A four-long noncoding RNA signature predicts survival of hepatocellular carcinoma patients

Haitao Jiang1,2,3 | Lianhe Zhao4 | Yunjie Chen1,2,3 | Liang Sun4

1Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
2Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
3Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
4Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Correspondence
Yunjie Chen, Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo 315010, China.
Email: ybyfish@163.com
Liang Sun, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100000, China.
Email: sunliang@ict.ac.cn

Funding Information
Ningbo Natural Science Foundation, China, Grant/Award Number: 2017A610149; Medical Scientific Research Foundation of Zhejiang Province, China, Grant/Award Number: 2018265085; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Grant/Award Number: 2019E10020; Ningbo Clinical Research Center for Digestive System Tumors, Grant/Award Number: 2019A21003; National Natural Science Foundation of China, Grant/Award Number: 3197040656

Abstract

Background: Hepatocellular carcinoma (HCC) is a common neoplasm located in the liver. Accumulating evidence has highlighted that long noncoding RNAs (lncRNAs) are correlated with the survival of HCC patients. This study focuses on finding a lncRNA signature to predict the prognostic risk of HCC patients.

Methods: Statistical and machine learning analyses were conducted to analyze the lncRNA expression data and corresponding clinical data of 180 HCC patients collected from the public online Tanric and The Cancer Genome Atlas (TCGA) databases.

Results: From the training dataset, we obtained the four-lncRNA model comprising RP11-495K9.6, RP11-96O20.2, RP11-359K18.3, and LINC00556 which can divide HCC patients into two different groups with significantly different prognosis (n = 90, median 1.81, 95% confidence interval [CI]: 1.50-4.91 vs 8.56 years, 95% CI: 6.96-9.97, log-rank test \(P < .001 \)). The test dataset confirmed the prognostic ability of the signature (n = 90, median 1.95, 95% CI: 1.14-4.08 vs 5.80 years, 95% CI: 3.11-6.82, log-rank test \(P = .007 \)). Receiver operating characteristic curve displayed the better prediction efficiency of the four-lncRNA signature than the tumor/node/metastasis stage. Cox analysis showed the four-lncRNA signature was an independent predictor of HCC prognosis.

Conclusion: The four-lncRNA signature can be used as an independent biomarker for HCC patients to predict the prognostic risk.

KEYWORDS
biomarker, hepatocellular carcinoma, lncRNA, prognostic, signature

Abbreviations: CI, confidence interval; HCC, hepatocellular carcinoma; lncRNA, long noncoding RNA; TCGA, The Cancer Genome Atlas.
1 | INTRODUCTION

Hepatocellular carcinoma (HCC) is a refractory tumor that kills 746,000 people every year,\(^1,2\) ranked as the third cause of cancer-induced death. The main reasons for the high mortality of HCC are the following two points. First, the disease is insidious and difficult to be detected early; thus, most of the HCC patients are diagnosed at advanced stages when they are in poor physical condition and miss the opportunity of surgery; second, there are few effective treatments for patients with advanced HCC who are not only insensitive to radiotherapy but also poorly responsive to conventional chemotherapy drugs.\(^3\) In recent years, it has been recognized that molecular characteristics are closely related to the prognosis and therapeutic effectiveness of HCC patients.\(^4\) Therefore, identifying molecular indicators will result in more accurate prognostic judgments and improved treatments, which are urgently needed for HCC patients.

Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with the length more than 200 bp.\(^5,6\) Recent studies have found that lncRNAs play important roles in the regulation of important biological processes in various types of cancer, especially the oncogenic or onco-suppressive role,\(^7,8\) implying the potential of lncRNAs as biomarkers and therapeutic targets for cancer.\(^9,10\) In addition, the prognostic role of lncRNA in HCC has been reported in many studies. For instance, lncRNA PTTG3P was found to be associated with short survival in HCC patients and could be used as an unfavorable prognostic predictor.\(^11\) LncRNA ASB16-AS1 was demonstrated to promote the malignant behavior of HCC through regulating miR-1827/FZD4/Wnt/β-catenin pathway and has the prognostic value.\(^12\) CTC-297N7.9 was observed to be highly expressed in HCC patients with good prognosis, indicating its protective role.\(^13\) Subsequently, due to better prediction performance than a single lncRNA molecule, lncRNA signatures for HCC prognosis prediction are being discovered.\(^14-16\)

