Prognostic models for predicting overall and cancer-specific survival in hepatocellular carcinoma: A competing risk analysis

Kongying Lin
Mengchao Hepatobiliary Hospital of Fujian Medical University

Qizhen Huang
Mengchao Hepatobiliary Hospital of Fujian Medical University

Zongren Ding
Mengchao Hepatobiliary Hospital of Fujian Medical University

Yongyi Zeng (lamp197311@126.com)
Mengchao Hepatobiliary Hospital of Fujian Medical University

Jingfeng Liu (drjingfeng@126.com)
Mengchao Hepatobiliary Hospital of Fujian Medical University

Research article

Keywords: hepatocellular carcinoma, SEER, competing risk nomogram, cancer-specific survival, overall survival

DOI: https://doi.org/10.21203/rs.3.rs-46064/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objectives

This study was conducted to estimate the probability of cancer-specific survival (CSS) of HCC and establish a competing risk nomogram for predicting the CSS of HCC using a large population-based cohort.

Methods

Patients diagnosed with HCC between 2004 and 2015 were identified from the Surveillance Epidemiology and End Results Program. The CSS and overall survival (OS) were the endpoints of the study. A competing risk nomogram for predicting CSS was built with Fine and Gray’s competing risk model, and the nomogram for predicting OS was constructed with Cox proportional hazard regression models. The predictive performance of the model was tested in terms of discrimination and calibration.

Results

A total of 34,957 patients were included in the study and randomly divided into a training set and validation set at a ratio of 9:1. Multivariate analysis identified age, race, sex, surgical therapy, chemotherapy, radiotherapy, tumour diameter, and tumour staging as independent predictive factors of CSS. Additionally, marital status was identified as an independent predictive factor of OS. Using these factors, corresponding nomograms were constructed for CSS and OS. In the validation set, the concordance-index of the two nomogram models reached 0.810 and 0.750, respectively. Calibration curves revealed good consistency between the prediction of models and observed outcome. Furthermore, cumulative incidence function analysis and Kaplan-Meier analysis divided patients into four distinct risk subgroups, supporting the predictive performance of the models.

Conclusions

In this population-based analysis, we developed and validated nomograms for individualized prediction of CSS and OS in patients with HCC.

Introduction

Hepatocellular carcinoma (HCC) is the most common liver cancer and fourth leading cause of cancer-related death worldwide, with approximately 841,000 new cases and 782,000 deaths annually[^1]. The worldwide incidence of HCC adjusted by age is around 10.1 cases per 100,000 person-year and is
expected to increase in the future\cite{2}. Because of the lack of specific symptoms and unfavourable tumour biology, most patients with HCC are diagnosed in an advanced stage and exhibit poor prognosis\cite{3,4}.

Similar to in other types of cancer, competitive events, such as cancer-specific death and death from other causes, are frequent in HCC. In terms of competing events, cancer-specific death and death from other causes are mutually exclusive, and the occurrence of one event will prevent the occurrence of another. Kaplan-Meier methods and Cox regression models used in traditional survival analysis can only consider one endpoint, which may overestimate the risk of the interested event\cite{5–7}. The Fine and Gray model based on the sub-distribution hazard is recommended to overcome this problem\cite{5,6,8}. Several studies have analysed the independent predictive factors of related malignant diseases by utilizing competing risk analysis and established models with good predictive performance for cancer-specific death\cite{9–12}. However, no studies have analysed and constructed a prognostic model for cancer-specific death from HCC using the competing risk method.

Therefore, this study was conducted to evaluate the predictive factors associated with the survival of patients with HCC using the competing risks method and develop two simple nomograms for individualized prediction of cancer-specific survival (CSS) and overall survival (OS).

Materials And Methods

Data source

Data on patients with hepatocellular carcinoma diagnosed between 2004 and 2015 were extracted from the Surveillance, Epidemiology, and End Results (SEER). Data were extracted using SEER*Stat 8.3.5 from the Surveillance Research Program of the Division of Cancer Control and Population Science, National Cancer Institute.

Patients

Patients with HCC were identified based on the International Classification of Disease for Oncology, third edition (ICD-0-3) primary site code C22.0, and Histologic type code 8170-8175. According to the variables included in our study, we excluded patients with missing data which was recorded as “blank” in the database; second, patients 1) with history of other primary malignancies; 2) with invalid follow-up data; 3) aged <18 years and 4) with undefined data, recorded as “unknown” in the database were also excluded from the study. The detailed inclusion and exclusion criteria are shown in Figure 1.

