Set membership with non-adaptive bit probes

Mohit Garg\textsuperscript{1} and Jaikumar Radhakrishnan\textsuperscript{2}

\textsuperscript{1}Tokyo Institute of Technology, Tokyo, garg.m.aa@m.titech.ac.jp
\textsuperscript{2}Tata Institute of Fundamental Research, Mumbai, jaikumar@tifr.res.in

Abstract

We consider the non-adaptive bit-probe complexity of the set membership problem, where a set $S$ of size at most $n$ from a universe of size $m$ is to be represented as a short bit vector in order to answer membership queries of the form “Is $x$ in $S$?” by non-adaptively probing the bit vector at $t$ places. Let $s_N(m, n, t)$ be the minimum number of bits of storage needed for such a scheme. Buhrman, Miltersen, Radhakrishnan, and Srinivasan [4] and Alon and Feige [1] investigated $s_N(m, n, t)$ for various ranges of the parameter $t$. We show the following.

General upper bound ($t \geq 5$ and odd): For odd $t \geq 5$, $s_N(m, n, t) = O\left(\frac{m}{t} n^{1 - \frac{1}{t}} \lg \frac{2m}{n}\right)$. This improves on a result of Buhrman \textit{et al.} that states for odd $t \geq 5$, $s_N(m, n, t) = O\left(\frac{m^4}{t^2} n^{1 - \frac{1}{t}} \lg \frac{m}{n}\right)$. For small values of $t$ (odd $t \geq 3$ and $t \leq \frac{1}{10} \lg \lg m$) and $n \leq m^{1-\epsilon}$ ($\epsilon > 0$), we obtain adaptive schemes that use a little less space: $O\left(\exp\left(e^{2t} m^{1-t} n^{1-t} \lg \frac{m}{n}\right)\right)$.

Three probes ($t = 3$) lower bound: We show that $s_N(m, n, 3) = \Omega\left(\sqrt{mn}\right)$ for $n \geq n_0$ for some constant $n_0$. This improves on a result of Alon and Feige that states that for $n \geq 16 \lg m$, $s_N(m, n, 3) = \Omega\left(\sqrt{mn \lg m}\right)$. The complexity of the non-adaptive scheme might, in principle, depend on the function that is used to determine the answer based on the three bits read (one may assume that all queries use the same function). Let $s_f_N(m, n, 3)$ be the minimum number of bits of storage required in a three-probe non-adaptive scheme where the function $f : \{0,1\}^3 \rightarrow \{0,1\}$ is used to answer the queries. We show that for large class of functions $f$ (including the majority function on three bits), we in fact have $s_N(m, n, 3) = \Omega\left(m n^{1 - \frac{1}{t}}\right)$ for $n \geq 4$ and some $c > 0$. In particular, three-probe non-adaptive schemes that use such query functions $f$ do not give any asymptotic savings over the trivial characteristic vector when $n \geq \log m$.

1 Introduction

The set membership problem is a fundamental problem in the area of data structures and information compression and retrieval. In its abstract form we are given a subset $S$ of size at most $n$ from a universe of size $m$ and required to represent it as a bit string so that membership queries of the form “Is $x$ in $S$?” can be answered using a small number of probes into the bit string. The characteristic function representation provides a solution to this problem: just one bit-probe is needed to answer queries, but all sets are represented using $m$-bit strings (which is very wasteful when $n$ is promised to be small).

The trade-off between the number of bits in the representation and the number of probes is the subject of several previous works: it was studied by Minsky and Papert in their 1969 book \textit{Perceptrons} [10]; more recently, Buhrman, Miltersen, Radhakrishnan and Venkatesh [4] showed the existence of randomized schemes that answer queries with just one bit probe and use near optimal space. In contrast, they showed that deterministic schemes that answer queries

\textsuperscript{*}A part of this work was done when the first author was at the Tata Institute of Fundamental Research.
by making a constant number of probes cannot use optimal space. The deterministic worst-case trade-off for this problem was also considered in the same paper and in several subsequent works (e.g., Radhakrishnan, Raman and Rao [11], Alon and Feige [1], Radhakrishnan, Shah and Shannon [13], Viola [14], Lewenstein, Munro, Nicholson and Raman [7], Garg and Radhakrishnan [9]). For sets where each element is included with probability $p$, Makhdoumi, Huang, Médard and Polyanskiy [9] showed, in particular, that no savings over the characteristic vector can be obtained in this case for non-adaptive schemes with $t = 2$.

In this work, we focus on deterministic schemes with non-adaptive probes, where the probes are made in parallel (or equivalently the location of probes do not depend on the value read in previous probes). Such schemes have been studied in several previous works. Let $s_N(m,n,t)$ be the minimum number of bits of storage required in order to answer membership queries with $t$ non-adaptive probes.

**Definition 1.** A non-adaptive $(m,n,s,t)$-scheme consists of a storage function and a query scheme. The storage function has the form $\phi : \binom{[m]}{s} \rightarrow \{0,1\}^s$ that takes a set of size at most $n$ and returns its $s$-bit representation. The query scheme associates with each element $x$ the $t$ probe locations $(i_1(x), \ldots, i_t(x)) \in [s]^t$ and a function $f_x : \{0,1\}^t \rightarrow \{0,1\}$. We require that for all $S \subseteq \binom{[m]}{s}$ and all $x \in [m]$: $x \in S$ iff $f_x(\phi(S)[i_1(x)], \phi(S)[i_2(x)], \ldots, \phi(S)[i_t(x)]) = 1$. Let $s_N(m,n,t)$ denote the minimum $s$ such that there is an $(m,n,s,t)$-scheme.

In our discussion, we use $s(m,n,t)$ (without the subscript $N$) to denote the minimum space required for adaptive schemes. Using the above notation, we now describe our results and their relation to what was known before. All asymptotic claims below hold for large $m$.

### 1.1 General non-adaptive schemes

**Theorem 2** (Result 1, non-adaptive schemes). For odd $t \geq 5$, we have

$$s_N(m,n,t) = O(tm^{\frac{1}{2}}n^{1 - \frac{2}{t^2}} \lg \frac{2m}{n}).$$

In comparison, for odd $t \geq 5$, Buhrman et al. showed that $s_N(m,n,t) = O(m^{\frac{1}{t+1}}n)$. The exponent of $m$ in their upper bound result is roughly four times the exponent of $m$ appearing in their lower bound result. Their schemes are non-adaptive and use the MAJORITY function to answer membership queries. We exhibit schemes that still use MAJORITY but need less space. Buhrman et al. also show a lower bound of $s(m,n,t) = \Omega(tm^{\frac{1}{2}}n^{1 - \frac{1}{t}})$ valid (even for adaptive schemes) when $n \leq m^{1-\epsilon}$ (for $\epsilon > 0$ and $t \ll \lg m$). Note that the exponent of $m$ in our result is twice the exponent of $m$ appearing in the lower bound result. These schemes, as well as the non-adaptive scheme for $t = 4$ due to Alon and Feige [1], have implications for the problem studied by Makhdoumi et al. [9]; unlike in the case of $t = 2$, significant savings are possible if $t \geq 4$, even with non-adaptive schemes. Using a similar proof idea, we obtain slightly better upper bounds with adaptive schemes when $t$ is small and $n$ is at most $m^{1-\epsilon}$.

**Theorem 3** (Result 2, adaptive schemes). For odd $t \geq 3$ and $t \leq \frac{1}{\alpha} \lg \lg m$ and for $n \leq m^{1-\epsilon}$ ($\epsilon > 0$), we have $s(m,n,t) = O(\exp(2^t)m^{2t^2}n^{1 - \frac{2}{t^2}} \lg m)$.

*Technique.* To justify our claim, we need to describe the query scheme, that is, $(i_1(x), i_2(x), \ldots, i_t(x))$ for each $x \in [m]$ and the query function $f_x : \{0,1\}^t \rightarrow \{0,1\}$. For $f_x$ we use the MAJORITY on $t$ bits ($t$ is odd). The locations to be probed for each element will be obtained using a probabilistic argument. Once a query scheme is fixed, we need to show how the assignment to the memory is obtained. For this, we describe a sequential algorithm. We show that the random assignment of locations ensures sufficient expansion allowing us to start with a greedy argument.

---

1We are grateful to Tom Courtade and Ashvin Pananjady for this observation.
arrange that most queries are answered correctly, and then use Hall’s bipartite graph matching theorem to find the required assignment for the remaining elements. Versions of this argument have been used in previous works [8, 4, 6, 1, 5].

1.2 Three non-adaptive probes

For one probe and \( m \geq 2 \), it is easy to show that no space can be saved over the characteristic vector representation. For two non-adaptive probes, only for the special case \( n = 1 \), some non-trivial savings over the characteristic vector representation are possible: \( s_N(m, 1, 2) = \theta(\sqrt{m}) \).

For \( n \geq 2 \), Buhrman et al. [4] showed \( s_N(m, n, 2) = m \). The smallest number of probes for which the complexity of problem with non-adaptive probes is not settled is three. Observe that any scheme with two adaptive probes can be converted to a scheme with three non-adaptive probes; the two probe decision tree has at most three nodes. Thus, using the two adaptive probes upper bound result of Garg and Radhakrishnan [5], we have the upper bound \( s_N(m, n, 2) = m \). Thus, non-trivial savings in space over the characteristic vector representation is possible when \( n = o(\log m) \). Consequently, the question is whether more space can be saved or is this upper bound tight? We are not aware of any three-probe non-adaptive scheme that manages with \( o(m) \) space for sets of size \( \omega(\log m) \). Alon and Feige [1] show the following lower bound: \( s_N(m, n, 3) = \Omega(\sqrt{n \log m}) \) for \( n \geq 16 \log m \).

In order to obtain better lower bounds for three-probe non-adaptive schemes, we proceed as follows. In any three-probe non-adaptive scheme, the query scheme specifies, for each element, the three locations to probe and a three variable boolean function to be applied on three values read. In principle, for different elements, the query scheme can specify different boolean functions. But since there are only a finite number (256) of boolean functions on three variables, some set of at least \( m/256 \) elements of the universe use a common function. We may thus restrict attention to this part of the universe, and assume that the function being employed to answer queries is always the same. Furthermore, we may place functions obtained from one another by negating and permuting variables in a common equivalence class, and restrict our attention to one representative in each class. For three variable boolean functions, Pólya counting yields that there are twenty-two equivalence classes. This classification of the 256 functions into twenty-two classes is already available in the literature [15]. We show the following.

**Theorem 4 (Result 3).**

(a) If the query function \( f : \{0, 1\}^3 \to \{0, 1\} \) is not equivalent to \((x, y, z) \mapsto (x \land y) \oplus z \) or \((x, y, z) \mapsto 1 \) iff \( x + y + z = 1 \), then \( s_N(m, n, 3) = \Omega(m^{1 - \frac{1}{cn}}) \) for \( n \geq 4 \) and some \( c > 0 \).

(b) If the query function \( f : \{0, 1\}^3 \to \{0, 1\} \) is equivalent to \((x, y, z) \mapsto (x \land y) \oplus z \) or \((x, y, z) \mapsto 1 \) iff \( x + y + z = 1 \), then \( s_N(m, n, 3) = \Omega(\sqrt{mn}) \).

(c) If the query function \( f : \{0, 1\}^3 \to \{0, 1\} \) is equivalent to \((x, y, z) \mapsto (x \land y) \oplus z \) and \( \lg m \leq n \leq \frac{m}{\lg m} \), then \( s_N(m, n, 3) = \Omega(\sqrt{mn \frac{\lg m}{\lg \lg m}}) \).

The best upper bounds for non-adaptive schemes with four or more probes use the MAJORITY function to answer membership queries. Our result implies that for three non-adaptive probes, when queries are answered by computing MAJORITY, the space required is at least \( \Omega(m^{1 - \frac{1}{cn}}) \) for some constant \( c \). In fact, similar lower bound holds if membership queries are answered using most boolean functions. Our results do not yield a similar lower bound for \((x, y, z) \mapsto (x \land y) \oplus z \) and \((x, y, z) \mapsto 1 \) iff \( x + y + z = 1 \) types. For these two types of query functions, we get a slightly better lower bound than what is implied by [1]. Thus, further investigations on three probes non-adaptive schemes need to focus on just \((x, y, z) \mapsto 1 \) iff \( x + y + z = 1 \) and \((x, y, z) \mapsto (x \land y) \oplus z \) as the query functions.

**Technique.** As mentioned above, there are twenty-two types of functions for which we need to prove a lower bound. Seven of the twenty-two classes contain functions that can be represented
by a decision tree of height at most two. Thus, for these functions, the two probe adaptive lower bound in [3] implies the result. These functions are: constant 0, constant 1, the DICTATOR function \((x, y, z) \mapsto x\), the function \((x, y, z) \mapsto x \land y\), its complement \((x, y, z) \mapsto \bar{x} \lor \bar{y}\), \((x, y, z) \mapsto (x \land y) \lor (\bar{x} \land \bar{y})\), and \((x, y, z) \mapsto (x \land y) \lor (\bar{x} \land \bar{y})\).

After this, fifteen classes remain. Functions in some eleven of the remaining fifteen classes admit a density argument, similar in spirit to the adaptive two-probes lower-bound proof in [3]. To streamline the argument, we classify these eleven classes into two parts. The first part contains the MAJORITY function. The second part contains the AND function, the ALL-EQUAL function, the functions \((x, y, z) \mapsto (x \lor y) \land z\), \((x, y, z) \mapsto (x \lor y) \land z\), \((x, y, z) \mapsto (x \land y) \lor (\bar{x} \land \bar{y})\), and their complements. For functions in the second part we deal with two functions—a function and its complement—with a single proof. In these proofs, we produce sets \(S\) and \(T\) of size at most \(n\) such that storing \(S\) and not storing \(T\) leads to a contradiction. The proof for the complement function works with a small twist: storing \(T\) and not storing \(S\) leads to the contradiction. Thus, these eleven cases are handled by six proofs. In each of these proofs we roughly argue (sometimes probabilistically) that if the scheme is valid, it must conceal a certain dense graph that avoids small cycles. Standard graph theoretic results (the Moore bound) that relate density and girth then gives us the lower bound.

For the remaining four classes, we employ linear-algebraic arguments. Representatives chosen from these classes are PARITY, \((x, y, z) \mapsto 1\) iff \(x + y + z \neq 1\), \((x, y, z) \mapsto (x \land y) \lor z\), and \((x, y, z) \mapsto 1\) iff \(x + y + z = 1\). For PARITY and \((x, y, z) \mapsto 1\) iff \(x + y + z \neq 1\), we show using standard dimension argument, that if the space used is smaller than the universe size \(m\), then there is some element \(u \in [m]\) that is (linearly) dependent on the other elements. Not storing the other elements, leaves the scheme with no choice for \(u\), thus leading to a contradiction. For \((x, y, z) \mapsto (x \land y) \lor z\) and \((x, y, z) \mapsto 1\) iff \(x + y + z = 1\) a modification of an algebraic argument of Radhakrishnan, Sen and Venkatesh [12] implies a lower bound of \(\sqrt{mn}\). (Interestingly, we need to choose an appropriate characteristic of the field (2 or 3) based on which function we deal with.) For \((x, y, z) \mapsto (x \land y) \lor z\), we further improve on this argument by employing random restrictions. These results together improve the previous best lower bound (due to Alon and Feige [1]) irrespective of the query function used.

2 General non-adaptive upper bound

In this section, we prove the general non-adaptive upper bound result: Theorem 2.

**Definition 5.** A non-adaptive \((m, s, t)\)-graph is a bipartite graph \(G\) with vertex sets \(U = [m]\) and \(V (|V| = ts)\). \(V\) is partitioned into \(t\) disjoint sets: \(V_1, \ldots, V_t\); each \(V_i\) has \(s\) vertices. Every \(u \in U\) has a unique neighbour in each \(V_i\). A non-adaptive \((m, s, t)\)-graph naturally gives rise to a non-adaptive \((m, ts, t)\)-query scheme \(T_G\) as follows. We view the memory (an array \(L\) of \(ts\) bits) to be indexed by vertices in \(V\). On receiving the query “Is \(u\) in \(S\)?”, we answer “Yes” iff the MAJORITY of the locations in the neighbourhood of \(u\) contain a 1. We say that the query scheme \(T_G\) is satisfiable for a set \(S \subseteq [m]\), if there is an assignment to the memory locations \((L[v] : v \in V)\), such that \(T_G\) correctly answers all queries of the form “Is \(x\) in \(S\)?”.

