Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor

Guangcheng Yang1, Hailong Hu2, Yong Zhou3, Yingjie Hu4, Hui Huang1, Fude Nie1 & Weimei Shi1

1Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan, 621900, China, 2Analytical and Testing center, Southwest University of Science and Technology, Mianyang, Sichuan, China, 621010, 3ERERC, School of Physics, National Laboratory of Solid State Microstructures, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093 (P. R. China), 4School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University; Nanjing 211171, China.

Energetic material is a reactive substance that contains a great amount of potential energy, which is extremely sensitive to external stimuli like force. In this work, one-molecule-thick single-crystalline nanosheets of energetic material were synthesized. Very small force applied on the nanosheet proves to lead to the rotation of the tilted nitro groups, and subsequently change of current of the nanosheet. We apply this principle to design high-sensitive force sensor. A theoretical model of force-current dependence was established based on the nanosheets' molecular packing structure model that was well supported with the high resolution XPS, AFM analysis results. An ultra-low-force with range of several picoNewton to several nanoNewton can be measured by determination of corresponding current value.

The growing interest in the field of nanomechanics drives the need for more accurate force measurements down to nanoNewtons for determination of nanomechanical properties of micro- and nano-devices. The comprehensive understanding of the behaviors and properties of materials at nanometer length and nano-newton force scales is one of the critical challenges to be addressed for design and improvement of next generation materials and devices, and there are many issues1-5 that must be addressed to achieve reliable and quantitative measurements of forces at nano/picoNewton scale. Therefore, researches of ultra-low-force measuring methods and high force sensitive materials are extremely important and urgent. In recent years, some researchers have made important steps based on magnetic flux quantization in a superconducting annulus6, single-molecule force spectroscopy7 and protein-tension8. However, the disadvantages of expensive instruments, cellular complexity and wild-type function losing after protein integration have hampered their widespread adoption9. So, Investigation on ultra high force-sensitive materials and their nano-devices at piconewton scale still has an important significance, particularly the very thin film that have the advantages in design and fabrication micro-and nano-mechanical systems.

Energetic material (EM) is a kind of reactive substance that contains a great amount of potential energy, which has greatly promoted the development of aerospace industry, infrastructure, airbag, weapon, etc. It is extremely sensitive to stimuli such as impact, friction, heat, static electricity, or electromagnetic radiation. Under those stimuli, EM can be initiated to undergo very rapid, self-propagating reactions that results in the formation of gas products, the liberation of heat. Benefiting from this feature, special sensors that detect those stimuli with super high precision are expected to be developed. The nitro group is one of the most common explosophores used globally in high EMs, for example, TNT (2,4,6-Trinitrotoluene). Researchers believe that nitro groups are far more sensitive to outside stimuli and prove to be trigger spots in nitro EMs9-10. If a small force is applied on a few or a limited number of nitro groups, it will cause nitro groups warping or distortion and will change the conductivity of EM molecules due to conjugated electroconductivity of nitro groups. So ultra-low-force measuring will alternatively be realized by sensing mechanics effect, such as bond tilting, molecular deformation, resistance change, etc.

In the past few years, considerable attention has been focused on two-dimensional (2D) monolayer sheets comprising one atomic or molecular layer, due to their unique structural and phychemical properties. For example, graphene11-13, boron nitride, dichalcogenides14 and oxides15-17. Most those nanosheets possess chemical stability, which were widely applied in optical and optoelectronic fields. It is a challenge to form the monolayer
sheets of highly reactive substances like EMs. Intramolecular reactions of EM monolayer will easily be initiated under very weak stimuli due to its high surface energy and high amount of stored chemical energy in molecules.

If EM is present in the form of monolayer sheets, all the atoms are exposed on the surface. Simple ultra-low-force may deform nitro groups or initiate the intramolecular reactions. Conversely, we may apply this principle to design high-sensitive force sensor. In monolayer sheets, nitro groups will be more sensitive to force than those in free crystals and the number of nitro groups under force can be accurately calculated to obtain an effective force sensing model. Besides, the monolayer sheets of EM may have other unique properties and applications owing to their sensitivity to stimuli of heat, static electricity and electromagnetic radiation, for example, the sheets can be used to create reactive patterns by etching with micro-current for optoelectronic application. In fact until now, no studies have been found that address the preparation of EM monolayer nanosheet and its application in micro sensors.

