Salicylaldehydes as privileged synthons in multicomponent reactions

Majid Momahed Heravi,* Vahideh Zadsirjan, Malihe Mollaiye, Masumeh Heydari, Afsaneh Taheri Kal Koshvandi

Department of Chemistry, Alzahra University
Vanak, Tehran, P.O. Box 1993891176, Iran

Salicylaldehyde (2-hydroxybenzaldehyde) bearing two different active functional groups, namely, a hydroxy group and an aldehyde group, finds wide application as a key chemical in a variety of industrial processes, especially in the large-scale production of pharmaceuticals. Salicylaldehyde and most of its derivatives are commercially available or readily accessible, and hence are ideal starting materials for multicomponent reactions (MCRs), mostly in pseudo-three and four-component ones, giving rise to a plethora of heterocyclic systems. The importance of salicylaldehyde and an impressive amount of studies concerning its applications in MCRs prompted us to highlight in this review the important role of this compound as a privileged synthon in the synthesis of heterocycles.

The bibliography includes 276 references.

Contents

1. Introduction 553
2. Multi-component reactions of salicylaldehyde 554
3. Conclusion 582

1. Introduction

A multicomponent reaction (MCR) is a synthetic approach in which three or more commercially available or easily accessible starting materials are reacted in a one-pot fashion to produce a compound where almost all the parent entities contribute to this newly formed compound. This strategy provides many advantages over the traditional multi-step reactions such as shorter reaction times, higher yields as well as a wide scope for molecular diversity and atom economy.3 On the other hand, a MCR is a domino or cascade reaction. A cascade reaction is a chemical process involving at least two consecutive reactions wherein each subsequent reaction takes place only in virtue of the chemical functionality generated in the previous step.3 MCRs are currently on the top of the most valuable synthetic processes since they provide facile and rapid access to large combinatorial libraries of organic molecules, what is of particular importance in drug design. The most advantageous and promising drug nominees are small organic molecules, since common peptides and standard oligonucleotides have certain restrictions in terms of bioavailability. Having a number of commercially available or easily accessible starting materials in hand, a large libraries of small organic molecules can be readily synthesized via MCRs. However, despite the obvious synthetic convenience and advantages of MCRs, and their availability for construction of a wide range of chemical structures, their wide applications have been overlooked over the years. Fortunately, during the last decade, the significance of MCRs, particularly those involving salicylaldehyde, for drug design has been well-recognized and substantial attempts have been made in this field, both in academia and industry.4

M.Momahed Heravi. Ph.D. Professor in Organic Chemistry of the Department of Chemistry, Alzahra University. Telephone: +098(912)132–9147, e-mail: mnheravi@alzahra.ac.ir, Mmhi1331@yahoo.com
Current research interests: heterocyclic chemistry, catalysis, organic methodology, green chemistry.

V.Zadsirjan. Ph.D. in Organic Chemistry at the same University. Telephone: +098(218)804–4040, e-mail: z_zadsirjan@yahoo.com
Current research interests: heterocyclic chemistry, catalysis, organic methodology, green synthetic organic chemistry.

M.Mollaiye. M.Sc. in Organic Chemistry at the same University. Telephone: +098(937)532–9618, e-mail: malihe.mollaiye@yahoo.com
Current research interests: heterocyclic chemistry, catalysis, organic methodology, green synthetic organic chemistry.

M.Heydari. Ph.D. Student in Organic Chemistry at the same University. Telephone: +098(916)852–9193, e-mail: heydari.chemmas@gmail.com
Current research interests: synthetic organic chemistry, heterocyclic chemistry, multicomponent reactions.

A.Taheri Kal Koshvandi. Ph.D. Student in Organic Chemistry at the same University. Telephone: +098(990)959–6849, e-mail: Afsanehtaheri96@yahoo.com
Current research interests: synthesis, characterization and application of polymeric nanocomposites in the preparation of new nanocatalysts, their applications in organic reactions.

Received 4 September 2017

© 2018 Uspekhi Khimii, Russian Academy of Sciences and Turpion Ltd.
Salicylaldehyde and its derivatives are commonly used as preservatives in essential oils, cosmetics and fragrances.5 Salicylaldoximes containing branched alkyl chains are frequently used as extracting agents in the processes of separation and concentration in the copper recovery.6

There are several different approaches to the preparation of salicylaldehyde. One of them comprises formulation of phenol with formaldehyde in the presence of Mg(OMe)\textsubscript{2} in anhydrous media.7 Although salicylaldehyde is a simple molecule, it is an important and versatile precursor for a variety of useful compounds, particularly for complex heterocyclic systems. Salicylaldehyde and its derivatives can be effectively applied in MCRs, particularly, in (pseudo)-three- and four-component reactions. There is a plethora of studies reporting the synthesis of various heterocycles via MCR involving salicylaldehyde as a suitable starting material.8,9 However, a literature survey showed no comprehensive review covering these data.

In continuation of our interest in the chemistry of heterocyclic compounds10–14 and their synthesis via MCRs,15–23 in this review we will try to highlight the applications of salicylaldehyde as a privileged synthon for the synthesis of various heterocycles. Here, we decided to restrict our consideration to reactions involving both hydroxyl and aldehyde groups of salicylaldehydes in the MCRs.

2. Multi-component reactions of salicylaldehyde

2.1. Pseudo-three-component reactions

Pseudo-multicomponent reaction is a kind of MCRs wherein at least one of the reactants participates two or more times in the reaction, and the reaction product contains two or more molecules of this reactant.

Among the most commonly used starting materials in both multicomponent and pseudo-multicomponent reactions involving salicylaldehyde, there are active methylene compounds, such as 1,3-dicarbonyl compounds, and various derivatives of malonic acid. Such reactions provide a general approach to a variety of xanthene and chromene derivatives, representing ‘privileged medicinal scaffolds’ and displaying a wide spectrum of pharmacological activities.24,25

Thus, Tajbakhsh \textit{et al.} performed pseudo-three component iron(III) chloride-mediated reaction via condensation of salicylaldehydes 1 with two moles of cyclic 1,3-diketones 2 in water at ambient temperature to obtain the corresponding 1-oxo-tetrahydro-1H-xanthen-1-ones 3 (Scheme 1).26

A possible mechanism for this reaction is illustrated in Scheme 2. First, the Knoevenagel coupling is catalyzed by FeCl\textsubscript{3}·6H\textsubscript{2}O via coordination of the Lewis acid sites (Fe3+) with the oxygen atom of the carbonyl group in salicylaldehyde, generating intermediate 5. Then, a nucleophilic attack of intermediate 5 on the electrophilic carbon during a Michael addition takes place affording intermediate 6. Next, the phenolic oxygen atom attacks the enone via the ‘oxy-Michael’ reaction to yield intermediate 7, which can also exist as an enolate. Elimination of water from the above intermediate results in transformation of the latter into the target product 3 (Scheme 2).

It should be mentioned that, apart from ferric trichloride, other homogeneous and heterogeneous catalysts were reported to be effective in this reaction, \textit{e.g.}, CeCl\textsubscript{3}·7H\textsubscript{2}O,27 triethylbenzylammonium chloride (TEBA),28 L-proline,29 para-toluenesulfonic acid,30 nano-ZnAl\textsubscript{2}O\textsubscript{4},31 nano-Fe/NaY,32 AcOH–H\textsubscript{2}O,33 diethylamine,34 cellulose sulfuric acid,35 2,4,6-trichloro-1,3,5-triazine (TCT, cyanuric chloride),36 Broensted acid ionic liquid [([CH\textsubscript{2}\textsubscript{2})\textsubscript{2}SO\textsubscript{3}]HIM)[HSO\textsubscript{4}],37 lemon extract as a natural Broensted acid-type biosurfactant,38 1,4-diazabicyclo[2.2.2]octane (DABCO),39 polyvinylpyrrolidone
(PVP) stabilized Ni(0) nanoparticles, sodium acetate, Preyssler acid, piperidine, ferric triflate and cesium fluoride. Moreover, catalyst-free conditions were also reported. Most of these catalysts provide high yields, simple experimentation and easy isolation procedure.

Zeng et al. has performed a more general reaction using a series of dicarbonyl and monocarbonyl compounds such as barbituric acids (8, 9), 1H-indene-1,3(2H)-dione (10), 4-hydroxy-6-methylpyran-2-one (11) and 4-hydroyxycoumarin (12) in the presence of I2 to afford chromene derivatives (Scheme 3). Salicylaldehydes bearing both electron-donating and electron-withdrawing substituents showed similar reactivity producing the corresponding products in high yields.

An interesting example of a tandem Knoevenagel condensation and Michael addition was discovered by Yu et al. when studying the reaction between aldehydes and 1,3-diketones. It was shown that, contrary to benzaldehydes producing tetraketones, salicylaldehyde reacted with cyclohexane-1,3-dione (2a) to afford 2-(1-oxo-2,(3,4,9-tetrahydro-1H-xanthen-9-yl)cyclohexane-1,3-dione (14) in almost quantitative yield (Scheme 4). The reaction proceeded in water at room temperature without any catalyst.

Three-component reactions constitute the most numerous part of the MCRs of salicylaldehyde providing an access to functionalized chromene, coumarin, xanthene derivatives, etc., most of which relating to medically privileged scaffolds. For example, 2-aminochromenes represent a very important class of chemical compounds as they are the main constituents of many natural products and also find a wide application as pigments, cosmetics, agrochemicals, etc. However, their biological activities are of particular importance. Three-component reactions between salicylaldehyde, malononitrile and various nucleophiles proved to be a powerful tool to obtain these compounds.

In 2007, Shanthi and Perumal developed a facile and efficient approach to the synthesis of 2-amino-3-cyanochromene derivatives via the reaction between substituted salicylaldehydes, malononitrile and Hantzsch dihydropyridine ester (Scheme 6). Salicylaldehydes bearing both electron-donating and electron-withdrawing substituents are suitable for this procedure, resulting in the formation of the corresponding chromenes in relatively short reaction times.

The reaction between salicylaldehydes, either malononitrile or cyanoacetamide and trimethylsilylcyanide (TMSCN) catalyzed by LiClO4 in EtOH at ambient temperature afforded the corresponding 2-amino-4-cyano-4H-chromenes (Scheme 7). It should be noted that in the case of malononitrile the yields of the cyano-substituted chromenes were significantly higher (73% – 87%) compared to cyanoacetamide-substituted ones (41% - 47%).

