Genetic and Morphological Characterization of *Mangifera indica* L. Growing in Egypt

Nader R. Abdelsalam
Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531 Alexandria, Egypt

Hayssam M. Ali
Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2435, Riyadh 11451, Saudi Arabia; and Timber Trees Research Department, Sabahia Horticulture Research Station, Horticulture Research Institute, Agriculture Research Center, Alexandria, Egypt

Mohamed Z.M. Salem
Forestry and Wood Technology Department, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, Egypt

Elsayed G. Ibrahim
Department of Tropical Fruits, Horticultural Research Institute Agriculture Research Center, Giza, Egypt

Mohamed S. Elshikh
Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2435, Riyadh 11451, Saudi Arabia

Additional index words. mango cultivars, EST, SSR, marker, genetic, morphological

Abstract. Mango (*Mangifera indica* L.) is a fruit crops belong to the family Anacardicaceae and is the oldest cultivated tree worldwide. Cultivars maintained in Egypt have not been investigated previously. Mango was first brought to Egypt from South Asia. Morphological and molecular techniques were used to identify the genetic diversity within 28 mango cultivars. SSR and EST-SSR were used for optimizing germplasm management of mango cultivars. Significant variations were observed in morphological characteristics and genetic polymorphism, as they ranged from 0.71% to 100%. High diversity was confirmed as a pattern of morphological and genotypes data. Data from the present study may be used to calculate the mango relationship and diversity currently grown in Egypt.

In Egypt, statistics of The Ministry of Agriculture and Land Reclamation (2015) provided that a total of 243,028 feddans (16.1038 acres 61 or 0.42 ha) have been planted with mango. Succari and Owais, the most famous types of Egyptian mangoes, are excellent sugary, white sugary, butter-like mango (Zebda), and Hindi Besennara, as well as other famous types of mangoes. Egypt exports mango to several European countries. Previously, DNA markers such as random amplification of polymorphic DNA (RAPD)–polymerase chain reaction (PCR) (Rajwana et al., 2008), restricted fragment length polymorphism, and amplified fragment length polymorphism (AFLP) (Yamanaka et al., 2006) have been used to assess the genetic diversity among mango genotypes/cultivars. Recently, mango germplasm has been collected and analyzed using simple sequence repeat (SSR) markers in numerous studies (Dillon et al., 2013; Tsai et al., 2013). Microsatellite markers were developed by Kundapura et al. (2011) to calculate the genetic diversity of mango cultivars with polymorphic information content (PIC %) from 0.185 to 0.920 (Sherman et al., 2015). Wöhrmann and Weising (2011) used an alternative strategy to identify SSR markers using comparative genomics tools called expressed sequence tags (ESTs). It has been hypothesized that the highly repetitive nature of SSRs makes slippage during replication a common event, leading to high levels of polymorphism found between populations. EST-SSRs are physically linked to expressed genes and therefore represent potentially functional markers. Twenty-four of the 25 EST-SSR markers exhibited polymorphisms, identifying a total of 86 alleles with an average of 5.38 alleles per locus, and distinguished between all *Mangifera* selections that were analyzed. Private alleles were identified for some *Mangifera* species. The main objectives of the present study were to examine the molecular and horticultural characterizations of several mango cultivars in Egypt from different localities based on different markers.

Materials and Methods

Mango cultivars. Experiments were performed at the Agricultural Botany Department, Faculty of Agriculture, Saba Basha, Alexandria University, Egypt. DNA was isolated from leaves using the modified cetyltrimethylammonium bromide method described by Dellaporta et al. (1983). Six SSR markers were selected for analysis as described by Begum et al. (2013, 2016) (Table 1). PCR amplification reactions were performed in 17 μL of reaction volume containing 50 ng of DNA, 12.5 μL of Dream Taq master mix (Fermentas Co., Waltham, MA), and 0.5 μmol of each primer.

