Analysis of the physical properties, composition and structure of soot particles

V A Likhanov¹,4, O P Lopatin¹, A S Yurlov¹ A G Terentiev² and R V Andreev³

¹Department of thermal engines, automobiles and tractors, Vyatka State Agrotechnological University, 133, October prospect, Kirov, 610017, Russian Federation
²Department of Mechanization, Electrification and Automation of Agricultural Production, Chuvash State Agrarian University, 29, K. Marx Street, Cheboksary, 428003, Russian Federation
³Department of Technical Service, Chuvash State Agrarian University, 29, K. Marx Street, Cheboksary, 428003, Russian Federation

4E-mail: lihanov.va@mail.ru

Abstract. A soot particle consisting of crystallites representing several parallel layers of densely packed hexagons with carbon atoms located at the vertices is considered. Such a crystallite structure is similar to a graphite crystal lattice, but less ordered with large distances between the layers, where individual layers can be arbitrarily rotated relative to each other and relative to their common normal. It is shown that the core of a particle with a high salt content of exhaust gases (EG) of a diesel internal combustion engine (DICE) is discharged more, which allows us to distinguish models of the structure of a spherical nanoscale particle.

1. Introduction
Soot is unburned carbon in a DICE. Dissociation, or decay, of particles occurs when the decay forces due to an increase in the vibrational movements of atoms with an increase in temperature begin to prevail over the dissociation forces of a given molecular structure, expressed in the binding energy. Naturally, the process begins with individual molecules that either have the least strong bonds or are activated, and their properties can differ significantly when sampling at different sites of the same flame. During the oxidation of hydrocarbons, there are thresholds of thermal stability for some hydrocarbons, since there are not initial hydrocarbons, but their products, although primary, but nevertheless essential for the oxidation of decomposition [1-7].

2. Methodology
The specific surface area of soot can vary from 15 to 120 m²/g, depending on the technological parameters of obtaining carbon black. Soot consists of 94-99% carbon, chemically bound hydrogen (0.5-3.0%), a certain amount of oxygen and ash elements. At different stages, the atomic ratio of C/H varies from 3 to 15 [8-13].

With the help of electron microscopy and X-ray diffraction studies, it became possible to analyze the morphology of soot particles. The smallest particle is a complex cluster-like formation of carbon globules connected by common carbon layers (figure 1).
The average arithmetic diameter of the primary soot particles (globules) during combustion in DICE of various fuels is from 20 to 90 nm. According to some reports, the size of the primary soot particles can vary from 15 to 170 nm [14-19]. The primary particle is close to a spherical shape, while the aggregates have a complex shape (figure 2).

![Primary particles (globules)](primary_particlessm.png)

Figure 1. Primary node diagram.

The structure of the crystal lattice of soot differs significantly from the structure of the crystal lattice of coals. The crystal lattice of coals is ordered, while most varieties of soot do not have an ordered crystal lattice. According to the structure, only the crystal lattice of graphitized soot approaches the lattice of natural fuel. Many authors [20-26] depict the crystal lattice of graphitized soot in the form of a polyhedron, the surface of which is composed of crystallites with basic planes parallel to each other. It is established that the particle consists of crystallites, which represent several parallel layers of densely packed hexagons, in the vertices of which carbon atoms are located (figure 3).

3. Results and Discussion

Such a crystallite structure is similar to the graphite crystal lattice, but less ordered, with large distances between the layers. Individual layers can be arbitrarily rotated relative to each other and relative to their common normal [27-34].

![Images of primary aggregates of soot particles obtained using an electron microscope.](primary_aggregates.png)

Figure 2. Images of primary aggregates of soot particles obtained using an electron microscope.

Elementary crystallites contain from 100 to 200 carbon atoms. The crystallites, consisting of 2-10 plates, have a thickness of 1.2-3.0 nm. A spherical particle with a diameter of 20-30 nm contains 103-104 crystallites. When thermal exposure to soot at temperatures above 1000°C, elementary crystallites
increase in diameter and height. At temperatures above 2800°C, the graphitization process begins, which leads to the ordering of the crystal lattice [35-40].

Figure 3. Structure of crystallites of soot particles.

Depending on the conditions of soot formation, the mutual orientation of the crystallites in the particle may vary. In a particle with a high soot content of DICE EG, the core is discharged more. In this regard, models of the structure of a spherical nanoscale particle can be distinguished [41-43]. A soot particle with a compacted shell consisting of oriented crystallites 1 and a less dense core is shown in figure 4, a.

Figure 4. Models of the structure of a nanoscale particle of diesel soot. 1 - oriented crystallites; 2 – filler; 3 - mineral component.

The orientation of the crystallites on the surface may be disturbed and contain fillers 2 of the mineral components (figure 4, b). A model of the structure is known with a chaotic arrangement of crystallites and in the core containing fillers from mineral components 3 (figure 4, c), stabilizing the position of the crystallites corresponding to the moment of their formation, with a disturbed orientation of the crystallites on the surface. In [44], a model of defective clusters – fullerenes, which are the germ of a particle, is proposed (figure 5) [45-46].
4. Conclusion
Surface growth occurs both on individual spheroidal particles and on aggregates. Diesel soot is prone to the formation of conglomerates containing from several hundred to several thousand spherical nanoscale particles. In the EG of a DICE, soot is an irregular formation with linear dimensions up to 100 microns.

