TRUNCATIONS OF THE RING OF NUMBER-THEORETIC FUNCTIONS

JAN SNELLMAN

Abstract. We study the ring Γ of all functions $\mathbb{N}^+ \to K$, endowed with the usual convolution product. Γ, which we call the ring of number-theoretic functions, is an inverse limit of the “truncations”

$$\Gamma_n = \{ f \in \Gamma | \forall m > n : f(m) = 0 \} .$$

Each Γ_n is a zero-dimensional, finitely generated K-algebra, which may be expressed as the quotient of a finitely generated polynomial ring with a stable (after reversing the order of the variables) monomial ideal. Using the description of the free minimal resolution of stable ideals given by Eliahou-Kervaire, and some additional arguments by Aramova-Herzog and Peeva, we give the Poincaré-Betti series for Γ_n.

1. Introduction

Cashwell and Everett [2] studied “the ring of number-theoretic functions”

$$\Gamma = \{ f | \mathbb{N}^+ \to K \} \quad (1)$$

where \mathbb{N}^+ is the set of positive natural numbers (we denote by \mathbb{N} the set of all natural numbers) and K is a field containing the rational numbers. Γ is endowed with component-wise addition and multiplication with scalars, and with the convolution (or Cauchy) product

$$fg(n) = \sum_{(a,b) \in (\mathbb{N}^+)^2} f(a)g(b) \quad (a,b) \in (\mathbb{N}^+)^2 \quad (a+b=n) \quad (2)$$

With these operations, Γ becomes a commutative K-algebra. It is immediate that it is a local domain; less obvious is the fact that it is a unique factorisation domain. Cashwell and Everett proved this in [2] using the isomorphism

$$\Phi : \Gamma \to K[[X]]$$

$$f \mapsto \sum f(n)x_1^{a_1}x_2^{a_2}\cdots \quad (3)$$

where $X = \{x_1, x_2, x_3, \ldots \}$, $K[[X]]$ is the “large” power series ring of all functions from the free abelian monoid $\mathcal{M} = [X]$ (the free abelian monoid generated by X) to K, and where the summation extends over all $n = p_1^{a_1}p_2^{a_2}\cdots \in \mathbb{N}^+$. Here, and henceforth, we denote by p_i the i’th prime number, with $p_1 = 2$, and by \mathcal{P} the set of all prime numbers. That (3) is an isomorphism is immediate from the following isomorphism of commutative monoids, implied by the fundamental theorem of arithmetics:

$$(\mathbb{N}^+, \cdot) \simeq \prod_{p \in \mathcal{P}} (\mathbb{N}, +) \quad (4)$$

The following number-theoretic functions are of particular interest (whenever possible, we use the same notation as in [2]):

1. The multiplicative unit ϵ given by $\epsilon(1) = 1$, $\epsilon(n) = 0$ for $n > 1$,
2. \(\lambda : \mathbb{N}^+ \to \mathbb{N} \) given by \(\lambda(1) = 0 \), \(\lambda(q_1 \cdots q_l) = l \) if \(q_1, \ldots, q_l \) are any (not necessarily distinct) prime numbers.

3. \(\tilde{\lambda} : \mathbb{N}^+ \to \mathbb{N} \) given \(\tilde{\lambda}(1) = 0 \), \(\tilde{\lambda}(p_1^{a_1} \cdots p_r^{a_r}) = \sum a_r p_r \).

4. The Möbius function \(\mu(1) = 1 \), \(\mu(n) = (-1)^v \) if \(n \) is the product of \(v \) distinct prime factors, and 0 otherwise.

5. For any \(i \in \mathbb{N}^+ \), \(\chi_i(p_i) = 1 \), and \(\chi_i(m) = 0 \) for \(m \neq p_i \). Note that under the isomorphism \(\tilde{\Phi}_i, \Phi(\chi_i) = x_i \).

The topic of this article is the study of the “truncations” \(\Gamma_n \), where for each \(n \in \mathbb{N}^+ \),

\[
\Gamma_n = \{ f \in \Gamma \mid m > n \implies f(m) = 0 \} \tag{5}
\]

With the modified multiplication given by

\[
fg(n) = \sum_{(a,b) \in \{1, \ldots, n\} \times \{1, \ldots, n\}} f(a)g(b) \tag{6}
\]

\(\Gamma_n \) becomes a \(K \)-algebra, isomorphic to \(\Gamma / J_n \), where \(J_n \) is the ideal

\[
J_n = \{ f \in \Gamma \mid \forall m \leq n : f(m) = 0 \}.
\]

If we define

\[
\pi_n : \Gamma \to \Gamma_n \tag{7}
\]

\(\pi_n(f)(m) = \begin{cases} f(m) & m \leq n \\ 0 & m > n \end{cases} \tag{8} \]

then \(\pi_n \) is a \(K \)-algebra epimorphism, and \(J_n \) is the kernel of \(\pi_n \). We note furthermore that \(J_n \) is generated by monomials in the elements \(x_i \).

