Actinoplanes aureus sp. nov., a novel protease-producing actinobacterium isolated from soil

Jia Song · Xiujun Sun · Xianxian Luo · Chuan He · Zhenzhen Huang · Junwei Zhao · Beiru He · Xiaowen Du · Xiangjing Wang · Wensheng Xiang

Received: 19 February 2021 / Accepted: 6 July 2021 / Published online: 29 July 2021© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract A novel protease-producing actinobacterium, designated strain NEAU-A11T, was isolated from soil collected from Aohan banner, Chifeng, Inner Mongolia Autonomous Region, China, and characterised using a polyphasic approach. The hydrolytic enzymes, such as proteases, played critical roles in destruction of fungi by degrading the protein linkages to disrupt integrity in the cell wall. This suggested that the isolate could be a good biocontrol candidate against pathogens to control fungal diseases. On the basis of 16S rRNA gene sequence analysis, strain NEAU-A11T was indicated to belong to the genus Actinoplanes and was most closely related to Actinoplanes rectilineatus JCM 3194T (98.9%). Cell walls contained meso-diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were arabinose, xylose and glucose. The phospholipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and two phosphatidylinositol mannosides. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK-9(H8). The major fatty acids were C18:0, C16:0, C18:1ω9c, C17:0 and C15:0. Genome sequencing revealed a genome size of 10,742,096 bp, a G+C content of 70.5% and 9,514 protein-coding genes (CDS), including 102 genes coding for protease. Moreover, Genome analysis showed that strain NEAU-A11T contained 255 glycoside hydrolases (GHs), 152 glycosyl transferases (GTs), 40 carbohydrate esterases (CEs), 26 polysaccharide lyases (PLs), and 12 auxiliary activities (AAs) genes. Genome mining analysis using antiSMASH 5.0 led to the identification of 20 putative gene clusters responsible for the production of diverse secondary metabolites. Phylogenetic analysis using the 16S rRNA gene sequences showed that the strain formed a stable clade with A. rectilineatus JCM 3194T in the genus Actinoplanes. Whole-genome phylogenoy showed strain NEAU-A11T formed a stable phyletic line with Actinoplanes lutulentus DSM 45883T (97.6%). However, whole-genome average nucleotide identity value between strain NEAU-A11T and its reference strains A. rectilineatus JCM 3194T and
A. lutulentus DSM 45883^T were found to be 81.1% and 81.6%, respectively. The levels of digital DNA-DNA hybridization between them were 24.6% (22.2–27.0%) and 24.8% (22.5–27.3%), respectively. The levels of digital DNA-DNA hybridization between them were 24.6% (22.2–27.0%) and 24.8% (22.5–27.3%), respectively. The values were well below the criteria for species delineation of 70% for dDDH and 95–96% for ANI, suggesting that the isolate differed genetically from its closely related type strain. The content of G + C in genomic DNA was 70.5%, within the range of 67–76%. In addition, evidences from phenotypic, chemotaxonomic and genotypic studies indicated that strain NEAU-A11^T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes aureus^{sp. nov.} is proposed, with NEAU-A11^T (= CTTCC AA 2019063^T = JCM 33971^T) as the type strain.

Keywords Actinoplanes aureus^{sp. nov} · Genome · Polyphasic analysis · 16S rRNA gene

Abbreviations
ANI Average nucleotide identity
BA Bennett’s agar
CA Czapek’s agar
CCTCC China Center for type Culture Collection
dDDH Digital DNA-DNA hybridization
DPG Diphosphatidylglycerol
DSM Deutsche Sammlung von
Mikroorganismen und Zellkulturen
GC–MS Gas Chromatography-Mass Spectrometer
GY Glucose-yeast extract medium
ISCC- Inter-society color council-national
NBS bureau of standards
ISP International Streptomyces Project
JCM Japan Collection of Microorganisms
MEGA Molecular Evolutionary Genetics
Analysis
NA Nutrient agar
PE Phosphatidylethanolamine
PG Phosphatidylglycerol
PI Phosphatidylinositol
PIM Phosphatidylinositolmannoside
TLC Thin-Layer Chromatography

