Riemannian geometry for Compound Gaussian distributions: application to recursive change detection

Florent Boucharda, Ammar Mianb, Jialun Zhouc, Salem Saidc, Guillaume Ginolhaca, Yannick Berthoumieuc

aLISTIC, University Savoie Mont-Blanc, France
bSONDRA, CentraleSupelec, France
cIMS, University of Bordeaux, CNRS, France

Abstract

A new Riemannian geometry for the Compound Gaussian distribution is proposed. In particular, the Fisher information metric is obtained, along with corresponding geodesics and distance function. This new geometry is applied on a change detection problem on Multivariate Image Times Series: a recursive approach based on Riemannian optimization is developed. As shown on simulated data, it allows to reach optimal performance while being computationally more efficient.

Keywords: Riemannian geometry and optimization, covariance matrix estimation, compound Gaussian distribution, change detection.

1. Introduction

Covariance matrix is an important topic in signal and image processing. When data are Gaussian distributed, the Maximum Likelihood Estimator (MLE) is the well known Sample Covariance Matrix (SCM). However, this estimator features poor performance when data follow a more heavy-tailed...
distribution. In such a case, it is interesting to model the data with a Complex Elliptically Symmetric (CES) distribution \(^1\) and to employ M-estimators \(^2\) for covariance estimation. In this paper, we limit ourselves to the Compound Gaussian (CG) distribution \(^3, 4\), which is a CES sub-family. Its stochastic representation consists in a Gaussian vector multiplied by a positive scalar, called texture. For instance, this family fits well RADAR empirical data \(^5\).

It is possible to develop change detection algorithms for SAR Multivariate Image Times Series (MITS). Several approaches exist and those based on a test of equality of covariance matrices generally perform well. Moreover, they may have the interesting Constant False Alarm Rate (CFAR) property, in particular for Gaussian data \(^6, 7, 8\). For the CG distribution, the Generalized Likelihood Ratio Test (GLRT) is derived in \(^9\). This detector exhibits very good performance when data are not drawn from a Gaussian distribution. However, when the number of images \(T\) of the MITS is large, the computational time becomes prohibitive for practical implementation. In this paper, a recursive implementation of this detector is proposed. Because of the form of the change detector, this implementation cannot be derived easily, for example by employing an arithmetic mean.

To solve the problem, a framework based on a recursive approach as proposed in \(^{10}\) is developed and adapted to the CG distribution. In order to do so, the Riemannian geometry of the CG distribution has to be considered, which, to the best of our knowledge, has not been done previously. Hence, the main contribution of this paper consists in deriving a well-suited Riemannian geometry for the distribution of interest, \(i.e\). metric, geodesics, distance. It relies on the Fisher information metric of the CG distribution; see \(e.g\). \(^{11, 12}\) for Gaussian and CES cases. In addition, the Riemannian
gradient to recursively estimate the CG parameters of a MITS and the corresponding Intrinsic Cramér Rao Bound (ICRB) [11] are provided. Finally, the proposed method is validated on simulated data.

2. Data Model

Let a MITS \(\{x_i^{(t)}\}_{i \in [1,n], t \in [1,T]} \) of \(T \) data composed of \(n \) samples in \(\mathbb{C}^p \). Even though these data follow the same statistical distribution, their parameters might change with \(t \). From this MITS, we want to detect these changes by comparing the parameters of the distribution, denoted \(\theta^{(t)} \). The change detection problem can be written as:

\[
\begin{align*}
H_0 : \theta^{(1)} = \theta^{(2)} = \ldots = \theta^{(T)} &= \theta^{(0)} \\
H_1 : \exists (t, t') \in [1, T]^2, \theta^{(t)} &\neq \theta^{(t')}
\end{align*}
\] (1)

