Therapeutic potential of traditional Chinese medicine for the treatment of NAFLD: A promising drug Potentilla discolor Bunge

Longshan Jia,1, Qian Lia,1, Yong Heb, Xin Zhanga, Zhenhua Zhouc, Yating Gaoa, Miao Fanga, Zhuo Yuc, Robim M. Rodriguesd,*, Yueqiu Gaoa,*, Man Lia,*

aLaboratory of Cellular Immunity, Institute of Clinical Immunology, Shanghai Key Laboratory of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai 201203, China
bShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
cDepartment of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
dDepartment of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels 1000, Belgium

Received 14 December 2021; received in revised form 9 February 2022; accepted 23 March 2022

Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of hepatic lipids and metabolic stress-induced liver injury. There are currently no approved effective pharmacological treatments for NAFLD. Traditional Chinese medicine (TCM) has been used for centuries to treat patients with chronic liver diseases without clear disease types and mechanisms. More recently, TCM has been shown to have unique advantages in the treatment of NAFLD. We performed a systematic review of the medical literature published over the last two decades and found that many TCM formulas have been reported to be beneficial for the treatment of metabolic dysfunctions, including Potentilla discolor Bunge (PDB). PDB has a variety of active compounds, including flavonoids, terpenoids, organic acids, steroids and tannins. Many compounds have been shown to exhibit a series of beneficial effects for the treatment of NAFLD, including anti-oxidative and anti-inflammatory functions, improvement of lipid...
1. Introduction

Nonalcoholic fatty liver disease (NAFLD), recently also named as metabolic associated fatty liver disease\(^1\), is one of the leading causes of chronic liver diseases and one of the most prevalent metabolic disorders worldwide\(^2\). NAFLD comprises a series of liver abnormalities, ranging from simple hepatic steatosis to steatohepatitis, liver cirrhosis and hepatocellular carcinoma. Multiple conditions of the metabolic syndrome are regarded as the main risk factors of NAFLD, including obesity, dyslipidemia and type 2 diabetes (T2DM). The “multiple hits” hypothesis\(^3\) reveals that several hepatic insults act together in the pathogenesis of NAFLD. The mechanisms contributing to the development of NAFLD include hyperlipidemia, insulin resistance (IR), abnormal adipocyte stimulation, secretion of inflammatory mediators by immune cells and adipose tissue, oxidative stress, endoplasmic reticulum (ER) stress, dysregulation of intestinal microflora, disturbance in genetic and epigenetic functions, dysfunction of mitochondria and environmental and dietary factors\(^4\). Due to the complexity of the disease, no effective pharmacological treatments have been currently approved to treat NAFLD.

Nowadays, traditional Chinese medicine (TCM) has been recognized worldwide as a complementary and alternative therapy. Chinese herbs and their extracts have been identified as new sources of potential therapeutic agents for the prevention and treatment of NAFLD\(^5\). More specifically, many Chinese medicine formulas containing Potentilla discolor Bunge (PDB) have been found to play a beneficial role in the treatment of metabolic dysfunctions\(^6\). PDB was first described in the ‘*Meteria Medica for Relief of Famines*’, which is the earliest monograph of agronomy and botany of China published in the 14th–15th century\(^7\). PDB, growing in temperate zones and mountainous areas, is a dry grass of the *Rosaceae* species. There are 88 species of PDB in China, which are mainly produced in Shandong, Liaoning and Anhui provinces and are widely used in Hebei, Henan, Inner Mongolia and Hunan provinces\(^8\). Extracts of the aerial and underground parts of the plant have been used in formulations for the treatment of several diseases, including inflammations, wounds, cancers, infections induced by bacteria, fungi and viruses, diarrhea and diabetes mellitus\(^9\). In this review, we discuss the medicinal properties of PDB and the underlying mechanisms of its active compounds for the treatment of NAFLD.

2. Therapeutic effects and mechanisms of TCM in treating NAFLD

2.1. Pathogenesis of NAFLD and current therapeutic targets

NAFLD is a major cause of liver-related morbidity worldwide, impacting nearly 25% of the global population\(^10,11\). The comprehensive inter-tissue crosstalk between the liver, the intestine, adipose tissue, and the nervous system plays a role in the development of NAFLD\(^12,13\). Also, the liver immune microenvironment, and particularly macrophages and neutrophils are involved in lipid accumulation and inflammation during NAFLD\(^14\) (Fig. 1).

2.1.1. Gut microbiome

Gut microbiota play a significant role in the pathogenesis of NAFLD. The gut microbiota is affected by environmental, dietary and host factors, such as gastrointestinal anatomy and pH\(^15\). Gut barrier dysfunction and disruption of barrier integrity cause translocation of bacteria or bacterial products into the blood circulation, which is the essential condition for liver inflammation and the progression of NAFLD towards nonalcoholic steatohepatitis (NASH)\(^16\).

2.1.2. Crosstalk between adipose tissue and the liver

The intricate crosstalk between adipose tissue and the liver affects systemic metabolism and IR. Adipose tissue plays an important role in regulating NASH development by secreting adiponectin, leptin, tumor necrosis factor (TNF) and IL-6\(^19,20\). In addition, some lipid moieties (palmitic acid, ceramide) released by adipocytes also hinder the function of the ER and mitochondria, which causes cell stress and even hepatocyte death\(^21\). Hepatocyte death is one of the crucial triggers of liver inflammation in NAFLD progression\(^22\). It has been recently found that E-selectin-mediated neutrophil recruitment promotes inflammation and lipolysis in adipose tissue, thereby inducing the release of free fatty acids and proinflammatory adipokines that exacerbate the steatosis-to-NASH progression\(^23,24\).

2.1.3. Macrophages

Liver-resident macrophages, also termed Kupffer cells (KCs), and recruited macrophages play a central role in the progression of NAFLD. KCs are the major source of cytokines and chemokines. KCs produce TNF, TNF-related apoptosis inducing ligand (TRAIL), and fatty acid synthase (FAS) ligands through phagocytosis of apoptotic bodies, which subsequently promotes hepatocyte apoptosis and causes hepatitis and fibrosis\(^25\). In addition, extracellular vesicles (EVs) released from hepatocytes contribute to key processes involved in the pathogenesis and progression of NAFLD\(^26,27\). The EVs can promote the expression of proinflammatory cytokines and polarize hepatic macrophages to the proinflammatory (M1) phenotype\(^28-30\). Mixed-lineage kinase 3 induces lipid-treated hepatocytes to release EVs containing C=\(\sim\)X=\(\sim\)C motif chemokine ligand 10 to recruit macrophages\(^31\). Moreover, EVs can contribute to hepatic recruitment of monocyte-derived macrophages\(^32\), which results in inflammation\(^33\). The identification of the pivotal molecules associated with the dynamic
changes of macrophages could be crucial in the quest for novel therapeutic approaches against NAFLD.

2.1.4. Neutrophils

NASH, a more severe type of NAFLD, is accompanied by hepatocellular injury and ballooning with lobular inflammation in addition to lipid accumulation. The hepatic upregulation of chemokines, including C–X–C motif chemokine ligand 1 (CXCL1) and interleukin (IL)-8, resulting in infiltration of neutrophils in the liver are hallmarks of NASH. Hepatic overexpression of Cxcl1 is sufficient to drive steatosis-to-NASH progression in high fat diet (HFD)-fed mice through neutrophil-driven reactive oxygen species (ROS) and activation of stress kinases. This can be reversed by IL-22 treatment via the induction of metallothionein. In addition, neutrophil-specific microRNA-223 (miR-223) is elevated in hepatocytes and limits NASH progression in obese mice. This elevation of Cxcl1 is due to preferential uptake of miR-223-enriched EVs mainly derived from neutrophils. Once internalized by hepatocytes, the EV-derived miR-223 acts to inhibit hepatic inflammatory and fibrogenic gene expression.

2.2. Potential therapeutic effects of TCM for treating NAFLD

TCM has been widely used in China and other Asian countries for thousands of years. TCM formulas are developed under the guidance of TCM theory. The therapeutic effects of TCM on NAFLD have been gradually reported in clinical practices, leading to an increased recognition. TCM discriminates between different types of syndromes in different patients with NAFLD, and therefore, diverse prescriptions and treatments are administered to different patients, based on the four properties of Chinese medicinal herbs (cold, hot, warm, cool), five flavors (sour, bitter, sweet, spicy, salty) and efficiency.

