RATIONAL APPROXIMATE SYMMETRIES OF KDV EQUATION

JEN-HSU CHANG
DEPARTMENT OF GENERAL COURSES,
CHUNG-CHENG INSTITUTE OF TECHNOLOGY,
NATIONAL DEFENSE UNIVERSITY,
DASHI, TAU-YUAN COUNTY, TAIWAN, 33509

Abstract. We construct one-parameter deformation of the Dorfman Hamiltonian operator for the Riemann hierarchy using the quasi-Miura transformation from topological field theory. In this way, one can get the rational approximate symmetries of KdV equation and then investigate its bi-Hamiltonian structure.

1. Introduction

In this paper, one will investigate the one-parameter deformation of the Dorfman Hamiltonian operator \((D = \partial_x)\)

\[
J = D \frac{1}{v_x} D \frac{1}{v_x} D, \tag{1}
\]

which is third-order and compatible with the differential operator \(D\), i.e., \(J + \lambda D\) is Hamiltonian operator for any \(\lambda\) \cite{3}. The deformation of the bi-Hamiltonian pair \(J\) and \(D\) satisfies the Jacobi identity only up to a certain order of the parameter of the deformation. The problem is that how we can find the deformation such that the bi-Hamiltonian structure can be preserved. One way to construct this deformation is borrowed from the free energy of the topological field theory(TFT) \cite{5} (and references therein). The free energy satisfies the universal loop equation(p.157 in \cite{5}). From the free energy, one can construct the so-called quasi-Miura transformation to get the deformation(see below).

From the deformation of the bi-Hamiltonian pair, one can also get the deformation of the recursion operator \(JD^{-1}\) to the genus-one correction \(\epsilon^2\)-correction. The deformed recursion operator can be used to generate higher-order symmetries, which commute each other only up to \(O(\epsilon^4)\). In doing so, we can deform the original integrable system.
to include ϵ^2-correction. The rational approximate symmetries of KdV equation are established using the method.

Let’s start with the well-known Riemann equation

(2) \[v_t = vv_x. \]

It is also called the dispersionless KdV equation (dKdV). The integrability of (2) is that it has an infinite sequence of commuting Hamiltonian flows ($t_1 = t$)

(3) \[v_{tn} = v^n v_x, \quad n = 1, 2, 3, \ldots. \]

The Riemann hierarchy (3) has the bi-Hamiltonian structure (4)

\[
\begin{align*}
v_t^n &= \frac{1}{(n + 1)(n + 2)} D\delta H_{n+2} = \frac{1}{(n + 1)(n + 2)(n + 3)(n + 4)} J\delta H_{n+4},
\end{align*}
\]

where $H_n = \int v^n dx$, δ is the variational derivative and J is the Dorfman Hamiltonian operator (1). From the bi-Hamiltonian structure (4), the recursion operator is defined as

(5) \[L = JD^{-1} = D \frac{1}{v_x} D \frac{1}{v_x} = R^2, \]

where

(6) \[R = D \frac{1}{v_x} \]

is the Olver-Nutku recursion operator (11), i.e., the square root of the recursion operator L. One can easily check that R (or L) satisfies the following recursion operator equation associated with the Riemann equation (2)

(7) \[A_t = [v_x + v D, A], \]

where A is (pseudo-)differential operator. Then from the recursion operator theory (10), one can establish new symmetries of (2) by the Olver-Nutku recursion operator (6) repeatedly

(8) \[v_{tn} = R^n 1, \quad n = 1, 2, 3, \ldots \]

The new symmetries (8) of (2), i.e.,

\[(v_t)_{tn} = (v_{tn})_t,\]

will correspond to the “superintegrability” of the Riemann equation (2) (14).

