Review

Feasibility and long-term results of focused radioguided parathyroidectomy using a "low" 37 MBq (1 mCi) 99mTc-sestamibi protocol

Domenico Rubello*1, Adil Al-Nahhas2, Giuliano Mariani3, Milton D Gross4, Lucia Rampin1 and Maria Rosa Pelizzo5

Address: 1Nuclear Medicine Service, 'S. Maria della Misericordia'Hospital, Istituto Oncologico Veneto (IOV), Rovigo, Italy, 2Nuclear Medicine Department, Hammersmith Hospital, London, UK, 3Regional Centre of Nuclear Medicine, University of Pisa Medical School, Pisa, Italy, 4Department of Radiology, Division of Nuclear Italy Medicine, University of Michigan and Department of Veterans Affairs Health System, Ann Arbor, Michigan, USA and 5Department of Surgical Science, University of Padova Medical School, Padova, Italy

Email: Domenico Rubello* - domenico.rubello@libero.it; Adil Al-Nahhas - AAl-Nahhas@hhnt.nhs.uk; Giuliano Mariani - g.mariani@med.unipi.it; Milton D Gross - mgross@med.umich.edu; Lucia Rampin - rampin.lucia@azisanrovigo.it; Maria Rosa Pelizzo - mariarosa.pelizzo@unipd.it

* Corresponding author

Abstract

Aim of the present study was to investigate the feasibility and long-term results of focused radioguided parathyroidectomy using a "low" 37 MBq (1 mCi) 99mTc-sestamibi dose protocol compared to conventional "high 740 MBq (20 mCi) 99mTc-sestamibi dose protocol" in patients with primary hyperparathyroidism (PHPT). The data of focused radioguided surgery obtained in a group of 320 consecutive PHPT patients with high probability of the presence of a solitary parathyroid adenoma (PA) were studied. All patients underwent preoperative imaging work-up of double-tracer 99mTc-pertechnetate/99mTc-sestamibi subtraction parathyroid scintigraphy (Sestamibi scintigraphy) and high resolution neck ultrasound (US). In 301/320 patients (96.6%) focused minimally invasive radioguided surgery was successfully performed by administering a "low" 37 MBq (1 mCi) 99mTc-sestamibi dose in the operating room 10 minutes before operation. No major intraoperative complications were recorded. Focused radioguided surgery required a mean time of 32 min and a mean hospital stay of 1.2 days. Local anesthesia was applied in 75 patients, 66 of whom (88%) were patients older than 65 years with comorbidities contraindicating general anesthesia. No case of persistent or recurrent PHPT was observed during post-surgical follow-up (range = 18–70 months; mean +/- SD = 15.3 +/- 9.1 months). Radiation exposure dose to the operating surgeon was 1.2 μSi/hour with the "low 37 MBq (1 mCi) 99mTc-sestamibi dose", and less than 1.0 μSi/hour for the other operating-room personnel. Focused low dose radioguided parathyroidectomy is a safe and effective means to localize parathyroid adenomas in patients affected by solitary PA thus reducing by 20 fold the radiation exposure dose to the patients and operating room personnel.

Published: 15 September 2006

International Seminars in Surgical Oncology 2006, 3:30 doi:10.1186/1477-7800-3-30

This article is available from: http://www.issoonline.com/content/3/1/30

© 2006 Rubello et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background
The surgical approach to patients with primary hyperparathyroidism (PHPT) has moved from bilateral neck exploration (BNE) to minimally invasive operative alternatives of endoscopic or focused radioguided surgery.

The popularity of the focused surgical approach has occurred as a result of technical improvements in surgical practice by the introduction of the endoscope, the intraoperative gamma probe, and the availability of rapid, intraoperative measurements of "quick" parathyroid hormone (QPTH). In a worldwide survey published in 2002, more than half of endocrine surgeons favored a minimally invasive approach to PHPT patients with a high likelihood of a solitary parathyroid adenoma (PA) as the etiology of their disease [1].

In contrast to the more traditional approach of BNE, the minimally invasive focused approach requires rapid and accurate preoperative localization:

- to establish the etiology of PHPT;
- to precisely localize PA (orthotopic or ectopic position, deepness, etc);
- to distinguish the presence of 99mTc-sestamibi-avid thyroid nodules mimicking PA and which may result in false positive intraoperative probe localization [3,4].

The present study details our experience with focused minimally invasive parathyroidectomy in a group of 300 consecutive patients using the "low 37 MBq (1 mCi) sestamibi protocol" and the intraoperative gamma probe.

