Parental Socioeconomic Status as a determinant of breastfeeding : an analysis of the Korea National Health and Nutrition Examination Survey (2013 ~ 2017)

Jusuk Lee
Samsung Changwon Hospital

Taehong Kim (md3728@pednet.co.kr)
Pusan National University Yangsan Hospital https://orcid.org/0000-0003-2411-2309

Research article

Keywords: Breastfeeding, Parental, Socioeconomic status, Korea

DOI: https://doi.org/10.21203/rs.3.rs-25616/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The importance of breastfeeding is well known. One of important factors affecting breastfeeding is socioeconomic status. We investigated the relationship between socioeconomic status and breastfeeding to promote future breastfeeding projects.

Methods: Data were collected from the 2013 - 2017 Korea National Health and Nutrition Examination Survey (KNHANES). We evaluated the demographic information and parents’ socioeconomic status of 1,220 children under 60 months.

Results: A total 1,220 children were included in this study. Some of the socioeconomic factors were associated with breastfeeding. Mothers’ education level (≥ 13 years: odd ratio [OR], 2.79; 95% confidence interval [CI], 1.21-6.42), middle high of mother’s income level (OR, 2.30; 95% CI, 1.18-2.84), no smoking status (OR, 3.07; 95% CI, 1.28-7.36), body mass index (BMI) (< 25 (kg/m²): OR, 1.82; 95% CI, 1.12-2.95) were associated with breastfeeding (p<0.05). Also, fathers’ age (30s: OR, 4.88; 95% CI, 1.82-13.04), education level (≥ 13 years: OR, 7.94; 95% CI, 3.12-20.18) were associated with breastfeeding (p<0.05). After controlling for the confounding factors, mothers’ BMI, fathers’ age and educational level were statistically significant.

Conclusion: This study demonstrated that socioeconomic factors were associated with breastfeeding in Korea. Keywords: Breastfeeding, Parental, Socioeconomic status, Korea

Background

The benefits of breastfeeding are well known. Breastfeeding reduces respiratory infections, gastrointestinal tract infections, necrotizing enterocolitis, sudden infant death syndrome, otitis media in children younger than 2 years of age, allergic disorders (asthma, atopic dermatitis), diabetes, obesity, acute leukemia, hypertension, and neurodevelopmental disorder. In addition, breastfeeding benefits mothers’ health, including reducing the risk of breast cancer, ovarian cancer, type 2 diabetes. The World Health Organization (WHO) and American Academy of Pediatrics recommend exclusive breastfeeding for the first six months, followed by continued breastfeeding for 1 year or longer as complementary foods are introduced.

Globally, 43% of infants aged younger than six months were exclusively breastfed in 2016, an increase from 36% in 2005. The prevalence of exclusive breastfeeding was highest in Southern Asia (59%) and Eastern Africa (57%). It is much lower in Latin America and the Caribbean (33%), Eastern Asia (28%), Western Africa (25%), and Western Asia (21%).

In 2006–2012, only an estimated 25% of infants in the WHO European Region were exclusively breastfed for the first 6 months. After birth, between 56% and 98% of infants in European countries (Ireland, 56%; the Netherlands, 80%; Italy, 86%; Sweden, 94%; Germany, 97%; and Norway, 98%) were breastfed. At 6 months age, the following breastfeeding rates were reported: Italy (38%), the Netherlands (51%),
Germany (57%), Sweden (61%), Norway (71%). Although early initiation of breastfeeding is very high in some countries, exclusive breastfeeding rates drop rapidly between 4 and 6 months of age and are very low at 6 months: Denmark, 13%; Germany, 19%; Norway, 17%; Sweden, 14%; the Netherlands, 39%. Among infants born in 2015 in the United States, 4 out of 5 (83.2%) were breastfed at birth, over half (57.6%) were breastfed at 6 months-old, and over one-third (35.9%) were breastfed at 12 months-old. However, despite the recommendation to breastfeed exclusively for about the first 6 months, less than 50% of infants were exclusively breastfed in the first 3 months, and 24.9% were exclusively breastfed in the first 6 months.

Between 1985 and 1995, the global rates of exclusive breastfeeding increased by 2.4% per year on average (increasing from 14% to 38% over 10 years). The Global Breastfeeding Collective, led by United Nations Children’s Fund and the WHO, set a target to increase the global rate of exclusive breastfeeding in the first 6 months of life: at least 50% by 2025 and at least 70% by 2030.

