Exploring high-resolution chromatin interaction changes and functional enhancers of myogenic marker genes during myogenic differentiation

Skeletal muscle differentiation (myogenesis) is a complex and highly coordinated biological process regulated by a series of myogenic marker genes. Chromatin interactions between gene’s promoters and their enhancers have an important role in transcriptional control. However, the high-resolution chromatin interactions of myogenic genes and their functional enhancers during myogenesis remain largely unclear. Here, we used circularized chromosome conformation capture coupled with next generation sequencing (4C-seq) to investigate eight myogenic marker genes in C2C12 myoblasts (C2C12-MBs) and C2C12 myotubes (C2C12-MTs). We revealed dynamic chromatin interactions of these marker genes during differentiation and identified 163 and 314 significant interaction sites (SISs) in C2C12-MBs and C2C12-MTs, respectively. The interacting genes of SISs in C2C12-MTs were mainly involved in muscle development, and histone modifications of the SISs changed during differentiation. Through functional genomic screening, we also identified 25 and 41 putative active enhancers in C2C12-MBs and C2C12-MTs, respectively. Using luciferase reporter assays for putative enhancers of Myog and Myh3, we identified eight activating enhancers. Furthermore, dCas9-KRAB epigenome editing and RNA-Seq revealed a role for Myog enhancers in the regulation of Myog expression and myogenic differentiation in the native genomic context. Taken together, this study lays the groundwork for understanding 3D chromatin interaction changes of myogenic genes during myogenesis and provides insights that contribute to our understanding of the role of enhancers in regulating myogenesis.

Myogenesis *in vivo* is a complex biological process involving the commitment of embryonic precursors to the myogenic lineage, myoblast (MB) proliferation, and their eventual differentiation into skeletal muscle fibers. The terminal differentiation of MBs, including the proliferation, differentiation, and fusion of myocytes into multinucleated myotubes (MTs), is essential for the growth and development of skeletal muscle. Myogenesis is associated with the temporal and spatial expression of muscle-specific genes. *Myod1* and *Myog* are critical transcription factor (TF) genes involved in skeletal muscle differentiation (3–6). They cooperate with the myocyte enhancer factor-2 (MEF2A, MEF2B, MEF2C, and MEF2D) family of TFs to activate the expression of most myogenesis-related genes and promote the differentiation of MBs (7–9) such as the myosin heavy chain (MHC) gene families (10) and MB fusion factor (*Mymk*) (5, 6, 11). The molecular mechanisms involved in how myogenic genes regulate myogenesis have been extensively studied; however, few studies have focused on changes in 3D chromatin interactions between myogenic genes and their functional enhancers during myogenesis.

3D chromatin interactions in the nucleus are thought to have a fundamental role in gene regulation by facilitating or restricting regulatory element interactions such as promoter and enhancer interactions. Gene activation and inactivation are linked to dramatic changes in chromatin interactions. The development of chromosome conformation capture (3C) technology and its variations, including circularized chromosome conformation capture sequencing (4C-seq), high-throughput chromatin conformation capture (Hi-C), and promoter capture Hi-C (PCHi-C) have uncovered the principles of higher-order chromatin structures and identified chromatin contacts at different genome structural levels. Compared with Hi-C and PCHi-C, 4C-seq enables the detection of single promoter interactions at a higher resolution (1–2 kb) and lower sequencing depth (12). Previous studies revealed that the expression of myogenic genes was regulated by chromatin interactions between promoters and enhancers during myogenesis (13–15). However, because of the low resolution of current Hi-C and PCHi-C data, little is known about the dynamics of such promoter–enhancer interactions and the precise localization of enhancer sites at high resolution. Therefore, deciphering changes in the chromatin interactions between myogenic genes and their functional enhancers remains a major challenge.

The transcriptional regulation of genes is a key factor in gene expression in general. Enhancers are critical *cis*-regulatory
Chromatin interaction and enhancers of myogenic marker genes

elements that control spatial and temporal gene expression by recruiting specific TFs in a sequence-specific manner (16). Enhancers are typically located upstream (5'), downstream (3'), or in the intron of the gene that they regulate, and they can also be located distant from their target genes (17). Chromatin modifications of H3K27ac, H3K4me1, and H3K4me2 are effective markers to identify enhancers, and the combination of H3K27ac and H3K4me1 is widely used for the identification of active enhancers (18–20). Enhancers regulate cell type–specific gene expression through long-range chromatin interactions. For example, Shyamsunder et al. found that the +6 kb enhancer of the Cebp gene is essential for granulocytic differentiation and that its germline deletion reduced the expression levels of Cebp and significantly inhibited granulocytic differentiation (21). The Sonic hedgehog (Shh) gene is regulated by an enhancer located 1 Mb distant in an intron of the unrelated Lmbr1 gene and point mutations of the enhancer segregated with polydactyly in humans and mice (22, 23). In terms of muscle cell differentiation, several studies have reported that interactions between enhancers and promoters affected cell differentiation (13–15). However, to date, how enhancer–promoter interactions activate myogenic gene expression to myogenic differentiation is poorly understood, although this information is required to understand the underlying differentiation mechanisms involved.

Here, we used 4C-seq to explore the chromatin interactions of eight myogenic marker genes (Myod1, Myog, Mef2a, Mef2b, Mef2d, Myh2, Myh3, and Mynk) that are important for the terminal differentiation of MBs to MTs. We found a change in the dynamic chromatin interactions of the myogenic marker genes during C2C12-MB differentiation and identified the significant interaction sites (SISs) of C2C12-MBs and C2C12-MTs. We used dCas9-Krüppel-associated box (KRAB) and RNA-Seq to study the role of Myog enhancers in target gene regulation and myogenic differentiation. These findings enhance our understanding of the molecular regulation of myogenesis associated with the promoter–enhancer chromatin interactions.

Results

Interactome characterization of eight myogenic marker genes during C2C12 MB differentiation

We induced C2C12-MBs to differentiate into C2C12-MTs in vitro by culture with 2% horse serum for 5 days (Fig. S2, A–C). Giemsa staining showed the presence of dark purple-stained MT cytoplasm and pink multinuclei in differentiated C2C12-MBs (Fig. S2A). Immunofluorescence staining revealed the high expression of myosin heavy chain (MHC) protein (markers of MB differentiation) in differentiated C2C12-MBs (Fig. S2A). We observed significant changes in cell morphology and visible MT formation in differentiated C2C12-MBs, with a high fusion index (FI) of 70% (Fig. S2, A and B). The mRNA expressions of eight well-characterized myogenic marker genes (Myod1, Myog, Mef2a, Mef2b, Mef2d, Myh2, Myh3, and Mynk) were evaluated in C2C12-MBs and differentiated C2C12-MBs by quantitative RT-PCR (qRT-PCR). Compared with C2C12-MBs, the expression levels of the myogenic marker genes after differentiation were upregulated significantly (p < 0.005) (Fig. S2C). These results suggested C2C12-MBs were successfully induced to differentiate into MTs in vitro and highlighted the dynamic mRNA expression of the myogenic marker genes during differentiation.

To reveal genome-wide chromatin interactions of the myogenic marker genes during myogenic differentiation, we performed 4C-seq experiments with the promoters of eight genes. Overall, we generated 32 libraries for the eight genes in C2C12-MBs and C2C12-MTs with two replicates each. We obtained ~201.37 M filtered reads with an average of 6.29 M reads for each 4C data, and 57.55% to 85.95% of the total reads in 32 datasets were distributed on the cis-chromosome (Fig. S3A). This conforms to the “cis/overall ratio of > 40%” criteria proposed by Van De Werken et al. (24), indicating the good experimental quality. In addition, 26 out of 32 datasets showed a capt100 kb > 40%, indicating the high complexity and reproducibility of the 4C datasets (Fig. S3B). All 4C datasets had cov1Mb > 50%, and 87.5% (28/32) of the 4C datasets had cov1Mb > 60%, indicating that most reads were located within 1 Mb of the viewpoint (Fig. S3C). Detailed quality metrics are provided in Table S7.

We used r3Cseq to identify the interaction sites of each 4C data with a continuous nonoverlapping 2 kb window and counted the number and ratio of cis- and trans-interaction sites (Table S8). Then, we evaluated the reproducibility of the 4C datasets (Fig. S3). All 4C datasets showed a good consistency between replicates. The paired t test revealed significantly higher correlation coefficients in C2C12-MBs than in C2C12-MTs (p < 0.05) (Fig. 1B), which may be related to the higher heterogeneity and complexity of C2C12 MB differentiation (25, 26).

