On degree-colorings of multigraphs

Mark K. Goldberg
Department of Computer Science,
Rensselaer Polytechnic Institute
Troy, NY, 12180.
goldbm4@rpi.edu

December 21, 2016

Abstract

A notion of degree-coloring is introduced; it captures some, but not all properties of
standard edge-coloring. We conjecture that the smallest number of colors needed for degree-
coloring of a multigraph \(G \) [the degree-coloring index \(\tau(G) \)] equals \(\max\{\Delta, \omega\} \), where \(\Delta \) and
\(\omega \) are the maximum vertex degree in \(G \) and the multigraph density, respectively. We prove
that the conjecture holds iff \(\tau(G) \) is a monotone function on the set of multigraphs.

1 Introduction.

The chromatic index \(\chi'(G) \) of a multigraph \(G(V, E) \) is the minimal number of colors
(positive integers) that can be assigned to the edges of \(G \) so that no two adjacent edges
receive the same color. Clearly, \(\Delta(G) \leq \chi'(G) \), where \(\Delta(G) \) is the maximal vertex degree
in \(G \). The famous result by Vizing [10] establishes \(\chi = \chi'(G) \leq \Delta(G) + p(G) \), where
\(p(G) \) is the maximal number of parallel edges in \(G \). For graphs, in particular, \(\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1 \). The problem of computing the exact value of the chromatic index was
proved by Holyer [5] to be NP-hard even for cubic graphs. It is suspected that for every
multigraph with \(\chi'(G) > \Delta(G) + 1 \), its chromatic index is determined by the parameter
\(\omega(G) \), called the multigraph density:

\[
\omega(G) = \max_{H \subseteq G} \left[\frac{e(H)}{\left\lfloor v(H)/2 \right\rfloor} \right],
\]

where \(H \) is a sub-multigraph of \(G \), and \(v(H) \) (resp. \(e(H) \)) denotes the number of vertices
(resp. edges) in \(H \). It is easy to prove that \(\omega(G) \leq \chi'(G) \) for every multigraph \(G \).
Seymour in [7] and Stahl in [8] proved the equality \(\max(\Delta(G), \omega(G)) = \chi^*(G) \), where
\(\chi^*(G) \) is the the fractional chromatic index of \(G \), known to be polynomially computable
(see [6]).

The following variation of the multigraph density idea was considered in [3]. Let \(\pi(F) \)
denote the size of a maximum matching composed of the edges in a set \(F \subseteq E \). Denote
\[\omega^*(G) = \max_{F \subseteq E} \left\lceil \frac{|F|}{\pi(F)} \right\rceil. \text{ Then, it is easy to see that} \]

\[\omega(G) \leq \omega^*(G) \leq \chi'(G). \]

It turns out (see [3]) that \(\omega^*(G) = \max(\Delta(G), \omega(G)) \).

Conjectures connecting \(\chi'(G), \omega(G), \) and \(\Delta(G) \) were independently proposed by Goldberg ([1]) and Seymour ([7]) more than 30 years ago ([8], [9]). Currently, the strongest variation of the conjecture ([2]) is as follows:

Conjecture 1 If \(\Delta(G) \neq \omega(G) \), then \(\chi'(G) = \max(\Delta(G), \omega(G)) \), else \(\chi'(G) \leq \Delta(G) + 1 \).

Every edge-coloring with colors 1, 2, \ldots, \(c \) yields an assignment \(\mu : V \to 2^{[1,c]} \), where for every \(x \in V \), \(\mu(x) \) denotes the set of colors used on the edges incident to \(x \). Given \(S \subseteq V \) and \(i \in [1,c] \), the set of vertices \(x \in S \) such that \(i \in \mu(x) \) is denoted \(S^{(i)}(\mu) \). It is easy to prove that the assignment \(\mu \) originated by an edge-coloring using colors 1, \ldots, \(c \) satisfies the following three conditions:

Degree condition: \(\forall x \in V(G), |\mu(x)| = \deg_G(x) \);

Cover condition: \(\forall S \subseteq V, |E(S)| \leq \sum_{i=1}^{c} \left\lfloor \frac{|S^{(i)}(\mu)|}{2} \right\rfloor \);

Matching condition: \(\forall i \in [1,c] \), the submultigraph induced on \(V^{(i)} \) either has a perfect matching, or is empty.

Definition 1 An assignment \(\mu : V(G) \to 2^{[1,c]} \) satisfying the degree and the cover conditions is called a degree-coloring.