The same catalytic system in the reaction of salicylaldehyde, 2-imino-2H-chromene-3-carbonitrile and various secondary amines produced 2-(chroomeno[2,3-d]-pyrimidin-2-yl)phenols in satisfactory yields (Scheme 8).

A probable mechanism for the synthesis of products is shown in Scheme 9. The reaction is initiated by the nucleophilic attack of amines on the nitrile group of 23.
to generate 26. The latter then reacts with salicylaldehyde 1, and undergoes isomerization to give the desired products 25.

Indoles possessing a variety of important biological functions are considered to be a privileged scaffold in drug discovery, therefore they are among the most popular starting materials in the MCRs.

Thus, Thakur et al. reported the synthesis of 3-indolochromenes 27 using ethylenediammonium diformate (EDDF) as a catalyst and ethylene glycol acting both as a co-catalyst and a solvent (Scheme 10).

A probable mechanism demonstrating the role of ethylene glycol as a co-catalyst is shown in Scheme 11. EDDF is a salt and, therefore, it can be applied as an ambiphilic catalyst in which both the anion and cation act in combination as a nucleophile and electrophile. On the one hand, the acidic portion improved the electrophilicity of the carbonyl group of 1, while on the other hand, the immediately produced amine promotes an attack of the malonate ion 28. Following the protonation and elimination of the water molecule, the first Knoevenagel adduct 29 is generated undergoing cyclization to afford intermediate 2-iminochromene via the Pinner reaction.

The diversity of catalysts for MCRs affording 3-indolopyrans is really impressive. In addition to an EDDF-ethylene glycol catalytic system, a plethora of heterogeneous and homogeneous catalytic systems have also been applied. Their examples include copper sulfonato salen, Zn(salphen), β-cyclodextrin, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), tetrabutylammonium bromide (TBAB), nanocomposite consisting of the reduced graphene oxide and zinc oxide nanoparticles (RGO/ZnO), polystyrene-supported p-toluenesulfonic acid, L-cysteine functionalized magnetic nanoparticles (LCMNP), tetra-butylammonium valinate supported on 3-chloropropyltriethoxysilane-grafted superparamagnetic Fe₃O₄ nanopar-
In recent times, using environmentally benign solvents and reagents is among the most attractive trends in MCRs. A new versatile tool for the synthesis of diversely substituted 4H-chromene scaffolds with a predefined arrangement of functional groups based on the electrocatalytic chain transformations of salicylaldehydes and CH-acids was proposed by Elinson et al. Reactions were carried out in an individual cell in an alcohol medium using sodium bromide as an electrolyte.

Thus, electrochemically induced MCR between salicylaldehydes 1 and two different CH-acids (15 and 30) afforded functionalized 2-amino-4H-chromenes 31 in 65%–86% yields (Scheme 12). It should be noted that this is a rare example of a selective one-pot reaction with different CH-acids where a distinction is made according to their reactivity. Here, more acidic cyano derivative 15a serve as a source for the 2-amino-3-cyano-4H-chromene framework, while the less acidic CH-acid 30 contributes to the corresponding 4-substituent in 2-amino-4H-chromene 31.

With three moles of malononitrile 15a under the optimized conditions, the reaction led to the formation of chromeno[2,3-b]pyridine 32 with a fused dicyanomethyl-substituted 4H-chromene moiety.

As for salicylaldehydes 1, MCRs proceed smoothly with substrates containing both electron-withdrawing and electron-donating substituents. However, nitroalkanes gave only moderate yields in this reaction, probably due to the undesired oxidation on the cathode under the reaction conditions.

Electrocatalytic MCRs are very promising in view of the further development of 2-amino-4H-chromene chemistry as they allow the selective and one-step introduction of a wide range of medicinally significant functionalities into the 2-amino-4H-chromene framework and also have obvious advantages over the traditional procedures as being simple, environmentally friendly and easy to scale-up.

Moreover, the same authors developed one more general approach to 4-functionalized 2-amino-4H-chromene
derivatives 31 applying solvent-free or 'on-solvent' strategies.80–84 According to these methods, MCRs between salicylaldehyde, malononitrile and a number of carbon nucleophiles 15, 33–35 were performed either by grinding the starting materials substantially without any solvent or under 'on-solvent' conditions, i.e. in a minimum amount of a solvent, using commercially available and inexpensive catalysts such as sodium acetate, potassium fluoride or sodium hydroxide (Scheme 13).

Depending on the nature of a carbon nucleophile, certain reaction parameters (catalyst, temperature, reaction time) were varied. Thus, the reaction with 3-methyl-2-pyrazolin-5-one 33 proceeded in 10 min just upon grinding the reactants in a mortar (see Scheme 13).30 It was shown that the desired products 36 were obtained even in the absence of any solvent, but only in satisfactory yields (55%). However, addition of 1 ml of water had a significant effect on the reaction rate, and the yields increased by more than 20%. For the reaction with 4-hydroxy-6-methyl-2H-pyran-2-one 34, two convenient procedures were proposed, one of them comprised stirring with NaOAc in EtOH for 30 minutes at room temperature (method A), and the second one involved grinding with NaOAc or KF under 'on-alcohol' conditions for 15 min at room temperature (method B) (see Scheme 13).81 Both methods gave comparable yields of products 37. Cyanocetates 15b,d reacted under similar 'on-solvent' conditions in a (1 : 1) water-alcohol mixture, but it took these compounds about an hour to produce the corresponding products 38 in high yields.82 At the same time, CH-acids such as cyanoacetamides 15c,e,f and nitroalkanes 35 required somewhat different reaction conditions. Thus, the reaction with nitroalkanes 35 proceeded under solvent-free conditions at 60 °C with both catalysts; however, KF proved to be more effective providing shorter reaction times (1 h vs 3 h with NaOAc) (see Scheme 13).83 As it was mentioned above, application of nitroalkanes in the electrocatalytic method by Elinson et al.78 was not especially successful because of the undesirable oxidation of the substrate. On the contrary, the proposed solvent-free procedure can be considered to be the most effective approach to 4-nitroalkyl-substituted 4H-chromenes 39 for the moment. As for cyanoacetamides

Scheme 12

31 (65%–86%)

(a) Electrolysis, NaBr, EtOH, 78 °C, 10 mA cm⁻², 0.1 F mol⁻¹ passed; R₁ = H, Me, Br; R₂ = H, OMe, OEt; R₃ = Me, Et; R₄ = H, Me, CO₂Me, (CH₂)₂COMe, (CH₂)₂CO₂Me; 15: R₅ = CN (a), CO₂Et (b), CONH₂ (c), CO₂Me (d); 30: R³ = H, R⁴ = NO₂ (a), R³ = R⁴ = CO₂Me (b), R³ = R⁴ = CO₂Et (c)

Scheme 13

(a) NaOAc (10 mol.%), H₂O, 10 min, rt, grinding;
(b) method A: NaOAc (10 mol.%), EtOH, 30 min, rt;
method B: NaOAc or KF, EtOH, 15 min, rt, grinding;
(c) NaOAc, EtOH – H₂O (1 : 1), 1 h, rt, grinding;
(d) NaOAc, 3 h, 60 °C or KF, 1h, 60 °C, grinding;
(e) NaOH, H₂O, 1 – 3 h, 60 °C, grinding;
R¹, R² = H, Me, Br, OMe, OEt, NO₂; R³ = Me, Et; R⁴ = H, Me, Ph, CO₂Me, (CH₂)₂COMe, (CH₂)₂CO₂Me;
R⁴ + R⁵ = (CH₂)₂; 15: NR² = NH₂ (c), NH (e), N (f)

15 (3 equiv.) 15a (3 equiv.) 1

32 (60% – 90%)

33 (90% – 96%)

36 (90% – 96%)

37 (77% – 99%)

38 (79% – 95%)

39 (80% – 93%)

40 (80% – 95%)
15c,e,f, a stronger base (NaOH) and higher temperatures were required for the reaction to be accomplished under 'on-water' conditions (see Scheme 13).84

The probable mechanism for the reaction with cyanoacetamide is illustrated in Scheme 14.

First, sodium hydroxide deprotonates malononitrile 15a generating the anion 28, which undergoes the Knoevenagel condensation with salicylaldehyde 1 proceeding with the removal of the hydroxide anion to afford benzylidene malononitrile 41.85 In fact, the Knoevenagel adduct 41 can give rise to three reaction routes. The Michael addition of malononitrile to adduct 41 followed by an intramolecular cyclization yields (2-amino-3-cyano-4\(H\)-chromen-4-yl)malononitrile 42 (pathway a). Compound 42 was detected in the reaction mixture when the solvent-free reaction of salicylaldehyde 1, malononitrile 15a and cyanoacetamide 15c was performed in the presence of sodium hydroxide in shorter reaction times. (2-Amino-3-cyano-4\(H\)-chromen-4-yl)malononitrile 42 could exist in equilibrium with 2-imino-2\(H\)-chromene-3-carbonitrile 23 and malononitrile 15a under certain reaction conditions.55 If such an equilibrium takes place, the uptake of malononitrile from the equilibrium process by salicylaldehyde 1 could promote the base-stimulated addition of a weaker CH acid such as cyanoacetamide 15c to 2-imino-2\(H\)-chromene 42, resulting in the conversion of 42 into the corresponding 2-amino-4\(H\)-chromene 40 (see Scheme 14).

Despite the fact that every new substrate requires the tuning of the reaction conditions, the proposed solvent-free or 'on-solvent' methods gave remarkable results and are characterized by high yields, operational simplicity and extremely simple isolation of the resulting functionalized 4\(H\)-chromene derivatives.

An alternative procedure for similar reactions with two different CH-acids was developed by Wang et al. using basic-functionalized ionic liquids such as [bmim]OAc, [bmim]OH, etc.86
One more solvent-free procedure based on grinding the starting materials was developed to obtain fluorescent chromeno[2,3-d]pyrimidines 25 (Scheme 15). The reaction of substituted salicylaldehydes 1, malononitrile 15a and secondary amines 24 proceeded in the presence of a catalytic amount of ZnAl₂O₄ nanoparticles at ambient temperature upon grinding in a mortar and was accomplished in two minutes, so it can be considered as the most rapid reaction to obtain the compounds of such type. Among other advantages, the chemical stability of the catalyst, its recyclability, environmentally benign and cost effectiveness are worth mentioning. As for the scope of the reaction, the substituents in salicylaldehyde 1 have no significant effect on the product yields. The amine component 24 is limited to only secondary amines; both cyclic and acyclic ones such as diethylamine reacted smoothly in high yields. However alkylarylamines were not reactive at all and could not be used in this reaction.

