Influent Flow Rate Effect On Sewage Pump Station Performance Based On Organic And Sediment Loading

Anfal Majid Salal *
M.Sc. student
Engineering Collage-Baghdad University
a.salal1001@coeng.uobaghdad.edu.iq

Dr.Basim Hussein Khudair
Assistant Professor
Engineering Collage-Baghdad University
dr.basimal-obaidy@coeng.uobaghdad.edu.iq

ABSTRACT

The performance of sewage pumps stations affected by many factors through its work time which produce undesired transportation efficiency. This paper is focus on the use of artificial neural network and multiple linear regression (MLR) models for prediction the major sewage pump station in Baghdad city. The data used in this work were obtained from Al-Habibia sewage pump station during specified records- three years in Rusafa district, Baghdad. Pumping capability of the stations was recognized by considering the influent input importance of discharge, total suspended solids (TSS) and biological oxygen demand (BOD). In addition, the chemical oxygen demands (COD), pH and chloride (Cl). The proposed model performance has compared with the correlation coefficient (r). The suitable structure design of neural network model is examined through many trials, error, preparations and evaluation steps. Two prediction models of organic and sediment loading are presented. Results found that the estimating of the organic and sediment loading by ANN model could be successful. Moreover, results showed that influent discharge rate have more effect on organic and sediment loading predicting to other parameters.

Key words: sewage pump station, flow rates, organic load, sediment load, modelling.
1. INTRODUCTION

Sewage pump stations (SPS) are transitional structure that combined native and storm sewage from many conveniences to sewage treatment places or other plants for discarding considerations. Operation of a sewage pump station is often affected by a variety of physical, chemical, and biological factors of raw wastewater. In order to follow the station performance during the operation, measurements would not be sufficient. The internal parts in this stations might require to replace and mended to guarantee the hydraulic performance requirements which prevent any failure phenomena, Hemed, 2015. Many researchers have been projected in the pump station modeling as in, Slys' and Dziopak, 2011. They had been talked about problems associated with the mathematic formulations and developed the software based design and simulation of preservation tank collaborating with sewage pump station in the Przemysl left side river parts. The optimization of mathematical formula to running the cost in the sewage pumping station has been proposed by Chaball and Stanko, 2014, which suggested model contains a simulation of multi frequency change in sewage pump speed to provide high running cost.

The simulation model based evaluation of sewage flow in treat water allocation has designed by Aleisa, et al., 2015. They illustrate that the potential of 2050 waste water network will capable to carry out the capacity of sewage flow able be expecting for Al-sulaibiyy plant will attain to improved capacity of initial followed by Umm Al-Hayman wastewater treatment plant (WWTP) plants. The prediction of wastewater treatment plant behavioral with coefficient of correlation between experiential and expected output level by ANN has proposed in Abdullah, et al., 2015. Prediction of the major water quality parameters in Gaza WWTP by using ANN and MLR has introduced by Mazen, et al., 2018, while Sewer condition changes are predicted and develop a deterioration models (the multiple discriminant model (MDM) and neural network model (NNM)), Alsaqqar, et al., 2017. They showed that a better control of SPS could provide by mathematical tool improvements to expect the performance of station depend on earlier period parameters testing. The objective of this research to study the influent flow rate effect on Al-Habibia sewage pump station performance based on organic and sediment loading using two mathematical model artificial neural network (ANN) and multiple linear regression (MLR) of predict the sewage pump station conditions changes has been developed.

2. MATERIAL AND METHODS

2.1 Study Area Description

Al-Habibia sewage pump station where selected in this study which is one of the large main sewage pump station in the side of Al-Rusafa in Baghdad city (N33.36700º, E44.47213º) which located on Zublin trunk sewer to collects the wastewater from the regions, AL-Shaab, AL-Sader1, Al-Sader2 as shown in Fig. 1, and lift and transfer sewage to Al-Rustamyia WWTP.
The total design capacity of Al-Habibia SPS is 11.5 m³/sec, so it is qualified for handling the inflow sewage discharge. A 3 m sewer enters the SPS into two stages, each stage has two sewers of 2 m diameter with a manually cleaned bar screen to remove big and floated solids. Then, sewage flows into two wet wells each of (3.5 × 5 × 7) m in volume. After that, two dry pits adjacent to the wet wells, each pit consists of five pumps. Sewage is collected in a collection chamber of volume (4 × 48 × 5.15) m receives it from the pumps and discharge it into a 3 m gravity sewer which runs for approximately 13 km reaching Al-Rustamyia WWTP. Ten sewage pumps are in Al-Habibia SPS, four of capacity of (1.5) m³/sec, four of (1) m³/sec and two of (0.5) m³/sec as shown in Fig. 2.
2.2 Data collection
In this research, monthly data were collected for three years (2014, 2015 and 2016) for the concentrations of physical and chemical properties of wastewater i.e. (TSS, BOD, COD, PH, Cl) and the flow rates influent to the WWTP. Data were taken for the raw sewage entered to the WWTP. Excel 2013 and IBM SPSS 20 software were used for data analysis. The multilayer prediction artificial neural network analysis was performed by IBM SPSS 20 software.

