Semantic Analysis of Japanese Noun Phrases: A New Approach to Dictionary-Based Understanding

Sadao Kurohashi and Yasuyuki Sakai
Graduate School of Informatics, Kyoto University
Yoshida-honmachi, Sakyo, Kyoto, 606-8501, Japan
kuro@i.kyoto-u.ac.jp

Abstract
This paper presents a new method of analyzing Japanese noun phrases of the form N1 no N2. The Japanese postposition no roughly corresponds to of, but it has much broader usage. The method exploits a definition of N2 in a dictionary. For example, rugby no coach can be interpreted as a person who teaches technique in rugby. We illustrate the effectiveness of the method by the analysis of 300 test noun phrases.

1 Introduction
The semantic analysis of Japanese noun phrases of the form N1 no N2 is one of the difficult problems which cannot be solved by the current efforts of many researchers. Roughly speaking, Japanese noun phrase N1 no N2 corresponds to English noun phrase N2 of N1. However, the Japanese postposition no has much broader usage than of as follows:

- watashi ‘I’ no kuruma ‘car’ possession
- tsukue ‘desk’ no ashi ‘leg’ whole-part
- gray no seihaku ‘uniform’ modification
- senmonka ‘expert’ no chousa ‘study’ agent
- rugby no coach subject
- yakyu ‘baseball’ no senshu ‘player’ category
- kaze ‘cold’ no virus result
- ryokou ‘travel’ no yuubin ‘preparation’ purpose
- toranpu ‘card’ no tejina ‘trick’ instrument

The conventional approach to this problem was to classify semantic relations, such as possession, whole-part, modification, and others. Then, classification rules were crafted by hand, or detected from relation-tagged examples by a machine learning technique (Shimazu et al., 1987; Sumita et al., 1990; Tomiura et al., 1995; Kurohashi et al., 1998).

The problem in such an approach is to set up the semantic relations. For example, the above examples and their classification came from the IPA nominal dictionary (Information-Technology Promotion Agency, Japan, 1996). Is it possible to find clear boundaries among subject, category, result, purpose, instrument, and others? No matter how fine-grained relations we set up, we always encounter phrases which are on the boundary or belong to two or more relations.

This paper proposes a completely different approach to the task, which exploits semantic role information of nouns in an ordinary dictionary.

2 Semantic Roles of Nouns
The meaning of a word can be recognized by the relationship with its semantic roles. In the case of verbs, the arguments of the predicates constitute the semantic roles, and a considerable number of studies have been made. For example, the case grammar theory is a semantic valence theory that describes the logical form of a sentence in terms of a predicate and a series of case-labeled arguments such as agent, object, location, source, goal (Fillmore, 1968). Furthermore, a wide-coverage dictionary describing semantic roles of verbs in machine readable form has been constructed by a great deal of labor (Ikehara et al., 1997).

Not only verbs, but also nouns can have semantic roles. For example, coach is a coach of some sport; virus is a virus causing some disease. Unlike the case of verbs, no semantic-
Table 1: Semantic relations in N_1 no N_2

Relation	Noun Phrase N_1 no N_2	Verb Phrase
Semantic-role	rugby no coach,	hon-wo ‘book-ACC’ yomu ‘read’
	kaze ‘cold’ no virus,	
	tsukue ‘desk’ no ashi ‘leg’,	
	ryokou ‘travel’ no jyunbi ‘preparation’	
Agent	senmonka ‘expert’ no chousa ‘study’	kare-ga ‘he-NOM’ yomu ‘read’
Possession	watashi ‘I’ no kuruma ‘car’	
Belonging	gakkou ‘school’ no sensei ‘teacher’	
Time	aki ‘autumn’ no hatake ‘field’	3ji-ni ‘at 3 o’clock’ yomu ‘read’
Place	Kyoto no mise ‘store’	heya-de ‘in room’ yomu ‘read’
Modification	gray no seihuku ‘uniform’	isode ‘hurriedly’ yomu ‘read’
	huzoku ‘attached’ no neji ‘screw’	
	ki ‘wooden’ no hako ‘box’	
Complement	kimono no jyosei ‘lady’	
	nobel-sho ‘Nobel prize’ no kisetsu ‘season’	

role dictionary for nouns has been constructed so far. However, in many cases, semantic roles of nouns are described in an ordinary dictionary for human being. For example, a Japanese dictionary for children, Reikai Shougaku Kogojiten (abbreviated to RSK) (Tadika, 1997), gives the definition of the word coach and virus as follows:

coach a person who teaches technique in some sport

virus a living thing even smaller than bacteria which causes infectious disease like influenza

If an NLP system can utilize these definitions as they are, we do not need to take the trouble in constructing a semantic-role dictionary for nouns in the special format for machine-use.

