КЛІНІЧНА МЕДИЦИНА

СПИСОК ЛІТЕРАТУРИ

1. Булашова О.В. Мультифокальный атеросклероз у больных ишемической болезнью сердца / О.В. Булашова, И.М. Игнатьев, Р.А. Бредихин // Клинич. медицина. – 2003. – № 12. – С. 32-35.

2. Комаров А.Л. Частота поражений различных сосудистых бассейнов и медикаментозное лечение больных с высоким риском атеротромботических осложнений. Российские результаты международного исследования AGATHA / А. Л. Комаров, Е.П. Панченко // Кардиология. – 2004. – № 11. – С. 39-43.

3. Корнева В.А. Мультифокальный атеросклероз: клинико-патогенетические синдромы / В.А. Корнева, Н.В. Долбикова, В.И. Мазуров // Регионарное кровообращение и микроциркуляция. - 2006.- Т. 5, № 4.- С. 45-52.

4. Мамедалиева С.А. Ишемический инсульт, обусловленный атеротромбозом сонных артерий / С.А. Мамедалиева // Новости медицины и фармации. – 2008. – № 13-14. – С. 249-250.

5. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol / Van A.G. Norden, de K.F. Laat, R.A. Gons [et al.] BMC Neurology. 2011. – Vol. 11. – P. 29.

6. Ernest Palomeras Soler. Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences / Ernest Palomeras Soler, Virgina Casado Ruiz // Current Cardiology Reviews. – 2010. – Vol. 6. – P. 138-149.

7. Intracranial Atherosclerosis: The Natural History and Management Strategies / Ossama Mansour, Martin Schumacher, Mohammad A. Farrag, Foad Abd-Allah // World J. Cardiovascular Diseases. – 2014. – Vol. 4, N 7. – P. 350-360.

8. Self-report of stroke, transient ischemic attack, or stroke symptoms and risk of future stroke in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Stroke / S.E. Judd, D.O. Kleindorfer, L.A. McClure [et al.] // J. Cerebral Circulation. – 2013. – Vol. 44, N 1. – P. 55-60.

МОРФОМЕТРИЧНИЙ АНАЛІЗ
ПАНЦИТОКЕРАТИН-НЕГАТИВНИХ
НЕОПЛАСТИЧНИХ УШКОДЖЕНЬ
ЛІМФАТИЧНИХ ВУЗЛІВ ШІЇ

Д3 «Дніпропетровська медична академія МОЗ України»
кафедра патологічної анатомії і судової медицини
(зав. – к. мед. н., доц. О.А. Алексєєнко)
вуzel. В. Вернадського, 9, Дніпро, 49044, Україна
SE «Dnipropetrovsk medical academy of Health Ministry of Ukraine»
Department of Pathological Anatomy and Forensic Medicine
V. Vernadsky str., 9, Dnipro, 49044, Ukraine
e-mail: alexandra.poslavskaya@gmail.com

Ключові слова: лімфатичні вузли шиї, імуногістохімія, морфометрія, ImageJ
Key words: lymph nodes of the neck, immunohistochemistry, morphometry, ImageJ

Реферат. Морфометричний аналіз панцитокератин-негативних неопластичних повреждень лимфатичних узлів шеї. Пославська А.В., Щопняка И.С., Гриценко П.А., Алексєєнко А.А. Пациенты, имеющие диагноз рак с неизвестной первичной локализацией (РНПЛ), в основном относятся к категории онкологической коагуляции с клинической манифестацией увеличение лимфатических узлов. Случаи РНПЛ занимают 3-5% всех неоплазий любых локализаций и только 20% из них имеют прогностически лучшие шансы

