Research Paper

Angiogenic and Antiangiogenic mechanisms of high density lipoprotein from healthy subjects and coronary artery diseases patients

Hua-Ming Lia,b,c,d,1, Zhi-Wei Moa,b,c,d,1, Yue-Ming Penga,b,c,d,1, Yan Lia,b,c,d,1, Wei-Ping Daia,b,c,d,1, Hai-Yun Yuana,b,c,d,1, Feng-Jun Changa,b,c,d, Tian-Tian Wanga,b,c,d, Mian Wangb,c,d,f, Kun-Hua Hub, Xiao-Li Lia,b,c,d, Da-Sheng Ninga,b,c,d, Ya-Ting Chena,b,c,d, Yuan-Kai Songa,b,c,d, Xi-Lin Lug, Zhong Peig, Yu-Gang Dongb,c,h, Zhi-Ping Wanga,b,c,d, Xi Zhanga,b,c,d, Ying-Qi Xua,b,c,d, Shen-Ming Wangb,c,d,f, Zhi-Jun Oub,c,d,e,*,**, Jing-Song Oua,b,c,d,f,*,**.

1 Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
2 National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, PR China
3 Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, 510080, PR China
4 Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
5 Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
6 Department of Cardiology, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China
* Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, PR China
** Protemics Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China

\textbf{A R T I C L E I N F O}

Keywords:
- High-density lipoprotein
- Angiogenesis
- Coronary artery disease
- miRNA
- Vinculin
- Endothelial nitric oxide synthase

\textbf{A B S T R A C T}

Normal high-density lipoprotein (nHDL) in normal, healthy subjects is able to promote angiogenesis, but the mechanism remains incompletely understood. HDL from patients with coronary artery disease may undergo a variety of oxidative modifications, rendering it dysfunctional; whether the angiogenic effect is mitigated by such dysfunctional HDL (dHDL) is unknown. We hypothesized that dHDL compromises angiogenesis. The angiogenic effects of nHDL and dHDL were assessed using endothelial cell culture, endothelial sprouts from cardiac tissue from C57BL/6 mice, zebrafish model for vascular growth and a model of impaired vascular growth in hypercholesterolemic low-density lipoprotein receptor null(LDLr-/-) mice. mRNA microarray and proteomic analyses were used to determine the mechanisms. Lipid hydroperoxides were greater in dHDL than in nHDL. While nHDL stimulated angiogenesis, dHDL attenuated these responses. Protein and miRNA profiles in endothelial cells differed between nHDL and dHDL treatments. Moreover, nHDL suppressed mir-24-3p expression to increase vinculin expression resulting in nitric oxide (NO) production, whereas dHDL delivered mir-24-3p to inhibit vinculin expression leading to superoxide anion (O2-) generation via scavenger receptor class B type 1. Vinculin was required for endothelial nitric oxide synthase (eNOS) expression and activation and modulated the P3K/AKT/eNOS and ERK1/2 signaling pathways to regulate nHDL- and VEGF-induced angiogenesis. Vinculin overexpression or mir-24-3p inhibition reversed dHDL-impaired angiogenesis. The expressions of vinculin and eNOS and angiogenesis were decreased, but the expression of mir-24-3p and lipid hydroperoxides in HDL were increased in the ischemic lower limbs of hypercholesterolemic LDLr-/- mice. Overexpression of vinculin or mir-24-3p antagomir restored the impaired-angiogenesis in ischemic hypercholesterolemic LDLr-/- mice. Collectively, nHDL stimulated vinculin and eNOS expression to increase NO production by suppressing mir-24-3p to induce angiogenesis, whereas dHDL inhibited vinculin and eNOS expression to enhance O2- generation by delivering...
miR-24-3p to impair angiogenesis, and that vinculin and miR-24-3p may be therapeutic targets for dHDL-impaired angiogenesis.

Non-standard abbreviations and acronyms

Acronym	Description
AKT	protein kinase B
CAD	coronary artery disease
CRP	C reacting protein
ECs	endothelial cells
eNOS	endothelial nitric oxide synthase
ERK1/2	extracellular signal-regulated kinase 1/2
HUVECs	human umbilical vein endothelial cells
HDL	high-density lipoprotein
nHDL	normal high-density lipoprotein
dHDL	dysfunctional high-density lipoprotein
LDLr-/	low-density lipoprotein receptor null
l-NAME	L-NAME, L-arginine methyl ester
Mn-TBAP	Manganese-TBAP
NO	nitric oxide
O2-	superoxide anion
PBS	phosphate buffer saline
PI3K	phosphatidylinositide 3-kinases
qRT-PCR	quantitative real-time polymerase chain reaction
SAA	serum amyloid A
SRB1	scavenger receptor class B type 1
TNF-α	tumor necrosis factor-α
VCAM-1	vascular cell adhesion molecule-1
VEGF	vascular endothelial growth factor

1. Introduction

Preclinical research formed the basis for clinical trials that were directed at stimulating coronary vascular growth as a treatment for coronary artery disease (CAD); unfortunately these trials failed. The reasons for failure are likely many, but one consensus is the myriad risk factors contributing to vascular disease and endothelial dysfunction in aged patients. Furthermore, stimulating blood vessel growth in preclinical models without vascular disease is non-trivial. One notable and perhaps underestimated risk is oxidized high-density lipoprotein (HDL) [1,2]. Previous studies have shown that HDL from healthy subjects (nHDL) is pro-angiogenic, which could potentially be used to therapeutically aid angiogenesis in patients with CAD [3-5]. Moreover, some studies demonstrate that normal or reconstituted HDL can stimulate angiogenesis in patients with CAD [6,7]. However, HDL from patients with CAD does not have similar beneficial functions as nHDL. The HDL in patients with CAD (dHDL) undergoes oxidative modifications and is proinflammatory (dysfunctional) [1,2,8-24]. Despite these myriad observations, little is known how dHDL exerts its detrimental effects on angiogenesis. Thus, the present study was designed to compare the angiogenic effects between HDL from patients with CAD and healthy subjects, and investigate their potential mechanisms.

To test this hypothesis, we first tested the proinflammatory and angiogenic effects of nHDL and dHDL. We then measured the effects of nHDL and dHDL on miRNAs expressions in vascular endothelial cells (ECs). Finally, we determined if altered miRNAs expressions target proteins expression to regulate angiogenesis. In this study, we present evidence that nHDL suppressed miR-24-3p to increase the expressions of proteins expression to regulate angiogenesis. In contrast, dHDL impaired angiogenesis via partially delivering miR-24-3p, which inhibited the expressions of vinculin and eNOS leading to superoxide anion (O2-) generation. Our findings revealed novel molecular mechanisms underlying the angiogenic effects of nHDL and how oxidative modifications of HDL in patients with CAD undermine this beneficial effect.

