ORIGINAL CONTRIBUTION

The Feasibility of Case-Control Studies Using Rezept Files of a Japanese Hospital: A Study on Thrombocytopenia

Tsugumichi Satoh, Kiyohiko Katahira, and Akira Sakuma

A case-control study on thrombocytopenia with the Rezept files of Tokyo Medical and Dental University Hospital has been carried out. The study explored whether the case-control studies are feasible using files of Rezept system maintained in many Japanese hospitals for health insurance billing. Each of the 100 patients with thrombocytopenia was contrasted with one control case, matched for age, sex, in- or out-patient, consultation clinic and year of registration. Of 1,021 products of drugs registered in the files, 40 products (36 drugs) were associated with the disease. Through medical record review, low platelet count was confirmed in 94.6% of inpatients, while only in 26.9% of outpatients. Thirty-one cases of drug-induced thrombocytopenia were identified, and 29 suspected drugs were listed up. On the basis of the analysis of these data, we conclude that the Rezept files be useful in the case-control studies on adverse drug reactions similar to thrombocytopenia in inpatients. The medical records, however, must be reviewed to confirm the date of disease onset and to obtain information not included in the computerized data. J Epidemiol, 1994; 4: 147-155.

pharmacoepidemiology, databases, adverse drug reactions, postmarketing surveillance, epidemiologic methods

In recent years, the role of pharmacoepidemiology in drug evaluation has begun to be emphasized in Japan. For example, the Ministry of Health and Welfare has established the Good Post-Marketing Surveillance Practice, which came into effect on April 1, 1993. Upon performing pharmacoepidemiologic studies, computerized databases have been extensively used in the North America and in Europe. These databases have special features of promptness of data retrieval, largeness of accumulation and cost advantages, although there are still formidable difficulties in relevant usage of them. Unfortunately these types of databases are scarcely available in Japan.

Rezept files are files of the Rezept system, which is a computerized system maintained by many hospitals in Japan for health insurance billing. We have a nationwide health insurance system under which most fees for drugs and medical procedures are reimbursed by insurance agencies to medical facilities. They include information on patient characteristics, drugs dispensed, and diagnoses for nearly all of both inpatients and outpatients. Thus, the Rezept system is one of the few potential resources for pharmacoepidemiologic studies in Japan. For years, we have tried to find out the possibility of applying the data of the system in pharmacoepidemiologic studies, particularly relating to the postmarketing drug surveillance system for earlier detection of adverse drug reactions. The previous studies suggest that Rezept files can be useful in retrospective cohort studies provided that the diagnostic data are reliable to some extent.

To examine the feasibility of case-control studies using Rezept files, we tried a case-control study on thrombocytopenia with the Rezept files of Tokyo Medical and Dental University Hospital at the outset. Thrombocytopenia caused by drugs is a serious problem, and the diagnostic validity of which is objectively evaluated through laboratory findings. The present paper reports on the results of an effort to conduct retrospective case-control study on thrombocytopenia and illustrates some problems in using the files for this purpose.

Received June 3, 1994; accepted September 26, 1994
Department of Clinical Pharmacology, Division of Information Medicine, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
Address for correspondence: Tsugumichi Satoh, Department of Clinical Pharmacology, Division of Information Medicine, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai Chiyoda-ku Tokyo, 101 Japan.
SUBJECTS AND METHODS

Data Source

The present study population was drawn from the Rezept files of Tokyo Medical and Dental University Hospital, Faculty of Medicine, for about seven years from January 1982 to November 1988. The hospital is a general hospital with about 700 beds, and consists of 18 consultation clinics. The Master File of Inpatient included data on patients admitted to the hospital, which consisted of an identification number, name, date of birth, sex, and admission and discharge dates. The Master File of Outpatient included similar data on outpatients examined and treated at the hospital.

A potential subject was defined as a patient whose diagnostic data was entered into the Master File of Diagnosis during the study period. This Master File of Diagnosis contained a record of each diagnosis with the diagnostic date, consultation clinic, and in- or out-patient. Because diagnostic data before April 1985 were very sparse, the number of potential subjects defined was 109,088 out of 177,317 patients registered in the files during the study period.

