Light propagation in the gravitational field of \( N \) arbitrarily moving bodies in 1PN approximation for high-precision astrometry

Sven Zschocke
Institute of Planetary Geodesy - Lohmann Observatory, Dresden Technical University, Helmholtzstrasse 10, D-01069 Dresden, Germany

The light-trajectory in the gravitational field of \( N \) extended bodies in arbitrary motion is determined in the first post-Newtonian approximation. According to the theory of reference systems, the gravitational fields of these massive bodies are expressed in terms of their intrinsic multipoles, allowing for arbitrary shape and inner structure of these bodies. The results of this investigation aim towards a consistent general-relativistic theory of light propagation in the Solar system for high-precision astrometry at sub-micro-arcsecond level of accuracy.

1. INTRODUCTION

The primary objective of astrometry is the determination of the positions and motions of celestial objects, like stars or Solar system objects, from angular observations, that is to say to trace a lightray detected by an observer back to the celestial light-source. Consequently, one fundamental assignment in relativistic astrometry concerns the precise description of the trajectory of a light-signal, which is emitted by the celestial object and propagates through the gravitational field of the Solar system towards the observer. The growing accuracy of observations and new observational techniques have made it necessary to take subtle relativistic effects into account. In this respect, a breakthrough in astrometry and especially in the theory of light propagation is indispensable.

In the limit of geometrical optics the path of a light-signal (photons) is a null geodesic, governed by the geodesic equation which is valid in any coordinate system and reads in the exact form\footnote{1}}\footnote{1} [11, 15]:

\[
\frac{d^2x^\alpha}{d\lambda^2} + \Gamma^\alpha_{\mu\nu} \frac{dx^\mu}{d\lambda} \frac{dx^\nu}{d\lambda} = 0, \quad (1a)
\]

\[
g_{\alpha\beta} \frac{dx^\alpha}{d\lambda} \frac{dx^\beta}{d\lambda} = 0, \quad (1b)
\]

where (1a) represents the geodesic equation, while the so-called isotropic condition (1b) must be imposed as additional constraint for null geodesics; \( x^\alpha (\lambda) \) are the four-coordinates of the photon which depend on the affine curve parameter \( \lambda \), and the Christoffel symbols are functions of the metric of curved space-time,

\[
\Gamma^\alpha_{\mu\nu} = \frac{1}{2} g^{\alpha\beta} \left( \frac{\partial g_{\beta\mu}}{\partial x^\nu} + \frac{\partial g_{\beta\nu}}{\partial x^\mu} - \frac{\partial g_{\mu\nu}}{\partial x^\beta} \right), \quad (2)
\]

where \( g^{\alpha\beta} \) and \( g_{\alpha\beta} \) are the contravariant and covariant components of the metric tensor, respectively.

Facing the fact that in the Solar system the gravitational fields are weak, \( \frac{G M_A}{c^2 R_A} \ll 1 \), and the orbital velocities of the bodies are slow, \( \frac{v_A}{c} \ll 1 \), one is allowed for utilizing the post-Newtonian (PN) approximation for the metric tensor \( g_{\alpha\beta} \) which is based on both of these assumptions\footnote{9}; here \( M_A, R_A, \) and \( v_A \) being mass, radius, and velocity, respectively, of some massive Solar system body (e.g., \( A = \) Sun, planets, moons, planetoids). This so-called weak-field slow-motion approximation admits an expansion of the metric of Solar system in powers of these small parameters, that means in inverse powers of the speed of light, e.g.,\footnote{10}:

\[
g_{\alpha\beta} = \eta_{\alpha\beta} + h^{(2)}_{\alpha\beta} + h^{(3)}_{\alpha\beta} + h^{(4)}_{\alpha\beta} + \mathcal{O} (c^{-5}), \quad (3)
\]
where $\eta_{\alpha \beta} = \text{diag} \{ -1, +1, +1, +1 \}$ is the metric tensor of flat Minkowski space-time, and $h_{\alpha \beta}^{(n)} \ll 1$ are small perturbations of it, which scale as follows, $h_{\alpha \beta}^{(n)} \sim \mathcal{O}(e^{-n})$, while their detailed structure will be considered later.

In doing so one has to bear in mind that such a post-Newtonian expansion assumes from the very beginning that all retardations are small. Therefore, the expansion in \[3\] is only valid inside the so-called near-zone of the Solar system, $|x| \ll \lambda_{gr}$, characterized by the length of gravitational waves, $\lambda_{gr}$, emitted by the Solar system \[14\][17][19]. To get an idea about the magnitude, one can relate this wavelength to a typical orbital period $T_{\text{orbit}}$ of the Solar system bodies by $\lambda_{gr} \sim c T_{\text{orbit}} \sim 10^{17}$ meter, where we have considered as orbital period one revolution of Jupiter around the Sun. Hence, the boundary of the near-zone, $|x| \ll 10^{17}$ meter, is still beyond the most outer border of the Solar system and especially encompasses all Solar system objects.

Since one can define the position of any object only with respect to a concrete reference system, such description necessarily implies to introduce global coordinates which cover the entire curved space-time and in respect to which the positions of the massive bodies, celestial objects and photons along their trajectories can be well-described. The global reference system adopted in modern astrometry is the Barycentric Celestial Reference System (BCRS) with coordinates $(ct, x)$, which $t$ is the coordinate-time and $x$ are Cartesian-like spatial coordinates from the origin of the global system (barycenter of the Solar system) to some field-point.

In BCRS coordinates the exact light-trajectory from the light-source through the Solar system towards the observer, that means the exact solution of geodesic equation \[1\], can be written as follows,

$$
x(t) = x_0 + c(t - t_0) \sigma + \Delta x(t, t_0), \tag{4}
$$

where $x_0 = x(t_0)$ is the position of the light-source at the moment $t_0$ of emission of the light-signal, $\sigma = x_0(x)$ is the unit-direction of the lightray at past-null infinity, and $\Delta x$ are gravitational corrections to the unperturbed light-trajectory. These corrections are complicated expressions which depend on all parameters which characterize the metric of the Solar system. According to the post-Newtonian expansion \[3\], the gravitational corrections to the unperturbed light-trajectory admit a corresponding expansion,

$$
\Delta x = \Delta x_{1\text{PN}} + \Delta x_{1.5\text{PN}} + \Delta x_{2\text{PN}} + \mathcal{O}(e^{-5}), \tag{5}
$$

where the 1PN terms $\Delta x_{1\text{PN}}$, the 1.5PN terms $\Delta x_{1.5\text{PN}}$, and the 2PN terms $\Delta x_{2\text{PN}}$ are of the order $\mathcal{O}(e^{-2})$, $\mathcal{O}(e^{-3})$, and $\mathcal{O}(e^{-4})$, respectively.

As aforementioned, today's astrometric accuracy has reached a level of a few micro-arcseconds in angular observations, and the next scale of precision is the sub-micro-arcsecond level; for a historical survey see \[22\]. In order to analyse such highly precise astrometric data, a comprehensive and systematic relativistic procedure of data-reduction is required \[13\][23]. Among several aspects of modern astrometry, two specific issues have carefully to be treated:

(A) First, the most fundamental concept in astrometric data-reduction concerns the accurate definition of a set of several reference systems plus the coordinate transformations among them. In particular, for the determination of the light-trajectory through the Solar system (N-body system), the following $N+1$ coordinate systems are of primary importance: one global reference system (BCRS) with coordinates $(ct, x)$ and $N$ local coordinate systems with coordinates $(cT_A, X_A)$, one for each massive body $A = 1, \ldots, N$ and co-moving with it. These $N+1$ reference systems are fully defined by the form of their metric tensor. Furthermore, it is well-known, that the global metric \[3\] of a $N$-body system in the region exterior of the massive bodies admits a decomposition into two families of global multipoles, namely global mass-multipoles $m_L$ and global spin-multipoles $s_L$ \[19\][24][27];

$$
h_{\alpha \beta}^{(n)} = h_{\alpha \beta}^{(n)}(m_L, s_L), \quad \text{for} \quad n = 2, 3, 4. \tag{6}
$$

These global multipoles describe the multipole-structure of the entire Solar system as a whole. On the other side, from the theory of reference systems and in accordance with the IAU resolutions \[20\][21], it is clear that physically meaningful multipole moments of some massive body $A$ have to be defined in the body's local reference system, namely local (also called intrinsic) mass-multipoles $M_A^{(n)}$ and local spin-multipoles $S_A^{(n)}$. These intrinsic multipoles describe the multipole-structure of each individual body separately. Consequently, the problem arises about how to express the global metric \[3\] in terms of local multipoles:

$$
h_{\alpha \beta}^{(n)} = h_{\alpha \beta}^{(n)}(M_A^{(n)}, S_A^{(n)}), \quad \text{for} \quad n = 2, 3, 4. \tag{7}
$$

In this respect, there are two advanced approaches in the relativistic theory of reference systems: the Brumberg-Kopeikin formalism (BK) \[15][18][28][31] and the Damour-Soffel-Xu approach (DSX) \[32][65]. Both these approaches coincide for all practical problems in celestial mechanics and astrometry \[56\] and have become a part of the IAU resolutions \[20][21]. Thus it appears that the explicit form of the metric perturbations $h_{\alpha \beta}^{(2)}$, $h_{\alpha \beta}^{(3)}$ and $h_{\alpha \beta}^{(4)}$ in \[7\] are well-established expressions in celestial mechanics and modern astrometry, while the spatial components $h_{ij}^{(4)}$ in \[7\] deserve special attention in case of extended bodies with full multipole structure and is presently an active field of research \[22][40]; note that $h_{00}^{(4)} = 0$.

(B) Second, the Solar system can be described as an isolated $N$-body system, where the bodies move under the influence of their mutual gravitational interaction, therewith associated are orbital motions of the bodies which are highly complicated. One has to be aware that
the metric (3) and, therefore, the light-trajectory (1) are functions of these complicated worldlines \( x_A(t) \) of the massive bodies. In order to simplify this problem, one might want to expand the worldline of some body A around some time-moment \( t_A \) as follows,

\[
x_A(t) = x_A(t_A) + \frac{v_A}{1!} (t - t_A) + \frac{a_A}{2!} (t - t_A)^2 + \mathcal{O}(a_A) ,
\]

(8)

where \( x_A = x_A(t_A) \), \( v_A = v_A(t_A) \) and \( a_A = a_A(t_A) \) are the position, velocity and acceleration of body A at time-moment \( t_A \), respectively, which are constant parameters. While terms like \( v_A/c \) are beyond 1PN approximation in the geodesic equation, one has to realize that the above series expansion is not an expansion in powers over \( c \), thus all terms in (8) will contribute in 1PN approximation to the lightray metric, at least as long as no further assumptions like \( a_A \sim G \) are asserted; cf. text below Eq. (3). In principle, the expression in (8) can be implemented into the metric tensor of the Solar system in (3). But such an approach leads rapidly to involved integrals when solving the geodesic equation in (1a), and implies actually an infinite series of integrals that apparently cannot be summed. Also the time-moment \( t_A \) is actually an open parameter and remains uncertain without further assumptions. Consequently, instead to apply for such an approximative expansion in (8), it is much preferable to find a solution for the light-trajectory in terms of arbitrary worldlines \( x_A(t) \). The actual worldline of some massive body can finally be concretized by means of Solar system ephemerides; e.g. the JPL DE421 [41]. Accordingly, an important point which has carefully to be considered concerns the arbitrary motion of the massive bodies.

In this investigation we will account for both of these fundamental aspects addressed above: issue (A) is incorporated by the DSX approach, while issue (B) is accounted for by integration by parts of geodesic equation plus the evidence that the remnants of this procedure represent terms beyond 1PN approximation. In this way, a systematic approach is developed in order to determine the light-trajectory in the Solar system in (1) in the first post-Newtonian approximation (1PN approximation),

\[
x(t) = x_0 + c(t - t_0) \sigma + \Delta x_{1PN}(t,t_0) + \mathcal{O}(e^{-3}) \quad \sigma
\]

(9)

where the global metric of the Solar system is described from the very beginning in terms of intrinsic multipoles of the extended bodies in arbitrary motion. Such a systematic formalism is an imperative prerequisite for extending the model to higher-order terms in the post-Newtonian expansion in (3).

The article is organized as follows: In section XIV we will motivate the inevitability for an analytical solution of light-trajectory in the field of \( N \) arbitrarily moving bodies with full multipole structure in post-Newtonian order for sub-micro-arcsecond astrometry. In section XVI the geodesic equation in 1PN approximation and the initial-boundary conditions are introduced which determine an unique solution of the geodesic equation. The metric of the Solar system in terms of intrinsic multipoles in accordance with the IAU resolutions is given in section IX. In order to simplify the integration procedure, new variables for space and time and the corresponding transformation of geodesic equation and metric tensor are presented in section VII. In section VI the first integration of geodesic equation is performed, while in section VII some specific cases (arbitrarily moving monopoles, dipoles, quadrupoles, and one body at rest with full multipole structure) are considered. It will be demonstrated that in the limit of bodies at rest the results are in agreement with known results in the literature. In section VIII the second integration of geodesic equation is represented, while some specific cases (arbitrarily moving monopoles, dipoles, quadrupoles, and one body at rest with full multipole structure) are considered in section IX. In the limit of bodies at rest an agreement with known results in the literature is shown. Expressions for the observable relativistic effects of time-delay and light-deflection are given in section X. A summary and outlook can be found in section XII.

A. Notation of impact vectors:

It appears to be considerate to introduce the notation in use regarding the impact vectors, while further notations are shifted to appendix A.

While the exact lightray \( x(t) \) in (1) is a complicated function, the unperturbed lightray in flat Minkowski space-time is just given by a straight line:

\[
x_N(t) = x_0 + c(t - t_0) \sigma ,
\]

(10)

where the subscript N stands for Newtonian limit. One may introduce the following impact vector:

\[
\xi = \sigma \times (x_N(t) \times \sigma) = \sigma \times (x_0 \times \sigma) , \quad d = |\xi| . \quad (11)
\]

The impact-vector in (11) points from the origin of the global system (BCRS) towards the point of closest approach of the unperturbed lightray to that origin. The impact vector in (11) is time-independent, both in case of massive bodies at rest as well as in case of massive bodies in motion.

1. Massive bodies at rest:

Massive bodies at rest means their positions to be constant with respect to the global system: \( x_A = \text{const} \). We will make use of the following notation for the vector from the massive body at rest towards the photon propagating along the exact light-trajectory:

\[
r_A = x(t) - x_A ,
\]

(12)
with the absolute value $r_A = |r_A|$. The vector from the massive body at rest towards the photon along the unperturbed light-trajectory reads:

$$r_A^N = x_N(t) - x_A = x_0 + c(t - t_0)\sigma - x_A,$$

(13)

with the absolute value $r_A^N = |r_A^N|$, and obviously $r_A = r_A^N + O(c^{-2})$. We also need the vector from the massive body at rest towards the photon at the moment of signal-emission:

$$r_A^0 = x_0 - x_A,$$

(14)

with the absolute value $r_A^0 = |r_A^0|$. Note that in case of massive bodies at rest there will be no time-argument in $r_A$ and $r_A^N$, irrespective of the fact that the distance between the photon and the body actually depends on time due to the propagation of the photon. In case of massive bodies at rest we introduce the following impact-vector:

$$d_A = \sigma \times (r_A^N \times \sigma), \quad d_A = |d_A| .$$

(15)

The impact-vector in (15) is time-independent, $d_A = 0$, and points from the origin of local coordinate system of massive body $A$ towards the unperturbed lightray at the time of closest approach to that origin, defined later by Eq. (23). Notice that the term weak gravitational field implies $d_A \gg \frac{G M_A}{c^2}$.

2. Massive bodies in motion:

In case of massive bodies in motion, their positions become time-dependent: $x_A(t)$. Then we will make use of the following notation for the vector from the massive body towards the photon propagating along the exact light-trajectory:

$$r_A(t) = x(t) - x_A(t),$$

(16)

with the absolute value $r_A(t) = |r_A(t)|$. The vector from the massive body in motion towards the photon along the unperturbed light-trajectory reads:

$$r_A^N(t) = x_N(t) - x_A(t) = x_0 + c(t - t_0)\sigma - x_A(t) ,$$

(17)

with the absolute value $r_A^N(t) = |r_A^N(t)|$ and obviously $r_A(t) = r_A^N(t) + O(c^{-2})$. We also will need the vector from the massive body towards the photon at the time-moment of emission of the light signal, given by

$$r_A^0(t_0) = x_0 - x_A(t_0) ,$$

(18)

with the absolute value $r_A^0(t_0) = |r_A^0(t_0)|$. In case of massive bodies in motion we introduce the following impact-vector:

$$d_A(t) = \sigma \times (r_A^N(t) \times \sigma), \quad d_A(t) = |d_A(t)| .$$

(19)

The impact-vector in (19) is time-dependent, $d_A \neq 0$, and points from the origin of local coordinate system of massive body $A$ towards the unperturbed lightray at the time of closest approach to that origin. The time-dependence of the impact-vector in (19) is solely caused by the motion of the massive body, that means a time-derivative of (19) is proportional to the orbital velocity of this body, $d_A(t) = \sigma \times (\frac{\sigma \times v_A(t)}{c})$. The term weak gravitational field implies $d_A(t_0) \gg \frac{G M_A}{c^2}$ for the time of closest approach of the lightray to the massive body, which will be defined later; see Eq. (23).

II. MOTIVATION

Before representing our approach, it is most appropriate to review in brief the recent advancements in the theory of light propagation in the weak gravitational field of $N$ massive bodies. It is clear that in a short review like the present, it is impossible to consider all articles written on the subject during the last decades, and many important calculations must remain unmentioned. Instead, the brief survey is enforced to be focussed on those results, which are of utmost relevance for our considerations.

As mentioned in the introductory section, the BCRS metric of Solar system admits an expansion in terms of multipoles. By inserting the decomposition of the metric in terms of global multipoles (6) into the geodesic equation (1a) one obtains a corresponding decomposition of the lightray-perturbation (5) in terms of global multipoles:

$$\Delta x = \sum_{l=0}^{\infty} \Delta x (m_L, s_L) + O(c^{-5}) .$$

(20)

Likewise, inserting the decomposition of the metric in terms of local multipoles (7) into the geodesic equation (1a) one obtains a corresponding decomposition of the lightray-perturbation (5) in terms of local multipoles:

$$\Delta x = \sum_{l=0}^{\infty} \Delta x (M_L^A, S_L^A) + O(c^{-5}) .$$

(21)

In the subsequent survey it will carefully be distinguished whether a decomposition in terms of global multipoles (20) or in terms of local multipoles (21) is meant. Let us gradually consider these individual terms, depending on how accurate the astrometric measurements are.

A. Astrometry at milli-arcsecond level of accuracy

For astrometry on milli-arcsecond (mas) level of accuracy it is sufficient to approximate all Solar system bodies as spherically symmetric objects. In case of $N$ monopoles at rest the corresponding correction-term in
time-dependence of the coordinates of the photon and the solution of the boundary value problem for the geodesic equations has been obtained at the first time. These results were later confirmed by different approaches in \[52–54\]. The formula for the quadrupole light-deflection in 1PN approximation can be found in \[16\] and should be given here in its complete form:

\[
\Delta x^Q_{1PN}(t, t_0) = \frac{G}{c^2} \sum_{A=1}^{N} M_A \left( \frac{d_A}{r_A^N - \sigma \cdot r_A^N} - \frac{d_A}{r_A^N - \sigma \cdot r_A^N} - \sigma \ln \frac{r_A^N - \sigma \cdot r_A^N}{r_A^N - \sigma \cdot r_A^N} \right),
\]

where the sum in \[22\] runs over all massive bodies of the Solar system. For a comparison of Eq. \[23\] with \[16\] it might be useful to recall: \(\ln r_A^N / r_A^N\). The magnitude of light-deflection for grazing rays amounts to \(1.75 \times 10^9\) mas for Sun, 16.3 mas for Jupiter, 5.8 mas for Saturn, 2.1 mas for Uranus, 2.5 mas for Neptune \[42\].

Since in reality these massive bodies are moving, the question arises about how to implement the time-dependence of the positions of these gravitating bodies. This particular issue has thoroughly been solved in \[43\] in first post-Minkowskian (1PM) approximation, and will be one aspect in the following section.

