Bioinformatic Analysis of Strawberry GSTF12 Gene

To cite this article: Xiran Wang et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 108 042099

View the article online for updates and enhancements.
Bioinformatic Analysis of Strawberry GSTF12 Gene

Xiran Wang*, Leiyu Jiang and Haoru Tang*
Horticulture College, Sichuan Agriculture University, Chengdu 611130, China.

*Corresponding author: htang@sicau.edu.cn
*631763272@qq.com

Abstract. GSTF12 has always been known as a key factor of proanthocyanins accumulate in plant testa. Through bioinformatics analysis of the nucleotide and encoded protein sequence of GSTF12, it is more advantageous to the study of genes related to anthocyanin biosynthesis accumulation pathway. Therefore, we chosen GSTF12 gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyse, constructed phylogenetic tree. At the same time, we analysed the strawberry GSTF12 gene of physical and chemical properties and its protein structure and so on. The phylogenetic tree showed that Strawberry and petunia were closest relative. By the protein prediction, we found that the protein owed one proper signal peptide without obvious transmembrane regions.

1. Introduction
Glutathione S-transferases (GSTs) is a super family in plants, which could be split into 5 kinds named φ (phi, F), τ (tau, U), θ (theta, T), ζ (zeta, Z) and λ (lambda, L) via protein homology and genomic structure. Plant GSTs play an important part in primary metabolism, secondary metabolism, stress tolerance, cell signaling transduction and so on [1]. Certified by gene knockout experiment, some members of GSTs participate in the transportation of anthocyanin. The GSTs reacted to anthocyanin are found in corn firstly named BZ2. Kernels cannot accumulate anthocyanin because of BZ2 mutation [2]. Anthocyanin vanish in petunia on account of AN9 deficiency [3]. Transducing BZ2 and AN9 to carnation (Dianthus caryophyllus L.), petal show color with anthocyanin transported to vacuole [4]. Recent studies show Arabidopsis thaliana GSTF12 (TT19) [5], Perilla frutescens var. crispa PfrGST1[6], Vitis vinifera VvGST4[7], Cyclamen persicum CkmGST3, Senecio cruentus ScGST3[8] and Dianthus caryophyllus DcGSTF2 are connected to anthocyanin transport, too. However, though many GSTs members are isolated from various plant species, the identification of them is limited, according to information analyze of EMBL/DDBJ/GenBank database [9].

Anthocyanin play essential role in coloring plant [10]. The catalytic synthesis of it by the multi-enzyme complex in the cytoplasm [11]. And it is transported and stored in vacuole [12]. The study chosen GSTF12-like gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyze so as to provide reference for further study and utilization.
2. Result and Analysis

2.1. Strawberry GSTF12 Find and Phylogenetic Tree Construction of GSTF12

Run BLAST in the *Fragaria ×ananassa* database of GDR and Strawberry GARDEN respectively using Arabidopsis thaliana GSTF12 as a sample. Select the sequence with ideal S and C value, showing FAN_iscf00079132.1 likewise. We find that FAN_iscf00079132.1 is strawberry GSTF12.

We have chosen GSTF12-like gene of 11 kinds species (Table 1), downloaded their nucleotide and protein sequence from NCBI as the research object, analyzed sequences via MEGA6.0, constructed phylogenetic tree on the genetic distance base (Figure 1). The relationship between strawberry and petunia is closer than others, because they all contain a lot of anthocyanins probably.

Species	mRNA Accession Number	Protein Accession Number	Amino Acid Number
Arabidopsis thaliana	NM_121728	NP_197224	1096
Zea mays	NM_0011967	NP_001183661	1217
Perilla frutescens var. crispa	AB362191	BAG14300	976
Petunia x hybrida	Y07721	CAA68993	735
Malus domestic	JN573599	AEN84869	975
Cyclamen persicum x Cyclamen purpurascens	AB682678	BAM14584	642
Nicotiana tabacum	KX356542	ANO39923	1538
Beckmannia syzigachne	KP852061	ADM26566	681
Prunus persica	KT312850	ALE31202	652
Pyrus pyrifolia	KP965802	ALF95173	648
Thellungiella halophila	AK353216	BAJ34302	927

Table 1. Basic information of GSTF12 gene in different species

![Figure 1. Phylogenetic Tree of Strawberry GSTF12.](image)
2.2. **Strawberry GSTF12 Protein Physical Analysis**
Analyze strawberry GSTF12 protein physical feature using ProtPram. Result shows as following: the protein is composed by 1592bp, molecular weight is 132276.52, theoretical pI is 5.02, electric neutrality, molecular formula is C_{4916}H_{8242}N_{1592}O_{2077}S_{293}. Because the N-terminal of the sequence considered is A (Ala), the estimated half-life is 4.4 hours in mammalian reticulocytes (*in vitro*), 20 hours in yeast (*in vitro*) and 10 hours in *Escherichia coli* (*in vitro*). The instability index (II) is computed to be 42.27, so the protein is unstable. The aliphatic index of the protein is 29.59. Grand average of hydropathicity (GRAVY): 0.693.

