2-DOF robot modelling by SimMechanics and PD-FL integrated controller for position control and trajectory tracking

Tian Soon Lee1, Esmail Ali Alandoli1, V Vijayakumar2

1 Faculty of Engineering and Technology, Multimedia University, 75450 Ayer Keroh, Melaka, Malaysia
2 Faculty of Computing and Informatics, Multimedia University, 63100 Cyberjaya, Selangor, Malaysia

Abstract

Background Due to the high demand of robots to perform several industrial tasks, such as welding, machining, pick and place, position control in robotics has attracted high attention recently. Controllers’ improvement is also continuous specifically in terms of design simplicity and performance accuracy. This research plans to obtain the SimMechanics model of a two-degree of freedom (DOF) robot and to propose an integrated controller of a proportional-derivative (PD) controller and a fuzzy logic (FL) controller.

Methodology The SimMechanics model of the 2-DOF robot is obtained using MATLAB SimMechanics toolbox from a CAD assembly design of the 2-DOF robot. Then, the proposed PD-FL integrated controller is designed and simulated in MATLAB Simulink. The PD controller is widely used for its simplicity, but it doesn’t have a satisfactory performance in difficult tasks. Furthermore, the FL controller is also easy for design and implementation even by non-experts in control theory, but it has the disadvantage of long computational time for multi-input systems due to the increased fuzzy rules.

Results The FL controller is integrated with the PD controller for enhanced performance of the 2-DOF robot. The PD-FL integrated controller is developed and tested to control the 2-DOF robot for point-to-point position control and also tip trajectory tracking (TTT) such as triangular TTT and rhombic TTT.

Conclusion The PD-FL integrated controller demonstrates enhanced performance compared to the conventional PD controller in both point-to-point position control and TTT. Furthermore, the PD-FL integrated controller has the advantage of less fuzzy rules which helps to overcome the computational time issue of the FL controller.

Keywords

2-DOF robot, SimMechanics model, PD-FL integrated controller, position control, tip trajectory tracking.
Corresponding author: Tian Soon Lee (timtslee08@yahoo.com)

Author roles: Lee TS: Conceptualization, Formal Analysis, Funding Acquisition, Investigation, Methodology, Software, Supervision, Validation, Writing – Review & Editing; Alandoli EA: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Validation, Writing – Original Draft Preparation; Vijayakumar V: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Supervision, Validation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This research was supported by Multimedia University through MMU GRA Scheme (MMUI/180265).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Lee TS et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Lee TS, Alandoli EA and Vijayakumar V. 2-DOF robot modelling by SimMechanics and PD-FL integrated controller for position control and trajectory tracking [version 2; peer review: 1 approved] F1000Research 2021, 10:1045
https://doi.org/10.12688/f1000research.72912.2
First published: 15 Oct 2021, 10:1045 https://doi.org/10.12688/f1000research.72912.1
Introduction

There is a wide use of planar robots in industries to achieve several required tasks, such as welding, handling, machining, polishing, pick and place, etc. Meanwhile, there is a high demand of fast and precise position control for such robots in industries. A dynamic model is required for several types of controllers in order to obtain the optimal parameters of a controller for satisfactory performance. There are many mathematical modelling methods, such as the kinematics method, Newtonian method, Lagrange’s equation, and Hamilton’s principle. However, mathematical modelling is difficult and requires long calculations especially for nonlinear systems; critical and deep discussion of mathematical modelling methods is given in reference. A numerical modelling method was used to obtain SimMechanics models of robots using Simulink and Simscape toolboxes from CAD assemblies. SimMechanics models are easily obtained and can be simulated and controlled, so they are preferable.

A proportional–derivative (PD) controller was tuned using root locus and manually tuned for position control of such robots. The manual tuning method helps to dispense about the mathematical model of a system which one of its advantages. However, the PD controller is not perfect for nonlinear and complex systems. A 2-DOF robot was controlled by a proportional–integral–derivative controller (PID) due to its simple structure, but it is not easy to obtain optimal PID parameters to give a satisfactory performance. The linear quadratic regulator (LQR) is an optimal classical control technique and was utilized to control a planar robot with the necessity of a system mathematical model in order to calculate the controller gain. The fuzzy logic controller (FLC) is a common control technique in robotics and has continuous increasing interest due to its robustness performance for nonlinear systems and does not require a mathematical model to tune its membership functions and rules. FLC has the disadvantage of computational time due to the fuzzy rules explosion for controlling multi-input systems.