### B. Astrometry at micro-arcsecond level of accuracy

Meanwhile, modern space-based astrometry has accomplished the step from milli-arcsecond level to micro-arcsecond level of accuracy \[22\]. In order to determine the light-trajectory on \(\mu\)as-level of accuracy, besides the monopole-term in \[22\] some further subtle relativistic effects of light propagation need to be accounted for, as there are:

- 1. the quadrupole structure of the massive bodies,
- 2. the motion of the massive bodies,
- 3. the post-post-Newtonian monopole-term.

The fundamentals of the corresponding theoretical model of light propagation have been worked out in \[15\] \[16\] \[42\] \[44\], and later be refined in \[45\] \[46\]. The results of these investigations have been adopted as one of two model for the Gaia data reduction and which is called GREM (Gaia Relativistic Model). Another approach has been developed in \[47\] \[51\], which is the second model in use for Gaia data reduction and which is called RAMOD (Relativistic Astrometric Model). Both these model are designed for relativistic astrometry at micro-arcsecond level of accuracy and allow for an independent check of their results. Let us consider in more detail each of these three subtle effects which are listed above.

#### 1. Impact of the quadrupole field on light-trajectory

The analytical solution for the light-trajectory in a quadrupole field of a body at rest and in post-Newtonian approximation has been determined in \[44\], where the

\[
\Delta x^M_{1PN}(t, t_0) = \frac{2G}{c^2} \sum_{A=1}^{N} M_A \left( \frac{d_A}{r_A^N - \sigma \cdot r_A^N} - \frac{d_A}{r_A^N - \sigma \cdot r_A^N} - \sigma \ln \frac{r_A^N - \sigma \cdot r_A^N}{r_A^N - \sigma \cdot r_A^N} \right),
\]
2. Impact of the motion of massive bodies on light-trajectory

One of the most sophisticated challenges in relativistic astrometry concerns the problem of the motion of massive bodies and its impact on the light-trajectories. While the solutions in (22) and (23) are valid for bodies at rest, $x_A = 0$, in reality the global coordinates of the bodies depend on time, $x_A(t)$, which is a highly complicated function in a $N$-body system due to the mutual gravitational interaction of the massive bodies. These complicated worldlines of the massive bodies in the Solar system can be series-expanded [10, 42].

$$x_A(t) = x_A + v_A(t - t_A) + O(v_A), \quad (32)$$

where $x_A$ and $v_A$ can be thought of as the actual position and velocity of body $A$ taken from an ephemeris for some instant of time $t_A$. Let us underline here that the impact of the term $v_A(t - t_A)$ in (32) on the light-trajectory is of 1PN order, besides the fact that this term is proportional to the velocity of the body; recall that on the other side terms proportional to $v_A/c$ are of 1.5PN order in the theory of light propagation; cf. text below Eq. (53).

An analytical integration of light-trajectory in the field of an uniformly moving body (32) has been derived in closed form in 1PN approximation in [55] and later also in 1PM approximation by means of a suitable Lorentz transformation of the light-trajectory [56]. As long as one considers uniformly moving bodies, the instant of time $t_A$ in the expansion (32) remains an open parameter, but by all means heuristic arguments can be put forward for a meaningful choice for it. Perhaps the most fruitful suggestion was that given in [57], where it was supposed to accept that this parameter coincides with the time of closest approach of the lightray to the massive body, $t_A^*$, given by an implicit relation:

$$t_A^* = t_0 - \frac{\sigma \cdot (x_0 - x_A(t_A^*))}{c} + O(c^{-2}), \quad (33)$$

$$t_A^* = t_1 - \frac{\sigma \cdot (x_1 - x_A(t_A^*))}{c} + O(c^{-2}), \quad (34)$$

where $x_0 = x(t_0)$ is the global spatial coordinate of the source at the moment of emission of the light signal and $x_1 = x(t_1)$ is the global spatial coordinate of the space-based observer at the moment of observation of the light signal; cf. Eq. (5.13) in [10]. As a result, in the light propagation formulae (22) and (23), one would have to insert $x_A(t_A^*)$. That educated guess was triggered by the idea that the biggest influence on the lightray the body exerts when the photon passes nearest to it. But an unique justification of this suggestion has not been evidenced at that time. Further arguments have later been put forward that partially justify the computation of the parameters of the linear model (32) to match the real position and velocity of the body at the moment of closest approach between the lightray and the real trajectory of the body [58].

A rigorous solution of the problem of light propagation in the field of arbitrarily moving pointlike monopoles and in the first post-Minkowskian approximation has been found in [13], where advanced integration methods have been applied that were originally been introduced in [52] for stationary fields and further developed in [59] for time-dependent fields. According to the solution in [13], the positions of the bodies have to be computed at the retarded instant of time, $t_A^{ret}$, given by the implicit relation

$$t_A^{ret} = t - \frac{|x(t) - x_A(t_A^{ret})|}{c}. \quad (35)$$

The expression (35) is valid for an arbitrary time, e.g. either $t = t_0$ or $t = t_1$. With the aid of this rigorous approach in [13] it has been shown that if the positions and velocities of the bodies are taken at $t_A^{ret}$ then the effects of acceleration and the effects due to time-dependence of velocity of the bodies are much smaller than 1 microarcsecond. The numerical accuracy of various approaches have been investigated in [58], where it was demonstrated for the monopole-term that for an accuracy of 1 mas it is sufficient to take the 1PN solution of a motionless body in (22), if the position $x_A$ of body $A$ is taken at either $t_A^*$ or $t_A^{ret}$.

3. The post-post-Newtonian monopole term

Actually, corrections of post-post-Newtonian (2PN) order to the lightray in [4] will not be on the scope of the present investigation, but should briefly be mentioned here for reasons of completeness about μas-astrometry.

While several post-post-Newtonian effects of light-deflection due to a monopole at rest have been determined a long time ago [60, 65], the determination of the explicit time-dependence of the photons coordinate is mandatory in the data reduction for highly sophisticated astrometry missions like Gaia. In this respect, an important progress has been made in [60], where a 2PN solution for the light-trajectory in the Schwarzschild field as function of coordinate-time in a number of coordinate gauges was obtained; see also [15, 16]. In harmonic gauge, the solution reads

$$x_{2PN}^H (t) = x_0 + c(t - t_0) \sigma \quad + \frac{GM_A}{c^2} \left[ B_1 (r_A^{1PN}) - B_1 (r_0) \right] \quad + \frac{G^2 M_A^2}{c^4} \left[ B_2 (r_A^N) - B_2 (r_0) \right], \quad (36)$$

where the vectorial functions read (cf. Eqs. (50) and (51) in [45]):
\[ B_1(r_A^{1\text{PN}}) = -2 \frac{\sigma \times (r_A^{1\text{PN}} \times \sigma)}{r_A^{1\text{PN}} - \sigma \cdot r_A^{1\text{PN}}} + 2 \sigma \ln (r_A^{1\text{PN}} - \sigma \cdot r_A^{1\text{PN}}), \]  
\[ B_2(r_A^N) = +4 \frac{\sigma}{r_A^N - \sigma \cdot r_A^N} + 4 \frac{d_A}{(r_A^N - \sigma \cdot r_A^N)^2} + \frac{1}{4} \frac{r_A^N}{(r_A^N)^2} - \frac{15}{4} \frac{\sigma}{d_A} \arctan \left( \frac{\sigma \cdot r_A^N}{d_A} \right), \]  
while the expressions \( r_A^N \) and \( r_A^{1\text{PN}} \) are given by:
\[ r_A^N = x_0 + c(t - t_0) \sigma - x_A, \]  
\[ r_A^{1\text{PN}} = r_A^N - 2 \frac{GM_A}{c^2} \left( \frac{d_A}{r_A^N - \sigma \cdot r_A^N} - \frac{d_A}{r_A^N - \sigma \cdot r_A^0} \right) + 2 \frac{GM_A}{c^2} \sigma \ln \frac{r_A^N - \sigma \cdot r_A^N}{r_A^N - \sigma \cdot r_A^0}, \]  
while \( r_A^0 \) is defined by Eq. (14). Notice that the expression (37) is the source of 1PN and 2PN terms. Generalizations of that 2PN solution for the case of the parametrized post-post-Newtonian metric have been given in [53], where the numerical magnitudes of the post-post-Newtonian terms have been estimated and a practical algorithm for highly-effective computation of the post-post-Newtonian effects has been formulated.

Two alternative approaches to the calculation of propagation-time and direction of the light rays have been formulated recently. Both approaches allow one to avoid explicit integration of the geodesic equations for light rays. The first approach in [57, 68] is based on the use of Synge’s world function. Another approach is based on the eikonal concept and has been developed in [60] in order to investigate the light propagation in the field of a spherically symmetric body.

In order to get an idea about the magnitude of 2PN effects, let us recall the well-known fact that the 2PN monopole correction for grazing light rays at the Sun is about 11 \( \mu \)as [15, 16, 60–65]. In the concrete case of ESA astrometry-mission Gaia there is a sunshield which is tilted at a 45 degree angle to the Sun, so that the telescopes observe a space-region where the post-post-Newtonian effects of the Sun become negligible. However, while the Gaia mission will not observe close to the Sun, it will observe very close to the surface of giant planets. A corresponding detailed investigation in [45] has recovered the remarkable fact, that post-post-Newtonian corrections become relevant for lightrays grazing the surface of the giant planets. As outlined in [45], the reason for this fact is the inevitable occurrence of coordinate-dependent enhanced terms, because real astrometric measurements incorporate the use of concrete global coordinate systems and inherit the choice of coordinate-dependent impact parameters, see also [70].

C. Astrometry at sub-micro-arcsecond level of accuracy

In order to determine the light trajectory with an unprecedented accuracy at sub-micro-arcsecond of accuracy, many further subtle relativistic effects in the theory of light propagation have to be accounted for. Let us deploy just a minimal set of corresponding requirements which need to be considered:

- 1. full set of mass multipoles,
- 2. spin-dipole,
- 3. some higher spin-multipoles,
- 4. motion of arbitrarily moving massive bodies,
- 5. post-post-Newtonian effects.

Of course, what is really necessary to implement into the final relativistic model depends on what is actually meant by the term sub-\( \mu \)as-level of accuracy. For instance, for a model aiming at an accuracy of 0.1 \( \mu \)as-level there is no need to take into account any higher spin-multipoles in 1.5PN approximation, while a model on 0.01 \( \mu \)as-level necessitates such terms. Let us look at the present situation in the theory of light propagation at sub-\( \mu \)as-level of accuracy by considering each of these five issues mentioned.

1. Impact of higher mass-multipoles on light-trajectory

Keeping the magnitude of quadrupole light-deflection by giant planets in mind, it can easily be foreseen that a light propagation model at sub-\( \mu \)as-level needs to take into account the impact of higher mass-multipoles beyond the well-known mass-quadrupole term in (23).

A systematic approach to the integration of light geodesic equations in the stationary gravitational field of a localized source at rest, \( x_A = \text{const} \), located at the origin of coordinate system and having time-independent local multipole structure, \( M^L_{2\mu} \) and \( S^L_{2\mu} \), has been worked out in [52] in 1PN and 1.5PN approximation. Especially, sophisticated integration methods have been introduced in [52] allowing for analytical integrations of geodesic
equations in the complex field of multipoles to arbitrary order.

Furthermore, the case of light propagation in the field of a localized source at rest which is characterized by time-dependent multipoles has been investigated in [71, 72] in 1PM approximation. This solution can be interpreted in two different ways:

(i) Either the localized source is thought of to be composed of $N$ arbitrarily moving bodies, but then the time-dependent multipoles have to be interpreted as global multipoles, $M_L(t)$ and $S_L(t)$, which characterize the entire $N$-body system as a whole.

(ii) Or the localized source is thought of as being just one body $A$ at rest with intrinsic multipoles, $M_A(t)$ and $S_A(t)$, which characterize that single body.

But neither of these two interpretations allow one to consider the solution in [71, 72] to be valid for the case of arbitrarily moving bodies, $x_A(t)$, and with local multipoles $M_A(t)$ and $S_A(t)$ characterizing each individual body $A$ of the $N$-body system.

The influence of time-independent intrinsic mass-multipoles of higher-order on a lightray by an isolated axisymmetric body at rest has also been investigated in [53], using a different approach based on the multipole expansion of time transfer function. Explicitly, a formula for the bending of light due to any order of multipole moments has been derived and numerical estimates have been presented. For instance, it has been found in [53] that the light-deflection due to mass-octupole structure amounts to 0.016 µas and due to mass-hexadecupole structure amounts to 9.6 µas for grazing rays at Jupiter.

Recently, in [73] the light propagation in the field of an uniformly moving axisymmetric body has been determined in terms of the full multipole structure of the body. Furthermore, an analytical formula for the time-delay caused by the gravitational field of a body in slow and uniform motion with arbitrary multipoles has been derived in [74].

1. **assessment:** According to these investigations in the literature, the 1PN solution $\Delta x_{\text{1PN}}(t, t_0)$ in [9] in the gravitational field of $N$ arbitrarily moving bodies, $x_A(t)$, and with time-dependent intrinsic mass-multipoles, $M_A(t)$, has not been determined thus far, but appears to be an inevitable requirement for sub-µas-astrometry.

2. **Light propagation in the field of spin-dipoles**

The next term beyond µas-astrometry which is certainly required at sub-µas-level is the impact of rotational motion of massive bodies on the light propagation; note that such a term is already of 1.5PN order. For instance, the light-deflection due to rotational motion of Solar system bodies amounts to 0.7 µas for grazing ray at Sun, 0.2 µas for grazing ray at Jupiter, and 0.04 µas for grazing ray at Saturn [42, 44].

The first solution of the light-trajectory $\Delta x_{\text{1.5PN}}(t, t_0)$ in the gravitational field of massive bodies at rest possessing a time-independent intrinsic spin-dipole, $S_A(t)$, has been obtained in [44]. This solution provides all the details of light propagation, especially the time-dependence of the coordinates of the photon and the solution of the corresponding boundary value problem.

Utilizing advanced integration methods, a solution for the light-trajectory in the field of one body at rest and having time-independent local spin-dipole, $S_A$, has also been obtained in [52] in 1.5PN approximation. Moreover, an analytical solution in 1PM approximation for the case of light propagation in the field of an arbitrarily moving pointlike spin-dipole, $s(t)$ (expressed in terms of a global spin-tensor) has been derived in [73].

2. **Light propagation in the field of spin-dipoles**

The next term beyond µas-astrometry which is certainly required at sub-µas-level is the impact of rotational motion of massive bodies on the light propagation; note that such a term is already of 1.5PN order. For instance, the light-deflection due to rotational motion of Solar system bodies amounts to 0.7 µas for grazing ray at Sun, 0.2 µas for grazing ray at Jupiter, and 0.04 µas for grazing ray at Saturn [42, 44].

3. **Impact of higher spin-multipoles on light-trajectory**

As mentioned above, a solution for the light-trajectory in the stationary gravitational field of a localized source at rest, $x_A = \text{const}$, with time-independent local multipoles, $M_A$ and $S_A$, has been determined in 1.5PN approximation in [52]. Furthermore, the light-trajectory in the field of a localized source with time-dependent global multipoles, $M(t)$ and $S(t)$, has been obtained in [71, 72] in 1PM approximation. As it has been noticed already, the results in [71, 72] can be considered as solution for the light-trajectory in the field of either a system of $N$ arbitrarily moving bodies characterized by global multipoles or in the field of one body $A$ at rest characterized by local multipoles, but not as solution for the light-trajectory in the field of arbitrarily moving bodies characterized by intrinsic multipoles.

Recent calculations [46] have revealed, that the light-deflection due to spin-octupole structure of massive bodies at rest amounts to about 0.015 µas for Jupiter and about 0.006 µas for Saturn for grazing rays. Therefore, a model at sub-µas-level has to take into account at least the spin-octupole term which is of 1.5PN order in the theory of light propagation.

3. **Impact of higher spin-multipoles on light-trajectory**

The Solar system bodies are moving along their individual worldlines, $x_A(t)$, which are complicated func-
tions of time due to the mutual interaction among the bodies, implying that the metric and the light-trajectory become also complicated functions of time. As explicated in section [11B2] for μas-astrometry this highly sophisticated problem can be treated by using the standard 1PN solutions of motionless bodies, \( x_A = \text{const} \), as long as the positions of the bodies are taken at either their retarded times \( t_A^r \) or at their time of closest approach to the lightray \( t_A^l \).

However, in the investigation [58] it has been shown that for an astrometric astrometry better than 0.2 μas one needs to take into account the motion of the bodies. Especially, it is not sufficient to apply for a simple series-expansion of the bodies worldline, \( x_A(t) = x_A(\nu_A(t - t_A)) \), as given by Eq. (32). Instead, one has to determine the light-trajectory in the field of arbitrarily moving bodies \( x_A(t) \). For the case of arbitrarily moving monopoles such a solution has been provided in [43], and for the case of arbitrarily moving bodies with quadrupole structure such a solution has been found in [77]. But for arbitrarily moving bodies with higher intrinsic multipoles there are no solutions available so far.

4. assessment: As a result, for sub-μas-astrometry the approximative expansion in (32) is not applicable, instead of that one has to find a solution for the light-trajectory in terms of arbitrary worldlines \( x_A(t) \). The real worldlines of the massive bodies can finally be implemented into the model by means of Solar system ephemerides [11].

5. Post-post-Newtonian effects

The most intricate issue in the theory of sub-microarcsecond astrometry will be the post-post-Newtonian effects \( \Delta x_{2PN} (t, t_0) \) in (5). Such 2PN corrections to the lightray will not be on the scope of this investigation, but some remarks should be in order.

The largest perturbation term is of course the monopole-term, \( \Delta x_{2PN}^M (t, t_0) \), which in case of pointlike bodies at rest, \( x_A = \text{const} \), has been calculated at the first time in [66]; see also [11, 10]. In reality, the bodies are moving, and one has to treat the problem of moving monopoles in post-post-Newtonian approximation where, however, only very limited results are available thus far. Especially, in [75] the light-deflection in 2PN approximation in the field of two moving point-like bodies has been determined, using two essential approximations: (i) both the light-source and the observer are assumed to be located at infinity in an asymptotically flat space, and (ii) the relative separation distance of the bodies is assumed to be much smaller than the impact parameter of incoming lightray. These approximations are of interest in case of studying light propagation in the field of a binary pulsar, but they are not applicable for real astrometric observations in the Solar system.

Presently it remains unknown, how large the impact of higher mass-multipoles on light-deflection in post-post-Newtonian order is. In order to tackle this problem, an extension of the DSX-metric [52, 33] towards post-linear order is mandatory; see text below Eq. (7). There are several preliminary and promising efforts to extend relativistic astrometry to post-post-Newtonian order for lighttrays, especially to focus on the 2PN gravitational field of arbitrarily moving bodies endowed with arbitrary intrinsic mass- and spin-multipole moments. There have been several attempts to solve this problem [34, 39], but they are far from being complete. Problems, that have been ignored in these articles are related with the internal structure of extended bodies. For a single body at rest these problems are well understood for both the post-Newtonian [24, 25] and the post-Minkowskian case [26, 27], where many structure dependent terms appear in intermediate calculations that cancel exactly in virtue of the local equations of motion or can be eliminated by corresponding gauge transformations. However, in post-post-Newtonian order the situation is still unclear.

For a spherically symmetric body the complete derivation of the metric in the exterior of the massive body (Schwarzschild metric) was recently solved in [40], where it has been shown how such structure-dependent terms cancel so that one finally ends up with the well-known Schwarzschild solution in harmonic gauge. This work allows in principle to determine the light-trajectory in the field of a spherically symmetric and extended massive body at rest in 2PN approximation.

5. assessment: So far, the light-trajectory in 2PN approximation, \( \Delta x_{2PN} (t, t_0) \) in (5), is only known for pointlike monopoles at rest. Moreover, the DSX-metric in post-linear approximation has to be determined, in order to ascertain the impact on light-deflection of terms in second post-Newtonian order beyond the monopole-term, either numerically or analytically.