2. Materials and methods

Please refer to the online supplement for additional details on the methodology.
2.7. Immunofluorescence analysis

Vinculin and vascular cell adhesion molecule-1 (VCAM-1) expression levels were detected by immunofluorescence staining [12].

2.8. EC tube formation assay

HUVECs were cultured with PBS, nHDL (100 µg/ml), dHDL (100 µg/ml), siRNA (50 nM), miRNA mimic, miRNA inhibitor, or vascular endothelial growth factor (VEGF). The EC tube formation was examined as previously described [31].

2.9. Measurement of EC NO and O2•− production

HUVECs were cultured with PBS, nHDL (100 µg/ml), dHDL (100 µg/ml), siRNA, miRNA mimic, miRNA inhibitor, or VEGF. Nitric oxide (NO) production was determined by 4,5-diaminofluorescein diacetate and Sievers NOA analyzer [31-33]. Superoxide anion (O2•−) production was assessed with the lucigenin assay and hydroethidine in ECs as previously described [25,31,32-35]. Tumor necrosis factor-α (TNF-α) was used as a positive control, and Manganese-5, 10, 15, 20-tetrakis (4-benzoic acid) porphyrin (Mn-TBAP) and N⁷-nitro-arginine methyl ester (L-NAME) were used as negative controls.

2.10. Western blot analysis of cultured HUVECs

HUVECs were cultured with PBS, nHDL (100 µg/ml), dHDL (100 µg/ml or different doses), siRNA, miRNA mimic, miRNA inhibitor, or TNF-α. Cellular proteins were harvested for Western blot analysis as previously described [31-33,36,37].

2.11. Detection of HDL deliver miR-24-3p to ECs

The nHDL (100 µg) or dHDL (100 µg) were incubated with miR-24-3p mimic (0.2 nmol) labeled by Cy3 dye before added to the cultured HUVECs with the final concentration of HDL 100 µg/ml. Transfecting Cy3 dye-labeled miR-24-3p mimic with Lipofectamine RNAiMAX Regent as a positive control. HUVECs were cultured for 36 h before fluorescence images were taken.

2.12. Animal studies

All animal experiments were approved by the ethics review board and animal research committee of The First Affiliated Hospital, Sun Yat-sen University. Eight-week-old male and female C57BL6 mice and low-density lipoprotein receptor null (LDLr−/−) mice were obtained from the Jackson Laboratory. LDLr−/− mice were fed with a Chow diet for 6 weeks to induce hypercholesterolemia and proinflammatory HDL [26,38,39].

2.13. Angiogenesis assay in zebrafish

Healthy embryos were treated with H2O2, nHDL (10 µg/mL), dHDL (10 µg/mL), or VEGF with/without or GSK690693. Embryos were incubated and the pro-angiogenic effects were evaluated as previously described [40].

2.14. Measurements of vascular growth in vivo

A model of lower limb ischemia was produced in hypercholesterolemic LDLr−/− mice, and the mice were subjected to multiple intramuscular injections of miR-24-3p antagonist or were injected intramuscularly with adenovirus vector carried plasmids encoding vinculin. The feet of the mice were imaged to measure the blood flow [41]. In addition, mice were anaesthetized and perfused with heparinized saline and contrast agent. The hindlimb vasculature was imaged and analyzed with a high-resolution computed tomography imaging system.

2.15. Statistical analysis

Data are presented as means ± SD. The differences among the test groups were determined with an analysis of variance (ANOVA) followed by a Tukey’s test for more than two groups or with Student T-test for two groups (Prism, GraphPad Software, Inc., San Diego, CA). P < 0.05 was considered statistically significant.

3. Results

3.1. The lipid hydroperoxide levels of HDL from dHDL and nHDL, and the relation with C reactive protein (CRP) and serum amyloid A (SAA)

The characteristics of the study population are summarized in Supplementary Table 1. Although 20% of the patients were being treated with statin, most of these patients were treated with statin for only 1–3 days before blood collection. To determine whether the dHDL is proinflammatory, the lipid hydroperoxide levels in HDL were measured. We found that the lipid hydroperoxide levels in HDL from patients with CAD were greater than those from normal healthy subjects (Fig. 1A), demonstrating that HDL from patients with CAD is proinflammatory. Lipid hydroperoxide levels in dHDL were positively correlated with CRP (r = 0.546) and SAA (r = 0.679, Fig. 1B,C).

3.2. Effects of nHDL and dHDL on cholesterol efflux and VCAM-1 expression

Next, we detected that HDL function by measuring the effects of nHDL and dHDL on cholesterol efflux and VCAM-1 expression. Fig. 1D and Supplemental Fig. 1 showed that the cholesterol efflux capacity was reduced by dHDL compared with nHDL. The nHDL did not stimulate VCAM-1 expression in ECs, but dHDL did. The nHDL could partially suppress TNF-α-induced VCAM-1 expression, but dHDL could not suppress TNF-α-induced VCAM-1 expression (Fig. 1E, Supplemental Fig. 2), indicating that dHDL is dysfuctional.

3.3. Effects of nHDL and dHDL on tube formation

We further investigated the ability of HDL-induced angiogenesis. Both VEGF and nHDL stimulated EC tube formation. However, dHDL were less able to stimulate these responses (Fig. 1F and G). Both the extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor PD98059 and the protein kinase B (AKT) inhibitor GSK690693 inhibited EC tube formation induced by nHDL and dHDL, suggesting dHDL lost the ability to induce angiogenesis. Since our current data and other reports demonstrated that 100 µg/mL of HDL produced the optimal proliferative effect, we decided to use this concentration for subsequent experiments.

3.4. Effects of nHDL and dHDL on angiogenesis in zebrafish

The angiogenic effects of HDL were further evaluated in vivo using a zebrafish model. Both nHDL and VEGF stimulated angiogenesis in zebrafish (Fig. 1H,I). The capability of dHDL-stimulated angiogenesis in zebrafish was lower than nHDL. Both ERK1/2 and AKT inhibitors inhibited angiogenesis induced by nHDL or dHDL. Since 100 µg/mL of HDL resulted in zebrafish mortality in our preliminary experiments, we chose 10 µg/mL of HDL in these experiments.