Straightforward checking of the assignment presented in the Figure below shows that the assignment is a degree-coloring of the multicycle \(C \). However, it is not originated by any edge-coloring of \(C \), since the submultigraph of \(C \) induced on \(V^{(6)} \) has no perfect matching.

Let \(\tau(G) \) denote the smallest integer \(c \) for which a degree-coloring of \(G \) exists. It is easy to prove

Lemma 1 \(\max(\Delta(G), \omega(G)) \leq \tau(G) \leq \chi'(G) \).

Conjecture 2 (the \(\tau \)-conjecture): For every multigraph \(G \), \(\tau(G) = \max(\Delta(G), \omega(G)) \).
A real-valued function $\kappa(G)$ defined on the set of multigraphs is called **monotone** if for any multigraph G and any submultigraph $H \subseteq G$, $\kappa(H) \leq \kappa(G)$. Clearly, $\Delta(G)$ and $\omega(G)$ are monotone functions.

Conjecture 3 *The degree-coloring index $\tau(G)$ is a monotone function on multigraphs.*

It is easy to see that Conjecture 2 implies Conjecture 3. We prove in this paper that the reverse is also true: the monotonicity of $\tau(G)$ implies conjecture 2.

We use the standard graph-theoretical terminology which can be found in [11].

2 **Monotonicity of $\tau(G)$ and the τ-conjecture.**

It is easy to construct a $\tau(G)$-degree-coloring for a regular multigraph G with $\omega(G) \leq \Delta(G)$.

Lemma 2 *If G is a Δ-regular multigraph, and $\omega(G) \leq \Delta$, then $\tau(G) = \Delta$.***

Proof. From the definition, $\tau(G) \geq \Delta$. Consider the following assignment:

$$\forall x \in V(G), \mu(x) = \{1, 2, \ldots, \Delta\}.$$

Given $S \subseteq V(G), \forall i \in [1, \Delta], S^{(i)}(\mu) = S$. Thus,

$$\sum_{i=1}^{\Delta} \left\lfloor \frac{|S^{(i)}(\mu)|}{2} \right\rfloor = \left\lfloor \frac{|S|}{2} \right\rfloor \Delta.$$

Since $\omega(G) \leq \Delta$, for any $S \subseteq V$, $\left\lfloor \frac{|S|}{2} \right\rfloor \Delta \geq \left\lfloor \frac{|S|}{2} \right\rfloor \omega(G) \geq |E(S)|$ implying $\tau(G) = \Delta$.

Constructing a degree-coloring for a non-regular multigraph can be done via operation Regularization which, for every multigraph G, creates a regular multigraph $R(G)$ containing G as an induced sub-multigraph.

Regularization: If a multigraph G is regular and $\omega(G) \leq \Delta(G)$, then $R(G) = G$; else

1. generate a disjoint isomorphic copy $G' = (V', E')$ of $G(V, E)$ with an isomorphic mapping $f : V \rightarrow V'$ from G onto G';
2. let $V(R(G)) = V \cup V'$ and initialize $E(R(G))$ by setting $E(R(G)) = E(G) \cup E(G')$;
3. $\forall x \in V$, add $\max(\Delta(G), \omega(G)) - \deg(x)$ new edges $xf(x)$ to $E(R(G))$.

Lemma 3 *$\forall G, \omega(G) \leq \omega(R(G)) \leq \max(\omega(G), \Delta(G))$ and $\Delta(R(G)) = \max(\Delta(G), \omega(G))$.***
Proof. If \(G = R(G) \), the lemma is obvious. Let \(G \neq R(G) \). Denote \(\Delta = \Delta(G) \), \(\omega = \omega(G) \), and \(\rho = \max(\Delta, \omega) \). Obviously, \(\Delta(R(G)) = \rho \) and \(\omega \leq \omega(R(G)) \).

To prove \(\omega(R(G)) \leq \rho \), denote \(R = R(G) \), \(V(R) = V_1 \cup V_2 \), where \(V_1 = V(G) \) and \(V_2 = V(G') \). Let \(f \) be an isomorphic mapping from \(V_1 \) onto \(V_2 \). Given \(S \subseteq V(R) \), let \(S_1 = S \cap V_1 \), \(S_2 = S \cap V_2 \), \(S' = S_1 \cap f^{-1}(S_2) \), and \(S'' = S_2 \cap f(S_1) \). Note that \(|S'| = |S''| \) and \(|E(S')| = |E(S'')| \).

