程 \(\{\xi(t), t \geq 0\} \)，且 \(\xi(t) \) 的分布函数在零点连续，满足对任意的 \(m \in \mathbb{N}, t_i > 0, 1 \leq i \leq m, \)

\[
\lim_{u \to \infty} \mathbb{P}[X(1 - q(u)t_i) > u, 1 \leq i \leq m | X(1) > u] = \mathbb{P}[\xi(t_i) > 0, 1 \leq i \leq m]. \quad (1.3)
\]

条件 B 假定

\[
\lim_{d \to \infty} \lim_{u \to \infty} \mathbb{P}[X(1/q(u)) > u | X(1) > u]dt = 0.
\]

下面介绍紧性条件。记 \(L(u) \) 为随机过程 \(X \) 在时间区间 \([0, 1] \) 上超过门槛 \(u \) 的平均逗留时间，定义如下:

\[
L(u) = \int_{0}^{1} \mathbb{I}\{X(t) > u\}dt, \quad (1.4)
\]

其中 \(\mathbb{I}\{\cdot\} \) 为指示函数。给定 \(u > 0, a \in (0, \tilde{a}] \) 定义一序列 \(\{t_u^n(k)\} \) 如下：令 \(t_u^n(0) = 1 \)，且

\[
t_u^n(k+1) = t_u^n(k)(1 - aq(t_u^n(k))^{-\kappa}u), \quad k = 0, \ldots, K, \quad (1.5)
\]

其中 \(K = K(a, u) = \sup\{k \in \mathbb{N}: t_u^n(k)^{-\kappa}u < \infty\} \)。

条件 C 假定对所有 \(\sigma > 0 \) 和由 (1.5) 定义的 \(\{t_u^n(k)\} \) 序列有

\[
v(a, \sigma) \equiv \lim_{u \to \infty} \sup_{k \in [0, \infty)} \frac{\mathbb{P}[\sup_{u \in [0, 1]} X(t) > u + \sigma/w(u), \max_{0 \leq k \leq K} X(t_u^n(k)) \leq u]}{\mathbb{E}[L(u)/q(u)] + G(u)} \to 0, \quad a > 0.
\]

本文的主要贡献有如下三点：第一，在通常的 Albin 条件 A-C 下建立了 \(p_r(u) \) 的逼近。第二，本文将所得到的理论结果应用到广义偏 Gauss 自相似过程 (包括 χ 过程、双分式 Brown 运动和子分式 Brown 运动)，见推论 2.1。由此可见，验证 Albin 条件需要极大的努力。对自相似 Gauss 过程及场的相关研究，参见文献 [14-19]。第三，本文给出了第 \(r \) 个顺序统计过程 \(X_{r,n} \) 的平均逗留时间的渐近性的相关研究，见命题 3.1 和 3.2。关于随机过程的平均逗留时间的研究，参见文献 [20, 21]。本文所得到的所有结果都是新的，并且再一次表明，我们只需对过程 \(X \) 限定一定条件即可得到关于其顺序统计过程的的渐近性质。本文结构如下：第 2 节建立主要理论结果；第 3 节给出所有结果的证明。
2 主要结论

定理 2.1 和 2.2 建立了本文的两个主要结论：自相似顺序统计过程（见 (1.1)）的极值的尾渐近性质依赖于函数 \(uq(u)w(u) \) 的极限，即 \(\beta_3 \) 和 \(\beta_4 \) (见 (2.1))。推论 2.1 建立了广义偏 Gauss 自相似过程（包括 \(\chi \) 过程、双分式 Brown 运动和子分式 Brown 运动）的渐近性。

为叙述定理 2.1 和 2.2，令 \(G_r(u) = \mathbb{P}(X_{r,n}(1) > u) \)，且 \(L_r(u) \) 表示 \(X_{r,n}(t) \) 在 \(t \in [0,1] \) 超过门限 \(u \) 的逗留时间，定义同 \(L(u) \) (见 (1.4))。进一步，令

\[
\beta_3 = \lim inf_{u \to \infty} uq(u)w(u), \quad \beta_4 = \lim sup_{u \to \infty} uq(u)w(u).
\]