3.5. Effects of dHDL and nHDL on NO production and O2•− generation in ECs

NO is important for angiogenesis. We found that NO production was elevated by nHDL compared to controls. However, dHDL was less effective than nHDL in stimulating NO generation (Fig. 1J,K,
Fig. 1. The characteristics and functions of HDL from healthy subjects and patients with coronary artery disease (nHDL and dHDL, respectively) and their effects on angiogenesis. (A) The levels of lipid hydroperoxide in nHDL and dHDL. *p < 0.05 (n = 95). (B and C) The correlation between levels of lipid hydroperoxide in dHDL and C reactive protein (CRP) and serum amyloid A (SAA). *p < 0.05 (n = 78). (D) The cholesterol efflux capacities of nHDL and dHDL(100 μg/ml). *p < 0.05 (n = 31). (E) Immunofluorescence assays showing the effects of nHDL and dHDL with or without pretreatment with TNF-α on VCAM-1 expression (n = 6). (F-G) Images and dot plot show that nHDL stimulated endothelial cell (ECs) tube formation. The dHDL had a lower effect on EC tube formation. Both the ERK1/2 and AKT inhibitors decreased nHDL and dHDL-induced EC tube formation. * vs. control; # vs. nHDL; & vs. dHDL; p < 0.05 (n = 30). (J-K) Image and dot plot show that nHDL increased EC nitric oxide (NO) production. The dHDL had a lower effect on EC NO production. AU, arbitrary units. * vs. control; # vs. nHDL; & vs. dHDL; p < 0.05 (n = 10). (L) The dot plot shows that dHDL, but not nHDL, was enhanced endothelial O2- generation. l-NAME inhibited dHDL-induced O2- generation. AU, arbitrary units. * vs. control; # vs. nHDL; & vs. dHDL; p < 0.05 (n = 10).

3.8. Effects of miR-24-3p on nHDL- and dHDL-induced EC NO production and O2- generation

Next, we determined whether miR-24-3p affected nHDL- and dHDL-induced EC NO production and O2- generation. The miR-24-3p mimic inhibited VEGF-, nHDL-, and dHDL-induced EC NO production, but inhibition of miR-24-3p promoted NO production in control-, dHDL-, and nHDL-treated EC (Fig. 3A–D). The miR-24-3p mimic increased O2- generation in nHDL-treated EC and increased O2- generation both in dHDL-induced EC and control. Inhibition of miR-24-3p decreased dHDL-induced O2- generation (Fig. 3E–H), indicating that nHDL inhibited miR-24-3p to stimulate NO production, but dHDL increased miR-24-3p to induce O2- generation.

3.9. Effects of nHDL and dHDL on EC proteomics

Since HDL can regulate miR-24-3p to affect angiogenesis, then we looked for its target. We first used proteomic analysis to detect the protein change by HDL. The 2D gel electrophoresis analysis showed a lot of changes of proteins among the control, nHDL, and dHDL groups. Among them, a significant change in 5 proteins related to endothelial function between nHDL and dHDL treatment were found (Supplemental Fig. 7). These 5 proteins were further identified by Ultraflex III matrix assisted laser desorption/ionization tandem time-of-flight (MALDI TOF/TOF) analysis. The nHDL upregulated 4 proteins and downregulated 1 protein compared to dHDL. These proteins are listed in Supplemental Table 2. The identified proteins are involved in different aspects of cell function. Based on a systematic review of endothelial function and nHDL up-regulated vinculin expression, but dHDL down-regulated vinculin expression in a dose-dependent manner in EC (Fig. 4A–E), we selected vinculin as the potential target for further study.

3.10. Effects of vinculin expression on nHDL- and dHDL-mediated EC tube formation

To determine whether vinculin contributed to HDL-induced angiogenesis, vinculin in ECs was silenced or overexpressed before the HDL treatment. Vinculin-siRNA1 was selected to silence vinculin since it produced the best silencing results (Supplemental Fig. 8). Silencing vinculin inhibited VEGF, nHDL, or dHDL-induced EC tube formation (Fig. 4F and G). Overexpression of vinculin enhanced nHDL or dHDL-induced EC tube formation (Fig. 4H and I, Supplemental Fig. 9), suggesting that nHDL increased vinculin expression to induce angiogenesis, but dHDL decreased vinculin expression to inhibit angiogenesis.

3.11. Effects of vinculin expression on nHDL- and dHDL-mediated NO production and O2- generation in ECs

To determine whether vinculin participates in nHDL-mediated NO production or dHDL-mediated O2- generation, vinculin in ECs was silenced or overexpressed before the HDL treatment. Silencing of vinculin decreased VEGF, nHDL or dHDL-mediated NO production (Fig. 5A, B, Supplemental Fig. 10); whereas, overexpression of vinculin enhanced NO generation in the VEGF, nHDL or dHDL groups (Fig. 5C,D).

Supplemental Fig. 3A). Similar levels of O2- generation were observed following nHDL treatment, similar to that observed in the control, but an increase in O2- generation was observed when the EC were treated with dHDL. l-NAME and MnTBAP reduced O2- generation induced by dHDL and TNF-α using both hydroethidine and lucigenin assays (Fig. 1L, Supplemental Fig. 3B,C). These data hints that dHDL lost the ability to stimulate NO production, but increased O2- generation, which may inhibit angiogenesis.

3.6. MiRNAs in HDL and the effects of nHDL and dHDL on the expressions of miRNAs in ECs

To investigate the potential mechanisms, we started by looking for gene changes, which we determined how HDL regulate the expressions of miRNAs in ECs. Twenty-one (14 upregulated and 7 downregulated) of 3100 miRNAs were altered (more than 3-fold) by dHDL compared to those by nHDL (Supplemental Fig. 4). Four miRNAs (miR-181a-5p, -1275, -204-3p, and -24-3p) were downregulated by nHDL but upregulated by dHDL, whereas miR-146a-5p was upregulated by nHDL but downregulated by dHDL verified by quantitative real-time polymerase chain reaction (qRT-PCR) (Fig. 2A). MiR-223 was increased in both nHDL and dHDL treatments. However, miR-223 level was higher in ECs treated with dHDL than that treated with nHDL, and miR-24-3p was hundreds fold higher than miR-223 levels in ECs after dHDL treatment. MiR-24-3p was also demonstrated the most striking changes; thus, we focused on miR-24-3p (Fig. 2A). The miRNA array dataset has been deposited to GEO and the accession number is GPL26002.