References
[1] Sun P, Chen C, Ye L and Wang J 2013 ICMREE 2013 – Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment (Chengdou) 228-31
[2] Guimaraes A O, Machado F A L, Da Silva E C et al. 2012 International Journal of Thermophysics 33(10-1) 1842-7
[3] Sanjid A, Masjuki H H, Kalam M A et al. 2013 Renewable and Sustainable Energy Reviews 27 664-82
[4] Likhanov V A and Lopatin O P 2020 IOP Conf. Series: Earth and Environmental Science 548 062028
[5] Meyer D D, Beker S A, Bücker F et al. 2012 International Journal of Thermophysics 33(10-1) 1842-7
[6] Azizi Z, Tohidian T, Rahimpour M R et al. 2014 Chemical Engineering and Processing 82 150-72
[7] Hatanaka R R, Sequinel R, Gualtieri C E et al. 2013 Talanta 109 191-6
[8] Sanli H, Canakci M, Alptekin E et al. 2015 Fuel 159 179-87
[9] Subramanian K A 2011 Energy Conversion and Management 52 849-57
[10] Lopatin O P 2020 IOP Conf. Series: Earth and Environmental Science 548 062023
[11] James C and Szybist P 2010 Energy 35 1658-64
[12] Han K, Yang B, Zhao C et al. 2016 Experimental Thermal and Fluid Science 70 381-8
[13] Zhang S, Wu W, Lee C-F et al. SAE International Journal of Engines 9(1) 631-40
[14] Titak W, Szwaja S, Lukacs K et al. 2015 Fuel 154 196-206
[15] Torres-Jimenez E, Svoljsak-Jerman M, Gregorc A et al. 2010 Energy and Fuels 24(3) 2002-9
[16] Arat H T, Baltacioglu M K, Özcanli M et al. 2016 International Journal of Hydrogen Energy 41(19) 8354-63
[17] Torres-Jimenez E, Jerman M S, Gregorc A et al. 2011 Fuel 90(2) 795-802
[18] Likhanov V A and Lopatin O P 2020 IOP Conf. Series: Materials Science and Engineering 919 032011
[19] Lazarev E and Lomakin G 2014 WIT Transactions on Ecology and the Environment 190(1) 677-83
[20] Mikulski M and Wierzbicki S 2016 Journal of Natural Gas Science and Engineering 31 525-37
[21] Lang Y-H, Li G-L, Wang X-M and Peng P 2015 Marine Pollution Bulletin 90(1-2) 129-34
[22] Bauer C, Hofer J, Simons A, Althaus H-J and Del Duco A 2015 Applied Energy 157 871-83
[23] Patel A, Arora N, Sartaj K et al. 2016 Renewable and Sustainable Energy Reviews 62 836-55
[24] Lopatin O P 2020 IOP Conf. Series: Earth and Environmental Science 548 062034
[25] Sitoie B V, Mitsutake H, Guimaraës E et al. 2016 Energy and Fuels 30(2) 1062-70
[26] Makareviciene V and Sendzikiene E 2015 *Environmental Technology* **36**(14) 1745-50
[27] Yang W, Lang Y-H, Bai J and Li Z-Y 2015 *Ecological Engineering* **74** 117-24
[28] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Materials Science and Engineering* **919** 062004

[29] Dzhalilova S and Erofeev V 2017 *Key Engineering Materials* **743** 394-7

[30] Kordulis C, Gousi M, Kordouli E, Lycourghiotis A and Bourikas K 2016 *Applied Catalysis B: Environmental* **181** 156-96

[31] Melbert A A, Shaposhnikov Y A, Mashensky A V and Voinash S A 2019 *Journal of Physics: Conference Series* 012011

[32] Santos C E D, Silva J D, Gomes L P, Zinani F and Wander P 2015 *Renewable Energy* **80** 331-7

[33] Dzhalilova S and Erofeev V 2017 *Key Engineering Materials* **743** 394-7

[34] Rivero J C S, Navarro-Pineda F S, Eastmond-Spencer A and García J B 2016 *Sustainability* **8**(12) 1316

[35] Likhanov V A and Lopatin O P 2020 *IOP Conf. Series: Earth and Environmental Science* **548** 062041

[36] Maksimov I I, Vasilyev S A and Vasilyev A A 2019 *Mechanized application of ameliorants for preservation of soil moisture on cultivated lands* *IOP Conf. Series: Materials Science and Engineering* **516**(1) doi:10.1088/1755-1315/516/1/012027

[37] Maksimov I I, Vasilyev S A and Vasilyev A A 2019 Erosion resistance potential as a soil erodibility characteristic based on energy approach *IOP Conf. Series: Earth and Environmental Science* **226**(1) doi:10.1088/1755-1315/226/1/012067

[38] Popov A P, Dimitrieva A I, Kovalenko A V, Yumanov D S, Stepanov A V, Shemukhin A A and Elsehly E M 2020 The structure of multi-walled carbon nanotubes as a factor affecting the life of E. coli *Journal of Physics: Conference Series* **1611**(1) doi:10.1088/1742-6596/1611/1/012009