Anthropogenic iron oxide aerosols enhance atmospheric heating

Nobuhiro Moteki1, Kouji Adachi2, Sho Ohata1, Atsushi Yoshida1, Tomoo Harigaya1, Makoto Koike1 & Yutaka Kondo3

Combustion-induced carbonaceous aerosols, particularly black carbon (BC) and brown carbon (BrC), have been largely considered as the only significant anthropogenic contributors to shortwave atmospheric heating. Natural iron oxide (FeOx) has been recognized as an important contributor, but the potential contribution of anthropogenic FeOx is unknown. In this study, we quantify the abundance of FeOx over East Asia through aircraft measurements using a modified single-particle soot photometer. The majority of airborne FeOx particles in the continental outflows are of anthropogenic origin in the form of aggregated magnetite nanoparticles. The shortwave absorbing powers (P_{abs}) attributable to FeOx and to BC are calculated on the basis of their size-resolved mass concentrations and the mean $P_{\text{abs(FeOx)}}/P_{\text{abs(BC)}}$ ratio in the continental outflows is estimated to be at least 4–7%. We demonstrate that in addition to carbonaceous aerosols the aggregate of magnetite nanoparticles is a significant anthropogenic contributor to shortwave atmospheric heating.
Dark-coloured aerosols such as combustion-induced carbonaceous particles and wind-blown mineral dust absorb solar radiation and perturb the climate system by heating the atmosphere and reducing the snow albedo\(^1\). Shortwave atmospheric heating by such aerosols can alter the cloud fraction and hydrological cycle on both regional and global scales\(^2\). The global mean increase in precipitation per degree of increase in global-mean surface temperature, attributable to human-induced global warming, strongly depends on the emission of black carbon (BC), a proxy for anthropogenic shortwave absorbers\(^3\). To evaluate the effects of dark-coloured aerosols on climate using numerical models, observational datasets are needed to constrain the sources, atmospheric abundance, and detailed microphysical properties (for example, size distribution and morphology) of individual light-absorbing aerosols\(^4\). The long-term data on absorption aerosol optical depth measured by ground-based remote sensing\(^5\) have been the main observational constraints for numerical models used to evaluate the effects of absorbing aerosols on climate change\(^6,7\). Inverting the remote sensing data to the column abundance of absorbing aerosols requires a priori assumption on the optical properties of each type of aerosols that contributes to absorption aerosol optical depth\(^8\). Therefore, in situ observations of the all the important contributors to atmospheric shortwave absorption form the basis for the quantitative investigation of the complex effects of absorbing aerosols on climate.

Until now, two types of carbonaceous aerosols, BC and brown carbon (BrC), and wind-blown mineral dust (DU) have generally been considered as the only three aerosol species that contribute significantly to shortwave absorption in the atmosphere and snowpack\(^9,10,11\). BC and BrC are mostly co-emitted during the burning of fossil fuels, biofuels and biomass\(^7\). Light absorption by DU is mostly due to iron oxide nanoparticles attached on the surfaces of host mineral materials\(^12\). DU absorption dominates the atmospheric shortwave absorption over the desert and dust outflow regions\(^13\). A number of attempts have recently been made to quantify BrC absorption separately from BC absorption\(^11,14–16\). These studies suggest that BC absorption almost invariably dominates BrC absorption, except at ultraviolet wavelengths. In Beijing, an indirect estimate using ground-based remote-sensing technique\(^14\) indicated that BrC absorption is ~10% of BC absorption at the mid-visible wavelength in the winter and spring seasons. Another estimate of BrC absorption in Beijing using in situ optical and chemical measurements in March provided a similar result\(^11\). Using a global chemical transport model, Feng et al. estimated that BrC accounts for 7–19% of aerosol absorption (global average)\(^17\).

Recent observational studies using electron microscopy methods revealed that anthropogenic iron oxide particles in the form of aggregated FeO\(_x\) nanoparticles are ubiquitous in urban atmospheres\(^18–20\) and roadside environments\(^21\). They are emitted from, for example, the blast furnaces of iron manufacturing facilities\(^22\) and from the engines and brakes of motor vehicles\(^23,24\). The major iron oxide phases of aggregated FeO\(_x\) nanoparticles are magnetite (Fe\(_{3}\)O\(_4\))\(^18,20,21,23,24\), maghemite (\(\gamma\)-Fe\(_{2}\)O\(_3\))\(^21,24\) and hematite (\(\alpha\)-Fe\(_2\)O\(_3\))\(^18,21,24\). However, their abundances in the troposphere and radiative effects have not yet been evaluated.

In this study, in situ aircraft measurements using a modified single-particle soot photometer (SP2)\(^25\) and electron microscopy are performed to show that anthropogenic FeO\(_x\) particles, particularly aggregated magnetite nanoparticles, are ubiquitous in the continental outflows from East Asia. We then evaluate their contribution to atmospheric shortwave absorption on the basis of the observed size-resolved mass concentrations and particle morphologies. Our results indicate that the absorption by anthropogenic FeO\(_x\) is at least 4–7% of the BC absorption over East Asia.

Results

Observation

We used observational data from the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign\(^26\) over Yellow Sea and East China Sea in February and March, 2013. Our modified SP2 can measure individual BC and FeO\(_x\) particles in the mass-equivalent diameter (D_m) domains of 70 nm $\leq D_m \leq$ 850 nm and 170 nm $\leq D_m \leq$ 2,100 nm, respectively\(^25\). The aerosol-sampling system, which consisted of a forward-facing shrouded solid diffuser inlet, transport tubes and aerosol measuring instruments, was designed to observe submicron-sized particles. The theoretical transmission efficiency curves $\text{Tr}(D_m)$ of FeO\(_x\) particles began to drop at $D_m = \sim$ 600 nm and decreased to ~ 0.5 at $D_m = 2,100$ nm (Supplementary Fig. 1). These theoretical $\text{Tr}(D_m)$ curves suggest that our measurement system underestimates the ambient FeO\(_x\) concentrations at $D_m > \sim 600$ nm.