Variable selection

Information on demographic factors (race, age, sex, and marital status), tumour-related factors (tumour diameter and AJCC staging system), therapeutic factors (surgery, chemotherapy, and radiotherapy) and follow-up were collected from the SEER database.
Marital status was recorded as single (never married), separated, divorced, widowed, unmarried or domestic partner, and married (including common law) in the SEER database. We grouped single (never married), separated, divorced, widowed, and unmarried or domestic partner into the single classification. As no information was available on the eighth edition AJCC staging system and only patients diagnosed after 2010 showed information from the seventh edition AJCC staging system in the SEER database, to enrol as many patients as possible, the sixth edition AJCC staging system was recorded for further analysis. Based on the Surgery Codes of the SEER program, we divided the surgical procedures into four categories: no surgery, local tumour destruction (e.g., Heat-Radio-Frequency ablation (RFA), and Percutaneous Ethanol Injection (PEI)), resection and transplantation.

The endpoints of the study were cancer-specific survival (CSS) and overall survivals (OS). The specific cause of death was based on the code of “SEER cause-specific death classification” in the SEER database. OS was calculated from the date of diagnosis to the date of death caused by any cause or the most recent follow-up. CSS was defined as the interval between the date of diagnosis and date of death due only to HCC or the most recent follow-up. The median follow-up time was calculated by the reverse Kaplan-Meier method.

Statistical Analysis

Demographic and clinical variables were summarized by descriptive statistics. Categorical variables were expressed as a number (percent, %) and compared by the chi-square test. Cancer-specific death and death from other causes were regarded as the two competing endpoint events, and the associations between variables and the risk of cancer-specific death were evaluated by Fine and Gray’s competing risk analysis\(^6\). The corresponding cancer-specific mortality probability of different groups was depicted by the cumulative incidence function (CIF) and compared by Gray’s test\(^6,8,13\). Variables with \(p < 0.05\) in univariate analysis or with clinically relevant results were then evaluated by multivariate analysis based on the proportional sub-distribution hazard ratio model. The independent predictive factors in the Fine and Gray competing risk model were incorporated in the nomogram model to predict the 3-, 4-, and 5-year CSS probability.

For OS, the independent risk factors were identified by univariate and multivariate Cox proportional hazard regression analyses, and the corresponding nomogram model was constructed to predict the 3-, 4-, and 5-year OS probability.

The predictive performance of the nomogram models was analysed from two perspectives: discrimination and calibration. The discriminative ability of the models was tested by the concordance index (C-index), and calibration was tested using calibration curves\(^{14,15}\). Furthermore, CIF curves with Gray’s test or Kaplan-Meier curves with log-rank test were used to measure the performance of the models; the risk groups were classified by previously recommended cut-points for predictive models (16th, 50th, and 84th)\(^{16}\), which classified patients into good, fairly good, fairly poor, and poor risk groups based on their personalized total points determined using the nomogram models.
All statistical analyses were two-sided, and a p < 0.05 was regarded as statistically significant. SPSS version 20 (SPSS, Inc., Chicago, IL, USA) and R version 3.5.2 (R Project, Vienna, Austria) (R packages “table1”, “cmprsk”, “mstate”, “rms”, “survival”, “survminer”, “riskRegression” and “pec”) were used to perform statistical analysis.

Results

Basic characteristics of patients

According to the inclusion and exclusion criteria, 34,957 patients diagnosed with HCC between 2004 and 2015 were included for further analysis (Figure 1). The whole cohort was then randomly divided into a training set (31,461) and validation set (3,496) at a ratio of 9:1. The basic clinicopathological features of the whole cohort and corresponding training and validation sets are shown in Table 1. In the whole cohort, most patients were younger than 60 years (46.0%), Caucasian (67.9%), and male (77.2%). In terms of the therapy for HCC, 67.3% of patients did not undergo surgery for the primary nodules, 13.2% of patients were treated by local tumour destruction, 11.8% of patients were administered liver resection, and 7.7% of patients were administered liver transplantation. Regarding tumour characteristics, most patients had tumours with a diameter smaller than 3 cm (33.3%) and were in AJCC I stage (41.9%). There was no significant difference in clinicopathological features between the training and validation sets.

Identification of Risk factors and construction of nomograms

The median follow-up time was 63 (range: 1–155) months. Of the 34,957 patients, 9840 patients survived during follow-up, 21,044 patients died from HCC, and 4073 patients died from other causes. For the training set, the respective 5-year OS, cancer-specific mortality, and other causes-specific mortality were 24.3%, 63.9%, and 11.8%, respectively. The 3- and 5-year cumulative incidence of death and CIF curves corresponding to each clinicopathological variable are shown in Table 2 and Figure 2.

Uni- and multivariate analysis were used in the training set to identify independent predictive factors associated with CSS and OS (Table 3 and 4). Multivariate analysis identified age, race, sex, surgical therapy, chemotherapy, radiotherapy, tumour diameter, and tumour stage as independent predictive factors of CSS. Additionally, marital status was an independent risk factor of OS.

Based on the independent predictive factors in multivariate analysis, a nomogram for predicting OS and competing risk nomogram for predicting CSS were constructed (Figure 3).

