Green synthesis of silver nanoparticles using *Calotropis gigantea* and its characterization using UV-Vis Spectroscopy

P Kemala¹, R Idroes¹,²,* K Khairan¹,², T E Tallei⁴, M Ramli¹, R Efendi¹

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
²Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
³Pusat Riset Obat Herbal Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
⁴Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia

Email: rinaldi.idroes@unsyiah.ac.id

Abstract. The use of *Calotropis gigantea* from Ie Seu-Um, Aceh Besar geothermal area for silver nanoparticles (AgNPs) synthesized has been reported. The process of synthesis AgNPs can be carried out with chemical methods, physical methods, and green synthesis methods, but in this study, the process is focused on the green synthesis method using *C. gigantea* flowers and leaves extract from Ie Seu-Um geothermal area, Aceh Besar. Phytochemical analysis showed that *C. gigantea* leaves contain alkaloids, steroids, tannins, phenolics, and saponins, while the flowers of *C. gigantea* contain alkaloids, terpenoids, steroids, flavonoids, tannins, phenolics, and saponins. The reaction of the AgNPs formation was observed by colour change formed. AgNPs-*C. gigantea* flower extract dan AgNPs-*C. gigantea* leaves extract showed the reddish-brown and brownish-yellow solution respectively after 48 h incubation in dark condition at room temperature. The result of the reaction characterized using UV-Vis Spectrophotometry showed that the phenomenon of *Surface plasmon resonance* (SPR) occurs in the mixture of nanoparticles formed. The concentration of AgNO₃ as a reagent affected the SPR phenomenon. The result showed that particles formed are the same size and shape.

1. **Introduction**

Nanotechnology is an important field of modern research today. In the nanoparticle size range 1-100 nm, all physical properties and changes in atoms or molecules can be utilized more effectively and efficiently [1]. Nanotechnology is referred to metal nanoparticles. The use of nanoparticles increases because of their unique properties and better physical and chemical characteristics than ordinary sizes. Several studies have reported that nanoparticles through cell membranes and interact with cell biological systems with high oxidative activity. However, the widespread use of nanoparticles has risks to human health and the environment [2]. The application of metal nanoparticles as nanotechnology in biomedical therapy has attracted the attention of many researchers. Some of them are the use of silver nanoparticles synthesized using plants as antibacterial [3–6], antifungal [7,8], anticancer [9], antioxidant [6], and antiviral [10,11].
Silver nanoparticles (AgNPs) are the main focus of metal nanoparticles because AgNPs have the highest thermal and electrical conductivity and also have low boiling and melting points. AgNPs are known to be the most reactive metal among other metals and are used as agents of antimicrobial [12]. Metal nanoparticles can be synthesized in several ways, including using physical methods, chemical methods, and green synthesis methods. The green synthesis method is a popular method because it is environmentally friendly and relatively inexpensive compared to other methods [7]. This method is performed by using protein or secondary metabolite as an important agent in metal reduction reaction [Ahmed, 2016].

In Indonesia, the secondary metabolite is highly abundant in its biodiversity [13,14]. It is easily found in the plant, produced as a metabolite by itself, and stored in its anatomies like a leaf, root, bark [15–17], stem, flower, and fruit [18–20]. Other sources are endophytes, bacteria [21], or fungus [22]. The use of secondary metabolites in nanoparticle preparation has several advantages, including producing metal nanoparticles with lower toxicity for eukaryotic cells than others, because the secondary metabolites have functioned as a capping agent to neutralize metals (Ag²⁺→Ag³⁺) [12].

Some of the plants that have been reported in the AgNPs green synthesis process are Lampranthus coccineus and Malephora lutea [10], Andrographys paniculata, Phyllanthus niruri and Tinospora cordifolia [11], Calotropis gigantea [4,7], Platycodon grandiflorum [5], Memecylon umbellatum Burm [6], and Malva parviflora [8]. This study explores the use of plants that live in a geothermal area. Some research showed that the secondary metabolite content of plants taken from geothermal areas is higher in species diversity and yields than plants from ordinary areas [23–26]. In Aceh Province, there are several areas that have geothermal potential due to volcanic activity [27–29], one of which is Seulawah Agam Mountain in Aceh Besar District [30–32]. This mountain has several manifestations in several separate locations, namely the manifestation of Ie Brouk [33,34], Ie Seu-Um [35,36], and Ie Jue [37,38]. Lots of mineral-rich water in each of these manifestations spread to the surrounding environment so that it affects the mineral composition of the soil to the biosynthesis of plants that grow in that area [33].

