Evolutionary Origins and Functions of the Carotenoid Biosynthetic Pathway in Marine Diatoms

Sacha Coesel¹, Miroslav Oborník², Joao Varela³, Angela Falciatore¹, Chris Bowler¹,⁴

¹ Cell Signalling Laboratory, Stazione Zoologica ‘Anton Dohrn’, Villa Comunale, Naples, Italy, ² Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Science, University of South Bohemia, České Budejovice, Czech Republic, ³ Centre of Marine Sciences, University of Algarve, Faro, Portugal, ⁴ CNRS UMR8186, Department of Biology, Ecole Normale Supérieure, Paris, France

Abstract

Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymana thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.

Introduction

The brown unicellular diatoms (Bacillariophyceae) constitute a successful group in the phytoplankton community estimated to be responsible for 30 to 40 % of marine primary production [1]. Their role in global carbon cycling is predicted to be comparable to that of all terrestrial rain forests combined [2,3], and they therefore represent an ecologically important group of bloom-forming phytoplankton. Diatoms can be classified into two major groups based on the symmetry of the frustule [4]. Centric diatoms are radially symmetrical and mostly planktonic, whereas pennate diatoms have a bilateral symmetry. Fossil records indicate that centric diatoms appeared at least 180 million years ago (Ma), whereas rhabdom penne diatoms are thought to have evolved from centric diatoms prior to 90 Ma [5].

The importance of diatoms in marine ecosystems led to the sequencing of the nuclear, plastid and mitochondrial genomes of the centric diatom Thalassiosira pseudonana. The 34.5 Mb nuclear genome of this diatom was predicted to contain over 11,000 genes distributed on 24 chromosomes [6]. About half of the genes in this genome could not be assigned functions on the basis of similarity to genes in other organisms, and these genes may encode proteins involved in diatom-specific processes. The other half of the predicted genes have similar alignment scores to their closest homologs in either plant, red algal or animal genomes, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymana thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms.
for this alga [9,10]. Comparison between the two diatoms may also shed light on the evolution of diatoms. The nuclear \(P. \) \textit{tricornutum} genome (27.4 Mb) is slightly smaller than the \(T. \) \textit{pseudonana} genome and also from centric diatoms to rapid pennate diatoms. A number of environmental conditions, which may control the expression of diatom carotenoid biosynthesis-related genes, were assessed experimentally and in silico by means of quantitative real-time RT-PCR and by analysis of the \textit{Phaeodactylum} Digital Gene Expression Database (http://www.biologie.ens.fr/diatomics/EST3).

Results and Discussion

The \(P. \) \textit{tricornutum} and \(T. \) \textit{pseudonana} nuclear genomes were examined for putative genes of the carotenoid biosynthetic pathway. The diatom EST database (http://www.biologie.ens.fr/diatomics/EST3), containing over 130,000 ESTs from \(P. \) \textit{tricornutum}, was of great importance for accurate gene annotation. All selected gene models contain start and stop codons, unless stated otherwise, as well as putative upstream targeting sequences as determined by SignalP v3.0 and ChloroP v1.1 [34]. A summary of diatom genes putatively encoding carotenoid pathway components is shown in Table 1, and details concerning the early carotenoid biosynthetic pathway are given in the Supplementary Information. In short, our findings indicate that diatoms most likely have inherited the genes involved in the early reactions of carotenoid biosynthesis (up to \(\beta \)-carotene) from the algal endosymbiont. However, the gene encoding \(\beta \)-carotene hydroxylase (BCH), responsible for the hydroxylation of \(\beta \)-carotene into zeaxanthin (Fig. 1), is absent in the \(P. \) \textit{tricornutum} genome and only a partial sequence is present in the \(T. \) \textit{pseudonana} genome. This enzymatic reaction may therefore be catalyzed by other unrelated enzymes in diatoms, such as LUT-like P450 proteins (see Supplementary Information S1 and Figure S1). Due to their special interest in diatoms the enzymes involved in the xanthophyll cycle were studied in more detail.

Domain structures of diatom violaxanthin de-epoxidases

Violaxanthin de-epoxidase (VDE)-encoding genes have been identified in a broad range of plants and they form a highly conserved family. VDE is characterized as a soluble protein located in the thylakoid lumen and the optimal VDE activity is found between pH 5.0 and 5.2 in vivo [26,35]. We have previously reported the presence of two VDE-encoding genes in the centric diatom \(T. \) \textit{pseudonana} [8], one of which is similar to the VDE of higher plants, while the other (designated as violaxanthin de-epoxidase-like; \(TpVDE \)) is more distantly related. We had proposed that the first might be involved in the conventional xanthophyll cycle found also in green photosynthetic eukaryotes, while the latter may be more specialized in the chromist-specific diadinoxanthin cycle. Analysis performed in this work indicate that the \(P. \) \textit{tricornutum} genome contains one \textit{VDE} gene and two \textit{VDE-like} genes, designated as \textit{PvVDE} and \textit{PvVDL} and 2, respectively (Table 1).

A comparison between the domain structures of the plant and diatom VDE proteins shows that the diatom proteins are relatively similar to the plant counterparts and consist of a cysteine-rich N-terminal domain, a lipocalin domain, and a C-terminal glutamic acid-rich domain (Fig. 2). The cysteine residues in the first domain can form one or more disulfide bridges [28] and this domain seems essential for VDE function because deletion of any region in this domain leads to a total loss of VDE activity [36,37]. The second domain, which is thought to bind the xanthophyll molecule in the all-trans configuration, shows similarity to the eight-stranded \(\beta \)-barrel structure of the lipocalin protein family [38]. The small proteins (\(\leq 200 \) aa) of this family are highly divergent in amino acid composition but are conserved in their tertiary structure, which allows them to bind small hydrophobic molecules [39].
Carotenoids in Marine Diatoms

Figure 1. Hypothesized carotenoid biosynthetic pathway in diatoms. The genes identified in this study, phytoene synthase (PSY), phytoene desaturase (PDS), ζ-carotene desaturase (ZDS), lycopene β-cyclase (LCYB), β-carotene hydroxylase (BCH), lutein deficient-like (LTL), zeaxanthin epoxidase (ZEP), violaxanthin de-epoxidase (VDE) and violaxanthin de-epoxidase-like (VDL), are indicated. The BCH-encoding gene is absent in the *P. tricornutum* genome, ZEP3 and VDL2 are absent in the *T. pseudonana* genome. The two xanthophyll cycles are boxed, A) the violaxanthin cycle and B) the diadinoxanthin cycle. α-carotene and lutein are not produced by diatoms. Dashed arrows indicate hypothetical conversion steps, according to Lohr and Wilhelm (1999, 2001). doi:10.1371/journal.pone.0002896.g001
Both these domains are generally well conserved between diatoms and plants, indicating that these proteins show similar folding and can bind the same molecules. However, the C-terminal Gh-rich domain is considerably less conserved between diatoms and plants: whereas the C-terminal domain of plant VDEs contains an average of 47% charged residues of which about 25% are glutamic acid residues, the percentage of charged amino acids in the PtVDE domain is considerably less conserved between diatoms and plants: whereas the C-terminal domain of plant VDEs contains an average of 47% charged residues of which about 25% are glutamic acid residues, the percentage of charged amino acids in the PtVDE domain is considerably less conserved between diatoms and plants:

The Phatr2 genome browser was used to identify P. tricornutum gene models encoding putative carotenoid biosynthetic enzymes (see text for abbreviations), and the following parameters are given: the protein identification number (ID) of the best gene model, the length of the immature (including putative signal peptide) protein, the number of introns, the probability of the presence of a signal peptide as determined by SignalP v3.0 and, in parentheses, the chloroplast targeting prediction score as determined with ChloroP v1.1. The Thaps3 genome browser was used to identify the T. pseudonana homologues and the protein IDs are shown together with the identity/similarity to the respective P. tricornutum gene. The identity/similarity was determined after aligning the mature protein sequences with ClustalW using the BLOSUM62 similarity matrix. BLASTP searches on the NCBI sequence browser were performed on 24-08-2007 and the NCBI accession number and identity/similarity with the respective P. tricornutum genes are given. When the Phatr2 gene model is absent, the Thaps3 model was used instead. When a gene model was not full length, the alignment was trimmed to the shortest sequence.

