Serum level of TSGF, CA242 and CA19-9 in pancreatic cancer

Jing-Ting Jiang, Chang-Ping Wu, Hai-Feng Deng, Ming-Yang Lu, Jun Wu, Hong-Yu Zhang, Wen-Hui Sun, Mei Ji

INTRODUCTION

Early period of pancreatic cancer lacked the typical clinic performances,[1,2] was high malignant and had a low survival time in five years.[3-6] And it was difficult to be diagnosed and made the patients lose the chances of radical cures. So it was very important to diagnose pancreatic cancer early.[7-9]. But the sensitivity and specificity were not ideal in examining pancreatic cancer with a single method. We assured the content of TSGF, CA242 and CA19-9 in serum of pancreatic cancer sufferers and analyzed their expression in different positions and tissue typing in order to improve the level of early period of the pancreatic cancer diagnosis.

MATERIALS AND METHODS

Materials

To collect 200 normal people who had medical check-up in the hospital as normal group, including 112 males and 88 females with a mean age of 55.0±11.2 (range, 22-68 years). To collect 52 pancreatitis suffers as pancreatitis group, including 29 males and 23 females with an average age of 66.0±8.0 (range, 60-74 years). To collect 96 pancreatic cancer suffers as pancreatic cancer group, including 61 males and 35 females with an average age of 67.6±6.7 (range, 60-88 years). There were 64 heads of pancreatic cancer, 18 body of pancreatic cancer and 10 tail of pancreatic cancer, which were all proved by pathology.

Methods

TSGF was assayed by colorimetric of biochemistry from Fujian New Continent Biochemical Technology Limited Company. CA242 and CA19-9 were assayed by ELISA from Sweden CanAg Company. All operations were followed by manuals. All data were showed as mean±SD and calculated by t test, and positive ratios were calculated by χ² test.

RESULTS

TSGF, CA242 and CA19-9 assay of three groups

Statistical significance of the contents of the three markers was found when pancreatic cancer group was compared with normal group and pancreatitis group (P<0.01). No statistical significance was found between normal group and pancreatitis group (P>0.05, Table 1).

Table 1 Laboratory parameters of the 3 tumor markers in pancreatic cancer group, pancreatitis group and normal group (mean±SD, ×10⁷ U/L)

Group	No. of cases	TSGF	CA242	CA19-9
Critical value		>71	>20	>37
Pancreatic cancer	96	80.7±12.6p	90.2±10.9p	643.5±203.6p
Pancreatitis	52	61.4±6.7	21.1±10.5	30.9±5.9
Normal				
22-59 yr	113	54.3±5.1	17.5±8.3	14.5±5.0
60-68 yr	87	56.6±5.8	19.2±6.6	17.2±5.9

*: P<0.01 vs normal group.

CONCLUSION

The positive likelihood ratios of TSGF, CA242 and CA19-9 were 5.4, 12.6 and 6.3, respectively, and their negative likelihood ratios were 0.10, 0.19 and 0.17 (Table 2).

Abstract

AIM: To establish a method to detect the expression of the tumor specific growth factor TSGF, CA242 and CA19-9 in serum and evaluate their value in diagnosis of pancreatic cancer.

METHODS: ELISA and Biochemical colorimetric assay were used to detect the serum content of TSGF, CA242 and CA19-9 in 200 normal cases, 52 pancreatitis patients and 96 pancreatic cancer patients.

RESULTS: The positive likelihood ratios of TSGF, CA242 and CA19-9 were 5.4, 12.6 and 6.3, respectively, and their negative likelihood ratios were 0.10, 0.19 and 0.17 (Table 2).
The different combinations of the 3 markers to the diagnosis in pancreatic cancer

When diagnosing pancreatic cancer by any of the 3 markers was over the critical value, the sensitivity, specificity and positive predictive value were 93.8%, 79.0% and 68.2%. When two of the 3 markers were over the critical value, the sensitivity, specificity and positive predictive value were 89.5%, 95.5% and 90.5%. When the 3 markers were over the critical value, the sensitivity was 77.0% and the specificity and positive predictive value were both 100%. Therefore, the combination diagnosis in pancreatic cancer could increase the specificity of the diagnosis (Table 3).

Group	No. of cases	1 Item (+)	2 Item (+)	3 Item (+)
Pancreatic cancer	96	90 (93.8)	86 (89.5)	74 (77.0)
Normal	200	42 (21.0)	9 (4.5)	0 (100)
Positive likelihood rate (%)	68.2	90.5	100	

(1), sensitivity (%).

