Assessment and valorization of treated and non-treated olive mill wastewater (OMW) in the dry region

Haifa Rajhi1 · Inès Mnif2,3 · Mounir Abichou1 · Ali Rhouma1

Received: 24 October 2017 / Accepted: 28 March 2018 / Published online: 14 May 2018
© The Author(s) 2018

Abstract
Purpose The quantity of Olive by-products does not stop increasing and a water shortage that threatens the olive tree culture; require a serious valuation of these by-products. A comparative and valorization study of two kinds of OMW; Fresh OMW (FOMW), directly issue from three-phase continuous extraction factory and Disposal Evaporation Ponds OMW (DOMW) were done.

Methods Physico-chemical and biological parameters of OMWs and soil irrigated with OMWs, respectively, were determined. An antibacterial activity test of FOMW against Clinic Standard Bacteria was determined. A statistical analysis was performed for all defined parameters.

Results A significant increase of pH value of 6 and a lower failure of the EC in 8.94 (mS/cm−1) were registered after OMW disposal in evaporation ponds. We registered a fall of BOD5 and COD from 61.05–116.37 (g/L) to 55.67–103.82 (g/L), respectively. A significant increment of phenol compound removal was observed after OMW disposal. However, a switch of fatty acids distribution and content was observed, which several fermentation pathways could explain took place. This result suggested by a clear shift in biomass composition. An important soil fertility after DOMW soil irrigated was traduced by an important value of the germination index (170.55%) and efficient organic matter increment of 2.3%. A CMI rate of 32.76 (μg mL−1) was determined by FOMW against different clinic standard bacteria.

Conclusion A spectacular soil fertility effect was obtained from DOMW soil spreading, that efficiently evaluate the OMW biological treatment. In addition, the FOMW was valorized as its powerful antibacterial.

Keywords Olive mill water valorization · Ponds evaporation · OMW compounds · Soil treatment · Soil fertility · OMW antibacterial activity

Introduction

Every year, olive oil production industry release large quantities of olive mill wastewater (OMW). They are estimated approximately 30 million m³ in the world and 700 million m³ in Tunisia (Mekki et al. 2013). They are obtained from olive tree after discontinuous press or from the continuous centrifugation (Niaounakis and Halvadakis 2006; Aggoun et al. 2016). Different phenolic compounds were detected essentially for simple phenols and flavonoids and polyphenols resulting from polymerisation of the simple phenols (Comandini et al. 2014). They are phytotoxic and can...
inhibit plant growth limiting the use of OMW for irrigation. In addition, their direct release onto soil may affect soil’s physical and chemical properties including soil porosity and pH (Niaounakis and Halvadakis 2006; Mekki et al. 2013). Moreover, release of OMW in the environment can discolor streams and rivers due to the high concentration of darkly colored polyphenols. Indeed, discharge of the OMW in the environment has a serious environmental drawback (Paraskeva and Diamadopoulos 2006).

In addition to phenolic compounds, the highly reduced sugars content of OMW can stimulate microbial respiration, lowering therefore, dissolved oxygen concentrations (McNamara et al. 2008). Besides, the high phosphorus content can lead to eutrophication (McNamara et al. 2008). Likewise, the large-volume OMW and the seasonal nature of olive oil production limit their storage operation and their displacement (McNamara et al. 2008). Regardless, olive oil production remains a high polluting industry due to the utilization of large amounts of water and the production of large amounts of waste water and sludge.

To resolve these problems, pretreatment of OMW can improve the quality of the wastewater and remove some of its toxicity. Different strategies to know, physical–chemical, and biological processes were applied to treat OMW. Dilution, evaporation, sedimentation, filtration and centrifugation were used largely as a physical process to treat OMW (Paraskeva and Diamadopoulos 2006; Villegas et al. 2016). Moreover, several biotechnological methods have been used to reduce the polluting load of OMW including decantation with lime and clay, coagulation–flocculation, electrocoagulation, natural evaporation and thermal concentration (Paraskeva and Diamadopoulos 2006; Villegas et al. 2016). Also, evaporation ponds and artificial ponds with very large surface areas that are designed to efficiently evaporate water by sunlight and exposure to the ambient temperatures can be used for OMW treatment (Barbera et al. 2013). Besides, different biological treatment technologies of OMW were reported as efficient strategies to clean OMW, including microbial degradation, aerobic and anaerobic process (co-digestion with other effluents and composting) (Paraskeva and Diamadopoulos 2006; Villegas et al. 2016). It presents many advantages over other techniques including simplicity; less expensive for the reduction of pollutants that perfectly meets many sustainable social systems and ecological advantages (Barbera et al. 2013). Note in this regard that the arid southern Tunisia is a wide field of biochemical exploration and has many characteristics associated with the continuous presence of light and sunshine throughout the year.

Moreover, soil serves as a medium for organic waste disposal, both solid and liquid. OMW was known to have a fertilizing effect, assessing a possible valorization of these effluents in agronomy (Dakhli and Maalej 2017). Spreading represents an interesting solution for OMW treatment and disposal. In fact, the higher content of micronutrients, especially potassium and organic matter induce plant growth (Di Serio et al. 2008; Dakhli and Maalej 2017). However, the high organic load of OMW due mainly to the presence of polyphenols as well as short and long chain fatty acids may cause phytotoxic and antimicrobial effects of these effluents (Dakhli and Maalej 2017). The inhibition of the growth of microorganisms, especially bacteria, may reduce the mineralization process in the soil (Dakhli and Maalej 2017). For these reasons, the controlled spreading of OMW can increase the fertility of the soil and offer the opportunity to recycle various compounds.

Indeed, the goal of this work is constituted of two parts; the first one is to characterize different types of OMW. A comparison between Fresh OMW directly issue from three-phase continuous extraction factory and disposal evaporation ponds OMW in the south of Tunisia (Chammakh-Zarzis) was done. The second goal of this work was the investigation of the effects of different types of OMW spreading on the soil characteristics. The soil treated fertility was evaluated to evaluate the OMW spreading phytotoxicity potential. In addition, we tried to evaluate the antibacterial activities of the fresh OMW against different clinic bacteria, making the possibility of further production of antibiotic with high industrial and biotechnological values.