Materials and methods
Three-hundred and twenty consecutive patients with clinically and biochemically proven PHPT entered the study. There were 207 females and women and 113 men, mean age 55.5 years (range 16–83 years). Fifty-five, (55) of these patients had undergone in other centers previous thyroid or unsuccessful parathyroid surgery. The following inclusion criteria were used for focused radioguided, minimally invasive, parathyroidectomy: (a) the evidence at surgical exposure. The scintigraphic studies required approximately 1 hour (40 minutes for the planar and 20 minutes for SPECT imaging) to complete).

The scintigraphic images were interpreted by two nuclear medicine physicians; in cases of disagreement the final impression was reached by consensus. In patients with a normal thyroid gland confirmed both at 99mTc-pertechnetate scintigraphy and neck US, a single focus of 99mTc-sestamibi uptake was considered to be consistent with a solitary PA while in patients in whom at least two foci of 99mTc-sestamibi uptake were demonstrated multiple adenomas were reported. In patients with concomitant 99mTc-sestamibi positive thyroid nodules, neck US, 99mTc-pertechnetate thyroid scintigraphy was used to distinguish PA from the sestamibi-avid thyroid nodule(s).

Planar sestamibi scintigraphy was acquired by a large-field-of-view (LFOV) gamma camera (Orbiter, 7500, Siemens, Hoffman Estates, IL or E-CAM, Siemens, Hoffman Estates, IL) equipped with a parallel hole, low-energy, high resolution collimator. Images were stored in a 128 × 128 matrix and processed using a dedicated computer.

Tomographic sestamibi SPECT acquisition was performed by a dual-head gamma camera (Axis, Picker International, Cleveland, Ohio or E-CAM, Siemens, Hoffman Estates, IL) equipped with a couple of parallel-hole low-energy ultrahigh-resolution collimators. The following parameters were adopted: elliptical orbit, 120 (64 × 2) steps, 30 sec per step, 64 × 64 matrix. Images were reconstructed using a Butterworth filter, cut-off 0.45–0.65, order 5–8, and processed using a dedicated computer: three-dimensional (3D) analysis and 1D rendering imaging was also obtained.

Neck ultrasound was performed using high resolution, 7.5–12.5 MHz, transducer (Technos, Esaote, Italy). Longitudinal and axial neck scans were obtained from the angle...
of the mandible to the sternal notch. The PA was identified on gray-scale imaging as a hypo-echoic nodule well distinct from the thyroid gland.

After operation, the surgeon was asked to judge the utility of the gamma probe during operation using a 4-point scale of "not valuable", "slightly valuable", "definitely valuable", and "very valuable".

The intraoperative technique used in our center for minimally invasive radioguided surgery is outlined in Table 1.

A hand-held commercially available collimated gamma probe (Scintiprobe MR 100, Pol.hi.tech., Italy) was used. Intraoperative QPTH was measured by immunochemoluminescent assay (Liason, Byk Gulden, Italy). A fall of 50% or more in PTH levels 10 minutes after PA removal in comparison with baseline pre-excision value was considered indicative of a successful parathyroidectomy. Additional blood samples for QPTH measurement were obtained in patients with multigland disease after removal of any hyperfunctioning parathyroid gland.

All operations were performed by the same surgeon (M.R.P.). Post-surgical follow-up ranged 18–70 months, mean +/- SD = 15.3 +/- 9.1 months.

All patients received clinical and laboratory surveys 1 month after surgery and subsequently every 2–3 months, thereafter.

Data are expressed as mean +/- 1 standard deviation (SD). Mean values were compared using Student's t test. P values lower than 0.05 were considered significant.

Results
Characteristics of our patient population are resumed in Table 2.

On the basis of preoperative 99mTc-sestamibi scintigraphy and high resolution neck US results, focused minimally invasive parathyroidectomy was offered to 320 patients, and was successfully performed in 309 (96.6%). Figure 1 shows an example of double-tracer planar and SPECT sestamibi scintigraphy.

In 11 patients BNE was performed: in 2 patients because of suspected parathyroid carcinoma, in 4 patients because of a persistently elevated QPTH levels after removal of the preoperatively visualized PA (in all these 4 cases a second PA was found during subsequent BNE), and in 4 because of a technical difficulties due to either unusual position and/or large size precluded minimally invasive parathyroidectomy.

