The Indian Journal of Dermatology, Venereology and Leprology (IJDVL) is a bimonthly publication of the Indian Association of Dermatologists, Venereologists and Leprologists (IADVL) and is published for IADVL by Medknow Publications.

The Journal is indexed/listed with Science Citation Index Expanded, PUBMED, EMBASE, Bioline International, CAB Abstracts, Global Health, DOAJ, Health and Wellness Research Center, SCOPUS, Health Reference Center Academic, InfoTrac One File, Expanded Academic ASAP, NIWI, INIST, Uncover, JADE (Journal Article Database), IndMed, Indian Science Abstract’s and PubList.

All the rights are reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review, no part of the publication can be reproduced, stored, or transmitted, in any form or by any means, without the prior permission of the Editor, IJDVL.

The information and opinions presented in the Journal reflect the views of the authors and not of the IADVL or its Editorial Board or the IADVL. Publication does not constitute endorsement by the journal. The IJDVL and/or its publisher cannot be held responsible for errors or for any consequences arising from the use of the information contained in this journal.

The Journal is printed on acid free paper.
EDITORIAL REPORT - 2007

IJDVL gets into the Science Citation Index Expanded!
Uday Khopkar .. 1

EDITORIAL

Registration and reporting of clinical trials
Uday Khopkar, Sushil Pande ... 2

SPECIALTY INTERFACE

Preventing steroid induced osteoporosis
Jyotsna Oak .. 5

REVIEW ARTICLE

Molecular diagnostics in genodermatoses - simplified
Ravi N. Hiremagalore, Nagendrachary Nizamabad, Vijayaraghavan Kamasamudram 8

ORIGINAL ARTICLES

A clinicoepidemiological study of polymorphic light eruption
Lata Sharma, A. Basnet .. 15

A clinico-epidemiological study of PLE was done for a period of one year to include 220 cases of PLE of skin type between IV and VI. The manifestation of PLE was most common in house wives on sun exposed areas. Most of the patients of PLE presented with mild symptoms and rash around neck, lower forearms and arms which was aggravated on exposure to sunlight. PLE was more prevalent in the months of March and September and the disease was recurrent in 31.36% of cases.

Comparative study of efficacy and safety of hydroxychloroquine and chloroquine in polymorphic light eruption: A randomized, double-blind, multicentric study
Anil Pareek, Uday Khopkar, S. Sacchidanand, Nitin Chandurkar, Geeta S. Naik .. 18

In a double-blind randomized, comparative multicentric study evaluating efficacy of antimalarials in polymorphic light eruption, a total of 117 patients of PLE were randomized to receive hydroxychloroquine and chloroquine tablets for a period of 2 months (initial twice daily dose was reduced to once daily after 1 month). A significant reduction in severity scores for burning, itching, and erythema was observed in patients treated with hydroxychloroquine as compared to chloroquine. Hydroxychloroquine was found to be a safe antimalarial in the dosage studied with lesser risk of ocular toxicity.
Many faces of cutaneous leishmaniasis
Arfan Ul Bari, Simeen Ber Rahman

Symptomatic cutaneous leishmaniasis is diverse in its presentation and outcome in a tropical country like Pakistan where the disease is endemic. The study describes the clinical profile and atypical presentations in 41 cases among 718 patients of cutaneous leishmaniasis. Extremity was the most common site of involvement and lupoid cutaneous leishmaniasis was the most common atypical form observed. Authors suggest that clustering of atypical cases in a geographically restricted region could possibly be due to emergence of a new parasite strain.

Forehead plaque: A cutaneous marker of CNS involvement in tuberous sclerosis
G. Raghu Rama Rao, P. V. Krishna Rao, K. V. T. Gopal, Y. Hari Kishan Kumar, B. V. Ramachandra

In a retrospective study of 15 patients of tuberous sclerosis, eight patients had central nervous system involvement. Among these 8 cases, 7 cases had forehead plaque. This small study suggests that presence of forehead plaque is significantly associated with CNS involvement.