Predictive performance of nomogram models

The predictive performance of the nomogram models was verified via the C-index and calibration curve in the training and validation sets.

For the competing risk nomogram for CSS, the C-index of the model reached 0.805 (95%CI, 0.805–0.806) in the training set and 0.810 (95%CI, 0.807–0.813) in the validation set, respectively. The calibration plots
also displayed good agreement between the predictions of the nomogram models and observation in the probability of 3- and 5-year CSS in the training and validation sets (Figure 4 and Figure S1).

For the OS nomogram, the C-index values were 0.755 (95%CI, 0.750–0.759) in the training set and 0.750 (95%CI, 0.737–0.763) in the validation set, and calibration curves for 3- and 5-year were also well-matched with the standard lines (Figure 4 and Figure S1).

Based on the nomograms, each patient was assigned corresponding total points for CSS and OS. The median total points calculated for CSS and OS were 152 (range: 10–256) and 169 (range: 17–297) in the training set, respectively, and 151.5 (range: 14–256) and 151.5 (range: 23–295) in the validation set, respectively. Based on previously reported cut-off points (16th, 50th, and 84th of total points in the training set), patients were divided into four various risk groups. CIF and Kaplan-Meier analysis also showed that the curves of the four risk groups were widely separated in the training and validation sets (both p < 0.001), further supporting the good predictive performance of the nomogram models (Figure 5).

Discussion

Cancer-specific death and other cause-specific death are mutually exclusive endpoints in oncology research. Competing events are regarded as censoring and cancer-specific mortalities, which may be overestimated using traditional Kaplan–Meier and Cox methods\(^1\,\,^2\). Therefore, there may be deviation in the prognosis assessment of patients by clinicians, creating a substantial psychological burden to patients and affecting their lives. In the present study, we conducted a real-world study based on the SEER database to identify the independent predictive factors of CSS of patients diagnosed with HCC using the competing risk method and established a competing nomogram model for individualized prediction of CSS. We also constructed a model for predicting OS. Both models achieved excellent predictive efficiency, which can help clinicians assess the prognosis of patients more accurately.

However, we only developed nomogram models for OS and CSS and not for other cause-specific survival (OCSS). OCSS is mainly influenced by cardiovascular disease, cerebrovascular disease, and other underlying diseases\(^1\,\,^9\,\,^{10}\); however, the SEER database lacks records of underlying diseases. Therefore, construction of a model for predicting OCSS based on existing data is unreasonable because the predictive performance of the model will be poor.

The two models included nine parameters: age, race, sex, marital status, surgical therapy, chemotherapy, radiotherapy, tumour diameter, and AJCC staging. Marital status was the only difference between the two models. Previous research showed that marital status is one factor affecting prognosis\(^1\,\,^2\,\,^2\,\,^3\); this may be because a close and cohesive family increases the likelihood of adherence, and psychological and economic support from spouses may contribute to improvements in survival in married patients\(^1\,\,^4\,\,^5\). Furthermore, several studies based on the SEER database indicated that HCC patients who were married had a better prognosis\(^1\,\,^6\,\,^7\). However, our competitive risk analysis showed that marital status was
significantly associated with well OS but not CSS. Therefore, the marital status mainly associated with other cause-specific death for HCC but has little association with cancer-specific death.

By comparing the prognosis outcomes of different surgical treatments, we found that liver transplantation remains the most effective treatment. Interestingly, patients who underwent liver transplantation had comparable 5-year CSS and OCSS. In the whole cohort, 2686 patients were administered liver transplantation and 784 died during follow-up, including 393 from other causes and 391 from HCC, with 5-year CSS and OCSS of 13.4% (95%CI, 12.0–14.8%) and 10.5% (95%CI, 9.2–11.7%), respectively. Therefore, survival analysis of liver transplantation patients with HCC should consider the influence of competing events.

Although using population-based data from SEER can reduce selection or treatment biases associated with small sample sizes or single-centre data analysis, there were several limitations to this study. First, this was a retrospective study. Second, although we included a large number of multicentre queues, all patients were from the United States. Considering that there may be differences in treatments and the management of HCC among different countries, international multicentre studies are needed to estimate the predictive performance of the models. Additionally, not all previously reported factors were recorded in the SEER database, such as the aetiology of HCC and other detailed treatments. Previous studies showed that antiviral therapy improves the prognostic outcome of patients with hepatitis B or C infection30,31. Including these variables may improve the predictive power of the models.

Conclusion

Overall, in this population-based study, we developed and validated nomogram models for individualized prediction of CSS and OS in patients with HCC. These simple tools can help clinicians identify high-risk groups and guide clinical decision making. For the patients, the models will help answer consultation questions from patients and provide personalized prognosis assessments.