3 Interpretation of N_1 no N_2 using a Dictionary

Semantic-role information of nouns in an ordinary dictionary can be utilized to solve the difficult problem in the semantic analysis of N_1 no N_2 phrases. In other words, we can say the problem disappears.

For example, rugby no coach can be interpreted by the definition of coach as follows: the dictionary describes that the noun coach has an semantic role of sport, and the phrase rugby no coach specifies that the sport is rugby. That is, the interpretation of the phrase can be regarded as matching rugby in the phrase to some sport in the coach definition. Furthermore, based on this interpretation, we can paraphrase rugby no coach into a person who teaches technique in rugby, by replacing some sport in the definition with rugby.

Kaze ‘cold’ no virus is also easily interpreted based on the definition of virus, linking kaze ‘cold’ to infectious disease.

Such a dictionary-based method can handle interpretation of most phrases where conventional classification-based analysis failed. As a result, we can arrange the diversity of N_1 no N_2 senses simply as in Table 1.

The semantic-role relation is a relation that N_1 fills in an semantic role of N_2. When N_2 is an action noun, an object-action relation is also regarded as a semantic-role relation.

On the other hand, in the agent, possession and belonging relations, N_1 and N_2 have a weaker relationship. In theory, any action can be done by anyone (my study, his reading, etc.).
anything can be possessed by anyone (my pen, his feeling, etc.); and anyone can belong to any organization (I belong to a university, he belongs to any community, etc.).

The difference between the semantic-role relation and the agent, possession, belonging relations can correspond to the difference between the agent and the object of verbs. In general, the object has a stronger relationship with a verb than the agent, which leads several asymmetrical linguistic phenomena.

The time and place relations have much clearer correspondence to optional cases for verbs. A modification relation is also parallel to modifiers for verbs. If a phrase has a modification relation, it can be paraphrased into N2 is N1, like gray no seihuku ‘uniform’ is paraphrased into seihuku ‘uniform’ is gray.

The last relation, the complement relation is the most difficult to interpret. The relation between N1 and N2 does not come from N1’s semantic roles, or it is not so weak as the other relations. For example, kimono no jyosei ‘lady’ means a lady wearing a kimono, and nobel-sho ‘Nobel prize’ no kisetsu ‘season’ means a season when the Nobel prizes are awarded. Since automatic interpretation of the complement relation is much more difficult than that of other relations, it is beyond the scope of this paper.

4 Analysis Method

Once we can arrange the diversity of N1 no N2 senses as in Table 1, their analysis becomes very simple, consisting of the following two modules:

1. Dictionary-based analysis (abbreviated to DBA hereafter) for semantic-role relations.

2. Semantic feature-based analysis (abbreviated to SBA hereafter) for some semantic-role relations and all other relations.

After briefly introducing resources employed, we explain the algorithm of the two analyses.

4.1 Resources

4.1.1 RSK

RSK (Reikai Shougaku Kokugojoiten), a Japanese dictionary for children, is used to find semantic roles of nouns in DBA. The reason why we use a dictionary for children is that, generally speaking, definition sentences of such a dictionary are described by basic words, which helps the system finding links between N1 and a semantic role of a head word.

All definition sentences in RSK were analyzed by JUMAN, a Japanese morphological analyzer, and KNP, a Japanese syntactic and case analyzer (Kurohashi and Nagao, 1994; Kurohashi and Nagao, 1998). Then, a genus word for a head word, like a person for coach were detected in the definition sentences by simple rules: in a Japanese definition sentence, the last word is a genus word in almost all cases; if there is a noun coordination at the end, all of those nouns are regarded as genus words.

