A search for the $Z\gamma$ decay mode of the Higgs boson
in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

The ATLAS Collaboration

A search for the $Z\gamma$ decay of the Higgs boson, with Z boson decays into pairs of electrons or muons is presented. The analysis uses proton–proton collision data at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 139 fb$^{-1}$ recorded by the ATLAS detector at the Large Hadron Collider. The observed data are consistent with the expected background with a p-value of 1.3%. An upper limit at 95% confidence level on the production cross-section times the branching ratio for $pp \rightarrow H \rightarrow Z\gamma$ is set at 3.6 times the Standard Model prediction while 2.6 times is expected in the presence of the Standard Model Higgs boson. The best-fit value for the signal yield normalised to the Standard Model prediction is $2.0^{+1.0}_{-0.9}$ where the statistical component of the uncertainty is dominant.
1 Introduction

A new boson \([1, 2]\) was discovered in 2012 by the ATLAS and CMS Collaborations. The observed properties of the particle, such as its couplings to Standard Model (SM) elementary particles, its spin and its parity, are so far consistent with the predictions for a SM Higgs boson (\(H\)) \([3–7]\). The mass of this boson was determined by the ATLAS and CMS Collaborations to be \(m_H = 125.09 \pm 0.21\text{(stat)} \pm 0.11\text{(syst)}\) GeV using the LHC Run 1 data set \([8]\). Subsequent measurements, by both collaborations during the LHC Run 2, are published \([9, 10]\) and are consistent with this value.

The SM Higgs boson can decay into \(Z\gamma\) through loop diagrams and the branching ratio is predicted to be \(B(H \to Z\gamma) = (1.54 \pm 0.09) \times 10^{-3}\) at \(m_H = 125.09\) GeV \([11]\). It can differ from the SM value for several scenarios beyond the SM, for example, if the Higgs boson were a neutral scalar of different origin \([12, 13]\), or a composite state \([14]\). Different branching ratios are also expected for models with additional colourless charged scalars, leptons or vector bosons that couple to the Higgs boson, due to their contributions via loop corrections \([15–17]\).

Final states where the \(Z\) boson decays into electron or muon pairs can be efficiently triggered and clearly distinguished from background events produced in \(pp\) collisions. In addition, the \(Z(\to \ell\ell)\gamma (\ell = e\) or \(\mu)\) final state can be reconstructed completely with good invariant mass resolution and relatively small backgrounds.

Previous searches for the \(H \to Z(\to \ell\ell)\gamma\) decay by the ATLAS and CMS Collaborations use the full \(pp\) data sets collected at \(\sqrt{s} = 7\) and \(8\) TeV \([18, 19]\) and partial data sets collected at \(13\) TeV \([20, 21]\). In all cases, no significant excess of events above the expected background is observed around the Higgs boson mass. Prior to the present study, the ATLAS Collaboration reported an observed (expected for a SM Higgs boson) upper limit on the production cross-section times branching ratio for \(pp \to H \to Z\gamma\) of 6.6 (5.2) times the SM prediction at 95% confidence level for a Higgs boson with \(m_H = 125.09\) GeV using a sample corresponding to an integrated luminosity of 36.1 fb\(^{-1}\) \([20]\). The CMS Collaboration reported an observed (expected for a SM Higgs boson) upper limit of 7.4 (6.0) times the SM prediction for a Higgs boson with \(m_H = 125\) GeV using a sample corresponding to an integrated luminosity of 35.9 fb\(^{-1}\) \([21]\).

An updated search for decays of the Higgs boson into \(Z\gamma\) with the \(Z\) boson decaying into electron or muon pairs is detailed in this letter. The search uses \(pp\) collision data recorded at \(\sqrt{s} = 13\) TeV with the ATLAS detector at the LHC from 2015 to 2018, corresponding to a total integrated luminosity of 139 fb\(^{-1}\). There are important improvements in this analysis compared with the previous one \([20]\), including an increase in the size of the data set, an improved event categorisation, and optimised lepton and photon identification criteria. Events with at least one photon and two electrons or muons of opposite charge are classified into six mutually exclusive categories which are designed to maximise the sensitivity to the presence of the SM Higgs boson decaying into \(Z\gamma\). The dominant background is the irreducible non-resonant production of \(Z\) bosons together with photons. A simultaneous fit to the reconstructed \(Z\gamma\) invariant mass distributions in all the categories is performed to extract the overall \(H \to Z\gamma\) signal yield.
2 ATLAS detector and data sample

The ATLAS detector [22, 23] at the LHC is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry and a near 4π coverage in solid angle.\(^1\) It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid, electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) incorporating three large air-core toroidal magnets with eight coils each.

A two-level trigger system [24] was used during the $\sqrt{s} = 13$ TeV data-taking period. The first-level trigger (L1) is implemented in hardware and uses a subset of the detector information. This is followed by a software-based high-level trigger which runs algorithms similar to those in the offline reconstruction software, reducing the event rate to approximately 1 kHz from the maximum L1 rate of 100 kHz.

The events were collected with triggers requiring either one or two electrons or muons in the event. Due to the increasing luminosity, the transverse momentum (p_T) thresholds were increased slightly during the data-taking periods. At the highest instantaneous luminosity recorded, the lowest p_T threshold for the single-muon trigger was 26 GeV. For the dimuon trigger, asymmetric p_T thresholds of 22 GeV and 8 GeV were used. The p_T threshold was 26 GeV for the single-electron trigger and 17 GeV for both electrons in the dielectron trigger. These lowest-threshold triggers were complemented by triggers with higher thresholds but looser lepton identification criteria. For $H \rightarrow Z\gamma$ events that pass the full analysis selection, described in Section 4, the trigger selection is 95.6% efficient for the $ee\gamma$ final state and 92.2% efficient for the $\mu\mu\gamma$ final state. After applying trigger and data quality requirements, the integrated luminosity of the data used in this search corresponds to $139 \pm 2.4 \text{ fb}^{-1}$. The average number of pp interactions per bunch crossing (pile-up) ranged from about 13 in 2015 to about 39 in 2018, with a peak instantaneous luminosity of $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$.

3 Simulation samples

Simulated Monte Carlo (MC) events of the signal and dominant backgrounds are used to optimise the search strategy. The generated MC events, unless stated otherwise, were processed with the detailed ATLAS detector simulation [25] based on Geant4 [26]. The effects of pile-up were modelled by overlaying simulated inelastic pp events over the original hard-scattering event. The pile-up events were generated with Pythia 8.186 [27] using the NNPDF2.3LO set of parton distribution functions (PDFs) [28] and the A3 parameter tune [29]. The MC events were weighted to reproduce the distribution of the number of interactions per bunch crossing observed in the data.

In order to improve the description of the data, simulated events were corrected to ensure that the efficiencies for the reconstruction and identification of objects match those measured in data. The corrections include those applied to trigger, reconstruction, identification and isolation efficiencies for electrons and muons, identification and selection efficiencies for photons, and selection efficiency for jets [30, 31]. Similarly, momentum and energy scale and resolution corrections for simulated objects were also taken into account.

\(^1\) The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Polar coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$. Angular distance is measured in units of $\Delta R = \sqrt{(\Delta\eta)^2 + (\Delta\phi)^2}$.

The mass of the Higgs boson for all simulated samples was chosen to be \(m_H = 125 \text{ GeV} \) and the corresponding width is \(\Gamma_H = 4.1 \text{ MeV} \) \cite{11}. The samples were normalised with the latest available theoretical calculations of the corresponding SM production cross-sections and branching ratios at \(m_H = 125.09 \text{ GeV} \), which were taken from Refs. \cite{11, 32–60}.

The production of the SM Higgs boson via gluon–gluon fusion (ggF), via vector-boson fusion (VBF), in association with a vector boson (\(VH \), where \(V \) is a \(W \) or a \(Z \) boson) and with a top-quark pair (\(t\bar{t}H \)) was modelled with the \texttt{Powheg-Box} v2 Monte Carlo event generator \cite{61–64}, as described in Ref. \cite{65} and summarised in Table 1. \texttt{Pythia} 8 \cite{27} was used to simulate the \(H \to Z\gamma \) decay as well as to provide parton showering, hadronisation and the underlying event. Other Higgs boson production processes are not considered as their contributions to the total Higgs boson production cross-section are of the order of 0.1\% or less. All production modes of the Higgs boson contribute to the signal in this analysis and their relative yields were fixed to the SM predictions. Contributions from \(H \to \mu\mu \) (where the reconstructed photon originates from QED final-state radiation) were evaluated using samples produced in the same manner and are considered as a potential background in this analysis. The impact of interference between Higgs bosons decays with the same final-state signature (\(H \to \gamma^*\gamma \) and \(H \to \mu\mu \)) is expected to be negligible \cite{66} and is neglected.

