Dynamic changes in host immune system and gut microbiota are associated with the production of SARS-CoV-2 antibodies

Recently, we read the article by Ng et al with great interest, which identified several gut microbiota harbour the
potential to improve immune response and reduce adverse events following COVID-19 vaccines, and demonstrated that gut microbiota has the potential to complement the effectiveness of vaccines. Together with several recent studies, gut microbiota plays a key role in modulating immune responses of vaccination and is related to the severity of COVID-19 pandemic.

Furthermore, the comparison of the gut microbiota of healthy individuals who vaccinated with Sinovac vaccine and COVID-19 patients with different clinical diagnoses, without accounting for factors such as age, suggest that the alterations of gut microbiota during vaccination were not as substantial as those caused by SARS-CoV-2 infection (figure 1J).

Finally, our results showed that the correlations among gut microbiota, cytokines, lymphocytes and SARS-CoV-2 antibodies (figure 1K and online supplemental figures 2, 3). In particular, we found that several gut microorganisms have a significant association with SARS-CoV-2 antibodies production. For example, Prevotella copri was negatively correlated with IgG, whereas Clostridiurn leptum, Lactobacillus ruminis, Rumina-coccus torques, etc, presented a positive correlation with antibodies production (all p<0.01, figure 1K). Moreover, a variation partitioning analysis based on the metadata of body features and the compositions of gut microbial communities was performed, which showed that the production of antibodies is mainly affected by the gut microbiome (22%) and body features (18%, online supplemental table 5, online supplemental figure 4). These results suggest that gut microbiota plays an important role in the production of SARS-CoV-2 antibodies in young healthy individuals and the dynamic changes of immune system and gut microbiota and their associations with the production of SARS-CoV-2 antibodies in elderly population remain elusive and should be further investigated.

Overall, our study systematically investigated the dynamic changes of host, including lymphocytes, cytokines, gut microbiota and antibodies, and linked these factors to the production of antibodies. Our results provide an optional perspective for evaluating the safety and effectiveness of SARS-CoV-2 vaccines and settling the treatment of COVID-19 patients, and can alleviate the public’s concerns and fears about the vaccination.

Maozhen Han, Yixuan Huang, Hongya Gui, Xiyuan Xiao, Maozhang He, Jing Li, Xiujing Cao, Meijuan Zheng, Min Lu, Weihua Jia, Hui Li, Xiaoyan Wang, Na Zhang, Shu-an Kong, Xiaohui Liu, Yongguo Wu, Fengcheng Wu, Shenghai Huang.

1School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
2Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
3Department of Microbiology, The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
4Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
5Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
6Hefei City Maternal and Child Health & Family Planning Service Center, Hefei, Anhui, China
7Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
8State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
9Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China

Correspondence to Professor Shenghai Huang; huangshh68@aliyun.com; Professor Fengcheng Wu; wufengcheng@vip.sjep.cn; Professor Yongguo Wu; wuyonggui@163.com

Acknowledgements. We thank Professor Yong Gao (Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China) and MD Zhengchun Jiang (Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University) for the support in experiment of pseudovirus neutralisation assay.

Contributors. MHa and SH designed the study. MH, WJ and SH recruited the healthy volunteers from School of Life Sciences, Anhui Medical University. MHa, YX, MHe, HL, XL, NZ and SK collected the blood and fecal samples. MHa, YH, HG, YY, NZ and XC analysed the data of indicators obtained from routine blood tests, lymphocytes, cytokines and metagenomic sequencing data. HL and ML conducted the measurement of the indicators obtained from routine blood tests, lymphocytes and cytokines. MHa, YW, FW and SH organised the structure of the manuscript. MH, YH, HG and YY wrote the initial draft of the manuscript. All authors read, modified and approved the final manuscript.

Funding. This work was supported by Grants for the Natural Science Foundation of China (No. 61973406), Major Project of Natural Science Research of Anhui Education Department (No. KJK2019ZD23), the Fund of Excellent Talents in Colleges and Universities of Anhui Province (gxbjz2009), Scientific Research of BSYK (No. XJ201916) from Anhui Medical University, Anhui Provincial Natural Science Foundation (2200804Q231). Young Foundation of Anhui Medical University (2020kx015), the Natural Science Foundation in Higher Education of Anhui (KJ2021A0244), the joint project of nephrology and microbiology in Anhui Medical University (No. 2020lcky015) and Education Quality Engineering of Anhui Province (No. 2020xy0614).