* np) not present, *) gene model not complete, **) cleavage site of VDE was used, ***) Cut-off value of 0.500 used for ChloroP1.1.

The protein ID Phatr2 length (aa) introns SignalP (ChloroP***) ID Thaps3 id/sim (%) best hit NCBI Accession id/sim (%)

protein	ID Phatr2	length (aa)	introns	SignalP (ChloroP***)	ID Thaps3	id/sim (%)	best hit NCBI	Accession	id/sim (%)
PSY1	56481	505	1	0.88 (0.526)	26909	61/71	Pavlova lutheri	ABA55571	45/61
PSY2	np	-	-	-	258309*	-	Zea mays	AAR18885	32/45
PDS1	45735	624	0	0.98 (0.531)	6524	81/89	Ostreococcus lucimarinus	ABO98307	74/83
PDS2	55102	589	1	0.99 (0.479)	1383	52/68	Gentiana lutea	BAB8246	57/74
ZDS	53974	591	0	1.00 (0.564)	37288	83/91	Lyngbya sp. PCC 8106	EAW0008	59/73
CRTISO	up to 6 related genes+1 gene with closer homology to crtl								
LCBY	56484	659	1	0.99 (0.561)	261407	57/70	Capsicum annuum	CAAG0119	32/48
B8CH	np	-	-	263437*	-	-	Glycine max	AAS8426	39/54
LUT-like1	50101	644	1	0.98 (0.564)	9541	75/85	Ostreococcus tauri	CALS0459	50/66
LUT-like2	26422	769	0	0.56 (0.474)	36235	69/81	Skeletonema costatum	AAL73435	70/82
ZEP1	45845	565	0	0.97 (0.574)	269147	66/75	Chlamydomonas sp. W80	AAQ48914	33/47
ZEP2	56488	604	1	1.00 (0.556)	261390	68/75	Vigna unguiculata	BAB11934	31/45
ZEP3	56492	557	2	0.98 (0.560)	np	-	Arabidopsis thaliana	AAG38877	34/49
VDE	46435	437	0	0.90 (0.518)	7677	59/73	Chrysanthemum x morifolium	BAE79554	42/61
VDL1	46155	453	0	0.99 (0.464)	22076	74/82	Spinacia oleracea	CBAB59211	20/34
VDL2	45846	555	1	0.99 (0.531)	np	-	Medicago truncatula	ABO38487	17/25
VDR	56459	587	0	0.92 (0.512)	270211	65/80**	Oryza sativa	EAZ13333	42/58**

The genome of Chlamydomonas reinhardtii lacks a copy of the VDE gene (possibly due to incomplete sequencing), although careful scanning of the C. reinhardtii genome for VDE led to the discovery of a novel gene designated VDE-related (VDR). VDR does not contain the typical VDE protein family signature (pmam 07137) which spans the lipocalin domain (Fig. 2) and does not contain a C-terminal domain, but nevertheless it still shares sequence similarity with VDE (A. thaliana VDE and VDR: 12% id, 27% sim). Following this first identification, VDR homologues were subsequently found in higher plants as well, and it appears that this gene of unknown function is ubiquitously present in all green photosynthetic eukaryotes. We found that the two diatom genomes also contain a copy of the VDR gene, and that the encoded amino acid sequences are relatively similar to the plant counterpart (Table 1), except for the position of the conserved cysteine residues (Fig. 2), which probably has implications for the folding of the protein.

Even though VDE, together with ZEP, were the first lipocalin-like proteins to be identified in plants [38,44], there is still considerable debate as to whether VDE can be truly ascribed to the lipocalin protein family because of the great divergence in size, function, and genomic organization between lipocalins and VDEs [45-47]. The most accepted evolutionary scenario for the

Table 1. Genes of the P. tricornutum and T. pseudonana carotenoid biosynthetic pathway.

Protein	ID Phatr2	Length (aa)	Introns	SignalP (ChloroP***)	ID Thaps3	Id/sim (%)	Accession	Id/sim (%)	
PSY1	56481	505	1	0.88 (0.526)	26909	61/71	Pavlova lutheri	ABA55571	45/61
PSY2	np	-	-	-	258309*	-	Zea mays	AAR18885	32/45
PDS1	45735	624	0	0.98 (0.531)	6524	81/89	Ostreococcus lucimarinus	ABO98307	74/83
PDS2	55102	589	1	0.99 (0.479)	1383	52/68	Gentiana lutea	BAB8246	57/74
ZDS	53974	591	0	1.00 (0.564)	37288	83/91	Lyngbya sp. PCC 8106	EAW0008	59/73
Figure 2. Domain structure of violaxanthin de-epoxidases and related proteins. A) Schematic representation of VDE, VDL and VDR proteins (not to scale). Three different domains are shown; the cysteine-rich domains include the N-terminal targeting sequence. Black and red asterisks indicate the positions of conserved and alternative cysteine residues, respectively. The central lipocalin domain contains the lipocalin binding fold. Conserved and divergent lipocalin motifs (roman numbers) are given in black and red, respectively. The size of the lipocalin motif was determined by sequence alignment of VDE sequences and a representative group of lipocalin proteins. The C-terminal glutamic acid-rich domain indicates the percentage of Glu residues in this domain. B) Alignment of the N-terminal cysteine-rich domains of several plant and diatom VDEs. Also included is a sequence derived from the amoeba Acanthamoeba castellanii. C) Alignment of the lipocalin motifs I, II and III of several different lipocalin VDE, VDL and VDR proteins. The distance (in amino acids) between the three lipocalin motifs is also indicated. The lipocalin motif consensus sequences, as derived from kernel lipocalins (Flower, 1996), are indicated above the alignment and conserved motifs within the alignment are indicated in red. The abbreviations used are: Lip, lipocalin; TIL, temperature induced lipocalin; CHL, chloroplastic lipocalin; PRBR, plasma retinol-binding protein precursor; CC, crustacyanin; At, Arabidopsis thaliana; Cr, Chlamydomonas reinhardtii; Dd, Dictyostelium discoideum; Gv, Gloeobacter violaceus; Hg, Homarus gammarus; Hs, Homo sapiens; Mt, Medicago truncatula; Nt, Nicotiana tabacum; Pt, Phaeodactylum tricornutum; Py, Porphyra yezoensis; Ta, Triticum aestivum; Tp, Thalassiosira pseudonana; Vc, Vibrio cholerae.

