Precise Low-Temperature Expansions for the Sachdev-Ye-Kitaev model

Erick Arguello Cruz and Grigory Tarnopolsky

Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

We solve numerically the large N Dyson-Schwinger equations for the Sachdev-Ye-Kitaev (SYK) model utilizing the Legendre polynomial decomposition and reaching 10^{-36} accuracy. Using this we compute the energy of the SYK model at low temperatures $T \ll J$ and obtain its series expansion up to $T^{7.54}$. While it was suggested that the expansion contains terms $T^{3.77}$ and $T^{6.68}$, we find that the first non-integer power of temperature is $T^{6.54}$, which comes from the two point function of the fermion bilinear operator $O_{h_1} = \chi \partial^2 \chi$ with scaling dimension $h_1 \approx 3.77$. The coefficient in front of $T^{6.54}$ term agrees well with the prediction of the conformal perturbation theory. We conclude that the conformal perturbation theory appears to work even though the SYK model is not strictly conformal.

In memory of Yaroslav Pugai

I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model is a quantum system of N Majorana fermions with all-to-all random interactions [1, 2]. This model finds its application in different branches of science including quantum computation [3-6] and there is a variety of proposals for its realization in laboratory [7-16]. Reviews of the SYK model can be found in [17-20].

The SYK model low temperature behavior displays various interesting properties. Particularly in the large N limit it exhibits emergent conformal symmetry in the infrared. This suggests that conformal field theory methods can be used to study the model. However the symmetry is both explicitly and spontaneously broken and therefore the term “nearly conformal quantum mechanics” or NCFT$_1$ was coined for the SYK model in [17]. The conformal symmetry still plays a crucial role and a complete framework of its applicability is not yet clear.

In this paper we investigate the low temperature expansion of the SYK model using the conformal perturbation theory approach and confirm theoretical predictions by extremely precise numerical computations. It was previously assumed that the SYK model energy at low temperatures contains non-integer powers of temperature T^{h_k}, where h_k are scaling dimensions of fermion bilinear operators O_{h_k} and the first two dimensions are $h_1 \approx 3.77$ and $h_2 \approx 5.68$ for $q = 4$ case. We show numerically that these terms are not present and the first non-integer power of temperature is $T^{6.54-1}$, which comes from the two point function of the operator O_{h_1}. We find that the coefficient in front of this power term agrees well with the prediction of the conformal perturbation theory.

The paper is organized as follows: in section II, we review the SYK model. In section III, we discuss the effective theory approach to the SYK model and the low temperature expansion of the two-point function and free energy. In section IV, we discuss methods for numerical solution of the large N Dyson-Schwinger equations. Finally, in section V, we present numerical results and compare them with the theoretical predictions.

II. THE SYK MODEL

The Majorana SYK model is described by the following Hamiltonian with even integer q

$$H = \frac{\imath q/2}{q!} \sum_{i_1, \ldots, i_q} J_{i_1 \ldots i_q} \chi_{i_1} \cdots \chi_{i_q},$$

(1)

where N Majorana fermions χ_i with $i = 1, \ldots, N$ interact via random couplings $J_{i_1 \ldots i_q}$ drawn from a Gaussian ensemble with zero mean $\langle J_{i_1 \ldots i_q} \rangle = 0$ and variance $\langle J_{i_1 \ldots i_q}^2 \rangle = (q - 1)! J^2 / N^{q-1}$. The free energy of the SYK model after disorder average is

$$-\beta F = \text{ln} Z = \partial_n \overline{Z^n} |_{n \to 0},$$

(2)

where $\beta = 1/T$ is the inverse temperature. In [21, 22] it was explained that for the SYK model up to $1/N^{q-2}$ order $\overline{Z^n} = (\overline{Z})^n$, therefore at leading N we get $-\beta F = \text{ln} Z$. Taking disorder average of the partition function and integrating out the Majorana fermions we obtain a functional integral over two bi-local fields G and Σ:

$$e^{-\beta F} = \int DG(\tau_1, \tau_2) D\Sigma(\tau_1, \tau_2) e^{-I[G, \Sigma]},$$

(3)

where $G(\tau_1, \tau_2)$ has a meaning of imaginary time two-point function of the Majorana fermions

$$G(\tau_1, \tau_2) = -\frac{1}{N} \langle T \chi_i(\tau_1) \chi_i(\tau_2) \rangle$$

(4)

and the (G, Σ) action I is [17, 21]

$$-\frac{I[G, \Sigma]}{N} = \log \text{Pf}(-\sigma - \Sigma) - \frac{1}{2} \int_0^\beta d\tau_1 d\tau_2 \left[\Sigma(\tau_1, \tau_2) G(\tau_1, \tau_2) - \frac{J^2}{q} G(\tau_1, \tau_2)^2 \right].$$

(5)

where $\sigma(\tau_1, \tau_2) = \delta(\tau_1 - \tau_2)$. In the large N limit the leading contribution to the thermodynamic free energy F comes from the saddle point configuration (G_s, Σ_s) of
the functional I, so $\beta F_*= I[G_*, \Sigma_*]$. This configuration is a solution of the Dyson-Schwinger (DS) equations

$$-\partial_\tau G_\tau(t_1, t_2) - \int_0^t d\tau' \Sigma(t_1, \tau') G(\tau', t_2) = \delta(t_1t_2),$$

$$\Sigma(t_1, t_2) = J^2 G(t_1, t_2)^q-1,$$ \hspace{1cm} (6)

and it has translational symmetry $G_\tau(t_1, t_2) = G_\tau(t_2).$ It is well-known that the saddle point solution for $\beta, t \gg 1/J$ can be approximated by the power law form $[2, 17, 21, 23]$

$$G_\tau(\tau) = -b^{\Delta}\left(\frac{\pi}{|\beta J|\sin \frac{\pi}{\tau}}\right)^{2\Delta} \operatorname{sgn}(\tau),$$ \hspace{1cm} (7)

where $\Delta = 1/q$ and

$$b = \frac{1}{2\pi}(1 - 2\Delta) \tan(\pi\Delta).$$ \hspace{1cm} (8)

This is a consequence of the emergent time reparametrization invariance of the DS equations in the IR limit.

Since βF_* depends only on βJ, the large N energy of the system per particle is $\beta E = J\partial_\beta(\beta F_* / N)$ and thus we obtain for the energy

$$E = -\frac{J^2}{q} \int_0^\beta d\tau G_\tau(\tau)^q = -\frac{1}{q} \partial_\tau G_\tau(\tau)|_{\tau \to 0^+}.$$ \hspace{1cm} (9)

This is a UV quantity and cannot be calculated using the conformal approximation (7). At large βJ, the energy admits a $1/\beta J$ expansion, so we have for the energy per coupling J

$$\epsilon(\beta J) = E/J = c_0 + \frac{c_2}{(\beta J)^2} + \frac{c_3}{(\beta J)^3} + \ldots,$$ \hspace{1cm} (10)

which is a function of βJ only. For the first three terms of the energy it was found that $[17, 21, 24-26]$

$$\epsilon(\beta J) = c_0 - \frac{\pi^2 k'(2)\alpha_0}{3\mu(\beta J)^2} + \frac{2\pi^2 k'(2)\alpha_0^2}{3\mu(\beta J)^3} + \ldots,$$ \hspace{1cm} (11)

where $a = ((q-1)b)^{-1}$ and $k(h)$ is given in (13) and for $q = 4$ the ground energy is $c_0 \approx -0.0406$ and $\alpha_0 \approx 0.2648$, which are determined numerically.