As shown in [9], to reach good performance, it is important that the parameters capture both the power and the correlations of the data. To ensure this, we propose to use the CG distribution [3, 4] (also referred to as a mixture of scaled Gaussian). This model corresponds to a Gaussian one, where each realization \(x_i^{(t)} \in \mathbb{C}^p \) is scaled by a local power factor \(\tau_i^{(t)} \) referred to as texture sample (assumed unknown deterministic in this work):

\[
x_i^{(t)} \sim \mathcal{CN}(0, \tau_i^{(t)} \Sigma^{(t)})
\] (2)

For the parameters to be identifiable, a constraint on the covariance \(\Sigma^{(t)} \) is needed. Most often, a trace constraint \(\text{tr}(\Sigma^{(t)}) = p \) is applied. However, from a geometrical point of view, it is not the best choice. In the following, we choose the unitary determinant normalization, advocated in [13] because it allows to decorrelate the estimation of textures and covariance matrix. In
this paper, we further show that it yields tremendous simplifications in the Fisher information metric. Thus, \(\Sigma^{(t)} \) belongs to

\[
\mathcal{SH}_p^{++} = \{ \Sigma \in \mathcal{H}_p^{++} : |\Sigma| = 1 \},
\]

where \(\mathcal{H}_p^{++} \) is the manifold of \(p \times p \) positive definite matrices.

In [9], the GLRT for the CG model is derived and the following detector is obtained:

\[
\hat{\Lambda}^{(T)}_{\text{CG}} = \frac{\left| \hat{\Sigma}_0^{(T)} \right|^T}{\prod_{t=1}^T |\hat{\Sigma}_{Ty}^{(t)}|} \prod_{i=1}^n \left(\frac{\sum_{t=1}^T \hat{\tau}_{i,0}^{(t)}}{T} \right)^T \frac{H_1}{H_0} \lambda,
\]

where \(\hat{\Sigma}_0^{(T)} \) and \(\hat{\tau}_{i,0}^{(t)} \) are the classical Tyler’s estimators of covariance and textures [14, 15]:

\[
\hat{\Sigma}_{Ty}^{(t)} = \frac{p}{n} \sum_{i=1}^n x_i^{(t)} x_i^{(t)H} \left(\hat{\Sigma}_{Ty}^{(t)} \right)^{-1} x_i^{(t)} \quad \text{and} \quad \hat{\tau}_{i}^{(t)} = \frac{x_i^{(t)H} \left(\hat{\Sigma}_{Ty}^{(t)} \right)^{-1} x_i^{(t)}}{p};
\]

\[
\hat{\Sigma}_0^{(T)} = \frac{p}{n} \sum_{i=1}^n \sum_{t=1}^T x_i^{(t)} y_i^{(t)H} \left(\hat{\Sigma}_0^{(T)} \right)^{-1} x_i^{(t)} \quad \text{and} \quad \hat{\tau}_{i,0}^{(t)} = \frac{x_i^{(t)H} \left(\hat{\Sigma}_0^{(T)} \right)^{-1} x_i^{(t)}}{Tp}.
\]

This detector features interesting CFAR properties and exhibits better performances when data follow a CG distribution. Unfortunately, it suffers a large complexity, in particular as \(T \) grows. Moreover, when a new dataset
\(\{ x_i^{(T+1)} \} \) occurs, it is impossible to compute the new detector \(\hat{\Lambda}^{(T+1)}_{CG} \) directly from \(\hat{\Lambda}^{(T)}_{CG} \) because:

\[
\hat{\Sigma}_0^{(T+1)} \neq \frac{T \hat{\Sigma}_0^{(T)} + \hat{\Sigma}_{yl}^{(T+1)}}{T + 1}
\]

(7)

To avoid the computation of \(\hat{\Sigma}_0^{(T+1)} \) with all previous data, an original recursive approach based on Riemannian optimization is proposed.

