A facile sonochemical protocol for synthesis of 3-amino- and 4-amino-1,2,4-triazole derived Schiff bases as potential antibacterial agents

Aeysha Sultan¹, Mian Habib Ur Rehman¹, Noreen Sajjad², Ali Irfan³, Irfan Ullah⁴, Muhammad Mustaqeem⁴, Muhammad Saleem⁴, Syeda Laila Rubab¹, Muhammad Rafiq⁵, Muhammad Khalid⁶, Katarzyna Kotwica-Mojzych⁷, Mariusz Mojzych⁸ *

¹ Division of Science and Technology, Department of Chemistry, University of Education, Lahore, Pakistan, ² Department of Chemistry, University of Lahore, Lahore, Pakistan, ³ Department of Chemistry, University of Lahore Sargodha campus, Sargodha, Pakistan, ⁴ Department of Chemistry, University of Sargodha Sub-campus Bhakkar, Bhakkar, Pakistan, ⁵ Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan, ⁶ Department of Chemistry, Khwaja Ghulam Fareed University of Science and Technology, Rahimyar Khan, Pakistan, ⁷ Chair and Department of Histology, Embryology and Cytophisiology, Medical University of Lublin, (Collegium Medicum), Lublin, Poland, ⁸ Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland

* mmojzych@yahoo.com

Abstract

A facile method has been developed for the synthesis of Schiff bases derived from substituted and unsubstituted 3-amino- and 4-amino-1,2,4-triazoles. Condensation of the aminotriazoles with a variety of aromatic aldehydes afforded desired Schiff bases in excellent yields in 3–5 minutes of exposure to ultra-sound. The synthesized compounds were characterized by means of IR, ¹HNMR and Mass spectrometry. The synthesized compounds were also screened for their antibacterial potential against Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) strains.

Introduction

Schiff bases are the condensation products of primary amines and carbonyl compounds,[1] named after Hugo Schiff, who discovered them in 1864.[2] Schiff bases have been well documented for their wide spectrum potential as chemotherapeutic agents. The biological and chemical importance of the Schiff bases centers around the presence of azomethine group; it is the lone pair on nitrogen of azomethine that plays the key role.[3,4]

Schiff bases derivatives of aliphatic as well as aromatic aldehydes and ketones have been well reported; however, in general the stability of aliphatic aldehydes derived Schiff bases is quite inferior to that of aromatic aldehydes. The former being more prone to polymerization while the latter being more stable due to conjugation. [5] Heterocyclic Schiff bases moiety is of special importance in medicinal chemistry and a lot of active research is being done on this
pharmacophore. In addition to their importance in medicinal chemistry, heterocyclic Schiff bases find promising potential applications as: sensors (optical and electrical), intermediates in organic reactions, dyes, pigments and as catalysts [6–9].

Heterocyclic Schiff bases have been extensively documented for their potential as: antifungal [10,11], antibacterial [12,13], antiproliferative [14], anticoagulant [15], anti-inflammatory [16], and antiviral [17] agents. These heterocyclic Schiff bases have the added advantages of: ease of synthesis, electronic properties, higher solubility in organic solvents and most importantly for their potential role as chelating ligands in coordination chemistry [18].

The 1,2,4-triazole motif is a part of a large number of chemotherapeutic drugs [19,20] which are useful as: anti-inflammatory [21,22], anti-depressant, antiviral, antifungal, antimicrobial [23–27], anticancer properties [28–31], antitubercular [32–35] and analgesic [36], activities. Owing to the huge possibility of exploration of biologically active molecules containing this moiety, a lot of work has been done on the synthesis of 1,2,4-triazole Schiff base derivatives [37–41].

A lot of work has been done to device strategies for the synthesis of Schiff bases; the most trivial method involves acid catalyzed condensation of an aldehyde (or ketone) with a primary amine under refluxing conditions. [42]. Due to attempts towards greener chemistry approaches, newer and unconventional methods are being explored in the field of synthetic chemistry. Various non-conventional methods employed in the synthesis of Schiff bases include: microwave assisted synthesis [43] and click chemistry [44–49].

The presented work is concerned with the synthesis of ultrasound assisted synthesis of Schiff bases derived from substituted and unsubstituted 3-amino and 4-amino-1,2,4-triazoles. The reaction outcome has also been compared with that of conventional method. Synthesized Schiff bases have also been evaluated for their antibacterial potential.

Material and methods

The TLC was carried out on pre-coated silica gel (0.25 mm thick layer over Al sheet, Merck, Darmstadt, Germany) with fluorescent indicator. The spots were visualized under UV lamps (λ 365 and 254 nm) of 8 W power or KMnO₄ dip and heating. The compounds were purified either on a glass column packed silica gel (0.6–0.2 mm, 60Å mesh size, Merck) or by crystallization. All solutions were concentrated under reduced pressure (25 mm of Hg) on a rotary evaporator (Laborota 4001, Heidolph, Germany) at 35–40˚C. Melting points were determined using a MF-8 (Gallenkamp, Burladingen, Germany) instrument and are reported uncorrected. The IR-spectra are recorded on Prestige 21 spectrophotometer (Shimadzu, Japan) as KBr discs. The LREIMS are carried out on a Fisons Autospec Mass Spectrometer (VG, New Jersey, USA). The ¹H (300, 400 and 500 MHz) and ¹³C-NMR (75 MHz) are recorded on AM-300, 400 and 500 MHz instruments (Bruker, Massachusetts, USA) in CDCl₃ using TMS as internal standard. In spectroscopic data "A" means yield from conventional method and "B" means yield from sonochemical method.

Representative conventional procedure for synthesis of triazole based Schiff bases

An equimolar mixture of amino-1,2,4-triazoles (10 mmol) and respective aldehydes (10 mmol) in methanol (40 mL) were refluxed for ~5 h. The completion of reaction was monitored by TLC. The reaction mixture was cooled to room temperature and filtered. After an hour, solid products were obtained from the solution. The precipitated products were recrystallized with hot ethanol.
Representative sonochemical procedure for synthesis of triazole based Schiff bases

An equimolar mixture of amino-1,2,4-triazoles (1 mmol) and respective aldehydes (1 mmol) in methanol (4 mL) was subjected to ultrasonic irradiation for ~5 minutes. The product started to precipitate within 3–4 minutes of sonochemical procedure. The completion of reaction was monitored by TLC. The solid product thus obtained was centrifuged and isolated by decantation of mother liquor. The isolated products were recrystallized with hot ethanol.

1-Phenyl-N-(4H-1,2,4-triazol-3-yl)methanimine, 6

Yield: 86% (A), 96% (B); M.p: 196˚C. IR (KBr, cm⁻¹): 3044 (N-H), 1634 (HC = N), 1592 (C = N), 1019 (N-N). ¹H-NMR (DMSO-d₆, δ): 8.34 (s, 1H, azomethine), 7.81–7.53 (m, 5H, Ar-H), 6.25 (s, 1H, N-CH = N). ¹³C-NMR (DMSO-d₆, δ): 158.19 (HC = N), 153.83 (CH, triazole), 150.21 (C = N, triazole), 137.17 (C, Ar), 132.50 (C, Ar), 130.24 (C, Ar), 127.38 (CH, Ar); EI MS: 178 [M] (67%), 177 [M-H]+ (100%).

1H-NMR (DMSO-d₆, δ): 8.34 (s, 1H, azomethine), 7.81–7.53 (m, 5H, Ar-H), 6.25 (s, 1H, N-CH = N).

13C-NMR (DMSO-d₆, δ): 158.19 (HC = N), 153.83 (CH, triazole), 150.21 (C = N, triazole), 137.17 (C, Ar), 132.50 (C, Ar), 130.24 (C, Ar), 127.38 (CH, Ar); EI MS: 178 [M] (67%), 177 [M-H]+ (100%).

2-[(4H-1,2,4-Triazol-3-yl)iminomethyl]phenol, 7

Yield: 61% A), 96% (B); M.p: 264–265˚C. IR (KBr, cm⁻¹): 3188 (N-H), 3021 (O-H), 1624 (HC = N), 1605 (C = N), 1021 (N-N). ¹H-NMR (DMSO-d₆, δ): 8.78 (s, 1H, Azomethine), 7.84–7.13 (m, 4H, Ar-H), 6.25 (s, 1H, N-CH = N).

13C-NMR (DMSO-d₆, δ): 159.14 (HC = N), 164.35 (C₁, Ar), 153.23 (C₅), 150.66 (C₂), 134.11(CH, Ar), 121.13(CH, Ar), 116.08 (C, Ar). ESI MS (C₉H₈N₄O): 188.069834 (found); 188.069811 (calc).

3-[(E)-4H-1,2,4-Triazol-3-yliminomethyl]naphthalene-2-ol, 8

Yield = 75% (A), 98% (B); M.p: 271˚C. IR (KBr, cm⁻¹): 3284 (O-H), 3089 (N-H), 1626 (HC = N), 1528 (C = N), 1023 (N-N). ¹H-NMR (DMSO-d₆, δ): 8.53 (s, 1H, azomethine), 8.27–7.35 (m, 6H, Ar-H), 9.24 (s, 1H, N-CH = N).