Characterization of anthropogenic FeO\(_x\)

In this section, we characterize the fundamental properties of airborne FeO\(_x\) particles in the East Asian continental outflows. For this purpose, we focus on the air parcel passed through the planetary boundary layer over eastern China and was directly transported to the sampling point on the flight track below 2 km altitude without experiencing wet removal of aerosols. The aircraft observation data of this air parcel is called dry PBL air\(^26\). The detailed criteria for selecting the dry PBL air according to the backward trajectory analysis is described in Kondo et al.\(^26\).

First, we classified individual Fe-bearing particles in dry PBL air depending on the composition and morphology, based on the electron-microscopy analyses of 1,460 particles collected by an onboard aerosol-impactor sampler. A transmission electron microscope (TEM) and a scanning transmission electron microscope equipped with energy-dispersive X-ray spectrometry (STEM–EDS)\(^19\) were used for these analyses. Table 1 lists the number of Fe-bearing particles for each of the three morphological types measured by the STEM–EDS analyses. The most abundant type of Fe-bearing particle was aggregated FeO\(_x\) nanoparticles; the TEM images and associated elemental mappings of these

Sample number	Flight date	Sampling time	All measured particles	Aggregate of FeO\(_x\) nanoparticles	Fe-bearing fly ash	Fe-bearing mineral dust	Number fraction of mineral dust in all Fe-bearing particles
1	4 Mar.	14:35–14:47	278	20	6	1	0.038
2	7 Mar.	11:53–12:05	344	4	4	0	0.10
3	7 Mar.	12:53–13:05	403	11	2	0	0
4	8 Mar.	11:17–11:29	435	1	9	1	0
Total			1460	36	21	2	0.035
nanoparticles are shown in Fig. 1; Supplementary Fig. 2. The diameters of the FeOx monomers comprising each aggregate were highly variable, ranging from several nm to ~100 nm. These composition and morphology of FeOx particles are similar to those found in Tokyo19 or Mexico City27. Our electron energy loss spectroscopy (EELS) analyses with TEM showed that the major component of the aggregated FeOx nanoparticles in dry PBL air is magnetite (Supplementary Fig. 3). The second most abundant type of Fe-bearing particles in dry PBL air was fly ash, which is a complex internal mixture of combustion-induced refractory materials commonly includes Si as a major component. The Fe-bearing fly ash particles in the dry PBL air typically contained only several per cent of Fe by mass. A third type of Fe-bearing particle, Fe-bearing mineral dust, was rare in the dry PBL air; the fraction of mineral dust particles among all the Fe-bearing particles was only 0.035 (Table 1). Although the mineral dust was observed to be minor in the dry PBL air, it would be the dominant type of Fe-bearing particles over the East Asia during an Aeolian dust (that is, Kosa) outflow event.

Next, we present results provided by the light-scattering signals of individual FeOx particles measured by the SP2. Figure 2 shows a scatterplot of the scattering cross-section at the onset of the incandescence \(C_{\text{S-oi}} \)\(^{28}\) and the mass-equivalent diameter \(D_m \) for both laboratory and ambient FeOx-containing particles. Figure 2 also includes experimental results for pure magnetite particles and mineral dust particles (Icelandic dust and Taklamakan dust)\(^{29}\). Compared with pure magnetite, the mineral dust samples exhibited large \(C_{\text{S-oi}} \) values beyond the detectable limit of \(\sim 4 \times 10^{-14} \text{ m}^2 \), because the host minerals internally mixed with the incandescing FeOx also contribute to the \(C_{\text{S-oi}} \) value. On the basis of these results, we introduced a criterion for classifying the mixing state of detected FeOx-containing particles in the \(D_m \) domain of 170 nm ≤ \(D_m \) ≤ 270 nm. Particles with \(C_{\text{S-oi}} > 2 \times 10^{-14} \text{ m}^2 \) were

![Image 1](https://example.com/image1)

Figure 1 | Transmission electron microscopy images and element distributions of aggregated iron oxide nanoparticles found in dry PBL air. The sample was collected using an aerosol-impactor sampler onboard the aircraft from 14:35 to 14:47 on 4 March 2013 (local time) during the A-FORCE 2013W campaign (that is, Sample number 1 in Table 1). The particles magnified in a and b were collected on the same substrate with an inter-particle distance of ~4 μm, as shown in c. The elemental distributions of Fe and O for particles a and b are shown in d and e, respectively, and indicate that these particles contain iron oxide.

![Image 2](https://example.com/image2)

Figure 2 | Single-particle soot photometer data indicating the mixing state of individual iron oxide-containing particles. The figure shows scatterplots of scattering cross-section at the onset of incandescence \(C_{\text{S-oi}} \) and mass-equivalent diameter \(D_m \) for laboratory samples (magnetite, Icelandic dust and Taklamakan dust) and FeOx-containing particles in dry PBL air. For dry PBL data, the solid red line and two dashed red lines represent median and (10 and 90) percentile \(C_{\text{S-oi}} \) values as functions of \(D_m \), respectively. The \(D_m \) domain used for classifying the mixing state of FeOx-containing particles is schematically shown. In this study, ambient FeOx-containing particles with 170 nm ≤ \(D_m \) ≤ 270 nm are classified as dust-like FeOx if \(C_{\text{S-oi}} > 2 \times 10^{-14} \text{ m}^2 \). The detectable upper limit of \(C_{\text{S-oi}} \) is \(\sim 4 \times 10^{-14} \text{ m}^2 \).
classified as dust-like. Figure 2 shows that a majority of the FeO\textsubscript{x}-containing particles in the dry PBL air were similar to the pure magnetite particles in terms of their C\textsubscript{C/\alpha} value, whereas a minority had substantially larger C\textsubscript{C/\alpha} values. In the dry PBL air, the fraction of dust-like FeO\textsubscript{x} particles among the detected FeO\textsubscript{x}-containing particles was ~0.1, as discussed later.

