1. Introduction

By the improvement of the recent rapid high frequency technology, the signal data rate 28 Gbps (CEI 3.0) has been put to practical use implemented by the multilayer printed circuit board and 56 Gbps is planned in the next generation. Therefore, the higher harmonic waves are already beyond 50 GHz, and designing concepts for the high-speed signal integrity should become more important and be updated in order to ensure data reliability.

When a multilayer circuit board is used to increase the signal density, via structures are unavoidable to connect signal paths and planes. However, it has been known that the high-speed via transmission causes impedance discontinuities which cannot be ignored. And it is clear these discontinuities could lead to various signal integrity problems.[1–5] For example, the high-speed via transmission could induce increases of the reflection, cross-talk, jitter, and insertion loss as a result. In the previous studies, it was proven that the above discontinuities are caused by the electromagnetic couplings between the signal via and the solid ground planes. And those couplings were expressed in the equivalent circuit as the parasitic capacitances between a signal via and solid ground layers,[6–14] as shown Fig. 1. In this case, the design concepts of decrease in the above capacitances, such as adjustments of the via and through-hole structures, could be effective to improve the high-speed via transmission characteristics.[15–17] However, It has been known recently that the via transmission give rise to not only the problems of impedance discontinuities, but also the undesirable signal power emission or leak into the interval of the solid ground planes which have the parallel plate transmission mode. The above emission has also been known to end up to cause EMI problems against the external electric equipment.[18–21]

The circuit board manufacturer attempts to reduce costs of multilayer circuit board under compulsion, according to the significant progress of the signal data rate in recent years. For instance, there are two ways to reduce it. One is the adoption of the single-ended transmitter line. The
other way is the reduction of layers of multilayer circuit board. Here, only inner layers should be removed, as shown in Fig. 1. This is because the standard thickness for the board should be maintained. In the view of the crosstalk in addition, adjacent layers must be separated with each other.

While the distance between the adjacent ground planes must become longer in the above situation, it has been known that the unwanted signal power emissions might be occurred at the signal via into the dielectric between ground planes when the high-speed signal goes through it. It is clear and obvious that the involved emission causes remarkable noises and degradations of transmission characteristics at high frequencies in the multilayer circuit board. However, the previous studies do not mentioned obviously the electromagnetic behaviors of the signal power emissions at higher frequency band and why this phenomenon is occurred, at 30-50 GHz. As a result, there is no suppression method for that undesirable signal power emission. It could be considered that surrounding the signal via with a sufficient number of ground vias, as the electromagnetic shield, of course could suppress the above phenomenon. Nevertheless, this method must take more regions for high density wiring and costs of multilayer circuit board.

In this paper, we therefore proposed the simple suppression method for the undesirable power emissions from the via transmission into the dielectric between ground planes. Specifically, only to the direction that wanted to suppress the unnecessary signal power emission, the clearance around the via is extended simply into a fan shape. At first, we considered the causes of the undesirable signal power emission at high frequency from the signal via into dielectric between ground planes in chapter II. These are described by evaluating electromagnetic fields simulated by use of 3D analysis models of the single-ended via transmission implemented by the conventional 4 layer printed circuit board as the basic study.[22] Based on the chapter II, the availabilities of the proposed unique clearance structure around the high-speed via are evaluated in chapter III. As a consequence, by using this proposed method in this paper, the low-cost production of the multilayer circuit board in the next generation is available, in the point that it is applicable to conventional low-cost substrate manufacturing methods.

2. Signal Power Emission Problems from High-speed Via Transmission

Influences and causes of the undesirable signal power emission into the dielectric between ground planes from the signal via in multilayer circuit board were evaluated in the preceding study.[22] In order to consider them, the E field intensity distributions around it were simulated by use of HFSS (Ansys) in this chapter. The 3D analysis model of the single-ended via transmission implemented by the conventional 4 layer circuit board is used in this investigation.

