Topological entropy of continuous self-maps on closed surfaces

Juan Luis García Guiraoa, Jaume Llibreb and Wei Gaoa,c

aDepartamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, Región de Murcia, Spain; bDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain; cSchool of Information Science and Technology, Yunnan Normal University, Kunming, People's Republic of China

\textbf{ABSTRACT}
The objective of this work is to present sufficient conditions for having positive topological entropy for continuous self-maps defined on a closed surface by using the action of this map on the homological groups of the closed surface.

\textbf{ARTICLE HISTORY}
Received 5 June 2019
Accepted 16 December 2019

\textbf{KEYWORDS}
Closed surface; continuous self-map; Lefschetz fixed point theory; periodic point; set of periods

\textbf{2010 MATHEMATICS SUBJECT CLASSIFICATIONS}
37C05; 37C25; 37C30

1. Introduction

Along this work by a \textit{closed surface}, we denote a connected compact surface with or without boundary, orientable or not. More precisely, an \textit{orientable connected compact surface without boundary of genus $g \geq 0$, M_g}, is homeomorphic to the sphere if $g = 0$, to the torus if $g = 1$, or to the connected sum of g copies of the torus if $g \geq 2$. An \textit{orientable connected compact surface with boundary of genus $g \geq 0$, $M_{g,b}$}, is homeomorphic to M_g minus a finite number $b > 0$ of open discs having pairwise disjoint closure. In what follows $M_{g,0} = M_g$.

A \textit{non-orientable connected compact surface without boundary of genus $g \geq 1$, N_g}, is homeomorphic to the real projective plane if $g = 1$, or to the connected sum of g copies of the real projective plane if $g > 1$. A \textit{non-orientable connected compact surface with boundary of genus $g \geq 1$, $N_{g,b}$}, is homeomorphic to N_g minus a finite number $b > 0$ of open discs having pairwise disjoint closure. In what follows $N_{g,0} = N_g$.

Let $f : X \to X$ be a continuous map on a closed surface X. A point $x \in X$ is periodic of period n if $f^n(x) = x$ and $f^k(x) \neq x$ for $k = 1, \ldots, n - 1$.

The \textit{topological entropy} of a continuous map $f : X \to X$ denoted by $h(f)$ is a non-negative real number (possibly infinite) which measures how much f mixes up the phase
space of X. When $h(f)$ is positive the dynamics of the system is said to be complicated and the positivity of $h(f)$ is used as a measure of the so-called topological chaos.

Here we introduce the topological entropy using the definition of Bowen [4].

Since it is possible to embed any surface orientable or not in \mathbb{R}^4 by the Whitney immersion theorem, see [13], we consider the distance between two points of X as the distance of these two points in \mathbb{R}^4. Now, we define the distance d_n on G by

$$d_n(x, y) = \max_{0 \leq i \leq n} d(f^i(x), f^i(y)), \quad \text{for all } x, y \in G.$$

A finite set S is called (n, ε)-separated with respect to f if for different points $x, y \in S$ we have $d_n(x, y) > \varepsilon$. We denote by S_n the maximal cardinality of an (n, ε)-separated set. Define

$$h(f, \varepsilon) = \limsup_{n \to \infty} \frac{1}{n} \log S_n.$$

Then

$$h(f) = \lim_{\varepsilon \to 0} h(f, \varepsilon)$$

is the topological entropy of f.

We have chosen the definition by Bowen because, probably it is the shorter one. The classical definition was due to Adler, Konheim and McAndrew [1]. See for instance the book of Hasselblatt and Katok [7] and [3] for other equivalent definitions and properties of the topological entropy. See [1, 2, 9, 10, 15] for more details on the topological entropy.

Let f be a continuous self-map defined on $\mathbb{M}_{g, b}$ or $\mathbb{N}_{g, b}$, respectively. For a closed surface the homological groups with coefficients in \mathbb{Q} are linear vector spaces over \mathbb{Q}. We recall the homological spaces of $\mathbb{M}_{g, b}$ with coefficients in \mathbb{Q}, i.e.