III. GEODESIC EQUATION IN 1PN APPROXIMATION

The description of the metric of the Solar system becomes more complex the more accurate the astrometric measurements are and one has to resort on approximation schemes to solve the geodesic equation (1a). Since the gravitational fields of Solar system are weak and the motions of the massive bodies are slow, we can utilize the so-called post-Newtonian expansion (weak-field slow-motion approximation) for the metric as given by Eq. (3). The main objective of this investigation is an analytical solution for the light-trajectory in 1PN approximation, see Eq. (4). As a result, terms of the order \( O(c^{-2}) \) in the metric tensor are required for such an approximation:

\[
g_{\alpha\beta}(t, x) = \eta_{\alpha\beta} + h^{(2)}_{\alpha\beta}(t, x) + O(c^{-3}). \tag{41}
\]

Inserting (41) into (1a) with virtue of (2) yields the geodesic equation in 1PN approximation, which can be rewritten in terms of global coordinate-time; cf.
Ref. \[15\ [16\ [58\ (cf. the first four terms in Eq. (A.4) in \[55\):
\[
\frac{\ddot{x}^i(t)}{c^2} = \frac{1}{2} h^{(2)}_{00,i} - h^{(2)}_{00,j} \frac{x^j(t)}{c} - h^{(2)}_{i,j,k} \frac{\dot{x}^j(t) \dot{x}^k(t)}{c^2}.
\]

where \( h^{(2)}_{00,i} \), \( h^{(2)}_{00,j} \), \( h^{(2)}_{i,j,k} \), \( i \), \( j \), and \( k \) are determined with respect to coordinate-time. In order to find an unique solution of the geodesic equation in (42), so-called mixed initial-boundary conditions must be imposed, which have extensively been used in the literature, e.g. \[15\ [16\ [45\ [52\ [59\ [66\ [71\):
\[
x_0 = x(t_0),
\]
\[
\sigma = \lim_{t \to -\infty} \frac{\dot{x}(t)}{c}.
\]

The first condition (43) defines the spatial coordinates of the photon at the moment \( t_0 \) of emission of light. The second condition (44) defines the unit-direction (\( \sigma \cdot \sigma = 1 \)) of the lightray at past null infinity, that means the unit-tangent vector along the light-path at infinite distance in the past from the origin of the global coordinate system.

The metric perturbations in (42) are functions of the coordinates of the global reference system (BCRS). It is, however, important to realize that in the geodesic equation this coordinate-dependence has always to be understood as being the coordinates of the photon \( x(t) \) at time \( t \), that means
\[
\frac{\ddot{x}^i}{c^2} = \frac{1}{2} h^{(2)}_{00,i} - h^{(2)}_{00,j} \frac{x^j}{c} - h^{(2)}_{i,j,k} \frac{\dot{x}^j \dot{x}^k}{c^2}.
\]

Consequently, the spatial derivatives in (42) are taken along the lightray:
\[
\frac{\partial h^{(2)}_{\alpha\beta}}{\partial x^i} = \frac{\partial h^{(2)}_{\alpha\beta}}{\partial x^i} |_{x=x(t)}.
\]

The geodesic equation in (42) has usually been solved by an iteration procedure. For the first time the right-hand side in (42) vanishes, \( \ddot{x} = 0 \), and the integration of this differential equation yields the unperturbed lightray in Eq. (42). The exact light-trajectory \( x(t) \) deviates from the Newtonian approximation by terms of the order \( O(e^{-2}) \), that means
\[
x(t) = x_N(t) + O(e^{-2}).
\]

Solving the geodesic equations (42) by iteration implies that \( \dot{x}(t) \) can be replaced by its Newtonian approximation, \( \dot{x}_N(t) = c\sigma \), which follows by time-derivative of (10), so that the geodesic equation in (42) simplifies as follows:
\[
\ddot{x}^i(t) = \frac{1}{2} h^{(2)}_{00,i} - h^{(2)}_{00,j} \frac{x^j}{c} - h^{(2)}_{i,j,k} \frac{\dot{x}^j \dot{x}^k}{c^2} + \frac{1}{2} h^{(2)}_{i,j,k} \frac{\dot{x}^j \dot{x}^k}{c} + O(c^{-3}).
\]

In 1PN approximation, the metric perturbations in (48) have to be taken at the spatial coordinates of the unperturbed lightray given by (10), that means
\[
h^{(2)}_{\alpha\beta} = \frac{\partial h^{(2)}_{\alpha\beta}(t, x)}{\partial x^i} |_{x=x_N(t)},
\]

and in (48) one has first to differentiate with respect to spatial coordinates and afterwards one inserts the unperturbed lightray, that means
\[
h^{(2)}_{\alpha\beta,i} = \frac{\partial h^{(2)}_{\alpha\beta}(t, x)}{\partial x^i} |_{x=x_N(t)}.
\]

In our investigation we will solve the geodesic equation (48) in 1PN approximation, that means the exact light-trajectory \( x(t) \) is determined up to terms of the order \( O(e^{-3}) \):
\[
x(t) = x_{1PN}(t) + O(e^{-3}).
\]

The first and second integral of geodesic equations (48) in 1PN approximation can formally be written as follows:
\[
x(t) = x_{1PN}(t) + O(e^{-3}),
\]
\[
x_{1PN}(t) = x(t_0) + c\sigma(t - t_0) + \Delta x_{1PN}(t, t_0),
\]
where \( \Delta x_{1PN} \) are small perturbations of the unperturbed light-trajectory, and \( \Delta x_{1PN} \) is the time-derivative of these small perturbations.

### IV. THE METRIC OF SOLAR SYSTEM

In order to describe and to interpret observational data in astrometry correctly, a set of several reference systems and the transformation laws among their coordinates must be introduced. In this respect, two standard reference systems are of fundamental importance, which are adopted by the IAU resolution B1.3 (2000) [20]: the Barycentric Celestial Reference System (BCRS) with coordinates \((ct, \mathbf{x})\) and the Geocentric Celestial Reference System (GCRS) with coordinates \((cT, \mathbf{X})\). Furthermore, for any massive body \( A \) of the Solar system a so-called GCRS-like reference system with coordinates \((cT_A, \mathbf{X}_A)\) can be introduced. In this section we will give a summary about how to combine these systems to a global metric tensor in terms of local multipoles, which is the physically adequate reference system for modeling of light-trajectories through the Solar system.
A. BCRS

The harmonic coordinates of BCRS are denoted by \( x^\mu = (ct, x^i) \), where \( t \) is TCB is the BCRS coordinate-time, and cover the entire space-time and can therefore be used to model light-trajectories from distant celestial objects to the observer. The origin of the BCRS is located at the barycenter of the Solar system, and the IAU Resolution B2 (2006) recommends the spatial axes of BCRS to be oriented according to the spatial axes of the International Celestial Reference System (ICRS) [79]. According to IAU resolution B1.3 (2000), the Solar system is assumed to be isolated and the space-time is asymptotically flat, that means the BCRS metric \( \eta_{\mu\nu} \) at spatial infinity reads:

\[
\lim_{|x| \to \infty} g_{\mu\nu} (t, x) = \eta_{\mu\nu}.
\] (54)

The BCRS is completely characterized by the form of its metric tensor, up to order \( \mathcal{O} (c^{-3}) \) given by [20]:

\[
g_{00} (t, x) = -1 + \frac{2}{c^2} \frac{w(t, x)}{x} + \mathcal{O} (c^{-4}),
\] (55)

\[
g_{0i} (t, x) = \mathcal{O} (c^{-3}),
\] (56)

\[
g_{ij} (t, x) = \left(1 + \frac{2}{c^2} \frac{w(t, x)}{x}\right) \delta_{ij} + \mathcal{O} (c^{-4}).
\] (57)

The scalar gravitational potential in (55) and (57) is given by the integral

\[
w(t, x) = \frac{G}{c^2} \int d^3x \frac{t^{00} (t, x')}{|x - x'|} + \mathcal{O} (c^{-2}),
\] (58)

which runs over the entire Solar system, and where \( t^{00} \) is the time-time-component of the energy-momentum tensor \( t^{\mu\nu} \) in global BCRS coordinates; recall the components of energy-momentum tensor scale as follows:

\[t^{00} = \mathcal{O} (c^2), \quad t^{i0} = \mathcal{O} (c^1), \quad t^{ij} = \mathcal{O} (\delta^{ij})\]

The global gravitational potential in (58) admits an expansion in terms of global STF multipoles, which characterize the multipole structure of the Solar system as a whole [21][26][31]:

\[
w(t, x) = \frac{G}{c^2} \sum_{l=0} \frac{(-1)^l}{l!} m_L (t) \frac{1}{r} + \mathcal{O} (c^{-2}),
\] (59)

where \( m_L \) are Cartesian symmetric and trace-free (STF) tensors, in Newtonian approximation given by; cf. Eq. (2.34a) in [25]:

\[
m_L (t) = \int d^3x \dot{x}_L \frac{t^{00} (t, x)}{c^2} + \mathcal{O} (c^{-2}),
\] (60)

where the integral runs over the entire Solar system. The global mass-monopole, i.e. \( l = 0 \) in Eq. (60), is just the total (Newtonian) mass, \( M = \text{const} \), of the entire Solar system, while the global mass-dipole term vanishes, i.e. \( m_1 = 0 \), because the origin of BCRS is located at the barycenter of the Solar system.

A further comment should be in order about a possible retarded time argument of the energy-momentum tensor in Eq. (35); cf. text below Eqs. (17) in [20]. One may easily recognize that such retarded time-argument would be beyond IPN approximation for the lightrays. Especially, in terms of multipole-expansion one may demonstrate the following relation:

\[
w(t, x) = \sum_{l=0} \frac{(-1)^l}{l!} m_L (t) \frac{1}{r} + \mathcal{O} (c^{-2}),
\]

where the retarded time has been defined by Eq. (35). If one expands the retarded multipoles (second line in Eq. (60) in inverse powers of \( c \), then one finds that all terms proportional to \( 1/c \) cancel against each other. This cancellation is important, because terms of odd powers \( 1/c \) would violate the time-reversal symmetry; cf. the corresponding statement in the text below Eq. (17) in the IAU resolutions [20]. The time-reversal symmetry is violated because of the gravitational radiation emitted by the Solar system which is, however, an effect much beyond IPN approximation.

The expansion in (59) has two specific characteristics, which prevent a direct use for our intentions:

1. As emphasized in [21][27], the expansion in (60) is valid outside a sphere which encloses the complete N-body system, see also [20]. However, for a description of lightrays inside the Solar system (light-trajectories between the massive bodies) one has to apply a metric tensor which is also valid inside this sphere, i.e. in space-regions between these massive bodies; cf. text on page 3298 in [22].

2. From the theory of relativistic reference systems it is clear that physically meaningful multipole moments of some body \( A \) have to be defined in the body’s local reference system \( (cT_A, X_A) \).

For these reasons, in our approach we will have to express the gravitational potential in (59) by local (intrinsic) mass-multipoles \( M^A_L \), which are defined in the local coordinate system \( (cT_A, X_A) \) of the corresponding massive body. This crucial issue will be the subject in what follows.

B. GCRS

The harmonic coordinates of GCRS are denoted by \( X^\mu = (cT, X^i) \), where \( T = \text{TCG} \) is the GCRS coordinate-time. According to IAU resolution B1.3 (2000), the origin of GCRS is co-moving with the Earth and located at the barycenter of the Earth, and is
adequate to describe physical processes in the vicinity of the Earth. The spatial axes of GCRS are kinematically non-rotating with respect to BCRS, i.e. they are locally non-inertial. The GCRS is completely characterized by the form of its metric tensor, up to order $\mathcal{O}(c^{-3})$ given by $[20, 32, 33]$,

$$G_{00}(T, X) = -1 + \frac{2W(T, X)}{c^2} + \mathcal{O}(c^{-4}), \quad (62)$$

$$G_{0i}(T, X) = \mathcal{O}(c^{-3}), \quad (63)$$

$$G_{ij}(T, X) = \left(1 + \frac{2W(T, X)}{c^2}\right)\delta_{ij} + \mathcal{O}(c^{-4}) \quad (64)$$

The scalar gravitational potential in $[62]$ and $[64]$ can uniquely be separated into two terms: a local potential, $W_{\text{loc}}$, which originates from the body $A$ itself and an external potential, $W_{\text{ext}}$, which is associated with inertial effects (due to the accelerated motion of the local system) and tidal forces (caused by the other bodies of the Solar system) $[20, 32, 33]$:

$$W(T, X) = W_{\text{loc}}(T, X) + W_{\text{ext}}(T, X). \quad (65)$$

Explicit expressions for the external potential $W_{\text{ext}}$ are given in $[32, 33]$, while the potential $W_{\text{loc}}$ is defined by the following integral,

$$W_{\text{loc}}(T, X) = \frac{G}{c^2} \int_{V_E} d^3X' \frac{T^{00}(T, X')}{|X - X'|} + \mathcal{O}(c^{-2}), \quad (66)$$

which runs over the entire volume $V_E$ of the Earth, and where $T^{00}$ is the time-time-component of the energy-momentum tensor $T^{\mu\nu}$ of the isolated Earth and expressed in GCRS coordinates; recall the components of energy-momentum tensor scale as follows: $T^{00} = \mathcal{O}(c^2), T^{0i} = \mathcal{O}(c^1), T^{ij} = \mathcal{O}(c^0)$. The local potential $W_{\text{loc}}$ is generated by the Earth and can be expanded into a series of local STF multipole moments, which characterize the multipole structure of the Earth as an isolated body $[20, 24, 27, 32]$:

$$W_{\text{loc}}(T, X) = G \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} M_L \left( T \right) \mathcal{D}_L \frac{1}{R} + \mathcal{O}(c^{-2}), \quad (67)$$

where $\mathcal{D}_L = \frac{\partial}{\partial X_{a_1}} \cdots \frac{\partial}{\partial X_{a_l}}$.

The local mass-monomopole, i.e. $l = 0$ in Eq. $[67]$, is just the (Newtonian) mass of the Earth, $M = \text{const}$. Actually, the origin of the GCRS is assumed to be located at the barycenter of the Earth, hence the dipole-term in $[67]$ vanishes: $M_1 = 0$. But in real measurements of celestial mechanics the center-of-mass of massive Solar system bodies can usually not be determined exactly, so it is meaningful to keep this term and to assume $M_1 \neq 0$ in general. The STF mass-multipoles $M_L$ in $[67]$ in Newtonian approximation are given by

$$M_L(T) = \int_{V_E} d^3X \frac{T^{00}(T, X)}{c^2} + \mathcal{O}(c^{-2}). \quad (68)$$

According to the theory of reference systems, $[15, 20, 28, 35]$, the GCRS is the standard reference system to define local multipoles of the Earth. However, as it has been noted in $[20]$, the detailed form of mass-multipoles in $[68]$ is not needed for practical astrometry or celestial mechanics, since these terms are related to observational quantities. That means, the gravitational potentials can be expanded in terms of vector spherical harmonics and the coefficients of such an expansion are equivalent to the local multipoles, see appendix A in $[20]$.

C. Metric of Solar system in terms of intrinsic multipoles in the DSX-framework

Physically meaningful multipoles of the massive bodies can only be defined in their local reference systems. On these grounds, for each massive body $A$ of the Solar system a GCRS-like reference system with coordinates $\left(cT_A, X_A\right)$ and co-moving with the body $A$ is introduced, to permit the definition of local multipoles of this body. Hence, for a N-body system there are in total $N+1$ reference systems, one global chart $\left(cT, x\right)$ and $N$ local charts $\left(cT_A, X_A\right)$, which are linked to each other via coordinate-transformations, which allow the construction of one global reference system in terms of local multipoles $M^A_L$ of the massive bodies $A=1,...,N$. That reference system is valid in the entire near-zone of the Solar system, and combines the advantage of locally defined multipoles and is well-defined in space-regions between the massive bodies; cf. text above Eq. (6.9a) in $[32]$. Such a system is also physically adequate for modeling the light-trajectory from a light-source through the near-zone of the Solar system towards the observer. The corresponding framework has been elaborated within the DSX theory $[32, 35]$, which has originally been established for celestial mechanics and for deriving the equations of motion of a $N$-body system. This framework has later been reformulated in terms of PPN formalism in $[81]$, aiming at several tests of relativity in celestial mechanics, e.g. tests of equivalence principle. One main result of the DSX-formalism are these transformation rules for the coordinates $\left(ct, x\right) \leftrightarrow \left(cT_A, X_A\right)$ and for the metric potentials $w \leftrightarrow W_A$. According to $[32, 33]$, the global coordinates $\left(ct, x\right)$ and the local coordinates $\left(cT_A, X_A\right)$ of some body $A$ are related by the following coordinate transformation; cf. Eq. (2.8a) in $[32]$ (for the inverse transformation we refer to $[20]$):

$$x^\mu = x^\mu_T (T_A) + e^\mu_a (T_A) X_A^a + \mathcal{O}(c^{-2}), \quad (69)$$

where $x^\mu_T$ is the worldline of body $A$ in BCRS coordinates (i.e. a selected point associated with body $A$) and $e^\mu_a$ are
tetrad along the worldline of this body; cf. Eqs. (2.16) in [32]:
\[ e_a^\nu (T_A) = \frac{\dot{x}_a^\nu (T_A)}{c} + \mathcal{O} (c^{-3}) \],
(70)
\[ e_a^\nu (T_A) = \delta_{ai} + \mathcal{O} (c^{-2}) \],
(71)
where in (70) a dot means derivative with respect to \( T_A \); thus \( \dot{x}_a^\nu (T_A) \) are the spatial components of the three-velocity of body \( A \) in the global system and given in terms of the body’s local coordinate-time \( T_A \). Without going into the details, using the tensorial transformation rule for metric tensors in different coordinate systems (cf. Eq. (4.11) in [32]), it has been demonstrated in [32] that the global potential can be expressed in terms of local (intrinsic) STF multipoles \( M_l^A \) as follows (for the inverse transformation we refer to [20]):
\[ w (t, x) = \sum_{A=1}^{N} w_A (t, x) , \]
(72)
\[ w_A (t, x) = G \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} M_l^A (T_A) \frac{1}{r_A} + \mathcal{O} (c^{-2}) , \]
(73)
where in (72) the sum runs over all bodies of the \( N \)-body system, \( r_A = |x - X_A| \) is the spatial distance from the origin of local coordinate system to some field point located outside the massive body, and \( D_L^A = \frac{\partial}{\partial X_A^l} \ldots \frac{\partial}{\partial X_A^{i_l}} \). The local STF mass-multipoles \( M_l^A \) in (73) in Newtonian approximation are given by
\[ M_l^A (T_A) = \int_{V_A} d^3X_A \hat{X}_A^t \frac{T^{00}_A (T_A, X_A)}{c^2} + \mathcal{O} (c^{-2}) , \]
(74)
where the integration runs over the volume \( V_A \) of the massive body \( A \) under consideration, and where \( T^{00}_A \) is the time-time-component of the energy-momentum tensor \( T^{\mu \nu}_A \) of the isolated massive body \( A \) and expressed in the coordinates of the local reference system of that envisaged body.

In order to complete the transformation, also the partial derivatives in (73) have to be transformed, which follow from the coordinate transformations [69] and read explicitly; cf. Eqs. (2.10) with virtue of Eqs. (2.16) in [32]:
\[ \frac{\partial}{\partial c T_A} = \frac{\partial}{\partial c t} + \frac{\dot{x}_a^\nu (T_A)}{c} \frac{\partial}{\partial x^a} + \mathcal{O} (c^{-2}) , \]
(75)
\[ \frac{\partial}{\partial X_A^a} = \frac{\partial}{\partial x^a} + \frac{\dot{x}_a^\nu (T_A)}{c} \frac{\partial}{\partial c t} + \mathcal{O} (c^{-2}) . \]
(76)
Let us note already here, that the second term in (75) and (76) yield terms of the order \( \mathcal{O} (c^{-1}) \) in the global metric, hence these terms do finally not appear in Eq. (80).

