Development of the first potential nonpeptidic positron emission tomography tracer for the imaging of CCR2 receptors
Wagner, S.; Moura Gatti, F.; Silva, D.G. de; Ortiz Zacarias, N.V.; Zweemer, A.J.M.; Hermann, S.; ...; Junker, A.

Citation
Wagner, S., Moura Gatti, F., Silva, D. G. de, Ortiz Zacarias, N. V., Zweemer, A. J. M., Hermann, S., ... Junker, A. (2020). Development of the first potential nonpeptidic positron emission tomography tracer for the imaging of CCR2 receptors. Chemmedchem, 16(4), 640-645. doi:10.1002/cmdc.202000728

Version: Publisher's Version
License: Creative Commons CC BY-NC-ND 4.0 license
Downloaded from: https://hdl.handle.net/1887/3134856

Note: To cite this publication please use the final published version (if applicable).
Very Important Paper

Development of the First Potential Nonpeptidic Positron Emission Tomography Tracer for the Imaging of CCR2 Receptors

Stefan Wagner,[a] Fernando de Moura Gatti,[b,c] Daniel G. Silva,[c] Natalia V. Ortiz Zacarias,[d] Annelien J. M. Zweezer,[d] Sven Hermann,[c] Monica De Maria,[e] Michael Koch,[f] Christina Weiss,[f] Dirk Schepmann,[b] Laura H. Heitman,[d] Nuska Tschammer,[g] Klaus Kopka,[h] and Anna Junker*[b,c]

Herein we report the design and synthesis of a series of highly selective CCR2 antagonists as 18F-labeled PET tracers. The derivatives were evaluated extensively for their off-target profile at 48 different targets. The most potent and selective candidate was applied in vivo in a biodistribution study, demonstrating a promising profile for further preclinical development. This compound represents the first potential nonpeptidic PET tracer for the imaging of CCR2 receptors.

Introduction

The C–C chemokine receptor type 2 (CCR2) is a key player in the trafficking of lymphocytes and monocytes/macrophages leading to the development of various pathophysiological processes like inflammatory and autoimmune diseases,[1] tumor growth and metastasis formation,[2] CCR2 receptor is increasingly gaining attention in the field of positron emission tomography (PET) imaging as a promising diagnostic target for lung inflammation,[3] injured heart[4] or pancreatic ductal adenocarcinoma (phase 1: NCT03851237, 1R01CA235672-01, 201807099). So far only a peptidic ligand that binds to the first extracellular loop of the CCR2 receptor ECL1i was applied in PET imaging either as 64Cu-DOTA-ECL1i or 68Ga-DOTA-ECL1i conjugate.[3–4] There are no small-molecule, nonpeptidic PET tracers for the imaging of CCR2 receptors reported thus far.

The CCR2 receptors share 71% sequence identity and an overlapping expression pattern with the C–C chemokine type 5 (CCR5) receptors.[5] The CCR5 receptor is expressed on a variety of cells and tissues such as monocytes, macrophages, T-lymphocytes, microglia, dendritic cells, the endothelium, and vascular smooth muscle. The CCR2 expression is more restricted to certain cell types such as monocytes, NK (natural killer) cells, and T lymphocytes.[6] Many potent CCR2 ligands demonstrate affinity to both receptors.[7] In the past, we have reported the design and synthesis of novel, selective as well as dual-targeting CCR2 and CCR5 receptor antagonists,[8] as well as the positive allosteric modulators (PAMs) for the CCR5 receptors.[9]