Neural network (NN) is an intelligent control technique and can be developed with simple knowledge of the system behavior without a need for a dynamic model which assists to avert the complexity of the mathematical modelling. NN was used to control a 2-DOF robot in terms of links’ position. However, NN require many hidden layers in its network to provide an accurate position control which needs long time for training. Sliding mode controller (SMC) is a robust controller and was employed for position control of a 2-DOF robot. However, sliding mode controller has the chattering issue which is a serious disadvantage. Integrated controllers which consist of more than one control technique were also used for position control of 2-DOF robots such as FLC-SMC, FLC-PID, and FLC-NN. There are many other control techniques were critically discussed in the literature.

Based on the discussed previous studies, the mathematical modelling of robots is a serious problem faces researchers and control engineers either the difficulty of mathematical operations or the challenge of obtaining accurate models. Therefore, the first objective is to obtain the SimMechanics model of the 2-DOF robot from the CAD assembly design via SimMechanics environment in MATLAB; an open access alternative is GNU Octave. The second objective is to design the PD-FL integrated controller to control the 2-DOF robot in terms of point-to-point position control of the links, triangular TTT and rhombic TTT. The remaining sections of this paper are as follows: section 2 describes the system and the SimMechanics model. Section 3 explains the proposed controller design. Section 4 presents the results and discussion. Section 5 is the conclusion.

System and the SimMechanics model

A schematic diagram of the 2-DOF robot is shown in Figure 1 which consists of two links with 50-cm length of each link and a 4.5 cm² cross-sectional area. The links’ material is aluminum with the density of 2.7 g/cm³. The movement of this robot is only on the horizontal plane. The tip position of the robot is computed based on Equation 1.

\[
\begin{bmatrix}
P_x \\
P_y
\end{bmatrix} =
\begin{bmatrix}
\cos \theta_1 & \cos(\theta_1 + \theta_2) \\
\sin \theta_1 & \sin(\theta_1 + \theta_2)
\end{bmatrix}
\begin{bmatrix}
L_1 \\
L_2
\end{bmatrix}
\]

Equation 1

The CAD assembly of the 2-DOF is designed as shown in Figure 2. The CAD assembly is used to generate the SimMechanics model of the 2-DOF robot. The SimMechanics model is obtained starting by building the CAD assembly design of the robot and export the CAD assembly and save it in the format of ‘XML’ file. Then, the assembly ‘XML’ file is imported to the MATLAB SimMechanics toolbox using the ‘smimport’ function. The steps of generation the SimMechanics model is

![Figure 1. Schematic diagram of the 2-DOF robot.](image-url)
explained in detail in Figure 3. The SimMechanics model of the 2-DOF robot is presented in Figure 4. The SimMechanics model was generated and used in previous research such as in reference 9 and reference 10.

Figure 2. CAD assembly of the 2-DOF robot.

Figure 3. Steps of SimMechanics model generation.

Figure 4. SimMechanics model of the 2-DOF robot.
Control design
The 2-DOF robot is controlled by the PD-FL integrated controller. The PD controller is selected due to its simplicity of design and it is widely used. The PD parameters can be easily tuned based on trial and error\cite{12,13}. **Equation 2** shown the PD control transfer function. Two PD controllers are designed as the PD controller is single input single output. The parameters of the two PD controllers are manually tuned and the better performance is achieved by the parameters tabulated in **Table 1**.

\[G_C = K_P + K_D s \] \hspace{1cm} (2)

FL controller is an intelligence control technique that depends on expressing the system behaviour. FL uses errors as its input variables and assigns the input into partial degrees of membership functions (MFs)\cite{33}. The MF amplitude varies between 0 and 1. The fuzzy rules are expressed in the form of IF-THEN to describe the relation between inputs and outputs depended on the MFs. The MFs are designed and tuned in terms of range, numbers, and shape as shown in **Figure 5** for the two inputs and outputs, they are described by “positive big” (PB), “positive medium” (PM), “positive small” (PS), “zero” (ZE), “negative big” (NB), “negative medium” (NM), and “negative small” (NS). Then, the fuzzy rules are tuned to describe the system errors depended on the MFs and to decide what fuzzy output should be, **Table 2** describes the fuzzy rule-base. **Table 2** shows the fuzzy rules reduction from 49 rules to 25 rules. The fuzzy rules reduction improves the computational time and simplifies the FL controller design.

