The heat sensitive factor (HSF) of *Yersinia ruckeri* is produced by an alkyl sulphatase involved in sodium dodecyl sulphate (SDS) degradation but not in virulence

Roberto Navais, Jessica Méndez, Desirée Cascales, Pilar Reimundo and José A Guijarro*

Abstract

Background: The heat sensitive factor (HSF) of the fish pathogen *Yersinia ruckeri* was previously identified as an unusual band on SDS-PAGE. According to this, *Y. ruckeri* strains were classified in HSF+ and HSF− in terms of the presence/absence of the factor. Experiments carried out by injection challenge with HSF+ strains caused high mortalities in rainbow trout. In contrast, HSF− strains did not cause mortality. In conclusion, HSF appeared to be a relevant virulence factor in *Y. ruckeri*.

Results: We report here the identification and study of the gene coding for the enzyme involved in the production of HSF. Culture medium containing SDS and Coomassie brilliant blue dye was used to screen a mini*Tn5 Km2* mutant library of *Y. ruckeri* 150. Blue colonies lacking a surrounding creamy deposit, a phenotype described in former studies as HSF−, were identified. DNA sequence analysis of a selected mutant revealed that this had a transposon interruption in a chromosome-located gene which codes for a heat sensitive alkyl sulphatase of 78.7 kDa (*YraS*; *Yersinia ruckeri* alkyl sulphatase) which is able to degrade SDS to 1-dodecanol. As it was expected, the introduction of the *yraS* gene into an HSF− strain turned this into HSF+. Surprisingly, although the protein allows *Y. ruckeri* to degrade SDS, the bacterium could not use this compound as the sole carbon source. Moreover, the *yraS* mutant showed a similar level of SDS resistance to the parental strain. It was the interruption of the *acrA* gene which made *Y. ruckeri* sensitive to this compound. LD50 experiments showed a similar virulence of the *yraS* mutant and parental strain.

Conclusions: The HSF of *Y. ruckeri* is the product of the alkyl sulphatase YraS, able to degrade SDS to 1-dodecanol. This degradation is not linked to the utilization of SDS as a carbon source and surprisingly, the enzyme is not involved in bacterial virulence or in the high SDS resistance displayed by the bacterium. This role is played by the AcrAB-ToIC system.

Keywords: *Yersinia ruckeri*, HSF factor, Alkyl sulphatase, Virulence

Background

Yersinia ruckeri is a Gram-negative bacterium alternating between planktonic and host interaction states. It is the causative agent of enteric redmouth disease (ERM) affecting mainly salmonids in fish farms, which leads to important economic losses in aquaculture worldwide. Four serological groups [1] and two biotypes [2] of *Y. ruckeri* are currently proposed. Amongst them, serotype 1 is the most virulent, being commonly isolated from outbreaks in fish farms. Whereas the mechanisms involved in the virulence of human pathogenic *Yersinia* species have been studied in depth, only a few pathogenic mechanisms of *Y. ruckeri* have been described [3-8]. In this context, of special interest is the work of Furones et al. [9], who found an association between the virulence of *Y. ruckeri* serotype I strains and the presence of a heat-sensitive factor (HSF), identified as a sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) band of approximately 120 kDa from cell extracts. The
strains were classified in HSF+ and HSF− in terms of the presence/absence of the factor [9]. Experiments carried out by injection challenge with HSF+ strains caused high mortalities in rainbow trout. In contrast, HSF− strains did not cause mortality. These authors concluded that HSF appeared to be a relevant virulence factor in Y. ruckeri.

In order to be able to distinguish HSF+ and HSF− strains routinely, Furones et al. [10] developed a differential culture medium containing SDS and the Coomassie brilliant blue dye. In this medium, the colonies of the HSF+ strains appeared as white, due to a creamy deposit around the colony, whereas those of HSF− strains did not form this deposit and became deeply blue.

Given the relationship between the presence of the HSF and the virulence of Y. ruckeri, we decided it would be interesting to investigate the gene coding for this factor. The HSF was found to be produced by an alkyl sulphatase, a protein which is not related to the virulence of the bacterium, but with potential usefulness for removing surfactant from the environment.

Results

Creamy white Y. ruckeri colony phenotype (HSF+) growing in the presence of SDS is caused by an alkyl sulphatase (YraS). A mini-Tn5 Km2 Y. ruckeri transposon library was screened for colonies lacking the creamy white deposit around the colonies on TSA medium containing SDS and Coomassie brilliant blue (Figure 1). Southern blot and sequence analysis of the interrupted genes in several blue coloured colonies showed that all of them presented a unique chromosomal transposon insertion in a 2,127 bp open reading frame. Putative −10 (ATTATT) and −35 (ATAACA) promoter sequences, and ribosome–binding site (AAGGA) were identified upstream of the ORF, and a stem-loop palindromic sequence corresponding to a rho-independent terminator was located at the 3′ end of the gene (Figure 2).

The product of the interrupted gene, a protein of 708 amino acids, shows a high degree of identity with other proteins defined as alkyl sulphatases or SDS hydrolases from different bacteria such as Microcystis aeruginosa (71%) (CC104676), Thioctis violascens (63%) (YP_006413521), Vibrio cholerae (52%) (EGS71352) and Pseudomonas aeruginosa (51%) [11].

In silico analysis indicated that the protein carries an N-terminal signal peptide of 24 amino acid residues and contains two domains: the cl00446, characteristic of the metallo-β-lactamase family, and the COG2015, typical of alkyl sulphatases (Figure 2). Both domains are present in the SdsA and SdsA1 alkyl sulphatases from Pseudomonas sp. ATCC19151 (AAA25989) [12] and P. aeruginosa PAO1 (NP_249431) [11], respectively. Additionally, the protein harbours, at its N-terminal sequence, a Zn²⁺–binding motif (THxHxDHxGG-102-E-18-AE-44-H) characteristic of metallo-β-lactamase-related enzymes, also present in the SdsA and SdsA1 alkyl sulphatases [11,12] (Figure 2).

