Effect of intrinsic point-defect complex on elastic properties of γ'-Ni$_3$Al phases

Yi Chen1,2,*, Yong He Deng3, Shuang Chen1,4, Hai Jun Luo1, Ya Jun Luo1 and Ping Peng4

1 College of Mechanical Engineering, Hunan Institute of Engineering, Xiangtan 41104, People’s Republic of China
2 Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Xiangtan 41104, People’s Republic of China
3 School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 41104, People’s Republic of China
4 School of Material Science and Engineering, Hunan University, Changsha, 410082, People’s Republic of China

* Authors to whom any correspondence should be addressed.

E-mail: yichen364@163.com and 65422713@qq.com

Keywords: γ'-Ni$_3$Al phases, intrinsic point defect, complex, elastic properties

Abstract

The effect of the intrinsic point-defect complex on the elastic properties of the γ'-Ni$_3$Al phases was investigated through first-principles calculations. The formation enthalpies show that Al$_{Ni}$ and Ni$_{Al}$ defects dominate in the off-stoichiometric γ'-Ni$_3$Al phases, and the Al$_{Ni}$ + Al$_{Ni}$ and Ni$_{Al}$ + Ni$_{Al}$ point-defect complexes most likely emerge in Al-rich and Ni-rich systems, respectively. Our computational results suggest that the shear modulus G, Young’s modulus E, and melting point T_m of the Ni$_3$Al phases increase when single anti-site defects form, but decrease when intrinsic point defects combine. With variations in the electronic structures caused by point defects, we explained the adverse effect of the intrinsic point-defect complex on the strength of the γ'-Ni$_3$Al phases.

1. Introduction

Nickel-based single-crystal (SC) superalloys are widely used in gas turbines and aero-engine blades owing to their high-temperature strength, excellent antioxidation, and corrosion resistance [1]. These properties benefit from a high volume fraction of the L1$_2$ Ni$_3$Al strengthening phase coherently embedded in the face-centered cubic (FCC) Ni matrix phase [2]. The performance of nickel-based SC superalloys strongly depends on the size, volume fraction, and solution strengthening degree of the γ'-Ni$_3$Al phases [3–5]. The addition of extra alloying elements increases the manufacturing cost of nickel-based SC superalloys. Therefore, the mechanical properties of off-stoichiometric γ'-Ni$_3$Al crystals with intrinsic point defects have received great attention [6–11].

Many studies have shown that the strengths of the off-stoichiometric γ'-Ni$_3$Al phases are greater than those of stoichiometric systems. In off-stoichiometric systems, the formation of anti-site point defects, Al$_{Ni}$ or Ni$_{Al}$, emerges more easily than vacancy defects [6, 12], V_{Ni} or V_{Al}, and the anti-site point defects have been considered as a reinforcing factor for the γ'-Ni$_3$Al phases [7, 8]. For example, the flow stress-temperature curves of off-stoichiometric γ'-Ni$_3$Al phases were first determined by Lopez and Hancoc [13] for temperatures in the range 77–1273 K. For temperatures below 1173 K, there was a dramatic improvement in the strength of the Al-rich compound [13]. Noguchi et al [14] also observed that Al-rich off-stoichiometric γ'-Ni$_3$Al phases produce more significant strengthening effects than those of Ni-rich systems and the strength was the lowest for a stoichiometric composition in compression tests for temperatures in the range 77–1000 K. Furthermore, a comparison of stoichiometric Ni$_3$Al (Ni–25 at.\% Al) and Al-rich γ'-Ni$_3$Al single crystals (Ni–26 at.\% Al and Ni–27 at.\% Al) performed by Golberg et al [8] indicated that the former is weaker and has a lower yield stress than that of the latter below the peak temperature (1073 K) of the yield stress anomaly. Miura et al [10] explored the hardening of Al-rich and Ni-rich Ni$_3$Al at 77 K and found that Al-rich compounds have higher strengths than Ni-rich compounds [9]. Thus, they concluded that the hardening effect of the off-stoichiometric composition was caused by the anti-site point defects, Al$_{Ni}$ or Ni$_{Al}$, and the effect of the Al$_{Ni}$ point defect was better.

However, the attractive hardening effect in Al-rich γ'-Ni$_3$Al crystals only occurred at low temperatures, and the strength of stoichiometric Ni$_3$Al was higher than that of Al-rich Ni$_3$Al at high temperatures. Lopez et al [13]...
demonstrated that the yield stress of Al-rich Ni$_3$Al was lower than that of Ni-rich Ni$_3$Al above 1173 K, and the stoichiometric compound was the highest. Hayashi et al.\cite{7} investigated the effect of off-stoichiometry on the creep resistance of binary and ternary Ni$_3$Al. These results showed that the creep strengths of the γ'-Ni$_3$Al phases increased with increasing Ni concentration above 1123 K, except for the stoichiometric γ'-Ni$_3$Al crystals\cite{7}. Thus, it was observed that anti-site point defects do not always enhance the γ'-Ni$_3$Al phases at high temperatures, which may originate from the intrinsic point-defect complex related to the diffusion mechanisms in the γ'-Ni$_3$Al phases\cite{11,15,16}.

