GRAPHS WHOSE VERTICES OF DEGREE AT LEAST 2 LIE IN A TRIANGLE

VINICIUS L. DO FORTE¹, MIN CHIH LIN²*, ABILIO LUCENA³, NELSON MACULAN⁴*, VERONICA A. MOYANO⁵* and JAYME L. SWARCIFTER⁵,⁶

Abstract. A pendant vertex is one of degree one and an isolated vertex has degree zero. A neighborhood star-free (NSF for short) graph is one in which every vertex is contained in a triangle except pendant vertices and isolated vertices. This class has been considered before for several contexts. In the present paper, we study the complexity of the dominating induced matching (DIM) problem and the perfect edge domination (PED) problem for NSF graphs. We prove the corresponding decision problems are NP-Complete for several of its subclasses. As an added value of this study, we show three connected variants of planar positive 1in3SAT are also NP-Complete. Since these variants are more basic in complexity theory context than many graph problems, these results can be useful to prove that other problems are NP-Complete.

Mathematics Subject Classification. 05C70, 05C85, 68R07, 68R10, 68Q25.

Received April 8, 2024. Accepted October 16, 2024.

1. Introduction

A graph with vertex set \(V \) and edge set \(E \) is denoted by \(G = (V, E) \), and the number of vertices and edges is \(|V| = n \) and \(|E| = m \), respectively. The open and closed neighborhoods of \(v \in V \) are denoted by \(N(v) \) and \(N[v] = N(v) \cup \{v\} \), respectively. Write \(d(v) = |N(v)| \) for the degree of \(v \). Let \(e = (u, w) \in E \) an edge, denote by \(d(e) = d(u, w) = |N(u) \cap N(w)| \) the degree of \(e \). For \(V' \subseteq V \), \(G[V'] \) represents the subgraph of \(G \) induced by \(V' \). A star is the bipartite graph \(K_{1,t} \), for some \(t \geq 1 \).

We say that \(G = (V, E) \) is a neighborhood star-free graph, NSF graph for short, if for every vertex \(v \in V \) with degree at least 2, \(G[N[v]] \), is not a star. In other words, every vertex \(v \in V \) is contained in some triangle, for \(d(v) \geq 2 \). Such a class of graphs seems natural, in some different ways. For instance, to model human relationships, as the common case where every individual is acquainted with at least a pair of individuals, which

Keywords. Neighborhood star-free graphs, triangle, efficient edge domination, perfect edge domination, dominating induced matching, connected planar positive 1in3SAT, connected cubic planar positive 1in3SAT, connected subcubic planar \(C_4 \)-free positive 1in3SAT.

¹ Departamento de Matemática, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.
² CONICET, Instituto de Cálculo and Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina.
³ Programa de Engenharia de Sistemas e Computação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
⁴ Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
⁵ Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina.
⁶ Instituto de Matemática e Estatística, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
*Corresponding author: oscarlin@dc.uba.ar

© The authors. Published by EDP Sciences, ROADEF, SMAI 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
are themselves acquainted. In this paper, we explore the use of this class in the problems of perfect and efficient edge domination of graphs. We remark that NSF graphs are not necessarily closed under induced subgraphs (adding 2 new vertices of degree $n+1$ to any n-vertex graph makes it an NSF graph). In this paper, we focus on NSF graphs and this class has been considered before on various contexts.

In [14], the authors investigate the F-domination number for all 2-stratified graphs F of order at most 3. Particularly, for two 2-stratified graphs K_3, they consider (i) graphs in which every vertex is in a triangle and (ii) graphs in which every edge is in a triangle; both are NSF graph subclasses. A graph G is a 2-stratified graph if its vertex set is partitioned into two non-empty color classes: red and blue. Let F be a 2-stratified graph rooted at some blue vertex v. The F-domination number $\gamma_F(G)$ of a graph G is the minimum number of red vertices of G in a red-blue coloring of the vertices of G such that every blue vertex v of G belongs to a copy of F rooted at v.

In a very recent paper [1], it is shown that every vertex of any optimal IC-planar graph is in a triangle. An n-vertex graph G is IC-Planar if it has a drawing in the plane such that each edge is crossed by at most one edge and every vertex is incident to at most one crossed edge. Such IC-planar graph G is optimal if every n-vertex graph G' with more edges than G is non-IC-Planar.

Also, any k-tree for fixed $k \geq 2$ is an NSF graph. A complete graph on k vertices is a k-tree, fixed k. If G is a k-tree, fixed k and C is a k-clique of G, then the graph formed by adding a new vertex to G, and making it adjacent to all vertices of C is a k-tree, fixed k. Several characterizations of k-trees are given in [34]. As maximal outplanar graphs are 2-trees [29], they are NSF graphs.

Most of our proposed results on this paper are on edge domination problems. For a graph $G = (V,E)$, every edge $e \in E$ dominates itself and all edges adjacent to e. A subset $E' \subseteq E$ is an edge dominator of G, if E' dominates every edge $e \in E$ of G. In particular, if each edge $e \in E$ is dominated exactly by one edge then E' is called an efficient edge dominating set (EED). On the other hand, if we relax the definition, and let each of $e \in E \setminus E'$ be dominated exactly by one edge then E' is called a perfect edge dominating set (PED). It follows from the definitions that every EED is also a PED. Observe that a graph does not necessarily contain an EED and in case of having several EEDs, they all have the same number of edges. However, every graph always contains a PED. In particular, the entire edge set E is always a PED, called trivial. Every PED which is not trivial and not an EED is called proper. As many domination problems, the interest is to find a PED (EED) of smaller size or weight if the graph has weights assigned to its edges. All these problem variants are NP-hard for graphs in general. In particular, determining whether or not a graph has an EED is NP-Complete [17]. Below is a summary table of the complexity status of this problem by different graph classes and their references. Also in [13], the authors define a limit class $S = \bigcap S_k$ (see Tab. 1) for EED problem and they claim that unless $P = NP$, the problem is solvable in polynomial time in an hereditary graph class X = Free(M) only if X excludes all classes S_k, i.e., only if $M \cap S_k \neq \emptyset$, for each k.