C. gigantea from Ie Seu-Um geothermal manifestation area, Aceh Besar, is the plant chosen in this study because the plant extract has high gram-positive and gram-negative antibacterial activity [35]. The plant was more fertile in the Ie Seu-Um geothermal manifestation area than other geothermal manifestation areas such as Ie Brok and Ie Jue. In addition, the use of C. gigantea flower extract has been used as a bioreductant of silver nanoparticles with antibacterial activity [4], and its leaf extract has been reported for the synthesis of silver nanoparticles with antifungal activity [7]. However, none of the research has been found on the synthesis of silver nanoparticles using C. gigantea plants which grow in geothermal manifestation areas.

2. Materials and methods

2.1. Collection and extraction of C. gigantea

Samples of C. gigantea flowers and leaves were taken from Ie Seu-Um, Aceh Besar geothermal manifestation area. The sampling locations at N05°32’50.97”, E095°32’55.10’ with an altitude of 97 m above sea level. The samples were separated between flowers and leaves, then washed with water flow and cut into small pieces to be dried in shade condition for several days. Sample extraction was carried out in different ways for flowers and leaves. The process of extracting C. gigantea leaves follows a reported procedure [7], whereas the dried leaf samples 10 g were taken to be boiled with 100 mL of distilled water for 20 minutes and filtered using filter paper. The dried C. gigantea flowers were put in 200 mL of distilled water while stirring at room temperature for 15 minutes and filtered [4]. Extract of flowers and leaves C. gigantea can only be stored at 4°C for a week.
2.2. Phytochemical Analysis
Phytochemical analysis was carried out to test the content of alkaloids, saponins, phenolics, tannins, flavonoids, steroids, and terpenoids in flowers and leaves of *C. gigantea*. The phytochemical screening followed standardized methods [39].

2.3. Green Synthesis AgNPs
The process of synthesizing silver nanoparticles followed the method reported by [40] in which 90 mL of AgNO₃ (2 mM and 9 mM respectively) was mixed with 10 mL of *C. gigantea* leaves and flowers extracted separately. The reaction was incubated at room temperature and kept under constant stirring using a magnetic stirrer 60 rpm for 48 hours in dark conditions. The colour formed of the reaction was observed. The reaction was centrifuged and characterized by UV-Vis spectrophotometry.

2.4. Characterization AgNPs Using UV-Vis Spectrophotometry
The formation of silver nanoparticles (AgNPs) is characterized by discolouration that occurs at the time of incubation. Each mixture of AgNPs reaction with leaves and flowers of *C. gigantea* was measured at a wavelength range of 200-600 nm.

3. Results and discussion

3.1. Plant Extraction
C. gigantea leaves and flowers extract from Ie Seu-Um, Aceh Besar geothermal area was washed first to remove impurities. These samples were cut into small pieces to expand the sample surfaces so the compounds of the samples could come out easily when water was added. The synthesis of AgNPs using plant extracts was reported to use water as solvent [4–7,10,11,41]. But the process of the leaves extraction was used at high temperature while the flowers extraction was not. The result of extraction obtained a pink solution of *C. gigantea* flower extract and a dark yellow solution of *C. gigantea* leaves extract.

3.2. Phytochemical Analysis
C. gigantea is a gummy plant that is found at Ie Seu-Um Outflow Geothermal Area, Aceh Besar [35], and almost all locations in Aceh. The plant is drought and salt tolerant. It can grow quickly as a weed because it can spread seeds by the wind [42]. The bioactive compounds in the genus Calotropis used in
medicine include cardenolides in leaves; flavonols in Arial; proteinase, triterpene ester and cysteine proteinase in the sap; triterpenoids in flowers; cardiac glycosides, terpenes, aromatic products (essential oils), cardenolides, sterols, and the non-protein amino acid at the root [43]. Analysis of phytochemicals on the leaves, stems, and flowers of *C. gigantea* from the normal environment showed that the plant contains saponins, tannins, alkaloids, glycosides, flavonoids, cyclicides, and steroids [44].

