Identification of Campylobacter jejuni Genes Involved in Its Interaction with Epithelial Cells

Veronica Novik, Dirk Hofreuter,‡ and Jorge E. Galán*

Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, Connecticut 06536

Received 2 February 2010/Returned for modification 18 March 2010/Accepted 19 May 2010

Campylobacter jejuni is the leading cause of infectious gastroenteritis in industrialized nations. Its ability to enter and survive within nonphagocytic cells is thought to be very important for pathogenesis. However, little is known about the C. jejuni determinants that mediate these processes. Through an extensive transposon mutagenesis screen, we have identified several loci that are required for C. jejuni efficient entry and survival within epithelial cells. Among these loci, insertional mutations in aspA, aspB, and sodB resulted in drastic reduction in C. jejuni entry and/or survival within host cells and a severe defect in colonization in an animal model. The implications of these findings for the understanding of C. jejuni-host cell interactions are discussed.

Campylobacter jejuni is one of the most important causes of food-borne illness in industrialized nations and diarrhea in children in developing countries (45, 67). Despite its importance as a pathogen, its virulence mechanisms are just beginning to be understood. The ability of C. jejuni to enter nonphagocytic cells is thought to be very important for its pathogenesis (77). Correlation between the cultured-cell invasiveness of Campylobacter strains and the severity of the disease outcome has been reported (10, 11, 33, 47), and studies have visualized C. jejuni inside intestinal epithelial cells during human infections (68). C. jejuni can enter and survive within a variety of cultured cell lines (37, 49, 71, 73). Studies have revealed unique aspects in the cell biology of C. jejuni entry. For example, it has been shown that C. jejuni entry does not require an intact actin cytoskeleton although it requires an intact microtubular network (49). Other studies have implicated Rho-family GTPases in C. jejuni entry (39). However, little is known about the bacterial determinants specifically involved in mediating entry and intracellular survival. Although several studies have identified C. jejuni mutants exhibiting various degrees of deficiency in their ability to enter cultured cells (1, 2, 5, 13, 17, 25, 27, 29–31, 52, 63), there is no evidence indicating that the identified gene products directly mediate the entry process. Nonmotile mutants exhibit a drastic decrease in their ability to invade cultured cells (17, 70, 75). However, it is unclear whether the flagellar structure is directly involved in triggering bacterial internalization or whether the severe entry defect of nonmotile mutants indicates that motility per se is required for entry. A mutation in the pfIA gene, which results in paralyzed flagella, has been shown to be defective for entry (75), suggesting that motility and not the flagellar structure itself is required for entry. However, the actual role of PfIA is unknown, and therefore it is still possible that the phenotype of the pfIA mutation may be due to functions other than its putative role in motility. We have carried out a mutagenesis screen to identify C. jejuni genes that are required for entry and/or survival within host cells. Among the identified loci, insertional mutations in aspA, aspB, and sodB resulted in a drastic reduction in C. jejuni entry and/or survival within host cells and a severe colonization defect in an animal model. Although our studies did not provide evidence for a direct involvement of these loci in the cell entry process, these findings highlight the importance of C. jejuni basic metabolism in its ability to interact with host cells.

MATERIALS AND METHODS

Bacterial strains, cell lines, and culture conditions. The complete list of strains and plasmids used in this study is shown in Table 1. The expression vector pKETH-9c that carries the Tn552 transposase with an N-terminal His tag (59) was kindly provided by Nigel D. F. Grindley. The C. jejuni derivative of the Tn552 transposon (Tn552kan-Campy) has been described previously (7). The Escherichia coli BL21(DE3) strain (64) (Invitrogen) was used for the expression and purification of the TnpA transposase using standard affinity chromatography techniques. E. coli XLI-Blue (Stratagene) or DH5α (Bethesda Research Laboratories) was used as a host strain for recombinant DNA experiments and other genetic manipulations. For E. coli, antibiotics were used at the following concentrations as needed: ampicillin, 100 μg ml⁻¹; kanamycin, 50 μg ml⁻¹; and chloramphenicol, 30 μg ml⁻¹. All E. coli strains were stored at −80°C in Luria-Bertani (LB) medium containing 20% glycerol.

The C. jejuni 81-176 wild-type strain used in this study has been described previously (4, 24, 38) and was a generous gift from Patricia Guerry. Routinely, C. jejuni was grown on brucella broth agar or on blood agar plates (Trypticase soy agar supplemented with 5% defibrinated horse blood [Beckton & Dickinson]) at 37°C in an incubator equilibrated to a 10% CO2 atmosphere or under low-oxygen conditions (GasPak Plus; BD-Diagnostic Systems, NJ). The C. jejuni transformants were selected on plates supplemented with 50 μg ml⁻¹ kanamycin and 7.5 μg ml⁻¹ chloramphenicol, as indicated below. For liquid cultures C. jejuni strains were grown in brain heart infusion (BHI) medium with no antibiotics added. For the determination of growth curves, C. jejuni cultures were adjusted to an optical density at 600 nm (OD600) of about 0.1 and placed on a rotating wheel (50 rpm) at 10% CO2 for 14 h. For large-volume cultures, C. jejuni strains were incubated under the same conditions using an orbital shaker at 200 rpm. All C. jejuni strains were stored at −80°C in BHI broth containing 30% to 50% glycerol. In all cases,
cultures were inoculated by swabbing bacteria from plates incubated for 12 to 24 h (to avoid experimental discrepancies due to phase variation).

COS-7 (African green monkey kidney fibroblast-like cell line) or T84 (human colon carcinoma cell line) were obtained from American Type Culture Collection (Manassas, VA) and grown in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS). All cell lines were kept under a 5% CO2 atmosphere. T84 cells were used in gentamicin protection assays because these cells provide better support for C. jejuni entry. COS-7 cells were used in all experiments involving microscopy and fluorescence-activated cell sorter (FACS) analysis since all are more amenable than T84 cells for these types of assays and support robust C. jejuni entry.

DNA manipulation and C. jejuni strain construction. The complete list of primers used in this study is shown in Table S1 in the supplemental material. DNA manipulations were done according to standard laboratory protocols described elsewhere (60). For isolation of genomic and plasmid DNA, a DNeasy tissue kit and a QIAprep spin miniprep kit (Qiagen) were used. The C. jejuni 81-176 pEB1A, cjj81176_0966 (homolog of Cj0977 in the NCTC1168 reference strain), mokA (cjj81176_0939), pepA, and cjj81176 mutagenic strains were constructed by PCR amplification of the flanking regions of these open reading frames (ORFs) with specific primers (see Table S1 in the supplemental material) and cloning of a kanamycin resistance cassette (apbA3) between the amplified flanking regions. The resulting plasmids (built on a pBluescript II SK backbone) were used to move the mutated alleles into the chromosome of C. jejuni 81-176 by natural transformation and allelic recombination.

The mutated strains of C. jejuni were complemented by introducing a wild-type copy of the different alleles (i.e., sodB, aspA, and apbA3), as previously described (72). Briefly, complementation was carried out by integrating the complementing gene within the hsdM locus and driving its constitutive coexpression with a chloramphenicol resistance gene.

Construction of C. jejuni transposon mutant library. An in vitro transposon mutagenesis system was used to generate insertion mutants of C. jejuni as previously described (7). Briefly, 20-μl reaction mixtures containing ~500 ng of chromosomal DNA, 100 to 150 ng of Tn552 kan-Campy, and 100 ng of TnpA in 20 mM HEPES (pH 7.0), 50% (wt/vol) glycerol, 125 mM NaCl, and 10 mM MgSO4 were incubated at 37°C for 60 min and then dialyzed against water using 0.025-μm-pore-size nitrocellulose membrane discs (Fisher). C. jejuni electocompetent cells were prepared as previously described (20) and were transformed directly with a portion of the dialyzed transposition reaction mixture. The mixture of competent cells and DNA was incubated on an antibiotic-free blood agar plate for 5 to 7 h and then resuspended in 400 μl of BHI medium and plated out on brucella broth plates containing kanamycin (50 μg ml−1). The insertion sites of the different transposon mutants were determined by DNA sequencing using apbA3′ outward and apbA3′ outward primers (see Table S1 in the supplemental material).