We now restrict attention to odd \(t \geq 5\). First, we identify an appropriate property of the underlying non-adaptive \((m, s, t)\)-graph \(G\) that guarantees that \(T_G\) is satisfiable for all sets \(S\) of size at most \(n\). We then show that such a graph exists for some \(s = O\left(m^\frac{1}{\sqrt{n}} n^\frac{1}{\sqrt{n}} \lg \frac{2n}{m}\right)\).

**Definition 6** (Non-adaptive admissible graph). We say that a non-adaptive \((m, s, t)\)-graph \(G\) is admissible for sets of size at most \(n\) if the following two properties hold:

\[(P1) \ \forall R \subseteq [m] (|R| \leq n + \lceil 2n \lg \frac{2n}{m} \rceil): |\Gamma_G(R)| \geq \frac{t + 1}{t} |R|, \text{ where } \Gamma_G(R) \text{ is the set of neighbors of } R \text{ in } G.\]
that all queries are answered correctly by $T$ to 0 for each one of them. As a result, queries for elements in \((P1)\) holds. If \((P1)\) fails, then for some non-empty $\{89\}\subseteq \{72\} \cup \{50\}$.

Fix an admissible graph $F$ or each $u \in \{\{72\}\} \cup \{50\}$. Hence, \(\{50\}\subseteq \{72\}\). From \((P1)\) and Hall’s theorem, we may assign to each element $u \in \{72\} \cup \{50\}$ a set $A_u \subseteq V$ such that (i) \(|A_u| = \frac{t+1}{2}\) and (ii) the $A_u$’s are disjoint. For each $u \in S \subseteq \{72\}$, we assign the value 1 to all locations in $A_u$. For each $u \in \{72\} \cup \{50\}$, we assign the value 0 to all locations in $A_u$. Since \(\frac{t+1}{2} > \frac{t}{2}\), all queries for $u \in \{72\} \cup \{50\}$ are answered correctly.

Assign 0 to all locations in $\Gamma_G(\{\{72\}\} \cup \{\{50\}\})$. For $y \in \{\{72\}\} \setminus \{\{50\}\}$, \(|\Gamma_G(\{\{72\}\} \cup \{\{50\}\})| \leq \frac{t-1}{2}\). As a result, queries for elements in $\{\{72\}\} \setminus \{\{50\}\}$ are answered correctly, as the majority evaluates to 0 for each one of them.

**Proof of Lemma**

In the following, set

\[
s = \left\lceil 60m^{\frac{2}{r}} n^{1 - \frac{2}{r}} \log \frac{2m}{n} \right\rceil.
\]

We show that a suitable random non-adaptive \((m, s, t)\)-graph $G$ is admissible for sets of size at most $n$ with positive probability. The graph $G$ is constructed as follows. Recall that $V = \bigcup_i V_i$. For each $u \in U$, one neighbor is chosen uniformly and independently in each $V_i$.

**Proof of Lemma**

If \((P1)\) fails, then for some non-empty $W \subseteq U$, \(|W| \leq n + \left\lceil 2n \log \frac{2m}{n} \right\rceil\), we have \(|\Gamma_G(W)| \leq \frac{t+1}{2}|W| - 1\). Fix a set $W$ of size $r \geq 1$ and $L \subseteq V$ of size $\frac{t+1}{2}r - 1$. Let $L$ have $\ell_i$ elements in $V_i$; thus, \(\sum_i \ell_i = \frac{t+1}{2}r - 1\). Then,

\[
\Pr[|\Gamma_G(W)| \leq L] \leq \prod_{i=1}^{l} \left( \frac{\ell_i}{|V_i|} \right)^r \leq \left( \frac{\left( \frac{t+1}{2}r - 1 \right)}{ts} \right)^r,
\]

where the last inequality is a consequence of \(GM \leq AM\). We conclude, using the union bound over choices of $W$ and $L$, that \((P1)\) fails with probability at most

\[
\frac{n + \left\lceil 2n \log \frac{2m}{n} \right\rceil}{m} \left( \frac{ts}{t+1} r - 1 \right)^r \left( \frac{t+1}{2}r - 1 \right) \left( \frac{t+1}{2}r - 1 \right) \leq \frac{1}{3},
\]

where the last inequality holds because we have chosen $s$ large enough.
(P2) holds. For (P2) to fail, there must exist a set \( S \subseteq [m] \) of size \( n \) such that \(|T_S| > \left\lfloor 2n \log \frac{2m}{n} \right\rfloor\).

Fix a set \( S \) of size \( n \). Fix a \( y \in [m] \setminus S \).

\[
\Pr[y \in T_S] \leq \left( \frac{t}{t+1} \right) \left( \frac{n}{s} \right)^{t+1} \leq \frac{n}{10m},
\]

where the last inequality holds because of choice of \( s \) and \( m \) is large. Thus, \( E[|T_S|] \leq \frac{n}{10} \).

To conclude that \( |T_S| \) is bounded with high probability, we will use the following version of Chernoff bound: if \( X = \sum_{i=1}^{N} X_i \), where each random variable \( X_i \in \{0,1\} \) independently, then if \( \gamma > 2eE[X] \), then \( \Pr[X > \gamma] \leq 2^{-\gamma} \). Then, for all large \( m \),

\[
\Pr[|T_S| > 2n \log \frac{2m}{n}] \leq 2^{-2n \log \frac{2m}{n}}.
\]

Using the union bound, we conclude that

\[
\Pr[(P2) \text{ fails}] \leq \left( \frac{enm}{n} \right)^n 2^{-2n \log \frac{2m}{n}} \leq \frac{1}{3}.
\]

Thus, with probability at least \( \frac{2}{3} \) the random graph \( G \) is admissible. \( \square \)

3 General upper bound: adaptive

In this section, we prove the general adaptive upper bound result: Theorem 3. We will use the following definitions from previous works.

**Definition 9** (storing scheme, query scheme, scheme, systematic). An \((m,n,s)\)-storing scheme is a method for representing a subset of size at most \( n \) of a universe of size \( m \) as an \( s \)-bit string. Formally, an \((m,n,s)\)-storing scheme is a map \( \phi \) from \( \binom{m}{\leq n} \) to \( \{0,1\}^s \).

A deterministic \((m,n,t)\)-query scheme is a family \( \{T_u\}_{u \in [m]} \) of \( m \) Boolean decision trees of depth at most \( t \). Each internal node in a decision tree is marked with an index between 1 and \( s \), indicating the address of a bit in an \( s \)-bit data structure. For each internal node, there is one outgoing edge labeled “0” and one labeled “1”. The leaf nodes of every tree are marked ‘Yes’ or ‘No’. Such a tree \( T_u \) induces a map from \( \{0,1\}^m \) to \( \{\text{Yes}, \text{No}\} \); this map will also be referred to as \( T_u \).

An \((m,n,s)\)-storing scheme \( \phi \) and an \((m,n,t)\)-query scheme \( \{T_u\}_{u \in [m]} \) together form an \((m,n,s,t)\)-scheme if \( \forall S \in \binom{m}{\leq n} , \forall u \in [m] : T_u(\phi(S)) = \text{Yes} \) if and only if \( u \in S \). Let \( s(m,n,t) \) be the minimum \( s \) such that there is an \((m,n,s,t)\)-scheme.

We say that an \((m,n,s,t)\)-scheme is systematic if the value returned by each of its trees \( T_u \) is equal to the last bit it reads (interpreting 0 as No/False and 1 as Yes/True).

In order to show that \( s(m,n,t) \) is small, we will exhibit efficient adaptive schemes to store sets of size exactly \( n \). This will imply our bound (where we allow sets of size at most \( n \)) because we may pad the universe with \( n \) additional elements, and extend \( S \) \(|S| \leq n \) by adding \( n - |S| \) additional elements, to get a subset of size exactly \( n \) in a universe of size \( m + n \leq 2m \).

**Definition 10**. An adaptive \((m,s,t)\)-graph is a bipartite graph \( G \) with vertex sets \( U = [m] \) and \( V (|V| = (2^t - 1)s) \). \( V \) is partitioned into \((2^t - 1)\) disjoint sets: \( A, A_0, A_1, A_0, \ldots \), that is, one \( A_\sigma \) for each \( \sigma \in \{0,1\}^{t-1} \); each \( A_\sigma \) has \( s \) vertices. Between each \( u \in U \) and each \( A_\sigma \), there is exactly one edge. Let \( V_i := \bigcup_{|\sigma| = i - 1} A_\sigma \). An \((m,s,t)\)-graph naturally gives rise to a systematic \((m,(2^t - 1)s,t)\)-query scheme \( T_G \) as follows. We view the memory (an array \( L \) of \((2^t - 1)s \) bits) to be indexed by vertices in \( V \). For query element \( u \in U \), if the first \( i-1 \) probes resulted in values \( \sigma \in \{0,1\}^{t-1} \), then the \( i \)-th probe is made to the location indexed by the unique neighbor
of \( u \) in \( A_y \). In particular, the \( i \)-th probe is made at a location in \( V_i \). We answer “Yes” iff the last bit read is 1. In addition, we use following notation. We refer to \( V_i \) as the leaves of \( G \) and for \( y \in [m] \), let \( \text{leaves}(y) := V_i \cap \Gamma_G(y) \). For \( R \subseteq [m] \), let \( \text{leaves}(R) := V_i \cap \Gamma_G(R) \).

We say that the query scheme \( \mathcal{T}_G \) is satisfiable for a set \( S \subseteq [m] \), if there is an assignment to the memory locations \( (L[v] : v \in V) \), such that \( \mathcal{T}_G \) correctly answers all queries of the form “Is \( x \) in \( S \)?”.

We assume that \( t \geq 3 \) is odd and show that \( \forall \epsilon > 0 \ \forall n \leq m^{1 - \epsilon} \ \forall t \leq \frac{1}{10} \log m \ s(m, n, t) = O(\exp(e^{2t}) m^{\frac{2}{t+1}} n^{1 - \frac{2}{t+1}} \log m) \). Our \( t \)-probe scheme will have two parts: a \( t_1 \)-probe non-adaptive part and a \( t_2 \)-probe adaptive part. The respective parts will be based on appropriate non-adaptive \((m, s, t_1)\)-graph \( G_1 \) and adaptive \((m, s, t_2)\)-graph \( G_2 \) respectively. To decide set membership, we check set membership in the two parts separately and take the AND, that is, we answer “Yes” iff all bits read in \( G_1 \) are 1 and the last bit read in \( G_2 \) is 1. We refer to this scheme as \( \mathcal{T}_G = \mathcal{T}_G \cap \mathcal{T}_G \).

First, we identify appropriate properties of the underlying graphs \( G_1 \) and \( G_2 \) that guarantee that all queries are answered correctly for sets of size \( n \). We then show that such graphs exist with \( s = O(\exp(e^{2t} - t) m^{\frac{2}{t+1}} n^{1 - \frac{2}{t+1}} \log m) \).

We will use the following constants in our calculations: \( \alpha := 2^{t_1} - 1 \) and \( \beta := 2^{t_2} - t_2 \). Note that \( \alpha \) is the total number of nodes in a \( t_2 \)-probe adaptive decision tree. In any such decision tree, for every choice of \( \beta \) nodes and every choice \( b \in \{0, 1\} \) of the answer, it is possible to assign values to those \( \beta \) nodes so that the decision tree returns the answer \( b \).

**Definition 11** (admissible-pair). We say that a non-adaptive \((m, s, t_1)\)-graph \( G_1 \) and an adaptive \((m, s, t_2)\)-graph \( G_2 \) form an admissible pair \((G_1, G_2)\) for sets of size \( n \) if the following conditions hold.

\[
\text{(P1)} \ \forall S \subseteq [m] \ (|S| = n) : |	ext{survivors}(S)| \leq 10m \left(\frac{2}{t_1}\right)^{t_1}, \text{ where } \text{survivors}(S) = \{ y \notin S : \Gamma_{G_1}(y) \subseteq \Gamma_{G_1}(S) \}.
\]

\[
\text{(P2)} \ \text{For } S \subseteq [m] \ (|S| = n), \text{ let } \text{survivors}^+(S) = \{ y \in \text{survivors}(S) : \text{leaves}_{G_2}(S) \cap \text{leaves}_{G_2}(y) \neq \emptyset \}. \text{ Then, } \forall S \subseteq [m] \ (|S| = n) \ \forall T \subseteq S \cup \text{survivors}^+(S) : \Gamma_{G_2}(T) \geq \beta|T|.
\]

**Lemma 12.** If a non-adaptive \((m, s, t_1)\)-graph \( G_1 \) and an adaptive \((m, s, t_2)\)-graph \( G_2 \) form an admissible pair for sets of size \( n \), then the query scheme \( \mathcal{T}_G = \mathcal{T}_G \cap \mathcal{T}_G \) is satisfiable for every set \( S \subseteq [m] \) of size \( n \).

**Lemma 13.** Let \( t \geq 3 \) be an odd number; let \( t_1 = \frac{t-3}{2} \) and \( t_2 = \frac{t+3}{2} \). Then, there exist an admissible pair of graphs consisting of a non-adaptive \((m, s, t_1)\)-graph \( G_1 \) and an adaptive \((m, s, t_2)\)-graph \( G_2 \) with \( s = O(\exp(e^{2t} - t) m^{\frac{2}{t+1}} n^{1 - \frac{2}{t+1}} \log m) \).

**Proof of Lemma 12.** Fix an admissible pair \((G_1, G_2)\). Thus, \( G_1 \) satisfies (P1) and \( G_2 \) satisfies (P2) above. Fix a set \( S \subseteq [m] \) of size \( n \). We will show that there is an assignment such that \( \mathcal{T}_G = \mathcal{T}_G \cap \mathcal{T}_G \) answers all questions of the form “Is \( x \) in \( S \)” correctly.

The assignment is constructed as follows. Assign 1 to all locations in \( \Gamma_{G_1}(S) \) and 0 to the remaining locations in \( \Gamma_{G_1}([m]) \). Thus, \( \mathcal{T}_G \) answers “Yes” for all query elements in \( S \) and answers “No” for all query elements outside \( S \cup \text{survivors}(S) \). However, it (incorrectly) answers “Yes” for elements in \( \text{survivors}(S) \). We will now argue that these false positives can be eliminated using the scheme \( \mathcal{T}_G \).

Using (P2) and Hall’s theorem, we may assign to each element \( u \in S \cup \text{survivors}^+(S) \) a set \( L_u \subseteq V(G_2) \) such that (i) \( |L_u| = \beta \) and (ii) the \( L_u \)'s are disjoint. Set \( b_u = 1 \) for \( u \in S \) and \( b_u = 0 \) for \( u \in \text{survivors}^+(S) \) (some of the false positives). As observed above for each \( u \in S \cup \text{survivors}^+(S) \) we may set the values in the locations in \( L_u \) such that the value returned on the query element \( u \) is precisely \( b_u \). Since the \( L_u \)'s are disjoint we may take such an action independently for each \( u \). After this partial assignment, it remains to ensure that queries for
elements \( y \in \text{survivors}(S) \setminus \text{survivors}^+(S) \) (the remaining false positives) return a “No”. Consider any such \( y \). By the definition of \( \text{survivors}^+(S) \), no location in \( \text{leaves}_{G_2}(y) \) has been assigned a value in the above partial assignment. Now, assign 0 to all unassigned locations in \( V(G_2) \). Thus \( T_{G_2} \) returns the answer “No” for queries from \( \text{survivors}(S) \setminus \text{survivors}^+(S) \). \( \square \)

Proof of Lemma 14. In the following, let 

\[
s = \left\lceil \exp(e^{2t} - t)m^{2t}n^{1 - \frac{t}{2m}} \ln m \right\rceil.
\]

We will construct the non-adaptive \((m, s, t_1)\)-graph \( G_1 \) and the \((m, s, t_2)\)-graph \( G_2 \) randomly, and show that with positive probability the pair \((G_1, G_2)\) is admissible. The graph \( G_1 \) is constructed as in the proof of Lemma 8, and the analysis is similar. Recall that \( V(G_1) = \bigcup_{i \in [t]} V_i(G_1) \). For each \( u \in U \), one neighbor is chosen uniformly and independently from each \( V_i(G_1) \).