定理 2.1 若自相似过程 \(X \) 满足条件 \(C \) 且 \(\beta_3 = \infty \)，则

\[
\lim_{u \to \infty} \frac{1}{G_r(u)} \mathbb{P}\left\{ \sup_{t \in [0,1]} X_{r,n}(t) > u \right\} = 1,
\]

其中

\[
G_r(u) = \frac{n\lambda^r(u) \gamma(1 + o(1)) \kappa uq(u)w(u)}{r!(n-r)!}.
\]

下面考虑 \(\beta_4 < \infty \) 的情形，为此令 \(\xi_{r,r}(t), t \geq 0 \) 为 \(r \) 个独立同条件 \(A \) 中的极限过程的最小值过程，定义

\[
\Theta_r(x) = \mathbb{P}\left\{ \int_0^\infty I[\xi_{r,r}(t) > 0]dt > x \right\}, \quad x \geq 0.
\]

定理 2.2 若自相似过程 \(X \) 满足条件 \(A-C \) 且 \(\beta_4 < \infty \)，则

\[
\lim_{u \to \infty} \frac{1}{\mathbb{E}\{L_r(u)/q(u)\}} \mathbb{P}\left\{ \sup_{t \in [0,1]} X_{r,n}(t) > u \right\} = -\Theta_r'(0),
\]

其中 \(\mathbb{E}\{L_r(u)/q(u)\} = G_r(u)/(\kappa uq(u)w(u))(1 + o(1)) \) 且 \(\Theta_r'(0) = \lim_{x \to 0}(1 - \Theta_r(x))/x \in (0, \infty) \)。

注 2.1 (i) 定理 2.1 和 2.2 中涉及到的条件 \(B \) 可替换为 \(\beta_3 > 0 \)，而条件 \(C \) 可替换为下面的充分条件 \(C^* \)（参见文献 [13, 命题 2 和 3(ii)]: 假定存在 \(\lambda_0, \rho, b, D > 0 \) 和 \(d > 1 \) 使得

\[
\mathbb{P}\left\{ (1 - q(u)t) > u + \lambda + v w(u), X(1) \leq u + \frac{v}{w(u)} \right\} \leq Dt^d\lambda^{-b}G_r(u)
\]

对充分大的 \(u \) 和所有的 \(0 < \nu < \lambda \leq \lambda_0, v \geq 0 \) 都成立。

(ii) 注意到 \(\{X_{r,n}(t), t \geq 0\} \) 为自相似系数为 \(\kappa \) 的自相似过程，由定理 2.1 和 2.2 易于求出当 \(u \) 充分大时，

\[
p_{r,T}(u) = \mathbb{P}\{\sup_{t \in [0,T]} X_{r,n}(t) > u\} \approx (1 - \Theta_r(x))/x \in (0, \infty)
\]

(iii) 自相似过程的边际分布 \(G \) 可类似地属于 Fréchet 和 Weibull 最大值吸引场的情形，参见文献 [13, 22]。一方面，辅助函数 \(q(\cdot) \) 的确定至关重要。另一方面，弱化函数 \(q(\cdot) \) 的幂函数渐近假设是可行的，参见文献 [13]。

最近，偏 Gauss 过程受到了理论和实践领域的广泛重视，参见文献 [6, 23, 24]。推论 2.1 研究广义偏 Gauss 自相似过程 \(\xi(t) \) (见 (2.4)) 的顺序统计过程的极值行为。为此，设 \(\{X(t), t \geq 0\} \) 为一个中心化的具有自相似系数 \(\kappa > 0 \) 的自相似 Gauss 过程，其协方差函数为

\[
\mathbb{E}\{X(1)X(1 + t)\} = 1 + \kappa t - \tilde{D}|t|^\alpha + o(|t| + |t|^\alpha), \quad t \to 0,
\]

其中

\[
\tilde{D} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\{X(i)|X(i)|^{\alpha} - \mathbb{E}|X(i)|^{\alpha}\}.
\]

1141
其中 $\alpha \in (0, 2], \tilde{D} > 0$. 令 $|X(t)| := (\sum_{i=1}^{m} X_i^2(t))^{1/2}$, 其中 $X_i, 1 \leq i \leq m + 1, m \in \mathbb{N}$ 为过程 X 的独立副本。定义广义 Gauss 过程 ζ 如下：给定 $\delta \in [0, 1]$,

$$
\zeta(t) \equiv \delta |X(t)| + \sqrt{1 - \delta^2} X_{m + 1}(t), \quad t \geq 0.
$$

