Thermal escape of fractional vortices in long Josephson junctions

U. Kienzle, T. Gaber, K. Buckenmaier, K. Ilin, M. Siegel, D. Koelle, R. Kleiner, and E. Goldobin

1Physikalisches Institut–Experimentalphysik II and Center for Collective Quantum Phenomena, Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
2Institut für Mikro- und Nanoelektronische Systeme, Universität Karlsruhe, Hertzstraße 16, D-76187 Karlsruhe, Germany

(Received 19 March 2009; revised manuscript received 4 June 2009; published 8 July 2009)

We consider a fractional Josephson vortex in a long 0–κ Josephson junction. A uniformly applied bias current exerts a Lorentz force on the vortex. If the bias current exceeds the critical current, an integer fluxon is torn off the κ vortex and the junction switches to the voltage state. In the presence of thermal fluctuations the escape process takes place with finite probability already at subcritical values of the bias current. We experimentally investigate the thermally induced escape of a fractional vortex by high-resolution measurements of the critical current as a function of the topological charge κ of the vortex and compare the results to numerical simulations for finite junction lengths and to theoretical predictions for infinite junction lengths. To study the effect caused by the junction geometry we compare the vortex escape in annular and linear junctions.

DOI: 10.1103/PhysRevB.80.014504 PACS number(s): 74.50.+r, 85.25.Cp, 05.45.–a

I. INTRODUCTION

Vortices in long Josephson junctions (LJJs) usually carry a single magnetic-flux quantum \(\Phi_0 \) and therefore are called fluxons. The study of fluxons has been attracting a lot of attention during the last 40 years because of their interesting nonlinear nature\(^1\–^3\) as well as because of possible applications.\(^4\–^7\) Recently it was shown that one can create and study experimentally vortices that carry only a fraction of the magnetic-flux quantum. One can distinguish two different types of fractional vortices.

The first type appears in LJJs with a degenerate ground state. For example, when the junction’s current-phase relation has a strong negative second harmonic, the Josephson energy \(U(\mu) \) has two equally deep minima in the interval \(-\pi, ..., +\pi \) corresponding to the two degenerate ground states with the phases \(\mu = \pm \varphi = \arccos(-j_{12}/2j_{12}) \), where \(j_{12} \) and \(j_{12} \) are the amplitudes of the first and the second harmonics, respectively. Then one can have Josephson vortices (topological solitons) that connect these two energy minima, i.e., a vortex with the topological charge \(\mu(\pm\infty) - \mu(-\infty) = 2\varphi \) and magnetic flux \(\Phi_1 = \Phi_0\varphi/\pi \) and another one with the topological charge \(2\pi - 2\varphi \) and the flux \(\Phi_2 = \Phi_0(1 - \varphi/\pi) \). These so-called splintered vortices are solitons of a double sine-Gordon equation and their physics was studied in several theoretical works (see Ref. 8 and Refs. 34, 35, 39, and 40 therein). The specific current-phase relation with degenerate ground state can be present either intrinsically or an effective negative second harmonic may appear naturally or can be obtained artificially in LJJs with fast alternating critical current density.\(^9\–^11\) In such a system the splintered vortices were observed experimentally.\(^12\) We do not study such vortices here.

The second type of fractional vortices appears in the so-called 0–π LJJs that can be fabricated using superconductors with an anisotropic order parameter that changes sign depending on the direction in \(k \) space (e.g., \(d \)-wave order parameter symmetry)\(^13\–^16\) or with an oscillating order parameter (e.g., with a ferromagnetic barrier).\(^17\) 0–π LJJs consist of two parts: a 0 part, which would have a ground-state phase \(\mu = 0 \) if taken separately, and a \(\pi \) part, which would have a ground-state phase \(\mu = \pi \) if taken separately (\(\pi \)-junction). In this kind of junctions, the ground-state phase \(\mu(x) \) will have the value 0 deep inside the 0 region and the value π deep inside the π region. In the \(\lambda \) vicinity of the 0–π boundary, \(\mu(x) \) will continuously change from 0 to π, where \(\lambda \) is the Josephson penetration depth. Because of the phase bending a magnetic field \(\approx dx/d\lambda \) localized in the \(\lambda \) vicinity of the boundary appears and a supercurrent \(\approx \sin[\mu(x)] \) circulates around it.\(^18\–^20\) The total magnetic flux localized at the 0–π boundary is equal to \(-\Phi_0/2 \). Since the Josephson phase is \(2\pi \) periodic, its value can be \(-\pi \) inside the \(\pi \) region instead of \(\pi \). In this case, the supercurrent flows counterclockwise and an antisemifluxon with the magnetic flux \(-\Phi_0/2 \) is formed. Semifluxons and antisemifluxons were observed experimentally.\(^13\–^14\)

