Finding Sparse Structure for Domain Specific Neural Machine Translation

Jianze Liang, 1,2* Chengqi Zhao, 2 Mingxuan Wang, 2 Xipeng Qiu, 1 Lei Li 2
1 School of Computer Science, Fudan University
2 ByteDance AI Lab
{zjliang18, xpqiu}@fudan.edu.cn, {zhaochengqi.d, wangmingxuan.89, lileilab}@bytedance.com

Abstract

Fine-tuning is a major approach for domain adaptation in Neural Machine Translation (NMT). However, unconstrained fine-tuning requires very careful hyper-parameter tuning otherwise it is easy to fall into over-fitting on the target domain and degradation on the general domain. To mitigate it, we propose PRUNE-TUNE, a novel domain adaptation method via gradual pruning. It learns tiny domain-specific subnetworks for tuning. During adaptation to a new domain, we only tune its corresponding subnetwork. PRUNE-TUNE alleviates the over-fitting and the degradation problem without model modification. Additionally, with no overlapping between domain-specific subnetworks, PRUNE-TUNE is also capable of sequential multi-domain learning. Empirical experiment results show that PRUNE-TUNE outperforms several strong competitors in the target domain test set without the quality degradation of the general domain in both single and multiple domain settings. 1

Introduction

Neural Machine Translation (NMT) (Cho and Bengio 2014; Vaswani et al. 2017) yields state-of-the-art translation performance when a large number of parallel sentences are available. However, only a few parallel corpora are available for the majority of language pairs and domains. It has been known that NMT does not perform well in the specific domains where the domain-specific corpora are limited, such as medical domain (Koehn and Schroeder 2007; Axelrod, He, and Gao 2011) and multi-domain settings (Bapna et al. 2017). As such, high-quality domain-specific machine translation systems are in high demand whereas general purpose MT has limited applications.

There are many studies of domain adaptation for NMT, which can be mainly divided into two categories: data-centric and model fine-tuning (Chu and Wang 2018). Data-centric methods focus on selecting or generating target domain data from general domain corpora, which is effective and well explored (Axelrod, He, and Gao 2011; Chinea-Rios, Peris, and Casacuberta 2017; Zeng et al. 2019). In this paper, we focus on the second approach. Fine-tuning is very common in domain adaptation, which first trains a base model on the general domain data and then fine-tunes it on each target domain (Luong and Manning 2015; Chen et al. 2017; Gu, Feng, and Liu 2019; Saunders et al. 2019). However, unconstrained or full fine-tuning requires very careful hyper-parameter tuning, and is prone to over-fitting on the target domain as well as forgetting on the general domain. To tackle these problems, researchers have proposed several constructive approaches, with the view to limiting the size or plasticity of parameters in the fine-tuning stage, which can be roughly divided into two categories: regularization and partial-tuning strategy. Regularization methods often integrate extra training objectives to prevent parameters from large deviations, such as model output regularization (Khayrallah et al. 2018), elastic weight consolidation (EWC) (Thompson et al. 2019). Regularization methods, which impose arbitrary global constraints on parameter updates, may further restrict the adaptive process of the network, especially when domain-specific corpora are scarce. Partial-tuning methods either freeze several sub-layers of the network and fine-tune the others (Thompson et al. 2018), or integrate domain-specific adapters into the network (Bapna and Pirat 2019; Vilar 2018). By only fine-tuning the domain-specific part of the model, they can alleviate the over-fitting and forgetting problem in fine-tuning. However, the structure designed to adapting is usually hand-crafted, which relies on experienced experts and the adapter brings additional parameters. Therefore, a more adaptive, scalable, and parameter-efficient approach for domain adaptation is very valuable and worth well studying.

In this paper, we propose PRUNE-TUNE, a novel domain adaptation method via adaptive structure pruning. Our motivation is inspired from Continual Learning (Paris et al. 2019; Kirkpatrick et al. 2017; Mallya and Lazebnik 2018; Mallya, Davis, and Lazebnik 2018; Hung et al. 2019; Lee, Cho, and Kang 2019) and the lottery hypothesis that a randomly-initialized, dense neural network contains a subnetwork which can match the test accuracy of the original network after training for at most the same number of iterations (Frankle and Carbin 2018). We therefore suppose that multiple machine translation models for different domains...
NetworkPruning Generate and Fine-tune Lottery Subnet Adapting to more Domains

a) General Model
b) Informative General Subnetwork
c) Lottery Domain Subnetwork
d) Multi-domain Model

