Syntheses, Characterization, Resolution, and Biological Studies of Coordination Compounds of Aspartic Acid and Glycine

Temitayo Aiyelabola,1 Ezekiel Akinkunmi,2 Isaac Ojo,1 Efere Obuotor,3 Clement Adebajo,4 and David Isabirye5

1Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
2Department of Pharmaceutics, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
3Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
4Department of Pharmacognosy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
5Department of Chemistry, North-West University, Mafikeng Campus, Mmabatho, South Africa

Correspondence should be addressed to Temitayo Aiyelabola; tt1hay@yahoo.com

Received 14 August 2016; Accepted 14 November 2016; Published 15 February 2017

1. Introduction

The need for more potent antimicrobial and anticancer agents has led to increased attention given to coordination compounds in recent times. This is partly due to the reports of increased bacterio- and carcinostatic activities of some biologically active compounds upon chelation [1–5]. A current challenge facing coordination chemists is that of obtaining enantiomerically pure compounds [6–11]. Since the potential target receptor sites for pharmacological agents are biopolymers with chiral subunits, the activity of therapeutic agents may involve molecular recognition by these sites, thereby demanding high optical purity [12–17]. Hence, high enantiomeric purity is essential for the effectiveness of these agents and it is therefore important that these agents are enantiopure. Research has shown that when an enantiomer of a racemic or enantiomerically enriched form is inactive, the potency of the active enantiomer is reduced, similar to the concept of deliberate adulteration. Such situations were encountered with warfarin and ibuprofen [12, 15–19]. In some cases, one of the enantiomers may have toxic side effects, as typified by thalidomide. Both enantiomers of thalidomide have desirable sedative properties; however, the (−)-enantiomer is teratogenic, presenting toxic side effects that led to its withdrawal from the market [20, 21]. Therefore, all these problems dictate the need of these optically active compounds as enantiopure compounds. Resolution serves as a way of discriminating between enantiomers of coordination compounds and diastereoisomer formation is the primary technique used [22–30]. There is no single resolving agent...
that can be considered universal. Hence, choosing the right resolving agent for enantiomeric separation may be a herculean task [13, 27].

Previous workers have synthesized and reported some significant antimicrobial and cytotoxic activities of coordination compounds of various amino acids [31–37]. However, these studies on their enantiochemically enriched and pure forms are few [38] and, as indicated above, obtaining these compounds at high enantiomeric purity may enhance their potency and reduce their toxicity. Aspartic acid (Figure 1) is one of such amino acids studied; it possesses three potential donor sites (one amine and two carboxyl groups) [37, 39, 40]. It is therefore capable of coordinating as a bi-, tri-, and monodentate and bridging ligand. Thus, a variety of geometries are possible with this ligand, which may be studied by comparing the complexes it forms with a series of metal ions of the same valency [13, 27]. Previous workers have synthesized and reported some significant antimicrobial and cytotoxic activities of coordination compounds of various amino acids [31–37]. However, these studies on their enantiochemically enriched and pure forms are few [38] and, as indicated above, obtaining these compounds at high enantiomeric purity may enhance their potency and reduce their toxicity. Aspartic acid (Figure 1) is one of such amino acids studied; it possesses three potential donor sites (one amine and two carboxyl groups) [37, 39, 40]. It is therefore capable of coordinating as a bi-, tri-, and monodentate and bridging ligand. Thus, a variety of geometries are possible with this ligand, which may be studied by comparing the complexes it forms with a series of metal ions of the same valency [41–47].

Hence, in this work, coordination compounds of aspartic acid (L1) and glycine (L2), Figure 2 were synthesized and characterized. The aspartato complexes were synthesized using asymmetric synthesis via chiral pool syntheses while ion exchange chromatography was used in separating some of the compounds into their geometric isomers. In determining the most active resolving agent, the predominant isomers were further resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) chloride, (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride, and (+)-tris(1,10-phenanthroline)nickel(II) chloride. The synthesized compounds and resolved complexes were then screened for their in vitro antimicrobial activity and brine shrimp lethality.

2. Materials and Methods

2.1. General. All reagents and solvents used were of analytical grade. Melting points or temperatures of decomposition were measured using open capillary tubes on a Gallenkamp (variable heater) melting point apparatus. The UV-Vis spectra were obtained using a Genesis 10 UV-Vis spectrophotometer at the Central Science Laboratory, Obafemi Awolowo University, Ile-Ife, Nigeria. The infrared spectra (KBr) were recorded on a Genesis II FT-IR spectrophotometer at North-West University, Mafikeng Campus, South Africa. Optical rotations were measured using Atago Polax-2L polarimeter at the Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife. Magnetic susceptibility was obtained using a Sherwood scientific balance, Kwara State University, Nigeria. Antimicrobial activities of the complexes was determined at the Department of Pharmacuetics, Obafemi Awolowo University, Ile-Ife. Brine shrimp lethality bioassay was carried out at the Department Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife.

The syntheses, characterization, and the antimicrobial studies for the glycinate complexes have been reported previously [33]. However, the cytotoxic activity is reported here for the first time.

2.2. Syntheses of Complexes

2.2.1. Preparation Sodium Tris(aspartato)cuprate(II), Na[Cu(L1)3]. Copper(II) sulphate anhydrous solution (3.12 g, 0.02 M) was dissolved in 10 mL of distilled water and warmed until a clear solution was obtained. (+)–Aspartic acid solution (8.11 g, 0.06 M) was dissolved in distilled water (25 mL) and warmed over a steam bath and NaCl solution (0.58g, 0.01 M) was added with stirring. The copper sulphate solution was then added and the mixture heated for 2 hours on a steam bath (pH of the reaction was 2.31). The solution obtained was concentrated and allowed to cool overnight with the formation of a precipitate. The precipitate obtained was filtered, washed with methanol, and dried in an oven at 60°C. Yield: 6.62 g, 66.0%; d.p.: 232°C. IR data (cm⁻¹): 3380, 2922, 2851, 1666, 1547, 702, 595. UV-Vis data (nm): 217, 223, 238, 262, 499, 517. Magnetic moment, μeff(BM): 1.93.

Similar methods of preparation were used for the following compounds

2.2.2. Sodium Tris(aspartato)manganese(II), Na[Mn(L1)3]. Manganese(II) chloride solution (0.71 g, 0.005 M) was added to (+)–aspartic acid solution (8.02 g, 0.06 M) and sodium sulphate solution (0.71 g, 0.005 M) was added with stirring. The copper sulphate solution was then added and the mixture heated for 2 hours on a steam bath (pH of the reaction was 2.42). The solution obtained was concentrated and allowed to cool overnight with the formation of a precipitate. The precipitate obtained was filtered, washed with methanol, and dried in an oven at 60°C. Yield: 8.34 g; 83.0%; d.p.: 287°C. IR data (cm⁻¹): 2920, 1681, 1506, 779, 549. UV-Vis data (nm): 217, 259, 283, 298, 550, 544, 574, 679. Magnetic moment, μeff(BM): 5.30.