The E field intensity distributions at a moment of the specific phase are analyzed at 45 GHz for the conventional model, as shown in Fig. 2. The 3D analysis model of the conventional 4 layer circuit board we evaluated is as the layer 1 and layer 4 are the signal layers, two microstrip lines are loaded on there respectively, and connected by a signal via. Then, waveguide port 1 and 2 are placed at edges of microstrip lines on their own layers. The solid ground planes are set to the layer 2 and layer 3 of the model. They are connected by the two ground vias which are located on both side of the signal via for the isolation from another transmission system. The input voltage to the microstrip line at the 1st layer is 1.0 V. The diameters of the barrel and the pad of the vias are set to be 300 μm and 600 μm, respectively as typical parameters. The characteristic impedance of this transmission system is 50 Ω. The diameter of the clearance around a signal via is set to be 1,000 μm. The solid ground distance between the layer 2 and layer 3 is 800 μm as generally adopted with a 4 layer circuit board.

As the results of the side view the E field intensity distribution as shown in Fig. 3 (a), it is confirmed that the strong E field is induced between the 2nd and 3rd ground planes. The electric potential difference must be occurred between the two solid ground planes because of the distance between them is approximately 1/4 wavelength at 45 GHz. Then, this induced E field might propagate between the ground layers in ±x direction as the undesirable signal power emission. On the other hand, shown in, the top view of which the observation plane is at the intermediate point between the 2nd/3rd ground layers in Fig. 3 (b), it shows that the induced E fields are radiated in all directions from the signal via concentrically, except the direction to the ground vias.

From the results of the E field intensity distributions, we assumed that the signal power emissions at 40-50 GHz are caused by the electric potential difference between the 2nd
and 3rd solid layers induced by unwanted capacitive coupling between a signal via and a solid ground plane. Consequently, it could say that the suppression of that capacitive coupling must be effective in order to reduce the undesirable signal power emission and improve transmission characteristics at high frequency.

3. Improvement Method for Power Emission between Ground Planes

It is suggested that the cause of the signal power emission into the interval of the adjacent solid ground planes is the capacitive coupling with a signal and the solid ground plane in the chapter II. Moreover, it is assumed that the leak into the interval of the solid ground planes could be suppressed by prevention of that capacitive coupling. Based on the above considerations, we proposed the method for suppression of the involved signal power emissions without taking costly components, and evaluated its availabilities by 3D analysis.

3.1 Proposed suppression method

In order to suppress the strong capacitive coupling between the signal via and the solid ground plane, we focused on the clearance which is loaded on the solid ground plane around the signal via. Figure 4 shows the clearance of the proposed model which is expanded only to the forward direction as a fan shape. That direction is
where the strong capacitive coupling is seemed to be occurred, as shown in Fig. 3. There is no cost up factor in the proposed clearance because it could be just made by etching the ground layer as a fan shape. It is recommended that the expansion distance “d” is set as following relationships,

\[d > r + S, \]
\[S > T, \]

when \(r \) is the radius of the via barrel, \(S \) is the minimum distance from the surface of the via barrel to the 2nd/3rd solid layers, and \(T \) is the distance between the 2nd/3rd solid layers. This is because the remarkable signal power emission must be occurred at the frequency band of which 1/4 wavelength approximates the value of \(T \), refer to chapter II. Therefore, the method expanding a part of the clearance as greater than \(T \) could be effective for suppression of the capacitive coupling that induces the unnecessary propagation mode into the interval of the solid ground planes.

For example, the surrounding the signal via a sufficient number of ground vias, or the concentric expansion of the clearance might be of course effective for suppressing the undesirable signal power emissions. However, it is obvious that the former must take much cost and wiring region, the latter should deteriorate transmission characteristics at high frequency because the characteristic impedance around the signal via might be disturbed due to the concentric expansion of the clearance.