Next, to deform the recursion operator (6), we use the free energy in TFT of the famous KdV equation

(9) \[u_t = uu_x + \frac{\epsilon^2}{12} u_{xxx} \]
to construct the quasi-Miura transformation as follows. The free energy
F of KdV equation (9) in TFT has the form

$$F = \frac{1}{6} v^3 + \sum_{g=1}^{\infty} \epsilon^{2g-2} F_g(v; v_x, v_{xx}, v_{xxx}, \ldots, v^{(3g-2)})$$

Let

$$\Delta F = \sum_{g=1}^{\infty} \epsilon^{2g-2} F_g(v; v_x, v_{xx}, v_{xxx}, \ldots, v^{(3g-2)})$$

$$= F_1(v; v_x) + \epsilon^2 F_2(v; v_x, v_{xx}, v_{xxx}) + \epsilon^4 F_3(v; v_x, v_{xx}, v_{xxx}, \ldots, v^{(7)}) + \cdots$$

The ΔF will satisfy the loop equation (p.151 in [5])

$$\sum_{r \geq 0} \frac{\partial \Delta F}{\partial v^{(r)}} \frac{1}{\partial v - \lambda} \frac{1}{\partial v^{(r)}} + \sum_{r \geq 1} \frac{\partial \Delta F}{\partial v^{(r)}} \sum_{k=1}^{r} \left(\begin{array}{c} r \\ k \end{array} \right)$$

$$= \frac{1}{16\lambda^2} - \frac{1}{16(v - \lambda)^2} - \frac{\kappa_0}{\lambda^2}$$

$$+ \frac{\epsilon^2}{2} \sum_{k,l \geq 0} \left[\frac{\partial^2 \Delta F}{\partial v^{(k)} \partial v^{(l)}} + \frac{\partial \Delta F}{\partial v^{(k)}} \frac{\partial \Delta F}{\partial v^{(l)}} \right] \frac{1}{\partial v - \lambda} \frac{1}{\partial v^{(k)}} \frac{1}{\partial v^{(l)}}$$

Then we can determine F_1, F_2, F_3, \cdots recursively by substituting ΔF into equation (10). For F_1, one obtains

$$\frac{1}{v - \lambda} \frac{\partial F_1}{\partial v} - \frac{3}{2} \frac{v_x}{(v - \lambda)^2} \frac{\partial F_1}{\partial v_x} = \frac{1}{16\lambda^2} - \frac{1}{16(v - \lambda)^2} - \frac{\kappa_0}{\lambda^2}$$

From this, we have

$$\kappa_0 = \frac{1}{16}, \quad F_1 = \frac{1}{24} \log v_x$$

For the next terms $F_2(v; v_x, v_{xx}, v_{xxx}, v_{xxxx})$, it is presented in the appendix A. Now, one can define the quasi-Miura transformation as

(11)

$$u = v + \epsilon^2 (\Delta F)_{xx} = v + \epsilon^2 (F_1)_{xx} + \epsilon^4 (F_2)_{xx} + \cdots$$

$$= v + \frac{\epsilon^2}{24} (\log v_x)_{xx} + \epsilon^4 \left(\frac{v_{xxxx}}{1152v_x^3} - \frac{7v_x v_{xxx}}{1920v_x^4} + \frac{v_x^3}{360v_x^4} \right)_{xx} + \cdots$$
One remarks that Miura-type transformation means the coefficients of \(\epsilon \) are homogeneous polynomials in the derivatives \(v, v_x, \cdots, v^{(m)} \) (p.37 in [5], [7]) and "quasi" means the ones of \(\epsilon \) are quasi-homogeneous rational functions in the derivatives, too (p.109 in [5] and see also [13]).

The truncated quasi-Miura transformation

\[
(12) \quad u = v + \sum_{n=1}^{g} \epsilon^{2n} \left[F_n(v; v_x, v_{xx}, \cdots, v^{(3g-2)}) \right]_{xx}
\]

has the basic property (p.117 in [5]) that it reduces the Magri Poisson pencil of KdV equation (9)

\[
(13) \quad \{u(x), u(y)\}_{\lambda} = [u(x) - \lambda]D\delta(x-y) + \frac{1}{2} u_x(x)\delta(x-y) + \frac{\epsilon^2}{8} D^3\delta(x-y)
\]

to the Poisson pencil of the Riemann hierarchy (3):

\[
(14) \quad \{v(x), v(y)\}_{\lambda} = [v(x) - \lambda]D\delta(x-y) + \frac{1}{2} v_x(x)\delta(x-y) + O(\epsilon^{2g+2}).
\]