It turns out that instead of a \(\pi \) discontinuity of the Josephson phase at the 0–π boundary one can artificially create any arbitrary \(\kappa \) discontinuity at any point of the LJ and the value of \(\kappa \) can be tuned electronically.\(^21\) At the resulting 0–κ boundary two types of vortices may exist: a direct vortex with topological charge \(\kappa \) (–κ vortex) and a complementary vortex with topological charge \(2\pi - \kappa \). Without loosing generality we assume that \(0 < \kappa < 2\pi \). Such vortices are a generalization of semifluxons and antisemifluxons discussed above. Only if their topological charge is less or equal than \(2\pi \) by absolute value, they are stable.\(^23\) Several experiments with arbitrary fractional vortices were reported.\(^24\–^25\) We are dealing with such fractional vortices pinned at \(\kappa \) discontinuity here.

By applying a spatially uniform bias current to a LJ with a \(\kappa \) vortex, one exerts a Lorentz force which pushes the vortex along the junction. Depending on the mutual polarity of the vortex and the bias current, the direction of the force can be adjusted. Since the vortex exists to compensate the phase discontinuity, it is pinned at it, i.e., it may only bend under the action of the Lorentz force but it cannot move away from the discontinuity. However, increasing the bias current, the force can be made strong enough to tear off a whole integer fluxon out of a \(\kappa \) vortex. The fluxon moves away along the junction, leaving a complementary (\(\kappa - 2\pi \))
infinite probability at escape process described above will already take place with responds to the measurable critical current if \(I = I_c \) and to theoretical predictions for infinite length.

pare it to numerical simulations for finite junction lengths our experimental findings in Sec.IV. The influence on junction transition of the JJ from a superconducting zero-voltage state to a finite-voltage state. In the absence of thermal and quantum fluctuations the junction switches from the zero-voltage state, which corresponds to the particle being localized in one of the potential wells, to a finite-voltage state, when the minima disappear and the particle runs down the potential, at \(\gamma \approx 1 \). If, such as in our case, the temperature is finite, the particle may escape from the well already at \(\gamma \approx 1 \), being thermally excited over the barrier.30–37

The rate at which this process occurs depends on the barrier height

\[
 u_0 = \frac{2E_J}{\sqrt{1 - \gamma^2}} \gamma \arccos(\gamma)
\]

and the small amplitude oscillation frequency of the particle at the bottom of the well,

\[
 \omega_0 = \frac{2\pi/I_c}{\Phi_0 C} = \omega_p(1 - \gamma^2)^{1/4}.
\]

Here, \(\omega_p = \sqrt{2\pi \tau I_c / \Phi_0 C} \) is the plasma frequency. For \(1 - \gamma \ll 1 \), Eq. (4) can be approximated as

\[
 u_0 \approx E_J \frac{4\sqrt{2}}{3} (1 - \gamma)^{3/2}.
\]

In the thermal regime the escape of the particle from the well occurs at a bias-current-dependent rate of [30,31]

\[
 \Gamma(\gamma) = a \frac{\omega_p(\gamma)}{2\pi} \exp \left[-\frac{u_0(\gamma)}{k_B T} \right],
\]

where \(a \ll 1 \) is a damping-dependent prefactor. Knowing all relevant junction parameters and the bath temperature \(T \), one can calculate the escape rate \(\Gamma \) of a current-biased pointlike JJ.

III. LONG JOSEPHSON JUNCTION WITH A FRACTIONAL VORTEX

Here, the considered system, a long JJ with a fractional vortex is more complex than a pointlike JJ. In order to account for the spatial phase variation \(\mu(\chi) \), one has to extend the picture of the particle in a tilted washboard potential. First, to take into account the finite junction length, one replaces the pointlike particle in a one-dimensional (1D) potential by an elastic string in an extended potential. Second, the \(\kappa \) vortex in the LJJ corresponds to a kink in the string, as illustrated in Fig. 2.

The depinning process of a fractional vortex at \(\gamma \ll \gamma_c(\kappa) \) [see Eq. (1)], described above, corresponds to the escape of this string out of a metastable well. To find the effective barrier height for this system, we map the multidimensional system to a pointlike particle in an effective 1D potential. By comparing the escape rate \(\Gamma \), which we obtain by high-resolution measurement of the depinning current, to the known escape rate of a pointlike JJ, one can make a statement about the effective barrier height.

