Development of a 16S rRNA PCR-RFLP Assay for Bartonella Identification: Applicability in the Identification of Species Involved in Human Infections

Luis J. del Valle1, Michael L. Jaramillo2, Miguel Talledo2, Maria J. Pons3, Lidia Flores2, Ruth L. Quispe2, Pablo Ramírez2, Ruth García-de-la-Guarda5, Débora Alvarado2, Abraham Espinoza-Culupú2, Juana del Valle4,5, Martha Vargas6, Joaquim Ruíz3,*

1Centre de Biotecnologia Molecular, Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Barcelona, Spain
2Laboratorio de Microbiología Molecular y Biotecnología, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
3Barcelona Centre for International Health Research (CRESIB), Hospital Clinic, Universitat de Barcelona, Spain
4Universidad Peruana de Ciencias Aplicadas, Lima, Perú
5Instituto de Investigación Nutricional, Lima, Perú
6Hospital Clinic de Barcelona, Barcelona, Spain
*Corresponding Author: joruiz@clinic.ub.es

Abstract We designed a 16S rRNA gene PCR-RFLP scheme to identify all currently described Bartonella spp. The 16S rRNA genes of all Bartonella spp. were in-silico analyzed in order to design a RFLP technique able to discriminate among different species. The restriction enzymes selected were MaeIII, MseI, Sau96I, BsaAI, DrdI, FokI, BssHII, BsrUI, AluI, TspDTI and HphI which, according to a decision-making tree, facilitated the differentiation of all the currently described species of Bartonella. The technique was experimentally tested in different species of Bartonella, including human pathogenic B. bacilliformis and B. henselae with a 100% of concordance with the in-silico predicted patterns. This novel RFLP assay could be used to identify both human and non-human pathogenic Bartonella in diagnostic, phylogenetic and epidemiologic studies.

Keywords Bartonella, PCR-RFLP, 16s rRNA Gene, Identification

1. Introduction

Bartonella spp. are vector-transmitted Gram-negative bacteria which are members of the α-proteobacteria group phylogenetically close to the Rickettsiae, as well as Brucella spp., Agrobacterium spp., and Afipia spp. [1-3].

The number of species of the Bartonella genus described has been raised greatly in the last years. To date more than 29 species belonging to the genera Bartonella have been described most of them as a cause of infections in humans and animals [1,4-10]. Thus, Bartonella bacilliformis is the causative agent of Carrion’s disease, a two-phase human infectious disease (acute or hematic phase, known as Oroya Fever that may be fatal in the absence of treatment, and an eruptive or tissue phase, known as Peruvian Wart) which is endemic in Andean areas of Peru, Ecuador and Colombia [9]. Another relevant illness due to Bartonella species are Cat-Scratch disease by Bartonella henselae or Trench Fever due to Bartonella quintana. Additionally a series of other species such as Bartonella grahamii, Bartonella bovis or Bartonella rochalimae among others have been isolated as a causative of different infections [4, 9, 11, 12].

Currently, standard identification techniques for Bartonella spp. include serology methodologies, culture techniques to recover viable organisms or PCR detection of specific sequences from DNA in blood and tissue samples [4]. However, these techniques are cumbersome, or do not provide univocal identification or are only able to detect some specific Bartonella spp. among other limitations [4]. Additionally, the members of the Bartonella genus have a fairly neutral biochemical profile, except for the production of peptidases, which may vary among species [11]. In absence of molecular studies, this fact may results in incorrect identification problems. The more suitable molecular tools, as DNA sequencing or MALDI-TOFF [13, 14] remains unavailable in a long series of areas from low and middle income countries, especially in those placed far of main cities. In these areas a gap in the knowledge of etiological causes of febrile syndromes is present. This lack of technical resources usually results in clinical symptoms based diagnosis [14], which may drive to misdiagnosis [14]. Thus, the development of techniques which will be able to be
implemented in regional health centers will be a valuable tool in order to determine the relevance of the role of *Bartonella* spp. as a cause of illness in rural low and middle income areas.