The first molecular dynamics simulations of diffusion mechanisms in stoichiometric and off-stoichiometric Al-rich Ni$_3$Al were performed by Duan\cite{11,17}. These results showed that Al atoms were diffused via the anti-structural bridge and intra-sublattice mechanism, resulting in the formation of intrinsic point-defect complexes\cite{11,17}. For off-stoichiometric γ'-Ni$_3$Al crystals, Hu et al\cite{16} found that Ni diffusion coefficients decreased monotonically with increasing Ni content, and the Al diffusion coefficients increased with increasing Al content. In addition, the diffusion coefficients of the Ni and Al atoms in the γ'-Ni$_3$Al crystals increased with increasing temperature\cite{16,18}. Consequently, the impact of the intrinsic point-defect complex on the elastic properties of the γ'-Ni$_3$Al phases should not be ignored at high temperatures.

This study aimed to discuss the effect of intrinsic point-defect complexes on the elastic properties of γ'-Ni$_3$Al crystals by employing a series of constructed models. In this study, the formation enthalpies of various point-defect complexes and their corresponding elastic properties were calculated using supercell models. In addition, supercells with four single intrinsic point defects were also constructed and calculated. Finally, an analysis of intrinsic point-defect complexes and their influence on the mechanical properties of the γ'-Ni$_3$Al phases was conducted. Moreover, the variation in the electronic structures caused by the point defects was examined.

2. Calculation details

First-principles calculations were performed using the Vienna \textit{ab initio} simulation package (VASP)\cite{19,20}. The VASP was based on density functional theory, in which a plane-wave basis set with a projector augmented wave\cite{21} was adopted to characterize the ion-electron interaction, and the exchange-correlation term was described within the generalized gradient approximation, which was parameterized by the Perdew–Burke–Ernzerhof functional\cite{22}. In our self-consistent field (SCF) calculations, the cutoff energy of the plane-wave functions was set at 350 eV, and the sampling of irreducible wedges of the Brillouin zones was performed with $4 \times 4 \times 4$ regular Monkhorst-Pack grids\cite{23}. The calculations of the total energies and electronic structures were performed after the volume and atomic position optimizations using an SCF tolerance of 1×10^{-6} eV.

A series of supercells were constructed for the defective system, which was $3 \times 3 \times 3$ of the γ'-Ni$_3$Al crystallographic cell (see figure 1(b)), consisting of 27 Al and 81 Ni sites. The single intrinsic point defects were indicated as Al$_{Ni}$, V$_{Ni}$, Ni$_{Al}$ or V$_{Al}$, which corresponded to the Al anti-site, Ni vacancy, Ni anti-site, and Al vacancy defects, respectively. As the two intrinsic point defects were simultaneously added to the Ni$_3$Al models, we constructed seven point-defect complex models in the investigations: Al$_{Ni}$ + Al$_{Ni}$, Al$_{Ni}$ + Ni$_{Al}$, Al$_{Ni}$ + V$_{Ni}$, Al$_{Ni}$ + V$_{Al}$, Ni$_{Al}$ + V$_{Ni}$, Ni$_{Al}$ + V$_{Al}$, Al$_{Ni}$ + Ni$_{Al}$ + V$_{Ni}$, Ni$_{Al}$ + Ni$_{Al}$ + V$_{Al}$, and Ni$_{Al}$ + Ni$_{Al}$ + V$_{Al}$. The orientation and distance between the lattice points occupied by the defects in the Ni$_3$Al crystals are shown in figure 1(a); the distances are $\sqrt{2}/2$-a and a, where a is the equilibrium lattice parameter.

The elastic properties of Ni$_3$Al, with and without various defects, were calculated to investigate the effects of the point-defect complexes on the mechanical properties. The elastic tensor for the equilibrium volume was determined by performing seven finite distortions of the lattice and deriving the elastic constants from the strain–stress curves\cite{24,25}. There were three independent components, C_{11}, C_{12}, and C_{44}, in the cubic L1$_2$ Ni$_3$Al crystals\cite{25}. Therefore, the bulk modulus B, shear modulus G, Young’s modulus E, and Poisson’s ratio ν can be directly obtained using the elastic constants via the Voigt–Reuss–Hill method\cite{26}. These were calculated for the cubic crystals using the following expressions:

\begin{align}
B &= (C_{11} + 2C_{12})/3 \\
G_V &= [(C_{11} - C_{12}) + 3C_{44}]/5 \\
G_R &= [5C_{44}(C_{11} - C_{12})]/[3(C_{11} - C_{12}) + 4C_{44}] \\
G &= G_{HH} = (G_V + G_R)/2 \\
E &= 9BG/(3B + G) \\
\nu &= (3B - 2G)/(2(3B + G))
\end{align}

