Life-threatening bronchopulmonary dysplasia: a British Paediatric Surveillance Unit Study

Rebecca Naples, Sridhar Ramaiah, Judith Rankin, Janet Berrington, Sundeep Harigopal

ABSTRACT

Objectives To assess the minimum incidence of life-threatening bronchopulmonary dysplasia (BPD), defined as need for positive pressure respiratory support or pulmonary vasodilators at 38 weeks corrected gestational age (CGA), in infants born <32 weeks gestation in the UK and Ireland; and to describe patient characteristics, management and outcomes to 1 year.

Methods Prospective national surveillance study performed via the British Paediatric Surveillance Unit from June 2017 to July 2018. Data were collected in a series of three questionnaires from notification to 1 year of age.

Results 153 notifications met the case definition, giving a minimum incidence of 13.9 (95% CI: 11.8 to 16.3) per 1000 live births <32 weeks’ gestation. Median gestation was 26.1 (IQR 24.6–28) weeks, and birth weight 730 g (IQR 620–910 g). More affected infants were male (95 of 153, 62%; p<0.05). Detailed management and outcome data were provided for 94 infants. Fifteen died at median age 159 days (IQR 105–182) or 49.6 weeks CGA (IQR 620–910 g). Fifty-seven (60.6%) received postnatal steroids and/or major neurodevelopmental impairment (37.3%) or long-term ventilation (23.4%) were significantly associated with need for invasive ventilation near term and pulmonary hypertension.

Conclusions This definition of life-threatening BPD identified an extremely high-risk subgroup, associated with serious morbidity and mortality. Wide variability in management was demonstrated, and future prospective study, particularly in key areas of postnatal steroid use and pulmonary hypertension management, is required.

INTRODUCTION

Significant bronchopulmonary dysplasia (BPD), defined as need for oxygen or positive pressure respiratory support at 36 weeks corrected gestational age (CGA), affected 37% of infants born <32 weeks gestation in the UK in 2019, and is the most common major complication of preterm birth.1 BPD is associated with adverse respiratory and neurodevelopmental outcomes throughout childhood and into adult life, and despite significant progress in neonatal respiratory care in recent decades, rates continue to increase.2,4

BPD is traditionally classified according to respiratory support or oxygen requirement at 36 weeks CGA,5 but it is increasingly recognised that the predictive value of this classification is limited, and need for pressure support more closely associated with longer term morbidity.3–8

Although extensively studied as a broad group, there is little data on treatment and outcomes of infants with the most severe BPD, making management decisions, counselling and identification of research priorities difficult. This study aimed to identify the minimum incidence of ‘life-threatening BPD’, defined as a need for positive pressure respiratory support or pulmonary vasodilators at, or beyond, 38 weeks corrected gestational age.

Prospective national surveillance study performed via the British Paediatric Surveillance Unit from June 2017 to July 2018. Data were collected in a series of three questionnaires from notification to 1 year of age.

RESULTS

We defined ‘life-threatening’ BPD in preterm infants requiring positive pressure respiratory support or pulmonary vasodilators at, or beyond, 38 weeks corrected gestational age. Mortality and morbidity were high, and significant variation in practice was demonstrated. Invasive ventilation near term and presence of pulmonary hypertension were identified as key factors significantly associated with adverse outcomes within this cohort.

What is already known on this topic?

BPD is traditionally classified according to respiratory support or oxygen requirement at 36 weeks CGA, but it is increasingly recognised that the predictive value of this classification is limited, and need for pressure support more closely associated with longer term morbidity.3–8

What this study adds?

We defined ‘life-threatening’ BPD in preterm infants requiring positive pressure respiratory support or pulmonary vasodilators at, or beyond, 38 weeks corrected gestational age.

Mortality and morbidity were high, and significant variation in practice was demonstrated.

Invasive ventilation near term and presence of pulmonary hypertension were identified as key factors significantly associated with adverse outcomes within this cohort.
well-established centre for paediatric rare disease surveillance, using their methodologies. All paediatricians are sent monthly electronic reporting cards to notify cases or confirm they have seen none. Surveillance was undertaken for 13 months from 1 July 2017 to 31 July 2018 as standard for BPSU Studies. Clinicians then completed up to three questionnaires using medical records: questionnaire 1 at notification (demographics, pregnancy and delivery details), questionnaire 2 at 8 weeks post-term (neonatal care and outcome at discharge/death), and questionnaire 3 at 1 year of age (post-discharge data). Presence of major or minor neurodevelopmental concerns at 1 year was reported from medical records. Up to three reminders were sent for each questionnaire by email and post.

