Abstract

Given $X \subseteq \mathbb{Z}_N$, X is called a cyclic basis if $(X + X) \cup X = \mathbb{Z}_N$, symmetric if $x \in X$ implies $-x \in X$, and sum-free if $(X + X) \cap X = \emptyset$. We ask, for which $m, N \in \mathbb{Z}^+$ can the set of non-identity elements of \mathbb{Z}_N be partitioned into m symmetric sum-free cyclic bases? If, in addition, we require that distinct cyclic bases interact in a certain way, we get a proper relation algebra called a Ramsey algebra. Ramsey algebras (which have also been called Monk algebras) have been constructed previously for $2 \leq m \leq 7$. In this manuscript, we provide constructions of Ramsey algebras for every positive integer m with $2 \leq m \leq 400$, with the exception of $m = 8$ and $m = 13$.

1 Introduction and motivation

Let N be a positive integer, and let \mathbb{Z}_N denote the ring of integers modulo N. For $X \subseteq \mathbb{Z}_N$, let

$$X + X = \{x_1 + x_2 : x_1, x_2 \in X\}.$$

A subset $X \subseteq \mathbb{Z}_N$ is called a cyclic basis for \mathbb{Z}_N if $(X + X) \cup X = \mathbb{Z}_N$. A cyclic basis X is called sum-free if $(X + X) \cap X = \emptyset$.

One interesting question about cyclic bases is how small they can be. More precisely, let $m(2, k)$ denote the largest N such that there is some $A \subseteq \mathbb{Z}_N$ with $|A| = k$ and $A \cup (A + A) = \mathbb{Z}_N$ (see [4]). It is easy to see that $m(2, k) = O(k^2)$; an interesting question is how large the coefficient α on k^2 can be made so that $m(2, k) \geq \alpha k^2$. The largest α currently known is $1/3 - \varepsilon$ for any $\varepsilon > 0$ and for all sufficiently large k, due to Shen and Jia [5]. Jia’s excellent manuscript [4]
provides a great background on the topic of cyclic bases as well as a healthy list of references, and the authors wish to refer the interested reader to it.

For $m \in \mathbb{Z}^+$, a partition of $\mathbb{Z}_N \setminus \{0\}$ into sets $X_0, X_1, \ldots, X_{m-1}$ is called a \textit{sum-free cyclic multi-basis} if X_i is a sum-free cyclic basis for $i = 0, 1, \ldots, m - 1$.

A subset $X \subseteq \mathbb{Z}_N$ is called \textit{symmetric} if $\forall x \in X \rightarrow -x \in X$; that is, X is closed under additive inverse. We take a moment to note that if X is symmetric, then $X - X = X + X$.

For ease, if a partition is a symmetric sum-free cyclic multi-basis, we shall call it an \textit{SSFCMB}.

We also desire our partitions to have one more property: $\forall i \forall j (i \neq j \rightarrow X_i + X_j = \mathbb{Z}_N \setminus \{0\})$.

If a partition has this property, we shall say that the partition satisfies the \textit{mandatory triangle condition}. (The reason for this term is due to the connection to Ramsey algebras, which will be made clear shortly.)

The smallest example of a non-trivial SSFCMB which satisfies the mandatory triangle condition has parameters $m = 2$ and $N = 5$. The partition of $\mathbb{Z}_5 \setminus \{0\}$ that we use is $X_0 = \{1, 4\}$ and $X_1 = \{2, 3\}$. We leave it to the reader to check that this partition is an SSFCMB possessing the mandatory triangle condition. The next smallest example has parameters $m = 3$ and $N = 13$. Here, the partition of $\mathbb{Z}_{13} \setminus \{0\}$ is

- $X_0 = \{1, 5, 8, 12\}$
- $X_1 = \{2, 3, 10, 11\}$, and
- $X_2 = \{4, 6, 7, 9\}$.

In [1], Comer constructs these previous two examples as well several others. The focus of this manuscript is to attack the following question: given $m \in \mathbb{Z}^+$, can we find $N \in \mathbb{Z}^+$ and a partition of $\mathbb{Z}_N \setminus \{0\}$ into m parts which is an SSFCMB that satisfies the mandatory triangle condition? Our main result is summarized below as Theorem 1.

