CONCERNING ASYMPTOTIC BEHAVIOR FOR EXTREMAL POLYNOMIALS ASSOCIATED TO NON-DIAGONAL SOBOLEV NORMS

ANA PORTILLA\(^{(1),(3)}\), YAMILET QUINTANA\(^{(2)}\), JOSÉ M. RODRÍGUEZ\(^{(3),(4)}\), AND EVA TOURÍS\(^{(1),(3)}\)

Abstract. Let \(P \) be the space of polynomials with the non-diagonal Sobolev norm \(\| \cdot \|_{W^{1,p}(V\mu)} \), given by
\[
\| f \|_{W^{1,p}(V\mu)} := \left(\int \left(a_p |f|^2 + c_p |f'|^2 + 2 \Re(b_p f f') \right)^{p/2} d\mu \right)^{1/p},
\]
where \(\mu = \mu_1 + \mu_2 \) is a measure such that \(|b_p|^2 \leq (1 - \varepsilon_0) a_p c_p \), \(\mu_1 \)-almost everywhere for some fixed \(0 < \varepsilon_0 \leq 1 \), \(\mu_2 \) is a finite Borel measure whose support \(S(\mu_2) \) is contained in a finite union of rectifiable compact curves, \(V \) is a positive definite matrix \(\mu \)-almost everywhere and \(1 \leq p < \infty \). In this paper we establish the zero location and asymptotic behavior of extremal polynomials associated to \(\| \cdot \|_{W^{1,p}(V\mu)} \), stating hypothesis on the matrix \(V \) rather than on the diagonal matrix appearing in its unitary factorization.

Using the properties of the multiplication operator by the independent variable as the main tools in order to obtain our results, we complement and improve the study started in [17], where the case \(p = 2 \) with \(1 \leq p \leq 2 \) was considered with a similar approach.

Key words and phrases: Multiplication operator; Zero location; Asymptotic behavior; \(n \)th root asymptotic; Sobolev orthogonal polynomials; Extremal polynomials; Non-diagonal Sobolev norms.

Dedicated to Francisco Marcellán Español on his 60th birthday

1. Introduction

In the last decades the asymptotic behavior of Sobolev orthogonal polynomials has been one of the main topics of interest to investigators in the field. In [13] the authors obtain the \(n \)th root asymptotic of Sobolev orthogonal polynomials when the zeros of these polynomials are contained in a compact set of the complex plane; however, the boundedness of the zeros of Sobolev orthogonal polynomials is an open problem, but as was stated in [11], it could be obtained as a consequence of the boundedness of the multiplication operator \(Mf(z) = zf(z) \). Thus, finding conditions to ensure the boundedness of \(M \) would provide important information about the crucial issue of determining the asymptotic behavior of Sobolev orthogonal polynomials (see, for instance [2, 12, 16, 18, 19, 20, 22, 23]). The more general result on this topic is [2, Theorem 8.1] which characterizes in terms of equivalent norms in Sobolev spaces the boundedness of \(M \) for the classical diagonal norm
\[
\| q \|_{W^{N,p}(\mu_0,\mu_1,\ldots,\mu_N)} := \left(\sum_{k=0}^{N} \| q^{(k)} \|_{L^p(\mu_k)} \right)^{1/p}
\]
(see Theorem 2.2 below, which is [2, Theorem 8.1] in the case \(N = 1 \)). The rest of the above mentioned papers provides conditions that ensure the equivalence of norms in Sobolev spaces, and consequently, the boundedness of \(M \).

Date: June 15, 2011.
2010 AMS Subject Classification. 41A10, 46E35, 46G10.

(1) Supported in part by a grant from Ministerio de Ciencia e Innovación (MTM 2009-12740-C03-01), Spain.
(2) Supported in part by the Research Sabbatical Fellowship Program (2011-2012) from Universidad Simón Bolívar, Venezuela.
(3) Supported in part by two grants from Ministerio de Ciencia e Innovación (MTM 2009-07800 and MTM 2008-02829-E), Spain.
(4) Supported in part by a grant from CONACYT (CONACYT-UAG I0110/62/10 FON.INST.8/10), México.
Results related to non-diagonal Sobolev norms, may be found in [1, 3, 6, 7, 9, 12, 14, 16]. Particularly, in [3, 9, 12, 14, 16] the authors establish the asymptotic behavior of orthogonal polynomials with respect to non-diagonal Sobolev inner products and the authors in [12] deal with the asymptotic behavior of extremal polynomials with respect to the following non-diagonal Sobolev norms.

Let \mathbb{P} be the space of polynomials and μ be a finite Borel positive measure with compact support $S(\mu)$ consisting of infinitely many points in the complex plane; let us consider the diagonal matrix $\Lambda := \text{diag}(\lambda_{j})$, $j = 0, \ldots, N$, with λ_{j} positive μ-almost everywhere measurable functions, and $U := (u_{jk})$, $0 \leq j, k \leq N$, a matrix of measurable functions such that the matrix $U(x) = (u_{jk}(x))$, $0 \leq j, k \leq N$ is unitary μ-almost everywhere. If $V := U^\ast U^*$, where U^* denotes the transpose conjugate of U (note that then V is a positive definite matrix μ-almost everywhere), and $1 \leq p < \infty$ we define the Sobolev norm on the space of polynomials \mathbb{P}

$$
\|q\|_{W^{N,p}(V,\mu)} := \left(\int |(q, q', \ldots, q^{(N)})V^{2/p}(q, q', \ldots, q^{(N)})^{\ast}|^{p/2}d\mu \right)^{1/p}
$$

(1.1)

In [8, Chapter XIII] certain general conditions imposed on the matrix V are requested in order to guarantee the existence of an unitary representation with measurable entries.

If U is not the identity matrix μ-almost everywhere, then (1.1) defines a non-diagonal Sobolev norm in which the product of derivatives of different order appears. We say that $\{q_{n}\}_{n \geq 0}$ is an nth monic extremal polynomial with respect to the norm (1.1) if

$$
\|q_{n}\|_{W^{N,p}(V,\mu)} = \inf \{\|q\|_{W^{N,p}(V,\mu)} : q(z) = z^n + b_{n-1}z^{n-1} + \cdots + b_1z + b_0, \quad b_j \in \mathbb{C} \}.
$$

It is clear that there exists at least an nth monic extremal polynomial. Furthermore, it is unique if $1 < p < \infty$. If $p = 2$, then the nth monic extremal polynomial is precisely the nth monic Sobove orthogonal polynomial with respect to the inner product corresponding to (1.1).