Introduction

The genus Actinoplanes was first proposed by Couch (1950) as a member of the family Micromonosporaceae, with Actinoplanes philippinesis as the type species. Currently, there are 47 species with validly published and correct names (https://lpsn.dsmz.de/genus/actinoplanes), including the latest described species Actinoplanes deserti (Habib et al. 2018). Actinoplanes species are abundant sources of bioactive compounds (Parenti and Coronelli 1979; Simone et al. 2013; Iorio et al. 2014; Rückert et al. 2014; Huang et al. 2015), including antibiotics with therapeutic value such as teicoplanin (Sosio et al. 2004), and the alpha-glucosidase inhibitor acarbose which is a potent drug used worldwide in the treatment of type 2 diabetes (Schwientek et al. 2012). All members of the genus Actinoplanes are aerobic, Gram-stain positive, non-acid-fast actinomycetes that can form branched substrate mycelium on various agar media but scant aerial mycelia. Meanwhile, members of the genus have a very interesting life cycle and are characterised by motile spores and the presence of spherical, cylindrical, lobate, bottle or flask-shaped or very irregular sporangia (Zhang et al. 2012). Terminal sporangia containing flagellated spores are produced and open up to release the spores when contact with water and additional undefined substance(s) in soil extracts (Hayakawa et al. 1991). This process is known as dehiscence (Uchida et al. 2011; Higgins 1967). Goodfellow et al. (1990) provided the detailed phenotypic and chemotaxonomic analysis of the genus, and a comprehensive phylogenetic analysis of the genus was given by Tamura and Hatano (2001). The peptidoglycan of members within this genus contains meso-diaminopimelic acid, while, hydroxyl-diaminopimelic acid can also be present. The diagnostic sugar of whole-cell hydrolysates is xylose, moreover, small amounts of galactose and/or arabinose are also found. Phosphatidylethanolamine is the diagnostic phospholipid. The G + C contents of the genomic DNA vary from 67 to 76% (Sazak et al. 2012).

In this study, we described a novel species, protease-producing strain NEAU-A11^T from continuous cropping soil of cucumbers collected from Aohan Banner, Chifeng, Inner Mongolia Autonomous Region, China. It produced protease involving in destroying the components of fungal cell wall, which was an important mechanism of the biocontrol of phytopathogenic fungi (Deng et al. 2018). The isolate had the potential to be a eco-friendly antagonistic microorganism used as biocontrol agents against plant...
pathogens without adverse effects as chemical fungicides. In this study, we reported on polyphasic taxonomy of strain NEAU-A11T and proposed this strain represents a new species of the genus *Actinoplanes*.

Materials and methods

Isolation and maintenance of the organism

Strain NEAU-A11T was isolated from soil collected from Aohan banner, Chifeng, Inner Mongolia Autonomous Region, China (42°29' N, 119°92' E). Before isolation, the soil sample was air-dried at room temperature for 14 days. For isolation, 5 g of dried soil was diluted in sterile distilled water (45 ml), and then the soil suspension was incubated in a constant temperature shaker incubator at 28°C and 250 g for 30 min. Subsequently, the strain was isolated using the standard dilution plate method and grown on sodium succinate-asparagine agar (Piao et al. 2017) supplemented with cycloheximide (50 mg l⁻¹) and nalidixic acid (20 mg l⁻¹). After 3 weeks of aerobic incubation at 28°C, colonies were transferred and purified on oatmeal agar [International Streptomyces Project (ISP) medium 3] (Shirling and Gottlieb 1966) and maintained as glycerol suspensions (30%, v/v) at −80°C.

