Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Protection against omicron (B.1.1.529) BA.2 reinfection conferred by primary omicron BA.1 or pre-omicron SARS-CoV-2 infection among health-care workers with and without mRNA vaccination: a test-negative case-control study

Sara Carazo, Danuta M Skowronski, Marc Brisson, Sapha Barkati, Chantal Sauvageau, Nicholas Brousseau, Rodica Gilca, Judith Fafard, Denis Talbot, Manale Ouakki, Vladimir Gilca, Alex Carignan, Geneviève Deceuninck, Philippe De Wals, Gaston De Serres

Summary

Background There is a paucity of data on vaccine-induced or infection-induced (hybrid or natural) immunity against omicron (B.1.1.529) subvariant BA.2, particularly in comparing the effects of previous SARS-CoV-2 infection with the same or different genetic lineage. We aimed to estimate the protection against omicron BA.2 associated with previous primary infection with omicron BA.1 or pre-omicron SARS-CoV-2, among health-care workers with and without mRNA vaccination.

Methods We conducted a test-negative case-control study among health-care workers aged 18 years or older who were tested for SARS-CoV-2 in Quebec, Canada, between March 27 and June 4, 2022, when BA.2 was the predominant variant and was presumptively diagnosed with a positive test result. We identified cases (positive test during study period) and controls (negative test during study period) using the provincial laboratory database that records all nucleic acid amplification testing for SARS-CoV-2 in Quebec, and used the provincial immunisation registry to determine vaccination status. Logistic regression models compared the likelihood of BA.2 infection or reinfection (second positive test ≥30 days after primary infection) among health-care workers who had previous primary infection and none to three mRNA vaccine doses versus unvaccinated health-care workers with no primary infection.

Findings 258 007 SARS-CoV-2 tests were done during the study period. Among those with a valid result and that met the inclusion criteria, there were 37 732 presumed BA.2 cases (25 21 [6.7%] reinfections following pre-omicron primary infection and 659 [1.7%] reinfections following BA.1 primary infection) and 73 507 controls (73 60 [10.0%] had pre-omicron primary infection and 12 315 [16.8%] had BA.1 primary infection). Pre-omicron primary infection was associated with a 38% (95% CI 19–53) reduction in BA.2 infection risk, with higher BA.2 protection among those who had also received one (56%, 95% CI 47–63), two (69%, 64–73), or three 70%, 66–74) mRNA vaccine doses. Omicron BA.1 primary infection was associated with greater protection against BA.2 infection (risk reduction of 72%, 95% CI 65–78), and protection was increased further among those who had received two doses of mRNA vaccine (96%, 95–96), but was not improved with a third dose (96%, 95–97).

Interpretation Health-care workers who had received two doses of mRNA vaccine and had previous BA.1 infection were subsequently well protected for a prolonged period against BA.2 reinfection, with a third vaccine dose conferring no improvement to that hybrid protection. If this protection also pertains to future variants, there might be limited benefit from additional vaccine doses for people with hybrid immunity, depending on timing and variant.

Funding Ministère de la Santé et des Services Sociaux du Québec.

Copyright © 2022 Elsevier Ltd. All rights reserved.

Introduction

Since December, 2021, omicron (B.1.1.529) has been the dominant SARS-CoV-2 variant globally, responsible for the highest COVID-19 incidence to date due to its greater transmissibility and escape from natural immunity and vaccine-induced immunity. The initial omicron BA.1 sublineage has been replaced by the phylogenetically distinct and even more transmissible BA.2 sublineage. In Quebec, Canada, omicron BA.2 became dominant at the end of March, 2022, accounting for more than 90% of sequenced viruses during the ensuing weeks. The intense omicron BA.1 surge that occurred among the population of Quebec, despite a high proportion of people having been vaccinated, between December, 2021, and February, 2022, resulted in a considerable pool of people with potential hybrid immunity induced by the combination of vaccination and infection. In the context of previous reports of reduced and rapidly waning
We aimed to estimate the protection against omicron BA.2 reinfection conferred by previous primary infection with or without vaccination. Two preprint reports estimated cross-sublineage protection against BA.2 reinfection of 95% for people with previous BA.1 infection 35–95 days earlier (adjusted for vaccination) and of about 70% for unvaccinated people who had previous infection during the omicron-dominant period 30–59 days earlier. Data on hybrid immunity (combined protection from vaccination and previous infection) are scarce, particularly in comparing the effects of previous infection with the same or different genetic lineage (eg, pre-omicron infection vs omicron BA.1 infection).

Methods

Study design

We conducted a test-negative case-control study to estimate the protection against omicron BA.2 reinfection conferred by previous pre-omicron or omicron BA.1 primary infection, with and without mRNA vaccination, in the population-based cohort of health-care workers aged 18 years or older in Quebec, Canada.

Previous omicron BA.1 infection alone was the single most protective factor against BA.2 reinfection (risk reduction of 72%), and was associated with higher protection than pre-omicron primary infection alone (38%) or even than three doses of mRNA vaccine in people with no previous infection (46%). Hybrid immunity conferred by previous omicron BA.1 primary infection plus vaccination increased estimated protection against BA.2 reinfection, similarly to 96% with two or three vaccine doses, and this protection was maintained for at least 5 months after primary infection.

