Aniline–phenol recognition: from solution through supramolecular synthons to cocrystals

Arijit Mukherjee, Karuna Dixit, Siddhartha P. Sarma and Gautam R. Desiraju
S1. Crystallization details

3,4,5-trichlorophenol: 4-chloroaniline (11): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from a 1:1 solvent mixture of n-hexane and MeOH after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 3-chloroaniline (12): The phenol was taken in a mortar and a few drops of 3-chloroaniline were added to it. The mixture was ground and the grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from CHCl₃ after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 2,5-dichloroaniline (13): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from CHCl₃ after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 3,5-dichloroaniline (14): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from acetone after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 3,4-dichloroaniline (15): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from CH₂Cl₂ after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 4-bromoaniline (16): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from acetone after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 4-iodoaniline (17): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated for thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were
obtained from a 1:1 solvent mixture of n-hexane and MeOH after 3-4 days by solvent evaporation.

3,4,5-trichlorophenol: 3-chloro-4-iodoaniline (18): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from MeOH after 3-4 days by solvent evaporation.

2,3,4-trichlorophenol: 4-chloroaniline (19): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. The resulting powder was put for sublimation. Needle like crystals were obtained after two days.

2,3,4-trichlorophenol: 3-chloroaniline (20): The phenol was taken in a mortar and a few drops of 3-chloroaniline were added to it. The mixture was ground and the grinding process was repeated thrice. The resulting powder was put for sublimation. Needle like crystals were obtained after two days.

2,3,4-trichlorophenol: 3,5-dichloroaniline (21): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. The resulting powder was dissolved in different solvents. Nice crystals were obtained from EtOH after 3-4 days by solvent evaporation.

2,3,4-trichlorophenol: 3,4-dichloroaniline (22): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. The resulting powder was put for sublimation. Needle like crystals were obtained after one day.

4-hydroxybenzoic acid: 3-aminobenzamide (23): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from MeOH after 3-4 days by solvent evaporation.

3-hydroxybenzoic acid: 3-aminobenzamide (24): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from EtOH after 3-4 days by solvent evaporation.

3,5-dihydroxybenzoic acid: 4-aminobenzamide (25): The two compounds were taken together in a mortar in 1:1 ratio and ground with a few drops of MeOH. The grinding process was repeated
thrice. Solutions of resulting powder were kept for crystallizations. Diffraction quality crystals were obtained from EtOH after 3-4 days by solvent evaporation.

Table S1 Additional crystallographic details

Name	11	12	13	14	15
Molecular weight	325.00	325.00	359.44	359.44	358.44
ρ_{calc} (g/cm³)	1.568	1.601	1.676	1.614	1.655
F(000)	328	656	720	1440	358
μ (MoKα) (mm⁻¹)	0.845	0.863	1.007	0.970	0.997
Temp. (K)	150	150	150	150	150
θ Range for data collection (°)	3.0, 27.5	3.1, 27.5	3.1, 27.5	3.0, 25.2	3.1, 27.5
R₁	0.0322	0.0330	0.0256	0.0925	0.0642
wR₂	0.0836	0.0846	0.0558	0.2015	0.1496
Goodness-of-fit	1.09	1.09	1.06	1.21	1.04
Reflns collected	7315	13875	15205	12389	7652
Unique reflns	3144	3066	6493	2662	3293
Observed reflns	2604	2703	6193	2516	2949
Name	16	17	18	19	20
------	----	----	----	----	----
Molecular weight	369.45	416.45	449.89	325.00	325.00
\(\rho_{\text{calc}} \) (g/cm\(^3\))	1.753	1.909	1.991	1.626	1.624
F(000)	364	400	430	656	328
\(\mu \) (MoK\(\alpha\)) (mm\(^{-1}\))	3.494	2.749	2.835	0.876	0.875
Temp. (K)	150	150	150	150	150
\(\theta \) Range for data collection (\(^\circ\))	3.0, 27.5	3.2, 27.5	3.0, 27.5	2.2, 27.6	2.0, 25.2
\(R_1 \)	0.0394	0.0276	0.0475	0.0416	0.0422
\(wR_2 \)	0.0978	0.0697	0.1235	0.1436	0.1390
Goodness-of-fit	1.04	1.12	1.20	1.14	1.14
Reflns collected	7199	7553	7564	13867	5849
Unique reflns	3204	3313	3429	3068	2397
Observed reflns	2717	3105	3038	2843	2240

Name	21	22	23	24	25
Molecular weight	359.44	359.44	274.27	274.27	580.54
\(\rho_{\text{calc}} \) (g/cm\(^3\))	1.624	1.673	1.418	1.430	1.458
F(000)	360	360	1152	576	304
\(\mu \) (MoK\(\alpha\)) (mm\(^{-1}\))	0.975	1.005	0.106	0.106	0.112
Temp. (K)	150	150	150	150	150
\(\theta \) Range for data collection (\(^\circ\))	3.0, 27.5	3.2, 27.5	3.3, 27.5	1.6, 27.5	3.3, 27.5
\(R_1 \)	0.0371	0.0252	0.0385	0.0476	0.0402
\(wR_2 \)	0.0992	0.0665	0.1085	0.1689	0.1083
Goodness-of-fit	1.09	1.07	1.10	1.14	1.03
Reflns collected	7780	7624	12832	12530	6973
Unique reflns	3366	3265	2944	2914	3013
Observed reflns	3035	3023	2635	2416	2472
Table S2 Multi-component crystals: 29