To identify the reliable interaction sites, we overlapped interaction sites between replicates using r3Cseq. We identified 353 to 1641 interaction sites after overlapping replicates in C2C12-MBs and C2C12-MTs (Fig. 1C), which is comparable with other 4C-seq studies (27–29). In addition, more interaction sites were observed in C2C12-MBs for most myogenic marker genes except the Myod1 and Myh2 genes (Figs. 1, C and D and S5). For example, the number of interaction sites of Myod1, Mef2d, and Myh3 genes increased more than twofold in C2C12-MBs compared with C2C12-MTs. Next, we counted the number of cis- and trans-interaction sites. Interestingly, all genes in C2C12-MTs had a higher trans-interaction ratio than in C2C12-MBs. Among them, the three most changed genes were Myod1 (10.92% in C2C12-MBs, 58.81% in C2C12-MTs), Myog (21.77% in C2C12-MBs, 70.00% in C2C12-MTs), and Mef2a (11.00% in C2C12-MBs, 57.56% in C2C12-MTs). These results indicated the interaction divergence and high complexity of the chromatin interaction model of the myogenic marker genes during C2C12 MB differentiation.
Chromatin interaction and enhancers of myogenic marker genes during C2C12 MB differentiation

To investigate the chromatin interaction alterations of the myogenic marker genes during differentiation, we performed a cluster analysis, which revealed a clear split between C2C12-MBs and C2C12-MTs for the Myod1, Myog, Mef2d, Myh2, and Myh3 genes but a weak division for the Mef2a, Mef2b, and Mymk genes (Figs. 2A and S6A). Principal component analysis suggested an interaction discrepancy of the myogenic marker genes in C2C12-MBs and C2C12-MTs. (Figs. 2B and S6B). In addition, we compared the interaction profiles of the myogenic marker genes within ±500 kb of the viewpoint in C2C12-MBs and C2C12-MTs. The interaction sites of the myogenic marker genes were changed (Fig. S7). Together, these results suggested that chromatin interactions of the myogenic marker genes differed to some extent between C2C12-MBs and C2C12-MTs.

To clarify the detailed interaction changes during differentiation, we identified significant differential interaction sites (SDISs) between C2C12-MBs and C2C12-MTs using DESeq2 analysis with a q-value ≤ 0.01. Many SDISs were observed (Figs. 2, C and D and S8A), with the proportion of SDISs versus total interaction sites close to or greater than 40% for genes (Myod1, Myog, Me2a, Me2d, Myh2, and Myh3). Of note, the Myh2 gene had the most SDISs, with more than 70% of interaction sites significantly changed. In comparison, 27.54% and 33.28% of interaction sites were changed for the Mef2b and Mymk genes, which had the least SDISs. In addition, the mean |Log2FC| of SDISs ranged from 7.48 to 12.42 for each gene (Fig. 2E), indicating a marked alteration in the interaction frequency of SDISs during differentiation. For example, Myod1 had the largest average |Log2FC| (12.42) of SDISs. We also analyzed the mean fold changes for SDISs within ±500 kb of myogenic marker genes and found that the mean [Log2FC] of SDISs ranged from 5.49 to 10.73 (Fig. S8B). These results indicated a marked change in the interaction profiles of myogenic marker genes during myogenesis. Next, we examined the fold change distribution of the upregulated and downregulated SDISs. The results showed that the [Log2FC] values of upregulated and downregulated SDISs had different distributions (Figs. 2F and S9A). Except for Myog, most upregulated SDISs of other myogenic genes had larger fold changes than those of most downregulated SDISs, such as Myod1 and Mef2a (Figs. 2F and S9A). We also examined the fold change of cis- and trans-SDISs and created density plot of the fold change distribution. We found that most trans-SDISs of seven myogenic genes had larger fold change than most cis-SDISs, such as Myod1 and Mef2b (Figs. 2G and S9B). However, most cis-SDISs of Myog had higher fold change than most trans-SDISs (Fig. S9B). This suggests that the trans-interactions of most myogenic marker genes have a stronger change in interaction frequency than the cis-interactions between C2C12-MBs and C2C12-MTs. These results indicate that the interaction sites and interaction intensity of myogenic marker genes changed markedly during differentiation.

SIS analysis reveals an enhanced coregulatory network and open chromatin state during myogenic differentiation

The high confidence of the SISs suggests that they are potential candidate regulatory elements that regulate gene expression (21, 30, 31). Therefore, we used r3Cseq to detect SISs (q-value ≤ 0.05) of the myogenic marker genes in C2C12-MBs and C2C12-MTs. Overall, 477 SISs were detected, with 163 and 314 in C2C12-MBs and C2C12-MTs, respectively.
Of note, six of eight genes had more SISs in C2C12-MTs than in C2C12-MBs (Fig. 3A). For example, the Mef2b gene had more SISs within ±500 kb around the viewpoint in C2C12-MTs (n = 15) than C2C12-MBs (n = 11) (Fig. 3B). We also identified peaks using PeakC (35) and used monotonic regression to confirm this result. When the wSize set at 5, the peak number of each myogenic marker gene in C2C12-MTs was higher than in C2C12-MBs (Fig. S10A). Although the numbers of SISs and peaks identified by the two software packages were different, both methods revealed more SISs or peaks in C2C12-MTs, which had the higher expression levels of the myogenic marker genes. This result is consistent with a previous study (32) reporting increased gene expression was positively correlated with the number of promoter interactions. A detailed comparison indicated that only Myog and Mymk share about 40% of SISs between C2C12-MBs and C2C12-MTs; the other genes only share about 10% of SISs (Fig. S10B), suggesting dynamic chromatin interactions during differentiation. In summary, these results indicate that the interaction profile of the myogenic marker genes changes during C2C12-MB differentiation.

Interactions between genes involved in related biological pathways have been detected in various biological processes, suggesting spatial networks of co-regulated genes (32). To examine potential differences in spatial networks during differentiation, interacting genes that contained at least one SIS within intragenic regions were identified. We identified 15 interacting genes in C2C12-MBs and 84 interacting genes in C2C12-MTs, suggesting an increased network during myogenic differentiation (Table 1). Myh genes (Myh1, Myh2, Myh3, Myh4, Myh8, and Myh13) are located adjacently across the genome and are coexpressed to promote myogenesis (33, 34). In this study, we observed a significant interaction between Myh2 and Myh1 in C2C12-MBs. In comparison, Myh2
interacted significantly with the *Myh1*, *Myh3*, *Myh8*, and *Myh13* genes in C2C12-MTs, indicating the increased connection of fast *Myh* (f*Myh*) genes during differentiation. These results demonstrated the coregulated expression of the f*Myh* genes and their potential coordinated roles in myogenic differentiation. To further investigate the biological function of the interacting genes, functional enrichment analysis was performed. The interacting genes in C2C12-MTs that showed

Figure 3. The coregulated network and open chromatin state of SISs during myogenic differentiation. A, the SISs numbers of the myogenic marker genes in C2C12-MBs and C2C12-MTs. B, interactions of the *Mef2b* within ±500kb of the viewpoint. The dotted red line represents the viewpoint. Circles represent interactions. The deeper color indicates a higher interaction frequency. The y-axis indicates reads per million (RPM). C, GO and KEGG pathway enrichment analyses of the interacting genes in C2C12-MBs. D, enrichment analysis of histone marks of the SISs. Bar plots showing the enrichment factor values for histone modifications of the SISs in C2C12-MBs and C2C12-MTs. E, enrichment analysis of histone marks of the SISs. Bar plots showing the enrichment factor values for histone modifications of the SISs in C2C12-MBs and C2C12-MTs. ChIP-seq, chromatin immunoprecipitation sequencing; MB, myoblast; MT, myotube; SIS, significant interaction site.

