A Short Versatile Route Towards Benzothiadiazinyl Radicals
Supporting Information

Andryj M. Borys, Ewan R. Clark,* Paul J. Saines, Antonio Alberola-Catalan, Jeremy M. Rawson.*
Table of Contents

1. General Experimental Considerations ...3
2. Synthetic Details ..4
 2.1. Synthesis of N-Arylamidines ..4
 2.2. Synthesis of 1,2,4-Benzothiadiazine 1-Chlorides9
 2.3. Synthesis of 1,2,4-Benzothiadiazinyl Radicals ..12
 2.4. Test Synthesis of 1,2,4-Benzothiadiazinyl Cation14
3. Single-Crystal X-Ray Diffraction Data ...15
 3.1. Crystallographic Data and Unit Cell Parameters ..15
4. EPR Spectroscopy ...32
 4.1. EPR Spectra of 1,2,4-Benzothiadiazinyl Radicals32
5. Cyclic Voltammetry ..37
 5.1. Cyclic Voltammograms of 1,2,4-Benzothiadiazine 1-Chlorides38
 5.2. Variable Concentration Studies ..43
 5.3. Variable Scan Rate Studies ...43
6. Magnetometric Studies ...45
 6.1. Paramagnetic Susceptibility Plots ...45
7. Computational Chemistry ..46
 7.1. EPR and Electronic Studies ...46
 7.2. Magnetic Exchange Interactions ..47
 7.3. Cartesian Coordinates for Optimised Geometries48
8. References ..69
1. General Experimental Considerations
All manipulations were carried out under an atmosphere of Argon using standard Schlenk line\(^1\) and glovebox techniques unless otherwise stated. All solvents were purchased from Fisher Scientific and dried before use following the methods specified. DCM and MeCN were dried by reflux over CaH\(_2\) and stored over activated molecular sieves. THF was dried by reflux over potassium and stored over activated molecular sieves. \(^1\)Hexane and Et\(_2\)O were dried by reflux over sodium/benzophenone and stored over potassium mirrors. Toluene was dried by reflux over sodium and stored over activated molecular sieves. \(^1\)BuLi was purchased from ACROS as a 2.5 M solution in hexanes. Pyridine, Et\(_3\)N and Pr\(_2\)EtN were vacuum distilled over CaH\(_2\) and stored over activated molecular sieves. Ferrocene and DABCO were purified by vacuum sublimation. Ph\(_3\)P was recrystallised from DCM and \(^1\)hexane. NaBAr\(_{Cl}\) and (4-methoxy)benzonitrile were prepared according to literature procedures.\(^2,3\) All other compounds were used as supplied by the manufacturer.

NMR spectra were recorded on either a JEOL ECS 400 MHz NMR spectrometer, a Bruker AV II 400 MHz spectrometer, or a Bruker NEO 400 MHz spectrometer. The spectra are reported in ppm and referenced to appropriate residual solvent peaks; spectra recorded in SOCl\(_2\) were arbitrarily referenced to residual DMSO-d\(_5\) in the insert capillary. EPR spectra were recorded on a continuous wave X-band ADANI CMS 8400 spectrometer at ambient temperature. EPR spectral simulation and analysis were performed using the EasySpin computational package.\(^4\) Single crystal X-ray diffraction data were recorded on either an Agilent SuperNova Dual diffractometer or a Nonius Kappa CCD diffractometer, with Mo-K\(_\alpha\) (\(\lambda = 0.71073\) Å) or Cu-K\(_\alpha\) (\(\lambda = 1.54184\) Å) radiation. Electrochemical studies were performed with a Biologic potentiostat and carried out in a three-electrode electrochemical cell with a glassy carbon working electrode, a platinum wire counter electrode, and a silver wire pseudo-reference electrode. Magnetic studies were performed using a Quantum Design MPMS-7 magnetometer. Elemental Analysis was performed by Stephen Boyer via the London Metropolitan University service.
2. Synthetic Details

2.1. Synthesis of N-Arylamidines

The substituted N-arylamidines 1a-o,t were prepared via standard methods through condensation of lithiated anilines with suitable carbonitriles, followed by aqueous work-up.\(^5\) Compound 1f was synthesised in the absence of light. Compound 1p was synthesised by Lewis-acid mediated condensation in the melt.\(^6\) The syntheses of 1a and 1p are given as exemplars. All amidines were isolated as colourless crystalline solids in good yields.

\(\text{Aniline (4.56 cm}^3, 50 \text{mmol) was dissolved in THF (50 cm}^3) \text{and } \text{nBuLi (2.5 M in hexanes, 20 cm}^3, 50 \text{mmol) was added dropwise at 0 °C. The reaction mixture was allowed to slowly warm to room temperature and stir for 1 hour. Benzonitrile (4.84 cm}^3, 50 \text{mmol) was then added yielding a straw-coloured solution thick with off-white precipitate. After 12 hours of stirring, the mixture was quenched with ice water (50 cm}^3) \text{and the organic products extracted into DCM (3 x 50 cm}^3) \text{under air. The combined organic extracts were washed with water and brine (50 cm}^3 \text{each), dried over MgSO}_4, \text{filtered, and evaporated to dryness. The crude residue was recrystallised from DCM and hexanes at -20 °C. The colourless microcrystalline solid was collected by filtration, washed with cold hexanes, and dried in vacuo to give 1a (8.80 g, 44.8 mmol, 90%). }\)

\(^{1}H\text{ NMR (400 MHz, DCM, 19.8 °C): }\delta 7.87 (\text{bs, 2H}), 7.45 (\text{m, 3H}), 7.35 (\text{t, } J = 7.3 \text{ Hz, 2H}), 7.04 (\text{t, } J = 7.3 \text{ Hz, 1H}), 6.94 (\text{d, } J = 7.3 \text{ Hz, 2H}), 3.91 (\text{s, 2H}). \(^{13}C\{^{1}H\}\text{ NMR (100.5 MHz, DCM, 18.4 °C): }\delta 154.4, 150.2, 136.0, 129.6, 128.5, 126.8, 122.9, 121.5.\)

Analytical data in accordance with the literature.\(^7-9\)

\(1b:\)

\(\text{Colourless needles, 71% yield. }^{1}H\text{ NMR (400 MHz, DCM, 19.3 °C): }\delta 7.89 (\text{d, } J = 6.4 \text{ Hz, 2H}), 7.46 (\text{m, 3H}), 7.22 (\text{d, } J = 7.3 \text{ Hz, 1H}), 7.17 (\text{t, } J = 7.3, 7.8 \text{ Hz, 1H}), 6.97 (\text{t, } J = 7.3 \text{ Hz, 1H}), 6.82 (\text{d, } J = 7.8 \text{ Hz}), 4.76 (\text{bs, 2H}), 2.15 (\text{s, 3H}). \(^{13}C\{^{1}H\}\text{ NMR (100.5 MHz, DCM, 18.5 °C): }\delta 153.5, 148.5, 135.9, 130.8, 130.5, 129.6, 128.5, 126.9, 126.8, 123.0, 120.8, 17.5.\)

Analytical data in accordance with the literature.\(^9,10\)
1c:

![Structure of 1c]

Colourless needles, 87% yield. 1H NMR (400 MHz, DCM, 19.8 °C): δ 7.90 (d, $J = 6.4$ Hz, 2H), 7.47 (m, 3H), 7.05 (t, $J = 7.3$, 7.8 Hz, 1H), 6.87 (d, $J = 7.3$ Hz, 1H), 6.68 (d, $J = 7.8$ Hz, 1H), 4.72 (bs, 2H), 2.28 (s, 3H), 2.07 (s, 3H). 13C{1H} NMR (100.5 MHz, DCM, 18.4 °C): δ 153.5, 148.3, 138.1, 136.0, 128.5, 128.0, 126.8, 126.2, 124.6, 118.5, 20.3, 13.4.

Analytical data in accordance with the literature.$^8,^1^1$

1d:

![Structure of 1d]

Colourless needles, 79% yield. 1H NMR (400 MHz, DCM, 19.8 °C): δ 7.89 (d, $J = 6.9$ Hz, 2H), 7.46 (m, 3H), 7.09 (d, $J = 7.8$ Hz, 1H), 6.79 (d, $J = 7.3$ Hz, 1H), 6.65 (s, 1H), 4.75 (bs, 1H), 2.29 (s, 3H), 2.10 (s, 3H). 13C{1H} NMR (100.5 MHz, DCM, 18.3 °C): δ 153.5, 148.3, 136.6, 136.0, 130.6, 130.5, 128.5, 126.3, 123.7, 121.4, 20.9, 17.0.

Analytical data in accordance with the literature.8

1e:

![Structure of 1e]

Colourless needles, 78% yield. 1H NMR (400 MHz, DCM, 19.9 °C): δ 7.85 (d, $J = 6.9$ Hz, 2H), 7.45 (m, 3H), 6.70 (s, 1H), 6.55 (s, 2H), 4.89 (bs, 2H), 2.29 (s, 6H). 13C{1H} NMR (100.5 MHz, DCM, 18.4 °C): δ 154.2, 150.0, 139.3, 136.1, 130.5, 128.5, 126.8, 126.3, 123.7, 21.2.

Analytical data in accordance with the literature.$^8,^9$

1f:
Colourless microcrystalline solid, 65% yield. 1H NMR (400 MHz, DCM, 17.1 °C): δ 7.86 (d, $J = 5.7$ Hz, 2H), 7.46 (m, 3H), 7.24 (t, $J = 8.0$ Hz, 1H), 6.60 (d, $J = 7.8$ Hz, 1H), 6.52 (d, $J = 8.7$ Hz, 2H), 4.93 (bs, 2H), 3.78 (s, 3H). 13C(1H) NMR (100.5 MHz, DCM, 18.4 °C): δ 161.0, 154.3, 151.7, 135.9, 130.6, 130.4, 128.5, 126.8, 113.7, 108.7, 107.0, 55.3.

Analytical data in accordance with the literature.11,12

1g:

![1g structure](image)

Colourless micro-crystalline solid, 63% yield. 1H NMR (400 MHz, DCM, 18.7 °C): δ 7.28 (m, 6H), 6.95 (bs, 3H), 4.84 (bs, 2H), 2.50 (bs, 3H). 13C(1H) NMR (100.5 MHz, DCM, 18.8 °C): δ 156.2, 149.6, 137.2, 135.7, 130.7, 129.3, 129.1, 127.9, 125.7, 122.6, 121.6, 19.6.

Analytical data in accordance with the literature.9

1h:

![1h structure](image)

Colourless microcrystalline solid, 66% yield. Anal. Calc. for C$_{16}$H$_{18}$N$_2$: C, 80.6; H, 7.61; N, 11.8. Found: C, 80.39; H, 7.76; N, 11.8. 1H NMR (400 MHz, DCM, 18.8 °C): δ 7.49 (bs, 1H), 7.28 (m, 3H), 7.06 (bs, 1H), 6.87 (bs, 1H), 6.73 (bs, 1H), 2.55 (s, 3H), 2.30 (s, 3H), 2.14 (s, 3H). 13C(1H) NMR (100.5 MHz, DCM, 19.0 °C): δ 155.3, 148.1, 138.0, 137.4, 135.9, 130.8, 129.1, 128.0, 126.3, 125.8, 124.5, 118.6, 20.3, 19.8, 13.6.

1i:

![1i structure](image)

Colourless microcrystalline solid, 77% yield. 1H NMR (400 MHz, DCM, 19.6 °C): δ 7.82 (d, $J = 6.9$ Hz, 2H), 7.33 (t, $J = 6.6$, 7.1 Hz, 2H), 7.03 (t, $J = 6.6$, 7.3 Hz, 1H), 6.93 (t, $J = 7.3$, 8.2 Hz, 4H), 4.81 (bs, 2H), 3.84 (s, 3H). 13C(1H) NMR (100.5 MHz, DCM, 19.2 °C): δ 161.6, 153.7, 150.4, 129.6, 128.3, 122.7, 121.6, 113.7, 55.5.

Analytical data in accordance with the literature.5
1j:

Colourless microcrystalline solid, 74% yield. Anal. Calc. for C₁₆H₁₈N₂O: C, 75.6; H, 7.13; N, 11.0. Found: C, 75.6; H, 7.24; N, 11.0. ¹H NMR (400 MHz, DCM, 18.3 °C): δ 7.85 (d, J = 8.2 Hz, 2H), 7.04 (t, J = 7.6, 7.8 Hz, 1H), 6.94 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 7.3 Hz, 1H), 6.66 (d, J = 7.6 Hz, 1H), 4.68 (bs, 2H), 3.84 (s, 3H), 2.28 (s, 3H), 2.06 (s, 3H). ¹³C(¹H) NMR (100.5 MHz, DCM, 19.3 °C): δ 161.6, 153.0, 148.5, 138.0, 128.3, 128.1, 126.2, 124.4, 118.7, 113.7, 55.5, 20.3, 13.4.

1k:

Colourless microcrystalline solid, 88% yield. Anal. Calc. for C₁₂H₁₁N₃: C, 73.1 H, 5.62; N, 21.3. Found: C, 73.0; H, 5.75; N, 21.4. ¹H NMR (400 MHz, DCM, 18.4 °C): δ 8.68 (d, J = 4.6 Hz, 2H), 7.73 (d, J = 4.6 Hz, 2H), 7.36 (t, J = 6.4, 6.9 Hz, 2H), 7.07 (t, J = 6.9 Hz, 1H), 6.93 (d, J = 6.9 Hz, 2H), 5.01 (bs, 2H). ¹³C(¹H) NMR (100.5 MHz, DCM, 18.7 °C): δ 152.4, 150.4, 149.5, 143.2, 129.7, 123.4, 121.2, 121.0.

1l:

Colourless microcrystalline solid, 85% yield. Anal. Calc. for C₁₄H₁₅N₃: C, 74.6; H, 6.71; N, 18.7. Found: C, 74.8; H, 6.74; N, 18.6. ¹H NMR (400 MHz, DCM, 18.8 °C): δ 8.68 (d, J = 4.6 Hz, 2H), 7.76 (d, J = 4.6 Hz, 2H), 7.06 (t, J = 7.3, 7.8 Hz, 1H), 6.89 (d, J = 7.3 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 4.87 (bs, 2H), 2.29 (s, 3H), 2.05 (s, 3H). ¹³C(¹H) NMR (100.5 MHz, DCM, 18.8 °C): δ 151.6, 150.4, 147.6, 143.1, 138.2, 127.8, 126.3, 125.0, 121.0, 118.1, 20.2, 13.4.

1m:

Colourless needles, 71% yield. ¹H NMR (400 MHz, DCM, 19.3 °C): δ 7.89 (d, J = 6.4 Hz, 2H), 7.46 (m, 3H), 7.22 (d, J = 7.3 Hz, 1H), 7.17 (t, J = 7.3, 7.8 Hz, 1H), 6.97 (t, J = 7.3 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 4.91 (bs, 2H), 2.16 (s, 3H). ¹³C(¹H) NMR (100.5 MHz, DCM, 19.3 °C): δ 153.5, 148.5, 135.9, 130.8, 130.5, 129.6, 128.5, 126.9, 126.8, 123.0, 120.8, 17.5.

Analytical data in accordance with the literature.⁹,¹¹

1n:
Colourless needles, 73% yield. 1H NMR (400 MHz, DCM, 18.9 °C): \(\delta 7.87\) (d, \(J = 7.1\) Hz, 2H), 7.45 (m, 3H), 7.06 (s, 1H), 6.99 (d, \(J = 7.9\) Hz, 1H), 6.71 (d, \(J = 7.8\) Hz, 1H), 4.78 (bs, 2H), 2.31 (s, 3H), 2.13 (s, 3H). 13C{1H} NMR (100.5 MHz, DCM, 18.9 °C): \(\delta 153.8, 145.7, 136.0, 132.3, 131.5, 130.4, 129.3, 128.5, 127.5, 126.8, 120.7, 20.7, 17.5\).

