ABELIAN VARIETIES WITH MANY ENDOMORPHISMS
AND THEIR ABSOLUTELY SIMPLE FACTORS

XAVIER GUITART

Abstract. We characterize the abelian varieties arising as absolutely simple factors of GL₂-type varieties over a number field k. In order to obtain this result, we study a wider class of abelian varieties: the k-varieties A/k satisfying that End₀^k(A) is a maximal subfield of End₀^k(A). We call them Ribet-Pyle varieties over k. We see that every Ribet-Pyle variety over k is isogenous over ¯k to a power of an abelian k-variety and, conversely, that every abelian k-variety occurs as the absolutely simple factor of some Ribet-Pyle variety over k. We deduce from this correspondence a precise description of the absolutely simple factors of the varieties over k of GL₂-type.

1. Introduction

Let k be a number field. An abelian variety A over k is said to be of GL₂-type if its algebra of k-endomorphisms End₀^k(A) = Q ⊗ Z End_k(A) is a number field of degree equal to the dimension of A. The aim of this note is to characterize the abelian varieties over ¯k that arise as absolutely simple factors of GL₂-type varieties over k.

The interest in abelian varieties over Q of GL₂-type arose in connection with the Shimura-Taniyama conjecture on the modularity of elliptic curves over Q, and its generalization to higher dimensional modular abelian varieties over Q. To be more precise, to each A/Q of GL₂-type is attached a compatible system of λ-adic representations ρ_A,λ: G_Q → GL_2(E_λ), where E = End_Q^0(A) and the λ’s are primes of E. As a consequence of Serre’s conjecture on Galois representations these ρ_A,λ are modular; that is, there exists a newform f ∈ S_2(Γ_1(N)) such that ρ_A,λ ≃ ρ_{f,λ} for all primes λ of E, where ρ_{f,λ} is the λ-adic representation attached to f (see [4] for the details).

The study of the Q-simple factors of GL₂-type varieties over Q was initiated by K. Ribet in [4], in which the one-dimensional factors where characterized: they are the elliptic curves C/Q that are isogenous to all their
Galois conjugates, also known as elliptic \mathbb{Q}-curves. This result was completed by Ribet’s student E. Pyle in her PhD thesis [3], where she characterized the higher dimensional $\overline{\mathbb{Q}}$-simple factors as a certain type of abelian \mathbb{Q}-varieties called building blocks. More concretely, an abelian variety B/\mathbb{Q} is an abelian \mathbb{Q}-variety if it is $\text{End}_{\mathbb{Q}}(B)$-equivariantly isogenous to all of its Galois conjugates; this means that for each $\sigma \in G_{\mathbb{Q}}$ there exists an isogeny $\mu_{\sigma} : \sigma B \to B$ such that $\varphi \circ \mu_{\sigma} = \mu_{\sigma} \circ \sigma \varphi$ for all $\varphi \in \text{End}_{\mathbb{Q}}(B)$. A building block is an abelian \mathbb{Q}-variety B whose endomorphism algebra is a central division algebra over a totally real field F, with Schur index $t \leq 2$ and reduced degree $t[F : \mathbb{Q}] = \dim B$. The following statement is Proposition 1.3 and Proposition 4.5 of [3].

Theorem 1.1 (Ribet-Pyle). Let A/\mathbb{Q} be an abelian variety of GL_2-type such that $A_{\overline{\mathbb{Q}}}$ does not have complex multiplication. Then $A_{\overline{\mathbb{Q}}}$ decomposes up to $\overline{\mathbb{Q}}$-isogeny as $A_{\overline{\mathbb{Q}}} \sim B^n$ for some building block $B/\overline{\mathbb{Q}}$. Conversely, if $B/\overline{\mathbb{Q}}$ is a building block then there exists a GL_2-type variety A/\mathbb{Q} such that $A_{\overline{\mathbb{Q}}} \sim B^n$ for some n.

Observe that this result establishes a correspondence between abelian varieties of GL_2-type over \mathbb{Q} without CM and building blocks. In the last chapter of Pyle’s thesis, a series of questions were posed about whether a similar correspondence holds for GL_2-type varieties over other fields k. The goal of this note is to establish such correspondence when k is a number field. In this case, the analogous of building blocks are abelian k-varieties (that is, varieties B/\overline{k} equivariantly isogenous to σB for all $\sigma \in G_k$) whose endomorphism algebra is a central division algebra over a field F with Schur index $t \leq 2$ and $t[F : \mathbb{Q}] = \dim B$. We call these varieties building k-blocks.