Phenotypic characterisation

The cultural characteristics of strain NEAU-A11T were determined after growing for 14 days at 28°C on various ISP (ISP 1–7) media (Shirling and Gottlieb 1966), Bennett’s agar (Waksman 1967), Czapek’s agar (Jones 1949) and nutrient agar (Jones 1949). ISCC-NBS color charts (Kelly 1964) were used to determine colours of aerial and substrate mycelia. Morphological characteristics were observed by light microscopy (Nikon ECLIPSE E200) and scanning electron microscopy (Hitachi SU8010) using cultures grown on ISP 3 agar at 28°C for 4 weeks as previously described method (Jin et al. 2019). The Gram reaction was performed according to the protocol of Gregersen (1978) by using KOH for cell lysis. Spore motility was identified by light microscopy (Nikon ECLIPSE E200) observation of cells suspended in 1 mM phosphate buffer (pH 7.0). Growth at different temperatures (4, 10, 15, 18, 25, 28, 32, 35, 37, 40 and 42°C) was determined on ISP 3 agar after incubation for 14 days. The pH range for growth (pH 3.0–12.0, at intervals of 1 pH units) was tested in Glucose-yeast extract broth (GY) (Jia et al. 2013) using the buffer system: pH 4.0–5.0, 0.1 M citric acid/0.1 M sodium citrate; pH 6.0–8.0, 0.1 M KH₂PO₄/0.1 M NaOH; pH 9.0–10.0, 0.1 M NaHCO₃/0.1 M Na₂CO₃; pH 11.0–12.0, 0.2 M KH₂PO₄/0.1 M NaOH (Cao et al. 2020; Zhao et al. 2019). NaCl tolerance (0–12%, with an interval of 1%, w/v) for growth were tested after 14 days growth in GY broth at 28°C. The utilization of sole carbon and nitrogen sources, decomposition of cellulose, hydrolysis of starch and aesculin, reduction of nitrate, coagulation and peptization of milk, liquefaction of gelatin and production of H₂S were examined as described previously (Gordon et al. 1974; Yokota et al. 1993). Hydrolysis of Tweens (20, 40 and 80) and production of urease were tested as described by Smibert and Krieg (1994). The related type strain was also included for comparison in all tests. In addition, the protease was detected by observing whether the agar plate (5% skimmed milk powder, 2% agar, sterilized at 121°C) produced clear rings.

Chemotaxonomic analyses

For the chemotaxonomic analysis, freeze-dried biomass was prepared from cultures grown in GY medium on a rotary shaker (250 g) at 28°C for 7 days. The isomer of diaminopimelic acid (DAP) in the cell wall hydrolysates was derivatized and analysed by a HPLC method (McKerrow et al. 2000). The whole-cell sugars were performed according to the procedures developed by Lechevalier and Lechevalier (1980). The phospholipids in cell were separated by two-dimensional TLC and identified using the method of Minnikin et al. (1984). Menaquinones were extracted from freeze-dried biomass and purified according to Collins (1985). Extracts were analysed by a HPLC–UV method (Wu et al. 1989) using an Agilent Extend-C₁₈ Column (150 × 4.6 mm, i.d. 5 μm), typically at 270 nm. The mobile phase was acetonitrile/propyl alcohol (60:40, v/v) (Song et al. 2019). The presence of mycolic acids was checked by the acid methanolysis method of Minnikin et al. (1980). To determine cellular fatty acid compositions, strain NEAU-A11T and its closely related strain were cultivated in GY medium in shake flasks at 28°C for
7 days. Fatty acid methyl esters were extracted from the biomass as described by Gao et al. (2014a) and analysed by GC–MS using the method of Xiang et al. (2011).

DNA preparation, amplification and determination of 16S rRNA sequences

Extraction of chromosomal DNA and PCR amplification of the 16S rRNA gene sequence were carried out according to the procedure developed by Kim et al. (2000). The PCR product was purified and cloned into the vector pMD19-T (Takara) and sequenced using an Applied Biosystems DNA sequencer (model 3730XL). The almost full-length 16S rRNA gene sequence of strain NEAU-A11T, comprising 1480 bp, was obtained and compared with type strains available in the EzBioCloud server (https://www.ezbiocloud.net/) (Yoon et al. 2017a) and retrieved using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi), and then submitted to the GenBank database. The phylogenetic trees were constructed based on the 16S rRNA gene sequences of strain NEAU-A11T and related reference species. Multiple sequences were aligned in Molecular Evolutionary Genetics Analysis (MEGA) software version 7.0 using the Clustal W algorithm and trimmed manually where was necessary. Phylogenetic trees were constructed with maximum likelihood (Felsenstein 1981) and neighbour-joining (Saitou and Nei 1987) algorithms using MEGA 7.0 (Kumar et al. 2016). The stability of the topology of the phylogenetic tree was assessed using the bootstrap method with 1000 repetitions (Felsenstein 1985). A distance matrix was generated using Kimura’s two-parameter model (Kimura 1980). All positions containing gaps and missing data were eliminated from the dataset (complete deletion option). 16S rRNA gene sequence similarities between strains were calculated on the basis of pairwise alignment using the EzBioCloud (Yoon et al. 2017a).