To describe the main idea of this paper, we need a few additional definitions. First, for any \(n \in \mathbb{N}^+ \) we denote by \(r(n) \in \mathbb{N} \) the largest integer such that \(p_r(n) \leq n \). In other words, \(r(n) \) is the number of prime numbers \(\leq n \) (this number is often denoted \(\pi(n) \)). Secondly, for a monomial \(m = x_1^{\alpha_1} \cdots x_n^{\alpha_n} \), we define the support \(\text{Supp}(m) \) as the set of positive integers \(i \) such that \(\alpha_i > 0 \). We define \(\max(m) \) and \(\min(m) \) as the maximal and minimal elements in the support of \(m \).

Definition 1.1. A monomial ideal \(I \subset K[x_1, \ldots, x_r] \) is said to be strongly stable if whenever \(m \) is a monomial such that \(x_j m \in I \), then \(x_i m \in I \) for all \(i \leq j \). If this condition holds at least for all \(i \leq j = \max(m) \) then \(I \) is said to be stable.

We can now state our main theorem:

Theorem 1.2. Let \(n \in \mathbb{N}^+ \) and \(r = r(n) \). Then the following holds:

1. \(\Gamma_n \simeq \frac{K[x_1, \ldots, x_r]}{I_n} \), where \(I_n \) is a strongly stable monomial ideal, with respect to the reverse order of the variables.

2. \(\Gamma_n \) is artinian, with \(\dim K(\Gamma_n) = n \). Furthermore, if it is given the natural grading with \(|\chi_i| = 1 \), then its Hilbert series is \(\sum d_i t^i \) where \(d_i \) is the number of \(w \leq n \) with \(\lambda(w) = i \).

3. There is a 1-1 bijection between the minimal monomial generators of \(I_n \) of minimal support \(v \), and the solutions in non-negative integers to the equation

\[
\log n - \log p_v < \sum_{i=v}^r b_i \log p_i \leq \log n \tag{9}
\]

4. If we denote by \(C_{n,v} \), the number of such solutions, then the Poincaré-Betti series of the free minimal resolution of \(K \) as a cyclic module over \(\Gamma_n \) is the following rational function:

\[
P(\text{Tor}_*^\Gamma(n, K), t) = \frac{(1+t)^r}{1 - t^2(\sum_{i=1}^r (1+t)(i-1)C_{n,v-i+1})} \tag{10}
\]

We will show this result, and also give the graded Poincaré-Betti series. For this, we define the number \(C_{n,v,d} \) which counts the number of minimal generators of \(I_n \) of minimal support \(v \) and total degree \(d \). We determine some elementary properties of the numbers \(C_{n,v,d} \) and \(C_{n,v} \).
2. The ring of number-theoretic functions and its truncations

2.1. Norms, degrees, and multiplicativity. For a monomial \(M \ni m = x_1^{a_1} \cdots x_n^{a_n} \), we define the weight of \(m \) as \(w(m) = p_1^{a_1} \cdots p_n^{a_n} \) (we put \(w(1) = 1 \)). Hence \(w \) gives a bijection between \(M \) and \(\mathbb{N}^+ \). Furthermore, we can define a term order on \(M \) by \(m > m' \) iff \(w(m) > w(m') \). If we define the initial monomial \(\text{in}(f) \) of \(f \in K[[X]] \) as the monomial in \(\text{Supp}(f) \) minimal with respect to \(> \), then \(\text{in}(f) \) is easily seen to correspond to the norm \(N(\alpha) \) of a number-theoretic function \(\alpha \), defined as the smallest \(n \) such that \(\alpha(n) \neq 0 \). Here, we must use \(w \) and \(\Phi \) to identify \(M \) and \(\mathbb{N}^+ \) and \(K[[X]] \) and \(\Gamma \). As observed in \([2]\), the norm is multiplicative: \(N(\alpha \beta) = N(\alpha)N(\beta) \).