For an infinitely long JJ, the effective potential for the escape of a fractional vortex close to the depinning current can be derived analytically, as shown in Ref. 38. Here, only the main results are summarized. The barrier height is given by

\[
 \text{FIG. 1. (a) Resistively and capacitively shunted junction model. (b) Particle in a tilted washboard potential. The thermal escape from the metastable state is indicated by an arrow.}
\]

\[
 \gamma_c(\kappa) = \frac{\sin(\kappa/2)}{\kappa/2},
\]

where \(I_{c0} \equiv I_c w L \) is the “intrinsic” critical current, which corresponds to the measurable critical current if \(\kappa = 0 \); \(w \) is the LJJ width and \(L \) is its length. Due to thermal fluctuations, the escape process described above will already take place with finite probability at \(\gamma \ll \gamma_c \). In this paper, we study the thermal escape of an arbitrary \(\kappa \) vortex experimentally and compare it to numerical simulations for finite junction lengths and to theoretical predictions for infinite length.

The paper is organized as follows: in Sec. II, we briefly review the thermal phase escape of the pointlike Josephson junction. Then, in Sec. III, we discuss theoretically the phase escape in a long JJ with a vortex and compare it with our experimental findings in Sec. IV. The influence on junction geometry is further investigated in Sec. V.

II. POINTLIKE JOSEPHSON JUNCTION

In the Stewart-McCumber model26,29 [see Fig. 1(a)], the dynamics of a current-biased pointlike JJ is described by an equation of motion for the Josephson phase \(\mu \)

\[
 C \left(\frac{\Phi_0}{2\pi} \frac{\partial}{\partial \mu} + \frac{1}{R} \left(\frac{\Phi_0}{2\pi} \right) \frac{\partial}{\partial \mu} \right) \mu + I_c \sin(\mu) - I = 0,
\]

where \(C \) is the effective shunt capacitance, \(R \) is the effective shunt resistance of the JJ embedded in the bias circuitry, and dots denote the derivative with respect to time. The equation of motion Eq. (2) is equivalent to the damped motion of a particle of mass \(m = C(\Phi_0/2\pi) \) along the generalized coordinate \(\mu \) in a tilted washboard potential

\[
 U(\mu) = -E_J(\gamma \mu + \cos(\mu)),
\]

where \(E_J = \Phi_0 I_c / 2\pi \) is the Josephson coupling energy, [see Fig. 1(b)]. The tilting angle of the potential is proportional to the bias current \(\gamma = I/I_c \) applied.

The process of the particle escape from a metastable minimum in this Kramers-like system30,31 corresponds to a transition of the JJ from a superconducting zero-voltage state to
Fig. 2. LJJ in the picture of a particle chain in an extended potential.

\[
E_J = \frac{4}{3} (\kappa \gamma^2)^{3/2} \left(1 - \frac{\gamma}{\gamma^2} \right)^{3/2},
\]

with

\[
F = \frac{2}{3} \sin \frac{\kappa}{2} (\sin \beta - \gamma \beta),
\]

\[
\beta = \frac{\pi}{2} - \arcsin(\gamma),
\]

and the depinning current \(\gamma_0(\kappa) \) given by Eq. (1). \(E_J = E_{J0} \omega \lambda / 2 \pi E_J \lambda / L \) is the Josephson coupling energy per normalized unit length and \(j_c \) the junction’s critical current density assumed to be equal in 0 and \(\kappa \) parts. Here, we use \(u_0 \) and reserve \(u_0 \) as the barrier height for the homogeneous phase escape (short-junction limit). The small oscillation frequency Eq. (5) in this case is given by the eigenfrequency of the fractional vortex. In absence of a bias current the eigenfrequency is given by \(\omega_0(\kappa, \gamma) = \omega_p \sqrt{1 - \cos \frac{\kappa}{4} \left(\cos \kappa - 4 - 3 \cos \frac{\kappa}{4} \right)} \).