Table 1 lists the elastic constants, bulk modulus B, shear modulus G, and Young’s modulus E of the perfect γ'-Ni$_3$Al crystals, which are consistent with previous theoretical\cite{27} and experimental\cite{28} results, indicating that the parameters were sufficient to achieve the accuracy required in the current calculations.
3. Results and discussion

3.1. Formation enthalpy of point defect

The calculated equilibrium lattice parameter a of the γ'-Ni$_3$Al crystals was 3.566 Å, which was consistent with the experimental value of 3.572 Å [29]. Furthermore, the formation enthalpies of the point defects H_d [30, 31] in defective systems were calculated using

$$H_d = E_{Ni_{1-x}Al_{x}} - E_{Ni_{1-x}Al_{x}} + x \cdot E(Ni) + y \cdot E(Al)$$

where $E_{Ni_{1-x}Al_{x}}$ and $E_{Ni_{1-x}Al_{x}}$ are the total energies of the defective and perfect Ni$_3$Al crystals, respectively. x and y are the numbers of Ni and Al sites replaced by point defects, respectively; these can be -2, -1, 0, 1, or 2, depending on the type of point defect in the supercell models. For example, the combination of $x = 1$ and $y = -1$ represents an Al anti-site defect (i.e., Al$_{Ni}$); the combination of $x = 1$ and $y = 0$ represents a vacancy on the Ni site (i.e., V_{Ni}) or a complex with an Al anti-site defect and vacancy on the Al site (i.e., Al$_{Ni}$ + V_{Al}). In this case, the two configurations may yield different H_d values for the point defects, despite their expressions being the same. $E(Ni)$ and $E(Al)$ are the energies per atom in the FCC-Ni and FCC-Al unit cells, respectively.

Using the Al$_{Ni}$ + Al$_{Ni}$ complex as an example, a comparison of the calculated H_d values obtained for different sized supercell models is plotted in figure 2. It is clear that the 3 \times 3 \times 3 supercell models were sufficient in this study.

The calculated H_d values of the point defects are listed in table 2. As for the single point defect, H_d of the Al anti-site defects (-0.968 eV) is much lower than that of the Ni vacancy defect (1.624 eV) in the Al-rich alloys, and H_d of the Ni anti-site (2.008 eV) is much lower than that of the Al vacancy defect (3.638 eV) in the Ni-rich alloys. These results clearly indicate that the anti-site point defects were dominant in the off-stoichiometric Ni$_3$Al crystals, which is consistent with previous theoretical and experimental results [27, 32, 33]. Furthermore, a negative H_d of Al$_{Ni}$ indicates that the formation of a single Al anti-site defect is an exothermic reaction, which means that the Al anti-site defect was the easiest to form in the Ni$_3$Al intermetallic compounds.

For the point-defect complex in the Al-rich Ni$_3$Al crystals, H_d of the Al$_{Ni}$ + Al$_{Ni}$ complexes were the lowest, followed by those of the Al$_{Ni}$ + V_{Ni} and Al$_{Ni}$ + V_{Al} complexes. This clearly reveals that the dominance of the Al anti-site defects in the Al-rich systems did not have a significant effect, despite the extra point defect, and the

Alloys	C_{11}/GPa	C_{12}/GPa	C_{44}/GPa	B/GPa	G/GPa	E/GPa
Ni$_3$Al	232	157	122	182	76	201
Ni$_3$Al [27]	242	152	125	182	83	217
Ni$_3$Al [28]	225	149	124	174	77	202

![Figure 1](image-url)
Al$_{Ni}$ + Al$_{Ni}$ point-defect complexes were the most likely to emerge. The H_d values of the point-defect complex were larger in the Ni-rich phases compared with those of the Al-rich phases. Specifically, H_d of the Ni$_{Al}$ + V$_{Ni}$ complex (5.614 eV) was higher than that of the Al$_{Ni}$ + V$_{Ni}$ complex (0.705 eV) at the same orientation and distance, $\frac{1}{2}(110)$. This indicates that point defects can hardly be complex in Ni-rich crystals. Despite this, the Ni$_{Al}$ + Ni$_{Al}$ defect was dominated by the smallest H_d in the Ni-rich system. These results demonstrate that the complex of anti-site point defects was dominant in the off-stoichiometric Ni$_3$Al crystals, as concluded previously. For the Al$_{Ni}$ + Ni$_{Al}$ complex, $H_d = 0.781$ eV, which is less than that of both the point-defect complex in Ni-rich Ni$_3$Al and a single Ni$_{Al}$ defect, indicating that the exchange point-defect complex can be formed in stoichiometric Ni$_3$Al phases.