In Korea, the rates of breastfeeding at 6 months of age increased to 60.8% in 2010 and 62.3% in 2013; however, it decreased to 55.6% in 2016. The Korean Ministry of Health and Welfare's Fourth National Health Plan aims to increase to 66.8% by 2020.

Hence, exploring the socioeconomic factors which affect breastfeeding are crucial for increasing breastfeeding rate and maintaining breastfeeding. Although the socioeconomic factors associated with breastfeeding have been broadly reported, scant studies have examined these variables in Korea. Therefore, we explored the relationship between socioeconomic factors and breastfeeding in Korea using data from the Korean National Health and Nutrition Examination Survey (KNHANES).

Methods

Data source

This study was conducted using the raw data from the KNHANES of the sixth (2013 ~ 2015) and the seventh term (2016~2017). The KNHANES is a statutory survey on people's health behavior, prevalence of chronic diseases, and food and nutrition practices. KNHANES was conducted in a three-year period from the first (1998) to the third period (2005), and has since been reorganized into a year-round survey system, and has been conducted annually from the fourth term (2007-2009) to the present day. KNHANES consisted of a cross-sectional survey composed of a health interview survey and a health examination survey, and a nutrition survey. All survey protocols were approved by the Korea Centers for Disease Control & Prevention (KCDC) Institutional Review Board. Written informed consent was obtained from all participants before the survey commencement.

In this study, we included 1,726 children under 60 months in the sixth and seventh terms. Of these, we excluded 506 participants who were no information of breastfeeding, did not provide socio-economic data. We included the 1,220 participants who had complete health interview survey in the final analysis.
Study design

This study employed a cross-sectional design. All data are available from the KNHANES database (http://knhanes.cdc.go.kr/knhanes). We categorized data into two groups (non-breastfed, breastfed). The breastfeeding group was derived from the following questionnaires: “Have you been breastfeeding for at least a month?” These surveys included questions regarding sex, age, residence area, employment status, education level, incomes, parental smoking status, weight and height. Education level was divided into 3 categories: ≤ 9 years, 10~12 years, ≥ 13 years. Income was classified into quartiles to determine income level (1: low, 2: middle low, 3: middle high, 4: high). Body mass index (BMI) was calculated as the ratio of weight to height^2 (kg/m^2).

Data analysis

Statistical Package for the Social Sciences (SPSS) complex sample procedures were employed since KNHANES data were collected through a representative, stratified, and clustered sampling method. Participants’ characteristics are presented as an estimate and a 95% confidence interval. Differences between the breastfeeding and non-breastfeeding groups are reported using chi-square test. We conducted a logistic regression analysis to identify the relationships between factors and breastfeeding. We adjusted for mothers’ education, income, smoking status, BMI, fathers’ age, education level. Statistical analysis was conducted using SPSS version 21.0 (SPSS Inc. Chicago, IL, US). For all analyses, p-values were two-tailed, and a p value < 0.05 was considered significant.

Results

Participants’ demographics are shown on Table 1. A total of 1,220 children were included in the study. Mean birth weight was 3.21kg.