Ligand-binding prediction for ErbB2, a key molecule in the pathogenesis of leprosy
Viroj Wiwanitkit

SCORTEN: Does it need modification?
Col. S. S. Vaishampayan, Col. A. L. Das, Col. R. Verma

Universal acquired melanosis (Carbon baby)
P. K. Kaviarasan, P. V. S. Prasad, J. M. Joe, N. Nandana, P. Viswanathan

Adult onset, hypopigmented solitary mastocytoma:
Report of two cases
D. Pandhi, A. Singal, S. Aggarwal
Incidental finding of skin deposits of corticosteroids without associated granulomatous inflammation: Report of three cases
Rajiv Joshi ... 44

Erythromelanosis follicularis faciei et colli: Relationship with keratosis pilaris
M. Augustine, E. Jayaseelan .. 47

Naxos disease: A rare occurrence of cardiomyopathy with woolly hair and palmoplantar keratoderma
R. Rai, B. Ramachandran, V. S. Sundaram, G. Rajendren, C. R. Srinivas ... 50

Granular parakeratosis presenting with facial keratotic papules
R. Joshi, A. Taneja ... 53

Adult cutaneous myofibroma
V. Patel, V. Kharkar, U. Khopkar .. 56

LETTERS TO THE EDITOR

Extragenital lichen sclerosus of childhood presenting as erythematous patches
N. G. Stavrianeas, A. C. Katoulis, A. I. Kanelleas, E. Bozi, E. Toumbis-Ioannou ... 59

Leukocytoclastic vasculitis during pegylated interferon and ribavirin treatment of hepatitis C virus infection
Esra Adisen, Murat Dizbay, Kenan Hize, Nilsel Ilter .. 60
Poland’s syndrome
Saurabh Agarwal, Ajay Arya... 62

Hereditary leiomyomatosis with renal cell carcinoma
Sachin S. Soni, Swarnalata Gowrishankar, Gopal Kishan Adikey, Anuradha S. Raman ... 63

Infantile onset of Cockayne syndrome in two siblings
Prerna Batra, Abhijeet Saha, Ashok Kumar... 65

Multiple xanthogranulomas in an adult
Surajit Nayak, Basanti Acharjya, Basanti Devi, Manoj Kumar Patra ... 67

Bullous pyoderma gangrenosum associated with ulcerative colitis
Naik Chandra Lal, Singh Gurcharan, Kumar Lekshman, Lokanatha K... 68

Sporotrichoid pattern of malignant melanoma
Ranjan C. Rawal, Kanu Mangla... 70

Acitretin for Papillon-Lefèvre syndrome in a five-year-old girl
Didem Didar Balci, Gamze Serarslan, Ozlem Sangun, Seydo Homan ... 71

Bilateral Becker’s nevi
Ramesh Bansal, Rajeev Sen... 73

Madarosis: A dermatological marker
Silonie Sachdeva, Pawan Prasher... 74
FOCUS

Botulinum toxin
Preeti Savardekar

Net Studies

A study of oxidative stress in paucibacillary and multibacillary leprosy
P. Jyothi, Najeeba Riyaz, G. Nandakumar, M. P. Binitha

Clinical study of cutaneous drug eruptions in 200 patients
M. Patel Raksha, Y. S. Marfatia

Net case

Porokeratosis confined to the genital area: A report of three cases
Sujata Sengupta, Jayanta Kumar Das, Asok Gangopadhyay

Net Letters

Camisa disease: A rare variant of Vohwinkel’s syndrome
T. S. Rajashekar, Gurcharan Singh, Chandra Naik, L. Rajendra Okade

Cross reaction between two azoles used for different indications
Arika Bansal, Rashmi Kumari, M. Ramam

Net Quiz

Asymptomatic erythematous plaque on eyelid
Neeraj Srivastava, Lakhan Singh Solanki, Sanjay Singh

A bluish nodule on the arm
Ragunatha S., Arun C. Inamadar, Vamseedhar Annam, B. R. Yelikar

The copies of the journal to members of the association are sent by ordinary post. The editorial board, association or publisher will not be responsible for non-receipt of copies. If any of the members wish to receive the copies by registered post or courier, kindly contact the journal's / publisher’s office. If a copy returns due to incomplete, incorrect or changed address of a member on two consecutive occasions, the names of such members will be deleted from the mailing list of the journal. Providing complete, correct and up-to-date address is the responsibility of the members. Copies are sent to subscribers and members directly from the publisher’s address; it is illegal to acquire copies from any other source. If a copy is received for personal use as a member of the association/society, one cannot resale or give-away the copy for commercial or library use.
INTRODUCTION

Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous genodermatosis characterized by hamartoma formation in multiple organs - like skin, brain, kidney, lung, heart and eyes.[1-3] The incidence of TSC is about 1 in 10,000, with half of the TSC families linked to chromosome 9q34 and the other half to 16p13. Tuberin (TSC1) and hamartin (TSC2), proteins having tumor-suppressor activity, located on chromosomes 9 and 16 respectively are the known defective proteins in TSC.[4,5] Approximately 60% of cases occur as apparent sporadic cases without any family history, due to germline mosaicism.[6] The definitive diagnosis of TSC is made by the presence of either one primary feature like facial angiofibromas, subungual fibromas, cortical tubers, etc.; or two secondary features or one secondary plus two tertiary features.[2,7] CNS manifestations like seizures occur in 86%, mental retardation in 49% and cutaneous manifestations are seen in almost 96% patients of TSC.[5,8] Cutaneous manifestations of TSC include facial angiofibromas, subungual fibromas, hypomelanotic macules, forehead fibrous plaques and shagreen patches.[2,7,9] In 1961, Nickel and Reed observed fibromatous forehead plaques in patients with advanced mental retardation. They opined that presence of fibrotic forehead plaque was a poor prognostic sign in tuberous sclerosis.[10] Till now, there are no specific studies to observe the relationship between forehead plaque and CNS involvement. The objective of the present study is to examine the relationship between the presence of forehead plaque and CNS involvement in TSC.
METHODS

This retrospective study was conducted in the Department of Dermatology, King George Hospital and Andhra Medical College, Visakhapatnam, between May 2003 and October 2004. The study group included 15 cases of tuberous sclerosis. Diagnosis of tuberous sclerosis was made on the basis of the presence of at least one primary feature, which included facial angiofibromas, multiple subungual fibromas, cortical tubers, subependymal nodules or giant cell astrocytomas and multiple retinal astrocytomas.[2,7]

In all patients, a detailed clinical history was taken with reference to age at onset of various cutaneous lesions, infantile spasms, seizures or mental retardation. Family history was taken in all patients, including details of any affected first-degree relative, consanguinity and genetic pedigree. In all patients, thorough dermatological and CNS examination was carried out. Complete ophthalmologic examination was also done in all patients with direct and indirect ophthalmoscopy and fundoscopy to detect any retinal hamartomas. In all 15 cases, computed tomography of brain was performed to find out any CNS lesions.

Relevant investigations like routine hematological and biochemical tests; X-rays of the chest, skull, hands and feet; and ultrasound abdomen were performed. Elliptical biopsy of the forehead plaque was done in seven patients to study the histopathological features.

RESULTS

Out of the 15 TSC patients, 8 were males and 7 were females. The age of the patients varied from 1.5 years to 50 years. Mean age was 15.9 years. Seven of the 15 patients gave a family history of TSC, with at least one affected first-degree relative. Consanguinity of parents was found in 3 cases.

The various clinical features of our cases are given in Table 1. Forehead plaque was observed in 7 of the 15 cases (47%). In 4 cases, a single forehead plaque was present since birth [Figure 1]. In the 3 other cases, two or more forehead plaques were present, which developed at the age of 2, 3 and 4 years respectively [Figure 2]. Histopathological examination of the forehead plaques revealed features suggestive of connective tissue hamartoma consisting of vascular, fibrous and dermal tissues.

Specific CNS manifestations and their relationship with forehead plaque are shown in Table 2. Out of the 15 cases, CNS involvement was seen in 8 cases. History of seizures was present in 8 of the 15 cases (53.33%). Out of these 8 cases, 3 cases had infantile spasms; and in 6 cases, mental retardation was observed. CT scan of brain revealed subependymal nodules (SENS) in 8 of the 15 cases (53.33%) [Figure 3]. In addition to SENS, subependymal giant cell astrocytomas and cortical tubers were seen in 2 cases each and retinal phakomas were seen in 1 case [Figures 4]. Out of these 8 cases having CNS involvement, in 7 cases forehead plaque was observed ($\chi^2 = 1.07, P<0.05$). In 1 case, no forehead plaque was observed. In the remaining 7 cases, neither CNS involvement nor fibrotic forehead plaque was seen.