In this communication, one-molecule-thick single-crystalline nanosheets of EM 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105, Fig. 1a shows the molecular structure) supported on highly oriented pyrolytic graphites (HOPG) were for the first time prepared by using vapour self-assembling method. The shape, surface morphology and molecular packing structure of LLM-105 nanosheets have been investigated through experimental data analysis combined computer simulation. A theoretical model of force-current dependence is proposed based on the principle that nitro group rotation under force leads to the nanosheet thickness decrease and conductivity increase. Furthermore, the validity of model was confirmed by the measured results of AFM as a calibration.

Results
Analysis of atomic force microscopy (AFM) images in the topographic mode (Fig. 1b) shows that LLM-105 was assembled as sheets with a rectangular shape and a lateral dimension of more than 1 μm. From the line sections shown in Fig. 1c, the thickness is measured...
between the sheet and the substrate surface, which yielded a value of 0.83 nm with a completely flat plane surface. And the calculation results show that the distance between top of the nanosheet and HOPG substrate is about 0.51 nm (Fig. 1d). It means that nanosheet is of one-molecule-thick (typically ~1 nm). The surface details of nanosheets can be more clearly observed in high-magnification current image of 20 nm×20 nm with a conductive AFM at 0.1 V (Fig. 1d). Bright patches means relatively high current. It is found that periodicity bright spots are presented on the surface of the sheets and the distances of the spots were about 1.4 nm in direction of A and 1.8 nm in direction of B, respectively (inset of Fig. 1d).

In order to determine the molecular packing structure of LLM-105 nanosheets within the HOPG plane, the optimized molecular packing structure has been studied by using density functional theory (DFT) calculations. The simulation results show that LLM-105 molecules can be packed periodically into a monolayer structure on HOPG surface. Two adjacent LLM-105 molecules form centrosymmetric dimers via strong N-H...O hydrogen bond N(13)...O(15') (Fig. 1a shows the atom serial numbers). The N(10)O2 groups have nearly the same plane with the pyrazine ring, while the N(7)O2 groups are rotated with respect to the ring plane due to the strong repulsive force between a pair of closely nitro groups (Fig. 1e, Fig. 1 g). There are two kind of tilted nitro groups with different torsion angle of (1)-C(6)-N(7)-O(8), one is 167° and the other is 154°. So there exist two kinds of dimers, and one dimmer aggregate coplanar with another different kind of dimmer to generate a flat tetramer via intermolecular N-H...O hydrogen bonds N(13)-H(13B)...O(8') and N(14)-H(14A)...O(9'). As a basic unit, the tetramer is arrayed periodically to form a one-molecule-thick single-crystalline nanosheet via intermolecular hydrogen bonds and the π-π stacked attraction between LLM-105 molecular and graphite layers. The single-crystalline exhibits p2 symmetry with unit cell parameters of a = 1.81 nm, b = 2.13 nm and γ = 139.84°. Two adjacent tilted nitro groups with torsion angle of about 154° form a bulge onto the sheet surface, and the bulge height above the ground of graphite layer is about 0.51 nm (Fig. 1f). The regular, periodic bulges are labeled with circles and the distance of the circles were 1.39 nm and 1.81 nm in the direction of A and B, respectively (Fig 1e). Their included angle is about 88°. Meanwhile, when conductive AFM tip scans over the nanosheet with a weak voltage, the bulges are closer to the tip than other region within the sheet surface and the conjugated delocalized electrons of nitro groups have better conductivity, which will result in relatively large current passing through the bulges and form periodicity bright spots in conductive AFM image (Fig. 1d). Distances and direction between the bright spots are in good agreement with those of circles in Fig 1e.