One can also say that the truncated quasi-Miura transformation (12) deforms the KdV equation (3) to the Riemann equation (2) up to \(O(\epsilon^{2g+2}) \). And conversely, we can also think that the Poisson pencil (13) for the Riemann hierarchy is deformed to get the Magri Poisson pencil (13) of genus-g correction after the truncated quasi-Miura transformation (12). So a very natural question arises: under the truncated quasi-Miura transformation (12), is the deformed Dorfman’s Hamiltonian operator \(J(\epsilon) \) of (11) still Hamiltonian and compatible with \(D \) up to \(O(\epsilon^{2g+2}) \)? The answer is affirmative for \(g = 1 \), i.e.,

\[
(15) \quad u = v + \frac{\epsilon^2}{24} (\log v_x)_{xx} + O(\epsilon^4)
\]

or

\[
(16) \quad v = u - \frac{\epsilon^2}{24} (\log u_x)_{xx} + O(\epsilon^4).
\]

and it is the main purpose of this paper.

Also, from the deformed recursion operator \(R(\epsilon) \) of the Olver-Nutku recursion operator [6], we can generate rational approximate symmetries of KdV equation (13) up to \(O(\epsilon^4) \). These symmetries are different from the ones generated by the Magri Poisson pencil (13). Then one can call them the "superintegrability" of KdV equation.

Finally, one remarks that in general integrable dispersive deformation for integrable dispersionless systems is not unique [1, 6, 9, 13]. For deformations of bi-Hamiltonian PDEs of hydrodynamic type with one dependent variable, we refer to [7].
The paper is organized as follows. In the next section, we construct the genus-one deformation of Olver-Nutku recursion operator. In section 3, the bi-Hamiltonian structure of the rational approximate symmetries of the KdV equation (9) is investigated. In the final section, we discuss some problems to be investigated.

2. Quasi-Miura Transformation of Olver-Nutku Recursion Operator

In this section, we will investigate the Hamiltonian operator D and the Olver-Nutku recursion operator (6) under the truncated quasi-Miura transformation (12) for $g = 1$.

In the new "u-coordinate", D and R will be given by the operator

\begin{align*}
D(\epsilon) &= M^* D M \\
R(\epsilon) &= M^* R(M^*)^{-1},
\end{align*}

where

\begin{align*}
M &= 1 - \frac{\epsilon^2}{24} D \frac{1}{u_x} D^2 \\
M^* &= 1 + \frac{\epsilon^2}{24} D^2 \frac{1}{u_x} D,
\end{align*}

M^* being the adjoint operator of M. Then using (17), (18) and (16), we can yield after a simple calculation

\begin{align*}
D(\epsilon) &= D + O(\epsilon^4) \\
R(\epsilon) &= \frac{1}{u_x} + \frac{\epsilon^2}{12} D \left(\frac{1}{u_x} \frac{1}{u_x} D^2 \frac{1}{u_x} - \frac{1}{u_x} D^2 \frac{1}{u_x} D + \frac{\log u_x}{u_x^2} \right) + O(\epsilon^4) \\
&= \frac{1}{u_x} + \frac{\epsilon^2}{24} D \left(\frac{1}{u_x} \frac{1}{u_x} D^2 + \frac{1}{u_x} \frac{1}{u_x} D - 3u_x^{-5} u_{xxx}^3
ight) \\
&\quad + 2u_x^{-4} u_{xxx} u_{xxxx} + O(\epsilon^4).
\end{align*}

We hope that $R(\epsilon)$ is an recursion operator of KdV equation (9). Indeed, it’s the following

Theorem 1. $R(\epsilon)$ satisfies the recursion operator equation of KdV equation

\begin{equation}
R(\epsilon)_t = [u_x + u D + \frac{\epsilon^2}{12} D^3, R(\epsilon)] + O(\epsilon^4).
\end{equation}

Proof. Direct calculations. □
We can think (19) as the genus-one deformation of (7). One remarks that the recursion operator
\[u + \frac{u_x}{2} D^{-1} + \frac{\epsilon^2}{8} D^2 \]
of Magri pencil (13) will also satisfy the recursion operator equation (19) but there is no higher-order correction. Moreover, we know that in general recursion operator is non-local [10] and hence the local property of \(R(\epsilon) \) is special from this point of view.