Table 1 The interacting genes of the myogenic marker genes in C2C12-MTs and C2C12-MBs

Gene	The interacting genes in C2C12-MTs	The interacting genes in C2C12-MBs	Shared the interacting genes
Myod1	Abcc8, Abhl2m2, Gnao1, Grin1, Grin2d, Hif1a, Kcncl, Myo10, Nup133, Otog, Parp14, Pits1, Pkb, Pkch, Sipa13, Usp48, Zfp507	Otog, Sergef	Otog
Myog	Chat1, Klhdc8a, Ppfa4	Adora1, Ppfa4, Slc4a2	Ppfa4
Mef2a	Dnah1, Lrrc28, Mba2, Sema5a, Sema6d, Spink5, Tnc2, Ttc23, Zkhd1	Lrrc28	Lrrc28
Mef2b	Ariege3, Cad1, Cdkal1, Cup2, Fg9, Gata2a, Gm20604, Gycp, Otulinl, Rf1, Yf6n3	Tmem161a, Borc8	Tmem161a, Borc8
Mef2d	Atf1, Cacna1c, Dlg1, Fhbp1, Galtn2, Igap3, Rorc, Tnn, Tmm2rb7, Twxox	Igap3	Igap3
Myh2	Abcsa, Axin3, Cep112, Cmip, Cs1d3a, Klin1, Myh1, Myh3, Myh8, Myh13, Rcrv, Sop, Tmem132d, Tpgs2, Zfpb04	Myh1	Myh1
Myh3	Acaca, Dnah7, Epn1, Filip1l, Myh13, Pp3r2d, Rpe, Rsa1, Sco1, Sco8, Tbc1d5, Tmem220, Ttx1, Tubd2, Usp48, Usp49	Adprrn, Sco1, Tmem220	Sco1, Tmem220
Mynk	Adamts1f2, Fam155a, Pkra, Vav2	Adamts1f2, Sardi	Adamts1f2
significant enrichment were related to muscle development and function, including the terms “myosin complex” (five genes, \(p < 1.76 \times 10^{-6} \)), “cytoskeletal motor activity” (six genes, \(p < 3.01 \times 10^{-6} \)), “glutamatergic synapse” (six genes, \(p < 4.14 \times 10^{-6} \)), “long-term potentiation (five genes, \(p < 5.18 \times 10^{-6} \))”, “actin filament binding” (seven genes, \(p < 1.74 \times 10^{-5} \)), “contractile fiber” (seven genes, \(p < 2.90 \times 10^{-5} \)), and “regulation of system process” (nine genes, \(p < 6.67 \times 10^{-4} \)) (Fig. 3C and Table S10). In C2C12-MBs, the interacting genes were not enriched for any term.

Next, we integrated our 4C-seq data with published epigenome datasets, including five histone modifications (H3K27ac, H3K4me2, H3K4me3, H3K36me3, and H3K27me3) to calculate enrichment factors for each histone mark in the SISs to assess the regulatory potential of the SISs (32, 35). Given that most SISs are located on the cis-chromosome, we mainly focused on the chromatin state of the SISs on the cis-chromosome. We found that histone hallmarks of open chromatin, such as H3K27ac, H3K4me2, H3K4me3, and H3K36me3, had high enrichment levels in C2C12-MTs compared with the enrichment in C2C12-MBs (Fig. 3D, Table S11, and Fig. S11). In contrast, the repressive histone mark H3K27me3 had high levels of enrichment in C2C12-MBs. For example, cis-SISs of the Myog gene showed increased enrichment of the H3K27ac, H3K4me2, and H3K4me3 modifications but decreased enrichment of H3K27me3 in C2C12-MTs (Fig. 3E). These results indicated dynamic histone modifications of the SISs occur during differentiation and that the chromatin state of the SISs in C2C12-MTs tends to be open.

Identification and characterization analysis of active enhancers of myogenic marker genes

We used two 4C-seq software programs to identify putative active enhancers, based on a nonoverlapping window and number of fragment ends. The two software programs have advantages in identifying the precision and recall of interaction regions (36). After identifying putative active enhancers (Fig. 4A), we identified 41 and 25 putative active enhancers in C2C12-MTs and C2C12-MBs, respectively (Table 2). As expected, more putative active enhancers were observed in C2C12-MTs, consistent with a previous study reporting a positive correlation between gene expression level and number of interacting enhancers (32). For example, we detected seven putative active enhancers of Myog in C2C12-MTs, which showed apparent histone modifications of H3K27ac and H3K4me1. In comparison, only one putative active enhancer was detected in C2C12-MBs (Fig. 4B).

The enhancer serves as a platform to supply binding sites of TFs to regulate gene expression (37, 38). Furthermore, genetic variants within enhancers that disrupt TF-binding motifs may lead to misregulated gene expression. It is therefore important to investigate TF binding in enhancer regions. We analyzed which myogenic TFs (MYOD1, MYOG, MYF6, and MEF2A-D) might bind to the enhancers of myogenic marker genes by performing motif enrichment analysis using AnimalTFDB3.0 (39) and JASPAR (40). All putative active enhancers were predicted to contain at least three types of myogenic TF-binding sites (Table S12). For enhancers of Myod1, Myh2, Myh3, and Mymk, we observed that the binding sites of MYOD1 TF were significantly enriched (\(p < 0.05 \)). MYOD1 is a transcriptional activator that activates its own transcription and promotes the transcription of muscle-specific target genes during muscle differentiation (5, 41, 42).

Of note, the motifs of MYOD1 and MYOG TFs were significantly enriched in most enhancer sequences of Myog (Fig. 4C), suggesting the TFs might cобind to functional enhancers of Myog to promote the transcription of Myog. Next, we downloaded the chromatin immunoprecipitation sequencing (ChIP-seq) data of MYOD1 and MYOG to determine whether MYOD1 and MYOG TFs occupied the enhancer of Myog. The ChIP-seq results confirmed that the enhancer regions of Myog were occupied by MYOD1 and MYOG TFs (Fig. 4D), which is consistent with the predicted results of TF-binding sites.

Previous studies have shown that enhancers are usually evolutionarily conserved, which allows them to be used to identify functional elements within genomes (43–49). To evaluate the conservation of the putative active enhancers, we used the UCSC genome browser (http://genome-asia.ucsc.edu/) to perform conserved element analysis in 60 vertebrates. Overall, 58 out of 66 (87.88%) putative active enhancers contained at least one conserved element (Table 2, Fig. S12, and Table S13), including Myog-MT-En5 (Fig. 4E). These results suggested the high confidence of the putative active enhancers. To validate the transcriptional activity of putative active enhancers, we performed luciferase reporter assays for 13 candidate enhancers of two genes (Myog: a transcription factor that controls myoblast differentiation; Myh3: a contractile protein important for muscle contraction), which are important for the differentiation of myoblasts. Eight enhancers had activity that increased gene expression. For enhancers of Myog, we found that Myog-En1, Myog-En3, Myog-En4, and Myog-En5 had a significant increase in luciferase activity compared with the pGL3-promoter vector (Fig. 4F), and Myog-En4 had the strongest activity (~1.5-fold higher). Myh3 enhancers other than Myh3-En1 and Myh3-En2 significantly increased the luciferase activity (Fig. 4G). To test whether the enhancement was associated with its conservation, we conducted Pearson correlation coefficient analysis between Lod score/length and the fold change of relative fluorescent intensity across 19 putative active enhancers. There was a significant positive Pearson correlation coefficient (\(r = 0.57, p < 0.05 \)) (Fig. 4H), suggesting a weak relationship, but a significant correlation, between the activity of enhancers and their conservation. In summary, we comprehensively analyzed putative active enhancers and evaluated their transcriptional activity.

The repression of Myog enhancers decreases Myog expression and inhibits myogenic differentiation