4.1.2 NTT Semantic Feature Dictionary

NTT Communication Science Laboratories (NTT CS Lab) constructed a semantic feature tree, whose 3,000 nodes are semantic features, and a nominal dictionary containing about 300,000 nouns, each of which is given one or more appropriate semantic features. Figure 1 shows the upper levels of the semantic feature tree.

SBA uses the dictionary to specify conditions of rules. DBA also uses the dictionary to calculate the similarity between two words. Suppose the word X and Y have a semantic feature Sx and Sy, respectively, their depth is dx and dy in the semantic tree, and the depth of their lowest (most specific) common node is dc, the similarity between X and Y, sim(X,Y), is calculated as follows:

\[sim(X,Y) = \frac{d_C \times 2}{d_X + d_Y}. \]

If Sx and Sy are the same, the similarity is 1.0, the maximum score based on this criteria.

4.1.3 NTT Verb Case Frame Dictionary

NTT CS Lab also constructed a case frame dictionary for 6,000 verbs, using the semantic features described above. For example, a case frame of the verb kakou-suru (process) is as follows:

\[N_1(AGENT)-ga N_2(CONCRETE)-wo kakou-suru \]

‘N1 process N2’

where ga and wo are Japanese nominative and accusative case markers. The frame describes
that the verb *kakou-suru* takes two cases, nouns of AGENT semantic feature can fill the *ga*-case slot and nouns of CONCRETE semantic feature can fill the *wo*-case slot. KNP utilizes the case frame dictionary for the case analysis.

4.2 Algorithm

Given an input phrase \(N_1 \, no \, N_2\), both DBA and SBA are applied to the input, and then the two analyses are integrated.

4.2.1 Dictionary-based Analysis

Dictionary based-Analysis (DBA) tries to find a correspondence between \(N_1\) and a semantic role of \(N_2\) by utilizing RSK, by the following process:

1. Look up \(N_2\) in RSK and obtain the definition sentences of \(N_2\).
2. For each word \(w\) in the definition sentences other than the genus words, do the following steps:
 1. When \(w\) is a noun which shows a semantic role explicitly, like *kotogara* 'thing', *monogoto* 'matter', *nanika* 'something', and \(N_1\) does not have a semantic feature of HUMAN or TIME, give 0.9 to their correspondence.
 2. When \(w\) is other noun, calculate the similarity between \(N_1\) and \(w\) by using NTT Semantic Feature Dictionary (as described in Section 4.1.2), and give the similarity score to their correspondence.
 3. When \(w\) is a verb, it has a vacant case slot, and the semantic constraint for the slot meets the semantic feature of \(N_1\), give 0.5 to their correspondence.
3. If we could not find a correspondence with 0.6 or more score by the step 2, look up the genus word in the RSK, obtain definition sentences of it, and repeat the step 2 again. (The looking up of a genus word is done only once.)
4. Finally, if the best correspondence score is 0.5 or more, DBA outputs the best correspondence, which can be a semantic-role relation of the input; if not, DBA outputs nothing.

For example, the input *rugby no coach* is analyzed as follows (figures attached to words indicate the similarity scores; the underlined score is the best):

1. **rugby no coach**

 - coach a person who teaches technique \(0.21\)
 - in some sport \(1.0\)

 Rugby, technique and *sport* have the semantic feature *SPORT, METHOD* and *SPORT* respectively in NTT Semantic Feature Dictionary. The lowest common node between *SPORT* and *METHOD* is *ABSTRACT*, and based on these semantic features, the similarity between *rugby* and *technique* is calculated as 0.21. On the other hand,
the similarity between rugby and sport is calculated as 1.0, since they have the same semantic feature. The case analysis finds that all case slots of teach are filled in the definition sentence. As a result, DBA outputs the correspondence between rugby and sport as a possible semantic-role relation of the input.

On the other hand, bunsho ‘writings’ no tatsujin ‘expert’ is an example that \(N_1 \) corresponds to a vacant case slot of the predicate outstanding:

\((2) \) bunsho ‘writings’ no tatsujin ‘expert’

expert a person being outstanding (at \(\phi_{0.50} \))

Puroresu ‘pro wrestling’ no chukei ‘relay’ is an example that the looking up of a genus word broadcast leads to the correct analysis:

\((3) \) puroresu ‘pro wrestling’ no chukei ‘relay’

relay a relay broadcast

broadcast a radio, or television presentation of news, entertainment, music and others

4.2.2 Semantic Feature-based Analysis
Since diverse relations in \(N_1 \) no \(N_2 \) are handled by DBA, the remaining relations can be detected by simple rules checking the semantic features of \(N_1 \) and/or \(N_2 \).

