Controls of Nuclear Factor-Kappa B Signaling Activity by 5’-AMP-Activated Protein Kinase Activation With Examples in Human Bladder Cancer Cells

Bo-Hwa Choi¹, Da-Hyun Lee¹, Jin Kim², Ju-Hee Kang³, Chang-Shin Park⁴

¹Department of Pharmacology, Hypoxia-Related Disease Research Center, Inha Research Institute for Medical Sciences, Inha University College of Medicine, Incheon, Korea
²Department of Anesthesiology and Pain Medicine, Inha University College of Medicine, Incheon, Korea

Generally, both lipopolysaccharide (LPS)- and hypoxia-induced nuclear factor kappa B (NF-κB) effects are alleviated through differential posttranslational modification of NF-κB phosphorylation after pretreatment with 5´-AMP-activated protein kinase (AMPK) activators such as 5´-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or the hypoglycemic agent metformin. We found that AICAR or metformin acts as a regulator of LPS/NF-κB- or hypoxia/NF-κB-mediated cyclooxygenase induction by an AMPK-dependent mechanism with interactions between p65-NF-κB phosphorylation and acetylation, including in a human bladder cancer cell line (T24). In summary, we highlighted the regulatory interactions of AMPK activity on NF-κB induction, particularly in posttranslational phosphorylation and acetylation of NF-κB under inflammatory conditions or hypoxia environment.

Keywords: NF-kappa B; AMP-Activated Protein Kinases; Lipopolysaccharides; Hypoxia

Fun Support: This work was financially supported by a Medical Research Center (2014009392) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning.

Conflict of Interest: No potential conflict of interest relevant to this article was reported.
vates the transcription of several genes, including newly synthesized IκB. In addition to translocation of NF-κB, the transcriptional activities of NF-κB are regulated by posttranslational modifications such as phosphorylation and acetylation of p65-NF-κB subunit for full activation [12-14]. The transcriptional activities of p65-NF-κB, which are specifically targeted by several kinases, are highly enhanced by phosphorylation of Ser205, or Ser276, and Ser311 (by zetaPKC) in association with the coactivator CBP/p300 [15,16]. Additionally, Anrather et al. [17] reported 3 phosphorylation sites at Ser205 (induced by LPS), Ser276 (by MSK1), and Ser311 (by LPS and unknown kinase) as essential phosphorylation sites for transcriptional activity.

Phosphorylation of p65-NF-κB at Ser536 leads to nuclear translocation or cytoplasmic priming, and the transactivation mechanism is the target of several kinases including the important kinase IKKβ [18-20]. Phosphorylation of Ser281 has been studied with other related phosphorylation sites, including Ser205 and Ser276, to evaluate transactivation [17,21-23]. Anrather et al. [17] identified Ser205, Ser276, and Ser281 as potential phospho-acceptor sites within the p65 Rel homology domain, and found that both Ser205 and Ser276 can be mediated by Ser/Thr kinases, but Ser281 Ser-specific kinases after transcriptional NF-κB activities when Ser is substituted with Thr. They suggested that the phosphorylation levels of these potential sites can affect the interaction of NF-κB with coactivators, and to acetylation patterns for the full NF-κB transcriptional activities. Additionally, p65-NF-κB phosphorylation levels reflect the differential NF-κB transcriptional activity of related gene subsets; however, phosphorylation is not essential for NF-κB DNA binding [23]. It was previously shown that the transcriptional coactivators p300 and CBP mainly acylate p65-NF-κB Lys218, Lys221, and Lys310 [24,25]. Particularly, p65-NF-κB Lys310 acetylation stimulates the full transcriptional activity of p65-NF-κB, but is only minimally related to DNA binding or IκB assembly.