TABLE 1 Clinicopathological parameters of hepatocellular carcinoma patients in each cohort

Characteristic	Training set	Testing set
Age (y)		
>63	48	44
≤63	42	46
Sex		
Female	28	39
Male	62	51
Vital status		
Living	59	47
Dead	31	43
Tumor/node/metastasis stage		
I	37	34
II	22	22
III	26	21
IV	1	2
Unknown	4	11

![FIGURE 1](image_url) Constructing the prognostic long noncoding RNA (lncRNA) signature in the training dataset. A, The process of selecting the survival-related lncRNAs. B, Based on the associated expression score, random survival forests-variable hunting analysis was performed to filter lncRNAs. C, Receiver operating characteristic analysis of the selected signature.
In the present study, we aimed to identify IncRNAs that could predict outcomes of HCC patients and construct a prognostic IncRNA signature based on IncRNA expression profile data of HCC from the The Cancer Genome Atlas (TCGA) and Tanric databases.

2 | MATERIALS AND METHODS

2.1 | Construction process of the IncRNA risk score model

LncRNA transcriptome expression data of 180 HCC patients were downloaded from the Tanric database (https://www.tanric.org/). Corresponding clinical information of 180 HCC patients was downloaded from TCGA database (https://xenabrowser.net/datapages/). We omitted IncRNAs expressing value with coefficient of variance >0.1 and selected survival-related lncRNAs from training samples by performing Cox analysis (P < .05). Then, we used the random survival forests-variable hunting algorithm to further filter nodes until nine lncRNAs were screened out. We developed risk score models to estimate prognosis risk as follows:

\[
\text{Risk score} = \sum_{i=1}^{N} (\text{IncRNAexp} \times \text{coefficientCOXi}),
\]

where \(N \) represents the lncRNAs number in the model, IncRNAexp is the lncRNAs expression value, and coefficientCOXi is the coefficient of lncRNAs in the Cox analysis. We selected signatures which predicted the HCC OS with AUC > 0.7 and log-rank \(P < .05 \) from all \(2^9 = 511 \) signatures.

TABLE 2 The feature of the long noncoding RNAs (IncRNAs) in the prognostic expression signature

IncRNA name	Ensembl ID	Coefficient	\(P \) value	Gene expression level association with poor prognosis
RP11-495K9.6	ENSG00000249926	1.13	.01	High
RP11-96O20.2	ENSG00000259681	1.35	.01	High
RP11-359K18.3	ENSG00000259788	1.42	<.001	High
LINCO0556	ENSG00000260131	2.17	<.001	High

*Derived from the univariable Cox analysis in the training set.

FIGURE 2 The performance of the four-long noncoding RNAs (IncRNA) signature in Hepatocellular carcinoma prognosis prediction. A-C, Kaplan-Meier analysis of the SIGNATURE in the training, test, and entire The Cancer Genome Atlas datasets. D-F, Comparing the survival prediction power between the IncRNA signature and tumor/node/metastasis stage by receiver operating characteristic in the training, test, and entire datasets.
2.2 | Statistical analysis

We used R program, including pROC, TimeROC, Survival, and RandomForestSRC (from Bioconductor: http://www.bioconductor.org/) to perform statistics and machine learning analysis. Using the receiver operating characteristic (ROC) and the Time ROC analysis, we compared the prognostic performance of tumor/node/metastasis (TNM) stage and the lncRNA signature. Cox analysis was performed on the data processing to identify the prognostic factors with significance defined as $P < .05$. Pearson’s test with $P < .05$ and the Pearson coefficient $>|-.2|$ were used to select co-expressed protein-coding genes with lncRNAs which were visualized by Cytoscape (3.2.3). We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis by the R package clusterProfiler.

