Students’ “D”ILEMMA: An Assessment of Knowledge, Attitudes and Practice Toward Vitamin D Among University Students

Negia Mohamed
Al-Zaytoonah University of Jordan

Walid Al-Qerem (waleed.qirim@zuj.edu.jo)
Al-Zaytoonah University of Jordan

Ezeddin Gassar
Al-Zaytoonah University of Jordan

Mohammad Hailat
Al-Zaytoonah University of Jordan

Faiza Elhamdy
University of Benghazi

Jonathan Ling
University of Sunderland

Research Article

Keywords: Vitamin D, Supplements, Knowledge, Attitude, Practice, Sun Exposure, Fortification, university students, Jordan

DOI: https://doi.org/10.21203/rs.3.rs-113664/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The message delivered to the public regarding vitamin D is unclear, and contradictory; particularly regarding sun exposure; previous studies in Jordan have revealed high prevalence of low vitamin D among university students. The aim of this study was to investigate university students’ knowledge, attitudes and practice regarding vitamin D.

Method: A web-based cross-sectional survey completed by students at a Jordanian university in 2019. Binary logistic regression analysis was used to predict supplement use.

Results: 496 students completed the questionnaire. The mean knowledge score was 31.3 (± 11.3) out of 100. Women had significantly higher beliefs that vitamin D deficiency is an escalating health issue (p<0.01). Negative practices regarding sun exposure was significantly higher in women than men (p<0.01). The majority of participants recognized that insufficient sun exposure was a cause of vitamin D deficiency, but 50.7 % avoid sun exposure, and 67.6% expose only their face and hands. The consumption of fortified foods (OR 3.59; p<0.001) was the only studied variable associated with vitamin D consumption.

Conclusion: There is a gap between knowledge, attitude, and practice regarding vitamin D which can be bridged by promoting Vitamin D related awareness.

Background

Vitamin D deficiency is a widespread global condition(1). Vitamin D is naturally present in relatively few foods, therefore diet is considered a poor source of vitamin D that accounts for only 10% of the intake of vitamin D; the rest is obtained by the exposure of unprotected skin to sunlight UVB radiation(1). Jordan is a sunny country having sunshine for an average of 10 hours per day during summer and 8 hours per day during winter(2). Therefore, exposure to UVB radiation should be sufficient for optimal vitamin D production(1). However, the rate of vitamin D deficiency in Jordan has an increasing trend in all ages and genders (3). The high prevalence of vitamin D deficiency in sunny countries has also been reported in several other studies (4,5).

Vitamin D deficiency is often thought to be an exclusively elderly or hospitalized patient’s problem. In contrast, many studies have found a higher prevalence of low vitamin D status among younger adults (6). Strikingly high prevalence of low vitamin D status has been found in Saudi Arabia(7) and Qatar (8) (100% and 97.2 % respectively) among university students. In Jordan the prevalence of vitamin D deficiency among female university students was lower (31.2%) than Saudi Arabia and Qatar but still considered high (2).

University students are the potential future makers and they represent about 12% of the Jordanian population(9). In addition, early health attitudes and beliefs are difficult to change in later life (10). Furthermore, university students are reasonably healthy (11), which minimizes the bias related to the influence of illness on health behavior (12).

Consequently, a thorough understanding of students’ knowledge and attitudes toward vitamin D, the association between vitamin D and sun exposure and the consumption of vitamin D rich food or supplements, is essential before being able to create effective health promotion messaging and other intervention strategies. To date, no other studies have investigated the level of vitamin D knowledge, attitude and practice in Jordan. This study will assess knowledge, attitudes and practice of students regarding vitamin D, its association to sun exposure and the consumption of vitamin D food or supplementations among Jordanian university students drawn from non-health-related faculties.

Methods

Study design, setting and participants

A cross-sectional web-based survey was designed using the Google survey tool (Google Forms), and the generated link was embedded in an invitation sent to all registered students during summer semester at Al-Zaytoonah University of Jordan (ZUJ) via email. Only students registered in the summer semester were recruited to avoid any potential recall bias when asked about sun exposure, as it is most importantly during the summer.

The inclusion criteria for the study were current non-medical or para-medical students at ZUJ to avoid the influence of knowledge acquired during their study.

The emails sent to the participants contained a personalized invitation that described the nature of the survey.

The Google form was set to allow only one submission per participant and completing all questions was mandatory before submission. Three reminder emails were sent to ensure a reasonable participation rate.

Measures

Due to the lack of a locally-validated questionnaire on knowledge, attitude, and practice regarding vitamin D, we developed a new questionnaire (see online repository). The survey questions were adapted after an extensive and thorough review of the previously published literature and modified to be applicable to the Jordanian population.

Socio-demographic measures

Socio-demographic information was collected including age, gender, marital status, average household income, and smoking habits. The Fitzpatrick skin type chart photo was included in the questionnaire to classify the participants’ skin color (13). The color palate used in the chart photo was adapted from (D’Orazio et al., 2013)(14) and participants were asked to compare the color palate to their upper inner arm.
Physical activity was assessed by asking the students how many times per week they exercise enough to work up a sweat. Students were classified as physically active if they exercise to a sweat three or more times per week. Exposure to the sun at home was classified into four categories: no exposure, sun exposure via window glass only, has an open area for sun exposure with lack of privacy, and place of residence has an open area for sun exposure with high privacy.