We prove in Section 3 that every GL_2-type variety A/k such that $A_{\overline{k}}$ does not have CM is \overline{k}-isogenous to the power of a building k-block. Conversely, every building k-block arises as the \overline{k}-simple factor of some variety over k of GL_2-type. In other words, we construct a correspondence

\[
\begin{array}{c}
\{A/k \text{ of } GL_2\text{-type without CM}\} \\
\text{k-isogeny}
\end{array} \leftrightarrow
\begin{array}{c}
\{\text{building } k\text{-blocks } B/\overline{k}\} \\
\text{k-isogeny}
\end{array}
\]

This can be seen as a natural generalization of the results of Ribet and Pyle to a wider class of abelian varieties. Moreover, it is worth noting that varieties over k of GL_2-type play a similar role as their counterparts over \mathbb{Q} with respect to modularity: they are conjectured to be modular, at least when k is totally real, in a similar sense as they are known to be modular for $k = \mathbb{Q}$. Indeed, if A/k is of GL_2-type and k is a totally real number field, a generalization of the Shimura-Taniyama conjecture predicts the existence of a Hilbert modular form f such that $\rho_{A,\lambda} \simeq \rho_{f,\lambda}$ for all primes λ of $E = \text{End}_k^0(A)$. See [1, Conjecture 2.4] for a precise statement.
Observe that in correspondence (1) the objects in the right hand side are k-varieties whose endomorphism algebra satisfies certain conditions. Instead of proving (1) directly, what we do is to construct as a previous step a more general correspondence, in which the right hand side is enlarged to all abelian k-varieties. As we will see, the varieties that correspond to them in the left hand side are then varieties A/k characterized by the fact that $A_{\bar{k}}$ is a k-variety and $\text{End}_{k}^{0}(A)$ is a maximal subfield of $\text{End}_{\bar{k}}^{0}(A)$. We call the varieties satisfying these properties Ribet-Pyle varieties, because they arise naturally in this generalization of the results of Ribet and Pyle. Section 2 is devoted to the study of Ribet-Pyle varieties and their absolutely simple factors, and we obtain the following main result.

Theorem 1.2. Let k be a number field and let A/k be a Ribet-Pyle variety. Then $A_{\bar{k}}$ decomposes up to \bar{k}-isogeny as $A_{\bar{k}} \sim B^n$ for some abelian k-variety B/\bar{k}. Conversely, if B/\bar{k} is a k-variety then there exists a Ribet-Pyle variety A/k such that $A_{\bar{k}} \sim B^n$ for some n.

This result gives some insight into the nature of the correspondences of Theorem 1.1 and its generalization (1). Indeed, what we do in Section 3 is to prove that varieties over k of GL$_2$-type without CM are Ribet-Pyle varieties, and then we obtain (1) by applying Theorem 1.2 to GL$_2$-type varieties.

2. Ribet-Pyle varieties

Let k be a number field. In this section we establish and prove the correspondence between abelian k-varieties and Ribet-Pyle varieties of Theorem 1.2. We begin by giving the relevant definitions.

Definition 2.1. An abelian variety B/\bar{k} is an abelian k-variety if for each $\sigma \in G_k$ there exists an isogeny $\mu_{\sigma} : \sigma B \to B$ compatible with the endomorphisms of B; i.e., such that for all $\varphi \in \text{End}_{\bar{k}}(B)$ the following diagram is commutative

\[
\begin{array}{ccc}
\sigma B & \xrightarrow{\mu_{\sigma}} & B \\
\downarrow{\sigma \varphi} & & \downarrow{\varphi} \\
\sigma B & \xrightarrow{\mu_{\sigma}} & B \\
\end{array}
\]

Definition 2.2. An abelian variety A defined over k is a Ribet-Pyle variety if $A_{\bar{k}}$ is an abelian k-variety and $\text{End}_{k}^{0}(A)$ is a maximal subfield of $\text{End}_{\bar{k}}^{0}(A)$.

Remark 2.3. We remark that not all abelian varieties A defined over k satisfy that $A_{\bar{k}}$ is a k-variety. Indeed, although in this case the identity is an obvious isogeny between σA and A, it is not necessarily compatible with $\text{End}_{\bar{k}}(A)$ in general.

One of the directions of the correspondence that we aim to establish follows almost immediately from the definitions.
Proposition 2.4. Let A/k be a Ribet-Pyle variety. Then it decomposes up to k-isogeny as $A_k \sim B^n$, for some simple abelian k-variety B and some n.

Proof. Let F be the center of $\text{End}_k^0(A)$ and let φ be an element of F. Since A_k is a k-variety, for each $\sigma \in G_k$ we have that

$$\sigma \varphi = \mu_{\sigma}^{-1} \cdot \varphi \cdot \mu_{\sigma},$$

for some isogeny $\mu_{\sigma} : \sigma A_k \rightarrow A_k$. Since A is defined over k the isogeny μ_{σ} belongs to $\text{End}_k^0(A)$. Then $\sigma \varphi = \varphi$ because φ belongs to the center of $\text{End}_k^0(A)$. This gives the inclusion $F \subseteq \text{End}_k^0(A)$. By hypothesis $\text{End}_k^0(A)$ is a field, so F is a field as well and this implies that $A_k \sim B^n$ for some simple variety B and some n. Next, we show that B is a k-variety. By fixing an isogeny $A_k \sim B^n$ the center of $\text{End}_k^0(B)$ can be identified with F, and each compatible isogeny $\mu_{\sigma} : \sigma A_k \rightarrow A_k$ gives rise to an isogeny $\nu_{\sigma} : \sigma B \rightarrow B$. The relation (3) implies that $\psi = \nu_{\sigma} \circ \sigma \psi \cdot \nu_{\sigma}^{-1}$ for all $\psi \in Z(\text{End}_k^0(B)) \simeq F$, so that the map

$$\text{End}_k^0(B) \longrightarrow \text{End}_k^0(B)$$

$$\psi \longmapsto \nu_{\sigma} \circ \sigma \psi \cdot \nu_{\sigma}^{-1}$$

is a F-algebra automorphism. By the Skolem-Noether Theorem it is inner, and there exists an element $\alpha_{\sigma} \in \text{End}_k^0(B)^*$ such that

$$\nu_{\sigma} \circ \sigma \psi \cdot \nu_{\sigma}^{-1} = \alpha_{\sigma}^{-1} \circ \psi \cdot \alpha_{\sigma},$$

for all $\psi \in \text{End}_k^0(B)$. The isogeny $\alpha_{\sigma} \cdot \nu_{\sigma}$ satisfies the compatibility condition (2) and we see that B is a k-variety.

