Supplementary Material

Phylogenetic analyses of the bacterial parasites detected in A. terrestris populations in Franche-Comte, France, collected in 2014-2018. Bacterial parasites were detected using high-throughput sequencing of the 16S rRNA bacterial gene extracted from organ tissues of the hosts. OTU formation was conducted using the Swarm algorithm [1]; two clustering iterations are performed - the first to denoise the data, and the second using the first iteration as seed sequences for grouping. Taxonomic assignment was conducted using blastn+ and the SILVA 16S database [2]. Sequence alignments were performed using the web implementation of Clustal Omega with default parameters [3]. The following comparisons to reference sequences were performed using the seed sequences from the first clustering iteration.

Contents

1 Anaplasma ... 2
2 Bartonella .. 3
3 Bordetella ... 10
4 Borelliela ... 13
5 Filobacterium ... 14
6 Leptospira ... 15
7 Mycobacterium ... 20
8 Mycoplasma and Ureaplasma 22
9 Pasteurellaceae .. 28
10 Rickettsia .. 33
11 Yersinia ... 34
12 GenBank Accession Numbers 35
13 R Packages ... 36
1 Anaplasma

Anaplasma-001, the only OTU in this data set assigned to the Anaplasma genus, is identical to V4 16S rRNA reference sequences of Anaplasma phagocytophilum (formerly Ehrlichia phagocytophilum) and several unspecified Ehrlichia sp. sequences.

Table S1: Similarity, expressed as a percentage, and coverage (in parentheses) of the OTU Anaplasma-001 compared to a selection of reference strains of Anaplasma phagocytophilum and unspecified Ehrlicia. Sequences were compared using the blastn search tool.

Reference Sequence	Similarity % (Coverage %)
Ehrlichia sp. - U10873	100 (100)
A. phagocytophilum - U02521	100 (100)
Ehrlichia sp. - U77389	100 (100)
Ehrlichia sp. - AJ242784	100 (100)
Ehrlichia sp. - AJ242783	100 (100)
A. phagocytophilum - HM439430	100 (100)
A. phagocytophilum str. JM - CP006617	100 (100)
A. phagocytophilum str. HZ2 - CP006616	100 (100)
Ehrlichia sp. - AF241532	100 (100)
A. phagocytophilum - GQ412339	100 (100)
A. phagocytophilum str. HZ - CP000235	100 (100)
2 Bartonella

The most prevalent of the Bartonella OTUs, Bartonella-001 (global prevalence of 43%), differed from reference sequences for *B. ancashensis*, *B. australis* Aust/NH1, *B. birtlesii*, *B. clarridgeiae*, and *B. taylorii* by one base pair (<1%). The remaining Bartonella OTU’s differed from reference *Bartonella* sequences by as much as 1-6% (2-14 base pairs) and did not form clear affinities to previously-described *Bartonella* species (Figures S1 and S2).
Table S2: Accession numbers, species, host and country of isolation for reference strains of *Bartonella* sp. used in comparisons.

Species - GenBank Accession	Isolation Source	Country
Bartonella alsatica - AJ002139	Oryctolagus cuniculus	France
Bartonella auncashensis CP010401	Homo sapiens	
Bartonella australis Aust/NH1 - DQ538394	Macropus giganteus	Australia
Bartonella bacilliformis - M65249		
Bartonella birtlesii - AF204274	Apodemus sp.	France
Bartonella bovis - AF293391	Bos sp.	France
Bartonella clarridgeiae - X89208	Felis catus	
Bartonella coopers Plainsensis - EU111759	Rattus leucopus	Australia
Bartonella doshiiae - Z31351	Microtus agrestis	UK
Bartonella elizabethae - L01260	Homo sapiens	USA
Bartonella grahamii - Z31349	Myodes glareolus	UK
Bartonella grahamii - CP001562	Apodemus sylvaticus	Sweden
Bartonella henselae - BX897699		
Bartonella koehlera - AF076237	Felis catus	USA
Bartonella queenslandensis - EU111754	Melomys sp.	Australia
Bartonella quintana - M73228	Homo sapiens	USA
Bartonella ratta australi ania - EU111749	Rattus tunneyi	Australia
Bartonella schoenbuchensis - AJ278187	Capreolus capreolus	Germany
Bartonella sp. - U71322	Peromyscus leucopus	USA
Bartonella sp. - JF500559	Miniopterus schreibersii	Taiwan
Bartonella sp. AA131HXZ - KJ361606	Apodemus agrarius	China
Bartonella sp. CR93HXZ - KJ361625	Myodes rutilus	China
Bartonella taylori - Z31350	Apodemus spp.	UK
Bartonella tribocorum - AM260525	Rattus norvegicus	France
Bartonella vinsonii subsp. vinsonii - L01259	Vole (unspecified)	Canada
Brucella microti - AM392286	Micr otes arvalis	Czech Republic
Daeguia caeni - EF532794		
Falsochrobactrum ovis - KC254733	Ovis aries	
Mycoplasma dimorpha - D12786		
Ochrobactrum anthropi - NR_114979	Homo sapiens	France
Paenocrobactrum gallinar i - FN391023		Germany
Pseudochrobactrum asccharolyticum - AM180485	Homo sapiens	Sweden
Zoogloea ramigera - D14255		
Figure S1: Variable base-pair positions within the V4 region of the 16S rRNA bacterial gene of a selection of reference *Bartonella* sequences and Bartonella OTUs obtained from *Arvicola terrestris* in Franche-Comté, France. Tile colour indicates the base pair in each sequence at each position. Sequences were clustered using complete linkage of raw distances (ie. no assumptions were made about evolution rates). Black tiles indicate gaps (-) in the alignment.
P. asaccharolyticum − AM180485
B. microti* − AM392286
M. dimorpha − D12786
Z. ramigera − D14255
D. caeni − EF532794
P. gallinarii − FN391023
F. ovis − KC254733
O. anthropi* − NR_114979