To determine if the change of miR-24-3p in ECs was due to delivery or regulation by HDL, we first measured the amount of miR-24-3p in HDL and found that the amount of miR-24-3p in dHDL was higher than that in nHDL(Fig. 2B). Secondly, we showed that nHDL significantly inhibited, but dHDL slightly decreased, the expressions of pri-miR-24-1, pri-miR-24-2, and pre-miR-24-3p(two are two gene sites that can generate mature miR-24-3p) in ECs(Fig. 2C). Fig. 2D and Supplemental Fig. 5 showed that both nHDL and dHDL can deliver miR-24-3p to ECs, indicating that the change of miR-24-3p in ECs was due to both deliver and regulation.

3.7. Effects of miR-24-3p on EC tube formation, and nHDL- and dHDL-induced EC tube formation

The effect of miR-24-3p on angiogenesis was further determined. The confirmation of miR-24-3p inhibition is shown in Supplemental Fig. 6. The miR-24-3p mimic significantly suppressed EC tube formation, whereas the miR-24-3p inhibitor promoted EC tube formation (Fig. 2E–H). Next, we determined whether miR-24-3p affected HDL-induced angiogenesis. The miR-24-3p mimic partly inhibited VEGF-, nHDL- and dHDL-induced EC tube formation. Inhibition of miR-24-3p promoted nHDL- and dHDL-induced EC tube formation (Fig. 2E–H), suggesting that nHDL inhibited miR-24-3p to induce angiogenesis, but dHDL increased miR-24-3p to inhibit angiogenesis, and vinculin is required for VEGF-induced angiogenesis.
Fig. 2. MiRNA microarray revealed that nHDL suppressed, but dHDL enhanced expression of miR-24-3p in endothelial cells (ECs), which affected tube formation. (A) The qRT-PCR confirmed that four miRNAs were downregulated, whereas one miRNA was upregulated by nHDL. In contrast, these four miRNAs were upregulated, whereas miR-146a-5p was downregulated by dHDL. dHDL increased miR-223 more than nHDL, but the levels of miR-223 in ECs is hundred folds less than other miRNAs. (B) The level of miR-24-3p was higher in dHDL than in nHDL. * vs. Mimic-NC or Inhibitor-NC; # vs. Mimic-NC or Mimic-NC + nHDL or NC + nHDL; & vs. Mimic-NC + dHDL or Inhibitor-NC + dHDL; $ vs. Mimic-NC + VEGF, p < 0.05 (n = 6–10).

N. M. Li et al.
Redox Biology 36 (2020) 101642

3.12. Vinculin is a direct target of miR-24-3p

Next, we determined whether vinculin was a direct target of miR-24-3p. As shown in Fig. 6A, vinculin was identified as a potential target of miR-24-3p in ECs by the TargetScan (targetscan.org) prediction software. Treatment of ECs with the miR-24-3p mimic inhibited the luciferase activity of vinculin, whereas their mutants or control miRNA had no effect (Fig. 6B). Treatment with the miR-24-3p mimic decreased vinculin expression, which was blocked by the miR-24-3p inhibitor at both the mRNA and protein levels with a dose-dependent effect in ECs (Fig. 6CD, Supplemental Fig. 11), demonstrating that vinculin is a direct target of miR-24-3p.

3.13. Effects of miR-24-3p on nHDL- and dHDL-regulated EC vinculin expression

Next, we further determined whether miR-24-3p affected HDL-regulated vinculin expression. We found that the miR-24-3p mimic inhibited nHDL-induced vinculin expression and decreased the vinculin expression both in control- and dHDL-treated EC. In contrast, the miR-24-3p inhibitor increased vinculin expression in control-, nHDL-, and dHDL-treated EC (Fig. 6EF), indicating that HDL regulated vinculin by miR-24-3p.

3.14. Effects of nHDL and dHDL on other protein signaling related to angiogenesis

Previous studies found that HDL affects phosphatidylinositide 3-kinases (PI3K)/AKT/eNOS and ERK signaling pathways. We also determined the effects of nHDL and dHDL on these proteins. Short-term exposure of ECs to nHDL (30 min) stimulated the phosphorylation of AKT, eNOS at S1177 and ERK1/2, but dHDL reduced the phosphorylation of AKT, eNOS at S1177 and ERK1/2. Long-term exposure (48 h) of ECs to nHDL increased the expressions of PI3K, AKT, eNOS and ERK1/2, whereas long-term exposure of ECs to dHDL decreased expressions of PI3K, AKT, and eNOS. The nHDL inhibited caveolin-1 expression, whereas dHDL increased caveolin-1 expression (data not shown), which confirms the previous studies.

3.15. Effects of nHDL and dHDL on protein signaling related to vinculin

To determine whether vinculin was related to PI3K/AKT/eNOS and ERK signaling pathways, vinculin was silenced or overexpressed before treatment with HDL. Silencing vinculin inhibited the expressions of PI3K, AKT, eNOS and ERK 1/2 and phosphorylations of AKT, eNOS and ERK1/2 in response to nHDL or dHDL. (Fig. 7ABD, E). In contrast, silencing vinculin removed the suppression of nHDL on caveolin-1 expression and increased caveolin-1 expression in control and dHDL-treated EC (Fig. 7C). More important, overexpression of vinculin enhanced O2− generation in both nHDL- and dHDL-treated EC (Fig. 5EF). Overexpression of vinculin reduced O2− generation in both nHDL- and dHDL-treated EC (Fig. 5GH), indicating that nHDL increased vinculin expression to stimulate NO production, but dHDL decreased vinculin expression to induce O2− generation.

3.16. The receptor of HDL regulating vinculin and miR-24-3p

Next, we tested whether HDL regulated the expression of vinculin and miR-24-3p in ECs via scavenger receptor class B type 1 (SRB1). SRB1-siRNA1 was selected to silence SRB1 since it had the best silencing effects (Supplemental Fig. 12). Fig. 6A–C showed that the effects of nHDL and dHDL on the expression of miR-24-3p and vinculin were eliminated after silencing SRB1. No miR-24-3p mimic can be delivered to ECs by nHDL and dHDL after silencing SRB1 (Supplemental Fig. 13), demonstrating that both nHDL and dHDL regulated the expression of vinculin and miR-24-3p in ECs by SRB1.