Materials and methods

Study zone

The study zone is located at Chammakh-Zarzis in the south-eastern Tunisia. The climate of this region is an arid Mediterranean climate with an annual average rainfall of 180 mm. The soil of this area is moderately deep with a slight texture, very filterable and relatively poor in organic matter (Abichou et al. 2009).

Meteorological parameters

Average monthly values of different meteorological factors of evaporation ponds are detailed in Fig. 1 including Month temperature (°C), Evaporation rate (mm per days), Relative humidity (%), Wind speed (m per second) and Dominant wind direction. The annual temperature and precipitation was 21 °C and 15.16 mm per year, respectively. The evaporation extended from 1 mm to 5.6 mm. In fact, the OMW evaporation rate can be considered around 4.03 mm per year. The maximal air humidity and wind speed was around 74% and 1.6 m per second, respectively, followed by (230°) as a maximal value of a wind direction Dig. The meteorological conditions described above can facilitate an efficient natural evaporation of OMW.
Sampling

FOMW was taken from a three-phase continuous extraction factory located in the region of Chemmakh-Zarzis (Southern Tunisia, 33°36′N, 11°02′E). DOMW Samples were collected from the evaporation ponds after one year of fresh OMW disposal. The characteristics of ponds were in m: 70 of Length, 40 of Width, 4 of Height. The volume of ponds was 11200 m³. The OMW was sprayed homogeneously on the sandy soil surface, previously tilled to a 20 cm of depth. DOMW and FOMW were sprayed in the soil olive tree culture plot during 5 years in the winter period (December–January) using at doses of 50 m³/ha−1. The dimension of soil plot was 1 ha. The soil sample was collected between two olive trees using the Hand auger tube H-4268. The soil sampling was taken in March. Each type of OMW was used in each different site. Non-OMW spreading soil (Untouched soil) was used as a control.

Physico-chemical analysis

Different physico-chemical parameters including organic matter, mineral content, biological oxygen demand (BOD), chemical oxygen demand (COD), electrical conductivity (EC) and pH were performed according to the Standard Methods for the Examination of Water and Wastewater, 20th Edition 1998. The pH value of soil was determined with pH meter XP with a pH 50 lab model. Electrical Conductivity (EC) of each site was determined Conductivity inoLab WTW 7110 model. Total Organic Carbon (TOC) was determined following the Walkley–Black method (Walkley 1947) and organic matter (OM) was calculated by multiplying the total carbon by 1.724.

Sugar and phenolic compounds analysis

High-performance liquid chromatography (HPLC 2010 PLUS, SHIMADZU) was used to quantify Sugar and Phenolic compounds. For sugar compounds identification, stationary phase consisted of NH2 column (AQUASILC C18 with length and inner diameter of 150 and 30 mm, respectively) and mobile phase consisted of acetonitrile with a flow rate of (1 ml/min). For phenolic compound quantification, the mobile phase was an equal mixture of (A) 0.1% of formic acid in water and (B) 0.1% of formic acid in methanol with a flow of 0.4 ml/min. The column TSK (TSK gel with length and inner diameter of 30 cm and 7.8 mm, respectively) was used (Pérez et al. 1990; Kemal 1994). The extraction of soil polyphenols was realized according to FOLIN-DENIS method by the ethanol (Ranalli1997).

Fatty acid analysis

Free fatty acids were analyzed with a Shimadzu gas chromatograph system, (GC–MS GP2010ULTRA) adapted for capillary columns. For the analysis, a fused silica capillary
column, 30 m×0.25 mm×0.25 μm film thickness, was used. The injector and detector temperatures were set at 200 °C with interface of 220. The column temperature was set at 50 °C, then raised to 250 °C with flow of 50 °C/minute, then increased from 200 to 230 °C at the rate of 50 °C/ min. Peak heights were determined by integration software (D’Annibale et al. 1998).

Microbial enumeration

Microbial enumeration was done according to ISO 2718 (Technical Committee 1996). Results were expressed as the total number of colonies forming units (CFU). For the enumeration of total aerobic mesophilic bacteria, PCA plate were inoculated and incubated at 37 °C for 24 h. While, Sabouraud medium containing a bacterial inhibitor (chloramphenicol) was used to enumerate yeasts after incubation at 25 °C for 5 days. The microbial results were expressed by calculating the ratios of decimal logarithmic value of each flora (bacteria and yeasts). Triplicates plated were used in each test.

For soil Microbial estimation, a soil suspension was prepared as follows; 10 g of the soil sample were suspended in an Erlenmeyer flask containing 90 mL of a sterile solution (0.2% of sodium polyphosphate (NaPO₃) in distilled water, pH 7.0) and 10 g of sterile glass beads (1.5 mm diameter). The flask was shaken at 200 rpm for 2 h. Serial tenfold dilutions of the samples in a 0.85% NaCl solution were plated in triplicate on PCA at 37 °C and Sabouraud containing chloramphenicol at 25 °C for total bacterial counts and for yeasts counting, respectively.

Antibacterial activity study

Antibacterial activities of different OMWF concentration were studied in triplicate using glass tubes as described by (Aziz et al. 1998). The antimicrobial activity of the different test was tested against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Klebsiella pneumonia, Salmonella typhimurium and Enterobacter cloacae) to determine the minimal inhibitor concentration (MIC). The tubes were incubated at 37 °C for 18 h. Results of bacterial growth inhibition were expressed by a visual examination; the inhibition was considered positive when there was no microbial growth in all the three tubes of the triplicate. The MIC was determined as the lowest concentration caused complete growth inhibition in the triplicate tubes of each treatment.

A Stock solution containing 10 mL of Mueller–Hinton medium and 1 mL of culture was prepared. A 1.8 mL of stock solution was mixed with 0.8 mL of the filtrate of FOMW extracted. A solution of 100, 50 and 25% dilution of OMW extracted range was prepared. Pure water was used as a control. The same protocol described above was repeated in triplicate for each strain.

Respirometric tests

Biological activity in the soil was achieved by measuring CO₂ evolution in the aerobic condition. Respirometric analysis was done according to the method of Ohlinger (1995). The soil sample was humidified to 50% of its water holding capacity, and then was incubated at 25 °C in the dark. Released CO₂ was trapped in NaOH solution and titrated with HCl.

