Capturing phenotypes for precision medicine

Peter N. Robinson,1,2,3,4 Christopher J. Mungall,5 and Melissa Haendel6

1Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; 2Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; 3Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; 4Institute for Bioinformatics, Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany; 5Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; 6Oregon Health and Science University, Portland, Oregon 97239, USA

Abstract Deep phenotyping followed by integrated computational analysis of genotype and phenotype is becoming ever more important for many areas of genomic diagnostics and translational research. The overwhelming majority of clinical descriptions in the medical literature are available only as natural language text, meaning that searching, analysis, and integration of medically relevant information in databases such as PubMed is challenging. The new journal Cold Spring Harbor Molecular Case Studies will require authors to select Human Phenotype Ontology terms for research papers that will be displayed alongside the manuscript, thereby providing a foundation for ontology-based indexing and searching of articles that contain descriptions of phenotypic abnormalities—an important step toward improving the ability of researchers and clinicians to get biomedical information that is critical for clinical care or translational research.

A phenotypic abnormality is defined in medical settings as a deviation from normal morphology, physiology, or behavior, and good phenotyping is a cornerstone of a doctor’s daily work (Baynam et al. 2015). Next-generation sequencing, proteomics, and metabolomics data as well as information technologies are bringing about a paradigm shift in translational research and also clinical care. Although the coming era will allow physicians and patients to access large-scale data with the potential to stratify and thereby improve medical treatment, the ability to find correct and up-to-date information with sufficiently detailed and accurate phenotypic descriptions will be essential to exploit this data to its fullest (Fernald et al. 2011). In this article, we will discuss the role of deep phenotyping in translational research and the challenges in using this information for integrated computational analysis of “omics” data in the medical arena, as well as the application of the Human Phenotype Ontology (HPO) as a standardized, comprehensive nomenclature for disease-associated phenotypic abnormalities.

DEEP PHENOTYPING

Deep phenotyping can be defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described, generally in such a way as to be computationally accessible. Precision medicine has the goal of providing the best available care for each patient based on stratification into disease subclasses for which there is a common biological basis. The comprehensive discovery of such subclasses, as well as the translation of this knowledge into clinical care,
will depend critically upon computational resources to capture, store, and exchange deep phenotypic data. Further, sophisticated algorithms to integrate deep phenotype data with genomic variation and additional clinical information will be required in support of precision medicine (Robinson 2012).

TEXT MINING PHENOTYPE DATA

A “traditional” method of retrieving phenotype data from the medical literature or Electronic Health Records for computational analysis is text mining. However, the overwhelming majority of clinical descriptions in the medical literature are simply natural language text, and thus automated searching, analysis, and integration of medical information from databases such as PubMed remains challenging (Taboada et al. 2014). For instance, in the phrase “short long bones” the word “long” is part of the concept long bone (e.g., the femur and the humerus are long bones, but the skull is not). However, in the phrase “long metacarpal,” the word “long” is used to denote an abnormally increased length of metacarpal bones. Similarly, the medical literature abounds in phrases such as “the patient was still ambulatory after 25 years,” or “segmentation defects appear to affect L4-S1” that can be very evocative to trained physicians but next to impossible to interpret correctly by text mining. Therefore, although sophisticated concept recognition algorithms have been developed to improve the results of text mining for phenotype data (Groza et al. 2015), it remains difficult to extract the clinical information from an article in a correct and comprehensive fashion. The need for improved online search tools to find and analyze publications on patients with similar clinical characteristics is especially critical and challenging for rare diseases, where publications of large series are scarce.

There are several current clinical nomenclatures for phenotyping such as Medical Subject Headings (MeSH), the ICD-10, the National Cancer Institute’s (NCI) Thesaurus, SNOMED CT, and the United Medical Language System (UMLS). However, phenotypic concepts are covered inconsistently and incompletely in most currently used clinical terminologies (Winnenburg and Bodenreider 2014). For example, MeSH provides little semantic distinction between disease entities and phenotypic manifestations of diseases. For instance, even though the MeSH category C is described as comprising Diseases, it contains many entries that describe phenotypic features of diseases rather than an actual disease entities, such as Cheyne–Stokes Respiration (MeSH: D002639), which is an abnormal pattern of breathing that can be observed in diseases such as central sleep apnea syndrome. Even with these clinical nomenclatures, it can be difficult for clinicians and researchers to find relevant biomedical articles on a phenotypic abnormality using PubMed or Google Scholar.