(2.4)

为叙述我们的结论，设 E 为均值为 1 的指数分布随机变量，独立于标准分式 Brown 运动 $\{Z(t), t \geq 0\}$, 其 Hurst 指数为 $\alpha/2 \in (0, 1]$. 进一步，令 $E_i (i \leq r)$ 和 $Z_i (i \leq r)$ 为 E 和 Z 的 r 个独立副本。类似于文献 [13] 中的 χ 过程，假定存在一常数 $h > 0$ 使得

$$
\sup_{t \in [\varepsilon, h]} e^{-\kappa t} \mathbb{E}\{|X(1)X(e^t)|\} < 1, \quad \varepsilon \in (0, h].
$$

(2.5)

推论 2.1

设 $\{\zeta(t), t \geq 0\}$ 为由 (2.4) 定义的广义偏 Gauss 自相似过程，具有自相似系数 $\kappa > 0$, 其协方差函数满足 (2.3) 和 (2.5).

(i) 若 $\alpha \in (0, 1]$, 则

$$
P\left\{ \sup_{0 \leq t \leq 1} \zeta_{r,a}(t) > u \right\} = -\Theta'(0) \frac{n!}{r!(n-r)!} \left(\mathbb{P}\{\zeta(1) > u\} \right)^r \left(1 + o(1) \right), \quad u \to \infty,
$$

其中 $\Theta_1 = \mathbb{I}\{\alpha = 1\}$ 和

$$
\Theta_r(x) \equiv P\left\{ \int_0^\infty \min_{1 \leq i \leq r} (\sqrt{2}Z_i(\tilde{D}^{1/\alpha} t) - \tilde{D} t^\alpha + E_i - \beta_i \kappa t) > 0 \right\}dt > x.
$$

(ii) 若 $\alpha \in (1, 2]$, 则

$$
P\left\{ \sup_{0 \leq t \leq 1} \zeta_{r,a}(t) > u \right\} = \frac{n!}{r!(n-r)!} (\mathbb{P}\{\zeta(1) > u\})^r \left(1 + o(1) \right), \quad u \to \infty,
$$

其中

$$
P\{\zeta(1) > u\} = \left(\delta^{m-1} \frac{2^{1-m/2}}{\Gamma(m/2)} u^{m-2 \mathbb{I}\{\delta > 0\}} + \frac{1}{\sqrt{2\pi}} u^{-1} \mathbb{I}\{\delta = 0\} \right) \exp \left\{ - \frac{u^2}{2} \right\} \left(1 + o(1) \right).
$$

(2.6)

注 2.2

(i) 推论 2.1 推广了许多 Lamperti 变换相应的平稳过程的极值性质。参见文献 [13, 25].

(ii) 当 $\delta = 1$, 推论 2.1 即为文献 [13] 中的关于自相似 χ 过程的定理 8 和 9; 当 $\delta = 0$, 推论 2.1 包含了许多重要的自相似 Gauss 过程的渐近结论，如分式 Brown 运动 $\{B_{h,k}(t), t \geq 0\}$ ($h \in (0, 1), k \in (0, 1]$) 和子分式 Brown 运动 $\{S_{h}(t), t \geq 0\}$ ($h \in (0, 1]$), 两者均为中心化自相似 Gauss 过程，分别具有协方差函数

$$
\mathbb{E}\{B_{h,k}(s)B_{h,k}(t)\} = \frac{1}{2} ((s^{2h} + t^{2h})^{k} - |s-t|^{2hk}), \quad s, t \geq 0
$$

和

$$
\mathbb{E}\{S_{h}(s)S_{h}(t)\} = s^{2h} + t^{2h} - \frac{1}{2} ((s + t)^{2h} + |s-t|^{2h}), \quad s, t \geq 0.
$$
3 定理 2.1, 2.2 和推论 2.1 的证明

