Novel magnetic organic–inorganic hybrids based on aromatic polyamides and ZnFe$_2$O$_4$ nanoparticles with biological activity

Reza Eivazzadeh-Keihan1, Mostafa Ghafari Gorab1, Hooman Aghamirza Moghim Aliabadi2,3, Mohammad mahdavi4, Ali Reza Akbarzadeh5, Ali Maleki1,5 & Hossein Ghafuri1,5

Magnetic nanoparticles were creatively selected as stable, inexpensive, biodegradable, facile recoverable, and functionalizable supports for a variety of synthetic and natural polymers. Herein, for the first time, aromatic polyamide was synthesized on the magnetic core of zinc iron oxide (ZnFe$_2$O$_4$). Terephthaloyl chloride and derivations of phenylenediamine were employed as monomers in this polymerization process. The toxicity of the synthesized hybrid at the highest concentration (1000 μg/ml) is 13.65% and on the other hand, the cell viability percentage is 86.35%. So, the prepared hybrid is biocompatible and non-toxic to Hu02 cells. Also, it has antibacterial ability against gram-positive and gram-negative bacteria. Because the results show that the minimum inhibitory concentration (MIC) of the synthesized polymer for bacteria such as *Staphylococcus aureus* ATCC 25923, *Escherichia coli* ATCC 25922, and *Pseudomonas aeruginosa* ATCC 27853 is in the range of 500–1000 μg/ml. Moreover, the hemolytic effect of ZnFe$_2$O$_4$ based hybrid was below 9% at the concentration of 1000 μg/ml. Therefore, it is compatible with red blood cells.

In recent years, the perusal of branched polymeric materials such as star polymers, dendrimers, and hyper-branched polymers has been increased. These molecular structures have been prepared via particular application, controlled structure, and specific properties to emergence advanced polymerization methods and a variety of polymeric macromolecules1,2. A blend of inorganic compounds such as MNPs with organic polymers is one of the exciting research areas. In this regard, magnetic polymers were prepared in different ways, which can be classified into three categories. The first group consists of the preparation of magnetic polymers from magnetic particles and polymers that have already been synthesized separately3. In this regard, magnetic nanoparticles can be synthesized by various methods, including coprecipitation, thermal decomposition, microemulsion synthesis, hydrothermal synthesis, sol–gel, wire explosion, laser evaporation, ball milling and, biological synthesis methods$^{4-6}$. The second group of magnetic polymers is synthesized by the polymerization process in the presence of magnetic nanoparticles and finally, the third group is prepared while the magnetic nanoparticles are synthesized in the presence of polymer3. There are plenty of reports on preparing a wide range of magnetic polymers for different scientific aspects$^{7-11}$. In this regard, among different kinds of nanoparticles, ZnFe$_2$O$_4$ MNPs have received great interest due to their desirable attributes such as low toxicity, low cost, high abundance of parent materials, good chemical stability, and is easily collected from the reaction system12. According to their works of literature, ZnFe$_2$O$_4$ MNPs have been used in many fields such as adsorption13, photocatalysts14, solar cell15, sensors15, highly sensitive MRI contrast agents16, biomedical applications17 and battery18.

1Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846-13114 Tehran, Iran. 2Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran. 3Advanced Chemistry Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran. 4Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. 5Department of Chemistry, Iran University of Science and Technology, 16846_13114 Tehran, Iran. *email: maleki@iust.ac.ir; ghafuri@iust.ac.ir
Over the last decades, the functionalization of MNPs has attracted remarkable interest due to their exhibit of improved features such as biocompatibility, stability of colloid in variety of environments, and prevention of accumulation through magnetic forces between particles. When MNPs are used alone, they are prone to oxidation in air, which reduces their magnetic properties and their ability to disperse. One way to overcome these limitations is to functionalize MNPs surface with different inorganic or organic molecules. An example of these molecules is SiO\textsubscript{2}, which is used to coat ZnFe\textsubscript{2}O\textsubscript{4} MNPs due to its desirable properties such as biocompatibility, non-toxicity, and dispersity in H\textsubscript{2}O. So far, ZnFe\textsubscript{2}O\textsubscript{4} MNPs has been combined with variety of natural and synthetic polymers such as Chitosan, Tragacanth gum, Poly(vinylidene fluoride), Polydopamine, polystyrene, polyaniline, polypyrrole, poly(o-phenylenediamine), polythiophene, polyvinyl pyrrolidone, Poly(m-phenylenediamine), poly methyl methacrylate for different purposes. In addition, there are various reports of different polymers growing during the polymerization process on the surface of MNPs to prepare novel magnetic star polymers.