For \(\gamma \neq 0 \) the analytical expression for \(\omega_0(\kappa, \gamma) \) is unknown but can be approximated as

\[
\omega_0(\kappa, \gamma) \approx \omega_0(\kappa, 0) \sqrt{1 - \frac{\gamma}{\gamma_0(\kappa)}}.
\]

For LJJ of finite length one may use a numerical approach and follow the ansatz described by Castellano et al. \(\omega_0(\kappa, \gamma) \) is defined by the energy difference between a minimum and the lowest adjacent saddle point maximum of the potential surface. The corresponding phase distributions are solutions of the stationary sine-Gordon equation

\[
\mu(x) = \sin[\mu(x) + \gamma H(x)] + \gamma = 0,
\]

where \(H(x) \) is a step function that describes the position of the 0 and \(\kappa \) region

\[
H(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x > 0. \end{cases}
\]

For a linear-junction geometry at zero applied magnetic field the phase obeys the boundary conditions

\[
\mu \left(-\frac{L}{2} \right) = \mu \left(\frac{L}{2} \right) = 0.
\]

Here, \(\mu(x) \) is the Josephson phase, which is a continuous function of \(x \), the spatial coordinate \(x \) is normalized to the Josephson penetration depth \(\lambda_J \) and \(l = L / \lambda_J \) is the normalized junction length. The subscript \(x \) denotes the derivative with respect to coordinate \(x \). The potential energy of any state \(\mu(x) \) is given by

\[
U = E_J \int_{-L/2}^{L/2} \left[1 - \cos[\mu + \kappa H(x)] - \gamma \mu + \frac{1}{2} (\mu')^2 \right] dx.
\]

Let us denote the solutions corresponding to energy minima as \(\mu_0(x) \) and the ones corresponding to saddle points/maxima as \(\mu_\kappa(x) \). Then, the effective barrier height is

\[
u = U(\mu_\kappa) - U(\mu_0),
\]

which is defined for each pair of \(\mu_\kappa \) and \(\mu_0 \).

For an annular geometry it is more convenient to rewrite and solve the sine-Gordon Eq. (13) for the (discontinuous) phase \(\phi(x) = \mu(x) + \kappa H(x) \)

\[
\phi_\kappa - \sin \phi + \gamma \kappa \phi_\delta = 0,
\]

where \(\delta_\kappa \) is the derivative of the \(\delta \) function. The vortex is placed at \(x=0 \), in which annular geometry corresponds to \(x=l \), and the following boundary conditions are used

\[
\phi(0) = \phi(l) + \kappa,
\]

\[
\phi_\kappa(0) = \phi_\kappa(l). \]

If \(\kappa > 0 \), then the topological charge of the vortex is \(-\kappa < 0 \). Note, that all static solutions of Eqs. (18) and (19) also obey

\[
\gamma = \kappa \left[(1 - \cos \kappa) \cos \phi(0) - \sin \kappa \sin \phi(0) \right].
\]

Here, \(\phi(0) \) denotes the phase value at \(x=0 \). By inverting the signs of \(\kappa \) and \(\phi(0) \), Eqs. (18) and (19) can also be applied to a vortex with positive charge. Equation (20) is particularly useful if a shooting algorithm is used to find solutions of Eqs. (18) and (19).

For \(\kappa=0 \), the effect of junction length (and an externally applied magnetic field) on the phase escape in linear LJJ has already been discussed by other authors. In the following we will summarize some of the results, particularly important for the situation discussed in this paper. That is, we do not consider an applied magnetic field. In short junctions, \(l < \pi \), the barrier height \(u \) is identical to \(u_0 \) for any \(\gamma \), i.e., the value obtained from the short-junction-limit formula (4). The phase configurations corresponding to minima and saddle points are homogeneous, i.e., \(\mu(x) = \text{const.} \). In longer junctions, \(l > \pi \), phase escape via additional inhomogeneous
saddle solutions of lower potential barrier Eq. (17) results in $u \approx u_0$. This is easily understood, as the energy required for a homogeneous phase escape increases linearly with junction length whereas it is constant for the alternative process, that is, the creation of a fluxon/antifluxon and its successive propagation along the junction. However, the nature and ultimate existence of the saddle solutions depends on bias current γ. As it turns out, at dc bias close to the critical current, $\gamma_c - \gamma \ll 1$, which is of primary relevance in experiment, usually only one minimum and one saddle-point solution remains. For junction lengths $l < 9$ and bias currents $\gamma \sim 0.99 \gamma_c$, the barrier heights u even coincide with the short-junction value u_0. In annular junctions the length at which the phase escapes via inhomogeneous phase configurations is 2π instead of π, as boundary conditions require the creation of a fluxon-antifluxon pair. As in linear junctions, the barrier height u coincides with u_0 for $\gamma \sim 0.99 \gamma_c$ and $l \approx 12$, which is the longest junction considered here.