In [12, Theorem 1] the authors showed that the zeros of the polynomials in $\{q_{n}\}_{n \geq 0}$ are uniformly bounded in the complex plane, whenever there exists a constant C such that $\lambda_{j} \leq C\lambda_{k}$, μ-almost everywhere for $0 \leq j, k \leq N$. This property made possible to obtain the nth root asymptotic behavior of extremal polynomials (see [12, Theorems 2 and 6]). Although it is required compact support for μ, this is, certainly, a natural hypothesis: if $S(\mu)$ is not bounded, then we cannot expect to have zeros uniformly bounded, not even in the classical case (orthogonal polynomials in L^2), see [5].

For $N = 1$ and $1 \leq p \leq 2$, in [17] is obtained an equivalent result to [12, Theorem 1], but stating hypothesis on the matrix V rather than on the diagonal matrix Λ that appears in its unitary factorization. In exchange for a certain loss of generality, a weaker hypothesis than the totally dominatedness for $\{\lambda_{j}\}_{0 \leq j \leq N}$ is required. More precisely, the authors obtain the following result.

Theorem 1.1. [17, Theorem 4.3] Let γ be a finite union of rectifiable compact curves in the complex plane, μ a finite Borel measure with compact support $S(\mu) = \gamma$, V a positive definite matrix μ-almost everywhere and

$$
V^{2/p} = \begin{pmatrix}
 a_p^2 & b_p \\
 b_p & c_p
\end{pmatrix}.
$$

Assume that $1 \leq p \leq 2$, $(c_p^{p/2}d\mu/ds)^{-1} \in L^{1/(p-1)}(\gamma)$, and the norms in $W^{1,p}(a_p^{p/2} + c_p^{p/2})\mu$, $W^{1,p}(d_{p/2}^p, c_p^{p/2})\mu$ are equivalent on \mathbb{P}. Let $\{q_{n}\}_{n \geq 0}$ be a sequence of extremal polynomials with respect to (1.1). Then the multiplication operator is bounded with the norm $W^{1,p}(V,\mu)$ and the zeros of $\{q_{n}\}_{n \geq 0}$ lie in the bounded disk $\{z : |z| \leq 2\|M\|\}$.

In this paper we improve Theorem 1.1 in two directions: on the one hand, we enlarge the class of measures μ considered and, on the other hand, we prove our result for $1 \leq p < \infty$ (see Theorem 4.3). In order to describe the measures we will deal with, we introduce the definition of p-admissible pairs as follows: Given
1 \leq p < \infty$, we say that the pair (V, μ) is p-admissible if μ is a finite Borel measure which can be written as $\mu = \mu_1 + \mu_2$, its support $S(\mu)$ is a compact subset of the complex plane which contains infinitely many points and V is a positive definite matrix μ-almost everywhere with $|b_p|^2 \leq (1 - \varepsilon_0) a_p c_p$, μ_1-almost everywhere for some fixed $0 < \varepsilon_0 \leq 1$, the support $S(\mu_2)$ is contained in a finite union of rectifiable compact curves γ with

$$\left(c_p^{1/2} d\mu_2 / ds\right)^{-1} \in L^{1/(p-1)}(\gamma)$$

if $\gamma \neq \emptyset$, $V^{2/p} := \left(\frac{a_p}{b_p} \frac{b_p}{c_p} \right)$ and $d\mu_2 / ds$ is the Radon-Nykodim derivative of μ_2 with respect to the Euclidean length in γ.

We want to make three remarks about this definition. First of all, since $V = \left(\begin{array}{ll} a_2 & b_2 \\ b_2 & c_2 \end{array}\right)$ is a positive definite matrix μ-almost everywhere, $V^{2/p}$ also has this property and hence, $|b_p|^2 < a_p c_p$, μ-almost everywhere.

In order to obtain $\left(c_p^{1/2} d\mu_2 / ds\right)^{-1} \in L^{1/(p-1)}(\gamma)$ the best choice for μ_2 is the restriction of μ to γ.

Note that the support of μ is an arbitrary compact set: we just require that $S(\mu_2)$ (the part of $S(\mu)$ in which $V^{2/p}$ is about to be a degenerated quadratic form, when $|b_p|^2$ is very close to $a_p c_p$) is a union of curves.

Therefore, with the results on p-admissible pairs we complement and improve the study started in [17], where the case $\mu = \mu_2$ with $1 \leq p \leq 2$ was considered.

Another interesting property which could be studied is the asymptotic estimate for the behavior of extremal polynomials because, in this setting, there does not exist the usual three term recurrence relation for orthogonal polynomials in L^2 and this makes really difficult to find an explicit expression for the extremal polynomial of degree n. In this regard, Theorems 5.1 and 5.2 deduce the asymptotic behavior of extremal polynomials as an application of Theorems 4.2 and 4.3. More precisely, we obtain the nth root and the zero counting measure asymptotic both of those polynomials and their derivatives to any order. The study of the nth root asymptotic is a classical problem in the theory of orthogonal polynomials, see for instance, [11, 12, 13, 25, 26].

Furthermore, in Theorem 5.2 we find the following asymptotic relation:

$$\lim_{n \to \infty} \frac{\lambda_n^{(j+1)}(z)}{\lambda_n^{(j)}(z)} = \int \frac{d\mu(x)}{z - x},$$

for any $j \geq 0$.

The main idea of [12, 16, 17] and this paper is to compare non-diagonal and diagonal norms.

When it comes to compare non-diagonal and diagonal norms, the reference [10] is remarkable, since the authors show that symmetric Sobolev bilinear forms, like symmetric matrices, can be rewritten with a diagonal representation; unfortunately, the entries of these diagonal matrices are real measures, and we cannot use this representation since we need positive measures for the Sobolev norms.

Finally, we would like to note that the central obstacle in order to generalize the results given in this paper and [17] to the case of more derivatives is that there are too many entries in the matrix V and just a few relations to control them (see Lemma 3.5 and notice that some limits appearing in that Lemma do not provide any new information). In that case we have just three entries (a_p, b_p, c_p), but in the simple case of two derivatives $(N = 2)$ we have

$$V := \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix},$$

and we would need to control six functions $(a_{11}, a_{12}, a_{13}, a_{22}, a_{23}, a_{33})$; in the general case with N derivatives, we would need to control $(N + 1)(N + 2)/2$ functions.

The outline of the paper is as follows. In Section 2 we provide some background and previous results on the multiplication operator and the location of zeros of extremal polynomials. We have devoted Section 3 to some technical lemmas in order to simplify the proof of Theorem 4.1 about the equivalence of norms; in fact,
in these lemmas the hardest part of this proof is collected. In Section 4 we give the proof of that Theorem and in Section 5 we deduce some results on asymptotic of extremal polynomials.