Screening of C. jejuni transposon mutants for their ability to enter cultured cells. The protocol used to screen the C. jejuni mutant library for mutants unable to enter cultured cells is outlined in Fig. S1 in the supplemental material. To evaluate invasion abilities of a large number of Tn552 kan-Campy transformants, a modified gentamicin protection assay was used to address the following issues: (i) the screen had to allow handling a large number of mutants at once; (ii) no liquid culture and no optimization of optical density could be utilized for logistics reasons; (iii) the growth conditions had to allow the wild-type C. jejuni strain to retain its invasiveness; and (iv) all steps of the screen had to be reliable and easy to monitor. Individual 2-day-old Tn552 kan-Campy transposon mutant colonies were transferred to the center of soft-agar wells (0.8%, wt/vol, agar in brucella broth) of 24-well polystyrene plates and incubated at 37°C under 10% CO2 for 24 h. Growth on a soft agar allowed us to assess motility of each C. jejuni mutant, and only motile clones were considered for further analysis since non-

Table 1. Strains and plasmids used in this study

Strain or plasmid	Genotype (ORF) or description	Reference and/or source
E. coli BL21(DE3)	F− ompT hsdS8 (rB− m−) gal dcm (DE3)	64; Invitrogen
DH5α	λ− F' φ80lacZD15 M(lacZYA−argF)U169 recA1 endA hsdR17 (rB− m−)	Invitrogen
XL1-Blue	recA1 endA1 gyrA96 thi-1 hsdR17 supE4 relA1 lac (F− proAB lacP2ΔΔM15 Tn10 (Ter))	Stratagene
C. jejuni 81-176	Wild type; human isolate	4, 38; gift of Patricia Guerry
CB1	flaA:apbA3 (cjj81176_1339:apbA3)	Laboratory strain collection
CB18	mokA:apbA3 (cjj81176_0939:apbA3)	This study
CB21	complemented aspA4 mutant; aspA4:apbA3 (cjj81176_1539:cat aspA)	This study
CB22	complemented aspB mutant; aspB:apbA3 (cjj81176_1539:cat aspB)	This study
CB25	peb1A:apbA3 (cjj81176_0928:apbA3)	This study
CB26	ciaB:apbA3 (cjj81176_0921:apbA3)	This study
CB30	sodB:apbA3 (cjj81176_0205:apbA3)	This study
CB43	cjj81176_0966:apbA3	This study
CB60	cjj81176_0708:apbA3	This study
CB61	cjj81176_0708:apbA3	This study
CB62	jlpA:apbA3 (cjj81176_1002:apbA3)	This study
Plasmids		
pKETh-8c	His-tagged pE800 (TnpA) transposase in pET expression vector; Km′	59; gift of Nigel D. F. Grindley
pTG426	Source of Tn552cat; cat cassette flanked by 48-bp Tn552 terminal inverted repeats in pUC19	18; gift of Nigel D. F. Grindley
pSB1699	Source of Tn552kan-Campy; Tn552apbA3 in SpeI of pRY112	7
pRY109	Source of the chloramphenicol acetyltransferase gene (cat cassette)	74
pBluescriptII SK (+/−)	Phagemid cloning vector, f1 origin in plus orientation; lacPOZ'; Sac → Kpn polylinker orientation; Amp′	Stratagene
pSB3021	C. jejuni complementation vector; pGK2003 cjj81176_1539:cat	72
pSB2996	cjj81176_1539:cat sodB in pSB3021	This study
pSB3000	mokA:apbA3 in pBluescript II SK (+/−)	This study
pSB3001	peb1A:apbA3 in pBluescript II SK (+/−)	This study
pSB3002	cj0977:apbA3 in pBluescript II SK (+/−) (cjj81176_0966:apbA3)	This study
motile mutants are noninvasive (see below) (14, 17, 70, 75). After the 24 h of growth at 37°C in a 10% CO₂ atmosphere, 500 μl of brucella broth medium was added to each well, and cells were incubated for an additional 12 to 14 h (biphasic growth). Bacterial cells were lifted off the plate into the overlaid medium by gentle mixing and used as an inoculum in the invasion assay. T84 cells were seeded to ~70% confluence in 24-well plates (seeded at about 10⁴ cells per well) and washed three times with Hank’s balanced salt solution (HBSS). Fifteen microliters of bacterial suspension was added with 500 μl of HBSS to each well, and plates were spun down at 200 × g for 5 min to enhance bacterium-host cell contact, followed by incubation for 2 h at 37°C in 5% CO₂.

The motility of each mutant was examined under a light microscope (Nikon TMS 0.3×; ×40 objective with a 1.4 numerical aperture [NA]) at 1 h postinfection, and the approximate percentage of the motile versus nonmotile population of bacteria was recorded. Infected monolayers were washed three times with phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM sodium phosphate dibasic, 2 mM potassium phosphate monobasic, pH 7.4) containing 0.5 g/liter gelatin (BSG), and 500 μl of prewarmed DMEM containing gentamicin at 150 μg ml⁻¹ was added for 3 h to kill extracellular bacteria. The intestinal cells were washed again and lysed with 500 μl of 0.1% sodium deoxycholate in PBS to release intracellular bacteria. The invasion ability of the assayed mutants was evaluated by overlaying 25 μl of cell/bacteria lysate dilution (1:200 in brucella broth medium) onto blood agar plates (allowing the evaluation of four mutants per plate), followed by a 3-day incubation. We assumed that mutants had an invasion defect if the number of recovered bacteria was ~50% or less of that of the wild-type strain. Invasion-defective mutant candidates from the initial screen were reevaluated later in a standardized bacterial invasion assay as described below.

Standardized bacterial invasion assay. The ability of C. jejuni to invade cultured intestinal epithelial cells was evaluated by the gentamicin protection assay using a C. jejuni flaA knockout strain (nonmotile and noninvasive) as a negative control. Briefly, T84 cells were split to ~70% confluence in 24-well plates (seeded at ~10⁵ cells per well) 1 day prior to the experiment. To prepare bacterial inocula, C. jejuni strains were grown in BHI medium to an early-logarithmic phase (OD₅₆₀ of 0.3 to 0.5) and then adjusted to an OD₅₆₀ of 0.1 in PBS. One microliter of the inoculums was plated onto blood agar plates to determine the number of bacteria. On the day of the experiment, cell monolayers were washed three times with 500 μl of HBSS and 10 μl of bacterial cells (~10⁵ bacteria; at a multiplicity of infection [MOI] of 10) was added to each well. Plates were spun down at 200 × g for 5 min to enhance bacterium-host cell contact and incubated for 2 h at 37°C under 5% CO₂. Following the incubation, infected monolayers were washed three times with BSG, and prewarmed DMEM containing gentamicin (130 μg ml⁻¹) was added for 3 h to kill extracellular bacteria. Cells were washed again and lysed with 0.1% sodium deoxycholate (Sigma) in PBS to release intracellular bacteria. Invasion ability was expressed as a percentage of the inoculum that survived gentamicin sensitivity of sodium deoxycholate, C. jejuni strains were adjusted to a concentration of about 10⁶ bacteria per ml in HBSS. A total of 100 μl of bacterial cell suspension was transferred to microcentrifuge tubes containing 900 μl of either 0.1% sodium deoxycholate or HBSS solution. Samples were incubated at room temperature for 20 min and then subjected to a series of dilutions in HBSS and plated out onto blood agar plates. The numbers of CFU were enumerated, and the percentage of bacteria surviving the detergent treatment was calculated. The results were compared between strains using the C. jejuni wild-type strain as a reference. Early-logarithmic-phase bacterial cultures were used in this test. The incubation time in 0.1% sodium deoxycholate exceeded the time needed to lysis COS-7 (up to 1 min) or T84 (up to 7 min) cells during the standardized invasion assay.