13C-NMR (DMSO-d₆, δ): 159.08 (HC = N), 156 (C = C=O-H), 153 (N-CH = N), 159.14 (HC = N), 150 ((N)₂-C = N), 140.1(1C, Ar), 128.15(1C, Ar), 126.08 (2C, Ar), 122.10 (2C, Ar), 115.93 (1C, Ar), 111.34 (2C, Ar). ESI MS (C₁₃H₁₀N₄O): 238.086001 (found); 238.085461 (calc).

3-(4H-1,2,4-Triazol-3-yl)iminomethylbenzene-1,2-diol, 9

Yield = 58% (A), 92% (B). M.p: 282˚C. IR (KBr, cm⁻¹): 3273 (O-H), 3074 (N-H), 1623 (HC = N), 1601 (C = N), 1031 (N-N). ¹H-NMR (DMSO-d₆, δ): 3.14 (s, 2H, OH), 7.34–7.03 (m, 3H, Ar-H), 8.98 (s, 1H, azomethine), 9.23 (s, 1H, triazole); ¹³C-NMR (DMSO-d₆, δ): 159.97 (HC = N), 154.23 (C, Ar), 153.24 (N-CH = N), 150.66 (C₂, triazole), 148.56 (C, Ar), 128.61 (C, Ar), 122.45 (C, Ar), 117.38 (CH, Ar). ESI MS (C₉H₈N₄O₂): 204.064681 (found); 204.064726 (calc).

N,N-Dimethyl-4-[(E)-(4H-1,2,4-triazol-3-ylimino)methyl]aniline, 10

Yield: 79% (A), 99% (B); M.p: 203˚C. IR (KBr, cm⁻¹): 3092 (N-H), 3074 (N-H), 1623 (HC = N), 1539 (C = N), 1032 (N-N). ¹H-NMR (DMSO-d₆, δ): 3.15 (s, 6H, (CH₃)₂-N), 6.23 (s, 1H, azomethine), 7.52–6.86 (m, 4H, Ar-H), 9.56 (s, 1H, HC = N); ¹³C-NMR (DMSO-d₆, δ): 159.08 (HC = N), 153.02 (N-CH = N), 150.24 (C₂, triazole), 132 (C, Ar), 127.06 (CH, Ar), 121.07 (C, Ar), 113.58 (CH, Ar), 43.33 [N(CH₃)₂]; ESI MS (C₉H₉N₄O₂): 215.117108 (found); 215.117095 (calc).
1-(4-Nitrophenyl)-N-(4H-1,2,4-triazol-3-yl)methanimine, 11
Yield: 67% (A), 97% (B); M.p: 269˚C. IR (KBr, cm⁻¹): 3102 (O-H), 3097 (N-H), 1638 (HC = N), 1595 (C = N), 1011 (N-N); ¹H-NMR (DMSO-d6, δ): 6.23 (s, 1H, azomethine), 8.91–8.32 (m, 4H, Ar-H), 9.86 (s, 1H, HC = N), ¹³C-NMR (DMSO-d6, δ): 164.36 (HC = N), 153.83 (C5, triazole), 150.22 (C, Ar), 151.73 (CH, Ar), 148.06 (C, Ar), 127.66 (CH, Ar), 124.57 (C, Ar). ESI MS (C₉H₇N₅O₂): 217.06009 (found), 217.059975 (calc).

2-Ethoxy-4-[(E)-(4H-1,2,4-triazol-3ylimino)methyl]phenol, 12
Yield: 82% (A), 98% (B), M.p: 152˚C. IR (KBr, cm⁻¹): 3073 (N-H), 1633 (HC = N), 1580 (C = N), 1030 (N-N), ¹H-NMR (DMSO-d6, δ): 1.15 (t, 3H, CH₃), 4.16 (q, 2H, CH₂), 7.53–6.96 (m, 3H, Ar-H), 8.38 (s, 1H, azomethine), 9.26 (s, 1H, CH, triazole), ¹³C-NMR (DMSO–d₆, δ): 161.18 (HC = N), 153.79 (N-CH = N), 150.26 (C2, triazole), 150.05 (CH, Ar), 148.00 (C, Ar), 132.50 (C, Ar), 125.06 (C, Ar), 117.33 (CH, Ar), 110.82 (C, Ar), 65.65 (CH₂), 17.38 (CH₃), ESI MS (C₁₁H₁₂N₄O₂): 232.09651 (found) 232.096026 (calc).

4-chloro-2-[(E)-(1H-1,2,4-triazol-3-ylimino)methyl]phenol, 13
Yield: 81% (A), 98% (B). Light-yellow. M.p: 222–224˚C. IR (KBr, cm⁻¹): 3273 (OH), 3184 (NH), 1636 (HC = N), 1610 (C = N), 1042 (N–N), 810 (C–Cl). ¹H NMR (DMSO–d₆, δ, ppm): 7.16 (d, 1H, J = 8.2 Hz, Ar-H), 7.46 (dd, 1H, J = 8.2, 2.4 Hz, Ar-H), 7.89 (d, 1H, J = 2.4 Hz, Ar-H), 8.44 (s, 1H, triazole C₉–H), 9.40 (s, 1H, azomethine), 12.30 (s, 1H, OH), 13.98 (s, 1H, triazole NH). ¹³C NMR (DMSO–d₆, δ, ppm): 118.1 (C₃), 120.0 (C₁), 129.2 (C₅), 132.7 (C₆), 134.2 (C₄), 153.5 (C₉), 156.9 (C₈), 161.7 (C₂), 162.9 (C₇). Anal. Calcd. for C₉H₇ClN₄O (222.63): C: 48.55; H: 3.17; N: 25.17; Cl: 15.92; Found: C: 48.32; H: 3.21; N: 25.08; Cl: 16.07%. ESI MS (C₉H₇N₄OCl): 222.030893, 224.027952 (found, 3:1), 222.030839, 224.030839 (calc).

4-bromo-2-[(E)-(1H-1,2,4-triazol-3-ylimino)methyl]phenol, 14
Yield: 80% (A), 97% (B). Bright-yellow. M.p: 239–241˚C. IR (KBr, cm⁻¹): 3267 (OH), 3181 (NH), 1636 (HC = N), 1610 (C = N), 1042 (N–N), ¹H NMR (DMSO–d₆, δ, ppm): 2.62 (s, 3H, CH₃), 6.95 (ddd, 1H, J = 7.90, 7.81, 2.4 Hz, Ar–H), 7.10 (dd, 1H, J = 8.2, 2.4 Hz, Ar–H), 8.00 (d, 1H, J = 2.4 Hz, Ar-H), 8.55 (s, 1H, azomethine), 9.37 (s, 1H, azomethine), 12.51 (s, 1H, OH), 14.21 (s, 1H, triazole NH). ¹³C NMR (DMSO–d₆, δ, ppm): 13.9 (CH₃), 119.2 (CH, Ar), 121.4 (CH, Ar), 133.9 (C, Ar), 136.1 (C, Ar), 153.9 (CH = N), 156.9 (C = N), 161.75 (C₂). Anal. Calcd. For C₉H₇BrN₄O (267.08): C: 40.47; H: 2.64; N: 20.98; Br: 29.92; Found: C: 40.29; H: 2.56; N: 21.07; Br: 29.84%.

2-[(E)-[5-(methyl sulfanyl)-1H-1,2,4-triazol-3-yl]imino]methyl]phenol, 15
Yield: 72% (A), 90% (B). Light-yellow. M.p: 239–241˚C. IR (KBr, cm⁻¹): 3265 (OH), 3175 (NH), 1625 (HC = N), 1606 (C = N), 1030 (N–N), ¹H NMR (DMSO–d₆, δ, ppm): 2.62 (s, 3H, CH₃), 6.95 (ddd, 1H, J = 7.90, 7.81, 2.4 Hz, Ar–H), 7.10 (dd, 1H, J = 8.2, 2.4 Hz, Ar–H), 7.44 (ddd, 1H, J = 7.90, 7.84, 2.35 Hz, Ar–H), 7.81 (dd, 1H, J = 7.81, 2.35 Hz, Ar–H), 9.37 (s, 1H, azomethine), 12.01 (s, 1H, OH), 14.21 (s, 1H, triazole NH). ¹³C NMR (DMSO–d₆, δ, ppm): 13.9 (CH₂), 116.7 (C, Ar), 119.3 (C, Ar), 131.7–134.5 (CH, Ar), 156.2 (C, Ar), 158.7 (C₂, triazole), 161.9 (C₅, triazole), 163.2 (CH = N). ESI MS (C₁₀H₁₀N₄OS): 234.057598 (found), 234.057533 (calc).
4-chloro-2-[(E)-[[5-(methylsulfanyl)-1H-1,2,4-triazol-3-yl]imino)methyl]phenol, 16
Yield: 74% (A), 94% (B). Off-white. M.p: 214–215°C. IR (KBr, cm⁻¹): 3281 (OH), 3183 (NH), 1634 (HC = N), 1610 (C = N), 1038 (N–N), 827 (C–Cl).