Among reactions combining the application of eco-friendly catalysts and reaction media, the ones using easily accessible, non-toxic and biodegradable oleic acid as an effective catalyst for the formation of 4H-chromenes 43 in an aqueous media cannot but be mentioned (Scheme 16). The scope of this domino reaction is rather wide and includes also pseudo-three-, three- and four-component reactions. Remarkably, the oleic acid-mediated three-component reaction afforded the desired indole-tethered 4H-chromenes 43 at ambient temperature in high yields.

A promising alternative to conventional harmful organic solvents in MRCs was found to be a choline chloride based deep eutectic solvent (DES, 44) used as a reaction medium in the reaction of salicylaldehyde 1, malononitrile 15a and a wide range of various nucleophiles to provide the corresponding 2-amino-3-cyano-4H-chromenes 43 (Scheme 17). The required solvent 44 was obtained by the reaction of choline chloride and urea.
Deep eutectic solvent is easily recovered from the reaction mixture and can be effectively reused at least three times without noticeable loss of activity. Remarkably, salicylaldehydes bearing both electron-donating (e.g., MeO) and electron-withdrawing groups (e.g., Br) showed almost similar reactivity giving $4H$-chromenes in 65%–98% yields. As for thiols, aromatic compounds like 2-naphthylthiol and a number of functionalized thiophenol derivatives produced the corresponding chromenes in 80%–98% yields, while aliphatic ones (cyclohexylthiol and iso-butylthiol) were significantly less reactive (28% and 45%, respectively). At the same time, secondary amines provided benzo[pyrano[2,3-d]pyrimidines under similar conditions. It was shown that the scope of this reaction is limited to secondary amines, with cyclic ones such as piperidine and morpholine being much more reactive compared to acyclic dimethylamine, whereas primary amines, e.g., benzylamine, did not react at all. Nevertheless, this method provides an easy access to a variety of chromenes and benzo[pyrano[2,3-d]pyrimidines and is very attractive from the viewpoint of green chemistry since it requires mild conditions, no catalyst and recyclable non-toxic reaction medium.

A plausible mechanism for the synthesis of 2-amino-2-chromenes in DES as exemplified by the reaction with thiophenol is shown in Scheme 18. First, the urea part of DES assists the Knoevenagel condensation via hydrogen bonding between the urea hydrogen atom and the oxygen atom of the carbonyl group of salicylaldehyde. At the same time, urea can activate deprotonation of malononitrile using its Lewis basic sites, providing intermediate. Next, the higher reactivity of salicylaldehyde and malononitrile facilitates the Knoevenagel reaction generating intermediate, and then nucleophilic attack of

![Scheme 18](image-url)
thiophenol on the electrophilic carbon–carbon double bond in 23 affords 2-amino-2-chromenes 43,101

Mohammadzadeh et al. demonstrated that high surface area magnesium oxide in DMF represents a highly effective heterogeneous catalytic system for the reaction of salicylaldehyde 1, malononitrile 15a and aryl alcohols 48–50 or ketones 51, 52 to produce chromeno[3,4-c]chromenes 53–55 and chromeno[3,4-c]pyridines 56, 57, respectively (Scheme 19).103 The reaction proceeds very rapidly and provides the corresponding heterocycles in high yields. The catalyst is easily prepared by dehydration of Mg(OH)2 at about 450 °C for 2 hours. Unfortunately, the authors gave poor information about the scope of the reaction, but nevertheless, this method represents a very attractive approach to such polycyclic compounds.

An interesting result was obtained for MCRs between salicylaldehydes and hydrazide derivatives. Thus, the reaction of salicylaldehydes 1, malononitrile 15a and 2-cyanoacetohydrazide 15g was found to produce 2-amino-4(3-amino-5-hydroxy-4-pyrazol-4-ylidene)-4-carbonitrile derivatives 58 under catalysis with potassium phosphate in ethanol (Scheme 20).104 Surprisingly, under the same conditions, the reaction with two equivalents of 2-cyanoacetohydrazide 15g produced linear salicylaldehyde azine derivatives 59 instead of the expected analogue of 58, providing an alternative approach to salicylaldehyde azines.

Scheme 20

![Scheme 20](image)

Using isonitriles 60 as nucleophiles in MCRs between salicylaldehyde and ortho-aminophenols 61 gives rise to 2-imino-1,4-benzoxazine derivatives 62 (Scheme 21).105 Here, the hydroxy group of salicylaldehyde 1 is not involved in the reaction, whereas its presence in aminophenol 61 is of key importance for the formation of compounds 62.

A probable mechanism for the synthesis of compounds 62 is shown in Scheme 22. Initially, condensation of salicylaldehyde 1 and an appropriate aminophenol 61 gives Schiff base 63, which then reacts with isonitrile 60 to generate nitrilium intermediate 64. Nucleophilic attack by the oxygen of ortho-aminophenol 61 on the electrophilic carbon atom affords 2-imino-3,4-dihydroxybenzoxazine 65 undergoing successive oxidation to produce benzoxazine 62 (pathway a). An alternative cyclization pathway involving the salicylaldehyde hydroxyl group and subsequent oxidation that would result in the formation of imino-1-benzofuran 67 was not observed (pathway b). Probably, the NH precursor of 67 (66) is in equilibrium with 64, and the formation of 65 and 62 is thermodynamically favoured, driving the reaction to benzoxazine derivatives 62.

Apart from using carbon, nitrogen or sulfur nucleophiles in the three-component reactions of salicylaldehyde and cyanoacetic acid derivatives, application of phosphorus nucleophiles has also been reported. Thus, condensation of salicylaldehyde 1, malononitrile 15a and trialkyl phosphites 68 proceeds via the phospha-Michael addition and affords (2-amino-4H-chromen-4-yl)phosphonates 69. This reaction has attracted a special attention of researchers and was accomplished by a plenty of procedures using catalysts such as, e.g., K3PO4,106 ethylene diaminediacetate,107 iodine,108 indium trichloride109 and polyethylene glycol 400110 (Scheme 23).

Other catalysts include tetramethylguanidine,111 5-hydroxypentalammonium acetate,112 silica-bonded 2-hydroxyethylammonium acetate (HEAA),113 sulfotiosan-incapsulated nano-Fe3O4,114 nano-MgO,115 ZnO nanorods,116 4-dimethylaminopyridine (DMAP) under MW117 and polyethylene glycol 400110 (Scheme 23).

Metal complex catalysis, both hetero- and homogeneous, has also become an indispensable tool for MCRs involving salicylaldehydes as allowing the synthesis of a variety of useful heterocycles.

Copper(I)-catalyzed three-component reactions of salicylaldehyde, an alkyne and an amine (sometimes referred to as A2 coupling reaction) provides a reliable approach to 2,3-disubstituted benzofuran derivatives. Thus, in 2008, Sakai et al. found that a combination of CuI and CuII catalysts and DMAP was very effective in catalysis of the reaction between salicylaldehydes 1, secondary amines 24 and alkylsilanes 70 to produce 2,3-disubstituted benzofuran 71 in satisfactory to high yields (Scheme 24).123 However, the scope of this reaction is rather limited. The alkyne component 70 is limited to
silylalkynes, where only phenyl and hexyl substituents gave high yields, whereas the introduction of the methyl group decreased the yields to as low as 22% – 28%. As for an amine component, the lowest yield was observed for diallylamine \(24l\) (27% – 30% yields). At the same time, for piperidine \(24b\), morpholine \(24c\) or dibenzylamine \(24m\), the desired benzofurans \(71\) were formed in moderate to high yields (50% – 99%), with the lowest yield (50%) obtained for a nitro-substituted compound.

A probable mechanism for the synthesis of benzofurans \(71\) is illustrated in Scheme 25. The authors assumed that the reaction proceeds through an intramolecular 5-exo-dig cyclization. Copper(I) chloride forms copper acetylide \(72\). At the same time, copper(II) triflate plays a dual role: (a) it acts as a Lewis acid for the \textit{in situ} generation of iminium intermediate \(73\) from aldehyde \(1\) and amine \(24\); and (b) activates the alkyne moiety to assist the intramolecular nucleophilic attack by a hydroxy group via 5-exo-dig cyclization in \(74\).

Later, Li \textit{et al.} developed the CuI-catalyzed A3 coupling reaction between salicylaldehydes \(1\), secondary amines \(24\), and arylacetylenes \(75\) followed by the base-assisted O-annulation reaction to obtain benzofuran derivatives \(76\) (Scheme 26).\(^{125}\) It was found that the final closure of the benzofuran ring requires the presence of a base, and the system K$_2$CO$_3$/Bu$_4$NBr turned out to be optimal. Here, the yields of products \(76\) were influenced mainly by the structure of amine component \(24\) (the presence of at least one alkyl substituent decreased the yield by 19%), and the nature of a substituent in alkyne \(75\) (those substituted with electron-donating groups were more reactive).

It should be noted that the majority of other metal catalysts tested in the above-mentioned reaction, \textit{e.g.,} \(N,N’\)-ethylenebis(salicylideneiminato)copper(II),\(^{126}\) Ni$^{2+}$ exchanged Y-zeolite,\(^{127}\) nano-copper(I) oxide-zinc oxide,\(^{128}\)
Zinc(II) oxide,129 Zn11 anchored onto the magnetic natural hydroxyapatite130 and a copper(II) Schiff base complex immobilized on graphene oxide131 produced only the corresponding intermediate propargylamine derivatives of type \textbf{74}, whereas the AgNO\textsubscript{3}/DMF system was reported to catalyze the tandem 5-exo-dig cyclization and allylic rearrangement to afford 2-substituted benzo[\textit{b}]furans \textbf{71} under rather drastic conditions.132

In contrast to the above-mentioned procedures utilizing volatile and toxic organic solvents, a catalytic system consisting of CuI and [bmim]OAc (1-butyl-3-methylimidazolium acetate) in [bmim]PF\textsubscript{6} proved to be an effective catalyst for the synthesis of 2,3-disubstituted benzo[\textit{b}]furans \textbf{76} (Scheme 27).133 A particular advantage of this procedure is that this catalytic system is easily recoverable and can be reused at least five times without loss in its efficiency. The amine component \textbf{24} is limited to aliphatic secondary amines \textbf{24} such as piperidine \textbf{24b}, morpholine \textbf{24c} and dibenzylamine \textbf{24m}, whereas both secondary aralkyl amines (\textbf{24o,p}) and aromatic primary amines (PhNH\textsubscript{2}) gave no desired benzo[\textit{b}]furans. The amine component \textbf{24} was found to be more reactive than aliphatic ones.

