Risk assessment of radon in some bottled water on the Ghanaian market

Irene Opoku-Ntim, Owiredu Gyampo and Aba Bentil Andam

1. Ghana Atomic Energy Commission, P.O.Box LG 80, Legon, Accra, Ghana
2. School of Nuclear and Allied Sciences, University of Ghana, Ghana
3. Author to whom any correspondence should be addressed.

E-mail: ina82ma@gmail.com

Keywords: radon, bottled water, Ghanaian, effective dose, ingestion

Abstract

The demand for bottled drinking water on the Ghanaian market has increased despite being expensive. This can be attributed to the public perception that is of higher quality relative to other water sources. Risk assessment of radon in some bottled water on the Ghanaian market has increased despite being expensive. This can be attributed to the public perception that is of higher quality relative to other water sources.

1. Introduction

222Rn is a natural radionuclide with a half-life of 3.8 days. It is colorless, tasteless, inert and odorless. 222Rn and its daughters, Po-214 and Po-218 are among the main and final products of the decay of Uranium 238 (238U) chain, which can spread out of different sources such as surface and groundwater water, soil, igneous or sedimentary rocks [1, 2]. 222Rn has a half-life of 3.82 days and it is the most stable and abundant isotope of radon in nature. It decays by emitting an (α) particle of energy 5.49 MeV [3]. The World Health Organisation (WHO) recommended daily fluid intake, including moisture from food, for an average adult is approximately two liters (2 l) [4]. Naturally sourced bottled waters are by far the most popular choice for the middle and high class in Ghana [5]. The bottled water industry in Ghana is huge. Brands are springing up all over the place and the public is accepting the product in good faith obviously believing that what they are getting is better than pipe-borne water [5]. Groundwater which is the major source of water for bottled drinking waters is often assumed to be good for consumption once the water is clean, tastes and smells good. Due to the more contact of groundwater water with igneous and sedimentary rocks, concentration of radioactive contents in these waters can be higher than surface water sources [1, 6, 7].

Consuming waters which contain high concentrations of 222Rn would raise the effective dose received and the risk to lung and gastric cancer [8]. The World Health Organization (WHO) guidance level for 222Rn drinking water is 100 Bq l$^{-1}$ [9]. In the United States, Environmental Protection Agency’s (EPA) standard is 11 Bq l$^{-1}$ [10]. WHO and the European Committee have proposed the annually received effective dose of 222Rn to be 0.1 mSv y$^{-1}$ [6].

© 2019 The Author(s). Published by IOP Publishing Ltd
If groundwater is used as drinking water, the radon content in the water must be considered. The two diseases of principal concern associated with radon are stomach cancer from ingestion and lung cancer from inhalation [11–14]. Countries like Denmark, Finland, Germany, Greece, Ireland, Sweden and the Czech Republic have national reference levels for radon in drinking water. Reference levels are in the range 20 to 100 Bq l$^{-1}$ which is in broad agreement with EU recommendations on the protection of the public against exposure to radon in drinking water supplies [15]. The Italian National Health Council has proposed a reference level of 100 Bq l$^{-1}$ be set for mineral water and that infants should not consume mineral water containing radon with a concentration above 32 Bq l$^{-1}$ [15]. Ghana as a country is yet to set a national reference level for water.

Drinking water has great importance in our food. Therefore, its availability, quality and regulation are important [16]. There is no knowledge about the radon content of bottled drinking water in Ghana. Several researchers have reported on radon concentrations in groundwater in Ghana [17–19] but none on bottled drinking water.

The aim of this research work is to presents the variation in radon concentration in 15 bottled water samples which popular on the Ghanaian market and estimate the associated effective dose received from by various age groups from ingestion compared with standard limits and bring awareness to policy makers and the populace about the health effects due to ingestion of radon dissolved in bottled drinking water.

1.1. Study area
The Greater Accra Region is the smallest of the 10 administrative regions in terms of area, occupying a total land surface of 3245 square kilometres or 1.4 per cent of the total land area of Ghana. Figure 1 shows the study area on
the Ghana map. In terms of population, however, it is the second most populated region, after the Ashanti Region, with a population of 4010 054 in 2010, accounting for 15.4 per cent of Ghana’s total population [21].

