SUPPLEMENTARY MATERIAL

A new polyketide, penicillolide from the marine-derived fungus *Penicillium sacculum*

Tao Liu a*, Songya Zhang b, Zhanlin Li b, Yu Wang a, Zaixing Chen c, Jiao Bai b, Li Tian de, Yuehu Pei b and Huiming Hua b

a Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang 110122, China; b Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; c Department of the Central Laboratory, School of Pharmacy, China Medical University, Shenyang 110122, China; d The First Institute of Oceanography SOA, Qingdao 266061, China; e Department of Biology, Qingdao University of Science & Technology, Qingdao 266042, China

* taoliu0307@163.com

A new polyketide, penicillolide (1) was isolated from the fermentation broth of the marine-derived fungus *Penicillium sacculum* GT-308. Compound 1 is a polyketide with a unique carbon skeleton. The structure of this compound was established via extensive spectroscopic analyses including 1D-, 2D-NMR, and HRESI-MS.

Keywords: marine-derived fungus; *Penicillium sacculum*; polyketide; penicillolide
List

Figure S1. The 1H-NMR Spectrum of Compound 1 in CDCl$_3$.

Figure S2. The 13C-NMR Spectrum of Compound 1 in CDCl$_3$.

Figure S3. The HSQC Spectrum of Compound 1 in CDCl$_3$.

Figure S4. The HMBC Spectrum of Compound 1 in CDCl$_3$.

Figure S5. The 1H-1H COSY Spectrum of Compound 1 in CDCl$_3$.

Figure S6. The NOESY Spectrum of Compound 1 in CDCl$_3$.

Figure S7. The ESI-MS Spectrum of Compound 1.

Figure S8. The HRESI-MS Spectrum of Compound 1.

Figure S9. Key HMBC and 1H-1H COSY correlations of compound 1.

Figure S10. Key NOESY correlations of compound 1.

Table S1. NMR spectroscopic data of compound 1 (in CDCl$_3$)
Figure S1. The 1H-NMR Spectrum of Compound 1 in CDCl$_3$.
Figure S2. The 13C-NMR Spectrum of Compound 1 in CDCl$_3$.
Figure S3. The HSQC Spectrum of Compound 1 in CDCl₃.
Figure S4. The HMBC Spectrum of Compound 1 in CDCl₃.
Figure S5. The 1H-1H COSY Spectrum of Compound 1 in CDCl$_3$.
Figure S6. The NOESY Spectrum of Compound 1 in CDCl$_3$.
Figure S7. The ESI-MS Spectrum of Compound 1.
Figure S8. The HRESI-MS Spectrum of Compound 1.

Elemental Composition Search Report:

Target Mass:
- Target m/z = 371.0767 ± 9.00ppm
- Charge = -1

Possible Elements:

Element	Exact Mass	Min	Max
C	12.0000000	0	100
H	1.007825	0	100
N	14.003074	0	100
O	15.994915	0	100

Additional Search Restrictions:
- Seven Golden Rules
- Nitrogen Rule
- DBE Limit Mode = Both Integer and Half-Integer
 - Minimum DBE = 0
 - Maximum DBE = 100

Search Results:
- Number of Hits = 5

m/z	Delta m/z (ppm)	DBE	Formula
371.07724	-1.46	12.0	C_{16}H_{15}O_{6}^{-1}
371.07589	2.17	18.0	C_{16}H_{17}N_{10}O_{2}^{-1}
371.07858	-5.07	17.0	C_{20}H_{11}N_{4}O_{4}^{-1}
371.07456	5.77	13.0	C_{16}H_{11}N_{6}O_{6}^{-1}
371.07992	-8.67	22.0	C_{21}H_{7}N_{6}^{-1}
Figure S9. Key HMBC and $^1\text{H}-^1\text{H}$ COSY correlations of compound 1.
Figure S10. Key NOESY correlations of compound 1.
Table S1. NMR spectroscopic data of compound 1 (in CDCl₃)

position	δ_H mult. (J Hz)	δ_C	HMBC	NOESY
2	5.01 (1H, d, J = 12.3 Hz, H-2a) 5.08 (1H, d, J = 12.3 Hz, H-2b)	72.0 (t)	C-3, C-4, C-5, C-8, C-11	H-10a
3	6.37 (1H, s)	131.9 (s)	C-2, C-5, C-6, C-8	H-2b, 5-OCH₃
4	96.0 (d)	C-3, C-4, C-5, C-7, C-8, C-10	H-4	
5	148.0 (s)	96.0 (d)	C-2, C-5, C-6, C-8	H-2b, 5-OCH₃
6	131.6 (s)	139.7 (s)	C-2, C-5, C-6, C-8	H-2b, 5-OCH₃
7	118.5 (s)	118.5 (s)	C-2, C-5, C-6, C-8	H-2b, 5-OCH₃
8	4.99 (1H, d, J = 9.3 Hz)	82.3 (d)	C-3, C-7, C-8, C-11, C-13, C-15	H-10b
9	3.10 (1H, d, J = 15.9 Hz, H-10a) 2.77 (1H, dd, J = 15.9, 9.3 Hz, H-10b)	33.5 (t)	C-8, C-11, C-15	H-2a, H-9, H-12
10	7.04 (1H, s)	138.3 (d)	C-16, C-17, C-20	H-12
11	3.90 (1H, m)	88.8 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
12	168.8 (s)	168.8 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
13	189.9 (s)	189.9 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
14	117.2 (s)	117.2 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
15	161.9 (s)	161.9 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
16	117.4 (s)	117.4 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
17	3.88 (3H, s)	56.5 (q)	C-5	H-4
18	7.04 (1H, s)	138.3 (d)	C-16, C-17, C-20	H-12
19	3.96 (1H, s)	168.8 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
20	5.35 (1H, s)	117.2 (s)	C-10, C-11, C-13, C-16, C-19	H-10b, H-19
5-OCH₃	56.5 (q)	C-5	H-4	
6-OH	4.96 (1H, s)²	7.04 (1H, s)	138.3 (d)	C-16, C-17
7-OH	5.35 (1H, s)²	14.3 (q)	C-16, C-17	
17-CH₃	2.64 (3H, s)	14.3 (q)	C-16, C-17	

Note: ² These chemical shifts are interchangeable.