Stress : 0.22
R² : 0.83
Figure S2: nMDS ordination of differences between Bartonella OTU seed sequences (numbered, coloured to indicate frequency of detection within the animals sampled) and reference Bartonella sp. sequences (red). Additional reference sequences include *Mycoplasma dimorpha*, *Zooglea ramigera*, *Daeguia caeni*, *Falsochromobactrum ovis*, *Paenochrobactrum gallinarii*, *Pseudochrobactrum asaccharolyticum*, *Brucella microti* and *Ochrobactrum anthropi*. See Figure S3 for expanded view of the ordination within the grey dashed box.
Figure S3: Inset of Figure S2 showing nMDS ordination of differences between the Bartonella-001 seed sequence (yellow) and reference Bartonella sp. sequences in red.
3 Bordetella

The seed sequence of Bordetella-001, the most prevalent of the 11 Bordetella OTUs in the data set, is identical to V4 16S rRNA reference sequences of *Bordetella parapertussis* and *B. bronchiseptica*. The seed sequence of Bordetella-003, the second-most prevalent Bordetella OTU, differs from these two reference sequences by 4 base-pairs. The remaining Bordetella OTU seed sequences differ from reference sequences by at least 4 base-pairs and do not show strong affinities with any of the reference sequences.

Table S3: Species and GenBank accession numbers, source and country of isolation for reference strains of *Bordetella* sp. used in comparisons.

Species - GenBank Accession	Isolation Source	Country
B. avium - AF177666	Meleagris gallopavo	Germany
B. bronchiseptica - U04948	Canis lupus familiaris	Germany
B. hinzii - AF177667	Gallus gallus	Australia
B. holmesii - U04820	Homo sapiens	USA
B. muralis - LC053647	environment	Japan
B. parapertussis - U04949	Homo sapiens	Sweden
B. sputigena - KF601914	Homo sapiens	Sweden
Figure S4: Variable base-pair positions within the V4 region of the 16S rRNA bacterial gene of a selection of reference *Bordetella* sequences and Bordetella OTU seed sequences (numbered) obtained from *Arvicola terrestris* in Franche-Comté, France. Tile colour indicates the base pair in each sequence at each position. Sequences were clustered using complete linkage of raw distances (ie. no assumptions were made about evolution rates). Black crossed tiles (N) indicate ambiguous base pairs in the sequence.
Figure S5: nMDS ordination of differences between Bordetella OTU seed sequences (numbered, coloured to indicate frequency of detection within the animals sampled) and reference *Bordetella* sp. sequences (red).
44 Borelliela

The seed sequence of Borrelliela-001, the only Borrelliela OTU in this data set, is identical to reference sequences of *Borelliella (Borellia) burgdorferi* as well as an unspecified *Borelliela* strain.

Table S4: Similarity, expressed as a percentage, and coverage (in parentheses) of the OTU Borrelliela-001 compared to a selection of reference strains of *Borreleilla (Borrelia) burgdorferi* [4]. Sequences were compared using the blastn search tool.

Reference Sequence	Similarity % (Coverage %)
B. burgdorferi (Lyme disease spirochete) - U03396	100 (100)
B. burgdorferi (Lyme disease spirochete) - X85204	100 (100)
B. sp. - AF467971	100 (100)
B. burgdorferi JD1 - CP002312	100 (100)
B. burgdorferi N40 - CP002228	100 (100)
B. burgdorferi ZS7 - CP001205	100 (100)
5 Filobacterium

23 OTUs were assigned to *Filobacterium*; due to the low number of reference sequences available, they were compared to the two reference sequences of *Fiolbacterium rodentium* deposited in GenBank (accession numbers LC036397 and LC055729). The seed sequence of Filobacterium-001 is identical to both reference sequences; the remaining OTU seed sequences range in similarity from 96.8% and 99.6%.