2.2.3. Sodium Tris(aspartato)nickelate(II), Na[Ni(L1)3]. Nickel(II) chloride hexahydrate solution (2.32 g, 0.01 M) was added to (+)–aspartic acid solution (4.00 g, 0.03 M) and sodium chloride solution (0.58 g, 0.01 M) was added with stirring. The copper sulphate solution was then added and the mixture heated for 2 hours on a steam bath (pH of the reaction was 2.37). The solution obtained was concentrated and allowed to cool overnight with the formation of a precipitate. The precipitate obtained was filtered, washed with methanol, and dried in an oven at 60°C. Yield: 3.81 g; 88.07%; d.p.: 265°C. IR data (cm⁻¹): 3497, 2994, 1527, 751, 595. UV-Vis data (nm): 241, 310, 325, 343, 541, 820. Magnetic moment, μeff(BM): 2.83.
2.2.4. Sodium Tris(aspartato)cobaltate(II), Na[Co(L1)3]. Cobalt(II) chloride hexahydrate solution (2.14 g, 0.01 M) was added to (+)-aspartic acid solution (4.01 g, 0.03 M) and sodium chloride solution (0.58 g, 0.01 M) gave sodium tris-aspartatocobaltate(II) as purple crystals. pH of reaction 2.35; yield: 3.43 g; 68.64%; d.p.: 265–267°C. IR data (cm⁻¹): 3404, 2853, 1654, 1547, 724, 598. UV-Vis data (nm): 223, 241, 247, 307, 484, 505. Magnetic moment, \(\mu_{\text{eff}} \) (BM): 5.04.

2.2.5. Sodium Tris(aspartato)cadmium(II), Na[Cd(L1)3]. Cadmium(II) chloride monohydrate solution (3.12 g, 0.02 M) added to (+)-aspartic acid solution (8.11 g, 0.06 M) and sodium chloride solution (0.58 g, 0.01 M) gave sodium tris-aspartatocadmium(II) as pink crystals. pH of reaction 2.44; yield: 6.21 g; 62.60%; d.p.: 220–222°C. IR data (cm⁻¹): 3547, 3453, 2890, 1684, 1470, 766, 599. UV-Vis data (nm): 217, 238, 280, 295. Magnetic moment, \(\mu_{\text{eff}} \) (BM): 0.00.

2.2.6. Sodium Tris(glycinato)cobaltate(II), Na[Co(L2)3]. Cobalt(II) chloride hexahydrate solution (2.51 g, 0.01 M) was added to glycine solution (2.29 g, 0.03 M) and sodium chloride solution (0.58 g, 0.01 M) gave sodium tris-glycinato-cobaltate(II) as pink crystals. pH of reaction 2.45; yield: 1.84 g; 61.6%; d.p.: 223°C. IR data (cm⁻¹): 3428, 2834, 1621, 1454, 672, 509. UV-Vis data (nm): 220, 226, 256, 520, 667, 682; Magnetic moment, \(\mu_{\text{eff}} \) (BM): 5.20.

2.2.7. Bis(glycinato)copper(II) Complex, [Cu(L2)2]₂. Copper(II) chloride anhydrous solution (1.62 g, 0.01 M) added to glycine (2.29 g, 0.03 M) and sodium sulphate solution (0.71 g, 0.005 M) gave bis(glycinato)copper(II) complex as blue precipitate. pH of reaction 2.59; yield: 2.01 g; 67.00%; d.p.: 223°C. IR data (cm⁻¹): 3333, 2913, 1632, 1416, 695, 501. UV-Vis data (nm): 262, 620, 632. Magnetic moment, \(\mu_{\text{eff}} \) (BM): 1.53.

2.3. Resolution of the Geometrical Isomers. Complexes of L₁ and L₂, namely, Na[Co(L₁)₃], Na[Cu(L₁)₃], Na[Ni(L₁)₃], [Cu(L₂)₂]₂, and Na[Cd(L₁)₃], were separated into their geometric isomers using an adaptation of the method described by Glodjović et al. (2005) [48].

2.3.1. Sodium Tris(aspartato)cobaltate(II), Na[Co(L₁)₃]. Sodium tris(aspartato)cobaltate(II) (2.83 g, 0.005 M) was loaded onto a column containing Dowex X 50 (200–400 mesh) anion exchange resin (chloride ion form). The column was washed with water and eluted with 0.1 M NaClO₄. Two bands were collected and their eluates concentrated and left to crystallize. The crystals were thereafter washed and filtered. First eluted isomer (pink): yield: 1.08 g; 38.16%; d.p.: 261–263°C; UV-Vis (nm): 220, 238, 245, 332, 340, 344, 510. Second eluted isomer (blue): yield: 0.52 g; 18.37%; d.p.: 265°C; UV-Vis (nm): 226, 232, 246, 336, 340, 346, 514.

A similar method was used for the following compounds.

2.3.2. Sodium Tris(aspartato)cuprate(II), Na[Cu(L₁)₃]. Sodium tris(aspartato)cuprate(II) (2.42 g, 0.005 M) gave only one band (blue). Yield: 1.82 g; 75.21%; d.p.: 230°C; UV-Vis (nm): 222, 232, 249, 250, 254, 340, 356, 974.

2.3.3. Sodium Tris(aspartato)nickelate(II), Na[Ni(L₁)₃]. In sodium tris(aspartato)nickelate(II) (2.45 g, 0.005 M), one band was observed (green). Yield: 1.66 g; 67.82%; d.p.: 225°C; UV-Vis (nm): 444, 648, 980.

2.3.4. Sodium Tris(glycinato)cobaltate(II), Na[Co(L₂)₃]. In sodium tris(glycinato)cobaltate(II) (3.05 g, 0.01 M), two bands were obtained. First eluted isomer (purple): yield: 1.87 g; 61.31%; d.p.: 261–263°C; UV-Vis (nm): 360, 444, 567. Second eluted isomer (light pink): yield: 0.21 g; 6.89%; d.p.: 265°C; UV-Vis (nm): 290, 386, 665.

2.3.5. Bis(glycinato)copper(II), [Cu(L₂)₂]. Bis(glycinato)copper(II) [Cu(L₂)₂] (3.11 g, 0.01 M) column eluted with water gave blue eluant. Yield: 1.92 g; 63%; d.p.: 212°C; UV-Vis (nm): 296, 386, 628. When eluted with 0.1 M, NaClO₄ gave a violet eluant. Yield: 0.12 g; 7%; d.p.: 221°C; UV-Vis (nm): 232, 290, 386, 637,980.

2.4. Preparation of Resolving Agents

2.4.1. cis-Dichlorobis(ethylenediamine)cobalt(III) Chloride. The synthesis of cis-dichlorobis(ethylenediamine)cobalt(III) chloride was carried out using an adaptation of the method described by Moriguchi (2000) [49]. Cobalt(II) chloride-6-hydrate (24 g, 0.1 M) was dissolved completely in distilled water (35 mL). Anhydrous ethylenediamine (15 g, 0.2 M) in 50 mL of water was then added. Hydrogen peroxide (12 mL) was added dropwise with stirring. The oxidized solution was cooled in ice and 12 mL of concentrated HCl was added with stirring. A dark ruby red solution was formed. The solution was then concentrated in a water bath and cooled. Dark green crystals were obtained. The crystals were thereafter dissolved in methanol solution, filtered, and dried in an oven at 100°C. Yield: 23.26 g; 82.23%. The green trans-dichlorobis(ethylenediamine)cobalt(III) chloride obtained was then dissolved in a minimum amount of water, heated, and evaporated to dryness to give a glassy deep violet product. This was filtered and washed with iced cold water to obtain a violet powder of cis-dichlorobis(ethylenediamine)cobalt(III) chloride. Yield: 21.31 g; 75.34%. IR (cm⁻¹): 3444, 3230, 3104, 2903, 1202, 1612, 1099, 938, 801. UV-Vis (nm): 222, 245, 342, 489, 609.

2.4.2. Bis(glycinato)(1,10-phenanthroline)cobalt(III) Chloride. A solution of 1,10-phenanthroline (4.4 g, 0.02 M) and glycine (3.0 g, 0.04 M) in water (50 mL) was added to cobalt(II) chloride-6-hydrate (5.83 g, 0.02 M) solution with stirring. Hydrogen peroxide was added gradually to the dark orange solution with vigorous stirring. The suspension obtained was concentrated by heating at 65°C and cooled to obtain crystals which were filtered and dried. Yield: 8.23 g, 89.20%.

