Degeneracy analysis for a super cell of a photonic crystal and its application to the creation of band gaps

Liang Wu1 and Sailing He1,2

1Center for Optical and Electromagnetic Research,
State Key Laboratory for Modern Optical Instrumentation,
Zhejiang University,
email:wl@coer.zju.edu.cn

2Division of Electromagnetic Theory,
Alfven Laboratory,
Royal Institute of Technology,
S-100 44 Stockholm, Sweden

(Dated: November 7, 2018)

Abstract

A method is introduced to analyze the degeneracy properties of the band structure of a photonic crystal making use of the super cells. The band structure associated with a super cell of a photonic crystal has degeneracies at the edge of the Brillouin zone if the photonic crystal has some kind of point group symmetry. Both E-polarization and H-polarization cases have the same degeneracies for a 2-dimensional (2D) photonic crystal. Two theorems are given and proved. These degeneracies can be lifted to create photonic band gaps by changing the transform matrix between the super cell and the smallest unit cell which is caused by changing the translation group symmetry of the photonic crystal (the point group symmetry of the photonic crystal may keep unchanged). The existence of the photonic band gaps for many known 2D photonic crystals is explained through the degeneracy analysis. Some structures with large band gaps are also found under the guidance of this degeneracy analysis.
I. INTRODUCTION

Photonic crystals, which are periodic arrangement of dielectric or metallic materials, have attracted a wide attention recently in both physics and engineering communities in view of their unique ability to control light propagation [1, 2, 3, 4]. Many potential applications of photonic crystals rely on their photonic band gaps (PBGs). It is thus of great interest to design photonic crystals with an absolute band gap (as large as possible), particularly, for a given dielectric material.

Two-dimensional (2D) photonic crystals have attracted special attention since they are easier to fabricate. Many 2D photonic crystals with large absolute band gaps have been found [3, 4]. Based on the difference of the filling factors between the dielectric band and the air band (related to the distribution of the displacement field), the rule of thumb sometimes can be used to explain the band gaps particularly at low frequencies [3, 8]. Due to the complication of the differential operators in electrodynamics (different field components are coupled to each other even if the permittivity $\varepsilon(r)$ is separable), it is difficult to obtain analytical (even approximate) solutions for the distribution of the displacement field (particularly at high frequencies). Therefore, many photonic crystals with large absolute band gaps can not be explained or found by the rule of thumb [10, 11, 15].

Degeneracy lifting is another explanation for absolute band gaps and even a method to create band gaps [12, 13, 14, 15, 16, 17]. The degeneracy can be lifted by e.g. using hexagonal photonic structures [12], using anisotropic materials [13, 14], breaking the space group symmetry [15, 16] and changing the dielectric distribution without breaking the space group symmetry [17]. Both accidental and normal degeneracies can exist in a photonic band structure (see e.g. [17], this is different as compared to an electronic system). To investigate the degeneracy properties of 2D photonic crystals, the E-polarization and H-polarization are usually considered separately as suggested by [12, 18]. It is very complicated to predict where the degeneracy appears and how to break the degeneracy.

In some cases, we don’t have to rely on such an analysis. In the present paper, we introduce a method to create degeneracies first and then break them to create band gaps by studying the band structure associated with a super cell (instead of the unit cell as considered in the literature mentioned before by others). In the band structure associated with a super cell, we can analyze how degeneracies are formed and how to break them to
create band gaps.

The point group symmetry of a photonic crystal is defined with respect to the point with the highest symmetry. For example, the point group symmetry does not changed by adding columns at the corners of the unit cell for the 2D photonic crystals considered in \[15\] (they belong to the same point group symmetry \(C_{4v}\)). We notice that the translation group symmetry does not change either. Thus the space group symmetry of the photonic crystal does not change at all although the smallest unit cell must include two rods after the additional rods are added. It may be hard to understand the degeneracy breaking for the \(H\)-polarization at point \(M\) of the second and third bands as shown in \[15\] without careful analysis of the electromagnetic field distribution. However, if we study the band structure associated with a super cell, the lifting of the degeneracy and the creation of PBGs of such photonic crystals can be understood with some tricks even when the space group symmetry of the photonic crystal does not change. For the example mentioned above, the photonic crystal with the additional columns at the corners can be treated as the result of changing the translation group symmetry (keeping the point group symmetry unchanged) from another photonic crystal with the additional columns having the save size with the original column (as shown in Fig. 3(a) with the square column case), which also belongs to \(C_{4v}\) point group symmetry). Another view is presented to understand the idea of additional columns. Not surprisingly, many known photonic crystal structure such as a chessboard structure \[20\], a square lattice of square rods \[11\] and even a triangular air hole structure \[3\] can be somehow understood from this point of view. (cf. the numerical example associated with Figs. 3-6 below). By using such a degeneracy analysis associated with a super cell, some structures with large band gaps are also found in the present paper.

II. THEOREMS FOR DEGENERACIES IN THE BAND STRUCTURE ASSOCIATED WITH A SUPER CELL

A unit cell we consider here refers to the smallest periodic region in a photonic crystal. If the periodic region includes more than one unit cells, e.g. 2 unit cells, it is called a super cell. First we want to study the relation between the band structure associated with the super cell and the original band structure (associated with the unit cell).

In general, we consider a three-dimensional (3D) photonic crystal with primitive lat-
tice vectors \(\mathbf{a}_1, \mathbf{a}_2 \) and \(\mathbf{a}_3 \). The associated primitive reciprocal vectors \(\mathbf{b}_1, \mathbf{b}_2 \) and \(\mathbf{b}_3 \) are determined by

\[
\mathbf{b}_i = 2\pi \sum_{j,k=1}^{3} \epsilon_{ijk} \mathbf{a}_j \times \mathbf{a}_k / (\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)),
\]

where \(\epsilon_{ijk} \) is the 3D Levi-Civita completely antisymmetric symbol. The complete set of the reciprocal lattice vectors is written as \(\{ \mathbf{G} \mid \mathbf{G} = l_1 \mathbf{b}_1 + l_2 \mathbf{b}_2 + l_3 \mathbf{b}_3 \} \), where \((l_1, l_2, l_3) \) are integers. We denote the first Brillouin zone formed by these reciprocal lattice vectors \(\{ \mathbf{G} \} \) as zone A.

