Schwahn, Paul

Coindex and rigidity of Einstein metrics on homogeneous Gray manifolds. (English)
Zbl 07596001
J. Geom. Anal. 32, No. 12, Paper No. 302, 34 p. (2022)

Summary: Any 6-dimensional strict nearly Kähler manifold is Einstein with positive scalar curvature. We compute the coindex of the metric with respect to the Einstein-Hilbert functional on each of the compact homogeneous examples. Moreover, we show that the infinitesimal Einstein deformations on $F_{1,2} = \text{SU}(3)/T^2$ are not integrable into a curve of Einstein metrics.

MSC:
53C24 Rigidity results
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C30 Differential geometry of homogeneous manifolds

Keywords:
Einstein metrics; stability; rigidity; Lichnerowicz Laplacian; nearly Kähler

Full Text: DOI arXiv

References:
[1] Besse, A.L., Einstein Manifolds, Classics in Mathematics (1987), Berlin: Springer, Berlin. doi:10.1007/978-3-540-74311-8
[2] Batat, W., Hall, S.J., Murphy, T., Waldron, J.: Rigidity of (SU_n)-type symmetric spaces (2021). arXiv:2102.07168v2 (preprint)
[3] Butruille, J-B, Classification des variétés approximativement kähleriennes homogènes, Ann. Glob. Anal. Geom., 27, 201-225 (2005) · Zbl 1079.53044 · doi:10.1007/s10455-005-1581-x
[4] Butruille, J-B, Twistor and 3-symmetric spaces, Proc. Lond. Math. Soc., 96, 738-766 (2008) · Zbl 1143.53025 · doi:10.1112/plms/pdm035
[5] Foscolo, L., Deformation theory of nearly Kähler manifolds, J. Lond. Math. Soc., 95, 586-612 (2017) · Zbl 1376.53067 · doi:10.1112/jlms.12033
[6] Fulton, W.; Harris, J., Representation Theory: A First Course, Graduate Texts in Mathematics (1991), New York: Springer, New York. · Zbl 0744.22001
[7] Heil, K.; Moroianu, A.; Semmelmann, U., Killing and conformal Killing tensors, J. Geom. Phys., 106, 383-400 (2016) · Zbl 1342.53066 · doi:10.1016/j.geomphys.2016.04.014
[8] Koiso, N., Rigidity and stability of Einstein metrics: the case of compact symmetric spaces, Osaka Math. J., 17, 51-73 (1980) · Zbl 0426.53037 · doi:10.2140/pjm.2008.235.57 · Zbl 1152.58015 · doi:10.1007/s00229-011-05064-6
[9] Koiso, N., Rigidity and infinitesimal deformability of Einstein metrics, Osaka Math. J., 19, 643-668 (1982) · Zbl 0495.53043 · doi:10.2140/pjm.2008.235.57
[10] Lauret, E.A., Lauret, J.: The stability of standard homogeneous Einstein manifolds (2021). arXiv:2112.08469 (preprint) · Zbl 1269.53054
[11] Lauret, J.: On the stability of homogeneous Einstein manifolds (2022). arXiv:2105.0636v1 (preprint)
[12] Moroianu, A.; Nagy, P-A; Semmelmann, U., Deformations of nearly Kähler structures, Pac. J. Math., 235, 1, 57-72 (2008) · Zbl 1152.58015 · doi:10.2140/pjm.2008.235.57
[13] Moroianu, A.; Semmelmann, U., The Hermitian Laplace operator on nearly Kähler manifolds, Commun. Math. Phys., 294, 251-272 (2010) · Zbl 1210.58028 · doi:10.1007/s00220-009-0903-4
[14] Moroianu, A.; Semmelmann, U., Infinitesimal Einstein deformations of nearly Kähler metrics, Trans. Am. Math. Soc., 363, 3057-3069 (2011) · Zbl 1216.58006 · doi:10.1090/S0002-9947-2011-05064-6
[15] Morris, D.: Nearly Kähler geometry in six dimensions (MPhil thesis) (2014)
[16] Nagy, P-A, Nearly Kähler geometry and Riemannian foliations, Asian J. Math., 3, 481-504 (2002) · Zbl 1041.53021 · doi:10.4310/AJM.2002.v6.n3.a5
[17] Schwalm, P., Stability of Einstein metrics on symmetric spaces of compact type, Ann. Glob. Anal. Geom., 61, 333-357 (2022) · Zbl 1494.53054 · doi:10.1007/s10455-021-09810-4
[18] Semmelmann, U.; Wang, C.; Wang, MY-K, On the linear stability of nearly Kähler 6-manifolds, Ann. Glob. Anal. Geom., 57, 15-22 (2020) · Zbl 1459.53053 · doi:10.1007/s10455-019-09686-5
[19] Semmelmann, U.; Weingart, G., The standard Laplacian, Manuscripta Math., 158, 273-293 (2019) · Zbl 1436.53024 · doi:10.1007/s00229-019-09686-5

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities © 2022 FIZ Karlsruhe GmbH
[20] Semmelmann, U.; Weingart, G., Stability of compact symmetric spaces, J. Geom. Anal., 32, 137 (2022) · Zbl 1494.53070 · doi:10.1007/s12220-021-00838-3

[21] Verbitsky, M., Hodge theory on nearly Kähler manifolds, Geom. Topol., 15, 2111-2133 (2011) · Zbl 1246.58002 · doi:10.2140/gt.2011.15.2111

[22] Wallach, NR, Harmonic Analysis on Homogeneous Spaces (1973), New York: Marcel Dekker Inc, New York · Zbl 0265.22022

[23] Wang, C., Wang, M. Y.-K.: Instability of some Riemannian manifolds with real Killing spinors (2018). arXiv:1810.04526v2 (preprint)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.