Evidence before this study

We searched Medline and the preprint servers medRxiv and SSRS on June 15, 2022, using the term “omicron BA.2”, with no language or date restrictions. We found 16 studies reporting cross-immunity or cross-protection against omicron BA.2 among people who had previous BA.1 infection. Several immunological studies found robust neutralising antibody titres against BA.2 in sera of people who had previous omicron BA.1 infection, which were improved among people who had also been vaccinated. However, we did not identify any published peer-reviewed epidemiological studies that estimated the protection against omicron BA.2 infection in people with previous omicron primary infection with or without vaccination. Two preprint reports estimated cross-sublineage protection against BA.2 reinfection of 95% for people with previous BA.1 infection 35–95 days earlier (adjusted for vaccination) and of about 70% for unvaccinated people who had previous infection during the omicron-dominant period 30–59 days earlier. Data on hybrid immunity (combined protection from vaccination and previous infection) are scarce, particularly in comparing the effects of previous infection with the same or different genetic lineage (eg, pre-omicron infection vs omicron BA.1 infection).

Added value of this study

We conducted a test-negative case-control study to estimate the protection against omicron BA.2 reinfection conferred by previous pre-omicron or omicron BA.1 primary infection, with and without mRNA vaccination, in the population-based cohort of health-care workers aged 18 years or older in Quebec, Canada.

Previous omicron BA.1 infection alone was the single most protective factor against BA.2 reinfection (risk reduction of 72%), and was associated with higher protection than pre-omicron primary infection alone (38%) or even than three doses of mRNA vaccine in people with no previous infection (46%). Hybrid immunity conferred by previous omicron BA.1 primary infection plus vaccination increased estimated protection against BA.2 reinfection, similarly to 96% with two or three vaccine doses, and this protection was maintained for at least 5 months after primary infection.

Implications of all the available evidence

In the context of hundreds of millions of people worldwide who have already had SARS-CoV-2 infection, and with over half having accrued since omicron emergence, our results have important implications for preparedness and response to future epidemic waves. If also applicable to other populations and emerging omicron subvariants, our findings of substantial and sustained omicron BA.1 hybrid protection against BA.2 among health-care workers suggest that people who have had previous omicron infection and two vaccine doses might be well protected. For such individuals, additional doses might provide only marginal added benefit against subsequent omicron infections and severe outcomes. Therefore, available vaccine doses might be better prioritised for protecting people who are more vulnerable globally.
Reinfection was defined as two positive specimens collected at least 30 days apart. Consequently, tests that were done within 30 days of a previous positive result were excluded. Health-care workers with a reinfection documented before the study period were also excluded. Negative tests collected within 7 days before a positive test were excluded, to avoid misclassifying potential cases within their incubation period as controls. We additionally excluded cases without nucleic acid amplification test confirmation.

Data sources
We identified cases and controls using the provincial laboratory database that records all nucleic acid amplification testing for SARS-CoV-2 in Quebec, including the date of specimen collection, the result, and testing indication. Indications for testing were being symptomatic in assessment centres, symptoms during consultation at the emergency room or hospitalisation, asymptomatic during outbreaks, hospital pre-admission screening, contact with case(s), confirmation of a rapid antigen detection testing positive result, confirmation of recovery, and other reasons combined. Publicly funded nucleic acid amplification testing was broadly accessible to all health-care workers in Quebec throughout the pandemic. We defined symptomatic infection as a positive test result in the presence of symptoms during consultation at an assessment centre, at the emergency room, or at hospitalisation, recognising a broad clinical spectrum for COVID-19.

Using a unique personal identifying number, the cohort of health-care workers was linked with the laboratory database; the provincial immunisation registry, which is a population-based database including all unvaccinated and vaccinated people with their dates of vaccination and the type of vaccine administered; the provincial database of all COVID-19 cases, including demographics and clinical information; and the administrative hospitalisation database.

Procedures
We defined exposure by a combination of previous infection and vaccination history. We defined primary infection as a SARS-CoV-2-positive specimen collected at least 30 days before a specimen collected during the study period. The 30-day interval was chosen to capture all potential BA.2 reinfections following previous BA.1 primary infection, because early reinfections during SARS-CoV-2 variant replacement periods have been documented.10–12 In a sensitivity analysis, we defined reinfection using the more standard 90-day interval.13–15

We defined a pre-omicron primary infection as any SARS-CoV-2-positive specimen collected between Feb 20, 2020, and Nov 27, 2021. The strategy for variant of concern identification in Quebec during this period has been detailed elsewhere.16 Based on provincial genomic surveillance, we assumed omicron BA.1 attribution for cases between Dec 26, 2021, and March 26, 2022; during this period, all sequenced viruses were omicron and more than 90% overall were characterised as omicron BA.1 between Dec 26, 2021, and March 5, 2022, decreasing but remaining predominant (>50% overall) through March 26, 2022.7 To separately ascribe and analyse the protection associated with pre-omicron versus omicron primary infection, we excluded
Table 1: Characteristics of cases and controls stratified by SARS-CoV-2 primary infection history

