Theoretical study on rotating casson fluid in moving channel disk

Ahmad Qushairi Mohamad1, Nurul Aini Jaafar1, Sharidan Shafie1, Zulkhibri Ismail2 and Muhammad Qasim3

1 Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
2 Centre for Mathematical Sciences, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
3 COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 455000, Pakistan

E-mail: ahmadqushairi@utm.my

Abstract. The theoretical study of rotating Casson fluid in moving channel disk has been investigated in this article. The dimensional governing equation of proposed fluid is derived in the form of partial differential equation with initial and boundary conditions. The non-dimensional governing equation has been obtained by using the suitable non-dimensional variables. The expression of velocity for rotating Casson fluid has been obtained by using Laplace transform method. It is found that, they satisfied governing equation and conditions imposed. Computations are carried out and the results are analyzed and discussed in details.

1. Introduction

Recently, non-Newtonian fluids are widely used in industries such as chemicals, pharmaceuticals, food, oil, gas and cosmetic. For example, in the production of several chemicals, oil, gas, paint, syrup, juice, cleanser, deodorizer, in process of plastic sheets, glass fibre production, movement of lubricants and biological fluids [1-4]. The non-Newtonian fluid models show the non-linear relationship between the shear rate and shear stress which do not obey Newton’s law of viscosity compared to Newtonian fluid. In Newtonian fluid, the relationship between the shear stress and the shear rate is assumed to be linear. However, not all shear stress and shear rate obey this relationship for certain cases. Thus, the study of non-Newtonian fluids is useful for the fundamental understanding of certain applications and to describe the fluids in industrial and other technological applications such as blood, soap, certain oils, paints, and many emulsions [3].

Some of non-Newtonian fluid models have been used to describe the complex behaviour of fluids in applications including power law [5], second grade [6], Jeffrey [7], Maxwell [8], viscoplastic [9], Bingham plastic [10], Brinkman type [11], Oldroyd-B [12] and Walters-B [13] models. One of the most famous non-Newtonian fluid models is Casson fluid model which has several applications in food processing, metalurgy, drilling operations and bioengineering operations [14]. This fluid model was originally introduced by Casson in 1959 to analyze the prediction of the flow behaviour of pigment-oil suspensions [15]. Casson fluid model is the non-Newtonian fluid model which consists of yield stress. When the shear stress of Casson fluid
is less than yield stress, the fluid behaves like a solid. The examples of Casson fluid are jelly, tomato sauce, honey, soup, concentrated fruit juices [16].

Chen et al. [17] studied the unsteady state unidirectional MHD flow of Voigt fluids moving between two parallel surfaces under magnetic field effect using Laplace transform method. Seth et al. [18] investigated the effect of Hall current on the unsteady hydromagnetic Couette flow within a rotating porous parallel channel in the presence of an uniform transverse magnetic field when the magnetic field is fixed relative to the moving plate of the channel. Wang [19] studied the starting unsteady flow in the presence of an impulsive pressure gradient in a system of rotating parallel plate channel using Laplace Transform method. The author observed that as rotation is increased, the asymptotic (steady state) flow rate decreases. Jha et al. [20] investigated the unsteady hydromagnetic natural convection flow of an incompressible viscous electrically conducting fluid in the presence of transverse magnetic field in infinite vertical parallel plates through channel using Laplace Transform method. Seth et al. [21] studied the unsteady hydromagnetic natural convection flow of a viscous, incompressible, electrically conducting and heat absorbing fluid in the presence of transverse magnetic field. The flow was considered through a porous medium in a rotating parallel plate channel with the effect of Hall current. VeeraKrishna et al. [22] investigated the unsteady convective flow of second grade fluid through a porous medium in a rotating parallel plate channel by considering the magnetohydrodynamic (MHD) effect. Mohamad et al. [16] analyzed the influence of thermal radiation on unsteady MHD free convection flow of Casson fluid over a vertical plate through a porous medium.

