THE AGE OF THE HD 15407 SYSTEM AND THE EPOCH OF FINAL CATASTROPHIC MASS ACCRETION ONTO TERRESTRIAL PLANETS AROUND SUN-LIKE STARS

C. Melis, B. Zuckerman, Joseph H. Rhee, and Inseok Song

1 Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093-0424, USA; cmelis@ucsd.edu
2 Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, USA
3 Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451, USA

Received 2010 March 12; accepted 2010 May 18; published 2010 June 16

ABSTRACT

From optical spectroscopic measurements we determine that the HD 15407 binary system is ∼80 Myr old. The primary star, HD 15407A (spectral type F5 V), exhibits strong mid-infrared excess emission indicative of a recent catastrophic collision between rocky planetary embryos or planets in its inner planetary system. The synthesis of all known stars with large quantities of dust in their terrestrial planet zone indicates that for stars of roughly solar mass this warm dust phenomenon occurs at ages between 30 and 100 Myr. In contrast, for stars of a few solar masses, the dominant era of the final assembling of rocky planets occurs earlier, between 10 and 30 Myr age. The incidence of the warm dust phenomenon, when compared against models for the formation of rocky terrestrial-like bodies, implies that rocky planet formation in the terrestrial planet zone around Sun-like stars is common.

Key words: circumstellar matter – infrared: planetary systems – planets and satellites: formation – stars: individual (HD 15407A, HD15407B) – stars: kinematics and dynamics

Online-only material: color figures

1. INTRODUCTION

Investigating the formation of terrestrial planets outside of the solar system can give insight into the origin of the Earth–Moon system and whether similar planetary system architectures form around other stars. The study of extrasolar terrestrial planet formation must currently be carried out through indirect searches for the dusty aftermath of formation events. Since the dust is located in the terrestrial planet zone, it will have temperatures of ∼300 K and will emit most of its thermal radiation at ∼10 μm. Stars actively undergoing terrestrial planet formation will have substantial amounts of warm dust orbiting in their terrestrial planet zones and will thus show mid-infrared emission in excess of what one would expect from the star alone. Properly establishing the age of such mid-infrared excess systems is necessary for comparison with expectations from planet formation theories and simulations.

We were alerted to excess mid-infrared emission around the star HD 15407A through a paper entitled “Detection of silica dust in the debris disk around HD 15407” presented at a 2009 October Spitzer meeting by H. Fujiwara (E. Becklin 2009, private communication). At this meeting, the age of HD 15407A was suggested to be ∼2 Gyr. We felt that this age could be in error and initiated our own follow-up observations to independently constrain HD 15407A’s age. Here we report these observations, our revised value for the age of the HD 15407 binary system, and a discussion of terrestrial planet zone collisions around adolescent solar-mass stars.

2. OBSERVATIONS

Our star of interest, HD 15407A, is part of a visual double star system. Both components of the HD 15407 system were observed in cloudy conditions at Mauna Kea Observatory with the Keck I telescope and High Resolution Echelle Spectrometer (HIRES; Vogt et al. 1994). With the HIRES red collimator, wavelengths between 4680 and 8700 Å were covered at a resolution of 50,000 (as determined from the FWHM of single ThAr arclines). The final signal-to-noise ratio per pixel, measured at 6700 Å, is 350 for HD 15407A and 200 for HD 15407B. Spectral data were reduced and extracted using both the MAKEE software package and standard IRAF tasks and echelle reduction procedures.

3. RESULTS

3.1. HD 15407 Stellar Parameters

Table 1 contains information about HD 15407A, the dusty primary star, and HD 15407B, the secondary component of the HD 15407 system. For both stars, we employ line–depth ratios to roughly determine absolute temperature and, for HD 15407B, luminosity. Those interested in the details of determining such parameters are referred to Melis et al. (2009).

We deduce that HD 15407A has a temperature similar to that of an F5-type star; its broadband colors (BVIJK) are in agreement with this temperature class determination. This suggests that HD 15407A is not significantly reddened by its circumstellar material and we adopt a temperature class of K2 V with an uncertainty of ±1 temperature subclass.