Theorem 1. For every positive integer m with $2 \leq m \leq 400$, with the possible exception of $m = 8$ and $m = 13$, there exists a positive integer N and a partition of $\mathbb{Z}_N \setminus \{0\}$ which is an SSFCMB that satisfies the mandatory triangle condition.

The proof of Theorem 1 is based on an optimized computer search, whose inception was based in the ideas of Comer and Maddux. Section 2 describes our search algorithm. Section 3 describes how we have optimized the search. Appendix A contains the results of the search, summarized as a table of values of m and N, with enough information to recreate the partition (for the curious reader).

Before we get to the search algorithm, we wish to discuss the connection between SSFCMBs and the theory of relation algebras. A \textit{(proper) relation algebra} is an algebra $\langle A, \cup, \cdot, \circ^{-1}, Id \rangle$, where A is a subset of the power set of some equivalence relation E that forms a Boolean algebra $\langle A, \cup, \cdot \rangle$, the operator
is composition of relations, the operator \(-1 \) is conversion of relations, and \(Id \) is the identity subrelation of \(E \). A \textit{Ramsey algebra in \(m \) colors} is a proper relation algebra where all of the \textit{atoms} (i.e., minimal non-empty relations) \(A_0, \ldots, A_{m-1} \) distinct from \(Id \) satisfy

1. \(A^{-1}_i = A_i \);
2. \(A_i \circ A_i = A^c_i \);
3. for \(i \neq j \), \(A_i \circ A_j = Id \).

A \textit{cyclic Ramsey algebra in \(m \) colors} is a Ramsey algebra where \(E = \mathbb{Z}_N \times \mathbb{Z}_N \) for some \(N \in \mathbb{Z}^+ \), and all of the atoms \(A_i \) are defined by “difference sets” \(X_i \), so that \(A_i = \{(x, y) : x - y \in X_i \} \), where \(-X_i = X_i \). In this case, each \(X_i \subseteq \mathbb{Z}_N \) is a symmetric sum-free cyclic basis, since it must satisfy \(X_i + X_i = \mathbb{Z}_N \setminus X_i \). Furthermore, the collection \(X_0, \ldots, X_{m-1} \) is an SSFCMB for \(\mathbb{Z}_N \) that has the additional property that each sum \(X_i + X_j \) is as large as it can possibly be; that is,

\[
\forall i, X_i + X_i = \mathbb{Z}_N \setminus X_i \quad \text{and} \quad (1)
\]

\[
\forall i \neq j, X_i + X_j = \mathbb{Z}_N \setminus \{0\}. \quad (2)
\]

Thus the existence of a cyclic Ramsey algebra in \(m \) colors is equivalent to the existence of an SSFCMB in \(m \) parts satisfying (1) and (2).

Our example above with \(m = 2 \) and \(N = 5 \) is a cyclic Ramsey algebra in 2 colors. Let \(X_0 = \{1, 4\} \) and \(X_1 = \{2, 3\} \). Define two relations

\[
R = \{(x, y) \in \mathbb{Z}_5 \times \mathbb{Z}_5 : x - y \in X_0\}
\]

and

\[
B = \{(x, y) \in \mathbb{Z}_5 \times \mathbb{Z}_5 : x - y \in X_1\}.
\]

Let \(R \) and \(B \) be the two atoms besides the identity \(Id = \{(x, x) : x \in \mathbb{Z}_5\} \). They satisfy

\[
R \circ R = B \cup Id, \\
B \circ B = R \cup Id, \quad \text{and} \\
R \circ B = R \cup B.
\]

Note that \(R \circ R = B \cup Id \) follows from the fact that \(X_0 + X_0 = X_1 \cup \{0\} \), \(X_0 \) is sum-free, which means that \(R \) is “triangle-free,” as in the graph depicted in Figure 1. The graph depicts the relations \(R \) and \(B \) as sets of edges in \(K_5 \) colored red and blue, respectively.

