This paper presents a comprehensive review of thin-layer drying-curve models available in the literature and their comparisons for single-layer drying applications from 2003 to 2013. In this regard, a total of 67 models are selected and classified under 28 performance assessment criteria for comparison purposes. These models are then evaluated by considering the following parameters: (1) product type; (2) pretreatment type; (3) drying parameters, such as temperature, air velocity, layer thickness, microwave power levels, amount of solar radiation, vacuum pressure, frequency of sound wave, excitation amplitude, relative humidity, bed depth, product shape, pH, salt content, absolute pressure, etc.; and (4) drying method employed. Furthermore, the best models obtained are employed for product drying applications and compared for different drying methods, drying parameters, and dried products.

Keywords Drying; Drying models; Food; Performance evaluation; Thin layer

INTRODUCTION

Drying is recognized as a crucial unit operation to dry out moist bodies by removing their moisture and reducing their moisture content to desired levels through diffusion within the body and evaporation from the surface. It is, at the same time, known as one of the oldest and most common forms of food preservation methods. Its use, over centuries, has been extended to various sectors, ranging from the pharmaceutical to lumber industries. Its use, over centuries, has been extended to various sectors, ranging from the pharmaceutical to lumber industries. It is of paramount importance to develop appropriate models to study the behavior of drying processes and their transport phenomena, including moisture diffusion and evaporation.

The models developed in the literature are used for designing new drying systems as well as selection of optimum drying conditions and for accurate prediction of simultaneous heat and mass transfer phenomena during the drying process.\[1-390\]

Under these considerations, based on the experimental data taken from the thin-layer drying experiments, the thin-layer drying curve models can be applied in the case of (i) a single product exposed to the drying air or one layer of the grains and (ii) a multilayer of many grain thicknesses if the temperature and the relative humidity of the drying air can be applied for drying process calculations as being in the same thermodynamic state at any time of the drying process. It is then important to emphasize that the thickness of a thin layer can go up if the velocity of drying air rises and also if the thermodynamic state of the drying air approaches the equilibrium state in heat and mass transfer with grain dried in this layer.\[390\] As a result, such mathematical models appear to be useful tools for the prediction of drying kinetics of heat-sensitive bio-origin materials.\[112\] The drying curves can be processed for drying rates to find the most convenient model for the drying process under given conditions.\[76\] The principle of modeling is based on having a set of mathematical equations that are detailed and simplified enough that they can adequately characterize the system.\[46\] Comprehensive models use simultaneous heat and mass transfer equations with variable food properties and shrinkage and these equations are a system of two nonlinear, coupled partial differential equations.\[46\] The thin-layer equations have been used to estimate drying times of several products and to generalize drying curves. In the development of thin-layer drying models for agricultural products, the moisture content of the material at any time after it has been subjected to a constant relative humidity and temperature conditions is generally measured and correlated to the drying parameters.\[1\]

In addition, they are absolutely required to select and evaluate the appropriate drying technique for a specific product. These procedures help the producer understand whether or not high-quality products are produced during the thin-layer drying process and if the efficiency of the thin-layer drying system increases. Although modeling studies in thin-layer drying are important, there is no theoretical model which is both practical and can unify the calculations. Therefore, experimental studies are important in thin-layer drying and thin-layer drying equations are...
important tools in the mathematical modeling of drying. They are practical and give sufficiently good results.\cite{200}
For every dryer, the process conditions—such as the drying chamber temperature, pressure, air velocity (if the carrier gas is air), relative humidity, and the product retention time—have to be determined according to feed, product, purpose, and method.\cite{200} Considering all these parameters, the designers who want to establish and construct a thin-layer dryer should take into account the experimental results collected from the thin-layer experiments. Accordingly, this will provide improved performance of thin-layer dryers and increase the efficiency of the thin-layer drying process while minimizing the harmful effects that reduce product quality as well as the drying behavior of the process. It should be emphasized that the experimental data collected incorrectly from thin-layer drying experiments will affect the system’s performance and process efficiency as well as the selection of the best model to describe thin-layer drying behavior. The selection of the best model is a very important procedure describing the behavior of the thin-layer drying process. However, before selecting the best model, the researchers should precisely and accurately perform experimental studies and measure the parameters correctly using devices with high accuracy, and collect the experimental data in a reliable way. Before the researchers use the experimental data in the calculations of the parameters in the thin-layer drying curve models, they should check the raw data in terms of the uncertainty analysis. It is observed that most of the researchers in the area of drying technologies have not applied an uncertainty analysis to their experimental studies. This is a really important lack in the modeling and analysis of thin-layer drying processes. Accordingly, the uncertainty analysis should be taken into consideration not only in the modeling and analysis of the thin-layer drying processes, but also in designing and performing cost analysis of the thin-layer dryers.

In this article, we aim to review the potential thin-layer drying-curve models available in the literature and compare them for single-layer drying applications from 2003 to 2013. We identify 67 potential models and classify and compare them under 28 performance assessment criteria. We also aim to evaluate these models by considering the following parameters: (1) product type; (2) pretreatment of the product; (3) drying parameters, such as temperature, air velocity, layer thickness, microwave power levels, amount of solar radiation, vacuum pressure, frequency of the sound wave, excitation amplitude, relative humidity, bed depth, product shape, pH, salt content, absolute pressures, etc.; and (4) drying method employed.

THIN-LAYER DRYING-CURVE MODELS

It is generally noted that, in terms of the comparative evaluation of the advantages and disadvantages of thin-layer drying models, the curve models used for thin-layer drying are mainly theoretical, semi-theoretical, and empirical types. The most widely used theoretical models are derived from Fick’s second law of diffusion. Similarly, semi-theoretical models are generally derived from Fick’s second law and modifications of its simplified forms (other semi-theoretical models are derived by analogues with Newton’s law of cooling). They are easier and need fewer assumptions due to their use of some experimental data.\cite{200} The empirical models also have similar characteristics to semi-theoretical models. They strongly depend on the experimental conditions and give limited information about the drying behaviors of the product.\cite{200} The empirical method is based on experimental data and dimensional analysis. They are easily applied to drying simulation, as they depend on experimental data.\cite{1} The theoretical method takes into account not only the external conditions, but also the mechanism of internal movement of moisture and the consequent effects.\cite{46} The semi-theoretical and empirical models consider only the external resistance to moisture transfer between the product and air.\cite{3,62} Accordingly, the solution of Fick’s second law is used widely as a theoretical model in thin-layer drying of food products. Semi-theoretical models are only valid under the drying and product conditions for which these models were developed. Empirical models are used for the water absorption process as well as the single-layer drying process, which can adequately describe the drying kinetics.\cite{204} Under these considerations, it can be said that the complexity of the models are mainly based on the number of constants. According to the open literature, the number of the model constants varies between one constant (e.g., see Newton model) and six constants (e.g., see Modified Henderson and Pabis Model, and Multiple Multiplicative Factor (MMF)) (see Table S1, available online in the Supplementary Material). When the number of model constant is taking into consideration, the Newton model with one constant is the simplest model, and the Modified Henderson and Pabis model and Multiple Multiplicative Factor (MMF) are the most complex models. In the literature,\cite{47,59,123,152,182} it is seen that Newton model was found to be the most suitable thin layer curve equation (see Table S3, available online). On the other hand, the Modified Henderson and Pabis model was determined to be the best model in the literature,\cite{2,73,95,130,141,195,213,293,322,330,348,351} while the Multiple Multiplicative Factor (MMF) was not designated as a most suitable model (see Table S3). As understood from these explanations, it is impossible to select the model describing the thin-layer drying curve by taking into consideration the number of the model constants. That is, the number of the model constants is not a selection criterion for determination of the best model indicating the drying behavior of the products. However, it is expected
that the model should give accurate results for optimization of drying behavior and conditions of the products. When the thin-layer drying curve models in the literature are taken into consideration, it is observed that the Midilli-Kucuk model with four constants is mostly found to be the most suitable model for thin-layer drying processes. In addition, the following thin-layer drying curve models have been commonly selected to be the most suitable models: the Page model (with two constants), the Logarithmic model (with three constants), the two-term model (with four constants), the Wang and Singh model (with two constants), the approximation of diffusion model (with three constants), the Modified Henderson and Pabis model (with six constants), the Modified Page model (with two constants), the Henderson and Pabis model (with two constants), the two-term exponential model (with two constants), the Verma et al. model (with three constants), and the Weibull model (with two-four constants) (see Table S3).

MODEL SELECTION AND ASSESSMENT

In the thin-layer drying method, sensible heat from heated air is transferred to wet products by convection. Heated air is ventilated through the thin layer of the wet material and carries with it the water vapor evaporated from the material. Researchers have developed numerous thin-layer drying models for various agricultural products (see Table S1). Thin-layer drying generally means to dry as a single layer of sample particles or slices. Because of this thin structure, the temperature distribution can be easily assumed to be uniform and thin-layer drying is very suitable for lumped parameter models. Recently, thin-layer drying equations have been found to have wide application due to their ease of use and the fact that they require less data, unlike in complex distributed models with wide application due to their ease of use and the fact that they require less data, unlike in complex distributed models have been commonly used to define this model by researchers (see Table S1). The most used form of the Page model is given in Eq. (50); it has been commonly used in the literature and has been incorrectly defined in Eqs. (28), (51), and (61)–(67). The Page model has two model constants and it has been determined to be the second-best suitable model after the Midilli-Kucuk model for various products according to evaluation criteria (see Table S3). The Modified Page model is generally used in a form as given in Eqs. (88) and (69), respectively, and is sometimes called the Modified Page-I, Modified Page-II, or Overhults et al. model. The Modified Page model has two model's constant and it has been determined to be the eighth-best suitable model (see Table S3). The Henderson and Pabis model, occasionally called the single term, generalized exponential, approximation of diffusion, McCormick, or Brooker et al. model, is highly cited in the literature and Eq. (159) is commonly used to define this model by researchers (see Table S1). However, Eqs. (127) and (153) have not been correctly defined. The Henderson and Pabis model has two model constants and has been found to be the ninth-best suitable model (see Table S3). The Logarithmic model is occasionally called the asymptotic or Yagcioglu et al. model and is the third-best suitable model (see Table S3). It has three model constants. The commonly used form of the logarithmic model is given in Eq. (193) and incorrectly used in Eqs. (194), (195), and (197). The Midilli-Kucuk model is sometime called the

- Step 1: Calculate the values of correlation coefficient, the coefficient of determination, modelling efficiency, adjusted R², the reduced chi-square, the root mean square error, the mean relative percentage error, the mean bias error, the standard error of estimate, the residual sum of squares, the reduced sum square error, the residuals, and the others in Table S2 for each model selected for the analysis. For the details of the equations of these criteria, please see Table S2.

- Step 2: Determine and select the highest values of the correlation coefficient, the coefficient of determination, modelling efficiency, adjusted R².

- Step 3: Determine and select the lowest values of the reduced chi-square, the root mean square error, the mean relative percentage error, the mean bias error, the standard error of estimate, the residual sum of squares, the reduced sum square error, the residuals, and the others in Table S2.

- Step 4: Determine the drying curve model that has the highest values of the criteria in Step 2 and the lowest values of the criteria in Step 3. This model can be assumed to be the best model describing the thin-layer drying curve.