Amino acid composition result is settings as following (Table 2): the peptide chain consists many Ala as 29.6%.

Amino Acid	Count	Percentage
Ala (A)	471	29.6%
Cys (C)	293	18.4%
Gly (G)	344	21.6%
Thr (T)	484	30.4%

Table 2. Strawberry GSTF12 gene amino acid composition

2.3. **Strawberry GSTF12 Protein Signal Peptide Forecast**
Forecast strawberry GSTF12 protein signal peptide using SignalP 4.1. Result shows as following (Figure 2). There is one signal peptide in the GSTF12 between 21th base and 22th base.

![Figure 2. Signal peptide forecast of strawberry GSTF12.](image)

2.4. **Strawberry GSTF12 Protein Transmembrane Domain Forecast**
Forecast strawberry GSTF12 protein transmembrane domain using TMHMM Server. Result shows as following (Figure 2). There isn’t transmembrane domain in the strawberry GSTF12, thus the protein is not cytomembrane receptor or located on cytomembrane.
3. Materials and methods
Sequences access from NCBI (https://www.ncbi.nlm.nih.gov/). BLAST run in GDR (https://www.rosaceae.org/), and Strawberry GARDEN(http://strawberry-garden.kazusa.or.jp/). Phylogenetic tree is constructed via MEGA6.0, forecast strawberry GSTF12 protein signal peptide using Signa IP 4.1 (http://www.cbs.dtu.dk/services/SignalP/), forecast strawberry GSTF12 protein transmembrane domain using TMHMM Server (http://www.cbs.dtu.dk/services/TMHMM/).

4. Conclusion
GST is a multifunctional protease that catalyzes the electrophilic substitution of hydrophobic and electrophilic compounds with glutathione, presenting in animals and plants and microorganisms widely. The genes coding GST present multi-family phenomenon universally. There are 53 GSTs genes in Arabidopsis, where Phi and Tau are of the same type and quantity. Anthocyanins in the vacuole synthesis, through some biochemical mechanism of transport to the vacuoles in the storage, by the bubble in the different ion concentration, conditions and show different colors. GST is a key enzyme for transporting anthocyanins from cytoplasm to vacuoles, which is identified in a variety of plants are involved in the transport of anthocyanins [13]. Later applied to the study of anthocyanin transport in specific species, the members of the GST family should be screened, and the gene can be studied for specific genes due to GSTs diversity. The way could vary such as filtering from database, constructing local database to BLAST, aligning allied sequence and so on. The exploration on strawberry TT12, which is forward gene to strawberry GSTF12, have been attempt in our lab, we would focus on the interaction between strawberry TT12 and GSTF12 so as to provide reference for further study and utilization.

Acknowledgments
I thank my teachers: Haoru Tang, for the directions of UVR8, predecessors: Leiyu Jiang and Chen Feng, for the discussion of UVR8, and my boyfriend Kefei Lou for the comments on the article.

This work was financially supported by National Innovation Experiment Program for University Students (201510626005) fund.

References
[1] A. Moons, Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitamins & Hormones 72.72 (2005):155-202.
[2] Marrs, A. Kathleen, et al. A glutathione S-transferase involved in vacuolar transfer encoded by the, maize gene Bronze-2. Nature. 375.6530 (1995):397-400.
[3] Alfenito, R. Mark, et al. Functional Complementation of Anthocyanin Sequestration in the Vacuole by Widely Divergent Glutathione S-Transferases. Plant Cell. 10.7 (1998):1135-1140.
[4] E. Larsen. A carnation anthocyanin mutant is complemented by the glutathione S-transferases
encoded by maize Bz2 and petunia An9. Plant Cell Reports. 21.9 (2003):900-904.

[5] Kitamura, N. Satoshi, et al. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant Journal. 37.1 (2004):104–114.

[6] Yamazaki. Differential gene expression profiles of red and green forms of Perilla frutescens leading to comprehensive identification of anthocyanin biosynthetic genes. Febs Journal. 275.13 (2008):3494-3502.

[7] Conn, Simon, et al. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany. 59.13 (2008):3621-3626.

[8] XH. Jing, Y. Hong, et al. Isolation and Expression Analysis of GST Gene Encoding GlutathioneS-transferase from Senecio cruentus. Acta Horticulturae Sinica. 40.6 (2013):1129–1138.

[9] Narumi, Issay, et al. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. Journal of Plant Physiology. 169.6 (2012):636-647.

[10] Harborne, B. Jeffrey, and C. A. Williams. Advances in flavonoid research since 1992. Phytochemistry. 55.6 (2000):481-504.

[11] Winkel, B. S. Metabolic channeling in plants. Annual Review of Plant Biology 55.55 (2004):85-95.

[12] L. Jaakola, New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science. 18.9 (2013):477-487.

[13] M. Jain.,, C. Ghanashyam, et al. Comprehensive expression analysis suggests overlapping and specific roles of rice glutathione S-transferase genes during development and stress responses. Bmc Genomics. 11.1 (2010):1-17.