The 2-DOF robot model and proposed PD-FL controller is shown in **Figure 6**. The outputs of the two PD controllers are the fuzzy inputs, and the fuzzy outputs are the robot inputs. The first PD controller controls link 1 and the second PD controller control link 2. The two PD controllers initially control the robot and minimize the errors, which do not reach NM and NB regions. Thus, there is no effectiveness of the fuzzy rules for NM and NB of errors which helps to minimize the fuzzy rules number from 49 to 25. This fuzzy rules’ reduction solves the issue of the computational time and also simplifies the FL controller design. The proposed PD-FL integrated controller

Results and discussion
This section presents and discusses the results of point-to-point position control and the TTT.

Point-to-point position control
The performance of the PD-FL integrated controller and the conventional PD controller is shown in **Figure 7** for the first link of the 2-DOF robot by the blue line and the red line, respectively. The PD-FL integrated controller demonstrated

| Table 1. Parameters of PD controllers. |
|-----------------|--------|
| Controller | K_P | K_D |
| PD 1 | 5 | 4.5 |
| PD 2 | 16.2 | 1.5 |

Figure 5. Membership function of FL controller for the 2-DOF robot.
Table 2: Fuzzy rules of FL controller for the 2-DOF robot based on error 1 (e_1), error 2 (e_2), output 1 (u_1), and output 2 (u_2).

e_1	PB	PM	PS	ZE	NS	NM	NB	
e_2	u_1	u_2	u_1	u_2	u_1	u_2	u_1	u_2
PB	PB	PM	PB	PM	PB	PM	NS	PM
PM	PB	PS	PB	PS	ZE	PS	PS	PS
PS	PB	PS	PB	PS	PS	PS	NS	PS
ZE	PB	ZE	PB	ZE	ZE	ZE	NS	ZE
NS	PB	NS	PB	NS	PB	NS	NS	NS
NM	Non-effective							
NB	Non-effective							

Figure 6. SimMechanics model with PD-FL integrated controller.

Figure 7. Point-to-point position control of link 1.
great improvement in terms of “rise time” (T_r), “settling time” (T_s), “overshoot” (OS), and “steady state error” (e_{ss}) compared with the PD controller alone as analyzed in Table 3.

The PD controller has better performance for link 2 than link 1 as shown in Figure 8, this is because link 2 is a load to link 1 which makes the control of link 2 easier than control link 1 for the PD controller. However, the PD-FL integrated controller has better performance than the PD controller for link 2 as it has shorter rise time (T_r) and settling time (T_s), also it has less overshoot as described in Table 4. Based on the results of point-to-point position control of the 2-DOF robot, it is obvious that the PD-FL integrated controller is better than the conventional PD controller as it has shorter rise time (T_r), shorter settling time (T_s), and less overshoot for link 1 and link 2. Figure 9 (a) shows the velocity and Figure 9 (b) shows the acceleration of the links during the point-to-point position control by the PD-FL integrated controller.

Tip trajectory tracking

The PD-FL integrated controller is tested for TTT of the 2-DOF robot for triangular TTT and rhombic TTT as follows.

Triangular tip trajectory tracking

The triangular TTT of the 2-DOF is shown in Figure 10 for the PD-FL controller and the PD controller. The triangular TTT starts and ends based on the following trajectory points (X,Y): (1.0,0.0), (0.9,-0.1), (0.9,0.1), (1.0,0.0). It can be seen that the TTT of the PD-FL controller trajectory is nearer to the reference than the TTT of the PD controller. Based on the X and Y errors of both controllers in Figure 11, the improvement of the PD-FL integrated controller for the triangular TTT is

Table 3. Performance analysis for position control of link 1.

Controller	T_r (ms)	T_s (s)	OS %	e_{ss} (rad)
PD-FL	129.471	0.196	0.505	0.00
PD	153.907	1.732	9.341	0.00

Table 4. Performance analysis for position control of link 2.