The correlation between the different positions of pancreatic cancer and the levels of the 3 markers

International Union Against Cancer (UICC) divided pancreatic cancer into head, body, tail and whole of pancreatic cancer. Statistical significance was found that the levels of TSGF and CA242 in head of pancreatic cancer were extra better than those in the other three kinds of pancreatic cancer (P<0.01). But no statistical significance was found in the levels of the 3 markers in the other three kinds of pancreatic cancer (P>0.05). The levels of CA19-9 had no correlation with the positions of the pancreatic cancer (P>0.05). (Table 4).

To compare the sensitivity of the 3 tumor markers in different stages of pancreatic cancer

We analyzed the sensitivity of the 3 tumor markers in serum in different stages of pancreatic cancer (Table 5). The results showed that the sensitivity gradually strengthened by the progress of clinical stages. Statistical significance was found between stage II, III, IV, and stage I (P<0.01). The sensitivity of CA19-9 was higher than that of CA242, but there was no statistical significance (P>0.05). The sensitivity of TSGF in stage I was significant better than that of CA242 and CA19-9 (P<0.01). So TSGF could be regarded as a tumor marker to filtrate pancreatic cancer in early stage.

Table 2

Value of diagnosis	Sensitivity (%)	Specificity (%)	Positive likelihood ratio	Negative likelihood ratio
TSGF	91.6 (88)a	83.0	5.4	0.10
CA242	82.3 (79)	93.5b	12.6	0.19
CA19-9	85.4 (82)	86.5	6.3	0.17

(), No. of cases; aP<0.05, bP<0.01 vs the other two indexes. Sensitivity = true positive/patients×100%/(TP/TP+FN)×100%, specificity = true negative/normal×100%=TN/(TN+FP)×100%, positive likelihood ratio = true positive/false positive = sensitivity/(1-specificity), negative likelihood ratio = (1-true positive)/(1-false positive) = (1-sensitivity)/specificity.

Table 3

Group	No. of cases	1 Item (+)	2 Item (+)	3 Item (+)	3 Item (+)
Pancreatic cancer	96	90 (93.8)	86 (89.5)	74 (77.0)	
Normal	200	42 (21.0)	9 (4.5)	0 (100)	
Positive likelihood rate (%)	68.2	90.5	100		

Table 5

Clinical stages	No. of cases	TSGF	CA242	CA19-9
I	10	6 (60.0)a	3 (30.0)a	4 (40.0)a
II	12	9 (75.0)	6 (50.0)	7 (58.3)
III	25	22 (88.0)	20 (80.0)	21 (84.0)
IV	49	46 (93.8)	40 (81.6)	42 (85.7)

Note: (), sensitivity (%); aP<0.01 vs the sensitivity of stage II, III, IV; bP<0.01 vs the sensitivity of CA242, CA19-9.

DISCUSSION

The incidence of pancreatic cancer is rising[10,11]. We want to diagnose pancreatic cancer in early stage by tumor markers[12]. First, we should find one tumor marker of good specificity[13,14]. TSGF was a gene that could promote the growth of tumor blood vessels. It could greatly hyperplas in the tumor tissues and capillary vessels around. No correlation was found in the hyperplasia of non-tumor blood vessels. TSGF had good sensitivity to malignant tumors. CA19-9 belonged to the ramification of lactotetraose and was a kind of the ganglioside lipoprotein protein[15,16]. It was mucoprotein when in serum and its epipositions was pentaglucose determinant. Despite advances in preoperative radiologic imaging, a significant fraction of potentially resectable pancreatic cancers are found to be unresectable at laparotomy[17]. CA242 was a kind of sialic acid mucoprotein tumor associated antigen linked Mucin pyrenoid by –O-. It existed in the same molecule with CA19-9. But it belonged to the different antigen determinant with CA19-9. Therefore, there was no correlation between CA19-9 and CA242[18]. But they were complemental. They had good sensitivity in pancreatic cancer diagnosis. This result was exactly similar with the report of Ichihara et al[19]. This research also showed that 3 tumor markers in pancreatic cancer group were remarkably higher than that of normal group. And the levels of the 3 tumor markers in pancreatitis group were not high.

The research showed that the positive likelihood ratio of TSGF, CA242 and CA19-9 were 5.4, 12.6 and 6.3, and the negative likelihood ratio were 0.1, 0.19 and 0.17. So the three indexes were very important in clinical pancreatic cancer diagnosis. TSGF had good sensitivity in pancreatic cancer diagnosis as 91.6%. CA19-9 was very important to evaluate the curative effect of chemotherapy and to judge the survival time[20-26]. CA242 had good specificity as 93.5%. When diagnosing with the combination assay of the 3 indexes, the sensitivity was 77.0% and the specificity and positive predictive value were both 100%. Therefore, combination diagnosis should be used in pancreatic cancer diagnosis in order to improve the specificity[27-29].