Similarly, for \(m = 3 \) and \(N = 13 \) we can construct a cyclic Ramsey algebra in 3 colors. As above, let

\[
\begin{align*}
X_0 &= \{1, 5, 8, 12\} \\
X_1 &= \{2, 3, 10, 11\}, \quad \text{and} \\
X_2 &= \{4, 6, 7, 9\}.
\end{align*}
\]
be a partition of the non-identity elements of \(Z_{13} \). Define three relations

\[
R = \{(x, y) \in Z_{13} \times Z_{13} : x - y \in X_0\},
\]

\[
B = \{(x, y) \in Z_{13} \times Z_{13} : x - y \in X_1\}, \text{ and}
\]

\[
G = \{(x, y) \in Z_{13} \times Z_{13} : x - y \in X_2\}.
\]

See Figure 2 for a graph that depicts the relations \(R, B, \) and \(G \) as sets of edges in \(K_{13} \) colored red, blue, and green, respectively. These examples illustrate the fact that the question of the existence of Ramsey algebras can be stated in purely graph-theoretical terms.

This is where the name “Ramsey algebra” comes from — the atoms of a (cyclic) Ramsey algebra, interpreted as edge sets in a complete graph \(K_N \) instead of as symmetric binary relations, yield an edge-coloring of \(K_N \) in \(m \) colors that contains no monochromatic triangles. Note that under this interpretation, the mandatory triangle condition says that every edge participates in every possible type of triangle except for monochromatic triangles.

Let us pause briefly to discuss terminology further. The abstract-algebraic counterpart to Ramsey algebras has been used in the literature under various names for over 30 years. They were first mentioned by Maddux [9] but given no name. They have been called, variously, Monk algebras, Maddux algebras, and very recently, Ramsey algebras. In [3], Hirsch and Hodkinson use the term “Monk algebra” to refer to a more general kind of algebra in which the colors can come in different “shades”, but in their usage monochromatic triangles are still forbidden. In his 2011 talk at the AMS meeting in Iowa City [3], Maddux defined (for the first time, it would seem) a Ramsey algebra as we did above. In [6], Kowalski uses the term “Ramsey algebra” to refer to an abstract algebra, so that the Ramsey algebras of the present paper would be, in his terminology, representations of (Kowalski’s) Ramsey algebras. We choose to adopt Maddux’s
terminology, since it allows the problem of existence of Ramsey algebras to be stated in purely combinatorial terms. See Kowalski’s paper [6] for the abstract-algebraic treatment.

The question of the existence of Ramsey algebras in all numbers of colors was raised (though not in those terms) by Maddux in [9], Problem 2.7. Sometime in the mid-80s, Erdős, Szemerédi, and Trotter gave a purported proof that Ramsey algebras exists for all sufficiently large m. Comer told Trotter about the problem sometime in the early-to-mid 80s. Trotter sent a version of the purported proof to Comer via e-mail, and Comer sent it to Maddux [7]. Unfortunately, their “proof” was in error, as their construction did not satisfy the mandatory triangle condition. Comer produced constructions of cyclic Ramsey algebras for $m = 2, 3, 4, 5$ in 1983 [1]. In 2011, Maddux produced constructions for $m = 6, 7$ using the same method as Comer but with a 2011 computer. Maddux failed to construct a Ramsey algebra for $m = 8$. In [6], Kowalski simultaneously and independently derives results that match ours for $2 \leq m \leq 120$. In addition, he finds different constructions over finite fields of prime-power order. The present authors independently rediscovered Comer’s method of using so-called cyclotomic classes, and we show that Comer’s method does not work for $m = 8$, but does work for all m between 9 and 400, except possibly for $m = 13$. Therefore, cyclic Ramsey algebras in m colors exist for all m between 2 and 400, except possibly 8 and 13. In addition, we found some SSFCMBs that failed to be Ramsey algebras (because they failed to satisfy the mandatory triangle condition).
2 Description of the search algorithm

To describe the algorithm we used to search for these SSFCMBs, we first bring the reader’s attention to a property of the examples mentioned for $m = 2$ and $m = 3$. Recall that if $m = 2$, we may take $N = 5$, $X_0 = \{1, 4\}$, and $X_1 = \{2, 3\}$. Notice that $2 \in \mathbb{Z}_5$ is a generator of \mathbb{Z}^\times_5. Modulo 5, we have $X_0 = \{2^0, 2^2\}$ and $X_1 = \{2^1, 2^3\}$.