Case definition
Life-threatening BPD was defined in any infant born at <32 weeks gestation, without significant congenital anomaly, requiring positive pressure support (ventilation, continuous/bilevel positive airway pressure (CPAP/BiPAP), or high flow ≥2L/min) or pulmonary vasodilators at 38 weeks CGA, without intercurrent illness to explain this need.

Statistics
Descriptive statistics with measures of central tendency and dispersion were used. Categorical variables were compared using X² or Fisher’s exact tests, and continuous, non-parametric variables using Mann-Whitney U test. A p value of <0.05 was considered significant. Binomial logistic regression was used to evaluate predictors of outcomes. Models included gestational age (GA), birth weight and sex, plus variables with p<0.1 on univariate analysis not showing multicollinearity. All analyses were performed using IBM SPSS V.26.

RESULTS
Case reporting
During the study period, overall monthly BPSU surveillance reporting was 94.7%. In total, 329 notifications were received; 90 were excluded as they did not fulfil inclusion criteria (n=68) or were duplicates (n=22). For a further 86 notifications, no data were provided despite multiple requests. One hundred fifty-three confirmed cases were finally included with detailed data up to discharge (questionnaire 2) provided for 94 infants and data to 1 year or death (questionnaire 3) for 77 infants (figure 1). All infants met the case definition by virtue of requiring positive pressure support at 38 weeks’ GA.

Incidence
Using national population estimates, minimum incidence of life-threatening BPD during the surveillance period was 13.9 (95% CI 11.8 to 16.3) per 1000 live births <32 weeks gestation, or 0.17 (0.15 to 0.2) per 1000 of all live births, based on 153 confirmed cases.

Demographics
Cases were reported from 57 hospitals, with individual units reporting 0–12 cases. Median GA was 26.1 weeks (IQR 24.6–28), and birth weight 730 g (IQR 620–910 g). More affected infants were male (95 of 153, 62%); p<0.05) and most (120 of 153, 78%) white British (online supplemental table 1). No differences in baseline characteristics were identified between infants with and without discharge data (online supplemental table 2).

Disputes were considered separate if transfer to another device was achieved for >24 hours. Two of 94 cases provided incomplete respiratory data due to multiple postnatal transfers. Ninety-one (98.9%) infants received invasive ventilation: 85 of 91 (92.4%) on the first day of life and the remaining 6 within 72 hours. Infants were ventilated for median 29 days (IQR 17–51) in 2 (IQR 1–3) episodes, and median age last receiving invasive ventilation was 50 days (IQR 22–98).

All ventilated infants received surfactant, with a median first dose of 182 mg/kg (IQR 144–211) given at 11 min (IQR 7–23) of age. High-frequency oscillatory ventilation (HFOV) was used in 53 of 94 (56.4%); 30 of 94 (31.9%) received inhaled nitric oxide, and 4 of 94 (4.3%) had a pneumothorax.

Postnatal steroids
Postnatal steroids were used for BPD in 57 of 94 (60.6%) infants, starting at a median age of 26 days (IQR 14–48). Initial steroid received was dexamethasone in the majority (52 of 57; 91.2%). Median steroid courses (defined as separate if >72 hours deliberately elapsed between doses) per infant was 1 (IQR 0–6, max 6). In total, infants in the study received 109 courses of steroid: 90 (82.6%) dexamethasone, 10 (9.2%) prednisolone, 5 (4.6%) methylprednisolone and 4 (3.7%) hydrocortisone. Two infants

Figure 1 Cases reported to the BPSU. Q1/Q2/Q3=eligible questionnaire returned. BPSU, British Paediatric Surveillance Unit.

Antenatal steroids were given in 139 of 153 (90.8%) cases, with the last dose received a median of 2 days (IQR 1–6) before delivery (table 1).