Applying this procedure, most of the models are presented in Table S1. Table S1 shows thin-layer drying models developed by researchers for various agricultural products depending on product type, pretreatment of the product, drying parameters, and drying methods. It is observed that 67 thin-layer drying models have been used to estimate drying curves. Note that there is a complexity in drying methods such as name, equation, and nomenclature. The Newton model, commonly used by the researchers, is sometimes called the Lewis, exponential, or single exponential model, and is the simplest model because of the one-model constant. Equation (25) has been usually used to define this model by researchers (see Table S1). The most used form of the Page model is given in Eq. (50); it has been commonly used in the literature and has been incorrectly defined in Eqs. (28), (51), and (61)–(67). The Page model has two model constants and it has been determined to be the second-best suitable model after the Midilli-Kucuk model for various products according to evaluation criteria (see Table S3). The Modified Page model is generally used in a form as given in Eqs. (88) and (69), respectively, and is sometimes called the Modified Page-I, Modified Page-II, or Overhults et al. model. The Modified Page model has two model's constant and it has been determined to be the eighth-best suitable model (see Table S3). The Henderson and Pabis model, occasionally called the single term, generalized exponential, approximation of diffusion, McCormick, or Brooker et al. model, is highly cited in the literature and Eq. (159) is commonly used to define this model by researchers (see Table S1). However, Eqs. (127) and (153) have not been correctly defined. The Henderson and Pabis model has two model constants and has been found to be the ninth-best suitable model (see Table S3). The Logarithmic model is occasionally called the asymptotic or Yagcioglu et al. model and is the third-best suitable model (see Table S3). It has three model constants. The commonly used form of the logarithmic model is given in Eq. (193) and incorrectly used in Eqs. (194), (195), and (197). The Midilli-Kucuk model is sometime called the
Midilli or Midilli et al. model; it was developed in 2012 and is commonly used in the literature. The Midilli-Kucuk model has four model constants and has been found to be the best model at high ratio by researchers (see Table S3). In the literature, Eq. (232) is generally used to define the Midilli-Kucuk model, while Eqs. (202), (209), (222), (227), (233), (241), (242), and (244) have been incorrectly used by researchers (see Table S1). Also, some researchers have developed thin-layer drying models (model numbers are 10, 11, and 12; see Table S1) based on the Midilli-Kucuk model. On the other hand, Eqs. (246) and (252) have been written incorrectly (see Table S1). The two-term model is sometime called the two-factor, two terms exponential-I, exponential two terms, Henderson, double logarithmic, two-term exponential, Sharaf-Eldeen et al., or Sharma et al. model. It has four model constants and Eq. (261) has been generally used to define it by the researchers. The two-term model is one of the most used models in the literature to describe the drying behavior of products and it is the fourth-best thin-layer drying model (see Table S3). In Eqs. (257)–(260), the two-term model has been defined as wrong (see Table S1). The two-term exponential model is occasionally called the two-term exponential-II model; it, too, has been commonly used in the literature as defined in Eq. (311) and given as the wrong expression in Eqs. (312), (314), and (326)–(332). The two-term exponential model has two model’s constant and is found to be the ninth-best suitable model by researchers (see Table S3). The Verma et al. model is called the modified two-term exponential, and has been commonly used in the literature. It has three model’s constant and been found to be the eleventh-best suitable model by researchers to determine thin-layer drying curve equations for products (see Table S3). The Verma et al. model is generally defined by Eq. (353) and is wrongly written in Eqs. (350) and (354) (see Table S1). The approximation of diffusion model is sometimes called the diffusion approach or simplified diffusion; it has four constants and is the sixth-best model between thin-layer drying models (see Table S3). It is highly used and commonly defined by Eq. (355) by the researchers in the literature; however, it is incorrectly given in Eqs. (371) and (372) (see Table S1). The Modified Henderson and Pabis model is sometimes called a three-term exponential model; it has six constants and, with the Wang and Singh model which has two constants, they are the seventh- and fifth-best suitable models defining thin-layer drying curve equations, respectively (see Table S3). Also, they are commonly used in the literature and generally given by Eqs. (374) and (424), respectively (see Table S1). On the other hand, the Wang and Singh model is not correctly used in Eqs. (425), (426), (433), (434) and (439). The Weibull model has two model’s constants and it is the twelfth-best suitable model found by researchers. It is defined in two different forms, as given in Eqs. (455)–(458) and Eqs. (459)–(464) (see Table S1). The Thompson model, which has two constants, and the Simplified Fick’s diffusion (SFFD) model, which has three constants, are highly used in the literature and commonly defined by Eq. (401) and Eq. (447), respectively. The Thompson model is presented in two different forms given as in Eqs. (398)–(404) and Eqs. (406)–(408) in the literature and it is wrongly defined in Eq. (405). The Thompson and simplified Fick’s diffusion models have been found to be the first- and third-best suitable models in the literature (see Table S3). Also, the simplified Fick’s diffusion model has been incorrectly defined in Eq. (455). Moreover, the exponential-hyperbolic decay model, the modified Page-I model, the modified Midilli-Kucuk model (number of the model is 10; see Table S1), the Demir et al. model, the Abbasi et al. model (modified Midilli-Kucuk), the Hii et al. model, the Aghbashlo et al. model, the Akbulut and Durmuş model, the Jaros and Pabis-II model, the modified Page-II model, the Diamente et al. model, the Law et al. model, the Tutuncu and Labuza model, the parabolic model, the modified Henderson and Perry model, the Jena-Das model, the Das et al. model, the Balbay and Şahin model, the Ranjbaran and Zare model, the Alibas model, the exponential model, the polynomial model, the cubic model, the logistic model, the quadratic model, the Yun et al. model, the Kaleta et al. model, and the Pillai model have been found to be the most suitable thin-layer drying model in the respective literature [11,26,30,37,55,134,136,142,156,192,198,204,216,226,233,259,268,270,301,306,314,316,317,320,321,327,332,335,350,351,352,356,357,376,386] (see Table S3).

The evaluation criteria given in Table S2 are highly important to determine the best suitable models in thin-layer drying studies. It is determined that there are 28 performance evaluation criteria in the literature to evaluate thin-layer drying models. As seen in Table S2, evaluation criteria have complexity such as name, equation, and nomenclature in the literature. The highest values of correlation coefficient, coefficient of determination, modeling efficiency, and adjusted R^2 and the lowest values of reduced chi-square, root mean square error, mean relative percentage error, mean bias error, standard error of estimate, residual sum of squares, reduced sum square error, residuals and the other evaluation criteria given in Table S2 give the best suitable model for thin-layer drying. The commonly used forms of correlation coefficient, coefficient of determination, modeling efficiency, reduced chi-square, root mean square error, mean relative percentage error, mean bias error, standard error of estimate, residual sum of squares are given in Eqs. (527), (560), (718), (609), (673), (787), (761), (733), and (544), respectively (see Table S2). The most used evaluation criteria that have the most complexity in the literature for thin-layer drying models are coefficient of determination, reduced
chi-square, root mean square error, mean relative percentage error, standard error of estimate, mean bias error, and reduced sum square error, respectively (see Tables S2 and S3).

CONCLUSIONS

Studying the drying behavior and determining the drying times of moist products are considered two significant areas of drying, and research has focused on model development in these areas. There was a strong need to identify, classify, evaluate, and compare these thin-layer drying-curve models.

In this article, a comprehensive review of 67 models under 28 performance assessment criteria is undertaken, and an evaluation of these models is performed by considering the following parameters: (a) product type; (b) pretreatment type; (c) drying parameters, such as temperature, air velocity, layer thickness, microwave power levels, amount of solar radiation, vacuum pressure, frequency of sound wave, excitation amplitude, relative humidity, bed depth, product shape, pH, salt content, absolute pressure, etc.; and (d) drying method utilized. The most used evaluation criteria, which have the most complexity in the literature for thin-layer drying models, are coefficient of determination, reduced chi-square, root mean square error, mean relative percentage error, standard error of estimate, mean bias error, and reduced sum square error, respectively.

Based on the assessment carried out, some single-layer drying-curve models, such as Midilli-Kucuk, Page, logarithmic, two-term, Wang and Singh, approximation of diffusion, Modified Henderson and Pabis, Modified Page, Henderson and Pabis, two-term exponential, Verma et al., and Weibull et al., offer better results for the criteria considered and applications and products selected. Before selecting the model for use, it is important for researchers to properly conduct the drying experiments and measure the drying quantities and parameters/properties in an adequately correct manner with an uncertainty analysis. Furthermore, there are several parameters—such as the drying air (possibly other types of gases or fluids) temperature, pressure, velocity, relative humidity, shape and type of drying materials, retention time, design and geometry of the shelves, flow configuration, drying medium conditions, etc.—which should be considered for better management of drying processes.

NOMENCLATURE

ANO, f(x), MR, Moisture ratio
M_R, MC, mr, R,
RU, RH, RX, X',
X, X_R, X_r, y, Y',
\Delta M, \Phi

Empirical constants in models

Sample length (m)
Drying constants (min^{-1})

Effective moisture (m^2 s^{-1})
Drying time
Root mean square error, mean square deviation
Percent mean relative deviation modulus, mean relative deviation modulus, mean relative percentage deviation
Absolute relative error
Standard deviation
Modeling efficiency
Mean relative percentage deviation
Estimated mean error
Mean relative error
Mean bias error
Root mean square error
Mean square error, root mean square error
Moisture content
Half-slice thickness, sample thickness (m)
Moisture content (kg/kg, db)
Mean absolute error
Mean bias error
Critical moisture content (dry basis)
M_e
Equilibrium or final product moisture on dry basis (g water/g dry solid)
M_o
Initial product moisture on dry basis (g water/g dry solid)
M_s
Moisture at the product surface on dry basis (g water/g dry solid)
Mean percent error
Mean relative deviation between moisture levels, mean relative deviation modulus
Mean relative error
FUNDING

The authors acknowledge the support provided by Recep Tayyip Erdoğan University in Turkey and University of Ontario in Canada.

SUPPLEMENTAL MATERIAL

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

1. Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Drying Technology 2002, 20(7), 1503–1513.
2. Toğrul, I.T.; Pehlivan, D. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering 2004, 65(3), 413–425.
3. Akpınar, E.K.; Sarsılmaz, C.; Yıldız, C. Mathematical modelling of a thin layer drying of apricots in a solar energized rotary dryer. International Journal of Energy Research 2004, 28(8), 739–752.
4. Demir, V.; Günhan, T.; Yaşıcıoğlu, A.K.; Değirmencioglu, A. Mathematical modeling and the determination of some quality parameters of air-dried bay leaves. BioSystems Engineering 2004, 88(3), 325–335.
5. Lahsasni, S.; Kouhila, M.; Mahrouz, M.; Idlimam, A.; Jamali, A. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica). Energy 2004, 29(2), 211–224.
6. Ertekin, C.; Yaldız, O. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering 2004, 63(3), 349–359.
7. Sahin, A.Z.; Dincer, I. Prediction of drying times for irregular shaped multi-dimensional moist solids. Journal of Food Engineering 2005, 71(1), 119–126.
8. Toğrul, H. Simple modeling of infrared drying of fresh apple slices. Journal of Food Engineering 2005, 73(3), 311–323.
9. Hosseini, A.A.M. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.). Ph.D. thesis, Wageningen University, Wageningen, Netherlands, 2005.
10. Günhan, T.; Demir, V.; Hancioglu, E.; Hepbasli, A. Mathematical modeling of drying of bay leaves. Energy Conversion and Management 2005, 46(11–12), 1667–1679.
11. Montazer-Rahmati, M.M.; Amini-Horri, B. From laboratory experiments to design of a conveyor-belt dryer via mathematical modeling. Drying Technology 2005, 23(12), 2389–2420.
12. Çanakç, B. Mathematical modeling and thermodynamic analysis of solar drying process of pollen. M.Sc. thesis, Niğde University, Niğde, Turkey, 2005 [in Turkish].
13. Yurtsever, S. Mathematical modeling and evaluation of microwave drying kinetics of mint (Mentha spicata L.). Journal of Applied Sciences 2005, 5(7), 1266–1274.
56. Wang, Z.; Sun, J.; Liao, X.; Chen, F.; Zhao, G.; Wu, J.; Hu, X. Mathematical modeling on hot air drying of thin layer apple pomace. *Food Research International* 2007, 40(1), 39–46.

57. Hayaloglu, A.A.; Karabulut, I.; Alpaslan, M.; Kelbaliev, G. Mathematical modeling of drying characteristics of strained yoghurt in a convective type tray-dryer. *Journal of Food Engineering* 2007, 78(1), 109–117.

58. Singh, B.; Gupta, A.K. Mass transfer kinetics and determination of effective diffusivity during convective dehydration of pre-osmosed carrot cubes. *Journal of Food Engineering* 2007, 79(2), 459–470.