The Master File of Treatment included the records of medical procedures which could be reimbursed through the health insurance program. They consisted of drug prescriptions, anesthetizations, surgical operations, X-ray examinations, laboratory tests and so forth. Although drugs which could be reimbursed have been on the National Health Insurance Ethical Drug Tariff, during the study period, most prescription drugs had been on the Tariff, and had been filled in the hospital even for outpatients. In the previous studies, a person based longitudinal file, named the File of Each Patient's Medical History, was created for the potential subjects through record linkage (Fig. 1).

Figure 1. Flow chart of data processing.
Selection of cases and controls

We identified potential cases from the File of Each Patient's Medical History for those with thrombocytopenia. They were then examined to exclude those that had not received any medication before the first diagnostic date of thrombocytopenia (index date). A large pool of potential control patients remained. For each case of thrombocytopenia, we further drew a subgroup from the pool of potential control patients, matching for age, sex, in- or out-patient, consultation clinic and year of registration, some allowance being set for year of registration. Finally, a control case was randomly drawn from the subgroup.

Screening of drugs associated with thrombocytopenia

For each case, we identified all the drugs administered before the index date. For each drug identified, users before the index date in the case group and users during the whole study period in the control group were counted respectively. Exposure odds ratio and its 95% confidence interval were calculated of each drug. If the lower 95% confidence limit was larger than 1.0, namely, if a drug was used in the case group with a definitely higher frequency, then the drug was selected.

Medical record review procedures

We requested the relevant doctors for primary medical records and laboratory data of all cases. We identified patient characteristics and underlying or primary diseases. Presence of thrombocytopenia in the month including the index date or in the previous month or in the following month was confirmed by the finding of low platelet count less than 120,000/mm³, the lower limit of the reference interval adopted in the hospital. The medical record review was aborted if low platelet count was not found. The primary medical records of the cases of low platelet count were reviewed in detail for the followings: changes over time in platelet count and other laboratory data, complications, drugs prescribed and other treatments given including operations and radiations, and descriptions on etiology for thrombocytopenia. If recurrence was found, the records were reviewed on thrombocytopenia in the time including the same or closest date to the index date. Recurrence was defined as the returning of low platelet count exceeding the limit in 14 days or more after the recovery. The date of disease onset was decided as the first date of falling of platelet count exceeding the reference value. Descriptions on etiology for the disease were examined by one of the authors (TS). For the cases of drug-induced thrombocytopenia, we listed suspected drugs designated on the records. If only product categories of suspected drugs were mentioned, he decided which drug was to be indicated based on the time relationship of drug exposure to the onset and the course of the illness.

RESULTS

Characteristics of subjects and drugs associated with thrombocytopenia

We identified 131 patients with thrombocytopenia from the Rezept files. Of these, 100 cases had been receiving

Groups	Drugs	
A	Therapeutic agents for the disease (2)	dexamethasone, heparin sodium*
B	Diagnostics for the disease (0)	cefalexin, chlorpheniramine maleate, cimetidine, cyclophosphamide, cytarabine, daunorubicin hydrochloride, doxorubicin hydrochloride, heparin sodium, indomethacin, mercaptopurine, pipercillin sodium, sulfamethoxazole, trimethoprim, vincristine sulfate
C	Drugs whose Japanese package inserts refer to the disease as an adverse reaction** (13)	amphotericin B, gentamicin sulfate
D	Drugs except stated above whose US package inserts refer to the disease as an adverse reaction*** (2)	aluminum hydroxide, magnesium hydroxide, amikacin sulfate, L-aspartate potassium, cytochrome C, distilled water for injection, domperidone, glucose, hydrocortisone sodium phosphate, indocianine green, intravenous hyperalimentative basic solution, iodine addition products of the ethylesters of the fatty acids obtained from poppyseed oil, isotonic sodium chloride solution, metoclopamide, potassium chloride, povidone iodine, procaine hydrochloride, sissomic sulfonate, technetium phytate, thiamine hydrochloride, vitamin A

* Classified also into C group. ** Based on Iryo-yaku Nihon-iyakuhinshu (Drugs in Japan: ethical drugs), 1993. *** Based on Physicians' desk reference, 47th ed., 1993, and 46th ed., 1992.
medication before the index date. For these cases, we selected 100 matched controls. Of both the case and control groups, 54% were men, mean age (SD) was 44.4 (21.6) years, 74% were inpatients, and 57% were the patients of the clinics of internal medicine. Examination of medical records of all cases revealed that primary or underlying diseases were malignant tumors in 49%, heart disorders in 7%, thrombocytopenic purpura in 7%, bleeding tendency or nasal hemorrhage in 4%, and others in 33%.