Respiratory support
Episodes of respiratory support were considered separate if transfer to another device was achieved for >24 hours. Two of 94 cases provided incomplete respiratory data due to multiple postnatal transfers. Ninety-one (98.9%) infants received invasive ventilation: 85 of 91 (92.4%) on the first day of life and the remaining 6 within 72 hours. Infants were ventilated for median 29 days (IQR 17–51) in 2 (IQR 1–3) episodes, and median age last receiving invasive ventilation was 50 days (IQR 22–98).

All ventilated infants received surfactant, with a median first dose of 182 mg/kg (IQR 144–211) given at 11 min (IQR 7–23) of age. High-frequency oscillatory ventilation (HFOV) was used in 53 of 94 (56.4%); 30 of 94 (31.9%) received inhaled nitric oxide, and 4 of 94 (4.3%) had a pneumothorax.

Nasal CPAP/BiPAP and high flow were both extensively used (96.7% and 91.3%, respectively, table 2). Flow high was generally started later and given for a significantly longer duration than CPAP (40.5 vs 27 days; p<0.05). Median duration of positive pressure support for infants discharged alive, off support was 103 days (IQR 87–134; max 258), which was discontinued at a median 41.3 weeks CGA (IQR 39.4–45.4; max 65.14). Seven infants required long-term ventilation post-discharge, all of whom survived to 1 year.
total duration of steroid treatment was 23 days (IQR 14–44, range 2–163), and nine remained on steroid at discharge.

Management of patent ductus arteriosus

Medical therapy for patent ductus arteriosus (PDA) was used in 36 of 94 (38.3%) infants, and 8 (8.4%) received repeat courses (table 2). Seventeen (18.1%) underwent PDA ligation at median age of 43 days (IQR 37–78): 11 following medical therapy and 6 primary closures. Immediately before ligation, 9 of 17 (52.9%) infants were invasively ventilated.

Infections

Culture-positive sepsis occurred in 42 of 94 (44.7%) infants, most commonly coagulase-negative staphylococcus. Forty-nine (52.1%) experienced ≥1 episode of culture-negative sepsis, and 32 of 94 (34.0%) pneumonias, most commonly Klebsiella or Staphylococcus aureus (online supplemental table 3). Median number of treated infections was 2 (IQR 1–4), and age of first reported infection 7 days (IQR 1–28).

Pulmonary hypertension

Echocardiographic evidence of pulmonary hypertension (PHT) was identified in 32 of 94 (34%) infants. Sildenafil was used in 22 of 94 (23.4%) at a maximum dose of 3 mg/kg/day (IQR 1.6–4.3). One infant also received bosentan.

Other medications

Diuretics were frequently used (82 of 94, 87.2%), while inhaled steroids and bronchodilators were less common and started much later during admission (table 2).

Outcomes

Key outcomes are reported in table 3. By 1 year of age, 15 of 94 (16%) infants died; 14 before discharge, at median age 159 days (IQR 105–182) or 49.6 weeks CGA (IQR 43–52.9). Reported cause of death was BPD in 11 of 15 (73.3%), pulmonary stenosis in 1 of 15 (6.7%), and not known in 3 of 15 (20%). Of 79 surviving infants, 1 (1.3%) remained an inpatient at 1 year. Median age of discharge home was 143 (IQR 117–185) days, or 46.6 (IQR 43–52.9) weeks CGA. Eighteen infants were transferred to respiratory paediatrics before discharge. At final discharge, 60 of 79 (75.9%) infants were documented as receiving low-flow oxygen, and 7 of 79 (8.9%) required long-term positive pressure support at home. Five had a tracheostomy at a median age of 260 days (range 177–278). Post-discharge, two infants required new invasive ventilation, one required CPAP and eight required high flow during readmissions in the first year of life.

One-year neurodevelopmental assessment was available for 60 of 79 (76%) surviving infants. No concerns were reported for 37 (61.7%), minor concerns in 10 (16.7%) and major concerns in 13 (21.7%) infants.

Characteristics of infants who died with and without major neurodevelopmental impairment (NDI) or required long-term ventilation are compared in table 4. Presence of PHT and need for any invasive ventilation at or beyond 38 weeks were significantly associated with these adverse outcomes on regression analysis.