doi:10.1371/journal.pone.0002896.g002
appearance of plant VDEs involves a gene fusion event between a lipocalin and another gene, together giving rise to the larger VDE protein with a newly acquired function [45,46]. To find the ancestral lipocalin sequence, which may have given rise to the modern VDEs, Charron et al. [46] searched 14 complete and 2 partial cyanobacterial genomes, and found only 1 cyanobacterial species that contained a lipocalin gene. This particular species, Gloeobacter violaceous PCC7421, belongs to the most ancient members of the cyanobacterial lineage, which do not possess thylakoid membranes but instead use the plasma membrane to attach the phycobilisomes [48]. Charron et al. [46] speculated that the G. violaceous lipocalin might be the ancestor of recently identified chloroplastic lipocalins (CHL), VDEs and ZEPs of higher plants. However, there is currently no solid phylogenetic evidence to support the role of the cyanobacterial lipocalin in the occurrence of the xanthophyll cycle genes.

In order to find evidence for the proposed gene-fusion event between a lipocalin and a second gene, we used the well-conserved N-terminal cysteine-rich domain of VDE to search the microbial and protozoan genomes available at NCBI using BLAST. While the 915 microbial genomes did not yield any positive hits, a relatively conserved Cys-rich domain (>40% similarity) was present in the protozoan genomes of Phytophthora sojae and P. ramorum, Entamoeba histolytica, Taxiplasma gondii, and Trypanosoma cruzi. A similar search against the Taxonomically Broad EST Database (TBestDB) was performed, and an especially well-conserved Cys-rich domain in an EST contig encoding a multidomain protein of the protozoa Acetabularia castellanii was found. To illustrate the homology, this sequence was placed within the Cys-rich domain alignment of Figure 2B. Because protists, but not cyanobacteria, contain well-conserved expressed Cys-rich-encoding proteins in their genomes, the N-terminal domain of the VDE-encoding gene may have originated from the protozoan host. Furthermore, because only chlorophyll \(b\) and \(c\)-containing photosynthetic eukaryotes possess this Cys-rich domain in conjunction with a lipocalin domain, it can be hypothesized that VDE is the result of a gene-fusion event which probably occurred relatively early after the primary endosymbiosis of the cyanobacterium and the host cell.

Phylogeny of violaxanthin de-epoxidases

The identification of plant-like VDEs in diatoms and other unicellular brown algae is most easily explained by the presence of VDE in the common ancestor of the green and red lineages. However, the main light-harvesting complexes of rhodophytes, the phycobilisomes, do not use a zeaxanthin-dependent NPQ mechanism to dissipate excess-absorbed light [49,50], and physiological experiments on a wide range of different red algal species indicate that red algae do not convert violaxanthin to zeaxanthin upon illumination [50], although some red algal species are able to produce antheraxanthin and violaxanthin [50,51]. Furthermore, no VDE sequence evidence from a red alga has been forthcoming from the C. merolae genome, nor from the EST sequences of the red macroalga Porphyra yezoensis (data not shown).

A phylogenetic tree of the diatom and plant VDEs and related genes was generated and rooted by related lipocalin family proteins from both prokaryotes and eukaryotes. As can be seen in the tree (Fig. 3), there is a considerable difference between the ancient lipocalins and VDEs, such that the ancestor of VDE proteins within these lipocalin proteins cannot be specified. The VDE proteins constituted three distinct clusters: VDE, VDL (VDE-like) and VDR (VDE-related) proteins. Two of these clusters (VDE and VDR) are composed of plant and diatom sequences with diatom sequences appearing on the root of each cluster (Fig. 3). Plant sequences are absent from the VDL cluster, which contains, in addition to diatom proteins, sequences from other chromalveolates, such as heterokonts and dinoflagellates (Fig. 3). A single metazoan VDL sequence from the eastern oyster Crassostrea virginica, which has been obtained from ESTs at NCBI, appeared within the VDL proteins; however, the position of this oyster sequence is not supported by bootstraps. Its position is also questioned by the fact that the NJ tree showed a different topology than the ML tree, placing C. virginica at the root of all VDE and related proteins (data not shown). The sequence from C. virginica is the only VDE sequence known from non-photosynthetic eukaryotes and, moreover, when Blast searched in NCBI it yields hits only from photosynthetic eukaryotes. We therefore have serious reservations about the identity of this sequence and speculate that it may be derived from contamination of C. virginica cDNA with material from eukaryotic algae.

Within the VDE+VDL+VDR cluster, VDE sequences seem to constitute an ancestral form, which is basal to the advanced sisters VDL and VDR (Fig. 3). It is obvious that VDL and VDR proteins have arisen by two duplication events. The second duplication could be associated with the secondary endosymbiosis, since it has happened only in chromalveolates. Alternatively, this particular paralogue was previously present only in red algae or has been lost from green plants.

Based on the tree topology we suggest that VDE, VDL and VDR genes are out-paralogues of the original VDE gene, with the duplication event preceding the speciation as well as the secondary endosymbiosis that led to the appearance of complex plastids. The fact that no homolog of VDE proteins has been found in prokaryotes suggests that they represent an ancient eukaryotic innovation. This is also supported by the fact that in cyanobacteria, the putative prokaryotic donor of genes encoding proteins of plastid functions, no VDE proteins have ever been identified and the lipocalin homolog is found only in a single cyanobacterial species Gloeobacter violaceus. We propose that VDE proteins have arisen in diatoms by the endosymbiotic gene transfer from the nucleus of the algal endosymbiont. In such a scenario, VDE proteins have been lost from the current rhodophytes. Plants lack VDL proteins, possibly because they lost it during evolution, similarly to rhodophytes, or because VDLs are for some reason only found in photosautotrophs derived from the secondary endosymbiosis. Based on the phylogenetic position of plant, diatom and other chromalveolate VDEs, we suggest that VDE proteins of green and brown algae share a common origin. Alternatively, the VDE gene may have been introduced in diatoms by a lateral gene transfer from a green alga. However, this scenario seems less likely to explain the widespread appearance of VDE throughout the brown clade, as seen by the presence of a VDE sequence in haptophytes.

Domain structures of diatom zeaxanthin epoxidases

Zeaxanthin epoxidase is localized in the stromal side of the thylakoids, where it catalyzes the conversion of zeaxanthin to antheraxanthin and violaxanthin [52]. The gene encoding ZEP was first identified in a transposon-tagged Nicotiana plumbaginifolia abscisic acid (ABA)-deficient mutant, called aba2 [29], and was found to encode a chloroplast-imported flavin-containing mono-oxygenase (FMO), containing an ADP-binding fold and an FAD-binding domain similar to prokaryotic aromatic-substrate mono-oxygenases. As predicted by Bugos et al. [38], VDE and ZEP share a similar basic tertiary structure based on a lipocalin domain.