Mouse infections. Animal infection studies were carried out using myd88⁻/⁻ (also known as crumpy¹) male mice as previously described (72). Briefly, myd88⁻/⁻ (also known as crumpy¹) male mice were infected intraperitoneally (ip.) with 10⁷ CFU of different C. jejuni strains. C. jejuni strains to be tested were restreaked from 1-day-old-frozen stock the night before the experiment and then grown in BHI medium to an OD₅₆₀ of ~0.4 to 0.6. The colonization levels of the different C. jejuni strains were monitored by enumerating the number of CFU in the feces of inoculated animals. At the time points indicated in Fig. 5 and 6, feces were collected into BHI broth, weighed, and plated on blood agar plates containing Campylobacter-selective supplements (Oxoid SR0167E) to determine the number of CFU per gram of feces. To differentiate between C. jejuni strains, the antibiotic kanamycin (50 μg ml⁻¹) or chloramphenicol (5 μg ml⁻¹) was added to selective medium when appropriate. At the end of the experiment mice were sacrificed, and their organs were aseptically removed and homogenized in HBSS. The bacterial loads in the intestine, liver, and spleen of infected animals were then determined by plating 10-fold serial dilutions on selective plates, as described above. Statistical analysis of the results was carried out with a Wilcoxon matched-pair signed-rank test.

Enumeration of C. jejuni loads in host cells by flow cytometry. To enumerate bacteria by flow cytometry, the protocol described by Watson et al. was followed (72). Briefly, COS-7 cells were seeded at a density of 1 × 10⁶ cells per well on a 24-well dish and infected at an MOI of 50. Following a 1-h incubation at 37°C and 5% CO₂, the cells were washed with HBSS, and DMEM containing 10% FBS and gentamicin (150 μg ml⁻¹) was added to each well. Cells were washed again and lysed at the time points indicated in Fig. 3 in 500 μl of 0.1% sodium deoxycholate in PBS. The cell lysates were collected and subjected to a low-speed spin (1,000 rpm) for 1 min to remove large cell debris. Supernatants were collected, and intracellular bacteria were recovered by a 2-min high-speed spin (10,000 rpm). The isolated bacterial pellet was resuspended in 500 μl of filter-sterilized staining buffer (PBS containing 1 mM EDTA and 0.01% Tween). Bacteria were then stained with the reagents of a cell viability kit (BD Biosciences, San Jose, CA), which distinguishes live and dead cells by using a thiazole orange (TO) solution, which stains all bacteria, and propidium iodide (PI), which stains only dead bacteria. The TO and PI solutions were added to final concentrations of 53 nM and 11 μM, respectively, in accordance with the manufacturer’s instructions. After 5 min of staining, bacteria were pelleted, washed three times in PBS, resuspended in 1 ml of PBS, and analyzed by flow cytometry. The absolute count of live and dead bacteria was carried out by the addition of 50 μl of a liquid suspension of a known number of fluorescent beads (supplied with the kit; BD Biosciences, San Jose, CA) following the manufacturer’s instructions. Samples were analyzed on a FACSCalibur flow cytometer. TO fluo-
dilution factor /H11003

RESULTS

C. jejuni 81-176 motA mutant is deficient for bacterial entry into cultured epithelial cells. Although flagellar mutants are drastically reduced in their ability to enter cultured epithelial cells, it is still unclear whether the invasion defect is due to the lack of motility, a direct role of flagellin in the entry process, or a potential role of the flagellar apparatus as an export machine for a putative invasion factor (19). Therefore, we compared the invasive ability of the wild-type C. jejuni 81-176 with that of the nonmotile derivatives flaA and motA. The flaA mutant lacks flagellin (the main filament subunit), whereas the motA mutant makes a complete flagellar structure but is nonmotile because of its inability to rotate the flagella. The flaA and motA mutants are predicted to be fully competent for secretion through the flagellar apparatus. As shown in Fig. 1, both flagellar mutants were drastically (1,000-fold) and equivalently reduced in their abilities to enter cultured intestinal epithelial cells despite the application of a centrifugal force during the assay to facilitate bacteria-cell contact. These results are consistent with previous findings (17, 70, 75) and indicate that although motility per se is required for bacterial entry, internalization is not the result of events directly mediated by either flagellin or other proteins secreted via the flagellar apparatus.

Identification of Tn552kan insertion mutants of C. jejuni 81-176 defective for entry into cultured epithelial cells. Using the optimized invasion assay described in Materials and Methods, 3,200 Tn552kan transposon insertion mutants were screened for the ability to enter cultured epithelial cells. Since it had been previously shown (14, 17, 70, 75) and confirmed by our studies that bacterial motility is essential for invasion, a step was introduced into the screening protocol to identify nonmotile mutants prior to assaying them for epithelial cell invasion. This step identified 149 mutants (4.7% of the total number of mutants screened) that were nonmotile and therefore were not run through the epithelial cell invasion assay. Although the annotated genome sequence of C. jejuni NCTC 11168 lists 40 genes (2.4%) as being involved in the assembly and function of flagella (50), the actual number of genes that affect motility is thought to be significantly higher. In fact, comprehensive motility mutant searches in E. coli and Bacillus subtilis have demonstrated that mutations in ~4% of nonessential genes exhibit a motility phenotype (56). A random sampling of the nonmotile mutants isolated in the screen identified transposon insertions in flhF, flhL, flgB, flgH, flgR, flgM, flgE, and pfIA, all of which encode components of the flagellar system (19, 75, 77; also data not shown). In addition, a number of mutants exhibited a wild-type motility phenotype when tested on motility plates but had a significant proportion of nonmotile bacteria when observed under the microscope. Although the molecular basis for this phenotype was not investigated, we hypothesize that the reduced motility may be due to either phase variation (6, 8, 22, 48) or reduced expression of genes encoding components of the flagellar system. Nevertheless, since motility plays a major role in the ability of C. jejuni to enter cultured epithelial cells, the presence of motility-defective mutants in the insertion pool that could not be eliminated by the motility plate assay required the examination of all noninvasive mutants under the microscope to identify those with possible motility defects. Whenever identified, these mutants were eliminated from the screen and were not considered further. Finally, a total of 52 insertion mutants were identified that retained wild-type motility in both plate and bacterial suspension assays but exhibited a reduced ability to invade cultured epithelial cells that ranged from 2- to 100-fold. The phenotype of these mutants was confirmed using a quantitative assay (see Materials and Methods), and the transposon insertion sites for each mutant were determined by nucleotide sequencing and are listed in Table 2.

Based on their predicted functions, the identified genes can be classified into the following groups.