3.2 3D analysis model for proposed via transmission in multilayer circuit board

Figure 5 shows the 3D analysis models for the proposed via transmission implemented by 4 layer circuit board. The parameters and the analysis conditions of the proposed model follow the conventional one in Fig. 2. In order to suppress the unwanted signal power emissions induced at the signal via, the expansion distance \(d \) of the clearance around the signal via is set to be 1,000 \(\mu \)m for the case of \(r = 150 \mu m \) and \(T = 800 \mu m \). In order to evaluate only the loss of the power emission from the signal via, the boundary condition is set to be non-reflecting boundary and the conductor loss and dielectric loss are all ignored in this calculation.
3.3 Frequency characteristics of proposed via transmission model

Frequency characteristics for the proposed model are shown in Fig. 6. These are compared with the result of the conventional one. From the results of return loss (S_{11}) and insertion loss (S_{21}) characteristics shown in Fig. 6 (a), both of them degrade remarkably at more than 40 GHz are confirmed in the conventional model. Particularly, S_{21} becomes -5.8 dB at 45 GHz. On the other hand, S_{11} and S_{21} are largely improved in the proposed model compared with the conventional results at 40-50 GHz. Especially, S_{21} keeps more than -2 dB and S_{11} keeps less than -15 dB at 0-50 GHz.

In order to discuss the effectiveness of the proposed model, the signal power emission loss characteristic is evaluated, as shown in Fig. 6 (b). This characteristic is defined as below,

$$\text{Signal power emission loss} = \{1 - (|S_{11} [\text{mag}]|^2 + |S_{21} [\text{mag}]|^2)\} \times 100 \%.$$

The emission loss should be predominant in the above characteristics because the conductor loss and dielectric loss are all ignored in this section. From the results of the signal power emission losses of the proposed model are shown in Fig. 6 (b), these are compared with the result of the conventional one, it indicates that the peak level of the signal power emission of the proposed model is drastically improved by 27% in comparison to that of the conventional one. Consequently, S_{21} characteristic is largely improved in the proposed model at 40-50 GHz. It therefore could be said that the suppression of the unwanted signal power emission is directly linked to increase the power which should be transmitted.

3.4 Electric fields of proposed via transmission model

The E field intensity distributions at 45 GHz for the proposed model are evaluated as shown in Fig. 7 in order to confirm the effectiveness of suppressing the power emissions. These distributions are captured at a moment of the specific phase when 1.0 V is inputted to the waveguide.
port 1. The observation planes are the same as Fig. 2 (a).

As shown in the side view of Fig. 7 (a), in comparison to Fig. 3 (a), there are no strong E field is observed between the signal via and the 2nd or 3rd solid ground planes by expanding a part of each clearance as a fan shape. The unnecessary transmission mode between the solid ground planes is seemed not to be strongly induced between the 2nd and 3rd solid ground planes in x direction. Consequently, as shown in the top view of Fig. 7 (b), it could be observed that the levels of E field radiated from the signal via are lower than those of the conventional model as shown in Fig. 3 (b). Therefore, we confirmed that the proposed clearance structure could certainly suppress the signal power emissions effectively.

3.5 Discussion of design concepts for proposed via transmission model

It is recommended that the expansion distance “d” is set as the relationships, $d > r + T$ and $S > T$, in the preceding section. That is because the remarkable signal power emission must be occurred at the frequency depended on T. In order to confirm them, the relationship between emission loss and d at 45 GHz is discussed, as shown in Fig. 8. This result shows it is clear that effectiveness for suppressing emission losses are drastically different in border of $S = T$. Moreover, Fig. 8 indicates the effectiveness for suppressing emission losses in $S > T$ is almost the same. From the above, we can say that the design concept for the proposed clearance should satisfy the relationships, $d > r + T$ and $S > T$.

4. Conclusion

The causes of the undesirable signal power emission between ground planes around high-speed via are described in this paper. As a result of investigation, it is confirmed that the frequency of the signal power emission is related well to the distance between the solid ground planes, as 1/4 wavelength. In addition, we made it clear that the signal power emission is caused by the capacitive coupling between a signal via and a solid ground layer.