C. gigantea from Ie Seu-Um, Aceh Besar geothermal manifestation area was tested for phytochemicals to find out the secondary metabolites in the plant. There is a difference in the content of secondary metabolites between the flowers and the leaves of the plant. Table 1 shows a comparison of the phytochemical *C. gigantea* from Ie Seu-Um, Aceh Besar geothermal manifestation area.

Table 1. Phytochemical screening analysis of *C. gigantea* flowers and leaves extract from Ie Seu-Um, Aceh Besar geothermal area.

	Flowers	Leaves
Alkaloids	+	+
Terpenoids	+	-
Steroids	-	+
Flavonoids	+	-
Tannins	+	+
Phenolics	+	+
Saponins	+	+

3.3. Green Synthesis AgNPs

The silver nanoparticle (AgNPs) synthesis reaction was carried out using two samples: flower extract and leaves extract of *C. gigantea*. The reaction is carried out in a dark condition to avoid the photoactivation reaction of silver nitrate [11]. An indication of AgNPs formation is the occurrence of discoloration in the solution. After some incubation time, it was reported that the AgNPs solution has discoloration to brownish-yellow [5,11] or reddish-brown [4,8,10]. The discoloration is an indication that Ag⁺ has been reduced to AgNPs in the solution [11].

The study showed a change in the colour of the solution after 48 h of incubation. A pink solution of *C. gigantea* flowers extract will form a reddish-brown solution after mixing AgNO₃. A dark yellow solution of *C. gigantea* leaves extract will form brownish yellow after reacting with AgNO₃. Based on the results, it can be concluded that silver nanoparticles synthesized using *C. gigantea* from Ie Seu-Um, Aceh Besar geothermal area have been formed.

![Figure 2](image_url)

Figure 2. (a) *C. gigantea* flowers extract; (b) AgNP- *C. gigantea* flowers extract; (c) *C. gigantea* leaves extract; (d) AgNP- *C. gigantea* leaves extract.
3.4. Characterization UV-Vis Spectrophotometry

UV-Vis characterization is one of the common characterization performed to test AgNPs formed. Previously, it has been discussed that all synthesis processes of AgNPs have discoloration to brownish yellow or reddish-brown. The presence of chromophores in the organic components affects the visible light while UV-Vis light absorption extinction of metal AgNPs is connected to Localized Surface Plasmon Resonance (LSPR) appearance. LSPR is a complex process and describes excitation and coherent electron oscillation under an electromagnetic field of incident light. The complexity of the LSPR phenomenon implies the influence volume, composition, structure, shape, and also an aggregation of AgNPs [12]. Alsalhi et al. (2019) explained when plant extract is mixed with silver nitrate solution, SPR dominates and changes the electron density. SPR spectrum is also known as making redshift because of increasing temperature. This is presumably because the heating during the reaction process will cause AgNPs to agglomerate and become larger particles [5].

![Figure 3](image1.png)

Figure 3. Characterization UV-Vis AgNPs using AgNO₃ 9 mM as a reagent (a) AgNP- *C. gigantea* leaves extract; (b) AgNP- *C. gigantea* flowers extract.

![Figure 4](image2.png)

Figure 4. Characterization UV-Vis AgNPs using AgNO₃ 2 mM as a reagent (a) AgNP- *C. gigantea* leaves extract; (b) AgNP- *C. gigantea* flowers extract.

Figures 3 and 4 showed that AgNO₃ concentration affected the SPR phenomenon. When using AgNO₃ 9 mM as a reagent in AgNPs synthesis reaction, AgNP- *C. gigantea* flowers extract with SPR peak at 282 nm, whereas AgNP- *C. gigantea* leaves extract with SPR peak at 264 nm. It is different from
using AgNO$_3$ 2 mM as a reagent, AgNP-C. gigantea leaves extract showed an SPR peak at 256 nm, while AgNP-C. gigantea flowers extract showed an SPR peak at 260 nm. The broadening peaks in the UV-Vis spectra indicate that silver nanoparticles formed are polydispersed in nature due to the slow reduction of silver ions. In addition, none of the AgNPs reactions showed a maximum absorption of SPR above 500, so that indicates that the particle formed have the same size and shape [11].