Controller	T_r (ms)	T_s (s)	OS %	e_{ss} (rad)
PD-FL	99.444	0.3011	2.577	0.00
PD	104.188	0.495	10.556	0.00
also noticeable. The maximum Y error of the PD-FL integrated controller is less than 6 millimeters, but it is more than 9 millimeters for the PD controller. The X error of the PD-FL integrated controller is also smaller than the X error of the PD controller as presented in Figure 11. The velocity and the acceleration of the links by the PD-FL integrated controller during the triangular TTT are shown in Figure 12 (a) and Figure 12 (b), respectively.

Rhombic tip trajectory tracking
The rhombic TTT starts and ends based on the following trajectory points (X,Y): (1.0,0.0), (0.9,-0.1), (0.8,0.0), (0.9,0.1),
Figure 11. X and Y error of the triangular TTT.

Figure 12. a) Velocity of the triangular tip trajectory, b) Acceleration of the triangular tip trajectory.

(1,0,0,0). Figure 13 shows the rhombic TTT of the 2-DOF robot. It is clearly shown that the PD-FL integrated controller is better than the PD controller in tracking the tip of the 2-DOF robot as it is closer to the tip reference trajectory. Furthermore, the maximum Y error of the PD controller tracking is about 8 millimeters while the maximum Y error of the PD-FL controller is less than 4 millimeters as shown in Figure 14. The X error of the PD controller is also larger than the X error of the PD-FL integrated controller as presented in Figure 14. Thus, the PD-FL integrated controller performance for the rhombic TTT of the 2-DOF robot is better than the PD controller. Figure 15 (a) and Figure 15 (b) demonstrate the velocity...
Figure 13. Rhombic TTT performance of the 2-DOF robot.

Figure 14. X and Y error of the rhombic TTT.
and the acceleration of the links by the PD-FL integrated controller during the rhombic TTT, respectively.

The discussed results of the point-to-point position control and the TTT demonstrate the improvement of the proposed controller in terms of fast response and accuracy. Normally, the faster response is the more overshoot and larger tip position error. However, the proposed PD-FL integrated controller has a faster response and reduces the overshoot and the tip position error of the 2-DOF robot. Furthermore, the proposed controller has the advantage of design simplicity compared with other integrated controllers.

Conclusion

The aim of this research was to obtain the SimMechanics model of the 2-DOF robot using MATLAB SimMechanics Toolbox from the CAD assembly design. Then, the PD-FL integrated controller was designed to control the 2-DOF robot in terms of point-to-point position control and TTT. This proposed integration technique of the PD controller and the FL controller improves the position control performance and reduces the fuzzy rules which results in avoiding the computational time drawback. The PD-FL integrated controller was used to control the 2-DOF robot for point-to-point position control which demonstrates enhanced performance compared with the conventional PD controller. Moreover, the 2-DOF robot was controlled for triangular TTT and rhombic TTT by the PD-FL integrated controller which has better performance than the PD controller.

Data availability

Figshare: Data are available under the term of the ‘2-DOF robot data of position control and tip trajectory tracking’ and has the following DOI: https://doi.org/10.6084/m9.figshare.1670645.

Figshare: The model of the 2-DOF robot and control is available under the term of the ‘2-DOF robot model’ and has the following DOI: https://doi.org/10.6084/m9.figshare.1671432.

Author contributions

All authors equally contributed to this research.

Figure 15. (a) Velocity of the rhombic tip trajectory, (b) Acceleration of the rhombic tip trajectory.

References

1. Chi J, Yu H, Yu J. Hybrid Tracking Control of 2-DOF SCARA Robot via Port-Controlled Hamiltonian and Backstepping. *IEEE Access*. 2018; 6: 17354-17360. Publisher Full Text

2. Zhang B, Wu J, Wang L, et al.: Accurate dynamic modeling and control parameters design of an industrial hybrid spray-painting robot. *Robot Comput Integr Manuf.* 2020; 63: 101923. Publisher Full Text

3. Lee SH, Kim J, Park FC, et al.: Newton-Type Algorithms for Dynamics-Based Robot Movement Optimization. *IEEE Trans Robot.* 2005; 21(4): 657-667. Publisher Full Text