About two-thirds of Ghana is dominated by Paleoproterozoic Birimian rocks consisting of five evenly spaced volcanic belts trending northeast-southwest. The intervening basins between the volcanic belts are filled by sediments. The remaining one-third is made up of post-Birimian rock [22]. The supra-crustal rocks are highly deformed. However, the sedimentary rocks are particularly characterized by extensive folding. The lavas are mainly of basaltic composition, though andesitic, dacitic and rhyolitic rocks are also present. Some pattern of facies distribution is shown by the Birimian sedimentary basins from the margins towards the basin centres. The transition zone between the volcanic belts and the sedimentary basins is marked by chemical facies, which has of late been found to be the site of much of gold mineralization in Ghana [22].

2. Materials and method

2.1. Sampling

15 popularly known bottled drinking water was randomly selected from the market and/or stores in the Greater Accra region in July 2016 and given codes. Samples were collected in duplicates of 500 ml bottles. Considering the effect of temperature on the radiation of ^{222}Rn, the samples were stored in thermos container to keep the temperature constant enroute to the Nuclear track Detection Laboratory of the National Nuclear Research Institute (NNRI), Ghana Atomic Energy (GAEC) for analysis. Samples were analysed immediately upon arrival to the laboratory using RAD–H$_2$O [23] as shown in figures 2–4. The RAD-7 has been factory calibrated by Durridge Company, USA [23].

2.2. Radon in water measurements

The RAD H$_2$O method employs a closed loop aeration scheme where the air volume and water volume are constant and independent of the flow rate. The operation of this device is based on principles such as (1) radon is ejected from a water sample using a bubbling kit, (2) ejected radon enters a hemisphere chamber by air circulation, (3) polonium decayed from radon is collected onto a silicon solid-state detector in a high electric field, and (4) concentration of radon in water sample is estimated from the count rate of polonium [23].

For the setup 250-ml sample bottle was connected to RAD-7 detector via bubbling kit and desiccant tube to establish a closed air loop (figure 3). An internal air pump (with flow rate of about 1 l min$^{-1}$) in the RAD-7 was
activated every 5 min for 1 min to purge/degass/aerate (figures 2–4) and circulate radon present in the water into the closed air loop, so that radon released to air stream can finally enter RAD-7 to be counted. For quality control and reliability of the sampling and measurement methods, each sample was analyzed in 4cycles of 5 min each, with an initial aeration time of 5 min. During the 5 min of aeration (figure 4), about 95% of radon is
removed from the water and the radon concentration in the water automatically determined by the RAD-7. At the end of the run, a summary is printed out, showing the average radon reading from the four cycles counted, a bar chart of the four readings, and a cumulative spectrum. This procedure considers the calibration of the RAD-7, the size of the sample vial, time of the analysis and the total volume of the closed air loop, as seen in set up (figure 2).

2.3. Annual effective dose
The annual effective dose, H_{ing} due to the ingestion of radon from water, was calculated according to equation (1)[24,25]

$$H_{\text{ing}}(\text{mSv/yr}) = C_{\text{Rn}} \times D_{\text{ing}} \times L$$

Where

- H_{ing}: committed effective dose, mSv$^{-1}$
- C_{Rn}: radon concentration in water, Bq$^{-1}$
- D_{ing}: conversion factor, 1×10^{-8} SvBq$^{-1}$
- L: annual water consumption by an adult in liters.

The daily water consumption by an adult of 2 litres (730 litres per year) was used.[26] UNSCEAR has estimated that the conversion factor for ingestion of radon in water is 10^{-8} SvBq$^{-1}$ for an adult, 2×10^{-8} SvBq$^{-1}$ for a child and 7×10^{-8} SvBq$^{-1}$ for an infant[26]. According to UNSCEAR, doses to children and infants for similar consumption rates could be a factor of 2 and 7 higher, respectively[27].

3. Results and discussion
Radon concentration measurements have been measured in fifteen (15) popular bottled drinking water samples from Greater Accra Region, Ghana, using RAD7 detector. Currently, the 222Rn concentration in drinking water is not regulated in Ghana. The United States Environmental Protection Agency (USEPA) proposes a maximum contaminant level (MCL) of 11.1 Bq l$^{-1}$ for radon in drinking water[28]. The European Union (EU) Commission non-binding recommendation in 2001 on the protection of the public against exposure to radon in drinking water supplies[29] is 100 Bq l$^{-1}$ for public or commercial drinking water supplies and 1000 Bq l$^{-1}$ for individual or private water supplies. World Health Organization (WHO) has recommended a treatment level of 100 Bq l$^{-1}$ for radon in drinking water supplies[30].

