Mechanistic Prediction of Chinese Herb Compound (Zhi Zhu Ma Ren Pill) in the Treatment of Constipation Using Network Pharmacology and Molecular Docking

Yong Wen1,2,*, Yu Zhan3,4,*, Shiyu Tang5, Jian Kang1, Rong Wu1 and Xuegui Tang5,6

Abstract

Background: Constipation is one of the most prevalent chronic gastrointestinal diseases. Notably, previous studies have demonstrated that Chinese herbal compounds may exert effects on constipation. The present study aimed to predict the mechanisms underlying the effects of Zhi Zhu Ma Ren Pill (ZZMRP), which includes Aurantii Fructus Immaturus, Atractylodis Macrocephalae Rhizoma, Fructus Cannabis, Paeonia lactiflora and Radix Asteris in the treatment of constipation, using network pharmacology and molecular docking. Methods: The components and target information of ZZMRP were accessed using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform, and the associated targets of constipation were obtained from the GeneCards, Disgenet, Online Mendelian Inheritance in Man, DrugBANK and Therapeutic Target Database databases. The major targets were subsequently selected using a Venn diagram and network topology analysis, which was followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was performed to authenticate the binding activity between active components and core targets. Results: A total of 44 active components, 249 targets of ZZMRP and 1501 targets associated with constipation were acquired. A total of 122 intersection targets were discovered between ZZMRP and constipation. Subsequently, 18 key targets were authenticated, including tumor protein 53, RAC-alpha serine/threonine-protein kinase, JUN and caspase-3. GO and KEGG pathway enrichment analysis indicated that mitogen-activated protein kinase, tumor necrosis factor, and phosphoinositide 3-kinase/protein kinase B signaling pathways may be involved in the treatment of constipation using ZZMRP. Molecular docking suggested that quercetin, kaempferol, and luteolin exhibited high binding affinities with several of the primary targets. Conclusions: The active components, core targets, and signaling pathways of ZZMRP in the treatment of constipation were predicted, which may be applicable to the development of treatments for constipation and application of ZZMRP.

Keywords
Chinese herbs, constipation, network pharmacology, molecular docking, signaling pathway

Introduction

Constipation is one of the most common chronic gastrointestinal disorders that affect individuals of both sexes and all ages.1–3 Characteristics of constipation include infrequent or difficulty in defecation, hard stools and incomplete evacuation.4–5 It is estimated that ~16% adults are suffering from constipation worldwide;6 thus, medical care services face high treatment costs annually.7 Moreover, its prevalence has been reported as >20% in certain populations and regions, including Asia, due to high mental stress levels and environmental factors.8,9 In addition, severe constipation is associated with retentive fecal incontinence, mental health issues and reduced quality of life.10,11 Constipation in women is also associated with obesity and hormonal disorders.12,13 At present, numerous therapies

Received: February 14th, 2022; Accepted: August 3rd, 2022.

Corresponding Author:
Xuegui Tang, Department of Integrated Traditional and Western Medicine Anorectal, Affiliated Hospital of North Sichuan Medical College, 1 Maoyuan South Road, Nanchong, Sichuan 637000, P.R. China.
Email: txg668nc@sohu.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
have been used for the treatment of various degrees of constipation, such as dietary fiber, laxatives, and surgery. However, the toxic side effects and efficacy of these clinical drugs remain a concern. Thus, the development of effective treatment options with manageable toxic side effects is required for use in the clinic.

Traditional Chinese Medicine (TCM) has been widely used in the treatment of constipation. For example, Zhao et al. reviewed the treatment with modified RunChang-Tang in functional constipation using a meta-analysis. Chen et al. demonstrated the use of Rheo Radix et Rhei in the treatment of constipation. Chen et al. also investigated the tissue distribution, pharmacokinetics and pharmacodynamics of Dahuang-Gancao in mice with constipation. The present study aimed to investigate the use of Zhi Zhu Ma Ren Pill (ZZMRP), which includes dried young fruit of Citrus aurantium (Zhishi, ZS), Atractylodes macrocephala (Baizhu, BZ), dry ripe fruit of Cannabis sativa (Huomaren, HMR), Cynanchum otophyllum (Baishao, BS) and Aster tataricus (Zi-wan, ZW). BZ accounts for the largest dosage in ZZMRP, and this is believed to improve the function of the spleen. ZS is believed to relieve tension in the gastrointestinal tract, acting as a ministerial medicine. Based on the aforementioned factors, it was hypothesized that ZZMRP may exert protective effects on constipation. Furthermore, the targets and potential mechanisms underlying ZZMRP in the treatment of constipation require further analysis.

Network pharmacology analysis is a powerful tool for drug discovery and associated mechanisms. Using a network pharmacology approach, the associations between drug, component, target, pathway and disease can be explored, and the underlying therapeutic mechanisms of drugs in diseases can be predicted. This may lead to the development of a novel theoretical basis for the mechanisms underlying TCM therapy in diseases. In the present study, the underlying targets and molecular mechanisms of ZZMRP in constipation were investigated, using network pharmacology and molecular docking (Figure 1).

Materials and Methods

Collection of the Primary Active Components and Associated Targets of the Herbs in ZZMRP

The TCM Systems Pharmacology (TCMSP) database and analysis platform database is a systematic pharmacology website that supplies details of the absorption, distribution, metabolism and excretion of herbal medicines, including drug likeness (DL), oral bioavailability (OB), Caco-2 permeability and blood–brain barrier. Thus, the TCMSP database (https://tcmspw.com; accessed on December 4, 2021) was used in the present study to determine the active components and targets involved in ZZMRP. As OB and DL are the most crucial parameters for drug delivery, OB was set to ≥30% and DL to ≥0.18 to obtain the active components and targets of ZZMRP. Subsequently, the Chinese names of each herb “Zhi Shi,” “Bai Zhu,” “Huo Ma Ren,” “Bai Shao,” and “Zi Wan” were searched using the search tool. All attained targets were exported into the UniProt database (https://www.uniprot.org; accessed on December 4, 2021) to obtain the gene symbol.

Target Screening of Constipation

Disease-related targets were acquired from the GeneCards (https://www.genecards.org), Disgenet (https://www.disgenet.org/), Online Mendelian Inheritance in Man (OMIM; https://omim.org), DrugBank (https://go.drugbank.com), and Therapeutic Target Database (TTD; http://d.idrblab.net/td/) databases using “constipation” as the keyword, in which the relevance score ≥0.85 was set as the screening index in the GeneCards database. GeneCards is a searchable, integrative database that provides comprehensive, user-friendly information on all annotated and predicted human genes. DisGeNET is a discovery platform containing one of the largest publicly available collections of genes and variants associated with human diseases. OMIM is an online catalog of human genes and genetic disorders. DrugBank is a web-enabled database containing comprehensive molecular information about drugs, and their mechanisms, interactions and targets. TTD is a database providing information about the known and explored therapeutic protein and nucleic acid targets, the targeted disease, pathway information, and the corresponding drugs directed at each of these targets. Microsoft Excel software was used to remove duplicates, to obtain a total of 1501 final disease-related targets.

