Overview of digital health teaching courses in medical education in Germany in 2020

Abstract

Objective: The digitalization of the healthcare system poses new challenges for physicians. Thus, the relevance of learning digital competencies (DiCo), such as dealing with data sets, apply telemedicine or using apps, is already growing in medical education. DiCo should be clearly separated from digitized teaching formats, which have been increasingly used since the COVID 19 pandemic. This article outlines the faculties in Germany where DiCo are already integrated into medical education.

Methods: Courses with DiCo as teaching content were collected by a literature research on Pubmed and Google as well as by contacting all dean’s offices and other persons responsible for teaching at German medical faculties. The courses were summarized in a table.

Results: In a first survey, 16 universities were identified that offer courses on DiCo. In the elective area at the universities, 17 courses and in the compulsory area eight courses could be identified. The scope and content of the courses diverged between compulsory curricula, integrated courses of different lengths, and elective courses that are one-time or longitudinally integrated. The topics taught are heterogeneous and include fundamentals of medical informatics such as data management on the one hand and a collection of, e.g., ethics, law, apps, artificial intelligence, telemedicine and robotics on the other hand.

Conclusion: Currently, only some German medical faculties offer courses on DiCo. These courses vary in scope and design. They are frequently part of the elective curriculum and only reach some of the students. The possibility of embedding DiCo in the already existing cross-sectional area appears limited. In view of the ongoing digitalization of healthcare, it is necessary to make future courses on DiCo accessible to all medical students. In order to drive this expansion forward, the implementation of the new learning objectives catalogue, in which DiCo are integrated, a network formation, a teaching qualification as well as the involvement of students is recommended.

Keywords: education, digital health, digital competencies, digital medicine, digital teaching, eLearning, medical informatics

Introduction

The digitalisation of healthcare is a development that has been progressing for several years and is growing in importance. Easier access to medical knowledge, data-recording wearables, and telemedicine will permanently change healthcare in the next few years [1]. The first political basis has been set with laws for the provision of digital health applications, telemedicine and the electronic patient record [2], [3]. The majority of medical students has a positive view of the digitalisation of care, but at the same time students do not feel well prepared for this change in the healthcare system [4], [5]. Also, health informatics and eHealth are not yet integrated throughout the field of advanced training [6]. Physicians have a special responsibility, for instance, in dealing with health apps, but they are not adequately prepared for this [7]. Dealing with these digital applications in everyday clinical life requires learning Digital Competencies (DiCo) [8], as training on the subject promotes acceptance [9] and such teaching should start early in education [10]. Even if students often use digital technologies in their everyday life, this does not imply that they can apply this in a professional healthcare setting [11]. The German Council of Science and Humanities recommended with regard to the “Masterplan Medizinstudium 2020” to integrate digitalisation as a central topic in medical education [12]. The German term “Digitale Kompetenzen” (Digital Competencies, short DiCo) is not used uniformly. The corresponding term “eHealth literacy”, established in the international context, describes an informed and self-confident handling of digital health information [13].
In medical education, a distinction must be made between the digitalisation of teaching methods (such as learning apps, PowerPoint, eLearning courses, etc.), and DiCo as teaching content. For DiCo, the German Society for Medical Informatics, Biometry and Epidemiology (GMDS) has published a catalog with learning objectives sorted in central topic areas as a guide [14]. In the National Competence-Based Learning Objectives Catalog for Medicine (NKLM), there are currently hardly any learning objectives that can be assigned to DiCo [8].

At present, there is no overview of the courses that are already offered on DiCo available. Therefore, it is uncertain to what extent future physicians are prepared for the developments in the digitalisation of healthcare. This article aims to present a descriptive inventory of the teaching of DiCo at medical faculties in Germany.

Methodology

The research of DiCo projects was performed in three ways: via an online search, two queries of the deaneries of all medical faculties in Germany, and a survey of the “digital competencies” working group of the NKLM/GK process.

First, a simple search via PubMed and Google using the keywords “digital health”, “digital competencies”, “digital literacy”, “medical school”, “medical education” and the corresponding German words was conducted, for papers on projects at German universities, colleges, and medical faculties.

Simultaneously, the deaneries of all German medical faculties as well as all members of the NKLM/GK working group “Digital Competencies” were contacted by mail and asked to name corresponding concepts, projects and courses. The deaneries were contacted under the general e-mail address and the persons most likely to be responsible in each case were approached, for example curriculum officers, digitalisation officers and officers for the timetable, if their addresses were found on the website.

Telephone interviews were conducted in some cases. The deans of studies were queried in November 2019 and again as part of the review process in June/July 2020. The members of the NKLM/GK working group were contacted, as they were assumed to have expertise in the courses offered.

The overview in this article only includes courses which, in the view of the authors, deal with digitalisation in medicine and the teaching of digital competencies as teaching content. This selection was based on the GMDS learning objectives catalogue on medical informatics competencies for physicians [14]. Courses that use digitalisation as a teaching method but teach competencies that are primarily independent of digitalisation in healthcare were excluded from this overview. Similarly, courses that were in the planning phase but not implemented at time of assessment were excluded. The teaching of DiCo which are not officially part of a course and comprise less than one teaching unit (UE, equivalent to 45 min) were also excluded.

The courses have been listed in a table and broken down by scope, content, elective or compulsory, and examination type.

Results

24 faculties and 9 members of the “Digital Competencies” working group of the NKLM/GK-process reported back. One course was found via Pubmed and one via Google search (see figure 1). In total, 25 projects could be included in the overview. The main reason for excluding courses was that they featured digitisation of teaching materials and teaching methods but did not address the topic of “digitalisation” as teaching content.

According to our survey, there are currently 16 universities that have integrated DiCo into the curricula of medical education (see attachment 1). We were able to list 17 courses in the elective area and eight courses in the compulsory area. Of all the courses, only three extend longitudinally over several semesters. The extent of integration at the universities diverges. For example, the learning objectives for DiCo are partly integrated into other elective courses for a few students (cf. Bochum) [15], to a lesser extent part of the compulsory curriculum via the cross-sectional area “Epidemiology, Medical Biometry and Medical Informatics” (EBI) (cf. Münster) [16], or established in a focused manner in extensive elective modules over several semesters (cf. UKE Hamburg) [17].

Most elective subjects are designed for 10-25 students, so that currently often only a small fraction of medical students is reached. Some subjects are only scheduled for a few hours, others contain 60 lessons (cf. Berlin) [9] or are combined with a clinical elective (cf. Giessen) [18]. In most cases, the courses cover a wide range of digital medicine. For example, they primarily include the following learning objectives:

- address the topic: reflecting on physician roles in the digital age,
- evaluate possibilities of using mobile apps as well as indications for using telemedicine,
- know machine learning and explain basic principles of neural networks,
- differentiate between legal and ethical aspects of the digitalisation of healthcare.

However, the content of the individual electives varies, so that further clustering and subdivision based on content or learning objectives was not possible. For example, in Halle, students are given the opportunity to practice interprofessional ward rounds in telepresence modules, using a tablet with video transmission [19]. In Mainz, students are using various apps, such as anamnesis support, and reflecting on this [20].

In the compulsory area, medical informatics with the fundamentals of data management, workplace systems and telemedicine is established at some universities,
primarily via the cross-sectional area EBI. The focus on
the field of medical informatics could only be evaluated
at a few locations. These topics are largely aligned with
the GMDS learning objectives catalogue. For example, at
the Hannover and Münster campuses, practical trainings
prepare students for clinically relevant activities, such as
workplace systems, online research, or the potential im-
 pact of digitalisation on health care [16], [21]. The extent
to which the courses are intended to enable medical
students to develop their own ideas and to deal not only
with current but also future circumstances was evident
in individual cases (cf. Berlin and Marburg) [9].

