Ethnomedicinal assessment of Irula tribes of Walayar valley of Southern Western Ghats, India

Arjunan Venkatachalapathi*, Thekkan Sangeeth, Mohammad Ajmal Ali, Sulur Senniyappan Tamilselvi, Subramaniyam Paulsamy, Fahad M.A. Al-Hemaidc

PG and Research Department of Botany, Kongunadu Arts and Science College, Coimbatore 641029, India

R & D, Bharthiar University, Coimbatore 641046, India

Department of Botany and Microbiology, King Saud University, Riyadh 11451, Saudi Arabia

Received 11 June 2016; revised 12 September 2016; accepted 10 October 2016

Available online 19 October 2016

Abstract The present study was aimed to explore the traditional knowledge of Irula tribal people who are practicing herbal medicine in Walayar valley, the Southern Western Ghats, India. A total number of 146 species of plants distributed in 122 genera belonging to 58 families were identified as commonly used ethnomedicinal plants by them. Interestingly, 26 new claims were also made in the present study. Through the data obtained from Irula tribal healers, the herbs were mostly used for medicine (40.4%) followed by trees (26.7%) and climbers (18.5%). In addition leaves were highly used for medicinal purposes, collected from 55 species (38%) followed by multiple parts from 18 species (12%). Acorus calamus is the species of higher use value (1.80) assessed to be prescribed most commonly for the treatment of cough. High informant consensus factor (1.0) obtained for insecticidal uses and cooling agent indicates that the usage of Canarium strictum and Melia dubia, and Mimosa pudica and Sesamum indicum respectively for that purposes had obtained high degree of agreement among the healers in using these species for the respective purposes. The most commonly used method of preparation was decoction (63%) followed by raw form (23%), paste (12%) and powder (2%). Therefore, it is suggested to take-up pharmacological and phytochemical studies to evaluate the species to confirm the traditional knowledge of Irulas on medicinal plants.

1. Introduction

Since few centuries, it is reported that about one fourth of the common drugs used worldwide are derived from plants (Ernst, 2005). Among the top 252 common formulations of the drugs, 219 are obtained from plants alone (Dobson, 1995). As the indigenous people are the more reliable source of information on medicinal plants (Iwu et al., 1999), for the past few decades, use of ethnomedicinal information in medicinal plant research
Ethnomedicinal assessment of Irula tribes of Walayar valley of Southern Western Ghats, India

2. Materials and methods

2.1. Study area and the tribal community

The study area, Walayar Valley, located in lower Western Ghats of Coimbatore district, Tamil Nadu State and Palghat district, Kerala State and the Palghat gap of both States covers an area of ca. 12500 ha (ca. 4200 ha in Tamil Nadu and 8300 ha in Kerala) between the altitude 370 and 450 m above msl. The geographical location of Walayar valley is 10° 77’ 0-3’ N and 76° 51’ 06-10’ E (Fig. 1). In this landscape, ca. 55% of the geographical area occupied by moist tropical semi-evergreen forest dominated by the tree species, Chloroxylon swietenia (Champion and Seth, 1968) is a protected forest for biodiversity conservation. The only inhabitant, Irula tribal community is permitted to do agriculture and collection of minor forest produce for their own use without posing any problem to species diversity. The Walayar river runs across the valley and its environ occupies ca. 2% of geographical area of this region. The agricultural land around the forests in this valley spreads over an area of ca. 40% of total geographical area. Annual rainfall ranges between 1500 and 2200 mm for the past 15 years.

The population of Irula tribes in Walayar valley is ca. 470, distributed in six hamlets each consists of 6–15 families. According to anthropological literature, Irula, one of the oldest tribal communities of India belongs to the Negrito race (migrated from Africa) which is one among the six ethnic groups that add to the racial mosaic of India (Von, 1982). Few elders in this community have the knowledge on medicinal uses of plants which are used mainly for first aid remedies like stomach problems, fever, headache, skin problems, etc.

2.2. Data collection

Six field visits were made in Walayar valley for getting ethnobotanical information during the period between October, 2013 and May, 2015 in all the six Irula habitations. Totally five age-old healers of in-depth knowledge on medicinal plants were identified for collecting information by interrogations. To determine the difference in knowledge among the Irula people, we cross checked the information collected with the other informants. The number of times, the healers repeated the same use of the plants was noted. For documenting the ethnobotanical information, field data sheet has been prepared and used. Local name of the plant, parts used for treatment, preparation methods, other plants used as ingredients, mode of administration etc., were collected for all medicinal plants used by Irulas. The plant species were identified with the help of keys provided in ‘The Flora of Presidency of Madras’ (Gamble and Fischer, 1935) and ‘The Flora of Tamil Nadu Carnatic’ (Matthew, 1983). Identified species were confirmed with Dr. V. Balasubramaniam, Plant Taxonomist in the Botany Department of Kongunadu Arts and Science College, Coimbatore. Herbarium specimens are maintained in the Botany Department of the College.

2.3. Ailment categories

Sixteen ailment categories were grouped (Cook, 1995) as presented elsewhere (Venkatachalapathi et al., 2016) on basis of the information provided by the Irula healers of Walayar valley.

2.4. Analysis of data

Informant consensus factor \((F_a) \) was used to know the level of consensus among the informants or healers on the use of a plant for a particular ailment category. The Use Value \((UV) \) is importance of a species in terms of its use in herbal remedy in relation to other species. Fidelity level \((FL) \) is a tool to determine the most frequently used plant species as per the informants for the treatment of a disease in a particular ailment category. The \(UV, F_a \) and \(FL \) were calculated as per the formula of Trotter and Logan (1986), Phillips et al. (1994) and Friedmen et al. (1986) respectively.
3. Results

The Irula tribes of Walayar valley utilized a large number of 146 species of 122 genera belonging to 58 families for the treatment of various medicaments (Table 1). One of the interesting observations made in the study is that among the 146 ethnomedicinal plants, 26 claims from the species like Acacia leucophloea, Alstonia venenata, Artocarpus heterophyllus, Carissa spinarum, Curculigo orchioides, Hybanthus enneaspermus, Melia dubia and Solena amplexicaulis etc. are new and are reported for the first time (Table 1). Among the medicinal plant families represented, Fabaceae registered more number of 16 species followed by Euphorbiaceae (9 species), Lamiaceae (7 species) and Asclepiadaceae (6 species). Through the data obtained from life-form analysis, incidence of herbs (40.4%) were the primary source of medicine followed by trees (26.7%) and climbers (18.5%) (Fig. 2). In addition, among the utilization of various plant parts investigated, leaves of greater number of 55 species followed by whole plant (16 species), fruits (13 species) and rhizomes (12 species) were used by the tribal community for the treatment of common ailments such as cold, cough, jaundice, rheumatism etc. (Fig. 3). However, 18 species were exploited for their multiple usage in herbal remedy. They were administered either alone or in combination with parts of other species (Table 2). Generally, they were prescribed as decoction (63%), raw form (23%), paste (12%) and powders (2%) (Fig. 4).

Evidently, the current study documents, Acorus calamus as the most commonly used species prescribed for the treatment of cough by the Irula tribes with highest use value of 1.80 (Table 1). Other important species with high use value more than 1.20 were Abrus precatorius, Acacia leucophloea, Aerva lanata, Albizia amara, Cardiospermum canescens, Cassia auriculata, Dioscorea oppositifolia, Enicostemma littorale, Justicia adhatoda, Mimosa pudica, Mukia maderaspatana, Ocimum sanctum, Phyllanthus amarus, Piper betle, Plectranthus amboinicus, Plumbago zeylanica, Solanum surattense, Solena amplexicaulis, Syzygium cumini and Vitex negundo (Table 1). For employing informant consensus factor (F_{ic}), more than 50 use-reports were obtained for certain ailment categories viz., dermatological infections (82 use-reports, 45 species), skeleto-muscular system disorders (54 use-reports, 29 species) and gastro-intestinal ailments (50 use-reports, 30 species) (Table 3) and their F_{ic} values ranged between 0.10 and 1.0 (Table 3). In this study, high F_{ic} value was obtained for insecticidal uses (1.0) and cooling agent (0.85), whereas lower F_{ic} was obtained for endocrinal disorders, especially diabetes (0.10). It was found that the Irula tribes commonly apply bark powders of Canarium strictum and Melia dubia for mosquito repellency and Mimosa pudica and Sesamum indicum as body coolant in Walayar valley. Appreciably, it has been determined that a high number of 100 species have obtained 100% fidelity and were highly preferred for treating particular ailments (Table 1).