Furthermore, we note that from (69) follows the relation [18, 20, 32, 33]:
\[ R_A = |x - x_A (t)| + \mathcal{O} (c^{-2}) , \]
(77)
where according to (49) the field-point \( x \) in (77) will later be replaced by the photons light-trajectory. The coordinate-time in the global and local systems are related via [18, 20, 32, 33]:
\[ T_A = t + \mathcal{O} (c^{-2}) . \]
(78)
Actually, a constant \( b_0^A \) could be added on the right-hand side in (78), which would indicate different initial times of the clocks in the global and local systems, cf. Eq. (4) in [32], but has been omitted in favor of simpler notation and could formally be added at any stage of the calculations; about the general problem of clock-synchronization in the gravitational field of the Solar system we refer to [83]. From (78) we conclude
\[ M_l^A (T_A) = M_l^A (t) + \mathcal{O} (c^{-2}) , \]
(79)
where the neglected terms in (79) are beyond 1PN approximation for lightrays. By inserting (75) - (79) into (72) - (73) we arrive at the global gravitational potential in terms of local mass-multipoles \( M_l^A \):
\[ w_A (t, x) = G \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} M_l^A (t) \frac{1}{r_A (t)} + \mathcal{O} (c^{-2}) , \]
(80)
where \( r_A (t) = |x - x_A (t)| \), and \( \partial L = \frac{\partial}{\partial x^{i_1}} \ldots \frac{\partial}{\partial x^{i_l}} \) are partial derivatives in the global system. In summary of this section, the metric perturbation in the near-zone of the Solar system and expressed in terms of local multipoles is given by:
\[ h_{00}^{(2)} (t, x) = \sum_{A=1}^{N} h_{00}^{(2)A} (t, x) , \]
(81)
\[ h_{00}^{(2)A} (t, x) = \frac{2G}{c^2} \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} M_l^A (t) \frac{1}{r_A (t)} , \]
(82)
\[ h_{ij}^{(2)} (t, x) = \delta_{ij} h_{00}^{(2)} (t, x) , \]
(83)
where the sum in (81) runs over all massive bodies of the Solar system and the metric perturbation caused by one individual body is given by (82). The metric perturbation in (81) - (83) has to be implemented into the geodesic equation in (48).

At this stage let us underline again that an implementation of the infinite series expansion (8) into (82) via \( r_A (t) = |x - x_A (t)| \), would more explicitly elucidate the fact that an arbitrary worldline of the body, \( x_A (t) \), implicitly generates terms in the metric tensor (82) which are proportional to the velocity and acceleration of the
body. However, such terms would be proportional either to $v_A (t - t_A)$ or $a_A (t - t_A)$, but neither to $v_A/c$ nor $a_A/c$, hence they would not be beyond 1PN approximation for the lightrays. From this consideration it becomes obvious that an arbitrary worldline $x_A (t)$ implies a summation over all terms in the series expansion $\mathit{\xi}$ and, therefore, a solution of the geodesic equation in terms of arbitrary worldlines $x_A (t)$ is much preferable compared to a solution in terms of approximative worldlines $\mathit{\xi}$.

V. TRANSFORMATION OF GEODESIC EQUATION

According to Eqs. (49) - (50), the geodesic equation in (48) has to be integrated along the unperturbed light-trajectory (10). In view of this fact, it is meaningful to express the geodesic equation, i.e. the metric tensor and the derivatives, in terms of new parameters which characterize the unperturbed light-trajectory from the very beginning of the integration procedure. In this respect, the investigations in [59, 71, 72] have recovered the remarkable efficiency of the following two independent variables $\tau$ and $\mathit{\xi}$:

$$c \tau = \sigma \cdot x_N (t), \quad c \tau_0 = \sigma \cdot x_N (t_0), \quad (84)$$

$$\xi^i = P^i_j x^j_N (t), \quad (85)$$

where $P^i_j = P_{ij} = P^{ij}$ is the operator of projection onto the plane perpendicular to the vector $\sigma$, $P^{ij} = \delta_{ij} - \sigma^i \sigma^j$. \hspace{1cm} (86)

The three-vector $\mathit{\xi} = \sigma \times (x_N (t) \times \sigma) = \sigma \times (x_0 \times \sigma)$ in (85) is the impact vector of the unperturbed lightray, see also Eq. (11). Especially, $\mathit{\xi}$ is time-independent and directed from the origin of global coordinate system to the point of closest approach of the unperturbed light-trajectory; its absolute value is denoted by $d = |\mathit{\xi}|$.

While some detailed explanations and geometrical elucidations can be found in [59], two comments should be in order about these new variables.

(i) First, one can easily recognize that (81) can also be written in the form $c \tau = c (t - t^*)$ and $c \tau_0 = c (t_0 - t^*)$, where

$$t^* = t_0 - \frac{\sigma \cdot x_0}{c}, \quad (87)$$

is the time of closest approach of unperturbed lightray to the origin of the global coordinate system; note that (87) differs from (33) which is the time of closest approach of the lightray to the origin of the local coordinate system of some massive body $A$. With the aid of these new variables $\mathit{\xi}$ and $\tau$, the mixed initial-boundary conditions (43) and (44) take the form

$$x_0 = x (\tau_0 + t^*), \quad (88)$$

$$\sigma = \lim_{\tau \to -\infty} \frac{\dot{x} (\tau + t^*)}{c}, \quad (89)$$

where a dot means derivative with respect to variable $\tau$. In terms of the new variables the interpretation of these initial-boundary conditions remains the same: the first condition (88) defines the spatial coordinates of the photon at the moment of emission of light, while the second condition (89) defines the unit-direction ($\sigma \cdot \sigma = 1$) at infinite past and infinite distance from the origin of global coordinate system, that means at the so-called past null infinity.

(ii) Second, it is important to mention that with the aid of the new variable (84) and (85), the unperturbed lightray in (10) transforms as follows [92]:

$$x_N (\tau + t^*) = \mathit{\xi} + c \tau \sigma. \quad (90)$$

In these new variables, the vector from the arbitrarily moving body and the light-trajectory in (16) transforms as follows:

$$r_A (\tau + t^*) = x (\tau + t^*) - x_A (\tau + t^*), \quad (91)$$

with the absolute value $r_A (\tau + t^*) = |r_A^N (\tau + t^*)|$, while the distance between the unperturbed lightray and the arbitrarily moving body in (17) reads now:

$$r_A^N (\tau + t^*) = x_N (\tau + t^*) - x_A (\tau + t^*)$$

$$= \mathit{\xi} + c \tau \sigma - x_A (\tau + t^*), \quad (92)$$
with the absolute value $r_A^N(\tau + t^*) = |r_A^N(\tau + t^*)|$, and we note $r_A(\tau + t^*) = r_A^N(\tau + t^*) + \mathcal{O}(c^{-2})$. The impact parameter in [19] for arbitrarily moving bodies in these new variables reads:

$$d_A(\tau + t^*) = \sigma \times (r_A^N(\tau + t^*) \times \sigma),$$

(93)

with the absolute value $d_A(\tau + t^*) = |d_A(\tau + t^*)|$. For an illustration of the expressions in Eqs. (85) and (90) - (93) see Fig. 1.

Furthermore, it has been outlined in [59, 73] that by means of the new variables [84] and (85), the following relation is valid for a smooth function $F(t, \mathbf{x})$; cf. Eq. (33) in [59] or Eq. (C4) in [75]:

$$\left( \frac{\partial}{\partial t} + \sigma^i \frac{\partial}{\partial c_t} \right) F(t, \mathbf{x}) \bigg|_{\mathbf{x} = \mathbf{x}_N(t)} = (P_{ij}^t \frac{\partial}{\partial \xi^j} + \sigma^t \frac{\partial}{\partial c_t}) F(\tau + t^*, \xi + c_t \sigma).$$

(94)

It is important to realize that on the left-hand side in (94) one has first to differentiate with respect to the fieldpoint $\mathbf{x}$ and global coordinate-time $t$ and afterwards one has to substitute the unperturbed lightray $\mathbf{x}_N(t) = \mathbf{x}_0 + c(t - t_0) \sigma$, while on the right-hand side in (94) one has first to substitute $t + t^*$ and $\mathbf{x}_N(\tau + t^*) = \xi + c_t \sigma$ and afterwards to perform the differentiation with respect to $\xi$ and $\tau$.

From now on, the smooth function $F(t, \mathbf{x})$ in relation (94) is considered to be one of the components of the metric perturbation $h_{ij}^{(2)}(t, \mathbf{x})$. Then, the derivatives with respect to variable $c_t$ on the left-hand side of relation (94) yield only terms of higher-order beyond 1PN approximation,

$$\frac{\partial h_{ij}^{(2)}(t, \mathbf{x})}{\partial c_t} \bigg|_{\mathbf{x} = \mathbf{x}_N(t)} = \mathcal{O}(c^{-3}),$$

(95)

because they are proportional to either $\dot{M}_L^A/c$ or $v_A/c$; for actually the same reason there is no time-derivative in the geodesic equation either, see (42) or (48). However, one has to keep the differentiation with respect to variable $c_t$ on the right-hand side of relation (94), because that derivative does not only act on the multipoles $M_A^A(\tau + t^*)$ and spatial coordinates of the massive bodies $\mathbf{x}_A(\tau + t^*)$, but also on the unperturbed lightray $\mathbf{x}_N(\tau + t^*)$. Therefore, in 1PN approximation the relation (94) simplifies as follows:

$$\frac{\partial h_{ij}^{(2)}(t, \mathbf{x})}{\partial c_t} \bigg|_{\mathbf{x} = \mathbf{x}_N(t)} = (P_{ij}^t \frac{\partial}{\partial \xi^j} + \sigma^t \frac{\partial}{\partial c_t}) h_{ij}^{(2)}(\tau + t^*, \xi + c_t \sigma) + \mathcal{O}(c^{-3}).$$

(96)

If the derivative with respect to variable $c_t$ in (96) acts on the multipoles or spatial coordinates of the massive bodies, then terms will be generated which are beyond 1PN approximation, namely terms proportional to either $\dot{M}_L^A/c$ or $v_A/c$, respectively, which, however, can easily be identified.

By means of relation (96), the geodesic equation in 1PN approximation in (18) transforms as follows:

$$\frac{\ddot{x}^i(\tau + t^*)}{c^2} = + \frac{1}{2} P_{ij}^t \frac{\partial}{\partial \xi^j} h_{00}^{(2)} - \frac{1}{2} \sigma^i \frac{\partial}{\partial c_t} h_{00}^{(2)} + \frac{1}{2} \sigma^k \sigma^l P_{ij}^t \frac{\partial}{\partial \xi^j} h_{kl}^{(2)} + \frac{1}{2} \sigma^j \sigma^k \frac{\partial}{\partial c_t} h_{jk}^{(2)} - \sigma^j \frac{\partial}{\partial c_t} h_{0j}^{(2)} + \mathcal{O}(c^{-3}),$$

(97)

where the double-dot on the left-hand side in (97) means twice of the total derivative with respect to the new variable $\tau$. By taking into account (83), the geodesic equation further simplifies:

$$\frac{\ddot{x}^i(\tau + t^*)}{c^2} = P_{ij}^t \frac{\partial}{\partial \xi^j} h_{00}^{(2)} - \sigma^i \frac{\partial}{\partial c_t} h_{00}^{(2)} + \mathcal{O}(c^{-3}).$$

(98)

As next step, the metric perturbations in (81) - (83) have to be transformed in terms of these new variables $\xi$ and $\tau$. Since the metric perturbations in (82) contain spatial derivatives, $\partial_t r_A^{-1}(t)$, we will have to transform these differential operators in terms of these new variables. For that one might want to use relation (94), which is valid for any smooth function, but a possible time-derivative on the left-hand side of (94) generates only terms beyond 1PN approximation,

$$\frac{\partial}{\partial c_t} \frac{1}{r_A(t)} \bigg|_{\mathbf{x} = \mathbf{x}_N(t)} = \mathcal{O}(c^{-1}).$$

(99)

Therefore, like in (96), we may use the simpler relation,

$$\frac{\partial}{\partial c_t} \frac{1}{r_A(t)} \bigg|_{\mathbf{x} = \mathbf{x}_N(t)} = \left(P_{ij}^t \frac{\partial}{\partial \xi^j} + \sigma^t \frac{\partial}{\partial c_t}\right) \frac{1}{r_A^N(\tau + t^*)} + \mathcal{O}(c^{-1}),$$

(100)

where we have taken into account that the derivative with respect to $c_t$ in the right-hand side of (100) must be kept because of; cf. relation (E6):

$$\frac{\partial}{\partial c_t} \frac{1}{r_A^N(\tau + t^*)} = - \frac{\sigma \cdot r_A^N(\tau + t^*)}{(r_A^N(\tau + t^*))^3} + \mathcal{O}(v_A/c).$$

(101)

The outcome of (100) and (101) is, that the metric perturbation in (82) for one massive body $A$ and in terms of
these new variables $\xi$ and $\tau$ is given by:

$$h_{00}^{(2)}(\tau, \xi) = \sum_{A=1}^{N} h_{00}^{(2)A}(\tau, \xi),$$

$$h_{00}^{(2)A}(\tau, \xi) = \frac{2G}{c^2} \sum_{l=0}^{\infty} \sum_{j=0}^{\infty} \sum_{p} \frac{(-1)^{l+j}}{l!} M_{L}^{A}(\tau + t^*) \frac{1}{r_{A}^{2}(\tau + t^*)}.$$  

(103)

where, by means of binomial theorem, the spatial derivatives in terms of new variables can be written in the following form (cf. Eq. (24) in [52]):

$$\partial_{L} = \sum_{\mu=0}^{l} \frac{l!}{(l-p)!} \sigma^{i_{1}} \ldots \sigma^{i_{p}} P_{i_{p+1}j_{p+1} \ldots j} P_{i_{1}j_{1}} \times \frac{\partial}{\partial \xi^{i_{1}}} \ldots \frac{\partial}{\partial \xi^{i_{p}}} \left( \frac{\partial}{\partial \tau^{c}} \right)^{p}.$$  

(104)

Here, we recall that $M_{L}^{A}$ are STF multipoles, therefore for a smooth function $F$ we have $M_{L}^{A} \partial_{L} F = M_{L}^{A} \text{STF} \partial_{L} F$, so that the expression in [104] must be interpreted in combination with $M_{L}^{A}$. The insertion of metric perturbation [102] - [103] into the geodesic equation [98] finally yields the geodesic equation for light rays which propagate in the gravitational field of one arbitrarily moving body $A$:

$$\ddot{x}^{iA}(\tau + t^*) = \frac{2G}{c^2} P^{ij} \frac{\partial}{\partial \xi^{j}} \sum_{l=0}^{\infty} \sum_{j=0}^{\infty} \sum_{p} \frac{(-1)^{l+j}}{l!} M_{L}^{A}(\tau + t^*) \frac{1}{r_{A}^{2}(\tau + t^*)} + \mathcal{O}(c^{-3}).$$

(105)

where the derivative operator $\partial_{L}$ is given by [104].

Eq. (105) completes the transformation of geodesic equation in 1PN approximation and for the case of one arbitrarily moving massive body having arbitrary shape and structure. Due to the linearity of post-Newtonian equations, the case of $N$ arbitrarily moving bodies is easily obtained by a summation over all massive bodies $A = 1, 2, ..., N$.

In the limit of: (i) one massive body at rest, (ii) time-independent multipoles, and (iii) assuming that the center-of-mass is located at the origin of the global coordinate-system, the geodesic equation (105) agrees with the geodesic equation obtained in [52]. Recall that there are no spin-multipole terms in (106) because they contribute to the order $\mathcal{O}(c^{-3})$.

VI. FIRST INTEGRATION OF GEODESIC EQUATION

The first integral determines the coordinate-velocity of the photon and, due to the linearity of geodesic equation in 1PN approximation, can be written as follows; cf. Eq. (52):

$$\dot{x}_{1PN}(\tau + t^*) = c\sigma + \sum_{A=1}^{N} \Delta \dot{x}_{1PN}^{A}(\tau + t^*),$$

(106)

where the contribution of one body $A$ reads:

$$\Delta \dot{x}_{1PN}^{A}(\tau + t^*) = \int_{-\infty}^{\tau} dc^{\prime} \frac{\Delta \dot{x}_{1PN}^{A}(\tau^{\prime} + t^*)}{c^2}. (107)$$

where the integrand is given by Eq. (105). Accordingly, one obtains:

$$\Delta \dot{x}_{1PN}^{A}(\tau + t^*) = + \frac{2G}{c^2} P^{ij} \frac{\partial}{\partial \xi^{j}} \sum_{l=0}^{\infty} \sum_{j=0}^{\infty} \sum_{p} \frac{(-1)^{l+j}}{l!} I_{A}(\tau + t^*, \xi) - \frac{2G}{c^2} \sigma^{i} \sum_{l=0}^{\infty} \sum_{j=0}^{\infty} \sum_{p} \frac{(-1)^{l+j}}{l!} I_{B}(\tau + t^*, \xi).$$

(108)

The integrals in [108] are defined by (the arguments of the integrals are omitted)

$$I_{A} = \int_{-\infty}^{\tau} dc^{\prime} M_{L}^{A}(\tau^{\prime} + t^*) \frac{1}{r_{A}^{2}(\tau^{\prime} + t^*)},$$

(109)

$$I_{B} = \int_{-\infty}^{\tau} dc^{\prime} \frac{\partial}{\partial c^{\prime}} M_{L}^{A}(\tau^{\prime} + t^*) \frac{1}{r_{A}^{2}(\tau^{\prime} + t^*)},$$

(110)

where the differential operator $\partial_{L}$ in [109] and [110] is given by (cf. Eq. (104)):

$$\partial_{L} = \sum_{\mu=0}^{l} \frac{l!}{(l-p)!} \sigma^{i_{1}} \ldots \sigma^{i_{p}} P_{i_{p+1}j_{p+1} \ldots j} P_{i_{1}j_{1}} \times \frac{\partial}{\partial \xi^{i_{1}}} \ldots \frac{\partial}{\partial \xi^{i_{p}}} \left( \frac{\partial}{\partial \tau^{c}} \right)^{p}.$$  

(111)

Here, we recall again that $M_{L}^{A}$ are STF multipoles, therefore for a smooth function $F$ we have $M_{L}^{A} \partial_{L} F = M_{L}^{A} \text{STF} \partial_{L} F$, so that relation [111] must be interpreted in combination with $M_{L}^{A}$. In [108] we have taken into account that $dt = dc^{\prime}$ for the total differentials because $t^{\prime} = \text{const}$ is a constant for each individual lightray. Also the following integration rule ($\tau$ and $\xi$ are independent variables) for indefinite integrals along the unperturbed lightray has been used; cf. Eq. (4.10) in [71]:

$$\int_{-\infty}^{\tau} dc^{\prime} \frac{\partial}{\partial \xi^{i}} f(\tau^{\prime}, \xi) = \frac{\partial}{\partial \xi^{i}} \int_{-\infty}^{\tau} dc^{\prime} f(\tau^{\prime}, \xi).$$

(112)
The integral in (109) runs over the unknown worldline $x_A(t)$ of the massive body $A$ and, therefore, can only be integrated by parts. Such strategy intrinsically inherits to demonstrate that the non-integrated terms of the integration procedure involve terms which are beyond 1PN approximation, that means it elaborates on the fact that the non-integrated terms imply an additional factor $c^{-1}$. In this way, the integral $\mathcal{I}_A$ is determined by Eqs. (B2) - [14] in appendix B while the integral $\mathcal{I}_B$ can immediately be calculated without integration by parts:

$$\mathcal{I}_B (\tau + t^*, \xi) = M_L^A (\tau + t^*) \frac{1}{r_N^A (\tau + t^*)}. \tag{113}$$

Altogether one obtains for the first integral of geodesic equation (105):

$$\Delta \dot{x}^A_{1PN} (\tau + t^*) = - \frac{2G}{c^2} \sum_{i=1}^{\infty} \lambda_i^2 \left( \frac{-1}{l^2} \right) \sum_{l=0}^{\infty} \frac{1}{l!} M_L^A (\tau + t^*) \sigma_i \ldots \sigma_{i_l} P^{i_{l+1} j_{l+1}} \ldots P^{i_1 j_1} \frac{\partial}{\partial \xi_{i_1}} \ldots \frac{\partial}{\partial \xi_{i_l}} \left( \frac{\partial}{\partial c \tau} \right)^{p-1} \frac{d_A (\tau + t^*)}{(r_N^A (\tau + t^*))^3}$$

$$- \frac{2G}{c^2} \sum_{i=1}^{\infty} \lambda_i^2 \left( \frac{-1}{l^2} \right) \sum_{l=0}^{\infty} \frac{1}{l!} M_L^A (\tau + t^*) P^{i_1 j_1} \ldots P^{i_{l+1} j_{l+1}} \frac{\partial}{\partial \xi_{i_1}} \ldots \frac{\partial}{\partial \xi_{i_l}} \frac{d_A (\tau + t^*)}{(r_N^A (\tau + t^*))^3} \frac{1}{r_N^A (\tau + t^*)}$$

where we recall the notation $M_L^A = M^A_{l_1 \ldots l_l}$. The expression in (114) represents the solution for the first integration of geodesic equation in 1PN approximation in (105), in the gravitational field of one arbitrarily moving body $A$ to any order of its intrinsic mass-multipoles. It should be underlined, that after performing of the differentiations in (114) one can replace $\tau + t^*$ by the global coordinate-time $t$. Let us also note that the following relations have been used in order to obtain (114):

$$P^{i_1 j_1} \frac{\partial}{\partial \xi_{i_1}} \left( \frac{1}{r_N^A (\tau + t^*)} \right) = - \frac{d^A (\tau + t^*)}{(r_N^A (\tau + t^*))^3}, \tag{115}$$

and

$$P^{i_1 j_1} \frac{\partial}{\partial \xi_{i_1}} \left[ r_N^A (\tau + t^*) - \sigma \cdot r_N^A (\tau + t^*) \right]$$

$$= \frac{d^A (\tau + t^*)}{r_N^A (\tau + t^*)} \frac{1}{r_N^A (\tau + t^*) - \sigma} \cdot r_N^A (\tau + t^*), \tag{116}$$

and the relation $P^{i_1 j_1} \left( \xi_{i_1} - x_A^i (\tau + t^*) \right) = d^A_A (\tau + t^*)$.