Cashwell and Everett also define the degree \(D(\alpha) \) to mean the smallest \(d \) such that there exists an \(n \) with \(\lambda(n) = d \) and \(\alpha(n) \neq 0 \). This corresponds the smallest total degree of a monomial in \(\text{Supp}(f) \). Furthermore, the norm \(M(\alpha) \), defined as the smallest integer \(n \) with \(\lambda(n) = D(\alpha) \), \(\alpha(n) \neq 0 \), corresponds to the initial monomial of \(f \) under the term order obtained by refining the total degree partial order with the term order \(> \).

A multiplicative function is an element \(\alpha \in \Gamma \) such that \(\alpha(1) = 1 \) and \(\alpha(ab) = \alpha(a)\alpha(b) \) whenever \(a \) and \(b \) are relatively prime. Cashwell and Everett observes that a multiplicative function is necessarily a unit in \(\Gamma \). One can further observe that if \(\alpha \) is multiplicative, then \(f = \Phi(\alpha) \) can be written

\[
f(x_1, x_2, x_3, \ldots) = f_1(x_1)f_2(x_2)f_3(x_3) \cdots
\]

where each \(f_i(x_i) \in K[[x_i]] \) is invertible. In particular, the constant function \(\Gamma \ni \nu_0 \) with \(\nu_0(n) = 1 \) for all \(n \), corresponds to

\[
\sum_{m \in M} m = \frac{1}{1 - x_1} \frac{1}{1 - x_2} \frac{1}{1 - x_3} \cdots
\]

Since the Möbius function is defined to be the inverse of this function, we get that it corresponds to

\[
(1 - x_1)(1 - x_2)(1 - x_3) \cdots = 1 - \left(\sum_{i=1}^{\infty} x_i \right) + \left(\sum_{i<j} x_i x_j \right) - \left(\sum_{i<j<k} x_i x_j x_k \right) + \cdots
\]

2.2. Truncations of the ring of number-theoretic functions. Let \(n, n' \in \mathbb{N}^+ \), \(n' > n \). Then there is a \(K \)-algebra epimorphism

\[
\varphi_n' : \Gamma_{n'} \to \Gamma_n
\]

\[
\varphi_n'(f)(m) = \begin{cases} f(m) & m \leq n \\ 0 & m > n \end{cases}
\]

Hence, the \(\Gamma_n \)'s form an inverse system.

Lemma 2.1. \(\lim \Gamma_n \cong \Gamma \).

Proof. Given any \(f \in \Gamma \), the sequence \((\pi_1(f), \pi_2(f), \pi_3(f), \ldots) \) is coherent. Conversely, given any coherent sequence \((g_1, g_2, g_3, \ldots) \), we can define \(g : \mathbb{N} \to K \) by \(g(m) = g_i(m) \) where \(i \geq m \). \(\square \)

As a side remark, we note that

Lemma 2.2. The decreasing filtration

\[
J_1 \supseteq J_2 \supseteq J_3 \supseteq \cdots
\]

is separated, that is, \(\cap_n J_n = (0) \).

Definition 2.3. We define

\[
I_n = K[[X]] \{ m \in M \, | \, w(m) > n \},
\]

that is, as the monomial ideal in \(K[[X]] \) generated by all monomials of weight strictly higher than \(n \). We put \(A_n = \frac{K[[X]]}{I_n} \).
Theorem 2.7. The bi-graded Hilbert series of K is bihomogeneous, this grading is inherited by Γ. Proof. As a vector space, $K[[X]] \cong U \oplus I_n$, where U consists of all functions supported on monomials of weight $\leq n$. It follows that $A_n \cong U$ as K vector spaces. Of course, there are exactly n monomials of weight $\leq n$. Finally, if $s > r$ then $w(x_s) = p_s > n$, hence $x_s \in I_n$. This establishes part II of the main theorem. Part I of the main theorem is now proved.

Proposition 2.6. A K-basis of A_n is given by all monomials of weight $\leq n$. Hence A_n is an artinian algebra, with $\dim_K(A_n) = n$. Putting $r = r(n)$, we have that

$$A_n = \frac{K[[X]]}{I_n} \cong \frac{K[x_1, \ldots, x_r]}{I_n \cap K[x_1, \ldots, x_r]}$$

Proof. We will abuse notations and identify I_n and its contraction $I_n \cap K[x_1, \ldots, x_r]$.

Lemma 2.5. $\Gamma_n \cong A_n$.

Proof. Since A_n has a K-basis is given by all monomials of weight $\leq n$, the two K-algebras are isomorphic as K-vector spaces. The multiplication in A_n is induced from the multiplication in $K[[X]]$, with the extra condition that monomials of weight $> n$ are truncated. This is the same multiplication as in Γ_n.

Proposition 2.6. I_n is a strongly stable ideal, with respect to the reverse order of the variables.