2.2.1. The classical formulas of TCM for the treatment of NAFLD

Based on clinical experience, the pathogeneses of NAFLD can be summarized as the deficiency of spleen, dampness-heat, phlegm and stasis, cold coagulation and qi-stagnation. The syndromes in patients with NAFLD can be classified into the following types: (i) spleen-deficiency and phlegm-turbid stagnation; (ii) stagnation of liver-qi; (iii) accumulated damp-heat; (iv) stasis blocking channels and (v) deficiency of liver and kidney. According to these TCM syndromes, the treatment principle and the relevant classical formulas to treat NAFLD are as follows: (i) formulas for invigorating spleen, removing dampness and phlegm: shenlingbaizhu powder (Tai Ping Hui Min He Ji Ju Fang); (ii) formulas for relieving liver and regulating qi: xiaochaihu decoction (Shang Han Lu); (iii) formulas for clearing heat, promoting dampness and dispersing knot: dachaihu decoction.
Treatment principle	Chinese medicinal formula	Model	Effects of TCM treating NAFLD	Ref.
Invigorate spleen, remove dampness and phlegm	Shenlingbaizhu powder (SLBZS)	HFD-induced NAFLD rats	↓ Hepatic injury; ↓ Lipid accumulation; ↓ The serum level of endotoxin, TNF-α, IL-1β; ↓ TLR4, TRAF6 in the liver tissue; ↑ The abundance of intestinal microbiota; ↑ The abundance of short-chain fatty acid; ↑ Adiponectin; ↓ SREBP-1c, FAS; ↓ Acly, Fas, Acc, Scd1; ↓ IL-1β, NLRP-3; ↑ The biosynthesis of fatty acids; ↑ Gut microbiota composition; ↑ Insulin secretion pathway	42, 43
	CDAA-fed rats			
		Y		
		Y		
		Y		
Simiao powder (SMS)	HFHS-induced NAFLD mice		↓ Hepatic injury; ↓ Lipid accumulation; ↓ The serum level of endotoxin, TNF-α, IL-1β; ↓ TLR4, TRAF6 in the liver tissue; ↑ The abundance of intestinal microbiota; ↑ The abundance of short-chain fatty acid; ↑ Adiponectin; ↓ SREBP-1c, FAS; ↓ Acly, Fas, Acc, Scd1; ↓ IL-1β, NLRP-3; ↑ The biosynthesis of fatty acids; ↑ Gut microbiota composition; ↑ Insulin secretion pathway	44
Sanziyangqin decoction (SZYQT)	HFD-induced NAFLD mice		↓ Hepatosteatosis; ↓ Inflammatory cell infiltration in liver tissues; ↑ Insulin resistance; ↑ p-AKT; ↓ apoptosis; ↑ Lipid metabolism; ↑ Enterobacteriaceae, Staphylococcaceae families and Veillonella genus; ↑ Anaeroplasma genus; ↓ Fat accumulation; ↓ Inflammatory factors (TNF-α, IL-1β, IL-18, IL-6); ↓ NLRP3, ASC, CASPASE-1; ↓ TLR4, p-p38 MAPK; ↑ Adiponectin; ↓ leptin	45
		Y		
Relief liver and regulate Qi	Xiaochaihu decoction (XCHT)	Patients with NAFLD	↓ TNF-α; ↓ Hepatic lipid accumulation; ↓ C/EBPα, PPARγ, p-AMPK; ↑ IRS-1, pAKT; ↓ The ratio of BAX to BCL-2 expression; ↑ AMPKα, PPAR-γ; ↑ ACC-α, p-ACC-α, SREBP2, HMGR	50, 51
	Chaihushugan powder (CHSGS)	High fat and sugar emulsion-induced NAFLD rats		
Clear heat, promote dampness and disperse knot	Dachaihu decoction (DCHT)	Patients with NAFLD	↓ TNF-α; ↓ Hepatic lipid accumulation; ↓ C/EBPα, PPARγ, p-AMPK; ↑ IRS-1, pAKT; ↓ The ratio of BAX to BCL-2 expression; ↑ AMPKα, PPAR-γ; ↑ ACC-α, p-ACC-α, SREBP2, HMGR	52
	High-fat high-fructose diet-induced NAFLD rats			
		Y		
		Y		
		Y		
Promote blood circulation and dissipate blood stasis	Yinchenhao decoction (YCHT)	HHHC-induced NAFLD mice	↓ TNF-α; ↓ Hepatic lipid accumulation; ↓ C/EBPα, PPARγ, p-AMPK; ↑ IRS-1, pAKT; ↓ The ratio of BAX to BCL-2 expression; ↑ AMPKα, PPAR-γ; ↑ ACC-α, p-ACC-α, SREBP2, HMGR	53
	Taohongsiwu decoction (THSWT)	High-fat and sugar emulsion-induced NAFLD rats		
Warm Yang and invigorate spleen	Chaihulizhong decoction (CHLZT)	HFD-induced NAFLD rats	↑ GS, ACC, SREBP-1c, HMGR; ↑ PYGL activity; ↑ GS, ACC, SREBP-1c, HMGR; ↑ PYGL activity	54
	A long chain fat emulsion-treated HepG2 cells			
	Lingguizhugan decoction (LGZGT)	HFD-induced NAFLD rats	↑ GS, ACC, SREBP-1c, HMGR; ↑ PYGL activity; ↑ GS, ACC, SREBP-1c, HMGR; ↑ PYGL activity	55, 56, 57
	HFD-induced NAFLD mice			
		Y		
A promising drug *Potentilla discolor* Bunge for the treatment of NAFLD

Hepatosteatosis
- Insulin resistance;
- Oxygen consumption rate;
- The expression and protein the liver;
- Apoptosis

Gut microbiota
- **Fuzilizhong decoction** (FZLZT) HFD-induced NAFLD rats
- **Sini powder** (SNS) Stress-induced NAFLD rats
- **Ganjianglingzhu decoction** (GJLZT) HFD-induced NAFLD mice

Treatise on Febrile Disease
- Yinchenhao decoction (Shang Han Lun)
- Muqingheng decoction
- Baihu decoction
- Taohongsiwu decoction (San Yin Ji decoction)

Electroacupuncture
- Acupuncture is an ancient Chinese medical technique that involves the insertion of needles into specific points on the body's acupoints. It is used to treat a variety of conditions, including NAFLD.

Benefits of PDB
- **Flavonoids**: These compounds are present in PDB and have been shown to have antioxidant and anti-inflammatory properties.
- **Terpenoids**: These are another type of compound found in PDB that have been associated with anti-inflammatory effects.

Clinical Application
- Electroacupuncture combined with lifestyle changes, such as diet and exercise, can be used to treat NAFLD.

Conclusion
- The use of TCM, including PDB, shows promise in the treatment of NAFLD. Further research is needed to fully understand the mechanisms of action and effectiveness of these treatments.

2.2.2. Acupuncture for the treatment of NAFLD

Acupuncture, which is a classical TCM method, has been used to treat NAFLD during clinical practice. The safety profile of acupuncture therapy for the treatment of NAFLD is satisfactory. Taichong (LR3), Zusanli (ST36), Fenglong (ST40), and Sanyinjiao (SP6) are the most commonly used acupuncture points. Electroacupuncture combined with lifestyle control can effectively treat patients with NAFLD by reducing serum leptin levels, increasing the sensitivity of hepatocytes to insulin and improving IR ameliorating blood glycolipid metabolism and reducing hepatic fat, waist circumference and waist-to-hip ratio.

In addition, acupuncture has been shown to ameliorate NAFLD by regulating lipid metabolism, improving IR and ER stress, alleviating oxidative stress, inhibiting the expression of inflammatory cytokines, and alleviating steatosis, necrosis and inflammatory cell infiltration of liver tissue in NAFLD rat model. Furthermore, acupuncture can alleviate bullous steatosis of liver tissue and the expansion and disorder of rough endoplasmic reticulum in NAFLD rat model.

3. Beneficial effects of Chinese medicinal formulas containing PDB

According to the *Compendium of Materia Medica*, PDB has the effects of “clearing heat and cooling blood, detoxification, hemostasis and detumescence”. An increasing number of studies show that many formulas of TCM containing PDB exert beneficial effects for the treatment of metabolic, inflammatory and hematologic diseases. In Table 2, we summarize Chinese herbal products containing PDB and their medical application.

4. Functions of the main natural active compounds of PDB

PDB contains a variety of chemical components, including flavonoids, terpenoids, organic acids, steroids and tannins. The structure backbones of the main components of PDB are shown in Fig. 3.

Flavonoids, which have different chemical structure subtypes, are one of the main active compounds in PDB, with many pharmacological and physiological activities. The total flavonoids content in PDB is approximately 20%. The two main types of flavonoids are conjugated glycosides and free forms. Terpenoids in PDB are mainly monoterpenes and triterpenes. The content of monoterpenes is lower than that of the triterpenes, and most of the triterpenes are oleanolic alkane, uranethane and their saponins. The main organic acids in PDB are phenolic acids and fatty acids. The steroids obtained from PDB are mainly beta-sitosterol and carotene. Tannins in PDB are mainly ellagic acid and its derivatives.

In a large majority of studies in which mouse and rat models were used, the active compounds from PDB have been found to exhibit a series of beneficial effects for the treatment of NAFLD. As such, it
was found that flavonoids improve lipid metabolism and IR, reduce oxidative stress, ER stress and inflammation in rodent models. In addition, flavonoids and organic acids were shown to regulate the intestinal microflora. The steroids and terpenoids from PDB also improved IR and lipid metabolism, respectively. The latter, also inhibited ER stress (Fig. 4).

5. Anti-NAFLD mechanisms of the natural active compounds of PDB

Table 4 summarizes the PDB active compounds that have been shown to improve NAFLD.

5.1. Improvement of lipid metabolism

The abnormal lipid metabolism during NAFLD involves synthesis, uptake and oxidation of FA, triglycerides (TG) synthesis, and very low density lipoprotein (VLDL) secretion. When carbohydrates are in excess, they are converted into FA by acetyl-CoA carboxylase, FAS and stearoyl-CoA desaturase and subsequently esterified to TG. The liver X receptors (LXRs) are multifunctional nuclear receptors that control lipid homeostasis. LXRs can be activated by glucose at physiological concentrations in the liver. Therefore, LXRs provide a transcriptional switch that integrates hepatic glucose metabolism and FA synthesis. Inhibition of LXRs transactivation may be beneficial for NAFLD. In addition, the mRNAs encoding enzymes in the biosynthetic pathway of FA can be regulated by sterol regulatory element binding protein-1c (SREBP-1c) that is a critical molecule involved in lipid synthesis. Adenosine 5’-monophosphate-activated protein kinase (AMPK) is known to regulate glucose and lipid metabolism, which plays vital roles in FAS and gluconeogenesis. Once AMPK is activated, the uptake of FA β-oxidation in the mitochondria is increased, with a concomitant increase of glucose uptake through the translocation of Glucose transporter type 4 (GLUT-4). In addition, peroxisomal proliferator-activated receptor α (PPAR-α) plays a central role in FA β-oxidation. The gene carnitine palmitoyl transferase 1/2 involved in FA β-oxidation is regulated by PPAR-α. Accumulating evidence suggests that several natural active ingredients from PDB play an important role in improving lipid metabolism, as discussed below.

5.1.1. Luteolin

Luteolin, a natural flavonoid, has been shown to have strong antioxidant and anti-inflammatory activities. Luteolin can improve hepatic steatosis by repressing hepatic TG accumulation and novel...
Table 2 Beneficial effects of Chinese medicinal formulas containing PDB in the treatment of patients.