Abbreviations

HCC, hepatocellular carcinoma; CSS, cancer-specific survival; OS, Overall survival; AJCC, American Joint Committee on Cancer.

Declarations

Acknowledgements

Not applicable.

Author Contributions
KL, YZ, and JL designed the project. KL, QH, and ZD performed the experiments and KL contributed statistical analysis. KY, QH, and ZD wrote the manuscript. All authors reviewed the manuscript.

Funding

This study was supported by Key Clinical Specialty Discipline Construction Program of Fuzhou, Fujian, P.R.C (Grant number: 201912002) and fujian provinical medical center of hepatobiliary.

Availability of data and materials

All the data of this study were derived from the SEER database, which was available from: www.seer.cancer.gov.

Ethics approval and consent to participate

As all the data of this study were derived from the SEER database, institutional review board approval and consent to participate were not demanded.

Consent for publication

Not applicable.

Competing Interests

The authors declare no conflict of interest.

Author details

1. Department of Hepatopancreatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China

2. Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China

3. The Big Data Institute of Southeast Hepatobiliary Health Information, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China

References

1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

2. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet. 2018;391(10127):1301–14.
3. Benson AB, D’angelica MI, Abbott DE, et al. Guidelines Insights: Hepatobiliary Cancers, Version 2.2019. J Natl Compr Canc Netw. 2019;17(4):302–10.

4. Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology. 2018;67(1):358–80.

5. Carmona R, Zakeri K, Green G, et al. Improved Method to Stratify Elderly Patients With Cancer at Risk for Competing Events. J Clin Oncol. 2016;34(11):1270–7.

6. Pintilie M. Competing Risks: A Practical Perspective, 1st edn[M]. Chichester: John Wiley & Sons; 2006.

7. Zhang Z, Geskus RB, Kattan MW, et al. Nomogram for survival analysis in the presence of competing risks. Ann Transl Med. 2017;5(20):403.

8. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Stat Assoc. 1999;94(446):496–509.

9. He C, Zhang Y, Cai Z, et al. Competing risk analyses of overall survival and cancer-specific survival in patients with combined hepatocellular cholangiocarcinoma after surgery. BMC Cancer. 2019;19(1):178.

10. Wang Y, Wu J, He H, et al. Correction to: Nomogram predicting cancer-specific mortality in early-onset rectal cancer: a competing risk analysis. Int J Colorectal Dis. 2020;35(6):1167–8.

11. Wu X, Yu W, Petersen RH, et al. A competing risk nomogram predicting cause-specific mortality in patients with lung adenosquamous carcinoma. BMC Cancer. 2020;20(1):429.

12. Xu YB, Liu H, Cao QH, et al. Evaluating overall survival and competing risks of survival in patients with early-stage breast cancer using a comprehensive nomogram. Cancer Med, 2020;.

13. Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16(2):1141–54.

14. Huang XD, Zhou GQ, Lv JW, et al. Competing risk nomograms for nasopharyngeal carcinoma in the intensity-modulated radiotherapy era: A big-data, intelligence platform-based analysis. Radiother Oncol. 2018;129(2):389–95.

15. Zhou H, Zhang Y, Qiu Z, et al. Nomogram to Predict Cause-Specific Mortality in Patients With Surgically Resected Stage I Non-Small-Cell Lung Cancer: A Competing Risk Analysis. Clin Lung Cancer. 2018;19(2):e195–203.

16. Royston P, Altman DG. External validation of a Cox prognostic model: principles and methods. BMC Med Res Methodol. 2013;13:33.

17. Latouche A, Allignol A, Beyersmann J, et al. A competing risks analysis should report results on all cause-specific hazards and cumulative incidence functions. J Clin Epidemiol. 2013;66(6):648–53.

18. Wolkewitz M, Cooper BS, Bonten MJ, et al. Interpreting and comparing risks in the presence of competing events. BMJ. 2014;349:g5060.

19. Collaborators GBDCOD. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet,
20. Steel N, Ford JA, Newton JN, et al. Changes in health in the countries of the UK and 150 English Local Authority areas 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10158):1647–61.

21. Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019;394(10204):1145–58.

22. Comparative mortality of married and single persons. JAMA. 2013;310(3):326.

23. Kissane DW. Marriage is as protective as chemotherapy in cancer care. J Clin Oncol. 2013;31(31):3852–3.

24. Baine M, Sahak F, Lin C, et al. Marital status and survival in pancreatic cancer patients: a SEER based analysis. PLoS One. 2011;6(6):e21052.

25. Dimatteo MR. Social support and patient adherence to medical treatment: a meta-analysis. Health Psychol. 2004;23(2):207–18.

26. Goldzweig G, Andritsch E, Hubert A, et al. Psychological distress among male patients and male spouses: what do oncologists need to know? Ann Oncol. 2010;21(4):877–83.