[a] Dr. S. Wagner*
Department of Nuclear Medicine
University Hospital Münster
Albert-Schweitzer-Campus 1, Building A1
48149 Münster (Germany)
[b] Dr. F. de Moura Gatti,* Dr. D. Schepmann, Dr. A. Junker
Institut für Pharmazeutische und Medizinische Chemie der Universität Münster
Corrensstraße 48, 48149 Münster (Germany)
[c] Dr. D. G. Silva, Dr. S. Hermann, Dr. A. Junker
European Institute for Molecular Imaging (EIMI)
Waldeyerstraße 15, 48149 Münster (Germany)
E-mail: anna.junker@wwu.de
[d] Dr. N. V. Ortiz Zacarias, Dr. A. J. M. Zweezer, Prof. Dr. L. H. Heitman
Leiden Academic Center for Drug Research (LACDR)
Leiden University
Einsteinweg 55, 2333 CC Leiden (The Netherlands)
[e] M. De Maria
Department of Developmental Biology
Friedrich Alexander University
Staudtstraße 5, 91058 Erlangen (Germany)
[f] Dr. M. Koch, C. Weiss
Boehringer Ingelheim, Research & Development
Ludwig-Weddendorf-Weg 18a, Gebäuude 466
42096 Wuppertal (Germany)
[g] Dr. N. Tschammer
Department of Chemistry and Pharmacy
Emil Fischer Center
Friedrich Alexander University Erlangen–Nürnberg
Schulstraße 19, 91052 Erlangen (Germany)
[h] Prof. Dr. K. Kopka
Helmholtz-Zentrum Dresden-Rossendorf
Institut für Radiopharmazeutische Krebsforschung
Bautzener Landstraße 400
01328 Dresden (Germany)
[i] and
Faculty of Chemistry and Food Chemistry
Technische Universität Dresden
01062 Dresden (Germany)
[j] Dr. F. de Moura Gatti*
Faculdade de Ciências Farmacêuticas
Universidade de São Paulo
Av. Prof. Lineu Prestes, 580
CEP 05508-900, São Paulo, SP (Brazil)

These authors contributed equally to this work.

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cmdc.202000728

© 2020 The Authors. ChemMedChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
this work we envisaged to evaluate fluorine-18 radiolabeled CCR2 targeting ligands as PET radiotracers for molecular imaging of inflammation and cancer.

Our previous structure–activity and structure–affinity studies of novel CCR2 and CCR5 receptors targeting compounds derived from TAK-779 (1) revealed a first strategy for the introduction of high CCR2 receptor selectivity. While TAK-779 (1) is more or less equipotent at CCR2 and CCR5 receptors introduction of a bulky isopropoxy residue at the 6-position of a pyridine ring as seen in compound 2 (Figure 1) yielded different properties of binding to the active site residues within the CCR2 and CCR5 receptors, leading to higher CCR2 selectivity (Table 1). IC50 ([125I]CCL2) = 19 nM vs. IC50 ([1H]TAK-779) = 468 nM. Other pyridine derivatives were inactive.8a

Results and Discussion

Following the idea of addressing different electrostatic properties by the isoproxy derivative 2, a series of CCR2 selective antagonists 6a–c bearing a flexible ω-fluorooalkoxy side chain was developed. The phenol derivative 3 served as a starting structure for the introduction of the alkoxy side chain. As the influence of the chain length on the CCR2 and CCR5 receptor activity/affinity should be examined, propyloxy (4a, n = 3), pentyloxy (4b, n = 5) and heptyloxy (4a, n = 7) side chains were considered. The high acidity of the phenol 3 allows deprotonation with weak bases without affecting the primary alcohol of the ω-halogenalkanols used. The reactivity of the ω-halogenalkanols is dependent on the halogen leaving group (I > Br > Cl). However, the reaction with 3-iodomopropan-1-ol led to dialkylation of 3 (second alkyl group attached to the tertiary amine). Because we assumed that the dialkylation was due to the high reactivity of 3-iodopropan-1-ol, 3-bromopropan-1-ol with reduced reactivity was employed. Reaction of 3 with 3-bromopropan-1-ol and K2CO3 in DMF afforded selectively 4a in 84% yield. The homologous alcohols 4b and 4c were prepared analogously by alkylation of phenol 3 with 5-bromopentan-1-ol and 7-bromohexan-1-ol, respectively (Scheme 1). The compounds 5a–c served as precursors for the development of fluorinated PET ligands [18F]6a–c. The introduction of an 18F-atom into the molecule requires a good leaving group. Therefore, the primary alcohols 4a–c were converted into the tosylates 5a–c. The reaction of the alcohols 4a–c with tosyl chloride and 4-dimethylaminopyridine (DMAP, Steglich catalyst) provided the tosylates 5a–c.8c The in vitro receptor activities and affinities of the 18F-labeled PET tracers cannot be recorded.