Discussion

This first overview of courses on digital competencies at
German medical faculties shows that several faculties
have already integrated the subject, but mainly in the
elective area so far.
The courses vary widely in scope and design, so that a
classification based on definable content criteria was not
possible. The current elective courses already cover a
wide range of subjects and mainly provide a general
overview of current digital trends in healthcare, such as
digital health applications, robotics or new healthcare
models. In some cases, students are given the opportunity
to reflect on ethical, legal or political issues. Due to the
very heterogeneous teaching content and the different
presentation of the content, no content clustering was
done.
Unfortunately, the extent to which DiCo are established
within the framework of the already existing cross-section-
al area of EBI could only partially be determined. There
was little feedback from the deaneries in this case. In
Münster, for example, the basics of medical informatics
are not only mentioned in a lecture, but also deepened
in an application-related way in a seminar. Otherwise, it
can be assumed, that DiCo are currently not sufficiently
integrated into the cross-sectional areas. On the one hand
it is due to the poor level of information of medical stu-
dents on digitalisation [4], [5] and on the other hand it is
due to the increasing demands for more competencies
in digital medicine [8], [14], [21]. The GMDS has made
efforts to adapt the content of the cross-sectional area
since 2012 [22], but these developments do not appear
to be sufficient, so that the GMDS and the Society for
Medical Education are calling for a national initiative [8].
There is potential for the further expansion of the already
existing cross-sectional area. In the future, longitudinal
implementation could also improve learning outcomes
and linkage with clinical subjects is suggested [9], [23].
The low status of courses on DiCo contrasts with the
change in the reality of care due to digitalisation, for which
students should be prepared through basic knowledge
up to the development of their own attitude. At the same
time, training is an opportunity to implement new techno-
lologies in the healthcare system in a meaningful way [22].

Challenges and limitations

The term “digitalisation” is a mixture in its meaning for
university teaching. e-learning platforms, PC exams or
simulation programs, i.e. digitized teaching, are equated
with the teaching of digital competencies. The reason for
this may lie both in a translation of “digital health” or
“eHealth literacy” that is not yet used in everyday lan-
guage, and in definitions of the associated content for
medical education that are also not yet standardised in-
ternationally. “Digital competencies” is hardly used in English-language literature. The more common term “digital literacy” is used partly as an overarching collective term and partly as one of many components of digital health for the subarea of accessing and using knowledge and sources, often overlapping with “digital health literacy” and “e-health literacy” [24, 25]. Online searches likewise proved difficult because of the inconsistent scientific terminology addressed. In the United States, despite many existing chairs and initial certificates, integration into medical education is still mostly limited to electives and based on inconsistent content [26].

In Germany, the term “digital competencies” has become established [8], [21], [26], [27], [28]. We consider this to be suitable for providing a distinction from digitized teaching.

This inconsistent term complicates the question of a uniform definition of learning objective content: What do digital competencies include and are they covered as completely as possible in the curriculum? The GMDS has presented a catalogue of learning objectives for the basic structure of the DiCo [14], and there are also competence frameworks in the international context, for example the “eHealth capabilities framework” of an Australian research group [23] or the “Competence Framework” of the EU [29]. In the working group “digital competencies” as part of the further development of the NKLM and the GK, the subject area is being put together in learning objectives and is to be published in the near future. Due to the obligation of the NKLM for faculty teaching and the GK for examinations, which is specified in the Master Plan for Medical Studies, many faculties will develop or deepen their teaching on the basis of the competencies and learning objectives formulated there.

Since the response rate of the deaneries and working group members was approximately 65%, it is possible that not all existing projects are listed. In addition, it should be mentioned that not all teaching projects are published and the homepages of the faculties are very differently designed, so that the teaching contents of the modules were sometimes difficult to identify. Furthermore, some courses were excluded from our analysis (duration<1 lesson of 45min). In addition, it appeared that the deaneries found it difficult to distinguish between digitisation of teaching and DiCo as teaching content in their feedback, despite emphasising it several times. This should be viewed critically in terms of awareness of the problem.

Therefore, this analysis can only be understood as a first overview and encourage future exchange and networking on the DiCo courses. For a better qualitative overview of the contents, a survey through direct interviews with the teachers about the concrete schedule of the courses is advisable.

Recommendations to the faculties

Many universities have already reported that they are currently developing new modules on digital competencies or expanding existing ones. In the development of a curriculum on DiCo, the following recommendations emerge from the authors’ point of view:

An inventory at the individual faculty to bundle the various courses, as for example in Hanover, is recommended [21]. Courses and their modules should be linked in the curriculum to demonstrate the diverse facets of the subject completely, but also not duplicate aspects within the overall programme. The use of the new NKLM as a basis for DiCo courses is indispensable. Integration into already existing teaching formats or clinical disciplines is possible, flexible formats that are adaptable should be chosen [23]. Furthermore, technical resources must be made available [30].

In order to gain further scientific expertise in this area, there is the option of founding own chairs, or starting new master’s programs on medical informatics, medical management or even digital medicine (Technische Hochschule Mittelhessen). Networking beyond one’s own faculty for competence transfer and mutual benefit through existing pilot projects can be the key to faster and cross-faculty embedding [9], [31]. Currently, eleven universities, including several medical faculties, are working on a large collaboration (HighMed Teaching Program [32]) to create a learning platform on DiCo. Individual modules are to be offered with face-to-face sessions across professions. Such mono- or interprofessional collaborations between institutions and specialties offer great opportunities for rapid and collaborative progress [8] and are important for different professional groups across the health care team to understand each other’s systems requirements [30]. It is also feasible to involve e-health start-ups, health insurance companies, or inter-disciplinary teaching with computer scientists, health services researchers, or pharmacists.

In this context, the training of teachers must also be considered in addition to the training of students. In addition to expanding the chairs, such as the new medical faculty in Bielefeld, which is developing its own chair for didactics, digitalization and interprofessionalism, further training programs must be initiated. In our view, the integration of committed students, who often have independent content expertise, into teaching is also advisable [33]. For example, in Dresden, the curriculum certified by the Saxony Medical Association, in which students acquire DiCo together with physicians and participants from informatics, was initiated by students.

Overall, the teaching of digital competencies at the medical faculties is still being developed. At some campuses, digital competencies are already taught to some of the students, mostly as elective courses. Due to the increasing digitalization of healthcare, an expansion of courses and an increased inclusion in the compulsory curriculum on digital competencies appears future-oriented. Therefore, it is recommended for medical faculties
to take a look at existing teaching elements, to implement DCo learning objectives based on the new NKLM, to professionalize (chairs, continuing education) to network and to integrate students in the process. Students should already be prepared for the digital transformation of healthcare reality as part of their education.

Competing interests

The authors declare that they have no competing interests.