In contrast, there is less research done on the PED problem (Tab. 2).

Also, a dichotomy theorem is given in [26] which establishes the complexity of the PED problem for every graph class $G(H,d)$ which is H-free graphs with degree $\leq d$ for some fixed $d \geq 3$ and H a graph. The problem is polynomial time solvable for graphs in $G(H,d)$ if H is a linear forest (union of induced paths) and NP-Complete otherwise.

We can see that most of the studies done on these problems so far focus their attention on the hereditary graph classes. It would be of great interest to study them for a non-hereditary graph class like NSF graphs.

In [26], the authors proved that connected NSF graphs do not have any proper edge perfect dominating set. The only possible PEDs of these graphs are (i) the trivial PED, and (ii) EEDs. We give a brief idea of this proof. Given a perfect edge dominating set $E' \subseteq E$ of a connected graph $G = (V,E)$, we can classify each vertex of V in three types according to the number of its incident edges in E': white, 0 edges; yellow, 1 edge; black, 2 or more edges. The following statements are true.

- Black vertices have no white neighbors.
- If $(u,v) \in E$, then $(u,v) \in E'$ if and only if u and v are both non-white vertices.
- Any neighbor of a white vertex is yellow.
Table 1. Complexity status for existence of EED problem by graph classes.

Graph class	Complexity	Ref.
Cubic graphs	NP-Complete	[20]
r-regular graphs for fixed $r \geq 3$	NP-Complete	[12]
Bipartite graphs	NP-Complete	[27]
Planar bipartite graphs	NP-Complete	[28]
Planar bipartite graphs with degree ≤ 3	NP-Complete	[10]
$S_k = (C_3, \cdots, C_k, H_1, \cdots, H_k)$-free bipartite graphs with degree ≤ 3	NP-Complete	[13]
Circular-arc graphs	Linear	[24]
Claw-free graphs	$O(n)$	[13,23]
Convex graphs	Linear	[10,13]
Biconvex graphs	$O(n)$	[10,23]
Bounded clique-width graphs	Polynomial	[13]
Bipartite permutation graphs	$O(n)$	[23,27]
Generalized series-parallel graphs	Linear	[28]
Chordal graphs	$O(n)$	[23,28]
Dually chordal graphs	$O(n)$	[11,23]
Hole-free graphs	Polynomial	[10]
Chordal bipartite graphs	Linear	[10]
P_7-free graphs	Linear	[3]
P_8-free graphs	Polynomial	[4]
P_9-free graphs	Polynomial	[8]
$S_{1,2,2}$-free graphs	Polynomial	[19]
$S_{1,2,3}$-free graphs	Polynomial	[19]
$S_{1,2,4}$-free graphs	Polynomial	[5]
$S_{2,2,2}$-free graphs	Polynomial	[18]
$S_{2,2,3}$-free graphs	Polynomial	[6]
$S_{1,1,5}$-free graphs	Polynomial	[7]

Table 2. Complexity status for the PED problem by graph classes.

Graph class	Complexity	Ref.
Bipartite graphs	NP-Complete	[28]
Claw-free graphs with degree ≤ 3	NP-Complete	[26]
r-regular graphs for fixed $r \geq 3$	NP-Complete	[26]
Graphs with degree $\leq r$ and girth $\geq k$ for fixed $r, k \geq 3$	NP-Complete	[26]
Generalized series-parallel graphs	Linear	[28]
Chordal graphs	Linear	[28]
Circular-arc graphs	Linear	[24]
Cubic claw-free graphs	$O(n)$	[26]
P_5-free graphs	Linear	[26]

- Any yellow vertex has exactly one non-white neighbor.
- For any triangle T of G, T has either all 3 black vertices or 2 of them are yellow and the third one is white.
- Given a black vertex u and some of its neighbors v, if v is in some triangle then v is also black.
- If $|V| = 1$, E' is a trivial PED.
- If $|V| \geq 2$, E' is a trivial PED if and only if there is no white vertex.
- E' is an EED if and only if there is no black vertex.
– If E' is a proper PED (E' is not trivial PED nor EED) then there are some black vertex and some white vertex. Clearly, every degree one vertex can not be black. There is some black vertex $u \in V$ with degree at least degree 2. If G is an NSF graph, then v is in some triangle T of G and all vertices of degree 2 or more are black since for each vertex v of degree at least 2, there is a path connecting u with it. Every vertex in this path is in some triangle. Consequently, all degree one vertices are yellow and there is no white vertex which is a contradiction. Then E' is not a proper PED or G is not an NSF graph.

In this article, we show that deciding if a connected NSF graph contains an EED is an NP-Complete problem. In fact, we describe NP-Completeness proofs for several subclasses of connected NSF graphs.

We briefly describe some known results related to the present paper.

There is a concept of bi-coloring associated to an EED set [13] as follows. Given a graph $G = (V, E)$ and an EED $E' \subseteq E$ of G, vertices of G can be classified into two color classes.

Black vertices: if they have exactly one incident edge of E'. We denote this subset of vertices by B.

White vertices: if they do not have any incident edge of E'. We denote this subset of vertices by W.

We call (B, W) the bi-coloring associated to E'.

Observation 1. The subset B of G induces in G the EED E'. Moreover, E' is an induced matching of G.

For the above reason, an EED is also called dominating induced matching (DIM) of G. From now on, we will use either the terms EED or DIM, with the same meaning.

The following rules are useful to verify if a bi-coloring of a graph G is associated to some DIM of G. In the positive case, we say that it is a valid bi-coloring of G.

Theorem 1 ([13]). Given a graph G and a bi-coloring (B, W) of G. Then (B, W) is valid if and only if it verifies the following conditions.

– $G[B]$ is 1-regular which means every black vertex has exactly one black neighbor.

– W is an independent set. That is, all neighbors of white vertices have black color.

As in [25], assigning one of the two possible colors to vertices of G is called a coloring of G. A coloring is partial if only part of the vertices of G has been assigned colors, otherwise is total.