Recently, the design and synthesis of novel nanocomposites that can be employed in biological applications have been increased dramatically. There have been numerous reports on improved applications of these nanocomposites in various fields including cancer treatment, tissue engineering, drug delivery, bioimaging, diagnosis of disease, antibiofilm, wound healing, antibacterial, antimicrobial, and antifungal activities. The important point here is that these applications should be considered alongside features such as biocompatibility and low toxicity. For example, in a previous study, a magnetic nanocomposite was synthesized on the surface of Fe\textsubscript{3}O\textsubscript{4} by conduct polymerization between monomers including phenylenediamine derivatives and dichlorophenylsilane and investigated in the field of hyperthermia application. Herein the novel magnetic aromatic polyamide based on the polymerization process of terephthaloyl chloride and phenylenediamine derivations on the surface of functionalized ZnFe\textsubscript{2}O\textsubscript{4} MNPs was prepared (Fig. 1). After studying the structure of magnetic polymer, the properties of hybrid in terms of toxicity, biocompatibility, blood compatibility and antibacterial activity were investigated. Based on the results from 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay, the synthesized hybrid is completely non-toxic and biocompatible with Hu02 cells. Moreover, RBCs hemolytic assay results indicated that the hemolytic effect of ZnFe2O4 based hybrid was below 9% at concentration of 1000 μg/ml. Finally, the results of the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) showed that MIC of organic-inorganic hybrid in Gram-negative and Gram-positive bacteria was 500–1000 μg/ml. In other words, it showed antibacterial activity. It is the first report that ZnFe2O4 magnetic core has been utilized for the synthesis of hybrid with high antibacterial properties and low hemolysis and toxicity. The presence of a magnetic core along with the adaptation of this structure to biological environments makes it probable candidate to use it in the treatment of cancer via the hyperthermia method. Also, the amide structure of the polymer can cause good dispersion of the substance in the biological environment due to the high potential of the polyamide chain to form a hydrogen bond with water. In addition, the polyamide structure is likely to interact electrostatically with anticancer drugs, including doxorubicin, which may further highlight the importance of this structure. The mentioned properties made the synthesized structure can be used as a material with high potential for future research in biological investigations.

Experimental

General. All raw materials used in this study are provided by reputable companies such as Merck (New Jersey, United States) or Flucka (Buchs, Switzerland). AVATAR device from Thermo company (Waltham, Massachusetts, United States) was used for the record Fourier transform (FT)-IR spectra to identify hybrid structure. Jersey, United States) or Flucka (Buchs, Switzerland). AV ATAR device from Thermo company (Waltham, Massachusetts, United States) was used for the record Fourier transform (FT)-IR spectra to identify hybrid structure. This analysis was performed in the range of 400–4000 cm⁻¹. The X-ray diffraction (XRD) analysis was utilized (Almelo, Netherlands) was used for this purpose. This analysis was evaluated in the range of 20°, 0.5° to 20° and 10° to 80°. The energy dispersive x-ray spectroscopy (EDS) and Field emission scanning electron microscopy (FE-SEM) were gained using a ZEISS SIGMA VP model (Oberkochen, Germany) for investigate morphology, structure, and chemical composition of the synthesized hybrid. Thermogravimetric analysis (TGA) was used in the range of 20–800 °C at a rate of 10 °C/min in argon to investigate the thermal stability of the synthesized magnetic polymer. In this regard, an STA504 analyzer (New Castle County, Delaware, United States) was used. Finally, VSM analysis was done to evaluate the magnetic strength of the fabricated sample and magnetic Kavir’s LBKFB device (Kashan, Iran) was used. TEM analysis was performed to further examine the structure of the synthesized hybrid and for this purpose, ZEISS-EM10C-100 kV (Oberkochen, Germany) was used. DLS/Z-potential measurement were used the answer the stability in the solvent and hydrodynamic diameter of the particles after polymeric shell creation. This analysis was performed using Horiba SZ100 (kyoto, Japan). The biological experimental methods and the procedure for taking informed satisfaction were approved by Pasteur Institute of Iran, Ethics Research Committee. Moreover, this study was conducted in accordance with the principles outlined in the Declaration of Helsinki.

Preparation of ZnFe2O4 MNPs. Although there are many reported procedures for synthesizing ZnFe2O4 NPs, in this study, a simple process was performed based on the previously reported article. For this purpose, two solutions must be made. To prepare solution number one, 50 ml of deionized water is poured into a 250 ml beaker, and 4.9 g (0.016 mol) of Zn(NO3)2.6H2O is added to it while stirring. After dissolving the zinc salt, 13.4 g (0.033 mol) of Fe(NO3)3.9H2O is added to the solution and mixed until completely dissolved. Then to prepare solution number two, dissolve 4.2 g (0.105 mol) of NaOH and 3 ml (0.045 mol) of 1,2-Diaminoethane in 70 ml of distilled H2O. In the next step, the two solutions are mixed and heated for 1 h at 90 °C. After this time, the precipitate was removed by centrifugation and washed with water and ethanol. In final step, the resulting ZnFe2O4 was dried in a vacuum oven and then calcined for 1 h at 600 °C at a rate of 10 °C/min. The whole process was performed using a magnetic stirrer at a speed of 600 rpm (supplementary information. Fig. S1).