The primitive lattice vectors for a super cell are the linear combinations (with integer coefficients) of the primitive lattice vectors for the unit cell, i.e., \(\mathbf{a}'_i = \sum_{j=1}^{3} N_{ij} \mathbf{a}_j, i, j = 1, 2, 3 \), where \(N_{ij} \) are integers. The corresponding primitive reciprocal vectors for the super cell are determined by

\[
\mathbf{b}'_i = 2\pi \sum_{j,k=1}^{3} \epsilon_{ijk} \mathbf{a}'_j \times \mathbf{a}'_k / (\mathbf{a}'_1 \cdot (\mathbf{a}'_2 \times \mathbf{a}'_3)).
\]

The integers \(N_{ij} \) form a \(3 \times 3 \) transform matrix with a positive determinant \(\det(N) \equiv M > 0 \).

Since

\[
\mathbf{b}_i \cdot \mathbf{a}'_j = 2\pi \sum_{m,n=1}^{3} \epsilon_{imn} \mathbf{a}_m \times \mathbf{a}_n / (\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)) \cdot \sum_{l=1}^{3} N_{jl} \mathbf{a}_l
\]

it follows from \(\mathbf{a}'_i \cdot \mathbf{b}'_j = 2\pi \delta_{ij} \) that

\[
\mathbf{b}_i = \sum_{j=1}^{3} N_{ji} \mathbf{b}'_j = \sum_{j=1}^{3} N_{ij}^{T} \mathbf{b}'_j,
\]

where the superscript \(T \) denotes the matrix transposition. The set of the reciprocal lattice vectors associated with the super cell is \(\{ \mathbf{G}' \mid \mathbf{G}' = \sum_{j=1}^{3} n_j \mathbf{b}'_j \} \). Since \(\mathbf{G} = \sum_{i=1}^{3} n_i \mathbf{b}_i = \sum_{i,j=1}^{3} n_i N_{ij}^{T} \mathbf{b}'_j \), one sees that \(\{ \mathbf{G} \} \) is a subset of \(\{ \mathbf{G}' \} \). Note that the elements of \(\{ \mathbf{G} \} \) and \(\{ \mathbf{G}' \} \) are the integer grid points (they do not fill any continuous space) formed by the corresponding reciprocal lattice vectors. We denote the first Brillouin zone formed by the reciprocal vectors \(\{ \mathbf{G}' \} \) as zone B.

Lemma. There exist a subset \(\{ \mathbf{G} \} \) of \(\{ \mathbf{G}' \} \), which satisfies:

(i) \(\{ \mathbf{G} \} \subset \{ \mathbf{G}' \} \) and \(\{ \mathbf{G} \} \cap \{ \mathbf{G} \} = 0 \).

(ii) There are \(M \) elements in the set \(\{ \mathbf{G} \} \) (\(M \) is the determinant of the matrix \(N \)) and the difference of any two of them does not belong to \(\{ \mathbf{G} \} \), i.e., \((\mathbf{G}_1 - \mathbf{G}_2 \notin \{ \mathbf{G} \}) \).
(iii) Any $G' \in \{G'\}$ can be expressed as

$$G' = \bar{G} + G,$$

(4)

where $G \in \{G\}$, $\bar{G} \in \{G\}$.

The proof and a way to find the set $\{\bar{G}\}$ are given in the appendix.

If we define the addition of vectors as the multiplication in a group theory, we can take $\{G'\}$ as a group and $\{G\}$ as a subgroup. Then the vector 0 is the unit element of the group. From the group theory, one knows that $\{G'\}$ is the union of all the cosets of the set $\{G\}$. The subset $\{\bar{G}\}$ is used to give the cosets.

With these reciprocal vectors, each eigenstate of the electromagnetic field component H_k (with the wave vector k in the first Brillouin zone) in the photonic crystal can be expressed in terms of the following Bloch series [10],

$$H_k(r) = e^{ikr} \sum_G H_G e^{G \cdot r}.$$ (5)

The field component H_k satisfies the following equation,

$$\Theta H_k = \frac{\omega_k^2}{c^2} H_k,$$

(6)

where the operator Θ can be easily derived from Maxwell’s equations, and c is the speed of light.

For any wave vector k in the k space of a photonic crystal, one can find a wave vector in the first Brillouin zone which has the same eigenstate. The difference of the two wave vectors should be a reciprocal vector. Therefore, for any wave vector k, there exist a $G \in \{G\}$ so that

$$k_1 = k - G$$

(7)

is in zone A (associated with the unit cell) and a $G' \in \{G'\}$ so that

$$k_2 = k - G'$$

(8)

is in zone B (associated to the super cell). We call k_1 (in zone A) the counterpoint of k_2 (in zone B) for the same photonic crystal. They denote the same eigenstate in the reciprocal vector spaces associated with the unit cell and the super cell, respectively.
For a fixed $k_2 \in \mathbb{B}$, we define the set $\{ \mathbf{K}_1 | \mathbf{K}_1 = k_2 + \mathbf{G}, \text{ for all } \mathbf{G} \in \{ \mathbf{G} \} \}_{k_2}$. Clearly, there are M elements in $\{ \mathbf{K}_1 \}$. Since not all of these M elements are in zone A, we can make each of them inside zone A by subtracting an appropriate reciprocal vector $\mathbf{G}_{\mathbf{K}_1} \in \{ \mathbf{G} \}$. Thus, we define a set $\{ \mathbf{k}_1 | \mathbf{k}_1 = \mathbf{K}_1 - \mathbf{G}_{\mathbf{K}_1}, \text{ in A for all } \mathbf{K}_1 \in \{ \mathbf{K}_1 \}_{k_2} \}_{k_2}$. Obviously $\{ \mathbf{k}_1 \}_{k_2}$ contains M points inside zone A.

Theorem 1.