To the authors knowledge, no researchers attempted to study the unsteady flow of rotating Casson fluid in moving channel disk. From the previous literature, Casson fluid model is one of the important models that should be considered in the fluid flow. Thus, an attempt is made in this paper to investigate the convective flow by considering the Casson fluid. Motivated by the above studies, the present work focused on theoretical study on rotating Casson fluid in moving channel disk. The theoretical exact solution is obtained by using the Laplace transform method. The behavior of obtained physical parameters are plotted graphically and discussed in details.

2. Problem Formulation and Solution

Consider the unsteady flow of rotating incompressible Casson fluid in two infinite vertical disks separated by a distance h. The x^*-axis is taken along one of the disks in the vertically upward direction and the z^*-axis is taken normal to the disks. Initially, both the disks and fluid are at rest and at time $t^* = 0^+$, the disk at left hand side starts to move in its plane with constant velocity U_0 and while the other disk (right hand side) is remains immovable. Due to that, the fluid starts solid body rotation with constant angular velocity Ω parallel to z^*-axis. The schematic diagram with a coordinate system is shown in Figure1. Therefore, the appropriate governing equation is given as

$$\frac{\partial F^*}{\partial t^*} + 2i\Omega F^* = \nu(1 + \frac{1}{\gamma}) \frac{\partial^2 F^*}{\partial z^{*2}}$$

(1)

together with imposed initial and boundary conditions

$$F^*(z^*, 0) = 0 \quad ; \quad 0 \leq z^* \leq h,$$

$$F^*(0, t^*) = U_0 \quad ; \quad t^* > 0,$$

$$F^*(h, t^*) = 0 \quad ; \quad t^* > 0.$$

(2)

where $F^* = F^*(z, t) = u^*(z^*, t^*) + i v^*(z^*, t^*)$ is a complex velocity, $u^*(z^*, t^*)$ is a primary velocity, $v^*(z^*, t^*)$ is a secondary velocity, i is an imaginary number, ν is a kinematic viscosity and γ is a Casson parameter. Introducing the suitable non-dimensional variables

$$z = \frac{z^*}{h}, \quad F = \frac{F^*}{U_0}, \quad t = \frac{t^*\nu}{h^2}. $$

(3)
Therefore, employing the non-dimensional variables (3) into Eq. (1) along with initial and boundary conditions (2), obtained the non-dimensional form as

$$\frac{\partial F}{\partial t} + 2i\omega F = A_1 \frac{\partial^2 F}{\partial z^2}$$

subjected to initial and boundary conditions

$$F(z, 0) = 0 \quad ; \quad 0 \leq z \leq 1,$$

$$F(0, t) = 1 \quad ; \quad t > 0,$$

$$F(1, t) = 0 \quad ; \quad t > 0,$$

where $A_1 = 1 + \frac{1}{\gamma}$ is a constant parameter and $\omega = \frac{\Omega h^2}{\nu}$ is a rotation parameter. In order to obtain an exact solution of this problem, we use the Laplace transform method. Then, by applying the Laplace transform into equation (4) together with conditions (5), we obtained the transform equations as

$$\frac{d^2 \tilde{F}(z, q)}{dz^2} - \left(\frac{q + 2i\omega}{A_1}\right)\tilde{F}(z, q) = 0$$

and

$$\tilde{F}(0, q) = \frac{1}{q},$$

$$\tilde{F}(1, q) = 0,$$

which is q is a Laplace transform parameter. Using equation (7) into equation (6) leads to

$$\tilde{F}(z, q) = \sum_{n=0}^{\infty} \left[\frac{1}{q} \exp \left(-2n + z \right) A_2 \sqrt{q + 2i\omega} \right] - \frac{1}{q} \exp \left(2n + 2 - z \right) A_2 \sqrt{q + 2i\omega}. $$
Finally, the solution of velocity profile is obtained by using inverse Laplace transform and it can be written as