(i) Resistance to sodium deoxycholate. The invasion assay protocol utilized in the screen includes a step in which the epithelial cells are lysed with sodium deoxycholate to release the internalized bacteria prior to their plating for enumeration. It has been previously reported that mutations in certain genes conferred increased sensitivity to bile salts, including sodium deoxycholate (41, 42, 57). Therefore, all mutants that exhibited an invasion phenotype were tested for their sensitivity to 0.1% sodium deoxycholate. Eleven mutants were identified that exhibited increased sensitivity to sodium deoxycholate. Retesting of these mutants with a modified invasion assay protocol that does not utilize sodium deoxycholate to lyse the epithelial cells determined that these mutants exhibit wild-type invasion levels (data not shown). Nucleotide sequencing established that all these mutants carry a transposon insertion within the cmeABC locus. These genes encode a multidrug efflux system that con-
ORF (NCTC 11168/81-176)*	Insertion site/total length of ORF (nt)	Annotation
Cj0039c/CJJ81176_0077	297/1,809	*typA*, GTP-binding protein TypA
Cj0064c/CJJ81176_0102	1221/1,455	*flhF*, flagellar biosynthetic protein FlhF
Cj0081/CJJ81176_0118	453/1,563	*cyaA*, cytochrome *d* ubiquinol oxidase, subunit I
Cj0087/CJJ81176_0122	250/1,407	*aspA*, aspartate ammonia-lyase
Cj0140/CJJ81176_0176	50/867	Hypothetical protein
Cj0169/CJJ81176_0205	561/663	*sodB*, superoxide dismutase, Fe
Cj0190c/CJJ81176_0221	824/1,506	Mg chelatase-related protein
Cj0195/CJJ81176_0226	347/1,386	*flhI*, flagellum-specific ATP synthase FlhI
Cj0227/CJJ81176_0252	625/1,182	*argD*, acetylornithine aminotransferase
Cj0261c/CJJ81176_0288	322/720	Conserved hypothetical protein
Cj0264c/CJJ81176_0291	2397/2,517	Biotin sulfoxide reductase
Cj0268c/CJJ81176_0295	1023/1,089	SPFH domain/band 7 family protein
Cj0342c/CJJ81176_0366	562/2,826	*uvrA*, excinuclease ABC, A subunit
Cj0365c/CJJ81176_0388	884/1,479	*cmeC*, RND efflux system;* outer membrane lipoprotein CmeC
Cj0366c/CJJ81176_0389	963/3,123	*cmeB*, RND efflux system, inner membrane transporter CmeB
Cj0367c/CJJ81176_0390	1001/1,104	*cmeA*, RND efflux system, membrane fusion protein CmeA
Cj0411/CJJ81176_0435	1611/2,187	GTP-binding protein
Cj0454c/CJJ81176_0479	379/519	Hypothetical protein
Cj0456c/CJJ81176_0481	475/960	Hypothetical protein
Cj0528c/CJJ81176_0553	63/432	*flgB*, flagellar basal body rod protein FlgB
Cj0587/CJJ81176_0615	564/948	Membrane protein, putative
Cj0687c/CJJ81176_0710	64/699	*flgH*, flagellar L-ring protein FlgH
Cj0693c/CJJ81176_0716	126/933	*mraW*, S-adenosyl-methyltransferase MraW
Cj0762c/CJJ81176_0783	669/1,170	*aspB*, aspartate aminotransferase; *aspC*, aspartate aminotransferase
Cj0788/CJJ81176_0809	354/492	Conserved hypothetical protein
Cj0791c/CJJ81176_0812	152/1,269	Aminotransferase, putative
Cj0843c/CJJ81176_0859	1333/1,626	Soluble lytic murein transglycosylase, putative
Cj0924c/CJJ81176_0931	547/555	*cheB*, protein-glutamate methyltransferase CheB
Cj1068/CJJ81176_1086	172/1,107	Membrane-associated zinc metalloprotease, putative
Cj1069/CJJ81176_1087	297/867	Conserved hypothetical protein
Cj1097/CJJ81176_1115	291/1,224	Sodium/dicarboxylate symporter
Cj1120c/CJJ81176_1138	636/1,773	*pglF*, general glycosylation pathway protein
Cj1161c/CJJ81176_1176	163/2,100	Copper-translocating P-type ATPase
Cj1179c/CJJ81176_1194	647/768	*flhR*, flagellar biosynthetic protein FlhR
Cj1198/CJJ81176_1213	31/495	*luxS*, autoinducer-2 production protein LuxS
Cj1209/CJJ81176_1223	735/1,554	HD/HDIG/KH domain protein
Cj1215/CJJ81176_1228	1061/1,161	Peptidase, M23/M37 family

Continued on following page
fers resistance to bile salts normally present in the intestinal tract of animals. Consequently, cmeABC mutants are defective for colonization in an animal model of C. jejuni infection (41, 42).

(ii) C. jejuni surface structures. A number of transposon insertions mapped to genes predicted to encode components or modifiers of putative surface structures. Among this group there were several insertions in genes involved in capsule polysaccharide biosynthesis and N-linked glycosylation, including Cj1414c, Cj1418c, Cj1422c, Cj1425c, Cj1428c, Cj1440, and Cj1120c (pgfL). Previous studies have shown that mutations in the capsule polysaccharide and N-linked glycosylation affected C. jejuni entry into cultured epithelial cells, and therefore these structures have been proposed to be directly involved in the adhesion and entry processes (1, 3, 31, 65). However, the modest defect in invasion observed in these mutants, which ranged from 2- to 3-fold, suggests that these structures may play only a secondary role in the invasion process, perhaps by promoting a more intimate interaction which may facilitate the stimulation of the entry event by other bacterial determinants.

(iii) Chemotaxis and other flagellum-associated loci. A number of mutants that showed a measurable defect in entry but retained full motility according to both the plate motility and microscopic observation assays were mapped to genes associated with the flagellar system. One of the transposon insertions inactivated the predicted homolog of CheB (Cj0924c), a putative methyl-accepting chemotaxis protein (MCP)-glutamate methylesterase, and exhibited a 3-fold decrease in entry. We hypothesize that this entry defect may be due to the inability of this mutant strain, as well as other mutants of the C. jejuni chemotaxis system (23, 66, 76), to properly swim toward the cultured epithelial cells. Two insertions were mapped to Cj1340 and Cj1341c, which belong to the maf (motility-accessory factor) gene family. This gene family is prone to phase variation via a slipped-strand mispairing mechanism and is clustered in chromosomal regions encoding flagellar biosynthesis genes (32, 50). Consequently, they have been proposed to be involved in flagellar biosynthesis and/or flagellar phase variation although mutations in only one of the family members, maf5, were shown to result in a motility defect.

TABLE 2—Continued

ORF (NCTC 11168/81-176)*	Insertion site/total length of ORF (nt)*	Annotation
Cj1228c/CJ81176,1242	293/1,419 663/1,419	htrA, protease DO
Cj1249/CJ81176,1265	492/1,461 876/1,461 1140/1,461 1233/1,461	Hypothetical protein
CJ81176,1314	657/897	Conserved hypothetical protein
Cj1341c/CJ81176,1340	390/1,827 224/1,827 854/1,827	maf6, motility accessory factor/CJ81176,1340 motility accessory factor
Cj1418c/CJ81176,1417	1906/2,340 2028/2,340 2034/2,340	Part of C. jejuni capsule locus (Cj1413c - Cj1448c); conserved hypothetical protein
Cj1425c/CJ81176,1424	410/1,020	Capsular biosynthesis sugar kinase, putative
Cj1428c/CJ81176,1427	191/1,059 733/1,059	fcl, GDP-1-fucose synthetase
CJ81176,1435	947/1,812 985/1,812	Putative sugar transferase
CJ81176,1436	1816/2,181 48/198	Putative glycosyl transferase
Cj1464/CJ81176,1457	1606/810 454/810 711/810	Tungstate ABC transporter, periplasmic tungstate-binding protein, putative
Cj1540/CJ81176,1525	2065/2,367 72/837 256/2,517	pflA, paralyzed flagellar protein PflA
Cj1685c/CJ81176,1677	1307/1,837 172/1,837	bioB, biotin synthetase
Cj1729c/CJ81176,0025	985/1,812	fglE, flagellar hook protein FglE

*a DNA sequences of Tn552kan insertions junction sites were used to determine the insertion site. The ORF designations correspond to the C. jejuni NCTC 11168 and 81-176 strains.

*b Insertion site(s) within a given gene of C. jejuni 81-176 (The Institute for Genomic Research [TIGR] project identification number 16135; complete genome sequence). nt, nucleotide.

** RND, resistance-nodulation-cell division (efflux pump).
Although we could not detect a motility defect in the two maf mutant strains identified in this screen, we hypothesize that the rather minor (less than 3-fold) invasion defect displayed by these mutants may be due to a slight motility defect that cannot be detected with our assays.

(iv) General metabolism and housekeeping. A number of mutants mapped to genes involved in a variety of metabolic and housekeeping functions. Included in this group are genes involved in DNA repair (cj0342c [uvrA]), amino acid metabolism and transport (cj0227 [argD] and cj1097, a putative transmembrane transport protein), purine biosynthesis (cj1208, a 5-formyltetrahydrofolate cyclo-ligase), RNA metabolism (cj0135c, an RNA methylase), oxidative stress (cj0169 [sodB]), respiration (cj0264, a putative oxidoreductase, and cj0081, a cytochrome bd oxidase subunit), stress responses (cj1228c [htrA] and cj0039c [ntrA]), and carbon metabolism (cj0087 [aspA] and cj0762c [aspB]). Another mutation mapped to Cj0190c, a homologue of Mg$^{2+}$-chelatases, which catalyzes the ATP-dependent insertion of Mg into protoporphyrin IX and participate in the critical steps of (bacterio)chlorophyll (Bchl/Chl) synthesis (69). Most of the mutants in this category exhibited a rather minor invasion phenotype, and therefore their contribution to C. jejuni internalization was considered to be indirect. However, mutations in aspA, aspB, and sodB resulted in a rather strong phenotype (~50- to 100-fold decrease in invasion), and these genes therefore were chosen for further characterization (see below).