(i) The M elements in $\{ \mathbf{k}_1 \}_{k_2}$ are the counterpoints of k_2. They are M different points in zone A.

(ii) All the M eigenstates with the M wave vectors in $\{ \mathbf{k}_1 \}_{k_2}$ (associated with the unit cell) correspond to M eigenstates with one wave vector k_2 in zone B (associated with the super cell).

(iii) Each band in the band structure associated with the unit cell will split into M bands in the band structure associated with the super cell.

Proof. For any wave vector \mathbf{k} in the \mathbf{k} space, \mathbf{k}_1 and \mathbf{k}_2 are the counterpoints in zone A and zone B, respectively. From Eqs. (4), (7) and (8), one has

$$\mathbf{k} = k_2 + \mathbf{G}' = k_1 + \mathbf{G},$$
$$k_1 = k_2 + \mathbf{G}' - \mathbf{G}$$
$$= k_2 + \mathbf{G} + G_1 - \mathbf{G}$$
$$\equiv k_2 + \mathbf{G} + G_2$$
$$= \mathbf{K}_1 + G_2. \quad (10)$$

Since \mathbf{k}_1 is in zone A, it follows from the definition that $\mathbf{k}_1 \in \{ \mathbf{k}_1 \}_{k_2}$ (here $G_{\mathbf{K}_1} = -G_2$). Therefore, for any wave vector which has a counterpoint \mathbf{k}_2 in zone B, its counterpoint in zone A must belong to $\{ \mathbf{k}_1 \}_{k_2}$. On the other hand, all the elements in $\{ \mathbf{k}_1 \}_{k_2}$ for all possible \mathbf{G}' (correspond to all possible $\mathbf{G} \in \{ \bar{\mathbf{G}} \}$) in Eq. (10) are all the counterpoints of \mathbf{k}_2. Therefore, the elements in the set $\{ \mathbf{k}_1 \}_{k_2}$ are exactly all the counterpoints of \mathbf{k}_2.

Consider two different $\mathbf{G}_1, \mathbf{G}_2 \in \{ \mathbf{G} \}$. Correspondingly, we have $\mathbf{K}_1 = k_2 + \mathbf{G}_1$ and $\mathbf{K}_2 = k_2 + \bar{\mathbf{G}}_2$. From the definition we have $\bar{\mathbf{K}}_1 - \bar{\mathbf{K}}_2 = \mathbf{K}_1 - \mathbf{G}_{\mathbf{K}_1} - (\mathbf{K}_2 - \mathbf{G}_{\mathbf{K}_2}) = \overline{\mathbf{G}}_1 - \overline{\mathbf{G}}_2 - (\mathbf{G}_{\mathbf{K}_1} - \mathbf{G}_{\mathbf{K}_2})$. Since $\overline{\mathbf{G}}_1 - \overline{\mathbf{G}}_2 \notin \{ \mathbf{G} \}$ and $\mathbf{G}_{\mathbf{K}_1} - \mathbf{G}_{\mathbf{K}_2} \in \{ \mathbf{G} \}$, we know that $\overline{\mathbf{G}}_1 - \overline{\mathbf{G}}_2$ and $\mathbf{G}_{\mathbf{K}_1} - \mathbf{G}_{\mathbf{K}_2}$ are different, i.e., $\overline{\mathbf{G}}_1 - \overline{\mathbf{G}}_2 - (\mathbf{G}_{\mathbf{K}_1} - \mathbf{G}_{\mathbf{K}_2}) \neq 0$, which immediately gives $\bar{\mathbf{K}}_1 - \bar{\mathbf{K}}_2 \neq 0$. This proves that $\bar{\mathbf{K}}_1$ and $\bar{\mathbf{K}}_2$ are two different points in zone A. Therefore, the elements in $\{ \mathbf{k}_1 \}_{k_2}$ are M different points.
Let H_{k_1} be the eigenstate for a wave vector in the set $\{k_1\}_{k_2}$ associated with the unit cell. From Eqs. (5) and (10), one has

$$H_{k_1}(r) = e^{i k_1 \cdot r} \sum_G H_G e^{i G \cdot r} = e^{i(k_2+G+G_2) \cdot r} \sum_G H_G e^{i(G+G_2) \cdot r} = e^{i k_2 \cdot r} \sum_G H_G e^{i G' \cdot r} \equiv H'_{k_2}(r), \quad (11)$$

where H'_{k_2} is the same eigenstate (with the same field distribution) but for the wave vector k_2 in zone B (associated with the super cell). Therefore, all the M eigenstates with the M wave vectors in $\{k_1\}_{k_2}$ (associated with the unit cell) can be represented by M eigenstates with one wave vector k_2 in zone A (associated with the super cell). The M points of k_1 on any band in the band structure associated with the unit cell will be on M bands for one k_2 value in the band structure associated with the super cell. Generally speaking, one band in the band structure associated with the unit cell will split into M bands (which may overlap partially and form degenerated eigenstates) in the band structure associated with the super cell. The theorem is thus proved.

Theorem 2. If a photonic crystal has some kind of point group symmetry, the eigenstates at the edge of the first Brillouin zone B will be degenerated in the band structure associated with the super cell. The degree of the degeneracy depends on both the determinent M of the transform matrix N and the point group symmetry of the photonic crystal.