Proof. We must show that if $m \in I_n$, and $x_i | m$, then $mx_i/x_i \in I$ for $i \leq j \leq r$. We have that $w(mx_i/x_i) = w(m)p_j/p_i > w(m) > n$. Part II of the main theorem is now proved.

We give $K[x_1, \ldots, x_r]$ an \mathbb{N}^2-grading by giving the variable x_i bi-degree $(1, p_i)$. Since each I_n is bihomogeneous, this grading is inherited by A_n.

Theorem 2.7. The bi-graded Hilbert series of A_n is given by

$$A_n(t, u) = \sum_{i,j} c_{ij} t^i u^j,$$

where c_{ij} is the number of $p_1^{a_1} \cdots p_r^{a_r} \leq n$ with $\sum a_r = i$ and $\sum a_r p_r = j$. Furthermore,

$$A_n(t, 1) = \sum_i d_i t^i$$

$$A_n(1, u) = \sum_j c_j u^j$$

where d_i is the number of $w \leq n$ with $\lambda(w) = i$, and c_i is the number of $w \leq n$ with $\lambda(w) = i$. In particular, the t^i-coefficient of $A_n(t, 1)$ is the number of prime numbers $\leq n$.

Proof. The monomial $x_1^{a_1} \cdots x_r^{a_r}$ has bi-degree $(\sum_{i=1}^n a_i, \sum a_i p_i)$.

This establishes part II of the main theorem.

3. Minimal generators for I_n

Let $n \in \mathbb{N}^+$, and let $r = r(n)$. We have that

$$x_1^{a_1} \cdots x_r^{a_r} = m \in I_n \iff w(m) > n \iff \prod_{i=1}^r p_i^{a_i} > n. \quad (14)$$

We denote by $G(I_n)$ the set of minimal monomial generators of I_n. For $m = x_1^{a_1} \cdots x_r^{a_r}$ to be an element of $G(I_n)$ it is necessary and sufficient that $m \in I_n$ and that for $1 \leq v \leq r$, $x_v | m \implies m/x_v \notin I_n$. In other words,

$$1 \leq j \leq n, a_j > 0 \implies n < \prod_{i=1}^r p_i^{a_i} \leq p_j n. \quad (15)$$
\textbf{Definition 3.1.} For \(n, v, d \) positive integers, we define:
\begin{align*}
C_n &= \# G(I_n) \quad (16) \\
C_{n,v} &= \# \{ m \in G(I_n) \mid \min(m) = v \} \quad (17) \\
C_{n,v,d} &= \# \{ m \in G(I_n) \mid \min(m) = v, |m| = d \} \quad (18)
\end{align*}

\textbf{Theorem 3.2.} \(C_{n,v} \) is the number of solutions \((b_1, \ldots, b_r) \in \mathbb{N}^r \) to the equation
\begin{equation}
\log n - \log p_v < \sum_{i=v}^{r} b_i \log p_i \leq \log n.
\end{equation}
Equivalently, \(C_{n,v} \) is the number of integers \(x \) such that \(n/p_v < x \leq n \) and such that no prime factors of \(x \) are smaller than \(p_v \).

Similarly, \(C_{n,v,d} \) is the number of solutions \((b_1, \ldots, b_r) \in \mathbb{N}^r \) to the system of equations
\begin{equation}
\log n - \log p_v < \sum_{i=v}^{r} b_i \log p_i \leq \log n \\
\sum_{i=1}^{r} b_i = d - 1.
\end{equation}

or equivalently, \(C_{n,v,d} \) is the number of integers \(x \) such that \(n/p_v < x \leq n \) and such that no prime factors of \(x \) are smaller than \(p_v \), and with the additional constraint that \(\lambda(x) = d \).

\textbf{Proof.} We have that \(a_v > 0, a_w = 0 \) for \(w < v \). Hence equation (15) implies that
\begin{equation}
n < \prod_{j=v}^{r} p_i^{a_j} \leq p_v n.
\end{equation}
Putting \(b_v = a_v - 1, b_j = a_j \) for \(j > v \) we can write this as
\begin{equation}
n < p_v \prod_{j=v}^{r} p_i^{b_i} \leq p_v n \iff n/p_v < \prod_{j=v}^{r} p_i^{b_i} \leq n
\end{equation}
from which (19) follows by taking logarithms. This implies (20) as well. \(\blacksquare \)

We have now proved part 1 of the main theorem.