Routine hematological, biochemical investigations and X-ray studies were within normal limits in all patients. Ultrasound scanning of the abdomen revealed renal angiomyolipomas.

Table 1: Clinical features (N = 15)

Case no.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Facial angiofibromas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	14	
Shagreen patches	+	+	+	+	+	+	+	+	+	+	+	+	+	12		
Hypomelanotic macules	–	+	+	+	+	+	+	+	+	+	+	+	+	+	12	
Subungual fibromas	–	–	–	–	–	–	–	–	–	–	–	–	–	–	2	
Forehead plaque	+	–	+	+	+	+	+	+	+	+	+	+	+	+	8	
CNS Involvement	+	+	+	+	+	+	+	+	+	+	+	+	+	+	8	
Renal changes	–	–	–	–	–	–	–	–	–	–	–	–	–	–	1	
Eye changes	+	–	–	–	–	–	–	–	–	–	–	–	–	–	1	

Table 2: Forehead plaque and CNS involvement (N = 8)

Case no.	1	3	4	7	12	13	14	15
Forehead plaque	+	+	+	+	+	+	+	+
Convulsions	+	+	+	+	+	+	+	+
Age at onset of seizures	2 yrs	3 yrs	10 m	2 yrs	8 yrs	4 m	12 yrs	5 m
CT findings	SENS, SEGA, RP	SENS	SENS	SENS	SENS, CT	SENS	SENS, CT	SENS, SEGA

SENS - Subependymal nodules, SEGA - Subependymal giant cell astrocytoma, CT - Cortical tubers, RP - Retinal phakomas
fibromas, shagreen patches and forehead plaque. The last four of these provide strong support for a diagnosis of TSC.[2,5,7] According to Jozwiak S et al., hypopigmented macules were the most frequent finding (97.2%) and facial angiofibromas were the next common cutaneous lesion.[14] Forehead plaques were observed in 20 of 103 cases (18.9%). Webb et al., reported forehead plaque in 36% of cases.[15] In our study, in 47% of cases of TSC, forehead plaque was observed. Fibrotic forehead plaques are large connective tissue hamartomas that are fibromatous, soft, compressible, doughy-to-firm tumorous or plaque-like lesions commonly present on the forehead, eyelids, upper cheeks and scalp. These are present in up to 25% of patients with TSC, are often multiple, and are commonly seen on the forehead.[10,16] Recently, it was found that forehead plaques are more frequently seen in TSC2 patients than in TSC1 patients.[17] The individual lesions tend to be much larger than the
angiofibromas on the face, are often unilateral and may be present at birth.

Nickel and Reed in 1961 had observed that in tuberous sclerosis, fibromatous forehead plaque was not observed in normal patients but was common in hospitalized patients with advanced mental retardation. They suggested that the presence of forehead plaque was a poor prognostic sign. Since then, no attempts have been made to establish the association between forehead plaque and CNS involvement. In various previous studies, though forehead plaque was observed, no correlation between these lesions and CNS involvement was made. In one study, forehead plaque along with retinal phakomas and multiple intracranial periventricular calcifications was reported. In our study, various CNS manifestations like infantile spasms, persistent seizures, mental retardation, subependymal nodules, subependymal giant cell astrocytomas, cortical tubers and retinal phakomas were seen in 8 of the 15 cases (53.33%); and in 7 of these cases, forehead plaque was observed (χ² = 1.07, P<0.05). In the remaining 7 cases, though other cutaneous manifestations like angiofibromas, shagreen patches and subungual fibromas were seen, no clinical or radiological evidence of CNS involvement was seen. Our findings show that there is a significant relationship between the presence of forehead plaque and CNS involvement. Therefore, whenever fibrotic forehead plaques are seen in TSC patients, a thorough radiological search may be carried out to rule out the involvement of other organ systems, especially CNS, even in the absence of clinical manifestations.