- We propose PRUNE-TUNE, which enables generating domain-specific subnetworks via gradual pruning and potentially circumvents the notorious catastrophic forgetting problems in domain adaptation.
- We conduct extensive experiments to evaluate PRUNE-TUNE and demonstrate that PRUNE-TUNE outperforms the strong competitors both in the general and target domain with big margins. On domain adaptation benchmarks for EN→DE, PRUNE-TUNE outperforms several strong competitors including Fine-tuning, EWC, Model Distillation, Layer Freeze and Adapter in target domain test set without the loss of general domain performance.
- We extend PRUNE-TUNE to multi-domain experiments on EN→De and Zh→En, which shows the possibilities of training a single model to serve different domains without performance degradation.

Background

Neural Machine Translation

Given an source sentence \(x = \{x_1, \ldots, x_n\}\) and its translation \(y = \{y_1, \ldots, y_m\}\), Neural Machine Translation directly models the conditional probability of target sentence over source sentence:

\[
P(y|x; \theta) = \prod_{i=1}^{m} P(y_i|x, y_{<i}; \theta),
\]

where \(\theta\) denotes the parameters of the model. For a parallel training dataset \(D = \{x^i, y^i\}_{i=1}^{N}\) of a new domain. We can simply apply fine-tuning to adapt the model to the new domain, that is, we continue training the model to optimize \(\theta\) on \(D_t\):

\[
\arg\max_{\theta} \sum_{i=1}^{N_t} \log P(y^i|x^i; \theta).
\]

As discussed in Introduction, fine-tuning on all model parameters \(\theta\) often leads to over-fitting on the new domain as well as forgetting on the general domain. So apart from regularization approaches, it is effective to introduce domain-specific part of models to alleviate these problems. There are two typical kinds of methods: layer freeze and adapter.

Layer freeze approaches regard the top layer, denoted as \(L\), of model as the domain-specific parameters while the rest parameters \(\theta_{<L}\) are kept fixed. The training object of layer freeze is:

\[
\arg\max_{\theta_L} \sum_{i=1}^{N_t} \log P(y^i|H_{L-1}; \theta_L),
\]

where \(H_{L-1} = F(x^i; \theta_{<L})\) indicates the output of the \((L-1)\)-th layer of the model.

Adapter methods integrate an additional module \(\theta_A\) into the network. The additional module can be a fully-connection layer, a self-attention layer or their combinations. Finally we fine-tune only on the domain-specific part.
\(\theta_A \) and the training objective is as follow:

\[
\arg \max_{\theta_A} \sum_{i=1}^{N} \log P(y_i^d | H_L; \theta_A),
\]

where \(H_L = \mathcal{F}(x^i; \theta) \).

As shown in equation (4) and (5), domain-specific parameters only interact with the output of general model, i.e. \(\mathcal{F}(\cdot; \theta) \). We suppose interaction more with the general model would achieve much better performance.

Approach

As many studies show, a great proportion of parameters in the network are redundant (Frankle and Carbin 2018; Zhu and Gupta 2017; Liu et al. 2018). Pruning such parameters causes minor or even no degradation in the task. Zhu and Gupta (2017) show that the dynamic and sparse subnetwork after pruning is expressive and outperforms the dense network with the equivalent size of parameters. Therefore, it is possible to make use of such redundancy for domain adaptation.

Given a well trained general model, our approach consists of the following steps (see Figure 1):

1. Find and freeze the most informative parameters of the general domain and leave unnecessary parameters for the target domain
2. Uncover the lottery subnetworks from the free parameters for a specific domain
3. Tune the lottery subnetworks for the specific domain
4. Repeat the 2-3 steps for multi-domain adaptation

Finding the Informative Parameters for General Domain

Pruning has proven to be effective for keeping the informative parameters and eliminating unnecessary ones for neural networks (LeCun, Denker, and Solla 1990; Li et al. 2016; Han et al. 2015; Zhu and Gupta 2017). Without loss of generality, we employ a simple and effective *Gradual Pruning* approach to find the most informative parameters for the general domain (Zhu and Gupta 2017). The method gradually prunes the model to reach the target sparsity by reducing low magnitude parameters every 100 training steps. Explicitly, we trim parameters to the target sparsity in each layer. Between pruning steps, the model is trained on the general dataset to recover its performance in the subnetwork. Though NMT is one of the most complicated tasks in deep learning, our empirical study on pruning sparsity shows that up to 50% parameters in a Transformer big model are not necessary and can be pruned with a performance drop less than 0.6 BLEU (see Figure 2). In this way, we can keep the general NMT model intact as an informative subnetwork of the original model. To keep consistent generalization ability provided from the original subnetwork, we freeze the parameters of the informative subnetwork during domain adaptation process.