As there is no local validated questionnaire for assessment of dietary vitamin D intake, vitamin D containing food items were obtained from a short validated questionnaire(15) and the frequencies of intake were measured according to a Jordanian validated food frequency questionnaire(16). The final version of the questionnaire includes four food items: oily fish, butter, egg, and meat, in addition to low vitamin D sources including olive oil and unfortified milk.

Knowledge, attitude, and practice

To assess knowledge we developed a questionnaire consisting of 30 questions. Knowledge score was calculated according Boland et al.(17) (See Additional file 1). One point was added for each correct answer in questions that included one correct option, and for questions with multiple correct answers, one point was counted for each correct choice and one point was subtracted for each incorrect choice. The scores then were converted to percentages by dividing the scores by the highest possible score (30), then multiplied by 100. Regarding the question on the best time to be exposed to the sun to induce vitamin D synthesis, participants were provided with 5 answers; any student who answered one or more correct answer without choosing any incorrect answer was categorized as knowledgeable about the best time to be exposed to the sun.

Validation of the questionnaire

The questionnaire content validity was evaluated by and expert panel composed of three experts. Formulated in English the questionnaire was translated to Arabic and back translated by different translator, then the two English version were compared. Face validity of the Arabic version was conducted by interviewing 30 students and the questionnaire was modified according to their feedback. The responses from the pilot testing were excluded from the final analysis.

Statistical Analysis

Descriptive statistics were used to describe the study findings. Categorical variables were presented as frequencies (percentages) whereas continuous variables were presented as means (standard deviations). The χ² test was used to assess the associations between the sample characteristics and their vitamin D knowledge and practices and to evaluate the association between participants’ knowledge and practices. Binary logistical regression was conducted to assess the contribution of different factors to the use of vitamin D supplements and the results of the regression were represented as odds ratios and 95% Confidence Interval (CI). P-values <0.05 were considered significant. IBM SPSS Statistics 25 was used to analyze the data and to create figures.

Results

The number of sent invitations was 2,150 (the number of eligible students who were registered in the summer semester). We received responses from 496. The response rate was 23%), which is higher than the minimum acceptable response rate(18).

Socio-demographic characteristics

The socio-demographic characteristics of participants are shown in Table 1. Females made up 67.1% of the participants. The mean age of the participants was 23.52 ± 4.1 years. The skin color of most of the participants ranged between Fitzpatrick skin type III (light brown) (41.1%) and type IV (moderate brown) (43.1%). Almost three-quarters of participants (74.6%) of the participants were physically inactive.

The largest group of the participants (46%) had access to an open area in their homes but without privacy, and only 2.8% reported that they had no kind of sun exposure in their home.

Sources of information about vitamin D and attitude toward vitamin D

As Table 2 shows, all participants had heard of vitamin D and the majority of the participants (78.8%) indicated that the primary source of information about vitamin D was from educational centers, followed by healthcare providers (42.9%). Likewise, the preferred source of information for more than half of them (53%) was educational centers followed by healthcare providers (38.5%). Most (79.4%) participants agreed that vitamin D deficiency is an escalating health issue in the region and all were interested in getting more knowledge about vitamin D. Nevertheless, 44.6% of participant were unconcerned about their vitamin D levels.

Knowledge and attitudes regarding vitamin D health benefits and the causes of its deficiency

Most participants knew that vitamin D is essential for bone integrity and for prevention of osteoporosis, but none knew that there is a role of vitamin D in prevention of osteomalacia (Table 2). Moreover, other essential benefits of vitamin D were less known; only a third (32.5%) of participants knew that vitamin D is important for the integrity of muscles. The primary cause of vitamin D deficiency according to participants was insufficient sun exposure (82.3%), followed by insufficient nutritional intake (39.7%) and the least mentioned cause was obesity (10.7%).

Knowledge and attitude regarding nutritional sources of vitamin and sun exposure
As shown in Table 2, 52.8% of participants acknowledged that the nutritional sources of vitamin D are insufficient and most of them (75.8%) believed that the main source of vitamin D is the sun. Nevertheless, 75.6% did not know the best time to be exposed to the sun for cutaneous production of vitamin D and 36.3% of the participants were aware of the association between dark skin color and vitamin D deficiency. Only 9.7% of the participants regarded oily fish as a source of vitamin D. The majority (78.6%) of respondents believed that vitamin D consumption is important only when sun exposure is limited and 79.4% believed that vitamin D rich foods are costly.

Participants’ knowledge scores are presented as percentages (Figure 1). The mean (±SD) was 31.3% (± 11.25) and only 7% of the participants got a score of 50% and above. The highest score was 66.67%.

Sun exposure practice

As Table 3 shows 50.6% of the participants usually avoid exposure to the sun, and 57.9% routinely use sunscreen. From 10 am to 4 pm, 45.6% spend only less than 30 minutes outdoors during the weekdays and 62.3% of them spend less than 30 minutes outdoors during the weekends. Moreover, only 26.6% were exposed to the sun in the right time for vitamin D synthesis. The main sun-exposed body parts of the participants were face and hands (67.7%), legs were exposed in 6.7% of the participants. Totally covered body with no parts exposed to the sun was practiced by (2.2%) of the participants.

Vitamin D containing food, fortified food and vitamin D supplement, consumption practice

As indicated by the weekly frequency of vitamin D rich food consumption (Table 3), the least consumed food was oily fish, followed by butter, eggs. The most consumed was meat. A third of participants reported that they are taking vitamin D supplements. Regarding the consumption of vitamin D-fortified food, 34.5% of the participants reported consuming fortified food and 48.8% were unsure.