In X-ray Photoelectron Spectroscopy (XPS) of the nanosheets, there exist N1s peaks with binding energy range between 395 eV and 410 eV (shown in Fig. 2a). Comparison of the high resolution N1s spectrum of nanosheets and that of the free LLM-105 crystal (Fig. 2b) exhibits obviously binding energy shifts due to different crystal forms and the different chemical environments of these two samples. It is worthwhile to note that two new peaks appear at around 406.7 eV and 405.8 eV that are assigned to the nitro groups, which means that there are three different nitro groups in nanosheets. The concentration rate of three nitro groups about 1:1:2 for 154° nitro group, 167° nitro group and planar nitro group, respectively. Above molecular packing model shows that one quarter of nitro groups are tilted with torsion angle of 154°, another quarter are tilted with torsion angle of 167°, and two others are parallel to pyrazine ring plane. Additionally, our theoretical results indicate that the smaller the torsion angle of nitro group, the more deviating from pyrazine plane, the higher binding energy in N1s XPS spectra (See Supplemental Information).

The tilted nitro groups are closer to HOPG than planar nitro groups, which improve the conductivity of the one-molecule-thick nanosheets due to the delocalized π-clouds in nitro groups. Fig. 3a shows typical current-voltage (I–V) curves for an Au coated tip in contact with a LLM-105 nanosheet on HOPG. 10 times repeated experiments lead to almost the similar curves, which indicate that the nanosheets are stable at this range of voltage and force. Those curves appear symmetric and show a reasonably linear slope at low bias voltage. The approximate linear portion of the I-V characteristic between ±0.3 V was used to define the nanosheet resistance equal to 1/slope. At higher bias values, the current shows a nonlinear increase. Voltage excursions beyond 1.5 V typically results in a dramatic increase in current and further rise in voltage will lead to nanosheet break. The most probable reason is that under high current, LLM-105 decomposes and forms gas molecules to escape into space, which led to breakdown of the nanosheet at the point of contact with AFM.
tip. By using this feature, two square patterns (Fig. 3c) and the logo of our institute (Fig. 3d) are directly written on the nanosheet under the program that controls the tip-moving route path. ICM is the abbreviation of our institute, Institute of Chemical Materials. A similar experimental was conducted on graphene oxide (GO) nanosheet that contains no energetic groups under same conditions, no obvious changes was observed (see Supplemental Information).

Discussion

LLM-105 has a skeleton of pyrazine ring with a conjugated system of six π-electrons delocalized over the ring, and has alternating nitro- and amino-groups in combination with N-oxide moiety that are capable of the formation of both the intra- and inter-molecular hydrogen bonds. Driven by the intermolecular hydrogen-bond interactions and chemical bonding of π-π stacking attraction between the LLM-105/graphite layers, LLM-105 gaseous molecules are absorbed on the surface of HOPG substrate and undergo self-assembly to form nanosheets. The molecular self-assembly process is the result of an intricate balance between adsorbate–adsorbate and adsorbate–substrate interactions. Dimension and shape of the aggregation on the HOPG surface are controlled by forces including Van der Waals interactions and π–π stacked interactions between the LLM-105 and graphite layers, electrostatic interactions between closed nitro groups, forces of intermolecular hydrogen-bond among LLM-105 molecules. The chemical bonding of π–π stacked attraction prompts the molecules to aggregate coplanar. The intermolecular hydrogen-bond interaction constrains the molecules to array compactly and regularly to form a two-dimensional crystal with p2 symmetry (Fig 1e). The binding energy in N1s XPS spectra are in good agreement with the computed model of LLM-105 molecular packing structure on HOPG plane and the computed packing structure of nitro groups is in good agreement with AFM analysis results. The great correspondence of theoretical simulation and experimental results verified that the molecular packing model is accurate and reliable.

