Impaired ACE2 glycosylation and protease activity lowers COVID-19 susceptibility in Gitelman’s and Bartter’s syndromes

Dear Editor,

The SARS-CoV-2 pandemic (COVID-19) has focused attention on the renin angiotensin system (RAS), specifically angiotensin-convertase enzyme 2 (ACE2) as it serves as the entry point of the SARS-CoV-2 virus [1]. The SARS-CoV-2 virus attaches to its target cell via its surface spike (S) protein binding to ACE2 [2], which is then followed by subsequent fusion of the viral envelop with the host cell membrane through the action of specific proteases, such as cathepsin (Cat)-L [3]. ACE2, part of the RAS counter-regulatory system, opposes the activity of the regulatory RAS ACE/angiotensin II/AT1R axis by inducing endothelial-dependent vasodilation, and anti-proliferative and anti-inflammatory effects [4]. However, ACE2’s role in the cellular entry of the virus raised clinical concerns regarding increased SARS-CoV-2 infection in patients treated with angiotensin receptor blockers or ACE inhibitors that increase ACE2 levels, although it is now clear that ACE2 upregulation has a protective impact on COVID-19 morbidity and mortality [5, 6].

Gitelman’s and Barter’s syndromes (GS/BS), two rare genetic tubulopathies, present with hypokalemia and metabolic alkalosis, high Ang II levels and RAS activation yet normo-hypotension, protection from cardiovascular and renal remodeling, and—crucially—increased ACE2 and Ang 1–7 levels [7].

During the first Italian wave of the COVID-19 pandemic in early 2020, we assessed via telephone survey the impact of COVID-19 on our cohort of 128 GS/BS patients living in the main northern Italy COVID-19 hotspots. We found that none of them had COVID-19 symptoms compared to the adjusted northern Italian general population’s COVID-19 prevalence (p < 0.008), which again suggests that increased risk of COVID-19 due to increased ACE2 is unlikely [8]. A second survey on the same cohort 1 year later found that only eight patients tested positive for COVID-19, of which four were asymptomatic and four had very mild symptoms. Based on this and considering GS/BS patients’ increased ACE2 levels, we sought to investigate the possible factors that render GS/BS patients at a minimum resistant to COVID-19. Given that blocking ACE2/viral S protein interaction is effective against SARS-CoV-2 infection and that increased pH, a feature of GS/BS, has been shown to interfere with ACE2 glycosylation (Refs. 1 and 2 in the Supporting Information), we recruited 20 GS/BS patients from the previous survey (13 females, 7 males, 32–68 years), with either GS (n = 19) or BS (n = 1) and 15 healthy controls (seven females, eight males, 29–52 years) and assessed the levels of mononuclear ACE2 and its glycosylation alongside plasma Cat-L activity (Supporting Information Methods).

GS/BS patients had higher nonglycosylated ACE2 levels (0.82 ± 0.19 d.u. vs. 0.67 ± 0.13 p = 0.01) and lower Cat-L activity (3.91 ± 1.13 r.f.u. vs. 5.31 ± 0.8 p < 0.001) (Fig. 1A,B) compared to healthy subjects. In addition, GS/BS’s Cat-L activity inversely correlated (p < 0.001, r = 0.78) (Fig. 1C) with blood bicarbonate (HCO3−), while a negative correlation between ACE2 glycosylated isofrom and HCO3− approaches statistical significance (p = 0.08).

The genetic defects of GS/BS inducing metabolic alkalosis alter chloride transport. Chloride anion (Cl−) is a key factor in cellular homeostasis as changes in intracellular Cl− concentration drive gene and protein expression, post-translational modification, and intracellular/extracellular pH [9]. Endo-lysosomal pH plays a critical role for the
endocytic uptake of SARS-CoV-2. Increased intracellular organelle pH, in fact, interferes with both ACE2 glycosylation and the binding via S protein as observed in experiments with chloroquine (CQ)/hydroxychloroquine (HCQ) (Ref. 1 in the Supporting Information). The inverse correlation in GS/BS between blood HCO₃⁻ and Cat-L activity—alongside the trend toward a negative correlation between blood HCO₃⁻ and the glycosylated isoform of ACE2—also suggests that GS/BS patients’ metabolic alkalosis underlies these effects.