3.2. Excess Infrared Emission from HD 15407A

Excess infrared emission is detected toward HD 15407A by IRAS in the 12 and 25 μm bands (Oudmaijer et al. 1992). Archival Spitzer Infrared Spectrograph (IRS) spectroscopy of HD 15407A (AOR 26122496, PI: Fujiwara) confirms the excess (see Figure 1). We note the presence of solid-state dust emission features in the IRS spectrum. Figure 2 compares the IRS spectrum of HD 15407A with those of other stars that...
Figure 1. Significant mid-infrared excess emission is detected toward HD 15407A. The solid brown curve is a synthetic stellar spectrum (Hauschildt et al. 1999) for a 6500 K effective temperature star. The orange dotted curve represents a dust continuum emission blackbody fit to a dust temperature of 500 K. The black dashed line, the sum of the above two curves, is a reasonable fit to all data points. The total luminosity of the excess, determined by integrating under the data points between 1 μm and 100 μm, is ~0.6% of the luminosity of the star. The BV data points are from the Tycho-2 catalog. The green (diamond) data points are from the IRAS Faint Source Reject Catalog and have not been color corrected. The horizontal bars indicate the filter bandwidths. Overplotted is the reduced, extracted, calibrated Spitzer IRS spectrum. (A color version of this figure is available in the online journal.)

Table 1

Parameter	HD 15407A	HD 15407B
R.A. (J2000)	02 30 50.65	02 30 48.58
Decl. (J2000)	+55 32 54.4	+55 33 06.4
Sp. type	F5 V	K2 V
Vmag	6.95	9.58
Teff (K)	6500 ± 100	4830 ± 150
pmRA (mas yr⁻¹)	+80.6 ± 1.0	+83.1 ± 1.0
pmDE (mas yr⁻¹)	−96.7 ± 1.1	−93.6 ± 1.1
RV (km s⁻¹)	−10.4 ± 0.4	−10.0 ± 0.2
Li I λ6710 EW (mÅ)	94 ± 4	174 ± 5
v sin i (km s⁻¹)	20	4
Lbol/Lₜₜₜ	<10⁻⁵.0	10⁻⁴.1

System

Distance from Earth (pc) | 54.7 ± 2.1 |
Separation between stars | 21.725 (projected separation 1160 AU) |
UVW space motions (km s⁻¹) | −11.5, −28.8, −14.0 |
Age (Myr) | 80.0 ± 50 |

Notes. Epoch J2000 positions are from the Two Micron All Sky Survey (2MASS) catalog (Cutri et al. 2003). The highest fidelity proper motions come from the Tycho-2 catalog (Hog et al. 2000) for HD 15407A and from the UCAC3 catalog (Zacharias et al. 2010) for HD 15407B. Radial velocities (RV) for both stars were measured by cross-correlating our HIRES spectra with HIRES spectra of a star from Table 2 of Nidever et al. (2002). See the text for discussion of other stellar parameters.

host substantial quantities of terrestrial planet zone dust. We defer quantitative analysis of these spectral features to later publications.

To estimate the dust temperature and the fraction of the stellar luminosity reradiated by the dust (τ = Lₜₜₜ/Lbol), we fit optical and near-infrared measurements out to the Kₜ band with a synthetic stellar atmosphere spectrum (Hauschildt et al. 1999) and a blackbody to model the dust excess (see Figure 1). In this way, we find that the fraction of stellar light reradiated by the circumstellar dust is ~5.7 × 10⁻³ and that the grains radiate with a blackbody temperature of ~500 K. Such grains will reside at a distance of ~0.6 AU from HD 15407A.

We note that both the IRS spectrum and an IRAS upper limit at 60 μm of 347 mJy (4σ) suggest that there is no cold dust orbiting HD 15407A.

3.3. Age of the HD 15407 System

To determine the age of the binary system, we obtained and analyzed high-resolution echelle spectra for both stars and searched for X-ray detections in the literature. From these data,
we estimate the system age from the lithium content in the stellar photospheres, velocity widths of absorption lines, Galactic space motion, and chromospheric activity; details can be found in Zuckerman & Song (2004). The lithium 6710 Å absorption feature is strongly detected in the spectra of both stars (Table 1 and Figure 3). Lithium content in a stellar atmosphere is mainly determined by the star’s age and mass. These strong detections are consistent with roughly solar mass stars of \(\sim 30–100 \) Myr age (see Figure 3). We note that the lithium equivalent width (EW) measured for HD 15407A (\(\sim 94 \) mÅ) is significantly stronger than the range of Li I EWs (\(\sim 40–70 \) mÅ) quoted for similar spectral type Pleiades in Figure 3; this suggests that the HD 15407 system may be younger than Pleiades cluster stars.

