Application of Baculovirus Expression Vector system (BEV) for COVID-19 diagnostics and therapeutics: a review

Muhammad Azharuddin Azali1,2*, Salmah Mohamed2, Azian Harun3, Faezahtul Arbaeyah Hussain4, Shaharum Shamsuddin5 and Muhammad Farid Johan1*

Abstract

Background: The baculovirus expression vector system has been developed for expressing a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various applications.

Main body of the abstract: The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the protein.

Conclusion: This review covers the wide application of the recombinant protein produced using the baculovirus expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins with high yields. However, there is still room for improvement and there are parts of this field of research that have not been investigated yet.

Keywords: SARS-CoV-2, COVID-19, Baculovirus expression system, Spike protein, Non-structural protein, Angiotensin converting enzyme 2, Recombinant antibodies, Therapeutic proteins

Background

The baculovirus expression vector system (BEV) has been in use for more than 30 years [1]. Thousands of proteins have been successfully created using the BEV platform, and it is no longer limited to research purposes; it is now being used on a broad scale to manufacture a variety of biological products, including vaccines. At first, only two BEV-derived vaccines were commercialized [2]. Since then, numerous products have been approved for usage, including the latest Novavax’s COVID-19 vaccine [3]. BEV is made up of three parts: a transfer plasmid with a foreign gene to be inserted into the baculovirus genome, a baculovirus vector (i.e., bacmid) or baculovirus DNA (linearized DNA), and insect cell lines [4]. Strong promoters, such as the polyhedrin promoter, govern the transcription of the gene insert [5]. The original polyhedrin gene is replaced with multiple cloning sites for the insertion of the foreign gene downstream.
of the promoter [6]. The plasmid is then co-transfected with baculovirus DNA into insect cells [7]. Homologous recombination will be used to integrate the recombinant gene into the baculovirus genome [8]. Large-scale protein expression has been modified to incorporate larvae such as silkworm larvae. Using larvae instead of cells to make more protein has a number of benefits, such as increasing capacity and lowering the cost of making protein on a large scale [9].

The BEV platform has been used to express a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines [10]. The application of baculovirus as a vector for DNA delivery in humans is relatively safe because the virus cannot replicate in humans [11]. Moreover, the BEV has various advantages compared to other expression systems. The production of protein in the BEV is relatively simple compared to the mammalian expression system, which requires a CO₂ incubator. However, unlike bacteria, it still has the post-translational capabilities to produce the glycosylated protein. In fact, baculovirus has been engineered to introduce a complex glycan structure to the recombinant protein that is normally found in mammals [12]. Moreover, the yield of the recombinant protein produced in BEV can be increased further using the baculovirus surface display method, where the ORF of the gene is fused in between the signal peptide of the BV glycoprotein GP64 and the mature GP64 sequence, causing the protein to fold correctly and become immunogenic enough to be taken by antigen-presenting cells [13]. The application of nanotechnology has speed up vaccine development, which includes the first mRNA vaccines for COVID-19 [14]. The nanoparticles act as carriers to protect the vaccine and get it to the target site.

As the number of COVID-19 patients increases around the world, scientists are focusing their efforts on every aspect of the disease, from diagnostics to therapies, by leveraging new technologies or exploiting existing platforms like BEV. This review gathers all the information from major databases about the application of BEV for the development of COVID-19 diagnosis and treatments to give insight about the achievement and limitations as well as opportunities in this field. This article also reviews the integration of nanotechnology into COVID-19 diagnostic and therapeutic research.

The general process of producing SARS-CoV-2 proteins in BEV is shown in Fig. 1.

Literature survey

Literature resources were searched from PubMed, ScienceDirect, Google Scholar, and Scopus databases using keyword combinations such as baculovirus expression AND (sars-cov-2 OR 2019nCoV OR severe acute respiratory syndrome coronavirus 2). The specific queries for each database are given in Table S1. The inclusion criteria were any study or article related to the production of SARS-CoV-2 protein using baculovirus expression systems. Articles that reported the use of expression systems other than baculovirus or the production of recombinant protein from viruses other than SARS-CoV-2 were excluded. Only publications in English were selected. In addition, only original articles reporting the production of SARS-CoV-2 proteins for diagnostic and therapeutic research were chosen. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) chart for this review is shown in Fig. 2.

The SARS-CoV-2 proteins produced in BEV

SARS-CoV-2 viral particles consist of spikes (S), membranes (M), envelopes (E), and nucleocapsid (N) proteins [15]. The S protein binds to the human angiotensin converting enzyme 2 (hACE2) via its receptor-binding domain (RBD) during SARS-CoV-2 infection [16]. The S and N proteins have been discovered to be viral materials that can be utilized to detect coronavirus infections, such as SARS-CoV-2 [17]. The signal peptide, the S1 subunit, and the S2 subunit make up the spike protein [18]. The S1 subunit consists of an N-terminal domain (NTD), and a C-terminal domain (CTD) where the RBD is located [19].

A single purification yielded both non-glycosylated and glycosylated forms of the S protein, as well as other insect cell proteins [20]. In insect cells, the glycosylated S protein is decorated with 38 N-glycans, which mostly consist of oligomannose (Hex) and fucose (Fuc), while in human cells, the S protein is glycosylated with 157 N-glycans, mainly containing extra N-acetylglucosamine (HexNAc) and galactose (Hex), variably terminating with sialic acid (NeuAc) [21]. Glycosylation at the binding site and the proximate amino acid can affect the interaction between the spike protein and the host cell [22]. It was reported that the glycosylated S1 showed lower binding affinities to ACE2 as compared to the non-glycosylated [23]. Additionally, molecular dynamic (MD) simulations show that glycosylation creates steric effects that have an impact on the interaction between the N-terminal sequence of S1 and ACE2. However, the low molecular size of the N-glycans synthesized in insect cells produces lower steric effects as compared to mammalian cells. The Coulombic repulsion, which drives S1 away from ACE2, is absent in proteins derived from insect cells. This is because sialylation occurs only in N-glycans that are synthesized by mammalian cells.

The furin protease produced by insect cells breaks the synthesized S protein into S1 and S2 subunits [16]. Besides, recombinant SARS-CoV-2 proteins produced in silkworm larvae were also exposed to furin protease.
The in-cell digestion resulted in the loss of the N-terminal signal peptide from the C-terminal half of S protein, preventing the truncated form of the protein from being secreted to silkworm serum. As a result, less protein could be recovered. The removal of a furin-recognized polybasic cleavage site and the inclusion of a stabilizing mutation in the S2 subunit by replacing K986P and V987P with prolines can stabilize and improve S protein production (Fig. 3) [16]. This modification keeps the S protein from extending its central helix, which keeps it in its prefusion state [25].

Application of baculovirus expression vector system (BEV) for SARS-CoV-2 diagnostics and therapeutics

Diagnostic applications

The widespread transmission of SARS-CoV-2 necessitates a quick and accurate diagnosis of COVID-19 disease. COVID-19 is diagnosed using either molecular or
serum-specific antibody detection assays [26]. Antibody detection against SARS-CoV-2 is beneficial for analyzing infected patients’ immune responses, determining the rate of infection in specific areas, and identifying a person with strong antibody responses who might be a donor for convalescent serum or plasma therapies [27]. The two assays that have been approved for the diagnosis of COVID-19 are the enzyme-linked immunosorbent assay (ELISA) and lateral flow [17]. The BEV-derived spike protein has been used to diagnose COVID-19 disease (Table 1) [27].

The spike protein was used to coat 96-well plates in ELISA for the detection of IgG, IgA, or IgM antibodies in the positive serum, with IgG being the most preferred antibody because it is upregulated 1–7 days after COVID-19 detection and its level remains high and detectable for at least 3 months [33]. In an ELISA test, it was discovered that COVID-19 sera responded highly to full-length S protein compared to RBD [27]. Furthermore, the test

(See figure on next page.)

Fig. 3 The production of SAR-CoV-2 spike protein or its subunits in BEV. Infected insect cells produce wild-type or mutated spike protein, or RBD. The wild-type spike protein is cleaved by furin protease but not the mutated protein. All the proteins produced by the insect cell will be glycosylated. The recombinant proteins are used for diagnostic and therapeutic studies such as vaccines, therapeutic proteins, and antibody development.
Fig. 3 (See legend on previous page.)
was able to distinguish between serum from COVID-19 patients and serum from convalescent samples. Most notably, the test was highly specific such that it does not detect other human viruses’ infections, including the human immunodeficiency virus (HIV) and other human coronaviruses. The use of S protein for anti-SARS-CoV-2 antibody detection was further expanded with fluorometric detection methods [29]. Human serum spiked with monoclonal IgM anti-COVID-19 was used to evaluate a microcapillary film (MCF) containing an array of 10 micro-capillaries coated with 15 μg/ml SARS-CoV2-S1. The strip was coated with the AttoPhos® AP Fluorescent Substrate System (Promega). Then the secondary antibody anti-human IgG or IgM conjugated with alkaline phosphatase was added to generate the fluorescent signal. The signal was captured with a camera and analyzed with ImageJ software.