https://doi.org/10.26641/2307-0404.2018.1.124915

УДК 616-006.04-076-097.3-079.4

30
Пациенты, что мают діагноз рак з невідомою первиною локалізацією (РНПЛ), здебільшого відносяться до категорії онкологічної когорти з клінічною маніфестацію збільшення лімфатичних вузлів [3, 4]. І знахідка атипичних (часто апластичних) клітин під час біопсії призводить до необхідності проведення імуногістохімічного дослідження та розширеного клінічного обстеження пацієнта для встановлення гістогенезу пухлинного процесу. За даними останніх досліджень, випадки РНПЛ займають 3-5% всіх неоплазій будь-яких локалізацій і тільки 20% з них мають прогностично кращі шанси порівняно з іншими 80%. Сприятливі фенотипи включають в себе характеристики статі, локалізації й кількості метастазів, гістологічного типу пухлин та ін. Таким чином складається система характеристик, яка дає уявлення про прогноз РНПЛ. Наприклад: жінки з аденокарциномою, що ураже виключно аксиллярних лімфатичних вузлів, або чоловіки з метастазами кісток та інші виснаження простат-специфічного антигену мають більші шанси, ніж пацієнти з метастазами в печінку або плоскоклітинною карциномою че- ревної порожнини. Треба відзначити, що до сприятливого варіанту, який ураже лімфатичні вузли шиї, належить тільки один фенотип, і це плоскоклітинна карцинома [5, 6, 7]. 60% всіх випадків РНПЛ виявляються аденокарциномою помірного (60%), низького ступеню диференціювання або взагалі недиференційовані (30%), плоскоклітинних карцином - приблизно 5% і вагалі недиференційованих пухлин - також 5% [2]. Саме ІГХ методу відводиться первинна роль у досліджені гістогенезу РНПЛ. У численних дослідженнях останніх десятиріч розроблені алгоритми використання первинної панелі ІГХ маркерів, що дозволяють морфологічно недиференційовані (анапластичні, плеоморфні) пухлини розподілити за походженням на епітеліальні, мезенхімальні, гемоцитичні або меланоцитарні на підставі визначення складу проміжних філа- ментів (цитокератинів, віментину, нейрофіліментів тощо). Але дослідження додаткових морфологічних та імуногістохімічних ознак пухлин без відомих первинних локалізацій для більш глибокого розуміння патогенезу та прогнозу перебігу залишається актуальним і до теперішнього часу.
Мета – дослідити комплекс морфологічних, морфометричних та імуногістохімічних характеристик елементів пухлинної тканини метастатичного походження в лімфатичних вузлах шиї для вдосконалення діагностичних алгоритмів.

МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕНЬ
Дослідження виконано в рамках науково-дослідної роботи кафедри патологічної анатомії і судової медицини ДЗ «Дніпропетровська медич- на академія МОЗ України» «Розробка діагностичних та прогностичних критеріїв новоутворень різних локалізацій з урахуванням біологічних показників активності пухлинного процесу»
Було проведено ретроспективне дослідження 41 спостереження неопластичного ураження лімфатичних вузлів шиї (ЛВШ) (у 4 випадках поєднане з надключичною ділянкою) без інших клінічних маніфестацій першвої локалізації пухлини. Всі зразки були доставлені в морфологічний відділ лікувально-діагностичного центру ТОВ «Аптеки медичної академії» (м. Дніпро) після первинного морфологічного дослідження для ГХ диференційної діагностики за період серпень 2016 р. - липень 2017 р. Середній вік пацієнтів становив 47,68±16,41 року (медіана 46). Для морфометричного методу використовувалась камера мікроскопа Zeiss Primo Star - AxioCam ERC 5s з ліцензованим програмним забезпеченням ZEN 2 blue edition, інформативні поля зору були зафіксовані у форматі jpg і оброблені в програмі ImageJ з визначенням периметру, площі та крутись ядер, згідно з методикою, описаною в інших публікаціях [1, 2].

Імуногістохімічне дослідження проводилось згідно з протоколами компанії TermoScientific (TS, США). У зрізах завтовшки 4 мкм використовували систему візуалізації Lab Vision Quanto (TS, США) з виявленням білкового ланцюга за допомогою DAB Quanto Chromogen (TS, США). Характеристики моноклональних антитіл занесені в таблицю 1. Статистичний аналіз параметрів площі, периметру та коефіцієнту круглості клітин проводили в програмах ImageJ та Microsoft Excel з розрахунком мінімального, максимального, медіанного, середнього арфметичного та стандартного відхилення [1, 2].

Таблиця 1

Первинні моноклональні антитіла	Клон (разведення)	Локалізація специфічної реакції
Cytokeratin, Pan	AE1/AE3(1:200)	Цитоплазма
Vimentin	V9 (1:250)	Цитоплазма
CD45	Ab-3 (1:200)	Мембрана
S100	Ab-1 (1:100)	Цитоплазма

РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

Ідентифікація метастатичних злоякісних новоутворень починається з аналізу морфології пухлинних клітин, порівнюючи з лімфоїдною тканиною лімфатичного вузла. Для визначення питання про наявність ушкодження ЛВШ онколоґічним захворюванням треба відокремити пухлинні клітини від навколишнього реактивного середовища. У мікрофотографіях зрізів ЛВШ з кортикальною гіперплазією (без непластичного ушкодження) в програмі ImageJ були визначенні морфометричні параметри звичайних лімфоцитів для подальшого порівняння їх розмірів з параметрами непластичних клітин (табл. 2, рис. 1). Окрім площі та периметру об’єктів, ця програма дозволяє розрахувати коефіцієнти «круглості», що надає більше інформації про варіант відмінності пухлинних клітин, порівняно з лімфоїдною тканиною ЛВШ.