The primary program was set at six cycles at 94 °C for 1 min, 45 °C for 50 s decreasing 1 °C in every cycle, and 72 °C for 1 min, followed by 28 cycles at 94 °C for 1 min, 40 °C for 1 min, and 72 °C for 1 min. These programs were preceded by a denaturation step at 94 °C for 4 min, followed by an extension step at 72 °C for 7 min. The PCR products were separated on 1.5% agarose gel electrophoresis (Begum et al., 2016). For SSR markers, the annealing temperature ranged from 52 to 59 °C.

Seven EST-SSR markers (Table 1) were selected to achieve the EST analysis for mango cultivars as described by Dillon et al. (2013). The PCR program was performed according to Dillon et al. (2014). Statistical analysis. Morphological data were subjected to analysis of variance to
Results and Discussion

Morphological variations of mango cultivars. Table 2 displays the fruit length of the 28 mango cultivars, which shows that the longest cultivar was Fajri Kalan at 16.5 cm and the shortest was Succari at 9.0 cm. The average fruit length was 12.11 cm, with significant variations observed among the cultivars. Five cultivars from a total of 28 had fruit lengths equal to or less than 10 cm, including Alphonso (9.2 cm), Maya (9.5 cm), Princess (9.6 cm), Sensation (9.5 cm), and Haden (10 cm). These values were lower than the overall average and nearly equaled the minimum values (Table 2).

Data for fruit width (cm) shown in Table 2 ranged from 6.3 to 11.5 cm (average of 10.6 cm). The highest value recorded was for R2E2 (11.5 cm) and the lowest fruit width recorded was for Sabre at 6.3 cm. No significant variations were observed between the maximum and minimum values, whereas between cultivars there were significant differences in relation to fruit width.

Comparing fruit weight, significant variations were observed among all cultivars (Table 2). The heaviest fruit weight was for Piva (650 g), followed by for Hindi Mloki (625 g) and Tommy Atkins (615 g). The lightest value was 225 g recorded for Zebda cultivar. The mean was 416.4 g for the 28 cultivars. Three different categories were observed for fruit weight, the first group was greater than 600 g and included Piva (650 g), Hindi Mloki (625 g), and Tommy Atkins (615 g). The second group was from 300 to 600 g, which included 17 cultivars, and the last group was less than 300 g, which included seven efficient matrices were calculated (Jaccard, 1908).
cultivars, including Yasmina, Succari, Hindi Besennara, Golek, Zebda, Maya, and Joa.

The peel percentage in different mango cultivars demonstrated that Succari had the lowest percentage (14%) and was also the shortest fruit. In contrast, Tommy Atkins showed the highest peel percentage (34%), followed by Hindi Mloki (33%). Piva, Hindi Mloki, and Tommy Atkins also had the largest fruit weights with values of 650, 625, and 615 g, respectively.

For pulp percentage, the data ranged from 16% to 46%, with a mean of 23.2%. The highest pulp percentage was for Hindi Besennara (46%) and the lowest was for Tommy Atkins (16%), although the fruit weight was high (615 g) for the latter cultivar, as shown in Table 2.

For fiber length (mm), data showed that values ranged from 6 to 23 mm, with a mean of 10.9 mm. The shortest cultivars were Princess at 6 mm, whereas the longest was Sabre at 23 mm, with this latter cultivar also having the lowest fruit width.

The shelf life for the studied cultivars ranged from 5 to 7 d, with a mean of 6.1 d. Yasmina, Alphonso, and Nam Doc Mai showed the lowest values (5, 7, and 5 d, respectively) for shelf life compared with the other cultivars (Table 2).

For fruit shape, different morphological variation between the 28 mango cultivars were found (Table 2), such as cordate, ovate, cylindrical, oblique ovate, fusiform, cylindrical oblique, rectangular oblique, and oval roudnich (Table 2). The obtained results are in agreement with the results of previous studies (Bally et al., 1996; Rymbai et al., 2014; Singh et al., 2009).