	Cases (n=37,732)		Controls (n=73,507)	
	Previous primary infection	No primary infection	Previous primary infection	No primary infection
Total	3180	34552	19675	53832
Sex				
Female	2643 (82.8%)	28,235 (81.7%)	16,566 (84.2%)	44,401 (82.5%)
Male	546 (17.2%)	6317 (18.3%)	3109 (15.8%)	9431 (17.5%)
Age, years				
18–39	1750 (55.0%)	16,473 (47.7%)	10,033 (55.1%)	24,383 (45.3%)
40–59	1341 (42.2%)	16,161 (45.8%)	8,106 (41.2%)	25,629 (47.6%)
≥60	89 (2.8%)	1918 (5.6%)	736 (3.7%)	3820 (7.1%)
Type of employment				
Physician	104 (3.3%)	16,53 (4.8%)	465 (2.4%)	3014 (5.6%)
Nursing staff or respiratory therapist	1220 (38.4%)	10,736 (31.1%)	7706 (39.2%)	18,051 (33.5%)
Other health-assisting occupation	980 (30.8%)	8,119 (24.1%)	6,048 (30.7%)	13,857 (25.7%)
Social worker	569 (17.9%)	8,172 (24.1%)	3,464 (17.6%)	11,131 (20.7%)
Pharmacist	24 (0.8%)	505 (1.5%)	160 (0.8%)	974 (1.8%)
Management and administrative staff	283 (8.9%)	5,022 (14.5%)	1,832 (9.3%)	6,805 (12.6%)
Facility				
Hospital or health centre	1712 (53.8%)	18,798 (54.4%)	10,927 (55.5%)	29,557 (54.9%)
Long-term health facility	605 (19.0%)	3,705 (10.7%)	3,356 (19.0%)	7,020 (13.0%)
Rehabilitation centre	141 (4.4%)	1,689 (4.9%)	712 (3.6%)	2,248 (4.2%)
Childhood and youth centre	89 (2.8%)	1,547 (4.5%)	561 (2.9%)	1,569 (2.9%)
Home care	182 (5.7%)	2,057 (6.0%)	1,023 (5.2%)	2,640 (4.9%)
Other	451 (14.2%)	6,756 (19.6%)	2,716 (13.8%)	10,798 (20.1%)
Time of specimen collection, epidemiological weeks (calendar date)				
13–14 (March 27–April 9)	1,102 (34.7%)	13,789 (39.9%)	4,737 (24.1%)	19,310 (35.9%)
15–16 (April 10–23)	1,001 (31.5%)	10,666 (30.9%)	5,141 (26.1%)	14,515 (27.0%)
17–18 (April 24–May 7)	563 (17.7%)	5,284 (15.3%)	4,271 (21.7%)	8,895 (16.7%)
19–20 (May 8–21)	264 (8.3%)	2,556 (7.4%)	2,862 (14.6%)	5,983 (11.1%)
21–22 (May 22–June 4)	250 (7.9%)	2,247 (6.5%)	2,664 (13.5%)	5,029 (9.3%)
Indication for testing				
Symptomatic, emergency room	52 (1.6%)	445 (1.3%)	820 (4.2%)	1,636 (3.0%)
Symptomatic, health-care worker	1765 (55.5%)	21,058 (60.9%)	7,374 (37.5%)	20,988 (38.2%)
Asymptomatic, closed setting outbreak	252 (7.9%)	1,523 (4.4%)	4,617 (23.5%)	10,767 (20.0%)
Asymptomatic, hospital pre-admission	41 (1.3%)	318 (0.9%)	1,417 (7.2%)	3,880 (7.2%)
Asymptomatic contact	283 (8.9%)	3,710 (10.7%)	1,955 (9.9%)	8,749 (16.3%)
Asymptomatic other	177 (5.6%)	915 (2.6%)	1,073 (10.0%)	4,758 (8.8%)
Confirmation of positive rapid antigen test	562 (17.7%)	6,324 (18.3%)	938 (4.8%)	2,277 (4.2%)
Other reasons combined	48 (1.5%)	259 (0.7%)	581 (3.0%)	1,177 (2.2%)
Variant of concern of primary infection by calendar period				
Before variant of concern or alpha (before Feb 1, 2021)	2,081 (65.4%)	NA	5,996 (30.5%)	NA
Before variant of concern or alpha (Feb 1–April 10, 2021)	185 (5.8%)	NA	503 (2.6%)	NA
Alpha (April 11–June 26, 2021)	98 (3.1%)	NA	280 (1.4%)	NA
Alpha or delta (June 27–Sept 4, 2021)	53 (1.7%)	NA	141 (0.7%)	NA
Delta (Sept 5–Nov 27, 2021)	104 (3.3%)	NA	440 (2.2%)	NA
Omicron BA.1 (Dec 26, 2021–March 26, 2022)	630 (19.8%)	NA	11,585 (58.9%)	NA
Omicron BA.2 (March 27–May 7, 2022)	29 (0.9%)	NA	730 (3.7%)	NA
Time between primary infection and specimen collection, days	487 (246–572)	NA	120 (95–483)	NA

Data are n (%) or median (IQR). NA=not applicable.
participants with past infection during the period of delta and omicron cocirculation (Nov 28–Dec 25, 2021).

We defined vaccination as the administration of BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) mRNA vaccines. Health-care workers were a prioritised group for vaccination throughout the pandemic, earlier for high-risk facilities (long-term and acute-care facilities), and without geographical differences in the province. Health-care workers with pre-omicron or omicron BA.1 subvariant primary infection who had received no vaccine, or one, two, or three vaccine doses were compared with health-care workers who had no previous primary infection and had not been vaccinated.

The main outcomes were any nucleic acid amplification test-positive SARS-CoV-2 infection or symptomatic infection during the study period, in the context of omicron BA.2 subvariant dominance when 86% (weekly range 60–93) of viruses from sentinel laboratories characterised by sequencing were BA.2 (figure 1).5 Other outcomes were the number of deaths and COVID-19 hospitalisations within 30 days of sample collection by infection history and vaccination status.