Таблиця 2

Показники морфометричного дослідження звичайних лімфоцитів ЛВШ у програмі ImageJ, мкм², мкм	Площа (мкм²)	Периметр (мкм)	Коефіцієнт «круглості» (параметр ImageJ)
Середнє значення	16,738	15,993	0,746
Стандартне відхилення	2,693	1,541	0,098
Мінімальне значення	11,708	13,127	0,514
Максимальне значення	23,028	19,008	0,927
Аналізуючи дані таблиці 2, відзначаємо невеликі за площею 16,738±2,693 мкм² (від 11,708 до 23,028 мкм²) та периметром 15,993±1,541 мкм² (від 13,127 до 19,008 мкм²), більшою мірою однакової (невеликі стандарти відхилення), помірної круглості (0,746±0,098) клітини, що стали в цьому дослідженні еталоном оцінювання параметрів для неопластичних клітин.

Найбільшу проблему в діагностиці анапластичних пухлин становлять малі за діаметром круглоклітинні патерни, так звані «small round cell tumors», які можуть міститись у різних за гістогенезом пухлинах. Морфологічні особливості таких підтипів — це невеликі, круглі/овальні, тісно упаковані недиференційовані клітини з високим ядерно-цитоплазматичним співвідношенням, «слабкою» цитоплазмою та круглими ядрами з рівномірно розподіленим, трохи грубим хроматином.

алгоритм ікх аналізу подібного ушкодження починається зі встановлення лінії детермінації, для чого використовують ікх маркери до про-міжних філаментів: Cytokeratin, Pan AE1/AE3 (епітеліальне походження), загальний лейкоцитарний антиген CD45 (гемопоетичне), Vimentin (мезенхімальне), S100 (меланоцитарне). Окрім позитивності на ці маркери, ми пропонуємо (для зменшення суб’єктивності оцінювання) враховувати реальні розміри ядер неопластичних клітин, що були визначені нами в програмі ImageJ.

Після проведення першої ланки ікх дослідження (Cytokeratin, Pan AE1/AE3; Vimentin; CD45, S100), виявилися 5 досить різних фенотипів, але треба відзначити, що більшу частину ушкоджень представляли Cytokeratin, Pan AE1/AE3 — негативні (-); Vimentin – частково позитивні (+/-) або строго позитивні (+) ураження ЛВШ (27 із 41 спостереження, 65,85%):

- 23 із 41 (56,10%) Cytokeratin, Pan AE1/AE3 – негативних (-); Vimentin - часківо позитивних (+/-), CD45 (+) – позитивних; S100 (+) – негативних;
- 2 із 41 (4,88%) Cytokeratin, Pan AE1/AE3 – негативних (-); Vimentin – строго позитивних (+); CD45 (-) – негативних, S100 (+) – позитивних;
- 2 із 41 (4,88%) Cytokeratin, Pan AE1/AE3 – негативних (-); Vimentin – строго позитивних (+); CD45 (-) – негативних, S100 (-) – негативних;
- 10 із 41 (24,39%) Cytokeratin, Pan AE1/AE3 – позитивних (+) й Vimentin – строго негативних (-), CD45 (-) – негативних, S100 (+) – позитивних;
- 4 із 41 (9,8%) Cytokeratin, Pan AE1/AE3 – позитивних (+); Vimentin - позитивних (+); CD45 (-) – негативних; S100 (+) – негативних.

Дослідження морфології та параметрів ядер першої підгрупи Cytokeratin, Pan AE1/AE3 – негативних (-); Vimentin - частково позитивних (+/-), CD45 (+) – позитивних; S100 (+) – негативних.
фенотипів злоякісних пухлин дозволило розділити їх на три підгрупи:
1.1 підгрупа (6 із 23 спостережень, 26,08%) – мали (менше або на рівні звичайних лімфоцитів ЛВШ) за мономорфні круглі дисоційовані клітини без десмопластичної реакції строми, яким відповідали фенотипи лімфомі з малих лімфоцитів / хронічний лімфолейкоз, лімфоми з клітин маргінальної зони, крупноклітинної В-клітинної лімфоми, збагаченої T-клітинами (табл. 3, рис. 2 А).