Protein-Protein Interaction Network Construction and Analysis

The intersection targets of the herbs in ZZMRP and constipation were collected using Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html; accessed on December 5, 2021). Subsequently, the STRING database (https://string-db.org; accessed on December 5, 2021) was utilized to construct the Protein-protein interaction (PPI) network of the intersection targets, where confidence scores were set as >0.7, with no changes to the other variables. The STRING database is often used to predict both direct and indirect interactions of proteins. Subsequently, the inputted PPI network in a TSV format was assessed for its topology properties using Cytoscape 3.8.0 software (https://cytoscape.org/). As the most prevalent topological parameter, degree centrality (DC) indicated the central attribute of nodes in the PPI network. The core targets were verified using DC ≥2× the median.

Functional and Pathway Enrichment Analysis

The Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are used for
predicting the roles of underlying targets in gene function and signaling pathways. Thus, GO and KEGG were used in the present study using DAVID 6.8 (https://david.ncifcrf.gov/; accessed March 5, 2021)41 to explore the mechanisms underlying ZZMRP in the treatment of constipation.

Herb, Component, Target, and Pathway Analysis of ZZMRP

The herb, active components, targets, and associated pathways were imported into Cytoscape 3.8.0, and as 4 categories of nodes to build the herb, component, target and pathway network. Cytoscape is an open-source platform for visualizing complex networks and integrating these with any type of attributed data.42

Molecular Docking

The binding activity between the active ingredient and core target was predicted using molecular docking. The structural formula of components was retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/; accessed March 10, 2021) as an SDF file. The central target conformations were collected from the Protein Data Bank database (https://www.rcsb.org/; accessed March 10, 2021). The screening conditions were as follows: (1) protein structure determined using x-ray crystal diffraction; (2) protein crystal resolution >3; (3) preferential choice of protein structures with unique ligands and (4) *Homo sapiens* as the organism. The structures of the protein receptors and ligands were collected, and molecular docking was subsequently performed using AutoDockTools 1.5.6.43 The docking results were visualized using PyMol 2.3.2 (https://pymol.org/2/).44,45

Results

Active Components and Targets of the Herbs in ZZMRP

The active components and targets of ZS, BZ, HMR, BS and ZW were accessed using the TCMSP database. Sixty-one active components were obtained using OB \(\geq 30\%\) and DL \(\geq 0.18\), once duplicate compounds were removed. The numbers of active compounds in ZS, BZ, HMR, BS and ZW were 22, 7, 6, 13 and 19, respectively (Table S1). After deleting the active compounds with no corresponding genes in the Uniprot database and targets, 44 active components were still retained with 19, 4, 6, 8, and 13 active compounds in ZS, BZ, HMR, BS and ZW, respectively (Table 1). Moreover, these 44 active components corresponded to 249 associated targets. Subsequently, these active components and associated putative targets were analyzed using Cytoscape. As demonstrated in Figure 2, the component-target network of ZZMRP comprised 298 nodes and 751 edges (Table S2). Each edge signified the reciprocities between herbs and compound molecules, or compound molecules and targets. Thus, the node degree corresponds to the number of edges associated with the node in the network, and the node size is positively associated with the degree value. Results of our network analysis demonstrated that the average degree value of the nodes was

![Figure 1. Experimental workflow of the present study.](image-url)
Table 1. Information on the 44 Active Compounds.

Mol ID	Molecule Name	Herb	ID used in the present study
MOL013277	Isosinensetin	ZS	ZS1
MOL013279	57,4’-Trimethylapigenin	ZS	ZS2
MOL013428	Isosakuranetin-7-rutinoside	ZS	ZS3
MOL013430	Prangenin	ZS	ZS4
MOL013435	Poncimarin	ZS	ZS5
MOL013436	Isoponcimarin	ZS	ZS6
MOL013437	6-Methoxy aurapten	ZS	ZS7
MOL013440	Citrusin B	ZS	ZS8
MOL001798	Neobesperidin_qt	ZS	ZS9
MOL001803	Sinensetin	ZS	ZS10
MOL001941	Ammidin	ZS	ZS11
MOL002914	Eriodictol (flavanone)	ZS	ZS12
MOL004328	Naringenin	ZS	ZS13
MOL005100	5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one	ZS, ZW	A1
MOL005828	Nobiletin	ZS	ZS14
MOL005849	Dikymin	ZS	ZS15
MOL000006	Luteolin	ZS, HMR, ZW	B1
MOL007879	Tetramethoxyluteolin	ZS	ZS16
MOL009053	4-[(2S,3R)-5-[(E)-3-hydroxyprop-1-enyl]-7-methoxy-3-methylol-2,3-dihydrobenzofuran-2-yl]-2-methoxy-phenol	ZS	ZS17
MOL000022	14-Acetyl-12-seneoyl-2E,8Z,10E-atatractylenol	BZ	BZ1
MOL000033	(3S,8S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-2,3,4,7,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[alpha]phenanthren-3-ol	BZ	BZ2
MOL00049	3β-Acetoxyatractylone	BZ	BZ3
MOL00072	8β-Ethoxy atractyleneoxide III	BZ	BZ4
MOL001439	Archicholic acid	HMR	HMR1
MOL00389	Stiossterol	HMR, BS	C1
MOL00449	Stigmastanol	HMR	HMR2
MOL00483	(Z)-3-(4-hydroxy-3-methoxy-phenyl)-N-2-(4-hydroxyphenyl)ethyl]acrylamide	HMR	HMR3
MOL005030	Gandoic acid	HMR	HMR4
MOL001918	Paeoniflorigenone	BS	BS1
MOL001919	(5S,8S,9S,10S,14S,15R)-5,6,9,10,14,15-dimethyl-17-dihydroxy-4,4,8,10,14-pentamethyl-2,3,5,6,7,9-hexahydro-1H-cyclopenta[alpha]phenanthrene-15,16-dione	BS	BS2
MOL001924	Paeoniflorin	BS	BS3
MOL00211	Mairin	BS	BS4
MOL00358	β-sitosterol	BS, ZW	D1
MOL00422	Kaempferol	BS, ZW	D2
MOL000492	(+)-catechin	BS	BS5
MOL01428	16β,17-dihydroxy-(-)-kauran-19-ate-β-D-glucose ester_qt	ZW	ZW1
MOL01486	Astin D	ZW	ZW2
MOL01470	Rabdosinatol	ZW	ZW3
MOL01473	Shionone	ZW	ZW4
MOL002563	Galangin	ZW	ZW5
MOL003056	ZINC03978781	ZW	ZW6
MOL00354	Isorhamnetin	ZW	ZW7
MOL004355	Spinasterol	ZW	ZW8
MOL000098	Quercetin	ZW	ZW9

