On the Prime Radical of a Hypergroupoid

Gürsel Yeşılot
Istanbul Technical University Fen-Edebiyat fak. Matematik Böl. 80626 Maslak, Istanbul,Turkey

Abstract: In this study, we give definitions of a prime ideal, a s-semiprime ideal and a w-semiprime ideal for a hypergroupoid K. For an ideal A of K we show that radical of A (R(A)) can be represented as the intersection of all prime ideals of K containing A and we define a strongly A-nilpotent element. For any ideal A of K, we prove that R(A)=∩(s-semiprime ideals of K containing A)= ∩(w-semiprime ideals of K containing A)={strongly A nilpotent elements}. For an ideal B of K put B^{0}=B and B^{n+1}=(B^{n})^{2}. If a hypergroupoid K satisfies the ascending chain condition for ideals then (R(A))^n⊂A for some n. For an ideal A of K we give a definition of right radical of A (R_r(A)). If K is associative then R(A)=R_r(A)=R_(n)(A).

Key words: Hypergroupoids, s-semiprime ideal, w-semiprime ideal, ascending chain

1. Hypergroupoids and Complete ℓ-Groupoids

Definition 1.1: A groupoid K is a system (K, ·), where K is a set and · is a binary operation on K.

Definition 1.2[1]: A complete ℓ-groupoid is a system (K, ·), where K is a complete lattice and · is a binary operation on K which satisfies the following conditions:

\[a \cdot (Vb_1 \cdot t) = V (a \cdot b_1 \cdot t) \quad \text{for all} \quad a, b_1 \in K \]

for all a, b_1 ∈ K

Let K be a set and denote by 2^K the set of all its subsets.

Definition 1.3[2]: A multivariable binary operation on K is a map \(\vartheta : K \times K \rightarrow 2^K \). A hypergroupoid is a system (K, \(\vartheta \)), where K is a set and \(\vartheta \) is a multivariable operation on K.

From now on, we write a-b instead of \(\vartheta (a, b) \).

Let (K, ·) be a hypergroupoid. For A, B ∈ 2^K. A≠∅, B≠∅, put A-B={a-b | a∈A, b∈B} and A·B=∅ if a·b∈∅ for all \(a \in A \), \(b \in B \).

Let \(\vartheta \) be a ternary relation on K. Then (2^K, ·) is a complete ℓ-groupoid.

Conversely, If (2^K, ·) is a complete ℓ-groupoid then a restriction of the binary operation of 2^K to K is a multivariable operation on K and K is a hypergroupoid, with respect to this operation.

Let w be a ternary relation on K.

For (a, b)∈KxK, put a-b={xeK | (a, b, x)∈w}, then (K, ·) is a hypergroupoid.

Conversely, let (K, ·) be a hypergroupoid. Denote by w the set (a, b, c)∈KxKxK such that a·b≠∅ and c∈a·b. Then w is a ternary relation on K.

Hypergroupoids contain the following two classes of algebraic systems.
Definition 2.3: An element $h \in G$ is w-semiprime if $h \neq 1_G$ and $f(a)\neq h$, $G(\alpha \in \mathbb{A})$ implies that $a \neq h$.

Therefore every w-semiprime element is s-semiprime. For $a \in G$, $a \neq 1_G$, denote by $r^w_G(a)$ the intersection of all w-semiprime elements of G containing a. Put $r^w_G(a)=1_G$ if there are not any element with this property. It is clear that $r^w_G(a)\leq r^s_G(a)\leq r^w_G(a)$ for all $a \in G$.

3. The Prime Radical of an Ideal

Definition 3.1: Let K be a hypergroupoid. A right (left) ideal of K is a subset H such that $ha \subseteq H$ (respectively $ah \subseteq H$) for all $a \in K$, $h \in H$. An (two-side) ideal of K is a subset H such that $ha \subseteq H$ and $ah \subseteq H$ for all $a \in K$, $h \in H$.

Denote by $\text{Id}(K)$ ($\text{Id}_{r}(K)$, $\text{Id}_{l}(K)$) the set of all ideals (respectively, right ideals, left ideals) of K. Put $\emptyset \in \text{Id}(K)$, $\emptyset \in \text{Id}_{r}(K)$, $\emptyset \in \text{Id}_{l}(K)$. Then $\text{Id}(K)$, $\text{Id}_{r}(K)$, $\text{Id}_{l}(K)$ are complete lattices with respect to the inclusion relation.