O–H···N	N–H···O	N–H···π	O–H···O	N–H···N	Synthon	Others
CIQP AU	CIQP AU					
EXAMUM						
EXANAT						
EXAPID01	EXAPID01					
FIDLIO	FIDLIO				II	
FIDLOU	FIDLOU				II	
FIDLUA	FIDLUA				I	
FIDMAH	FIDMAH	FIDMAH	FIDMAH			
HEBHAK						
JAKPIV	JAKPIV				III	
JAKPOB	JAKPOB				III	
JAKPUH	JAKPUH				III	
KIBQOC	KIBQOC				N–H···F	
KIBQOC01	KIBQOC01				O–H···F	
OFEPUK	OFEPUK	OFEPUK				
OFEQUIZ	OFEQUIZ	OFEQUIZ			OH: NH₂ (2:1)	
PITYAS	PITYAS				III	
PITYEW	PITYEW				III	
PITYIA	PITYIA				III	
PITYOG	PITYOG				III	
PUVNID	PUVNID					Synthon is interrupted by H₂O
PUZZIT	PUZZIT				OH: NH₂ (2:1)	
Table S3 Single-component crystals: 44

O–H···N	N–H···O	N–H···π	O–H···O	N–H···N	Synthon	Others
AMNPHA						Interrupted by NO₂
AMPHOL01	AMPHOL01				III	
AMPHOM02	AMPHOM02	AMPHOM02				
AMPHOM03	AMPHOM03	AMPHOM03				
EBITALF	EBITALF				III	
EBITALF	EBITALF				III	
ENALOU	ENALOU				II	
ENALUA	ENALUA				III	
ENAMAH	ENAMAH	ENAMAH				
ENAMEL	ENAMEL				III	
ENAMIP	ENAMIP	ENAMIP				
ENAMOV	ENAMOV				II	
ENAMUB	ENAMUB				III	
ENANAI	ENANAI				III	
ENANEM	ENANEM	ENANEM				
ENANIQ	ENANIQ	ENANIQ				
ENANOW	ENANOW	II				
---------	---------	------				
ENANUL	ENANUL	II				
ENAPAK	ENAPAK					
FUHTAE	FUHTAE	I				
FUHTAE01	FUHTAE01	I				
GEBVAK	GEBVAK	GEBVAK				
GEBVAK01	GEBVAK01					
GIVRIM	GIVRIM					
HIWMUW	HIWMUW	HIMUW				
HIWNAD	HIWNAD	HIWNAD				
HIWNEH		N–H···O=C				
MAMPOL	MAMPOL	MAMPOL				
MAMPOL02	MAMPOL02	MAMPOL02				
MASZIQ	MASZIQ	MASZIQ				
MASZOW	MASZOW	II				
MASZUC	MASZUC	MASZUC				
MATBAL	MATBAL	II				
MATBEP	MATBEP	MATBEP				
MATBIT	MATBIT	MATBIT				
MATBOZ	MATBOZ	MATBOZ				
MATBUF	MATBUF	II				
MATCAM	MATCAM	II				
MATCEQ	MATCEQ	II				
NODTIJ	NODTIJ					
PEJCAJ	PEJCAJ					
PEJCAJ01	PEJCAJ01					

Interrupted by NO₂

Not Infinite
PITZAT	PITZAT		III
QEPGAU	QEPGAU	QEPGAU	
SADJAK	SADJAK	SADJAK	
UHEVOT	UHEVOT		
WURNAZ	WURNAZ		
YEJPUA	YEJPUA		I
Figure S1 Diagrams of multi-component crystals with \cdotsO–H\cdotsN–H\cdots hydrogen bonding