Abbreviations: BZ, Baizhu; ZS, Zhishi; HMR, Huomaren; BS, Baishao; ZW, Zi-wan.
5.0, each compound interacted with an average of 15.9 targets, and the average number of compounds per target was 2.8. Therefore, the results demonstrated that every compound may interact with multiple targets, and different compounds may function on the same targets in ZZMRP. This indicated the pharmacological mechanisms underlying coactions between multiple components and targets of ZZMRP. Moreover, 40.9% of the compounds interacted with ≥10 targets, and 12 compounds interacted with ≥20 targets. Notably, quercetin in ZW exhibited the highest number of associations with 139 target proteins, followed by kaempferol in BS and ZW, and luteolin in ZS, HMR and ZW with 58 and 55 target proteins, respectively. In addition, 7 compounds interacted with ≥30 target proteins; namely, β-sitosterol in BS and ZW, isorhamnetin in ZW, naringenin in ZS, nobiletin in ZS, arachidonic acid in HMR, tetramethoxyluteolin in ZS and stigmasterol in HMR with 37, 35, 35, 33, 33, 31, and 30 target proteins, respectively. Also, 3 target proteins interacted with ≥20 compounds. PTGS2 was the target protein that had the highest degree value with 29 compounds. It was followed

\[\text{Figure 2. Network of active components and targets. The regular hexagon indicates the active components of 5 herbs (BZ, ZS, HMR, BS, and ZW). The green rhombus represents the targets of active components. A1, B1, C1, D1 and D2 represent the mutual components of the herbs. The edges demonstrate the interaction between the components and targets. Abbreviations: BZ, Baizhu; ZS, Zhishi; HMR, Huomaren; BS, Baishao; ZW, Zi-wan.} \]
by NCOA2 and PTGS1, with 22 and 21 compounds, respectively. Consistently, these data demonstrated the mechanisms of the multiple targets and components of ZZMRP.

Primary Targets of ZZMRP in Constipation Treatment

A total of 1501 associated targets of constipation were obtained from GeneCards, Disgenet, OMIM, DrugBank and TTD databases, following the removal of duplicates. The top ten targets of constipation were tumor protein 53 (TP53), catenin β 1, epidermal growth factor receptor (EGFR), steroid receptor coactivator, RAC-α serine/threonine-protein kinase (AKT1), signal transducer and activator of transcription 3, mitogen-activated protein kinase 3 (MAPK3), E1A Binding Protein P300, β-actin and insulin, in sequence. Subsequently, 122 intersection targets of ZZMRP and constipation were acquired using the Venn diagram (Figure 3). Following construction using the STRING database, a PPI network was generated with 113 nodes, 807 edges and an average node degree of 14.3, using Cytoscape 3.8.0. The darker the color and the larger the node, the greater the degree. The top ten targets of ZZMRP in constipation treatment were TP53, AKT1, caspase-3 (CASP3), JUN, EGFR, tumor necrosis factor (TNF), MAPK3, heat shock protein 90 α [cytosolic], class A member 1 (HSP90AA1), interleukin 6 (IL6) and MAPK1. The DC of each node was analyzed using the function “network analyzer.” A total of 18 main targets of ZZMRP in constipation treatment were screened using DC ≥24 (2×12; Figure 4). The detailed information of these 16 core targets is displayed in Table 2. These results suggested that these targets may play a significant role in constipation treatment.

Constructing and Analyzing the PPI Network

The PPI network of these 18 key targets was obtained according to the STRING database (Figure 5a). Subsequently, the network was imported into Cytoscape to analyze the DC value that may denote the importance of a target in the PPI network. The results revealed that targets, including TP53, AKT1, JUN, CAPS3, MAPK3, TNF, EGFR, HSP90AA1, and IL6 demonstrated a high level of significance in the network (Figure 5b).

GO and KEGG Enrichment Analysis

To explore the mechanisms underlying ZZMRP in the treatment of constipation, the 18 core targets were introduced into DAVID 6.8 for GO and KEGG enrichment analysis. The results revealed a total of 248 items, of which 196 were associated with biological processes, 16 with cell composition and 36 with molecular function. Subsequently, the top ten items based on the gene ratio were selected for imaging; these are displayed in Figure 6a. The biological processes mainly

Figure 3. Intersection targets of Zhi Zhu Ma Ren Pill (ZZMRP) and constipation. The blue circle represents targets for active components of ZZMRP, and the yellow circle represents targets for constipation.

Figure 4. Filter of the key targets. A total of 122 intersection targets of ZZMRP and constipation were input into the STRING database, and 113 targets were obtained with high confidence (confidence score, >0.7). Subsequently, 18 key targets were obtained using DC ≥24 from 113 targets.

Abbreviations: ZZMRP, Zhi Zhu Ma Ren Pill; DC, degree centrality.
included positive regulation of transcription from RNA polymerase II promoter, positive regulation of transcription, DNA-templates, negative regulation of apoptotic process, transcription, signal transduction, response to drugs, positive regulation of smooth muscle cell proliferation, positive regulation of protein phosphorylation, positive regulation of nitric oxide biosynthetic processes and positive regulation of gene expression. The cell composition primarily contained the nucleus, nucleoplasm, cytosol, cytoplasm, protein complex, mitochondrion, extracellular space, extracellular region, nuclear chromatin and microtubule cytoskeleton. The molecular functions involved protein binding, identical protein binding, enzyme binding, transcription factor binding, adenosine triphosphate binding, transcription factor activity, DNA binding, sequence-specific DNA binding, nitric oxide synthase regulator activity, and double-stranded DNA binding. In addition, 99 pathways were found during the KEGG enrichment pathways analysis, of which the top 20 items were selected for further analysis. These included the MAPK, TNF, Toll-like receptor, phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt), estrogen and