Definition 1 ([25]). A partial coloring of G is valid if verifies the following conditions.

– White vertices form an independent set.

– Every black vertex has at most one black neighbor.

– Every black vertex without black neighbors has an uncolored neighbor.

It is clear that any invalid partial coloring cannot be extended to a valid total coloring.

For the next definitions, we need some more basic terminology.

A vertex is universal if it is neighbor of all other vertices of the graph. A vertex is simplicial if the subgraph induced by its neighborhood is complete. Next we define some of the graphs depicted in Figure 1. A butterfly is an NSF graph that consists of exactly two triangles sharing a single vertex. We call this vertex its central vertex. If we remove any vertex except the central vertex, the resulting graph is a paw. A pendant or leaf vertex is a vertex of degree one and its unique neighbor is a preleaf vertex. P_k is a connected graph with exactly $k - 2$ vertices of degree 2 and two leaves. C_k is a connected graph of k vertices of degree 2. A wheel W_k is a C_k plus a universal vertex (see Fig. 2). A diamond is the resulting graph after deleting an edge from a K_{4}. A gem is a P_4 plus a universal vertex. An H graph is two copies of P_3 plus an edge connecting both middle vertices of P_3’s. The latter edge is the middle edge of H. H_k is obtained by replacing the middle edge (v, u) of H by a path P_{k+1} that connects v and u. Exactly $k - 1$ new vertices of degree 2 are added. A snail is obtained by adding 3 pendant vertices to a triangle, in such a way that two of them become adjacent to the same vertex of the triangle. A press graph consists of two copies of paw plus an edge connecting a degree 2 vertex of each paw.
There are some structures and properties related to valid bi-colorings.

Theorem 2 ([13]). Given a graph G and any valid bi-coloring (B, W) of G

- Any triangle of G has exactly one white vertex.
- The central vertex of an induced butterfly F of G is the unique white vertex of F.
- The odd degree vertices in an induced paw of G have different colors.
- In an induced diamond, the vertices of degree 2 are white and the other two vertices are black.

There is some more bibliography to add to the already vast literature [2, 9, 25, 31, 33, 35] on dominating induced matchings. As we have seen before, the papers on perfect edge domination are less frequent. There is a paper [16] where the authors describe ILP formulations for the PED problem, together with some experimental results.

2. NP-Completeness results

We consider in this work five variants of the 1in3SAT problem, two of them are well-known NP-Complete problems, and we prove that the other three are NP-Complete. Then, we reduce them to the existence of DIMs on some subclasses of connected NSF graphs.

Given a formula F in conjunctive normal form (CNF), its associated graph $G(F)$ is a bipartite graph where one of the classes of the bipartition corresponds to the clauses and the other one to the variables. We follow the convention of previous articles in this field, using rectangles to represent vertices corresponding to clauses and circles for those that are associated to variables. In $G(F)$, two vertices are neighbors if one of them corresponds
to a variable x_j (circle), the other one corresponds to a clause C_i (rectangle), and x_j or $\neg x_j$ is a literal of C_i. As we work with 1in3SAT, every clause of F has exactly three different literals which implies that every clause (rectangle) vertex has degree 3 in $G(F)$. We say that an assignment is valid if in every clause there is exactly one true literal. Two formulas F and F' in CNF are equivalent if there is a valid assignment for F if only if there is a valid assignment for F'. A formula F is positive if all literals in F are positive.

On the other hand, it is highly probable that the associated graphs of hard instances (to determine if there is a valid assignment) contain some induced C_4. In many NP-completeness proofs variants of 1in3SAT (for instance [30]), the reduction adds two clauses that repeat two literals in order to assure that the third literal has the same value in any valid assignment. This action makes the associated graph to contain induced C_4’s.

Below are the six decision problems that we deal with in this article. The first two of them are known NP-Complete variants of 1in3SAT.

PLANAR POSITIVE 1in3SAT

INPUT: A positive formula F in CNF, each clause is a disjunction of exactly three different literals and the associated graph $G(F)$ is planar.

QUESTION: Is there a valid assignment for F?

The NP-Completeness proof of this variant can be found in [21,32].

CUBIC PLANAR POSITIVE 1in3SAT

INPUT: A positive formula F in CNF, each clause is a disjunction of exactly three different literals and the associated graph $G(F)$ is cubic planar.

QUESTION: Is there a valid assignment for F?

The NP-Completeness proof of this more restricted variant can be found in [30] where a polynomial reduction is presented to transform an input instance F of PLANAR POSITIVE 1in3SAT to an instance F' of CUBIC PLANAR POSITIVE 1in3SAT. It is important to see that if $G(F)$ is connected then $G(F')$ is also connected.

Now, we consider the new connected versions of these two previous 1in3SAT variants.

CONNECTED PLANAR POSITIVE 1in3SAT

INPUT: A positive formula F in CNF, each clause is a disjunction of exactly three different literals and the associated graph $G(F)$ is connected and planar.

QUESTION: Is there a valid assignment for F?

We prove this restricted variant 1in3SAT is also NP-Complete. Let F be an input instance of PLANAR POSITIVE 1in3SAT, we will construct a positive formula F^* in CNF, input instance of CONNECTED PLANAR POSITIVE 1in3SAT, and show that F and F^* are equivalent. This construction is iterative and will stop when the obtained formula is a valid input instance for CONNECTED PLANAR POSITIVE 1in3SAT. We will show in every step, the new formula F^* of the step is a valid input instance of PLANAR POSITIVE 1in3SAT, the number of connected components of $G(F^*)$ has decreased by 1 compared to the previous formula and both formulas are equivalent. Initially, let $F^* = F$. Repeat the following PROCEDURE while $G(F^*)$ is not connected.

PROCEDURE

1. Let R be a planar representation of $G(F^*)$.
2. Select G_1 and G_2, two different connected components of $G(F^*)$.

(3) As $G(F^*)$ is a bipartite graph and every rectangle (clause) vertex has exactly 3 circle (variable) vertices as neighbors. Therefore, every connected component of $G(F^*)$ has some circle vertex which lies in the external region of R. Let v_1 (corresponds to some variable x) and v_2 (corresponds to some variable y), circle vertex with this property for G_1 and for G_2, respectively.