Now, how does the presence of a fractional vortex, i.e., $|\kappa| > 0$, affect the phase escape? In the following we first consider an annular geometry, where junction boundaries do not play a role. The influence of open boundaries on phase escape is discussed in Sec. V. Figure 3 compares the effective barrier height $u(\kappa)$ at $\gamma = 0.99 \gamma_c(\kappa)$ for different junction lengths. Here, u is normalized to E_I to avoid a normalization that depends on JJ length. The analytic result $u_\kappa(\kappa)$ for $l = \infty$ is also depicted in the graph. As can be seen, the presence of a vortex facilitates the phase escape by lowering the effective barrier height. The larger the vortex, the easier is the escape. Figure 3 also shows that with increasing junction length, $u(\kappa)$ asymptotically approaches $u_\kappa(\kappa)$—the analytic result for an infinitely long junction.

For further discussion it is important to note, that although u strongly depends on bias current, numerical calculations of $u(\gamma)$ have shown, that it scales as $(1 - \gamma/\gamma_c)^{3/2}$ close to critical current with a prefactor almost independent of γ. This is very convenient, as u, $u_\kappa(\gamma)$ [compare Eq. (8)], and u_0 [compare Eq. (6)] exhibit the same asymptotic behavior for $\gamma \rightarrow \gamma_c$. With their relative proportions independent of γ, they can be easily compared with experimental data.

IV. EXPERIMENTS

For the experiments we used tunnel Nb-Al$_2$O$_3$-Nb annular JJJs (ALJJ) with different junction radii R. The junction properties are specified in Table I, the specific capacitance of all junctions is $C = 4.1 \mu F/cm^2$. The Josephson penetration depth λ_J was estimated taking into account the idle region. The normalized length of the ALJJ is given by $l = 2\pi R / \lambda_J$.

To create an arbitrary κ discontinuity in the junctions, a pair of tiny current injectors is used, as shown in Fig. 4. The short section of the top electrode between points A and B of a length $\approx \lambda_J$ has an inductance L_{inj}. A current I_{inj} passing through this inductance creates a phase drop $\kappa = \lambda_{inj} I_{inj} / \Phi_0$ across the distance AB, i.e., the κ discontinuity. To calibrate the injectors we have measured the critical current I_c as a function of I_{inj} for the left injector pair in Fig. 4. The $I_c(I_{inj})$ pattern is presented for the shortest junction with $R = 30 \mu m$ in Fig. 5 and looks like a perfect Fraunhofer pattern in accordance to the theory. The first minimum at I_{inj}^{min} corresponds to $\kappa = 2\pi$, the values I_{inj}^{min} are given in Table I. Thus, for any I_{inj}, the corresponding value of κ can be calculated as $\kappa = 2\pi I_{inj} / I_{inj}^{\text{min}}$.

TABLE I. Junction parameters (annular) at $T = 4.2$ K.

R [\mu m]	w [\mu m]	j_c [A/cm2]	λ_J [\mu m]	l	I_{inj}^{min} [mA]
30	5	134	37.9	5.0	7.4
50	5	87.8	46.7	6.7	7.0
70	5	72.6	51.4	8.6	6.5

FIG. 5. The dependence $\gamma_c(I_{inj})$ measured at $T = 4.2$ K (gray symbols) and the corresponding theoretical curve $\gamma_c(\kappa)$ (continuous line).

FIG. 4. Optical image (top view) of one of the investigated samples: ALJJ with two pairs of injectors. The right pair of current injectors was not used during experiment.
The escape of a fractional vortex in an ALJJ is experimentally investigated by measuring the statistics of switching of the junction from the zero-voltage state to a finite-voltage state. To do so, a bias current applied to the junction is ramped up at a constant rate I and the current I_c at which the junction switches from its zero-voltage state is recorded.\(^{33}\) The probability distribution $P(I)$ of such switching currents is found by accumulating a large number of measurements of I_c and generating a histogram. Using the obtained $P(I)$ distribution, the bias-current-dependent escape rate can be reconstructed as\(^{33}\)

$$\Gamma(I) = \frac{i}{\Delta I} \ln \frac{\int_{I - \Delta I}^{\infty} P(I')dI'}{\int_{I}^{\infty} P(I')dI'},$$

where ΔI is the width of the bins on the histogram. The shape of the histogram depends on the bias-current ramp rate, the bath temperature T, and damping.\(^{33}\) Higher T leads to a broader histogram shifted toward lower currents. Note, electronic noise in the measurement setup has, to the first order, the same effect as the increase in T. Since the accuracy of our measurement is defined by the width of the escape histogram, special measures were taken to suppress electronic noise down to the level where the broadening caused by electronic noise is well below the one caused by the bath temperature. We mounted the sample in a copper box to shield it from electromagnetic radiation and in a cryoperm shield it from static magnetic fields. The bias lines contained three-stage low-pass filters: two cold filters in close vicinity of the sample and one at room temperature. The measurement technique and setup are similar to those described in Ref. 42.