The product obtained, 4.60 g, 0.01 M, was poured onto a cation-exchange resin column (Dowex 50W-X8, 200–400 mesh, anion exchange resin, chloride ion form). The orange
solution of [Co(gly)$_2$] phe]Cl was obtained by eluting with 0.20 M KBr solution. It was then concentrated at 70°C, cooled, and filtered. The residue was dissolved in methanol and the solution was filtered. The crude complex was obtained by the addition of acetone to the filtrate. Recrystallization was achieved by dissolving it in a minimum amount of water to which methanol-acetone (1:1) mixture was added. This solution was allowed to stand in a refrigerator overnight. The orange crystals deposited were filtered and washed with methanol-acetone (1:2) mixture and dried in a vacuum oven. The solution was a yellow solution with a pale violet precipitate, and then cooled in ice to obtain crystals that were filtered, washed, and dried. A solution of the diastereomer (6.81, 0.005 m) in a minimum amount of water was added to potassium chloride (0.52 g, 0.005 m) with vigorous stirring. A methanol-acetone (1:2) mixture was added to precipitate (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride. This was filtered and dried. Recrystallization was carried out with a methanol-acetone (1:2) mixture. Optical rotation was constant after two recrystallizations. Yield: 1.87 g, 54.21%; $[\alpha]^{589} = +138^\circ$.

2.5.3. Resolution of Tris(1,10-phenanthroline)nickel(II) Chloride. A similar method as described in Section 2.5.1 was used. Potassium antimonyl-D-tartrate hydrate (3.24 g, 0.005 m) was dissolved in 10 mL of water with warming. A solution of the racemic mixture of bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride (4.54 g, 0.01 m) dissolved in 20 mL of water was then added. The diastereomer which was deposited was filtered and washed with a methanol-acetone mixture (1:1) and then acetone. The diastereomer was recrystallized by dissolving in a minimum quantity of water, followed by gradual addition of methanol to produce turbidity, and then cooled in ice to obtain crystals which were filtered, washed, and dried. A solution of the diastereomer (9.21 g, 0.005 m) in a minimum amount of water was added to potassium chloride (0.51 g, 0.005 m) with vigorous stirring. A methanol-acetone (1:2) mixture was added to precipitate (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride. This was filtered and dried. Recrystallization was carried out with a methanol-acetone (1:2) mixture. Optical rotation was constant after two recrystallizations. Yield: 1.87 g, 54.21%; $[\alpha]^{589} = +800^\circ$.

2.6. Resolution of Compounds. The geometric isomer of higher yield, which was invariably the first eluted isomer, for complexes Na[Co(L$_1$)$_3$], Na[Co(L$_2$)$_3$], Na[Cu(L$_3$)$_3$], and Na[Na(L$_4$)$_3$], was resolved using dichlorobis(ethylendiamine)cobalt(III) chloride and bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride as resolving agents using a similar procedure as described in Section 2.5.3. Attempt was also made to use tris(1,10-phenanthroline)nickel(II) chloride as a resolving agent. The general equations of reactions using

\[
\begin{align*}
\text{CoL} & \rightarrow 2 \text{CoL} + 2\text{HCl} \\
\text{trans-} \left[\text{Coen}_2 \text{Cl}_2\right] & + 2\text{HCl} \\
\text{trans-} \left[\text{Coen}_2 \text{Cl}_2\right] & \rightarrow \text{cis-} \left[\text{Coen}_2 \text{Cl}_2\right] \\
2 \left[\text{cis-} \left[\text{Coen}_2 \text{Cl}_2\right]\right] & + K_2 \left[\text{Sb}_2(d\text{-tart})_2\right] \\
& \rightarrow (+) \cdot [\text{Coen}_2 \text{Cl}_2]_2 \left[\text{Sb}_2(d\text{-tart})_2\right] + 2\text{KCl}
\end{align*}
\]
(+) - dichlorobis(ethylenediamine)cobalt (III) chloride are given in

\[
\text{Na}[\text{ML}_3] + (+) - [\text{Coen}_2\text{Cl}_2] \text{ Cl} \\
\rightarrow (+) - [\text{Coen}_2\text{Cl}_2] (+) - [\text{ML}_3] \\
(+) - [\text{Coen}_2\text{Cl}_2] [\text{ML}_3] + \text{ NaCl} \\
\rightarrow (+) - \text{Na}[\text{ML}_3] + (+) - [\text{Coen}_2\text{Cl}_2] \text{ Cl}
\]

(6)

(7)

2.7. Resolution Using (+)-cis-Dichlorobis(ethylenediamine)cobalt(III) Chloride

2.7.1. Na[Co(L1)3] First Eluted Isomer. Sodium tris(aspartato)cobaltate(II) (2.39 g, 0.005 M) and (+)-dichlorobis(ethylenediamine)cobalt(III) chloride (1.47 g, 0.005 M). Yield: 1.88 g, 78.66%, \(\alpha\)^589 = +36°, ee = 28.31.

2.7.2. Na[Co(L2)3] First Eluted Isomer (1EI). Sodium tris(aspartato)cobaltate(II) (2.99 g, 0.005 M). Yield: 1.74 g, 73.73%, \(\alpha\)^589 = +47.00°, ee = 23.20.

2.7.3. Na[Co(L3)3] First Eluted Isomer. Sodium tris(glycinato)(1,10-phenanthroline)cobalt(III) chloride (3.01 g, 0.005 M). Yield: 0.49 g, 31.33%, \(\alpha\)^589 = +40.25°.

2.8. Resolution Using Bis(glycinato)(1,10-phenanthroline)cobalt(III) Chloride

2.8.1. Na[Co(L1)3] First Eluted Isomer. Sodium tris(aspartato)cobaltate(II) (2.37 g, 0.005 M) and (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride (2.94 g, 0.005 M). Yield: 1.42 g, 64.83%, \(\alpha\)^589 = +35.50°, ee = 32.10.

2.8.2. Na[Co(L2)3] First Eluted Isomer. Sodium tris(aspartato)cobaltate(II) (2.94 g, 0.005 M) and (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride (3.19 g, 0.005 M). Yield: 1.53 g, 64.83%, \(\alpha\)^589 = +43.50°, ee = 28.31.

2.8.3. Na[Co(L3)3] First Eluted Isomer. Sodium tris(aspartato)cobaltate(II) (1.59 g, 0.005 M) and (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride (2.37 g, 0.005 M) and (+)-bis(glycinato)(1,10-phenanthroline)cobalt(III) chloride (2.37 g, 0.005 M). Yield: 0.49 g, 31.33%, \(\alpha\)^589 = +40.25°.

2.9. Resolution Using (+)-Tris(1,10-phenanthroline)nickel(II) Chloride. Attempt was made to resolve the complexes using (+)-tris(1,10-phenanthroline)nickel(II) chloride at complex: resolving agent ratio of 2:1. However, for all the complexes, the analysing lens was blurred and no rotation was observed.

2.10. Antimicrobial Activity Using Disc Diffusion Assay. The strains used were Escherichia coli NCTC 8196, Pseudomonas aeruginosa ATCC 19429, Staphylococcus aureus NCTC 6571, Proteus vulgaris NCIB, Bacillus subtilis NCIB 3610, and one methicillin-resistant S. aureus clinical isolate for bacteria and C. albicans NCYC 6 for fungi. The standard strains were from stocks of culture collections maintained at the Pharmacuetics Laboratory, Obafemi Awolowo University, Ile-Ife. The bacteria were maintained on nutrient agar slants and fungi on Sabouraud Dextrose Agar slants at 4°C and subcultured monthly. Each test agent (20 mg) was dissolved in 1 mL sterile distilled water boiled gently on a Bunsen flame. Discs of Whatman No. 1 filter paper (φ 6 mm) were soaked with 2 drops of the test agent using a sterile Pasteur pipette and allowed to dry at room temperature.