We have previously reported the presence of two ZEP encoding genes in the centric diatom T. pseudonana [8]. As with VDE, this is one copy more than is generally found in higher plants and may
again be a reflection of the two separate xanthophyll cycles found in heterokonts. As was the case for VDE, we found that the *P. tricornutum* genome contained a third copy of ZEP that is absent in the *T. pseudonana* genome (Table 1). As compared to the plant ZEPs, the amino acid region covering lipocalin motif I is considerably larger in the diatom ZEP1 and 2 proteins, but not in PtZEP3 (Fig. 4) and the motif I consensus sequence is not conserved in any of the diatom ZEPs. All diatom ZEPs lack the C-terminal forkhead-associated (FHA) domain that is normally found in plant ZEPs. In the diatom ZEP1 proteins this domain has been replaced with a conserved 35 amino acid sequence, whereas considerably larger sequences are present in the Pt and TpZEP2 and PtZEP3 proteins. Interestingly, a transmembrane region is predicted in the C-terminal domain of PtZEP3, which may have an effect on the localization and/or regulation of the diatom ZEP proteins. In this context it is interesting to note that the epoxidation kinetics of diatoxanthin in diatoms under low light conditions is generally faster than the epoxidation of zeaxanthin in higher plants and green algae [53], but the presence of a proton gradient almost completely inhibits this reaction in diatoms [53,54]. This is in stark contrast with the epoxidation reaction of higher plants, which occurs in the dark as well as in the light, and

Figure 3. Maximum likelihood phylogenetic tree of violaxanthin de-epoxidases and related proteins. A maximum likelihood phylogenetic tree (loglk = -13981.66253) as inferred from amino acid sequences (141 amino acid characters) of violaxanthin de-epoxidases and related proteins was computed using WAG model for amino acid substitution (selected by PROTEST) with discrete gamma distribution in four categories. All parameters (gamma shape = 2.158; proportion of invariants = 0.000) were estimated from the dataset. Numbers above branches indicate ML/NJ bootstrap supports. ML bootstraps were computed using the above mentioned model in 300 replicates. An NJ tree was inferred using AsaturA program with cutoff value 0.906 and 1000 replicates. Black stars indicate both bootstraps over 90%. Nodes that display different NJ topology than the one obtained by ML are indicated by “dt”. doi:10.1371/journal.pone.0002896.g003
the extent of zeaxanthin accumulation in plants depends largely on the activity of VDE. The mechanism behind the peculiar light-dependent ZEP activation/deactivation in diatoms is not yet understood, but it is possible that the divergent C-terminal domains of ZEP1, ZEP2 or ZEP3 may play a role.

Whereas zeaxanthin epoxidation in higher plants is not only important for xanthophyll cycling, but also for ABA synthesis, diatoms do not appear to synthesize this phytohormone. Diatoms however are thought to produce their major light harvesting carotenoid, fucoxanthin, from violaxanthin [Fig. 1; 55,56], so the epoxidation reaction of zeaxanthin to synthesize fucoxanthin may require a different regulation than xanthophyll cycle-related epoxidation. The presence of two ZEP-encoding genes in *T. pseudonana* could also be a reflection of these two different processes, as was suggested by Wilhelm et al. [57]. The finding that *P. tricornutum* possesses a third copy of both VDE and ZEP is also very striking. Results presented by Goss et al. [53] indicated that the NPQ capacity of *P. tricornutum* is higher than *T. pseudonana*, whereas the diatoxanthin epoxidation rate under low light is considerably slower in *P. tricornutum*.

As seen in Figure 4, zeaxanthin epoxidases are FAD-dependent mono-oxygenases (FMO) containing a putative lipocalin fold. Even though it is possible to recognize at least two of the three lipocalin motifs within the FMO domain, the overall similarity between lipocalin proteins and the putative lipocalin fold of ZEP is extremely weak (<10% similarity). Therefore, a possible gene fusion event between a lipocalin and another gene, as was proposed above for the VDE genes, seems less likely to explain the evolution of ZEP genes. More probably, the lipocalin fold of ZEPs may have evolved in a process driven by steric constraints for

Figure 4. Domain structure of zeaxanthin epoxidases. A) Schematic representation of ZEP proteins (not to scale). Three different domains are discriminated; the N-terminal targeting sequence (note that the *TpZEP1* gene model is not complete), the central flavin-containing mono-oxygenase (FMO) domain containing ADP and FAD binding sites, and the C-terminal domain containing the FHA motif. Conserved and divergent lipocalin motifs (roman numbers) are given in black and red, respectively. The size of the lipocalin motif was determined by sequence alignment of ZEPs and a representative group of FMO proteins. B) Alignment of the lipocalin motifs I, II and III of several different lipocalins and ZEP protein sequences. The lipocalin motif consensus sequence, as derived from kernel lipocalins, is indicated above the alignment and conserved motifs within the alignment are indicated in red. The asterix indicates the Gly304 identified by Baroli et al. (2003). The distance (in amino acids) between the lipocalin motifs are also indicated. The abbreviations used are: Lip, lipocalin; TIL, temperature induced lipocalin; CHL, chloroplastic lipocalin; PRBR, plasma retinol-binding protein precursor; CC, crustacyanin; At, Arabidopsis thaliana; Cr, Chlamydomonas reinhardtii; CW80, Chlamydomonas sp. W80; Dd, Dicyostelium discoideum; Gv, Gloeobacter violaceus; Hg, Homarus gammarus; Hs, Homo sapiens; Np, Nicotiana plumbaginifolia; Pt, Phaeodactylum tricornutum; Py, Porphyra yezoensis; Ta, Triticum aestivum; Tp, Thalassiosira pseudonana; Vc, Vibrio cholerae; Vu, Vigna unguiculata.

doi:10.1371/journal.pone.0002896.g004
binding the hydrophobic xanthophyll molecule. Since the FMO domain of ZEP proteins aligns very well with the amino acid sequence of other flavin-containing mono-oxygenases, except for the regions containing the lipocalin motifs, we propose that ZEP proteins may have evolved from an ancient flavin-containing monoxygenase-encoding gene.

Phylogeny of zeaxanthin epoxidases

To further explore the phylogenetic relationships of plant and diatom ZEPs, ML and NJ trees of ZEP proteins rooted with eukaryotic and prokaryotic squalene monoxygenases and epoxidases were generated (Fig. 5). It is evident that two copies of genes encoding ZEP proteins are generally encoded in photosynthetic eukaryotes, which represent out-paralogues originating in an ancient single gene duplication event. Both ZEP paralogues are still present in *Ostreococcus* spp. and in both diatoms, whereas higher plants retain only one copy of the gene, as do other chromalveolates such as *Guillardia theta* and *Pavlova lutheri*. *P. tricornutum* contains three possible out-paralogues of the ZEP gene (Fig. 5). It has to be noted that within the chromalveolate clade we can also find a ZEP sequence from *Euglena gracilis*, an organism belonging to the excavates and possessing a secondary green plastid. This may suggest that the distribution of ZEP genes is a result of early duplication of ZEP in a primary host, before the secondary endosymbiosis occurred. In this case, ZEP genes would have been duplicated in an ancestor of plants and algae containing a primary plastid, and these duplicates would have spread to photoautotrophs with secondary plastids by endosymbiotic gene transfer. In some lineages, various ZEP copies have been lost. This scenario is also supported by the presence of a single ZEP homologue in the ciliate *Tetrahymena thermophila*, which forms a monophyletic group at high confidence with other ZEP genes. Since ZEP genes have not been found in heterotrophs, its presence in this ciliate may serve as evidence for a plastid-containing ancestor of ciliates, thus supporting the chromalveolate hypothesis.