Understanding the complex mechanism involved in the transcriptional regulation of myogenic genes remains a major challenge. Classical luciferase reporter assay studies have
Figure 4. Identification and activity evaluation of enhancers. A, scheme of putative active enhancer identification strategy. B, manual selection of putative active enhancers of Myod1 in C2C12-MBs and C2C12-MTs. View of a genomic region around Myod1 integrating ChIP-seq profiles for H3K27ac (blue) and H3K4me1 (green) with 4C interaction profile (black). Upper panel: 4C interaction profile of Myog in C2C12-MBs. Lower panel: 4C interaction profile of Myog in C2C12-MTs. The blue and green vertical lines below the ChIP-seq profiles indicate the peak. The red dotted line represents the viewpoint of Myod1. The orange column represents the putative active enhancers. C, MYOD1 and MYOG TFs motif enrichment analysis of putative active enhancer regions of Myog. D, zoom in view of MYOD1 and MYOG ChIP-seq signals. Shaded regions showing seven putative active enhancers (Myog-MT-En1-En7). UCSC genome browser (https://genome-asia.ucsc.edu/; GRCm38/mm10) shows conserved regions (black boxes) of putative active enhancers in selected species. Horizontal red bars indicate conservative elements in 60 vertebrates. Elements conservation is measured as the LOD score of phastCons elements. F and G, dual-luciferase reporter assay assessing the enhancer activity of Myog and Myh3. Luciferase reporter assays was performed in H293T cells. The pGL3-promoter was used as control. Luciferase signals were normalized to renilla signals. Data are represented as mean ± SD of three independent experiments, and p values are calculated using Student’s t test (*p < 0.05, **p < 0.01). H, correlation analysis between LOD score/length and relative fluorescence intensity of enhancers of Myog and Myh3. The x-axis indicates LOD score/length.
already enabled the discovery of active enhancers; however, the influence of genomic context is still largely unknown. To test the transcription regulating potential of active enhancers for the target gene, we selected the active enhancers of the transcription factor *Myog*, which is critical for myoblast differentiation in functional studies. First, we visualized published Hi-C data (http://3dgenome.fsm.northwestern.edu/index.html) and analyzed published SMC3 (a subunit of the cohesin complex) and CTCF ChIP-seq data from mouse muscle tissues or cells. These results showed that these Myog-Ens and *Myog* promoter are located in an interaction domain, and they are present in the cohesin- and CTCF-enriched DNA region with convergent CTCF motif orientation (Fig. S13), suggesting that cohesin-mediated loop might be responsible for this interaction (50, 51). Then, we separately targeted four active enhancers of *Myog* using catalytically inactive Cas9 fused to a KRAB domain system, with two single guide RNAs (sgRNAs) for each enhancer (Fig. 5A). We transduced C2C12 cells with lentiviruses expressing dCas9-KRAB or dCas9-KRAB-sgRNAs (Figs. 5B and S14). The repression of *Myog*-En1, En3, En4, and En5 significantly decreased Myog expression compared with cells expressing dCas9-KRAB on days 4 and 5 of differentiation (Fig. 5C). Of note, Myog expression was significantly reduced by dCas9-KRAB-En4-sgRNAs (0.027-fold, p < 0.01) and dCas9-KRAB-En5-sgRNAs (0.02-fold, p < 0.005) on day 5 of differentiation. The immunofluorescence analysis of Myogenin (MYOG) was performed using C2C12 cells expressing dCas9-KRAB or dCas9-KRAB-sgRNAs. The repression of *Myod*-En1, En3, En4, and En5 reduced the proportion of Myogenin-positive cells and fluorescence intensity compared with dCas9-KRAB at day 5 of differentiation, indicating the repression of enhancers impaired *Myog* expression (Fig. 5D). For C2C12 cells expressing dCas9-KRAB-En4-sgRNAs or dCas9-KRAB-En5-sgRNAs, the proportion of Myogenin-positive cells was 23.81% and 7.86%, respectively. In addition, qRT-PCR analysis showed that myogenic genes including *Myod1*, *Myh1*, *Myh3*, *Myh4*, *Myh7*, and *Mymk* of dCas9-KRAB-En4 cells and dCas9-KRAB-En5 cells were significantly downregulated compared with dCas9-KRAB cells (Fig. 5E). To investigate whether the repression of Myog-En4 and En5 affected myoblast differentiation, we performed immunofluorescence staining of MHC on dCas9-KRAB cells and dCas9-KRAB-sgRNAs cells. We observed few MHC-positive cells on day 5 of differentiation, indicating the repression of Myog-En4 and En5 markedly attenuated the ability of C2C12 to differentiate and form multinucleated MTs (Fig. 5F).

Next, to examine the effect of Myog-En5 repression on differentiation in a transcriptome-wide manner, we conducted RNA-Seq analysis for dCas9-KRAB cells and dCas9-KRAB-En5 cells. Hierarchical clustering between samples revealed that samples between replicates within the same group have better correlations than samples between different groups (Fig. 6A). RNA-Seq analysis revealed Myog expression was reduced significantly (p < 0.01) in dCas9-KRAB-En5 cells than in dCas9-KRAB cells (Fig. 6B), which is in line with the qRT-PCR results (Fig. 5C). Differential expression analysis indicated that 2342 genes were differentially expressed, including 1379 upregulated and 963 downregulated genes in dCas9-KRAB cells (Fig. 6C). Known MYOG targets (*Myh1*, *Myh3*, *Myh7*, *Mymk*, *Mynx*, *Acta1*, *Lmod2*, *Tnni2*, and *Ckm*) (6, 52), the myogenic regulatory factors (*Myf5*, *Myod1*, and *Myog*), and late myogenic differentiation genes (*Tnnt1*, *Des*, *Tune1*, *Myph*, and *Mylpf*) (4, 53, 54) were significantly downregulated (p < 0.01) in dCas9-KRAB-En5 cells (Fig. 6D). Gene Ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of downregulated differentially expressed genes (DEGs) in dCas9-KRAB-En5 cells revealed significant enrichment for terms implicated in muscle structure and differentiation, such as contractile fiber, sarcomere, myofibril, muscle structure development, and muscle cell differentiation. (Fig. 6E and Table S14). In addition, Gene Set Enrichment Analysis (GSEA) showed that muscle cell development, muscle contraction, and structural constituent of muscle were enriched in dCas9-KRAB cells (Fig. S15). These findings indicate that Myog-En5 repression alters the transcriptome for MB differentiation and inhibits myogenic differentiation, demonstrating that Myog-En5 is critical for regulation of *Myog* transcription and myogenesis.

Discussion

The formation of skeletal muscles involves 3D chromatin interactions and epigenetic modifications, which ultimately

Table 2

Gene	Number of enhancers C2C12-MT	Containing conserved elements C2C12-MT	Number of enhancers C2C12-MB	Containing conserved elements C2C12-MB
Myod1	8	8	7	7
Myog	7	6	1	1
Mef2a	8	8	10	10
Mef2b	2	1	0	0
Mef2d	3	3	2	2
Myh2	1	1	1	1
Myh3	6	4	3	2
Mymk	6	4	1	1
Total	41	35	25	23
Figure 5. Enhancers are required for Myog expression myoblast differentiation. A, ChiP-seq profiles of H3K27ac and H3K4me1 are shown at Myog-En1, Myog-En3, Myog-En4, and Myog-En5 regions in C2C12-MTs. Enhancers regions are shown as orange rectangle. sgRNA target locations are indicated in black with corresponding black numbers, and the direction of the arrow indicates the gRNA targets the forward or reverse DNA strand. B, proliferating C2C12 cells expressing dCas9-KRAB or dCas9-KRAB-En5-sgRNAs system after 10 days of puromycin selection and qRT-PCR analysis of dCas9 and β-actin genes. C, relative expression of Myog transcripts measured by qRT-PCR in C2C12 cells transduced with dCas9-KRAB, dCas9-KRAB-En1-sgRNAs, dCas9-KRAB-En3-sgRNAs, dCas9-KRAB-En4-sgRNAs, or dCas9-KRAB-En5-sgRNAs and induced to differentiate for 4 days or 5 days. Relative expression levels of genes were normalized to β-actin. Data are presented as mean ± SD (n = 3). *p < 0.05, **p < 0.01, ***p < 0.005. D, immunofluorescence detection of Myogenin (MYOG) in C2C12 cells transduced with dCas9-KRAB, dCas9-KRAB-En4 cells, and dCas9-KRAB-En5 cells after 5 days of differentiation. E, qRT-PCR for myogenic genes in dCas9-KRAB cells, dCas9-KRAB-En4 cells, and dCas9-KRAB-En5 cells after 5 days of differentiation. Relative expression levels of genes...
Chromatin interaction and enhancers of myogenic marker genes

lead to alterations in myogenic gene expression (14, 55–57). The expression of myogenic genes is essential for myogenesis, and their abnormal expression directly affects muscle growth and development (58–61). In this study, we analyzed the chromatin interactomes of eight myogenic marker genes and studied the alterations of their chromatin interactions during differentiation. We identified putative active enhancers of myogenic marker genes and performed sequence characterization analysis and transcriptional activity. Finally, we studied the role of Myog enhancers in the regulation of Myog expression and myogenic differentiation by epigenome editing and RNA-seq.

4C-seq is a powerful technique for studying the 3D chro-

matin interactions of a locus of interest at the resolution of several kilobases (62–64). Compared with Hi-C and PCHi-C, 4C-seq enables the generation of a high-resolution interaction map with a relatively low amount of sequencing data (12). To date, 4C-seq has been widely used to study the chromatin interaction of gene promoters (29), enhancers (65), lncRNA (66), and SNP sites (67). We utilized 4C-seq to study the chromatin interactions of eight myogenic marker genes during C2C12 myogenic differentiation. The correlation of chromatin interactions of each gene between replicates of C2C12-MBs was lower than that of C2C12-MTs, indicating that differenti-
tated C2C12 have heterogeneity compared with the highly homogeneous C2C12-MBs before differentiation. We specu-
lated that this was because the nuclei were heterogeneous at different differentiation stages (25), resulting in a more diverse interaction of the myogenic marker genes in C2C12-MTs. Similarly, this heterogeneity of cell differentiation was also reported during the adipogenic differentiation of 3T3-L1 (68). C2C12 can express a variety of MyHC isoforms proteins after differentiation in vitro, leading to the production of nuclei of different MT types (26). This may increase the diversity of Myh gene chromatin interactions. We found that the Mef2a, Mef2b, and Mymk genes did not cluster together in C2C12-

MTs, suggesting that they might have more diverse chro-
matin interaction patterns after differentiation.