Two colonies of a 24-hour plate culture of each organism were transferred aseptically into 10 mL sterile distilled water in a test tube and mixed thoroughly, using an electric shaker, for uniform distribution. A sterile cotton swab was then used to spread the resulting suspension uniformly on the surface of oven-dried Mueller Hinton Agar (Oxoid) and Sabouraud Dextrose Agar plates (Sterillin) for bacteria and fungi, respectively. These were incubated for an hour at 37° and 25°C for bacteria and fungi, respectively. Sterile forceps were used to aseptically place each of the discs on the agar plates and the plates were then refrigerated for 30 min at 4°C following which the inoculated plates were incubated at 37°C for 24 hours for bacteria strains and 25°C for 72 hours for the fungal strain. Antimicrobial activity was evaluated by noting the zones of inhibition against the test organisms [50].

2.11. Cytotoxicity Bioassay. The procedure used was modified from the assay described by Solis et al. (1993) [51]. Brine shrimps (Artemia salina) were hatched using brine shrimp eggs in a conical shaped vessel (1 L), filled with sterile artificial seawater under constant aeration for 48 h. After hatching, active nauplii free from egg shells were collected from a brighter portion of the hatching chamber and used for the assay. Ten nauplii were drawn through a Pasteur pipette and placed in each vial containing 4.5 mL brine solution. In each experiment, different volumes of sample were added to 4.5 mL of brine solution to give different concentrations (20, 40, 60, 80, and 100 μg/mL) and maintained at room temperature for 24 h under the light. The surviving larvae were counted. Experiments were conducted along with control (vehicle treated) of the test substances in a set of three tubes per dose.

2.12. Statistical Analysis. The in vitro antimicrobial analysis data was analysed using one-way ANOVA by SPSS 16 (Statistical Package for the Social Sciences) for Windows. Mean
separation test between treatments was performed using Duncan's multiple range tests. P value ≤ 0.05 was considered statistically significant.

The brine shrimp mortality data was subjected to Probit Regression Analysis (Finney 1971) using the United States Environmental Protection Agency (USEPA) Probit Analysis software program version 1.5.

3. Results and Discussion

3.1. Characterization of Synthesized Complexes

3.1.1. Aspartato Complexes.

The infrared spectrum of aspartic acid showed a broad band at 3380 cm$^{-1}$ that was assigned to the ν(N–H) absorption stretching frequency. On coordination, this was shifted to higher wave number with the exception of the manganese and copper complexes [52–54]. The absence of a distinct band for the manganese complex was adduced to the hydrogen bonding between the hydrogen atom of the amino substituent and the uncoordinated oxygen atom of the ligand [55, 56]. For reasons that were not quite evident, the spectrum of the copper complex exhibited no shift in the ν(NHB2) absorption when compared with that of the ligand. However, shifts in the carbon–nitrogen absorption frequency and appearance of new bands that could be ascribed to the metal-nitrogen band in the spectrum of the complex suggested that the nitrogen atom's lone pair of electrons were used for coordination in the complex (Table 1). Based on this, it was suggested that there was probably elongation of the metal-nitrogen bond, substantially for the γ(NHB2) absorption to occur at the same position. From previous studies, the axial bonds of octahedrally coordinated copper(II) complexes are of higher energy compared with the equatorial bonds; consequently, bonding at the axial position is elongated at one of the apical regions of such complex and this is attributable to the Jahn-Teller distortion [57]. It is proposed therefore that the amino substituent is positioned at the apical region in the complex; this type of arrangement may be assigned as the \textit{trans}-amine/cis-carboxylate isomer of the complex (Figure 3) [52, 58]. Further buttressing this point of view is the fact that amino acids exist as zwitterions in crystalline form, with a positively charged ammonium ion with a weak ν(N–H) band. Similar to that obtained for the copper complex, evidence for coordination to the metal ion via the nitrogen atom of the ligand was also given by the shifts in the carbon-nitrogen absorption band frequencies on coordination for all the other complexes [52]. This was corroborated by the observed M–N absorption frequency in the region 549–599 nm, which was absent in the spectrum of the ligand [53, 59]. Intense bands at 1650 and 1583 cm$^{-1}$ in the spectrum of the ligand were attributed to COO$^{-}$ asy and COO$^{-}_{sg}$ stretching frequencies, respectively [52, 55]. On complexation, these were shifted to higher and lower wave numbers, respectively (Table 1), suggesting that the oxygen atom of the carboxylate group of the ligand was used for coordination [37, 52]. The nickel complex showed no clearly defined band and this may be attributable to the overlap of the ν(NH2) bending frequency. As a consequence, this serves as an indication of the nonparticipation of the carboxylic acid group of the side chain in binding [56].

The electronic spectrum for aspartic acid exhibited three absorption bands at 196, 212, and 232 nm, assigned as the $n \rightarrow \pi^*$, $n \rightarrow \pi^*$, and $\pi^* \rightarrow \pi^*$ transitions and ascribed to intraligand electronic transitions. On coordination, however, shifts were observed in these bands in addition to new d-d transition bands (Table 2) [33, 52, 53]. These and the magnetic moment of the complexes were used to propose probable geometry of the complexes. The electronic spectrum of the Cu(II) complex showed a well resolved band at 499 nm and a weak band at 517 nm typical for a tetragonally distorted octahedral configuration and may be assigned to 2B$_{1g} \rightarrow ^2$A$_{1g}$ and 2B$_{1g} \rightarrow ^2$E$_{g}$ transitions. Its magnetic moment value of 1.93 BM is indicative of a mononuclear octahedral complex. This is in agreement with what was proposed by previous

Table 1: Relevant IR bands for the ligands and compounds.

Compound	ν(N–H) (cm$^{-1}$)	ν_{asy}(COO$^-$) (cm$^{-1}$)	ν_{sy}(COO$^-$) (cm$^{-1}$)	ν(M–N) (cm$^{-1}$)	ν(M–O) (cm$^{-1}$)
Aspartic acid	3380w	1650s	1583s		
Glycine	3119br	1615s			
Na[Cu(L$_1$)$_3$]	3380br	1666br	1547s	595br	682m
Na[Cd(L$_1$)$_3$]	3547,3452br	1684m	1512br	599s	658s
Na[Ni(L$_1$)$_3$]	3497br	—	1527w	595s	629s
Na[Co(L$_1$)$_3$]	3404w,br	1654s	1547s	598s	668s
Na[Mn(L$_1$)$_3$]	—	1681s	1506s	549s	601s
[Cu (L$_2$)$_2$]	3333br	1632br	1416br	501s	695s
Na[Co(L$_3$)$_3$]	3428br	1621s	1454s	509s	672s

w: weak; m: medium; s: strong; br: broad.
Table 2: Electronic spectra bands for the ligands and complexes.

Compound	Band I (nm)	Band II (nm)	Band III (nm)	d-d (nm)
Aspartic acid	196	212	232	—
Glycine	199	211	244	—
Na[Cu(L₁)₃]Cl₂	217	223	238, 262	499, 517
Na[Cd(L₁)₃]Cl₂	217	238	280, 295	—
Na[Ni(L₁)₃]Cl₂	217	310	325, 343	541, 820
Na[Co(L₁)₃]Cl₂	223	244	249, 259	484, 505
Na[Mn(L₁)₃]Cl₂	217	259	283, 298	550, 574, 679
Na[Cu(L₂)₂]Cl₂	220	265	262, 620	620, 632
Na[Co(L₂)₃]Cl₂	220	266	256	520, 667, 682

Figure 3: trans-Amine/cis-carboxylate isomer (R = –CH₂COOH).

