Role of detection of microsatellite instability in Chinese with hereditary nonpolyposis colorectal cancer or ordinary hereditary colorectal cancer

Wen-Zhi Liu, Feng Jin, Zhen-Hai Zhang, Shu-Bao Wang

INTRODUCTION
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant inheritance syndrome, with a penetrance as high as 70%-80%[1], and accounts for about 5%-15% of all colorectal cancer[2]. The molecular genetic basis of the disease is germ line mutation of the mismatch repair (MMR) gene, which causes failure of the DNA MMR system to repair errors that occur during the replication of DNA and results in alterations in the length of simple, repetitive microsatellite sequences and so called microsatellite instability (MSI). MSI may reflect the mutation of the MMR gene indirectly and can be used as a means of screening gene mutation of the MMR gene[3,4]. Recently, studies showed most patients with HNPCC have MSI[5,6] and the ratio is higher than that of patients with sporadic colorectal cancer[7,8]. In the current study, we tested microsatellites of the former paraffin-embedded tissue by the method of polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP) of the Chinese patients who fulfilled the criteria for HNPCC and ordinary hereditary colorectal cancer and tested its application value in the clinic.

MATERIALS AND METHODS

Patients

HNPCC group (group A): 20 patients (12 men, 8 women, mean age 48 years, range 32-70 years) who fulfilled the criteria for HNPCC of Chinese people[9] were selected and their family histories were obtained by follow-
up study. Among them 9 cases were with carcinoma of ascending colon, 2 cases with carcinoma of transverse colon, 1 case with carcinoma of descending colon, 2 cases with carcinoma of sigmoid colon and 6 cases with carcinoma of rectum.

**Ordinary hereditary colorectal cancer group (group B):** 20 patients (13 men, 7 women, mean age 61 years, range 30-83 years) who fulfilled the criteria for ordinary hereditary colorectal cancer of Chinese people[10] were selected. Among them 5 cases were with carcinoma of ascending colon, 3 cases with carcinoma of transverse colon, 1 case with carcinoma of descending colon, 2 cases with carcinoma of sigmoid colon and 9 cases with carcinoma of rectum.

**Sporadic colorectal cancer group (group C):** 20 patients (10 men, 10 women, mean age 65 years, range 42-80 years) who were diagnosed with colorectal cancer by pathology and with no family history were selected. Among them 5 cases were with carcinoma of ascending colon, 4 cases with carcinoma of sigmoid colon and 11 cases with carcinoma of rectum.

**Methods**

For MSI analysis, normal and tumor tissues of the three groups were embedded with paraffin, 4-5 slides of tissue with thickness of 4 µm were sliced and stained with HE. Normal and tumor tissues were selected with microscopy. They were transferred to the EP tubes which contained 150 µL cell lysates. Then DNAs of the normal and tumor tissues were extracted with DNA extraction kit. The primers of the 5 microsatellite loci of HNPCC (BAT26, BAT25, D2S123, D5S346 and D17S250) were selected according to recommendation of the international cooperation organization (Table 1). The primers were synthesized by TAKARA Company.

**The reaction system:** It was consisted of a total volume of 25 µL with 3 µL template DNA, 0.5 µL forward and reverse primers, 10× Buffer 2.5 µL, dNTP 2.0 µL, TaqE 0.2 µL, DMSO 1.0 µL, ddH2O 15.3 µL. The PCR program started with a 95°C denaturation for 5 min, then at 94°C for 40 s, 53°C for 30 s followed by 35 cycles of annealing at 72°C for 1 min, and extension at 72°C for 40 s, finally an extension at 72°C for 10 min. The PCR products were analyzed by electrophoresis on 1.5% agarose gels containing ethidium bromide.