The BEV platform was also used to synthesize subdomains of SARS-CoV-2 S proteins, such as S1 and its subdomain, RBD, instead of full-length spike proteins, where in some cases, the S1 protein was found to be the best performing antigen, such as in a Luminex-based suspension immunoassay (SIA) [34]. The S1 subunit was efficiently secreted with the addition of a signal peptide to the gene construct, and the S1 subunit was detectable in both cell extracts and supernatant, as opposed to the full-length spike protein [30]. The proteins were generated in large quantities in Tnao38 cells, and S1 protein purification in the supernatant yielded an 85% pure protein with a yield of 1 mg/l (Table 1). Tnao38 and High Five cells produce significantly more recombinant protein than Sf9 cells, although Sf9 cells have a higher capacity for producing infectious virus particles [35]. As a result, Sf9 cells are employed to make recombinant baculovirus while Tnao38 or High Five cells are used for large-scale protein production. For low-cost production, the large-scale SARS-CoV-2 spike protein is also produced in insect larvae such as silkworms [28]. A commercial ELISA test has been developed from RBD antigen which can be performed manually using basic laboratory equipment [31]. Its performance was no different from that of automatic ELISA if a high-quality antigen was used.

In other studies, a SARS-CoV-2 nucleocapsid protein was produced in BEV using a suspension culture of insect cells [36]. A total of 1 mg of protein was purified from 50 mg of crude protein. S and N proteins coupled to magnetic beads were used for the detection of anti-SARS-CoV-2 antibodies in the serum samples [32]. Apart from producing SARS-CoV-2 protein, baculovirus is also used for generating SARS-CoV-2 pseudovirus that can be handled in BSL-2 laboratories, which are more widely

Table 1	Recombinant proteins produced at laboratory scale using BEV for diagnosis of COVID-19						
Proteins	Modifications	Host Cells	Purification Method	Yield	Purity	Specific Applications	References
Moloney Murine Leukemia Virus Reverse Transcriptase (MMLV-RT)	TEV-BxHis-Strep tag added	Sf9	Ni-NTA affinity chromatography	7.5 mg/l	95%	qRT-PCR	[15]
Spike Protein, S1 and receptor binding domain.	Signal peptides, T4 foldon trimerization domain, cleavage sites and peptide tags added. Mutations introduced to the sequences.	Sf9/High Five/Tnao38/Tnms42/Rachiplusia nu larvae	Ni-NTA affinity chromatography	0.5 – 1.5 mg/l or 15 μg/g larvae	Up to 99%	ELISA	[27–31]
Spike and nucleocapsid protein	Removal of transmembrane and endodomains. Kozak motif, IZN4 foldon trimerization, thrombin cleavage site and hexahistidine tag added.	Sf9/High Five	Ni-NTA affinity chromatography	Not measured	Not measured	mPLEX-CoV assay	32
available compared to BSL-3 containment [37]. A SARS-CoV-2 spike protein pseudotyped baculovirus was created for the infection model study. It was detected using an anti-spike antibody attached to gold nanoparticles.

Non-SARS-CoV-2 proteins, such as Moloney murine leukemia virus reverse transcriptase (MMLVRT), were also produced in BEV for use in the one-step reverse-transcription quantitative polymerase chain reaction (qRT-PCR) for the diagnosis of COVID-19 [15]. The protein was synthesized in suspension culture and has a high concentration as well as purity (Table 1). The MMLVRT’s integration into RT-PCR allowed for the detection of as few as 10 copies of RNA. The results were comparable with those from commercial RT-PCR kits.

Furthermore, COVID-19 research is progressing to vaccines have progressed to the clinical trial stage [50]. As of now, the existing vaccines are inadequate to stop the spread of the COVID-19 disease due to the emergence of new variants. Fortunately, at least 16 additional vaccines have progressed to the clinical trial stage [50]. Furthermore, COVID-19 research is progressing to generate more vaccines to combat the disease. Currently, there are five types of vaccines available, which include live virus and inactivated vaccines; subunit vaccines; vector vaccines; and nucleic acid vaccines [51].

Subunit vaccines were developed using the SARS-CoV-2 protein, such as the S protein, which can trigger the immune system (Table 2). The spike protein was modified to produce stable spike protein in insect cells by substituting K986 and V987 in the S2 subunit with prolines (PP), resulting in S2 being cleaved into a minute fragment (Fig. 3) [16]. This fragment could be formed through proteolytic cleavage by the protease located within the S2 subunit [52]. Combining proline substitutions with another mutation that removes the cleavage site from the S protein results in a recombinant protein that provides maximum protection in vaccinated mice with minimum weight loss [16]. In addition, it was modified further using a mix of proline substitutions, the insertion of a C-terminal thrombin cleavage site, and the inclusion of an “AGAG” sequence at the furin cleavage site, resulting in S-2P, a recombinant protein [20]. The yield of the trimer-stabilised S-2P protein was greater than the wild-type spike protein in insect cells. S-2P is a promising vaccine candidate because it evokes high neutralising antibodies in monkeys and has significant reactivity with COVID-19 sera. It also had stronger immunogenicity at a lower inoculation dose. The S-2P protein was made soluble by replacing the transmembrane domain with a T4 foldon domain, resulting in a new recombinant spike protein called prefusion membrane-deleted spike (preS dTM) [53]. The preS dTM vaccine, which was adjuvanted with AS03 oil-in-water emulsion, generated a neutralising antibody response that protected nonhuman primates against a high dose of SARS-CoV-2 by giving protection in the upper and lower airways via a fast anamnestic response. Currently, this vaccine is progressing to a phase 3 clinical trial [54].

It was reported that the spike protein vaccine with Sepivac SWE™, a nanoemulsion oil (SWE) adjuvant, provided better protection to the challenged animals compared to the RBD vaccine using the same adjuvant [65]. Besides, other adjuvants, such as Advax-SM, were also found to be effective for protection against SARS-CoV-2 [66]. In other studies, it has been reported that the spike protein adjuvanted with gold nanoparticles induces a strong IgG response [67]. However, it fails to induce protective antibodies in the lungs.

A booster for the preS DTM vaccine derived from parental strain D614 or variant B.1.351 (Beta) has been formulated [68]. One dose of the vaccine formulated as monovalent D614 (parental) or B.1.351 (Beta) or bivalent (D614 + B.1.351) with AS03 adjuvant was found to significantly boost the existing neutralizing antibodies

Vaccine

As of now, the existing vaccines are inadequate to stop the spread of the COVID-19 disease due to the emergence of new variants. Fortunately, at least 16 additional vaccines have progressed to the clinical trial stage [50]. Furthermore, COVID-19 research is progressing to

Therapeutic applications

Vaccine

As of now, the existing vaccines are inadequate to stop the spread of the COVID-19 disease due to the emergence of new variants. Fortunately, at least 16 additional vaccines have progressed to the clinical trial stage [50]. Furthermore, COVID-19 research is progressing to
Table 2 Recombinant proteins produced in BEV for the development of COVID-19 vaccines

Proteins	Modifications	Host Cells	Purification Method	Yield	Purity	Specific Applications	References
Spike protein, S1 and receptor-binding domain (RBD)	Signal peptide, ectodomain, T4 foldon trimerization domain, thrombin cleavage site, spacer, ferritin, viral protein, and peptide tags added. Mutations introduced to the sequences.	Sf9/Sf21/High Five/expressSF+/-BmN/silk-worm larvae	Affinity or ion-exchange or gel filtration chromatography/ultrasonic crushing and ultracentrifugation/tangential flow filtration/dialysis	0.19 - 30 mg/l	90 - 98%	Subunit vaccine	[16, 19, 55–59]
Spike protein, S1, receptor binding domain (RBD)	Codon-optimized and fusion with MERS-CoV S gene corresponding to the N-terminal domain (NTD) (RBD).	Sf9/293T	Not applicable	Not applicable	Not applicable	Not applicable	DNA Vaccine [60]
Envelope, Membrane, Spike S1 and influenza matrix protein 1 proteins	Signal peptides, prefusion stabilized ectodomain, T4 fibrin trimerization signal, peptide tags, linker, cleavage site, transmembrane and tail domain added. Codon optimization.	Sf9/ExpiSF9	Affinity chromatography/sucrose gradient centrifugation	0.005 – 11 mg/mL	Not measured	VLP vaccine	[61–63]
Human angiotensin converting enzyme 2 (hACE2)	GP67 signal peptide sequence added at N terminus. Hexa-His tag added to the C terminus	Sf9/High Five	Gel Filtration Chromatography	Not measured	Not measured	Surface plasmon resonance (SPR) assay	[64]
produced after previous vaccination in macaque (Macaca mulatta). Currently, these vaccines are at the clinical stage.