Preparation of ZnFe2O4/SiO2. ZnFeO4@SiO2 MNPs synthesis was carried out according to the described process in the literature. For this purpose, a mixture of 1 ml of 25% ammonia, 20 ml of distilled water, and 60 ml of EtOH was poured in a round bottom balloon with a capacity of 100 ml. Then half a gram of ZnFe2O4 was added and dispersed in an ultrasonic bath for 30 min. Then, the solution containing 0.5 ml of tetraethyl orthosilicate (TEOS) and 10 ml ethanol was made and added dropwise to the MNPs solution. The mixture component was stirred by mechanical stirring for 24 h at ambient temperature. After the mentioned time, the precipitate is collected by a magnet and after washing with water and ethanol, it is placed in an 80 °C vacuum oven for 7 h to dry (supplementary information. Fig. S2).

Preparation of ZnFe2O4/SiO2-Cl. At this stage of synthesis, a layer of (3-chloropropyl)trimethoxysilane (CPTMS) molecule sits on the SiO2 layer in the structure. Initially, 0.69 g of ZnFe2O4@SiO2 powder was added to the 70 ml of dry toluene and stirred at 60 °C. After adding 1 ml of CPTMS, the solution was kept stirring for 18 h under the conditions mentioned. Finally, the obtained ZnFe2O4/SiO2-Cl was separated from the reaction medium by magnetic field, and washed with dry toluene and dried in vacuum oven (supplementary information. Fig. S3).

Preparation of ZnFe2O4/SiO2-phenylenediamine. Initially, 25 ml of ethanol is poured into a 50 ml round bottom balloon. Then 2 mmol of phenylenediamine derivatives and 1 g of MNPs functionalized by CPTMS were added to the balloon. After the resulting solution is refluxed for 12 h, the precipitate was separated and washed with ethanol. The washed precipitate is placed in a 60 °C oven for 12 h to dry (supplementary information. Fig. S4).
Preparation of ZnFe$_2$O$_4$/SiO$_2$–polymer. To synthesize polymer-functionalized ZnFe$_2$O$_4$ MNPs, 50 ml of DMF and 0.05 g of as-prepared magnetic substrate were poured into a 100 ml round bottom balloon, and the mixture was stirred for half an hour until the magnetic particles were completely dispersed in the solvent. Then 10 mmol of phenylenediamine derivatives were added to the balloon and stirred for 20 min. Next, 10 mmol of terephthaloyl chloride was dissolved in 5 ml of DMF and added to the mixture within 1 h. The balloon contents were stirred at room temperature for 5 h and then refluxed under nitrogen for 45 min to 1 h. The final precipitate is collected by a magnet and after washing with DMF and ethanol, it is placed in a 160-degree vacuum oven for 12 h to dry (supplementary information. Fig. S5).

Cytotoxicity assay. MTT assay was used to evaluate the toxicity and biocompatibility of the synthesized hybrid. This test was performed according to the method of Eivazzadeh-Keihan et al.45. For this purpose, human skin fibroblast cells (Hu02) were prepared from the cell bank of Pasteur Institute of Iran and cultured at 1 × 105 cell/well in 96 well plates on the scaffolds under optimal conditions (37 °C, 5% CO$_2$ in humidified incubator). Next, the growth media (10% FBS) was removed and the cells were washed two times with PBS. New maintenance Roswell Park Memorial Institute Medium (RPMI) medium (10% FBS) containing 0.5, 5, 50, 500, and 1000 μg/ml of synthesized hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe$_2$O$_4$ was added and the cells were incubated for 24, 48, and 72 h. Quinet wells were analyzed for each concentration and column elution buffer was used as the control. A 10 µL solution of freshly prepared 5 mg/ml MTT in PBS was added to each well and allowed to incubate for an additional 4 h. The media was removed and isopropanol was added at 100 µL/well. Plates were shaken gently to facilitate the formazan crystal solubilization. The absorbance was measured at 545 nm using a microplate reader (STAT FAX 2100, BioTek, Winooski, USA). The percentage of toxicity and cell viability was calculated as follows:

\[\text{Toxicity} \% = \left(1 - \frac{\text{mean OD of sample}}{\text{mean OD of control}} \right) \times 100 \]

(1)

\[\text{Viability} \% = 100 - \text{Toxicity} \% \]

(2)

Blood compatibility assay. The potential lytic effects of synthesized hybrid on human erythrocytes, was evaluated by a red blood cells (RBCs) hemolytic assay. First, after completing the informed consent form, fresh blood samples were taken from a volunteer with blood type O. Next, 20% (Vol/Vol) suspension of human RBCs was prepared and diluted 1: 20 in PBS; after that 100 μL was added in triplicate to 100 μL of a twofold serial dilution series of synthesized hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe$_2$O$_4$ in a 96-well plate. As a positive control for 100% lysis of RBCs, 1% Triton-X 100 was added and a sterile 0.9% NaCl solution was added to the negative control. The plates were incubated at 37 °C for 1 h and centrifuged for 10 min at 3000 rpm. Then, 150 μL of the supernatant was transferred to a new 96-well plate to measure the absorbance at 414 nm using a microplate reader (STAT FAX 2100, BioTek, Winooski, USA). Finally, the percentage of hemolysis was calculated as follows:

\[\text{Hemolysis ratio (HR)} = \left(\frac{\text{TS} - \text{NC}}{\text{PC} - \text{NC}}\right) \times 100 \]

(3)

TS = test sample, NC = negative control, PC = positive control.