(4) Add 3 variables (x', y' and z) and 2 clauses ($x \lor z \lor x'$ and $y \lor z \lor y'$) to F^*.

It is clear that after the execution of the above procedure, the number of connected components of $G(F^*)$ has decreased by 1 since there is a path connecting v_1 and v_2 passing through vertices corresponding to $x \lor z \lor x'$, z and $y \lor z \lor y'$. It is not hard to see that the new $G(F^*)$ is still planar (the five new vertices and the six new edges can be drawn in the external region of R without edge crossing) and F^* is still a valid input instance of PLANAR POSITIVE 1in3SAT. Now, if the new F^* is satisfiable then the old F^* is satisfiable because all clauses of the old one are clauses of the new one. If the old F^* is satisfiable, we can extend any valid assignment for it to a valid assignment for the new F^* as below: setting $FALSE$ to z, the value of $\neg x$ to x' and $\neg y$ to y'. With this the proof is completed.

CONNECTED CUBIC PLANAR POSITIVE 1in3SAT

INPUT: A positive formula F in CNF, each clause is a disjunction of exactly three different literals and the associated graph $G(F)$ is connected and cubic planar.

QUESTION: Is there a valid assignment for F?

The polynomial reduction given in [30] transforms connected instances of PLANAR POSITIVE 1in3SAT to connected instances of CUBIC PLANAR POSITIVE 1in3SAT. The NP-Completeness of this variant is guaranteed by the NP-Completeness of CONNECTED CUBIC PLANAR POSITIVE 1in3SAT and the correctness of this reduction.

The following is our last new proposed variant of 1in3SAT.

CONNECTED SUBCUBIC PLANAR C_4-FREE POSITIVE 1in3SAT

INPUT: A positive formula F in CNF, each clause is a disjunction of exactly three different literals and the associated graph $G(F)$ is connected, planar, C_4-free, with degree at most 3.

QUESTION: Is there a valid assignment for F?

Finally, our target problem.

EXISTENCE OF DIM FOR CONNECTED NSF GRAPHS

INPUT: Connected NSF graph G.

QUESTION: Does G contain a dominating induced matching?

Next we prove that CONNECTED SUBCUBIC PLANAR C_4-FREE POSITIVE 1in3SAT is NP-complete.

Theorem 3. Connected subcubic planar C_4-free positive 1in3SAT is NP-Complete.

Proof. Firstly we describe a polynomial-time reduction from an input instance of Connected cubic planar positive 1in3SAT, a formula F, to an input instance of Connected subcubic planar C_4-free positive 1in3SAT, a formula F'. Secondly, we show that F and F' are equivalent. This will prove that Connected subcubic planar C_4-free positive 1in3SAT is NP-Complete.

The reduction will consider a positive formula F as input (where all literals are positive). The associated graph $G(F)$ is connected cubic planar bipartite. Every variable y_i of F, appears exactly in 3 clauses C_{i1}, C_{i2}, C_{i3} as positive literal. We replace y_i by three variables $x_{i1}^1, x_{i1}^2, x_{i1}^3$ and x_{i2}^j replaces y_i as positive literal in C_{i2}^j for $j = 1, 2, 3$. In order to assure that $x_{i1}^1, x_{i1}^2, x_{i1}^3$ have the same value in every valid assignment, we add 8 new clauses and 10 additional variables as follows (see Fig. 3).
For $j = 1, 2$

\[
\begin{align*}
& x_j^1 \lor w_{i,j}^1 \lor w_{i,j}^2 \\
& w_{i,j}^1 \lor w_{i,j}^2 \lor w_{i,j}^3 \\
& x_{i+1,j}^1 \lor w_{i,j}^4 \lor w_{i,j}^5 \\
& w_{i,j}^2 \lor w_{i,j}^3 \lor w_{i,j}^5.
\end{align*}
\]

We show that $w_{i,j}^1, w_{i,j}^5$ have the same value in any valid assignment. If $w_{i,j}^1$ is true, then $x_j^1, w_{i,j}^2, w_{i,j}^3, w_{i,j}^4$ should be false. Therefore, $w_{i,j}^5$ should be the true literal in $w_{i,j}^2 \lor w_{i,j}^3 \lor w_{i,j}^5$. Symmetrically, if $w_{i,j}^5$ is true, then $x_{i+1,j}^1, w_{i,j}^2, w_{i,j}^3, w_{i,j}^4$ should be false. Therefore, $w_{i,j}^1$ should be the true literal in $w_{i,j}^3 \lor w_{i,j}^4 \lor w_{i,j}^5$. Now, we prove that $x_j^1, x_{i+1,j}^1$ have the same value in any valid assignment. In case that $w_{i,j}^1, w_{i,j}^5$ are true, then $x_j^1, x_{i+1,j}^1$ are both false. Then, we can assume that $w_{i,j}^1, w_{i,j}^5$ are false. If x_j^1 is true, then $w_{i,j}^2$ is false and $w_{i,j}^3, w_{i,j}^4$ should be the true literal in $w_{i,j}^2 \lor w_{i,j}^3 \lor w_{i,j}^5$. Consequently, $w_{i,j}^1$ is false and $x_{i+1,j}^1$ should be the true literal in $w_{i,j}^3 \lor w_{i,j}^4 \lor w_{i,j}^5$. Symmetrically, if $x_{i+1,j}^1$ is true, x_j^1 would be true using a similar deduction. As a consequence, $x_j^1, x_{i+1,j}^2, x_{i,j}^3$ have the same value in every valid assignment as we need. Note that all these variables except $x_j^1, x_{i,j}^3$ are literals of exactly 2 of these 8 clauses. $x_j^1, x_{i,j}^3$ appear only once. But solely, $x_j^1, x_{i+1,j}^2, x_{i,j}^3$ appear in exactly one other clause (C_1^i, C_2^i, C_3^i, respectively). In conclusion, every variable appears at most in 3 clauses. Clearly, the resulting formula F' is equivalent to F. If F uses n variables and m clauses, then F' has exactly $13n$ variables and $m + 8n$ clauses. Therefore, F' can be obtained in polynomial time. As all clauses have exactly 3 literals, the associated graph $G(F')$ has maximum degree 3. In case that $G(F')$ has an induced C_4 (see Fig. 4). Two of the vertices of this C_4 correspond to clauses and the other two variables meaning that those two clauses have both variables as literals. This situation does not occur in the formula F'. The original m clauses have their local copies of variables. They do not have any variable in common. Any pair of the new $8n$ clauses have at most one variable in common. An original clause and a new one can have at most one variable x_j^1 in common. Therefore, $G(F')$ is C_4-free. Given a planar representation of $G(F)$, this representation can be easily transformed to a planar representation of $G(F')$ (see Fig. 3). It is clear that if $G(F)$ is connected then $G(F')$ also does. Finally, we can conclude that $G(F')$ is connected subcubic planar C_4-free. Consequently, we can state that Connected subcubic planar C_4-free positive 1in3SAT is NP-Complete. \[\Box\]
Now, we give a polynomial-time reduction from an instance of input of Connected subcubic planar C_4-free positive 1in3SAT, a positive formula F in CNF, to a graph $S(G(F))$ an instance of our final target problem.