The next order terms in the energy expansion are unknown. It was suggested in [21, 24] that the next order term should have the form $c_{h_1}(\beta J)^{h_1}$, where $h_1 \approx 3.77$ for $q = 4$ is the scaling dimension of the bilinear operator $O_{h_1} = \chi_1 \chi_2$. On the other hand, the conformal perturbation theory, and arguments based on the large q expansion in $[27, 28]$, imply that this term should be absent. The main goal of this paper is to clarify the low temperature energy expansion of the Majorana SYK model. For this, we used a high-precision computation of the SYK model Green’s function $G_\tau(\tau)$ at very low temperatures (very large βJ). In the next section we discuss an effective theory approach to the SYK model, which uses conformal perturbation theory for computation of $1/\beta J$ expansion of the two-point function and the free energy.

III. SYK EFFECTIVE THEORY

The effective theory approach to the SYK model provides a way to compute higher power temperature corrections (higher $1/\beta J$ terms) of the SYK free energy and the two point function using the conformal perturbation theory. In this approach one assumes that the (G, Σ) action I can be viewed as a Conformal Field Theory (CFT) action, perturbed by an infinite series of irrelevant bilinear operators $O_h(\tau)$

$$I = I_{\text{CFT}} + \sum_h g_h \int_0^\beta d\tau O_h(\tau),$$ \hspace{1cm} (12)

with the scaling exponents h obtained from the solution of the equation $k(h) = 1$ with

$$k(h) = \frac{\Gamma(2\Delta - h)\Gamma(h + 2\Delta - 1)}{\Gamma(2\Delta - 2)\Gamma(2\Delta + 1)} \left(1 - \frac{\sin(\pi h)}{\sin(2\pi \Delta)}\right).$$ \hspace{1cm} (13)

For any Δ the lowest scaling exponent is $h_0 = 2$, but the higher scaling exponents depend on q and for $q = 4$ the next three are

$$h_1 \approx 3.7735, \quad h_2 \approx 5.6795, \quad h_3 \approx 7.6320.$$ \hspace{1cm} (14)

The bilinear operators O_{h_k} schematically are

$$O_{h_k}(\tau) = \chi_i(\tau) \partial_\tau^{2h+1} \chi_i(\tau).$$ \hspace{1cm} (15)

Conformal SYK two-point function in (7) is obtained using the I_{CFT} action

$$G_\tau(\tau_1) = -\frac{1}{Z} \int D\chi_i \frac{1}{N} \chi_i(\tau_1) \chi_i(\tau_2) e^{-I_{\text{CFT}}}. \hspace{1cm} (16)$$

The $1/\beta J$ corrections to the two-point function can be computed using conformal perturbation theory with the action in (12). For the first order correction one uses the three-point function $[29-31]$

$$\frac{1}{N} \chi_i(\tau_1) \chi_i(\tau_2) O_h(\tau_3)) = \frac{c_h b^\Delta \operatorname{sgn}(\tau_2)}{\left[\frac{\beta J}{\pi} \sin \frac{\pi \tau_2}{2\Delta - h} \right]^2 \left[\frac{\beta J}{\pi} \sin \frac{\pi \tau_2}{2\Delta - h} \right] \left[\frac{\beta J}{\pi} \sin \frac{\pi \tau_2}{2\Delta - h} \right]}.$$ \hspace{1cm} (17)

where the structure constants c_h can be extracted from the explicit computation of the connected part of the four-point function of the Majorana fermions $[17, 29]$

$$c_h^2 = \frac{a}{k(h) \pi \tan(\pi h/2) \Gamma(2h)}. \hspace{1cm} (18)$$

The second order of the conformal perturbation theory requires the computation of the four-point function and so on $[27]$, this in turn uses the structure constants $c_{h' h''}$ of the three-point function of the operators $O_{h'}, O_{h''}$ and $O_{h'''}$. These structure constants were computed in $[30]$ from the six-point correlation function of the Majorana
fermions. Finally this leads to the following expansion of the exact two-point function

\[G_s(\tau) = G_c(\tau) \left(1 - \sum_h \frac{\alpha_h}{(\beta J)^{h-1}} f_h(\tau) - \sum_{h,h'} \frac{\alpha_h \alpha_{h'}}{(\beta J)^{h+h'-2}} f_{h,h'}(\tau) - \ldots \right), \tag{19} \]

where the functions \(f_h(\tau) \) are

\[f_h(\tau) = \frac{(2\pi)^h \Gamma(h/2) (A_h e^{2\pi\tau} + A_h e^{-2\pi\tau})}{2 \sin \pi h/2 \Gamma(2h-1)}, \tag{20} \]

with \(A_h(z) = (1-z)^h F(h, h, 1; z) \) and \(F \) is the regularized hypergeometric function. Parameters \(\alpha_h \) are related to the couplings \(g_h \) as

\[g_h^2 = \frac{J^2 k'(h)}{a} \left(h - 1/2 \right) \frac{\Gamma(h)^2}{\pi \tan(\pi h/2)} \frac{\alpha_h^2}{\Gamma(2h)\alpha_h^2}, \tag{21} \]

and the coefficients \(a_{h' \prime}, a_{h''} \), etc can be computed exactly [27]. The functions \(f_{h,h'}(\tau) \) are unknown and depend on \(q \), but scale as \(f_{h,h'}(\tau) \to (\beta/\tau)^{h+h'-2} \) for \(\beta \to \infty \). For the Majorana SYK model the leading terms in this series expansion are

\[G_s(\tau) = G_c(\tau) \left(1 - \frac{\alpha_0}{\beta J} f_0(\tau) - \frac{a_0 a_0^2}{(\beta J)^2} f_0(\tau) - \frac{\alpha_1}{(\beta J)^{h+1}} f_1(\tau) - \frac{a_0 a_0 a_0^2}{(\beta J)^3} f_0(\tau) - \ldots \right). \tag{22} \]

In this approach, the coupling constants \(g_h \) (or parameters \(\alpha_h \)) are unknown real numbers. We can find \(\alpha_h \) by fitting numerical solution for \(G_s(\tau) \) by the formula (22).

Similarly, using the conformal perturbation theory for the action (12), we can obtain the \(1/\beta J \) expansion of the SYK model free energy

\[\beta F_s = \beta F_{CFT} + \sum_h g_h \int_0^\beta d\tau \langle O_h \rangle_{\beta} \]

\[- \frac{1}{2} \sum_h g_h^2 \int_0^\beta d\tau_1 d\tau_2 \langle O_h(\tau_1) O_h(\tau_2) \rangle_{\beta} + \ldots, \tag{23} \]

and \(\beta F_{CFT}/N = \beta E_0 - s_0 \) is the conformal part of the free energy, where \(E_0 \) is the bare energy and \(s_0 \) is the zero-temperature entropy [23, 32]

\[s_0 = \int_0^{1/2-\Delta} dx \frac{\pi x}{\tan(\pi x)}. \tag{24} \]

Since in one-dimension we can map a line to a circle by the transformation \(\tau \to e^{2\pi\tau/\beta} \) we expect that correlation functions on the thermal circle are determined by the conformal symmetry. Therefore all one-point correlation functions of primary operators should vanish, except for the identity [33]. Using the two-point function of operators

\[\langle O_h(\tau_1) O_h(\tau_2) \rangle_{\beta} = \frac{\pi}{\beta \sin \pi \beta} 2^{2h} \tag{25} \]

we can compute its contribution to the free energy [27, 34]

\[\frac{\beta \delta^2 F_h}{N} = -\frac{\pi^{2h-1} \Gamma(\frac{1}{2} - h)}{2 \Gamma(1-h)} \frac{g_h^2}{J^2} \frac{2}{(\beta J)^{h-2}}. \tag{26} \]