Figure 2 shows the consumption of vitamin D rich food percentages, the mean was 72.9% (± 14.7). Over 95% of participants got a score of 50% or more and the lowest reported percentage was 33.3%.

Association between sample characteristics and knowledge and practices related to vitamin D

Table 4 shows that females significantly higher beliefs that vitamin D deficiency is an escalating health issue (84.7%) than males. In addition, their negative practices regarding sun exposure was statistically significant compared to males, as they reported covering more of their bodies, exposing only face and hands (81.1%) and spend less than 30 minutes during 10 am-4pm time period of the day outside during weekends (64.6%). Significant differences between male and females, were found in use of sunscreen and avoidance of sun exposure habits - only (6.7%) of males used sunscreen routinely compared to 82.9% of females, and 58% of females compared to 35.3% of males reported avoiding sun exposure.

Regarding the knowledge about the best time to be exposed to the sun for vitamin D synthesis (around the solar noon), 78.1% of females did not know the best time for vitamin D synthesis, which was reflected in their practice toward sun exposure as three-quarters of them (76%) reported being exposed to the sun during the time of day when little vitamin D synthesis might occur.

Association between vitamin D knowledge and beliefs with practices

As shown in Table 5, the participants who knew the best time for sun exposure for vitamin D synthesis had significantly higher sun exposure at the right time when compared with those who did not know (p<0.01). However, the beliefs of the sun as the best source of vitamin D, and insufficient sun exposure are the main cause of vitamin D deficiency did not have any significant effect on sun exposure time or duration of sun exposure during both weekdays and weekends. No significant association was found between the acknowledgment of a certain types of foods as a good source of vitamin D and their consumption.

Table 6 shows the results of the logistical regression of the factors that can contribute to vitamin D supplement use. The only significant contribution was found for the consumption of fortified foods which increased the odds of consuming vitamin D supplements.

Discussion

Although Jordan is considered a sunny country[2], the prevalence of low vitamin D status is high in both genders, particularly among young adults of (18-39 years) compared to older age groups (2,19). This study aimed to evaluate the current knowledge, attitude, and practice towards vitamin D among young, educated, adults.

Knowledge score

The mean of knowledge score of the participants in this study was 31.3%, which is close to previously reported scores in China(20) and Canada(21) but significantly lower than that of undergraduate health science students in Saudi Arabia(22).

Overall, participants demonstrated that the term, "vitamin D" had been heard, which is higher than an Australian study in which more than one-third of the participants had not heard of vitamin D(23), although the latter group were not university students as in the current study.

Vitamin D – knowledge attitude and practice, regarding information sources, food sources, health benefits, and causes of its deficiency

Educational centers (schools and universities) were the most commonly reported and preferred source of information about vitamin D among the participants, followed by healthcare providers unlike other studies which found that healthcare providers(24) and the Internet(17) were the main knowledge sources for
The essential role of vitamin D in bone integrity was the most recognized benefit, in line with a similar study conducted in the United Kingdom (17). The importance of vitamin D in maintaining normal calcium levels, and its role in muscle integrity were known by only half of participants. None of the participants knew of the role of vitamin D in the prevention of osteomalacia, which is an early sign of vitamin D deficiency (25). However, this could be due to the lack of a clear diagnostic criteria of osteomalacia (25), or unfamiliarity of the term, that may lead to the ambiguity of the term among the general population. Furthermore, less than 10% of participants identified oily fish as a source of vitamin D and low percentages were also reported for other nutritional sources. This indicates that the main nutritional sources of vitamin D and their essential role in health were not well-known by those surveyed, which suggests an unmet educational need regarding vitamin D deficiency and its related factors.

The escalating problem of vitamin D deficiency in the region was perceived by more than two-thirds of participants, with females being significantly more aware of this issue, which is in line with previous a study(26). This emphasizes the need for better health education campaigns related to vitamin D that targets both males and females, especially because a previous Jordanian study indicated that the prevalence of low vitamin D status among males was low (54%)(3).

While nutritional insufficiency was reported by (40%) of the participants as a possible cause of vitamin D deficiency, no significant associations were found between participants’ consumption of different vitamin D rich foods and their beliefs. However, their reported consumption of vitamin D rich food was better than the reported rates in a Sudanese study(27) which might contribute to the lower prevalence of vitamin D deficiency among Jordanian women than Sudanese women(28).

Knowledge, attitude and practice regarding the importance of sun exposure for vitamin D synthesis

High awareness of the relationship between insufficient sun exposure and vitamin D deficiency was observed among the participants. This was not observed in a Pakistani (29) study where only 36% of participants identified exposure to sunlight as a factor influencing vitamin D production. Nevertheless, consistent with a Chinese study(20), the high level of awareness in Jordanian participants did not improve their sun exposure practice. The relationship between attitude and practice of sun exposure reported among the participants is non-linear. This non-linear relationship could be better understood if the state of sun exposure at the participants’ home is investigated.

Clearly, there is a barrier for sun exposure among the participants as most did not have a private area for sun exposure at home. This means that participants, especially females, may be less comfortable exposing their body to the sun due to Jordanian cultural barriers. Consequently, the lack of privacy for sun exposure compelled a quarter of the participants to practice sun exposure via glass windows only, which filters out the UVB radiation required for vitamin D synthesis(30).