RESULTS

3.1 | Constructing the lncRNA signature for predicting HCC prognosis in the training group

Table 1 displayed the detailed clinical information of the 180 HCC patients. The median age of the enrolled patients was 63 years (20-90 years) including 67 female and 113 male patients. A total of 165 HCC patients were categorized as TNM stage I to IV. These 180 HCC patients were randomly divided into two groups, one as the training ($n = 90$) group and one as the test group ($n = 90$). We constructed prognostic lncRNA signature from the training group and then verified its predictive power in the test group.

First, we selected 9683 lncRNAs with coefficient of variance <0.1 based on their expression value from 12727 lncRNAs. Then, we used univariate Cox regression analysis and got a 642-lncRNA set associated with HCC patient OS (Figure 1A, $P < .05$). Finally, through random survival forests analysis, we obtained 9 prognostic lncRNAs according to importance score (Figure 1A, B).

Kaplan-Meier and ROC analyses were performed on $2^{29} - 1 = 511$ signatures. The lncRNA combination including RP11-495K9.6, RP11-96O20.2, RP11-359K18.3, and LINC00556 was considered as the final lncRNA signature since its AUC value was the largest (AUC > 0.70) and log-rank $P < .001$ (Figure 1C). The lncRNA signature risk score (Table 2) = $(1.13 \times \text{RP11-495K9.6 expression value}) + (1.35 \times \text{RP11-96O20.2 expression value}) + (1.42 \times \text{RP11-359K18.3 expression value}) + (2.17 \times \text{LINC00556 expression value})$.

TABLE 3 Association of the long noncoding RNA signature with clinicopathological characteristics in the hepatocellular carcinoma patients

Variables	Train group		Test group		Entire group				
	Low risk a	High risk a	P	Low risk a	High risk a	P	Low risk a	High risk a	P
Age (y)									
>63	17	25	.14	21	23	.83	38	48	.18
≤63	28	20		24	22		52	42	
Sex									
Female	10	18	.11	23	16	.20	33	34	.35
Male	35	27		22	29		57	56	
M stage									
M0	39	32	.16	31	29	.27	70	61	.21
M1	0	1		2	0		2	1	
N stage									
N0	28	31	.37	29	23	.31	57	54	.62
N1	2	0		0	1		2	1	
N2	14	14		16	21		30	35	
T stage									
T1	22	17	.09	14	22	.22	36	39	.17
T2	14	9		17	9		31	18	
T3	8	17		9	10		17	27	
T4	0	2		5	3		5	5	
Tumor/node/metastasis stage									
I	20	17	.22	14	20	.20	34	37	.29
II	13	9		14	8		27	17	
III	9	17		11	10		20	27	
IV	0	1		2	0		2	1	

aLow risk ≤ median of risk score; high risk > median of risk score; the chi-squared test; P value < .05 was considered significant.
3.2 | The predictive performance of the four-lncRNA signature

Based on the four-lncRNA signature, HCC patients obtained their risk scores. We used the median risk score as a cutoff point for Kaplan-Meier analysis, and HCC patients in the training group (n = 90) were subgrouped into two risk groups with significantly different survival. The median survival of the high-risk group was shorter than that of the low-risk group (median survival time: 1.81 years, 95% confidence interval [CI]: 1.50-4.91 vs 8.56, 95% CI: 6.96-9.97, log-rank test P < .001; Figure 2A). Then, we test the survival predictive performance of the signature in the test set. Kaplan-Meier result revealed the outcome of high-risk patients were significantly different from low-risk patients (median survival time: 1.95, 95% CI: 1.14-4.96 vs 5.80 years, 95% CI: 3.11-6.82, P = .007; Figure 2B). At last, we tested the risk identification ability of the signature in the entire TCGA dataset (n = 180) and the Kaplan-Meier result showed that the HCC patients of the low-risk group (n = 90) outlived the high-risk group (n = 90) in Figure 2C (log-rank P < .001).

