Entomopathogenic nematodes associated with organic honeybush (Cyclopia spp.) cultivation in South Africa

Fisayo Y. Daramola1 *, Francis B. Lewu1 and Antoinette P. Malan2

1Department of Agricultural Sciences, Cape Peninsula University of Technology, Private bag X8, Cape Town, South Africa and 2Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa

Abstract

Entomopathogenic nematodes (EPNs) of the genera Steinernema and Heterorhabditis have demonstrated great potential as useful bio-control agents in the management of certain important soil-inhabiting insect pests of agricultural crops. In a survey of nematodes associated with organic honeybush cultivation, soil samples were obtained from nine organic honeybush plots, which are located in the Bredasdorp area of the Western Cape province of South Africa. The EPNs were isolated from soil by baiting with larvae of Galleria mellonella (greater wax moth) and identified by the amplification of the internal transcribed spacer region using the primer set TW81 and AB28. EPNs were abundant in the honeybush orchards, accounting for about 50% of the sampled fields and five EPN species were identified including Heterorhabditis bacteriophora, Heterorhabditis safrica, Steinernema kahoisanac, Steinernema nguyenii, Oscheius sp. and an unknown EPN, therefore suggesting a substantial diversity of EPNs in the sampled fields. A 100% mortality of infected G. mellonella larvae was recorded within 48 h of exposure to the nematodes. However, although these EPNs have been previously reported in South Africa, it is the first time they are found in such diversity on a conservative tillage management system in organic honeybush cultivation.

Introduction

Entomopathogenic nematodes (EPNs) are useful biocontrol agents or ‘bio-predators’ that have been successfully used in the management of various soil-inhabiting insect pests worldwide (Nguyen & Smart, 1996; Bhat et al., 2020). The role of EPNs in the development of integrated pest management (IPM) is significant because as natural enemies, EPNs are highly virulent, able to kill their hosts and suppress the population of various insect pests within a short period of time. They also offer an environmentally safe alternative to the use of pesticides, due to their safety to humans and non-target organisms; while retaining their environmental friendliness and relative ease of application. Their function as natural enemies or predators of agricultural pests has made their use as potential alternatives to chemical pesticides a very attractive option in the development of IPM programmes.

The EPNs belonging to the genera Steinernema and Heterorhabditis have been frequently reported as having great potentials for the biological control of insect pests of economic importance worldwide (Kaya & Gaugler, 1993; Lacey & Georgis, 2012; Gozel & Gozel, 2016; Bhat et al., 2020). The relevance of these nematodes as biocontrol agents in South Africa is being demonstrated by the extent of research activities that were dedicated to the identification and reporting of new local species (Malan et al., 2006, 2008, 2011, 2014; Malan & Ferreira, 2017; Abate et al., 2018; Ramakuwela et al., 2018; Lephoto & Gray, 2019a; Lulamba & Serepa-Dlamini, 2020). These nematodes were shown to exhibit biocontrol potentials against a wide range of insect pests including: codling moth (Cydia pomonella); false codling moth (Thaumetopoea pityocampa); wood wasps (Sirex noctilio); mealybug (Planococcus ficus); the banded fruit weevil (Phyllophaga callosus); fruit flies (Ceratitis capitata and, Ceratitis rosa); sugarcane stalk borer (Eldana saccharina); and leaf miners Holococista capensis (Lepidoptera: Heliozelidae) (De Waal et al., 2011; Odendaal et al., 2016; Malan & Ferreira, 2017; Platt et al., 2018; Steyn et al., 2019). More recently, attention is being focused on the development of commercial and industrial-scale production of the EPNs (Van Zyl & Malan, 2014; Kagimu & Malan, 2019; Dunn et al., 2020).

The life cycle of EPNs is similar to other nematodes comprising egg, four juvenile stages, and the adults. These nematodes have a special non-feeding infective 3rd stage dauer larvae which emerges at the depletion of the food resource within the host cadaver and migrates in search of a new host. The dauer larvae carry their symbiotic bacteria in the gut and can survive several months in the soil until a suitable host is found. The duration of the life cycle is dependent on the temperature and can vary between species and locality; it however
usually completes its life cycle within 6–18 days at a temperature range of 18–28°C (Subramanian & Muthulakshmi, 2016).

