A self-assembled, multicomponent water oxidation device

Journal:	ChemComm
Manuscript ID	CC-COM-11-2015-009556.R1
Article Type:	Communication
Date Submitted by the Author:	05-Jan-2016
Complete List of Authors:	Housecroft, Catherine; University of Basel, Department of Chemistry Constable, Edwin; University of Basel, Departement Chemie Walliser, Roche; University of Basel, Department of Chemistry Toth, Rita; Empa, Braun, Artur; Empa, Modern Materials and Surfaces Murray, Niamh; University of Basel, Departement Chemie Bora, Debajeet; Empa.Swiss Federal Laboratory for Material Testing and Research, Laboratory for high performance ceramics; University of Basel, Department of Chemistry Fortunato, Giuseppino; Empa.Swiss Federal Laboratory for Material Testing and Research, Laboratory for Advanced Fibers
A self-assembled, multicomponent water oxidation device

Rita Tóth, Roché M. Walliser, Niamh S. Murray, Debajeet K. Bora, Artur Braun, Giuseppeppi Fortunato, Catherine E. Housecroft, Edwin C. Constable

Langmuir-Blodgett (LB) and drop-cast (DC) films prepared from [Ru(1)2][PF6]2 and Co3POM (1 = 4,4′-bis(nonyl)-2,2′-bipyridine, Co3POM = K10[Co4(H2O)2(α-PW10O40)4]) have been evaluated as water oxidation catalysts and their electrocatalytic performances are reported; DC films evolve more O2 per unit area than LB films and the catalyst is stable on an FTO surface for ≈ 500–600 minutes.

Developing clean, renewable energy sources is one of the greatest challenges facing mankind, and a promising approach is that of artificial photosynthesis. Inspired by Nature and an understanding of the mechanisms exhibited by photosystems I and II many groups are investigating the photoelectrochemical or photocatalytic splitting of water into H2 and O2. Of the two half-reactions of water splitting, oxidation to O2 is more challenging involving four electrons, four protons, two H2O molecules and the final formation of an O=O bond.

High activation energies and slow kinetics motivates the development of water oxidation catalysts (WOC) which are efficient at minimal overpotential, hydrolytically and oxidatively stable and composed of inexpensive, earth-abundant materials. Recently carbon-free, molecular polyoxometalate (POM) WOCs have been incorporated in both homogeneous and heterogeneous systems. A polyoxometallate K10[Co4(H2O)2(PW10O40)4] (Co4POM) and a more efficient vanadium-containing polyoxometalate [Co4(H2O)3(VW10O40)4]10+, function as effective homogeneous WOCs when combined with an in situ generated [Ru(bpy)3]2+ oxidant. A solid-aqueous interface, can both control the organization of the components and enhance the overall efficacy.\(^1\)\(^-\)\(^12\)

We have recently prepared films from [Ru(1)2][PF6]2 and Co3POM on mica using the LB technique for use as a WOC in an electrochemical water splitting cell.\(^13\) We now compare the electrocatalytic performance of LB layers with layer-by-layer drop-cast (DC) films of the same components on fluorine doped tin oxide (FTO) coated glass slides as a conductive substrate.

LB films were self-assembled on the substrates by the vertical lifting method, with withdrawal and immersion of the substrate through the film\(^15\). The substrate was allowed to dry in air after each withdrawal for 5 minutes prior to the next immersion/withdrawal cycle. The films were prepared with 50 dipping cycles. Details of the preparation of the LB and DC films are given in the ESI\(^*\).

SEM-FIB images of LB films before and after electrocatalytic treatment (Fig. S1 versus S2\(^*\)) show that the surface of a multiple-layer LB film is smoother than the FTO surface (Fig. S3\(^*\)) but is still rough. This surface structure of the electrodes is essential for the catalytic activity. The surface of the DC films is more uneven (Fig. S4\(^*\)), with the film thickness ranging between 10 nm and a few microns.

Scheme 1. Structure of ligand 1. See Scheme S1\(^*\) for the structure of [Ru(1)2]\(^2+\).