The ROSAT All-Sky Survey (RASS) detected X-ray emission from HD 15407B. Analysis of this X-ray emission (Table 1 and Figure 4) suggests a star of \(\sim 100 \) Myr age (Zuckerman & Song, 2004). We note that Suchkov et al. (2003) claim a detection of HD 15407A by RASS. Upon further investigation, it is revealed that the putative detection has an angular separation of \(> 5' \) from HD 15407A, well outside the RASS positional uncertainties. We conclude that HD 15407A was not detected by ROSAT. We estimate an upper limit for its fractional X-ray luminosity in the following manner: HD 15407B is detected by ROSAT with \(\sim 4 \sigma \) significance. We take this level of X-ray flux as an upper limit for HD 15407A. Thus, we derive an upper limit to HD 15407A’s fractional X-ray luminosity by scaling HD 15407B’s fractional X-ray luminosity by the ratio of the two stars’ luminosities. This upper limit is reported in Table 1 and plotted in Figure 4 where it is shown to be consistent with stars of \(\sim 100 \) Myr age.

Velocities of the HD 15407 system toward the center of the Milky Way, around the Galactic center, and perpendicular to

Figure 3. Top left panel: Keck HIRES spectra obtained on UT 2009 November 29 and covering the Li I \(\lambda 6710 \) (vacuum) region for HD 15407A and B. Strong lithium lines are detected in both stars (see Table 1). These spectra are continuum normalized and offset by arbitrary values. Wavelengths in this figure are plotted in the heliocentric reference frame and are in vacuum. Bottom left panel: comparison of the measured Li I EWs of HD 15407A and B (Table 1) to those of moving groups with similar age (adapted from Figure 3 of Zuckerman & Song 2004). The Pleiades age is \(\sim 100 \) Myr, the Tucana association age is \(\sim 30 \) Myr, and the AB Dor association age is \(\sim 80 \) Myr (see the text and Zuckerman & Song 2004). Right panels: comparison of the Galactic UVW space motion of the HD 15407 system (red star symbol at UVW \(\sim -11, -29, -14 \)) with the UVW space motions of (1) the cluster of plus symbols near the center of the figures that are AB Dor moving group members from Zuckerman et al. (2004) and (2) triangles that are white dwarfs with mean total ages comparable to that of the Sun (Zuckerman et al. 2003; Bergeron et al. 2001). The rectangles represent the “good” UVW box for young stars as defined in Zuckerman & Song (2004).

(A color version of this figure is available in the online journal.)

Figure 4. Comparison of the calculated fractional X-ray luminosities of HD 15407A and B (Table 1) to those of two clusters of known age (adapted from Figure 4 of Zuckerman & Song 2004). HD 15407A was not detected by the ROSAT satellite, the plotted value is an estimated upper limit (see the text). The Pleiades age is \(\sim 100 \) Myr while the Hyades age is \(\sim 600 \) Myr.
the Galactic plane (U, V, W) are calculated from Table 1 sky positions and proper motions, the *Hipparcos* measured distance (van Leeuwen 2007, where we assume that HD 15407A and B are bound as suggested by their common space motions; see Table 1), and the optical echelle measured heliocentric radial velocities. UVW is computed for each component of the HD 15407 system and these two results are averaged together to produce the values reported in Table 1. Comparison of these computed UVW space motions to those of known nearby stellar associations (see Figure 3 and, e.g., Zuckerman & Song 2004; Torres et al. 2008, and references therein) suggests that the HD 15407 system is a member of the AB Dor moving group ($UVW \sim -8, -27,$ and -14 km s^{-1}). The distance to the HD 15407 system and its position in the plane of the sky are consistent with it being a member of the AB Dor moving group (e.g., see Table 5 of Zuckerman & Song 2004). Age estimates for the AB Dor moving group range from ~ 50 to 120 Myr (Zuckerman et al. 2004; Luhman et al. 2005; Torres et al. 2008, and references therein).