Table 1. Demographic Characteristics of Participants.
Children’s Information

	N	Estimate (95% CI)
Sex		
male	625	51.93 (48.86-54.98)
female	595	48.07 (45.02-51.14)
Age		
≤	396	31.51 (28.97-34.16)
13 ~ 24 months	397	32.82 (30.07-35.69)
≥ 25 months	427	35.67 (32.77-38.68)
Birth weight (kg)	1,220	3.21 (3.18-3.24)
Duration of Breastfeeding		
≥ 4weeks	334	30.43 (27.44-33.59)
5 ~ 8 weeks	203	18.96 (16.47-21.73)
9 ~ 12 weeks	271	24.75 (21.91-27.83)
≥ 13 weeks	290	25.86 (23.05-28.89)
Residence area		
Rural	202	15.91 (12.20-20.48)
Urban	1,018	84.09 (79.52-87.80)
House income (quartile)		
1 (low)	68	5.43 (4.11-7.13)
2 (middle low)	403	34.00 (30.72-37.43)
3 (middle high)	427	34.28 (31.12-37.59)
4 (high)	322	26.29 (23.27-29.56)
Mother’s Information		
Age		
20s	149	12.73 (10.51-15.33)
30s	907	74.68 (71.59-77.54)
≥ 40s	156	12.59 (10.60-14.90)
Marital status		
Never married	1	0.00 (0.00-0.38)
Married	1,193	98.25 (96.81-99.05)
Separated/divorced	18	1.69 (0.91-3.14)
Parity		
Primipara	182	16.91 (14.64-19.45)
Multipara	938	83.09 (80.55-85.36)
Education level		
≤ 9 years	70	6.16 (4.70-8.04)
10~12 years	320	28.32 (25.27-31.59)
≥ 13 years	732	65.51 (62.03-68.84)
Income (quartile)		
1 (low)	358	31.01 (27.74-34.49)
2 (middle low)	345	28.19 (25.32-31.26)
3 (middle high)	279	22.02 (19.32-24.99)
4 (high)	230	18.77 (16.21-21.64)
Employment		
No	779	66.64 (63.23-69.89)
Yes	417	33.36 (30.11-36.77)
Current Smoking status		
No	1,101	95.44 (93.76-96.69)
Yes	52	4.56 (3.31-6.24)
Body mass index		
< 25 (kg/m²)	906	77.17 (74.23-79.86)
≥ 25 (kg/m²)	273	22.83 (20.14-25.77)
Father’s information		
Age		
20s	44	4.65 (3.16-6.81)
30s	704	68.02 (64.16-71.65)
≥ 40s	279	27.33 (24.03-30.90)
Marital status		
Never married	-	-
Married	1,021	99.32 (98.05-99.76)
Separated/divorced	6	0.68 (0.24-1.95)
Values are presented as estimate (95% confidence interval).

Breastfeeding group was 1,101 children. Factors related to breastfeeding were mothers’ education level and BMI, current smoking status (p < 0.05), fathers’ age, marital status and education level (p< 0.05) (Table 2).

Table 2. Demographic characteristics according to the breastfeeding.
	Non-Breastfeeding group	Breastfeeding group	P-value
Children’s information			
Sex			0.404
Male	47.95 (38.41-57.65)	52.33 (49.10-55.55)	
Female	52.05 (42.35-61.59)	47.67 (44.45-50.90)	
Age			0.139
≤ 12 months	39.28 (29.66-49.81)	30.72 (28.14-33.42)	
13~24 months	32.92 (24.25-42.94)	32.81 (29.95-35.80)	
≥ 25 months	27.80 (20.10-37.07)	36.47 (33.43-39.63)	
Birth weight (kg)			0.004
	3.03 (2.90-3.16)	3.23 (3.20-3.26)	
Residence area			0.540
Rural	18.13 (11.22-27.98)	15.68 (11.90-20.38)	
Urban	81.87 (72.02-88.78)	84.32 (79.62-88.10)	
House income			0.513
1(Low)	4.84 (2.09-10.79)	5.49 (4.09-7.33)	
2(Middle low)	41.06 (31.05-51.87)	33.28 (29.90-36.84)	
3(Middle high)	31.69 (22.91-42.01)	34.55 (31.21-38.05)	
4(High)	22.41 (14.51-32.95)	26.69 (23.51-30.13)	
Mother’s information			
Age			0.386
20s	17.36 (10.50-27.32)	12.27 (9.97-15.01)	
30s	71.37 (60.60-80.16)	75.01 (71.74-78.02)	
≥ 40s	11.27 (6.46-18.92)	12.72 (10.63-15.17)	
Marital status			0.824
Never married	0.00 (0.00)	0.00 (0.00-0.42)	
Married	98.90 (92.56-99.85)	98.19 (96.61-99.04)	
Separated/divorced	1.11 (0.15-7.44)	1.75 (0.91-3.34)	
Parity			0.741
primipara	18.37 (10.82-29.43)	16.78 (14.39-19.46)	
multipara	81.63 (70.57-89.18)	83.22 (80.54-85.61)	
Education			<0.001
≤ 9 years	10.32 (5.25-19.31)	5.77 (4.27-7.76)	
10~12 years	46.42 (34.73-58.52)	26.64 (23.56-29.96)	
≥ 13 years	43.26 (32.14-55.10)	67.59 (64.03-70.96)	
Income (quartile)			0.093
1(low)	41.94 (31.69-52.94)	29.93 (26.53-33.56)	
2(middle low)	25.94 (17.88-36.03)	28.42 (25.40-31.65)	
3(middle high)	13.92 (8.32-22.36)	22.83 (19.92-26.03)	
4(high)	18.20 (10.86-28.90)	18.83 (16.17-21.81)	
Employment			0.068
No	75.54 (65.43-83.44)	65.77 (62.18-69.20)	
Yes	24.46 (16.56-34.57)	34.23 (30.80-37.82)	
Current Smoking status			0.008
No	88.84 (77.56-94.83)	96.07 (94.56-97.18)	
Yes	11.16 (5.17-22.44)	3.93 (2.82-5.44)	
Body mass index			0.014
≤ 25 (kg/m²)	66.37 (55.65-75.64)	78.20 (75.15-80.97)	
≥ 25 (kg/m²)	33.63 (24.36-44.35)	21.80 (19.03-24.85)	
Father’s information			0.001
Age			
20s	13.78 (6.17-27.98)	3.84 (2.53-5.81)	
30s	51.10 (38.32-63.74)	69.52 (65.44-73.31)	
≥ 40s	35.11 (24.11-47.97)	26.64 (23.20-30.39)	
Marital status			0.015
Never married	-	-	
Married	96.39 (85.81-99.16)	99.28 (98.15-99.91)	
To determine the association between breastfeeding and socioeconomic factors in all participants, logistic regression analysis was performed. The results are presented in Table 3. Mothers’ education level (≥13 years: odd ratio [OR], 2.79; 95% confidence interval [CI], 1.21-6.42), middle high of mother’s income (OR, 2.30; 95% CI, 1.18-2.84), no smoking status (OR, 3.07; 95% CI, 1.28-7.36), BMI (< 25(kg/m\(^2\)): OR, 1.82; 95% CI, 1.12-2.95) were associated with breastfeeding (p<0.05). Also, fathers’ age (30s: OR, 4.88; 95% CI, 1.82-13.04), education level (≥ 13 years: OR, 7.94; 95% CI, 3.12-20.18) were associated with breastfeeding (p<0.05). After adjusting for mothers’ education, income, smoking status, BMI, fathers’ age, education and income level, the OR showed that mother’s BMI (<25 (kg/m\(^2\)): OR, 2.14; 95% CI, 1.12-4.09), fathers’ age (30s: OR, 6.16; 95% CI, 1.63-23.31), (40s: OR, 3.94; 95% CI, 1.08-14.33), education level (≥13 years: OR, 4.48; 95% CI, 1.13-17.81) were statistically significant (p<0.05).