(P1) holds. Fix a set \( S \) of size \( n \). Then, \( \mathbb{E}[|\text{survivors}(S)|] \leq (m - n) \left( \frac{n}{s} \right)^{t_1} \leq m \left( \frac{n}{s} \right)^{t_1} \). As before, using the Chernoff bound, we conclude that

\[
\Pr[|\text{survivors}(S)| > 10m \left( \frac{n}{s} \right)^{t_1}] \leq 2^{-10m \left( \frac{n}{s} \right)^{t_1}}.
\]

Then, by the union bound,

\[
\Pr[\text{P1 fails}] \leq \binom{m}{n} 2^{-10m \left( \frac{n}{s} \right)^{t_1}} \leq \frac{1}{10},
\]

where the last inequality follows from our choice of \( s \).

Fix a graph \( G_1 \) such that (P1) holds. The random graph \( G_2 \) is constructed as follows. Recall that \( V(G_2) = \bigcup_{z \in \{0, 1\}^{t_2 - 1}} A_z \). For each \( u \in [m] \), one neighbor is chosen uniformly and independently from each \( A_z \).

(P2) holds To establish (P2), we need to show that all sets of the form \( S' \cup R \), where \( S' \subseteq S \) and \( R \subseteq \text{survivors}^+(S) \) expand. To restrict the choices for \( R \), we first show in Claim 14

(a) that with high probability \( \text{survivors}^+(S) \) is small. Then, using direct calculations, we show that w\( \)h the required expansion is available in the random graph \( G_2 \).

Claim 14. (a) Let \( \mathcal{E}_a \equiv \forall S \subseteq [m]|(|S| = n) : |\text{survivors}^+(S)| \leq 100 \cdot 2^{t_2} m \left( \frac{n}{s} \right)^{t_1 + 1} \); then, \( \Pr[\mathcal{E}_a] \geq \frac{9}{10} \).

(b) Let \( \mathcal{E}_b \equiv \forall R \subseteq [m]|(|R| \leq n + \lfloor n \lg m \rfloor) : |\Gamma_{G_2}(R)| \geq \beta |R| \); then, \( \Pr[\mathcal{E}_b] \geq \frac{9}{10} \).

(c) Let \( \mathcal{E}_c \equiv \forall S \subseteq [m]|(|S| = n), \forall S' \subseteq S, \forall R \subseteq \text{survivors}^+(S)(|n \lg m| \leq |R| \leq 100 \cdot 2^{t_2} m \left( \frac{n}{s} \right)^{t_1 + 1}) : |\Gamma_{G_2}(S' \cup R)| \geq \beta |S' \cup R| \); then, \( \Pr[\mathcal{E}_c] \geq \frac{9}{10} \).

Proof of claim 14. Part (a) follows by a routine application of Chernoff bound, as in several previous proofs. For a set \( S \) of size \( n \), we have \( \mathbb{E}[\text{survivors}^+(S)] \leq |\text{survivors}(S)| 2^{t_2} \left( \frac{n}{s} \right)^{t_1 + 1} \leq 2^{t_2} 10m \left( \frac{n}{s} \right)^{t_1 + 1} \). Then,

\[
\Pr[\neg \mathcal{E}_a] \leq \binom{m}{n} 2^{-2^{t_2} 10m \left( \frac{n}{s} \right)^{t_1 + 1}} \leq \frac{1}{10},
\]

where the last inequality holds because of our choice of \( s \).
Next consider part (b). If $\mathcal{E}_b$ does not hold, then for some non-empty $W \subseteq [m]$, $|W| \leq n + [n \lg m]$), we have $|\Gamma_{G_2}(W)| \leq \beta |W| - 1$. Fix a set $W$ of size $r \geq 1$ and $L \subseteq V(G_2)$ of size $\beta r - 1$. Let $L$ have $\ell_z$ elements in $A_z$. Then,

$$
\Pr[\Gamma_{G_2}(W) \subseteq L] \leq \prod_z \left( \frac{\ell_z}{|A_z|} \right)^r \leq \left( \frac{\beta r - 1}{\alpha s} \right)^{as}.
$$

We conclude, using the union bound over choices of $W$ and $L$, that the probability that $\mathcal{E}_b$ does not hold is at most

$$
n+\lfloor n\lg m \rfloor \sum_{r=1}^{n+\lfloor n\lg m \rfloor} \binom{m}{r} \frac{\alpha s}{\beta r - 1} \left( \frac{\beta r - 1}{\alpha s} \right)^{as} \leq \sum_{r=1}^{n+\lfloor n\lg m \rfloor} \left( \frac{em}{r} \right)^r \left( \frac{\alpha es}{\beta r - 1} \right)^{an} \left( \frac{\beta r - 1}{\alpha s} \right)^{as} \leq \sum_{r=1}^{n+\lfloor n\lg m \rfloor} \left( \frac{\beta r}{\alpha es} \right)^{\frac{r}{s^{\beta(b-1)}}} \left( \frac{\beta r - 1}{\alpha s} \right)^{as} \leq \frac{1}{10^4},
$$

where the last inequality holds because of our choice of $s$.

Finally, we justify part (c). To bound the probability that $\mathcal{E}_c$ fails, we consider a set $S \subseteq [m]$ of size $n$, a subset $S' \subseteq S$ of size $i$ (say), a subset $R \subseteq \text{survivors}^+(S)$ of size $r$ (where $\lfloor n \lg m \rfloor \leq r \leq 100 \cdot 2^{l+1} m \left( \frac{2}{s} \right)^{l+1}$) and $L \subseteq V(G_2)$ of size $\ell = \beta(i + r)$ and define the event

$$
\mathcal{E}(S, S', R, L) \equiv (\forall y \in R : \text{leaves}_{G_2}(S) \cap \text{leaves}_{G_2}(y) \neq \emptyset) \land \Gamma_{G_2}(S' \cup R) \subseteq L.
$$

Then,

$$
\Pr[\mathcal{E}(S, S', R, L)] \leq \left( \frac{2^{l+1} m}{s} \right)^r \left( \frac{\ell}{(\alpha - 1)s} \right)^{\alpha i} \left( \frac{\ell}{\alpha s} \right)^{\alpha i} \leq \left( \frac{2^{l+1} m}{s} \right)^r \left( \frac{\beta(i + r)}{(\alpha - 1)s} \right)^{\alpha (i+1)} \left( \frac{\beta(i + r)}{\alpha s} \right)^{\alpha i},
$$

where the factor $\left( \frac{2^{l+1} m}{s} \right)^r$ is justified because of the requirement that every $y \in R$ has at least one neighbour in $\text{leaves}_{G_2}(S)$; the factor $\left( \frac{\ell}{(\alpha - 1)s} \right)^{\alpha i}$ is justified because all the remaining neighbours must lie in $L$ (we use AM $\geq$ GM); the last factor $\left( \frac{\ell}{\alpha s} \right)^{\alpha i}$ is justified because all neighbours of elements in $S'$ lie in $L$ (again we use AM $\geq$ GM). To complete the argument we apply the union bound over the choices of $(S, S', R, L)$. Note that we may restrict attention to $\ell = \beta(i + r)$ (because for our choice of $s$, we have $\beta(i + r) \leq |V(G_2)| = as$). Thus, the probability that $\mathcal{E}_c$ fails to hold is at most

$$
\sum_{S, S', R, L} \Pr[\mathcal{E}_c(S, S', R, L)],
$$

where $S$ ranges over sets of size $n$, $S' \subseteq S$ of size $i$, $R \subseteq \text{survivors}(S)$ of size $r$ such that $\lfloor n \lg m \rfloor \leq r \leq 100 \cdot 2^{l+1} m \left( \frac{2}{s} \right)^{l+1}$, $L$ is a subset of $V(G_2)$ of size $\beta(i + r)$. We evaluate this
sum as follows.

\[
\sum_r \sum_i \frac{m}{n} \left( \frac{10m \left( \frac{n}{r} \right)^{t_1}}{r} \right) \binom{n}{i} \frac{\alpha s}{\beta(i+r)} \left( \frac{2t_2 n}{s} \right)^r \left( \frac{\beta(i+r)}{(\alpha-1)s} \right)^{(a-1)(i+r)} \left( \alpha s \right)^i
\]

(5)

\[
\leq \sum_r \sum_i \left( \frac{e\alpha s}{\beta(i+r)} \right)^{\frac{r}{\alpha+1}} \left( \frac{10e \left( \frac{n}{r} \right)^{t_1}}{r} \right)^{\frac{r}{\alpha+1}} \binom{n}{i}^{\frac{1}{\alpha+1}} \left( \frac{e\alpha}{\alpha-1} \right)^{\beta(i+r)} \left( \frac{2t_2 n}{s} \right)^{\beta(i+r)} \left( \frac{\beta(i+r)}{(\alpha-1)s} \right)^{\beta(i+r)}
\]

(6)

\[
\leq \sum_r \sum_i \left[ \left( \frac{e\alpha s}{\beta(i+r)} \right)^{\frac{r}{\alpha+1}} \left( \frac{10e \left( \frac{n}{r} \right)^{t_1}}{r} \right)^{\frac{r}{\alpha+1}} \binom{n}{i}^{\frac{1}{\alpha+1}} \left( \frac{e\alpha}{\alpha-1} \right)^{\beta(i+r)} \left( \frac{2t_2 n}{s} \right)^{\beta(i+r)} \left( \frac{\beta(i+r)}{(\alpha-1)s} \right)^{\beta(i+r)} \right]^{i+r}
\]

(7)

We will show that the quantity inside the square brackets is at most \( \frac{1}{2} \). Then, since \( r \geq n \lg m \) and \( i \geq 0 \)

\[
\Pr[-\mathcal{E}_i] \leq \left( \sum_r 2^{-r} \right) \left( \sum_i 2^{-i} \right) \leq \frac{1}{10}.
\]

The quantity in the brackets can be decomposed as a product of two factors, which we will bound separately.

**Factor 1:** Consider the following contributions

\[
\left( \frac{e\alpha s}{\beta(i+r)} \right)^{\frac{r}{\alpha+1}} \left( \frac{10e \left( \frac{n}{r} \right)^{t_1}}{r} \right)^{\frac{r}{\alpha+1}} \binom{n}{i}^{\frac{1}{\alpha+1}} \left( \frac{e\alpha}{\alpha-1} \right)^{\beta(i+r)} \left( \frac{2t_2 n}{s} \right)^{\beta(i+r)} \left( \frac{\beta(i+r)}{(\alpha-1)s} \right)^{\beta(i+r)}
\]

Since \( r \geq n \lg m \) and \( i \leq n \), we have \( \frac{i}{\alpha+1} \leq \frac{n}{\alpha+1} \leq \frac{1}{\lg m} \leq \frac{1}{\lg m} \). Thus, for all large enough \( m \), this quantity is at most

\[
e^{2} \cdot 10e \cdot e^{2} \cdot (2e)^{2} \cdot e \leq \exp(e^{2t} - t).
\]

**Factor 2:** We next bound the contribution for the remaining factors.

\[
\frac{m \left( \frac{n}{r} \right)^{t_1}}{r} \left( \frac{\beta(i+r)}{(\alpha-1)s} \right)^{\alpha-i} \left( \frac{2t_2 n}{s} \right)\]

(8)

\[
\leq \frac{m \left( \frac{n}{r} \right)^{t_1}}{r} \left( \frac{2t_2 n}{s} \right)\]

(9)

\[
e^{mn \left( t_{1} + 2 \alpha - \beta + 2 \right)} s^{\alpha - \beta + t_{1}}.
\]

(10)

To justify (9), recall that \( r \leq 100 \cdot 2t_2 m \left( \frac{n}{r} \right)^{t_1 + 1} \) and

\[
\frac{m \left( \frac{n}{r} \right)^{t_1}}{r} \geq 1.
\]

Then, the above quantity is bounded by

\[
\frac{mn \left( t_{1} + 2 \alpha - \beta + 2 \right) s^{\alpha - \beta + t_{1}}}{s^{t_{1} + 2}} \]

(11)

\[
\leq \left( \frac{100 \cdot 2t_2 mn \left( t_{1} + 1 \right) s^{\alpha - \beta + t_{1}}}{s^{t_{1} + 2}} \right)^{\alpha - \beta - 1}.
\]

(12)
Thus, since \( s = \left\lceil \exp(e^{2t} - t) m^{2t} n^{1 - \frac{2t}{1 + t}} \lg m \right\rceil \), then the product of the factors is at most \( \frac{1}{10} \), as required.

\[ \square \]

4 Three non-adaptive probes lower bound

In this section, we prove the three probe lower bound result: Theorem \[ \text{4} \]

**Definition 15** (Equivalent). Two boolean functions are called equivalent if one can be obtained from the other by negating and permuting the variables.

**Proposition 16.** Let \( f, g : \{0, 1\}^t \to \{0, 1\} \) be equivalent. If \( s_1 \) and \( s_2 \) are the minimum bits of space required for non-adaptive \((m, n, s_1, t)\) and \((m, n, s_2, t)\)-schemes with query functions \( f \) and \( g \) respectively, then \( s_1 = s_2 \).

For three variable boolean functions, there are twenty-two equivalence classes (see [15]). To prove Theorem \[ \text{4} \] we provide proofs for these twenty-two query functions, each from a different class. In many proofs below we assume that the memory consists of three arrays of size \( s \) each, and the three probes are made on different arrays. Given any scheme that uses space \( s \), we can always modify it to meet our assumption, by expanding the space by factor 3.

4.1 Decision trees of height two

Seven of the twenty-two classes contain functions that can be represented by a decision tree of height at most two. Thus, for these functions, the two probe adaptive lower bound \[ \text{5} \] implies the result. These functions are: constant 0, constant 1, the DICTATOR function \((x, y, z) \mapsto x\), the function \((x, y, z) \mapsto x \land y\), its complement \((x, y, z) \mapsto \bar{x} \lor \bar{y}\), \((x, y, z) \mapsto (x \lor y) \lor (\bar{x} \lor \bar{z})\), and \((x, y, z) \mapsto (x \land y) \lor (\bar{x} \land \bar{z})\).

4.2 MAJORITY

Let \( \Phi \) be a non-adaptive \((m, n, s, 3)\)-scheme with MAJORITY as the query function. The memory is a bit array \( A[1, \ldots, s] \) of length \( s \). For each element \( u \in [m], x(u), y(u), z(u) \in [s] \) are the three distinct locations in \( A \) that are probed to determine whether \( u \) is in the set or not. For each set \( S \subseteq [m] \) of size at most \( n \), the assignment \( \sigma(S) \in \{0, 1\}^s \) to \( A \) is such that for all elements \( u \in [m], \operatorname{Maj}(A[x(u)], A[y(u)], A[z(u)]) = 1 \) iff \( u \in S \), where \( \operatorname{Maj} \) is the MAJORITY of 3 bits.

**Definition 17.** (model-graph for \( \Phi \), third vertex, meet) Let \( \Phi \) be a \((m, n, s, 3)\)-scheme with MAJORITY as the query function. Fix a graph \( G \) such that \( V(G) = [s], |E(G)| = m \) and edge labels: \( \{\text{lab}(e) \mid e \in E(G)\} = [m] \) (there is a unique edge for each label in \([m]\) ). \( G \) is called a model-graph for \( \Phi \) if for each \( u \in [m] \) the edge labelled \( u \) has the set of endpoints in \( \{(x(u), y(u)), (y(u), z(u)), (z(u), x(u))\} \). For example, the graph \( G = ([s], \{(x(u) \leftrightarrow y(u)) \mid u \in [m]\}) \) is a model graph for \( \Phi \).

In a model-graph for \( \Phi \), let \( e \) be the set of endpoints of the edge with label \( u \). The element in the singleton \( \{(x(u), y(u), z(u)) \setminus e\} \) is defined to be the third vertex of \( u \).

Two edge-disjoint cycles \( C_1 \) and \( C_2 \) are said to meet in a model-graph for \( \Phi \) if there exist elements \( u, v \in [m] \) such that the third vertices of \( u \) and \( v \) are the same vertex and the edges labelled \( u \) and \( v \) are in the different cycles \( C_1 \) and \( C_2 \) respectively.

**Definition 18.** A model-graph \( G \) for an \((m, n, s, 3)\)-scheme with MAJORITY as the query function is said to be forced if at least one of the following three conditions hold.

11
Proof of Lemma 19. Fix a forced model-graph.

Case: (P1) holds. (P1) implies that there are edge-disjoint cycles in $G$ with lengths at most $n$ each that intersect at a vertex.

(P2) holds. (P2) implies that there are edge-disjoint even cycles in $G$ with lengths at most $n$ each and $C_1$ and $C_2$ meet.

