FREE SUBGROUPS OF SPECIAL LINEAR GROUPS

RUPERT McCALLUM

ABSTRACT. We present a proof of the following claim. Suppose that \(n \) is an integer such that \(n > 1 \) and that \(k \) is any field. Suppose that \(g \) is an element of \(\text{SL}(n, k) \) of infinite order. Then the set \(\{ h \in \text{SL}(n, k) \mid \langle g, h \rangle \text{ is a free group of rank two} \} \) is a Zariski dense subset of \(\text{SL}(n, \overline{k}) \) where \(\overline{k} \) is an algebraic closure of \(k \).

Our goal in this paper is to prove the following theorem:

Theorem 1. Suppose that \(n \) is an integer such that \(n > 1 \), and that \(k \) is a field, and that \(g \) is an element of \(\text{SL}(n, k) \) of infinite order. Then the set \(\{ h \in \text{SL}(n, k) \mid \langle g, h \rangle \text{ is a free group of rank two} \} \) is a Zariski dense subset of \(\text{SL}(n, \overline{k}) \) where \(\overline{k} \) is an algebraic closure of \(k \).

Remark 2. If \(k \) is an algebraic extension of a finite field, then the theorem is vacuously true, because in that case elements of infinite order do not exist. In the other cases elements of infinite order do exist.

Remark 3. The condition that \(\langle g, h \rangle \) is a free group of rank two might at first sight seem weaker than the condition that \(g \) and \(h \) are of infinite order and that the canonical homomorphism \(\langle g \rangle \ast \langle h \rangle \to \langle g, h \rangle \) is a monomorphism. However, in fact these two conditions are equivalent by the Nielsen-Schreier theorem.

In [2] Theorem 1 is proved for connected simple Lie groups with \(\mathbb{R} \)-rank one and trivial centre.

Definition 4. If \(v \) is a valuation on a field \(k \) then \(k_v \) denotes the completion of \(k \) with respect to the valuation \(v \).

The following lemma is well-known; see for example [1], Proposition 1.1:

Lemma 5 (the ping-pong lemma.). Suppose that a group \(G \) acts on a compact Hausdorff space \(X \). Suppose that \(g \in G \) has fixed points \(g^+, g^- \) and \(h \in G \) has fixed points \(h^+, h^- \). Suppose that \(g^+ \) is an attracting fixed point for \(g \) and \(g^- \) is an attracting fixed point for \(g^{-1} \), and \(h^+ \) is an attracting fixed point for \(h \) and \(h^- \) is an attracting fixed point for \(h^{-1} \). Suppose that \(\{ g^+, g^- \} \) and \(\{ h^+, h^- \} \) are disjoint; we do not necessarily require that the members of either pair be distinct. Then there exists an integer \(N > 0 \) such that \(\langle g, h^N \rangle \) is a free group of rank two.

Proof of the ping-pong lemma. Assume the hypotheses of the lemma. We may choose compact neighbourhoods \(N_1, N_2 \) of \(g^+, g^- \) respectively and compact neighbourhoods \(N_3, N_4 \) of \(h^+, h^- \) respectively, such that if \(i \in \{1, 2\}, j \in \{3, 4\} \), then \(N_i \) and \(N_j \) are disjoint. There will exist an integer \(N > 0 \) such that, for the integers \(i = 1, 2, 3, 4 \) respectively, the elements \(g^N, g^{-N}, h^N, h^{-N} \) respectively map \(N_j \) into \(N_i \) whenever \(j \) is any element of \(\{1, 2, 3, 4\} \). So we may conclude that if \(w \) is a nontrivial reduced word in \(g^N \) and \(h^N \), then there will exist \(i, j \in \{1, 2, 3, 4\} \) such that \(N_i \neq N_j \) (because either \(i \in \{1, 2\} \) and \(j \in \{3, 4\} \), or \(i \in \{3, 4\} \) and \(j \in \{1, 2\} \), or both).
and \(j \in \{1, 2\} \), and \(w \) maps \(N_j \) into \(N_i \). Consequently \(g^N \) and \(h^N \) generate a free group of rank two. Let \(N_3 \) and \(N_4 \) satisfy the same hypotheses as before, and also choose them such that they are sufficiently small that they are both disjoint from their respective images under \(g \) and \(g^{-1} \), and let \(N > 0 \) be sufficiently large that \(h^N \) maps \(X \setminus N_3 \) into \(N_3 \) and \(h^{-N} \) maps \(X \setminus N_4 \) into \(N_4 \). It is then possible to replace \(N_1 \) and \(N_2 \) with compact neighbourhoods \(N' \) and \(N'_2 \) of \(g^+, g^- \) respectively, such that \(N'_1 \) contains \(\cup_{i=1}^{N-1} g(N_3 \cup N_4) \) and \(N'_2 \) contains \(\cup_{i=1}^{N-1} g^{-1}(N_3 \cup N_4) \), and the disjointness condition is still satisfied. Then \(g \) and \(h^N \) generate a free group of rank two.