The following statement gives the other direction of the correspondence between k-varieties and Ribet-Pyle varieties in the number field case.

Theorem 2.5. Let k be a number field, and let B/k be a simple abelian k-variety. Then there exists a Ribet-Pyle variety A/k such that $A_k \sim B^n$ for some n.

Before giving the proof of Theorem 2.5 we shall need some preliminary results.

Cohomology classes and splitting fields. Let k be a number field and let B/k be a simple abelian k-variety. Let B be its endomorphism algebra and let F be the center of B. Since B has a model over a finite extension of k, we can choose for each $\sigma \in G_k$ a compatible isogeny $\mu_{\sigma} : \sigma B \rightarrow B$ in such a way that the set $\{\mu_{\sigma}\} \subset \text{End}_k(G_k)$ is locally constant; more precisely, such that $\mu_{\sigma} = \mu_{\tau}$ if $\sigma B = \tau B$. Then we can define a map $c_B : G_k \times G_k \rightarrow F^*$ by means of $c_B(\sigma, \tau) = \mu_{\sigma} \cdot \mu_{\tau} \cdot \mu_{\sigma\tau}^{-1}$. It is easy to check that c_B is a continuous 2-cocycle of G_k with values in F^* (considering the trivial action of G_k in F^*). Its cohomology class $[c_B] \in H^2(G_k, F^*)$ is an invariant of the isogeny
We say that a map β satisfies (4) if, as we vary χ, the class of ϵ exists continuous maps β such that $H^2(G_k, F^*)$ is trivial, which means that there exist continuous maps $\beta : G_k \to \overline{F^*}$ such that

$$c_B(\sigma, \tau) = \beta(\sigma)\beta(\tau)\beta(\sigma\tau)^{-1}.$$

We say that a map β satisfying (4) is a splitting map for the cocycle c_B. If $\chi : G_k \to \overline{F^*}$ is a character then $\beta' = \beta\chi$ is another splitting map for c_B. In fact, as we vary χ through all the characters from G_k to $\overline{F^*}$ we obtain all the splitting maps for c_B. For a splitting map β, we will denote by E_β the field $F(\{\beta(\sigma)\}_{\sigma \in G_k}) \subseteq \overline{F}$. The extension E_β / F is finite because β is continuous.

Let m be the order of $[c_B]$ in $H^2(G_k, F^*)$, and let d be a continuous map $d : G_k \to F^*$ expressing c_B as a coboundary:

$$c_B(\sigma, \tau)^m = d(\sigma)d(\tau)d(\sigma\tau)^{-1}.$$

We define a map

$$\epsilon_\beta : G_k \to \overline{F^*}$$

$$\sigma \mapsto \beta(\sigma)^m/d(\sigma).$$

By (4) and (5) we see that $\epsilon_\beta : G_k \to \overline{F^*}$ is a continuous character.

Lemma 2.6. For each nonnegative integer n there exists a splitting map β such that $F(\zeta_n) \subseteq E_\beta$, where ζ_n is a primitive n-th root of unity in \overline{F}.

Proof. Let β' be a splitting map for c_B, and let r be the order of ϵ_β. Let $e = \gcd(n, r)$ and let $\chi : G_k \to \overline{F^*}$ be a character of order mn/e, where m is the order of $[c_B]$ in $H^2(G_k, F^*)$. Then the character $\chi^m \epsilon_\beta$ is the character that corresponds to the splitting map $\beta = \chi\beta'$ and its order is nr/e, which is a multiple of n. Therefore E_β contains a primitive n-th root of unity ζ_n. \qed

Cyclic splitting fields of simple algebras. Let \mathcal{A} be a central simple algebra over a number field F. A well-known result of central simple algebras over number fields guarantees the existence of fields L cyclic over F that split \mathcal{A} (i.e. with $\mathcal{A} \otimes_F L \simeq M_n(L)$ for some n). In order to prove Theorem 2.5 we use a similar result, but with the extension L being cyclic over \mathbb{Q} and such that LF splits \mathcal{A}. Although this is probably also well-known, for lack of reference we include a proof based on the Grunwald-Wang Theorem.

Theorem 2.7 (Grunwald-Wang Theorem). Let M be a number field, and let $\{(v_1, n_1), \ldots, (v_r, n_r)\}$ be a finite set of pairs, where each v_i is a place of M and each n_i is a positive integer such that $n_i \leq 2$ if v_i is a real place, and $n_i = 1$ if v_i is a complex place. Let m be the least common multiple of...
the n_i’s, and let n be a positive integer divisible by m. Then there exists a cyclic extension L/M of degree n such that for each i the degree $[L_{v_i} : M_{v_i}]$ is divisible by n_i.