Germination index evaluation

The phytotoxicity of the treated soils was evaluated by the measurement of the germination index according to the method proposed by (Zucconi et al. 1981). This technique consists of making germinate, in petri dish, 10 seeds of tomatoes with the different samples studied. Petri dish incubated during a 1 week in the darkness at 25 °C. The untouched soil was used as positive control. After incubation, the reading of the result is determined by counting the number of germinated seeds. The length of the roots of seeds having germinated measured in mm. The germination index “GI” is calculated according to the following formula:

\[
GI (\%) = \frac{\text{Number of seed germinated} \times \text{root length}}{\text{Control Number of seed germinated}} \times \text{Control root length} \times 100
\]

Statistical analysis

The Statistical Package for the Social Sciences (SPSS, Version 20.0) was used to perform the statistical analysis. The Phenol, fatty acids and sugar compounds of both OMW Samples (fresh and disposed in the evaporation ponds) values were compared using Student test at the “5% (P = 0.05)” significance level. Data are presented as mean ± standard deviation. Values were obtained from triplicate determinations and the differences were examined using one-way analysis of variance (ANOVA) followed by the Fischer’s LSD (Least Significant Difference) post hoc test. Statistical significances of the correlations between datasets were calculated using Pearson’s R values. At least three replicates were performed for each laboratory measurement.

Results and discussion

The physico-chemical properties

The physico-chemical properties of FOMW and DOMW are reported in Table 1. A significant increase of pH value of 6 and a lower failure of electrical conductivity of 8.94 (mS/cm⁻¹) were registered after OMW disposal in evaporation
ponds. The OMW are rich in organic matter expressed in terms of BOD$_5$ and COD. However, a fall of BOD$_5$ and COD from 61.05 and 116.37 (g/L) to 55.67 and 103.82 (g/L), respectively, after the disposal of OMW more than 1 year in evaporation ponds. These results suggest the occurrence of oxidative phenomena, which led to further removal of the acidic compounds in OMW (Paraskeva and Diamadopoulos 2006).

The phenol compounds

Table 2 summarizes the phenol compound concentration founded in OMWF and DOMW. Comparative study of phenol compounds between fresh and disposal OMW shows a significant difference in the concentration values ($p = 0.01$). Figure 2 and Table 3 shows a significant change of the fatty acid distribution.

Regarding previous studies, it is not easy to compare phenol content in OMW in different experiments because phenol compounds are influenced by many factors, including the impact of geographical and climatic conditions.

OMW composition was studied in various studies (Boukana et al. 2014; Leouifoudi et al. 2014; Alaoui et al. 2016). It was characterized by its complexity and it was found to be rich in hydroxytyrosol and secoiridoids derivatives (Peixoto et al. 2008; Leouifoudi et al. 2014). In this work, we tried to analyze phenolic compounds in OMW before and after ponds evaporation. An important failure of phenol compound concentration rate as well as the efficient removal of a large number of phenolic compounds was observed. Significant increment, ranging from 54 to 100% of phenol compound removal of the most compound after disposal of OMW in the evaporation ponds, was observed.

Phenol compounds such as protocatechuic acid, caffeic acid, $p$-coumaric acid, Naringin, Rutin and Salviolinic acid, were completely removed. The decrease and removal of phenol compounds may be due to their oxidation and their possible further transformations (Belaid et al. 2002). In fact, the complete oxidation of organic compounds to CO$_2$ and H$_2$O results from the split of the various aromatic compounds during the aerobic catabolism permitting their use in the cycle of the Krebs (Anderson and Dagley 1980). Regardless, a higher concentration rate of 39.193 of syringic acid compounds in DOMW was detected in this study. A previous study suggested that syringic acid is the least toxic phenol compound (Rahouti et al. 1997). These results showing the significant decrease of phenolic compounds along with their toxic effect are of great interest. However, previous studies showed that degradation of phenolic compounds is considered as an obstacle in the biological OMW treatment, including their natural breakdown is not easy (Tsioulpas et al. 2002; Martins et al. 2008).

The fatty acid content

The comparison of fatty acids between the fresh and disposal OMW shows a significant difference in the fatty acid concentration ($p = 0.01$). Figure 2 and Table 3 shows a significant change of the fatty acid distribution.

Several acids are completely removed such as ethylbenzene, styrene; ethyl 9-hexadecenoate, cyclobutane, 3-diphenyl-, trans-, cyclopropyl phenyl methane, benzene, 1,1’-(1,2-Cyclobutanedilyl) bis-, trans-, octadecanoic acid,
methyl ester, Octadecanoic acid, ethyl ester and 1-Eicosanol. Most of these acids have a little content that is quickly degraded. In addition, we note a remarkable failure for other acids such as, Hexadecanoic acid, methyl ester, 9-Hexadecenoic acid, methyl ester, (Z)-hexadecanoic acid, ethyl ester; 9-Octadecenoic acid, methyl ester, (E)-; ethyl oleate 9,12-Octadecadienoic acid (Z,Z), methyl ester (E) and ethyl (9Z,12Z)-9,12-Octadecadienoate. However, an appearance of the other acids reduced to know Propionic acid, ethyl ester, propyl ester and acetic acid. Generally, these acids are a direct product of the main fermentation pathway, such as a propionic or acetic fermentation (Staples et al. 2001; Antonopoulou et al. 2010). OMW can produce glycerol and long chain fatty acids (LCFA). According to Schönfeld et al. (2004), long chain free fatty acids (C16–C48) are naturally occurring fats in olive fruits, which exhibit toxic effects towards microorganisms. Indeed, the fermentation of glycerol gives 1,2-propanediol and ethanol, which can be further oxidized to acetate and propionate (Rajhi et al. 2015). Moreover, LCFA can be degraded by β-oxidation releasing, therefore, one molecule of acetate per cycle (Rajhi et al. 2015). To know, a
possible triglyceride hydrolysis, β-oxidation presented in Eq. 1 can take place (Singh 1997).

\[
\text{Fatty acids + ATP + CoA – SH} \rightarrow \text{acyl – CoA + AMP + PP_i}
\]  

(1)

Meanwhile, the increase of pH close to 6 led further to an eventual enhancement of the anaerobic digestion process of OMW, during their disposal in the evaporation ponds leading to the degradation of long chain fatty acids by methanogen communities (Speece 1996). Generally, long Chain Fatty Acids (LCFA), in anaerobic condition and at neutral pH can be ionized (Alves et al. 2009). However, studies have shown that LCFA inhibited anaerobic digestion (Neves et al. 2009; Palatsi et al. 2009). These inhibiting potential can be due to the complexity of lipids molecules in addition to their carbon chain length and their saturation (Kuang et al. 2006).