\textbf{Example 3.3.} The first few \(I_n \)'s are as follows: \(I_2 = (x_1^2) \), \(I_3 = (x_1^2, x_2^2, x_1 x_2) \), \(I_4 = (x_1^3, x_2^2, x_1 x_2) \), \(I_5 = (x_1^3, x_2^2, x_1 x_2, x_3^2, x_1 x_3, x_2 x_3) \).

We tabulate \(C_{n,i} \) and \(C_{n,i,j} \), the latter in form of the polynomial \(u^{-2} \sum_j \lambda_{m, j} u^j \) in the tables 3 and 4.

\textbf{Theorem 3.4.} (1) \(C_{n,v} = 0 \) for \(v > r(n) \)
(2) \(\forall n \in \mathbb{N} : \forall v \leq r(n) : C_{n,1+r(n)-v} \geq v \)
(3) \(\forall n \in \mathbb{N} : C_n \geq \binom{r(n)+1}{2} \)
(4) \(\forall v \in \mathbb{N} : \exists N : \forall n \geq N : C_{n,1+r(n)-v} = v \)
(5) If \(n \) is even, then \(C_{n,v} = C_{n-1,v} \) for all \(v \)
(6) \(C_{n,1} = \lfloor n/2 \rfloor \).

\textbf{Proof.} (1) Obvious.
(2) and (3) It suffices to show that for any subset \(S \subset \{1, \ldots, r\} \) of cardinality 1 or 2, there is an \(m \in G(I_n) \) with \(\text{Supp}(m) = S \). If \(S = \{ i \} \) then there is an unique positive integer \(a \) such that \(p_i^{a-1} \leq n < p_i^a \), and \(m = x_i^a \) is the desired generator. If \(S = \{ i, j \} \) with \(i < j \) then we claim that there is a positive integer \(a \) such that \(x_i^a x_j \in G(I_n) \). Namely, choose \(b \) such that \(p_j^{b-1} \leq n < p_j^b \), then since \(p_i < p_j \) one has \(n < p_i^{a-1} p_j \). Hence \(x_i^{p_j^{b-1}} x_j \in I_n \), so it is a multiple of some minimal generator. By the definition of \(b \), this minimal generator must be of the form \(x_i^a x_j \) for some \(a \), which establishes the claim.
We must show that the number of solutions in \mathbb{N}^r to
\[
\frac{n}{2} < \prod_{i=1}^{r} p_i^{b_i} \leq n
\]
is precisely $\lceil \frac{n}{2} \rceil$. Obviously, any integer $x \in (\frac{n}{2}, n]$ fits the bill; there are $\lceil \frac{n}{2} \rceil$ of those.

The case $v = 1$ follows from (3). Hence, it suffices to show that if $v > 1$, $x \in (\frac{n}{p_v}, n] \cap \mathbb{N}$, and if x has no prime factor $< p_v$, then $x \in (\frac{n}{p_v}, n-1] \cap \mathbb{N}$. The only way this can fail to happen is if $x = n$, but then x is even, and has the prime factor $2 = p_1 < p_v$, a contradiction.

For large enough n, the only integers $x \leq n$ with all prime factors $\geq 1 + r(n) - v$ are $p_1 + r(n)-v, \ldots, p_r(n)$. There is v of these, and they are all $> \frac{n}{p_v}$.

\begin{theorem}
1. $C_{n,v,d} = 0$ for $v > r(n)$, and for $d < 2$,
2. $\forall v \in \mathbb{N} : \exists N : \forall n \geq N : C_{n,1+r(n)-v,2} = v$, $C_{n,1+r(n)-v,d} = 0$ for $d \not= 2$,
3. $\binom{r(n)}{2} = \# \{ m \in \mathbb{N}^+ | m \leq n, \lambda(m) = 2 \}$.
\end{theorem}

\begin{proof}
The first and the last assertions are obvious. The second one follows from the proof of (4) in the previous lemma.
\end{proof}

4. Poincaré series

In (3), a minimal free multi-graded resolution of an ideal I over S is given, where $S = K[x_1, \ldots, x_r]$ is a polynomial ring, and $I \subset (x_1, \ldots, x_r)^2$ is a stable ideal. As a consequence, the following formula for the Poincaré-Betti series is derived:
\[
P(\text{Tor}_{s}^{S}(I, K), t) = \sum_{a \in G(I)} (1 + t)^{\max(a)-1}
\]
where $G(I)$ is the minimal generating set of I. Since the resolution is multi-graded, (21) can be modified to yield a formula for the graded Poincaré-Betti series (we here consider S as \mathbb{N}-graded, with each variable given weight 1):
\[
P(\text{Tor}_{s}^{S}(I, K), t, u) = \sum_{a \in G(I)} u^{\lceil a \rceil}(1 + t)^{\max(a)-1}
\]
We will use the following variant of this result:

\begin{theorem}[Eliahou-Kervaire]
Let $I \subset (x_1, \ldots, x_r)^2 \subset K[x_1, \ldots, x_r] = S$ be a stable monomial ideal. Put
\[
b_{i,d} = \# \{ m \in G(I) | \max(m) = i, |m| = d \}
\]
\[
b_i = \# \{ m \in G(I) | \max(m) = i \}
\]