DISCUSSION

Broad definitions of BPD do not facilitate focus on the most severely affected infants who merit separate approaches to their care. Infants requiring pressure support near term are an

Table 1 Demographic, antenatal and delivery details

Demographics				
Gestational age at delivery (weeks)	26.1 (24.6–28)	Birth weight (g)	730 (620–910)	
Birth weight <10th centile	57/153 (37.3%)	Male	95/153 (62.1%)	
Female	58/153 (37.9%)			
Antenatal steroids				
Received any steroid	139/153 (90.8%)	Incomplete course only	16/139 (11.5%)	
One complete course	109/139 (78.4%)	Two complete courses	13/139 (9.4%)	
Courses not known	1/139 (0.7%)	None	13/153 (8.5%)	
Not known	1/153 (0.7%)			
Antenatal steroid received				
Betamethasone	66/139 (47.5%)	Dexamethasone	65/139 (46.8%)	
Betamethasone and dexamethasone	1/139 (0.7%)	Not known	7/139 (5.0%)	
Mode of delivery				
Caesarean section	85/153 (55.6%)	Vaginal	64/153 (41.8%)	
Not known	4/153 (2.6%)			
Rupture of membranes				
Prelabour	65/153 (42.5%)	Prolonged (>24hours)	46/153 (30.1%)	
Placenta				
Evidence of chorioamnionitis	21/153 (13.7%)	Other abnormality	21/153 (13.7%)	
Appgar scores	5min	7 (5–8)	10min	8 (7–9)
Surfactant				
Doses received				
None	1/153 (0.7%)	One	58/153 (37.9%)	
Two	50/153 (32.7%)	Three	33/153 (21.6%)	
Not known	11/153 (7.2%)			
Respiratory support at 36 weeks’ CGA				
Invasive ventilation	13/94 (13.8%)	CPAP/BiPAP	32/94 (34.0%)	
High flow	43/94 (45.7%)	Not known	6/94 (6.4%)	
Respiratory support at 38 weeks’ CGA				
Invasive ventilation	13/94 (13.8%)	CPAP/BiPAP	20/94 (21.3%)	
High flow	56/94 (59.6%)	Not known	5/94 (5.3%)	

Data presented as number (%) or median (IQR). BiPAP, bilevel positive airway pressure; CGA, corrected gestational age; CPAP, continuous positive airway pressure.

received Mini-Dex investigational medicinal product, one of whom also received open-label dexamethasone.14
extremely vulnerable subgroup, at high-risk of death, respiratory and neurodevelopmental morbidity. This study describes in detail the demographics, management and clinical outcomes of infants with ‘life-threatening’ BPD; a group we defined based on assessment at 38 weeks to capture those with the most severe disease.

There are certain limitations to this study. The well-established BPSU methodology was chosen to provide a collated overview of a condition seen rarely in individual units, with a high level of detail not possible using other methodologies. Compliance with reporting is high, but ascertainment and follow-up limited by clinician’s responses. Our study of three questionnaires was designed to maximise data collected but, despite multiple reminders, attrition occurred at each stage, meaning detailed information was provided for 94 of 153 confirmed (or 239 potential) cases. Although a potential source of bias, baseline characteristics of infants with and without additional data were similar, and a detailed description of highly informative cases from 57 different centres is provided. Minimum incidence of life-threatening BPD was calculated using 153 confirmed cases, however true incidence is likely higher due to under-reporting. Finally, as cases were reported at 38 weeks CGA, deaths occurring before this time point or without meeting the case definition were not captured, therefore true BPD-related mortality is higher.

Our minimum annual incidence of life-threatening BPD is 13.9 (95% CI 11.8 to 16.3) per 1000 live births <32 weeks gestation. The associated high mortality, morbidity and significant resource use during a protracted neonatal admission make further study important. Furthermore, incidence is likely to increase as progressively more immature infants are supported from birth, and survival at the lowest gestation increases.

By definition, infants received very prolonged pressure support (median 103 days). Most were ventilated on the first day of life, and it is unclear whether a more proactive approach to non-invasive support from birth would have a positive impact in this cohort. Need for any invasive ventilation at or beyond 38 weeks CGA was significantly associated with death and major morbidity in this cohort (also significant when retrospectively assessed at 36 weeks). This is consistent with Jensen et al reporting significantly higher rates of death, serious respiratory and NDI in infants requiring invasive rather than non-invasive support at 36 weeks CGA, and supports the distinct classification of infants requiring invasive ventilation near term as an extremely high-risk subgroup.