59. Lagunas, L.M. L’effet des conditions variables de séchage sur la cinétique de séchage et la qualité de l’ail. Ph.D. thesis, Université Laval, Québec, Canada, 2007 [in French].

60. Ildilim, A.; Kane, C.S.E.; Kouthila, M. Single layer drying behaviour of grenade peel in a forced convective solar dryer. *Revue des Energies Renouvelables* 2007, 10(2), 191–203.

61. Velic´, D.; Bilic´, M.; Tomas, S.; Planinic´, M.; Bucic´-Kojic´, A.; Aladic´, K. Study of the drying kinetics of “Granny Smith” apple in tray dryer. *Agriculturae Conspectus Scientificus* 2007, 72(4), 323–328.

62. Soares, R.D.; Chaves, M.A.; Bonomo, R.C.F.; Da Silva, N.J.; Babi´c, M. The selection criteria of the best matemathics model for basil (*Ocimum Basilicum*, L.) thin-layer drying kinetics. *Czasopis za Procesnu Tehniku i Energetiku u Poljoprivredi* 2007, 11(4), 161–165.

63. Sobokula, O.P.; Dairo, O.U.; Sanni, L.O.; Oduenevu, A.V.; Falolu, B.O. Thin layer drying process of some leafy vegetables under open sun. *Food Science and Technology International* 2007, 13(1), 35–40.

64. Shibly, V.K.; Mishra, H.N. Thin layer modelling of recirculatory convective air drying of curd (Indian yoghurt). *Food and Bioproducts Processing* 2007, 83(3), 193–201.

65. Ózbek, B.; Dadali, G. Thin-layer drying characteristics and modeling of mint leaves undergoing microwave treatment. *Journal of Food Engineering* 2007, 83(4), 541–549.

66. Karabulut, I.; Hayaloglu, A.; Yildirim, M. Thin layer drying characteristics of kurut, a Turkish dried dairy by-product. *International Journal of Food Science and Technology* 2007, 42(9), 1080–1086.

67. Menges, H.O.; Ertekın, C. Explain of drying process by various models in sour cherry drying. *Selçuk Üniversitesi Ziraat Fakültesi Dergisi* 2007, 21(42), 4–10 [in Turkish].

68. Zhen-Hua, D.; Ai-Guo, F.; Dong, X.; Zhi-Guo, W. Study on model and energy consumption of hot-air drying of tilapia fillets. *Technology of Food Science* 2007, 28(7), 201–204.

69. Garcia, S.V.; Schmalko, M.E.; Tanzariello, A. Adsorptions isotherms and drying kinetics of some vegetables and aromatic plants cultured in misiones. *Revista de Investigaciones Agropecuarias* 2007, 36(1), 115–129 [in Spanish].

70. dos Santos, J.A.B. Análise comparativa entre técnicas de processamento para extração de pigimentos nas sementes de urucum. Ph.D. thesis, Federal University of Campina Grande, Campina, Paraiba, Brazil, 2007 [in Portuguese].

71. Martinazzo, A.P.; Corrêa, P.C.; Resende, O.; Melo, E. de C. Analysis and mathematical description of drying kinetic of lemon grass. *Revista Brasileira de Engenharia Agrícola e Ambiental* 2007, 11(3), 301–306 [in Portuguese].

72. Lema, A.; Pontin, M.; Sammartino, A.; Ziletti, M.; Martinello, M. Características del proceso de secado en capa delgada del perejil. *Avances en Energias Renovables y Medio Ambiente* 2007, 11(8), 75–82 [in Spanish].

73. Aktas, T.; Polat, R. Changes in the drying characteristics and water activity values of selected pistachio cultivars during hot air drying. *Journal of Food Process Engineering* 2007, 30(5), 607–624.

74. de Lima, E.E.; de Figueirêdo, R.M.F.; de Melo Queiroz, A.J. Drying kinetics of *cereus squamosus* pulp. *Revista Brasileira de Produtos Agroindustriais, Campina Grande* 2007, 9(1), 17–28, [in Portuguese].

75. Mohammadpour, V.; Hamed Mosavian, M.T.; Etemadi, A. Determination of effective diffusivity coefficient and activation energy of shielded pistachio by using fluidized bed dryer. *Iranian Food Science and Technology Research Journal* 2008, 3(2), 1–12.

76. Dikbasan, T. Determination of effective parameters for drying of apples. M.Sc. thesis, Izmir Institute of Technology, Izmir, Turkey, 2007.

77. George, C.; McGruder, R.; Torgerson, K. Determination of optimal surface area to volume ratio for thin-layer drying of breadfruit (*Artocarpus altilis*). *International Journal for Service Learning in Engineering* 2007, 2(2), 76–88.

78. Magee, R. Drying of biomaterials, foods and pharmaceutical powders. *Food and Bioproducts Processing* 2007, 85(3), 153–154.

79. Runcio, A.; Santacaterina, S.; Minejine, A. Effetti di diversi pre-trattamenti sulla qualita di uve zibibbo sottoposte a essiccazione in corrente d’aria. *VIVI, Prospettive Di Innovazione Per Il Potenziamento Del Comparto Vitivinicolo Calabrese*, Lamezia Terme, Italy, December 13, 2007; 147–158 [in Italian].

80. Barbosa, F. da F.; Melo, E. de C.; Santos, R.H.S.; da Rocha, R.P.; Martinazzo, A.P.; Radinz, L.L.; Gracia, L.M.; Evaluation of mathematical models for prediction of thin layer drying of Brazilian lemon-scented verbena leaves (lippia alba (mill) n.e. brown). *Revista Brasileira de Produtos Agroindustriais, Campina Grande* 2007, 9(1), 73–82.

81. Ildilim, A.; Lamharrar, A.; Kane, C.S.E.; Akkad, S.; Kouthila, M. Etude experimentale de la cinetique de sechage de l'ecorce de grenade dans un echour partielement solaire en convection forcre. *Revue des Energies Renouvelables CER’07*, Oujda, Morocco, 2007; 237–240 [in French].

82. Kuitche, A.; Edoun, M.; Takamte, G. Influence of pre-treatment on drying on the drying kinetic of a local okro (*Hibiscus esculentus*) variety. *World Journal of Dairy and Food Sciences* 2007, 2(2), 83–88.

83. Doymaz, I. Influence of pretreatment solution on the drying of sour cherry. *Journal of Food Engineering* 2007, 78(2), 591–596.

84. Tahmasebi, A.; Yu, J.; Han, Y.; Zhao, H.; Bhattacharya, S. Thermogravimetric study and modeling for the drying of a Chinese lignite. *Asia-Pacific Journal of Chemical Engineering* 2013, 8(6), 793–803.

85. Hayet, A. Aptitudes technologiques de quelques variétés communes de dattes: Formulation d’un yaourt naturellement sucré et aromatisé. Ph.D. thesis, Université M’hamed Bougara-Boumerdes, Algeria, 2008 [in French].

86. Dantas, H.J.; Silva, A.S.; de Lima, E.E.; Farias, P. de A.; de Andrade, M.A. Obtençao da polpa de jaca em pelo metodo de secagem em camada de espuma (foam-mat drying). *III Jordana Nacional da Agroindustria*, Bananeiras, Brazil, August 5–8, 2008 [in Portuguese].

87. Montes, E.J.M.; Gallo, R.T.; Pizarro, R.D.A.; Sierra, O.A.P.; Escobar, J.I.M.; Herazo, I.I.M. Modelling the kinetics of thin-layer drying process of long green pepper in solar dryer and under open sun. *Energy Conversion and Management* 2008, 49(6), 1367–1375.
92. Hachafzoglu, O.; Cihan, A.; Kahveci, K. Mathematical modelling of drying of thin layer rough rice. *Food and Bioproducts Processing 2008*, 8(6(C4)), 268–275.
93. Goyalde, N.A.; Rocha, R.P.; Melon, E.C.; Goneli, A.L.D.; Araujo, F.L. Mathematical modelling of drying kinetics of sugarcane slices. *CIGR-International Conference of Agricultural Engineering, XXXVII Congresso Brasileiro de Engenharia Agrícola, Brazil, August 31–September 4, 2008*.
94. Dongpourn, S.; Poomsa-ad, N.; Aththajaryakul, S.; Wiset, L. Mathematical modeling of thin layer drying of Thai Hom Mali paddy. *Technology and Innovation for Sustainable Development Conference, Khon Kaen, Thailand, January 28–29, 2008, 601–606*.
95. Corrêa, P.C.; Reesende, O.; Martinazzo, A.P.; Goneli, A.L.D.; Botelho, F.M. Mathematical modelling for describing the drying process of the edible bean (*Phaseolus vulgaris L.*) in thin layers. *Engenharia Agrícola. Jaboticabal 2007*, 12(2), 501–510 [in Portuguese].
96. Bingol, G.; Pan, Z.; Roberts, J.S.; Devres, Y.O.; Balaban, M.O. Mathematical modeling of microwave-assisted convective heating and drying of grapes. *International Journal of Agricultural and Biological Engineering 2008*, 1(2), 46–54.
97. Vega-Gálvez, A.; Ayala-Aponte, A.; Notte, E.; de la Fuente, L.; Lemus-Mondaca, R. Mathematical modeling of mass transfer during convective dehydration of brown algae macrocystis pyrifera. *Drying Technology 2008*, 26(12), 1610–1616.
98. Chavan, B.R.; Yakupiyitage, A.; Kumar, S. Mathematical modeling of drying characteristics of Indian mackerel (*Rastrelliger kanagurta*) in solar-biomass hybrid cabinet dryer. *Drying Technology 2008*, 26(12), 1552–1562.
99. Griffith, J.D.; Bayly, A.E.; Johns, M.L. Magnetic resonance studies of detergent drop drying. *Chemical Engineering Science 2008*, 63(13), 3449–3456.
100. Karaaslan, S. The experiments on vegetables and industrial plant drying by microwave energy. Ph.D. thesis, Çukurova University, Adana, Turkey, 2008 [in Turkish].
101. de Faria, F.S.E.D.V. Secagem convectiva de sacaca (*Croton cajucara Benth*): Análise experimental da influência de variáveis de entrada no rendimento em oleo essencial, umidade final e teor de linalol. Ph.D. thesis, Federal University of Amazonas, Manaus, AM, Brazil, 2008 [in Portuguese].
102. Kane, C.S.E.; Jamali, A.; Kouhila, M.; Mimet, A.; Abachad, M. Single-layer drying behavior of Mexican tea leaves (*Chenopodium ambrosioides*) in a convective solar dryer and mathematical modeling. *Chemical Engineering Communications 2008*, 195(7), 787–802.
103. Magalhães, A.; Pinho, C. Spouted bed drying of cork stoppers. *Chemical Engineering and Processing: Process Intensification 2008*, 47(12), 2395–2401.
104. Duran, A.; Hayaloglu, A.A.; Karabulut, I. Thin layer drying characteristics of eriste: A dried cereal product of Turkey. *International Journal of Food Engineering 2008*, 4(2(7)), 1–11. http://www.bepress.com/ijfe/vol4/iss2/art7.
105. Mohamed, L.A.; Kane, C.S.E.; Kouhila, M.; Jamali, A.; Mahrouz, M.; Kechau, N. Thin layer modelling of Gelidium sesquipedale solar drying process. *Energy Conversion and Management 2008*, 49(5), 940–946.
106. Goneli, A.L.D. Variações das propriedades físico-mecânicas e da qualidade da mamona (*Ricinus Communis L.*) durante a secagem e o armazenamento. Ph.D. thesis, Federal University of Viçosa, Minas Gerais, Brazil, 2008 [in Portuguese].
107. Cihan, A.; Kahveci, K.; Hachafzoglu, O.; de Lima, A.G.B. A diffusion based model for intermittent drying of rough rice. *Heat and Mass Transfer 2008*, 44(8), 905–911.
108. Paglarini, C. de S.; da Silva, F.S.; Porto, A.G. Analise preliminar da cinetica de secagem de polpa de abacaxi em camada delgada. *IV Congresso Interno de Iniciação Científica da UNEMAT, Cáceres, Mato Grosso, Brazil, October 20–24, 2008* [in Portuguese].
109. Ganesapillai, M.; Regupathi, I.; Murugesan, T. An empirical model for the estimation of moisture ratio during microwave drying of plaster of paris. *Drying Technology 2008*, 26(7), 963–978.
110. Furtado, G. de F.; Porto, A.G.; Zela, S.P.; da Silva, F.S. Avaliação físico: Quimica do pequi submetido a secagem em camada delgada. *IV Congresso Interno de Iniciação Científica da UNEMAT, Cáceres, Mato Grosso, Brazil, October 20–24, 2008* [in Portuguese].
111. Thiagarajan, I.V. Combined microwave-convection drying and textural characteristics of beef jerky. M.Sc. thesis, University of Saskatchewan, Saskatoon, Canada, 2008.
112. Chin, S.K.; Law, C.L.; Supramaniam, C.V.S.; Cheng, P.G.; Mujumdar, A.S. Convective drying of Ganoderma tsugae Murrill and effect of temperature on basidiospores. *Drying Technology 2008*, 26(12), 1524–1533.
113. Sobukola, O.P.; Dairo, O.U.; Odunewu, A.V. Convective hot air drying of blanched yam slices. *International Journal of Food Science and Technology 2008*, 43(7), 1233–1238.
114. Silva, A.S.; Gurjão, K.C. de O.; Almeida, F. de A.C.; Bruno, R. de L.A.; Pereira, W.E. Dehydration of tamarind pulp through the foam-mat drying method. *Ciencia e Agrotecnologia, Lavras 2008*, 32(6), 1899–1905 [in Portuguese].
115. Corrêa, J.L.G.; Filho, E.D.S.; Batista, M.B.; Arola, F.; Fioreze, R. Osmotic dehydration of tomato followed by drying. *Revista Brasileira de Produtos Agroindustriais, Campina Grande 2008*, 10(1), 35–42 [in Portuguese].
116. Aghfiri, A.; Akkad, S.; Rhazi, M.; Kane, C.S.E.; Kouhila, M. Determination du coefficient de diffusion et de l’énergie d’activation la menthe lors d’un séchage conductif en régime continu. *Revue des Energies Renouvelables 2008*, 11(3), 385–394 [in French].
117. Tunç, M. Determination of modelling of drying behaviour and investigation of drying characteristics for thickness layer drying of eggplant. M.Sc. thesis, Selçuk University, Konya, Turkey, 2008 [in Turkish].
118. Karaaslan, S.N.; Tuncer, I.K. Development of a drying model for combined microwave-fan-assisted convection drying of spinach. *BioSysteams Engineering 2008*, 100(1), 44–52.
119. Saeed, I.E.; Sopian, K.; Abidin, Z.Z. Drying characteristics of Roselle (1): Mathematical modeling and drying experiments. *Agricultural Engineering International: The CIGR Ejournal 2008*, 10, Manuscript FP 08 015, 1–25. http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1161/1117.
120. Saeed, I.E.; Sopian, K.; Abidin, Z.Z. Drying characteristics of Roselle: Study of the two-term exponential model and drying parameters. *Agricultural Engineering International: The CIGR Ejournal 2008*, 10, Manuscript FP 08 016, 1–27. http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1226/1081.
121. Benhamou, A.; Idlimam, A.; Lamharrar, A.; Benyoucef, B.; Kouhila, M. Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. *Revue des Energies Renouvelables 2008*, 11(1), 75–85 [in French].
122. Silva, A.S.; Almeida, F. de C.; Lima, E.E.; Silva, F.L.H.; Gomes, J.P. Drying kinetics of coriander (*Coriandrum sativum*) leaf and stem. *Agricultural Engineering International: The CIGR Ejournal 2008*, 10, Manuscript FP 08 017, 1–8. http://www.cigrjournal.org/index.php/Ejounral/article/viewFile/1262/1081.
123. Benhamamou, A.; Idlimam, A.; Lamharrar, A.; Benyoucef, B.; Kouhila, M. Diffusivité hydrique et cinétique de séchage solaire en convection forcée des feuilles de marjolaine. *Revue des Energies Renouvelables 2008*, 11(1), 75–85 [in French].
124. Aghbashlo, M.; Kianmehr, M.H.; Arabhosseini, A. Energy and exergy analyses of thin-layer drying of potato slices in a semi-industrial continuous band dryer. *Drying Technology 2008*, 26(12), 1501–1508.
125. Morsetto, J.; Lema, A.; Pontin, M.; Paisio, G. Estudio preliminar sobre la cinética de secado para perejil en condicion de seco...
128. Arslan, D.; Özcan, M.M. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. *Energy Conversion and Management* 2008, 49(5), 1258–1264.