The spike protein is a trimer in its natural state, but when it is recombinantly generated, it mostly becomes monomeric [69]. To create trimeric recombinant spike proteins, the T4 foldon, an artificial trimerization domain derived from the bacteriophage T4 fibrin protein, was inserted into the S protein construct [55]. Another way to make spike protein trimers is to fuse Helicobacter pylori ferritin at the N-terminus [56]. Ferritin is a protein made up of 24 identical polypeptides that naturally produces nanoparticles [70]. The SGG linker binds ferritin to either the ectodomain (S1 and S2), the S1 or the RBD [56]. The recombinant virus was made in BmN cells while the large-scale nanoparticle vaccine was made in larvae. The ectodomain (ECD) trimer induced the highest level of antibodies.

The S protein's immunogenicity is not restricted to its full component. Its subunits, such as S1 and RBD, can trigger the immune system on their own, but their antigenicity is lower than that of the entire unit [20, 60, 71]. The advantage of generating subunits rather than full-length spike proteins is that larger recombinant protein concentrations can be obtained (Table 2) [27]. Furthermore, when the plasmid vector was co-transfected with linearized baculovirus DNA defective in v-cath/chiaAgenes, the protein amount was considerably greater [20]. In fact, it is the greatest SARS-CoV-2 protein yield ever produced using BEV for COVID-19 research. The S1 protein conjugated with fucoidan/trimethylchitosan nanoparticles (FUC-TMC NPs) and cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) induces a broad spectrum neutralizing antibody response against SARS-CoV-2 variants [72]. Additionally, S1 protein was also coated with biopolymer particles (BP) to produce a vaccine that is stable at room temperature [57]. The binding of S1 protein with BP was mediated by the formation of an isopeptide bond between Spytagged S1 and SpyC displayed on the BP surface. This vaccine has been shown to provide protection for hamsters against SAR-CoV-2 infection.

RBD was used for the development of the COVID-19 vaccine using an adenoavirus platform. The recombinant RBD was produced in an insect cell line before being displayed in the non-infectious adenoavirus-inspired nanoparticle (ADDomer) [58]. Originally, the ADDomer platform was limited to simple antigens such as neutralizing epitopes from the Chikungunya virus. Its capability is further extended with the Spy Tag/Spy Catcher system, which enables the insertion of complex antigens such as RBD. The immunization of a mouse with the RBD vaccine elicited a significant anti-coronavirus humoral response, which was elevated further with the second vaccination. RBD was also fused to the rotavirus VP6-protein to create a fusion protein (FP) vaccine [59]. However, no RBD or S-specific antibodies were detected in the treated mice.

Apart from in vitro production, the S protein was also synthesized in vivo for the development of DNA vaccines by introducing DNA into the host using a baculovirus vector [60]. The CMV promoter was used to control the expression of the insert in the cells. The insertion of the envelope glycoprotein of human endogenous retrovirus (HERV) into the baculovirus genome improved the efficiency of vaccine gene delivery [73]. The recombinant baculovirus expressing SARS-CoV-2 full-length spike protein and the HERV gene (AcHERV-COVID19-S) was able to elicit neutralizing antibodies specific to SARS-CoV2 [60]. Additionally, virus titers were lower in the treated animals as well as fewer respiratory illnesses were observed in them. This result suggests that the vaccine could minimize SARS-CoV-2 infection.

Virus-like particle (VLP) is another type of COVID-19 vaccine synthesized using a baculovirus-insect cell platform that involves three techniques. In the first technique, the E, M, and S proteins were expressed in insect cells simultaneously using a triple expression plasmid [61]. Each component would be self-assembled in insect cells, forming a VLP. As for the second technique, the recombinant baculovirus expressing the full-length S, S1, or S2 proteins was co-transfected with another recombinant baculovirus expressing influenza matrix protein 1 (M1) to form VLP in the insect cells [62]. In the third technique, the S1 protein was coupled to the bacteriophage AP205 VLP nanoparticles [63]. This was done using the Spytag/Spycatcher platform. This was formulated as an adjuvanted vaccine.

The non-SARS-CoV-2 protein produced in BEV for a vaccine development study is human angiotensin converting enzyme 2 (hACE2) [64]. It was synthesized to investigate its binding to the SARS-CoV-2 RBD-dimer produced in mammalian cells. In this study, HACE2 had low affinity for the RBD, which could be due to inadequate glycosylation of human protein in insect cells [74]. Glycosylation in insect cells results in glycoproteins with simple oligo-mannose sugar chains, as contrasted to glycoproteins with complex sugar groups and terminal sialic acids in mammalian cells [75]. Transformed insect cells, like the SfSWT-1, can synthesize mammalian proteins with complex N-glycan [74].

To date, 10 vaccines that were created using different platforms have been approved for usage [76]. The only BEV-derived vaccine that obtained approval is NovaVax’s NVX-CoV2373 [50]. The NVX-CoV2373 vaccine exhibited 89.7% efficacy against SARS-CoV-2 infection and
good efficacy against the B.1.1.7 variant after two doses [77]. There are three more BEV-derived vaccines that have reached the first or second clinical phase [50].

The biggest issue for producing successful vaccines is the emergence of new variants, as the presently licensed vaccines show decreasing neutralizations, particularly against the new Delta (B.1.617.2) and Omicron (B.1.1.529) variants [78, 79]. The two doses of inactivated vaccines followed by either a subunit, adenovirus-vectorized vaccine, or mRNA vaccine, were found to be more efficient than homologous vaccines as a boost method [80]. Additionally, a vaccine that targets the less mutated region such as M and E proteins might be able to neutralize any new variants. Side effects after vaccination is another shortcoming for the currently available vaccines. Indeed, it is one of the reasons for vaccine refusal. It was reported that the reactogenicity was dependent on the vaccine dosage where optimum dosage could help to minimize side effects such as headache, joint pain, diarrhea, and chilling [81]. Therefore, it is suggested that dosage need to be further optimized as to reduce the side effects, i.e., customizing the dosage according to the health status.

Cross-reactivity between different Adeno-associated viruses (AAV) serotypes has been reported to be 50% [61, 62]. BEV-derived vaccines offer an alternative to adenovirus-vectorized vaccines, especially for people who develop Guillain-Barre Syndrome (GBS) after vaccination or who are undergoing gene therapy [82, 83]. Overall, the application of BEV for vaccine development was primarily focused on subunit vaccines, but fewer studies were done on DNA vaccines, where only one study has been identified. There are a lot of aspects that remain to be explored, such as the use of different eukaryotic promoters, which might affect the efficiency of the vaccine. In addition, BEV can express multiple proteins simultaneously, and this feature can be used for the development of novel vaccines that can trigger the production of multiple antibodies that can fight against different types of SARS-CoV2 variants. Moreover, this type of vaccine can cover a wide range of coronavirus diseases. The integration of nanotechnology into vaccine development has been proven to be successful in delivering new generation nucleic acid vaccines, particularly mRNA, into cells. Lipid nanoparticles (LNPs) have been used to protect mRNA from attack by ribonucleases and make it easier to get to the target site [14].

Protein and antibodies

The spike protein, which is essential for SARS-CoV or SARS-CoV-2 infection, has become a focus for therapeutic development (Table 3). The attachment of RBD to the cells is the first step in the SARS-CoV-2 pathogenesis. As a result, binding of antibodies to the RBD would limit the SARS-CoV-2 infection [84]. Several studies reported the production of S, S2, or RBD proteins in BEV to study the binding of the antibody in the serum of convalescent individuals [85–93]. It is also reported that optimization of several factors could lead to high yield antibody or antigen production in insect cell lines [94]. The inclusion of the Kozak sequence as well as the signal peptide of the mouse Ig heavy chain variable region in the vector increased the protein expression by more than 50%, with the optimum harvesting time being 96 h after transfection. Furthermore, it was also discovered that High Five cells grown in EX-CELL405 media yield the most protein. Additionally, the antibodies could be made into a lyophilized form without affecting their reactivity.

A monoclonal antibody against RBD, CR3022, has been produced using a silkworm-baculovirus expression vector system in three formats (scFv, Fab, and IgG) [95]. The affinity of the antibody towards S protein was equivalent to the one that was produced in the mammalian expression system. Additionally, the antibody production in silkworms gave a high yield as well as purity. The emergence of new SARS-CoV-2 variants could potentially reduce the efficiency of monoclonal antibodies (mAbs) and vaccines. Hence, a polyclonal anti-SARS-CoV-2 immunoglobulin was produced in transchromosomic (TC) bovines (Tc-hIgG-SARS-CoV-2) [97]. TC bovines are bovines that have been transformed with either human chromosome fragments, human artificial chromosomes, or mouse artificial chromosomes [100]. The advantage of using TC bovines to produce antibodies is that they can produce high amounts of human IgG in their serum [101].