Of 1,021 products of drugs registered in the files, 40 products (36 drugs) were associated with the disease from the lower 95% confidence limit of odds ratios. They are tentatively classified into five groups as shown in Table 1. Fifteen drugs have been described to be liable to cause thrombocytopenia in Japanese and/or US package inserts15–17) (C and D groups in Table 1).

Accuracy of diagnostic information in the Rezept files

In Table 2 is shown the reliability of diagnosis for thrombocytopenia in the computerized files. Among 100 cases, 77 had low platelet counts. For inpatients, 94.6% (of 74) actually had thrombocytopenia, while only 26.9% (of 26) for outpatients. Then the medical records of 77 cases were reviewed in detail. We examined the agreement of the diagnostic date in the computerized files with the date of disease onset from primary record review for the disease. As shown in Figure 2, the two dates agreed in only six cases (7.8%), and in almost all of the others (76.6%), the diagnostic date was later than the date of the onset. Although the difference between the two dates ranged from -9 to 769 days, it was within ±10 days in

Low platelet count	Inpatient	Outpatient	All cases (n=100)			
No.	%	No.	%	No.	%	
Present &superscript;	70	94.6	7	26.9	77	77.0
Absent	4	5.4	17	65.4	21	21.0
Unknown &superscript;	0	0	2	7.7	2	2.0

&superscript; Platelet count less than 120,000/mm³ in the month including first computerized diagnostic date on thrombocytopenia or in the previous month or in the following month was confirmed.

&superscript; Platelet count was not tested or data were incompletely available.

58.4% and within ±20 days in 72.7% of cases.

Drug-induced thrombocytopenia

Through medical record review, we identified 31 cases of drug-induced thrombocytopenia diagnosed by medical doctors, and listed up 29 suspected drugs. Although two or three suspected drugs were designated for most of the cases, almost all of the drugs for each case were classified into the same product category. Of drug-induced thrombocytopenia cases, 23 (74.2%) were due to antineoplastic agents, five (16.1%) to antibiotics, one (3.2%) to antiepileptics, and two (6.5%) to drugs not classified in the same product category.

![Figure 2. Difference between the date of disease onset and the computerized date of diagnosis. On the horizontal axis, if the computerized date was later than the date of onset, a positive number represents the difference, in case of the opposite situation, a negative number represents it.](image-url)
Table 3. Comparison of the results from Rezept files and the results from medical record review.

Drugs* (Products)	No. of exposed cases (n=100)	No. of exposed controls (n=100)	Odds ratio (95%CI)	No. of cases of drug-induced thrombocytopenia (n=100)
cytarabine	8	1	8.6 (1.1-70.2)	8
(Cytocide Injection 60 mg)				
(Cytocide Injection 20 mg)				
cyclophosphamide	14	4	3.9 (1.2-12.3)	6
(Endoxan Injection 500 mg)				
(Endoxan Injection 100 mg)				
daunorubicin hydrochloride (Daunomycin)	13	2	7.3 (1.7-33.4)	5
doxorubicin hydrochloride (Adriacin Injection)	16	6	3.0 (1.1-8.0)	4
vincristine sulfate (Oncovin)	17	7	2.7 (1.1-6.9)	4
mercaptopurine (Leukerin Powder)	13	3	4.8 (1.3-17.5)	3
piperacillin sodium (Pentillin Injection 1 g)	32	19	2.0 (1.0-3.9)	1
cefalexin (Keflex 250 mg Capsules)	12	4	3.3 (1.0-10.5)	0
chlorpheniramine maleate (Polaramin Injection 0.5% 1 ml)	27	14	2.3 (1.1-4.7)	0
cimetidine (Tagamet Injection)	28	15	2.2 (1.1-4.4)	0
heparin sodium (Novo heparin Injection 1,000 Units)	16	6	3.0 (1.1-8.0)	0
indomethacin (Indacin 50 mg suppositories)	25	11	2.7 (1.2-5.8)	0
sulfamethoxazole • trimethoprim (Baktar 480 mg Tablets)	19	7	3.1 (1.2-7.8)	0

* Only the data on drugs classified into C group on Table 1 (drugs whose Japanese package inserts refer to the disease as an adverse reaction) are shown. There was no thrombocytopenia case due to drugs classified into other groups on Table 1.