A NEW APPROACH TO CAPTURING PHENOTYPES

To overcome the limitations above, a structured, comprehensive, and well-defined phenotyping terminology is needed. The Human Phenotype Ontology (HPO), available at www.human-phenotype-ontology.org, provides a set of more than 11,000 terms describing human phenotypic abnormalities. The HPO provides both a set of terms that describe concepts of human phenotypes as well as a logical (computational) representation of the interrelationships between the terms. The HPO is arranged as a hierarchy with the most specific terms being at the greatest distance from the root term (Fig. 1). A recent study comparing HPO with alternate terminologies found that the ICD-10 covered 9%, the NCI thesaurus 16%, MeSH 19%, SNOMED CT 30%, and the UMLS 54% of the concepts in the HPO (Winnenburg and Bodenreider 2014).
The HPO is developed in the context of the Monarch Initiative (monarchinitiative.org/), whereby HPO classes are logically related to terms from other ontologies for anatomy, cell types, function (Gene Ontology), embryology, pathology, and other domains. The links provide computational definitions for HPO terms that can be used both for quality control as well as sophisticated computational phenotypic comparison. The logical links enable interoperability with numerous resources, including human genotype–phenotype resources such as OMIM (Amberger et al. 2015) and ClinVar (Landrum et al. 2014), but also those containing phenotype information on model organisms such as mouse and zebrafish (Gkoutos et al. 2009; Washington et al. 2009; Mungall et al. 2010; Köhler et al. 2013; Robinson and Webber 2014). Furthermore, human disease models that are annotated with HPO terms can be related to mouse and zebrafish models at databases including the Mouse Genome Database (Blake et al. 2014) and ZFIN (Howe et al. 2013). Integration of patient deep-phenotyping data with the landscape of both clinical and basic research informatics resources is key to effectively leveraging a much wider diversity of relevant data for the purposes of precision medicine.

A number of tools have been developed to help physicians and researchers annotate patients with HPO terms. For example, PhenoTips provides a secure, web-based interface that closely mirrors clinician workflows to facilitate the recording of phenotypic abnormalities for patients with genetic disorders, as well as a variety of other relevant information including family and medical history (Girdea et al. 2013). PhenoDB is another useful web-based tool initially developed for the Centers of Mendelian Genomics project for storing and analyzing phenotypic information from families or cohorts (Hamosh et al. 2013). Phenotypic features are hierarchically organized according to the major headings and subheadings of the Online Mendelian Inheritance in Man (OMIM) clinical synopses. The terms of PhenoDB have been mapped to HPO terms, enabling interoperability with other resources.

The HPO is being used by a number of groups in human genetics to annotate and analyze phenotypic features of patients against the background of knowledge about human diseases and animal models of disease in order to prioritize novel disease genes and perform genomic diagnostics (Riggs et al. 2012; Sifrim et al. 2013; Javed et al. 2014; Petrovski and Goldstein 2014; Robinson et al. 2014; Singleton et al. 2014; Soden et al. 2014; Zemojtel et al. 2014; Wright et al. 2015). Among the groups and projects using the HPO are the U.K. 100,000 Genomes Project (rare diseases), the Canadian CARE for RARE,
PhenomeCentral (https://phenomecentral.org/), the case matching system GeneYenta (Gottlieb et al. 2015), the U.S. National Institutes of Health Undiagnosed Diseases Program and Network, and the Sanger Institute's Deciphering Developmental Disorders (DDD) (Wright et al. 2015) and DECIPHER (Firth et al. 2009) databases. Therefore, annotations of articles in Cold Spring Harbor Molecular Case Studies with HPO terms will open up the possibility of interlinking data with an ever-richer ecosystem of phenotypic data and sophisticated computational algorithms.