The *in silico* results were in concordance with data obtained from the analysis by gas chromatography–mass spectrometry of the creamy-white compound produced by cultures of the Y. ruckeri parental strain grown in NB with 0.25% SDS. The compound was identified as 1-dodecanol (Additional file 1: Figure S1), the molecule resulting from the hydrolysis of SDS by an alkyl sulphatase [13].

The phylogenetic tree, based on the YraS protein of different microorganisms, showed that Y. ruckeri does not share any evolutionary origin with the bacteria harbouring...
an YraS-homologous protein (Additional file 2: Figure S2). However, all the bacteria that are closer to Y. ruckeri in the phylogenetic tree, with the exception of Sinorhizobium meliloti, are also aquatic. One example is Photobacterium profundum, a psychrophilic marine bacterium belonging to the Vibrionaceae family. Proteins homologous to YraS were also found in other Enterobacteriaceae species such as Klebsiella oxytoca, Klebsiella variicola and Salmonella enterica. However, the proteins of these bacteria are very distant in the phylogenetic tree from the YraS protein of Y. ruckeri (Additional file 2: Figure S2).

YraS is the HSF factor

In order to go further into the relationship between the yraS gene and the HSF phenotype, defined by a creamy deposit around the colony on SDS containing media (Figure 3A), one of the obtained mutants showing an HSF colony phenotype (HSF−1; Figure 3B) was complemented with the yraS gene. As can be observed in Figure 3C, a complete reversion of the HSF− to HSF+ colony phenotype was achieved. Furthermore, when the yraS gene was introduced in Y. ruckeri 956, a serotype II strain showing an HSF− phenotype, the colony phenotype changed to...
HSF+ (Figure 3D,E). Both, yraS mutant and 956 strains, when complemented with the yraS gene, originated a larger creamy deposit than that of the parental strain, probably owing to gene dosage effect (Figure 3C,E). In conclusion, the yraS gene is responsible for the HSF+ phenotype of Y. ruckeri colonies on SDS-containing media.

To confirm that the YraS protein was linked to the HSF factor, defined by Furones et al. [9] as a 120 kDa band in SDS-PAGE gels, cell extracts from the different Y. ruckeri parental, yraS mutant, 956 and complemented strains were obtained and separated by SDS-PAGE under the conditions previously described [9]. Figure 4A, lane 1, shows the presence in the Y. ruckeri parental strain of a band, resulting from the degradation of the SDS present in the gel, with an apparent molecular mass of approximately 120 kDa. This band disappeared in the yraS mutant (Figure 4A, lane 2) and returned when the mutant was complemented with the yraS gene (Figure 4A, lane 3). This band was also absent in the HSF− Y. ruckeri 965 strain (Figure 4B, lane 1), and again appeared when this strain was yraS complemented (Figure 4B, lane 2). The presence in the gel of this 120 kDa band was temperature-dependent. Indeed, when the cell extracts of the HSF+ strains were heated to 100°C for 10 min, before SDS-PAGE separation, the 120 kDa band was absent (Figure 4A, lane 4). Moreover, when the gel was stained with Sudan black dye the 120 kDa band became stained (Additional file 3: Figure S3). Both types of behaviour were defined previously for the HSF factor [9].

![Figure 3 Colony morphology of different Y. ruckeri strains grown on TSA-SDS showing the HSF+ and HSF− phenotypes. Strains were point inoculated and after 120 h at 28°C colonies were photographed. A. Y. ruckeri 150 parental strain. The HSF− phenotype of yraS mutant (HSF−) (B), and 956 strains (D) changes to HSF+ phenotype (C and E, respectively), when they are complemented by the yraS gene.](image)

![Figure 4 Zymograms showing SDS hydrolysis after SDS-PAGE of crude extract of different Y. ruckeri strains. SDS-PAGE of bacterial cell extracts was performed at 15 mA in a cool room for 16 h. Then, gels were incubated at 20°C for 4 h and kept 1 additional hour at 4°C for SDS precipitation. Bands of SDS hydrolysis activity appear as clear zones against an opaque gel. (A) Cell extract from: lane 1, Y. ruckeri (parental strain); lane 2, yraS−; lane 3, yraS+; lane 4, parental strain heated at 100°C for 10 min. (B) Cell extract from: lane 1, Y. ruckeri 956; lane 2, 956yraS+. Molecular mass markers (in kDa) are indicated on the left side of each gel. Photographs were taken on a dark background to contrast the bands. There was a match between the appearance in the SDS-PAGE of the 120 kDa SDS hydrolysis bands and the presence of the yraS gene in the strains.](image)
HSF+/HSF− phenotype correlates with the presence/absence of the yraS gene in *Y. ruckeri* strains

A set of *Y. ruckeri* strains, including some used in the study of Furones et al. [9,10], were analysed by PCR for the presence of the *yraS* gene and also tested for colony morphology on SDS-containing medium. In all the cases, there was a match between colony morphology and the presence of the *yraS* gene: all the HSF+ strains harboured the *yraS* gene and presented a white creamy deposit surrounding the colonies, whereas in HSF− strains the *yraS* gene was absent and colonies lacked the white creamy deposit (Figure 5).

The *yraS* gene is not involved in virulence and it has no nutritional role

The presence in *Y. ruckeri* of the HSF factor, now defined as the product of the YraS enzyme, was previously associated with virulence [9,10]. In order to define the role of this factor in virulence, LD₅₀ experiments were carried out in groups of 10 rainbow trout fish (weight 10–15 g) intraperitoneally injected with 100 μl of parental and yraS mutant strains dilutions from 10² to 10⁸ CFU/ml. Fish death occurred along the 7 days period and cumulative mortality curves were similar for both strains in each dilution (Additional file 4: Figure S4). At the end of this period, LD₅₀ values obtained were 1.0 × 10² CFU (with lower and upper 95% confidence limits of 1.3 × 10 and 4.0 × 10² CFU), and 1.1 × 10² CFU (with lower and upper 95% confidence limits of 9.0 and 4.8 × 10² CFU), respectively. These results showed that the YraS protein is not a virulence factor.