Based on the above analysis, we suggest a best estimate age for the HD 15407 system of ~ 80 Myr with a conservative range of plausible ages from 60 to 120 Myr. We note that the measured $v \sin i$ for HD 15407B5, $\sim 4 \text{ km s}^{-1}$, is surprisingly low for a star of such age and spectral type (Zuckerman & Song 2004, and references therein); it is possible that we view HD 15407B in a pole-on geometry.

4. DISCUSSION

Here, we use our age estimate for the HD 15407 system to help constrain the era of rocky planet formation in the terrestrial planet zone around stars of solar mass. We consider stars with fractional infrared luminosities $\tau \gtrsim 0.01$ as very dusty and likely to have undergone a recent collision between two planetary embryos or planets such as that postulated to have formed Earth’s Moon. Rhee et al. (2008) considered this problem, but included the very dusty G-type star BD+20 307 in their analysis. Subsequent to their paper, it was discovered that BD+20 307 is an old main-sequence star and hence its circumstellar dust is not related to terrestrial planet formation (Weinberger 2008; Zuckerman et al. 2008). Rhee et al. (2007) and C. Melis et al. (2010, in preparation) have investigated “intermediate mass” stars (spectral types late-B through early-F and masses from ~ 8 to $\sim 1.5 M_\odot$) with large masses of warm dust in their terrestrial planet zones. The half dozen or so very dusty intermediate mass stars currently known have ages between 10 and 30 Myr. This suggests that for such stars the era of most intense accretion of material onto rocky planets is over by about 30 Myr. Such a conclusion is similar to that drawn by Currie et al. (2008a) who considered an ensemble of young intermediate mass stars but with only modest amounts of warm dust. We now show that the corresponding era for solar mass stars, by contrast, lasts for ~ 100 Myr.

Based on *IRAS* and *Spitzer* surveys we are aware of four adolescent solar-type stars with $\tau \gtrsim 0.01$: AB Dor member HD 15407A (this Letter), Pleiades member HD 23514 (Rhee et al. 2008), M47 member P1121 (Gorlova et al. 2004), and NGC 2547 member ID8 (Gorlova et al. 2007). The ages of these stars range between 35 Myr (NGC 2547) and about 100 Myr (the other three stars). Interestingly, two of these four young, very dusty Sun-like stars are in wide binary systems (HD 23514; D. Rodríguez et al. 2010, in preparation; HD 15407, this work). The other two systems (ID8 and P1121) have not been exhaustively searched for binary companions; confirmation of any such binarity would be suggestive (although still in the realm of statistics of small numbers) of a link between binarity and catastrophic terrestrial planet collisions.

We note the relative absence of similar numbers of warm dust stars with ages from ~ 200 to 800 Myr. No stars in four stellar associations with ages in this range—the Hyades (Cieza et al. 2008), Praesepe (Gáspar et al. 2009), Carina-Near (Zuckerman et al. 2006), and Ursa Major (King et al. 2003)—have substantial quantities of warm dust in their terrestrial planet zone. Together these four groups contain ~ 200 solar-type stars. In the field, *IRAS* has surveyed many more stars with ages of ~ 200–800 Myr compared to the 30–100 Myr range, yet none in the former age range have been identified with luminous warm dust.

We estimate the frequency of catastrophic accretion events during rocky planet formation in the terrestrial planet zone by considering the detection rate of very dusty stars in the field and in young clusters. Very dusty nearby field stars were better investigated in the all-sky *IRAS* survey than with *Spitzer’s* pointed capabilities. As noted by Rhee et al. (2008), *IRAS* could have detected a main-sequence dwarf with $\tau \gtrsim 0.01$ and spectral type between F4 and K0 out to about 150 pc. There are 400 or so such field stars with ages ~ 100 Myr that *IRAS* could have detected, but of these, only HD 15407A has sufficient dust to actually have been detected by *IRAS*. Similarly, among the young clusters studied with *Spitzer*—NGC 2232 (Currie et al. 2008b), M47 (Gorlova et al. 2004), NGC 2547 (Gorlova et al. 2007), IC 2391 (Siegler et al. 2007), and the Pleiades (Stauffer et al. 2005; Gorlova et al. 2006)—the three very dusty cluster stars listed previously represent about one solar-type star in 200 (roughly consistent with the determination for solar-type cluster stars by Balog et al. 2009).