Amplification of conserved genes (as 16S rRNA or rpoB genes) followed by PCR-products digestion and the analysis of the resulting Restriction Fragment Length Polymorphisms (RFLP) has been successfully used to identify different bacterial genus at a species level [16-18]. In this line, the construction of a decision-making tree [19] with a series of consecutive restrictions, leading to a specific RFLP pattern in one of the consecutive steps has the advantage of early discrimination of species of special interest.

Although different authors designed PCR-RFLP assays for a rapid identification of different *Bartonella* spp. in the 90's [7, 20], these studies did not evolve in parallel with the description of new *Bartonella* species and are currently unable to discriminate between a series of newly described species. However, the PCR-RFLP is a flexible technique that may be modified incorporating the current and future newly described species, by selecting new restriction enzymes, or by adding a novel species in its own unique branch in one of the described restrictions of the decision-making tree.

In the present work, we designed an alternative 16S rRNA gene PCR-RFLP scheme to identify 29 currently described *Bartonella* spp. easily applicable to *Bartonella* spp. with clinical interest such as *B. bacilliformis*, *B. quintana* or *B. henselae*.

2. Materials and Methods

2.1. Bioinformatic Analysis of the Restriction Sites for 16S rRNA in *Bartonella* spp.

Representative DNA sequences of *Bartonella* spp. 16S rRNA genes were selected from GenBank (Table 1). Regions of 1452 bp, flanked by the oligonucleotides 8F (5’-AGAGTTGATCCTGGCTCAG-3’) and 1510R (5’-GGTACCTTGTTACGACTT-3’) [18] were aligned and visualized using ClustalW (http://www.clustal.org) and Bioedit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) software respectively. In some sequences, the end regions were lack, in these cases these regions were considered as conserved.

In-silico analysis for the restriction sites in the 16S rRNA gene was carried out using Restenzym software (http://www.enzim.hu/~tusi/restric/index.html) in order to select the appropriate restriction enzymes. The fragments of the aforementioned *in-silico* RFLP were separated in a virtual electrophoresis using the pDraw32 software (http://www.acaclone.com/). The fragments smaller than 50 bp were not considered in the analysis.

Additionally, closely related microorganisms such as *Brucella melitensis*, *Rickettsia rickettsii*, *Ehrlichia muris* and *Chlamydia trachomatis* were included in the *in-silico* analysis.

2.2. Bacteria Culture

B. bacilliformis CIP 57.17, *B. henselae* CIP 103737, *B. bovis* CIP 106692, *B. claridgeiae* CIP104772, acquired from the Collection of the Institute Pasteur (Paris, France) were cultured in Columbia Agar plates adding 10% of sheep blood and incubated at 30 ºC with 5% of CO2 for 15-45 days. Additionally 7 *Bartonella* spp. clinical isolates, recovered from blood samples of patients with febrile syndrome, were also included in the study.

2.3. Purification of genomic DNA

The cells were collected from the plates and washed with buffer phosphate for three times by centrifugation at 13000g during 2 min. The DNA was obtained with the Wizard® Genomic Purification Kit (Promega, Madison, Wi) following the manufacturer's instructions.

An aliquot of DNA was analyzed by establishing the A260:A280 and A260:A230 ratios and electrophoresis at 1% agarose gel to evidence the quality of purified DNA. The genomic DNA was stored at -20 ºC.

2.4. Amplification of the 16S rRNA and Digestion with Restriction Enzymes

A fragment of 1452 bp of the 16S rRNA gene, equivalent to that analyzed *in-silico*, was amplified using previously described primers and conditions [18]. The amplified products were digested with the *in-silico* selected restriction enzymes following the manufacturer's instructions and RFLP was visualized by electrophoresis in a 2.5 % agarose gel.

3. Results and Discussion

3.1. Design of *in-silico* decision-making tree

The 16S rRNA gene possesses a highly conserved DNA sequence and thus has been previously used to identify microorganisms at species level [15, 18, 19]. In the case of *Bartonella* genus an alignment matrix of the sequences showed 97-99 % of homology between species (Table 2). Thus, in this study an easy and rapid technique is proposed to identify *Bartonella* species based on the development of serial restrictions of the 16S rRNA gene to obtain a RFLP pattern associated with a unique species of the genus. Additionally, this technique has the potential to be used in low or middle resources countries, in which other techniques may be non-disposable or too expensive to be applied.