In addition to the direct microscopic observations using the TEM–EELS, the optical signals measured using the SP2 also provided indirect information on the material properties of the airborne FeO\textsubscript{x}. The timing of the onset of incandescence (t\textsubscript{on}) of FeO\textsubscript{x}-containing particles has been experimentally shown to be a qualitative indicator of colour darkness (that is, light-absorbing efficiency) in FeO\textsubscript{x} materials25. The distribution of the t\textsubscript{on} values of the FeO\textsubscript{x}-containing particles in dry PBL air was similar to that for black-coloured magnetite but dissimilar to that of red-coloured hematite (see the Methods section and Supplementary Fig. 3). This implies that the major component of incandescent FeO\textsubscript{x} particles in dry PBL air is magnetite, which is consistent with the TEM–EELS results (Supplementary Fig. 3).

We found that the FeO\textsubscript{x} number concentration in the dry PBL air was highly correlated with the CO mixing ratio (r2 = 0.87) and BC number concentration (r2 = 0.69; Fig. 3a,b, respectively). These results suggest that the spatial distribution of the FeO\textsubscript{x} emission flux over the East Asian continent is similar to those of CO and BC. On the other hand, the FeO\textsubscript{x}/BC number concentration ratio in the dry PBL air-correlated neither with the relative abundance of the supermicron-sized aerosols (Fig. 3c) nor the number fraction of the dust-like FeO\textsubscript{x}-containing particles (Fig. 3d). The scatterplots imply that the majority of the detected FeO\textsubscript{x} particles in the dry PBL air are not associated with DU, which is consistent with the results of the direct STEM–EDS analyses of the aerosol-impactor samples (Table 1).

The two most important conclusions drawn from these observations are as follows. First, the FeO\textsubscript{x} particles detected using the modified SP2, with the exception of the dust-like FeO\textsubscript{x}, are primarily aggregated magnetite nanoparticles of anthropogenic origin. Second, the anthropogenic magnetite is a major type of Fe-bearing aerosol in East Asian continental outflow.

Altitude profiles. Figure 4 shows the size-resolved number and mass concentrations of FeO\textsubscript{x} at each altitude along with those in the dry PBL air. Within the observed size domain of 170 nm ≤ D\textsubscript{m} ≤ 2,100 nm, the size-resolved number concentration of FeO\textsubscript{x} was approximated using a power function with an offset

\[
\left(\frac{dN}{d\log D_m} \right)_{\text{FeO}_x} = y_0 + a D_m^{-p},
\]

where y\textsubscript{0}, a and p are numerical parameters listed in Table 2. The size-resolved mass concentration of FeO\textsubscript{x} was approximated as

\[
\left(\frac{dM}{d\log D_m} \right)_{\text{FeO}_x} = \frac{\pi}{6} \rho_{\text{FeO}_x} D_m^3 \left(\frac{dN}{d\log D_m} \right)_{\text{FeO}_x},
\]

where \rho_{\text{FeO}_x} is the assumed bulk density of FeO\textsubscript{x} (5.17 g cm-3).
In contrast, the size-resolved mass concentration of BC within the observed size domain of 70 nm ≤ \(D_m \) ≤ 850 nm (see Figs 6 and 14 of Kondo et al.26) was approximated with a two-modal lognormal function as

\[
\left(\frac{dM}{d\log D_m} \right)_{BC} = \sum_{i=0}^{1} A_i \exp \left(-\frac{\log^2(D_m/D_i)}{2\sigma^2_{fi}} \right),
\]

where \(A_i, D_i \) and \(\sigma_{fi} \) (\(i = 0,1 \)) are numerical parameters listed in Table 2. Figure 4 shows that the mode \(D_m \) values of the number size distribution were smaller than 170 nm, whereas the mode \(D_m \) values of the mass size distribution may have been larger than 2,100 nm, that is, the detectable \(D_m \) domain of 170 nm ≤ \(D_m \) ≤ 2,100 nm was insufficient to reveal the entire shape of the size-distribution function of ambient \(\text{FeO}_x \). As mentioned earlier, our aerosol-sampling system likely underestimated the ambient \(\text{FeO}_x \) concentrations for \(D_m > \sim 600 \) nm. In contrast, our BC measurements in the domain of 70 nm ≤ \(D_m \) ≤ 850 nm were likely sufficient to determine the total BC mass concentrations, as expected from the Figure 6 and 14 of Kondo et al.26 and the parameters listed in Table 2.

The BC size distributions tended to shift towards smaller sizes at higher altitudes26 (see parameter \(D_0 \) in Table 2). This trend has been explained by the preferential wet removal of larger BC particles during vertical transport26,29. In contrast, the \(\text{FeO}_x \) size distributions shifted towards larger sizes with increasing altitude (Fig. 4). The decrease of the parameter \(p \) with altitude reflects this trend (Table 2). As shown later, the number fraction of dust-like \(\text{FeO}_x \) was observed to increase with altitude. We hypothesize that the mineral dust particles lifted from the deserts in central China and transported by the westerlies cause the larger shift of the \(\text{FeO}_x \) size distributions over the Yellow Sea and East China Sea.

Figure 5a,b show the vertical profiles of the \(\text{FeO}_x \) concentrations and the \(\text{FeO}_x/\text{BC} \) concentration ratios, respectively. The

Figure 4 | Size-resolved number and mass concentrations of iron oxide particles. Results in dry PBL air and at different altitudes are shown in a and b-f, respectively. Filled circle and error bar represent the sample mean and the sample s.d. (±1σ) of the 1-min data, respectively. The number of 1-min data points (n) is shown in each panel. Dashed lines show the results of least-square fitting of equation (1).
The mean FeOx mass concentration was 100–400 ng m\(^{-3}\) at standard temperature and pressure (STP) in the boundary layer (altitude \(2 \text{ km}\)), and monotonically decreased with altitude to 30–90 ng m\(^{-3}\) STP in the free troposphere (altitude \(4 \text{ km}\)). The mean FeOx/BC number concentration ratio was 0.004 in the boundary layer and decreased to 0.002 in the free troposphere. The mean FeOx/BC mass concentration ratio was 0.3–0.5 in all altitudes below 6 km, and increased to \(\sim 0.8\) at higher altitudes (6–8 km). The observed FeOx/BC number (mass) ratio would be substantially larger if we were able to detect smaller (larger) FeOx particles with \(D_m < 170 \text{ nm}\) (\(D_m > 2,100 \text{ nm}\)). The number fraction of dust-like FeOx showed a monotonic increase with altitude from \(\sim 0.07\) at \(0–1 \text{ km}\) to \(\sim 0.5\) at 6–8 km (Fig. 5c). In an aerosol-impactor sample collected during a time period of the highest FeOx number concentration observed at 6–8 km altitude (\(\sim 0.4 \text{ cm}^{-3}\) STP), we actually found mineral dust particles including Fe (Supplementary Fig. 5). However, in the free tropospheric samples, the number of Fe-bearing particles collected on each TEM grid was too low to evaluate the relative abundance of each of the three morphological types listed in Table 1.