AMPK ACTIVATION

5′-AMP-activated protein kinase (AMPK) is a highly conserved serine/threonine protein kinase that regulates energy homeostasis and metabolic stress, and exists in all eukaryotic cells as heterotrimeric complexes comprising catalytic α-subunits and regulatory β- and γ-subunits. Phosphorylation of the Thr172 residue of the α subunit is important for maximum AMPK activity [26-28]. Three upstream kinases have been shown to activate AMPK. LKB1 stimulates AMPK in response to changes in the cellular AMP/ATP ratio, calmodulin-dependent protein kinase kinase β in response to intracellular Ca2+ concentration, and transforming growth factor-beta-activating kinase 1 by immunological cytokines [29-32].

INTERACTIONS BETWEEN NF-κB INDUCTION AND AMPK ACTIVATION

In recent years, numerous studies have reported the effects of AMPK activities on inflammatory NF-κB activity [33-48]. The major function of AMPK in inhibiting inflammation has been demonstrated using a known AMPK activator and the pharmacological mimetic 5′-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Other studies showed that AICAR inhibits tumor necrosis factor (TNF)-α and interleukin-β-induced NF-κB activities in immune cells [49-52] and inducible nitric oxide synthase and cyclooxygenase (COX-2) expression levels in LPS- or cytokine-stimulated myocytes, adipocytes, or macrophages grown in culture [53,54]. However, the anti-inflammatory effects of AICAR were also found to be AMPK-independent or nonspecific activators of AMPK in several studies [52,55].

In addition to AICAR, there are several AMPK activators; metformin, used to treat type 2 diabetes; berberine, a natural product used in traditional Chinese medicine; and A-769662, derived from a high-throughput screen for AMPK activators [56,57]. Aspirin and salicylate also inhibit the inflammatory NF-κB pathway, and it has been proposed that this results from inhibition of the upstream kinase IKK-β [58]. However, they suggested that inhibition of the NF-κB pathway is mediated by AMPK activation, rather than by direct inhibition of IKK-β. Overall, all AMPK activators described above have been reported to inhibit inflammatory responses in various model systems.

Example 1 (Unpublished): Effects of AMPK Activator on LPS- or Hypoxia-Induced NF-κB Phosphorylation and Acetylation Activities in the Human Bladder Cancer Cell Line T24

We recently investigated the effects of LPS and the AMPK activator AICAR on COX-2 induction, two specific p65-NF-κB phospho-activities (Ser205 and Ser281), and the acetylation activity of p65-NF-κB Lys310. Particularly, we proposed that the expression levels of p65-NF-κB Ser281 phosphorylation and p65-NF-κB Lys310 acetylation were inverted, suggesting potential inhibitory activity of p65-NF-κB Ser281 phosphorylation. Both LPS- and hypoxia-induced NF-κB activities in a human bladder can-
cancer line T24 were alleviated by pretreatment with AICAR. Additionally, AMPK siRNA-mediated suppression enhanced NF-κB-mediated COX-2 induction by LPS or hypoxia. Particularly, we suggested that direct interactions and colocalization occur between p-AMPK (at phospho-activation site Thr^{172}) (p-AMPK) and IκBα-free NF-κB, especially in nucleus. LPS-induced full transcriptional activity of NF-κB, as indicated by a critical acetylation level (Ac-K310 p65-NF-κB), was decreased by AICAR pretreatment, whereas the phosphorylation level at p65-NF-κB Ser^{281} was increased [35].

Example 2 (Unpublished): Transient Inactivation of AMPK and ROS Participation After LPS Treatment in the Human Bladder Cancer Line T24

We also found that AMPK phosphorylation as well as the ability of AICAR to enhance phosphorylation of AMPK was decreased only at the early time (~1 hour) after LPS stimulation. This effect of LPS stimulation on p-AMPK levels was abolished or showed a greater increase at the later time (after 16 hours). Recently, Sag et al. [59] and Tadie et al. [60] demonstrated that the transient suppression of AMPK phosphorylation diminished the ability of AICAR to increase AMPK phosphorylation in LPS-stimulated cells. In particular, Tadie et al. [60] suggested that HMGB1 released form injured or necrotic cells was involved in decreasing LPS-treated AMPK phospho-activity based on their results showing an inverse relationship between accumulated HMGB1 in cytoplasm and AMPK phosphorylation levels. Furthermore, we examined N-acetyl cystein (NAC) pretreatment under the above experimental conditions to immediately inhibit reactive oxygen species (ROS) release at the early time, which resulted in increased p-AMPK levels and decreased COX-2 induction. Thus, our finding may also be explained by the influence of early released ROS on AMPK phospho-activity in LPS-stimulated bladder cancer cells.