27. Wu W, Fang D, Shi D, et al. Effects of marital status on survival of hepatocellular carcinoma by race/ethnicity and gender. Cancer Manag Res. 2018;10:23–32.

28. Yan B, Bai DS, Qian JJ, et al. Does marital status impact postoperative survival in patients with less differentiated hepatocellular carcinoma? A population-based study. Cancer Med. 2019;8(14):6272–9.

29. Zhang W, Wang X, Huang R, et al. Prognostic value of marital status on stage at diagnosis in hepatocellular carcinoma. Sci Rep. 2017;7:41695.

30. Cabibbo G, Celsa C, Calvaruso V, et al. Direct-acting antivirals after successful treatment of early hepatocellular carcinoma improve survival in HCV-cirrhotic patients. J Hepatol. 2019;71(2):265–73.

31. Yin J, Li N, Han Y, et al. Effect of antiviral treatment with nucleotide/nucleoside analogs on postoperative prognosis of hepatitis B virus-related hepatocellular carcinoma: a two-stage longitudinal clinical study. J Clin Oncol. 2013;31(29):3647–55.

Tables

Table1. Basic characteristics of patients with hepatocellular carcinoma.
Characteristics	Total	Training Set	Validation Set	P-value
	(n=31461)	(n=31461)	(n=3496)	
years				
	16088 (46.0%)	14490 (46.1%)	1598 (45.7%)	0.657
	6623 (18.9%)	5947 (18.9%)	676 (19.3%)	
	4409 (12.6%)	3951 (12.6%)	458 (13.1%)	
	3253 (9.3%)	2940 (9.3%)	313 (9.0%)	
	2451 (7.0%)	2204 (7.0%)	247 (7.1%)	
	1462 (4.2%)	1313 (4.2%)	149 (4.3%)	
	671 (1.9%)	616 (2.0%)	55 (1.6%)	
age				
	23741 (67.9%)	21345 (67.8%)	2396 (68.5%)	0.67
	4683 (13.4%)	4229 (13.4%)	454 (13.0%)	
	6533 (18.7%)	5887 (18.7%)	646 (18.5%)	
sex				
male	7957 (22.8%)	7166 (22.8%)	791 (22.6%)	0.856
	27000 (77.2%)	24295 (77.2%)	2705 (77.4%)	
status				
le	15932 (45.6%)	14328 (45.5%)	1604 (45.9%)	0.716
ted	19025 (54.4%)	17133 (54.5%)	1892 (54.1%)	
therapy				
surgery	23533 (67.3%)	21197 (67.4%)	2336 (66.8%)	0.127
l tumor destruction	4629 (13.2%)	4135 (13.1%)	494 (14.1%)	
ction	4109 (11.8%)	3727 (11.8%)	382 (10.9%)	
splant	2686 (7.7%)	2402 (7.6%)	284 (8.1%)	
other therapy				
notherapy	18594 (53.2%)	16703 (53.1%)	1891 (54.1%)	0.269
	16363 (46.8%)	14758 (46.9%)	1605 (45.9%)	
other				
or diameter, cm				
	11640 (33.3%)	10445 (33.2%)	1195 (34.2%)	0.639
	9081 (26.0%)	8177 (26.0%)	904 (25.9%)	
	9707 (27.8%)	8747 (27.8%)	960 (27.5%)	
	4529 (13.0%)	4092 (13.0%)	437 (12.5%)	
staging system				
	14661 (41.9%)	13162 (41.8%)	1499 (42.9%)	0.581
	8323 (23.8%)	7516 (23.9%)	807 (23.1%)	
	8115 (23.2%)	7301 (23.2%)	814 (23.3%)	
	3858 (11.0%)	3482 (11.1%)	376 (10.8%)	