Disease	Chinese medicinal formula	Composition of herbal mixture	Ref.
T2DM	Fanbaicao mixture	PDB, Corn Silk	79
	Fanbaicao decoction	PDB, Rubus idaeus L, Astragalus mongholicus, Ophiopogon japonicus, Radix	80
		Pseudostellariae, Dioscorea opposita Thunb, Polygonatum sibiricum, Salvia miltiorrhiza Bge, Corn Silk, Ilex pubescens Hook, Rehmannia glutinosa, Chinese wolfberry, Dendrobium nobile Lindl, Rehmannia glutinosa, Cornus officinalis	
Jiulongjiangtang decoction	Gentian, Astragalus mongholicus, Portia cocos, Salvia miltiorrhiza Bge, PDB, Atractylodes lancea, Agrimonia pilosa Ledeb, Pueraria lobata, Codonopsis pilosula, Rehmannia glutinosa, Rhizoma Dioscoreae, Schisandra chinensis, Anemarrhena asphodeloides Bunge, Cornus officinalis	81	
Jiangtangzengmin decoction	Pueraria lobata, Astragalus mongholicus, Codonopsis pilosula, Atractylodes macrocephala, PDB, Lotus leaf, Portia cocos, Salvia miltiorrhiza Bge, Coptis chinensis Franch, Licorice	82,83	
Zengmin decoction	Euonymus alatus (Thunb.) Sieb, PDB, Trichosanthis, Dioscorea opposita Thunb, Raw Astragalus, Coptis chinensis Franch, Anemarrhena asphodeloides Bunge, Laminaria, Asparagus root, Ophiopogon japonicus, Chinese wolfberry root-bark, Dendrobium nobile Lindl, Polygonatum odoratum	84	
Yidaozengmin decoction	Radix Bupleuri, Fructus aurantii, Coptis chinensis Franch, Codonopsis pilosula, Atractylodes macrocephala Koiz., Portia cocos, Lotus leaf, Salvia miltiorrhiza Bge, PDB, Pueraria lobata, Licorice	85	
Xiaokekang No.2 decoction	Atractylodes lancea, Atractylodes macrocephala, Pinellia ternata, Pericarpium Citri Reticulatae, Coptis chinensis, Scutellaria baicalensis, PDB, Radix Scrophulariae, Radix puerariae, Litchi seed	86	
Qiyupingtang decoction	Astragalus membranaceus, Cornus officinalis, Rehmannia glutinosa, Lilium brownies Thunb, Trichosanthis, Wolfberry, PDB, Cortex rehmanniae, Schisandra chinensis	87	
Tegningtang decoction	PDB, Salvia miltiorrhiza, Pangolin, Dalbergia odorifera, Achyranthes bidentata, Astragalus, Atractylodes macrocephala, Pueraria lobata, Sophora flavescens, Coptis chinensis, Bamboo shavings, Trichosanthis	88	
Antang capsule	Astragalus, Cornus officinalis, Salvia miltiorrhiza, PDB, etc.	89	
Kuhuang capsule	Bitter melon, Coptis, Pueraria, PDB	90	
Baihuangjiangtang granule	PDB, Raspberry, Astragalus membranaceus, Ophiopogon japonicus, Pseudostellaria heterophylla, Dioscorea opposita, Polygonatum, Salvia miltiorrhiza, Stigma maydis, Ilex pubescens, Medlar, Dendrobium, Rehmannia glutinosa, Cornus officinalis	91	
Jiedufuyang decoction	Honeysuckle, PDB, Coptis chinensis, Epimedium, Cynomorium songaricum, Morinda officinalis, Licorice	92	
Yiqiyangyinhuoxue decoction	Astragalus membranaceus, Epimedium, PDB, Radix paoniae alba, Radix rehmanniae, Fructus mume, Rhizoma atractylodes, Radix Scrophulariae, Radix puerariae, Radix salviae miltiorrhizae, Radix glycyrrhiza	93	
Yiqiyangyingxingre decoction	Astragalus, Dioscorea opposita Thunb, Pueraria, Ophiopogon japonicus, Radix rehmanniae, Codonopsis pilosula, Coptis chinensis, PDB, Schisandra chinensis, Cortex rehmanniae, Anemarrhena asphodeloides, Cassia obtusifolia	94	
Diabetic nephropathy	Raw Astragalus, Salvia miltiorrhiza, PDB, Dioscorea opposita Thunb, Codonopsis pilosula, Leech, Radix rehmanniae, Peach kernel, Atractylodes macrocephala, Arctium lappa, Angelica sinensis, Rhubarb	95,96	
Yiqijianpuhuayu decoction	Raw Astragalus, Leech, Dioscorea opposita Thunb, Codonopsis pilosula, Radix rehmanniae, Rhizoma atractylodis macrocephala, Angelica sinensis, Salvia miltiorrhiza, Eupatorium adenophorum, Earthworm and rhubarb	97	

(continued on next page)
Disease	Chinese medicinal formula	Composition of herbal mixture	Ref.
Diabetic peripheral neuropathy	Yiqihuoxue decoction	Raw Astragalus, Radix Codonopsis, **PDB**, Cornus officinalis, Chinese yam, Radix rehmanniae, Rhizoma atractylodismacrocephalae, Angelica sinensis, Salvia miltiorrhiza, **Eupatorium adenophorum**, peach kernel, **Safflower and rhubarb**	98
Diabetic limb arterial occlusion	Tangshenkang mixture	Astragalus membranaceus, Codonopsis pilosula, Angelica sinensis, Radix paoniae rubra, Rhizoma Chuanxiong, Salvia miltiorrhiza, Peach kernel, **Leech, Rehmannia glutinosa, Cornus officinalis, Achyranthes bidentata, Raspberry, Euryale ferox seed, **PDB**, Honeysuckle, Licorice**	99
Chronic nephritis with proteinuria	Fanbaicao capsule	**PDB**, Astragalus membranaceus, **Leech, Dioscorea opposita**	100
Chronic hepatitis B	Jiangbai decoction	PDB, Chinese wolfberry root-bark, Angelica tail, Astragalus, Peach kernel, Dragon, Radix paoniae rubra, **Ligusticum wallichii, Carthamus tinctorious, Achyranthes bidentata Lysimachia christinae, Hedyotis diffusa, PDB, Plantain, Tripterygium wilfordii, Cuscata, Cornus corni, Dried lotus, Cherry, Thicken, Salvia miltiorrhiza, **Motherwort, Astragalus, Portia cocos, Atractylodes**	101
Acute mastitis	Medicine of the yao nationality (no compound name)	Acanthopanax, Hypericum japonicum Thunb, Dicliptera chinensis, Ardisia mamilata Hance, Aralia elata, Hagen, Camellia, Sapium sebiferum, Blumea megacephala, Guidianhua, Selaginella uncinata(Desv.) spring, Melicope pteleifolia, Wild sesame, **PDB, Sedum sarmentosum, Abrus cantoniensis, Meizizhen, Acer davidii**	102
Bacterial dysentery	Potentilla discolor Bunge Yuliyan	**PDB**, Radix pulsatillae, Radix paoniae rubra, Honeysuckle charcoal, Portulaca oleracea, **PDB**, Portulaca oleracea, Angelica sinensis, Radix paoniae rubra, Radix Aucklandiae, Radix glycyrrhiza	103
Idiopathic thrombocytopenic purpura	Purpura mixture	Thistle, Thistle, Lotus leaf, Platycladus orientalis, Imperata cylindrica, Palm, Forsythia suspensa, Peony bark, **PDB, Bauhinia root (rhubarb), Gardenia jasminoides Ellis, Schizonepeta tenuifolia, Rehmannia glutinosa, Paonia lactiflora (stir fried with bran)**	104
Acute gouty arthritis	Xiaozhongjiuwei powder (Mongolian medicine, external use)	Astragalus mongholicus, Angelica sinensis, Rehmannia glutinosa, Radix rehmanniae, Charred Radix Rubiae, Hairyvein agrimony, Alternanthera philoxeroides, Chinese wolfberry, Fructus Ligustri Lucidi, **PDB, Licorice, Rhizoma Cyperi, Jujube**	105
Epidemic parotitis	Habuder-9 (Mongolian patent medicine, external use)	**PDB**, Euphorbia, Rhabar, Turmeric, Aconitum kusnezoffii, Polygonatum odoratum, Turmeric, Acorus calamus, **Aconitum kusnezoffii**	106
Chronic prostatitis	Lebi-balazhuri powder (anal plug)	**PDB**, Euphorbia, Rhabar, Rheum subrheum, Polygonatum odoratum, Acorus calamus, **Asparagus, Aconitum kusnezoffii**	107
Emphyrosis	Fanbaicao powder (external application)	**PDB**, Euphorbia, Rhabar, Rheum subrheum, Polygonatum odoratum, Acorus calamus, Turmeric, Asparagus, **Aconitum kusnezoffii**	108
Hemorrhoids	Zhining decoction (fumigation bath)	Caecum, **PDB**, Verbena officinalis, Gallus chinensis, Sanguisorba officinalis, *Sophora japonica, Coptis chinensis, Honeysuckle, Artemisia anomala, Angelica sinensis, Angelica dahurica, Schizonepeta tenuifolia, Camphor, etc.*	109

PDB, Potentilla discolor Bunge; T2DM, type 2 diabetes.
liver protection and anti-cancer effects. UA significantly inhibits the activity score by modulating lipid metabolism gene expression, below.

5.1.2. Ursolic acid (UA)
UA is the natural pentacyclic triterpenoid carboxylic acid, which has many medicinal properties, such as anti-tumorigenic, anti-obesity, anti-oxidative, anti-inflammatory, anti-fibrotic and anti-atherosclerotic properties. UA significantly inhibits the activity of LXRα response element by competitively binding to LXRα ligand binding region, which demonstrates that UA is a natural LXRα antagonist. In addition, UA reduces hepatic lipid contents through increasing AMPK phosphorylation. Another recent study showed that UA meaningfully reduces the degree of hepatic steatosis by down-regulating the expression levels of PPAR-α and carnitine palmitoyltransferase 1 A (CPT1A), which plays an essential role in the transport of FA into mitochondria for β-oxidation.

5.1.3. Oleanolic acid (OA)
OA is a natural triterpenoid compound, which widely exists in many plants. It has been demonstrated that OA plays a wide range of biological effects, including anti-oxidation, renal protection, liver protection and anti-cancer effects. One study in HFD-induced NAFLD model shows that the administration of OA significantly increases AMPK and CPT-1 levels, which decreases lipid accumulation and promotes the uptake of FA by mitochondria for β-oxidation. Another study shows that OA can sensitize cells to insulin and suppress the hormone-sensitive lipase, which inhibits lipolysis in adipose tissue and consequently decreases serum TGs and VLDL-C particles. OA also ameliorates hepatic oxidative stress and lowers the SREBP and intrahepatic TGs levels.

5.1.4. 3-Acetyloleanolic acid (3Ac-OA)
3Ac-OA is a derivative of oleanolic acid, which can significantly reduce body weight, liver weight and serum total cholesterol (TC), TG, low-density lipoprotein cholesterol (LDL-C) levels in HFD-fed rats by ameliorating hepatic lipid accumulation. In vitro, 3Ac-OA decreases intracellular levels of TC and TG and the number of lipid droplets in free fatty acids (FFA)-treated primary hepatocytes. Moreover, 3Ac-OA significantly increases the expression levels of GLUT-2 and LDL receptor, phosphorylated AMPK and protein kinase B (AKT) and glycogen synthase kinase 3β in the liver tissues of HFD-fed rats.

5.2. Improvement of IR
IR is one of the important pathogeneses of NAFLD. IR can lead to the increase of liver lipid synthesis and the inhibition of FA β-oxidation and lipolysis, which leads to hepatic steatosis. At present, homeostasis model assessment for IR (HOMA-IR) is the gold standard for measuring IR. HOMA-IR increases with the severity of NAFLD. In addition, studies show that Tumor necrosis factor-α (TNF-α) directly disrupts the role of intracellular calcium in beta cells and then induces IR. Accumulating evidence suggests that several natural active ingredients from PDB play an important role in IR in the development of NAFLD, as discussed below.

