THREE STRONGLY HYPERBOLIC METRICS ON PTOLEMY SPACES

YINGQING XIAO AND ZHANQI ZHANG

Abstract: Recently, strongly hyperbolic space as certain analytic enhancements of Gromov hyperbolic space was introduced by B. Nica and J. Špakula. In this note, we prove that the log-metric \(\log(1 + d) \) on a Ptolemy space \((X, d)\) is a strongly hyperbolic metric. Using our result, we construct three metrics on a Ptolemy metric space and prove they are strongly hyperbolic.

Key Words: Ptolemy space, strongly hyperbolic space, Gromov hyperbolicity.

2010 Mathematics subject classification: Primary 30F45; Secondary 51F99, 30C99.

1. Introduction

In the field of geometric function theory, the hyperbolic metric plays an important role. In higher dimensional Euclidean spaces, the hyperbolic metric exists only in balls and half-spaces and the lack of hyperbolic metric in general domains has been a primary motivation for introducing the so-called hyperbolic-type metrics in the sense of Gromov. For example, \(\tilde{j} \)-metric, Apollonian metric, Seittenranta’s metric, half apollonian metric, scale-invariant Cassinian metric and Möbius-invariant Cassinian metric (see [4, 6, 7, 8, 9, 10, 11, 13, 14] and the references therein). All these metrics are defined in terms of distance functions and can be classified into one point metrics or two-point metrics based on the number of boundary points used in their definitions. Recently, in the paper [1], the authors proposed an approach to construct a metric from the one-point metrics. More precisely, let \((X, d)\) be an arbitrary metric space. For each \(p \in X\), they defined a distance function \(\tau_p \) on \(X \setminus \{p\}\), by

\[
\tau_p(x, y) = \log(1 + 2 \frac{d(x, y)}{\sqrt{d(p, x)} \sqrt{d(p, y)}})
\]

and proved that for each \(p \in X\), the distance function \(\tau_p \) is Gromov hyperbolic with \(\delta = \log 3 + \log 2 \). In fact, the following more general distance function was first introduced by O. Dovgoshey, P. Hariri and
M. Vuorinen in [5].
\[
 h_{D,c}(x, y) = \log(1 + c \frac{d(x, y)}{\sqrt{d_D(x)d_D(y)}})
\]
where \(D \) is a nonempty open set in a metric space \((X, d)\) and \(d_D(x) = \text{dist}(x, \partial D) \), \(c \geq 2 \). They shown that \(h_{D,c} \) is a metric and 2 is the best possible.

Although hyperbolicity yields a very satisfactory theory, for certain analytic purposes, hyperbolicity by itself is not enough, and one needs certain enhancements. In the paper [14], the authors introduced the notion of strongly hyperbolic space and given certain enhancements. They shown that strongly hyperbolic spaces are Gromov hyperbolic spaces that are metrically well-behaved at infinity, and under weak geodesic assumptions, the strongly space are strongly bolic as well. They shown that CAT(−1) spaces are strongly hyperbolic and also shown that the Green metric defined by a random walk on a hyperbolic group is strongly hyperbolic. Since the strongly hyperbolic space has better properties, it is interesting to determine which hyperbolic metric in geometric function theory is a strongly hyperbolic metric or to construct a strongly hyperbolic metric on a given metric space. We consider this problem in Ptolemy spaces in this paper.

Firstly, we show that the log-metric of a Ptolemy space is a strongly hyperbolic metric. That is, we show that if \((X, d)\) is a Ptolemy space, then \((X, \log(1 + d))\) is a strongly hyperbolic space. Using our result, we can show that the metric space \((X, S_p)\) is also a strongly hyperbolic space. Here
\[
 S_p(x, y) = \log(1 + \frac{d(x, y)}{[1 + d(x, p)][1 + d(y, p)]})
\]
for a fix point \(p \in X \) and \(x, y \in X \).