Moreover, many of the females in our study did not report exposure to the sun during right time for vitamin D synthesis (31). In addition, compared to males, females during weekends had significantly lower duration (< 30 min) of sun exposure during the period from 10 am to 4 pm, in which effective vitamin D production could be achieved.

It is noteworthy to mention that the participants, who were well-informed about the right time for sun exposure for vitamin D synthesis, practiced significantly more sun exposure at that time than those who were unaware of this fact. Therefore, a more detailed message defining the correct time for sun exposure might enhance public sun exposure practice.

Furthermore, as reported in the present study, most of females in the conservative Jordanian society, cover most of their body parts sparing only their faces and hands, while the sun exposure of some of other body parts (eg back and legs)(1) is important for vitamin D synthesis. Similarly, males’ exposure to sunlight did not differ much from the females’ as 40.2% of the males exposed face/hands only.

Skin color has an important effect on the sun-induced synthesis of vitamin D, as the darker the skin, the less vitamin D is synthesized by sun exposure (32). In our study, participants’ knowledge of this information was poor, which implies that there is a need to clarify the importance of skin color for vitamin D synthesis, especially among those with darker skin. Use of sunscreen was significantly higher in females than males, something also reported by an Indian study(33). Although in India this may be due to cultural factors related to skin colour with greater value placed on lighter skin tones(34). It is now generally accepted that sunscreen usage is not associated with vitamin D deficiency in real-life setting(35) and this was found in the current study, as four-fifths of the participants felt that sunscreen usage would not lead to vitamin D deficiency.

Knowledge attitudes, and practice, toward vitamin D supplementation

Despite the high prevalence of vitamin D deficiency and insufficiency among the Jordanian population(3), 60.5% of the participants did not consume vitamin D supplements, despite these being one of the main sources of vitamin D. The results of the logistical regression showed that the only studied factor that significantly contributed to the vitamin D supplements use was the consumption of vitamin D fortified food, unlike other studies, that reported knowledge scores had the greatest influence (17,21).

It is worth reporting that milk was the second most consumed food among the participants, therefore milk fortification may help solve the vitamin D deficiency problem in Jordan as one glass containing about four cubic centimeters of fortified milk will contain about 100 IU of vitamin D which counts for 1/6 of the daily recommended intake (600 IU/day) of vitamin D for those between 1-70 years of age(36).
Many factors that may predispose to vitamin D deficiency like skin color and cultural expectations of clothing are impossible or hard to modify. Therefore, more emphasis should be placed on important alternative modifiable factors including use of vitamin D supplement and food fortification, which might improve the low vitamin D status.

Strengths and limitations

First, this study is the first to evaluate knowledge, attitude, and practice toward vitamin D among university students and Jordanian population in general. Second, the sample size is larger than similar studies (17,37). Lastly, the study was conducted online, in a university with an infrastructure that allows free internet access for all students, where emails were sent to all of them, which eliminates coverage error, which led to a good response rate. However, there are several potential limitations of this study: first, the questionnaire based on self-reporting, which could lead to recall bias. Second, our results are limited in generalizability as the study population consisted mainly of Jordanian students. This educated population is likely to have led to an underestimation of the knowledge related to vitamin D in the wider Jordanian population. Third, a selection bias may have occurred, as the participation in this study is voluntary, those who participated in the study might have more interest in it than those who did not participate. Nevertheless, since the researchers have no knowledge regarding the views and the characteristics of those who choose not to respond, the reason for non-response cannot be accurately predicted.

Conclusion

A gap between participants’ knowledge, attitudes and practices regarding vitamin D was observed. This gap which could be bridged through health policy makers adopting food-based strategies, and design effective campaigns to raise awareness of vitamin D, the importance of safe exposure to the sun expressed in unit of time, the use of vitamin D supplements, food fortification and the regular inclusion of oily fish such as salmon in their diet to improve vitamin D status among the Jordanian population. Our results, might give a hint for the explanation of the high prevalence of low vitamin D among younger adults in the sunny Jordan. While this conclusion may not be generalizable to the whole population as our sample were drawn from a single university, our study provides a baseline for further quantitative and qualitative studies regarding vitamin D knowledge, attitudes and practices within the wider population. Future studies could fruitfully explore this issue further by including vitamin D status as a proxy for vitamin D knowledge attitude and practice.

Declarations

Ethics approval and consent to participate

An informed consent form included in the online questionnaire was completed by the participants. Ethical approval was obtained from ZUJ ethical committee before the commencement of the study. All methods were carried out in accordance with Declaration of Helsinki.

Consent for publication

Not applicable

Availability of data and materials

The datasets generated and/or analyzed during the current study are available in the Zenodo repository. https://doi.org/10.5281/zenodo.4261766 (38)

Competing interests

The authors declare that they have no competing interests.

Funding

This research was funded by ZUJ (for publishing fees).

Authors’ contributions

NM and WQ made a substantial contribution to the design of the work, acquisition, analysis, and interpretation of data. MH and FE have drafted the work and substantially revised it. EG made a substantial contribution to the conception, designing of the work, and drafting it. JL helped with the interpretation of the data and the drafting of the manuscript. All authors reviewed the manuscript.

Acknowledgements

We would like to thank Raghda Qarqaz for her contribution to the article writing and data analysis.