Statistical analysis
The odds of pre-omicron or omicron BA.1 primary infection with or without vaccination and of vaccination alone without primary infection were compared among cases and controls. The comparator group for all analyses were health-care workers who had no previous primary vaccination and had not been vaccinated. Adjusted odds ratios (ORs) and their 95% CIs were computed using the maximum likelihood estimator. Logistic regression models were adjusted for age (18–39, 40–59, and ≥60 years), sex, type of employment (as a proxy for socioeconomic status), facility (associated with potential differential in virus exposure opportunities over time between cases and controls), Vaccine effectiveness or protection (ie, BA.2 infection risk reduction) was derived as 1 − adjusted OR.17 ORs were not estimated for exposure categories with fewer than five participants because the statistical uncertainty would be too large. Analyses were also stratified by time since last primary infection or vaccine exposure. We did post-hoc sensitivity analyses stratifying by age group and epidemiological weeks 15–22 (April 10–June 4, 2022), when 76–96% of SARS-CoV-2 viruses detected by sentinel laboratories were BA.2.

Statistical analyses were performed using SAS (version 9.4).

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

All infections analysis	Symptomatic infections analysis*		
Cases	**Controls**	**Cases**	**Controls**
(n=27,732)	(n=73,507)	(n=23,371)	(n=30,542)
Pre-omicron primary infection			
Overall	2521 (5.7%)	7260 (10.0%)	1495 (6.4%)
Non-vaccinated	109 (0.3%)	265 (0.4%)	57 (0.2%)
One vaccine dose	340 (0.9%)	729 (1.0%)	214 (0.9%)
Primary infection, first dose	340 (0.9%)	722 (1.0%)	212 (0.9%)
First dose, primary infection	2 (<0.1%)	7 (<0.1%)	2 (<0.1%)
Two vaccine doses	897 (2.4%)	2665 (3.6%)	540 (2.3%)
Primary infection, two doses	815 (2.2%)	2376 (3.2%)	486 (2.1%)
First dose, primary infection, second dose	39 (0.1%)	107 (0.1%)	24 (0.1%)
Two doses, primary infection	43 (0.1%)	182 (0.2%)	30 (0.1%)
Three vaccine doses	1173 (3.1%)	3701 (5.0%)	684 (2.9%)
Primary infection, three doses	1028 (2.7%)	3177 (4.3%)	594 (2.5%)
First dose, primary infection, second and third doses	83 (0.2%)	271 (0.4%)	52 (0.2%)
Two doses, primary infection, third dose	62 (0.2%)	253 (0.3%)	38 (0.2%)
Omicron BA.1 primary infection			
Overall	659 (1.7%)	12315 (16.8%)	330 (1.4%)
Non-vaccinated	125 (0.3%)	772 (1.0%)	43 (0.2%)
One vaccine dose	9 (<0.1%)	109 (0.1%)	3 (<0.1%)
Primary infection, first dose	1 (<0.1%)	6 (<0.1%)	1 (<0.1%)
First dose, primary infection	8 (<0.1%)	103 (<0.1%)	2 (<0.1%)
Two vaccine doses	262 (0.7%)	5222 (7.2%)	147 (0.6%)
Primary infection, two doses	262 (0.7%)	5214 (7.2%)	147 (0.6%)
First dose, primary infection, second dose	0	8 (<0.1%)	0
Three vaccine doses	263 (0.7%)	6157 (8.4%)	137 (0.6%)
Primary infection, three doses	243 (0.6%)	5679 (7.7%)	124 (0.5%)
No previous SARS-CoV-2 infection			
Overall	34,552 (91.6%)	53,832 (73.2%)	21,546 (92.2%)
Non-vaccinated	672 (1.8%)	1043 (1.4%)	343 (1.5%)
One vaccine dose	136 (0.4%)	193 (0.3%)	68 (0.3%)
Two vaccine doses	6727 (17.8%)	8939 (12.2%)	4382 (18.5%)
Three vaccine doses	27,027 (71.6%)	43,657 (59.4%)	16,748 (71.7%)

*Including only participants who had symptoms at the time of specimen collection according to the indication for testing.

Table 2: Vaccination status of presumed omicron BA.2 cases and controls stratified by SARS-CoV-2 primary infection (pre-omicron or omicron BA.1)

Results
258,007 tests were performed among health-care workers in Quebec during the study period, 256,636 (99.5%) of which had valid results and were merged with other databases. 39,955 (15.5%) of tests were excluded (appendix p 4). In total, 37,732 presumed omicron BA.2 cases were compared with 73,507 randomly selected controls. Most participants were aged 18–59 years (n=104,677 [94.1%]) and female (n=91,845 [82.6%]; table 1). A previous SARS-CoV-2 primary infection was
observed in 3180 (8·4%) of 37732 cases and 19675 (26·8%) of 73 507 controls (table 2). Among cases, 1159 (3·1%) had primary infection combined with two vaccine doses and 1436 (3·8%) had primary infection and three vaccine doses. Among controls, 687 (10·9%) had primary infection combined with two vaccine doses and 821 (13·4%) had primary infection and three vaccine doses.

COVID-19 hospitalisations within 30 days following specimen collection were recorded for 58 vaccinated cases: 51 (0·1%) of 34 552 cases without primary infection, four (0·2%) of 2521 cases with pre-omicron primary infection, and three (0·6%) of 659 cases with BA.1 primary infection. Only one COVID-19-attributable death was documented in a participant with no previous primary infection who had received three doses of vaccine (data not shown).