![Figure 2: BLEU scores of models with different sparsity on WMT14 EN→DE.](image)

The left unnecessary weights throughout the network provide the possibility of generating a sparse lottery subnetwork that can exactly match the test accuracy of the domain-specific model. As the lottery subnetwork keeps most of the general domain information, fine-tuning the unnecessary weights can potentially outperform the full fine-tuning approach. Particularly, the sparsity rate is very flexible which can be changed to meet the requirements of various scenarios. In general, a low sparsity rate is suitable for simple domain adaptation tasks, while high sparsity works better for complicated domain or multiple domain adaptation tasks.

Lottery Subnetwork Generation for Specific Domain

It is not necessarily needed to fine-tune all the free parameters for a specific domain, especially for multi-domain adaptation tasks that require parameter efficient subnetworks for different domains. As the extracted informative subnetwork already has a strong capacity, we suppose that a few additional parameters may be enough for the target domain adaptation. The most challenging problem is to automatically uncover the best sparse structure for the specific domain within. And we call this sparse structure as *lottery subnetwork*. The challenge is essentially a network architecture search problem (NAS) to learn domain-specific subnetwork, which is very costly. For simplicity, we apply an iterative pruning method again as an effective way to learn the lottery subnetwork.

Specifically, we fine-tune the free parameters on the target domain data for a few steps as warm-up training, then apply pruning to obtain the domain-specific structure. The generated structure is then fixed as the lottery-domain-specific subnetwork for further fine-tuning.

Fine-tuning of Domain-Specific Subnetwork

We introduce a mask matrix over all parameters in the network which indicates the subnetwork for each domain with different domain identification. Each parameter of the network belongs to only one specific domain, and can not be updated by learning of other domains.

For single domain adaptation, we adapt the general domain to the target domain by training on the combined parameters of the general informative subnetwork and the
domain-specific lottery subnetwork. For multiple domain adaptation, we iteratively repeat this process based on the general model. It is rather flexible as we do not require data from all domains simultaneously. Particularly, with the partition of parameters, we can adapt a new domain only from helpful domains. Supposes that we have successfully trained a multi-domain system supporting three different domains: news, law, biology. While our goal is to adapt to a new medical domain, it is capable of incorporating both the general and biology domain as source domains for the medical domain.

PRUNE-TUNE shares different domain subnetwork in a single transform model with domain-specific masks. Given the source sentence and the corresponding domain identification, a binary domain mask will be applied to the unified model to support decoding with only the learned sparse subnetwork. The mask matrix makes the system rather flexible for practical application or extends to a new domain.

Experiment

We conducted experiments on both single domain adaptation and multiple domain adaptation to show the effectiveness and flexibility of PRUNE-TUNE.

Dataset

To evaluate our model in single domain adaptation, we conducted experiments on English to German translation, where the training corpora for the general domain were from WMT14 news translation task. And we used newstest2013 and newstest2014 as our validation and test set respectively. The general domain model trained on WMT14 EN→DE was then individually adapted to three distinct target domains: TED talks, biomedicine, and novel. For TED talks, we used IWSLT14 as training corpus, dev2010, and tst2014 as the validation and test set respectively. For the biomedicine domain, we evaluated on EMEA News Crawl dataset. As there were no official validation and test set for EMEA, we used Khresmoi Medical Summary Translation Test Data 2.0. For novel domain, we used a book dataset from OPUS (Tiedemann 2012). We randomly selected several chapters from Jane Eyre as our validation set and The Metamorphosis as the test set. We extended PRUNE-TUNE to multi-domain adaptation on English to German and Chinese to English translation. For Zh→En, we used the training corpora from WMT19 Zh→En translation task as the general domain data. We selected 6 target domain datasets from from UM-Corpus (Tian et al. 2014).

Table 1 lists the statistics of all datasets mentioned above.