¹H NMR (DMSO-d₆, δ, ppm): 2.48 (s, CH₃), 6.83 (d, 1H, J = 7.92 Hz, Ar-H), 7.30 (dd, 1H, J = 7.94, 2.5 Hz, Ar-H), 7.73 (d, J = 2.5 Hz, Ar–H), 9.14 (s, 1H, azomethine), 11.89 (s, 1H, OH), 13.98 (s, 1H, triazole NH).

¹³C NMR (DMSO-d₆, δ): 13.9 (C, Ar), 118.7 (CH, Ar), 120.8 (CH, Ar), 127.6 (CH, Ar), 131.8 (C, Ar), 133.6 (C, Ar), 156.2 (C, Ar), 158.8 (C₅, triazole), 162.1 (C₂, triazole), 163.2 (CH = N).

Anal. Calcd. for C₁₀H₉N₄SClO (268.72): C: 44.70; H: 3.38; N: 20.85; S: 11.93; Cl: 13.19; Found: C: 44.34; H: 3.24; N: 20.68; S: 12.04; Cl: 13.23%.

ESI MS (C₁₀H₉N₄SClO): 236.046505, 238.043610 (found, 3:1), 236.046489, 238.043539 (calc).

4-bromo-2-[(E)-[[5-(methylsulfanyl)-1H-1,2,4-triazol-3-yl]imino)methyl]phenol, 17
Yield: 76% (A), 97% (B). Greenish-yellow. M.p: 210–212°C. IR (KBr, cm⁻¹): 3276 (OH), 3183 (NH), 1628 (HC = N), 1603 (C = N), 1024 (N–N).

¹H NMR (DMSO-d₆, δ, ppm): 2.60 (s, 3H, CH₃), 6.95 (d, 1H, J = 7.89 Hz, Ar-H), 7.62 (dd, 1H, J = 7.89, 2.44 Hz, Ar-H), 8.00 (d, 1H, J = 2.44 Hz, Ar–H), 9.35 (s, 1H, azomethine), 12.12 (s, 1H, OH), 14.01 (s, 1H, triazole NH).

¹³C NMR (DMSO-d₆, δ): 13.6 (CH₃), 115.7 (C, Ar), 119.1 (CH, Ar), 121.4 (CH, Ar), 135.2 (CH, Ar), 136.3 (C, Ar), 156.4 (C, Ar), 158.1 (C₅, triazole), 162.1 (C₂, triazole), 163.4 (CH = N). Anal. Calcd. for C₁₀H₉BrN₄OS (313.17): C: 38.35; H: 2.90; N: 17.89; S: 10.24; Br: 25.51; Found: C: 38.33; H: 2.63; N: 17.63; S: 10.19; Br: 25.64%.

2-[(E)-[[5-(methylsulfanyl)-1H-1,2,4-triazol-3-yl]imino)methyl]-4-nitrophenol, 18
Yield: 75% (A), 98% (B). Deep-yellow. M.p: 222–224°C. IR (KBr, cm⁻¹): 3290 (OH), 3182 (NH), 2910 (OCH₃), 1632 (HC = N), 1606 (C = N), 1360 (C–NO₂), 1022 (N–N).

¹H NMR (DMSO-d₆, δ, ppm): 2.72 (s, 3H, OCH₃), 7.18 (d, 1H, J = 7.86 Hz, Ar-H), 8.30 (dd, 1H, J = 7.86, 2.45 Hz, Ar-H), 8.45 (d, 1H, J = 2.45 Hz, Ar-H), 9.40 (s, 1H, azomethine), 12.6 (s, 1H, OH), 14.10 (s, 1H, NH).

¹³C NMR (DMSO-D₆, δ): 13.98 (CH₃), 117.74 (C, Ar), 120.30 (CH, Ar), 125.58 (CH, Ar), 137.71 (C, Ar), 140.53 (CH, Ar), 156.28 (CH, Ar), 156.44 (C₂, triazole), 162.28 (C₅, triazole), 163.34 (CH = N). Anal. Calcd. for C₁₀H₉N₅SO₃ (279.29): C: 43.01; H: 3.25; N: 25.08; S: 11.48; Found: C: 42.45; H: 2.98; N: 25.35; S: 11.64%.

2-{(E)-[[5-Amino-1H-1,2,4-triazol-3-yl]imino)methyl]-3-methoxyphenol, 19
Yield: 83% (A), 99% (B); colour (light yellow); M.p: 252–253°C; IR (KBr, cm⁻¹): 3420 (OH), 3346 (NH₂), 3187 (NH), 2910 (OCH₃), 1628 (HC = N), 1595 (C = N, triazole), 1022 (N–N);

¹H NMR (DMSO-d₆, δ, ppm): 2.86 (s, 3H, OCH₃), 6.98 (dd, 1H, J = 8.8, 8.9 Hz, Ar-H), 7.12 (d, 1H, J = 8.8 Hz, Ar-H), 7.53 (d, 1H, J = 8.9 Hz, Ar-H), 8.78 (s, 1H, azomethine), 10.22 (s, 1H, OH), 12.18 (s, 1H, NH);

¹³C NMR (DMSO-D₆, δ): 55.4 (OCH₃), 119.7 (C, Ar), 121.9 (CH, Ar), 124.2 (CH, Ar), 129.6 (CH, Ar), 150.0 (C, Ar), 151.0 (C, Ar), 156.6 (C₂, triazole), 157.2 (C₅, triazole), 162.3 (CH = N). LR EIMS (70eV) m/z (%): 233 ([M⁺]¹³, 13), 218 (100), 202 (32), 177 (9), 171 (19), 164 (7), 150 (12), 134 (27), 123 (14), 104 (20), 77 (22); Anal. Calcd. for C₁₀H₁₁N₅O₂ (233.23): C 51.50, H 4.75, N 30.03, O 13.72; Found C 51.47, H 4.72, N, 29.98.
2-\{(E)\}-\[(5-Amino-1H-1,2,4-triazol-3-yl)imino\]methyl\}-5-chlorophenol, 20
Yield: 73% (A), 97% (B); colour (light yellow); M.p: 222–224˚C; IR (KBr, cm\(^{-1}\)): 3428 (OH), 3345 (NH\(_2\)), 3192 (NH), 1636 (HC = N), 1606 (C = N, triazole), 1032 (N-N), 819 (C-Cl); \(^1\)H NMR (DMSO-d6, \(\delta\)): 6.04 (s, 2H, NH\(_2\)), 6.97 (d, 1H, J = 7.8 Hz, Ar-H), 7.48 (dd, 1H, J = 7.8, 2.4 Hz, Ar-H), 7.84 (d, 1H, J = 2.4 Hz, Ar-H), 8.87 (s, 1H, azomethine), 10.26 (s, 1H, OH), 12.27 (s, 1H, NH); \(^{13}\)C NMR (DMSO-d6, \(\delta\)): 120.27 (CH, Ar), 125.52 (CH, Ar), 131.72 (C, Ar), 133.13 (C, Ar), 156.12 (CH, Ar), 159.63 (C5, triazole), 160.33 (C2, triazole), 163.35 (CH = N); EIMS: [m/z, (%)]: 237, 235 [M]+ (100, 34), 221 (5), 205 (5), 181 (18), 166 (6), 154 (11), 131 (14), 127 (10), 111 (8), 75 (7); Anal. Calcd. for C\(_{13}\)H\(_8\)ClN\(_3\)O (237.65): C 45.49, H 3.39, N 29.47; Found C 45.46, H 3.36, N 29.45.

2-\{(E)\}-\[(5-Amino-1H-1,2,4-triazol-3-yl)imino\]methyl\} - 5-bromophenol, 21
Yield: 77% (A), 95% (B); colour (light yellow); M.p: 227–229˚C; IR (KBr, cm\(^{-1}\)): 3424 (OH), 3343 (NH\(_2\)), 3192 (NH), 1634 (HC = N), 1603 (C = N, triazole), 1027 (N-N), 564 (C-Br); \(^1\)H NMR (DMSO-d6, \(\delta\)): 6.03 (s, 2H, NH\(_2\)), 6.97 (d, 1H, J = 8.8 Hz, Ar-H), 7.58 (dd, 1H, J = 8.8, 2.4 Hz, Ar-H), 8.04 (d, 1H, J = 2.4 Hz, Ar-H), 8.83 (s, 1H, azomethine), 10.24 (s, 1H, OH), 12.25 (s, 1H, NH); \(^{13}\)C NMR (DMSO-d6, \(\delta\)): 119.78 (C, Ar), 121.34 (CH, Ar), 133.09 (CH, Ar), 136.53 (C, Ar), 156.12 (CH, Ar), 159.92 (C2, triazole), 158.78 (C5, triazole), 164.89 (CH = N); LR EIMS: [m/z, (%)]: 282, 284 [M]+ (100), 266 (13), 250 (7), 225 (20), 212 (8), 199 (26), 171 (5), 157 (9), 103 (14), 76 (11); Anal. Calcd. for C\(_{13}\)H\(_8\)BrN\(_3\)O (282.09): C 38.32, H 2.86, N 24.83; Found C 38.28, H 2.84, N 24.81.