To assess the WOC performances of the LB and DC films, along with the individual drop-cast components ([Ru(1)2][PF6]2 and Co3POM), cyclic voltammetry (CV) measurements were performed at pH 7.6 in phosphate buffer saline (PBS) solution in a three-electrode system.\(^\)\(^*\) Fig. 1 shows that the catalytic activity of the bare FTO-coated glass and the [Ru(1)2][PF6]2 drop cast film is negligible. In contrast, the Co3POM drop cast film exhibited larger current density than the LB and DC combined WOC ([Ru(1)2]\(^2+\)/Co3POM) films. The onset of catalytic current of the DC film and Co3POM films occurs at nearly the same potential (+1.11 V vs. Ag/AgCl, respectively), however, the current onsets at ~0.1 V higher potential (+1.23 V vs. Ag/AgCl) in the case of LB films. The overpotential is at least 0.52 V over the thermodynamic potential for water oxidation at pH 7.6 (0.59 V vs. Ag/AgCl). The current density of 2.16 mA cm\(^-2\) is associated with the catalytic action of the combined [Ru(1)2][PF6]2/Co3POM system.
To monitor the amount of O\textsubscript{2} evolved from the reaction between the [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−]\textsubscript{2}/CoPOM system and H\textsubscript{2}O we have developed a closed cycle, recirculating gas chromatography (GC) system equipped with a custom-built, sealed electrochemical cell (Fig. S6†). A long term (over 1000 minutes) electrolysis was carried out by applying a constant potential of +1.3 V vs. Ag/AgCl (and +1.0 V vs. Ag/AgCl, see Fig. S7†) in PBS electrolyte. Sustainable O\textsubscript{2} evolution was observed for ~600 min for all four types of film, indicating the stability of the catalyst system on the FTO surface for a relative long time (Fig. 2). Although no further oxygen evolution was detected after 600 minutes from the LB and DC films or [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−]\textsubscript{2}, the oxygen amount in the headspace steadily increased during the 1100 minutes for which the reaction was monitored above the CoPOM film. The DC films evolved slightly more O\textsubscript{2} per area than the the LB films. However, the thickness of the DC films is greater and the surface was more uneven than the layers prepared by the LB technique (Fig. S4 and S8†).

Under a lower applied bias of +1 V vs. Ag/AgCl the DC, CoPOM and [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−]\textsubscript{2} films evolve approximately the same amount of O\textsubscript{2} as at +1.3 V vs. Ag/AgCl bias (Fig. S7†) since the applied potentials are higher than their water oxidation onset potential. The LB film performs better at +1.3 V than at +1.0 V bias potential due to its higher onset potential of +1.23 V (Fig. S7†).

The long-term stability of the systems was confirmed by chronocoulometric measurements. A bias of +1.3 V (vs Ag/AgCl) was applied for >600 minutes and the current was recorded under working conditions (Fig. 3). After the initial drop, the current was relatively stable. The spikes on the curves are due to bubble formation on, and desorption from the surface of the film. The results are similar to those for a study related to a spinel mixed oxide electrode.14 On the smoother surface of the LB films, fewer bubbles form than on the rough surface of the DC films. The height of the spikes scales with the observed current density.

We compared the amount of evolved O\textsubscript{2} measured by gas chromatography with the theoretical number of moles of O\textsubscript{2} obtained from the current density data (shown in Fig. 3) applying Faraday’s Law (integrated current/4F) (Fig. 4).15 The amount of O\textsubscript{2} determined from the GC experiment is around six times lower than that calculated for DC films and about one third of the theoretical value for LB films at 600 minutes. This can be attributed to the dissolution of O\textsubscript{2} in the relatively large volume of electrolyte (59 cm3) compared to the 1 cm2 area of the electrode containing ~3.5 nmol catalyst. The measured current density may also include parasitic side reactions. It is evident that the amount of catalyst material on the FTO substrate is lower after anodizing the electrodes for a significant period of time than in the initial DC and LB films (Fig. S8†). Initially, the electrodes show structures with a cracked pattern similar to the Co-Pi catalyst surface reported by Nocera.7 The post-electrochemical treated films show a very small amount of catalyst and the bare FTO surface is clearly visible in scanning electron microscopy (SEM) images (Fig. S8†) taken after 1000 min. operation. However, the film thickness and surface structure remained the same after, (Fig. S1 and S2†), and the films were stable during, 1 hour of catalytic activity.