References

1. MF H. Sunlight, UV-radiation, vitamin D and skin cancer: how much sunlight do we need? Adv Exp Med Biol. 2020;1268:19–38.
2. Qatatsheh A, Tayyem R, Al-Shami I, Al-Holy MA, Al-Rethaia AS. Vitamin D deficiency among Jordanian university students and employees. Nutr Food Sci. 2015 Feb;45(1):68–82.
3. El-Khateeb M, Khader Y, Batieha A, Jaddou H, Hyassat D, Khawaja N, et al. Vitamin D deficiency and associated factors in Jordan. SAGE Open Med [–]. 2019 Jan 13 [cited 2020 Oct 1];7:205031211987615. Available from: http://journals.sagepub.com/doi/10.1177/2050312119876151
4. Nadeem S, Munim TF, Hussain HF, Hussain DF. Determinants of Vitamin D deficiency in asymptomatic healthy young medical students. Vol. 34, Pak J Med Sci. 2018. p. 1248–52.

5. IS D, HB N, HS A, MS M. Vitamin D Status among First Grade University Female Students. Bull Natl Nutr Inst Arab Repub Egypt. 2019;53(1):41–61.

6. Tennesen R, Hovind PH, Jensen LT, Schwarz P. Determinants of Vitamin D status in young adults: Influence of lifestyle, sociodemographic and anthropometric factors. BMC Public Health. 2016;16(1).

7. Al-Elq A. The status of Vitamin D in medical students in the preclerkship years of a Saudi medical school. J Fam Community Med. 2012;19(2):100.

8. Rizk NM. The prevalence of vitamin D deficiency among female college students at Qatar University. Saudi Med J. 2011;32(9):964–5.

9. Department of statistics. Estimated Population of Jordan by Sex and Age Group, at End-year 2019 [Internet]. 2019. Available from: http://dosweb.dos.gov.jo/population/population-2/

10. Nelson MC, Story M, Larson NI, Neumark-Sztainer D, Lytle LA. Emerging adulthood and college-aged youth: An overlooked age for weight-related behavior change. Obesity. 2008;16(10):2205–11.

11. von Bothmer MIK, Fridlund B. Gender differences in health habits and in motivation for a healthy lifestyle among Swedish university students. Nurs Heal Sci. 2005;7(2):107–18.

12. Steptoe A, Wardle J. Health behaviour, risk awareness and emotional well-being in students from Eastern Europe and Western Europe. Soc Sci Med. 2001;53(12):1621–30.

13. Fitzpatrick TB. Soleil et Peau. Med Esthet. 1975;2:33–4.

14. D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Vol. 14, Int J Mol Sci. MDPI AG; 2013. p. 12222–48.

15. Hedlund L. A Short Questionnaire for Assessment of Dietary Vitamin D Intake. Eur J Nutr Food Saf. 2014 Jan 10;4(2):150–6.

16. Tayyem RF, Abu-Mweis SS, Bawadi HA, Agraib L, Bani-Hani K. Validation of a food frequency questionnaire to assess macronutrient and micronutrient intake among Jordanians. J Acad Nutr Diet. 2014;114(7):1046–52.

17. O’connor C, Glatt D, White L, Iniesta RR, O’connor C, Glatt D, et al. Knowledge, attitudes and perceptions towards vitamin d in a uk adult population: A cross-sectional study. Int J Environ Res Public Health [-]. 2018 Nov 1 [cited 2020 Oct 1];15(11). Available from: /pmc/articles/PMC6267199/?report=abstract

18. Ramshaw A. The Complete Guide to Acceptable Survey Response Rates [Internet]. [cited 2020 Oct 27]. Available from: https://www.geniwe.com/blog/acceptable-survey-response-rate-2/11504?utm_campaign=NPS&utm_medium=email&hsml=934197318&hsenc=p2ANqtz-9V62GBX5jev3PbCTZuRsv7MRGUItUmEnFRxemkw36ldUP-Z3tiAvTTev8m3nes9MYLuVuYV1wSACVHNwma6Q&utm_content=934197318&utm_source=934197318

19. Batieha A, Khader Y, Jaddou H, Hyassat D, Batieha Z, Khateeb M, et al. Vitamin D status in Jordan: Dress style and gender discrepancies. Ann Nutr Metab. 2011 Apr;58(1):10–8.

20. Kung AW, Lee KC. Knowledge of vitamin D and perceptions and attitudes toward sunlight among Chinese middle-aged and elderly women: a population survey in Hong Kong. BMC Public Health. 2006;7:1–7.

21. Boland S, Irwin JD, Johnson AM. A Survey of University Students’ Vitamin D-related knowledge. J Nutr Educ Behav [-]. 2015;47(1):99–103. Available from: http://dx.doi.org/10.1016/j.jneb.2014.08.013

22. Geddawy A, Al-burayk AK, Almhaine AA, Al-ayed YS, Bin-hotan AS. Response regarding the importance of vitamin D and calcium among undergraduate health sciences students in Al Khara’, Saudi Arabia. 2020;

23. Vu LH, Van Der Pols JC, Whiteman DC, Kimlin MG, Neale RE. Knowledge and attitudes about vitamin D and impact on sun protection practices among urban office workers in Brisbane, Australia. Cancer Epidemiol Biomarkers Prev. 2010;19(7):1784–9.