FIDLIO

FIDLOU

FIDLUA

JAKPIV
Table S4	Hydrogen-bonding parameters for cocrystals 11-25				
D–H···A	Symmetry code	D–H (Å)	H···A (Å)	D–H···A (°)	
11	N1–H1A···O1	-x,3-y,1-z	0.829(19)	2.36(2)	147.7(19)
	O1–H10···N1	0.79(2)	1.98(2)	171(3)	
12	N1–H1B···O1	-x,1-y,2-z	0.85(3)	2.24(2)	150(2)
	O1–H10···N1	0.81(3)	1.96(3)	174(3)	
13	N1–H1A···O1	1-x,1/2+y,-z	0.87(2)	2.17(2)	162(2)
	N1–H1B···Cl10	0.84(3)	2.61(3)	109(2)	
	O1–H10···N2	0.73 (3)	2.12 (3)	163(3)	
	N2–H2A···Cl7	0.81(3)	2.62(2)	110(2)	
	N2–H2B···O2	0.82 (3)	2.44 (3)	161(3)	
	O2–H2O···N1	0.75 (3)	2.03 (3)	165(3)	
	C6–H6···Cl7	0.93	2.79	160.00	
	C8–H8···Cl9	0.93	2.79	157.00	
14	N1–H1B···O1	x,1-y,1-z	0.89 (3)	2.18 (4)	145 (5)
	O1–H10···N1	-x,y,1/2-z	0.85 (7)	1.96 (6)	169 (5)
15	N1–H1A···O1	1+x,-1+y,1+z	0.92 (7)	2.31 (7)	142 (6)
	O1–H7···N1	0.81 (6)	1.97 (6)	171 (6)	
16	O1–H10···N1	-x,1-y,2-z	0.82 (4)	1.96 (4)	173 (4)
	N1–H2B···O1	1+x,-1+y,1+z	0.85 (5)	2.34 (4)	148 (4)
17	N1–H1A···O1	1-x,2-y,-z	0.83 (4)	2.33 (4)	151 (4)
	O1–H10···N1	x,1+y,z	0.8200	1.9600	169.00
18	N1–H1A···O1	-x,2-y,-z	0.93 (7)	2.27 (7)	148 (6)
	O1–H10···N1	0.8200	1.9800	169.00	
19	N1–H1A···O1	-x,2-y,-z	0.90 (7)	2.29 (7)	149 (6)
	O1–H10···N1	0.8200	1.9800	169.00	
20	N1–H1A···O1	x,1+y,z	0.80 (3)	2.28 (3)	154 (3)
	O1–H10···N1	-x,-1+y,1-z	0.92 (3)	1.81 (3)	166 (3)
21	N1–H1B···O1	-x,-y,1-z	0.85 (3)	2.19 (3)	163 (3)
	O1–H10···N1	0.8200	1.9300	163.00	
22	N1–H1A···O1	1+x,1+y,z	0.845(19)	2.242(19)	156.5(19)
	O1–H10···N1	1-x,-y,1-z	0.83(2)	1.89(2)	171(2)
23	N1–H1B···O1	1-x,1+y,1/2-z	0.92 (2)	2.16 (2)	156.17 (16)
	O1–H10···N1	x,2-y,1/2-z	0.92 (2)	1.88 (2)	166.7 (19)
	N2–H2A···O2	1/2-x,1/2+y,1/2-z	0.880 (18)	2.153 (18)	159.9 (15)
	N2–H2B···O2	x,1+y,z	0.92 (2)	2.091 (19)	166.8 (16)
	O3–H3O···O4	x,-1+y,z	0.91 (2)	1.69 (2)	170.7 (19)
	C6–H6···O4	1-x,y,1/2-z	0.9300	2.5200	152.00
	C10–H10···O2	1/2-x,1/2+y,1/2-z	0.9300	2.5700	159.00
	C14–H14···O4	0.9300	2.4200	100.00	
	Bond	Symmetry	d (Å)	D (Å)	θ (°)
---	----------------------	----------	--------	--------	--------
24	N1–H1A···O4	x,-1+y,z	0.90 (3)	2.43 (3)	130 (2)
	N1–H1B···O3	-x,-1/2+y,1/2-z	0.84 (3)	2.07 (3)	169 (2)
	O1–H1O···N2		0.85 (3)	1.97 (3)	167 (2)
	N2–H2B···O1	1-x,-1-y,1-z	0.87 (3)	2.16 (3)	161 (2)
	O2–H2O···O4	-x,1/2+y,1/2-z	0.8200	1.8200	170.00
	C3–H3···O2	-x,1-y,1-z	0.9300	2.6000	137.00
25	N1–H1A···O1		0.90 (2)	2.40 (2)	142.0 (16)
	O1–H1O···N1	-1-x,-y,1-z	0.86 (2)	1.96 (2)	172 (2)
	N2–H2A···O4	-1-x,1-y,1-z	0.88 (2)	2.30 (2)	162.5 (18)
	N2–H2B···O5	-3-x,1-y,-z	0.898 (19)	2.002 (19)	176.4 (18)
	O2–H2O···O5	1+x,y,1+z	0.93 (2)	1.74 (2)	167 (2)
	O4–H4O···O3	1-x,1-y,1-z	1.27 (4)	1.35 (4)	175 (3)
	C3–H3···O3		0.9300	2.4100	100.00
	C10–H10···O5		0.9300	2.4700	100.00
	C13–H13···O3	-1+x,y,z	0.9300	2.5600	126.00
Figure S2 ORTEP diagrams for cocrystals 11-25
Figure S3 Packing diagram of 1,2,3-trichlorobenzene (TCBENZ)

S3. NMR signal intensities as a function of gradient power

Figure S4 Representative spectra were obtained using the bipolar pulse pair gradient stimulated echo pulse program. Shown here are the spectra for sample A of 14. See text for details.
S4. 2-D DOSY plots

Figure S5 2-D DOSY plots of A, E, and F of 14 and A₁, E₁ and F₁ of 26.
S5. 15N NMR spectra for solutions A, E and F

Figure S6 One-dimensional 15N spectra of samples A (black), E (green) and F (magenta). Also shown is the reference spectrum of 15N enriched urea (red). The aniline N resonates at 58.7ppm. See text for details.