Expression profiling of carotenoid biosynthesis-related genes in P. tricornutum

The *Phaeodactylum* Digital Gene Expression Database (v3.0) contains over 130,000 ESTs from *P. tricornutum* cells grown in 16
different conditions (http://www.biologie.ens.fr/diatomics/EST3). We have mined this extensive database for EST-derived contigs encoding genes of the carotenoid biosynthetic pathway, and have determined the frequency and distribution of each contig throughout the different EST libraries (Table 2). Although this type of expression analysis is not quantitative, it nevertheless provides useful information on general gene expression trends. The genes most represented in the EST database, ZEP2, ZEP3 and VDL1, are all putatively involved in xanthophyll biosynthesis. Of these genes, VDL1 appears to be the most constitutively transcribed.

The blue light (BL) library was found to be the most enriched in carotenogenesis-related ESTs. This library was generated from dark-adapted cells that were treated with 1 h of blue light with an intensity of 25 μmol m\(^{-2}\) s\(^{-1}\) prior to RNA extraction, and it is enriched in ESTs related to photosynthesis and carbon fixation. The libraries from ammonium adapted (AA), urea adapted (UA) and iron limited (FL) cells are also rich in carotenogenesis-related ESTs compared to the other libraries. The cells of these libraries probably suffered a degree of photosynthetic inhibition due to nutrient shortage [58–60]. The ‘carotenogenesis-rich’ libraries all have a relatively high level of LTI1 and LTI2-encoding ESTs. These ESTs may encode Lut-like proteins involved in the hydroxylation of β-carotene (Supplementary Information S1). There are also some substantial differences in the EST distribution within the ‘carotenogenesis-rich’ libraries. For instance, the Fe-limited library does not contain many xanthophyll cycle-related ESTs but instead contains a high number of PSI-encoding sequences. The UA and AA libraries are particularly rich in ZEP2-encoding ESTs but do not contain any transcripts of the other two ZEPs, and the opposite is true for the BL library, which contains a high number of ZEP1 and ZEP3 but relatively few ZEP2 transcripts (Table 2). The BL library is also relatively rich in VDE ESTs. Interestingly, cells grown in the AA and UA conditions contain significantly more diadinoxanthin than cells grown under standard nitrogen conditions (Andrew E. Allen, personal communication), whereas blue light treated cells are relatively enriched in violaxanthin (unpublished data).

The finding that the P. tricornutum blue light library was enriched in carotenoid biosynthesis-related ESTs as compared to all other libraries suggested that light may play an important role in controlling diatom carotenoid biosynthesis. Whereas the regulatory role of light in the nuclear gene expression of plastid-targeted proteins has been studied for decades in green algae and higher plants, study of these processes in diatoms is still in its infancy. To further explore the regulatory role of light in diatoms at the transcriptional level, we studied the gene expression profiles of PSI, PDS1, and the different xanthophyll cycle genes in response to different light signals. To compare, we also studied the transcript levels of two diatom chlorophyll/carotenoid-binding LHC proteins, fucoxanthin/chlorophyll a/c-binding protein B (FCPB) and a protein denoted as ELIP-like, which shares structural similarity to early light-inducible proteins (ELIPs). Like the carotenoid biosynthesis-related genes, the transcripts of these nuclear genes are targeted to the plastid, and in higher plants and green algae the transcription of these genes is known to be regulated at the transcriptional level by light [61,62]. Likewise, the transcription of FCPs are also known to be light-regulated in diatoms [9,63].

The steady state transcript levels of 48 hour dark-adapted P. tricornutum cells treated with either continuous white (175 μmol m\(^{-2}\) s\(^{-1}\)), blue (25 μmol m\(^{-2}\) s\(^{-1}\)) or red (25 μmol m\(^{-2}\) s\(^{-1}\)) light were determined for 12 subsequent hours by quantitative real-time PCR (qRT-PCR) using histone H4 (H4) as a reference gene [9]. The transcript levels of both PSI and PDS1 increased immediately upon light exposure (Fig. 6), and the highest steady state transcript levels were measured after 3 to 5 h light. Transcript levels decreased again after longer exposure. The transcript levels of PDS1 and, to a lesser degree, of PSI are similar at 25 μmol m\(^{-2}\) s\(^{-1}\) blue light and 175 μmol m\(^{-2}\) s\(^{-1}\) white light, indicating that the spectral quality of light plays a major role in the regulation of expression of these genes. This observation is further supported by the fact that red light, with an equal fluence rate as blue light, triggered a much weaker response. The induction of the two genes encoding LHC proteins, FCPB and ELIP-like, began slightly later than the carotenogenesis-related genes (Fig. 6). However, the amplitude of induction was more than 100-fold higher than for PSI and PDS1. The spectral quality of light was also of major influence for these genes: the transcript levels of both genes in blue and white light were similar, but the kinetics of increase were faster in blue light than in white light. By contrast, the amplitude and kinetics of transcription in response to red light were much lower.

We also determined the steady state transcript levels of the P. tricornutum ZEPs and VDE in 48 h dark-adapted cells subsequently shifted to either white, blue and red light as described above (Fig. 7). We found a steady and strong increase of ZEP1 transcript levels after 5 hours of white and blue light, and after this period the levels decreased again. The effect of white light was stronger than blue light, and red light did not result in a significant induction (Fig. 7A). The increase in ZEP2 levels is approximately 10-fold lower than ZEP1, but the kinetics of ZEP2 accumulation is faster and maximal levels were reached within 5 h of illumination (Fig. 7B). Blue light appears to have a stronger effect on ZEP2 transcription than white light, even though the white light fluence rate was 7 times higher. Contrary to ZEP1, red light also has a slight effect on ZEP2 transcript levels. ZEP3 mRNA accumulation showed different kinetics, in which a minor induction after 1 h white or blue light was followed by a 2 h lag-phase (Fig. 7C). Maximal ZEP3 transcript levels were found after 5 h of blue light and after 8 h of white light. VDE transcript levels very rapidly increased after stimulation with blue and white light and close to maximal levels were reached within 1 h (Fig. 7D). The overall kinetics of steady-state VDE mRNA levels was much like ZEP3 (Fig. 7C,D). These two genes are located next to each other on chromosome 8 (Fig. 7G) and are likely to form a co-regulated gene-cluster. Another such gene cluster is found on chromosome 4 composed of ZEP1 and VDL2, and also in this case the transcript levels of the two clustered genes were comparable (Fig. 7A,F,G).

The data presented shows that mRNA levels for the first two genes committed to carotenoid biosynthesis, as well as the xanthophyll cycle-related genes, rapidly increase upon light exposure and that light of different spectral quality has differential effects. In higher plants and C. reinhardtii, PSI and PDS transcription has been demonstrated to be regulated through photoreceptors [64–66], and the genomes of T. pseudonana and P. tricornutum contain several putative photoreceptor-encoding genes, including a phytochrome, an animal-type cryptochrome/photo-lyase and several cryptochrome-DASH homologs [6,8,67], which may be important for diatom light-dependent gene-regulation. This is supported, at least for the PSI gene, by the finding that a short pulse (5 min) of blue light was sufficient to effectively induce its expression (Fig. S2).