4. Discussion

The information on therapeutic uses of 146 species (Table 1) collected from the Irula tribal community of Walayar valley was compared with that of the early publications (Rajendran and Henry, 1994; Vashistha, 2015). In this content, 26 new claims were documented and are reported for the first time in this study (Table 1). Remaining species were already reported for their various medicinal uses (Jain and Goel, 1995; Yesodharana and Sujana, 2007; Sanjeev et al., 2015). Among the 58 families represented, Fabaceae manifested the first dominant family in terms of species richness followed by Euphorbiaceae, Lamiaceae and Asclepiadaceae (Table 1). It has been reported already that the members of these families, owing to rich variety of secondary metabolites and Lamiaceae...
Table 1 List of medicinal plants used by the Irula tribal community in Walayar valley of Coimbatore district, Southern Western Ghats, India.

S. No.	Botanical name and family	Local name	Use value	Parts used	Ailment category: number of use reports (ailments treated)	Preparation	Application	
1	*Acacia catechu* Willd. (Mimosaceae)	Karungali	0.60 Stem	GIA-1 (ulcer)	RSD-1 (chest pain)	Decoction	Oral	
2	*A. leucoxphloea* (Roxb.) Willd. (Mimosaceae)	Vellvale maram	1.40 Bark	DID-1 (wound healing)	GIA-3 (stomach problem)	Raw	Oral	
3	*A. nilotica* (L.) Willd. (Mimosaceae)	Karuvale maram	0.20 Stem and bark	DC-1 (toothache)		Past	Oral	
4	*Aegle marmelos* (L.) Corr. (Rutaceae)	Vilvam	0.60 Leaf and fruit	ED-1 (diabetes)		Raw	Oral	
5	*Ailanthus excelsa* Roxb. (Simaroubaceae)	Perumaram	0.20 Leaf			Decoction	Oral	
6	*A. lebbeck* (L.) Benth. (Fabaceae)	Vagai	0.20 Leaf			Raw	Oral	
7	*Albizia amara* R. Br. (Apocynaceae)	Sinnappalai	0.20 Latex	DID-1 (wound)		Raw	Oral	
8	*A. lebbeck* (L.) Benth. (Fabaceae)	Vagai	0.20 Leaf			Raw	Oral	
9	*Aristolochia venenata* R. Br. (Apocynaceae)	Pala	0.60 Leaf and stem	SMSD-1 (arthritis)	DID-2 (antioxidant and skin diseases)	Decoction	Oral	
10	*Artocarpus heterophyllus* Lam. (Rutaceae)	Vembu	0.60 Whole plant	PB-1 (snake bite)		Raw	Oral	
11	*Azadirachta indica* A. Juss. (Meliaceae)	Sambirani chedi	0.20 Bark	IC-1 (mosquito repellent)		Powder	Topical	
12	*Canarium strictum* Roxb. (Burseraceae)	Payira maram	0.40 Leaf			Decoction	Oral	
13	*Cantia dioecocum* Gaertn. Merr. (Rubiacae)	Chrukila	0.40 Fruit and latex	Fvr-2 (fever)		Decoction	Oral	
14	*Carissa spinarum* Linn. (Apocynaceae)	Kakke maram	1.00 Stem and flower	SMSD-1 (arthritis)	DID-2 (antioxidant and skin diseases)	Decoction	Oral	
15	*Cassia fistula* Linn. (Caesalpinia)	Vembu	0.60 Whole plant	PB-1 (snake bite)		Raw	Oral	
16	*Cinnamomum camphora* (L.) Nees & Eberm. (Lauraceae)	Pachkarpoomar	0.20 Stem			Decoction	Oral	
17	*Cinnamomum camphora caulata* Wight & Arn. (Burseraceae)	Kiluvai	0.80 Leaf	Fvr-4 (fever)		Decoction	Oral	
18	*Dalbergia sissoo* Roxb. ex DC. (Fabaceae)	Eitte	0.20 Stem	DID-1 (skin diseases)		Past	Topical	
19	*Dodonaea angustifolia* (L.f.) Benth. (Sapindaceae)	Baraley	0.40 Leaf and bark	SMSD-2 (Bone fracture and head ache)		Past	Topical	
20	*Erythrina variegata* (L.) Merr. (Fabaceae)	Mullumurungai	0.40 Leaf	RSD-2 (cold and cough)		Decoction	Oral	
21	*Ficus racemosa* Roxb. (Fabaceae)	Athi	0.60 leaf, bark and fruit	CSCD-1 (blood purification)	GIA-1 (leucorrhoea)	Raw	Oral	
22	*Limonia acidissima* L. (Rutaceae)	Vilampilam	0.60 Fruit			Raw	Oral	
23	*Mangifera indica* L. (Anacardiaceae)	Mavin mara	0.80 Leaf, bark and fruit	DID-2 (Wound healing and antioxidant)		Raw	Oral	
24	*M. azedarach* L. (Meliaceae)	Malaivembu	0.60 Bark			Decoction	Oral	
25	*M. dubia* L. (Meliaceae)	Malaivembu	0.60 Bark			IC-1 (mosquito repellent)	Decoction	Oral
S. No.	Local name	Use value	Parts used	Preparation	Application			
-------	------------	-----------	------------	-------------	-------------			
26	Churuli	0.20	Flower	GIA-1 (stomach ache)	Decoction	Oral		
27	Murungai	0.40	Leaf, flower and fruit	GUA-2 (male fertility)	Decoction	Oral		
28	Nelli	0.60	Fruit	CSCD-1 (blood purification)	Raw	Oral		
				DID-1 (antioxidant)	Decoction	Oral		
				HC-1 (hair tonic)	Decoction	Oral		
29	Pungam	0.40	Seed	SMSD-2 (rheumatism)	Decoction	Oral		
30	Pucha	0.60	Stem and fruit	SMSD-1 (head ache)	Decoction	Oral		
31	Kiraampu	0.60	Fruit	GH-2 (piles and bathing)	Decoction	Oral		
				DC-3 (toothache)	Past	Topical		
32	Naval	1.40	Leaf, bark, fruit and seed	ED-4 (diabetes)	Raw	Oral		
33	Puli	0.40	Seed	DID-2 (antioxidant)	Decoction	Oral		
34	Marutu	0.20	Bark	GIA-1 (dysentery)	Decoction	Oral		
35	Thanikai	0.20	Bark	RSD-1 (chest pain)	Decoction	Oral		
36	Kadukkai	0.20	Fruit	GIA-1 (stomach pain)	Decoction	Oral		
37	Palai	0.20	Leaf	DC-1 (toothache)	Past	Topical		
38	Elanthai	0.60	Leaf	DID-3 (wound)	Past	Topical		
39	Malai elanthai	0.60	Leaf	DID-3 (wound)	Past	Topical		
40	Kutiyotti	0.60	Latex	GIA-1 (ulcer)	Decoction	Oral		
41	Kattuelumichai	1.00	Fruit	SMSD-4 (body pain)	Decoction	Oral		
42	Rattha choori	0.80	Whole plant	SMSD-4 (arthritis and joint pain)	Decoction	Oral		
43	Vella Erukku	0.20	Latex	DID-1 (wound)	Raw	Oral		
44	Elumichi	0.20	Flower	ED-6 (diabetes)	Raw and	Oral		
45	Elanthi	0.60	Leaf	GIA-1 (dysentery)	Decoction	Oral		
46	Sangam	0.20	Leaf	DID-1 (skin diseases)	Decoction	Oral		
47	Valampuri edampuri	0.20	Fruit	ENT-1 (ear ache)	Decoction	Oral		
48	Adalai	0.60	Latex	ENT-3 (mouth ulcer)	Decoction	Oral		
49	Adatodai	1.20	Leaf	Fvr-6 (fever)	Decoction	Oral		
50	Vadaikkutti	0.20	Leaf	SMSD-1 (body pain)	Decoction	Oral		
51	Unnichedi	0.40	Leaf	DID-2 (wound healing and antiinflammatory)	Past	Topical		
52	Unnichedi	0.60	Leaf	DID-3 (wound healing)	Past	Topical		
53	Maravalli	0.20	Rhizome	DID-1 (wound healing)	Past	Topical		
54	Vellaippavattai	0.80	Leaf	PB-4 (snake bite)	Decoction	Oral		
55	Amalpori	0.80	Leaf	PB-4 (snake bite)	Decoction	Oral		
Table 1 (continued)