Analytical data in accordance with the literature.9

Colourless needles, 68% yield. Anal. Calc. for C\textsubscript{19}H\textsubscript{16}N\textsubscript{2}: C, 83.8; H, 5.92; N, 10.3. Found: C, 83.6; H, 5.90; N, 10.3. 1H NMR (400 MHz, DCM, 19.3 °C): \(\delta 7.70\) (d, \(J = 7.2\) Hz, 2H), 7.50 (d, \(J = 7.4\) Hz, 2H), 7.46-7.29 (m, 7H), 7.24 (t, \(J = 7.3, 7.4\) Hz, 1H), 7.16 (t, \(J = 7.4\) Hz, 1H), 6.98 (d, \(J = 7.6\) Hz, 1H), 4.81 (bs, 2H). 13C{1H} NMR (100.5 MHz, DCM, 19.7 °C): \(\delta 153.7, 147.4, 140.4, 135.9, 133.9, 130.9, 130.5, 129.1, 128.7, 128.5, 127.9, 126.8, 126.7, 123.5, 122.1\).

\textbf{1p:}

Aniline (2.05 cm3, 22.5 mmol), pivalonitrile (2.49 cm3, 22.5 mmol) and AlCl\textsubscript{3} (3.00 g, 22.5 mmol) were combined and heated to 130 °C. After 1 hour, the molten mixture was poured into a 12.5 % aqueous NaOH (50 cm3) and ice (50 g) mixture, and allowed to stir for 15 minutes. The suspension was extracted into DCM (3 x 50 cm3), dried over MgSO\textsubscript{4}, filtered, and evaporated to dryness. The crude residue was recrystallised from DCM and hexanes at -20 °C. The colourless needles were collected by filtration, washed with cold hexanes and dried in vacuo to give 1p (1.63 g, 9.3 mmol, 41%). 1H NMR (400 MHz, DCM, 25.0 °C): \(\delta 7.28\) (t, \(J = 7.6, 8.0\) Hz, 2H), 6.97 (t, \(J = 7.4\) Hz, 1H), 6.77 (d, \(J = 7.4\) Hz, 2H), 4.38 (bs, 2H), 1.26 (s, 9H). 13C{1H} NMR (100.5 MHz, DCM, 25.0 °C): \(\delta 164.1, 150.9, 129.5, 122.3, 121.4, 36.9, 28.4\).

Analytical data in accordance with the literature.13

\textbf{1t:}

\begin{align*}
\text{N} & \text{N} \\
\text{NH} & \text{NH}_2
\end{align*}
Colourless needles, 85% yield. 1H NMR (400 MHz, DCM, 18.0 °C): δ 7.84 (bs, 2H), 7.50-7.41 (m, 3H), 7.30 (d, J = 8.1 Hz, 2H), 6.87 (d, J = 8.1 Hz, 2H), 4.96 (bs, 2H). 13C(1H) NMR (100.5 MHz, DCM, 19.6 °C): δ 154.8, 148.9, 135.7, 130.7, 129.6, 128.5, 127.8, 126.8, 123.8.

Analytical data in accordance with the literature.14

2.2. Synthesis of 1,2,4-Benzothiadiazine 1-Chlorides

The S(IV) heterocycles were prepared by treatment of the corresponding N-arylamidine in neat, excess thionyl chloride at reflux. The synthesis of 2a is given as exemplar. Single crystals suitable for X-ray diffraction studies were grown via slow diffusion of n-hexane into a saturated solution of the product in SOCl$_2$, or by slow cooling of saturated SOCl$_2$ solutions. NMR spectra were recorded in SOCl$_2$ and arbitrarily referenced to residual DMSO-d_5 in the insert capillary (fixed at 2.50 ppm).

2a:

^{1}H NMR (400 MHz, SOCl$_2$, 19.4 °C): δ 8.46 (d, J = 7.3 Hz, 2H), 7.92 (s, 1H), 7.52 (m, 3H).

^{13}C(1H) NMR (100.5 MHz, SOCl$_2$, 18.7 °C): δ 158.3, 140.4, 139.5, 135.3, 134.6, 132.9, 132.6, 129.2, 128.7, 122.1, 116.5.

Synthesis from 1t gave the same product in slightly reduced yield (37%) as confirmed by NMR.

2b:

Orange crystalline solid, 61% yield. Anal. Calc. for C$_{14}$H$_8$Cl$_4$N$_2$S: C, 44.5; H, 2.1; N, 7.4. Found: C, 44.3; H, 2.1; N, 7.5. 1H NMR (400 MHz, SOCl$_2$, 18.4 °C): δ 8.43 (d, J = 7.1 Hz, 2H), 8.01 (s, 1H), 7.53 (m, 3H), 5.36 (s, 2H). 13C(1H) NMR (100.5 MHz, SOCl$_2$, 18.6 °C): δ 141.7, 141.4, 136.6, 135.6, 132.7, 132.6, 129.0, 128.8, 124.3, 116.3, 37.2.
2c:

Orange crystalline solid, 76% yield. Anal. Calc. for C₁₅H₁₀Cl₄N₂S: C, 45.9; H, 2.6; N, 7.1. Found: C, 45.8; H, 2.4; N, 7.2. ¹H NMR (400 MHz, SOCl₂, 19.6 °C): δ 8.44 (d, J = 8.2 Hz, 2H), 7.97 (s, 1H), 7.52 (m, 3H), 5.38 (s, 2H), 4.96 (s, 2H). ¹³C{¹H} NMR (100.5 MHz, SOCl₂, 19.6 °C): δ 157.5, 142.4, 141.3, 137.9, 135.6, 134.0, 132.6, 129.0, 128.7, 124.4, 118.1, 38.6, 35.2.

Although this compound appears clean by NMR spectroscopy, SCXRD analysis shows a small (< 4%) disordered component of 2c' in which the benzo-fused ring is fully chlorinated in the lattice.

2d:

Pale yellow crystalline solid, 31% yield. Anal. Calc. for C₁₅H₁₀Cl₄N₂S: C, 45.9; H, 2.6; N, 7.1. Found: C, 45.7; H, 2.6; N, 7.2. ¹H NMR (400 MHz, SOCl₂, 16.6 °C): δ 8.44 (d, J = 7.3 Hz, 2H), 7.52 (m, 3H), 5.37 (s, 2H), 2.85 (s, 3H). ¹³C{¹H} NMR (100.5 MHz, SOCl₂, 19.1 °C): δ 157.5, 141.8, 141.6, 135.5, 133.9, 133.5, 133.0, 132.7, 129.0, 128.8, 116.8, 37.7, 16.7.

2e:

Orange fibrous solid, 40% yield. Anal. Calc. for C₁₅H₁₀Cl₄N₂S: C, 45.9; H, 2.6; N, 7.1. Found: C, 45.8; H, 2.4; N, 7.3. ¹H NMR (400 MHz, SOCl₂, 17.7 °C): δ 8.49 (d, J = 7.3 Hz, 2H), 7.55 (m, 3H), 5.07 (s, 2H), 2.81 (s, 3H). ¹³C{¹H} NMR (100.5 MHz, SOCl₂, 18.7 °C): δ 157.6, 140.6, 139.6, 135.2, 134.3, 133.4, 132.8, 130.7, 129.1, 128.8, 119.0, 41.3, 16.0.
2f:

Red crystalline solid, 46% yield. Anal. Calc. for C_{14}H_{8}Cl_{4}N_{2}OS: C, 42.7; H, 2.0; N, 7.1. Found: C, 42.5; H, 1.9; N, 7.2. \(^1\)H NMR (400 MHz, SOCl₂, 18.5 °C): \(\delta\) 8.47 (d, \(J = 8.0\) Hz, 2H), 7.52 (m, 3H), 4.24 (s, 3H). \(^{13}\)C\{\(^1\)H\} NMR (100.5 MHz, SOCl₂, 18.3 °C): \(\delta\) 159.1, 149.3, 140.6, 140.4, 135.4, 132.8, 129.2, 128.7, 124.7, 112.5, 62.4.

2g:

Pale orange crystalline solid, 46% yield. Anal. Calc. for C_{14}H_{8}Cl_{4}N_{2}S: C, 44.5; H, 2.1; N, 7.4. Found: C, 44.4; H, 2.1; N, 7.5. \(^1\)H NMR (400 MHz, SOCl₂, 18.4 °C): \(\delta\) 8.02 (d, \(J = 7.3\) Hz, 1H), 7.95 (s, 1H), 7.43 (t, \(J = 6.4, 7.3\) Hz, 1H), 7.33 (t, \(J = 6.0, 7.3\) Hz, 2H), 2.76 (s, 3H). \(^{13}\)C\{\(^1\)H\} NMR (100.5 MHz, SOCl₂, 18.9 °C): \(\delta\) 160.3, 139.6, 139.4, 135.2, 134.3, 132.8, 132.0, 131.6, 131.5, 126.1, 122.1, 116.1, 22.4.

2h:

Turmeric-coloured crystalline solid, 53% yield. Anal. Calc. for C_{16}H_{12}Cl_{4}N_{2}S: C, 47.3; H, 3.0; N, 6.9. Found: C, 47.2; H, 2.9; N, 6.7. \(^1\)H NMR (400 MHz, SOCl₂, 18.5 °C): \(\delta\) 8.00 (s, 1H), 7.96 (d, \(J = 7.8\) Hz, 1H), 7.41 (t, \(J = 7.3, 7.6\) Hz, 1H), 7.33 (t, \(J = 6.0, 7.3\) Hz, 2H), 5.32 (s, 2H), 4.98 (s, 2H), 2.71 (s, 3H). \(^{13}\)C\{\(^1\)H\} NMR (100.5 MHz, SOCl₂, 19.2 °C): \(\delta\) 159.9, 142.5, 140.9, 138.8, 138.0, 136.0, 134.4, 131.8, 131.5, 131.3, 126.1, 124.5, 117.4, 38.7, 35.4, 22.0.

2i:

Dark red crystalline solid, 81% yield. Anal. Calc. for C_{14}H_{8}Cl_{4}N_{2}OS: C, 42.7; H, 2.1; N, 7.1. Found: C, 42.3; H, 2.1; N, 7.1. \(^1\)H NMR (400 MHz, SOCl₂, 18.5 °C): \(\delta\) 8.44 (d, \(J = 8.6\) Hz, 2H), 7.92 (s, 1H), 7.01 (d, \(J = 8.6\) Hz, 2H), 3.88 (s, 3H). \(^{13}\)C\{\(^1\)H\} NMR (100.5 MHz, SOCl₂, 19.2 °C): \(\delta\) 163.5, 158.1, 140.6, 139.4, 134.2, 131.8, 131.3, 127.8, 122.1, 116.6, 114.1, 55.3.

2j:
To avoid concomitant formation of \(2q\), the time at reflux time must be reduced to 12 hours. Red crystalline solid, 63% yield. Anal. Calc. for C\(_{16}\)H\(_{12}\)Cl\(_4\)N\(_2\)OS: C, 45.5; H, 2.9; N, 6.6. Found: C, 45.4; H, 2.8; N, 6.8. \(^1\)H NMR (400 MHz, SOCl\(_2\), 18.0 °C): \(\delta\) 8.42 (d, \(J = 8.8\) Hz, 2H), 7.97 (s, 1H), 7.02 (d, \(J = 8.8\) Hz, 2H), 5.39 (s, 2H), 4.97 (s, 2H), 3.88 (s, 3H). \(^{13}\)C\(({^1}\)H\}) NMR (100.5 MHz, SOCl\(_2\), 19.0 °C): \(\delta\) 163.4, 157.4, 142.4, 141.5, 137.6, 133.5, 131.2, 128.1, 124.5, 118.3, 114.2, 55.4, 38.7, 35.4.

Synthesis of 3:2 1,5,7-trichloro-3-(\(p\)-pyridinium)-benzo-1,2,4-thiadiazine chloride, 2k', and 1,5,6,7-tetrachloro-3-(\(p\)-pyridinium)-benzo-1,2,4-thiadiazine chloride, 2k'':

Yellow solid, 72 % yield based on 3:2 ratio of 2k': 2k'' species, assuming chloride salt formation. The solid was near insoluble even in hot SOCl\(_2\), and only \(^1\)H NMR data could be obtained, which nevertheless permitted unambiguous assignment of the products, consistent with the SCXRD data for 3k. 2k' \(^1\)H NMR (400 MHz, SOCl\(_2\), 19.1 °C) \(\delta\): 8.88 (bs, 2H), 8.73 (bs, 2H), 7.99 (bs, 1H), 7.82 (bs 1H). 2k'' \(^1\)H NMR (400 MHz, SOCl\(_2\), 19.1 °C) \(\delta\): 8.88 (bs, 2H), 8.73 (bs, 2H), 7.96 (bs, 1H).

\(2l.H[\text{HCl}_2]\):

Yellow crystalline solid, 87% yield. Elemental analysis results are between those expected for \([2l.H]\text{Cl}\) and \([2l.H][\text{HCl}_2]\) salts even after recrystallisation; this is likely due to the tendency of the \([\text{HCl}_2]\) anion to lose HCl although the concomitant formation of the Cl\(^-\) and [HCl\(_2\)]\(^-\) cannot be ruled out. Anal. Calc. for C\(_{14}\)H\(_{11}\)Cl\(_6\)N\(_3\)S: C, 36.1, H, 2.38, N, 9.02. Anal. Calc. for C\(_{14}\)H\(_{10}\)Cl\(_5\)N\(_3\)S: C, 39.2, H, 2.35, N, 9.78. Found: C, 37.3, H, 2.10, N, 9.14. \(^1\)H NMR (400 MHz, SOCl\(_2\), 18.1 °C): \(\delta\) 8.82 (dd, \(J = 5.3, 33.2\) Hz, 4H), 8.03 (s, 1H), 5.33 (s, 2H), 4.96 (s, 2H).

\(^{13}\)C\(({^1}\)H\}) NMR (100.5 MHz, SOCl\(_2\), 19.0 °C): \(\delta\) 152.2, 151.7, 143.0, 141.1, 139.8, 138.3, 136.8, 125.4, 124.8, 116.3, 38.4, 35.1.

Attempted Synthesis of 2p

Reaction of 1p under standard conditions gave a low yield of pale peach solid (37% assuming complete conversion to desired product). Attempted recrystallisation of this from boiling SOCl\(_2\) was not successful in obtaining a single product, though a very low quality crystal did afford a connectivity map for \(1p.H\text{Cl}\) below, indicating that ortho-chlorination is rapid for this species.

The \(^1\)H NMR of the crystals remained a mixture with broad peaks commensurate with \(1p.H\text{Cl}\) as the major product but with 40% of the remaining aromatic integrals corresponding to other
species; no 1p remained. The \(^1\)H NMR is reported here for reference, but as this is a mixture, these data should be regarded as indicative only.

\(^1\)H NMR (400 MHz, SOCl\(_2\), 25.0 °C): \(\delta\) 8.39 (bs, 1H), 7.60 (bs, 2H), 1.51 (bs, 9H).

NMR parameters for 1,7-dichloro-5,6-bis(chloromethyl)-3-(3-chloro-4-methoxyphenyl)benzo-1,2,4-thiadiazine, 2q:

![Structural diagram]

Formed concomitantly with 2j on prolonged heating in SOCl\(_2\). \(^1\)H NMR (400 MHz, SOCl\(_2\), 18.7 °C): \(\delta\): 8.45 (s, 1H), 8.36 (m, 1H), 7.97 (s, 1H), 7.08 (d, \(J = 8.7\) Hz, 1H), 5.39 (s, 2H), 4.98 (s, 2H), 3.96 (s, 3H). \(^{13}\)C\{\(^1\)H\} NMR (100.5 MHz, SOCl\(_2\), 18.3 °C): \(\delta\): 158.8, 156.7, 142.8, 138.0, 133.9, 131.1, 129.9, 129.4, 124.9, 123.2, 118.4, 112.3, 56.6, 39.1, 35.7.

2.3. Synthesis of 1,2,4-Benzothiadiazinyl Radicals

The 1,2,4-benzothiadiazinyl radicals 3a-j were prepared by treating the S(IV) 1-chlorides with Ph\(_3\)P in MeCN. The synthesis of 3a is given as exemplar. Although deeply coloured solids that appeared to be homogenous were obtained in all cases, samples pure by combustion analysis could only be isolated for 3c, 3d and 3e. It is unknown if this is due to true sample impurity or degradation of these highly sensitive materials; reported yields are therefore indicative only.