Figure 4: The proposed structure for the tris-chelate complexes. R = –H; glycinate complexes; –CH₂COOH; aspartate complexes.

3.1.2. Glycinato Complexes. The comparison of the infrared spectra of glycine and the complexes provided evidence of coordination of the metal ion with the ligand via the nitrogen atom of its amino substituent. This is because the –NH₂ stretching frequency for the ligand at 3119 cm⁻¹ was shifted in the complexes hypsochromically to 3333 and 3428 nm for the Cu(II) and Co(II) complexes, respectively. This is in accord with the concept of lone-pair donation of nitrogen atom of the ligand on coordination [52, 69]. The coordination of the nitrogen atom of NH₂ was corroborated by the appearance of new bands, which were not present in the spectrum of the ligand, at 501 and 509 cm⁻¹ ascribable to metal-nitrogen absorption frequencies [53, 59]. The observed medium band at 1112 cm⁻¹ in the free ligand was attributed to the ν(C–N) absorption and this blue-shifted on coordination [52]. The asymmetric stretching vibration frequency observed at 1615 cm⁻¹ for the carboxylate ion was shifted to higher frequencies with the complexes, confirming coordination via this functional group [52]. For the symmetric stretch, sharp extended bands were observed instead of distinct bands. This has been reported to be due to the zwitterionic nature of the ligand in the crystalline form [52]. New bands at 695 and 672 cm⁻¹ were assigned to metal-oxygen absorption frequencies [33, 53, 59].

The absorption spectrum for the free ligand, glycine, exhibited bands at 199, 211, and 244 attributed to n → σ*,...
n → π*, and π* → π* transitions. The visible spectrum of the Cu(II) complex displayed bands at 620 and 632 nm assigned to 2B1g → 2A1g and 2B1g → 2Eg transitions, ascribed to a square pyramidal geometry. The magnetic moment of 1.53 BM of the glycinate Cu(II) complex is indicative of an antiferromagnetic spin-spin interaction through molecular association with possible Cu–Cu interaction or dimerization; similar results have been reported for the copper(II)acetate complex [33, 32]. Glycine similarly corroborates the pH dependence for the available donor atoms in the ligand [37, 39, 40, 72, 73]. It further corroborates the pH dependence for the available donor atoms in the ligand [37, 39, 40, 72, 73]. Glycine similarly corroborates the pH dependence for the available donor atoms in the ligand [37, 39, 40, 72, 73].

Figure 5: The proposed structure for the geometric isomers for the tris-chelate complexes. R = –H; glycinate complexes; –CH2COOH; aspartato complexes.

3.2. Geometrical Isomers. Two geometrical isomers were obtained for Na[Co(L1)3] and Na[Co(L2)3]. From previous studies, tris-chelate complexes exhibited two possible geometric isomers, namely, the facial cis-cis and meridional cis-trans isomers. It is suggested that the more readily eluted isomer is the cis-trans isomer. This is because it has a lower dipole moment compared to the cis-cis isomer and as such is more readily eluted from the ion-exchange column [62, 74]. The separation of the geometric isomers for [Cu(L2)2] gave two isomers as well. Dinuclear square planar complexes have been reported to exhibit cis and trans geometric isomers [75]. In this case, similar to the bis-chelate complexes, the more readily eluted isomer was ascribed to the trans isomer [74]. No separation was observed on the ion-exchange column for Na[Co(L1)3] and Na[Co(L2)3], pointing to the fact that geometric isomers are diastereomers and may be separated by physical means. Therefore, it is probable that such isomers may have been separated during preparation or purification [7, 28, 29, 39, 52, 62].

According to Greenwood and Earnshaw (1997), the UV-Vis spectra of geometrical isomers are often diagnostic. From this viewpoint, UV-Vis spectra of the geometric isomers for Na[Co(L1)3], [Cu(L2)2], and Na[Co(L2)3] were obtained. The spectrum of the second eluted isomer exhibited higher molar extinction coefficient for the d-d transition absorption band than the corresponding first eluted isomer, as evident with Na[Co(L1)3] first eluted isomer (λmax 510 nm, ε510 40 mol⁻¹ cm⁻³ dm⁻¹) and second eluted isomer (λmax 514 nm, ε514 250 mol⁻¹ cm⁻³); with Na[Co(L2)3] first eluted isomer (λmax 567 nm, ε567 30 mol⁻¹ cm⁻³) and second eluted isomer (λmax 665 nm, ε665 80 mol⁻¹ cm⁻³); with [Cu(L2)2] first eluted isomer (λmax 628 nm, ε628 50 mol⁻¹ cm⁻³) and second eluted isomer (λmax 637 nm, ε637 70 mol⁻¹ cm⁻³). Consequently, the second eluted isomer was assigned to the fac-isomer for Na[Co(L1)3] and Na[Co(L2)3]. This is because of the centrosymmetric nature of the mer-isomer compared to the fac-isomer (Figure 5) [52, 62, 74]. It was however assigned as the trans isomer for [Cu(L2)2] and the spectrum with d-d transition bands with lower molar extinction coefficient as cis isomer [75].

3.3. Optical Activity. The specific rotation of the synthesized compounds was determined and the result obtained
showed that the enantiomerically enriched compounds were dextrorotatory isomers, indicating primarily that the enantiomerically enriched complexes are in excess of the dextrorotary isomer. This is not totally unexpected as the compounds were synthesized using asymmetric synthesis via chiral pool syntheses. Previous researches have shown that products obtained from such reactions are enantiomerically enriched in favour of the chiral starting material [7, 29, 38, 76]. In the case of the glycinato complexes, the specific rotation was zero, suggestive of a racemic mixture [10, 38, 76].

The mer-isomers of Na[Co(L1)3] and Na[Co(L2)3], the synthesized complexes of Na[Ni(L1)3] and Na[Co(L1)3], were resolved using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex and (+)-bis(glycinato)-1,10-phenanthroline-cobalt(II) chloride as resolving agent (Figure 6). The specific rotation and enantiomeric excess of the resolved compounds were determined. The enantiomeric purity of the compounds was in the range of 22.10–23.33% using bis(glycinato)-(1,10-phenanthroline)cobalt(II) complex and 28.31–32.10% using (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex, the better resolving agent. Attempt to resolve the complexes using (+)-tris(1,10-phenanthroline)nickel(II) complex was not successful. According to Kirschner et al. (1979) and Lennartson (2011), tris(1,10-phenanthroline)nickel(II) complex is optically labile in aqueous solution. Therefore, it may not be an efficient resolving agent [77, 78]. From a structural point of view, we are unable to give reasons why (+)-cis-dichlorobis(ethylenediamine)cobalt(III) complex is the preferred resolving agent. It has however been reported that coordination compounds form diastereomeric complexes via intimate ion-pair formation [79–81]. It is proposed consequently that chiral recognition may be said to have been achieved through this mechanism. Attempt to resolve [Cu(L2)3]2 using column chromatography was unsuccessful, thus suggesting the specificity of chiral resolving agents.

3.4. Antimicrobial Activities. The in vitro antimicrobial activities of the parent and resolved synthesized compounds are presented in Table 3. The ligands and their parent Cu(II) complexes (Na[Cu(L2)3] and Cu(L2)3) were inactive against all the tested microbes. This is contrary to the established antimicrobial activity of copper and its complexes [82–85].