4. Alandoli EA, Lee TS, My CA, et al.: Robust P-H∞ Integrated Controller for Flexible Link Manipulator System in the Presence of Disturbance. *J Appl Comput Mech.* 2021; 7(2): 646-654. Publisher Full Text
19. Farah N, Talib MHN, Ibrahim Z, et al.: Self-tuning fuzzy logic control based on mras for induction motor drives. In: Proceedings of the 5th IET International Conference on Clean Energy and Technology (CEAT2018); 2018; 61–67. Publisher Full Text
20. Farah N, Talib MHN, Ibrahim Z, et al.: Self-tuning fuzzy logic control based on mras for induction motor drives. In: Proceedings of the 5th IET International Conference on Clean Energy and Technology (CEAT2018); 2018; 61–67. Publisher Full Text
21. Kiang CT, Spowage A, Youong CK: Review of Control and Sensor System of Flexible Manipulator. J Intel Robot Syst Theory Appl. 2015; 77(1): 187–213. Publisher Full Text
22. He W, Chen Y, Yin Z: Adaptive Neural Network Control of an Uncertain Robot with Full-State Constraints. IEEE Trans Cybern. 2016; 46(3): 620–629. PubMed Abstract | Publisher Full Text
23. Tavoosi J, Jokandan AS, Daneshwar MA: A new method for position control of a 2-DOF robot arm using neuro-fuzzy controller. Indian J Sci Technol. 2012; 5(3): 1–5. Publisher Full Text
24. Islam S, Liu XP: Robust sliding mode control for robot manipulators. IEEE Trans Ind Electron. 2011; 58(6): 2444–2453. Publisher Full Text
25. Kuo TC, Huang YJ, Hong BW: Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control. Int J Comput Electr Autom Control Inf Eng. 2011; 5(5): 453–457. Publisher Full Text
26. Piltan F, Sulaiman NB: Review of Sliding Mode Control of Robotic Manipulator. World Appl Sci J. 2012; 18(12): 1855–1869. Reference Source
27. Capisani LM, Ferrara A: Trajectory Planning and Second-Order Sliding Mode Motion/Interaction Control for Robot Manipulators in Unknown Environments. IEEE Trans Ind Electron. 2012; 59(8): 3189–3198. Publisher Full Text
28. Li THS, Huang YC: MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Inf Sci. 2010; 180(23): 4641–4660. Publisher Full Text
29. Sohtampa MR, Khooban MH: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 2013; 74(1): 467–478. Publisher Full Text
30. Sharma R, Rana KPS, Kumar V: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst Appl. 2014; 41(9): 4274–4289. Publisher Full Text
31. Gierlak P, Muszyńska M, Żyński W: Neuro-fuzzy control of a robotic manipulator. Int J Appl Mech Eng. 2014; 19(3): 575–584. Publisher Full Text
32. Alandoli EA, Lee TS: A Critical Review of Control Techniques for Flexible and Rigid Link Manipulators. Roboticsa. 2020; 38(12): 2239–2265. Publisher Full Text
33. Farah N, Talib MHN, Shah NSM, et al.: A Novel Self-Tuning Fuzzy Logic Controller Based Induction Motor Drive System: An Experimental Approach. IEEE Access. 2019; 7: 68172–68184. Publisher Full Text
Open Peer Review

Current Peer Review Status: ✓

Version 2

Reviewer Report 24 November 2021

https://doi.org/10.5256/f1000research.79499.r100476

© 2021 Duong X. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✓ Xuan Bien Duong
Advanced Technology Center, Le Quy Don Technical University, Hanoi, Vietnam

In my opinion, all of my comments are satisfactorily explained.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: CAD/CAM/CNC Technology, Robotics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 02 November 2021

https://doi.org/10.5256/f1000research.76525.r97077

© 2021 Duong X. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

? Xuan Bien Duong
Advanced Technology Center, Le Quy Don Technical University, Hanoi, Vietnam

Reviewer Comment for Authors
1. Comment No. 1
 - This paper implements modeling a planar two links robot with rotational joints based on 3D CAD model and SIMMECHANICS Toolbox in MATLAB software. This model retains the basic
connections of the joints in the design environment. The PD-FL hybrid control system is designed to control the position and trajectory of the end-effector point. The control quality is compared with the traditional PD control system. The results show that the quality of the hybrid control system is much better than that of the PD system.