3. MATHEMATICAL MODELLING
3.1 Artificial neural network (ANN)
A neural network is processor consist of several parameters to process the inputs with their interconnections. It contains a many building blocks, the most important ones are: Input layer, hidden layer, and output layer. These three layers are linked in a feed forward way were each square represents input data such as organic and sediment load as illustrated in Fig. 3. To expect the outcome information from input data, the neural networks could be used depend on simulates operation of human nervous time. The following formula could be used to normalize the input and output data, Jacobson, 2013.

\[x_{\text{norm}} = \frac{x_i - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} \]

Where: \(x_{\text{norm}} \) is the normalize rate, \(x_i \) is the original information, \(x_{\text{max}} \) and \(x_{\text{min}} \), is the maximum and minimum values respectively.

3.1.1 Ann Input Parameters Selection
The major aspect in neural network is the selection of input parameters. Hence, great consideration of input variable should be taken in account when the ANN structure has been used in order to provide effective results and better understanding of the problems. The input variables used in this research are influent flow rate, BOD, COD, TSS, PH, and CL as shown in Fig. 4. Those parameters have an important effect on the presentation of an ANN, and to make ANN work effectively.

![Figure 3. Simple feed-forward neural network.](image-url)
3.2 Multiple Linear Regression (MLR)

The MLR methods are used to approximate the linear relation between single definite dependent variable of organic and sediment loads with the group of quantitative independent variables of raw sewage specifications. The raw sewage group parameters are used as independents variables in MLR linear equation do calculate the functions of classification as follow, *Hamada, et al., 2018*:

\[
Y_i = A + a_1x_1 + a_2x_2 + \cdots + a_nx_n
\]

(2)

Where \(Y_i \) : Represents the function of classification when \(i = 1 \) to \(j \) (number of condition classes), \(X \): Represents the independent variables (1 to \(n \)), \(a_i \): Represent the coefficients of classification and \(A \): represent the offset

4. RESULTS AND DISCUSSION

4.1 Raw sewage flow assessment

The comparison between yearly performances of AL-Habibia SPS for influent raw sewage for the physical parameter (i.e. TSS) is shown in Fig. 5, also the yearly changes of the chemical parameters (i.e. BOD and COD) shown in Fig. 6, and Fig. 7 for the Chloride parameter.
Figure 5. Yearly variation of TSS.

Figure 6. Yearly variation of BOD, COD.
Fig.5, 6 and 7 indicate that the concentration of the physical and chemical in the wastewater in AL-Rusafa side of Baghdad increasingly with time and this cause based on the population growth, usual bad habits and the deterioration of the sewer network.

In addition, Fig.5 shows that the total suspended solid increase at year 2015 because the high rain intensity at this year and drag more particles to the sewerage system and Fig.7 indicate infiltration saline groundwater or discharge of chloride bearing wastes. Also the BOD5/COD ratio is presented as some literature sources give such information, when ratio BOD5/COD > 0.5, Syed, 1998, then the wastewater is fairly biodegradable and can treated biologically.

4.2 Data modelling processing

2.4.1 ANN

The neural network consists of 47 measured values in the raw sewage characteristics as a set of data. To find a set of model parameters that enables the model with given function form with efficient presentation, many training in ANN has been prepared with desired input and output relation. In one set, the 47 readings are combined to examine the possibility for developing a neural network model for predicting the organic and sediment loading. The ANN function model in Equation (4) and the correlation coefficient (R²) was 99.6 %. Results showed that influent discharge rate have more effect on organic and sediment loading predicting to other parameters as shown in Fig. 8.

\[Y = 4.04 \times 10^{-4} + 0.99x \]

(3)
That’s mean the changing of the influent sewage flow rate(x) can predict the pumping performance during dry and wet weather flow. The details parameters of proposed model are illustrated in Table 2 and 3 for the estimation of hidden and output layers of ANN.

Table 2. Prediction parameters of output and hidden layers.

Predictor	Input Layer	Hidden Layer	Output Layer
(Bias)	-0.083-	-1.669-	1.661-
BOD	0.016	0.360	-0.013-
COD	0.065	-0.011-	0.083
TSS	0.385	-0.002-	0.399
PH	-0.169-	0.117	-0.322-
CL	0.325	-0.043-	0.387
DISCHARGE	-0.569-	0.639	0.612

Table 3. Prediction parameters of output and hidden layers.