Although the occurrence of EPNs on many conventional agricultural lands, orchards, vineyards and forest plantations in South Africa has been well documented (Hatting et al., 2009; Malan & Ferreira, 2017; Abate et al., 2018) in many cases, low percentage frequency of occurrence of the EPNs were obtained from the sampling expenditures. Malan et al. (2006) reported that EPNs were recovered from only about 7% of sampled fields. Hatting et al., 2009 also reported a 5% recovery rate, while a recovery rate of 11% was documented from citrus orchards by Malan et al. (2011). Elsewhere in Africa, a 6.5% positive record for EPNs was documented from soil samples obtained from a survey of EPNs in Northern Nigeria (Akyazi et al., 2012). According to Abate et al. (2018), about 20 species of the EPN have been recorded from the African continent, with South Africa accounting for most of the reported species within the continent. In a survey that cuts across five provinces in South Africa, Hatting et al. (2009) reported EPNs from different habitats, such as undisturbed natural grasslands, vineyards, fruit and vegetable orchards, wheat, sugarcane and rooibos tea orchards. There are strong indications from the literature (Freckman & Ettema, 1993; Birkhofer et al., 2008) that suggest that the type of habitat and agricultural systems could determine the fauna diversity in the soil and this is especially true of nematodes, which have proven to be useful indicators of soil and environmental health.

The need for more indigenous species of EPNs to provide biological control against endemic insect pests in Africa is increasing in a bid to reduce harvest losses due to pests and diseases. This is crucial in the fight against impending food crisis, combating hunger and promoting food security in the continent. For instance, the biocontrol efficacy of a native EPN species was demonstrated against the devastating tomato leaf miner, Tuta absoluta Meyrick Lepidoptera: Gelechiidae, which was reported as a serious pest against tomato production in many African countries (Ndereyimana et al., 2019; Dlamini et al., 2020). It is therefore important to identify species that are adaptable to existing IPM systems, well suited to native environmental conditions, and which could be mass-produced for industrial and commercial purposes.

Honeybush, Cyclopia Vent. belongs to the leguminous family Fabaceae. The genus comprises 23 recognized species (Schutte, 1997; Joubert et al., 2011). Honeybush is an important herbal tea plant that is locally renowned as possessing great medicinal values for controlling type 2 diabetes among other health benefits. It is caffeine-free and rich in anti-inflammatory and antioxidant properties. Organic honeybush tea production is common in the Western Cape province of South Africa and is being practised by some farmers. The organic honeybush farms in Bredasdorp are semi-natural cultivated plantation with a moderate level of disturbance. The farms are more than twenty years old with harvesting regime of 2–3 years. The occurrence of EPNs on organic tea orchards is yet to be documented in South Africa. High susceptibility of honeybush to some plant-parasitic nematodes has been reported; however, this was associated with the conventional system of cultivation of the tea plants (Daramola et al., 2021). Furthermore, there are indications that organic cultivation could support a high diversity of EPNs. In the current study, the diversity and distribution of EPNs that are associated with organic honeybush tea plants in the Western Cape province of South Africa were investigated.

### Materials and methods

#### Soil sampling and isolation of EPNs

Soil samples were collected from four organic honeybush farms that are located around Bredasdorp, Western Cape province of South Africa in October 2018. The farmlands comprised a blend of four different species of Cyclopia including: Cyclopia genistoides; Cyclopia longifolia, Cyclopia maculata; and Cyclopia subternata. Soil samples were collected from the base of the honeybush plants up to a depth of about 20 cm with the aid of a hand trowel and/or spade. The farmlands were divided into different plots from which 20 soil sub-samples/hectare were collected, bulked and transported inside plastic bags to the laboratory (with ice in cooler boxes) for further processing. A total of 18 bulked soil samples were collected from nine plots on the organic honeybush farms.

The EPNs were recovered from the infected cadavers of Galleria larvae that were collected from the containers after incubation for 7 days. The dead larvae were picked individually and placed on top of moist filter papers, which were placed inside a Petri dish using a modified White’s trap method (White, 1927). Infective juveniles (IJ’s) were harvested from the set-up after emergence were further tested for pathogenicity by infecting 10 mealworms, Tenebrio molitor L. (Coleoptera: Tenebrionidae) larvae with about 200 IJs each in a 5-cm-diameter Petri dish which was lined with Whatman No. 1 filter papers. The isolates that satisfied Koch’s postulates were stored in sterilized distilled water in 500 ml flat tissue culture flasks with ventilated lids at 14°C. The EPNs were recycled on Galleria larvae after consecutive three months.