2. Comment No. 2
○ The article has not shown new points in terms of robot model because the 2DOF robot model is quite simple, common and not a model that is widely applied in industrial production.
○ Establishing and converting 3D models from CAD design environment to MATLAB environment is not prominent because this problem has been done for a long time and with more complex robot models, more degrees of freedom.

3. Comment No. 3
○ The concern point of the article is the position control and trajectory control problem of the end-effector point in the workspace, but it seems to only stop at the control for the kinematics model, not considering the factors dynamics, if any. The author should to add more information to the article.

4. Comment No. 4
○ The position control problem is presented quite clearly. However, the control trajectory problem needs to include more specific information, such as how the author describes the trajectory of the end-effector point in the workspace - the equation describing the trajectory should be clearly shown.

5. Comment No. 5
○ The paper should to be further developed with consideration of the trajectory planning of the end-effector point in the workspace with more specific constraints on velocity and acceleration as well as the dynamic factors of the robot.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Partly

Are sufficient details of methods and analysis provided to allow replication by others?
Partly

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Reviewer Expertise: CAD/CAM/CNC Technology, Robotics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Author Response 15 Nov 2021

tian lee, Multimedia University, 75450 Ayer Keroh, Malaysia

The following points are the comments from Dr. Xuan Bien Duong and the authors' responses.

Reviewer Comment No. 1
This paper implements modeling a planar two links robot with rotational joints based on 3D CAD model and SIMMECHANICS Toolbox in MATLAB software. This model retains the basic connections of the joints in the design environment. The PD-FL hybrid control system is designed to control the position and trajectory of the end-effector point. The control quality is compared with the traditional PD control system. The results show that the quality of the hybrid control system is much better than that of the PD system.

Reviewer Comment No. 2
The article has not shown new points in terms of robot model because the 2DOF robot model is quite simple, common and not a model that is widely applied in industrial production. Establishing and converting 3D models from CAD design environment to MATLAB environment is not prominent because this problem has been done for a long time and with more complex robot models, more degrees of freedom.

Authors’ response: The SimMechanics model can be obtained easier than the derivation of a mathematical model and might be more accurate to present the system. Thus, the SimMechanics model of the 2-DOF robot is obtained in this research in order to test the proposed PD-FL integrated controller in terms of position control and tip trajectory tracking. The main concern of this research is the PD-FL integrated controller design and it demonstrates significant enhancement in terms of the point-to-point position control of the links and the tip trajectory tracking.

Reviewer Comment No. 3
The concern point of the article is the position control and trajectory control problem of the end-effect point in the workspace, but it seems to only stop at the control for the kinematics model, not considering the factors dynamics, if any. The author should to add more information to the article.

Authors’ response: The SimMechanics model includes all the parameters of the 2-DOF robot which were identified in the CAD assembly design such as the material density, the weights, the cross-sectional area of the links, and the links’ lengths. In addition, the motion of the SimMechanics model is based on the torques actuation to the joints. Therefore, the position control of the 2-DOF robot is based on the dynamic motion.
Such information is recently added to the article for more clarification of the model.

Reviewer Comment No. 4
The position control problem is presented quite clearly. However, the control trajectory problem needs to include more specific information, such as how the author describes the trajectory of the end-effector point in the workspace - the equation describing the trajectory should to be clearly shown.

Authors’ response: The tip trajectory of the 2-DOF robot is achieved by specific reference paths for the two joints simultaneously, the data of the joints’ references are available in the link provided in the “Data availability” section. The accurate position control of the joints related to the desired references will lead to an accurate tip trajectory of any demanded tip trajectory. From the position control output of the joints can obtain the tip position based on Equation 1 and compute the error.

Reviewer Comment No. 5
The paper should to be further developed with consideration of the trajectory planning of the end-effector point in the workspace with more specific constraints on velocity and acceleration as well as the dynamic factors of the robot.

Authors’ response: The velocity and acceleration for the position control response and the tip trajectory tracking are added to the article.

Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

• Your article is published within days, with no editorial bias
• You can publish traditional articles, null/negative results, case reports, data notes and more
• The peer review process is transparent and collaborative
• Your article is indexed in PubMed after passing peer review
• Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com