Setup

For EN→DE data preprocessing, we tokenized data using sentencepiece (Kudo and Richardson 2018), with a jointly

Direction	Corpus	Train	Dev.	Test
EN→DE	WMT14	3.9M	3000	3003
	IWSLT14	170k	6750	1305
	EMEA	587k	500	1000
	Novel	50k	1015	1031

ZH→EN	WMT19	20M	3000	3981
	Laws	220k	800	456
	Thesis	300k	800	625
	Subtitles	300k	800	598
	Education	449K	800	791
	News	449K	800	1500
	Spoken	219k	800	456

Table 1: Datasets statistic for En→De and Zh→En tasks.

We used a lottery subnetwork with 10% sparsity and conducted domain adaptation experiments on EN→DE. 10% free parameters were tuned to fit each target domain. During inference, our model can recover the capability of the general domain by simply masking these domain-specific subnetworks. During inference, we used a beam width of 4 for both EN→DE and Zh→En and we set the length penalty to 0.6 for EN→DE, 1.0 for Zh→En.

The evaluation metric for all our experiments is tokenized BLEU (Papineni et al. 2002) using multi-bleu.perl. We used Adam optimizer (Kingma and Ba 2014) with the same schedule algorithm as Vaswani et al. (2017). All models were trained with a global batch size of 32,768 on NVIDIA Tesla V100 GPUs. During inference, we used a beam width of 4 for both EN→DE and Zh→En.

The learned vocabulary of size 32,768. For Zh→En, we applied jieba and moses tokenizer to Chinese and English side respectively. Then we encoded sentences using byte pair encoding (BPE) (Sennrich, Haddow, and Birch 2016b) with 32k merge operations separately. We implemented our models on recently the state-of-the-are translation model, Transformer (Vaswani et al. 2017) and we followed the big setting, including 6 layers for both encoder and decoders. The embedding dimension was 1,024 and the size of ffn hidden units was 4,096. The attention head was set to 16 for both self-attention and cross-attention. We used Adam optimizer (Kingma and Ba 2014) with the same schedule algorithm as Vaswani et al. (2017). All models were trained with a global batch size of 32,768 on NVIDIA Tesla V100 GPUs. During inference, we used a beam width of 4 for both EN→DE and Zh→En and we set the length penalty to 0.6 for EN→DE, 1.0 for Zh→En.

The evaluation metric for all our experiments is tokenized BLEU (Papineni et al. 2002) using multi-bleu.perl. We used Adam optimizer (Kingma and Ba 2014) with the same schedule algorithm as Vaswani et al. (2017). All models were trained with a global batch size of 32,768 on NVIDIA Tesla V100 GPUs. During inference, we used a beam width of 4 for both EN→DE and Zh→En and we set the length penalty to 0.6 for EN→DE, 1.0 for Zh→En.

Domain Adaptation on single Lottery Subnetwork

We used a lottery subnetwork with 10% sparsity and conducted domain adaptation experiments on EN→DE. The 10% free parameters were tuned to fit each target domain. During inference, our model can recover the capability of the general domain by simply masking these domain-specific parameters. We compared our model with several strong baselines and effective models:

- **General domain model**: The model was trained using only parallel data from the general domain.
- **Target domain model**: The model was trained using only the target domain data.
- **Mixed domain model**: All general domain and target domain data were mixed to train the model.
- **Fine-tuning (Luong and Manning 2015)**: We continued to train the general domain model on target domain data with the training step unchanged. The empirical study shows it performs better than resetting the training step to 0.

https://ufal.mff.cuni.cz/ufal_medical_corpus
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2122
http://opus.nlpl.eu/
http://nlp2ct.cis.umac.mo/um-corpus
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl
BLEU 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0

conclude, P

strates that our approach effectively alleviates the serious
unified model, simply via a domain mask. Figure 3 demon-
chine translation without any performance compromise in a
our model is able to serve both general or target domain ma-
tive performance with less training parameters. Moreover,
with varying corpus size, our approach achieves competi-
tic performance with less training parameters. Moreover,
EWSLT-regularized model

- EWC-regularized model (Thompson et al. 2019): EWC
(Kirkpatrick et al. 2017) is a popular algorithm in Con-
tinual Learning (Parisi et al. 2019), which applies elas-
tic consolidation to each parameter during gradient up-
dates. The EWC-regularized model prevents the param-
eters from large deviations.

- Model Distillation (Khayrallah et al. 2018): We em-
ployed an auxiliary loss during fine-tuning to prevent the
target domain model’s output from differing too much
from the original general domain model’s output.