Name	Degree	Betweenness centrality	Closeness centrality	Neighborhood connectivity	Topological coefficient
TP53	51	0.11245067	0.58823529	21.17647059	0.21588635
AKT1	48	0.05987751	0.56994819	22.95833333	0.23668385
CASP3	44	0.04822119	0.56994819	23.47727273	0.23956401
JUN	44	0.04735084	0.57894737	24.38636364	0.24884045
MAPK3	41	0.03529375	0.56122449	24.63414634	0.25136884
TNF	41	0.0470166	0.55276382	22.73170732	0.24708378
EGFR	41	0.07232209	0.57291667	23.75609756	0.24216028
HSP90AA1	40	0.06389079	0.55276382	22.35	0.23723404
IL6	39	0.03911337	0.55	23.58974359	0.25365316
MAPK1	35	0.02361588	0.53398058	24.42857143	0.25987842
MYC	33	0.02483016	0.50458716	25.21212121	0.29281184
IL1B	31	0.01914914	0.51643192	23.29032258	0.26168902
ESR1	30	0.02731448	0.50458716	24.56666667	0.27878788
CCND1	29	0.01945213	0.50228311	25.31724138	0.2835249
STAT1	28	0.02252384	0.51162791	27.60714286	0.31331169
MMP9	27	0.04046616	0.50228311	24.44444444	0.26570048
HIF1A	25	0.00520382	0.49327354	30.52	0.33911111
MAPK8	24	0.00817263	0.48072566	25.58333333	0.2907197

Abbreviations: TNF, tumor necrosis factor; MAPK, mitogen-activated protein kinase; CASP3, caspase-3; TP53, tumor protein 53; EGFR, epidermal growth factor receptor; MAPK3, mitogen-activated protein kinase 3; IL6, interleukin 6; HIF1A, hypoxia-inducible factor 1 subunit-α.
thyroid hormone signaling pathways, and osteoclast differentiation (Figure 6b).

Herb, Compound, Target and Pathway Network

To determine the associations between herbs, active compounds, targets and pathways, the herb, compound, target and pathway network was built using a total of 5 herbs, all 44 active compounds, 18 core targets of ZZMRP in constipation treatment, and 7 underlying pathways. The network included 75 nodes and 190 edges (Figure 7). The results demonstrated that the degree value of the MAPK signaling pathway was the highest, and hypoxia-inducible factor 1 subunit-α demonstrated the highest degree value among the targets. Table 3 displays the targets associated with the pathways.

Molecular Docking

To investigate the underlying drug-target interactions, molecular docking was performed to forecast the binding affinities between the active components and core targets in the herb, compound, target, and pathway network. The first 3 active components based on their degree values were quercetin, kaempferol and luteolin, which were selected as ligands. The 8 core targets of ZZMRP in constipation treatment with DC ≥40, which were TP53, AKT1, CASP3, JUN, MAPK3, TNF, EGFR and HSP90AA1, were selected as receptors. A lower affinity indicated improved binding activity between the compound and target. A docking score of ≤−5 kcal/mol among the 24 pairs of target-compound combinations revealed their precise binding activity (Table 4). Moreover, the corresponding images were visualized using Pymol software (Figure 8).

Discussion

Constipation is one of the most prevalent chronic gastrointestinal diseases, that greatly impacts the physical and mental health of patients. Previous studies have demonstrated that Chinese herbal compounds may improve constipation. For example, MaZiRenWan increased colonic motility, thus improving the symptoms of constipation by acting on multiple targets and pathways.46 Yiqi Kaimi Recipe modulated the levels of substance P proteins and NOSI in the enteric plexus, which enhanced the contraction amplitude and frequency of the smooth muscle. This facilitated colon motility and alleviated colonic slow transit constipation.47 Moreover, Ji et al48 recently reviewed the positive efficacy and safety of Chinese herbal compounds in the treatment of functional constipation. In the present study, a Chinese herbal compound, named ZZMRP, was used. This includes ZS, BZ, HMR, BS and ZW, based on previous studies that mitigate constipation. Treatments composed of BZ and ZS, which were first recorded in the Synopsis of the Golden Chamber 1700 years ago, have the ability to regulate gastrointestinal activity and promote gastrointestinal motility.49 HMR and BS are common drugs used for treating constipation.50 In addition, patients with constipation often exhibit mental and psychological symptoms. It is believed that BS functions by softening the liver and nourishing the liver yin, which help to smooth the liver qi. It is also believed that the lungs and the large intestine are on the outside, and the normal suppression of lung qi is essential for the normal functioning of
the large intestine. Moreover, ZW is believed to nourish the lungs and lower qi. Notably, multiple previous studies have elucidated the positive effects of these herbal medicines on intestinal diseases, including constipation. For example, a network pharmacology analysis revealed the use of ZS volatile oil in the treatment of slow transit constipation.51 In addition, a metabolic study demonstrated the therapeutic effects of ZS and BZ on slow transit constipation.52 Gao et al53 demonstrated that intestinal diseases with major symptoms of constipation, dyschezia, and abdominal fullness, may be treated with numerous herbal medicines, and this is believed to be through moistening the intestine and invigorating qi. Among them, BZ was believed to clear Fu-organs, and HMR was believed to moisten the intestine. In addition, ethanol extracts of HMR demonstrated laxative properties that may affect Cl− and Na+ movement in the intestinal epithelia cells in rats.54 Notably, total glucosides of paeony isolated from BS ameliorated Sjögren’s syndrome-elicited intestinal inflammation and constipation in mice.55 Thus, the present study aimed to analyze the underlying targets and pharmacological mechanisms of ZZMRP on constipation, using network pharmacology and molecular docking.

Forty-four active components were obtained using TCMSP, with 249 associated targets. Among them, quercetin, kaempferol, luteolin, β-sitosterol,isorhamnetin, naringenin, nobiletin,
arachidonic acid, tetramethoxyxylateolin and stigmasterol were determined to be active components. Previous pharmacological studies revealed that quercetin modulates the mAChRs downstream signal to promote mucin secretion and gastrointestinal motility, which ameliorates chronic constipation. The results of a previous study also reported that quercetin protects rats from loperamide-induced constipation. The kaempferol, a flavonoid constituent of Capparis decidua, generates Ca$^{2+}$ antagonist-like activity, therefore promoting the plant’s utilization in the treatment of constipation. Naringenin exhibited anti-constriction roles through enhancing the expression of cell proliferation, apoptosis and inflammation. It is also involved in the activation of the NF-κB signaling pathway. Therefore, PTGS2 may act as a potential target for nonsteroidal anti-inflammatory drugs. A previous network pharmacology study used molecular docking analysis to demonstrate that PTGS2 was a target protein for the treatment of slow transit constipation. Moreover, both the transcriptional and translational levels of PTGS2 were markedly upregulated, while those of PTGS1 were significantly downregulated in both patients with slow transit constipation and cellular models. A further network pharmacology analysis also demonstrated that HSP90AA1 was one of main targets for the treatment of constipation. Collectively, these results indicated that ZZMRP may exert anti-constriction effects through multiple components and targets.