Attachments

Available from https://www.emsa-europe.eu/wp-content/uploads/2019/09/Digital-Health-in-the-Medical-Curriculum_-Addressing-the-Needs-of-the-Future-Health-Workforce.pdf?attid= 17241&sfe=.pdf

1. Overview of teaching projects at medical faculties in Germany

References

1. Mesko B, Gyorffy Z. The Rise of the Empowered Physician in the Digital Health Era: Viewpoint. J Med Internet Res. 2019;21(3):e12490. DOI: 10.2196/12490
2. Deutscher Bundestag. Gesetz für eine bessere Versorgung durch Digitalisierung und Innovation (Digitale-Versorgung-Gesetz - SVG). Bundesgesetzebl Teil I. 2019;(49):2562.
3. Deutscher Bundestag. Entwurf eines Gesetzes zum Schutz elektronischer Patientendaten in der Telematikinfrastruktur (Patientendaten-Schutz-Gesetz - PDSG). Berlin: Deutscher Bundestag; 2020. Zugänglich unter /available from: https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/Gesetze_und_Verordnungen/GuV/P/PDSG-Bundestag_Drs-18783.pdf
4. Jacobs R, Kopp J, Fellinger P. Berufsmonitoring Medizinstudierende 2018 - Ergebnisse einer bundesweiten Befragung. Berlin: Kassenärztliche Bundesvereinigung; 2019. Zugänglich unter /available from: https://www.kbv.de/media/sp/Berufsmonitoring_Medizinstudierende_2018.pdf
5. Mosch L, Machleid F, von Maltzahn F, Kaczmarczyk R. Digital Health in the Medical Curriculum: Addressing the Needs of the Future Health Workforce. Brüssel: European Medical Students' Association; 2019. Zugänglich unter /available from: https://emsaeurope.eu/wp-content/uploads/2019/09/Digital-Health-in-the-Medical-Curriculum_-Addressing-the-Needs-of-the-Future-Health-Workforce.pdf?attid=IwAR26hElE206cSuiH63YCTypMsFMiuUGzFVUszsyxKUf4GT7n8bT3-Xs
6. Jidkov L, Alexander M, Bark P, Williams JG, Kay J, Taylor P, Hemingway H, Banerjee A. Health informatics competencies in postgraduate medical education and training in the UK: a mixed methods study. BJM Open. 2019;9(3):e025460. DOI: 10.1136/bmjopen-2018-025460
7. Long S, Hasenfuß G, Raupach T. Apps in der Inneren Medizin. Internist. 2019;60(4):324-330. DOI: 10.1007/s00108-019-0568-9
8. Haag M, Igel C, Fischer MR. German Medical Education Society (GMA); Committee "Digitization - Technology-Assisted Learning and Teaching"; Joint working group "Technology-enhanced Teaching and Learning in Medicine" (TeLL) of the German Association for Medical Informatics, Biometry and Epidemiology (gmbs) and the German Informatics Society (GI). Digital Teaching and Digital Medicine: A national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10.3205/zma001189
9. Poncette AS, Spies C, Mosch L, Sch hinter M, Weber-Carstens S, Krampe H, Balzer F. Clinical Requirements of Future Patient Monitoring in the Intensive Care Unit: Qualitative Study. JMIR Med Inform. 2019;7(2):e13064. DOI: 10.2196/13064
10. Kuhn S, Kadioglu D, Deutsch K, Michl S. Data Literacy in der Medizin. Onkologie. 2018;24(5):368-377. DOI: 10.1007/s00761-018-0344-9
11. Biggins DE, Holley D, Zezulkova M. EAI Endorsed Transactions on e-Learning 1 Digital Competence and Capability Frameworks in Higher Education: Importance of Life-long Learning, Self-Development and Well-being. EAI. 2017;4(13):e1-e7. DOI: 10.4108/eai.20-6-2017.152742
12. Wissenschaftsrat. Neustrukturierung des Medizinstudiums und Änderung der Approbationsordnung für Ärzte. Drs. 7271-18. Dresden: Wissenschaftsrat; 2018. Zugänglich unter /available from: https://www.wissenschaftsrat.de/download/archiv/7271-18.pdf?__blob=publicationFile&v=1
13. Paige SR, Stellefson M, Krieger JL, Anderson-Lewis C, Cheong J, Stopca C. Proposing a Transactional Model of eHealth Literacy: Concept Analysis. J Med Internet Res. 2018;20(10):e10175. DOI: 10.2196/mbe000205
14. Varghese J, Röhrig R, Dugas M. Welche Kompetenzen in Medizininformatik benötigen Ärzte? Update des Lernzielskaltes für Studierende der Humanmedizin. GMS Med Inform Biom Epidemiol. 2020;16(1):Doc02. DOI: 10.3205/mibe000205
15. Hoffmann F. Wahlpflichtfach Medizin 4.0. Bochum: Ruhr Universität Bochum; 2020. Zugänglich unter /available from: http://medizinstudium.ruhr-uni-bochum.de/medidek/infoszumstudium/schwarzesbrett/index.cfm/Fyer%20Wahlpflichtfach%20Medizin%204.0%20v03.pdf?attid=17241&sfef=pdf
16. WWU Münster - Institut für Medizinische Informatik, Medizinische Informatik Sommersemester 2020 - WWU Münster. Münster: WWU Münster; 2020. Zugänglich unter /available from: https://www.medizin.uni-muenster.de/imi/studium/sommersemester-2020.html
17. "Digital Health" neues Schwerpunktcursus "Digitale Medizin, eHealth und Digitale Medizin: An national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10.3205/zma001189
18. "Digital Health" neues Wahlfach in Hamburger Medizin-Modellstudienang. Dtsch Ärztebl. 2019. Zugänglich unter /available from: https://www.aerzteblatt.de/nachrichten/102963/Digital-Health-neues-Wahlfach-in-Hamburger-Medizin-Modellstudienang
19. RÖHN-KLINIKUM AG, Justus-Liebig-Universität Gießen, Justus-Liebig-Universität Gießen und RÖHN-KLINIKUM AG initiieren neues Schwerpunktcursus "Digitale Medizin, eHealth und Telemedizin". Gießen: Justus-Liebig-Universität Gießen; 2019. Zugänglich unter /available from: https://www.uni-giessen.de/ueber-uns/pressestelle/pm/pmehealth
20. Haucke E, Schwarz K, Luderer C, Clever K, Ludwig C, Stoeverand D. Digitale Kommunikation in der Medizin - interprofessionelles Telekonsil. In: Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA), des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWLZ) und der Chirurgischen Arbeitsgemeinschaft Lehre (CAL). Frankfurt am Main, 25.-28.09.2019. Düsseldorf; 2019. DocP-06-01. DOI: 10.3205/19gma300
20. Kuhn S, Frankenhauser S, Tolks D. Digitale Lehr- und Lernangebote in der medizinischen Ausbildung. Heidelberg: Springer-Verlag GmbH; 2018. DOI: 10.1007/s00103-017-2673-z

21. Foadi N, Koop C, Behrends M. Medizinische Ausbildung: Welche digitalen Kompetenzen braucht der Arzt? Dtsch Ärztebl. 2020. Zugänglich unter/available from: https://www.aerzteblatt.de/archiv/213155/Medizinische-Ausbildung-Welche-digitalen-Kompetenzen-braucht-der-Arzt

22. Cresswell KM, Bates DW, Williams R, Morrison Z, Slee A, Coleman J, Robertson A, Sheilah E. Evaluation of medium-term consequences of implementing commercial computerized physician order entry and clinical decision support prescribing systems in two "early adopter" hospitals. J Am Med Inform Assoc. 2014;21(2):e194-202. DOI: 10.1136/amiajnl-2013-002252

23. Brunner M, McGregor D, Keep M, Janssen A, Spallek H, Quinn D, Jones A, Tseris E, Yeung W, Togher L, Solman A, Shaw T. An eHealth Capabilities Framework for Graduates and Health Professionals: Mixed-Methods Study. J Med Internet Res. 2018;20(5):e10229. DOI: 10.2196/10229

24. EuroHealthNet. Digital health literacy: how new skills can help improve health, equity and sustainability. EuroHealthNet; 2019. Zugänglich unter/available from: https://eurohealthnet.eu/sites/eurohealthnet.eu/files/publications/PP_Digital%20Health%20Literacy_LR.pdf

25. Mesko B, Gyorgyi Z, Kollár J. Digital Literacy in the Medical Curriculum: A Course With Social Media Tools and Gamification. JMIR Med Educ. 2015;1(2):e6. DOI: 10.2196/mededu.4411

26. Matusiewicz D, Aulenkamp J, Werner JA. Effektederdigitalen TransformationdesKrankenhausesaufdenWandeldesBerufsbildesArzt. In: Klauber J, Geraedts M, Friedrich J, Wasem J, editors. Krankenhaus-Report 2019: Das digitale Krankenhaus. Berlin, Heidelberg: Springer; 2019. p.101-114. DOI: 10.1007/978-3-662-58225-1_8