Molecular studies of M. indica. During the present study, 13 specific markers were used (SSR and EST-SSR) (Figs. 1 and 2) to calculate the genetic variations between 28 mango cultivars. SSR data in Table 3 show that SSR-16 and 19 markers produced two alleles with the allele size ranging from 169 to 235 and 137 to 173 base pairs (bp), respectively. SSR-52 and SSR-65 detected only one allele at 199–154 bp, respectively. Finally, SSR-59 and SSR-83 recorded two alleles with a molecular weight range of 145–168 bp and 157–183 bp, respectively. The PIC ranged from 0.71% to 1% based on the different markers. The data for SSR-52 and SSR-65 showed PIC of 1% for both, followed by SSR-59 of 0.87%, SSR-19 of 0.83%, SSR-16 of 0.77%, and finally SSR-83 of 0.71%.

Previous studies have reported that molecular analysis is an efficient method of assessing genetic diversity among mango cultivars, and PCR-based genomic polymorphisms have been detected in several mango cultivars (Bally et al., 1996; Rocha et al., 2012). Intracultivar studies of genomes from different locations could confirm whether or not there were any genetic differences among the location-specific cultivars. In the present study with SSR markers, in total 190 amplified fragments, ranging from 137 to 235 bp in length, were detected.

Overall, larger intra-cultivars variation and significant differentiation in different cultivar pairs were observed at several loci. The present study is in agreement with Manchekar (2008), who reported the level of polymorphism in mangoes present in microsatellites was variable and ranged from two to four alleles with an average of 2.48 alleles per SSR. The analysis of 23 SSRs revealed that the PCR product size (bp)
ranged from 100 (SSR-52) to 310 (SSR-20) in 31 mango cultivars (Manchekar, 2008). The results of Manchekar (2008) are in agreement with results from the present study that showed the PIC values varied widely among loci and ranged from 0.77% (SSR-16) to 100.0% (SSR-52 and SSR-65) with an average of 86.33% per locus (Table 4).

Data in Table 4 show that all EST-SSR markers detected one specific allele except for QGMi-001, which recorded three alleles with sizes ranging from 161 to 253 bp. The other primers showed different allele sizes e.g., 172, 227, 315, 240, 110, and 140 for primers QGMi-003, QGMi-004, QGMi-005, QGMi-0010, QGMi-020, and QGMi-023, respectively.

Concerning the EST-SSR markers used in the present study (Table 3), different specific genes were selected to identify the genetic diversity between the 28 mango cultivars. The first one was QGMi-001, and the homology traits for this gene were a short vegetative phase (controlling flowering time) or floral development. This marker produced three alleles with a size range from 161 to 253 bp with genetic polymorphism of 0.82%; the next six markers provided just one allele and were related to different homology traits such as disease resistance gene (defense response), cis-epoxy carotenoid dioxygenase 5 (abscisic acid biosynthesis), stress response, WRKY40 (transcription factor); and defense response, carotenoid cleavage dioxygenase 1 (carotenoid biosynthesis), IAA-leucine resistant 3 (transcription factor), and phytochrome-associated protein 2 (plant development). The allele size ranged from 110 to 240 bp. Data in Table 4 show the present and absent amplified fragments for both SSR and EST-PCR markers for the 28 mango cultivars. A dendrogram illustrating the genetic relationships of the 28 mango cultivars using an unweighted pair-group method is shown in Fig. 3. The dendrogram constructed from the matrix of simple matching coefficients revealed two major clusters with genetic similarity of 46%. The first major bifurcation in the dendrogram (Fig. 3) separated the 28 cultivars into two major clusters (56%). Cluster I divided into subclusters (74%) that included Shelly, Golek (100%), Succari (87%), Alphonso (82%), Piva, and Princess (87%). Cluster II (65%) divided into subclusters that included Nam Doc Mai and Sidik in a separate subcluster (87%), Kent (80%), Hindi Besennara, R2E2, Tommy Atkins, Naomi (88%); and the other subcluster (80%) included Zebda and Fajri Kalan (87%); and Heidi, Joa, Sensation, and Lilly (87%). The third subcluster (68%) included Sabre, Haden, and Langra Benersi (81%) and Oseem, Maya, Hindi Mloki, and Palmer (87%). Kensington Pride and Yasmina were found to be in a separate cluster (74%). These findings are in agreement with Mahkerejie (1972), who worked on genetic diversity of mango cultivars in India during seedling and reported that the selections of the variants due to recombination and segregation of characters in the progenies. Also, it has been found that suitable environment can help in wider diversity in the seedling progenies with much improved types as in Florida, where the Haden and other cultivars have bigger-sized fruits with more attractive color than the parent Mulgoa with dull color.