The present *in-silico* analyses focused on *Bartonella* spp., result in the selection of *MaeI*, *MseI*, *Sau96I*, *BsaAI*, *DrdI*, *FokI*, *BssHII*, *BstUI*, *AluI*, *TspDTI* and *HphI* restriction enzymes. Using these enzymes in the sequential manner proposed the 29 *Bartonella* spp. species currently present in GenBank may be unambiguously identified (Fig 1-6).
Figure 1. Identification and establishment of clusters of *Bartonella* species. The patterns were obtained using restriction with MaeIII. *Isolate G7464 (ATCC 35685) of* B.vinsonii subsp. berkhoffii. ** Strain ATCC 23457 (CP001489) of Brucella melitensis. In this figure, as in Figures 2 to 7 the proportions have been altered in order to best disposition of the samples sizes.

Figure 2. Identification of species included in cluster I. Each enzymatic digestion is always carried out on the 16S rRNA amplicon.

Figure 3. Identification of species included in cluster II. Each enzymatic digestion is always carried out on the 16S rRNA amplicon.

Figure 4. Identification of species included in cluster III. Each enzymatic digestion is always carried out on the 16S rRNA amplicon.

Figure 5. Identification of species included in cluster IV. Each enzymatic digestion is always carried out on the 16S rRNA amplicon.
A total of 29 species of Bartonella were analyzed in this study, for the case of *B. vinsonii* were analyzed three subspecies. Negative controls were used in the in-silico analysis of RFLP patterns: *Chlamydia trachomatis* strain HAR-13 (D89067), *Brucella melitensis* ATCC 23457 (CP001489), *Ehrlichia muris* AS145 (U15527), *Rickettsia ricettsii* strain R (L36217). (*) Isolate G7464 of *B. vinsonii* subsp. *berkhoffii* used in other publications (11) close related to type strain 93 CO1T of *B. vinsonii* subsp. *berkhoffii.*

Species	Strain	Collection No.	GenBank No.
B. alsatica	IBS382T	CIP 1054773	AJ002139
B. australis	AUST/NH1F	CIP 108978F	DQ538394
B. bacilliformis	KC583F	ATCC 35685	NC_008783
B. birtlesii	IBS 325F	CIP 106294F	AF204274
B. bovis	91-4T	CIP 106692F	AF293391
B. capreoli	IBS 193F	CIP 106691F	AF293389
B. chomelii	A828F	CIP 107869F	AY254309
B. claridgeiae	94-F40		U64691
B. cooperisplainensis	AUST/NH20	CIP 109064	EU111759
B. d oscillae	R18F	NCTC 12862	Z31351
B. elizabethae	F9251F	ATCC 49927	L01260
B. grahamii	V2	NCTC 12860	Z31349
B. henselae	Houston-1T	ATCC 49882	NC_005956
B. japonica	Fuji 18-1F	JCM 15567F=CIP 109861F	AB440632
B. koehlerae	C-20F	ATCC 700693	AF076237
B. phoceensis	16120F	CIP 107707F	AY515119
B. queenslandensis	AUST/NH12	CIP 109057	EU111754
B. quintana	Toulouse		NC_005955
B. rattiaustraliensis	AUST/NH4	CIP 109051	EU111749
B. rattimmassiliensis	15908F	CIP 107705F	AY515120
B. rochalimae		ATCC BAA-1498	Contig12 (12399-13873)
B. schoenbuchensis	R1F	NCTC 13165F	AJ278187
B. silvatica	Fuji 23-1F	JCM 15566F=CIP 109862F	AB440636
B. silvicola	Cul-9		EF616480
B. taylorii	M6F	NCTC 12861	Z31350
B. tribocorum	IBS 506F	CIP 104576	AJ003070
B. vinsonii subsp. arupensis*	OK 94-513F	ATCC 700727	AF214558
B. vinsonii subsp. berkhoftii	93 CO1F	ATCC 51672	L35052
B. vinsonii subsp. berkhoftii (*)	strain G7464	ATCC 35685	U26258
B. vinsonii subsp. vinsonii	BakerF	ATCC VR-152	Z31352
B. volans	FSq-1	ATCC BAA-1451	EU294521
B. washoensis	NVH1		AF070463
Table 2. *16S rRNA* similarity values obtained from a multiple–sequence alignment.