The estimated amounts of CoPOM and [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−]\textsubscript{2} in the LB film are ≤ 3.5 nmol cm2 and ≤ 1.5 nmol cm2, respectively, and 1370 nmol cm2 for the complexes in the DC film. From 1 cm2 LB and DC films, 34 and 43 nmol O\textsubscript{2} evolved, respectively, in 600 minutes as measured by gas chromatography. The theoretical values for the same time interval, which were calculated from the current density data, are 94 and 298 nmol for 1 cm2 LB and DC films. Both measured and calculated values far exceed the amount that the stoichiometric reaction with water would give. The calculated turnover numbers and turnover

Fig. 1. CVs of 50-layer LB and DC films of [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−]/CoPOM on FTO (black and red curves respectively), DC films of [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}− (blue) and CoPOM (magenta) on FTO, and bare FTO (green). Scan rate: 25 mV s−1. Complete CVs are shown in Fig. S5†.

*Fig. 2. O\textsubscript{2} evolution vs time at +1.3 V bias for LB and DC films prepared from [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−] and CoPOM, and separate DC CoPOM and [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−].

Fig. 3. Current densities of LB and DC films, and DC CoPOM and [Ru(1)\textsubscript{3}][PF\textsubscript{6}\textsubscript{3}−] films during chronoamperometry (+1.3 V bias vs Ag/AgCl). Spikes are caused by surface bubble formation.
CoO occurs during film preparation. The XRD results also reveal the presence of powder and film contain K\textsubscript{2}O\textsubscript{3} comparable to that of 0.0007 s-1 the DC and LB films, respectively (left axis) presented measured gas amounts (right axis). The dashed red line and the solid black line reported in Nocera’s work, it was possible to calculate the lower limit since the amount of catalyst was given.

The DC films evolve about 10 nmol cm-2 more O\textsubscript{2} than the LB films at +1.3 V applied bias potential. The onset potential for DC [Ru(1)\textsubscript{3}] [PF\textsubscript{6}\textsubscript{3}]/CoPOM and DC CoPOM films is ≈ 0.1 V lower than for the LB [Ru(1)\textsubscript{3}] [PF\textsubscript{6}\textsubscript{3}]/CoPOM films, possibly arising from the larger surface area with more catalytic sites on the island-like structure of the DC film shown on the SEM images (Fig. S81). Although the CoPOM evolves less O\textsubscript{2} during the first 500–700 minutes than the LB and DC [Ru(1)\textsubscript{3}] [PF\textsubscript{6}\textsubscript{3}]/CoPOM system, it continues to produce a linearly increasing amount of O\textsubscript{2} after the other two films have reached saturation. As significantly less CoPOM was observed on the electrode after electrolysis than before electrolysis, it appears that CoPOM worked in part as a homogeneous catalyst and also partially decomposed to CoO\textsubscript{x}, which is an effective WOC catalyst. An ongoing debate concerns the stability of CoPOM and whether the polyoxometalate or CoO\textsubscript{x} is the true catalyst in the homogeneous systems. The reaction conditions, (pH, bias potential, buffer and the concentration of the catalyst) have a huge impact on the stability of CoPOM17. In the homogeneous system, not only water molecules but also the organic ligand of the Ru complex are oxidized, furthermore precipitates form from the CoPOM and Ru complex and CoPOM decomposes in phosphate buffer at neutral and basic pH values where the POM catalyst is most active. When the catalyst is immobilized on an electrode surface, desorption of the catalyst and oxidant/photosensitizer is also an issue.18 All of these parameters affect the stability of our catalytic system and contribute to the cessation of catalytic activity after 600 minutes. The detailed investigation of the stability of the system was not the scope of this study.

In conclusion, we have prepared two kinds of water oxidizing electrodes: i) alternating, smooth Langmuir-Blodgett monolayers of abundant, inorganic CoPOM catalyst and [Ru(1)\textsubscript{3}] [PF\textsubscript{6}\textsubscript{3}] oxidant and ii) also alternating, uneven drop cast layers of the two above mentioned components, both on FTO substrate. We have found that both electrodes are efficient oxygen evolving anodes at pH 8 and the DC film evolves slightly more O\textsubscript{2} per geometrical area due to its higher surface area. The catalyst is stable on the FTO surface for about 500–600 minutes. In long term operation, the drop cast CoPOM catalyst on its own evolves more O\textsubscript{2} than the [Ru(1)\textsubscript{3}] [PF\textsubscript{6}\textsubscript{3}]/CoPOM combined layers, most likely because it is not stable on the FTO surface and works as a homogeneous catalyst in the electrolyte. The turnover frequency of the LB and DC electrodes is lower than that of the homogeneous system of the same components reported by Hill,6 however, it is higher than the turnover frequency reported for CoPOM forming in situ on the surface of indium tin oxide electrode.7 Potentially, the stability of the system could be enhanced in the future by improving the binding of the catalyst system to the substrate and the components to each other, avoiding phosphate buffer and using for example borate buffer and using as low as possible bias potential. Organic oxidant/photosensitiser should also be avoided but a viable inorganic component has not yet been developed.