Now from Theorem 1, one will construct infinite rational symmetries (up to \(O(\epsilon^4) \)) of KdV equation (9) using recursion operator \(R(\epsilon) \) as follows:

\[u_{\tau_n} = R^n(\epsilon) 1 + O(\epsilon^4), \quad n = 1, 2, 3, \ldots, \]
which is the genus-one deformation of (8). For example,

\[u_{\tau_1} = R(\epsilon) 1 = \left[\frac{1}{u_x} + \frac{\epsilon^2}{12} (-3u_x^{-5} u_{xx}^3 + 2u_x^{-4} u_{xx} u_{xxxx}) \right]_x + O(\epsilon^4) \]

\[u_{\tau_2} = R^2(\epsilon) 1 = \left\{ \frac{1}{u_x} \left(\frac{1}{u_x} \right)_x + \frac{\epsilon^2}{12} \left[30u_x^{-7} u_{xx}^4 - 30u_x^{-6} u_{xx}^2 u_{xxx} + 3u_x^{-5} u_{xx} u_{xxxx} \right] \right\}_x + O(\epsilon^4). \]

Also, we notice that one can also obtain (20) by (15) as follows. Since

\[u_{\tau_{n+1}} = v_{\tau_{n+1}} + \frac{\epsilon^2}{24} \left(\frac{v_{\tau_n x}}{v_x} \right)_{xx} + O(\epsilon^4), \]
then using (16), after some calculations, we can obtain

\[u_{\tau_{n+1}} = \left\{ \frac{u_{\tau_n}}{u_x} + \frac{\epsilon^2}{24} \left[\log u_x \right]_{xxx} u_{\tau_n} \right\} + \frac{\epsilon^2}{24} \left[\left(\frac{u_{\tau_n}}{u_x} \right)_{xx}/u_x \right] \]

\[- \frac{\epsilon^2}{24} \left[\left(\frac{u_{\tau_n x}}{u_x} \right)_{xx}/u_x \right] \} + O(\epsilon^4) \]
\[= R(\epsilon) u_{\tau_n} + O(\epsilon^4). \]

3. **Bi-Hamiltonian structure of rational Approximate Symmetries**

In this section, one will prove the bi-Hamiltonian structure of (20) for even flows, i.e., \(n = 2k, \ k \geq 1. \)

Firstly, the deformed Dorfman Hamiltonian operator \(J(\epsilon) \) under the
quasi-Miura transformation (15) is

\[
J(\varepsilon) = R^2(\varepsilon)D(\varepsilon)
\]

\[
= D \frac{1}{u_x} D \frac{1}{u_x} \mathcal{D} + \frac{\varepsilon^2}{24} \frac{1}{u_x} \frac{1}{u_x} \frac{D}{u_x^2} \frac{(\log u_x)_{xxx}}{u_x^2} + \frac{(\log u_x)_{xxx}}{u_x^2}
\]

\[
+ D \frac{1}{u_x} + D \frac{1}{u_x} D^2 \frac{1}{u_x} D \frac{1}{u_x} - \frac{1}{u_x} D \frac{1}{u_x} D^2 \frac{1}{u_x} \mathcal{D} + \mathcal{O}(\varepsilon^4).
\]

Then we have the following

Theorem 2. (i) \(J(\varepsilon)\) is a Hamiltonian operator up to \(\mathcal{O}(\varepsilon^4)\). (ii) \(J(\varepsilon)\) and \(D(\varepsilon)\) form a bi-Hamiltonian pair up to \(\mathcal{O}(\varepsilon^4)\).

Proof. (i) The skew-symmetric property of the operator (22) is obvious. To prove \(J(\varepsilon)\) is Hamiltonian operator, we must verify that \(J(\varepsilon)\) satisfies the Jacobi identities up to \(\mathcal{O}(\varepsilon^4)\). Following [10, 11], we introduce the arbitrary basis of tangent vector \(\Theta\), which are then conveniently manipulated according to the rules of exterior calculus. The Jacobi identities are given by the compact expression

\[
P(\varepsilon) \wedge \delta I = \mathcal{O}(\varepsilon^4) \ (mod. \ div.),
\]

where \(P(\varepsilon) = J(\varepsilon)\Theta\), \(I = \frac{1}{2} \Theta \wedge P(\varepsilon)\) and \(\delta\) denotes the variational derivative. The vanishing of the tri-vector (23) modulo a divergence is equivalent to the satisfaction of Jacobi identities.