| Organism | B. bacilliformis | B. schoenbuchensis | B. henselae | B. vinsonii subsp. vinsonii | B. vinsonii subsp. arupensis | B. vinsonii subsp. berkhoffii | B. claridgeae | B. tribocorum | B. quintana | B. phoceensis | B. herodii | B. capreoli | B. bovis | B. elizabetiae | B. washoensis | B. koehlerae | B. australis | B. rattiaustraliensis | B. queenslandiae | B. cooperiaplaeensis | B. grahamii | B. chomeli | B. taylorii | B. doshiae | B. japonica | B. silvatica | B. rochalliae | B. silvicola | B. volans | B. vinsonii subsp. berkhoffii |
|---------------------------|------------------|--------------------|-------------|-----------------------------|-----------------------------|-------------------------------|----------------|----------------|-------------|----------------|-------------|---------------|----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| B. bacilliformis | ID | | | | | | 97 | 97 | 98 | 97 | 97 | 98 | 98 | 98 | 98 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 98 | 98 | B. vinsonii subsp. berkhoffii (*) |
| B. schoenbuchensis | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 97 | 98 | 97 | 97 | 98 | 98 | 98 | 98 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
| B. henselae | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 97 | 98 | 97 | 97 | 98 | 98 | 98 | 98 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
| B. vinsonii subsp. vinsonii | 98 | 98 | 98 | 98 | 98 | 98 | 98 | 97 | 98 | 97 | 97 | 98 | 98 | 98 | 98 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
| B. vinsonii subsp. arupensis | 97 | 98 | 98 | 98 | 98 | 98 | 98 | 97 | 98 | 97 | 97 | 98 | 98 | 98 | 98 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |
| B. vinsonii subsp. berkhoffii | 97 | 97 | 98 | 97 | 98 | 98 | 98 | 97 | 98 | 97 | 97 | 98 | 98 | 98 | 98 | 97 | 97 | 97 | 97 | 97 | 97 | 97 | 98 | 98 | 98 | 98 | 98 | 98 | 98 |

* Isolate G7464 (ATCC 35685) of *B. vinsonii* subsp. *berkhoffii*
The RFLP decision-making tree is started using MaeIII. This should allow among *B. bacilliformis*, *B. quintana*, *B. silvatica*, *B. vinsonii* subsp. *vinsonii*, and *B. vinsonii* subsp. *arupensis* to be unambiguously and accurately differentiated from the remaining *Bartonella* (Fig. 1) in a single step.

The interest of this point is specially related to the clinical interest of *B. bacilliformis* and *B. quintana* as human pathogens. Thus, *B. bacilliformis* and *B. quintana* are the etiologic agents for Carrion’s disease (acute Oroya fever and angiomatosis, endocarditis, chronic bacteremia, pericarditis), respectively [4]. Referring to non-*Bartonella* included in the analysis, only *Brucella melitensis* results in a common pattern with some *Bartonella* species (cluster IV) in the MaeIII restriction, but was quickly separates in the cluster analysis (Fig 5).

3.2. Applicability of the PCR-RFLP identification

This rapid technique may be of special interest to describe more in depth the real role of different *Bartonella* spp. in human infections being of specially interest in limited-resources countries. Until early 1990, only one *Bartonella* species (*B. bacilliformis*) was implicated in human pathology, but currently around ten species have been related to different human pathologies [4]. Moreover, identifications based on clinical findings may not be correct as in a suspicious case of Oroya’s Fever, pathology related to *B. bacilliformis*, which was described as produced by *B. rochalimae* [12].

The use of molecular tools may overcome these erroneous bacterial identifications obtained on the basis of clinical presentations or classical techniques [12, 18, 21] This problem is especially relevant in fastidious microorganisms such as the members of the *Bartonella* genus.