3a:

2a (0.40 g, 1.1 mmol) was suspended in MeCN (5 cm\(^3\)), degassed with three freeze-pump-thaw cycles, and backfilled with argon. A solution of Ph\(_3\)P (0.15 g, 0.6 mmol) in degassed MeCN (5 cm\(^3\)) was added resulting in an immediate darkening of colour. After 5 minutes of rapid stirring, the supernatant was removed via filter cannula and the dark purple solids were washed with MeCN (5 cm\(^3\)) and dried *in vacuo* to give 3a (0.25 g, 0.8 mmol, 69%).

3b:

Dark blue powder, 51% yield.

3c:
Dark purple powder, 72% yield. Anal. Calc. for C_{15}H_{10}Cl_{3}N_{2}S: C, 50.5; H, 2.8; N, 7.9. Found: C, 50.4; H, 2.7; N, 8.0

![Chemical structure 3d](image)

3d: Dark purple powder, 60% yield. Anal. Calc. for C_{15}H_{10}Cl_{3}N_{2}S: C, 50.5; H, 2.8; N, 7.9. Found: C, 50.5; H, 2.9; N, 8.0.

![Chemical structure 3e](image)

3e: Dark purple powder, 68% yield. Anal. Calc. for C_{15}H_{10}Cl_{3}N_{2}S: C, 50.5; H, 2.8; N, 7.9. Found: C, 50.3; H, 2.7; N, 7.9.

![Chemical structure 3f](image)

3f: Dark purple/green powder, 58% yield.

![Chemical structure 3g](image)

3g: Dark green powder, 64% yield.
3h: Dark purple powder, 57% yield.

3i: Dark blue powder, 49% yield.

3j: Dark blue powder, 68% yield.

3k:

\[
\text{SNCl} \quad \text{X} = 4:1 \text{ H, Cl}
\]

Attempts to recrystallise crude \(2k\) (50 mg, 0.13 mmol) from hot pyridine (1 cm\(^3\)) gave rapid discolouration to a murky, dark solution. On storage at -20 °C, a few dark purple, low quality crystals suitable for SCXRD were isolated.

2.4. Test Synthesis of 1,2,4-Benzothiadiazinyl Cation

Halide abstraction was achieved by treating the 1,2,4-benzothiadiazine 1-chloride \(2a\) with \(\text{GaCl}_3\) in DCM.

\[
\begin{array}{c}
\text{Cl} \quad \text{Cl} \\
\text{Cl} \quad \text{N} \\
\text{Cl} \quad \text{S} \\
\text{Cl} \quad \text{N} \\
\text{Cl}
\end{array}
\quad \text{GaCl}_3
\quad \text{DCM}
\quad 25 \degree \text{C}
\]

\[
\begin{array}{c}
\text{Cl} \quad \text{Cl} \\
\text{Cl} \quad \text{N} \\
\text{Cl} \quad \text{S}^+ \\
\text{Cl} \quad \text{N} \\
\text{Cl}
\end{array}
\quad \text{[4a][GaCl}_4]^{-}
\]
2a (30 mg, 0.08 mmol) was suspended in DCM (5 cm³) and GaCl₃ (14.5 mg, 0.08 mmol) added, giving a dark purple solution. After 5 minutes of stirring, the reaction mixture was filtered to remove undissolved material, and the filtrate was layered with “hexane (10 cm³). After 1 week, dark purple crystals of [4a][GaCl₄] were isolated by filtration, washed with “hexane (2 x 2.5 cm³), and dried in vacuo (27 mg, 0.05 mmol, 63% yield). ¹H NMR (400 MHz, DCM, 25.0 °C): δ 8.92 (s, 1H), 8.70 (d, J = 7.4 Hz, 2H), 7.84 (t, J = 7.4, 7.6 Hz, 1H), 7.73 (t, J = 7.4, 7.6 Hz, 2H). ¹³C{¹H} NMR (100.6 MHz, DCM, 25.0 °C): δ 166.4, 150.7, 148.7, 148.6, 145.0, 140.4, 135.8, 130.1, 129.8, 122.2. The compound was unstable in solution and in the solid state, and satisfactory elemental analysis could not be obtained.

3. Single-Crystal X-Ray Diffraction Data
Single crystal X-ray diffraction data were recorded on either an Agilent SuperNova Dual diffractometer or a Nonius Kappa CCD diffractometer, with Mo-Kα (λ = 0.71073 Å) or Cu-Kα (λ = 1.54184 Å) radiation. Single crystals were mounted on nylon cryloops or MiTeGen microloops. Unit cell determination, data reduction and absorption corrections were performed using CrysAlisPro 38.41. Using the Olex2 GUI, the structures were solved with the SHELXT structure solution program via intrinsic phasing and refined with the SHELXL refinement package using least squares minimisation. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were included using a riding model unless otherwise stated. Crystal structure images were made using Mercury with thermal ellipsoids shown at 50% probability.

Supplementary crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CDCC) under the deposition numbers: 2101061; 2101062; 2101063; 2101064; 2101065; 2101066; 2101067; 2101068; 2101069; 2101070; 2101071; 2101072; 2101073; 2101074; 2101075; 2101076; 2101077; 2101078.

3.1. Crystallographic Data and Unit Cell Parameters

Figure S1 Crystal structure of 2a - Front view.
Compound	2b
Empirical formula	C_{14}H_{8}Cl_{4}N_{2}S
Formula weight	378.08
Temperature/K	150.00(10)
Crystal system	triclinic
Space group	P1
a/Å	8.9856(5)
b/Å	9.2182(3)
c/Å	9.3740(6)
α/°	103.868(4)
β/°	94.530(7)
γ/°	95.061(4)
Volume/Å³	2857.0(3)
Z	8
ρ_{calc} g/cm³	1.693
μ/mm⁻¹	0.962
F(000)	1456.0
Crystal size/mm³	0.28 × 0.28 × 0.18
Radiation	MoKα (λ = 0.71073)
2θ range for data collection/°	5.62 to 50.06
Index ranges	-17 ≤ h ≤ 17, -16 ≤ k ≤ 16, -19 ≤ l ≤ 19
Reflections collected	26565
Independent reflections	5023 [R_{int} = 0.0674]
Data/restraints/parameters	5023/0/361
Goodness-of-fit on F²	1.029
Final R indexes [I>=2σ (I)]	R_{I} = 0.0484, wR_{I} = 0.098
Final R indexes [all data]	R_{I} = 0.0866, wR_{I} = 0.1119
Largest diff. peak/hole / e Å⁻³	0.65/-0.33

Flack parameter

Figure S2 Crystal structure of 2a - Side view.
2b:

Parameter	Value
Volume/Å³	746.84(7)
Z	2
ρcalc/g/cm³	1.681
μ/mm⁻¹	8.456
F(000)	380
Crystal size/mm³	0.239 × 0.125 × 0.119
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection	9.772 to 130.764
Index ranges	-10 ≤ h ≤ 9, -10 ≤ k ≤ 10, -11 ≤ l ≤ 10
Reflections collected	7792
Independent reflections	2562 [Rint = 0.0194, Rsigma = 0.0186]
Data/restraints/parameters	2562/0/190
Goodness-of-fit on F²	1.066
Final R indexes [I>=2σ (I)]	R₁ = 0.0267, wR² = 0.0724
Final R indexes [all data]	R₁ = 0.0275, wR² = 0.0730
Largest diff. peak/hole / e Å⁻³	0.38/-0.34
Flack parameter	

Figure S3 - Crystal structure of **2b** - Front view.

Figure S4 - Crystal structure of **2b** - Side view.
2c:

![Figure S5 - Crystal structure of 2c - Front view.](image1)

Figure S5 - Crystal structure of 2c - Front view.

![Figure S6 - Crystal structure of 2c - Side view.](image2)

Figure S6 - Crystal structure of 2c - Side view.

Compound	2c
Empirical formula	C_{15}H_{9.97}Cl_{4.03}N_{2}S
Formula weight	393.31
Temperature/K	100.0(5)
Crystal system	triclinic
Space group	P̅1
a/Å	7.3043(3)
b/Å	9.0923(3)
c/Å	12.6109(5)
α/°	80.349(3)
β/°	86.679(3)
γ/°	72.338(3)
Volume/Å³	786.73(5)
Z	2
ρ_{calc} g/cm³	1.66
μ/mm⁻¹	8.097
F(000)	397
Crystal size/mm³	0.267 × 0.168 × 0.053
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	7.11 to 137.166
Index ranges	-8 ≤ h ≤ 8, -10 ≤ k ≤ 10, -15 ≤ l ≤ 15
Reflections collected	15042
Independent reflections	2891 [R(int) = 0.0370, R(sigma) = 0.0213]
Data/restraints/parameters	2891/0/212
Goodness-of-fit on F²	1.028
Final R indexes [I>=2σ (I)]	R₁ = 0.0360, wR₂ = 0.0943
Final R indexes [all data]	R₁ = 0.0368, wR₂ = 0.0950
Largest diff. peak/hole / e Å⁻³	1.29/-0.49
Flack parameter	}
2d-α:

![Crystal structure of 2d-α](image)

Figure S7 - Crystal structure of 2d-α - Front view.

![Crystal structure of 2d-α](image)

Figure S8 - Crystal structure of 2d-α - Side view.

Compound

Property	Value
Empirical formula	C_{15}H_{10}Cl_{4}N_{2}S
Formula weight	392.11
Temperature/K	100.0(5)
Crystal system	monoclinic
Space group	P2_1/c
a/Å	7.38990(10)
b/Å	10.5325(2)
c/Å	20.5855(4)
α/°	90
β/°	96.598(2)
γ/°	90
Volume/Å³	1591.64(5)
Z	4
ρ_{calc}/g/cm³	1.636
μ/mm⁻¹	7.949
F(000)	792
Crystal size/mm³	0.377 × 0.042 × 0.038
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	8.648 to 146.978
Index ranges	-9 ≤ h ≤ 6, -13 ≤ k ≤ 13, -25 ≤ l ≤ 25
Reflections collected	19045
Independent reflections	3201 [R_{int} = 0.0386, R_{sigma} = 0.0244]
Data/restraints/parameters	3201/0/200
Goodness-of-fit on F²	1.057
Final R indexes [I>2σ (I)]	R₁ = 0.0456, wR₂ = 0.1183
Final R indexes [all data]	R₁ = 0.0475, wR₂ = 0.1198
Largest diff. peak/hole / e Å⁻³	1.26/-0.51
Flack parameter	1.26/-0.51
2d-β:

Figure S9 - Crystal structure of 2d-β - Front view.

Figure S10 - Crystal structure of 2d-β - Side view.

Compound	2d-β
Empirical formula	$C_{15}H_{10}Cl_4N_2S$
Formula weight	392.11
Temperature/K	180(2)
Crystal system	Monoclinic
Space group	$P2_1/n$
a/Å	9.1703(4)
b/Å	13.7683(7)
c/Å	12.5807(6)
α°	90
β°	96.799(3)
γ°	90
Volume/Å3	1577.26(13)
Z	4
ρ_{calc}/g/cm3	1.651
μ/mm$^{-1}$	0.878
F(000)	792
Crystal size/mm3	0.42 x 0.23 x 0.23
Radiation	MoKα ($\lambda=0.71073$)
2θ range for data collection/°	2.61 to 25.03
Index ranges	-10 ≤ h ≤ 10, -15 ≤ k ≤ 16, -14 ≤ l ≤ 14
Reflections collected	11297
Independent reflections	2778 [Rint = 0.1127]
Data/restraints/parameters	2778/0/200
Goodness-of-fit on F^2	1.036
Final R indexes [I>=2σ (I)]	$R_1 = 0.0738$, $wR_2 = 0.2026$
Final R indexes [all data]	$R_1 = 0.1020$, $wR_2 = 0.2238$
Largest diff. peak/hole / e Å$^{-3}$	1.450/-0.668
Flack parameter	
2f:

Compound	2f
Empirical formula	C_{14}H_{8}Cl_{4}N_{2}O_{S}
Formula weight	394.08
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P̅1
a/Å	7.10603(16)
b/Å	7.22142(17)
c/Å	15.6955(4)
α/°	83.2406(19)
β/°	78.4301(19)
γ/°	71.106(2)
Volume/Å³	745.33(3)
Z	2
ρ(calc) g/cm³	1.756
μ/mm⁻¹	8.544
F(000)	396
Crystal size/mm³	0.367 × 0.197 × 0.115
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	5.756 to 142.51
Index ranges	-8 ≤ h ≤ 8, -8 ≤ k ≤ 8, -19 ≤ l ≤ 19
Reflections collected	14538
Independent reflections	2893 [R(int) = 0.0297, R(sigma) = 0.0191]
Data/restraints/parameters	2893/0/230
Goodness-of-fit on F²	1.055
Final R indexes [I>=2σ(I)]	R₁ = 0.0269, wR₂ = 0.0769
Final R indexes [all data]	R₁ = 0.0277, wR₂ = 0.0778
Largest diff. peak/hole / e Å⁻³	0.36/-0.33
Flack parameter	

Figure S11 - Crystal structure of 2f - Front view. Only one orientation of the OMe group is shown for clarity.

Figure S12 - Crystal structure of 2f - Side view. Only one orientation of the OMe group is shown for clarity.
2g:

Compound	2g
Empirical formula	C_{28}H_{16}Cl_{8}N_{4}S_{2}
Formula weight	756.17
Temperature/K	100.0(6)
Crystal system	monoclinic
Space group	P2_1
a/Å	9.0246(3)
b/Å	13.7857(5)
c/Å	12.0756(4)
α/°	90
β/°	98.513(3)
γ/°	90
Volume/Å³	1485.78(9)
Z	2
ρcalc/g/cm³	1.69
μ/mm⁻¹	8.491
F(000)	760
Crystal size/mm³	0.216 × 0.077 × 0.048
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	7.402 to 142.134
Index ranges	-11 ≤ h ≤ 11, -15 ≤ k ≤ 16, -14 ≤ l ≤ 14
Reflections collected	54843
Independent reflections	5617 [Rw = 0.0805, Rsigma = 0.0293]
Data/restraints/parameters	5617/1/381
Goodness-of-fit on F²	1.093
Final R indexes [I>=2σ (I)]	R₁ = 0.0766, wR₂ = 0.2049
Final R indexes [all data]	R₁ = 0.0769, wR₂ = 0.2058
Largest diff. peak/hole / e Å⁻³	1.10/-0.69
Flack parameter	0.06(3)

Figure S13 - Crystal structure of 2g - Front view. Only one molecule in the asymmetric unit is shown for clarity.

Figure S14 - Crystal structure of 2g - Side view. Only one molecule in the asymmetric unit is shown for clarity.
2h:

Compound	2h
Empirical formula	C_{16}H_{12}Cl_{4}N_{2}S
Formula weight	406.14
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	Pbc a
a/Å	14.2979(4)
b/Å	14.0607(3)
c/Å	16.3174(4)
α/°	90
β/°	90
γ/°	90
Volume/Å^3	3280.41(15)
Z	8
ρ_{calc} g/cm^3	1.645
μ/mm⁻¹	7.736
F(000)	1648
Crystal size/mm³	0.424 × 0.235 × 0.177
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	10.356 to 142.54
Index ranges	-17 ≤ h ≤ 17, -13 ≤ k ≤ 17, -20 ≤ l ≤ 20
Reflections collected	63211
Independent reflections	3183 [R_{int} = 0.0724, R_{aggr} = 0.0183]
Data/restraints/parameters	3183/0/237
Goodness-of-fit on F²	1.108
Final R indexes [I>=2σ (I)]	R₁ = 0.0399, wR₂ = 0.0977
Final R indexes [all data]	R₁ = 0.0400, wR₂ = 0.0977
Largest diff. peak/hole / e Å⁻³	1.00/-0.47
Flack parameter	

Figure S15 - Crystal structure of 2h - Front view.

Figure S16 - Crystal structure of 2h - Side view.
2i:

![Crystal structure of 2i - Front view.](image1)

Figure S17 - Crystal structure of 2i - Front view.