Proposition 2.8. Let F be a number field and let \mathcal{D} be a central division algebra over F. There exists a cyclic extension L/\mathbb{Q} such that LF is a splitting field for \mathcal{D}.

Proof. Let F' be the Galois closure of F. Let $n = [F' : \mathbb{Q}]$ and let t be the Schur index of \mathcal{D}. Let $\{p_1, \ldots, p_s\}$ be the set of primes of F where \mathcal{D} ramifies, and let $\{p_1, \ldots, p_t\}$ be the set of primes of \mathbb{Q} below $\{p_1, \ldots, p_s\}$. The Grunwald-Wang Theorem, when applied to the primes p_i with $n_i = tn$, and to the infinite place of \mathbb{Q} with $n_\infty = 2$, guarantees the existence of a cyclic extension L/\mathbb{Q} of degree $2tn$ such that $[L_p : \mathbb{Q}_p] = tn$ for all p belonging to $\{p_1, \ldots, p_t\}$ and $L_v = \mathbb{C}$ for all archimedean places v of L. Let $K = LF$.

If p is a prime of F dividing p, and \mathfrak{P} is a prime of K dividing p, the fields L_p and F_p can be seen as subfields of $K_{\mathfrak{P}}$. Then the degree $g = [L_p \cap F_p : \mathbb{Q}_p]$ divides n, so $[L_p : L_p \cap F_p] = \frac{tn}{g} = [F_p L_p : F_p]$ and we see that t divides $[K_{\mathfrak{P}} : F_p]$. Therefore, K is a totally imaginary extension of F such that, for every prime p of F ramifying in \mathcal{D} and for every prime \mathfrak{P} of K dividing p, the index $[K_{\mathfrak{P}} : F_p]$ is a multiple of the Schur index of \mathcal{D}. This implies that K is a splitting field for \mathcal{D} (see [2] Corollary 18.4 b and Corollary 17.10 a)).

Corollary 2.9. Every central division F-algebra is split by an extension of the form $F(\zeta_m)$ for some m.

Proof. By the previous proposition there exists a cyclic extension L/\mathbb{Q} such that LF splits \mathcal{D}. The field L is contained in a field of the form $\mathbb{Q}(\zeta_m)$ by the Kronecker-Weber Theorem, and then $F(\zeta_m)$ splits \mathcal{D}.

Construction of Ribet-Pyle varieties. In this paragraph we perform the construction of Ribet-Pyle varieties having a k-variety B as simple factor. Recall that \mathcal{B} denotes $\text{End}_k^0(B)$, F is the center of \mathcal{B} and t denotes the Schur index of \mathcal{B}. Fix also a locally constant set of isogenies $\{\mu_\sigma : \sigma B \to B\}_{\sigma \in G_k}$, let c_B be the cocycle constructed with these isogenies and let β be a splitting map for c_B.

Let n be the degree $[E_\beta : F]$, and fix an injective F-algebra homomorphism

$$\phi : E_\beta \longrightarrow M_n(F) \subseteq M_n(\mathcal{B}) \simeq \text{End}_k^0(B^n).$$

The elements of E_β act as endomorphisms of B^n up to isogeny by means of ϕ. Let $\hat{\mu}_\sigma$ be the diagonal isogeny $\hat{\mu}_\sigma : \sigma B^n \to B^n$ consisting in μ_σ in each factor.
Proposition 2.10. There exists an abelian variety X_β over k and a $\bar k$-isogeny $\kappa: B^n \to X_\beta$ such that $\kappa^{-1} \circ \kappa = \phi(\beta(\sigma))^{-1} \circ \hat \mu_\sigma$ for all $\sigma \in G_k$. Moreover, the k-isogeny class of X_β is independent of the chosen injection ϕ.

Proof. Let ν_σ be the isogeny defined as $\nu_\sigma = \phi(\beta(\sigma))^{-1} \circ \hat \mu_\sigma$. In order to prove the existence of X_β, by [4, Theorem 8.1] we need to check that $\nu_\sigma \circ \nu_\tau \circ \nu_\sigma^{-1} = 1$. By the compatibility of μ_σ we have that:

$$\nu_\sigma \circ \nu_\tau \circ \nu_\sigma^{-1} = \phi(\beta(\sigma))^{-1} \circ \hat \mu_\sigma \circ \phi(\beta(\tau))^{-1} \circ \hat \mu_\tau \circ \phi(\beta(\sigma)) = \phi(\beta(\sigma))^{-1} \circ \phi(\beta(\tau))^{-1} \circ \mu_\sigma \circ \mu_\tau \circ \phi(\beta(\sigma)) \circ \phi(\beta(\tau)) = \phi(\beta(\sigma))^{-1} \circ \beta(\tau)^{-1} \circ \beta(\sigma)^{-1} \circ \beta(\tau) = \phi(c_B(\sigma, \tau)^{-1} \circ c_B(\sigma, \tau) = c_B(\sigma, \tau)^{-1} \circ c_B(\sigma, \tau) = 1.$$

Now suppose that ϕ and ψ are F-algebra homomorphisms $E_\beta \to M_n(F)$, and let $X_{\beta, \phi}$ and $X_{\beta, \psi}$ denote the varieties constructed by the above procedure using ϕ and ψ respectively to define the action of E_β on B^n. We aim to see that $X_{\beta, \phi}$ and $X_{\beta, \psi}$ are k-isogenous.