2. Background and Previous Results

In what follows, given $1 \leq p < \infty$ we define
\[
\|f\|_{W^{1,p}(\mathbb{R}^2)} := \left(\int (a_p |f|^2 + c_p |f'|^2)^{p/2} \, d\mu \right)^{1/p},
\]
(2.2)
\[
\|f\|_{W^{1,p}(\mathbb{R})} := \left(\int (a_p |f|^2 + c_p |f'|^2)^{p/2} \, d\mu \right)^{1/p},
\]
\[
\|f\|_{W^{1,p}(V_\mu)} := \left(\int (a_p |f|^2 + c_p |f'|^2 + 2 \Re(b_p f f'))^{p/2} \, d\mu \right)^{1/p},
\]
for every polynomial f.

It is obviously much easier to deal with the norms $\| \cdot \|_{W^{1,p}(\mathbb{R}^2)}$ than with the one $\| \cdot \|_{W^{1,p}(\mathbb{R})}$. Therefore, one of our main goals is to provide weak hypotheses to guarantee the equivalence of these norms on the linear space of polynomials \mathcal{P} (see Section 4).

In order to bound the zeros of polynomials, one of the most successful strategies has certainly been to bound the multiplication operator by the independent variable $Mf(z) = zf(z)$, where
\[
\|M\| := \sup \left\{ \|zq(z)\|_{W^{1,p}(V_\mu)} : \|g\|_{W^{1,p}(V_\mu)} = 1 \right\}.
\]

Regarding this issue, the following result is known.

Theorem 2.1. ([12, Theorem 3]) Let μ be a finite Borel measure in \mathbb{C} with compact support and $1 \leq p < \infty$. Let $\{q_n\}_{n \geq 0}$ be a sequence of extremal polynomials with respect to (1.1). Then the zeros of $\{q_n\}_{n \geq 0}$ lie in the disk $\{z : |z| \leq \|M\|\}$.

It is also known a simple characterization of the boundedness of M.

Theorem 2.2. ([2, Theorem 8.1]) Let μ be a finite Borel measure in \mathbb{C} with compact support, α, β non-negative measurable functions and $1 \leq p < \infty$. Then the multiplication operator is bounded in $W^{1,p}(\alpha \mu, \beta \mu)$ if and only if the following condition holds:
\[
\|f\|_{W^{1,p}(\mathbb{R}^2)}(\alpha + \beta) \mu \text{ and } W^{1,p}(\alpha \mu, \beta \mu) \text{ are equivalent on } \mathbb{P}.
\]
(2.3)

It is clear that if there exists a constant C such that $\beta \leq C\alpha$ μ-almost everywhere, then (2.3) holds. In [19, 23] some other very simple conditions implying (2.3) are shown.

In what follows, we will fix a p-admissible pair (V, μ) with $1 \leq p < \infty$; then $S(\mu_2)$ is contained in a finite union of rectifiable compact curves γ in the complex plane; each of these connected components of γ is not required to be either simple or closed.

3. Technical Lemmas

For the sake of clarity and readability, we have opted for proving all the technical lemmas in this section. This makes the proof of Theorem 4.1 much more understandable.

The following result is well known.

Lemma 3.1. Let us consider $1 \leq \alpha < \infty$. Then
\[
(x + y)^\alpha \leq 2^{\alpha-1} (x^\alpha + y^\alpha) \quad \text{for every } x, y \geq 0.
\]
(3.4)

Lemma 3.2. ([17, Lemma 3.1]) Let us consider $0 < \alpha \leq 1$. Then
(1) $|y^\alpha - x^\alpha| \leq |y - x| \alpha$ for every $x, y \in \mathbb{R}$.
(2) $2^{\alpha-1} (y^\alpha + x^\alpha) \leq (y + x)^\alpha \leq y^\alpha + x^\alpha$ for every $x, y \geq 0$.

[72x770]
Lemma 3.3. ([17, Lemma 3.2]) Let \(\{s_n\}_n \) and \(\{t_n\}_n \) be two sequences of positive numbers. Then
\[
\lim_{n \to \infty} \frac{2s_n t_n}{s_n^2 + t_n^2} = 1 \quad \text{if and only if} \quad \lim_{n \to \infty} \frac{s_n}{t_n} = 1.
\]

In what follows \(a_p, b_p \) and \(c_p \) refer to the coefficients of the fixed matrix \(V^{2/p} \).

Definition 3.4. We say that \(\{f_n\}_n \subset \mathbb{P} \) is an extremal sequence for \(p \) if, for every \(n \), \(\|f_n\|_{L^\infty(\mu_p)} = 1 \) and
\[
\lim_{n \to \infty} \frac{\int |2b_p f_n f_n' |^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2} = 1.
\]

Lemma 3.5. If \(1 \leq p < \infty \) and \(\{f_n\}_n \) is an extremal sequence for \(p \), then:
\[
\lim_{n \to \infty} \frac{\int |b_p f_n f_n'|^{p/2} \, d\mu_2}{\int (\sqrt{a_p c_p} |f_n f_n'|)^{p/2} \, d\mu_2} = 1,
\]
\[
\lim_{n \to \infty} \frac{\left(\int (a_p |f_n|^2)^{p/2} \, d\mu_2 \right)^{1/2} \left(\int (c_p |f_n'|^2)^{p/2} \, d\mu_2 \right)^{1/2}}{\left(\int (a_p |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2 \right)^{1/2}} = 1,
\]
\[
\lim_{n \to \infty} \frac{2^{p/2} \int (a_p |f_n|^2)^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2} = 1,
\]
\[
\lim_{n \to \infty} \frac{(c_p |f_n'|^2)^{p/2} \, d\mu_2}{(c_p |f_n'|^2)^{p/2} \, d\mu_2} = 1.
\]

Proof. The case \(1 \leq p \leq 2 \) is a consequence of Lemmas 3.5 and 3.6 in [17]. We deal now with the case \(p > 2 \). First note that we can rewrite the limit (3.5) in the definition 3.4 as the limit of the following product
\[
\lim_{n \to \infty} \frac{\int |b_p f_n f_n'|^{p/2} \, d\mu_2}{\int (\sqrt{a_p c_p} |f_n f_n'|)^{p/2} \, d\mu_2} \cdot \frac{\int (\sqrt{a_p c_p} |f_n f_n'|)^{p/2} \, d\mu_2}{\int (a_p |f_n|^2)^{p/2} \, d\mu_2} \cdot \frac{\left(\int (a_p |f_n|^2)^{p/2} \, d\mu_2 \right)^{1/2} \left(\int (c_p |f_n'|^2)^{p/2} \, d\mu_2 \right)^{1/2}}{\left(\int (a_p |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2 \right)^{1/2}} \cdot \frac{2^{p/2} \int (a_p |f_n|^2)^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2} = 1.
\]