Now, a lengthy and tedious calculation can yield

\[
P(\varepsilon) = \left\{ \frac{1}{u_x} \frac{\Theta_x}{u_x} \right\}_x + \frac{\varepsilon^2}{24} \frac{1}{u_x} \frac{1}{u_x} \frac{(\log u_x)_{xxx}}{u_x^2} \frac{\Theta_x}{u_x} + \frac{(\log u_x)_{xxx}}{u_x^2} \frac{\Theta_x}{u_x} \]

\[+ \left\{ \frac{1}{u_x} \frac{1}{u_x} \frac{(\Theta_x}_{xx} x) \right\}_x \]

\[+ \left\{ \frac{1}{u_x} \frac{1}{u_x} \frac{(\Theta_{xxx})_{xx}}{u_x} \right\}_x \]

\[+ \mathcal{O}(\varepsilon^4) \]

And

\[
I = \frac{1}{2} \Theta \wedge P(\varepsilon) = - \frac{1}{2u_x^2} \Theta_x \wedge \Theta_{xx}
\]

\[+ \frac{\varepsilon^2}{24} \left\{ -5u_x^{-6}u_{xx}^3 \Theta_x \wedge \Theta_{xx} + 3u_x^{-5}u_{xx}^2 \Theta_x \wedge \Theta_{xxx} - 2u_x^{-4}u_{xx} \Theta_{xx} \wedge \Theta_{xxx} \right\} + \mathcal{O}(\varepsilon^4) \ (mod. \ div.)
\]
Then

\[
\delta I = (3u_x^{-4} u_{xx} \Theta_x \wedge \Theta_{xx} - u_x^{-3} \Theta_x \wedge \Theta_{xxx}) \\
+ \frac{\epsilon^2}{24} \{60u_x^{-7} u^3_{xx} \Theta_x \wedge \Theta_{xx} - 30u_x^{-6} u_{xxx} \Theta_x \wedge \Theta_{xx} \\
- 30u_x^{-6} u^2_{xx} \Theta_x \wedge \Theta_{xxx} + 6u_x^{-5} u_{xxxx} \Theta_x \wedge \Theta_{xxx} \\
+ 6u_x^{-5} u_{xx} \Theta_{xx} \wedge \Theta_{xxx} + 6u_x^{-5} u_{xxx} \Theta_x \wedge \Theta_{xxxx} \\
- 2u_x^{-4} \Theta_{xx} \wedge \Theta_{xxxx}\} + O(\epsilon^4)
\]

Finally,

\[
P(\epsilon) \wedge \delta I = 0 - \frac{\epsilon^2}{24} \{-7u_x^{-8} u_{xxx} u_{xxxx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxxx} \\
+ 7u_x^{-8} u^2_{xx} \Theta_x \wedge \Theta_{xxx} \wedge \Theta_{xxxx} \\
- 7u_x^{-7} u_{xxx} \Theta_x \wedge \Theta_{xxxx} \wedge \Theta_{xxxx} \\
+ (7u_x^{-8} u_{xxxx} u_{xxxxx} - u_x^{-7} u_{xxxxx}) \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxx} \\
- u_x^{-7} u_{xx} \Theta_x \wedge \Theta_{xxx} \wedge \Theta_{xxxx} \\
+ u_x^{-7} u_{xxx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxxxx} \\
+ u_x^{-6} \Theta_{xx} \wedge \Theta_{xxx} \wedge \Theta_{xxxxx}\}
\]

\[
= (u_x^{-6} \Theta_{xx} \wedge \Theta_{xxx} \wedge \Theta_{xxxx})x \\
- (u_x^{-7} u_{xx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxxx})x \\
+ (u_x^{-7} u_{xxx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxxx})x \\
- (u_x^{-7} u_{xxxx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxxx})x + O(\epsilon^4)
\]

which is a total derivative so that the Jacobi identities are satisfied and this complete the proof of (i).

(ii) Since \(J(\epsilon)\) and \(D(\epsilon)\) are Hamiltonian operators, we need only verify the additional condition

\[
P(\epsilon) \wedge \delta I_D + D(\Theta) \wedge \delta I = O(\epsilon^4),
\]

where

\[
I_D = \frac{1}{2} \Theta \wedge D(\Theta) = \frac{1}{2} \Theta \wedge \Theta_x.
\]

\(\delta I\) and \(P(\epsilon)\) are defined in (23), modulo a divergence.