Let C denote the image of ϕ. The map $\phi(x) \mapsto \psi(x): C \to M_n(F)$ is a F-algebra homomorphism. Since C is simple and $M_n(F)$ is central simple over F, by the Skolem-Noether Theorem there exists an element b in $M_n(F)$ such that $\phi(x) = b \psi(x) b^{-1}$ for all x in E_β. By the defining property of $X_{\beta, \phi}$ and $X_{\beta, \psi}$, there exist k-isogenies $\kappa: B^n \to X_{\beta, \phi}$ and $\lambda: B^n \to X_{\beta, \psi}$ such that

$$\kappa^{-1} \circ \kappa = \phi(\beta(\sigma))^{-1} \circ \hat \mu_\sigma = b \circ \psi(\beta(\sigma))^{-1} \circ b^{-1} \circ \hat \mu_\sigma,$$

$$\lambda^{-1} \circ \lambda = \psi(\beta(\sigma))^{-1} \circ \hat \mu_\sigma.$$

The $\bar k$-isogeny $\nu = \kappa \circ b \circ \lambda^{-1}: X_{\beta, \psi} \to X_{\beta, \phi}$ is in fact defined over k, since for each σ of G_k we have that

$$\nu^{-1} \circ \nu = \lambda \circ b^{-1} \circ \kappa^{-1} \circ \kappa \circ b \circ \lambda^{-1} = \lambda \circ b^{-1} \circ b \circ \psi(\beta(\sigma))^{-1} \circ b^{-1} \circ \hat \mu_\sigma \circ b \circ \lambda^{-1} = \lambda \circ \psi(\beta(\sigma))^{-1} \circ \hat \mu_\sigma \circ b \circ \lambda^{-1} \circ b \circ \lambda^{-1} = \lambda \circ \lambda^{-1} \circ \lambda \circ \lambda^{-1} = 1,$$

where we used the compatibility of $\hat \mu_\sigma$ with the endomorphisms of B^n in the third equality, and the expressions (6) and (7) in the second and fourth equality respectively.

Proposition 2.11. The algebra $\text{End}^0_k(X_\beta)$ is isomorphic to the centralizer of E_β in $M_n(B)$.

Proof. \(\text{End}_k^0(\mathcal{X}_\beta) \) is isomorphic to \(M_n(\mathcal{B}) \) and every endomorphism of \(\mathcal{X}_\beta \) up to \(\bar{k} \)-isogeny is of the form \(\kappa \ast \psi \ast \kappa^{-1} \), for some \(\psi \in \text{End}_k^0(B^n) \). For \(\sigma \) in \(G_k \) we have:

\[
\sigma((\kappa \ast \psi \ast \kappa^{-1})) = \kappa \ast \psi \ast \kappa^{-1} \iff \sigma \kappa \ast \sigma \psi \ast \sigma \kappa^{-1} = \kappa \ast \psi \ast \kappa^{-1} \iff \kappa^{-1} \ast \sigma \kappa \ast \sigma \psi \ast (\kappa^{-1} \ast \sigma \kappa)^{-1} = \psi \iff \beta(\sigma) \ast \mu_\sigma \ast \sigma \psi \ast \mu_\sigma^{-1} \ast \beta(\sigma)^{-1} = \psi \iff \beta(\sigma) \ast \psi \ast \beta(\sigma)^{-1} = \psi.
\]

Thus the endomorphisms of \(\mathcal{X}_\beta \) defined over \(k \) are exactly the ones coming from endomorphisms \(\psi \) that commute with \(\beta(\sigma) \), for all \(\sigma \) in \(G_k \). Now the proposition is clear, since the \(\beta(\sigma) \)'s generate \(E_\beta \).

\[\square\]

Corollary 2.12. The algebra \(\text{End}_k^0(\mathcal{X}_\beta) \) is isomorphic to \(E_\beta \otimes_F \mathcal{B} \).

Proof. Let \(C \) be the centralizer of \(E_\beta \) in \(M_n(\mathcal{B}) \). In view of Proposition 2.11 we have to prove that \(C \simeq E_\beta \otimes_F \mathcal{B} \). It is clear that \(E_\beta \) is contained in \(C \). Moreover, \(\mathcal{B} \) is contained in \(C \) because the elements of \(E_\beta \) can be seen as \(n \times n \) matrices with entries in \(F \), and these matrices commute with \(\mathcal{B} \) (which is identified with the diagonal matrices in \(M_n(\mathcal{B}) \)). Since \(E_\beta \) and \(\mathcal{B} \) commute there exists a subalgebra of \(C \) isomorphic to \(E_\beta \otimes_F \mathcal{B} \), which has dimension \(nt^2 \) over \(F \). By the Double Centralizer Theorem we know that

\[[C : F][E_\beta : F] = [M_n(\mathcal{B}) : F] = nt^2, \]

and from this we obtain that \([C : F] = nt^2 \), hence \(C \) is isomorphic to \(E_\beta \otimes_F \mathcal{B} \).

\[\square\]

At this point we have at our disposal all the tools needed to prove Theorem 2.5.