27. Ärztekammer Berlin. 8. Fortbildungskongress der Ärztekammer Berlin: Medizin 4.0 - digitale Kompetenz macht den Unterschied! Berlin: Ärztekammer Berlin; 2019. Zugänglich unter/available from: https://www.aerztekammer-berlin.de/10arzt/25_Aerztl_Fb/13_Fortbildungskongress_der_AEKX/B_Fortbildungskongress_2019/index.shtml

28. Keane L. eHAction - Report on eSkills for Professionals Information Note. eHAction- 3rd Joint Action supporting the eHealth Network. 2019. Zugänglich unter/available from: https://ec.europa.eu/health/sites/health/files/ehealth/docs/ev_20190611_co322_en.pdf

29. Potterfract SK, Wilson K. Using electronic patient records: defining learning outcomes for undergraduate education. BMC Med Educ. 2019;19(1):30. DOI: 10.1186/s12909-019-1466-5

30. Kuhn S. Wie revolutioniert die digitale Transformation die Bildung der Berufe im Gesundheitswesen? - Careum Working Paper. Zürich: Careum Verlag; 2019. Zugänglich unter/available from: https://www.careum.ch/documents/20181/75972/Careum_+Working+Paper+8+%20deutsch%20.pdf

31. Eils R. HiGHmed - a brochure for health professional. HiGHmed Coordination Office; 2018. Zugänglich unter/available from: https://www.higmed.org/user/pages/05.further-readings/HiGHmed_Brochure_Up_the_Stairs.pdf

32. Universität Witten/Herdecke. DigitalWorks. Witten: Universität Witten/Herdecke; 2020. Zugänglich unter/available from: https://www.uni-wh.de/studium/studentische-initiativen/digitalworks

33. Sächsische Landesärztekammer. Clinicum Digitale Interdisziplinäre Fortbildungsreihe. Dresden: Sächsische Landesärztekammer; 2020. Zugänglich unter/available from: https://elearning.slaek.de/goto.php?target=cat_8763&ident_id=SLAEK02

Corresponding author:
Jana Aulenkamp
Universitätsklinikum Essen, Klinik für Anästhesiologie und Intensivmedizin, Hufelandstr. 55, D-45147 Essen, Germany
jana.aulenkamp@uk-essen.de

Please cite as
Aulenkamp J, Mikuteit M, Löffler T, Schmidt J. Overview of digital health teaching courses in medical education in Germany in 2020. GMS J Med Educ. 2021;38(4):Doc80. DOI: 10.3205/zma001476, URN: urn:nbn:de:0183-zma0014762

This article is freely available from https://www.egms.de/en/journals/zma/2021-38/zma001476.shtml

Received: 2019-11-30
Revised: 2020-11-20
Accepted: 2021-01-09
Published: 2021-04-15

Copyright
©2021 Aulenkamp et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Erste Übersicht der Lehrveranstaltungen mit dem Inhalt „Digitale Kompetenzen“ an den medizinischen Universitäten in Deutschland 2020

Zusammenfassung

Zielsetzung: Die Digitalisierung des Gesundheitswesens stellt Ärztinnen und Ärzte vor neue Herausforderungen. Somit wächst die Relevanz des Erlermens von Digitalen Kompetenzen (DiKo), wie z.B. Kenntnisse im Umgang mit Datenmengen, Telemedizin oder Apps, bereits im Medizinstudium. DiKo sind hierbei klar zu trennen von digitalisierten Lehrformaten, die seit der COVID 19-Pandemie vermehrt eingesetzt wurden. Dieser Artikel beschreibt, an welchen Fakultäten in Deutschland digitale Kompetenzen bereits in die Medizinische Ausbildung integriert sind.

Methodik: Über eine Literaturrecherche auf Pubmed und Google sowie durch den Kontakt zu allen Dekanaten und weiteren Lehrverantwortlichen deutscher medizinischer Fakultäten wurden Lehrveranstaltungen, die DiKo als Lehrinhalt aufweisen, gesammelt und in einer Tabelle zusammengefasst.

Ergebnisse: In einer ersten stichprobenartigen Übersicht wurden 16 Universitäten identifiziert, die Lehrveranstaltungen zu DiKo anbieten. Im Wahlpflichtbereich konnten 17 Universitäten und im Pflichtbereich acht Universitäten identifiziert werden. Der Umfang und die inhaltliche Ausgestaltung der Lehrveranstaltungen divergierend zwischen Pflichtcurricula, integrierten Lehrveranstaltungen verschiedener Größe und Wahlpflichtveranstaltungen, die einmalig oder longitudinal integriert sind. Die gelehrteten Themen sind heterogen und umfassen einerseits Grundlagen der medizinischen Informatik, wie z.B. Datenmanagement und andererseits eine Sammlung aus z.B. Ethik, Recht, Apps, Künstlicher Intelligenz, Telemedizin und Robotik.

Schlussfolgerung: Aktuell werden nur an einem Teil der deutschen medizinischen Fakultäten Lehrveranstaltungen zu DiKo angeboten. Diese Veranstaltungen divergieren in Umfang und Ausgestaltung. Sie sind häufig im Wahlpflichtbereich angesiedelt und erreichen nur einen Teil der Studierenden. Eine Verankerung von DiKo im bereits vorhandenen Querschnittsbereich erscheint begrenzt. Angesichts der fortschreitenden Digitalisierung des Gesundheitswesens ist es notwendig, zukünftige Lehrveranstaltungen zu DiKo allen Medizinstudierenden zugänglich zu machen. Um diesen Ausbau zügig voranzutreiben wird die Umsetzung des neuen Lernzielkatalog, in den DiKo integriert sind, eine Netzwerkbildung, eine Lehrendenqualifikation sowie die Einbindung Studierender empfohlen.

Schlüsselwörter: Ausbildung, digital health, digitale Kompetenzen, digitale Medizin, digitale Lehre, elearning, Medizininformatik

Einleitung

Die Digitalisierung des Gesundheitswesens ist eine seit mehreren Jahren fortschreitende Entwicklung, die an Bedeutung zunimmt. Der einfachere Zugang zu medizinischem Wissen, Daten aufzeichnende Wearables, und Telemedizin werden das Gesundheitswesen in den nächsten Jahren nachhaltig verändern [1]. Erste politische Grundsteine wurden mit Gesetzen für die Versorgung mit digitalen Gesundheitsanwendungen, Telemedizin und der elektronischen Patientenakte gelegt [2], [3]. Die Mehrheit der Medizinstudierenden sieht der Digitalisierung der Versorgung positiv entgegen, gleichzeitig fühlen sie sich nicht gut auf diese Veränderung des Gesundheitssystems vorbereitet [4], [5]. Auch im Bereich der Weiterbildung ist Gesundheitsinformatik/eHealth
noch nicht flächendeckend integriert [6]. Dabei fällt Ärzt*innen beispielsweise im Umgang mit Gesundheits-Apps eine besondere Verantwortung zu, auf die sie nicht ausreichend vorbereitet werden [7].

Der Umgang mit diesen digitalen Anwendungen im klinischen Alltag erfordert das Erlernen Digitaler Kompetenzen (DiKo) [8], denn Schulungen zu der Thematik fördern die Akzeptanz [9] und diese Vermittlung sollte bereits früh in der Ausbildung beginnen [10]. Auch wenn Studierende in Ihrem Alltag oft digitale Technologien verwenden, impliziert dies nicht, dass Sie dies auch auf das Gesundheitswesen anwenden können [11]. Der Wissenschaftsrat empfahl im Hinblick auf den Masterplan Medizinstudium 2020, Digitalisierung als zentrales Thema in das Medizinstudium zu integrieren [12]. Der deutsche Begriff DiKo wird nicht einheitlich verwendet. Der im internationalen Kontext etablierte Begriff „eHealth literacy“ beschreibt einen informierten und selbstbewussten Umgang mit digitalen Gesundheitsinformationen [13].