4. Conclusions
Silver nanoparticles (AgNPs) have been synthesized using C. gigantea flowers and leaves extracts from Ie Seu-Um manifestation geothermal area, Aceh Besar. The reaction was observed by a colour change after 48 h incubation. The end of the reaction showed that the silver nanoparticle formed had brownish yellow and reddish-brown solution. Phytochemical analysis showed that AgNP-C. gigantea leaves extract contains alkaloids, steroids, tannins, phenolics dan saponins. However, AgNP-C. gigantea flowers extract contains alkaloids, terpenoids, steroids, flavonoids, tannins, phenolics, and saponins. The concentration of AgNO$_3$ as a reagent affects the UV-Vis characterization.

Acknowledgment
This research was funded by Kementerian Riset dan Teknologi/Badan Riset Inovasi Nasional, Lembaga Pengelola Dana Pendidikan Indonesia through “Program Pendanaan Konsorsium Riset dan Inovasi untuk Percepatan Penanganan Corona Virus Disease 2019 (Covid-19)” scheme, grant number: 14/FI/PKS-KCOVID-19.A/VI/2020 and by Universitas Syiah Kuala, Kementerian Pendidikan dan Kebudayaan Indonesia through “Program Riset Unggulan USK Percepatan Doktor” scheme, grant number: 369/UN11.2.1/PT.01.03/PNBP/2021.

References
[1] Ahmed S, Ahmad M, Swami B L and Ikram S 2016 A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise J. Adv. Res. 7 17–28
[2] Jaswal T and Gupta J 2021 A review on the toxicity of silver nanoparticles on human health Mater. Today Proc.
[3] Kambale E K, Nkanga C I, Mutonkole B P I, Bapolisi A M, Tassa D O, Liesse J M I, Krause R W M and Memvanga P B 2020 Green synthesis of antimicrobial silver nanoparticles using aqueous leaf extracts from three Congolese plant species (Brillantaisia patula, Crossopteryx febrifuga and Senna siamea) Heliyon 6 e04493
[4] Mathew S and Victo C P 2020 Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L .) W . T . Aiton and activity against pathogenic bacteria Arab. J. Chem. 0–5
[5] Anbu P, Gopinath S C B, Shik H and Lee C 2019 Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon fl ower plants and their antibacterial potential J. Mol. Struct. 1177 302–9
[6] Alsalihi M S, Elangovan K, Jacob A, Ranjitsingh A, Murali P and Devanesan S 2019 Saudi Journal of Biological Sciences Synthesis of silver nanoparticles using plant derived 4-N-methyl benzoic acid and evaluation of antimicrobial , antioxidant and antitumor activity Saudi J. Biol. Sci. 26 970–8
[7] Ali E M and Abdallah B M 2020 Effective Inhibition of Candidiasis Using an Eco- Friendly Leaf Extract of Calotropis - gigantean - Mediated Silver Nanoparticles nanomaterials 10 1–16
[8] Alotibii F, Perveen K, Al-saif N A, Alharbi R I, Bokhari N A, Albasher G, Al-oatibi R M and Al-mosa M A 2021 Saudi Journal of Biological Sciences Biosynthesis of silver nanoparticles using Malva parviflora and their antifungal activity Saudi J. Biol. Sci. 1–7
[9] Almatroudi A, Khadri H, Azam M, Rahmani A H, Khaleefah F, Khaleefah A, Khateef R and Ansari M A 2020 Seed Extract of Nigella sativa 8
[10] Haggag E G, Elshamy A M, Rabie M A, Gabr N M, Salem M, Youssif K A, Samir A, Bin
Muhsinah A, Alsayari A and Abdelmohsen U R 2019 Antiviral potential of green synthesized silver nanoparticles of lampranthus coccineus and malephora lutea Int. J. Nanomedicine 14 6217–29

Sharma V, Kaushik S, Pandit P, Dhill D, Yadav J P and Kaushik S 2019 Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus Appl. Microb. Cell Physiol. 103 881–91

Pryshchepa O 2020 Silver nanoparticles: Synthesis, investigation techniques, and properties Adv. Colloid Interface Sci. 284 87–100

Nuraskin C A, Marlina M, Idroes R, Soraya C and Djufri D 2020 Antibacterial Activity Tests of N-hexane, Ethyl Acetate, and Methanol Leaves (Vitex) Extract (pinnata) against Streptococcus mutans Open Access Maced. J. Med. Sci. 8 181–4