首先建立两个关键命题：关于顺序统计过程 $X_{r,n}$ 的边际分布 $G_r(x) = \mathbb{P}[X_{r,n}(1) \leq x]$, 以及 $X_{r,n}$ 在区间 $[0, 1]$ 上的平均逗留时间 $E\{L_r(u)\}$ 的渐近性质（命题 3.1 和 3.2)，即将自相似过程的相关逗留时间的理论结果推广到顺序统计过程的场合。受文献 [6, 定理 1] 的启发, 并注意到 $X_{r,n}$ 为自相似过程, 证明主要由验证当 $r = n$ 和 $r = n - 1$ 时, $X_{r,n}$ 满足条件 A-C 组成, 而 $r < n - 1$ 的情形可参照

为方便起见, 在本节的证明中, 记 $\overset{d}{\rightarrow}$ 和 $\overset{d}{\rightarrow}$ 分别表示依分布相等和依分布收敛 (若符号两端涉及随机过程, 则指其任意有限维分布意义下的相等和收敛). 令

$$
c_n, l = \frac{\pi_!}{l!(n - l)!}, \quad l = 0, \ldots, n, \quad u_x = u + \frac{x}{w(u)}, \quad x \geq 0.
$$

命题 3.1 若 $X(1)$ 的分布函数 G 连续, 则

$$
\mathcal{T}_r(u) = c_n, l (\mathcal{T}(u))^l (1 + o(1)), \quad u \to \infty.
$$

进一步, 若 $G \in D_0(w(\cdot))$, 则 $G_r \in D_0(rw(\cdot))$, 且

$$
E\{L_r(u)\} = \frac{1}{\kappa r w(u)} \mathcal{T}_r(u)(1 + o(1)), \quad u \to \infty.
$$

证明 由文献 [6, 引理 1] 得

$$
\mathcal{T}_r(u) = c_n, l (\mathcal{T}(u))^l (1 + o(1)), \quad u \to \infty.
$$

从而利用 $G \in D_0(w(\cdot))$ 有 $G_r \in D_0(rw(\cdot))$. 最后注意到 $\{X_{r,n}(t), t \geq 0\}$ 为一自相似系数为 κ 的自相似过程, 从而由文献 [13, 命题 1] 知命题 3.1 的结论成立.

命题 3.2 若自相似过程 X 满足条件 A, 则对每一个 $x > 0$ 有

$$
\liminf_{u \to \infty} \int_x^{\infty} \frac{\mathbb{P}\{L_r(u)/q(u) > y\}}{\mathbb{E}\{L_r(u)/q(u)\}} dy \geq \Theta_r(x).
$$

进一步, 若条件 B 成立, 则对每一个 $x > 0$ 有

$$
\limsup_{u \to \infty} \int_x^{\infty} \frac{\mathbb{P}\{L_r(u)/q(u) > y\}}{\mathbb{E}\{L_r(u)/q(u)\}} dy \leq \Theta_r(x-),
$$

其中 $\Theta_r(\cdot)$ 由 (2.2) 定义.

证明 由文献 [13, 引理 2] 知, 对于每个 $t \in (0, \infty)$, 函数 $\mathbb{P}\{\xi(t) > x\}$ 在 $x = 0$ 处连续. 从而, 由文献 [13, 定理 1] 知, 只需证明顺序统计过程 $X_{r,n}$ 满足 (1.3). 以下证明的主要思想来自于文献 [6, 引理 2].

首先考虑 $r = n$ 的情形. 由条件 A 和文献 [6, 引理 1] 有

$$
\mathbb{P}\{X_{n,n}(1 - q(u)t_i) > u, 1 \leq i \leq m \mid X_{n,n}(1) > u\} = \frac{\mathbb{P}\{X_{n,n}(1 - q(u)t_i) > u, 1 \leq i \leq m, X_{n,n}(1) > u\}}{\mathbb{P}\{X_{n,n}(1) > u\}} \to \mathbb{P}\{\xi_{n,n}(t_i) > 0, 1 \leq i \leq m\}, \quad u \to \infty,
$$

(3.1)
当 $r = n$ 时 (1.3) 成立。

注

$$
\mathbb{P}\{X_{r,n}(1 - q(u)t_i) > u, 1 \leq i \leq m \mid X_{r,n}(1) > u\}
= \mathbb{P}\{X_{r,r}(1 - q(u)t_i) > u, 1 \leq i \leq m \mid X_{r,r}(1) > u\}(1 + Y_r(u)),
$$

（3.2）

其中 $\lim_{n \to \infty} Y_r(u) = 0$ 对所有 $t_i \in (0, \infty)$ 和 $m \in \mathbb{N}$ 一致成立。