Table 1.

```
| Cmpd. | CCR2 IC50 ± SEM [nM] | CA+ flux, hCCR2 | β-Arein, mCCR2 | CCR5 [1H]TAK-779 IC50 ± SEM [nM] | β Arein, hCCR5, CCL5-mediated Kd [nM] | cAMP BRET, CCL5-mediated Kd [nM] | cAMP BRET, CCL4-mediated Kd [nM] | |
|---|---|---|---|---|---|---|---|---|
| 1     | 2.0 ± 0.2(3)         | 50 ± 5(4)       | 0.95(5)      | 23(6)                           | 8.8 ± 1.7(7)                    | 12 ± 1.2         | 65.5             | 7.5              |
| 2     | 19 ± 4.2(3)          | –               | 2.7(8)       | 90(9)                           | 468(10)                        | –                | –                | –                |
| 3     | 35%[11]              | –               | 82            | 1360                            | 1500                           | –                | –                | –                |
| 4a    | 199                  | 51%[11]         | 45            | 783                             | 970                            | –                | –                | –                |
| 4b    | 326                  | 53%[11]         | 10            | 117                             | 3100                           | –                | –                | –                |
| 4c    | 83                   | 56%[11]         | 1.1           | 54                              | 2300                           | –                | –                | –                |
| 6a    | 48%[11]              | 118 ± 20        | 130           | 1110                            | 2700                           | 684 ± 219        | 2300             | 551              |
| 6b    | 14 ± 7               | 609 ± 188       | 0.76          | 40                              | 2000                           | 529 ± 142        | 580              | 65.4             |
| 6c    | 93 ± 8               | 494 ± 38        | 1.1           | 17                              | 3600                           | 378 ± 114        | 288              | 27.1             |
```

All experiments were performed in at least triplicate (n = 3). [a] See ref. [8a]. [b] % inhibition at a test compound concentration of 1 μM.
directly with the radiolabeled ligands due to the small amount and the short physical half-life of the labeled compounds. Therefore, the in vitro activities and affinities to the CCR2 and other receptors/targets were determined using the non-radioactive 18F-labeled analogues. The synthesis of the non-radioactive 18F counterparts 6a–c can be performed by direct fluorination of the alcohols 4a–c or by the introduction of an appropriate leaving group and subsequent S_2 substitution. Tetrabutylammonium fluoride (TBAF) is a common fluorinating reagent. The bulky tetralkylammonium counterion reduces the ionic bond strength and generates a “naked” fluoride ion with a good solubility in organic solvents. As the tosylates 5a–c were already prepared for the radiolabeling reaction, they were also employed for the fluorination with TBAF. Tosylates 5a–c were reacted with TBAF in THF, which afforded the pure fluoro derivatives 6a–c in 73–84% yield (Scheme 1).

The compounds were evaluated for their in vitro CCR2 activities and affinities as well as their selectivity towards CCR5 receptors in functional as well as in binding assays. The hydroxylalkoxy derivatives 4a–c display very low CCR2 and CCR5 receptor affinities and moderate to high CCR2 receptor activities (Table 1). The CCR5 receptor affinity and high selectivity over CCR5 were observed. The heptyloxy derivative with a primary alcohol at the end (4c) shows the highest CCR2 affinity/activity (IC_{50}([125]I)CCL2) = 83 nM, IC_{50} (Ca$^{2+}$-flux, hCCR2) = 1.1 nM, IC_{50} (β-arrestin, mCCR2) = 54 nM).