- Layer Freeze (Thompson et al. 2018): We froze all model
layers except for the top layers of both the encoder and de-
coder, then fine-tuned the top layers on the target domain
data.

- Adapter (Bapna and Firat 2019): We stacked adapters on
each transformer block of both encoder and decoder as
proposed by Bapna and Firat (2019), and fine-tuned the
adapters only.

Our proposed PRUNE-TUNE outperforms fine-tuning and
other baselines as shown in Table 2. In three distinct domains
with varying corpus size, our approach achieves competi-
tive performance with less training parameters. Moreover,
our model is able to serve both general or target domain ma-
chine translation without any performance compromise in a
unified model, simply via a domain mask. Figure 3 demon-
strates that our approach effectively alleviates the serious
over-fitting problem that fine-tuning often suffers from. To
conclude, PRUNE-TUNE enjoys the following advantages:

- PRUNE-TUNE is very effective for the target domain
adaptation. We attribute this to the adaptive pruning of
the lottery subnetwork. With little modification of a sub-
network, PRUNE-TUNE significantly outperforms Layer
Freeze and adapter with pre-defined subnetwork fine-
tuning, which shows the benefits of dynamic structure
finding.

- Clearly, PRUNE-TUNE is firmly capable of keeping the
translation performance in the general domain. After fine-
tuning on the novel domain, PRUNE-TUNE even sur-
passes the second fine-tuning competitor by 5 BLEU
score in the general domain.

Table 2: BLEU scores of single domain adaptation on EN→DE

Model	IWSLT (190k)	EMEA (587k)	Novel (50k)	#Tuning Params
	general	general	general	#Tuning Params
Mixed Domain Model	27.9	31.3	27.9	273M
Target Domain Model	N/A	24.0	N/A	273M
General Domain Model	28.7	28.5	28.7	273M
+ Fine-tuning (Luong and Manning 2015)	27.0	31.5	17.1	23.4
+ EWC-regularized (Thompson et al. 2019)	28.0	31.5	27.1	23.1
+ Model Distillation (Khayrallah et al. 2018)	26.3	31.5	16.3	23.1
+ Layer Freeze (Thompson et al. 2018)	28.6	31.3	26.9	23.0
+ Adapter (Bapna and Firat 2019)	27.0	31.6	26.7	24.3
Prune-Tune Model	28.8	31.9	28.9	273M

- PRUNE-TUNE is robust when compared to the fine-tuning
baseline, which suffers from the over-fitting challenges
and requires very careful checkpoints choices.

Sequential Domain Adaptation

We conducted multi-domain adaptation experiments on
EN→DE and ZH→EN to demonstrate the unique sequential
learning ability of our approach.

We first trained general models on EN→DE and ZH→EN,
and then gradually pruned them to reach 50% sparsity. We
find it empirically that 50% is a sparsity with no significant
performance drop and enough redundant parameters. Dif-
ferrent from single domain adaptation, we fixed embedding
layers and layer normalization parameters to avoid sharing
parameters across multiple domains.

In these experiments, we adopt the general models to tar-
get domains sequentially. For each target domain:

1. Firstly, we applied warm-up training and Gradual Prun-
ing to generate a suitable lottery domain subnetwork.
2. Secondly, We simply adapt the general domain learned
before to the current domain by including the general sub-
network as frozen parameters.
Table 3: BLEU scores of sequential domain adaptation on EN→DE. #M denotes the number of required models. W, I, E, N refer to dataset WMT14, IWSLT, EMEA, Novel, respectively. In our Sequential P-Tune Model, general domain occupied 50% parameters, and each target domain occupied 10%.

Table 4: BLEU scores of sequential domain adaptation on ZH→EN. #M denotes the number of required models. In our Sequential P-Tune Model, general domain occupied 50% parameters, and each target domain occupied 5%.

Table 5: BLEU scores of different pruning rate. Only 10% of parameters for fine-tuning is able to achieve the best performance.

Analysis
In this section, we revisit our approach to reveal more details and explain the effectiveness of the proposed PRUNE-TUNE.

Robustness of PRUNE-TUNE
We are convinced that the over-fitting problem seriously affects the robustness of fine-tuning. As shown in figure 3, fine-tuning reaches the best performance at the early step, and then starts to decline, while our method yields stable performance. When the target data is scarce, domain adaptation by unrestricted fine-tuning will rapidly over-fit to the target domain, forgetting the generalization ability from the general model. Our proposed PRUNE-TUNE is a more robust method as we integrate a frozen informative subnetwork within the model, which provides generalized information consistently.