下证 $r = n - 1$ 和 $m = 1$ 的情形，而其余情形可类似分析得到，故略。由文献 [6, 引理 1] 有

$$
\overline{G}_{n-1}(u) = n \mathbb{P}\{X_{(n-1):(n-1)}(1) > u\}(1 + o(1)), \quad u \to \infty
$$

且

$$
\mathbb{P}\{X_{(n-1):n}(1 - q(u)t_1) > u, X_{(n-1):n}(1) > u\}
= \mathbb{P}\{X_{(n-1):n}(1 - q(u)t_1) > u \geq X_{n:n}(1 - q(u)t_1), X_{n:n}(1) > u\}
+ \mathbb{P}\{X_{n:n}(1 - q(u)t_1) > u, X_{(n-1):n}(1) > u \geq X_{n:n}(1)\}
+ \mathbb{P}\{X_{n:n}(1 - q(u)t_1) > u \geq X_{n:n}(1 - q(u)t_1), X_{(n-1):n}(1) > u \geq X_{n:n}(1)\}
+ \mathbb{P}\{X_{n:n}(1 - q(u)t_1) > u, X_{n:n}(1) > u\}
=: I_{1u} + I_{2u} + I_{3u} + I_{4u}.
$$

由于对所有的 $t_1 \in (0, \infty)$ 和充分大的 u，一致地有 $\mathbb{P}\{X_{n}(1 - q(u)t_1) \leq u, X_{n}(1) > u\} \leq \overline{G}(u) = o(1)$，因此,

$$
I_{1u} = n \mathbb{P}\left\{ \min_{1 \leq j \leq n-1} X_j(1 - q(u)t_1) > u, \min_{1 \leq j \leq n-1} X_j(1) > u\right\} \mathbb{P}\{X_{n}(1 - q(u)t_1) \leq u, X_{n}(1) > u\}
= n \mathbb{P}\left\{ \min_{1 \leq j \leq n-1} X_j(1 - q(u)t_1) > u, \min_{1 \leq j \leq n-1} X_j(1) > u\right\} o(1), \quad u \to \infty.
$$

类似地，$I_{2u} = I_{1u}(1 + o(1)), \quad u \to \infty$。

接下来处理 I_{3u} 和 I_{4u}. 由 (3.1) 可得，对于 $k = 0, 1, 2$ 有

$$
\mathbb{P}\left\{ \min_{1 \leq j \leq n-k} X_j(1 - q(u)t_1) > u, \min_{1 \leq j \leq n-k} X_j(1) > u\right\} = (\overline{G}(u))^{n-k} O(1), \quad u \to \infty.
$$

进一步利用 $\mathbb{P}\{X_{n}(1 - q(u)t_1) \leq u, X_{n}(1) \leq u\} = 1 + o(1)$ 对所有的 $t_1 \in (0, \infty)$ 和充分大的 u 一致成立，可得

$$
I_{3u} = \sum_{i,j'=1}^{1,n} \mathbb{P}\left\{ \min_{1 \leq j \leq n-j \neq i} X_j(1 - q(u)t_1) > u, X_i(1 - q(u)t_1) \leq u, \min_{1 \leq j' \leq n-j' \neq j'} X_{j'}(1) > u, X_{j'}(1) \leq u\right\}
= n \mathbb{P}\left\{ \min_{1 \leq j \leq n-1} X_j(1 - q(u)t_1) > u, \min_{1 \leq j \leq n-1} X_j(1) > u\right\} \mathbb{P}\{X_{n}(1 - q(u)t_1) \leq u, X_{n}(1) \leq u\}
+ c_{n,2} \mathbb{P}\left\{ \min_{1 \leq j \leq n-2} X_j(1 - q(u)t_1) > u, \min_{1 \leq j \leq n-2} X_{j'}(1) > u\right\}
\times \mathbb{P}\{X_{n-1}(1 - q(u)t_1) \leq u, X_{n-1}(1) > u\}\mathbb{P}\{X_{n}(1 - q(u)t_1) > u, X_{n}(1) \leq u\}
= n \mathbb{P}\left\{ \min_{1 \leq j \leq n-1} X_j(1 - q(u)t_1) > u, \min_{1 \leq j \leq n-1} X_{j'}(1) > u\right\}(1 + o(1))
$$
且 \(I_{4n} = o(I_{3n}) \), \(u \to \infty \), 从而 (3.2) 对 \(r = n - 1 \) 和 \(m = 1 \) 成立。因此, 命题 3.2 的第一个结论获证。