Constitutive expression of the *yraS* gene seems to occur, since the YraS protein is present in both NB and M9C media. A first approach to the role of the YraS protein was inferred from experiments in which glucose was added to the M9C medium containing 1% (w/v) SDS. After 96 h of incubation at 28°C, no degradation at all of SDS by the parental strain occurred when glucose was present in the culture medium. In the same way, the parental strain showed an HSF− phenotype when glucose was present in M9C medium containing SDS (Additional file 5: Figure S5). This result could be a consequence of a

Figure 5 Relationship between HSF+/− colony phenotype and presence/absence of the *yraS* gene in different *Y. ruckeri* isolates.

(A) Aliquots of 5 μl of early stationary phase cultures of isolates of *Y. ruckeri* from different hosts and geographic origins were spotted onto TSA-SDS medium. After 48 h of incubation at 28°C, colonies were photographed. (B) Aliquots from the same cultures were used for an *yraS* gene fragment amplification using PCR reactions according the protocol described in Experimental Procedures. PCR-generated amplicons were separated in agarose gel and photographed. Lane A100 shows DNA molecular mass markers from 100 to 1000 bp. All the isolates showing HSF+ phenotype (creamy white colonies) were positive for the PCR reaction, whereas the isolates with HSF− phenotype (transparent colonies) did not present the amplicon.
catabolic repression mechanism involved in the regulation of the *yraS* gene. Therefore, it would be possible that *Y. ruckeri* uses SDS as an additional carbon source for bacterial growth. However, when the different *Y. ruckeri* strains were incubated in M9 solid and liquid media containing different amounts of SDS as sole carbon source no growth at all was observed. Definitely, *Y. ruckeri* SDS degradation by YraS is not linked to the utilization of this detergent as a sole carbon source. Moreover, the presence in the culture media of different amounts of sulphate did not produce any visible alteration in SDS degradation, suggesting that sulphate is not involved in the regulation of the *yraS* gene.

The protein YraS is not involved in SDS-resistance; instead, this property lies within the AcrAB-TolC system. Growth of the *yraS* mutant strain in NB medium containing 0.25% SDS at 28°C was similar to that of the parental strain, although a greater decrease in cell viability occurred in the mutant strain during the stationary phase of growth (Figure 6). SDS was totally degraded by the parental strain after 24 h of incubation at 28°C, but no degradation at all occurred during the growth of the *yraS* mutant (Figure 6). Percentages of 0.5% and 1% SDS were not totally degraded by the parental strain, probably because nutrient depletion occurred before all the detergent was hydrolysed.

To examine the role of the YraS protein in the physiology of the bacterium, the MIC of SDS for different *Y. ruckeri* strains was determined. The results indicated that an identical level of resistance to SDS (MIC=3.2% w/v) was found amongst *Y. ruckeri* parental, *yraS* mutant and complemented *yraS*+ strains. In addition, no major resistance to SDS was found when the *Y. ruckeri* 956 strain was complemented with the *yraS* gene, the MIC for both strains was 0.8% (w/v). These results indicated that the alkyl sulphatase is not a relevant SDS-resistance mechanism in the bacterium. Similarly, both parental and mutant strains presented the same MIC for Triton X-100, Tween 80 and bile salts (data not shown).

In order to elucidate the system responsible for the high SDS resistance of the bacterium, a mini-Tn5 Km2 mutant library of *Y. ruckeri* was screened to select a mutant unable to grow in the presence of 0.5% SDS. The gene whose interruption was responsible for that phenotype codes for a protein homologous to AcrA, one of the components of the AcrAB-TolC system. This is involved in pumping out of the cell a wide variety of

Figure 6 Growth curves and SDS degradation by *Y. ruckeri* parental and *yraS* mutant strains. Cultures were incubated in NB containing 0.25% (w/v) SDS at 28°C and 250 rpm and, at different times, samples were withdrawn and growth determined by plate counting. Simultaneously, the presence of SDS in the culture supernatant was quantified by the Stains-all method [14]. Continuous line and dotted line represents the growth and SDS degradation of parental (■) and *yraS* (○) strains. Data represent the mean ± standard deviation of three independent experiments. Growth was similar for the two strains, but SDS was completely degraded by the parental strain after 24 h of incubation, whereas no degradation at all occurred by the *yraS* mutant strain.
compounds including detergents and antibiotics in bacteria such as *Escherichia coli* and *Salmonella enterica* [15-17]. Phenotypic analysis of this mutant showed that it was sensitive to SDS, having a MIC of 0.00625% w/v, instead of the 3.2% w/v of the parental strain. Additionally, the *acrA* mutant was significantly more sensitive than the parental strain to Triton X-100, bile salts and the antimicrobials tetracycline, oxitetracycline, ciprofloxacin, chloramphenicol and oxolinic acid (data not shown).

Discussion

Virulence in *Y. ruckeri* was previously correlated with the presence of the HSF+ colony phenotype [9]. In this work, this HSF+ phenotype was linked to the product of the *yraS* gene which corresponds to an alkyl sulphatase. This enzyme is involved in the degradation of alkyl sulphate esters, such as SDS, generating as a first product water insoluble 1-dodecanol. This compound, which, in *Y. ruckeri* is accumulated in the medium, forms a white creamy deposit around colonies and leads to a band of 120 kDa in SDS-PAGE gels. Both phenotypes were previously observed by Furones et al., [9,10]. According to in silico analysis, the YraS enzyme falls into a new class of alkyl sulphatases characterized by the presence of a metallo-β-lactamase domain and found mostly in gram-negative bacteria [11]. This kind of enzymes cleaves alkyl sulphates such as SDS into the corresponding alcohol.