(v) Putative regulators. One of the mutants mapped to a gene that encodes a putative homolog of the regulator LuxS (cj1198), the autoinducer-2 (AI-2) synthase, suggesting that quorum sensing may affect the ability of C. jejuni to interact with host cells (9, 26).

(vi) Unknown function. Several insertions mapped to genes of unknown function, including the following: Cj0411, a putative ATP/GTP binding protein; Cj1209, an HD/KH domain-containing protein; Cj0261c, a putative S-adenosylmethionine (SAM)-dependent methyltransferase; Cj0268c, a putative transmembrane protein; Cj0791c, a putative aminotransferase; Cj0843c, a putative secreted transglycosylase; Cj1068, a putative peptidase M50 family protein; and Cj0454c, Cj0456c, and Cj0788. Interestingly, some of these proteins have been previously implicated in C. jejuni virulence. Cj0411, Cj0454c, and Cj0456c were previously identified in various mutagenesis studies to have the strongest phenotypes (15, 27, 35, 52, 58). We then assayed their invasion phenotypes using the protocols and cell lines described in this study.

C. jejuni Peb1A is an aspartate/glutamate-binding protein of an ABC transporter that is essential for the uptake of dicarboxylic amino acids (40, 51). In addition, Peb1A has been proposed to be an important adhesion factor, and a loss-of-function mutation in this gene has been reported to reduce significantly C. jejuni’s ability to interact with epithelial cells or colonize experimental animals (52). However, we found that the introduction of an insertion mutation in this gene that resulted in a total loss of function did not affect the ability of C. jejuni 81-176 to attach and/or invade cultured epithelial cells under our standardized assay conditions (Fig. 2). These results are in disagreement with a previous report indicating a ~15-fold reduction in the levels of internalization into Henle 407 cells and a ~100-fold reduction in the levels of attachment to HeLa cells (52). We are not certain what the reasons for the discrepancy may be, but variations in the protocols, growth conditions, and/or cell lines used in the different studies may account for these differences.

Cultivation of C. jejuni in the presence of mammalian cells has been correlated with the de novo synthesis of a number of bacterial proteins as well as with an increase in bacterial invasion (34, 36, 58), suggesting that perhaps some of these de novo synthesized proteins may be involved in triggering the internalization process. One of these proteins, CiaB, has been sug-
gested to be necessary for entry since a null mutation in ciaB has been reported to cause a significant reduction in C. jejuni internalization into cultured cells (35, 58). We constructed a ciaB-deficient mutant of C. jejuni 81-176 and examined its ability to enter cultured intestinal epithelial cells. Surprisingly, we observed no measurable defect in the ability of this mutant to enter into cells (Fig. 2). The reasons for these discrepancies are unknown, but they may relate to differences in the strains or protocols used in the different studies. However, it should be pointed out that another laboratory also failed to confirm the phenotype of the ciaB mutant (15). In the original report, the ciaB mutant strain showing a defect in invasion was not complemented by reintroduction of a wild-type copy of the gene. Given the propensity of C. jejuni to undergo phase variation, it is possible that the phenotype originally ascribed to ciaB was due to an unlinked phenomenon.

JlpA is a surface-exposed lipoprotein in C. jejuni reported to play a role in mediating the adherence of this bacterium to host epithelial cells (27, 28). Although our screen did not identify a jlpA mutant, we investigated the potential contribution of JlpA to the C. jejuni invasion phenotype as assayed by our protocol. We constructed a C. jejuni 81-176 jlpA mutant strain and assayed the mutant for its ability to invade cultured epithelial cells. As shown in Fig. 2, the ability of the mutant strain to enter cultured epithelial cells was indistinguishable from that of the wild type.

A recent study reported that the gene cj0977, whose expression is coregulated with flagella, was required for C. jejuni virulence but not for motility (15, 54). Inactivation of cj0977 resulted in a C. jejuni mutant that was motile but significantly (~3 logs) impaired in bacterial entry (15). We were surprised that a mutant with such a strong phenotype did not come up in our screen since the reported studies used the same C. jejuni strain (81-176) as we did. Furthermore, a 3-log defect would be hard to reconcile by slight differences between our assay and the protocol used in that study. We therefore constructed a loss-of-function mutant in cj0977 and examined its ability to enter into cultured intestinal epithelial cells. We found that our C. jejuni cj0977 mutant exhibits a drastic reduction in its ability to enter cultured intestinal epithelial cells (Fig. 2) (0.57% ± 0.31% of the wild-type levels of invasion in several repetitions of the experiment). These results therefore confirmed the reported invasion defect of this mutant. However, we observed that although this mutant scored as “motile” on standard motility plates, when resuspended in HBSS, the buffer used in the invasion assay, this mutant exhibited a significant motility defect, which was accentuated during the assay. We have found that this type of motility defect results in a drastic invasion defect, underscoring the central importance of motility in the internalization process. We therefore conclude that the invasion phenotype of the cj0977 was due to its lack of robust motility and not to a direct role of the predicted protein in triggering the internalization event. The potential involvement of cj0977 in regulating motility is entirely consistent with its structural similarity to FapR, a B. subtilis transcriptional regulatory protein, and its coregulated expression with flagellar genes (15).

Characterization of the invasion phenotype of aspA, aspB, and sodB mutants. Our transposon mutagenesis screen identified only three C. jejuni mutants that, while retaining wild-type motility, exhibit a significant (i.e., more than 20-fold) defect in the ability to enter nonphagocytic cells. These insertions mapped to aspA, aspB, and sodB. Because of their strong phenotype, these mutants were chosen for further characterization.

The sodB gene encodes a superoxide dismutase (SOD), whose primary function is to detoxify reactive oxygen intermediates generated during respiration and oxidative stress by catalyzing the conversion of superoxide (O2−) to molecular oxygen (O2) and hydrogen peroxide (H2O2) (21, 46). SODs have been shown to be important virulence factors for a number of bacterial pathogens including Campylobacter coli and C. jejuni (53, 55). Previous studies have also reported an invasion defect for a C. jejuni strain carrying a loss-of-function mutation in sodB (53). However, this previous study did not distinguish whether this mutant had a defect in attachment, entry, or survival within cells. Defects in any of these phenotypes would have scored equally in the assay utilized in those studies. Therefore, we reexamined the phenotype of the sodB mutant in C. jejuni interactions with host cells. We first reconstructed the sodB mutant strain and examined its invasion phenotype by a gentamicin protection assay, as described in Materials and Methods. The reconstructed sodB mutant strain retained full motility and exhibited a significant invasion defect (Fig. 3A) (2.61% ± 0.76% of wild-type levels; three repetitions of the experiment), which is consistent with the findings of the previous study (53). Complementation of the mutant by reintroduction of a wild-type copy of sodB significantly restored its invasion phenotype (39.3% ± 3.0% of the wild-type levels; three repetitions of the experiment) (Fig. 3A), therefore confirming the linkage of the invasion phenotype to sodB. We next investigated whether the defect observed in the gentamicin protection assay was the result of a defect in entry, attachment, intracellular survival, or a combination of some or all of the above. Since the gentamicin protection assay cannot distinguish among these possibilities, we examined the ability of the sodB mutant to attach to cultured cells by enumerating all cell-associated bacteria after infection using CFU- and flow cytometry-based assays (see Materials and Methods). Both assays indicated that the sodB mutant exhibits a decreased ability to attach to cells that ranges between 6- and 7-fold (Fig. 3B and C). This defect, however, could not fully account for the larger defect observed with the gentamicin resistance assay, suggesting that the viability of the sodB mutant may decrease shortly after internalization. To address this issue, we examined the ability of the C. jejuni sodB mutant to enter cultured epithelial cells with a microscopy-based assay. This assay uses a staining protocol that can distinguish between internalized versus extracellular bacteria. Furthermore, this assay is independent of bacterial CFU recovery after infection. Using this assay, we detected a ~9-fold defect between in the levels of the internalized sodB mutant compared to the wild type (Fig. 3D), which is slightly larger than its defect in attachment. These results suggest a slight deficiency in the recovery of the sodB mutant shortly after infection, which, in combination with the attachment phenotype, may account for the bulk of the differences seen with the gentamicin assay. In fact, longer infection periods further accentuated the difference in intracellular survival rates between the wild-type and the ΔsodB mutant (Fig. 3E). Taken together, these results suggest that the reduced...
“invasion” phenotype of the sodB mutant observed using the gentamicin protection assay is not due to an invasion defect per se, as previously suggested (53), but to a combined defect in bacterial adhesion and impaired viability inside the cell.