Proposition 3.2: Let K be a hypergroupoid. Then:
1. $\bigcap_{t \in T} A_t \in \text{Id}(K)$ and $\bigcup_{t \in T} A_t \in \text{Id}(K)$ for any $A_t \in \text{Id}(K)$;
2. $\bigcap_{t \in T} B_t \in \text{Id}_{r}(K)$ and $\bigcup_{t \in T} B_t \in \text{Id}_{r}(K)$ for any $B_t \in \text{Id}_{r}(K)$;
3. $\bigcap_{t \in T} C_t \in \text{Id}_{l}(K)$ and $\bigcup_{t \in T} C_t \in \text{Id}_{l}(K)$ for any $C_t \in \text{Id}_{l}(K)$.

The proof is clear. We next consider the multiplication operation $A \cdot B$ on 2^K.

Definition 3.3: Hypersemigroup is a hypergroupoid K such that $(A \cdot B)C=A \cdot (B \cdot C)$ for any $A, B, C \subseteq 2^K$.

If K is hypersemigroup then $A \cdot B \subseteq \text{Id}(K)$ for any $A, B \in \text{Id}(K)$. But there are a hypergroupoid K and $A, B \in \text{Id}(K)$ such that $A \cdot B \notin \text{Id}(K)$. Therefore for any hypergroupoid K we define a multiplication operation of ideals as follows:

For $A, B \in \text{Id}(K)$ denote by $A \cdot B$ the intersection of all ideals of K containing the set $G=\{x \in a \cdot b, a \in A, b \in B\}$.

Multiplication operations on $\text{Id}_{r}(K)$ and $\text{Id}_{l}(K)$ are introduced similarly.

Proposition 3.4: For any hypergroupoid K, the lattices $\text{Id}(K)$, $\text{Id}_{r}(K)$, $\text{Id}_{l}(K)$ are complete l-groupoids with respect to above multiplication operations.

Proof: We give a proof for $\text{Id}(K)$ and the proofs for $\text{Id}_{r}(K)$ and $\text{Id}_{l}(K)$ are similar. Suppose $A, B \in \text{Id}(K)$, $t \in T$. It is clear that $A \cdot (\bigcup_{t \in T} B_t) \supseteq (\bigcup_{t \in T} A \cdot B_t)$.

Conversely the ideal $A \cdot (\bigcup_{t \in T} B_t)$ is the smallest ideal containing all elements $a \cdot b$, where $a \in A$, $b \in \bigcup_{t \in T} B_t$.

Let $a, b \in \text{Id}(K)$, $A \cdot (\bigcup_{t \in T} B_t)$. Since $b \in B_t$ for some $t \in T$ then $a \cdot b \in A \cdot B$. Therefore $A \cdot (\bigcup_{t \in T} B_t) \subseteq (A \cdot B_t)$.

Now, we apply the definitions and designations of the prime and semiprime elements of ordered groupoids to 2^K, $\text{Id}(K)$, $\text{Id}_{r}(K)$, $\text{Id}_{l}(K)$. Put $R_0(A)=R(A)$, $r^w_G(A)=r^w_G(A)$, $r^w_G(A)=r^w_G(A)$ for $G=\text{Id}(K)$, $A \in \text{Id}(K)$.

Definition 3.5: An ideal H is maximal if $H \neq K$ and $H \subseteq B \subseteq K$, $B \in \text{Id}(K)$ implies that $H=B$ or $B=K$.

For $a \in \text{Id}(K)$ denote by $[a]$ the intersection of all ideals of K containing a.

Proposition 3.6: Let K be a hypergroupoid. Then any maximal ideal of K is prime if and only if $K=2^K$.

Proof: Let $K=2^K$ and M be a maximal ideal of K. Assume that $A \cdot B=\bigcup_{t \in T} A \cdot B_t=2^K$.

Since $a \in \text{Id}(K)$, $a \in \text{Id}(K)$.

Therefore $M=K$. This is a contradiction. Thus M is prime.

Conversely, Let $K \neq 2^K$ and $a \in K \cdot 2^K$. We prove that $M=K \setminus \{a\}$ is a minimal ideal of K and it is not prime. Let $b \in M \setminus \{a\}$. Then $a \cdot b \in M$ and $b \cdot a \in M$ for all $a, b \in K$.