Additional samples of Higgs bosons produced by gluon–gluon fusion are used for studies of theoretical uncertainties. A sample with multiple parton interactions disabled is used to study the uncertainties in the signal acceptance related to the modelling of non-perturbative quantum chromodynamics (QCD) effects. A sample generated with \texttt{MadGraph5 _aMC@NLO} \cite{67} using the NNPDF30 PDF \cite{68} set, which includes up to two jets at next-to-leading-order (NLO) accuracy in QCD using the FxFx merging scheme \cite{67, 69}, is used to study the ggF acceptance in the analysis categories.

The background in this analysis originates mainly from non-resonant production of a \(Z \) boson and a photon (\(Z\gamma \)), with a smaller contribution from the production of \(Z \) bosons in association with jets (\(Z+\text{jets} \)), with one jet misidentified as a photon.

A large sample of background \(Z\gamma \) events was simulated with the \texttt{Sherpa} v2.2.2 \cite{70} generator using a fast simulation of the calorimeter response \cite{71}. It was produced at NLO precision in QCD for up to one additional parton and leading-order (LO) accuracy in QCD for up to three additional partons using the NNPDF3.0nnlo PDF set \cite{72}. The matrix elements were matched and merged with the \texttt{Sherpa} parton shower \cite{73, 74} using the MEPS@LO prescription \cite{75–78}.

The electroweak production of \(Z\gamma jj \) with jets originating from the fragmentation of partons arising from electroweak vertices is also considered. It was generated at LO accuracy in QCD using \texttt{MadGraph5 _aMC@NLO} 2.3.3 with no additional partons in the final state, which is orthogonal to the \(Z\gamma \) simulation with Sherpa. The NNPDF30 LO PDF set \cite{72} was used for the generation of the events, and the hadronisation, parton shower and the underlying event of the events was modelled using \texttt{Pythia} 8.212 with the A14 parameter tune \cite{79}.

The background originating from \(Z+\text{jets} \) is estimated using a data-driven technique which is validated using a sample simulated with the \texttt{Powheg-Box} v1 MC generator \cite{62–64, 80} at NLO accuracy in QCD. It was interfaced to \texttt{Pythia} 8.186 for the modelling of the parton shower, hadronisation and the underlying event with parameters set according to the AZNLO tune \cite{81}. The CT10 PDF set \cite{82} was used for the hard-scattering processes, whereas the CTEQ6L1 PDF set \cite{83} was used for the parton shower.
4 Event selection, reconstruction and categorisation

Events are required to have two same-flavour opposite-charge leptons, ($\ell = e, \mu$), and at least one photon candidate arising from a primary vertex candidate, reconstructed from charged particles (tracks) in the ID with transverse momentum $p_T > 500$ MeV. This primary vertex candidate is required to be the one with the largest sum of the squared transverse momenta of the associated tracks.

Muons candidates are required to have a high-quality track in the ID or the MS, satisfy the medium identification criteria, be within $|\eta| < 2.7$ and have $p_T > 10$ GeV [31]. Electron and photon candidates are reconstructed from topological clusters of energy deposits in the EM calorimeter, and in the case of an electron, a track in the ID matched to the cluster [30, 91]. Electron and photon candidates in the transition region between the barrel and endcap EM calorimeters, $1.37 < |\eta| < 1.52$, are excluded. Electrons are required to satisfy loose likelihood-based identification criteria [30], have $p_T > 10$ GeV and be within $|\eta| < 2.47$, while photon candidates are required to satisfy $p_T > 10$ GeV, $|\eta| < 2.37$ and the tight identification criteria. The lepton and photon candidates are also required to be isolated from additional activity in the tracking detector and in the calorimeters. Contributions to the energy deposited in the calorimeters originating from the underlying events and pile-up are corrected for on an event-by-event basis using the method described in Refs. [92–94].

In order to ensure that muon and electron candidates originate from the primary vertex, it is required that the longitudinal impact parameter, Δz_0, computed relative to the primary vertex position, satisfies $|\Delta z_0 \cdot \sin \theta| < 0.5$ mm, where θ is the polar angle of the track. Additionally, to suppress leptons from heavy-flavour decays the significance of the transverse impact parameter d_0 calculated relative to the measured beam-line position must satisfy $|d_0|/\sigma_{d_0} < 3$ (5) for muons (electrons) where σ_{d_0} is the uncertainty in d_0.

Jets are reconstructed from topological clusters [95] using the anti-k_t algorithm [96] with a radius parameter of 0.4. They are required to have $p_T > 25$ GeV and $|\eta| < 4.4$. Jets produced in pile-up interactions are suppressed by requiring that those with $p_T < 60$ GeV and $|\eta| < 2.4$ pass a selection based on a jet vertex tagging algorithm [97], which is 92% efficient for jets originating from the hard interaction.

An overlap removal procedure is applied to the selected lepton, photon and jet candidates. If two electrons share the same track, or the separation between two electron energy clusters satisfies $|\Delta \eta| < 0.075$ and $|\Delta \phi| < 0.125$, then only the highest-p_T electron is retained. Electron candidates that fall within $\Delta R = 0.02$ of a selected muon candidate are also discarded. In order to suppress the events arising from QED final-state radiation (FSR), photon candidates within a $\Delta R = 0.3$ cone around the leptons of the Z boson candidate
are rejected. Jet–lepton and jet–photon overlap removal are also performed by removing the jet if its axis is within a cone of size $\Delta R = 0.2$ around one of the leptons or the photon.

The Z boson candidates are reconstructed from two same-flavour opposite-charge leptons satisfying the selection criteria. The leptons of the Z boson candidate are additionally required to be consistent with being accepted by at least one of the triggers that the event passed. It is required that the p_T of the leptons that are associated with the single-lepton or dilepton triggers is 1 GeV above the trigger threshold. The invariant mass of the Z boson candidates is required to be between 50 GeV and 101 GeV before applying the mass resolution improvements described in the following.

The resolution of the invariant mass of the $Z \rightarrow \mu \mu$ candidates is improved by 3% by correcting the muon momenta for collinear FSR ($\Delta R < 0.15$), using identified photons in the EM calorimeter [65]. A constrained kinematic fit is applied to the dilepton invariant mass [98] for all Z boson candidates. This fit makes use of the measured values of the Z boson mass and width, and leads to a 14% improvement in the mass resolution of the Higgs boson candidates.

After the FSR correction and applying the kinematic fit, Z boson candidates are required to have an invariant mass within 10 GeV of the Z boson mass, $m_Z = 91.2$ GeV [99]. If an event has multiple Z boson candidates which pass all requirements, the candidate with the mass closest to the Z boson mass is chosen. Fewer than 1% of the simulated signal events that pass the final $H \rightarrow Z \gamma$ selection have more than two leptons (dominated by events produced via VH and $t\bar{t}H$) and less than 0.1% of the signal events have a Z boson candidate that does not match a true Z boson.

The Higgs boson candidate is reconstructed from the Z boson candidate and the highest-p_T photon candidate in the event. The invariant mass of the final-state particles, $m_{Z\gamma}$ after correction for FSR and by the kinematic fit, is required to satisfy $105 \text{ GeV} < m_{Z\gamma} < 160 \text{ GeV}$. Finally, to reduce background contamination and simplify the background modelling, an additional requirement is placed on the transverse momentum of the photon such that $p_T^\gamma / m_{Z\gamma} > 0.12$.

For SM $H \rightarrow (\rightarrow \ell \ell)\gamma$ events, the reconstruction and selection efficiency (including kinematic acceptance) is 20.4% varying by a maximum of 2% depending on the production mode.

In order to improve the sensitivity to a $H \rightarrow Z\gamma$ signal, the selected events are classified into six mutually exclusive categories with different expected signal-to-background ratios and mass resolutions. Categories are defined according to the lepton flavour and event kinematics. Additionally, a boosted decision tree (BDT) trained to separate VBF signal events from other Higgs boson production modes and backgrounds is used to define a category of events with at least two jets. If there are more than two jets in an event, the two highest-p_T jets are used. The kinematic variables used in the categorisation and as input to the BDT are:

- The p_T of the highest-p_T jet, $p_T^{j\text{h}}$.
- The pseudorapidity difference between the two jets, $\Delta \eta_{jj}$.
- The minimum ΔR between the Z boson or photon candidate and either of the two jets, $\Delta R_{\gamma = Z,j}^\text{min}$.
- The invariant mass of the two jets, m_{jj}.
- The absolute value of the difference between the pseudorapidity of the $Z\gamma$ system and the average pseudorapidity of the two jets, $|\eta_{Z\gamma} - (\eta_{j1} + \eta_{j2})/2|$ [100].
- The azimuthal separation between the $Z\gamma$ system and the system formed by the two jets, $\Delta \Phi_{Z\gamma,jj}$.
- The azimuthal angle between the dilepton system and the photon, $\Delta \Phi_{Z,\gamma}$.
The component, p_{Tt}, of the transverse momentum of the $Z\gamma$ system, that is perpendicular to the difference of the 3-momenta of the Z boson and the photon candidate ($p_{Tt} = |\vec{p}_{TZ} \times \hat{t}|$, where $\hat{t} = (\vec{p}_{TZ} - \vec{p}_{T\gamma})/|\vec{p}_{TZ} - \vec{p}_{T\gamma}|$). This quantity is strongly correlated with the transverse momentum of the $Z\gamma$ system, but has better experimental resolution [101, 102].