**Sugar analysis**

Carbohydrates are primarily represented by the parietal components; in particular cellulose and pectin; where they account for approximately 0.6% of the weight of the fresh pulp (Dermeche et al. 2013). Generally, they play an important role in texture olives. Previous studies have shown that the OMW is very rich in simple sugars (Dermeche et al. 2013). Analysis of these OMW shows the predominance of fructose, glucose, sucrose, palatinose and maltose. Sugars generated from different OMW samples are shown in Table 4. The comparison with Fresh and disposal OMW shows any significant difference (p < 0.05) for the different sugar fractions. As can be seen, an accumulation of sucrose concentration is observed in DOMW. Despite, the sucrose rate was completely removed in DOMW.

### Table 3 Fatty acids concentration rate in FOMW and DOMW

| Fatty acids                                      | FOMW (%) | DOMW (%) |
|-------------------------------------------------|----------|----------|
| Ethylbenzene                                    | 5.893a   | 0.000b   |
| Styrene                                         | 5.893a   | 0.000b   |
| Hexadecanoic acid, methyl ester                 | 14.681a  | 8.972b   |
| 9-Hexadecanoic acid, methyl ester, (Z)-         | 2.113a   | 0.627b   |
| Hexadecanoic acid, ethyl ester                  | 2.651a   | 1.672b   |
| Ethyl 9-hexadecenoate                           | 0.433a   | 0.000b   |
| Cyclobutane, 1,3-diphenyl-, trans-              | 1.800a   | 0.000b   |
| Cyclopropylnaphthalene(C_{10}H_{12})            | 0.676a   | 0.000b   |
| Benzene, 1,1'-(1,2-Cyclobutanedlyl) Bis-, Trans-| 7.704a   | 0.000b   |
| Octadecanoic acid, methyl ester                 | 4.786a   | 16.789b  |
| 9-Octadecenoic acid, methyl ester, (E)-         | 34.252a  | 16.789b  |
| Octadecanoic acid, ethyl ester                  | 0.750a   | 0.722b   |
| Ethyl Olate                                     | 5.998a   | 3.286b   |
| 9,12-Octadecadienoic acid (Z,Z)-, Methyl ester  | 13.634a  | 4.805b   |
| Acetic acid n-octadecyl ester                   | 0.362a   | 0.474b   |
| Ethyl (9Z,12Z)-9,12-Octadecadienoate #          | 2.729a   | 0.902b   |
| 1-Eicosanol                                     | 1.059a   | 0.000b   |
| Propanoic acid, ethyl ester                    | 0.000b   | 0.500b   |
| Acetic acid, Propyl ester                       | 0.000b   | 0.274b   |
| 3,4-Dihydroxyphenyl-[3,4,B]-5-carboxytiol        | 0.000a   | 0.324b   |
| Cycloheptasiloxane, Tetradecamethyl-            | 0.000a   | 0.952b   |
| Cyclooctasiloxane, Hexadecamethyl-              | 0.000a   | 0.629b   |
| Cyclononasiloxane, Octadecamethyl-             | 0.000a   | 0.227b   |
| 1-Propen, 3-(2-Cyclopentenyl)-2-methyl-1,1-diphenyl-| 0.000a | 2.471b |
| Octacosanol                                     | 0.000a   | 1.391b   |
| Benzene, 1,1',1''-(1,3,4,6-hexanetetrayl)tetrakis-, (R*,R*) | 0.000a | 7.330b |
| (E)-3,3-Diphenylamine-4-hexenoic acid           | 0.000a   | 16.831b  |
| Methyl (Z)-3,3-diphenyl-4-hexenoate             | 0.000a   | 27.460b  |

Test Student was determined with FOMW and DOMW (p=0.01, *p<0.05). Mean scores in the same line with different letter (“a” and “b”) are significantly different (for p<0.05) (Results are compared for the same parameters and the two different OMW)
With regard to DOMW, we noted an accumulation of fructose and glucose. They can be by-products of the oxidation of intermediates released by the complex chain carbon such as phenol or from long chain fatty acid degradation. Indeed, the OMW disposal in evaporation ponds led to a further oxidation of the fermented product that enhances the COD degradation. The complexity of the results requires a more detailed analysis and a further treatment.

**Microbial community**

It is known that OMW contained all essential elements for microbial growth. However, they may contain several growth inhibitors, such as organic acids and phenolic compounds (Borja et al. 1992). As observed in Table 5, microbial community analysis before and after pond evaporation showed a clear shift in biomass composition. Bacterial aerobic mesophilic community present in the FOMW disappeared completely after disposal in pond evaporation, even though there was available substrate. Since, competing species or new species can be appeared (data not shown). Above all, the Archaea community defined as the act of anaerobic digestion. In fact, the pH increment has been previously reported (Section: The physico-chemical properties) would be enhancing the development of some Methanomicrobiales. It is well known that methanogens are more sensitive to low pH than other anaerobic microorganisms (Speece 1996). In addition, we showed a failure of yeast number. This can be explained by the reduction of the soluble oxygen in the pond evaporation.