The following rules are applied one by one to the input phrase. Once the input phrase meets a condition, SBA outputs the relation in the rule, and the subsequent rules are not applied any more.

1. \(N_1: \text{HUMAN}, N_2: \text{RELATIVE} \rightarrow \text{semantic-role (relative)} \)
 e.g. kare ‘he’ no oba ‘aunt’

2. \(N_1: \text{HUMAN}, N_2: \text{PERSONAL_RELATION} \rightarrow \text{semantic-role (personal relation)} \)
 e.g. kare ‘he’ no tomodachi ‘friend’

3. \(N_1: \text{HUMAN}, N_2: \text{HUMAN} \rightarrow \text{modification (aposition)} \)
 e.g. gakusei ‘student’ no kare ‘he’

4. \(N_1: \text{ORGANIZATION}, N_2: \text{HUMAN} \rightarrow \text{belonging} \)
 e.g. gakkou ‘school’ no sensei ‘teacher’

5. \(N_1: \text{AGENT}, N_2: \text{EVENT} \rightarrow \text{agent} \)
 e.g. senmonka ‘expert’ no chousa ‘study’

6. \(N_1: \text{MATERIAL}, N_2: \text{CONCRETE} \rightarrow \text{modification (material)} \)
 e.g. ki ‘wood’ no hako ‘box’

7. \(N_1: \text{TIME}, N_2: * \rightarrow \text{time} \)
 e.g. aki ‘autumn’ no hatake ‘field’

8. \(N_1: \text{COLOR, QUANTITY, or FIGURE}, N_2: * \rightarrow \text{modification} \)
 e.g. gray no seihuku ‘uniform’

9. \(N_1: *, N_2: \text{QUANTITY} \rightarrow \text{semantic-role (attribute)} \)
 e.g. hei ‘wall’ no takasa ‘height’

10. \(N_1: *, N_2: \text{POSITION} \rightarrow \text{semantic-role (position)} \)
 e.g. tsukue ‘desk’ no migi ‘right’

11. \(N_1: \text{AGENT}, N_2: * \rightarrow \text{possession} \)
 e.g. watashi ‘I’ no kuruma ‘car’

12. \(N_1: \text{PLACE or POSITION}, N_2: * \rightarrow \text{place} \)
 e.g. Kyoto no mise ‘store’

The rules 1, 2, 9 and 10 are for certain semantic-role relation. We use these rules because these relations can be analyzed more accurately by using explicit semantic features, rather than based on a dictionary.

4.2.3 Integration of Two Analyses
Usually, either DBA or SBA outputs some relation. In rare cases, neither analysis outputs any relation, which means analysis failure. When both DBA and SBA output some relations, the results are integrated as follows (basically, if the output of the one analysis is more reliable, the output of the other analysis is discarded):

If a semantic-role relation is detected by SBA, discard the output from DBA.

Else if the correspondence of 0.95 or more score is detected by DBA, discard the output from SBA.

Else if some relation is detected by SBA, discard the output from DBA if the correspondence score is 0.8 or less.

In the case of the following example, rojin ‘old person’ no shozo ‘portrait’, both analyses were accepted by the above criteria.

\(^{3} * \) meets any noun.
Table 2: Experimental results of N_1 no N_2 analysis.

Relation (R)	Correct R is correct, but the detected correspondence was incorrect	R was detected, but incorrect	R was not detected, though R is possibly correct
Semantic-role (DBA)	137	19	21
Semantic-role (SBA)	15	—	2
Agent	10	—	1
Possession	32	—	7
Belonging	12	—	1
Time	20	—	1
Place	23	—	7
Modification	20	—	3

(4) rojin ‘old person’ no shozo ‘portrait’

DBA:
portrait a painting or photograph of a face or figure of real person

SBA: N_1:AGENT, N_2:* → possession

DBA interpreted the phrase as a portrait on which an old person was painted; SBA detected the possession relation which means an old person possesses a portrait. One of these interpretations would be preferred depending on context, but this is a perfect analysis expected for N_1 no N_2 analysis.