129. Pereira, D.A. Extração aquosa de própolis e secagem em leito de espuma para uso em alimentos. M.Sc. thesis, State University of Southwest Bahia, Bahia, Brazil, 2008 [in Portuguese].

130. Zenoozian, M.S.; Feng, H.; Razavi, S.M.A.; Shahidi, F.; Pourreza, H.R. Image analysis and dynamic modeling of thin-layer drying of osmotically dehydrated pumpkin. *Journal of Food Processing and Preservation* 2008, 32(1), 88–102.

131. Doymaz, I. Influence of Blanching and slice thickness on drying characteristics of leek slices. *Chemical Engineering and Processing: Process Intensification* 2008, 47(1), 41–47.

132. Alves, A.P.; Porto, A.G.; da Silva, F.S. Influência do tipo do alho (Allium sativum) na cíclica de secagem. IV Congresso Interno de Iniciação Científica da UNEMAT, Cáceres, Mato Grosso, Brazil, October 20–24, 2008 [in Portuguese].

133. Krishnamurthy, K.; Khurana, H.K.; Jun, S.; Irudayaraj, J.; Demirci, A. Infrared heating in food processing: An overview. *Comprehensive Reviews in Food Science and Food Safety* 2008, 7(1), 2–13.

134. Abbasi, S.; Mousavi, S.M.; Mohhebi, M. Propose suitable model for modeling of moisture ratio and estimation of effective moisture diffusivity of onion slices by hot air dryer. The 6th International Chemical Engineering Congress and Exhibition (ICHEC 2009), Kish Island, Iran, November 16–20, 2009.

135. Mohammadi, A.; Rafiee, S.; Keyhani, A.; Emam-Djomeh, Z. Moisture content modeling of sliced kiwifruit (cv. Hayward) during drying. *Pakistan Journal of Nutrition* 2009, 8(1), 78–82.

136. Hii, C.L.; Law, C.L.; Cloke, M.; Suzannah, S. Thin layer drying kinetics of cocoa and dried product quality. *Biosystems Engineering* 2009, 102(2), 153–161.

137. Rafiee, Sh.; Keyhani, A.; Sharifi, M.; Jafari, A.; Mobli, H.; Tabatabaeefar, A. Thin layer drying properties of soybean (Vilianzm Cultivar). *Journal of Agricultural Science and Technology* 2009, 11(3), 289–300.

138. Laosanganeuk, N.; Assawarachan, R.; Noomhorm, A. Thin layer infrared radiation drying of turmeric slices. 10th International Agricultural Engineering Conference, Bangkok, Thailand, December, 7–10, 2009.

139. Akbulut, A.; Durmuş, A. Thin layer solar drying and mathematical modeling of mulberry. *International Journal of Energy Research* 2009, 33(7), 687–695.

140. Chin, S.K.; Law, C.L.; Supramaniam, C.V.; Cheng, P.G. Thin-layer drying characteristics and quality evaluation of air-dried Ganoderma tsugae Murrill. *Drying Technology* 2009, 27(9), 975–984.

141. Pardeshi, I.L.; Arora, S.; Borker, P.A. Thin-layer drying of green peas and selection of a suitable thin-layer drying model. *Drying Technology* 2009, 27(2), 288–295.

142. Karasaalan, S.; Tunçer, İ.K. Investigating of drying characteristics and determining of a drying model for microwave-fan assisted convection drying of red pepper. *KSU Journal of Natural Sciences* 2009, 12(2), 9–16 [in Turkish].

143. Doymaz, I. An experimental study on drying of green apples. *Drying Technology* 2009, 27(3), 478–485.

144. Argyropoulos, D.; Heindl, A.; Müller, J. Assessment of convection, hot-air combined with microwave-vacuum and freeze-drying methods for mushrooms with regard to product quality. *International Journal of Food Science and Technology* 2011, 46(2), 333–342.

145. Soares, E.C. Caracterização de aditivos para secagem de Araça-boi (Eugenia stipitata Mc Vaug) em leito de espuma. M.Sc. thesis, State University of Southwest Bahia, Bahia, Brazil, 2009 [in Portuguese].
163. Celma, A.R.; Cuadros, F.; López-Rodríguez, F. Characterisation of industrial tomato by-products from dried tomato processing. *Food and Bioprocess Technology* 2009, 87(4), 282–291.

164. Perez, N.E.; Schmalko, M.E. Convective drying of pumpkin: Influence of pretreatment and drying temperature. *Journal of Food Process Engineering* 2009, 32(1), 88–103.

165. Boughali, S.; Bennoussa, H.; Bouckemila, B.; Menouche, D.; Bouguettaia, H.; Bechki, D. Crop drying by indirect active hybrid solar-electrical dryer in the Eastern Algerian Septentrional Sahara. *Solar Energy* 2009, 83(13), 2223–2232.

166. Yong, P.K. Drying and solid-liquid extraction of hydroxychavicol and eugenol from betel leaves (*Piper betle* L.). Ph.D. thesis, Putra Malaysia University, Selangor, Malaysia, 2009.

167. Pin, K.Y.; Chuah, T.G.; Abdull Rashid, A.; Law, C.L.; Rasadah, M.A.; Choong, T.S.Y. Drying of betel leaves (*Piper betle* L.): Quality and drying kinetics. *Drying Technology* 2009, 27(1), 149–155.

168. López, R.; de Ita, A.; Vaca, M. Drying of prickly pear cactus cladodes (*Opuntia ficus indica*) in a forced convection tunnel. *Energy Conversion and Management* 2009, 50(9), 2119–2126.

169. Lemus-Mondaca, R.; Miranda, M.; Grau, A.A.; Fúente, J.M.; Villalobos, R.; Vega-Gálvez, A. Effect of osmotic pretreatment on hot air drying kinetics and quality of Chilean papaya (*Carica papaya* L.). *Drying Technology* 2009, 27(10), 1097–1104.

170. Wang, Z.-F.; Fang, S.-Z.; Hu, X.-S. Effective diffusivities and energy consumption of whole fruit Chinese jujube (*Zizyphus jujuba* Miller) in microwave drying. *Drying Technology* 2009, 27(10), 1097–1104.

171. Kane, C.S.E.; Sid’Ahmed, M.A.O.; Khoulia, M. Evaluation of drying parameters and sorption isotherms of mint leaves (M. Pulegium). *Revue des Energies Renouvelables* 2009, 12(3), 449–470.

172. Selma, A.R.; López-Rodríguez, F.; Blázquez, F.C. Experimental modelling of infrared drying of industrial grape by-products. *Food and Bioprocess Technology* 2009, 87(4), 247–253.

173. Fang, S.; Wang, Z.; Hu, X. Hot air drying of whole fruit Chinese jujube (*Zizyphus jujuba* Miller): Thin-layer mathematical modelling. *International Journal of Food Science and Technology* 2009, 44(9), 1818–1824.

174. Nachaisin, M.; Dondee, S. Investigation of thin-layer drying equation of bamboo shoot under hot-air drying. *35th Congress on Science and Technology of Thailand*, Chonburi, Thailand, October 15–17, 2009.

175. Pillai, M.G.; Regupathi, L.; Miranda, L.R.; Murugesan, T. Moisture diffusivity and energy consumption during microwave drying of plaster of paris. *Chemical Product and Process Modeling* 2010, 5(14), 1–23. http://www.beypress.com/cppm/vol5/iss1/1.