Genomic analysis, DNA-DNA hybridization and DNA G + C content

The genomic DNA of strain NEAU-A11T was extracted by SDS method for genome sequencing and assembly. The harvested DNA was detected by the agarose gel electrophoresis and quantified by Qubit. Whole-genome sequencing was performed on the Illumina HiSeq PE150 platform. A-tailed, ligated to paired-end adaptors and PCR amplified with a 350 bp insert was used for the library construction at the Beijing Novogene Bioinformatics Technology Co., Ltd. Illumina PCR adapter reads and low quality reads from the paired-end were filtered by the step of quality control using our own compiling pipeline. All good quality paired reads were assembled using the SOAP denovo (Li et al. 2010, 2008) (http://soap.genomics.org.cn/soapdenovo.html) into a number of scaffolds. Then the filter reads were handled by the next step of the gap-closing. Whole-genome phylogeny was generated using TYGS server (http://tygs.dsmz.de) which is free, publicly available on the Internet as an easy-to-comprehend interface for submitting requests and browsing results. An according menu item allows for the rapid submission of a request including an e-mail address and one to several user-defined genomes. (Meier-Kolthoff and Göker 2019). The dDDH and ANI values were determined between the genomes of strain NEAU-A11T and A. rectilineatus JCM 3194 T and A. lutulentus DSM 45883 T online at http://ggdc.dsmz.de using the Genome-to-Genome Distance Calculation (GGDC 2.1) (Meier-Kolthoff et al. 2013) and the ChunLab’s online ANI Calculator (www.ezbiocloud.net/tools/ani) (Yoon et al. 2017b), respectively. The DNA G + C content was calculated from the genome sequence. “Antibiotics and secondary metabolite analysis shell” (antiSMASH) version 5.0 was employed to analyze the bioactive secondary metabolites (Blin et al. 2019).

Results and discussion

Phenotypic characteristics

Morphological observation of 4-week-old culture of strain NEAU-A11T grown on ISP 3 medium showed that it had the typical characteristics of the genus Actinoplanes. Strain NEAU-A11T was observed to produce branched, non-fragmenting substrate hyphae. The sporangia were 4.6–8.7 μm in size (Fig. S1) with irregular shape similar to Actinoplanes nipponensis (Wink et al. 2014), Actinoplanes lichenis (Phongsipitanun et al. 2016) and Actinoplanes luteus (Suriyachadkun et al. 2015). The sporangiospores were motile. Strain NEAU-A11T was found to grow well on
ISP 2, ISP 3, ISP 4, ISP 7 and nutrient agar media; grow moderately on ISP 6 medium; grow poorly on ISP 1, ISP 5 and Czapek’s agar media; but no growth occurred on Bennett’s agar medium. Moderate olive and strong yellow pigments were observed on ISP 6 and nutrient agar, respectively. The summary of cultural characteristics of strain NEAU-A11T and its phylogenetic neighbors were shown in Table S1 for comparative analysis. The strain was found to grow at a temperature range of 18–37 °C (optimum temperature 28 °C), pH 6.0–9.0 (optimum pH of 7.0) and NaCl tolerance of 0–4%. The physiological and biochemical properties of strain NEAU-A11T are shown in Table 1.

Chemotaxonomic characteristics

All the chemotaxonomic data were consistent with the assignment of strain NEAU-A11T to the genus Actinoplanes. The isolate was determined to contain meso-diaminopimelic acid in the cell wall. Whole-cell sugars contained arabinose, glucose and xylose. The phospholipid profile consisted of diphasatidyglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatydilinositol and two phosphatidylinositol mannosides (Fig. S2). The menaquinones were MK-9(H8) (46.3%), MK-9(H6) (41.0%) and MK-9(H4) (12.7%). The cellular fatty acid profile was composed of C18:0 (19.5%), C16:0 (16.5%), C18:1ω9c (13.4%), C17:0 (13.2%), C15:0 (12.0%), iso-C15:0 (9.7%), C17:1ω8c (7.0%), iso-C17:0 (3.6%), anteiso-C15:0 (2.0%), C16:1ω9c (1.8%), iso-C18:0 (0.8%), and iso-C16:0 (0.5%). Mycolic acids were not found.

Molecular characteristics

The almost complete 16S rRNA gene sequence of strain NEAU-A11T (1480 bp) was determined and deposited with the accession number MW272536 in the GenBank/EMBL/DDBJ databases. Comparative 16S rRNA gene sequence analysis using the EzBioCloud server showed that strain NEAU-A11T belongs to the genus Actinoplanes and is closely related to A. rectilineatus JCM 3194T. The menaquinones were MK-9(H8) (46.3%), MK-9(H6) (41.0%) and MK-9(H4) (12.7%). The cellular fatty acid profile was composed of C18:0 (19.5%), C16:0 (16.5%), C18:1ω9c (13.4%), C17:0 (13.2%), C15:0 (12.0%), iso-C15:0 (9.7%), C17:1ω8c (7.0%), iso-C17:0 (3.6%), anteiso-C15:0 (2.0%), C16:1ω9c (1.8%), iso-C18:0 (0.8%), and iso-C16:0 (0.5%). Mycolic acids were not found.