Antibacterial assay. The antimicrobial efficacy of the synthesized hybrid was measured using a serial dilution titration method, according to Clinical and Laboratory Standards Institute (CLSI) guidelines, to determine MIC of the polymer against different bacterial strains47. Briefly, bacteria were grown overnight at 37 °C in Mueller Hinton Broth (MHB) and Roswell Park Memorial Institute (RPMI) 1640 medium, respectively, then were diluted in the same medium. Serial dilutions of synthesized hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe$_2$O$_4$ were added to the microtiter plates in a volume of 100 μL, followed by the addition of 100 μL of bacteria to give a final inoculum of 5 × 105 colony-forming units (CFU)/ml. The plates were incubated at 37 °C for 24 h and 48 h, and the MICs were determined. Then, 100 μL of the initial bacteria inoculums of 5 × 105 CFU/ml were platted on Mueller–Hinton Agar (MHA) and Sabouraud Maltose Agar (SMA) as the positive control, and 100 μL of the 24 h inhibitory concentration test samples was platted on the same media to determine the MBCs48.

Results and discussion

Characterization of the prepared organic–inorganic hybrid. FT-IR analysis. The synthesis procedure of synthesized hybrid was confirmed step by step via FT-IR analysis (Fig. 2a–e). As shown in Fig. 2a, the ZnFe$_2$O$_4$ IR spectrum shows the peaks at 453 cm$^{-1}$, 562 cm$^{-1}$, and 3405 cm$^{-1}$, which respectively correspond to the Zn–O, Fe–O, and O–H stretching vibrations20. Figure 2b confirms the process of functionalization of ZnFe$_2$O$_4$ nanoparticles by a shell of silica. The peaks observed at points 1100 cm$^{-1}$ and 800 cm$^{-1}$ show stretching vibration of Zn–O, Fe–O, and O–H stretching vibrations20. Figure 2b confirms the process of functionalization of ZnFe$_2$O$_4$ nanoparticles by a shell of silica. The peaks observed at points 1100 cm$^{-1}$ and 800 cm$^{-1}$ show stretching vibration of Zn–O, Fe–O, and O–H stretching vibrations20.
vibrations of Si–O–Si and Si–O. On the other hand, the presence of a peak at point 479 cm\(^{-1}\) can indicate the bending vibration of the mentioned chemical division. In addition, a tiny peak is observed around 1637 cm\(^{-1}\), which can be attributed to twisting vibrations of the H–O–H adsorbed on the silica layer and the O–H stretching vibration in Si–OH. Broad peak observed in the area around 3400 cm\(^{-1}\) is also due to the stretching vibration of O–H. Figure 2c shows the spectrum of ZnFe\(_2\)O\(_4\)/SiO\(_2\) functionalized by CPTMS molecules. Very small peaks seen in areas 1410 cm\(^{-1}\) and 2855 cm\(^{-1}\) related to Si–CH\(_2\) and CH\(_2\) stretching vibrations, and these peaks can confirm the functionalization of MNPs by the CPTMS molecule. Figure 2d demonstrates the reaction of the synthesized functionalized MNPs in the previous step by the 1,4-phenylenediamine. In this diagram, the weak peaks observed at 1490 cm\(^{-1}\) and 1615 cm\(^{-1}\) are related to the stretching vibration of the C=C bond of the benzenoid rings and quinonoid. In addition, the broad peak that appears in the region 3340 cm\(^{-1}\) is related to the N–H stretching vibration of the amine. Finally, in Fig. 2e, the polymer formation process on the magnetic core was confirmed. The C–N and N–H peaks in the structure of polymer are observed in areas 1546 cm\(^{-1}\) and 1255 cm\(^{-1}\). The peak seen in 1515 cm\(^{-1}\) is also related to the stretching vibration of the aromatic ring in a synthetic polymer and N–H stretching vibration is appeared in 3340 cm\(^{-1}\). It should also be noted that the FT-IR spectrums of other polymers synthesized from phenylenediamine derivatives is shown in the supplementary information file (Figs. S6–S8).

EDX analysis. Following the structural study of the synthesized hybrid, EDX analysis was used to examine the elements present in the structure. As shown in Fig. 3, the presence of iron and zinc peaks can indicate the pres-
ence of ZnFe$_2$O$_4$ MNPs as the central magnetic core of a synthesized hybrid. In addition, the presence of silicon peak can indicate that the surface of nanoparticles is functionalized by TEOS and CPTMS molecules. Also, the presence of peaks related to carbon and nitrogen can confirm the polymerization process and the formation of aromatic polyamide. In order to examine other structures, EDX analysis of other derivatives is also available in the supplementary information file (Figs. S9–S11).