The aspA and aspB genes encode aspartate ammonia-lyase and aspartate aminotransferase, respectively. The activity of these enzymes leads to the production of fumarate, which constitutes both a carbon source as well as an alternative electron acceptor during anaerobic respiration (61, 62). Given the function of these genes, it was surprising to observe such a strong invasion phenotype. We first tested the susceptibility of these mutants to the concentration of sodium deoxycholate used in our invasion assay. Exposure of either mutant to 0.1% sodium deoxycholate did not alter their plating efficiencies (data not shown). To confirm that the invasion phenotype was associated with the inactivation of aspA or aspB, a wild-type copy of these genes was introduced into the respective strains, which were then tested for their invasion phenotypes. Both mutants were fully complemented by the introduction of wild-type copies of the respective genes, confirming that the invasion phenotype observed was associated with the insertional inactivation of either aspA or aspB and not due to potential polar effects on downstream genes (Fig. 4A and B). We then tested the growth characteristics of the aspA and aspB mutants in rich medium. Both strains initially grew to levels similar to those of the wild type, but their growth plateaued when they reached an OD600 of ~0.5. However, the wild-type level of growth was recovered upon the addition of 20 mM fumarate (Fig. 4C). We then tested the invasive ability of the mutants during their growth cycle. We found that early during growth, the invasive ability of the aspA or aspB mutant was only ~4-fold lower than that of the wild type.
However, as the mutants continued to grow, their invasive ability progressively decreased, and at the late stationary phase of growth, the invasive abilities of both mutants sharply declined (Fig. 4D). The fact that these mutants were able to enter cultured intestinal cells during the early growth phase clearly indicated that neither AspA nor AspB is directly involved in mediating entry. Rather, these results suggest that absence of AspA or AspB translates into undefined physiological changes that render these mutants unable to enter cultured cells. Consistent with this hypothesis, the invasion phenotype could be recovered by the addition of fumarate, which also recovered the growth characteristics of the mutants which had been grown in BHI medium for the indicated times. Levels of bacterial internalization are shown as the percentage of bacteria that survived treatment with gentamicin relative to that of the wild-type strain, which was set at 100%. The error bars represent the standard deviation of three independent determinations. *, values were statistically significantly different ($P < 0.0001$, Student t test) from those of the wild type.

aspA, aspB, and sodB mutants are defective in mouse colonization. To further evaluate the potential role of AspA, AspB, and SodB in virulence, we examined the ability of mutant strains to colonize intestinal cells during the early growth phase clearly indicated that neither AspA nor AspB is directly involved in mediating entry. Rather, these results suggest that absence of AspA or AspB translates into undefined physiological changes that render these mutants unable to enter cultured cells. Consistent with this hypothesis, the invasion phenotype could be recovered by the addition of fumarate, which also recovered the growth characteristics of the mutants (Fig. 4C; see also Fig. S2 in the supplemental material).

FIG. 4. Ability of C. jejuni aspA and aspB mutants to invade cultured cells. (A and B) T84 cells were infected with wild-type C. jejuni 81-176 (WT), its isogenic aspA::Tn552 or aspB::Tn552 mutant, or the complemented mutant strains, as indicated. Levels of bacterial internalization are shown as the percentage of bacteria that survived treatment with gentamicin relative to that of the wild-type strain, which was set at 100%. The error bars represent the standard deviation of three independent determinations. *, values were statistically significantly different ($P < 0.0001$, Student t test) from those of the wild type. (C) Growth characteristics of the aspA and aspB mutants. Growth curves of the wild-type C. jejuni 81-176 and its isogenic aspA::Tn552 or aspB::Tn552 mutant grown in BHI medium with or without the addition of fumarate (F) (20 mM). (D) Invasion ability of the aspA and aspB mutants during growth. T84 cells were infected with wild-type C. jejuni 81-176 (WT) or its isogenic aspA::Tn552 or aspB::Tn552 mutant which had been grown in BHI medium for the indicated times. Levels of bacterial internalization are shown as the percentage of bacteria that survived treatment with gentamicin relative to that of the wild-type strain, which was set at 100%. The error bars represent the standard deviation of three independent determinations. *, values were statistically significantly different ($P < 0.0001$) from those of the wild type.

of infected animals was monitored over time, as described in Materials and Methods. Five out of seven mice cleared the aspA mutant by the 10th week after infection, meaning that this strain could not be detected in the feces of infected animals (Fig. 5A). Consistent with a defect in colonization, the aspA mutant was significantly reduced in the tissues of infected animals 10 weeks after infection (Fig. 5B). Similar results were obtained with the aspB mutant, and reduced or undetectable CFU counts of the mutant were recovered in both the feces and tissues of infected animals when the mutant was administered simultaneously with the wild type (Fig. 5C and D).

The C. jejuni sodB strain could not be detected in the feces of four out of five mice as early as 2 days postinfection. One mouse still shed a small number of the sodB strain cells 1 week later (2×10^5) while the levels of the complemented strain remained high (5×10^5) in all animals throughout the experiment (Fig. 6A). Two weeks after infection, all animals were sacrificed, and their tissues were examined for the presence of the sodB mutant and complemented strain. Although the complemented strain was recovered from the intestine, liver, and spleen of all mice, the sodB mutant was not present in any of the tissues examined (Fig. 6B). Taken together, these results
indicate that AspA, AspB, and SodB are required for C. jejuni host colonization.

DISCUSSION

We have conducted a transposon mutagenesis screen to identify C. jejuni genes directly involved in the cellular internalization process. The screen was designed to eliminate non-motile mutants since it is well established that motility is essential for C. jejuni entry. Although it is difficult to determine whether our screen was exhaustive, the fact that many non-identical insertions in the same genes were often obtained suggests that the screen most likely approached saturation. With the exception of insertions in three genes (aspA, aspB, and sodB), our screen did not identify mutations that were

![Figure 5](image1.png)

FIG. 5. C. jejuni aspA and aspB mutants are attenuated in a mouse colonization model. Wild-type C. jejuni and its aspA (A and B) or aspB (C and D) mutant derivative were simultaneously administered intraperitoneally to 8-week-old MyD88- and Nramp1-deficient mice. The numbers of CFU for the two competing strains in the feces of mice were enumerated by differential plating at the indicated times (A and C). At the end of the experiment mice were sacrificed, and their internal organs were homogenized and plated on differential medium (B and D). Each symbol represents the number of CFU of an individual mouse. ◆, C. jejuni wild-type strain; ○, aspA or aspB mutant strain.

![Figure 6](image2.png)

FIG. 6. C. jejuni sodB is attenuated in a mouse colonization model. C. jejuni sodB and its complemented derivative were simultaneously administered intraperitoneally to 8-week-old MyD88- and Nramp1-deficient mice. The numbers of CFU for the two competing strains in the feces of mice were enumerated by differential plating at the indicated times (A). At the end of the experiment mice were sacrificed, and their internal organs were homogenized and plated on differential medium (B). Each symbol represents the number of CFU of an individual mouse. ○, C. jejuni sodB mutant; ◆, complemented mutant.
impaired in entry to a large extent (more than 10-fold) although it identified numerous mutations that exhibited a modest (less than 5-fold) phenotype. We hypothesize that the modest phenotypes associated with the rest of the mutants suggest that the identified genes do not encode factors directly involved in bacterial entry.