Proof. For a wave vector k_2 at the edge of zone B, besides that itself $k_1 = k_2 + 0$ (corresponding to $G_1 = 0$) is one of its counterpoints at the edge of the zone B, it may have other counterpoint $k'_1 = K_1 - G_{K_1}$ (with $K_1 = k_2 + G_2$) located at somewhere else at the edge of zone B. For nonzero G only those points at the edge of zone B may have counterpoints still at the edge of zone B and the counterpoints for those points inside zone B will be outside zone B (but still inside A according to the definition for counterpoints; note that zone B is inside zone A). Wave vectors k_1 and k'_1 correspond to the same wave vector k_2 in zone B associated with the super cell. Sometimes there exists a symmetric operation α (which can be represented by a matrix for coordinate transformation; then one has $\alpha^{-1} = \alpha^T$) and the associated operator $T(\alpha)$ (with $T(\alpha)f(r) = f(\alpha^{-1}r)$) for the photonic crystal such that $\alpha k'_1 = k_1$ and $T(\alpha)\Theta(r) = \Theta(\alpha^{-1}r)T(\alpha) = \Theta(r)T(\alpha)$. Assume
that H_{k_1} and H'_{k_1} are the eigenstates for these two wave vectors, i.e., $\Theta H_{k_1} = \frac{\omega_{k_1}}{c^2} H_{k_1}$ and $\Theta H'_{k_1} = \frac{\omega'_{k_1}}{c^2} H'_{k_1}$. Since

$$T(\alpha)H'_{k_1}(r) = H'_{k_1}(\alpha^{-1} r) = H_{\alpha k_1}(r)$$

$$= H_{k_1}(r),$$

(12)

we have

$$\Theta H_{k_1} = \Theta T(\alpha)H'_{k_1} = T(\alpha)\Theta H'_{k_1}$$

$$= \frac{\omega'_{k_1}}{c^2} T(\alpha) H'_{k_1} = \frac{\omega'_{k_1}}{c^2} H_{k_1},$$

(13)

we have $\omega_{k_1} = \omega'_{k_1}$. Therefore, H_{k_1} and H'_{k_1} are two different eigenstates (for different wave vectors k_1 and k'_1) with the same eigenvalue. In the band structure associated with the super cell, these two eigenstates are located at two bands but have the same wave vector k_2 and the same eigenvalue. Thus, they are degenerated states. Since we do not assume any specific form for Θ in the above proof, the theorem is valid in any dimensional space (and for any polarization in the 2D case).

In the next section, we will illustrate these degeneracy theorems with some numerical examples and use the degeneracy analysis to explain PBGs for some known 2D photonic crystals and create large band gaps by breaking the symmetric properties of the photonic crystal.

III. NUMERICAL RESULTS

First we give a one-dimensional (1D) example. Fig. 1 is a 1D photonic crystal consisting of alternating layers of materials with two different dielectric constants ($\varepsilon_1 = 13$ and $\varepsilon_2 = 1$). We can select a periodic region (a super cell) to include 2 unit cells as shown in Fig. 1(a). The band structure associated with the unit cell and the band structure associated with the super cell (with $N = 2$) are given in the same figure (see Fig. 2(a)), where the frequency and the wave vector are normalized with the same constant $a = 1$ in order to make them comparable. For this case, we have $\{\vec{G}\} \equiv \{\vec{G}_1, \vec{G}_2\} = \{0, 0.5(2\pi/a)\}$ and $M = 2$. From Fig. 2(a) one sees that the eigenvalues (associated with the original unit cell) for the wave vectors outside the first Brillouin zone B (associated with the super cell) have their counterpoints in zone B in the band structure associated with the super cell. As expected, each band (solid
FIG. 1: A 1D photonic crystal consisting of alternating layers of two different materials. (a) The super cell (including 2 unit cells) of the photonic crystal. (b) The symmetry of the super cell is broken (by changing the widths of the two dielectric layers while keeping the position of both unchanged) to form a unit cell for a new photonic crystal.

line) associated with the unit cell corresponds to two bands (dashed lines) associated with the super cell. Since the center point of the super cell in Fig. 1(a) is mirror symmetric, one has \(\alpha = -1 \). At the edge of zone B, the two wave vectors \(k'_1 = 0.25(2\pi/a) \) and \(k_1 = -0.25(2\pi/a) = \alpha k'_1 \) correspond to the same wave vector \(k_2 = -0.25(2\pi/a) \) (note that \(k_2 + G_1 = k_1, k_2 + G_2 = k'_1 \)). Thus, these two eigenstates are degenerated in the band structure associated with the super cell. Each eigenstate at \(k = \pm 0.25(2\pi/a) \) is formed by two degenerated states in the band structure associated with the super cell. If one breaks the point group symmetry with respect to the center point of the super cell of the photonic crystal by changing the size of the inclusion media, one obtains a new photonic crystal as
FIG. 2: The corresponding band structures of the 1D photonic crystals with $\varepsilon_1 = 13, \varepsilon_2 = 1$. (a) The solid lines are for the band structure associated with the unit cell and the dashed lines give the band structure associated with the super cell. Here we choose $b = 2a$ and $d = 0.5a$ for Fig. 1(a). (b) The solid lines give the band structure for a new photonic crystal with a unit cell shown Fig. 1(b) (here we choose $d_1 = 0.3a$ and $d_2 = 0.7a$). The dashed lines are for the band structure for Fig. 1(a) before the symmetry of the super cell is broken.

shown in Fig. 1(b). Since the resulted photonic crystal is still mirror symmetric respect to the center point of the inclusion media, the symmetry breaking with respect to the center point of the super cell does not change the point group symmetry of the photonic crystal as a whole. However because of the symmetry breaking, the translation group symmetry changes which leads to a larger unit cell. The corresponding transform matrix between the
FIG. 3: The case for the square lattice of square dielectric rods. (a) The super cell including 4 unit cells. (b) The symmetry of the super cell is broken as two square rods increase in size and the other two rods decrease in size. The symmetry-broken super cell is marked by the thick solid lines. (c) The first Brillouin zone A (marked by the dashed lines) associated with the original unit cell and the first Brillouin zone B (marked by the solid lines) associated with the super cell of Fig. 3(a). The first Brillouin zone C associated with the new unit cell (marked by the dashed lines of Fig. 3(b)) of the new photonic crystal of Fig. 3(b) is marked by the dotted lines. Γ, X, J, M are the symmetry points.

For the 2D case, if the dielectric inclusions have rectangle shapes, we can employ the super cell and the new unit cell changes from \(N = 2 \) to \(N = 1 \). The band structure is shown by the solid lines in Fig. 2(b), where one sees that the degeneracy disappears (since \(M = 1 \) for this new photonic crystal and consequently there is only one counterpoint for each wave vector in the Brillouin zone) and more band gaps appear.