**VII. SOME SPECIAL CASES OF FIRST INTEGRATION**

Modern computer algebra systems allow for highly-efficient computation of partial differentiations which occur in the first integral (114) of geodesic equation. Here, the first few terms of (114) as instructive examples are considered and compared with known results in the literature, namely: arbitrarily moving monopoles, dipoles, quadrupoles, and the case of one massive body at rest with full mass-multipole structure. These examples can also serve as further elucidation about how the formula in (114) works.

**A. Monopoles in arbitrary motion**

For the case of light propagation in the gravitational field of $N$ extended mass-monopoles in arbitrary motion we have to consider the term $t = 0$ in (114), which reads:

$$\Delta \dot{x}_M (t) = - \frac{2G}{c^2} \sum_{A=1}^{N} M_A \left( r_N^A (t) - \sigma \cdot r_N^A (t) + \sigma \right), \tag{117}$$

where $\tau + t^*$ has finally been replaced by the global coordinate-time $t$. We recall that $r_N^A (t) = x_N (t) - x_A (t)$, with $x_N (t)$ being the spatial position of the unperturbed light-signal and $x_A (t)$ is the spatial position of the arbitrarily moving massive monopole.

By taking the limit of monopoles at rest $x_A = \text{const}$ in (117), one may easily recognize an agreement of (117) with Eq. (3.2.14) in [13] and with Eq. (28) in [22], where the mass-monopoles are displaced by some constant vector $x_A$ from the origin of the global coordinate-system.
In [43] the light-trajectory in the field of N arbitrarily moving pointlike monopoles has been determined in 1PM approximation. The 1PM approximation is a weak-field approximation, that means the pointlike monopoles could even be in ultra-relativistic motion, while (117) is for extended monopoles but in 1PN approximation, which is a weak-field slow-motion approximation. By expansion of the 1PM solution (Eqs. (32) and (34) in [43]) in powers of \( v_A/c \), one may show an agreement with our solution in (117) up to terms of the order \( \mathcal{O}(v_A/c) \).

### B. Dipoles in arbitrary motion

Let us consider the dipole-term, given by the term \( l = 1 \) in (114). Inserting the derivatives given by Eqs. (E4) - (E6) in appendix E we obtain

\[
\frac{\Delta \dot{x}_{D}(t)}{c} = + \frac{2G}{c^2} \sum_{A=1}^{N} \frac{M_A(t)}{r_N^A(t)} \frac{1}{r^N_A(t) - \sigma \cdot r^N_A(t)} \\
+ \frac{2G}{c^2} \sum_{A=1}^{N} \frac{\sigma \cdot M_A(t)}{r_N^A(t)} \left( \frac{d_A(t)}{r_N^A(t)} \right)^2 - \frac{\sigma}{r_N^A(t)} - \frac{\sigma}{r_N^A(t)} - \frac{\sigma}{(r_N^A(t))^2}
\]

If the origin of the local reference system \((cT_A, X_A)\) is located exactly at the center-of-mass of the massive body \(A\), then the dipole moment of this body vanishes, \(M_A = 0\). However, in real high-precision astrometry the center-of-mass of, for instance, a planet like Jupiter cannot be determined precisely. Therefore, for real astrometric measurements \(M_A \neq 0\), hence the light-deflection caused by the dipole moment of a massive body has to be taken into account, which is purely a coordinate effect; see also [18, 77].

### C. Quadrupoles in arbitrary motion

As further instructive example we consider the case of light propagation in the gravitational field of \(N\) arbitrarily moving quadrupoles, given by \(l = 2\) in (114), which reads:

\[
\frac{\Delta \dot{x}_{Q}(\tau + t^*)}{c} = - \frac{2G}{c^2} \sum_{A=1}^{N} M_{A_{ij}^2} \sigma_{i_{j1}^*} P_{i_{j2}^*} \frac{\partial}{\partial \xi_{j2}^*} \frac{d_A(t)}{(r_N^A(t))^3} - \frac{G}{c^2} \sum_{A=1}^{N} M_{A_{ij}=1} \sigma_{i_{j1}^*} \sigma_{i_{j2}^*} \frac{\partial}{\partial \xi_{j1}^*} \frac{d_A(t)}{(r_N^A(t))^3} \\
- \frac{G}{c^2} \sum_{A=1}^{N} M_{A_{ij}^2} \sigma_{i_{j1}^*} \sigma_{i_{j2}^*} \frac{\partial}{\partial \xi_{j2}^*} \frac{d_A(t)}{r_N^A(t)} - \frac{G}{c^2} \sigma \sum_{A=1}^{N} M_{A_{ij}^1} \sigma_{i_{j1}^*} \sigma_{i_{j2}^*} \frac{\partial}{\partial \xi_{j1}^*} \frac{1}{r_N^A(t)} \\
- \frac{2G}{c^2} \sigma \sum_{A=1}^{N} M_{A_{ij}^1} \sigma_{i_{j1}^*} \sigma_{i_{j2}^*} \frac{\partial}{\partial \xi_{j2}^*} \frac{1}{r_N^A(t)} \frac{G}{c^2} \sigma \sum_{A=1}^{N} M_{A_{ij}^1} \sigma_{i_{j1}^*} \sigma_{i_{j2}^*} \frac{\partial}{\partial \xi_{j1}^*} \frac{1}{r_N^A(t)} \frac{1}{r_N^A(t)}, \tag{119}
\]

where here for simpler notation the time-arguments have been omitted, i.e. \(r_N^A = r_N^A(\tau + t^*), \ r_N^A = r_N^A(\tau + t^*), \ d_A = d_A(\tau + t^*), \) and \(M_{A_{ij}^1} = M_{A_{ij}^1}(\tau + t^*)\). The derivatives in (119) are given in appendix E and by inserting (E7) - (E12) into (119) one obtains the first integral of geodesic equation in the field of \(N\) arbitrarily moving quadrupoles:
The scalar functions in (120) are given by:

\[ \alpha_k(t) = -M^A_{i_1 i_2}(t) d^k_A(t) \sigma^{i_1} \sigma^{i_2} + 2 M^A_{i_1 k}(t) d^{i_1}_A(t) - 2 M^A_{i_1 i_2}(t) d^{i_1}_A(t) \sigma^{i_1} \sigma^k - \frac{4}{d^2_A(t)} M^A_{i_1 i_2}(t) d^{i_1}_A(t) d^2_A(t) d^k_A(t), \]

(121)

\[ \beta_k(t) = +M^A_{i_1 i_2}(t) \sigma^{i_1} \sigma^{i_2} \sigma^k - 2 M^A_{i_1 k}(t) \sigma^{i_1} + \frac{4}{d^2_A(t)} M^A_{i_1 i_2}(t) d^{i_2}_A(t) d^2_A(t) \sigma^{i_1} - \frac{2}{d^2_A(t)} M^A_{i_1 i_2}(t) d^{i_1}_A(t) d^2_A(t) \sigma^k, \]

(122)

\[ \gamma_k(t) = +M^A_{i_1 i_2}(t) d^{i_1}_A(t) d^{i_2}_A(t) d^k_A(t) - M^A_{i_1 i_2}(t) d^k_A(t) d^2_A(t) \sigma^{i_1} \sigma^{i_2} + 2 M^A_{i_1 i_2}(t) d^{i_1}_A(t) d^{i_2}_A(t) \sigma^{i_1} \sigma^k, \]

(123)

\[ \delta_k(t) = -M^A_{i_1 i_2}(t) d^{i_1}_A(t) d^{i_2}_A(t) \sigma^k + M^A_{i_1 i_2}(t) d^2_A(t) \sigma^{i_1} \sigma^{i_2} \sigma^k + 2 M^A_{i_1 i_2}(t) d^{i_1}_A(t) d^{i_2}_A(t) d^2_A(t) \sigma^{i_1}. \]

(124)

The scalar functions in (120) are given by:

\[ \frac{\dot{U}_A(t)}{c} = \frac{d^2_A(t)}{(r^N_A(t))^3} \left( \frac{1}{r^N_A(t)} - \frac{\sigma \cdot r^N_A(t)}{(r^N_A(t))^3} \right), \]

(125)

\[ \frac{\dot{V}_A(t)}{c} = \frac{d^2_A(t)}{(r^N_A(t))^3}, \]

(126)

\[ \frac{\dot{F}_A(t)}{c} = -3 \frac{\sigma \cdot r^N_A(t)}{(r^N_A(t))^5}, \]

(127)

\[ \frac{\dot{E}_A(t)}{c} = \frac{1}{(r^N_A(t))^3} - 3 \frac{\sigma \cdot r^N_A(t)}{(r^N_A(t))^5} \left( \frac{(r^N_A(t))^2}{(r^N_A(t))^5} \right). \]

(128)

In the limit of quadrupoles at rest, \( x_A = \) const, and time-independent quadrupole-moments, \( M^A_{i_1 i_2} = \) const, the expression in (120) - (128) coincides with the corresponding results in [16, 42, 44].

D. Body at rest with full mass-multipole structure

The light-trajectory in the gravitational field of one massive body \( A \) at rest and located at the origin of coordinate system, \( x_A = 0 \), has been determined in [52] in post-Newtonian approximation for the case of time-independent multipoles. In such situation, we have to make the following replacements:

\[ d_A(\tau + t^*) \rightarrow \xi, \]

\[ d_A(\tau + t^*) \rightarrow d, \ r^N_A(\tau + t^*) \rightarrow r = \xi + c \tau \sigma, \ r^N_A(\tau + t^*) \rightarrow r = \sqrt{d^2 + c^2 \tau^2}, \]

and \( M^A_i(\tau + t^*) \rightarrow M^A_i \). Then, our solution in [16, 42, 44] simplifies as follows (we omit the monopole- and the dipole-term, because the former one has already been considered above, while the latter one is not determined in [52]):
\[ \Delta \mathbf{x}_{\text{PN}}^{A}(\tau + t^*; \tau_0 + t^*) = \frac{2G}{c^2} \sum_{l=2}^{\infty} \sum_{p=1}^{l} \frac{(-1)^l}{l!} M_l^A p_l^{ij} \ldots p_l^{ij} \frac{\partial}{\partial \xi^j} \ldots \frac{\partial}{\partial \xi^j} \left[ \frac{\xi}{d^2} \left( 1 + \frac{c\tau}{r} \right) + \frac{\sigma}{r} \right] \]

where the contribution of one body \( A \) is given by:

\[ \Delta \mathbf{x}_{\text{PN}}^{A}(\tau + t^*; \tau_0 + t^*) = \int_{\tau_0}^{\tau} d\tau' \frac{\Delta \mathbf{x}_{\text{PN}}^{A}(\tau' + t^*)}{c}, \]

where the integrand is given by Eq. (114). How one goes about performing the second integration is not much different in principle from the first integration represented in section VI. Using relations (115) and (116) we obtain the following expression for the second integration of geodesic equation for the light-trajectory in the gravitational field of one extended body \( A \) in arbitrary motion:

\[ \Delta \mathbf{x}_{\text{PN}}^{A}(\tau + t^*, \tau_0 + t^*) = \sum_{A=1}^{N} \Delta \mathbf{x}_{\text{PN}}^{A}(\tau + t^*, \tau_0 + t^*), \]

In order to obtain the form of the first two terms and of the last two terms in (132), the summation over \( l, p \) has
been separated as follows:

\[
\sum_{l=0}^{\infty} \sum_{p=0}^{l} F(l,p) = \sum_{l=0}^{\infty} F(l,p = 0) + \sum_{l=1}^{\infty} \sum_{p=1}^{l} F(l,p),
\]

(133)

\[
\sum_{l=0}^{\infty} \sum_{p=0}^{l} F(l,p) = \sum_{l=1}^{\infty} \sum_{p=1}^{l} F(l,p).
\]

(134)

In (132) we encounter four kinds of integrals:

\[
\mathcal{I}_C = \int_{\tau_0}^{\tau} d\tau' \frac{M_A^A(\tau' + t^*)}{r_A^A(\tau' + t^*)},
\]

(135)

\[
\mathcal{I}_D = \int_{\tau_0}^{\tau} d\tau' M_A^A(\tau' + t^*) \left( \frac{\partial}{\partial c\tau'} \right)^p \frac{1}{r_A^A(\tau' + t^*)},
\]

(136)

\[
\mathcal{I}_E = \int_{\tau_0}^{\tau} d\tau' \frac{M_A^A(\tau' + t^*)}{r_A^A(\tau' + t^*)} \times \ln \left[ r_A^N(\tau' + t^*) - \sigma \cdot r_A^N(\tau' + t^*) \right],
\]

(137)

\[
\mathcal{I}_F = \int_{\tau_0}^{\tau} d\tau' M_A^A(\tau' + t^*) \left( \frac{\partial}{\partial c\tau'} \right)^p \frac{1}{r_A^A(\tau' + t^*)},
\]

(138)

which are determined in appendix\{C\}. These integrals run over the unknown worldline \(x_A(t)\) of massive body A, and can also be integrated by parts, that means the procedure it essentially based upon the fact that the non-integrated remnants are beyond 1PN approximation, because they imply an additional factor \(c^{-1}\).

Then, inserting the solutions of these four integrals, given by Eqs. (C2), (C4), (C8) and (C9), into Eq. (132) and performing the differentiations with respect to \(P_{ij} \frac{\partial}{\partial \xi_j}\), the second integration of geodesic equation for the light-trajectory in the field of one body A is given by

\[
\Delta x_{1PN}^A(\tau + t^*, \tau_0 + t^*) = \Delta x_{1PN}^A(\tau + t^*) - \Delta x_{1PN}^A(\tau_0 + t^*),
\]

(139)

where
\[ \Delta x_{1PN}^A (\tau + t^*) \]

\[ = \frac{-2 G}{c^2} \sum_{l=1}^{\infty} \frac{(-1)^l}{(l-1)!} M^A_L (\tau + t^*) \sigma_{i_1}^1 P^{i_2 j_2} \ldots P^{i_l j_l} \frac{\partial}{\partial \xi^{j_2}} \ldots \frac{\partial}{\partial \xi^{j_l}} \frac{d_A (\tau + t^*)}{r_A^N (\tau + t^*)} \left( \frac{1}{r_A^N (\tau + t^*)} - \sigma \cdot r_A^N (\tau + t^*) \right) \]

\[ - \frac{2 G}{c^2} \sum_{l=2}^{\infty} \frac{(-1)^l}{(l-2)!} \sum_{p=2}^{l} \frac{(-1)^p}{p!} M^A_L (\tau + t^*) \sigma_{i_1}^1 \sigma_{i_p}^p P^{i_{p+1} j_{p+1}} \ldots P^{i_l j_l} \frac{\partial}{\partial \xi^{j_{p+1}}} \ldots \frac{\partial}{\partial \xi^{j_l}} \frac{d_A (\tau + t^*)}{r_A^N (\tau + t^*)} \left( \frac{1}{r_A^N (\tau + t^*)} - \sigma \cdot r_A^N (\tau + t^*) \right) \]

\[ + \frac{2 G}{c^2} \frac{\sigma}{l!} \sum_{l=0}^{\infty} \frac{(-1)^l}{l!} M^A_L (\tau + t^*) P^{i_1 j_1} \ldots P^{i_l j_l} \frac{\partial}{\partial \xi^{j_1}} \ldots \frac{\partial}{\partial \xi^{j_l}} \ln \left[ \frac{r_A^N (\tau + t^*)}{r_A^N (\tau + t^*)} - \sigma \cdot r_A^N (\tau + t^*) \right] \]

\[ - \frac{2 G}{c^2} \sum_{l=1}^{\infty} \sum_{p=1}^{l} \frac{(-1)^l}{(l-p)!p!} M^A_L (\tau + t^*) \sigma_{i_1}^1 \sigma_{i_p}^p P^{i_{p+1} j_{p+1}} \ldots P^{i_l j_l} \frac{\partial}{\partial \xi^{j_{p+1}}} \ldots \frac{\partial}{\partial \xi^{j_l}} \left( \frac{1}{r_A^N (\tau + t^*)} \right) \]

\[ (140) \]

and we recall the notation \( M^A_L = M^A_{i_1 \ldots i_l} \). In order to obtain (140), the relations (115) and (116) and have also been used. The expression in (140) represents the solution for the second integration of geodesic equation in 1PN approximation in (105), in the field of one arbitrarily moving body A and to any order of its intrinsic mass-multipoles. Like in the first integral in (114), after the differentiations in (140) the replacement of \( \tau + t^* \) by the global coordinate-time \( t \) can be performed. One may easily check that the time-differentiation of (140) yields immediately the first integral in (114) up to terms of higher-order beyond 1PN approximation. So the solution in (140) is consistent with the solution in (114).

\[ P^{ij} \frac{\partial}{\partial \xi^i} \left( \frac{r_A^N (\tau + t^*)}{r_A^N (\tau + t^*)} - \sigma \cdot r_A^N (\tau + t^*) \ln \left[ \frac{r_A^N (\tau + t^*)}{r_A^N (\tau + t^*)} - \sigma \cdot r_A^N (\tau + t^*) \right] \right) = \frac{d_A^N (\tau + t^*)}{r_A^N (\tau + t^*)} - \sigma \cdot r_A^N (\tau + t^*) \]

\[ (141) \]

IX. SOME SPECIAL CASES OF SECOND INTEGRATION

Like in case of first integration, let us consider the very few first terms of (140) as instructive examples, for the monopole-term \( (l = 0) \) we obtain from (139) and (140):

\[ \Delta x_M (t, t_0) = - \frac{2 G}{c^2} \sum_{A=1}^{N} M_A \left( \frac{d_A (t)}{r_A^N (t)} - \sigma \cdot r_A^N (t) \right) - \frac{d_A (t_0)}{r_A^N (t_0)} + \frac{2 G}{c^2} \sigma \sum_{A=1}^{N} M_A \ln \left( \frac{r_A^N (t)}{r_A^N (t_0)} - \sigma \cdot r_A^N (t) \right), \]

\[ (142) \]
where in the final expression we have replaced \( \tau + t^* = t \) and \( \tau_0 + t^* = t_0 \); recall \( r^N_A(t) = x_N(t) - x_A(t) \) and \( r^N_A(t_0) = x_0 - x_A(t_0) \). The time-derivative of Eq. (142) yields immediately (117); up to terms of order \( O(v_A/c) \).

In the limit of massive bodies at rest, the expression (142) coincides with Eq. (3.2.13) in [15] and with Eq. (22) in [42], where the mass-monopoles are not located at the origin of the coordinate-system but displaced by some constant vector \( x_A \); cf. Eq. (22).

In [43] the light-trajectory in the field of \( N \) arbitrarily moving pointlike monopoles has been determined in first post-Minkowskian approximation (1PM), that means where the pointlike monopoles could even move with ultra-relativistic speed, while [42] is for extended monopoles in 1PN approximation. By expansion of the 1PM solution (Eqs. (33) and (35) in [43]) in powers of \( v_A/c \), one may show an agreement with our solution in (142) up to terms of the order \( O(v_A/c) \).