**Table 4** Sugar concentration rate in FOMW and DOMW; Test Student was determined with FOMW and DOMW ($p = 0.14, p > 0.05$). Mean scores in the same line with different letter (“a” and “b”) are significantly different ($p < 0.05$). (Results are compared for the same parameters and the two different OMW)

| Sugar compounds (g/l) | FOMW | DOMW |
|-----------------------|------|------|
| Fructose ($C_6H_{12}O_6$) | 0.689$^a$ | 3.074$^b$ |
| Glucose ($C_6H_{12}O_6$) | 0.689$^a$ | 1.489$^b$ |
| Sucrose ($C_{12}H_{22}O_{11}$) | 0.053$^a$ | 0.000$^b$ |
| Palatinose ($C_{12}H_{22}O_{11}$) | 0.201$^a$ | 0.462$^b$ |
| Maltose ($C_{12}H_{22}O_{11}$) | 0.000$^a$ | 0.149$^b$ |

**Antibacterial activity**

To valorize the FOMW as an antibacterial agent, MIC against different clinic bacterial strains (Gram-positive and Gram-negative bacteria) were determined. The antibacterial activity shows a MIC value of 32.76 ($μg$ $mL^{-1}$) for the different studied strains (Table 6). A significant important MIC value was registered compared with others works. The MIC was established against bacterial isolates responsible for human intestine and respiratory tract infections such as *Staphylococcus aureus* ($50.00$ $μg$ $mL^{-1}$) and *Klebsiella pneumoniae* ($50.00$ $μg$ $mL^{-1}$) (Tafesh et al. 2011). The MIC defined in this study was the result of a combined effect of several phenolic compounds present in the FOMW extract. Indeed, previous studies suggested that bioactivity of the single phenolic component against clinic bacterial strains was found to be very low and required high concentration exceeding 1000 $μg$ $mL^{-1}$ to inhibit the growth of the these strains (Obied et al. 2007).

The observed antibacterial activities against Gram-negative and Gram-positive bacteria were similar. In contrast, previous study explains that there is a relationship between antibacterial activity and cell wall composition (Khouri et al. 2008; Yangui et al. 2008). However, the comparison of antimicrobial data of plant extracts is very difficult, depends on the different factors, such bacterial strains, growth media, inoculum size, methods and the relative purity (Leouifoudi et al. 2015).

**Soil chemical and biological and features, behaviour after FOMW and DOMW spreading**

All OMW compounds are involved in several chemical and biological soil transformations, which influence their mobility and biodegradation. Indeed, just after spreading, the OMWs modify the soil. Table 7 summarizes the physico-chemical properties and biological quality of two soils treated with OMWF and OMWD, respectively. During the

**Table 5** Microbial diversity in FOMW and DOMW

| Samples | MB (CFU/mL) | Yeats (CFU/mL) |
|---------|-------------|----------------|
| OMW F   | $1005 \times 10^3$ | $38,100 \times 10^2$ |
| OMW T   | 0           | 1632           |

| Culture Studies | Different OMWF concentration ($μg$ $mL^{-1}$) |
|-----------------|---------------------------------------------|
| Control         | 32.76                                       |
|                  | 65.52                                       |
|                  | 131.04                                      |

| Culture Studies | Different OMWF concentration ($μg$ $mL^{-1}$) |
|-----------------|---------------------------------------------|
| *Staphylococcus aureus* | (+) Bacterial growth observed and (−) No bacterial growth observed |
| *Klebsiella pneumoniae* | (+) Bacterial growth observed and (−) No bacterial growth observed |
| *Enterobacter cloacae* | (+) Bacterial growth observed and (−) No bacterial growth observed |
| *Salmonella typhimurium* | (+) Bacterial growth observed and (−) No bacterial growth observed |

**Table 6** Antibacterial activity of different OMWF concentration ($μg$ $mL^{-1}$) against the flowing bacteria: Gram-positive bacteria (*Staphylococcus aureus*) and Gram-negative bacteria (*Klebsiella pneumoniae*, *Salmonella typhimurium* and *Enterobacter cloacae*)

| Culture Studies | Different OMWF concentration ($μg$ $mL^{-1}$) |
|-----------------|---------------------------------------------|
| Control         | 32.76                                       |
|                  | 65.52                                       |
|                  | 131.04                                      |

| Culture Studies | Different OMWF concentration ($μg$ $mL^{-1}$) |
|-----------------|---------------------------------------------|
| *Staphylococcus aureus* | (+) Bacterial growth observed and (−) No bacterial growth observed |
| *Klebsiella pneumoniae* | (+) Bacterial growth observed and (−) No bacterial growth observed |
| *Enterobacter cloacae* | (+) Bacterial growth observed and (−) No bacterial growth observed |
| *Salmonella typhimurium* | (+) Bacterial growth observed and (−) No bacterial growth observed |
experimented period, the soil treated with DOMW showed a significant failure of pH and EC values, compared to the soil FOMW spreading. As can be seen, the soil treated with DOMW showed an OM value close to the value found with control soil, which emphasizes the efficiency and the interest of the OMW treatment before use in soil irrigation. Results are similar to those published by Mahmoud et al. (2010) and Munir et al. (2016) showing an increase of soil organic matter after OMW treatments.

Moreover, this OM increase is accompanied by an important rate of soil fertility represented by GI and microflora biomass by 170.55% and $5 \times 10^6$ CFU g$^{-1}$, respectively. Indeed, OMW treatment entails the soil enrichment and the improvement of the yield on the culture. Mekki et al. (2013) showed that microbial growth could increase by soil fertility. The lowest polyphenols soil rate (10 ppm) was recorded when irrigated with DOMW. These results can be explained by the high decrease and removal of phenolic compounds for DOMW (see section The Phenol Compounds). In fact, phenolic compounds are non-degradable and can inhibit seed germination and decrease soil fertility. In addition, we note that low-molar-mass polyphenols remained in the DOMW did not affect the bacterial growth ($5 \times 10^6$ CFU g$^{-1}$). This result corroborates with previous studies that showed a lower toxicity of Low-molar-mass polyphenols for bacteria (Fiorentino et al. 2003; Isidori et al. 2005).

However, higher concentrations of salts and polyphenols, found in the FOMW explained the highest rate of EC (1.76 mS/cm$^{-1}$) found in FOMW spreading soil. Results are similar to those presented by Rinaldi et al. (2003) explaining the increase of soil electrical conductivity. Generally, the increase of EC after direct OMW spreading was attributed to the highest contain of salt concentrations in the non-treated OMW (Di Serio et al. 2008).