Table S5: Similarity (expressed as a percentage) and coverage of the *Filobacterium* OTU’s compared to two reference *Filobacterium* strains from the GenBank database. Sequences were compared using the blast+n search tool during OTU procession.

OTU label	F. rodentium - LC036397	F. rodentium - LC055729
Filobacterium-001	100 (100)	100 (100)
Filobacterium-002	99.59 (96.8)	99.59 (96.8)
Filobacterium-003	99.58 (94.4)	99.58 (94.4)
Filobacterium-004	97.99 (99.2)	97.99 (99.2)
Filobacterium-006	98.01 (100)	98.01 (100)
Filobacterium-007	97.61 (100)	97.61 (100)
Filobacterium-008	97.61 (100)	97.61 (100)
Filobacterium-009	96.41 (100)	96.41 (100)
Filobacterium-013	98.79 (98.4)	98.79 (98.4)
Filobacterium-017	98.41 (100)	98.41 (100)
Filobacterium-018	98.01 (100)	98.01 (100)
Filobacterium-023	98.39 (98.8)	98.39 (98.8)
Filobacterium-026	98.01 (100)	98.01 (100)
Filobacterium-027	98.41 (100)	98.41 (100)
Filobacterium-029	96.81 (100)	96.81 (100)
Filobacterium-030	97.21 (100)	97.21 (100)
Filobacterium-031	97.61 (100)	97.61 (100)
Filobacterium-032	98.41 (100)	98.41 (100)
Filobacterium-034	97.61 (100)	97.61 (100)
Filobacterium-040	98.01 (100)	98.01 (100)
Filobacterium-043	98.41 (100)	98.41 (100)
Filobacterium-044	98.01 (100)	98.01 (100)
Filobacterium-045	98.01 (100)	98.01 (100)
6 Leptospira

The seed sequence of Leptospira-001, the most globally prevalent Leptospira OTU, is identical to the type sequences for *L. interrogans* and *L. noguchii* Panama. The majority of the remaining Leptospira OTU seed sequences differ from reference sequences by less than 10 base pairs, but few clear affinities between seed sequences and references are present (Figures S6 and S7).
Table S6: Accession numbers, species, host and country of isolation and associated publications for reference strains of *Leptospira* sp. used in comparisons. *Mayotte is a island department of France located in the Indian Ocean*

Species - Accession	Isolation Source	Country
Leptospira alexanderi serovar Manhao 3 - AY631880		
Leptospira alstonii serovar Sichuan - AY631881		
Leptospira broomii - AY796065	Homo sapiens	
Leptospira idonii - AB721966	Homo sapiens	
Leptospira interrogans - Z12817	Homo sapiens	
Leptospira kmetyi serovar Malaysia - AB279549		
Leptospira licerasiae serovar Varillal - EF612284	Homo sapiens	Peru
Leptospira meyeri serovar Ranarum - AY631878	Rana pipiens	USA
Leptospira noguchii serovar Panama - AY631886	Didelphis marsupialis	Panama
Leptospira parva serovar Parva - AY293856		
Leptospira santarosai serovar Shermani - AY631883	Proechimys semispinosus	Panama
Leptospira wolbachii serovar Codice - AY631879		USA
Leptospira wolffi serovar Khorat - EF025496	Homo sapiens	Thailand
Leptospira mayottensis - KJ847187	Homo sapiens	France (Mayotte, Indian Ocean)
Leptospira borgpetersenii serovar Tarassovi - AM050577		
Leptospira sp. E156 - LC196101		
Leptospira sp. E152 - LC196099		
Figure S6: Variable base-pair positions within the V4 region of the 16S rRNA bacterial gene of a selection of reference *Leptospira* sequences and Leptospira OTU seed sequences (numbered) obtained from *Arvicola terrestris* in Franche-Comté, France. Tile colour indicates the base pair in each sequence at each position. Sequences were clustered using complete linkage of raw distances (ie. no assumptions were made about evolution rates). Black crossed tiles (N) indicate ambiguous base pairs in the sequence, and black tiles indicate gaps (-) in the alignment.
Figure S7: nMDS ordination of differences between Leptospira OTU seed sequences (numbered, coloured to indicate frequency of detection within the animals sampled) and reference *Leptospira* sp. sequences (red).
Mycobacterium

The seed sequences of Mycobacterium-001 and -002 are identical to several reference sequences from the Mycobacterium genus; Mycobacterium-001 is identical to *M. llatzerense*, *M. mucogenicum*, and *M. phlei*, while Mycobacterium-002 is identical to *M. florentinum*, *M. heidelbergense*, *M. lentiflavum*, *M. kubicae*, *M. montefiore*, *M. parvatae*, *M. stoma- tepiae*, and *M. triplex*.
Table S7: Similarity, expressed as a percentage, and coverage (in parentheses) of the *Mycobacterium* OTU’s compared to a selection of typ strains of the genus *Mycobacterium*. Sequences were compared using the blastn search tool.