**B. Dipoles in arbitrary motion**

From (140) we obtain for the dipole-term \((l = 1)\):

\[
\Delta x_D(t, t_0) = \Delta x_D(t) - \Delta x_D(t_0),
\]

\[
\Delta x_D(t) = \frac{2G}{c^2} \sum_{A=1}^N \frac{M_A(t)}{r^N_A(t)} - \frac{2G}{c^2} \sum_{A=1}^N \frac{\sigma \cdot M_A(t)}{r^N_A(t)} \left( \frac{d_A(t)}{r^N_A(t)} - \frac{\sigma \cdot r^N_A(t)}{r^N_A(t)} \right)
\]

\[
- \frac{2G}{c^2} \sum_{A=1}^N \frac{d_A(t) \cdot M_A(t)}{r^N_A(t)} \left( \frac{\sigma}{r^N_A(t)} + \frac{d_A(t)}{r^N_A(t)} \cdot \frac{\sigma}{r^N_A(t)} \right),
\]

where we have used the derivatives given in appendix [5]. The time-derivative of (143) yields immediately (118) up to terms of order \( O(v_A/c) \). As mentioned above, if the origin of the local reference system \( (ct_A, x_A) \) is located exactly at the center-of-mass of the massive body \( \Lambda \), then the dipole moment of this body vanishes, \( M_A = 0 \), and there would be no dipole-term. But in reality one cannot determine precisely the center-of-mass of a massive body (e.g. giant planets) so that \( M_A \neq 0 \) and one has carefully to take into account the change in the light-trajectory caused by the dipole-term, which is purely a coordinate effect; cf. Ref. [18] [77].

**C. Quadrupoles in arbitrary motion**

Now we consider the light-trajectory in the gravitational field of \( N \) arbitrarily moving quadrupoles, given by the term \( l = 2 \) in (140), which reads:

\[
\Delta x_Q(\tau + t^*, \tau_0 + t^*) = \Delta x_Q(\tau + t^*) - \Delta x_Q(\tau_0 + t^*),
\]

with

\[
\Delta x_Q(\tau + t^*) = -\frac{2G}{c^2} \sum_{A=1}^N M^A_{i_1i_2} \sigma^{i_1}P^{i_2j_2} \frac{\partial}{\partial \xi^{j_2}} \frac{d_A}{r^N_A - \sigma \cdot r^N_A}
\]

\[
- \frac{G}{c^2} \sum_{A=1}^N M^A_{i_1i_2} \sigma^{i_1} \frac{d_A}{r^N_A} \frac{1}{r^N_A - \sigma \cdot r^N_A}
\]

\[
+ \frac{G}{c^2} \sum_{A=1}^N M^A_{i_1i_2} \sigma^{i_1} \frac{d_A}{r^N_A} \frac{1}{r^N_A - \sigma \cdot r^N_A} \ln(r^N_A - \sigma \cdot r^N_A)
\]

\[
- \frac{2G}{c^2} \sum_{A=1}^N M^A_{i_1i_2} \sigma^{i_1} \frac{d_A}{r^N_A} \frac{1}{r^N_A - \sigma \cdot r^N_A}
\]

\[
- \frac{G}{c^2} \sum_{A=1}^N M^A_{i_1i_2} \sigma^{i_1} \frac{d_A}{r^N_A} \frac{1}{r^N_A - \sigma \cdot r^N_A} \ln(r^N_A - \sigma \cdot r^N_A),
\]

where here for simpler notation the time-arguments have been omitted, i.e. \( r^N_A = r^N_A(\tau + t^*) \), \( r^N_A = r^N_A(\tau + t^*) \),
\(d_A = d_A(\tau + t^*)\), and \(M_{i_1i_2}^A = M_{i_1i_2}^A(\tau + t^*)\). The derivatives in the first, fifth, and sixth term in (145) were already given in appendix E, while the derivatives of the third and fourth term in (145) were already given in appendix F. After performing these derivatives the replacements have to be performed: \(\tau + t^* = t\) and \(\tau_0 + t^* = t_0\).

By inserting relations (E4), (E6), (F3), (F4) into (145) one obtains the light-trajectory in the field of \(N\) arbitrarily moving quadrupoles:

\[
\Delta x_Q(t, t_0) = \Delta x_Q(t) - \Delta x_Q(t_0),
\]

with

\[
\Delta x_Q(t) = \frac{G}{c^2} \sum_{A=1}^{N} \frac{1}{d_A^2(t)} \left[ \alpha_A(t) U_A(t) + \beta_A(t) V_A(t) + \gamma_A(t) F_A(t) + \delta_A(t) E_A(t) \right].
\]

The vectorial coefficients in (147) were given by Eqs. (121) - (124) and the scalar functions in (147) are given by:

\[
U_A(t) = \frac{1}{r_A^N(t)} \left( \frac{\sigma \cdot r_A^N(t)}{r_A^N(t)} - \sigma \cdot r_A^N(t) \right), \quad \text{(148)}
\]

\[
V_A(t) = \frac{\sigma \cdot r_A^N(t)}{r_A^N(t)} + 1, \quad \text{(149)}
\]

\[
F_A(t) = \frac{1}{(r_A^N(t))^3}, \quad \text{(150)}
\]

\[
E_A(t) = \frac{\sigma \cdot r_A^N(t)}{(r_A^N(t))^2}. \quad \text{(151)}
\]

The time-derivative of (147) yields (120), up to terms of higher-order, i.e. \(O(v_A/c)\) or \(O(M_{i_1i_2}^A/c)\).

In the limit of bodies at rest, \(x_A = \text{const}\), and time-independent quadrupole-moments, \(M_{i_1i_2}^A = \text{const}\), the expression in (147) - (151) coincides with with the corresponding results in (16 - 124 - 114), cf. Eqs. (25 - 51).

One should keep in view that a series expansion of the vectorial coefficients (121) - (124) does not necessarily create terms beyond 1PN approximation. For instance, a series expansion of the vectorial coefficients around some time-moment \(t_0\) implies a corresponding series expansion of the impact vector and quadrupole moment,

\[
d_A(t) = d_A(t_0) + \sigma \times (\sigma \times v_A(t_0))(t - t_0) + O(a_A), \quad \text{(152)}
\]

\[
M_{i_1i_2}^A(t) = M_{i_1i_2}^A(t_0) + \dot{M}_{i_1i_2}^A(t_0)(t - t_0) + O(\dot{M}_{i_1i_2}^A), \quad \text{(153)}
\]

which are proportional either to \(v_A(t - t_0)\) or \(M_{i_1i_2}^A(t - t_0)\), but neither to \(v_A/c\) nor \(M_{i_1i_2}^A/c\). Consequently, the individual terms in a series expansion of vectorial coefficients are not necessarily beyond 1PN approximation.

Results for the light-trajectory in the field of quadrupoles in uniform motion, \(v_A = \text{const.}\), were represented in (51). In the limit of uniform motion the expression in (146) - (151) should coincide with the results in (51). For such a comparison the series-expansion in (32) would have to be inserted into the solution (146) - (151), which leads rapidly to cumbersome expressions. Consequently, such a comparison constitutes a rather ambitious assignment of a task and spoils the intention of the investigation.

D. Body at rest with full mass-multipole structure

As it has been mentioned above, the light-trajectory in the gravitational field of one massive body at rest and located at the origin of coordinate system, \(x_A = 0\), has been determined in (52) in post-Newtonian approximation and for the case of time-independent multipoles. In such situation, we have to make the following replacements: \(d_A(\tau + t^*) \rightarrow \xi, \quad d_A(\tau + t^*) \rightarrow d, \quad r_A^N \rightarrow r = \xi + c \tau \sigma, \quad r_A^N(\tau + t^*) \rightarrow r = \sqrt{d^2 + c^2 \tau^2}, \quad \text{and} \ M_{i_1i_2}^A(\tau + t^*) \rightarrow M_{i_1i_2}^A\). Then our solution in (140) simplifies as follows (without monopole- and dipole-term):
\[ \Delta x_{i=A=0}^4 (\tau + t^*) = - \frac{2G}{c^2} \sum_{l=2}^{\infty} \frac{(-1)^l}{(l-1)!} M_A^4 \sigma_i^1 P^i_{p+1} j_{p+1} \cdots P^i_{j_1} j_1 \frac{\partial}{\partial \xi^i_{j_1}} \cdots \frac{\partial}{\partial \xi^n} \left[ \frac{\xi^i}{d^2} \frac{c \tau}{r} + \sigma \right] \]

\[ - \frac{2G}{c^2} \sum_{l=2}^{\infty} \sum_{p=1}^{l} \frac{(-1)^l}{l!} M_A^4 \sigma_i^1 \cdots \sigma^p \ P^i_{j_1} j_{p+1} \cdots P^i_{j_1} j_1 \frac{\partial}{\partial \xi^i_{j_1}} \cdots \frac{\partial}{\partial \xi^n} \left[ \frac{\xi^i}{d^2} \frac{c \tau}{r^3} \right] \]

which is in agreement with Eq. (36) in [52], and the time-derivative of \( (154) \) yields \( (129) \). Let us note, that expression \( (154) \) has to be understood in combination with \( (139) \), that means in the first line the term \( \frac{\xi^i}{d^2} \frac{c \tau}{r} \) has been replaced by \( \frac{\xi^i}{d^2} \frac{c \tau}{r} \) and also \( \ln \frac{r + c \tau}{r_0 - c \tau} = - \ln \frac{r + c \tau}{r_0} + \frac{c \tau}{r_0} \) has been used.

It is of course impossible to deduce the general solution in \( (140) \) from the specific solution in \( (154) \), by reason that an inverse replacement procedure would not be unique, because it could either be \( d \to |\xi| \) or \( d \to |d_A| \); similar problems concern the variables \( \xi \) or \( c \tau \). Stated somewhat differently: one cannot deduce the general expression in \( (140) \) from the specific solution given by Eq. (36) in [52]; cf. text below Eq. (129).

\section{X. OBSERVABLE RELATIVISTIC EFFECTS}

Let us consider two observable effects which are of decisive importance in relativistic astrometry: the time-delay and the deflection of photons propagating through the Solar system. We shall assume that the observer and the celestial lightsource are at rest with respect to the global system.

\subsection{A. Time-delay}

The classical relativistic effect of time-delay when a light-signal propagates through the static gravitational field of a spherically symmetric massive body (monopole) has been predicted by Shapiro in 1963 [54] and were detected soon afterwards [55]. The results of these experiments have been confirmed with increasing accuracy, and the todays most accurate measurement of Shapiro-delay was achieved in 2003 [87] using Cassini spacecraft. The solution in \( (130) \) allows to determine the time-delay of light-signals propagating through the gravitational field of a system of \( N \) arbitrarily moving massive bodies.

Let \( x_1 = x(t_1) \) be the global spatial coordinate of the space-based observer at the moment of observation \( t_1 \) and \( x_0 = x(t_0) \) be the global spatial coordinate of the source at the moment of emission \( t_0 \) of the light-signal which is observed at \( x(t_1) \). In terms of the new variables \( \xi \) and \( \tau \), both of these spatial coordinates are given by \( x_1 = x(t_1 + t^*) \) and \( x_0 = x(t_0 + t^*) \). Furthermore, we introduce the following vectors:

\[ R = x(t_1 + t^*) - x(t_0 + t^*) , \]

\[ k = \frac{R}{R} , \]

where \( R = |R| \) with \( R \) being the vector from the source (at the moment of emission) to the observer (at the moment of observation) and \( k \) is the corresponding unit direction. Then, using the same procedure as described in [59], one obtains from Eq. (130) the following expression for the relativistic time-delay, cf. [12]:

\[ c(t_1 - t_0)_{1PN} = R \sum_{A=1}^{N} k \cdot \left( \Delta x_{1PN}^4 (\tau_1 + t^*, \tau_0 + t^*) \right) , \]

where the perturbation terms \( \Delta x_{1PN}^4 \) are given by Eq. (139) with (140); note that the below standing relation \( (156) \) has also been used. In case of \( N \) arbitrarily moving monopoles Eq. (157) agrees with formula (51) in [43] up to order \( O(v_A/c) \), and in case of \( N \) quadrupoles at rest Eq. (157) agrees with formula (23) in [46].

The result in \( (157) \) is valid for \( N \) slowly-moving bodies with full mass-multipole structure. But even for future highly-precise astrometry missions aiming to determine relativity within the Solar system (e.g. ASTROD [67], LATOR [89], ODYSSEY [10], SAGAS [11], TIPO [12]) only the impact of the very few first multipoles could be detected. However, the exact determination of these relevant parts of the perturbation terms in \( (157) \) implies some remarkable effort, see for instance [46] for the efficient computation of the quadrupole-term, and is beyond the scope of our present investigation.
B. Light-deflection

Assume, that the observer and the celestial light-source are at rest with respect to the global coordinate system. The light-deflection at observers position, \( x_1 = x(t) \), which is assumed to be at rest with respect to the global coordinate system, is defined by the unit tangent-vector of the lightray at observers position:

\[
 n_{1\text{PN}}(\tau_1 + t^*) = \frac{\dot{x}_{1\text{PN}}(\tau_1 + t^*)}{|\dot{x}_{1\text{PN}}(\tau_1 + t^*)|}. \tag{158}
\]

Using (106), one obtains

\[
 n_{1\text{PN}}(\tau_1 + t^*) = \sigma + \sum_{A=1}^{N} \sigma \times \left( \frac{\Delta \dot{x}_{1\text{PN}}(\tau_1 + t^*)}{c} \times \sigma \right), \tag{159}
\]

where the perturbation terms \( \Delta \dot{x}_{1\text{PN}} \) are given by (114).

In case of \( N \) arbitrarily moving monopoles our result in (159) agrees with Eq. (69) in [43], and in case of \( N \) quadrupoles at rest our result in (159) agrees with Eq. (7) in [20]. One has to bear in mind that for astrometry within the near-zone of the Solar system, where the light-sources are at finite distance, one needs to determine the light-deflection as function of \( k \) instead of \( \sigma \), both of which are related by, cf. [12]:

\[
 \sigma = k - \frac{1}{R} \sum_{A=1}^{N} \left[ k \times \left( \frac{\Delta x_{1\text{PN}}(\tau_1 + t, \tau_0 + t^*) \times k}{c} \right) \right], \tag{160}
\]

which follows from (130) and the definition in (155). Inserting (160) into (159) yields the expression for the light-deflection, cf. [12]:

\[
 n_{1\text{PN}}(\tau_1 + t^*) = k + \sum_{A=1}^{N} k \times \left( \frac{\Delta x_{1\text{PN}}(\tau_1 + t^*) \times k}{c} \right) + \frac{1}{R} \sum_{A=1}^{N} \left[ k \times \left( \frac{\Delta x_{1\text{PN}}(\tau_1 + t^*, \tau_0 + t^*) \times k}{c} \right) \right]. \tag{161}
\]

In case of quadrupoles at rest our result in (161) agrees with Eq. (14) in [20]. Let us notice here that in order to determine the unit tangent vector of the lightray at observers position, one needs to ascertain both the term \( \Delta x_{1\text{PN}} \) as well as \( \Delta x_{1\text{PN}} \), which are given by (114) and (130), with (140), respectively.

The formulae in (159) and (161) determine the light-deflection in the field of \( N \) arbitrarily moving massive bodies with full mass-multipoles structure. Like in case of time-delay, only the very few first multipoles in (159) or (161) have to be taken into account for sub-micro-arcsecond astrometry. But such an exact determination of the relevant multipoles implies some considerable amount of effort, see for instance [10] for the quadrupole part, and will therefore not be on the scope of the present investigation.

XI. SUMMARY AND OUTLOOK

While the precision of astrometric measurements has made an advance from milli-arcsecond to micro-arcsecond in the angle-determination of celestial objects, prospective developments in nearest future aim at sub-micro-arcsecond or even nano-arcsecond level of accuracy. It is clear that such extremely high accuracy implies the precise determination of the light-trajectory \( x(t) \) from the celestial object through the Solar system towards the observer. In respect thereof two aspects are of specific importance:

(A) In the region exterior of the massive bodies, the global metric of the Solar system (BCRS coordinates: \( c, x \)) can be expressed in terms of two families of global multipoles [24–27]: global mass-multipoles \( m_L \) and global spin-multipoles \( S_L \), which define the multipole structure of the Solar system as a whole. On the other side, from the theory of relativistic reference systems follows that the multipole structure of the gravitational field of some massive body \( A \) can only be defined in a physically meaningful way within the local reference system (GCRS-like coordinates: \( cT_A, X_A \)) co-moving with that body. In accordance with these requirements, highly precise astrometric measurements appeal for the use of a global metric expressed in terms of intrinsic mass-multipoles \( M^A \) and intrinsic spin-multipoles \( S^A \), of each individual body. Such a metric is provided by the Brumberg-Kopeikin (BK) formalism [15, 18, 28–31] as well as by the Damour-Soffel-Xu (DSX) approach [32–35], originally been introduced for celestial mechanics, and which have become a part of the IAU resolutions B1.3 (2000) [20].

(B) Another aspect in the theory of light propagation concerns the fact that the massive bodies of the Solar system are moving along their worldline \( x_A(t) \), which is a highly complicated function because of the mutual interaction of the massive bodies. Formally, the worldline of some massive body \( A \) can be series-expanded around some time-moment \( t_A \),

\[
x_A(t) = x_A + v_A \frac{t - t_A}{1!} + \frac{a_A}{2!} (t - t_A)^2 + \mathcal{O}(\dot{a}_A), \tag{162}
\]

where \( x_A, v_A \) and \( a_A \) are the position, velocity and acceleration of body \( A \) at time-moment \( t_A \), respectively.

The expansion (162) has some drawbacks:

(i) It implies to introduce an instant of time \( t_A \), which remains an open parameter, as long as no additional arguments are put forward to identify that parameter with the time of closest approach \( t_A \) or with the retarded time \( t_{\text{ret}} \). But so far, an unique justification of that suggestion exists only for point-like bodies in arbitrary motion, but not for extended bodies in arbitrary motion and expressed in terms of intrinsic multipoles.

(ii) If the expansion (162) is implemented into the metric, it leads to rather cumbersome expressions when integrating the geodesic equation.
(iii) One has also to realize that \(162\) is not an expansion in inverse powers of the speed of light, hence these terms are not necessarily beyond 1PN approximation of geodesic equation.

These facts make it much preferable to determine the light-trajectory as function of arbitrary worldlines \(x_A(t)\), that means to determine the light-trajectory in the field of arbitrarily moving massive bodies. The actual worldline of the massive bodies can finally be concretized and implemented by some Solar system ephemerides; e.g. the JPL DE421 \[41\].

As outlined in some detail by a brief survey of recent advancements in the theory of light propagation, so far there was no solution derived for the light-trajectory in the gravitational field of arbitrarily shaped bodies in arbitrary motion and described in terms of their local multipoles. According to the IAU recommendations \[20\], in this investigation the DSX-metric has been employed in order to determine the light-trajectory in 1PN approximation in the gravitational field of \(N\) arbitrarily moving massive bodies with full mass-multipole structure:

\[
x(t) = x_0 + c(t - t_0)\sigma + \Delta x_{1\text{PN}}(t, t_0) + \mathcal{O}(c^{-3})
\]

(163)

The main results of this investigation are given by Eq. \((114)\) and Eq. \((140)\). These solutions have been taken into account both of these issues \((A)\) and \((B)\) outlined above: expression \((114)\) represents the first integration of geodesic equation, while expression \((140)\) represents the second integration of geodesic equation, that means the light-trajectory in the gravitational field of \(N\) arbitrarily moving and extended massive bodies and expressed in terms of their intrinsic multipoles. Furthermore, it has been shown that the results presented agree in special cases with well-established results in the literature, namely monopoles, quadrupoles, and arbitrarily shaped bodies at rest as well as monopoles in arbitrary motion.

It is clear, that a comprehensive model of light propagation on sub-\(\mu\)as or even nano-level of accuracy requires at least the solution of light-trajectory in 1.5PN approximation as well:

\[
x(t) = x_0 + c(t - t_0)\sigma + \Delta x_{1\text{PN}}(t, t_0) + \Delta x_{1.5\text{PN}}(t, t_0) + \mathcal{O}(c^{-4})
\]

(164)

For instance, the light-deflection of a grazing ray at Jupiter amounts to be about \(n^{Q}_{1\text{PN}} \approx 240\ \mu\)as \[42\] \[44\]. Such terms are already implemented in the 1PN solution. On the other side, a typical term of 1.5PN approximation would be \(n^{Q}_{1.5\text{PN}} \approx n^{Q}_{1\text{PN}} v_A/c\), which in case of Jupiter \((v_A/c \approx 4.5 \times 10^{-5})\) yields a light-deflection of about \(n^{Q}_{1.5\text{PN}} \approx 0.01\ \mu\)as. Another typical term of 1.5PN approximation is the light-deflection due to the spin of the massive bodies, which have been determined to be about \(n^{S}_{1.5\text{PN}} \approx 0.7\ \mu\)as, 0.2\,\mu as, and 0.04\,\mu as for grazing lightrays at Sun, Jupiter, and Saturn, respectively \[42\] \[44\]. Moreover, recent investigations \[70\] have recovered, that the light-deflection due to the spin-octupole-structure of massive bodies amounts to be about 0.015\,\mu as for Jupiter and about 0.006\,\mu as for Saturn for grazing rays. Therefore, a model at sub-\(\mu\)as-level has also to account for higher spin-multipole terms which are of 1.5PN order.