5.2.1. Quercetin
Quercetin, one of the most abundant flavonoids, is found naturally as glycosides, such as quercetin-3-O-β-rutinoside or quercetin-3-O-β-glucoside. Quercetin treatment decreases IR and NAFLD activity score by modulating lipid metabolism gene expression, cytochrome P450 2E1 dependent lipoperoxidation and related lipotoxicity, which reduces the intrahepatic lipid accumulation. Quercetin-3-O-β-glucoside can promote AKT phosphorylation in gastrocnemius muscles that are the most important tissue to determine whole-body insulin sensitivity. The activation of insulin signaling pathway induced by AKT may contribute to the reduction of plasma glucose concentration and IR.

5.2.2. Luteolin
Luteolin increases hepatic FA oxidation and decreases hepatic lipogenesis, which improves the hepatic insulin sensitivity and increases the insulin receptor substrate expression. Luteolin-7-O-glucoside (LUG) is one of the O-glycosides of luteolin. Luteolin and LUG can decrease serum fasting blood glucose.

Table 3: Beneficial effects of Chinese medicinal formulas containing PDB in animal models.

Disease model	Chinese medicinal formula	Composition of herbal mixture	Ref.
T2DM mice	Mixture of fanbaicao and dandelion	PDB, Dandelion	117
	Qiba mixture	Raw Astragalus, PDB	118
	TCM for clearing heat and replenishing qi	PDB, Raw Astragalus	119
T2DM rats	Fanbaicao and shen mixture	PDB, Salvia miltiorrhiza, Astragalus, Schisandra chinensis, Trichosanthis	120
	Fanbaicao mixture	PDB, Semen Platycladus, Ginseng, Polygala tenuifolia, Schisandra chinensis	121
Diabetic nephropathy mice	Tangshenping capsule	Astragalus tablets, Cooked ground yellow, Cornus, White flower snake tongue grass, PDB, Leech	122
Big-ear white rabbits with	Water decoction of Potentilla discolor Bunge	PDB	123
Hyperlipidemia	Water decoction of Potentilla discolor Bunge	PDB	124

PDB, Potentilla discolor Bunge; T2DM, type 2 diabetes.
5.2.3. Kaempferol
Kaempferol, one of the flavonoids, which is a subclass of flavonoids, has many medicinal properties such as anti-oxidative, anti-carcinogenic, anti-diabetic, antimicrobial and cardio-protective properties. Oral administration of kaempferol significantly improves FBG and decreases glucose tolerance in HFD-induced obese mice, which is associated with reduction of hepatic glucose production and improvement of whole-body insulin sensitivity. Kaempferol is an inhibitor of hepatic pyruvate carboxylase activity. It inhibits gluconeogenesis through suppressing pyruvate carboxylase and glucose-6 phosphatase activity. In addition, kaempferol also improves hepatic glucose metabolism by activating AKT and glucokinase. It has also been shown that kaempferol glycoside (KG) fractions reduce body weight, adipose tissue and TG levels in HFD-fed mice. KG treatment also decreases the levels of FBG and HbA1c and improves IR. In addition, KG decreases peroxisome proliferator-activated receptor-γ (PPAR-γ) and SREBP-1c expression levels, which is correlated with the decrease of adipose tissue accumulation and the improvement of lipid metabolism and IR.

5.2.4. Apigenin
Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Previous research showed that apigenin can decrease serum TC, TG, LDL-C, FBG and fasting insulin levels, and increase high-density lipoprotein cholesterol levels in the HFD-induced NASH rats. In addition, apigenin can notably decrease HOMA-IR and increase PPAR-α and PPAR-γ levels in the liver. These results show that apigenin alleviates hepatic steatosis and inflammatory necrosis through improving IR, glucose tolerance and lipid metabolism.

5.2.5. β-Sitosterol
β-Sitosterol is a plant sterol, and its chemical structure is similar to cholesterol. β-Sitosterol has anti-diabetes, anti-cancer, anti-arthritis, hypolipidemic and hepatoprotective properties. It normalizes serum levels of glucose, insulin, lipids, oxidative stress markers and anti-oxidant enzymes in diabetic rats through the regulation of insulin receptor and GLUT-4.

5.3. Anti-oxidative and anti-inflammatory responses
Oxidative stress in the liver is one of the hits in the pathogenesis of NAFLD. The chronic inflammatory state of the liver is closely
associated with IR, inflammatory cytokines and hepatic steatosis. Neutrophils can produce ROS, subsequently activate stress kinases (e.g., ASK1 and p38 MAPK), and induce liver injury. CXCL1 or IL-8 can induce hepatic neutrophil infiltration and promote the progression of fatty liver to NASH in HFD-fed mice, which is mediated via the p47Phox-dependent production of ROS by neutrophils. By inducing hepatic metallothionein IL-22Fc is able to attenuate hepatic ROS production, stress kinase activation and the inflammatory functions of hepatocyte-derived EVs, and thereby ameliorates CXCL1-driven NASH. As described below, several PDB active ingredients also have anti-oxidative and anti-inflammatory properties.

5.3.1. Luteolin
Luteolin inactivates nuclear factor-κB and decreases the inflammatory levels of IL-6, Interleukin-1β (IL-1β) and TNF-α. Furthermore, hepatic ROS production is significantly attenuated by luteolin administration, which indicates that oral intake of luteolin exerts the anti-oxidant effects in the liver.

5.3.2. Rutin
Rutin is a natural flavonoid and has many biological functions, including anti-oxidative, anti-inflammatory, anti-cancer, neuroprotective and hepatoprotective functions. Rutin has also hypolipidemic and hepatoprotective effects in NAFLD. Rutin reduces the cellular malondialdehyde levels and increases the expression levels of anti-oxidant enzymes. It restores the superoxide dismutase activity, which inhibits the accumulation of lipids in liver cells and reduces oxidative damage simultaneously.

5.3.3. Apigenin
Apigenin has a variety of biological activities, such as anti-oxidative, anti-inflammatory, anti-apoptotic, anti-mutagenic and anti-tumorigenic properties. Apigenin can alleviate HFD-induced liver injury in mice by increasing insulin sensitivity, reducing liver lipid accumulation, improving hepatic steatosis and reducing macrophages recruitment. These protective effects may be correlated with the activation of NLRP3 inflammasome, the decreased expression of IL-1β and IL-18, the inhibition of xanthine oxidase activity and the reduction of ROS production. In addition, apigenin has been shown to ameliorate lipid metabolism and oxidative stress through regulating nuclear factor E2-related factor 2 (Nrf2) (a master regulator of lipid metabolism homeostasis and oxidative stress) and PPAR-γ. It has been confirmed that apigenin promotes the entry of Nrf2 into the nucleus, and thereby considerably activates Nrf2 to inhibit the expression of PPAR-γ.

5.4. Inhibition of endoplasmic reticulum (ER) stress
ER stress is a major contributor in the development of hepatic steatosis. ER is crucial for the formation of lipid droplets and is pivotal for VLDL assembly and the progression of hepatic steatosis. ER homeostasis is maintained through an adaptive mechanism termed the unfolded protein response. This adaptive mechanism is mediated by inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α), which is responsible for producing spliced X-box binding protein 1 (XBPs1) and protein kinase R-like ER kinase, and activating transcription factor 6α. In addition, C/EBP homologous protein is a critical molecule involved in ER stress and ER stress-induced apoptosis. There is increasing evidence to suggest that several natural active compounds from PDB play a central role in endoplasmic reticulum stress in the development of NAFLD.

5.4.1. Quercetin
Quercetin can activate IRE1α and ameliorate hepatic steatosis and ER stress induced by high cholesterol. A study reports that quercetin reduces the levels of hepatic TG and TC and increases the levels of hepatic VLDL, and up-regulates XBPs1 expression in the HFD-fed rats. Additionally, microsomal TG-transfer protein complex expression is also increased by quercetin. Moreover, quercetin increases co-localization of lysosomes and lipid droplets, accompanied by the decreasing accumulation of autophagy related protein p62. Collectively, these findings demonstrate that quercetin plays anti-NAFLD effects by inducing the hepatic VLDL assembly and lipophagy through the IRE1α/XBP1s pathway.

5.4.2. UA
UA significantly reduces the liver weight, serum ALT/AST levels and hepatic steatosis in leptin receptor deficient diabetic

Figure 4 Functions of the main natural active compounds of PDB. Flavonoids improve lipid metabolism and IR, reduce oxidative stress and ER stress, and regulate the intestinal microflora. Organic acids regulate the intestinal microflora. The terpenoids improve lipid metabolism and inhibit endoplasmic reticulum stress. The steroids improve IR.
Natural active compound	Chemical structure	Active ingredient content	Model	Mechanism of action	Ref.	PubChem CID	
Flavonoids	Quercetin	0.1086 mg/g	HFD-induced NAFLD rats, FFA-induced HepG2, db/db mice	↓ TC, TG	↓ Microsomal TG-transfer protein complex, ↑ Co-localization of lysosomes with LDs	131, 145	5280343
				↑ VLDL	↓ Accumulation of p62, ↑ IRE1α endonuclease activity, ↑ XBP1s, ↓ Lipid accumulation, ↓ Serum transaminase levels, ↓ Serum total bile acids		
				↓ Histological alterations of liver			
				↓ IL-1β, IL-6, and TNF-α in liver			
				↑ FXR1/TGR5 signaling pathway			
				↓ Glucose concentration in plasma, ↑ AKT phosphorylation	132	5280804	
	Quercetin-3-O-β-glucoside	Sucrose-fed rats		↑ Body weight, ↓ FBG, HbA1c, ↓ Adipose tissue accumulation, ↓ TGs, ↑ Lipid metabolism, ↓ PPAR-γ and SREBP-1c		5280863	
	Kaempferol	0.0611 mg/g	HFD-fed mice	↓ TC	↓ The abundance of lipid droplets, ↓ Lipid accumulation, ↓ Cellular malondialdehyde level, ↓ Superoxide dismutase activity, ↑ AMPK activity, ↑ Anti-oxidative enzymes, ↑ PPARα, CPT-1 and CPT-2, ↓ SREBP-1c, DGAT-1, DGAT-2, ↓ HMGCR, GPAT, FAS, ACC	147, 148	5280805
	Rutin	0.555 mg/g	HFD-induced NAFLD mice, HepG2 cells	↓ TC	↓ Insulin sensitivity, ↓ Hepatic steatosis, ↓ Macrophages recruitment, ↓ IL-1β and IL-18, ↓ Xanthine oxidase(XO) activity, ↓ ROS production, ↑ NLRP3 inflammasome	149, 150, 151	5280443
	Apigenin	0.114 mg/g	HFD-induced NAFLD mice, Hepa1-6 cells pre-treated with FFA	↑ Insulin sensitivity			