FE-SEM and TEM imaging. Due to the importance of knowing the morphology and particle size of the synthesized hybrid, FE-SEM images of synthesized polymers were obtained. As shown in Fig. 4, the primary spherical nanoparticles size are about 20–40 nm (a and b), while after the polymerization process, the particle size increases to about 450–600 nm for 1,2-phenylenediamine. Based on this, the growth of the polymer on the surface of ZnFe$_2$O$_4$ MNPs can be clearly observed. In order to examine other structures, this increase in particle size is observed for other derivatives and FE-SEM images of other derivatives are also available in the supplementary information file (Figs. S12–S14). In addition, As can be seen in the TEM images, the spherical particles of ZnFe$_2$O$_4$ are covered by a layer of polymer and these results confirm the informations of FE-SEM images.

XRD pattern. The XRD pattern of pure ZnFe$_2$O$_4$ and synthesized hybrid based on p-phenylenediamine is demonstrated in Fig. 5a. According to the observed diffraction angles ($2\theta = 24.1873, 33.1425, 35.2917, 42.9939, 56.8531$ and 62.3081), the crystalline peaks are complied with standard XRD pattern of SiO$_2$ shell and ZnFe$_2$O$_4$ MNPs in Fig. 5b, c (JCPDS card No.00-047-1300 and 01-077-0011). According to the literature, the size of ZnFe$_2$O$_4$ crystals synthesized by the co-precipitation method is reported to be about 26 nm. In this study, ZnFe$_2$O$_4$ was prepared using the mentioned technique and by using Scherrer's equation the average size of ZnFe$_2$O$_4$ crystals was found 26.49 nm. In addition, the peaks intensity in the XRD pattern of ZnFe$_2$O$_4$ is similar to the literature, and this is another confirmation of the correct formation of the desired metal nanoparticles. The crystals size were calculated as follows:

$$\tau = \frac{K\lambda}{\beta \cos \theta}$$

(4)

According to the Scherrer’s equation, τ is the crystallite size, λ is the X-ray wavelength (1.540 Å), β is the FWHM, θ is the angle of diffraction and K is scherrer constant.
Figure 4. (a, b) FE-SEM images of ZnFe₂O₄ MNPs, (c, d) magnetic hybrid based 1,2-phenylenediamine, (e) size distribution of magnetic hybrid based 1,2-phenylenediamine, (f) size distribution of ZnFe₂O₄ MNPs (g) TEM images of magnetic hybrid based 1,2-phenylenediamine.
Thermogravimetric analysis. TG analysis was performed under argon gas by increasing the temperature by 10 degrees per minute in the range of 50–900 °C to investigate the thermal behavior of synthetic magnetic hybrid. As can be seen in Fig. 6a, numerous mass reductions can be seen in the TGA diagram. Initially, a mass reduction of about 7% is detected in the temperature range of 50–420 °C, which can be attributed to the removal of possible impurities and solvents from the synthesis process20,32. Also, the decrease in mass observed in the temperature range of about 250–420 can be related to the removal of some organic parts of the molecule and grafted linkers7. Immediately after the first mass reduction, the second mass reduction occurs in the range of about 420–530 °C, at which point about 10% of the sample mass is reduced. This reduction in mass may be related to the initial and partial decomposition of the synthesized aromatic polyamide7. Then, with increasing temperature from 530 to 900 °C, the third stage of mass reduction (about 25%) is observed, which can be attributed to the decomposition of organic components of synthesized polymer. Finally, about 40% of the weight remains, which can be attributed to the core/shelled ZnFe$_2$O$_4$ and the organic materials ash that remains.

VSM analysis. VSM analysis was used to investigate the magnetic properties of the synthesized polymer and the magnetic hysteresis loop demonstrated in Fig. 6b. According to the obtained result of this analysis, the magnetic saturation of synthesized hybrid is approximately 7 (emu g$^{-1}$), and the magnetic saturation of synthesized ZnFe$_2$O$_4$ is about 11 (emu g$^{-1}$). Therefore, it can be concluded that MNPs functionalization reduces the magnetic property of these materials and on the other hand, this result is confirmed the correct functionalization of the ZnFe$_2$O$_4$ nanoparticles32. In this study, the coercivity (Hc) and a remanence magnetization (Mr) are approximately zero, which could be due to the superparamagnetic nature of the samples55,56.

DLS analysis. DLS analysis was performed and demonstrated in Fig. 7 to investigate the particle size and in this regard, the average particle size is about 500.1 nm. Moreover, the Z-average was 874.1 nm and the PI was 0.677. According to the obtained results from DLS analysis, the particle size of the final hybrid is the same as that estimated by microscopic methods.