The research of Matsuyma et al. proved that there was significant correlation in malignant tumors between the creation of blood vessels and blood transfer[30]. TSGF and CA242 had high levels. It was related to the rich blood supply of the head of pancreas. Pancreas had the priority and step artery pancreaticoduodenalis superior and the forward and back branches down pancreaticoduodenales inferiors. The arteries were connected by anastomosis at the head of pancreas to be arcuate arterial. The arcuate arterial gave out branches to supply the forward and back parts of the head of pancreas and duodenum. It accelerated the head of pancreas circulation. So
it made the carbohydrate antigen excreted by tumors to be a high level in serum. But there was no correlation between the expression of CA19-9 and the position of tumor. This needs further researches. TSGF was a new tumor marker related to the blood vessel hyperplasia of malignant tumors. It was also a result of the hyperplasia of the malignant tumors and the capillary vessels around. It was released to blood with the acceleration of blood circulation. In the different stage of pancreatic cancer, the sensitivity of the tumor markers TSGF, CA242 and CA19-9 increased with the progress in different stages. Statistical significance was found in the sensitivity of stage II, III, IV and stage I. This result disagreed that Frebourg et al reported that there was no correlation between the level of CA19-9 in serum and the stage of pancreatic cancer\(^{29}\). The sensitivity of CA19-9 was a little higher than that of CA242, but there was no statistical significance. In the stage I of pancreatic cancer, the sensitivity of TSGF was remarkably higher than that of CA242 and CA19-9. Therefore, TSGF can be regarded as a tumor marker to filtrate pancreatic cancer in early stage.

The research shows that there is very important correlation between the levels of TSGF, CA242 and CA19-9 and pancreatic cancer. The combined assay of the 3 indexes does help to diagnose pancreatic cancer in early stage. At the same time between the levels of TSGF, CA242 and CA19-9 and pancreatic cancer, the sensitivity of TSGF was remarkably higher than that of CA242 and CA19-9. Therefore, TSGF can be regarded as a tumor marker to filtrate pancreatic cancer in early stage.

REFERENCES

1 Barbe L, Ponsot P, Vilgrain V, Terris B, Fléjou JF, Sauvanet A, Belghiti J, Hammel P, Ruszniewski P, Bernades P. Intraductal papillary mucinous tumors of the pancreas. Clinical and morphological aspects in 30 patients. Gastroentrol Clin Biol 1997; 21:278-286

2 Love L, Piziotto G, Darnascelli B, Ceglia E, Garbagnatti F, Mihelč M. Pancreatic tumor imaging by II generation CT, gray-scale ultrasound and improved angiography. Tumori 1998; 84:357-372

3 Sahmoun AE, D’Agostino RA Jr, Bell RA, Schwenke DC. International variation in pancreatic cancer mortality for the period 1995-1998. Eur J Epidemiol 2003; 18:801-816

4 Burchart F, Trillingsgaard J, Olsen SD, Moesgaard F, Federspiel B, Struckmann JR. Resection of cancer of the body and tail of the pancreas. Epidemiology 2003; 50:563-566

5 Soga J. Primary endocrinomas (carcinoids and variant neoplasms) of the gallbladder. A statistical evaluation of 138 reported cases. Exp Clin Cancer Res 2002; 22:15-51

6 Pingank JF Jr, Hoffman JP, Sigrudson ER, Ross E, Sassen AR, Eisenberg BL. Pancreatic resection for locally advanced primary and metastatic nonpancreatic neoplasms. Am Surg 2002; 68:337-340

7 Birk D, Schoenber NH, Gansauge F, Formentini A, Hayashi Y, Koike M, Yamaguchi T. Ductal and acinar differentiation in pancreatic endocrine tumors. Gastroenterol Clin Biol 2003; 27:248-251

8 Standop J, Schneider MB, Ulrich A, Pour PM. Experimental animal models in pancreatic carcinogenesis: lessons for human pancreatic cancer. Dig Dis 2001; 19:24-31

9 Berberat P, Friess H, Kashiwagi M, Beger HG, Buchler MW. Diagnosis and staging of pancreatic cancer by positron emission tomography. World J Surg 1999; 23:882-887

10 Zalalai M. Pancreatic cancer - a continuing challenge in oncology. Pathol Oncol Res 2003; 9:252-263

11 Shire S, Barany MG, Ghandhi P, Neoptolemos JP. Review article: chemotherapy for pancreatic cancer. Aliment Pharmacol Ther 2003; 18:1049-1069

12 Otsuki M. Chronic pancreatitis in Japan: epidemiology, prognosis, diagnostic criteria, and future problems. J Gastroenterol 2003; 38:315-326

13 Laurent-Puig P, Lubrin R, Semhou-Ducloix S, Peletier G, Fourre C, Ducrèux M, Briantais MJ, Buffet C, Soussi T. Antibodies against p53 protein in serum of patients with benign or malignant pancreatic and biliary diseases. Gut 1995; 36:455-458