Table 4. Drugs not associated with thrombocytopenia but designated as suspected drugs on medical records.

Drugs	No. of cases
methotrexate	5
cisplatin	3
etoposide	3
ampicillin	2
cefmetazole sodium	2
mitomycin C	2
sodium valproate	2
vinblastine sulfate	2
vindesine sulfate	2
L-asparaginase	1
carmofur	1
cefamandole sodium	1
enocitabine	1
fluorouracil	1
ifosfamide	1
latamoxef sodium	1
mitoxantrone hydrochloride	1
pipemidic acid trihydrate	1
procainamide hydrochloride	1
tegafur	1
tegafur • uracil	1
theophylline	1

Comparison of drugs from the Rezept files and those from medical record review

Of 36 drugs associated with thrombocytopenia from the Rezept files, seven (six antineoplastic agents and one antibiotic agent) were suspected drugs from medical record review as listed in Table 3. Oppositely, of drugs not associated with the disease from the files, 22 were suspected drugs from the record review (Table 4).

DISCUSSION

The Rezept system: advantages and limitations

Rezept is a German term and means the bill for reimbursement. The Rezept system was introduced in the 1970's for the first time in Japan, and has rapidly become popular among hospitals in the 1980's. As of 1992, 76.9% of hospitals, and 41.9% of all medical facilities have maintained the system. And, 94.4% of bills from hospitals, and 68.3% of total bills were prepared by the system. Some hospitals incorporated the Rezept system into comprehensive systems for various administrative purposes. Although the codes of drugs and diagnoses and/or the data structures differ depending on the situation, every Rezept system includes similar kinds of information.

Much has been written on advantages and limitations of using computerized databases which are maintained for administrative purposes. For pharmaco-
The feasibility of case-control studies

In this study using the Rezept files of Tokyo Medical and Dental University Hospital, we found that the files are useful in the case-control studies of thrombocytopenia for inpatients but not for outpatients. This is based on the following three findings: First, obtained primary medical records of all cases proved to be highly accessible, and thus the number of cases deleted from the study due to inaccessible medical records can be small. Moreover, detail information not involved in the files is available in the medical records. This enhances the validity and efficiency of the study. Second, low platelet counts being found in 94.6% of inpatient cases, the computerized diagnostic data on the disease are highly reliable as far as inpatients are concerned. Third, it is possible that a control group drawn from the Rezept files is comparable to a case group to detect the drugs that cause the disease. As shown in Table 3, the drugs associated with thrombocytopenia at higher odds ratios were more frequently designated on medical records as suspected drugs such as cytarabine, daunorubicin and cyclophosphamide. Particularly for cytarabine, the number of cases for which the drug was suspected as the cause was close to the difference in the number of patients administered the drug between case and control groups.

Besides these findings, we have already confirmed that the Rezept data on drugs were extremely accurate in preparation form, dosage, and duration by a previous study on piroxicam, an NSAID (nonsteroidal anti-inflammatory drug) (data not published). In the present study, the computerized data on drugs which were designated as suspected drugs were also well consistent with the data in the medical records, and thus we consider that the Rezept data on drugs are of high quality.

We, however, also found several limitations of applying the Rezept files to case-control studies in addition to the limitations mentioned above. First of all, computerized diagnostic data for outpatients would not be reliable enough, as thrombocytopenia was confirmed only in 26.9% of outpatients. In a previous study on gastrointestinal disorders, in which most of the subjects were outpatients, drug-induced gastritis and gastric ulcer were confirmed at most in only 14.8% and 11.4% of the cases drawn from the Rezept files. These results indicate that the study of outpatients will not be efficient. We suggest a possible explanation of why false diagnoses were frequent in the files for outpatients: In the Japanese health insurance system, medical procedures which could be reimbursed have been exclusively treatments for a disease, and have not been for examination and prevention. Thus, getting reimbursement for medical procedures, routine blood tests to diagnose thrombocytopenia for instance, requires that a relevant diagnosis, thrombocytopenia as a temporary diagnosis, should be registered before final diagnosis. In the present study, many outpatients have evidenced bleeding tendency or nasal hemorrhage, but have not had thrombocytopenia. Likewise, it would be frequent for outpatients that a temporary diagnosis is entered into the files for billing. Existence of such “diagnosis for billing” or “Rezept diagnosis” have been tacitly understood, however, there have been very few reports on the frequency of Rezept diagnoses. In order to evaluate the effect of the Rezept diagnoses on the quality and efficiency of the studies, we need to study on many other diseases.