24. Kotta S, Gadhvi D, Jakeways N, Saeed M, Sohanpal R, Hull S, et al. Test me and treat me - Attitudes to vitamin D deficiency and supplementation: A qualitative study. BMJ Open [-]. 2015 Jul 14 [cited 2020 Oct 1];5(7):1–9. Available from: https://bmjopen.bmj.com/lookup/doi/10.1136/bmjopen-2014-007401

25. Uday S, Högl W. Spot the silent sufferers: A call for clinical diagnostic criteria for solar and nutritional osteomalacia. J Steroid Biochem Mol Biol. 2019;188(January):141–6.

26. Arora H, Dixit V, Srivastava N. Evaluation of knowledge, practices of vitamin d and attitude toward sunlight among Indian students. Asian J Pharm Clin Res [-]. 2016 Jan [cited 2020 Nov 19];9(1):308–13. Available from: https://www.researchgate.net/publication/290490087_Evaluation_of_knowledge_practices_of_vitamin_d_and_attitude_toward_sunlight_among_Indian_students

27. Ali S, Salih L, Saeed E. Awareness of medical students about vitamin D deficiency at Ahfad University for women, Sudan. Sudan J Paediatr. 2019;19(2):117–25.

28. Husain N, Badie Suliman A, Abdelrahman I, Bedri S, Musa R, Osman H, et al. Vitamin D level and its determinants among Sudanese Women: Does it matter in a sunshine African Country? J Fam Med Prim Care [-]. 2019 [cited 2020 Oct 3];8(7):2389. Available from: /pmc/articles/PMC6691462/?report=abstract

29. Tariq A, Khan SR, Basharat A. Assessment of knowledge, attitudes and practice towards Vitamin D among university students in Pakistan. BMC Public Health [-]. 2020 Mar 18 [cited 2020 Nov 12];20(1):1–10. Available from: https://link.springer.com/articles/10.1186/s12889-020-8453-y

30. Bernerd, F.; Moyal, D.; Pai, S.B.; Srinivas CR. Ultraviolet-induced skin damage and its prevention with sunscreen. In Basic Science for Modern Cosmetic Dermatology. Srinivas, C.R., Verschoore, M. E, editor. Jaypee Brothers Medical Publishers: New Delhi, India; 2014. 91 p.

31. Webb AR, Kazantzidis A, Kift RC, Farrar MD, Wilkinson J, Rhodes LE. Meeting vitamin D requirements in white caucasians at UK latitudes: Providing a choice. Nutrients. 2018;10(4):1–13.
32. Mohammad A, Alwadei A, Saad N, Al-Johani M, Saleh S, Alzamanan M, et al. Public Awareness of Vitamin "D" Deficiency among Children in Najran City and The Role of Primary Health Care Centers in Raising Their Awareness. Egypt J Hosp Med. 2018;70(12).
33. (PDF) Evaluation of knowledge, practices of vitamin d and attitude toward sunlight among Indian students [Internet]. [cited 2020 Oct 1]. Available from: https://www.researchgate.net/publication/290490087_Evaluation_of_knowledge_practices_of_vitamin_d_and_attitude_toward_sunlight_among_Indian_st
34. Kavita Karan. Obsessions with Fair Skin: Color Discourses in Indian Advertising. Advert Soc Rev [–]. 2008 [cited 2020 Nov 22];9(2). Available from: https://muse.jhu.edu/article/241033
35. Neale RE, Khan SR, Lucas RM, Waterhouse M, Whiteman DC, Olsen CM. The effect of sunscreen on vitamin D: a review [Internet]. Vol. 181, Br J Dermatol. 2019 [cited 2020 Oct 1]. p. 907–15. Available from: https://pubmed.ncbi.nlm.nih.gov/30945275/
36. Vitamin D - Health Professional Fact Sheet [Internet]. [cited 2020 Oct 4]. Available from: https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#h3
37. Aljefree N, Lee P, Ahmed F. Exploring Knowledge and Attitudes about Vitamin D among Adults in Saudi Arabia: A Qualitative Study. Healthcare [–]. 2017 Oct 16 [cited 2020 Oct 6];5(4):76. Available from: http://www.mdpi.com/2227-9032/5/4/76
38. Mohamed N, Al-Qerem W, Gassar E, Hailat M, A.M.Elhamdy F, Ling J. Students’ “D”ILEMMA: An assessment of knowledge, attitudes and practice toward Vitamin D among university students. 2020 Nov 8 [cited 2020 Nov 12]; Available from: https://doi.org/10.5281/zenodo.4261766#.X61Ho-XieLE.mendeley

Table 1 Study Sample Demographics

Variable	Mean (SD) or Frequency (%) (n=496)
Age	23.52(4.10)
Body Mass Index (BMI)	24.43(5.65)
Sex	
Female	333(67.1)
Male	163(32.9)
Do you have any chronic illness?	
Yes	27(5.4)
No	469(94.6)
Smoking status	
Smoker	74(14.9)
Non smoker	404(81.5)
Ex-smoker	18(3.6)
Marital status	
Single	441(88.9)
Married	55(11.1)
Average income (Jordanian dinars/month)	
Low income (<600)	109(32.5)
Moderate income(600-1000)	123(36.7)
High income(>1000)	103(30.7)
Skin color	
White skin	16(3.2)
Light brown skin	204(41.1)
Moderate brown skin	214(43.1)
Dark brown skin	62(12.5)
Physical activity	
Physically active	125(25.4)
Physically inactive	367(74.6)
Home exposure to the sun	
No exposure to the sun inside the residence	14(2.8)
Sun exposure via glass only	134(27)
Open area sun exposure with lack of privacy	228(46.0)
Open area sun exposure with high privacy	120(24.2)