#### Nematode identification

The EPNs that were recovered from the soil samples were examined under the microscope and identified to their genus level, based on their morphological features. The females, males and hermaphrodites of the first generation were observed and identified microscopically (Nguyen & Smart, 1996). However, the species of the EPNs were further confirmed, using molecular tools.

Molecular identification of the EPNs was done by extracting DNA from single young adult females using a modified method of Nguyen (2007). The nematodes were cut into 2–3 parts with the sharp side of a sterile needle in 30 ml lysis buffer (500 mM magnesium chloride,10 mM dithiothreitol, 4.5% Tween20®, 0.1% gelatine and 3 μl proteinase K at 600 μg ml-1) which was placed on the side of an Eppendorf tube. The tubes were refrigerated at −80°C for 15 min and then incubated in a thermocycler at 65°C for 1 h followed by 95°C for 10 min and then centrifuged at 12,000 rpm for 2 min.

Polymerase chain reaction (PCR) for the amplification of the internal transcribed spacer (ITS) regions of the ribosomal DNA gene was done in a thermocycler using the forward primer TW81 (5’-GTTCGCTTAGTGAACCTGC-3’) and the reverse primer AB28 (5’-ATATGCTGAAGCTCAGGCTG-3’). The PCR was done in a thermocycler with the cycling profile comprising
They include: organic honeybush farms and identified using molecular tools. A total of nine EPN isolates were recovered from the eighteen soil samples. The sequence and phylogenetic analyses
The sequence data, including the forward and reverse DNA strands, were manually assembled and edited using BioEdit version 7.2 (Hall, 1999). Newly obtained sequences were deposited in the GenBank with accession numbers assigned to the honeybush farms with accession numbers MW969648, MW970233. The phylogenetic analysis of the ITS regions of the EPN isolates was done using the software for molecular evolutionary genetics analysis, MEGA X version 10.0.5 (Kumar et al., 2018). The evolutionary history among species was inferred using the maximum parsimony (MP) method and the confidence intervals for the various branching patterns were measured using bootstraps (Felsenstein, 1985) with 1000 replicates. Caenorhabditis elegans accession FJ589008 was used as the outgroup in both analyses.

| Species            | Strain | Habitat          | Query cover (%) | BLASTn (% identity) | Accession number |
|--------------------|--------|------------------|-----------------|---------------------|-----------------|
| Heterorhabditis bacteriophora | HB09    | Cyclopia genistoides | 100             | 100                 | MW969648        |
| Heterorhabditis safricana   | HB16    | C. genistoides    | 100             | 99.87               | MW915609        |
| H. safricana         | HB17    | Cyclopia maculatus | 100             | 99.87               | MW915610        |
| Steinernema nguyenii | HB10    | Cyclopia longifolia | 100             | 99.21               | MW915805        |
| Steinernema khoisanae | HB07    | hybrid            | 100             | 97.50               | MW969648        |
| S. khoisanae        | HB11    | C. longifolia     | 100             | 98.48               | MW915655        |
| Oscheius sp.        | HB12    | C. genistoides    | 100             | 99.64               | MW970232        |
| Oscheius sp.        | HB18    | Cyclopia subternata | 99              | 99.76               | MW970233        |

Results
Entomopathogenic nematodes associated with Cyclopia species
A total of nine EPN isolates were recovered from the eighteen soil samples that were examined for the presence of EPNs. This amounts to 50% of the sampled fields. EPNs belonging to the genera Heterorhabditis, Steinernema and Oscheius were isolated from organic honeybush farms and identified using molecular tools. They include: Heterorhabditis bacteriophora; Heterorhabditis safricana, Steinernema khoisanae, Steinernema nguyenii; Oscheius sp.; and an unidentified species (table 1). The EPNs were identified from Cyclopia longifolia, C. genistoides, C. maculata and C. subternata, which were the four dominant Cyclopia species on the sampled honeybush farmlands in fig. 1.

Pathogenic effect and reproduction of EPNs on G. mellonella larvae
The pathogenic effect of the isolated EPNs was confirmed on G. mellonella larvae. All nine newly obtained isolates showed good potential as biocontrol agents by producing 100% mortality of infected larvae within 48 h of exposure to the IJs. Both sexual and asexual generations (amphimictic and hermaphroditic forms) were observed in the heterorhabditids (fig. 2) while only amphimictic populations of the steinernematids were observed inside their insect hosts. Second generation IJs were seen migrating from the insect cadaver after 7 days. The lifecycle of the EPNs were completed within 18 days at an average temperature of 25°C.