Less Pruning Improves Performance
Since we can prune the model to different sparsity, we evaluate the single domain adaptation performance on general models with different sparsity. As shown in Table 5, domain adaptation on low sparsity achieves better performance mainly due to better knowledge preservation of the general domain. It also indicates that a few parameters are enough for single domain adaptation. As the pruning goes further, the high sparsity model is doomed to degrade on the general domain, which affects the subsequent domain adaptation. However, the performance gap between low sparsity PRUNE-TUNE models is relatively small.
Table 6: BLEU scores of different adaptation order for sequential domain adaptation.

Adaptation Order	EMEA
1	30.3
2	30.1
3	30

Table 7: BLEU scores of different scale of target domain-specific parameters for sequential domain adaptation.

Target Domain Params(%)	IWSLT	EMEA	Novel
1%	31.7	29.4	22.3
5%	31.8	30.1	23
10%	31.9	30.1	23.6

Figure 4: Fine-tuning with different domain-specific corpus. PRUNE-TUNE improves the baseline at different scales, while full fine-tuning suffers from over-fitting.

PRUNE-TUNE is very Effective for Low-resource Domain Adaptation

To evaluate the performance of our approach on varying amounts of target domain data, we experimented on the EMEA dataset with different fractions of training data. We extract 1%, 3%, 10%, 30% and 100% of the original EMEA training set. We compare with full fine-tuning using 10% sparsity PRUNE-TUNE model on different fractions of EMEA dataset. As the results are shown in Figure 4, our approach significantly outperforms fine-tuning for each fraction. Especially for extremely small 1% fraction, which consists of 5.7K sentences, our proposed approach improves the performance over the general model by 0.7 BLEU, while fine-tuning leads to a 3.3 BLEU drop. With fractions less than 30%, fine-tuning can not improve the target bio domain, but brings damage to the general model. In the contrast, our approach does not harm the general domain ability, and can make the most of the few training data to improve the target domain. It indicates that our proposed approach is suitable for low resource domain adaptation, which is common and valuable in practice.

Sequential PRUNE-TUNE is Capable for Numerous Domains

We conducted experiments to explore the limit of sequential multi-domain adaptation with PRUNE-TUNE. We first evaluated the influence of the learning order of the EMEA dataset. As shown in Table 6, there is only a minor gap of BLEU score between different learning order. We also conducted experiment on EN→DE with different scale of target domain-specific parameters. As shown in Table 7, 5% of parameters is sufficient for most domains, and even 1% of parameters yields comparable performance. Actually, PRUNE-TUNE has the potential to adapt to dozens of domains.

Related Work

Domain Adaptation

Domain adaptation has been widely investigated in recent years. In Machine Translation, the fine-tuning based approach is the most relevant to our work. Fine-tune is the conventional way for domain adaptation (Luong and Manning 2015; Sennrich, Haddow, and Birch 2016; Freitag and Al-Onaizan 2016; Chu, Dabre, and Kurohashi 2017). Many studies try to address the shortcoming of Fine-tune. Thompson et al. (2018) freeze selected modules of the general network. Adapters is introduced for parameter efficiency (Bapna and Firat 2019; Vilar 2018). Khayrallah et al. (2018) explore regularization techniques to avoid over-fitting. Thompson et al. (2019) employ EWC (Kirkpatrick et al. 2017) to alleviate the catastrophic forgetting problem in domain adaptation. Zhang et al. (2020) re-initialize parameters from some layer for few-sample BERT fine-tuning. Wuebker, Simianer, and DeNero (2018) introduce sparse offset from the general model parameters for every domain, sharing the similar idea of our proposed method. The key difference is that PRUNE-TUNE provides a dynamic parameter adaptation method, which is parameter efficient and potentially makes the most of general domain information for the target domain.

Another research line for domain adaptation is data selection and data mixing, both being concerned with how to sample examples to train an MT model with a strong focus on a specific domain (Axelrod, He, and Gao 2011; Chinae-Rios, Peris, and Casacuberta 2017; Zeng et al. 2019; Wang et al. 2020), while PRUNE-TUNE focused on the training model which can complement with the data-driven methods perfectly.