Predictor	Input Layer	Hidden Layer	Output Layer
(Bias)	-0.074-	-1.118-	
BOD	0.032	0.034	
COD	0.010	0.104	
Table 4. MLR model results

Target	Model	R	R²	Std. Error of the estimate	function
Organic Loading	2	99.9	99.8	0.066	$Y_O=-1.47+0.016Q+0.09\text{BOD}$
Sediment Loading	2	99.9	99.9	0.069	$Y_S=-2.329+0.026Q+0.091\text{TSS}$

2.4.2 MLR

The data set available for 47 measured values in the raw sewage characteristics as a set of data. SPSS regression tool is used adopting the stepwise procedure in the variable selection progression; this resulted in **Table 4**. Results showed the maximum coefficient of determination (R^2) of 99.8% and 99.9% for the sediment and organic loading respectively.
4.3 CONCLUSIONS

This paper presented the implication of sewage in Al-Habibia sewage pump station which utilize efficient prediction for the future has been suggested and improved. The development of ANN model to estimate the organic and sediment load in Al-Rusafa side of Baghdad (AL-Habibia SPS). The suggested models have been examined and evaluated on monthly sewage performance and influent discharge measurements over a period three years. Over the range of data size used in evaluation and examine, the development of ANN model to predict the diverse error efficiently is considered as robust tool nowadays. Better predictive and high capability could be resultant in this model in case of more data have been collected. However, the ANN and MLR techniques considers a valuable in sewage pump station performance prediction, but the ANN could be more suitable to provide efficient performance by capturing the non-linear weakening relation between inputs and outputs. For future development, the observations documentation of all collected data could support the reviewers of pump station systems performance as enough source of information.

5. ABBREVIATIONS:

Abbreviation	Description
SPS	Sewage Pump Station
BOD	Biological Oxygen Demand
COD	Chemical Oxygen Demand
TSS	Total Suspended Solids
ANN	Artificial neural network
MLR	Multiple Linear Regression
Yo	Organic Loading
Ys	Sediment Loading
WWTP	Waste Water Treatment Plant

6. REFERENCES

- Chiang, Y. M., Chang, L. C., Tsai, M. J., Wang, Y. F., and Chang, F. J., 2010, Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites. *Hydrology and Earth System Sciences*, 14(7), 1309-1319.

- Mounce, S. R., Shepherd, W., Sailor, G., Shucksmith, J., and Saul, A. J., 2014, Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. *Water Science and Technology*, 69(6), 1326-1333.

- Mazen H., Hossam A., Z., Ahmed A., J., 2018, Application of artificial neural networks for the prediction of Gaza wastewater treatment plant Performance-Gaza strip.
• Zhang, Z., Kusiak, A., Zeng, Y., & Wei, X., 2016, Modeling and optimization of a wastewater pumping system with data-mining methods. Applied Energy, 164, 303-311.

• Yen-Ming Chiang, Li-Chiu Chang, Meng-Jung Tsai, Yi-Fung Wang, and Fi-John Chang, 2010, Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites.

• Lee Jacobson. Introduction to artificial neural networks – part 1. 2013. URL http://www.theprojectspot.com/tutorial-post/introduction-to-artificial-neural-networks-part-1/7.

• M.S. Nasr, M. A, Moustafa, H. A. Seif, and G. El Kobrosy, 2012, Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance- EGYPT,” Alexandria Engineering Journal, vol. 51(1), pp. 37-43.

• S. Yordanova, R. Petrova, N. Noykova, and P. Tzvetkov, 2014, Neuro-fuzzy modelling in anaerobic wastewater treatment for prediction and control, International Journal of Computing, vol. 5(1), pp. 51-56.

• Y. M. Guo, Y. G. Liu, G. M. Zeng, X. J. Hu, W. H. Xu, Y.Q. Liu, and H. J. Huang, 2014, An integrated treatment of domestic wastewater using sequencing batch biofilm reactor combined with vertical flow constructed wetland and its artificial neural network simulation study, Ecological Engineering, vol. 64, pp. 18-26.

• P. Kundu, A. Debsarkar, S. Mukherjee, and S. Kumar, 2014, Artificial neural network modelling in biological removal of organic carbon and nitrogen for the treatment of slaughterhouse wastewater in a batch reactor, Environmental technology, vol. 35(10), pp. 1296-1306.

• G. B. Gholikandi, S. Jamshidi, and H. Hazrati, H., 2014, Optimization of anaerobic baffled reactor (ABR) using artificial neural network in municipal wastewater treatment,” Environmental Engineering and Management Journal, vol. 13(1), pp. 95-104.

• Alsaqar A. S., Khudair B. H., Jbbar R. K., 2017, Rigid Trunk Sewer Deterioration Prediction Models using Multiple Discriminant and Neural Network Models in Baghdad City, Iraq, Journal of Engineering, Vol. 23.

• Syed R. Q., 1998, wastewater treatment plants, second edition, CRC press.