Events with two or more jets with $\Delta\eta_{jj} > 2$ that have a BDT output score larger than 0.87 are classified into a VBF-enriched category. Of the remaining events, those that satisfy the requirement on $p_{T\gamma}/m_{Z\gamma} > 0.4$ are classified into a High relative p_T category while the others are separated into four categories depending on the lepton flavour and a cut at $p_{Tt} = 40$ GeV. The boundaries of the categories are selected to maximise the expected signal significance.

VBF events are estimated to constitute 72% of the signal in the VBF-enriched category. The High relative p_T and High p_T categories are expected to be enriched in VBF, VH and $t\bar{t}H$ events as these production modes have on average higher Higgs boson p_T than ggF production. As the continuum $Z\gamma$ background has on average lower Higgs boson candidate p_T than the SM Higgs boson, the signal-to-background ratio is expected to be higher in these categories than in the other categories, as shown in Table 2. The table also summarises the observed number of events in data in the $Z\gamma$ mass range of 105-160 GeV and the expected number of signal (S_{68}) and background (B_{68}) events in a $m_{Z\gamma}$ window containing 68% of the expected signal. In addition the width of the window containing 68% of the SM signal (w_{68}), which quantifies the mass resolution and is defined as the difference between the 84th and the 16th percentile of the signal mass distribution, is reported. B_{68} is estimated from the simulated background samples normalised to the data yields in each category excluding the 120-130 GeV mass region. The categorisation improves the expected sensitivity, based on simple number counting, by approximately 50%.

Table 2: The number of data events selected in each category, and in the $Z\gamma$ mass range of 105–160 GeV. In addition, the following numbers are given: the expected number of Higgs boson signal events in an interval around the peak position for a signal of $m_H = 125.09$ GeV containing 68% of the SM signal (S_{68}), the mass resolution quantified by the width of the S_{68} interval (w_{68}) defined by the difference between the 84th and the 16th percentile of the signal mass distribution, the background in the S_{68} interval (B_{68}) determined by counting the number of events in the simulated background samples when normalised to the data yield with the 120–130 GeV region excluded, the expected signal-to-background ratio in the S_{68} window (S_{68}/B_{68}), and the expected significance estimate defined as $S_{68}/\sqrt{S_{68} + B_{68}}$. The final row of the table displays the expected number of events for an analysis performed in a single inclusive category.

Category	Events	S_{68}	B_{68}	w_{68} [GeV]	S_{68}/B_{68} [10^{-2}]	$S_{68}/\sqrt{S_{68} + B_{68}}$
VBF-enriched	194	2.7	18.7	3.7	14.3	0.58
High relative p_T	2276	7.6	112.8	3.7	6.7	0.69
High p_T, ee	5567	9.9	444.0	3.8	2.2	0.46
Low p_T, ee	76679	34.5	6654.1	4.1	0.5	0.42
High p_T, $\mu\mu$	6979	12.0	610.8	3.9	2.0	0.48
Low p_T, $\mu\mu$	100876	43.5	8861.5	4.0	0.5	0.46
Inclusive	192571	110.2	16701.9	4.0	0.7	0.85
5 Signal and background modelling

The signal and background yields are extracted from a fit to the \(m_{Z\gamma} \) distribution observed in data by assuming parametric models for both the signal and backgrounds. For the signal, the expected acceptance and parameters that describe the shape are obtained from simulated signal samples. For the background, the models are chosen using simulated background samples and the values of their parameters are determined by a fit to data mass spectra.

The signal mass distribution for the Higgs boson decay into \(Z\gamma \) is well modelled by a double-sided Crystal Ball (DSCB) function (a Gaussian function with power-law tails on both sides) [103, 104]. The peak position and width of the Gaussian component are represented by \(\mu_{CB} \) and \(\sigma_{CB} \), respectively. The parameters of the DSCB are determined in each category by performing a maximum-likelihood fit to the signal MC samples.

The parametric model used to describe the background \(m_{Z\gamma} \) distribution is selected using a template that is constructed from the simulated \(Z\gamma \) and electroweak \(Z\gamma jj \) events, and a \(Z+\text{jets} \) contribution derived from data. The shape of the \(m_{Z\gamma} \) distribution for \(Z+\text{jets} \) events is constructed for each category from a data control region defined by requiring the photon candidate to not satisfy the tight identification criteria but still pass a looser identification criteria. To smooth the statistical fluctuations of the \(m_{Z\gamma} \) distribution for \(Z+\text{jets} \) events, an analytic function is fitted to the ratio of the \(m_{Z\gamma} \) distributions for \(Z+\text{jets} \) and \(Z\gamma \) events, in the \(m_{Z\gamma} \) range of 105–160 GeV. The smoothed \(m_{Z\gamma} \) distribution for \(Z+\text{jets} \) events is constructed by multiplying the \(Z\gamma \) distribution by the fitted ratio. The \(Z+\text{jets} \) and \(Z\gamma \) distributions have similar shapes, allowing a simple function to be used to fit the ratio. The uncertainty in the fitted ratio is found to have negligible impact on the background template.

The background composition in each category is determined using data and confirms the dominance of the \(Z\gamma \) process over other backgrounds where jets are misidentified as photons. A two-dimensional sideband technique [20, 105] based on the track and calorimeter isolation of the photon candidate and whether the photon candidate satisfies the tight or the looser identification criteria is performed in each category. The fraction of genuine \(Z\gamma \) events (including the \(Z\gamma jj \) contribution), inclusive over categories, is \(0.78^{+0.04}_{-0.09} \).

For each category, the normalisation of the electroweak \(Z\gamma jj \) events is based on the predicted cross-section while the combined \(Z\gamma \) and \(Z+\text{jets} \) distribution is normalised to the number of data events in that category after subtracting the expected number of electroweak \(Z\gamma jj \) events. The relative normalisations of the sum of \(Z\gamma \) and electroweak \(Z\gamma jj \) events to \(Z+\text{jets} \) events are determined by the technique described earlier. The choice of background function has little sensitivity to the uncertainty in the measured background composition as the shapes of the various background contributions are similar.

The functional form used to model the background is selected from the following families of functions: Bernstein polynomials, exponential polynomial functions \(\left(e^{\sum_{i=0}^{p_i} f_i m_{Z\gamma}}\right) \), a class of functions given by \((1 - x^{1/3}) x^{\log(x) p_i} \) where \(x = m_{Z\gamma}/\sqrt{s} \) \((\sqrt{s} = 13 \text{ TeV})\), and a sum of power functions \(\sum_{i=1}^{N_t} s^i m_{Z\gamma} \) where \(f_i \) and \(p_i \) are the free parameters of the models. The choice of analytical model of the background and the \(m_{Z\gamma} \) range used for the final fit is optimised in each category using the background template mentioned earlier. The optimisation procedure includes a limit on the amount of bias in the extracted signal yield (also referred to as spurious signal) and a requirement on the fit quality, and it prefers models with fewer free parameters to maximise the statistical sensitivity to the signal [1]. For each category used in the analysis, the bias due to the spurious signal is estimated by performing a signal-plus-background fit to the \(m_{Z\gamma} \) background-only distribution with \(m_H \) varied between 123 GeV and 127 GeV. The maximum
number of signal events derived from these fits in each category constitutes the spurious-signal systematic uncertainty. A requirement that the spurious signal be less than 50% of the expected statistical uncertainty in the signal yield is applied when selecting the background modelling function. Stricter requirements on the spurious signal are not possible due to the statistical uncertainty in the $m_{Z\gamma}$ background template. In addition, the χ^2 probability of the background-only fit is required to be larger than 1%. The fit range is optimised in each analysis category by varying the lower and upper bounds in 5 GeV steps within the ranges 105–115 GeV and 140–160 GeV, respectively. The optimal fit range and function are selected to achieve the highest signal significance while fitting the expected mass distribution of background plus SM signal. The significance evaluation also includes the spurious-signal systematic uncertainty. The selected background functional form and fit range in each category are detailed in Table 3.

Table 3: The selected background function and fit range in each analysis category.