Reference Sequence	Mycobacterium-001	Mycobacterium-002
M. chelonae - AY457072	99.203 (100)	95.618 (100)
M. florentinum - AJ616230	96.414 (100)	100 (100)
M. heidelbergense - AJ000684	96.414 (100)	100 (100)
M. insubricum - EU605695	96.414 (100)	100 (100)
M. kubicae - AF133902	96.414 (100)	100 (100)
M. lentiflavum - AF480583	96.414 (100)	100 (100)
M. llatzerense - AJ746070	100 (100)	96.414 (100)
M. montefiore - AF330038	96.414 (100)	100 (100)
M. mucogenicum - AY457074	100 (100)	96.414 (100)
M. paratuberculosis - X52931	96.016 (100)	99.602 (100)
M. parmense - AF466821	96.414 (100)	100 (100)
M. phlei - AF480603	100 (100)	96.414 (100)
M. stomatopiae - AM884331	96.414 (100)	100 (100)
M. triplex - U57632	96.414 (100)	100 (100)
M. tuberculosis - X60070	96.016 (100)	99.602 (100)
8 Mycoplasma and Ureaplasma

The majority of the Mycoplasma OTU seed sequences are most similar to the hemotrophic mycoplasmas, with two matching exactly to reference sequences; Mycoplasma-032 is identical to *M. microti*, and Mycoplasma-002 is identical to an unspecified hemotrophic mycoplasma isolated from *Akodon* sp. (Figures S8 and S9). The remaining hemotrophic mycoplasma OTUs do not form clear affinities to described mycoplasma species, with Mycoplasma-001, the most prevalent, differing from *Mycoplasma haemomurus* by 18 base-pairs. Two OTUs appear more similar to non-hemotrophic mycoplasmas, with Mycoplasma-009 and Mycoplasma-016 most similar to *M. neurolyticum* (differing by 17 and 14 base-pairs respectively).
Table S8: Species and GenBank accession numbers, source and country of isolation for reference strains of *Mycoplasma* sp. used in comparisons.

Species - GenBank Accession	Isolation Source	Country
Anaeroplasma varium - M23934		
Asteroleplasma anaerobium - M22351		
Candidatus *Mycoplasma haemomuris* subsp. *musculi* - AB758440	*Apodemus argenteus*	Japan
Candidatus *Mycoplasma haemomuris* subsp. *ratti* - AB758439	*Rattus rattus*	Japan
Haloplasma contractile - EF999972		
Mesoplasma tabanidae - AY187288		
Mycoplasma arginini - AF125581		
Mycoplasma arthritidis - M24580		
Mycoplasma caviae - AF221111		
Mycoplasma cavipharyngis - AF125879		
Mycoplasma citelli - AF412973		
Mycoplasma coccoides - AY171918		
Mycoplasma collis ATCC 35278 - AF538681		
Mycoplasma cricetuli ATCC 35279 - AF412976		
Mycoplasma haemofelis - AF178677	*Felis catus*	USA
Mycoplasma haemofelis - U88563	*Apodemus argenteus*	Japan
Mycoplasma haemofelis - U95297	*Felis catus*	USA
Mycoplasma haemomuris - U82963	*Apodemus argenteus*	Japan
Mycoplasma microti - AF212859	*Microtus ochrogaster*	USA
Mycoplasma muris - M23939	*Mus sp.*	
Mycoplasma neurolyticum - M23944		
Mycoplasma ovipneumoniae - U44771	*Ovis aries*	
Mycoplasma oxoniensis - AF412987	*Cricetulus griseus*	
Mycoplasma pneumoniae ATCC 15531 - AF132740		*Homo sapiens*
Mycoplasma pulmonis - AF125582	*Rattus sp.*	
Mycoplasma putrefaciens - U26055	*Capra aegagrus*	USA
Spiroplasma sabaudiense - AY189308	*Aedes sticticus/vexans*	France
uncultured *Mycoplasma sp.* - KT215637	*Akodon sp.*	Brazil (Atlantic Forest)
uncultured *Mycoplasma sp.* - KT215638	*Necromys lasiurus*	Brazil (Atlantic Forest)
Ureaplasma gallorale - U62937	*Gallus gallus domesticus*	
Ureaplasma urealyticum ATCC27618 - AF073450		*Homo sapiens*
Figure S8: Variable base-pair positions within the V4 region of the 16S rRNA bacterial gene of a selection of reference *Mycoplasma* sequences and Mycoplasma OTUs obtained from *Arvicola terrestris* in Franche-Comté, France. Tile colour indicates the base pair in each sequence at each position. Sequences were clustered using complete linkage of raw distances (i.e. no assumptions were made about evolution rates). Black crossed tiles (N) indicate ambiguous base pairs in the sequence, solid black tiles indicate gaps (-) in the alignment.
Figure S9: nMDS ordination of differences between Mycoplasma OTU seed sequences (coloured to indicate frequency within the data set) and references Mycoplasma sequences (red). See Figure S10 for expanded view of the ordination within the grey dashed box.
Figure S10: Inset of Figure S9 showing nMDS ordination of differences between Mycoplasma OTU seed sequence (numbered, coloured) and reference *Mycoplasma* sp. sequences in red.
9 Pasteurellaceae