Molecular identification and phylogenetic analysis
Molecular identification using the amplification of ITS region of the EPN isolates showed the presence of the two families (Heterorhabditidae and Steinernematidae) on the honeybush farms with accession numbers assigned to the newly obtained sequences (MW969648, MW915609, MW915610, MW915805, MW915655, MW970232 and MW970233). Their percentage similarities as compared with closely related sequences on the GenBank are indicated in table 1. The phylogenetic analyses of the Steinernema and Heterorhabditis species as inferred by the MP method based on the analysis of the ITS rDNA regions are shown in figs. 3 and 4. The analysis involved 23 Steinernema nucleotide sequences that have been reported in South Africa and the type specimen of some closely related species from GenBank using C. elegans as the outgroup. The most parisonomous tree with length 2207 is shown in fig. 3. There were a total of 1013 positions in the final dataset. Figure 4 shows the phylogenetic relationship of the newly obtained sequences of H. bacteriophora and H. safricana with their closely related species. The analysis involved 25 nucleotide sequences and the most parisonomous tree with length 393 is shown. The result of the analysis of the ITS rDNA region shows that the S. nguyenii and S. khoisanae that were isolated in this study clustered with other published S. nguyenii and S. khoisanae sequences. The former S. nguyenii falls within the Steinernema feliae-group along with Steinernema citrae while S. khoisanae falls within the Steinernema glaseri-group. The phylogenetic analysis of the species within the genus.
**Heterorhabditis** indicates that the newly obtained sequences of *H. bacteriophora* and *H. safricana* obtained from the honeybush samples both clustered with previously published sequences of *H. bacteriophora* and *H. safricana*, respectively, and were both placed in the 'bacteriophora' and 'megidis' clades. The sequence of the unknown EPN species was not included in the analysis.

---

Fig. 1. Sampling sites on honeybush orchards around Bredasdorp in the Western Cape province of South Africa (image generated from Google Maps).

Fig. 2. Life cycle of the entomopathogenic nematode.
Discussion

Some of the EPNs that were isolated from organic honeybush orchards in the current study, include those that have been demonstrated as useful biocontrol agents with proven potential against serious agricultural pests such as *T. absoluta*, *C. pomonella* and fruit fly species, *Ceratitis capitata* and *C. rosa* (Malan & Manrakhan, 2009; De Waal et al., 2011; Ndereyimana et al., 2019). The result of this study also corroborates the reports of previous surveys on the biogeography of these nematodes (Malan et al., 2006; Hatting et al., 2009; Malan et al., 2011), therefore confirming that these EPN species are widely distributed in the Western Cape province of South Africa. Some of these nematodes have also been reported outside the shores of South Africa with *H. bacteriophora* being the most frequently reported of the EPNs (Nguyen & Hunt, 2007; Bhat et al., 2019).

Most of the EPNs species that act as vectors transporting pathogenic bacteria and causing insect mortality belong to the genera *Steinernema* and *Heterorhabditis* (Shapiro-Ilan et al., 2009). Also, nematodes belonging to genus *Oscheius* have shown great biocontrol potential against insect species (Torres-Barragan et al., 2011; Ghavamabad et al., 2021). However, their entomopathogenic potential is not as widely studied and reported in the literature (Dillman & Sternberg, 2012). In the present investigation, *Oscheius* species that were recovered from the honeybush orchards caused mortality of *Galleria* larvae, thereby confirming their biological control potentials against the insect bait. More recently, reports of the biological control activities of *Oscheius* species on insect pests in South Africa has been documented (Serepa-Dlamini & Gray, 2018; Lephot & Gray, 2019b).

The biocontrol efficiency of these EPN genera (*Steinernema*, *Heterorhabditis* and *Oscheius*) to cause mortality of their insect hosts is associated with the virulence of their symbiotic bacteria: *Xenorhabdus*; *Photorhabdus* and *Serratia* spp., respectively (Dillman & Sternberg, 2012; Lulamba et al., 2019). However, studies on the relationship of EPNs with their symbiotic bacteria was beyond the scope of the current investigation but will be considered in future studies. An unidentified EPN species was also isolated from the honeybush orchards. The DNA sequence was not similar to any previously known or published EPN sequence on the NCBI. The current finding attests to the fact that there is a whole lot of undiscovered biodiversity of EPNs existing in nature, thereby underscoring the need for a more rigorous and extensive survey to unravel the enormous bio-resource potential within the soil ecosystem.