For $m = 3$, we had $N = 13$ with
\[
X_0 = \{1, 5, 8, 12\}, \quad X_1 = \{2, 3, 10, 11\}, \quad \text{and} \quad X_2 = \{4, 6, 7, 9\}.
\]

Again, 2 is a generator of \mathbb{Z}^\times_{13}, and we also have
\[
X_0 = \{2^0, 2^3, 2^6, 2^9\}, \quad X_1 = \{2^1, 2^4, 2^7, 2^{10}\}, \quad \text{and} \quad X_2 = \{2^2, 2^5, 2^8, 2^{11}\}.
\]

Based on these two constructions, we tried to continue this pattern. That is, given m, we look at primes $N = mk + 1$ with k even. We find a generator x of \mathbb{Z}_N^\times, and construct the partition
\[
X_0 = \left\{ x^0, x^m, x^{2m}, \ldots, x^{(k-1)m} \right\}
\]
with $X_i = x \cdot X_{i-1}$, for $i = 1, 2, \ldots, m - 1$.

For ease, if a partition constructed in this fashion is an SSFCMB, we shall call it a single-generator SSFCMB. We wish to make it clear that our algorithm searches only for single-generator SSFCMBs.

2.1 The search algorithm for single-generator SSFCMBs

Below we describe the search algorithm as a series of steps.

1. Use the Sieve of Eratosthenes to generate a list P of primes smaller than 2000000.

2. Fix a positive integer m.

3. Range over elements of P until we come across a prime $N \equiv 1 \pmod{2m}$.

4. Set $k = \frac{N-1}{m}$.

5. Find the prime divisors p_1, p_2, \ldots, p_r of $N - 1$.

\[\text{These two examples are well-known “folklore” among relation-algebraists, and can be found in many sources.}\]
6. Find the smallest \(x \in \mathbb{Z}_N^\times \) such that \(x^{(N-1)/p_i} \not\equiv 1 \pmod{N} \) for every \(i \in \{1, 2, \ldots, r\} \). Such \(x \) is the smallest generator of the cyclic group \(\mathbb{Z}_N^\times \).

7. Compute \(X_0 = \{ x^0, x^m, \ldots, x^{(k-1)m} \} \).

8. Check that \(X_0 \) is sum-free and that \(|X_0 + X_0| = N - k \). If it is, proceed; otherwise, discard \(N \) and keep checking the elements of \(P \).

9. For \(i = 1, 2, \ldots, m - 1 \), check that \(X_0 + X_i = \mathbb{Z}_N \setminus \{0\} \).

To see that this collection of steps is sufficient for the constructed partition to form an SSFCMB, we turn our attention to Section 3 which provides the lemmas we used to complete some of the steps.

3 Efficiency lemmas

This section consists of a collection of lemmas which are used to improve the efficiency of the search algorithm. Together, they significantly reduce the number of checks that need to be made from what would be required in a naïve approach.

Lemma 1 states that for given \(m \) and prime \(N \equiv 1 \pmod{2^m} \), it suffices to check only a single generator. Lemma 2 states that we need only to check whether the element 1 is in \(X_0 + X_0 \) to determine if \(X_0 \) is sum-free. Lemma 3 states that if \(X_0 \) is a sum-free cyclic basis, then so is \(X_i \) for \(i = 1, \ldots, m - 1 \). Lemma 4 reduces the number of calculations required to check if an SSFCMB satisfies the mandatory triangle condition from \(O(N^2) \) to \(O(N) \).

Throughout this section, we let \(m \in \mathbb{Z}^+ \) and let \(N = mk + 1 \) be a prime number. Note that a version of Lemma 1 appears in [1].

Lemma 1. If \(x \) and \(y \) are generators of \(\mathbb{Z}_N^\times \), then

\[
\left\{ x^0, x^m, x^{2m}, \ldots, x^{(k-1)m} \right\} = \left\{ y^0, y^m, y^{2m}, \ldots, y^{(k-1)m} \right\}.
\]

Proof. Suppose \(x \) and \(y \) are generators of \(\mathbb{Z}_N^\times \). We must show that every power of \(y^m \) is some power of \(x^m \).