S. No.	Botanical name and family	Local name	Use value	Parts used	\(^a\)Ailment category: number of use reports (ailments treated)	Preparation	Application
56	\(^1\)R. tetraphylla L. (Apocynaceae)	Pampukaaalahchendi	0.60	Leaf	PB-3 (snake bite)	Decoction	Oral
57	\(^1\)Solanum surattense L. (Solanaceae)	Kandankathiri	1.20	Whole plant	RSD-6 (cold and wheezing)	Decoction	Oral
58	\(^1\)Vitex negundo L. (Verbenaceae)	Notchi	1.40	Leaf	SMSD-7 (headache and body pain)	Decoction	Oral
59	Herbs	Thuththi	0.80	Whole plant	GH-4 (piles)	Decoction	Oral
60	\(^1\)Acalypha indica L. (Euphorbiaceae)	Kuppaimeni	0.20	Leaf	LP-1 (jaundice)	Decoction	Oral
61	\(^1\)A. fruticosa L. (Euphorbiaceae)	Vasambu	1.80	Rhizome	RSD-5 (cough)	Decoction	Oral
62	\(^1\)Achyranthes aspera L. (Amaranthaceae)	Nayuruvi	0.40	Whole plant	PB-2 (dog bite and poisonous bite)	Decoction	Oral
63	\(^1\)Acorus calamus L. (Acoraceae)	Poolai poo	1.20	Leaf	ED-6 (kidney stone)	Raw	Oral
64	\(^1\)Alpinia galanga L. (Zingiberaceae)	Kattukarunai	1.00	Rhizome	GUA-1 (menstrual problem)	Raw	Oral
65	\(^1\)Andrographis paniculata L. (Acanthaceae)	Neelavembu	0.80	Whole plant	PB-4 (snake bite)	Decoction	Oral
66	\(^1\)Anisomeles malabarica (LBR) (Lamiaceae)	Mitikirai	0.40	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
67	\(^1\)Asystasia gangetica L. (Acanthaceae)	Vallarai	0.60	Whole plant	SMSD-1 (tumor)	Decoction	Oral
68	\(^1\)Centella asiatica L. (Apiaceae)	Vallukkai	0.40	Leaf	SMSD-1 (swelling)	Decoction	Oral
69	\(^1\)C. asiatica L. (Amaranthaceae)	Nilapanai	1.20	Rhizome	SMSD-1 (rheumatism)	Decoction	Oral
70	\(^1\)Cynodon dactylon L. (Cyperaceae)	Karbepoovale	0.40	Leaf	SMSD-1 (swelling)	Decoction	Oral
71	\(^1\)Cyperus rotundus L. (Cyperaceae)	Korai kilangu	0.20	Rhizome	SMSD-1 (head ache)	Decoction	Oral
72	\(^1\)Curcuma aromatica Salisb. (Zingiberaceae)	Kancatam	0.20	Whole plant	SMSD-1 (tumor)	Raw	Oral
73	\(^1\)Cleome aspera L. (Cleomaceae)	Karumpoondu	0.20	Leaf	SMSD-1 (headache and antiinflammatory)	Raw	Oral
74	\(^1\)Daucus carota L. (Apiaceae)	Ellukku sakkalathi	0.40	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
75	\(^1\)Eclipta prostrata L. (Amaranthaceae)	Naikadugu	0.80	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
76	\(^1\)Eclipta prostrata L. (Amaranthaceae)	Karpooravalli	0.40	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
77	\(^1\)Eugenia jambolana L. (Myrtaceae)	Kamyunist Alai	0.20	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
78	\(^1\)Eupatorium cannabinum L. (Asteraceae)	Karumpoondu	0.20	Leaf	SMSD-1 (headache and antiinflammatory)	Raw	Oral
79	\(^1\)Eucalyptus globulus L. (Myrtaceae)	Ellukku sakkalathi	0.40	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
80	\(^1\)Eupatorium cannabinum L. (Asteraceae)	Naikadugu	0.80	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
81	\(^1\)Eupatorium cannabinum L. (Asteraceae)	Karpooravalli	0.40	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
82	\(^1\)Eupatorium cannabinum L. (Asteraceae)	Kamyunist Alai	0.20	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
83	\(^1\)Eupatorium cannabinum L. (Asteraceae)	Karpooravalli	0.40	Leaf	SMSD-1 (rheumatism)	Decoction	Oral
84	\(^1\)Eupatorium cannabinum L. (Asteraceae)	Kamyunist Alai	0.20	Leaf	SMSD-1 (rheumatism)	Decoction	Oral

(continued on next page)
Table 1 (continued)

S. No.	Botanical name and family	Local name	Use value	Parts used	#Ailment category: number of use reports (ailments treated)	Preparation	Application
85	*Eclipta prostrata L.* (Asteraceae)	Karisalankanni	1.00	Leaf	HC-5 (hair tonic)	Decoction	Oral
86	*Eletusine coracana* (L.) Gaertn. (Poaceae)	Kaelvaragu	0.20	Seed	Fvr-1 (fever)	Decoction	Oral
87	*Enicostemma axillare* L. (Gentianaceae)	Vellarugu	0.20	Leaf	PB-1 (snake bite)	Decoction	Oral
88	*E. littorale* Blume. (Gentianaceae)	Vishnukiranthi	1.20	Whole plant	Fvr-1 (fever)	Decoction	Oral
89	*Evolvulus alsinoides* L. (Convolvulaceae)	Vellarugu	0.20	Leaf	PB-6 (snake bite)	Decoction	Oral
90	*Hemidesmus indicus* L. (Ascipladaceae)	Nannari	0.80	Root	Fvr-1 (fever) GIA-3 (stomach problem)	Decoction	Oral
91	*Hybanthus enneaspermus* L. (Violaceae)	Orithalthamarai	1.00	Whole plant	GUA-5 (male fertility)	Raw and	Oral
92	*Hygrophylla auriculata* Schum. (Acanthaceae)	Voyal chullai	0.20	Leaf	DID-1 (menstrual problem)	Decoction	Oral
93	*Hyptis sauveolens* (L.) Poit. (Lamiaceae)	Karunchsatachi	0.20	Leaf	DID-1 (eczema)	Past	Topical
94	*Leonotis nepetaefolia* (L.) W. T. Ait. (Fabaceae)	Theanthumpai	0.20	Leaf	DID-1 (eczema)	Past	Topical
95	*Mimosa pudica* L. (Fabaceae)	Thootal singi	1.20	Whole plant	CA-4 (body coolant)	Decoction	Oral
96	*Notonia grandiflora* DC. (Astraceae)	Muyalkathu	0.20	Leaf	ENT-1 (ear ache)	Decoction	Oral
97	*Ocimum sanctum* L. (Lamiaceae)	Nallathulasi	1.20	Leaf	RSD-6 (cold and cough)	Decoction	Oral
98	*O. tenuiflorum* L. (Lamiaceae)	Karut tulasi	0.40	Leaf	RSD-2 (cold and cough)	Decoction	Oral
99	*Oxalis corniculata* L. (Oxalidaceae)	Paliakirai	0.40	Whole plant	Fvr-1 (fever) ED-1 (kidney stone)	Decoction	Oral
100	*Phyllanthus amarus* Schum. & Thonn. (Euphorbiaceae)	Kizhaanelli	1.20	Whole plant	GUA-5 (sterility in women)	Raw	Oral
101	*P. maderaspatensis* L. (Euphorbiaceae)	Civappu kilanelli	0.60	Fruit	GIA-3 (indigestion)	Raw and	Oral
102	*P. reticulatus* Poir. (Euphorbiaceae)	Karunelli	0.40	Leaf	GH-1 (piles)	Decoction	Oral
103	*Physalis minima* L. (Solaniaceae)	Kupanti	0.40	Leaf	GIA-1 (gas trouble)	Decoction	Oral
104	*Pluchtranthus anthoines* (Lour.) Spreng. (Lamiaceae)	Karpooravalli	1.20	Leaf	RSD-6 (cold and cough)	Decoction	Oral
105	*Plumbago zeylanica* L. (Plumbaginaceae)	Chittiramoolam	1.20	Flower	GUA-5 (sterility in women)	Decoction	Oral
106	*Polygala arvensis* Willd. (Polygalaceae)	Vecinankai	0.20	Root	SMSD-1 (inflammation)	Decoction	Oral
107	*Pseudaarthria viscida* (L.) Wight & Arn. (Fabaceae)	Moovilai	0.60	Stem and root	CSSD-1 (heart problem) Fvr-1 (fever) GIA-1 (gas trouble)	Decoction	Oral
108	*Sansevieria roxburghiana* Schult. (Agavaceae)	Sanam	0.80	Leaf	ENT-4 (ear ache)	Decoction	Oral
109	*Sesamum indicum* L. (Pedaliaceae)	Elifu	0.80	Seed	CA-4 (body coolant)	Decoction	Oral
110	*Sida rhombifolia* L. (Malvaceae)	Kurunthotti	0.40	Leaf and root	GIA-1 (gas trouble)	Decoction	Oral
111	*Spermacoce latifolia* Aubl. (Rubiaceae)	-	0.20	Leaf	DID-1 (wound healing)	Past	Topical
112	*Tephrosia purpurea* (Linn.) Pers. (Fabaceae)	Kozhunji	0.20	Root	GIA-1 (stomach problem)	Decoction	Oral
113	*Tragia involucrata* L. (Euphorbiaceae)	Kanchori	0.20	Fruit	SMSD-1 (one side headache)	Raw and	Oral
114	*Tridax procumbens* L. (Astraceae)	Vettukkaya puntu	0.80	Leaf	DID-4 (wound healing)	Past	Topical
Table 1 (continued)