A plausible mechanism for the synthesis of 2,3-disubstituted benzo[\textit{b}]furans \textbf{76} is similar to that for the synthesis of compounds \textbf{71} and is shown in Scheme 28. First, the condensation of salicylaldehyde \textbf{1} with amine \textbf{24} generates active iminium intermediate \textbf{73}. At the same time, CuI reacts with terminal alkyne \textbf{75} to form copper-alkynyl complex \textbf{72}, which subsequently reacts with \textbf{73} yielding propargylamine \textbf{77}. At this step, the AcO− anion of [bmim]OAc acts as a base inducing the polarization of the O—H bond in \textbf{77} and increasing the nucleophilicity of the oxygen atom, thus facilitating the intramolecular hydroaryloxylation of the coordinated carbon—carbon triple bond with copper(i) to afford the desired 2,3-disubstituted benzo[\textit{b}]furan \textbf{76}.

According to the authors opinion, [bmim]PF\textsubscript{6} or [bmim]OAc plays a key role in condensation of 1 and 24 through hydrogen bonding between the hydrogen atom in the position 2 of the imidazolium cation in [bmim]PF\textsubscript{6} or [bmim]OAc and the oxygen atom of the aldehyde group. Application of Cu-catalyzed click reactions in MCRs between salicylaldehydes 1, sugar alkenes 78 and azides 79,80 provides a highly useful approach to functionalized glycosylated iminocoumarins81,82,134 Depending on the nature of an azide component, various types of iminocoumarins are formed. In the case of sulfonyl azides 79 the
reaction proceeds via the ketenimine intermediate and affords glycosylated iminocoumarins 81. With 2-azidoacetonitrile 80, a tandem ‘CuAAC-aldol-cyclization-dehydration’ reaction sequence takes place furnishing the corresponding glycosyl 3-triazolyl-2-iminocoumarin derivatives 82 (Scheme 29). In this case, a Cu-mediated cycloaddition between 2-azidoacetonitrile 80 and sugar alkynes 78 provided a triazole derivative in situ and activated the adjacent methylene group, inducing an aldol-cyclization-dehydration sequence involving salicylaldehyde 1. The most remarkable is that two rings and four bonds of different types (one C−C, one C−O and two C−N bonds) are formed in this reaction, and all four bonds are formed with 2-azidoacetonitrile 80.

Salicylaldehydes bearing both electron-withdrawing and electron-donating substituents reacted smoothly and in high yields in both types of reactions. In the synthesis of glycosylated iminocoumarins 81, the most reactive were propargyl glycosides (X = O, n = 1, reaction time 2 h), whereas for S-propynyl and sulfonyl glycoside derivatives it took 4 hours for the reaction to proceed.

The above-mentioned reaction between salicylaldehyde 1, sugar alkynes 83 and sulfonyl azides 79a,d,e was independently performed by Rajput et al. under the same conditions. However, in this case the authors used only propargyl ethers of carbohydrates 83 as an alkyne component (Scheme 30). Glycosides 83 containing 6-deoxy, 2-deoxy-2-acetamido and disaccharide moieties as well as carbohydrates linked to other positions rather than anomeric afforded high yields of iminocoumarins 84. Also, sulfonylazides bearing different substituents showed virtually equal reactivity. Iminocoumarins 84 with deprotected acetoxy groups were subsequently tested as galectine antagonists and demonstrated high activity.

In 2013, Wu et al. developed a straightforward procedure for the Pd-catalyzed carbonylation of salicylaldehydes 1 and substituted benzyl chlorides 85 to obtain chromenone derivatives 86 (Scheme 31). The scope of the reaction is rather wide; benzyl chlorides with both electron-donating and electron-withdrawing substituents were tolerated under the reaction conditions; however, the former substituents provided higher product yields (69%–99%) compared to the latter ones (71%–76%).
dehydes 1, substrates with different functionalities gave the desired product in moderate to high yields (44% – 95%). The only one exception were nitro-substituted substrates, which proved to be unstable under reaction conditions and underwent the reduction of the nitro group to the amino one followed by self-polymerization.

A probable reaction mechanism is depicted in Scheme 32. The catalytic cycle is initiated by palladium(0) generated from palladium(II) by the action of the phosphine ligand. Then, the oxidative addition of benzyl chloride to palladium(0) occurs to afford organopalladium species 87. After the coordination and insertion of CO, the key intermediate acyl-palladium complex 88 is formed. Nucleophilic attack of the salicylaldehyde on complex 88 results in the elimination of 2-formylphenyl 2-phenylacetae affording final product 86 after the intramolecular condensation.137 Palladium(0) can be regenerated by treatment with a base and used directly in the next catalytic cycle.

PdII-Catalyzed three-component coupling reaction between salicylaldehydes 1, alkynols 89 and anilines 90 or orthoesters 91 represents a straightforward diastereoselective synthetic route to chroomane spiroacetals 92, 93, respectively (Scheme 33).138 Previously, such compounds were obtained, e.g., by the hetero-Diels–Alder reactions requiring tedious experimentation.139–141 In contrast, the proposed PdII-catalyzed MCR is a convenient one-pot procedure performed under ambient temperature from easily available starting materials. In both cases, spiroacetals 92, 93 are produced stereospecifically and in high yields.

A plausible mechanism for the formation of spiroacetals 92 proposed by the authors is illustrated in Scheme 34. The reaction is initiated by coordination of the cationic Pd complex to the triple bond of the starting alkynol 89 to generate intermediate 94. Then, intramolecular addition of the hydroxy group to the oxonium ion affords 95. Protodemetalation of the latter gives enol ether 96 and releases the catalytic species.142–151 Being generated, 96 enters the second catalytic cycle where it reacts with imine 97 produced through condensation of aldehyde 1 with amine 90. Thus, the coordination of the nitrogen atom of imine 97 by the Pd catalyst favours the addition of 96 to produce oxonium intermediate 98 via the Mannich-type reaction.152, 153 Intramolecular nucleophilic addition of the hydroxyl group to the oxonium ion affords 99, which undergoes a protodemetalation reaction to yield the desired product 92, thus terminating the second catalytic cycle.

Another general approach to densely substituted chromanes was elaborated by Taheri et al. by using diarylethylene 100 as the starting material in MCRs involving salicylaldehyde and carbon nucleophiles.154 Three-component reaction of salicylaldehyde 1, 1,1-diphenylethylene 100 and indoles 19 or trimethoxybenzene 101 was accomplished in the presence of a sulfonyl-containing Brønsted acid ionic liquid 102 serving both as a catalyst and as a solvent at 80 °C to provide the desired chromanes 103, 104 in high yields (Scheme 35). The first reaction step comprises an intermolecular hydroalkoxylation of the carbon–carbon double bond of 100. It was shown that the scope of the olefinic component is limited to 1,1-diphenylethylene 100 only, since other styrene derivatives such as methylstyrene have insufficient nucleophilicity to enter this reaction. Substituents in indoles 19 have almost no effect on the yield of chromanes 103. This method represents a convenient
approach to chromanes of such type and provides usual advantages of utilizing ionic liquids, namely, a simple reaction procedure, easy isolation of the desired compounds and possibility to reuse the ionic liquid several times with the same efficiency.

In recent times, application of ultrasonic or microwave assistance in MCRs occupies a special place.

An unusual switchable three-component reaction between salicylaldehyde 1, 5-amino-3-methylisoxazole 105 and N-aryl-3-oxobutanamides 106 was reported in 2014 by Chebanov et al.155 Applying either ultrasonication, or Lewis acid [Yb(OTf)3] catalysis, or both, one can change the direction of the reaction and selectively obtain one of three kinds of heterocyclic scaffolds 107–109 depending on the group in the N-aryl moiety (Scheme 36).

A plausible mechanism for such transformation is shown in Scheme 37. First, it should be mentioned that the formation of any of the products 107–109 through intermediate 110 (pathway a) as for cyclic 1,3-diketones156 was excluded as intermediate 110 did not react with amide 106 under any comparable conditions. Probably, the synthesis of chromane-3-carboxamide 107 proceeds via generation of imine 111 (pathway b) since ultrasonication of 111 and 106 at ambient temperature provided the desired compound 107 during the same reaction time. Expectedly, the Lewis acid activates the carbonyl group in salicylaldehyde 1. As a result, this active species can interact not only with the exocyclic NH2 group but also with the 4-CH nucleophilic centre of aminoisoxazole 105.157 When treated with carboxamide 106, adduct 112 (pathway c) generated from intermediate 113 can lose a water molecule via two different routes: either by elimination at ambient temperature resulting in the formation of dihydroisoxazolo[5,4-b]pyridine 108 or by nucleophilic substitution involving the phenolic OH group under ultrasonication providing oxygen-bridged compound 109. Presumably, in this case the main effect of ultrasound is the energy transfer to the reaction mixture required for the intramolecular heterocyclization, which cannot be provided by heating under conventional magnetic or even mechanical stirring. However, the possibility of the Lewis acid-mediated route cannot be completely excluded since it has been reported for the similar three-component reactions.158,159 This route involves an initial attack of the exocyclic NH2 moiety of aminoisoxazole on the acid-activated β-carbonyl substituent of acetooacetamide and subsequent reaction with salicylaldehyde.