Obviously, \(\delta I_D = O(\epsilon^4)\). So we will check \(D(\Theta) \wedge \delta I = \Theta_x \wedge \delta I = \)
O(\epsilon^4). From (24), we have

\begin{align*}
\Theta_x \wedge \delta I &= 0 + \epsilon \frac{\epsilon^2}{24} \left\{ 6u_x^{-5} u_{xxx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxx} \\
&\quad - 30u_x^{-6} u_{xx}^2 \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxx} \\
&\quad + 6u_x^{-5} u_{xx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxxx} \right\} \\
&= \frac{\epsilon^2}{24} \left\{ 6u_x^{-5} u_{xx} \Theta_x \wedge \Theta_{xx} \wedge \Theta_{xxx} \right\}_x + O(\epsilon^4)
\end{align*}

This completes the proof of (ii). \(\square\)

Remark: Although the quasi-Miura transformation (15) is of change of coordinates (including derivatives), it is non-trivial to see that \(J(\epsilon)\) is a Hamiltonian operator (up to \(O(\epsilon^4))\). It’s because that change of coordinates, in general, won’t preserve the Jacobi identities.

Since \(J(\epsilon)\) and \(D(\epsilon)\) form a Hamiltonian pair, we will find the Hamiltonian densities of the even flows of the rational approximate symmetries of KdV equation (9) up to \(O(\epsilon^4)\) (25)

\begin{equation}
u_{r2n} = R^{2n}(\epsilon)1 = D(\epsilon) \frac{\delta H_n(\epsilon)}{\delta u} = J(\epsilon) \frac{\delta H_{n-1}(\epsilon)}{\delta u}, \quad n = 1, \ 2, \ 3 \ldots,
\end{equation}

in the following way. Firstly, we notice that by (8) we have

\begin{equation}
u_{r2n} = R^{2n}1 = D(K_{2n+1}) = J(K_{2n-1}),\tag{26}
\end{equation}

where

\begin{align*}
K_1 &= x \\
K_3 &= \frac{1}{v_x}(\frac{1}{v_x})_x \\
K_5 &= \frac{1}{v_x}(\frac{1}{v_x}(K_3)_x)_x \\
&\vdots \\
K_{2n+1} &= \frac{1}{v_x}(\frac{1}{v_x}(K_{2n-1})_x)_x.
\end{align*}
From the bi-Hamiltonian structure of J and D, one can construct the Hamiltonian densities of (26) using the method described in [4]. Secondly, by the Hamiltonian structure of $J(\epsilon)$ and $D(\epsilon)$, one can also construct the Hamiltonian densities of (25) using the quasi-Miura transformation (15). For example,

\[
v_{r2} = R^2 1 = D\left(\frac{1}{v_x} \frac{1}{v_x} \right) = D \frac{\delta \hat{H}_1}{\delta v} = J \frac{\delta \hat{H}_0}{\delta v}
\]

\[
v_{r4} = R^4 1 = D\left(\frac{1}{v_x} \frac{1}{v_x} (K_3)_x \right) = D \frac{\delta \hat{H}_2}{\delta v} = J \frac{\delta \hat{H}_1}{\delta v},
\]

where

\[
\hat{H}_0 = \int xvdx
\]

\[
\hat{H}_1 = \frac{1}{2} \int \frac{1}{v_x} dx
\]

\[
\hat{H}_2 = -\frac{1}{2} \int v_{xx} x^{-5} dx.
\]

Then after the quasi-Miura transformation (15), one can obtain

\[
\hat{H}_0(\epsilon) = \int x(u - \frac{\epsilon^2}{24} (\log u_x)_{xx}) dx + O(\epsilon^4)
\]

\[
\hat{H}_1(\epsilon) = \frac{1}{2} \int \left[\frac{1}{u_x} + \frac{\epsilon^2}{24} (2u_x^{-5} u_x^3 - 3u_x^{-4} u_{xx} u_{xxx} + u_x^{-3} u_{xxxx}) \right] dx + O(\epsilon^4)
\]

\[
\hat{H}_2(\epsilon) = -\frac{1}{2} \int \left[u_{xx} u_x^{-5} + \frac{\epsilon^2}{24} (22 u_x^{-9} u_x^5 - 39 u_x^{-8} u_x^3 u_{xxx} + 13 u_x^{-7} u_x^2 u_{xxxx} - 2 u_x^{-6} u_{xxx} u_{xxxxx} + 6 u_x^{-7} u_x^2 u_{xxxx}) \right] dx + O(\epsilon^4).
\]
On the other hand, we can also verify using MAPLE that, noting (21),