Accordingly, in order to solve above problems, we proposed the unique clearance structure around a high-speed signal via. Specifically, only to the direction that wanted to suppress the unnecessary signal power emission, the clearance is extended simply into a fan shape. By using this proposed method, we confirmed that the involved emissions are suppressed by 27% in comparison to the conventional signal via model. Consequently, the transmission characteristics at 30–50 GHz are largely improved. Thus, we could say that the proposed suppression method is available to low-cost production of the multilayer circuit board in the next generation, in the point that it is applicable to the conventional low-cost substrate manufacturing methods.

References

[1] T. Kushta, K. Narita, T. Kaneko, T. Saeki, and H. Tohya, “Resonance stub effect in a transition from a through via hole to a stripline in multilayer PCBs,” IEEE Microwave and Wireless Components Letters, Vol. 13, No. 5, pp. 169–171, 2003.

[2] C. Chastang, C. Gautier, M. Brizoux, A. Grivon, V. Tissier, A. Amedeo, and F. Costa, “Electrical behavior of stacked microvias integration technologies for multi-gigabits applications using 3D simulation,” 15th IEEE Workshop on Signal Propagation on Interconnects, pp. 65–68, 2011.

[3] W. Beyene, D. S. Yeon-Chang Hahm, D. Mullen, and Y. Shlepnev, “Design, modeling, and characterization of passive channels for data rates of 50 Gbps and beyond,” IEEE 64th Electronic Components and Technology Conference, pp. 730–735, 2014.

[4] S. Zuowei and T. Jian, “Signal Integrity Analysis of High-Speed Single-Ended and Differential Vias,” 10th Electronics Packaging Technology Conference, pp. 65–70, 2008.

[5] T. Fukumori and D. Mizutani, “Characterization of signal via structure in multilayer printed circuit boards up to 50 GHz,” IEEE 2nd CPMT Symposium Japan, pp. 1–4, 2012.

[6] C. Schuster, Y. H. Kwark, G. Selli, and P. Muthana, “Developing a “physical” model for vias,” in Proc. IEC DesignCon 2006, Santa Clara, CA, USA, Feb.
[7] G. Selli, C. Schuster, Y. H. Kwark, M. B. Ritter, and J. L. Drewniak, “Developing a “physical” model for vias - part II: coupled and ground return vias,” in Proc. IEC DesignCon2007, Santa Clara, CA, USA, Jan. 29–Feb. 1, 2007.

[8] P. Siming and F. Jun, “Characterization of Via Structures in Multilayer Printed Circuit Boards With an Equivalent Transmission-Line Model,” IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 5, pp. 1077–1086, 2002.

[9] J. H. Kim, S. W. Han, and O. K. Kwon, “Analysis of Via in Multilayer Printed Circuit Boards for High-speed Digital Systems,” International Symposium on Electronic Materials and Packaging, pp. 382–387, 2001.

[10] Y. Zhang, J. Fan, G. Selli, M. Cocchini, and F. de Paulis, “Analytical Evaluation of Via-Plate Capacitance for Multilayer Circuit Boards and Packages,” IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 9, pp. 2118–2128, 2008.

[11] M. Friedrich, M. Leone, and C. Bednarz, “Exact Analytical Solution for the Via-Plate Capacitance in Multiple-Layer Structures,” IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 5, pp. 1097–1104, 2012.

[12] Y. Zhang, E. Li, Z. Oo, W. Zhang, E. Liu, X. Wei, and J. Fan, “Analytical Formulas for the Barrel-plate and Pad-plate Capacitance in the Physics-based Via Circuit Model for Signal Integrity analysis of PCBs,” Asia Pacific Microwave Conference 2009, pp. 2432–2435, Dec. 7–9, 2009.

[13] H. H. Park, C. Hwang, K.-Y. Jung, and Y. B. Park, “Mode Matching Analysis of Via-Plate Capacitance in Multilayer Structures With Finite Plate Thickness,” IEEE Transactions on Electromagnetic Compatibility, Vol. 99, pp. 1–9, 2015.