Our screen identified mutations in aspA, aspB, and sodB that demonstrated a rather strong invasion phenotype. The phenotype of the aspA and aspB mutants could be reversed by either altering the growth conditions or supplying the strain with fumarate, the product of the enzymatic reactions associated with these gene products. These observations led us to conclude that AspA and AspB affect the invasion phenotype indirectly, perhaps by indirectly influencing the envelope composition of the bacteria under certain growth conditions and, hence, its invasiveness. Further studies of these phenotypes may yield information relevant to the understanding of the mechanisms C. jejuni internalization into host cells.

The defect in attachment and entry of the sodB mutant is intriguing although we do not favor a direct role of SodB in the entry process. While the reduced intracellular survival of the sodB mutant could be due to an increased sensitivity to reactive oxygen species that C. jejuni may be exposed to within the intracellular vacuole, its defect in attachment is more difficult to explain. Reports have shown that in E. coli, a sodB mutant constitutively expresses a set of outer membrane proteins, which are normally repressed in the wild type (43, 44). It is therefore possible that an equivalent remodeling of the outer membrane in the C. jejuni sodB mutant may alter the availability of putative envelope proteins directly involved in mediating cellular attachment. More experiments will be required to clarify these issues.

Since our studies also indicated that AspA, AspB, and SodB do not play a direct role in entry, it follows that our screen most likely did not identify “true” invasion determinants. Some previous studies have identified mutations that retained wild-type motility but exhibited rather drastic invasion phenotypes. Since those mutations did not come up in our screen, we constructed strains carrying mutations in these factors and compared their abilities to enter cells. Our studies could not confirm the phenotypes of three of these mutants, jfpA, ciaB, and pebLA (27, 35, 52), indicating that at least in C. jejuni 81-176, these genes played no measurable role in bacterial entry when assayed under the conditions used in this study. We confirmed the reported phenotype of a mutation in cj0977 (15) and observed a rather severe invasion defect. However, our data indicate that although this mutant does not show a significant motility defect when assayed on motility plates, it does show a rather strong motility defect when assayed in liquid. This observation is consistent with the reported coregulation of expression of cj0977 with other motility genes and also explains why this mutant did not come up in our screen since we eliminated from considerations all motility-defective mutants. Given the demonstrated importance of motility in cell invasion, the phenotype of this mutant is likely due to a role of Cj0977 in motility rather than to direct involvement in the entry event. In fact, Cj0977 is a homolog of FapR, a transcriptional regulatory protein of B. subtilis, suggesting that it may be involved in regulating flagellar gene expression. This observation also indicates that motility plates may not be a reliable indicator of the true motility phenotype of a given mutant since more subtle defects in motility may escape detection by this method.

Assuming that mutations in genes directly involved in entry should result in strong phenotypes, the question, then, is why did this rather extensive screen fail to identify those genes? There are a number of possibilities. First, although extensive, it is possible that our screen simply missed these mutants. We find this possibility unlikely, considering the large number of mutants screened and the relatively small size of the C. jejuni genome, particularly considering the fact that essential genes would not be targets of the screen. Indeed, different insertions in many genes were repeatedly obtained, which further supports the notion that our screen approached saturation. Second, it is possible that elimination of nonmotile genes resulted in the elimination of mutations in putative invasion genes. For example, since the transposon insertions obtained in this screen are polar, insertions in invasion genes located in the same operon as a downstream motility gene would not be recovered in this screen. Another possibility is that genes responsible for C. jejuni invasion or located in the same operon could be essential for bacterial viability and therefore would not be identifiable with the approach utilized in this study. Finally, the invasion determinants may be redundant, and therefore inactivation of a single invasion gene would not lead to an invasion phenotype.

Our results also highlight the challenges associated with the identification of true invasion genes. Many of the mutants we identified as invasion-defective based on the standard gentamicin protection assay turned out to have other defects that were not related to entry. Only after careful examination with alternative assays were we able to clarify the true phenotypes of those mutants. It is possible that some of these challenges may explain our inability to confirm previous invasion phenotypes of a number of mutants reported to exhibit internalization defects.

This study also highlights the close relationship between C. jejuni physiology and metabolism and its ability to enter and survive within cells. For example, our screen identified mutations in aspA and aspB, which showed a drastic phenotype in our assay. However, subsequent analysis indicated that the phenotype was highly dependent on the C. jejuni growth phase. In conclusion, although our screen identified a number of genes that are important for C. jejuni colonization, the identification of C. jejuni determinants directly involved in entry remains elusive.

ACKNOWLEDGMENTS

We thank María Lara-Tejero for providing the Myd88−/− mice. This work was supported by a grant from the Ellison Medical Foundation to J.E.G.

REFERENCES

1. Bachtiar, B. M., P. J. Coloe, and B. N. Fry. 2007. Knockout mutagenesis of the kpsE gene of Campylobacter jejuni 81116 and its involvement in bacterium-host interactions. FEMS Immunol. Med. Microbiol. 49:149–154.

2. Bacon, D. J., R. A. Alm, D. H. Burr, L. Hu, D. J. Kopecko, C. P. Ewing, T. J. Trust, and P. Guerry. 2000. Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect. Immun. 68:4384–4390.

3. Bacon, D. J., C. M. Szymanski, D. H. Burr, R. P. Silver, R. A. Alm, and P. Guerry. 2001. A phase-variable capsule is involved in virulence of Campylobacter jejuni 81-176. Mol. Microbiol. 40:769–777.

4. Black, R. E., M. M. Levine, M. L. Clements, T. P. Hughes, and M. J. Blaser. 1988. Experimental Campylobacter jejuni infection in humans. J. Infect. Dis. 157:472–479.
5. Brondsted, L., M. T. Andersen, M. Parker, K. Jørgensen, and H. Ingmer. 2005. The HtrA protease of Campylobacter jejuni is required for heat and oxygen tolerance and for optimal interaction with human epithelial cells. Appl. Environ. Microbiol.71:3205–3211.

6. Caldwell, M., B. P. Egger, C. E. Lee, J. P. Burnas, and R. I. Walker. 1985. Reversible expression of flagella in Campylobacter jejuni. Infect. Immun. 50:941–943.

7. Colegio, O. R., T. J. Griffin IV, N. D. Grindley, and J. E. Galan. 2001. In vitro transposition of a transposon to an efficient generation of random mutants of Campylobacter jejuni. J. Bacteriol. 183:2388–2384.

8. Diker, K. S., G. Hascelik, and M. Akan. 1992. Reversible expression of flagella in Campylobacter spp. FEMS Microbiol. Lett. 78:261–264.

9. Elvers, K. T., and S. F. Park. 2002. Quorum-sensing component of Campylobacter jejuni: detection of a luxS encoded signaling molecule. Microbiology 148:1451–1459.

10. Everest, P. H., H. Goossens, J. P. Butzler, D. Lloyd, S. Knutton, J. M. Ketley, and B. W. Jin, S., Y. C. Song, A. Emili, P. M. Sherman, and V. L. Chan. 2003. Effects of quorum sensing on Campylobacter jejuni growth on dicarboxylic amino acids. Mol. Microbiol. 23:559–368.

11. Guerry, P., R. Yao, R. A. Aln, D. H. Burr, and T. J. Trust. 1994. Systems of experimental genetics for Campylobacter species. Methods Enzymol. 235:474–481.

12. Hendriksen, R., K. Galpin, T. A. Oelschlaeger, T. A., P. Guerry, and D. J. Kopecko. 1993. Unusual microtubule-dependent invasion. Trends Microbiol. 1:98–27.

13. 403:656–658.

14. Hofreuter, D., J. Tsai, R. O. Watson, V. Novik, B. Altman, M. Benitez, C. Clark, C. Perbost, T. Jarvie, L. Du, and J. E. Galan. 1999. Unique features of a highly pathogenic Campylobacter jejuni strain. Infect. Immun. 67:4094–4707.

15. Javed, M., A. A. Grant, M. C. Bagnall, D. J. Maskell, D. G. Newell, and G. Mannini. 2010. Transcription mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion. Microbiology156:1134–1143.

16. Jeon, B., K. Itoh, N. Misawa, and S. Ryu. 2003. Effects of quorum sensing on flaB transcription and autoagglutination in Campylobacter jejuni. Infect. Immun. 71:3086–3090.

17. Jin, S., Y. C. Song, A. Emili, P. M. Sherman, and V. L. Chan. 2003. A jhpA transcription and autoagglutination in Campylobacter jejuni. Infect. Immun. 71:9045–9499.