The YraS activity was identified in SDS-PAGE as a diffuse SDS-hydrolytic band of 120 kDa, approximately. This result is coincident with the molecular mass of HSF described by Furones et al. [9]. According to this, and taking into account that the molecular mass of the YraS, deduced from the amino acid sequence, was 78.7 kDa, the active form of the enzyme should correspond to a dimeric structure. This also agrees with the dimeric structure of the active form of the SdsA1 from *P. aeruginosa*, which provides resistance to high concentrations of SDS [11]. In the same way, a lipid core structure for HSF was suggested, since the 120 kDa band was stained with Sudan black, a dye used for lipid detection [9]. Our results showed that the 120 kDa band was also stained with this dye. Therefore, the lipidic core structure of HSF suggested by Furones et al. [9] was correct, since it is likely that the compound stained with Sudan black is the fatty alcohol 1-dodecanol, the product of the alkyl sulphatase action on SDS. Nevertheless, we must link the HSF to the alkyl sulphatase rather than to the product of SDS degradation by the enzyme. This fact is consistent with the absence of the band when the cell extract was heat-inactivated before electrophoresis. Comparative analysis of parental and yraS mutant *Y. ruckeri* strains, complementation studies, as well as PCR detection of the *yraS* gene in different strains of *Y. ruckeri*, confirm that YraS is responsible for the production of the HSF factor. These results, together with the presence of a single 120 kDa band in the cell extracts of the parental *Y. ruckeri* strain, strongly suggested that, under these experimental conditions, there were no additional alkyl sulphatases involved in the degradation of SDS, and the YraS protein was the only one responsible for this activity. This differs from different reports that indicated that bacteria able to degrade alkyl sulphate esters possess multiple sulphatase enzymes [11,18-22].

Our results indicate that there was no relation between the presence of HSF factor and virulence in *Y. ruckeri*. Indeed, results of the rainbow trout infection experiments carried out with the parental and yraS mutant strains, showed that both strains behaved similarly as virulent bacteria. These results are not incompatible with the one obtained by Furones et al., [9,10] because although YraS is not a virulence factor its presence could be linked to the existence in the bacterium of specific virulence factors. In this way, YraS could be a hallmark of virulence even though it is not involved in pathogenesis. This could explain why HSF+ strains are always virulent [9,10].

The YraS protein was produced by the bacterium when growing in media lacking SDS and therefore, it seems that the gene is constitutively expressed. However, YraS activity was absent when the bacterium was grown in the presence of glucose, suggesting a regulation of the *yraS* gene by catabolic repression. Nevertheless, the absence of bacterial growth in the presence of SDS as a sole carbon source as well as the accumulation of 1-dodecanol in the culture media, indicate that *Y. ruckeri*, in contrast to *P. aeruginosa* [11], is unable to use this detergent as sole carbon source. 1-dodecanol, resulting from SDS degradation by the YraS protein, is likely to enter the bacterium where it would be oxidized to 1-dodecanoic acid by the action of the appropriate alcohol dehydrogenase and aldehyde dehydrogenase to be assimilated as a carbon source. Therefore, it seems that the absence of one or more of these systems could be a problem which prevents further metabolic assimilation of 1-dodecanol by *Y. ruckeri*.

No alteration in detergent hydrolysis by *Y. ruckeri* was observed when inorganic sulphate was added to the media. Our results suggest that in *Y. ruckeri* this enzyme is not involved in the sulphur cycle and is not a system for scavenging sulphate from the environment. Whereas bacterial aryl sulphatases have been involved in sulphate scavenging [23], alkyl sulphatases seem to have additional roles [11,24,25]. In conclusion, and according to the results, it seems that the *yraS* gene is not related to carbon or sulphur utilization.

There are many reports of bacteria able to degrade different amounts of SDS. For example, a *P. putida* SP3 strain was able to completely degrade 0.1% SDS in 16 h [26]. However, most of the SDS-degrading bacteria
isolated presented lower rates, needing 4 to 10 days of incubation to completely degrade percentages of 0.05 to 0.2% of SDS [27,28]. Interestingly, _Y. ruckeri_ degrades 0.25% SDS in NB within 24 h of incubation at 28°C, and can grow in the presence of up to 1.6% of this detergent. Introduction of the _yraS_ gene in _Y. ruckeri_ strains lacking the capacity to degrade SDS enables these strains to do so. However, _Y. ruckeri_ SDS resistance is not _yraS_-dependent since the growth curve of the _yraS_ mutant strain in the presence of 0.25% SDS was similar to that of the parental strain. To our knowledge, it is here established for the first time that a gene involved in SDS degradation is not associated with the resistance of the bacterium to this detergent. Usually it is assumed that the presence of alkyl sulphatases in a particular bacterium is related to its resistance to toxic alkyl sulphate molecules. However, in fact, resistance of _Y. ruckeri_ to SDS lies in the AcrAB-TolC system, a pump involved in the excretion of multiple compounds such as antimicrobials and detergents in different bacteria [15-17], as was indicated by the analysis of an SDS-sensitive _Y. ruckeri_ acrA mutant. Therefore, in this particular case, and probably in other bacteria bearing this kind of sulphatase-coding gene, it may be that the _yraS_ gene is only present in naturally SDS resistant _Y. ruckeri_ strains. These characteristics, high SDS resistance and degradation capacity, make this bacterium potentially useful as a tool for removing anionic surfactants from different sources.

It is interesting to speculate about the presence of this enzyme in a bacterium alternating between planktonic and host interaction states. The results indicate that the protein does not have a significant role in the infectious process or in nutrition or detergent resistance. However, the constitutive expression in nutritionally rich and poor media suggests that the protein provides an advantage to the bacterium in its natural environment. The high resistance to SDS depending on the AcrAB-TolC system, together with the high rate of degradation of this compound by the alkyl sulphatase YraS, reinforces the potential usefulness of bacteria possessing high expression systems of both mechanisms in the fight against surfactant pollution in bioremediation.

Conclusions

We have showed in this work the nature of the previously defined HSF factor of _Y. ruckeri_ as the product of SDS degradation by the YraS alkyl sulphatase. Although in former works it was established a correlation between the possession of HSF and the virulence of this microorganism, our results indicate that the factor is not necessary for bacterial pathogenicity. YraS was able to degrade SDS but it does not contribute, at least in a relevant way, to the high SDS resistance observed in this bacterium. This function corresponds to the AcrAB-TolC system.