![Crystal structure of 2i - Side view.](image2)

Figure S18 - Crystal structure of 2i - Side view.

Compound	2i
Empirical formula	C_{14}H_{8}Cl_{4}N_{2}O_{2}
Formula weight	394.08
Temperature/K	100.0(5)
Crystal system	triclinic
Space group	P\(\bar{1}\)
\(a/\text{Å}\)	7.0073(5)
\(b/\text{Å}\)	9.6628(6)
\(c/\text{Å}\)	12.0172(7)
\(\alpha/°\)	95.257(5)
\(\beta/°\)	106.738(6)
\(\gamma/°\)	101.231(6)
Volume/Å³	754.78(9)
\(Z\)	2
\(\rho_{\text{calc}}/\text{g/cm}³\)	1.734
\(\mu/\text{mm}⁻¹\)	8.438
\(F(000)\)	396
Crystal size/Å³	0.222 × 0.040 × 0.035
Radiation	CuK\(\alpha\) (\(\lambda = 1.54184\))
2\(\theta\) range for data collection/°	7.78 to 144.244
Index ranges	\(-8 \leq h \leq 7, -11 \leq k \leq 10, -14 \leq l \leq 14\)
Reflections collected	11718
Independent reflections	2964 [\(R_{\text{int}} = 0.0508, R_{\text{sigma}} = 0.0319\)]
Data/restraints/parameters	2964/0/200
Goodness-of-fit on \(F\)²	1.028
Final R indexes [\(I \geq 2\sigma(I)\)]	\(R_1 = 0.0387, wR_2 = 0.1048\)
Final R indexes [all data]	\(R_1 = 0.0408, wR_2 = 0.1073\)
Largest diff. peak/hole / e Å⁻³	0.64/-0.39
Flack parameter	
2j:

![Crystal structure of 2j - Front view.](image1)

Figure S19 - Crystal structure of 2j - Front view.

![Crystal structure of 2j - Side view.](image2)

Figure S20 - Crystal structure of 2j - Side view.

Compound	2j
Empirical formula	C_{16}H_{12}Cl_{4}N_{2}O_{5}
Formula weight	422.14
Temperature/K	99.9(6)
Crystal system	triclinic
Space group	P1
a/Å	7.4264(7)
b/Å	11.9574(11)
c/Å	11.9660(9)
α/°	115.075(9)
β/°	91.228(8)
γ/°	95.201(8)
Volume/Å³	956.37(16)
Z	2
ρ.calc	1.466
μ/mm⁻¹	6.697
F(000)	428
Crystal size/mm³	0.415 x 0.042 x 0.028
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	8.176 to 134.15
Index ranges	-6 ≤ h ≤ 8, -14 ≤ k ≤ 13, -14 ≤ l ≤ 14
Reflections collected	6147
Independent reflections	3403 [R(int) = 0.0440, Rsigma = 0.0492]
Data/restraints/parameters	3403/0/218
Goodness-of-fit on F²	1.056
Final R indexes [I>2σ (I)]	R₁ = 0.0546, wR₂ = 0.1486
Final R indexes [all data]	R₁ = 0.0611, wR₂ = 0.1565
Largest diff. peak/hole / e Å⁻³	0.81/-0.84
Flack parameter	
2l.H[\text{HCl}_2]:

![Crystal structure of 2l.H[\text{HCl}_2] - Front view. Anion omitted for clarity.](image)

Figure S21 - Crystal structure of 2l.H[\text{HCl}_2] - Front view. Anion omitted for clarity.

![Crystal structure of 2l.H[\text{HCl}_2] - Side view. Anion omitted for clarity.](image)

Figure S22 - Crystal structure of 2l.H[\text{HCl}_2] - Side view. Anion omitted for clarity.
2r:

Empirical formula

Compound	2r
Empirical formula	C₁₆H₁₀.₄₂Cl₅.₅₈N₂OS
Formula weight	476.64
Temperature/K	100.00(13)
Crystal system	monoclinic
Space group	P2₁/n
a/Å	6.5698(7)
b/Å	16.562(2)
c/Å	16.941(3)
α/°	90
β/°	93.510(12)
γ/°	90
Volume/Å³	1839.8(5)
Z	4
ρ calc g/cm³	1.721
μ/mm⁻¹	9.11
F(000)	957
Crystal size/mm³	0.056 × 0.028 × 0.018
Radiation	CuKα (λ = 1.54184)
2θ range for data collection/°	7.472 to 136.154
Index ranges	-4 ≤ h ≤ 7, -19 ≤ k ≤ 19, -20 ≤ l ≤ 19
Reflections collected	6606
Independent reflections	3350 [R_w = 0.0626, R_{wmax} = 0.0882]
Data/restraints/parameters	3350/0/241
Goodness-of-fit on F²	1.145
Final R indexes [I>=2σ (I)]	R₁ = 0.1055, wR₂ = 0.2644
Final R indexes [all data]	R₁ = 0.1319, wR₂ = 0.2818
Largest diff. peak/hole / e Å⁻³	0.77/-0.96
Flack parameter	0.77/-0.96

Figure S23 - Crystal structure of 2r - Front view. Shown in partial chlorination ortho to the OMe group.

Figure S24 - Crystal structure of 2r - Side view. Shown with partial chlorination ortho to the OMe group.
2s:

Compound	2s
Empirical formula	$C_{15}H_{9.88}Cl_{4.12}N_2S$
Formula weight	396.33
Temperature/K	100.0(6)
Crystal system	monoclinic
Space group	$P2_1/n$
$a/$Å	7.8074(3)
$b/$Å	15.8724(4)
$c/$Å	13.5003(4)
α°	90
β°	105.795(3)
γ°	90
Volume/Å3	1609.82(9)
Z	4
ρ/g/cm3	1.635
μ/mm$^{-1}$	8.049
$F(000)$	800
Crystal size/mm3	$0.315 \times 0.066 \times 0.03$
Radiation	CuKα ($\lambda = 1.54184$)
2Θ range for data collection"	8.796 to 135.814
Index ranges	$-9 \leq h \leq 9, -19 \leq k \leq 19, -16 \leq l \leq 16$
Reflections collected	22798
Independent reflections	2931 [R(int) = 0.0463, R(sigma) = 0.0202]
Data/restraints/parameters	2931/0/210
Goodness-of-fit on F^2	1.318
Final R indexes [$I>2\sigma(I)$]	$R_1 = 0.0744, wR_2 = 0.1732$
Final R indexes [all data]	$R_1 = 0.0748, wR_2 = 0.1733$
Largest diff. peak/hole / e Å$^{-3}$	1.16/-0.73

Figure S25 - Crystal structure of 2s - Front view. Shown with partial chlorination at C6.

Figure S26 - Crystal structure of 2s - Side view. Shown with partial chlorination at C6.
3a:

Empirical formula

\[\text{C}_{13.5}\text{H}_{7}\text{Cl}_{4}\text{N}_{2}\text{S} \]

Formula weight

371.07

Temperature/K

100.0(7)

Crystal system

orthorhombic

Space group

\(\text{Pbcn} \)

\[a/\text{Å} = 16.7712(3) \]

\[b/\text{Å} = 13.1359(2) \]

\[c/\text{Å} = 13.0495(2) \]

\[\alpha/° = 90 \]

\[\beta/° = 90 \]

\[\gamma/° = 90 \]

Volume/Å\(^3\)

2874.87(8)

Z

8

\(\rho_{\text{calc}} \) g/cm\(^3\)

1.715

\(\mu \text{ mm}^{-1} \)

8.764

F(000)

1488

Crystal size/mm\(^3\)

\(0.257 \times 0.084 \times 0.08 \)

Radiation

CuK\(\alpha \) (\(\lambda = 1.54184 \))

\(2\theta \) range for data collection/°

8.55 to 142.028

Index ranges

\(-20 \leq h \leq 20, -16 \leq k \leq 16, -16 \leq l \leq 12 \)

Reflections collected

72177

Independent reflections

2779 \([R_{\text{int}} = 0.0861, R_{\text{sigma}} = 0.0305]\)

Data/restraints/parameters

2779/0/186

Goodness-of-fit on \(F^2 \)

1.237

Final R indexes \([I>=2\sigma(I)]\)

\(R_1 = 0.0615, wR_2 = 0.1453 \)

Final R indexes \([\text{all data}]\)

\(R_1 = 0.0638, wR_2 = 0.1454 \)

Largest diff. peak/hole / e Å\(^3\)

1.15I-0.68

Flack parameter

Figure S27 - Crystal structure of 3a - Front view. Solvent of crystallisation (DCM) omitted for clarity.

Figure S28 - Crystal structure of 3a - Side view of radical dimerisation. Solvent of crystallisation (DCM) omitted for clarity.
3c:

![3c Crystal Structure](image)

Figure S29 - Crystal structure of 3c - Front view.

![3c Crystal Structure](image)

Figure S30 - Crystal structure of 3c - Side view of radical dimerisation.

Compound	3c
Empirical formula	C_{15}H_{10}Cl_{3}N_{2}S
Formula weight	356.66
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	P2_1/n
a/Å	11.5111(15)
b/Å	7.7055(8)
c/Å	16.9368(18)
α/°	90
β/°	104.127(12)
γ/°	90
Volume/Å³	1456.8(3)
Z	4
\(\rho_{\text{calc}}\)/g/cm³	1.626
μ/mm⁻¹	6.972
F(000)	724
Crystal size/mm²	0.132 × 0.041 × 0.028
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	8.42 to 131.946
Index ranges	-13 ≤ h ≤ 13, -9 ≤ k ≤ 8, -20 ≤ l ≤ 14
Reflections collected	7614
Independent reflections	2532 [R_{int} = 0.0574, R_{sigma} = 0.0513]
Data/restraints/parameters	2532/0/190
Goodness-of-fit on F²	1.053
Final R indexes [I≥2σ (I)]	R₁ = 0.0388, wR₂ = 0.1031
Final R indexes [all data]	R₁ = 0.0454, wR₂ = 0.1076
Largest diff. peak/hole / e Å⁻³	0.38/-0.58
Flack parameter	

S31
3e:

Empirical formula: $C_{30}H_{20}Cl_6N_4S_2$

Formula weight: 713.32

Temperature/K: 100.00(10)

Crystal system: triclinic

Space group: $P \bar{1}$

- $a/\text{Å}$: 9.9369(4)
- $b/\text{Å}$: 12.2664(4)
- $c/\text{Å}$: 13.3652(5)
- α°: 91.036(3)
- β°: 107.068(4)
- γ°: 109.355(3)

Volume/Å3: 1457.25(10)

Z: 2

ρ_{calcd}, g/cm3: 1.626

μ, mm$^{-1}$: 6.97

$F(000)$: 724

Crystal size/mm3: $0.273 \times 0.17 \times 0.048$

Radiation: CuKα ($\lambda = 1.54184$)

2Θ range for data collection/$^\circ$: 6.976 to 142.122

Index ranges: $-12 \leq h \leq 12, -14 \leq k \leq 15, -16 \leq l \leq 16$

Reflections collected: 29597

Independent reflections: 5631 [R(int) = 0.0638, R(sigma) = 0.0358]

Data/restraints/parameters: 5631/0/381

Goodness-of-fit on F^2: 1.08

Final R indexes [I>=2σ (I)]: $R_1 = 0.0679, wR_2 = 0.1871$

Final R indexes [all data]: $R_1 = 0.0708, wR_2 = 0.1907$

Largest diff. peak/hole / e Å3: 2.23/-0.49

Flack parameter: 0.05(3)

Figure S31 - Crystal structure of 3e - Front view. Only one molecule of the asymmetric unit is shown for clarity.

Figure S32 - Crystal structure of 3e - Side view of radical dimerisation.
3k:

Figure S33 - Crystal structure of 3e - Front view. Only one molecule of the asymmetric unit is shown for clarity.

Figure S34 - Crystal structure of 3k - Side view of radical dimerisation.

Compound 3k
- **Empirical formula**: $\text{C}_{13}\text{H}_8\text{N}_3\text{SCl}_2$
- **Formula weight**: 300.84
- **Temperature/K**: 99.98(10)
- **Crystal system**: monoclinic
- **Space group**: $P2_1/c$
- **Volume/Å³**: 1190.83(11)
- **Z**: 4
- **ρ_{calc}/g/cm³**: 1.725
- **μ/mm⁻¹**: 6.430
- **F(000)**: 628.0
- **Cryst size/mm³**: 0.304 × 0.079 × 0.053
- **Radiation**: CuKα ($\lambda = 1.54184$)
- **2θ range for data collection/°**: 9.502 to 152.66
- **Index ranges**: -9 ≤ h ≤ 9, -23 ≤ k ≤ 23, -11 ≤ l ≤ 11
- **Reflections collected**: 23707
- **Independent reflections**: 2489 [Rint = 0.0543, Rsigma = 0.0168]
- **Data/restraints/parameters**: 2489/8/177
- **Goodness-of-fit on F^2**: 1.095
- **Final R indexes [I>2σ (I)]**: $R_1 = 0.0467$, $wR_2 = 0.1182$
- **Final R indexes [all data]**: $R_1 = 0.0468$, $wR_2 = 0.1183$
- **Largest diff. peak/hole / e Å⁻³**: 0.91/-0.51
[4a][GaCl₄]:

Figure S35 - Crystal structure of [4a][GaCl₄] - Front view.

Figure S36 - Crystal structure of [4a][GaCl₄] - Side view.
4. EPR Spectroscopy

EPR spectra were recorded on a continuous wave X-band ADANI CMS 8400 spectrometer at ambient temperature with a spectral width of 7.5 mT and a modulation amplitude of 100 μT. EPR spectral simulation and analysis were performed using the EasySpin computational package. The 1,2,4-benzothiadiazinyl radicals 3a-j were prepared in situ by combining a solution of S(IV) 1-chloride (0.005 mmol) in toluene (100 μL) with a 50 mM solution of ferrocene in toluene (100 μL, 0.005 mmol). 50 μL of the dark blue/green solution was transferred to a sealed quartz EPR tube for analysis.

4.1. EPR Spectra of 1,2,4-Benzothiadiazinyl Radicals

![EPR Spectra of 3a](image)

Figure S37 - EPR spectra of 3a. \(g\)-value = 2.00369, line width = 0.27 MHz, \(a_{N2}\) = 15.56 MHz, \(a_{N4}\) = 13.13 MHz.
Figure S38 - EPR spectra of 3b. g-value = 2.00346, line width = 0.26 MHz, $a_{N2} = 15.64$ MHz, $a_{N4} = 13.51$ MHz.

Figure S39 - EPR spectra of 3c. g-value = 2.00341, line width = 0.31 MHz, $a_{N2} = 15.80$ MHz, $a_{N4} = 13.60$ MHz.
Figure S40 - EPR spectra of 3d. \(g \)-value = 2.00431, line width = 0.31 MHz, \(a_{N2} = 15.10 \) MHz, \(a_{N4} = 13.10 \) MHz.

Figure S41 - EPR spectra of 3e. \(g \)-value = 2.00463, line width = 0.37 MHz, \(a_{N2} = 14.69 \) MHz, \(a_{N4} = 13.30 \) MHz.
Figure S42 - EPR spectra of 3f. g-value = 2.00453, line width = 0.33 MHz, $a_{N2} = 14.56$ MHz, $a_{N4} = 13.23$ MHz.

Figure S43 - EPR spectra of 3g. g-value = 2.00461, line width = 0.27 MHz, $a_{N2} = 15.88$ MHz, $a_{N4} = 13.35$ MHz.
Figure S44 - EPR spectra of 3h. g-value = 2.00449, line width = 0.34 MHz, $a_{N2} = 15.61$ MHz, $a_{N4} = 13.71$ MHz.