18. Karlshevy, A. V., D. Linton, N. A. Gregory, and B. W. Wren. 2002. A novel paralogue gene family found in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 148:473–480.

19. Konkel, M. E., and W. Cieplak, Jr. 1992. Altered synthetic response of Campylobacter jejuni to cultivation with human epithelial cells is associated with enhanced internalization. Infect. Immun. 60:4945–4949.

20. Konkel, M. E., D. J. Mead, and W. Cieplak, Jr. 1993. Kinetic and antigenic characterization of altered protein synthesis by Campylobacter jejuni during cultivation with human epithelial cells. J. Infect. Dis. 168:948–954.

21. Kopecko, D. J., L. H. and J. Zaal. 2001. Campylobacter jejuni—miniature tubule-dependent invasion. Trends Microbiol. 9:8–27.

22. Kopecko, D. J., L. H. and J. Zaal. 2001. Campylobacter jejuni—miniature tubule-dependent invasion. Trends Microbiol. 9:8–27.

23. Konkel, M. E., D. J. Mead, and W. Cieplak, Jr. 1993. Kinetic and antigenic characterization of altered protein synthesis by Campylobacter jejuni during cultivation with human epithelial cells. J. Infect. Dis. 168:948–954.

24. Lorn-Kepris Meld, R., E. Guccione, F. Mulholland, M. P. Williamson, and D. J. Kelly. 2006. The Campylobacter jejuni PEB1a adhesin is an aspartate/glutamate-binding protein. Mol. Microbiol. 57:1761–1771.

25. Luke, N. R., R. J. Karalus, and A. A. Campagnari. 1998. A novel efflux pump system bacterial efflux system in Campylobacter jejuni. Antimicrob. Agents Chemother. 42:2124–2131.

26. Lodise, T. P., and F. J. Qin. 2003. Virulence factors in Campylobacter jejuni. Clin. Microbiol. Rev. 16:101–118.

27. Martinaelli, S., and J. A. Imlay. 1999. An intracellular iron chelator plasto- tropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181:3792–3802.

28. Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Breese, C. Shapiro, P. M. Griffin, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607–625.

29. Miller, R. A., and B. E. Britigan. 1997. Role of oxidants in microbial pathophysiology. Clin. Microbiol. Rev. 10:1–18.

30. Newell, D. G. Wren. 2004. The Campylobacter jejuni general glycosylation system is impor- tant for attachment to human epithelial cells and in the colonization of chicks. Microbiology 150:1907–1964.

31. Novikov, T. A., P. Guerry, and D. J. Kopecko. 1993. Unusual microtubule-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundi. Proc. Natl. Acad. Sci. U. S. A. 90:6884–6888.

32. Oelschlaeger, T. A., P. Guerry, E. C. Luke, N. R., R. J. Karalus, and A. A. Campagnari. 2002. Inactivation of the Monaxella catarrhalis superoxide dismutase SodA induces constitutive expression of iron-repressible outer membrane proteins. Infect. Immun. 70:1389–1395.

33. Parkhill, J., R. W. Wren, K. Mungall, J. M. Ketley, C. Churcher, D. Basham, T. Chillingworth, R. M. Davies, T. Feltwell, S. Holroyd, K. Jagels, A. V. Kyraslhev, S. Moule, M. J. Pallen, C. W. Penn, M. A. Quail, M. A. Rajan- dream, K. M. Rutherford, A. H. van Vliet, S. Whitehead, and B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668.

34. Pei, Z., M. J. Zalk, and J. D. Blaser. 1993. The PEB1, the major cell-binding factor of Campylobacter jejuni and colonization. Appl. Environ. Microbiol.65:3764–3768.

35. Pei, Z., M. J. Zalk, and J. D. Blaser. 1993. The PEB1, the major cell-binding factor of Campylobacter jejuni and colonization. Appl. Environ. Microbiol.65:3764–3768.

36. Perkins, E. C., D. L. Cottle, and C. L. Pickett. 1999. Generation of a superoxide dismutase (SOD)-deficient mutant of Campylobacter coli: evidence for the significance of SOD in Campylobacter survival and colonization. Appl. Environ. Microbiol.65:2540–2546.
56. Rajagopala, S. V., R. Titz, J. Goll, J. R. Parrish, K. Wohlbold, M. T. McKeivit, T. Palzkill, H. Mori, R. L. Finley, Jr., and P. Uetz. 2007. The protein network of bacterial motility. Mol. Syst. Biol. 3:3128.

57. Raphael, B. H., S. Pereira, G. A. Flom, Q. Zhang, J. M. Ketley, and M. E. Konkel. 2005. The Campylobacter jejuni response regulator, CbrR, modulates sodium deoxycholate resistance and chicken colonization. J. Bacteriol. 187:3662–3670.

58. Rivera-Amill, V., B. J. Kim, J. Seshu, and M. E. Konkel. 2001. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis. 183:1607–1616.

59. Rowland, S. J., D. J. Sherratt, W. M. Stark, and M. R. Boocock. 1995. Tn552 transposase purification and in vitro activities. EMBO J. 14:196–205.

60. Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

61. Sellars, M. J., S. J. Hall, and D. J. Kelly. 2002. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J. Bacteriol. 184:4187–4196.

62. Smith, M. A., G. L. Mendz, M. A. Jorgensen, and S. L. Hazell. 1999. Fumarate metabolism and the microaerophily of Campylobacter species. Int. J. Biochem. Cell Biol. 31:961–975.

63. Song, Y. C., S. Jin, H. Louie, D. Ng, R. Lau, Y. Zhang, R. Weerasekera, S. Al Rashid, L. A. Ward, S. D. Der, and V. L. Chan. 2004. FlaC, a protein of Campylobacter jejuni TGH9011 (ATCC43431) secreted through the flagellar apparatus, binds epithelial cells and influences cell invasion. Mol. Microbiol. 53:541–553.

64. Studier, F. W., and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113–130.

65. Szymanski, C. M., D. H. Burr, and P. Guerry. 2002. Campylobacter protein glycosylation affects host cell interactions. Infect. Immun. 70:2242–2244.

66. Takata, T., S. Fujimoto, and K. Amako. 1992. Isolation of nonchemotactic mutants of Campylobacter jejuni and their colonization of the mouse intestinal tract. Infect. Immun. 60:3596–3600.

67. Tauxe, R. V. 1997. Emerging foodborne diseases: an evolving public health challenge. Emerg. Infect. Dis. 3:425–434.

68. van Spreeuwel, J. P., G. C. Duursma, C. J. Meijer, R. Bax, P. C. Rosekrans, and J. Lindeman. 1985. Campylobacter coli: histological immunohistochemical and ultrastructural findings. Gut 26:945–951.

69. Walker, C. J., and R. D. Willows. 1997. Mechanism and regulation of Mg-chelatase. Biochem. J. 327:321–333.

70. Wassenaar, T. M., N. M. Bleumink-Pluym, and B. A. van der Zeijst. 1991. Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J. 10:2055–2061.

71. Watson, R. O., and J. E. Galan. 2008. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLoS Pathog. 4:e14.

72. Watson, R. O., V. Novik, D. Hofreuter, M. Lara-Tejero, and J. E. Galan. 2007. A MyD88-deficient mouse model reveals a role for Nramp1 in Campylobacter jejuni infection. Infect. Immun. 75:1994–2003.

73. Wooldridge, K. G., P. H. Williams, and J. M. Ketley. 1996. Host signal transduction and endocytosis of Campylobacter jejuni. Microb. Pathog. 21:299–305.

74. Yao, R., R. A. Alm, T. J. Trust, and P. Guerry. 1993. Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 138:127–130.

75. Yao, R., R. A. Alm, T. J. Trust, and P. Guerry. 1994. Isolation of motile and nonmotile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol. Microbiol. 14:883–893.

76. Yao, R., D. H. Burr, and P. Guerry. 1997. CheY-mediated modulation of Campylobacter jejuni virulence. Mol. Microbiol. 23:1021–1031.

77. Young, K. T., L. M. Davis, and V. J. Dirita. 2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5:665–679.