$$H_k(\mathbb{M}_{g, b}, \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{N}_k \oplus \mathbb{Q},$$

where $n_0 = 1$, $n_1 = 2g$ if $b = 0$, $n_1 = 2g + b - 1$ if $b > 0$, $n_2 = 1$ if $b = 0$, and $n_2 = 0$ if $b > 0$; and the induced linear maps $f_{\ast k} : H_k(\mathbb{M}_{g, b}, \mathbb{Q}) \to H_k(\mathbb{M}_{g, b}, \mathbb{Q})$ by f on the homological group $H_k(\mathbb{M}_{g, b}, \mathbb{Q})$ are $f_{\ast 0} = (1), f_{\ast 2} = (d)$ where d is the degree of the map f if $b = 0$, $f_{\ast 2} = (0)$ if $b > 0$, and $f_{\ast 1} = A$ where A is an $n_1 \times n_1$ integral matrix (see for additional details [12, 14]).

We recall that the homological groups of $\mathbb{N}_{g, b}$ with coefficients in \mathbb{Q}, i.e.

$$H_k(\mathbb{N}_{g, b}, \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{N}_k \oplus \mathbb{Q},$$

where $n_0 = 1$, $n_1 = g + b - 1$ and $n_2 = 0$; and the induced linear maps are $f_{\ast 0} = (1)$ and $f_{\ast 1} = A$ where A is an $n_1 \times n_1$ integral matrix (see again for additional details [12, 14]).

Our main results are the following.

Theorem 1.1: Let \mathbb{M}_g be an orientable connected compact surface without boundary of genus g. Then the following statements hold.

(a) If the degree $d \notin \{-1, 0, 1\}$, then the topological entropy of f is positive.

(b) If the degree $d \in \{-1, 0, 1\}$ and the number of roots of the characteristic polynomial $f_{\ast 1}$ is equal to ± 1 or 0 taking into account their multiplicities is not even, then the topological entropy of f is positive.
Theorem 1.2: Let $M_{g,b}$, $b > 0$, be an orientable connected compact surface with boundary of genus g. If the number $2g + b - 1$ and the number of roots of the characteristic polynomial of f_{s1} equal to ± 1 or 0 taking into account their multiplicities have different parity, then the topological entropy of f is positive.

Theorem 1.3: Let $N_{g,b}$, $b \geq 0$, be a non-orientable connected compact surface with boundary of genus g. If the number $g + b - 1$ and the number of roots of the characteristic polynomial of f_{s1} equal to ± 1 or 0 taking into account their multiplicities have different parity, then the topological entropy of f is positive.

2. Lefschetz zeta functions for surfaces

Let $f: \mathbb{X} \to \mathbb{X}$ be a continuous map and let \mathbb{X} be either $M_{g,b}$ or $N_{g,b}$. Then the Lefschetz number of f is defined by

$$L(f) = \text{trace}(f_{s0}) - \text{trace}(f_{s1}) + \text{trace}(f_{s2}).$$

We shall use the Lefschetz numbers of the iterates of f, i.e. $L(f^n)$. In order to study the whole sequence $\{L(f^n)\}_{n \geq 1}$ it is defined the formal Lefschetz zeta function of f as

$$Z_f(t) = \exp\left(\sum_{n=1}^{\infty} \frac{L(f^n)}{n} t^n\right).$$

The Lefschetz zeta function is in fact a generating function for the sequence of the Lefschetz numbers $L(f^n)$.

From the work of Franks in [6], we have for a continuous self-map of a closed surface that its Lefschetz zeta function is the rational function

$$Z_f(t) = \frac{\det(I - tf_{s1})}{\det(I - tf_{s0}) \det(I - tf_{s2})},$$

where $I - tf_{sk}$ I denotes the $n_k \times n_k$ identity matrix and $\det(I - tf_{s2}) = 1$ if $f_{s2} = (0)$. Then for a continuous map $f: M_{g,b} \to M_{g,b}$ we have

$$Z_f(t) = \begin{cases} \frac{\det(I - tA)}{(1 - t)(1 - dt)} & \text{if } b = 0, \\ \frac{\det(I - tA)}{1 - t} & \text{if } b > 0, \end{cases}$$

and for a continuous map $f: N_{g,b} \to N_{g,b}$ we have

$$Z_f(t) = \frac{\det(I - tA)}{1 - t}.$$

3. Basic results

In this section, we present the main result stated in Theorem 3.4 for proving Theorems 1.1–1.3. Since its proof is short and important for this work we provide it here.
For a polynomial $H(t)$, we define $H^*(t)$ by

$$H(t) = (1 - t)^{\alpha} (1 + t)^{\beta} t^\gamma H^*(t),$$

where α, β and γ are non-negative integers such that $1 - t$, $1 + t$ and t do not divide $H^*(t)$.