For the SYK model this CFT approach has a big caveat. The problem is that the operator \(O_{h_0} = \chi_i \partial_\tau \chi_i \) with \(h_0 = 2 \) is essentially the Hamiltonian \(H \) of the SYK model and thus correlation functions with it do not have the CFT structure. For instance as was shown in [17] the two-point function of \(O_{h_0} \) measures the energy fluctuations and is a constant rather than a power law

\[\langle O_{h_0}(\tau_1) O_{h_0}(\tau_2) \rangle_{\beta} = N c \frac{e^{-\beta s}}{\beta^2}, \tag{27} \]

where \(c \) is the specific heat per particle

\[\frac{c}{\beta^2} = -\frac{\pi^2 k'(2) a_0}{3 q a_0} \frac{\alpha_0}{\beta J}, \tag{28} \]

so \(\beta F_s/N = \beta E_0 - s_0 - c/(2\beta) + \ldots \) One can say that the operator \(O_{h_0} \) breaks conformal symmetry. On the other hand if we assume that \(\langle O_h \rangle_{\beta} = 0 \) for \(k = 1, 2, 3, \ldots \), then we can heuristically argue that for all \(n \)

\[\langle O_{h_0}(\tau_1) \ldots O_{h_0}(\tau_n) O_{h_0}(\tau_{n+1}) \rangle_{\beta} = 0 \tag{29} \]

because, as we mentioned above \(O_{h_0} = H, \) and thus

\[\langle H \ldots H O_{h_0}(\tau_{n+1}) \rangle_{\beta} = Z^{-1} (-\partial_{\beta})^m \text{Tr}(O_{h_k} e^{-\beta H}). \tag{30} \]

Similarly we should conclude that if \((O_{h_k} O_{h_m})_\beta \propto \delta_{k,m} \) for \(m = 1, 2, 3, \ldots \), then

\[\langle O_{h_0} \ldots O_{h_0} O_{h_0} O_{h_0} \rangle_{\beta} \propto \delta_{k,m}. \tag{31} \]

We find below that our numerical results indeed support the equations (29) and (26) and show some evidence for (31) in the case of one \(O_{h_0} \) operator and \(k = m = 1 \).

Though the expression (19) can be obtained using the CFT approach and assuming that \(O_{h_0} \) does not violate the CFT structure of the correlation functions, the coefficients \(a_{h, h'} \), \(a_{h''} \) and the first two terms in (11) of the energy expansion were computed using more direct method, developed in [17, 21, 25, 26]. In the Appendix C we show how to reproduce (26) using this method. Nevertheless, this method does not explain which powers of \(1/\beta J \) can be present in the energy expansion. Therefore in this paper we approach this question using numerical computations. Particularly we analyse \(1/\beta J \) expansion of the energy \(\epsilon(\beta J) \) and also Green’s function \(G_s(\beta/2) \) at \(\tau = \beta/2 \) point.
IV. NUMERICAL SOLUTION OF THE DYSON-SCHWINGER EQUATIONS

Conventional approach to numerical solution of the SYK Dyson-Schwinger equations (6) at finite βJ uses iterations of the equations, starting with the free correlation function and using the Fourier series expansion [17]

$$G(\tau) = \frac{1}{\beta} \sum_{n=-\infty}^{+\infty} G(i\omega_n)e^{-i\omega_n\tau},$$ \hspace{1cm} (32)

where $\omega_n = 2\pi(n+1/2)/\beta$ are the Matsubara frequencies. In the Matsubara frequency space the first equation in (6) is diagonal

$$ (i\omega_n - \Sigma(i\omega_n))G(i\omega_n) = 1. \hspace{1cm} (33)$$

Numerically, one keeps only Matsubara modes with $|n| < N_M$ and because at large frequencies the Green’s function decays as $G(i\omega_n) \sim 1/(i\omega_n)$ the error of the numerical solution scales as $O(N_M^{-1})$. To improve accuracy of this approach one uses the knowledge of the first p high-frequency expansion terms of the Green’s function $G(i\omega_n) \approx \sum_{k=1}^{p} g_k/(i\omega_n)^k$, where $g_1 = 1$. This helps to reduce the error to the order $O(N_M^{-p-1})$ [35–38]. In the Appendix B we discuss this approach to the Majorana SYK model.

In this paper we use the Legendre spectral method [35, 39] to solve numerically the Dyson-Schwinger equations (6) much more efficiently. Namely we decompose the Green’s function and the self-energy in the Legendre polynomials (there are other orthogonal polynomials which can be used [40] as well as methods [41])

$$G(\tau) = \sum_{\ell=0}^{\infty} G_{\ell} L_\ell(x(\tau)), \hspace{1cm} \Sigma(\tau) = \sum_{\ell=0}^{\infty} \Sigma_\ell L_\ell(x(\tau)), \hspace{1cm} (34)$$

where $x(\tau) = 2\tau/\beta - 1$. The Legendre coefficients G_ℓ and Σ_ℓ decay exponentially with ℓ [39] and therefore if we retain only N_L Legendre coefficients in the expansion (34) we expect numerical solution to have exponentially high accuracy of the order $O(e^{-N_L})$.

An inherent particle-hole symmetry of the Majorana fermions leads to the symmetry of Green’s function around $\tau = \beta/2$, so $G(\tau) = G(\beta - \tau)$. This implies that all the odd coefficients of the Legendre decomposition must be zero $G_{2k+1} = 0$ for $k = 0, 1, 2, \ldots$.

Using the Legendre polynomial expansion we can find the energy of the SYK model (10) as

$$\epsilon(\beta J) = \frac{1}{2\beta J} \sum_{k=1}^{\infty} k(2k+1)G_{2k}, \hspace{1cm} (35)$$

and also the two-point function at $\tau = \beta/2$ point:

$$G(\beta/2) = \sum_{k=0}^{\infty} (-1)^k\frac{(2k)!}{4^k(k!)^2} G_{2k}, \hspace{1cm} (36)$$

where we used that $L_\ell^*(-1) = (-1)^{\ell+1}\ell(\ell + 1)/2$ and $L_{2k+1}(0) = 0$ and

$$L_{2k}(0) = \frac{(-1)^k(2k)!}{4^k(k!)^2}. \hspace{1cm} (37)$$

Details of the numerical solution with the Legendre polynomial expansion are discussed in the Appendix A. In the next section we present our numerical results and compare them with the theoretical predictions.

V. NUMERICAL RESULTS

We find numerical solution for the Green’s function $G(\tau)$ in $q = 4$ SYK model in the range of parameter $\beta J \in [10, 15000]$ with accuracy around 10^{-36} solving the equations (6) with the use of the Legendre polynomials decomposition. To achieve this accuracy we retain N_L Legendre coefficients, where N_L is such that the last Legendre coefficient G_{N_L} is smaller than 10^{-36}. As we already mentioned above the Legendre coefficients G_ℓ and Σ_ℓ decay exponentially with ℓ [39] and by fitting numerical results for different βJ we find for $q = 4$

$$G_\ell \approx -e^{-3.32\ell/\sqrt{\beta J}}, \hspace{1cm} \Sigma_\ell \approx -e^{-3.20\ell/\sqrt{\beta J}}. \hspace{1cm} (38)$$

In contrast, the Legendre coefficients of the conformal solution $G_c(\tau)$ in (7) for $q = 4$ and large $\ell = 2k$ are

$$G_{c,2k} \approx -\frac{2\sqrt{2}}{\pi^{1/4}\sqrt{\beta J}} \left(1 + \frac{45}{2048k^4} + \ldots \right), \hspace{1cm} (39)$$

and to derive it we used expansion in powers of $1 - x^2$ of the function $(\cos(\pi x/2))^{-2\Delta}$ and the integral

$$\int_{-1}^{1} \frac{dxL_{2k}(x)}{(1-x^2)^{\alpha}} = \frac{\Gamma(1-\alpha)\Gamma(k+\frac{3}{2})\Gamma(k+\frac{3}{2}-\alpha)}{\Gamma(\alpha)\Gamma(k+1)\Gamma(k+\frac{3}{2}-\alpha)}. \hspace{1cm} (40)$$

A plot of the Legendre coefficients G_{2k} and $G_{c,2k}$ for $\beta J = 1000$ is depicted in Fig.1. We see that only first two Legendre coefficients G_0, G_2 of the exact solution $G_c(\tau)$ are close to the ones of the conformal solution $G_c(\tau)$.