By considering the distance between the point defects, it was found that their interaction had a significant impact on the formation ability of defects in the same complex. For example, the distances in the Al$_{Ni}$ + Al$_{Ni}$ complexes with the (100) and $\frac{1}{2}(110)$ configurations were a and $\frac{\sqrt{2}}{2}a$, with H_d values of -1.789 and -1.579 eV (table 2), respectively. In this case, a larger distance in the former configuration implies a weaker interaction between the point defects [31, 34]. Thus, a large interaction between point defects is unfavorable for the formation of a point-defect complex. As a result, the point defects tended to separate from each other in the Ni$_3$Al crystals at low temperatures. However, the diffusion of Al and Ni atoms also became stronger with increasing temperature [16], and a growing number of point-defect complexes were inevitable in the γ'-Ni$_3$Al crystals. Hence, the investigation of the impact of point-defect complexes on the mechanical properties can provide an in-depth perspective for understanding the high-temperature strength of off-stoichiometric γ'-Ni$_3$Al phases.

3.2. Elastic properties

The values of the elastic constants of the defect systems are listed in table 2. The mechanical stability criterion, i.e., the Born criterion, for the elastic constants is $C_{11} - C_{12} > 0$, $C_{44} > 0$, and $C_{11} + 2C_{12} > 0$ [35, 36]. As seen in table 2, all elastic constants met these criteria, indicating that the L1$_2$-Ni$_3$Al crystals, both with and without various point defects, were mechanically stable. Meanwhile, C_{11} and C_{12} were significantly affected by the point defects, while C_{44} was insensitive.

Table 2 further provides the values of the bulk modulus B, shear modulus G, Young’s modulus E, B/G, and Poisson’s ratio ν. For the γ'-Ni$_3$Al crystals with single point defects, other calculation values were also employed and determined in line with our results [27]. Generally, B/G is associated with the ductility (brittleness) of a material [37, 38]. If $B/G < 1.75$, a material is a brittle substance, otherwise it is ductile. B, G, and E determine the resistance to fracture, resistance to plastic deformation, and evaluation of the stiffness of the solid, respectively [39]. Moreover, the ductility or brittleness behavior of materials can also be characterized using Poisson’s ratio ν [40], in which $\nu < 0.26$ and $\nu > 0.26$ corresponds to brittle and ductile materials, respectively [41].

Single anti-site defects have a strengthening effect on the mechanical properties of γ'-Ni$_3$Al crystals relative to single vacancy defects, that is, Al$_{Ni}$ and Ni$_{Al}$ defects are beneficial, while V$_{Ni}$ and V$_{Al}$ defects are detrimental [27]. For example, in table 2 G is 80 and 78 GPa in the Al$_{Ni}$ and Ni$_{Al}$ models, respectively, which are both greater than 76 GPa in the defect-free model. Similarly, the E increased to 208 and 205 GPa in the Al$_{Ni}$ and Ni$_{Al}$ models,
Table 2. Formation enthalpies of the point defects (\(H_d\)) and elastic properties of the Ni$_3$Al models with various point defects.

Component	Point defects	orientation and distance	\(H_d\)/eV	\(C_{11}\)/GPa	\(C_{12}\)/GPa	\(C_{44}\)/GPa	\(B$/GPa$	\(G$/GPa$	\(E$/GPa$	\(B$/G	\(v	References
Al-rich	V$_{Ni}$	—	1.624	227	155	120	179	74	196	2.41	0.32	This work
			1.48	220	155	155	177	69	183	2.56	0.33	[27]
	Al$_{Ni}$	—	−0.968	236	153	123	181	80	208	2.27	0.31	[32],[33]
			−1.00	233	152	121	179	77	203	2.31	0.32	This work
	Al$_{Ni}$ + Al$_{Ni}$ (100)		−1.789	214	168	122	183	64	171	2.88	0.34	This work
	Al$_{Ni}$ + Al$_{Ni}$ (100)		−1.579	200	191	122	191	43	120	4.53	0.40	This work
	Al$_{Ni}$ + Al$_{Ni}$ (100)		0.671	222	156	120	178	72	190	2.48	0.32	This work
	Al$_{Ni}$ + Al$_{Ni}$ (100)		0.705	222	156	120	178	72	190	2.48	0.32	This work
	Al$_{Ni}$ + Al$_{Ni}$ (100)		2.307	227	154	120	178	75	196	2.39	0.32	This work
Stoichiometric	Al$_{Ni}$ + Ni$_{Al}$ (110)		0.781	232	156	122	181	77	201	2.37	0.32	This work
	Defect free		—	232	157	122	182	76	201	2.39	0.32	This work
Ni-rich	V$_{Al}$	—	3.638	228	156	120	180	74	196	2.42	0.32	This work
			3.42	221	150	120	174	74	194	2.35	0.32	[27]
	Ni$_{Al}$	—	2.008	236	156	122	183	78	205	2.34	0.31	This work
			2.06	242	149	123	180	83	216	2.17	0.30	[27]
	Ni$_{Al}$ + V$_{Ni}$ (110)		5.614	57	39	120	45	48	106	0.94	0.11	[32],[33]
	Ni$_{Al}$ + V$_{Al}$ (100)		3.982	228	156	119	180	74	195	2.44	0.32	This work
	Ni$_{Al}$ + Ni$_{Al}$ (100)		3.613	234	157	120	183	76	201	2.40	0.32	This work
respectively. B, G, and E decreased to 179, 74, and 196 GPa in the V_{Ni} model and 180, 74, and 196 GPa in the V_{Al} model, respectively. Furthermore, the values of B/G and v were all greater than the 1.75 and 0.26 criteria, respectively. These results indicate that the γ'-Ni_3Al crystals, both with and without single point defects, were ductile in all cases, and the anti-site defect decreased the ductility of the materials because the values of B/G and v were reduced compared to those of perfect materials.