The spectral radii of the maps f_{sk} are denoted $\text{sp}(f_{sk})$, and they are equal to the largest modulus of all the eigenvalues of the linear map f_{sk}. The spectral radius of f_* is

$$\text{sp}(f_*) = \max_{k=0, \ldots, m} \text{sp}(f_{sk}).$$

The next result is due to Manning [11].

Theorem 3.1: Let $f : X \to X$ be a continuous map on a closed surface X. Then

$$\log \max\{1, \text{sp}(f_{s1})\} \leq h(f).$$

Lemma 3.2: Let $f : X \to X$ be a continuous map and let X be a closed surface. If the topological entropy of f is zero, then all the eigenvalues of the induced homomorphism f_{s1} are zero or root of unity.

Proof: Since the topological entropy is zero, by Theorem 3.1 we have $\text{sp}(f_{s1}) = 1$. So, all the eigenvalues of f_{s1} have modulus in the interval $[0, 1]$ and at least one of them is 1. Then the characteristic polynomial of f_{s1} is of the form $t^m p(t)$, where m is a non-negative integer, positive if the zero is an eigenvalue. And $p(t)$ is a polynomial with integer coefficients and whose independent term a_0 is non-zero. Since the product of all non-zeros eigenvalues of f_{s1} is the integer a_0 and, these eigenvalues have modulus in $(0, 1]$, we have that any of these eigenvalues cannot have modulus smaller than one, otherwise we are in contradiction with the fact a_0 is an integer. In short, all the non-zero eigenvalues have modulus one, and consequently $a_0 = 1$.

Since if a polynomial has integer coefficients, constant term 1 and all of whose roots have modulus 1, then all of its roots are roots of unity, see [16], the lemma follows. \blacksquare

The nth cyclotomic polynomial is defined recursively by

$$c_n(t) = \frac{1 - t^n}{\prod_{d|n} c_d(t)},$$

for a positive integer $n > 1$ and $c_1(t) = 1 - t$. Note that all the zeros of $c_n(t)$ are roots of unity. See [8] for the properties of these polynomials.

For a positive integer n, the Euler function is $\varphi(n) = n \prod_{p|n, p\text{ prime}} (1 - 1/p)$. It is known that the degree of the polynomial $c_n(t)$ is $\varphi(n)$. Note that $\varphi(n)$ is even for $n > 2$.

A proof of the next result can be found in [8].

Proposition 3.3: Let ξ be a primitive nth root of the unity and $P(t)$ a polynomial with rational coefficients. If $P(\xi) = 0$, then $c_n(t) | P(t)$.

The proofs of our results are strongly based in the next theorem originally proved in [5] in 1992. For completeness of this paper, we present its proof.
Theorem 3.4 (Theorem 3.2 of [5]): Let X be a closed surface, $f : X \to X$ be a continuous self-map, and let $Z_f(t) = P(t)/Q(t)$ be its Lefschetz zeta function. If $P^*(t)$ or $Q^*(t)$ has odd degree, then the topological entropy of f is positive.

Proof: From the definitions of a polynomial H^* and of the Lefschetz zeta function, we have

$$Z_f(t) = \frac{P(t)}{Q(t)} = (1-t)^a(1+t)^b ft^c \frac{P^*(t)}{Q^*(t)},$$

where a, b and c are integers.

Assume now that the topological entropy $h(f) = 0$. Then by Lemma 3.2, all the eigenvalues of the induced homomorphisms f_*'s are zero or roots of unity. Therefore, by (1) all the roots of the polynomials $P^*(t)$ and $Q^*(t)$ are roots of the unity different from ± 1 and zero. Hence, by Proposition 3.3 the polynomials $P^*(t)$ and $Q^*(t)$ are product of cyclotomic polynomials different from $c_1(t) = 1 - t$ and $c_2(t) = 1 + t$. Consequently $P^*(t)$ and $Q^*(t)$ have even degree because all the cyclotomic polynomials which appear in them have even degree due to the fact that the Euler function $\varphi(n)$ for $n > 2$ only takes even values. But this is a contradiction with the assumption that $P^*(t)$ or $Q^*(t)$ has odd degree. \hfill \blacksquare

4. Proof of Theorems 1.1–1.3

Proof of Theorem 1.1: Since M_g is an orientable connected compact surface without boundary of genus g, then the Lefschetz zeta function of f is equal to

$$Z_f(t) = \frac{\det(I - tA)}{(1-t)(1-dt)},$$

where d is the degree of f and $2g$ is the dimension of the characteristic polynomial $\det(I - tA)$ of $f_{s1} = A$. Note here that if $d \notin \{-1, 0, 1\}$, then $Q^*(t) = 1 - dt$ and therefore by Theorem 3.4 statement (a) of Theorem 1.1 is proved.