Based on our findings, AICAR pretreatment partially decreased both LPS- and hypoxia-treated COX-2 induction. Additionally, LPS-induced NF-κB p65 Ser^{281} phospho-activity was decreased by AICAR pretreatment, but highly increased by AMPK-siRNA, suggesting an AMPK-dependent mechanism. Consistent with this result, recent studies reported the ability of AICAR to suppress NF-κB activation in response to LPS or pro-inflammatory cytokines through an AMPK-dependent or -independent mechanism [52,59-61].

Example 3 (Unpublished): Differential Activities of AMPK and Activation of NF-κB Signaling Pathways Under Inflammatory or Hypoxia Conditions

It is generally known that the TLR4/NF-κB signaling pathway is activated under hypoxic conditions, increasing the gene expression of downstream inflammatory mediators [7,8,57,62-67]. Additionally, hypoxia induces AMPK activation in cancer cells as a survival mechanism by ATP-depletion (Laderoute et al. [66], 2006; Miller et al. [67], 2008; Kim et al. [57], 2012). In contrast, the phospho-activities of the serial enzymes p-LKB1, p-AMPK, and p-ACC in our study were time-dependently diminished under hypoxia conditions and hypoxia-induced COX-2 expression was synergistically enhanced by additional treatment with LPS and blocked or decreased by AICAR pretreatment; these results are similar to those of other recent reports [9,10].

CONCLUSIONS

In this short review, we highlighted the regulatory interactions of AMPK activity on NF-κB induction, particularly in post-translational phosphorylation and acetylation of NF-κB under inflammatory conditions or in hypoxia environments, providing examples in the human bladder cancer cell line T24.

REFERENCES

1. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999;18:6853-66.
2. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2002;2:301-10.
3. Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002;3:221-7.
4. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene 2006;25:6758-80.
5. Henkel T, Machleidt T, Alkalay I, Krönke M, Ben-Neriah Y, Baeuerle PA. Rapid proteolysis of I kappa B-alpha is necessary for activation of transcription factor NF-kappa B. Nature 1993;365:182-5.
6. Spencer E, Jiang J, Chen ZJ. Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 1999;13:284-94.
7. Jung YJ, Isaacs JS, Lee S, Trepel J, Neckers L. IL-1beta-mediated up-
regulation of HIF-1α via an NFKappaB/COX-2 pathway identifies HIF-1α as a critical link between inflammation and oncogenesis. FASEB J 2003;17:2115-7.

8. Hara Y, Shiraishi A, Ohashi Y. Hypoxia-altered signaling pathways of toll-like receptor 4 (TLR4) in human corneal epithelial cells. Mol Vis 2009;15:2515-20.

9. Bruning U, Fitzpatrick SF, Frank T, Birtwistle M, Taylor CT, Cheong A. NFKb and HIF display synergistic behaviour during hypoxic inflammation. Cell Mol Life Sci 2012;69:1319-29.

10. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med 2014;34:1629-39.

11. Arenzana-Seisdedos F, Thompson J, Rodriguez MS, Bachelier F, Thomas D, Hay RT. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcripational activities of NF-κB. Mol Cell Biol 1995;15:2689-96.

12. Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 1997;89:413-24.

13. Wang D, Baldwin AS Jr. Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem 1998;273:29411-6.

14. Chen LF, Mu Y, Greene WC. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 2002;21:6539-48.

15. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappaB P65 by PKA stimulates transriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998;2:6539-71.