Figure S45 - EPR spectra of 3i. g-value = 2.00410, line width = 0.29 MHz, $a_{N2} = 15.82$ MHz, $a_{N4} = 12.89$ MHz.
Figure S46 - EPR spectra of 3j. g-value = 2.00411, line width = 0.38 MHz, a_{N2} = 14.73 MHz, a_{N4} = 13.98 MHz.
5. Cyclic Voltammetry

Electrochemical studies were performed with a Biologic multichannel potentiostat and carried out in a three-electrode electrochemical cell consisting of a glassy carbon working electrode, a platinum wire counter-electrode, and a silver wire pseudo-reference electrode. The glassy carbon working electrode was polished prior to use with a 3 μm and 1 μm diamond suspension, followed by a 0.05 μm alumina suspension. All cyclic voltammetry studies were performed under an atmosphere of argon with 2 mM concentration of analyte unless otherwise stated, and a 50 mM concentration of [t-Bu₄N][PF₆] supporting electrolyte in 10 cm³ of anhydrous DCM. All experiments were performed at 100 mV s⁻¹ unless otherwise stated. Ferrocene was added during the final measurements as an internal reference. Cyclic voltammograms were corrected in situ for uncompensated Ohmic loss using positive feedback at the 85% level relative to the measured solution resistance prior to the experiment. Data were processed with the EC Lab software and plotted with Matlab.

5.1. Cyclic Voltammograms of 1,2,4-Benzothiadiazine 1-Chlorides

![Cyclic voltammogram of 2a.](image)

Figure S47 - Cyclic voltammogram of 2a.
Figure S48 - Cyclic voltammogram of 2b.

Figure S49 - Cyclic voltammogram of 2c.
Figure S50 - Cyclic voltammogram of 2d.

Figure S51 - Cyclic voltammogram of 2e.
Figure S52 - Cyclic voltammogram of 2f.

Figure S53 - Cyclic voltammogram of 2g.
Figure S54 - Cyclic voltammogram of 2h.

Figure S55 - Cyclic voltammogram of 2i.
5.2. Variable Concentration Studies
Variable concentration cyclic voltammetry studies were performed on 2a to qualitatively assess the radical monomer-dimer equilibrium (Figure S57).
5.3. Variable Scan Rate Studies

Variable scan rate studies on 2f were performed to gain further insight into the electrochemical behaviour of the 1,2,4-benzothiadiazine 1-chlorides. The cyclic voltammograms can be superimposed upon one another (Figure S58), although the peak-to-peak separation increases with scan-rate, suggesting that the redox chemistry for the S(III)/S(IV) couple is quasi-reversible.19 The S(II)/S(III) couple is believed to be associated with an E_{rC_i} process; a reversible electron transfer followed by an irreversible chemical reaction. For a typical E_{rC_i} mechanism, the ratio of the anodic to cathodic peak currents decreases because the reduced species (\textit{i.e.} the S(II) anion) is consumed by a subsequent chemical reaction (\textit{i.e.} comproportionation), resulting in fewer species to oxidise on the anodic scan. As the scan rate is increased, the time scale of the experiment competes with the time scale of the chemical step. This results in relatively more reduced species left for reoxidation, and for sufficiently fast scan rates, the electrochemical feature will regain reversibility. No evidence of quasi-reversibility was observed for the S(II)/S(III) couple for scan rates up to 2 V s$^{-1}$, indicating that the comproportionation reaction is extremely rapid.

\textbf{Figure S58} - Cyclic voltammograms of 2f at various scan rates.
A plot for each of the maximum and minimum peak currents against the square root of the scan rate gave a linear correlation with R^2 values close to 1. The plots for the S(III)/S(IV) dimer redox couple are shown in Figure S59. This indicates an electrochemically reversible electron transfer process involving a freely diffusing redox species according to the Randles-Sevcik equation, and confirms that the analyte is not adsorbed to the electrode surface.20

![Figure S59 - Randles-Sevcik plot for 3f.](image-url)
6. Magnetometric Studies
Magnetometric studies on 3c and 3e were performed using a Quantum Design MPMS 7 magnetometer and recorded between 2-300 K in either a 1000 Oe or 10000 Oe applied magnetic field. Samples were finely ground under inert atmosphere in a Glove Box and placed in gelatin capsules enclosed inside a pierced straw with a uniform diamagnetic background. Diamagnetic corrections were applied according to literature procedures.21 Curie-Weiss analysis provided Curie constants of 0.145 and 0.021 emu.K.Oe-1.mol-1 for 3c and 3e respectively, consistent with essentially diamagnetic species with significant residual S = ½ defects arising from grinding the samples. The Weiss constants were found to be -998 and -101 K respectively, again consistent with strong antiferromagnetic coupling. The low temperature magnetic data clearly show the antiferromagnetic transition of trace O\textsubscript{2} within the sample at 50 K.22 There is evidence for some magnetic phase change leading to increased susceptibility at 82 K and 75 K for 3c and 3e respectively; it not known if this small effect is due to trace impurity, structural phase transition, or a purely magnetic phase transition. Further study is hampered by the extreme difficulty in obtaining large samples of sufficient purity for examination, which will therefore require additional optimisation of the syntheses.

6.1 Curie-Weiss Plots

![Curie-Weiss plot](image)

Figure S60 – Curie-Weiss plot for 3c, recorded in a field of 1000 Oe.
Figure S61 – Curie-Weiss for 3e, recorded in a field of 1000 Oe.
7. Computational Chemistry
7.1. EPR and Electronic Studies

Calculations were performed using the Gaussian 16 suite of programs. Structures were optimised in the gas-phase, from single-crystal X-ray diffraction data where available, at the DFT UB3LYP/6-31g level of theory. All structures were confirmed as minima by frequency analysis and the absence of imaginary frequencies. Single-point calculations for the EPR parameters were performed at the UB3LYP/cc-pVDZ level of theory from the UB3LYP/6-31g optimised geometry. Orbital visualisations were made using the VMD molecular graphics viewer.

Many studies on the redox properties of sulphur-nitrogen radicals have found good correlation between the \(E_{1/2} \) potentials for the 0/1\(^{+} \) couple with both the calculated energies of the LUMO of the S(IV) cations, and the SOMO of the radical. Optimised geometries of the 1,2,4-benzothiadiazine 1-chlorides 2a-j were calculated, along with their corresponding free radicals 3a-j. The results, summarised in Table S1, were found to give poor correlation with experimental electrochemical results although systems bearing electron-withdrawing groups did tend to have SOMOs with lower (more negative) energies, whilst those bearing electron-donating groups had SOMOs with higher (less negative) energies. As with the \(E_{1/2} \) potentials for the S(III)/S(IV) couple, the range of values observed for the calculated LUMO and SOMO energies was small, further indicating that the substituents on the benzo-fused and pendant aryl ring have only a minor influence on the electronic structure of the radical.

	LUMO Energy / eV	SOMO Energy / eV	\(E_{1/2} / \) V
a	-4.5013	-6.1177	0.096
b	-4.5165	-6.1231	-0.014
c	-4.4951	-6.0913	-0.020
d	-4.4836	-6.0477	-0.024
e	-4.4733	-6.0447	0.057
f	-4.2687	-6.0371	0.014
g	-4.4997	-6.0872	0.108
h	-4.4970	-6.0700	0.041
i	-4.3974	-6.0273	0.086
j	-4.5413	-6.0037	-0.018

Table S1 - Calculated LUMO and SOMO energies for the 1,2,4-benzothiadiazine 1-chlorides 2a-j and corresponding radicals 3a-j. Potentials referenced against the Fc/Fc\(^{+} \) couple.

Systematic and comprehensive studies of sulphur-nitrogen radicals have shown that DFT calculations gives excellent correlation to experimental EPR parameters. However, the absolute accuracy of the calculated hyperfine coupling constants are typically poor and show significant basis set sensitivity. As such, appropriate scaling factors have been developed for each nuclei and basis set. Calculations were performed following established methods for 1,2,4-benzothiadiazinyl radicals. The hyperfine coupling constants were found to be significantly overestimated even after scaling (0.73 for \(^{14}\)N) whilst the ratio of \(a_{N2} \) to \(a_{N4} \) was inconsistent and gave poor correlation to experimental data. A table of unscaled calculated hyperfine coupling constants and the estimated spin densities on N2, N4 and S1 are shown in Table S2.
Dimerisation Energy Calculations were performed in a manner reported in the literature, including an explicit dispersion correction.33,34 Dimerisation energies were obtained by comparing the energies of the dimer of the parent radical with that of the monomer according to the following equation:

$$\Delta E_{\text{dim}} = E_{\text{dimer}} - 2E_{\text{monomer}}$$

The dimer energies were calculated as unrestricted singlets at the UM062X-D3/6-311++G(d,p) level whilst the monomer was calculated as an unrestricted doublet at the same level. The starting geometries for the calculations were derived from the crystal structure geometries of 3a (suprafacial), 3c (trans-antarafacial), and 3e (trans-suprafacial) which were trimmed down to remove all substituents and halides, replacing them with protons where appropriate.

In the case of suprafacial dimerisation, no minimum could be located on the potential energy surface, and the calculations instead converged to transition state corresponding to the formation of an S-N single bond and breaking of the pancake dimer system. Given the need for electron withdrawing groups to stabilise the radicals which was observed experimentally, the calculation for the suprafacial geometry was repeated for the full compound 3a, again using the crystal geometry for the initial calculation; this too did not converge and an equivalent transition state was located.

The calculated energies are shown in Table S3 below.

Compound	Dimerisation Mode	Dimerisation Energy
		Hartree
		kj.mol\(^{-1}\)
		kcal.mol\(^{-1}\)
3-phenyl-benzo-1,2,4-thiadazinyl	Suprafacial*	-0.02451
		-64.354
		-15.381
	Trans-antarafacial	-0.02279
		-59.827
		-14.299
	Trans-suprafacial	-0.02353
		-61.775
		-14.764
5,6,7-trichloro-3-phenyl-benzo-1,2,4-thiadazinyl	Suprafacial*	-0.0384
		-100.81
		-24.095

Table S3 – Dimerisation Energies for 3-phenyl-benzothiadiazinyl radical pancake bonding modes.

7.3. Magnetic Exchange Interactions

Single-point exchange energies were performed on the Gaussian 16 suite of programs23 and calculated at the UB3LYP/6-311g(d,p) level of theory27 with a simple dinuclear nearest-neighbour exchange model from pairwise combinations of radicals.35,36 Atomic coordinates...
were taken from crystallographic data. The individual pairwise exchange energies, J, were estimated in terms of the difference between the total energies of the triplet (TS) and broken symmetry single (BSS) states and the respective expectation values of the two states according to the expression:

$$J = -\frac{(E_{TS} - E_{BSS})}{\langle S^2 \rangle_{TS} - \langle S^2 \rangle_{BSS}}$$

![Figure S62 - Magnetic exchange pathways in 3c.](image)

E_{TS} / Hartrees	$\langle S^2 \rangle_{TS}$	E_{BSS} / Hartrees	$\langle S^2 \rangle_{BSS}$	J / cm$^{-1}$	
J_{1}	-4931.92924166	2.0329	-4931.93785381	0.9984	-1827.115
J_{2}	-4931.94238034	2.0330	-4931.94253497	0.9996	-32.841
J_{3}	-4931.94504518	2.0348	-4931.94504480	1.0000	0.081
J_{4}	-4931.94527360	2.0347	-4931.94527371	1.0000	-0.023

Table S4 - Calculated exchange energies for 3c.

3e:

E_{TS} / Hartrees	$\langle S^2 \rangle_{TS}$	E_{BSS} / Hartrees	$\langle S^2 \rangle_{BSS}$	J / cm$^{-1}$	
J_{1}	-4931.83391003	2.0309	-4931.85623662	0.9934	-4723.013
J_{2}	-4931.89695375	2.0319	-4931.89802333	0.9987	-227.203
J_{3}	-4931.81925623	2.0310	-4931.81968459	0.9989	-91.090
J_{4}	-4931.86338358	2.0330	-4931.86338389	1.0000	-0.066
J_{5}	-4931.82426099	2.0324	-4931.82426100	1.0000	-0.002

Table S5 - Calculated exchange energies for 3e.
Figure S63 - Exchange pathways for 3e.
7.4. Cartesian Coordinates for Optimised Geometries

Full Cartesian coordinates and total energies for all optimised geometries are given below:

2a:

Center Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
1	16	0	1.441607	7.238480	8.519775
2	17	0	1.416780	7.329372	11.064734
3	17	0	6.709794	8.263969	7.176513
4	17	0	6.165360	11.413797	7.548903
5	17	0	3.226106	12.426335	8.422110
6	7	0	4.338111	6.581157	7.684833
7	7	0	2.085870	5.718973	8.009575
8	6	0	4.049804	7.898677	7.854102
9	6	0	3.428829	5.601719	7.750811
10	6	0	2.776948	8.412314	8.217039
11	6	0	3.882369	4.219691	7.491581
12	6	0	2.531955	9.776361	8.402779
13	1	0	1.558285	10.132721	8.715429
14	6	0	5.088761	8.864222	7.648981
15	6	0	5.211204	3.986655	7.087153
16	1	0	5.879892	4.833172	6.978518
17	6	0	4.851993	10.219633	7.812321
18	6	0	3.001869	3.130620	7.640072
19	1	0	1.983127	3.312244	7.958272
20	6	0	3.563783	10.671731	8.193441
21	6	0	5.649104	2.688049	6.836143
22	1	0	6.674586	2.516603	6.526209
23	6	0	3.447025	1.832479	7.385693
24	1	0	2.764673	0.997620	7.505204
25	6	0	4.769523	1.607051	6.983246
26	1	0	5.113244	0.596337	6.787693

Total energy $E(UB3LYP) = -2847.12972313$ Hartrees
2b:

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

1 17 0 7.317996 6.799277 7.292015
2 16 0 6.738006 0.908202 4.916811
3 17 0 9.046558 4.360726 8.503876
4 17 0 6.319687 6.892489 3.529507
5 17 0 5.271316 -0.041658 6.769585
6 7 0 5.264526 3.439336 3.951648
7 7 0 5.777360 1.105287 3.491726
8 6 0 6.131554 3.610985 4.989637
9 6 0 6.246488 4.934705 5.547097
10 6 0 5.134336 2.294461 3.268691
11 6 0 7.135852 5.144246 6.592022
12 6 0 4.232369 2.283770 2.096011
13 6 0 5.406740 6.019556 4.969179
14 1 0 5.191294 6.817365 5.672163
15 1 0 4.512015 5.617962 4.506204
16 1 0 7.907134 4.087977 7.135196
17 6 0 6.927209 2.582035 5.553262
18 6 0 3.861084 1.068923 1.488216
19 1 0 4.237225 0.137740 1.892684
20 6 0 7.799333 2.808122 6.623160
21 1 0 8.376360 2.000055 7.055994
22 6 0 3.744695 3.497549 1.576106
23 1 0 4.047296 4.428593 2.038309
24 6 0 3.007974 1.072195 0.383522
25 1 0 2.719693 0.132392 -0.075262
26 6 0 2.894268 3.493427 0.470114
27 1 0 2.525305 4.432863 0.072245
28 6 0 2.522362 2.282086 -0.128246
29 1 0 1.859664 2.281732 -0.987716