Previous studies have proposed that one of the possible mechanisms of antimicrobial activity of similar compounds is via ligand exchange [31]. It is suggested that, as a result of the distortion in the geometry for (+)-Na[Cu(L1)3], it may not be well suited for the receptor site [1, 3, 31]. Hence, molecular recognition of the complex by the receptor site of the microbe may not be achieved as a consequence.

The synthesized parent complex of Na[Ni(L1)3] and the cadmium aspartato complex also lacked antibacterial activity but had similar moderate antifungal activity to acriflavine (Table 3). Also, the complexes Na[Co(L1)3], Na[Mn(L1)3], and NaCo(L2)3, respectively, had varied activities against the microbes tested. Comparing the activities of Na[Co(L1)3] and Na[Mn(L1)3], it may not be achieved as a consequence.

Figure 6: The proposed structure for the optical isomer for the tris-chelate complexes. R: –H; glycinate complexes; –CH2COOH; aspartato complexes.
Table 3: Antimicrobial activities of the compounds.

Microorganism	Na(Cu(L₁)₃)	Na[Co(L₁)₃]	Na[Ni(L₁)₃]	Na[Co(L₂)₂]	Na[Cd(L₁)₃]	Na[Mn(L₁)₃]	[Cu(L₂)₂]	Acriflavine
E. coli	6.0	6.0	8.0 ± 0.9	9.0 ± 0.3	8.0 ± 0.1	6.0	6.0	20.0 ± 0.4
Ps. aeruginosa	6.0	6.0	8.0 ± 0.2	20.2 ± 0.1	24.0 ± 0.4	6.0	8.0 ± 0.5	6.0
P. vulgaris	6.0	6.0	6.0	9.0 ± 0.2	11.0 ± 0.6	6.0	14.0 ± 0.8	6.0
S. aureus	6.0	16.0 ± 0.3	6.0	13.0 ± 0.5	6.0	8.0 ± 0.1	6.0	20.0 ± 0.2
B. subtilis	6.0	9.0 ± 0.3	18.0 ± 0.8	13.1 ± 1.0	16.0 ± 0.3	6.0	8.0 ± 0.6	6.0
MRSA	6.0	6.0	6.0	15.0 ± 0.0	16.0 ± 0.2	6.0	20.0 ± 0.4	6.0
C. albicans	6.0	6.0	24.0 ± 0.5	18.0 ± 0.5	6.0	6.0	19.0 ± 0.1	6.0

L₁: aspartic acid; L₂: glycine; P: parent compounds of Na[Cu(L₁)₃], Na[Co(L₁)₃], Na[Ni(L₁)₃], Na[Co(L₂)₂], and Na[Cd(L₁)₃]; R: parent compounds’ respective resolved forms; E. coli: Escherichia coli NCTC 896; Ps. aeruginosa: Pseudomonas aeruginosa ATCC 19429; P. vulgaris: Proteus vulgaris NCIB; S. aureus: Staphylococcus aureus NCTC 6571; B. subtilis: Bacillus subtilis NCIB 3610; MRSA: methicillin-resistant S. aureus clinical isolate; C. albicans: Candida albicans NCYC 6.
compound, the resolved Na[Cu(L₁)]₃ demonstrated a greatly higher activity only against S. aureus, a Gram-positive bacterium (Table 3). The results in Table 3 supported the hypothesis of increased biological activity of the resolved compounds and may also indicate the importance of chirality in the activity against S. aureus [12, 13, 40, 96]. The resolved complex of Na[Co(L₁)]₃ gave double the zone of inhibition of the parent compound only against the Gram-positive bacteria of S. aureus and B. subtilis and a slightly better activity against the fungus and MRSA. Also, the resolved Na[Ni(L₁)]₃ showed slightly better activities only against E. coli and S. aureus than the parent complex. Similarly, the resolved Na[Co(L₂)]₃ showed slightly better activities against Ps. aeruginosa, P. vulgaris, and B. subtilis than the parent complex (Table 3). All these results also supported the better activity of the resolved compounds and consequently the role of chirality in the demonstrated antimicrobial activity of coordinated compounds tested. On the other hand, the activities of the parent compounds of Na[Co(L₁)]₃ against Ps. aeruginosa and P. vulgaris, Na[Ni(L₁)]₃ against the fungus, and Na[Co(L₂)]₃ against S. aureus were higher than those of the resolved compounds (Table 3). An inactive enantiomer has been suggested as a potent antagonist for a receptor site, consequently reducing the efficacy of an optically active antimicrobial agent, even at high enantiomeric excess [12, 13, 40, 96]. These results also may confirm the specificity of antimicrobial activities of the resolved compounds [12, 13, 40, 96]. Acriflavine, the standard drug, had better activities against E. coli and S. aureus than all the tested synthesized compounds while some of the latter were better against some microbes. The results obtained thus demonstrate the usefulness of resolution of racemates and enantiomerically enriched compounds in drug development of antimicrobial agents of coordinated compounds.

3.5. Cytotoxicity. Brine shrimp lethality bioassay is a simple cytotoxicity test based on the killing ability of test compounds on a simple zoological organism, brine shrimp (Artemia salina) [97]. The standard cytotoxic compound used was K₂Cr₂O₇ [98]. The result obtained indicated that the complexes (parent and resolved) and the ligands elicited good cytotoxic activity with LC₅₀ values in the range of 4.187 and 13.867 μg mL⁻¹ (Table 4). According to Meyer et al. (1982), compounds with LC₅₀ < 1000 μg mL⁻¹ are considered significantly toxic [99]. The resolved complexes, with the exception of Na[Ni(L₁)]₃, showed higher cytotoxicity than their respective parent complexes. Furthermore, the resolved complexes and the two ligands employed, aspartic acid and glycine, elicited cytotoxic activities in a 2–4-fold range more than the standard cytotoxic compound, K₂Cr₂O₇. From the foregoing, it can be argued that the resolution process enhanced the cytotoxic properties of the synthesized complexes (Table 4). Although the tested compounds exhibited cytotoxic activity against a simple invertebrate organism, the use of appropriate human cell lines may be necessary for extrapolation of this finding to the mammalian system.

4. Conclusion

It was concluded from this study that the antimicrobial activity of the resolved complexes in some case was better compared to that of the parent synthesized complexes against most of the pathogens investigated. It can further be concluded that complexation imparted strong cytotoxic activities on the ligands and resolving the complexes improved on these activities. These results therefore stress the need to develop the means for complete resolution of pharmacologically active complexes in their enantiomerically enriched or racemic forms to obtain enantiopure compounds.

Competing Interests

The authors declare that there are no competing interests regarding the publication of this paper.

References

[1] Z. H. Chohan, M. Arif, M. A. Akhtar, and C. T. Supuran, "Metal-based antibacterial and antifungal agents: synthesis,
characterization, and in vitro biological evaluation of Co(II), Cu(II), Ni(II), and Zn(II) complexes with amino acid-derived compounds,” Bioinorganic Chemistry and Applications, vol. 2006, Article ID 83131, 13 pages, 2006.

[2] I. Kostova, “Platinum complexes as anticancer agents,” Recent Patents on Anti-Cancer Drug Discovery, vol. 1, no. 1, pp. 1–22, 2006.

[3] E. L. Chang, C. Simmers, and D. A. Knight, “Cobalt complexes as antiviral and antibacterial agents,” Pharmaceutica, vol. 3, no. 6, pp. 1711–1728, 2010.

[4] A. F. Hussein, E. S. Aazam, and J. Al Shebary, "Synthesis, characterization and antibacterial activity of Schiff-base ligand incorporating coumarin moiety and it metal complexes," Inorganic Chemistry, vol. 3, pp. 64–68, 2008.

[5] S. Emami and S. Dadashpour, "Current developments of coumarin-based anti-cancer agents in medicinal chemistry," European Journal of Medicinal Chemistry, vol. 102, pp. 611–630, 2015.