Mass-absorption cross-sections. An original discrete-dipole approximation code was used to calculate the mass-absorption cross-sections of the BC- and FeOx-containing particles.
by assuming the particle shape, mixing state and refractive index of each material. Before discussing the results, we briefly explain the nontrivial assumptions used. For both BC and FeOx, the particle shape was assumed to be a fractal-like aggregate of spherical monomers. The mixing state of the aggregate with other non-absorbing materials was assumed to be either bare or coated: the bare state denotes a pure aggregate, whereas the coated state denotes an aggregate coated by a large amount of non-absorbing material. In the coated state, the volume of the coating material was prescribed such that the theoretical log($C_{\text{bc}}/C_{\text{co}}$) value of the model BC-containing particles was greater than the measured log($C_{\text{bc}}/C_{\text{co}}$) values of the real BC-containing particles, where the C_{bc} denotes the scattering cross-section of a BC-containing particle in the SP2 laser beam before the onset of evaporation [see the Methods section]. The mean + 1σ value of the observed log($C_{\text{bc}}/C_{\text{co}}$) value for BC-containing particles with $D_m \sim 200$ nm was ~ 0.9 at all altitudes below 8 km (Fig. 5d). On the basis of this observation, the coating/aggregate volume ratio in the coated state was chosen to be approximately 3–4 so that the theoretical value of log($C_{\text{bc}}/C_{\text{co}}$) for the coated BC was ~ 1.0 at $D_m \sim 200$ nm (Supplementary Fig. 6).

The mass-absorption cross-sections (σ_a) calculated for the BC- and FeOx-containing particles as functions of wavelength (λ) and mass-equivalent diameter D_m are shown in Fig. 6. In general, the σ_a value at a particular (λ, D_m) is approximately three times larger for BC than for FeOx, primarily because the assumed bulk density of FeOx (5.17 g cm$^{-3}$) was 2.87 times greater than that of BC (1.8 g cm$^{-3}$). Compared with the bare state, σ_a was enhanced by a factor of approximately two in the coated state because of the so-called lensing effects [30]. The $\sigma_a(\lambda, D_m)$ of FeOx did not change appreciably with λ in the D_m domain largely contributing the total ambient FeOx mass concentration. Thus, we expect that the atmospheric absorption coefficient (b_{abs}) attributable to anthropogenic FeOx depends little on the wavelength. In contrast, the b_{abs} attributable to carbonaceous aerosols (BC + BrC) is known to decrease sharply with wavelength [14, 15, 31]. This large difference in the wavelength dependence of b_{abs} between anthropogenic FeOx and carbonaceous aerosols will be useful to classify them in remote sensing observations.

Shortwave atmospheric heating. Here we quantify the instantaneous shortwave atmospheric heating attributable to FeOx and BC using their observed size-resolved mass concentrations and theoretical mass-absorption cross-sections. The contribution to shortwave atmospheric heating from particles of a particular size is quantified by the size-resolved absorbing power $dP_{\text{abs}}/d\log D_m$ (W m$^{-3}$), which is defined as

\[
\frac{dP_{\text{abs}}}{d\log D_m} = \int_{2500 \text{nm}}^{2500 \text{nm}} F_{\text{sec}}(\lambda) \sigma_a(\lambda, D_m) \left(\frac{dM}{d\log D_m} \right) d\lambda,
\]

where $F_{\text{sec}}(\lambda)$ is the spectral actinic flux (W m$^{-2}$ nm$^{-1}$), $\sigma_a(\lambda, D_m)$ is the mass-absorption cross-section (m2 g$^{-1}$) and $dM/d\log D_m$ (g m$^{-3}$) is given by equations (2) or (3). The value of $F_{\text{sec}}(\lambda)$ for each altitude was computed using a radiative transfer model assuming a clear sky and a daytime-mean solar zenith
Figure 7 | Size-resolved shortwave absorbing powers $dP_{abs}/d\log D_m$ of black carbon and iron oxide. The $dP_{abs}/d\log D_m$ values (thin lines) were calculated for two distinct atmospheric conditions: (a) dry PBL air (~1 km altitude) and (b) the highest altitude (6–8 km). Solid and dashed lines represent the mean $dP_{abs}/d\log D_m$ values for bare and coated particles, respectively. Error bars represent the variability in the $dP_{abs}/d\log D_m$ values estimated from the ±1σ value of the 1-min data of $dM/d\log D_m$. In each panel, the transmission efficiency curves $Tr(D_m)$ of the aerosol-sampling system calculated for BC and FeOx are also shown (thick lines).

Figure 8 | Altitude profiles of the shortwave absorbing powers P_{abs} attributable to black carbon and iron oxide. (a) The $P_{abs}(BC)$ and $P_{abs}(FeOx)$, whereas b shows mean $P_{abs}(FeOx)/P_{abs}(BC)$ ratio. Filled and open circles (triangles) represent the mean values in each altitude range (dry PBL air) for the bare and coated particles, respectively. In a, error bars represent the variability in P_{abs} estimated from the ±1σ value of the 1-min mass concentration data.