Total energy E(UB3LYP) = -2886.44928161 Hartrees
2c:

```
Center     Atomic      Atomic             Coordinates (Angstroms)
Number     Number       Type             X           Y           Z
---------------------------------------------------------------------
 1         17           0        5.069510    1.884385    3.627555
 2         16           0        2.980081    3.320418    3.923627
 3         17           0        4.578637    6.439213   -0.288167
 4         17           0        3.993752    9.737949    1.286108
 5         17           0        3.674616    9.282836    5.243824
 6         7           0        2.724870    3.596869    5.611955
 7         6           0        4.050203    5.854892    4.265851
 8         6           0        3.285649    4.695545    6.208193
 9         6           0        3.819463    5.058785    1.943947
10        6           0        3.536403    4.287404    1.238464
11        6           0        4.642346    7.073407    3.772743
12        6           0        4.790342    7.275900    2.392368
13        6           0        3.114313    4.739821    7.676769
14        6           0        3.647986    4.880591    3.320195
15        6           0        3.355379    5.938374    8.374974
16        6           0        3.652443    6.820333    7.821610
17        6           0        2.705260    3.593918    8.380484
18        6           0        2.522557    2.673946    7.845157
19        6           0        2.549139    3.648010    9.772054
20        6           0        2.240821    2.759588    10.312929
21        6           0        3.194627    5.985906    9.760103
22        6           0        3.377090    6.914390   10.290852
23        6           0        4.374605    6.242574    1.504816
24        6           0        5.081542    8.067329    4.795949
25        6           0        5.897419    8.708382    4.478181
26        6           0        5.306821    7.576460    5.736788
27        6           0        2.793055    4.841826    10.462587
28        6           0        2.669862    4.881368    11.540173
29        6           0        5.368493    8.538282    1.833925
30        6           0        5.946722    8.365057    0.930664
31        6           0        5.949032    9.107504    2.551149
---------------------------------------------------------------------
Total energy E(UB3LYP) =  -2925.75973149 Hartrees
```
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	5.114392	1.885218	3.656962
2	16	0	3.003736	3.325893	3.930355
3	17	0	4.573405	6.582082	-0.267685
4	17	0	3.601751	9.310635	5.201712
5	7	0	3.912534	5.722758	5.624374
6	7	0	2.752905	3.589924	5.618298
7	6	0	4.045437	5.861449	4.274344
8	6	0	3.299792	4.691635	6.218023
9	6	0	4.619588	7.091107	3.798861
10	6	0	4.746121	7.266920	2.428314
11	6	0	3.134234	4.731008	7.687015
12	6	0	3.656486	4.891050	3.316198
13	6	0	3.376034	5.927619	8.388121
14	6	0	3.670360	6.811466	7.836461
15	6	0	3.730644	3.581798	8.394010
16	6	0	2.548229	2.663070	7.850921
17	6	0	2.579857	3.631021	9.780768
18	6	0	2.275734	2.740184	10.31986
19	6	0	3.220784	5.970263	9.774047
20	1	0	3.404299	6.897109	10.307196
21	6	0	4.353820	6.270354	1.500714
22	6	0	5.042079	8.111362	4.795536
23	1	0	5.834591	8.760182	4.438177
24	1	0	5.275485	7.654048	5.750621
25	6	0	2.824130	4.823095	10.474248
26	1	0	2.705472	4.858725	11.552447
27	6	0	3.810206	5.057228	1.920647
28	6	0	3.412248	3.945013	0.981042
29	1	0	3.539749	4.231426	-0.060542
30	1	0	4.025121	3.054948	1.170443
31	1	0	2.361922	3.665224	1.126785
32	17	0	5.433075	8.819312	1.807177

Total energy $E(UB3LYP) = -2925.75928790$ Hartrees
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
1	17	0	5.117940 1.858223 3.670225
2	16	0	3.006183 3.305436 3.936486
3	17	0	4.619052 6.537357 -0.262588
4	7	0	3.882221 5.713190 5.632863
5	7	0	2.750009 3.566328 5.620911
6	6	0	4.029659 5.847490 4.287465
7	6	0	3.289521 4.670860 6.224801
8	6	0	4.579895 7.061717 3.776606
9	6	0	4.766971 7.280612 2.417564
10	6	0	3.140582 4.703302 7.695719
11	6	0	3.667590 4.870845 3.322145
12	6	0	3.532047 5.851467 8.410332
13	1	0	3.937668 6.694558 7.865414
14	6	0	2.613243 3.598127 8.390979
15	1	0	2.320345 2.714599 7.837986
16	6	0	2.479795 3.645095 9.779580
17	1	0	2.075904 2.789009 10.309620
18	6	0	3.396800 5.890405 9.798439
19	1	0	3.700980 6.777883 10.343405
20	6	0	4.381268 6.241351 1.518750
21	6	0	2.869998 4.789358 10.486805
22	1	0	2.766286 4.822475 11.566680
23	6	0	3.841389 5.026693 1.928042
24	6	0	3.462044 3.905290 0.991359
25	1	0	3.613960 4.181055 -0.049886
26	1	0	4.066484 3.014734 1.202579
27	1	0	2.407176 3.631056 1.113949
28	17	0	5.028235 8.333700 4.975916
29	6	0	5.348729 8.561858 1.913412
30	1	0	5.886152 8.441131 0.978892
31	1	0	5.958702 9.060984 2.658359
32	17	0	3.969639 9.816457 1.509648

Total Energy E(UB3LYP) = -2925.75684163 Hartrees
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	16	0	1.446734	7.223536	8.427569
2	17	0	1.465630	7.186049	10.957944
3	17	0	6.76622	8.229599	7.276682
4	17	0	6.182444	11.376091	7.545914
5	17	0	3.272801	12.414003	8.335738
6	7	0	4.379787	6.542431	7.725085
7	7	0	2.108941	5.698753	7.947318
8	6	0	4.083509	7.863978	7.848103
9	6	0	3.457471	5.571616	7.752520
10	6	0	2.791643	8.375237	8.121295
11	6	0	3.913299	4.186512	7.501053
12	6	0	2.505739	9.750741	8.235887
13	6	0	5.122861	8.827736	7.661058
14	6	0	5.255735	3.947183	7.150776
15	1	0	5.933863	4.787659	7.073279
16	6	0	4.857962	10.181730	7.774266
17	6	0	3.020143	3.103433	7.610131
18	1	0	1.991182	3.292385	7.888820
19	6	0	3.554141	10.652038	8.076093
20	6	0	5.694537	2.644128	6.913382
21	1	0	6.730760	2.466325	6.645295
22	6	0	3.465904	1.802856	7.369180
23	1	0	2.773445	0.972417	7.458387
24	6	0	4.802126	1.569052	7.020290
25	1	0	5.146460	0.556415	6.835598
26	8	0	1.204031	10.036140	8.572814
27	6	0	0.416524	11.098525	7.916630
28	1	0	-0.610462	10.738796	7.964369
29	1	0	0.518976	12.034013	8.463710
30	1	0	0.730264	11.225571	6.877343

Total Energy E(UB3LYP) = -2961.60478588 Hartrees
2g:

```
Center     Atomic      Atomic             Coordinates (Angstroms)
Number     Number       Type             X           Y           Z
---------------------------------------------------------------------
1         16           0        1.344517    7.426041    8.045327
2         17           0        0.854436    7.381120   10.552427
3         17           0        6.816270    8.119685    7.674848
4         17           0        6.417535   11.286889    8.085817
5         17           0        3.444104   12.472938    8.507454
6          7           0        4.293500    6.590298    7.730159
7          7           0        1.975317    5.873522    7.592812
8          6           0        4.062346    7.918265    7.886768
9          6           0        3.327759    5.666026    7.60319
10         6           0        2.780237    8.509185    8.047930
11         6           0        3.758677    4.266447    7.377646
12         6           0        2.595241    9.881160    8.250386
13         6           0        5.180708    8.816756    7.896425
14         6           0        1.606985   10.295029    8.407936
15         6           0        5.041296    4.084960    6.815416
16         6           0        5.612084    4.965157    6.593555
17         6           0        5.059578   10.178639    8.076038
18         6           0        2.966100    3.132038    7.709110
19         6           0        3.702358    10.707378    8.257402
20         6           0        5.543268    2.813977    6.553479
21         6           0        6.527812    2.698953    6.113207
22         6           0        3.505847    1.861216    7.440452
23         6           0        2.916392    0.987081    7.699561
24         6           0        4.766643    1.692805    6.865669
25         6           0        5.142543    0.693381    6.670882
26         6           0        1.602051    3.197691    8.362143
27         6           0        1.576860    3.897841    9.202502
28         6           0        0.833294    3.533423    7.659620
29         6           0        1.320992    2.207271    8.733362
---------------------------------------------------------------------
Total energy E(UB3LYP) =  -2886.43218800 Hartrees
```
Total energy $E(UB3LYP) = -2965.06307593$ Hartrees
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	4.974897	1.870553	3.748893
2	16	0	2.913754	3.376450	3.900513
3	17	0	4.834940	6.322388	-0.301758
4	17	0	4.250859	9.684155	1.141104
5	17	0	3.686384	9.353336	5.087153
6	7	0	3.821349	5.798154	5.575628
7	7	0	2.572545	3.708147	5.559756
8	6	0	4.033263	5.890753	4.231685
9	6	0	3.134265	4.807014	6.161626
10	6	0	3.913872	5.030500	1.923372
11	1	0	3.651339	4.244668	1.225964
12	6	0	4.683074	7.079454	3.736798
13	6	0	4.915063	7.235489	2.361854
14	6	0	2.890103	4.891560	7.610010
15	6	0	3.659984	4.898952	3.291945
16	6	0	3.153007	6.091971	8.306762
17	1	0	3.521675	6.948905	7.757650
18	6	0	2.388705	3.787774	8.324185
19	1	0	2.187239	2.864664	7.795346
20	6	0	2.160982	3.866843	9.697673
21	1	0	1.783139	2.999718	10.224245
22	6	0	2.926305	6.179711	9.671824
23	1	0	3.116442	7.094488	10.219924
24	6	0	4.524003	6.186109	1.482293
25	6	0	5.087862	8.093812	4.753451
26	1	0	5.934297	8.708055	4.464165
27	1	0	5.248289	7.626770	5.719352
28	6	0	2.430880	5.066266	10.375112
29	6	0	5.558382	8.464833	1.801218
30	1	0	6.180925	8.249367	0.937440
31	1	0	6.113306	9.040400	2.533462
32	8	0	2.242353	5.255337	11.730418
33	6	0	1.724973	4.160100	12.537305
34	1	0	2.402814	3.299653	12.514903
35	1	0	1.666214	4.558352	13.548938
36	1	0	0.728219	3.857239	12.197994

Total energy E(UB3LYP) = -3040.24578786 Hartrees
3a:

Center Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
1	16	0	1.377408	7.275125	8.482359
2	17	0	6.676776	8.230900	7.118504
3	17	0	6.210369	11.385620	7.556857
4	17	0	3.282176	12.438391	8.464905
5	7	0	4.282453	6.583468	7.615383
6	7	0	2.080180	5.671990	8.131903
7	6	0	4.014959	7.908023	7.818922
8	6	0	3.379281	5.589979	7.766559
9	6	0	2.756463	8.431951	8.216548
10	6	0	3.863097	4.209427	7.498315
11	6	0	2.546103	9.795595	8.408367
12	1	0	1.578135	10.175477	8.711954
13	6	0	5.069162	8.852071	7.621642
14	6	0	5.199101	4.000734	7.110204
15	1	0	5.854871	4.856595	7.013496
16	6	0	4.868346	10.215391	7.810882
17	6	0	2.999909	3.105159	7.627877
18	1	0	1.972220	3.269794	7.926834
19	6	0	3.599036	10.679630	8.205646
20	6	0	5.661480	2.707626	6.856413
21	1	0	6.693590	2.555770	6.557523
22	6	0	3.468470	1.815243	7.372691
23	1	0	2.796241	0.969507	7.474955
24	6	0	4.799573	1.611628	6.986385
25	1	0	5.161428	0.607544	6.788555

Total energy $E(\text{UB3LYP}) = -2386.96710162$ Hartrees
3b:

Center Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
1	17	0	7.247433	6.817043	7.309422
2	16	0	6.839585	0.889498	4.895722
3	17	0	8.988317	4.392485	8.559115
4	17	0	6.377162	6.905935	3.530429
5	7	0	5.327195	3.423619	3.913511
6	7	0	5.708827	1.047608	3.523262
7	6	0	6.172495	3.601662	4.977186
8	6	0	6.256496	4.925727	5.530998
9	6	0	5.154970	2.251925	3.261310
10	6	0	7.114039	5.154148	6.608532
11	6	0	4.233140	2.265428	2.093781
12	6	0	5.424412	6.002348	4.928107
13	1	0	5.170529	6.792625	5.627001
14	1	0	4.556129	5.591370	4.425351
15	6	0	7.880498	4.113944	7.160954
16	6	0	6.956548	2.576212	5.564139
17	6	0	3.847582	1.063881	1.469734
18	1	0	4.228717	0.124943	1.851437
19	6	0	7.805219	2.826787	6.640173
20	1	0	8.404489	2.036705	7.076739
21	6	0	3.744386	3.487380	1.597351
22	1	0	4.056012	4.409665	2.070325
23	6	0	2.982779	1.087706	0.374264
24	1	0	2.687832	0.156053	-0.097522
25	6	0	2.882390	3.505312	0.498699
26	1	0	2.515533	4.453692	0.119872
27	6	0	2.496843	2.307123	-0.114770
28	1	0	1.825736	2.323240	-0.067702

Total energy $E_{(UB3LYP)} = -2426.28581316$ Hartrees
Center Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
1	16	0	2.884716	3.319212	3.868381
2	17	0	4.651132	6.444569	-0.291774
3	17	0	4.062383	9.771314	1.280322
4	17	0	3.613427	9.298375	5.205034
5	7	0	3.836220	5.719280	5.598607
6	7	0	2.777373	3.523829	5.639254
7	6	0	4.003607	5.853341	4.243197
8	6	0	3.254430	4.657683	6.198911
9	6	0	3.824021	5.069769	1.925822
10	1	0	3.533718	4.316381	1.203581
11	6	0	4.608683	7.068785	3.772034
12	6	0	4.801937	7.280231	2.391303
13	6	0	3.109807	4.721855	7.678404
14	6	0	3.626872	4.874189	3.291121
15	6	0	3.364131	5.926644	8.358312
16	1	0	3.654050	6.800803	7.789575
17	6	0	2.709821	3.587972	8.410438
18	1	0	2.509948	2.663200	7.883677
19	6	0	2.575898	3.659371	9.798114
20	1	0	2.271373	2.778773	10.354355
21	6	0	3.224529	5.993219	9.746347
22	1	0	3.416699	6.929209	10.260699
23	6	0	4.404990	6.254887	1.501238
24	6	0	5.021004	8.062744	4.805653
25	1	0	5.852077	8.696696	4.513265
26	1	0	5.207379	7.574258	5.755892
27	6	0	2.833012	4.860802	10.470927
28	1	0	2.726347	4.914434	11.549776
29	6	0	5.404020	8.539047	1.855836
30	1	0	5.998901	8.367552	0.963199
31	1	0	5.974693	9.098104	2.589098

Total energy $E_{UB3LYP} = -2465.59604853$ Hartrees
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	X	Y	Z
1	16	0		2.926148	3.314008	3.882421
2	17	0		4.678699	6.572571	-0.263549
3	17	0		3.553929	9.334520	5.143822
4	7	0		3.838899	5.722320	5.613434
5	7	0		2.820012	3.512868	5.651587
6	6	0		4.006780	5.856730	4.259269
7	6	0		3.276013	4.651596	6.214795
8	6	0		4.597992	7.083006	3.803337
9	6	0		4.775693	7.262228	2.433674
10	6	0		3.131624	4.712424	7.694222
11	6	0		3.647779	4.882995	3.295911
12	6	0		3.384171	5.915743	8.377179
13	1	0		3.673764	6.791232	7.810451
14	6	0		2.734226	3.575843	8.423439
15	1	0		2.536300	2.652078	7.894134
16	6	0		2.600518	3.643376	9.811300
17	1	0		2.297833	2.760772	10.365392
18	6	0		3.245069	5.978500	9.765452
19	1	0		3.436638	6.913260	10.282252
20	6	0		4.403501	6.273923	1.503205
21	6	0		4.990696	8.105410	4.809426
22	1	0		5.807036	8.740953	4.482661
23	1	0		5.171696	7.653150	5.777929
24	6	0		2.855677	4.843550	10.487170
25	1	0		2.749515	4.894119	11.566225
26	6	0		3.827251	5.063318	1.912915
27	6	0		3.408683	3.972539	0.956202
28	1	0		3.552540	4.264094	-0.082201
29	1	0		3.987565	3.057094	1.133441
30	1	0		2.349702	3.722308	1.094620
31	17	0		5.503885	8.611392	1.838511

Total energy E(UB3LYP) = -2465.59426778 Hartrees
Molecular Structure

![Molecular Structure Image](image)