The bulk modulus B, shear modulus G, Young’s modulus E, B/G, and Poisson’s ratio v for the point-defect complex systems are shown in Figure 3; the values of the perfect Ni$_3$Al and single point defect models are also plotted for comparison. In the Al-rich models, B was in the range 183–191 GPa for the Al$_{Ni}$ + Al$_{Ni}$ complex models, which were the largest among all point-defect complex models, and significantly higher than that of the Al$_{Ni}$ model (181 GPa). This indicates that a double Al$_{Ni}$ defect configuration can further improve the resistance

![Figure 3. Bulk modulus B, shear modulus G, Young’s modulus E, B/G, and Poisson’s ratio v of γ'-Ni_3Al crystals with a point-defect complex.](image-url)
Table 3. Melting point T_m and G_{11} of Ni$_3$Al crystals with various point defects.

Component	Point defects	Orientation and distance	G_{11}/GPa	T_m/K	References
Al-rich	V_{Ni}	—	227	1595	This work
	Al_{Ni}	—	236	1647	This work
	$Al_{Ni} + Al_{Ni}$	$\frac{1}{2}(110)$	214	1517	This work
	$Al_{Ni} + V_{Ni}$	$\frac{1}{2}(110)$	222	1565	This work
Stoichiometric	$Al_{Ni} + V_{Al}$	$\frac{1}{2}(110)$	227	1594	This work
Ni-rich	V_{Al}	—	228	1600	This work
	Ni_{Al}	—	236	1648	This work
	$Ni_{Al} + V_{Ni}$	$\frac{1}{2}(110)$	57	590	This work
	$Ni_{Al} + V_{Al}$	(100)	228	1600	This work
	$Ni_{Al} + Al_{Al}$	(100)	234	1635	This work

To fracture of γ'-Ni$_3$Al crystals. However, as shown in figure 3, G and E in the $Al_{Ni} + Al_{Ni}$ complex models were the lowest for all Al-rich systems, which were not only smaller than that of perfect Ni$_3$Al, but also smaller than that of the V_{Ni} model, indicating that the resistance to plastic deformation and stiffness of the materials were significantly weaker. Conversely, the ductility of the materials was enhanced as a result of having the highest B/G and ψ in a series of models. Similar to the $Al_{Ni} + Al_{Ni}$ complex models, B, G and E of the $Al_{Ni} + V_{Ni}$ and $Al_{Ni} + V_{Al}$ complex models were less than those of the Al_{Ni} model and perfect Ni$_3$Al. This phenomenon resulted in a low high-temperature strength of Al-rich Ni$_3$Al compared to that of stoichiometric Ni$_3$Al [13]. Compared to the $Al_{Ni} + Al_{Ni}$ complex models, B was large (183 GPa) and greater than that of perfect Ni$_3$Al for the $Ni_{Al} + Ni_{Al}$ complex model (figure 3). G and E of the $Ni_{Al} + Ni_{Al}$ complex model did not improve compared to that of perfect Ni$_3$Al, and were less than those of the Ni_{Al} model. This result clearly indicates that the anti-site point-defect complex in Ni-rich Ni$_3$Al has an indirect reinforcement effect on the γ'-Ni$_3$Al crystals. In addition, $E = 195$ GPa for the $Ni_{Al} + V_{Al}$ complex model, which is less than that of the V_{Al} model; and B, G, and E in the $Ni_{Al} + V_{Ni}$ complex model were the smallest among all models. Consequently, the high-temperature strength of Ni-rich Ni$_3$Al is less than that of stoichiometric Ni$_3$Al [7, 13].

Thus, we conclude that although a single anti-site defect is helpful in improving strength, the point-defect complexes due to atomic diffusion [16] are harmful for the strengthening of γ'-Ni$_3$Al crystals.