3540 Longshan Ji et al.
Compound	Concentration	Cell Type	Effect
Luteolin	0.04 mg/g	db/db mice, HepG2 cells, primary hepatocytes	Novel lipid synthesis, PPAR-γ, TC, TGs, LDL-C, FBG, fasting insulin, HOMA-IR, HDL-C, glucose tolerance, hepatic inflammatory necrosis, PPAR-α and PPAR-γ (protein and mRNA expression)
Terpenoids	0.02436 mg/g	T0901317-induced mice, HepG2 cells, intestinal cells, db/db mice, palmitate solution-treated LO2 cells	Hepatocyte lipid content, LXRα-SREBP-1c signaling pathway, AMPK phosphorylation, liver weight, ALT and AST, lipid accumulation, IRE1α activity, JNK phosphorylation, C/EBP homologous protein accumulation, PPARα, lipid β-oxidation, AMPK gene expression, GLUT-4
Oleanolic acid	0.1086 mg/g	High fructose diet-fed rats	Lipid metabolism, AMPK gene expression, GLUT-4
3-Acetyloleanolic acid		HFD-induced NAFLD rats, FFA-treated primary rat hepatocytes	Body weight, liver weight, TC, TGs and LDL-C, GLUT-2, low-density lipoprotein receptor, AMPK phosphorylation, blood glucose, serum insulin, blood lipid, oxidative stress markers, anti-oxidant enzymes, insulin receptor, GLUT-4
Steroids		HepG2 cells, diabetic rats	Blood glucose, serum insulin, blood lipid, oxidative stress markers, anti-oxidant enzymes, insulin receptor, GLUT-4
Organic acids		HFD-induced NAFLD mice	Trimethylamine, Trimethylamine-N-oxide, Dimethylamine

AKT, protein kinase B; AMPK, (AMP)-activated protein kinase; db/db mice, leptin receptor deficient diabetic mice; FAS, fatty acid synthase; FBG, fasting blood glucose; FFA, free fatty acid; FXR, farnesoid X receptor; GLUT-4, glucose transporter type 4; HbA1c, glycosylated hemoglobin; HFD, high-fat diet; HOMA-IR, homeostasis model assessment for IR; IRE1α, inositol-requiring transmembrane kinase/endoribonuclease 1α; LDL-C, low-density lipoprotein cholesterol; Nrf2, nuclear factor E2-related factor 2; PPAR-α, peroxisomal proliferator-activated receptor α; ROS, reactive oxygen species; SREBP-1c, sterol regulatory element binding protein-1c; TC, total cholesterol; TG, triglyceride; TGR5, Takeda G protein-coupled receptor 5; VLDL, very low density lipoprotein; XBP1s, X-box binding protein 1.
properties and anti-oxidative activities. GA, an endogenous plant phenol, has potent free radical scavenging activity. Furthermore, treatment of HFD-fed mice compared with the control group has been suggested to induce the development of NAFLD by multiple mechanisms. The intestinal barrier is maintained by the gut microbiota, including trimethylamine, kynurenine, and cysteine. For example, short chain fatty acids maintain the gut barrier and reduce pro-inflammatory cytokine secretion in the liver. The mechanisms by which BAs contribute to the development of NAFLD involve two major receptor molecules: the nuclear farnesoid X receptor (FXR) (mainly activated by primary BAs) and the Takeda G protein-coupled receptor 5 (TGR5) (mainly activated by secondary BAs). Activation of FXR reduces hepatic inflammation and maintains the intestinal barrier by inhibiting LPS-stimulated nuclear factor-κB (NF-κB) activation. Moreover, choline acquired through the diet can be further metabolized by the microbiome from trimethylamine into trimethylamine-N-oxide. Trimethylamine-N-oxide has been suggested to induce the development of NAFLD by multiple mechanisms, such as aggravating hepatic IR, increasing adipose tissue inflammation and reducing the levels of BAs produced by enzymes. In recent years, studies have shown that several natural active ingredients from PDB play an important role in regulating intestinal flora in the course of NAFLD progression. Those active ingredients are discussed below.

5.5. Regulation of intestinal microflora

The intestinal microflora and their metabolites, including bile acids (BAs), branched-chain amino acids and tryptophan catabolites, regulate the intestinal homeostasis and may contribute to the pathogenesis of NAFLD. The metabolites exhibit multiple effects on the development of NAFLD through saccharolytic and proteolytic fermentation. For example, short chain fatty acids maintain the gut barrier and reduce pro-inflammatory cytokine secretion in the liver. The mechanisms by which BAs contribute to the development of NAFLD involve two major receptor molecules: the nuclear farnesoid X receptor (FXR) (mainly activated by primary BAs) and the Takeda G protein-coupled receptor 5 (TGR5) (mainly activated by secondary BAs). Activation of FXR reduces hepatic inflammation and maintains the intestinal barrier by inhibiting LPS-stimulated nuclear factor-κB (NF-κB) activation. Moreover, choline acquired through the diet can be further metabolized by the microbiome from trimethylamine into trimethylamine-N-oxide. Trimethylamine-N-oxide has been suggested to induce the development of NAFLD by multiple mechanisms, such as aggravating hepatic IR, increasing adipose tissue inflammation and reducing the levels of BAs produced by enzymes. In recent years, studies have shown that several natural active ingredients from PDB play an important role in regulating intestinal flora in the course of NAFLD progression. Those active ingredients are discussed below.

5.5.1. Quercetin

Quercetin can revert the gut microbiota imbalance and the linked endotoxemia-mediated TLR-4 pathway activation, which results in the inhibition of inflammamson response and reilum stress pathway activation and the deregulation of lipid metabolism gene expression. Quercetin significantly reduces serum transaminase levels and T2DM-induced liver histological characteristics. In addition, quercetin restores the levels of superoxide dismutase, catalase and glutathione, and reduces total BAs levels and lipid accumulation in the liver of db/db mice. In vitro, quercetin eliminates lipid droplets and restores the up-regulated TC and TG levels. Mechanistic studies have shown that quercetin activates the FXR/TGR5 signaling pathway that is involved in the regulation of T2DM-induced lipid metabolism during NAFLD.

5.5.2. Gallic acid (GA)

GA, an endogenous plant phenol, has potent free radical scavenging properties and anti-oxidative activities. Lower levels of methylamine-associated metabolites including trimethylamine, trimethylamine-N-oxide and dimethylamine are found in GA treatment HFD-fed mice compared with the control group. GA is able to reduce the elevation of choline metabolism in the gut microflora present in HFD-fed mice and as such improve hepatic steatosis.

6. Challenges and suggestions

The application of TCM for the treatment of NAFLD has been reported in many Asian countries including China, India and Japan. However, the clinical effects of TCM for the treatment of NAFLD have not been yet recognized by regulatory agencies such as the U.S. Food and Drug Administration. Clinical trials for the evaluation of the safety and efficacy of PDB as a potential anti-NAFLD therapeutic are still necessary for regulatory acceptance. In this paper we investigated the mechanisms by which the natural active compounds of PDB may improve NAFLD using experimental models. Yet, clinical data, in which the mode-of-action of the therapeutic effects of natural active compounds of PDB are described, are still missing. Moreover, pharmacokinetic data of the PDB compounds, such as drug dose variance and absorbance rates cannot be extrapolated from animal models and need also to be determined in patients during clinical trials.

7. Summary

The prevalence of NAFLD is reaching pandemic proportions, and since the pathogenesis of this disease is very complex, there are currently no approved effective drugs for its treatment. Therefore, it is urgent to develop novel efficient therapeutic and preventative strategies for NAFLD. More and more studies are paying attention to TCM. PDB has been known since ancient times for its curative properties. In this paper, we provide an overview of the current knowledge of the pathogenesis of NAFLD, and summarize the anti-NAFLD properties of PDB, providing the underlying mechanisms of its natural active compounds. Luteolin, UA, OA, 3Ac-coumaric acid, rutin and GA were found to ameliorate NAFLD characteristics. Interestingly, these compounds exert their anti-NAFLD effects through different mechanisms, including improving lipid metabolism and IR, reducing oxidative stress and inflammation, inhibiting ER stress, and regulating intestinal microflora. These beneficial effects of the natural active compounds of PDB support the notion that PDB can be considered as a potential novel candidate for the treatment and prevention of NAFLD. As such, the PDB natural active compounds may represent new sources for the development of new drugs or dietary supplements against NAFLD.

However, some questions remain to be addressed. On one hand, a systematic meta-analysis of the available publications about traditional Chinese medicines containing PBD still needs to be conducted. On the other hand, the hepatotoxicity and nephrotoxicity induced by PDB also needs investigation. The increase of well-designed preclinical and clinical studies to investigate the therapeutic effects of TCM, will hopefully validate the benefits of PDB as a therapeutic agent for the treatment of NAFLD in the future.

Acknowledgments

This work was partly supported by National Natural Science Foundation of China (Nos. 82074155, 81874436, 81973773, China); “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (No. 18SG39, China); Program of Shanghai Academic/Technology Research Leader (No. 20XD1423500, China); Clinical Research Plan of SHDC (No. SHDC2020CR3089B, China); Shanghai Key Clinical Specialty Construction Project (No.
A promising drug *Potentilla discolor* Bunge for the treatment of NAFLD

shslczdzk01201, China); Shanghai Frontier Research Base of Disease and Syndrome Biology of inflammatory cancer transformation (No. 2021KJ03-12, China); Shanghai Sailing Program (No. 20YF1450200, China); Shanghai Collaborative Innovation Center of Industrial Transformation of Hospital TCM Preparation (China).

Author contributions

Man Li, Yueqiu Gao and Robim M. Rodrigues: proposition proposal, design and final revision; Longshan Ji and Qian Li: organizational framework and construction, paper drafting; Yong He: revision and analysis; Xin Zhang and Zhenhua Zhou: collected data and provided materials; Yating Gao, Miao Fang, and Zhuo Yu: revision.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Eslam M, Sanyal AJ, George J. NAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. *Gastroenterology* 2020;158:1999–2014.e1.

2. Younossi Z, Tacke F, Arrese M, Chander Sharma B, Mostafa I, Corrales-Zygueno E, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. *Hepatology* 2019;69:2672–82.

3. Nourreddin M, Sanyal AJ. Pathogenesis of NASH: the impact of multiple pathways. *Curr Hepat Rep* 2018;17:350–60.

4. Dufour JF, Caussy C, Loomba R. Combination therapy for non-alcoholic steatohepatitis: rationale, opportunities and challenges. *Gut* 2020;69:1877–84.