Methods

Bacterial strains and culture conditions

The bacterial strains and plasmids used in this study are listed in Tables 1 and 2, respectively. _E. coli_ strains were routinely grown in 2xTY broth and agar, and _Y. ruckeri_ strains in nutrient broth (NB) and nutrient agar (NA). Screening of _Y. ruckeri_ strains for the HSF+/HSF coli- ony phenotype was performed on TSA medium supplemented with 1% SDS (TSA-SDS). Coomassie brilliant blue dye was added to molten TSA-SDS medium to provide final concentrations of 100 μg/ml, as described by Furones et al., [10]. Experiments on SDS as a nutrient were performed using the minimal medium described by Romaine et al. [29] without glucose (M9) and M9C (M9 containing 2 g/l casamino acids) broth and agar media supplemented with different percentages of SDS. When it was required glucose was added to M9C to a concentration of 0.5% (w/v). For motility experiments, a semisolid tryptone agar medium (5 g/l NaCl, 10 g/l tryptone, 0.6% w/v agar) was used. Liquid cultures were incubated at 37°C for _E. coli_ and 18°C and 28°C for _Y. ruckeri_ in orbital shakers at 250 rpm. Growth was monitored by determining the OD₆₀₀. When SDS was present in the liquid culture growth was determined by serial dilutions and plate counts. When required, the following compounds were added to the media: 100 μg/ml ampicillin, 0.1 μg/ml cephalexine, 50 μg/ml kanamycin or streptomycin.

Mutant selection, DNA sequencing and mutant complementation

A mini-Tn5 Km2 transposon based _Y. ruckeri_ 150 mutants library was generated by using the pUT mini-Tn5 Km2 plasmid. This plasmid was transferred by conjugation from _E. coli_ S17 1pir to _Y. ruckeri_ 150 strain [34]. Transconjugants were first selected on NA plates supplemented with kanamycin and cephalexine by incubation for two days at 28°C. Approximately 10000 transposon mutants were replicated onto TSA-SDS medium containing Coomassie brilliant blue dye and incubated for five days. Colonies showing an HSF[−] phenotype characterized by a deep blue colour were selected. For testing that selected transconjugants presented a sole transposon insertion, selected colonies were analysed by Southern blotting using a DIG DNA detection kit (Roche) following the protocol described by the manufacturer. Total DNA from transconjugants and the parental strain was isolated (GenElute Mammalian Genomic DNA Purification Kit-Sigma) and digested with EcoRI and XbaI restriction enzymes. Then, DNA fragments were subjected to 0.75% w/v agarose gel electrophoresis at 100 V for 2 h, transferred to a nylon membrane (Amersham Biosciences) and fixed with UV irradiation. The labelled region of the kanamycin gene from the Tn5 transposon was used as a
probe to perform hybridization. For genome location of the mini-Tn5 transposon mutated gene, plasmid was obtained by the Kado and Liu [35] method, and total DNA was extracted from the Y. ruckeri strains 150 and 956 using GenElute Mammalian Genomic DNA Purification Kit-Sigma. DNA extracted from both procedures was separated by agarose gel electrophoresis and after transfer to nylon membranes, submitted to hybridization using as a probe a labelled 455 bp PCR-generated internal fragment of the yraS gene. PCR was performed using the following primers: yraS-a (5′-ACCGAAGCGCCAGA-3′) and yraS-b (5′-AGTGTCGCTGGATTACC-3′).

The acrA mutant was obtained after replica plating of a mini-Tn5 transposon library on TSA medium and TSA containing 0.5% w/v SDS. Colonies able to grow on TSA but unable to do so in the presence of SDS were selected. Unique transposon insertion in the genome of the bacterium was assessed by Southern blot analysis as described above using as a probe the labelled region of the kanamycin gene from the Tn5 transposon.

To obtain the complete sequence of yraS (the gene responsible for the HSF+ phenotype), genomic DNA from the Y. ruckeri yraS mutant strain was digested with EcoRI and PstI restriction enzymes to obtain the DNA regions adjacent to the 5′ and 3′ ends, respectively, from the kanamycin gene of the mini-Tn5 Km2 transposon. The restriction fragments were ligated into the pUC19 plasmid previously digested with the corresponding enzymes and

Table 1 Bacterial strains used in this study

Strain	Serotype	HSF	Other characteristics	Source of reference
Y. ruckeri				
150	I	+	Isolated during outbreaks of ERM disease in Denmark	J.L. Larsen, University of Frederiksberg (Denmark)
150 acrA	I	+	acrA::mini-Tn5 Km2 Kmr	This study
150 yraS	I	-	yraS::mini Tn5 Km2 Kmr	This study
150 yraS+	I	+	150 yraS harboring pGBM5-yraS	This study
146,147,148,149			Isolated during outbreaks of ERM disease in Denmark	J.L. Larsen, University of Frederiksberg (Denmark)
955	I	+	Trout-isolated strain	CECT (Spanish Type Culture Collection)
956	II	-	Trout-isolated strain	CECT (Spanish Type Culture Collection)
43/19	I	-	Trout-isolated strain	CECT (Spanish Type Culture Collection)
956 yraS+	II	+	956 harboring pGBM5-yraS	This study
35/85*	I	+	Isolated from Salmo gairdneri in Denmark	C.J. Rodgers (University of Tarragona, Spain)
13/86*	I	+	Isolated from Salmo gairdneri in England	C.J. Rodgers (University of Tarragona, Spain)
A100, A102,	I		Trout-isolated strain	I. Márquez (SERIDA, Spain)
150/05,158/05,382/05	I	+	Trout-isolated strain	Proaqua Nutrition S.A.
137/76*,138/76*	I		Trout-isolated strain	C.J. Rodgers (University of Tarragona, Spain)
NCTC 10478*	I		Isolated from S. gairdneri in USA	C.J. Rodgers (University of Tarragona, Spain)
NCMB 1315*	NT		Isolated from S. gairdneri in USA	C.J. Rodgers (University of Tarragona, Spain)
NCMB 1316*	I		Isolated from S. gairdneri in USA	C.J. Rodgers (University of Tarragona, Spain)
YrV187/09/115*	I		Isolated from S. solar in Norway	C.J. Rodgers (University of Tarragona, Spain)
YrV187/09/700*	II		Trout-isolated strain	C.J. Rodgers (University of Tarragona, Spain)
ATCC 29473*	I		Isolated from S. gairdneri in USA	C.J. Rodgers (University of Tarragona, Spain)
RD38*	I		Trout-isolated strain	R.L. Davies, University of Stirling (Scotland)
AL 3017	NT		Trout-isolated strain	M.D. Furones, IRTA (Tarragona)
E. coli				
DHH5λpir	NT	NT	F′/endA1 hsdR17 (k-mk+) supE44 thi-1 recA1 gyrA (NalR) λ (pir)	[30]
S17-1λpir	NT	NT	λ (pir) hsdR pro thi, RP4-2 Tc-Mu Km::Tn7	[31]

*Strains used in the work of Furones et al., [9,10].