S. No.	Botanical name and family	Local name	Use value	Parts used	²Ailment category: number of use reports (ailments treated)	Preparation	Application
115	¹Fernonia cinerea (L.) Less. (Asteraceae)	Mukuttipoondu	0.20	Leaf	SMSD-1 (paralysis)	Decoction	Oral
116	¹Vigna radiata (L.) R. Wilczek. (Fabaceae)	Pasipayaru	0.20	Seed and latex	DID-1 (skin disease)	Past	Topical
117	¹Withania somnifera L. (Solanaceae)	Amukkarakmizangu	0.60	Rhizome	SMSD-3 (nervous disorders)	Decoction	Oral
118	Climbers ¹Abrus precatorius L. (Fabaceae)	Kundu mani	1.20	Seed, latex and root	ENT-4 (eye pain)	Decoction	Oral
119	¹Acacia nilotica (Lour.) Merr. (Fabaceae)	Seeyakkai	0.40	Fruit	DC-1 (toothache)	Powder	Oral
120	¹Amelocissus tomentosa (Roth) Planch. (Vitaceae)	Kattukodi mundiri	0.80	Fruit	DID-4 (antioxidant and skin diseases)	Powder	Oral
121	¹Asparagus racemosus Willd. (Asparagusaceae)	Thanneervittan	1.20	Rhizome	ED-6 (urinary problem)	Decoction	Oral
122	¹Antigonon leptopus Hook. & Arn. (Polygonaceae)	Kodi roja	0.20	Root	DID-1 (anti-inflammatory)	Decoction	Oral
123	¹Aristolochia bracteata L. (Aristolochiaceae)	Aaduthannapalai	0.80	Leaf	DID-3 (eczema, scabies and ringworm infection)	Decoction	Oral
124	¹A. indica L. (Aristolochiaceae)	Aaduthannapalai	0.80	Leaf	DID-3 (eczema, scabies and ringworm infection)	Decoction	Oral
125	¹Basella rubra L. (Basellaceae)	Kodippasali	0.40	Leaf	CSCD-2 (anaemia and increase WBC)	Raw and Decoction	Oral
126	¹Cardiospermum halicacabum Wall. (Sapindaceae)	Mudakathan	1.40	Leaf	SMSD-6 (joint pain)	Raw	Oral
127	¹C. halei 'Caracalla' (L.) Baker (Sapindaceae)	Mudakathan	1.00	Leaf	GIA-1 (stomach ache)	Powder	Oral
128	¹Cissus quadrangularis L. (Vitaceae)	Pirandai	1.00	Stem	GIA-5 (indigestion and inducing appetite)	Powder	Oral
129	¹Coccinia grandis L. (Cucurbitaceae)	Kovai	0.20	Leaf	LP-1 (jaundice)	Decoction	Oral
130	¹Cucurbita moschata Duch. ex Lam. (Cucurbitaceae)	Poosanai	0.20	Fruit	GH-1 (increase weight)	Raw and Decoction	Oral
131	¹Cuscuta chinensis L. (Cucurbitaceae)	Manjavulluwa	0.20	Stem	SMSD-1 (bone fracture)	Past	Oral
132	¹Cyclea pelata L. (Menispermaceae)	Padaikilangu	0.40	Whole plant	GIA-1 (stomach ache)	Decoction	Oral
133	¹Dioscorea oppositifolia L. (Dioscoreaceae)	Kavvala kodi	1.60	Rhizome	GIA-4 (piles)	Powder	Oral
134	¹D. pentaphylla L. (Dioscoreaceae)	Kaattuvalli	0.20	Rhizome	DID-4 (wound)	Powder	Oral
135	¹Gloriosa superba L. (Lilaceae)	Kanuvalikodi	0.20	Root	GUA-1 (abortion)	Decoction	Oral
136	¹Gynnemsa sylvestre R. Br. (Asclepiadaceae)	Chirukurunjan	1.00	Leaf	ED-5 (diabetes)	Decoction	Oral
137	¹Impea starphyllina Roemer & Schultes. (Convulvulaceae)	Onan kodi	0.20	Latex	GH-1 (cracked feet)	Raw	Oral
138	¹'Mukia maderaspatana (Linn.) M. Roemer. (Cucurbitaceae)	Mosumuosukkai	1.40	Leaf	GH-7 (piles)	Decoction	Oral
139	¹Pergularia daemia Forsk. (Asclepiadaceae)	Vaeliparruthi	0.40	Leaf and fruit	RSD-1 (asthma)	Decoction	Oral
140	¹Piper betle L. (Piperaceae)	Vetarli	1.20	Leaf	GIA-1 (gas trouble)	Decoction	Oral
141	¹P. nigrum L. (Piperaceae)	Kurumilag	0.40	Seed	GIA-4 (indigestion)	Decoction	Oral
142	¹Sarcostemma acuminatum Roxb. (Asclepiadaceae)	Sommanum	0.40	Latex	RSD-2 (cold and cough)	Past	Topical
143	¹'Solinga amplexicaulis L. (Cucurbitaceae)	Pulivanchi	1.40	Rhizome	DID-1 (antiinflammatory)	Decoction	Oral

(continued on next page)
members due to more types of volatile oils are getting importance in healing the illness (Sanjeev et al., 2015). From the life-form analysis, herbs were found to be the most common functional group of plants followed by trees and climbers (Fig. 2). In general, richness of herbaceous species than any other life-forms is higher in any natural community which may lead to more use of herbs for medicinal purposes than the species of other habits (Giday et al., 2010; Pushpakarani and Natarajan, 2014; Swapna, 2015). In support of this fact, Venkatachalapathi et al. (2014), also enumerated a higher number of herbaceous species than the other life-forms in various vegetations of Attukal area of Western Ghats, an adjoining part of Walayar valley.

Among the assortment of plant parts utilized, leaves were most frequently used by the Irula tribal community for healing purpose (Fig. 3). These results were in accordance with previous literatures that several traditional healers prescribe mainly the leaves for the preparation of medicines (Gonzalez et al., 2010; Amjad et al., 2015). Umapriya et al. (2011) found that the Irula tribals of Palamalai hills of Coimbatore, India also utilize leaves mainly for their therapeutic applications. Perhaps a more likely explanation for the high utility of leaves is that they can be collected very easily than the other parts (Ayyanar and Ignacimuthu, 2011). Furthermore, leaves are the active sites of photosynthesis and hence the production of a variety of bioactive entities (Bahmani et al., 2014). Obviously, for remedies preparations decoction form was prescribed by Irulas in Walayar valley (Fig. 4). Decoction is the major form of medicine preparation in some tribal communities worldwide (Ahirwar, 2010; Bahmani et al., 2014; Amjad et al., 2015). Raw consumption, paste and powder forms were also prepared and prescribed by the Irulas of Walayar. Further, Irula healers informed that preparation of medicine was made by using single plant part or in combination with parts of more than one species (Table 2). The study revealed that a single mode of medicine preparation was more predominant (52.7%) in comparison to multiple modes (26.01%). Umapriya et al. (2011) also reported that the single mode of medicine preparation by the Irula tribe in Palamalai hills of Western Ghats, is the most common type. Similar observations for other tribal communities were documented elsewhere (Erinoso and Aworinde, 2012; Savithramma et al., 2012; Senthilkumar et al., 2013; Shosan et al., 2014). The single mode of medicine preparation by the Irula tribe may be attributed to the presence of phytochemical constituents such as saponins, tannins, alkaloids, alkenyl phenols, flavonoids, terpenoids, phorbol esters and sesquiterpene lactones in the individual herals which lead to the desired healing effect (Lixin et al., 2014). A single herb may even contain more than one