In der Medizinischen Ausbildung muss zwischen der Digitalisierung der Lehramethoden (wie Lern-Apps, PowerPoint, eLearning Kurse etc.), und DiKo als Lehrlinhalt unterschieden werden. Für DiKo hat die Deutsche Gesellschaft für Medizinische Informatik, Biometrie und Epidemiologie (GMDS) einen Lernzielkatalog der zentralen Themenfelder als Orientierungshilfe veröffentlicht [14]. Im Nationalen Kompetenzbasierten Lernzielkatalog Medizin (NKLm) gibt es aktuell kaum Lernziele, die den DiKo zuzuordnen sind [8].

Aktuell gibt es noch keinen Überblick über die bereits angebotenen Lehrveranstaltungen zu DiKos und daher ist es ungewiss wie weit angehende Ärztinnen und Ärzte auf die Entwicklungen zur Digitalisierung des Gesundheitswesens vorbereitet werden. Dieser Artikel hat das Ziel eine deskriptive Bestandsaufnahme der Lehre zu DiKo an den medizinischen Fakultäten in Deutschland darzulegen.

Methodik

Die Recherche der Projekte erfolgte über drei Wege: über eine Onlinercherche, zwei Abfragen der Studiendekanate aller medizinischen Fakultäten in Deutschland, und eine Befragung der sogenannten Arbeitsgruppe „Digitale Kompetenzen“ des NKLm/GK-Prozesses. Zunächst wurden eine einfache Suche über PubMed und Google mit den Stichwörtern „digital health“, „digital competencies“, „digital literacy“, „medical school“ und „medical education“ sowie den entsprechenden deutschen Wörtern einfache Suchen nach Arbeiten über Projekte an deutschen Universitäten, Hochschulen und medizinischen Fakultäten durchgeführt. Parallel wurden per Mail die Studiendekanate aller deutschen medizinischen Fakultäten sowie alle Arbeitsgruppenmitglieder der NKLm/GK-Prozess „Digitale Kompetenzen“ kontaktiert und gebeten, entsprechende Konzepte, Projekte und Lehrveranstaltungen zu benennen. Bei den Studiendekanaten wurden diese immer unter der allgemeinen Mailadresse kontaktiert und die jeweils, sofern durch Internetauftritt möglich, am ehesten zuständigen Personen, beispielsweise Curriculumsbeauftragte, Digitalisierungsbeauftragte und Beauftragte für den Stundenplan angesprochen. Teilweise wurden Telefoninterviews durchgeführt. Die Abfrage der Studiendekanate erfolgte dabei im November 2019 sowie erneut im Rahmen des Review-Prozesses im Juni/Juli 2020. Die Arbeitsgruppenmitglieder der NKLm/GK-Prozess wurden kontaktiert, da hier Expertise zu angebotenen Lehrveranstaltungen vermutet wurde.

In die Übersicht dieses Artikels wurden nur solche Lehrveranstaltungen aufgenommen, die sich, aus Sicht der Autoren, mit der Digitalisierung in der Medizin und der Vermittlung von digitalen Kompetenzen als Lehrlinhalt befassen. Orientiert wurde sich bei dieser Auswahl an dem Lernzielkatalog der GMDS zu Kompetenzen der Medizininformatik für Ärztinnen und Ärzte [14]. Veranstaltungen, die zwar Digitalisierung als Lehrrmethode verwenden, dort jedoch Kompetenzen vermitteln, die primär von der Digitalisierung in der Gesundheitsversorgung unabhängig sind, wurden aus dieser Übersicht ausgeschlossen. Ebenso wurden auch solche Veranstaltungen, die sich in derzeit in der Planungsphase befinden, aber derzeit noch nicht umgesetzt werden, ausgeschlossen. Die Vermittlung von DiKo, die nicht offiziell Teil einer Lehrveranstaltung sind und weniger als eine Unterrichtseinheit (UE, entspricht 45 min) umfassen wurden ebenfalls ausgeschlossen.

Die Veranstaltungen wurden in einer Tabelle aufgestellt und nach Umfang, Inhalt, Wahl oder Pflicht und Prüfung aufgeschlüsselt.

Ergebnisse

Es haben sich 24 Fakultäten und 9 Arbeitsgruppenmitglieder der AG „Digitale Kompetenzen“ des NKLm/GK-Prozesses zurückgemeldet. Eine Lehrveranstaltung wurde über PubMed und eine über die Google-Suche gefunden (siehe Abbildung 1). Insgesamt konnten von den Rückmeldungen 25 Projekte mit in die Übersicht aufgenommen werden. Der Hauptausschlussgrund für Lehrveranstaltungen war, dass diese eine Digitalisierung der Lehrmittel sowie der Lehramethoden aufwiesen und nicht das Thema „Digitalisierung als Lehrlinhalt“ behandelten. Es gibt unserer Erhebung nach aktuell 16 Universitäten, die DiKo in die Curricula der Humanmedizin integriert haben (siehe Anhang 1). Es konnten 17 Lehrveranstaltungen im Wahlbereich und acht Lehrveranstaltungen im Pflichtbereich aufgeführt werden. Von allen Veranstaltungen erstrecken sich lediglich drei longitudinal über mehrere Semester. Der Umfang der Integration an den Universitäten divergiert. So sind die Lernziele zu DiKo teilweise in andere Wahlpflichtfächer für wenige Studierende integriert (vgl. Bochum) [15], in geringem Ausmaß Teil des Pflichtcurriculums über den Querschnittsbereich „Epidemiologie, medizinische Biometrie und medizinische Informatik“ (EBI) (vgl. Münster) [16] oder fokussiert in umfang-
Abbildung 1: Aufteilung der Rechercheergebnisse zur Übersicht „Digitale Kompetenzen“ im Medizinstudium 2020 (*= Eine Person konnte mehrere Projekte rückmelden, NKLM-GK Gruppe = Arbeitsgruppe „Digitale Kompetenzen“ des Weiterentwicklungsprozesses zum Nationalen Lernzielkatalog Medizin und der Gegenstandskatalog des Medizinstudiums)

reichen Wahlpflichtmodulen über mehrere Semester etabliert (vgl. UKE Hamburg) [17]. Die meisten Wahlpflichtfächer sind für 10-25 Studierende ausgelegt, sodass aktuell oft nur ein kleiner Teil der Medizinstudierenden erreicht wird. Manche Fächer sind nur für wenige Stunden angesetzt, andere beinhalten 60 Unterrichtseinheiten (UE) (vgl. Berlin) [9] oder werden mit einer Famulatur verknüpft (vgl. Gießen) [18].

Die Lehrveranstaltungen bilden in den meisten Fällen eine große Bandbreite der digitalen Medizin ab. Beispielsweise beinhalten sie vor allem folgende Lernziele:

- Behandlung der Thematik: Arztrolle im digitalen Zeitalter reflektieren,
- Möglichkeiten des Einsatzes mobiler Apps sowie Indikationen zur Verwendung von Telemedizin bewerten,
- maschinelles Lernen kennen und Grundprinzipien von neuronalen Netzen erläutern,
- rechtliche und ethische Aspekte der Digitalisierung des Gesundheitswesens differenzieren.

Jedoch ist die inhaltliche Ausgestaltung der einzelnen Wahlfächer unterschiedlich, sodass eine weitere Clusterung und Unterteilung anhalt der Inhalte oder Lernziele nicht möglich war. Beispielsweise wird es in Halle den Studierenden ermöglicht, interprofessionelle Visiten in Telepräsenz-Modulen, mit einem Tablet mit Videoübertragung, zu üben [19]. In Mainz probieren sich Studierende im Umgang mit verschiedenen Apps wie z.B. bei der Anamneseunterstützung und reflektieren dies [20].