3.17. The effects of vinculin and miR-24-3p on vascular growth in vivo

Finally, we determined the effects of miR-24-3p and vinculin on vascular growth in vivo. Lipid hydroperoxide levels in HDL from hypercholesterolemic LDLr−/− mice is significantly higher than that in non-hypercholesterolemic LDLr−/− mice and C57BL6 mice (Supplemental Fig. 14). The expressions of vinculin and eNOS were decreased in ischemic lower limbs of hypercholesterolemic LDLr−/− mice (Fig. 8D,E). Overexpression of vinculin increased the expression of vinculin and eNOS, improved blood flow and collateral in ischemic lower limbs of hypercholesterolemic LDLr−/− mice (Fig. 8F–I). In the contrast, the expression of miR-24-3p was increased in ischemic lower limbs of hypercholesterolemic LDLr−/− mice (Fig. 8J). Administration of the miR-24-3p antagomir decreased miR-24-3p expression and enhanced blood flow as well as collateral in ischemic lower limbs of hypercholesterolemic LDLr−/− mice (Fig. 8J–N), demonstrated that both miR-24-3p and vinculin may be the targets for dHDL-impaired angiogenesis.

4. Discussion

Previous studies showed that nHDL is able to stimulate angiogenesis [3,5,6]. However, the manner in which dHDL regulates angiogenesis is unknown, as previous reports suggest that HDL properties between healthy subjects and CAD patients differ [8,12–16,21–24]. Our study has six novel findings: 1. HDL from healthy subjects (nHDL) and patients with CAD (dHDL) regulated angiogenesis differently via alterations in vinculin expression. 2. Vinculin was critical for VEGF-induced and ERK signaling pathways to regulate angiogenesis. 3. Vinculin is a target of miR-24-3p. 4. nHDL suppressed miR-24-3p to increase vinculin expression to stimulate NO production, but dHDL delivered miR-24-3p to inhibit vinculin expression to enhance O2− generation. 5. Vinculin and eNOS expression was decreased, but that of miR-24-3p was increased in the ischemic lower limbs of hypercholesterolemic LDLr−/− mice, a dysfunctional HDL animal model, and vinculin overexpression or administration of the miR-24-3p antagonist increased angiogenesis. 6. Our simple modified cell-free assay may be used to measure the
Fig. 3. MiR 24-3p affected endothelial cell (EC) NO and O$_2^-$ generation induced by nHDL and dHDL. (A–D) The miR-24-3p mimic inhibited EC NO production whereas the miR-24-3p inhibitor enhanced EC NO production in all groups. (E–H) The miR-24-3p mimic enhanced EC O$_2^-$ generation, whereas the miR-24-3p inhibitor inhibited EC O$_2^-$ generation in all groups. TNF-α was the positive control. NC, negative control. AU, arbitrary Units. * vs. Mimic-NC or Inhibitor-NC; # vs. Mimic-NC or Inhibitor-NC + nHDL; $ vs. Mimic-NC or inhibitor-NC + VEGF; & vs. Mimic-NC or inhibitor-NC + dHDL, p < 0.05 (n = 10–14).
oxidative levels of HDL as a predictive biomarker for cardiovascular events. A critical aspect of our study is the assessment of oxidized, dysfunctional HDL. To measure the degree of HDL oxidation, we previously established a modified cell-free assay that measures lipid hydroperoxide levels in HDL in human plasma [25,26]. Using this assay, we found that dHDL had higher lipid hydroperoxide levels, suggesting that HDL from patients with CAD was oxidatively modified. A previous study found that in patients with low SAA, higher HDL-cholesterol is associated with lower all-cause and cardiovascular mortality [16]; in contrast, higher HDL-cholesterol in patients with high SAA is associated with increases in such mortality, and SAA impairs the anti-inflammatory properties of HDL [16,42]. We found that the lipid hydroperoxide levels in dHDL were positively correlated with CRP and SAA, indicating that lipid hydroperoxide levels in dHDL may predict cardiovascular mortality. Indeed, recent study reported that high lipid peroxidation in HDL may be a molecular signature of the risk for developing cardiovascular disease [23].

Using EC culture, a zebrafish model for vascular growth, and hypercholesterolemic LDLr-/- mice as a model of impaired vascular growth, we found much lower angiogenesis with dHDL than with nHDL. There is much evidence showing that miRNAs regulate angiogenesis and that HDL and reconstituted HDL can carry and deliver miRNAs to cells [43-47]. We found that miRNA profiles in ECs differed between nHDL and dHDL treatments. In ECs, miR-24-3p expression was downregulated by nHDL, but upregulated by dHDL, to regulate angiogenesis. However, nHDL significantly inhibited both pri-miR-24 and pre-miR-24, but dHDL slightly suppressed them. In addition, we found that dHDL contained more miR-24-3p than nHDL did, and both nHDL and dHDL can deliver miR-24-3p mimic to ECs. Although whether HDL can deliver miRNAs to cells is controversial [44,48], our data demonstrated that nHDL decreased miR-24-3p levels due to downregulation, whereas dHDL increased them via delivery. These data demonstrated that HDL is able to both deliver and regulate miRNAs in ECs to affect angiogenesis.

Previous study showed that miR-232 carried by HDL with familial hypercholesterolemia is much higher than that in healthy subjects, and HDL delvers miR-232 to ECs, as well as miR-232 inhibits angiogenesis [43,44,46]. We also found that miR-232 levels in ECs was enhanced by both nHDL and dHDL, and dHDL increased miR-232 more. We further found that miR-24-3p levels was hundreds folds higher than miR-232 levels in ECs after both nHDL and dHDL treatments. These data incorporated with miR-24-3p in ECs, whereas miR-232 does not [45], we chose miR-24-3p in this study since the impact of miR-24-3p on ECs should be stronger than miR-232.

It is well known that NO is important for angiogenesis, and our results align with this concept. Specifically, we found that nHDL induced angiogenesis by suppressing miR-24-3p expression to increase NO production and inhibit O2- generation, whereas dHDL impaired angiogenesis by delivering miR-24-3p expression, resulting in decreased NO production and increased O2- generation. Recently, it is reported that miR-24 promotes atherosclerosis by inhibiting lipid uptake from HDL cholesterol, suggesting a close relationship between HDL and miR-24 [49]. Importantly, miR-24-3p inhibition neither completely restored dHDL-induced angiogenesis and NO production nor restored the decrease in dHDL-stimulated O2- generation. Although the explanation is not intuitive, we postulate that these findings were based on the fact that HDL contains many different types of proteins, lipids, and miRNAs [43,44]. Although miR-24-3p may play a major inhibitory role, other particles and miRNAs such as myeloperoxidase, miR-223 in dHDL, may contribute to the inhibition of angiogenesis [11,18,44,46]. These findings suggest that nHDL induces angiogenesis and dHDL impairs angiogenesis, at least in part, by regulating miR-24-3p.