To produce the antibodies against SARS-CoV-2, the TC bovines were given two doses of the DNA encoding the Wuhan-Hu-1 strain Spike gene, followed by three doses of S protein generated in insect cells [97]. SAB-185 antibodies were produced by purifying plasma from TC bovines. It was found that SARS-CoV-2 variants D614G, S477N, E484K, and N501Y could be neutralized by SAB-185. It is now in the clinical phase of testing. A therapeutic protein that targets SARS-CoV-2 spike protein has been developed and it is the tetravalent form of ACE2, which consists of four ACE2 extracellular domains coupled to the human immunoglobulin g1 Fc region [96]. This tetrameric ACE2 protein binds strongly to the RBD. Additionally, it also has more potential compared to monomeric (sACE2) and dimeric (ACE2-Fc) ACE2.

Most antibodies isolated from COVID-19 patients are specific to SARS-CoV-2. There are also some antibodies that can cross-neutralize other SARS-CoVs, including COVA1-16, H014, EY6A, S304, and CV38-142 [93, 102–105]. However, some of these antibodies have lower
It was found that a combination of the two cross-neutralizing antibodies such as CV38-142 and COVA1-16 showed enhanced neutralization towards the two SARS-CoV-2 variants of concern, B.1.1.7 and B.1.351. This synergistic effect occurred after the RBD bound to the COVA1-16 antibodies, where it was caught in the “up” state.

The S proteins produced in the BEV are also used for screening and isolation of nanobodies such as VHH. VHH nanobodies are heavy-chain only antibodies (hcAbs) generated by camelids or sharks that include a single variable domain in the antigen-binding segment of a naturally occurring IgG derivate [106, 107]. Nanobodies can be used to treat cancers, chronic disorders, as well as viral infections [107]. Alternatively, nanobodies can be produced using prokaryotic expression systems, which are highly scalable, rapid, and low-cost. A VHH library was created using bacteriophage and the specific nanobodies for SARS-CoV-2 S protein were screened, isolated, and tested against SARS-CoV-2 [106]. Using bacteriophage, a VHH library was generated, and specific nanobodies for SARS-CoV-2 S protein were screened, extracted, and tested against SARS-CoV-2 [96]. Using a bacterial display system, nanobodies can also be created without the need for bacteriophage [107]. E. coli bacteria in the bacterial display system contain intimin-Nanobody protein fusions that anchor in the outer membrane, exposing the functional nanobody to the extracellular environment for spike protein recognition, allowing the bacteria to adhere to spike protein-coated NHS-beads. The bacteria that express specific nanobodies travel all the way to the bottom of the Ficoll density gradient, leaving unbound bacteria in the upper fraction. The nanobodies were further characterized, cloned, and their capacity to neutralize SARS-CoV-2 was tested. The bacterial display technique allows nanobodies to be made with very little equipment and reagents.

To develop antibodies for COVID-19 disease, BEV is also being used to produce non-SARS-CoV-2 proteins such as ACE2 (Table 3). Two monoclonal antibodies (mAbs) specific for SARS-CoV-2 RBD generated by memory B cells from peripheral blood mononuclear cells have been discovered [99]. BEV-produced ACE2 for RBD binding was found to compete with CA1 and CB6 mAbs. According to structure analysis, ACE2 and CB6 share numerous binding sites. CB6 binding induced steric hindrance, which was mediated by both the VH and VL domains of CB6, that prevented ACE2 from binding to the RBD. Currently, nine monoclonal antibodies are in clinical trials, with three of them, LY-CoV555 (Eli Lilly/AbCellera), REGN-COV2 (Regeneron), and CT-P59 (Celltrion), receiving Emergency Use Authorization (EUA) from the US Food and Drug Administration.
CoV-2 genome (Fig. 4) [112]. ORF-1ab, which are located at the 5'-end of the SARS-′ translation of RNA viruses, including SARS-CoV-2, isating separate baculoviruses for each protein [117]. In into an active binary nsp8/12 RdRp complex. Alternativeduced in insect cells will be cleaved by the nsp5 protease drugs such as Remdesivir (RDV) and Favipiravir [116, in RdRP becoming the target for nucleotide analogue no effect on proteins in human cells. This has resulted RdRp has no host cell homolog, its inhibitors would have case (nsp13), and exoribonuclease (nsp14) [127]. Because multiple enzymes, including papain-like protease (nsp3), chymotrypsin-like main protease (3CL protease, nsp5), replicase–transcriptase complex (nsp7 and nsp8), RdRP (nsp12), heli- chymotrypsin-like main protease (nsp5), multiple enzymes, including papain-like protease (nsp3), chymotrypsin-like main protease (3CL protease, nsp5), primase complex (nsp7 and nsp8), RdRP (nsp12), heli- case (nsp13), and exoribonuclease (nsp14) [127]. Because RdR amplification step. Its inhibitors would have no effect on proteins in human cells. This has resulted in RdRP becoming the target for nucleotide analogue drugs such as Remdesivir (RDV) and Favipiravir [116, 127]. The RdRP complex (nsp5-7-8-12) polypeptides produced in insect cells will be cleaved by the nsp5 protease into an active binary nsp8/12 RdRp complex. Alterna- tively, nsp12, nsp7, and nsp8 can be produced by generating separate baculoviruses for each protein [117]. In addition, nsp proteins were also produced in different expression systems. For example, nsp12 was produced in BEV while its cofactors nsp7 and nsp8 were expressed in the E. coli expression system [113]. Further investigation found that the expression of the RdRP complex was highly increased with the addition of the His6-3xFlag tag on nsp12 (Sf nsp12-HF) and a neutral 6 amino acid (Gly-Gly-Ser) -linker between nsp7 and nsp8 [118]. nucleotide analogue drugs are produced in their triphosphate form to act as substrates for RdRP, which results in termination of RNA synthesis [116]. The termination of RNA synthesis by Remdesivir triphosphate form (RDV-TP) does not occur immediately. Its incor- poration at position ‘i’ commonly results in delayed chain termination between positions i+3 and i+5 after a few nucleotide incorporation events. The cryo-electron microscopy (cryo-EM) images of RdRP in complex with the template, primer double-stranded RNA (dsRNA), and favipiravir ribonucleoside triphosphate (favipiravir-RTP) revealed that favipiravir, which was present at the active site of RdRP, stacks onto the 3’ nucleotide of the primer strand by forming a noncanonical base pair with the cytosine in the template strand [56]. Favipiravir, like other nucleotide analogues such as ribavirin and penciclovir, binds to +1 sites at the RdRP complex, but due to the drug’s nonproductive conformation in the poly- merase active site, it is only weakly incorporated into the RNA primer strand [117]. The 3’OH of the P-1 nucleo- tide in the template strand is not orientated for nucleo- philic attack on the β-phosphate of favipiravir-RTP [119]. Favipiravir, ribavirin, and penciclovir were found to be less effective than remdesivir [117]. Remdesivir, despite this, is difficult to synthesize, administer, and can even cause hepatotoxicity. As a result, it was further modified to obtain oral delivery as well as a uniform distribution of the nucleoside and nucleotide metabolites through- out the body, particularly in organs that are particularly susceptible to SARS-CoV-2, such as the lungs. The inser- tion of a deuterium atom at the C5 position of the base moiety, as well as esterification with isobutyric acid, are examples of such changes. The X3 molecule showed a 5-fold increased replication inhibition compared to the original remdesivir. Suramin is another potential drug for treating COVID-19, which is at least 20-fold more potent than remdesivir against SARS-CoV-2 [120]. The inhibition mechanism of suramin is the same as remdesivir but it occupies a differ- ent base position at RdRP. Additionally, suramin also interferes with multiple steps of coronavirus infection and replication, which include interruption of host-cell interaction, cellular uptake, as well as inhibition of viral helicase activities [123]. There are several limitations which hinder the application of suramin for the treatment
of COVID-19, such as its high negative charge that restricts its entry into cells, potential off-target effects on other cellular enzymes and exposure to endocytosis [120, 123]. The uptake rate of suramin by the cells can be improved by liposomal delivery [123]. Caspofungin acetate (Cancidas) and the oncolytic peptide LTX-315 are another two potential drugs for treating COVID-19 [113]. Other potential compounds include R406 (fostamatinib) and ibrutinib [124]. Several novel compounds that have the potential for treating COVID-19 have been discovered. Such drugs are GSK-650394 and C646 [118]. These compounds were found to inhibit SARS-CoV-2 RdRp activity at non-cytotoxic concentrations.

Molnupiravir is another oral drug that can serve as a substrate for RNA polymerases. It can be taken orally and intracellularly metabolized to its triphosphate form (NHC-TP) [121]. However, using RdRP synthesized in the BEV, it was found that the natural nucleotide, Cytidine triphosphate (CTP), is 30-fold preferable to NHC-TP. Besides synthetic compounds, there are also natural alkaloids that were found to bind to SARS-CoV-2 RdRP, such as emetine and cephaeline [114]. Emetine is an alkaloid that comes from the root of the ipecac plant, *Carapichea ipecacuanha*. Cephaeline is a desmethyl version of emetine.