Gene expression and cell differentiation are often accom-
panied by changes in chromatin conformation (69–73). Our results showed that the number of chromatin interactions and the proportion of cis- and trans-chromatin interactions for myogenic marker genes are markedly changed after differentiation and that the proportion of trans-interactions is increased in C2C12-MTs, especially for Myod1 and Myog. Considering that these myogenic marker genes are highly active in C2C12-MTs and that the regions in which they are located show higher chromatin activity, these active regions may interact with active regions of other chromosomes with a higher interaction frequency than the average contact fre-

cuency in the genome. Furthermore, Tsai et al. reported that DRR8RNA, a noncoding RNA transcribed from the enhancer

were normalized to β-actin. Data are presented as mean ± SD (n = 3). ***p < 0.005. F. immunofluorescence detection of myosin heavy chain (MHC) in C2C12 cells transduced with dCas9-KRAB, dCas9-KRAB-En4-sgRNAs or dCas9-KRAB-En5-sgRNAs and differentiated for 5 days; MHC (green) and DAPI (blue). The fusion index (percentage of MTs containing more than three nuclei) in dCas9-KRAB cells, dCas9-KRAB-En4 cells, and dCas9-KRAB-En5 cells. Data are presented as mean ± SD (10 randomly chosen microscopic fields). ***p < 0.005. ChIP-seq, chromatin immunoprecipitation sequencing; DAPI, 4′,6-
diamidino-2-phenylindole; MT, myotube; qRT-PCR, quantitative RT-PCR; sgRNA, single guide RNA.
located in two adjacent windows, it is difficult to use r3Cseq to determine the exact location of the enhancer. Therefore, we used the visual inspection method based on PeakC contact profiles as a supplement to identify the enhancer further. The two methods have their advantages and both are widely used to identify enhancers of genes (36). For example, Pan et al. utilized r3Cseq to identify significant interactions of the HNF4A gene and detected three distal enhancers of the HNF4A gene in combination with ChIP-seq H3K27ac in a study of gastrointestinal adenocarcinomas (31). Maqbool et al. mapped 4C profiles of sliding windows of 21 fragments and ChIP-seq profiles of H3K27ac and Pol II at Lef1, Sipr1, mir181, and Nfata1 loci, visually inspected the profiles, manually selected their putative enhancers, and found moderate dynamics of enhancer–promoter interactions during T cell differentiation (80). In keeping with these two methods, we identified the putative enhancers of eight genes in C2C12-MBs and C2C12-MTs. Counting the number of enhancers, we found that the number of putative active enhancers in C2C12-MTs was higher than that in C2C12-MBs, which might be related to the additive mode effects of enhancers to increase expression (32, 81). In addition, the enrichment analysis of TF motifs showed that these enhancers have many binding sites of myogenic TFs, indicating its potential to bind to myogenic TFs to regulate gene expression. Moreover, we found that MYOG and MYOD1 TFs were colocalized in the enhancer sequence of Myog. This suggests that the expression of Myog is regulated by MYOG and MYOD1 during myogenic differentiation. Previous studies showed that Myog was activated by MYOD1 and that its expression was self-regulated (82, 83).

Gene KO is a traditional method of altering gene expression at the genome level. However, this method has a systemic and irreversible impact on the individual and can even cause death. As cis-regulatory elements, enhancers are usually located in
Chromatin interaction and enhancers of myogenic marker genes

noncoding regions to regulate gene expression in a spatio-temporally specific manner (81, 84). The manipulation of enhancers can regulate gene expression and reduce the impact on nontargeted tissues and cells. We used the dCas9-KRAB system to study the effect of enhancers on Myog expression and myogenic differentiation. After targeting the Myog enhancers, the expression of Myog was significantly decreased; moreover, we observed a reduction of MB fusion and MT formation by the repression of Myog-En4 and En5. This indicates that Myog expression and myogenic differentiation can be regulated by manipulating enhancers. Previous studies also reported that the manipulation of enhancer affected gene expression and changed cell differentiation processes. For example, deletion of the +6 kb enhancer of CEBPE reduced levels of CEBPE and inhibited granulocytic differentiation in mice (21). Although our study demonstrated the ability of four enhancers to regulate Myog expression, the modes of multiple enhancer action for gene expression require further in-depth study. Overall, our study demonstrated dynamic chromatin interactions of myogenic marker genes during myogenic differentiation and investigated the role of Myog enhancers in Myog expression. Our research strategy can be applied to other genes and is expected to greatly accelerate the study of mechanisms related to gene transcriptional regulation.

Experimental procedures

Cell culture and C2C12 myoblast differentiation

C2C12 mouse MB cells and human embryonic kidney cells (HEK293T) were kindly provided by the Cell Bank of the Chinese Academy of Sciences. HEK293FT cells were purchased from Thermo Fisher Scientific. Cells were maintained in Dulbecco’s modified Eagle’s medium (Gibco) supplemented with 10% fetal bovine serum (Gibco) and 1% penicillin–streptomycin (Gibco) at 37 °C under 5% CO2. The cells were confirmed without mycoplasma contamination using a PCR mycoplasma detection kit (TransGen). To induce differentiation, we cultured C2C12 cells in the differentiation medium consisting of 2% horse serum (HyClone) when grown to 50% confluence. The differentiation medium was changed every 48 h. Differentiated C2C12 cells are treated until day 5.

Giemsa staining, immunofluorescence staining, and FI scoring

Cells on the dishes were fixed with 100% methanol for 2 to 3 min at room temperature (RT) and then washed with PBS. Giemsa stock solution (Solarbio) was diluted 1:9 in 0.01 M sodium phosphate buffer (pH 6.8), then cells were incubated with 1 ml of Giemsa working solution for 15 to 30 min at RT. Cells were finally visualized and photographed using an Olympus IX73 inverted microscope (Olympus). Each dish was photographed in three randomly selected regions. Protein-rich MTs are stained darker purple color, and nuclei are stained pink.

Cells were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4) for 10 min. Cells were washed three times with PBS and permeabilized by treatment with 0.25% Triton X-100 for 10 min. Cells were washed three times with PBS and blocked in 10% goat serum (Solarbio, SL038) for 40 min at RT. Cells were incubated with myosin 4 monoclonal antibody (ebioscience, 14-6503-80) overnight at 4 °C. Then, cells were washed three times with PBS and incubated with Alexa Fluor 488–labeled goat antimouse IgG H&L secondary antibody (abcom, ab150113) at RT protected from light for 1 h. Finally, the nuclei were stained with 1 μg/ml 4′,6-diamidino-2-phenylindole (Beyotime) for 3 min at RT. Cells were washed three times with PBS and photographed with Olympus IX73 inverted microscope (Olympus). The images were processed using ImageJ 1.52a software (NIH).

The FI was calculated as has been described (85). MTs were defined as 3+ nuclei within a cellular structure to rule out myoblasts undergoing mitosis. The number of nuclei in MTs with ≥ 3 nuclei and the total number of nuclei in cells were counted in each field. The FI was defined as the number of nuclei in MTs divided by the total number of nuclei.

RNA extraction, complementary DNA synthesis, and quantitative RT-PCR

Total RNA was extracted using HiPure Total RNA Mini Kit (Magen) following the manufacturer’s instructions. Complementary DNA synthesis was performed with the HiScript III RT SuperMix (Vazyme). qRT-PCR amplification was performed on the CFX Connect Real-Time System (Bio-Rad) using the ChamQ Universal SYBR qPCR master mix (Vazyme). The reaction conditions were 95 °C for 5 min, followed by 40 cycles at 95 °C for 10 s and 60 °C for 30 s. After PCR amplification, a melting curve was obtained by the following process: 95 °C for 15 s, 60 °C for 1 min, followed by 95 °C for 15 s to verify primer specificity. Relative expression of genes was calculated using the 2ΔΔCt method (86) after normalization to mRNA expression of the housekeeping gene β-actin. All experiments were performed at least in triplicate. The primers of qRT-PCR are provided in Table S1.

Generation of 4C libraries and sequencing

4C templates were prepared as previously described (24, 62) with slight modifications. The outline of the 4C-seq procedure, viewpoint selection, and primer position are shown in Fig. S1, A and B. In brief, ~1 × 10⁷ million cells were harvested and crosslinked with 2% formaldehyde for 10 min at RT. The nuclei were digested using primary enzyme Dpn II (RE1) (New England Biolabs) overnight. Following proximity ligation, DNA was reverse crosslinked and purified using phenol/chloroform extraction, and the ligated circular DNA was precipitated with ethanol. The ligated circular DNA was digested with secondary enzyme Csp6 I (RE2) (New England Biolabs) overnight, followed by proximity ligation and purification to obtain the 4C library. The 4C-seq library was generated by performing a two-step PCR using Phusion DNA polymerase (Thermo Scientific; # F5305). The primers of the 4C-seq library are listed in Table S2. For each 4C-seq library, we perform 32-tube PCR reactions, and each PCR reaction uses 100 ng DNA as a template. PCR reactions were pooled and purified with the QIAquick PCR purification kit (Qiagen;
Chromatin interaction and enhancers of myogenic marker genes

DNA smears from 200 bp to 1000 bp were extracted by agarose gel and subjected to Agencourt AMPure XP Bead clean-up (Beckman Coulter; #A63881) using a 0.8 bead/DNA sample ratio. The 4C-seq libraries were sequenced on the Illumina NovaSeq 6000 platform.