176. Tunc, M.; Menges, H.O. Explain of drying process by various models in eggplant drying. *Selçuk Tarım ve Gıda Bilimleri Dergisi 2010,* 5(1), 1–9 [in Turkish].

177. Yelmen, B. Drying of spice red chili pepper in polyethylene high tunnel hothouse. Ph.D. thesis, Çukurova University, Adana, Turkey, 2010 [in Turkish].

178. Amira, T.; Saber, C.; Fethi, Z. Modelling of the drying kinetics of *Opuntia ficus indica* fruits and cladodes. *International Journal of Food Engineering* 2010, 6(2(11)), 1–17. http://www.bepress.com/ijfe/vol6/iss2/art11.

179. Falade, K.O.; Solademi, O.J. Modelling of air drying of fresh and blanched sweet potato slices. *International Journal of Food Science and Technology* 2010, 45(2), 278–288.

180. Aghbashlo, M.; Kianmehr, M.H.; Arabhosseini, A. Modelling of thin-layer drying of apple slices in a semi-industrial continuous band dryer. *International Journal of Food Engineering* 2010, 6(4)(1), 1–17. http://www.bepress.com/ijfe/vol6/iss4/art1.

181. Shah, S.; Joshi, M. Modeling microwave drying kinetics of sugarcane bagasse. *International Journal of Electronics Engineering* 2010, 2(1), 159–163.

182. Lombraña, J.I.; Rodríguez, R.; Ruiz, U. Microwave-drying of sliced mushroom: Analysis of temperature control and pressure. *Innovative Food Science and Emerging Technologies* 2010, 11(4), 652–660.

183. Demirhan, E.; Özbeck, B. Microwave-drying characteristics of basil. *Journal of Food Processing and Preservation* 2010, 34(3), 476–494.

184. Hossain, M.A.; Gottschalk, K.; Amer, B.M.A. Mathematical modeling for drying of tomato in hybrid dryer. *The Arabian Journal for Science and Engineering* 2010, 33(2B), 239–262.

185. Mazutti, M.A.; Zabot, G.; Boni, G.; Skorovs Mandarin, A.; de Oliveira, D.; Di Luccio, M.; Oliveira, J.V.; Rodrigues, M.I.; Treichel, H.; Maugeriet, F. Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse. *Biomass and Bioenergy* 2010, 34(5), 780–786.

186. Zomorodian, A.; Moradi, M. Mathematical modeling of forced convection thin layer solar drying for cuminum cuminum. *Journal of Agricultural Science and Technology* 2010, 12(4), 401–408.

187. Rayaguru, K.; Routray, W.; Mohanty, S.N. Mathematical modeling and quality parameters of air-dried betel leaf (*Piper Betle* L.). *Journal of Food Processing and Preservation* 2010, 35(4), 394–401.

188. Lotfallah, A.; Ghazavi, M.; Hoseinzadeh, B. Reviewing drying of dill and spearmint by a solar dryer and comparing with traditional dryers. *World Applied Sciences Journal* 2010, 8(3), 364–368.

189. Coelho, W.L.V.; dos Santos, P.; Furtado, G. de F.; da Silva, F.S. Secagem de polpa de mamão pelo método de camada de espuma. *Anais 3ª Jornada Científica da UENMAT*, Cáceres, Mato Grosso, Brazil, September 20–24, 2010 [in Portuguese].

190. Demir, K.; Sacilik, K. Solar drying of Ayaş tomato using a natural convection solar tunnel dryer. *Journal of Food, Agriculture and Environment* 2010, 8(1), 7–12.

191. Saeed, I.E. Solar drying of roselle (*Hibiscus sabdariffa* L.) Part I: Mathematical modelling, drying experiments, effects of the drying conditions. *Agricultural Engineering International: CIGR Journal* 2010, 12(3), 1–13. http://www.cigrijournal.org/index.php/Ejournal/article/viewFile/1484/1366.

192. Kaleta, A.; Górnicki, K. Some remarks on evaluation of drying models of red beet particles. *Energy Conversion and Management* 2010, 51(12), 2967–2978.

193. Ojediran, J.O.; Raji, A.O. Thin layer drying of millet and effect of temperature on drying characteristics. *International Food Research Journal* 2010, 17, 59–69.

194. Arntsew, A.; Therarakulpsit, S.; Benjapiyaporn, C. Thin layer drying model of toom yum herbs in vacuum heat pump dryer. *Food Science and Technology International* 2010, 16(2), 135–146.

195. Erbay, Z.; Icier, F. Thin-layer drying behaviors of olive leaves (*Olea europaea* L.). *Journal of Food Process Engineering* 2010, 33(2), 287–308.

196. Singh, C.; Sharma, H.K.; Sarkar, B.C. Kinetics of mass transfer during convective dehydration of coated osmosed pineapple samples. *Journal of Food Process Engineering* 2010, 34(6), 1879–1902.

197. Deeping, K.; Pomsa-ad, N.; Wiset, L. Kaffir lime leaves drying using heat pump dryer under air, carbon dioxide and nitrogen gas. *Agricultural Science and Technology* 2010, 11, 520–523.

198. Diamante, L.M.; Ilhns, R.; Savage, G.P.; Vanhanen, L. A new mathematical model for thin layer drying of fruits. *International Journal of Food Science and Technology* 2010, 45(9), 1956–1962.

199. Jazini, M.H.; Hatamipour, M.S. A new physical pretreatment of plum for drying. *Food and Bioproducts Processing* 2010, 8(2–3), 133–137.

200. Erbay, Z.; Icier, F. A review of thin layer drying of foods: Theory, modeling, and experimental results. *Critical Reviews in Food Science and Nutrition* 2010, 50(5), 441–464.

201. Abbas, K.A.; Saleh, A.M.; Lasekan, O.; Khalil, S.K. A review on factors affecting drying process of pistachio and their impact on product’s quality. *Journal of Agricultural Science* 2010, 2(1), 3–15.
202. Chinenye, N.M.; Ogunlowo, A.S.; Olukunle, O.J. Cocoa bean (Theobroma cacao L.) drying kinetics. *Chilean Journal of Agricultural Research* 2010, 70(4), 633–639.

203. Mundada, M.; Hatun, B.S.; Maske, S. Convective dehydration kinetics of osmotically pretreated pomegranate arils. *BioSystems Engineering* 2010, 107(4), 307–316.

204. Seiiedlou, S.; Ghasemzadeh, H.R.; Hamdami, N.; Pereira, A. Determination of suitable thin layer model for air drying of coroba slices (Attalea Maripa) at different air temperatures and velocities. *Journal of Food Processing and Preservation* 2010, 34(2), 587–598.

205. Artnaseaw, A.; Theerakulpisut, S.; Benjapinyaporn, C. Development of a vacuum heat pump dryer for drying chilli. *BioSystems Engineering* 2010, 105(1), 130–138.

206. Çelen, O.; Kahveci, K.; Akyol, U.; Haksever, A. Drying behavior of cultured mushrooms. *Journal of Food Processing and Preservation* 2010, 34(1), 27–42.

207. Al-Muhtaseb, A.H.; Al-Harahsheh, M.; Hararah, M.; Magee, T.R.A. Drying characteristics and quality change of unutilized-protein rich-tomato pomace with and without osmotic pretreatment. *Industrial Crops and Products* 2010, 31(1), 171–178.

208. Bala, B.K.; Hocque, M.A.; Hossain, M.A.; Uddin, M.B. Drying characteristics of asparagus roots (*Asparagus racemosus* Wild.). *Drying Technology* 2010, 28(4), 533–541.

209. Köse, B.; Erentürk, S. Drying characteristics of mistletoe (Viscum album L.) in convective and UV combined convective type dryers. *Industrial Crops and Products* 2010, 32(3), 394–399.

210. Artnaseaw, A.; Theerakulpisut, S.; Benjapinyaporn, C. Drying characteristics of Shiitake mushroom and Jinda chili during vacuum heat pump drying. *Food and Bioprocess Technology* 2010, 88(2–3), 105–114.

211. Thianpong, C.; Boonlai, A.; Promvonge, P. Drying kinetic of peppercorns in a rectangular fluidized-bed with wavy surfaces. *PEA-AIT International Conference on Energy and Sustainable Development: Issues and Strategies*, Chiang Mai, Thailand, June 2–4, 2010; 1–8.

212. Radinž, L.L.; Mossi, A.J.; Cláudio Zakrzevski, A.; Do Amaral, A.S.; Grassmann, L. Drying kinetics analysis of sage leaves. *Revista Brasileira de Engenharia Agrícola e Ambiental* 2010, 14(9), 979–986 [in Portuguese].

213. Demirhan, E.; Özbek, B. Drying kinetics and effective moisture diffusivity of purslane undergoing microwave treatment. *Korean Journal of Chemical Engineering* 2010, 27(5), 1377–1383.

214. Borges, S.V.; Mancini, M.C.; Corrêa, J.L.G.; Leite, J. Drying of banana prata and banana d’água by forced convection. *Ciência e Tecnologia de Alimentos* 2010, 30(3), 605–612 [in Portuguese].

215. Law, C.L.; Tasirin, S.M.; Daud, W.R.W. A new variable diffusion drying model for the second falling rate period of paddy dried in a rapid bin dryer. *Drying Technology* 2003, 21(9), 1699–1718.

216. Furtado, G.de F.; da Silva, F.S.; Porto, A.G.; dos Santos, P. Drying of ceriguela pulp through the foam-mat drying method. *Revista Brasileira de Produto Agroindustriais, Campina Grande* 2010, 12(1), 9–14 [in Portuguese].

217. Motevalli, A.; Minaei, S.; Khoshtaghaza, M.H.; Kazemi, M.; Nikbakht, A.M. Drying of pomegranate arils: Comparison of predictions from mathematical models and neural networks. *International Journal of Food Engineering* 2010, 6(3(15)), 1–19. http://www.bepress.com/ijfe/vol6/iss3/art15.

218. Doymaz, I. Drying of thyme (Thymus Vulgaris L.) and selection of a suitable thin-layer drying model. *Journal of Food Processing and Preservation* 2011, 34(4), 458–465.

219. Eştürk, O.; Soysal, Y. Drying properties and quality parameters of dill dried with intermittent and continuous microwave-convective air treatments. *Journal of Agricultural Sciences* 2010, 16, 25–36.

220. Mirzaei, E.; Rafiee, S.; Keyhani, A. Evaluation and selection of thin-layer models for drying kinetics of apricot (cv.Nasiry). *Agricultural Conversion and Management* 2010, 51(12), 2769–2775.

221. Arslan, D.; Özcan, M.M.; Mengşık, H.O. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (*Mentha sp. piperita* L.). *Energy Conversion and Management* 2010, 52(2), 1–11. http://www.cigirjournal.org/index.php/Ejournal/article/viewFile/1361/1330.

222. Arslan, D.; Özcan, M.M.; Mengşık, H.O. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (*Mentha sp. piperita* L.). *Energy Conversion and Management* 2010, 52(2), 1–11. http://www.cigirjournal.org/index.php/Ejournal/article/viewFile/1361/1330.

223. Jayashree, E.; Zachariah, T.J.; Chempakam, B.; Alaguselvi, K. Modeling of thin layer drying of banana (*Nendran Spp*) under microwave, convective and combined microwave-convective processes. *Process and Product Process Modeling 2011*, 6((1)10), 1–29. http://www.bepress.com/cppm/vol6/iss10/1.

224. Prato, T.S. Influência da secagem sobre compostos medicinais e de pungência do gengibre. M.Sc. thesis, São Paulo State University, São José do Rio Preto, Brazil, 2010 [in Portuguese].

225. Ganesapillai, M.; Regupathi, I.; Murugesan, T. Modeling of thin layer drying of banana (*Nendran Spp*) under microwave, convective and combined microwave-convective processes. *Process and Product Process Modeling 2011*, 6((1)10), 1–29. http://www.bepress.com/cppm/vol6/iss10/1.