Moreover, 18 main targets of ZZMRP in the treatment of constipation were obtained in the present study, and these were primarily involved in cell proliferation, apoptosis and inflammation. Interstitial cells of Cajal (ICCs) may serve as pacemakers of gastrointestinal muscles, exerting crucial roles in modulating gut motility. The healthy phenotypes and functions of ICCs rely on the activation of tyrosine kinase receptor c-Kit protein expressed on the cell surface. Therefore, c-Kit protein expressed on the cell surface. Therefore, c-Kit protein expressed on the cell surface.

Pathway in cancer	Count	Enrichment	p value	Genes
Polyadenylation	15	83.33333333	1.81×10^{-15}	JUN, HSP90AA1, STAT1, HIF1A, MMP9, EGFR, IL6, MAPK8, CCND1, MYC, CASP3, AKT1, MAPK1, TP53, MAPK3
Hepatitis B	13	72.22222222	2.73×10^{-17}	JUN, STAT1, TNF, MMP9, IL6, MAPK8, CCND1, MYC, CASP3, AKT1, MAPK1, TP53, MAPK3
Proteoglycans in cancer	12	66.66666667	1.02×10^{-13}	CCND1, MYC, CASP3, MAPK1, AKT1, HIF1A, ESR1, TNF, TP53, MMP9, EGFR, MAPK3
MAPK signaling pathway	11	61.11111111	5.89×10^{-11}	JUN, MAPK8, IL1B, MYC, CASP3, MAPK1, AKT1, TNF, TP53, EGFR, MAPK3
TNF signaling pathway	10	55.55555556	8.31×10^{-13}	IL6, JUN, MAPK8, IL1B, CASP3, MAPK1, AKT1, TNF, MMP9, MAPK3
Colorectal cancer	9	50	6.23×10^{-13}	JUN, MAPK8, CCND1, MYC, CASP3, MAPK1, AKT1, TP53, MAPK3
Toll-like receptor signaling pathway	9	50	5.28×10^{-11}	IL6, JUN, MAPK8, STAT1, IL1B, MAPK1, AKT1, TNF, MAPK3
Thyroid hormone signaling pathway	9	50	1.02×10^{-10}	CCND1, STAT1, MYC, MAPK1, AKT1, HIF1A, ESR1, TP53, MAPK3
Influenza A	9	50	2.86×10^{-09}	IL6, JUN, MAPK8, STAT1, IL1B, MAPK1, AKT1, TNF, MAPK3
Tuberculosis	9	50	3.27×10^{-09}	IL6, MAPK8, STAT1, IL1B, CASP3, MAPK1, AKT1, TNF, MAPK3
P3K-Akt signaling pathway	9	50	6.03×10^{-07}	IL6, HSP90AA1, CCND1, MYC, MAPK1, AKT1, TP53, EGFR, MAPK3
Pancreatic cancer	8	44.44444444	8.72×10^{-11}	MAPK8, CCND1, STAT1, MAPK1, AKT1, TP53, EGFR, MAPK3
Pertussis	8	44.44444444	2.45×10^{-10}	IL6, JUN, MAPK8, IL1B, CASP3, MAPK1, TNF, MAPK3
Estrogen signaling pathway	8	44.44444444	1.78×10^{-09}	HSP90AA1, JUN, MAPK1, AKT1, ESR1, MMP9, EGFR, MAPK3
Chagas disease (American trypanosomiasis)	8	44.44444444	2.53×10^{-09}	IL6, JUN, MAPK8, IL1B, MAPK1, AKT1, TNF, MAPK3
Osteoclast differentiation	8	44.44444444	1.28×10^{-08}	JUN, MAPK8, STAT1, IL1B, MAPK1, AKT1, TNF, MAPK3
Hepatitis C	8	44.44444444	1.43×10^{-08}	MAPK8, STAT1, MAPK1, AKT1, TNF, TP53, EGFR, MAPK3
Herpes simplex infection	8	44.44444444	1.31×10^{-07}	IL6, JUN, MAPK8, STAT1, IL1B, CASP3, TP53, MAPK3
Bladder cancer	7	38.88888889	3.61×10^{-10}	CCND1, MYC, MAPK1, TP53, MMP9, EGFR, MAPK3
Endometrial cancer	7	38.88888889	1.61×10^{-09}	CCND1, MYC, MAPK1, AKT1, TP53, EGFR, MAPK3

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; TNF, tumor necrosis factor; MAPK, mitogen-activated protein kinase; P3K, phosphoinositide 3-kinase; CASP3, caspase-3; TP53, tumor protein 53; EGFR, epidermal growth factor receptor; MAPK3, mitogen-activated protein kinase 3; IL6, interleukin 6; HIF1A, hypoxia-inducible factor 1 subunit-α.
acts as a marker for ICCs. He et al. previously demonstrated that astragaloside IV improved slow transit constipation in mice, and this was involved in the proliferation of ICCs. Similarly, germinated barley exerted effects on colonic epithelial proliferation, to impact loperamide-induced constipation in rats. The results of a further study demonstrated that microRNA-222 modulated the growth, apoptosis and autophagy of ICCs isolated from rats with slow transit constipation, by targeting c-kit. The reduced apoptosis of colonic smooth muscle cells demonstrated the protective role of bacterial cellulose in rats with diphenoxylate-induced constipation. Moreover, numerous previous studies demonstrated that the protective effects of various drugs or herbs on constipation were associated with the downregulation of inflammation. Thus, the aforementioned studies revealed that these may act as targets in the treatment of constipation.

Table 4. Results of Molecular Docking

Proteins	PDB ID	Test compounds	Affinity (kcal/mol)
TP53	4BUZ	Quercetin	−6.41
		Kaempferol	−6.61
		Luteolin	−6.58
AKT1	1H10	Quercetin	−7.31
		Kaempferol	−7.2
		Luteolin	−6.9
CASP3	3DE1	Quercetin	−6.24
		Kaempferol	−6.26
		Luteolin	−6.36
JUN	5FV8	Quercetin	−5.63
		Kaempferol	−5.56
		Luteolin	−5.53
MAPK3	2ZOQ	Quercetin	−6.48
		Kaempferol	−6.33
		Luteolin	−7.47
TNF	3IT8	Quercetin	−5
		Kaempferol	−6.26
		Luteolin	−6.19
EGFR	2JIV	Quercetin	−8
		Kaempferol	−8.62
		Luteolin	−8.73
HSP90AA1	7LSZ	Quercetin	−8.77
		Kaempferol	−5.52
		Luteolin	−8.47

Abbreviations: TNF, tumor necrosis factor; MAPK, mitogen-activated protein kinase; CASP3, caspase-3; TP53, tumor protein 53; EGFR, epidermal growth factor receptor; MAPK3, mitogen-activated protein kinase 3.