However, the fluoroalkoxy derivatives 6a–c do not follow the same trend in their SAR. The pentyloxy compound 6b displays the highest CCR2 binding in the $[11]^{18}$F-5a,5b-[125]I-CCL2 assay with an IC_{50}-value of 14 nM and the highest CCR2 activity in the Ca$^{2+}$-flux assay using the human CCR2 receptor, indicating an IC_{50}-value of 0.76 nM. Furthermore, 6b is highly selective against CCR5 receptors (IC_{50} (CCR5; $[125]^{18}$F-TAK-779) = 2000 nM). The fluoroalkoxy derivatives 6a–c show a probe-dependent CCR5 activity when compared to TAK-779; whereas TAK-779 (1) binding affects CCL5- as well as CCL4-dependent CCR5 receptor activity. The fluoroalkoxy derivatives 6b and 6c display only high activity in the cAMP-BRET CCL4-mediated assay with K_d values of 65.4 and 27.1 nM, respectively. Only moderate activity is seen in β-arrestin and cAMP BRET CCL5-mediated CCR5 assays, indicating a different binding mode at the CCR5 receptors as compared with that of TAK-779 (1).

Moreover, the fluoroalkoxy derivatives 6a–c were screened in the in-house assays, and in a panel of 45 different targets (hERG, 5-HT_{1A}, 5-HT_{1B}, 5-HT_{2A}, 5-HT_{2B}, 5-HT_{2C}, 5-HT_{3}, 5-HT_{5}, 5-HT_{7}, D_{1}, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A, H_1, 5-HT_2A, 5-HT_2C, 5-HT_3, 5-HT_4, 5-HT_5, 5-HT_6, 5-HT_7, D_1, SERT, NET, DAT, MOR, KOR, DOR, GABA_A

Table 3. Results of the radiosynthesis of compounds $^{[18]}$F6a–c.

Compd.	Synthesis time (min)	A_{50} (GBq/μmol)	RCV [%] (decay-corrected)
$^{[18]}$F6a	94 ± 13	4–70	40 ± 3%
$^{[18]}$F6b	113 ± 27	3–31	28 ± 3%
$^{[18]}$F6c	91 ± 10	5–54	25 ± 6%

[a] $n = 5$, [b] $n = 9$, [c] $n = 6$.

Table 2. Off-target affinities/activities of fluorinated ligands 6a–c.

Compd.	α_1 K_M (μM)	α_2, K_M (μM)	α_4, K_M (μM)	α_5, K_M (μM)	M_1, K_M (μM)	5-HT_{2A}, K_M (μM)	5-HT_{3}, K_M (μM)	hERG EC_{50} (μM)
6a	1.0	0.04	–	1.2	–	1.0	5.01	2.29 ± 0.31
6b	0.32	79.9	–	6.81	–	–	–	1.72 ± 0.09
6c	14.6%	17%	6.27	5.22	–	–	0.671 ± 0.220	

Assays: K_M values ± SEM from three independent experiments. [a] % inhibition at a test compound’s concentration of 10 μM. Radioligands used for receptor binding studies were as follows: α_1: [1H]-(+)-pentazocine, α_2: [3H]dipropylguanidine, α_4 and α_5: [3H]rauwolscine, M3: [3H]QNB, 5-HT_{2A}: [3H]mesulergine, 5-HT_{3A}: [3H]LSD, functional assays: FluxOR assay hERG: ciscapride.

ChemMedChem 2021, 16, 640 – 645 www.chemmedchem.org 642 © 2020 The Authors. ChemMedChem published by Wiley-VCH GmbH
shielded computer-controlled TRACERLab FxFDC radiosynthesizer. In trial experiments, reaction of 5b with 18F fluoride in DMSO gave a higher radiochemical yield (RCY) of 18F 6b (30%) than in acetonitrile (5.5%). Compounds 18F 6a–c were purified by semipreparative reversed-phase radio-HPLC in high radiochemical purities (>99%). No residual precursors 5a–c or other chemical impurities were detected in the formulated radioligand solution by analytical radio-HPLC. The molar activity (A_m) of the radioligands, when finally formulated for intravenous injection, the RCY and the synthesis times are given in Table 3. Furthermore, the partition coefficient $\log D$ was experimentally determined for the radiolabeled compounds 18F 6a–c at pH of 7.4. Compound 18F 6b is the most lipophilic derivative of the series with a $\log D$ (exp.) of 1.94 ± 0.26 (n = 5), calculated $\log D$, of 7.00, was calculated by ACD/Chemsketch version ACD/Labs 6.00. For 18F 6a a $\log D$ (exp.) of 1.63 ± 0.17 (n = 5), $\log D$ = 6.17 and for 18F 6c a $\log D$ (exp.) of 1.69 ± 0.16 (n = 5), $\log D$ = 8.06 was determined. An in vitro stability study was carried out for all three radiolabeled compounds 18F 6a–c using mouse and human blood serum. During incubation for up to 90 min at 37°C 18F 6a, 18F 6b and 18F 6c possessed a high stability in both sera. Figure 2 shows exemplarily the data of 18F 6b in mouse blood serum. Only the parent compound 18F 6b was detected by radio-HPLC and no significant radiometabolites or decomposition products could be observed. The behavior of 18F 6a and 18F 6c is the same (data not shown). Due to its high potency and binding affinity to the CCR2
receptor and its favorable off-target selectivity profile, the fluoropentyloxy derivative \[^{18}\text{F}]6b\) was selected for the biodistribution studies.