We compute the energy using eq. (35) and we can estimate the accuracy of this computation assuming that each coefficient G_ℓ for $\ell = 1, \ldots, N_L$ is computed with accuracy G_{N_L} plus the sum in (35) from N_L to ∞ with the asymptotic values of G_ℓ from (38). This gives

$$\delta \epsilon \approx \frac{N_L^2}{24\beta J} + \frac{N_L^2}{8 \cdot 3.32\sqrt{\beta J}} e^{-3.32N_L/\sqrt{\beta J}}. \hspace{1cm} (41)$$

For $\beta J \in [9600, 15000]$ we used $N_L = 3000$ and the lowest accuracy for energy $\epsilon(\beta J)$ is at $\beta J = 15000$ and can be estimated as $\delta \epsilon \approx 4 \cdot 10^{-31}$. On the other hand the coefficient $(1/\beta J)^{7.54} \approx 3 \cdot 10^{-32}$ at this value of βJ, so the overall accuracy is enough to probe $(1/\beta J)^{7.54}$ dependence of the energy. We also estimated accuracy of our computation using the second relation in eq. (B14). This
estimate shows even higher accuracy of the energy computation than eq. (41), confirming that we can reliably probe $(1/βJ)^{7.54}$ term.

We are interested in $1/βJ$ series expansion of the energy $ε(βJ)$. This is an asymptotic series and the accuracy of its approximation to $ε(βJ)$ for large enough $βJ$ is proportional to $(1/βJ)^p$, where $p’ > p$ is the next omitted power in the series expansion up to the power p. So if we denote the series expansion up to the power p by

$$ε_p(βJ) = c_0 + c_2/(βJ)^2 + \cdots + c_p/(βJ)^p,$$ \hspace{1cm} (42)

then we should expect

$$|ε(βJ) - ε_p(βJ)| \leq c_{p’}/(βJ)^{p’}.$$ \hspace{1cm} (43)

This should be true for asymptotic series provided we take large enough $βJ$ such that $c_{p’}/(βJ)^{p’} \ll c_p/(βJ)^p$. We stress that powers in this expansion can be non-integer numbers.

In order to extract series coefficients c_0, c_2, \ldots, c_p we perform linear regression fit of the numerical data for $ε(βJ)$ by the polynomial $ε_p(βJ)$ on the interval of couplings $βJ$ using the weighted least squares, i.e. minimizing the loss function

$$L_w(c_0, c_2, \ldots, c_p) = \sum_i w_i |ε(βJ_i) - ε_p(βJ_i)|^2.$$ \hspace{1cm} (44)

We tune weights w_i in such a way that the inequality (43) is fulfilled on the interval of $βJ$. An example of such a fit on the interval $βJ \in [500, 15000]$ for $p = 2h_1 \approx 7.54$ is depicted in Fig. 2.

On general grounds, we expect that by fitting the numerical data by the polynomial $ε_p(βJ)$ we can find coefficients c_0, c_2, \ldots, c_p with the accuracy

$$δc_k \propto 1/(βJ_{\text{max}})^{p’ - k},$$ \hspace{1cm} (45)

where $βJ_{\text{max}}$ is the maximal value of the $βJ$ interval and $p’ > p$ is the next omitted power in the series expansion.

The validity of the estimate (45) is not entirely clear, but it should be certainly correct in the $βJ_{\text{max}} \to \infty$ limit. We also analyze accuracy of our fit using the ratio c_3/c_2^2, which is independent on $α_0$ parameter and can be computed analytically from (11)

$$c_3/c_2^2 = -384/π(2 + 3π) \approx -10.6988.$$ \hspace{1cm} (46)

The accuracy of this ratio is essentially the accuracy of the coefficient c_3, since c_2 should have much higher accuracy than c_3 for large $βJ_{\text{max}}$ according to (45). To further improve accuracy of the numerical estimate of the coefficients c_k, we fit the data for different values of $βJ_{\text{max}}$ and then approximate the results to $βJ_{\text{max}} \to \infty$ value.

To rule out potentially possible non-integer power terms $c_k/(βJ)^k$ in the energy expansion, we include these terms one at a time in the polynomial $ε_p(βJ)$ and by fitting them we find that their coefficients c_k are tiny numbers. We listed the results of such a fit by the polynomial $ε_{2h_1}(βJ)$ in the Table I. We conclude that there are no terms with powers $p = h_1, h_1 + 1, h_1 + 2$ or h_2, where h_k are given in (14) in the energy $1/βJ$ expansion.

c_1	$\approx 10^{-26}$
c_{h_1}	$\approx 10^{-13}$
c_{h_1+1}	$\approx 10^{-9}$
c_{h_1+2}	$\approx 10^{-5}$
c_{h_2}	$\approx 10^{-30}$

TABLE I. Fitting results for possible power expansion coefficients. We conclude that these coefficients are absent in the series expansion. We also included non-existing coefficient c_1 to check accuracy of the fit.
included in ϵ_7 for different values of βJ_{max} and analyse
behavior of the error $\delta(c_3/c_2^2)$ as a function of βJ_{max}. According to (45) and discussion below (46) we expect
to find $\delta(c_3/c_2^2) \propto 1/(\beta J_{\text{max}})^{p' - 3}$, where p' is the next
omitted power after the power p of the fitting polynomial $\epsilon_p(\beta J)$. The plot of $\delta(c_3/c_2^2)$ as a function of $1/\beta J_{\text{max}}$
and its fit are depicted in Fig. 3. We find numerically $p' \approx 6.52$ and $p'' \approx 7.44$ for $p = 6$ and $p = 7$ cases correspondingly.

![Log-log plot of the error $\delta(c_3/c_2^2)$](image)

FIG. 3. Log-log plot of the error $\delta(c_3/c_2^2)$ as a function of $1/\beta J_{\text{max}}$ obtained from fitting $c_3(\beta J)$ by $c_0(\beta J)$ in (a) and by $\epsilon_7(\beta J)$ in (b). Black dashed lines are proportional to $(\beta J_{\text{max}})^{-3.52}$ and $(\beta J_{\text{max}})^{-4.41}$.

Finally we fit the numerical data by the polynomial $c_{2h_1}(\beta J)$ which includes $c_{2h_1 - 1}$ and c_{2h_1} coefficients. Our results for the energy expansion coefficients are summarized in the Table II with the standard error in parenthesis. For these results the ratio (46) has precision 10^{-18}.

c_0	$-0.0406302697583449152143475022673(6)$
c_2	$0.19800839700257657773045(3)$
c_3	$-0.4194698967373753612(4)$
c_4	$0.664982705993833(5)$
c_5	$-2.57685914760(6)$
c_6	$9.93218529(9)$
$c_{2h_1 - 1}$	$-13.02312(9)$
c_7	$-26.8(9)$
c_{2h_1}	109 ± 5

TABLE II. $1/\beta J$ expansion coefficients of the energy.

We will see below that the coefficient $c_{2h_1 - 1}$ of the first non-integer power term in the energy expansion is in perfect agreement with the prediction of the conformal perturbation theory (26).

To find numerically the parameters $\alpha_0, \alpha_1, \alpha_2$ we compute $G_*(\beta J/2)$ on an interval of βJ using the equation (36). We notice that $L_{2k}(0) \approx (-1)^k/\sqrt{\pi k} + O(k^{-3/2})$ for $k \gg 1$, so the contribution of the Legendre coefficients G_{2k} in (36) decay with k, which makes accuracy of $G_*(\beta J/2)$ computation even higher than the accuracy of the energy computation.