The total shortwave absorbing power P_{abs} (W m$^{-2}$) was computed by integrating equation (4) over D_{m}:

$$P_{abs} = \int_{D_{m\text{min}}}^{D_{m\text{max}}} \left(\frac{dP_{abs}}{d\log D_m} \right) dD_m,$$

where $D_{m\text{min}}$ and $D_{m\text{max}}$ denote the lower and upper limits of the detectable D_m domain, respectively. Figure 8a shows the altitude profiles of $P_{abs}(BC)$ and $P_{abs}(FeOx)$. For both BC and FeOx, P_{abs} values decreased monotonically with altitude, following their mass concentration profiles. For the dry PBL air, the mean $P_{abs}(BC)$ and $P_{abs}(FeOx)$ values in the bare (coated) state were 4.0 (10.0) and 0.24 (0.44) mW m$^{-2}$, respectively. These P_{abs} values are equivalent to atmospheric heating rates of 0.29 (0.72) and 0.017 (0.032) K per day, respectively. Figure 8b shows the altitude profiles of the mean $P_{abs}(FeOx)/P_{abs}(BC)$ ratio. In the boundary layer wherein anthropogenic FeOx dominated the detected FeOx particles (Fig. 5c), the mean $P_{abs}(FeOx)/P_{abs}(BC)$ ratio was estimated to be 0.04–0.07. The altitude dependence of $P_{abs}(FeOx)/P_{abs}(BC)$ was similar to that of the FeOx/BC mass concentration ratio (Fig. 5b). In the highest altitude (6–8 km), wherein the dust-like FeOx particles contributed 50% of the detected FeOx particles (Fig. 5c), the P_{abs} attributable to anthropogenic FeOx may be ~50% of the calculated P_{abs} value.

It should be noted that the $P_{abs}(FeOx)/P_{abs}(BC)$ ratios reported herein are lower than the real values because our measurements underestimated the ambient FeOx mass concentration in the D_m domain of ~600 nm ≤ D_m ≤ 2,100 nm and totally ignored
the FeOx particles outside the detectable \(D_m \) domain. Considering these facts, the real \(P_{abs}(FeOx)/P_{abs}(BC) \) ratios in the boundary layer would be as large as 0.1.

Discussion

On the basis of the previous observations of BrC near Beijing in March 2013 (refs 11,14), we roughly estimate the typical \(P_{abs}(BrC)/P_{abs}(BrC) \) value in the boundary layer to be \(\sim 0.1 \). Thus, we expect that \(P_{abs}(FeOx) \) is as large as \(P_{abs}(BrC) \) in the East Asian continental outflows. In future studies, it is highly desirable to use an aerosol-sampling system with a higher transmission efficiency of large FeOx particles. In addition, some technical improvements in the SP2 are necessary to perform FeOx measurements beyond the current detectable \(D_m \) domain (170 nm \(\leq D_m \leq 2,100 \) nm). Despite the room for such improvements, an essential conclusion can be drawn from our results, namely, in addition to BC and BrC, airborne FeOx in the form of aggregated magnetite nanoparticles should also be recognized as a significant anthropogenic contributor to shortwave atmospheric heating.

In addition to clear-sky shortwave absorption, we briefly discuss some other potential climatic effects of anthropogenic FeOx particles. Low stratiform clouds are of frequent climatological occurrences over the mid- to high-latitude ocean and southeast China32. Under modest maximum supersaturation in such clouds, particle’s mass fraction activated to cloud droplets will be substantially larger for FeOx than BC, because the critical supersaturations of FeOx-containing aerosols will be lower than those of BC due to the larger \(D_m \). Under these situations, \(P_{abs}(FeOx)/P_{abs}(BC) \) is enhanced because the lensing effect in droplets is larger for FeOx than for BC. We expect that the number of co-emitted cloud condensation nuclei and their precursor gases in anthropogenic FeOx-rich sources, which remain uncertain, are substantially different from those in anthropogenic BC- and BrC-rich sources such as residential coal, industrial coal and biomass fuels7. Thus, without comprehensive investigations, it is not clear whether the net positive climate forcing of anthropogenic FeOx-rich sources is negligible or comparable with those of BC- and BrC-rich sources. Finally, it should be mentioned that the anthropogenic FeOx particles may also play a role in the biogeochemical cycles34.

Methods

Modified single-particle soot photometer. A modified single-particle soot photometer (SP2), which detects light-absorbing refractory aerosols on the basis of intra-cavity laser-induced incandescence, was used to measure BC and iron oxide FeOx particles25. The BC and FeOx are discriminated from each other on the basis of the colour ratio, which is an indicator of the boiling temperature25, and the peak amplitude of the blue-band incandescence signal, which is an indicator of an incandescing particle’s size25. Supplementary Figure 7 shows a scatterplot of the peak amplitudes and colour ratios of all incandescing particles detected during the A-FORCE 2013 W campaign. The boundary lines for discriminating FeOx from BC were determined on the basis of experimental results25 and are also shown in Supplementary Fig. 7. The masses \(m \) of the individual FeOx and BC particles were determined from the peak heights of the incandescence signals using the experimentally determined mass-to-peak height relationships25. The mass-equivalent diameters \(D_{eq} \) for BC and FeOx were calculated from the observed masses \(m \) assuming the void-free densities of 1.89 cm\(^{-3}\) and 5.17 \(\text{cm}^3 \) (density of magnetite), respectively. In this study, the detectable size domains of the BC and FeOx particles were 70 nm \(\leq D_{eq} \leq 850 \) nm and 170 nm \(\leq D_{eq} \leq 2,100 \) nm, respectively.

The detailed morphological properties of the individual particles containing a particular mass of each incandescing material were evaluated on the basis of time-resolved scattering cross-sections \(C_s \) (integrated over the solid angle of light collection) in a laser beam derived from the scattering signal35-37. We evaluated whether the incandescing material (BC or FeOx) was attached to another particle on the basis of the magnitude of \(C_s \) at the onset of the incandescence signal \((C_{s-o}) \). In our observations, the fraction of the attached-type BC-containing particles with \(D_{eq} = 200 \) nm was \(\sim 3\% \) at all altitudes below 8 km. Thus, we assumed the \(C_{s-o} \) of BC-containing particles to be equivalent to the \(C_s \) of BC core. For BC-containing particles, the ratio of \(C_{s-o} \) before the onset of particle evaporation \((C_{s-o}) \) to \(C_s \) is used as an indicator of the amount of non-refractory material (for example, sulfate) coating the BC28.