Given such positive formula F where each clause is a disjunction of exactly three different literals and its associate graph $G(F)$ is connected planar C_4-free with degree at most 3, we construct a graph $S(G(F))$ from $G(F)$ as follows.

(1) Replace every rectangle vertex v (corresponding to a clause C_i) of $G(F)$ by a triangle (clause triangle). Each vertex of this triangle takes a different neighbor (a circle vertex corresponding to a variable) of v as its owner (see Fig. 5). Call this resulting graph as temporary graph $T(G(F))$.

(2) For each circle vertex w, add two mutually adjacent new vertices as its neighbors forming a triangle (vertex triangle) (see Fig. 6). This final graph is the graph $S(G(F))$.

For our convenience, we call this construction as Main Transformation.

Clearly, $S(G(F))$ can be obtained in polynomial-time from F. If F has n variables and m clauses, then $S(G(F))$ has exactly $3n + 3m$ vertices and $3n + 6m$ edges.

Theorem 4. $S(G(F))$ is connected planar NSF $(K_4$, diamond, butterfly, $K_{1,5}$, H, snail, press, C_4, C_5, C_6, C_7, C_8, C_{3t+1}, C_{3t+2})-free for $t \geq 3$ without pendant vertices.

Proof. Clearly, as $G(F)$ is connected then $S(G(F))$ is connected. Every vertex of $S(G(F))$ is in exactly one triangle which implies that $S(G(F))$ is NSF graph without pendant vertices and it is $(K_4$, diamond, butterfly)-free.

Every vertex u of a clause triangle T has exactly one neighbor $z \notin T$ and z is in a vertex triangle (u has degree 3). Every vertex triangle has exactly two simplicial vertices and both of degree two. It is clear that the only vertices that can have degree more than 3 in $S(G(F))$ are those corresponding to circle vertices in $G(F)$. They have degree at most 3 in $G(F)$ but in $S(G(F))$, they have two additional neighbors. Hence, they have degree at most 5 in $S(G(F))$. As every vertex in $S(G(F))$ has at most degree 5, and it is in exactly one triangle, $S(G(F))$ is $K_{1,5}$-free (also, $(K_4$, diamond, butterfly, $K_{1,5}$)-free implies maximum degree 5).

Next, let us show that $S(G(F))$ is $(H$, snail, press)-free.

Suppose $S(G(F))$ has a snail as an induced subgraph. The triangle of the snail should be a vertex triangle since one of its vertices has degree at least 4. But in this case, this triangle has at most one simplicial vertex which is a contradiction. Hence, $S(G(F))$ is snail-free.

If $S(G(F))$ has an H as an induced subgraph. We consider two cases: (i) the middle edge is part of some triangle T and clearly, T is a vertex triangle, again T has at most one simplicial vertex (ii) the middle edge connects two triangles, one of them is a clause triangle meaning that one of the middle vertices should have degree exactly 3. All its three neighbors are in H and there is not any triangle, a contradiction. Therefore, $S(G(F))$ is H-free.

Suppose now that $S(G(F))$ contains a press as an induced subgraph. Clearly, one of the two triangles must be a variable triangle but both of them have at most one simplicial vertex. Again, a contradiction. So, $S(G(F))$ is press-free.
Next, we analyze the possible induced cycles of $S(G(F))$ and $G(F)$.

Let C be an induced cycle of $S(G(F))$ having length greater than 3. We claim that the length of C is reduced by 2/3, regarding its corresponding length in $G(F)$. To show this claim, consider a cycle of $G(F)$ and its corresponding cycle of $S(G(F))$. Let t and k represent the lengths of these cycles of $G(F)$ and $S(G(F))$, respectively. Recall that $G(F)$ is planar, C_4-free and bipartite, whose parts are formed by circle vertices and rectangle vertices, respectively.

In $G(F)$ each rectangle vertex has exactly degree 3 because each clause is formed by 3 positive literals. Furthermore, each of these rectangle vertices is replaced by a clause triangle in $T(G(F))$. To extend $T(G(F))$ into $S(G(F))$, we add two new adjacent vertices for each circle vertex u, both to be adjacent to u. Therefore, the vertices belonging to an induced cycle of length ≥ 4 in $S(G(F))$ are circle vertices, and vertices of clause triangles. Clearly, they ought to be these both types, since the set of circle vertices forms an independent set, while the clause triangles are disjoint triangles. Clearly, we need at least two circle vertices, to form an induced cycle C of $S(G(F))$. For each such circle vertex, we need two vertices of clause triangles. Therefore, if C contains t circle vertices, C also contains another $2t$ vertices from clause triangles, that is $3t$ vertices in total. Next, every pair of vertices of clause triangles is contracted into a single vertex. Therefore, $t = (2/3)k$, and the length of each cycle of $G(F)$ becomes 2/3 smaller, indeed.