Following the analysis method used in Refs. 33, 34, and 42 we fit the escape rate $\Gamma(I)$ calculated from the measured histogram using Eq. (21) with the known escape rate of a pointlike JJ, see Eq. (7), having the relative barrier height u/I_0 and $\gamma I_c\omega$ as fitting parameters. The damping-dependent prefactor was assumed to be $a=1$.

The effective barrier height found in this way is shown in Fig. 6 for three different junction lengths at a bath temperature $T=4.2$ K. Solid circles indicate experimental results and the black solid line corresponds to numerical simulations. For all junction lengths, the experimental data are in good agreement with simulations, in particular, for large κ values. In the range of small values of the discontinuity κ, the deviation from simulations increases with junction length. There are two possible reasons explaining the deviations.

First, this might be due to junction inhomogeneities. For large $|\kappa|$, only the λ_1 vicinity of the κ discontinuity is important for the escape whereas for $|\kappa|\to 0$ the whole junction matters. The longer the junction is, the higher is the probability for inhomogeneities, thus the deviations are more dominant for longer JJs.

Second, our calculations are based on a single-mode approximation, which becomes less accurate and even fails in the limit $|\kappa|\to 0$ and $l\to \infty$.\(^{38}\) This happens because the eigenfrequency of the lowest eigenmode ω_0 and the next ones ω_1, ω_2, etc., are not well separated at the values of bias current where the escape takes place. At first, it seems that at $\gamma\to \gamma_c$, the eigenfrequency $\omega_0 \to 0$ while $\omega_1(\gamma_c$) stays finite. Therefore there is always a region around γ_c, where $\omega_0<\omega_1$, regardless how small is the separation between ω_0 and ω_1 at low γ, say, at $\gamma=0$. However, the peak of the escape histogram (even in the case of quantum escape with the rightmost position of the histogram) is not sufficiently close to γ_c in order to keep the condition $\omega_0<\omega_1$ satisfied. Then it is important how much ω_0 and ω_1 are separated at those values of γ that are most relevant for the escape process. This separation is roughly proportional to but much smaller than $\omega_1(0)-\omega_0(0)$. In the limit $l\to \infty$ and $|\kappa|\to 0$, according to Eq. (11), $\omega_0(0)\to \omega_p$, while the the next mode (ω_1 in the plasma band) $\omega_1=\omega_p$. Thus, the single-mode approximation fails. To make it working again one has either to increase $|\kappa|$ or to reduce l. By increasing $|\kappa|$ one shifts $\omega_p(\kappa, 0)$ downward from $\omega_p=\omega_p$, according to Eq. (11). By decreasing l one increases the wave vector $k_1=2\pi/l$ of the lowest mode in the plasma band, thus, shifting $\omega_1(0)$ up as

$$\omega_1(0) = \omega_p \sqrt{1+\frac{k_1^2}{\omega_p^2}}.$$

Thus, a single-mode approximation starts working again for short (pointlike) JJ and any κ. Note, that participation of higher modes in the escape makes the escape rate higher, i.e.,
the damping-dependent prefactor \(a \) important. To account for this unknown factor, we fit the
incidence measured at different temperatures should coincide with the dashed line. However, the experi-
mental data and simulations deviate from this curve, which becomes more pronounced with increasing junction length. This indicates a difference in the escape process of a point-
like junction and a long junction with a \(\kappa \) vortex.

The white line in Fig. 6 corresponds to the analytic result from Sec. III for infinitely long JJs. Comparing this result to simulations and experimental data, three regimes can be distinguished: a homogeneous regime (small \(|\kappa| \), light-gray region in Fig. 6), an intermediate regime (moderate \(|\kappa| \), gray region in Fig. 6) and a vortex escape regime (large \(|\kappa| \), dark-gray region in Fig. 6). In the homogeneous regime, the escape process corresponds to the one of a pointlike junction: the phase string escapes as a whole from the metastable state. The effective barrier height corresponds to \(\hbar \) in this regime. In the vortex escape regime, the escape process is dominated by the vortex itself and experimental data, simulations, and theory coincide.