3. Riemannian geometry of the compound Gaussian distribution

To simplify notations, the superscript \(^{(t)}\) is omitted in this section. In the following, \(\tau = [\tau_1 \ldots \tau_n]^T \), \(\xi = (\xi_\Sigma, \xi_\tau) \) and \(\eta = (\eta_\Sigma, \eta_\tau) \). The parameter \(\theta \) of the CG distribution lies in the manifold \(\mathcal{M}_{p,n} = \mathcal{SH}_p^{++} \times \mathbb{R}_n^{++} \). Since this is the product of two manifolds, \(\mathcal{M}_{p,n} \) is also a manifold (see e.g. [16] for details). Its tangent space \(T_\theta \mathcal{M}_{p,n} \) at \(\theta \) is \(T_\Sigma \mathcal{SH}_p^{++} \times T_\tau \mathbb{R}_n^{++} \), where \(T_\Sigma \mathcal{SH}_p^{++} \):

\[
T_\Sigma \mathcal{SH}_p^{++} = \{ \xi_\Sigma \in \mathcal{H}_p : \text{tr}(\Sigma^{-1} \xi_\Sigma) = 0 \}
\]

(8)

(\(\mathcal{H}_p \) denotes the space of \(p \times p \) Hermitian matrices); and \(T_\tau \mathbb{R}_n^{++} \) is identified to \(\mathbb{R}^n \).

To turn \(\mathcal{M}_{p,n} \) into a Riemannian manifold, it must be equipped with a Riemannian metric. The most natural choice in our case is to consider the Fisher information metric on \(\mathcal{M}_{p,n} \) associated with the CG distribution. It is given in the following proposition.

Proposition 3.1 (Fisher information metric). *The Fisher metric of the CG distribution on \(\mathcal{M}_{p,n} \) is defined, for \(\theta \in \mathcal{M}_{p,n} \) and \(\xi, \eta \in T_\theta \mathcal{M}_{p,n} \), by, up to a factor,*

\[
\langle \xi, \eta \rangle^{\mathcal{M}_{p,n}}_\theta = \frac{1}{p} \langle \xi_\Sigma, \eta_\Sigma \rangle_{\mathcal{H}_p^{++}} + \frac{1}{n} \langle \xi_\tau, \eta_\tau \rangle_{\mathbb{R}_n^{++}}
\]
with \(\langle \xi_\Sigma, \eta_\Sigma \rangle^\mathcal{H}_p^{++} = \text{tr}(\Sigma^{-1} \xi_\Sigma \Sigma^{-1} \eta_\Sigma) \) and \(\langle \xi_\tau, \eta_\tau \rangle^\mathbb{R}^{n+}_\tau = (\xi_\tau \odot \tau^{-1})^T \eta_\tau \odot \tau^{-1} \), where \(\odot \) and \(\cdot^{-1} \) denote elementwise product and inversion, respectively.

Proof. The log-likelihood \(L \) on \(\mathcal{M}_{p,n} \) for \(\theta \) is

\begin{equation}
L_{CG}(\theta) = \sum_i L_{G}(\tau_i \Sigma) = \sum_i L_{G} \circ \varphi_i(\theta),
\end{equation}

where \(L_{G} \) is the log-likelihood for the Gaussian distribution, see e.g. [11]; and \(\varphi_i(\theta) = \tau_i \Sigma \). By definition and [11, Theorem 1],

\begin{align*}
\langle \xi, \eta \rangle_{\mathcal{M}_{p,n}} &= \mathbb{E}[D L_{CG}(\theta)[\xi] D L_{CG}(\theta)[\eta]] = -\mathbb{E}[D^2 L_{CG}(\theta)[\xi, \eta]] \\
&= -\sum_i \mathbb{E}[D^2 L_{G} \circ \varphi_i(\theta)[\xi, \eta]] \\
&= \sum_i \mathbb{E}[D L_{G} \circ \varphi_i(\theta)[\xi] D L_{G} \circ \varphi_i(\theta)[\eta]] \\
&= \sum_i \langle D \varphi_i(\theta)[\xi], D \varphi_i(\theta)[\eta] \rangle_{\mathcal{H}_p^{++}},
\end{align*}

where \(D \varphi_i(\theta)[\xi] = \xi_\tau \tau_i \Sigma + \tau_i \xi_\Sigma \) is the directional derivative of \(\varphi_i \). Basic manipulations yield, up to a factor,