16. Duran A, Diaz-Meco MT, Moscat J. Essential role of RelA Ser311 phosphorylation by zetaPKC in NF-kappaB transcriptional activation. EMBO J 2003;22:3910-8.

17. Anrather J, Racchumi G, Iadecola C. cis-acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-kappaB. J Biol Chem 2005;280:244-52.

18. Sakurai H, Chiba H, Miyoshi H, Sugita T, Toriumi W. IkappaB kinase phosphorylates gamma NF-kappaB P65 subunit on serine 536 in the transactivation domain. J Biol Chem 1999;274:30353-6.

19. Haller D, Russo MP, Sartor RB, Jobin C. IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappaB activation in both primary and intestinal epithelial cell lines.
EMBO J 2009;28:677-85.

33. Zhao X, Znijewski JW, Lorne E, Liu G, Park YJ, Tsuruta Y, et al. Activation of AMPK attenuates neutrophil pro-inflammatory activity and decreases the severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008;295:L497-504.

34. Andreasen AS, Kelly M, Berg RM, Moller K, Pedersen BK. Type 2 diabetes is associated with altered NF-κB DNA binding activity, JNK phosphorylation, and AMPK phosphorylation in skeletal muscle after LPS. PLoS One 2011;6:e23999.

35. Barroso E, Eyre E, Palomer X, Vázquez-Carrera M. The peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 prevents TNF-α-induced NF-κB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochem Pharmacol 2011;81:534-43.

36. Green CJ, Macrae K, Fogarty S, Hardie DG, Sakamoto K, Hundal HS. Counter-modulation of fatty acid-induced pro-inflammatory nuclear factor κB signalling in rat skeletal muscle cells by AMP-activated protein kinase. Biochem J 2011;435:463-74.

37. Green CJ, Pedersen M, Pedersen BK, Scheele C. Elevated NF-κB activation is conserved in human myocytes cultured from obese type 2 diabetic patients and attenuated by AMP-activated protein kinase. Diabetes 2011;60:2810-9.

38. Kubota S, Ozawa Y, Kurihara T, Sasaki M, Yuki K, Miyake S, et al. Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation. Invest Ophthalmo Vis Sci 2011;52:9142-8.

39. Zhang Y, Qiu J, Wang X, Zhang Y, Xia M. AMP-activated protein kinase suppresses endothelial cell inflammation through phosphorylation of transcriptional coactivator p300. Arterioscler Thromb Vasc Biol 2011;31:2897-908.

40. Ji G, Zhang Y, Yang Q, Cheng S, Hao J, Zhao X, et al. Genistein suppresses LPS-induced inflammatory response through inhibiting NF-κB following AMP kinase activation in RAW 264.7 macrophages. PLoS One 2012;7:e53101.

41. Kim HS, Kim MJ, Kim EJ, Yang Y, Lee MS, Lim JS. Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression. Biochem Pharmacol 2012;83:835-94.

42. Moiseeva O, Deschénes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell 2013;12:489-98.

43. Jiménez-Flores LM, López-Briones S, Macías-Cervantes MH, Ramírez-Emiliano J, Pérez-Vázquez V. A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mouse. Molecules 2014;19:8289-302.

44. Li J, Li J, Yue Y, Hu Y, Cheng W, Liu R, et al. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synovioocyte MH7A cells. Drug Des Devel Ther 2014;8:315-23.

45. Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal 2014;20:574-88.

46. Nalli AD, Kumar DP, Mahavadi S, Al-Shboul O, Alkahtani R, Kuehmerle JF, et al. Hypercontractility of intestinal longitudinal smooth muscle induced by cytokines is mediated by the nuclear factor-κB/Amp-activated kinase/myosin light chain kinase pathway. J Pharmacol Exp Ther 2014;350:89-98.