Despite it has been described that some members of the *Bartonella* genus are able to grown from blood stored at 4°C, even being maintained for more than 2 years [22], the growth and isolation of *Bartonella* species on blood agar plates generally requires a prolonged incubation period (an average of 21 days) and is rarely successful. This fact may be considered as a pitfall, because the need of dispose of cultured bacteria. However, the RFLP method provides a broad application, even in culture-negative infected material [23]. Moreover, the amplification of the *16S rRNA* gene has been successfully used as rapid *Bartonella* spp. diagnosis tool [14]. Thus, RFLP analysis of the *16S rRNA* gene in *Bartonella* can be a useful molecular tool for the identification of *Bartonella* species.

An interesting possibility may be the presence of two different *16S rRNA* sequences in the same microorganism. This fact has been showed in the case of *B. henselae*, in which 2 different *16S rRNA* sequences have been found, and isolates presenting both together have been described [24, 25]. This *16S rRNA* gene variants has been namely as type 1, with has *B. henselae* Houston-1 as representative strain, and type 2, with has *B. henselae* Urlly8 as a representative strain (GenBank access: AF214556).

The small differences among these two variants (2 bases plus 1 gap) do not affect the proposed decision-making tree. Moreover, despite the strongly identity between these two variants, the use of the restriction enzymes Ddel or Bsu36I may allow arriving to determine the exact variant(s) present in the sample, because the presence of a specific digestion point in the *16S rRNA* gene belongs to the type 1 which is absent in those belonging to type 2.

3.3. Experimental application of the PCR-RFLP to identify several *Bartonella* spp

Experimentally, we have run the RFLP analysis of the *16S rRNA* gene in *B. bacilliformis*, *B. henselae*, *B. bovis* and *B. claridgeiae* (Fig. 7). In all cases, the electrophoresis pattern of the fragments obtained in the digestion with MaeIII was different in each species and occurred in accordance to the predicted pattern obtained using bioinformatics tools.
Additionally, the RFLP-technique was also tested in a series of Bartonella spp. clinical isolates proceeding from blood cultures. In all cases the PCR-RFLP results in an unambiguous identification. Thus, 6 cases were identified as \textit{B. bacilliformis}, while the remaining as \textit{B. elizabethae} (data not show). In the seven cases the sequencing of the 16S rRNA gene confirms this identification.

The RFLP technique has previously been used for rapid identification of \textit{B. henselae} in the Cat-Scratch disease [7]. Endonuclease digestion of the 16S rRNA gene with \textit{Dde} resulted in fragments of approximately 410 and 210 bp for \textit{B.henselae}, \textit{B.quintana}, \textit{B.elizabethae}, \textit{B.vinsonii}, and \textit{B.clarridgeiae}. A third fragment of approximately 380 bp was observed in all these strains except \textit{B.clarridgeiae}. Although other species-specific products ranged from 100 to 280 bp, \textit{B.elizabethae} and \textit{B.vinsonii berkhoffii} were barely identical [7], besides further studies showed a similar pattern in \textit{B. bacilliformis} [9]. Additionally, in last years a high number of Bartonella species has been described, and, to our knowledge, no study to adapt this proposal has been made.

4. Conclusion

The description of new human pathogenic species of the \textit{Bartonella} genus makes improvement of the molecular techniques in the detection and identification of these species necessary. The 16S rRNA gene is used to establish the phylogenetic taxonomy of the \textit{Bartonella} genus due to the high interspecies similarity. This same approach has been used to develop a molecular assay by RFLP analysis able to both differentiate among all the currently described \textit{Bartonella} species and to be modified according to future knowledge. This simple, rapid method provides a broad application and can be expected to significant increase our understanding of the epidemiology of this group of important human pathogens.

Acknowledgements

This work has been partially supported by Optimus Foundation, CONCYTEC (Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica, Perú) grant 323-2010-CONCYTEC-OAJ, UNMSM-VRI (Universidad Nacional Mayor de San Marcos - Vicerrectorado de Investigación, Perú) grant 111001141, and by grant PI11/00983 from the Instituto de Salud Carlos III-ISCIII (Spain).