Показники морфометрії неопластичних клітин	Площа (мкм²)	Периметр (мкм)	Коефіцієнт «круглості» (параметр ImageJ)
Середнє значення	14,902	15,227	0,892
Стандартне відхилення	1,263	0,954	0,049
Мінімальне значення	13,039	13,610	0,804
Максимальне значення	17,389	17,973	0,990

1.2 підгрупа (7 із 23 спостережень, 30,43%) характеризувалась середніми розмірами ядер, які в 1,5-2,5 рази перевищували розміри звичайних лімфоцитів ЛВШ. Пухлинна тканина складалась з поліморфноядерних клітин приблизно одного розміру (35,912±6,911 мкм² і 23,380±1,902 мкм) та помірної круглості (0,798±0,099) з окремими поодинокими крупними анапластичними клітинами (площею до 52,566 мкм² та периметром до 27,642мкм) (табл. 4, рис. 2 Б). Діагнози, що відповідали таким розмірам, виявилися дифузно крупноклітинною В-клітинною лімфомою, фолікулярною лімфомою, хворобою Кастлємана, неспецифіцировано периферійною Т-клітинною лімфомою.

Показники морфометрії неопластичних клітин	Площа (мкм²)	Периметр (мкм)	Коефіцієнт «круглості» (параметр ImageJ)
Середнє значення	35,912	23,380	0,798
Стандартне відхилення	6,911	1,902	0,099
Мінімальне значення	24,613	20,388	0,581
Максимальне значення	52,566	27,642	0,977

1.3 підгрупа (10 із 23 спостережень, 43,48%), середні розміри пухлинних клітин якої в 3-4 рази перевищують розміри звичайних лімфоцитів ЛВШ. Це двокомпонентна дисоційована пухлинна тканина з крупними анапластичними ядрами до 107,630 мкм² (у 4 рази більше лімфоцитів) та клітинами оточення, ядра яких лише в 1,5 рази крупніші від еталона (від 26,839 мкм²), обидва компоненти клітин помірної круглості (0,732±0,107). Таким характеристикам відповідав фенотип різних варіантів класичної лімфоми Ходжкіна (табл. 5, рис. 2 Б).
Наступний фенотип 2 із 41 (4,88%) Cytokeratin, Pan AE1/AE3 – негативних (-); Vimentin – строго позитивних (+); CD45 (+) – негативних, S100 (+) – позитивних неопластичних уражень мав значні зміни в морфології порівняно з попередніми підгрупами. Клітини цих випадків характеризувались здебільшого круглими ядрами (0,802±0,133) середніх розмірів (45,914±9,431 мкм² та 26,062±2,799 мкм), але з рясною еозинофільною цитоплазмою, що мали як ділянки дисоціації клітин, так і солідний тип будови тканини (рис. 1 Г). Клітини метастатичного ураження ЛВШ за розміром варіювали від 59,294 мкм² до 49,642±10,607 мкм² / 30,643±3,729 мкм² відповідно), але різні коефіцієнти круглості (0,737±0,140 та 0,460±0,097 відповідно). Результати морфометричного дослідження відображають різні морфологічні особливості цих Vimentin (+) ушкоджень ЛВШ. Характеристики першого випадку включали клітини середнього розміру та помірної круглості з високим ядерно-цитоплазматичним коефіцієнтом (мало цитоплазми) і гіперхромними ядрами без ядерець (рис. 1 Г), остаточний діагноз після другого етапу IGХ – метастаз альвеолярної рабдоміосаркоми. У другому випадку – це неоплазія з яскравим мезенхімоподібним диференціюванням, таким як
дифузно розташовані витягнуті клітини середнього розміру без гнізд розташування і реактивної сполучної тканини, із судинами, що розташовані безпосередньо між пухлинними клітинами (рис.1 Д), остаточний діагноз після другого етапу ІГХ був метастаз фібросаркоми.

Морфометричні показники третьої підгрупи Cytokeratin, Pan AE1/AE3 (-), Vimentin (+/-), CD45 (+), S100 (-) фенотипу ушкоджень ЛВШ

Показники морфометрії імінцентів шийного лімфоузлу	Площа (мкм²)	Периметр (мкм)	Коефіцієнт «круглості» (параметр ImageJ)
Середнє значення	55,395	29,391	0,732
Стандартне відхилення	20,642	5,822	0,107
Мінімальне значення	26,839	20,269	0,547
Максимальне значення	107,630	38,625	0,919

Треба відзначити, що більшість пацієнтів з метастатичним процесом без встановленої первинної локалізації зразу направляються на первинну біопсію без інших додаткових методів дослідження, що зазвичай допомагають патологоанатому зустріти імуногістохімічну панель маркерів «для пошуку локалізації» і тим зменшити вартість діагностики. Таким чином, економічний аспект «пошуку локалізації пухлини» повністю лягає на плечі онкохворого, а патологоанатом повинен розраховувати тільки на своїй досвід, не маючи можливості скористатися клінічними аспектами онкозахворювання, що спостерігає клініко-мorfологічний підхід у формуванні діагнозу. Як результат, навіть сприятливі випадки РНПЛ мають сумнівний прогноз внаслідок пізньої або неповної діагностики.