Cold Spring Harbor Molecular Case Studies requires authors to select HPO terms during submission that will be displayed alongside the manuscript to improve visibility. Authors should only annotate abnormal phenotypes for the case(s) described in their articles and use a precise and comprehensive set of HPO terms to maximize the ability of search engines to find their article. As the number of articles increases, researchers and physicians would be able to search for articles that describe patients with a set of phenotypic abnormalities and hopefully take advantage of semantic comparison algorithms such as the Phenomizer (Köhler et al. 2009) and not simply rely upon single-phrase matching.

Articles in Cold Spring Harbor Molecular Case Studies will present clinical and molecular data obtained by -omics and related approaches with the goal of elucidating disease pathogenesis and gaining insights into therapeutic strategies. Encoding the salient aspects of the clinical presentation using Human Phenotype Ontology terms will enable the articles to be searched according to phenotypic presentations, something that is currently difficult to do with standard search engines. Ontology-based indexing of articles thus represents an important step toward improving the ability of researchers and clinicians to get biomedical information that is critical for clinical care or translational research—and to realize the goal of precision medicine.

ADDITIONAL INFORMATION

Acknowledgments
This work was supported by grants from the Bundesministerium für Bildung und Forschung (Förderkennziffer FKZ 1315848A), the European Commission’s Seventh Framework Program (SYBIL, 602300), and the National Institutes of Health (grant 5R24OD011883).

REFERENCES

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. 2015. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43(Database issue): D789–D798.

Baynam G, Walters M, Claes P, Kung S, LeSouef P, Dawkins H, Bellgard M, Girdea M, Brudno M, Robinson P, et al. 2015. Phenotyping: targeting genotype’s rich cousin for diagnosis. J Paediatr Child Health 51: 381–386.

Blake JA, Bult CJ, Eppig JT, Kadin JA, Richardson JE; Mouse Genome Database Group. 2014. The Mouse Genome Database: integration of and access to knowledge about the laboratory mouse. Nucleic Acids Res 42(Database issue): D810–D817.

Femald GH, Capiroti E, Daneshjou R, Karczewski KJ, Altman RB. 2011. Bioinformatics challenges for personalized medicine. Bioinformatics 27: 1741–1748.

Firth HV, Richards SM, Bevan AP, Clayton S, Corps M, Rajan D, Van Vooren S, Moreau Y, Pettett RM, Carter NP. 2009. DECIPHER: database of chromosomal imbalance and phenotype in humans using Ensembl resources. Am J Hum Genet 84: 524–533.

Girdea M, Dumitriu S, Fiume M, Bowdin S, Boycott KM, Chénier S, Chitayat D, Faghfouri H, Meyn MS, Ray PN, et al. 2013. PhenoTips: patient phenotyping software for clinical and research use. Hum Mutat 34: 1057–1065.
Capturing phenotypes for precision medicine

Gkoutos GV, Mungall CJ, Dolkens S, Ashburner M, Lewis S, Hancock J, Schofield P, Kohler S, Robinson PN. 2009. Entity/quality-based logical definitions for the human skeletal phenome using PATO. Conf Proc IEEE Eng Med Biol Soc 2009: 7069–7072.

Gottlieb MM, Arenillas DJ, Maithripala S, Maurer ZD, Tarailo Graovac M, Armstrong L, Patel M, van Karnebeek C, Wasserman WW. 2015. GeneYenta: a phenotype-based rare disease case matching tool based on online dating algorithms for the acceleration of exome interpretation. Hum Mutat 36: 432–438.

Groz T, Kähler S, Doelken S, Collier N, Oellrich A, Mungall D, Couto FM, Baynam G, Zankl A, Robinson PN. 2015. Automatic concept recognition using the Human Phenotype Ontology reference and test suite corpora. Database (Oxford) pii: bav005.