Since the limit of the product is 1, if we prove that the first, third and fourth factors tend to 1 as \(n \) tends to infinity, then the limit of the second factor must also be 1.
So, our problem is reduced to show

\[\left(3.6\right) \quad \lim_{n \to \infty} \int |b_p f_n f'_n|^{p/2} \, d\mu_2 = 1, \]

\[\left(3.7\right) \quad \lim_{n \to \infty} \frac{2 \left(\int (a_p |f_n|^2)^{p/2} \, d\mu_2 \right)^{1/2} \left(\int (c_p |f'_n|^2)^{p/2} \, d\mu_2 \right)^{1/2}}{\int \left((a_p |f_n|^2)^{p/2} + (c_p |f'_n|^2)^{p/2} \right) \, d\mu_2} = 1, \]

\[\left(3.8\right) \quad \lim_{n \to \infty} \frac{2^{p/2-1} \int (a_p |f_n|^2)^{p/2} + (c_p |f'_n|^2)^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} = 1, \quad \text{and} \]

\[\left(3.9\right) \quad \lim_{n \to \infty} \frac{\int (a_p |f_n|^2)^{p/2} \, d\mu_2}{\int (c_p |f'_n|^2)^{p/2} \, d\mu_2} = 1. \]

Again, we can rewrite the limit in the definition of extremal sequence as the limit of the following product

\[\lim_{n \to \infty} \frac{\int |b_p f_n f'_n|^{p/2} \, d\mu_2}{\left(\sqrt{\alpha_p c_p} |f_n f'_n| \right)^{p/2} \, d\mu_2} \cdot \frac{\int (2 \sqrt{\alpha_p c_p} |f_n f'_n|)^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} = 1. \]

The two factors above are non-negative and less than or equal to 1 using, respectively, that $|b_p|^2 < a_p c_p \mu_2$-almost everywhere and $2xy \leq x^2 + y^2$. Thus,

\[\left(3.10\right) \quad \lim_{n \to \infty} \frac{\int |b_p f_n f'_n|^{p/2} \, d\mu_2}{\left(\sqrt{\alpha_p c_p} |f_n f'_n| \right)^{p/2} \, d\mu_2} = 1 = \lim_{n \to \infty} \frac{\int (2 \sqrt{\alpha_p c_p} |f_n f'_n|)^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2}, \]

and (3.6) holds.

Given $\varepsilon > 0$, for each n let us define the following sets:

\[F_{n, \varepsilon} := \left\{ z \in S(\mu_2) : \frac{1}{1+\varepsilon} \leq \frac{\sqrt{\alpha_p c_p} |f_n|}{\sqrt{c_p} |f'_n|} \leq 1 + \varepsilon \right\}, \]

\[F^c_{n, \varepsilon} := S(\mu_2) \setminus F_{n, \varepsilon}. \]

Then there exists a constant $0 < C_\varepsilon < 1$, just depending on ε, such that

\[\int_{F^c_{n, \varepsilon}} \frac{(2 \sqrt{\alpha_p c_p} |f_n f'_n|)^{p/2} \, d\mu_2}{(a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} \leq C_\varepsilon^{p/2} < 1. \]

Using this fact and (3.10), we have
consequently,

\[1 = \lim_{n \to \infty} \frac{\int_{F_{n, \varepsilon}} \left(2\sqrt{\alpha_p c_p} |f_n f_n'| \right)^{p/2} \, d\mu_2}{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2} + \int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2 \]

\[+ \int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu \]

\[\leq \frac{C^{p/2} + \liminf_{n \to \infty} \int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2}{1 + \liminf_{n \to \infty} \int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2} \]

If we assume that \(\liminf_{n \to \infty} \int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2 = l < \infty \), then from the previous inequality we have \(1 \leq \frac{C^{p/2} + l}{1 + l} < 1 \), and this is a contradiction. Hence, \(\lim_{n \to \infty} \int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2 = \infty \) and consequently,

\[\lim_{n \to \infty} \frac{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2}{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2} = 0. \]

Since for each \(n \), we have

\[\frac{\int_{F_{n, \varepsilon}} \left(2\sqrt{\alpha_p c_p} |f_n f_n'| \right)^{p/2} \, d\mu_2}{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2} \leq \frac{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2}{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2}, \]

then (3.12) implies that

\[\lim_{n \to \infty} \frac{\int_{F_{n, \varepsilon}} \left(2\sqrt{\alpha_p c_p} |f_n f_n'| \right)^{p/2} \, d\mu_2}{\int_{F_{n, \varepsilon}} \left(a_p |f_n|^2 + c_p |f_n'|^2 \right)^{p/2} \, d\mu_2} = 0. \]
On the other hand, using (3.10) it is easy to deduce that

\[
\lim_{n \to \infty} \frac{\int_{F_{n,a}} (2\sqrt{ap}c_p |f_n f_n'|)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2} + \frac{\int_{F_{n,a}} (2\sqrt{ap}c_p |f_n f_n'|)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2}
\]

\[(3.14)\]

\[= 1, \]

Consequently, (3.12), (3.13) and (3.14) give

\[
\lim_{n \to \infty} \frac{\int_{F_{n,a}} (2\sqrt{ap}c_p |f_n f_n'|)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2} = 1. \]

\[(3.15)\]

Furthermore, since

\[
0 \leq \frac{1}{(1 + \varepsilon)^{p/2}} \int_{F_{n,a}} (c_p |f_n'|^2)^{p/2} \, d\mu_2 \leq \frac{1}{\int_{F_{n,a}} (\sqrt{ap}c_p |f_n f_n'|)^{p/2} \, d\mu_2},
\]

we obtain

\[
0 \leq \frac{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2}{(1 + \varepsilon)^{p/2} \int_{F_{n,a}} (c_p |f_n'|^2)^{p/2} \, d\mu_2} \leq \frac{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (\sqrt{ap}c_p |f_n f_n'|)^{p/2} \, d\mu_2}.
\]

\[(3.16)\]

Therefore, (3.12), (3.15) and (3.16) give

\[
\lim_{n \to \infty} \frac{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (c_p |f_n'|^2)^{p/2} \, d\mu_2} = 0.
\]

\[(3.17)\]

Similar arguments allow us to show

\[
\lim_{n \to \infty} \frac{\int_{F_{n,a}} (ap |f_n|^2 + c_p |f_n'|^2)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (ap |f_n|^2)^{p/2} \, d\mu_2} = 0.
\]

\[(3.18)\]

From (3.17) and (3.18) we obtain

\[
\lim_{n \to \infty} \frac{\int_{F_{n,a}} (ap |f_n|^2)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (c_p |f_n'|^2)^{p/2} \, d\mu_2} = 0 = \lim_{n \to \infty} \frac{\int_{F_{n,a}} (c_p |f_n'|^2)^{p/2} \, d\mu_2}{\int_{F_{n,a}} (ap |f_n|^2)^{p/2} \, d\mu_2},
\]

\[(3.19)\]

and
Concerning asymptotic behavior for extremal polynomials associated to non-diagonal Sobolev norms