Category	Function Type	Fit range [GeV]
VBF-enriched	Second-order power function	110–155
High relative p_T	Second-order exponential polynomial	105–155
ee high p_T	Second-order Bernstein polynomial	115–145
ee low p_T	Second-order exponential polynomial	115–160
$\mu\mu$ high p_T	Third-order Bernstein polynomial	115–160
$\mu\mu$ low p_T	Third-order Bernstein polynomial	115–160

6 Systematic uncertainties

The dominant experimental uncertainty in the signal yield is the spurious signal from the choice of background model. The spurious signal corresponds to as much as 50% of the statistical error in the expected signal yield per category, due to a limited number of simulated background events. It introduces a 28% systematic uncertainty in the signal strength, defined as the ratio of the observed to expected signal yield; however, it only increases the total uncertainty in the expected signal strength by 5.6% because of the large statistical uncertainty. The contribution from $H \rightarrow \mu\mu$ is estimated using simulated events and amounts to about 1.7% inclusively, and up to 3.3% in individual categories. An uncertainty in this contribution taken from the latest ATLAS measurement [106] results in an uncertainty of 2.1% in the expected signal yield. The combined uncertainty in the signal yield in any category due to the reconstruction, identification, isolation, and trigger efficiency measurements [30, 31] is no more than 2.6%, 2.4% and 1.6% for photons, electrons and muons, respectively. Pile-up also affects the lepton and photon identification efficiency but contributes a negligible amount to the uncertainty (0.2%). The uncertainty in the combined 2015–2018 integrated luminosity is 1.7% [107, 108].

The theoretical uncertainties in the predicted signal yield originate from uncertainties in the predicted branching ratio (5.7%) [11] as well as from uncertainties in the modelling of the production cross-section and kinematics of the Higgs boson due to missing higher-order QCD calculations (5.3%), that are dominated by uncertainties in the QCD renormalisation and factorisation scales (5.2%). Smaller effects originate from the parton shower modelling uncertainty (1.3%), PDFs (2.5%) and α_s (1.9%). The uncertainties in the Higgs boson event kinematics due to missing higher-order QCD calculations impact the distribution of signal events amongst the analysis categories. They are evaluated using an extension of the Stewart–Tackmann method [11, 109], based on inputs from Refs. [110–112]. Details of how the uncertainty in the
acceptance of ggF events in the VBF-enriched category and all other categories is evaluated can be found in Refs. [113] and [20], respectively. Additionally, to account for the uncertainties in the modelling of jet kinematics in ggF events the category acceptance is compared with the acceptance derived from the MadGraph5_aMC@NLO sample. The Higgs boson and jet kinematics particularly affect the ggF signal acceptance in the VBF-enriched category (37%) and High relative \(p_T \) category (21%). The effect of parton shower modelling, PDFs and \(\alpha_s \) on the distribution of signal events amongst the analysis categories is less than 11%, 1% and 2%, respectively. The expected signal yield in the VBF category is also affected (14%) by the jet energy scale, jet energy resolution and vertex tagging efficiency [114].

The uncertainty in the modelling of the signal shape varies between analysis channels. The uncertainty in the mass resolution (\(\sigma_{CB} \)) is dominated by the uncertainty in the electron and photon energy resolution (< 3.4%) and in the muon momentum resolution (< 3.6%). The uncertainty in the signal position (\(\mu_{CB} \)) from the uncertainty in electron, photon and muon calibration (< 0.15%) is less than the uncertainty in the assumed Higgs boson mass of 0.19% [8]. The impact of the signal model uncertainty on the signal strength is less than 2%.

7 Results

A profile-likelihood-ratio test statistic [115] is used to search for a localised excess of events above the expected background by performing a fit to the \(m_{Z\gamma} \) spectra in the various categories. In the same manner as was done in previous searches for H \(\rightarrow \) Z\(\gamma \) [20], the likelihood is built from the product of Poisson probability terms across all categories with two contributions: non-resonant background, and Higgs boson signal. The likelihood includes terms for the systematic uncertainties discussed in Section 6 implemented as nuisance parameters. The nuisance parameters describe the systematic uncertainties, which are parameterised as Gaussian or log-normal priors. Upper limits are set on the Higgs boson production cross-section at 95% confidence level (CL) using the modified frequentist formalism [116].

The invariant mass distributions of the \(Z\gamma \) events for the various categories are shown in Figure 1 with the background-only fit superimposed. The expected Higgs boson signal normalised to 20 times the SM prediction for \(m_H = 125 \) GeV is also shown. At \(m_H = 125.09 \) GeV, the observed (expected with a SM Higgs boson) \(p \)-value under the background hypothesis is 0.013 (0.123), which corresponds to a significance of 2.2 \(\sigma \) (1.2 \(\sigma \)). A weighted sum of all categories with the fitted signal-plus-background model superimposed is shown in Figure 2. The events are weighted by \(\ln(1 + S_{68}/B_{68}) \), where \(S_{68} \) and \(B_{68} \) are defined in Section 4.

The best-fit value for the H \(\rightarrow \) Z\(\gamma \) signal strength, defined as the ratio of the observed to the predicted SM signal yield, is found to be \(2.0 \pm 0.9 \) (stat.)\(^{+0.4}_{-0.3} \) (syst.) = \(2.0 ^{+1.0}_{-0.9} \) (tot.) with an expected value of \(1.0 \pm 0.8 \) (stat.) \(\pm 0.3 \) (syst.) assuming the presence of the SM Higgs boson. The total uncertainty is dominated by the statistical component from the data. The systematic component of the total uncertainty is dominated by the spurious-signal uncertainties.

The observed 95% CL limit on the H \(\rightarrow \) Z\(\gamma \) signal strength is found to be 3.6 times the SM prediction compared with an expected value of 1.7 (2.6) assuming no (SM) Higgs boson decays into \(Z\gamma \). The observed upper limit on \(\sigma(pp \rightarrow H) \cdot B(H \rightarrow Z\gamma) \) is 305 fb at 95% CL. Assuming the SM Higgs boson production cross-section, the upper limit at 95% CL on \(B(H \rightarrow Z\gamma) \) is found to be 0.55%.

10
Figure 1: The $Z\gamma$ invariant mass ($m_{Z\gamma}$) distributions of events satisfying the $H \to Z\gamma$ selection in data for the six event categories: (a) VBF-enriched, (b) High relative p_T^γ, (c) High $p_T^T_e e e$, (d) Low $p_T^T_e e e$, (e) High $p_T^T_\mu \mu$, and (f) Low $p_T^T_\mu \mu$. The black points represent data. The error bars represent only the statistical uncertainty of the data. The solid blue lines show the background-only fits to the data, performed independently in each category. The dashed red histogram corresponds to the expected signal for a SM Higgs boson with $m_H = 125$ GeV decaying into $Z\gamma$ multiplied by a factor of 20. The bottom part of the figures shows the residuals of the data with respect to the background-only fit.
Figure 2: Weighted $Z\gamma$ invariant mass ($m_{Z\gamma}$) distribution of events satisfying the $H \rightarrow Z\gamma$ selection in data. The black points represent data. The error bars represent only the statistical uncertainty of the data. Events are weighted by $\ln(1 + S_{68}/B_{68})$, where S_{68} and B_{68} are the expected signal and background events in a $m_{Z\gamma}$ window containing 68% of the expected signal. The solid blue curve shows the combined fitted signal-plus-background model when fitting all analysis categories simultaneously, the dashed line shows the model of the background component.
8 Conclusion

A search for $Z\gamma$ decays of the SM Higgs boson in 139 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV is performed with the ATLAS experiment at the LHC. The observed data are consistent with the expected background with a p-value of 1.3%, while the expected p-value in the presence of a SM Higgs boson is 12.3%. These p-values correspond to a significance of 2.2 and 1.2 standard deviations, respectively. The observed 95% CL upper limit on the $\sigma(pp \rightarrow H) \cdot B(H \rightarrow Z\gamma)$ is 3.6 times the SM prediction for a Higgs boson mass of 125.09 GeV. The expected limit on $\sigma(pp \rightarrow H) \cdot B(H \rightarrow Z\gamma)$ assuming either no Higgs boson decay into $Z\gamma$ or the presence of the SM Higgs boson decay is 1.7 and 2.6 times the SM prediction, respectively. The best-fit value for the signal yield normalised to the SM prediction is $2.0^{+1.0}_{-0.9}$ where the statistical component of the uncertainty is dominant.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sklodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [117].
References

[1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1, arXiv: 1207.7214 [hep-ex].

[2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30, arXiv: 1207.7235 [hep-ex].

[3] ATLAS Collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476, arXiv: 1506.05669 [hep-ex], Erratum: Eur. Phys. J. C 76 (2016) 152.

[4] CMS Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004, arXiv: 1411.3441 [hep-ex].

[5] ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraintsonitscouplingsfromacombinedATLASandCMSanalysisoftheLHC pp collision data at $\sqrt{s} = 7$ and 8 TeV, JHEP 08 (2016) 045, arXiv: 1606.02266 [hep-ex].

[6] CMS Collaboration, Combined measurements of Higgs boson couplings in proton–proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C 79 (2019) 421, arXiv: 1809.10733 [hep-ex].

[7] ATLAS Collaboration, Combined measurements of Higgs boson production and decay using up to $80 fb^{-1}$ of proton–proton collision data at $\sqrt{s} = 13$ TeV collected with the ATLAS experiment, (2019), arXiv: 1909.02845 [hep-ex].

[8] ATLAS and CMS Collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803, arXiv: 1503.07589 [hep-ex].