We suggest that forehead plaque can be considered to be a novel cutaneous marker of CNS involvement at an early stage so that proper and timely prophylactic measures can be undertaken to prevent seizures, mental retardation and permanent CNS damage. However, larger clinical studies are warranted to establish forehead plaque as one of the important prognostic markers.

REFERENCES

1. Gomez MR. Tuberous sclerosis. In: Gomez MR, editor. Neurocutaneous diseases. Butterworths: Boston; 1987. p. 30.
2. Kwiatwoski DJ, Short MP. Tuberous sclerosis. Arch Dermatol 1994;130:348-54.
3. Monaghan HP, Kraftchik BR, MacGregor DL, Fitz CR. Tuberous sclerosis complex in children. Am J Dis Child 1981;135:912-7.
4. Nijhawan A, Lyon VB, Drolet BA. Paediatric dermatology

Cutaneous markers of malformations and selected syndromes - what do you see, when do you see it and how do you find it? Curr Probl Dermatol 2001;13:249-300.
5. Paller AS, Goldsmith LA. Tuberous sclerosis complex. In: Freedberg IM, Eisen AZ, Wolff Klaus, Austen KF, Goldsmith LA, Katz SI, editors. Fitzpatrick's dermatology in general medicine. 6th Ed. McGraw Hill: New York; 2003. p. 1822-5.
6. Northrup H. Tuberous sclerosis complex: genetic aspects. J Dermatol 1992;19:914-9.
7. Harper JL. Genetics and Genodermatoses. In: Champion RH, Burton JL, Burns DA, Breathnach SM, editors. Textbook of dermatology. 6th Ed. Oxford Blackwell Science: 1998. p. 357-447.
8. Anisya-Vasanth AV, Satishchandra P, Nagaraja D, Swamy HS, Jayakumar PN. Spectrum of epilepsy in tuberous sclerosis. Neurol India 2004;52:210-2.
9. Krishnan SG, Yesudian DP, Jayaraman M, Janaki VR, Raj Boopal JM. Tuberous sclerosis. Indian J Dermatol Venereol Leprol 1996;62:239-41.
10. Nickel WR, Reed WB. Tuberous sclerosis: Special reference to the microscopic alterations in the cutaneous hamartomas. Arch Dermatol 1962;85:209-26.
11. Morgan JE, Wolfot F. The early history of tuberous sclerosis. Arch Dermatol 1979;115:1317-9.
12. Roach ES. Introduction. In: Roach ES, Miller VS, editors. Neurocutaneous disorders. Cambridge University Press: Cambridge; 2004. p. 1-3.
13. Arbiser JL, Brat D, Hunter S, D'Armiento J, Henske EP, Arbiser ZK, et al. Tuberous Sclerosis-associated lesions of the kidney, brain and skin are angiogenic neoplasms. J Am Acad Dermatol 2002;46:376-80.
14. Jozwiak S, Schwartz RA, Janniger CK, Michalowicz R, Chmielik J. Skin lesions in children with tuberous sclerosis complex: their prevalence, natural course and diagnostic significance. Int J Dermatol 1998;37:911-7.
15. Webb DW, Clarke A, Fryer A, Osborne JP. The cutaneous features of tuberous sclerosis: A population study. Br J Dermatol 1996;135:1-5.
16. Fryer AE, Osborne JP, Schutt W. Forehead plaque: A presenting skin sign of tuberous sclerosis. Arch Dis Child 1987;62:292-3.
17. Dabora SL, Jozwiak S, Franz DN, Roberts PS, Nieto A, Chung J, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 2001;68:64-80.
18. Jeevan KB, Thappa DM, Narasimahan R. Cutaneous features of tuberous sclerosis: A hospital based study in South India. Indian J Dermatol 2000;45:149-53.
19. Chou PC, Chang YJ. Prognostic factors for mental retardation in patients with tuberous sclerosis complex. Acta Neurol Taiwan 2004;13:10-3.
20. Kumar P, Brindha S, Manimegalai M, Premalatha S. Tuberous sclerosis with interesting features. Indian J Dermatol Venereol Leprol 1996;62:122-4.