Then
\[
P(\text{Tor}_{s}^{S}(I, K), t) = \sum_{i=1}^{r} b_i (1 + t)^{(i-1)}
\]
\[
P(\text{Tor}_{s}^{S}(I, K), t, u) = \sum_{i=1}^{r} \left(1 + tu \right)^{(i-1)} \sum_{j} b_{i,j} u^j.
\]

For the Betti-numbers we have that
\[
\beta_i = \dim_K (\text{Tor}_{q}^{S}(I, K)) = \sum_{i=1}^{r} b_{i} \left(i - 1 \right) / q.
\]

From Proposition (2.6) we have that the ideals I_n are stable after reversing the order of the variables. Hence, replacing max by min, and hence b_i with $C_{n,1+r-i}$, we get:
Corollary 4.2. Let \(n \in \mathbb{N}^+ \), \(r = r(n) \), \(S = K[x_1, \ldots, x_r] \). Then
\[
P(\text{Tor}^S(I_n, K), t) = \sum_{i=1}^{r} C_{n,1+r-i}(1 + t)^{(i-1)}
\]
(28)
\[
P(\text{Tor}^S(I_n, K), t, u) = \sum_{i=1}^{r}(1 + tu)^{(i-1)} \sum_{j} C_{n,1+r-i,j} u^j.
\]
(29)

For the Betti-numbers we have that
\[
\beta_q = \sum_{i=1}^{r} C_{n,1+r-i}(i - 1) q^i.
\]
(30)

In [4, 5] it is shown that if \(S = K[x_1, \ldots, x_r] \) and \(I \) is a stable monomial ideal in \(S \), then \(S/I \) is a Golod ring. Hence, from a result of Golod [4] (see also [5]), it follows that
\[
P(\text{Tor}^S(I_n, K), t) = \frac{(1 + t)^r}{1 - t^2 P(\text{Tor}^S(I_n, K), t)}
\]
(31)

Regarding \(S \) as an \(\mathbb{N} \)-graded ring, one can show that in fact
\[
P(\text{Tor}^S(I_n, K), t, u) = \frac{(1 + tu)^r}{1 - t^2 P(\text{Tor}^S(I_n, K), t, u)}
\]
(32)

The following theorem is an immediate consequence:

Theorem 4.3 (Herzog-Aramova, Peeva). Let \(S = K[x_1, \ldots, x_r] \), and suppose that \(I \) is a stable monomial ideal in \(S \). Put
\[
b_{i,d} = \# \{ x \in G(I) \mid \text{max}(x) = i, |x| = d \}
\]
\[
b_i = \# \{ x \in G(I) \mid \text{max}(x) = i \}
\]

Then, for \(R = S/I \), we have that
\[
P(\text{Tor}^R(I_n, K), t) = \frac{(1 + t)^r}{1 - t^2 \sum_{i=1}^{r}(1 + t)^{(i-1)} \sum_{j} b_i}
\]
(33)
\[
P(\text{Tor}^R(I_n, K), t, u) = \frac{(1 + tu)^r}{1 - t^2 \sum_{i=1}^{r}(1 + tu)^{(i-1)} \sum_{j} b_{i,j} u^j}
\]
(34)

Specialising to the case of \(A_n \), we obtain:

Corollary 4.4. Let \(n \in \mathbb{N}^+ \), and let \(r = r(n) \). Regard \(A_n \) as a naturally graded \(K \)-algebra, with each \(x_i \) given weight 1, and regard \(K \) as a cyclic \(A \)-module. Then
\[
P(\text{Tor}^A(I_n, K), t) = \frac{(1 + t)^r}{1 - t^2 \sum_{i=1}^{r}(1 + t)^{(i-1)} C_{n,r-i+1}}
\]
(35)
\[
P(\text{Tor}^A(I_n, K), t, u) = \frac{(1 + tu)^r}{1 - t^2 \left(\sum_{i=1}^{r}(1 + tu)^{(i-1)} \sum_{j} C_{n,r-i+j} u^j \right)}
\]
(36)

Part IV of the main theorem is now proved.