Table 2 Respiratory support and medications received pre-discharge

Respiratory support	Number of infants	Starting age (days)	Starting CGA (weeks)	Total duration (days)	Postnatal age last received (days)
Invasive ventilation	91/92 (98.9%)	0 (0–0; 0–2)	26.4 (24.6–28.1; 23.3–31.3)	29 (17–51; 1–238)	50 (22–98)
Nasal CPAP/BiPAP	89/92 (96.7%)	20 (6–39; 0–152)	29.6 (27.7–32.1; 24.3–48.7)	27 (14–45; 2–297)	84 (49–103)
Nasal high flow	84/92 (91.3%)	49.5 (28–84; 0–161)	33.6 (31.1–37.1; 27.7–50.7)	40.5 (22–64; 4–156)	109 (89.5–143)

*Outcomes reported for infants with complete data only.

Table 3 Discharge details and outcomes

Outcomes	Number (%)
Status at 1 year	
Discharged home	76/94 (81)
Died	15/94 (16)
Remained inpatient	1/94 (1.1)
Not known	2/94 (2.1)
Age of discharge home (days)	143 (117–185)
CGA of discharge home (weeks)	46.6 (43–52.9)
Age of death (days)	159 (105–182)
CGA of death (weeks)	49.6 (42.6–52.6)
Respiratory support at discharge	
Air	8/79 (10.1)
Low-flow oxygen	60/79 (75.9)
Long-term ventilation (ventilation, CPAP, high flow)	7/79 (8.9)
Not known	4/79 (5.1)
Comorbidities	
Retinopathy of prematurity requiring treatment	26/94 (27.7)
Laser	20/94 (21.3)
Avastin	3/94 (3.2)
Both	3/94 (3.2)
Perventriculal leukomalacia	7/94 (7.4)
Ventriculoperitoneal shunt inserted	5/94 (5.3)
Gastrostomy inserted	7/94 (7.4)
Tracheostomy	5/94 (5.3)
Neurological assessment at 1 year	
Normal	37/60 (61.7)
Minor concerns	10/60 (16.7)
Major concerns	13/60 (21.7)
Death or long-term ventilation (LTi)	22/94 (23.4)
Death or major neurodevelopmental impairment (NDI)	28/75 (37.3)*
Death or major morbidity (LTi, major NDI or readmission for respiratory support within 1st year)	42/94 (44.7)

*Data presented as number (%) or median (IQR).
HFOV was common (56.4%) and associated with increased risk of death, presumably reflecting use as ‘rescue’ therapy. Similarly, inhaled nitric oxide use was higher than the general preterm population (31.9% vs 16.6%), indicating severe respiratory disease, and knowledge of such associations with poorer outcomes may facilitate risk stratification for future treatment intervention studies.

Although most infants received both CPAP and high flow (97% and 92%, respectively), high flow was generally started later and continued for a significantly longer duration. A number of retrospective studies have reported increased BPD, longer respiratory support and hospitalisation since introduction of high flow, although this is not universal.18–22 Randomising infants with evolving BPD to weaning via CPAP only or CPAP and high flow to explore this relationship further would be helpful.

Postnatal dexamethasone reduces BPD, but optimal timing, dosing and duration of postnatal steroids to prevent and treat BPD are unknown.22 23 Only 61% of infants received any postnatal steroid, despite the severity of their BPD, and significant variability in use demonstrated. Treatment commenced at an average age of 26 days, but recent retrospective studies suggest benefit from earlier treatment in the second postnatal week.24 Risk stratification and prospective assessment of the optimal steroid regimes both to prevent BPD in high-risk infants and to treat established BPD should be a priority.

Diuretics were widely used (87%) despite no convincing evidence for long-term respiratory benefit and frequent side-effects.25 26 Inhaled steroids and bronchodilators were used uncommonly (17% and 8.5%, respectively) and later in the inpatient course, likely reflecting a shift to treatment of established BPD. Neither have proven efficacy in prevention or treatment of BPD. Nosocomial infections are implicated in the pathogenesis of BPD. Neither have proven efficacy in prevention or treatment of BPD. Neither have proven efficacy in prevention or treatment of BPD. Neither have proven efficacy in prevention or treatment of BPD. Neither have proven efficacy in prevention or treatment of BPD. Neither have proven efficacy in prevention or treatment of BPD. Neither have proven efficacy in prevention or treatment of BPD.