$$F(z, t) = \sum_{n=0}^{\infty} [A_1(z, t) + A_2(z, t)]$$ \hspace{1cm} (9)$$

where

$$A_1(z, t) = \frac{1}{2} \text{Exp} \left(-a_1 \sqrt{2i\omega} \right) \text{Erfc} \left(\frac{a_1}{2\sqrt{t}} - \sqrt{2i\omega t} \right) + \frac{1}{2} \text{Exp} \left(a_1 \sqrt{2i\omega} \right) \text{Erfc} \left(\frac{a_1}{2\sqrt{t}} + \sqrt{2i\omega t} \right)$$ \hspace{1cm} (10)$$

and

$$A_2(z, t) = \frac{1}{2} \text{Exp} \left(-a_2 \sqrt{2i\omega} \right) \text{Erfc} \left(\frac{a_2}{2\sqrt{t}} - \sqrt{2i\omega t} \right) + \frac{1}{2} \text{Exp} \left(a_2 \sqrt{2i\omega} \right) \text{Erfc} \left(\frac{a_2}{2\sqrt{t}} + \sqrt{2i\omega t} \right)$$ \hspace{1cm} (11)$$

which is $a_1 = 2nA_2 + zA_2$ and $a_2 = 2nA_2 + 2A_2 - zA_2$.

3. Results and Discussions
This section is written to discuss the impact of flow parameters namely, Casson parameter γ, rotation parameter ω and time parameter t on velocity profiles which are displayed graphically in figure 2 until figure 4. The subsections (a) and (b) on plotting indicate the primary u and secondary v velocities, respectively. Here, Figure 2 shows the effect of Casson parameter γ on velocity profiles for primary and secondary parts. It is found that the velocity decrease in u but fluctuate behavior in v when the values of γ increase. This is due to increment of viscosity and yield stress in fluid flow which retard the movement of the fluid’s velocity. Besides that, the effect of rotation parameter ω on velocity behavior is displayed in Figure 3. Obviously, it can be seen that, the velocity of the fluid will decrease in primary velocity but increase in secondary velocity. This is due to the Coriolis effect that exist in rotation fluid phenomena. This effect will reduce the force in primary velocity and enhance the formation of secondary velocity. In facts, the Coriolis force is defined as a deflection of moving objects in a frame rotating in the opposite direction. Lastly, the Figure 4 shows the behavior of velocity on time changing. It is found that, velocity increases when the value of t increases. During the change of time, the fluid gains an energy from the moving disk as an external force and increase the both velocities of fluid flow. In addition, the results obtained here satisfy all of the initial and boundary conditions (5).

4. Conclusion
The formulation and solution for the problem of rotating Casson fluid in moving channel disk have been obtained by using the Laplace transform method. The analysis results on embedded parameters for velocity profiles have been plotted graphically in figure 2 until figure 4. Therefore, the main conclusions from this study are

(i) Both primary and secondary velocities increase with increasing t.
(ii) Primary velocity decreases while secondary velocity first increases and then decreases when γ is increased.
(iii) For larger value of ω, the primary velocity is decreasing but increase for secondary velocity.

5. Acknowledgments
The authors would like to acknowledge Ministry of Education (MOE) and Research Management Centre-UTM, Universiti Teknologi Malaysia (UTM) for the financial support through vote numbers 5F004 and 07G70, 07G72, 07G76, 07G77 and RDU170354 for this research.
References

[1] Chaoyang W and Chuanjing T 1989 Boundary layer flow and heat transfer of non-Newtonian fluids in porous media. Int J Heat Fluid Fl 10(2) 160165.

[2] Hussanan A, Salleh M Z, Tahar R M, and Khan I 2014 Unsteady boundary layer flow and heat transfer of a Casson fluid past an oscillating vertical plate with Newtonian heating. PloS One 9(10) e108763.

[3] Das M, Mahato R and Nandkeolyar R 2015 Newtonian heating effect on unsteady hydromagnetic Casson fluid flow past a flat plate with heat and mass transfer. Alexandria Eng J 54 871-879.

[4] Hussanan A, Salleh M Z, Khan I and Tahar R M 2016 Unsteady heat transfer flow of a Casson fluid with Newtonian heating and thermal radiation. Jurnal Teknologi 78 1-7.