Підсумок
Таким чином, при гістологічному дослідженні біоптатів неопластичних уражень лімфатичних вузлів доцільно використовувати поряд із первинною панеллю ІГХ маркерів об’єктивні параметри ядер пухлинних клітин (площа, периметр, коефіцієнт «круглості»), порівнюючи їх з розмірами звичайних лімфоцитів. Обробка цифрових мікрофотографій зрізів, забарвлених гематоксиліном-еозином, не потребує додаткових економічних витрат, зменшує суб’єктивність оцінювання і суттєво допомагає визначити діагностичний алгоритм другого етапу ІГХ дослідження.

Список літератури
1. Пославська О.В. Визначення лінійних розмірів та площ окремих морфологічних об’єктів на мікрофотографіях за допомогою програми ImageJ / О.В. Пославська // Морфологія. – 2016. – Т. 10, № 3. – С. 377-381.
2. Пославська О.В. Методологія використання програмного забезпечення для аналізу цифрових мікрофотографій на базі курсу патоморфології з метою підвищення професійного рівня студентів, аспірантів, докторів медичних закладів / О.В. Пославська // Морфологія. – 2015. – Т. 9, № 3. – С. 122-126.
3. Cancer of unknown primary (CUP) presenting as a Spigelian hernia: a case report / A. Carollo, T. Rosenkranz, D.J. Smith // J. Surg. Case. Rep. – 2017. – Vol. 2017, N 4. – Р. rjw218.
4. Carcinoma of Unknown Primary Site: Outcomes in Patients with a Colorectal Molecular Profile Treated with Site Specific Chemotherapy / F. Anthony Greco, Wayne J. Lennington, David R. Spigel et al.] // J. Cancer Therapy. – 2012. – Vol. 3. – Р. 37-43.
5. Fletcher C.D.M. Diagnostic histopathology of tumors / C.D.M. Fletcher. – 4th ed. – PA: Elsevier, 2013. – 1148 p.
6. Hanahan D. Hallmarks of cancer: the next generation / D. Hanahan, R.A. Weinberg // Cell. – 2011. – Vol. 144. – P. 646-674.
7. Health service utilisation and investigations before diagnosis of cancer of unknown primary (CUP): A population-based nested case-control study in Australian Government Department of Veterans’ Affairs clients / C. M. Vajdic, A. L. Schaffer, T. A. Dobbins et al.] // Cancer Epidemiol. – 2015. – Vol. 39, N 4. – P. 585-592.
8. Lin F. Immunohistochemistry in Undifferentiated Neoplasms / Tumor of Uncertain Origin / F. Lin, H. Liu // Arch. Pathol. Lab. Med. – 2014. – Vol. 138. – Р. 1583-1610.
REFERENCES

1. Poslavskaya OV. [Determination of linear dimensions and square square surfaces areas of morphological objects on micrographs using ImageJ software]. Morphologia. 2016;10(3):377-81. Ukrainian.
2. Poslavska OV. [Methodology for the use of software for the analysis of digital micrographs on the base of pathomorphology course in order to increase the professional level of students and scientists]. Morphologia. 2015;9(3):122-6. Ukrainian.
3. Carollo A, Rosenkranz T, Smith DJ. Cancer of unknown primary (CUP) presenting as a Spigelian hernia: a case report. J Surg Case Rep. 2017;2017(4):rjw218.
4. Greco FA, Lennington WJ, Spigel DR, Varadcharsy GR, Hainsworth JD. Carcinoma of Unknown Primary Site: Outcomes in Patients with a Colorectal Molecular Profile Treated with Site Specific Chemotherapy. Journal of Cancer Therapy. 2012;3:37-43.
5. Fletcher CDM. author. Diagnostic histopathology of tumors. 4th ed. PA: Elsevier. 2013;1148.
6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74.
7. Vajdic CM, Schaffer AL, Dobbins TA, Ward RL, Er CC, Pearson SA. Health service utilisation and investigations before diagnosis of cancer of unknown primary (CUP): A population-based nested case-control study in Australian Government Department of Veterans’ Affairs clients. Cancer Epidemiol. 2015;39(4):585-92.
8. Lin F, Haiyan Liu. Immunohistochemistry in Undifferentiated Neoplasm / Tumor of Uncertain Origin. Arch Pathol Lab Med. 2014;138:1583-610.