It has been reported that proteomics profiles differ between nHDL and dHDL, which may affect angiogenesis [13,16,18,19,23,24]. However, little is known regarding the differences in EC proteomics profiles between nHDL and dHDL treatments. In addition, previous studies demonstrate that HDL promotes angiogenesis by activating the Ras/ERK pathway or Src/PI3K/AKT/ERK/Rac pathway, or SIP3-dependent of VEGFR2 pathway, which is independent of HDL cargo molecules [3-5]. Recently it also shows that reconstituted HDL mediates angiogenesis in diabetes by regulating miRNAs [47]. However, it is unclear whether native HDL regulates these pathways via miRNAs regulation. Thus, we focused on the targets of miR-24-3p. Using proteomics, we identified many proteins, including vinculin in ECs, that were regulated by HDL. We selected vinculin as the potential target of miR-24-3p because nHDL and dHDL had opposing effects on vinculin, specifically upregulation and downregulation, respectively. Additionally, vinculin was a study candidate because it appears to be involved in endothelial mechanotransduction [50], which is critical for NO production. It is reported that the loss of vinculin prevents cell adhesion and migration, which are critical for angiogenesis [50,51]. We found that vinculin was the direct target of miR-24-3p. Normal HDL induced angiogenesis by increasing vinculin expression to increase NO production, and dHDL impaired angiogenesis by decreasing vinculin expression and NO production. Moreover, decreased vinculin expression stimulated O2- generation. A recent study demonstrates that vinculin is downregulated in atherosclerotic plaque [52]; dHDL may inhibit vinculin expression in this plaque. More importantly, we found that vinculin also regulates VEGF-induced angiogenesis and could directly regulate eNOS activation as well as the PI3K/AKT/eNOS and ERK signaling pathways. Meanwhile, vinculin could inhibit caveolin-1 expression. As caveolin-1 can negatively regulate eNOS and inhibit angiogenesis, our data suggest that vinculin is critical not only for nHDL-induced angiogenesis, but also for VEGF-induced angiogenesis [53].

We and others reported that HDL from hypercholesterolemic LDLr-/- mice are dysfunctional and proinflammatory, and hypercholesterolemia impairs angiogenesis [26,38,39]. In the present study, we confirmed that lipid hydroperoxide levels in HDL from hypercholesterolemic mice were higher than those in non-hypercholesterolemic LDLr-/- mice and C57BL6 mice. We also found that vinculin and eNOS expression was decreased and that of miR-24-3p was increased in the ischemic lower limbs of hypercholesterolemic LDLr-/- mice; therefore, we used these mice as a dysfunctional HDL animal model. We found that overexpression of either vinculin or miR-24-3p antagonist increased angiogenesis in these ischemic hypercholesterolemic LDLr-/- mice; therefore, we used these mice as a dysfunctional HDL animal model. We found that overexpression of either vinculin or miR-24-3p antagonist increased angiogenesis in these ischemic hypercholesterolemic LDLr-/- mice; therefore, we used these mice as a dysfunctional HDL animal model. We found that overexpression of either vinculin or miR-24-3p antagonist increased angiogenesis in a dysfunctional HDL model.

Our findings indicated that normal HDL, which stimulates angiogenesis in healthy subjects, might become dysfunctional, thereby...
Fig. 5. Vinculin (VCL) affected NO and O$_2^\cdot$ generation, which were induced by nHDL and dHDL. (A–D) Images and dot plots show that knockdown of vinculin inhibited NO production induced by nHDL in endothelial cells (ECs). Knockdown of vinculin impaired EC NO production in control and dHDL-treated groups. Overexpression of vinculin increased EC NO production in VEGF-, nHDL-, and dHDL-treated groups. AU, arbitrary units. * vs. control (NC-siRNA) or Empty-NC; # vs. nHDL (NC-siRNA) or Empty-NC $+$ nHDL; & vs. dHDL (NC-siRNA) or Empty-NC $+$ dHDL; $+$ vs. VEGF (NC-siRNA) or Empty-NC $+$ VEGF, p < 0.05 (n = 10). (E–H) Image and dot plots show that knockdown of vinculin enhanced EC O$_2^\cdot$ generation in control-, nHDL- and dHDL-treated groups. Overexpression of vinculin inhibited EC O$_2^\cdot$ generation in nHDL- and dHDL-treated groups. AU, arbitrary units; NC, negative control; OE, overexpression. * vs. control (NC-siRNA) or Empty-NC; # vs. nHDL (NC-siRNA) or Empty-NC $+$ nHDL; & vs. dHDL (NC-siRNA) or Empty-NC $+$ dHDL, p < 0.05 (n = 8–14).
Fig. 6. Vinculin (VCL) was the direct target of miR-24-3p, which affected the expression of VCL induced by nHDL and dHDL. (A) A potential human miR-24-3p binding site in the vinculin. (B) Luciferase activity confirmed that vinculin was the direct target of miR-24-3p. NC, control 3′UTR. * vs. NC, p < 0.05 (n = 10). (C and D) The expression of vinculin was decreased by the miR-24-3p mimic but was increased by the miR-24-3p inhibitor. * vs. Mimic-NC or Inhibitor-NC, p < 0.05 (n = 10). (E and F) The miR-24-3p mimic inhibited nHDL-induced the expression of vinculin, whereas the miR-24-3p inhibitor enhanced dHDL-inhibited the expression of vinculin in cultured ECs. The miR-24-3p mimic decreased the expression of vinculin in dHDL-treated EC, whereas the miR-24-3p inhibitor further increased the expression of vinculin in nHDL-treated EC. NC, negative control; * vs. Mimic-NC or Inhibitor-NC; # vs. Mimic-NC or inhibitor-NC + nHDL; & vs. Mimic-NC or inhibitor-NC + dHDL, p < 0.05 (n = 10).
Fig. 7. Vinculin (VCL) affected PI3K/AKT/eNOS and ERK1/2 signaling pathways. (A–E) Immunoblots and dot plots show that knockdown of vinculin inhibited the expressions of PI3K, AKT, eNOS and ERK1/2 as well as the phosphorylations of AKT, eNOS, and ERK1/2 in cultured endothelial cells (ECs) in all groups, but increased the expression of caveolin-1 in cultured ECs in control- and nHDL-treated groups. NC, negative control; * vs. control (NC-siRNA); # vs. nHDL (NC-siRNA); & vs. dHDL (NC-siRNA), p < 0.05 (n = 10). (F–J) Immunoblots and dot plots show that overexpression of vinculin increased the expressions of PI3K, AKT, eNOS and ERK1/2 as well as the phosphorylations of AKT, eNOS and ERK1/2, but decreased the expression of caveolin-1 in cultured ECs in all groups. NC, negative control; OE, overexpression. * vs. Empty-NC; # vs. Empty-NC + nHDL; & vs. Empty-NC + dHDL, p < 0.05 (n = 6–8).
H.-M. Li et al.