3.3 | Prognostic independence test of the four-lncRNA signature

Chi-square test found there was no correlation between the signature and other clinical features (Table 3). We further performed univariable and multivariable Cox analysis to evaluate the prognostic independence of the four-lncRNA signature. As shown in Table 4, the four-lncRNA signature was proved to be an independent indicator in the training group (high-risk vs low-risk, HR = 3.95, 95% CI 3.65-8.90, P < .001, n = 90). The test group and the entire TCGA set verified the accuracy of the independence test (HR = 2.38, 95% CI 1.14-4.96, P = .02, n = 90; HR = 3.82, 95% CI 2.17-6.71, P < .001, n = 180).

3.4 | Comparison of the lncRNA signature with TNM stage system

Receiver operating characteristic analyses found that the AUC value of the lncRNA signature was greater than that of the

TABLE 4 Univariable and multivariable Cox regression analysis of the lncRNA signature with survival of hepatocellular carcinoma patients in the training group, test group, and entire group

Variables	The training set (n = 90)	The Test set (n = 90)	The TCGA dataset (n = 180)
	HR Lower Upper P	HR Lower Upper P	HR Lower Upper P
Univariable analysis			
Age >63 vs ≤63	0.76 0.37 1.55 .44	1.51 0.79 2.88 .22	1.09 0.68 1.74 .73
Sex Male vs female	1.60 0.73 3.50 .24	1.15 0.62 2.13 .65	1.26 0.78 2.03 .34
TNM stage IV vs I + II	1.36 0.90 2.06 .15	1.24 0.85 1.81 .27	1.30 0.98 1.71 .07
lncRNA signature High risk vs	3.34 3.23 7.03 <.001	2.03 1.08 3.84 .03	3.56 2.11 6.00 <.001
Multivariable analysis			
Age >63 vs ≤63	0.93 0.43 2.01 .85	1.45 0.71 2.97 .31	1.18 0.71 1.98 .52
Sex Male vs female	2.59 1.09 6.15 .03	1.13 0.55 2.32 .73	1.34 0.80 2.22 .27
TNM stage IV vs I + II	1.10 0.71 1.70 .68	1.40 0.94 2.08 .10	1.35 1.02 1.78 .04
lncRNA signature High risk vs	3.95 3.65 8.90 <.001	2.38 1.14 4.96 .02	3.82 2.17 6.71 <.001

Abbreviation: TNM, tumor/node/metastasis.
TNM stage system in the training, test, and entire datasets (n = 90/90/180), (lncRNA model-AUC = 0.73/0.62/0.67 vs TNM-AUC = 0.60/0.60/0.60, Figure 2D-F), demonstrating the lncRNA signature had better survival predictive performance. Combining the lncRNA signature and the TNM stage had the largest AUC value, indicating the signature could be used as an auxiliary prognostic marker (Both-AUC = 0.76/0.65/0.71, Figure 2D-F).

On the other hand, the result of TimeROC demonstrated that the predictive ability of lncRNA signature outperformed that of the TNM stage. The AUCs of the four-lncRNA signature in the training group were 0.75/0.75/0.72/0.78 at 2/3/4/5 years, greater than the corresponding AUC values of TNM stage (Figure 3A,B). Similar results were also visible in the entire TCGA dataset (signature-AUC training = 0.67/0.65/0.62/0.69 at 2/3/4/5 years vs TNM-AUC training = 0.50/0.57/0.58/0.61 at 2/3/4/5 years, Figure 3C,D).
3.5 | Stratified analysis for TNM stage

Combined the TNM stage with lncRNA signature risk scores, we stratified the HCC patients into different subgroups. HCC patients with TNM I + II stage were stratified into high-risk and low-risk subgroups. Kaplan-Meier analysis showed there was a significant difference in survival time between the two subgroups (log-rank test $P < .001$, Figure 4A). HCC patients with TNM III + IV stage were also divided into two risk subgroups with different survival (log-rank test $P = .0043$, Figure 4B).