Table 3. Unadjusted and adjusted Odds Ratio for breastfeeding and socioeconomic factors.

	Unadjusted	Adjusted
Separated/divorced	3.61 (0.84-14.19)	0.42 (0.00-1.85)
Education level		<0.001
≤ 9 years	16.88 (8.74-30.09)	4.11 (2.77-6.06)
10–12 years	46.30 (33.73-59.36)	24.75 (21.40-28.43)
≥ 13 years	36.83 (25.09-50.36)	71.14 (67.34-74.68)
Income (quartile)		0.348
1 (low)	39.03 (27.98-51.32)	31.84 (28.09-35.85)
2 (middle low)	23.22 (14.72-34.63)	26.21 (22.90-29.82)
3 (middle high)	16.21 (9.02-27.41)	24.39 (20.99-28.14)
4 (high)	21.54 (12.71-34.12)	17.55 (14.92-20.53)
Employment		0.546
No	18.30 (10.56-29.83)	21.54 (18.56-24.84)
Yes	81.70 (70.17-89.44)	78.46 (75.16-81.44)
Current Smoking status		0.142
No	44.01 (31.84-56.95)	54.15 (50.13-58.12)
Yes	55.99 (43.05-68.16)	45.85 (41.88-49.87)
Body mass index		0.902
< 25 (kg/m\(^2\))	54.56 (41.49-67.04)	53.70 (49.79-57.56)
≥ 25 (kg/m\(^2\))	45.44 (32.96-58.51)	46.30 (42.44-50.21)