3.1. Evaluation of radon concentration
Table 1 represents the radon concentration levels along with their respective annual effective dose exposure for the various ages. The range and mean radon concentration of 222Rn in all samples were 0.026–0.093 Bq l$^{-1}$ and

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Sample id & Relative humidity & Radon concentration Bq l$^{-1}$ & Adults & Children & Infants \\
\hline
1 & 0.08 & 0.05 & 3.29E-01 & 6.57E-01 & 2.30 \\
2 & 0.1 & 0.03 & 2.48E-01 & 4.96E-01 & 1.74 \\
3 & 0.09 & 0.07 & 4.89E-01 & 9.78E-01 & 3.42 \\
4 & 0.11 & 0.06 & 4.31E-01 & 8.61E-01 & 3.01 \\
5 & 0.07 & 0.05 & 3.58E-01 & 7.15E-01 & 2.50 \\
6 & 0.10 & 0.09 & 6.50E-01 & 1.30 & 4.55 \\
7 & 0.07 & 0.08 & 6.06E-01 & 1.21 & 4.24 \\
8 & 0.08 & 0.06 & 4.53E-01 & 9.05E-01 & 3.17 \\
9 & 0.08 & 0.09 & 6.35E-01 & 1.27 & 4.45 \\
10 & 0.10 & 0.09 & 6.57E-01 & 1.31 & 4.60 \\
11 & 0.10 & 0.04 & 3.21E-01 & 6.42E-01 & 2.25 \\
12 & 0.07 & 0.07 & 4.75E-01 & 9.49E-01 & 3.32 \\
13 & 0.07 & 0.06 & 4.53E-01 & 9.05E-01 & 3.17 \\
14 & 0.11 & 0.07 & 4.89E-01 & 9.78E-01 & 3.42 \\
15 & 0.08 & 0.09 & 6.79E-01 & 1.36 & 4.75 \\
16 & 0.10 & 0.03 & 1.90E-01 & 3.80E-01 & 1.33 \\
\hline
MEAN & 0.06 & 4.66E-01 & 9.33E-01 & 3.26 \\
\hline
STANDARD ERROR & 0.01 & 3.77E-02 & 7.55E-02 & 2.64E-01 \\
\hline
SKEWNESS & -0.18 & -1.82E-01 & -1.82E-01 & -1.82E-01 \\
\hline
KURTOSIS & -0.88 & -8.80E-01 & -8.80E-01 & -8.80E-01 \\
\hline
\end{tabular}
\caption{A table showing the various radon concentrations in bottled water and them corresponding annual effective dose to Adults, Children and infants.}
\end{table}
0.064 ± 0.005 Bq\ l^{-1} Bq\ l^{-1} respectively. The concentration of 222Rn difference could be due to differing water source, temperature, production process and storage time.

From table 1, it was observed that the radon concentration in the various bottled water samples are well below the allowed 11 Bq\ l^{-1} MCL proposed by USEPA [28] and 100 Bq\ l^{-1} recommended by WHO and the EU on the protection of the public against exposure to radon in drinking water supplies.

3.2. Evaluation of annual effective dose

The annual effective dose due to ingestion in the various age groups had a range and mean of 6.79E-01-1.90E-01 μSv\ yr^{-1} and 4.66E-01 ± 3.77E-02 μSv\ yr^{-1} for adults, 3.80E-01-1.36 E-01 μSv\ yr^{-1} and 9.33E-01 ± 7.55E-02 μSv\ yr^{-1} for children and 1.33-4.75 μSv\ yr^{-1} and 3.26 μSv\ yr^{-1} ± 2.64E-01 for infants. From figure 5, the order of the effective dose due to ingestion received by the age groups is infants > children > Adults. The effective dose due to ingestion received from the bottled water in infants and children were 1.43 and 0.50 times bigger than adults respectively. On the average, the effective dose received in both age groups were much lower than the recommended maximum value of 0.1 mSv\ yr^{-1}. [30].

Table 2. Radon concentration in various drinking waters from other studies as compared to the present study.

Water source	222Rn (Bq/l)	Country	References
Drinking water	0.27–5.4	India	[31]
Drinking water	0.20–1.23	Palestine	[29]
Tap water	0.91–12.58	Turkey	[32]
Bottled water	0.91–1.463	Serbia	[29]
Tap water	3.7	Iran (Teheran)	[33]
Tap water	17.99	Iran (Neyshabour)	[33]
Tap water	16.23	Iran (Mashhad)	[33]
Drinking Groundwater	1.02–7.26	Libya	[34]
Tap water	3.4	Iran (Ramsar)	[33]
Drinking water	0.333–0.903	Pakistan	[35]
Drinking water	0.39–0.47	Brazil	[36]
Tap water	0.025–0.128	Iran (Kastamonu)	[37]
Bottled water	0.04–0.25	Iraq	[38]
Bottled water	0.026–0.093	Ghana	This study

![Figure 5. A graph showing the annual effective dose in the different age groups versus Samples.](image-url)
The average radon concentration obtained in the present study is compared with studies from other countries from the literature findings as listed in table 2.