![Diagram](image)

Then
\[
|E(S)| = |E(S_1)| + |E(S_2)| + \sum_{x \in S'} (\rho - \deg_G(x))
\]
\[
= |E(S_1 - S')| + |E(S_1 - S', S')| + |E(S')| + |E(S_2 - S'')| + |E(S_2 - S'', S'')| + |E(S'')| + |S'|\rho - \sum_{x \in S'} \deg_G(x).
\]

It is easy to check that
\[
|E(S_1 - S', S')| + |E(S')| + |E(S_2 - S'', S'')| + |E(S'')| =
|E(S_1 - S', S')| + |E(S_2 - S'', S'')| + 2|E(S')| \leq \sum_{x \in S'} \deg_G(x),
\]

which yields the following upper bound
\[
|E(S)| \leq |E(S_1 - S')| + |E(S_2 - S'')| + |S'|\rho
\]
\[
\leq \left(\frac{|S_1| - |S'|}{2} \right) \rho + \left(\frac{|S_2| - |S''|}{2} \right) \rho + |S'|\rho.
\]

To prove
\[
\left(\frac{|S_1| - |S'|}{2} \right) \rho + \left(\frac{|S_2| - |S''|}{2} \right) \rho + |S'|\rho \leq \left(\frac{|S_1| + |S_2|}{2} \right) \rho,
\]

note that it is straightforward if \(|S_1| + |S_2| \) is even. If \(|S_1| + |S_2| \) is odd, one out of two integers \(|S_1| - |S'| \) and \(|S_2| - |S''| \) is even and one is odd. Thus,
\[
\left(\frac{|S_1| - |S'|}{2} \right) \rho + \left(\frac{|S_2| - |S''|}{2} \right) \rho + |S'|\rho = \frac{|S_1|}{2} \rho + \frac{|S_2|}{2} \rho - \frac{1}{2} \rho.
\]
Since $|S_1| + |S_2|$ is odd,
\[
\left\lfloor \frac{|S_1| + |S_2|}{2} \right\rfloor \rho = \frac{|S_1| + |S_2|}{2} \rho - \frac{1}{2} \rho,
\]
which implies the result.

Theorem 1 If function $\tau(G)$ is monotone on the set of all multigraphs, then for any multigraph G,
\[
\tau(G) = \max\{\Delta(G), \omega(G)\}.
\]

Proof. By Lemma 1, $\max\{\Delta(G), \omega(G)\} \leq \tau(G)$. On the other hand, since $G \subseteq R(G)$, it follows from Lemma 2 that $\tau(G) \leq \tau(R(G)) = \max\{\Delta(G), \omega(G)\}$.

References

[1] M. K. Goldberg, 1973, *On Multigraphs of Almost Maximal Chromatic Class*, Discret. Analiz, vol 23, pp. 3-7, In Russian

[2] M. K. Goldberg, 1984, *Edge coloring of multigraphs: Recoloring Technique* J. Graph Theory, vol 8, pp. 123-137.

[3] M. K. Goldberg, 2007, *Clusters in a multigraph with elevated density* The Electronic Journal of Combinatorics, vol 14(1), num R10.

[4] P. E. Haxell and H. A. Kierstead, 2015, *Edge coloring multigraphs without small dense subsets* Discrete Mathematics, vol 338, pp. 2502-2506.

[5] I.J. Holyer, 1981, *The NP-completeness of edge coloring* SIAM J. Comput., vol. 10, pp.718-720.

[6] E. R. Scheinerman and D. H. Ullman, 1997, *Fractional Graph Theory*, John Wiley & Sons, Inc.

[7] P. D. Seymour, 1979, *Some unsolved problems on one-factorizations of graphs*, Graph Theory and Related Topics, Academic Press”, Bondy and Murty, eds.

[8] S. Stahl, 1979, *Fractional edge colorings* Cahiers Center Etudes Rech. Oper., vol 21, pp. 127-131.

[9] Michael Steibitz, Diego Schide, Bjarne Toft, and Lene M. Favrholdt. 2012, *Graph Edge Coloring, WILEY Series in Discrete Mathematics and Optimization*

[10] V. G. Vizing. 1965, *Critical graphs with a given chromatic class* Discret. Analiz, volume 5, pp. 9-17, in Russian.

[11] D. B. West, 2003, *Introduction to Graph Theory* Prentice Hall, Upper Saddle River, NJ.