The same tendency to form oxygen-bridged structures under MWI was also observed in the three-component reaction of salicylaldehyde 1, 5-amino-3-arylpyrazole 114 and pyruvic acid 115 (Scheme 38).160 Refluxing the reaction mixture in acetic acid results in the formation of 3-aryl-6-(2-hydroxyphenyl)pyrazolo[3,4-b]pyridine-4-carboxylic acid derivatives 116. The same result was also obtained by applying MWI at 150 °C, allowing one to gain a four-fold reduction in the reaction time due to the higher reaction temperature. Reaction of the starting materials in AcOH at ambient temperature by using ultrasonic irradiation produced oxygen-bridged 3-aryl-10,11-dihydro-4,10-methano-pyrazolo[4,3-c][1,5]benzoxazocine-4-carboxylic acid derivatives 117. Heterocycles 117 are rather stable and tolerated re refluxing in a number of solvents (AcOH, MeOH, EtOH and BuOH). Also, treatment with NaOH in ethanol resulted in removal of the bridged moiety, oxidation, and transformation into compounds 116 in 90% yield.
Scheme 36

\[\text{R} = \text{H, 2-OMe, 2-OEt, 2-Cl, 2-Me, 2-OH, 3-Cl, 2,4-Me} \]

Scheme 37
MW-Promoted MCR between salicylaldehyde, \(p \)-isopropanilaine \(90i \) and \(\alpha \)-chloroacetyl chloride \(118 \) gives rise to benzofuran-2-carboxamide \(119 \) (Scheme 39).\(^{161} \) In place of salicylaldehyde, acetophenones can also be used. This approach allows producing highly functionalized 3-alkylbenzofurans, 3-aminobenzofurans and 3-unfunctionalized benzofurans, however in only satisfactory yields.

Scheme 39

A unique \(\alpha \)-sulfonylation/Knoevenagel condensation/hetero-Diels-Alder reaction cascade affording pentacyclic fused pyranochromenone \(120a \) and pyranooquinolinone benzosultones \(120b \) was found for the reaction of salicylaldehydes \(1 \), \((E) \)-2-phenylthioanisulfonyl chloride \(122 \) and 4-hydroxycoumarins \(123a \) or 4-hydroxyquinolinones \(123b \), respectively (Scheme 40).\(^{162} \) The reactions were catalyzed by ethylenediamine-\(N,N' \)-diacetic acid (EDDA) and proceeded smoothly under prolonged reflux in water. The condensation is regioselective, and the corresponding pyranochromenes \(121a \) and pyranoquinolines \(121b \) are formed as minor products.

Scheme 40

A large group of MCRs involving salisylaldehyde comprises reactions with 1,3-dicarbonyl compounds. These reactions give rise to another very important privileged medicinal scaffold, namely, 2\(H \)-chromenes representing an ubiquitous structural motif in a variety of compounds displaying a wide range of biological activities.\(^{163} \)

Yang et al. pioneered to demonstrate that lipase can catalyze MCRs between salicylaldehyde, acetoacetone \(124 \) and alcohols \(125 \) to afford functionalized 2\(H \)-chromenes \(126 \) in satisfactory yields (Scheme 41).\(^{164} \) The scope of alcoholic substrates is limited to aliphatic alcohols, where the linear ones with a longer alkyl moiety are less reactive, and branched-chain alcohols do not react at all. The proposed procedure cannot be considered to be practically valuable; however, this study extends the utility of lipase in organic synthesis.

Scheme 41
Petasis-borono-Mannich reaction represents an efficient synthetic route to 2H-chromenes proceeding without participation of 1,3-dicarbonyl compounds. Candeias et al. and, independently, Petasis et al. have shown that the reaction between salicylaldehyde 1, amine 24 and vinylboronic acids 127 can be successfully performed using water as a reaction medium to produce substituted 2H-chromenes 128 in high yields (Scheme 42).

Changing one of the starting materials in this reaction results in changing the reaction pathway. For example, using phenylboronic acid 129 in the above-mentioned reaction led to the formation of alkylaminophenols 130 in yields up to 96%. At the same time, with an amino acid, e.g., L-phenylalanine 131, as an amino component, boron complex 132 was obtained in 85% yield with 99% de (Scheme 43).

An approach to coumarin-3-carboxylic esters 137 comprises the reaction of salicylaldehydes 1, cyclic 1,3-dicarbonyl compound, such as 2,2-dimethyl-1,3-dioxane-4,6-dione 138 (Meldrum’s acid), and alcohols 125 under catalysis with ferric chloride (Scheme 45). Here, alcohols 125 act both as a reagent and a solvent.

A probable mechanism of this process is illustrated in Scheme 46. First, FeCl3-catalyzed reaction of Meldrum’s acid 138 with alcohol 125 yields esterification product 139, and then the Knoevenagel condensation of the latter with salicylaldehydes 1 provides intermediate 140, which is easily

In all cases the resulting products required no laborious isolation or purification since they precipitated from the reaction mixture.

A convenient approach to 3-cinnamoylcoumarins 133 represents the three-component reaction between salicylaldehyde 1, β-keto esters 134 and aromatic aldehydes 135 catalyzed by bismuth(III) trifluoromethanesulfonate (Scheme 44). Interestingly, addition of hydrazine turns this reaction into the four-component one, affording pyrazolyl-coumarins 136 in high yields under the same reaction conditions. This efficient and selective methodology characterized by using a ‘green’ catalyst, low costs, short reaction times and an easy work-up procedure provides a useful approach to coumarin derivatives, a structural scaffold realized in a range of naturally occurring products and pharmaceuticals.
transformed into the corresponding products 137 through an intramolecular transesterification.

Amines proved to be effective catalysts for the synthesis of coumarin derivatives. Among them, piperidine is one of the most commonly used. Thus, in 2013 Ghandi et al. performed piperidine-catalyzed condensation of salicylaldehydes 1 and ethyl acetoacetate 134b with isocyanides 60 to obtain substituted pyrrole-fused coumarins 141 in good yields (Scheme 47). The target compounds are probably obtained through a reaction of in situ produced 3-acetyl-2H-chromen-2-one intermediates with isocyanides 60 via Michael addition/intramolecular cyclization/oxidation tandem reactions. Both strong electron-withdrawing and electron-donating substituents in salicylaldehydes 1 decrease the product yields (49% – 59%), while the modest electron-withdrawing substituents have less pronounced effect. The highest yields were achieved with unsubstituted salicylaldehyde.

Alizadeh et al. demonstrated that the piperidine-iodine dual catalyst system showed excellent results in the synthesis of coumarins bearing a heterocyclic moiety. Reactions between salicylaldehyde 1, \(\beta \)-keto esters 134 and 1-(2-aminophenyl)pyrrole 90j or isatoic anhydride 144 provided pyrrole[1,2-\(a \)]quinoxaline-145 or quinazolinone-substituted coumarins 146 respectively (Scheme 49). In the case of coumarin 146 the reaction requires the presence of ammonium acetate and thus is considered to be the four-component process. The highest yields of the heterocycles 145, 146 were attained with salicylaldehydes 1 having electron-withdrawing substituents (NO2, Cl), whereas the presence of electron-donating substituents (MeO) reduces the yields by on average 30%. The same tendency is observed with the elongation of the alkyl radical \(R^2 \) in substituent (80%). At the same time, the diethylamino substituent provided lower yield, probably due to a facile oxidation under reaction conditions. However, the scope of this reaction is limited to only one type of a substrate, namely, ethyl cyanoacetate 15b, since attempts to use malonic acid, malononitrile or diethyl malonate failed. Later, it was shown that this reaction can also be performed not only under basic catalysis conditions, but also under acidic ones (PhCO2H, BuOH, reflux, 8 – 24 h).
β-keto ester 134. Undoubtful advantages of this procedure are mild reaction conditions and easy isolation of the resulting compounds.

A probable mechanism for the formation of 146 is illustrated in Scheme 50. First, isatoic anhydride 144 transforms into 2-aminobenzamide 147. Next, the piperidine-catalyzed Knoevenagel reaction and cyclization of salicylaldehyde 1 and β-keto ester 134a provides 3-acetylcoumarin 148. Then, I2-catalyzed condensation reaction of 2-aminobenzamide 147 and 3-acetylcoumarin 148 generates intermediate 149. Subsequently, an intramolecular nucleophilic attack of the amide NH2 on the imine group in compound 149 provides the anticipated product 146. It appears that I2 plays two essential roles in this reaction, a) the construction of imine 149, potentially via coordination to the carbonyl group, and b) activation of the imine group to promote its reaction with nucleophiles.

MCRs of salicylaldehydes 1, acetylacetic ester 134b and 3-aminopyrazol-5-ones 150 under catalysis with piperidine in acidic medium gives rise to 2,3-dihydrochromeno[4,3-d]pyrazolo[3,4-b]pyridine-1,6-diones 151 possessing antibacterial activity against certain Gram-(+)-strains. The authors demonstrated that this reaction proceeds stepwise through an initial condensation of salicylaldehyde 1 with acetylacetic ester 134b to form 3-acetylcoumarins followed by condensation of the latter with pyrazolones. As for the scope of this method, it turned out that acetylacetic ester 134b seems to provide optimal electronic and steric environment of the carbonyl group, since attempts to replace it, e.g., ethyl benzoylacetae were unsuccessful. At the same time, the range of aminoheterocyclic components is rather wide and includes also 5-amino-3-methyl-1-phenylpyrazole (152), 3-aminom,uracil (154), so these MCRs can be used as a general approach to coumarin-based polyheterocycles 151, 155–157 (Scheme 51).

Among amine catalysts used in the MCRs involving salicylaldehyde and 1,3-dicarbonyl derivatives, amino acids occupy a special place.

Scheme 50

Scheme 51
Application of \(N\)-acetylglucose as an inexpensive catalyst in the Biginelli reaction between salicylaldehyde, ethyl acetooacetate 134b and urea/thiourea 45a,b gave a surprising result.\(^{177}\) It was found that salicylaldehyde reacts to form unexpected bicyclic oxygen-bridged pyrimidines 158a,b under refluxing in methanol in the presence of \(N\)-acetylglucose, whereas under traditional reaction conditions \(R = H, 5\text{-}\text{OMe}, 5\text{-}\text{OEt}, 4\text{-}\text{OMe}, 3\text{-}\text{Me}, 3\text{-}\text{Cl}, 3\text{-}\text{Br}\) was obtained (Scheme 52).