Diagnostic date in Rezept files did not accord with the date of disease onset, generally the diagnostic date was liable to be behind the date of disease onset. The reason for this date discrepancy can be due to a time lag period between the onset and the diagnosis, as well as the process of data input. The clerks who input data for monthly billing are not concerned with the accurate date of diagnoses. It is essential for getting reimbursement only that a
A Case-control Study Using Rezept Data

Table 5. Confounding variables could not be controlled in this study.

Confounding variables	Drugs associated with thrombocytopenia
Therapeutic agents or diagnostics for the disease	dexamethasone, heparin sodium
Combined or adjuvant therapy with the drug causes the disease	aluminum hydrochloride gel • magnesium hydroxide, cytochrome C, domperidone, metoclopramide
Therapeutic agents or diagnostics for primary or underlying diseases	iodine addition products of the ethylesters of the fatty acids obtained from poppyseed oil
Adjuvant therapy for primary or underlying diseases	glucose, high calorie infusion, thiamine hydrochloride
Severity of the disease	distilled water for injection, isotonic sodium chloride solution
Therapeutic agents or diagnostics for complications of primary or underlying diseases	antibiotics, antymycotics, cimetidine, indocianine green, potassium L-aspartate, potassium chloride, technetium phytate

diagnosis which is admitted as the indication of a therapy is registered in the month when a therapy is performed. There may also be cases for which a diagnosis was not entered into the files before starting a therapy for a disease. For these cases, diagnostic date would be liable to be the entry date. The delay in the diagnostic date should be problematic in that the drugs dispensed after the onset can be counted, and this bias may come to show false-positive association. Consequently, medical records must be reviewed to confirm the date of disease onset.

It may be difficult to control such confounding variables as therapeutic agents for the disease studied and combined therapy with the drug causing the disease (Table 5). We initially meant to select controls matched for primary or underlying diseases to manage some of these confounding variables. However, automatic determination of primary or underlying diseases was too complicated to execute. Difference in the severity of primary or underlying diseases, cancer for example, might also be a confounding variable. Although we cannot evaluate the influence of these variables in this study, in which medical records for control patients were not reviewed, consideration of such confounding variables should be taken upon the analysis.

There is the limitation of the statistical power. Such antineoplastic agents commonly induce thrombocytopenia as methotrexate, cisplatin and etoposide were not detected to be associated with the disease (Table 4). This implies the size of potential study subjects may not be sufficiently large to detect even relatively common adverse reactions. The size of the study population must be large to find the relevant drugs that rarely induce the disease or are uncommonly prescribed.

Our methods in the present study have some unsatisfactory aspects to be improved to assure the quality of analysis. The patients who did not have a low platelet count, or had chronic thrombocytopenia should be excluded. The drugs dispensed after the time of disease onset and dispensed fairly before the time of the onset should also be excluded. Also a variety of codes of a drug, for which a different code is given for each product, should be put together. Since 1992, however, the computer system of the University Hospital has been changed into a new one not compatible with the old one to develop a system for more versatile services. Therefore, unfortunately we could not afford to revise the computer program and to analyze the data again when the medical record review was completed.

Apart from the limitations, mentioned above, one should be well aware of securing the privacy of study subjects. One should make arrangement for protecting the confidentiality of the data by omitting information that might lead to the identification of individual subjects or limiting access to the data31). In our case, we kept the printed data sheets in a safe with strict access control.