5. Kefala G, Tzimolas K. Apoptosis signal-regulating kinase-1 as a therapeutic target in nonalcoholic fatty liver disease. *Exper Rev Gastroenterol Hepatol* 2019;13:189–91.

6. Thanapriom K, Tsochatzi EA. Non-alcoholic fatty liver disease (NAFLD) and the quest for effective treatments. *Hepatobiliary Surg Nutr* 2019;8:77–9.

7. Yan T, Yan N, Wang P, Xia Y, Hao H, Wang G, et al. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease. *Acta Pharm Sin B* 2020;10:3–18.

8. Zhang L, Yang J, Chen XQ, Zan K, Wen XD, Chen H, et al. Antidiabetic and antioxidative effects of extracts from *Potentilla discolor* Bunge on diabetic rats induced by high fat diet and streptozotocin. *J Ethnopharmacol* 2010;132:518–24.

9. Lu YT, Gao CB, Fu B. Textual research on the herb of *Potentilla discolor* Bunge. *Hunan J Tradit Chin Med* 2019;35:126–8.

10. Huang FB, Wu J, Sheng WB, Peng CG, Wang W, Zhang ZQ, et al. Research progress on chemical constituents and pharmacological activities of *Potentilla freyniana* Borrm. *J Hunan Univ Chin Med* 2020;40:1039–44.

11. Wang SS, Wang DM, Pu WJ, Li DW. Phytochemical profiles, antioxidant and antimicrobial activities of three *Potentilla* species. *BMC Compl Alternative Med* 2013;13:321.

12. Zhou F, Zhou J, Wang W, Zhang XJ, Ji YX, Zhang P, et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis. *Hepatology* 2019;70:1119–33.

13. Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, et al. Epidemiological features of NAFLD from 1999 to 2018 in China. *Hepatology* 2020;71:1851–64.

14. Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. *Gut* 2018;67:963–72.

15. Rathnasarathy G, Revelo X, Muhlendyck X, Sanyal AJ. Pathogenesis of nonalcoholic steatohepatitis: an overview. *Hepatol Commun* 2020;4:478–92.

16. Wang H, Mehal W, Nagy LE, Rotman Y. Immunological mechanisms and therapeutic targets of fatty liver diseases. *Cell Mol Immunol* 2021;18:73–91.

17. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. *Nature* 2018;555:210–5.

18. Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. *Sci Rep* 2015;5:8096.

19. Adolph TE, Grander C, Grabherr F, Tilg H. Adipokines and non-alcoholic fatty liver disease: multiple interactions. *Int J Mol Sci* 2017;18:1649.

20. Polyzos SA, Kountouras J, Mantzoros CS. Obesity and nonalcoholic fatty liver disease: from pathophysiology to therapeutics. *Metabolism* 2019;92:82–97.

21. Marra F, Svegliati-Baroni G. Lipotoxicity and the gut–liver axis in NASH pathogenesis. *J Hepatol* 2018;68:280–95.

22. Rodrigues RM, He Y, Hwang S, Bertola A, Mackowiak B, Ahmed YA, et al. E-selectin-dependent inflammation and lipolysis in adipose tissue exacerbate steatois-to-NASH progression via S100A8/9. *Cell Mol Gastroenterol Hepatol* 2022;13:151–71.

23. Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bork SF, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. *Hepatology* 2003;38:1188–98.

24. Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets. *Nat Rev Gastroenterol Hepatol* 2017;14:455–66.

25. Wu D, Zhu H, Wang H. Extracellular vesicles in non-alcoholic fatty liver disease and alcoholic liver disease. *Front Physiol* 2021;12:707429.

26. Malhi H. Emerging role of extracellular vesicles in liver diseases. *Am J Physiol Gastrointest Liver Physiol* 2019;317:G739–49.

27. Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bork SF, Werneburg NW, et al. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. *Gastroenterology* 2016;150:956–67.

28. Liu XL, Pan Q, Cao HX, Xin FZ, Zhao ZH, Yang RX, et al. Lipotopic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through rictor/akt/forkhead box transcription factor o1 signaling in nonalcoholic fatty liver disease. *Hepatology* 2020;72:454–69.

29. Zhao Z, Zhong L, Li P, He K, Qiu C, Zhao L, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p. *Exp Cell Res* 2020;387:111738.

30. Ibrahim SH, Hirsova P, Tomita K, Bork SF, Werneburg NW, Harrison SA, et al. Mixed lineage kinase 3 mediates release of extracellular vesicles that promote inflammation in mice with steatohepatitis. *Hepatol Commun* 2016;63:731–44.

31. Guo Q, Furuta K, Lucien F, Gutierrez Sanchez LH, Hirsova P, Krishnan A, et al. Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. *J Hepatol* 2019;71:1193–205.

32. Dasgupta D, Nakao Y, Mauer AS, Thompson JM, Sehrawat TS, Liao CY, et al. IRE1A stimulates hepatocyte-derived extracellular vesicles that promote inflammation in mice with steatohepatitis. *Gastroenterology* 2020;159:1487–1503.e17.

33. Rinella ME, Tacke F, Sanyal AJ, Anstee QM. Report on the AASLD/EASL joint workshop on clinical trial endpoints in NAFLD. *Hepatology* 2019;70:1424–56.
34. Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe?. Gastroenterology 2016;150:1704–9.
35. Bertola A, Bonnafous S, Anty R, Patoureaux S, Saint-Paul MC, Iannelli A, et al. Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One 2010;5:e13577.
36. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 2013;13:159–75.
37. Hwang S, He Y, Xiang X, Seo W, Kim SJ, Ma J, et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology 2020;72:412–29.
38. He Y, Hwang S, Cai Y, Kim SJ, Xu M, Yang D, et al. MicroRNA-223 ameliorates nonalcoholic steatohepatitis and cancer by targeting multiple inflammatory and oncogenic genes in hepatocytes. Hepatology 2019;70:1150–67.
39. He Y, Rodrigues RM, Wang X, Seo W, Ma J, Hwang S, et al. Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J Clin Invest 2021;131:e141513.
40. Shi T, Wu L, Ma W, Ju L, Bai M, Chen X, et al. Nonalcoholic fatty liver disease: pathogenesis and treatment in traditional Chinese medicine and western medicine. Evid Based Complement Alternat Med 2020;2020:8749564.
41. Ji YM, Mao GQ. Study on TCM constitution and correlative syndromes of nonalcoholic fatty liver patients. Medical Information 2018;31:46–52.
42. Zhang Y, Tang K, Deng Y, Chen R, Liang S, Xie H, et al. Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats. Biomed Pharmacother 2018;102:1025–36.
43. Tang KR, Deng YJ, Zheng CY, Nie H, Pan MX, Chen RS, et al. Prevention of nonalcoholic hepatic steatosis by shenling baizhu powder: involvement of adiponectin-induced inhibition of hepatic SREBP-1c. Oxid Med Cell Longev 2020;2020:9701285.
44. Han RT, Qiu HH, Zhong J, Zhen NN, Li BB, Hong Y, et al. Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease via anti-inflammatory response through regulating p53 and PPARγ signaling. Biol Pharm Bull 2020;43:1626–33.
45. Wei SS, Yang HJ, Huang JW, Lu XP, Peng LF, Wang QG. Traditional herbal formula sini powder extract produces antidepressant-like effects through stress-related mechanisms in rats. Chin J Nat Med 2016;14:590–8.
46. Cheng FF, Ma CY, Wang XQ, Zhai CM, Wang XL, Xu XL, et al. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced non-alcoholic fatty liver disease: a rat study. BMC Compl Altern Med 2017;17:203.
47. Zhu F, Li YM, Feng TT, Wu Y, Zhang HX, Jin GY, et al. Freeze-dried Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease. World J Gastroenterol 2019;25:3506–68.
48. Yang YJ, Ma W, Mei QC, Song JF, Shu L, Zhang S, et al. Protective effect of FuZi LiZhong decoction against non-alcoholic fatty liver disease via anti-inflammatory response through regulating p53 and PPARγ signaling. Biomed Pharmacother 2021;139:102104.
49. Wei SS, Yang HJ, Huang JW, Lu XP, Peng LF, Wang QG. Traditional herbal formula sini powder extract produces antidepressant-like effects through stress-related mechanisms in rats. Chin J Nat Med 2016;14:590–8.
50. Cheng FF, Ma CY, Wang XQ, Zhai CM, Wang XL, Xu XL, et al. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced non-alcoholic fatty liver disease: a rat study. BMC Compl Altern Med 2017;17:203.
51. Zhu F, Li YM, Feng TT, Wu Y, Zhang HX, Jin GY, et al. Freeze-dried Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease. World J Gastroenterol 2019;25:3506–68.
52. Deng YQ, Xu JJ, Zhi MZ, Zhou W, Zhang L, Ji G. Gan-Jiang-Ling-Zhu decoction alleviates hepatic steatosis in rats by the miR-138-5p/CPT1B axis. J Clin Invest 2020;130:125–37.
53. Deng YQ, Hao SJ, Zhou WJ, Zhang L, Ji G. The traditional Chinese herbal medicine Si-Ni-San powder herbal formula on intestinal microbiota in high-fat diet-induced non-alcoholic fatty liver disease. J Tradit Chin Med 2020;40:203–10.
54. Yang JY, Ma W, Mei QC, Song JF, Shu L, Zhang S, et al. Protective effect of FuZi LiZhong decoction against non-alcoholic fatty liver disease via anti-inflammatory response through regulating p53 and PPARγ signaling. Biol Pharm Bull 2020;43:1626–33.
55. Wei SS, Yang HJ, Huang JW, Lu XP, Peng LF, Wang QG. Traditional herbal formula sini powder extract produces antidepressant-like effects through stress-related mechanisms in rats. Chin J Nat Med 2016;14:590–8.
56. Cheng FF, Ma CY, Wang XQ, Zhai CM, Wang XL, Xu XL, et al. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced non-alcoholic fatty liver disease: a rat study. BMC Compl Altern Med 2017;17:203.
57. Zhu F, Li YM, Feng TT, Wu Y, Zhang HX, Jin GY, et al. Freeze-dried Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease. World J Gastroenterol 2019;25:3506–68.
58. Deng YQ, Xu JJ, Zhi MZ, Zhou W, Zhang L, Ji G. Gan-Jiang-Ling-Zhu decoction alleviates hepatic steatosis in rats by the miR-138-5p/CPT1B axis. Biomed Pharmacother 2020;127:110127.
59. Chen P, Zhong X, Dai Y, Tan M, Zhang G, Ke X, et al. The efficacy and safety of acupuncture in nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Zhongguo Zhen Jiu 2021;40:27050.
60. Cheng FF, Ma CY, Wang XQ, Zhai CM, Wang XL, Xu XL, et al. Effect of traditional Chinese medicine formula Sinisan on chronic restraint stress-induced non-alcoholic fatty liver disease: a rat study. BMC Compl Altern Med 2017;17:203.
61. Zhu F, Li YM, Feng TT, Wu Y, Zhang HX, Jin GY, et al. Freeze-dried Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease. World J Gastroenterol 2019;25:3506–68.
62. Deng YQ, Xu JJ, Zhi MZ, Zhou W, Zhang L, Ji G. Gan-Jiang-Ling-Zhu decoction alleviates hepatic steatosis in rats by the miR-138-5p/CPT1B axis. Biomed Pharmacother 2020;127:110127.
63. Chen P, Zhong X, Dai Y, Tan M, Zhang G, Ke X, et al. The efficacy and safety of acupuncture in nonalcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials. Zhongguo Zhen Jiu 2021;40:27050.
64. Li Y, Liu Y, Yang M, Wang Q, Zheng Y, Xu J, et al. A study on the therapeutic efficacy of San Zi Yang Qin decoction for non-alcoholic fatty liver disease and the underlying mechanism based on network pharmacology. Evid Based Complement Altern Med 2021;2021:8819245.
65. Zhu WY, Luo H, Xiong M, Shen T, Xiaochaihu decoction for nonalcoholic fatty liver disease: a protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2021;100:e25267.
66. Liang YJ, Zhang YP, Deng YJ, Liang S, He YF, Chen YN, et al. Chaihu-Shugan-San decoction modulates intestinal microbe dysbiosis and alleviates chronic metabolic inflammation in NAFLD rats via the NLRP3 inflammasome pathway. Evid Based Complement Alternat Med 2018;2018:9390786.
67. Yang QH, Xu YJ, Feng GF, Hu CF, Zhang YP, Cheng SB, et al. p38 MAPK signal pathway involved in anti-inflammatory effect of Chaihu-Shugan-San and Shen-Ling-Bai-Zhu-San on hepatocyte in non-alcoholic hepatitis rats. Afr J Tradit Complement Altern Med 2013;11:213–21.
68. Jiang WN, Li D, Jiang T, Guo J, Chen YF, Wang J, et al. Protective effects of Chaihu Shugan San, on nonalcoholic fatty liver disease in rats with insulin resistance. Chin J Integr Med 2018;24:125–32.
69. Fan YH, Miao BQ. Treatment of 63 cases of nonalcoholic fatty liver disease with Duchaihu decoction. Mongol J Traditional Chinese Medicine 2014;33:9.
70. Yang JM, Sun Y, Wang M, Zhang XL, Zhang SJ, Gao YS, et al. Regulatory effect of a Chinese herbal medicine formula on non-alcoholic fatty liver disease. World J Gastroenterol 2019;25:5105–19.
71. Chen SD, Fan Y, Xu WJ. Effects of YinChenHao decoction (see text) for non-alcoholic steatohepatitis in rats and study of the mechanism. J Tradit Chin Med 2011;31:220–3.
A promising drug Potentilla discolor Bunge for the treatment of NAFLD