Indeed, if there is K such that $a \cdot b \in M$ then $a \cdot b \notin M$.

Hence $a \in K \cdot 2^K$. It is a contradiction. Thus $a \cdot b \notin M$ and $b \cdot a \notin M$ for any $a \cdot b \in K$. It is clear that M is a maximal ideal. Prove that M is not prime. By $a \in M$ we have $[a]=M$. But $[a]=\bigcup_{t \in T} A_t \subseteq M$. Therefore M is not prime.

Remark: This proposition is known for semigroups\[5\].

Every sequence $\{x_0, x_1, \ldots, x_n, \ldots\}$, where $x_n=a$, $x_{n+1} \in [x_n]^2$, will be called an s-sequence of the element a.

Definition 3.7: Let $a \in \text{Id}(K)$. An element $a \in K$ is strongly A-nilpotent if every s-sequence of a meets A.
Remark: This definition is similar to the definition of the n-sequence\(^6\).

Denote by \(n(A)\) the set of all strongly A-nilpotent elements of K.

Theorem 3.8: Let K be a hypergroupoid. Then for any ideal A of K, we have \(n(A)=r^w(A)=r^s(A)=R(A)\).

Proof: From the definitions \(r^w(A)\), \(r^s(A)\), and \(R(A)\) we obtain \(r^s(A)\subseteq r^w(A)\subseteq R(A)\) for any \(A\in\text{Id}(K)\).

We prove that \(n(A)\subseteq r^s(A)\). If there is not an s-semiprime ideal of K containing A then \(r^s(A)=K\) and \(n(A)\subseteq r^s(A)\).

Assume that there exists an s-semiprime ideal of K containing A. Let \(a\in n(A)\) and \(b\in s\)-semiprime ideal of K containing A. We first prove that \(a\in S\) and \(b\in S\).

By continuing in this manner we obtain an s-sequence \(\{x_n, x_1, x_2, \ldots, x_{n+1}\}\) of the element a such that \(x_n\in S\) for all n. But this is a contradiction since every s-sequence of the element a meets A. Thus \(a\in S\) and \(b\in S\).

Now we prove that \(R(A)=n(A)\). If \(n(A)=K\) then \(n(A)=r^s(A)=r^w(A)=R(A)=K\). Let \(n(A)=K\). Hence there exists \(b\in K\) such that \(b\in n(A)\). Then there exists an s-sequence \(X=\{x_n, x_1, x_2, \ldots, x_{n+1}\}\) of the element b such that \(X\cap A=\emptyset\).

Conversely, if every ideal of K is radical then using the Theorem 3.8 we obtain that every \(s\)-semiprime ideal of K is radical. Let A be an ideal of K. Then \(A^2=\cup_{a\in A} [a]\) and \(A^3=\cup_{a\in A} [a^2]\) for all \(a\in A\).

Using the Proposition 3.4 we have \(A^{2n}\subseteq A, B_{2n}\subseteq A\), and \(B_{2n}\subseteq A\) for any \(a, b\in A\).

Remark: This corollary is an analog of the similar theorem for associative rings\(^6\).

Definition 3.12: Let \(A\in\text{Id}(K)\). An ideal B of K is \(A\)-nilpotent if \(B^{m}\subseteq A\) for some m.

Proposition 3.13: Let K be hypergroupoid and A, B be ideals of K. If C is B\(_n\)-nilpotent and B is A\(_n\)-nilpotent then C is A\(_n\)-nilpotent.

Proof: Since C is B\(_n\)-nilpotent then \(C^{m}\subseteq B\) for some m. Hence \(C^{m+n}\subseteq (C^{m})^{n}\subseteq B^{m+n}\subseteq A\).

Theorem 3.14: Let K be a hypergroupoid satisfying the ascending chain condition for ideals. Then for any ideals A of K, R(A) is A\(_n\)-nilpotent.