Values are presented as estimate (95% confidence interval).
	Unadjusted OR (95% CI)	OR p-value	Adjusted OR a (95% CI)	p-value
Children’s information				
Sex				
Male	1.19 (0.79-1.80)	0.404	0.90 (0.44-1.87)	0.782
Female	Reference		0.96 (0.45-2.07)	0.917
Age				
≤ 12 months	Reference		Reference	
13~24 months	1.27 (0.76-2.13)	0.353	0.90 (0.44-1.87)	0.782
≥ 25 months	1.68 (1.01-2.80)	0.048	0.96 (0.45-2.07)	0.917
Residence area				
Rural	Reference		Reference	
Urban	1.19 (0.68-2.09)	0.540		
House income				
Low	Reference		Reference	
Middle low	0.71 (0.27-1.87)	0.494		
Middle high	0.96 (0.36-2.54)	0.936		
High	1.05 (0.38-2.91)	0.926		
Mother’s information				
Age				
20s	Reference		Reference	
30s	1.49 (0.78-2.83)	0.225		
≥ 40s	1.60 (0.72-3.57)	0.252		
Parity				
primipara	Reference		Reference	
multipara	1.12 (0.58-2.14)	0.741		
Education level				
≤ 9 years	Reference		Reference	
10~12 years	1.03 (0.43-2.44)	0.954	0.53 (0.15-1.88)	0.328
≥ 13 years	2.79 (1.21-6.42)	0.016	0.89 (0.24-3.35)	0.864
Income(quartile)				
1(low)	Reference		Reference	
2(middle low)	1.54 (0.88-2.68)	0.132	1.15 (0.51-2.61)	0.740
3(middle high)	2.30 (1.18-4.49)	0.015	1.56 (0.65-3.72)	0.316
4(high)	1.45 (0.74-2.84)	0.278	0.70 (0.29-1.67)	0.420
Employment				
No	Reference		Reference	
Yes	1.61 (0.96-2.68)	0.070		
Current Smoking status				
No	3.07 (1.28-7.36)	0.012	0.45 (0.09-2.27)	0.335
Yes	Reference		Reference	
Body mass index				
< 25 (kg/m²)	1.82 (1.12-2.95)	0.016	2.14 (1.12-4.09)	0.021
≥25 (kg/m²)	Reference		Reference	
Father’s information				
Age				
20s	Reference		Reference	
30s	4.88 (1.82-13.04)	0.002	6.16 (1.63-23.31)	0.008
≥40s	2.72 (0.99-7.42)	0.051	3.94 (1.08-14.33)	0.037
Education level				
≤ 9 years	Reference		Reference	
10~12 years	2.20 (0.89-5.39)	0.086	1.42 (0.42-4.84)	0.571
≥ 13 years	7.94 (3.12-20.18)	<0.001	4.48 (1.13-17.81)	0.033
Income(quartile)				
Reference	1(low)	2(middle low)	3(middle high)	4 (high)
-----------	--------	---------------	----------------	---------
Reference	1.38 (0.72-2.64)	1.84 (0.86-3.94)	0.99 (0.49-2.05)	**Employment**
No	Reference	1.23 (0.63-2.38)	0.547	
Yes	1.50 (0.87-2.60)	0.114		
Current Smoking status	Body mass index	0.97 (0.56-1.68)	1.15 (0.58-2.25)	0.688
No	Reference	Reference	Reference	< 25(kg/m²)
Yes	Reference	Reference	Reference	≥25 (kg/m²)

*Adjusted for mother's education, income, smoking status, body mass index and father's age, education.

Discussion

Using data from the KNHANES, this study demonstrated that socioeconomic factors affect breastfeeding. Children whose mothers have a higher education level, middle high income, no smoking and obese status were associated with breastfeeding, as were children whose fathers had high education level and 30s age.

Multiple factors influence breastfeeding. These factors were classified into four groups: demographic, biological, social, and psychological. Demographic factors that affect the breastfeeding rate include race, maternal age, marital status, socioeconomic status, and education level. In this study, we examined socioeconomic factors that affect breastfeeding.

Some studies showed that parental age did not affect breastfeeding. However, several previous reports showed that the older the mothers were more likely to breastfeed than were younger mothers. Oakely et al reported that the younger the mother was, the less likely she was to breastfeed or to stop breastfeeding within 6 weeks. We posit that younger mothers lack knowledge and awareness of breastfeeding. In this study, most parents were in their 30s and most breastfed their infants; mothers' age did not affect breastfeeding.