Biodistribution of \[^{18}\text{F}]6b\) in healthy adult C57Bl/6 mice

The radioactivity distribution of \[^{18}\text{F}]6b\) was measured in adult C57Bl/6 mice *in vivo* over 90 minutes by PET/CT. PET images reveal fast and significant accumulation of radioactivity in the liver already in the first minutes after tracer injection that persists until the end of the study (Figure 4). A few minutes post-injection intermediate radioactivity levels were found in the lung, the spleen and the kidneys. Over the course of 90 minutes, the radioactivity concentration in the lungs decreased while the signal in the spleen and the kidneys remained at the same level. Image data do not show the elimination of the tracer and/or its metabolites in the urine. We observed a very slow and only marginally increase of radioactivity in the bones as a sensitive indicator of *in vivo* defluorination of the \[^{18}\text{F}]\) labeled tracer, which demonstrated the expected stability of the fluoropentyl group against *in vivo* defluorination. Quantitative analysis by *in vivo* time–activity concentration curves and *ex vivo* gamma counting confirmed the visual impressions (Figure 3). The highly CCR2 selective radioligand \[^{18}\text{F}]6b\) demonstrated favorable properties as a new diagnostic tool for PET to elucidate the changes in the distribution and density of CCR2 receptors, revealing their role in the development and pathobiology of inflammation or cancer.

Conclusion

Previously uncovered structure–activity/affinity relationships at CCR2 and CCR5 led the way to the development of highly potent and selective CCR2 receptor antagonists 4a–c and 6a–c, which were further converted into potential \[^{18}\text{F}]\)-labeled PET tracer \[^{18}\text{F}]6a–c\). Compounds 6a–c were excessively evaluated for their CCR2 activity/affinity and their off-target selectivity profile at CCR5 receptors and 47 other biological targets (GPCR, ion channels, transporters). The radiolabeled derivatives \[^{18}\text{F}]6a–c\) were prepared in high purity (> 99%) and high RCY (40–25%). Their logD, murine and human serum plasma stability was determined. The most potent and selective candidate \[^{18}\text{F}]6b\) was evaluated *in vivo* in a biodistribution study. Thus displaying a promising profile for further preclinical development.

Experimental Section

Complete protocols for both chemical syntheses and biological methods together with characterization data are presented in the Supporting Information.

Author Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript. A.J. planned and synthesized all compounds. F.M.G. synthesized the precursor 5b in large scale. S.W., A.J. and D.G.S. performed the radiolabeling. Biological assays were performed by D.S., L.H., N.V.O.Z., A.Z., M.M., N.T., M.K. and C.W. The imaging experiments were performed by S.H.

Acknowledgements

K. determinations and hERG data were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract no. HHSN-271-2018-00023-C (NIMH PDSP). The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscoll at NIMH, Bethesda MD, USA. This work was supported by the
Interdisciplinary Center of Clinical Research (IZKF core unit PIX). We would like to thank Christine Bätza, Steffi Bouma, Sarah Köster, Roman Pribe, and Dirk Reinhardt for excellent technical assistance. F.M.G. thanks for the financial support the Brazilian Doctoral Scholarship Program in Federal Republic of Germany: grant no. 290265/2017-7, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior–Brazil (CAPES)–Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for fundings [grants no. 88881.170193/2018-01 (DGS) and 2017/22001-0 (DGS). Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: CCR2 · CCR5 antagonists · chemokine receptors · molecular imaging · PET · radiolabeling · TAK-779