Conclusions

In conclusion, we propose that both genes encoding enzymes of the xanthophyll cycle (VDE and ZEP) are eukaryotic innovations even though they are putatively located in the primary plastids of plants and the secondary plastids of diatoms. Genes for VDE and VDR have arisen through gene duplication events preceding
Table 2. EST distributions of carotenogenesis-related genes in the *Phaeodactylum* Digital Gene Expression Database.

gene	contig OS	OM	TM	TA	SM	SP	NR	NS	AA	UA	FS	BL	LD	HD	C1	C4	total (%)		
PSY	G4187B	-	-	-	-	-	-	-	-	-	-	0.73	0.08	0.11	-	-	0.10	0.10	1.11
	G34382											-	-	-	-	-			
PDS1	G35509	0.58	0.22	-	0.21	-	-	-	-	-	-	0.11	0.58	0.08	-	-	-	1.78	
PDS2	G55102	0.22	-	-	-	-	0.13	-	0.11	-	-	-	0.25	0.28	-	-	-	-	
ZDS	G9040	0.08	-	0.32	0.21	-	-	0.13	-	0.11	0.23	-	0.24	0.50	-	-	0.10	1.92	
LCYB	G8835	-	0.22	-	0.21	-	0.13	0.28	-	0.11	-	-	-	-	0.22	-	-	0.19	1.36
C193																			
LTL1	G16586	0.08	-	-	-	-	0.29	-	-	0.22	0.22	0.35	0.36	0.42	-	-	0.10	0.10	2.13
LTL2	G26422						-	0.11	0.55	0.23	0.36	0.33	0.11	-	0.29	0.19	-		
ZEP1	G45845	0.08	-	-	-	-	-	0.22	-	-	0.24	0.58	-	0.28	0.10	-		1.50	
ZEP2	C962	0.25	0.44	-	0.14	-	-	0.11	1.11	0.94	0.12	0.33	0.22	-	0.10	0.10	3.85		
	S1206																		
ZEP3	G10970	0.25	1.32	0.64	0.62	-	0.53	-	0.22	0.24	0.54	-							5.19
	S1048																		
VDE	G51703						0.27	-	-	0.11	0.11	-	0.12	0.33	0.11	-	-	1.05	
VDL1	G36048	0.16	0.22	0.24	0.21	0.14	0.13	0.28	-	0.11	0.12	-	0.17	0.33	0.56	-	0.10	2.76	
VDL2	G45846						-	-	0.22	-	0.12	0.08	-	0.39	0.10	0.91			
VDR	G43240						-	-	0.22	0.12	-	-	0.11	-	-	-	0.45		
total (%)	1.48	2.64	1.19	1.45	0.57	1.33	0.55	1.10	2.88	2.57	2.54	3.99	1.73	1.13	1.07	0.97			
size library	12136	4544	12566	4821	6968	7508	3632	9122	9031	8552	8264	12045	9227	3541	10307	10283			

The database was searched for ESTs encoding genes of the diatom carotenoid biosynthetic pathway (see text for abbreviations of the genes) and their distribution in the different libraries was determined. The numbers given in the table reflect the amount of ESTs per one thousand ESTs (%) for each respective library. Also given are the EST contig ID numbers from the Gene Expression Database v3.0 and the total number of ESTs in each library. Abbreviations used for the libraries: OS) Original 12000 Standard, OM) Oval Morphotype in 10% seawater, TM) Triradiate Morphotype, TA) Tropical Accession at 15°C, SM) Silica Minus in artificial seawater, SP) Silica Plus in artificial seawater with 350 μM metasilicate, NR) Nitrate Replete with 1.12 mM nitrate in chemostat, NS) Nitrate Starved for 3 days with 50 μM nitrate in chemostat, AA) Ammonium Adapted at 75 μM ammonium, UA) Urea Adapted at 50 μM urea, FS) Iron Starved at 5 nM iron, BL) Blue Light for 1 h on 48 h dark adapted cells, LD) Low Decadienal Treated for 6 h with 0.5 μg/ml 2E,4E-decadienal, HD) High Decadienal Treated for 6 h with 5 μg/ml 2E,4E-decadienal, C1) 230 μM/Kg of CO2 for 1 day in chemostat, C4) 230 μM/Kg of CO2 for 4 days in chemostat. Note: this table gives LTL11 and LTL2 as alternative genes involved in β-carotene hydroxylation, because BCH is absent in *P. tricornutum*. doi:10.1371/journal.pone.0002896.t002
secondary endosymbiosis. VDL proteins appeared due to a second duplication of VDR, which probably happened exclusively in organisms derived from secondary endosymbiosis. The ZEP genes are also duplicated and again this duplication likely occurred before the secondary endosymbiotic event. A single gene for ZEP from the ciliate *T. thermophila* has also been found, providing the first evidence for a secondary plastid gene being encoded in a heterotrophic ciliate.

The transcription of all *P. tricornutum* xanthophyll cycle-related genes was up-regulated by blue and white light. However, the amplitude and kinetics of mRNA accumulation varied between the different genes and it is possible that their transcription is regulated at multiple levels including photoreceptor- and plastid retrograde signaling mechanisms. The differential expression of ZEP and VDE/VDL homologs may be indicative of distinct roles for each gene product. Both ZEP1/VDL2 and ZEP3/VDE form gene clusters and appear to be co-regulated upon light stimulation. These genes are not clustered in the *T. pseudonana* genome, providing an illustration of the continued divergence of this gene family even within the diatoms.

Materials and Methods

Identification, phylogeny and EST-distribution of carotenogenesis-related genes

The *P. tricornutum* genome sequence, available at the DOE Joint Genome Institute website (http://genome.jgi-psf.org/Phatr2), was analyzed for the presence of genes involved in the carotenoid biosynthetic pathway using BLAST- and keyword searches. Using known sequences from other organisms and *P. tricornutum* EST sequence data available in the diatom EST database (http://www.biologie.ens.fr/diatomics/EST3), the best gene models were selected and annotated. The encoded genes were scanned for the presence of a signal peptide by SignalP v3.0 (http://www.cbs.dtu.dk/services/SignalP) and a plastid transit peptide (cTP) with ChloroP v1.1 (http://www.cbs.dtu.dk/services/ChloroP) [34]. The *P. tricornutum* sequences were used to identify homologs in the *T. pseudonana* genome (http://genome.jgi-psf.org//Thaps3), and keyword- and BLAST searches with sequences from other organisms were also performed. The identity and similarity of the *P. tricornutum* and *T. pseudonana* sequences were determined after ClustalW alignment of the mature protein sequences using Bioedit v7.0.5.3 and the BLOSUM62 similarity matrix [68]. The identity/similarity of the diatom sequences with the best BLASTP hits on the non-redundant protein sequences (nr) deposited at the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/) were also determined.