According to the molecular packing model, a quarter of nitro groups in the nanosheets are tilted from pyrazine ring plane with a torsion angle of 154°. Under tip force, the most deformation of nanosheet is taken up by rotation of the 154° nitro groups, because the elastic deformation caused by van der Waals forces is very small compared with the twisted deformation of the tilted nitro groups (See Supplemental Information). Ultra-small tip force will lead to the rotation of the tilted nitro groups and thinning of the nanosheet and increase of current. Based on the torsion of the nitro groups, a one-to-one dependency between current and force may be established. As such, a high-sensitive force sensor is expected to be fabricated from the one-molecule-thick nanosheets of energetic material and the schematic of the measurement architecture is shown in Fig. 4d.

Figure 3 | I-V curves of the LLM-105 nanosheets and patterns on nanosheets. (a) the I-V curve of the LLM-105 nanosheet on HOPG at a voltage ranged from −1.0 to 1.0 V conducted by a conductive AFM tip at a load of 1 nN. There are ten almost overlapping curves that indicate the nanosheet is stable under the voltage less than 1.0 V. (b) I-V characters of the nanosheet at large bias scale with the same tip and load as a. Ten curves are similar and it is showed that the nanosheet becomes unstable when the voltages surpass 1.5 V. Further rise in voltage will lead to nanosheet break, which provides the possibility of pattern fabrication in LLM-105 nanosheets. (c) Dynamic force microscope (DFM) topographical of LLM-105 nanosheet on HOPG, the dark squares in nanosheet in regions of 50 nm×50 nm and 200 nm×200 nm were scanned at bias value of 5 V with conductive AFM. (d) The logo pattern of our institute, ICM, wrote on an explosive nanosheet of LLM-105. “ICM” is the abbreviation of “Institute of Chemical Materials”.

www.nature.com/scientificreports
Supplemental Information. The curves are smooth, good linear and non-overlapping. It is revealed that we can establish a good one-to-one relationship between current and force. Using this relationship and by detecting the tunneling current, an ultra-low force could be measured with good reproducibility and high precision. However, not all the molecular nanosheets are applicable for measurement of the micro force with this method. Graphene oxide (GO) nanosheets and titania nanosheet were used to investigate the structure of tilted nitro groups that cause the LLM-105 nanosheets high sensitive to external force. Unlike LLM-105, GO contains conjugated six-membered ring structures and no conductive nitro groups. I–V curves of GO nanosheet are not smooth and oscillating, which indicates that current through GO nanosheet is unstable and has no a one-to-one correspondence with force and current (see supplemental information). Furthermore, the GO nanosheet is less sensitive to force than LLM-105 nanosheet. Titania nanosheet is not conductive at low voltage and breakdowns at high voltage. For GO nanosheets and titania nanosheet, it is difficult to establish a good relationship between current and force, and those two nanosheets are not suitable for making high sensitive force sensor.

In Fig. 4a, with the force increase, the conductivity of nanosheet increase significantly, and it is observed that the curves are remarkably sensitive to applied force. In generally, there are two reasons that can result in the increase of the current with increasing the tip force. One is the contact area between the tip and nanosheets is extended, the other is the increases of the tunneling current density of the nanosheet induced by the nanosheet deformation. In this work, we have taken into both of factors to investigate force-current dependence of nanosheet. Under the ultra-low force below 9.6 nN, the deformation of the nanosheet is mainly caused by the rotation of nitro groups. The electron transfer of the one-molecule-thick nanosheet, can just be thought as the electrons transporting through a LLM-105 molecular junction with a tunneling progress, the junction conductivity depended the thickness of the nanosheet, the molecular HOMO-LUMO energy gap, the electrode work function, the contact properties between the nanosheet and electrode (physical or chemical contact) and junction bias. The tunneling progress can be simply modeled as a rectangle barrier tunneling. The barrier length is the nanosheet thickness, and the barrier height is depend on the molecular HOMO-LUMO energy gap and the electrode work function and applied bias. At a constant bias, the tunneling current density j decreased exponentially with the barrier length L, it can be expressed by equation (1):

$$j = j_0 \exp(-\beta L)$$

Where j_0 is the current density at absent barrier, β is the decay factor that primarily depends on the electronic structure of the nanosheet,

![Figure 4](https://www.nature.com/scientificreports/images/4-698.png)