To that end, fix a nonnegative integer \(\ell \). Since \(x \) is a generator of \(\mathbb{Z}_N^\times \), there exists an integer \(\alpha \) so that \(x^\alpha = y \). Hence,

\[
y^{\ell m} = (x^\alpha)_{\ell m} = x^{\alpha \ell m} = x^{(\alpha \ell)m},
\]

as desired. \(\square\)

Lemma 2. If \(x \) is a generator of \(\mathbb{Z}_N^\times \) and \(X_0 = \{ x^0, x^m, x^{2m}, \ldots, x^{(k-1)m} \} \), then \(X_0 \) is sum-free if and only if 1 \(\not\in (X_0 + X_0) \).
Proof. It is clear that if \(X_0 \) is sum-free, then \(\frac{1}{1} \notin (X_0 + X_0) \). For the other direction, suppose \(X_0 \) is not sum-free. This means there exist \(\alpha, \beta, \) and \(\gamma \) so that
\[
 x^{\alpha m + i} + x^{\beta m + i} = x^{\gamma m + i}.
\] (3)
If \(\min \{ \alpha, \beta, \gamma \} = \alpha \), we may factor out \(x^{\alpha m + i} \) from both sides of (3) to get
\[
 1 + x^{m(\beta - \alpha)} = x^{m(\gamma - \alpha)}, \text{ or } 1 = x^{m(\gamma - \alpha)} - x^{m(\beta - \alpha)}, \text{ so } 1 \in (X_0 - X_0) \text{. Since } X_0 \text{ is symmetric, } X_0 - X_0 = X_0 + X_0 \text{.}
\]
Similarly, if \(\min \{ \alpha, \beta, \gamma \} = \gamma \), then we may factor out \(x^{\gamma m + i} \) from both sides of (3), and get that \(1 \in (X_0 + X_0) \).

Lemma 3. Suppose \(x \) is a generator of \(Z_N^{\times} \). For \(i \in \{0, 1, \ldots, m - 1\} \), define
\[
 X_i = \{ x^i, x^{m+i}, x^{2m+i}, \ldots, x^{(k-1)m+i} \} \text{.}
\]
If \(X_0 + X_0 = Z_N \setminus X_0 \), then
\[
 X_i + X_i = Z_N \setminus X_i
\]
for all \(i \in \{1, 2, \ldots, m - 1\} \).

Proof. First we check that each \(X_i \) is sum-free. Every element of \(X_i + X_i \) is of the form
\[
 x^{\alpha m + i} + x^{\beta m + i}
\]
for some integers \(\alpha \) and \(\beta \). If there is an integer \(q \) so that \(x^{\alpha m + i} + x^{\beta m + i} = x^{q m + i} \), then by factoring out \(x^i \), we have
\[
 x^{\alpha m} + x^{\beta m} = x^{q m},
\]
which is a contradiction, as \(X_0 + X_0 = Z_N \setminus X_0 \).

Suppose \(z \in Z_N \setminus X_i \). Recall that \(x \) is a generator of \(Z_N^{\times} \), so there exists an integer \(k \) so that \(z = x^k \). Since \(x^k \notin X_i \), we have \(x^k - i \notin X_0 \). This means there exist integers \(\alpha \) and \(\beta \) so that
\[
 x^{\alpha m} + x^{\beta m} = x^{k - i}.
\]
Multiplying both sides by \(x^i \) achieves the desired result.

Lemma 4. Suppose \(x \) is a generator of \(Z_N^{\times} \). For \(i \in \{0, 1, \ldots, m - 1\} \), define
\[
 X_i = \{ x^i, x^{m+i}, x^{2m+i}, \ldots, x^{(k-1)m+i} \} \text{.}
\]
If \(X_0 + X_i = Z_N \setminus \{0\} \) for all \(i \in \{1, 2, \ldots, m - 1\} \), then
\[
 \forall i \forall j (i \neq j \rightarrow X_i + X_j = Z_N \setminus \{0\}) \text{.}
\]
Proof. Fix \(i \) and \(j \) with \(i \neq j \). Without loss of generality, say \(j > i \). Given a nonnegative integer \(k \), we need to show that there exist integers \(\alpha \) and \(\beta \) so that

\[
x^{\alpha m + i} + x^{\beta m + j} = x^k.
\]