Among the 2521 (6·7%) cases who had reinfection following pre-omicron primary infection, most had been vaccinated following their primary infection (815 [32·3%] had received two vaccine doses and 1028 [40·8%] had received three vaccine doses) and 109 (4·3%) remained unvaccinated. Among the 659 (1·7%) cases who had reinfection after a presumed omicron BA.1 primary infection, 125 (19·0%) were unvaccinated, 262 (39·8%) had received two vaccine doses, and 263 (36·9%) had received three vaccine doses (table 2).

Reinfections in participants who had a previous pre-omicron primary infection mostly (in 2081 [82·5%] of 2521 participants) occurred before February, 2021, during the time before the variant-of-concern period, with a median primary infection to reinfection interval of 515 days (IQR 461–682; figure 2). Reinfections in participants who had a previous omicron primary infection mostly (in 429 [65·1%] of 659 participants) occurred during the 3 peak weeks of the omicron BA.1 wave, with a median primary infection to reinfection interval of 100 days (IQR 87–116). Of these, 49 (6·5%) reinfections occurred at 30–59 days after primary infection and 151 (20·8%) occurred at 60–89 days after primary infection (figure 2). The proportion of reinfections following a BA.1 primary infection increased from 0·9% to 3·6% of the reported cases from epidemiological weeks 13–22 of 2022 (figure 1).

Pre-omicron primary infection alone (without vaccination) was associated with a BA.2 reinfection risk reduction of 38% (95% CI 19–53) and a symptomatic reinfection risk reduction of 51% (22–69). In participants who had received two vaccine doses and had pre-omicron primary infection hybrid exposure, the estimated BA.2 reinfection risk reduction was 69% (95% CI 64–73), similar to in participants who had received three vaccine doses and had pre-omicron primary infection exposure (70%, 66–74). Protection against symptomatic BA.2 reinfection was also similar in participants who had
Omicron BA.1 primary infection and two vaccine doses (risk reduction of 81%, 95% CI 76–85) or three vaccine doses (83%, 78–86; figure 3; appendix p 2).

Omicron BA.1 primary infection alone (without vaccination) was associated with a BA.2 reinfection risk reduction of 72% (95% CI 65 to 78) and a symptomatic reinfection risk reduction of 86% (79 to 91). This protection was similar to that of hybrid pre-omicron primary infection plus two or three vaccine doses and higher than the estimated risk reduction with three vaccine doses among participants with no previous primary infection (46%, 95% CI 40 to 52; figure 3). This difference was not explained by time since last exposure.

At a similar interval since primary infection (3 to <6 months), omicron BA.1 primary infection without vaccination was associated with a BA.2 risk reduction of 70% (95% CI 61 to 77) compared with 42% (47 to 77) for pre-omicron primary infection without vaccination (table 3). At a similar interval since last exposure (30–89 days), omicron BA.1 primary infection without vaccination was associated with a BA.2 risk reduction of 78% (95% CI 66 to 86), compared with 63% (57 to 68) conferred by three vaccine doses without previous primary infection (data not shown).

Omicron BA.1 primary infection with two mRNA vaccine doses was associated with 96% (95% CI 95–96) reduced risk of any omicron BA.2 reinfection and 98% (97–98) reduced risk of symptomatic omicron BA.2 reinfection. As observed with pre-omicron primary infection, the estimated hybrid protection associated with BA.1 primary infection was not improved with a third vaccine dose against any BA.2 reinfection (risk reduction of 96%, 95% CI 95–97) or symptomatic BA.2 reinfection (98%, 98–99; appendix p 2). The timing of the third dose (ie, before or after the primary infection) did not modify the observed protection (figure 3). Sensitivity
articles

analyses stratified by age group showed risk reduction estimates higher than in the primary analysis for two and three vaccine doses with pre-omicron primary infection, but the 95% CIs were overlapping between age groups (appendix p 3). We found no differences when using the more standard 90-day interval for defining reinfection (appendix p 4), or when the period was restricted to epidemiological weeks 15–22 (appendix p 5).

Pre-omicron primary infection without vaccination, occurring 4–25 months before omicron BA.2 circulation, was associated with BA.2 reinfection risk reduction of 42% (95% CI 1–77) after 4–5 months, 39% (0 to 63) after 6–11 months, and 42% (17 to 60) after 12 months or longer (table 3). When the last vaccine dose followed the pre-omicron primary infection, two and three doses of vaccine were associated with similar protection during the 7–59-day period after vaccination (risk reduction of 89% [95% CI 78 to 94] with two doses and 88% [81 to 92] with three doses) and the 60–89-day period after vaccination (73% [60 to 82] and 80% [75 to 84]).

Over the 5-month follow-up of participants with history of previous omicron BA.1 primary infection, a non-significant decline in BA.2 reinfection protection was observed among unvaccinated participants (from risk reduction of 82% [95% CI 49–94] at 30–59 days to 70% [61–77] at 90–160 days), but not among those who had received two or three doses before their primary infection, whose protection remained between 96% and 97% for the 30–159 days of follow-up (table 3).

Estimated protection against BA.2 reinfection when the third dose was instead administered after an omicron BA.1 primary infection was similarly high at 98% (95% CI 96–99) at 7–59 days after the third dose and 95% (89–98) at 60–89 days after the third dose. No participants who had received two vaccine doses had received their second dose after omicron BA.1 primary infection (table 3).