The ITS region of the ribonucleic RNA provided a good molecular marker for the identification of the EPNs in this study. The use of molecular tools for nematode identification provides a rapid and reliable option for nematode identification and helps to reduce erroneous identification/misidentifications of species due to morphological similarity, overlapping morphometric measurements and variability of some diagnostic features (Van den Berg et al., 2014). Molecular identification in combination with morphological characters is often recommended for nematode characterization (Oliveira et al., 2011); however in the present study, new species are not being described but we identified EPN species that have been previously described, therefore detailed morphological characterization and morphometric measurements were not required. Phylogenetic analysis of the
EPNs isolated in the current study also gave an accurate picture of the isolates and their genetic relationship with other species within the *Steinernema* and *Heterorhabditis* genera, as compared to other published isolates that are reported in South Africa and from other countries.

Successful application of EPNs as a biocontrol agent of pests is hinged on appropriate temperature and moisture. According to Kaya (1990), the temperature range for survival and infectivity will depend on the species of EPN and its native habitat and centre of origin. Thus, there is a continuous drive for the identification of more indigenous species that can adapt well to prevailing climatic conditions and be more suited for South African soil. Environmental factors such as soil type, aeration, temperature and moisture contribute significantly to the distribution, survival and infectivity of EPNs (Kaya, 1990; Lacey & Georgis, 2012). Other factors include the presence of suitable host and soil fauna. Furthermore, agronomic practices such as tillage methods, pest control, fertilizer application and cropping systems could affect the abundance and survival of these nematodes in the soil. There are indications that the type of farming system such as conventional agriculture could contribute to a disturbance in the soil ecosystem, thereby having a consequent negative effect on the diversity and distribution of EPNs in the soil whereas organic agriculture seems to promote conservation of soil fauna diversity.

The recovery rate of 50% in the isolated EPNs from the sampled honeybush fields in the Bredasdorp area of Western Cape, therefore, reflects an abundance of the EPNs in this habitat and geographical location. The prevalence of EPNs in this region might be due to the availability of insect hosts, a suitable soil type along with behavioural and physiological adaptations (Adams et al., 2006). Species richness and substantial diversity of the EPNs are also implied from the study. According to Malan et al. (2011), low recovery of the EPNs is common in many surveys and low detection of EPNs in the soil does not necessarily mean that the EPNs are not present, but might be due to insect aggregation (Campos-Herrera et al., 2013). EPNs tend to aggregate more in the soil rather than being randomly distributed and larger sample sizes have been recommended to increase chances of detection and diversity (Chaerani et al., 2019). In the present study, however, the 50% recovery rate of the EPNs was recorded from a relatively smaller sample size. Such a high rate of recovery could also be linked to the conservation tillage management that was practised on the organic honeybush orchards which tend to favour more detection of EPNs more than conventional tillage management where fluctuations in temperature and moisture reduce EPN population in the soil (Brust, 1991; Campos-Herrera et al., 2013). Further intensive survey that involves a large scale sample size might reveal a higher diversity and increase in the number of native EPNs from this geographical region and that can be useful biocontrol tools against targeted insect pests. In addition, more laboratory investigations will provide a better understanding of the host specificity of the understudied EPNs and give better insight into the processes that can facilitate successful mass production of the EPNs into useful commercial products.

**Acknowledgement.** The authors are grateful to the management of Stellenbosch University for providing the facility for this study.

**Financial support.** None.

**Conflicts of interest.** None.

**References**

Abate BA, Slippers B, Wingfield MJ, Malan AP and Hurley BP (2018) Diversity of entomopathogenic nematodes and their symbiotic bacteria in South African plantations and indigenous forests. *Nematology* 20(4), 355–371.

Adams BJ, Todor A, Koppenhöfer HS, Stackebrandt E, Stock SP and Klein MG (2006) Biodiversity and systematics of nematode–bacterium entomopathogens. *Biological Control* 37(1), 32–49.