Correlation analyses, among soil parameters of the studied sites indicated different significant trends (Table 8). A significant positive correlation between Polyphenols and EC ($r = 0.732$) was established. In fact, the soil salinity increases with the content of polyphenols. These results agree with previous results showing a higher rate of soil EC due to the accumulation of polyphenols compounds (Di Serio et al. 2008). However, a positive correlation founded between Bacteria and the index of germination of ($r = 0.775$). This result confirmed the increase of soil fertility by the bacterial growth. In addition, a positive correlation with soil organic matter and fungi biomass ($r = 0.716$) confirmed that soil organic additives, (such as glucose or/and lipid OMW contain), can cause changes in soil microflora (Stenström

| Table 7 Physicochemical and microbial soil characteristics of two sites treated with OMWF and OMWD |
|----------------------------------------------------|

| Parameters                        | Non-treated soil | Soil treated FOMW | Soil treated DOMW |
|-----------------------------------|------------------|-------------------|-------------------|
| OM (%)                            | 2.6 ± 0.2        | 0.87 ± 0.12       | 2.3 ± 0.26        |
| pH                                | 8.7 ± 0.16       | 8.64 ± 0.01       | 7.66 ± 0.01       |
| EC (mS/cm$^{-1}$)                  | 0.86 ± 0.05      | 1.76 ± 0.15       | 0.48 ± 0.02       |
| Soil respiration (mg CO$_2$ g$^{-1}$ dry soil) | 0.22 ± 0.02      | 0.66 ± 0.02       | 0.3 ± 0.01        |
| GI (%)                            | 100              | 61.65 ± 3.03      | 170.55 ± 1.88     |
| Mesophilic bacterial (CFU g$^{-1}$) | 18.93$\times 10^6$ ± 1 | 29$\times 10^6$ ± 1 | 50$\times 10^6$ ± 2 |
| Fungi (CFU g$^{-1}$)               | 51$\times 10^6$ ± 3.6 | 6$\times 10^6$ ± 1 | 12$\times 10^6$ ± 2 |
| Polyphenols contain (ppm)         | –                | 1850 ± 50         | 10 ± 800          |

Non-treated soil was used as a control

– not detected

| Table 8 Correlation matrix (Pearson’s $r$ values) between the different parameters determined in soils subjected to the two different treatments |

| pH   | EC  | OM  | Resp | GI   | Poly | Bac  | Fungi |
|------|-----|-----|------|------|------|------|-------|
| pH   |     |     |      |      |      |      |       |
| EC   | 0.683* |    |      |      |      |      |       |
| OM   | − 0.310* | − 0.873** |      |      |      |      |       |
| Resp | 0.292  | 0.877** | − 0.957** |      |      |      |       |
| GI   | − 0.908** | − 0.908** | 0.638 | − 0.651 |      |      |       |
| Poly | 0.29  | 0.732* | − 0.939** | 0.953** | − 0.418 |      |       |
| Bac  | − 0.948** | − 0.462 | 0.034 | − 0.038 | 0.775* | 0.242 |       |
| Fungi| 0.418  | − 0.340 | 0.716* | − 0.710* | − 0.045 | − 0.883** | − 0.658 |

pH, EC (Electrical Conductivity) OM (Organic Matter), Resp (Respiration), GI (Germination index), Poly (Polyphenol compounds), Bac (Bacterial mesophilic), Fungi (fungi)

*p < 0.05; **p < 0.01
et al. 2001). In fact, sugars and lipids can increase bacterial growth. Indeed, previous studies suggested that OMW enriched the soil in organic substrates affecting the nutritional status of the soil; influencing, therefore, the structure of the soil microbial communities (Barbera et al. 2013). The significant negative correlation founded between polyphenols compound and fungi biomass ($r = -0.883$) could be explained by polyphenols phytopathogenic soil agents (Yangui et al. 2010; Debo et al. 2011). Of it made, the polyphenols content was negatively correlated with OM ($r = -0.939$), the result was in agreement with previous works (Cardinali et al. 2010). Having a phytotoxic effect and antimicrobial activities, polyphenols are the main limiting factor for spreading OMW. In fact, polyphenols are difficult to decompose. Indeed, polyphenols present a microbial toxicity suppressing soil microorganisms and inhibiting their growth (Obied et al. 2007). In addition, the high level of polyphenols in OMW can also pollute surface and ground-water resources (Obied et al. 2007).

However, the negative correlation between Respiration values and OM content ($r = -0.957$) seems to be strange. Indeed, this result was in contrast to previous works which showed a strongly positive effect with these between both soil parameters (Di Serio et al. 2008; Hoorman and Rafiq 2010). The negative correlation between the organic matter and soil respiration in our case could corroborate with previous studies which demonstrated that increasing soil OM is a strategy for sequestering carbon dioxide ($CO_2$) a greenhouse gas (Luo et al. 2010; Liu et al. 2014; Barton et al. 2016).

## Conclusion

The natural biological treatment of OMW, which is obvious in the disposal of OMW in an evaporation pond promoted an important phenol compounds and long chain fatty acid degradation. Ponds disposal OMW also affected the microbial biomass composition. Both shift in microbial and LCFA composition was a consequence of an anaerobic digestion, which promoted further oxidation of organic by-products, thus generating more reduced product and led to disappearance of total aerobic mesophilic bacteria, which in turn prevented the growth of anaerobic bacteria. The profitable effect of DOMW was successfully presented after the DOMW soil spreading. Indeed, we note an important development of the soil microorganism communities accompanied by a very spectacular soil fertility without forgetting that FOMW can be also valorized as soon in the axis of powerful antibacterial activity against certain standard clinical species.

## Acknowledgements

The present work has been supported by grants to Central laboratory and Laboratory of Érémologie and Fight Against Desertification of Institute Arid Regions of Medenine.