Acknowledgements

We thank the Swiss National Science Foundation (HTTP://P3.SNF.CH/PROJECT-137868 and -121306) R’Equip., the European Research Council (Advanced Grant 267816 LiLo) and the University of Basel for financial support. Financial support for D.K.B from the Swiss National Science Foundation (NanoTera project SHINE, 20NA21-145936) and for R.T. from the Marie Heim Vögtlin Foundation (project no” HTTP://P3.SNF.CH/PROJECT-139698) are gratefully
acknowledged. We thank Hongjin Lv (Emory University) for providing the Co4-POM complex. The sealed electrochemical cell was designed by K. Gajda-Schrantz and H. Altorfer at Empa.

Notes and references

1 J. Chow, R. J. Kopp and P. R. Portney, Science, 2003, **302**, 1528.
2 K. Arifin, E. H. Majlan, W. R. W. Daud and M. B. Kassim, Mater. Sci. and Tech., Uberlandstrasse 1 29, CH-8600, Dubendorf, Switzerland. email: edwin.constable@unibas.ch
3 Laboratory for High Performance Ceramics, Empa. Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstr. 5, 9014 St. Gallen, Switzerland.
4 Protection and Physiology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Tullastrasse 145, CH-8604, Dübendorf, Switzerland.
5 Electronic Supplementary Information (ESI) available: Experimental details, calibration/quantification; Scheme S1: structure of [Ru(411)3]; Fig. S1–S4, S8: SEM images; Fig. S5: complete CVs; Fig. S6: electrochemical reactor; Fig. S7: rate of O2 production under 1 V applied bias; Fig. S9–S13, Table S1: XRD and XPS. See for example H. Yamazaki, A. Shouji, M. Kajita and M. Yagi, ChemSusChem, 2012, 4, 1176-1182; K. Wearen, F. Laffir, G. Armstrong, C. Dickinson, M. Bonchio and T. McCormac, ACS Appl. Mater. Interfaces, 2014, 6, 8022; S. M. Lauinger, J. M. Sumliner, Q. Yin, Z. Xu, G. Liang, E. N. Glass, T. Lian and C. L. Hill, Chem. Mater., 2015, 2, 5886; J. Fielden, J. M. Sumliner, N. Han, Y. V. Geletii, X. Xiang, D. G. Musaev, T. Lian and C. L. Hill, Chem. Sci., 2015, 6, 5531; M. Nagai, H. Sanpei and M. Shirakura, J. Mater. Chem. A, 2015, **3**, 9473.