As $G(F)$ is bipartite and C_4-free, the only values available for k is 3t with $t \geq 3$. Therefore, $S(G(F))$ and $T(G(F))$ are (C_4, C_5, C_6, C_7, C_8, C_{3t+1}, C_{3t+2})-free, for $t \geq 3$.

As $G(F)$ is planar, take a planar representation of $G(F)$, any vertex is replaced by a triangle. In case of a variable triangle, it is clear that the two adjacent new neighbors of the circle vertex maintain the planar representation (see Fig. 6). In case of a clause triangle, a similar fact holds (see Fig. 5). Therefore, $S(G(F))$ is planar. □
Theorem 5. There is a valid assignment for an input formula F of Connected subcubic planar C_4-free positive 1-in-3SAT if and only if the resulting graph $S(G(F))$ of the main transformation contains some dominating induced matching.

Proof. Given a valid assignment, we define a bi-coloring of $S(G(F))$ using this assignment below.

1. If a variable x_i is true then color black its corresponding circle vertex v. Choose arbitrarily any neighbor w of its variable triangle and color it also black. Color white all other neighbors of v.
2. If a variable x_i is false then color white its corresponding circle vertex v and color black all its neighbors.

Next we prove that this bi-coloring verifies the conditions of Theorem 1.

1. In a variable triangle, every vertex satisfies trivially the conditions.
2. In a clause triangle, a vertex is colored black (white) if its unique circle vertex neighbor x_i is colored white (black) because the variable x_i is false (true). As every clause has one true literal (all literals are positive).

In any clause triangle T, there is exactly one white vertex v and all its 3 neighbors have been colored black.

Therefore, this bi-coloring corresponds to a DIM of $S(G(F))$.

Conversely, given a DIM D and its associated bi-coloring, we define an assignment as follows. If a circle vertex x_i is black (white) then the variable x_i is true (false). We will prove this assignment is valid. Using the properties of Theorem 2 and considering T the variable triangle that contains x_i, every clause triangle neighbor w of v has a different color of x_i since the vertices of T and w induce a paw and x_i, w are the odd degree vertices in the induced paw. The color of w is white only if x_i is true. As every clause triangle has exactly one white vertex. Consequently, every clause has exactly one true literal.

Corollary 1. EXISTENCE DIM is NP-Complete for connected planar NSF $(K_4, \text{diamond}, \text{butterfly}, K_{1,5}, H, \text{snail}, \text{press}, C_4, C_5, C_6, C_7, C_8, C_{3t+1}, C_{3t+2})$-free graphs for $t \geq 3$ without pendant vertices.

Since connected NSF graphs do not have proper perfect dominating sets, the existence of DIM is equivalent to asking if there exists a perfect edge dominating set with at most $m - 1$ edges where $|E| = m$ (the trivial perfect dominating set is the set of all edges E).

Corollary 2. EXISTENCE of a perfect dominating set with at most $m - 1$ edges is NP-Complete for Connected planar NSF $(K_4, \text{diamond}, \text{butterfly}, K_{1,5}, H, \text{snail}, \text{press}, C_4, C_5, C_6, C_7, C_8, C_{3t+1}, C_{3t+2})$-free graphs for $t \geq 3$ without pendant vertices where m is the number of edges in the graph.

A subdivision of an edge (v, w) in a graph consists of replacing such edge by two edges $(v, u), (u, w)$ and a new vertex u.

Lemma 1 ([13]). Let G be a graph and e an edge in G. If G' is the graph obtained from G by subdividing the edge e exactly three times, then G has a dominating induced matching if and only if so has G'.

Cardoso, et al. [13] use the ideas of the triple subdivision of the edges (see Lem. 1) to extend the girth of the graph without affecting the existence or not of DIM. This technique does not work for our class under consideration since this operation adds 3 new vertices of degree 2 and they are not part of triangles. Instead of this operation we propose other alternatives to avoid induced cycles of size at most k for any k. But all of them come with some cost. The main idea is replacing edges of $S(G(F))$, the resulting graph of Main Transformation that connects vertices of different triangles by chains of structures that assure the vertices at both ends of chains should have different colors in any valid bi-coloring. We call those edges as variable-clause edges since they connect a variable triangle to a clause triangle. It is clear that every vertex of the chains should be in a triangle. We define two types of triangles: (i) vertex link triangles, these triangles have only one vertex in the chain, and (ii) edge link triangles, which are those that have exactly two vertices in the chain. There are many alternatives to create chains.
(1) Every chain has exactly $2k_1$ vertex link triangles (see Fig. 7 for $k_1 = 1$). It is clear that every pair of consecutive vertices in the chain are odd-degree vertices in some induced paw. By Theorem 2, they have different colors in any valid bi-coloring. Since the chain has $2k_1 + 1$ edges, then both ends of the chain have different colors in any valid bi-coloring.

(2) Every chain has alternately edge link triangles and vertex link triangles if we start from the variable triangle side, the first triangle is an edge link triangle. The number of each type of triangle is $2k_2$ (see Fig. 8 for $k_2 = 1$). Some additional structure is needed for edge link triangles. Each edge link triangle has exactly one vertex that is not in the chain. We should connect this vertex to some contact vertex of a gadget. There are three options for the gadget structure (see Fig. 8).

(a) A butterfly, where the contact vertex is its central vertex.
(b) A K_1 and the contact vertex is the unique one. This vertex will become a pendant vertex.
(c) A diamond, where the contact vertex is any vertex of degree 2 in the diamond.

In any case, the contact vertex is colored white in any valid bi-coloring by Theorem 2 and its neighbor in the edge link triangle should be black, again by Theorem 2. In consequence, the vertices of the edge link triangle in the chain should have different colors. All other edges of the chain form part of some induced paw and their incident vertices have degree odd in such paw. Therefore, every pair of consecutive vertices in the chain have different colors in any valid bi-coloring. The number of edges in the chain is exactly $6k_2 + 1$, an odd number, which implies that both ends of the chain have a different color in any valid bi-coloring.