4C-seq data analysis

Demultiplexing, trimming, mapping, and quality control of the 4C-seq data were performed using the pipe4C pipeline (62). r3Cseq (87) and PeakC (35) were used to perform 4C-seq data analysis. Briefly, trimmed reads were mapped to the masked version of the reference mouse genome (masked for primary restriction enzyme sites) using bowtie2 (v2.4.2). samtools (v1.11) was used to convert SAM to BAM. Only uniquely mapped reads consisting of sequences directly flanking the 4C primary restriction enzyme sites were used in downstream analyses, and nonunique frag-ends were discarded for posterior analysis.

Numbers of mapped reads for each window were counted and normalized to obtain reads per million per window values. Interactions sites were detected using r3Cseq with a nonoverlapping window (window size = 2 kb). Interactions sites with a q-value ≤ 0.05 were considered interaction sites. Interactions within ±500 kb around the viewpoint were visualized. The differential analysis of the interaction sites was performed using DESeq2 (version 1.35.0) with the “ashr” algorithm (88, 89). In addition, we used PeakC for calling peaks with a running mean window size of 11 (wSize = 11), as described previously (62, 90). Overlapping peak regions of two replicates were merged using bedtools (v2.25.0). Wig file of 4C-seq coverage profile was obtained using wSize = 21, and Wig file was visualized in Integrative Genomics Viewer.

KEGG and GO enrichment analyses

The GO is a comprehensive source of digital data relating to the functions of genes, spanning three aspects of biology: BP (biological processes), CC (cellular components), and MF (molecular functions). The KEGG is a database resource for understanding high-level functions and utilities of the biological system from molecular-level information. MetaScape (http://metascape.org/) is an online gene functional annotation tool to provide a comprehensive set of biological information of genes and proteins (91). To understand the function of genes, GO and KEGG enrichment analyses were performed using MetaScape. GO/KEGG terms with p < 0.01 were considered significantly enriched.

Identification of active enhancers of myogenic marker genes

The active enhancers were identified through two 4C-seq software combined with H3K27ac and H3K4me1 signal. We used two stringent criteria to identify active enhancers of myogenic marker genes. First, SILs identified by r3Cseq (87) show simultaneous enrichment with H3K27ac and H3K4me1 peaks; second, manually selected peaks based on chromatin interaction maps generated by PeakC (35) are overlaid simultaneously with H3K27ac and H3K4me1 peaks. To remove promoter regions (defined as -2000 bp to +500 bp around the transcription start site) of the annotated gene, we filtered out the enhancer located at the promoter regions. The active enhancers identified are considered same enhancer as long as their sequences are overlapped, and the manually selected enhancer is retained. The genomic coordinates of putative active enhancers are listed in Table S4.

TF motif enrichment analysis and evolutionary conservation analysis

We used coordinates of the predicted enhancers to download FASTA format sequence of all the enhancers from the NCBI database (https://www.ncbi.nlm.nih.gov/). TF motif enrichment analysis was performed using AnimalTFDB 3.0 (http://bioinfo.life.hust.edu.cn/AnimalTFDB/#/tffs_predict) (39) and JASPAR database (https://jaspar.genereg.net/) (40) by input FASTA format of the enhancers. TF motifs with p < 0.05 were identified as enriched motifs. The sequence logo of TF-binding sites motif was retrieved from JASPAR database.

The conserved elements of the predicted enhancers were analyzed by using phastCons method in the UCSC genome browser (http://genome-asia.ucsc.edu/). Each element is assigned a log-odds score (LOD) equal to its log probability under the conserved model minus its log probability under the nonconserved model. The “score” contains transformed log-odds scores, taking values between 0 and 1000. The raw log-odds scores are retained in the “name.” The sequence conservation is evaluated as the sum of the LOD of all elements divided by the length of the sequence, which is defined as the LOD score/length.

Download and analysis of public ChIP-seq data

Publicly available ChIP-seq sequencing data were downloaded from the EBI ENA database (https://www.ebi.ac.uk/ena/browser/home). The detailed information of ChIP-seq data is listed in Table S3.

For ChIP-seq data, raw sequence reads were aligned to the mouse reference genome (mm10) using BWA (v0.7.17), and BAM files were created by Samtools (v1.11). PCR duplicates of ChIP-seq were removed with Samtools. Prior to downstream analysis, mitochondrial reads were removed. Peak calling for individual replicates was carried out by MACS2 (v2.2.7.1). Peaks were called at q-value ≤ 0.05. The bigwig files were generated by bedGraphToBigWig (v4) and visualized in Integrative Genomics Viewer (v 2.10.0).
Chromatin interaction and enhancers of myogenic marker genes

after transfection, luciferase activity was measured using the Dual-Glo luciferase assay kit (Promega; #E2920) on a GloMax 96 microplate luminometer (Promega) according to the manufacturer’s instructions. Luciferase activity of firefly was normalized by renilla, and relative luciferase activity was obtained as compared with empty pGL3-promoter. The experiments were in triplicate and repeated at least once. The data are presented as means with their SD (mean ± SD). The PCR primers of constructed vectors are shown in Table S5.

sgRNA design and plasmid construction

Two sgRNAs were designed for each enhancer using CRISPOR (http://crispor.tefor.net/) (92) and CRISPR-ERA (http://crispr-era.stanford.edu/) (93). All sgRNAs were examined for genome-wide sequence specificity using CRISPR Finder (https://wge.stemcell.sanger.ac.uk/) (94) and Cas-OFFinder (http://www.rgenome.net/cas-offinder/) (95). Synthesized oligonucleotides were annealed and cloned into the BsmBI-v2 restriction sites of pLV hU6-sgRNA hUbC-dCas9-KRAB-T2a-Puro vector (Addgene; #71236) using DNA Ligase.

Lentivirus production, cell transduction, and CRISPR-mediated enhancer inhibition

Under sterile BSL-2 conditions, lentiviral particles were generated in HEK293FT cells using the pVSV-G (Addgene; #138479) and pSPAX2 (Addgene; #12260) packaging plasmids alongside the Lenti-dCas9-KRAB-enhancer-sgRNA plasmid (Addgene; #71236). The virus supernatant was harvested at 24, 48, and 72 h post-transfection and filtered with a 0.45 μm polyvinylidene difluoride filter (Millipore; catalog no.: #SLHV033RB). Viruses were purified and concentrated using Amicon Ultra (Millipore; #UFC910008) and titer was determined using a colloidal gold kit (BioDragon). Concentrated viruses were stocked in a final volume of 1 ml and stored at −80 °C.

For transduction, C2C12 cells were seeded in a 12-well plate. When confluence reaches about 50%, the cells were infected with 1 ml lentivirus medium containing dCas9-KRAB-sgRNA or dCas9-KRAB at a multiplicity of infection of 100. The day after transduction 24 h, the medium was exchanged to remove the virus. At 48 h postinfection, 2 μg/ml puromycin was used to select transduced cells. C2C12 cells were kept at ~30% confluence during antibiotic selection. C2C12 cells stably expressing dCas9-KRAB-sgRNAs or dCas9-KRAB were induced to differentiation with the differentiation medium consisting of 2% horse serum for 5 days. C2C12 cells expressing dCas9-KRAB served as controls. Cells were examined by qRT-PCR and immunofluorescence staining.

RNA-Seq: Library preparation, sequencing, and data analysis

Total RNA (RIN ≥ 9) was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB). mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. The library preparations were sequenced on an Illumina Novaseq 6000 platform, and 150 bp paired-end reads were generated. Sequence reads were aligned to the mouse reference genome (GRcm38/mm10) by HISAT2 (v2.2.1) and quantified by featureCounts from the Rsubread package (v2.8.1). Differential analysis was performed using DESeq2. DEGs were defined as genes with adjusted \(p \)-value ≤ 0.01 and \(|\text{Log}_{2}\text{fold-change}| ≥ 1 \). Gene expression levels for each sample were calculated as transcripts per million values. Functional enrichment analysis of the DEGs was performed using Metascape. Terms with \(p \)-values ≤ 0.01 were considered significantly enriched for DEGs. GSEA was performed using GSEA version 4.2.3 software (https://www.gSEA-msigdb.org/gsea/index.jsp) with MSigDbv7.5.1.

Statistical analysis

Statistical analysis was performed for unpaired or paired two-tailed Student’s \(t \) test using SPSS Statistics 21. Data are presented as mean ± SD. \(p \) ≤ 0.05 was considered statistically significant.

Data availability

All 4C-seq data were deposited in the NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra/) under Bio-Project PRJNA795427. RNA-seq data were deposited into the Gene Expression Omnibus (GEO) under accession code GSE201138.