---

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

## References

Abichou M, Labiadh M, Cornelis W, Gabriels D, Ben Rouina B, Taamallah H, Khatteli H (2009) The Olive Mills Waste Water (OMW) as an organic amendment for controlling wind erosion in southern Tunisia by improving the soil surface structure. J Arid Land Studies 19–1:343–346

Aggoun M, Arhab R, Cornu A, Portelli J, Barkat M, Graulet B (2016) Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chem 209:72–80. https://doi.org/10.1016/j.foodchem.2016.04.034

Alaoui NS, El Laghdaich A, Sitou M, Bakkali A (2016) Treatment and valorization of olive mill wastewaters. Mediterr J Chem 5(3):458–464

Alves LC, Rubinger MM, Lindemann RH, Perpétuo GJ, Janzack J, Miranda DL, Zambolim L, Oliveira MR (2009) Syntheses, crystal structure, spectroscopic characterization and antifungal activity of new N-R-sulfonyldithiocarbimate metal complexes. J Inorg Biochem 103:1045–1053. https://doi.org/10.1016/j.jinorgbio.2009.04.018

Anderson JJ, Dagley S (1980) Catalolysis of aromatic acids in Trichosporon cutaneum. J Bacteriol 141:534–543

Antonopoulou G, Gaval N, Skiadas IV, Lyberatos G (2010) Influence of pH fermentative hydrogen production from sweet sorghum extract. Int J Hydrog Energy 35:1921–1928. https://doi.org/10.1016/j.ijhydene.2009.12.175

APHA, AWWA, WPCF (1998) Standard Methods for the Examination of Water and Wastewater American Public Health Association. Washington DC, USA. https://www.mwa.co.th/download/file_upload/SMWW_1000-3000.pdf

Aziz NH, Farag SE, Mousa LAA, Abo-Zaid MA (1998) Comparative antibacterial and antifungal effects of some phenolic compounds. Microbios 93:43–54

Barbera AC, Maucci C, Cavallaro V, Ioppolo A, Spagna G (2013) Effects of spreading olive mill wastewater on soil properties and crops. Agric Water Manag 119:43–53. https://doi.org/10.1515/awmh-2016-0017

Barton L, Hoyle FC, Stefanova KT, Murphy DV (2016) Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric Ecosystems Environ 231:320–330. https://doi.org/10.1016/j.agee.2016.07.004

Belaid C, Kallel M, Elleuch B (2002) Revue francophone d’écologie 231:320–330. https://doi.org/10.1016/j.agee.2016.07.004

Belaid C, Kallel M, Elleuch B (2002) Revue francophone d’écologie industrielle N°27–3ème trimestre 2002. Identification de nouveaux composés phénoliques présents dans les rejets liquides d’huileries d’olive (Margins). https://doi.org/10.4267/deechets-sciences-techniques.2389

Borja R, Martín A, Maestro-Durán R, Alba J, Fiestas JA (1992) Enhancement of the anaerobic digestion of olive mill waste water by the removal of phenolic inhibitors, Process Biochem 27:231–237. https://doi.org/10.1016/0960-8524(93)90097-U

Boukrama D, Hammouiti B, Salghi R, Jodeh S, Zarrouk A, Warad I, Aouniti A, Sha M (2014) Physicochemical characterization of olive oil mill wastewaters in the eastern region of Morocco. J Mater Environ Sci 5:1039–1058

Cardinali A, Cicco N, Linsalata V, Minervini F, Pati S, Pieralice M, Tursi N, Lattanzio V (2010) Biological activity of high molecular
weight phenolics from olive mill wastewater. J Agric Food Chem 58:8585–8590. https://doi.org/10.1021/jf101437c

Comandini P, Lerma-Garcia MJ, Massanova P, Simo-Alfonso EF, Toschi TG (2014) Phenolic profiles of olive mill wastewaters treated by membrane filtration systems. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4416

D’Annibale A, Crestini C, Vinciguerra V, Sermanni GG (1998) The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus. J Biotechnol 61:209–218

Dakhli R, Maaele EM (2017) Olive-mill wastewater spreading in Southern Tunisia: effects on a barley crop (Hordeum vulgare L.). J Agric Environ Int Dev 111:87–103. https://doi.org/10.12895/jaeid.20171.552

Debo A, Yangu T, Dhouib A, Ksantini M, Sayadi S (2011) Efficacy of a hydroxytyrosol-rich preparation from olive mill wastewater for control of oil mill, Euphyllula olivina, infestations. Crop Prot 30:1529–1534. https://doi.org/10.1016/j.cropro.2011.08.006

Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud F (2014) Effects of straw carbon totaux dans les grignons d’olive et les margines. Oliv AE 51:34–47. https://doi.org/10.12895/jaeid.20171.552

Di Serio MG, Lanza B, Mucciarella MR, Russi F, Iannucci E, Marfisi P, Madeo A (2008) Efficacy of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int Biodeterior Biodegrad 62:403–407. https://doi.org/10.1015/j.jbhb.2007.01.007

Fiorentino A, Gentili A, Isidori M, Monaco P, Nardelli A, Parrella A, Temussi F (2003) Environmental effects caused by olive mill wastewaters: toxicity comparison of low-molecular-weight phenol components. J Agric Food Chem 51:1005–1009. https://doi.org/10.1021/jf020887d

Hoormann J, Rafii Í (2010) Understanding soil microbes and nutrient recycling. Agriculture and Natural Resources, The Ohio State University. https://ohiolink.osu.edu/factsheet/SAG-16

Isidori M, Lavorgna M, Nardelli A, Parrella A (2005) Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and Vibrio Fischeri metabolism. J Agric Food Chem 53:8414–8417. https://doi.org/10.1021/jf051169f

Kemal UM (1994) Polyphenols, 0-diphenols and acids phenoliques totaux dans les grignons d’olive et les margines. Olive AE 51:531–539. https://doi.org/10.12895/jaeid.20171.552

Khoufi S, Aloui F, Sayadi S (2008) Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion. J Hazard Mater 151:531–539. https://doi.org/10.1016/j.jhazmat.2007.06.017

Kuang Y, Pullammanappallil P, Lepester M, Ho G-E (2006) Recovery of oleate inhibited anaerobic digestion by addition of simple substrates. J Chem Technol Biotechnol 81:1057–1063. https://doi.org/10.1002/jctb.1530

Leouifoudi I, Zyad A, Amehroug A, Oukerrou MA, Mouse HA, Mbarki M (2014) Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater. Food Sci Technol 34:249–257. https://doi.org/10.1590/fst.2014.0051