Perspectives

In spite of some incompleteness, the findings of the present study encourage one to conduct pharmaco-epidemiologic studies using Rezept data. For years, in many major hospitals in Japan, advanced hospital information systems32-35) are under development such as the computerized clinical laboratory system36), the prescription order entry system37, the electronic medical record system38) and the research assistance system39-41). These systems connected with the Rezept system would ensure the reliability and validity of the data on prescription as well as diagnosis. In some hospitals, for members of a health insurance cooperative association42), population based databases could be constructed using the data of hospital information systems. Thus, the use of developed systems mentioned above promises to get over the limitation of applying Rezept files of hospitals to pharmaco-epidemiologic studies. The University Medical Information Network (UMIN)43,44) and memory card systems in local communities might also strengthen the Rezept data system45-50).

In summary, our study indicates that the Rezept files of Tokyo Medical and Dental University Hospital having been useful in the case-control study of drug-induced thrombocytopenia for inpatients. Medical records, however, must be reviewed to exclude patients not aimed at, to confirm the date of disease onset, and to obtain information not included in the computerized data. We speculate that case-control studies with the Rezept files as to other diseases would also be feasible, if computerized diagnosis
data are reliable, and other types of Rezept files also would be applicable to the studies. This type of study is an effective tool to catch an early signal of adverse drug reaction.

ACKNOWLEDGEMENTS

The authors sincerely thank Dr. Masahiro Nishibori, Dr. Fumio Okuyama, Dr. Kenichi Inui, Mr. Masao Kawagu-chi, Mr. Chiharu Nakami, Dr. Akio Suzuki and many medical doctors of Tokyo Medical and Dental University Hospital for their help and cooperation.