3.3. Melting point T_m

To understand the effect of the point-defect complex on the heat resistance of the γ'-Ni$_3$Al crystals, their melting point T_m was calculated using an empirical formula. The relationship between the elastic constant G_{11} and T_m for Ni–X binary systems is as follows [42, 43]:

$$T_m = 553 + 5.91G_{11} - 300(K) \quad (8)$$

The calculated T_m values for the Ni$_3$Al crystals with various point defects are listed in table 3. For the defect-free Ni$_3$Al crystals, $T_m = 1624$ K, which is consistent with experimental results [29], indicating that the T_m computational method is reliable. For the γ'-Ni$_3$Al crystals with single point defects, T_m decreased from 1624 to 1600 and 1595 K, corresponding to the effects of the V_{Al} and V_{Ni} defects, respectively. In contrast, T_m increased to 1647 and 1648 K in the γ'-Ni$_3$Al crystals with Al_{Ni} and Ni_{Al} defects, respectively. These results clearly suggest that single anti-site defects are favorable for the improvement of T_m in γ'-Ni$_3$Al crystals and single vacancy defects are disadvantageous. For Ni$_3$Al with point-defect complexes, the values were reduced to the range 590–1600 K, except for the $Al_{Ni} + Ni_{Al}$ and $Ni_{Al} + Ni_{Al}$ complexes, which demonstrated that the point-defect complexes had a detrimental effect on T_m of the γ'-Ni$_3$Al crystals. This may explain the reduction in the high-temperature strength of the off-stoichiometric Ni$_3$Al, especially that of Al-rich systems [7, 13].

3.4. Electronic density

To understand the impact of the point-defect complex on the elastic properties of the γ'-Ni$_3$Al phases, the electronic density contours of the typical (001) and (002) planes are plotted in figure 4. The variations in the elastic properties of the γ'-Ni$_3$Al crystals resulting from point defects can be explained using the electronic density [44]. The greater the electronic density, the stronger the bonds formed between the Ni and Al atoms [45],

...
and materials with nearly spherical electronic structures are prone to deformation owing to their relatively shorter shear deformation ranges [46].

Figure 4(c) shows that the single AlNi defect affected the electronic densities between its nearest neighboring Al-Ni atoms, making the electronic structure around point defects from nearly spherical (figure 4(a)) to nearly square (figure 4(c)). For the NiAl model, as shown in figure 4(d), the electronic density between the nearest neighboring Ni-Ni atoms was significantly increased compared to that between the Al and Ni atoms, and the electronic structure around the point defect became nearly square from nearly spherical. Therefore, single anti-site AlNi and NiAl defects enhance the strength of γ′-Ni3Al crystals [27].

For the point-defect complex systems, the electronic density contours of the (002) plane in the AlNi + AlNi\textsubscript{1/2}(110) and (001) planes in the NiAl + V\textsubscript{Ni}\textsubscript{1/2}(110) models are also plotted in figures 4(e) and (f), respectively. For the AlNi + AlNi model, when the nearest neighboring Ni atoms were simultaneously replaced by two Al atoms, the electronic structure between the point defects changed from nearly square (figure 4(b)) to nearly spherical (figure 4(e)), and the electronic density between the Al and Al atoms (figure 4(e)) was less than that between the Ni and Ni atoms (figure 4(b)). Thus, the AlNi + AlNi complex reduced the strength of the γ′-Ni3Al crystals, as opposed to further strengthening it. For the NiAl + V\textsubscript{Ni} model, the anti-site Ni atom and its nearest-neighbor Ni vacancy occurred simultaneously. The Ni vacancy (figure 4(f)) caused the electronic density to decrease significantly in the γ′-Ni3Al crystals, and the electronic structure around the anti-site Ni atom became nearly spherical owing to the effect of the Ni vacancies. Therefore, the strength of the γ′-Ni3Al crystals was significantly reduced (see figure 3).

4. Conclusions

Density functional theory calculations were performed to study the effect of various point defects on the elastic properties of the L12 Ni3Al phases. Furthermore, the forming abilities of point defects were also investigated. The analysis of the formation enthalpy implied that single anti-site point defects were dominant in the off-stoichiometric γ′-Ni3Al crystals, which is consistent with previously reported theoretical and experimental results. In the case of the point-defect complex, AlNi + AlNi and NiAl + NiAl complexes tended to occur in the Al-rich and Ni-rich Ni3Al, respectively. These results demonstrate that the anti-site point defects are predominant, both at low and high temperatures, for off-stoichiometric Ni3Al. In addition, the calculation
results of the elastic properties showed that the single AlNi and NiAl point defects were beneficial to the strengthening of the γ'-Ni$_3$Al phases, while the AlNi + AlNi and NiAl + NiAl point-defect complexes were harmful. Furthermore, single anti-site point defects and point-defect complexes can increase and reduce the melting point T_m of the γ'-Ni$_3$Al crystals, respectively. In other words, with increasing temperature service conditions, stoichiometric γ'-Ni$_3$Al crystals are more likely to achieve excellent high-temperature strengths. At low temperatures, the γ'-Ni$_3$Al phases should deviate from the stoichiometric ratio and form anti-site point defects, thereby increasing their strength. These results provide some explanations for the reduction in the high-temperature strength of off-stoichiometric systems. A careful analysis of the electronic densities revealed that the increase in the strength of the AlNi and NiAl models resulted mainly from the nearly square electronic structure around the anti-site point defects and the higher strength of the Ni–Ni bonding compared to that of the Al–Ni bonding in the NiAl model. Furthermore, the nearly spherical electronic structures around the point defects and the lower strength of the Al–Al bonding relative to that of the Ni–Al bonding resulted in the weakening of the γ'-Ni$_3$Al crystals with the AlNi + AlNi complex.