Corollary 6. Suppose that \(g, h \in \text{SL}(2, k) \) for some field \(k \) and that \(k' \) is the splitting field over \(k \) for the characteristic polynomials of \(g \) and \(h \). Suppose that \(g \) and \(h \) have no common eigenvector in \((k')^2 \). Suppose that there exists a valuation \(v \) on \(k' \), such that \((k')_v\) is locally compact, such that \(v \) separates the eigenvalues of \(h \) (if \(g \) is not diagonalisable) or simultaneously separates the eigenvalues of \(g \) and \(h \) (if \(g \) is diagonalisable). Then there exists an integer \(N \) and an open neighbourhood \(U \subseteq \text{SL}(2, k_v) \) of \(h \) (in the strong topology on \(\text{SL}(2, k_v) \)) induced by the topology on \(k_v \) from the valuation \(v \) such that for all \(h' \in U \) the group \(\langle g, (h')^N \rangle \) is a free group of rank two.

Proof. Suppose that \(g, h, k, k' \) and \(v \) are as in the statement of the corollary. Let \(G = \text{SL}(2, (k')_v) \subset M_{22}((k')_v) \) and endow \(G \) with the strong topology arising from the topology on \((k')_v\), from the valuation \(v \). Now consider the action of \(G \) on \(P^1(k'_v) \), also with the strong topology. We then have a continuous action of a topological group on a compact Hausdorff space. There will exist fixed points \(g^+, g^- \) for \(g \), and fixed points \(h^+, h^- \) for \(h \), with the properties required by the ping-pong lemma. (If \(g \) is not semisimple then we must choose \(g^+ = g^- \).) There will exist an open neighbourhood \(U \subseteq \text{SL}(2, (k')_v) \) of \(h \) such that all \(h' \in U \) have the requisite properties, and furthermore the proof of the ping-pong lemma may be adapted to show that we may choose \(U \) so that the same choice of integer \(N \) works for all \(h' \in U \).

Corollary 7. Suppose that \(g \in \text{SL}(2, k) \) has infinite order for some field \(k \). Then \(\{ h \in \text{SL}(2, k) \mid \langle g, h \rangle \text{ is a free group of rank two} \} \) is a Zariski dense subset of \(\text{SL}(n, \overline{k}) \) where \(\overline{k} \) is an algebraic closure of \(k \).

Proof. Suppose that \(g \in \text{SL}(2, k) \) has infinite order for some field \(k \). We may assume without loss of generality that \(k \) has finite transcendence degree over its prime subfield. Let \(k' \) be the splitting field over \(k \) for the characteristic polynomial of \(g \). If \(g \) is diagonalisable then there exists a valuation \(v \) on \(k' \), separating the eigenvalues of \(g \). This is because \(g \) has infinite order and so the ratio of one eigenvalue to another is not a root of unity, and in general when two nonzero elements of a field with finite transcendence degree over a prime field do not have the property that the ratio of one to the other is a root of unity, then there exists a valuation on the field in question separating them. If \(k \) has characteristic zero and some of the eigenvalues of \(g \) are transcendental over the prime subfield, then \(v \) may be chosen to be archimedean. Hence it is possible to choose \(v \) such that \((k')_v\) is locally compact. Let \(h \in \text{SL}(2, k) \) be such that \(h \) has eigenvalues in \(k \) separated by \(v \) and such that \(g \) and \(h \) have no common eigenvector in \(k^2 \). By Corollary 6 there exists an integer \(N \) and an open neighbourhood \(U \subseteq \text{SL}(2, (k')_v) \) of \(h \) such that for all \(h' \in U \) the group \(\langle g, (h')^N \rangle \) is a free group of rank two. The set \(U \cap \text{SL}(2, k) \) is nonempty and open in the strong topology arising from the topology from \(v \), and is therefore Zariski dense in \(\text{SL}(2, \overline{k_v}) \) and therefore
also in $\text{SL}(2, \mathbb{F})$, since $\text{SL}(2, k)$ is a Zariski connected algebraic group. Its image under the map $h \mapsto h^N$ is also open in the strong topology arising from the topology from v, and is therefore also Zariski dense in $\text{SL}(2, \mathbb{F})$. The corollary follows.

To generalise the result to $\text{SL}(n, k)$ for $n > 2$ we need to generalise Lemma 8.