为证命题 3.2 的第二个结论, 由文献 [13, 定理 1], 我们只需验证顺序统计过程 \(X_{r,n} \) 满足条件 B。为此证明以下不等式: 对充分大的 \(u \) 和某个 \(D > 0 \) 有下列不等式对 \(t \in (0, \infty) \) 局部一致地成立。

\[
P\{X_{r,n}(1 - q(u)t) > u \mid X_{r,n}(1) > u\} \leq D(P\{X(1 - q(u)t) > u \mid X(1) > u\})^r. \tag{3.3}
\]

显然, 当 \(r = n \) 时,

\[
P\{X_{n,n}(1 - q(u)t) > u \mid X_{n,n}(1) > u\} = (P\{X(1 - q(u)t) > u \mid X(1) > u\})^n;
\]

而当 \(r < n \), 由类似于对 (3.2) 的分析有

\[
P\{X_{r,n}(1 - q(u)t) > u \mid X_{r,n}(1) > u\} = (P\{X(1 - q(u)t) > u \mid X(1) > u\})^r(1 + Y_r(u)),
\]

其中 \(Y_r(u) = o(1), u \to \infty \)。从而 (3.3) 成立。命题 3.2 得证。□

定理 2.1 的证明 由文献 [13, 定理 4], 只需证明顺序统计过程 \(X_{r,n} \) 满足胎紧性条件。为此我们证明, 对任意给定的 \(\sigma > 0 \) 和较小的 \(a \in (0, \bar{a}] \) 有

\[
v_r(a, \sigma) \equiv \limsup_{u \to \infty} \frac{P\{\sup_{t \in [0,1]} X_{r,n}(t) > u, \max_{0 \leq k \leq K} X_{r,n}(t_a^n(k)) \leq u\}}{E[L_r(u)/q(u)] + \overline{C}_r(u)} \leq Dv(a, \sigma), \tag{3.4}
\]

其中 \(\{t_a^n(k)\} \) 由 (1.5) 定义, 绝对常数 \(D > 0 \) 不依赖于 \(a \)。

首先,

\[
\limsup_{u \to \infty} \frac{P\{\sup_{t \in [0,1]} X(t) > u\}}{E[L(u)/q(u)] + \overline{C}(u)} \leq \limsup_{u \to \infty} \frac{P\{\sup_{t \in [0,1]} X(t) > u\}}{E[L(u)/q(u)] + \overline{C}(u)} \limsup_{u \to \infty} \frac{E[L(u)/q(u)] + \overline{C}(u)}{E[L(u)+q(u)] + \overline{C}(u)}. \tag{3.5}
\]

由文献 [13, 命题 1 和定理 3] 知, 上述不等式的左边有界。进一步利用命题 3.1、\(\beta_3 = \infty \) 和不等式 \((x + y)^n \leq 2^n(x^n + y^n)\), \(x, y > 0 \), 有

\[
P\left\{ \sup_{t \in [0,1]} X_{n,n}(t) > u, \max_{0 \leq k \leq K} X_{n,n}(t_a^n(k)) \leq u \right\} \leq \left(\frac{1}{n} \right)^{n-1} P\left\{ \sup_{t \in [0,1]} X(t) > u \right\} \leq D\left(\frac{E[L(u)]}{q(u)} + \overline{C}(u) \right)^n v(a, \sigma) \leq D\left(\frac{E[L(u)]}{q(u)} + \overline{C}(u) \right)v(a, \sigma), \ u \to \infty.
\]

从而 (3.4) 对 \(r = n \) 成立。

下证 \(r = n - 1 \) 的情形。注意对较小的 \(a > 0 \) 和 \(\sigma > 0 \) 有 \(v(a, \sigma) \in [0, \infty) \)。从而,

\[
P\left\{ \sup_{t \in [0,1]} X_{n-1,n}(t) > u, \max_{0 \leq k \leq K} X_{n-1,n}(t_a^n(k)) \leq u \right\}
\]