Since \(X_0 + X_{j-i} = \mathbb{Z}_N \setminus \{0\} \), there exist integers \(\alpha \) and \(\beta \) so that

\[
x^{\alpha m} + x^{\beta m + (j-i)} = x^{k-i}.
\]

Multiplying both sides by \(x^i \) gives the desired result. \(\square \)

4 Future directions

Although we have found constructions for many values of \(m \), we have not gained any insight into any sort of pattern, as the sequence of successive moduli is not even monotonic. If there is a pattern, it currently eludes the authors.

The recursive upper bound from [2,10] gives \(R(3, 3, 3, 3, 3, 3, 3, 3, 3) \leq 109602 \). By checking every candidate prime up through this bound, we were able to determine that there is no single-generator SSFCMB for \(m = 8 \).

Theorem 2. Let \(N \in \mathbb{Z}^+ \). There does not exist a partition of \(\mathbb{Z}_N \setminus \{0\} \) into 8 parts that is a single-generator SSFCMB.

For the case of \(m = 13 \), the recursive bound is too large for the computing power available to the authors to rule out existence of a single-generator SSFCMB. (The recursive upper bound is \(\approx 1.69 \cdot 10^{103} \).) However, if there is such a construction for \(m = 13 \), the modulus \(N \) must exceed 190997. Since this value is more than 100 times the size of those moduli for other similarly small values of \(m \), we conjecture that there is no such partition for \(m = 13 \).

Conjecture 1. Let \(N \in \mathbb{Z}^+ \). There does not exist a partition of \(\mathbb{Z}_N \setminus \{0\} \) into 13 parts that is a single-generator SSFCMB.

5 Acknowledgements

The authors would like to thank Jian Shen for invaluable conversations regarding this topic. We also thank Roger Maddux for background information on Ramsey/Monk/Maddux algebras and for some independent verification, as well as the two anonymous referees for their helpful comments on the manuscript. Finally, we thank Tomasz Kowalski for the independent verification and for sharing his manuscript with us.

A Table of \(m \) and corresponding moduli

Below we include tables containing the corresponding smallest modulus \(N \) for each value of \(m \), together with the smallest generator \(x \) of \(\mathbb{Z}_N^k \) needed to
construct a single-generator SSFCMB. Notice that $N = mk + 1$ for some positive integer k in every case. To reconstruct any of the partitions, set $X_0 = \{x^0, x^m, x^{2m}, \ldots, x^{(k-1)m}\}$ and $X_i = x \cdot X_{i-1}$ for $i = 1, 2, \ldots, m - 1$. Hence, independent verification of any of the triples below is quite straightforward.

As mentioned in Section 4, the values $m = 8$ and $m = 13$ are missing from the table.