(3.20) \[\lim_{n \to \infty} \int_{F_{n,x}} (a_p |f_n|^2)^{p/2} \, d\mu_2 = 0 = \lim_{n \to \infty} \int_{F_{n,x}} (c_p |f'_n|^2)^{p/2} \, d\mu_2 \cdot \]

As a consequence of (3.19) we have

\[\limsup_{n \to \infty} \int_{F_{n,x}} (a_p |f_n|^2)^{p/2} \, d\mu_2 = \limsup_{n \to \infty} \int_{F_{n,x}} (c_p |f_n|^2)^{p/2} \, d\mu_2 = \left(1 + \varepsilon \right)^p. \]

In a similar way we obtain

\[\frac{1}{1 + \varepsilon} \leq \liminf_{n \to \infty} \int_{F_{n,x}} (a_p |f_n|^2)^{p/2} \, d\mu_2. \]

Since these inequalities hold for every \(\varepsilon > 0 \), we conclude that (3.9) holds. Applying now Lemma 3.3 we obtain (3.7).

Using Lemma 3.1, (3.9) and (3.20) we obtain that for every \(\varepsilon, \eta > 0 \) there exists \(N \) such that for every \(n \geq N \) the following holds

\[1 \leq \frac{2^{p/2-1} \int \left((a_p |f_n|^2)^{p/2} + (c_p |f'_n|^2)^{p/2} \right) \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} \leq \frac{2^{p/2-1} \int \left((a_p |f_n|^2)^{p/2} + (c_p |f'_n|^2)^{p/2} \right) \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} \]

\[\leq \frac{2^{p/2-1} \int \left((a_p |f_n|^2)^{p/2} + (c_p |f'_n|^2)^{p/2} \right) \, d\mu_2}{\left(1 + \frac{1}{1 + \varepsilon \eta} \right)^{p/2} \int_{F_{n,x}} (a_p |f_n|^2)^{p/2} \, d\mu_2} \leq \frac{2^{p/2} \int (a_p |f_n|^2)^{p/2} \, d\mu_2}{\left(1 + \frac{1}{1 + \varepsilon \eta} \right)^{p/2} \int_{F_{n,x}} (a_p |f_n|^2)^{p/2} \, d\mu_2} \]

Then (3.8) follows from the previous inequalities, since \(\varepsilon, \eta > 0 \) are arbitrary.

This completes the proof.
Definition 3.6. For each $0 < \varepsilon < 1$, we define the sets A_{ε} and A_{ε}' as

$$A_{\varepsilon} := \{ z \in S(\mu_2) : \| b_p \| > (1 - \varepsilon) \sqrt{\alpha_p c_p} \},$$

$$A_{\varepsilon}' := S(\mu_2) \setminus A_{\varepsilon}.$$

Lemma 3.7. If $1 \leq p < \infty$ and $\{f_n\}_n$ is an extremal sequence for p and ε is small enough, then

$$\lim_{n \to \infty} \int_{A_{\varepsilon}} |b_p f_n f_n'|^{p/2} d\mu_2 = 1.$$

Remark 3.8. The statement of the lemma might seem strange, because we could have, a priori $\mu_2(A_{\varepsilon}) = 0$; however, the existence of the fundamental sequence implies $\mu_2(A_{\varepsilon}) > 0$.

Proof. If $1 \leq p \leq 2$, then the result follows from [17, Lemma 3.8]. For the case $p > 2$ it suffices to follow the proof of [17, Lemma 3.8] applying Lemma 3.5 to conclude the result.

Lemma 3.9. If $1 \leq p < \infty$, $\{f_n\}_n$ is an extremal sequence for p and ε is small enough, then

$$\lim_{n \to \infty} \int_{A_{\varepsilon}} \left(|a_p f_n|^2 + (c_p |f_n'|^2)^{p/2} \right) d\mu_2 = 1,$$

$$\lim_{n \to \infty} \int_{A_{\varepsilon}'} \left(|a_p f_n|^2 + (c_p |f_n'|^2)^{p/2} \right) d\mu_2 = 0.$$

Proof. If $1 \leq p \leq 2$, then the result follows from [17, Lemma 3.10]. For the case $p > 2$ it suffices to follow the proof of [17, Lemma 3.10] applying Lemmas 3.5 and 3.7 to conclude the result.

Lemma 3.10. If $1 \leq p < \infty$, $\{f_n\}_n$ is an extremal sequence for p and ε is small enough, then

$$\lim_{n \to \infty} \int_{A_{\varepsilon}} (a_p |f_n|^2)^{p/2} d\mu_2 = 1 \quad \text{and} \quad \lim_{n \to \infty} \int_{A_{\varepsilon}'} (c_p |f_n'|^2)^{p/2} d\mu_2 = 1.$$

Proof. If $1 \leq p \leq 2$, then the result follows from [17, Lemma 3.11]. For the case $p > 2$ it suffices to follow the proof of [17, Lemma 3.11] applying Lemmas 3.5, 3.7 and 3.9 to conclude the result.

Lemma 3.11. If $1 \leq p < \infty$ and $\{f_n\}_n$ is an extremal sequence for p, then for every $\varepsilon > 0$ small enough with $\mu_2(A_{\varepsilon}') > 0$ and for every $t \in (0, 1)$ there exists N such that $\inf_{z \in A_{\varepsilon}'} |f_n(z)| < t$ for every $n \geq N$.

Proof. If $1 \leq p \leq 2$, then the result follows from [17, Lemma 3.12]. For the case $p > 2$ it is sufficient to follow the proof of [17, Lemma 3.12] applying Lemma 3.10 to conclude the result.
Definition 3.12. If f is a continuous function on γ, we define the oscillation of f on γ, and we denote it by $\text{osc}(f)$, as

$$\text{osc}(f) \coloneqq \sup_{z,w \in \gamma} |f(z) - f(w)|.$$

Lemma 3.13. ([17, Lemma 3.14]) For $1 \leq p < \infty$, let us assume that γ is connected and $(c_p^{p/2} d\mu_2/ds)^{-1} \in L^{1/(p-1)}(\gamma)$, where $d\mu_2/ds$ is the Radon-Nykodim derivative of μ_2 with respect to the Euclidean length in γ. (According to our notation, if $p = 1$ then $1/(p-1) = \infty$.) Then

$$\int_\gamma |f'|^p c_p^{p/2} d\mu_2 \geq k \cdot \text{osc}^p(f), \quad \text{with } 1/k = \|1/\left(c_p^{p/2} d\mu_2/ds\right)\|_{L^{1/(p-1)}(\gamma)},$$

for every polynomial f.

4. Equivalent norms

Now we prove the announced result about the equivalence of norms for $1 \leq p < \infty$.