For phylogenetic analysis, amino acid sequences were aligned using Kalign [69] at the EBI Tools Website (http://www.ebi.ac.uk/kalign/). Gaps and ambiguously aligned regions were excluded from further analysis. Phylogenetic trees were constructed using Maximum likelihood (ML) and Neighbor-joining (NJ) methods as implemented in PhyML [70] and AsaturA [40], respectively. ML trees were computed with particular models of amino acid substitutions chosen according to PROTTTEST AIC results [70,71]. ML bootstraps were inferred from 300 replicates using
the same parameters. NJ trees were constructed using the same substitutional model as for ML computations, with NJ bootstraps calculated from 1000 replicates. The majority of the sequences used for phylogenetic analysis were derived from the NCBI database, but the genomes of *Ostreococcus tauri* and *O. lucimarinus* are available at JGI, the genome browser of *Cyanidioschyzon merolae* (http://merolae.biol.s.u-tokyo.ac.jp), the Taxonomically Broad EST Database (http://tbestdb.bcm.umontreal.ca), and the sequence database of the J. Craig Venter Institute (http://www.jcvi.org/gme) were also searched for homologous genes.

The *Phaeodactylum* Digital Gene Expression Database (v3.0) (http://www.biologie.ENS.fr/diatomics/EST3) was used to gain insight into the differential expression of carotenogenesis-related genes. The BLASTN search algorithm linked to the database was used to identify the consensus sequence (contig) of multiple ESTs encoding the gene of interest, and the frequency and distribution

Figure 7. mRNA levels of xanthophyll cycle-related genes upon white, blue or red light stimulation. 48-hour-dark-adapted *P. tricornutum* cells were exposed to 175 μmol m⁻² s⁻¹ continuous white light, or 25 μmol m⁻² s⁻¹ continuous blue or red light and the relative transcript levels of ZEP1 (A), ZEP2 (B), ZEP3 (C), VDE (D), VDL1 (E) and VDL2 (F) were determined after 1, 3, 5, 8 and 12h by qPCR using H4 as a reference gene. The values were normalized to the transcript levels in the dark. Data are averages of triplicate measurements. The error bars represent standard deviation. doi:10.1371/journal.pone.0002896.g007

Carotenoids in Marine Diatoms

PLoS ONE | www.plosone.org
of the ESTs within each contig was determined. When genes were represented by more than one contig, the accuracy of the contigs was verified using the genome sequence and all gene-specific ESTs were taken into account.

Strains and growth conditions

P. tricornutum Bolin clan Pcl 8.6 (CCMP 2561) was obtained from the culture collection of the Provasoli-Guillard National Center for Culture of Marine Phytoplankton, Bigelow Laboratory for Ocean Sciences, USA. Cells were grown at 18°C under white fluorescent lights (TLD 58W/840, Philips) at approximately 175 μmol m⁻² s⁻¹ in a 12 hr photoperiod, using 1/2 medium made with 0.2-μm-filtered and autoclaved local seawater supplemented with inorganic nutrients and vitamins according to Guillard [72]. Sterility was monitored microscopically and by occasional inoculation into peptone-enriched media to check for bacterial growth in darkness. To study the effect of light quality on steady state gene transcription, 3 L cultures were grown up to a cell density of 2.10⁶ cells/mL as determined by microscopy using a Malassez counting chamber (Brand). The cultures were dark-adapted for 48 hours and subsequently submitted to either blue light (25 μmol m⁻² s⁻¹) with an emission between 380–450 nm (F 40 BB, Philips), red light (25 μmol m⁻² s⁻¹) provided by an LED lamp with a peak emission at 670 nm (QB1310CS-670-735, Quantum devices Inc.), or white fluorescent light (175 μmol m⁻² s⁻¹; TLD 58W/840, Philips). Samples for RNA extraction were collected at the end of the dark period and after the onset of light by centrifugation and the cell pellets were washed with PBS (1x) prior to storage in liquid nitrogen.

Quantitative real-time RT-PCR

Total RNA was isolated from 1.10⁶ cells using 1.5 mL TriPure isolation reagent (Roche) according to the instructions of the manufacturer. The RNA concentrations were determined photo metrically at 260 nm and the integrity was confirmed by agarose gel electrophoresis. Residual genomic DNA was removed by incubating 1 μg of RNA with 1 U/μL amplification grade DNaseI (Invitrogen) at 25°C for 10 min. First-strand cDNA synthesis for quantitative real-time RT-PCR (qRT-PCR) was obtained by incubating 430 ng of DNaseI-treated total RNA with 50 ng of random hexamers, 500 μM dNTPs, and 50 U of SuperScript II reverse transcriptase (Invitrogen) in a 30 μL reaction volume (1x RT buffer; Invitrogen) at 25°C for 10 min, followed by a 50 min incubation at 42°C. The reaction was stopped by heat inactivation at 70°C for 15 min, and RNA was removed with an RNase H treatment at 37°C for 20 min.

Gene-specific primers were designed with Primer3 (http://frodo.wi.mit.edu) and are listed in Supplementary Table S1. All primer pairs were initially tested by standard RT-PCR and the amplification of single products with the correct size was verified on 2% (w/v) agarose gels. Real Time-RT PCR amplification mixtures (25 μL) contained 1 μL of cDNA obtained after the reverse transcription (estimated to represent 10 ng), 200 nM forward and reverse primers, and 2x FastStart SYBR Green I PCR Master Mix (Roche). Triplicate reactions were run in an Opticon Chromo4 MJ Research Thermal Cycler (Bio-Rad) in Low-Profile 0.2 mL PCR 8-Tube white Strips (Bio-Rad). The cycling conditions comprised 10 min polymerase activation at 95°C and 40 cycles at 95°C for 15 sec and 60°C for 60 sec. The reaction was ended with a 5 min final elongation at 72°C. Amplicon dissociation curves, i.e., melting curves, were recorded after cycle 40 by heating from 60 to 95°C with a ramp speed of 0.5°C every second which served to confirm primer specificity.

The results obtained in the Chromo4 Sequence Detector were exported as tab delimited text files and imported into Microsoft Excel for further analysis. Primer efficiencies were verified by real time RT-PCR on serial dilutions of cDNA. The relative steady state mRNA transcript levels were calculated by comparing the cycle threshold (C_T) values of the target and the housekeeping control transcripts throughout the time-course (time x) with the C_T values of these transcripts at 48 hours dark (time 0) using the 2⁻ΔΔC_T method [73]. ΔΔC_T is represented by the following formula:

\[\Delta \Delta C_T = (C_T\text{target}_{\text{time } x} - C_{T\text{control } gene}_{\text{time } x}) - (C_T\text{target}_{\text{time } 0} - C_{T\text{control } gene}_{\text{time } 0}) \]

Supporting Information

Supplementary Information S1 Formation of 10-carotene and zeaxanthin

Found at: doi:10.1371/journal.pone.0002896.s001 (0.07 MB DOC)

Table S1 Primers used for quantitative real-time RT-PCR

Found at: doi:10.1371/journal.pone.0002896.s002 (0.06 MB DOC)

Figure S1 ClustalW amino acid sequence alignment of diatom LTIIs with LUT proteins from A. thaliana Amino acids shaded in black are identical, and those shaded in grey are similar (BLOSUM62). Sequence accession numbers (NCBI) are as follows: A. thaliana (At) Lut1, NP_190881; Lut3, NP_564384 and Skeletonema costatum (Sc) P450, AAL73435. Protein ID numbers of _P. tricornutum_ (Pt; Phatr v2.0) are: LTL1, 50101 and LTL2, 26422 and protein ID numbers of _T. pseudonana_ (Tp; Thaps v3.0) are: LTL1, 9541 and LTL2, 36235.