Secondly, motivated by the recent works of A. G. Aksov, Z. Ibragimov and W. Whiting in [II], we construct a strongly hyperbolic metric on a Ptolemy metric space. To formulate the results of our paper, for each \(p \in X \), we define a distance function \(\chi_p \) on \(X \setminus \{p\} \), by
\[
 \chi_p(x, y) = \log(1 + \frac{d(x, y)}{d(p, x)d(p, y)}).
\]
We prove that if \((X, d)\) is a Ptolemy space, for each \(p \in X \), the distance function \(\chi_p \) is a strongly hyperbolic metric. We also consider the distortion of the above metric \(\chi_p \) under Möbius maps of a punctured ball in \(\mathbb{R}^n \).
2. Strongly hyperbolic metrics on Ptolemy spaces

We begin by recalling some basic notions and facts. Let \(X \) be a metric space, fix a base point \(o \in X \), the Gromov product of \(x, x' \in X \) with respect to \(o \) is defined as

\[
(x|x')_o := \frac{1}{2}(|ox| + |ox'| - |xx'|).
\]

Note that \((x|x')_o \geq 0\) by the triangle inequality.

Definition 1 (Gromov). A metric space \(X \) is \(\delta \)-hyperbolic, where \(\delta \geq 0 \), if

\[
(x|y)_o \geq \min\{ (x|z)_o, (z|y)_o \} - \delta
\]

for all \(x, y, z, o \in X \).

In the paper [14], the authors given the following enhancements of hyperbolicity.

Definition 2 ([14], Definition 4.1). We say that a metric space is strongly hyperbolic with parameter \(\epsilon > 0 \) if

\[
\exp(-\epsilon(x|y)_o) \leq \exp(-\epsilon(x|z)_o) + \exp(-\epsilon(z|y)_o)
\]

for all \(x, y, z, o \in X \); equivalently, the four-point condition

\[
\exp\left(\frac{\epsilon}{2}(|xy| + |zt|)\right) \leq \exp\left(\frac{\epsilon}{2}(|xz| + |yt|)\right) + \exp\left(\frac{\epsilon}{2}(|xt| + |zy|)\right)
\]

holds for all \(x, y, z, t \in X \).

The authors mentioned the motivation for considering this notion of strongly hyperbolic is the following theorem in the paper [14].

Theorem 1 ([14], Theorem 4.2). Let \(X \) be a strongly hyperbolic space with parameter \(\epsilon \). Then \(X \) is an \(\epsilon \)-good, \(\log 2/\epsilon \)-hyperbolic space. Furthermore, \(X \) is strongly bolic provided that \(X \) is roughly geodesic.

Strongly bolic metric spaces was considered by V. Lafforgue in [12] in relation with conjecture of Baum-Connes. Here for hyperbolic spaces \((X, d)\) which are roughly geodesic, strong bolicity in the sense of Lafforgue [12] amounts to the following: for every \(\eta, r > 0 \), there exists \(R > 0 \) such that \(d(x, y) + d(z, t) \leq r \) and \(d(x, z) + d(y, t) \geq R \) imply that \(d(x, t) + d(y, z) \leq d(x, z) + d(y, t) + \eta \).

From the above theorem [14] we know that the strongly hyperbolic space has better properties than general hyperbolic spaces. Thus it is interesting to construct a strongly hyperbolic metric on a metric space.
Definition 3. A metric space \((X,d)\) is called Ptolemy space if the following Ptolemy inequality
\[
d(x_1, x_2)d(x_3, x_4) \leq d(x_1, x_4)d(x_2, x_3) + d(x_1, x_3)d(x_2, x_4)
\]
holds for all quadruples \(x_1, x_2, x_3, x_4 \in X\).