Similarly to the energy we fit the numerical results for $G_*(\beta J/2)$ by a polynomial of $1/\beta J$, which includes only powers predicted theoretically in (22). More precisely to find $\alpha_0, \alpha_1, \alpha_2$ we fit the expression

$$
\frac{\sqrt{\beta J} G_*(\beta J/2)}{\pi/4} + 1 = \frac{\alpha_0 f_0(\beta J)}{\beta J} + \frac{\alpha_0 \alpha_2^2 f_0(\beta J)}{\beta J^2}
$$

$$
+ \frac{\alpha_1 f_1(\beta J)}{(\beta J)^{h_1 - 1}} + \frac{\alpha_0 \alpha_2^3 f_0(\beta J)}{(\beta J)^3} + \ldots, \quad (47)
$$

where we used that $G_c(\beta J/2) = -(\pi/4)^{1/4}/\sqrt{\beta J}$. Numerical results for the coefficients of the expansion in eq. (47) are shown in the Table III. From these results we can find parameters α_h for h_0, h_1 and h_2, using that $f_0(\beta J/2) = 2$, $f_1(\beta J/2) \approx 4.7373$, $f_2(\beta J/2) \approx 11.3971$ from (20). The results for α_h are summarized in Table IV. We notice that numerical error of α_2 is large, since the two powers $h_2 - 1 \approx 4.68$ and $h_1 + 1 \approx 4.77$ in $1/\beta J$ expansion are very close to each other and this lowers precision of the fit. We also obtain $f_0(\beta J/2) \approx 5.00969$, $f_0(\beta J/2) \approx 19.9483$ and $f_0(\beta J/2) \approx 2.52785$ using that $a_{00} = 9/4$, $a_{01} \approx 2.7229$ and $a_{000} = -65/4$ [27].

As a check of our accuracy we expect from (11)

$$
c_2^{\text{theory}} = \frac{1}{48} \pi (2 + 3\pi) \alpha_0. \quad (48)
$$

Using the results from the Tables II and IV we find

$$
c_2 - c_2^{\text{theory}} \approx 10^{-17}. \quad (49)
$$

This essentially shows the accuracy of α_0 from the Table IV, since the coefficient c_2 from the Table II has higher accuracy in agreement with (45). Similarly, from (26) we expect

$$
c_{2h_1 - 1}^{\text{theory}} = \frac{(h_1 - 1)! \pi^{2h_1 - 1} \Gamma(\frac{1}{2} - h_1)}{\Gamma(1 - h_1)} \frac{g_{2h_1}}{J^2} \approx -121.9375 \alpha_0^2, \quad (50)
$$

where g_h is given in (21). Using the numerical result for α_h from the Table IV, we obtain from the conformal...
perturbation theory prediction

\[c_{2h_1-1} \approx -13.0224. \]

We see that it coincides with our numerical estimate for \(c_{2h_1-1} \) in the Table I within an error of \(8 \cdot 10^{-4} \). We remark that such a good agreement with the conformal perturbation theory indirectly confirms that \(\langle O_{h_0}O_{h_2} \rangle = 0 \), otherwise it would produce the power term \(h_2 + 1 \approx 6.68 \) in the energy expansion, which would strongly interfere with the term \(2h_1 - 1 \approx 6.54 \) and thus lower the accuracy of the fit significantly.

VI. DISCUSSION

In this article we show numerically that the conformal perturbation theory appears to work for the SYK model even though the SYK model is not strictly conformal. We found that there are no terms \((\beta J)^{-h_1+1} \) and \((\beta J)^{-h_2+1} \) in the \(1/\beta J \) expansion of the SYK free energy and the first non-integer power term is \(p = 2h_1 - 2 \) (\(\approx 5.54 \) for \(q = 4 \)). It comes from the two point function of the bilinear operator \(O_{h_1} = \chi \partial_x^2 \chi \). It would be interesting to investigate the low temperature expansion of the complex SYK model [42] with non-zero chemical potential \(\mu \), where there is a local operator \(O_h = c! \partial_x^2 c \) with the scaling dimension \(h \approx 2.65 \) which depends slightly on \(\mu \) [32, 43]. We expect that the first non-integer power in the cSYK model free energy should be \(p = 2h - 2 \) (\(\approx 3.3 \) for \(q = 4 \)) and is much lower than in the Majorana SYK [44]. There are variety of other random and non-random quantum models, where the scaling dimensions of the bilinear operators depend strongly on the models' parameters [27, 28, 45–48]. In some of these models the scaling dimensions of the lowest operators can be less than 3/2 (and for some parameters can become even relevant \(h < 1 \), thus breaking the conformal invariance completely). For these type of models the validity of the conformal perturbation theory approach is of primary importance, since it defines the leading behavior of the free energy.

ACKNOWLEDGMENTS

We would like to thank Igor R. Klebanov and Alexey Milekhin for useful discussions and comments. We also would like to thank Michael Widom for providing us with computer cluster time.

Appendix A: Legendre spectral method

In this appendix, following [35], we briefly describe the Legendre spectral method for solving the Dyson-Schwinger equations. We would like to solve numerically the Dyson-Schwinger equation

\[\partial_\tau G(\tau) + \int_0^\beta d\tau' \Sigma(\tau - \tau')G(\tau') = -\delta(\tau), \]

where \(\Sigma(\tau) = J^2 G^{q-1}(\tau) \). We expand Green's function \(G(\tau) \) in the Legendre series

\[G(\tau) = \sum_{\ell=0}^\infty G_\ell L_\ell(x(\tau)), \]

where \(x = 2\tau/\beta - 1 \). Since the Legendre polynomials \(L_\ell(x(\tau)) \) are defined only on the interval \(\tau \in [0, \beta] \) the delta function in (A1) can be omitted, but its effect must be reinstated in the boundary condition for the Green's function \(G(0^+) + G(\beta^-) = -1 \). In terms of the Legendre coefficients this boundary condition reads

\[\sum_{\ell=0}^\infty ((-1)^\ell + 1) G_\ell = -1, \]

where we used that \(L_\ell(-x) = (-1)^\ell L_\ell(x) \) and \(L_\ell(1) = 1 \). For the derivative of the Legendre polynomial we find

\[\partial_\tau L_\ell(x(\tau)) = \frac{2}{\beta} \partial_x L_\ell(x) = \frac{2}{\beta} \sum_k D_{k\ell} L_k(x), \]

where \(D_{k\ell} = (2k + 1) \) if \(k + \ell \) is odd and \(k < \ell \), otherwise \(D_{k\ell} = 0 \). The derivative matrix \(D_{k\ell} \) for the first several values of \(k \) and \(\ell \) starting from 0 is

\[D_{k\ell} = \begin{pmatrix} 0 & 1 & 0 & 1 & \ldots \\ 0 & 0 & 3 & 0 & 3 & \ldots \\ 0 & 0 & 0 & 5 & 0 & \ldots \\ 0 & 0 & 0 & 0 & 7 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \]

So we obtain that

\[\partial_\tau G(\tau) = \frac{2}{\beta} \sum_{k=0}^\infty \left[\sum_{\ell=0}^\infty D_{k\ell} G_\ell \right] L_k(x(\tau)). \]

Next we write the convolution as the Legendre expansion

\[\int_0^\beta d\tau' \Sigma(\tau - \tau')G(\tau') = \frac{\beta}{2} \sum_{k,\ell=0}^\infty [\Sigma^*]_{k\ell} G_\ell L_k(x(\tau)). \]

Therefore the Dyson-Schwinger equation (A1) reads

\[\sum_{\ell=0}^\infty \left(D_{k\ell} + \frac{\beta^2}{4} [\Sigma^*]_{k\ell} \right) G_\ell = 0 \]

1 The delta function implies the boundary condition \(G(0^+) - G(0^-) = -1 \). Using the KMS condition \(G(-\tau) = -G(\beta - \tau) \) we arrive to the boundary condition on the interval \(\tau \in [0, \beta] \).
and it has to be supplemented with the boundary condition (A3). We notice that since \(G(\tau) = G(\tau/\beta, \beta J) \) the Legendre coefficients \(G_\ell \) depend only on combination \(\beta J \) and this is also evident from the equation (A8).