[9] ATLAS Collaboration, Measurement of the Higgs boson mass in the $H \rightarrow ZZ^* \rightarrow 4\ell$ and $H \rightarrow \gamma\gamma$ channels with $\sqrt{s} = 13$ TeV pp collisions using the ATLAS detector, Phys. Lett. B 784 (2018) 345, arXiv: 1806.00242 [hep-ex].

[10] CMS Collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $\sqrt{s} = 13$ TeV, JHEP 11 (2017) 047, arXiv: 1706.09936 [hep-ex].

[11] D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, (2016), arXiv: 1610.07922 [hep-ph].

[12] I. Low, J. Lykken and G. Shaughnessy, Singlet scalars as Higgs imposters at the Large Hadron Collider, Phys. Rev. D 84 (2011) 035027, arXiv: 1105.4587 [hep-ph].

[13] I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012, arXiv: 1207.1093 [hep-ph].

[14] A. Azatov, R. Contino, A. Di Iura and J. Galloway, New Prospects for Higgs Compositeness in $h \rightarrow Z\gamma$, Phys. Rev. D 88 (2013) 075019, arXiv: 1308.2676 [hep-ph].

[15] C.-W. Chiang and K. Yagyu, Higgs boson decays to $\gamma\gamma$ and $Z\gamma$ in models with Higgs extensions, Phys. Rev. D 87 (2013) 033003, arXiv: 1207.1065 [hep-ph].

[16] C.-S. Chen, C.-Q. Geng, D. Huang and L.-H. Tsai, New Scalar Contributions to $h \rightarrow Z\gamma$, Phys. Rev. D 87 (2013) 075019, arXiv: 1301.4694 [hep-ph].
[17] M. Carena, I. Low and C. E. Wagner, *Implications of a modified Higgs to diphoton decay width*, JHEP **08** (2012) 060, arXiv: 1206.1082 [hep-ph].

[18] ATLAS Collaboration, *Search for Higgs boson decays to a photon and a Z boson in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV with the ATLAS detector*, Phys. Lett. B **726** (2014) 8, arXiv: 1402.3051 [hep-ex].

[19] CMS Collaboration, *Search for a Higgs boson decaying into a Z and a photon in pp collisions at \(\sqrt{s} = 7 \) and 8 TeV*, Phys. Lett. B **726** (2013) 587, arXiv: 1307.5515 [hep-ex].

[20] ATLAS Collaboration, *Search for the Z\(\gamma \) decay mode of the Higgs boson and for new high-mass resonances in pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector*, JHEP **10** (2017) 112, arXiv: 1708.00212 [hep-ex].

[21] CMS Collaboration, *Search for the decay of a Higgs boson in the ll\(\gamma \) channel in proton-proton collisions at \(\sqrt{s} = 13 \) TeV*, JHEP **11** (2018) 152, arXiv: 1806.05996 [hep-ex].

[22] ATLAS Collaboration, *The ATLAS experiment at the CERN Large Hadron Collider*, JINST **3** (2008) S08003.

[23] ATLAS Collaboration, *ATLAS Insertable B-Layer Technical Design Report*, ATLAS-TDR-19, 2010, url: https://cds.cern.ch/record/1291633, Addendum: ATLAS-TDR-19-ADD-1, 2012, url: https://cds.cern.ch/record/1451888.

[24] ATLAS Collaboration, *Performance of the ATLAS Trigger System in 2015*, Eur. Phys. J. C **77** (2017) 317, arXiv: 1611.09661 [hep-ex].

[25] ATLAS Collaboration, *The ATLAS simulation infrastructure*, Eur. Phys. J. C **70** (2010) 823, arXiv: 1005.4568 [physics.ins-det].

[26] S. Agostinelli et al., *GEANT4 - a simulation toolkit*, Nucl. Instrum. Methods A **506** (2003) 250.

[27] T. Sjöstrand, S. Mrenna and P. Skands, *A brief introduction to PYTHIA 8.1*, Comput. Phys. Commun. **178** (2008) 852, arXiv: 0710.3820 [hep-ph].

[28] R. D. Ball et al., *Parton distributions with LHC data*, Nucl. Phys. B **867** (2013) 244, arXiv: 1207.1393 [hep-ph].

[29] ATLAS Collaboration, *The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model*, ATL-PHYS-PUB-2016-017, 2016, url: https://cds.cern.ch/record/2206965.

[30] ATLAS Collaboration, *Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data*, JINST **14** (2019) P12006, arXiv: 1908.00005 [hep-ex].

[31] ATLAS Collaboration, *Muon reconstruction performance of the ATLAS detector in proton–proton collision data at \(\sqrt{s}=13 \) TeV*, Eur. Phys. J. C **76** (2016) 292, arXiv: 1603.05598 [hep-ex].

[32] A. Djouadi, J. Kalinowski and M. Spira, *HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension*, Comput. Phys. Commun. **108** (1998) 56, arXiv: hep-ph/9704448.

[33] A. Djouadi, J. Kalinowski, M. Mühlleitner and M. Spira, *HDECAY: Twenty++ years after*, Comput. Phys. Commun. **238** (2019) 214, arXiv: 1801.09506 [hep-ph].

[34] M. Spira, *QCD Effects in Higgs Physics*, Fortschritte der Physik **46** (1998) 203, arXiv: hep-ph/9705337.
[35] A. Djouadi, M. M. Mühlleitner and M. Spira, *Decays of Supersymmetric Particles: The Program SUSY-HIT (SU scept-SdecaY-Hdecay-InTerface)*, Acta Phys. Polon. B 38 (2007) 635, arXiv: hep-ph/0609292.

[36] C. Anastasiou et al., *High precision determination of the gluon fusion Higgs boson cross-section at the LHC*, JHEP 05 (2016) 058, arXiv: 1602.00695 [hep-ph].

[37] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, *Higgs Boson Gluon-Fusion Production in QCD at Three Loops*, Phys. Rev. Lett. 114 (2015) 212001, arXiv: 1503.06056 [hep-ph].

[38] F. Dulat, A. Lazopoulos and B. Mistlberger, *iHixs 2 – Inclusive Higgs cross sections*, Comput. Phys. Commun. 233 (2018) 243, arXiv: 1802.00827 [hep-ph].

[39] R. V. Harlander and K. J. Ozeren, *Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order*, JHEP 11 (2009) 088, arXiv: 0909.3420 [hep-ph].

[40] R. V. Harlander and K. J. Ozeren, *Top mass effects in Higgs production at next-to-next-to-leading order QCD: Virtual corrections*, Phys. Lett. B 679 (2009) 467, arXiv: 0907.2997 [hep-ph].

[41] R. V. Harlander, H. Mantler, S. Marzani and K. J. Ozeren, *Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass*, Eur. Phys. J. C 66 (2010) 359, arXiv: 0912.2194 [hep-ph].

[42] A. Pak, M. Rogal and M. Steinhauser, *Finite top quark mass effects in NNLO Higgs boson production at LHC*, JHEP 02 (2010) 025, arXiv: 0911.4662 [hep-ph].

[43] S. Actis, G. Passarino, C. Sturm and S. Uccirati, *NLO electroweak corrections to Higgs boson production at hadron colliders*, Phys. Lett. B 670 (2008) 12, arXiv: 0809.1381 [hep-ph].

[44] S. Actis, G. Passarino, C. Sturm and S. Uccirati, *NNLO computational techniques: The cases $H \to \gamma\gamma$ and $H \to gg$*, Nucl. Phys. B 811 (2009) 182, arXiv: 0809.3667 [hep-ph].

[45] M. Bonetti, K. Melnikov and L. Tancredi, *Higher order corrections to mixed QCD-EW contributions to Higgs boson production in gluon fusion*, Phys. Rev. D 97 (2018) 056017, Erratum: Phys. Rev. D 97 (2018) 099906, arXiv: 1801.10403 [hep-ph].

[46] M. Ciccolini, A. Denner and S. Dittmaier, *Strong and electroweak corrections to the production of Higgs+2jets via weak interactions at the LHC*, Phys. Rev. Lett. 99 (2007) 161803, arXiv: 0707.0381 [hep-ph].

[47] M. Ciccolini, A. Denner and S. Dittmaier, *Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC*, Phys. Rev. D 77 (2008) 013002, arXiv: 0710.4749 [hep-ph].

[48] P. Bolzoni, F. Maltoni, S.-O. Moch and M. Zaro, *Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD*, Phys. Rev. Lett. 105 (2010) 011801, arXiv: 1003.4451 [hep-ph].

[49] M. L. Ciccolini, S. Dittmaier and M. Krämer, *Electroweak radiative corrections to associated WH and ZH production at hadron colliders*, Phys. Rev. D 68 (2003) 073003, arXiv: hep-ph/0306234 [hep-ph].

[50] O. Brein, A. Djouadi and R. Harlander, *NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders*, Phys. Lett. B 579 (2004) 149, arXiv: hep-ph/0307206.