Results of univariate analysis reported as number (%) or median (IQR); results of regression analysis reported as aOR (95% CI).

Table 4 Comparison of infants with and without outcomes of death, death/major neurodevelopmental impairment (NDI) and death/long-term ventilation (LT) at 1 year

Association with outcomes on univariate analysis

Death/NDI (n=28)	No death/NDI (n=47)	Death/LTV (n=22)	No death/LTV (n=70)	
Gestational age (weeks)	27.0 (24.1–27.7)	26.1 (24.7–28.3)	27.0 (25.1–28.7)	26.8 (24.3–28.4)
Birth weight (g)	705 (570–869)	755 (621–930)	750 (610–892)	775 (604–1048)
Birth weight <10th centile	7 (46.7%)	29 (37.7%)	510 (35.7%)	22 (46.8%)
Male sex	7 (46%)	48 (62%)	256 (57.1%)	30 (63.8%)
Received antenatal steroids	15 (100%)	68 (88.3%)	160 (71.4%)	105 (62.9%)
Received postnatal steroids	12 (80%)	43 (55.8%)	200 (53.6%)	150 (44.2%)
Duration postnatal steroids (days)	31 (10–53)	8 (0–27)	29 (9–53)	4 (0–24)
Age first steroid (days)	23 (7–63)	11 (0–10)	23 (7–63)	10 (0–35)
Starting dose dexamethasone (µg/kg/day)	87.5 (15–142.5)	25 (0–120)	50 (0–120)	10 (0–120)
Maximum dose dexamethasone (µg/kg/day)	120 (30–120)	0 (0–120)	60 (0–150)	0 (0–120)
Diuretics	0.269	0.257	0.269	0.257
Antenatal steroids	0.269	0.257	0.269	0.257
Male sex	0.269	0.257	0.269	0.257
Received antenatal steroids	0.16	0.15	0.16	0.15
Received postnatal steroids	0.20	0.19	0.20	0.19
Duration postnatal steroids (days)	0.029	0.020	0.029	0.020
Age first steroid (days)	0.081	0.081	0.081	0.081
Starting dose dexamethasone (µg/kg/day)	0.081	0.081	0.081	0.081
Maximum dose dexamethasone (µg/kg/day)	0.081	0.081	0.081	0.081

Association with outcomes on binomial logistic regression analysis

Death	(95% CI)	P value	Death/NDI	(95% CI)	P value	Death/LTV	(95% CI)	P value
Gestational age (weeks)	1.42 (0.95 to 2.37)	0.183	1.06 (0.66 to 1.74)	1.08	1.33 (0.87 to 2.05)	0.188		
Birth weight (g)	1.0 (0.99 to 1.00)	0.419	1.0 (1.00 to 1.0)	1.08	1.33 (0.87 to 2.05)	0.188		
Male sex	0.40 (0.09 to 1.87)	0.242	0.70 (0.20 to 2.38)	0.562	0.40 (0.11 to 1.43)	0.159		
Received antenatal steroids	–	–	0.02 (0.01 to 0.40)	0.010	0.71 (0.11 to 4.68)	0.721		
Received postnatal steroids	3.42 (0.55 to 21.16)	0.186	4.33 (0.96 to 19.52)	0.057	2.91 (0.66 to 12.78)	0.158		
Any ventilation ≥36 weeks	11.73 (3.31)	0.019	15 (53.6%)	20 (42.6%)	0.355	10 (45.5%)	0.143	
Any high flow ≥38 weeks	8 (53.3%)	0.005	20 (71.4%)	45 (97.5%)	0.004	14 (63.6%)	0.280	
Received inhaled nitric oxide	7 (46.7%)	0.24	23 (9–53)	14 (29–63)	0.242	10 (0–150)	0.093	
Received HFOV	10 (80%)	0.036	39 (50.6%)	26 (55.3%)	0.648	14 (63.6%)	0.061	
Pulmonary hypertension*	12 (80%)	0.005	18 (7%)	10 (6%)	0.002	13 (59.1%)	0.001	
Received sildenafil*	10 (66.7%)	0.001	11 (39.3%)	8 (64%)	0.317	14 (63.6%)	0.007	