**Detection of MSI:** Single strand conformation polymorphism (SSCP) was used to analyze MSI. The PCR products of normal and tumor tissues were mixed with the same volume of alkaline buffer, then started with 97°C denaturation for 10 min and put in the mixture of water and ice for 5 min. Then electrophoresis was performed vertically on the 10% nondenaturing polyacrylamide gel (constant power; 60 W) for about 4 h. When the indicating straps reached the inferior margin of the gel or the tracer agent disappeared, silver staining, coloration, fixation and termination were performed. When the film dried 24 h later, the imaging was observed.

**Results assessment:** MSI was defined by the presence of novel bands following PCR amplification of tumor DNA, which were not present in PCR products of the corresponding normal DNA. If more than 2 of them showing positive results, it was defined as high frequency microsatellite instability (MSI-H), and if only 1 of them showing positive result, it was defined as low frequency microsatellite instability (MSI-L), and if none of them showing positive result, it was named microsatellite stable (MSS).

**RESULTS**

The results of detection of MSI are shown in Figures 1 and 2, and Tables 1 and 2. The relationship among MSI-H, mean age of the patients and the sites of cancer are shown in Table 3. The ratio of every locus occupying in the MSI-H is shown in Table 4.

The clinical pathological characteristics of colorectal cancer are as follows: in the 17 cases with MSI-H of group A, 7 cases had multiple cancers, among which 4 cases were with multiple cancers simultaneously, 3 cases were with multiple cancers at different times. As to groups B and C, none of the patients were with multiple cancers. There were 70.6% (12/17) of poorly differentiated adenocarcinoma in group A, which was more than that of groups B (50%, 4/8) and C (50%, 1/2).

**DISCUSSION**

Microsatellites are long stretches of apparently redundant DNA between genes by 2-6 nucleotides tandemly arrayed, within which repetitive sequences may be found. Repetition of two bases (CA/GT) is most common. Under normal conditions, the repetitive sequence is constant but
In this study, we amplified 5 loci of microsatellite by PCR according to the criteria of the International Collaborative Group and the International Cancer Research Institute and found the positive ratio was as high as 85% for MSI-H patients with HNPCC, which is in accordance with other research. We found the 5 loci were ideal for detection of MSI of HNPCC patients. It reflected the mutation of MMR gene objectively and could be used as a reliable indicator for screening of HNPCC family just before gene sequencing. If other loci were selected, the type of MSI could be decided by the percentage of positive loci, and MSI-H could be diagnosed when the percentage of positive loci was more than 30%-40% while MSI-L was diagnosed when the percentage of positive loci was less than 30%. As to which loci should be selected, there are a variety of viewpoints. Some scholars think 1-2 microsatellite loci are enough. Hoang believes BAT26 has high correlation with MSI, and their concordance rate is very high. Because the detecting process is relatively simple, Stone detected MSI from tumor specimen using BAT26 directly and recommended that it should be used more extensively. Our study found the positive rate of BAT26 was as high as 94.1%, indicating its high sensitivity for MSI-H detection. At the same time, the positive rate of BAT25 was also 94.1%. Their annealing temperature was close to each other and could be carried out in the same reaction system. The combined application of BAT26 and BAT25 may elevate the specificity of the experiment.