For the 2D case, if the dielectric inclusions have rectangle shapes, we can employ the
FIG. 4: The band structures associated with Fig. 3 for $f = 0.47, \varepsilon = 8.9$. The solid lines denote the H-polarization case and the dashed lines are for the E-polarization case. They are calculated by the plane wave expansion method (with the inverse rule) with 289 plane waves for (a) $\beta = 0$, i.e., a simple square lattice of square rods; (b) $\beta = 1$, i.e., the case of chess board. The absolute band gap $\Delta \omega/\omega_c = 0.07$ appears at $\omega_c = 0.605(2\pi c/a)$. (c) The bandgap map for $0 \leq \beta \leq 1$.
plane wave expansion method with the inverse rule \[21\] to calculate the band structure. It is shown in \[21, 22\] that this method with 225 plane waves can give more accurate results than a conventional plane wave expansion method with even 1681 plane waves. In our calculations, we use this method with 289 plane waves and the error in the band structure is less than 0.5%.

As an example, we choose \(2 \times 2\) unit cells as the super cell. Then we have \(N^T = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}\), which corresponds to \(\{\vec{G}\} = \{0, b'_1, b'_2, b'_1 + b'_2\}\) (see the Appendix for a derivation for a general case). Fig. 3(a) shows a simple square lattice of square dielectric rods. Alumina is chosen as the dielectric medium and thus \(\varepsilon = 8.9\). The filling factor is set to \(f = 0.47\). Fig. 4(a) gives the band structure associated with the super cell. Each band (associated with the unit cell) have split into 4 bands in the band structure associated with the super cell. The point group symmetry is \(C_{4v}\). We use the two mirror symmetries \(\alpha_1 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}\) and \(\alpha_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\) to analyze the degeneracy here. The eigenstates with wave vectors at the 4 corners (e.g. points \(X\) and \(M\)) of the Brillouin zone \(B\) have 4-fold degeneracy and the eigenstates with wave vectors on two opposite edges are of 2-fold degeneracy under these two symmetry operations. Thus, in the band structure associated with the super cell one can see that there are 4-fold degeneracies at \(X\) and \(M\) points. There are also 2-fold accidental degeneracies for the 4 split bands (and thus one sees only 3 bands) in region \(\Gamma - X\). The \(E\)-polarization and the \(H\)-polarization have similar behaviors of degeneracy.

In the super cell, both the size and the position of the inclusions can be changed to break the point symmetry with respect to the center point of the super cell. Since the band structure is more sensitive to the inclusion size \cite{4}, the size of the inclusions will influence significantly the band structure. In our first example, the symmetry is broken as two square rods increase in size and the other two rods decrease in size in order to keep the filling factor \(f = 0.47\) unchanged. In the resulted photonic crystal shown in Fig. 3(b), the squares rotate a \(45^\circ\) angle to form a chessboard structure in the new unit cell denoted by thickened lines in Fig. 3(b) after the symmetry is broken. The ratio of the side lengths between the smaller rods to the larger rods is \(1 - \beta\) with \(0 \leq \beta \leq 1\). When \(0 < \beta < 1\), it just the case with the smaller square rods being added at the corner of the simple unit cell. When \(\beta = 1\), the side
length of the smaller rods is 0 and only two larger rods exist in the super cell. The structure is exactly the chessboard structure reported in [20].

For $0 < \beta \leq 1$ shown in Fig. 3(b), since the symmetry with respect to the center point of each square (which has the highest symmetry) is still C_{4v}, the point group symmetry of the photonic crystal is still C_{4v}. Similar with 1D case, the symmetry breaking with respect to the center point of the super cell changes the translation symmetry of the photonic crystal. The corresponding transform matrix N between the super cell and the unit cell changes from

$$N^T = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

to

$$N^T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

since the unit cell changes to a larger one. Therefore, the degeneracies of the band structure associated with the super cell will also change. We take the chessboard ($\beta = 1$) as an example to study its band structure (shown in Fig. 4(b)). From Fig. 4(b) one sees clearly that some degeneracies (including the usual degeneracies at the edge of zone B and the accidental degeneracies for points at $\Gamma - X$) are lifted for both the E-polarization and the H-polarization. An absolute band gap appears at where the degeneracies are lifted at the edge points of zone B. To understand this situation, after the unit cell of the photonic crystal in Fig. 3(b) changes to a larger one (denoted by the dashed line in Fig. 3(b)), the corresponding first Brillouin of this new photonic crystal is denoted by Zone C in Fig. 3(c). The transform matrix between zone C and zone A is

$$N^T = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

which corresponds to $M = \det(N^T) = 2$, $\bar{G} = \{0, \bar{b}_2\} = \{0, b'_2\}$ according to the Appendix. For the point group symmetry of C_{4v}, we can analyze the degeneracy with the two mirror symmetry operators $\alpha_3 = \alpha_1$ and $\alpha_4 = \alpha_2$. The eigenstates with the 2 wave vectors on the two opposite edges in the Brillouin zone B are 2-fold degenerate states under these two symmetry operations. The degeneracy becomes only 2-fold at points X and M now (as compared to the 4-fold degeneracy in the band structure associated with the super cell) since $|N^T| = 2$ here. Therefore, degeneracies must disappear at X and M points and each group of 4 bands in Fig. 4(a) break at points X and M to form 2 groups with 2 bands in each group (see Fig. 4(b)). An absolute band gap $\Delta \omega/\omega_c = 0.070$ appears at the mid-frequency (of the band gap) $\omega = \omega_c = 0.605 (2\pi c/a)$. The reason why they have large absolute band gaps can be explained by the present theory of super cells.