2-\{(E)\}-\[(5-Amino-1H-1,2,4-triazol-3-yl)imino\]methyl\} - 5-nitrophenol, 22
Yield: 67% (A), 95 (B); dark yellow; M.p: 242–244˚C; IR (KBr, cm\(^{-1}\)): 3431 (OH), 3347 (NH\(_2\)), 3199 (NH), 1648 (HC = N), 1617 (C = N, triazole), 1350 (NO\(_2\)), 1054 (N-N); \(^1\)H NMR (DMSO-d6, \(\delta\)): 6.07 (s, 2H, NH\(_2\)), 7.19 (d, 1H, J = 8.7 Hz, Ar-H), 8.24 (dd, 1H, J = 8.7, 2.3 Hz, Ar-H), 8.75 (d, 1H, J = 2.3 Hz, Ar-H), 9.83 (s, 1H, azomethine), 10.31 (s, 1H, OH), 12.30 (s, 1H, NH); \(^{13}\)C NMR (DMSO-d6, \(\delta\)): 120.8 (CH, Ar), 135.6 (CH, Ar), 140.7 (C, Ar), 156.1 (CH, Ar), 160.2 (C, Ar), 162.5 (C5, triazole), 166.1 (C2, triazole), 168.8 (CH = N); EIMS: [m/z, (%)]: 248 ([M]+, 22), 232 (100), 216 (20), 192 (31), 172 (5), 166 (19), 149 (22), 138 (11), 122 (14), 76 (10); Anal. Calcd. for C\(_{13}\)H\(_8\)N\(_6\)O\(_3\) (248.19): C 43.55, H 3.25, N 33.86; Found C 43.52, H 3.22, N 33.83.

2-\{(E)\}-\[(5-Amino-1H-1,2,4-triazol-3-yl)imino\]methyl\}phenol, 23
Yield: 75% (A); 98% (B); colour (yellow); M.p: 181–183˚C; IR (KBr, cm\(^{-1}\)): 3420 (OH), 3350 (NH\(_2\)), 3190 (NH), 1631 (HC = N), 1594 (C = N, triazole), 1025 (N-N); \(^1\)H-NMR (DMSO-d6, \(\delta\)): 6.01 (s, 2H, NH\(_2\)), 6.98 (t, 1H, J = 8.4 Hz, Ar-H), 7.12 (d, 1H, J = 7.8 Hz, Ar-H), 7.41 (t, 1H, J = 7.4 Hz, Ar-H), 7.63 (d, 1H, J = 7.9 Hz, Ar-H), 8.81 (s, 1H, azomethine, Ar-H), 10.31 (s, 1H, OH), 12.22 (s, 1H, NH); \(^{13}\)C NMR (CDCl\(_3\), \(\delta\)): 117.7 (CH, Ar), 121.2 (CH, Ar), 130.3 (CH, Ar), 133.2 (C, Ar), 158.1 (C2, triazole), 159.8 (C5, triazole), 160.6 (CH = N); LR EIMS: [m/z, (%)]: 203 ([M]+, 100), 186 (85), 172 (48), 161 (36), 147 (81), 132 (72), 120 (47), 104 (70), 91 (31), 77 (84); Anal. Calcd. for C\(_{13}\)H\(_8\)NO\(_2\) (203.20): C 53.20, H 4.46, N 34.47; Found C 53.16, H 4.43, N 34.45.

4-\[(4-Chloro-benzylidene)-amino\]-5-(2,3,5-trichloro-phenyl)-4H-\[1,2,4\]triazole-3-thiol, 24
Yield: 46%, 92% (B); M.p: 148˚C, IR (KBr, cm\(^{-1}\)): 3082 (Ar-H), 3071 (NH/SH), 1617 (CH = N), 1594 (C = N), 1493 (C = C), 1019 (N-N). \(^1\)H-NMR (DMSO, \(\delta\)): 7.33 (d, 2H, J = 8.7 Hz,
4-chlorophenyl), 7.53 (d, 2H, J = 8.4 Hz, Ar-H), 7.66 (d, 1H, J = 2.7 Hz, Ar-H), 7.91 (d, 1H, J = 2.4 Hz, Ar-H), 9.8 (s, 1H, azomethine). LR EIMS: [m/z, (%)]: 418.8 (48), 417 (100), 415.2 (72), 387 (10), 335 (5), 307 (20), 289 (15), 281 (15), 232 (40).

4-[(4-Fluoro-benzylidene)-amino]-5-(2,3,5-trichloro-phenyl)-4H-[1,2,4]triazole-3-thiol, 25
Yield: 53% (A), 88% (B), M.p: 154˚C; IR (KBr, cm\(^{-1}\)): 3075 (NH), 3075 (Ar-H), 2910 (C-H), 1624 (HC = N), 1601 (C = N), 1612, 1486 (C = C), 1018 (N-N), 785 and 628 (C = Cl).

1H NMR (DMSO–d\(_6\), δ, ppm): 7.1–7.14 (t, 2H, J = 10.4 Hz, Ar-H), 7.474 (d, 1H, J = 2.7 Hz, Ar-H), and 7.68 (d, 1H, J = 2.4 Hz, Ar-H), 7.7–7.74 (m, 2H, Ar-H), 10.34 (s, 1H, N = CH), 11.29, (s, 1H, SH). LR EIMS: [m/z, (%)]: 404, 402, 400 [M\(^+\)], (100, 100, 29), 403, 401, 399 [M-H] (100, 100, 30), 383 (20), 307 (30), 280 (50).

N-(thiophen-2-ylmethylidene)-1H-1,2,4-triazole-3-amine, 26
Yield: 71% (A), 99% (B). Off-white. M.p: 172–174˚C. IR (KBr, cm\(^{-1}\)): 3175 (NH), 1628 (HC = N), 1611 (C = N), 1570, 1540 (C = C), 1020 (N–N), 965 (C–S).

1H NMR (DMSO–d\(_6\), δ, ppm): 7.24 (dd, 1H, J = 4.6, 4.0 Hz, thienyl–H), 7.8 (d, 1H, J = 4.0 Hz, thienyl–H), 7.89 (d, 1H, J = 4.6 Hz, thienyl–H), 8.25 (s, 1H, triazole–H), 9.30 (s, 1H, azomethine), 13.98 (s, 1H, triazole NH).

13C NMR (δ, ppm): 126.7 (CH, thienyl), 129.5 (CH, thienyl), 132.6 (C, thienyl), 153.5 (C5, triazole), 156.2 (C2, triazole), 159.0 (CH = N). Anal. Calcd. for C\(_7\)H\(_6\)N\(_4\)S (178.21): C: 47.17; H: 3.39; N: 31.44; S: 17.99; Found: C: 47.30; H: 3.41; N: 31.35; S: 17.80%. ESI MS (C\(_7\)H\(_6\)N\(_4\)S): 178.031359 (found) 178.031318 (calc).

N-[(5-methylthiophen-2-yl)methylidene]-1H-1,2,4-triazole-3-amine, 27
Yield: 73% (A), 98% (B). Off-white. M.p: 168–170˚C. IR (KBr, cm\(^{-1}\)): 3185 (NH), 1632 (HC = N), 1612 (C = N), 1575, 1545 (C = C), 1020 (N–N), 965 (C–S).

1H NMR (DMSO–d\(_6\), δ, ppm): 2.5 (s, 3H, CH\(_3\)), 6.96 (d, 1H, J = 3.0 Hz, thienyl-H), 7.60 (d, 1H, J = 3.0 Hz, thienyl–H), 8.20 (s, 1H, triazole–H), 9.20 (s, 1H, azomethine), 13.95 (s, 1H, triazole NH).

13C NMR (δ, ppm): 15.4 (CH\(_3\)), 128.2 (C, thienyl), 130.9 (CH, thienyl), 137.6 (C, thienyl), 142.9 (CH, thienyl), 153.5 (C5, triazole), 156.2 (C2, triazole), 159.0 (CH = N). Anal. Calcd. for C\(_8\)H\(_8\)N\(_4\)S (192.24): C: 49.98; H: 4.19; N: 29.14; S: 16.68; Found: C: 50.10; H: 4.10; N: 29.20; S: 16.61%. ESI MS (C\(_8\)H\(_8\)N\(_4\)S): 192.047008 (found) 192.046968 (calc).

N-[(3-methylthiophen-2-yl)methylidene]-1H-1,2,4-triazole-3-amine, 28
Yield: 74% (A), 96% (B). Light-brown. M.p: 171–173˚C. IR (KBr, cm\(^{-1}\)): 3180 (NH), 1626 (HC = N), 1610 (C = N), 1575, 1540 (C = C), 1020 (N–N), 970 (C–S).

