Despite social distancing measures implemented in Madrid to prevent the propagation of SARS-CoV-2, a significant increase (57.1%; 28.5 to 38.5 cases/month) in cases of lymphogranuloma venereum was detected during the COVID-19 pandemic. This unusual scenario might have accelerated a shift in Chlamydia trachomatis (CT) epidemiology towards a higher proportion of L genotypes compared with non-L genotypes in CT-positive samples. Our data underscore the importance of surveillance of sexually transmitted infections during the pandemic, in particular among vulnerable populations.

In 2020, in response to the emergence and global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), different measures were undertaken in an attempt to control and stop the propagation of the infection. One of the measures widely used was strict social distancing with lockdowns [1]. Several studies have explored the impact of coronavirus disease (COVID-19)-related lockdowns on sexual practices [2,3]. The social changes reported could potentially decrease the risk of acquiring a sexually transmitted infection (STI). We aimed to assess the impact of a national COVID-19-related lockdown in Spain during the pandemic waves on the diagnosis of new cases of lymphogranuloma venereum (LGV), an invasive STI caused by L genotypes of Chlamydia trachomatis in a large STI centre in Madrid.

National health system responses to the pandemic waves in Madrid
A nationwide lockdown started in Spain on 14 March 2020 and, after 2 weeks, was extended for an additional 98 days to 21 June. Of note, a de-escalation strategy was started on 28 April, with differences between the autonomous regions of the country. In Madrid, one of the cities most affected by the COVID-19 pandemic, limited social contact (≤ 10 people) was permitted from 24 May. During the successive pandemic waves, different control measures were adopted, but restricted social gatherings were always allowed. The time periods for the three pandemic waves were defined as follows: first wave from 10 March to 10 May 2020 (the first COVID-19 cases were diagnosed at the end of February), second wave from 22 August to 22 November 2020 and third wave from 20 December 2020 to 20 February 2021.

Evolution of the lymphogranuloma venereum epidemic
Our centre sees more than 25,000 patients annually, and is the only authorised centre for prescription of pre-exposure prophylaxis for HIV in Madrid, following 1,200 patients regularly. We analysed data from January 2020 to February 2021.

During the period of the pandemic from March 2020 to February 2021, a total of 284 LGV cases were diagnosed, of whom 51.1% (145/284) were HIV-infected patients and 98.9% (281/284) were men who have sex with men (MSM). An LGV case was defined in this study as a person with laboratory confirmation: among all C. trachomatis-positive samples, a real-time PCR
COVID-19: coronavirus disease; IW1: interwave period 1; IW2: interwave period 2.

Analysis of IW2 was not performed because of a short timeframe.

Blue line: number of lymphogranuloma venereum cases; dashed line: trend line.

Discussion

The decrease in the number of LGV cases during the strict lockdown is in agreement with other studies [5]. This outcome was probably related to the Spanish government’s decision to minimise all healthcare activities that were not dedicated to COVID-19 in primary care centres, such as STI clinics. As other authors have reported, this led to a reduction in the number of consultations [6] and in testing volume [7], since only patients with LGV symptoms were able to access the centres. In fact, a similar drop has been reported for a wide range of communicable diseases [5]. During this period, patients may have postponed visiting any medical centres, which may have caused more severe symptoms and additional complications in the absence of treatment [8]. This consequently provided more opportunities for transmission of CT infection, facilitating the spread of LGV. Moreover, a European study suggests that access to STI testing for vulnerable populations may have been reduced during the pandemic [7]. As expected, a reduction in the number of sexual partners [9] and sex frequency [10] has been reported; of note, an increase by 27.0% in the use of mobile sex apps during the strict lockdown was also detected [11]. These data could explain the significant increase in the number of LGV cases and the proportion with respect to the CT-positive samples following the first wave. Nonetheless, the resumption of social gatherings, including sexual activities, together with an increase in the asymptomatic screening in the reopened STI centres [6] might also have led to the subsequent increase in LGV cases after the lockdown. However, the clinical activity in our centre increased progressively and, now in 2021, has reached the same levels as in the pre-pandemic period. During the second and third waves, the measures were less strict, as in other countries [12]. In Madrid, although social contact was still limited, gatherings up to 10 people were continuously allowed, which may explain why LGV incidence remained high. However, throughout the different periods of the pandemic, a progressive increase was observed, reaching concerning levels in the final days of the third pandemic wave. The proportion of LGV of total CT during first pandemic wave was higher compared with the pre-lockdown period. This is probably because patients infected by L genotypes are more likely to have symptoms than patients infected by
non-L genotypes [13], and therefore are among the only patients to receive care during the strictest lockdown. Nonetheless, it is important to note that the proportion of LGV represented 32.9% of all CT infections during February 2021, highlighting that the LGV epidemic seemed to be challenging to control, continuing its spread and replacement of non-invasive CT genotypes among vulnerable populations.

Conclusion

Our data revealed that the restrictions (including lockdown) have had no impact on reducing LGV transmission. It is important to make efforts to improve LGV diagnosis and surveillance, focusing on high-risk groups, such as MSM and other populations participating in dense sexual networks both during and after the COVID-19 pandemic.