47. Tsai KL, Huang PH, Kao CL, Lee HB, Cheng YH, Liao YW, et al. Aspirin attenuates vinorelbine-induced endothelial inflammation via modulating SIRT1/AMPK axis. Biochem Pharmacol 2014;88: 189-200.

48. Huang BP, Lin CH, Chen HM, Lin JT, Chong YE, Kao SH. AMPK activation inhibits expression of proinflammatory mediators through downregulation of PI3K/p38 MAPK and NF-κB signaling in murine macrophages. DNA Cell Biol 2015;34:133-41.

49. Giri S, Nath N, Smith B, Viollet B, Singh AK, Singh I. 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. FEBS J 2015;282:20351-64.

50. Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal 2014;20:574-88.

51. Levine YC, Li GK, Michel T. Agonist-modulated regulation of AMP-activated protein kinase. Biochem J 2011;435:463-74.

52. Li J, Li J, Yue Y, Hu Y, Cheng W, Liu R, et al. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear factor κB and adenosine monophosphate-activated protein kinase signal pathways in human synovioocyte MH7A cells. Drug Des Devel Ther 2014;8:315-23.

53. Centeno-Baez C, Dallaire P, Marette A. Resveratrol inhibition of some proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 prevents TNF-α-induced NF-κB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochem Pharmacol 2011;81:534-43.
54. Wang L, Li L, Ran X, Long M, Zhang M, Tao Y, et al. Lipopolysaccharides reduce adipogenesis in 3T3-L1 adipocytes through activation of NF-κB pathway and downregulation of AMPK expression. Cardiovasc Toxicol 2013;13:338-46.

55. Jhun BS, Jin Q, Oh YT, Kim SS, Kong Y, Cho YH, et al. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 2004;318:372-80.

56. Göransson O, McBride A, Hawley SA, Ross FA, Shiroy N, Foretz M, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 2007;282:32549-60.

57. Kim HS, Wannatung T, Lee S, Yang WK, Chung SH, Lim JS, et al. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis 2012;17:938-49.

58. Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science 2012;336:918-22.

59. Sag D, Carling D, Stout RD, Suttles J. Adenosine 5’-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J Immunol 2008;181:8633-41.

60. Tadie JM, Bae HB, Dushman JS, Bell CP, Lazarowski ER, Chaplin DD, et al. Toll-like receptor 4 engagement inhibits adenosine 5’-monophosphate-activated protein kinase activation through a high mobility group box 1 protein-dependent mechanism. Mol Med 2012;18:659-68.

61. Prasad R, Giri S, Nath N, Singh I, Singh AK. 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates experimental autoimmune encephalomyelitis via modulation of endothelial-monocyte interaction. J Neurosci Res 2006;84:614-25.

62. Yang C, Ling H, Zhang M, Yang Z, Wang X, Zeng F, et al. Oxidative stress mediates chemical hypoxia-induced injury and inflammation by activating NF-κB-COX-2 pathway in HaCaT cells. Mol Cells 2011;31:531-8.

63. Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, et al. Hydrogen sulfide protects against chemical hypoxia-induced cytotoxicity and inflammation in HaCaT cells through inhibition of ROS/NF-κB/COX-2 pathway. PLoS One 2011;6:e21971.

64. Luo H, Guo P, Zhou Q. Role of TLR4/NF-κB in damage to intestinal mucosa barrier function and bacterial translocation in rats exposed to hypoxia. PLoS One 2012;7:e46291.

65. Tewari R, Choudhury SR, Ghosh S, Mehta VS, Sen E. Involvement of TNFα-induced TLR4-NF-κB and TLR4-HIF-1α feed-forward loops in the regulation of inflammatory responses in glioma. J Mol Med (Berl) 2012;90:67-80.

66. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J, et al. 5’-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006;26:5336-47.

67. Miller EJ, Li J, Leng L, McDonald C, Atsumi T, Bucala R, et al. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischemic heart. Nature 2008;451:578-82.