Molecular Information

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)
1	16	0	X: 2.920541 Y: 3.293032 Z: 3.885030
2	17	0	X: 4.705361 Y: 6.529517 Z: -0.259643
3	7	0	X: 3.777686 Y: 5.719224 Z: 5.618465
4	7	0	X: 2.823428 Y: 3.480270 Z: 5.656313
5	6	0	X: 3.965105 Y: 5.847553 Z: 4.268929
6	6	0	X: 3.295530 Y: 4.629468 Z: 6.219639
7	6	0	X: 4.524577 Y: 7.059658 Z: 3.776207
8	6	0	X: 4.761941 Y: 7.285607 Z: 2.419436
9	6	0	X: 3.131622 Y: 4.683813 Z: 7.700946
10	6	0	X: 3.645124 Y: 4.862167 Z: 3.300558
11	6	0	X: 3.541944 Y: 5.836817 Z: 8.394449
12	1	0	X: 3.943191 Y: 6.69834 Z: 7.831375
13	6	0	X: 2.606989 Y: 3.593886 Z: 8.420468
14	1	0	X: 2.291782 Y: 2.708344 Z: 7.882696
15	6	0	X: 2.496305 Y: 3.659303 Z: 9.810500
16	1	0	X: 2.090639 Y: 2.814380 Z: 10.357526
17	6	0	X: 3.428319 Y: 5.895960 Z: 9.785178
18	1	0	X: 3.746645 Y: 6.789660 Z: 10.312130
19	6	0	X: 4.411055 Y: 6.246682 Z: 1.519941
20	6	0	X: 2.906081 Y: 4.809344 Z: 10.497548
21	1	0	X: 2.818622 Y: 4.857870 Z: 11.578432
22	6	0	X: 3.854186 Y: 5.028441 Z: 1.919458
23	6	0	X: 3.476554 Y: 3.917644 Z: 0.968691
24	1	0	X: 3.695693 Y: 4.174832 Z: -0.065654
25	1	0	X: 4.020756 Y: 2.996144 Z: 1.210616
26	1	0	X: 2.404883 Y: 3.693495 Z: 1.040201
27	17	0	X: 4.928599 Y: 8.342279 Z: 4.985341
28	6	0	X: 5.356534 Y: 8.566709 Z: 1.937231
29	1	0	X: 5.919385 Y: 8.450725 Z: 1.017165
30	1	0	X: 5.943722 Y: 9.065678 Z: 2.700426
31	17	0	X: 3.995736 Y: 9.836099 Z: 1.492464

Total energy $E_{UB3LYP} = -2465.59278462$ Hartrees
Center Number	Atomic Number	Atomic Type	X (Angstroms)	Y (Angstroms)	Z (Angstroms)
1	16	0	1.403019	7.311891	8.477996
2	17	0	6.750398	8.236210	7.239622
3	17	0	6.273991	11.386937	7.679885
4	17	0	3.353815	12.451619	8.527337
5	7	0	4.332615	6.591805	7.664455
6	7	0	2.103567	5.712262	8.110807
7	6	0	4.066842	7.918739	7.858631
8	6	0	3.408889	5.611659	7.760500
9	6	0	2.797951	8.443514	8.206527
10	6	0	3.877229	4.227747	7.497522
11	6	0	2.570579	9.811105	8.375806
12	6	0	5.127822	8.858880	7.692059
13	6	0	5.217017	4.002994	7.132087
14	1	0	5.888097	4.849520	7.061271
15	6	0	4.916630	10.220522	7.877124
16	6	0	2.994449	3.135829	7.594730
17	1	0	1.964415	3.313615	7.877688
18	6	0	3.638237	10.699519	8.224811
19	6	0	5.663665	2.706329	6.868328
20	1	0	6.698926	2.542002	6.587350
21	6	0	3.447177	1.842232	7.329566
22	1	0	2.759907	1.005975	7.407274
23	6	0	4.782055	1.622636	6.965668
24	1	0	5.131741	0.615715	6.760329
25	8	0	1.300713	10.207296	8.777464
26	6	0	0.428855	10.849239	7.769315
27	1	0	-0.515205	11.009358	8.286985
28	1	0	0.851106	11.802730	7.446991
29	1	0	0.285949	10.181033	6.914923

Total energy $E_{(UB3LYP)} = -2501.44354252$ Hartrees
3g:

Center	Atomic Number	Atomic Number	Type	Coordinates (Angstroms)	X	Y	Z
1 | 16 | 0 | 1.302255 | 7.477658 | 8.124250
2 | 17 | 0 | 6.781885 | 8.099536 | 7.502890
3 | 17 | 0 | 6.466700 | 11.269948 | 7.962356
4 | 17 | 0 | 3.522544 | 12.500137 | 8.516446
5 | 7 | 0 | 4.245148 | 6.608597 | 7.657101
6 | 7 | 0 | 1.945374 | 5.830608 | 7.825415
7 | 6 | 0 | 4.035834 | 7.941973 | 7.847928
8 | 6 | 0 | 3.272132 | 5.661313 | 7.603665
9 | 6 | 0 | 2.771666 | 8.544447 | 8.089549
10 | 6 | 0 | 3.734874 | 4.261662 | 7.424756
11 | 6 | 0 | 2.627245 | 9.915378 | 8.290050
12 | 1 | 0 | 1.654316 | 10.354595 | 8.474059
13 | 6 | 0 | 5.166013 | 8.818351 | 7.811800
14 | 6 | 0 | 5.037208 | 4.109383 | 6.901213
15 | 1 | 0 | 5.618755 | 5.003033 | 6.717755
16 | 6 | 0 | 5.030518 | 10.187799 | 8.009974
17 | 6 | 0 | 2.953974 | 3.103574 | 7.698964
18 | 6 | 0 | 3.752815 | 10.729478 | 8.250677
19 | 6 | 0 | 5.571272 | 2.852651 | 6.629518
20 | 1 | 0 | 6.572683 | 2.767058 | 6.221077
21 | 6 | 0 | 3.524759 | 1.847788 | 7.421409
22 | 1 | 0 | 2.938638 | 0.959199 | 7.635138
23 | 6 | 0 | 4.808109 | 1.710730 | 6.890320
24 | 1 | 0 | 5.208171 | 0.722149 | 6.687720
25 | 6 | 0 | 1.559586 | 3.120243 | 8.287219
26 | 1 | 0 | 1.500843 | 3.736301 | 9.189753
27 | 1 | 0 | 0.829181 | 3.539550 | 7.588996
28 | 1 | 0 | 1.252967 | 2.100921 | 8.542843

Total energy E(UB3LYP) = -2426.26898651 Hartrees
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	X	Y	Z
1 | 16 | 0 | 2.541636 | 3.491537 | 3.716797
2 | 17 | 0 | 4.643213 | 6.596914 | -0.302828
3 | 17 | 0 | 4.396085 | 9.897680 | 1.437784
4 | 17 | 0 | 3.840512 | 9.256270 | 5.33837
5 | 7 | 0 | 3.772438 | 5.676047 | 5.549308
6 | 7 | 0 | 2.461711 | 3.622679 | 5.506451
7 | 6 | 0 | 3.935537 | 5.861735 | 4.201318
8 | 6 | 0 | 3.083738 | 4.634390 | 6.112590
9 | 6 | 0 | 3.673880 | 5.213294 | 1.850682
10 | 1 | 0 | 3.306240 | 4.530216 | 1.094596
11 | 6 | 0 | 4.655905 | 7.034493 | 3.785043
12 | 6 | 0 | 4.872949 | 7.288710 | 2.415631
13 | 6 | 0 | 2.969098 | 4.690764 | 7.599312
14 | 6 | 0 | 3.455984 | 4.974230 | 3.206116
15 | 6 | 0 | 2.992919 | 5.964907 | 8.203430
16 | 1 | 0 | 3.095127 | 6.835384 | 7.566968
17 | 6 | 0 | 2.843665 | 3.530764 | 8.409685
18 | 6 | 0 | 2.744721 | 3.711166 | 9.800950
19 | 1 | 0 | 2.662010 | 2.830389 | 10.430601
20 | 6 | 0 | 2.879574 | 6.113892 | 9.584126
21 | 1 | 0 | 2.888644 | 7.105302 | 10.024432
22 | 6 | 0 | 4.375479 | 6.350466 | 1.480362
23 | 6 | 0 | 5.150809 | 7.937802 | 4.864502
24 | 1 | 0 | 6.026303 | 8.521747 | 4.599659
25 | 1 | 0 | 5.297793 | 7.389700 | 5.789111
26 | 6 | 0 | 2.754592 | 4.977536 | 10.389322
27 | 1 | 0 | 2.669585 | 5.074309 | 11.467183
28 | 6 | 0 | 5.601923 | 8.502493 | 1.937305
29 | 1 | 0 | 6.171019 | 8.314512 | 1.031356
30 | 1 | 0 | 6.232817 | 8.959626 | 2.691646
31 | 6 | 0 | 2.835749 | 2.115198 | 7.873596
32 | 1 | 0 | 1.894699 | 1.882493 | 7.366364
33 | 1 | 0 | 3.629011 | 1.948020 | 7.138078
34 | 1 | 0 | 2.973268 | 1.403979 | 8.694354

Total energy \(E(UB3LYP) = -2504.89884282 \) Hartrees
Center	Atomic Number	Atomic Type	Coordinates (Angstroms)	X	Y	Z
1	16	0		1.370122	7.298982	8.341416
2	17	0		6.727186	8.336599	7.304629
3	17	0		6.242303	11.449390	7.966973
4	17	0		3.278080	12.440631	8.818341
5	7	0		4.311272	6.650384	7.558817
6	7	0		2.084550	5.725254	7.899441
7	6	0		4.035315	7.970108	7.853082
8	6	0		3.402657	5.665142	7.588499
9	6	0		2.760294	8.467353	8.231808
10	6	0		3.894860	4.313922	7.236639
11	6	0		2.541692	9.812696	8.520188
12	1	0		1.560664	10.171316	8.807379
13	6	0		5.097708	8.923112	7.779897
14	6	0		5.250398	4.122269	6.894146
15	1	0		5.914324	4.977144	6.894920
16	6	0		4.888942	10.268119	8.065965
17	6	0		3.032432	3.204200	7.235769
18	1	0		1.991122	3.345173	7.497768
19	6	0		3.603021	10.705616	8.436646
20	6	0		5.723623	2.859983	6.562198
21	1	0		6.761343	2.696824	6.297075
22	6	0		3.499989	1.931966	6.903299
23	1	0		2.813135	1.094928	6.910830
24	6	0		4.850721	1.758721	6.565113
25	8	0		5.419802	0.543940	6.219692
26	6	0		4.586187	-0.646572	6.197131
27	1	0		5.253728	-1.454460	5.900911
28	1	0		4.167375	-0.855695	7.188124
29	1	0		3.775212	-0.540826	5.466457

Total energy $E(\text{UB3LYP}) = -2501.45226718$ Hartrees
Center	Atomic Number	Atomic Type	Coordinates (Angstroms)
1	16	0	X: 2.833199 Y: 3.368964 Z: 3.827814
2	17	0	X: 4.911921 Y: 6.340564 Z: -0.300994
3	17	0	X: 4.316766 Y: 9.720496 Z: 1.146933
4	17	0	X: 3.631529 Y: 9.365722 Z: 5.050739
5	7	0	X: 3.744510 Y: 5.789184 Z: 5.550402
6	7	0	X: 2.629286 Y: 3.619794 Z: 5.582458
7	6	0	X: 3.990499 Y: 5.884624 Z: 4.204133
8	6	0	X: 3.103119 Y: 4.758068 Z: 6.14072
9	6	0	X: 3.924323 Y: 5.045220 Z: 1.899536
10	1	0	X: 3.657107 Y: 4.279699 Z: 1.181098
11	6	0	X: 4.650746 Y: 7.073212 Z: 3.737386
12	6	0	X: 4.927805 Y: 7.243477 Z: 2.365182
13	6	0	X: 2.878383 Y: 4.861442 Z: 7.604679
14	6	0	X: 3.644905 Y: 4.890498 Z: 3.255734
15	6	0	X: 3.155344 Y: 6.065965 Z: 8.285134
16	1	0	X: 3.522293 Y: 6.914571 Z: 7.722686
17	6	0	X: 2.378708 Y: 3.771365 Z: 8.338035
18	1	0	X: 2.159298 Y: 2.845282 Z: 7.821309
19	6	0	X: 2.166081 Y: 3.867274 Z: 9.714020
20	1	0	X: 1.784733 Y: 3.009343 Z: 10.253451
21	6	0	X: 2.943635 Y: 6.171764 Z: 9.653296
22	1	0	X: 3.145129 Y: 7.092804 Z: 10.186961
23	6	0	X: 4.557774 Y: 6.204537 Z: 1.479501
24	6	0	X: 5.027377 Y: 8.084746 Z: 4.761713
25	1	0	X: 5.890275 Y: 8.690237 Z: 4.508584
26	1	0	X: 5.144620 Y: 7.618789 Z: 5.739052
27	6	0	X: 2.450410 Y: 5.071724 Z: 10.375056
28	6	0	X: 5.590878 Y: 8.473098 Z: 1.834219
29	1	0	X: 6.233049 Y: 8.263813 Z: 0.983364
30	1	0	X: 6.130334 Y: 9.039161 Z: 2.585494
31	8	0	X: 2.277219 Y: 5.277301 Z: 11.733855
32	6	0	X: 1.755505 Y: 4.194937 Z: 12.551935
33	1	0	X: 2.423756 Y: 3.326413 Z: 12.532942
34	1	0	X: 1.706914 Y: 4.600738 Z: 13.561378
35	1	0	X: 0.753386 Y: 3.897483 Z: 12.222711

Total energy $E_{UB3LYP} = -2580.08115172$ Hartrees
The following geometries were used for the dimerization energy calculations. Parent 1,2,4-benzothiadiazinyl monomer:

Center Number	Atomic Number	Atomic Type	X	Y	Z
1	16	0	7.215861	4.835470	8.582726
2	7	0	9.070689	7.197400	8.061054
3	7	0	8.822108	4.818768	8.265270
4	6	0	10.964761	5.749536	7.779614
5	6	0	9.509281	5.946255	8.055522
6	6	0	11.785479	6.854662	7.545860
7	1	0	11.348876	7.844224	7.568769
8	6	0	7.754866	7.481434	8.303314
9	6	0	6.758342	6.515161	8.563739
10	6	0	13.139183	6.677414	7.288883
11	1	0	13.769304	7.540293	7.108534
12	6	0	7.360738	8.837056	8.293026
13	6	0	13.685237	5.397738	7.262864
14	1	0	14.741452	5.261093	7.062234
15	6	0	11.516172	4.466784	7.752750
16	1	0	10.875481	3.613898	7.934599
17	6	0	12.870184	4.293888	7.495366
18	1	0	13.290002	3.295187	7.476285
19	6	0	5.079230	8.219003	8.785319
20	6	0	5.430674	6.882976	8.802770
21	1	0	4.686954	6.118467	8.999932
22	6	0	6.052342	9.197501	8.528736
23	1	0	4.052254	8.508750	8.969896
24	1	0	5.770759	10.243381	8.516350
25	1	0	8.129025	9.573728	8.092796