Continual Learning

The main idea of our approach is originated from the Continual Learning community (Parisi et al. 2019; Kirkpatrick et al. 2017; Mallya and Lazebnik 2018; Mallya, Davis, and Lazebnik 2018; Hung et al. 2019; Lee, Cho, and Kang 2019), as they all try to alleviate the catastrophic forgetting problem. Mallya and Lazebnik (2018); Mallya, Davis, and Lazebnik (2018); Hung et al. (2019) learn separate subnetworks for multiple tasks in computer vision, which inspires us with PRUNE-TUNE for machine translation domain adap-
Model Pruning

Our approach is also inspired by many studies of sparse networks. (Frankle and Carbin 2018; Zhu and Gupta 2017; Liu et al. 2018; Masana et al. 2017; Frankle and Carbin 2018; Liu et al. 2018) reevaluate unstructured network pruning to highlight the importance of sparse network structure. Zhu and Gupta (2017) introduce advanced pruning technique to compress the model. Sun et al. (2019) learn sparse sharing architecture for multi-task learning. Hung et al. (2019) introduce compact parameter subnetwork for continual learning. Different from these work, PRUNE-TUNE aims at finding the best sparse structure for a specific domain based on an NMT model trained on large scale general domain data. Model pruning is an effective method for our approach.

Conclusion and Future Work

In this work, we propose PRUNE-TUNE, an effective way for adapting neural machine translation models which first generates an informative subnetwork for the general domain via gradual pruning and then fine-tunes the unnecessary parameters for the target domain. By doing so, PRUNE-TUNE is able to retain as much general information as possible and alleviate the catastrophic forgetting problems. Experiments show that the proposed PRUNE-TUNE outperforms fine-tuning and several strong baselines and it is shown to be much more robust compared to fine-tuning due to the complete retraining of the general information. Beyond that, PRUNE-TUNE can be extended to adapting multiple domains by iteratively pruning and tuning, which is naturally suitable for multi-lingual scenario. We leave the multilingual problem as our future work.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. We would also like to thank Zehui Lin, Yang Wei, Daqing Wang, Zewei Sun, and Kexin Huang for their useful suggestions and help with experiments. This work was supported by the National Key Research and Development Program of China (No. 2017YFB1002104).

References

Axelrod, A.; He, X.; and Gao, J. 2011. Domain adaptation via pseudo in-domain data selection. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, 355–362.

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Bapna, A.; and Fırat, O. 2019. Simple, Scalable Adaptation for Neural Machine Translation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 1538–1548.

Chen, B.; Cherry, C.; Foster, G.; and Larkin, S. 2017. Cost weighting for neural machine translation domain adaptation. In Proceedings of the First Workshop on Neural Machine Translation, 40–46.

Chinae-Rios, M.; Peris, A.; and Casacuberta, F. 2017. Adapting neural machine translation with parallel synthetic data. In Proceedings of the Second Conference on Machine Translation, 138–147.

Chu, C.; Dabre, R.; and Kurohashi, S. 2017. An empirical comparison of domain adaptation methods for neural machine translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 385–391.

Chu, C.; and Wang, R. 2018. A survey of domain adaptation for neural machine translation. arXiv preprint arXiv:1806.00258.

Frankle, J.; and Carbin, M. 2018. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks. In International Conference on Learning Representations.

Freitag, M.; and Al-Onaizan, Y. 2016. Fast domain adaptation for neural machine translation. arXiv preprint arXiv:1612.06897.

Gu, S.; Feng, Y.; and Liu, Q. 2019. Improving domain adaptation translation with domain invariant and specific information. arXiv preprint arXiv:1904.03879.

Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning both weights and connections for efficient neural network. In Advances in neural information processing systems, 1135–1143.

Hung, C.-Y.; Tu, C.-H.; Wu, C.-E.; Chen, C.-H.; Chan, Y.-M.; and Chen, C.-S. 2019. Compacting, Picking and Growing for Unforgetting Continual Learning. In Advances in Neural Information Processing Systems, 13669–13679.

Kalchbrenner, N.; and Blunsom, P. 2013. Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 1700–1709.

Khayrallah, H.; Thompson, B.; Duh, K.; and Koehn, P. 2018. Regularized training objective for continued training for domain adaptation in neural machine translation. In Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, 36–44.

Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-Barwinska, A.; et al. 2017. Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences 114(13): 3521–3526.

Koehn, P.; and Schroeder, J. 2007. Experiments in domain adaptation for statistical machine translation. In Proceedings of the second workshop on statistical machine translation, 224–227.
Kudo, T.; and Richardson, J. 2018. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 66–71.