The data from this study were obtained under the same conditions except where marked.

The assembled genome sequence of strain NEAU-A11T was found to be 10,742,096 bp long, composed of 109 scaffolds with an N50 of 187,467 bp and a DNA G+C content of 70.5%. The draft genome sequence was deposited at the GenBank/EMBL/DDBJ under the accession number JADQTO000000.

NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed four copies of the 5S rRNA genes, formed a stable phyletic line with A. lutulentus DSM 45883T (97.6%) (Fig. 2). Based on the 16S rRNA gene sequence similarities and phylogenetic analysis, A. rectilineatus JCM 3194T and A. lutulentus DSM 45883T were selected as the reference strains for comparative analysis.

The assembled genome sequence of strain NEAU-A11T was found to be 10,742,096 bp long, composed of 109 scaffolds with an N50 of 187,467 bp and a DNA G+C content of 70.5%. The draft genome sequence was deposited at the GenBank/EMBL/DDBJ under the accession number JADQTO000000000.

NCBI Prokaryotic Genome Annotation Pipeline (PGAP) revealed four copies of the 5S rRNA genes,
one copy of the 16S rRNA gene, five copies of the 23S rRNA genes, 69 tRNA genes, three copies of noncoding RNA genes and 9514 protein-coding genes (CDS). Detailed genomic information and other general features of genome sequences are shown in Table S2. Genome analysis showed that strain NEAU-A11^T contained 255 glycoside hydrolases (GHs), 152 glycosyl transferases (GTs), 40 carbohydrate esterases (CEs), 26 polysaccharide lyases (PLs), and 12 auxiliary activities (AAs) genes. Meanwhile, it was also showed that strain NEAU-A11^T contained 303 biosynthesis genes of antibiotics, 18 prodigiosin biosynthesis genes, 17 streptomycin biosynthesis genes, 8 biosynthesis genes of endodyne antibiotics, 6 penicillin and cephalosporin biosynthesis genes, 5 biosynthesis genes of ansamycins, 4 biosynthesis genes of vancomycin group antibiotics, 4 novobiocin biosynthesis genes, 3 acarbose and validamycin biosynthesis genes, 2 carbapenem biosynthesis genes, 2 isoquinoline alkaloid biosynthesis genes, 2 neomycin, kanamycin and gentamicin biosynthesis genes and 1 flavonoid biosynthesis gene. Genome mining analysis using antiSMASH 5.0 led to the identification of

![Fig. 1](image1.png) Neighbour-joining tree based on 16S rRNA gene sequences showing relationships between strain NEAU-A11^T (1480 bp) and the 47 phylogenetically closely related representative species with validly-published names in the genus *Actinoplanes*. The out-group used was *Dactylosporangium aurantiacum* DSM 43157^T. Only bootstrap values above 50% (percentages of 1000 replications) are indicated. Asterisks indicate branches also recovered in the maximum-likelihood tree; Bar, 0.005 nucleotide substitutions per site

![Fig. 2](image2.png) Whole-genome sequence tree generated with TYGS for strain NEAU-A11^T and closely related species of the genus *Actinoplanes*. The out-group used was *Dactylosporangium aurantiacum* DSM 43157^T. Tree inferred with FastME from GBDP distances calculated from genome sequences. Branch lengths are scaled in terms of GBDP distance formula d_5; numbers above branches are GBDP pseudo-bootstrap support values from 100 replications.
20 putative gene clusters responsible for the production of diverse secondary metabolites. There were 17 gene clusters displayed very low similarities to the known gene clusters of xantholipin, azinomycin B, dynemicin A, oligomycin, diazepinomicin, himastatin, azalomycin F3a, mediomycin A and so on. Therefore, strain NEAU-A11T has great potential to produce novel bioactive compounds. The other three biosynthetic gene clusters with more than 50% similarities to the known clusters were related to the production of alkyl-O-dihydrogeranyl-methoxyhydroquinones, citrulassin E and desferrioxamin B. Especially, one putative gene cluster shared 100% similarity to the reported type III polyketide biosynthetic gene cluster of alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouriensis (Awakawa et al. 2011). Hence, it is speculated that strain NEAU-A11T had significant potential to be a rich source for producing various bioactive compounds. In addition, 102 protease (such as YP_003344293, YP_008738346, YP_003836524, YP_007213461, YP_003300042) genes were identified in the genome of NEAU-A11T. Moreover, the results of agar plates bioassay showed that strain NEAU-A11T had the ability to produce protease (Fig. S4). Proteases may be involved in the biological control of plant-pathogenic fungi because they may play an important role in fungal cell wall lysis (Liu et al. 2019). Therefore, strain NEAU-A11T is a potential biological control agent.