1H NMR (DMSO–d\(_6\), δ, ppm): 2.46 (s, 3H, CH\(_3\)), 7.06 (d, 1H, J = 4.5 Hz, thienyl–H), 7.79 (d, 1H, J = 4.5 Hz, thienyl–H), 8.20 (s, 1H, triazole–H), 9.29 (s, 1H, azomethine), 13.90 (s, 1H, triazole NH).

13C NMR (δ, ppm): 14.4 (CH\(_3\)), 128.4 (C, thienyl), 129.3 (CH, thienyl), 132.9 (C, thienyl), 140.6 (CH, thienyl), 153.1 (C5, triazole), 156.8 (C2, triazole), 159.2 (CH = N). Anal. Calcd. for C\(_8\)H\(_8\)N\(_4\)S (192.24): C: 49.98; H: 4.19; N: 29.14; S: 16.68; Found: C: 50.10; H: 4.10; N: 29.20; S: 16.61%. ESI MS (C\(_8\)H\(_8\)N\(_4\)S): 192.047008 (found) 192.046968 (calc).

N-[(5-chlorothiophen-2-yl)methylidene]-1H-1,2,4-triazole-3-amine, 29
Yield: 59% (A), 91 (B). Light-brown. M.p: 178–180˚C. IR (KBr, cm\(^{-1}\)): 3180 (NH), 1629 (HC = N), 1610 (C = N), 1570, 1540 (C = C), 1020 (N–N), 970 (C–S), 820 (C–Cl).

1H NMR (DMSO–d\(_6\), δ, ppm): 7.39 (d, 1H, J = 3.5 Hz, thienyl–H), 7.70 (d, 1H, J = 3.5 Hz, thienyl–H), 7.80 (s, 1H, azomethine), 13.90 (s, 1H, triazole NH).
8.5 (s, 1H, triazole–H), 9.24 (s, 1H, azomethine), 13.99 (s, 1H, triazole NH). 13C NMR (δ, ppm): 128.9 (CH, thienyl), 132.5 (CH, thienyl), 135.6 (C, thienyl), 146.2 (C, thienyl), 153.3 (C5, triazole), 156.9 (C2, triazole), 159.3 (CH = N). Anal. Calcd. for C$_7$H$_5$ClN$_4$S (212.66): C: 39.53; H: 2.37; N: 26.35; S: 15.08; Cl: 16.70%. ESI MS (C$_7$H$_5$ClN$_4$S) = 211.992408, 213.989609 (found, 3:1), 211.992346, 213.989396 (calc).

N-[5-nitrothiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, 30

Yield: 79% (A), 89% (B). Brownish-green. M.p: 202–204°C. IR (KBr, cm$^{-1}$): 3175 (NH), 1629 (HC = N), 1611 (C = N), 1560, 1540 (C = C), 1370 (C–NO$_2$), 1020 (N–N), 980 (C–S).

1H NMR (DMSO–d$_6$, δ, ppm): 7.72 (d, 1H, J = 4.1 Hz, thienyl–H), 7.87 (d, 1H, J = 4.1 Hz, thienyl–H), 8.30 (s, 1H, triazole–H), 9.27 (s, 1H, azomethine), 14.00 (s, 1H, triazole NH).

13C NMR (δ, ppm): 129.9 (C, thienyl), 133.8 (CH, thienyl), 141.2 (CH, thienyl), 147.0 (C, thienyl), 153.6 (C5, triazole), 156.9 (C2, triazole), 159.1 (CH = N). Anal. Calcd. for C$_7$H$_5$N$_5$SO$_2$ (223.21): C: 37.67; H: 2.26; N: 31.38; S: 14.37; Found: C: 37.78; H: 2.34; N: 31.26; S: 14.45%. ESI MS (C$_7$H$_5$N$_5$SO$_2$): 223.016724 (found), 223.016397 (calc).

N-[(E)-(4-bromothiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, 31

Yield: 69% (A), 98% (B). Off-white. M.p: 215–217°C. IR (KBr, cm$^{-1}$): 3184 (NH), 1630 (HC = N), 1608 (C = N), 1570, 1545 (C = C), 1025 (N–N), 965 (C–S).

1H NMR (DMSO–d$_6$, δ, ppm): 7.85 (d, 1H, J = 3.5 Hz, thienyl–H), 8.0 (d, 1H, J = 3.5 Hz, thienyl–H), 8.55 (s, 1H, triazole–H), 9.30 (s, 1H, azomethine), 14.00 (s, 1H, triazole NH).

13C NMR (δ, ppm): 116.7 (C$_4$), 123.9 (C$_5$), 125.2 (C$_3$), 144.6 (C$_2$), 153.4 (C$_8$), 156.2 (C$_0$), 159.5 (C$_5$). Anal. Calcd. for C$_7$H$_5$N$_4$SBr: 255.941909, 257.939824 (found, 1:1), 255.941829, 257.939783 (calc).

N-[(E)-(3-methylfuran-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, 32

Yield: 68% (A), 95% (B). Light-yellow. M.p: 106–108°C. IR (KBr, cm$^{-1}$): 3190 (NH), 1630 (HC = N), 1609 (C = N), 1575, 1545 (C = C), 1090 (C–O), 1020 (N–N).

1H NMR (DMSO–d$_6$, δ, ppm): 2.55 (s, 3H, CH$_3$), 7.00 (d, 1H, J = 3.0 Hz, furanyl–H), 7.70 (d, 1H, J = 3.0 Hz, furanyl–H), 8.4 (s, 1H, triazole–H), 9.25 (s, 1H, azomethine), 13.95 (s, 1H, triazole NH).

13C NMR (δ, ppm): 15.2 (CH$_3$), 115.2 (CH, furanyl), 118.9 (CH, furanyl), 139.9 (C, furanyl), 144.6 (C, furanyl), 154.5 (C2, triazole), 156.5 (C2, triazole), 160.4 (CH = N). Anal. Calcd. for C$_8$H$_8$N$_4$O (176.18): C: 54.54; H: 4.58; N: 31.80; Found: C: 54.75; H: 4.46; N: 31.97%. ESI MS (C$_8$H$_8$N$_4$O): 176.069872 (found), 176.069811 (calc).

N-[(E)-(5-chlorofuran-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, 33

Yield: 68% (A), 97% (B). Light-yellow. M.p: 168–170°C. IR (KBr, cm$^{-1}$): 3180 (NH), 1632 (HC = N), 1609 (C = N), 1575, 1545 (C = C), 1086 (C–Cl), 1020 (N–N).

1H NMR (DMSO–d$_6$, δ, ppm): 7.38 (d, 1H, J = 3.5 Hz, thienyl–H), 7.49 (d, 1H, J = 3.5 Hz, thienyl–H), 8.4 (s, 1H, triazole–H), 9.25 (s, 1H, azomethine), 13.95 (s, 1H, triazole NH).

13C NMR (δ, ppm): 116.2 (CH, furanyl), 120.0 (CH, furanyl), 135.4 (C, furanyl), 142.6 (C, furanyl), 153.9 (C5, triazole), 155.5 (C2, triazole), 160.4 (CH = N). Anal. Calcd. for C$_7$H$_5$N$_4$OCl (196.59): C: 42.77; H: 2.56; N: 28.50; Cl: 18.03; Found: C: 42.90; H: 2.43; N: 28.30; Cl: 18.11%. ESI MS (C$_7$H$_5$N$_4$OCl): [M]$^+$ = 196.015213, 198.012287 (found, 3:1), 196.015189, 198.012239.
N-[(E)-(5-nitrofuran-2-y1)methylidene]-1H-1,2,4-triazol-3-amine, 34
Yield: 76% (A), 91% (A). Gray. M.p: 212–214˚C. IR (KBr, cm\(^{-1}\)): 3185 (NH), 1629 (HC = N), 1607 (C = N), 1570, 1548 (C = C), 1370 (C–NO\(_2\)), 1080 (C–O), 1030 (N–N). \(^1\)H NMR (DMSO–d\(_6\), δ ppm): 7.60 (d, 1H, J = 4.1 Hz, furanyl–H), 7.85 (d, 1H, J = 4.1 Hz, furanyl–H), 8.62 (s, 1H, triazole–H), 9.16 (s, 1H, azomethine), 14.20 (s, 1H, triazole NH). \(^1\)C NMR (δ ppm): 120.6 (C, furanyl), 123.0 (C, furanyl), 143.2 (CH, furanyl), 147.0 (C, furanyl), 153.6 (C5, triazole), 156.7 (C2, triazole), 160.8 (CH = N). Anal. Calcd. for C\(_{7}\)H\(_{5}\)N\(_{5}\)O\(_3\) (207.15): C: 40.59; H: 2.43; N: 33.81; Found: C: 40.23; H: 2.34; N: 34.20%. ESI MS (C\(_{7}\)H\(_{5}\)N\(_{5}\)O\(_3\)): 207.03991 (found), 207.03924 (calc).