Table 2 Plasmids used in this study

Plasmid	Characteristics	Source or reference
pGBM5	Spc/Sm', lac promoter	[32]
pGBM5-yraS	pGBM5 harboring yraS gene	This study
pUC19	Ap', cloning vector	Pharmacia
pUT mini-Tn5 Km2	Ap', oriR6K, mobRP4, trp, mini-Tn Km2 (Km')	[33]
dephosphorylated, and the mixture was used to transform cells of E. coli S17-1pir by electroporation. Transformants were selected on 2xTY agar medium containing kanamycin and ampicillin. Plasmid DNA was obtained and sequencing was carried out using primers from the mini-Tn5 Km2 transposon sequence (Tn5-sec5′-AACGCGTATCAGGCT-3′, and Tn5-sec2:5′-GCGTATCAGGCTGACC-3′). Based on the obtained sequences new primers were designed to complete the yraS gene sequence. DNA sequencing was performed by the dyeoxy chain termination method with the BigDye Terminator version 3.1 (Applied Biosystems) according to the manufacturer's instructions in an ABI Prism 3730 DNA sequencer.

A similar procedure was performed for the sequencing of the acrA gene. The DNA from the selected mutant was digested with KpnI and XbaI restriction enzymes for the sequencing of the DNA region located at 5′ and 3′ position with respect to the kanamycin gene. After DNA digestion, the fragments were ligated into the pUC19 plasmid and the mixture was used to transform cells of E. coli S17-1pir by electroporation. From this point the same procedure described in the previous paragraph was followed.

To complement the Y. ruckeri yraS mutant and Y. ruckeri 956 strains, the yraS gene was amplified from the parental strain by PCR using Biotools DNA polymerase and primers yraS-S (5′-CCTGGTACGGTTGG TATTGTCTGGT-3′) and yraS-E (5′-GGCGGAAATTC AGTCAGTGAGATAACGA-3′). The SalI and EcoRI restriction sites (in italics) were introduced into the sequences of yraS-S and yraS-E, respectively, to clone the derivative product and SDS quantification system consisting of a 1:400 dilution of each sample was used. A 1-min splitless injection of 1 μl of a 1:400 dilution of each sample was used. Linear velocity of the carrier gas (helium): 36 cm/s (1 ml/min). Oven program: 40°C, 20°C/min to 250°C, 10°C/min to 300°C (hold for 5 min). Temperatures of injector, source, interface and quadrupole were 270°C, 230°C, 280°C y 150°C, respectively. 70 eV was used for ionization. Mass spectra were recorded scanning the 20–550 m/z range.

For SDS quantification, at different times during the growth curve samples were withdrawn and supernatant obtained by centrifugation at 13,000 rpm for 10 min. Samples of 1 μl of 1:3 supernatant dilutions were mixed with 200 μl Stains-all assay solution [14] and the absorbance was read at 438 nm using a PowerWave™ XS.
Microplate Spectrophotometer (BioTek). New calibration curves (0–0.1% w/v SDS) were acquired with each set of samples. In all the cases, samples were analysed by triplicate.

MIC determination

The MIC for different compounds was determined by the dilution method in NB. A bacterial inoculum was prepared by diluting 100 times in NB a 0.5 McFarland suspension (10^8 CFU/ml) from an exponential-phase culture (OD_{600} 0.5). One ml of the cell suspension was added to each tube containing the appropriate dilution of the tested compound. Then, cultures were incubated for 24 h at 28°C and 250 rpm. Growth inhibition was evaluated macroscopically, except for SDS, which was determined by serial dilutions and plate counts. The MIC value corresponds to the first dilution of each compound where no growth at all was observed. MIC values were tested in triplicate.

Animal experiments

Animal experiments were performed in accordance with the European legislation governing animal welfare, and they were authorized and supervised by the Ethics Committee of Universidad de Oviedo. Rainbow trout (*Oncorhynchus mykiss*) of about 10–15 g obtained from a commercial fish farm were used in all the experiments. Fish were kept in 60 l tanks at 18°C ± 1 in dechlorinated water. Each batch was microbiologically analysed for potential pathogens before and during all the experimental process.

Fish were authorized and supervised by the Ethics Committee of Universidad de Oviedo. Rainbow trout (*Oncorhynchus mykiss*) of about 10–15 g obtained from a commercial fish farm were used in all the experiments. Fish were kept in 60 l tanks at 18°C ± 1 in dechlorinated water. Each batch was microbiologically analysed for potential pathogens before and during all the experimental process.

For LD_{50} determination, *Y. ruckeri* parental and yraS mutant strains cultures were grown to an OD_{600} of 0.5-0.6 (OD_{600} 0.5 = 10^8 CFU/ml), harvested by centrifugation and washed twice with PBS. Cells were re-suspended in PBS and logarithmic dilutions were prepared. Groups of 10 fish were challenged by intraperitoneal injection of 100 μl of each dilution from 10^2 to 10^8 CFU/ml. Mortality was monitored daily over a 7-days period, and LD_{50} was calculated according to the PROBIT method using the SPSS statistical package for Windows, establishing a 95% confidence limit. LD_{50} experiments were performed in duplicate. Aliquots of bacterial suspensions injected in each dilution were plated on NA and after incubation for two days at 18°C colonies were counted for further LD_{50} determination. Dead animals were examined bacteriologically to confirm the presence of *Y. ruckeri*. Control fishes were injected with an equal volume of PBS.