The *Pasteurellaceae* as a family is currently taxonomically ambiguous; with a myriad of undescribed species and strains poorly characterized, new taxonomies are produced relatively frequently, often with radically different topologies depending on the loci under consideration. That being said, we don’t attempt to assign genera to the majority of our Pasteurellaceae OTUs unless the seed sequence matches a described species exactly (Actinobacillus-001, for example).
Table S9: Accession numbers, species, host and country of isolation and associated publications for reference strains of *Pasteurellaceae* sp. used in comparisons. *Members of the Rodent Group described in [5].

Species - Accession	Isolation Source	Country
Muribacter muris - AF024526	mouse (unspecified)	USA
Rodentibacter rarus - AF024529	*Rattus* sp.	USA
Haemophilus influenzae-murium - AF024530	mouse (unspecified)	USA
Mannheimia granulomatis - AF053902	*Bos* sp.	Brazil
Haemophilus felis - AF224292	*Felis catus*	USA
Pasteurella sp. MCCM 00235 - AF224300	rodent (unspecified)	USA
Pasteurellaceae bacterium - AF224301	*Mesocricetus auratus*	Germany
Mesocricketibacter intestinalis - AF224302	*Cavia porcellus*	Germany
Pasteurella sp. MCCM 02120 - AF224304	*Anas platyrhynchos domesticus*	Denmark
Gallibacterium anatis - AF228001	*Sus scrofa domesticus*	Canada
*Pasteurella multocida subsp. multocida - AF294410	*Homo sapiens*	France
*Pasteurella multocida subsp. septica - AF294411	*Salmo salar*	UK
*Pasteurella skyensis - AJ243202	*Sus scrofa domesticus*	Canada
*Haemophilus pittmaniae - AJ290755	*Homo sapiens*	USA
*Haemophilus parahaemolyticus - AJ295746	*Homo sapiens*	USA
*Pasteurella multocida subsp. multocida - AY078999	*Canis lupus familiaris*	Denmark
*Haemophilus aegyptius - AY362905	*Homo sapiens*	USA
*Haemophilus haemoglobinophilus - AY362906	*Homo sapiens*	UK
*Haemophilus parainfluenzae - AY362907	*Homo sapiens*	UK
*Glaesserella parasuis - AY362909	*Homo sapiens*	UK
*Pasteurella bettyae - AY362917	*Sus scrofa domesticus*	Denmark
*Avibacterium gallinarum - AY362921	*Gallus gallus*	Denmark
*Pasteurella langaensis - AY362922	*Sus scrofa domesticus*	UK
*Pasteurella mairii - AY362923	*Ovis aries*	UK
*Bibersteinia trehalosi - AY362927	*Gallus gallus*	Germany
*Avibacterium paragallinarum - AY498868	*Homo sapiens*	UK
*Haemophilus influenzae - M35019	*Homo sapiens*	UK
*Haemophilus ducreyi - M63900	*Homo sapiens*	France
*Aggregatibacter actinomycetemcomitans - M75039	*Homo sapiens*	UK
*Aggregatibacter aphrophilus - M75042	*Homo sapiens*	UK
*Aggregatibacter segnis - M75043	*Homo sapiens*	Denmark
*Pasteurella oralis - M75052	*Homo sapiens*	Germany
*Avibacterium aviium - M75058	*Gallus gallus*	Germany
*Haemophilus paracuniculus - M75061	*Oryctolagus cuniculus*	USA
*Avibacterium volantium - M75070	Galloanserae sp.	UK
*Actinobacillus pleuropneumoniae - M75074	*Sus scrofa domesticus*	Germany
*Haemophilus paraphrohaemolyticus - M75076	*Homo sapiens*	UK
*Mannheimia haemolytica - M75080	*Ovis aries*	UK
Rodentibacter pneumotropicus - M75083	*Mus musculus (Swiss mouse)*	USA
*Haemophilus massiliensis - NR149208	*Homo sapiens*	Senegal
Figure S11: Variable base-pair positions within the V4 region of the 16S rRNA bacterial gene of a selection of reference Pasteurellaceae sequences and Pasteurellaceae OTUs obtained from Arvicola terrestris in Franche-Comté, France. Tile colour indicates the base pair in each sequence at each position. Sequences were clustered using complete linkage of raw distances (ie. no assumptions were made about evolution rates). Black crossed tiles (N) indicate ambiguous base pairs in the sequence.
Actinobacillus−001
M. muris
H. influenzae−murium
M. granulomatis
H. felis
Pasteurella sp. MCCM 00235
P. bacterium
M. intestinalis
N. rosorum
G. anatis
P. multocida subsp. multocida
P. multocida subsp. septica
P. skyensis
H. pittmaniae
H. parahaemolyticus
P. multocida subsp. multocida
H. aegyptius
H. haemoglobinophilus
H. parainfluenzae
G. parasuis
P. bettyae
A. gallinarum
P. langaaensis
B. trehalosi
A. paragallinarum
H. influenzae
H. ducreyi
A. actinomycetemcomitans
A. aphrophilus
A. segnis
P. oralis
A. avium
H. paracuniculus
A. volantium
A. pleuropneumoniae
H. paraphrohaemolyticus
M. haemolytica
R. pneumotropicus
H. massiliensis
P. aerogenes
A. paragallinarum
P. mairii
B. trehalosi
P. aerogenes
H. aegyptius
A. pleuropneumoniae
H. influenzae−murium