There are a total of at least nine enzymatic activities in SARS-CoV-2 which are potential for drug targets [125]. Those enzymes and their cofactors that have been produced using BEV are nsp3, nsp5, nsp10, nsp13, and nsp14 (Table 4) [116, 122, 123, 126]. Nsp3 contains a papain-like protease (PLpro) which generates viral non-structural proteins from a polyprotein precursor [126]. Recombinant nsp3 produced in insect cells was less active compared to the nsp3 produced in bacteria. The PLpro activity was inhibited by dihydrotanshinone I, a derivative of tanshinones, which resulted in inhibition of SARS-CoV-2 proliferation at an EC50 of 8 μM. Additionally, dihydrotanshinone I did not exhibit much cytotoxicity, even at high concentrations. Further investigation showed that it has no synergistic effect with remdesivir.

Nsp14 is an exoribonuclease/methyltransferase whose cofactor is nsp10. It reduces the host innate antiviral immune response by cleaving viral-associated double-stranded RNAs and by regulating viral genome recombination [122]. It became the target for developing a new antivirus for COVID-19. As of nsp12/7/8, nsp14 and nsp10 were more active when they were fused together with a short linker.

Nsp13 encodes a viral helicase and hence plays an essential role in viral replication and proliferation where it unwinds DNA or RNA in an NTP-dependent manner with a 5’ to 3’ polarity [123]. As opposed to nsp3, nsp13 produced in insect cells was more active than nsp13 produced in bacteria [126]. Nsp13 might be more active in its glycosylated form, which results from post-translational modifications in insect cells. Suramin and FPA-124 were found to be potential nsp13 inhibitors with lower IC50 in vitro and lower anti-viral EC50 in cell-based assays.

Table 4

Proteins	Modifications	Host Cells	Purification Method	Specific Applications	References
Nsp12	Cleavage site and peptide tags added.	High Five	Size exclusion chromatography	In vitro polymerase inhibition assay	[113]
Nsp12, spike protein and receptor binding domain	Cleavage site changed. Trimerization domain, sequence motifs and peptide tags added. Codon optimization.	High Five	Affinity and size exclusion chromatography	Surface plasmon resonance (SPR)	[113–115]
RNA-dependent RNA polymerase (RdRp) complexes (nsp5, nsp7, nsp8, nsp10, nsp12 and nsp14)	Peptide tags, cleavage site, linker and sequence motifs added. Codon optimization.	Sf9	Affinity and size exclusion chromatography	RNA synthesis assay	[116–122]
Nsp13	Peptide tags added. Codon optimization.	Sf9	Affinity chromatography	Helicase assay	[123]
S1	No modification.	Sf9/Tnao38	Affinity chromatography	Platelet adhesion assay, In vitro thrombus formation and Flow cytometry measurement of fibrinogen binding.	[124]
Nsp9	Peptide tags added. Codon optimization.	Sf9	Affinity chromatography	Gel based nsp9 cleavage assay	[125]
papain-like protease (PLpro)	Peptide tags added. Codon optimization.	Sf9	Not mentioned	Protease assay	[126]
Spike protein and receptor binding domain	A trimerization domain added. Cleavage site added.	High Five	Not mentioned	ELISA	[115]
Fig. 4 The NSPs produced in BEV and their inhibitors. There is a total of five SAR-COV-2 Nsp proteins produced in BEV and tested with their respective inhibitors. Nsp3 was inhibited by Dihydro-tanshinone I. Nsp 10 is a cofactor for Nsp14. Nsp12, which encodes for RdRP, was inhibited by 10 drugs (Remdesivir, Favipiravir, Penciclovir, X3, Suramin, Cancidas, LTX-315, GSK-650394, and Suramin). Suramin inhibited both Nsp12 and Nsp13. Nsp14 was inhibited by Patulin and ATA.
as compared to the previously reported compounds, myricetin and SSYA10-001 [123]. The nsps produced by BEV and its inhibitors are illustrated in Fig. 4.

It has been reported that lipids play a role in the suppression of viral infection [128]. The essential free fatty acid linoleic acid (LA) is a lipid that binds to the SARS-CoV-2 spike protein at RBD [115]. The attachment is provided by an arginine (Arg408) and a glutamine (Gln409) from the adjacent RBD. LA reduced the binding of RBD to ACE2 by stabilizing the closed conformation of the SARS-CoV-2 spike protein. The S protein is only accessible in an open state, that is, when the RBD is in an up position [129]. Further investigation found that there is a synergy between LA and remdesivir. The remdesivir dosage is reduced with the addition of LA.

Nanoceria is a rare earth nanoparticle that possesses promising anti-inflammatory properties by inhibition of NfκB and MAPK pathways, which could halt the progression of systemic inflammatory complications in COVID-19 patients [130]. Bilirubin, decorin, and silver nanoparticles are other nanomedicines that act in almost similar ways to nanoceria [131–133].

As of now, only four drugs are approved for treating COVID-19 [134]. Paxlovid and Molnupiravir are orally available, while Sotrovimab and Remdesivir are administered through intravenous infusion. There are numerous antiviral drugs on the market, and BEV-derived protein can be used to simulate the antiviral effects of these drugs on SARS-CoV-2. Moreover, the antiviral activities of natural alkaloids or plant-derived compounds have been less investigated.

Conclusions

The baculovirus expression vector technology was not only relevant until today, but also proved to be highly beneficial in dealing with the current COVID-19 pandemic. However, given its complexity in comparison to other expression systems such as bacteria and yeast, there is always room for improvement. To summarize, the spike protein is the most cloned SARS-CoV-2 protein, with Ni-NTA affinity chromatography being the most common purification method and the His tag being the most utilized protein tag in BEV for the COVID-19 study. Currently, the only BEV-derived vaccine approved for usage is subunit vaccines. Therefore, more studies are required to obtain approval for the other types of vaccines.

The use of nanoparticles led to high sensitivity and fast diagnosis as well as improved drug delivery for COVID-19. However, nanoparticles are expensive to produce and require strong infrastructure. At present, affordable conventional drugs are effective enough to treat COVID-19. Therefore, expensive nanomedicine is not a wise choice for the time being. Still, nanotechnology is expected to get cheaper and more widely available over time.

The emergence of the new variants has made the existing detection and treatment less efficient. As a result, more studies are required to generate new knowledge about the COVID-19 disease in order to develop new innovations that can cater to all types of SARS-CoV-2 variants. In view of this, the continuous improvement of the BEV can play an important role. Scalability and flexibility are among the crucial elements for such improvements. The availability of a highly customizable platform with a low manufacturing cost is very useful, especially for dealing with future pandemics. It is predicted that for BEV, the use of insect larvae for large-scale and low-cost recombinant protein production will be expanded. Lastly, the baculovirus vector is expected to be reinvented continuously to obtain a high yield of the recombinant protein with minimum input.

Abbreviations

ACE2: Angiotensin converting enzyme 2; ACE2-Fc: Dimeric ACE2; AcHERV: Autographa californica HERV; AAV: Adeno-associated viruses; BEV: Baculovirus expression vector system; CMV: Cauliflower mosaic virus; COVID-19: Coronavirus disease; CTD: C-terminal domain; DNA: Deoxyribonucleic acid; dsRNA: Double-stranded ribonucleic acid; ECD: Ectodomain; E: Envelope protein; EUA: Emergency use authorization; Favipiravir-RTP: Favipiravir ribonucleoside triphosphate; GBS: Guillain-Barre Syndrome; hAbs: Heavy-chain only Abs; hACE: Human ACE2; HERV: Human endogenous retrovirus; M: Membrane protein; MCF: Microcapillary film; mRNA: Messenger RNA; IgA: Immunoglobulin A; IgG: Immunoglobulin G; IgM: Immunoglobulin M; LA: Linoleic acid; MMLVRT: Moloney murine leukemia virus reverse transcriptase; mAbs: Monoclonal antibodies; N: Nucleocapsid proteins; Nsps: Non-structural proteins; NTD: N-terminal domain; ORF: Open reading frame; PLpro: Papain-like protease; preS dTM: Prefusion transmembrane-deleted spike; RBD: Receptor binding domain, RDV-TP: Remdesivir triphosphate; RdRP: RNA-dependent RNA polymerase; S: Spike protein; sACE2: Monomeric ACE2; SARS-CoV-2: Severe acute respiratory syndrome coronavirus–2; TC: Transchromosomic; U.S. FDA: United States United States Food and Drug Administration; VHH: Nanobodies.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s43141-022-00368-7.

Additional file 1: Table S1. The specific queries for PubMed, ScienceDirect, Scopus and Google Scholar databases.

Acknowledgements

Universiti Sains Malaysia.

Authors’ contributions

MAA and MFJ conceived and designed the conceptual presented idea. MAA collected data and wrote the original draft preparation. AH, SS, and SM revised the manuscript. MFJ and FAH supported MAA financially. MFJ supervised and proofread the final version. All authors read and approved the final manuscript.