To find an expression for the convolution matrix \([\Sigma^*]_{k\ell}\) we write
\[
\int_0^\beta d\tau' \Sigma(\tau - \tau') \sum_{\ell=0}^\infty G_\ell L_\ell(x'(\tau')) = \frac{\beta}{2} \sum_{k,\ell=0}^\infty [\Sigma^*]_{k\ell} G_\ell L_\ell(x(\tau)) ,
\]
therefore
\[
\int_{-1}^1 dx' \Sigma(\tau(x) - \tau'(x')) L_\ell(x(x')) = \sum_{k=0}^\infty [\Sigma^*]_{k\ell} L_\ell(x) .
\]
(A9)

Now multiplying both sides by the Legendre polynomial and integrating over \(x \) we obtain
\[
[\Sigma^*]_{k\ell} = \frac{2k+1}{2} \int_{-1}^1 dx' dx \Sigma(\tau(x) - \tau'(x')) L_\ell(x) L_\ell(x') ,
\]
(A10)

where we used orthogonality of the Legendre polynomials
\[
\int_{-1}^1 dx L_\ell(x)L_\ell(x) = \frac{2}{2k+1} \delta_{k\ell} .
\]
(A12)

It is possible to express \([\Sigma^*]_{k\ell}\) through the Legendre coefficients \(\Sigma_\ell \) of \(\Sigma(\tau) = \sum_{k=0}^\infty \Sigma_k L_\ell(\tau(x)) \). The matrix elements of \([\Sigma^*]_{k\ell}\) can be found recursively [49]
\[
[\Sigma^*]_{k,\ell+1} = -\frac{2\ell+1}{2k+1} [\Sigma^*]_{k+1,\ell} + \frac{2k+1}{2k-1} [\Sigma^*]_{k-1,\ell} + [\Sigma^*]_{k,\ell-1} .
\]
(A13)

The first two columns of the matrix \([\Sigma^*]_{k,\ell}\) are computed using the relations
\[
[\Sigma^*]_{k,0} = 2\left(\frac{\Sigma_{k-1}}{2k-1} - \frac{\Sigma_{k+1}}{2k+3} \right) , \quad k \geq 1
\]
\[
[\Sigma^*]_{k,1} = -\frac{2\ell+1}{2k+3} [\Sigma^*]_{k+1,0} - \frac{2\ell+1}{2k+1} [\Sigma^*]_{k-1,0} , \quad k \geq 1
\]
(A14)

with \([\Sigma^*]_{0,0} = -2\Sigma_1/3\) and \([\Sigma^*]_{0,1} = -[\Sigma^*]_{1,0}/3\). The recursion relation (A13) works only for the lower triangular part of the matrix \([\Sigma^*]_{k,\ell}\), i.e. for \(k \geq \ell \). To compute elements of the upper triangular part one has to use the transpose relation
\[
[\Sigma^*]_{k,\ell} = (-1)^{\ell-k} \frac{2k+1}{2\ell+1} [\Sigma^*]_{\ell,k} .
\]
(A15)

In practice we retain only \(N_L + 1 \) Legendre coefficients \(G_\ell \) and \(\Sigma_\ell \) with \(\ell = 0, 1, \ldots, N_L \) and to find \(G_\ell \) from given \(\Sigma_\ell \) we solve the \((N_L + 1) \times (N_L + 1)\) linear matrix equation composed of \(k = 0, 1, \ldots, N_L - 1 \) equations (A8) and \(k = N_L \) equation (A3).

In order to perform fast transform from the Legendre coefficients \(G_\ell \) to the imaginary time Green’s function \(G(\tau) \) we discretize the imaginary time \(\tau = \beta(1 + x)/2 \) using the Legendre-Gauss-Lobatto (LGL) points \(x_i \) with \(i = 0, 1, 2, \ldots, N \), where \(x_i \) are solutions of the equation
\[
(1 - x^2)L_N(x) = 0
\]
(A16)

and they fill the interval \(x \in [-1, 1] \) with boundary values \(x_0 = -1 \) and \(x_N = 1 \). The main statement for this particular choice of points \(x_i \) is that the following equation holds for any polynomial \(p(x) \) of degree less than \(2N \):
\[
\int_{-1}^1 dx p(x) = \frac{2}{N(N + 1)} \sum_{i=0}^N \omega_i p(x_i) ,
\]
(A17)

where \(\omega_i = \frac{2}{N(N + 1)} \) are called weights [50]. We assume that we expand \(G(\tau) \) in Legendre series up to the \(N_L \)-th Legendre polynomial
\[
G(\tau_i) = \sum_{\ell=0}^{N_L} G_\ell L_\ell(x_i) = \sum_{\ell=0}^{N_L} L_\ell G_\ell ,
\]
(A18)

with \(x_i = 2\tau_i/\beta - 1 \), therefore the transformation from the Legendre coefficients \(G_\ell \) to the discretized values of the imaginary time Green’s function \(G(\tau_i) \) is a multiplication by the matrix \(L_\ell \rightarrow L_\ell(x_i) \). To transform from \(G(\tau) \) to \(G_\ell \) we need to compute the integral
\[
\int_0^\beta d\tau G(\tau)L_\ell(x(\tau)) = \frac{\beta}{2\ell+1} G_\ell .
\]
(A19)

On the other hand if \(\ell + N_L < 2N \) we use (A17) to get
\[
\int_0^\beta d\tau G(\tau)L_\ell(x(\tau)) = \frac{\beta}{2} \sum_{i=0}^N \omega_i G(\tau_i)L_\ell(x_i) ,
\]
(A20)

and therefore we find
\[
G_\ell = \sum_{i=0}^N S_{\ell i} G(\tau_i) , \quad S_{\ell i} = \frac{2\ell+1}{2} \omega_i L_\ell(x_i) .
\]
(A21)

In our numerical computations we take \(N = N_L \). We solve the Dyson-Schwinger equation (A1) using iterations with the weighted update [17]:
\[
G_\ell(j+1) = (1 - u) G_\ell(j) + u \cdot \text{Solution of eq.}(A8) + \text{eq.}(A3) \text{ with } [\Sigma^*]^{(j)}_{k\ell} ,
\]
(A22)

where \(u \) is the weighting parameter and \([\Sigma^*]^{(j)}_{k\ell}\) is constructed from \(\Sigma^{(j)}_{\ell} = J^2 S_{\ell i} G^{(j)}(\tau_i)^q - 1 \). We start with the bare solution \(G_\ell^{(0)} = -\delta_{\ell 0}/2 \) and weight \(u = 1/2 \). We monitor the difference \(u^{-1} \sum_{i=0}^N \Delta G_i G^{(j+1)}(\tau_i) - G^{(j)}(\tau_i)^2 \) between successive iterations and divide \(u \) by a half if this difference increases. The iteration cycle is depicted in Fig.4. We performed all computations in Wolfram Mathematica and used small computer cluster to perform computations for different values of \(\beta J \) in parallel.
Appendix B: Matsubara spectral method

In this appendix we discuss improved numerical method for solving the Dyson-Schwinger equations (6) using the standard Matsubara frequency approach. Since in the Majorana SYK model $G(\beta - \tau) = G(\tau)$, Green’s function in the frequency space is anti-symmetric $G(-i\omega_n) = -G(i\omega_n)$ and therefore the high frequency expansions of it and of the self-energy have only odd powers of frequency with real coefficients

$$G(i\omega_n) = \sum_{k=1}^{\infty} \frac{s_{2k-1}}{(i\omega_n)^{2k-1}}, \quad \Sigma(i\omega_n) = \sum_{k=1}^{\infty} \frac{s_{2k-1}}{(i\omega_n)^{2k-1}}$$

and $g_1 = 1$. Expanding the r.h.s. of the DS equation

$$G(i\omega_n) = (i\omega_n - \Sigma(i\omega_n))^{-1}$$

for large $i\omega_n$ we find relations between the coefficients g_{2k-1} and s_{2k-1}

$$g_3 = s_1, \quad g_5 = s_1^2 + s_3, \quad g_7 = s_1^2 + 2s_1s_3 + s_5, \ldots$$