Thus, the high τ warm dust phenomenon manifests itself at about one adolescent solar-type star in 300. If all F4–K0 stars display this phenomenon as adolescents, then the lifetime of the phenomenon at a typical Sun-like star is about 300,000 years.

To understand this frequency of the warm dust phenomenon, we consider a dust production model similar to that described by Rhee et al. (2008) for HD 23514. Rhee et al. (2008) analyzed existing observations through 2007 October with the aid of a model of colliding planetary embryos due to C. Agnor and E. Asphaug (Agnor et al. 1999; Agnor & Asphaug 2004; Asphaug et al. 2006) and earlier researchers. The idea is that following a catastrophic collision of two rocky planetary embryos or planets, fragmented debris covering a range of sizes goes into orbit around a central star. Rhee et al. (2008) assumed that collisions between debris would be frequent enough to establish an equilibrium size distribution where the number of particles of radius a is proportional to $a^{-3.5}$. In this situation, both the mass carried by particles of radius a and the collision time are proportional to the square root of a. Most of the mass is carried by large fragments while small particles are responsible for most of the excess infrared luminosity and collide the fastest. The radius of the smallest dust particles in orbit around a very dusty star is set by radiative blowout and, for HD 15407A, will be $\sim 1 \mu$m. The collision time for such particles will be about 1 year divided by $10 \times \lambda_{4.5}/L_{\text{bol}}$ or ~ 10 years. If the largest initial fragments of a catastrophic collision have radii ~ 100 m, then

5 $v \sin i$ for both stars was measured from the FWHM of single absorption lines in the Keck HIRES spectra; the intrinsic FWHM resolution for the HIRES setup used was $\sim 6 \text{ km s}^{-1}$, a value we subtract in quadrature from the FWHM measured in the spectra when determining $v \sin i$ (see Equation (6) in Strassmeier et al. 1990).
their collisional lifetime is \(\sim 100,000 \) years which is within a factor of 3 of the lifetime (estimated in the previous paragraph) required if all solar-type stars are forming rocky planets in their terrestrial planet zone. Should the formation of rocky terrestrial planets involve more than a single catastrophic collision, then the model-estimated warm dust phenomenon lifetime could be more than \(100,000 \) years at each Sun-like star. As noted by Rhee et al. (2008), the total mass lost over this interval of time—due to a collisional cascade followed by radiative blowout—will be about the mass of Earth’s Moon.

5. CONCLUSIONS

Based on Keck HIRES optical spectroscopy, X-ray flux, and Galactic UVW space motions we estimate the age of the HD 15407 binary system to be \(\sim 80 \) Myr and identify the system as likely belonging to the AB Dor moving group. Collecting the full sample of known very dusty debris-disk hosting stars, we find that the era of final catastrophic mass accretion for rocky planets around stars of roughly solar mass occurs later than around intermediate mass stars. Provided that rocky planet formation in the terrestrial planet zone of most solar mass stars is accompanied by at least one and possibly a few catastrophic collisions of planet-size objects within a 100 Myr interval, then the detection rate and age range of very dusty solar-type stars—observed to be about one in 300 for ages between 30 and 100 Myr—can be accounted for. Our conclusion is that existing observations of such dusty stars indicate that most Sun-like stars are accompanied by rocky planets in the terrestrial planet zone and that collisions among such forming planets will occur, as expected in theoretical simulations of planetary origins.

We are indebted to George Herbig for obtaining the HIRES data for us. We thank Eric Becklin for pointing out the HD 15407 system to us. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This research has made use of the VizieR service and of data products from the Two Micron All Sky Survey. This research was supported in part by a NASA grant to UCLA and University of Georgia.