Cane H P C A, Saidi N, Mustanir M, Darusman D and Idroes R 2020 EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT ACTIVITIES OF XANTHONE ISOLATED FROM Orophea corymbosa LEAF Rasayan J. Chem. 13 2215–22

Nuraskin C A, Marlina, Idroes R, Soraya C and Djufri 2019 Activities inhibition methanol extract Laban Leaf (Vitex pinnata) on growth of bacteria S. mutans Atcc 31987 IOP Conf. Ser. Mater. Sci. Eng. 523 012008

Oyedemi S O and Afolayan A J 2011 Antibacterial and antioxidant activities of hydroalcoholic stem bark extract of Schotia latifolia Jacq Asian Pac. J. Trop. Med. 4 952–8

Ningsih D S, Idroes R, Bachtiar B M and Khairan 2019 The potential of five therapeutic medicinal herbs for dental treatment: A review IOP Conf. Ser. Mater. Sci. Eng. 523 12009

Tallei T E, Pelealu J J, Pollo H N, Pollo G A V, Adam A A, Effendi Y, Karuniaawan A, Rahimah S and Idroes R 2019 Ethnobotanical dataset on local edible fruits in North Sulawesi, Indonesia Data Br. 27 104681

Earlia N, Muslem, Suhendra R, Amin M, Prakoeswa C R S, Khairan and Idroes R 2019 GC/MS Analysis of Fatty Acids on Pliek U Oil and Its Pharmacological Study by Molecular Docking to Filaggrin as a Drug Candidate in Atopic Dermatitis Treatment Sci. World J. 2019 1–7

Rahmad R, Earlia N, Nabila C, Inayati I, Amin M, Prakoeswa C R S, Khairan K and Idroes R 2019 Antibacterial cream formulation of ethanolic Pliek U extracts and ethanolic residue hexane Pliek U extracts against Staphylococcus aureus IOP Conf. Ser. Mater. Sci. Eng. 523 012011

Tallei T E, Linelejan Y T, Umboh S D, Adam A A, Muslem and Idroes R 2020 Endophytic Bacteria isolated from the leaf of Languesei (Ficus minahassae Tesym. & De Vr.) and their antibacterial activities IOP Conf. Ser. Mater. Sci. Eng. 796 012047

Zulfendi, Idroes and Khairan 2019 Isolation and identification of Endophytic Fungus Fusarium sp from Agarwood (Aquilaria sp) population originated from the forest of Aceh Tamiang district, Indonesia IOP Conf. Ser. Mater. Sci. Eng. 523 12013

Nuraskin C, Marlina, Idroes R, Soraya C and Djufri 2020 Identification of secondary metabolite of laban leaf extract (Vitex pinnata l) from geothermal areas and non-geothermal of agam mountains in Aceh Besar, Aceh province, Indonesia Rasayan J. Chem. 13 18–23

Nuraskin C A, Marlina, Idroes R, Soraya C and Djufri 2019 Identification of Secondary Metabolite using Phytochemical and Infra-Radiation Test on the Leaves of Vitex pinnata found in the Seulawah Agam mountain region of Aceh Res. J. Pharm. Technol. 12 5247

Abubakar A, Yusuf H, Syukri M, Nasution R, Karma T, Munawar A A and Idroes R 2021 Chemometric classification of geothermal and non-geothermal ethanol leaf extract of seurapoh (Chromolaena odorata Linn) using infrared spectroscopy IOP Conf. Ser. Earth Environ. Sci. 667 012070

Idroes G M, Tallei T E, Idroes R, Muslem, Riza M and Suhendrayatnay 2021 The study of Calotropis Gigantea leaf metabolites from le Brouk geothermal areas Lamteuba-Aceh Besar using molecular docking IOP Conf. Ser. Earth Environ. Sci. 667 012072
[27] Putri D R, Nanda M, Rizal S, Idroes R and Ismail N 2019 Interpretation of gravity satellite data to delineate structural features connected to geothermal resources at Bur Ni Geureudong geothermal field IOP Conf. Ser. Earth Environ. Sci. 364 012003

[28] Idroes R, Marwan M, Yusuf M, Muslem M and Helwani Z 2021 GEOCHEMICAL INVESTIGATION ON JABOI MANIFESTATION, JABOI VOLCANO, SABANG, INDONESIA Int. J. GEOMATE 20