Naples R, et al. Arch Dis Child Fetal Neonatal Ed 2022;107:F13–F19. doi:10.1136/archdischild-2021-322001

Arch Dis Child Fetal Neonatal Ed: first published as 10.1136/archdischild-2021-322001 on 28 June 2021. Downloaded from http://fn.bmj.com/ on September 13, 2023 by guest. Protected by
CONCLUSIONS
Life-threatening BPD occurred in 13.9 per 1000 infants born at <32 weeks gestation during the study period, with death or major morbidity in 45% of affected infants. There is little evidence to guide management of severe BPD, and we demonstrate significant variation in practice. Optimisation of non-invasive respiratory support, targeted postnatal corticosteroid use and universal screening for PHT are recommended priority actions. We have identified an extremely high-risk subgroup not discernible using current definitions of BPD, and better identification, possibly through a dedicated register, and research focus on this group of infants is urgently needed.

Acknowledgements
We would like to thank Richard Lynn and Jacob Avis from the BPSU team, Sue Morrison for administrative support, Ashleigh McLean for statistical support, and all clinicians who provided data.

Contributors
SH and JB contributed equally. SH and JB conceptualised and designed the study. RN, SR, SH and JB collected data. RN, SH and JB analysed and interpreted the data. JR reviewed the statistical analysis. RN drafted the initial manuscript. SH, JB, JR and RN reviewed and revised the initial manuscript.

Funding
This study was funded by Tiny Lives (registered charity 1150178).

Competing interests
None declared.

Patient consent for publication
Not required.

Ethics approval
Approved by the North East Tyne and Wear South Research Ethics Committee (reference 16/NE/0343). Permission to access data obtained from the Health Research Authority via Section 251 Confidentiality Advisory Group, and the Public Benefit and Privacy Panel for Health and Social Care in Scotland.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data availability statement
Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplemental information.

Supplemental material
This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Rebecca Naples http://orcid.org/0000-0002-0707-1210
Sundeeep Hariogpal http://orcid.org/0000-0002-5329-5864