[14] Y. Zhang, J. Fan, A. R. Chada, and J. L. Drewniak, “A Concise Multiple Scattering Method for Via Array Analysis in a Circular Plate Pair,” IEEE Electrical Design of Advanced Packaging & Systems Symposium, pp. 143–146, 2008.

[15] Y. Takasu, K. Kikuchi, H. Nakagawa, K. Koshiji, and M. Aoyagi, “Simulated high-frequency characteristics of coaxial via connection structures in printed circuit boards using three-dimensional electromagnetic field analysis,” IEEE Electrical Design of Advanced Packaging & Systems Symposium, pp. 1–4, 2009.

[16] W. D. Guo, W.-N. Chine, C. L. Wang, G. H. Shiu, and R. B. Wu, “Design of Wideband Impedance Matching for Through-Hole Via Transition Using Ellipse-Shaped Anti-Pad,” IEEE Electrical Performance of Electronic Packaging, pp. 245–248, 2006.

[17] W. D. Guo, W. N. Chine, C. L. Wang, G. H. Shiu, and R. B. Wu, “Impedance Matching of Traces and Multi-layer via Transitions for On-Package Links,” IEEE Microwave and Wireless Components Letters, Vol. 21, No. 11, pp. 595–597, 2011.

[18] A. Hardoc, R. Rimolo-Donadio, S. Müller, Y. H. Kwark, and C. Schuster, “Efficient, Physics-Based Via Modeling: Return Path, Impedance, and Stub Effect Control,” IEEE Electromagnetic Compatibility Magazine, Vol. 3, quarter 1, pp. 76–84, 2014.

[19] E. Bogatin, “Signal and Power Integrity-Simplified 2nd edition,” Maruzen Co. and Pearson Education Inc., 2010.

[20] S. H. Hall and H. L. Heck, “Advanced Signal Integrity for High-Speed Digital Designs,” John Wiley& Sons Inc., 2009.

[21] X. Duan, R. R. Donadio, H.-D. Brüns, and C. Schuster, “Circular Ports in Parallel-Plate Waveguide Analysis with Isotropic Excitations,” IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 3, pp. 603–612, 2012.

[22] H. Itakura, K. Yamagishi, and Y. Akeboshi, “The Study of Suppression Method for Power Radiation between GND Planes from Signal Via in Multilayer Board,” International Conference on Electronics Packaging and iMAPS All Asia, pp. 761–766, 2015.
Hiroshi Itakura received the B.S. and M.S. degrees in engineering from Chiba University in 2011 and 2013, respectively. He joined Mitsubishi Electric Corp (Information Technology R&D Center) in 2013 and recently conducts research and development related to analog and digital circuit design of wire or wireless communication products. His research interests include high-speed digital circuit design for signal integrity, electromagnetic compatibility (EMC). He is the member of IEICE (the Institute of Electronics, Information and Communication Engineers), and IEEE (the Institute of Electrical and Electronic Engineers).

Keitaro Yamagishi received the B.S and M.S degrees in science and engineering from Waseda University, 1988, 1991, respectively. He joined Mitsubishi Electric Corporation in 1991 and recently conducts research and development related to physical design of digital or analog circuit. His research interests include SI (signal integrity) of digital signals or high frequency analog signals, PI (power integrity) and EMC (electromagnetic compatibility) of every levels of hardware system including these signals. He is members of JIEP (the Japan Institution of Electronics Packaging), IEICE (the Institute of Electronics, Information and Communication Engineers) and IEEE (the Institute of Electrical and Electronic Engineers).

Yoshihiro Akeboshi received the B.S. and M.S. degrees in physics from Tokyo Institute of Technology in 1991 and 1993, respectively. He joined Mitsubishi Electric Corp (Information Technology R&D Center) in 1993 and recently conducts research and development related to analog and digital circuit design of wire or wireless communication products. His research interest mainly focuses on signal and power integrity of digital systems and Electromagnetic compatibility (EMC). He is the member of IEICE (the Institute of Electronics, Information and Communication Engineers).