Moreover, our research found that about 40% of the patients with ordinary hereditary colorectal cancer were classified as MSI-H, although it was lower than that of the HNPCC group, it was higher than that of the sporadic colorectal cancer group (the positive rate was 10%), suggesting that about 30% of the patients with ordinary hereditary colorectal cancer had the characteristics of HNPCC. Whether these patients were potential HNPCC...
patients needs further study. MSI has been shown to have a close relationship with the onset age of the patients in many recent studies. MSI-H shows good consistency with early onset of age. Edmonston\[15\] found that the patients whose onset of age was less than 41 years were all MSI-H positive, and the youngest onset age of MSI-H was less than 26 years. Terdiman\[16\] found that in the different HNPPC families, the final diagnosis age of MSI-H was young and there were more family members with HNPPC than other families, and the ratio of multiple cancers or other HNPPC-related cancer increased. Our research revealed that the mean onset age of MSI-H in the HNPPC group was 43.6 years, which was younger than that of the ordinary hereditary colorectal cancer group (52.2 years) and the sporadic colorectal cancer group (61.8 years). The incidence of multiple cancers or other HNPPC-related cancers of HNPPC group was higher than other groups. In addition, MSI had a close relationship with the sites of carcinoma. The carcinoma of MSI-H, either of HNPPC or of sporadic colorectal cancer, was all likely to occur at the proximal half of a colon. Just as Altonen's study showed\[17\], 62% of the tumors occurred at the proximal hemicolon of the patients with HNPPC while 38% occurred at the distal hemicolon, suggesting that MSI had a close relationship with cancer of right hemicolon and may play a fundamental role in the pathology of cancer of right hemicolon. Our research found the incidences of right hemicolon cancer of the HNPPC group and the ordinary hereditary colorectal cancer group were 64.7% and 62.5% respectively, which were higher than those of left hemicolon cancer. There was no cancer of right hemicolon found in the sporadic colorectal cancer group, because the occurrence of rectum cancer was higher in North China and the bias was related with the cases selected. Our research suggests that MSI had high correlation with the clinical and pathological characteristics of the HNPPC.

At present, there have been few reports about MSI in typical cases of Chinese people and no clinical data about MSI in patients with ordinary hereditary colorectal cancer. Our research demonstrates that the incidence rate of MSI-H in patients with HNPPC, the mean onset age, the site of carcinoma occurrence, and the clinical and pathological characteristics of patients with HNPPC are all different from that of patients with sporadic colorectal cancer. Ordinary hereditary colorectal cancer is a special type between HNPPC and sporadic colorectal cancer. It has partial characteristics of HNPPC but is not the same as HNPPC and has many differences from sporadic colorectal cancer. Whether it has a special molecular genetic mechanism needs further study. In addition, the survival rate of patients with HNPPC is higher than that of patients with sporadic colorectal cancer, which is due to the early diagnosis of some patients with HNPPC\[18,19\].

Recently, studies reported that MSI induced by abnormal expression of MMR may affect the therapeutic effect of chemotherapy and the prognosis of patients with colorectal cancer\[20-22\]. Therefore, as an important screening method for HNPPC, MSI has a promising prospect in clinical application.

REFERENCES

1. Cunningham C, Dunlop MG. Molecular genetic basis of colorectal cancer susceptibility. *Br J Surg* 1996; 83: 521-529.

2. Müller A, Fishel R. Mismatch repair and the hereditary non-polyposis colorectal cancer syndrome (HNPPC). *Cancer Invest* 2002; 20: 102-109.

3. Liu T, Wahlberg S, Burek E, Lindblom P, Rubio C, Lindblom A. Microsatellite instability as a predictor of a mutation in a DNA mismatch repair gene in familial colorectal cancer. *Genes Chromosomes Cancer* 2000; 27: 17-25.

4. Debniak T, Kurzawski G, Gorski B, Kladny J, Domagala W, Lubinski J. Value of pedigree/clinical data, immunohistochemistry and microsatellite instability analyses in reducing the cost of determining hMLH1 and hMSH2 gene mutations in patients with colorectal cancer. *Eur J Cancer* 2000; 36: 49-54.

5. Lynch HT, Smyrk T. Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review. *Cancer* 1996; 78: 1149-1167.

6. Liu B, Nicolaides NC, Markowitz S, Willson JK, Parsons RE, Jen J, Papadopulous N, Peltomäki P, de la Chapelle A, Hamilton SR. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. *Nat Genet* 1995; 9: 48-55.

7. Brentnall TA, Crispin DA, Bronner MP, Cherian SP, Hufned M, Rabinovitch PS, Rubin CE, Haggitt RC, Boland CR. Microsatellite instability in nonneoplastic mucosa from patients with chronic ulcerative colitis. *Cancer Res* 1996; 56: 1237-1240.

8. Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, Jarvinen H, Powell SM, Jen J, Hamilton SR. Clues to the pathogenesis of familial colorectal cancer. *Science* 1993; 260: 812-816.

9. The Collaborative Group of the Chinese Genetic Colorectal Cancer. The practice project of the screening standard for Chinese Genetic Colorectal Cancer. *Zhonghua Zhongliu Zazhi* 2004; 26: 191-192.

10. Liu WZ, Jin F, Wang SB. The Analysis of Clinical Phenotype of the Hereditary Nonpolyposis Colorectal Cancer and the Common Hereditary Colorectal Cancer. *Zhongguo Zhongliu Linduang* 2005; 32: 811-813.

11. Bocker T, Diermann J, Friedl W, Gebert J, Holinski-Feder E, Karner-Hanusch J, von Knebel-Doebertitz M, Koelle B, Moelein G, Schackert HK, Wirtz HC, Fishel R, Rüschoff J. Microsatellite instability analysis: a multicenter study for reliability and quality control. *Cancer Res* 1997; 57: 4739-4743.

12. Boardman LA. Heritable colorectal cancer syndromes: recognition and preventive management. *Gastroenterol Clin North Am* 2002; 31: 1107-1113.

13. Hoang JM, Cottu PH, Thuille B, Salmon RJ, Thomas G, Hamelin R. BAT-26, an indicator of the replication error phenotype in colorectal cancers and cell lines. *Cancer Res* 1997; 57: 300-303.

14. Stone JG, Tomlinson IP, Houlston RS. Optimising methods for determining RER status in colorectal cancers. *Cancer Lett* 2000; 149: 15-20.

15. Edmonston TB, Cuesta KH, Burkholder S, Barussevicius A, Rose D, Kovatch A, Rosman B, Fry R, Fishel R, Palazzo JP. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with a close relationship to the pathogenesis of familial colorectal cancer. *Science* 1993; 260: 812-816.

16. Terdiman JP, Gass JC, Conrad PG, Miller GA, Weinberg V, Crawley SC, Levin TR, Reeves C, Schmitt A, Hepburn M, Sleisenger MH, Kim YS. Efficient detection of hereditary non-polyposis colorectal cancer patients. *Gastroenterology* 1995; 109: 619-627.

17. Edmonston TB, Cuesta KH, Burkholder S, Barussevicius A, Rose D, Kovatch A, Rosman B, Fry R, Fishel R, Palazzo JP. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with a close relationship to the pathogenesis of familial colorectal cancer. *Science* 1993; 260: 812-816.

18. Terdiman JP, Gass JC, Conrad PG, Miller GA, Weinberg V, Crawley SC, Levin TR, Reeves C, Schmitt A, Hepburn M, Sleisenger MH, Kim YS. Efficient detection of hereditary non-polyposis colorectal cancer patients. *Gastroenterology* 1995; 109: 619-627.

19. Edmonston TB, Cuesta KH, Burkholder S, Barussevicius A, Rose D, Kovatch A, Rosman B, Fry R, Fishel R, Palazzo JP. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with a close relationship to the pathogenesis of familial colorectal cancer. *Science* 1993; 260: 812-816.
Lynch HT, Lynch J. Lynch syndrome: genetics, natural history, genetic counseling, and prevention. *J Clin Oncol* 2000; 18: 195-315

Lynch HT, Lynch JF. Hereditary nonpolyposis colorectal cancer. *Semin Surg Oncol* 2000; 18: 305-313

Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer.

Cawkwell L, Li D, Lewis FA, Martin I, Dixon MF, Quirke P. Microsatellite instability in colorectal cancer: improved assessment using fluorescent polymerase chain reaction. *Gastroenterology* 1995; 109: 465-471

Hemminki A, Mecklin JP, Järvinen H, Aaltonen LA, Joensuu H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. *Gastroenterology* 2000; 119: 921-928

S- Editor Wang J  L- Editor Zhu LH  E- Editor Liu WF