Stress : 0.19
R^2 : 0.83
Figure S12: nMDS ordination of differences between Pasteurellaceae OTU sequences (numbered, coloured to indicate frequency within the data set) and references Pasteurellaceae sequences (red).
10 Rickettsia

Only one OTU in this data set was assigned to Rickettsia; the seed sequences is most similar to several members of the tick-borne spotted fever group.

Table S10: Similarity, expressed as a percentage, and coverage (in parentheses) of the OTU Rickettsia-001 compared to a selection of reference strains of Rickettsia sp. Sequences were compared using the blastn search tool.

OTUlabel	Reference Sequence	Similarity % (Coverage %)
Rickettsia-001	R. canadensis str. CA410 - CP003304	98.01 (100)
Rickettsia-001	R. canadensis - L36104	98.01 (100)
Rickettsia-001	R. rhipicephali - L36216	98.01 (100)
Rickettsia-001	R. canadensis str. McKiel - CP000409	98.01 (100)
11 Yersinia

Only one OTU in this data set was assigned to *Yersinia*; the seed sequence is identical to a number of species in this genus, as well as the type sequence for *Serratia liquefaciens*.

Table S11: Similarity, expressed as a percentage, and coverage (in parentheses) of the Yersinia OTU compared to a selection of reference strains of *Yersinia* sp. and *Serratia liquefaciens*. Sequences were compared using the blastn search tool.

Reference Sequence	Similarity % (Coverage %)
Serratia liquefaciens - CP011303	100 (100)
Y. kristensenii - CP009997	100 (100)
Y. pestis A1122 - CP009840	100 (100)
Y. enterocolitica - CP009838	100 (100)
Y. intermedia - CP009801	100 (100)
Y. aldovae 670-83 - CP009781	100 (100)
Y. rohdei - CP009787	100 (100)
Y. pseudotuberculosis - CP009786	100 (100)
12 GenBank Accession Numbers

Table S12: GenBank accession numbers for OTU seed sequences presented in the text