Funding

This work was supported by the Research University grant (1001/PPSP/8011025) to MFJ from Universiti Sains Malaysia.

Availability of data and materials

Not applicable.
References
1. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23. https://doi.org/10.1099/vir.0.067108-0
2. Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10:702–714. https://doi.org/10.1002/biot.201400438
3. Pijlman GP, Groce C, Hick TAH, Breukink HE, van den Braak R, Abbo SR, Geertsema C, van Oers MM, Martens DE, Esposito D (2020) Relocation of the attTn7 transgene insertion site in bacmid DNA enhances baculovirus genome stability and recombinant protein expression in insect cells. Viruses 12:1448. https://doi.org/10.3390/v12121448
4. Hitchman RB, Locanto E, Possee RD, Crombie AT, Chambers A, Ho K, Siaterli E, et al. Journal of Genetic Engineering and Biotechnology (2022) 20:98
5. Khanura A, Allwadhi P, Khanura S, Weiskirchen R, Banotu AK, Chhabra D, Joshi K, Bharani KK (2021) Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 38:101142. https://doi.org/10.1016/j.nantod.2021.101142
6. Takahashi M, Teheesen M, Salunke R, Takahashi E, Mfarrej S, Alonso I, Hashem AM, Khogeer A, Almontashiri AM, Lee JM, Mon H, Sakashita K, Li M, Kusakabe T, Pain A, Hamdan SM (2021) Quick and easy Assembly of a one-step qRT-PCR kit for COVID-19 diagnostics using in-house enzymes. ACS Omega 6:7374–7386. https://doi.org/10.1021/acsomega.0c05535
7. Hitchman RB, Strohmeier S, Amanat F, Rathnasinghe R, Schotsaert M, Coughlan L, Garcia-Sastre A, Krammer F (2021) Introduction of two prolines and removal of the polybasic cleavage site lead to higher efficacy of a recombinant spike-based SARS-CoV-2 vaccine in the mouse model. mBio 12:e02648–e02620. https://doi.org/10.1128/mBio.02648-20
8. Shetti NP, Mishra A, Bukkigrant SD, Basu S, Narang J, Raghava Reddy K, Aminabhavi TM (2021) Conventional and nanotechnology-based sensing methods for SARS coronavirus (2019-nCoV). ACS Appl Bio Mater 4:1178–1190. https://doi.org/10.1021/acsabm.0c01549
9. Huang Y, Yang C, Xue X, Liu S-W (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41:1141–1149. https://doi.org/10.1038/s41401-020-0485-4
10. Samrat SK, Tharappel AM, Li Z, Li H (2020) Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Res 288:198141. https://doi.org/10.1016/j.virusres.2020.198141
11. Li T, Zheng Q, Yu H, Wu D, Xue W, Xiong H, Huang X, Nie M, Yue M, Rong R, Zhang S, Zhang Y, Wu Y, Wang S, Zha S, Chen T, Deng T, Wang Y, Zhang T, Chen Y, Yuan Q, Zhao Q, Zhang J, Gu Y, Li S, Xia N (2020) SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates. Emerg Microbes Infect 9:2076–2090. https://doi.org/10.1080/20926233.2020.1821583
12. Zhang Y, Zhao W, Mao Y, Chen Y, Wang S, Zhong Y, Su T, Gong M, Du D, Lu X, Cheng J, Yang H (2021) Site-specific N-glycosylation characterization of recombinant SARS-CoV-2 spike proteins. Mol Cell Proteomics 20:1000058. https://doi.org/10.1074/mcp.MR20.002295
13. Wang Y, Wu Z, Hu W, Hao P (2021) Impact of expressing cells on glycosylation and glycan of the SARS-CoV-2 spike glycoprotein. ACS Omega 6:15998–15999. https://doi.org/10.1021/acsomega.1c01785
14. Huang C, Tan Z, Zhao K, Zou W, Wang H, Gao H, Sun S, Bu D, Chai W, Li Y (2021) The effect of N-glycosylation of SARS-CoV-2 spike protein on the virus interaction with the host cell ACE2 receptor. iScience 24:103272. https://doi.org/10.1016/j.isci.2021.103272
15. Fujita R, Hino M, Ebihara T, Nagasato T, Masuda A, Lee JM, Fuji T, Mon H, Kakino K, Nagai R, Tanaka M, Tonomura Y, Miyajima T, Kusakabe T (2020) Efficient production of recombinant SARS-CoV-2 spike protein using the baculovirus-silkworm system. Biochem Biophys Res Comm 529:257–262. https://doi.org/10.1016/j.bbrc.2020.06.020
16. Xiong X, Qu K, Czajkynska KA, Hosmillo M, Carter AP, Ebrahimi S, Ke Z, Scheres SHW, Bergamaschi L, Grice GL, Zhang Y, Bradley J, Lyons PA, Smith KGC, Toshner M, Elmer A, Ribeiro C, Kourampa J, Jose S, Kettner J, Rowlands J, Meadows A, O'Brien C, Rastall R, Cuissous C, Hewitt S, Price J, Calder J, Cann A, Bucke A, Tordesillas H, Harris J, Ruffolo V, Domingo J, Butter J, Butcher H, Caputo D, Le Greisley E, Dunmore BJ, Martin J, Legchenko E, Treacy C, Huang C, Wood J, Surcliff R, Hodgson J, Shih J, Graf S, Tong Z, Mesica F, Till T, O'Donnell C, Hunter K, Pontin L, Pond N, Wylot M, Jones E, Fawke S, Bullman B, Turner L, Jarvis I, O'meara J, De Sa A, Marsden J, Betancourt A, Pereira M, Epping M, Richoz N, Bower G, Sharma N, Rice F, Huhn O, Stark H, Walker N, Stirrups K, Ovington N, Dewhurst U, Le F, Papadia S, Nathan JA, Baker S, James LC, Baxendale HE, Ricordi I, Graves B, Butcher H, Caputo D, Le Greisley E, Dunmore BJ, Martin J, Legchenko E, Treacy C, Huang C, Wood J, Surcliff R, Hodgson J, Shih J, Graf S, Tong Z, Mesica F, Till T, O'Donnell C, Hunter K, Pontin L, Pond N, Wylot M, Jones E, Fawke S, Bullman B, Turner L, Jarvis I, O'meara J, De Sa A, Marsden J, Betancourt A, Pereira M, Epping M, Richoz N, Bower G, Sharma N, Rice F, Huhn O, Stark H, Walker N, Stirrups K, Ovington N, Dewhurst U, Le F, Papadia S, Nathan JA, Baker S, James LC, Baxendale HE, Goodfellow I, Doffinger R, Briggs JAG, The C-NC-BC (2022) A thermo-stable, closed SARS-CoV-2 spike protein trimmer. Nat Struct Mol Biol 27:934–941. https://doi.org/10.1038/s41594-020-0478-7
17. Wang H, Jiang X, Yang YH, Hu R, R Wang YP (2021) Research progress in laboratory detection of SARS-CoV-2. J R Med Sci 9:1. https://doi.org/10.1007/s11845-021-02604-4

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia. 2 School of Agriculture Science and Biotechnology, Faculty of Bioreources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia. 3 Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia. 4 Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia. 5 School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.

Received: 24 February 2022 Accepted: 20 May 2022
Published online: 06 July 2022
27. Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M, Jiang K, Arunukumar GA, Jurczyszak D, Polanco J, Bermudez-Gonzalez M, Kleiner G, Aydillo T, Morin L, Ferier DS, Lugo LA, Kojic EM, Stoever J, Liu STH, Cunningham-Rundles C, Felgner PL, Moran T, Garcia-Sastre A, Caplivski D, Cheng AC, Kedzierska K, Valapalli Q, Hejpojoki JM, Simon V, Kramer G (2020) A serological assay to detect SARS-CoV-2 sercoversion in humans. Nat Med 26:1033–1036. https://doi.org/10.1038/s41591-020-01935-2

28. Smith I, McCullum GA, Liberti MA, Bombicino SS, Trabucchi A, Klausberger M, Duerkop M, Haslacher H, Wozniak-Knopp G, Cserjan-Indenbaum V, Koren R, Katz-Likvornik S, Yitzchaki M, Halpern O, Regev-Aizenshtat S, Hoffman T, Kolstad L, Lindahl JF, Albinsson B, Bergqvist A, Rönnberg B, de Camargo BR, da Silva LA, de Oliveira AS, Ribeiro BM (2021) An easy to implement, specific and quantitative SARS-CoV-2 antibody detection. Wellcome Open Res 6. https://doi.org/10.12688/wellcomeopenres.16628.1

29. Jegouc SM, Jones IM, Edwards AD (2021) Affordable mobile microfluidic diagnostics: minimum requirements for smartphones and digital imaging for colorimetric and fluorometric anti-dengue and anti-SARS-CoV-2 antibody detection. Wellcome Open Res 6. https://doi.org/10.12688/wellcomeopenres.16628.1