S. No.	Botanical name and family	Local name	Use value	Parts used	#Ailment category: number of use reports (ailments treated)	Preparation	Application
144	Tylophora indica R. Br. (Asclepiadaceae)	Mekachettu	0.20	Leaf	RSD-1 (asthma)	Decoction	Oral
145	Loranthus flacata Linn. f. (Loranthaceae)	Pulluruvi	0.20	Bark	GUA-1 (menstrual problem)	Decoction	Oral
146	Viscum album Mistletoe. (Loranthaceae)	Pulluruvi	0.80	Fruit	CSCD-3 (heart problem) SMSD-1 (tumour)	Decoction	Oral

Species of new claim; #Ailment categories: Circulatory system/cardiovascular diseases (CSCD), Cooling agent (CA), Dental care (DC), Dermatological infections/diseases (DID), Ear, nose, throat problems (ENT), Endocrinal disorders (ED), Fever (Fvr), Gastro-intestinal ailments (GIA), General health (GH), Genito-urinary ailments (GUA), Hair care (HC), Liver problem (LP), Poisonous bite (PB), Respiratory system diseases (RSD), Skeleto-muscular system disorders (SMSD) and Insecticidal (IC); species with 100% fidelity level.
Table 2 Ingredients added for the preparation of herbal medicines by the Irula healers.

S. No.	Botanical name	Other plants added	Other ingredients added
1	A. catechu	Alpinia galanga, Cleome monophylla and Cyanotis axillaris (chest pain)	Milk
2	A. leucophloea	Angium salvifolium, Cyclea peltata, Dioscorea pentaphylla and Tephrosia purpurea (wound healing and stomach ache)	Coconut oil and honey
3	A. nilotica	Curcuma aromatica (toothache)	Coconut oil
4	A. marmelos	Curcuma aromatica, Piper nigrum and P. betle (diabetes)	Coconut oil and honey
5	A. excelsea	Curcuma aromatica, Piper nigrum and P. betle (menstrual problem)	Coconut oil
6	A. salvifolium	Acacia catechu, Terminalia arjuna, T. bellerica and Curculio orchids (chest pain)	Milk and honey
7	A. lebbek	Anisomeles malabarica, Cleome aspera and Curcuma aromatica (eczema)	Coconut oil
8	A. venenata	Curcuma aromatica (wound healing)	Coconut oil
9	A. heterophyllus	Ficus racemosa, Begonia malabaraha, Pedalium murex and Cardiospermum halicacabum (arthritis and skin diseases)	Coconut oil
10	A. indic	Ficus racemosa, Alpinia galanga, Phyllanthus emblica and Aloysia gangetica (blood purification)	Milk and honey
11	A. strictum	Allium sativum and Curcuma aromatica (mosquito repellent)	–
12	A. dioecicum	Curcuma aromatica, Piper nigrum and P. betle (dog bite and stomach ache)	Salt
13	C. fistula	Justicia adhatoda, Oxalis corniculata and Hemidesmus indicus (fever)	Milk
14	C. camphora	Helicteres isora, Cleome viscosa and Costus specious (ear ache)	Coconut oil
15	C. canadens	Ocimum sanctum, Cleome monophylla and Piper nigrum (fever)	Milk/honey
16	D. sisoo	Curcuma aromatica (skin diseases)	Coconut oil
17	D. angustifolia	Cardiospermum halicacabum, C. canasense, Curculio orchids and Cissus quadrangularis (joint pain)	Egg white yoke and coconut oil
18	E. variegata	Ocimum tenuiflorum, Piper nigrum and P. betle (cough and cold)	Honey
19	F. racemosa	Hemidesmus indicus, Pavetta indica, Vettiera zizanioides, Curcuma aromatica and Alainthus excelsa (leucorrhoea)	Milk and honey
20	L. indica	Hemidesmus indicus, Pavetta indica, Vettiera zizanioides, Curcuma aromatica, and Cardiospermum canasense and Alainthus excelsa (leucorrhoea and arthritis)	Milk and honey
21	M. indica	Curcuma aromatica (wound healing)	Coconut oil
22	M. azedarach	Hemidesmus indicus, Terminalia arjuna, T. bellerica, Centella asiatica and Cynodon dactylon (stomach ache)	Milk
23	M. dubia	Allium sativum, Canarium strictum and Curcuma aromatica (mosquito repellent)	–
24	M. ferrae	Curcuma aromatica, Piper nigrum and P. betle (dog bite and stomach ache)	Sugar
25	P. emblica	–	Sugar, milk and honey
26	P. pinnata	Cardiospermum halicacabum and Cardiospermum canasense (rheumatism)	Neem oil
27	S. cumini	–	Milk and honey
28	T. indica	Curcuma aromatica, Piper nigrum and P. betle (scorpion bite)	Coconut oil
29	T. arjuna	Alpinia galanga, Curculio orchids, Cleome monophylla, Terminalia bellerica and Cyanotis axillaris (chest pain)	Coconut oil, sugar and honey
30	T. bellerica	Alpinia galanga, Curculio orchids, Cleome monophylla, Terminalia bellerica and Cyanotis axillaris (chest pain)	Coconut oil, sugar and honey
31	T. chebula	Curcuma aromatica, Piper nigrum and P. betle (dog bite and stomach ache)	Salt
32	W. tinctoria	Curcuma aromatica (toothache)	–
33	Z. mauritiana	Curcuma aromatica (wound healing)	Coconut oil
34	Z. enophylla	Curcuma aromatica (wound healing)	Coconut oil
35	Shrubs	Curcuma aromatica, Piper nigrum and P. betle (ulcer and pimples)	Milk and coconut oil