Considering the group of 309 patients in whom focused minimally invasive parathyroidectomy was successfully performed, the surgeon judged the gamma probe as "slightly valuable" in 29 cases (9.4%), "definitely valuable" in 203 cases (65.7%) and "very valuable" in 77 cases (24.9%). The probe was critical in identifying 21 ectopic PAs located in the mediastinum, 2 ectopic PAs located at

Table 1: Characteristics of our patients population affected by primary hyperparathyroidism

Patients in whom focused minimally invasive parathyroidectomy was planned	Patients in whom bilateral neck exploration was planned	
Total patients number	320	107
Solitary PA and normal thyroid gland*	320	0
Solitary PA and nodular goitre*	0	51
Parathyroid multigland disease	0	27
Negative sestamibi scan	0	21
History of familial hyperparathyroidism	0	3
History of multiple endocrine neoplasia (MEN)	0	4
History of neck irradiation	0	1
Previous thyroid/parathyroid surgery	75	18
Mean (and range) levels of preoperative serum calcium (mg/dl)	12.1 (10.6 – 13.8)	12.2 (10.6 – 13.7)
Mean (and range) levels of preoperative serum PTH (pg/ml)	196 (84 – 351)	221 (91 – 336)
Mean (and range) operating time, minutes	32 (15 – 58)	78 (52 – 107)
Mean (and range) hospital stay, days	1.2 (1 – 2)	2.5 (2 – 5)
Mean (and range) post-surgical follow-up, months	15.3 (18 – 70)	15.9 (18 – 83)
Recurrent hyperparathyroidism	0 cases	4 cases; 3.7% (all multigland disease at first diagnosis)

*Thyroid gland evaluated by thyroid scan and ultrasound
the carotid bifurcation, and 24 PAs located deep in the neck in the para-retroesophageal/para-retrotracheal space. Mean operating time was 32 minutes (range, 15–64) and the mean hospital stay of 1.2 days (range, 1–2 days). Local anesthesia was successfully performed in 75 patients, the majority of whom (n = 66; 88%) were older than 65 years with comorbidities contraindicating general anesthesia. No major surgical complication (laryngeal nerve palsy, permanent hypoparathyroidism) were noted. Transient hypocalcemia was observed in 8.6% of cases. A small 1.5 to 2 cm skin incision was sufficient to perform focused minimally invasive radioguided parathyroidectomy. It is worth noting that focused parathyroidectomy was successfully performed in 42/55 patients (76.4% of cases) with recurrent hyperparathyroidism, prior thyroid surgery or previously unsuccessful parathyroid surgery.

The mean weight of the excised solitary PA by MIRS was 990 +/- 310 mg. The parathyroid glands removed in patients with multiple gland disease were significantly smaller (mean weight = 530 +/- 420 mg; p < 0.05).

Mean radiation exposure in the operating room after the injection of a low 37 MBq (1 mCi) of 99mTc-sestamibi dose, was 1.2 μSi/hour for the surgeon and less than 1.0 μSi/hour for other operating suite personnel. Present European Atomic Energy Community (EURATOM) recommends a radiation dose to the general public of < 1000 μSi/year, using this regulatory threshold, an endocrine surgeon and support operating room staff could perform approximately 1000 – 1500 focused parathyroidectomies per year with the "low 37 MBq (1 mCi) of 99mTc-sestamibi dose" protocol before reaching the EURATOM recommended dose for the general population.

Discussion

Tibblin et al. made the first attempt to perform a limited neck exploration in PHPT patients in the early ‘80s [9]. They performed a unilateral neck exploration removing the PA with biopsy of the ipsilateral parathyroid gland in an attempt to identify the presence of glandular hyperplasia. More recently minimally invasive endoscopic [10,11] and gamma probe-guided [3-8,12-14] approaches were developed for focused minimally invasive parathyroidectomy.

The development and popularity of focused minimally invasive, parathyroidectomy, has occurred because of (i) the improvement in preoperative localization imaging mainly related to 99mTc-Sestamibi scintigraphy [15-20] and (ii) the introduction in clinical practice of intraoperative QPTH measurements. Successful focused minimally invasive parathyroidectomy requires strict attention to patient selection criteria that include:

(a) high likelihood of a solitary PA demonstrated at preoperative 99mTc-sestamibi/UIS imaging;

(b) unambiguous 99mTc-sestamibi uptake in the PA;

(c) absence of other 99mTc-sestamibi avid thyroid nodules.

Using these selection criteria about two thirds of all PHPT patients can be offered focused minimally invasive parathyroidectomy as an alternative to BNE [3-8,12-14]. Thus, the success of focused parathyroidectomy is dependent upon precise preoperative localization of a solitary PA. In this regard, there is evidence that the combi-
nation of 99mTc-sestamibi scintigraphy and high resolution neck US provides several diagnostic localization advantages:

(a) more accurate information about PA localization (orthotopic or ectopic site, deepness, etc)

(b) differentiation of solitary PA from multiple gland disease;

(c) evaluation of presence of co-existing nodular goiter [3-8,14].