71. Feng WQ, Zeng ZH, Zhuo LS. Influence of electroacupuncture on insulin-resistance in non-alcoholic fatty liver rats. *Zhen Ci Zhen Jiu* 2008;33:111–5.
72. Zhang Y, Tang CL, Tian Y, Yuan HZ, Yang H, Tang NZ, et al. Effect of electroacupuncture on ERp57 in NAFLD rats. *Si Chuan Da Xue Xue Bao Yi Xue Ban* 2016;47:208–13.
73. Zhang Y, Tang CL, Tian Y, Yuan HZ, Gao RQ, Cao J. Effects of electroacupuncture combined with dietary control on liver endoplasmic reticulum stress in rats with non-alcoholic fatty liver disease. *Zhongguo Zhen Jiu* 2016;36:951–6.
74. Wang HY, Liang CM, Cui JW, Pan L, Hu H, Feng JH. Acupuncture improves hepatic lipid metabolism by suppressing oxidative stress in obese non-alcoholic fatty liver disease rats. *Zhen Ci Yan Jiu* 2019;44:189–94.
75. Ma BQ, Li P, An HY, Song ZM. Electroacupuncture attenuates liver inflammation in non-alcoholic fatty liver disease rats. *Inflammation* 2020;43:2372–8.
76. Zeng ZH, Zeng MH, Huang XK, Chen R, Yu H. Effect of electroacupuncture stimulation of back-shu points on expression of TNF-alpha and lipid peroxidation reaction in the liver tissue in non-alcoholic fatty liver disease rats. *Zhen Ci Yan Jiu* 2014;39:288–92.
77. Zeng ZH, Feng WQ, Zhuo LS. Influence of electroacupuncture on cytotoxicity P450 2E1 expression, oxidation, antioxidation in non-alcoholic fatty liver tissue. *J Fourth Mil Med Univ* 2008;11:994–7.
78. Bai CY, Zhuo LS, Zhu Y, Fu Y. Effect of electroacupuncture on the expression of leptin and leptin receptor in hypothalamus of rats with nonalcoholic fatty liver. *Zhen Ci Yan Jiu* 2010;35:277–80.
79. Zhang L, Wang HX, Chen Y, Ouyang SS. Treatment of 36 cases of type II diabetes compound fubai grass mixture. *Chin J Mod Drug Apr* 2007:1:50–1.
80. Luo XL, Ma ZJ, Liu HL, Li M. Clinical observation of compound white grass decoction on 60 patients with type 2 diabetes. *Guid J Tradit Chin Med Pharm* 2015;21:62–3.
81. Jin YS, Zhang ZQ, Mei XH, Zhang S, Xie LC, Liu BG. Effect of Jiulong Jiangtang decoction combined with acupuncture on blood lipid in patients with type 2 diabetes mellitus. *Hubei J Tradit Chin Med* 2004;6:36.
82. Jing LY. 33 cases of insulin resistance in elderly patients with type 2 diabetes mellitus by Jiang Tang Zeng Ming Tang. *Forum Tradit Chin Med* 2017;32:44–5.
83. Liu RX, Zeng JP, Cui DZ, Yang QF. Clinical study on Jiangtang Zengmin decoction in treating insulin resistance in elderly patients with type 2 diabetes. *J Shandong Univ Tradit Chin Med* 2016;40:439–41.
84. Wang Y, Wang N, Mao LH, Hu L. Clinical study of Chinese medicine Zeng Min decoction on insulin resistance in type 2 diabetes mellitus. *Practical Clin J Integrated Tradit Chin West Med* 2008;3:277–8.
85. Jiang J, Liu RX, Zhang T, Qian YD. Efficacy of the Shugan Yunpi and Huazhuo Jiedu therapy on adiponectin, leptin and insulin resistance in the patients with type 2 diabetes mellitus. *Clin J Chin Med* 2017;9:17–9.
86. Tang XZ, Luo Y. Treatment of 69 cases of latent latent type 2 diabetes with the method of invigorating spleen and spleen and removing dampness and clearing away heat. *Henan Tradit Chin Med* 2006;8:44–5.
87. Yuan MH, Ma XB, Zhang XK, Su LY. Study on treatment of type 2 diabetes by glucophage with Qi Yu Ping Tang (Qi Yin deficiency syndrome). *J Shanxi Univ Chin Med* 2016;39:63–5.
88. Wang ZQ. Clinical study of activating blood and supplementing qi in treating diabetes mellitus. *Henan Tradit Chin Med* 2001;21:33–4.
89. Lin XQ. Clinical observation on treating diabetes mellitus type 2 with the Antang capsule. *Clin J Chin Med* 2018;10:107–9.
90. Li MY, Wang QZ, Cai QM, Wu WF. Treatment of insulin resistance in type 2 diabetes mellitus by pioglitazone combined with self made bitter Huang capsule: a clinical observation. *Chin Med Mod Distance Ed Chinua* 2011;9:176.
91. Li M, Ma ZJ, Luo XL, Liu HL. Treatment of type 2 diabetes by bai huang jiangtang granule: a clinical observation of 60 cases. *Nei Mongol J Tradit Chin Med* 2016;38:51.
92. Wu JJ, Huang JR, Huang W, Pan FM, Huang XW. Clinical observation of jiedu fuyang prescription in treating type 2 diabetes mellitus. *Mod J Integr Tradit Chin West Med* 2014;23:713–4.
93. Fan H. Clinical observation on treatment of type 2 diabetes with Yiqi Yangxin Huoxue decoction. *Hubei J Tradit Chin Med* 2006;28:19–21.
94. Liu C, Ge H. Effect of boosting qi and nourishing yin on type 2 diabetes patients with serum CysC and HbA1C. *Chin J Biochem Pharm* 2016;36:53–5.
95. Wang WJ. The clinical curative effect of early diabetic nephropathy with Yiqi Jianpi Huayu decoction. *Chin J Ethnomed Ethnopharmacy* 2015;24:93–4.
96. Peng J, Qi YH, Huang K, Yan SF. Observation of curative effect on replenishing spleen Qi and removing blood stasis decoction in preventing early diabetic nephropathy. *Chin Med Rev* 2012;19:101–2.
97. Wu XQ, Peng J. Treatment of early stage of diabetic nephropathy by Yiqi Huayu decoction: a clinical observation of 26 cases. *Chin Med Herald* 2008;5:81–2.
98. Wang XF, Zhao CD, Zhang HL. Treatment of early stage of diabetic nephropathy by Yiqi Huoxue tang: a clinical observation of 40 cases. *J Chin Med* 2006;38:46–7.
99. Zhu YH, Wei T, Liu JX. Treatment of 30 cases of early diabetic nephropathy with Yiqi Huoxue, kidney preserving and detoxicating methods. *China Naturopathy* 2006;14:6–7.
100. Dong CH. Clinical observation onpotentilla discolor bungae capsule for diabetic peripheral neuropathy. *Chin J Control Endemic Dis* 2016;31:566.
101. Song CL, Wang XL, Wang T. Plowing huan wu tang combined with western treatment of diabetic peripheral arterial occlusive clinical observation of 35 cases. *J Chin Prac Tradit Chin Med* 2015;29:133–5.
102. Xu CK, Qu ZQ. Clinical observation on treating diabetic limb arterial occlusive disease by Fandihuanwu decoction. *Lining J Tradit Chin Med* 2006;33:835–6.
103. Liu CY, Liu H. Observation on therapeutic effect of Jiangbai decoction on 25 cases of chronic nephritis proteinuria. *Chin Med J Metallurgical Ind* 2008;25:709–10.
104. Zhao CD, Bao LY, Wu CS. 30 cases of chronic nephritis proteinuria treated with Jiangbai decoction. *J Tradit Chin Med* 2002;43:202–3.
105. Lu JM, Liu GB. Clinical study on Yao medicine in the treatment of chronic viral hepatitis B. *Hebei J Tradit Chin Med* 2006;28:253–4.
106. Xu P, Zhou CF, Chen SW. Treatment of 36 patients of mastitis by discolor cinquefoil herb and yellow cock-tree bark. *China Naturopathy* 2003;11:39.
107. Yuncheng district health and epidemic prevention station Yuanqu Metallurgical Ind. Clinical study on 25 cases of chronic ITP. *Liaoning J Tradit Chin Med* 2005;107:90–2.
108. Zhang YH, Wei T, Liu JX. Treatment of 30 cases of early diabetic nephropathy with Yiqi Huoxue, kidney preserving and detoxicating methods. *China Naturopathy* 2006;14:6–7.
109. Dong CH. Clinical observation onpotentilla discolor bungae capsule for diabetic peripheral neuropathy. *Chin J Control Endemic Dis* 2016;31:566.
110. Song CL, Wang XL, Wang T. Plowing huan wu tang combined with western treatment of diabetic peripheral arterial occlusive clinical observation of 35 cases. *J Chin Prac Tradit Chin Med* 2015;29:133–5.
111. Xu CK, Qu ZQ. Clinical observation on treating diabetic limb arterial occlusive disease by Fandihuanwu decoction. *Lining J Tradit Chin Med* 2006;33:835–6.
112. Liu CY, Liu H. Observation on therapeutic effect of Jiangbai decoction on 25 cases of chronic nephritis proteinuria. *Chin Med J Metallurgical Ind* 2008;25:709–10.
113. Zhao CD, Bao LY, Wu CS. 30 cases of chronic nephritis proteinuria treated with Jiangbai decoction. *J Tradit Chin Med* 2002;43:202–3.
114. Lu JM, Liu GB. Clinical study on Yao medicine in the treatment of chronic viral hepatitis B. *Hebei J Tradit Chin Med* 2006;28:253–4.
115. Xu P, Zhou CF, Chen SW. Treatment of 36 patients of mastitis by discolor cinquefoil herb and yellow cock-tree bark. *China Naturopathy* 2003;11:39.
116. Yuncheng district health and epidemic prevention station Yuanqu Metallurgical Ind. Clinical study on 25 cases of chronic ITP. *Liaoning J Tradit Chin Med* 2005;107:90–2.
115. Yan CF, Lv Y. Analysis of clinical application value of fanbaicao powder. *Zhongyi J Zhongyi Tcm* 2014;24:113–4.
116. Zou B. 124 cases of hemorrhoids treated with Zhining decoction fumigation bath. *J Ext Ther Tcm Clin Med* 2007;16:35.
117. Cheng SB, Wang GX, Yan P, Zou TX. Therapeutic effect of Potentilla discolor and dandelion mixture on diabetic mice. *Seek Med Ask Med* 2013;11:446–7.
118. Zhang DM, Lou LX, Wu AM, Lv XY, Hu ZJ, Zhang YH, et al. Effects of astragalus membranaceus and Potentilla discolor mixture on insulin resistance and its related mRNA expressions in KKAY mice with type 2 diabetes. *J Chin Intergr Med* 2012;10:821–6.
119. Hu ZJ, Liu HF, Zhang YH, Nie B, Zhang DM, Lou LX, et al. Influence of medicinals with actions of clearing heat and tonifying qi on insulin sensitivity in KKAY mice with early type 2 diabetes. *J Beijing Univ Tradit Chin Med* 2012;35:607–10.
120. Meng LY, Yan XH, Zhang DD, Jia Bin. Study on molecular mechanism of the mixture of Potentilla discolor bunge and Salvia miltiorrhiza bunge on the expression of PPARG gene in type 2 diabetic rat model. *J Med Sci Yunnan Univ* 2015;38:178–81.
121. Guo XM, Yu ST. Effect of Potentilla discolor mixture on the expression of nerve growth factor and nerve fiber protein in hippocampus of type 2 diabetic rats. *Chin J Clin Rehabil* 2005;9:82–3.
122. Cai JW, Zhao ZZ, Zhang XX, Miao YH, Wang T, Ge DY, et al. Renal protective effect of tangshiping capsule on diabetic nephropathy KK-Mice and its effect on Wnt/b-catenin signal transduction pathway. *Chin J Exp Tradit Med Form* 2019;25:96–102.
123. Lin YN, Yang CN, Chang HY, Chu FY, Hsu YA, Cheng WK, et al. Urolithiasis, a novel liver X receptor agonist inhibiting ligand-induced nonalcoholic fatty liver and drug-induced lipogenesis. *J Agric Food Chem* 2018;66:11647–62.
124. Li JS, Wang WJ, Sun Y, Zhang YH, Zheng L. Urolithiasis inhibits the development of nonalcoholic fatty liver disease by attenuating endoplasmic reticulum stress. *Food Funct* 2015;6:1543–51.
125. Wang I, Jiao Q, Wang HB, Song HM. Research progress on chemical constituents, quality evaluation and pharmacological activities of Potentilla discolor. *Chin Tradit Patent Med* 2016;38:1590–3.
126. Zhang Y, Zhang LM, Qi YX, Hao JF, Li FR, Gao YS. Determination of ursolic acid in plant extracts by liquid chromatography–mass spectrometry. *J Nutr Biochem* 2013;24:180–7.
127. Zhao Y, Deng YR, Wang Y, Lian LL. Research progress on chemical constituents and pharmacological activities of Potentilla discolor. *Chin Tradit Patent Med* 2016;38:639–45.
128. Qin HW, Sun H, Wang XD, Sun JY, Zhang J, Yang QM, et al. Chemical constituents of Potentilla discolor. *Zhong Yao Cai* 2020;43:339–43.
129. Fu LM. Extraction technology and chemical composition analysis of total flavonoids from Potentilla discolor. *J Clin Med Literature* 2017;4:4713–4.
130. Shao FF. Experimental study on hypoglycemic and lipid-lowering effect and mechanism of Potentilla discolor [dissertation]. Luoyang: Henan University of Science and Technology; 2010. p. 12–4.
131. Li YY, Xiao CM, Yao M, Zeng XY, Xiao XH, Zhu CQ. Study on chemical constituents of tripteranoids from Potentilla discolor. *Zhong Yao Cai* 2013;36:1099–101.
132. Sun C. Chemical constituents of Potentilla discolor Bunge. *Sci Tech Inf* 2015;13:243.
133. Yang H, Yang T, Heng C, Zhou Y, Jiang Q, Qian X, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. *Phytother Res* 2019;33:3140–52.
134. Phuwamongkolwiwat P, Suzuki T, Hira T, Hara H. Fructooligosaccharide augments benefits of quercetin-3-O-β-glucoside on insulin sensitivity and plasma total cholesterol with promotion of flavonoid absorption in sucrose-fed rats. *Eur J Nutr* 2014;53:457–68.
135. Zhang Y, Zhang L, Igarashi K, Yu C. The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. *Food Funct* 2015;6:834–41.
136. Yin Y, Gao L, Lin H, Wu Y, Han X, Zhu Y, et al. Luteolin improves non-alcoholic fatty liver disease in db/db mice by inhibition of liver X receptor activation to down-regulate expression of sterol regulatory element binding protein 1c. *Biochem Biophys Res Commun* 2017;482:720–6.
137. Zang Y, Igarashi K, Li Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A’ mice. *Biosci Biotechnol Biochem* 2016;80:1580–6.
high fat diet-treated rats by activating AMPK-related pathways. *Acta Pharmacol Sin* 2018;39:1284–93.