(P3) holds. (P3) implies that there are edge-disjoint odd cycles in $G$ with lengths at most $n$, such that some two edges in $C$, labelled $e$ and $f$ say, have an even number of edges between them (while traversing the edges of the cycle) and the third vertices of $e$ and $f$ are the same vertex.

Lemma 19. A model-graph for a scheme with MAJORITY as the query function cannot be forced.

Lemma 20. Any $(m,n,\left\lceil \frac{1}{6}m^{1-\frac{1}{(2^2)}+1}\right\rceil,3)$-scheme with MAJORITY as the query function has a forced model-graph.

From lemmas 19 and 20 it follows that when MAJORITY is used as the query function, $s_N(m,n,3) > \frac{1}{6}m^{1-\frac{1}{(2^2)}+1}$.

Proof of Lemma 19. Fix a $(m,n,s,3)$-scheme $\Phi$ with MAJORITY as the query function. Fix a model-graph $G$ for $\Phi$. Assume $G$ is forced, that is, it satisfies (P1) or (P2) or (P3) above.

Case: (P1) holds. (P1) implies that there are edge-disjoint cycles $C_1$ and $C_2$ in $G$ such that,

$$C_1: u_0 \xrightarrow{e_1} u_1 \xrightarrow{e_2} \cdots \xrightarrow{e_{2k+1}} u_{2k+1} = u_0,$$

$$C_2: u_0 \xrightarrow{f_1} v_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{2l+1}} v_{2l+1} = u_0,$$

and $2k+1, 2l+1 \leq n$. Let $S_0 = \{e_1, e_3, \cdots, e_{2k+1}\} \cup \{f_2, f_4, \cdots, f_{2l}\}$ and $S_1 = \{e_2, e_4, \cdots, e_{2k}\} \cup \{f_1, f_3, \cdots, f_{2l+1}\}$. Note that $|S_0| = |S_1| \leq n$. We claim that $\Phi$ cannot represent any set $S$ such that

$$S_0 \subseteq S \subseteq S_1.$$

In particular, $\Phi$ cannot represent the set $S_0$. Assume $\Phi$ represents such an $S$. We claim that $u_0$ cannot be assigned a 0. If $u_0$ is assigned a 0, then since $e_1 \in S$, $u_1$ must be assigned a 1. Otherwise, $\text{Maj}(A[x(e_1)], A[y(e_1)], A[z(e_1)]) = \text{Maj}(0,0,b) = 0$, where $b$ is the bit assigned to the location in $\{x(e_1), y(e_1), z(e_1)\} \setminus \{u_0, u_1\}$. Since, $u_1$ is assigned a 1 and $e_2 \notin S$, $u_2$ must be assigned a 0. Similarly, since $e_3 \in S$, $u_3$ must be assigned a 1 and so on. Finally, $u_{2k+1} = u_0$ must be assigned a 1. A contradiction. Hence $u_0$ cannot be assigned a 0.

Again, we claim $u_0$ cannot be assigned a 1. For if $u_0$ is assigned a 1, since $f_1 \notin S$, $v_1$ must be assigned a 0. Again, since $f_2 \in S$, $v_2$ must be assigned a 1 and so on. Finally, $v_{2l+1} = u_0$ must be assigned a 0. A contradiction.

Since $u_0$ can neither be assigned a 0 or a 1, we get a contradiction.

Remark. In the proofs below, we will often encounter similar arguments, where we will have a cycle of dependencies: assigning a particular bit to a location will force the assignment to the next location along the cycle.

Case: (P2) holds. (P2) implies that there are edge-disjoint cycles $C_1$ and $C_2$ in $G$ such that,

$$C_1: u_0 \xrightarrow{e_1} u_1 \xrightarrow{e_2} \cdots \xrightarrow{e_{2k}} u_{2k} = u_0,$$

$$C_2: v_0 \xrightarrow{f_1} v_1 \xrightarrow{f_2} \cdots \xrightarrow{f_{2l}} v_{2l} = v_0,$$
2k \cdot 2l \leq n, and the third vertices of e_1 and f_1 are the same vertex w. Let S_0 = \{e_1, e_3, \cdots, e_{2k-1}\} \cup \{f_2, f_4, \cdots, f_{2l}\} and S_1 = \{e_2, e_4, \cdots, e_{2k}\} \cup \{f_1, f_3, \cdots, f_{2l-1}\}. Note that |S_0| = |S_1| \leq n. We claim that \Phi cannot represent any set S such that

\[ S_0 \subseteq S \subseteq S_1. \]

In particular, \Phi cannot represent the set S_0. Assume \Phi represents such an S. Since e_1 \in S, either the location u_0 or the location u_1 of the memory A must be assigned a 1, otherwise \( \text{Maj}(A[x(e_1)], A[y(e_1)], A[z(e_1)]) = \text{Maj}(A[u_0], A[u_1], A[w]) = \text{Maj}(0, 0, A[w]) = 0 \). Assume \( u_1 \) is assigned a 1. Then, since \( e_2 \) is not in the set, using a similar argument, \( u_2 \) must be assigned a 0. Similarly, \( u_3 \) must be assigned a 1 and so on. Finally, \( u_{2k} = u_0 \) must be assigned a 0. Similarly, if \( u_0 \) was assigned a 1, then \( u_1 \) must be assigned a 0. Thus, \( \text{Maj}(x(e_1), y(e_1), z(e_1)) = \text{Maj}(0, 0, A[w]) = A[w] \). Hence \( w \) must be assigned a 1.

Again, since \( f_1 \) is not in \( S \), either \( v_0 \) or \( v_1 \) is assigned a 0. If \( v_1 \) is assigned 0, \( v_2 \) must be assigned a 1, \( v_3 \) a 0, and so on. Finally, \( v_{2l} = v_0 \) must be assigned a 1. Similarly, if \( v_0 \) is assigned 1, then \( v_1 \) is assigned a 0. Therefore, \( \text{Maj}(x(f_1), y(f_1), z(f_1)) = \text{Maj}(A[v_0], A[v_1], A[w]) = \text{Maj}(0, 0, A[w]) = A[w] \). Since \( f_1 \not\in S \), \( w \) must be assigned a 0. A contradiction.

**Case: (P3) holds.** (P3) implies that there is a cycle \( C \):

\[ v_0 \xrightarrow{e_1} v_1 \cdots \xrightarrow{e_{2k-1}} v_{2k} \cdots \xrightarrow{e_{2l}} v_{2l} = v_0, \]

\( 2k \leq 2l \leq n \) and the third vertices of \( e_1 \) and \( e_{2k} \) are the same vertex \( w \). Let \( S_0 = \{e_1, e_3, \cdots, e_{2k-1}\} \) and \( S_1 = \{e_2, e_4, \cdots, e_{2k}, \cdots, e_{2l}\} \). Note that \( |S_0| = |S_1| \leq n \). We claim that \( \Phi \) cannot represent any set \( S \) such that

\[ S_0 \subseteq S \subseteq S_1. \]

In particular, \( \Phi \) cannot represent the set \( S_0 \). Assume \( \Phi \) represents such an \( S \). Since \( e_1 \in S \), either \( v_0 \) or \( v_1 \) must be assigned a 1. Assume that \( v_1 \) is assigned a 1. Then, since \( e_2 \not\in S \), \( v_2 \) must be assigned a 0. Again, since \( e_3 \in S \), \( v_3 \) must be assigned a 1 and so on. All locations in \( R := \{v_2|0 \leq r \leq l\} \) must be assigned a 0 and all locations in \( Q := \{v_2|0 \leq r \leq l-1\} \) must be assigned a 1. Else if \( v_0 \) is assigned a 1, then all locations in \( R \) must be assigned a 1 and all locations in \( Q \) must be assigned a 0. Now, \( \text{Maj}(x(e_1), y(e_1), z(e_1)) = \text{Maj}(A[v_0], A[v_1], A[w]) = \text{Maj}(0, 0, A[w]) = A[w] \). Since \( e_1 \in S \), \( w \) must be assigned a 0. Similarly, \( \text{Maj}(x(e_{2k}), y(e_{2k}), z(e_{2k})) = \text{Maj}(A[v_{2k-1}], A[v_{2k}], A[w]) = \text{Maj}(0, 0, A[w]) = A[w] \). Since \( e_{2k} \not\in S \), \( w \) must be assigned a 1. A contradiction.

\[ \square \]

In order to prove Lemma 20 we will make use of the following proposition, which is a consequence of a theorem of Alon, Hoory and Linial [2] (see also Ajesh Babu and Radhakrishnan [3]).

**Proposition 21.** Fix a graph \( G \) such that the average degree \( d \geq 2 \). Then,

\[ (d - 1)^k > |V(G)| \implies \exists \text{ a cycle } C \subseteq E(G), |C| \leq 2k. \]

**Proof of Lemma 21.** Fix an \( (m, n, \left\lfloor \frac{1}{6} m^{1 - \frac{1}{2n}} \right\rfloor , 3) \)-scheme \( \Phi \) that uses MAJORITY as the query function. Note that \( s := \left\lfloor \frac{1}{6} m^{1 - \frac{1}{2n}} \right\rfloor \) implies

\[ m \geq s^{1 + \frac{1}{2n}} + 4s + 1. \tag{*} \]
For $\Phi$ we will come up with a model-graph which is forced, that is, one of (P1), (P2) or (P3) holds. We will start with an initial model-graph $G$ for $\Phi$. We will observe that the average degree of $G$ is high and invoke Proposition 21 to find a small cycle $C$. If $|C|$ is odd, we will bin it in ODD, delete $C$ and repeat. If $|C|$ is even and all the third vertices of the labels of edges in $C$ are distinct, we will bin $C$ in EVEN, delete the edges of $C$ and repeat; otherwise, we will either discover that property (P3) holds or we will modify our model-graph and find an odd cycle in it and bin it in ODD, delete it and repeat. The moment the sum of the lengths of the deleted cycles exceeds 2$s$, we know either the sum of the lengths of odd or even cycles exceeds $s$ and two odd cycles intersect or even cycles with distinct third vertices meet, which means either (P1) or (P2) holds. Formally, the procedure can be described as below. We will maintain the following invariant. EVEN will contain edge-disjoint cycles of length even and at most $n$ each and the third vertices of the labels in such a cycle will be all distinct. ODD will contain edge-disjoint cycles of length odd and at most $n$. Furthermore $([s], E(G) \cup$ EVEN $\cup$ ODD) will always be a model-graph for $\Phi$.

**Step 0: Initialization.** EVEN = $\emptyset$. ODD = $\emptyset$. $G = ([s], \{x(u) \leftrightarrow y(u) | u \in [m]\})$. Observe $G$ is a model-graph for $\Phi$.

**Step 1.** If $\sum_{C \in$ EVEN$\cup$ODD}$|C| > 2s$, END (this ensures that either (P1) or (P2) holds). Else, using Proposition 21 fix a cycle $C \subseteq E(G)$ such that $|C| \leq n$.

**Step 2.** If $|C|$ is odd, ODD $\leftarrow$ ODD $\cup \{C\}$ and $E(G) \leftarrow E(G) \setminus C$ and GOTO Step 1.

**Step 3.** If $|C|$ is even and all the third vertices of the labels of edges in $C$ are distinct, EVEN $\leftarrow$ EVEN $\cup \{C\}$ and $E(G) \leftarrow E(G) \setminus C$ and GOTO Step 1.

**Step 4.** If $|C|$ is even and the third vertices of the labels of two edges in $C$ which have an even number of edges between them while traversing the edges of $C$ in order, then END (Note this means that (P3) holds).

**Step 5.** If $|C|$ is even and the third vertices of the labels of two edges in $C$ have an odd number of edges between them (while traversing the edges of $C$ in order), then represent $C$ as

$$C : v_0 \xrightarrow{e_1} v_1 \cdots v_{2k} \xrightarrow{e_{2k+1}} v_{2k+1} \cdots v_{2l} = v_0,$$

such that the third vertices of $e_1$ and $e_{2k+1}$ are the same vertex $w$. We modify the model-graph $G$ by changing the endpoints of the edges appearing with labels $e_1, e_{2k+1}$ from $\{v_0, v_1\}, \{v_{2k}, v_{2k+1}\}$ to $\{v_1, w\}, \{v_{2k}, w\}$ respectively, thus obtaining a shorter odd cycle $C'$ in $G$:

$$E(G) \leftarrow (E(G) \setminus \{v_0 \xrightarrow{e_1} v_1, v_2k \xrightarrow{e_{2k+1}} v_{2k+1}\}) \cup \{v_1 \xrightarrow{e_1} w, v_{2k} \xrightarrow{e_{2k+1}} w\}$$

(Observe: $G$ with $E(G) \cup \{e | e \in$ ODD $\cup$ EVEN$\}$ continues to be a model-graph for $\Phi$).

$$C' \subseteq E(G) : w \xrightarrow{e_1} v_1 \xrightarrow{e_2} v_2 \cdots v_{2k} \xrightarrow{e_{2k+1}} w$$

is an odd length cycle of length at most $n$ in $G$.

ODD $\leftarrow$ ODD $\cup \{C'\}$. $E(G) \leftarrow E(G) \setminus C'$. GOTO Step 1.

In Step 1, if $|E(G)| \leq 2s$, then the average degree $d$ is at least $\frac{2m - 2s}{s} > s \sqrt{\frac{1}{2}} + 2$ (from $\star$) and $(d - 1)\lceil \frac{s}{2} \rceil > s$ which implies from Proposition 21 that there is a cycle of length at most $n$.

We claim that the procedure terminates only by encountering an END statement in Step 1 or in Step 4. Observe that once the procedure finds a cycle in Step 1, then exactly one of the four if conditions in Steps 2-5 holds. If the procedure does not encounter an END statement
in Step 4, then the procedure moves to Step 1 again as each of the Steps 2, 3 and 5 end in a ‘GOTO Step 1’ statement.

If the procedure encounters the END statement in Step 4, then (P3) holds. If the procedure encounters the END statement in Step 1, then from the pigeonhole principle, either $\sum_{C \in \text{ODD}} |C| > s$ or $\sum_{C \in \text{EVEN}} |C| > s$. In the first case, (P1) holds. In the second case, since each edge in a cycle in \text{EVEN} has a distinct third vertex, two cycles in \text{EVEN} meet.

Finally, we observe that the procedure terminates. If the procedure does not terminate in Step 4, then the procedure repeatedly finds edge disjoint cycles and deletes them. If the number of edges in the deleted cycle exceeds $2s$, then the procedure will terminate when it encounters the END statement in Step 1.

\section{4.3 Density argument}

The query functions considered in this section all admit a density argument. For such a query function, a valid scheme that supports sets from a large universe using only small space, must conceal a certain dense graph that avoids certain forbidden configurations. On the other hand, standard graph theoretic results (e.g., the Moore bound) would imply that dense graphs must have at least one of those forbidden configurations, which would contradict the existence of any such scheme.

In this section we provide lower bounds for the following ten query functions: AND function, $(x, y, z) \mapsto (x \lor y) \land z$, $(x, y, z) \mapsto (x \land y) \lor z$, the ALL-EQUAL function, $(x, y, z) \mapsto (x \land y \land z) \lor (\bar{y} \land \bar{z})$, and their complements. For these functions, we deal with two functions—a function and its complement—with a single proof. In these proofs, we produce sets $S$ and $T$ of size at most $n$ such that storing $S$ and not storing $T$ leads to a contradiction. The proof for the complement function works with a small twist: storing $T$ and not storing $S$ leads to the contradiction.

We now develop a common framework to prove lower bounds for the above mentioned query functions. We assume the query function is $f$, where $f$ could be any of these ten functions. Fix a scheme $\Phi_f$ for the query function $f$, where the memory consists of three distinct bit arrays: $A[1, \cdots , s], B[1, \cdots , s]$ and $C[1, \cdots , s]$. For any element $u \in [m]$, the scheme $\Phi_f$ probes three distinct locations $x(u) \in A, y(u) \in B, z(u) \in C$ to determine if $u$ is in the set or not. Given any set $S \subseteq [m]$ of size at most $n$, the assignment $\sigma_f(S) \in \{0, 1\}^{3s}$ to the memory is such that for all elements $u \in [m], f(A[x(u)], B[y(u)], C[z(u)])$ is 1 if $u \in S$.