In silico analysis

Sequences were compared to those in the databases with the BLAST (Basic Local Alignment Search Tool) program. Protein sequences were aligned with MUSCLE http://www.ebi.ac.uk/Tools/msa/muscle/ [36] using default parameters. Alignment was manually inspected to correct inaccurately situated residues and a maximum likelihood tree was built with MEGA software http://www.megasoftware.net/ [37], using WAG + G model [38] as most suitable amino acid substitution method and 4 Gamma categories. Bootstrap analysis was performed by resampling 500 times. Topology was checked and edited using iTOL http://itol.embl.de/ [39,40] and manual graphical corrections were performed using Adobe Illustrator CS6 (Adobe Systems, USA).

Availability of supporting data

The yraS sequence was deposited in GenBank under accession number KF421132.

Additional files

Additional file 1: Figure S1. GC-MS spectra of the components found in the culture supernatant after incubation of *Y. ruckeri* parental and yraS mutant strains were grown for 24 h at 28°C in NB containing 0.25% SDS. After 24 h of incubation at 28°C, cultures were filtrated. Filtrates were dried by vacuum centrifuge and finally resuspended in chloroform. Samples of 1μl of 1:400 dilutions were then analysed by GC-MS, framing the peaks amplified in graph E. (A) Commercial 1-dodecanol (control). (B) Sample from *Y. ruckeri* 150 culture. (C) Sample from *Y. ruckeri* yraS mutant culture. (D) Sample from culture medium without inoculation. (E) Magnification of the peak relative to the retention time corresponding to 1-dodecanol from the sample of the *Y. ruckeri* parental strain culture.

Additional file 2: Figure S2. Phylogenetic tree based on the deduced amino acid sequence of the YraS protein from *Y. ruckeri*. The protein alignment was carried out by the MUSCLE program [14], and further corrected manually and a phylogenetic tree of maximum likelihood was constructed using the MEGA program [36]. The topology was edited with the iTOL program [38,39].

Additional file 3: Figure S3. SDS-PAGE of cell extracts of different *Y. ruckeri* strains after Sudan black staining. Electrophoresis was performed at 15 mA in a cool room for 16 h. Then, the gel was incubated at 20°C for 4 h and stained with Sudan black dye. Cell extract from: lane 1, *Y. ruckeri* parental strain; lane 2, yraS; lane 3, yraS*. Molecular masses are indicated in kDa on the left side of the gel. Only strains bearing the yraS gene were positive for the presence of the 120 kDa band stained with Sudan black.

Additional file 4: Figure S4. Mean cumulative percent mortality of rainbow trout following challenge with *Y. ruckeri* parental and yraS mutant strains. Single groups of 10 fish were challenged by intraperitoneal infection with 1.8 x 10^6 (▲), 3.5 x 10^6 (▲), 1.8 x 10^7 (●) and 3.5 x 10^7 (□) CFU of parental (continuous line) and yraS mutant (dotted line) strains, and mortality was monitored every day. Each data point represents the mean ± standard deviation for at least 10 fish per group.

Additional file 5: Figure S5. Effect of glucose on the HSF phenotype of *Y. ruckeri*. Plates containing M9C with 0.5% w/v SDS (A) and the same medium plus 1% w/v of glucose (B) were spotted with 5 μl of early stationary phase cultures of *Y. ruckeri* parental and yraS strains. After 96 h of incubation at 28°C, plates were photographed. The HSF phenotype, indicated by the creamy white colony corresponding to the parental strain grown in the absence of glucose (A), was converted to HSF* in the presence of glucose (B).

Competing interest

The authors declare that they have no competing interests.

Authors’ contributions

JAG, RN and JM designed the study and wrote the manuscript. RN, JM and DC performed mutant’s selection, genetic manipulations and virulence experiments.
testing. RN, JM, PR and JAG analysed the data. All authors read and approved the final manuscript.

Authors’ information
This work was carried out in the Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain. RN, JM and PR are Doctors; DC is PhD student; and JAG is Professor of Microbiology.

Acknowledgments
The authors thanks to Dr. Dolors Furones for her generously providing Y. ruckeri strains and help during the development of this work. Roberto Navais and Desirée Cascales were the recipients of grants from the Spanish Ministerio de Ciencia e Innovación (MICINN). The study was supported by the MINECO project AGL2012-35808 and FEDER fund.

Received: 26 May 2014 Accepted: 12 August 2014
Published online: 30 September 2014