Table 2 Knowledge and Attitude about Vitamin D
Variable	Frequency (%)
Information sources about vitamin D	
Educational center school or university	391 (78.8)
Healthcare providers	213 (42.9)
Media	129 (26.0)
Websites and Facebook	155 (31.1)
Parents, relatives, or friends	162 (32.7)
Other sources	11 (2.2)
Knowledge about best time to expose to sun	
Knowledgeable*	121 (24.4)
Not knowledgeable**	375 (75.6)
Benefits of vitamin D	
Essential for the bone integrity	405 (81.7)
Prevention of osteoporosis	355 (71.6)
Prevention of rickets	272 (54.8)
Prevention of osteomalacia	0 (0)
Essential for muscle integrity	161 (32.5)
Protect against chronic diseases	192 (38.7)
Protect against weakness and fatigue	261 (52.6)
Unsure	24 (4.8)
Familiarity with vitamin D	
Familiar	496 (100)
Interest in getting more knowledge about vitamin D	
Interested	496 (100)
Preferred source of information about vitamin D	
Healthcare providers	191 (38.5)
Educational center school or university	263 (53.0)
Media and Internet	32 (6.5)
Parents, relatives, or friends	9 (1.8)
Causes of vitamin D deficiency	
Insufficient sun exposure	408 (82.3)
Nutritional insufficiency	197 (39.7)
Dressing style	140 (28.2)
Aging	128 (25.8)
Pregnancy	61 (12.3)
Obesity	53 (10.7)
Sunscreen usage	100 (20.2)
Genetic variability	121 (24.4)
Gender differences	61 (12.3)
Physical inactivity	140 (28.2)
Soft drinks	64 (12.9)
Smoking	72 (14.5)
Extra water drinking	13 (2.6)
Unsure	11 (2.2)
Sources of vitamin D	
Sun	376 (75.8)
Nutritional Source	Frequency (%)
-------------------------	---------------
Oily fish	48(9.7)
Meat	13(2.6)
Dairy products	23(4.6)
Eggs	14(2.8)
Fortified cereal	3(0.60)
Olive oil	3(0.60)
Mushroom	2(0.40)
Vegetables	5(1.0)
Unsure	10(2.0)

Concerns about vitamin D levels

Concerned	Frequency (%)
Yes	403(81.3)
No	93(18.8)

Vitamin D deficiency is an escalating health issue in the region

Yes	Frequency (%)
394(79.4)	
Unsure	76(15.3)
No	26(5.2)

Do you agree with these sentences?

Agreement	Frequency (%)
Nutritional sources of vitamin D are adequate	234(47.2)
Vitamin D is important to maintain normal calcium levels	254(51.2)
Vitamin D consumption is important only when sun exposure is limited	390(78.6)
Dark-skinned people are more prone to vitamin D deficiency	180(36.3)
Vitamin D rich foods are costly	394(79.4)

*Knowledgeable: if the student chose one or more correct answers without choosing any incorrect, ** Not knowledgeable: if the student chose any incorrect answer

Table 3 Sun exposure and vitamin D consumption practices
Variable	Frequency (%)
Time spent outdoors during weekdays (10 am to 4 pm)	
Less than 30 min	226(45.6)
30-60 min	120(24.2)
>60 min	150(30.2)
Time spent outdoors during weekends (10 am to 4 pm)	
Less than 30 min	309(62.3)
30-60 min	70(14.1)
>60 min	117(23.6)
Sunscreen usage	
Use	287(57.9)
Do not use	210(42.1)
Sun-exposed body parts	
Face/hands/arms/legs	33(6.7)
Face/hands/arms	92(18.5)
Face/hands	336(67.7)
Face	24(4.8)
No parts are exposed to sun	11(2.2)
Avoidance of sun	
Avoid usually	251(50.6)
Do not avoid usually	245(49.4)
Participant exposure to the sun	
At the right time*	132(26.6)
Not at the right time	364(73.4)
Consumption of vitamin D fortified foods	
Consume	171(34.5)
Not sure	242(48.8)
Do not consume	83(16.7)
Consumption of milk	
Less than once weekly	171(34.5)
Once weekly	96(19.4)
More than once weekly	229(46.2)
Consumption of butter	
Less than once weekly	286(57.7)
Once weekly	59(11.9)
More than once weekly	151(30.4)
Consumption of eggs	
Less than once weekly	70(14.10)
Once weekly	101(20.4)
More than once weekly	325(65.5)
Consumption of oily fish	
Less than once weekly	155(31.3)
Once weekly	213(42.9)
More than once weekly	128(25.8)
Consumption of meat	
Less than once weekly	67(13.5)
Once weekly	82(16.5)
More than once weekly	347(70.0)
Use of vitamin D supplements	
Use	196(39.5)
Do not use	300(60.5)