3.6 | Function prediction of the four lncRNAs in the signature

First, we used Pearson's test to compute the co-expressed mRNAs with the four lncRNAs in the entire TCGA dataset ($n = 180$). A total of 749 mRNAs were selected which were co-expressed with at least one of the four lncRNAs (coefficient >0.2/<=0.2, $P < .05$, Table S1, Figure 5A). Then, we used those co-expressed genes to predict the biological function of the four lncRNAs. We found the four lncRNAs were enriched in 27 GO terms and KEGG pathways and the top 20
pathways were visualized in Figure 5B, such as DNA replication and cell cycle checkpoint \((P < .05 \text{ Figure 5B}) \).

4 | DISCUSSION

A vast amount of research suggests that lncRNAs might serve as biomarkers in the diagnosis and prognosis of various tumors, including HCC. In addition, IncRNA has the advantage of being a marker because it is easy to detect in body fluids.\(^{24}\) Thus, there have been many articles on the prognostic IncRNA markers of HCC. Based on high throughput sequencing data, IncRNAs associated with the HCC prognosis have been identified, such as ASB16-AS1, LINC01138, and CTC-297N7.9.\(^{12,13,25}\) These IncRNAs were found play important roles in HCC carcinogenesis through regulating tumor proliferation and migration. Because of its better predictive efficacy, IncRNA signatures have been developed for prognostic prediction in many cancers such as esophageal squamous cell carcinoma, glioblastoma, lung adenocarcinoma, and pancreatic ductal adenocarcinoma, among others.\(^{19,26-28}\)

In this study, we collected and downloaded the expression data and clinical information of HCC cohort from Tanric and TCGA. Using statistical and machine learning analysis, we found 642 IncRNAs significantly correlated with overall survival and constructed a four-IncRNA signature which was proved to be a reliable indicator of HCC survival in 180 samples. The independence test detected the survival prediction ability of the four-IncRNA signature in HCC was not affected by age, gender, and TNM stage. In addition, stratification analysis discovered the four-IncRNA signature or the four-IncRNA-based risk score model can further subdivide HCC patients at same TNM stage into different risk groups with significantly different outcomes, suggesting that the four-IncRNA signature can be used as an advanced prognostic model for TNM stage in HCC. Moreover, we found high expression of RP11-495K9.6, RP11-96020.2, RP11-359K18.3, and LINC00556 was correlated with poor prognosis of HCC patients \((HR > 1, P < .05) \). Since the function of these four IncRNAs has not been reported yet, we performed Go and KEGG analysis and found that the coding genes co-expressed with the four IncRNAs were enriched in terms related to DNA replication and repair, indicating that the four IncRNAs in the signature may participate in the HCC progression through DNA replication and repair related pathways. The specific mechanism of these IncRNAs regulates the prognosis of HCC remains to be elucidated.

In summary, using statistical and machine learning analyses, we constructed a four-IncRNA signature including RP11-495K9.6, RP11-96020.2, RP11-359K18.3, and LINC00556 which could be used effectively to predict clinical outcome of HCC patients. The four-IncRNA signature exerts great applicable value in prognosis prediction, therapy selection, and disease recognition.

CONFLICT OF INTEREST
The authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS
Haitao Jiang contributed to data analysis, interpretation, and drafting. Lianhe Zhao contributed to data collection. Yunjie Chen and Liang Sun involved in study design, study supervision, and final approval of the article. All authors read and approved the final article.

DATA AVAILABILITY STATEMENT
LncRNA transcriptome expression data of patients were downloaded from the Tanric database (https://www.tanric.org/home).