Table 3. Primers, annealing temperature, alleles size, and polymorphic microsatellite primers used in this study.

No.	Primer	Annealing temperature (°C)	No. of alleles	Allele size range (bp)	PIC (%)
1	SSR-16	54	2	169–235	0.77
2	SSR-19	54	2	137–173	0.83
3	SSR-52	52	1	199	1
4	SSR-59	59	2	145–168	0.87
5	SSR-65	53	1	154	1
6	SSR-83	57	2	175–183	0.71

Table 4. Characteristics of seven EST-SSR markers screened across 28 of Mangifera cultivars.

Marker	GenBank accession no.	Repeat motif	Homology	No. of alleles	Size range	PIC (%)
QGMi-001	JZ532296 (CCTTT)3	floral development	3	161–233		
QGMi-003	JZ532319 (CTT)6	defense response	1	172		
QGMi-004	JZ532302 (AAG)5	(abscisic acid biosynthesis; stress response)	1	227		
QGMi-005	JZ532303 (AAC)8	defense response	1	315		
QGMi-010	JZ532309 (AGG)4	carotenoid biosynthesis	1	240		
QGMi-020	JZ532301 (CT)7	IAA-leucine resistant 3	1	110		
QGMi-0023	JZ532311 (AAC)7	Phytochrome-associated protein 2	1	140		

Fig. 3. Dendrogram of mango cultivars cluster analysis based on simple sequence repeat and expressed sequence tag markers.

has been found that suitable environment can help in wider diversity in the seedling progenies with much improved types as in Florida, where the Haden and other cultivars have bigger-sized fruits with more attractive color than the parent Mulgoa with dull color.

Conclusions

In the present study, detailed information regarding the genetic diversity of mango germplasm in Egypt using 13 specific markers (SSR and EST-SSR) was reported. A high diversity of mango cultivars was confirmed as a pattern of morphology and genotypes. Molecular markers (SSR and EST-SSR) are powerful tools for optimizing germplasm management of mango cultivars in Egypt. All these collected data could be reference material for future researchers when studying mango cultivars in Egypt.

Literature Cited

Bally, I.S.E., G.C. Graham, and R.J. Henry. 1996. Genetic diversity of Kensington mango in Australia. Austral. J. Expt. Agr. 36:243–247.
Begum, H., M.T. Reddy, S. Malathi, B.P. Reddy, G. Narshimulu, J. Nagaraju, and E.A. Siddiq. 2013. Morphological and microsatellite analysis of intravarietal heterogeneity in ‘Beneshan’ Mango (Mangifera indica L.). Inter. J. Biotech. Res. Prac. 1:1–18.
Begum, H., M.T. Reddy, S. Malathi, B.P. Reddy, G. Narshimulu, J. Nagaraju, and E.A. Siddiq. 2016. Morphological variability and microsatellite diversity of cultivated Mango (Mangifera indica L.) from Andhra Pradesh. India Jordan. J. Agr. Sci. 12:815–843.
Delepota, S.L., J. Wood, and I.B. Hicks. 1983. A plant DNA minipreparation: Version II. Plant Mol. Biol. Rpt. 1:19–21.
Dillon, N.L., I.S.E. Bally, C.L. Wright, L. Hucks, D.J. Innes, and R.G. Dietzgen. 2013. Genetic diversity of the Australian National Mango Genebank. Scientia Hort. 150:213–226.