The timing of the onset of the incandescence signal \(t_{cen} \) is an indicator of the heating rate of an absorbing particle in the laser beam of the SP2; \(t_{cen} \) tends to be lower (earlier) for more efficient light absorbers. Our experiments32 showed that the \(t_{cen} \) of magnetite \((FeOx) \) particles was markedly earlier than that of hematite \((Fe_2O_3) \), reflecting the greater incandescence rate of magnetite. It should be noted that comparisons of \(t_{cen} \) values derived from the laboratory experiments and field data are meaningful only under similar SP2 conditions (that is, the same laser power and width of the Gaussian beam) because the \(t_{cen} \) of a particular composition depends on these parameters. Supplementary Figure 4 shows the \(t_{cen} \) distributions for the ambient BC and FeOx particles in dry PBL air. The SP2 laser power during the A-FORCE 2013W campaign was similar to that in our laboratory experiments32, as expected from the comparison of \(t_{cen} \) at \(2.5 \mu m \) for BC between ambient data \((\sim 55 < t_{cen} < 60) \) and our laboratory results \((\sim 50 < t_{cen} < 55) \); refer to Fig. 2c of Yoshida et al.32. The \(t_{cen} \) distributions of the FeOx particles for two different size ranges \((100 < D_{eq} < 400) \) and \(m > 530 \text{ fg} \) and \(m < 100 \text{ fg} \) respectively, indicating that the primary FeOx material does not change appreciably with FeOx particle mass (Supplementary Fig. 4). Our experiment illustrated that the incandescence probability of pure hematite particles was zero for \(m < 100 \text{ fg} \) because the absorption efficiency of hematite particles in this size range is insufficient to heat the particles to the incandescing temperature25. Thus, the incandescing FeOx particles in dry PBL air had greater absorption efficiency than hematite. The \(t_{cen} \) of FeOx at \(0.2 \mu m \) distributions of FeOx with \(10 \text{ fg} \leq m < 58 \text{ fg} \) and \(m > 530 \text{ fg} \) largely overlapped with the \(t_{cen} \) distributions of pure magnetite with \(m < 100 \text{ fg} \) \((40 < t_{cen} < 50)32 \) and \(m > 530 \text{ fg} \) \((20 < t_{cen} < 35)32 \) respectively. On the basis of the SP2 results and the EELS spectra shown in Supplementary Fig. 3, the major constituent of the detected FeOx particles in dry PBL air is likely magnetite \((Fe_3O_4)\).

Electron microscopy analysis. An aerosol impactor-sampler19 onboard the aircraft was used to collect aerosol samples on the Cu TEM grids with collodion substrate at 12-min intervals during each flight. A 120-kV transmission electron microscope (IEM-1400, JEOL) equipped with an energy-dispersive X-ray spectrometer (Oxford Instruments) was used for the STEM-EDS analysis. A 200-kV transmission electron microscope (ARM 200, JEOL) was used for the EELS analysis.

Transmission efficiency of aerosols. Special care is required to measure the number concentrations of supermicron-sized aerosols in ambient air as the transmission efficiency \((T_i) \) through the entire tubing apparatus connecting the aerosol inlet to the particle detection volume unavoidably decreased because of the inertial and gravitational depositions. Since a substantially large fraction of the total FeOx mass was expected to be in the supermicron size range (Fig. 4), our conclusion is strongly dependent on the degree of sampling loss of large FeOx particles. According to the theoretical formulæ compiled by Pramod et al.39, we estimated the TR\((D_{eq})\) curves of the BC and FeOx particles through our aerosol-sampling system. In our A-FORCE 2013W aircraft campaign, the sample air was aspirated through a forward-facing shrouded inlet (DNT Inc., Boulder, CO, USA) installed on the top of the aircraft fuselage. This aerosol inlet is a replica of ‘University of Hawaii shrouded solid diffuser inlet’ described and evaluated by McNaughton et al.39. An isokinetic aspiration was performed to maintain the aspiration efficiency at 1.0, independent of the particle size. The geometric specifications and flow rates of the tubing apparatus comprising the sampling system are listed in Supplementary Table 1. The void-free densities of BC and FeOx were assumed to be 1.8 and 5.17 g cm\(^{-3}\) respectively. The dynamic shape factors of the BC and FeOx particles were assumed to be 1.5. Our experiment using pure magnetite nanoparticles confirmed the reasonable agreement between the measured and theoretical TR\((D_{eq})\) curves for a \(4 \) inch tube (length = 0-3 m) assuming the same density and dynamic shape factor.

Computing the fractal-like aggregates of spheres. On the basis of the TEM observations of ambient BC- and FeOx-particles, we assumed the shapes of the individual FeOx particles to be fractal-like aggregates of spheres. The aggregate geometry was computed using an original tunable cluster–cluster aggregation (CCA) code called aggregate.gem, which is an efficient C++ implementation of the hierarchical CCA algorithm40. We assumed the fractal prefactor and fractal dimension to be \(k_f = 1.0 \) and \(D_f = 2.8 \), respectively. The monomer diameters of BC and FeOx were assumed to be 40 and 80 nm, respectively. The number of monomers \(N_{mon} \) in the aggregates ranged from 8 to 16384. This range of \(N_{mon} \) covers the observed \(D_{eq} \) domain for both BC and FeOx.