226. Pardeshi, I.L.; Chattopadhyay, P.K. Hot air puffing kinetics for soy-forthified wheat-based ready-to-eat (RTE) snacks. *Food and Bioprocess Technology* 2010, 3(3), 415–426.

227. dos Santos, P.; da Silva, F.S.; Porto, A.G.; da Silva, F.T.C.; Furtado, G.de F. Influence of pretreatments on the kinetics of drying at different temperatures of banana variety terra (*Musa sapientum*, Linneo). *Revista Brasileira de Tecnologia Agroindustrial* 2010, 4(2), 218–234 [in Portuguese].

228. Jayashree, E.; Zachariah, T.J.; Chempakam, B.; Alaguselvi, K. Modeling of thin layer drying of banana (*Nendran Spp*) under microwave, convective and combined microwave-convective processes. *Process and Product Process Modeling 2011*, 6((1)10), 1–29. http://www.bepress.com/cppm/vol6/iss10/1.

229. Chayan, R.A.; Parian, J.A.; Ensa-Ashari, M. Modeling of moisture diffusivity, activation energy and specific energy consumption of high moisture corn in a fixed and fluidized bed convective dryer. *Spanish Journal of Agricultural Research* 2011, 9(1), 28–40.

230. Monakh, K.; Meeso, N.; Soponronnarit, S.; Siriamornpun, S. Modeling of combined far-infrared radiation and air drying of a ring shaped-pineapple with/without shrinkage. *Food and Bioprocess Processing 2012*, 90(2), 155–164.

231. Sarimeseli, A. Microwave drying characteristics of coriander (*Coriandum sativum* L.) leaves. *Energy Conversion and Management* 2011, 52(2), 1449–1453.

232. Kumar, N.; Sarkar, B.C.; Sharma, H.K. Mathematical modelling of thin layer hot air drying of carrot pomace. *Journal of Food Science and Technology* 2012, 49(1), 33–41.

233. Lee, J.H.; Zuo, L. Mathematical modelling on vacuum drying of Zizyphus jujuba Miller slices. *Journal of Food Science and Technology* 2013, 50(1), 115–121.

234. Taheri-Garavanda, A.; Rafiee, S.; Keyhani, A. Mathematical modeling of thin layer drying kinetics of tomato influence of air dryer conditions. *International Transaction Journal of Engineering, Management. Applied Sciences and Technologies* 2011, 2(2), 147–160.

235. Reis, R.C.; Barbosa, L.S.; Lima, M.de L.; Reis, J.de S.; Devilla, I.A.; Ascheri, D.P.R. Mathematical modeling of drying kinetics of pepper (*Capsicum pararum*). *Revista Brasileira de Engenharia Agrícola e Ambiental* 2011, 15(4), 347–353 [in Portuguese].

236. Jayashree, E.; Zachariah, T.J.; Chempakam, B.; Alaguselvi, K. Mathematical modeling for drying kinetics of black pepper (*Piper nigrum*) under open sun. *DSpace at Indian Institute of
Spices Research 2009, 1–15. http://220.227.138.214:8080/pspace/bitstream/123456789/523/1/12030906.pdf.

238. Kadam, D.M.; Dhingra, D. Mass transfer kinetics of banana slices during osmo-convective drying. Journal of Food Process Engineering 2011, 34(2), 511–532.

239. Wang, Y.; Li, Y.; Wang, S.; Zhang, L.; Gao, M.; Tang, J. Review of dielectric drying of foods and agricultural products. International Journal of Agricultural and Biological Engineering 2011, 4(1), 1–19.

240. Taheri-Garavand, A.; Rafiee, S.; Keyhani, A. Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Australian Journal of Crop Science 2011, 5(2), 128–131.

241. Doymaz, I. Sun drying of seedless and seeded grapes. Journal of Food Science and Technology 2012, 49(2), 214–220.

242. Cašmuk, G.; Yildız, C. The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food and Bioproducts Processing 2011, 89(2), 103–108.

243. Kadam, D.M.; Goyal, R.K.; Singh, K.K.; Gupta, M.K. Thin layer convective drying of mint leaves. Journal of Medicinal Plants Research 2011, 5(2), 164–170.

244. Demirhan, E.; Özbek, B. Thin-layer drying characteristics and modeling of celery leaves undergoing microwave treatment. Chemical Engineering Communications 2011, 198(7), 957–975.

245. Fadhil, M.I.; Abdo, R.A.; Yousif, B.F.; Zaharim, A.; Sopian, K. Thin-layer drying characteristics of banana slices in a force convection indirect solar dryer. CET11 Proceedings of the 6th IASME/WSEAS International Conference on Energy and Environment, Cambridge, United Kingdom, February 23–25, 2011: 310–315.

246. Ruvinda, K.D.L.; Suraweera, S.K.K.; Jayaweera, H.H.E.; Ranasinghe, O.K.; Ariyaratne, T.R. Construction and evaluation of a drying chamber powered by parabolic trough solar concentrator for drying of agricultural and other materials. Proceedings of the Technical Sessions 2011, 27, 114–122.

247. Corzo, O.; Bracho, N.; Alvarez, C. Determination of suitable thin layer model for air drying of mango slices (Mangifera indica L.) at different air temperatures and velocities. Journal of Food Process Engineering 2011, 34(2), 332–350.

248. Unal, H.G.; Sazlicik, K. Drying characteristics of hawthorn fruits in a convective hot-air dryer. Journal of Food Processing and Preservation 2011, 35(2), 272–279.

249. Doungporn, S.; Poomsa-ad, N.; Wiset, L. Drying equations of Thai Hom Mali paddy using hot air, carbon dioxide and nitrogen gases as drying media. Food and Bioproducts Processing 2012, 90(2), 187–198.

250. Doymaz, I. Drying of green bean and okra under solar energy. Chemical Industry and Chemical Engineering Quarterly 2011, 17(2), 199–205.

251. Milczarek, R.R.; Dai, A.A.; Otoni, C.G.; McHugh, T.H. Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste. Journal of Food Engineering 2011, 103(4), 434–441.

252. Iihns, R.; Diamante, L.M.; Savage, G.P.; Vanhanen, L. Effect of temperature on the drying characteristics, color, antioxidant and beta-carotene contents of two apricot varieties. International Journal of Food Science and Technology 2011, 46(2), 275–283.

253. Doangpoon, S.; Poomsa-ad, N.; Wiset, L. Investigation on the drying kinetics of sliced and whole roshups at different moisture contents under microwave treatment. Journal of Agriculture Science Technology-Mysore 2011, 15(3), 2353–2357.

254. Tunde-Akintunde, T.Y.; Ogunlakin, G.O. Development of drying model and determination of color characteristics for combined microwave-fan assisted convection drying of green tea. The Philippine Agricultural Scientist 2011, 94(2), 161–170.

255. Bizmark, N.; Mostoufi, N. Fluidized bed drying. In Drying of Foods, Vegetables and Fruits; S.V. Jangam, C.L. Law, A.S. Mujumdar, Eds.; National University of Singapore: Singapore, 2011; 3, 63–88. http://serve.me.nus.edu.sg/arun/file/Publications/books/Drying%20VF%20VFV_FVolume3.pdf.

256. Abbaszadeh, A.; Motevali, A.; Khoshtaghaza, M.H.; Kazemi, M. Evaluation of thin-layer drying models and neural network for describing drying kinetics of Lasagnas angstulifolia L. International Food Research Journal 2011, 18(4), 1321–1328.

257. Evsin, D. Determination of drying kinetics of sliced and whole roshups at different moisture contents under microwave treatment. Scientific Research and Essays 2011, 6(11), 2337–2347.

258. Hemis, M.; Singh, C.B.; Jayas, D.S. Microwave-assisted thin layer drying of wheat. Drying Technology 2011, 29(10), 1240–1247.

259. Phuonggandang, S.; Kongpim, P. Modeling a new thin-layer drying model and drying characteristics of sweet basil (Ocimum basilicum Linn.) using tray and heat pump-assisted dehumidified drying. Journal of Food Process Engineering 2012, 35(6), 851–862.

260. de Sousa, K.A.; Resende, O.; Chaves, T.H.; Costa, L.M. The drying kinetics of forage turnips (Raphanus sativus L.). Revista Ciência Agronômica 2011, 42(4), 833–892 [in Portuguese].

261. Nazghelichi, T.; Kianmehr, M.H.; Aghbashlo, M. Prediction of drying characteristics of forage turnips (Raphanus sativus L.) using tray and heat pump-assisted dehumidified drying. Journal of Food Process Engineering 2012, 35(6), 851–862.

262. Shen, F.; Peng, L.; Zhang, Y.; Wu, J.; Zhang, X.; Yang, G.; Peng, H.; Hui, Q.; Deng, S. Thin-layer drying kinetics and quality changes of sweet sorghum stalk for ethanol production for as affected by drying temperature. Industrial Crops and Products 2011, 34(3), 1588–1594.

263. Thanh, L.; Kim, T.; Kianmehr, M.H.; Aghbashlo, M. Prediction of drying characteristics of forage turnips (Raphanus sativus L.) using tray and heat pump-assisted dehumidified drying. Journal of Food Process Engineering 2012, 35(6), 851–862.
290. Michalewicz, J.S.; Henriquez, J.R.; Charamba, J.C. Drying of pineapple (Ananas comosus (L.) Merr.) using ultrasound. *Journal of Food Engineering* 2012, 108(1), 103–110.

291. Yurtlu, Y.B. Drying characteristics of bay laurel (Laurus nobilis L.) fruits in a convective hot-air dryer. *African Journal of Biotechnology* 2011, 10(47), 9939–9599.

292. Vega-Gálvez, A.; Lara, E.; Flores, V.; Scala, K.D.; Lemus-Mondaca, R. Effect of selected pretreatments on convective drying process of blueberries (var. 'O'neill'). *Food Bioprocess Technology* 2012, 5(7), 2797–2804.

293. Corrêa, P.C.; Botelho, F.M.; Oliveira, G.H.H.; Goneli, A.L.D.; Resende, O.; Campos, S.de C. Mathematical modeling of the drying process of corn ears. *Acta Scientiarum. Agronomy* 2011, 33(4), 575–581.

294. Toujani, M.; Hassini, L.; Belghith, A. Experimental study and mathematical modeling of apple convective drying. *European Drying Conference – EuroDrying 2011*, Palma de Mallorca, Spain, October 26–28, 2011.

295. Tabar, J.A. Obtención de curvas de secado de tomillo (Thymus vulgaris). M.Sc. thesis, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil, 2011 [in Spanish].

296. Prakash, B. Mathematical modeling of moisture movement within a rice kernel during convective and infrared drying. Ph.D. thesis, University of California, Davis, California, USA, 2011.

297. Doymaz, I. Drying of potato slices: Effect of pretreatments and mathematical modeling. *Journal of Food Processing and Preservation 2012*, 36(4), 310–319.

298. Kumar, N.; Sarkar, B.C.; Sharma, H.K. Effect of air velocity on kinetics of thin layer carrot pomace drying. *Food Science and Technology International* 2011, 17(5), 459–469.

299. Santos, E.de S.; Corrêa, P.C.; Baptestini, F.M.; Botelho, F.M.; Magalhães, F.Ed. A. Mathematical modeling of dehydration of “Fuji” and “Gala” apple slices using infrared. *Ciência e Tecnologia de Alimentos* 2011, 31(3), 776–781.

300. Doymaz, I. Air-drying characteristics, effective moisture diffusivity and activation energy of grape leaves. *Journal of Food Processing and Preservation 2012*, 36(2), 161–168.

301. Arslan, D.; Özen, M.M. Drying of tomato slices: Changes in drying kinetics, mineral contents, antioxidant activity and color parameters. *CyTA-Journal of Food 2011*, 9(3), 229–236.

302. Kadam, D.M.; Goyal, R.K.; Gupta, M.K. Mathematical modeling of convective thin layer drying of basil leaves. *Journal of Medicinal Plants Research 2011*, 5(19), 4721–4730.

303. Chen, D.; Zheng, Y.; Zhu, X. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. *Bioresource Technology* 2012, 107, 451–455.