Theorem 4.1. Let us consider $1 \leq p < \infty$ and (V, μ) a p-admissible pair. Then the norms $W^{1,p}(a_p^{p/2}, c_p^{p/2})$, $W^{1,p}(D\mu)$ and $W^{1,p}(V, \mu)$ defined as in (2.2) are equivalent on the space of polynomials \mathbb{P}.

Proof. The equivalence of the two first norms is straightforward, by Lemmas 3.1 and 3.2. We prove now the equivalence of the two last norms.

Let us prove that there exists a positive constant $C \coloneqq C(V, \mu, p)$ such that

$$C \|f\|_{W^{1,p}(D\mu)} \leq \|f\|_{W^{1,p}(V, \mu)} \leq \sqrt{2} \|f\|_{W^{1,p}(D\mu)}, \quad \text{for every } f \in \mathbb{P}.$$

Let us prove first the second inequality $\|f\|_{W^{1,p}(V, \mu)} \leq \sqrt{2} \|f\|_{W^{1,p}(D\mu)}$.

Note that $|2 \Re(b_p f' f')| \leq 2 b_p |f'|^2 \leq 2 \sqrt{a_p c_p} |f f'| \leq a_p |f|^2 + c_p |f'|^2$; therefore, for every polynomial f it holds

$$\|f\|_{W^{1,p}(V, \mu)}^p = \int (a_p |f|^2 + c_p |f'|^2) \|f f'| \, d\mu \leq 2^{p/2} \int (a_p |f|^2 + c_p |f'|^2)^{p/2} d\mu = 2^{p/2} \|f\|_{W^{1,p}(D\mu)}^p.$$

In order to prove the first inequality, $C \|f\|_{W^{1,p}(D\mu)} \leq \|f\|_{W^{1,p}(V, \mu)}$, note that

$$\|f\|_{W^{1,p}(V, \mu)}^p = \int (a_p |f|^2 + c_p |f'|^2 + 2 \Re(b_p f' f'))^{p/2} d\mu_1 \leq \int (a_p |f|^2 + c_p |f'|^2 - 2 b_p |f f'|)^{p/2} d\mu_1 \leq \left(1 - \sqrt{1 - \varepsilon_0}\right)^{p/2} \int (a_p |f|^2 + c_p |f'|^2)^{p/2} d\mu_1,$$

If $\gamma = \emptyset$ (i.e. $\mu = \mu_1$), then we have finished the proof. Assume that $\gamma \neq \emptyset$ then we prove $C \|f\|_{W^{1,p}(D\mu_2)} \leq \|f\|_{W^{1,p}(V, \mu_2)}$, seeking for a contradiction. It is clear that it suffices to prove it when γ is connected, i.e. when γ is a rectifiable compact curve. Let us assume that there exists a sequence $\{f_n\} \subset \mathbb{P}$ such that

$$\lim_{n \to \infty} \int (a_p |f_n|^2 + c_p |f_n'|^2 + 2 \Re(b_p f_n f_n'))^{p/2} d\mu_2 = 0.$$
If $1 \leq p \leq 2$, then [17, Lemma 3.1] (with $\alpha = p/2$) gives
\[
\int (a_p |f_n|^2 + c_p |f'_n|^2 + 2 \Re(b_p f_n f'_n))^{p/2} \, d\mu_2 \geq \int (a_p |f_n|^2 + c_p |f'_n|^2 - |2 b_p f_n f'_n|)^{p/2} \, d\mu_2 \\
geq \int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2 - \int |2 b_p f_n f'_n|^{p/2} \, d\mu_2 .
\]
This right-hand side of the inequality is positive, because $|2 b_p f f'| \leq a_p |f|^2 + c_p |f'|^2 \mu_2$-almost everywhere. Therefore, we have
\[
\lim_{n \to \infty} \frac{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2 - \int |2 b_p f_n f'_n|^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} = 0,
\]
and hence
\[
\lim_{n \to \infty} \frac{\int |2 b_p f_n f'_n|^{p/2} \, d\mu_2}{\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2} = 1 .
\]

If $p > 2$, then
\[
\left(\int (a_p |f_n|^2 + c_p |f'_n|^2 + 2 \Re(b_p f_n f'_n))^{p/2} \, d\mu_2 \right)^{2/p} \geq \left(\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2 \right)^{2/p} - \left(\int |2 b_p f_n f'_n|^{p/2} \, d\mu_2 \right)^{2/p} \geq 0 ,
\]
since $|2 b_p f f'| \leq a_p |f|^2 + c_p |f'|^2 \mu_2$-almost everywhere. Therefore,
\[
\lim_{n \to \infty} \frac{\left(\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2 \right)^{2/p} - \left(\int |2 b_p f_n f'_n|^{p/2} \, d\mu_2 \right)^{2/p}}{\left(\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2 \right)^{2/p}} = 0 ,
\]
or, equivalently,
\[
\lim_{n \to \infty} \frac{\left(\int |2 b_p f_n f'_n|^{p/2} \, d\mu_2 \right)^{2/p}}{\left(\int (a_p |f_n|^2 + c_p |f'_n|^2)^{p/2} \, d\mu_2 \right)^{2/p}} = 1 ,
\]
and (4.21) also holds for $p > 2$.

If f_n is constant for some n, then $\int |2 b_p f_n f'_n|^{p/2} \, d\mu_2 = 0$; therefore, taking a subsequence if it is necessary, without loss of generality we can assume that f_n is non-constant and $\|f_n\|_{L^\infty(\mu_2)} = 1$ for every n. Then $\{f_n\}$ is an extremal sequence for p. Applying Lemma 3.5,
\[
\lim_{n \to \infty} \frac{\int (a_p |f_n|^2)^{p/2} \, d\mu_2}{\int (c_p |f'_n|^2)^{p/2} \, d\mu_2} = 1 .
\]

By Lemma 3.11, there exist $\{z_n\} \subset S(\mu_2)$ such that $|f_n(z_n)| \leq 1/2$ for every $n \geq N_1$. Now, taking into account that $\|f_n\|_{L^\infty(\mu_2)} = 1$ and that γ is connected, we can apply Lemma 3.13, and then
\[
\int |f'_n|^p c_p^{p/2} \, d\mu_2 \geq k \cdot \osc^p(f_n) \geq k \left(\|f_n\|_{L^\infty(\mu_2)} - |f_n(z_n)| \right)^p \geq k \left(1 - 1/2 \right)^p = k/2^p > 0
\]
for every $n \geq N_1$, with $1/k = \|1/\left(c_p^p/2 \, d\mu_2/ds\right)\|_{L^{1/(p-1)}(\gamma)}$.