GS/BS’s higher level of nonglycosylated ACE2 alongside the reduced Cat-L activity, which has also been shown to be pH dependent, suggests that the endosomal processing system in GS/BS patients is impaired.

Both glycosylated ACE2 and Cat-L activity are critical for SARS-CoV-2 binding and infection [8]. The increased nonglycosylated ACE2 and decreased Cat-L activity found in GS/BS patients provide a mechanistic explanation for the near absence of COVID-19, and the very small number of GS/BS SARS-CoV-2 positives found either asymptomatic or with minimal symptoms. In addition, our findings provide a rationale for pursuing the identification and/or synthesis of new drugs that specifically target ACE2 glycosylation and/or proteases involved in SARS-CoV-2 infection that avoid the potentially deleterious heart rhythm effects of hydroxychloroquine and chloroquine.

Acknowledgments

This study was supported in part by the University of Padova, grant number DOR 2084023/2020 to L.A.C. and in part by Fondazione Cariparo, grant no. 55813 to L.A.C.

Open Access Funding provided by Universita degli Studi di Padova within the CRUI-CARE Agreement. [Correction added on 12 May 2022, after first online publication: Projekt CRUI-CARE funding statement has been added.]

Ethical Statement

The second survey was a telephone survey as well and the informed consent was asked as reported for the first survey (see ref [8]).
Low ACE2 glycosilation and Cat-L activity reduce COVID-19 / G. Bertoldi et al.

Conflict of Interest

The authors declare no conflict of interest.

Giovanni Bertoldi¹,*, Verdiana Ravarotto¹,*, Luca Sgarabotto¹, Paul A. Davis², Laura Gobbi¹ & Lorenzo A. Calò¹

From the ¹Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Padova, Italy, ²Department of Nutrition, University of California, Davis, California, USA

References

1 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444–8.
2 Forni D, Cagliani R, Clerici M, Sironi M. Molecular evolution of human coronavirus genomes. Trends Microbiol. 2017;25:35–48.
3 Hofmann H, Pöhlmann S. Cellular entry of the SARS coronavirus. Trends Microbiol. 2004;12:466–72.
4 Paz Ocaranza M, Riquelme JA, Garcia L, Jalil JE, Chiong M, Santos RAS, et al. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat Rev Cardiol. 2020;17:116–29.
5 Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?. Lancet Respir Med. 2020;8:e21.
6 Baral R, Tsampasian V, Debski M, Moran B, Garg P, Clark A, et al. Association between renin-angiotensin-aldosterone system inhibitors and clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. JAMA Netw Open. 2021;4:e213594.
7 Calò LA, Davis PA, Rossi GP. Understanding the mechanisms of angiotensin II signaling involved in hypertension and its long-term sequelae. J Hypertens. 2014;32:2109–19.
8 Calò LA, Rigato M, Sgarabotto L, Giansello L, Bertoldi G, Ravarotto V, et al. ACE2 and SARS-CoV-2 infection risk: insights from patients with two rare genetic tubulopathies, Gitelman’s and Bartter’s syndromes. Front Med. 2021;8:647319.
9 Lüscher B, Vachel L, Ohana E, Muallem S. Cl- as a bona fide signaling ion. Am J Physiol Cell Physiol. 2020;318:C125–36.

Correspondence: Lorenzo A. Calò, Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, Via Giustiniani, 2, 35128 Padova, Italy.
Email: (renzcalo@unipd.it)

Supporting Information

Additional Supporting Information may be found in the online version of this article:

Supplementary Material and Methods

Supplementary References