Proof: Let \(A\in\text{Id}(K)\). Denote by \(\Sigma\) the set of all A\(_n\)-nilpotent ideals H of K such that \(H\subseteq A\). \(\Sigma\) is not empty since \(A\in\Sigma\). There exists a maximal element P in \(\Sigma\). We prove that P is s-semiprime. Let \(B_{2n}\subseteq P\). Then \(B_{2n}\subseteq B_{2n}\subseteq BP_{2n}\subseteq P\). By Proposition 3.13 the
ideal B∪P is A₀-nilpotent. By the maximality of P we have B∪P=P. Hence B⊆P. This means that P is s-semiprime. Since P⊇A then R(A)⊂P by Theorem 3.8. But P_n⊂A⊂R(A) for some n. Since R(A) is s-semiprime then P⊂R(A). Thus P=R(A).

Remark: This theorem is similar to the proposition for associative rings[7].

Corollary 3.15: Let K be hypergroupoid satisfying the ascending chain condition for ideals. Then the following conditions are equivalent:
1. K is an intersection of finite prime ideals and a
2. K doesn’t have a prime ideal;
3. K doesn’t have a s-semiprime ideal.

A proof follows from Theorem 3.14 and the definition of Pr. rad(K). Denote by Id(K) the set of all radical ideals of K. Id(K) is a complete lattice with respect to the inclusion relation. Denote by ∨ and ∧ the lattice operations in Id(K).

Theorem 3.16: Let K be a hypergroupoid. Then the lattice Id(K) satisfies the infinite ∧-distributive condition:
A∩(B₁∪B₂) =(A∩B₁)∪(A∩B₂) for any A, B₁,B₂ ∈ Id(K)

Proof: The proof follows from Theorem 1.3[7].

Theorem 3.17: Let K be a hypergroupoid satisfying the ascending chain condition for ideals. Then any radical ideal of K is an intersection of finite prime ideals and a such representation is unique.

Proof: First we prove the following lemma.

Lemma: H∈Id(K) is prime ideal if and only if H is an ∧-indecomposable element of the lattice Id(K).

Proof: Let A be a prime ideal of K and A=A₁∧A₂, A₁, A₂∈Id(K). Then[7]
A₁A₂⊂A₁∩A₂⊂R(A₁∩A₂)=A₁∧A₂=A. Hence A₁⊂A or A₂⊂A. Then A=A₁ or A=A₂. Let A be an ∧-indecomposable element in Id(K) and BC⊂A, B, C∈Id(K). Then R(B-C)⊂A. By the lemma 1.6[7] we have R(B)∩R(C)⊂R(B-C)⊂A. By the distributivity Id(K) we obtain A=Av(R(B)∩R(C))=(A∩R(B))∧(A∩R(C)). Then A=Av(R(B) or A=Av(R(C) since A is ∧-indecomposable. This means that B⊂R(B)⊂A or C⊂R(C)⊂A.

Thus A is prime. The lemma is proved. By the lemma and the Corollary[11] we obtain that every radical ideal of K is an intersection of finite prime ideals and a such representation is unique.

4. The Right Prime Radical of an Ideal

Definition 4.1: A right ideal H of K is maximal if H≠K and H⊂B⊂K, B∈Id_r(K), implies that H=B or B=K.

Proposition 4.2: Let K be a hypergroupoid such that A⊂K, A for all A∈Id_r(K). Then any maximal right ideal of K is prime element of Id_r(K).

Proof: Let M be a maximal right ideal of K and A-B=M, A, B∈Id_r(K). If A,M then M∪A=K. By Proposition 3.4 we have B⊂K=B=(M∪A)-B=MB∪AB⊂M.

Definition 4.3: An element 1∈K is called identity of K if 1=a-1=a for all a∈K.

Remark: The conditions of Proposition 4.2 are satisfied for groupoids with 1. Thus there exists a right ideal in such groupoids.

For an element a∈K denote by [a], the intersection of all right ideals containing a. Every sequence {xₙ,..., xₙ,...} where xₙ=a, xₙₐ∈[xₙ]₂⁺, is called an s⁺-sequence of the element a.

Definition 4.4: Let A∈Id_r(K). An element a∈K is strongly A₀-nilpotent if every its s⁺-sequence meets a.

Denote by n₀(A) the set of all strongly A₀-nilpotent elements of K.

Proposition 4.5: Let K be a hypergroupoid. For any right ideal A of K are satisfied the following inequalities:
R(A)⊂n₀(A)⊂r⁺ (A)⊂r⁺ (A)⊂R_r(A).