5 Experiment and Discussion

5.1 Experimental Evaluation

We have collected 300 test N_1 no N_2 phrases from EDR dictionary (Japan Electronic Dictionary Research Institute Ltd., 1995), IPA dictionary (Information-Technology Promotion Agency, Japan, 1996), and literatures on N_1 no N_2 phrases, paying attention so that they had enough diversity in their relations. Then, we analyzed the test phrases by our system, and checked the analysis results by hand.

Table 2 shows the reasonably good result both of DBA and SBA. The precision of DBA, the ratio of correct analyses to detected analyses, was 77% ($=137/(137+19+21)$); the recall of DBA, the ratio of correct analyses to potential semantic-role relations, was 78% ($=137/(137+19+19)$). The result of SBA is also good, excepting modification relation.

Some phrases were given two or more relations. On average, 1.1 relations were given to one phrase. The ratio that at least one correct relation was detected was 81% ($=242/300$); the ratio that all possibly correct relations were detected and no incorrect relation was detected was 73% ($=219/300$).

5.2 Discussion of Correct Analysis

The success ratio above was reasonably good, but we would like to emphasize many interesting and promising examples in the analysis results.

(5) mado ‘window’ no curtain ‘curtain’

curtain a hanging cloth that can be drawn to cover a window in a room, to divide a room, etc.

(6) osetsuma ‘living room’ no curtain ‘curtain’

curtain a hanging cloth that can be drawn to cover a window in a room, to divide a room, etc.

(7) oya ‘parent’ no isan ‘legacy’

legacy property left on the death of the owner

Mado ‘window’ no curtain must embarrass conventional classification-based methods; it might be place, whole-part, purpose, or some other relation like being close. However, DBA can clearly explain the relation. Osetuma ‘living room’ no curtain is another interestingly analyzed phrase. DBA not only interprets it in a simple sense, but also provides us with more interesting information that a curtain might be being used for partition in the living room.
The analysis result of *oya 'parent' no isan 'legacy' *is also interesting. Again, not only the correct analysis, but also additional information was given by DBA. That is, the analysis result tells us that the parent died. Such information would facilitate intelligent performance in a dialogue system analyzing:

User: I bought a brand-new car by the legacy from my parent.
System: Oh, when did your parent die? I didn't know that.

By examining these analysis results, we can conclude that the dictionary-based understanding approach can provide us with much richer information than the conventional classification-based approaches.

5.3 Discussion of Incorrect Analysis
It is possible to classify some of the causes of incorrect analyses arising from our method.

One problem is that a definition sentence does not always describe well the semantic roles as follows:

(8) *shiire 'stocking' no saikaku 'resourcefulness'

 resourcefulness the ability to use one's head cleverly

*Saikaku 'resourcefulness' *can be the ability for some task, but the definition says nothing about that. On the other hand, the definition of *sainou 'talent' *is clearer about the semantic role as shown below. Consequently, *shiire 'stocking' no sainou 'talent' *can be interpreted correctly by DBA.

(9) *shiire 'stocking' no sainou 'talent'

 talent power and skill, esp. to do something

This represents an elementary problem of our method. Out of 175 phrases which should be interpreted as semantic-role relation based on the dictionary, 13 were not analyzed correctly because of this type of problem.

Another problem is that sometimes the similarity calculated by NTT semantic feature dictionary is not high enough to correspond as follows:

(10) *ume 'ume flowers' no meisho 'famous place'

 famous place a place being famous for scenery, etc.

In some cases the structure of NTT semantic feature dictionary is questionable; in some cases a definition sentence is too rigid; in other cases an input phrase is a bit metaphorical.

As for SBA, most relations can be detected well by simple rules. However, it is not possible to detect a modification relation accurately only by using NTT semantic feature dictionary, because modifier and non-modifier nouns are often mixed in the same semantic feature category. Other proper resource should be incorporated; one possibility is to use the dictionary definition of *N1*.