Electromagnetic scattering calculations. The mass-absorption cross-sections for BC and FeOx as functions of both wavelength \(\lambda \) and mass-equivalent diameter \(D_{eq} \) were computed using an original electromagnetic scattering solver called block-DDA, which utilizes the block Krylov subspace methods41,42 to efficiently solve the mass-dipole equation (MDE)43 for supermicron-sized particles, or, equivalently, for multiple target orientations. For every \((\lambda, D_{eq}) \) combination, we used the mean value of the results from four different randomly chosen target pixels.
orientations. When applying block-DDA to the scattering problems for fractal-like aggregates of BC or FeOx monomers, the monomer dipole formulation was assumed to avoid the discretization shape error in each monomer. The coupled electric and magnetic dipoles formulation was used to mitigate the multipole-truncation error associated with the monomer-dipole assumption. To apply efficient fast Fourier transform-based algorithms in DDA, we adjusted the center position of each monomer dipole to the nearest site of the computational cubic lattice. In this study, the lattice spacing of the CL was set to one-half of the monomer diameter. The geometry of the coating material surrounding a fractal-like aggregate of spheres was computed by the following procedure. First, the CL sites in the proximity of each monomer (at a distance of less than T monomer radii) were selected as candidates for coating volume elements, where the coating thickness was controlled by the parameter T. In this study, T was selected to be 3. Next, the CL sites overlapping with monomer volume, if present, were removed from the candidates. Finally, the coating volume was assigned to each candidate.

We used the complex refractive indices of BC and FeOx listed in Supplementary Table S. Ackerman and Toon also used this refractive index data set to estimate the radiative effects of atmospheric aerosols containing BC and magnetite. The refractive index of the coating material was assumed to 1.5 + 0.0 i, independent of the wavelength.

Radiative transfer calculations. The spectral actinic fluxes \(F_{\lambda} (\lambda) \) under the A-FORCE 2013W condition were calculated using the radiative transfer software package libRadtran 1.6 beta 25. At each altitude, the absorption coefficients \(\beta_{\lambda} (\lambda) \) of the BC and FeOx particles were calculated on the basis of observational \(D_{\lambda} / \text{d} \log D_{\lambda} \) data and theoretical \(\sigma_{\lambda} (\lambda) D_{\lambda} \) values. The extinction coefficients \(\beta_{\lambda} (\lambda) \) were evaluated as \(\beta_{\lambda} (\lambda) (1 - \omega) \), where the single-scattering albedo \(\omega \) was assumed to be 0.85, independent of \(\lambda \). The Henyey-Greenstein function with asymmetry parameter 0.7 was used for the scattering phase function. Shortwave absorption by gases (for example, water vapour and ozone) was calculated using the LOWTRAN/SBDART parameterization assuming the default atmospheric profiles (US-standard atmosphere). Effective solar zenith angle averaged over the daylight hours (local noon ± 6 h) was assumed for the actinic flux calculation. All the input parameters used in the radiative transfer calculations are listed in Supplementary Table 3.

Cloud and aerosol spectrometer probe. A cloud and aerosol spectrometer probe (CAS; Droplet Measurement Technologies, Inc.) installed under a major wing of the aircraft was used for measuring size-resolved number concentration of total aerosol in the light-scattering diameter (\(D_{\lambda} \)) domain of 0.5 \(\mu \text{m} \leq D_{\lambda} \leq 50 \mu \text{m} \). The CAS instrument used herein was also described in Koike et al. 31.

Code availability. The aggregate_gen code for computing the fractal-like aggregates of spheres and the block-DDA code for electromagnetic scattering were developed by the corresponding author (N.M.) and are available in the GitHub repository at: https://github.com/moteki.

Data availability. FeOx data shown in Fig. 4 is available at NOAA National Center for Environmental Information (NCEI) Reference ID: YKJKWD. The other observational data and calculation results are available from N. Moteki.