Akyazi FY, Ansari MA, Ahmed BI, Crow WT and Mekete T (2012) First record on entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Nigerian soil and their morphometrical and ribosomal sequence analysis. *Nematologia Mediterranea* 40(2), 95–100.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997) Gapped BLAST and PSI BLAST: a new generation of protein database search programs. *Nucleic Acids Research* 25(17), 3389–3402.

Bhat AH, Askary TH, Ahmad MJ, Suman B, Aasha R and Chaubey AK (2019) Description of *Heterorhabditiis bacteriophora* (Nematoda: *Heterorhabditidae*) isolated from hilly areas of Kashmir Valley. *Egyptian Journal of Biological Pest Control* 29, 96. doi:10.1186/s41938-019-0197-6.

Bhat AH, Chaubey AK and Askary TH (2020) Global distribution of entomopathogenic nematodes, *Steinernema* and *Heterorhabditis*. *Egyptian Journal of Biological Pest Control* 30, 31. doi:10.1186/s41938-020-0212-y.

Birkhofer K, Bezzemer TM, Bloem J, et al. (2008) Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. *Soil Biology and Biochemistry* 40(9), 2297–2308.

Brust GE (1991) Soil moisture, no-tillage and predator effects on southern corn rootworm survival in peanut agroecosystems. *Entomologia Experimentalis et Applicata* 58, 109–121.

Campos-Herrera R, Barbercheck M, Hoy CW and Stock SP (2012) Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. *Journal of Nematology* 44(2), 162–176.

Campos-Herrera R, Pathak E, El-Borai FE, Stuart RJ, Gutiérrez C, Rodríguez-Martín JA, Graham JH and Duncan LW (2013) Geospatial...
patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biology and Biochemistry. [Online] 166, 163–174. doi:10.1016/j.soilbio.2013.07.011

Charea C, Prabowo H and Indrayan IGA (2019) Isolation and molecular identification of entomopathogenic nematodes (Steinernema and Heterorhabditis) from East Java and Bali. Journal of Agrobiology 14(2), 85–96.

Daramola FY, Malan AP and Lewu FB (2021) Diversity and population distribution of nematodes associated with honeybush (Cyclopia spp.) and rooibos (Aspalathus linearis) in the Western Cape province of South Africa. Helyton 7(2). E06306. doi:10.1016/j.helyton.2021.e06306

De Waal JY, Malan AP and Addison MF (2011) Efficacy of entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae) against codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in temperate regions. Biocontrol Science and Technology 21(10), 1161–1176.

Dillman AR and Sternberg PW (2012) Entomopathogenic nematodes. Current Biology 22(11), R340–R343.

Dlamini BE, Dlamini N, Masarirambhi MT and A NK (2020) Control of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) larvae in laboratory using entomopathogenic nematodes from subtropical environment. Journal of Nematology 52, 1–8.

Dunn MD, Belur PD and Malan AP (2020) In vitro liquid culture and optimization of Steinernema feltjeense using shake flasks. BioControl 65(2), 223–233.

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4), 783–791.

Freckman DW and Ettema CH (1993) Assessing nematode communities in agroecosystems of varying human intervention. Agriculture, Ecosystems & Environment 5(3–4), 239–261.

Ghavamabad RG, Talebi AA, Mehrabadi M, Farashiani ME and Pedram M (2021) First record of Oscheius myriophila (Rhabditida: Rhabditidae) from Iran; and its efficacy against two economic forest trees pests, Cydalima perspectalis (Walker, 1859) (Lepidoptera: Crambidae) and Hypon�tria cunea (Lepidoptera: Erebidae) in laboratory condition. Journal of Nematology 53, e2021–e2035.

Gozel U and Gozel C (2016) Entomopathogenic nematodes in pest management. In: Integrated Pest Management (IPM), IntechOpen, Rijeka. Available at https://www.intechopen.com/chapters/50885 (accessed 03 March. 2021).

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series 41, 95–98.

Hatting J, Stock PS and Hazir S (2009) Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Journal of Invertebrate Pathology 102(2), 120–128.

Joubert E, Joubert ME, Bester C, de Beer D and De Lange JH (2011) Control of the Natal fruit fly (Ceratitis capitata) and the Nata! fruit fly (Ceratitis rosa) to entomopathogenic nematodes. Journal Invertebrate Pathology 100(1), 47–49.

Malan AP, Nguyen KB and Addison MF (2006) Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. African Plant Protect 12(1), 65–69.