4. Conclusion

The present study showed that the radon concentration in bottled drinking water in the greater Accra region are well within the maximum contaminant level (MCL) value of 11 Bq L⁻¹. The radon concentration measured does not have serious health risks to the public. The annual effective dose varied with respect to the increase in radon concentration and were significantly lower than the UNSCEAR and WHO recommended limit for members of the public of 0.1 mSv y⁻¹. These data must be regarded as preliminary and further extensive studies should be done on large scale by initiating further detailed investigation into other drinking water on the Ghanaian market to increase awareness and mitigate possible hazards. It can be concluded that the radiation dose from radon in the bottled water analysed is low and pose no risk to the public.

Acknowledgments

We would like to thank the National Nuclear Research Institute of Ghana Atomic Energy Commission, Mr Elvis Mensah and Benjamin Acquah for their support in this work.

ORCID iDs

Irene Opoku-Ntim https://orcid.org/0000-0002-7151-2746

References

[1] Kam E and Bozkurt A 2007 Environmental radioactivity measurements in Kastamonu region of northern Turkey Appl. Radiat. Isot. 65 440–4
[2] Oner F, Yalim H, Akkurt A and Orbay M 2009 The measurements of radon concentrations in drinking water and the Yeşilirmak river water in the area of Amasya in Turkey Radiation protection Isotropy 133 223–6
[3] Gillmore G K and Jabarivasal N 2010 A reconnaissance study of radon concentrations in Hamadan city, Iran Nat. Hazards Earth Syst. Sci. 10 857–63
[4] World Health Organization 1993 Guidelines for drinking-water quality Recommendations 1 2nd edn (Geneva: World Health Organization) 92 4 154460
[5] Daily Graphic 2014 retrieved 20th February, 2019 (https://newghana.com.gh/bottled-water-industry-ghana/)
[6] Akawie E 2014 Radon-222 concentrations in the groundwater along eastern jordan rift Journal of Applied Sciences 14 309–16
[7] Rangela J D, Lopez del Roa H, Garcia F M, Torresa L Q, Villablah M, Sujob I C and Cabrera B M 2002 Radioactivity in bottled waters sold in Mexico Appl. Radiat. Isot. 56 931–6
[8] Rožmarič M, Rogić M, Benedik I and Strok M 2012 Natural radionuclides in bottled drinking waters produced in Croatia and their contribution to radiation dose Sci. Total Environ. 437 53–60
[9] Risica S and Grande S 2000 Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption: Calculation of Derived Activity Concentrations (Roma: Istituto Superiore di Sanità Roma)
[10] Somlai K, Tokonami S, Ishikaw T, Vancsur P, Gáspár M, Jobbágy V and Kovács T 2007 ²²²Rn concentrations of water in the Balaton District of Hungary Radiat. Meas. 42 451–5
[11] Mills W A 1990 Radon Risk assessment and control management of radon in drinking water. (In: Cothern CR and Rebers P (Eds), Radon, radium and uranium in drinking water.) (Chicago, Michigan: Lewis Publishers) pp 27–57
[12] Somashekar R K and Ravikumar D 2010 Radon concentration in groundwater of Varahi and Markandeya river basins, Karnataka State, India J. Radioanal. Nucl. Chem. 285 343–51
[13] Azora V, Bhaiya B S and Singh S 2011 Measurements of radon concentration in ground water samples of tectonically active areas of Himachal Pradesh, North West Himalayas, India Radiat Prot Environ. 34 50–4
[14] Gillmore G K, Grattan J, Pratt F B, Phillips P S and Pearce G 2002 Uranium in the aquatic environment ed B J Merkel, B Planer-Friedrich and C Woltersdorfer (Berlin, Heidelberg: Springer) pp 65–76
[15] EC 2001 Commission recommendation of 20 december 2001 on the protection of members of the public to exposure of radon in drinking water supplies, 2001/928/Euratom Official Journal of the European Commission L344 85–8
[16] Abdalsattar H K and Hussien Ab A R 2015 Measurement of annual effective doses of radon in plastic bottled mineral water samples in Iraq Aust. J. Basic Appl. Sci. 9 31–5
[17] Darko E O, Adukpo O K, Fletcher J J, Awudu A R and Otoo F 2010 Preliminary studies on Rn-222 concentration in ground water from selected areas of the Accra metropolis in Ghana J. Radioanal. Nucl. Chem. 283 507–12
[18] Asamuda-Sakyi A B, Oppong O C, Quashie F K, Adjei C A, Akortia E, Nsia-Akoto I and Appiah K 2012 Levels and potential effect of radon gas in groundwater of some communities in the Kassena Nankana district of the upper east region of Ghana Proceedings of the International Academy of Ecology and Environmental Sciences 2 223–33
[19] Nsia-Akoto I 2017 Radon—occurrence, risk estimation and mapping of levels in water, indoors and soil in Osubasi and Offinso in the Ashanti Region PhD Thesis University of Ghana, Accra, Ghana
[20] Ghana Districts 2019 Retrieved 12 June, 2019 (http://ghanadistricts.com/Home/LinkData/7188)
[21] Greater Accra 2019 Retrieved 13th August, 2019 (http://ghana.gov.gh/index.php/82-greater-accra)
[22] Kesse G O 1985 The mineral and rock resources of Ghana The Republic of Ghana—Geography, Physiography, Geology and Geohydrology (Rotterdam/Boston: A.A. Balkema) pp 9–42