Discussion

Hybrid immunity resulting from previous omicron BA.1 infection plus two or three mRNA vaccine doses conferred the highest protection against any BA.2 infection (risk reduction of 96%) or symptomatic BA.2 infection (98%) among health-care workers. Protection was maintained for at least 5 months after primary infection. Previous omicron BA.1 primary infection alone was associated with greater protection against BA.2 infection than pre-omicron primary SARS-CoV-2 infection alone, or even three doses of mRNA vaccine in health-care workers who had no previous primary infection. When the primary infection was pre-omicron SARS-CoV-2, the reduction in risk of BA.2 reinfection was 38% in unvaccinated individuals, but was greater than 85% in those who had received their second or third vaccine dose less than 2 months earlier, and 70% when these doses were administered 2–6 months earlier.

In this population of health-care workers, 1·7% of cases detected during the study period, where BA.2 was the dominant variant, had previous primary infection with omicron BA.1; their odds of reinfection was four times lower than among those who had previous pre-omicron primary infection, but was still higher than the reported reinfection rates before the omicron surge.42 The omicron BA.2 sublineage shares multiple mutations with BA.1, but with genetic differences conferring growth advantage and resulting in BA.1 displacement.4 Omicron BA.2 reinfections had been documented using whole genome sequencing as early as 20 days after an omicron BA.1 primary infection, although such occurrences appeared to be rare.10

We observed a moderate protection against any BA.2 infection (risk reduction of 38%) and symptomatic BA.2 infection (51%) by heterologous pre-omicron primary infection without vaccination. Persistent cross-protection extending to different lineages might be explained by a T-cell response recognising epitopes across multiple viral proteins and other non-structural proteins that are less susceptible to mutations.4 We found higher effectiveness...
for hybrid immunity with primary infection and two
vaccine doses (risk reduction of 81%) than for natural
immunity from primary infection alone. This pattern
was also reported in a study from Qatar, with
46% effectiveness against symptomatic BA.2 infection
in people who had pre-omicron primary infection and
55% if combined with two vaccine doses and 77% with
closest homologous for the
infection-induced component. In our population of
health-care workers, previous omicron infection
combined with two or three vaccine doses was associated
with 96% protection against BA.2. Estimated protection
was slightly higher against symptomatic infections, and
only three hospitalisations were recorded. No other
studies to date have directly examined the effect and
duration of protection from hybrid BA.1 immunity
against descendant omicron sublineages.

Reported protection against omicron reinfection
conferred by previous pre-omicron infection waned with
time since the last immunogenic event (primary infection
or vaccination),15,16,26 with faster and more substantial
waning among vaccinated people who had no previous
primary infection. However, data interpretation is
challenging due to overlapping changes in SARS-CoV-2
variant circulation, vaccination deployment, and time
since the priming event (primary infection or
vaccination). In our study, we observed waning in the
first 6 months following receipt of the second or third
time since the last immunogenic event (primary infection
or vaccination),15,16,26 with faster and more substantial
wanning among vaccinated people who had no previous
primary infection. However, data interpretation is
challenging due to overlapping changes in SARS-CoV-2
variant circulation, vaccination deployment, and time
since the priming event (primary infection or
vaccination). In our study, we observed waning in the
first 6 months following receipt of the second or third
time since the last immunogenic event (primary infection
or vaccination),15,16,26 with faster and more substantial
wancing among vaccinated people who had no previous
primary infection. However, data interpretation is
challenging due to overlapping changes in SARS-CoV-2
variant circulation, vaccination deployment, and time
since the priming event (primary infection or
vaccination). In our study, we observed waning in the
first 6 months following receipt of the second or third
time since the last immunogenic event (primary infection
or vaccination),15,16,26 with faster and more substantial
wancing among vaccinated people who had no previous
primary infection. However, data interpretation is
challenging due to overlapping changes in SARS-CoV-2
variant circulation, vaccination deployment, and time
since the priming event (primary infection or
vaccination). In our study, we observed waning in the
first 6 months following receipt of the second or third
time since the last immunogenic event (primary infection
or vaccination),15,16,26 with faster and more substantial
wancing among vaccinated people who had no previous
primary infection. However, data interpretation is
challenging due to overlapping changes in SARS-CoV-2
variant circulation, vaccination deployment, and time
since the priming event (primary infection or
vaccination). In our study, we observed waning in the
first 6 months following receipt of the second or third
vaccine dose among people with a previous pre-omicron
primary infection (from 88–89% to 72–77%), but not for
those with previous omicron BA.1 primary infection
during the shorter 5-month follow-up period (stable at
96–97%). To our knowledge, no studies with longer
follow-up have examined the duration of protection from
natural or hybrid immunity conferred by omicron BA.1
primary infection.