Malan AP, Nguyen KB, De Waal JY and Tiedt L (2008) Heterorhabditis safiricana n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Nematology 10(3), 381–396.

Malan AP, Knoetze R and Moore SD (2011) Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false coding moth. Journal Invertebrate Pathology 108(2), 115–120.

Malan AP, Knoetze R and Tiedt L (2014) Heterorhabditis noeipatitis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Journal of Helminthology 88(2), 139–151.

Ndeyeyimana A, Nyalala S, Murerwa P, et al. (2019) Potential of entomopathogenic nematode isolates from Rwanda to control the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control 29, 57. Available at https://epjb.springeropen.com/track/pdf/pdf/10.1186/s41938-019-0163-3.pdf (accessed 17 Feb. 2022).

Nguyen KB (2007) Methodology, morphology and identification. pp 59–119. In Nguyen KB and Hunt DJ (Eds). Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts. Nematology Monographs and Perspectives 5 (Series Editors: Hunt DJ and Perry RN). Brill, Leiden.

Nguyen KB and Hunt DJ (2007) Heterorhabditidae: species descriptions. pp. 611–692. In Nguyen KB and Hunt DJ (Eds), Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts. Nematology Monographs and Perspectives 5 (Series Editors: Hunt DJ and Perry RN). Leiden, The Netherlands. Brill.

Nguyen KB and Smart GC (1996) Identification of entomopathogenic nematodes in the Steinernematidae and Heterorhabditidae (Nematoda:Rhabditida). Journal of Nematology 28(3), 286–300.

Odendaal D, Addison MF and Malan AP (2016) Evaluation of above-ground application of entomopathogenic nematodes for the control of diapausing codling moth (Cydia pomonella L.) under natural conditions. African Entomology 24(1), 61–74.

Olivera CMMG, Monteiro AR and Blok VC (2011) Morphological and molecular diagnostics for plant-parasitic nematodes: working together to get the identification done. Tropical Plant Pathology 36(2), 65–73.

Plett T, Stokwe NF and Malan AP (2018) Potential of local entomopathogenic nematodes for control of the vine mealybug, Planococcus ficus. South African Journal of Enology & Viticulture 39(2), 1–8.

Ramakuwela T, Hatting J, Laing MD, Thiebaut N and Hazir S (2018) Biological characterization of the entomopathogenic nematode, Steinernema innominatus: a South African isolate. Journal of Nematology 50(4), 1–10.

Schutte AL (1997) Systematics of the genus Cyclopia Vent. (Fabaceae, Podalireae). Edinburgh Journal of Botany 54(2), 125–170.

Serepa-Dlamini MH and Gray V (2018) A new species of entomopathogenic nematode Oscheius safiricana n. sp. (Nematoda: Rhabditidae) from South Africa. Archives of Phytopathology and Plant Protection 51(5–6), 309–321.

Shapiro-Ilan DI, Mbata GN, Nguyen KB, Peat SM, Blackburn D and Adams BM (2009) Characterization of biocontrol traits in the entomopathogenic nematode Heterorhabditis georgiana (Kesha strain), and phylogenetic analysis of the nematode’s symbiotic bacteria. Biological Control 51(3), 377–387.
Steyn LAI, Addison P and Malan AP (2019) Potential of South African entomopathogenic nematodes to control the leaf miner, Holocacista capensis (Lepidoptera: Heliozelidae). South African Journal of Enology and Viticulture 40(2), 1. Available at http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2224-79042019000200016 (accessed 17 Aug. 2021).

Subramanian S and Muthulakshmi M (2016) Entomopathogenic nematodes. pp. 367–410. In Omkar (Ed.) Ecofriendly Pest Management for Food Security. London, Elsevier.

Torres-Barragan A, Suazo A, Buhler W and Cardoza Y (2011) Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biological Control 59(2), 123–129.

Van den Berg E, Tiedt LR and Subbotin SA (2014) Morphological and molecular characterisation of several Paratylenchus Micoletzky, 1922 (Tylenchida: Paratylenchidae) species from South Africa and USA, together with some taxonomic notes. Nematology 16, 323–358.

Van Zyl C and Malan AP (2014) The role of entomopathogenic nematodes as biological control agents of insect pests, with emphasis on the history of their mass culturing and in vivo production. African Entomology 22(2), 235–249.

White GF (1927) A method for obtaining infective nematode larvae from cultures. Science 66(1709), 302–303.