1145
下证过程从而由文献[13], 为一平稳过程 \(1146 \)

其极限过程为

进一步由已证的引理成立

\[\lim\sup_{n \to \infty} D_{n} = 0 \]

利用文献[13, 推论 1]和命题 3.1 知定理成立且成立/

注意到了对于一具有自相似系数 \(\kappa > 0 \) 的自相似过程 \(X(t) \) 的 Lamperti 变换过程 \(\tilde{X}(t) = e^{-\kappa t} X(e^{t}) \) 为平稳过程. 由文献[6, 定理 2]知, \(\tilde{\zeta}(t) \) 满足 Albin 平稳条件. 虽然一般的自相似过程的极限行为与其对应的 Lamperti 变换平稳过程的极限行为并没有必然的联系, 但对于某些自相似过程(平稳)过程满足一定的关联条件时, 如文献[13, 第 9节]所述, 则两者的极限行为可建立关系. 以下证明推论 2.1 的思路来自于此.

推论 2.1 的证明 不失一般性, 假定 \(D = 1 \). 首先, 有文献[6, 引理 5]知, 边际分布函数 \(G(x) = \text{P}[\zeta(1) \leq x] = D_{0}(w(x)) \), 其中辅助函数 \(w(u) = u \), 且由文献[6, 引理 8]知 (2.6) 成立. 令 \(q(u) = u^{-\min(2/\alpha,2)} \), \(\alpha \in (0,2) \), 从而 \(\beta_{3} = \beta_{4} = 1 \). 由文献[6, 引理 6]知,

\(\{ u(w(\zeta)) \} \)

从而由文献[13, 命题 9(ii)]知, 极限 (1.3) 成立, 其中

\[\xi(t) = (\sqrt{2}Z(t) - t^\alpha) \| \{ \alpha \leq 1 \} + E, t \geq 0 \].

下证过程 \(\zeta \) 满足条件 B 和 C.

(i) 当 \(\alpha \in (0,1] \), 由文献[6, 引理 7]知, 对于某个 \(\epsilon \in (0, T) \), 存在一常数 \(K_{p} \) 和 \(p > m \) 使得

\[\text{P}[\zeta(q(u)) > u | \zeta(0) > u] \leq \begin{cases} K_{p} t^{-\alpha p/2}, & q(u)t \in (0, \epsilon), \\ K_{p} u^{n-1-p}, & q(u)t \in (\epsilon, T]. \end{cases} \]

从而由文献[13, 命题 7]知, 条件 B 成立.
最后，由文献 [6, 引理 8] 知，存在常数 $D^*, p, \lambda_0 > 0$ 和 $d > 1$ 使得对所有的 $0 < t^{n/2} \leq \lambda \leq \lambda_0$ 和充分大的 u，

$$
P\{\zeta(q(u)t) > u\lambda, \tilde{\zeta}(0) \leq u\} \leq D^* t^d \lambda^{-p} P\{\tilde{\zeta}(0) > u\}. \quad (3.6)
$$

因此，由文献 [13, 命题 8] 和 [26, 命题 2] 知，广义依存 Gauss 自相似过程 ζ 满足条件 C.

(ii) 当 $\alpha \in (1, 2]$. 注意到 $\beta_3 = 1 > 0$, 由注 2.1(i) 知条件 B 成立. 由条件 (2.3) 知，

$$
E\{\bar{X}(0)\bar{X}(t)\} \geq 1 - 2|t|, \quad t \to 0.
$$

再利用文献 [6, 引理 8] 有 (3.6)，从而条件 C 成立.

因此，结合定理 2.2，命题 3.1 和 3.2，定理的结论得证.