[6] E. Meggers, "Chiral auxiliaries as emerging tools for the asymmetric synthesis of octahedral metal complexes," Chemistry, vol. 16, no. 3, pp. 752–758, 2010.

[7] E. Meggers, "Metal templated design: from enzyme inhibition to asymmetric catalysis," in Proceedings of the 12th European Biological Inorganic Chemistry Conference, Zurich, Switzerland, 2014.

[8] A. M. Sargeson, "Optical phenomenon metal chelates," in Chelating Agents and Metal Chelates, F. P. Dwyer and D. P. Mellor, Eds., pp. 183–232, Academic Press, New York, NY, USA, 1965.

[9] E. Farkas and I. Sovago, "Metal complexes of amino acids and peptides," in Amino Acids, Peptides and Proteins, J. S. Davies, Ed., vol. 35, pp. 353–434, Royal Society of Chemistry, London, UK, 2006.

[10] H. Amouri and A. Gruselle, "Chirality and enantiomers," in Chirality in Transition Metal: Chemistry, Molecules, Supramolecular Assemblies and Materials, pp. 7–61, John Wiley & Sons, West Sussex, UK, 2008.

[11] H. Brunner, "Chiral metal atoms in optically active organo-transition-metal compounds," Advances in Organometallic Chemistry, vol. 18, pp. 151–206, 1980.

[12] G. R. Stephenson and J. P. Genet, "Design of asymmetric synthesis," in Advanced Asymmetric Synthesis, G. R. Stephenson, Ed., pp. 2–8, Chapman & Hall, London, UK, 1996.

[13] L. A. Nguyen, H. He, and C. Pham-Huy, "Chiral drugs an overview," International Journal of Biomedical Science, vol. 2, pp. 85–100, 2006.

[14] M. F. Landoni and A. Soraci, "Pharmacology of chiral compounds: 2-arylpropionic acid derivatives," Current Drug Metabolism, vol. 2, no. 1, pp. 37–51, 2001.

[15] E. J. Ariens, "Stereoactivity of bioactive agents: general aspects," in Stereochemistry and Biological Activity of Drugs, E. J. Ariens, W. Soulijn, and P. B. Timmermans, Eds., pp. 11–33, Blackwell Scientific, Oxford, UK, 1983.

[16] N. M. Davies and X. V. Teng, "Importance of chirality," in Drug Therapy and Pharmacy Practice, Implication for Psychiatry, vol. 1, no. 3 of Advances in Pharmacy, pp. 242–252, 2003.

[17] J. Patocka and A. Dvorak, "Biomedical aspects of chiral molecules," Journal of Applied Medicine, vol. 2, pp. 95–100, 2004.

[18] J. H. Lin and A. Y. H. Lu, "Role of pharmacokinetics and metabolism in drug discovery and development," Pharmacological Reviews, vol. 49, no. 4, pp. 403–449, 1997.

[19] A. Somogyi, F. Bochner, and D. Foster, "Inside the isomers: the tale of chiral switches," Australian Prescriber, vol. 27, no. 2, pp. 47–51, 2004.

[20] J. Hornback, "Stereochemistry," in Organic Chemistry, pp. 238–245, Brooks and Cole, 1998.

[21] R. Noyori, "Asymmetric catalysis: science and opportunities (nobel lecture),” Angewandte Chemie—International Edition, vol. 41, no. 12, pp. 2008–2022, 2002.

[22] S. Borman, "Asymmetric catalysis win. Chemistry nobel honours knowles, noyori, sharpless for chiral syntheses," in Chemical & Engineering News, vol. 42, pp. 5–7, 2001.

[23] J. T. Liu and R. H. Liu, "Enantiomeric composition of abused amine drugs: chromatographic methods of analysis and data interpretation," Journal of Biochemical and Biophysical Methods, vol. 54, no. 1–3, pp. 115–146, 2002.

[24] K. M. Rentsch, "The importance of stereoselective determination of drugs in the clinical laboratory," Journal of Biochemical and Biophysical Methods, vol. 54, no. 1–3, pp. 1–9, 2002.

[25] B. G. Katzung, "The nature of drugs," in Basic and Clinical Pharmacology, Lange Medical Books, New York, NY, USA, 9th edition, 2006.

[26] D. Burke and D. J. Henderson, "Chirality: a blueprint for the future," British Journal of Anaesthesia, vol. 88, no. 4, pp. 563–576, 2002.

[27] H. Y. Aboun-Enein and I. Ali, "Introduction," in Chiral Separation by Liquid Chromatography and Related Technologies, H. Y. Aboun-Enein and I. Ali, Eds., pp. 1–20, Marcel Dekker, London, UK, 2003.

[28] I. L. Finar, "Resolution of racemic modifications," in Sterechemistry and the Chemistry of Natural Products, vol. 2, pp. 69–119, Longman, Harlow, UK, 6th edition, 1996.

[29] E. Fogassy, M. Nôgrádi, D. Kozma, E. Pálovics, and V. Kiss, "Optical resolution methods," Organic and Biomolecular Chemistry, vol. 4, no. 16, pp. 3011–3030, 2006.

[30] J. Conchaly and M. J. Owens, "Stereochemistry in drug action," The Primary Care Companion to The Journal of Clinical Psychiatry, vol. 5, no. 2, pp. 70–75, 2003.

[31] K. Nomiya and H. Yokoyama, "Synthesis, crystal structures anti antimicrobial activities of polymeric silver(I) complexes with three amino-acids [aspartic acid (H4asp), glycine (Hgly) and asparagines (Hasn)]," Journal of Chemical Society, Dalton Transaction, pp. 2483–2490, 2002.

[32] S. Saha, D. Dhanasekaran, S. Chandraleka, N. Thajuddin, and A. Parneerselvam, "Synthesis, characterization and antimicrobial activity of cobalt metal complexes against drug resistant bacterial and fungal pathogens," Advances in Biological Research, vol. 4, pp. 224–229, 2010.

[33] T. O. Aiyelabola, I. A. Ojo, A. C. Adebajo et al., "Synthesis, characterization and antimicrobial activities of some metal(II) amino acids' complexes," Advances in Biological Chemistry, vol. 2, pp. 268–273, 2012.

[34] S. Zhang, Y. Zhu, C. Tu et al., "A novel cytotoxic ternary copper(II) complex of 1,10-phenanthroline and l-threonine with DNA nuclease activity," Journal of Inorganic Biochemistry, vol. 98, no. 12, pp. 2099–2106, 2004.

[35] Y.-S. Kim, R. Song, H. C. Chung, M. J. Jun, and Y. S. Sohn, "Coordination modes vs. antitumor activity: synthesis and antitumor activity of novel platinum(II) complexes of N-substituted amino dicarboxylic acids," Journal of Inorganic Biochemistry, vol. 98, no. 1, pp. 98–104, 2004.
[36] S. Chanmiya, S. M. Hossain, S. Easmin, M. S. Islam, M. A. Hossain, and M. Rashid, “New coordination complexes of chromium as cytotoxic and antimicrobial agents,” Pakistan Journal of Biological Science, vol. 7, no. 3, pp. 335–339, 2004.

[37] K. Bukietynska, H. Podsiadly, and Z. Karwecka, “Complexes of vanadium(III) with L-alanine and L-aspartic acid,” Journal of Inorganic Biochemistry, vol. 94, no. 4, pp. 317–325, 2003.

[38] K. Nomiya, S. Takahashi, R. Noguchi, S. Nemoto, T. Takayama, and M. Oda, “Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H₁His) and (S)-(−)-2-pyrrolidone-5-carboxylic acid (H₂pyr) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(H₁His)]ₙ and [Ag(H₂pyr)]ₙ in the solid state,” Inorganic Chemistry, vol. 39, pp. 3301–3311, 2000.