6 Related Work
From the view point of semantic roles of nouns, there have been several related research conducts: the mental space theory is discussing the functional behavior of nouns (Fauconnier, 1985); the generative lexicon theory accounts for the problem of creative word senses based on the qualia structure of a word (Pustejovsky, 1995); Dahl et al. (1987) and Macleod et al. (1997) discussed the treatment of nominalizations. Compared with these studies, the point of this paper is that an ordinary dictionary can be a useful resource of semantic roles of nouns.

Our approach using an ordinary dictionary is similar to the approach used to creat MindNet (Richardson et al., 1998). However, the semantic analysis of noun phrases is a much more specialized and suitable application of utilizing dictionary entries.

7 Conclusion
The paper proposed a method of analyzing Japanese *N1 no N2* phrases based on a dictionary, interpreting obscure phrases very clearly.

The method can be applied to the analysis of compound nouns, like *baseball player*. Roughly speaking, the semantic diversity in compound nouns is a subset of that in *N1 no N2* phrases. Furthermore, the method must be applicable to
the analysis of English noun phrases. The translated explanation in the paper naturally indicates the possibility.

Acknowledgments

The research described in this paper was supported in part by JSPS-RFTF96P00502 (The Japan Society for the Promotion of Science, Research for the Future Program) and Grant-in-Aid for Scientific Research 10143209.

References

Deborah A. Dahl, Martha S. Palmer, and Rebecca J. Passonneau. 1987. Nominalizations in PUNDIT. In Proceedings of the 25th Annual Meeting of ACL, pages 131–139, Stanford, California.

Gilles Fauconnier. 1985. Mental Spaces: aspects of meaning construction in natural language. The MIT Press.

Charles J. Fillmore. 1968. The case for case. Holt, Rinehart and Winston, New York.

Satoru Ikehara, Masahiro Miyazaki, Satoshi Shirai, Akio Yokoo, Hiromi Nakaiwa, Kentarou Ogura, and Yoshihumi Oyama Yoshihiko Hayashi, editors. 1997. Japanese Lexicon. Iwanami Publishing.

Information-Technology Promotion Agency, Japan. 1996. Japanese Nouns: A Guide to the IPA Lexicon of Basic Japanese Nouns.

Japan Electronic Dictionary Research Institute Ltd. 1995. EDR Electronic Dictionary Specifications Guide.

Sadao Kurohashi and Makoto Nagao. 1994. A syntactic analysis method of long Japanese sentences based on the detection of conjunctive structures. Computational Linguistics, 20(4).

Sadao Kurohashi and Makoto Nagao. 1998. Building a Japanese parsed corpus while improving the parsing system. In Proceedings of the First International Conference on Language Resources & Evaluation, pages 719–724.

Sadao Kurohashi, Masaki Murata, Yasunori Yata, Mitsunobu Shimada, and Makoto Nagao. 1998. Construction of Japanese nominal semantic dictionary using "A NO B" phrases in corpora. In Proceedings of COLING-ACL’98 workshop on the Computational Treatment of Nominals.

Catherine Macleod, Adam Meyers, Ralph Grishman, Leslie Barrett, and Ruth Reeves. 1997. Designing a dictionary of derived nominals. In Proceedings of Recent Advances in Natural Language Processing, Tzigov Chark, Bulgaria.

James Pustejovsky. 1995. The Generative Lexicon. The MIT Press.

Stephen D. Richardson, William B. Dolan, and Lucy Vanderwende. 1998. Mindnet: acquiring and structuring semantic information from text. In Proceedings of COLING-ACL’98.

Akira Shimazu, Shozo Naito, and Hirosato Nomura. 1987. Semantic structure analysis of Japanese noun phrases with adnominal particles. In Proceedings of the 25th Annual Meeting of ACL, pages 123–130, Stanford, California.

Eiichiro Sumita, Hitoshi Iida, and Hideo Koyama. 1990. Translating with examples: A new approach to machine translation. In Proceedings of the 3rd TMI, pages 203–212.

Jyunichi Tadika, editor. 1997. Reika Shougaku Kokugojiten (Japanese dictionary for children). Sanseido.

Yoichi Tomiura, Teigo Nakamura, and Toru Hitaka. 1995. Semantic structure of Japanese noun phrases NP no NP (in Japanese). Transactions of Information Processing Society of Japan, 36(6):1441–1448.