155. Ponnulakshmi R, Shyamaladevi B, Vijayalakshmi P, Selvaraj J. In silico and in vivo analysis to identify the antiadipogenic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats. *Toxical Mech Methods* 2019;29:276–90.

156. Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. *J Gastroenterol* 2013;48:434–41.

157. Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, et al. The nuclear receptor LXRx is a glucose sensor. *Nature* 2007;445:219–23.

158. Maczewsly J, Sikimic J, Bauer C, Krippeit-Draws P, Wolke C, Lendeckel U, et al. The LXRx ligand T0901317 acutely inhibits insulin secretion by affecting mitochondrial metabolism. *Endocrinology* 2017;158:2145–54.

159. Seelinger G, Merfort I, Schempp CM. Antioxidant, anti-inflammatory and anti-allergic activities of luteolin. *Planta Med* 2008;74:677–77.

160. Wang X, Ikejima K, Kon K, Arai K, Aoyama T, Okumura K, et al. Mitro N, Mak PA, Vargas L, Godio C, Hampton E, Molteni V, et al. The nuclear receptor LXRx is a glucose sensor. *Nature* 2007;445:219–23.

161. Madalal HP, Van Heerden FR, Mubagwa K, Musabayane CT. Changes in renal function and oxidative status associated with the hypertensive effects of oleanolic acid and related synthetic derivatives in experimental animals. *PloS One* 2015;10:e0128192.

162. Yu Z, Sun W, Peng W, Yu R, Li G, Jiang T. Pharmacokinetics and in vivo of two novel prodrugs of oleanolic acid in rats and its hepatoprotective effects against liver injury induced by CCl4. *Mol Pharm* 2016;13:1699–710.

163. Liese J, Abhari BA, Fulda S. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells. *Cancer Lett* 2015;365:47–56.

164. Gamede M, Mabuza L, Ngubane P, Khathi A. Plant-derived oleanolic acid ameliorates markers associated with non-alcoholic fatty liver disease in a diet-induced pre-diabetes rat model. *Diabetes Metab Syndr Obes* 2019;12:1953–62.

165. Agrawal NK, Kant S. Targeting inflammation in diabetes: newer therapeutic options. *World J Diabetes* 2014;5:697–710.

166. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. *Science* 1993;259:87–91.

167. Kwon EY, Jung UJ, Park T, Yun JW, Choi MS. Luteolin attenuates inflammatory and anti-allergic activities of luteolin. *Exp Toxicol Pathol* 2018;69:101–9.

168. Chau H, Duan Y, Yang L, Schnabl B. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. *Gut* 2019;68:359–70.

169. Hsu CL, Yen GC. Effect of gallic acid on high fat diet-induced dyslipidemia, hepatosteatosis and oxidative stress in rats. *Br J Nutr* 2007;98:727–35.

170. Pfennig KA, Scanu AM, Bunge for the treatment of NAFLD. *Cell Factories* 2017;15:205–75.