N-[(E)-1H-pyrrol-2-ylmethylidene]-1H-1,2,4-triazol-3-amine, 35
Yield: 61% (A), 92% (B). Light-brown. M.p: 190–192˚C. IR (KBr, cm\(^{-1}\)): 3185 (NH), 3120 (NH), 1631 (HC = N), 1610 (C = N), 1570, 1540 (C = C), 1025 (N–N). \(^1\)H NMR (DMSO–d\(_6\), δ ppm): 6.24 (dd, 1H, J = 4.6, 4.0 Hz, pyrrolyl–H), 6.86 (d, 1H, J = 4.0 Hz, pyrrolyl–H), 7.11 (d, 1H, J = 4.6 Hz, pyrrolyl–H), 8.30 (s, 1H, triazole–H), 8.89 (s, 1H, azomethine), 11.92 (s, 1H, pyrrolyl NH), 13.69 (s, 1H, triazole NH). \(^1\)C NMR (δ ppm): 114.5 (CH, pyrrolyl), 116.6 (C, pyrrolyl), 120.7 (CH, pyrrolyl), 132.0 (C, pyrrolyl), 153.7 (C5, triazole), 155.8 (C2, triazole), 159.9 (CH = N). Anal. Calcd. for C\(_{7}\)H\(_{7}\)N\(_{5}\) (161.16): C: 52.17; H: 4.38; N: 43.45; Found: C: 52.39; H: 4.46; N: 43.72%. ESI MS (C\(_{7}\)H\(_{7}\)N\(_{5}\)): 161.070185 (found), 161.070145 (calc).

N-[(E)-(1-methyl-1H-pyrrol-2-yl)methylidene]-1H-1,2,4-triazol-3-amine, 36
Yield: 69% (A) 94% (B). Light-brown. M.p: 132–134˚C. IR (KBr, cm\(^{-1}\)): 3195 (NH), 1630 (HC = N), 1609 (C = N), 1024 (N–N). \(^1\)H NMR (DMSO–d\(_6\), δ ppm): 3.30 (s, 3H, CH\(_3\)), 6.19 (dd, 1H, J = 4.4, 4.1 Hz, pyrrolyl–H), 6.88 (d, 1H, J = 4.1 Hz, pyrrolyl–H), 7.18 (d, 1H, J = 4.4 Hz, pyrrolyl–H), 8.36 (s, 1H, triazole–H), 8.98 (s, 1H, azomethine), 13.62 (s, 1H, triazole NH). \(^1\)C NMR (δ ppm): 31.2 (CH\(_3\)), 113.6 (C, pyrrolyl), 117.8 (C, pyrrolyl), 122.5 (CH, pyrrolyl), 130.3 (CH, pyrrolyl), 153.6 (C5, triazole), 155.8 (C2, triazole), 159.4 (CH = N). Anal. Calcd. for C\(_{8}\)H\(_{9}\)N\(_{5}\) (175.19): C: 54.85; H: 5.18; N: 39.98; Found: C: 54.39; H: 5.27; N: 40.14%. ESI MS (C\(_{8}\)H\(_{9}\)N\(_{5}\)): 175.085816 (found), 175.085795 (calc).

Results and discussion
For the synthesis of 1,2,4-triazole based Schiff bases, variously substituted and unsubstituted 3-amino and 4-amino-1,2,4-triazoles were employed. Condensation of these aminotriazoles with various aromatic aldehydes under ultrasound conditions would afford the desired Schiff bases (S1 File). For comparison purpose, the conventional method of synthesis of Schiff bases was also employed in parallel to ultrasound assisted synthesis.

S1 File. Synthesis of target molecules
The conventional method involved refluxing the amine and aldehyde in ethanol for 4–5 hours. Upon cooling the reaction mixture at ambient temperature (and / or in ice bath under certain cases) led to the precipitation of the Schiff bases as solid products. In some cases the precipitates of the products were formed even during reaction process.

When the reaction was carried out in the presence of aq. HCl, a decrease in product yield was observed. Same was the case with acetic acid catalysed reaction. It is believed that the amino group of the triazole system is sufficiently nucleophilic to require any catalyst for the reaction. Furthermore, the use of acid catalysts tends to protonate and thereby reduces the
nucleophilicity of the N of amino group. Conversely the reaction worked well in the absence of any catalyst.

The ultrasound mediated reaction was carried out by placing the ingredients of the reaction in a screw cap tube which was then placed in a sonicator. Subjecting the reaction contents to ultrasound resulted in immediate formation of product. The progress of reaction was monitored after every minute by means of TLC. The disappearance of both of the reactants on TLC was considered the completion of reaction. Majority of reactions got completed in 3 minutes and some took 4 minutes for completion.

The purity of the synthesized compounds was checked by TLC using a EtoAc/n-hexane (1:2) as mobile phase. All of the synthesized Schiff bases were soluble in DMSO, DMF while were soluble upon heating in methyl alcohol and ethyl alcohol. All products were stable to air as well. The synthesized compounds were characterized by means of FTIR, 1H NMR, 13C NMR and mass spectrometry.

The disappearance of the aldehydic carbonyl group as well as the stretching frequency corresponding to NH$_2$ group of the triazole and appearance of characteristic azomethine (imine) absorption signal at 1580–1630 cm$^{-1}$ in IR spectrum further strengthened the evidence of success of the reaction. In case of imines derived from 3,5-diamino-1,2,4-triazoles, the products exhibited an NH$_2$ signal that appeared from 3343–3350 cm$^{-1}$. In case of Schiff bases derived from 3-amino-1,2,4-triazoles and 4-amino-1,2,4-triazoles, the N-H of triazole appears 3187–3199 cm$^{-1}$ (Fig 1).

The 1H NMR of the synthesized products exhibited presence of imine (CH = N) proton at 8.78–8.93 ppm. The appearance of the azomethine (aka imine) proton confirms the successful condensation and hence the formation of desired product.

The characteristic absorption frequencies and chemical shift values of azomethine proton of the Schiff bases are tabulated in Table 1.

![Fig 1.](https://doi.org/10.1371/journal.pone.0229891.g001)
The appearance of $[M]^+$ in LR EIMS further confirmed the formation of Schiff bases. The fragmentation pattern was consistent with that of desired product. The base peak was observed by loss of H as radical fragment in majority of cases (Fig 2).

Antibacterial activities

Some representatives of the synthesized Schiff bases were evaluated for anti-bacterial activity. These compounds were tested for their effectiveness as antibacterial agents against gram

Compound No.	R²	Ar	M.P (C)	FTIR (absorption frequencies in cm⁻¹)	NMR (chemical shift in ppm)	[M]+	
		azomethine str	C = N str	N-N str	CH = N	CH = N	
6	H	Ph	196	1632 1590	1021 9.24	158.17	-
7	H	2-OHPh	263–264	1622 1604	1022 9.24	159.13	-
8	H	2-OHnaph	271	1626 1528	1023 9.24	159.00	-
9	H	3,4-(OH)₂Ph	182	1622 1602	1030 8.99	159.98	-
10	H	4-(NMe₂)Ph	203	1621 1540	1029 9.55	159.00	-
11	H	4-(NO₂)Ph	269	1636 1596	1014 9.85	164.37	-
12	H	3-OEt,4-OHPh	151	1628 1572	1025 9.24	161.17	-
13	H	2-OH,5-ClPh	222–224	1631 1608	1030 9.40	162.67	222, 224 (3:1)
14	H	2-OH,5-BrPh	239–241	1632 1610	1028 9.39	161.75	266,268 (1:1)
15	SMe	2-OHPh	183–185	1625 1606	1030 9.35	161.93	234.29
16	SMe	2-OH,5-ClPh	214–215	1630 1607	1030 9.15	162.11	266,270 (3:1)
17	SMe	2-OH,5-BrPh	210–212	1627 1605	1025 9.35	162.13	312,17,314,21 (1:1)
18	SMe	2-OH,5-NO₂Ph	222–224	1632 1606	1025 9.40	162.28	279.29
19	NH₂	2-OH,6-OMePh	252–253	1628 1595	1022 8.78	157.19	233
20	NH₂	2-OH,4-ClPh	222–224	1636 1606	1032 8.87	160.33	235, 237 (3:1)
21	NH₂	2-OH,4-BrPh	227–229	1634 1603	1027 8.83	158.78	282, 284 (1:1)
22	NH₂	2-OH,4-NO₂Ph	242–244	1648 1617	1054 9.83	166.05	248
23	NH₂	2-OHPh	181–183	1631 1594	1025 8.81	160.63	203

Compound No.	X	M.P (C)	FTIR (absorption frequencies in cm⁻¹)	NMR (chemical shift in ppm)	[M]+	
	azomethine str	C = N str	N-N str	CH = N	CH = N	
24	Cl	142	1617 1594	1019 9.80	-	418, 420 (3:1)
25	F	158	1624 1601	1018 10.34	-	401