Denoting an inverse Fourier transform of a given frequency power as

$$Q_p(\tau) = \frac{1}{\beta} \sum_{n=-\infty}^{\infty} \frac{e^{-i\omega_n \tau}}{(i\omega_n)^p} = \text{res}_{z=0} \left(-e^{(\beta/2 - \tau)} \right),$$

where the first three functions are $Q_1(\tau) = -1/2, Q_2(\tau) = (2\tau - \beta)/4, Q_3(\tau) = \tau(\beta - \tau)/4$, and using the equation $\Sigma(\tau) = J^2 G(\tau)^{q-1}$ we find

$$s_1 = J^2/2^{q-2},$$

and thus $g_3 = J^2/2^{q-2}$. This allows to write expansion of the Green’s function for $\tau \ll 1$

$$G(\tau) = -\frac{1}{2} - q\epsilon J\tau - (J\tau)^2 + \ldots,$$

where we used eqs. (9) and (10) to write the linear τ term. Consequently this fixes a small $J\tau$ expansion of the self-energy

$$\Sigma(\tau) = -J^2 \left(\frac{1}{2^{q-1}} + \frac{q(q-1)}{2^{q-2}} \epsilon J\tau \right. + \left. \left(\frac{q-1}{2^{q-2}} + \frac{q^2(q-1)(q-2)}{2^{q-4}} \epsilon^2 \right)(J\tau)^2 + \ldots \right).$$

Since we can write $\Sigma(\tau)$ as

$$\Sigma(\tau) = \sum_{k=1}^{\infty} s_{2k-1} Q_{2k-1}(\tau),$$

and only $Q_3(\tau)$ contains τ^2 term we find

$$s_3 = J^4 \left(\frac{q-1}{2^{q-4}} + \frac{q^2(q-1)(q-2)}{2^{q-4}} \epsilon^2 \right)$$

and therefore from (B3) we obtain

$$g_5 = J^4 \left(\frac{q}{2^{q-4}} + \frac{q^2(q-1)(q-2)}{2^{q-4}} \epsilon^2 \right).$$

We see that only g_1, g_3 and s_1 coefficients are known explicitly, whereas already g_5 and s_3 contain the energy ϵ, which itself can be computed only from the exact solution of the DS equations. Finally we note that the Matsubara coefficients $G(i\omega_n)$ are related to the Legendre coefficients G_ℓ as [39]

$$G(i\omega_n) = \sum_{\ell=0}^{\infty} T_{n\ell} G_\ell,$$

where the matrix $T_{n\ell}$ is

$$T_{n\ell} = \beta(-1)^{n} \epsilon^{\ell+1} j_\ell(\beta\omega_n/2)$$

and $j_\ell(z)$ are the spherical Bessel functions. The matrix $T_{n\ell}$ satisfies $\sum_n T_n^{\ell} T_{n\ell'} = \beta^2 \delta_{\ell\ell'}/(2\ell + 1)$. Using the properties of the spherical Bessel functions one can relate the coefficients g_k to the Legendre coefficients G_ℓ

$$g_k = \frac{2(-1)^k}{\beta^{k-1}} \sum_{\ell=0}^{\infty} \frac{(\ell + k - 1)!}{(k-1)! (\ell - k + 1)!} \delta_{\ell+k,\text{odd}} G_\ell.$$

This relation imposes constrains on the Legendre coefficients of the Majorana SYK two-point function

$$\sum_{\ell=0;2}^{\infty} G_\ell = -\frac{1}{2},$$

$$\sum_{\ell=0;2}^{\infty} (\ell - 1) (\ell + 1) (\ell + 2) G_\ell = -\frac{(\beta J)^2}{2^{q-2}},$$

where we used expressions for g_1 and g_3 coefficients. The first equation in (B14) is essentially the boundary condition (A3) and our numerical solution for G_ℓ automatically satisfies it. The second equation in (B14) can be used to estimate accuracy of the numerical results for G_ℓ coefficients.
To increase numerical accuracy of the Matsubara spectral method we rewrite the DS equations in terms of the reduced functions

\[\tilde{G}(i\omega_n) = G(i\omega_n) - \frac{1}{i\omega_n} - \frac{J^2}{2\pi^2(i\omega_n)^3}, \]

\[\tilde{\Sigma}(\tau) = \Sigma(\tau) + \frac{J^2}{2\pi^2}i, \]

and \(\Sigma(\tau) \) is computed as

\[\Sigma(\tau) = J^2 \left(\tilde{G}(\tau) + Q_1(\tau) + \frac{J^2}{2\pi^2}Q_3(\tau) \right)^{q-1}. \]

Therefore the fast Fourier transform (FFT) is performed with the functions \(\tilde{G}(i\omega_n) \) and \(\tilde{\Sigma}(i\omega_n) \), which decay faster than \(G(i\omega_n) \) and \(\Sigma(i\omega_n) \) in the frequency space. The iteration cycle is depicted in Fig. 5.

![Fig. 5. Graphic representation of the iteration cycle for the improved Matsubara spectral method.](image)

Finally we discuss computation of \(\log \text{Pf}(\partial_\tau - \Sigma) \), which contains the zero-temperature entropy \(H \) and has \(1/\beta J \) expansion of the form

\[2 \log \text{Pf}(\partial_\tau - \Sigma) = -(q + 1)\beta J\epsilon_0 + 2s_0 \]

\[- (q - 3) \frac{c_2}{\beta J} - (q - 2) \frac{c_3}{(\beta J)^2} - \ldots, \]

where \(c_k \) are the expansion coefficients of the energy \(H \). A naive computation with the use of the Legendre coefficients

\[2 \log \text{Pf}(\partial_\tau - \Sigma) = \log \det (1 + \frac{\beta^2}{4}D^{-1}[\Sigma_0]) \]

has very low accuracy of the order \(O(N_c^{-1}) \). Notice that in the matrix \(D_{kl} \) the last \(k = N_c \) row is \((-1)^{k+1} + 1 \) and represents the boundary condition \((A3) \). To improve accuracy one can compute Matsubara spectral functions from the Legendre ones using \((B11) \) and then compute

\[\log \text{Pf}(\partial_\tau - \Sigma) = \frac{1}{2} \log \left(2 \cosh^2 \left(\frac{\beta J}{2\pi^2} \right) \right) \]

\[+ \sum_{n=0}^{N_c} \log \left(1 + \frac{i\omega_n \tilde{\Sigma}(i\omega_n)}{\omega_n^2 + J^2/2\sigma^{-2}} \right), \]

where \(\tilde{\Sigma}(i\omega_n) \) is the reduced self-energy \((B15) \). We remark that whereas the accuracy of \(\tilde{g}_k \) computed from \(\tilde{G}_k \) using \((B13) \) decay exponentially with \(k \) because of the exponentially growing factors, the accuracy of \(G(i\omega_n) \) computed using \((B11) \) remains exponential.