[39] R. Bregier-Jarzebowska, A. Gasowska, and L. Lomozik, “Complexes of Cu(II) ions and noncovalent interactions in systems with L-aspartic acid and cytidine-5’-monophosphate,” Bioinorganic Chemistry and Applications, vol. 2008, Article ID 253971, 10 pages, 2008.

[40] A. L. Lehninger, D. L. Nelson, and M. M. Cox, “Amino acids building blocks of proteins,” in Principles of Biochemistry, W. H. Freeman, Ed., pp. 71–95, CBS, New York, NY, USA, 3rd edition, 2005.

[41] A. V. Legler, A. S. Kazachenko, V. I. Kazbanov, O. V. Per’yanova, and O. F. Veselova, “Synthesis and antimicrobial activity of silver complexes with arginine and glutamic acid,” Pharmaceutical Chemistry Journal, vol. 35, no. 9, pp. 501–503, 2001.

[42] T. Komiyama, S. Igarashi, and Y. Yukawa, “Synthesis of polynuclear complexes with an amino acid or a peptide as a bridging ligand,” Current Chemical Biology, vol. 2, no. 2, pp. 122–139, 2008.

[43] R. F. See, R. A. Kruse, and W. M. Strub, “Metal-ligand bond distances in first-row transition metal coordination compounds: coordination number, oxidation state, and specific ligand effects,” Inorganic Chemistry, vol. 37, no. 20, pp. 5369–5375, 1998.

[44] D. A. Buckingham, “Structure and stereochemistry of coordination compounds,” in Inorganic Biochemistry, G. Eichhorn, Ed., pp. 3–61, Elsevier, London, UK, 1973.

[45] J. J. R. Frausto da Silva and R. J. P. Williams, The Biological Chemistry of the Elements, Oxford University Press, Oxford, UK, 2nd edition, 1984.

[46] R. H. Holm, G. W. Everett, and A. Chakravorty, “Metal complexes of Schiff bases and β-ketoamines,” in Progress in Inorganic Chemistry, F. A. Cotton, Ed., vol. 7 of Progress in Inorganic Chemistry, pp. 83–214, John Wiley & Sons, Hoboken, NJ, USA, 3rd edition, 1966.

[47] D. P. Mellor, “Historical background and fundamental concept,” in Chelating Agents and Metal Chelate, F. P. Dwyer and D. Mellor, Eds., pp. 1–48, Academic Press, New York, NY, USA, 1964.

[48] V. V. Glodjović, M. D. Joković, and S. R. Trifunović, “The geometrical isomers of oxalato and malonato-(ethylenediamine-N,N’-di-S,S-2-propionato)-chromate(III) complexes,” Journal of the Serbian Chemical Society, vol. 70, no. 1, pp. 1–7, 2005.

[49] Y. Moriguchi, “Trisethylenediaminecobalt(III)chloride, sulphate as a subject material for widely different chemistry lab courses,” Journal of Chemical Education, vol. 77, no. 8, pp. 1045–1057, 2000.

[50] P. R. Murray, E. J. Baroon, M. A. Pfäller, F. C. Tenover, and R. H. Yolke, Manual of Clinical Microbiology, vol. 6th, American Society for Microbiology, Washington, DC, USA, 1995.

[51] P. N. Solis, C. W. Wright, M. M. Anderson, M. P. Gupta, and J. D. Philipson, “A microwell cytotoxicity assay using Artemia salina (brine shrimp),” Planta Medica, vol. 59, no. 3, pp. 250–252, 1993.

[52] K. Nakamoto, “Complexes of amino acids,” in Infrared and Raman Spectra of Inorganic and Coordination Compounds, pp. 66–74, Wiley Interscience, New York, NY, USA, 6th edition, 2009.

[53] A. A. Osowole, G. A. Kolawole, and O. E. Fagade, “Synthesis, characterization and biological studies on unsymmetrical Schiff-base complexes of nickel(II), copper(II) and zinc(II) and adducts with 2,2’-dipyridine and 1,10-phenanthroline,” Journal of Coordination Chemistry, vol. 61, no. 7, pp. 1046–1055, 2008.

[54] A. S. Gaballa, S. M. Teleb, M. S. Asker, E. Yalcın, and Z. Seferoğlu, “Synthesis, spectroscopic properties, and antimicrobial activity of some new 5-phenylazo-6-aminouracil-vanadyl complexes,” Journal of Coordination Chemistry, vol. 64, no. 24, pp. 4225–4243, 2011.

[55] D. Pavia, G. Lampman, and G. Kriz, Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, Brooks and Cole, 3rd edition, 2001.

[56] W. Kemp, “Infrared spectroscopy,” in Organic Spectroscopy, pp. 19–98, Macmillan, Hong Kong, 1991.

[57] R. L. Miselli and G. A. Terr, “Coordination compounds,” in Inorganic Chemistry, vol. 642, pp. 315–316, Pearson Prentice Hall, New York, NY, USA, 1999.

[58] N. Juranić, B. Prelesnik, L. Manožlović-Muir, K. Andjelković, S. R. Niketić, and M. B. Čelap, “Geometrical isomerism of mixed tris(aminocarboxylato)cobalt(III) complexes containing glycinate and β-alaninate ligands. Crystal structure of trans(O5)-(β-alaninato)bis(glycinato)cobalt(III)trihydrate,” Inorganic Chemistry, vol. 29, no. 8, pp. 1491–1495, 1990.

[59] A. A. Osowole, “Synthesis, Characterization, and Magnetic and Thermal Studies on Some Metal(II) Thiophenyl Schiff Base Complexes,” International Journal of Inorganic Chemistry, vol. 2011, Article ID 650186, 7 pages, 2011.

[60] L. J. Bellamy, The Infra-red Spectra of Complex Molecules, Springer Netherlands, 1975.

[61] D. L. Saunders, Isolation of lead-amino acid and mercury-amino acid complexes with characterization in the solid state, the solution state, and the gas phase [Ph.D. thesis], Department of Chemistry, Dalhousie University, Halifax, Canada, 2009.

[62] N. N. Greenwood and A. Earnshaw, Coordination compounds,” in Chemistry of the Elements, pp. 1290–1326, Butterworth-Heinemann, Oxford, UK, 2nd edition, 1997.

[63] F. A. Cotton, G. Wilkinson, and C. A. Murillo, Advanced Inorganic Chemistry, Wiley Interscience, New York, NY, USA, 6th edition, 1999.

[64] N. S. Youssef and K. H. Hegab, “Synthesis and characterization of some transition metal complexes of thiosemicarbazones derived from 2-acetylpyrrole and 2-acetylfuran,” Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, vol. 35, no. 5, pp. 391–399, 2005.

[65] C. J. Ballhausen, An Introduction to Ligand Field Theory, McGraw Hill, New York, NY, USA, 1962.

[66] N. Raman, K. Pothisraj, and T. Baskaran, “Synthesis, characterization, and DNA damaging of bivalent metal complexes incorporating tetradentate dinitrogen-dioxygen ligand as potential biocidal agents,” Journal of Coordination Chemistry, vol. 64, no. 24, pp. 4286–4300, 2011.
[98] J. R. Naidu, R. Ismail, and S. Sasidharan, “Acute oral toxicity and brine shrimp lethality of methanol extract of Mentha Spicata L. (Lamiaceae),” Tropical Journal of Pharmaceutical Research, vol. 13, no. 1, pp. 101–107, 2014.

[99] B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin, “Brine shrimp: a convenient general bioassay for active plant constituents,” Planta Medica, vol. 45, no. 5, pp. 31–34, 1982.