Figure 4 Dependence of force-current for LLM-105 nanosheets on HOPG substrate. (a) logarithm of the current of LLM-105 nanosheet as a function of applied bias at tip load of 0.2 nN, 1.5 nN, 3.0 nN, 6 nN and 7.5 nN. It shows the conductivity of the nanosheets was increased exponentially with the force. (b) The force-current experimental data (symbols) and theoretical fits (solid lines) at a constant bias of 0.5 V. A relation curve is drawn on the base of the currents at 30 different loads from 150 pN to 9.2 nN. The curve fits well with the calculating model described in text. It indicates that the calculating model is accurate and reliable and a load below 150 pN can be calculated by the model. (c) A SEM image of a typical gold-coated tip with an end radius of about 40 nm (the scale bar is 300 nm). (d) Schematic of the measurement architecture, the 154° nitro group will twist under tip load, resulting the conductivity of the nanosheet increase. When tip force is applied on LLM-105 nanosheet, the 154° nitro groups will rotate anticlockwise, the sheet will move toward HOPG and make the sheet thinner and current increase.
the barrier length \(L \) is the average thickness of nanosheet (0.83 nm). When the thickness was reduced by applied force, the current density will be increased exponentially. The tip can be looked as a sphere with a radius \(R \) of 40 nm (Fig 4c), so the contact area \(A \) and the deformation \(\delta \) can be characterized by Hertz mode\(^2\), and shows in following equations:

\[
A = \pi \left(\frac{RF}{K} \right)^{2/3}
\]

\[
\delta = \left(\frac{F^2}{2K} \right)^{1/3}
\]

Where \(F \) is the force Tip and the \(K \) is the effective modulus given by:

\[
K^{-1} = \frac{3}{4} \left[\frac{1 - \nu_1^2}{E_1} + \frac{1 - \nu_2^2}{E_2} \right]
\]

\(E_1 \) is Young's modulus for the Au coated tip (69 GPa)\(^2\), \(E_2 \) is the modulus for the nanosheet. \(\nu_1 \) and \(\nu_2 \) is the Piosson's ratios for the tip and nanosheet that can be assumed to be 0.33.

So the tunneling current \(I \) can be expressed as a function with \(F \) by following:

\[
I(F) = CF^{2/3} \exp \left(\frac{RF^2}{3K} \right)
\]

Where \(C = \frac{\pi R^2}{K} \), \(F \) is the applied force \((- \beta L) \), \(B = \beta \left(\frac{1}{2K} \right)^{1/3} \), the factor \(\beta \) is presumed to keep a constant with the nanosheet deformation, so the parameter of \(C \) and \(B \) can be keep as a constant for the load. At a constant bias of 0.5 V, the force-current experimental data as symbols and theoretical fitting by equation (5) as a solid line are in Fig. 4b. The force-current dependence model is in good coincidence with the experimental data.

Although it is a simple model that the increase mechanism of current density with the deformation cannot be discussed in detail here, the force sensitivity of current density can be confirmed by this model. The whole LLM-105 molecule is supported by tilting quarter nitro group on the HOPG surface like a molecule spring. When the force increases faintly the molecule would be pushed to the HOPG surface with the tilted nitro group lying down, and the conductivity of the molecule would be increased significantly. Compared with elastic deformation of the film thickness, nitro group torsion deformation would increase force-sensitivity up to about two orders of magnitude.

In conclusion, we have synthesized one-molecule-thick nanosheet of LLM-105 energetic material with a rectangular shape and a lateral dimension more than 1.0 μm via vapour self-assembling method. The computed molecular packing model of LLM-105 energetic material with a rectangular shape and a lateral magnitude. Elastic deformation of the film thickness, nitro group torsion deformation cannot be discussed in detail here, the force sensitivity of current density can be confirmed by this model. The whole LLM-105 molecule is supported by tilting quarter nitro group on the HOPG surface like a molecule spring. When the force increases faintly the molecule would be pushed to the HOPG surface with the tilted nitro group lying down, and the conductivity of the molecule would be increased significantly. Compared with elastic deformation of the film thickness, nitro group torsion deformation would increase force-sensitivity up to about two orders of magnitude.