Abbreviations: AJCC, American Joint Committee on Cancer.
Table 2. Overall survival rate and cumulative incidence of mortality in patients with hepatocellular carcinoma.
Characteristics	Overall survival rate(%)	P-value	Cancer-specific mortality (%)	P-value	Other causes-specific mortality (%)	P-value
	3-year (95%CI)	5-year (95%CI)	3-year (95%CI)	5-year (95%CI)	3-year (95%CI)	5-year (95%CI)
Total	33.5(33.0-34.1)	24.3(23.7-24.8)	56.7(56.1-57.3)	63.9(63.4-64.5)	9.8(9.4-10.1)	11.8(11.4-12.2)
Age, years						
≤60	36.7(35.8-37.5)	28.1(27.3-28.9)	53.7(52.9-54.6)	60.4(59.5-61.3)	9.6(9.1-10.1)	11.5(11.0-12.1)
61-65	36.9(35.6-38.3)	27.4(26.1-28.8)	53(51.7-54.4)	60.8(59.3-62.2)	10.1(9.3-10.9)	11.9(10.9-12.8)
66-70	33.7(32.2-35.4)	23.3(21.7-24.9)	57.4(55.7-59)	65.8(64.1-67.5)	8.9(7.9-9.8)	10.9(9.8-12)
71-75	30.1(28.3-31.9)	19.0(17.4-20.7)	61.7(59.8-63.5)	70.5(68.7-72.4)	8.3(7.2-9.3)	10.5(9.3-11.7)
76-80	23.9(22.1-25.9)	13.6(12.0-15.4)	65.4(63.3-67.4)	73.5(71.5-75.6)	10.8(9.4-12.1)	12.9(11.4-14.4)
81-85	17.2(15.1-19.5)	8.1(6.5-10.1)	70.2(67.7-72.8)	76.1(73.6-78.6)	12.6(10.7-14.4)	15.8(13.7-18)
>85	11.7(9.3-14.8)	5.3(3.5-8.0)	74(70.4-77.6)	78.2(74.7-81.7)	14.3(11.5-17.1)	16.5(13.3-19.6)
Race						
White	32.6(31.9-33.3)	23.5(22.9-24.2)	57.2(56.5-57.9)	64.2(63.5-64.9)	10.2(9.8-10.6)	12.3(11.8-12.8)
Back	27.8(26.4-29.2)	18.9(16.7-19.4)	60.7(59.2-62.3)	68.3(66.8-69.9)	11.5(10.5-12.5)	13.7(12.6-14.8)
Others	41.2(39.9-42.5)	31.5(30.2-32.9)	52(50.7-53.3)	59.9(58.5-61.3)	6.8(6.2-7.5)	8.6(7.8-9.4)
Sex						
Female	37(35.8-38.2)	27.5(26.4-28.8)	53.8(52.6-55)	61.2(60.6-62.5)	9.2(8.5-9.9)	11.2(10.4-12)
Male	32.5(31.9-33.2)	23.3(22.7-23.9)	57.5(56.9-58.2)	64.7(64.1-65.4)	9.9(9.5-10.3)	12(11.5-12.4)
Marital status						
Single	29.0(28.2-29.8)	19.5(18.8-20.3)	60(59.2-60.8)	67.3(66.4-68.1)	11(10.5-11.6)	13.2(12.6-13.8)
Married	37.3(36.6-38.1)	28.2(27.4-28.9)	54(53.2-54.7)	61.2(60.4-62)	8.7(8.3-9.1)	10.6(10.1-11.1)
Surgical therapy						
No surgery	19.7(19.1-20.3)	11.9(11.4-12.4)	69.8(69.1-70.5)	76.1(75.5-76.8)	10.5(10.1-10.9)	12(11.5-12.4)
Local tumor destruction	48.6(47.0-50.3)	32.6(30.9-34.3)	40.4(38.8-42)	52.4(50.6-54.1)	10.9(9.9-12)	15.1(13.8-16.3)
Resection	61.3(59.6-63.0)	47.2(45.4-49.1)	32.8(31.2-34.4)	44.3(42.5-46.1)	6(5.2-6.8)	8.5(7.5-9.6)
Transplant	83.2(81.7-84.8)	76.3(74.4-78.1)	9.2(8-10.4)	13.3(11.8-14.8)	7.6(6.5-8.7)	10.5(9.1-11.8)
Chemotherapy						
No	34.1(33.3-34.8)	25.3(24.6-26.1)	55.3(54.5-56)	61.9(61.1-62.7)	10.7(10.2-11.1)	12.8(12.2-13.3)
Yes	32.9(32.1-33.8)	23.0(22.3-23.8)	58.3(57.5-59.1)	66.3(65.4-67.1)	8.8(8.3-9.2)	10.7(10.1-11.2)
Radiotherapy						
No	34.5(34.0-35.1)	25.1(24.6-25.7)	55.5(54.9-56.1)	62.8(62.2-63.4)	10(9.6-10.3)	12.1(11.7-12.5)
Yes	20.8(19.0-22.7)	12.6(11.0-14.5)	71.8(69.9-73.8)	78.7(76.8-80.7)	7.4(6.3-8.5)	8.7(7.4-8.9)
Tumor diameter, cm						
≤3	52.5(51.5-53.5)	40.4(39.3-41.5)	36.3(35.3-37.3)	45.1(44.4-46.2)	11.2(10.6-11.9)	14.6(13.8-15.3)
	3-5	5-10	>10			
-----	-----------	-----------	-----------			
	34.8(33.7-35.9)	24.5(23.5-25.6)	62(60.8-63.1)			
	53.9(52.7-55)	72.2(71.2-73.2)	78.2(77.3-79.2)			
	11.3(10.6-12.1)	8.3(7.8-8.9)	9.5(8.8-10.1)			
	13.5(12.7-14.3)	81(79.8-82.2)	84.9(83.7-86.1)			
	19.4(18.6-20.3)	12.3(11.5-13.1)	13.5(12.7-14.3)			
	11.3(10.6-12.1)	81(79.8-82.2)	84.9(83.7-86.1)			
AJCC staging system	<0.001	<0.001	<0.001			