(continued on next page)
S. No.	Botanical name	Other plants added	Other ingredients added
36	*Atalantia monophylla*	*Adhatoda vasica, Eucalyptus globules* and *Ocimum basilicum* (body pain)	Honey
37	*Begonia malabarica*	*Cardiospermum halicacabum, C. canasense* and *Cissus quadrangularis* (arthritis and joint pain)	Egg white yoke
38	*Cassia auriculata*	—	Milk
39	*Citrus limon*	—	Salt and sugar
40	*Clerodendrum inerme*	*Carrum aromatica* (skin diseases)	Coconut oil
41	*Helicteres isora*	*Cleome viscosa and Costus specious* (ear ache)	Coconut oil
42	*Jatropha gossypifolia*	—	Coconut oil
43	*Justicia adhatoda*	*Syzigium cumini, Ocimum sanctum, Begonia malabarica, Piper nigrum and P. betle* (fever)	—
44	*J. gendarussa*	—	Coconut oil
45	*Lantana camara*	*Carrum aromatica* (wound healing)	Coconut oil
46	*L. wightii*	*Carrum aromatica* (wound healing)	Coconut oil
47	*Manihot esculenta*	—	Coconut oil
48	*Pavetta indica*	*Achyranthes aspera, Enicostemma littorale, Rauvolfia serpentina, R. trityphilla, Ocimum sanctum, Piper nigrum and P. betle* (snake bite)	—
49	*Rauvolfia serpentina*	*Achyranthes aspera, Enicostemma littorale, Ocimum sanctum, Rauvolfia trityphilla, Piper nigrum and P. betle* (snake bite)	—
50	*R. trityphilla*	*Achyranthes aspera, Enicostemma littorale, Rauvolfia serpentina, Ocimum sanctum, Piper nigrum and P. betle* (snake bite)	—
51	*Solamun surattense*	*Piper nigrum, Zingiber officinale and Asystasia gangetica* (wheezing)	Food
52	*Vitex negundo*	*Cleome viscosa, Cynodon daetylon, Euphorbia hirta, Ocimum sanctum and Piper nigrum* (snake bite)	Coconut oil
53	Herbs	*Cassia auriculata and Cynodon daetylon* (piles)	Castor oil
54	*Acalypha indica*	*Piper nigrum and P. betle* (jaundice)	Milk
55	*Achyranthes aspera*	*Citrus limon, Vitex negundo, Piper nigrum and P. betle* (dog bite and poisonous bite)	—
56	*Acorus calamus*	*Ocimum sanctum, Piper nigrum and P. betle* (cough)	Honey
57	*Curculio orchids*	*Citrus limon, Pseudarthria viscid, Terminalia arjuna and T. bellerica* (heart problem)	Egg white yoke
58	*Cleome monophylla*	*Cardiospermum halicacabum and C. canasense* (joint pain)	Milk/honey
59	*C. viscosa*	*Commiphora ctcuate, Ocimum sanctum and Piper nigrum* (fever)	—
60	*Coles aromaticus*	*Piper nigrum and P. betle* (cough and cold)	Coconut oil
61	*Cymbopogon citratus*	*Allium sativum and Piper nigrum* (diarrhoea)	Sugar/salt
62	*Cynodon daetylon*	—	Sugar
63	*Desmodium gangeticum*	*Carrum aromatica, Piper nigrum, Hemidesmus indicus and Ocimum sanctum* (fever)	Gingelly oil and Neem oil
64	*Eclipta prostrata*	*Phyllanthus emblica, Hibiscus rosa-siensis, Cleome viscose and Cynodon daetylon* (hair tonic)	Coconut oil
65	*Eleusine coracana*	—	Salt
66	*Enicostemma axilliare*	*Achyranthes aspera, Enicostemma littorale, Rauvolfia trityphilla, Hibiscus rosa-siensis, Ocimum sanctum, Piper nigrum and P. betle* (snake bite)	Salt
67	*E. littorale*	*Achyranthes aspera, Enicostemma axilliare, Rauvolfia trityphilla, Hibiscus rosa-siensis, Ocimum sanctum, Piper nigrum and P. betle* (snake bite)	Salt
68	*Evolvulus alsinodes*	—	Sugar
69	*Hemidesmus indicus*	*Ocimum sanctum and Piper nigrum* (fever)	Milk and honey
70	*Hybanthus enneaspermus*	—	—
S. No.	Botanical name	Other plants added	Other ingredients added
-------	---------------	--------------------	------------------------
71	Hygrophylla auriculata	–	Honey
72	Mimosha pudica	Alpinia galanga, Piper nigrum and Zingiber officinale (asthma)	Honey
73	Notonia grandiflora	Heliceres isora, Cleome viscosa and Costus specios (ear ache)	Coconut oil
74	Ocinum sanctum	Piper nigrum and P. betle (cough and cold)	Honey
75	O. tenuiflorum	Piper nigrum and P. betle (cough and cold)	Honey
76	Oxalis corniculata	Hemidesmus indicus, Piper nigrum and P. betle (fever)	Honey
77	Phyllanthus amarus	Andrographis paniculata, Piper nigrum and Piper betle (jaundice)	Milk
78	P. reticulatus	Abutilon indicum, Cassia auriculata and Cynodon dactylon (piles)	–
79	Physalis minima	Piper nigrum and P. betle (gas trouble)	Milk
80	Plectranthus amboinicus	Piper nigrum and P. betle (cough and cold)	Honey
81	Plumbago zeylanica	Hemidesmus indicus, Pavetta indica, Vetiveria zizanioides, Hybanthus enneaspermus, Begonia malabarica and Piper nigrum (sterility in women)	Milk/honey
82	Pseudarthria viscosa	Terminalia arjuna, T. bellerica, T. chebula, Curculio orchids, Phyllanthus emblica and Desmodium gangeticum (heart problem and fever)	Coconut oil, Milk/honey
83	Sansevieria roxburghiana	Heliceres isora, Cleome viscosa and Costus specios (ear ache)	Coconut oil
84	Sida rhombifolia	Curcuma aromatica, C. neilgherrensis, Piper nigrum, Zingiber officinale, Wrightia tinctoria and Asparagus racemosus (tumor)	Coconut oil, salt, milk/honey
85	Spermacoce latifolia	Commelina benghalensis and Curcuma aromatica (wound healing)	Coconut oil
86	Tephrosia purpurea	Hemidesmus indicus, Cymbopogon citratus and Zingiber officinale (stomach problem)	Milk/honey
87	Tridax procumbens	Curcuma aromatica (wound healing)	Coconut oil
88	Vernonia cinerea	Curcuma aromatica, Cardiopermum halicacabum and C. canasense (paralysis)	Egg white yoke
89	Vigna radiata	Curcuma aromatica (skin disease)	Coconut oil
90	Withania somnifera	Szyzygium cumini, Begonia malabarica, Piper nigrum and P. betle (fever)	Milk/honey
91	Climbers Abrus precatorius	Asparagus racemosus, Acalypha indica, Citrus limon, Curcuma aromatica, Piper nigrum, Allium sativum, Cleome viscosa and Costus specios (delivery pain and eye pain)	Milk/honey
92	Ampelocissus tonentosa	Curcuma aromatica and Citrus limon (antioxidant and skin diseases)	Honey and coconut oil
93	Antigonus lepota	Curcuma aromatica, Solena amplexicaulis and Citrus limon (anti-inflammatory)	Coconut oil
94	Asparagus racemosus	Allium sativum, Citrus limon, Cyperus rotundus and Phyllanthus amarus (urinary problem)	Butter milk/cow milk
95	Aristolochia bracteolata	Achyranthes aspera, Aristolochia indica, Curcuma aromatica, Zingiber officinale, Wrightia tinctoria, Citrus limon, Vitex negundo, Piper nigrum and P. betle (snake bite, eczema, scabies and ringworm infection)	Coconut oil
96	Basella rubra	Basella alba, Phyllanthus emblica, Centella asiatica and Ficus racemosa (anaemia and increase WBC)	Honey
97	Cardiospermum canasense	Cardiospermum halicacabum, C. canasense, Curculio orchids, Cissus quadrangularis and Dodonea angustifolia (joint pain)	Pungam oil, egg white yoke and coconut oil
98	Cissus quadrangularis	Allium cepa, A. sativum and Murraya koenigii (indigestion and inducing appetite)	Aasafoetida
99	Coccinia grandis	Azadirachta indica, Phyllanthus amarus, Ocimum sanctum, Piper nigrum and P. betle (jaundice)	Milk and honey
100	Cucurbita moschata	Allium cepa, A. sativum and Murraya koenigii (increase weight)	Gingelly oil
101	Cuscuta chinensis	Cardiospermum halicacabum, Cissus quadrangularis and Curculio orchids (joint pain)	Egg white yoke and coconut oil
102	Cychea pelata	Hemidesmus indicus, Pavetta indica and Vetiveria zizanioides (stomach ache and tonic)	Milk
103	Dioscorea oppositifolia	Abutilon indicum, Cassia auriculata and Cynodon dactylon (piles)	Castor oil

(continued on next page)
Decoction of cough. Similar to our study, Arunachalam and used species well recognized by all informants for the treatment (Table 1). Among them, clearly demonstrated that some plants have high use value dosage according to the age of the patients. The present study the preparation of medicines and they were administrated in additional knowledge, certain specific plant parts were used for and neem for the preparation of paste. According to their tra-

Walayar valley utilize oils of coconut, castor, gingelly, pongam (Ayyanar and Ignacimuthu, 2011), Irula tribal healers of used alone (Parasuraman et al., 2014). Similar to Kani tribe only when potentiated with other plants, but not evident when actions of active constituents of certain herbals are significant sent study may be explained that certain pharmacological used for multiple modes of preparation of medicine in the pre-

ergistically with each other in producing pharmacological aforementioned phytochemical constituents which works synergistically with each other in producing pharmacological effect (Bahmani et al., 2015). A sizeable number of 38 species used for multiple modes of preparation of medicine in the present study may be explained that certain pharmacological actions of active constituents of certain herbs are significant only when potentiated with other plants, but not evident when used alone (Parasuraman et al., 2014). Similar to Kani tribe (Ayyanar and Ignacimuthu, 2011), Irula tribal healers of Walayar valley utilize oils of coconut, castor, gingelly, pongam and neem for the preparation of paste. According to their traditional knowledge, certain specific plant parts were used for the preparation of medicines and they were administrated in dosage according to the age of the patients. The present study clearly demonstrated that some plants have high use value (Table 1). Among them, Acorus calamus is the most specifically used species well recognized by all informants for the treatment of cough. Similar to our study, Arunachalam and Parimelazhagan (2011) also reported that this species is generally prescribed by the Hooralis tribes of Kadambur hills of Eastern Ghats, India for treating cough and other throat problems. Saikia et al. (2013) in Assam and Venkatachalapathi et al. (2015) in nearby Walayar valley also found that A. cala-

mus is mainly prescribed for the treatment of cough. In con-

trast, certain plant species were reported to have very low use values (0.20) in the present study as they were used for very little number of specific uses (Table 1).