Proof of Theorem 2.5. By Corollary 2.9 there exists an integer \(m \) such that \(F(\zeta_m) \) splits \(\mathcal{B} \). Let \(\beta \) be a splitting map for \(c_B \) with \(E_\beta \) containing \(F(\zeta_m) \); the existence of such a \(\beta \) is guaranteed by Lemma 2.6. Consider the variety \(\mathcal{X}_\beta \) defined as in Proposition 2.10. By Corollary 2.12 we have that \(\text{End}_k^0(\mathcal{X}_\beta) \simeq E_\beta \otimes_F \mathcal{B} \), and this later algebra is in turn isomorphic to \(M_t(E_\beta) \) because \(E_\beta \) is a splitting field for \(\mathcal{B} \). Therefore, there exists an abelian variety \(A_\beta \) defined over \(k \) such that \(\mathcal{X}_\beta \sim_k A_\beta^t \) and \(\text{End}_k^0(A_\beta) \simeq E_\beta \). Clearly \(A_\beta \) is \(\bar{k} \)-isogenous to \(B^{n/t} \), where \(n = [E_\beta : F] \), and we claim that it is a Ribet-Pyle variety. First of all, it is easily seen that the power of a \(k \)-variety is also a \(k \)-variety. This implies that \((A_\beta)_k \) is a \(k \)-variety. Moreover, we have that \([\text{End}_k^0(A_\beta) : F] = [E_\beta : F] = n \), and the dimension of the ambient algebra is \([\text{End}_k^0(A_\beta) : F] = (\frac{nt}{t})^2[B : F] = n^2 \). This implies (cf. Proposition 13.1) that \(\text{End}_k^0(A) \) is a maximal subfield of \(\text{End}_k^0(A) \).

\[\square\]
Proposition 2.13. Let B be a k-variety and let A/k be a Ribet-Pyle variety having B as \bar{k}-simple factor. Then A is k-isogenous to the variety A_β obtained by applying the above procedure to some cocycle c_B attached to B and some splitting map β for c_B.

Proof. Let $B = \text{End}_k^0(B)$, let F be the center of B and let t be the Schur index of B. Let E be the maximal subfield $\text{End}_k^0(A)$ of $\text{End}_k^0(A)$, and fix an embedding of E into \overline{F}. Let κ be an isogeny $\kappa: B^\text{nt} \to A_{\bar{k}}$. We have the relation $[E : F] = nt$. Let $\{\mu_\sigma: \sigma B \to B\}_{\sigma \in G_k}$ be a locally constant set of compatible isogenies and denote by $\tilde{\mu}_\sigma: \text{End}_k^0(B) \to \text{End}_k^0(B)$ the diagonal of μ_σ. Define $\beta(\sigma) = \kappa \circ \tilde{\mu}_\sigma \circ \kappa^{-1}$, which is a compatible isogeny $\beta(\sigma): A_{\bar{k}} \to A_{\bar{k}}$. The fact that $\beta(\sigma)$ is compatible implies that

$$
(8) \quad \beta(\sigma) \circ \varphi = \sigma \varphi \circ \beta(\sigma)
$$

for all σ in G_k and for all $\varphi \in \text{End}_k^0(A)$. In particular, when applied to elements φ of E this property says that $\beta(\sigma)$ lies in $C(E)$, the centralizer of E. But $C(E)$ is equal to E, because E is a maximal subfield. Thus $\beta(\sigma)$ belongs to E and it is an isogeny defined over k. Now we have that

$$
c_B(\sigma, \tau) = \mu_\sigma \circ \mu_\tau \circ \mu_{\sigma \tau}^{-1} = \tilde{\mu}_\sigma \circ \tilde{\mu}_\tau \circ \tilde{\mu}_{\sigma \tau}^{-1}
$$

$$
= \beta(\sigma) \circ \sigma \beta(\tau) \circ \beta(\sigma \tau)^{-1} = \beta(\sigma) \circ \beta(\tau) \circ \beta(\sigma \tau)^{-1},
$$

and we see that the map $\sigma \mapsto \beta(\sigma)$ is a splitting map for c_B. We have already seen the inclusion $E_\beta \subseteq E$. From (8) it is clear that $C(E_\beta) \subseteq E$, and taking centralizers and applying the Double Centralizer Theorem we have that $E = C(E) \subseteq C(C(E_\beta)) = E_\beta$. Thus $E = E_\beta$ and, in particular, $[E_\beta : F] = nt$.

Now we define a \bar{k}-isogeny $\hat{\kappa}: (B^{\text{nt}})^t \to A_{\bar{k}}^t$ as the diagonal isogeny associated to κ, and we make E_β act on B^{nt} by means of $\hat{\kappa}$. It is easy to check that $\hat{\kappa}^{-1} \circ \hat{\kappa} = \tilde{\kappa}^{-1} \circ \tilde{\kappa} \circ \mu_\sigma$, so A^t satisfies the property defining X_β. By the uniqueness property of X_β we have that $A^t \sim_k X_\beta$, and so $A_\beta \sim_k A$. □

Remark 2.14. The hypothesis that k is a number field has been used only in order to guarantee the existence of splitting maps for c_B, by means of Tate’s theorem on the triviality of $H^2(G_k, \overline{F}^\ast)$. Since Tate’s theorem is valid for any global or local field k, Theorem [1.2] is valid for any global or local field k as well.