Bio-application. Cytotoxicity assay. The toxicity and biocompatibility of prepared hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe$_2$O$_4$ were evaluated using MTT assay. According to the results, the toxicity of synthesized hybrid at the highest concentration (1000 μg/ml) was 13.65% and cell viability percentage in this concentration is 86.35% (Fig. 8a). The results are the average of three independent experiments. This rate of cell viability in this concentration indicates that this polymer is completely non-toxic and biocompatible with Hu02 cells.
Figure 6. (a) Thermogravimetric curve of prepared hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe₂O₄ and (b) Hysteresis loop curve of prepared hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe₂O₄.
Blood compatibility assay: Compatibility with blood is one of the most important features of the newly synthesized samples because it makes the study of their properties acceptable in biological applications. Results showed that the hemolytic effect of synthesized hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe₂O₄ was below 9% at a concentration of 1000 μg/ml. Instead, triton X-100 was hemolyzed about 100% of RBCs at same concentration (Fig. 8b–d). It should be noted that the results are the average of three independent experiments. Finally, it can be concluded that the synthesized sample is compatible with blood.

Antibacterial assay: Antibacterial performance of synthesized hybrid by 1,4-phenylenediamine and terephthaloyl chloride on the magnetic ZnFe₂O₄ and two control antibiotics (Penicillin and Streptomycin) against Gram-positive bacteria (Staphylococcus aureus ATCC 25923) as well as two Gram-negative bacteria (Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853), were determined (Table 1). Results showed that MIC of synthesized hybrid in Gram-negative and Gram-positive bacteria was 500–1000 μg/ml. In other words, it showed antibacterial activity.

Conclusions

In conclusion, aromatic polyamides were grown on the surface of zinc ferrite nanoparticles via a polymerization process by phenylenediamine derivatives and terephthaloyl chloride. The structure of the novel magnetic hybrid was characterized by FT-IR, EDX, FE-SEM, XRD, and TGA. In addition, cytotoxicity, blood compatibility, and antibacterial performance of the synthesized sample were evaluated. This new structure has significant antibacterial power against gram-positive and gram-negative bacterial species and it has a MIC in the range of 500–1000 μg/ml. The compatibility of the synthesized sample with blood was also examined and it was found that its hemolytic effect on red blood cells at a concentration of 1000 μg/ml is less than 9%. The Cytotoxicity result of the prepared hybrid at the highest concentration (1000 μg/ml) showed that the cell viability percentage was 86.35%. So, these results indicate the possibility of using novel magnetic hybrid in the field of medical sciences.
Figure 8. (a) Hu02 cell viability percentage at different concentrations of synthesized hybrid. (b) Hemolysis percentage graph of synthesized hybrid and Triton X-100 (positive control) at different concentrations; comes with 96-well plate image from: synthesized hybrid (c) and Triton X-100 (d) at different concentrateons.

Table 1. MICs in µg/ml of synthesized hybrid against Gram-positive and Gram-negative bacteria and C. Albicans.
References