In conclusion, we have synthesized one-molecule-thick nanosheet of LLM-105 energetic material with a rectangular shape and a lateral dimension more than 1.0 μm via vapour self-assembling method. The computed molecular packing model of LLM-105 energetic material with a rectangular shape and a lateral magnitude. Elastic deformation of the film thickness, nitro group torsion deformation cannot be discussed in detail here, the force sensitivity of current density can be confirmed by this model. The whole LLM-105 molecule is supported by tilting quarter nitro group on the HOPG surface like a molecule spring. When the force increases faintly the molecule would be pushed to the HOPG surface with the tilted nitro group lying down, and the conductivity of the molecule would be increased significantly. Compared with elastic deformation of the film thickness, nitro group torsion deformation would increase force-sensitivity up to about two orders of magnitude.

In conclusion, we have synthesized one-molecule-thick nanosheet of LLM-105 energetic material with a rectangular shape and a lateral dimension more than 1.0 μm via vapour self-assembling method. The computed molecular packing model of LLM-105 energetic material with a rectangular shape and a lateral magnitude. Elastic deformation of the film thickness, nitro group torsion deformation cannot be discussed in detail here, the force sensitivity of current density can be confirmed by this model. The whole LLM-105 molecule is supported by tilting quarter nitro group on the HOPG surface like a molecule spring. When the force increases faintly the molecule would be pushed to the HOPG surface with the tilted nitro group lying down, and the conductivity of the molecule would be increased significantly. Comparison with elastic deformation of the film thickness, nitro group torsion deformation would increase force-sensitivity up to about two orders of magnitude.
19. Son, K. A., Kim, H. I. & Houston, J. E. Role of stress on charge transfer through self-assembled alkanethiol monolayers on Au. Phys.Rev.Lett. 86, 5357–5360 (2001).
20. DelRio, FW. et al. Elastic, adhesive, and charge transport properties of a metal-molecule-metal junction: the role of molecular orientation, order, and coverage. Langmuir 26, 1688–1699 (2010).
21. Wold, D. J. & Frisbie, C. D. Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy. J. Am. Chem. Soc. 123, 5549–5556 (2001).
22. Johnson, K. L. Contact Mechanics. Cambridge University Press, P84 (1985).
23. Salvadori, M. C. et al. Measurement of the elastic modulus of nanostructured gold and platinum thin films. Phys. Rev. B, 67 153404–153406 (2003).
24. Pagoria, P. F. et al., Synthesis, scale-up and experimental testing of LLM-105. Presented at the Insensitive Munitions and Energetic Materials Technology Symposium, San Diego, CA, (1998).
25. Lee, G. S. et al. Synthesis of amino- and nitro-substituted heterocycles as insensitive energetic materials. 2001 Insensitive Munitions and Energetic materials Technology Symposium, Bordeaux, France (2001).
26. Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.-Condens. Mat 14, 2717–2744 (2002).
27. Perdew, J. P., Burke, K. & Emzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
28. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B. 41, 7892–7895 (1990).

Acknowledgements
The authors thank Dr. Longyu Liao and Dr. Fachun Zhong for their help in XPS analysis and synthesis of LLM-105 raw material. This work was supported by the National Natural Science Foundation of China (grant no. 11002128, 11272252, 11172276) and the Foundation of China Academy of Engineering Physics (grant no. 2009A0302017).

Author contributions
Yang G.C. and Hu H.L. designed and performed the experiments. Yang G.C. and Zhou Y. conceived the experiments and wrote the manuscript. Hu Y.J. and Shi W.M. carried out the DFT calculations. All authors discussed the results and commented.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports
Competing financial interests: The authors declare no competing financial interests.
License: This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
How to cite this article: Yang, G. et al. Synthesis of one-molecule-thick single-crystalline nanosheets of energetic material for high-sensitive force sensor. Sci. Rep. 2, 698; DOI:10.1038/srep00698 (2012).