The Loewner framework for nonlinear identification and reduction of Hammerstein cascaded dynamical systems

Dimitrios S. Karachalios1,*, Ion Victor Gosea1,**, and Athanasios C. Antoulas1,2,3,***

1 Max Planck Institute for Dynamics of Complex Technical Systems, Data-Driven System Reduction and Identification (DRI) group, Sandtorstraße 1, Magdeburg 39106
2 Rice University Houston, Electrical and Computer Engineering Department, 6100 Main St., Houston, TX 77005
3 Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030

We present an algorithm for data-driven identification and reduction of nonlinear cascaded systems with Hammerstein structure. The proposed algorithm relies on the Loewner framework (LF) which constitutes a non-intrusive algorithm for identification and reduction of dynamical systems based on interpolation. We address the following problem: the actuator (control input) enters a static nonlinear block. Then, this processed signal is used as an input for a linear time-invariant system (LTI). Additionally, it is considered that the orders of the linear transfer function and of the static nonlinearity are not a priori known.

© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Introduction

In some engineering applications that deal with the study of dynamical control systems, the control input enters the differential equations in a nonlinear fashion [5]. It is of interest to identify the hidden nonlinearity while at the same time reduction is needed for robust simulations and control design [1]. The LF [2–4] constitutes a non-intrusive method that uses only input-output data. The matrix pencil composed of two Loewner matrices reveals the minimality (in terms of McMillan degree) of the LTI system. By means of a singular value decomposition (SVD), one can find left and right projection matrices that are used to construct a low order model.

The Hammerstein system is characterized by two blocks connected in series, where the static nonlinear (memoryless) block is followed by a linear time-invariant system (LTI) as in Fig. 1. The scalar control input $u(t)$ is used as an argument to the static nonlinearity F and then the signal $F(u(t))$ passes through a linear time-invariant (LTI) system. The static polynomial map approximates other non-polynomial maps (Taylor series expansion) s.a. $\tanh(\cdot)$, $\exp(\cdot)$, etc. The aim is to identify the cascaded system by estimating the coefficients of the polynomial map k_i, $i = 1, 2, \ldots, n$ and the hidden LTI system by using only input-output data $(u(t), y(t))$, $t \geq 0$.

Fig. 1: The input-output scheme of a cascaded system with a static nonlinear (polynomial) map of n^th order followed by an LTI. The connection describes a Hammerstein nonlinear model.

The steady state output solution can be computed explicitly with the convolution integral\(^1\), the impulse response $h(t)$, $t \geq 0$ and the linear transfer function $H(j\omega)$, $j\omega \in \mathbb{C}$ of the LTI as:

$$
g(t) = (k_1 u(t) + k_2 u^2(t) + \ldots + k_n u^n(t)) * h(t) = k_1(u*h)(t) + k_2(u^2*h)(t) + \ldots + k_n(u^n*h)(t) = k_1 \int_{-\infty}^{\infty} h(\tau) u(t-\tau)d\tau + \ldots + k_n \int_{-\infty}^{\infty} h(\tau) u^n(t-\tau)d\tau = \sum_{i=1}^{n} k_i \int_{-\infty}^{\infty} h(\tau) u^i(t-\tau)d\tau. \quad (1)
$$

Let the singleton real input be defined as $u(t) = A \cos(\omega t) = \alpha e^{j\omega t} + \alpha e^{-j\omega t}$ with the amplitude $\alpha = A/2$, the imaginary unit j, the driving frequency $\omega > 0$ and time $t \geq 0$. By substituting the above input in Eq. (1) and by making use of the binomial theorem, we conclude that:

$$
y(t) = \sum_{i=1}^{n} k_i \int_{-\infty}^{\infty} h(\tau) \left(\alpha e^{j\omega(t-\tau)} + \alpha e^{-j\omega(t-\tau)}\right)^i d\tau = \sum_{i=1}^{n} \sum_{m=0}^{i} \binom{i}{m} k_i \alpha^i \frac{i!}{(i-m)!m!} \int_{-\infty}^{\infty} H(j\omega(2m-i)) e^{j\omega(2m-i)} d\omega. \quad (2)
$$

* Corresponding author: email karachalios@mpi-magdeburg.mpg.de
** email gosea@mpi-magdeburg.mpg.de
*** email aca@rice.edu
\(^1\) $(f \ast g)(t) = \int_{-\infty}^{\infty} f(\tau) g(t-\tau) d\tau$

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Received: 14 August 2020 | Accepted: 3 November 2020
DOI: 10.1002/pamm.202000337

Proceedings in Applied Mathematics & Mechanics
At frequency ω the ℓth harmonic is computed by applying the single-sided Fourier transform in Eq. (2) as:

$$Y_{\omega,\ell}(j \ell \omega) = H(j \ell \omega)\delta(j \ell \omega) \sum_{\ell \leq \ell_0} k_i \phi_{i,\ell}, \; \ell = 0, \ldots, n,$$

$$\phi_{i,\ell} = \begin{cases} 2 \alpha^i \cdot \frac{1}{\ell \omega}\delta(i+\ell)/2, & (i \geq \ell) \text{ and } (i + \ell \text{ even}) \text{,} \\ 0, & (\ell \text{ odd}) \text{,} \end{cases}$$ \hspace{1cm} \text{where } nC_m = \frac{n!}{(n-m)!m!} \tag{3}$$