It is clear that $S(G(F))$ admits a DIM if and only if the resulting graph Q, after the replacement of variable-clause edges by the chains described above, has a DIM. Furthermore, every variable-clause edge of $S(G(F))$ is part of some induced paw and its incident vertices have odd degree in such induced paw. Consequently, they should have different colors in any valid bi-coloring, by Theorem 2. Then from any valid bi-coloring of Q, we can obtain trivially a valid bi-coloring of $S(G(F))$. Conversely, any valid bi-coloring of $S(G(F))$, can be extended
easily to a bi-coloring of Q. Consequently, we can define new reductions from Subcubic planar C_4-free positive 1in3SAT to the DIM problem, concatenating the Main Transformation and one of these types of replacement of variable-clause edges.

Next, let us examine the resulting graph class of each type of replacement. The number of variable-clause edges in an induced cycle in $S(G(F))$ is at least 6 and the number of clause triangle edges is at least 3 since the induced cycles in the associated graph $G(F)$ have at least 3 clause vertices.

1. In this case, the only forbidden subgraph of Corollaries 1 and 2 that can appear is the H graph. All induced cycles of Q should have at least $6 \cdot (2k_1 + 1) + 3 = 12k_1 + 9$ vertices. The number of vertices of Q is $n + (m - n) \cdot 3 \cdot 2k_1 = 6k_1m - (6k_1 - 1) \cdot n$ and Q has $m + (m - n) \cdot 4 \cdot 2k_1 = (8k_1 + 1) \cdot m - 8k_1n$ edges.

2. Independently of the gadget employed, all induced cycles of Q should have at least $6 \cdot (3 \cdot 2k_2 + 1) + 3 = 36k_2 + 9$ vertices.

(a) In this case, the only forbidden subgraph of Corollaries 1 and 2 that can appear is the butterfly. The number of vertices of Q is $n + (m - n) \cdot (8 + 3) \cdot 2k_2 = 22k_2m - (22k_2 - 1) \cdot n$ and Q has $m + (m - n) \cdot (11 + 4) \cdot 2k_2 = (30k_2 + 1) \cdot m - 30k_2n$ edges.

(b) In the present situation, Q has pendant vertices. The number of vertices of Q is $n + (m - n) \cdot (4 + 3) \cdot 2k_2 = 14k_2m - (14k_2 - 1) \cdot n$ and Q has $m + (m - n) \cdot (5 + 4) \cdot 2k_2 = (18k_2 + 1) \cdot m - 18k_2n$ edges.

(c) The only forbidden subgraph of Corollaries 1 and 2 that can appear is the diamond. We remark that there are no gems, nor W_4’s. The number of vertices of Q is $n + (m - n) \cdot (7 + 3) \cdot 2k_2 = 20k_2m - (20k_2 - 1) \cdot n$ and Q has $m + (m - n) \cdot (10 + 4) \cdot 2k_2 = (28k_2 + 1) \cdot m - 28k_2n$ edges.

Also, in any case, Q will still be a planar graph of degree at most five. We remark that cycles of size between 4 and k, in Q, for fixed $k \geq 4$, are forbidden. For each type of replacement, we can determine the smallest required value of k_1 or k_2 to assure this.

Theorem 6. For any fixed value $k \geq 4$, **EXISTENCE DIM** and **EXISTENCE OF PED** with at most $m - 1$ edges are NP-Complete in the following graph classes.

- Connected planar NSF (K_4, diamond, butterfly, $K_{1,5}$, snail, press, C_4, \ldots, C_k)-free without pendant vertices.
- Connected planar NSF (K_4, diamond, $K_{1,5}$, H, snail, press, C_4, \ldots, C_k)-free without pendant vertices.
- Connected planar NSF (K_4, diamond, butterfly, $K_{1,5}$, H, snail, press, C_4, \ldots, C_k)-free.
- Connected planar NSF (K_4, gem, W_4, butterfly, $K_{1,5}$, H, snail, press, C_4, \ldots, C_k)-free without pendant vertices.

3. Conclusions

We conclude with an open question.

We wonder if there is some algorithmic relation between efficient and perfect edge domination. More specifically, we remark that there are graph classes which admit polynomial time solutions for solving the efficient edge domination problem while being hard for solving the perfect edge domination problem. However, we ask whether there is some graph class for which there exists a polynomial time algorithm for solving the perfect edge domination problem while being hard for the efficient edge domination problem.

Acknowledgements

Min Chih Lin was partially supported by CONICET grant PIP 11220200100084CO and UBACyT Grants 20020190100126BA and 20020170100495BA, Argentina. Abilio Lucena acknowledges the support of CNPq grant 309887/2018-6, Brazil. Nelson Maculan was partially supported by CNPq and COPPETEC Foundation, Brazil. Veronica A. Moyano was partially supported by Universidad Nacional de General Sarmiento grant 30/1135, Argentina. Jayme L. Szwarcfluter was partially supported by FAPERJ and CNPq, Brazil.
References