[1] a) G. Bajpai, A. Bredemeyer, W. Li, K. Zaitsev, L. Koenig Andrew, I. Lokshina, J. Mohan, B. Ivey, H.-M. Hsiao, C. Weinheimer, A. Kovacs, S. Epelman, M. Artyomov, D. Kreisel, J. Lavine Kory, Circulation Res. 2019, 124, 263–278; b) S. Boste, J. Cho, Arch. Pharm. Res. 2013, 36, 1039–1050.
[2] M. Feria, F. Díaz-González, Expert Opin. Ther. Pat. 2006, 16, 49–57.
[3] Y. Liu, S. P. Gunsten, D. H. Sultan, H. P. Luehmann, Y. Zhao, T. S. Blackwell, Z. Bollermann-Nowlis, J.-H. Pan, D. E. Byers, J. J. Atkinson, D. Kreisel, M. J. Holtzman, R. J. Gropler, C. Combadiere, S. L. Brody, Radiology 2017, 283, 758–768.
[4] G. S. Heo, B. Kopecky, D. Sultan, G. Feng, G. Bajpai, X. Zhang, H. Luehmann, L. Detering, K. Lavine, Y. Liu, J. Nucl. Med. 2019, 60, 98.
[5] T. A. Berkhour, H. M. Sarau, K. Moores, J. R. White, N. Elshourbagy, E. Appelbaum, R. J. Reape, M. Braviner, J. Makiwana, J. J. Foley, D. B. Schmid, C. Imburgia, D. McNulty, J. Matthews, K. O’Donnell, D. O’Shannessy, M. Scott, P. H. Groot, C. Macphee, J. Biol. Chem. 1997, 272, 16404–16413.
[6] a) C. Combadiere, S. K. Ahuja, H. L. Tiffany, P. M. Murphy, J. Leukocyte Biol. 1996, 60, 147–152; b) M. Samson, O. Labbe, C. Mollereau, G. Vassart, M. Parmentier, Biochemistry 1996, 35, 3362–3367.
[7] L. Fantuzzi, M. Tagliamonte, M. C. Gauzzi, L. Lopalco, Cell. Mol. Life Sci. 2019, 76, 4869–4886.
[8] a) A. Junker, A. K. Kokornaczyk, A. J. M. Zweeker, B. Frehland, D. Scheppmann, J. Yamaguchi, K. Itami, A. Faust, S. Herrmann, S. Wagner, M. Schafers, M. Koch, C. Weiss, L. H. Heitman, K. Kopka, B. Wunsch, Org. Biomol. Chem. 2015, 13, 2407–2422; b) A. K. Strunz, A. J. M. Zweeker, C. Weiss, D. Scheppmann, A. Junker, L. H. Heitman, M. Koch, B. Wunsch, Bioorg. Med. Chem. 2015, 23, 4034–4049.
[9] S. Thum, A. K. Kokornaczyk, T. Seki, M. De Maria, N. V. Ortiz Zacarias, H. de Vries, C. Weiss, M. Koch, D. Scheppmann, M. Kitamura, N. Tscharmer, L. H. Heitman, A. Junker, B. Wunsch, Eur. J. Med. Chem. 2017, 135, 401–413.
[10] D. W. Kim, H. J. Jeong, S. T. Lim, M.-H. Sohn, Angew. Chem. Int. Ed. 2008, 47, 8404–8406; Angew. Chem. 2008, 120, 8532–8534.
[11] M. Bruhlmieer, U. Roelcke, P. A. Schubiger, S. M. Amitamey, J. Nucl. Med. 2004, 45, 1851–1859.
[12] P. W. Miller, N. J. Long, R. Vilar, A. D. Gee, Angew. Chem. Int. Ed. 2008, 47, 8998–9033; Angew. Chem. 2008, 120, 9136–9172.

Manuscript received: September 16, 2020
Revised manuscript received: November 4, 2020
Accepted manuscript online: November 18, 2020
Version of record online: November 23, 2020