Our study has some limitations. We assigned BA.1 and
BA.2 sublineages based on calendar time and provincial
phylogenetic analysis and surveillance. We excluded
weeks of delta and omicron cocirculation to specifically
measure the effect of previous omicron infection, but
still about 14% of infections during the study period
might have been due to the omicron BA.1 sublineage,5
which might have led to overestimation of omicron
primary infection protection against BA.2 reinfection.
We defined reinfections on the basis of a 30-day or longer
interval between positive tests, because of data docu-
menting early BA.2 reinfections.10–13 Prolonged viral
shedding might have been misclassified as reinfection,14
but this would tend to underestimate the protection
associated with previous BA.1 infection. Reassuringly,
sensitivity analysis using the standard 90-day or longer
interval did not change our estimates. Asymptomatic
or pauci-symptomatic infections might have been
undetected before or during omicron waves, which
would also lead to underestimation of the protection
induced by previous infection. Infection ascertainment
bias should be low among the prioritised and repeatedly
tested health-care workers who had easy and continuous
access to testing. Due to the low COVID-19 hospitalisation rate among health-care workers, the effect of primary infection severity as well as effectiveness against severe outcomes could not be estimated. Previous data indicate that protection should be higher and longer lasting against severe omicron disease.11,16 The proportion of health-care workers who were unvaccinated and had no previous primary infection, the comparator group for all analyses, was low (<2%), and unmeasured characteristics or exposure behaviours could have differed from the other groups, leading to residual confounding. Reassuringly, our estimates of vaccine and pre-omicron primary infection protection are in line with published evidence. Finally, the study was conducted among health-care workers, such that results might not be generalisable to children, older people, or immunocompromised adults. Extrapolation of our results to newly circulating omicron BA.4 and BA.5 or other sublineages requires caution. BA.4 and BA.5 differ antigenically from BA.2 and are even more distant from BA.1.24 BA.1 infection-induced neutralising immunity seems less protective against newly dominating omicron BA.5 than BA.2,27 but preprints from epidemiological studies in Portugal and Qatar suggest that hybrid protection against BA.4 and BA.5 conferred by omicron primary infection and vaccination also remains high at 76–80%.28,29 Ongoing evaluation of heterologous cross-protection (infection and infection plus vaccine-induced hybrid immunity) against emerging dominant variants and subvariants, including within and between lineages, remains important in informing real-time vaccination programme adjustments.

Hundreds of millions of people worldwide have already been infected with SARS-CoV-2, with over half having accrued since omicron emergence alone, and much of the global population have by now also received two vaccine doses.30 In that context, our findings have important implications for preparedness and response to future epidemic waves, including immunisation programme recommendations. If also applicable to other populations and emerging omicron subvariants, our findings of substantial and sustained omicron BA.1 hybrid protection against BA.2 among health-care workers suggest that people with previous omicron infection who have received two vaccine doses might be well protected against omicron reinfection. For such individuals, additional vaccine doses might provide only marginal added benefit against subsequent omicron infections and severe outcomes. In that context, available vaccine doses might be better prioritised for protecting people who are more vulnerable globally.

Contributors
GDS and SC conceptualised the study. All authors contributed to the study design. GDS, SC, and MO developed the statistical analysis plan. SC and MO accessed and verified the data, did the data linkage, and conducted the formal analysis. GDS supervised the analyses and verified the data. All authors contributed to data interpretation. SC created the figures and wrote the first draft of the manuscript. All authors critically revised and edited the manuscript and approved the final version for submission. SC and NB contributed to the literature search. GDS obtained funding for the study. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Declaration of interests
SC, MO, and GDS report financial support from the Ministère de la Santé et des Services Sociaux du Québec to their institution for this work, during the conduct of the study. GDS reports a grant from Pfizer for a “Meningococcal B antibody seroprevalence study”, outside of the submitted work. RG reports personal fees from AbbVie honorary for a conference on respiratory syncytial virus burden in children, outside of the submitted work. DT is supported by a research career award from the Fonds de Recherche du Québec–Santé. IF reports grants from the Ministry of Health of Quebec for sequencing of SARS-CoV-2 positive samples and grants from Cancogen (Génomique Canada) for sequencing of SARS-CoV-2-positive samples, outside of the submitted work; and is chair of the provincial genomic surveillance committee of SARS-CoV-2 (INSpq, Quebec). DMS reports grants paid to their institution from Public Health Agency of Canada, Michael Smith Foundation for Health Research, Canadian Institutes of Health Research, and BCCDC Foundation for Public Health, outside of the submitted work. All other authors declare no competing interests.

Data sharing
The databases used in this study are a property of the Ministère de la Santé et des Services Sociaux du Québec, which were shared with the researchers under the legal mandate of the National Director of Public Health of Quebec under the Public Health Act, precluding data sharing with a third party. Aggregate data are available within the manuscript and in the appendix.

Acknowledgments
This work was supported by the Ministère de la Santé et des Services Sociaux du Québec. We thank Radhounse Doggi and Abakar Idriss-Hassan (Institut National de Santé publique du Québec) for their contribution in the literature search.

References
1. Andrews N, Stowe J, Kirsebom F, et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N Engl J Med 2022; 386: 1532–46.
2. Liu L, Ikertari S, Guo Y, et al. Striking antibody evasion manifested by the omicron variant of SARS-CoV-2. Nature 2022; 602: 676–81.
3. WHO. Statement on omicron sublineage BA.2.22. https://www. who.int/news/item/22-02-2022-statement-on-omicron-sublineage- ba.2 (accessed May 25, 2022).
4. Government of Canada. COVID-19 daily epidemiological update. Coronavirus disease (COVID-19). 2022. https://health-infobase. canada.ca/covid-19/epidemiological-summary-covid-19-cases. html#VOC (accessed June 5, 2022).
5. Institut National de Santé Publique du Québec. Données sur les variants du SRAS-CoV-2 au Québec. 2022. https://www.inspq.qc.ca/ covid-19/donnees/variants (accessed April 1, 2022).
6. Institut National de Santé Publique du Québec. Données de vaccination contre la COVID-19 au Québec. 2022. https://mobile. inspq.qc.ca/covid-19/donnees/vaccination (accessed April 1, 2022).
7. Kirsebom FCM, Andrews N, Stowe J, et al. COVID-19 vaccine effectiveness against the omicron (BA.2) variant in England. Lancet Infect Dis 2022; 22: 931–33.
8. Abu-Raddad LJ, Chernaielly H, Ayoub HH, et al. Effect of mRNA vaccine boosters against SARS-CoV-2 omicron infection in Qatar. N Engl J Med 2022; 386: 1804–16.
9. Comité sur l’immunisation du Québec. Avis portant sur la pertinence d’une dose additionnelle de vaccin contre la COVID-19 pour les personnes ayant une immunodépression. 2021. https://www.inspq. qc.ca/publications/3163-pertinence-dose-additionnelle-vaccin-covid- 19-immunodeprimes (accessed March 24, 2022).
10. Stegger M, Edsley SM, Sieber RN, et al. Occurrence and significance of omicron BA.1 infection followed by BA.2 reinfection. medRxiv 2022; published online Feb 22. https://doi.org/10.1101/ 2022.02.19.22271112 (preprint).
11 Nevejan L, Cuypers L, Laenen L, et al. Early SARS-CoV-2 reinfections within 60 days highlight the need to consider antigenic variations together with duration of immunity in defining retesting policies. medRxiv 2022; published online April 7. https://doi.org/10.1101/2022.04.04.22273172 (preprint).