30. Lu L, Chu AW-H, Zhang RR, Chan W-M, Ip JD, Tsoi H-W, Chen L-l, Cai J-P, Ip T-C, Poon RW-S, Siu G-KH, Mok BW-Y, Cheng VC-C, Chan KH, Yuen K-Y, Hung IF-N, To KK-W (2021) The impact of spike N501Y mutation on neutralizing activity and RBD binding of SARS-CoV-2 convalescent serum. EBioMedicine 71:103544. https://doi.org/10.1016/j.ebiom.2021.103544

31. Singh V, Allahwadi P, Khurana A, Banothu AK, Bharii KK (2021) Critical neurological features of COVID-19: Role of imaging methods and biosensors for effective diagnosis. Sensors 21:100098–100109. https://doi.org/10.3390/s211010098

32. Hovin J, Balderston S, Tran T, deBoer T, Ehren O, Sandhu M, Wauford NA, Chung J-Y, Nores K, Athayia M, Paredes J, Peytavi R, Goldsmith B, Murthy N, Conboy IM, Aran K (2019) Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat Biomed Eng 3:427–437. https://doi.org/10.1038/s41555-019-0387-1

33. Mahari S, Roberts A, Shahdeo D, Gandhi S (2020) eCoV-Sens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCoV-19 antigen, a spike protein domain 1 of SARS-CoV-2. Biosens Bioelectron 2020(04):24.059204. https://doi.org/10.1016/j.bios.2020.04.059204

34. Mavrikou S, Moschopoulou G, Tsekouras V, Kintzos S (2020) Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 S1 spike protein antigen. Sensors 20:3121

35. Xiao Z, Cui H, Song W, Xu R, Zhou W, Yu X (2020) A simple magnetic nanoparticles-based viral RNA extraction method for efficient detection of SARS-CoV-2. BioBioEng 2020(22):961268. https://doi.org/10.1016/j.bobio.2020.02.22961268

36. Mostra P, Alafaeel M, Doghe K, Frieman MB, Pan D (2020) Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmidic Nanoparticles. ACS Nano 14:7617–7627. https://doi.org/10.1021/acs.nanolett.0c03822

37. Huang H, Tian D, Liu Y, Lin Z, Lyon CJ, Lai W, Fusco D, Drouin A, Yin X, Hu T, Ning B (2020) Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis. Biosensors and Bioelectronics 164:112316. https://doi.org/10.1016/j.bios.2020.112316

38. Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J (2020) Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano 14:5268–5277. https://doi.org/10.1021/acsnano.0c02349

39. Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, Zhang Y, Wang J, Huang B, Lin Y, Yang J, Cai W, Wang X, Cheng J, Chen Z, Sun K, Pan W, Zhan Z, Chen L, Ye F (2020) Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 92:1518–1524. https://doi.org/10.1002/jmv.25727

40. Tian B, Gao F, Fock J, Dufva M, Hansen MF (2020) Homogeneous circle-to-circle amplification for real-time optomagnetic detection of SARS-CoV-2 RdRp coding sequence. Biosensors and Bioelectronics 165:112356. https://doi.org/10.1016/j.bios.2020.112356

41. Pollet J, Chen W-H, Strych U (2021) Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 170:71–82. https://doi.org/10.1016/j.addr.2021.01.001

42. Yan Y, Pang Y, Liu Z, Wang R, Wu K, You C, Zhao H, Manickam S, Lester E, Wu T, Pang CH (2021) The COVID-19 vaccines: recent development, challenges and prospects. Vaccines (Basel) 9:349. https://doi.org/10.3390/vaccines9040349

43. Guruprasad L (2021) Human SARS-CoV-2 spike protein mutations. Proteins 89:569–576. https://doi.org/10.1002/prot.26042

44. Francica JR, Flynn BJ, Foulds KE, Noe AT, Werner AP, Moore IN, Gagne Proteins 89:569–576. https://doi.org/10.1002/prot.26042

45. Sridhar S, Joaquin A, Bonaparte MI, Bueso A, Chabanon A-L, Chen A, Chicz RM, Diemert D, Essink BJ, Fu B, Grunenberg NA, Janosczyk H, Keever MC, Rivera MDM, Meng Y, Michael NL, Munsiff SS, Ogbaruogu A, Raabe VN, Severance R, Rivas E, Romanynak N, Rouphael NG, Schuerman L, Sher LD, Walsh SR, White J, von Barbier D, de Bruyn C, Ranter G, Gillet M-H, Keshhtar-Jahomi M, Koutoukos M, Lopez D, Masotti R, Mendza
Francica JR, Flynn BJ, Foulds KE, Noe AT, Werner AP, Morre IN, Gagne M, Chen S, Evert B, Adeniyi A, Salla-Martret M, Lua LHL, Ozberk V, Pandey Chevillard C, Amen A, Besson S, Hannani D, Bally I, Dettling V, Gout E, Tamminen K, Heinimäki S, Gröhn S, Blazevic V (2021) Fusion protein of rotavirus

Chu K, Kang H, Yoon K, Lee H, Moon E, Han B, Quan F (2021) Influenza

Sekimukai H, Iwata-Yoshikawa N, Fukushi S, Tani H, Kataoka M, Suzuki

dose-finding, multi-centre study. medRxiv. https://doi.org/10.1101/2021.09.20.461023

van Oosten L, Altenburg JJ, Fougourez C, Geerstema C, van den End F, Evers WC, Westphal AH, Lindhoud S, van den Berg W, Swarts DC, Deurhof L, Suhrbier A, Le TT, Torres Morales S, Myeni SK, Sakamoto K, Stella A, Saganard M, Keijzer-TMP, Weijers D, Empink MMH, Wijffels RH, van Oers MM, Martens DE, Pijlman GP (2021) Two-component nanoparticle vaccine displaying glycosylated S1 domain induces neutralizing antibody response against SARS-CoV-2 variants. mBio 12:e0181321. https://doi.org/10.1128/mBio.01813-21

Dai L, Zheng Y, Hong H, Yang M, Li Y, Huang E, An Y, Cheng Y, Li S, Liu M, Yang M, Li Y, Cheng H, Yuan Y, Zhang W, Ke C, Wong G, Qi J, Qin C, Yan J, Gao GF (2020) A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 182:722–733.e11. https://doi.org/10.1016/j.cell.2020.06.035

Tabynov N, Turebekov N, Babayeva M, Fomin G, Yerubaev T, Yusupov T, Li L, Renukaradhya G, Petrovsky N, Tabynov K (2021) An adjuvanted subunit SARS-CoV-2 spike protein vaccine provides protection against COVID-19 infection and transmission. Res Square. https://doi.org/10.21203/rs.3.rs-902649/v1

Li L, Honda-Okubo Y, Huang Y, Jiang H, Carlcock MA, Baldwin J, Pipilani S, Bebin-Blackwell AG, Forgacs D, Sakamoto K, Stella A, Turville S, Chatway T, Colella A, Triccas J, Ross TM, Petrovsky N (2021) Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39:5940–5953. https://doi.org/10.1016/j.vaccine.2021.07.087

Sekimuki H, Iwata-Yoshikawa N, Fukushima S, Tani H, Katakma M, Suzuki T, Hasegawa H, Niikura K, Arai K, Nagata N (2020) Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol 64:33–51. https://doi.org/10.1111/1348-0421.12754

Pavot V, Berry C, Kishiko M, Anosova NG, Huang D, Tibbits T, Raillard A, Gautheron S, Gute G, Koutsoukos M (2021) SARS-CoV-2 preS-dTM vaccine booster candidates increase functional antibody responses and cross-neutralisation against SARS-CoV-2 variants of concern in non-human primates. bioRxiv. https://doi.org/10.1101/2021.09.20.461023

Li J, Ulijn R, Silbester E, Taylor DR, Viscidi R (2013) Immunogenicity and protection efficacy of monomeric and trimeric recombinant SARS coronavirus spike protein subunit vaccine candidates. Viral Immunol 26:126–132. https://doi.org/10.1089/vim.2012.0706

Kanekyo M, Wei C, Yassine HM, McTamney PM, Boyington JC, Whitt J, Rao SS, Nabel GJ (2013) Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499:102–106. https://doi.org/10.1038/nature12202

Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Xu Y, Huang Y, Wang H, Yang Y, Zhao Y, Ye F, Lin S, Deng W, Chen H, Lei H, Zhang Z, Luo M, Gao H, Zheng Y, Gong Y, Jiang X, Xu Y, Lu G, Li D, Wang M, Li F, Wang S, Wang G, Yu P, Qu Y, Yang L, Deng H, Tong A, Li J, Wang Z, Shen G, Zhao Z, Li Y, Luo J, Liu H, Yu W, Yang M, Xu J, Wang J, Li H, Wang H, Kuan D, Lin P, Hu Z, Guo W, Cheng W, He Y, Song X, Chen C, Xue Z, Yao S, Chen L, Ma X, Chen S, Gou M, Huang W, Wang Y, Fan C, Tian Z, Shi M, Wang FS, Dai L, Wu M, Li G, Peng Y, Qian Z, Huang C, Lau JYN, Yang Z, Wei Y, Chen C, Peng X, Qin C, Zhang K, Lu G, Wei X (2020) A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 586:572–577. https://doi.org/10.1038/s41586-020-2599-8