4.1. Informant consensus factor (F_{ic})

F_{ic} arrived for any species depends upon its availability and the knowledge of informants on medicinal plants (Venkatachalapathi et al., 2015). In the present study, the illnesses were grouped into 16 major ailment categories and their F_{ic} values ranged between 0.10 and 1.0 per illness category (Table 3). The average F_{ic} value for all ailment categories was 0.55, indicating a moderate level of informant consensus. However, it was not comparable to that of other studies in Tamilnadu by Ragupathy et al. (2008) among the “Malasars” of Velliangiri holy hills and Ayyanar and Ignacimuthu (2011) among the Kani tribes in Tirunelveli hills, the only two investiga-
tions with quantitative assessment in Tamil Nadu that showed the average F_{ic} values, more than 0.70. Remarkably, high F_{ic} obtained in the present study for the two ailment categories viz., insecticidal uses (1.0) and cooling agent (0.85), indicating a higher level of consensus among the Irula healers for the usage of species for these categories. They commonly apply bark powder of the species, Canarium strictum and Melia dubia particularly in avoiding mosquito bites through topical application. The insecticidal property category was not included in standardized illness groupings by Cook
(1995). However, it was included in the present study, as the Irula tribes were commonly using these two species for their mosquito repellency very regularly. It may be explained that as the Walayar valley is situated in Palakkad gap of Western Ghats, rainfall through south-west monsoon is highly effective (ca. 1100 mm between June and September alone). This moist condition results in thick vegetation of various types and the wetted soil with dense plant formation becomes the favourable site for insects including mosquitoes. Higher informant consensus was recorded by other workers also for certain ailment category as per the informants (Table 1). This fact indicates that all most of them were used for the treatment of single ailment category are suggested for further studies in the line of phytochemistry and pharmacology and hence to identify them adequately. However, consensus for certain illness categories viz., insecticidal property and cooling agent shows the effectiveness and reliability of the species viz., *Canarium strictum* and *Melia dubia*, and *Mimosa pudica* and *Sesamum indicum* on healing the respective ailment. Several new claims made in the study showed the unique knowledge of Irulas of this region on medicinal plants. Recognizing more species with high fidelity level and greater use value indicates the presence of rich varieties of phytoconstituents in these species. The species of high use value, new claims and greater fidelity level and the taxa on which higher consensus were obtained among the informants for using them in particular ailment category are suggested for further studies in the line of phytochemistry and pharmacology and hence to identify them for pharma industries.

4.2. Fidelity level

Among the 146 plants used for medicinal purposes by the Irula tribal community, interestingly it has been determined that a high number of 100 species have obtained 100% fidelity and most of them were used for the treatment of single ailment category as per the informants (Table 1). This fact indicates that all these 100 species were the highly preferred plants for treating the illness of particular ailment category due to their high healing potential. In agreement with the present findings, the species viz., *Acacia nilotica*, *Acorus calamus*, *Cassia auriculata*, *Cissus quadrangularis*, *Tridax procumbens* and *Vitex negundo* available in Walayar landscape were already reported to have 100% fidelity in Tirunelveli hills (Ayyanan and Ignacimuthu, 2011).

5. Conclusion

This wide spectrum of usage of 146 plant species indicates their strong traditional knowledge on medicinal plants. The moderate, average F_i value (0.55) reveals that the consensus on traditional knowledge on medicinal plants among the Irula healers of this landscape has not been shared adequately. However, consensus for certain illness categories viz., insecticidal property and cooling agent shows the effectiveness and reliability of the species viz., *Canarium strictum* and *Melia dubia*, and *Mimosa pudica* and *Sesamum indicum* on healing the respective ailment. Several new claims made in the study showed the unique knowledge of Irulas of this region on medicinal plants. Recognizing more species with high fidelity level and greater use value indicates the presence of rich varieties of phytoconstituents in these species. The species of high use value, new claims and greater fidelity level and the taxa on which higher consensus were obtained among the informants for using them in particular ailment category are suggested for further studies in the line of phytochemistry and pharmacology and hence to identify them for pharma industries.

Acknowledgements

The authors graciously acknowledge Dr. M. Aruchami Research Foundation, Coimbatore for financial support to carry out this work (ARF/RA-2012/018 Dt. 12.02.2012). The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. (RG-195). Tamil Nadu State Forest Department is also acknowledged for granting permission to do the work in Walayar valley. Authors are thankful to Dr. V. Balasubramaniam, Plant Taxonomist and Associate Professor of Botany, Kongunadu Arts and Science College, Coimbatore to confirm the taxonomic position of medicinal

Table 3 Ethnobotanical consensus index for traditional medicinal plant use categories.

S. No.	Ailment category	Number of use-reports (N_u)	Number of taxa (N_t)	Informants' consensus factor (F_{ic})
1.	Circulatory system/cardiovascular diseases (CSCD)	14	8	0.46
2.	Cooling agent (CA)	8	2	0.85
3.	Dental care (DC)	6	4	0.40
4.	Dermatological infections/diseases (DID)	82	45	0.45
5.	Ear, nose, throat problems (ENT)	19	8	0.61
6.	Endocrinial disorders (ED)	31	28	0.10
7.	Fever (Fvr)	20	11	0.47
8.	Gastro-intestinal ailments (GIA)	50	30	0.40
9.	General health (GH)	23	9	0.63
10.	Genito-urinary ailments (GUA)	25	12	0.54
11.	Hair care (HC)	8	4	0.57
12.	Liver problem (LP)	8	3	0.71
13.	Poisonous bite (PB)	29	12	0.60
14.	Respiratory system diseases (RSD)	35	16	0.55
15.	Skeleto-muscular system disorders (SMSD)	54	29	0.47
16.	Insecticidal (IC)	2	2	1.00
Total		414	223	

Average $F_{ic} = 0.55$
plants. We also wish to express our gratitude to the Irula tribal healers of Walayar landscape for providing information on medicinal plants.

References

Abraham, Z., 1981. Ethnobotany of the Todas, the Kotas and the Irulas of Nilgiris. In: Jain, S.K. (Ed.), Glimpses of Indian Ethnobotany. Oxford & IBA Publishing Co., New Delhi, pp. 308–320.

Ahirwar, R.K., 2010. A survey of medicinal plants used by tribals of Anuppur District, Central India. Indian J. Appl. Pure Biol. 25, 227–230.

Amjad, M.S., Arshad, M., Qureshi, R., 2015. Ethnobotanical inventory and folk uses of indigenous plants from Pir Nasoora National Park, Azad Jammu and Kashmir. Asian Pac. J. Trop. Biomed. 5, 234–241.

Arunachalam, K., Parimalalahan, T., 2011. Ethnobotanical observations among Hoorals tribes in Kadambur hills (Kalkadambur), Erode District, Tamil Nadu. Global J. Pharmacol. 5, 117–121.

Ayyanar, M., Ignacimuthu, S., 2011. Ethnobotanical survey of medicinal plants commonly used by Kani tribes in Tirunelveli hills of Western Ghats. India. J. Ethnopharmacol. 134, 851–864.

Bahmani, M., Zargaran, A., Rafieian-Kopaei, M., Saki, K., 2014. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian Pac. J. Trop. Biomed. 7, 348–354.

Bahmani, M., Kourosh, S., Hannaneh, G., Mahmoud, R.K., Narges, A., Ahmad, A., Farshad, N., Fariba, B., 2015. Ethnobotanical and therapeutic uses of Camomille. J. Chem. Pharm. Res. 7, 640–645.

Black, P.L., Arrason, J.T., Cuerrier, A., 2007. Medicinal plants used by the Inuit of Quijuqaaluk (Baffin Island, Nunavut). Botanique 86, 157–163.

Champion, H.G., Seth, S.K., 1968. A Revised Survey of Forest Types of India. Govt. of India Press, New Delhi, p. 404.

Cook, F.E.M., 1995. Economic Botany Data Collection Standard. Prepared for the International Working Group on Taxonomic Databases for Plant Sciences (TDWG). Kew, Royal Botanic Gardens, p. 146.

Dobson, A.P., 1995. Biodiversity and human health. Trends Ecol. Evol. 10, 390–391.

Edgar, T., 1909. In: Castes and Tribes of Southern India, Vol. 3. Government Press, Madras, p. 354.

Erinoso, S.M., Awoyinde, D.O., 2012. Ethnobotanical survey of some medicinal plants used in traditional health care in Abeokuta areas of Ogun State, Nigeria. African J. Pharm. Pharmacol. 6, 1352–1362.