One more example of an unusual course of the Biginelli-like MCRs was discovered by Gorobets et al. when studying the reaction between salicylaldehydes 1, 3-amino-1,2,4-triazole 153 and acetone 51b (Scheme 53).\(^{178}\) The aldehyde component reacted with the exocyclic amino substituent rather than with the endocyclic nitrogen atom of triazole 153 resulting in the formation of tetrahydropyrimidine 160. Depending on the reaction conditions, condensation afforded various products. Thus, under refluxing in methanol with a catalytic amount of \(4\text{N HCl, compound 160 was produced; however, the microwave irradiation (170 °C) of the reaction mixture led to the formation of oxygen-bridged compound 161, in both cases in moderate yields. It should be noted that a great deal of other catalytic systems were applied to obtain dihydropyrimidine derivatives including hydrogen chloride in water,\(^{179}\) \(\alpha\text{-Zr(O}_{3}\text{PCH}_{3})_{2}\text{(O}_{3}\text{PCuH}_{2}\text{SO}_{3}H)_{0.8}}, 180\) ytterbium pitarate under solvent-free conditions,\(^{181}\) Wells-Dawson heteropolyacid catalyst,\(^{182}\) poly(4-acetylthymethyl)pyridinium chloride-doped supported \(\text{H}_{3}\text{Mo}_{12}\text{O}_{40}), 183\) guanidine,\(^{184}\) tin(IV) chloride pentahydrate,\(^{185}\) nano-\(\gamma\text{-Fe}_{2}\text{O}_{3} - \text{SO}_{3}), 186\) copper(II) chloride dihydrate,\(^{187}\) \([\text{Cu}_{2}(2\text{-}bipy)]_{2}\text{[Cu}_{2}(2\text{-}bipy)]_{2}\text{[Pmno}_{3}\text{V}_{2}\text{O}_{5}])_{2} - 1.5\text{H}_{2}\text{O}, 188\) aluminium oxide-supported sulfuric acid,\(^{189}\) yttria-zirconia-based Lewis acid catalyst,\(^{190}\) 1-methylimidazole hydrogen sulfate,\(^{191}\) chromic(III) sulfamate,\(^{192}\) [DMEA][\text{HSO}_{4}],\(^{193}\) titanium grafted polyamidoamine second generation dendritic benzene mesoporous silica,\(^{194}\) indium(III) chloride,\(^{195}\) \(\text{Ce(SO}_{4})_{2}), 196\) sodium hydroxide,\(^{197}\) aminosulfinic acid,\(^{198}\) [\text{cmmim][BF}_{4}],\(^{199}\) magnesia in acetonitrile,\(^{200}\) \(\gamma\text{-AlO(OH}), 201\) Li(glycine),\(^{202}\) (\(\text{CF}_{3}\text{SO}_{3})_{2}\text{molybdenum(V)}\) chloride in acetonitrile,\(^{203}\) zeolite supported molybdenophosphoric acid in acetonitrile,\(^{204}\) (1-(3-sulfinic acid)propyl)pyridin-1-ium hexafluorophosphate,\(^{205}\) polyethyleneglycol/sulfonated montmorillonite nanocomposite,\(^{206}\) imidazol-1-ylacetic acid,\(^{207}\) organosilane sulfonated graphene oxide nanocatalyst,\(^{208}\) sodium tetrafluoroborate,\(^{209}\) aluminosilicate AlKIT-5,\(^{210}\) copper diacetate,\(^{211}\) 3-butyl-1,3-thiazolidinium-2-thione \(p\text{-}tolenesulfonate, 212\) silica-supported fluoroboric acid,\(^{213}\) silica-supported fluoroboric acid,\(^{214}\) nano-silica supported tin(II) chloride,\(^{215}\) triethyl(sulfopropyl)ammonium dihydrogen phosphomolybdate,\(^{216}\) borax/sulfuric acid,\(^{217}\) 3-butyl-1-methyl-1\text{-}imidazol-3-ium hexafluorophosphosphate,\(^{218}\) zinc(II) perchlorate,\(^{219}\) \(\text{H}_{2}\text{O}_{9}\text{S}_{2}\text{Si}), 220\) silica-gel-supported sulfuric acid,\(^{221}\) imidazolium-tagged iron,\(^{222}\) silica-supported ionic liquid \(\text{Si[StSipim][PF}_{6}), 223\) brominated Amberlyst 15,\(^{224}\) phosphorus pentoxide,\(^{225}\) phenylacetic acid coated \(\text{Fe}_{2}\text{O}_{4}), 226\) 4-aminoenazonzamido-functionalized polymer triflic acid salt,\(^{227}\) hydrogen chloride,\(^{228}\) copper methanesulfonate,\(^{229}\) dodecatungstophosphoric acid/KSF montmorillonite,\(^{230}\) triphenyl bismuth(V) bisperfluorooctanesulfonate,\(^{231}\) dimethylbromosulfonyl chloride,\(^{232}\) dodecatungstophosphoric acid/KSF montmorillonite,\(^{233}\) triphenyl bismuth(V) bisperfluorooctanesulfonate,\(^{234}\) dimethylbromosulfonyl chloride,\(^{235}\) MgAlCO\(_3\)\(_7\)-Fe\(_3\)O\(_4\),\(^{236}\) hydrogen chloride,\(^{237}\) large pore H-BEA zeolite,\(^{238}\) boronic acid tributyl ester,\(^{239}\) pyridinium p-toluenesulfonate,\(^{240}\) titanium tetrachloride,\(^{241}\) catalyst free, in ethanol,\(^{242}\) hydrogen chloride,\(^{243}\) aluminum(III) chloride in methanol,\(^{244}\) 1-methylimidazolium hydrogen sulphate [Hmim][\text{HSO}_{4}],\(^{245}\) most of which provide the Biginelli products in high yields and with high purity.

Multicomponent reactions involving salicylaldehyde, 1,3-cyclohexanediones and various nucleophiles open an access to functionalized tetrahydro-1H-xanthen-1-one derivatives.
In 2012, Li et al. reported on the MCRs between salicylaldehydes \(\text{I}, 1,3\text{-cyclohexanediones \(\text{2} \) and a variety of carbon-, sulfur-, and nitrogen-based nucleophiles, which were successfully performed in the presence of L-proline to afford densely functionalized 4H-chromenes \(\text{162} – \text{164} \) (Scheme 54).\(^{244}\) Interestingly, none of other catalysts tested in this reaction (e.g., Toluene, FeCl\(_3\), H\(_3\)BO\(_3\), NaOH, K\(_2\)CO\(_3\), DABCO, etc.) was effective in generating the desired heterocycles. Instead, by-products in variable ratio were formed. However, later Bhattacharjee et al. have independently demonstrated that such MCRs using various thiols can be successfully catalyzed by NH\(_4\)Cl in aqueous medium.\(^{245}\)

The nature of substituents in salicylaldehyde \(\text{I} \) has no significant effect on the yields of compounds \(\text{162} – \text{164} \). At the same time, steric hindrance in the position \(5 \) of 1,3-cyclohexanediones \(\text{2} \) favours the reaction, and the corresponding 5,5-dimethyl and 5-isopropyl derivatives being the most reactive.

A probable mechanism for the synthesis of 4H-chromenes \(\text{163} \) by the example of the reaction between salicylaldehyde \(\text{I} \), dimedone \(\text{2b} \) and thiophenol \(\text{165a} \) is depicted in Scheme 55. The process is induced by the formation of imine intermediate \(\text{166} \) by the reaction of salicylaldehyde \(\text{I} \) with L-proline.\(^{246 – 248}\) Next, \(\text{166} \) undergoes nucleophilic addition of thiophenol \(\text{165} \) (pathway \(a \)) or dimedone \(\text{2b} \) (pathway \(b \)) to yield the corresponding Mannich-type intermediate \(\text{167} \) or \(\text{168} \), respectively, which are susceptible towards nucleophilic attack of the other nucleophile, providing the desired product \(\text{163} \) following an intramolecular dehydration. Although pathways \(a \) and \(b \) are both able to generate \(\text{163} \), the authors believed that the reaction proceeds predominantly via the pathway \(b \).

It should be noted that among MCRs of salicylaldehyde, those involving 1,3-dicarbonyl compounds and indoles always attracted a special attention, since the resulting \(9\)-(1H-indol-3-yl)-xanthen-1-(9H)-ones have versatile biological activities.\(^{249}\)

In 2015, Kasralikar et al. studied the reaction of salicylaldehyde with 4-hydroxycoumarin \(\text{169} \) using indole \(\text{19} \) and barbituric acid \(\text{170a} \) as nucleophiles, and in search for optimal reaction conditions L-proline was confirmed to be the most effective catalyst compared to various metal chlorides (ZnCl\(_2\), SnCl\(_2\), InCl\(_3\) and Sc(OTf)\(_3\)). The above reaction gives rise to a series of 7-(1H-indol-3-yl)-6H,7H-chromeno[4,3-b]chromen-6-one \(\text{171} \) and 5-(6-hydroxy-6-oxo-6H,7H-chromeno[4,3-b]chromen-7-yl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives \(\text{172} \) having potential anti-HIV activity (Scheme 56).\(^{250}\)

A useful inexpensive catalyst for the synthesis of coumarins and chromenes was found to be an acid hydrolysate of bovine tendons (TH), which is a renewable source of amino acids such as proline and hydroxyproline. As depicted in Scheme 57, the treatment of salicylaldehydes \(\text{I} \), 1,3-hexanediones \(\text{2} \) and various nucleophiles with TH in ethanol afforded chromene derivatives \(\text{164} \) in moderate to excellent yields (43% – 95%).\(^{251}\) It should be noted that this reaction has also been performed by using different catalysts such as Amberlite IRA-400 CI, oleic acid and ZnO nanoparticles;\(^{254}\) however, the above TH-catalyzed procedure has obvious advantages such as using an inexpensive catalyst, simple isolation of the products and possibility to be scaled-up to multigram amounts.

L-Cysteine-functionalized magnetic nanoparticles (LCMNP) were applied as an effective and magnetically separable organocatalyst for the reaction of salicylaldehyde \(\text{I} \), dimedone \(\text{2b} \) and indole \(\text{19} \) producing 9-(1H-indol-3-yl)-xanthen-4-(9H)-ones \(\text{173} \) from high to excellent yields.\(^{255}\) Using barbituric or thiobarbituric acids \(\text{170a,b} \) in place of dimedone \(\text{2b} \) gives rise to a variety of 5-(1H-indol-3-yl)-chromeno[2,3-d]pyrimidines \(\text{174} \) (Scheme 58).