REFERENCES

1. Standard for Implementation of the Post-Marketing Surveillance for the Reexamination Applications of New Drugs, etc. Pharmaceutical Affairs Bureau, Ministry of Health and Welfare, Notification No. 646 (1991) [English version]. In ; Safety Division, Pharmaceutical Affairs Bureau, Ministry of Health and Welfare. GPMSP handbook. Tokyo, Mikusu, 1991 : 43–53.
2. Strom BL, ed. Pharmacoepidemiology. New York, Churchill Livingstone, 1989.
3. Sigler C, Cygan R, Carr SV. 1980 to 1990 English language bibliography of pharmacoepidemiologic research using computerized administrative databases. J Clin Res Pharmacoepidemiol, 1992 ; 6 : 313–326.
4. Shapiro S. The role of automated record linkage in the postmarketing surveillance of drug safety : a critique. Clin Pharmacol Ther, 1989 ; 46 : 371–386.
5. Jones JK, Shimizu N, Ohashi Y, eds. International drug benefit/risk assessment data resource handbook Volume 4. Japan. Arlington, The Degge Group Ltd., 1992.
6. Fujita T. Opportunities for data base development in Japan. In ; Shimizu N, Tanaka Y, Jones J, Taylor D, eds. Improving drug safety : the assessment, management and communication of the therapeutic benefits and risks of pharmaceutical products. Proceedings of the RAD-AR symposium ; 1989 Oct 4–6; Tokyo. Tokyo, PharmA International, 1990 : 148–154 (in Japanese).
7. Social Insurance Agency. Outline of social insurance in Japan 1992. Tokyo, Japan International Social Security Association, 1993.
8. Ikegami N. Health technology development in Japan. Int J Technol Assess Health Care, 1988 ; 4 : 239–254.
9. Ikegami N. Japanese health care : low cost through regulated fees. Health Affairs, 1991 ; 10 : 87–109.
10. Ikegami N. The economics of health care in Japan. Science, 1992 ; 258 : 614–618.
11. Katabira K, Sakuma A, Satoh T, et al. Medical data file of a university hospital as a possible source of postmarketing surveillance (report No.1). Jpn J Clin Pharmacol Ther, 1989 ; 20 : 597–605 (in Japanese).
12. Katabira K, Satoh T, Fukushima M, et al. Medical data file of a university hospital as a possible source of postmarketing surveillance (report No.2). Jpn J Clin Pharmacol Ther, 1991 ; 22 : 305–306 (in Japanese).
13. Satoh T, Katabira K, Sakuma A, et al. Medical data file of a university hospital as a possible source of postmarketing surveillance (report No.3) : reliability of diagnostic data on gastrointestinal disorders and thrombocytopenia. Jpn J Clin Pharmacol Ther, 1992 ; 23 : 201–202 (in Japanese).
14. Satoh T, Katabira K, Sakuma A, et al. A study on a possibility of applying hospital's medical data file to drug monitoring : thrombocytopenia following intravenous cimetidine. Jpn J Soc Pharm Sci, 1992 ; 11 : 9–21 (in Japanese).
15. Japan Pharmaceutical Information Center, ed. Iryo-yaku Nihon-iyakuhinshu (Drugs in Japan : ethical drugs). Tokyo, Yakugyôji-hô-sha, 1993.
16. Physicians' desk reference. 47th ed., Montvale, Medical Economics Data, 1993.
17. Physicians' desk reference. 46th ed., Montvale, Medical Economics Data, 1992.
18. Maeda Y. A history of the Rezept processing. Iryo to Konyuntu, 1993 ; 5 : 308–311 (in Japanese).
19. Stergachis AS. Evaluating the quality of linked automated databases for use in pharmacoepidemiology. In ; Hartzema AG, Porta MS, Tilson HH, eds. Pharmacoepidemiology : an introduction. 2nd ed. Cincinnati, Harvey Whitney Books Company, 1991 : 222–234.
20. Strom BL, Carson JL. Use of automated databases for pharmacoepidemiology research. Epidemiol Rev, 1990 ; 12 : 87–107.
21. Michels KB, Faich GA. Linked databases (LDs) and epidemiology. J Clin Res Pharmacoepidemiol, 1991 ; 5 : 11–18.
22. Roos Jr LL, Nicol P, Cageorge SM. Using administrative data for longitudinal research : comparisons with primary data collection. J Chron Dis, 1987 ; 40 : 41–49.
23. Crombie IK. The role of record linkage in post-marketing drug surveillance. Br J Clin Pharmacol, 1986 ; 22 : 77-S–82 S.
24. Skegg DCG. Medical record linkage. In ; Inman WHW ed. Monitoring for drug safety. Lancaster, MTP Press Limited, 1980 : 337–348.
25. Ray WA, Griffin MR. Use of Medicaid data for pharmacoepidemiology. Am J Epidemiol, 1989 ; 129 : 837–849.
26. Strom BL, Carson JL, Morse ML, LeRoy AA. The computerized on-line Medicaid pharmaceutical analysis and surveillance system : a new resource for postmarketing drug surveillance. Clin Pharmacol Ther, 1985 ; 38 : 359–364.
27. U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. Report to congress : the feasibility of linking research-related data bases to Federal and non-Federal medical administrative data bases. 1991.
28. Liu Z, Sakurai T, Orii T, Iga T, Kaihara S. Evaluation of the order entry system in the university hospitals. In ; Proceedings of the 11th Joint Conference on Medical Informatics : 1991 Nov 28–30; Tokyo. Tokyo, Dai-11-ki Syô-jo-gaku Rengou-taiakai Soshiki-iinkai, 1991 : 349–352 (in Japanese).
29. Matsuoka J. "Insurable diagnoses" (Rezept diagnoses) and "true diagnoses" (medical diagnoses). Shinryôrokuchô Kanri, 1990 ; (2) : 18–21 (in Japanese).
30. Yamamoto K, Ogura H, Furutani H, Kitazoe Y, Ohno F. Accuracy of the names of disease compiled at medical affair office mainly for payment of medical insurance. In ; Proceedings of the 7th Joint Conference on Medical Informatics ; 1987 Nov 26–28; Tokyo. Tokyo, Dai-7-ki SYô-jo-gaku Rengou-taiakai Soshiki-iinkai, 1987 : 61–64 (in Japanese).
31. Council for International Organizations of Medical Sciences(CIOMS). International guidelines for ethical review of epidemiological studies. Geneva, CIOMS, 1991.
32. Miyake H. Hospital information systems in Japan : their
trends of past, present and future. Jpn Hosp, 1987; 6: 35-44.