We will need the following definitions.

\begin{definition}
(G_{A,B}(E), G_{B,C}(E), G_{A,C}(E)). For a scheme $\Phi_f$, and any subset of elements $E \subseteq [m]$, we define the bipartite graph $G_{A,B}(E)$ as follows. The vertex sets are $A = [s]$ and $B = [s]$. For each element $u \in E$, we have an edge labelled $u$ with end points $x(u) \in A$ and $y(u) \in B$.

Similarly, we define the bipartite graphs $G_{B,C}(E) = (B := [s], C := [s], \{y(u) \leftrightarrow z(u) : u \in E\})$ and $G_{A,C}(E) = (A := [s], C := [s], \{x(u) \leftrightarrow z(u) : u \in E\})$.
\end{definition}

\begin{definition}
(private vertex, private $z$ vertex). For an element $u \in [m]$, we say $u$ does not have a private vertex if each of its three probe locations is also the probe location of another element, that is, there exists elements $v_1, v_2, v_3 \in [m]$ such that $u \notin \{v_1, v_2, v_3\}, x(u) = x(v_1), y(u) = y(v_2)$ and $z(u) = z(v_3)$. If it is not the case that $u$ does not have a private vertex, we say that $u$ has a private vertex.

For an element $u \in [m]$, we say $u$ has a private $z$ vertex if its probe location in $C$ is not shared by any other element, that is for all $v \in [m] \setminus \{u\}, z(v) \neq z(u)$.
\end{definition}

\begin{proposition}
If every $u \in [m]$ has a private vertex, then $3s \geq m$.
\end{proposition}

\begin{proposition}
If at least $\frac{m}{2}$ $u$’s in $[m]$ have a private $z$ vertex, then $s \geq \frac{m}{2}$.
\end{proposition}
4.3.1 AND

Let the query function $f$ be the AND function.

From Proposition 23, if every $u \in [m]$ has a private vertex, we are done. Otherwise, fix an element $u \in [m]$ such that $u$ does not have a private vertex. Let elements $v_1, v_2, v_3 \in [m]$ be such that $x(u) = x(v_1)$, $y(u) = y(v_2)$ and $z(u) = z(v_3)$. Let $S = \{v_1, v_2, v_3\}$ and $T = \{u\}$. Clearly, $|S|, |T| \leq n$. We now show that $\Phi_f$ cannot represent any set $S'$ such that

$$S \subseteq S' \subseteq [m] \setminus T.$$ 

In particular $\Phi_f$ cannot represent the set $S$. To show this, consider the assignment for the set $S'$: $\sigma_f(S')$ to the memory $A, B, C$. Since $v_1, v_2, v_3 \in S'$, and $f$ is the AND function, $A[x(v_1)] = B[y(v_2)] = C[z(v_3)] = 1$. This implies $A[x(u)] = B[y(u)] = C[z(u)] = 1$. Thus, $f(A[x(u)], B[y(u)], C[z(u)]) = 1$. But $u \notin S'$. A contradiction.

The same argument works for $f$ when we try to represent any set $S'$ such that

$$T \subseteq S' \subseteq [m] \setminus S.$$ 

4.3.2 $(x, y, z) \mapsto (x \oplus y) \land z$

Let the query function $f$ be $(x, y, z) \mapsto (x \oplus y) \land z$.

From Proposition 23, if at least $\frac{m}{2}$ elements have a private vertex, we are done. Otherwise, fix a set $E \subseteq [m]$ of size at least $\frac{m}{2}$ that has no element with a private vertex.

Now, we assume $s \leq \frac{1}{4} m^{1 - \frac{1}{\ell + 1}}$ and prove a contradiction. The average degree of vertices in $G_{A, B}(E)$ is at least $2m^{\frac{1}{\ell + 1}} \geq 2$, for large $m$. Since

$$(2m^{1\frac{1}{\ell + 1}} - 1)^{\frac{2}{\ell + 1}} \geq (m^{\frac{1}{\ell + 1}})^{\frac{2}{\ell + 1}} \geq m > 2s,$$

from Proposition 21 there exists a cycle of length $2k \leq 2\left\lfloor \frac{2}{\ell} \right\rfloor \leq n$ in $G_{A, B}(E)$:

$$v_0 \xleftarrow{u_1} v_1 \xleftarrow{u_2} \cdots \xleftarrow{u_{2k}} v_2k = v_0.$$ 

Since $u_1 \in E$ does not have a private $z$ vertex, fix an element $v$ such that $z(v) = z(u_1)$. Let $S = \{v, u_2, u_3, \ldots, u_{2k}\}$ and $T = \{u_1\}$. Clearly, $|S|, |T| \leq n$. We now show that $\Phi_f$ cannot represent any set $S'$ such that

$$S \subseteq S' \subseteq [m] \setminus T.$$ 

In particular $\Phi_f$ cannot represent the set $S$. Under the assignment $\sigma_f$, since $v \in S'$, the location $z(v) = z(u_1)$ is assigned 1; otherwise if $C[z(v)] = 0$, then $(A[x(v)] \oplus B[y(v)]) \land C[z(v)] = 0$.

Again, under the assignment $\sigma_f$, exactly one of $v_0$ and $v_1$ is assigned 0. To see this, let us assume $v_1$ is assigned the bit $b$, then since $u_2 \in S'$, $v_2$ must be assigned the bit $b$; otherwise if both $v_1$ and $v_2$ are assigned $b$, then $(A[x(u_2)] \oplus B[y(u_2)]) \land C[z(u_2)] = (b \oplus b) \land C[z(u_2)] = 0$. Similarly, $v_3$ must be assigned the bit $b$, $v_4$ must be assigned the bit $b$ and so on. Thus, each location in $\{v_1, v_3, \ldots, v_{2k-1}\}$ must be assigned the bit $b$ and each location in $\{v_2, v_4, \ldots, v_{2k} = v_0\}$ must be assigned the bit $b$. Now, $(A[x(u_1)] \oplus B[y(u_1)]) \land C[z(u_1)] = (b \oplus b) \land C[z(u_1)] = 1$. But $u_1 \notin S'$. A contradiction. Thus, $s > \frac{1}{4} m^{1 - \frac{1}{\ell + 1}}$.

The same argument works for $\tilde{f}$ when we try to represent any set $S'$ such that

$$T \subseteq S' \subseteq [m] \setminus S.$$

16
Lemma 27.  
If cannot represent all sets of size $n$, let the query function $f$ be the ALL-EQUAL function.

From Proposition 25 if at least $\frac{m}{2}$ elements have a private $z$ vertex, we are done. Otherwise, fix a set $E \subseteq [m]$ of size at least $\frac{m}{2}$ that has no element with a private $z$ vertex. Now make disjoint pairs of distinct elements $(u, v)$, $u, v \in E$, that share the same $z$ location, that is, $z(u) = z(v)$. Make as many pairs as possible. At most $s$ many, one per location in $C$, elements can remain unpaired. Delete these unpaired elements from $E$. Thus, $m' := |E| \geq \frac{1}{2}(\frac{m}{2} - s) \geq \frac{m}{4}$ if $s \leq \frac{m}{4}$ (which if not true, we are immediately done). For each such pair $(u, v)$, define $v$ to be the reserved partner of $u$. Let $E' \subseteq E$ be the set of all unreserved elements. Clearly, $E' = \frac{|E|}{2} = \frac{m'}{2} \geq \frac{m}{16}$.

Find elements $u, v, w \in E'$ such that $u \notin \{v, w\}$, $x(u) = x(v)$ and $y(u) = y(w)$. If no such triple of elements exists then each element has at least one of its $x$ or $y$ probe locations not shared with any other element in $E'$, and thus $2s \geq |E'| \geq \frac{m}{16}$ and we are done.

Let $S = \{u\} \cup \{\text{reserved partner of } t : t \in \{v, w\}\}$, $T = \{v, w\}$. Clearly, $|S|, |T| \leq n$. We now show that $\Phi_f$ cannot represent any set $S'$ such that

$$S \subseteq S' \subseteq [m] \setminus T.$$

In particular $\Phi_f$ cannot represent the set $S$. Any assignment $\sigma_{S'}$ must assign 1 to each location $z(t)$, for each $t \in \{v, w\}$; since, the reserved partner of each such $t$ is in $S'$ and $t$ shares the same $z$ vertex with it. The assignment $\sigma_{S'}$ must assign 0 to each of $x(v), y(v), x(w), y(w)$; since, if any of them is assigned a 1, together with the fact that $z(v), z(w)$ are assigned 1, either $(A[x(v)] \lor B[y(v)]) \land C[z(v)]$ or $(A[x(w)] \lor B[y(w)]) \land C[z(w)]$ will evaluate to 1 which cannot happen as $v, w \notin S'$.

Now, since $x(u) = x(v)$ and $y(u) = y(w)$, $(A[x(u)] \lor B[y(u)]) \land C[z(u)] = (0 \lor 0) \land C[z(u)] = 0$. But $u \in S'$. A contradiction.

The same argument works for $\tilde{f}$ when we try to represent any set $S'$ such that

$$T \subseteq S' \subseteq [m] \setminus S.$$

4.3.4  ALL-EQUAL

Let the query function $f$ be the ALL-EQUAL function.

We assume $s < \frac{1}{600}m^{1 - \frac{1}{2(2 + 2)}}$ and derive a contradiction.

Lemma 26.  If $G_{A, B}$ and $G_{B, C}$ contain cycles $C_1$ and $C_2$ respectively of size at most $\frac{n}{2}$ each such that for some $e_1 \in C_1$ and $e_2 \in C_2$, labels of $e_1$ and $e_2$ are the same, then the scheme $\Phi_f$ cannot represent all sets of size $n$.

Lemma 27.  If $s < \frac{1}{600}m^{1 - \frac{1}{2(2 + 2)}}$, then $G_{A, B}$ and $G_{B, C}$ will contain cycles $C_1$ and $C_2$ respectively each of length at most $\frac{n}{2}$ such that for some $e_1 \in C_1$ and $e_2 \in C_2$, labels of $e_1$ and $e_2$ are the same.

Our claim follows immediately from the above two lemmas.

Proof of Lemma 26.  Let the two cycles $C_1$ and $C_2$ as promised by Lemma 26 be

$$C_1 : r_0 \xrightarrow{u_1} r_1 \xrightarrow{u_2} \ldots \xrightarrow{u_{2k}} r_{2k} = r_0,$$

$$C_2 : r_0 \xrightarrow{u_1} t_1 \xrightarrow{v_2} \ldots \xrightarrow{v_{2l}} t_{2l} = r_0,$$

17
where \( r_0 = y(u_1) \in B, r_1 = x(u_1) \in A, t_1 = z(u_1) \in C \) and \( 2k, 2l \leq \frac{m}{2} \). Let \( S = \{u_2, u_3, \ldots, u_{2k}\} \cup \{v_2, v_3, \ldots, v_2l\} \) and \( T = \{u_1\} \). Clearly, \(|S|, |T| \leq n\). We now show that \( \Phi_f \) cannot represent any set \( S' \) such that
\[
S \subseteq S' \subseteq [m] \setminus T.
\]
In particular \( \Phi_f \) cannot represent the set \( S \). Let the assignment \( \sigma_{S'} \) assign the bit \( b \) to the location \( r_0 \). Then, all locations in \( \{r_1, r_2, \ldots, r_{2k}\} \cup \{t_1, t_2, \ldots, t_{2l}\} \) must be assigned the bit \( b \) since, \( r_{2k} = r_0 \) is assigned the bit \( b \) and since \( v_{2k} \in S' \), \( r_{2k-1} \) must be assigned the bit \( b \) similarly since \( r_{2k-1} \) is assigned the bit \( b \) and since \( u_{2k-1} \in S' \), \( r_{2k-2} \) must be assigned the bit \( b \) and so on and thus all locations in \( \{r_1, r_2, \ldots, r_{2k}\} \) must be assigned the bit \( b \). Arguing similarly, since \( r_0 = t_{2l} \) is assigned the bit \( b \) and since \( v_{2l} \in S' \), \( t_{2l-1} \) must be assigned the bit \( b \) and so on and thus all locations in \( \{t_1, t_2, \ldots, t_{2l}\} \) must be assigned the bit \( b \). Now, since \( r_0, r_1, t_1 \) are all assigned the bit \( b \) and they are the three probe locations for the element \( u_1 \), the ALL-EQUAL function for \( u_1 \) evaluates to 1. But \( u_1 \notin S' \). A contradiction. \( \square \)

**Proof of Lemma 27** In the graph \( G_{A,B}([m]) \), as long as the number of edges is at least \( 6s^{1+\frac{1}{m}} \), we can find a cycle of length at most \( \frac{n}{2} \) from Proposition 21 since, the average degree then would be at least
\[
\frac{6s^{1+\frac{1}{m}}}{2s} \geq 3s^{\frac{1}{2s}} \geq 2,
\]
and since
\[
(3s^{\frac{1}{2s}} - 1)^{\frac{1}{s}} > 2s.
\]

We repeatedly remove cycles: \( C_1, C_2, \ldots \) from the graph \( G_{A,B} \) each of length at most \( \frac{n}{2} \) using Proposition 21 (that is, we delete the edges appearing in the picked cycle), till no more cycle remains; then, the number of remaining edges in the graph will be at most \( 6s^{1+\frac{1}{m}} \leq \frac{1}{100}m \); since,
\[
s < \frac{1}{600}m^{1-\frac{1}{m}} \quad \Rightarrow \quad m > 600s^{1+\frac{1}{m}}.
\]

Similarly, following the same argument, we can remove cycles: \( D_1, D_2, \ldots \) from the graph \( G_{B,C}([m]) \), where the length of each cycle is at most \( \frac{n}{2} \), till no more cycle remains. The number of remaining edges in the graph will be at most \( \frac{1}{100}m \).

Now, pick a random element \( u \in [m] \). The probability that the edge \( \{x(u), y(u)\} \) with label \( u \) appears in some cycle \( C_i \) and the edge \( \{y(u), z(u)\} \) with label \( u \) appears in some cycle \( D_j \) is at least \( 1 - \left( \frac{1}{100} + \frac{1}{100} \right) = \frac{88}{100} \) (using the union bound). Thus, there exists an element \( u \) and cycles \( C_i \) and \( D_j \) each of length at most \( \frac{n}{2} \) in \( G_{A,B} \) and \( G_{B,C} \) respectively, each containing an edge labelled \( u \). \( \square \)

The same argument works for \( \tilde{f} \) when in Lemma 26 we try to represent any set \( S' \) such that
\[
T \subseteq S' \subseteq [m] \setminus S.
\]

**4.3.5** \((x, y, z) \mapsto (x \wedge y \wedge z) \lor (\tilde{y} \wedge \tilde{z})\)

Let the query function \( f \) be \((x, y, z) \mapsto (x \wedge y \wedge z) \lor (\tilde{y} \wedge \tilde{z})\).

**Definition 28** (forced). We say that the scheme \( \Phi_f \) is forced if in the graph \( G_{B,C}([m]) \) at least one of the following two conditions hold.

(P1) There exists a cycle \( C \) of length at most \( \frac{n}{2} \) such that there are two elements \( u_1, u_2 \in [m] \) which appear as labels of some two edges in \( C \) and \( x(u_1) = x(u_2) \).

(P2) There exist cycles \( C_1 \) and \( C_2 \) of lengths at most \( \frac{n}{2} \) each and some two elements \( u, v \in [m] \) that appear as the labels of an edge in \( C_1 \) and an edge in \( C_2 \) respectively have the same \( x \) probe location, that is, \( x(u) = x(v) \).
Lemma 29. If the scheme $\Phi_f$ is forced, then it cannot represent all sets of size at most $n$.

Lemma 30. If $s < \frac{1}{4}m^{1 - \frac{1}{\log m}}$, then $\Phi_f$ is forced.

Our claim follows immediately from these two lemmas.

Proof of Lemma 29. We assume either (P1) or (P2) above holds and derive a contradiction.