Clearly, the post-Newtonian approach allows for astrometry within the boundary of the near-zone of the Solar system, \(|x| \ll \lambda_\text{e} \sim 3\,\text{parsec}\), while lightrays which originate from sources lying far outside of the Solar system are subject of the far-zone astrometry. The perturbations of the light-trajectory in the far-zone of Solar system are extremely weak (less than 1\,\mu as in the light-deflection), but might be of relevance for sub-microarcsecond astrometry. These effects can be investigated by means of a matching procedure of two asymptotic solutions (near-zone and far-zone solution) proposed in \[16\] and further elaborated in \[89\], and will be on the scope of a further investigation \[88\].

A further problem concerns the retardation effect due to the finite speed at which gravitational action travels. It has, however, been elucidated by Eq. \(61\) that the effect of retardation cannot be taken into account within 1PN approximation for the lightrays. For this fact, the solution for the light-trajectory in 1PN approximation, Eqs. \((114)\) and \((140)\), are functions of the instantaneous distance between the photon and massive body, as given by Eq. \((17)\) or \((92)\).

Furthermore, the light-trajectory in 2PN approximation reads formally

\[
x(t) = x_0 + c(t - t_0)\sigma + \Delta x_{1\text{PN}}(t, t_0) + \Delta x_{1.5\text{PN}}(t, t_0) + \Delta x_{2\text{PN}}(t, t_0) + \mathcal{O}(c^{-5})
\]

(165)

The most dominant post-post-Newtonian correction is the monopole-term, \(\Delta x_{1\text{PN}}\), which is well-known for bodies at rest. Following a suggestion in \[56\], for the case of uniformly moving bodies this term can be obtained by an appropriate Lorentz transformation, while for the case of arbitrarily moving bodies the solution might be acquired with the aid of sophisticated integration methods mentioned in this article. It might even be that some very few terms in 2PN approximation beyond the monopole-term are required for nano-arcsecond accuracy. Such terms will rapidly decrease with increasing impact parameter \(d_A\) of the lightray and might only be of relevance for grazing rays, i.e. where \(d_A\) equals the radius \(R_A\) of the body. But for all that, the final level of ambition must include a rigorous estimation of such terms, implicating a clear understanding about whether or not some 2PN terms beyond the monopole-term become relevant for astrometry on nano-arcsecond level.

**XII. ACKNOWLEDGMENT**

This work was supported by the Deutsche Forschungsgemeinschaft (DFG).
Appendix A: Notations

Throughout the article the following notations are in use:

- $G$ is the Newtonian constant of gravitation.
- $c$ is the vacuum speed of light in flat Minkowski space.
- Lower case Latin indices $a, b, \ldots, i, j, \ldots$ take values 1,2,3.
- Lower case Greek indices $\alpha, \beta, \ldots, \mu, \nu, \ldots$ take values 0,1,2,3.
- $\delta_{ij} = \delta^{ij} = \text{diag}(+1,+1,+1)$ is Kronecker delta.
- The three-dimensional coordinate quantities ("three-vectors") referred to the spatial axes of the corresponding reference system are set in boldface: $\mathbf{a}$.
- The contravariant components of "three-vectors" are $a^i = (a^1, a^2, a^3)$.
- The contravariant components of "four-vectors" are $a^\mu = (a^0, a^1, a^2, a^3)$.
- Repeated indices imply the Einstein’s summation irrespective of their positions (e.g. $a^i b^i = a^1 b^1 + a^2 b^2 + a^3 b^3$).
- The absolute value (Euclidean norm) of a "three-vector" $\mathbf{a}$ is denoted as $|\mathbf{a}|$ or, simply, $a$ and can be computed as $a = |\mathbf{a}| = (a^1 a^1 + a^2 a^2 + a^3 a^3)^{1/2}$.
- The vector product of any two "three-vectors" $\mathbf{a}$ and $\mathbf{b}$ with respect to the Euclidean metric $\delta_{ij}$ is denoted by $\mathbf{a} \times \mathbf{b}$ and can be computed as $\mathbf{a} \times \mathbf{b} = \delta_{ij} a^i b^j = a^i b^j$.
- The vector product of any two "three-vectors" $\mathbf{a}$ and $\mathbf{b}$ is designated by $\mathbf{a} \times \mathbf{b}$ where $\epsilon_{ijk} = (i - j)(j - k)(k - i)/2$ is the fully antisymmetric Levi-Civita symbol.
- The global coordinate system is denoted by lower-case letters: $(ct, \mathbf{x})$.
- The local coordinate system of a massive body $A$ is denoted by upper-case letters: $(cT_A, \mathbf{X}_A)$.
- The photon trajectory is denoted by $\mathbf{x}(t)$. In order to distinguish the photon’s spatial coordinate $\mathbf{x}(t)$ from the spatial coordinate $\mathbf{x}$ of the global system, the time-dependence of photon’s spatial coordinate will everywhere be shown explicitly throughout the article.
- The worldline of massive body $A$ is denoted by $\mathbf{x}_A(t)$ or $\mathbf{x}_A(T_A)$.
- Partial derivatives in the global coordinate system:
  - $\partial_t = \frac{\partial}{\partial x^0}$ or $\partial_t = \frac{\partial}{\partial x_0}$.
  - Partial derivatives in the local coordinate system of body $A$: $\mathcal{D}^A = \frac{\partial}{\partial x^A}$ or $\mathcal{D}^A = \frac{\partial}{\partial X^A}$.
- $n! = n(n-1)(n-2) \cdots 2 \cdot 1$ is the faculty for positive integer; $0! = 1$.
- $L = i_1 i_2 \cdots i_l$ is a Cartesian multi-index of a given tensor $T$, that means $T_L \equiv T_{i_1 i_2 \cdots i_l}$, and each index $i_1, i_2, \ldots, i_l$ runs from 1 to 3 (i.e. over the Cartesian coordinate label).
- Two identical multi-indices imply summation, e.g.: $\partial_L T_L \equiv \sum_{i_1 \ldots i_l} \partial_{i_1 \ldots i_l} T_{i_1 \ldots i_l}$.
- The symmetric part of a Cartesian tensor $T_L$ is, cf. Eq. (2.1) in [24]:
  \[ T_{(L)} = T_{(i_1 \ldots i_l)} = \frac{1}{l!} \sum_{\sigma} A_{\sigma(i_1 \ldots i_l)} , \]
  where $\sigma$ is running over all permutations of $(1,2,\ldots,l)$.
- The symmetric tracefree (STF) part of a Cartesian tensor $T_L$ (notation: $T_L \equiv \text{STF} T_L$) is, cf. Eq. (2.2) in [24]:
  \[ \tilde{T}_L = \sum_{k=0}^{[l/2]} a_{lk} \delta_{i_1 i_2 \cdots i_{2k}} S_{i_{2k+1} \cdots i_l} a_{i_1 a_2 \cdots a_k} , \]
  where $[l/2]$ means the largest integer less than or equal to $l/2$, and $S_L \equiv T_{(L)}$ abbreviates the symmetric part of tensor $T_L$. For instance, $T_L^{\text{STF}}$ means STF with respect to indices $L$ but not with respect to indices $\alpha, \beta$. The coefficient in $[A2]$ is given by
  \[ a_{lk} = (-1)^k \frac{l!}{(l-2k)!} \frac{(2l-2k-1)!!}{(2l-1)!!(2k)!!} \]

As instructive examples of $[A2]$ let us consider the cases $l = 2$ and $l = 3$:

\[ \tilde{T}_{ij} = T_{(ij)} = \frac{1}{3} \delta_{ij} T_{ss} , \]
\[ \tilde{T}_{ijk} = T_{(ijk)} = \frac{1}{5} \left( \delta_{ij} T_{(ss)} + \delta_{jk} T_{(ss)} + \delta_{ki} T_{(ss)} \right) . \]
Appendix B: Integral $I_A$

The integral $I_A$ in (109) reads:

$$I_A(\tau + t^*, \xi) = \int_{-\infty}^{\tau} dc\tau' \, M_L^A(\tau' + t^*) \frac{1}{r_A^N(\tau' + t^*)}.$$  \hfill (B1)

In order to determine the integral $I_A$, it is useful to incorporate the operator $P^{ij} \frac{\partial}{\partial \xi^j}$ which stands in front of this integral according to Eq. (108). Furthermore, using expression in (111) for the differential operator $\partial_{\xi}$, the integral $I_A$ can be separated into two kind of integrals: integral $I_1$ which contains differentiations with respect to time-variable (i.e. $p \geq 1$) and integral $I_2$ which does not contain such differentiations (i.e. $p = 0$), that means:

$$P^{ij} \frac{\partial}{\partial \xi^j} \, I_A(\tau + t^*, \xi) = \sum_{p=1}^{l} \frac{l!}{(l-p)!} \sigma_1 \ldots \sigma_p$$

$$\times P^{ij} \frac{\partial}{\partial \xi^j} \frac{\partial}{\partial \xi^i} \, I_1(\tau + t^*, \xi)$$

$$+ P^{ij} \frac{\partial}{\partial \xi^j} \frac{\partial}{\partial \xi^i} \, I_2(\tau + t^*, \xi).$$ \hfill (B2)

The integral $I_1$, with the differential operation $P^{ij} \frac{\partial}{\partial \xi^j}$ in front, is given by

$$P^{ij} \frac{\partial}{\partial \xi^j} \, I_1(\tau + t^*, \xi) = P^{ij} \frac{\partial}{\partial \xi^j} \int_{-\infty}^{\tau} dc\tau' \, M_L^A(\tau' + t^*) \frac{1}{r_A^N(\tau' + t^*)}$$

$$= -M_L^A(\tau + t^*) P^{ij} \frac{\partial}{\partial \xi^j} \ln \left[ \frac{v_A(\tau + t^*) - \sigma \cdot r_N^A(\tau + t^*)}{c} \right]$$

$$+ O\left( \frac{M_L^A}{c} \right),$$ \hfill (B4)

where for the lower integration limit we have used,

$$\lim_{\tau \to -\infty} P^{ij} \frac{\partial}{\partial \xi^j} \ln \left[ \frac{v_A(\tau + t^*) - \sigma \cdot r_N^A(\tau + t^*)}{c} \right] = 0.$$ \hfill (B5)

Let us note that the physical dimension of a length in the argument of the logarithm in (B4) is not a problem at all and has to be treated according to Eq. (116). The integral in (B4) has been integrated by parts, using:

$$\frac{1}{r_A^N(\tau' + t^*)} = -\frac{\partial \ln \left[ \frac{v_A(\tau' + t^*) - \sigma \cdot r_N^A(\tau' + t^*)}{c} \right]}{dc\tau'}$$

$$+ O\left( \frac{v_A}{c} \right),$$ \hfill (B6)

where the terms proportional to $v_A/c$ in (B6) will be given later; see Eq. (111). The fact that the neglected terms in (B4) are beyond 1PN approximation is evidenced in appendix D.

Appendix C: Integrals $I_C, I_D, I_E, I_F$

The four integrals in Eqs. (135) - (138) will be determined; in what follows the time-arguments $\tau + t^*$ and $\tau + t^*$ of these integrals are omitted for simpler notation. In the calculation of the integrals, all terms are neglected which are proportional to either $v_A/c$ or $M_L^A/c$, because they are of higher-order beyond 1PN approximation. The proof for these assertions will not be given explicitly, because they go very similar as the example elaborated in appendix D.

1. Integral $I_C$

The integral $I_C$ reads:

$$I_C = \int_{\tau_0}^{\tau} dc\tau \, M_L^A(\tau' + t^*) \frac{1}{r_A^N(\tau' + t^*)}. \hfill (C1)$$

This integral occurs in the first and fourth term of Eq. (132).
2. Integral $\mathcal{I}_C$ for the case $l = 0$

Let us first consider the integral $[C1]$ for the case $l = 0$, which occurs in the fourth term in \((132)\). One obtains, by means of relation \((B6)\), the following solution:

\[
\mathcal{I}^{l=0}_C = \int_{\tau_0}^{\tau} d\tau' \frac{M_A}{r_A^N(\tau' + t^*)} \\
= -M_A \ln \frac{r_A^N(\tau + t^*) - \sigma \cdot r_A^N(\tau + t^*)}{r_A^N(\tau_0 + t^*) - \sigma \cdot r_A^N(\tau_0 + t^*)} \\
+ O \left( \frac{v_A}{c} \right). \tag{C2}
\]

3. Integral $\mathcal{I}_C$ for the case $l \geq 1$

Now we consider the integral $[C1]$ for the case $l \geq 1$, which occurs in the first and fourth term in \((132)\). In this case, we always have the differential operation $P^{ij} \frac{\partial}{\partial \xi^j}$ in front,

\[
P^{ij} \frac{\partial}{\partial \xi^j} \mathcal{I}_C = P^{ij} \frac{\partial}{\partial \xi^j} \int_{\tau_0}^{\tau} d\tau' \frac{M_A}{r_A^N(\tau' + t^*)}. \tag{C3}
\]

For evaluating this integral we can use the result in \((B4)\), and obtain:

\[
P^{ij} \frac{\partial}{\partial \xi^j} \mathcal{I}_C = \frac{M_A}{c} + O \left( \frac{v_A}{c} \right). \tag{C4}
\]

so we may consider:

4. Integral $\mathcal{I}_D$

According to expression \((132)\), the differential operation $P^{ij} \frac{\partial}{\partial \xi^j}$ is always in front of the integral $\mathcal{I}_D$ ($p \geq 2$),

\[
P^{ij} \frac{\partial}{\partial \xi^j} \mathcal{I}_D = P^{ij} \frac{\partial}{\partial \xi^j} \int_{\tau_0}^{\tau} d\tau' \frac{M_A^L(\tau' + t^*)}{r_A^N(\tau' + t^*)} \\
= \frac{M_A^L(\tau + t^*)}{c} \left( \frac{\partial}{\partial c\tau} \right)^{p-2} P^{ij} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N(\tau + t^*)} - \frac{M_A^L(\tau_0 + t^*)}{c} \left( \frac{\partial}{\partial c\tau_0} \right)^{p-2} P^{ij} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N(\tau_0 + t^*)} \\
+ O \left( \frac{M_A^L}{c} \right). \tag{C5}
\]

which has been solved using integration by parts. The proof that the correction terms are in fact of the order $O \left( \frac{M_A^L}{c} \right)$ is straightforward.

5. Integral $\mathcal{I}_E$

Now we consider the integral $[C4]$. According to \((132)\), the differential operation $P^{ij} \frac{\partial}{\partial \xi^j}$ is always in front

\[
P^{ij} \frac{\partial}{\partial \xi^j} \mathcal{I}_E = P^{ij} \frac{\partial}{\partial \xi^j} \int_{\tau_0}^{\tau} d\tau' M_A^L(\tau' + t^*) \\
\times \ln \left[ r_A^N(\tau' + t^*) - \sigma \cdot r_A^N(\tau' + t^*) \right]. \tag{C6}
\]

In order to solve that integral, we may use the following relation:
\[
ln \left( r_N^N \left( \tau' + t^* \right) - \sigma \cdot r_N^N \left( \tau' + t^* \right) \right) = \frac{\partial \left[ r_N^N \left( \tau' + t^* \right) + \sigma \cdot r_N^N \left( \tau' + t^* \right) \ln \left( r_N^N \left( \tau' + t^* \right) - \sigma \cdot r_N^N \left( \tau' + t^* \right) \right) \right]}{\partial c \tau'} + O \left( \frac{v_A}{c} \right).
\]

(C7)

Like in relation (B6), the form of the expressions proportional to \( v_A/c \) in (C7) can easily be determined. By inserting relation (C7) into the integral (C6), one obtains by integration by parts:

\[
P^{ij} \frac{\partial}{\partial \xi^j} I_E = +M_L^A \left( \tau + t^* \right) P^{ij} \frac{\partial}{\partial \xi^j} \left[ r_N^N \left( \tau + t^* \right) + \sigma \cdot r_N^N \left( \tau + t^* \right) \ln \left( r_N^N \left( \tau + t^* \right) - \sigma \cdot r_N^N \left( \tau + t^* \right) \right) \right]
- M_L^A \left( \tau_0 + t^* \right) P^{ij} \frac{\partial}{\partial \xi^j} \left[ r_N^N \left( \tau_0 + t^* \right) + \sigma \cdot r_N^N \left( \tau_0 + t^* \right) \ln \left( r_N^N \left( \tau_0 + t^* \right) - \sigma \cdot r_N^N \left( \tau_0 + t^* \right) \right) \right]
+ O \left( \frac{\dot{M}_A}{c} \right) + O \left( \frac{v_A}{c} \right).
\]

(C8)

The proof that the neglected terms are in fact of the order \( v_A/c \) goes very similar to the example elaborated in appendix D.

6. Integral \( I_E \)

Now we consider the integral (138). According to (132), at least one differential operation of the form

\[
P^{ij} \frac{\partial}{\partial \xi^j} I_E = \int_{\tau_0}^{\tau} d\tau' M_L^A \left( \tau + t^* \right) \left( \frac{\partial}{\partial \tau'} \right)^p \left( \frac{1}{r_N^A \left( \tau' + t^* \right)} \right)
= +M_L^A \left( \tau + t^* \right) \left( \frac{\partial}{\partial \tau} \right)^{p-1} \left( \frac{1}{r_N^A \left( \tau + t^* \right)} \right)
- M_L^A \left( \tau_0 + t^* \right) \left( \frac{\partial}{\partial \tau_0} \right)^{p-1} \left( \frac{1}{r_N^A \left( \tau_0 + t^* \right)} \right)
+ O \left( \frac{\dot{M}_A}{c} \right),
\]

which has been solved using integration by parts.

Appendix D: Estimation of neglected terms: an example

As a typical example, let us consider the neglected terms in the solution (134), where the relation (B6) has been used, which in its exact form reads (the variables
Inserting this relation into (B4) yields an additional integral proportional to \( v_A/c \), namely:

\[
P^{ij} \frac{\partial}{\partial \xi^j} \int_{-\infty}^{\tau} dc \tau' M_L^A \frac{v_A}{c} \left( \sigma - \frac{d_A}{r_A^N - \sigma \cdot r_A^N} \right),
\]

where \( r_A^N = d_A + (\sigma \cdot r_A^N) \) has been used. The first term of this integral is identical to the integral (B4), except the additional factor \( \sigma \cdot v_A/c \). So it remains to consider the second term in (D2); the sign in front is not relevant here:

\[
\mathcal{I}_G = \int_{-\infty}^{\tau} dc \tau' M_L^A \frac{v_A}{c} \left( \sigma - \frac{d_A}{r_A^N - \sigma \cdot r_A^N} \right).
\]

Using relation (2), one can rewrite this integral in the following form:

\[
\mathcal{I}_G = \int_{-\infty}^{\tau} dc \tau' M_L^A \frac{v_A}{c} \ln \left( r_A^N - \sigma \cdot r_A^N \right).
\]

Using relation (C7), this integral can be integrated by parts:

\[
\mathcal{I}_G = M_L^A \frac{v_A}{c} \left( P^{ij} \frac{\partial}{\partial \xi^j} + \frac{\partial}{\partial \xi^b} \frac{\partial}{\partial \xi^b} \right) \ln \left( r_A^N - \sigma \cdot r_A^N \right) \bigg|_{-\infty}^{\tau} + O \left( e^{-2} \right).
\]

Performing the differentiations, one finally arrives at

\[
\mathcal{I}_G = M_L^A \frac{v_A}{c} \left( P^{ij} \frac{\partial}{\partial \xi^j} + \frac{\partial}{\partial \xi^b} \frac{\partial}{\partial \xi^b} \right) \ln \left( r_A^N - \sigma \cdot r_A^N \right),
\]

up to terms of the order \( O \left( e^{-2} \right) \), and the absolute value can be estimated by

\[
|\mathcal{I}_G| \leq 2 M_L^A \frac{v_A}{c} \left( P^{ij} \frac{\partial}{\partial \xi^j} + \frac{\partial}{\partial \xi^b} \frac{\partial}{\partial \xi^b} \right) \ln \left( r_A^N - \sigma \cdot r_A^N \right).
\]

As stated in relation (B4), the expression in (D6) is of the order \( v_A/c \), hence beyond IPN approximation. The fact that in extreme astrometric configurations, \( \sigma \cdot r_A^N \to r_A^N \), the expression in (D6) becomes formally large is not of much relevance, since there are many other terms of the order \( v_A/c \) which presumably cancel this term. The proof of such an assertion is, of course, beyond IPN approximation and involves an exact consideration of all terms to that order.