References
1. Romalde JL, Magariños B, Barja JL, Toranzo AE: Antigenic and molecular characterization of Yersinia ruckeri. Proposal for a new intraspecific classification. Syst Appl Microbiol 1993, 16:411–419.
2. Davies RL, Fennichs GN: Morphological and biochemical differences among isolates of Yersinia ruckeri obtained from wide geographical areas. J Fish Dis 1989, 12:357–365.
3. Tobbach E, Decostere A, Hermans K, Haezebrock F, Chiers K: Yersinia ruckeri infections in salmonid fish. J Fish Dis 2007, 30:257–268.
4. Fernández L, Méndez J, Guijarro JA: Molecular virulence mechanisms of the fish pathogen Yersinia ruckeri. Vet Microbiol 2007, 125:1–10.
5. Dahiya I, Stevenson RMW: The ZnuABC operon is important for Yersinia ruckeri infections of rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 2010, 33:331–340.
6. Dahiya I, Stevenson RMW: The UvrY response regulator of the BarA-UvrY two-component system contributes to Yersinia ruckeri infection of rainbow trout (Oncorhynchus mykiss). Arch Microbiol 2010, 192:541–547.
7. Méndez J, Fernández L, Menéndez A, Reimundo P, Pérez-Pascual D, Navais R, Guijarro JA: A chromosomally located traHUCLMN operon encoding a putative type IV secretion system is involved in the virulence of Yersinia ruckeri. Appl Environ Microbiol 2009, 75:937–945.
8. Méndez J, Reimundo P, Pérez-Pascual D, Navais R, Gómez E, Guijarro JA: A novel cdsAB operon is involved in the uptake of L-cysteine and participates in the pathogenesis of Yersinia ruckeri. J Bacteriol 2011, 193:944–951.
9. Furones MD, Gilpin MJ, Alderman DJ, Munn CB: Virulence of Yersinia ruckeri serotype I strains is associated with a heat sensitive factor (HSF) in cell extracts. FEMS Microbiol Lett 1990, 66:339–344.
10. Furones MD, Gilpin ML, Munn CB: Culture media for the differentiation of isolated of Yersinia ruckeri, based on detection of a virulence factor. J Appl Bacteriol 1993, 74:360–366.
11. Hagelueken G, Adams TM, Wiehlmann L, Widow U, Kolmar H, Tümmler B, von Figura K, Kerrtesz M, Uson I: Expression of the bet operon: A broad host range mobilization system for Pseudomonas aeruginosa. J Bacteriol 1991, 173:2469–2475.
12. Ennahli H, Osako K, Ishino Y, Teh H: Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001, 503:1–6.
13. Chaturvedi V, Kumar A: A high-affinity iron uptake system in Yersinia ruckeri. Mol Biol Evol 2004, 21:153–158.
14. Chaturvedi V, Kumar A: An iron- and temperature-regulated haemolysin YhlA is a virulence factor of Yersinia ruckeri. Microbiology 2007, 153:483–489.
15. Menan D, Pougeon M, Danay P, Gieseler M: A sensitive reporter gene system using bacterial luteolase based on a series of plasmid cloning vectors compatible with derivatives of pBR322. Gene 1997, 28:197–200.
16. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN: Mini-Tn5 Transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 1990, 172:658–6572.
17. Romalde JL, Conchas RF, Toranzo AE: Evidence that Yersinia ruckeri possesses a high affinity iron uptake system. FEMS Microbiol Lett 1991, 64:121–125.
18. Lillis V, Dodgson KS, White FF: Initiation of activation of a pre-mergent herbicide by novel alkyl sulfatase of Pseudomonas putida FLA. Appl Environ Microbiol 1983, 46:988–994.
19. Bateman TJ, Dodgson KS, White GF: Primary alkyl sulfatase activities of the detergent-degrading bacterium Pseudomonas C128. Biochem J 1986, 236:401–408.
20. Matcham GJW, Bartholomew B, Dodgson KS, Payne WI, Fitzgerald W: Stereospecificity and complexity of microbial sulfotransferases involved in the biodegradation of secondary alkyl sulfonate detergents. FEMS Microbiol Lett 1977, 1:197–200.
21. Boltes I, Czapinska H, Kahntert A, von Bulow R, Dierks T, Schmidt B, von Figura K, Kertesz MA, Usón I: 1.3 A structure of arylsulfatase from Pseudomonas aeruginosa established the catalytic mechanism of sulfite ester cleavage in the sulfite family. Structure 2001, 9:493–491.
22. Muller I, Kahntert A, Pape T, Sheldrick GM, Meyer-Klauche W, Dierks T, Kertesz M, Usón I: Crystal structure of the arylsulfatase AtsK: Insights into the catalytic mechanism of the Fe (II) alpha-ketoglutarate-dependent dioxygenase superfamily. Biochemistry 2004, 43:3075–3088.
23. Hanson SR, Best MD, Wong C-H: Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed 2004, 43:5736–5763.
24. Tzouvelekis D, Matsuda K, Adachi K, Tsukada Y: Purification and properties of bile acid sulfatase from Pseudomonas testosteroni. Biosci Biotechnol Biochem 1994, 58:869–894.
25. Osteras M, Roncopagni E, Vincent N, Poggi MC, Lebruduler D: Presence of a gene encoding cholino sulfatase in Sinorhizobium meliloti bet operon: Choline-o-sulfatase is metabolized into glycine betaine. Proc Natl Acad Sci USA 1998, 95:1394–1399.
26. Chaturvedi V, Kumar A: Isolation of a strain of Pseudomonas putida capable of metabolizing anionic detergents sodium dodecyl sulfate (SDS), J. Microbiol 2011, 1:47–53.
27. Hosseini F, Malekzadeh F, Anmrozafar N, Ghaemi N: Biodegradation of anionic surfactants by isolation bacteria from activated sludge. Int J Environ Sci Tech 2007, 4:1237–1242.
28. Shukor MY, Husin WSW, Rahman MFA, Shamaan NA, Syed MA: Isolation and characterization of an SDS-degrading Klebsiella oxytoca. J Environ Biol 2009, 30:129–134.
29. Romalde JL, Conchas RF, Toranzo AE: Evidence that Yersinia ruckeri possesses a high affinity iron uptake system. FEMS Microbiol Lett 1991, 64:121–125.
30. Woodcock DM, Crowther PJ, Doherty J, Jefferson S, DeCruz E, Noyer-Weidner M, Smith SS, Michael MZ, Graham MW: Quantitative evaluation of Escherichia coli host strains for tolerance to cytokine methylation in plasmid and plasmid recombinants. Nucleic Acids Res 1989, 17:2669–2675.
31. Simon R, Prieger U, Pühler A: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1983, 1:794–791.
32. Benen J, Pougeon M, Danay P, Gieseler M: A sensitive reporter gene system using bacterial luteolase based on a series of plasmid cloning vectors compatible with derivatives of pBR322. Gene 1997, 28:197–200.
33. de Lorenzo V, Herrero M, Jakubzik U, Timmis KN: Mini-Tn5 Transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 1990, 172:658–6572.
34. Fernández L, Prieto M, Guijarro JA: The iron- and temperature-regulated haemolysin YhlA is a virulence factor of Yersinia ruckeri. Microbiology 2007, 153:483–489.
35. Kado CI, Liu ST: A sensitive reporter gene system using bacterial luteolase based on a series of plasmid cloning vectors compatible with derivatives of pBR322. Gene 1997, 28:197–200.
36. Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32:1792–1797.
37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28:2731–2739.
38. Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18:691–699.
39. Letunic I, Bork P: Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. *Bioinformatics* 2007, 23:127–128.
40. Letunic I, Bork P: Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. *Nucleic Acid Res* 2011, 39:475–478.

doi:10.1186/s12866-014-0221-7
Cite this article as: Navais et al: The heat sensitive factor (HSF) of *Yersinia ruckeri* is produced by an alkyl sulphatase involved in sodium dodecyl sulphate (SDS) degradation but not in virulence. *BMC Microbiology* 2014 14:221.