Lemma 1. Suppose \((X,d)\) is a metric space and \(x_i \in X\) for \(i = 1, 2, 3, 4\). Then
\[
d(x_1, x_2) + d(x_3, x_4) \leq d(x_1, x_3) + d(x_1, x_4) + d(x_2, x_3) + d(x_2, x_4).
\]

Proof By the triangle inequality, we have
\[
\begin{align*}
d(x_1, x_2) & \leq d(x_1, x_3) + d(x_3, x_2), \\
d(x_1, x_2) & \leq d(x_1, x_4) + d(x_4, x_2), \\
d(x_3, x_4) & \leq d(x_3, x_1) + d(x_1, x_4), \\
d(x_3, x_4) & \leq d(x_3, x_2) + d(x_2, x_4).
\end{align*}
\]

We sum the above four inequalities and obtain that
\[
d(x_1, x_2) + d(x_3, x_4) \leq d(x_1, x_3) + d(x_1, x_4) + d(x_2, x_3) + d(x_2, x_4).
\]

\[\square\]

Theorem 2. Suppose that \((X,d)\) is a Ptolemy space, then the metric space \((X, \log(1 + d))\) is a strongly hyperbolic space with parameter \(\epsilon = 2\).

Proof Let \(x_1, x_2, x_3, x_4 \in X\), we introduce the following notations for convenience. \(\rho_{ij} = \log(1 + d(x_i, x_j))\), \(d_{ij} = d(x_i, x_j)\) for all \(i, j \in \{1, 2, 3, 4\}\). Thus
\[
\rho_{ij} = \log(1 + d_{ij}).
\]

Now, we need to show that
\[
\exp(\rho_{12} + \rho_{34}) \leq \exp(\rho_{13} + \rho_{24}) + \exp(\rho_{14} + \rho_{23}),
\]
which is equivalent to the following inequality,
\[
(1 + d_{12})(1 + d_{34}) \leq (1 + d_{13})(1 + d_{24}) + (1 + d_{14})(1 + d_{23}).
\]

Notice that \((X,d)\) is a Ptolemy space, by Lemma 1 we have
\[
(1 + d_{12})(1 + d_{34}) = 1 + d_{12} + d_{34} + d_{12}d_{34} \\
\leq 2 + d_{13} + d_{24} + d_{14} + d_{23} + d_{14}d_{23} + d_{13}d_{24} \\
= (1 + d_{13})(1 + d_{24}) + (1 + d_{14})(1 + d_{23}).
\]

Thus, we show that the metric space \((X, \log(1 + d))\) is a strongly hyperbolic hyperbolic space with parameter \(\epsilon = 2\). \[\square\]
Let \((X, d)\) be any metric space, fix a base point \(p \in X\), and the following distance function \(s_p\) was considered in the paper [2],

\[
s_p(x, y) = \frac{d(x, y)}{[1 + d(x, p)][1 + d(y, p)]}
\]

for \(x, y \in X\). Sometimes this is a distance function, but in general it may not satisfy the triangle inequality. In this paper, we have the following result.

Theorem 3. Suppose \((X, d)\) is a Ptolemy space and \(p \in X\). Then \((X, s_p)\) is also a Ptolemy space.

Proof. Firstly, we prove that \(s_p\) is a metric. Obviously, \(s_p(x, y) \geq 0\), \(s_p(x, y) = s_p(y, x)\) and \(s_p(x, y) = 0\) if and only if \(x = y\). So it is enough to show that the triangle inequality holds. That is, for all \(x, y, z \in X \setminus \{p\}\),

\[
s_p(x, y) \leq s_p(x, z) + s_p(z, y),
\]

which is equivalent to

\[
d(x, y)[1 + d(z, p)] \leq d(x, z)[1 + d(y, p)] + d(y, z)[1 + d(x, p)].
\]

Since \((X, d)\) is a Ptolemy space, the above inequality holds naturally, which implies that \(s_p\) is a metric on \(X\).