致谢 作者对两位审稿人的宝贵修改意见及帮助致以特别的感谢。在此，第一作者对 Enkelejd Hashorva 教授为其在洛桑大学工作期间提供的建议和帮助表示诚挚的感谢。

参考文献

1. Adler R J, Subag E, Taylor J E. Rotation and scale space random fields and the Gaussian kinematic formula. Ann Statist, 2012, 40: 2910–2942
2. Worsley K J, Friston K J. A test for a conjunction. Statist Probab Lett, 2000, 47: 135–140
3. Alodat M T. An approximation to cluster size distribution of two Gaussian random fields conjunction with application to FMRI data. J Statist Plann Inference, 2011, 141: 2331–2347
4. Alodat M T, Al-Rawwash M, Jebrini M A. Duration distribution of the conjunction of two independent F processes. J Appl Probab, 2010, 47: 179–190
5. Dębicki K, Hashorva E, Ji L, et al. On the probability of conjunctions of stationary Gaussian processes. Statist Probab Lett, 2014, 88: 141–148
6. Dębicki K, Hashorva E, Ji L, et al. Extremes of order statistics of stationary processes. TEST, 2015, 24: 229–248
7. Albin J M P, Samorodnitsky G. On overload in a storage model, with a self-similar and infinitely divisible input. Ann Appl Probab, 2004, 14: 820–844
8. Bardet J M, Tudor C A. A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter. Stochastic Process Appl, 2010, 120: 2331–2362
9. Beran J, Feng Y, Ghosh S, et al. Long-Memory Processes. Heidelberg: Springer, 2013
10. Embrechts P, Maejima M. Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton: Princeton University Press, 2002
11. Taqqu M S. A representation for self-similar processes. Stochastic Process Appl, 1978, 7: 55–64
12. Ai X H, Li W V. m-th order detrend Brownian motion. Sci China Math, 2014, 57: 2043–2052
13. Albin J M P. On extremal theory for stationary processes. Ann Probab, 1998, 26: 743–793
14. Bojdecki T, Gorostiza L G, Talarczyk A. Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems. Electron Comm Probab, 2007, 12: 161–172
15. Bojdecki T, Talarczyk A. Particle picture interpretation of some Gaussian processes related to fractional Brownian motion. Stochastic Process Appl, 2012, 122: 2134–2154
16. Hüler J, Piterbarg V I. Extremes of a certain class of Gaussian processes. Stochastic Process Appl, 1999, 83: 257–271
17. Li Y, Xie Y. Multivariate operator-self-similar random fields. Stochastic Process Appl, 2011, 121: 1178–1200
18. Sato K I. Self-similar processes with independent increments. Probab Theory Related Fields, 1991, 89: 285–300
19. Sghir A. A self-similar Gaussian process. Random Oper Stoch Equ, 2014, 22: 85–92
20. Berman S M. Sojourns and extremes of stationary processes. Ann Probab, 1982, 10: 1–46
21. Pham V H. On the rate of convergence for central limit theorems of sojourn times of Gaussian fields. Stochastic Process Appl, 2013, 123: 2158–2174
22. Albin J M P. On extremal theory for stationary processes. Ann Probab, 1990, 18: 92–128
23. Al-Rawwash M, Seif M. Measuring the surface roughness using the spatial statistics application. J Appl Statist Sci, 2007, 15: 205–213
Extremes of order statistics of self-similar processes

LING ChengXiu & PENG ZuoXiang

Abstract Let \(\{X_i(t), t \geq 0\} (1 \leq i \leq n) \) be independent copies of a random process \(\{X(t), t \geq 0\} \). For a given positive threshold \(u \), define the set of \(r \)-th conjunctions \(C_r(u) := \{t \in [0,1] : X_{r,n}(t) > u\} \) with \(X_{r,n} \) the \(r \)-th largest order statistics of \(X_i \) (1 \(\leq i \leq n \)). In numerical applications such as brain mapping and digital communication systems, what of interest is the approximation of \(p_r(u) = \mathbb{P}\{C_r(u) \neq \emptyset\} \) as \(u \to \infty \). In this paper, we consider \(X \) to be a self-similar \(\mathbb{R}^m \)-valued process with \(\mathcal{P} \)-continuous sample paths. By imposing the Albin’s conditions directly on \(X \), we establish an exact asymptotic expansion of \(p_r(u) \) as \(u \) tends to infinity. As a by-product we derive the asymptotic tail behaviour of the mean sojourn time of \(X_{r,n} \) over an increasing threshold. Finally, our findings are applied to establishing the approximation of \(p_r(u) \) with \(X \) a generalized skew-Gaussian self-similar process including \(\chi \) processes, bi-fractional Brownian motions and sub-fractional Brownian motions.

Keywords self-similar processes, order-statistic processes, mean sojourn time, skew-Gaussian process

MSC(2010) 60G15, 60G70
doi: 10.1360/012016-15