OTU label	accession	OTU label	accession	OTU label	accession
Actinobacillus-001	MN94323	Borrelia-001	MN94321	Mycoplasma-001	MN94372
Anaplasma-001	MN94320	Filobacterium-001	MN94312	Mycoplasma-021	MN94351
Bartonella-001	MN94311	Filobacterium-002	MN94370	Mycoplasma-024	MN94354
Bartonella-002	MN94344	Filobacterium-003	MN94366	Mycoplasma-026	MN94368
Bartonella-003	MN94343	Filobacterium-004	MN94376	Mycoplasma-032	MN94345
Bartonella-004	MN94337	Filobacterium-006	MN94378	Mycoplasma-035	MN94373
Bartonella-005	MN94338	Filobacterium-007	MN94381	Mycoplasma-036	MN94375
Bartonella-006	MN94347	Filobacterium-008	MN94382	Mycoplasma-050	MN94400
Bartonella-007	MN94341	Filobacterium-009	MN94383	Mycoplasma-060	MN94407
Bartonella-008	MN94335	Filobacterium-013	MN94387	Mycoplasma-081	MN94408
Bartonella-009	MN94356	Filobacterium-017	MN94416	Mycoplasma-064	MN94409
Bartonella-010	MN94350	Filobacterium-018	MN94417	Mycoplasma-068	MN94410
Bartonella-012	MN94339	Filobacterium-023	MN94438	Mycoplasma-074	MN94411
Bartonella-014	MN94353	Filobacterium-026	MN94440	Mycoplasma-075	MN94412
Bartonella-018	MN94364	Filobacterium-027	MN94448	Mycoplasma-081	MN94419
Bartonella-021	MN94380	Filobacterium-029	MN94449	Pasteurellaceae-001	MN94319
Bartonella-026	MN94374	Filobacterium-030	MN94450	Pasteurellaceae-002	MN94317
Bartonella-028	MN94379	Filobacterium-031	MN94451	Pasteurellaceae-003	MN94318
Bartonella-032	MN94385	Filobacterium-032	MN94452	Pasteurellaceae-004	MN94328
Bartonella-035	MN94388	Filobacterium-034	MN94453	Pasteurellaceae-005	MN94358
Bartonella-039	MN94389	Filobacterium-040	MN94454	Pasteurellaceae-006	MN94365
Bartonella-041	MN94390	Filobacterium-043	MN94455	Pasteurellaceae-008	MN94346
Bartonella-042	MN94391	Filobacterium-044	MN94456	Pasteurellaceae-009	MN94357
Bartonella-044	MN94392	Filobacterium-045	MN94457	Pasteurellaceae-013	MN94377
Bartonella-047	MN94398	Leptospira-001	MN94314	Pasteurellaceae-015	MN94386
Bartonella-052	MN94401	Leptospira-002	MN94336	Pasteurellaceae-016	MN94393
Bartonella-055	MN94402	Leptospira-003	MN94367	Pasteurellaceae-017	MN94394
Bartonella-056	MN94404	Leptospira-004	MN94361	Pasteurellaceae-018	MN94403
Bartonella-057	MN94406	Leptospira-005	MN94363	Pasteurellaceae-020	MN94420
Bartonella-058	MN94413	Leptospira-012	MN94371	Pasteurellaceae-022	MN94433
Bartonella-059	MN94414	Leptospira-023	MN94396	Pasteurellaceae-023	MN94434
Bartonella-060	MN94415	Leptospira-024	MN94397	Pasteurellaceae-024	MN94435
Bartonella-063	MN94422	Leptospira-029	MN94418	Pasteurellaceae-026	MN94436
Bartonella-066	MN94423	Leptospira-030	MN94421	Pasteurellaceae-027	MN94437
Bartonella-067	MN94424	Leptospira-031	MN94458	Pasteurellaceae-028	MN94439
Bartonella-068	MN94425	Leptospira-035	MN94462	Pasteurellaceae-031	MN94441
Bartonella-075	MN94426	Leptospira-036	MN94463	Pasteurellaceae-033	MN94442
Bartonella-076	MN94427	Leptospira-039	MN94464	Pasteurellaceae-034	MN94443
Bartonella-079	MN94428	Leptospira-042	MN94465	Pasteurellaceae-040	MN94444
Bartonella-084	MN94429	Mycobacterium-001	MN94325	Pasteurellaceae-041	MN94445
Bartonella-087	MN94430	Mycobacterium-002	MN94329	Pasteurellaceae-045	MN94446
Bartonella-088	MN94431	Mycoplasma-001	MN94313	Pasteurellaceae-046	MN94447
Bartonella-090	MN94432	Mycoplasma-002	MN94315	Rickettsia-001	MN94322
Bordetella-001	MN94316	Mycoplasma-003	MN94332	Ureaplasma-001	MN94330
Bordetella-002	MN94340	Mycoplasma-004	MN94333	Yersinia	MN94327
Bordetella-003	MN94349	Mycoplasma-005	MN94334		
Bordetella-004	MN94359	Mycoplasma-006	MN94334		
Bordetella-005	MN94395	Mycoplasma-007	MN94331		
Bordetella-006	MN94342	Mycoplasma-008	MN94352		
Bordetella-008	MN94384	Mycoplasma-009	MN94326		
Bordetella-010	MN94399	Mycoplasma-010	MN94348		
Bordetella-011	MN94405	Mycoplasma-012	MN94360		
Bordetella-013	MN94459	Mycoplasma-016	MN94335		
Bordetella-015	MN94460	Mycoplasma-018	MN94362		
Bordetella-016	MN94461	Mycoplasma-019	MN94369		
13 R Packages