Hamosh A, Sobreira N, Hoover-Fong J, Sutton VR, Boehm C, Schietecatte F, Valle D. 2013. PhenoDB: a new web-based tool for the collection, storage, and analysis of phenotypic features. Hum Mutat 34: 566–571.

Hawe DG, Bradford YM, Conlin T, Eagle AE, Fashena D, Frazer K, Knight J, Mani P, Martin R, Moxon SA, et al. 2013. ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgensics. Nucleic Acids Res 41(Database issue): D854–D860.

Javed A, Agrawal S, Ng PC. 2014. Phen-Gen: combining phenotype and genotype to analyze rare disorders. Nat Methods 11: 935–937.

Kähler S, Schulz MH, Krawitz P, Bauer S, Dolkens S, Ott CE, Mundlos C, Hor D, Mundlos S, Robinson PN. 2009. Clinical diagnostics in human genetics with semantic similarity search in ontologies. Am J Hum Genet 85: 457–464.

Kähler S, Doelken SC, Ruef BJ, Bauer S, Washington N, Westerfield M, Gkoutos G, Schofield P, Mungall D, Lewis SE, et al. 2013. Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Res 2: 30.

Landrum MJ, Lee JM, Jiang W, Rubinstein WS, Church DM, Maglott DR. 2014. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res 42(Database issue): D980–D985.

Mungall CJ, Gkoutos GV, Smith CL, Haendel MA, Lewis SE, Ashburner M. 2010. Integrating phenotype ontologies across multiple species. Genome Biol 11: R2.

Petrovski S, Goldstein DB. 2014. Phenomics and the interpretation of personal genomes. Sci Transl Med 6: 254fs35.

Riggs ER, Jackson L, Miller DT, Van Vooren S. 2012. Phenotypic information in genomic variant databases enhances clinical care and research: the International Standards for Cytogenomic Arrays Consortium experience. Hum Mutat 33: 787–796.

Robinson PN. 2012. Deep phenotyping for precision medicine. Hum Mutat 33: 777–780.

Robinson PN, Webber C. 2014. Phenotype ontologies and cross-species analysis for translational research. PLoS Genet 10: e1004268.

Robinson PN, Kähler S, Oellrich A, Wang K, Mungall CJ, Lewis SE, Washington N, Bauer S, Seelow D, Krawitz P, et al. 2014. Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res 24: 340–348.

Sifrim A, Popovic D, Tranchevent L-C, Ardeshradivani A, Sakai R, Konings P, Vermeesch JR, Aerts J, De Moor B, Moreau Y. 2013. eXtasy: variant prioritization by genomic data fusion. Nat Methods 10: 1083–1084.

Singleton MV, Guthery SL, Voelkerding KV, Chen K, Kennedy B, Margraf RL, Durschi J, Eilbeck K, Reese MG, Jorde LB, et al. 2014. Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families. Am J Hum Genet 94: 599–610.

Soden SE, Saunders CJ, Willig K, Farrow EG, Smith LD, Petrikin JE, LePichon JB, Miller NA, Thiffault I, Dinwidde DL, et al. 2014. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 6: 265ra168.

Taboada M, Rodríguez H, Martinez D, Pardo M, Sobrido MJ. 2014. Automated semantic annotation of rare disease cases: a case study. Database (Oxford) pii: bau045.

Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE. 2009. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 7: e1000247.

Winnepennig R, Bodenreider O. 2014. Coverage of phenotypes in standard terminologies. In Proceedings of the Joint Bio-Ontologies and BioLINK ISMB2014 SIG session “Phenotype Day” 2014. pp. 41–44.

Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van Kogelenberg M, King DA, Ambridge K, Barrett DM, Bayet et al. 2015. Genetic diagnosis of developmental disorders in the DDD study: a scalable analysis of genome-wide research data. Lancet 385: 1305–1314.

Zemojtel T, Kähler S, Mackenroth L, Jäger M, Hecht J, Krawitz P, Graul-Neumann L, Doelken S, Ehmke N, Spielmann M, et al. 2014. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Sci Transl Med 6: 252ra123.