ORCID
Yunjie Chen https://orcid.org/0000-0001-8016-0415

REFERENCES
1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391:1301-1314.
2. Global Burden of Disease Liver Cancer Collaboration, Akinyemiju T, Abara S, et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the global burden of disease study 2015. JAMA Oncol. 2017;3:1683-1691.
3. Attwa MH, El-Etreby SA. Guide for diagnosis and treatment of hepatocellular carcinoma. World J Hepatol. 2015;7:1632-1651.
4. Schneller D, Angel P. Cellular origin of hepatocellular carcinoma. In: Tirnitz-Parker JEE (ed). Hepatocellular Carcinoma. Brisbane, QLD: Codon Publications; 2019.
5. Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Can Res. 2017;77:3965-3981.
6. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861-874.
7. Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071-1076.
8. Hauptman N, Glavac D. Long non-coding RNA in cancer. Int J Mol Sci. 2013;14:4655-4669.
9. Lin C, Yang L. Long Noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28:287-301.
10. Prensner JR, Chinnaiyan AM. The emergence of IncRNAs in cancer biology. Cancer Discov. 2011;1:391-407.
11. Bai H, Luo X, Liao D, Xiong W, Zeng M, Zheng B. Long noncoding RNA PTTG3P expression is an unfavorable prognostic marker for patients with hepatocellular carcinoma. Technol Cancer Res Treat. 2019;18.
12. Yao X, You G, Zhou C, Zhang D. LncRNA ASB16-AS1 promotes growth and invasion of hepatocellular carcinoma through regulating miR-1827/FZD4 axis and activating Wnt/beta-catenin pathway. Cancer Manage Res. 2019;11:9371-9378.
13. Zhu S, Huang X, Zhang K., et al. Low expression of long noncoding RNA CTC-297N7.9 predicts poor prognosis in patients with hepatocellular carcinoma. Cancer Med. 2019;8(18):7679-7692.
14. Gu J-X, Zhang X, Mao R-C, et al. Six-long non-coding RNA signature predicts recurrence-free survival in hepatocellular carcinoma. World J Gastroenterol. 2019;25:220-232.
15. Zhao QJ, Zhang J, Xu L, Liu FF. Identification of a five-long non-coding RNA signature to improve the prognosis prediction for patients with hepatocellular carcinoma. World J Gastroenterol. 2018;24:3426-3439.
16. Gu J, Zhang X, Mao R, et al. A three-long non-coding RNA-expression-based risk score system can better predict both overall and recurrence-free survival in patients with small hepatocellular carcinoma. Aging. 2018;10:1627-1639.
17. Li J, Han L, Roebuck P, et al. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Con Res. 2015;75:3728-3737.
18. Li J, Chen Z, Tian L, et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut. 2014;63:1700-1710.
19. Mao YU, Fu Z, Zhang Y, et al. A seven-lncRNA signature predicts overall survival in esophageal squamous cell carcinoma. Sci Rep. 2018;8:8823.
20. Guo J-C, Fang S-S, Wu Y, et al. CNIT: a fast and accurate web tool for identifying protein-coding and long non-coding transcripts based on intrinsic sequence composition. Nucleic Acids Res. 2019;47:W516-W522.
21. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337-344.
22. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498-2504.
23. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284-287.
24. Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: From biomarkers to therapeutic targets. Int J Cancer. 2017;140:1955-1967.
25. Li Z, Zhang J, Liu X, et al. The LINC01138 drives malignancies via activating arginine methyltransferase 5 in hepatocellular carcinoma. Nat Commun. 2018;9:1572.
26. Zhou M, Zhang Z, Zhao H, Bao S, Cheng L, Sun J. An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol. 2018;55:3684-3697.
27. Zeng L, Wang W, Chen Y, et al. A five-long non-coding RNA signature with the ability to predict overall survival of patients with lung adenocarcinoma. Exp Ther Med. 2019;18:4852-4864.
28. Zhou C, Wang S, Zhou Q, et al. A long non-coding RNA signature to improve prognostic prediction of pancreatic ductal adenocarcinoma. Front Oncol. 2019;9:1160.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Jiang H, Zhao L, Chen Y, Sun L. A four-long noncoding RNA signature predicts survival of hepatocellular carcinoma patients. J Clin Lab Anal. 2020;34:e23377. https://doi.org/10.1002/jcla.23377