Lemma 8 (the generalised ping-pong lemma.). Suppose that a group G acts on a compact metric space X with distance function d and a Radon measure μ, such that there exists some integer $N > 0$ and positive real constants c_1, c_2 such that, for every open ball B of radius r such that $0 < r < 1$, $c_1 r^N \leq \mu(B) \leq c_2 r^N$. Suppose that there exist compact sets G^+, G^-, H^+ such that (1) G^+ and G^- are either disjoint or equal, and H^+ and H^- are disjoint; (2) none of these sets is contained in another one except that $G^+ \cap G^-$ may be equal; (3) $\mu(G^+) = \mu(G^-) = \mu(H^+) = \mu(H^-) = 0$; (4) G^+ and G^- are fixed setwise by any power of g, and H^+ and H^- are fixed setwise by any power of h; (5) for any $x \in X \setminus G^-$, $\lim_{n \to \infty} d(g^n(x), G^+) = 0$; (6) for any $x \in X \setminus G^+$, $\lim_{n \to \infty} d(g^{-n}(x), G^-) = 0$; (7) for any $x \in X \setminus H^-$, $\lim_{n \to \infty} d(h^n(x), H^+) = 0$; (8) for any $x \in X \setminus H^+$, $\lim_{n \to \infty} d(h^{-n}(x), H^-) = 0$. Then there exists an integer $N > 0$ such that g and h^N generate a free group of rank two.

Proof of the generalised ping-pong lemma. Given any ϵ such that $0 < \epsilon < 1$, we may choose open neighbourhoods U_1, U_2, U_3, U_4 of $(H^+ \cup H^-) \cap G^+, (H^+ \cup H^-) \cap G^-, (G^+ \cup G^-) \cap H^+, (G^+ \cup G^-) \cap H^-$, respectively, such that $\mu(U_i) < \epsilon$ for $1 \leq i \leq 4$. In what follows let $\{k_i\}_{i \in \{1, 2, 3, 4\}}$ be such that $k_1 = g^N$, $k_2 = g^{-N}$, $k_3 = h^N$, $k_4 = h^{-N}$, and let $A_i = \{w \in (g^N, h^N) \mid w$ has an expression as a reduced word in g and h that does not end in $k_i\}$. We may choose an integer $N > 0$ and compact neighbourhoods N_1, N_2, N_3, and N_4 of G^+, G^-, H^+, and H^- respectively, such that (1) for all i such that $1 \leq i \leq 4$, Borel sets $S \subseteq \bigcup_{1 \leq j \leq 4, j \neq i} N_j \setminus \{k_i(S)\} < \epsilon \cdot \mu(S)$, and (2) $g^N((N_3 \setminus U_3) \cup (N_4 \setminus U_4)) \subseteq N_1$, $g^{-N}((N_3 \setminus U_3) \cup (N_4 \setminus U_4)) \subseteq N_2$, $h^N((N_1 \setminus U_1) \cup (N_2 \setminus U_2)) \subseteq N_3$, $h^{-N}((N_1 \setminus U_1) \cup (N_2 \setminus U_2)) \subseteq N_4$. If we replace every occurrence of U_i in the foregoing by $U'_i = \bigcup_{w \in A_i} w(U_i)$, and every occurrence of N_i by $N_i \setminus U'_i$, then $\mu(U'_i)$ is still a continuous function of ϵ and as such may be made arbitrarily small. It then follows that g^N and h^N generate a free group of rank two. We may get the further conclusion that, for a sufficiently large N, g and h^N generate a free group of rank two, as in the earlier proof of the ping-pong lemma.

Proof of Theorem 1. This is as in the derivation of Corollaries 6 and 7 from the ping-pong lemma. In our application of the generalised ping-pong lemma we let the compact metric space X be $P^{n-1}(k')_v$, where $(k')_v$ is an appropriately chosen completion of the splitting field over k for the characteristic polynomials of g and h, and we let μ be a Radon measure arising from the Haar measure on $(k')_v$ with respect to addition. We let G^+, G^-, H^+ and H^- be complementary subspaces of $P^{n-1}(k')_v$ spanned by eigenspaces of g and h. It is possible to choose a distance function d with the desired properties. Then one may argue as in the derivation of Corollaries 6 and 7 from the table-tennis lemma to derive Theorem 1 from the generalised ping-pong lemma.
REFERENCES

[1] Jacques Tits. Free Subroups in Linear Groups. J. Alg., 20:250–270, 1972.
[2] Michael Cowling, M. Bekka, and P. de la Harpe. Some groups whose reduced C^*–algebra is simple Inst. Hautes Etudes Sci. Publ. Math., 80:117-134, 1994.