Supporting information—This article contains supporting information.

Acknowledgments—This work was supported by the National Key R & D Program of China (2020YFA0509500, 2021YFA0805903 and 2021Y1FD1300800), the National Natural Science Foundation of China (U19A2036 and 32102512), the Sichuan Science and Technology Program of China (2020YJ0710, 2021YJ0711, and 2021YJ0712), the National Natural Science Foundation of China (2021NZZX0008, 2021YFYZ0009 and 2022JDQ0654).

Author contributions—K. L., X. L., D. S., and M. L. conceptualization; M. L., X. L., K. L., D. S., and S. Z. methodology; K. L., X. L., Q. T., H. L., and D. S. formal analysis; X. L., S. Z., Y. Z., B. Z., W. Y., and P. L. investigation; K. L. and X. L. writing—original draft; M. L., X. W., L. L., L. J., and J. M. writing—review & editing.

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

Abbreviations—The abbreviations used are: 3C, chromosome conformation capture; 4C-seq, circuclarized chromosome conformation capture sequencing; ChiP-seq, chromatin immunoprecipitation sequencing; DEG, differentially expressed gene; FI, fusion index; GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis; Hi-C, high-throughput chromatin conformation capture; KEGG, Kyoto Encyclopedia of Genes and Genomes; MB, myoblast; MT, myotube; PCHi-C, promoter capture Hi-C; qRT-PCR, quantitative RT-PCR; SDIS, significant differential interaction site; sgRNA, single guide RNA; SIS, significant interaction site; TF, transcription factor.
Chromatin interaction and enhancers of myogenic marker genes

References

1. Sabourin, L. A., and Rudnicki, M. A. (2000) The molecular regulation of myogenesis. Clin. Genet. 57, 16–25

2. Buckingham, M. (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev. 16, 525–532

3. Berkes, C. A., and Tapscott, S. J. (2005) MyoD and the transcriptional control of myogenesis. Semin. Cell Dev. Biol. 16, 585–595

4. Cao, Y., Kumar, R. M., Bennett, P. H., Berkes, C. A., Crooke, B., Boyer, L. A., et al. (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J. 25, 502–511

5. Zhang, H., Wen, J., Bigot, A., Chen, J., Shang, R., Mouly, V., et al. (2020) Human myotube formation is determined by MyoD–Myoomixer/Myomaker axis. Sci. Adv. 6, eabc4062

6. Adhikari, A., Kim, W., and Dave, J. (2021) Myogenin is required for assembly of the transcription machinery on muscle genes during skeletal muscle differentiation. PLoS One 16, e0245618

7. Molkentin, J. D., Black, B. L., Martin, J. F., and Olson, E. N. (1995) Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136

8. Ridgeway, A. G., Wilton, S., and Skerjanc, I. S. (2000) Myocyte enhancer factor 2C and myogenin up-regulate each other’s expression and induce the development of skeletal muscle in P19 cells. J. Biol. Chem. 275, 41–46

9. Blais, A., Tsikits, M., Acosta-Alvar, D., Sharan, R., Kluger, Y., and Dynlacht, B. D. (2005) An initial blueprint for myogenic differentiation. Genes Dev. 19, 553–569

10. Burattini, S., Ferri, P., Battistelli, M., Curci, R., Luchetti, F., and Falciari, E. (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur. J. Histochem. 48, 223–233

11. Millay, D. P., Sutherland, L. B., Bassel-Duby, R., and Olson, E. N. (2014) Myomaker is essential for muscle regeneration. Genes Dev. 28, 1641–1646

12. Fraser, J., Williamson, I., Bickmore, W. A., and Dostie, J. (2015) An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol. Mol. Biol. Rev. 79, 347–372

13. Doynova, M. D., Markworth, J. F., Cameron-Smith, D., Vickers, M. H., and Kleinjan, D. A., and van Heyningen, V. (2005) Long-range control of gene expression: emerging mechanisms and disruption in disease. J. Cell Sci. 118, 769–779

14. He, M., Li, Y., Tang, Q., Li, D., Jin, L., Tian, S., et al. (2020) Distinct and predictive chromatin signatures of super-enhancer heterogeneity. Nature. 573, 12893

15. Hu, H., Miao, Y.-R., Jia, L.-H., Yu, Q.-Y., Zhang, Q., and Guo, A.-Y. (2018) Genome-wide characterization of a novel enhancer of MyoD and Myf-5 generates ‘reserve cells’. J. Cell Sci. 111, 758–939

16. Lettice, L. A., Heaney, S. J., Purdie, L. A., Li, L., de Beer, P., Oostra, B. A., et al. (2003) A long-range Shh enhancer regulates expression in the developing limb and is associated with preaxial polydactyly. Hum. Mol. Genet. 12, 1725–1735

17. Amano, T., Sagai, T., Tanabe, H., Mizushina, Y., Nakazawa, H., and Shiroishi, T. (2009) Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47–57

18. van de Werken, H. J. G., de Vree, P. J. P., Splinter, E., Holwerda, S. J. B., Klous, P., de Wit, E., et al. (2012) Chapter four - 4C technology: protocols and data analysis. In: Wu, C., Allis, C. D., eds. Methods in Enzymology, Academic Press, Cambridge, MA: 89–112

19. Thayer, M. J., Tapscott, S. J., Davis, R. L., Wright, W. E., Lassar, A. B., and Weintraub, H. (1989) Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241–248

20. Fornes, O., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X., et al. (2018) Genome-wide characterization of the 3D organization of primary gastric adenocarcinoma reveals super-enhancer heterogeneity. Nature. 553, 403–407

21. Cai, M., Kim, S., Wang, K., Farnham, P. J., Coetzee, G. A., and Lu, W. (2016) 4C-seq revealed long-range interactions of a functional enhancer at the Cp2 prostate cancer risk locus. Sci. Rep. 6, 24262

22. Espina, S., Oh, D.-H., McKowen, J. K., Dassanayake, M., and Hart, C. M. (2018) 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS One 13, e023843

23. Zhang, J., Yao, W., Pan, Z., and Liu, H. (2021) Long-distance chromatin interaction of IGF1 during embryonic and postnatal development in the liver of Sias scrofa. Funct. Integr. Genomics 21, 59–72

24. Ooi, W. F., Xing, M., Xu, C., Yao, X., Ramlee, M. K., Lim, M. C., et al. (2016) Epigenomic profiling of primary gastric adenocarcinoma reveals super-enhancer heterogeneity. Nat. Commun. 7, 12983

25. Zhang, J., Su, T., Gull, N., Yang, Q., Plummer, J. T., Chen, S., et al. (2020) Lineage-specific epigenomic and genomic activation of oncogene HNF4A promotes gastrointestinal adenocarcinomas. Cancer Res. 80, 2722–2736

26. Schoenfelder, S., Furlan-Magarill, M., Mifsud, B., Tavares-Cadete, F., Sugar, R., Javierre, B. M., et al. (2015) The pluripotency regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597

27. Shresta, S., Oh, D.-H., McKowen, J. K., Dassanayake, M., and Hart, C. M. (2016) 4C-seq characterization of super-enhancer heterogeneity. Nature. 553, 403–407

28. Fridman, M., Polak, M., Ben-Shachar, O., Levav, S., and Reggiani, C. (2015) Developmental myosins: expression patterns and functional significance. Skeletal Muscle 5, 22

29. Gao, F., Wei, Z., Liu, W., and Wang, K. (2013) Comparative analysis of 4C-seq data generated from enzyme-based and sonication-based methods. BMC Genomics 14, 345

30. Walter, C., Schuettzmann, D., Rosenbauer, F., and Dugas, M. (2019) Benchmarking of 4C-seq pipelines based on real and simulated data. Bioinform. (Oxford, England) 35, 4938–4945

31. Buecker, C., and Wysocka, J. (2012) Enhancers as information integration hubs: lessons from genomics. Trends Genet. 28, 276–286

32. Sylueva, D., Stampfle, G., and Stark, A. (2014) Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286

33. Hu, H., Miao, Y.-R., Jia, L.-H., Yu, Q.-Y., Zhang, Q., and Guo, A.-Y. (2018) AnimalTFDB 3.0: a comprehensive resource for annotation and prediction of animal transcription factors. Nucl. Acids Res. 47, D33–D38

34. Horsman, D., Castro-Mondragon, J. A., Khan, A., van der Lee, R., Zhang, X., and Weintraub, H. (2009) Positive autoregulation of the myogenic determination gene MyoD1. Cell 58, 241–248
Chromatin interaction and enhancers of myogenic marker genes

42. Meissner, J. D., Umeda, P. K., Chang, K. C., Gros, G., and Scheibe, R. J. (2007) Activation of the beta myosin heavy chain promoter by MEF-2D, MyoD, p300, and the calcineurin/NFATc1 pathway. J. Cell Physiol. 211, 138–148