6 H. Lv, Y. V. Geletii, C. Zhao, J. W. Vickers, G. Zhu, Z. Luo, J. Song, T. Lian, D. G. Musaev and C. L. Hill, Chem. Soc. Rev., 2012, **41**, 7572.
7 Q. Yin, J. M. Tan, C. Besson, Y.V. Geletii, D.G. Musaev, A. E. Kuznetsov, Z. Luo, K. I. Hardcastle and C.L. Hill, Science, 2010, **328**, 342; H. Lv, J. Song, Y.V. Geletii, J.W. Vickers, J.M. Sumliner, D.G. Musaev, P. Kögerler, F.Z. Zhuk, J. Bacs, G. Zhu, and C.L. Hill, J. Am. Chem. Soc., 2014, **136**, 9268.
8 J. W. Vickers, T. A. Moore, A. L. Moore, D. Gust and T. E. Mallouk, J. Am. Chem. Soc., 2009, **131**, 926; P. K. Ghosh, B. S. Brunschwigg, M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 1984, **106**, 4772; I. A. Weinstock, E. M. G. Barbuzzi, M. W. Wemple, J. J. Cowan, R. S. Reiner, D. M. Sonnen, R. A. Heintz, J. S. Bond and C. L. Hill, Nature, 2001, **414**, 191.
9 F. Jiao and H. Frei, Angew. Chem. Int. Ed., 2009, **48**, 1841.
10 G. Sprintzschink, H. W. Sprintzschink, P. P. Kirsch and D. G. Whitten, J. Am. Chem. Soc., 1977, **99**, 4947.
11 G. L. Gaines, Jr, P. E. Behnken and S. J. Valenty, J. Am. Chem. Soc., 1978, **100**, 6549.
12 J. Wu, L. Liao, W. Yan, Y. Xue, Y. Sun, X. Yan, Y. Chen and Y. Xie, ChemSusChem, 2012, **5**, 1207; X. Xiang, J. Fielden, W. Rodriguez-Cordoba, Z. Huang, N. Zhang, Z. Luo, D. G. Musaev, T. Lian and C.L. Hill, J. Phys. Chem. C, 2013, **117**, 918; F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parise, C. Maccato, S. Rapino, B. R. Gonzalez, H. Amenitsch, T. Da Ros, L. Casalis, A. Goldoni, M. Marcaccio, G. Scorrano, G. Scoles, F. Paolucci, M. Prato and M. Bonchio, Nature Chem., 2010, **2**, 826; N. Anwar, A. Sartorel, M. Yaqub, K. Wearen, F. Laffir, G. Armstrong, C. Dickinson, M. Bonchio and T. McCormac, ACS Appl. Mater. Interfaces, 2014, **6**, 8022; S. M. Lauinger, J. M. Sumliner, Q. Yin, Z. Xu, G. Liang, E. N. Glass, T. Lian and C. L. Hill, Chem. Mater., 2015, **2**, 5886; J. Fielden, J. M. Sumliner, N. Han, Y. V. Geletii, X. Xiang, D. G. Musaev, T. Lian and C. L. Hill, Chem. Sci., 2015, **6**, 5531; M. Nagai, H. Sanpei and M. Shirakura, J. Mater. Chem., 2012, **22**, 9222.

13 N. S. Murray, J. A. Rudd, A.-C. Chamayou, E. C. Constable, C. E. Housecroft, M. Neuberger and J. A. J. Zampese, RSC Advances, 2014, **4**, 11766.
14 T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira and A. Manthiram, Nature Comm., 2014, **5**, 3949.
15 D. K. Bora, N. Han, Y. V. Geletii, X. Xiang, D. G. Musaev, T. Lian and C. L. Hill, Chem. Sci., 2015, **6**, 5531; M. Nagai, H. Sanpei and M. Shirakura, J. Mater. Chem., 2012, **22**, 9222.

16 H. Fukuoka, H. Imoto, and T. Saito, J. Solid State Chem., 1995, **119**, 107.
17 See for example: J. J. Stracke and R. G. Finke, J. Am. Chem. Soc., 2011, **133**, 14872; M. Natali, S. Berardi, A. Sartorel, M. Bonchio, S. Campagna and F. Scandola, Chem. Commun., 2012, **48**, 8808; J. J. Stracke and R. G. Finke, ACS Catal., 2013, 3, 1209; J. W. Vickers, H. Lv, J. M. Sumliner, G. Zhu, Z. Luo, D. G. Musaev, Y. V. Geletii and C. L. Hill, J. Am. Chem. Soc., 2013, **135**, 14110; J. J. Stracke and R. G. Finke, ACS Catal., 2014, **4**, 79.
18 J. M. Sumliner, H. Lv, J. Fielden, Y. V. Geletii and C. L. Hill, Eur. J. Inorg. Chem., 2014, 635.
A self-assembled, multicomponent water oxidation device

Rita Tóth, Roché M. Walliser, Niamh S. Murray, Debajeet K. Bora, Artur Braun, Guiseppino Fortunato, Catherine E. Housecroft, Edwin C. Constable*

Langmuir-Blodgett (LB) and drop-cast (DC) films of [Ru(1)3][PF6]2/Co4POM (1 = 4,4′-bis(α-nonyl)-2,2′-bipyridine) on FTO function as water oxidation catalysts, and the catalyst evolves O2 for 600 min.