Im Pflichtbereich ist an einigen Universitäten vor allen über den Querschnittsbereich EBI die Medizinische Informatik mit Grundlagen des Datenmanagement, Arbeitsplatzsysteme und Telemedizin etabliert. Der Fokus auf den Bereich der Medizininformatik war nur an wenigen Standorten zu evaluieren. Diese Themen sind größtenteils am GMDS-Lernzielkatalog orientiert. So werden z.B. an den Standorten Hannover und Münster die Studierenden in Praktika auf klinisch relevante Tätigkeiten, wie Arbeitsplatzsysteme, Online-Recherchen oder auf mögliche Auswirkungen der Digitalisierung auf das Gesundheitswesen vorbereitet [16], [21].

Aufgrund der sehr heterogenen Lehrinhalte und der sehr unterschiedlichen Darstellung der Inhalte wurde keine inhaltliche Clusterung durchgeführt.

Diskussion

Diese erste Übersicht der Lehrveranstaltungen zu digitalen Kompetenzen an deutschen medizinischen Fakultäten zeigt, dass bereits mehrere Fakultäten die Thematik aufgegriffen haben, jedoch bislang zumeist im Wahlpflichtbereich. Die Veranstaltungen divergieren stark in Umfang und Ausgestaltung, sodass eine auf abgrenzbaren inhaltlichen Kriterien basierende Einteilung nicht möglich war. Die aktuellen Wahlfachveranstaltungen decken bereits eine Vielzahl an Themenfeldern ab und geben zumeist einen allgemeinen Überblick über aktuelle digitale Trends im Gesundheitswesen wie beispielsweise Digitale Gesundheitsanwendungen, Robotik oder neue Versorgungsmodelle. Teilweise wird Raum zur Reflektion über ethische, rechtliche oder ethische Fragestellungen ermöglicht. Aufgrund der sehr heterogenen Lehrinhalte und der sehr unterschiedlichen Darstellung der Inhalte wurde keine inhaltliche Clusterung durchgeführt.
In welchem Umfang DiKo im Rahmen des bereits existierenden Querschnittsbereich EBI etabliert sind, war leider nur teilweise herauszufinden. Diesbezüglich gab es nur wenig Rückmeldung. In Münster werden beispielsweise Grundlagen der medizinischen Informatik nicht nur in einer Vorlesung erwähnt, sondern auch in einem Seminar anwendungsbezogen vertieft. Ansonsten lässt sich zum einen aufgrund des schlechten Informationsstandes von Medizinstudierenden zur Digitalisierung [4], [5] und zum anderen aufgrund der sich häufenden Forderungen nach mehr Kompetenzen zur digitalen Medizin [8], [14], [21] vermuten, dass DiKos aktuell nicht ausreichend in die Querschnittsbereiche integriert sind. Bereits seit dem Jahr 2012 gibt es Bestrebungen der GMDS die Inhalte des Querschnittsbereich anzupassen [22], jedoch scheinen diese nicht ausreichend, sodass von der GMDS und der Gesellschaft für Medizinische Ausbildung eine nationale Initiative gefordert wird [8]. Hier besteht Potential diesen bereits vorhandenen Bereich auszubauen. Zuwachst könnte auch eine longitudinalene Implementierung den Lernerfolg verbessern und eine Verknüpfung mit klinischen Fächern wird angeraten [9], [23].

Der geringe Stellenwert der Lehrveranstaltungen zu DiKo steht im Kontrast zur Veränderung der Versorgungsrealität durch die Digitalisierung, auf die Studierende über Grundlagenwissen bis zur Entwicklung eigener Haltung vorbereitet werden sollten. Ausbildung ist gleichzeitig eine Gelegenheit, neue Technologien sinnvoll im Gesundheitswesen zu implementieren [22].

Herausforderungen und Limitationen

Der Begriff der „Digitalisierung“ wird in seiner Bedeutung für die Hochschullehre vermischt. E-Learning-Plattformen, PC-Klausuren oder Simulationsprogramme, also digitalisierte Lehre, werden mit der Lehre digitaler Kompetenzen gleichgesetzt. Der Grund hierfür liegt möglicherweise sowohl in einer noch nicht in der Alltagssprache verwandten Übersetzung von „digital health“ oder „eHealth literacy“, als auch in auch international noch nicht einheitlichen Begriffssdefinitionen der zugehörigen Inhalte für die medizinische Ausbildung. „Digital competencies“ wird in englischsprachiger Literatur kaum verwendet. Der gängigere Begriff „digital literacy“ ist äußerst heterogen und wird teils als übergreifender Sammelbegriff, teils als eine von vielen Komponenten von digitaler Lehre für den Teilbereich des Zugangs und Umgangs zu Wissen und Quellen verwandt, oft überlappend mit „digital health literacy“ und „eHealth-literacy“ [24], [25]. Ebenso gestaltete sich die Onlinesuche aufgrund der angesprochenen uneinheitlichen wissenschaftlichen Terminologie schwierig. Auch in den USA ist, trotz bereits vielfach existierender Lehrstühle und erster Zertifikate, die Integration in die medizinische Ausbildung noch zumeist auf Wahlfächer begrenzt und basiert auf einer uneinheitlichen inhaltlichen Grundlage [26].

In Deutschland hat sich als Terminus „Digitale Kompetenzen“ gefestigt [8], [21], [26], [27], [28]. Wir halten diesen für geeignet, um eine Abgrenzung zu digitalisierter Lehre zu bieten. Dieser uneinheitliche Begriff erschwert die Frage nach einer einheitlichen Definition von Lernzielen: Was beinhalten digitale Kompetenzen und wie decke ich sie möglichst vollständig in einem Curriculum ab? Hier hat die GMDS einen Lernzielkatalog als Basis für eine grundlegende Struktur der DiKo [14] und auch im internationalen Kontext gibt es Kompetenzrahmen, beispielsweise den „ehealth capabilities framework“ einer australischen Forschergruppe [23] oder den „Competence Framework“ der EU [29]. In der Arbeitsgruppe „Digitale Kompetenzen“ als Teil der Weiterentwicklung des NKLM und des GKn wird das Themenfeld in Lernzielen zusammengestellt und soll in naher Zukunft veröffentlicht werden. Aufgrund der im Masterplan Medizinstudium festgeschriebenen Verpflichtung des NKLM für die fakultäre Lehre und des GKn für die Examina werden viele Fakultäten anhand der dort formulierten Kompetenzen und Lernziele ihre Lehre entwickeln oder vertiefen.

Ca. 1/2 der Dekanate sowie Arbeitsgruppenmitglieder haben die Anfragen nicht beantwortet, möglicherweise sind somit nicht alle existierenden Projekte aufgelistet. Zusätzlich wurden einige Veranstaltungen von unserer Analyse ausgeschlossen (Dauer < 1 UE). Daher soll diese Analyse als ein erster Überblick verstanden werden und den zukünftigen Austausch sowie Netzwerkbildung zu den Lehrveranstaltungen von DiKo anregen. Der Weiteren fiel den Dekanaten in den Rückmeldungen die Trennung zwischen Digitalisierung der Lehre und DiKo als Lehrinhalt trotz mehrfacher Betonung schwierig, was hinsichtlich des Problembewusstseins für die Themakultur kritisch zu beurteilen ist. Zusätzlich ist zu erwähnen, dass die Homepages der Fakultäten sehr unterchiedlich gestaltet sind, sodass die Lehrinhalte der Module teilweise schwer ersichtlich waren. Für eine bessere qualitative Übersicht der Inhalte ist eine Erhebung mittels direkter Interviews mit den Lehrenden über den konkreten Ablauf der Veranstaltungen ratsam.