1. Ren, J. M. et al. Star polymers. Chem. Rev. 116, 6743–6836 (2016).
2. Neo, S. E. & Hawker, C. J. The beauty of branching in polymer science. Macromolecules 53, 3257–3261 (2020).
3. Philippova, O., Barabanova, A., Molchanov, V. & Khokhlov, A. Magnetic polymer beads: Recent trends and developments in synthetic design and applications. Eur. Polym. J. 47, 542–559 (2011).
4. Anik, M. I. et al. Recent progress of magnetic nanoparticles in biomedical applications: A review. Nano Select 2, 1146–1186 (2021).
5. Ali, A. et al. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front. Chem. 9, 548 (2021).
6. Darwish, M., Kunz, U. & Peuker, U. Preparation and catalytic use of platinum in magnetic core-shell nanocomposites. J. Appl. Polym. Sci. 129, 1806–1811 (2013).
7. Eivazzadeh-Kehran, R. & Maleki, A. Design and synthesis of a new magnetic aromatic organo-silane star polymer with unique nanophase morphology and hyperthermia application. J. Nanostruct. Chem. 1–17 (2021).
8. Pooresmaeil, M., Mansoori, Y., Mirzaeinejad, M. & Khodayari, A. Efficient removal of methylene blue by novel magnetic hydrogel nanocomposites of poly (acrylic acid). Adv. Polym. Technol. 37, 262–274 (2018).
9. Ganivada, M. N. et al. Biodegradable magnetic nanocarrier for stimuli responsive drug release. Macromolecules 47, 2703–2711 (2014).
10. Kim, Y. et al. Self-assembly of fluorescent and magnetic Fe₃O₄@ coordination polymer nanochains. Chem. Commun. 50, 7617–7620 (2014).
11. Reddy, K. R., Lee, K. P. & Gopalan, A. I. Self-assembly approach for the synthesis of electro-magnetic functionalized Fe₃O₄/polyaniline nanocomposites: Effect of dopant on the properties. Colloids Surf. A Physicochem. Eng. Asp. 320, 49–56 (2008).
12. Zhang, P. et al. High efficiency removal of methylene blue using SDS surface-modified ZnFe₂O₄ nanoparticles. J. Colloid Interface Sci. 508, 39–48 (2017).
13. Ila, Z., Ren, D., Liang, Y. & Zhu, R. A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity. Mater. Lett. 65, 3116–3119 (2011).
14. Habibi, M. H., Habibi, A. H., Zendehdel, M. & Habibi, M. Dye-sensitized solar cell characteristics of nanocomposite zinc ferrite working electrode: Effect of composite precursors and titania as a blocking layer on photovoltaic performance. Spectrochim. Acta A Mol. Biomol. Spectrosc. 110, 226–232 (2013).
15. Zhou, X. et al. Nano-sheet-assembled ZnFe₂O₄ hollow microspheres for high-sensitive acetone sensor. ACS Appl. Mater. Interfaces 7, 15414–15421 (2015).
16. Gupta, H., Paul, P. & Kumar, N. Synthesis and characterization of DHA/ZnO/ZnFe₂O₄ nanostructures for biomedical imaging application. Procedia Mater. Sci. 5, 198–203 (2014).
17. Hoque, S. M. et al. Synthesis and characterization of ZnFe₂O₄ nanoparticles and its biomedical applications. Mater. Lett. 162, 60–65 (2016).
18. Várzi, A. et al. ZnFe₂O₄-C/Fe₂O₃-P,CNT: A novel high-power lithium-ion battery with excellent cycling performance. Adv. Energy Mater. 4, 1400054 (2014).
19. Boyer, C. et al. The design and utility of polymer-iron oxide nanoparticles for nanomedicine applications. NPG Asia Mater. 2, 23–30 (2010).
20. Etemadnia, T., Allahrasani, A. & Barikbin, B. ZnFe₂O₄@SiO₂@Tragacanth gum nanocomposite: Synthesis and its application for the removal of methylene blue dye from aqueous solution. Polym. Bull. 76, 6089–6109 (2019).
21. Rezgui, S. et al. ZnFe₂O₄-chitosan magnetic beads for the removal of chloridiform from photo-Fenton process under UVC irradiation. J. Environ. Manag. 283, 111987 (2021).
22. Prabhakaran, T. & Hemalatha. J. Flexible films of β-phase poly (vinylidene fluoride)/ZnFe₂O₄ polymer nanocomposite for magnetoelectric device applications. Sci. Adv. Mater. 6, 1313–1321 (2014).
23. Yue, H. et al. Biomimetic synthesis of polydopamine coated ZnFe₂O₄ composites as anode materials for lithium-ion batteries. ACS Omega 3, 2699–2705 (2018).
24. Abbas, Q. et al. Structural, dielectric and magnetic properties of (ZnFe₂O₄/Poly styrene) nanocomposites synthesized by micromulsion technique. Ceram. Int. 46, 5920–5928 (2020).
25. Wei, W. et al. Hierarchically grown ZnFe₂O₄-decorated polyvinylamine-coupled-graphene nanosheets as a novel electrocatalyst for selective detecting p-nitrophenol. Microchem. J. 160, 105777 (2021).
26. Hou, L. et al. Synthesis of ultralong ZnFe₂O₄@polypropylene nanowires with enhanced electrochemical Li-storage behaviors for lithium-ion batteries. Electrochim. Acta. 306, 198–208 (2019).
27. Sandoval, C. et al. Visible light assisted photodegradation of thimerosal by high performance ZnFe₂O₄/poly (o-phenylene diamide) composite. Mater. Res. Bull. 116, 8–15 (2019).
28. Kharaz, P., Rahmani, R. & Rabbani, M. Study on porphyrin/ZnFe₂O₄@ polythiophene nanocomposite as a novel adsorbent and visible light driven photocatalyst for the removal of methylene blue and methyl orange. Mater. Res. Bull. 103, 133–141 (2018).
29. Sagayaram, R., Aravazhi, S., Praveen, P. & Chandrasekaran, G. Structural, morphological and magnetic characters of PVP coated ZnFe₂O₄ nanoparticles. J. Mater. Sci. Mater. Electron. 29, 2151–2158 (2018).
30. Mathusamy, A. et al. Preparation, electrical and magnetic properties of poly (m-phenylene diamide)/ZnFe₂O₄ nanocomposites. J. Supercond. Nov. Magn. 31, 497–504 (2018).
31. Negi, A. et al. Dielectric response of poly methyl methacrylate/ZnFe₂O₄ composites under 400 KeV Ar⁺ ions. Adv. Sci. Lett. 20, 1089–1093 (2014).