In conclusion, the results of the present study demonstrated that numerous active ingredients, such as quercetin, kaempferol, and luteolin, were significantly active components of ZZMRP in the treatment of constipation, with a series of relevant targets, including PTGS2, NCOA2, PTGS1, HSP90AA1, and PRKACA. Moreover, the MAPK, TNF, and PI3K-Akt signaling pathways played vital roles in treating constipation using ZZMRP. The results of the present study also suggested that ZZMRP may treat constipation using multiple components, targets, and pathways. Although the results of the present study revealed the potential therapeutic effects of ZZMRP on constipation, further experiments are required for verification. Thus, the impact of dose and composition of ZZMRP must be investigated in subsequent in vivo assays. Collectively, the results of the present study provide a novel theoretical basis for the use of ZZMRP or associated herbs in the treatment of constipation.
Figure 8. Results of molecular docking were visualized using Pymol software. Cyan indicate the ligands (quercetin, kaempferol and luteolin), and green represents the amino acids that interacted with the ligands.
Author Contributions
Yong Wen, Yu Zhan, and Xuegui Tang designed the experiments, and analyzed and interpreted the data. Shiyu Tang, Jian Kang, and Rong Wu collected the data. Yong Wen, Yu Zhan, and Xuegui Tang wrote and revised the manuscript. All authors have approved the final manuscript.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The present study was supported by the National Natural Science Foundation of China (grant nos. 82074429 and 82004173).

Data Availability Statement
The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References
1. Chatoor D, Emmnauel A. Constipation and evacuation disorders. Best Pract Res Clin Gastroenterol. 2009;23(4):517–530. DOI:10.1016/j.bepg.2009.05.001. PMID: 19647687.
2. Devanarayana NM, Rajindrajith S. Association between constipation and stressful life events in a cohort of Sri Lankan children and adolescents. J Trop Pediatr. 2010;56(3):144–148. DOI:10.1093/jtroped/fmp077. PMID: 19696192.
3. Chadolias D, Zissimopoulos A, Nena E, et al. Association of occupational exposures and work characteristics with the occurrence of gastrointestinal disorders. Hippokratia. 2017;21(2):74–79. DOI:PMID:30455559.
4. Zhao Y, Yu YB. Intestinal microbiota and chronic constipation. Springerplus. 2016;5(1):1130. DOI:10.1186/s40064-016-2821-1. PMID: 27478747.
5. Bharucha AE. Constipation. Best Pract Res Clin Gastroenterol. 2007;21(4):709–731. DOI:10.1016/j.bepg.2007.07.001. PMID: 17643910.
6. Forootan M, Bagheri N, Darvishi M. Chronic constipation: a review of literature. Medicine (Baltimore). 2018;97(20):e10631. DOI:10.1097/md.0000000000010631. PMID: 29768326.
7. Dennison C, Prasad M, Lloyd A, Bhattacharyya SK, Dhawan R, Coyne K. The health-related quality of life and economic burden of constipation. Pharmacoeconomics. 2005;23(5):461–476. DOI:10.2165/00019053-200523050-00006. PMID: 15896098.
8. Werth BL, Williams KA, Fisher MJ, Pont LG. Defining constipation to estimate its prevalence in the community: results from a national survey. BMC Gastroenterol. 2019;19(1):75. DOI:10.1186/s12876-019-0994-0. PMID: 3113366.
9. Schmidt FM, Santos VI, Domansky Rde C, et al. [Prevalence of self-reported constipation in adults from the general population]. Rev Esc Enferm USP. 2015;49(3):443–452. DOI:10.1590/s0080-62342015000300012. PMID: 26107705.
10. Jiang Y, Tang Y, Lin L. Clinical characteristics of different primary constipation subtypes in a Chinese population. J Clin Gastroenterol. 2020;54(7):626–632. DOI:10.1097/mcg.000000000001269. PMID: 31592795.
11. Staller K, Barshop K, Kuo B, Ananthakrishnan AN. Depression but not symptom severity is associated with work and school absenteeism in refractory chronic constipation. J Clin Gastroenterol. 2018;52(5):407–412. DOI:10.1097/mcg.000000000000782. PMID: 28059936.
12. Lindberg G, Hamid SS, Malfertheiner P, et al. World gastroenterology organisation global guideline: constipation—a global perspective. J Clin Gastroenterol. 2011;45(6):483–487. DOI:10.1097/MCG.0b013e31820fb914. PMID: 21665546.
13. Rao SS, Rattanakotiv K, Patcharatrakul T. Diagnosis and management of chronic constipation in adults. Nat Rev Gastroenterol Hepatol. 2016;13(5):295–305. DOI:10.1038/nrgastro.2016.53. PMID: 27033126.
14. Chen JQ, Chen YY, Tao HJ, et al. An integrated metabolomics strategy to reveal dose-effect relationship and therapeutic mechanisms of different efficacy of rhubarb in constipation rats. J Pharm Biomed Anal. 2020;177:112837. DOI:10.1016/j.jpba.2019.112837. PMID: 31493746.
21. Chen YY, Cao YJ, Tang YP, Yue SJ, Duan JA. Comparative pharmacodynamic, pharmacokinetic and tissue distribution of Dahuang-Gancao decoction in normal and experimental constipation mice. Chin J Nat Med. 2019;17(11):871880. DOI:10.1016/s1875-5364(19)30104-9. PMID: 31831133.

22. Zhang RZ, Yu SJ, Bai H, Ning K. TCM-Mesh: the database and analytical system for network pharmacology analysis for TCM preparations. Sci Rep. 2017;7(1):2821. DOI:10.1038/s41598-017-03039-7. PMID: 28588237.

23. Zhou Z, Chen B, Chen S, et al. Applications of network pharmacology in traditional Chinese medicine research. Evid Based Complement Alternat Med. 2020;2020(6):1646905. DOI:10.1155/2020/1646905. PMID: 32148533.

24. Zheng C, Pei T, Huang C, et al. A novel systems pharmacology platform to dissect action mechanisms of traditional Chinese medicines for bovine viral diarrhea disease. Eure J Pharm Sci. 2016;94:33-45. DOI:10.1016/j.ejps.2016.05.018. PMID: 27208435.

25. Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. DOI:10.1186/s12951-013-0017-0. PMID: 24735618.

26. Geng H, Chen X, Wang C. Systematic elicitation of the pharmacological mechanisms of rhynchophylline for treating epilepsy via network pharmacology. BMC Complement Med Ther. 2021;21(1):9. DOI:10.1186/s12906-020-03178-x. PMID: 33407404.

27. Setzler G, Rosen N, Plaschkes I, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54:1.30.31–31.30.33. DOI:10.1002/cpbi.5. PMID: 27322403.

28. Amberger JS, Hamosh A. Searching online Mendelian inheritance in man (OMIM): a knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinformatics. 2017;58:1.2.1–1.2.12. DOI:10.1002/cpbi.27. PMID: 28654725.