Now, we show that \((X, s_p)\) also is a Ptolemy space. For any \(x_i \in X\) for \(i = 1, 2, 3, 4\). Set \(p_i = 1 + d(p, x_i)\) and \(d_{ij} = d(x_i, x_j)\), thus \(s_p(x_i, x_j) = d_{ij}/p_ip_j\) for \(i, j \in \{1, 2, 3, 4\}\). Since \((X, d)\) is a Ptolemy space, we have

\[
d_{12}d_{34} \leq d_{13}d_{24} + d_{14}d_{23},
\]

Thus

\[
\frac{d_{12}d_{34}}{p_1p_2p_3p_4} \leq \frac{d_{13}d_{24}}{p_1p_2p_3p_4} + \frac{d_{14}d_{23}}{p_1p_2p_3p_4}.
\]

That is

\[
s_p(x_1, x_2)s_p(x_3, x_4) \leq s_p(x_1, x_3)s_p(x_2, x_4) + s_p(x_1, x_4)s_p(x_2, x_3),
\]

which implies that \((X, s_p)\) also is a Ptolemy space. \(\square\)

Using \(s_p\), we define the following metric \(S_p\) on \(X\) by

\[
S_p(x, y) = \log(1 + s_p(x, y)).
\]

According to Theorem 2, we have the following result.

Theorem 4. Suppose \((X, d)\) is a Ptolemy and \(p \in X\). The metric space \((X, S_p)\) is a strongly hyperbolic space with parameter \(\epsilon = 2\). Thus \((X, S_p)\) is a \(\log 2/2\)-hyperbolic space.
Suppose \((X, d)\) is a metric space. For each \(p \in X\), A. G. Aksov, Z. Ibragimov and W. Whiting defined a distance function \(\tau_p\) on \(X \setminus \{p\}\) in [1] by
\[
\tau_p(x, y) = \log(1 + 2 \frac{d(x, y)}{\sqrt{d(p, x)} \sqrt{d(p, y)}}).
\]
They obtained the following result.

Theorem 5 ([1], Theorem 2.1 and Lemma 4.1). Let \((X, d)\) be a Ptolemy space and let \(p \in X\) be an arbitrary point. Then the distance function \(\tau_p\) is a metric on \(X \setminus \{p\}\). In particular, the space \((X \setminus \{p\}, \tau_p)\) is Gromov hyperbolic with \(\delta = \log 3 + \log 2\).

Motivated by the definition of \(\tau_p\), for each \(p \in X\), we define a distance function \(\chi_p\) on \(X \setminus \{p\}\) by
\[
\chi_p(x, y) = \log(1 + \frac{d(x, y)}{d(p, x)d(p, y)}).
\]
Usually, \(\chi_p\) is not a metric on \(X \setminus \{p\}\). But, when \((X, d)\) is a Ptolemy space, we have the following result.

Theorem 6. Let \((X, d)\) be a Ptolemy metric space and let \(p \in X\) be an arbitrary point. Then the distance function \(\chi_p\) is a metric on \(X \setminus \{p\}\).

Proof. Obviously, \(\chi_p(x, y) \geq 0\), \(\chi_p(x, y) = \chi_p(y, x)\) and \(\chi_p(x, y) = 0\) if and only if \(x = y\). So it is enough to show that the triangle inequality holds. That is, for all \(x, y, z \in X \setminus \{p\}\),
\[
\chi_p(x, y) \leq \chi_p(x, z) + \chi_p(z, y),
\]
which is equivalent to
\[
\frac{d(x, y)}{d(x, p)d(y, p)} \leq \frac{d(x, z)}{d(x, p)d(z, p)} + \frac{d(y, z)}{d(y, p)d(z, p)} + \frac{d(x, z)d(y, z)}{d(z, p)^2d(x, p)d(y, p)}.
\]
That is
\[
(1) \quad d(x, y)d(z, p) \leq d(x, z)d(y, p) + d(y, z)d(x, p) + \frac{d(x, z)d(y, z)}{d(z, p)}.
\]
Since \((X, d)\) is a Ptolemy space, the above inequality [1] holds naturally, which completes the proof. \(\square\)