3. Varieties over k of GL$_2$-type and k-varieties

Let k be a number field. In this section we characterize the absolutely simple factors of the varieties over k of GL$_2$-type, in the case where they do not have complex multiplication.

Proposition 3.1. Let A/k be an abelian variety of GL$_2$-type such that $A_{\bar{k}}$ does not have complex multiplication. Then A is a Ribet-Pyle variety.
Proof. By [6] Proposition 1.5] we can suppose that \(A \) does not have any simple factor with CM. Let \(A \simeq B_1^{n_1} \times \cdots \times B_r^{n_r} \) be the decomposition of \(A \) into simple abelian varieties up to isogeny. Since \(E = \text{End}_{A}(A) \) is a field it acts on each factor \(B_i^{n_i} \), and so it acts on the homology with rational coefficients \(H_1((B_i^{n_i})_C, \mathbb{Q}) \), which is a vector space of dimension \(2 \dim B_i^{n_i} \) over \(\mathbb{Q} \). Thus \(2 \dim B_i^{n_i} \) is divisible by \([E : \mathbb{Q}] = \dim A\). But \(\dim A \geq \dim B_i^{n_i} \), so either \([E : \mathbb{Q}] = \dim B_i^{n_i}\) or \(2[E : \mathbb{Q}] = \dim B_i^{n_i}\).

The later is not possible, because it would mean that \(B_i^{n_i} \) has CM by \(E \). Thus \(\dim A = \dim B_i^{n_i} \) and \(A \) has only one simple factor up to isogeny; say \(A \simeq B \).

Next, we see that \(E \) is a maximal subfield of \(\text{End}_{A}(A) \). Let \(C \) be the centralizer of \(E \) in \(\text{End}_{A}(A) \), and let \(\varphi \) be an element in \(C \). A priori \(\varphi(A) \) is isogenous to \(B^r \) for some \(r \leq n \). Since \(\varphi \in C \), the field \(E \) acts on \(\varphi(A) \); as before this implies that \([E : \mathbb{Q}] \) divides \(2 \dim B^r \). But \([E : \mathbb{Q}] = \dim A = \dim B^r \), therefore \(r = n \) or \(r = n/2 \). Again \(r = n/2 \) is not possible, because then \(B^r \) would be a factor of \(A \) with CM by \(E \). Thus \(r = n \) and \(\varphi \) is invertible in \(\text{End}_{A}^0(A) \). This implies that \(C \) is a field, and then \(E \) is a maximal subfield of \(\text{End}_{A}^0(B) \).

Finally, we see that \(A \) is an abelian \(k \)-variety. For each \(\sigma \in G_k \) the map

\[
\text{End}_{A}^0(A) \, \longrightarrow \, \text{End}_{A}^0(A) \\
\varphi \, \longmapsto \, \sigma \varphi
\]

is the identity when restricted to \(E \). Since \(E \) is a maximal subfield, it contains the center \(F \) of \(\text{End}_{A}^0(A) \), so (9) is a \(F \)-algebra isomorphism. By the Skolem-Noether Theorem there exists an element \(\mu_\sigma \in \text{End}_{A}^0(A)^* \) such that \(\sigma \varphi = \mu_\sigma^{-1} \circ \varphi \circ \mu_\sigma \), and we see that \(\mu_\sigma \) is a compatible isogeny in the sense of Definition 2.1.

\[
\begin{align*}
\text{Definition 3.2.} \quad & \text{A building } k \text{-block is an abelian } k \text{-variety } B/k \text{ such that } \\
& \text{End}_{A}^0(B) \text{ is a central division algebra over a field } F, \text{ with Schur index } t \leq 2 \\
& \text{and reduced degree } t[F : \mathbb{Q}] = \dim B.
\end{align*}
\]

\[
\begin{align*}
\text{Theorem 3.3.} \quad & \text{Let } k \text{ be a number field and let } A/k \text{ be an abelian variety of } \\
& \text{GL}_2\text{-type such that } A \text{ does not have CM. Then } A \simeq B^n \text{ for some building } \\
& k \text{-block } B. \text{ Conversely, if } B \text{ is a building } k \text{-block then there exists a variety } \\
& A/k \text{ of GL}_2\text{-type such that } A \simeq B^n \text{ for some } n.
\end{align*}
\]

Proof. By Proposition [3.1] \(A \) is a Ribet-Pyle variety, and by Proposition 2.4 we have that \(A \simeq B^n \) for some \(k \)-variety \(B \). Let \(B = \text{End}_{A}^0(B) \), let \(F \) be the center of \(B \) and let \(t \) be its Schur index. Then \(E = \text{End}_{A}^0(A) \) is a maximal subfield of \(\text{End}_{A}^0(A) \simeq M_n(B) \), which has dimension \(n^2 t^2 \) over \(F \). Therefore \([E : F] = nt\), and multiplying both sides of this equality by \([F : \mathbb{Q}]\) we see that \([E : \mathbb{Q}] = \dim A = nt[F : \mathbb{Q}]\). The equality \(t[F : \mathbb{Q}] = \dim B \) follows. Since \(B \) is a division algebra of \(\mathbb{Q} \)-dimension \(t^2[F : \mathbb{Q}] \) that acts
on $H_1(B_C, \mathbb{Q})$, which has \mathbb{Q}-dimension $2 \dim B = 2t[F : \mathbb{Q}]$, we see that necessarily $t \leq 2$ and B is a building k-block.