\begin{align*}
\langle \xi, \eta \rangle_{\mathcal{M}_{p,n}} &= \frac{1}{p} \langle \xi_\Sigma, \eta_\Sigma \rangle_{\mathcal{H}_p^{++}} + \frac{1}{n} \langle \xi_\tau, \eta_\tau \rangle_{\mathbb{R}^{n+}_\tau} \\
&\quad + \frac{1}{np} \text{tr}(\Sigma^{-1} \xi_\Sigma)(\eta_\tau \odot \tau^{-1})^T \mathbf{1}_n + \frac{1}{np} \text{tr}(\Sigma^{-1} \eta_\Sigma)(\xi_\tau \odot \tau^{-1})^T \mathbf{1}_n.
\end{align*}

Since \(\xi_\Sigma, \eta_\Sigma \in T_{\Sigma} S\mathcal{H}_p^{++} \), we have \(\text{tr}(\Sigma^{-1} \xi_\Sigma) = \text{tr}(\Sigma^{-1} \eta_\Sigma) = 0 \), which concludes the proof.

In the following proposition, the geodesics and Riemannian distance on \(\mathcal{M}_{p,n} \) associated with the Fisher information metric \(\langle \cdot, \cdot \rangle_{\mathcal{M}_{p,n}} \) of the CG distribution are provided. These geometrical objects are sufficient to perform
Riemannian optimization and to measure and bound estimation errors.

Proposition 3.2 (Geodesics and Riemannian distance). The geodesic on \(\mathcal{M}_{p,n} \) is \(\gamma_{\mathcal{M}_{p,n}}(t) = (\gamma_{\mathcal{S}^+^p}(t), \gamma_{\mathbb{R}^n^+}(t)) \). If \(\gamma_{\mathcal{M}_{p,n}}(0) = \theta \) and \(\dot{\gamma}_{\mathcal{M}_{p,n}}(0) = \xi \),

\[
\gamma_{\mathcal{S}^+^p}(t) = \Sigma \exp(t\Sigma^{-1}\xi\Sigma) \quad \text{and} \quad \gamma_{\mathbb{R}^n^+}(t) = \tau \odot \exp(t\odot^{-1} \odot \xi).
\]

If \(\gamma_{\mathcal{M}_{p,n}}(0) = \theta_0 \) and \(\gamma_{\mathcal{M}_{p,n}}(1) = \theta_1 \),

\[
\gamma_{\mathcal{S}^+^p}(t) = \Sigma_0^{1/2} (\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})^t \Sigma_0^{1/2} \quad \text{and} \quad \gamma_{\mathbb{R}^n^+}(t) = \tau_0^\odot^{-1} \odot \tau_1^\odot.
\]

It follows that the Riemannian distance on \(\mathcal{M}_{p,n} \) corresponding to the Fisher metric of proposition 3.1 is

\[
\delta^2_{\mathcal{M}_{p,n}}(\theta_0, \theta_1) = \frac{1}{p} \delta^2_{\mathcal{S}^+^p}(\Sigma_0, \Sigma_1) + \frac{1}{n} \delta^2_{\mathbb{R}^n^+}(\tau_0, \tau_1),
\]

where \(\delta^2_{\mathcal{S}^+^p}(\Sigma_0, \Sigma_1) = \|\log(\Sigma_0^{-1/2} \Sigma_1 \Sigma_0^{-1/2})\|^2 \) and \(\delta^2_{\mathbb{R}^n^+}(\tau_0, \tau_1) = \|\log(\tau_0^{-1} \odot \tau_1)\|^2 \).