L.J.dV has been supported by the AECID (Agencia Española de Cooperación Internacional al Desarrollo) grant PCI-A-9727/07, and DURSI, Generalitat de Catalunya, grant 2009SGR-1208. JR has a fellowship from the program I3, of the ISCIII (grant number: CES11/012).

REFERENCES

[1] R.J.Birtles, T.G.Harrison, N.A.Saunders, D.H.Molyneux, Proposals to unify the genera Grahameilla and Bartonella, with descriptions of Bartonella talpae comb. nov., Bartonella peromysci comb. nov., and three new species, Bartonella grahamii sp. nov., Bartonella taylorii sp. nov., and Bartonella doshiae sp. nov. International Journal of Systematic Bacteriology. Vol: 45, No: 1, 1-8. 1995.

[2] D.J.Brenner, S.P.O’Connor, H.H.Winkler, A.G.Steigerwalt. Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. International Journal of Systematic Bacteriology. Vol: 43, No:4, 777-786, 1993.

[3] W.G.Weisburg, C.R.Woese, M.E.Dobson, E.Weiss, A common origin of Rickettsiia and certain plant pathogens. Science. Vol: 230 No:4725. 556-558. 1985.

[4] J.R.Blanco, L.Jado, M.Marín, I.Sanfeliz, A.Portillo, P.Andu, I.Pons, J.A.Oteo. Diagnóstico microbiológico de las infecciones por patógenos bacterianos emergentes: Anaplasma, Bartonella, Rickettsia, Tropheryma whipplei. Enfermedades Infecciosas y Microbiología Clínica. Vol:26, No: 9, 573-580. 2008.

[5] L. Guptill. Bartonellosis. Veterinary Microbiology. Vol: 140, No: 3-4, 347-359. 2010.

[6] E.Huarcaya, C.Maguiña, R.Torres, J.Rupay, L.Fuentes. Bartonelosis (Carrion’s disease) in the pediatric population of Peru: an overview and update. Brazilian Journal of Infectious Diseases Vol:8, No:5, 331-339. 2004.

[7] D.L.Kordick,, E.JHilyard, T.L.Hadfield, K.H.Wilson, A.G.Steigerwalt, D.J.Brenner, E.B.Breitschwerdt. Bartonella clarridgeiae, a newly recognized zoonotic pathogen causing inoculation papules, fever, and lymphadenopathy (cat scratch disease). Journal of Clinical Microbiology. Vol:35, No:7, 1813-1818. 1997.

[8] D.L.Kordick, B.Swaminathan, C.E.Greene, K.H.Wilson, A.M.Whitney, S.O’Connor, D.G.Hollis, G.M.Matar, A.G,Steigerwalt, G.B.Malcolm., P.S.Hayes, T.L.Hadfield, E.B.Breitschwerdt, D.J.Brenner. Bartonella vinsonii subsp. berkhoffii subsp. nov., isolated from dogs; Bartonella vinsonii subsp. vinsonii and emended description of Bartonella vinsonii. International Journal of Systematic Bacteriology. Vol:46, No:3, 704-709. 1996.

[9] C.Maguiña, H.Guerra, P.Ventosilla, Bartonellosis. Clinical Dermatology. Vol:27, No:3, 271-280. 2009.

[10] W.Saisongkorh, J.M.Rolain, Y.Suputtamongkol, D.Raoul. Emerging Bartonella in Humans and Animals in Asia and Australia. Journal of the Medical Association of Thailand. Vol:92, No:5, 707-731. 2009.

[11] E.B.Breitschwerdt, D.L.Kordick, Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clinical Microbiology Reviews. Vol:13 No:3: 428-438. 2000.