[23] Durridge Company Inc 2009 RAD7 RAD H2O—radon in water accessory owner’s manual. (United States: Durridge Company) RAD7 RAD H2O—radon in water accessory owner’s manual (http://durridge.com/documentation/RADH2OManual.pdf)

[24] Tabasum N and Mujtaba S 2012 Measurement of annual effective doses of radon from drinking water and dwellings by CR-39 track detectors in Kulachi city of Pakistan J. Basic Appl. Sci. 8 528–36

[25] Thabayneh Khalil M 2015 Measurement of 222Rn concentration levels in drinking water and the associated health effects in the Southern part of WestBank—Palestine Appl. Radiat. Isot. 103 48–53

[26] United Nations Sources and effects of ionizing radiation, united nations scientific committee on the effects of atomic radiation 1993 report to the general assembly, with scientific annexes United Nations Sales Publication E.94.IX.2 (New York: United Nations)

[27] UNSCEAR 2000 Sources and effects of ionising radiation United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2000 Report to the General Assembly (New York: United Nations Publication) 92-1-142238-8

[28] Thabayneh K M 2015 Measurement of 222Rn concentration levels in drinking water and the associated health effects in the Southern part of West Bank—Palestine Appl. Radiat. Isot. 103 48–53

[29] Todorovic N, Nikolov J, Forkapic S, Biket I, Mrdja D, Krmar M and Veskovic M 2012 Public exposure to radon in drinking water in SERBIA Appl. Radiat. Isot. 70 543–9

[30] United States Environmental Protection Agency (USEPA) 1991 Guidelines for Developmental Toxicity Risk Assessment EPA/600/FR-91/001 Risk Assessment Forum

[31] Shilpa G M et al 2017 Measurement of 222Rn concentration in drinking water in the environs of Thirthahalli taluk, Karnataka, India Journal of Radiation Research and Applied Sciences 10 262–8

[32] Tarim U A, Gurler O, Akkaya G, Kılıç N, Yalcin S, Kaynak G and Gundogdu O 2012 Evaluation of radon concentration in well and tap waters in Bursa, Turkey Radiat. Prot. Dosim. 150 207–12

[33] Mowlavi A A, Shahbahrami A and Binesh A 2009 Dose evaluation and measurement of radon concentration in some drinking water sources of the Ramsar region in Iran Isot. Environ. Health Stud. 45 269–72

[34] Amin R M 2014 Evaluation of radon gas concentration in the drinking water and dwellings of south-west Libya, using CR-39 detectors International Journal of Environmental Sciences 4 484–90

[35] Nasir T and Shah M 2012 Measurement of annual effective doses of radon from drinking water and dwellings by CR-39 track detectors in Kulachi city of Pakistan Journal of Basic & Applied Sciences 8 528–36

[36] Marques A L, Dos Santos W and Geraldo L P 2004 Direct measurements of radon activity in water from various natural sources using nuclear track detectors Appl. Radiat. Isot. 60 801–4

[37] Kurnaz A and Atif Çetiner M 2016 Exposure assessment of the radon in residential tap water in Kastamonu International Journal of Radiation Research 14 341–9

[38] Abojassim A A, Kadhim S H, Mraity A, Abid H and Munim R R 2017 Radon levels in different types of bottled drinking water and carbonated drinks in Iraqi markets Water Science and Technology: Water Supply 17 206–11