Assume now that $d \in \{-1, 0, 1\}$. Note that in this case $Q(t) = (1-t)(1-dt)$ and $Q^*(t) = 1$. So, by Theorem 3.4 the main role will be played by the $2g$ degree polynomial $P(t) = \det(I - tA)$ where $f_{s1} = A$. Since $2g$ is even and the number of roots of the characteristic polynomial of f_{s1} equal to ± 1 or 0 taking into account their multiplicities is not even, then $P^*(t)$ has odd degree. Therefore, statement (b) of Theorem 1.1 follows by the application of Theorem 3.4. \hfill \blacksquare

Proof of Theorem 1.2: Note now, since $M_{g,b}$ is an orientable connected compact surface with boundary ($b > 0$) of genus g, then the Lefschetz zeta function of f is equal to

$$Z_f(t) = \frac{\det(I - tA)}{1-t},$$

being $2g + b - 1$ the degree of the characteristic polynomial $\det(I - tA)$ of $f_{s1} = A$. Now the proof is similar to the statements (a) and (b) of Theorem 1.1. \hfill \blacksquare

Proof of Theorem 1.3: This proof is exactly the same than the proof of Theorem 1.2. \hfill \blacksquare
Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
The first author is partially supported by Ministerio de Ciencia, Innovación y Universidades grant number PGC2018-097198-B-I00 and Fundación Séneca de la Región de Murcia grant number 20783/PI/18. The second author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grants MTM-2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References
[1] R.L. Adler, A.G. Konheim and M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), pp. 309–319.
[2] L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, 2nd ed., Advanced Series in Nonlinear Dynamics Vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
[3] F. Balibrea, On problems of topological dynamics in non-autonomous discrete systems, Appl. Math. Nonlinear Sci. 1(2) (2016), pp. 391–404.
[4] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), pp. 401–414; erratum: Trans. Amer. Math. Soc. 181(1973), pp. 509–510.
[5] J. Casasayas, J. Llibre and A. Nunes, Algebraic properties of the Lefschetz zeta function, periodic points and topological entropy, Publ. Math. 36 (1992), pp. 467–472.
[6] J. Franks, Homology and Dynamical Systems, CBMS Regional Conf. Series, Vol. 49, Amer. Math. Soc., Providence, RI, 1982.
[7] B. Hasselblatt and A. Katok, Handbook of Dynamical Systems, Vol. 1A, North-Holland, Amsterdam, 2002.
[8] S. Lang, Algebra, Addison–Wesley, USA, 1971.
[9] J. Llibre, Brief survey on the topological entropy, Discrete Cont. Dyn. Syst. B 20 (2015), pp. 3363–3374.
[10] J. Llibre and R. Saghin, Topological entropy and periods of graph maps, J. Differ. Equ. Appl. 18(4) (2012), pp. 589–598.
[11] A. Manning, Topological entropy and the first homology group, in Dynamical Systems - Warwick 1974, Lecture Notes in Math, Vol. 468, Springer-Verlag, Berlin, 1975, pp. 185–190.
[12] J.R. Munkres, Elements of Algebraic Topology, Addison–Wesley, USA, 1984.
[13] A. Skopenkov, Embedding and knotting of manifolds in Euclidean spaces, In Surveys in Contemporary Mathematics, N. Young and Y. Choi, eds., London Math. Soc. Lect. Notes., Vol. 347(2), 2008, pp 248–342.
[14] J.W. Vicks, Homology Theory. An Introduction to Algebraic Topology, Springer–Verlag, New York, 1994. Academic Press, New York, 1973.
[15] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, UK, 1992.
[16] L.C. Washington, Introduction to Cyclotomic Fields, Springer, Berlin, 1982.