Example 4.5. We consider the case \(n = 5 \), then \(r = r(n) = 3 \), so \(S = K[x_1, x_2, x_3] \) and \(I = I_5 = \langle x_1^3, x_1 x_2, x_1 x_3, x_2^3, x_2 x_3, x_3^3 \rangle \). We get that \(C_{5,1} = 3, C_{5,2} = 2, C_{5,3} = 1 \). According to our formula\(^{1}\) we have
\[
P^S_I(t) = 1 + 2(1 + t) + 3(1 + t)^2 = 6 + 8t + 3t^2
\]
\[
P^{S/I}_K(t) = \frac{(1 + t)^r}{1 - t^2 P^S_I(t)} = \frac{1}{1 - 3t}
\]

\(^{1}\)Here, we have used the abbreviation \(P^S_I(t) = P(\text{Tor}^S(I_n, K), t) \), we will also write \(P^{S/I}_K(t) = P(\text{Tor}^{S/I}_n(K, K), t) \) et cetera.
When we consider the grading by total degree, we have that $C_{5,1,2} = 2$, $C_{5,1,3} = 1$, $C_{5,2,2} = 2$, $C_{5,3,2} = 1$. Hence, our formulas yield

$$P^S_I(t, u) = u^2 + 2u^2(1 + t) + (2u^2 + u^3)(1 + t)^2$$

$$= 5u^2 + u^3 + (6u^2 + 2u^3)t + (2u^2 + u^3)t^2$$

$$P^{S/I}_K(t, u) = -\frac{1 + tu}{u^3t^2 + 2t^2u^2 + 2tu - 1}$$

We list the first few Poincaré-Betti series $P(\text{Tor}^A_n(K, K), t, u)$ in table 3.

Conjecture 4.6. $P(\text{Tor}^A_n(K, K), t) = \frac{(1+t)^{\ell_1(n)}}{q_n(t)}$, $q_n(t) = \sum_{i=0}^{\ell_2(n)} h_i(n)t^i$, with

1. $q_n(-1) \neq 0$,
2. $\ell_1(n)$ is the number of odd primes p such that $p^2 \leq n$,
3. $\ell_2(n) = \ell_1(n) + 1$,
4. $h_0(n) = -1$,
5. $h_1(n) = r(n) - \ell_1(n)$,
6. $h_{\ell_2(n)}(n) = C_{n,1} = [n/2]$.

5. **Acknowledgements**

I am indebted to Johan Andersson for suggesting the idea of studying the homological properties of the truncations Γ_n. I thank the referee for suggesting a simplified proof of parts of Theorem 3.4.

References

[1] Annetta Aramova and Jürgen Herzog. Koszul Cycles and Eliahou-Kervaire Type Resolutions. *Journal of Algebra*, 181(2):347–370, 1996.

[2] E. D. Cashwell and C. J. Everett. The ring of number-theoretic functions. *Pacific Journal of Mathematics*, 9:975–985, 1959.

[3] S. Eliahou and M. Kervaire. Minimal resolutions of some monomial ideals. *J. Algebra*, 129:1–25, 1990.

[4] E. S. Golod. On the homology of some local rings. *Soviet Math. Dokl.*, 3:745–749, 1962.

[5] T. Gulliksen and G. Levin. Homology of Local Rings, volume 20 of *Queen’s Papers in Pure and Applied Mathematics*. 1969.

[6] Irena Peeva. 0-Borel Fixed Ideals. *Journal of Algebra*, 184(3):945–984, 1996.

School of Informatics, University of Wales, Dean Street, Bangor, Gwynedd LL57 1UT, Wales, UK

E-mail address: jans@matematik.su.se
Figure 1. The numbers C_n and $C_{n,i}$.

n	$i = 1$	$i = 2$	$i = 3$	$i = 4$	$i = 5$	$i = 6$	$i = 7$	$i = 8$	$i = 9$	$i = 10$
2	1	1								
3	1	2	1							
4	3	2	1	1						
5	6	3	2	1	1					
6	6	3	2	1	1	1				
7	10	4	3	2	1	1	1			
8	10	4	3	2	1	1	1	1		
9	11	5	3	2	1	1	1	1	1	
10	11	5	3	2	1	1	1	1	1	1
11	16	6	4	3	2	1	1	1	1	1
12	16	6	4	3	2	1	1	1	1	1
13	22	7	5	4	3	2	1	1	1	1
14	22	7	5	4	3	2	1	1	1	1
15	23	8	5	4	3	2	1	1	1	1
16	23	8	5	4	3	2	1	1	1	1
17	30	9	6	5	4	3	2	1	1	1
18	30	9	6	5	4	3	2	1	1	1
19	38	10	7	6	5	4	3	2	1	1
20	38	10	7	6	5	4	3	2	1	1
21	39	11	7	6	5	4	3	2	1	1
22	39	11	7	6	5	4	3	2	1	1
23	48	12	8	7	6	5	4	3	2	1
24	48	12	8	7	6	5	4	3	2	1
25	50	13	9	7	6	5	4	3	2	1
26	50	13	9	7	6	5	4	3	2	1
27	51	14	9	7	6	5	4	3	2	1
28	51	14	9	7	6	5	4	3	2	1
29	61	15	10	8	7	6	5	4	3	2
30	61	15	10	8	7	6	5	4	3	2