	35.8(34.9-36.8)	40.5(39.6-41.4)	49.5(48.6-50.5)
	72.2(71.2-73.2)	78.2(77.3-79.2)	8.3(7.8-8.9)
	81(79.8-82.2)	84.9(83.7-86.1)	5.9(5.2-6.6)
	12.3(11.5-13.1)	13.5(12.7-14.3)	6.3(5.6-7.1)

	0.8(1.5-2.6)	2.0(1.5-2.6)	90.3(89.3-91.4)
	92.1(91.2-93)	5.6(4.8-6.3)	5.9(5.1-6.7)
	41.2(40.0-42.4)	30.1(28.9-31.3)	56.7(55.5-58)
	48.1(46.9-49.3)	56.7(55.5-58)	10.8(10-11.5)
	8.3(7.6-9.1)	78.6(77.6-79.6)	83.6(82.7-84.5)
	78.6(77.6-79.6)	83.6(82.7-84.5)	7.5(6.9-8.1)
	13.9(13.1-14.8)	8.3(7.6-9.1)	7.5(6.9-8.1)
	13.9(13.1-14.8)	8.3(7.6-9.1)	7.5(6.9-8.1)
	4.1(3.4-4.9)	2.0(1.5-2.6)	90.3(89.3-91.4)
	92.1(91.2-93)	5.6(4.8-6.3)	5.9(5.1-6.7)

Abbreviations: AJCC, American Joint Committee on Cancer.

*: Overall survival rate was estimated by Kaplan-Meier method and tested by log-rank test.

#: Cancer-specific mortality and Other causes-specific mortality were estimated by cumulative incidence function and tested by Gray’s test.

Table 3. Univariate analysis for OS and CSS.
Characteristics	OS*	CSS*		
	HR (95% CI)	P-value	sdHR (95% CI)	P-value
ears			ref	ref
1.103(0.976-1.051)	0.501	0.982(0.944-1.02)	0.370	
1.102(1.057-1.149)	<0.001	1.107(1.060-1.16)	<0.001	
1.263(1.206-1.322)	<0.001	1.289(1.229-1.35)	<0.001	
1.467(1.395-1.543)	<0.001	1.382(1.311-1.46)	<0.001	
1.744(1.640-1.854)	<0.001	1.536(1.438-1.64)	<0.001	
2.142(1.967-2.333)	<0.001	1.776(1.610-1.96)	<0.001	
	ref	ref	ref	ref
1.166(1.122-1.210)	<0.001	1.126(1.081-1.173)	<0.001	
0.817(0.789-0.847)	<0.001	0.902(0.869-0.936)	<0.001	
l status			ref	ref
1.126(1.091-1.162)	<0.001	1.100(1.070-1.140)	<0.001	
d			ref	ref
0.801(0.780-0.822)	<0.001	0.859(0.835-0.883)	<0.001	
al therapy			ref	ref
surgery			ref	ref
tumor destruction	0.442(0.423-0.460)	<0.001	0.447(0.428-0.466)	<0.001
ion	0.324(0.309-0.340)	<0.001	0.375(0.357-0.393)	<0.001
lant	0.136(0.126-0.147)	<0.001	0.104(0.093-0.115)	<0.001
therapy			ref	ref
0.915(0.892-0.940)	<0.001	0.983(0.956-1.010)	0.220	
therapy			ref	ref
1.321(1.261-1.385)	<0.001	1.4(1.34-1.46)	<0.001	
diameter, cm			ref	ref
1.559(1.504-1.617)	<0.001	1.64(1.58-1.71)	<0.001	
2.541(2.455-2.631)	<0.001	2.80(2.70-2.91)	<0.001	
3.451(3.309-3.598)	<0.001	3.92(3.74-4.11)	<0.001	
staging system			ref	ref
1.146(1.106-1.187)	<0.001	1.200(1.160-1.250)	<0.001	
2.726(2.637-2.819)	<0.001	2.950(2.840-3.060)	<0.001	
4.710(4.517-4.911)	<0.001	4.870(4.640-5.100)	<0.001	

Abbreviations: AJCC, American Joint Committee on Cancer; OS, overall survival; CSS, cancer-specific survival; HR, hazard ratio; CI, confidence interval; sdHR, subdistribution hazard ratio; ref, reference.

*: based on Cox proportional hazard regression analysis.