The authors proposed the reaction mechanism for the formation of 9-(1H-indol-3-yl)xanthen-1-(9H)-ones \(\text{173} \). LCMNP can probably activate salicylaldehyde \(\text{I} \) via formation of imine \(\text{175} \). Both carboxylic and amino moieties of the amino acid participate in activating the aldehyde for...
addition of diketone or indole components. Therefore, at this step, two reaction routes were possible (a and b). According to the route a, which is more probable, intermediate 175 reacts with diketone 2b to form the corresponding Knoevenagel condensation adduct 176. Addition of indole 19 to this adduct generates intermediate 177 undergoing a cyclization to afford the desired product 173. This reaction route has been confirmed by isolation of a Knoevenagel adduct without an indole component. The alternative reaction route b comprises the addition of indole 19 to intermediate 175 to generate intermediate 178, which subsequently undergoes the addition of diketone 2b to yield 177 transforming into the desired product 173 (Scheme 59).

Metal-based Lewis acids are no less effective catalysts in such reactions. Three-component reactions of salicylaldehyde 1, dimerone 2b and various carbon-based nucleophiles...
R₁ = H, 3-Br, 3-NO₂, 4-OMe, 4-OH; R₂ = H, 2-Me, 5-Br; R₃ = H, Me; R₄ = H, Me; LCMNP is L-cysteine-functionalized magnetic nanoparticles

Scheme 58

Scheme 59
such as antipyrine 179, as well as indoles 19 and naphthol 50, are effectively catalyzed by an anhydrous FeCl₃–PPh₃ catalytic system (Scheme 60). It was shown that the addition of PPh₃ significantly improved the yields of products 180–182, and such effect was not observed with any other metal catalyst tested. Here, triphenylphosphine acts as the hydrogen bond acceptor weakening the intramolecular H-bond in the dimesdene moiety of an intermediate product, thus facilitating the interaction of the substrate with FeCl₃ and subsequent transformation to the final product of the reaction. The authors have found that the key feature of the process is the reversible alkylation of dimesdene with salicylaldehyde allowing one to improve the selectivity of this three-component reaction with carbon-based nucleophiles.

Barbituric acid-annulated chromenes 183 can be synthesized by a highly effective procedure comprising the InCl₃-catalyzed Mannich reaction between salicylaldehyde 1, 1,3-dimethylbarbituric acid 184 and cyclic secondary amines 24 at ambient temperature (Scheme 61).

\[
\begin{align*}
\text{CHO} & & \text{OH} & & \text{Me} \end{align*}
\]

The plausible mechanism for the formation of 183 is shown in Scheme 62. Being treated with pyrrolidine 24e, salicylaldehyde 1 generates intermediate 185 that undergoes subsequently a nucleophilic attack by 184a forming intermediate 186. Then, compound 186 eliminates H₂O to provide the corresponding product 183.

As was already mentioned above, the 'on-solvent' procedure proved remarkably effective in reactions of salicylaldehyde and various cyanoacetic acid derivatives. Elinson et al. have demonstrated that application of this procedure to the three-component reaction involving salicylaldehyde 1, 1,3-dimethylbarbituric acid 184 and cyclic secondary amines 24 at ambient temperature (Scheme 61).
cylaldehydes 1, dimedone 2b and barbituric acids 170a, 184a,b is no less successful.260 Thus, functionalized tetrahydro-1H-xanthen-1-one derivatives 187 are formed without any catalyst under refluxing in a minimum amount of EtOH for 5 min in excellent yields (90% – 95%) (Scheme 63).

Multicomponent reactions between salicylaldehyde, barbituric acid 170a and pyrazolones 33 or isocyanides 60b,d give rise to chromeno[2,3-d]pyrimidines 189, 190. Soleimani et al.261, 262 demonstrated that these reactions are catalyzed by organic acids such as acetic and p-toluene sulfonic acids in water-ethanol media (Scheme 64). In both cases the scope of the reactions is limited to only barbituric acid, and attempts to replace it with, e.g., malononitrile, failed. Also, there are limitations concerning the substituents in the substrates — the presence of the 3-methoxy group in pyrazolone 33, as well as the nitro group in salicylaldehyde 1 in the case of reaction with isocyanides 60 reduces the yields up to 60%. Apart from these exceptions, both procedures provide excellent yields of the desired heterocycles. These procedures require rather prolonged heating; however, they have such undoubted advantages as operational simplicity and using water as a component of the reaction medium.

As noted above, in MCRs with salicylaldehyde and malononitrile, trialkylphosphites behave as usual nucleophiles, according to the typical reaction pattern.107 – 110 At the same time, in the case of reactions involving 1,3-dicarbonyl compounds, the situation is quite different. Thus, the reaction between salicylaldehydes 1, cyclohexane-1,3-diones 2 and trialkylphosphites 68 under solvent-free conditions and without a catalyst afforded 2,3,4,11b-tetrahydro-

\textit{1H,6H,6\textalpha\textbeta\textgamma}-[1,2]benzoxaphospholo[2,3-b][1,2]benzoxaphosphol-1-one derivatives 191 in high yields (Scheme 65).263

A probable mechanism for this reaction is demonstrated in Scheme 66. Initially, the CH-acid 2 reacts with salicylaldehyde 1 to provide \(\alpha\beta\textgamma\)-unsaturated intermediate 192. Then, nucleophilic attack of trialkylphosphite 68 on 192 generates zwitterion 193 wherein the phosphorus atom undergoes an intramolecular attack by the adjacent enolate and phenolic oxygen atoms to give the desired \(1H,6H,6\textalpha\textbeta\textgamma\)-[1,2]benzoxaphospholo[2,3-b][1,2]benzoxaphosphol-1-one derivatives 191 via elimination of an alcohol molecule.

\textbf{2.3. Four-component reactions}

Four-component reactions of salicylaldehyde form a far less numerous pool of reactions. However, each of them provides a unique, chemo- and regioselective approach to chromene and coumarin scaffolds.

In 2016, Chung et al.264 performed a pseudo-four component reaction of substituted salicylaldehydes 1, functionalized phenols 48 and malononitrile 15a in the presence of
trimethylamine as a catalyst under MWI to provide a series of chromeno[2,3-b]pyridine derivatives 194 (Scheme 67).

An alternative procedure to obtain such type of compounds comprises a non-catalyzed variant under solvent-free conditions at 110 °C. In both cases reactions are completed at most in 30 min.

Heterogeneous catalytic systems show high efficiency in four-component reactions to produce substituted chromene derivatives. Thus, pseudo-four component cyclocondensation between salicylaldehydes 1, malononitrile 15a and aromatic thiols 165 catalyzed by ZrP₂O₇ nanoparticles under reflux in EtOH afforded benzopyrano[2,3-b]pyridine derivatives 195 (Scheme 68).²⁶⁶

A probable mechanism for this reaction is presented in Scheme 69.

It should be noted that, to obtain similar benzopyranono[2,3-b]pyridines, different reaction conditions were also reported comprising the catalysis with piperidine, triethylamine,²⁶⁸ chitosan under solvent-free conditions²⁶⁹ or SnO nanoparticles.²⁷⁰ Here, the first two of the above-mentioned methods provided lower yields compared to the procedure using ZrP₂O₇ nanoparticles, and in the last one the procedure to prepare the heterogeneous catalyst is too laborious, while the method of applying the chitosan catalyst is very promising both in terms of high yields and simple experimentation.

Silica-bonded N-propylpiperazine sodium N-propionate (SBPPSP) was applied as a reusable heterogeneous solid base catalyst for the synthesis of benzopyrano[2,3-d]pyridines 196.²⁷¹ Salicylaldehydes 1, malononitrile 15a and secondary amines 24 were reacted at ambient temperature under solvent-free conditions (Scheme 70). Salicylaldehydes bearing both electron-donating and electron-withdrawing groups are well tolerated in this reaction. As for an amine component, the best results have been achieved by using cyclic secondary amines like piperidine (24b), morpholine (24e), and pyrrolidine (24e), whereas aliphatic amines such as, e.g., diethylamine, did not react.

A unique approach to construct a coumarin scaffold was proposed by Nandaluru et al. based on the inverse electron demand Diels-Alder reaction.²⁷² The overall conversion of salicylaldehyde, dimethyl glutarate 197, carbonyl compounds 51, 52 and pyrrolidine affording 6H-dibenzo[b,d]-pyran-6-one derivatives 198, 199 comprised six reactions.

R¹ = H, OMe, C₆H₄; R² = NH₂, N(Me)₂, N(Et)₂, C₆H₄
including Knoevenagel condensation, transesterification, enamine formation, an inverse electron demand Diels-Alder reaction, 1,2-elimination and transfer hydrogenation (Scheme 71). Both dienophiles and dienes for the main inverse electron demand Diels-Alder step were produced \textit{in situ} by a secondary amine-catalyzed strategy. The highest yields were achieved for 5-methoxy- and 5-methyl-substituted salicylaldehyde, other substitution patterns gave similar results, whereas 6-methoxy-substituted salicylaldehyde did not enter the reaction at all. Generally, this MCR procedure allows the synthesis of a series of previously reported A-ring functionalized 6\textit{H}-dibenzo\textit{[b,d]}pyran-6-ones in superior yields (by up to 44\%) compared to those obtained \textit{via} a stepwise protocol.273, 274

An effective diastereoselective approach to C3-dihydrofuran-functionalized coumarins 200 \textit{via} the four-component reaction between salicylaldehydes 1, substituted benzaldehydes 135, 6-methyl-4-hydroxy-2-pyranone 34 and pyridinium bromide 201 was developed by Sun \textit{et al.}275 The Et\textsubscript{3}N-catalyzed reaction proceeded smoothly under solvent-free conditions under MWI to provide coumarins 200 in 71\% – 89\% yields (Scheme 72). Electronic effects both in
salicylaldehydes and in the benzaldehyde components influence the product yields. Thus, the presence of electron-donating substituents in the positions 2 and 5 of salicylaldehydes renders these compounds more reactive and provides higher yields of coumarins compared to those substituted with electron-withdrawing substituents.

A plausible mechanism for the synthesis of the corresponding product is illustrated in Scheme 73. The first reaction step comprises the Knoevenagel condensation. At the same time, pyridinium ylide generated by the reaction of pyridinium bromide with Et3N undergoes the Michael addition with intermediate to give enolate 204. The latter eliminates pyridine and cyclizes simultaneously to afford dihydrofuran-functionalized coumarins 200. In total, one carbon–oxygen and two carbon–carbon bonds in dihydrofuran ring are generated in this MW-assisted four-component domino reaction.