Total energy E(UM062X) = -1008.356542 Hartree
Suprafacial Dimer:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)	X	Y	Z
1	16	0	7.168933	4.832242	8.658536	
2	7	0	9.001882	7.191306	8.046684	
3	7	0	8.765684	4.815940	8.333171	
4	6	0	10.889698	5.750751	7.770406	
5	6	0	9.436806	5.955267	8.046495	
6	6	0	11.691212	6.841088	7.424404	
7	1	0	11.228822	7.814711	7.326451	
8	6	0	7.685246	7.477075	8.322420	
9	6	0	6.702506	6.510428	8.614200	
10	6	0	13.056729	6.673410	7.241410	
11	1	0	13.672456	7.524037	6.973059	
12	6	0	7.288387	8.827067	8.315324	
13	6	0	13.637268	5.417449	7.407581	
14	1	0	14.704838	5.289536	7.271097	
15	6	0	11.470785	4.490800	7.919014	
16	1	0	10.841965	3.648019	8.178727	
17	6	0	12.841312	4.327111	7.743824	
18	1	0	13.286305	3.346865	7.867250	
19	6	0	5.012798	8.202619	8.833347	
20	6	0	5.374304	6.869408	8.867503	
21	1	0	4.643674	6.103508	9.108946	
22	6	0	5.978015	9.182089	8.563319	
23	16	0	9.001882	7.191306	8.046684	
24	7	0	7.176934	7.191313	11.527668	
25	7	0	8.005509	6.815962	11.241044	
26	6	0	5.881503	5.750768	11.803857	
27	6	0	7.334400	5.955283	11.527791	
28	6	0	5.079982	6.841107	12.149835	
29	1	0	5.542369	7.814731	12.247789	
30	6	0	9.085969	7.477088	11.251897	
31	6	0	10.068706	6.510444	10.960097	
32	6	0	3.714462	6.673429	12.333074	
33	1	0	3.098729	7.524058	12.601137	
34	6	0	9.482817	8.827082	11.258971	
35	6	0	3.133926	5.417467	12.166630	
36	1	0	2.066354	5.289555	12.303094	
37	6	0	5.300420	4.490095	11.655250	
38	1	0	5.929246	3.648030	11.395653	
39	6	0	3.929889	4.327127	11.830413	
40	1	0	3.484900	3.346878	11.706988	
41	6	0	11.758394	8.202648	10.740885	
42	6	0	11.396897	6.869434	10.706751	
43	1	0	12.127527	6.103537	10.465294	
44	6	0	10.793180	9.182114	11.010934	
---	---	---	---	---	---	
45	1	0	3.986708	8.485781	9.032818	
46	1	0	5.692582	10.227218	8.549448	
47	1	0	8.719490	9.566837	11.468453	
48	1	0	8.051715	9.566827	8.105858	
49	1	0	11.078605	10.227245	11.024788	
50	1	0	12.784477	8.485815	10.541382	

Total energy $E_{\text{UM062X}} = -2016.737595$ Hartree. N.B. This energy corresponds to a transition state for the formation of an S-N bond, and is not a minimum on the potential energy surface.
Trans-antarafacial Dimer:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)			
			X	Y	Z	
1	16	0	3.134183	2.574078	6.546637	
2	7	0	3.003758	2.642545	9.584647	
3	7	0	1.909073	3.079555	7.493228	
4	6	0	4.050696	1.964843	9.019652	
5	6	0	2.001448	3.083636	8.813837	
6	6	0	4.244149	1.799469	7.630781	
7	6	0	0.847357	3.697654	9.533057	
8	6	0	6.206963	0.465109	7.994427	
9	6	0	5.004712	1.379524	9.881130	
10	6	0	6.058616	0.648613	9.379679	
11	6	0	-0.260408	4.168868	8.825454	
12	1	0	-0.291507	4.039298	7.751219	
13	6	0	5.306847	1.041475	7.123152	
14	1	0	5.429525	0.936587	6.050531	
15	6	0	-1.288211	4.819699	9.493704	
16	1	0	-2.144427	5.184850	8.938498	
17	6	0	0.906262	3.870359	10.916994	
18	1	0	1.766186	3.490393	11.453825	
19	6	0	-1.217613	5.012145	10.872008	
20	1	0	-2.018327	5.526318	11.390946	
21	6	0	-0.121342	4.531773	11.581598	
22	1	0	-0.067462	4.687002	12.655386	
23	16	0	4.241710	5.129544	9.877286	
24	7	0	4.374447	5.064725	6.839512	
25	7	0	5.467206	4.606361	8.931288	
26	6	0	3.327386	5.742217	7.404410	
27	6	0	5.375400	4.621488	7.610391	
28	6	0	3.132758	5.905838	8.793342	
---	---	---	----------	----------	----------	
29	6	0	6.529481	4.007060	6.891568	
30	6	0	1.170513	7.241010	8.429894	
31	6	0	2.374570	6.329412	6.542898	
32	6	0	1.320393	7.059837	7.044491	
33	6	0	7.637206	3.536203	7.599449	
34	1	0	7.668273	3.666279	8.673622	
35	6	0	2.069582	6.663028	9.301169	
36	1	0	1.945707	6.106556	4.213350	4.970697
37	6	0	8.665090	2.885120	6.931529	
38	1	0	9.521334	2.520323	7.486923	
39	6	0	6.470596	3.833666	5.507713	
40	1	0	5.610656	4.213350	4.970697	
41	6	0	8.594522	2.692005	5.553336	
42	1	0	9.395278	2.177639	5.034655	
43	6	0	7.498212	3.171946	4.843479	
44	1	0	7.444350	3.034433	3.769766	
45	1	0	7.037993	-0.110590	7.606276	
46	1	0	6.778507	0.207768	10.058796	
47	1	0	4.865140	1.523550	10.945832	
48	1	0	0.339116	7.816136	8.818104	
49	1	0	0.601417	7.502117	6.365336	
50	1	0	2.515169	6.187072	5.478110	

Total energy $E_{(UM062X)} = -2016.735871$ Hartree
Trans-Suprafacial Dimer:

Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z

1 16 0 5.388993 0.054993 5.481318
2 7 0 2.758128 1.242187 6.424909
3 7 0 4.746002 0.005116 6.970849
4 6 0 2.998937 1.255579 5.079961
5 6 0 3.603089 0.651625 7.249555
6 6 0 1.989695 1.755116 4.225528
7 6 0 3.260230 0.688174 8.700222
8 6 0 2.190730 1.845255 2.868190
9 6 0 4.408131 0.927479 3.092209
10 6 0 3.986392 -0.065731 9.622974
11 1 0 4.775796 -0.715476 9.267581
12 6 0 2.249166 1.540950 9.145961
13 1 0 1.702420 2.123469 8.415083
14 6 0 4.195928 0.818460 4.473488
15 6 0 3.410900 1.445332 2.293482
16 6 0 3.709469 0.040809 10.980201
17 1 0 4.275239 -0.547935 11.693062
18 6 0 2.713212 0.905766 11.425077
19 1 0 2.502721 0.993153 12.484884
20 6 0 1.982784 1.653028 10.504570
21 1 0 1.204715 2.325260 10.847237
22 16 0 6.754169 2.432018 5.845706
23 7 0 4.350752 3.798630 7.101681
24 7 0 5.645512 3.370873 5.121585
25 6 0 3.557383 4.500615 4.953678
26 6 0 4.588917 3.839903 5.803883
27 6 0 2.305956 4.795355 5.496731
28 1 0 2.130304 4.579179 6.542831
29 6 0 5.244651 3.209573 7.950896
30 6 0 7.210626 1.825297 8.463904
31 6 0 5.025794 3.333193 9.341903
32 6 0 3.805488 4.760480 3.605330

	E(UM062X)						
33	1	0	4.775918	4.517670	3.191874		
34	6	0	6.372651	2.466898	7.541454		
35	6	0	6.949924	1.945751	9.812310		
36	6	0	5.858221	2.718772	10.247731		
37	6	0	1.552388	5.577503	3.343771		
38	1	0	0.771494	5.992962	2.717088		
39	6	0	1.305959	5.325618	4.691030		
40	1	0	0.331772	5.542115	5.113879		
41	6	0	2.806408	5.301180	2.805574		
42	1	0	3.004341	5.502650	1.759094		
43	1	0	5.349523	0.599875	2.663874		
44	1	0	3.566831	1.539485	1.226063		
45	1	0	1.407855	2.247793	2.236633		
46	1	0	1.067947	2.084636	4.688694		
47	1	0	8.057175	1.245758	8.111055		
48	1	0	7.587469	1.449123	10.533047		
49	1	0	5.659075	2.814562	11.308373		
50	1	0	4.164399	3.908426	9.657862		

Total energy E(UM062X) = -2016.736613 Hartree
3a optimised for dimerization calculation:

```
| Center Number | Atomic Number | Atomic Type | Coordinates (Angstroms) |
|---------------|---------------|-------------|-------------------------|
| 1             | 17            | 0           | 8.569219 10.037802 7.972789 |
| 2             | 16            | 0           | 7.212371 4.839071 8.585537 |
| 3             | 17            | 0           | 3.442647 8.644224 9.084929 |
| 4             | 17            | 0           | 5.593758 10.871467 8.509903 |
| 5             | 7             | 0           | 9.071744 7.184290 8.060955 |
| 6             | 7             | 0           | 8.816365 4.809443 8.268480 |
| 7             | 6             | 0           | 10.961826 5.738946 7.780384 |
| 8             | 6             | 0           | 9.509462 5.930473 8.056629 |
| 9             | 6             | 0           | 11.773702 6.850984 7.545974 |
| 10            | 1             | 0           | 11.330194 7.838179 7.569352 |
| 11            | 6             | 0           | 7.769645 7.478864 8.300631 |
| 12            | 6             | 0           | 6.765551 6.523258 8.563448 |
| 13            | 6             | 0           | 13.127815 6.680847 7.287894 |
| 14            | 1             | 0           | 13.752927 7.546982 7.106781 |
| 15            | 6             | 0           | 7.372018 8.844857 8.289667 |
| 16            | 6             | 0           | 13.680383 5.403799 7.261820 |
| 17            | 1             | 0           | 14.737172 5.273378 7.060248 |
| 18            | 6             | 0           | 11.518681 4.458497 7.753680 |
| 19            | 1             | 0           | 10.883679 3.601398 7.936179 |
| 20            | 6             | 0           | 12.873226 4.294097 7.495107 |
| 21            | 1             | 0           | 13.299698 3.298359 7.475623 |
| 22            | 6             | 0           | 5.089962 8.218605 8.785123 |
| 23            | 6             | 0           | 5.442995 6.885275 8.802792 |
| 24            | 1             | 0           | 4.687314 6.135267 9.002657 |
| 25            | 6             | 0           | 6.055147 9.213437 8.527418 |
```

Total energy E(UM062X) = -2387.14465 Hartree
3a dimer optimised for dimerization calculation:

Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
			X	Y	Z
1	17	0	8.632963	10.047575	8.032659
2	16	0	7.176579	4.876507	8.644425
3	17	0	3.522501	8.761198	9.344386
4	17	0	5.718172	10.942969	8.763462
5	7	0	9.068911	7.182044	8.052243
6	7	0	8.771463	4.816756	8.326647
7	6	0	10.921694	5.704100	7.770855
8	6	0	9.474568	5.933484	8.041892
9	6	0	11.744773	6.788607	7.453692
10	1	0	11.303205	7.774748	7.373457
11	6	0	7.775504	7.506747	8.338351
12	6	0	6.763981	6.572070	8.629837
13	6	0	13.107477	6.597226	7.273239
14	1	0	13.740962	7.443056	7.034812
15	6	0	7.417159	8.876724	8.373725
16	6	0	13.660768	5.326307	7.413533
17	1	0	14.726356	5.180809	7.280468
18	6	0	11.475847	4.428551	7.896961
19	1	0	10.830357	3.593004	8.136323
20	6	0	12.843173	4.243753	7.723474
21	1	0	13.269428	3.253368	7.827854
22	6	0	5.140547	8.300091	8.949134
23	6	0	5.458334	6.957614	8.923553
24	1	0	4.697782	6.221183	9.159032
25	6	0	6.121603	9.273357	8.685615
26	17	0	8.138235	10.047581	11.541620
27	16	0	9.594650	4.876510	10.929927
28	17	0	13.248683	8.761220	10.229829
29	17	0	11.053011	10.942986	10.810770
30	7	0	7.702308	7.182048	11.522104
31	7	0	7.999728	4.816771	11.247572
32	6	0	5.849508	5.704112	11.803411
33	6	0	7.296637	5.933496	11.532396
34	6	0	5.026423	6.786619	12.120559
Total energy $E(\text{UM062X}) = -4774.327698$ Hartree. N.B. This energy corresponds to a transition state for the formation of an S-N bond, and is not a minimum on the potential energy surface.
8. References

1. A. M. Borys, The Schlenk Line Survival Guide, https://schlenklinesurvivalguide.com.
2. R. Anulewicz-Ostrowska, T. Kliś, D. Krajewski, B. Lewandowski and J. Serwatowski, Tetrahedron Lett., 2003, 44, 7329–7331.
3. C. S. Chang, Y. T. Lin, S. R. Shih, C. C. Lee, Y. C. Lee, C. L. Tai, S. N. Tseng and J. H. Chern, J. Med. Chem., 2005, 48, 3522–3535.
4. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42–55.
5. I. K. Khanna, Y. Yu, R. M. Huff, R. M. Weier, X. Xu, F. J. Koszyk, P. W. Collins, J. N. Cogburn, C. M. Koboldt, J. L. Masferrer, K. Seibert, A. W. Veenhuizen, J. Yuan, D. Yang and Y. Y. Zhang, Synthesis, 2000, 3168–3185.
6. P. Oxley and W. F. Short, J. Chem. Soc., 1953, 255–260.
7. M. Cortes-Salva, C. Garvin and J. C. Antilla, J. Org. Chem., 2011, 76, 1456–1459.
8. T. B. Nguyen, L. Ermolenko and A. Al-Mourabit, Heterocycles, 2012, 86, 555–563.
9. Y. Wang, H. Wang, J. Peng and Q. Zhu, Org. Lett., 2011, 13, 4604–4607.
10. J. I. Clodt, V. D. Hack, R. Fröhlich and E. U. Würthwein, Synthesis, 2010, 1485–1492.
11. B. L. Korbad and S. Lee, Bull. Korean Chem. Soc., 2013, 34, 1266–1268.
12. T. Yao, Tetrahedron Lett., 2015, 56, 4623–4626.
13. J. C. Zhuo, A. H. Soloway, J. C. Beeson, W. Ji, B. A. Barnum, F. G. Rong, W. Tjarks, G. T. Jordan IV, J. Liu and S. G. Shore, J. Org. Chem., 1999, 64, 9566–9574.
14. M. Q. Tran, T. B. Nguyen, W. R. Sawadogo, L. Ermolenko, S. Song, P. Retailleau, M. Diederich and A. Al-Mourabit, European J. Org. Chem., 2018, 2018, 5878–5884.
15. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.
16. G. M. Sheldrick, Acta Crystallogr. Sect. A Found. Crystallogr., 2015, 71, 3–8.
17. G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
18. G. Gritzner and J. Kuta, Int. Union Pure Appl. Chem., 1984, 1, 462–466.
19. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart and J. L. Dempsey, J. Chem. Educ., 2018, 95, 197–206.
20. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamental and Applications, John Wiley & Sons, NJ, 2nd edn., 2001.
21. G. A. Bain and J. F. Berry, J. Chem. Educ., 2008, 85, 532.
22. N. Feeder, R. J. Less, J. M. Rawson, P. Oliete and F. Palacio, Chem. Commun., 2000, 2, 2449–2450.
23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, G. A. Cheeseman, J. R. Scalmani, G.; Barone, V. Petersson, X. Nakatsuji, H.; Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.; Lipparini, F. Egidio, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, G. A. Cheeseman, J. R. Scalmani, G.; Barone, V. Petersson, X. Nakatsuji, H.; Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.; Lipparini, F. Egidio, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, G. A. Cheeseman, J. R. Scalmani, G.; Barone, V. Petersson, X. Nakatsuji, H.; Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F.; Lipparini, F. Egidio, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, 2016.
24. R. G. Parr and W. Yang, Density-functional theory of atoms and molecules, Oxford University Press, 1989.
25. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724–728.
26. T. H. Dunning, J. Chem. Phys., 1989, 100, 1007–1023.
27. A. D. McLean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639–5648.
28. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33–38.
29. R. T. Boeré, K. H. Moock and M. Parvez, ZAAC - J. Inorg. Gen. Chem., 1994, 620, 1589–1598.
30. P. Kaszynski, J. Phys. Chem. A, 2001, 105, 7615–7625.
31. P. Kaszynski, J. Phys. Chem. A, 2001, 105, 7626–7633.
32 J. Zienkiewicz, P. Kaszynski and V. G. Young, J. Org. Chem., 2004, 69, 7525–7536.
33 M. A. Nascimento, E. Heyer, R. J. Less, C. M. Pask, A. Arauzo, J. Campo and J. M. Rawson, Cryst. Growth Des., 2020, 20, 4313–4324.
34 R. L. Melen, R. J. Less, C. M. Pask and J. M. Rawson, Inorg. Chem., 2016, 55, 11747–11759.
35 L. Noodleman, J. Chem. Phys., 1981, 74, 5737–5743.
36 L. Noodleman and E. R. Davidson, Chem. Phys., 1986, 109, 131–143.