LeCun, Y.; Denker, J. S.; and Solla, S. A. 1990. Optimal brain damage. In Advances in neural information processing systems, 598–605.

Lee, C.; Cho, K.; and Kang, W. 2019. Mixout: Effective regularization to finetune large-scale pretrained language models. arXiv preprint arXiv:1909.11299.

Li, H.; Kadav, A.; Durdanovic, I.; Samet, H.; and Graf, H. P. 2016. Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710.

Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018. Rethinking the Value of Network Pruning. In International Conference on Learning Representations.

Luong, M.-T.; and Manning, C. D. 2015. Stanford neural machine translation systems for spoken language domains. In Proceedings of the International Workshop on Spoken Language Translation, 76–79.

Mallya, A.; Davis, D.; and Lazebnik, S. 2018. Piggyback: Adapting a single network to multiple tasks by learning to mask weights. In Proceedings of the European Conference on Computer Vision (ECCV), 67–82.

Mallya, A.; and Lazebnik, S. 2018. Packnet: Adding multiple tasks to a single network by iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7765–7773.

Masana, M.; van de Weijer, J.; Herranz, L.; Bagdanov, A. D.; and Alvarez, J. M. 2017. Domain-adaptive deep network compression. In Proceedings of the IEEE International Conference on Computer Vision, 4289–4297.

Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002. BLEU: a method for automatic evaluation of machine translation. In ACL.

Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter, S. 2019. Continual lifelong learning with neural networks: A review. Neural Networks 113: 54–71.

Saunders, D.; Stahlberg, F.; de Gispert, A.; and Byrne, B. 2019. Domain adaptive inference for neural machine translation. arXiv preprint arXiv:1906.00408.

Sennrich, R.; Haddow, B.; and Birch, A. 2016a. Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 86–96.

Sennrich, R.; Haddow, B.; and Birch, A. 2016b. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1715–1725.

Sun, T.; Shao, Y.; Li, X.; Liu, P.; Yan, H.; Qiu, X.; and Huang, X. 2019. Learning sparse sharing architectures for multiple tasks. arXiv preprint arXiv:1911.05034.

Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, 3104–3112.

Thompson, B.; Gwinnup, J.; Khayrallah, H.; Duh, K.; and Koehn, P. 2019. Overcoming catastrophic forgetting during domain adaptation of neural machine translation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2062–2068.

Thompson, B.; Khayrallah, H.; Anastasopoulos, A.; McCarthy, A. D.; Duh, K.; Marvin, R.; McNamee, P.; Gwinnup, J.; Anderson, T.; and Koehn, P. 2018. Freezing Subnetworks to Analyze Domain Adaptation in Neural Machine Translation. In Proceedings of the Third Conference on Machine Translation: Research Papers, 124–132.

Tian, L.; Wong, D. F.; Chao, L. S.; Quaresma, P.; Oliveira, F.; Lu, Y.; Li, S.; Wang, Y.; and Wang, L. 2014. UM-Corpus: A Large English-Chinese Parallel Corpus for Statistical Machine Translation. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), 1837–1842.

Tiedemann, J. 2012. Parallel Data, Tools and Interfaces in OPUS. In Proceedings of the 8th International Conference on Language Resources and Evaluation (LREC’2012).

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention is all you need. In Advances in neural information processing systems, 5998–6008.

Vilar, D. 2018. Learning hidden unit contribution for adapting neural machine translation models. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 500–505.

Wang, W.; Tian, Y.; Ngiam, J.; Yang, Y.; Caswell, I.; and Parekh, Z. 2020. Learning a Multi-Domain Curriculum for Neural Machine Translation. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, 7711–7723.

Wuebker, J.; Simianer, P.; and DeNero, J. 2018. Compact Personalized Models for Neural Machine Translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 881–886.

Zeng, J.; Liu, Y.; Su, J.; Ge, Y.; Lu, Y.; Yin, Y.; and Luo, J. 2019. Iterative dual domain adaptation for neural machine translation. arXiv preprint arXiv:1912.07239.

Zhang, T.; Wu, F.; Katiyar, A.; Weinberger, K. Q.; and Artzi, Y. 2020. Revisiting Few-sample BERT Fine-tuning. arXiv preprint arXiv:2006.05987.

Zhu, M.; and Gupta, S. 2017. To prune, or not to prune: exploring the efficacy of pruning for model compression. arXiv preprint arXiv:1710.01878.