Empfehlungen an die Fakultäten

Bereits jetzt schilderten uns viele Universitäten, aktuell neue Module zu digitalen Kompetenzen zu entwickeln oder bestehende auszubauen. In der Entwicklung eines Curriculums zu DiKo zeichnen sich aus Autor*innensicht folgende Empfehlungen ab:

Eine Bestandsaufnahme an der eigenen Fakultät zur Bündelung der einzelnen Veranstaltungen, wie beispielsweise in Hannover, wird angeraten [21]. Fächer und deren Module sollten sich untereinander im Curriculums-Aufbau bestmöglich vernetzen, um die Facettenvielfalt vollständig, aber auch nicht doppelt abzubilden. Die Nutzung des neuen NKLMs als Basis der DiKo Lehrveranstaltungen ist unabdingbar. Die Integration in bereits bestehende Lehrformate oder klinische Disziplinen ist möglich, es
sollten flexible Formate, die adaptierbar sind, gewählt werden [23]. Des Weiteren müssen technische Ressourcen zur Verfügung gestellt werden [30]. Um weitere wissenschaftliche Expertise in diesem Bereich zu erlangen, besteht die Option der Gründung eigener Lehrstühle, oder neue Masterstudiengänge zu Medizininformatik, Medizinmanagement oder sogar Digitaler Medizin (Technische Hochschule Mittelhessen) aufzunehmen. Eine Vernetzung über die eigene Fakultät hinaus zu den Kompetenzentwicklungsunternehmen oder zu Forschungseinrichtungen könnte den Schlüssel zu einer schnelleren und übergreifenden Verankerung darstellen [9], [31]. Aktuell arbeiten elf Universitäten, darunter mehrere medizinische Fakultäten, an einem großen Zusammenschluss (HighMed Teaching Programm [32]) zur Erstellung einer Lernplattform zum Thema DiKo. Einzelmuse Module sollen mit berufskonformen übergeordneten Präsenzveranstaltungen angeboten werden. Solche mono- oder interprofessionelle Kooperationen zwischen Institutionen und Fachrichtungen bieten große Chancen für zügigen und gemeinsamen Fortschritt [8] und sind wichtig damit verschiedenen Berufsgruppen im gesamten Gesundheitswesen und für die Medizinische Fakultät Bielefeld ein eigener Lehrstuhl für Didaktik, Digitalisierung und Interprofessionalität entsteht, Weiterbildungsangebote zu initiieren. Auch die Integration von engagierten Studierenden, die oftmals eigenständig eine inhaltliche Expertise aufweisen, in die Lehre sollte unser Anliegen sein [23]. Beispielsweise ist in Dresden das von der Ärztekammer Sachsen zertifizierte Curriculum, bei dem Studierende zusammen mit Ärztinnen und Ärzten sowie Teilnehmenden aus der Informatik DiKo erwerben, von Studierenden initiiert. Insgesamt befindet sich die Lehre digitaler Kompetenzen an den medizinischen Fakultäten noch im Aufbau. An einigen Standorten werden bereits, meist als Wahlpflichtfächern, an einem Teil der Studierenden Digitale Kompetenzen vermittelt. Aufgrund der zunehmenden Digitalisierungs- des Gesundheitswesens erscheint ein Ausbau der Lehrveranstaltungen auf Digitalen Kompetenzen zukunftsorientiert. Daher wird für die medizinischen Fakultäten empfohlen, eine Bestandsaufnahme bereits bestehender Lehrelemente durchzuführen, DiKo Lernziele anlehnden an den neuen NKLK zu implementieren, sich zu professionallisieren (Lehrstühle, Weiterbildung) und Netzwerk- bildung zu betreiben. Studierende sollten auf den digitalen Wandel der Versorgungsrealität bereits in ihrer Ausbildung vorbereitet werden.

Interessenkonflikt

Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter
https://www.gms.de/de/journals/zma/2021/38/zma001476shtml

1. Anhang_1.pdf (145 KB) Übersicht über die Lehrprojekte an den medizinischen Fakultäten in Deutschland

Literatur

1. Mesko B, Gyorffy Z. The Rise of the Empowered Physician in the Digital Health Era: Viewpoint. J Med Internet Res. 2019;21(3):e12490. DOI: 10.2196/12490
2. Deutscher Bundestag. Gesetz für eine bessere Versorgung durch Digitalisierung und Innovation (Digitale-Versorgung-Gesetz - DVG). Bundesgesetzbl I Teil I. 2019(49):2562.
3. Deutscher Bundestag. Entwurf eines Gesetzes zum Schutz elektronischer Patientendaten in der Telematikinfrastruktur (Patientendaten-Schutz-Gesetz - PDSG). Berlin: Deutscher Bundestag; 2020. Zugänglich unter/available from: https://www.bundesgesundheitsministerium.de/fileadmin/Dateien/3_Downloads/Gesetze_und_Verordnungen/GuV/P/PDSG_Bundestag_Drs-18793.pdf
4. Jacobs R, Kopp J, Fellainger P. Berufsmonitoring Medizinstudierende 2018 - Ergebnisse einer bundesweiten Befragung. Berlin: Kassenärztliche Bundesvereinigung; 2019. Zugänglich unter/available from: https://www.kbv.de/media/sp/Berufsmonitoring_Medizinstudierende_2018.pdf
5. Mosch L, Machleid F, von Maltzahn F, Kaczmarczyk R, Digital Health in the Medical Curriculum: Addressing the Needs of the Future Health Workforce. Brüssel: European Medical Students' Association; 2019. Zugänglich unter/available from: https://emsaeurope.eu/wp-content/uploads/2019/09/Digital-Health-in-the-Medical-Curriculum_-_Addressing-the-Needs-of-the-Future-Health-Workforce.pdf?fbclid=IwAR26hELzuF6ScH63y019ypMsFwTukjKzksySKyGrFR7rN0jT3-Xs
6. Jidkov L, Alexander M, Bark P, Williams JG, Kay J, Taylor P, Hemingway H, Banerjee A. Health informatics competencies in postgraduate medical education and training in the UK: a mixed methods study. BMJ Open. 2019;9(3):e025480. DOI: 10.1136/bmjopen-2018-025480
7. Long S, Hasenfuß G, Raupach T. Apps in der Inneren Medizin. Internist. 2019;60(4):324-330. DOI: 10:1007/s00108-019-0568-9
8. Haag M, Igel C, Fischer MR. German Medical Education Society (GMA); Committee "Digitization - Technology-Assisted Learning and Teaching"; Joint working group "Technology-enhanced Teaching and Learning in Medicine (TeLL)" of the German Association for Medical Informatics, Biometry and Epidemiology (gmds) and the German Informatics Society (GI). Digital Teaching and Digital Medicine. A national initiative is needed. GMS J Med Educ. 2018;35(3):Doc43. DOI: 10:3205/zma001189
9. Poncette AS, Spies C, Mosch L, Schilder M, Weber-Carstens S, Krampe H, Balzer F. Clinical Requirements of Future Patient Monitoring in the Intensive Care Unit: Qualitative Study. JMIR Med Inform. 2019;7(2):e13064. DOI: 10:2196/13064
10. Kuhn S, Kadioglu D, Deutsch K, Michl S. Data Literacy in der Medizin. Onkologie. 2018;24(5):368-377. DOI: 10.1007/s00761-018-0344-9

11. Biggins DE, Holley D, Zezulkova M. EAI Endorsed Transactions on e-Learning 1 Digital Competence and Capability Frameworks in Higher Education: Importance of Life-long Learning - Self-Development and Well-being. EAI. 2017;4(13):e1-e7. DOI: 10.4108/eai.20-6-2017.152742

12. Wissenschaftsrat. Neustrukturierung des Medizinstudiums und Änderung der Approbationsordnung für Ärzte. Dtsch Ärztebl. 2018;115(10):e10175. DOI: 10.2196/10175