Dillon, N.L., D.J. Innes, I.S.E. Bally, C.L. Wright, L.C. Devitt, and R.G. Dietzgen. 2014. Expressed sequence tag-simple sequence repeat (EST-SSR) marker resources for diversity analysis of Mango (Mangifera indica L.). Diversity (Basel) 6:72–87.

Jaccard, P. 1908. Nouvelles recherches sur la distribution florale. Bull Soc. Vaudoise C. Sci. Nat. 44:223–270.

Kundapura, V.R., H.R.M. Bellam, A. Lalitha, and R.D. Makki. 2011. Development of new microsatellite markers from Mango (Mangifera indica) and cross-species amplification. Amer. J. Bot. 98:e96–e99.

Manchekar, M.D. 2008. Clonal variability studies in Alphonso mango (Mangifera indica L.) by phenotypic characters and molecular markers. University of Agricultural Sciences, Dharwad, Karnataka, India, unpublished M.Sc. (Agriculture) Thesis.

Mukherjee, S.K. 1972. Origin of mango (Mangifera indica). Econ. Bot. 26:260–264.

Rajwana, I.A., N. Tabbasam, A.U. Malik, S.A. Malik, Mehboob-ur-Rahman, and Y. Zafar. 2008. Assessment of genetic diversity among mango (Mangifera indica L.) genotypes using RAPD markers. Scientia Hort. 117:297–301.

Rocha, A., L.C.C. Salomao, T.M.F. Salomao, C.D. Cruz, and D.L. De Siqueira. 2012. Genetic diversity of ‘Uba’ mango tree using ISSR markers. Mol. Biotechnol. 50:108–113.

Rymbai, H., R.H. Laxman, M.R. Dinesh, V.S. John Sunoj, K.V. Ravishankar, and A.K. Jha. 2014. Diversity in leaf morphology and physiological characteristics among mango (Mangifera indica) cultivars popular in different agro-climatic regions of India. Scientia Hort. 176:189–193.

Sherman, A., M. Rubinstein, R. Eshed, M. Benita, M. Ish-Shalom, M. Sharabi-Schwager, A. Rozen, D. Saada, Y. Cohen, and R. Ophir. 2015. Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome. BMC Plant Biol. 15:277.

Singh, S., A.B. Gaikwad, and J.L. Karihaloo. 2009. Morphological and molecular analysis of intra-cultivar variation in Indian mango (Mangifera indica L.) cultivars. Acta Hort. 829:205–212.

The Ministry of Agriculture and Land Reclamation. 2015. Ministerial Decree No. 630. <http://www.sis.gov.eg/Story/68079?lang=en-us>.

Tsai, C.-C., Y.-K.H. Chenb, C.-H. Chen, I.-S. Weng, C.-M. Tsai, S.-R. Lee, Y.-S. Lin, and Y.-C. Chiang. 2013. Cultivar identification and genetic relationship of mango (Mangifera indica) in Taiwan using 37 SSR markers. Scientia Hort. 164:196–201.

Vieccell, J.C., D.L. De Siqueira, W.M. Da Silva Bispo, and L.M.C. Lemos. 2016. Characterization of leaves and fruits of mango (Mangifera indica L.) CV. IMBU. Rev. Bras. Frutic. 38(Jaboticabal - SP):e193.

Wöhmann, T. and K. Weising. 2011. In silico mining for simple sequence repeat loci in pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theor. Appl. Genet. 123:635–647.

Yamanaka, N., M. Hasran, D.H. Xu, H. Tsunematsu, S. Idris, and T. Ban. 2006. Genetic relationship and diversity of four Mangifera species revealed through AFLP analysis. Genet. Resources Crop Evol. 53:949–954.