14 Abrams RA, Grochow LB, Chakravartly A, Sohn TA, Zahrak ML, Haulik TL, Ord S, Hruban RH, Lillimone KD, Pitt HA, Cameron JL, Yeo CJ. Intensified adjuvant therapy for pancreatic and periampullary adenocarcinoma: survival results and observations regarding patterns of failure, radiotherapy dose and CA19-9 levels. Int J Radiat Oncol Biol Phys 1999; 44:1039-1046

15 Vibe-Larsen EM, Wulf H, Orntoft TF. Increased concentrations of genotype-interpreted Ca 19-9 in urine of bladder cancer patients mark diffuse atypia of the urothelium. Clin Chem 1998; 44:197-204

16 Ugorski M, Laskowska A. Slialy Lewis: a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol 2002; 49:303-311

17 Magnani JL, Steplewski Z, Koprowski H, Ginsburg V. Identification of the gastrointestinal and pancreatic cancer-associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin. Cancer Res 1983; 43:5489-5492

18 Schlüerman MG, Ho HS, Bold RJ. Utility of tumor markers in determining resectability of pancreatic cancer. Arch Surg 2003; 138:951-956

19 Banfi G, Zerba A, Pastori S, Parolini D, Di Carlo V, Bonini P. Behavior of tumor markers CA19, CA195, CA242 and TPS in the diagnosis and follow-up of pancreatic cancer. Clin Chem 1993; 39:420-423

20 Ichihara T, Nomoto S, Takeda S, Nagura H, Sakamoto J, Kondo K, Horisawa M, Nakao A. Clinical usefulness of the immunostaining of the tumor markers in pancreatic cancer. Kendo Chem 2001; 48:939-943

21 Frebourg T, Bercott, E, Mancheno N, Santen J, Basuyau JP, Breton P, Janvresse A, Brudelle P, Bourrelle J. The evaluation of CA19-9 antigen level in the early detection of pancreatic cancer. A prospective study of 866 patients. Cancer 1988; 62:2287-2290

22 Ziske C, Schlie C, Gorschluter M, Gnasamer A, Mey U, Strehl J, Sauerbretch T, Schmidt-Wolfgang. Prognostic value of CA 19-9 levels in patients with inoperable adenocarcinoma of the pancreas treated with gemcitabine. Br J Cancer 2003; 89:1413-1417

23 Halm U, Schumann T, Schieke I, Wittigmann H, Mossner J, Keim V. Decrease of CA 19-9 during chemotherapy with gemcitabine predicts survival time in patients with advanced pancreatic cancer. Br J Cancer 2000; 82:1013-1016

24 Masaki T, Ohkawa S, Hirakawa S, Miyakawa K, Tamai S, Taka K. A case of advanced pancreatic cancer showing remarkable response to gemcitabine treatment. Gan To Kagaku Ryoho 2003; 30:1333-1336

25 Kamisawa T, Tu Y, Egawa N, Ishiwata J, Tsuruta K, Okamoto A, Hayashi Y, Kieke M, Yamaguchi T. Ductal and acinar differentiation in pancreatic endocrine tumors. Dig Dis Sci 2002; 47:2254-2261

26 Koopmann J, Zhang Z, White N, Rosenzweig F, Fedarko N, Jagannath S, Canto MI, Yeo CJ, Chan DW, Goggins M. Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin Cancer Res 2004; 10:860-868

27 Schlüerman MG, Ho HS, Bold RJ. Utility of tumor markers in determining resectability of pancreatic cancer. Arch Surg 2003; 138:951-956

28 Dianxu F, Shengdao Z, Tianquan H, Yu J, Ruqiong L, Zurong Y, Xuezhi W. A prospective study of detection of pancreatic carcinoma by combined plasma K-ras mutations and serum CA19.9 antigen level in the early detection of pancreatic cancer. Br J Cancer 2004; 89:1413-1417

29 Mu DQ, Wang GF, Peng SY. p53 protein expression and CA19.9 values in differential cytological diagnosis of pancreatic cancer complicated with chronic pancreatitis and chronic pancreatitis. World J Gastroenterol 2003; 9:1815-1818

30 Mutsuyama K, Chiba Y, Sasaki M, Tanaka H, Murakawa K, Tanigawa N. Tumor angiogenesis as a prognostic marker in operable non-small cell lung cancer. Ann Thorac Surg 1999; 65:1405-1409

31 Frebourg T, Bercoff E, Mouchon N, Senant J, Basuyau JP, Breton P, Janvresse A, Brudelle P, Bourrelle J. The evaluation CA19-9 antigen level in the early detection of pancreatic cancer. Cancer 1988; 62:2287-2290

Edited by Kumar M and Xu FM