13. Paige SR, Stellefson M, Krieger JL, Anderson-Lewis C, Cheong J, Stopka C. Proposing a Transactional Model of eHealth Literacy: Concept Analysis. J Med Internet Res. 2018;20(10):e10175. DOI: 10.2196/10175

14. Varghese J, Röhrig R, Dugas M. Welche Kompetenzen in der Chirurgischen Arbeitsgemeinschaft (CAL). Frankfurt: GMSPublishingHouse; 2019. DocP-06-01. DOI: 10.3205/mibe000205

15. Hoffmann F. Wahlpflichtfach Medizin 4.0. Bochum: Ruhr Universität Bochum; 2020. Zugänglich unter/available from: http://medizin.ruhr.uni-bochum.de/medidex/infoszustudium/schwarzesbrett/index.cfm/Flyer%20Wahlpflichtfach%20Medizin%204.0%20V03.pdf?attid=17241&fse=.pdf

16. WWU Münster - Institut für Medizinische Informatik. Medizinische Informatik Sommersemester 2020 - WWU Münster; 2020. Zugänglich unter/available from: https://www.medizin.uni-muenster.de/im/immstudium/sommersemester-2020.html

17. "Digital Health" neues Wahlfach in Hamburger Medizin-Modellstudienang. Dtsch Arztebl. 2019. Zugänglich unter/available from: https://www.aerzteblatt.de/nachrichten/102963/Digital-Health-neues-Wahlfach-in-Hamburger-Medizin-Modellstudienang

18. RHÖN-KLINIKUM AG, Justus-Liebig-Universität Gießen. Justus-Liebig-Universität Gießen und RHÖN-KLINIKUM AG initiieren neues Schwerpunktkurskurs "Digitale Medizin, eHealth und Telemedizin". Gießen: Justus-Liebig-Universität Gießen; 2019. Zugänglich unter/available from: https://www.uni-giessen.de/ueber-uns/pressestelle/pm/peimehealth

19. Haucke E, Schwarz K, Luderer C, Clever K, Ludwig C, Stoevesandt D. Digitale Kommunikation in der Medizin - interprofessionelles Telekonsil. In: Gemeinsame Jahrestagung der Gesellschaft für Medizinische Ausbildung (GMA), des Arbeitskreises zur Weiterentwicklung der Lehre in der Zahnmedizin (AKWZL) und der chirurgischen Arbeitsgemeinschaft Lehre (CAL). Frankfurt am Main, 25.-28.09.2019. Düsseldorf: German Medical Science GMS Publishing House; 2019. DocP-06-01. DOI: 10.3205/19gma300

20. Kuhn S, Frankenhauser S, Tolks D. Digitale Lehr- und Lernangabe in der medizinischen Ausbildung. Heidelberg: Springer-Verlag GmbH; 2018. DOI: 10.1007/s00103-017-2673-z

21. Foadi N, Koop C, Behrends M. Medizinische Ausbildung: Welche digitalen Kompetenzen braucht der Arzt? Dtsch Arztebl. 2020. Zugänglich unter/available from: https://www.aerzteblatt.de/germany/213155/Medizinische-Ausbildung-Welche-digitalen-Kompetenzen-braucht-der-Arzt

22. Cresswell KM, Bates DW, Williams R, Morrison Z, Slin A, Coleman J, Robertson A, Sheik A. Evaluation of medium-term consequences of implementing commercial computerized physician order entry and clinical decision support prescribing systems in two “early adopter” hospitals. J Am Med Inform Assoc. 2014;21(2):e194-202. DOI: 10.1136/amiajnl-2013-002252

23. Brunner M, McGregor D, Keep M, Janssen A, Spätek H, Quinn D, Jones A, Terso E, Yeung W, Togher L, Soliman A, Shaw T. An eHealth Capabilities Framework for Graduates and Health Professionals: Mixed-Methods Study. J Med Internet Res. 2018;20(5):e10229. DOI: 10.2196/10229

24. EuroHealthNet. Digital health literacy: how new skills can help improve health, equity and sustainability. EuroHealthNet; 2019. Zugänglich unter/available from: https://eurohealthnet.eu/sites/eurohealthnet/files/publications/PP_Digital%20Health%20Literacy_LR.pdf

25. Mesko B, Gyorffy Z, Kollár J. Digital Literacy in the Medical Curriculum: A Course With Social Media Tools and Gamification. JMF Med Educ. 2015;12(6): DOI: 10.2196/mededu.4411

26. Matusiewicz D, Aulenkamp J, Werner JA. Effekte der digitalen Transformation des Krankenhauses auf den Wandel des Berufsbildes Arzt. In: Klauber J, Geraets M, Friedrich J, Wasem J, editors. Krankenhaus-Report 2019: Das digitale Krankenhaus. Berlin, Heidelberg: Springer; 2019. p.101-114. DOI: 10.1007/978-3-662-59225-1_8

27. Ärztekammer Berlin. 8. Fortbildungskongress der Ärztekammer Berlin: Medizin 4.0 - digitale Kompetenz macht den Unterschied! Berlin: Ärztekammer Berlin; 2019. Zugänglich unter/available from: https://www.aerzteblatt.de/nachrichten/102963/Digital-Health-neues-Wahlfach-in-Hamburger-Medizin-Modellstudienang

28. Ärztekammer Berlin. 8. Fortbildungskongress der Ärztekammer Berlin: Medizin 4.0 - digitale Kompetenz macht den Unterschied! Berlin: Ärztekammer Berlin; 10. Zugänglich unter/available from: https://www.aerzteblatt.de/nachrichten/102963/Digital-Health-neues-Wahlfach-in-Hamburger-Medizin-Modellstudienang

29. Pontefract SK, Wilson K. Using electronic patient records: defining learning outcomes for undergraduate education. BMC Med Educ. 2019;19(1):30. DOI: 10.1186/s12909-019-1466-5

30. Kuhn S. Wie revolutioniert die digitale Transformation die Bildung der Berufe im Gesundheitswesen? - Careum Working Paper. Zürich: Careum Verlag; 2019. Zugänglich unter/available from: https://www.careum.ch/documents/20181/75972//Careum+working+Paper+8+%28deutsch%29.pdf

31. Eils R, HiGHmed - a brochure for health professional. HiGHmed Coordination Office; 2018. Zugänglich unter/available from: https://www.highmed.org/user/pages/05.further-readings/HiGHmed_Brochure_Up_the_Stairs.pdf

32. Universität Witten/Herdecke. DigitalWorks. Witten: Universität Witten/Herdecke; 2020. Zugänglich unter/available from: https://www.uni-wi.de/studium/studentische-initiativen/digitalworks

33. Sächsische Landesärztekammer. Clinicum Digitale Interdisziplinäre Fortbildungsreihe. Dresden: Sächsische Landesärztekammer; 2020. Zugänglich unter/available from: https://elearning.slaek.de/goto.php?target=cat_8763&client_id=SLAEK02

Korrespondenzadresse:
Jana Aulenkamp
Universitätsklinikum Essen, Klinik für Anästhesiologie und Intensivmedizin, Hufelandstr. 55, 45147 Essen, Deutschland
jana.aulenkamp@uk-essen.de
Bitte zitieren als
Aulenkamp J, Mikuteit M, Löffler T, Schmidt J. Overview of digital health teaching courses in medical education in Germany in 2020. GMS J Med Educ. 2021;38(4):Doc80. DOI: 10.3205/zma001476, URN: urn:nbn:de:0183-zma0014762

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001476.shtml

Eingereicht: 30.11.2019
Überarbeitet: 20.11.2020
Angenommen: 09.01.2021
Veröffentlicht: 15.04.2021

Copyright
©2021 Aulenkamp et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.