Facilities: IRAS (), Keck:I (HIRES), Spitzer (IRS)

REFERENCES

Agnor, C., & Asphaug, E. 2004, ApJ, 613, L157
Agnor, C. B., Canup, R. M., & Levison, H. F. 1999, Icarus, 142, 219
Asphaug, E., Agnor, C. B., & Williams, Q. 2006, Nature, 439, 155
Balog, Z., et al. 2009, ApJ, 698, 1989
Bergeron, P., Leggett, S. K., & Ruiz, M. T. 2001, ApJS, 133, 413
Chen, C. H., et al. 2006, ApJS, 166, 351
Cieza, L. A., Cochran, W. D., & Augereau, J. 2008, ApJ, 679, 720
Currie, T., Kenyon, S. J., Balog, Z., Rieke, G., Bragg, A., & Bromley, B. 2008a, ApJ, 672, 559
Currie, T., Plavchan, P., & Kenyon, S. J. 2008b, ApJ, 688, 597
Cutri, R. M., et al. 2003, 2MASS All Sky Catalog of Point Sources, The IRSA 2MASS All-Sky Point Source Catalog, NASA/IPAC Infrared Science Archive (Pasadena, CA: NASA/IPAC), http://irsa.ipac.caltech.edu/applications/Gator/
Gáspár, A., et al. 2009, ApJ, 697, 1578
Gorlova, N., Balog, Z., Rieke, G. H., Muzerolle, J., Su, K. Y. L., Ivanov, V. D., & Young, E. T. 2007, ApJ, 670, 516
Gorlova, N., Rieke, G. H., Muzerolle, J., Stauffer, J. R., Siegler, N., Young, E. T., & Stansberry, J. H. 2006, ApJ, 649, 1028
Gorlova, N., et al. 2004, ApJS, 154, 448
Hauschildt, P. H., Allard, F., & Baron, E. 1999, ApJ, 512, 377
Hög, E., et al. 2000, A&A, 355, L27
King, J. R., Villarreal, A. R., Soderblom, D. R., Gulliver, A. F., & Adelman, S. J. 2003, AJ, 125, 1980
Lisse, C. M., Chen, C. H., Wyatt, M. C., & Morlok, A. 2008, ApJ, 673, 1106
Lisse, C. M., Chen, C. H., Wyatt, M. C., Morlok, A., Song, I., Bryant, G., & Sheehan, P. 2009, ApJ, 701, 2019
Luhman, K. L., Stauffer, J. R., & Mamajek, E. E. 2004, ApJ, 613, L65
Melis, C., Zuckerman, B., Song, I., Rhee, J. H., & Meech, S. 2009, ApJ, 696, 1964
Nidever, D. L., Marcy, G. W., Butler, R. P., Fischer, D. A., & Vogt, S. S. 2002, ApJS, 141, 503
Oudmaijer, R. D., van der Veen, W. E. C. J., Waters, L. B. F. M., Trams, N. R., Waelkens, C., & Engelsman, E. 1992, A&AS, 96, 625
Rhee, J. H., Song, I., & Zuckerman, B. 2007, ApJ, 671, 616
Rhee, J. H., Song, I., & Zuckerman, B. 2008, ApJ, 675, 777
Siegler, N., et al. 2007, ApJ, 654, 580
Stauffer, J. R., et al. 2005, AJ, 130, 1834
Strassmeier, K. G., Feke, F. C., Bopp, B. W., Dempsey, R. C., & Henry, G. W. 1990, ApJS, 72, 191
Suchkov, A. A., Makarov, V. V., & Voges, W. 2003, ApJ, 595, 1206
Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2008, in Handbook of Star Forming Regions, Vol. II: The Southern Sky, ed. B. Reipurth (ASP Monograph Publ. 5; San Francisco, CA: ASP), 757
van Leeuwen, F. 2007, A&A, 474, 653
Vogt, S. S., et al. 1994, Proc. SPIE, 2198, 362
Weinberger, A. J. 2008, ApJ, 679, L41
Zacharias, N., et al. 2010, AJ, 139, 2184
Zuckerman, B., Bessell, M. S., Song, I., & Kim, S. 2006, ApJ, 649, L115
Zuckerman, B., Feke, F. C., Williamson, M. H., Henry, G. W., & Muno, M. P. 2008, ApJ, 688, 1345
Zuckerman, B., Koester, D., Reid, I. N., & Hünsch, M. 2003, ApJ, 596, 477
Zuckerman, B., & Song, I. 2004, AR& A, 42, 685
Zuckerman, B., Song, I., & Bessell, M. S. 2004, ApJ, 613, L65