Case: (P1) holds. Let $C$ be a cycle:

$$C : r_0 \xrightarrow{v_i} r_1 \xrightarrow{v_2} \cdots \xrightarrow{v_{k-1}} r_k \xrightarrow{v_1} \cdots \xrightarrow{v_i} r_1 = r_0$$

in $G_{B,C}$ of length at most $\frac{n}{2}$, that contains two edges labelled $v_1$ and $v_k$ such that $x(v_1) = x(v_k)$. Let $S = \{v_2, \cdots, v_l\}$ and $T = \{v_1\}$. Clearly $|S|, |T| \leq n$ We now show that $\Phi_f$ cannot represent any set $S'$ such that

$$S \subseteq S' \subseteq [m] \setminus T.$$ In particular $\Phi_f$ cannot represent the set $S$. The assignment $\sigma_{S'}$ has to assign the same bit to all locations in $\{r_1, \cdots, r_l = r_0\}$. To see this, first observe that for any element $u \in S'$, for the query function $f$ to evaluate to 1, $y(u)$ and $z(u)$ must be assigned the same bit. Now, if $r_1$ is assigned the bit $b$, then since $v_2 \in S$, $r_2$ must be assigned the bit $b$, and again $r_2$ is assigned the bit $b$ and $v_3 \in S$, $r_3$ must be assigned the bit $b$ and so on and thus all locations in $\{r_1, \cdots, r_l = r_0\}$ is assigned the same bit $b$. Now, since the locations $x(v_1), x(v_k)$ are the same and the locations $y(v_1), z(v_1), y(v_k), z(v_k)$ are assigned the same bit the query function will evaluate to the same value for both $v_1$ and $v_k$. But $v_k \in S'$ and $v_1 \notin S'$. A contradiction.

Case: (P2) holds. Let $C_1$ and $C_2$ be cycles:

$$C_1 : r_0 \xrightarrow{u_1} r_1 \xrightarrow{u_2} \cdots \xrightarrow{u_{k-1}} r_k \xrightarrow{u_1} \cdots \xrightarrow{u_1} r_1 = r_0$$

$$C_2 : t_0 \xrightarrow{v_1} t_1 \xrightarrow{v_2} \cdots \xrightarrow{v_p} t_p = t_0$$

each of length at most $\frac{n}{4}$ and $x(u_k) = x(v_1)$. Let $S = \{u_2, u_3, \cdots, u_l\} \cup \{v_2, v_3, \cdots, v_p\}$ and $T = \{u_1, v_1\}$. Clearly, $|S|, |T| \leq n$. We now show that $\Phi_f$ cannot represent any set $S'$ such that

$$S \subseteq S' \subseteq [m] \setminus T.$$ In particular $\Phi_f$ cannot represent the set $S$. Following a similar reasoning as in the earlier case, we have the assignment $\sigma_{S'}$ must assign all locations in $\{r_1, r_2, \cdots, r_l = r_0\}$ the same bit $b$ and all locations in $\{t_1, t_2, \cdots, t_p\}$ the same bit $b'$. Since $u_1 \notin S'$, the locations in $\{y(u_1), z(u_1)\} = \{r_0, r_1\}$ cannot be assigned both 0’s and since both of them are assigned the same bit $b$, it must be that $b = 1$. Now, since $u_k \in S'$ and $\{y(u_k), z(u_k)\} = \{r_{k-1}, r_k\}$ are both assigned $b = 1$, $x(u_k)$ must be assigned 1. $x(u_k)$ is assigned 1 and the locations $y(v_1), z(v_1)$ are assigned the bit $b'$ implies $f(A[x(v_1)], B[y(v_1)], C[z(v_1)]) = f(1, b', b') = 1$. But $v_1 \notin S'$. A contradiction.

Proof of Lemma 30. If the scheme uses space less and (P1) above does not hold then we show (P2) above must hold.

In the graph $G_{B,C}([m])$, as long as the number of edges is at least $6s^{1 + \frac{1}{4}}$ we can find a cycle of length at most $\frac{n}{2}$ from Proposition 29 since, the average degree then would be at least

$$\frac{6s^{1 + \frac{1}{4}}}{2s} \geq 3s^{\frac{1}{4}} \geq 2,$$
and since

\[(3s \left\lfloor \frac{m}{4} \right\rfloor - 1)\left\lfloor \frac{m}{4} \right\rfloor > 2s.\]

We repeatedly remove cycles: \(C_1, C_2, \cdots\) from the graph \(G_{B,C}\) each of length at most \(\frac{n}{2}\) using Proposition 21 till no more cycle remains; then, the number of remaining edges in the graph will be at most \(6s^{1+\left\lfloor \frac{m}{4} \right\rfloor}\); since,

\[s < \frac{1}{t}m^{1-\left\lfloor \frac{m}{4} \right\rfloor+1} \implies m > 7s^{1+\left\lfloor \frac{1}{4}m \right\rfloor}.\]

Thus, the sum of the lengths of the removed cycles exceeds \(s\). Now, for any two edges labelled \(u, v\) in a removed cycle, \(z(u) \neq z(v)\); otherwise (P1) holds. Thus, the sum of the probe locations in \(C\) (\(z\) probe locations) of the labels of the edges appearing in the cycles exceeds \(s\) and hence some two cycles must have edge labels \(u, v\) respectively, such that \(z(u) = z(v)\). \(\square\)

The same argument works for \(\bar{f}\) when in Lemma 29 we try to represent any set \(S'\) such that

\[T \subseteq S' \subseteq [m] \setminus S.\]

### 4.4 Dimension argument

In the proofs below we make use of algebraic arguments. The query functions considered in this section admit a dimension argument. The argument will go as follows. To each element in the universe we will associate a vector. If the space used by a scheme is small, then all these vectors will reside in a vector space of small dimension, which, in turn, will force a linear dependence between them. We will then argue that if we keep one element \(u\) aside and not store any other elements appearing in the linear dependence, then the scheme will be left with no choice for \(u\) leading to a contradiction.

We now develop a common framework to prove lower bounds for the query functions- \(\text{PARITY}\) and \((x, y, z) \mapsto 1\) iff \(x + y + z \neq 1\) (over \(\mathbb{R}\)). We assume the query function is \(f\), where \(f\) could be either of these two functions. Fix a scheme \(\Phi_f\) for the query function \(f\), where the memory is a bit array \(A[1, \cdots, s]\) consisting of \(s\) locations. For any element \(u \in [m]\), the scheme \(\Phi_f\) probes three distinct locations \(x(u), y(u), z(u) \in A\) to determine if \(u\) is in the set or not. Given any set \(S \subseteq [m]\) of size at most \(n\) the assignment \(\sigma_f(S) \in \{0, 1\}^s\) to \(A\) is such that for all elements \(u \in [m]\), \(f(x(u), y(u), z(u))\) is 1 iff \(u \in S\).

**Definition 31** (Fields \(\mathbb{F}_2, \mathbb{R}\), vector spaces \(V, W\), vector). Let \(\mathbb{F}_2 = \{0, 1\}\) be the field with modulo 2 arithmetic. Let \(\mathbb{R}\) be the field of real numbers with the usual arithmetic.

Let \(V = \mathbb{F}_2^s\) be the vector space of all \(s\) dimensional vectors over the field \(\mathbb{F}_2\).

Let \(W = \mathbb{R}^s\) be the vector space of all \(s\) dimensional vectors over the field \(\mathbb{R}\).

For an element \(u \in [m]\), define vector\((u)\) to be an \(s\)-dimensional vector which contains three 1’s in the positions \(x(u), y(u)\) and \(z(u)\) and 0’s everywhere else. Clearly vector\((u)\) \(\in V \subseteq W\).

#### 4.4.1 \(\text{PARITY}\)

Now we fix \(f\) to be the parity function.

**Proposition 32.** For a set \(S \subseteq [m]\) of size at most \(n\), the assignment \(\sigma_f(S)\) is such that for all \(u \in [m]\), the dot product of the two vectors vector\((u)\) and \(\sigma_f(S)\) in \(V\) is 1 iff \(u \in S\).

If \(m > s\), then the set of \(m\) vectors \(\{\text{vector}(u) : u \in [m]\}\) \(\subseteq V\) is linearly dependent; \(V\) is \(s\)-dimensional. Thus, there exists distinct elements \(u, v_1, \cdots, v_t \in [m]\), such that

\[\text{vector}(u) = \sum_{i=1}^t \text{vector}(v_i).\]
Taking dot product on both sides with the assignment vector $\sigma_f(\{u\})$ for the singleton $\{u\}$, we have

$$\text{vector}(u).\sigma_f(\{u\}) = \sum_{i=1}^{t} \text{vector}(v_i).\sigma_f(\{u\})$$

$$\implies 1 = \sum_{i=1}^{t} 0 = 0,$$

where the last step follows from Proposition 32 and the fact that $u \in \{u\}$ and $v_i \notin \{u\}$ for all $i \in [t]$. A contradiction. Thus $s \geq m$.

4.4.2 $(x, y, z) \mapsto 1$ iff $x + y + z \neq 1$

Now we fix $f$ to be the $(x, y, z) \mapsto 1$ iff $x + y + z \neq 1$ function.

Proposition 33. For a set $S \subseteq [m]$ of size at most $n$, the assignment $\sigma_f(S)$ is such that for all $u \in [m]$, the dot product of the two vectors $\text{vector}(u)$ and $\sigma_f(S)$ in $W$ is 0 iff $u \in S$.

If $m > s$, then the set of $m$ vectors $\{\text{vector}(u) : u \in [m]\} \subseteq W$ is linearly dependent; $W$ is $s$-dimensional. Thus, there exists distinct elements $u, v_1, \ldots, v_t \in [m]$ and $\alpha_1, \ldots, \alpha_t \in \mathbb{R}$, such that

$$\text{vector}(u) = \sum_{i=1}^{t} \alpha_i \text{vector}(v_i).$$  \hspace{1cm} (13)

Taking dot product on both sides with the assignment vector $\sigma_f(\{u\})$ for the singleton $\{u\}$, we have

$$\text{vector}(u).\sigma_f(\{u\}) = \sum_{i=1}^{t} \alpha_i \text{vector}(v_i).\sigma_f(\{u\})$$

$$\implies 0 = \sum_{i=1}^{t} \alpha_i$$

where the last step follows from Proposition 33 and the fact that $u \in \{u\}$ and $v_i \notin \{u\}$ for all $i \in [t]$.

Again, taking dot product on both sides of Equation (13) with the assignment $\sigma_f(\emptyset)$ for the empty set, we have

$$\text{vector}(u).\sigma_f(\{u\}) = \sum_{i=1}^{t} \alpha_i \text{vector}(v_i).\sigma_f(\{u\})$$

$$\implies 1 = \sum_{i=1}^{t} \alpha_i = 0$$

where the last step follows from Proposition 33 and the fact that $u, v_i \notin \emptyset$ for all $i \in [t]$. A contradiction. Thus, $s \geq m$.

4.5 Degree argument

In this section we provide lower bound proofs for the query functions $(x, y, z) \mapsto (x \land y) \oplus z$ and $(x, y, z) \mapsto 1$ iff $x + y + z = 1$. 

21
4.5.1 \((x, y, z) \mapsto (x \land y) \oplus z\)

Let \(\Phi\) be a scheme with \((x, y, z) \mapsto (x \land y) \oplus z\) as the query function. The memory consists of three distinct bit arrays: \(A[1, \cdots, s], B[1, \cdots, s]\) and \(C[1, \cdots, s]\). For any element \(u \in [m]\), the scheme probes three locations \(x(u) \in A, y(u) \in B\) and \(z(u) \in C\) to determine if \(u\) is in the set or not. We treat each location as a boolean variable. Given any set \(S \subseteq [m]\) of size at most \(n\) the assignment \(\sigma(S) = \{0, 1\}^{3s}\) to \(A, B\) and \(C\) is such that for all elements \(u \in [m]\), \((x(u) \land y(u)) \oplus z(u)\) is 1 iff \(u \in S\).

We first prove that \(s = \Omega(\sqrt{mn})\) by specializing the lower bound proof in [12] to our case.

**Definition 34** (Field \(\mathbb{F}_2\), vector space \(V\), polynomials \(P_S\)). Let \(\mathbb{F}_2\) denote the field \(\{0, 1\}\) with mod 2 arithmetic. The query function \((x, y, z) \mapsto (x \land y) \oplus z\) is same as \((x, y, z) \mapsto xy + z\) (over \(\mathbb{F}_2\)).

Let \(V\) be the vector space over the field \(\mathbb{F}_2\) of all multilinear polynomials of total degree at most \(2n\) in the \(3s\) variables: \(A[1, \cdots, A[s], B[1, \cdots, B[s], C[1, \cdots, C[s]\) with coefficients coming from \(\mathbb{F}_2\).

For each set \(S \subseteq [m]\), we define the polynomial \(P_S\) in \(3s\) variables and coefficients coming from the field \(\mathbb{F}_2\) as follows:

\[
P_S = \prod_{u \in S} (x(u)y(u) + z(u)).
\]

We make \(P_S\) multilinear by reducing the exponents of each variable using the identity \(x^2 = x\) for each variable \(x\). This identity holds since we will be considering only 0-1 assignment to the variables.

To prove the theorem for \((x, y, z) \mapsto (x \land y) \oplus z\), we use the following two lemmas.

**Lemma 35.** The set of \((\binom{m}{n})\) multilinear polynomials \(\{P_S : |S| = n\}\) is linearly independent in the vector space \(V\).

**Lemma 36.** \(V\) has a spanning set of size at most \((\frac{3s + 2n}{2n})\).

Using these two lemmas, we first prove the theorem and provide the proofs of the lemmas later.

**Proof.** Now, since the size of a linearly independent set is at most the size of a spanning set, using Lemmas 35 and 36 we have

\[
\binom{m}{n} \leq \binom{3s + 2n}{2n}
\]

\[
\Rightarrow \binom{m}{n}^n \leq \left(\frac{e(3s + 2n)}{2n}\right)^{2n}
\]

\[
\Rightarrow 3s \geq \frac{2}{e}\sqrt{n(\sqrt{m} - e\sqrt{n})}
\]

\[
\Rightarrow 3s \geq \frac{18}{10e}\sqrt{mn} \quad \text{(when } n \leq \frac{m}{900} \Rightarrow e\sqrt{n} \leq \frac{1}{10}\sqrt{m}\}.
\]

When \(n \geq \frac{m}{900}\) the fact that the assignments to the memory for storing different sets of size \([\frac{m}{900}]\) are different implies that the space required is at least \(\lg \left(\frac{m}{900}\right) \geq \Omega(m) \geq \Omega(\sqrt{mn})\).

Now, we prove the two lemmas.

**Proof of Lemma 35.** First observe that any \(S\) of size \(n\), the polynomial \(P_S\) has \(n\) factors of degree 2 each. Hence, the degree of \(P_S\) is at most \(2n\).
For sets $S, S' \subseteq [m]$ of size $n$ each, the evaluation of the polynomial $P_S$ on the assignment $\sigma(S')$ is

$$P_S(\sigma(S')) = \begin{cases} 0 & \text{if } S \neq S' \\ 1 & \text{if } S = S'. \end{cases}$$

Since $S \neq S'$ and $|S| = |S'| = n \geq 1$, there exists $u \in S$ such that $u \notin S'$ and thus under the assignment $\sigma(S')$, the factor $x(u)y(u) + z(u)$ in $P_S(\sigma(S'))$ evaluates to 0. While, when $S = S'$, for each $u \in S$ the factor $x(u)y(u) + z(u)$ in $P_S(\sigma(S'))$ evaluates to 1.

In particular, this proves that $\{P_S : |S| = n\}$ has size $\binom{m}{n}$. Further we use this observation below to prove the lemma.