12 Andeweg SP, de Gier B, Eggink D, et al. Protection of COVID-19 vaccination and previous infection against omicron BA.1, BA.2 and delta SARS-CoV-2 infections. medRxiv 2022; published online May 12. https://doi.org/10.1101/2022.05.02.22270457 (preprint).

13 Yahav D, Yelin D, Eckerle I, et al. Definitions for coronavirus disease 2019 reinfection, relapse and PCR re-positivity. Clin Microbiol Infect 2021; 27: 135–18.

14 Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Effects of previous infection and vaccination on symptomatic omicron infections. N Engl J Med 2022; 387: 21–34.

15 Cerqueira-Silva T, de Araujo Oliveira V, Painão ES, et al. Vaccination plus previous infection: protection during the omicron wave in Brazil. Lancet Infect Dis 2022: 22: 945–46.

16 Carazo S, Skowronski DM, Brisson M, et al. Protection against omicron re-infection conferred by prior heterologous SARS-CoV-2 infection, with and without mRNA vaccination. medRxiv 2022; published online May 3. https://doi.org/10.1101/2022.04.29.2227455 (preprint).

17 Schnitzer ME, Harel D, Ho V, Koushik A, Merckx J. Identifiability and estimation under the test-negative design with population controls with the goal of identifying risk and preventive factors for SARS-CoV-2 infection. Epidemiology 2021; 32: 690–97.

18 Leidi A, Koegler F, Dumont R, et al. Risk of reinfection after seroconversion to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): a population-based propensity-score matched cohort study. Clin Infect Dis 2022; 74: 622–29.

19 Hall VJ, Foulkes S, Charlett A, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet 2021; 397: 1459–69.

20 Lu Z, Laing ED, Pena-Damata J, et al. Durability of SARS-CoV-2-specific T cell responses at 12-months post-infection. medRxiv 2021; published online Aug 11. https://doi.org/10.1101/2021.08.11.455984 (preprint).

21 Chin ET, Leidner D, Lamson L, et al. Protection against omicron conferred by mRNA primary vaccine series, boosters, and prior infection. medRxiv 2022; published online May 27. https://doi.org/10.1101/2022.05.26.22275639 (preprint).

22 Lind ML, Robertson AJ, Silva J, et al. Effectiveness of primary and booster COVID-19 mRNA vaccination against omicron variant SARS-CoV-2 infection in people with a prior SARS-CoV-2 infection. medRxiv 2022; published online April 25. https://doi.org/10.1101/2022.04.19.22274056 (preprint).

23 Yu J, Collier AV, Rowe M, et al. Neutralization of the SARS-CoV-2 BA.1 and BA.2 variants. N Engl J Med 2022; 386: 1579–80.

24 Wang W, Lusvarghi S, Subramanian R, et al. Post-vaccination omicron infections induce broader immunity across antigenic space than prototype mRNA COVID-19 booster vaccination or primary infection. medRxiv 2022; published online July 6. https://doi.org/10.1101/2022.07.05.499881 (preprint).

25 Chemaitelly H, Ayoub HH, Coyle P, et al. Protection of omicron sub-lineage infection against reinfection with another omicron sub-lineage. medRxiv 2022; published online Feb 25. https://doi.org/10.1101/2022.02.24.2227440 (preprint).

26 Smid M, Berc L, Majek O, Pavlik T, Jarkovsky J, Weiner J. Protection by vaccines and previous infection against the omicron variant of SARS-CoV-2. medRxiv 2022; published online Feb 25. https://doi.org/10.1101/2022.02.24.22274455 (preprint).

27 Khan K, Karim F, Ganga V, et al. Omicron sub-lineages BA.4/BA.5 escape BA.1 infection elicited neutralizing immunity. medRxiv 2022; published online May 1. https://doi.org/10.1101/2022.04.29.2227447 (preprint).

28 Altarawneh HN, Chemaitelly H, Ayoub HH, et al. Protection of SARS-CoV-2 natural infection against reinfection with the omicron BA.4 or BA.5 subvariants. medRxiv 2022; published online July 12. https://doi.org/10.1101/2022.07.11.22277448 (preprint).

29 Malato J, Ribeiro RM, Leite PP, et al. Risk of BA.5 infection in individuals exposed to prior SARS-CoV-2 variants. medRxiv 2022; published online July 28. https://doi.org/10.1101/2022.07.27.22277602 (preprint).

30 Worldometer. COVID-19 coronavirus pandemic. 2022. https://www.worldometers.info/coronavirus/ (accessed July 15, 2022).