Acknowledgments

This study was supported by the Scientific Research Fund of Hunan Provincial Education Department (19C0468 and 20C0476).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Yi Chen [orcid.org/0000-0001-9611-8393]

References

[1] Reed R C 2008 *The Superalloys: Fundamentals And Applications* 1st ed. (Cambridgeshire: Cambridge University Press)
[2] Reed R C, Tao T and Warnken N 2009 Alloys-By-Design: Application to nickel-based single crystal superalloys Acta Mater. 57 5898–913
[3] Liu S, Wen M, Li Z, Liu W, Yan P and Wang C 2017 Partitioning and diffusion of transition metal solutes in ternary model Ni-based single crystal superalloys Mater. Des. 130 157–65
[4] Liu S, Liu C, Ge L, Zhang X, Yu T, Yan P and Wang C 2017 Effect of interactions between elements on the diffusion of solutes in Ni-X-Y systems and γ'-coarsening in model Ni-based superalloys Scripta Mater. 138 100–4
[5] Huo J, Shi Q Y and Feng Q 2017 Effect of multiple alloying additions on microstructural features and creep performance at 950 °C and 400 MPa in Ru-containing single crystal superalloys Mater. Sci. Eng. A 693 136–44
[6] Aoki K and Izumi O 1975 Defect structures and long-range-order parameters in off-stoichiometric Ni$_3$Al Phys. Status Solidi 32 657–64
[7] Hayashi T, Shinoda T and Suzuki Y M T 1991 Effect of off-stoichiometry on the creep behavior of binary and ternary Ni$_3$Al Mrs Online Proceeding Library 213 617–22
[8] Golberg D, Demura M and Hirano T 1998 Effect of Al-rich off-stoichiometry on the yield stress of binary Ni$_3$Al single crystals Acta Mater. 46 2695–703
[9] Matterstock B, Conforfo E, Krufl T, Bonneville J and Martin J L 1999 Effect of off-stoichiometry on the deformation behavior of Ni$_3$Al binary polycrystals MRS Proc. 487 1–7
[10] Miura S, Takizawa S, Suzuki T, Mishima Y and Mohri T 2005 Effect of tetragonal distortion introduced by anti-site defect configuration on additional hardening in off-stoichiometric Al-rich Ni$_3$Al alloys Acta Mater. 53 5175–81
[11] Duan J 2007 Atomistic simulations of diffusion mechanisms in off-stoichiometric Al-rich Ni$_3$Al J. Phys. Condens. Matter 19 086217–9
[12] Zhao Y and Hou H 2013 The point defects occupancy rule of V atoms into Ni$_3$Al alloy Rev. Adv. Mater. Sci. 33 238–45
[13] Lopez J A and Hancock G F 1970 The effects of non-stoichiometry and titanium additions on the mechanical behaviour of Ni$_3$Al(γ') Phys. Status Solidi 2 409–74
[14] Noguchi O, Oya Y and Suzuki T 1981 The effect of nonstoichiometry on the positive temperature dependence of strength of Ni$_3$Al and Ni$_3$Al Metall. Trans. A 12A 1647–53
[15] Chen G X, Wang D D, Zhang J M, Huo H P and Xu K W 2008 Self-diffusion of Ni in the intermetallic compound Ni$_3$Al Physica B 403 3538–42
[16] Zhang X, Deng H, Xiao S, Tang J, Deng L and Hu W 2014 First-principles calculation of self-diffusion coefficients in Ni$_3$Al J. Alloys Compd. 612 361–4
[17] Duan J 2006 Atomistic simulations of diffusion mechanisms in stoichiometric Ni$_3$Al J. Phys. Condens. Matter 18 1381–94
[18] Sun J, Lin D and Lin T L 1994 Theoretical and positron annihilation study of point defects in intermetallic compound Ni$_3$Al Acta Metall. Mater. 42 195–200
[19] Kresse G and Hafner J 1993 *Ab initio* molecular dynamics for liquid metals Phys. Rev. B 47 558–61
[20] Kresse G and Furthmüller J 1996 Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set Phys. Rev. B: Condens. Matter 54 11169–86
[21] Kresse G and Joubert D 1999 From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B: Condens. Matter 59 1758–75
[22] Perdew J P, Burke K and Ernzerhof M 1996 Generalized gradient approximation made simple Phys. Rev. Lett. 77 3865–8
[23] Monkhorst H J 1976 Special points for Brillouin–zone integrations Phys. Rev. B 13 5188–92