Banu et al stated that the higher the parents’ education level, the higher the exclusive breastfeeding rate and longer duration of the exclusive breastfeeding. In this study, parents’ education level was also related to breastfeeding. The higher the parents’ education level, the more it affected breastfeeding. It is believed that the higher education level coincides with increased opportunities to access information about the benefits of breastfeeding. In high-income countries, mother’s education level is positively associated with higher breastfeeding rate. Even for mothers with a job, breastfeeding rate is estimated to be high, because the higher the level of education, the higher the occupational status, the better the working environment and the better knowing the benefits of breastfeeding. In middle- and low-income countries,
the relationship between breastfeeding and mothers’ education level varies. Some studies have reported a negative relationship between mothers’ education level and the breastfeeding rate owing to quick return to work. Another study showed a higher parental education level was associated with a higher breastfeeding rate and exclusive breastfeeding. We found a positive association between father's education level and breastfeeding. Similar finding has been reported by Flacking et al, who found that the lower the fathers’ education level, the lower the breastfeeding rate. We posit that this is related to family income. Because higher education often results in a better income, mothers may not need to work and can focus on parenting. However, other study showed that mothers—but not fathers—education level was related breastfeeding, or that parental education level was not related to breastfeeding.

Wallby et al reported that higher breastfeeding rate in low-income households. This is believed to be due to the fact that there are no economic condition to choose a different formula besides breast milk and no easy finding a job for mother. Victoria et al stated that high-income, better-educated women breastfeed more commonly in high-income countries. Due to economic benefits, the lower the household’s gross income, the higher the breastfeeding in low-income and middle-income countries. However, in other studies, household income did not affect breastfeeding. In this study, there was no relationship between house income, the parental income and breastfeeding, however, the mothers of middle high income was related to breastfeeding.

Maternal job status is variable that has been associated with breastfeeding. Previous studies revealed that full-time houseswives have higher breastfeeding rates than mothers with work and the shorter the time to return to work after childbirth, the shorter the breastfeeding period. It is estimated that they stop breastfeeding because they have less time to care for the child while working. However, we did not find a significant association between breastfeeding and parental job status.

A consistent negative association between breastfeeding and maternal smoking has been well known in present study. Weiser et al showed that smoking during the postpartum period were associated with failure to initiate breastfeeding, also associated with weaning sooner. Nicotine increases dopamine secretion in the hypothalamus, thereby reducing prolactin levels. For this reason, helping mothers quit smoking is beneficial to the health of infants and children as it helps prolong breastfeeding duration. In our study, significant negative association with breastfeeding was observed for maternal smoking.

Baker et al suggested that maternal obesity can be considered as a risk factor to adverse breastfeeding outcome. There were some hypotheses trying to explain possible reasons why obese women are less likely to breastfeed; (1) large breast in obese women have been associated with breastfeeding practical difficulties; (2) excessive maternal adiposity may interfere with the development of the mammary glands; (3) delayed lactogenesis and lower prolactin response to suckling in obese women. Our result showed that obesity is associated with breastfeeding. But we were not clear on the possible reasons.
Importantly, our results shed light on some socioeconomic factors associated with breastfeeding; however, this study has some limitations. The utilized data were collected through self-report, and this is a source of recall bias which may have either underestimated or overestimated the relationship between the breastfeeding and socio-economic status. This study was conducted by breastfeeding status, it was not possible to investigate the effects of breastfeeding duration and type. Further, causal relationships cannot be confirmed owing to the cross-sectional design of the KNHANES. In addition to the factors used in this study, it is considered that studies on various social factors such as breastfeeding education, use of postpartum care center, parental leave, and establishment of a breastfeeding room in the workplace are necessary.

Conclusion

This population-based study demonstrated that socioeconomic factors (parental education level, mothers’ income, smoking and obese status and fathers’ age) affect breastfeeding. To increase the breastfeeding rate and exclusive breastfeeding, further research should explore the reasons why parents stop breastfeeding.

Abbreviations

KNHANES: Korea National Health and Nutrition Examination Survey

WHO: World Health Organization

OR: odd ratio

CI: confidence interval

BMI: Body mass index

Declaration

Ethics approval and consent to participate

All of the participants in the KNHANES were informed that they had been randomly chosen to participate in the survey with the right to participate in the further analyses, and signed an informed consent form. As this was a cross-sectional study that used and analyzed data from KNHANES (http://knhanes.cdc.go.kr/knhanes/), ethical approval was not required.

Consent for publication: Not applicable

Availability of data and materials
The datasets generated and/or analyzed during the current study are available from the Korea National Health and Nutrition Examination Survey (http://knhanes.cdc.go.kr/knhanes).

Competing interests: The authors declare that they have no competing interests

Funding: Not applicable

Authors’ contributions

All authors have read and approved the manuscript

Conceptualization: THK. Data curation: THK, JSL. Formal analysis: THK, JSL. Investigation: THK, JSL. Methodology: THK, JSL. Writing-original draft: THK. Writing-review & editing: THK, JSL

Acknowledgements: Not applicable

References

1. Kramer MS, Kakuma R. Optimal duration of exclusive breastfeeding. *Cochrane Database of Systematic Reviews* 2012;(8):1-44.