33. Maeda Y. Trends of hospital information system. Keisoku to seigyo, 1989; 28: 605-610 (in Japanese).

34. Ishikawa K. Trends in hospital information systems. Asian Med J, 1990; 33: 235-242.

35. Kumamoto I, Uto Y. A total hospital information system at Kagoshima University Hospital. Jpn Hosp, 1991; 10: 25-30.

36. Ohota H, Hashimoto K, Inaba N, Sakurabayashi I, Kashi A. The present situation of the computer system for the clinical laboratory in Japan. Jpn J Clin Pathol, 1993; 41: 435-440 (in Japanese).

37. Takabayashi K, Satomura Y. Electronic medical record: its philosophy and implementation. In; Proceedings of the 12th Joint Conference on Medical Informatics; 1992 Nov 26-28; Kobe. Tokyo, Dai-12-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1992: 11-14 (in Japanese).

38. Kumamoto I, Tanaka H. Electronic medical record system using optical disk filing in total hospital information system. In; Proceedings of the 12th Joint Conference on Medical Informatics; 1992 Nov 26-28; Kobe. Tokyo, Dai-12-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1992: 23-26 (in Japanese).

39. Yoshihara H, Gotoh S, Tanoshimo J, Takasaki K. Running of research assistance LAN (PALM) with personal computer. In; Proceedings of the 11th Joint Conference on Medical Informatics; 1991 Nov 28-30; Tokyo. Tokyo, Dai-11-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1991: 119-122 (in Japanese).

40. Nagamoto N, Yoshihara H, Gotoh S, Tanoshimo J, Takasaki K. Extension of Miyazaki College research assistance system (PALM-3.) and its evaluation. In; Proceedings of the 13th Joint Conference on Medical Informatics; 1993 Nov 25-27; Tokyo. Tokyo, Dai-13-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1993: 361-362 (in Japanese).

41. Suzuki F, Tanaka H, Tani S, Suzuki N, Yoshimi T, Kanno T. Support system for clinical study by hospital information system & UNIX. In; Proceedings of the 11th Joint Conference on Medical Informatics; 1991 Nov 28-30; Tokyo. Tokyo, Dai-11-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1991: 115-118 (in Japanese).

42. Oyake T, Hashimoto H. Use of information on prescription and patients for pharmacoepidemiology. Gekkan Yakuji, 1993; 35: 1783-1790 (in Japanese).

43. Sakurai T, Orii T, Nagase T, Ohe K, Kaishara S. University Medical Information Network (UMIN): a survey of user environment in each hospital. In; Proceedings of the 13th Joint Conference on Medical Informatics; 1993 Nov 25-27; Tokyo. Tokyo, Dai-13-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1993: 335-338 (in Japanese).

44. Nishinuma H, Omura N, Iwamoto K, et al. The method to send/receive the drug information system on MS-DOS by University Medical Information Network (UMIN). Jpn J Hosp Pharm, 1993; 19: 248-254 (in Japanese).

45. Nishibori M, Shiina S. An automated data conversion and entry system for the medical optical card. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1990; 12(3): 1262-1263.

46. Hara S, Usami T, Sawai K. Health information system based on optical cards. In; Proceedings of the 12th Joint Conference on Medical Informatics; 1992 Nov 26-28; Kobe. Tokyo, Dai-12-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1992: 59-62 (in Japanese).

47. Matsuura S. The results of contribution by card media to community health care. In; Proceedings of the 3rd Meeting of Japanese Society of Medical Optical Card; 1992 Nov 20; Tokyo. Tokyo, Japanese Society of Medical Optical Card, 1992: 21-22 (in Japanese).

48. Fujimori H. Evaluation on a new health care system using “Iki-iki Cards” in Himeji city. In; Proceedings of the 13th Joint Conference on Medical Informatics; 1993 Nov 25-27; Tokyo. Tokyo, Dai-13-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1993: 75 (in Japanese).

49. Shiga T, Matsunawa Y, Wada K. Application of IC card in health care. In; Proceedings of the 11th Joint Conference on Medical Informatics; 1991 Nov 28-30; Tokyo. Tokyo, Dai-11-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1991: 785-786 (in Japanese).

50. Sakashita Y, Ogushi Y, Ota Y et al. Health control system in Isehara. In; Proceedings of the 12th Joint Conference on Medical Informatics; 1992 Nov 26-28; Kobe. Tokyo, Dai-12-kai Iryo-jooho-gaku Rengou-taikai Soshiki-iinkai, 1992: 55-56 (in Japanese).