[24] Le Page Y and Saxe P 2002 Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress Phys. Rev. B 65
[25] Kumar A, Chernatynskiy A, Hong M, Phillpot S R and Sinnott S B 2015 An ab initio investigation of the effect of alloying elements on the elastic properties and magnetic behavior of Ni₃Al Comp. Mater. Sci. 101 39–46
[26] Hill R 1952 The elastic behaviour of a crystalline aggregate Proc. Phys. Soc., Sect. A 65 349
[27] Kim D E, Shang S L and Liu Z K 2010 Effects of alloying elements on elastic properties of Ni₃Al by first-principles calculations Intermetallics 18 1163–71
[28] Prikhodko S V, Yang H, Ardell A J, Carnes J D and Isaak D G 1999 Temperature and composition dependence of the elastic constants of Ni₃Al Metallurgical & Materials Transactions A 30 2403–8
[29] Mohan Rao P V, Suryanarayana S V, Satyanarayana Murthy K and Nagender Naidu S V 1989 The high–temperature thermal expansion of Ni₃Al measured by X-ray diffraction and dilatation methods J. Phys. Condens. Matter 1 5537–61
[30] Li Y, Hu Q-M, Xu D-S and Yang R 2011 Strengthening of γ′-TiAl-Nb by short-range ordering of point defects Intermetallics 19 793–6
[31] Chen Y, He S, Yi Z and Peng P 2018 Impact of correlative defects induced by double re-addition on the ideal shear strength of γ′-Ni₃Al phases Comp. Mater. Sci. 152 408–16
[32] Jiang C, Sordelet D J and Gleeson B 2006 Site preference of ternary alloying elements in Ni₃Al: a first-principles study Acta Mater. 54 1147–54
[33] Wu Q and Li S 2012 Alloying element additions to Ni₃Al: site preferences and effects on elastic properties from first-principles calculations Comp. Mater. Sci. 53 436–43
[34] Chen Y, He S, Yi Z and Peng P 2019 A synergistic reinforcement of Re and W for ideal shear strengths of γ′-Ni₃Al phases J. Phys. Chem. Solids 131 34–43
[35] Pokluda J, Černý M, Sob M and Umeno Y 2015 Ab initio calculations of mechanical properties: Methods and applications Prog. Mater. Sci. 73 127–58
[36] Gong W, Zhao W, Miao N, Zhou J, Sun Z, Li S and Gong S 2018 Strengthening effects of alloying elements W and Re on Ni₃Al: a first-principles study Comp. Mater. Sci. 144 23–31
[37] Pugh S F 1954 XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, The London Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823–43
[38] Yao Q, Shang S L, Hu Y J, Wang Y, Wang Y, Zhu Y H and Liu Z K 2016 First-principles investigation of phase stability, elastic and thermodynamic properties in L₁₂ Co₄(Al,Mo,Nb) phase Intermetallics 78 1–7
[39] Zhang H, Shang S L, Wang Y, Saengdeejeing A, Chen L Q and Liu Z K 2010 First-principles calculations of the elastic, phonon and thermodynamic properties of Al₁₂ Mg₁₇ Acta Mater. 58 4012–8
[40] Wang A J, Shang S L, Du Y, Kong Y, Zhang L J, Chen L, Zhao D D and Liu Z K 2010 Structural and elastic properties of cubic and hexagonal Ti₃Ni and AlNi from first-principles calculations, Comp. Mater. Sci. 48 705–9
[41] Meng F S, Wang Y, Lu X M and Li J H 2020 First-principles investigation of elastic, mechanical, electronic and thermodynamic properties of Al₃Li compound under pressure Mater. Res. Express 7 1265–6
[42] Fine M E, Brown L D and Marcus H L 1984 Elastic constants versus melting temperature in metals Scr. Metall. 18 951–6
[43] Kim D, Shang S L and Liu Z K 2009 Effects of alloying elements on elastic properties of Ni by first-principles calculations, Comp. Mater. Sci. 47 254–60
[44] Shang S L, Kim D E, Zacheel C L, Wang Y, Du Y and Liu Z K 2012 Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations J. Appl. Phys. 112 053515
[45] Shang S, Wang Y, Arroyave R and Liu Z K 2007 Phase stability in α- and β-rhombohedral boron Phys. Rev. B 75
[46] Ogata S, Li J and Yip S 2002 Ideal pure shear strength of aluminum and copper Science 298 807–11