29. Wishart DS, Feunang YD, Guo AC, et al. Drugbank 5.0: a major update to the Drugbank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–d1082. DOI:10.1093/nar/gkx1037. PMID: 29126136.

30. Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–d839. DOI:10.1093/nar/gkw943. PMID: 27924018.

31. Yang H, Qin C, Li YH, et al. Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 2016;44(D1):D1069–D1074. DOI:10.1093/nar/gkv1240. PMID: 26578601.

32. Safran M, Dalah I, Alexander J, et al. Genecards version 3: the human gene integrator. Database (Oxford). 2010;2010:bao020. DOI:10.1093/database/bao020. PMID: 20689021.

33. Piñero J, Saich J, Sanz F, Furlong LI. The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput Struct Biotechnol J. 2021;19:2960–2967. DOI:10.1016/j.csbj.2021.05.015. PMID: 34136095.

34. Hamosh A, Amberger JS, Bocchini C, Scott AF, Rasmussen SA. Online Mendelian inheritance in man (OMIM®): victor McKusick’s magnum opus. Am J Med Genet A. 2021;185(11):3259–3265. DOI:10.1002/ajmg.a.62407. PMID: 34169650.

35. Zhou Y, Zhang Y, Lian X, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50(D1):D1398–d1407. DOI:10.1093/nar/gkab953. PMID: 34718717.

36. Szklarczyk D, Gable AI, Lyon D, et al. STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–d613. DOI:10.1093/nar/gky1131. PMID: 30476243.

37. Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–d368. DOI:10.1093/nar/gkw937. PMID: 27924014.

38. Legeay M, Doncheva NT, Morris JH, Jensen LJ. Visualize omics data on networks with omics visualization, a cytoscape app. F1000Res. 2020;9:157. DOI:10.12688/f1000research.22280.2. PMID: 32399202.

39. Dedhia M, Kohetuk K, Crusio WE, Delprato A. Introducing high school students to the gene ontology classification system. F1000Res. 2019;8:241. DOI:10.12688/f1000research.18061.2. PMID: 31431825.

40. Burenbatu Y, Wang, Wang S, et al. iTRAQ-based quantitative proteomics analysis of immune thrombocytopenia patients before and after Qishunbaolier treatment. Rapid Commun Mass Spectrom. 2021;35(3):e8993. DOI:10.1002/rcm.8993. PMID: 33140498.

41. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. DOI:10.1038/nprot.2008.211. PMID: 19131956.

42. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. DOI:10.1101/gr.1239303. PMID: 14597658.

43. Trott O, Olson AJ. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455461. DOI:10.1002/jcc.21334. PMID: 19499576.

44. Yuan S, Chan HCS, Filipek S, Vogel H. PyMOL and inkscape environment for integrated models of biomolecular interaction networks. F1000Res. 2019;8:241. DOI:10.12688/f1000research.18061.2. PMID: 33140498.

45. Viegas DJ, Edwards TG, Bloom DG, Abreu PA. Virtual screening identified compounds that bind to cyclin dependent kinase 2 and prevent herpes simplex virus type 1 replication and reactivation in neurons. Antiviral Res. 2019;172:104621. DOI:10.1016/j.antiviral.2019.104621. PMID: 31634495.

46. Huang T, Ning Z, Hu D, et al. Uncovering the mechanisms of Chinese herbal medicine (MazURenWan) for functional constipation by focused network pharmacology approach. Front Pharmacol. 2018;9:270. DOI:10.3389/fphar.2018.00270. PMID: 29632490.

47. He CM, Lu JG, Cao YQ. [Effects of YiQi Kaimi Recipe on gastrointestinal motility and neuropeptides in rats with colonic slow contraction]. Am J Med Genet A. 2021;185(11):3259–3265. DOI:10.1002/ajmg.a.62407. PMID: 34169650.
transit constipation]. Zhong Xi Yi Jie He Xue Bao. 2007;5(2):160–164. DOI:10.3736/jcim20070212. PMID: 17352872.

48. Ji I, Fan Y, Li I, Bai H, Weng L, Zhao P. Efficacy and safety of Chinese medicinal compound in the treatment of functional constipation: a protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020;99(9):e22456. DOI:10.1097/md.0000000000022456. PMID: 32991483.

49. Zhan Y, Tang X, Xu H, Tang S. Maren Pills improve constipation via regulating AQP3 and NF-kB signaling pathway in slow transit constipation in vitro and in vivo. Evid Based Complement Alternat Med. 2020;2020(1):1–12. DOI:10.1155/2020/9837384. PMID: 32774435.

50. Wang C, Ren Q, Chen XT, et al. System pharmacology-based strategy to decode the synergistic mechanism of Zhi-zhu Wan for functional dyspepsia. Front Pharmacol. 2018;9:841. DOI:10.3389/fphar.2018.00841. PMID: 30127739.

51. Wang LF, Liu XL, Li HT, et al. [Mechanism of Aurantii Fructus Immaturus volarili oil in treatment of slow transit constipation based on network pharmacology]. Zhongguo Zhong Yao Za Zhi. 2020;45(8):1909–1917. DOI:10.19540/j.cnki.cjemm.20200207.302. PMID: 32489077.

52. Yan S, Hao M, Yang H, et al. Metabolomics study on the therapeutic effect of the Chinese herb pair Fructus Aurantii Immaturus and Rhizoma Atractylodis Macrocephalae in constipated rats based on UPLC-Q/TOF-MS analysis. Ann Pharm Med. 2020;9(5):2837–2852. DOI:10.21037/apm-20-0280. PMID: 32921064.

53. Gao L, Wang J, Li F, Deng Y, Gao S. Literature-based analysis on relationship of symptoms, drugs and therapies in treatment of intestinal diseases. J Tradit Chin Med. 2014;34(1):106–114. DOI:10.1016/s0254-6272(14)60063-7. PMID: 25102700.

54. Tsai JC, Tsai S, Chang WC. Effect of ethanol extracts of three Chinese medicinal plants with laxative properties on ion transport of the rat intestinal epithelium. Biol Pharm Bull. 2004;27(2):162–165. DOI:10.1248/bpb.27.162. PMID: 14775805.

55. Liu G, Wang Z, Li X, et al. Total glucosides of parony (TGP) alleviates constipation and intestinal inflammation in mice induced by Sjögren’s syndrome. J Ethnopharmacol. 2020;266(11):13056. DOI:10.1016/j.jep.2020.113056. PMID: 32520566.

56. Kim JE, Lee MR, Park Jj, et al. Quercetin promotes gastrointestinal motility and mucin secretion in loperamide-induced constipation of SD rats through regulation of the mChRs downstream signal. Pharm Biol. 2018;56(1):309–317. DOI:10.1080/13880209.2018.1474932. PMID: 29952685.