[51] O. Brein, R. Harlander, M. Wiesemann and T. Zirke, *Top-Quark Mediated Effects in Hadronic Higgs-Strahlung*, Eur. Phys. J. C 72 (2012) 1868, arXiv: 1111.0761 [hep-ph].
[52] L. Altenkamp, S. Dittmaier, R. V. Harlander, H. Rzehak and T. J. E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD, JHEP 02 (2013) 078, arXiv: 1211.5015 [hep-ph].

[53] A. Denner, S. Dittmaier, S. Kallweit and A. Mück, HAWK 2.0: A Monte Carlo program for Higgs production in vector-boson fusion and Higgs strahlung at hadron colliders, Comput. Phys. Commun. 195 (2015) 161, arXiv: 1412.5390 [hep-ph].

[54] O. Brein, R. V. Harlander and T. J. E. Zirke, vh@nnlo – Higgs Strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998, arXiv: 1210.5347 [hep-ph].

[55] O. Brein, R. V. Harlander and T. J. E. Zirke, vh@nnlo – Higgs Strahlung at hadron colliders, Comput. Phys. Commun. 184 (2013) 998, arXiv: 1210.5347 [hep-ph].

[56] R. V. Harlander, A. Kulesza, V. Theeuwes and T. Zirke, Soft gluon resummation for gluon-induced Higgs Strahlung, JHEP 11 (2014) 082, arXiv: 1410.0217 [hep-ph].

[57] W. Beenakker et al., NLO QCD corrections to t\bar{t}H production in hadron collisions, Nucl. Phys. B 653 (2003) 151, arXiv: hepph/0211352.

[58] S. Dawson, C. Jackson, L. H. Orr, L. Reina and D. Wackeroth, Associated Higgs boson production with top quarks at the CERN Large Hadron Collider: NLO QCD corrections, Phys. Rev. D 68 (2003) 034022, arXiv: hep-ph/0305087.

[59] Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen and L. Guo, QCD NLO and EW NLO corrections to t\bar{t}H production with top quark decays at hadron collider, Phys. Lett. B 738 (2014) 1, arXiv: 1407.1110 [hep-ph].

[60] S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184, arXiv: 1504.03446 [hep-ph].

[61] P. Nason and C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP 02 (2010) 037, arXiv: 0911.5299 [hep-ph].

[62] S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2007) 070, arXiv: 0709.2092 [hep-ph].

[63] P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040, arXiv: hep-ph/0409146.

[64] S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv: 0709.2092 [hep-ph].

[65] ATLAS Collaboration, Higgs boson production cross-section measurements and their EFT interpretation in the 4f decay channel at $\sqrt{s} = 13$ TeV with the ATLAS detector, CERN-EP-2020-034 (2020), arXiv: 2004.03447 [hep-ex].

[66] Long-Bin Chen, Cong-Feng Qiao, Rui-Lin Zhu, Reconstructing the 125 GeV SM Higgs boson through $t\bar{t}Y$, Phys. Lett. B 726 (2013) 306, arXiv: 1211.6058 [hep-ph].

[67] J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079, arXiv: 1405.0391 [hep-ph].

[68] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys G 43 (2016) 023001, arXiv: 1510.03865 [hep-ph].
[69] R. Frederix and S. Frixione, "Merging meets matching in MC@NLO," JHEP 12 (2012) 061, arXiv: 1209.6215 [hep-ph].

[70] E. Bothmann et al., "Event Generation with Sherpa 2.2," SciPost Phys. 7 (2019) 034, arXiv: 1905.09127 [hep-ph].

[71] ATLAS Collaboration, "The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim," ATL-PHYS-PUB-2010-013 (2010), URL: https://cds.cern.ch/record/1300517.

[72] R. D. Ball et al., "Parton distributions for the LHC Run II," JHEP 04 (2015) 040, arXiv: 1410.8849 [hep-ph].

[73] T. Gleisberg and S. Höche, "Comix, a new matrix element generator," JHEP 12 (2008) 039, arXiv: 0808.3674 [hep-ph].

[74] S. Schumann and F. Krauss, "A Parton shower algorithm based on Catani-Seymour dipole factorisation," JHEP 03 (2008) 038, arXiv: 0709.1627 [hep-ph].

[75] S. Höche, F. Krauss, M. Schönherr and F. Siegert, "A critical appraisal of NLO+PS matching methods," JHEP 09 (2012) 049, arXiv: 1111.1220 [hep-ph].

[76] S. Höche, F. Krauss, M. Schönherr and F. Siegert, "QCD matrix elements + parton showers: The NLO case," JHEP 04 (2013) 027, arXiv: 1207.5030 [hep-ph].

[77] S. Catani, F. Krauss, R. Kuhn and B. R. Webber, "QCD Matrix Elements + Parton Showers," JHEP 11 (2001) 063, arXiv: hep-ph/0109231.

[78] ATLAS Collaboration, "ATLAS Pythia 8 tunes to 7 TeV data," ATL-PHYS-PUB-2014-021, 2014, URL: https://cds.cern.ch/record/1966419.

[79] S. Alioli, P. Nason, C. Oleari and E. Re, "NLO vector-boson production matched with shower in POWHEG," JHEP 07 (2008) 060, arXiv: 0805.4802 [hep-ph].

[80] ATLAS Collaboration, "Measurement of the Z/γ∗ boson transverse momentum distribution in pp collisions at √s = 7 TeV with the ATLAS detector," JHEP 09 (2014) 145, arXiv: 1406.3660 [hep-ex].

[81] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky et al., "New parton distributions for collider physics," Phys. Rev. D 82 (2010) 074024, arXiv: 1007.2241 [hep-ph].

[82] J. Pumplin et al., "New Generation of Parton Distributions with Uncertainties From Global QCD Analysis," JHEP 07 (2002) 012, arXiv: hep-ph/0201195.

[83] K. Hamilton, P. Nason and G. Zanderighi, "MINLO: multi-scale improved NLO," JHEP 10 (2012) 155, arXiv: 1206.3572 [hep-ph].

[84] J. M. Campbell et al., "NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM," JHEP 07 (2012) 092, arXiv: 1202.5475 [hep-ph].

[85] K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, "Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching," JHEP 05 (2013) 082, arXiv: 1212.4504 [hep-ph].

[86] E. Bagnaschi, G. Degrassi, P. Slavich and A. Vicini, "Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM," JHEP 02 (2012) 088, arXiv: 1111.2854 [hep-ph].
[88] K. Hamilton, P. Nason, E. Re and G. Zanderighi, *NNLOPS simulation of Higgs boson production*, JHEP 10 (2013) 222, arXiv: 1309.0017 [hep-ph].

[89] K. Hamilton, P. Nason and G. Zanderighi, *Finite quark-mass effects in the NNLOPS POWHEG+MiNLO Higgs generator*, JHEP 05 (2015) 140, arXiv: 1501.04637 [hep-ph].

[90] G. Luisoni, P. Nason, C. Oleari and F. Tramontano, *HW+/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO*, JHEP 10 (2013) 083, arXiv: 1306.2542 [hep-ph].

[91] ATLAS Collaboration, *Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016*, Eur. Phys. J. C 79 (2019) 205, arXiv: 1810.05087 [hep-ex].

[92] ATLAS Collaboration, *Measurement of the inclusive isolated prompt photon cross section in pp collisions at √s = 7 TeV with the ATLAS detector*, Phys. Rev. D 83 (2011) 052005, arXiv: 1012.4389 [hep-ex].

[93] M. Cacciari, G. P. Salam and S. Sapeta, *On the characterisation of the underlying event*, JHEP 04 (2010) 065, arXiv: 0912.4926 [hep-ph].

[94] M. Cacciari, G. P. Salam and G. Soyez, *The catchment area of jets*, JHEP 04 (2008) 063, arXiv: 0802.1188 [hep-ph].

[95] ATLAS Collaboration, *Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1*, Eur. Phys. J. C 77 (2017) 490, arXiv: 1603.02934 [hep-ex].

[96] M. Cacciari, G. P. Salam and G. Soyez, *The anti-k_t jet clustering algorithm*, JHEP 04 (2008) 063, arXiv: 0802.1189 [hep-ph].

[97] ATLAS Collaboration, *Tagging and suppression of pileup jets with the ATLAS detector*, ATLAS-CONF-2014-018 (2014), url: https://cds.cern.ch/record/1700870.

[98] ATLAS Collaboration, *Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector*, Phys. Rev. D 91 (2015) 012006, arXiv: 1408.5191 [hep-ex].

[99] C. Patrignani et al., *Review of Particle Physics*, Chin. Phys. C 40 (2016) 100001.

[100] D. Rainwater, R. Szalapski and D. Zeppenfeld, *Probing color-singlet exchange in Z + 2-jet events at the CERN LHC*, Phys. Rev. D 54 (11 1996) 6680, arXiv: hep-ph/9605444 [hep-ph].