Compound No.	X	R²	R'⁵	R"⁶	M.P (C)	FTIR (absorption frequencies in cm⁻¹)	NMR (chemical shift in ppm)	[M]+ (amu)	
	azomethine str	C = N str	N-N str	CH = N	CH = N				
26	S	H	H	H	172–174	1628 1611	1020 9.30	156.0	178.21
27	S	H	H	Me	168–170	1632 1612	1020 9.20	156.5	192.24
28	S	Me	H	H	171–173	1626 1610	1020 9.29	156.8	192.00
29	S	H	H	Cl	178–180	1629 1610	1020 9.24	156.9	212,66, 214.80 (3:1)
30	S	H	H	NO₂	202–204	1629 1611	1020 9.27	156.9	223.21
31	S	H	Br	H	215–217	1630 1608	1025 9.30	156.2	255.00, 257.18 (1:1)
32	O	Me	H	H	106–108	1630 1609	1090 9.25	156.5	176.18
33	O	H	H	Cl	176–178	1632 1608	1025 8.90	155.5	196.59, 198.64 (3:1)
34	O	H	H	NO₂	212–214	1629 1607	1080 9.16	156.7	207.15
35	NH	H	H	H	190–192	1631 1610	1025 8.89	155.8	161.16
36	NMe	H	H	H	132–134	1630 1609	1024 8.97	159.3	175.19

https://doi.org/10.1371/journal.pone.0229891.t001

The appearance of $[M]^+$ in LR EIMS further confirmed the formation of Schiff bases. The fragmentation pattern was consistent with that of desired product. The base peak was observed by loss of H as radical fragment in majority of cases (Fig 2).
positive (*S. aureus, B. subtilis*) and gram negative bacteria (*E. coli, S. flexneri, P. aeruginosa* and *S. typhi*). Imipenem was used as positive control in this study while filter paper disc dipped in 10% DMSO was used as negative control. In order to determine the antibacterial activity, 5 mg of each selected representatives were dissolved in 5 mL of DMSO to make up concentration of 1000 μg/mL. 0.1 mL of this solution was used for the determination of zone of inhibition. The zone of inhibition of different compounds was calculated in mm and mean ±SEM of triplicate data were calculated. The antibacterial activity was considered significant if the zone of inhibition was greater than 16 mm, the Schiff bases producing zone of 11–15 mm were considered moderately active while those with less than 10 mm zone were considered weakly active as antibacterial agents. The antibacterial activities of the selected Schiff bases are summarized in Table 2:

Establishing Structure activity relationship (SAR) from the zone of inhibition data is difficult however, some generalizations can be made. In case of 3-amino trizole derived Schiff bases, the presence of a bulky +R group promotes antibacterial activity while presence of a –R group decreases the activity (see entry 10 & 11, Table 2). Presence of a hydroxyl at ortho position of the benzene ring does not give any significant activity unless there is a +R group at...
position 5 of 6 of the aromatic ring. Presence of an SMe and /or NH$_2$ group at C5 of the triazole ring promotes antibacterial activity. Any substituent present of C3 of aromatic ring has no influence on antibacterial activity. The 4-aminotriazole derived imines showed significant activity which may be attributed to presence of Cl and F. however, presence of a F atom at 4-position of the benzene ring gave more broader and efficient response than Cl atom at the same position; the later gave significant response against Gram positive bacteria. Among the Schiff base derived from heterocyclic aldehydes, thienyl moiety exhibited better response than its oxygen and nitrogen counterparts. Again the presence of a halogen atom resulted in better activity. Since these studies were of preliminary nature, therefore further structure activity relationship studies require extensive exploration of the compounds.

Conclusion

A series of 30 Schiff bases was synthesized by employing ultra-sound from sonicator as energy source. For comparison purpose, a conventional setup was also used. It was observed that former method afforded products with higher yields (88–99%) and higher purity in less time (almost 5 minutes). The yields of conventional method were significantly lower and took almost 5 hours for completion. These results are encouraging enough to explore the ultrasound mediated synthetic protocol for synthesis of other compounds of medicinal interests as well. some selective Schiff bases were subjected to preliminary antibacterial screening against Gram positive and Gram negative bacteria; the results exhibited promising results. The
compounds that yielded good results will be further evaluated for their toxicology, MIC and MBC profile.

Supporting information
S1 File. Scheme 1.
(SDX)
S1 Data.
(SDX)

Acknowledgments
The authors are thankful to Higher Education Commission of Pakistan for Startup Research Grant (SRGP) to Dr Aeysha Sultan. We are also thankful to University of Lahore, Lahore, Pakistan for assistant and spectroscopic analysis.

Author Contributions
Conceptualization: Muhammad Rafiq, Mariusz Mojzych.
Formal analysis: Mariusz Mojzych.
Investigation: Aeysha Sultan, Mian Habib Ur Rehman, Noreen Sajjad, Ali Irfan, Irfan Ullah, Muhammad Mustaqeem, Muhammad Saleem, Syeda Laila Rubab, Muhammad Rafiq, Muhammad Khalid.
Methodology: Muhammad Rafiq, Mariusz Mojzych.
Supervision: Mariusz Mojzych.
Writing – original draft: Aeysha Sultan, Muhammad Rafiq.
Writing – review & editing: Katarzyna Kotwica-Mojzych, Mariusz Mojzych.

References
1. Saxena A. Metal complexes of Schiff bases: Preparation, characterization and synthesis of Schiff base derived from salicylaldehyde and triazole and its transition metal complexes. Der Chem Sin. 2015 Jan 21; 6: 29–33.
2. Mahmud T. (2010) Synthesis characterization and study of antibacterial activity of Enaminones complexes with Zinc and Iron. Arab J Chem. 2010 Jun 9; 3: 219–224.
3. Hernandez-Molina R, Mederos A. Acyclic and Macrocyclic Schiff base Ligands In Comprehensive Coordination Chemistry II. New York: Pergamon Press; 2004. Vol. 2. p 411–446.
4. KabaK M, Eimali A, Elerman Y. Keto–enol tautomerism, conformations and structure of N-(2-hydroxy-5-methylphenyl), 2-hydroxybenzaldehydeimine. Journal of molecular structure. 1999 Mar 10; 477 (1), 151–158.
5. Hasan A, Ameer AA, Ahmed A, Yousif E. Synthesis and characterization of some transition metal (II) complexes with 1,2,4-triazole Schiff base. J Chem Pharm Res. 2015. 7: 531–535 .
6. Cozzi PG, Metal–Salen Schiff base complexes in catalysis: practical aspects. Chemical Society Reviews. 2004; 33(7): 410–421. https://doi.org/10.1039/b307853c PMID: 15354222
7. Calligaris M, Nardini G, Randaccio L. Structural aspects of metal complexes with some tetradentate Schiff bases. Coordination Chemistry Reviews. 1972; 7(4): 385–403.
8. Djouhra A, Ali, Ramiro R.-R, Emilia M. A selective naked-eye chemosensor derived from 2-methoxybenzylamine and 2,3-dihydroxybenzaldehyde—synthesis, spectral characterization and electrochemistry of its bis-bidentates Schiff bases metal complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017; 184: 299–307.
9. Fan L. Synthesis of two coumarin-derived Schiff bases and investigation of their selectivity for Zn2+. Journal of Fluorescence. 2017; 27(4): 1331–1337. https://doi.org/10.1007/s10895-017-2067-5 PMID: 28353208

10. Karthikeyan MS, Prasad DS, Poojary B, Subrahmanyas BK, Holla BS, Kumari NS. Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorganic & Medicinal Chemistry. 2006; 14(22): 7482–7489.

11. Al-Omar MA, Amr AE-GE. Synthesis of some new pyridine-2-carboxamide-derived Schiff bases as potential antimicrobial agents. Molecules.2010; 15(7): 4711–4721. https://doi.org/10.3390/molecules15074711 PMID: 20657387

12. Unver Y, Celik F, Akar Z, Kucuk M, Sancak K. Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities. Journal of Enzyme Inhibition and Medicinal Chemistry. 2016; 31(3): 89–95.

13. Azab ME, Rizk SA, Mahmoud NF. Facile synthesis, characterization, and antimicrobial evaluation of novel heterocycles, Schiff bases, and N-nucleosides bearing phthalazine moiety. Chemical and Pharmaceutical Bulletin. 2016; 64(5): 439–450. https://doi.org/10.1248/cpp.c15-01005 PMID: 27150476

14. El-Faham A, Soliman SM, Ghabbour HA. Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities. Journal of Molecular Structure. 2016; 1125; 121–135.

15. Amr AE-GE, Sabry NM, Abdalla MM, AbdelWahab BF. Synthesis, antiarrhythmic and anticoagulant activities of novel thiazole derivatives from methyl 2-(thiazol-2-ylcarbamoyl)acetate. European Journal of Medicinal Chemistry. 2009; 44(2): 725–735. https://doi.org/10.1016/j.ejmech.2008.05.004 PMID: 18579260

16. Ragab FA, Abdel Gawad NM, Georgey HH, Said MF. Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. European Journal of Medicinal Chemistry. 2013; 63:645–654. https://doi.org/10.1016/j.ejmech.2013.03.005 PMID: 23567953

17. Mohamed SF, Flefel EM, Amr AE-GE, Abd El-Shafy DN. Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thio pyrimidine and thiazolopyrimidine derivatives. European Journal of Medicinal Chemistry. 2010; 45(4): 1494–1501. https://doi.org/10.1016/j.ejmech.2009.12.057 PMID: 21101135

18. Shafaaatian B, Ozbakzaei Z, Notash B, = Rezvani SA. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(lI) and oxovanadium (IV) complexes containing double Schiff base ligands. Spectrochimica Acta Part A: Molecular and Bio- molecular Spectroscopy. 2015; 140: 248–255.