2 The Loewner-Hammerstein identification method

As we have computed the total output of the Hammerstein cascaded system, we proceed with the method of determining the unknowns from input-output data. The symmetry in Eq. (3) allows the cancellation of the unknown contribution of the transfer function. Thus, we first determine the unknown coefficients k_i, and afterwards, we fit the LTI system by means of the LF. For this purpose, it is important to define the following invariant frequency quantities $\lambda_{p,q}$.

Definition 2.1 (Frequency invariant quantities)

The $Y_{p,q}$ denotes the qth harmonic at p frequency.

$$\lambda_{p,q} = \frac{Y_{p,q}}{\sum_{i=q}^{\infty} k_i \phi_{i,q}}$$ \hspace{1cm} \text{for } p \neq q. \tag{4}$$

The entries $\lambda_{p,q}$ are independent of ω.

The above harmonic map allows the construction of the following linear system. Due to the mixing linearity (i.e. $k_1 u(t)$ and $(u \ast h)(t)$), we can fix k_1 to an arbitrary value. For $p = 1$ and $q = 2, \ldots, n$, results:

$$\begin{bmatrix} \phi_{21} - \lambda_{12}\phi_{22} & \phi_{31} - \lambda_{13}\phi_{32} & \cdots & \phi_{n1} - \lambda_{1n}\phi_{n2} \\ \phi_{21} & \phi_{31} & \cdots & \phi_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{21} & \phi_{31} & \cdots & \phi_{n1} - \lambda_{1n}\phi_{n3} \end{bmatrix} \begin{bmatrix} k_2 \\ k_3 \\ \vdots \\ k_n \end{bmatrix} = -k_1 \phi_{11} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \forall k_1 \in \mathbb{R} \setminus \{0\}. \tag{5}$$

Finally, as we have identify the scaled (k_1) arbitrary coefficient vector $\mathbf{k} = (k_1, k_2, \ldots, k_n)$, we can transform the above harmonic map into a measurement map for the linear transfer function as $H(j \ell \omega) = Y_{\omega,\ell}/\sum_{\ell \leq \ell_0} k_i \phi_{i,\ell}$. The identification and reduction of the LTI system is done by applying the LF [2–4].

Algorithm 1: Hammerstein identification with the Loewner framework

Input: Apply signals $u(t) = \alpha \cos(\omega_1 t)$ with driving frequencies $\omega_1, \alpha = 1, \ldots, n$ where n is the maximum nonzero harmonic index.

Output: An identified Hammerstein system.

1. Apply FT and measure $U(j \omega_1), Y_1(j \omega_1), Y_2(j \omega_2), \ldots, Y_{n}(j \omega_n)$ from the power spectrum.
2. Fix k_1 to an arbitrary value and determine the scaled coefficient vector $\mathbf{k} = (k_1, k_2, \ldots, k_n)$ by solving the system in Eq. (5).
3. Estimate the measurements of the linear transfer function from $H(j \ell \omega) = Y_{\omega,\ell}/\sum_{\ell \leq \ell_0} k_i \phi_{i,\ell}$.
4. Apply the linear Loewner framework for identification and reduction of the LTI.

Fig. 2: The singular value decay of the Loewner matrices. $\sigma_3/\sigma_1 \sim 1e-10$.
Fig. 3: The identified linear transfer function with $\| H - H_r \|_\infty \sim 1e-7$. Comparison with the original one. $\| y - y_r \|_\infty \sim 1e-7$.
Fig. 4: The simulated identified Hammerstein system in Loewner matrices.
domain simulation in Fig. 4 is independent of the choice of k_1. The large input as $u(t) = 2\text{sawtooth}(0.1 \cdot 2\pi t)e^{-0.01t}\cos(0.1 \cdot 2\pi t)$ certifies that the method is able to perform well under large inputs for nonlinear Hammerstein systems.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References

[1] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, SIAM (2005).
[2] A. C. Antoulas, C. A. Beattie, S. Güçercin: Interpolatory Methods for Model Reduction. SIAM, Philadelphia, (2020).
[3] A. C. Antoulas, S. Lefteriu and A. C. Ionita, A Tutorial Introduction to the Loewner Framework for Model Reduction, SIAM Model Reduction and Approximation, pp. 335-376 (2016).
[4] Karachalios, D. S., Gosea, I. V., Antoulas, A. C.: The Loewner framework for system identification and reduction. In P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. H. A. Schilders, and L. M. Silveira, editors, Handbook on Model Reduction, volume I of Methods and Algorithms in press (2020).
[5] Úrednicek, Zdeněk, Nonlinear systems - describing functions analysis and using, MATEC Web Conf. (2018).