[101] OPAL collaboration, K. Ackerstaff et al., *Search for anomalous production of dilepton events with missing transverse momentum in e⁺e⁻ collisions at √s = 161 GeV and 172 GeV*, Eur. Phys. J. C 4 (1998) 47, arXiv: hep-ex/9710010.

[102] M. Vesterinen and T. Wyatt, *A novel technique for studying the Z boson transverse momentum distribution at hadron colliders*, Nucl. Instrum. Meth. A 602 (2009) 432, arXiv: 0807.4956 [hep-ph].

[103] M. Oreglia, *A Study of the Reactions ψ' → γγψ*, 1980, url: https://www.slac.stanford.edu/cgi-wrap/getdoc/slac-r-236.pdf.

[104] ATLAS Collaboration, *Search for Scalar Diphoton Resonances in the Mass Range 65-600 GeV with the ATLAS Detector in pp Collision Data at √s = 8 TeV*, Phys. Rev. Lett. 113 (2014) 171801, arXiv: 1407.6583 [hep-ex].
[105] ATLAS Collaboration, *Measurement of the inclusive isolated prompt photon cross section in pp collisions at √s = 7 TeV with the ATLAS detector*, Phys. Rev. D 83 (2011) 052005, arXiv: 1012.4389 [hep-ex].

[106] ATLAS Collaboration, *Search for the Dimuon Decay of the Higgs Boson in pp Collisions at √s = 13 TeV with the ATLAS Detector*, Phys. Rev. Lett. 119 (2017) 051802, arXiv: 1705.04582 [hep-ex].

[107] ATLAS Collaboration, *Luminosity determination in pp collisions at √s = 13 TeV using the ATLAS detector at the LHC*, ATLAS-CONF-2019-021, 2019, url: https://cds.cern.ch/record/2677054.

[108] G. Avoni et al., *The new LUCID-2 detector for luminosity measurement and monitoring in ATLAS*, JINST 13 (2018) P07017.

[109] I. W. Stewart and F. J. Tackmann, *Theory uncertainties for Higgs and other searches using jet bins*, Phys. Rev. D 85 (2012) 034011, arXiv: 1107.2117 [hep-ph].

[110] J. M. Campbell and R. Ellis, *MCFM for the Tevatron and the LHC*, Nucl. Phys. Proc. Suppl. 205-206 (2010) 10, arXiv: 1007.3492 [hep-ph].

[111] S. Gangal and F. J. Tackmann, *Next-to-leading-order uncertainties in Higgs+2 jets from gluon fusion*, Phys. Rev. D 87 (2013) 093008, arXiv: 1302.5437 [hep-ph].

[112] M. Grazzini and H. Sargsyan, *Heavy-quark mass effects in Higgs boson production at the LHC*, JHEP 09 (2013) 129, arXiv: 1306.4581 [hep-ph].

[113] ATLAS Collaboration, *Measurements of Higgs boson properties in the diphoton decay channel with 36fb−1 of pp collision data at √s = 13 TeV with the ATLAS detector*, Phys. Rev. D 98 (2018) 052005, arXiv: 1802.04146 [hep-ex].

[114] ATLAS Collaboration, *Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at √s = 13 TeV with the ATLAS detector*, Phys. Rev. D 96 (2017) 072002, arXiv: 1703.09665 [hep-ex].

[115] G. Cowan, K. Cranmer, E. Gross and O. Vitells, *Asymptotic formulae for likelihood-based tests of new physics*, Eur. Phys. J. C 71 (2011) 1554, arXiv: 1007.1727 [physics.data-an], Erratum: Eur. Phys. J. C 73 (2013) 2501.

[116] A. L. Read, *Presentation of search results: The CLs technique*, J. Phys. G: Nucl. Part. Phys. 28 (2002) 2693.

[117] ATLAS Collaboration, *ATLAS Computing Acknowledgements 2016–2017*, ATL-GEN-PUB-2016-002, url: https://cds.cern.ch/record/2202407.
1Department of Physics, University of Adelaide, Adelaide; Australia.
2Physics Department, SUNY Albany, Albany NY; United States of America.
3Department of Physics, University of Alberta, Edmonton AB; Canada.
4\(^{(a)}\)Department of Physics, Ankara University, Ankara;\(^{(b)}\)Istanbul Aydin University, Istanbul;\(^{(c)}\)Division of Physics, TOBB University of Economics and Technology, Ankara; Turkey.
5LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy; France.
6High Energy Physics Division, Argonne National Laboratory, Argonne IL; United States of America.
7Department of Physics, University of Arizona, Tucson AZ; United States of America.
8Department of Physics, University of Texas at Arlington, Arlington TX; United States of America.
9Physics Department, National and Kapodistrian University of Athens, Athens; Greece.
10Physics Department, National Technical University of Athens, Zografou; Greece.
11Department of Physics, University of Texas at Austin, Austin TX; United States of America.
12\(^{(a)}\)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul;\(^{(b)}\)Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul;\(^{(c)}\)Department of Physics, Bogazici University, Istanbul;\(^{(d)}\)Department of Physics Engineering, Gaziantep University, Gaziantep; Turkey.
13Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
14Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona; Spain.
15\(^{(a)}\)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing;\(^{(b)}\)Physics Department, Tsinghua University, Beijing;\(^{(c)}\)Department of Physics, Nanjing University, Nanjing;\(^{(d)}\)University of Chinese Academy of Science (UCAS), Beijing; China.
16Institute of Physics, University of Belgrade, Belgrade; Serbia.
17Department for Physics and Technology, University of Bergen, Bergen; Norway.
18Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA; United States of America.
19Institut für Physik, Humboldt Universität zu Berlin, Berlin; Germany.
20Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern; Switzerland.
21School of Physics and Astronomy, University of Birmingham, Birmingham; United Kingdom.
22\(^{(a)}\)Facultad de Ciencias y Centro de Investigaciones, Universidad Antonio Nariño, Bogotá; Colombia.
23\(^{(a)}\)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica;\(^{(b)}\)INFN Sezione di Bologna; Italy.
24Physikalisches Institut, Universität Bonn, Bonn; Germany.
25Department of Physics, Boston University, Boston MA; United States of America.
26Department of Physics, Brandeis University, Waltham MA; United States of America.
27\(^{(a)}\)Transilvania University of Brasov, Brasov;\(^{(b)}\)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest;\(^{(c)}\)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi;\(^{(d)}\)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca;\(^{(e)}\)University Politehnica Bucharest, Bucharest;\(^{(f)}\)West University in Timisoara, Timisoara; Romania.
28\(^{(a)}\)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava;\(^{(b)}\)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice; Slovak Republic.
29Physics Department, Brookhaven National Laboratory, Upton NY; United States of America.
30Departamento de Física, Universidad de Buenos Aires, Buenos Aires; Argentina.
31California State University, CA; United States of America.
32Cavendish Laboratory, University of Cambridge, Cambridge; United Kingdom.
Department of Physics, University of Cape Town, Cape Town; iThemba Labs, Western Cape; Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg; University of South Africa, Department of Physics, Pretoria; School of Physics, University of the Witwatersrand, Johannesburg; South Africa.

Department of Physics, Carleton University, Ottawa ON; Canada.

Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies - Université Hassan II, Casablanca; Faculté des Sciences, Université Ibn-Tofail, Kénitra; Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; Faculté des Sciences, Université Mohamed Premier and LPPTM, Oujda; Faculté des sciences, Université Mohammed V, Rabat; Morocco.

CERN, Geneva; Switzerland.

Enrico Fermi Institute, University of Chicago, Chicago IL; United States of America.

LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand; France.

Nevis Laboratory, Columbia University, Irvington NY; United States of America.

Niels Bohr Institute, University of Copenhagen, Copenhagen; Denmark.

Dipartimento di Fisica, Università della Calabria, Rende; INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; Italy.

Physics Department, Southern Methodist University, Dallas TX; United States of America.

Physics Department, University of Texas at Dallas, Richardson TX; United States of America.

National Centre for Scientific Research "Demokritos", Agia Paraskevi; Greece.

Department of Physics, Stockholm University; Oskar Klein Centre, Stockholm; Sweden.

Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen; Germany.

Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund; Germany.

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden; Germany.

Department of Physics, Duke University, Durham NC; United States of America.

SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh; United Kingdom.

INFN e Laboratori Nazionali di Frascati, Frascati; Italy.

Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen; Germany.

Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

INFN Sezione di Genova; Italy.

SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom.

LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble; France.

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA; United States of America.

Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei; Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao; School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai; Tsung-Dao Lee Institute, Shanghai; China.

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; Germany.

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima; Japan.

Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Department of Physics, University of Hong Kong, Hong Kong; Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; China.