2. Victoria CG, Bahl R, Barros AJ, Franca GV, Horton S, Kraevec J, *et al.* Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *Lancet* 2016;387(10017): 475-90.

3. Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, *et al.* Breastfeeding and maternal health outcomes: a systematic review and meta-analysis. *Acta Paediatrica* 2015;104(467):96-113.

4. Section on Breastfeeding. Breastfeeding and the use of human milk. *Pediatrics* 2012;129(3):e827-41.

5. World Health Organization. The optimal duration of exclusive breastfeeding: report of an expert consultation.

 http://www.who.int/nutrition/publications/optimal_duration_of_exc_bfeeding_report_eng.pdf.

 Accessed Nov 30, 2019.

6. Food and Agriculture Organization(FAO), International Fund for Agricultural Development(IFAD), United Nations Children's Fund(UNICEF), World Food Programme(WFP) and WHO. 2017. The State of Food Security and Nutrition in the world: In brief. http://fao.org/3/a-I7787e.pdf. Accessed Nov 30, 2019.

7. World Health Organization Regional Office for Europe. WHO European Region has lowest global breastfeeding rates. http://www.euro.who.int/en/health-topics/Life-stages/maternal-and-newborn-health/news/news/2015/08/who-european-region-has-lowest-global-breastfeeding-rates. Accessed Nov 30, 2019.

8. Theurich MA, Davanzo R, Busck-Rasmussen M, Díaz-Gómez N, Brennan C, Kylberg E, *et al.* Breastfeeding Rates and Programs in Europe: A survey 11 National Breastfeeding Committees and Representatives. *J Pediatr Gastroenterol. Nutr* 2019;68(3):400-7.
9. Centers for Disease Control and Prevention. National Center for Chronic Disease Prevention and Health Promotion, Division of Nutrition, Physical Activity, and Obesity. United States: Breastfeeding Report Card; 2018. https://www.cdc.gov/breastfeeding/data/reportcard.htm Accessed Dec 31, 2019

10. World Health Organization. WHO Global Nutrition Targets 2025: Breastfeeding Policy Brief. http://www.who.int/nutrition/publications/globaltargets2025_policybrief_breastfeeding. Accessed Nov 30, 2019

11. World Health Organization (WHO), United Nations Children’s fund (UNICEF). Increasing commitment to breastfeeding through funding and improved policies and programmes: Global breastfeeding scorecard 2019. Accessed Nov 30, 2019.

12. Korean Ministry of Health and Welfare. National Health Plan 2020; 2016. https://khealth.or.kr/healthplan. Accessed Nov. 30, 2019

13. Thulier D, Mercer J. Variables associated with breastfeeding duration. J Obstet Gynecol Neonatal Nurs 2009;38(3):259-68.

14. Langellier BA, Pia Chaparro M, Whaley SE. Social and institutional factors that affect breastfeeding duration among WIC participants in Los Angeles County, California. Matern Child Health J 2012;16:1887-95.

15. Laterra A, Ayoya MA, Beaulière J-M, Bienfait M, Pachón H. Infant and young child feeding in four departments in Haiti: mixed-method study on prevalence of recommended practices and related attitudes, beliefs, and other determinants. Rev Panam Salud Publica 2014;36(5):306-13.

16. Hure AJ, Powers JR, Chojenta CL, Byles JE, Loxton D. Poor adherence to national and international breastfeeding duration targets in an Australian longitudinal cohort. PLoS ONE.2013;8(1):e54409.

17. Kristiansen AL, Lande B, Øverby NC, Andersen LF. Factors associated with exclusive breast-feeding and breast-feeding in Norway. Public Health Nutr 2010;13(12):2087-96.

18. Hossain M, Islam A, Kamarul T, Hossain G. Exclusive breastfeeding practice during first six months of an infant’s life in Bangladesh: a country based cross-sectional study. BMC pediatrics 2018;18(1):93.

19. Oakley LL, Henderson J, Redshaw M, Redshaw M, Quigley MA. The role of support and other factors in early breastfeeding cessation: an analysis of data from a maternity survey in England. BMC pregnancy childbirth 2014;14:88.

20. Banu B, Khanom K. Effect of education level of father and mother on perception of breastfeeding. J Enam Med Coll 2012;2(2): 67-73.