Fig. 4(c) is the corresponding gap map when β increases from 0 to 1. The situation is similar to the case considered in [15] (the only difference is that here we use square dielectric
FIG. 5: The case of the chess board structure. (a) The super cell including 4 unit cells. (b) The symmetry of the super cell is broken when two square rods increase in size and the other two square rods decrease in size. (c) The photonic crystal when the size of the smaller square rods becomes zero. The structure becomes the simple square lattice of square rods.

rods instead of round air holes). To make a map for the actual procedure of the degeneracy breaking, we take β as the parameter. The photonic crystal with additional smaller squares ($0 < \beta < 1$, we call it case 2) is considered in [15] to be the resulted photonic crystal by adding the smaller ones to corners of the square lattice of the square rods ($\beta = 1$, we call it case 3). Here, we take both case 2 and case 3 to be the results of changing the translation symmetry of the photonic crystal when the additional square is of equal sized ($\beta = 0$, we call it case 1). They have the same degeneracy breaking properties with the chessboard structure as mentioned above. Thus larger absolute band gaps can be expected similarly by choosing an appropriate value of β. When $\beta \geq 0.76$, an absolute band gap appears around
FIG. 6: The gap map for Fig. 5 with $0 \leq \beta \leq 1$ ($1 - \beta$ is the side length ratio of the smaller squares to the larger ones).

$\omega = 0.6(2\pi c/a)$. It is more useful to use $\Delta \omega/\omega_c$ to describe the PBGs due to the scaling property of a photonic crystal. In the band structure associated with the super cell, $\Delta \omega/\omega_c$ remains almost unchanged. A maximum $\Delta \omega/\omega_c = 0.071$ occurs when $\beta = 0.93$.

Following the same procedure, from a chessboard photonic crystal shown in Fig. 5(a) we can obtain a photonic crystal formed with square dielectric rods of two different sizes (see Fig. 5(b)). The ratio of the side lengths between the smaller rods and the larger rods is $1 - \beta$ with $0 \leq \beta \leq 1$. Fig. 6 gives the gap map when the filling ratio is fixed to $f = 0.35$ with $0 \leq \beta \leq 1$ and the inclusion material has a dielectric constant $\varepsilon = 11.4$. From Fig. 6, one sees that there is no absolute band gap for the chessboard case (when $\beta = 0$) in the frequency range of $0 \leq \omega \leq 2\pi c/a$. When $\beta = 1$, the structure becomes the simple square lattice of square rods of the same size (see Fig. 5(c)), which has an absolute band gap $\Delta \omega/\omega_c = 0.0453$ with the mid-frequency $\omega_c = 0.7231(2\pi c/a)$. It is thus not surprising that with appropriate parameters an absolute photonic band gap exists for the 2D square lattice of square dielectric rods as considered in [11]. The maximal gap of $\Delta \omega/\omega_c = 0.0717$ (much larger than the case of inclusions with single size) occurs at $\omega = \omega_c = 0.7449(2\pi c/a)$ when the ratio of the size lengths for the two inclusion rods is $\beta = 0.31$.

A triangular lattice of air columns (see Fig. 7(b)) has been found to have a large absolute band gap. The rule of thumb [2] can be employed to give a reasonable explanation. Here we explain how a gap appears from the view of changing the translation symmetry. Although
FIG. 7: The case for a rectangular lattice of air holes. The ratio of the two side lengths is $\sqrt{3}$.
(a) The super cell including 4 unit cells. (b) The symmetry of the super cell is broken when two diagonal air holes reduce size to zero and the other two diagonal air holes increase in size. The symmetry-broken super cell is marked by the thick solid lines. (c) The first Brillouin zone A (marked by the dashed lines) associated with the original unit cell and the first Brillouin zone B (marked by the solid lines) associated with the super cell of Fig. 7(a). The first Brillouin zone C associated with the new unit cell (marked by the dashed lines of Fig. 7(b)) of the new photonic crystal of Fig. 7(b) is marked by the dotted lines. Γ, X, J, M are the symmetry points.

The triangular lattice has a high symmetry, it can be viewed as the result of symmetry breaking from a super cell of another photonic crystal shown in Fig. 7(a). From Figs. 8(a) and 8(b) we can see clearly how the degeneracies are lifted at the edge points X and M (cf. Fig. 7(c)) and an absolute band gap is created in the band structure associated with the super cell when the symmetry of the super cell is broken.
FIG. 8: Band structures calculated with the plane wave expansion method (with 961 plane waves). The relative permittivity for the background medium is $\varepsilon = 13$. The solid lines denote the H-polarization case and the dashed lines are for the E-polarization case. (a) The band structure associated with the super cell of Fig. 7(a). The radius of the air holes is $r = 0.5a$. (b) The band structure associated with the symmetry-broken super cell (marked by the thick solid line in Fig. 7(b)) The filling factor is $f = 0.836$. The absolute band gap $\Delta \omega/\omega_c = 0.169$ appears at mid-frequency $\omega_c = 0.4936(2\pi c/a)$.

As a final numerical example, we break the symmetry of a super cell shown in Fig. 9(a) by changing both the sizes (for all the nine square rods) and the positions (except the central square rod) of the square rods, however, with the dielectric filling factor f fixed. Fig. 9(b) is a resulted structure. The band structure with parameters $p_1 = 0.194a, p_2 = 0.236a, p_3 = 0.374, f = 0.5132$ are shown in Fig. 10. From this figure one sees that the degeneracies
FIG. 9: Symmetry breaking of a super cell by changing both the sizes and positions of the inclusions. (a) The super cell including 4 unit cells. (b) The symmetry of the super cell is broken when both the sizes (for all the 9 square rods) and the positions (except the central square rod) of the square rods are changed (however, with the dielectric filling factor f is fixed).

are lifted at the edge points and two absolute band gaps are created at higher normalized frequencies, namely, a large gap $\Delta \omega_1 = 0.072(2\pi c/a)$ at $\omega_c = 1.291(2\pi c/a)$ and another gap $\Delta \omega_2 = 0.043$ at $\omega_c = 1.142(2\pi c/a)$. Note that it is easier to fabricate a photonic crystal with the absolute band gap occurring at a higher normalized frequency.