Proof. The geodesics \(\gamma_{\mathcal{S}^+^p}(t) \) and \(\gamma_{\mathbb{R}^n^+}(t) \) are the geodesics on \(\mathcal{S}^+^p \) and \(\mathbb{R}^n^+ \) equipped with \(\langle \cdot, \cdot \rangle_{\mathcal{S}^+^p} \) and \(\langle \cdot, \cdot \rangle_{\mathbb{R}^n^+} \), respectively. Therefore, by definition of \(\langle \cdot, \cdot \rangle_{\mathcal{M}_{p,n}} \) and from the properties of product manifolds, \(\gamma_{\mathcal{M}_{p,n}} \) is the geodesic on \(\mathcal{M}_{p,n} \). Similarly, \(\delta^2_{\mathcal{S}^+^p} \) and \(\delta^2_{\mathbb{R}^n^+} \) are the Riemannian distances associated with \(\langle \cdot, \cdot \rangle_{\mathcal{S}^+^p} \) and \(\langle \cdot, \cdot \rangle_{\mathbb{R}^n^+} \). Thus, by definition of \(\langle \cdot, \cdot \rangle_{\mathcal{M}_{p,n}} \), \(\delta^2_{\mathcal{M}_{p,n}} \) is the associated Riemannian distance on \(\mathcal{M}_{p,n} \). \(\square \)

4. Application to recursive change detection

Given a new data at \(t + 1 \) \(\{x_i^{(t+1)}\}_i \), to obtain the CG change detector \(\hat{\Lambda}_{CG}^{(t+1)} \) defined in (4), one needs to compute: \(\hat{\theta}_{Tycl}^{(t+1)} = (\hat{\Sigma}_{Tycl}^{(t+1)}, \hat{\tau}_{Tycl}^{(t+1)}) \) and
\[\hat{\theta}^{(t+1)}_0 = (\hat{\Sigma}^{(t+1)}_0, \hat{\tau}^{(t+1)}_0) \] defined in (5) and (6). The complexity of the computation of \(\hat{\theta}^{(t+1)}_0 \) with usual techniques is quite high. To solve this issue, a recursive implementation, obtained by exploiting the Riemannian derivation studied in [10], is proposed. To estimate \(\hat{\theta}^{(t+1)}_0 \), we only use the information provided by \(\hat{\theta}^{(t)}_0 \) and the log-likelihood of the new data \(\{x^{(t+1)}_i\}_i \), which is

\[L^{(t+1)}_{CG}(\theta) = \sum_i -p \log(\tau_i) - \frac{(x^{(t+1)}_i)^H \Sigma^{-1} x^{(t+1)}_i}{\tau_i}. \quad (10) \]

The recursive algorithm returning the sequence of estimates \(\{\theta^{(t)}_0\}_t \) corresponding to the sequence of data \(\{x^{(t)}_i\}_i \) is given in Algorithm 1. This algorithm relies on: (i) the Riemannian exponential map \(\exp_{\theta}^{M_{p,n}} : T_{\theta} M_{p,n} \to M_{p,n} \), such that \(\exp_{\theta}^{M_{p,n}}(\xi) = \gamma^{M_{p,n}}(1) \), where \(\gamma^{M_{p,n}} \) is defined in Proposition 3.2; (ii) the Riemannian gradient of \(L^{(t)}_{CG} \), provided in Proposition 4.1.

Algorithm 1: Recursive estimation of CG parameters in \(M_{p,n} \)

Input: \(\{x^{(t)}_i\}_i \), initialization \(\theta^{(0)} \in M_{p,n} \), initial stepsize \(\alpha_0 > 0 \)

Output: \(\{\theta^{(t)}_0\}_t \in M_{p,n} \)

for \(t = 0 \) to \(T \) do

\[\theta^{(t+1)}_0 = \exp_{\theta^{(t)}}^{M_{p,n}} \left(\frac{\alpha_0}{t+1} \text{grad}_{M_{p,n}} L^{(t+1)}_{CG}(\theta^{(t)}) \right) \]

Proposition 4.1 (Gradient of the parameters of CG distribution). The Riemannian gradient \(\text{grad}_{M_{p,n}} L^{(t)}_{CG}(\theta) \) at \(\theta \in M_{p,n} \) is

\[\text{grad}_{M_{p,n}} L^{(t)}_{CG}(\theta) = \left(\sum_i p \frac{x^{(t)}_i (x^{(t)}_i)^H - (x^{(t)}_i)^H \Sigma^{-1} x^{(t)}_i \Sigma}{\tau_i}, n(a - p\tau) \right) \]

where, for \(1 \leq i \leq n \), \(a_i = (x^{(t)}_i)^H \Sigma^{-1} x^{(t)}_i \).