Proof: A proof of n₀(A)⊂r⁺ (A) is similar to the proof of n(A)⊂r⁺ (A) as in the Theorem 3.8. The inequality R(A)=n₀(A) and definitions of n(A) and n₀(A).

Theorem 4.6: Let K be a hypergroupoid satisfying the following conditions:
(K,A)-B=K-(A,B), (A,K)-B=A-(K,B) for all A, B∈Id_r(K). Then
R(A)=n₀(A)=r⁺ (A)=r⁺ (A)=R_r(A) for all A∈Id_r(K).

Proof: By Proposition 4.5 it is enough to prove that R_r(A)⊂R(A).

Denote by P(K) the set of all prime ideals of K and P_r(K) the set of all right prime ideals of K. We prove that P(K)⊂P_r(K). Let Q∈P(K) and B⊂Q. B∈Id_r(K). Then, (B∪K-B)=(B∪K-C) = (B∪K-C)⊂(B∪K-C)⊂Q.

Note that B∪KB and C∪KC are ideals of K. Indeed K×(B∪KB) =K-B∪(K-B)∈B∪KB.

From (B∪KB) (C∪KC) Q we obtain B⊂B∪KB⊂Q or C⊂C∪KC⊂Q since Q is prime. This means Q∈P_r(K).
Thus $P(K) \subseteq P_s(K)$. Therefore we have $R_s(A) \subseteq R(A)$.

Remark: The conditions of this theorem are satisfied for hypersemigroup. Therefore the same theorem is given for nonasociative hypergroupoid K and $A \in \text{Id}(K)$ such that $R(A) = R_s(A)$ and $R(A) \neq R_{\cdot}(A)$. Let $A \in \text{Id}_s(K)$. For $b \in K$ put $b^{(0)} = b$, $b^{(n+1)} = (b^{(n)})^2$.

Definition 4.7: An element $b \in K$ is A_s-nilpotent if $b^{(n)} \subseteq A$ for some n. An element $b \in K$ is A_w-nilpotent if $f(b) \subseteq A$ for some $f(b) \subseteq \langle b \rangle$.

Denote by $n^S_0(A)$ ($n^w_0(A)$) the set of all A_s-nilpotent (respectively, A_w-nilpotent) elements of K.

Proposition 4.8: For any ideal A of K are hold the following inequalities:

\[R(A) \subseteq n_s(A) \subseteq n^S_0(A) \subseteq n^S_0(A) \subseteq R_o(A) \]
\[R(A) \subseteq n_s(A) \subseteq n^w_0(A) \subseteq n^w_0(A) \subseteq R_w(A) \]

The proof is similar to the proof of Proposition 4.5.

Theorem 4.9: Let K be a hypersemigroup satisfying the condition $K \cdot a = a \cdot K$ for all $a \in K$. Then $R(A) = n_s(A) = r_s(A) = R_o(A)$ for all $A \in \text{Id}(K)$.

The proof is similar to the proof of Theorem 4.6.

REFERENCES

1. Birkhoff, G., 1967. Lattice Theory, Providence, Rhode Island.
2. Levy-Bruhl, J., 1968. Introduction Aux Structures Algébriques, Dunod, Paris.
3. Khadjiev, D. and F. Çallıalp, 1997. On the prime radical of a ring and a groupoid. Marmara Univ. Fen Dergisi, no. 13, Istanbul.
4. Clifford, A.H. and G.B. Preston, 1967. The Algebraic Theory of Semigroups. Vol. I, Providence, Rhode Island.
5. Artamonov, V.A., V.N. Saliy, L.A. Skornyakov, L.N. Shevrin and E.G. Shulgeyfer, 1991. General Algebra, T.2. Moskow, Nauka.
6. Lambek, J., 1966. Lectures on Rings and Modules. Blaisdell Publ., Comp., Waltham-London.
7. Khadjiev, D.J. and T.M. Shamilev, 1997. Complete ℓ-groupoids and their prime spectrums. Algebra i Logica (Algebra and Logic), 86: 341-355.
8. Andrunakievich, V.A. and Y.M. Ryabuhin, 1979. Radicals of Algebras and a Structure Theory. Moscow, Nauka.
9. Rowen, L.H., 1988. Ring Theory. Vol.1, Acad. Press. INC., Boston.