Figure 2. The numbers $C_{n,i,g}$.

n	$i = 1$	$i = 2$	$i = 3$	$i = 4$	$i = 5$	$i = 6$	$i = 7$	$i = 8$	$i = 9$	$i = 10$
2	1	1								
3	2	1								
4	u+1	1								
5	u+2	2	1							
6	2u+1	2	1							
7	2u+2	3	2	1						
8	u^2+u+2	3	2	1						
9	u^2+2u+2	u+2	2	1						
10	u^2+3u+1	u+2	2	1						
11	u^2+3u+2	u+3	3	2	1					
12	2u^2+2u+2	u+3	3	2	1					
13	2u^2+2u+3	u+4	4	3	2	1				
14	2u^2+3u+2	u+4	4	3	2	1				
15	2u^2+4u+2	2u+3	4	3	2	1				
16	u^3+u^2+4u+2	2u+3	4	3	2	1				
17	u^3+u^2+4u+3	2u+4	5	4	3	2	1			
18	u^3+u^2+3u+3	2u+4	5	4	3	2	1			
19	u^3+2u^2+3u+4	2u+5	6	5	4	3	2	1		
20	u^3+3u^2+4u+4	2u+5	6	5	4	3	2	1		
21	u^3+3u^2+4u+4	3u+4	6	5	4	3	2	1		
22	u^3+3u^2+4u+4	3u+4	6	5	4	3	2	1		
23	u^3+3u^2+4u+4	3u+5	7	6	5	4	3	2	1	
24	u^3+2u^2+4u+4	3u+5	7	6	5	4	3	2	1	
25	u^3+2u^2+5u+4	4u+5	8	7	6	5	4	3	2	1
26	u^3+2u^2+6u+3	4u+5	8	7	6	5	4	3	2	1
27	u^3+3u^2+6u+3	u+6	6	5	4	3	2	1		
28	u^3+4u^2+5u+4	u+6	6	5	4	3	2	1		
29	u^3+4u^2+5u+4	u+7	7	6	5	4	3	2	1	
30	u^3+5u^2+6u+4	u+7	7	6	5	4	3	2	1	
\begin{tabular}{|c|c|c|}
\hline
\(n\) & \textit{Graded} & \textit{Non-graded} \\
\hline
2 & \(- (tu - 1)^{-1}\) & \(- (t - 1)^{-1}\) \\
3 & \(- (2tu - 1)^{-1}\) & \(- (2t - 1)^{-1}\) \\
4 & \(- \frac{u+tu}{1+tu}tu^{-1}\) & \(- \frac{2}{1+tu}\) \\
5 & \(- \frac{u^2+2u}{1+tu}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
6 & \(- \frac{(u^2+u)tu}{1+tu}\) & \(- \frac{5}{1+4}\) \\
7 & \(- \frac{2u+u}{1+tu}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
8 & \(- \frac{u^2+2u}{1+tu}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
9 & \(- \frac{u^2+2u+2u^3}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
10 & \(- \frac{(u^2+4u+3u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
11 & \(- \frac{(u^2+4u+3u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
12 & \(- \frac{(u^2+2u+2u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
13 & \(- \frac{(u^2+2u+3u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
14 & \(- \frac{(u^2+3u+2u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
15 & \(- \frac{(u^2+4u+2u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
16 & \(- \frac{(u^2+4u+6u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
17 & \(- \frac{(u^2+4u+6u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
18 & \(- \frac{(u^2+2u+3u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
19 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
20 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
21 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
22 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
23 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
24 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
25 & \(- \frac{(u^2+3u+4u^3)tu}{1+2tu+2u^2}tu^{-1}\) & \(- \frac{5}{4}+\frac{1}{t+1}\) \\
\hline
\end{tabular}

Figure 3. Graded and non-graded Poincaré-Betti series of the minimal free resolution of \(K\) over \(A_n\).