Let us fix ε small enough. On the one hand, by Lemma 3.10 it holds
\[
\int (a_p |f_n|^2)^{p/2} \, d\mu_2 \leq 2 \int_{A_\varepsilon} (a_p |f_n|^2)^{p/2} \, d\mu_2 \leq 2 \|f_n\|_{L^2(\mu_2)}^p \int_{A_\varepsilon} a_p^{p/2} \, d\mu_2 = 2 \int_{A_\varepsilon} a_p^{p/2} \, d\mu_2
\]
for every $n \geq N_2 = N_2(\varepsilon)$.

On the other hand, we have
\[
\lim_{\varepsilon \to 0^+} \mu_2(A_\varepsilon) = \lim_{\varepsilon \to 0^+} \mu_2\left(\{b_p > (1 - \varepsilon)\sqrt{a_p c_p}\}\right) = \mu_2\left(\{b_p \geq \sqrt{a_p c_p}\}\right) = 0.
\]
This implies
\[
\lim_{\varepsilon \to 0^+} \int_{A_\varepsilon} a_p^{p/2} \, d\mu_2 = 0.
\]
Given any $\delta > 0$ there exists ε_1 with $\int_{A_{\varepsilon_1}} a_p^{p/2} \, d\mu_2 < \delta$. Hence, $\int (a_p |f_n|^2)^{p/2} \, d\mu_2 < 2\delta$ for every $n \geq N_2(\varepsilon_1)$.

Therefore, $\lim_{n \to \infty} \int (a_p |f_n|^2)^{p/2} \, d\mu_2 = 0$, which is a contradiction with (4.22) and (4.23).

The following result is a direct consequence of Theorems 2.2 and 4.1.

Theorem 4.2. Let us consider $1 \leq p < \infty$ and (V, μ) a p-admissible pair. Then the multiplication operator is bounded in $W^{1,p}(V\mu)$ if and only if the following condition holds:

\[(4.24) \quad \text{The norms in } W^{1,p}((a_p^{p/2} + c_p^{p/2})\mu, \mu) \text{ and } W^{1,p}(a_p^{p/2}\mu, c_p^{p/2}\mu) \text{ are equivalent on } \mathbb{P}.\]

This latter theorem and Theorem 2.1 give the following result.

Theorem 4.3. Let us consider $1 \leq p < \infty$ and (V, μ) a p-admissible pair such that (4.24) takes place. Let $\{q_n\}_{n \geq 0}$ be a sequence of extremal polynomials with respect to (1.1). Then the multiplication operator is bounded and the zeros of $\{q_n\}_{n \geq 0}$ lie in the bounded disk $\{z : |z| \leq 2\|M\|\}$.

In general, it is not difficult to check whether or not (4.24) holds. It is clear that if there exists a constant C such that $c_p \leq Ca_p$, μ-almost everywhere, then (4.24) holds. In [19, 23] some other very simple conditions implying (4.24) are shown.

The following is a direct consequence of Theorem 4.3.

Corollary 4.4. Let us consider $1 \leq p < \infty$ and (V, μ) a p-admissible pair. Assume that $c_p \leq Ca_p$, μ-almost everywhere for some constant C. Let $\{q_n\}_{n \geq 0}$ be a sequence of extremal polynomials with respect to (1.1). Then the zeros of $\{q_n\}_{n \geq 0}$ are uniformly bounded in the complex plane.

Finally, we have the following particular consequence for Sobolev orthogonal polynomials.

Corollary 4.5. Let (V, μ) be a 2-admissible pair. Assume that there exists a constant C such that $c_2 \leq Ca_2$, μ-almost everywhere. Let $\{q_n\}_{n \geq 0}$ be the sequence of Sobolev orthogonal polynomials with respect to $V\mu$. Then the zeros of the polynomials in $\{q_n\}_{n \geq 0}$ are uniformly bounded in the complex plane.
5. Asymptotic of extremal polynomials

We start this section by setting some notation. Let $Q_n, \| \cdot \|_{L^2(\mu)}$, $\text{cap}(S(\mu))$ and $\omega_{S(\mu)}$ denote, respectively, the nth monic orthogonal polynomial with respect to $L^2(\mu)$, the usual norm in the space $L^2(\mu)$, the logarithmic capacity of $S(\mu)$ and the equilibrium measure of $S(\mu)$. Furthermore, in order to analyze the asymptotic behavior for extremal polynomials we will use a special class of measures, “regular measures”, denoted by Reg and defined in [26]. In that work, the authors proved (see Theorem 3.1.1) that, for measures supported on a compact set of the complex plane, $\mu \in \text{Reg}$ if and only if

$$\lim_{n \to \infty} \| Q_n \|_{L^2(\mu)}^{1/n} = \text{cap}(S(\mu)).$$

Finally, if z_1, z_2, \ldots, z_n denote the zeros, repeated according to their multiplicity, of a polynomial q whose degree is exactly n, and δ_{z_j} is the Dirac measure with mass one at the point z_j, the expression

$$\nu(q) := \frac{1}{n} \sum_{j=1}^{n} \delta_{z_j},$$

defines the normalized zero counting measure of q.

We can already state the first result in this section.

Theorem 5.1. Let us consider $1 \leq p < \infty$, (V, μ) a p-admissible pair and $\{q_n\}_{n \geq 0}$ the sequence of extremal polynomials with respect to $\| \cdot \|_{W^{1, p}(V \mu)}$. Assume that the following conditions hold:

i) $a_{p/2}^{1/2} \mu \in \text{Reg}.$

ii) $S(\mu)$ is regular with respect to the Dirichlet problem.

iii) The condition (4.24) takes place.

Then,

$$\lim_{n \to \infty} \| q_n^{(j)} \|_{S(\mu)}^{1/n} = \text{cap}(S(\mu)), \quad j \geq 0.$$

Furthermore, if the complement of $S(\mu)$ is connected, then

$$\lim_{n \to \infty} \nu(q_n^{(j)}) = \omega_{S(\mu)}, \quad j \geq 0,$$

in the weak star topology of measures.

Proof. Note that, in our context, the hypothesis removed with respect to [12, Theorem 2] are equivalent to the following two facts: on the one hand, the multiplication operator is bounded (see Theorem 2.2) and on the other hand, the norms of $W^{1, p}(a_{p/2}^{1/2} \mu, c_{p/2}^{1/2} \mu)$ and $W^{1, p}(V \mu)$ defined as in (2.2) are equivalent (see Theorem 4.2). With this in mind, we just need to follow the proof of [12, Theorem 2] to conclude the result.

In the following theorem, we use $g_{\Omega}(z; \infty)$ to denote the Green’s function for Ω with logarithmic singularity at ∞, where Ω is the unbounded component of the complement of $S(\mu)$. Notice that, if $S(\mu)$ is regular with respect to the Dirichlet problem, then $g_{\Omega}(z; \infty)$ is continuous up to the boundary and it can be extended continuously to all \mathbb{C}, with value zero on $\mathbb{C} \setminus \Omega$.