Appendix C: Computation of the free energy using Kitaev-Sugh resonance theory

We can rewrite the SYK \((G, \Sigma)\) action \((5) \) in the following form

\[-\frac{I}{N} = \log \text{Pf}(\Sigma) - \frac{1}{2} \int_0^\beta d\tau_1 d\tau_2 \left[\tilde{\Sigma}(\tau_1, \tau_2)G(\tau_1, \tau_2) \]

\[- \frac{J^2}{2\pi^2} G(\tau_1, \tau_2)^q \right] + \frac{1}{2} \int_0^\beta d\tau_1 d\tau_2 \sigma(\tau_1, \tau_2)G(\tau_1, \tau_2), \]

where we made a replacement \(\tilde{\Sigma} = \Sigma + \Sigma \). The first part of this action without the last term is invariant under reparametrizations of time \((21) \) and can be viewed as \(-ICFT/N\) introduced in \((12) \). The saddle point configuration of \(ICFT \) is \((G_0(\tau), \Sigma_0(\tau))\). The last term in \((C1) \) is considered as a perturbation. The leading correction to the free energy is obtained from the first order perturbation theory

\[-\frac{\beta \delta F}{N} = \frac{1}{2} \int_0^\beta d\tau_1 d\tau_2 \sigma(\tau_1, \tau_2)(G(\tau_1, \tau_2)) \]

\[= \frac{\beta}{2} \int_0^\beta d\tau \sigma(\tau)G(\tau). \]

We can not use direct expression for the source function \(\sigma(\tau) = \delta'(\tau) \) in this formula, as it leads to uncontrolled divergence. It was proposed in \((21) \) that the source function \(\sigma \) can be replaced by the expression

\[\sigma(\tau) = -\sum_h \sigma_h \frac{J^2\delta h}{b\Delta a^{1/2}|J\tau|^{h+1-2\Delta}} u(\xi), \]

where \(a = ((q-1)b^{-1} \) and the sum goes over the scaling exponents of the bilinear operators in \((15) \) and \(u(\xi) \) with \(\xi = \ln|J\tau| \) is the window function, which serves as a regulator with the normalization \(\int d\xi u(\xi) = 1 \). The computation of the corrections to the two-point function, one derives that the coefficients \(\alpha_h \) in \((19) \) are related to \(\sigma_h \) as \(\alpha_h = \sigma_h a^{1/2} \)

\[\frac{\beta \delta F}{N} = \frac{\pi^2 k'(2)}{3q a^2 \beta J}. \]
which agrees with (28) and (11). It is not clear why a similar calculation with the higher scaling exponents \(h \) would not produce \(1/(\beta J)^{h-1} \) contribution.

The next \(\delta^2 F \) contribution to the free energy comes from the second order perturbation theory

\[
-\frac{\beta \delta^2 F}{N} = \frac{N}{8} \int_0^\beta d\tau_1 \ldots d\tau_4 \sigma(\tau_1, \tau_2) \sigma(\tau_1, \tau_2) \\
\times \langle G(\tau_1, \tau_2) G(\tau_3, \tau_4) \rangle_{\text{conn.}}. \tag{C7}
\]

The connected correlation function of two \(G(\tau_1, \tau_2) \) fields is equal to the connected part of the four point function

\[
\langle G(\tau_1, \tau_2) G(\tau_3, \tau_4) \rangle_{\text{conn.}} = \frac{1}{N} F(\tau_1, \tau_2; \tau_3, \tau_4). \tag{C8}
\]

The \(h_0 = 2 \) contribution to the four-point function is special and we only consider \(h \neq 2 \) sector here. It is well-known that in this sector the four-point function can be written as \([17, 21, 29]\)

\[
F_{h \neq 2}(\tau_1, \tau_2; \tau_3, \tau_4) = G_c(\tau_{12})G_c(\tau_{34}) \sum_{k=1}^\infty c_k^2 \chi^k 2 F_1(h_k, h_k, 2h_k, \chi), \tag{C9}
\]

where \(c_k \) are given in (18) and the cross-ratio \(\chi \) at finite temperature is

\[
\chi = \frac{\sin \frac{\pi x_2}{\beta} \sin \frac{\pi y_2}{\beta}}{\sin \frac{\pi x_1}{\beta} \sin \frac{\pi y_1}{\beta}}. \tag{C10}
\]

Taking only \(\sigma_h \) terms from \(\sigma \) functions and picking term with the scaling dimension \(h \) in (C9) we find contribution to the free energy

\[
-\frac{\beta \delta^2 F_h}{N} = \frac{J^4 c_h^2 \sigma_h^2}{8a} \int_0^\beta d\tau_1 \ldots d\tau_4 \\
\times \frac{u(\xi_{12})u(\xi_{34})}{|J\tau_{12}|^{h+1}|J\tau_{34}|^{h+1}} \chi^h 2 F_1(h, h, 2h, \chi). \tag{C11}
\]

Since the window function decays quickly when \(\xi = \log |J\tau| \) is not small, we assume that the integrals acquire the main contribution for \(\tau_{12} \to 0 \) and \(\tau_{34} \to 0 \), therefore we use that \(2 F_1(h, h, 2h, \chi) \approx 1 + \ldots \) and get

\[
-\frac{\beta \delta^2 F_h}{N} = \frac{J^4 c_h^2 \sigma_h^2}{8a} 4 \int_0^\beta dx dx' \\
\times \int_0^\beta dy dy' \frac{u(\xi)u(\xi')}{|Jx|^{h+1}|Jx'|^{h+1}} \left(\frac{\pi x \pi x'}{\beta^2} \right)^h, \tag{C12}
\]

where we introduced \(x = \tau_{12}, x' = \tau_{34} \) and \(y = (\tau_1 + \tau_2)/2, y' = (\tau_3 + \tau_4)/2 \). Using normalization of the window function \(u(\xi) \), the relation between \(\sigma_h \) and \(\alpha_0 \) in (C4) as well as the one between \(\alpha_0 \) and \(g_0 \) in (21), and the expression for \(c_h \) in (18), we finally obtain

\[
\frac{\beta \delta^2 F_h}{N} = -\frac{1}{2} g_h^2 4 \int_0^\beta dy dy' \left(\frac{\pi}{\beta \sin \frac{\pi y - y'}{\beta}} \right)^{2h}. \tag{C13}
\]

This is exactly equal to the result of the conformal perturbation theory (26).

[1] A. Kitaev, “A simple model of quantum holography,” http://online.kitp.ucsb.edu/online/entangled15/kitaev/http://online.kitp.ucsb.edu/online/entangled15/kitaev2/. Talks at KITP, April 7, 2015 and May 27, 2015.
[2] S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum Heisenberg magnet,” Phys. Rev. Lett., vol. 70, p. 3393, 1993.
[3] J. Kim, J. Kim, and D. Rosa, “Universal effectiveness of high-depth circuits in variational eigenproblems,” Phys. Rev. Res., vol. 3, no. 2, p. 023203, 2021.
[4] V. P. Su, “Variational preparation of the thermofield double state of the sachdev-ye-kitaev model,” Phys. Rev. A, vol. 104, p. 012427, Jul 2021.
[5] A. Haldar, O. Tavakol, and T. Scaffidi, “Variational wave functions for Sachdev-Ye-Kitaev models,” Phys. Rev. Res., vol. 3, no. 2, p. 023020, 2021.
[6] M. B. Hastings and R. O’Donnell. “Optimizing Strongly Interacting Fermionic Hamiltonians,” 10 2021.
[7] A. Chew, A. Essin, and J. Alicea, “Approximating the sachdev-ye-kitaev model with majorana wires,” Phys. Rev. B, vol. 96, p. 121119, Sep 2017.
[8] R. Haenel, S. Sahoo, T. H. Hsieh, and M. Franz, “Traversable wormhole in coupled sachdev-ye-kitaev models with imbalanced interactions,” Phys. Rev. B, vol. 104, p. 035141, Jul 2021.
[9] D. I. Pikulin and M. Franz, “Black hole on a chip: Proposal for a physical realization of the sachdev-ye-kitaev model in a solid-state system,” Phys. Rev. X, vol. 7, p. 031006, Jul 2017.
[10] A. Chen, R. Ilan, F. de Juan, D. I. Pikulin, and M. Franz, “Quantum holography in a graphene flake with an irregular boundary,” Phys. Rev. Lett., vol. 121, p. 036403, Jul 2018.
[11] I. Danshita, M. Hanada, and M. Tezuka, “Creating and probing the Sachdev-Ye-Kitaev model with ultracold gases: Towards experimental studies of quantum gravity,” Progress of Theoretical and Experimental Physics, vol. 2017, 08 2017, 083I01.
[12] C. Wei and T. A. Sedrakyan, “Optical lattice platform for the sachdev-ye-kitaev model,” Phys. Rev. A, vol. 103, p. 013323, Jan 2021.