Lemma 2. Suppose \((X, d)\) is a Ptolemy metric space and \(x_i \in X\) for \(i = 0, 1, 2, 3, 4\). Set \(p_i = d(x_0, x_i)\) and \(d_{ij} = d(x_i, x_j)\) for \(i, j \in \{1, 2, 3, 4\}\). Then
\[
p_{35}p_{412} + p_{15}p_{234} \leq p_{15}p_{34}d_{24} + p_{25}p_{14} + p_{2}p_{3}d_{14} + p_{1}p_{4}d_{23}.
\]
Proof. By the Ptolemy inequality, we have
\[p_3 p_4 d_{12} \leq p_3 p_1 d_{24} + p_3 p_2 d_{14}, \]
\[p_3 p_4 d_{12} \leq p_4 p_2 d_{13} + p_1 p_4 d_{23}, \]
\[p_1 p_2 d_{34} \leq p_1 p_3 d_{24} + p_1 p_4 d_{23}, \]
\[p_1 p_2 d_{34} \leq p_2 p_4 d_{13} + p_2 p_3 d_{14}. \]
We sum the above four inequalities and obtain that
\[p_3 p_4 d_{12} + p_1 p_2 d_{34} \leq p_1 p_3 d_{24} + p_2 p_4 d_{13} + p_2 p_3 d_{14} + p_1 p_4 d_{23}. \]
\[\square \]

Using the above lemma 2, we obtain the following result.

Theorem 7. Let \((X, d)\) be a Ptolemy metric space and let \(p \in X\) be an arbitrary point. Then the metric space \((X \setminus \{p\}, \chi_p)\) is strongly hyperbolic space with parameter 2. Thus \((X \setminus \{p\}, \chi_p)\) is \(\log 2/2\)-hyperbolic space.

Proof. Let \(x_1, x_2, x_3, x_4 \in X \setminus \{p\}\), we introduce the following notations for convenience. \(d_{ij} = d(x_i, x_j)\), \(p_i = d(p, x_i)\) and \(\rho_{ij} = \chi_p(x_i, x_j)\) for \(i, j \in \{1, 2, 3, 4\}\). Thus
\[\rho_{ij} = \log(1 + \frac{d_{ij}}{p_i p_j}) \]
for \(i, j \in \{1, 2, 3, 4\}\). Now, we need to show that
\[e^{(\rho_{12} + \rho_{34})} \leq e^{(\rho_{13} + \rho_{24})} + e^{(\rho_{14} + \rho_{23})}, \]
which is equivalent to the following inequality
\[
(1 + \frac{d_{12}}{p_1 p_2})(1 + \frac{d_{34}}{p_3 p_4}) \leq (1 + \frac{d_{13}}{p_1 p_3})(1 + \frac{d_{24}}{p_2 p_4})
+ (1 + \frac{d_{14}}{p_1 p_4})(1 + \frac{d_{23}}{p_2 p_3}).
\]
That is
\[
\frac{d_{12}}{p_1 p_2} + \frac{d_{34}}{p_3 p_4} + \frac{d_{12}}{p_1 p_2} \frac{d_{34}}{p_3 p_4} \leq \frac{d_{13}}{p_1 p_3} + \frac{d_{24}}{p_2 p_4} + \frac{d_{13}}{p_1 p_3} \frac{d_{24}}{p_2 p_4}
+ \frac{d_{14}}{p_1 p_4} + \frac{d_{23}}{p_2 p_3} + \frac{d_{14}}{p_1 p_4} \frac{d_{23}}{p_2 p_3} + 1,
\]
which is equivalent to the following inequality
\[
p_3 p_4 d_{12} + p_1 p_2 d_{34} + d_{12} d_{34} \leq p_2 p_4 d_{13} + p_1 p_3 d_{24} + d_{13} d_{24}
+ p_2 p_3 d_{14} + p_1 p_4 d_{23} + d_{14} d_{23}
+ p_1 p_2 p_3 p_4.
\]
Since \((X, d)\) is a Ptolemy space, we have
\[d_{12}d_{34} \leq d_{13}d_{24} + d_{14}d_{23}.\]
From Lemma 2, we have
\[p_3p_4d_{12} + p_1p_2d_{34} \leq p_2p_4d_{13} + p_1p_3d_{24} + p_2p_3d_{14} + p_1p_4d_{23}.\]
Thus, the above inequality holds, which implies that \((X \setminus \{p\}, \chi_p)\) is a strongly space with parameter 2. From Theorem 1, we know that \((X \setminus \{p\}, \chi_p)\) is a log 2/2-hyperbolic space.