Temperature dependence

In the thermal regime, the effective barrier height \(u \) does not depend on the bath temperature \(T \), see Eq. (6). For temperatures well above the crossover temperature to the quantum regime, which for our samples is \(\approx 100 \) mK, the \(u(\kappa) \) dependencies measured at different temperatures should coincide. For lower bath temperatures, \(T \approx 4.2 \) K, the damping-dependent prefactor \(a \) in Eq. (7) becomes important. To account for this unknown factor, we fit the escape rate \(\Gamma(l) \) calculated from the measured histogram not only with the barrier height but also with the junction’s resistance \(R \) assuming moderate to low damping with

\[
a = \frac{4}{\sqrt{1 + (Q \omega_0 R C)^2}}.
\]

where \(Q = \omega_0 R C \) is the quality factor. Using this method, the uncertainty of the experimentally obtained \(u(\kappa) \) dependence increases.

Figure 7 compares the barrier height determined at \(T = 500 \) mK for two annular JJs of lengths \(l = 6.7 \) and \(l = 8.6 \) with the already shown results at \(T = 4.2 \) K, cf. Fig. 6. The resistance values obtained from best fit are \(R = 480 \) \(\Omega \) and \(R = 433 \) \(\Omega \), respectively, corresponding to \(Q \) values of \(\approx 2000, \ldots, 3000 \). Note, the escape rate \(\Gamma \) only weakly depends on \(R \), which leads to relatively large uncertainties in the determined \(R \) values (\(\approx 50\% \)). Though the method of determining \(u \) is less accurate for lower temperatures, the measured \(u(\kappa) \) dependence shows very good agreement with numerical simulations.

V. LINEAR JUNCTIONS

To study the effect caused by the junction geometry we have also measured linear LJJs with different lengths. As shown in Ref. 44, the \(u(\kappa) \) pattern of linear junctions differs from Eq. (1) due to the open ends. It is \(2\pi \) periodic, has minima at \(\kappa = \pi + 2\pi n \) and depends on junction length. Calibration of the injectors follows the same method as described for annular junctions, however the first minimum of the \(I_c(U_{\text{inj}}) \) pattern corresponds here to \(\kappa = \pi \). Knowing the values \(I_{\text{inj}} \), the corresponding \(\kappa \) can be calculated as \(\kappa = \pi |I_{\text{inj}}|/|I_{\text{inj}}| + 1 \) for any \(I_{\text{inj}} \). Note, in contrast to annular junctions, \(u(\kappa) \) depends on lengths \(l \) and has to be determined numerically. In addition, only vortices with \(|\kappa| \leq \pi \) can be investigated with the experimental technique described above. For further details see Ref. 44.

For the experiments, we used Nb-Al-AlO\(_x\)-Nb linear LJJs with different lengths, as shown in Fig. 8. The junction prop-

\[
\begin{array}{cccccc}
L \,[\mu m] & w \,[\mu m] & j_c \,[A/cm^2] & \lambda_j \,[\mu m] & l & I_{\text{inj}}^{\text{min}} \,[mA] \\
120 & 5 & 84.2 & 53.5 & 2.3 & 4.9 \\
240 & 5 & 78.5 & 55.4 & 4.4 & 5.0
\end{array}
\]

FIG. 7. Effective barrier height \(u(\kappa) \) for two different bath temperatures \(T \) in the thermal regime. Symbols indicate experimental results, gray lines show theoretical predictions for the vortex escape, and solid lines show numerical simulations.

FIG. 8. Optical image of one of the investigated LJJs with one pair of injectors.
boundary dynamics are affected by the presence of a fractional vortex. This becomes clear if one compares numerically simulated $u(\kappa)$ dependencies for two junctions with different geometry, as shown for the longest junction with $l=4.4$: the dashed line in Fig. 9 corresponds to an annular junction of the same length. The obtained barrier heights differ in shape and absolute value.

Figure 10 compares simulated barrier-height dependencies on κ for linear junctions with different lengths to the theoretical prediction $u_c(\kappa)$ for infinitely long JJs. Only in rather long junctions ($l>9$) and for high values of κ the escape mechanism caused by the fractional vortex becomes important. For $l<9$ and small κ the edge effects dominate the phase escape.

VI. CONCLUSION

We have experimentally investigated the thermal escape of an arbitrary fractional Josephson vortex close to its depinning current $\gamma_c(\kappa)$ in long JJs of different geometry. A comparison of our results with numerical calculations based on the perturbed sine-Gordon equation shows very good agreement. Depending on the junction's geometry, our results coincide with theoretical predictions in different regimes of κ, except in the limit $\kappa\to0$ and $l\to\infty$, where our model, which is based on a single-mode approximation, fails.