The following R packages were used in the analyses and preparation of the manuscript:

ape Paradis, E. and Schliep, K. 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. – Bioinformatics 35: 526–528

gooccur Griffith, D. M. et al. 2016. gooccur: Probabilistic species co-occurrence analysis in R. – Journal of Statistical Software, Code Snippets 69: 1–17

dplyr Wickham, H. et al. 2020. dplyr: A Grammar of Data Manipulation

dunn.test Dinno, A. 2017. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums

ecodist Goslee, S. C. and Urban, D. L. 2007. The ecodist package for dissimilarity-based analysis of ecological data. – Journal of Statistical Software 22: 1–19

egg Auguie, B. 2019. egg: Extensions for ‘ggplot2’: Custom Geom, Custom Themes, Plot Alignment, Labelled Panels, Symmetric Scales, and Fixed Panel Size

emmeans Lenth, R. 2020. emmeans: Estimated Marginal Means, aka Least-Squares Means

english Fox, J. et al. 2020. english: Translate Integers into English

ggdendro de Vries, A. and Ripley, B. D. 2016. ggdendro: Create Dendrograms and Tree Diagrams Using ‘ggplot2’

ggplot2 Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. – Springer-Verlag New York

ggrepel Slowikowski, K. 2020. ggrepel: Automatically Position Non-Overlapping Text Labels with ‘ggplot2’

ggsn Santos Baquero, O. 2019. ggsn: North Symbols and Scale Bars for Maps Created with ‘ggplot2’ or ‘gmap’

gtable Wickham, H. and Pedersen, T. L. 2019. gtable: Arrange ‘Grobs’ in Tables

iNEXT Hsieh, T. C. et al. 2020. iNEXT: Interpolation and Extrapolation for Species Diversity

lubridate Grolemund, G. and Wickham, H. 2011. Dates and times made easy with lubridate. – Journal of Statistical Software 40: 1–25

MASS Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S. Fourth edn. – Springer, New York

multcomp Hothorn, T. et al. 2008. Simultaneous inference in general parametric models. – Biometrical Journal 50: 346–363

plyr Wickham, H. 2011. The split-apply-combine strategy for data analysis. – Journal of Statistical Software 40: 1–29
purrr Henry, L. and Wickham, H. 2020. purrr: Functional Programming Tools

raster Hijmans, R. J. 2020. raster: Geographic Data Analysis and Modeling

rcompanion Mangiafico, S. 2020. rcompanion: Functions to Support Extension Education Program Evaluation

readr Wickham, H. et al. 2018. readr: Read Rectangular Text Data

rgdal Bivand, R. et al. 2019. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library

rgeos Bivand, R. and Rundel, C. 2019. rgeos: Interface to Geometry Engine - Open Source (‘GEOS’)

sp Bivand, R. S. et al. 2013. Applied spatial data analysis with R, Second edition. – Springer, NY

stplanr Robin Lovelace and Richard Ellison 2018. stplanr: A Package for Transport Planning. – The R Journal 10

stringr Wickham, H. 2019. stringr: Simple, Consistent Wrappers for Common String Operations

tibble Miller, K. and Wickham, H. 2020. tibble: Simple Data Frames

xtable Dahl, D. B. et al. 2019. xtable: Export Tables to LaTeX or HTML
References

[1] Mahé, F., Rognes, T., Quince, C., de Vargas, C., Dunthorn, M.: Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, 593 (2014)

[2] Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glockner, F.O., Yarza, P.: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, 590–596 (2013). doi:10.1093/nar/gks1219

[3] Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R., Potter, S.C., Finn, R.D., et al.: The embl-ebi search and sequence analysis tools apis in 2019. Nucleic acids research 47(W1), 636–641 (2019)

[4] Adeolu, M., Gupta, R.S.: A phylogenomic and molecular marker based proposal for the division of the genus borrelia into two genera: the emended genus borrelia containing only the members of the relapsing fever borrelia, and the genus borreliella gen. nov. containing the members of the lyme disease borrelia (borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 105(6), 1049–1072 (2014)

[5] Olsen, I., Dewhirst, F.E., Paster, B.J., Busse, H.: Pasteurellaceae. In: Whitman, W.B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., Hedlund, B., Dedysh, S. (eds.) Bergey’s Manual of Systematics of Archaea and Bacteria, pp. 1–9. John Wily & Sons, Inc. in association with Bergey’s Manual Trust, (2015). doi:10.1002/9781118960608.fbm00230