Let $\sum_{S:|S|=n} \alpha_S P_S = 0$ where each $\alpha_S \in \mathbb{F}_2$. To show that the $P_S$’s are linearly independent, we need to show that each $\alpha_S$ is 0. Consider an arbitrary set $S'$ of size $n$, consider the assignment $\sigma(S')$ to the variables in the above identity.

$$0 = \sum_{S:|S|=n} \alpha_S P_S(\sigma(S'))$$

$$= \alpha_{S'} P_{S'}(\sigma(S')) + \sum_{S:|S|=n, S \neq S'} \alpha_S P_S(\sigma(S'))$$

$$= \alpha_{S'} P_{S'}(\sigma(S')) \text{ (since, } P_S(\sigma(S')) = 0 \text{ for each } S \neq S')$$

$$= \alpha_{S'} \text{ (since, } P_{S'}(\sigma(S')) = 1).$$

Proof of Lemma 36. The monomials of total degree at most $2n$ form a spanning set; each polynomial in $V$ can be written as a linear combination of these monomials. Thus, the size of this spanning set is

$$\sum_{k=0}^{2n} \binom{3s}{k} \leq \binom{3s+2n}{2n},$$

where the last inequality follows from the fact that $T \mapsto T \cap [3s]$ is an onto map from $\binom{[3s]+2n}{2n}$ to $\binom{[3s]}{2n}$. \qed

4.5.2 $(x, y, z) \mapsto 1$ iff $x + y + z = 1$

The lower bound proof for $(x, y, z) \mapsto 1$ iff $x + y + z = 1$ is similar to the lower bound proof for $(x, y, z) \mapsto (x \land y) \oplus z$. The only difference here is that instead of looking at the query function over the field $\mathbb{F}_2$, we consider the query function over the field $\mathbb{F}_3$ (the set of three elements $\{0, 1, 2\}$ with mod 3 arithmetic). Over the field $\mathbb{F}_3$, the query function $(x, y, z) = 1$ iff $x + y + z = 1$ is same as $(x, y, z) \mapsto x + y + z + xy + yz + zx$ (a degree 2 polynomial). Accordingly, the multilinear polynomial corresponding to a set $S$ of size $n$ is defined to be

$$P_S = \prod_{u \in S} (x(u) + y(u) + z(u) + x(u)y(u) + y(u)z(u) + z(u)x(u)).$$

where we reduce the exponents using the identity $x^2 = x$ for each variable $x$ (this identity holds as we consider only 0-1 assignments). Notice that $P_S$ has degree at most $2n$ and the rest of the proof is same as before.
4.6 Improved bound for \((x, y, z) \mapsto (x \land y) \oplus z\)

We now prove part (c) of Theorem 4. We extend the idea of the lower bound proof for the query function \((x, y, z) \mapsto (x \land y) \oplus z\) for \(\lg m \leq n \leq \frac{m}{10^4}\) to get a better lower bound. We continue to use the framework of Section 4.5.1.

For the scheme \(\Phi\), we first define a bipartite graph \(G_{A,B}\) with vertex sets \(A, B \subseteq [s]\). The sets \(A, B\) and the edges will be determined as follows. Initially let \(A = B = [s]\) and for each element \(u \in [m]\) add an edge labelled \(u\) between \(x(u) \in A\) and \(y(u) \in B\). Our goal is to ensure that there are \(m' \geq 4m^5\) edges in the graph and all vertices have degree at least \(m'10^s\). Repeatedly delete all vertices with degree less than \(m'10^s\), to get \(A\) and \(B\). We will lose at most \(2s \times m'10^s = m^5\) edges. Also delete the corresponding elements of the universe \([m]\) which appeared as labels of the deleted edges. \(\Phi\) restricted to the remaining elements of the universe gives a scheme on \(m' \geq 4m^5\) elements. Without loss of generality, we assume the remaining \(m'\) elements form the set \([m']\). Proving a lower bound of \(\Omega(\sqrt{m'n \frac{\lg m'}{\lg \lg m'}}) = \Omega(\sqrt{mn \frac{\lg m}{\lg \lg m}})\) on the space for this restricted scheme will prove the theorem.

Thus, \(G_{A,B}\) has \(m'\) edges labelled with distinct elements from the universe \([m']\) and vertex sets \(A, B \subseteq [s]\) with minimum degree at least \(m'10^s\). The edge labelled \(u \in [m']\) has endpoints \(x(u) \in A\) and \(y(u) \in B\).

We assume \(s = \sqrt{cm'n}\) for \(c = \left\lceil \frac{\lg m'}{\lg \ln n} \right\rceil - 1\) and show a contradiction.

**Definition 37** (The parameters \(s, m, m', n, c, c', D, k\) and their relations). In the following, we assume

\[
c = \left\lceil \frac{\lg m'}{\lg \ln n} \right\rceil - 1,
\]

\[
\lg m \leq n \leq \frac{m}{\lg m},
\]

\[
s = \sqrt{cm'n}.
\]

From before, we have

\[
m \geq m' \geq \frac{4}{5}m.
\]

Define

\[
D := \frac{1}{16} \sqrt{\frac{m'}{cn}},
\]

\[
c' := 2e \cdot e^2 \cdot (64 \cdot 100^2)^2c \ln c,
\]

\[
k := \left\lceil \frac{n}{2}(1 - \frac{1}{c'}) \right\rceil.
\]

Clearly, using the above definitions we have minimum degree of a vertex in \(G_{A,B}\) is at least \(D\) (by the assumption on \(s\)),

\[
m' \geq \max\{2.100^2cn, 64 \cdot e^2n, 2^{12}e^2n\},
\]

\[
n \geq \max\{4c', 6c, 64 \cdot 100^2c\},
\]

\[
\min\{D, c, c', n\} \geq 100
\]

for all large \(m'\). These relations will be used in proving the various lemmas and the theorem below.
Definition 38 (Trap, gain, good gainer, restriction). In a bipartite graph \((A, B, E)\), two edges \(e_1\) and \(e_2\) are said to trap an edge \(e = \{a, b\}\) if \(a \in e_1\) and \(b \in e_2\).

In a bipartite graph \((A, B, E)\), a set \(S \subseteq E\) is said to gain if there exists two edges \(e_1, e_2 \in S\) which either intersect at an end point, that is, \(e_1 \cap e_2 \neq \emptyset\) or if they trap an edge \(e \notin S\).

In a bipartite graph \((A, B, E)\), a set of edges \(S \subseteq E\) of size \(n\) is called a good gainer if every subset \(S' \subseteq S\) of size \(2k\) gains (\(k\) is defined above).

For a set \(T \subseteq [m]\), define \(\text{restriction}(T)\) to be the set of all assignments to the memory specified by the storage scheme for sets which do not contain any element from \(T\), that is, \(\text{restriction}(T) = \{\sigma(S) : |S| \leq n \text{ and } T \cap S = \emptyset\}\).

Lemma 39. Fix a bipartite graph \(G = (A, B, E)\) with \(|A|, |B| \leq s\), \(|E| = m'\) and minimum degree at least \(D\). A uniformly random set of edges \(S \subseteq E\) of size \(n\) is a good gainer with probability at least \(\frac{1}{2}\) for all large \(m'\).

Lemma 40. If \(S \subseteq [m']\) such that \(E_S := \{e \in E(G_{A,B}) : \text{lab}(e) \in S\}\) is a good gainer in \(G_{A,B}\), then there exist a polynomial \(\hat{P}_S\) of degree at most \(2n - \left\lceil \frac{n}{2c} \right\rceil\) and a set \(T_S \subseteq [m']\) such that \(T_S \cap S = \emptyset\), \(|T_S| \leq \frac{n}{2c}\) and \(P_S(x) = \hat{P}_S(x)\) for every \(x \in \text{restriction}(T_S)\). This is possible due to Lemma 40.

Using these two lemmas, we first prove the theorem, and provide the proofs of the lemmas later.

Proof of part (c). To each set \(S \subseteq [m']\) of size \(n\) such that \(E_S := \{e \in E(G_{A,B}) : \text{lab}(e) \in S\}\) is a good gainer, we associate a polynomial \(\hat{P}_S\) of degree at most \(2n - \left\lceil \frac{n}{2c} \right\rceil\) and set \(T_S \subseteq [m']\) such that \(|T_S| \leq \frac{n}{2c}\), \(T_S \cap S = \emptyset\) and \(P_S(x) = \hat{P}_S(x)\) for every \(x \in \text{restriction}(T_S)\). This is possible due to Lemma 40.

Let \(T\) be a random set of \([m']\) where each element of \([m']\) is independently included in \(T\) with probability \(\frac{1}{2}\). For each \(S\) above, let \(I_S\) be the indicator random variable of the event \(S \cap T = \emptyset\) and \(T_S \subseteq T\). Then, the expected sum of these indicator random variables is

\[
\sum_{S : E_S \text{ is good gainer}} E[I_S] \geq \frac{1}{2} \left(\frac{m'}{n}\right) \frac{1}{2^n} \cdot \frac{1}{2^n} \geq \frac{1}{2^{2n}} \left(\frac{m'}{n}\right),
\]

where in the first inequality, the factor \(\frac{1}{2} \left(\frac{m'}{n}\right)\) appears because there are at least that many good gainers (from Lemma 39), the factor \(\frac{1}{2^n} \cdot \frac{1}{2^n}\) appears because for a given good gainer \(S\), the \(n\) elements in \(S\) must fall outside \(T\) and the elements in \(T_S\) (at most \(\frac{n}{2c}\)) must fall inside \(T\). The second inequality follows from the fact that \(cn \geq n + c\) which holds for \(n, c \geq 2\).

Thus, there exists a \(T\) for which at least \(\frac{1}{2^{2n}} \left(\frac{m'}{n}\right)\) indicator random variables \(I_S\)'s are 1. Fix such a \(T\) and let \(S = \{S \subseteq [m'] : S \text{ is a good gainer, } S \cap T = \emptyset, T_S \subseteq T\}\). We have \(|S| \geq \frac{1}{2^{2n}} \left(\frac{m'}{n}\right)\).

We first prove that the collection of polynomials \(\{\hat{P}_S|S \in S\}\) is linearly independent. First, observe that \(R \subseteq T\) implies that \(\text{restriction}(R) \subseteq \text{restriction}(T)\). Thus, for any \(S \in S\), \(\hat{P}_S(x) = P_S(x)\) for all \(x \in \text{restriction}(T) \subseteq \text{restriction}(T_S)\). Since, each \(S \in S\) is disjoint from \(T\), the assignment \(\sigma(S) \in \text{restriction}(T)\). Consequently, for all \(S, S' \in S\), we have the property that

\[
\hat{P}_S(\sigma(S')) = P_S(\sigma(S')) = \begin{cases} 0 & \text{if } S \neq S' \\ 1 & \text{if } S = S', \end{cases}
\]

which can be used to prove \(\{\hat{P}_S|S \in S\}\) is linearly independent as we did in Lemma 35.
Since the polynomials \( \hat{P}_S \) for \( S \in \mathcal{S} \) are linearly independent and have degree at most \( 2n - \lfloor \frac{n}{2c} \rfloor \leq 2n - \frac{n}{6c} = 2n(1 - \frac{1}{6c}) \) for \( n \geq 6c \), we have

\[
\frac{1}{2e^n} \left( \frac{m'}{n} \right)^n \leq \left( \frac{3s + 2n - \lfloor \frac{n}{c} \rfloor}{2n - \lfloor \frac{n}{6c} \rfloor} \right) \]

\[
\Rightarrow \frac{1}{2e^n} \left( \frac{m'}{n} \right)^n \leq \left( e \cdot \frac{3s + 2n}{2n(1 - \frac{1}{6c})} \right) \]

\[
\Rightarrow 2n \left( 1 - \frac{1}{4c} \right) \left( \frac{1}{2} \sqrt[\frac{1}{12} \log \frac{m'}{n}} \right) \leq 3es + 2en \]

\[
\Rightarrow n \left( \frac{1}{2} \sqrt[\frac{1}{12} \log \frac{m'}{n}} \right)^{1 + \frac{1}{6c}} \leq 3es + 2en \quad (14) \]

\[
\Rightarrow n \left( \frac{1}{2} \sqrt[\frac{1}{12} \log \frac{m'}{n}} \right)^{1 + \frac{1}{6c}} \leq 3e \sqrt{cm'n} \quad (15) \]

\[
\Rightarrow \left( \frac{1}{16} \cdot \frac{m'}{n} \right)^{\frac{1}{m'}} \leq 12e \sqrt{c} \]

\[
\Rightarrow c \geq \frac{\log \frac{m'}{n}}{12 \log \frac{m'}{n}} \quad (16) 
\]

where \( (14) \) holds because \( c \geq \frac{1}{2} \Rightarrow 1 - \frac{1}{4c} \geq \frac{1}{2} \) and \( 1 \geq 1 - \frac{1}{6c} \Rightarrow \frac{1}{1 - \frac{1}{6c}} \geq 1 + \frac{1}{6c} \).

\( (15) \) holds for \( s = \sqrt{cm'n} \) and \( m' \geq 64c^2n \Rightarrow \frac{1}{2} \sqrt[\frac{1}{12} \log \frac{m'}{n}} - 2e \geq \frac{1}{4} \sqrt{\frac{m'}{n}} \), and \( (16) \) holds because \( c < \frac{\log \frac{m'}{n}}{12 \log \frac{m'}{n}} \Rightarrow \left( \frac{1}{16} \cdot \frac{m'}{n} \right)^{\frac{1}{m'}} > \log \frac{m'}{n} \) and \( m' \geq 2^{12c^2n} \Rightarrow \sqrt{\log \frac{m'}{n}} \geq 12e \Rightarrow \log \frac{m'}{n} \geq 12e \sqrt{c} \). A contradiction.

**Proof of Lemma 40** For a \( S \subseteq [m'] \) such that \( E_S \) is a good gainer, we get the desired \( T_S \) and \( \hat{P}_S \) by running the following procedure. Recall \( P_S = \prod_{u \in S} T(u) + z(u) \) consists of \( n \) factors each of degree 2.

Initially we set \( \hat{S} = S \), \( E_{\hat{S}} = E_S \), \( \hat{P}_S = P_S \), and \( T_S = \emptyset \). We run the procedure for \( \lfloor \frac{m'}{n} \rfloor \) steps. In each step we maintain the following invariants: \( T_S \cap S = \emptyset \), \( P_S(x) = \hat{P}_S(x) \) for all assignments \( x \in \text{restriction}(T_S) \). At the end of each step we delete two elements from each of \( \hat{S} \) and \( E_{\hat{S}} \).

**IF** \( E_{\hat{S}} \) has two intersecting edges \( e_1 \) and \( e_2 \) (with labels \( v \) and \( w \) say), that is, \( x(v) = x(w) \) or \( y(v) = y(w) \), then we multiply out the two factors in \( \hat{P}_S \) corresponding to \( v \) and \( w \) to get a degree 3 factor:

\[
(x(v)y(v) + z(v))(x(w)y(w) + z(w))
= x(v)x(w)y(v)y(w) + x(v)y(v)z(w) + x(w)y(w)z(v)
= \begin{cases} 
(x(v)y(v)y(w) + x(v)y(v)z(w) + x(w)y(w)z(v) & \text{if } x(v) = x(w) \\
(x(v)x(w)y(v) + x(v)y(v)z(w) + x(w)y(w)z(v) & \text{if } y(v) = y(w) 
\end{cases}
\]

**ELSE** (no two edges in \( E_{\hat{S}} \) intersect) since we run the procedure for only \( \lfloor \frac{m'}{n} \rfloor \) steps and delete some 2 elements at the end of each step, \( |\hat{S}| \geq n - 2(\lfloor \frac{m'}{n} \rfloor - 1) \geq 2k = 2\left[ \frac{n}{2} \left( 1 - \frac{1}{c} \right) \right] \). We invoke Lemma 39 with \( S' = E_{\hat{S}} \), to find edges \( e_1 \) and \( e_2 \) (with labels \( v \) and \( w \) say) in
\[ E_S \subseteq E_S \] that traps edge \( e \notin E_S \) (with label \( t \) say). Note that \( e \) is not just not in \( E_S \) as promised by Lemma \[ \text{Lemma 39} \] but also not in \( E_S \); otherwise \( e \) and \( e_1 \) would be both in \( E_S \) and intersecting which will satisfy the IF part. We add the element \( t \) to the set \( T_S \). Observe that for any assignment in \( \text{restriction}(T_S) \), \( x(t)y(t) + z(t) = 0 \), that is, \( x(t)y(t) = z(t) \). We use this relation, to simplify the product of the two factors in \( \hat{P}_S \) corresponding to \( v \) and \( w \) to get a degree 3 factor:

\[
(x(v)y(v) + z(v))(x(w)y(w) + z(w))
= x(v)x(w)y(v)y(w) + x(v)y(v)z(w) + x(w)y(w)z(v)
= \begin{cases} 
  z(t)x(w)y(v) + x(v)y(v)z(w) + x(w)y(w)z(v) & \text{if trapped edge } e = \{x(v), y(w)\} \\
  z(t)x(v)y(w) + x(v)y(v)z(w) + x(w)y(w)z(v) & \text{if trapped edge } e = \{x(w), y(v)\}.
\end{cases}
\]

We delete \( v \) and \( w \) from \( \hat{S} \) and delete \( e_1 \) and \( e_2 \) from \( E_S \) and repeat.

At the end of the procedure, that is, after \( \lfloor \frac{n}{2e} \rfloor \) steps, clearly \( |T_S| \leq \lfloor \frac{n}{2e} \rfloor \), \( S \cap T_S = \emptyset \), degree of \( \hat{P}_S \leq 2n - \lfloor \frac{n}{2e} \rfloor \), and \( \hat{P}_S(\bar{x}) = P_S(\bar{x}) \) for all assignments \( \bar{x} \in \text{restriction}(T_S) \).