Redox Biology 36 (2020) 101642

(caption on next page)
imparing angiogenesis in patients with CAD. This is very important since patients with CAD have ischemic heart and easy to occur myocardial infarction. Angiogenesis can improve myocardial ischemia, rescue necrotic myocardiums, reduce myocardial infarct size and increase the heart function. Unfortunately, HDL from patients with CAD can not only stimulate angiogenesis, but inhibit VEGF-induced angiogenesis. This may be one reason for the failure of clinical trials that are directed at stimulating coronary vascular growth as a treatment for CAD. These findings also suggest that the targeting of vinculin or miR-24-3p may become a therapeutic approach in ischemic patients with CAD. Finally, we found that HDL regulated vinculin and miR-24-3p expression to influence angiogenesis via SRB1, the classic receptor of HDL, which is consistent with previous finding that HDL promotes EC migration and reendothelialization via SRB14.

5. Conclusion

The present study provides direct evidence that nHDL suppresses miR-24-3p, resulting in increased vinculin expression and the stimulation of PI3K/AKT/eNOS and ERK signaling pathways to generate NO and induce angiogenesis. In contrast, dHDL was far less effective in stimulating angiogenesis since dHDL deliver miR-24-3p to inhibit vinculin expression and inactivate PI3K/AKT/eNOS and ERK signaling pathways. These effects inhibited NO production and increased O²⁻ generation. Our findings reveal the novel molecular mechanism of nHDL for inducing angiogenesis as well as the manner in which HDL function changed in patients with CAD regarding angiogenesis impairment. This study provides an explanation as to why some patients with CAD have a worse prognosis following myocardial infarction, and that vinculin and miR-24-3p may be therapeutic targets for dHDL-impaired angiogenesis. Additionally, our simple modified cell-free assay may be used to measure the proinflammatory HDL levels to predict the HDL function and cardiovascular events.

Sources of funding

This research was financially supported by the National Natural Science Foundation of China (Grants 30970261, 81170271, 81370370, 81670392, 81600382, 81770241, 81970363 and Distinguished Young Scholar Grant 81325001), International Cooperation project (2015DFA31070) from the Ministry of Science and Technology of China, National Key R&D Program of China (2016YFC0903000), Guangdong Basic and Applied Basic Research Foundation (Grant 2019B1515120092), the Changjiang Scholars Program from the Ministry of Education of China, the Sun Yat-sen University Clinical Research 5010 Program, Program of National Key Clinical Specialties, Fundamental Research Funds for the Central Universities Sun Yat-sen University Young Teacher Training Program (19ykpy79).

Declaration of competing interest

The authors have declared that no conflict of interest exists.

Acknowledgment

The authors would like to thank Zhi-Gang Guo from Nanfang Hospital, Southern Medical University for his assistance for the measurement of cholesterol efflux capacity on HDL. The authors also would like to thank the patients and staffs at the First Affiliated Hospital, Sun Yat-sen University for their assistance throughout this study.

Appendix A. Supplementary data

Supplementary data to this article can be found at https://doi.org/10.1016/j.redox.2020.101642.

References

[1] B.J. Ansell, M. Navab, S. Hama, et al., Inflammatory/antinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment, Circulation 108 (2003) 2751–2756.
[2] H. Honda, T. Hirano, M. Ueda, et al., Associations among apolipoproteins, oxidized high-density lipoprotein and cardiovascular events in patients on hemodialysis, PLoS One 12 (2017), e0177980.
[3] S. Miura, M. Fujino, Y. Matsuo, A. Kawamura, H. Tanigawa, H. Nishikawa, K. Sakai, High density lipoprotein-induced angiogenesis requires the activation of ras/map kinase in human coronary artery endothelial cells, Arterioscler. Thromb. Vasc. Biol. 23 (2003) 802–808.
[4] D. Seetharam, C. Mineo, A.K. Gormley, et al., High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-b type i, Circ. Res. 98 (2006) 63–72.
[5] F. Jin, N. Hagenmann, L. Sun, J. Wu, T.R. Doeppper, Y. Dai, D.M. Herrman, High-density lipoprotein (hdp) promotes angiogenesis via slp3-dependent vegfr2 activation, Angiogenesis 21 (2018) 381–394.
[6] H.C. Prosser, J.T. Tan, L.L. Dunn, S. Patel, L.Z. Vanags, S. Bao, M.K. Ng, C. A. Bursill, Multifunctional regulation of angiogenesis by high-density lipoproteins, Cardiovasc. Res. 101 (2014) 145–154.
[7] J.T. Tan, H.C. Prosser, L.L. Dunn, et al., High-density lipoprotein rescues diabetes-impaired angiogenesis via scavenger receptor class b type i, Diabetes 65 (2016) 3091–3103.
[8] A.V. Khera, M. Cuchel, M. de la Llera-Moya, et al., Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis, N. Engl. J. Med. 364 (2011) 127–135.
[9] A. Rohatgi, A. Khera, J.D. Berry, et al., Hdl cholesterol efflux capacity and incident cardiovascular events, N. Engl. J. Med. 371 (2014) 2383–2393.
[10] P. Mody, P.H. Joshi, A. Khera, C.H. Ayers, A. Rohatgi, Beyond coronary calcification, family history, and c-reactive protein: cholesterol efflux capacity and cardiovascular risk prediction, J. Am. Coll. Cardiol. 67 (2016) 2480–2487.
[11] H.W. Khine, J.F. Teiber, R.W. Haley, A. Khera, C.H. Ayers, A. Rohatgi, Association of the serum myeloperoxidase/high-density lipoprotein particle ratio and incident cardiovascular events in a multi-ethnic population: observations from the dallas heart study, Atherosclerosis 263 (2017) 156–162.
[12] C. Besler, K. Heinrich, L. Rohrer, et al., Mechanisms underlying adverse effects of hdp on enos-activating pathways in patients with coronary artery disease, J. Clin. Invest. 121 (2011) 2693–2708.
[13] T. Vaisar, S. Pennathur, P.S. Green, et al., Shotgun proteomics implicates protease inhibition and complement activation in the antinflammatory properties of hdp, J. Clin. Invest. 117 (2007) 746–756.
[14] Y. Huang, J.A. Didonato, B.S. Levion, et al., An abundant dysfunctional apolipoprotein a1 in human atheroma, Nat. Med. 20 (2014) 203–207.
[15] P. Zanoni, S.A. Khetarpal, D.B. Larach, et al., Rare variant in scavenger receptor bi, J. Clin. Invest. 121 (2008) 726–734.
[16] S. Zewinger, C. Drechsler, M.E. Kleber, et al., Serum amyloid a: high-density lipoprotein and cardiovascular events in patients with type 2 diabetes mellitus, Circulation 133 (2016) 1850–1856.
[17] M. O’Reilly, E. Dillon, W. Guo, et al., High-density lipoprotein proteomic composition, and not efflux capacity, reflects differential modulation of reverse cholesterol transport by saturated and monounsaturated fat diets, Circulation 133 (2016) 1838–1850.
[18] Y. Huang, Z. Wu, M. Riwanro, et al., Myeloperoxidase, paraoxonase-1, and hdl form a functional ternary complex, J. Clin. Invest. 123 (2013) 3815–3826.