3. Distortion property under Möbius transformations

In the following, we use the notation \(\mathbb{R}^n, n \geq 2\) for the Euclidean-dimensional space. The Euclidean distance between \(x, y \in \mathbb{R}^n\) is denoted by \(|x - y|\). Given \(x \in \mathbb{R}^n\) and \(r > 0\), the open ball centered at \(x\) with radius \(r\) is denoted by \(B^n(x, r) := \{y \in \mathbb{R}^n : |x - y| < r\}\). Denote by \(B^n := B^n(0, 1)\), the unit ball in \(\mathbb{R}^n\). One of our objectives in this section is to study the distortion property of our metric under Möbius maps from a punctured ball onto another punctured ball. Distortion properties of the scale-invariant Cassinian metric of the unit ball under Möbius maps has been studied in [10]. Recently, in the [13], M. R. Mohapatra and S. K. Sahoo also considered the distortion of the \(\tilde{\tau}\)-metric under Möbius maps of a punctured ball.

Theorem 8. Let \(a \in B^n\) and \(f: B^n \setminus \{0\} \to B^n \setminus \{a\}\) be a Möbius map with \(f(0) = a\). Then for \(x, y \in B^n \setminus \{0\}\), we have
\[
\chi_0(x, y) \leq \chi_a(f(x), f(y)) \leq \chi_0(x, y) - \log(1 - |a|^2).
\]
The equalities hold if and only if \(a = 0\).

Proof. If \(a = 0\), the proof is trivial since \(f(x) = Ax\) for some orthogonal matrix \(A\). Now we assume that \(a \neq 0\). Let \(\sigma\) be the inversion in the sphere \(S^{n-1}(a^*, r) = \{x \in \mathbb{R}^n : |x - a^*| = r\}\), where
\[
a^* = \frac{a}{|a|^2}, \quad r = \sqrt{|a^*|^2 - 1} = \frac{\sqrt{1 - |a|^2}}{|a|}.
\]
Note that the sphere \(S^{n-1}(a^*, r)\) is orthogonal to \(S^{n-1}\) and that \(\sigma(a) = 0\). In particular, \(\sigma\) is a Möbius map with \(\sigma(\mathbb{B}^n \setminus \{a\}) = \mathbb{B}^n \setminus \{0\}\). Recall that
\[
\sigma(x) = a^* + \left(\frac{r}{|x - a^*|}\right)^2(x - a^*).
\]
Then \(\sigma \circ f\) is an orthogonal matrix (see, for example, [10, Theorem 3.5.1(i)]). In particular,
\[
|\sigma(f(x)) - \sigma(f(y))| = |x - y|.
\]
By computation, we have

\[|\sigma(x) - \sigma(y)| = \frac{r^2|x - y|}{|x - a^*||y - a^*|}. \]

Thus

\[|\sigma(f(x)) - \sigma(f(y))| = \frac{r^2|f(x) - f(y)|}{|f(x) - a^*||f(y) - a^*|} = |x - y|, \]

which implies that

\[|f(x) - f(y)| = \frac{|x - y|}{r^2} |f(x) - a^*||f(y) - a^*|. \]

Since \(f(0) = a \), we have

\[|f(x) - a| = \frac{|f(x) - a^*||a - a^*|}{|a^*|^2 - 1}|x| \quad \text{and} \quad |f(y) - a| = \frac{|f(y) - a^*||a - a^*|}{|a^*|^2 - 1}|y|. \]

Notice that

\[\chi_0(x, y) = \log(1 + \frac{|x - y|}{|x||y|}) \]

and

\[\chi_a(f(x), f(y)) = \log(1 + \frac{|f(x) - f(y)|}{|f(x) - a||f(y) - a|}). \]