[1] F. Brandenburg, On optimal beyond-planar graphs. Comput. Geom. Topol. 2 (2023) 1–15.
[2] A. Brandstädt, Efficient domination and efficient edge domination: a brief survey, in Algorithms and Discrete Applied Mathematics. Vol. 10743 of Lecture Notes in Comput. Sci. Springer, Cham (2018) 1–14.
[3] A. Brandstädt and R. Mosca, Dominating induced matchings for \(P_t \)-free graphs. Algorithmica 68 (2014) 998–1018.
[4] A. Brandstädt and R. Mosca, Finding dominating induced matchings in \(P_8 \)-free graphs in polynomial time. Algorithmica 77 (2017) 1283–1302.
[5] A. Brandstädt and R. Mosca, Dominating induced matchings in \(S_{1,2,4} \)-free graphs. Discrete Appl. Math. 278 (2020) 83–92.
[6] A. Brandstädt and R. Mosca, Finding dominating induced matchings in \(S_{2,2,3} \)-free graphs in polynomial time. Discrete Appl. Math. 283 (2020) 417–434.
[7] A. Brandstädt and R. Mosca, Finding dominating induced matchings in \(S_{1,1,5} \)-free graphs in polynomial time. Discrete Appl. Math. 284 (2020) 269–280.
[8] A. Brandstädt and R. Mosca, Finding dominating induced matchings in \(P_9 \)-free graphs in polynomial time. Discuss. Math. Graph Theory 42 (2022) 1139–1162.
[9] A. Brandstädt and R. Nevries, Efficient dominating and edge dominating sets for graphs and hypergraphs, in Encyclopedia of Algorithms. Springer (2016) 618–621. DOI: 10.1007/978-1-4939-2864-4_689.
[10] A. Brandstädt, C. Hundt and R. Nevries, Efficient edge domination on hole-free graphs in polynomial time, in: LATIN 2010: Theoretical Informatics. Vol. 6034 of Lecture Notes in Comput. Sci. Springer, Berlin (2010) 650–661.
[11] A. Brandstädt, A. Leitert and D. Rautenbach, Efficient dominating and edge dominating sets for graphs and hypergraphs, in Algorithms and Computation – 23rd International Symposium, ISAAC 2012, Taipei, Taiwan, December 19–21, 2012. Proceedings, Vol. 7676 of Lecture Notes in Computer Science, edited by K. Chao, T. Hsu and D. Lee. Springer (2012) 267–277.
[12] D.M. Cardoso, J.O. Cerdeira, C. Delorme and P.C. Silva, Efficient edge domination in regular graphs. Discrete Appl. Math. 156 (2008) 3060–3065.
[13] D.M. Cardoso, N. Korpelainen and V.V. Lozin, On the complexity of the dominating induced matching problem in hereditary classes of graphs. Discrete Appl. Math. 159 (2011) 521–531.
[14] G. Chartrand, T.W. Haynes, M.A. Henning and P. Zhang, Stratification and domination in graphs. Discret. Math. 272 (2003) 171–185.
[15] N. Chiba and T. Nishizeki, Arboricity and subgraph listing algorithms. SIAM J. Comput. 14 (1985) 210–223.
[16] V.L. do Forte, M.C. Lin, A. Lucena, N. Maculan, V.A. Moyano and J.L. Szwarcfiter, Modelling and solving the perfect edge domination problem. Optim. Lett. 14 (2020) 369–394.
[17] D.L. Grinstead, P.J. Slater, N.A. Sherwani and N.D. Holmes, Efficient edge domination problems in graphs and hypergraphs. Inf. Process. Lett. 48 (1993) 221–228.
[18] A. Hertz, V. Lozin, B. Ries, V. Zamaev and D. de Werra, Dominating induced matchings in graphs containing no long claw. J. Graph Theory 88 (2018) 18–39.
[19] N. Korpelainen, V.V. Lozin and C. Purcell, Dominating induced matchings in graphs without a skew star. J. Discrete Algorithms 26 (2014) 45–55.
[20] J. Kratochvíl, Regular codes in regular graphs are difficult. Discrete Math. 133 (1994) 191–205.
[21] P. Laroche, Planar 1-in-3 satisfiability is NP-complete. ASMICSWorkshop on Tilings, Deuxième Journées Polyominos et pavages, Ecole Normale Supérieure de Lyon (1992).
[22] M.C. Lin, F.J. Soulignac and J.L. Szwarcfiter, Arboricity \(h \)-index and dynamic algorithms. Theor. Comput. Sci. 426 (2012) 75–90.
[23] M.C. Lin, M.J. Mizrahi and J.L. Szwarcfiter, Fast algorithms for some dominating induced matching problems. Inf. Process. Lett. 114 (2014) 524–528.
[24] M.C. Lin, M.J. Mizrahi and J.L. Szwarcfiter, Efficient and perfect domination on circular-arc graphs. Electron. Notes Discret. Math. 50 (2015) 307–312.
[25] M.C. Lin, M.J. Mizrahi and J.L. Szwarcfiter, Exact algorithms for minimum weighted dominating induced matching. Algorithmica 77 (2017) 642–660.
[26] M.C. Lin, V. Lozin, V.A. Moyano and J.L. Szwarcfiter, Perfect edge domination: hard and solvable cases. Ann. Oper. Res. 264 (2018) 287–305.
[27] C.L. Lu and C.Y. Tang, Solving the weighted efficient edge domination problem on bipartite permutation graphs. *Discrete Appl. Math.* **87** (1998) 203–211.

[28] C.L. Lu, M.-T. Ko and C.Y. Tang, Perfect edge domination and efficient edge domination in graphs. *Discrete Appl. Math.* **119** (2002) 227–250.

[29] L. Markenzon, C. Justel and N. Paciornik, Subclasses of k-trees: characterization and recognition. *Discrete Appl. Math.* **154** (2006) 818–825.

[30] C. Moore and J. Robson, Hard tiling problems with simple tiles. *Discrete Comput. Geom.* **26** (2001) 573–590.

[31] V. Moyano, *Edge dominating set problems: algorithms, bounds and properties*. Ph.D. Thesis, Universidad de Buenos Aires (2017).

[32] W. Mulzer and G. Rote, Minimum-weight triangulation is NP-hard. *J. ACM* **55** (2008) 1–29.

[33] R. Nevries, *Efficient domination and polarity*. Ph.D. Thesis, University of Rostock (2014).

[34] D.J. Rose, On simple characterizations of k-trees. *Discrete Math.* **7** (1974) 317–322.

[35] M. Xiao and H. Nagamochi, Exact algorithms for dominating induced matching based on graph partition. *Discrete Appl. Math.* **190, 191** (2015) 147–162.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model (S2O). We are thankful to our subscribers and supporters for making it possible to publish this journal in open access in the current year, free of charge for authors and readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports, is available at https://edpsciences.org/en/subscribe-to-open-s2o.