19. Paudyal R, Jamaluddin A, Warren JP, Doyle SM, Robert S. Trafficking modulator TEN in1 inhibits endocytosis, causes endomembrane protein accumulation at the pre-vacuolar compartment and impairs gravitropic response in Arabidopsis thaliana. Journal of Biochemistry. 2014; 460: 177–185.

20. Reddy LV, Nakka M, Suman A, Pal S. Synthesis of novel quinoline analogues of nimesulide: An unusual observation. Journal of Heterocyclic Chemistry. 2011; 48: 555–562.

21. Unangst PC, Shurum GP, Connor DT, Dyer RD, Schrier DJ. Novel 1, 2, 4-oxadiazoles and 1, 2, 4-thiadiazoles, -1, 3, 4-oxidiazoles and -1, 2, 4-triazoles as orally active, nonulcerogenic anti-inflammatory agents. Journal of Medicinal Chemistry. 1992; 35: 3691–3698. https://doi.org/10.1021/jm00098a015 PMID: 1433181

22. Mullikan MD, Wilson MW, Connor DT, Dyer RD, Schrier DJ. Design of 5-(3,5-di-tert-buty1-4-hydroxyphenyl)-1, 3, 4-thiadiazoles, -1, 3, 4-oxidiazoles and -1, 2, 4-triazoles as orally active, nonulcerogenic anti-inflammatory agents. Journal of Medicinal Chemistry. 1993; 36: 1090–1099. https://doi.org/10.1021/jm00060a017 PMID: 8478906

23. Bhagyalakshmi N, Udupi RH, Niranjan MS. Design, synthesis and evaluation of biological activity of certain triazole Schiff bases. International Journal of Pharm Chem Sci. 2012; 1: 287–294

24. Wahi AK, Singh AK, Singh A. Design and synthesis of novel Schiff bases having N-4H1, 2, 4-triazole-4-yl benzamide moiety as antimicrobial and anti-inflammatory agents. Pharm Chem. 2011; 3: 146–154

25. Chandramouli, Shivanand MR, Navinthabai TB, Acharaya B, Udupi RH. Synthesis and biological screening of certain new triazole Schiff bases and their derivatives bearing substituted benzothiazole moiety. J Chem Pharm Res; 2012; 4: 1151–1159.

26. Tahi M, Webster ER, Wilson R, Nithinchandra, Kalluraya B. Regioselective reaction: synthesis, characterization and pharmacological activity of some new Mannich and Schiff bases containing sydnone. European Journal of Medicinal Chemistry. 2012; 54: 597–604. https://doi.org/10.1016/j.ejmech.2012.06.011 PMID: 22795833

27. Stahl SM. Selective histamine H1 antagonism: novel hypnotic and pharmacologic actions challenge classical notions of antihistamines. CNS Spectr. 2008; 13(12): 1027–1038. https://doi.org/10.1017/s1092852900017089 PMID: 19179941
28. Chohan ZH, Supran CT. In-vitro antibacterial and cytotoxic of cobalt (II), nickel (II) and zinc (II) complexes of the antibiotic drug cephalothin (Keflin). J Enz Inhib Med Chem. 2005; 20: 463–468.
29. Singh K, Kumar Y, Pundir RK. Synthesis and characterization of biologically active organosilicon (IV) complexes with Schiff bases derived from α-aminophenol. Synth React Inorg Met Org Chem. 2010; 40: 836–842.
30. Altundas A, Nursen S, Colak N, Ogutchi H. Synthesis and biological activity of new cycloalkylthiophene Schiff bases and their Cr (III) and Zn (II) complexes. Med Chem Res. 2010; 19: 576–588.
31. Capranico G, Zagotto G, Palumbo M. Development of DNA topoisomerase-related therapeutics: a short perspective of new challenges. Curr. Med. Chem. Anticancer Agents. 2004; 4: 335–345. https://doi.org/10.2174/1568011043352885 PMID: 15281906
32. Zahaia L, Klimesova V, Koci J, Waisser K, Kaustova. Synthesis and antimycobacterial activity of Pyridytmethylsulfanyl and naphthylmethylsulfanyl derivatives of benzazoles, 1, 2, 4-triazole and pyridine-2-carboxiaimide-2-carbonitrile. J Arch Pharm (Weinheim). 2004; 337: 549–555
33. Foroumadi A, Kiani Z, Soltani F. Antituberculosis agents VIII: Synthesis and in vitro antimycobacterial activity of alkyl α-[5-(5-nitro-2-thiényl)-1, 3, 4-thiadiazole-2-ylthio] acetates. Int J Pharm. 2003; 58: 1073. https://doi.org/10.1016/s0014-827x(03)00158-7 PMID: 14572857
34. Joshi RD, Vagdevi HM, Vaidya VP, Gadaginamath GS. Synthesis of new 4-Pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring system: a novel class of potential antibacterial and antifungal agents. Eur J Med Chem. 2008; 43: 1989–1996. https://doi.org/10.1016/j.ejmech.2007.11.016 PMID: 18207286
35. Malikarjuna BP, Sastry BS, Suresh Kumar GV, Rajendra Prasad Y, Chandrasekar SM. Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring system-a novel Class of potential antibacterial, antifungal and antimycobacterial agents. Eur J Med Chem. 2009; 44: 4739–4746. https://doi.org/10.1016/j.ejmech.2009.08.008 PMID: 19589626
36. Sughen JK, Yoloye T. Medicinal applications of indole derivatives. Pharm Acta Helv. 1978; 58: 64–68.
37. Nurhan G, Mevlut S, Elf C, Ali S, Neslishan D. Synthesis and antimicrobial activity of some new 1, 2, 4-triazole derivatives. Turk J Chem. 2007; 31: 335–348.
38. Mobin Khaledi A, Foroughifar N, Khampour M, Ebrahimi S. Synthesis of some novel Schiff bases containing 1, 2, 4-triazole ring. Eur J of Chem. 2010; 1: 33–36.
39. Wajda-Hermanowicz K, Pieniążczak D, Zatajska A, Wróbel R, Drabent K. A Study on the Condensation Reaction of 4-Amino-3,5-dimethyl-1,2,4-triazole with Benzzaldehydes: Structure and Spectroscopic Properties of Some New Stable Hemiaminals. Molecules. 2015; 20: 17109–17131. https://doi.org/10.3390/molecules200917109 PMID: 26393552
40. Neslishan D. Synthesis and characterization of new triheterocyclic compounds consisting of 1, 2, 4-triazole and 1, 3, 4-triazole rings. Turk J Chem. 2005; 29: 125–133.
41. Baghahli GB, Avaj PG, Patli SA, Badamis PS. Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co (II), Ni (II) and Cu (II) complexes with 1, 2, 4-triazole Schiff bases. Eur J Med Chem. 2008; 43: 2639–2649. https://doi.org/10.1016/j.ejmech.2008.02.013 PMID: 18395942
42. Westheimer F, Taguchi K. Catalysis by molecular sieves in the preparation of ketimines and enamines. The Journal of Organic Chemistry. 1971; 36 (11): 1570–1572.
43. Asma AS, Zainab SA, Wadad ME, Salah MB, Inas AA, Nouri BE. Etal. Design, Synthesis and Biological Evaluation of Some Triazole Schiff’s Base Derivatives as Potential Antitubercular Agents. The Open Medicinal Chemistry Journal. 2018; 12: 48–59. https://doi.org/10.2174/187410450181201004 29854013
44. Huisgen R, Szeimies G, Mobius L. 1,3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. Chem. Ber. 1967; 100: 2494
45. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001; 40: 2004. https://doi.org/10.1002/1521-3773(200110601)40:11<2004::aid-anie2004>3.0.co;2-x PMID: 11433435
46. Sletten EM, Bertozzi CR. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 2011; 44: 666. https://doi.org/10.1021/ar200148n PMID: 21838330
47. Jewett JC, Bertozzi CR. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010; 39: 1272. https://doi.org/10.1039/b901970g PMID: 2034533
48. Moses JE, Moorhouse AD. The growing applications of click chemistry. Chem. Soc. Rev. 2007; 36: 1248. https://doi.org/10.1039/b613014n PMID: 17619685
49. New K, Brechbhel MW. Growing applications of click chemistry for bioconjugation in contemporary biomedical research. Cancer Biother. Radiopharm. 2009; 24: 289. https://doi.org/10.1089/cbr.2008.0626 PMID: 19538051