Theorem 5.2. Let us consider $1 \leq p < \infty$, (V, μ) a p-admissible pair and $\{q_n\}_{n \geq 0}$ the sequence of extremal polynomials with respect to $\| \cdot \|_{W^{1, p}(V \mu)}$. Assume that the following conditions hold:

i) $a_{p/2}^{1/2} \mu \in \text{Reg}.$

ii) $S(\mu)$ is regular with respect to the Dirichlet problem.

iii) The condition (4.24) takes place.

Then, for each $j \geq 0$,

$$\limsup_{n \to \infty} \| q_n^{(j)}(z) \|^{1/n} \leq \text{cap}(S(\mu)) e^{g_{\Omega}(z; \infty)},$$

uniformly on compact subsets of \mathbb{C}. Furthermore, for each $j \geq 0$,

$$\lim_{n \to \infty} \| q_n^{(j)}(z) \|^{1/n} = \text{cap}(S(\mu)) e^{g_{\Omega}(z; \infty)},$$
uniformly on each compact subset of \{z : |z| > 2\|M\|\} \cap \Omega. Finally, if the complement of \(S(\mu)\) is connected, we have equality in (5.25) for all \(z \in \mathbb{C}\), except for a set of capacity zero, \(S(\omega_{S(\mu)}) \subset \{z : |z| \leq 2\|M\|\}\) and,

\[
\lim_{n \to \infty} \frac{q_n^{(j+1)}(z)}{nq_n^{(j)}(z)} = \int \frac{d\omega_{S(\mu)}(x)}{z - x}
\]

uniformly on each compact subset of \(\{z : |z| > 2\|M\|\}\).

Proof. Note that, in our context, the multiplication operator is bounded (see Theorem 2.2) and the norms of \(W^{1,p}(a_p, \mu), c_p^{1/2}\mu\) and \(W^{1,p}(V\mu)\) defined as in (2.2) are equivalent (see Theorem 4.2). This is the crucial fact in the proof of this theorem; once we know this, we just need to follow the proof given in [12, Theorem 6] point by point to conclude the result.

\[\square\]

References

[1] M. Alfaro, F. Marcellán, M.L. Rezola, A. Ronveaux, Sobolev-type orthogonal polynomials: the non-diagonal case, J. Approx. Theory 83 (1995) 266-287.
[2] V. Alvarez, D. Pestana, J.M. Rodríguez, E. Romera, Weighted Sobolev spaces on curves, J. Approx. Theory 119 (2002) 41-85.
[3] A. Branquinho, A. Foulquié, F. Marcellán, Asymptotic behavior of Sobolev type orthogonal polynomials on a rectifiable Jordan curve or arc, Constr. Approx. 18 (2002) 161-182.
[4] A. Cachafeiro, F. Marcellán, Orthogonal polynomials of Sobolev type on the unit circle, J. Approx. Theory 78 (1994) 127-146.
[5] M. Castro, A.J. Durán, Boundedness properties for Sobolev inner products, J. Approx. Theory 122 (2003) 97-111.
[6] H. Dueñas, F. Marcellán, Asymptotic behaviour of Laguerre Sobolev type orthogonal polynomials: a nondiagonal case, J. Comput. Appl. Math. Approx. 235 (2010) 998-1007.
[7] G. López Lagomasino, I. Pérez Izquierdo, H. Pijeira, Sobolev orthogonal polynomials in the complex plane, J. Comput. Appl. Math. 127 (2001) 219-230.
[8] N. Dunford, J.T. Schwartz, Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space, John Willey & Sons, New York (1967).
[9] A. Foulquié, F. Marcellán, K. Pan, Asymptotic behavior of Sobolev-type orthogonal polynomials on the unit circle, J. Approx. Theory 100 (1999) 345-363.
[10] K.H. Kwon, L.L. Litteljohn, G.J. Yoon, Ghost matrices and a characterization of symmetric Sobolev bilinear forms, Linear Algebra Appl. 31 (2009) 104-119.
[11] G. López Lagomasino, I. Pérez Izquierdo, H. Pijeira, Sobolev orthogonal polynomials in the complex plane, J. Comput. Appl. Math. 127 (2001) 219-230.
[12] G. López Lagomasino, I. Pérez Izquierdo, H. Pijeira, Asymptotic of extremal polynomials in the complex plane, J. Approx. Theory 137 (2005) 226-237.
[13] G. López Lagomasino, I. Pérez Izquierdo, H. Pijeira, Zero location and n-th root asymptotics of Sobolev orthogonal polynomials, J. Approx. Theory 99 (1999) 30-43.
[14] F. Marcellán, J.J. Moreno-Balcázar, Strong and Plancherel Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials, J. Approx. Theory 110 (2001) 54-73.
[15] A. Martínez-Finkelshtein, Bernstein-Szegö’s theorem for Sobolev orthogonal polynomials, Constr. Approx. 16 (2000) 73-84.
[16] A. Portilla, J.M. Rodríguez, E. Tourís, The multiplication operator, zero location and asymptotic for non-diagonal Sobolev norms, Acta Appl. Math. 111 (2010) 205-218.
[17] A. Portilla, Y. Quintana, J.M. Rodríguez, E. Tourís, Zero location and asymptotic behavior for extremal polynomials with non-diagonal Sobolev norms, J. Approx. Theory 162 (2010) 2225-2242.
[18] J.M. Rodríguez, The multiplication operator in Sobolev spaces with respect to measures, J. Approx. Theory 109 (2001) 157-197.
[19] J.M. Rodríguez, A simple characterization of weighted Sobolev spaces with bounded multiplication operator, J. Approx. Theory 153 (2008) 53-72.
[20] J.M. Rodríguez, V. Alvarez, E. Romera, D. Pestana, Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials, J. Approx. Theory 117 (2002) 1-32.
[21] J.M. Rodríguez, V. Alvarez, F. Marcellán, A Kolmogorov-Szegö-Krein type condition for weighted Sobolev spaces, Indiana Univ. Math. J. 54 (2005) 575-598.
[25] E.B. Saff, V. Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften vol. 316, Springer-Verlag (1998).
[26] H. Stahl, V. Totik, General Orthogonal Polynomials, Cambridge University Press, Cambridge (1992).

St. Louis University (Madrid Campus), Avenida del Valle 34, 28003 Madrid, Spain
E-mail address: aportilla@slu.edu

Departamento de Matemáticas Puras y Aplicadas, Edificio Matemáticas y Sistemas (MYS), Apartado Postal: 89000, Caracas 1080 A, Universidad Simón Bolívar, Venezuela
E-mail address: yquintana@usb.ve

Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
E-mail address: jomaro@math.uc3m.es

Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
E-mail address: etouris@math.uc3m.es