Proof. By definition [10], for all \(\xi \in T_{\theta} M_{p,n} \), \(\langle \text{grad}_{M_{p,n}} L^{(t)}_{CG}(\theta), \xi \rangle^{M_{p,n}} = \)
\[D L^{(t)}_{CG}(\theta)[\xi]. \] We have
\[
D L^{(t)}_{CG}(\theta)[\xi] = \sum_i \left(\frac{x_i^{(t)} H \Sigma^{-1} x_i^{(t)} - p \tau_i}{\tau_i^2} \xi_{\tau_i} + (\frac{x_i^{(t)} H \Sigma^{-1} \xi_{\Sigma} \Sigma^{-1} x_i^{(t)}}{\tau_i} \right)
\]
\[
= \frac{1}{n} \langle n(a - p \tau), \xi_{\tau} \rangle_{\tau^+} + \frac{1}{p} \langle p \sum_i \frac{x_i^{(t)}(x_i^{(t)})^H}{\tau_i}, \xi_{\Sigma} \rangle_{\Sigma^+}.
\]

It remains to project \(p \sum_i \frac{x_i^{(t)}(x_i^{(t)})^H}{\tau_i} \) on the tangent space \(T_{\Sigma} S^H_{p^+} \). This is achieved by using \(F_{\Sigma}^{S^H_{p^+}}(\xi_{\Sigma}) = \text{herm}(\xi_{\Sigma}) - \frac{1}{p} \text{tr}(\Sigma^{-1} \xi_{\Sigma}) \Sigma \) (see e.g. [12]).

One can check that it yields the proposed gradient.

The Riemannian distance in Proposition 3.2 can be used to measure the error contained in an unbiased estimator \(\hat{\theta}^{(T)} \) of the parameter \(\theta^{(T)} \) corresponding to a MITS with \(T \) data. Exploiting the same framework as in [11, 12], the corresponding ICRB is provided in the following proposition.

Proposition 4.2 (ICRB). Given an unbiased estimator \(\hat{\theta}^{(T)} \) of \(\theta^{(T)} \) corresponding to a MITS with \(T \) data, the ICRB corresponding to the error measured with the Riemannian distance in Proposition 3.2 is
\[
\mathbb{E}[\delta^2_{M_{p,n}}(\theta^{(T)}, \hat{\theta}^{(T)})] \leq \frac{p^2 - 1 + n}{Tpn}
\]

Proof. By definition of \((\cdot, \cdot)^{M_{p,n}} \) in Proposition 3.1, the Fisher information matrix is \(F = Tpn I_{p^2 - 1 + n} \). Thus, \(\text{tr}(F^{-1}) = \frac{p^2 - 1 + n}{Tpn} \), which is enough to conclude.

5. Numerical simulations

Given \(T \) data, the performance of the CG change detector (4) under the null hypothesis greatly depends on the quality of the estimator \(\theta^{(T)}_0 \). In this
numerical experiment, we compare the performance of the three following estimators:

- The MLE $\hat{\theta}_{mle}$, which features the best performance but is computationally expensive.

- The arithmetic mean $\hat{\theta}_{art}$, such that $\hat{\theta}_{art}^{(t+1)} = \frac{t\hat{\theta}_{art}^{(t)} + \hat{\theta}_{Tyl}^{(t+1)}}{t+1}$, where $\hat{\theta}_{Tyl}$ is Tyler’s estimator (5) of $\{x_i^{(t+1)}\}_i$.

- The recursive estimation $\hat{\theta}_{rec}$ proposed in Algorithm 1 with $\alpha_0 = 1/pn$.