We have

\[
\begin{align*}
\chi_a(f(x), f(y)) &= \log(1 + \frac{|f(x) - f(y)|}{|f(x) - a||f(y) - a|}) \\
&= \log(1 + \frac{|x - y| |a^*|^2 - 1}{|x||y| |a - a^*|^2}) \\
&= \log(1 + \frac{1}{1 - |a|^2} \frac{|x - y|}{|x||y|}).
\end{align*}
\]

Since \(|a| < 1 \), we have \(1 \leq \frac{1}{1 - |a|^2} \). Thus

\[
1 + \frac{|x - y|}{|x||y|} \leq 1 + \frac{1}{1 - |a|^2} \frac{|x - y|}{|x||y|} \leq \frac{1}{1 - |a|^2} + \frac{1}{1 - |a|^2} \frac{|x - y|}{|x||y|}.
\]

So

\[\chi_0(x, y) \leq \chi_a(f(x), f(y)) \leq \chi_0(x, y) - \log(1 - |a|^2). \]

Obviously, the equalities hold if and only if \(a = 0 \).

\textbf{Acknowledgements.} This work was supported by the National Natural Science Foundation of China under grant Nos. 11301165,11571099.
References

[1] A. G. Aksov, Z. Ibragimov and W. Whiting, Averaging one-point hyperbolic-type metrics. arXiv preprint arXiv:1709.04063 (2017).
[2] S. M. Buckley, D. A. Herron, X. Xie, Metric Space Inversions, Quasihyperbolic Distance, and Uniform Spaces. Indiana U. Math.J., 57 (2008), 837-890.
[3] A. F. Beardon, Geometry of Discrete Groups. Springer-Verlag, New York, 1995, 340 pp.
[4] A. F. Beardon, The Apollonian metric of a domain in \mathbb{R}^n. In: P. Duren, J. Heinonen, B. Osgood, and B. Palka (Eds.), Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), pp. 91-108. Springer-Verlag, New York, 1998.
[5] O. Dovgoshey, P. Hariri, M. Vuorinen, Comparison theorems for hyperbolic type metrics. Complex Var. Theory Appl., 61 (2016), 1464-1480.
[6] P. Hästö, Gromov hyperbolicity of the j_G and \tilde{j}_G metrics. Proc. Amer. Math. Soc., 134 (2006), 1137-1142.
[7] P. Hästö, Z. Ibragimov and H. Lindén, Isometries of relative metrics. Comput. Methods Funct. Theory, 6 (1) (2006), 15-28.
[8] P. Hästö and H. Lindén, Isometries of the half-apollonian metric. Complex Var. Theory Appl., 49 (2004), 405-415.
[9] Z. Ibragimov, On the Apollonian metric of domains in \mathbb{R}^n. Complex Var. Theory Appl., 48 (2003), 837-855.
[10] Z. Ibragimov, A scale-invariant Cassinian metric. J. Anal., 24 (2016), 111-129.
[11] Z. Ibragimov, A Möbius invariant Cassinian metric. Bulletin, Malaysian Math. Sci. Soc., (to appear).
[12] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math., 149 (2002), 1-95.
[13] M. R. Mohapatra, S. K. Sahoo, Mapping properties of a scale-invariant Cassinian metric and a Gromov hyperbolic metric. Bull.Aust.Math.Soc., 97(2018), 141-152.
[14] B. Nica, J. Špakula. Strong hyperbolicity. Groups Geom. Dyn., 10(2016), 951-964.
[15] P. Seittenranta, Möbius-invariant metrics. Math. Proc. Cambridge Philos. Soc., 125 (1999), 511-533.
[16] M. Vuorinen, Conformal geometry and quasiregular mappings. Lecture Notes in Math., Vol. 1319, Springer-Verlag, Berlin, 1988.

YINGQING XIAO, COLLEGE OF MATHEMATICS AND ECONOMETRICS, HUNAN UNIVERSITY, CHANGSHA, 410082, CHINA
E-mail address: ouxyq@hnu.edu.cn

ZHANQI ZHANG (Corresponding author), COLLEGE OF MATHEMATICS AND ECONOMETRICS, HUNAN UNIVERSITY, CHANGSHA, 410082, P. R. CHINA
E-mail address: rateriver@sina.com