21. Li R, Darling N, Maurice E, Maurice E, Barker L, Grummer-Strawn LM. Breastfeeding rates in the United States by characteristics of the child, mother, or family: the 2002 National Immunization Survey. Pediatrics 2005;115(1):e31-7.

22. Lande B, Andersen LF, Veierød MB, Bærug A, Johansson L, Trygg KU, Bjørneboe GA. Breast-feeding at 12 months of age and dietary habits among breast-fed and non-breast-fed infants. Public Health Nutr 2004;7(4):495-503.
23. Jessri M, Farmer AP, Maximova K, Willows ND, Bell RC. Predictors of exclusive breastfeeding: observations from the Alberta pregnancy outcomes and nutrition (APrOn) study. *BMC Pediatr* 2013;13:77.

24. Al-Sahab B, Lanes A, Feldman M, Tamim H. Prevalence and predictors of 6-month exclusive breastfeeding among Canadian women: a national survey. *BMC pediatr* 2010;10:20.

25. Tang K, Wang H, Tan SH, Xin T, Qu X, Tang T, et al. Association between maternal education and breastfeeding practices in China: a population-based cross-sectional study. *BMJ Open* 2019;9(8):e028485.

26. Hajian-Tilaki KO. Factors associated with the pattern of breastfeeding in the north of Iran. *Ann Hum Biol* 2005;32(6):702-13.

27. Acharya P, Khanal V. The effect of mother’s educational status on early initiation of breastfeeding: further analysis of three consecutive Nepal Demographic and Health Surveys. *BMC Public Health* 2015;15:1069.

28. Flacking R, Dykes F, Ewal U. The influence of father’s socioeconomic status and paternity leave on breastfeeding duration: A population-based cohort study. *Scand J Public Health* 2010;38:337-43.

29. Yalcın SS, Yalcın S, Kurtuluş-Yiğit E. Determinants of continued breastfeeding beyond 12 months in Turkey: secondary data analysis of the Demographic and Health Survey. *Turk J Pediatr* 2014;56(6):581-91.

30. Senarath U, Siriwardena I, Godakandage SS, Jayawickrama H, Fernando DN, Dibley MJ. Determinants of breastfeeding practices: an analysis of the Sri Lanka Demographic and Health Survey 2006-2007. *Matern Child Nutr* 2012;8(3):315-29.

31. Wallby T, Hjern A. Region of birth, income and breastfeeding in a Swedish county. *Acta Paediatr* 2009;98(11):1799-804.

32. Horta BL, Kramer MS, Platt RW. Maternal smoking and the risk of early weaning: a meta-analysis. *Am J Public Health*. 2001;91(2):304-7.

33. Weiser TM, Lin M, Garikapati V, Feyerharm RW, Bensyl DM, Zhu BP. Association of maternal smoking status with breastfeeding practices: Missouri, 2005. *Pediatrics.*2009;124(6):1603-10

34. Jansson A, Andersson K, Bjelke B, Eneroth P, Fuxe K. Effects of postnatal exposure to cigarette smoke on hypothalamic catecholamine nerve terminal systems and on neuroendocrine function in the postnatal and adult male rat: Evidence for long-term modulation of anterior pituitary function. *Acta Physiol Scand.* 1992;144:453-62.

35. Baker JL, Michaelsen KF, Sorensen TI, Ramussen KM. High prepregnant body mass index is associated with early termination of full and any breastfeeding in Danish women. *Am J Clin Nutr.* 2007;86:404-11

36. Katz Ka, Nilsson I, Ramussen KM. Danish health care providers’ perception of breastfeeding difficulty experienced by women who are obese, have large breasts, or both. *J Hum Lact* 2010;26:138-47

37. Rasmussen KM. Association of maternal obesity before conception with poor lactation performance. *Annual Review of Nutrition.* 2007;27:103-21
38. Rasmussen KM, Kjolhede CL. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. *Pediatrics* 2004;113:465-71

Figures

Participants (n=31,098) from the Korean National Health and Nutrition Examination Survey (KNHANES), 2013 ~ 2017

- **Inclusion**
 - Aged ≥12 months to <60 months: 1,534 participants

- **Exclusion** (if at least one of the following criteria were present):
 - No information regarding breastfeeding: 365 participants
 - No information regarding socioeconomics: 41 participants
 - Single parents: 314 participants

Final study population: N = 814

Figure 1

Flow chart of the sample selection process of the study population