304. Tunde-Akindunde, T.Y.; Oke, M.O. Thin-layer drying characteristics of tiger nut (Cyperus Esculenta) seeds. *Journal of Food Processing and Preservation 2012*, 36(5), 457–464.

305. Michalewicz, J.S.; Henriquez, J.R.; Charamba, J.C. Drying of cashew (anacardium occidentale L.): Experimental study and drying kinetics modeling. *Informação Tecnológica 2011*, 2(6), 63–74 [in Spanish].

306. Liu, W.; Zheng, Y.; Huang, L.X.; Zhang, C.H.; Xie, P.J. Low-temperature vacuum drying of natural gardenia yellow pigment. *Drying Technology 2011*, 29(10), 1132–1139.

307. Akhondi, E.; Kazemi, A.; Maghsoodi, V. Determination of a suitable thin layer drying curve model for saffron (Crocus sativus L.) stigmas in an infrared dryer. *Scienca Iranica 2011*, 18(6), 1397–1401.

308. Resende, O.; Ullmann, R.; Siqueira, V.C.; Chaves, T.H.; Ferreira, L.U. Mathematical modeling and effective diffusion of jatropha (Jatropha curcas L.) seeds during drying. *Engenharia Agrícola 2011*, 31(6), 1123–1135 [in Portuguese].

309. Doymaz, I. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.). *Energy Conversion and Management 2012*, 56, 199–205.

310. Rasoul, M.; Seiedi, S.; Ghasedamzadeh, H.R.; Nalbandi, H. Convective drying of garlic (Allium sativum L.): Part I: Drying kinetics, mathematical modeling and change in color. *Australian Journal of Crop Science 2011*, 5(13), 1707–1714.

311. Gupta, R.K.; Sharma, A.; Kumar, P.; Vishwakarma, R.K.; Patil, R.T. Effect of blanching on thin layer drying kinetics of aonla (Emblica officinalis) shreds. *Journal of Food Science and Technology 2012*, doi: 10.1007/s13197-012-0634-y [in press].

312. Ghaderi, A.; Abbasi, S.; Motevali, A.; Minaei, S. Comparison of mathematical models and artificial neural networks for prediction of drying characteristics of mushroom in microwave vacuum dryer. *Chemical Industry and Chemical Engineering Quarterly 2012*, 18(2), 283–293.

313. Venturini, T.; Benchimol, L.R.; Bertuol, D.A.; Rosa, M.B.D.; Meili, L. Estudo da secagem e extracao de sementes de mamea (Carica Papaya L.). *Revista Eletronica em Gestao, Educacao e Tecnologia Ambiental* 2012, 5(5), 950–959 [in Portuguese]

314. Lammatou, C.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N. Experimental investigation and thermodynamic performance analysis of a solar dryer using an evacuated-tube air collector. *Applied Energy 2012*, 94, 232–243.

315. Fajar, S.B.; Satriadi, H.; Yurairski, O.; Nugroho, R.S.; Shobib, A. Thin layer drying kinetics of roselle. *Advance Journal of Food Science and Technology 2012*, 4(1), 51–55.

316. Deugoaonkar, S.U.; Ramteke, I.P.; Thorat, B.N. Filtration and drying characteristics of casein. *Separation and Purification Technology 2012*, 92, 50–56.

317. Darvishi, H. Energy consumption and mathematical modeling of microwave drying of potato slices. *Agricultural Engineering International: CIGR Journal 2012*, 4(1), 94–102.

318. Darvishi, H.; Farhang, A.; Hazbavi, E. Mathematical modeling of thin-layer drying of shrimp. *Global Journal of Science Frontier Research Mathematics and Decision Sciences 2012*, 12(3), 82–90.

319. Thakur, A.K.; Saharan, V.K.; Gupta, R.K. Drying of “Perlette” grape under different physical treatment for raisin making. *Journal of Food Science and Technology 2010*, 47(6), 626–631.

320. Balbay, A.; Sahin, O.; Ulker, H. Modeling of convective drying kinetics of pistachio kernels in a fixed bed drying system. *Thermal Science 2013*, 17(3), 839–846.

321. Ashraf, Z.; Hamidi-Esfahani, Z.; Sahari, M.A. Evaluation and characterization of vacuum drying of date paste. *Journal of Agricultural Science and Technology 2012*, 14, 565–575.

322. Bingol, G.; Roberts, J.S.; Balaban, Murat, O.; Devres, Y.O. Effect of dipping temperature and dipping time on drying rate and color change of grapes. *Drying Technology 2012*, 30(6), 597–606.

323. Motefali, A.; Ahsazadeh, A.; Najadi, G.H.; Minaei, S.; Ghobadian, B. Drying of jujube (“zyiphus jujube mill”) fruit: Comparison of prediction from mathematical models and artificial neural networks. *Australian Journal of Crop Science 2012*, 6(2), 210–218.

324. Kumar, P.S.; Kanwat, M.; Choudhury, V.K. Mathematical modeling and thin-layer drying kinetics of bamboo slices on convective tray drying at varying temperature. *Journal of Food Processing and Preservation 2013*, 37(5), 914–923.

325. Celma, A.R.; Cuadros, F.; López-Rodriguez, F. Convective drying characteristics of sludge from treatment plants in tomato processing industries. *Food and Bioproducts Processing 2012*, 90(2), 224–234.
311. Yi, X.-K.; Wu, W.; Zhang, Y.-Q.; Li, J.-X.; Hua-Ping, L. Thin-layer drying characteristics and modeling of Chinese jujubes. *Mathematical Problems in Engineering* 2012, 2012, 1–18.

312. Schössler, K.; Jäger, H.; Knorr, D. Novel contact ultrasound system for the accelerated freeze-drying of vegetables. *Innovative Food Science and Emerging Technologies* 2012, 16, 113–120.

313. Khandal, M.; Rafaee, S.; Jafari, A.; Hashemabadi, S.H.; Banasharif, A. Mathematical modeling of fluidized bed drying of rough rice (*Oryza sativa L.*) grain. *Journal of Agricultural Technology* 2012, 8(3), 795–810.

314. Balbay, A.; Şahin, Ö. Microwave drying kinetics of a thin-layer liquorice root. *Drying Technology* 2012, 30(8), 859–864.

315. Siqueira, V.C.; Resende, O.; Chaves, T.H. Drying kinetics of Jatropha seeds. *Revista Ceres* 2012, 59(2), 171–172.

316. Ranjbaran, M.; Zare, D. A new approach for modeling of hot air-microwave thin layer drying of soybean. *Electronic Journal of Polish Agricultural Universities* 2012, 15(3), 793–810.

317. Alibas, İ. Microwave drying of grapevine (*Vitis vinifera L.*) leaves and determination of some quality parameters. *Journal of Agricultural Sciences* 2012, 18(1), 43–53 [in Turkish].

318. Yang, W.-J.; Tang, D.-B.; Xu, Y.-J.; Wu, J.-J.; Xiao, G.-S. Drying characteristics and mathematical modeling on heat pump drying of litchi. *Food Science and Technology* 2012, http://124.205.222.100/Wk/Fspk/EN/article/downloadArticleFile.do?attachType=PDF&id=29886 [in Chinese].

319. Darvishi, H.; Azadabakt, M.; Rezaeias, A.; Farhang, A. Drying characteristics of sardine fish dried with microwave heating. *Journal of the Saudi Society of Agricultural Sciences* 2013, 12(2), 121–127.

320. Meda, V.; Gupta, M.; Opoku, A. Drying kinetics and quality characteristics of microwave-vacuum dried Saskatoon berries. *Journal of Microwave Power and Electromagnetic Energy* 2008, 42(4), 10–12.

321. El, T.Q.; Jittanit, W. Drying kinetics of cooked jasmine brown rice during various drying methods. *The 22nd National Graduate Research Conference*, Bangkok, Thailand. October 6–7, 2011; 1–9.

322. Costa, A.; Pereira, H. Drying kinetics of cork planks in a cork pile in the field. *Food and Bioproducts Processing* 2013, 91(1), 14–22.

323. Faria, R.Q.D.; Teixeira, I.R.; Devilla, I.A.; Ascheri, D.P.R.; Resende, O. Drying kinetics of crambe seeds. *Revista Brasileira de Engenharia Agrícola e Ambiental* 2012, 16(3), 573–583 [in Portuguese].

324. Hosseinabadi, H.Z.; Doosthoseini, K.; Layeghi, M. Drying kinetics of poplar *(Populus deltoides)* wood particles by a convective thin layer dryer. *Drva Industrija* 2012, 63(3), 169–176.

325. Rocha, R.P.D.; Melo, E.de C.; Corbin, J.B.; Berbert, P.A.; Donzeles, S.M.L.; Tabar, J.A. Drying kinetics of thyme. *Revista Brasileira de Engenharia Agrícola e Ambiental* 2012, 16(6), 675–683 [in Spanish].

326. Nowacka, M.; Wiktor, A.; Slezd, M.; Jurek, N.; Witrowa-Rajchert, D. Drying of ultrasonic pretreated apple and its selected physical properties. *Journal of Food Engineering* 2012, 113(3), 427–433.

327. Dinriño, R.R. Effects of pre-treatments on drying kinetics of sweet potato slices. *Agricultural Engineering International: CIGR Journal* 2012, 4(3), 136–145.

328. Loha, C.; Das, R.; Choudhury, B.; Chatterjee, P.K. Evaluation of air drying characteristics of sliced ginger (Zingiber officinale) in a forced convective cabinet dryer and thermal conductivity measurement. *Journal of Food Process Technology* 2012, 3(6), 1–5.

329. Toujani, M.; Hassini, L.; Azzouz, S.; Belghith, A. Experimental study and mathematical modeling of silverside fish convective drying. *Journal of Food Process and Preservation* 2013, 37(5), 930–938.

330. Garcia, S.V.; Brumovsky, L.A.; Fretes, R.M.; Schmalko, M.E. Influence of drying temperature on the physical and microbiological parameters and the quality of dried green onion. *Drying Technology* 2012, 28(12), 1435–1444.

331. Chakraborty, R.; Bera, M.; Bhattacharya, I. Infrared assisted freeze-drying of brahmi (*Bacopa Monnieri*) extracts: Analyses of phytochemical constituents and antimicrobial activity. *International Journal of Emerging Trends in Engineering and Developments* 2012, 5(2), 50–66.

332. Dalvand, M.J.; Mohtasebi, S.S.; Rafiee, S. Investigation drying kinetics of kiwi fruit in solar EHD dryer. *Electronic Journal of Environmental, Agricultural and Food Chemistry* 2012, 11(5), 512–522.

333. Perez, L.G.; de Oliveira, F.M.N.; Andrade, J.S.; Filho, M.M. Kinetic drying of cupuacu pulp (*Theobroma grandiflorum*) pre-dehydrated by immersion-impregnation. *Revista Ciência Agronômica* 2013, 44(1), 102–106 [in Portuguese].

334. Ghathrehsamani, S.H.; Dadashzadeh, M.; Zomorodan, A. Kinetics of apricot thin layer drying in a mixed and indirect mode solar dryer. *International Journal of Agricultural Sciences* 2012, 4(6), 262–267.

335. Slezd, M.; Witrowa-Rajchert, D. Kinetics of microwave-convective drying of some herbs. *International Conference of Agricultural Engineering*, Valencia, Spain, July 8–12, 2012.

336. Arici, R.C.; Mençez, H.O. Determination of drying characteristics and modelling of drying behaviour of mushroom (*Agarius Bisporus*). *Selçuk Tarım ve Gıda Bilimleri Dergisi* 2012, 26(1), 84–91 [in Turkish].

337. Darvishi, H.; Banakar, A.; Zarein, M. Mathematical modeling and thin layer drying kinetics of carrot slices. *Global Journal of Science Frontier Research Mathematics and Decision Sciences* 2012, 12(7), 1–9.

338. Doymaz, I. Mathematical modeling of drying of tomato slices using infrared radiation. *Journal of Food Processing and Preservation* 2014, 8(1), 389–396.