[19] B. Shao, C. Tang, A. Sinha, P.S. Mayer, G.D. Davenport, N. Brot, M.N. Oda, X. Q. Zhao, J.W. Heinecke, Humans with atherosclerosis have impaired acetyl

[20] cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase, Circ. Res. 114 (2014) 1733–1742.

[21] B.S. Rosenson, H.B. Brewer Jr., B.J. Ansell, P. Burter, M.J. Chapman, J. W. Heinecke, A. Kontush, A.R. Tall, N.R. Webb, Dysfunctional hdl and atherosclerotic cardiovascular disease, Nat. Rev. Cardiol. 13 (2016) 48–60.

[22] T. Miki, T. Miyoshi, K. Kotsu, K. Kohno, H. Assouma, S. Sakuragi, Y. Koyama, K. Nakamura, H. Ito, Decrease in oxidized high-density lipoprotein is associated with slowed progression of coronary artery calcification: subanalysis of a prospective multicenter study, Atherosclerosis 283 (2019) 1–6.

[23] F. Potakoski, V. Kothari, D.G. Thomas, et al., Anti-inflammatory effects of hdl (high-density lipoprotein) in macrophages dominate over proinflammatory effects in atherosclerotic plaques, Arterioscler. Thromb. Vasc. Biol. 39 (2019) e253–e272.

[24] M. Riwanto, L. Rohrer, B. Roschitzki, et al., Altered activation of endothelial anti-inflammatory enhancer for protection of endothelial function from injury. Circulation Cardiol. 129 (2019) 144.

[25] F.J. Chang, H.Y. Yuan, X.X. Hu, et al., High density lipoprotein from patients with valvular heart disease improves vasodilation in hypercholesterolemia and sickle cell disease, Circulation 127 (2013) 891–904.

[26] F.J. Chang, H.Y. Yuan, X.X. Hu, et al., High density lipoprotein from patients with valvular heart disease uncouples endothelial nitric oxide synthase, J. Mol. Cell. Cardiol. 74 (2014) 209–219.

[27] J. Ou, J. Wang, H. Xu, et al., Effects of d-ff on vasodilation and vessel wall thickness in hypercholesterolemic ldl receptor-null and ldl receptor/apoprotein a-i double-knockout mice on western diet, Circ. Res. 97 (2005) 1194–1197.

[28] M. Navab, S.Y. Hama, R. Chermali, G. Lai, Oral administration of an apo a-i mimetic peptide synthesized from d-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol, Circulation 105 (2002) 290–292.

[29] A. Chattopadhyay, M. Navab, G. Hough, et al., A novel approach to oral apo-a-i mimetic therapy, J. Lipid Res. 54 (2013) 995–1010.

[30] X.L. Liu, D. Luo, Y.L. Yao, et al., Dn-3n-butyrylphosphate promotes angiogenesis via the extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase/akt-endothelial nitric oxide synthase signaling pathways, J. Cardiovasc. Pharmacol. 59 (2012) 352–362.

[31] P. Mathiyalagan, Y. Liang, D. Kim, et al., Angiogenic mechanisms of human cd34(+) stem cell exosomes in the repair of ischemic hindlimb, Circ. Res. 120 (2017) 1466–1476.

[32] Y. Huang, Z. Wu, M. Riwanro, et al., Myeloperoxidase, paraoxonase-1, and hdl form a functional ternary complex, J. Clin. Invest. 123 (2013) 3815–3826.

[33] L. Zhou, X. Liu, Z.Q. Wang, et al., Siimvastatin treatment protects myocardium in noncoronary artery cardiac surgery by inhibiting apoptosis through mir-15a-5p targeting, J. Cardiovasc. Pharmacol. 72 (2018) 176–185.

[34] H.K. Yuan, C.Y. Chen, F.Q. Li, et al., Circulating extracellular vesicles from patients with valvular heart disease induce neutrophil chemotaxis via foxo3a and the inhibiting role of dexametadomedine, Jun 9, Am. J. Physiol. Endocrinol. Metab. (2020), https://doi.org/10.1152/ajpendo.00062.2020. Online ahead of print.

[35] M. Navab, G.M. Annantharamiah, S. Hama, D.W. Garber, M. Choudha, G. Hough, R. Lallone, A.M. Fogelman, Oral administration of an apo a-i mimetic peptide synthesized from d-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol, Circulation 105 (2002) 290–292.

[36] A. Chattopadhyay, M. Navab, G. Hough, et al., A novel approach to oral apo-a-i mimetic therapy. J. Lipid Res. 54 (2013) 995–1010.

[37] X.L. Liu, D. Luo, Y.L. Yao, et al., Dn-3n-butyrylphosphate promotes angiogenesis via the extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase/akt-endothelial nitric oxide synthase signaling pathways, J. Cardiovasc. Pharmacol. 59 (2012) 352–362.

[38] P. Mathiyalagan, Y. Liang, D. Kim, et al., Angiogenic mechanisms of human cd34(+) stem cell exosomes in the repair of ischemic hindlimb, Circ. Res. 120 (2017) 1466–1476.