References
1. Stier, P., Seinfeld, J. H. & Kinne, S. Aerosol absorption and radiative forcing. Atmos. Chem. Phys. 7, 5257–5261 (2007).
2. Qian, Y. et al. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 32, 64–91 (2015).
3. Ackerman, A. S., Toon, O. B. & Stevens, D. E. Reduction of tropical cloudiness as a result of absorbing aerosols: a global model study and evaluation with AERONET measurements. J. Geophys. Res. 116, D06204 (2011).
4. Holben, B. N. et al. Light-absorbing particles in snow and ice: Measurement and its implications. J. Geophys. Res. 108, 8441–8457 (2003).
5. Ackerman, A. S., Toon, O. B. & Stevens, D. E. Reduction of tropical cloudiness as a result of absorbing aerosols: a global model study and evaluation with AERONET measurements. J. Geophys. Res. 116, D06204 (2011).
6. Pendergrass, A. G. & Hartmann, D. L. Global-mean precipitation and black carbon aerosols. Atmos. Chem. Phys. 15, 12159–12177 (2015).
7. Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L. & Zhou, Q. Q. What is the real role of iron oxides in the optical properties of dust aerosols? Atmos. Chem. Phys. 15, 12433–1443 (2015).
8. Feng, Y., Ramanathan, V. & Kotamarthi, V. R. Brown carbon: a significant atmospheric absorber of solar radiation? Atmos. Chem. Phys. 13, 8607–8621 (2013).
9. Hu, Y. et al. Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere. Sci. Total Environ. 511, 369–380 (2015).
10. Adachi, K., Moteki, N., Kondo, Y. & Igarashi, Y. Mixing states of light-absorbing particles measured using a transmission electron microscope and a single-particle soot photometer in Tokyo, Japan. J. Geophys. Res. Atmos. 121, 19313–19324 (2016).
11. Maher, B. et al. Magnetite pollution nanoparticles in the human brain. Proc. Natl Acad. Sci. USA 113, 10797–10801 (2016).
12. Sanderson, P. et al. Characterisation of iron-rich atmospheric submicrometer particles in the roadside environment. Atmos. Environ. 140, 167–175 (2017).
13. Machemer, S. Characterization of airborne and bulk particulate from iron and steel manufacturing facilities. Environ. Sci. Technol. 38, 381–389 (2004).
14. Li, S., Pandurangi, S. S., Bouchoucos, K., Schreiber, D. & Yader, A. R. D. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmos. Environ. 101, 34–40 (2015).
15. Kukutschova, J. et al. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes. Environ. Pollut. 159, 998–1006 (2010).
16. Yoshida, A. et al. Detection of light-absorbing iron oxide particles using a modified single-particle soot photometer. Aerosol Sci. Technol. 50, 1–4 (2016).
17. Kondo, Y. et al. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia. J. Geophys. Res. Atmos. 112, 4691–4712 (2016).
18. Tothi, K. & Buseck, P. R. Hosted and free-floating metal-bearing atmospheric nanoparticles in Mexico City. Environ. Sci. Technol. 44, 2299–2304 (2010).
19. Moteki, N., Kondo, Y. & Adachi, K. Identification by single-particle soot photometer of black carbon particles attached to other particles: Laboratory experiments and ground observations in Tokyo. J. Geophys. Res. Atmos. 119, 1031–1043 (2014).
20. Moteki, N. et al. Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere. Geophys. Res. Lett. 39, L13802 (2012).
21. Fuller, K. A., Malm, W. C. & Kreidenweis, S. M. Effects of mixing on extinction by carbonaceous particles. J. Geophys. Res. Atmos. 104, 15941–15949 (1999).
22. Kirchstetter, T. W. & Thatcher, T. L. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmos. Chem. Phys. 12, 6067–6072 (2012).
23. Klein, S. A. & Hartmann, D. L. The seasonal cycle of low stratiform clouds. J. Clim. 6, 1587–1606 (1993).
24. Chýlek, P. et al. Black carbon and absorption of solar radiation by clouds. J. Geophys. Res. 101, 23365–23371 (1996).
25. Dall’Osto, M., Beddows, D. C. S., Harrison, R. M. & Onat, B. Fine iron aerosols are internally mixed with nitrates in the urban European atmosphere. Environ. Sci. Technol. 50, 4212–4220 (2016).
26. Gao, R. S. et al. A novel method for estimating light-scattering properties of soot aerosols using a modified single-particle soot photometer. Aerosol Sci. Technol. 41, 125–135 (2007).
27. Moteki, N. & Kondo, Y. Method to measure time-dependent scattering cross sections of particles evaporating in a laser beam. J. Aerosol Sci. 39, 358–364 (2008).
28. Lobarte, M. et al. Sensitivity of the single particle soot photometer to different black carbon types. Atmos. Meas. Tech. 5, 1031–1043 (2012).
29. Prasad, K., Baron, P. A. & Willeke, K. Eds. Aerosol Measurement: Principles, Techniques, and Applications 88–95 (John Wiley & Sons, 2011).
30. McNaughton, C. S. et al. Results from the DC-8 Inlet characterization experiment (DICE): Airborne versus surface sampling of mineral dust and sea salt aerosols. Aerosol Sci. Technol. 41, 136–159 (2007).
40. Filippov, A. V., Zurita, M. & Rosner, D. E. Fractal-like aggregates: relation between morphology and physical properties. J. Colloid. Interf. Sci. 229, 261–273 (2000).
41. Guennouni, E. A., Jbilou, K. & Sadok, H. A block version of BiCGSTAB for linear systems with multiple right-hand sides. Electron. Transac. Numer. Anal. 16, 129–142 (2003).
42. Tadano, H., Sakurai, T. & Kuramashi, Y. Block BiCGGR: A new block Krylov subspace method for computing high accuracy solutions. JSIAM Lett. 1, 44–77 (2009).
43. Gu, X.-M., Carpentieri, B., Huang, T.-Z. & Meng, J. Block variants of the COCG and COCR methods for solving complex symmetric linear systems with multiple right-hand sides. Preprint at arXiv:1601.05362 (2016).
44. Draine, B. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848–872 (1988).
45. Yurkin, M. & Hoeckstra, A. G. The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transf. 106, 558–589 (2007).
46. Moteki, N. Discrete dipole approximation for black carbon-containing aerosols in arbitrary mixing state: A hybrid discretization scheme. J. Quant. Spectrosc. Radiat. Transf. 178, 306–314 (2016).
47. Mulholland, G. W., Bohren, C. F. & Fuller, K. A. Light scattering by agglomerates: Coupled electric and magnetic dipole method. Langmuir 10, 2533–2546 (1994).
48. Barrowes, E. B., Teixeira, F. L. & Kong, J. A. Fast algorithm for matrix–vector multiply of asymmetric multilevel block Toeplitz matrices in 3 D scattering. Microwav. Opt. Technol. Lett. 31, 28–32 (2001).
49. Ackerman, T. P. & Toon, O. B. Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles. Appl. Opt. 20, 3661–3668 (1981).
50. Mayer, B. & Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations-description and description of use. Atmos. Chem. Phys. 5, 1855–1877 (2005).
51. Koike, M. et al. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea. J. Geophys. Res. Atmos. 119, 122–136 (2014).

Acknowledgements

This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the global environment research fund of the Japanese Ministry of the Environment (A-1101, 2-1403 and 5-1605), the Japan Society for the Promotion of Science (JSPS) KAKENHI Grants 15H05465, 16K16188 and 15H02881, the GENE Arctic Climate Change Research Project, and the Arctic Challenge for Sustainability (ArCS) project. The TEM–EELS study was supported by the NIMS microstructural characterization platform as a program of the Nanotechnology Platform of MEXT, Japan. We thank Diamond Air Service Inc. for supporting the A-FORCE campaign. We thank N. Takegawa, K. Kita, H. Matsu, N. Oshima, T. Mori and H. Hashioka for supporting the observations.

Author contributions

N.M. conceived the idea and wrote the paper. N.M., M.K. and K.A. acquired the SP2 data, CAS data and samples for electron microscopy analysis during the aircraft campaign. T.H., S.O. and A.Y. analysed the observational data. A.Y. and S.O. performed the laboratory experiments for the SP2 characterization using magnetite and dust samples. K.A. performed the STEM–EDX and TEM–EELS analyses. N.M. performed the calculations of aerosol transmission efficiency Tr(D_m), electromagnetic scattering and radiative transfer. A.Y. and N.M. experimentally tested the accuracy of the theoretically calculated Tr(D_m) curves. M.K. and Y.K. proposed the A-FORCE campaigns.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Moteki, N. et al. Anthropogenic iron oxide aerosols enhance atmospheric heating. Nat. Commun. 8, 15329 doi: 10.1038/ncomms15329 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017