(d) furthermore, the use of SPECT improves sensitivity and accuracy of the imaging procedure [22,23].

In our protocol, neck US was systematically combined with 99mTc-sestamibi scintigraphy while SPECT was reserved for patients with ectopic parathyroid glands or incongruent 99mTc-sestamibi (positive)/US (negative) results.

The first focused minimally invasive parathyroidectomy protocol was developed by Norman in USA in 1997 [12]: it consisted of a single-day, imaging and surgery approach, with the patient injected with a 740–925 MBq (20–25 mCi) of sestamibi and imaging obtained using a dual-phase technique with focused parathyroidectomy via a lateral neck access performed within 2–3 hours after radiotracer administration. Norman's protocol is attractive from a cost-analysis perspective because 99mTc-sestamibi scintigraphy and focused surgery are performed on the same day using a single dose of 99mTc-sestamibi that is sufficient for both planar scintigraphy and "focused" radioguided surgery. However, Norman's protocol presents practical disadvantages given the uncertainty of the scintigraphic results and differences between the minimally invasive parathyroidectomy and BNE with respect to the need for operating theatre time and efficient patient scheduling. Indeed, this problem would be expected to be even greater in geographic areas with a high prevalence of nodular goiter so that a multiple-day imaging protocol would be preferable [14]. The approach we use is a modified, multiple-day protocol: the first day imaging is obtained using dual-tracer 99mTc-pertechnetate/99mTc-sestamibi subtraction scintigraphy combined with high resolution neck US. The day of focused radioguided surgery is usually performed within 1 week of imaging, using a low 37 MBq (1 mCi) 99mTc-sestamibi dose administered in the operating room 10 minutes before operation. The 'low sestamibi dose protocol' we use provides the two main advantages of (a) less radiation exposure to the patient and operating suite personnel (approximately 20-fold lower than the 'high sestamibi dose protocol' and (b) fewer false negative results in PA exhibiting rapid 99mTc-sestamibi wash-out [24].

Favorable results have been reported with both with Norman’s 'high sestamibi dose' protocol and our 'low sestamibi dose' protocol with a success of intraoperative detection of PA of 95% or more, without major intraoperative surgical complications. It is reasonable to assume...
that Norman’s single-day protocol would be preferable in patients with a low-likelihood of nodular goiter while the multiple-day protocol would be preferable in areas with a high prevalence of nodular goiter.

Another advantage of focused radioguided surgery is the ability to perform minimally invasive neck exploration under local anesthesia with early (also same-day) hospital discharge [14]. Although attractive, we prefer to offer this approach to elderly and medically complex patients in whom general anesthesia would contraindicated with local anesthesia with early (also same-day) hospital discharge [14]. Although attractive, we prefer to offer this approach to elderly and medically complex patients in whom general anesthesia would contraindicated with local anesthesia with early (also same-day) hospital discharge [14]. Although attractive, we prefer to offer this approach to elderly and medically complex patients in whom general anesthesia would contraindicated with local anesthesia with early (also same-day) hospital discharge [14]. Although attractive, we prefer to offer this approach to elderly and medically complex patients in whom general anesthesia would contraindicated with local anesthesia with early (also same-day) hospital discharge [14].

In conclusion, focused minimally invasive surgery is a safe and effective approach for PHPT patients with a high probability of a solitary PA. Preoperative accurate imaging, based on 99mTc-sestamibi scintigraphy, is necessary. Our data confirm that a low 37 MBq (1 mCi) 99mTc-sestamibi dose administered in the operating room 10 minutes before surgery is sufficient to successfully perform a focused parathyroidectomy.