REFERENCES
1. RCPCH. National neonatal audit programme (NNAP) 2020 annual report on 2019 data. London: RCPCH, 2020. https://www.rcpch.ac.uk/work-we-do-quality-improvement-patient-safety/national-neonatal-audit-programme
2. Islam JX, Keller RL, Aschner JL, et al. Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med 2015;192:134–56.
3. Stoll BJ, Hansen NI, Bell EF, et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA 2015;314:1039–51.
4. Poets CE, Lorenz L. Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: current evidence. Arch Dis Child Fetal Neonatal Ed 2018;103:F285–91.
5. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001;163:1723–9.
6. Jensen EA, Dysart K, Gantz MG, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants. an evidence-based approach. Am J Respir Crit Care Med 2019;200:751–9.
7. Isayama T, Lee SK, Yang J, et al. Revisiting the definition of bronchopulmonary dysplasia: effect of changing Panopy of respiratory support for preterm neonates. JAMA Pediatr 2017;171:271–9.
8. Owen LS, Cheong JY, Davis PG. Bronchopulmonary dysplasia as a trial endpoint: time for re-evaluation? Lancet Child Adolesc Health 2019;3:842–4.
9. British paediatric surveillance unit (BPSU) annual report 2018-2019.
10. UK office for national statistics. Available: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths.[Accessed Sep 2020].
11. Public health Scotland. Available: https://www.isdscotland.org/Publications.[Accessed Sep 2020].
12. Northern Ireland statistics and research agency. Available: https://www.nisra.gov.uk/publications/birth-statistics.[Accessed Sep 2020].
13. Central statistics office, Ireland. Available: https://www.cso.ie/en/statistics/birthsdeathsandmarriages.[Accessed Sep 2020].
14. Yates H, Chiocchia V, Linsell L, et al. Very low-dose dexamethasone to facilitate extubation of preterm babies at risk of bronchopulmonary dysplasia: the MININDEX feasibility RCT. Efficacy and Mechanism Evaluation 2019;61–52.
15. Malavolti AM, Bassiller D, Aletzat-Meiret R, et al. Bronchopulmonary dysplasia—impact of severity and timing of diagnosis on neurodevelopment of preterm infants: a retrospective cohort study. BMJ Paediatr Open 2018;2:1–8.
16. Mactier H, Bates SE, Johnston T, et al. Perinatal management of extreme preterm birth before 27 weeks of gestation: a framework for practice. Arch Dis Child Fetal Neonatal Ed 2020;105:232–9.
17. Subramaniam P, Ho JI, Davis PG, et al. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst Rev 2016;12.
18. Subhekar NV, Jawad S, Oughham K, et al. Increase in the use of inhaled nitric oxide in neonatal intensive care units in England: a retrospective population study. BMJ Paediatr Open 2021;5:e000897–8.
19. Heath Jeffery RC, Broom M, Shaddobt B, et al. Increased use of heated humidified high flow nasal cannula is associated with longer oxygen requirements. J Paediatr Child Health 2017;53:1215–9.
20. Taha DK, Kornhauser M, Greenspan JS, et al. High flow nasal cannula use is associated with increased morbidity and length of hospitalization in extremely low birth weight infants. J Pediatr 2016;173:50–5.
21. Soonawad S, Tongswang N, Nuntanumri P. Heated humidified high flow nasal cannula for weaning from continuous positive airway pressure in preterm infants: a randomized controlled trial. Neonatology 2016;102:204–9.
22. Doyle LW, Cheong JL, Ehrenkranz RA, et al. Late (> 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev 2017;13.
23. Doyle LW, Halliday H, Ehrenkranz RA, et al. An Update on the Impact of Postnatal Systemic Corticosteroids on Mortality and Cerebral Palsy in Preterm Infants: Effect Modification by Risk of Bronchopulmonary Dysplasia. J Pediatr 2014;165:1258–60.
24. Cuna A, Lewis T, Dai H, et al. Timing of postnatal corticosteroid treatment for bronchopulmonary dysplasia and its effect on outcomes. Pediatr Pulmonol 2019;54:165–70.
25. Stewart A, Brion LP, Ambrosio-Perez I, et al. Diuretics acting on the distal renal tubule for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev 2012;23.
26. Stewart A, Brion LP, Cochrane Neonatal Group. Intravenous or enteral loop diuretics for preterm infants with (or developing) chronic lung disease. Cochrane Database Syst Rev 2011;103.
27. Onland W, Offringa M, van Kaam A, et al. Late (≥ 7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. *Cochrane Database Syst Rev* 2017;21.

28. Ng G, da Silva O, Ohlsson A, et al. Bronchodilators for the prevention and treatment of chronic lung disease in preterm infants. *Cochrane Database Syst Rev* 2016;5.

29. Duijts L, van Meel ER, Moschino L, et al. European respiratory Society guideline on long-term management of children with bronchopulmonary dysplasia. *Eur Respir J* 2020;55:1900788.

30. Nair V, Loganathan P, Soraisham AS. Azithromycin and other macrolides for prevention of bronchopulmonary dysplasia: a systematic review and meta-analysis. *Neonatology* 2014;106:337–47.

31. Arjaans S, Zwart EAH, Ploegstra Mark-Jan, et al. Identification of gaps in the current knowledge on pulmonary hypertension in extremely preterm infants: a systematic review and meta-analysis. *Paediatr Perinat Epidemiol* 2018;32:258–67.

32. Arjaans S, Haarmann MG, Roofthoof MTR, et al. Fate of pulmonary hypertension associated with bronchopulmonary dysplasia beyond 36 weeks postmenstrual age. *Arch Dis Child Fetal Neonatal Ed* 2021;106:45–50.

33. Nees SN, Rosenzweig EB, Cohen JL, et al. Targeted therapy for pulmonary hypertension in premature infants. *Children* 2020;7:97–5.

34. Kadmon G, Schiller Q, Dagan T, et al. Pulmonary hypertension specific treatment in infants with bronchopulmonary dysplasia. *Pediatr Pulmonol* 2017;52:77–83.

35. Moore T, Hennessy EM, Myles J, et al. Neurological and developmental outcome in extremely preterm children born in England in 1995 and 2006: the EPICure studies. *BMJ* 2012;345:e7961–13.