57. Liu W, Zhi A. The potential of quercetin to protect against loperamide-induced constipation in rats. Food Sci Nutr. 2021;9(6):3297–3307. DOI:10.1002/fsn3.2259. PMID: 34136194.

58. Ali MZ, Mehmood MH, Haneef M, et al. A flavonoid driven phyo-pharmacological effects of Capparis decidua edgew. In rodents. Pak J Pharm Sci. 2020;33(1(Supplementary)):333–342. DOI:PMID:32122866.

59. Yin J, Liang Y, Wang D, et al. Naringenin induces laxative effects by upregulating the expression levels of c-kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation. Int J Mol Med. 2018;41(2):649–658. DOI: 10.3892/ijmm.2017.3301. PMID: 29207043.

60. Yang ZH, Yu HJ, Pan A, et al. Cellular mechanisms underlying the laxative effect of flavonol naringenin on rat constipation model. PlaSe One. 2008;3(10):e3348. DOI:10.1371/journal.pone.0003348. PMID: 18833323.

61. Mehmood MH, Anila N, Begum S, Syed SA, Siddiqui BS, Gilani AH. Pharmacological basis for the medicinal use of Carissa carandas in constipation and diarrhea. J Ethnopharmacol. 2014;153(2):359–367. DOI:10.1016/j.jep.2014.02.024. PMID: 24583104.

62. Zhang X, Qu P, Zhao H, Zhao T, Cao N. COX-2 promotes epithelial-mesenchymal transition and migration in osteosarcoma MG-63 cells via P38K/AKT/NF-kB signaling. Mol Med Rep. 2019;20(4):3811–3819. DOI:10.3892/mmr.2019.10598. PMID: 31485669.

63. Cong P, Piccolo V, Biancani P, Behar J. Abnormalities of prostaglandins and cyclooxygenase enzymes in female patients with slow-transit constipation. Gastroenterology. 2007;133(2):445–453. DOI:10.1053/j.gastro.2007.05.021. PMID: 17681165.

64. Cheng I, Piccolo V, Biancani P, Behar J. Overexpression of progestrone receptor B increases sensitivity of human colon muscle cells to progestrone. J Physiol Pharmacol. 2008;59(3):G493–G502. DOI:10.11152/appi.90214.2008. PMID: 18776045.

65. Pei H, Wu S, Zheng L, Wang H, Zhang X. Identification of the active compounds and their mechanisms of medicinal and edible ShanZha based on network pharmacology and molecular docking. J Food Biochem. 2022;46(1):e14020. DOI:10.1111/jfbc.14020. PMID: 34825377.

66. Sanders KM, Koh SD, Ward SM. Intestinal cells of cajal as pacemakers in the gastrointestinal tract. Annu Rev Physiol. 2006;68:307–343. DOI:10.1146/annurev.physiol.68.040504.094718. PMID: 16042075.

67. Beckett EA, Ro S, Baygınov Y, Sanders KM, Ward SM. Kit signaling is essential for development and maintenance of intestinal cells of Cajal and electrical rhythm in the embryonic gastrointestinal tract. Dev Dyn. 2007;236(1):60–72. DOI:10.1002/dvdy.20929. PMID: 16937373.

68. Cohen M, Cazals-Hatem D, Duboc H, et al. Evaluation of interstitial cells of Cajal in patients with severe colonic inertia requiring surgery: a clinical-pathological study. Color Res Dis. 2017;19(5):462–467. DOI:10.1111/codi.13511. PMID: 27627028.

69. He Q, Han C, Huang L, et al. Astragaloside IV alleviates mouse slow transit constipation by modulating gut microbiota profile and promoting butyric acid generation. J Cell Mol Med. 2020;24(16):9349–9361. DOI:10.1111/jcmm.15586. PMID: 32628809.

70. Jeon JR, Choi HJ. Lactic acid fermentation of germinated barley fiber and proliferative function of colon epithelial cells in loperamide-induced rats. J Med Food. 2010;13(4):950–960. DOI:10.1089/jmf.2009.1307. PMID: 20673062.

71. Zheng H, Liu YJ, Chen ZG, Fan GQ, miR-222 regulates cell growth, apoptosis, and autophagy of interstitial cells of Cajal isolated from slow transit constipation rats by targeting c-kit. Indian J Gastroenterol. 2021;40(2):198–208. DOI:10.1007/s12664-020-01143-7. PMID: 33792838.

72. Zhai X, Lin D, Zhao Y, Yang X. Bacterial cellulose relieves diphenoxyline-induced constipation in rats. J Agric Food Chem.
73. Wang J, Bai X, Peng C, et al. Fermented milk containing *Lactobacillus casei* Zhang and *Bifidobacterium animalis* ssp. *lactis* V9 alleviated constipation symptoms through regulation of intestinal microbiota, inflammation, and metabolic pathways. *J Dairy Sci.* 2020;103(12):11025–11038. DOI:10.3168/jds.2020-18639. PMID: 33222846.

74. Hajji N, Wannes D, Jabri MA, et al. Purgative/laxative actions of *Globularia alypum* aqueous extract on gastrointestinal-physiological function and against loperamide-induced constipation coupled to oxidative stress and inflammation in rats. *Neurogastroenterol Motil.* 2020;32(8):e13858. DOI:10.1111/nmo.13858. PMID: 32337785.

75. Li Y, Yu Y, Li S, et al. Isobaric tags for relative and absolute quantification-based proteomic analysis that reveals the roles of progesterone receptor, inflammation, and fibrosis for slow-transit constipation. *J Gastroenterol Hepatol.* 2018;33(2):385–392. DOI:10.1111/jgh.13873. PMID: 28699285.

76. Zmonarski SC, Banasik M, Madziarska K, Mazanowska O, Krajewska M. The role of toll-like receptors in multifactorial mechanisms of early and late renal allotransplant injury, with a focus on the TLR4 receptor and mononuclear cells. *Adv Clin Exp Med.* 2019;28(7):981–987. DOI:10.17219/acem/94139. PMID: 30968609.

77. Choi YJ, Kim JE, Lee SJ, et al. Loperamide-induced constipation activates inflammatory signaling pathways in the transverse colon of SD rats via complement C3 and its receptors. *Curr Mol Med.* 2022;22(5):458–469. DOI:10.2174/1566524021666210618124220. PMID: 34148539.

78. Choi YJ, Park JW, Kim JE, et al. Novel characterization of constipation phenotypes in ICR mice orally administrated with polystyrene microplastics. *Int J Mol Sci.* 2021;22(11), DOI:10.3390/ijms22115845. PMID: 34072552.