Acknowledgements

We thank Mrs. Mary Harper for English correction of the article.

Funding: This work was supported by the Carlos III Health Institute (Spain) co-financed by the European Regional Development Fund (ERDF, A Way to Achieve Europe programme (PI16/01242, PI20/01397, CB06/02/0053)).

Conflict of interest

None declared.

Authors’ contributions

LMG, MRD and JCG wrote the manuscript. CL and MCRJ performed the laboratory testing. LMG, MRD, JMGA, TP, MSC, JMH, BRH and JCG participated in the data interpretation. All authors reviewed the article.

References

1. Han E, Tan MMJ, Turk E, Sridhar D, Leung GM, Shibuya K, et al. Lessons learnt from easing COVID-19 restrictions: an analysis of countries and regions in Asia Pacific and Europe. Lancet. 2020;396(10261):1525-34. https://doi.org/10.1016/S0140-6736(20)32007-9 PMID: 32979936
2. Li G, Tang D, Song B, Wang C, Qunshan S, Xu C, et al. Impact of the COVID-19 pandemic on partner relationships and sexual and reproductive health: Cross-sectional, online survey study. J Med Internet Res. 2020;22(8):e20961. https://doi.org/10.2196/20961 PMID: 32766895
3. Hammoud MA, Maher L, Holt M, Degenhardt L, Jin F, Murphy D, et al. Physical distancing due to COVID-19 disrupts sexual behaviors among gay and bisexual men in Australia: implications for trends in HIV and other sexually transmissible infections. J Acquir Immune Defic Syndr. 2020;86(3):309-15. https://doi.org/10.1097/QAI.0000000000002462 PMID: 32740374

4. Schaeffer A, Henrich B. Rapid detection of Chlamydia trachomatis and typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR. BMC Infect Dis. 2008;8(1):56. https://doi.org/10.1186/1471-2334-8-56 PMID: 18447917

5. Lai C-C, Chen S-Y, Yen M-Y, Lee P-I, Ko W-C, Hsueh P-R. The impact of the coronavirus disease 2019 epidemic on notifiable infectious diseases in Taiwan: A database analysis. Travel Med Infect Dis. 2021;40:101997. https://doi.org/10.1016/j.tmaid.2021.101997 PMID: 33640476

6. Chow EPF, Hocking JS, Ong J, Phillips TR, Fairley CK. Sexually transmitted infection diagnoses and access to a sexual health service before and after the national lockdown for COVID-19 in Melbourne, Australia. Open Forum Infect Dis. 2020;8(1):ofaa536. https://doi.org/10.1093/ofid/ofaa536 PMID: 33566064

7. Simões D, Stengaard AR, Combs L, Raben D, EuroTEST COVID-19 impact assessment consortium of partners. Impact of the COVID-19 pandemic on testing services for HIV, viral hepatitis and sexually transmitted infections in the WHO European Region, March to August 2020. Euro Surveill. 2020;25(47):2001943. https://doi.org/10.2807/1560-7917.ES.2020.25.47.2001943 PMID: 33243354

8. Stoner BP, Cohen SE. Lymphogranuloma venereum 2015: Clinical presentation, diagnosis, and treatment. Clin Infect Dis. 2015;61(Suppl 8):S865-73. https://doi.org/10.1093/cid/civ756 PMID: 26602624

9. Chow EPF, Hocking JS, Ong J, Schmidt T, Buchanan A, Rodrigue E, et al. Changing the use of HIV pre-exposure prophylaxis among men who have sex with men during the COVID-19 pandemic in Melbourne, Australia. Open Forum Infect Dis. 2020;7(7):ofaa275. https://doi.org/10.1093/ofid/ofaa275 PMID: 32704518

10. Coombe J, Kong FYS, Bittleston H, Williams H, Tomnay J, Vaisey A, et al. Love during lockdown: findings from an online survey examining the impact of COVID-19 on the sexual health of people living in Australia. Sex Transm Infect. 2020;sextrans-2020-054688. https://doi.org/10.1136/sextrans-2020-054688 PMID: 33203737

11. European Society for Sexual Medicine (ESSM). Sexual relationships during the lockdown: Adjusting sex counselling and therapy to the restriction of quarantine. Belgium: ESSM. [Accessed: 7 Apr 2021]. Available from: https://www.essm.org/adjusting-sex-therapy-to-the-restriction-of-quarantine/

12. World Health Organization Regional Office for Europe (WHO/ Europe). COVID-19 health system response monitor. Denmark: WHO/Europe. [Accessed: 7 Apr 2021]. Available from: https://www.covid19healthsystem.org/mainpage.aspx

13. Peuchant O, Touati A, Laurier-Nadalié C, Hénin N, Cazanave C, Bébéar C, et al. Prevalence of lymphogranuloma venereum among anorectal Chlamydia trachomatis-positive MSM using pre-exposure prophylaxis for HIV. Sex Transm Infect. 2020;96(6):615-7. https://doi.org/10.1136/sextrans-2019-054346 PMID: 32303577

License, supplementary material and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the authors or their affiliated institutions, 2021.