IV. CONCLUSION

In the present paper, we have presented a new way of explaining or creating photonic band gaps through analyzing the degeneracy of the band structure associated with a super
FIG. 10: The band structure associated with the symmetry-broken super cell shown in Fig. 9(b) with $f = 0.5132$ and $\varepsilon = 11.4$. The solid lines denote the H-polarization case and the dashed lines are for the E-polarization case. The other parameters are $p_1 = 0.194a, p_2 = 0.236a, p_3 = 0.374a$. Through the symmetry-breaking of the super cell, one obtains a band structure with two absolute band gaps, namely, one gap $\Delta\omega_1 = 0.0724$ at $\omega_1 = 1.2905(2\pi c/a)$, and another gap $\Delta\omega_2 = 0.0427$ at $\omega_2 = 1.1424(2\pi c/a)$.

cell. The band structure associated with a super cell of a photonic crystal has degeneracies at the edge of the first Brillouin zone if the photonic crystal has some kind of point group symmetry. We have analyzed these degeneracies and presented two theorems on degeneracies in the band structure associated with the super cell. These theorems and analysis are valid in any dimensional space (and for any polarization in the 2D case) and does not require the investigation of the field distribution. Photonic band gaps can be created through lifting these degeneracies by changing the transform matrix between the super cell and the unit cell which is caused by changing the translation group symmetry of the photonic crystal. Many numerical examples have been given in the present paper to illustrate this. In the 2D case, the E-polarization and the H-polarization have the same properties of degeneracies. The existence of photonic band gaps for many known 2D photonic crystals have been explained through the degeneracy analysis of the band structure associated with the super cell. Some photonic crystal structures with large or multiple band gaps have also been found by breaking the symmetry of the super cell.
Acknowledgment

The partial support of National Natural Science Foundation of China (under a key project grant; grant number 90101024) and Division of Science and Technologies of Zhejiang provincial government (under a key project grant; grant number ZD0002) is gratefully acknowledged.
Appendix: The proof of the Lemma and a method to find the set \(\{ \bar{G} \} \)

We can take 3 kinds of primary transformations for the integer matrix \(N \) while keeping the absolute value of \(\det(N) \) unchanged. The first transformation is to multiply a column or row by \(\pm 1 \). The second transformation is to interchange two columns or rows. The third transformation is to add one column or row with \(k \) times of another column or row (\(k \) is an integer). Each primary transformation can be expressed with a left or right multiplication of the matrix \(N \) by an integer matrix. Furthermore, the determinants of these integer matrices (associated with these primary transformations) are 1 and their inverses are also integer matrices. Under these primary transformations \[23\], the determinant of the matrix is kept unchanged and the resulted matrix \(N' \) is still an integer matrix.

Here we give a specific procedure for obtaining a diagonal matrix \(N' = D \) by taking these transformations. First, we interchange the column or the row with the second kind of transformation to make \(N_{11} \) the minimal among \(N_{1i} \) and \(N_{i1} \), \(i = 1, 2, 3 \). Then we make \(N_{11} \) positive (if it is negative) with the first kind of transformation. If all the integers \(N'_{1i} \) and \(N'_{i1} \) are divisible by \(N'_{11} \), we can make all \(N'_{1i} \) and \(N'_{i1} \) (except \(N'_{11} \)) zero by using the third kind of transformation. If any of \(N'_{1i} \) or \(N'_{i1} \) is not divisible by \(N'_{11} \), its column or row can be subtracted with \(k \) times of \(N_{11} \) so that the remaining component at \(N'_{1i} \) or \(N'_{i1} \) position becomes smaller than \(N'_{11} \). The column or row is then interchanged with the first column or the first row (with \(N_{11} \)) to make \(N'_{11} \) smaller. This can be done repeatedly until all \(N'_{1i} \) and \(N'_{i1} \) are divisible by \(N'_{11} \) or \(N'_{11} = 1 \). Then we can make all \(N'_{1i} \) and \(N'_{i1} \) but \(N'_{11} \) to be zero. Applying a similar way to \(N'_{22} \), we can make \(N'_{23} = N'_{32} = 0 \). Therefore, the integer matrix \(N^T \) is diagonalized as

\[
N^T = P^{-1}DQ, \tag{A1}
\]

\[
D = \begin{pmatrix}
 d_1 & 0 & 0 \\
 0 & d_2 & 0 \\
 0 & 0 & d_3 \\
\end{pmatrix},
\]

where \(D, P^{-1}, Q \) are all integer matrices. Here \(P^{-1} \) is the inverse of \(P \) and \(\det(P^{-1}) = \det(Q) = 1 \). Thus, we have \(\det(D) = d_1d_2d_3 = \det(N^T) = M \).

From Eq. (5) we have

\[
b_i = \sum_{j=1}^{3} N_{ij}^T b_j' = \sum_{j=1}^{3} (P^{-1}DQ)_{ij} b_j'. \tag{A2}
\]
We can define two other basic vectors \(\bar{b} \) and \(\bar{b}' \) by \(\bar{b}_i = \sum_{j=1}^{3} P_{ij} b_j \) and \(\bar{b}'_i = \sum_{j=1}^{3} Q_{ij} b'_j \). Below we will find \(\{ \bar{G} \} \) in terms of the vectors \(\bar{b}'_i \). It follows from Eq. (14) that

\[
\bar{b}_i = \sum_{j=1}^{3} D_{ij} b'_j = \sum_{j=1}^{3} \delta_{ij} d_j b'_j, \tag{A3}
\]

Since

\[
\sum_{i=1}^{3} n_i b_i = \sum_{i,j=1}^{3} n_i P_{ij}^{-1} b_j = \sum_{j=1}^{3} n'_j b_j \in \{ \sum_{i=1}^{3} n_i \bar{b}_i \}, \tag{A4}
\]

\[
\sum_{i=1}^{3} n_i \bar{b}_i = \sum_{i,j=1}^{3} n_i P_{ij} b_j = \sum_{j=1}^{3} n'_j b_j \in \{ \sum_{i=1}^{3} n_i b_i \}, \tag{A5}
\]

we see that the set \(\{ \sum_{i=1}^{3} n_i \bar{b}_i \} = \{ \sum_{i=1}^{3} n_i b_i \} \) \((n_i, n'_i \text{ are arbitrary integers})\. Similarly, we can show that

\[
\{ \sum_{i=1}^{3} n_i b'_i \} = \{ \sum_{i=1}^{3} n_i b_i \}. \tag{A6}
\]

Therefore, the sets \(\{ \bar{G} \} \) and \(\{ G' \} \) can be written as \(\{ G | \bar{G} = \sum_{i=1}^{3} n_i \bar{b}_i = \sum_{j=1}^{3} n_i d_j b'_j \} \) and \(\{ G' | G' = \sum_{i=1}^{3} n_i b'_i \} \).