Department of Physics, National Tsing Hua University, Hsinchu; Taiwan.
65IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.
66Department of Physics, Indiana University, Bloomington IN; United States of America.
67(a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b)ICTP, Trieste; (c)Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine; Italy.
68(a)INFN Sezione di Lecce; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce; Italy.
69(a)INFN Sezione di Milano; (b)Dipartimento di Fisica, Università di Milano, Milano; Italy.
70(a)INFN Sezione di Napoli; (b)Dipartimento di Fisica, Università di Napoli, Napoli; Italy.
71(a)INFN Sezione di Pavia; (b)Dipartimento di Fisica, Università di Pavia, Pavia; Italy.
72(a)INFN Sezione di Pisa; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa; Italy.
73(a)INFN Sezione di Roma; (b)Dipartimento di Fisica, Sapienza Università di Roma, Roma; Italy.
74(a)INFN Sezione di Roma Tor Vergata; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma; Italy.
75(a)INFN Sezione di Roma Tre; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma; Italy.
76(a)INFN-TIFPA; (b)Universität degli Studi di Trento, Trento; Italy.
77Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck; Austria.
78University of Iowa, Iowa City IA; United States of America.
79Department of Physics and Astronomy, Iowa State University, Ames IA; United States of America.
80Joint Institute for Nuclear Research, Dubna; Russia.
81(a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora; (b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (c)Universidade Federal de São João del Rei (UFSJ), São João del Rei; (d)Instituto de Física, Universidade de São Paulo, São Paulo; Brazil.
82KEK, High Energy Accelerator Research Organization, Tsukuba; Japan.
83Graduate School of Science, Kobe University, Kobe; Japan.
84(a)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow; Poland.
85Institute of Nuclear Physics Polish Academy of Sciences, Krakow; Poland.
86Faculty of Science, Kyoto University, Kyoto; Japan.
87Kyoto University of Education, Kyoto; Japan.
88Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka; Japan.
89Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata; Argentina.
90Physics Department, Lancaster University, Lancaster; United Kingdom.
91Oliver Lodge Laboratory, University of Liverpool, Liverpool; United Kingdom.
92Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana; Slovenia.
93School of Physics and Astronomy, Queen Mary University of London, London; United Kingdom.
94Department of Physics, Royal Holloway University of London, Egham; United Kingdom.
95Department of Physics and Astronomy, University College London, London; United Kingdom.
96Louisiana Tech University, Ruston LA; United States of America.
97Fysiska institutionen, Lunds universitet, Lund; Sweden.
98Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne; France.
99Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid; Spain.
100Institut für Physik, Universität Mainz, Mainz; Germany.
101School of Physics and Astronomy, University of Manchester, Manchester; United Kingdom.
102CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.
Department of Physics, University of Massachusetts, Amherst MA; United States of America.

Department of Physics, McGill University, Montreal QC; Canada.

School of Physics, University of Melbourne, Victoria; Australia.

Department of Physics, University of Michigan, Ann Arbor MI; United States of America.

Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk; Belarus.

Research Institute for Nuclear Problems of Byelorussian State University, Minsk; Belarus.

Group of Particle Physics, University of Montreal, Montreal QC; Canada.

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow; Russia.

Department of Physics and Astronomy, University of New Mexico, Albuquerque NM; United States of America.

Department of Physics, Northern Illinois University, DeKalb IL; United States of America.

Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk; Novosibirsk; Russia.

Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino; Russia.

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre "Kurchatov Institute", Moscow; Russia.

Department of Physics, New York University, New York NY; United States of America.

Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo; Japan.

Ohio State University, Columbus OH; United States of America.

Konstantinov Nuclear Physics Institute of National Research Centre "Kurchatov Institute", PNPI, St. Petersburg; Russia.

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA; United States of America.

Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; Departamento
Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa;\(^{(c)}\)Departamento de Física, Universidade de Coimbra, Coimbra;\(^{(d)}\)Centro de Física Nuclear da Universidade de Lisboa, Lisboa;\(^{(e)}\)Departamento de Física, Universidade do Minho, Braga;\(^{(f)}\)Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain);\(^{(g)}\)Dep Física and CEFITEC of Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica;\(^{(b)}\)Instituto Superior Técnico, Universidade de Lisboa, Lisboa; Portugal.

140Institute of Physics of the Czech Academy of Sciences, Prague; Czech Republic.
141Czech Technical University in Prague, Prague; Czech Republic.
142Charles University, Faculty of Mathematics and Physics, Prague; Czech Republic.
143Particle Physics Department, Rutherford Appleton Laboratory, Didcot; United Kingdom.
144IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette; France.
145Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA; United States of America.
146\(^{(a)}\)Departamento de Física, Pontificia Universidad Católica de Chile, Santiago;\(^{(b)}\)Universidad Andres Bello, Department of Physics, Santiago;\(^{(c)}\)Instituto de Alta Investigación, Universidad de Tarapacá;\(^{(d)}\)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso; Chile.
147Department of Physics, University of Washington, Seattle WA; United States of America.
148Department of Physics and Astronomy, University of Sheffield, Sheffield; United Kingdom.
149Department of Physics, Shinshu University, Nagano; Japan.
150Department Physik, Universität Siegen, Siegen; Germany.
151Department of Physics, Simon Fraser University, Burnaby BC; Canada.
152SLAC National Accelerator Laboratory, Stanford CA; United States of America.
153Physics Department, Royal Institute of Technology, Stockholm; Sweden.
154Departments of Physics and Astronomy, Stony Brook University, Stony Brook NY; United States of America.
155Department of Physics and Astronomy, University of Sussex, Brighton; United Kingdom.
156School of Physics, University of Sydney, Sydney; Australia.
157Institute of Physics, Academia Sinica, Taipei; Taiwan.
158\(^{(a)}\)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi;\(^{(b)}\)High Energy Physics Institute, Tbilisi State University, Tbilisi; Georgia.
159Department of Physics, Technion, Israel Institute of Technology, Haifa; Israel.
160Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv; Israel.
161Department of Physics, Aristotle University of Thessaloniki, Thessaloniki; Greece.
162International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo; Japan.
163Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo; Japan.
164Department of Physics, Tokyo Institute of Technology, Tokyo; Japan.
165Tomsk State University, Tomsk; Russia.
166Department of Physics, University of Toronto, Toronto ON; Canada.
167\(^{(a)}\)TRIUMF, Vancouver BC;\(^{(b)}\)Department of Physics and Astronomy, York University, Toronto ON; Canada.
168Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba; Japan.
169Department of Physics and Astronomy, Tufts University, Medford MA; United States of America.
170Department of Physics and Astronomy, University of California Irvine, Irvine CA; United States of America.
171Department of Physics and Astronomy, University of Uppsala, Uppsala; Sweden.
Department of Physics, University of Illinois, Urbana IL; United States of America.

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia - CSIC, Valencia; Spain.

Department of Physics, University of British Columbia, Vancouver BC; Canada.

Department of Physics and Astronomy, University of Victoria, Victoria BC; Canada.

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg; Germany.

Department of Physics, University of Warwick, Coventry; United Kingdom.

Waseda University, Tokyo; Japan.

Department of Particle Physics, Weizmann Institute of Science, Rehovot; Israel.

Department of Physics, University of Wisconsin, Madison WI; United States of America.

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal; Germany.

Department of Physics, Yale University, New Haven CT; United States of America.

Also at Borough of Manhattan Community College, City University of New York, New York NY; United States of America.

Also at Centro Studi e Ricerche Enrico Fermi; Italy.

Also at CERN, Geneva; Switzerland.

Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille; France.

Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève; Switzerland.

Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona; Spain.

Also at Department of Financial and Management Engineering, University of the Aegean, Chios; Greece.

Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI; United States of America.

Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY; United States of America.

Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva; Israel.

Also at Department of Physics, California State University, East Bay; United States of America.

Also at Department of Physics, California State University, Fresno; United States of America.

Also at Department of Physics, California State University, Sacramento; United States of America.

Also at Department of Physics, King’s College London, London; United Kingdom.

Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg; Russia.

Also at Department of Physics, University of Fribourg, Fribourg; Switzerland.

Also at Dipartimento di Matematica, Informatica e Fisica, Università di Udine, Udine; Italy.

Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow; Russia.

Also at Graduate School of Science, Osaka University, Osaka; Japan.

Also at Hellenic Open University, Patras; Greece.

Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay; France.

Also at Institutu Catalana de Recerca i Estudis Avancats, ICREA, Barcelona; Spain.

Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg; Germany.

Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen; Netherlands.

Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia; Bulgaria.

Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest; Hungary.

Also at Institute of Particle Physics (IPP), Vancouver; Canada.

Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku; Azerbaijan.
Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid; Spain.

Also at Joint Institute for Nuclear Research, Dubna; Russia.

Also at Louisiana Tech University, Ruston LA; United States of America.

Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia.

Also at National Research Nuclear University MEPhI, Moscow; Russia.

Also at Physics Department, An-Najah National University, Nablus; Palestine.

Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany.

Also at The City College of New York, New York NY; United States of America.

Also at TRIUMF, Vancouver BC; Canada.

Also at Universita di Napoli Parthenope, Napoli; Italy.

Also at University of Chinese Academy of Sciences (UCAS), Beijing; China.

* Deceased