### Appendix E: Partial derivatives for the first integration

Throughout this section we will use the following abbreviatory notation: \( r_A^N = r_A^N (\tau + \tau') \), \( \sigma_A = d_A (\tau + \tau') \), and corresponding notation for their absolute values.

#### 1. Example

Let us consider an example on how the differentiation is meant within the formalism:

\[
p^{ij}_{\xi^i} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N} = \frac{1}{r_A^N} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N} \frac{\sqrt{\xi^2 + c^2 \tau^2}}{\sqrt{\xi^2 + c^2 \tau^2 + r_A^N - 2 \xi \cdot x_A} - 2c \tau \sigma \cdot x_A}
\]

where (2) has been used; recall \( \xi \cdot \sigma = 0 \) and \( x_A = x_A (\tau + \tau') \). Inserting the projector \( \sigma_A \), one finds

\[
p^{ij}_{\xi^i} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N} = \frac{-\xi^{i\dagger} + x^{i\dagger}_{\eta} + \sigma^{i\dagger} (\sigma \cdot x_A)}{|\xi + c \tau \sigma - x_A|^3} (E2)
\]

In view of \( \sigma \cdot \xi = 0 \), the following term in the nominator can be rewritten as follows: \( c \tau - \sigma \cdot x_A = \sigma \cdot (\xi + c \tau \sigma - x_A) = \sigma \cdot r_A^N \). Then, by using the definition of impact vector \( \sigma_A \), we finally arrive at:

\[
p^{ij}_{\xi^i} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N} = -\frac{d_A}{(r_A^N)^2}. \]

All subsequent derivatives have been determined in similar way.

#### 2. Partial derivatives for dipole-term

In order to obtain the dipole-term in (L18) we need the following derivatives:

\[
p^{ij}_{\xi^i} \frac{\partial}{\partial \xi^j} \frac{d_A^i}{r_A^N} = \frac{1}{r_A^N} \frac{\partial}{\partial \xi^j} \frac{d_A^i}{r_A^N} \frac{1}{r_A^N} \frac{1}{(r_A^N)^2} \frac{d_A^j}{r_A^N} \left( \frac{d_A^j}{r_A^N} \frac{d_A^i}{r_A^N} \right), \]

and

\[
p^{ij}_{\xi^i} \frac{\partial}{\partial \xi^j} \frac{1}{r_A^N} = -\frac{d_A^i}{(r_A^N)^2}, \]

\[
\frac{\partial}{\partial \tau^j} \frac{1}{r_A^N} = -\frac{\sigma \cdot r_A^N}{(r_A^N)^2} + O \left( \frac{v_A}{c} \right).
\]
In the derivatives \( \frac{\partial M_A^4}{\partial \xi^\tau} = O \left( \frac{M_A^4}{c} \right) \) and \( \frac{\partial d_A^1}{\partial \xi^\tau} = O \left( \frac{v_A}{c} \right) \) are beyond 1PN approximation. Hence, we are left with the following expressions:

\[
p_{ij,ij} \frac{\partial}{\partial \xi^j} \frac{\partial}{\partial \xi^i} \frac{1}{r_A^3} = 3 \frac{d_A^1}{(r_A^3)^2} \left( \sigma \cdot r_A^N \right) + O \left( \frac{v_A}{c} \right),
\]

(E7)

\[
p_{ij,ij} \frac{\partial}{\partial \xi^j} \frac{\partial}{\partial \xi^i} \frac{1}{r_A} = 3 \frac{d_A^1}{r_A} \left( \sigma \cdot r_A^N \right) + O \left( \frac{v_A}{c} \right),
\]

(E8)

1. Partial derivatives for dipole-term

In order to obtain the dipole-term in (143) we need the following derivatives:

\[
p_{i,ij} \frac{\partial}{\partial \xi^j} \frac{1}{r_A} = -3 \frac{\sigma \cdot r_A^N}{(r_A^3)^3} + O \left( \frac{v_A}{c} \right),
\]

(E9)

\[
p_{i,ij} \frac{\partial}{\partial \xi^j} \frac{1}{r_A} = \frac{1}{(r_A^3)^2} \left( \sigma \cdot r_A^N \right) + O \left( \frac{v_A}{c} \right),
\]

(E10)

\[
p_{i,ij} \frac{\partial}{\partial \xi^j} \frac{1}{r_A} = \frac{1}{(r_A^3)^2} \left( \sigma \cdot r_A^N \right) + O \left( \frac{v_A}{c} \right),
\]

(E11)

where the last relation has already been given by (116).

2. Partial derivatives for quadrupole-term

In order to obtain the quadrupole-term in (144) we need the following derivatives:

\[
p_{ij,ij} \frac{\partial}{\partial \xi^j} \frac{\partial}{\partial \xi^i} \frac{1}{r_A} = \frac{1}{(r_A^3)^2} \left( \sigma \cdot r_A^N \right) + O \left( \frac{v_A}{c} \right),
\]

(F1)

\[
p_{ij,ij} \frac{\partial}{\partial \xi^j} \ln \left( r_A^N - \sigma \cdot r_A^N \right) = \frac{d_A^1}{(r_A^N)^2} \frac{1}{r_A^N - \sigma \cdot r_A^N},
\]

(F2)

where \( P_{ij,ij} \left( \xi^j \cdot x^j \right) = d_A^2 \) has frequently been used; note that \( \delta_{ij,ij} P_{ij,ij} = P_{ii,ii} \).

Appendix F: Partial derivatives for the second integration

Throughout this section the abbreviatory notation is used: \( r_A^N = r_A^N \left( \tau + t^* \right) \) and \( r_A^N = r_A^N \left( \tau + t^* \right) \).
\[ p_{i1j} p_{i2j2} \frac{\partial}{\partial q_{j1}} \frac{\partial}{\partial q_{j2}} d_A^i = - p_{i1j} d_A^i - p_{i2j2} d_A^i + p_{i1j} d_A^i \]

\[ + \frac{d_A^i d_A^i d_A^i}{(r_A^N - \sigma \cdot r_A^N)^2} + 2 \frac{d_A^i d_A^i d_A^i}{(r_A^N - \sigma \cdot r_A^N)^2} \]

\[ F(3) \]

\[ p_{i1j} p_{i2j2} \ln(r_A^N - \sigma \cdot r_A^N) = \frac{p_{i1j} d_A^i}{(r_A^N - \sigma \cdot r_A^N)^2} - \frac{d_A^i d_A^i d_A^i}{(r_A^N - \sigma \cdot r_A^N)^2} \]

\[ F(4) \]

[1] E. Høg, G. Bääsugen, U. Bastian, et al., *The Tycho Catalogue*, A & A *323* (1997) L57.
[2] E. Høg, C. Fabricius, V.V. Makarov, et al., *The Tycho-2 Catalogue of the 2.5 million brightest stars*, A & A *355* (2000) L27.
[3] *The Three-Dimensional Universe with Gaia*, Observatoire de Paris-Meudon, France, 4-7 October 2004, Editors: C. Turon, K.S. O'Flaherty, M.A.C. Perryman.
[4] *Nearby Earth Astrometric Telescope* (2011) [http://neat.obs.ujf-grenoble.fr/NEAT.html](http://neat.obs.ujf-grenoble.fr/NEAT.html).
[5] F. Malbet, A. Léger, R. Goullioud, et al., *An Astrometric Telescope To Probe Planetary Systems Down To The Earth Mass Around Nearby Solar-Type Stars* (2011) arXiv: astro-ph/1108.4784.
[6] Wei-Tou Ni, *Astron and Astrid 1 - overview and progress*, Int. J. Mod. Phys. D *17* (2008) 921.
[7] C. Braxmaier, H. Dittus, B. Foulon, et al., *Astrodynamical space test of relativity using optical devices I*, Experimental Astronomy *34* (2012) 181.
[8] J.E. Plowman, R.W. Hellings, *Latom covariance analysis*, Class. Quantum Grav. *23* (2006) 309.
[9] S.G. Turyshhev, M. Shao, K.L. Nordtvedt, et al., *Advancing fundamental physics with the laser astrometric test of relativity*, Experimental Astronomy *27* (2009) 27.
[10] B. Christophe, P.H. Andersen, J.D. Anderson, et al., *Odyssey: A Solar system mission*, Experimental Astronomy *23* (2007) 312.
[11] P. Wolf, Ch. J. Bordé, A. Clairon, et al., *Quantum physics exploring gravity in the outer Solar System: the Sagas project*, Experimental Astronomy *23* (2009) 651.
[12] E. Samain, *Proceedings of one way laser ranging in the Solar system: Typo, EGS XXVII General Assembly*, Nice (2002) p.80.
[13] O. Guyon, E.A. Bendek, T.D. Milster, et al., *High-precision astrometry with a diffractive pupil telescope*, The Astrophysical Journal Supplement *200* (2012) 11.
[14] C.W. Misner, K.S. Thorne, J.A. Wheeler, *Gravitation*, Palgrave Macmillan (1973). [15] V.A. Brumberg, *Essential Relativistic Celestial Mechanics*, (1991) Bristol: Adam Hilder.
[16] S.A. Klioner, S.M. Kopeikin, *Microwave Astrometry in Space: Relativistic Effects and Reduction of Observations*, Astron. J. *104* (1992) 897.
[17] E. Poisson, C.M. Will, *Gravity - Newtonian, Post-Newtonian, Relativistic*, Cambridge University Press (2014).
[18] S. Kopeikin, M. Efroimsky, G. Kaplan, *Relativistic Celestial Mechanics of the Solar System*, Wiley-VCH, Singapore (2012).
[19] L. Blanchet, *Gravitational radiation from post-Newtonian sources and inspiralling compact binaries*, Living Rev. Relativity *9* (2006) 4.
[20] M. Soffel, S.A. Klioner, G. Petit, et al., *The IAU 2000 resolutions for astrometry, celestial mechanics and metrology in the relativistic framework: explanatory supplement*, Astron. J. *126* (2003) 2687.
[21] [http://www.iau.org](http://www.iau.org).
[22] Michael Perryman, *The History of Astrometry*, Eur. Phys. J. H *34* (2012) 745; arXiv: physics.hist-ph/1209.3563v1.
[23] J. Kovalevsky, *Modern Astrometry*, Springer, 2nd ed, 2002.
[24] K.S. Thorne, *Multipole expansions of gravitational radiation*, Rev. Mod. Phys. *52* (1980) 299.
[25] L. Blanchet, T. Damour, *Radiative gravitational fields in general relativity: I. General structure of the field outside the source*, Phil. Trans. R. Soc. London A *320* (1986) 379.
[26] L. Blanchet, T. Damour, *Post-Newtonian generation of gravitational waves*, Annales de l’Institut Henri Poincare I Physique Theorique *50* (1989) 377.
[27] T. Damour, B.R. Iyer, *Multipole analysis for electromagnetic and linearized gravity with irreducible Cartesian tensors*, Phys. Rev. D *43* (1991) 3259.
[28] V.A. Brumberg, S.M. Kopeikin, in *Reference Frames*, edited by J. Kovalevsky, I.I. Mueller, B. Kolaczk (Kluwer, Dordrecht), 1989, p115.
[29] S.M. Kopeikin, *Celestial coordinate reference systems in curved space-time*, Cel. Mech. *44* (1988) 87.
[30] S.M. Kopeikin, *Theory of relativity in observational radio astronomy*, Sov. Astron. *34* (1990) 5.
[31] S.A. Klioner, A.V. Voinov, *Relativistic Theory of Reference Systems in Closed Form*, Phys. Rev. D *48* (1993) 1451.
[32] T. Damour, M. Soffel, C. Xu, *General-relativistic celestial mechanics. I. Method and definition of reference systems*, Phys. Rev. D *43* (1991) 3273.
[33] T. Damour, M. Soffel, C. Xu, *General-relativistic celestial mechanics. II. Translational equations of motion*, Phys.
F. de Felice, M. Crosta, A. Vecchiato, M.G. Lattanzi, B. M. Crosta, A. Vecchiato, F. de Felice, M.G. Lattanzi, D. Bini, M. Crosta, F. de Felice, A. Geralico, A. Vecchiato, The Erez-Rosen metric and the role of the quadrupole on light propagation, Class. Quantum Grav. 30 (2013) 045009.

S.A. Klioner, Propagation of the Light in the Barycentric Reference System considering the Motion of the Gravitating Masses, Communications of the Institute of Applied Astronomy (1989) No 6, pp.21, in Russian.

S.A. Klioner, Light Propagation in the Gravitational Field of Moving Bodies by means of Lorentz Transformation. I. Mass monopoles moving with constant velocities, Astron. Phys. 404 (2003) 783.

R.W. Hellings, Relativistic Effects in Astronomical Timing Measurements, Astron. J. 91 (1986) 650.

S.A. Klioner, M. Peip, Numerical simulations of the light propagation in the gravitational field of moving bodies, Astron. Astrophys. 410 (2003) 1063.

S.M. Kopeikin, G. Schäfer, C.R. Gwinn, T.M. Eubanks, Astrometric and timing effects of gravitational waves from localized sources, Phys. Rev. D 59 (1999) 084023.

R. Epstein, I.I. Shapiro, Post-post-Newtonian deflection of light by the Sun, Phys. Rev. D 22 (1980) 2947.

E. Fischbach, B.S. Freeman, Second-order contribution to the gravitational deflection of light, Phys. Rev. D 22 (1980) 2950.

G.W. Richter, A. Matzner, Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism, Phys. Rev. D 26 (1982) 1219.

G.W. Richter, A. Matzner, Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism. II. Photon orbits and deflections in three dimensions, Phys. Rev. D 26 (1982) 2549.

G.W. Richter, A. Matzner, Second-order contributions to relativistic time delay in the parametrized post-Newtonian formalism, Phys. Rev. D 28 (1983) 3007.

S.A. Cowling, Gravitational light-deflection in the Solar System, Mon.Not.R.Astr.Soc. 200 (1984) 415.

V.A. Brumberg, Post-post-Newtonian propagation of light in the Schwarzschild field, Kinematika i physika nebesnykh tel 3 (1987) 8, in Russian.

Chr. Le Poncin-Lafitte, B. Linet, P. Teysandier, World function and time transfer: general post-Minkowskian expansions, Class. Quantum Grav. 21 (2004) 4463.

P. Teysandier, Chr. Le Poncin-Lafitte, General post-Minkowskian expansion of time transfer functions, Class. Quantum Grav. 25 (2008) 145020.

N. Ashby, B. Bertotti, Accurate light-time correction due to a gravitating mass, Class. Quantum Grav. 27 (2010) 145013.

J. Bodenner, C.M. Will, Deflection of light to second order: A tool for illustrating principles of general relativity, Am. J. Phys. 71 (2003) 770.

S. Kopeikin, P. Korobkov, A. Polnarev, Propagation of light in the field of stationary and radiative gravitational multipoles, Class. Quantum Grav. 23 (2006) 4299.
Light Propagation in the Field of Radiative Gravitational Multipoles (2005) arXiv: gr-qc/0510084v2.

[73] A. Hees, S. Bertone, C. Le Poulcin-Lafitte, Light propagation in the field of a moving axisymmetric body: theory and application to JUNO, Phys. Rev. D 90 (2014) 084020.

[74] M.H. Soffel, Wen-Biao Han, The gravitational time delay in the field of a slowly moving body with arbitrary multipoles, Phys. Lett. A 379 (2015) 233.

[75] S.M. Kopeikin, B. Mashhoon, Gravitomagnetic-effects in the propagation of electromagnetic waves in variable gravitational fields of arbitrary-moving and spinning bodies, Phys. Rev. D 65 (2002) 064025.

[76] J. Meichsner, Physics in gravity fields with higher spin multipole moments, Diploma Thesis, Technical University Dresden, 2015.

[77] S.M. Kopeikin, V.V. Makarov, Gravitational bending of light by planetary multipoles and its measurement with micro-arcsecond astronomical interferometers, Phys. Rev. D 75 (2007) 062002.

[78] M.H. Brügmann, Light deflection in the post-linear gravitational field of bounded point-like masses, Phys. Rev. D 72 (2005) 024012.

[79] E.F. Arias, P. Charlot, M. Feissel, J.-F. Lestrade, The Extragalactic Reference System of the International Earth Rotation Service, ICRS, Astron. Astrophys. 303 (1995) 604.

[80] S. Zschocke, A detailed proof of the fundamental theorem of STF multipole expansion in linearized gravity, Int. J. Mod. Phys. D 23 (2014) 1450003.

[81] S.A. Klioner, M.H. Soffel, Relativistic celestial mechanics with PPN parameters, Phys. Rev. D 62 (2000) 024019.

[82] S. Zschocke, M.H. Soffel, Gravitational field of one uniformly moving extended body and N arbitrarily moving pointlike bodies in post-Minkowskian approximation, Class. Quantum Grav. 31 (2014) 175001.

[83] S.A. Klioner, The problem of clock synchronization: a relativistic approach, Celestial Mechanics 53 (1992) 81.

[84] I.I. Shapiro, Fourth Test of General Relativity, Phys. Rev. Lett. 13 (1964) 789.

[85] I.I. Shapiro, G.H. Pettengill, M.E. Ash, et al., Fourth Test of General Relativity: Preliminary Results, Phys. Rev. Lett. 20 (1968) 1265.

[86] I.I. Shapiro, M.E. Ash, R.P. Ingalls, et al., Fourth Test of General Relativity: New Radar Result, Phys. Rev. Lett. 26 (1971) 1132.

[87] B.Bertotti, L. Jes, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425 (2003) 374.

[88] S. Zschocke, Light propagation in the gravitational field of N arbitrarily moving bodies in 1.5PN approximation for high-precision astrometry, in preparation.

[89] C.M. Will, Propagation Speed of Gravity and the Relativistic Time Delay, Astrophys. J. 590 (2003) 683.

[90] A complete list of small parameters characterizing the Solar system and allowing for utilizing the post-Newtonian expansion can be found in the introductory section in [10].

[91] For the relations between metric tensor and gothic metric tensor in [25, 26] we refer to [24]; see also Appendix A in [82].

[92] The unperturbed lightray in Eq. (10) for \( t = \tau + t^* \) reads \( x_N (\tau + t^*) = x_0 + c (\tau + t^* - t_0) \sigma \). By means of the above mentioned relation \( t^* = t_0 - \frac{c}{\sigma} x_0 \) one obtains \( x_N (\tau + t^*) = x_0 - \sigma (\sigma \cdot x_0) + c t \sigma \). Using the definition \( \xi = c r \sigma \) one obtains \( x_N (\tau + t^*) = \xi + c r \sigma \), which is just relation (90).

[93] Terms \( \sim v_A/c \) originate from \( \frac{dx_A}{dt} = -v_A/c \), and given by

\[
-2 G M A d_A \frac{1}{c^2 r_A} + \frac{1}{c^2} \frac{d_A}{r_A - \sigma \cdot r_A} + \frac{v_A}{c} \sigma \cdot r_A - \frac{1}{c^2 r_A} r_A d_A + \frac{1}{c^2} \frac{d_A}{r_A - \sigma \cdot r_A} + \frac{v_A}{c} \sigma \cdot r_A - \frac{1}{c^2 r_A} r_A d_A.
\]

About the magnitude of these terms in the limit \( \sigma \cdot r_A \to r_A \), see the comment below Eq. (177). Let us also recall that

\[
\frac{v_A}{c} \sigma \cdot r_A - \frac{1}{c^2} \frac{d_A}{r_A - \sigma \cdot r_A} = \frac{v_A}{c} - \frac{v_A}{c} \cdot \frac{d_A}{r_A - \sigma \cdot r_A},
\]

hence there are no terms proportional to \( v_A (t - t_0) \) but only terms proportional to \( v_A (t - t_0) \), a statement which is consistent with the formalism presented.