Competing interests. None declared.

Patient consent for publication. Not applicable.

Ethics approval. The study protocols were all approved by the Biomedical Ethics Committee of Anhui Medical University (No 2021H021). Participants gave their written informed consent. The study was approved by the Ethics Committee of the School of Life Sciences, Anhui Medical University (2020020006).
Figure 1 The response of healthy individuals during the vaccination of two dose of SARS-CoV-2 vaccine and the interplay between host immune systems and gut microbiota that contributes to the production of SARS-CoV-2 antibodies. (A) Study design for collecting the faecal and blood samples from 30 healthy individuals to explore the dynamics changes of host immune systems, gut microbiota and the production of SARS-CoV-2 antibodies. Dynamic changes in SARS-CoV-2 antibodies, cytokines, lymphocytes and indicators obtained from routine blood tests. (B) Concentrations of IgA, IgG and IgM detected at different time points during the vaccination process. The differences between different time-points were assessed by two-way ANOVA, and two-sided exact p values are reported. (C) Concentrations of IFN-γ, IL-2 and IL-4 measured at different time points during the vaccination process. (D) The levels of NK cells, B cells and CD4+T cells and the CD4+/CD8+ ratio are illustrated in chronological order. (E) Dynamic changes in the counts of white cell count, neutrophils (Neu), lymphocyte (Lym), monocytes (Mon) and eosinophils (EOSs) during the vaccination process. (F) The alpha diversities, including the Shannon and Simpson indices, of the human gut microbial communities did not significantly differ among different time points during the vaccination process. (G) A significant difference in the human gut microbial compositions was found among different time points during the vaccination process according to their Bray-Curtis dissimilarity at the species level. (H) Based on the taxonomic compositions of all 143 samples at the species level, LDA can successfully separate the human gut microbial communities at different time points during the vaccination process. (I) Compositional differences in the gut microbiota among different time points during the vaccination process visualised with the average relative abundances at the phylum level. (J) Comparison of the taxonomic structure of the human gut microbiota among unvaccinated healthy individuals, healthy individuals at different time points during the vaccination process, and COVID-19 patients with different clinical diagnoses. (K) Correlations between the production of antibodies against SARS-CoV-2 and gut microbiota.* p<0.05; ** p<0.01; *** p<0.001; ANOVA, analysis of variance; LDA, linear discriminant analysis.
informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

OPEN ACCESS

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/gutjnl-2022-327561). MH, YH, HG and YX contributed equally.

To cite Han M, Huang Y, Gui H, et al. Gut 2023;72:1996–1999.

Received 7 April 2022
Accepted 23 September 2022
Published Online First 7 October 2022

Gut 2023;72:1996–1999. doi:10.1136/gutjnl-2022-327561

ORCID IDs Maozhen Han http://orcid.org/0000-0002-5958-1941
Shenghai Huang http://orcid.org/0000-0002-5699-8928

REFERENCES

1 Ng SC, Peng Y, Zhang L, et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut 2022;71:1106–16.
2 Hagan T, Cortese M, Rouphael N, et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 2019;178:e13:1313–28.
3 Lau HC-H, Ng SC, Yu J. Targeting the gut microbiota in coronavirus disease 2019: hype or hope? Gastroenterology 2022;162:9–16.
4 Lynn DJ, Benson SC, Lynn MA, et al. Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nat Rev Immunol 2022;22:33–46.
5 Kim HS. Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity? mBio 2021;12:e03022–20.
6 Segal JP, Mak JYV, Mullish BH, et al. The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? Therap Adv Gastroenterol 2020;13:1756284820974914.
7 Angel F, Spanevello A, Reboldi G, et al. SARS-CoV-2 vaccines: lights and shadows. Eur J Intern Med 2021;88:1–8.