m	N	x	m	N	x	m	N	x
2	5	2	41	13367	5	78	53197	2
3	13	2	42	19993	10	79	64781	2
4	41	6	43	14621	2	80	53441	3
5	71	7	44	12497	3	81	65287	3
6	97	5	45	14401	11	82	64781	2
7	491	2	46	14537	3	83	113213	2
9	523	2	47	20117	2	84	76777	5
10	1181	7	48	18913	7	85	91121	6
11	947	2	49	22541	3	86	80153	3
12	769	11	50	22901	2	87	70123	2
14	1709	3	51	19687	5	88	67409	3
15	1291	2	52	29537	3	89	131543	5
16	1217	3	53	26501	2	90	74161	7
17	4013	2	54	21493	2	91	81173	2
18	2521	17	55	23321	3	92	80777	3
19	1901	2	56	23297	3	93	78307	2
20	2801	3	57	21319	14	94	70877	2
21	1933	5	58	30509	2	95	100511	11
22	3257	3	59	28439	11	96	136897	5
23	3221	10	60	26041	13	97	96419	6
24	4129	13	61	45263	5	98	105449	6
25	3701	2	62	27281	6	99	87517	2
26	4889	3	63	30367	5	100	95801	3
27	5563	2	64	39041	3	101	154127	5
28	8849	3	65	37181	2	102	95881	13
29	6323	2	66	29569	17	103	119687	5
30	5521	11	67	38459	2	104	131249	3
31	6263	5	68	64601	3	105	89671	6
32	5441	3	69	31741	6	106	144161	3
33	8779	11	70	45641	11	107	88811	2
34	7481	6	71	36535	3	108	122041	7
35	7841	12	72	37441	17	109	128621	2
36	10009	11	73	44531	2	110	122321	6
37	13469	2	74	58313	3	111	95461	2
38	12161	3	75	48751	3	112	122753	3
39	8971	2	76	39521	3	113	120233	3
40	14561	6	77	70379	6	114	98953	10
\begin{tabular}{	c	c	c	c	c	c	}	
\hline								
\textbf{m} & \textbf{N} & \textbf{x} & \textbf{m} & \textbf{N} & \textbf{x} \\								
\hline								
115 & 115001 & 3 & 152 & 213713 & 3 \\								
116 & 159617 & 3 & 153 & 245719 & 11 \\								
117 & 118873 & 5 & 154 & 590129 & 3 \\								
118 & 159773 & 2 & 155 & 220721 & 3 \\								
119 & 166601 & 6 & 156 & 254281 & 7 \\								
120 & 120721 & 14 & 157 & 282287 & 5 \\								
121 & 176903 & 5 & 158 & 352973 & 2 \\								
122 & 160553 & 3 & 159 & 246769 & 7 \\								
123 & 145879 & 13 & 160 & 281921 & 3 \\								
124 & 171617 & 3 & 161 & 303647 & 7 \\								
125 & 121001 & 6 & 162 & 347329 & 7 \\								
126 & 165817 & 15 & 163 & 240263 & 5 \\								
127 & 182627 & 2 & 164 & 278801 & 3 \\								
128 & 129281 & 3 & 165 & 266641 & 19 \\								
129 & 142159 & 6 & 166 & 292493 & 3 \\								
130 & 225941 & 2 & 167 & 313961 & 3 \\								
131 & 208553 & 3 & 168 & 294673 & 5 \\								
132 & 187441 & 13 & 169 & 277499 & 2 \\								
133 & 173699 & 2 & 170 & 329801 & 3 \\								
134 & 243077 & 2 & 171 & 302329 & 7 \\								
135 & 197101 & 2 & 172 & 320609 & 3 \\								
136 & 215153 & 3 & 173 & 330431 & 23 \\								
137 & 190979 & 6 & 174 & 285709 & 2 \\								
138 & 156217 & 5 & 175 & 449051 & 2 \\								
139 & 179033 & 3 & 176 & 375233 & 3 \\								
140 & 191801 & 3 & 177 & 355063 & 7 \\								
141 & 224473 & 10 & 178 & 395873 & 3 \\								
142 & 218681 & 13 & 179 & 307523 & 2 \\								
143 & 200201 & 3 & 180 & 361441 & 13 \\								
144 & 184321 & 13 & 181 & 381911 & 17 \\								
145 & 218081 & 6 & 182 & 347621 & 3 \\								
146 & 257837 & 2 & 183 & 345139 & 2 \\								
147 & 221677 & 2 & 184 & 315377 & 3 \\								
148 & 262553 & 3 & 185 & 383321 & 3 \\								
149 & 238103 & 5 & 186 & 418129 & 7 \\								
150 & 199501 & 2 & 187 & 394571 & 6 \\								
151 & 237977 & 3 & 188 & 429017 & 3 \\								
\hline								
\end{tabular}								
m	N	x	m	N	x	m	N	x
--------	------	-------	--------	------	-------	--------	------	-------
226	539237	2	264	699073	5	302	1111361	3
227	52463	5	265	880331	7	303	948391	30
228	585049	7	266	1229453	2	304	964289	3
229	583493	2	267	690997	2	305	1087631	34
230	555221	10	268	941753	3	306	1171981	2
231	609379	2	269	833363	2	307	925913	3
232	609233	3	270	689581	10	308	1153709	3
233	642149	3	271	804329	3	309	975823	3
234	496549	2	272	875297	3	310	1009361	3
235	635441	12	273	716899	3	311	1014727	5
236	575669	3	274	778509	2	312	1129441	14
237	501493	2	275	929501	3	313	1214441	3
238	637841	21	276	724777	10	314	1366529	3
239	664421	2	277	916871	7	315	1167391	14
240	653281	7	278	856241	3	316	1216601	6
241	603947	2	279	921259	2	317	1381487	5
242	691637	2	280	975521	11	318	1176601	11
243	618679	3	281	911003	2	319	1052063	5
244	746153	3	282	680749	2	320	1210241	3
245	623771	2	283	946919	7	321	1145329	7
246	661741	2	284	983777	3	322	1409717	2
247	736061	2	285	949621	10	323	1149881	7
248	631409	3	286	1035893	2	324	1082161	7
249	761443	2	287	1080269	2	325	1066001	3
250	655501	2	288	816709	13	326	1270097	3
251	646577	3	289	826541	2	327	1043131	11
252	632521	11	290	1006301	2	328	1144721	3
253	719027	5	291	1230349	2	329	1309421	10
254	689357	2	292	1073393	3	330	1151041	17
255	632911	6	293	1181963	2	331	1397483	2
256	724481	3	294	981373	6	332	1496657	3
257	668201	6	295	918041	3	333	1235431	3
258	751297	5	296	877937	3	334	1269869	2
259	746957	2	297	880903	3	335	1345361	6
260	710321	3	298	1086509	2	336	1109473	5
261	694261	2	299	1288691	2	337	1317671	11
262	793337	3	300	940801	41	338	1643357	2
263	803729	3	301	1104671	7	339	1332949	6