References
1. Sackett WR, Barraclough B, Reeve TS, Delbridge LW: Worldwide trends in the surgical treatment of primary hyperparathyroidism in the era of minimally invasive parathyroidectomy. Arch Surg 2002, 137:1055-1059.
2. Rubello D, Pelizzo MR, Casara D. Nuclear medicine and minimally invasive surgery of parathyroid adenomas: a fair marriage (editorial). Eur J Nucl Med 2002, 30:189-192.
3. Rubello D, Fig LM, Casara D, Piotto A, Boni G, Pelizzo MR, Mariani G. Radioguided surgery of parathyroid adenomas and recurrent thyroid cancer using the “low sestamibi dose” protocol. Cancer Broker Radiothapham 2006, 21:91-205.
4. Rubello D, Casara D, Pelizzo MR. Symposium on parathyroid localising imaging. Optimization of preoperative procedures. Nucl Med Commun 2003, 24:133-140.
5. Casara D, Rubello D, Piotto A, Pelizzo MR. 99mTc-MIBI radio-guided minimally invasive parathyroid surgery planned on the basis of a preoperative combined 99mTc-pertechnetate/99mTc-MIBI and ultrasound imaging protocol. Eur J Nucl Med 2000, 27:1300-1304.
6. Casara D, Rubello D, Pelizzo MR, Shapiro B: Clinical role of 99mTcO4/MIBI scan, ultrasound and intra-operative gamma probe in the performance of unilateral and minimally invasive surgery in primary hyperparathyroidism. Eur J Nucl Med 2001, 28:1351-1359.
7. Rubello D, Casara D, Giannini S, Piotto A, De Carlo E, Muzzio PC, Pelizzo MR: Importance of radio-guided minimally invasive parathyroidectomy using hand-held gamma probe and low 99mTc-MIBI dose: technical considerations and long-term clinical results. Q J Nucl Med 2003, 47:129-138.
8. Rubello D, Piotto A, Casara D, Muzzio PC, Shapiro B, Pelizzo MR: Role of gamma probes in performing minimally invasive parathyroidectomy in patients with primary hyperparathyroidism: optimization of preoperative and intraoperative procedures. Eur J Endocrinol 2003, 149:7-15.
9. Tibblin S, Bondeson AG, Ljubgberg O: Unilateral parathyroidectomy in hyperparathyroidism due to a single adenoma. Ann Surg 1982, 195:245-252.
10. Gagner M: Endoscopic parathyroidectomy (letter). Br J Surg 1996, 83:875.
11. Henry JF, Iacobone M, Mirallie E, Deveze A, Pili S: Indications and results of video-assisted parathyroidectomy by a lateral approach in patients with primary hyperparathyroidism. Surgery 2001, 130:999-1004.
12. Norman J, Chheda H: Minimally invasive parathyroidectomy facilitated by intraoperative nuclear mapping. Surgery 1997, 122:998-1004.
13. Costello D, Norman J: Minimally invasive radioguided parathyroidectomy. Surg Oncol Clin N Am 1999, 8:555-564.
14. Mariani G, Gulec SA, Rubello D, Boni G, Puccini M, Pelizzo MR: Preoperative localization and radioguided parathyroid surgery. J Nucl Med 2003, 44:1443-1458.
15. Coakley AJ, Kettle AG, Wells CP, Dalle Carbonare L, Pelizzo MR: Minimally invasive parathyroidectomy in primary hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-Sestamibi (double-phase study). J Nucl Med 1992, 33:1801-1807.
16. Taillefer R, Boucher Y, Poxvin C, Lambert R: Detection and localization of parathyroid adenomas in patients with hyperparathyroidism using a single radionuclide imaging procedure with technetium-99m-Sestamibi (double-phase study). J Nucl Med 1998, 39:1100-1105.
17. Rubello D, Saladini G, Casara D, Borsato N, Toniato A, Piotto A, Pelizzo MR: Parathyroid imaging with pertechnetate plus perchlorate/MIBI subtraction scintigraphy. A fast and effective technique. Clin Nucl Med 2000, 25:527-531.
18. Irvin GL, Dembrow VD, Prudhomme DL: Clinical usefulness of an intraoperative “quick PTH” assay. Surgery 1993, 114:1019-1023.
19. Sfakianakis GN, Irvin GL, Foss J: Efficient parathyroidectomy guided by SPECT-MIBI and hormonal measurements. J Nucl Med 1996, 37:789-804.
20. Moka D, Yoth E, Dietlein M, Larena-Avellaneda A, Schicha H: Technetium 99m-MIBI-SPECT: a high sensitive diagnostic tool for localization of parathyroid adenomas. Surgery 2000, 128:29-35.
21. Norman J, Rubello D, Giuliano AE, Mariani G: Minimally invasive radioguided parathyroidectomy in primary hyperparathyroidism. In Radioguided Surgery – A Comprehensive Team Approach (editorial). Giuliano AE, Strauss FW New York: Springer; 2006 in press.
22. Rubello D, Pelizzo MR, Boni G, Schiavo R, Vaggelli L, Villa G, Sandrucci S, Mariani G: Radioguided surgery of parathyroid primary hyperparathyroidism using the low-dose 99mTc-sestamibi protocol: multi-institutional experience from the Italian Study Group on Radioguided Surgery and Immunoscintigaphy (GISC-RIS). J Nucl Med 2003, 45:220-226.
23. Rubello D, Casara D, Giannini S, Piotto A, Dalle Carbonare L, Pelizzo MR: Minimally invasive radioguided parathyroidec- tomy: an attractive therapeutic option for elderly patients with primary hyperparathyroidism. Nucl Med Commun 2004, 25:901-908.