Digital DNA-DNA hybridization and ANI values were employed to further clarify the relatedness between strain NEAU-A11T and A. rectilineatus JCM 3194T and A. lutulentus DSM 45883T. The levels of digital DNA-DNA hybridization between them were 24.6% (22.2–27.0%) and 24.8% (22.5–27.3%), respectively, which was below the threshold value of 70% recommended by Wayne et al. (Wayne et al. 1987) for assigning strains to the same genomic species. Similarly, the low ANI values between strain NEAU-A11T and its reference strains A. rectilineatus JCM 3194T and A. lutulentus DSM 45883T were found to be 81.1% and 81.6%, respectively, a result below the threshold used to delineate prokaryote species (Richter and Rossello-Mora 2009; Chun and Rainey 2014).

Beside of the genotypic evidence above, strain NEAU-A11T also can be distinguished from its closely related strains by phenotypic characteristics (Table 1). Differential cultural characteristics contain: NaCl tolerance of strain NEAU-A11T is up to 4% (w/v), which is higher than that of A. rectilineatus JCM 3194T (3%); and strain NEAU-A11T could grow at the maximum temperature of 37°C, which is lower than that of A. rectilineatus JCM 3194T (42°C) and higher than that of A. lutulentus DSM 45883T (32°C). Other phenotypic differences include: coagulation and peptization of milk, hydrolysis of Tween (40 and 80) and aesculin, production of H2S and utilization of D-mannitol, D-mannose, D-galactose, D-sorbitol, inositol, lactose, L-alanine, L-glutamine, L-proline, L-serine, L-threonine and maltose. The content of G + C in genomic DNA is 70.5%, within the range of 67–76%. Both ANI and dDDH values are below the proposed and generally accepted species boundaries. In addition, protease secreted by strain NEAU-A11T may contributes to antagonism against fungal pathogens via degradation and destruction of the cell wall, indicating the isolate could be used as an biological control agent against pathogenic fungus. Therefore, based on a combination of chemotaxonomic, morphological, molecular and physiological data, strain NEAU-A11T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes aureus sp. nov. is proposed.

Description of Actinoplanes aureus sp. nov.

Actinoplanes aureus (au’re.us. L. masc. adj. aureus golden)

An aerobic, Gram-stain positive, protease-producing actinobacterium that forms well-developed substrate mycelia carrying irregular sporangia (4.6–8.7 μm). The sporangiospores are motile. Grows well on ISP 2, ISP 3, ISP 4, ISP 7 and nutrient agar media; grows moderately on ISP 6 medium; grows poorly on ISP 1, ISP 5 and Czapek’s agar media; but no growth occurs on Bennett’s agar medium. Moderate olive and strong yellow pigments are observed on ISP 6 and nutrient agar, respectively. Growth occurs at pH 6.0–9.0 (optimum pH 7.0), temperature range of 18–37°C (optimum 28°C) and in the maximum presence of 4% NaCl (w/v). Positive for hydrolysis of aesculin and starch and production of H2S, but negative for hydrolysis of Tween (20, 40 and 80), liquefaction of gelatin, production of urease, coagulation and
peptization of milk, decomposition of cellulose and reduction of nitrate. Detailed utilization of carbon and nitrogen sources are referred to Table S3. Cell walls contain meso-diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars are arabinose, xylose and glucose. The phospholipid profile contains diphasphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and two phosphatidylglycosinol molecules. The menaquinones are MK-9(H₈), MK-9(H₀) and MK-9(H₄). The predominant cellular fatty acids (> 10%) are C₁₈:₀, C₁₆:₀, C₁₈:₁ ω₉c, C₁₇:₀ and C₁₅:₀. The DNA G + C content of the type strain is 70.5%.