Lin H-T, Chen C-C, Chiao D-J, Chang T-Y, Chen X-A, Young J-L, Kuo S-C (2021) Nanoparticular CpG-adjuvanted SARS-CoV-2 S protein elicits broadly neutralizing and Th1-biased immunoreactivity in mice. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.11.020

Lee HJ, Park N, Cho HI, Yoon JK, Van ND, Oh YK, Kim YB (2010) Development of a novel viral DNA vaccine against human papillomavirus: AChERV-HP16L1. Vaccine 28:1613–1619. https://doi.org/10.1016/j.vaccine.2009.11.044

Kost TA, Cordrey JP, Jarvis DL (2005) Baculovirus as versatile vectors in recombinant protein production using the baculovirus-insect cell platform. Bioinformatics. https://doi.org/10.1093/bioinformatics/bth135

Forchette L, Sebastian W, Liu T (2021) A comprehensive review of COVID-19 vaccines: status and perspectives. Front Microbes (2021) Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 385:1172–1183. https://doi.org/10.1056/NEJMoa2107659

Forchette L, Sebastian W, Liu T (2021) A comprehensive review of COVID-19 virology, vaccines, variants, and therapeutics. Curr Med Chem 28:1037–1051. https://doi.org/10.2174/0929867128615900117

Callaway E (2021) Omicron likely to weaken COVID vaccine protection. Nature 600:367–368. https://doi.org/10.1038/s41586-021-03672-3

Zhang J, He Q, An C, Mao Q, Gao F, Bian L, Wu X, Wang Q, Liu P, Song L, Huo Y, Liu S, Yan X, Yang J, Cui B, Li C, Wang J, Liang Z, Xu M (2021) Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg Microbes Infect 10:1598–1608. https://doi.org/10.1002/ermi.2221751.2021.1957401

Kanokudom S, Assawakool S, Suntronwong N, Chansanejorn A, Ujphimai N, Naryaanimit P, Vichaiwatana P, Thongmeye T, Yorawong N, Hongdechinda T, Chum以色列 P, Pakchanratan S, Pirunmatt D, Thanatatam K, Nlinfueung S, Mongkoljapaya S, Sudhinanraset N, Wanlapakorn N, Honsawek S, Poomvanavaravan Y (2020) Comparison of the reactogenicity and immunogenicity of a reduced and standard booster dose of the mRNA COVID-19 vaccine in healthy adults after two doses of inactivated vaccine. medRxiv. https://doi.org/10.1101/2020.11.04.20217375

Azali et al. Journal of Genetic Engineering and Biotechnology (2022) 20:98 Page 18 of 20
82. Aleld-Serrano A, G"al-Naeli A, Isla J, Mingorance A, Mendez-Hermida F, Hernandez-Alcocer R (2021) Gene therapies and COVID-19 vaccines: a necessary discussion in relation with viral vector-based approaches. Orphanet J Rare Dis 16:316. https://doi.org/10.1186/s13023-021-01959-3

83. Nasuelli NA, De Marchi F, Cecchin M, De Paoli I, Onorato S, Pettinaroli R, Savoini G, Lodi (2021) A case of acute demyelinating polyradiculo-neuropathy with bilateral facial palsy after ChAdOx1 nCoV-19 vaccine. Neurul Sci 42:4744–4749. https://doi.org/10.1007/s10072-021-05467-w

84. Baral PK, Yun J, Ming JN (2021) Treatment and prevention strategies for COVID-19. In: Int J Biol Macromol 186:490–500. https://doi.org/10.1016/j.ijbiomac.2021.07.013

85. Kreye J, Reincke SM, Kornau H-C, Sanchez-Sendin E, Corman VM, Liu H, Yuan M, Wu NC, Zhu X, Lee C-CD, Trumper J, H"oltte M, Dietert K, Stoffler L, van Wardenburg N, van Hof M, H"omer M, Hoffmann J, Ababei Gagadawal, Gruber AB, Bentzbach LD, Vladimirova D, Li LY, Barthel PC, K"unker K, Hecke AC, H"openstien S, Wittenremarh M, Suttrop N, Kurth F, Franke C, Endres M, Schmitz D, Jaworowski LM, Richter A, Schmidt ML, Schwarz T, Muller MA, Drosten C, Wendisch D, Sander LE, Osterriede N, Wilson IA, Pruss H (2020) A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell 183:1058–1069.e9. https://doi.org/10.1016/j.cell.2020.09.049

86. Liu H, Wu NC, Yuan M, Bangaru S, Torres JL, Canaves T, van Schooten J, Zhu X, Lee C-CD, Brouwer PIM, van Gils MA, Wilson IA (2020) Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity. Immunity 53:1272–1280.e5. https://doi.org/10.1016/j.immuni.2020.10.023

87. Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin PC, Skriner K, Hocke AC, Hippenstiel S, Witzenrath M, Suttorp N, Kurth F, Stöffler L, von Wardenburg N, van Hoof S, Homeyer MA, Hoffmann J, Yuan M, Wu NC, Zhu X, Wang Y, Han C, Wu L (2020) ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection. Sci Rep 10:21393. https://doi.org/10.1038/s41598-021-89957-z

88. Miller A, Leach A, Thomas J, McAndrew C, Bentley E, Mattiuzzo G, John L, Mirazimi A, Harris G, Ganage N (2021) A super-potent tetramerized ACE2 protein displays enhanced neutralization of SARS-CoV-2 virus infection. Sci Rep 11:1–13. https://doi.org/10.1038/s41598-021-10772-2

89. Wei S, Duan S, Liu X, Wang H, Ding S, Chen Y, Xie J, Tian J, Yu N, Ge P, Zhang X, chen X, Li Y, Meng Q (2021) Chicken egg yolk antibodies (IgYs) block the binding of multiple SARS-CoV-2 spike protein variants to human ACE2. Int Immunopharmacol 109:172. doi:https://doi.org/10.1016/j.intimp.2020.107172

90. Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L (2020) A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584:120–124. https://doi.org/10.1038/s41586-020-2381-y

91. Morwaki T, Abe S, Oshimura M, Kazuki Y (2020) Transchromosomic technology for genomically humanized animals. Exp Cell Res 390:111914. https://doi.org/10.1016/j.yexcr.2020.111914

92. Brüggemann M, Osborn MJ, Ma B, Hayre J, Avis S, Lundstrom B, Buelow R (2015) Human antibody production in transgenic animals. Arch Immunol Ther Exp (Warsz) 63:101–108. https://doi.org/10.1007/s00005-014-0322-x

93. Liu Z, Deng Y-Q, Ye Q, Cao L, Sun C-Y, Fan C, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang N, Nie J, Cui Z, Zhu D, Shaw N, Li X-F, Li Q, Xie L, Wang Y, Yao Z, Qin C-F, Wang X (2020) Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science 369:1505–1509. https://doi.org/10.1126/science.abc5881

94. Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, Acton OJ, Jacconi S, Guarino B, Minola A, Zatta F, Sgrugiasco N, Baus X, De Marco A, Nix JC, Mele F, Jovic S, Rodriguez BF, Gupta SV, Jin F, Piumatti G, Lo Presti G, Pellanda AF, Biggiogero M, Tarkowski M, Pizzuto MS, Cameroni E, Havenar-Daughton C, Smithy M, Hong D, Lepori V, Albanez C, Ceschi A, Bernasconi E, Elzi L, Ferrari P, Garzonni C, Riva A, Snell G, Sallusto F, Fink RV, WKH, Lanzavecchia A, Corti D, Veesler D (2020) Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution cryo-EM. Cell 183:1024–1042.e13. https://doi.org/10.1016/j.cell.2020.09.037

95. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Luh H, Mok CKP, Wilson IA (2020) A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368:630–633. https://doi.org/10.1126/science.abb2698

96. Zhong H, Chen Y, Zhang S, Niu P, Qin K, Jia W, Huang B, Zhang S, Lan J, Zhang L (2019) Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun 10:1–13. https://doi.org/10.1038/s41467-019-10897-4

97. Lu Q, Zhang Z, Li H, Zhong K, Zhao Q, Wang Z, Wu L, Yang D, Sun S, Yang N (2021) Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J NanoBiotechnol 19:1–12. https://doi.org/10.1186/s12951-021-00768-w

98. Nieto GV, Jara R, Waterson D, Modhiran N, Amariella AA, Himelreics, K, Ghomykh AA, Salinas-Rebolledo C, Pinto T, Chequerumila Y (2021)