43. Nardone, J., Lee, D. U., Ansel, K. M., and Rao, A. (2004) Bioinformatics for the 'bunch biologist': how to find regulatory regions in genomic DNA. Nat. Immunol. 5, 768–774

45. Bonello, G. B., Pham, M.-H., Begum, K., Sigala, J., Sataranatarajan, K., and Mummidi, S. (2011) An evolutionarily conserved TNF-α–responsive enhancer in the far upstream region of human CCL2 locus influences its gene expression. J. Immunol. 186, 7025–7038

46. Chen, L., Fish, A. E., and Capra, J. A. (2018) Prediction of gene regulatory enhancers across species reveals evolutionarily conserved sequence properties. PLoS Comput. Biol. 14, e1006484

50. Grubert, F., Srivas, R., Spacek, D. V., Kasowski, M., Ruiz-Velasco, M., Sinnott-Armstrong, N., et al. (2020) Landscape of cohesin-mediated chromatin loops in the human genome. Nature 583, 737–743

53. Ishibashi, J., Perry, R. L., Asakura, A., and Rudnicki, M. A. (2005) MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions. J. Cell Biol. 171, 471–482

54. Bergstrom, D. A., Penn, B. H., Strand, A., Perry, R. L., Rudnicki, M. A., and Tapscott, S. J. (2002) Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol. Cell 9, 587–600

55. Asp, P., Blum, R., Vethanatham, V., Parisi, F., Micinsai, M., Cheng, J., et al. (2011) Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. U. S. A. 108, E149–E158

56. Hernandez-Hernandez, O., Avila-Aviles, R. D., and Hernandez-Hernandez, J. M. (2020) Chromatin landscape during skeletal muscle differentiation. Front. Genet. 11, 578712

57. Yuan, R., Zhang, J., Wang, Y., Zhu, X., Hu, S., Zeng, J., et al. (2021) Reorganization of chromatin architecture during prenatal development of porcine skeletal muscle. DNA Res. 28, dsaa003

58. Rudnicki, M. A., Schnegelsberg, P. N., Stead, R. H., Braun, T., Arnold, H. H., and Jaenisch, R. (1993) MyoD or Myf-5 is required for the formation of embryonic myogenesis and adult muscle regeneration. Proc. Natl. Acad. Sci. U. S. A. 111, 4109–4114

59. Wood, W. M., Etmed, S., Yamamoto, M., and Goldhammer, D. I. (2013) MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development. Dev. Biol. 384, 114–127

60. Liu, N., Nelson, B. R., Bezprozvannaya, S., Shelton, J. M., Richardson, J. A., Basell-Duby, R., et al. (2014) Requirement of MEF2A, C and D for skeletal muscle regeneration. Proc. Natl. Acad. Sci. U. S. A. 111, 4109–4114

61. Ganassi, M., Badodi, S., Sanders, K., zammit, P. S., and Hughes, S. M. (2020) Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. Elife 9, e60445

62. Krüger, P. H. L., Geeven, G., Bianchi, V., Hlvering, C. R. E., and de Laat, W. (2020) 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170, 17–32

63. van de Werken, H. J. G., Landan, G., Holwerda, S. J. B., Hoichman, M., Klouw, P., Chachik, R., et al. (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972

64. Splinter, E., de Wit, E., van de Werken, H. J., Klouw, P., and de Laat, W. (2012) Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: from fixation to computation. Methods (San Diego, Calif.) 58, 221–230

65. Cai, M., Gao, F., Zhang, P., An, W., Shi, J., Wang, K., et al. (2015) Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions. Sci. Rep. 5, 14558

66. Zhao, T. T., Cai, M., Liu, M., Su, G., An, D., Moon, B.-S., et al. (2020) IncRNA 5430416N022Rik promotes the proliferation of mouse embryonic stem cells by activating Myd1 expression through 3D chromatin architecture. Stem Cell Rep. 14, 493–505

67. Brandt, M. M., Meddens, C. A., Louzaou-Martinez, L., van den Dungen, N. A. M., Lansu, N. R., Nieuwenhuis, E. E. S., et al. (2018) Chromatin conformation links distal target genes to CKD loci. J. Am. Soc. Nephrol. 29, 462–476

68. Loo, L. H., Lin, H. I., Singh, D. K., Lyons, K. M., Altschuler, S. I., and Wu, L. F. (2009) Heterogeneity in the physiological states and pharmacological responses of differentiating 3T3-L1 preadipoctyes. J. Cell Biol. 187, 375–384

69. Mello, M. L. S. (2021) Sodium valproate-induced chromatin remodeling. Front. Cell Dev. Biol. 9, 64518

70. Chen, T., and Dent, S. Y. R. (2014) Chromatin modifiers and remodelers: regulators of cellular differentiation. Nat. Rev. Genet. 15, 93–106

71. Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., et al. (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336

72. Sieversbæk, R., Madsen, J. G. S., Javierre, B. M., Nielsen, R., Bagge, E. K., Cairns, J., et al. (2017) Dynamic rewiring of promoter-anchoered chromatin loops during adipocyte differentiation. Mol. Cell 66, 420–435.e5

73. Vihervaara, A., Duarte, F. M., Louzao-Martinez, L., and Liu, J. T. (2018) Molecular mechanisms driving transcriptional stress responses. Nat. Rev. Genet. 19, 385–397

74. Tsai, P. F., Dell’Orso, S., Rodriguez, J., Vivanco, K. O., Ko, K. D., Jiang, K., et al. (2018) A muscle-specific enhancer RNA Mediates cohesin Recruitment and regulates transcription in trans. Mol. Cell 71, 129–141.e8

75. Sincennes, M.-C., Brun, C. E., and Rudnicki, M. A. (2016) Concise review: epigenetic regulation of myogenesis in health and disease. Stem Cells Transl. Med. 5, 282–290

76. Esteves de Lima, J., and Relax, F. (2021) Epigenetic regulation of myogenesis: focus on the histone variants. Int. J. Mol. Sci. 22, 12727

77. Jin, W., Peng, J., and Jiang, S. (2016) The epigenetic regulation of embryonic myogenesis and adult muscle regeneration by histone methylation modification. Biochem. Biophys. Rep. 6, 209–219

78. Lee, H., Zhang, Z., and Krause, H. M. (2019) Long noncoding RNAs and repetitive elements: junk or intimate evolutionary partners? Trends Genet. 35, 892–902

79. Palazzo, A. F., and Gregory, T. R. (2014) The case for junk DNA. PLoS Genet. 10, e1004251

80. Magboul, M. A., Piofer, L., El Aabidine, A. Z., Karasu, N., Molitor, A. M., Dae, L. T. M., et al. (2020) Alternative enhancer usage and targeted polycrom marking hallmark promoter choice during T cell differentiation. Cell Rep. 32, 109048

81. Peng, Y., and Zhang, Y. (2018) Enhancer and super-enhancer: positive regulators in gene transcription. Anim. Model Exp. Med. 1, 169–179

82. Edmondson, D. G., Cheng, T. C., Cserjesi, P., Chakraborty, T., and Olson, E. N. (1992) Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12, 3665–3677

83. Ganassi, M., Badodi, S., Orgtise Quiroga, H. P., Zammit, P. S., Hints, Y., and Hughes, S. M. (2018) Myogenin promotes myocyte fusion to balance fibre number and size. Nat. Commun. 9, 4323

84. Wittkopp, P. J., and Kayal, G. (2012) Co-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69
85. Velića, P., and Bunce, C. M. (2011) A quick, simple and unbiased method to quantify C2C12 myogenic differentiation. Muscle & Nerve 44, 366–370
86. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402–408
87. Thongjuea, S., Stadhouders, R., Grosveld, F. G., Soler, E., and Lenhard, B. (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucl. Acids Res. 41, e132
88. Love, M. I., Huber, W., and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550
89. Stephens, M. (2016) False discovery rates: a new deal. Biostatistics 18, 275–294
90. Geeven, G., Teunissen, H., de Laat, W., and de Wit, E. (2018) peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucl. Acids Res. 46, e91
91. Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tana-seichuk, O., et al. (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523
92. Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., et al. (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148
93. Liu, H., Wei, Z., Domínguez, A., Li, Y., Wang, X., and Qi, L. S. (2015) crispr-era: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics (Oxford, England) 31, 3676–3678
94. Hodgkins, A., Farne, A., Perera, S., Grego, T., Parry-Smith, D. I., Skarnes, W. C., et al. (2015) Wge: A CRISPR database for genome engineering. Bioinformatics (Oxford, England) 31, 3078–3080
95. Bae, S., Park, J., and Kim, J.-S. (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics (Oxford, England) 30, 1473–1475