To prove Lemma \[ \text{Lemma 39} \] we require the following lemma, which we prove later.

**Lemma 41.** Fix any bipartite graph \( G = (A, B, E) \) with \( |A|, |B| \leq s \), \( |E| = m' \) and minimum degree at least \( D \). A uniformly random set of edges \( S' \subseteq E \) of size \( 2k \) gains with probability at least \( 1 - \exp(-\frac{n}{32 \cdot 100^2 c}) \) for all large \( m' \).

**Proof of Lemma 39.** For a uniformly random set \( S \) of \( n \) edges from \( E \), the probability that \( S \) is a good gainer can be lower bounded using the union bound and Lemma 41 as follows.

\[
\Pr[S \text{ is a good gainer}] = 1 - \Pr[\exists S' \subseteq S, |S'| = 2k, S' \text{ does not gain}]
\geq 1 - \sum_{S' \subseteq S, |S'| = 2k} \Pr[S' \text{ does not gain}]
\geq 1 - \binom{n}{2k} \exp\left(-\frac{n}{32 \cdot 100^2 c}\right)
\geq 1 - \binom{n}{n-2k} \exp\left(-\frac{n}{32 \cdot 100^2 c}\right)
\geq 1 - \left(\frac{en}{n-2k}\right)^{n-2k} \exp\left(-\frac{n}{32 \cdot 100^2 c}\right).
\]

Now, since \( 2k \geq n(1 - \frac{1}{2}) \) therefore \( n - 2k \leq \frac{n}{2} \), and since \( 2k \leq n(1 - \frac{1}{2e}) + 2 \) therefore \( n - 2k \geq \frac{n}{2} - 2 \geq \frac{n}{2e} \) for \( n \geq 4e' \). Therefore, using these bounds we get,

\[
\Pr[S \text{ is a good gainer}] \geq 1 - \left(\frac{en}{n-2k}\right)^{n-2k} \exp\left(-\frac{n}{32 \cdot 100^2 c}\right)
= 1 - \exp\left(n \left(\frac{\ln 2}{e'} - \frac{1}{32 \cdot 100^2 c}\right)\right)
\geq 1 - \exp\left(-\frac{n}{64 \cdot 100^2 c}\right)
\geq \frac{1}{2},
\]

where the last inequality holds for \( n \geq 64 \cdot 100^2 c \) and the second last inequality holds for \( c' = 2e \cdot e^2 \cdot (64 \cdot 100^2)^2 \cdot \ln c \), since

\[
2e \cdot e^2 \cdot 64 \cdot 100^2 \geq \ln(2e \cdot e^2 \cdot 64 \cdot 100^2)^2
\implies 2e \cdot e^2 \cdot 64 \cdot 100^2 - 2 \geq \ln(2e \cdot 64 \cdot 100^2)(2e \cdot e^2 \cdot 64 \cdot 100^2),
\]

27
and since \( \ln c \geq 1 \), we have
\[
(2e \cdot e^2 \cdot 64 \cdot 100^2 - 2) \ln c + 2 \ln c \geq \ln(2e \cdot 64 \cdot 100^2)(2e \cdot e^2 \cdot 64 \cdot 100^2) + \ln c + \ln \ln c
\]
\[
\implies (2e \cdot e^2 \cdot 64 \cdot 100^2)(2e \cdot e^2 \cdot 64 \cdot 100^2) c \ln c = \ln 2ec'
\]
\[
\implies \frac{c'}{\ln 2ec'} \geq 64 \cdot 100^2 c
\]
\[
\implies \frac{1}{32 \cdot 100^2 c} \geq 2 \frac{\ln 2ec'}{c'}.
\]

Proof of Lemma 4.4 To aid our calculations, we pick a uniformly random set \( S' \) with \( 2k \) edges in two steps. In step I, we randomly pick \( k \) vertices: \( v_1, \ldots, v_k \) from \( A \) with replacement with each vertex being picked with probability proportional to its degree, that is, for all \( v \in A \), \( \Pr[v_i = v] = \frac{\deg(v)}{m'} \). For each \( v_i \) we pick an edge \( e_j \) incident on \( v_i \) uniformly at random, that is, with probability \( \frac{1}{\deg(v_i)} \). Thus for each edge \( e \in E \) whose endpoint in \( A \) is \( v \),
\[
\Pr[e_i = e] = \Pr[v_i = v] \Pr[e_i = e | v_i = v] = \frac{\deg(v_i)}{m'} \cdot \frac{1}{\deg(v_i)} = \frac{1}{m'}.
\]
This way, some \( t \) distinct edges are picked, where \( t \leq k \) (note that \( t \) can be strictly less than \( k \) if for some \( i \neq j \), \( e_i = e_j \)). In step II, we delete the edges picked in step I, and pick a set of \( 2k - t \) edges uniformly at random from the remaining edges.

Let \( \text{BAD} \) denote the event that \( S' \) does not gain.

In step I, after sampling the vertices \( \{v_1, \ldots, v_k\} \) we get some fixed multiset of \( k \) vertices with \( t \) distinct vertices. It is enough to show that conditioning on each choice for \( v_1, \ldots, v_k \), the conditional probability of \( \text{BAD} \) is at most \( \exp\left(-\frac{m}{32 \cdot 100^2 c'}\right) \) for large \( m' \). After conditioning, the only source of randomness in the calculations below comes from sampling the \( 2k \) edges in steps I and II.

To upper bound the probability that \( \text{BAD} \) occurs we have the following two cases. Let \( B_0 \subseteq B \) be the neighbourhood of \( \{v_1, \ldots, v_k\} \).

Case: \( |B_0| \geq \frac{kD^2}{100} \). For the event \( \text{BAD} \) to occur, none of the edges picked in step II should be incident on any vertex in \( B_0 \), the neighbourhood of \( \{v_1, \ldots, v_k\} \). For if some edge \( f = \{a, b\} \) picked in step II is incident on a vertex \( b \) in the neighbourhood of some \( v_i \), then either \( f \) and \( e_i \) trap an edge not in \( S \) with endpoints \( b \) and \( v_i \) or \( f \) intersects some edge \( e_j \) with endpoints \( b \) and \( v_i \). Since each vertex has degree at least \( D \), the number of edges incident on \( B_0 \) is at least \( \frac{kD^2}{100} \) and after deleting the edges \( \{e_1, \ldots, e_k\} \) picked in step I, at least \( k(\frac{D^2}{100} - 1) \) edges remain. Since, at least \( k \) edges are picked in step II out of at most \( m' \) edges, the probability that \( \text{BAD} \) occurs can be upper bounded as follows.
\[
\Pr[\text{BAD}] \leq \left(1 - \frac{k(\frac{D^2}{100} - 1)}{m'}\right)^k \leq \exp\left(-\frac{k^2(D^2 - 100)}{100m'}\right).
\]

Now, using the fact that \( 2k \geq n(1 - \frac{1}{c}) \), \( D \geq \frac{1}{10} \sqrt{\frac{m'}{cn}} \), we get
\[
\Pr[\text{BAD}] \leq \exp\left(-\frac{n(1 - \frac{1}{c})^2}{4 \cdot 100^2 c}(1 - \frac{100^2 cn}{m'})\right) \leq \exp\left(-\frac{n(1 - \frac{1}{c})^2}{8 \cdot 100^2 c}\right),
\]
where the last inequality holds since \( m' \geq 2 \cdot 100^2 cn \).
Case: \(|B_0| < \frac{kD}{100}\). For each \(i \in [k]\), define \(\Gamma'(v_i) := \Gamma(v_1, \ldots, v_{i-1}) \cap \Gamma(v_i)\) and \(\deg'(v_i) := |\Gamma'(v_i)| - 1\), where \(\Gamma\) stands for the neighbourhood function. For the event BAD to occur, the following event BAD\((v_i)\) must occur for each \(v_i\).

When \(v_i \notin \{v_1, \ldots, v_{i-1}\}\), BAD\((v_i)\) \equiv e_i is not incident on any vertex in \(\Gamma'(v_i)\).

When \(v_i = v_j\) for some \(j < i\), BAD\((v_i)\) \equiv e_i = e_j\), where \(j\) is the smallest number such that \(v_i = v_j\).

For if some BAD\((v_i)\) does not occur, then \(S'\) gains; in the case when \(v_i \notin \{v_1, \ldots, v_{i-1}\}\) and \(e_i\) is incident on some vertex \(b\) in \(\Gamma'(v_i)\), then \(b\) must be the neighbour of some vertex \(v_j\) where \(j < i\) and then either \(e_i\) and \(e_j\) trap an edge not in \(S\) with endpoints \(b\), \(v_j\) or \(e_i\) intersects \(e_j\) at \(b\). Again, in the case when \(v_i = v_j\) for some \(j < i\) and \(e_i \neq e_j\) (where \(j\) is the smallest number for which \(v_i = v_j\), then clearly \(e_i\) and \(e_j\) intersect at the vertex \(v_i\). Thus we bound the probability of BAD as follows.

\[
\Pr[BAD] \leq \Pr[\forall i \in [k] \text{ BAD}(v_i)] = \prod_{i=1}^{k} \Pr[\text{BAD}(v_i)],
\]

where the equality follows from the fact that, in the conditional space, the BAD\((v_i)\)’s are independent events. Now, if \(v_i \notin \{v_1, \ldots, v_{i-1}\}\),

\[
\Pr[\text{BAD}(v_i)] \leq 1 - \frac{\deg'(v_i)}{\deg(v_i)} \leq 1 - \frac{\deg'(v_i)}{\deg(v_i)}.
\]

Else, when \(v_i = v_j\) for some \(j < i\),

\[
\Pr[\text{Bad}(v_i)] \leq 1 - \frac{\deg'(v_i)}{\deg(v_i)}.
\]

Using this upper bound, we have

\[
\Pr[\text{BAD}] \leq \prod_{i=1}^{k} \Pr[\text{BAD}(v_i)] \leq \prod_{i=1}^{k} \left(1 - \frac{\deg'(v_i)}{\deg(v_i)}\right) \leq \exp\left(-\sum_{i=1}^{k} \frac{\deg'(v_i)}{\deg(v_i)}\right) \leq \exp(-\frac{49}{50}k) \leq \exp\left(-\frac{49}{100}(1 - \frac{1}{c'})\right),
\]

where the second last inequality can be shown as follows.

Since \(B_0 = \bigcup_{i=1}^{k} \Gamma(v_i) \setminus \Gamma'(v_i)\), we have

\[
\sum_{i=1}^{k} \left(\deg(v_i) - (\deg'(v_i) + 1)\right) \leq \frac{kD}{100}
\]

\[
\Rightarrow \sum_{i=1}^{k} \deg(v_i) \left(1 - \frac{\deg'(v_i)}{\deg(v_i)}\right) \leq \frac{kD}{100} + k
\]

\[
\Rightarrow D \sum_{i=1}^{k} \left(1 - \frac{\deg'(v_i)}{\deg(v_i)}\right) \leq \frac{kD}{100} + k
\]

\[
\Rightarrow \sum_{i=1}^{k} \left(1 - \frac{\deg'(v_i)}{\deg(v_i)}\right) \leq \frac{k}{100} + \frac{k}{D}
\]

\[
\Rightarrow \sum_{i=1}^{k} \frac{\deg'(v_i)}{\deg(v_i)} \geq k - \left(\frac{k}{100} + \frac{k}{D}\right) \geq \frac{49}{50}k,
\]

where the last inequality follows from the fact that \(D \geq 100\) for large \(m'\).
Thus combining the two cases, for large $m'$, the probability that a random set of $2k$ edges gains is at least

$$1 - \max \left\{ \exp \left( -\frac{n(1 - \frac{1}{c'})^2}{8 \cdot 100^2 c} \right), \exp \left( -\frac{49}{100} n(1 - \frac{1}{c'}) \right) \right\} \geq 1 - \exp \left( -\frac{n(1 - \frac{1}{c'})^2}{8 \cdot 100^2 c} \right) \geq 1 - \exp \left( -\frac{n}{32 \cdot 100^2 c} \right),$$

where the last two inequalities follow from the fact that $c', c \geq 2$.

References

[1] Noga Alon and Uriel Feige. On the power of two, three and four probes. In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 346–354, 2009. URL: http://dl.acm.org/citation.cfm?id=1496770.1496809.

[2] Noga Alon, Shlomo Hoory, and Nathan Linial. The Moore bound for irregular graphs. Graphs and Combinatorics, 18(1):53–57, 2002. URL: http://dx.doi.org/10.1007/s003730200002, doi:10.1007/s003730200002.

[3] Ajesh Babu and Jaikumar Radhakrishnan. An entropy based proof of the Moore bound for irregular graphs. CoRR, abs/1011.1058, 2010. URL: http://arxiv.org/abs/1011.1058.

[4] Harry Buhrman, Peter Bro Miltersen, Jaikumar Radhakrishnan, and Srinivasan Venkatesh. Are bitvectors optimal? SIAM J. Comput., 31(6):1723–1744, 2002. URL: http://dx.doi.org/10.1137/S0097539702405292, doi:10.1137/S0097539702405292.

[5] Mohit Garg and Jaikumar Radhakrishnan. Set membership with a few bit probes. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 776–784, 2015. URL: http://dx.doi.org/10.1137/1.9781611973730_53, doi:10.1137/1.9781611973730_53.

[6] Michael T. Goodrich and Michael Mitzenmacher. Invertible Bloom lookup tables. In 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011, Allerton Park & Retreat Center, Monticello, IL, USA, 28-30 September, 2011, pages 792–799, 2011. URL: http://dx.doi.org/10.1109/Allerton.2011.6120248, doi:10.1109/Allerton.2011.6120248.

[7] Moshe Lewenstein, J. Ian Munro, Patrick K. Nicholson, and Venkatesh Raman. Improved explicit data structures in the bitprobe model. In Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 630–641, 2014. URL: http://dx.doi.org/10.1007/978-3-662-44777-2_52, doi:10.1007/978-3-662-44777-2_52.

[8] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A. Spielman. Efficient erasure correcting codes. IEEE Trans. Information Theory, 47(2):569–584, 2001. URL: http://dx.doi.org/10.1109/18.910575, doi:10.1109/18.910575.

[9] Ali Makhdoumi, Shao-Lun Huang, Muriel Médard, and Yury Polyanskiy. On locally decodable source coding. In 2015 IEEE International Conference on Communications, ICC 2015, London, United Kingdom, June 8-12, 2015, pages 4394–4399, 2015. URL: http://dx.doi.org/10.1109/ICC.2015.7249014, doi:10.1109/ICC.2015.7249014.
[10] Marvin Minsky and Seymour Papert. Perceptrons. MIT press, Cambridge, MA, 1969.

[11] Jaikumar Radhakrishnan, Venkatesh Raman, and S. Srinivasa Rao. Explicit deterministic constructions for membership in the bitprobe model. In Algorithms - ESA 2001, 9th Annual European Symposium, Aarhus, Denmark, August 28-31, 2001, Proceedings, pages 290–299, 2001. URL: http://dx.doi.org/10.1007/3-540-44676-1_24, doi:10.1007/3-540-44676-1_24.

[12] Jaikumar Radhakrishnan, Pranab Sen, and Srinivasan Venkatesh. The quantum complexity of set membership. Algorithmica, 34(4):462–479, 2002. URL: http://dx.doi.org/10.1007/s00453-002-0979-0 doi:10.1007/s00453-002-0979-0.

[13] Jaikumar Radhakrishnan, Smit Shah, and Saswata Shannigrahi. Data structures for storing small sets in the bitprobe model. In Mark de Berg and Ulrich Meyer, editors, Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool, UK, September 6-8, 2010. Proceedings, Part II, volume 6347 of Lecture Notes in Computer Science, pages 159–170. Springer, 2010. URL: http://dx.doi.org/10.1007/978-3-642-15781-3_14 doi:10.1007/978-3-642-15781-3_14.

[14] Emanuele Viola. Bit-probe lower bounds for succinct data structures. SIAM J. Comput., 41(6):1593–1604, 2012. URL: http://dx.doi.org/10.1137/090766619 doi:10.1137/090766619.

[15] Wikiversity. The 22 becs, 3-ary boolean functions — wikiversity, 2016. [Online; accessed 7-August-2016]. URL: https://en.wikiversity.org/w/index.php?title=3-ary_Boolean_functions&oldid=1587287.