[12] M.E.Eremeeva, H.L.Gerns, S.L.Lydy, J.S.Goo, E.T.Ryan, S.SMathew, M.J.Ferraro, J.M.Holden, W.L.Nicholson, G.A.Dasch, J.E.Koehler. Bacteremia, fever, and...
Development of a 16S rRNA PCR-RFLP Assay for Bartonella identification: Applicability in the Identification of Species Involved in Human Infections

Splenomegaly caused by a newly recognized bartonella species. New England Journal of Medicine. Vol:356, No:23 2381-2387. 2007

[13] P.E.Fournier, C.Couderc, S.Buffêt, C.Flaudrops, D.Raoult. Rapid and cost-effective identification of Bartonella species using mass spectrometry. Journal of Medical Microbiology. Vol:58, No:9, 1154-1159. 2009.

[14] J.Ruiz, W.Silva, C.Tinco, M.J.Pons, L.del Valle, C.Gomez, J.Bazan, M.Vargas, D.Champin, J.del Valle Mendoza. Etiological and molecular diagnostic of Carrion's disease in patients from Cajamarca - Perú. International Journal of Infectious Diseases. Vol:16 No: Suppl1, e252-e254. 2012.

[15] N.Borrell, S.G.Acinas, M.J.Figuera, A.J.Martínez-Murcia. Identification of Aeromonas clinical isolates by restriction fragment length polymorphism of PCR-amplified 16S rRNA genes. Journal of Clinical Microbiology Vol:35, No:7 1671-1674. 1997.

[16] M.Ferreira-Tonin, J.Rodrigues-Neto, R.Harakava, S.A.Destéfano. Phylogenetic analysis of Xanthomonas based on partial pmoA gene sequences and species differentiation by PCR-RFLP. International Journal of Systematic and Evolutionary Microbiology. Vol:62, No:Pt 6, 419-424. 2012.

[17] J.B.Messick, L.M.Berent, S.K.Cooper. Development and evaluation of a PCR-based assay for detection of Haemobartonella felis in cats and differentiation of H. felis from related bacteria by restriction fragment length polymorphism analysis. Journal of Clinical Microbiology Vol:36, No:2, 462-466. 1998.

[18] E.Z.Salazar de Vegas, B.Nieves, M.Araque, E.Velasco, J.Ruiz, J.Vila. Outbreak of infection with Acinetobacter strain RUH 1139 in an intensive care unit. Infection Control and Hospital Epidemiology. Vol:27. No:4 397-403. 2006.

[19] M.J.Figueras, L.Soler, M.R.Chacón, J.Guarro, A.J.Martínez-Murcia. Extended method for discrimination of Aeromonas spp. by 16S rDNA RFLP analysis. International Journal of Systematic and Evolutionary Microbiology. Vol:50 No:Pt 6, 2069-2073. 2000.

[20] R.J. Birtles. Differentiation of Bartonella species using restriction endonuclease analysis of PCR-amplified 16S rRNA genes. FEMS Microbiology Letters. Vol: 129, No: 2-3, 261-266. 1995.

[21] O.Ormen, P.E.Granun, J.Lassen, M.J.Figueras. Lack of agreement between biochemical and genetic identification of Aeromonas spp. APMIS. Vol:113, No:3 203-207. 2005.

[22] J.Ruiz, W.Silva, M.J.Pons, L.J.del Valle, C.R.Tinco, V.D.Casabona, C.Gomes, J.Bazan, V.Zavaleta, H.Cornejo, D.Champin, J.del Valle. Long time survival of Bartonella bacilliformis in blood stored at 4 °C. A risk for blood transfusions. Blood Transfusion. Vol:10, No:4, 563-564. 2012.

[23] D.Rodrick, B.Dillon, M.Dexter, I.Nicholson, S.Marcel, D.Dickeson, J.Iredell. Culture-Negative Endocarditis Due to Houston Complex Bartonella henselae Acquired in Noumea, New Caledonia. Journal of Clinical Microbiology. Vol: 42, No:4, 1846-1848. 2004.

[24] J Viezens J, M.Arvand. Simultaneous presence of two different copies of the 16S rRNA gene in Bartonella henselae. Microbiology. Vol 154, No:9, 2881-2886. 2008

[25] V.V.Ebani, F.Bertelloni, F.Fratini. Occurrence of Bartonella henselae types I and II in Central Italian domestic cats. Research in Veterinary Science. Vol:93 No:4, 63–66. 2012