Found at: doi:10.1371/journal.pone.0002896.s003 (2.60 MB TIF)

Figure S2 PSY and PDS1 gene transcription following a 5 minute blue light pulse 60-hour-dark-adapted _P. tricornutum_ cells were exposed for 5 min to 25 μmol m⁻² s⁻¹ blue light and subsequently transferred back to darkness. The relative transcript levels of PSY and PDS1 were determined after 30 min and 1, 3, 5 and 7h by qRT-PCR using H4 as a reference gene. The values were normalized to the transcript levels in the dark. Data are averages of triplicate measurements. The error bars represent standard deviation.

Found at: doi:10.1371/journal.pone.0002896.s004 (0.09 MB TIF)

Acknowledgments

The authors thank Dr. Martin Lohr for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: SC AF CB. Performed the experiments: SC MO. Analyzed the data: SC MO. Contributed reagents/materials/analysis tools: JV AF CB. Wrote the paper: SC CB.

References

1. Nelson DM, Tréguer P, Brzezinski MA, Leynaert B, Quéguiner B (1995) Production and dissolution of biogenic silica in the ocean-Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem Cycles 9: 359–372.

2. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.

3. Mann DG (1999) The species concept in diatoms. Phycologia 38: 437–495.
4. Kooistra WH, De Stefano M, Mann DG, Medlin LK (2003) The phylogeny of the diatoms. Prog Mol Subcell Biol 33: 59–97.
5. Kooistra WH, Geronde R, Medlin LK, Mann DG (2007) The origin and evolution of the diatoms: their adaptation to a planktonic existence; Phaeodactylum PG, Knoll AH, eds. Amsterdam: Academic Press-Elsevier. 480 p.
6. Armburst EV, Berger JA, Bowler C, Green BR, Martinez D, et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79–86.
7. Allen AE, Vardi A, Bowler C (2006) An ecological and evolutionary context for integrated nitrogen metabolism and nitrate signaling pathways in marine diatoms. Curr Opin Plant Biol 9: 264–273.
8. Montsant A, Allen AE, Coesel S, De Martino A, Falcitore A, et al. (2007) Identification and comprehensive genomic analysis of signaling and regulatory components in the diatom Thalassiosira pseudonana. J Biol Phys 43: 505–604.
9. Saita M, Heijde M, Mangogna M, Montsant A, Coesel S, et al. (2007) Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406: 23–35.
10. Falcitore A, Bowler C (2002) Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol 53: 109–130.
11. Maheswari U, Montsant A, Goll J, Krishnaasamy S, Rajyashri KR, et al. (2005) The Diatom EST Database. Nucleic Acids Res 33: D344–347.
12. Montsant A, Jabbari K, Maheswari U, Bowler C (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 137: 500–513.
13. Li S, Nosenko T, Hackett JD, Bhattacharya D (2006) Phyllogenomic analysis identifies red algal genes of endosymbiotic origin in the chloroplastomes. Mol Biol Evol 23: 663–674.
14. Paterno NJ, Riesgo B, Keeling PJ (2004) Gene replacement of fructose-1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chloroplasts. Eukaryot Cell 3: 1169–1175.
15. Yoon HS, Hackett JD, Cingiga C, Pinto G, Bhattacharya D (2004) A molecular analysis of photosynthetic lipoygenases. Mol Biol Evol 21: 2143–2152.
16. Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? Biosystems 14: 224–228.
17. MacIntyre HL, Kana TM, Geider RJ (2000) The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends Plant Sci 5: 461–481.
18. Wagner H, Jakob T, Wilhelm C (2006) Balancing the energy flow from captured light to excess light energy. Plant Physiol 125: 1558–1566.
19. Montsant A, Jabbari K, Maheswari U, Bowler C, Coesel S, et al. (2006) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol 139: 2017–2027.
20. Falciatore A, Bowler C (2002) Revealing the molecular secrets of marine diatoms. Annu Rev Plant Biol 53: 115–130.
21. Falkowski PG, Laroche J (1991) Acclimation to spectral irradiance in algae. Annu Rev Plant Physiol 42: 65–85.
22. Hieber AD, Bugos RC, Yamamoto HY (2000) Overexpression of violaxanthin de-epoxidase in Chlamydomonas reinhardtii. Plant Cell 12: 1527–1535.
23. Armstrong JB, Gusse M, Danyuk J, Chauve C, et al. (2005) Identification, expression, and evolutionary analyses of plant lipocalins. Plant Physiol 139: 2017–2027.
24. Gnanou M, Gutierrez G, Bastiani M, Sanchez D (2000) A phylogenetic analysis of the lipocalin protein family. Mol Biol Evol 17: 114–126.
25. Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96: 8784–8789.
26. Baker J, Goss R, Wilhelm C (2001) Unusual pH-dependence of diadinoxanthin de-epoxidase activation causes chlororespiratory induced accumulation of diadinoxanthin in the diatom Phaeodactylum tricornutum. J Plant Physiol 158: 383–390.
27. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953–971.
28. Lavaud J, Rousseau B, Etienne AL (2002) Intrathylakoid pH in isolated pea chloroplasts as probed by violaxanthin de-epoxidation; Beziehungen zur photophosphorylierung. Planta 89: 224–243.
29. Riesgo B, Keeling PJ (2004) Photoregulated gene expression in marine diatoms. Annu Rev Plant Biol 55: 33–52.
30. Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, et al. (2007) Molecular identification of zeaxanthin epoxidase of Thalassiosira pseudonana. J Phycol 43: 585–604.
31. Guarente L (1998) Translational control of gene expression. Cell 92: 33–40.
32. Iverson D, Xu H, Reinhard F, Saller T, Shuttleworth T, et al. (2004) High-resolution imaging of the human transcriptome. Science 303: 1193–1197.
33. Zhao S, Boye E, Severson WR, Smith DR, Chua H, et al. (1998) Arabidopsis thaliana: a full-length cDNA library of the model plant Arabidopsis thaliana. Plant Physiol 116: 1017–1027.
34. Flower DR (1996) The lipocalin protein family: structure and function. Biochem J 318 (Pt 1): 1–14.
35. Plumbley EE, Rengathan M, Gilmore AM, Yamamoto HY, Dilley RA (1994) Intrathylakoid pH in isolated pea chloroplasts as probed by violaxanthin de-epoxidase. Plant Physiol 106: 1647–1658.
biosynthesis enzymes and LHC apoproteins in *Chlamydomonas reinhardtii*. Plant J 48: 1–16.

66. von Lintig J, Welsch R, Bonk M, Giuliano G, Batschauer A, et al. (1997) Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in *Sinapis alba* and *Arabidopsis thaliana* seedlings. Plant J 12: 625–634.

67. Falciatore A, Bowler C (2005) The evolution and function of blue and red light photoreceptors. Curr Top Dev Biol 68: 317–350.

68. Hall TA (1999) BioEdit, a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98.

69. Lassmann T, Sonnhammer EL (2005) Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6: 298.

70. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704.

71. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.

72. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates; Smith WL, Chanley MH, eds. New York: Plenum Press.

73. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402–408.