#: based on Fine and Gray’s competing risk regression analysis.
Table 4. Multivariate analysis for OS and CSS.

| Characteristics | **OS** | | | **CSS** | | |
|-----------------|--------|--------|--------|--------|--------|
| | HR (95% CI) | P-value | sdHR (95% CI) | P-value |
| **years** | | | | |
| 5 | 1.008(0.971-1.046) | 0.684 | 0.968(0.928-1.009) | 0.130 |
| 0 | 1.105(1.060-1.153) | <0.001 | 1.084(1.034-1.137) | 0.001 |
| 5 | 1.141(1.090-1.196) | <0.001 | 1.149(1.091-1.210) | <0.001 |
| 0 | 1.251(1.189-1.317) | <0.001 | 1.129(1.062-1.199) | <0.001 |
| 5 | 1.312(1.233-1.397) | <0.001 | 1.129(1.046-1.219) | 0.002 |
| | 1.337(1.226-1.458) | <0.001 | 1.135(1.016-1.268) | 0.026 |
| **sex** | | | | |
| ref | 1.028(0.989-1.068) | 0.16 | 0.978(0.934-1.024) | 0.350 |
| ref | 0.822(0.793-0.852) | <0.001 | 0.900(0.864-0.936) | <0.001 |
| **tumor status**| | | | |
| ref | 1.108(1.073-1.145) | <0.001 | 1.041(1.003-1.081) | 0.035 |
| **surgery** | | | | |
| ref | 0.916(0.891-0.941) | <0.001 | 0.971(0.941-1.002) | 0.069 |
| **medical therapy** | | | | |
| L tumor destruction | 0.542(0.519-0.567) | <0.001 | 0.613(0.585-0.641) | <0.001 |
| resection | 0.263(0.250-0.277) | <0.001 | 0.347(0.328-0.366) | <0.001 |
| splant | 0.172(0.159-0.186) | <0.001 | 0.150(0.135-0.167) | <0.001 |
| **radiotherapy**| | | | |
| ref | 0.620(0.603-0.638) | <0.001 | 0.743(0.720-0.767) | <0.001 |
| **therapy** | | | | |
| ref | 0.758(0.722-0.795) | <0.001 | 0.850(0.808-0.893) | <0.001 |
| **diameter, cm**| | | | |
| ref | 1.443(1.390-1.497) | <0.001 | 1.441(1.383-1.502) | <0.001 |
| ref | 1.732(1.661-1.807) | <0.001 | 1.790(1.706-1.878) | <0.001 |
| ref | 2.275(2.166-2.391) | <0.001 | 2.352(2.217-2.496) | <0.001 |
| **C staging system** | | | | |
| ref | 1.329(1.281-1.379) | <0.001 | 1.378(1.324-1.434) | <0.001 |
| ref | 1.883(1.811-1.957) | <0.001 | 1.934(1.850-2.021) | <0.001 |
| ref | 2.979(2.847-3.118) | <0.001 | 2.944(2.784-3.114) | <0.001 |
Supporting Information

Figure S1. The calibration curves for predicting the 3-year CSS and OS in the training and validation sets. (A) CSS, training set; (B) CSS, validation set; (C) OS, training set; (D) OS, validation set.

CSS, cancer-specific survival; OS, overall survival.

Figures
Patients diagnosed with hepatocellular carcinoma (n=105146)

Excluded

Incomplete data (which was record as “blank” in SEER database) (n=51850)

Patients with complete data (n=53296)

1. Complied with history of other primary malignancies (n=6773)
2. Invalid follow-up (such as “Incomplete dates are available” and “Survival months was recorded as 0”) (n=6377)
3. Age < 18 (n=102)
4. With unknown classification of cause-specific death (n=614)
5. Race unknown (n=152)
6. Treatment unknown (n=96)
7. Marital status unknown (n=1729)
8. AJCC staging status unknown (n=2496)

Excluded

Patients included in the study (n=34957)

Figure 1

Flowchart for patient selection. SEER, Surveillance, Epidemiology, and End Results (SEER) program.
Figure 2

Cumulative incidence function for cancer-specific mortality and other causes-specific mortality according to patient characteristics (A) age; (B) race; (C) sex; (D) marital status; (E) surgical therapy; (F) chemotherapy; (G) radiotherapy; (H) tumor diameter; (I) AJCC staging system (Solid line: cancer-specific mortality; Dotted line: other causes-specific mortality). AJCC, American Joint Committee on Cancer.
Figure 3

Nomograms for prediction of CSS and OS in patients with HCC. (A) CSS; (B) OS. CSS, cancer-specific survival; OS, overall survival.
Figure 4

The calibration curves for predicting the 5-year CSS and OS in the training and validation sets. (A) CSS, training set; (B) CSS, validation set; (C) OS, training set; (D) OS, validation set. CSS, cancer-specific survival; OS, overall survival.
Figure 5

Cumulative incidence function for CSS of risk groups defined by the nomogram model. (A) training set; (B) validation set; Kaplan-Meier plots for OS of risk groups defined by the nomogram model. (C) training set; (B) validation set.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• Suplementaryinformation.docx