* Right time: around the solar noon; before noon, noon, and early after noon

Table 4 Association between sample characteristics and knowledge and practices related to vitamin D
Sample characteristic	Knowledge or practice	P-value		
	Agree that vitamin D deficiency is an escalating health issue in the region			
	Yes	Unsure	No	
Average income				
Low income	89(81.7)	15(13.8)	5(4.6)	0.72
Moderate income	100(81.3)	16(13.0)	7(5.7)	
High income	86(83.5)	15(14.6)	2(1.9)	
Sex				
Female	282(84.7)	36(10.8)	15(4.5)	<0.01*
Male	112(68.7)	40(24.5)	11(6.7)	
Knowledge about best time to expose to sun				
Female	73(21.9)	260(78.1)		
Male	48(29.4)	115(70.6)		
Sun-exposed body parts				
Face/hands/arms/legs	15(4.5)	13(3.9)	270(81.1)	<0.01*
Face/hands	24(7.2)	11(3.3)		
Face	66(40.5)	0(0.0)		
Totally covered	13(3.9)	0(0.0)		
Time spent outdoor during weekdays (10 am to 4 pm)				
Female	148(44.4)	77(23.1)	108(32.4)	0.30
Male	78(47.6)	43(26.4)	42(25.8)	
Time spent outdoor during weekends (10 am to 4 pm)				
Female	215(64.6)	52(15.6)	66(19.8)	0.01*
Male	94(57.7)	18(11.0)	51(31.3)	
Sun exposure time				
Right time	80(24)	253(76.0)		0.06
Wrong time	52(31.9)	111(68.1)		
Sunscreen usage				
Use	276(82.9)	57(17.1)		<0.01*
Do not use	11(6.7)	152(93.3)		
Concern about vitamin D level				
Concerned	197(59.2)	136(40.8)		0.02
Not concerned	85(52.1)	78(47.9)		
Avoidance of sun				
Avoid usually	193(58.0)	140(42.0)		<0.01*
Do not avoid usually	58(35.6)	105(64.4)		
Skin color				
White skin	5(31.3)	11(68.8)		0.10
Skin Type	Yes	No	p-value	
-------------------	-------	-------	---------	
White skin	6(37.5)	10(62.5)	0.12	
Light brown skin	63(30.9)	141(69.1)		
Moderate brown skin	82(38.3)	132(61.7)		
Dark brown skin	29(46.8)	33(53.2)		

Significant differences (p-value<0.05)

Table 5 Association between vitamin D knowledge and beliefs with practices
Knowledge about best time to expose to sun	Practice	P-value		
Knowledgeable	Exposed at the right time	Exposed at the wrong time	<0.01*	
Knowledgeable	57(47.1)	64(52.9)		
Not knowledgeable	75(20.0)	300(80.0)		
Sun is the best source of Vitamin D				
Yes	104(27.7)	272(72.3)	0.35	
No	28(23.3)	92(76.7)		
Insufficient sun exposure is the main cause of vitamin D deficiency				
Yes	109(26.7)	299(73.3)	1.00	
No	23(26.1)	65(73.9)		
Sun is the best source of Vitamin D				
Time spent outdoor during weekdays (10 am to 4 pm)				
Yes	165(43.9)	92(24.5)	119(31.6)	0.36
No	61(50.8)	28(23.3)	31(25.8)	
Sun is the best source of Vitamin D				
Use sunscreen				
Yes	57(57.0)	43(43.0)		0.85
No	230(58.1)	166(41.9)		
Oily fish is one of the best sources of Vitamin D				
Consumption of oily fish				
Yes	19(39.6)	20(41.7)	9(18.8)	0.33
No	136(30.4)	193(43.1)	119(26.5)	
Egg is one of the best sources of Vitamin D				
Consumption of eggs				
Yes	2(14.3)	2(14.3)	10(71.4)	0.84
No	68(14.1)	99(20.5)	316(65.4)	
Meat is one of the best sources of Vitamin D				
Consumption of meat				
Yes	2(15.4)	0(0.0)	11(84.6)	0.26
No	65(13.5)	82(17.0)	336(69.6)	

Significant difference (p-value<0.01)

Table 6 Factors contributing to vitamin D supplementation use. A logistic regression predicting likelihood of supplement use on relevant factors (n =496)
	B	S.E.	Wald	df	P	Odds-Ratio	95% CI of Odds-Ratio	
							Lower	Upper
Sex (Females compared to males)	0.37	0.39	0.91	1.00	0.34	1.45	.68	3.11
Household average monthly income (Moderate income group compared to low income group)	0.36	0.29	1.57	1.00	0.21	1.44	.81	2.53
Household average monthly income (High income group compared to low income)	0.16	0.30	0.27	1.00	0.60	1.17	.65	2.12
Concerns about vitamin D deficiency ("Not Concerned" compared to "Concerned")	-0.30	0.24	1.52	1.00	0.22	0.74	0.46	1.19
Taking vitamin D fortified food ("Not sure" compared "Do not take")	0.72	0.36	4.12	1.00	0.04*	2.06	1.03	4.13
Taking vitamin D fortified food ("Take" compared to "Do not take")	1.28	0.36	12.55	1.00	<0.01*	3.59	1.77	7.28
Physical activity ("Inactive" compared to "Active")	-0.45	0.27	2.88	1.00	0.09	0.64	0.38	1.07
Sunscreen usage ("Do not use" compared to "Use")	0.23	0.35	0.42	1.00	0.52	1.26	0.63	2.50
Avoidance of sun habits ("Avoid" compared to "Do not avoid")	-0.24	0.24	0.94	1.00	0.33	0.79	0.49	1.27
Knowledge scores about vitamin D	-0.01	0.01	1.42	1.00	0.23	0.99	0.97	1.01
Scores of consumption of vitamin D rich food	0.03	0.07	0.20	1.00	0.65	1.03	0.90	1.19

Abbreviations: B coefficient (B), Standard Error (SE), Wald chi-square test (Wald), degrees of freedom (df), p-value (p), Confidence Interval (CI). * Significance taken at p < 0.05.