[5] Olajuwon B I 2009 Flow and natural convection heat transfer in a power law fluid past a vertical plate with heat generation. INT J Nonlin Sci Num 7 50-56.

[6] Hayat T, Khan I, Ellahi R and Fetecau C 2008 Some unsteady MHD flows of a second grade fluid through porous medium. J Porous Media 11 389-400.

[7] Qasim M 2013 Heat and mass transfer in a Jeffrey fluid over a stretching sheet with heat source/sink. Alexandria Eng J 52 571-575.

[8] Khan I, Farhad A, Samiulhaq and Sharidan S 2013 Exact solutions for unsteady MHD oscillatory flow of a Maxwell fluid in a porous medium. Z Naturforsch A 68 635-645.

[9] Hassan M A, Pathak M and Khan M K 2013 Natural convection of viscoplastic fluids in a square enclosure. J Heat Trans 135 122501-12.

[10] Kleppe J and Marner W J 1972 Transient free convection in a Bingham plastic on a vertical flat plate. J Heat Trans 1972 371-376.

[11] Zakaria M N, Abid H, Khan I and Sharidan S 2013 The effects of radiation on free convection flow with ramped wall temperature in Brinkman type fluid. Jurnal Teknologi 62 33-39.

[12] Khan I, Fakhar K and Anwar M I 2012 Hydromagnetic rotating flows of an Oldroyd-B fluid in a porous medium. Special Topics and Review in Porous Media 3 89-95.

[13] Khan I, Farhad A, Sharidan S and Qasim M 2014 Unsteady free convection flow in a Walters-B fluid and heat transfer analysis. B Malaysia Math Sci So 37): 437448.

[14] Kataria H R, and Patel H R 2018 Heat and mass transfer in magnetohydrodynamic (MHD) Casson fluid flow past over an oscillating vertical plate embedded in porous medium with ramped wall temperature. J Propul Power 7(3) 257-267.

[15] Casson N 1959 A flow equation for the pigment oil suspensions of the printing ink type, in: C.C. Mills(Ed.), Rheology of Disperse Systems, Pergamon, New York Oxford, pp.8104.

[16] Mohamad A Q, Khan I, Jian L Y, Khan A, Ilias M R and Shafie S 2016 Magnetohydrodynamic Conjugate Flow of Casson Fluid Over a Vertical Plate Embedded in a Porous Medium with Arbitrary Wall Stress J Nanofluids 6(1) 173-181.

[17] Chen W F, Lai H Y and Chen C K 2012 Unsteady Unidirectional MHD Flow of Voigt Fluids Moving between Two Parallel Surfaces for Variable Volume Flow Rates. J Appl Math 2012 1-12.

[18] Seth G S, Singh J K and Mahato G K 2012 Effects of hall current and rotation on unsteady hydromagnetic couette flow within a porous channel. Nt J Appl Mech 04(02) 1250015.

[19] Wang C Y 2012 Starting flow in a rotating parallel plate channel. Acta Mechanica Sinica/Lizue Xuebao 28(5) 1271-1276.

[20] Jha B K and Isa S 2013 Computational treatment of MHD transient natural convection flow in a vertical channel due to symmetric heating in presence of induced magnetic field. J Phys Soc Jpn 82(8) 1-9.

[21] Seth G S, Kumbhakar B and Sharma, R. (2015). Unsteady hydromagnetic natural convection flow of a heat absorbing fluid within a rotating vertical channel in porous medium with hall effects. J Appl Fluid Mech, 8(4), 767-779.

[22] VeeraKrishna M and Reddy G S 2016 Unsteady MHD convective flow of second grade fluid through a porous medium in a rotating parallel plate channel with temperature dependent source. IOP Conf Ser Mater Sci Eng 149(1).
Figure 2. Primary (a) and secondary (b) velocities profiles for different values of γ.
Figure 3. Primary (a) and secondary (b) velocities profiles for different values of ω.
Figure 4. Primary (a) and secondary (b) velocities profiles for different values of t.