[29] Marwan, Idroes R, Yanis M, Idroes G M and Syahriza 2021 A LOW-COST UAV BASED APPLICATION FOR IDENTIFY AND MAPPING A GEOTHERMAL FEATURE IN IE JUE MANIFESTATION, SEULAWAH VOLCANO, INDONESIA Int. J. GEOMATE 20

[30] Idroes R, Yusuf M, Saiful S, Alatas M, Subhan S, Lala A, Muslem M, Suhendra R, Idroes G M, Marwan M and Mahlia T M I 2019 Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia Energies 12 4442

[31] Marwan M, Syukri M, Idroes R and Ismail N 2019 Deep and Shallow Structures of Geothermal Seulawah Agam Based on Electromagnetic and Magnetic Data Int. J. GEOMATE 16 141–7

[32] Marwan M, Yanis M, Idroes R and Ismail N 2019 2D INVERSION AND STATIC SHIFT OF MT AND TEM DATA FOR IMAGING THE GEOTHERMAL RESOURCES OF SEULAWAH AGAM VOLCANO, INDONESIA Int. J. GEOMATE 17 173–80

[33] Idroes R, Haerian, Nurisma N W, Mawaddah N, Pradyasta R R G . and Rofina 2019 Skrining aktivitas tumbuhan yang berpotensi sebagai bahan antimikroba di Kawasan Ie Brök (upflow geothermal zone) Aceh Besar

[34] Idroes R, Yusuf M, Alatas M, Subhan, Lala A, Muslem, Suhendra R, Idroes G M, Suhendrayatna, Marwan and Riza M 2019 Geochemistry of warm springs in the Ie Brök hydrothermal areas at Aceh Besar district IOP Conf. Ser. Mater. Sci. Eng. 523 012010

[35] Idroes R, Khairan, Fakri F and Zulfendi 2016 Skrining Aktifitas Tumbuhan yang Berpotensi Sebagai Bahan Antimikroba di Kawasan Ie Seu’um Aceh Besar (Banda Aceh: Syiah Kuala Universiti Press)

[36] Idroes R, Yusuf M, Alatas M, Subhan, Lala A, Saiful, Suhendra R, Idroes G M and Marwan 2018 Geochemistry of hot springs in the Ie Seu’um hydrothermal areas at Aceh Besar district, Indonesia IOP Conf. Ser. Mater. Sci. Eng. 334 012002

[37] Idroes R, Khairan and Fakri F 2017 Skrining Aktivitas Tumbuhan yang berpotensi sebagai bahan antimikroba di kawasan ie Jue (upflow geothermal Zone) Aceh besar (Banda Aceh: Unsyiah Press)

[38] Idroes R, Yusuf M, Alatas M, Subhan, Lala A, Muhammad, Suhendra R, Idroes G M and Marwan 2019 Geochemistry of Sulphate spring in the Ie Jue geothermal areas at Aceh Besar district, Indonesia IOP Conf. Ser. Mater. Sci. Eng. 523 012012

[39] Evans W C 2002 Trease and Evans’ Farmacognosy (Edinburgh)

[40] Sorubavalli U, Vadivavzahi M K and Vadivelu J 2019 Antioxidant and antimicrobial activity of calotrophis mediated silver nanoparticles J. Compos. Theory XII 303–12

[41] Al-Rohaimi A H and Al Otahi F 2020 Novel SARS-CoV-2 outbreak and COVID19 disease; a systemic review on the global pandemic Genes Dis. 7 491–501

[42] Pandian S 2020 Review on a potential herb Calotropis gigantea (L .) R . Br Scholars Academic Journal of Pharmacy (SAJP) Review Article Review on a potential herb Calotropis gigantea (L .) R . Br . Sch. Acad. J. Pharm. 2 135–43

[43] Ali-seyed M and Ayesha S 2020 Biocatalysis and Agricultural Biotechnology Calotropis - A multi-potential plant to humankind : Special focus on its wound healing efficacy Biocatal. Agric. Biotechnol. 28 101725

[44] Singh S, Singh S and Singh A P 2013 Phytochemical Investigation of Different Plant Parts of Int. J. Sci. Res. Publ. 3 2012–4