An elegant synthetic approach to a combinatorial library of biologically significant pyrazolopyrazoles was developed based on application of nitroketene dimethylhydrazides and salicylaldehyde (Scheme 74). This domino reaction sequence provides the formation of C–C, C–O, C–N, C=O, C=N bonds and one stereocentre in a single operation through condensation/Knoevenagel/Michael/annulation reactions. The particular advantage of this procedure is that the target heterocycles are isolated by simple filtration.

A probable mechanism for the formation of chromenopyrazoles is shown in Scheme 75. The initial step is condensation of ethyl acetoacetate with salicylaldehyde to give Michael acceptor. Adduct immediately reacts with hydrazine hydrate affording pyrazolone, which undergoes the Knoevenagel condensation with salicylaldehyde to give Michael acceptor. Adduct interacts with nitroketene dimethylhydrazide via Michael-type addition reaction forming open-chain intermediate. The latter undergoes intramolecular phenolic O-cyclization through pathway a to afford compound with elimination of MeSH. Intermediate can exist in two rotameric forms, that could possibly undergo enolic N- or O-cyclizations via pathways b or c to produce compounds and , respectively. It should be noted that no traces of or were detected, and only compound was detected.
formed exclusively suggesting phenolic O-cyclization via pathway a to be more facile.

3. Conclusion
Salicylaldehydes, being commercially available and easily accessible starting materials, are efficiently utilized in a plethora of MCRs, mostly in (pseudo)three- as well as in four-component reactions. In this review, we focused our attention on the MCRs with the participation of at least one molecule of salicylaldehyde wherein both hydroxyl and aldehyde groups are involved in the reaction. We tried to cover applications of salicylaldehydes as privileged synths for the synthesis of a wide range of various heterocyclic systems such as chromenes, coumarins and xanthenes.

The authors are grateful to Alzahra Research Council for support. M.M.Heravi is also grateful to Iran National Science Foundation (INSF) for the granted individual research chair.

References
1. J.D.Sunderhaus, S.F.Martin. Chem. Eur. J., 15, 1300 (2009)
2. K.C.Nicolau, J.S.Chena. Chem. Soc. Rev., 38, 2993 (2009)
3. R.C.Simon, N.Richter, E.Busto, W.Kroutil. ACS Catal., 4, 129 (2014)
4. B.B.Touré, D.G.Hall. Chem. Rev., 109, 4439 (2009)
5. I.Kirk, R.Eller, D.F.Othmer, M.Grayson, D.Eckroth. Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 7, (3rd Ed.). Wiley, New York, 1979. P. 196
6. R.F.Dalton, G.W.Seward. Reagents in the Mineral Industry. (Ed. MJ.Jones). (London: Institute of Mining and Metallurgy, 1984), p. 107
7. I.V.Hansen, L.Skattenboel. Org. Synth., 82, 64 (2005)
8. I.B.Masesane, Z.Y.Desta. Bellsle J. Org. Chem., 8, 2162 (2012)
9. A.Al-Sherif, S.M.Aljahlaki. J. Coord. Chem., 66, 3423 (2013)
10. M.M.Heravi, T.Alshiri. Adv. Heterocycl. Chem., 113, 1 (2014)
11. M.M.Heravi, S.Khughaninejad, M.Mostofi. Adv. Heterocycl. Chem., 112, 1 (2014)
12. M.M.Heravi, F.V.Yusvari. Adv. Heterocycl. Chem., 114, 77 (2015)
13. M.M.Heravi, V.Zadsirjan. Adv. Heterocycl. Chem., 117, 261 (2015)
14. M.M.Heravi, B.Talaee. Adv. Heterocycl. Chem., 118, 195 (2016)
15. S.Sadjadi, M.M.Heravi, N.Nazari. RSC Adv., 6, 53203 (2016)
16. F.Nemat, M.M.Heravi, A.Elnampour. RSC Adv., 5, 45775 (2015)
17. M.M.Heravi, E.Hashemi, Y.S.Beheshtiha, K.Kamjou, M.Toolabi, N.Hosseintash. J. Mol. Catal. A: Chem., 392, 174 (2014)
18. M.M.Heravi, F.Mousawizadeh, N.Ghobadi, M.Tajbaksh. Tetrahedron Lett., 55, 1226 (2014)
19. M.M.Heravi, B.Bagherniajjad, H.A.Askooie, R.Hekmatshoar. Tetrahedron Lett., 49, 6901 (2008)
20. M.M.Heravi, S.Mohghimi. Tetrahedron Lett., 53, 392 (2012)
21. M.M.Heravi, S.Sadjadi, N.M.Haj, H.A.Askooie, F.F.Bamoharram. Catal. Commun., 10, 1643 (2009)
22. M.M.Heravi, M.Daraie. Molecules, 21, 441 (2014)
23. A.Rezvani, M.M.Heravi, Z.Shaabani, M.Tajbaksh. Tetrahedron, 73, 2009 (2017)
24. C.A.Kontogvorgis, D.J.Hadjivap władz-Litina. J. Med. Chem., 48, 6400 (2005)
25. S.Kirkiakrachian, D.T.Thuy, S.Siesic, R.Bakhhchianin, R.Kurkjian, T.Tonnare. Farmaco, 57, 703 (2002)
26. M.Tajbaksh, M.Heidary, R.Hosseinzadeh, M.A.Amiri. Tetrahedron Lett., 57, 141 (2016)
27. G.Sabitha, K.Arunabhath, K.Sudhakar, B.Sastry, J.S.Yadav. Synth. Commun., 38, 3439 (2008)
28. X.S.Wang, D.Q Shi, Y.Li. Chen, X.Y.Wei, ZM.Zong. Synth. Commun., 35, 97 (2005)
29. D.Prasad, A.Preetam, M.Nath. C.R. Chim., 16, 1153 (2013)
30. L.Nagarapu, S.Karnakanti, R.Bantu, B.Sridhar. Synth. Commun., 42, 967 (2012)
31. T.R.Mandlimath, B.Umamahesh, K.I.Sathiyanarayanan. J. Mol. Catal. A: Chem., 391, 198 (2014)
32. M.Tajbaksh, M.Heidary, R.Hosseinzadeh. Res. Chem. Interm., 42, 1425 (2016)
33. N.Sato, M.Jitsuoka, T.Shibata, T.Hirohashi, K.Nonoshita, M.Moriya, Y.Haga, A.Sakuraba, M.Ando, T.Ohe, I.Waasa, A.Gomori, A.Ishihara, A.Kanatani, T.Fukami. J. Med. Chem., 51, 4765 (2008)
34. R.V.Kupwade, K.S.Pandit, U.V.Desai. Res. Chem. Interm., 42, 6313 (2016)
35. B.S.Kuarm, J.Y.Madhap, S.V.Laxmi, B.Rajitha. Synth. Commun., 41, 1719 (2011)
36. P.Zhang, Y.D.Yu, Z.Zhang. Synth. Commun., 38, 4474 (2008)
37. M.M.Heravi, P.Ansari, S.Saeedi, N.Tavandi-Hosseini, N.Karimi, M.H.Majid, A.Parvan, S.Mina, K.Narges, T.Niloofar. Bull. Chem. Soc. Ethiop., 25, 315 (2011)
38. S.T.Morbale, S.D.Jadhav, M.B.Deshmukh, S.S.Patil. Tetrahedron Lett., 53, 261 (2014)
39. L.C.Rao, N.S.Kumar, N.J.Babu, H.M.Meshram. RSC Adv., 5, 71022 (2015)
40. J.M.Khurana, K.Vij. J. Chem. Sci., 124, 907 (2012)
41. M.N.Elinson, O.O.Sokolova, R.F.Nasybullin. Mendeleev Commun., 25, 19 (2015)
42. M.Zakeri, M.M.Heravi, H.A.Oskooie, F.F.Bamoharram. Synth. React. Inorg., Met.-Org. Nano-Met. Chem., 40, 916 (2010)
43. R.J.Cremlyn, D.Saunders. Phosphorus, Sulfur Silicon Relat. Elem., 81, 73 (1993)
44. X.Pan, M.Li, Y.Gu. Chem. Asian J., 9, 268 (2014)
45. K.M.Khan, I.Khan, S.Perveen, M.I.Malik. J. Fluorine Chem., 158, 1 (2014)
46. O.N.Pesyan, G.Olsanamloog, S.Ganbati, E.Elahi. Tetrahedron Lett., 53, 4096 (2012)
47. L.Y.Zeng, M.F.Liu, C.Cai. Chin. Chem. Lett., 23, 1347 (2012)
48. J.-J.Yu, L.-M.Wang, J.-Q.Liu, F.-L.Guo, X.-Y.Liu, N.Jia. Green Chem., 12, 216 (2010)
49. J.S.Rana, D.Widevi, S.Saha. RSC Adv., 5, 6552 (2015)
50. M.N.Elinson, M.G.Medvedev, A.I.Ilovaisky, V.M.Merkulova, T.-A.Zaimovskaya, G.I.Nikishin. Mendeleev Commun., 23, 94 (2013)
51. R.Ghorbani-Yaghezi, Z.Toghrab-Semirovi, R.Karimi-Nami. J. Braz. Chem. Soc., 22, 905 (2011)
52. M.Zahouli, B.Bahlououan, M.Adid, A.Rayad, S.Sebti. Org. Process Res. Dev., 8, 275 (2004)
53. M.S.F.Costa, F.Areis, L.Abrounhosa, A.Venâncio, M.Proença. J. Org. Chem., 73, 1954 (2008)
54. F.Yang, Z.Wang, H.Wang, C.Wang, L.Wang. RSC Adv., 5, 57122 (2015)
55. C.N.O’Callaghan, T.B.McMurry, J.E.O’Brein. Synth. Commun., 24. 81, 6400 (2005)
56. M.Zahouli, B.Bahlououan, A.Maid, A.Rayad, S.Sebti. Phosphorus, Sulfur Silicon Relat. Elem., 182, 1203 (2007)
57. J.F.Roudier, A.Foucaud. Synthesis, 159 (1984)
58. G.P.Ellis. In The Chemistry of Heterocyclic Compounds, Chromenes, Chromones, and Chromans. Ch. 11 (Eds A.Weissberger, E.C.Taylor). (New York: Wiley, 1977). p. 11