Ernst, E., 2005. The efficacy of herbal medicine - an overview. Fundam. Clin. Pharmacol. 19, 405–409.

Friedman, J., Yaniv, Z., Dafni, A., Palewitch, D., 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev desert, Israel. J. Ethnopharmacol. 16, 275–287.

Gamble, J.S., Fischer, C.E.C., 1935. In: Flora of the Presidency of Madras, Vols. I–III. Adlard & Sons Ltd., London.

Giday, M., Asfaw, Z., Woldu, Z., 2010. Ethnomedical study of plants used by Sheko ethnic group of Ethiopia. J. Ethnopharmacol. 132, 75–85.

Gonzalez, J.A., Garcia-Barriuso, M., Amich, F., 2010. Ethnobotanical study of medicinal plants traditionally used in the Arribes Del Duero, Western Spain. J. Ethnopharmacol. 131, 343–355.

Heinrich, M., 1999. Ethnobotany and its role in drug development. Phytother. Res. 14, 479–488.

Iwu, M.W., Duncan, A.R., Okunji, C.O., 1999. New antimicrobials of plant origin. In: Janick, J. (Ed.), Perspectives on New Crops and New Uses. ASHS Press, Alexandria, pp. 457–462.

Jain, S.K., Goel, A.K., 1995. A Manual of Ethnobotany. Scientific Publishers, Jodhpur.

Karthikeyani, T.P., 2003. Ethnopharmacological studies of Irulas in Siruvani hills, Coimbatore District, Tamil Nadu, India. Ph.D. Thesis. Bharathiar University, Coimbatore, Tamil Nadu.

Lixin, Y., Selena, A., John, R.S., Kai, M., Yanqiang, Z., Junzeng, M., Chen, L., Shengji, P., Huyin, H., Gang, X., Alan, C.H., Zhi-wei, Y., Dayuan, X., 2014. Comparative homegarden medical ethnobotany of Naxi healers and farmers in Northwestern Yunnan, China. J. Ethnobiol. Ethnomed. 10, 6.

Matthew, K.M., 1983. The Flora of the Tamil Nadu Carnatic. The Rapanit Herbarium, 3. St. Josephs College, Tiruchirapalli, India, p. 2154.

Nair, K.K.N., Jayakumar, R., 2003. Ethnobotany of Hill-Pulaya tribe in the context of biodiversity rehabilitation at Chinnar wild life Sanctuary, Western Ghats of India. In: Maheshwari, J.K. (Ed.), Ethnobotany and Medicinal Plants of Indian Subcontinent. Scientific Publishing (India), Jodhpur, pp. 431–449.

Owooru, B.O., Kisanp, D.P., 2006. Kenyan medicinal plants used as antivenin: a comparison of plant usage. J. Ethnobiol. Ethnomed. 2, 7.

Parasuraman, S., Thing, G.S., Dhanaraj, S.A., 2014. Polyherbal formulation: concept of ayurveda. Pharmacogn. Rev. 8, 73–80.

Paulsamy, S., 2004. Lemongrass oil and tribal welfare in Anaimalai hills, Western Ghats. South Asian J. Soc. Polit. Stud. 5, 111–113.

Phillips, O., Gentry, A.H., Reynel, C., Wilkin, P., Galvez-Durand, B.C., 1994. Quan-titative ethnobotany and Amazonian conservation. Conserv. Biol. 8, 225–248.

Pulliaiah, T., Murthy, K.S.R., Goud, P.S.P., Kumar, T.D.C., Vijayakumar, R., 2003. Medicinal plants used by the tribals of Nallamalais, Eastern Ghats of India. J. Trop. Med. Plants 4, 237–244.

Pushpakarani, R., Natarajan, S., 2014. Ethnomedicines used by Kaniyakaram tribes in Kaniyakumari district Southern Western Ghats of Tamil Nadu, India. J. App. Pharm. Sci. 4, 056–060.

Ragupathy, S., Steven, N.G., Maruthakkutti, M., Velusamy, B., Ul-Hada, M.M., 2008. Consensus of the ‘Malasars’ traditional aboriginal knowledge of medicinal plants in the Velliangiri holy hills. India. J. Ethnobiol. Ethnomed. 4, 8.

Rajendran, A., Henry, A.N., 1994. Plants used by the tribe Kadar in Anamalai Hills of Tamil Nadu. Ethnobotany 6, 19–24.

Ramachandra, V.S., 2007. Wild edible plants of the Anamalais, Coimbatore district, Western Ghats, Tamil Nadu. Indian J. Tradt. Know. 6, 173–176.

Raisingam, L., 2012. Ethnobotanical studies on the wild edible plants of Irula tribes of Pillur Valley, Coimbatore district, Tamil Nadu, India. Asian Pac. J. Trop. Biomed., 1493–1497.

Saikia, A., Bora, L., Paul, V., Ban, J., Hazarika, D., 2013. Handicraft skills of Yak Pastoralists in Arunachal Pradesh. Indian J. Tradt. Know. 12, 718–724.

Sanjeev, K., Som Datt, S., Nitesh, K., 2015. Ethnobatanical study of some common plants from district Hamirpur of Himachal Pradesh (India). Int. J. Adv. Res. 3, 492–496.

Savithramma, N., Linga Rao, M., Yugandhar, P., Hari Babu, R., 2012. Ethnobotanical study of Penchakalona forest area of Nellore District, Andhra Pradesh. India. Int. J. Phytomed. 4, 333–339.

Senthilkumar, K., Aravindhan, V., Rajendran, A., Henry, A.N., 1994. Quantitative ethnobotany and Amazonian conservation. Conserv. Biol. 8, 225–248.

Sanjeev, K., Som Datt, S., Nitesh, K., 2015. Ethnobotanical study of some common plants from district Hamirpur of Himachal Pradesh (India). Int. J. Adv. Res. 3, 492–496.

Senthilkumar, K., Aravindhan, V., Rajendran, A., Henry, A.N., 1994. Quantitative ethnobotany and Amazonian conservation. Conserv. Biol. 8, 225–248.

Senthilkumar, K., Aravindhan, V., Rajendran, A., Henry, A.N., 1994. Quantitative ethnobotany and Amazonian conservation. Conserv. Biol. 8, 225–248.
Trotter, R., Logan, M., 1986. Informant consensus: a new approach for identifying potentially effective medicinal plants. In: Etkin, N. L. (Ed.), Plants in Indigenous Medicine and Diet: Biobehavioural Approaches. Redgrave Publishers, Bedford hills, New York, pp. 91–112.

Umapriya, T., Rajendran, A., Aravindhan, V., Thomans, B., Maharanjan, M., 2011. Ethnobotany of Irular tribe in Palamalai Hills, Coimbatore, Tamil Nadu. Indian J. Nat Prod Reso. 2, 250–255.

Vashistha, P.B.D., 2015. An ethnobotanical study of plains of Yamuna Nagar District, Haryana. India. Int. J. Innov. Res. Sci. Eng. Technol. 4, 18600–18607.

Venkatachalapathi, A., Abdul Kaffoor, H., Paulsamy, S., 2014. Ethnomedicinal survey on the Irula tribes of Attukal, a part of Western Ghats, Coimbatore, Tamil Nadu, India. In: Proceedings of the National Symposium on Cultural Landscapes, Indigenous Knowledge and Biotechnological Tools for Biodiversity Conservation. Kongunadu Arts and Science College, Coimbatore, India, p. 253.

Venkatachalapathi, A., Sangeeth, T., Paulsamy, S., 2015. Ethnobotanical informations on the species of selected areas in Nilgiri Biosphere Reserve, the Western Ghats, India. J. Res. Biol. 5, 43–57.

Venkatachalapathi, A., Tamilselvi, S.S., Paulsamy, S., 2016. Ethnobotanical knowledge of Irula tribal community of Walayar valley, Southern Western Ghats, India. Int. J. Rec. Adv. Mult. Res. 03, 1379–1392.

Venkatassamy, R., Mubarack, H.M., Doss, A., Ravi, T.K., Sukumar, M., 2010. Ethnobotanical study of medicinal plants used by Malasar tribals in Coimbatore district of Tamil Nadu (South India). Asian J. Exp. Biol. Sci. 1, 387–392.

Von, F.H.C., 1982. Tribes of India: The Struggle for Survival. University of California Press, Berkeley,

Yesodharana, K., Sujana, K.A., 2007. Ethnobotanical knowledge among Malamalasar tribe, Parambikulam Wildlife Sanctuary, Kerala. Indian J. Tradt. Know. 6, 481–483.