12
m	N	x
340	1247801	3
341	1434929	3
342	1240777	7
343	1423451	2
344	1922273	3
345	1267531	2
346	1325873	3
347	1345667	2
348	1251409	14
349	1741511	7
350	1378301	10
351	1308529	7
352	1490369	3
353	1650629	2
354	1215637	2
355	1392311	13
356	1536497	3
357	1391587	2
358	1644653	2
359	1482671	7
360	1204561	29
361	1608617	3
362	1755701	2
363	1577599	3
364	1486577	3
365	1658561	6
366	1630897	10
367	1551677	2
368	1389569	3
369	1461979	2

m	N	x
370	1400081	3
371	1570073	3
372	1490233	7
373	2387201	3
374	1831853	2
375	1695751	3
376	1711553	3
377	1627133	2
378	1751653	2
379	1685511	11
380	1931921	3
381	1423417	11
382	1642601	3
383	1607069	2
384	1545217	15
385	1657811	2
386	1818833	3
387	1963639	3
388	1689353	3
389	2059367	5
390	1861861	2
391	1730567	5
392	1821233	3
393	1758283	3
394	1795853	2
395	1837541	3
396	1744777	7
397	1971503	5
398	2173877	2
399	2108317	2
400	1772801	3

References

[1] S. D. Comer. Color schemes forbidding monochrome triangles. In Proceedings of the fourteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1983), volume 39, pages 231–236, 1983.

[2] R. E. Greenwood and A. M. Gleason. Combinatorial relations and chromatic graphs. Canad. J. Math., 7:1–7, 1955.

[3] R. Hirsch and I. Hodkinson. Relation algebras by games, volume 147 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, 2002. With a foreword by Wilfrid Hodges.
[4] X. Jia. On the exact order of asymptotic bases and bases for finite cyclic groups. In Additive number theory, pages 179–193. Springer, New York, 2010.

[5] X. Jia and J. Shen. Extremal Bases for Finite Cyclic Groups. Preprint, 2012.

[6] T. Kowalski. Representability of Ramsey relation algebras. Algebra Universalis, to appear.

[7] R. Maddux. Personal communication.

[8] R. Maddux. Do all the Ramsey algebras exist? Presented at the AMS sectional meeting in Iowa City on March 18, 2011.

[9] R. Maddux. Some varieties containing relation algebras. Trans. Amer. Math. Soc., 272(2):501–526, 1982.

[10] S. P. Radziszowski. Small Ramsey numbers. Electron. J. Combin., 1:Dynamic Survey 1, 30 pp. (electronic), 1994.