\[u^{\tau_2} = R^2(\epsilon)1 = D(\epsilon)\frac{\delta \hat{H}_1(\epsilon)}{\delta u} = J(\epsilon)\frac{\delta \hat{H}_0(\epsilon)}{\delta u} + O(\epsilon^4) \]

\[u^{\tau_4} = R^4(\epsilon)1 = \left\{ \frac{1}{u_x} \left(1 + \frac{1}{u_x} \right) \right\}_x + \frac{\epsilon^2}{12} \left[1050u_x^{-9}u_{xxx}^3u_{xxxx} - 105u_x^{-8}u_{xxx}^3 \right. \]

\[+ 3780u_x^{-11}u_{xxx}^6 - 6300u_x^{-10}u_{xxx}^4u_{xxxx} + 2310u_x^{-9}u_x^2u_{xxx}^2 \]

\[- 420u_x^{-8}u_{xxx}^2u_{xxxx}^2 + 5u_x^{-7}u_x^2u_{xxxxxxx} + 15u_x^{-7}u_{xxx}u_{xxxxxxx} \]

\[+ 10u_x^{-7}u_{xxx}^2 - 105u_x^{-8}u_{xxx}^2u_{xxxxxxx} \} \right\} + O(\epsilon^4) \]

\[= D(\epsilon)\frac{\delta \hat{H}_2(\epsilon)}{\delta u} = J(\epsilon)\frac{\delta \hat{H}_1(\epsilon)}{\delta u} , \]

which comes from the fact that the quasi-Miura transformation for \(g = 1 \) is canonical by theorem 2.

One remarks that the truncated \(\tau_2 \)-flows are approximately integrable systems. We expect that solutions to such approximately integrable equations exhibit an integrable behavior at least for small physical parameters, for example, solitons solutions, as in \([7]\). But the truncated \(\tau_2 \)-flows are very complicated and need further investigations.

4. Concluding Remarks

We have studied the genus-one deformation of Dorfman Hamiltonian operator using quasi-Miura transformation borrowed from the free energy of the topological field theory. Then one can prove that the deformed Hamiltonian operators \(J(\epsilon) \) and \(D(\epsilon) \) are still compatible and thus it provides the rational approximate symmetries of the KdV equation up to \(O(\epsilon^4) \).

In spite of the results obtained, there are some interesting issues deserving more investigations:

- We believe that Theorem 1 and Theorem 2 can be generalized to higher genus, i.e., \(g \geq 2 \). However, the computations will become quite unmanageable.

- The Schwarzian KdV equation (degenerate Krichever-Novikov(KN) equation \([12]\) or Ur-KdV equation \([15]\)) is

\[v_t = v_{xxx} - \frac{3}{2}v_x^{-1}v_{xx}^2 = v_x \{ v, x \} , \]

where \(\{ v, x \} \) is the Schwarzian derivative. It is known that

\[\frac{1}{v_x} D \frac{1}{v_x} \]
and the Dorfman Hamiltonian operator J constitute a symplectic pair of the Schwarzian KdV equation \[4\]. Thus under the quasi-Miura transformation we can also investigate the genus-one deformation of the Schwarzian KdV equation \[2\].

- One can generalize J to the polytropic gas system \[11\]. Using the universal loop equation of free energy (p.157 in \[5\]), we can also find the corresponding quasi-Miura transformations of two variables and study their deformations. Thus the rational approximate symmetries of polytropic gas systems will also be obtained. But the computations are more involved and need further investigations.

Acknowledgments
The author is grateful for Prof. Nutku’s stimulating conversations on the Hamiltonian theory of polytropic gas system. He would like to thank the unknown referees for their valuable suggestions. He also thanks for National Science Council under grant no. NSC 91-2115-M-014-001 for support.
Appendix A.