339. Upadhyaya, A.K.; Gupta, B.; Garg, S.; Singh, M.; Pandey, M. Mathematical modeling of hot air drying of spinach leaves in universal hot air oven. *International Journal of Advanced Research in Computer Engineering and Technology* 2012, 1(4), 153–157.

340. Rayaguru, K.; Routray, W. Mathematical modeling of thin layer drying kinetics of stone apple slices. *International Food Research Journal* 2012, 19(4), 1503–1510.

341. Vega-Gálvez, A.; Puente-Díaz, L.; Lemus-Mondaca, R.; Miranda, M.; Torres, M.J. Mathematical modeling of thin-layer drying kinetics of cape gooseberry (*Physalis Peruviana L.*). *Journal of Food Processing and Preservation* 2012, doi:10.1111/j.12024 (in press).

342. Darvishi, H.; Farhang, A.; Hazbavi, E. Mathematical modeling of thin-layer drying of shrimp. *Global Journal of Science Frontier Research Mathematics and Decision Sciences* 2012, 12(3), 1–9.

343. Ding, Y.; Hu, Y.; Zhang, J.; Lu, F.; Liu, L. Mathematical models’ establishment of hot-air drying for spratelloides gracilis. *Journal of Aquatic Product Technology* 2012, 21(4), 380–392.

344. Murthy, T.P.K.; Manohar, B. Microwave drying of mango ginger (*Curcuma amada Roxb*): Prediction of drying kinetics by mathematical modelling and artificial neural network. *International Journal of Food Science and Technology* 2012, 47(6), 1229–1236.

345. Falade, K.O.; Ogunwolu, O.S. Modeling of drying patterns of fresh and osmotically pretreated cooking banana and plantain slices. *Journal of Food Processing and Preservation* 2014, 38(1), 373–388.

346. Chayjan, R.A.; Alizade, H.H.A.; Shadidi, B. Modeling some drying characteristics of high moisture potato slices in fixed, semi fluidized and fluid bed dryer. *Agricultural Engineering International: CIGR Journal* 2012, 14(2), 143–154.

347. Chayjan, R.A. Modeling some drying characteristics of high moisture potato slices in fixed, semi fluidized and fluid bed conditions. *Journal of Agricultural Science and Technology* 2012, 14(6), 1229–1241.

348. Madhiyanon, T.; Phila, A.; Soponronnarit, S. Models of fluidized bed drying for thin-layer chopped coconut. *Applied Thermal Engineering* 2009, 29(14–15), 2849–2854.

349. Schössler, K.; Thomas, T.; Knorr, D. Modification of cell structure and mass transfer in potato tissue by contact ultrasound. *Food Research International* 2012, 49(1), 425–431.
350. Sharifian, F.; Moltagh, A.M.; Nikbakht, A.M. Pulsed microwave drying kinetics of fig fruit (Ficus carica L.). Australian Journal of Crop Science 2012, 6(10), 1441–1447.

351. Alibas, I. Selection of the best suitable thin-layer drying mathematical model for vacuum dried red chili pepper. Journal of Biological and Environmental Sciences 2012, 6(17), 161–170.

352. Alibas, I. Development of the nem drying model of explanation of drying curves in hor-air drying of artichoke slices and comparison between the other drying models and the new model. Journal of Agricultural Faculty of Uludag University 2012, 26(1), 49–61 [in Turkish].

353. Ajala, A.S.; Ajala, F.A.; Tunde-Akintunde, T.Y. Study on drying kinetics of fermented corn grains. Food Science and Quality Management 2012, 5, 10–19.

354. Chen, D.; Li, M.; Zhu, X. TG-DSC method applied to drying characteristics and heat requirement of cotton stalk during drying. Heat Mass Transfer 2012, 48(12), 2087–2094.

355. Corrêa, P.C.; de Oliveira, G.H.H.; Baptestini, F.M.; Diniz, M.D.M.S.; da Paixão, A.A. Tomato infrared drying: Modeling and some coefficients of the dehydration process. Chilean Journal of Agricultural Research 2012, 72(2), 262–267.

356. Tee, Y.M.; Ifa, P.; Siti, T.M.; Meor, T.M.Z.; Wan, D.W.R.; Zahira, Y. Drying of oil palm fruit particles in a fluidized bed dryer with inert medium. Chemical Industry and Chemical Engineering Quarterly 2011, 19(4), 593–603.

357. Kaleta, A.; Gornicki, K.; Winiczenko, R.; Chojnacka, A. Evaluation of drying models of apple (var. Ligli) dried in a fluidized bed dryer. Energy Conversion and Management 2013, 67, 179–185.

358. Sami, S.; Rahimi, A.; Etesami, N. Dynamic modeling and a parametric study of an indirect solar cabinet dryer. Drying Technology 2011, 29(7), 825–835.

359. Xanthopoulos, G.; Yanniotsis, S.; Talaiporou, E. Influence of salting on drying kinetics and water diffusivity of tomato halves. International Journal of Food Properties 2012, 15(4), 847–863.

360. Harchegani, M.T.; Sadeghi, M.; Emami, M.D.; Moheb, A. Investigating energy consumption and quality of rough rice drying process using a grain heat pump dryer. Australian Journal of Crop Science 2012, 6(4), 592–597.

361. Abano, E.E.; Ma, H.; Qu, W. Influence of air temperature on the drying kinetics and quality of tomato slices. Journal of Food Process Technology 2011, 2(5), 1–9.

362. Evir, D. Microwave drying and moisture diffusivity of white mulberry: Experimental and mathematical modeling. Journal of Mechanical Science and Technology 2011, 25(10), 2711–2718.

363. Chayjan, R.A.; Salari, K.; Abedi, Q.; Sabziparvar, A.A. Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying. Journal of Food Science and Technology 2013, 50(4), 667–677.

364. Prakash, B.; Pan, Z. Modeling moisture movement in rice. In Advanced Topics in Mass Transfer; El-Amin, M., Ed.; InTech: Open Access, 2011; 283–304.

365. Weiyan, W.; Amin, L.; Xiaomin, Z.; Yulei, Y. Modeling of thin-layer drying for dewatered sewage sludge. International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, Hunan, China, February 19–21, 2011; 467–471.

366. Abano, E.E.; Ma, H.; Qu, W.; Teye, E. Modeling pre-treatments effect on drying kinetics of garlic (Allium sativum L.) slices in a convective hot air dryer. African Journal of Food Science 2011, 5(7), 425–435.

367. Azadbakht, M.; Darvishi, H.; Rezaeiasl, A.; Asghari, A. Thin layer drying characteristics and modeling of melon slices (Cucumis melo). Journal of Agricultural Technology 2012, 8(6), 1867–1880.

368. Nair, G.R.; Liplap, P.; Gariepy, Y.; Raghavan, G.S.V. Microwave drying of flax fibre at controlled temperatures. Journal of Agricultural Science and Technology B 2011, 8(8b), 1103–1115.

369. Kongkiatissak, P.; Songsermpong, S. Effect of temperature and velocity of drying air on kinetics, quality and energy consumption in drying process of rice noodles. Kasetsart Journal (Natural Science) 2012, 46(4), 603–619.

370. Singh, S.P.; Paul, B. Drying of leaves of tendu (Diospyros melanoxylon) plants using a solar dryer with mirror booster. International Journal of Energy and Environment 2012, 3(5), 799–808.

371. Dizí, K.A.; Aym, I.; Amankwah, E.A. Thin layer modeling of fláa-21 (tetraploid Plantain). ARPN Journal of Agricultural and Biological Science 2012, 7(11), 946–952.

372. Lin, B.; Wang, Y.; Zhou, Y.; Zhao, Z. Study on thin layer drying of rosa laevigata Michx. Engineering 2013, 5(1), 16–21.

373. Witkort, A.; Ivanik, M.; Sléď, M.; Nowacka, M.; Chudoba, T.; Witrowa-Rajchert, D. Drying kinetics of apple tissue treated by pulsed electric field. Drying Technology 2013, 31(1), 112–119.

374. Ruiz, C.A.; Francisco, C.; Fernando, L.-R.; Aida, R. Thin layer drying behavior of industrial tomato by-products in a convective dryer at low temperatures. Research Journal of BioTechnology 2013, 8(2), 50–60.

375. Abano, E.E.; Haile, M.A.; Owusu, J.; Engmann, F.N. Microwave vacuum drying effect on drying kinetics, lycopene and ascorbic acid content of tomato slices. Journal of Stored Products and Postharvest Research 2013, 4(1), 11–22.

376. Pillai, M.G. Thin layer drying kinetics, characteristics and modeling of plaster of Paris. Chemical Engineering Research and Design 2013, 91(6), 1018–1027.

377. Puente-Díaz, L.; Ah-Hen, K.; Vega-Galvez, A.; Lemus-Mondaca, R.; Di, S.K. Combined infrared-convective drying of Murta (Ugni molinae Turcz) berries: Kinetic modeling and quality assessment. Drying Technology 2013, 31(3), 329–338.

378. Argyropoulos, D.; Müller, J. Convective drying and desorption isotherms of Shiitake (Lentinula edodes) mushroom. CIGR International Symposium on Sustainable Bioproduction-Water, Energy and Food, Tokyo, Japan, September 19–23, 2011.

379. Pour-Damanab, A.R.S.; Jafary, A.; Rafiee, S. Determination of suitable drying curve model for bread moisture loss during baking. International Agrophysics 2013, 27(2), 233–237.

380. De Oliveira, D.E.C.; Resende, O.; Montes, A.L.; Silva, F.G. Drying kinetics of Aristolochia cymbifera Mart. and Zucc. leaves. African Journal of Agricultural Research 2013, 8(10), 922–929.

381. Motevali, A.; Youjni, S.; Chayjan, R.A.; Aghilinateghe, N.; Banakar, A. Drying kinetics of dill leaves in a convective dryer. International Agrophysics 2013, 27(1), 39–47.

382. Santos, D. da C.; Queiroz, A.J. de M.; de Figueiredo, R.M.F.; de Oliveira, E.N.A. Drying kinetics of residual grain flour of annatto. Revista Brasileira de Engenharia Agrícola e Ambiental 2013, 17(2), 223–231.

383. Mihindukulasuriya, S.D.F.; Jayasuriya, H.P.W. Mathematical modeling of drying characteristics of chilli in hot air oven and fluidized bed dryers. Agricultural Engineering International: The CIGR Ejournal 2013, 15(1), 154–165.

384. Bagheri, H.; Sparlosseini, A.; Kianmehr, M.H.; Chegini, G.R. Mathematical modeling of thin layer solar drying of tomato slices. Agricultural Engineering International: The CIGR Ejournal 2013, 15(1), 146–153.

385. Sakkalkar, S.R.; Bakane, P.H.; Khedkar, M.B.; Dhuma, C.V. Modeling of convective drying of safed musli (Chlorophyton borivilianum). Journal of Medicinal Plants Research 2013, 7(10), 602–611.

386. Sedz, M.; Nowacka, M.; Witkort, A.; Witrowa-Rajchert, D. Selected chemical and physico-chemical properties of microwave-convective dried herbs. Food and Bioproducts Processing 2013, 91(4), 421–428.
387. Zhang, Y.; Chen, H. Simple modelling of static drying of RDX. Scientific Journal of Frontier Chemical Development 2013, 3(1), 13–24.
388. Ghaitaranpour, A.; Yazdi, F.T.; Behbahani, B.A.; Mortazavi, A.; Mohebbi, M. The effect of wheat boiling time, bulgur particle size, drying time and temperature on some physical properties of hot air dried Tarkhineh. Scientific Journal of Pure and Applied Sciences 2013, 2(4), 175–182.
389. Sharifi, A.; Hassani, B. Vacuum drying of barberry fruit (Berberis vulgaris) and selection of a suitable thin layer drying model. Research Journal of Applied Sciences, Engineering and Technology 2013, 5(5), 1668–1673.
390. Jayasa, D.S.; Cenkowska, S.; Pabisb, S.; Muira, W.E. Review of thin-layer drying and wetting equations. Drying Technology 1991 9(3), 551–588.