32. Eivazzadeh-Kehran, R. et al. A new generation of star polymer: Magnetic aromatic polyamides with unique microscopc flower morphology and in vitro hyperthermia of cancer therapy. J. Mater. Sci. 55, 319–336 (2020).
33. Eivazzadeh-Kehran, R. et al. A natural and eco-friendly magnetic nanobiocomposite based on activated chitosan for heavy metals adsorption and the in-vitro hyperthermia of cancer therapy. J. Mater. Res. Technol. 9, 12244–12259 (2020).
34. Eivazzadeh-Kehran, R. et al. A novel biocompatible core-shell magnetic nanocomposite based on cross-linked chitosan hydrogels for in vitro hyperthermia of cancer therapy. Int. J. Biol. Macromol. 140, 407–414 (2019).
35. Eivazzadeh-Kehran, R. et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Mater. Sci. Eng. C 107, 110267 (2020).
36. Eivazzadeh-Kehran, R. et al. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J. Adv. Res. 18, 185–201 (2019).
37. Song, F. et al. Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J. Biomed. Nanotechnol. 11, 40–52 (2015).
38. Zhou, T. et al. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging. Int. J. Nanomed. 11, 4765 (2016).
39. Mishra, S. et al. Bioinspired nanocomposites: Applications in disease diagnosis and treatment. Pharm. Nanotechnol. 7, 206–219 (2019).
40. Zhao, R. et al. Highly stable graphene-based nanocomposite (GO–PEI–Ag) with broad-spectrum, long-term antimicrobial activity and antibiofilm effects. ACS Appl. Mater. Interfaces 10, 17617–17629 (2018).
41. Zhao, X. et al. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 9, 1–17 (2018).
42. Eivazzadeh-Khezan, R. et al. Alginite hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int. J. Biol. Macromol. 162, 1939–1971 (2020).
43. Zare, M. et al. Novel green biomimetic approach for synthesis of ZnO–Ag nanocomposite; antimicrobial activity against food-borne pathogen, biocompatibility and solar photocatalysis. Sci. Rep. 9, 1–15 (2019).
44. Roopan, S. M. et al. CuO/C nanocomposite: Synthesis and optimization using sucrose as carbon source and its antifungal activity. Mater. Sci. Eng. C 101, 404–414 (2019).
45. Eivazzadeh-Khezan, R. et al. Graphene oxide/alginite/silk fibroin composite as a novel bionanostructure with improved blood compatibility, less toxicity and enhanced mechanical properties. Carbohydr. Polym. 248, 116802 (2020).
46. Jaganathan, S. K. et al. Blood compatibility and physicochemical assessment of novel nanocomposite comprising polyurethane and dietary carotino oil for cardiac tissue engineering applications. J. Appl. Polym. Sci. 135, 45691 (2018).
47. Szabo, D. et al. The designer proline-rich antibacterial peptide A3-APÓ is effective against systemic Escherichia coli infections in different mouse models. Int. J. Antimicrob. Agents 35, 357–361 (2010).
48. Madanchi, H. et al. AurH1: A new heptapeptide derived from Aurein1. 2 antimicrobial peptide with specific and exclusive fungicidal activity. J. Pept. Sci. 25, e3175 (2019).
49. Villa, S., Riani, P., Locardi, F. & Canepa, F. Functionalization of Fe3O4 NPs by silanization: Use of amine (APTES) and thiol (MPTMS) silanes and their physical characterization. Materials 9, 826 (2016).
50. Farahi, M., Karami, B., Keshavarz, R. & Khosravian, F. Synthesis of a novel dendrimer core of oxo-vanadium phthalocyanine magnetic nano particles: As an efficient catalyst for the synthesis of 3, 4-dihydropyranon [c] chromiums derivatives under green condition. RSC Adv. 5, 102340–102349 (2015).
51. Vieira, E. G. et al. Synthesis and characterization of 3-[(thioureao-pppy)]-functionalized silica gel and its application in adsorption and catalysis. New J. Chem. 37, 1933–1943 (2013).
52. Lu, X.-W. et al. Preparation of polyaniline nanofibers by high gravity chemical oxidative polymerization. Ind. Eng. Chem. Res. 50, 5589–5595 (2011).
53. Yan, H. et al. A new approach to the preparation of poly (p-phenylene terephthalamide) nanofibers. RSC Adv. 6, 26599–26605 (2016).
54. Yoo, S. J. & et al. Effects of various sintering conditions on the structural and magnetic properties of zinc ferrite (ZnFe2O4). Mater. Res. 24 (2021).
55. Ma, J., Chen, B., Chen, B. & Zhang, S. Preparation of superparamagnetic ZnO–Fe3O4 submicromes via a solvothermal method. Adv. Nano. 5, 171 (2017).

Acknowledgements
The authors gratefully acknowledge the partial support from the Research Council of the Iran University of Science and Technology.

Author contributions
R.E.: Substantial contributions to the conception, Design of the work, have drafted the work, Writing - Review & Editing, Analysis and interpretation of data and wrote the main manuscript. M.G.G.: Have drafted the work, Analysis and interpretation of data, substantively revised it. Wrote the main manuscript and prepared figures. A.R.A.: Analysis and interpretation of data, substantively revised it, wrote the main manuscript and prepared figures. H.A.M.A.: Analysis and interpretation of data, substantively revised it, wrote the main manuscript and prepared figures. M.M.: Analysis and interpretation of data, substantively revised it. A.M.: The corresponding (submitting) author of current study, Substantial contributions to the conception, Design of the work, have drafted the work, Writing - Review & Editing, substantively revised it. H.G.: The co-corresponding author of current study, Substantial contributions to the conception, Design of the work, have drafted the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-99842-4.

Correspondence and requests for materials should be addressed to A.M. or H.G.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021