The equation for F_2 is

$$
\frac{1}{(v - \lambda)^5} \left(\frac{105}{2048} v_x^2 - \frac{945}{16} v_x^4 \frac{\partial F_2}{\partial v_{xxxx}} \right)
+ \frac{1}{(v - \lambda)^4} \left(-\frac{49}{1536} v_{xx} + \frac{735}{8} v_x^2 v_{xx} \frac{\partial F_2}{\partial v_{xxxx}} + \frac{105}{8} v_x^3 \frac{\partial F_2}{\partial v_{xxx}} \right)
+ \frac{1}{(v - \lambda)^3} \left[\frac{v_{xxx}}{192 v_x} - \frac{23}{4608 v_x^2} \frac{v_{xxx}^2}{v_x^4} - \left(\frac{16}{4} v_{xx}^2 + \frac{87}{4} v_x v_{xxxxx} \right) \frac{\partial F_2}{\partial v_{xxxxx}} \right]
- \frac{55}{4} v_x v_{xx} \frac{\partial F_2}{\partial v_{xxx}} - \frac{15}{4} v_x^2 \frac{\partial F_2}{\partial v_{xx}}
+ \frac{1}{(v - \lambda)^2} \left(\frac{3 v_{xxxx}^2}{v_{xxxx}} \frac{\partial F_2}{\partial v_{xxxx}} + \frac{5}{2} v_{xxx} \frac{\partial F_2}{\partial v_{xxx}} + 2 v_{xx} \frac{\partial F_2}{\partial v_{xx}} + \frac{3}{2} v_x \frac{\partial F_2}{\partial v_x} \right)
- \frac{1}{(v - \lambda)} \frac{\partial F_2}{\partial v} = 0.
$$

Let the coefficients of $\frac{1}{(v - \lambda)^i}$, $i = 1, 2, 3, 4, 5$, be equal to zero. Then one can obtain

$$F_2 = \frac{v_{xxxx}^2}{1152 v_x^2} - \frac{7 v_{xx} v_{xxxx}}{1920 v_x^3} + \frac{v_{xxx}^3}{360 v_x^3}.$$
REFERENCES

[1] Jen-Hsu Chang and M.H. Tu, On the Benney Hierarchy: Free Energy, String Equation and Quantization, Journal of Physics A, 34(2001), p.251-p.272
[2] J.H. Chang, Genus-One deformation of Schwarzian KdV Equation, in Preparation
[3] I. Dorfman, The Krichever-Novikov Equation and Local Symplectic Structures, Doklady Akademii Nauk SSSR, 302(1988), p.792-p.795
[4] I. Dorfman, Dirac Structures and Integrability of Non-Linear Evolution Equations, John Wiley and Sons Ltd, England, 1993
[5] B.Dubrovin and Y.J.Zhang, Normal Forms of Hierarchies of Integrable PDES, Frobenius Manifolds and Gromov-Witten Invariants, arXiv: [math.DG/0108160] 2001
[6] Y. Kodama and A.V. Mikhailov, Obstacles to Asymptotic Integrability, in: "Algebraic Aspects of Integrable Systems-In Memory of Irene Dorfman", Eds. A.S. Fokas and I.M. Gelfand, Birkhauser, Boston, 1997, p.173-p.204
[7] P. Lorenzoni, Deformations of Bi-Hamiltonian Structures of Hydrodynamic type, Journal of Geometry and Physics , vol 44, 2002, p.331-p.375
[8] F. Magri, A Simple Construction of Integrable Systems, J.Math. Phys(1978), p.1156-p.1162
[9] Y.Nutku and M.V.Pavlov, Multi-Lagrangians for Integrable Systems, J.Math.Phys. 43 (2002), p.1441-p.1459
[10] P.J. OLver, Applications of Lie-Groups to Differential Equations, Springer-Verlag, New York, 1993
[11] P.J. Olver and Y.Nutku, Hamiltonian Structures for Systems of Hyperbolic Conservational Laws, J. Math. Phys.29(1988), p.1610-p.1619
[12] I.M. Krichever and S.P. Novikov, Holomorphic Bundles and Non-Linear Equations, Soviet Math. Dokl, 20(1979)
[13] I.A.B. Strachan, Deformations of the Monge/Riemann hierarchy and approximately integrable systems, arXiv: [nlin.SI/0205051]
[14] S.P. Tsarev, On the Integrability of the Averaged KdV and Benney Equations, in "Singular Limits of Dispersive Waves", Plenum Press, 1994
[15] G. Wilson, On the Quasi-Hamiltonian Formalism of KdV Equation, Phys. Letter A, Vol 132, 1988, p.445-p.450