Since any integer \(n_i \) can be written as \(n_i = l_i d_i + m_i \) with \(0 \leq m_i \leq d_i - 1 \), we see that the set \(\{ \bar{G} | \bar{G} = \sum_{i=1}^{3} n_i \bar{b}'_i, m_i = 0, \ldots, d_i - 1 \} \). Obviously, we have \(\{ \bar{G} \} \cap \{ G \} = \emptyset \) and there are \(d_1 d_2 d_3 = M \) possible combinations of \((m_1, m_2, m_3)\) for \(\bar{G} \) \((i.e., \text{the set } \{ \bar{G} \} \text{ has } M \text{ elements).} \)

Also, for any two of them, e.g. \(\bar{G}_1 = \sum_{i=1}^{3} m_i \bar{b}'_i, \bar{G}_2 = \sum_{i=1}^{3} m'_i \bar{b}'_i, 0 \leq m_i \leq d_i - 1, 0 \leq m'_i \leq d_i - 1, \) the difference \(\bar{G}_1 - \bar{G}_2 = \sum_{i=1}^{3} m_i \bar{b}'_i - \sum_{i=1}^{3} m'_i \bar{b}'_i = \sum_{i=1}^{3} (m_i - m'_i) \bar{b}'_i \) does not belong to \(\{ \bar{G} \} \) since \(0 \leq |m_i - m'_i| \leq d_i - 1 \).

Obviously, any \(\bar{G}' \in \{ G' \} \) can be written as

\[
\bar{G}' = \sum_{i=1}^{3} n_i \bar{b}'_i = \sum_{i=1}^{3} (l_i d_i \bar{b}'_i + m_i \bar{b}'_i),
\]

\[
= G + \bar{G}, \tag{A7}
\]

where \(G \in \{ G \} \) and \(\bar{G} \in \{ \bar{G} \} \).

As a numerical example in the 2D case, we can consider the super cell indicated by the thick line in Fig. 3(b) where the unit cell is indicated by the dashed line (the super cell includes 2 unit cells). Obviously, we have \(\bar{a}'_1 = a_1 + a_2 \) and \(\bar{a}'_2 = a_1 - a_2 \).
Then we have $N^T = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$. Following the above procedure, we obtain $N^T = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $D = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $P^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, $P = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$, $Q^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Therefore, we have $d_1 = 1, d_2 = 2$, and $\{\mathcal{G}\} = \{0, b'_2\} = \{0, b'_2\}$. Since $\mathcal{G}_1 - \mathcal{G}_2 = b'_2$ in this special example and we have the following general form for $\mathcal{G} = n_1 b_1 + n_2 b_2 = n_1 (b'_1 + b'_2) + n_2 (-b'_1 + b'_2) = (n_1 - n_2) b'_1 + (n_1 + n_2) b'_2$, $\mathcal{G}_1 - \mathcal{G}_2 \in \{\mathcal{G}\}$ will end up with $n_1 = n_2 = 1/2$ which is contradictory to the requirement that n_1 and n_2 are integers. Therefore, for this special example we also see that $\mathcal{G}_1 - \mathcal{G}_2 \notin \{\mathcal{G}\}$.

[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[2] J. D. Joannopoulos, R.D. Mead, and J.N. Winn. Photonic crystals: Molding the Flow of Light, Princeton Univ. Press, Princeton, 1995.
[3] Photonic Band Gaps and Localization, Proceedings of the NATO ARW, edited by C. M. Soukoulis, Plenum Press, New York, 1993.
[4] J. D. Joannopoulos, P. Villeneuve, and S. Fan. Nature (London) 386, 143 (1997).
[5] R. Padjen, J. M. Gérard, and J. Y. Marzin, J. Mod. Opt. 41, 295 (1994).
[6] K. M. Ho, C.T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[7] M. Qiu and S. L. He, J. Opt. Soc. Am. B. 17, 1027 (2000).
[8] R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, Appl. Phys. Lett. 61, 495 (1992).
[9] Z. Y. Li and Z. Q. Zhang, Phys. Rev. B 62, 1516 (2000).
[10] P. R. Villeneuve and M. Piché, Phys. Rev. B, 46, 4973 (1992).
[11] C. S. Kee, J. E. Kim, and H. Y. Park, Phys. Rev. E 56, 56 (1997).
[12] D. Cassagne, C. Jouanin, and D. Bertho, Phys. Rev. B 53, 7134 (1996).
[13] I. H. H. Zabel and D. Stroud, Phys. Rev. B 48, 5004 (1993).
[14] Z. Y. Li, B. Y. Gu, and G. Z. Yang, Phys. Rev. Lett. 81, 2574 (1998).
[15] C. M. Anderson and K. P. Giapis, Phys. Rev. Lett. 77, 2949 (1996).
[16] C. M. Anderson And K. P. Giapis, Phys. Rev. B 56, 7313 (1997).
[17] X. D. Zhang and Z. Q. Zhang, Phys. Rev. B 61, 9847 (2000).

[18] F. Bassani and G. Pastori-Parravicini, in Electronic States and Optical Transitions in Solids (Pergamon, Oxford, 1975).

[19] M. Plíhal and A. A. Maradudin, Phys. Rev. B 44 8565 (1991).

[20] M. Agio and L. C. Andreani, Phys. Rev. B, 61, 15519 (2000).

[21] P. Lalanne, Phys. Rev. B, 58, 9801 (1998).

[22] L. F. Shen and S. L. He, J. Opt. Soc. Am. A 19 1021 (2002).

[23] Linear Algebra and Matrix Theory, edited by Evar D. Nering, John Wiley & Sons Inc., 1963.