ACKNOWLEDGMENTS

K. Buckenmaier gratefully acknowledges support from the Evangelisches Studienwerk e.V. Villigst. This work was supported by the Deutsche Forschungsgemeinschaft via the SFB/TRR21.
14 J. R. Kirtley, C. C. Tsuei, Ariando, H. J. H. Smilde, and H. Hilgenkamp, Phys. Rev. B 72, 214521 (2005).
15 H. J. H. Smilde, Ariando, D. H. A. Blank, G. J. Gerritsma, H. Hilgenkamp, and H. Rogalla, Phys. Rev. Lett. 88, 057004 (2002).
16 D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 (1995).
17 M. Weides, M. Kemmler, E. Goldobin, H. Kohlstedt, R. Waser, D. Koelle, and R. Kleiner, Phys. Rev. Lett. 97, 247001 (2006).
18 E. Goldobin, A. Sterck, T. Gaber, D. Koelle, and R. Kleiner, Phys. Rev. Lett. 92, 057005 (2004).
19 E. Goldobin, D. Koelle, and R. Kleiner, Phys. Rev. B 70, 174519 (2004).
20 E. Goldobin, H. Susanto, D. Koelle, R. Kleiner, and S. A. van Gils, Phys. Rev. B 71, 104518 (2005).
21 K. Buckenmaier, T. Gaber, M. Siegel, D. Koelle, R. Kleiner, and E. Goldobin, Phys. Rev. Lett. 98, 117006 (2007).
22 A. Dewes, T. Gaber, D. Koelle, R. Kleiner, and E. Goldobin, Phys. Rev. Lett. 101, 247001 (2008).
23 E. Goldobin, N. Stefanakis, D. Koelle, and R. Kleiner, Phys. Rev. B 70, 094520 (2004).
24 B. A. Malomed and A. V. Ustinov, Phys. Rev. B 69, 064502 (2004).
25 W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
26 D. McCumber, J. Appl. Phys. 39, 3113 (1968).
27 E. Goldobin, N. Stefanakis, D. Koelle, and R. Kleiner, Phys. Rev. B 70, 094520 (2004).
28 B. A. Malomed and A. V. Ustinov, Phys. Rev. B 69, 064502 (2004).
29 W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
30 H. A. Kramers, Physica (Utrecht) 7, 284 (1940).
31 P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).
32 D. Vion, M. Götz, P. Joyez, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 77, 3435 (1996).
33 T. A. Fulton and L. N. Dunkleberger, Phys. Rev. B 9, 4760 (1974).
34 M. G. Castellano, G. Torrioli, C. Cosmelli, A. Costantini, F. Chiarello, P. Carelli, G. Rotoli, M. Cirillo, and R. L. Kautz, Phys. Rev. B 54, 15417 (1996).
35 P. Silvestrini, S. Pagano, R. Cristiano, O. Liengme, and K. E. Gray, Phys. Rev. Lett. 60, 844 (1988).
36 E. Turlot, D. Esteve, C. Urbina, J. M. Martinis, M. H. Devoret, S. Linkwitz, and H. Grabert, Phys. Rev. Lett. 62, 1788 (1989).
37 S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris, Phys. Rev. Lett. 54, 2712 (1985).
38 K. Vogel, T. Kato, W. Schleich, D. Koelle, R. Kleiner, and E. Goldobin, arXiv:0812.3587 (unpublished).
39 R. Monaco, G. Costabile, and N. Martucciello, J. Appl. Phys. 77, 2073 (1995).
40 C. Nappi, M. P. Lissitski, and R. Cristiano, Phys. Rev. B 65, 132516 (2002).
41 P. Silvestrini, O. Liengme, and K. E. Gray, Phys. Rev. B 37, 1525 (1988).
42 A. Wallraff, A. Lukashenko, C. Coqui, A. Kemp, T. Duty, and A. V. Ustinov, Rev. Sci. Instrum. 74, 3740 (2003).
43 M. Büttiker, E. P. Harris, and R. Landauer, Phys. Rev. B 28, 1268 (1983).
44 T. Gaber, E. Goldobin, A. Sterck, R. Kleiner, D. Koelle, M. Siegel, and M. Neuhaus, Phys. Rev. B 72, 054522 (2005).
45 The necessary energy is $u=8E_j/l$ for $\gamma = 0$.

014504-8