Conversely, let B be a building k-block. In particular it is a k-variety, and by Theorem 2.5 there exists a Ribet-Pyle variety A/k such that $A_\mathbb{C} \sim B^n$ for some n. The field $E = \text{End}_k^0(A)$ is a maximal subfield of $\text{End}_k^0(A) \simeq M_n(B)$, which means that $[E : F] = nt$. Multiplying both sides of this equality by $[F : \mathbb{Q}]$ we see that $[E : \mathbb{Q}] = nt[F : \mathbb{Q}] = n \dim B = \dim A$, and so A is a variety of GL_2-type.

In the case $k = \mathbb{Q}$ the center of the endomorphism algebra of a building k-block is necessarily totally real, but for arbitrary number fields k a priori it can be either totally real or CM. That is why in Definition 3.2 the field F is not required to be totally real. However, if k admits a real embedding then exactly the same argument of [3, Theorem 1.2] shows that F is necessarily totally real. In addition, there are some extra restrictions on the endomorphism algebra.

Proposition 3.4. Let k be a number field that admits a real embedding. Let B be a building k-block, let $\mathcal{B} = \text{End}_k^0(B)$ and let $F = Z(\mathcal{B})$. Then F is totally real and \mathcal{B} is either isomorphic to F or to a totally indefinite division quaternion algebra over F.

Proof. We view k as a subfield of \mathbb{C} by means of a real embedding $k \hookrightarrow \mathbb{R}$. Let A/k be a GL_2-type variety such that $A_\mathbb{C} \sim B^n$. Let E be the maximal subfield $\text{End}_k^0(A)$ of $\text{End}_k^0(A)$, and identify F with $Z(\text{End}_k^0(A))$; under this identification F is contained in E. Let t be the Schur index of B and let $m = 2 \dim B/[\mathcal{B} : \mathbb{Q}]$, for which we have that $mt = 2$.

The division algebra \mathcal{B} belongs a priori to one of the four types of algebras with a positive involution, according to Albert’s classification (see for instance [5, Proposition 1]). However, type III is not possible; indeed by [5, Proposition 15] the variety B would then be isogenous to the square of a CM abelian variety.

To see that type IV is also not possible, suppose that F is a CM extension of a totally real field F_0. Let Φ denote the complex representation of \mathcal{B} on the space of differential forms $H^0(B_C, \Omega^1)$. For every real embedding ν of F_0 let $\chi_\nu, \overline{\chi}_\nu$ be the two complex-conjugate irreducible representations of \mathcal{B} extending ν. Let r_ν and s_ν be the multiplicities of χ_ν and $\overline{\chi}_\nu$ in Φ. For each ν we have that $r_\nu + s_\nu = 2$; moreover, the equality $r_\nu = s_\nu = 1$ is not possible for all ν (cf. [3, Propositions 18 and 19]). This implies that $\text{Tr}(\Phi)|_F = \sum r_\nu \chi_\nu|_F + s_\nu \overline{\chi}_\nu|_F$ takes non-real values. On the other hand, if we denote by Ψ the complex representation of $\text{End}_k^0(A)$ on $H^0(A_C, \Omega^1)$, then $\text{Tr}(\Psi) = n \text{Tr}(\Phi)$. Since A is defined over k we can take a basis of the differentials defined over k, and with respect to this basis the elements of E are represented by matrices with coefficients in k. Since $F \subseteq E$, the trace
of Ψ restricted to F takes values in $k \subseteq \mathbb{R}$, giving a contradiction with the fact that $\text{Tr}(\Phi)|_F$ takes non-real values. \hfill \Box

Acknowledgements. I am grateful to my advisor, Professor Jordi Quer, for his help and guidance throughout this work. I would also like to thank Francesc Fité for carefully reading a previous version of this manuscript.

References

[1] H. Darmon. *Rigid local systems, Hilbert modular forms, and Fermat’s last theorem.* Duke Math. J. **102** (2000), no. 3, 413–449.

[2] R. S. Pierce. *Associative Algebras.* Graduate Texts in Mathematics, 88. Studies in the History of Modern Science, 9. Springer-Verlag, New York-Berlin, 1982.

[3] E. Pyle. *Abelian varieties over \mathbb{Q} with large endomorphism algebras and their simple components over \mathbb{Q}.* Modular curves and abelian varieties, Progress in Math., vol. 224 (2002), pp. 189–239.

[4] K. A. Ribet. *Abelian varieties over \mathbb{Q} and modular forms.* Algebra and topology 1992 (Taejŏn), 53–79, Korea Adv. Inst. Sci. Tech., Taejŏn, 1992. Reprinted on *Modular curves and abelian varieties*, 241–261, Progr. Math. 224, Birkhäuser, Basel, 2004.

[5] G. Shimura. *On analytic families of polarized abelian varieties and automorphic functions.* Ann. of Math. (2) **78** (1963) 149–192.

[6] G. Shimura. *Class fields over real quadratic fields and Hecke operators.* Ann. of Math. (2) **95** (1972), 130–190.

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Jordi Girona 1-3 (Edifici Omega) 08034, Barcelona

E-mail address: xevi.guitart@gmail.com