Leouifoudi I, Harnafi H, Zyad A (2015) Olive mill waste extracts: polyphenols content, antioxidant, and antimicrobial activities. Ad Pharmacol Sci. https://doi.org/10.1155/2015/714138

Liu C, Meng LuM, Cui J, Li B, Fang C (2014) Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis. Global Change Biol 20:1366–1381. https://doi.org/10.1111/gcb.12517

Luo Z, Wang E, Sun OJ (2010) Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma 155:211–223. https://doi.org/10.1016/j.geoderma.2009.12.012

Maum M, Janssen M, Haboub N, Nassour A, Lennartz B (2010) The impact of olive mill wastewater application on flow and transport properties in soils. Soil Tillage Res 107:36–41

Martins F, Gomes-Laranjo J, Amaral C, Almeida J, Peixoto F (2008) Evaluation of olive oil mill wastewaters acute toxicity: a study on the mitochondrial bioenergetics. Ecotoxicol Environ Saf 69:480–487. https://doi.org/10.1016/j.ecoenv.2007.05.008

Mc Namara CJ, Anastassiou CC, O’Flaherty V, Mitchell R (2008) Bioremediation of olive mill wastewater. Int Biodeterior Biodegr 61:127–134

Mekki A, Dhouib A, Sayadi S (2013) Review: effects of olive mill wastewater application on soil properties and plant growth. Int J Recycl Org Waste Agricult 2:15

Neves L, Pereira MA, Mota M, Alves MM (2009) Detection and quantification of long chain fatty acids in liquid and solid samples and its relevance to understand anaerobic digestion of lipids. Biorec Technol 100:91–96. https://doi.org/10.1016/j.biortech.2008.06.018

Niaounakis M, Halvadakis CP (2006) Olive processing waste management, vol 5, 2nd edn. Literature Review and Patent Survey. https://ia81204.us.archive.org/2/items/proposedplanamenon1unit/propoisedplanamenon1unit.pdf. Accessed 1 Feb 2006

Obied HK, Bedgood DR Jr, Prenzler PD, Robards K (2007) Bioscreening of Australian olive mill waste extracts: biophenol content, antioxidant, antimicrobial and molluscicidal activities. Food Chem Toxicol 45:1238–1248. https://doi.org/10.1016/j.fct.2007.01.004

Ohlunger R (1995) Soil respiration by titration. In: Margesin R (ed) Methods in soil biology. Springer, Berlin, pp 95–98

Palatini J, Laurenzi M, Andres MV, Flossats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Biorec Technol 100:4588–4596. https://doi.org/10.1016/j.biortech.2009.04.046

Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485. https://doi.org/10.1002/jctb.1553

Peixoto F, Martins F, Amaral C, Gomes-Laranjo J, Almeida J, Palmeira CM (2008) Evaluation of olive oil mill wastewater toxicity on the mitochondrial bioenergetics after treatment with Candida oleophila. Ecotoxicol Environ Saf 70:266–275. https://doi.org/10.1016/j.ecoenv.2007.11.003

Perez J, Cormenzana R, Martinez J (1990) Bacteria degrading phenolic acids isolated on a polymeric phenolic pigment. J Appl Bacteriol 69:38–42. https://doi.org/10.1111/j.1365-2672.1990.tb02990.x

Rahouti M, Seigle-Murandi F, Steiman R, Benoit-Guyod J-L (1997) Etude de la toxicité des composés phénoliques modèles de la lignine vis-à-vis de 1040 souches de champignons. Actes Inst Agron Vet (Maroc) 17:165–172

Rajhi H, Puyol D, Martinez MC, Diaz EE, Sanz JL (2015) Vacuum promotes metabolic shifts and increases biogenic hydrogen production in dark fermentation systems. Front Environ Sci Eng 10:513–521. https://doi.org/10.1007/s11783-015-0777-y

Ranalli G (1997) Rheology of the lithosphere in space and time. In: Burg J-P, Ford M (eds) Orogeny through time. Geol Soc London Spec Publ, vol 121, pp 19–37

Rinaldi M, Rana G, Introna M (2003) Olive-mill wastewater spreading on soil properties and plants growth. Water Air Soil Poll 169:383:121–128. https://doi.org/10.1042/BJ20040583

Singh I (1997) Biochemistry of peroxisomes in health and disease. Mol Cell Biochem 167:1–29
Speece RE (1996) Anaerobic biotechnology (for industrial wastewater). Archae Press, Nashville. https://doi.org/10.1021/es00115a725
Staples CA, Williams JB, Craig GR, Roberts KM (2001) Fate, effects and potential environmental risks of ethylene glycol: a review. Chemosphere 43:377–383
Stenström J, Svensson K, Johansson M (2001) Reversible transition between active and dormant microbial states in soil. FEMS Microbiol Ecol 36:93–104
Tafesh A, Najami N, Jadoun J, Halahlih F, Riepl H, Azaizeh H (2011) Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evid Complement Altern Med. https://doi.org/10.1155/2011/431021
Technical Committee, 1996 ISO/TC 34, Food products, Subcommittee SC 9, Microbiology, in collaboration with CEN Technical Committee CEN/TC 275, Food analysis—Horizontal methods
Tsioulpas A, Dimou D, Iconomou D, Aggelis G (2002) Phenolic removal in olive oil mill wastewater by strains of Pleurotus spp. in respect to their phenol oxidase (laccase) activity. Biores Technol 84:251–257
Villegas LGC, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2:157–167

Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils- effect of variations in digestion conditions and inorganic soil constituents. Soil Sci 63:251–264
Yangui T, Rhouma A, Triki MA, Gargouri K, Bouzid J (2008) Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its. Crop Prot 27:189–197. https://doi.org/10.1016/j.cropro.2007.05.005
Yangui T, Sayadi S, Gargoubi A, Dhouib A (2010) Fungicidal effect of hydroxytyrosol-rich preparations from olive mill wastewater against Verticillium dahliae. Crop Prot 29:1208–1213. https://doi.org/10.1016/j.cropro.2010.04.016
Zucconi F, Pera A, Forte M, De Bertoldi M (1981) Evaluating toxicity of immature compost. BioCycle 22:54–57

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.