Simulated data $\{x_i^{(t)}\}_{i,t}$ of size $p = 10$, $n \in \{20, 50\}$, $T \in [1,1000]$ are drawn from a K-distribution. Textures τ follow a Γ distribution with parameters $\alpha = \beta = 1$. The covariance matrix is generated as $\Sigma = U\Lambda U^H$, where U is a random unitary matrix drawn from a normal distribution and Λ is a random diagonal positive definite matrix with unitary determinant drawn from a chi-squared distribution.

In Figure 1, we observe that, as expected, the MLE features the best performance and quickly reaches the ICRB as T grows. The arithmetic mean has good performance for small values of T but reaches a minimal floor, thus displaying poor performance for large T. Finally, our proposed method works quite well: it reaches the optimal performance as T grows. Moreover, it has the smallest complexity as only one iteration is needed for each new incoming data.

6. Conclusion

We have adapted a change detector derived for CG data in order to execute it recursively and greatly reduce the complexity of the calculation.
The approach is based on Riemannian optimization which required the construction of geometry for CG distribution. Simulations have shown the interest of this new algorithm to reduce the complexity while maintaining good performance.

Acknowledgment

This work was supported by ANR PHOENIX (ANR-15-CE23-0012) and ANR-ASTRID MARGARITA (ANR-17-ASTR-0015).

References

[1] E. Ollila, D. E. Tyler, V. Koivunen, H. V. Poor, Complex elliptically symmetric distributions: Survey, new results and applications, IEEE Transactions on Signal Processing 60 (11) (2012) 5597–5625.

[2] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, P. Larzabal, Covariance structure maximum-likelihood estimates in compound gaussian
noise: Existence and algorithm analysis, IEEE Transactions on Signal Processing 56 (1) (2008) 34–48.

[3] K. Yao, A Representation Theorem and its Applications to Spherically Invariant Random Processes, IEEE Transactions on Information Theory 19 (1973) 600–608.

[4] F. Gini, M. Greco, Covariance matrix estimation for CFAR detection in correlated heavy tailed clutter, Signal Processing 82 (12) (2002) 1847–1859.

[5] M. Greco, F. Gini, Statistical analysis of high-resolution SAR ground clutter data, IEEE Transactions on Geoscience and Remote Sensing 45 (3) (2007) 566–575.

[6] K. Conradsen, A. A. Nielsen, J. Schou, H. Skriver, A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data, IEEE Transactions on Geoscience and Remote Sensing 41 (1) (2003) 4–19.

[7] L. M. Novak, Coherent change detection for multi-polarization SAR, in: Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, 2005., 2005, pp. 568–573.

[8] D. Ciouonzo, V. Carotenuto, A. D. Maio, On multiple covariance equality testing with application to SAR change detection, IEEE Transactions on Signal Processing 65 (19) (2017) 5078–5091.

[9] A. Mian, G. Ginolhac, J.-P. Ovarlez, A. M. Atto, New robust statistics for change detection in time series of multivariate SAR images, IEEE Transactions on Signal Processing 67 (2) (2019) 520–534.
[10] J. Zhou, S. Said, Fast, asymptotically efficient, recursive estimation in a Riemannian manifold, Entropy 21 (10).

[11] S. T. Smith, Covariance, subspace, and intrinsic Cramér-Rao bounds, IEEE Transactions on Signal Processing 53 (5) (2005) 1610–1630.

[12] A. Breloy, G. Ginolhac, A. Renaux, F. Bouchard, Intrinsic Cramér-Rao bounds for scatter and shape matrices estimation in CES distributions, IEEE Signal Processing Letters 26 (2) (2019) 262–266.

[13] D. Paindaveine, A canonical definition of shape, Statistics & probability letters 78 (14) (2008) 2240–2247.

[14] D. E. Tyler, A distribution-free m-estimator of multivariate scatter, The Annals of Statistics 15 (1) (1987) 234–251.

[15] F. Pascal, Y. Chitour, J.-P. Ovarlez, P. Forster, P. Larzabal, Covariance structure maximum-likelihood estimates in compound gaussian noise: Existence and algorithm analysis, IEEE Transactions on Signal Processing 56 (1) (2008) 34–48.

[16] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, Princeton, NJ, USA, 2008.