The type strain is NEAU-A11T (= CCTCC AA 2,019,063 T = JCM 33971 T), isolated from soil collected from Aohan banner, Chifeng, Inner Mongolia Autonomous Region, China. The GenBank/EMBL/ DDBJ accession number for the 16S rRNA gene sequence of strain NEAU-A11T is MW272536. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JADQTO000000000. The version described in this paper is version JADQTO000000000.1.

Acknowledgements We thank Prof. Aharon Oren for his valuable help with naming the species.

Author contributions JS performed the laboratory experiments, designed the experiments and revised the manuscript. XS performed the laboratory experiments, analysed the data, and drafted the manuscript. XL contributed to the biochemical characterisation. CH and ZH contributed to the polyphasic taxonomy. JZ contributed to the fatty acids determination. BH and XD contributed to the morphological analyses. XW and WX participated to the discussions of each section of experiments, designed the experiments and revised the manuscript.

Funding This work was supported in part by grants from the National Natural Science Foundation of China (No. 31972291), the China Postdoctoral Science Foundation (2015M580255), the Heilongjiang Provincial Postdoctoral Science Foundation (LBH-Z15016), and the “Academic Backbone” Project of Northeast Agricultural University (19XG18).

Data availability The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain NEAU-A11T is MW272536. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JADQTO000000000. The version described in this paper is version JADQTO000000000.1.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Consent to participate and/or Consent to publish This research doesn’t involve human subjects, so the informed consent to participate and consent to publish are not obtained.

Ethical approval This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Informed consent All authors have seen a copy of the manuscript and have approved its submission.

References

Awakawa T, Fujita N, Hayakawa M, Ohnishi Y, Horinouchi S (2011) Characterization of the biosynthesis gene cluster for alkyl-O-dihydrogeranyl-methoxyhydroquinones in Actinoplanes missouiensis. ChemBioChem 12:439–448

Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

Cao P, Li C, Tan K, Liu C, Xu X, Zhang S, Wang X, Zhao J, Xiang W (2020) Characterization, phylogenetic analyses and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang province, China. Plant Dis 104:1601–1609

Chun J, Rainey FA (2014) Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 64:316–324

Collins MD (1985) Isopenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284

Couch JN (1950) Actinoplanes, a new genus of the Actino-mycteales. J Gen Microbiol 4:280–292

Deng JJ, Huang WQ, Li ZW, Lu DL, Zhang YY, Luo XC (2018) Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Enzyme Microb Technol 112:35–42

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

Gao RX, Liu CX, Zhao JW, Jia FY, Li C, Xing J, Wang X, Xiang W (2014a) Actinoplanes lutulentus sp. nov., isolated from mucky soil in China. Int J Syst Evol Microbiol 64:1782–1788

Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014b) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315
Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE (1990) Numerical and chemical classification of Actinoplanes and some related actinomycetes. J Gen Microbiol 136:19–36

Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

Gregersen T (1978) Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol 5:123–127

Habib N, Khan IU, Chu X, Xiao M, Li S, Fang BZ, Zhi XY, Li WJ (2018) Actinoplanes deserti sp. nov., isolated from a desert soil sample. Antonie Van Leeuwenhoek 111:2303–2310

Hayakawa M, Tamura T, Nonomura H (1991) Selective isolation of Actinoplanes and Dactylosporangium from soil by using γ-collidine as the chemotacticant. J Ferment Bioeng 72:426–432

Higgins ML (1967) Release of sporangiospores by a strain of Actinoplanes. J Bacteriol 94:495–498

Huang H, Ren SX, Yang S, Hu HF (2015) Comparative analysis of rapamycin biosynthesis clusters between Actinoplanes sp. N902–109 and Streptomyces hygroscopicus ATCC29253. Chin J Nat Med 13:90–98

Iorio M, Sasso O, Maffioli SI, Bertorelli R, Monciardini P, Sosio M, Bonezzi F, Summa M, Brunati C, Bordoni R, Corti G, Tarozzo G, Piomelli D, Reggiani A, Donadio S (2014) A glycosylated, labisin-containing lanthipeptide with marked antinoceptive activity. ACS Chem Biol 9:398–404

Jia FY, Liu CX, Wang XJ, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 103:399–408

Jin LY, Zhao Y, Song W, Duan LP, Jiang SW, Wang XJ, Zhao JW, Xiang WS (2019) Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 69:688–695

Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporesporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

Kelly KL (1964) Inter-society colour council-national bureau of standards colour-name charts illustrated with centroid colours. US Government Printing Office, Washington, DC

Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger data sets. Mol Biol Evol 33:1870–1874

Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

Liu D, Yan R, Fu Y, Wang X, Zhao J, Xiang W (2019) Antifungal, plant growth-promoting, and genomic properties of an Endophytic Actinobacterium streptomyces sp. NEAU-STGS2. Front Microbiol 10:2077

McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Se-viou RJ (2000) A simple HPLC method for analysing dianamopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182

Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

Meier-Kolthoff JP, Goker M (2019) TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 10:2182

Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M (1980) Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188:221–233

Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

Parenti F, Coronelli C (1979) Members of the genus Actinoplanes and their antibiotics. Annu Rev Microbiol 33:389–411

Phongsopitanun W, Matsumoto A, Inahashi K, Kudo T, Mori M, Shimoi K, Takahashi Y, Tanasupwat S (2016) Actinoplanes lichenis sp. nov., isolated from lichen. Int J Syst Evol Microbiol 66:468–473

Piao CY, Zheng WW, Li Y, Liu CX, Jin L, Song W, Yan K, Wang XJ, Xiang WS (2017) Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 199:963–970

Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131

Rückert C, Szczepanski R, Albersmeier A, Goessmann A, Fischer N, Steinkämper A, Pühler A, Biener R, Schwartz D, Kalinowski J (2014) Complete genome sequence of the actinobacterium Actinoplanes friuliensis HAG 010964, producer of the lipopeptide antibiotic friulimycin. J Biotechnol 178:41–42

Saitou N, Nei M (1987) The neighbor-joining method: a new method of phylogenetic tree construction. J Mol Biol 213:407–425

Saitou N, Nei M (1987) The neighbor-joining method: a new method of phylogenetic tree construction. J Mol Biol 213:407–425

Sakk A, Sahnin H, Camas M (2012) Actinoplanes abujensis sp. nov., isolated from Nigerian arid soil. Int J Syst Evol Microbiol 62:960–965

Schwientek P, Szczepanski R, Rückert C, Kalinowski J, Klein A, Selker K, Wehmeier UF, Stoye J, Pühler A (2012) The complete genome sequence of the acarbose producer Actinoplanes sp SE50/110. BMC Genom 13:112
Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340
Simone M, Monciardini P, Gaspari E, Donadio S, Maffioli SI (2013) Isolation and characterization of NAI-802, a new lantibiotic produced by two different Actinoplanes strains. J Antibiot (Tokyo) 66:73–78
Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654
Song J, Qiu SW, Zhao JW, Han CY, Ying W, Sun XJ, Jiang SW, Wang XJ, Xiang WS (2019) Pseudonocardia tritici sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Antonie Van Leeuwenhoek 112:765–773
Sosio M, Kloosterman H, Bianchi A, de Vreugd P, Dijkhuizen L, Donadio S (2004) Organization of the teicoplanin gene cluster in Actinoplanes teichomyceticus. Microbiology 150:95–102
Suriyachadkun C, Ngaemthao W, Chunhametha S, Sanglier JJ (2015) Actinoplanes luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 65:4227–4232
Tamura T, Hatano K (2001) Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangii Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacus sp. nov. Int J Syst Evol Microbiol 51:2119–2125
Uchida K, Jang MS, Ohnishi Y, Horinouchi S, Hayakawa M, Fujita N, Aizawa S (2011) Characterization of Actinoplanes missouriensis spore flagella. Appl Environ Microbiol 77:2559–2562
Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New York
Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Kríčhevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
Wink J, Schumann P, Spöer C, Eisenbarth K, Glaeser SP, Martin K, Kämpfer P (2014) Emended description of Actinoplanes friulensis and description of Actinoplanes nipponensis sp. nov., antibiotic-producing species of the genus Actinoplanes. Int J Syst Evol Microbiol 64:599–606
Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiol [English Transl Microbiol (Beijing) 16:176–178
Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169
Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenu-loplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017a) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617
Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017b) A large scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110:1281–1286
Zhang Y, Zhang J, Fan L, Pang H, Xin Y, Zhang X (2012) Actinoplanes atraurantiacus sp. nov., isolated from soil. Int J Syst Evol Microbiol 62:2533–2537
Zhao JW, Han LY, Cao P, Li DM, Guo XW, Liu YQ, Wang XJ, Xiang WS (2019) Characterization of Strepto-mycetes sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum. Microorganisms 7:360

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.