Review of Fishery Oceanography of the Early Stages of Loliginidae (Cephalopods: Myopsida): Paralarvae along the Continental Southeast Platform of Brazil between the Cape of São Tomé (Rio de Janeiro) and Cananeia (São Paulo) (22°–25°S)

*Wilfred Boa Morte Zacarias 1,2,3,4, Xiaojie Dai 1,2,3,4, Richard Kindong 1,2,3,4

1) College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, P. R. China
2) National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, P. R. China
3) Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources of Ministry of Education, Shanghai Ocean University, Shanghai 201306, P. R. China
4) Collaborative Innovation Center for Distant-water Fisheries, Shanghai 201306, P. R. China

*Corresponding author: wilfredzacarias@live.com

Abstract: Cephalopod fishing in Brazil has been on the rise as a result of the growing demand for high quality food. Therefore, for the sustainable exploitation of this resource, adequate evaluation and scientifically supported management strategies are necessary. Notably, the squid which belongs to the family Loliginidae are fishery resources of increasing importance in the marine ecosystem of the Continental Shelf Southeast and South of Brazil. However, information about stock status, knowledge of life history, ecology and the distribution of the early stages of its life cycle is still very insufficient. The present review analyzed more than 100 scientific articles, related to the history of life and ecology, the identification of the occurrence of cephalopods of the Loliginidae family in the region between Cabo de São Tomé (RJ) and Cananeia (SP), the patterns of family distribution to oceanographic processes that were identified from horizontal and vertical maps of abundance, temperature and salinity in plankton sampling collected by 11 oceanographic cruises conducted by the Oceanographic Institute of the University of São Paulo (USP) and published in 2013. Respectively, Generalized Linear Models (GLM) were used to detect the factors that would explain the occurrence and abundance of Loliginidae, which indicated the depth and sea surface temperature (SST), height of the sea surface (HSS), salinity of the sea surface (SSS), chlorophyll-a concentration Sea Surface Temperature (SST) and plankton density (PD). Also, a Redundancy Analysis (RDA) revealed the main distribution patterns observed for the three main species of Loliginidae in relation to the oceanographic variables. *Doryteuthis sanpaulensis* predominated in the northern region of the sampling area, associated with cold waters and resurgence events. *Doryteuthis pleii* occurred mainly in the southern region of the study area in warmer waters. *Lolliguncula brevis* was found only in the estuarine region of Santos, i.e in the shallow and less saline waters. The results obtained represents a relevant contribution to sustainable management for the exploitation of these resources and also contributes to the knowledge about squid fishing oceanography in the regional marine ecosystem.

Keywords: Paralarvae; Squid; *Doryteuthis sanpaulensis*; *Doryteuthis pleii*; *Lolliguncula brevis*; Space-time pattern; Horizontal distribution; Fishing oceanography.
1. Introduction

Cephalopods are important components of marine ecosystems around the world, playing a significant role in interspecific trophic relationships and sustaining industrial and artisanal fisheries (Rodhouse & Nigmatullin, 1996; Boyle & Rodhouse, 2005). These mollusks occupy several trophic levels and are considered the main intermediaries in the energy flow between primary, secondary consumers and top predators (Santos & Haimovici, 2002; Gasalla et al., 2010). However, the annual squid catch fluctuates most likely due to the influence of inter and intra-annual oceanographic variability in their feeding and spawning areas (Boletzky, 1986; Boyle, 1990; Piatkowski et al., 2001; Rodhouse, 2001; Rocha et al., 2001; Guerra, 2004; Boyle and Rodhouse, 2005). This is because the abundance and distribution of squid populations is highly susceptible to climate change and environmental conditions at a variety of spatio-temporal scales (Pierce et al., 2006). Immense studies have found that there is a strong relationship between the abundance of squid in the Loliginidae family and marine environmental conditions at different scales.

Loliginidae is a widely distributed squid family of economic importance which is widely used as a fishery products and with an important role in an intricate marine food web and it is composed of 47 species distributed in 10 genera of which all are pelagic (Fields, 1965; Pierce et al., 2006; Vecchione & Young, 2010a; Granados-Amores et al., 2014). Generally, Loliginids have the posterior end of the fins connected to the mantle and four rows of suction cups in the tentacle (Vecchione & Young, 2010).

These characteristics make the cephalopod populations respond quickly to environmental changes, with consequent interannual fluctuations in recruitment and catch rates (Pierce et al., 2006; Jackson, 2008). These characteristics also bring complexity to the population structure, making the application of conventional methods of assessment and management of stocks limited (Rodhouse, 2005; Perez et al., 2006). Thus, it is essential to understand their population strategies and mechanisms in relation to environmental variability (Araújo, 2013). Previously, two of the most common species on the Brazilian coast including Doryteuthis pleii (Blainville, 1823) and D. sanpaulensis (Brakoniecki, 1984), were placed in the genus Loligo, a genus that is now restricted to the Eastern Atlantic (Vecchione et al., 2005).

The main species of squid exploited commercially which belong to the Loliginidae families presented peculiar characteristics such as; short life cycle (less than one year), semi-parity (single
reproductive event, followed by death) and high growth rates, characteristics that significantly affect their availability for fishing (Rodhouse & Nigmatulin, 1996; Boyle & Rodhouse, 2005).

Generally, survival strategies in the early stages of the squid's life cycle are fundamental to the biological production of these organisms. The factors responsible for successful recruitment depend mainly on the interactions between the early stages of the life cycle and biotic and abiotic factors (Rodhouse et al., 1992).

Therefore, the need to develop several studies to better understand the mechanisms that occur in the early stages of development of these cephalopods in the South and Southeast regions of Brazil, as they are essential for understanding the distribution, biology, spawning and recruitment areas, structure population, and fishing strategies (Piatkowski, 1998). The initial phase of the life cycle of most cephalopods such as squid is called paralarvae, as it does not present morphological differences in relation to adults, as occurs with fish larvae and other organisms (Piatkowski, 1998; Young & Harman, 1988). They differ from the adults is only in their planktonic way of life (Barón, 2003b). Squid flanks are efficient predators of zooplankton, and active fins using jet propellers, however, their distribution is particularly dependent on ocean circulation (Barón, 2003b).

According to Röpke et al. 1993, the vertical structure of the water column, especially the occurrence of the pycnocline and the variable depth of the mixing layer, has been shown to be an important factor in the distribution patterns of the paralarvae. In the southeastern region of Brazil, until now, the relationship between the occurrence of Loliginidae (Doryteuthis plei, Lolliguncula brevis and Doryteuthis sanpaulensis) and the oceanographic characteristics was observed only by; Castellanos, 1967; Juanicó, 1979; Gonzalez-Rodriguez, 1982; Haimovici & Andriguetto, 1986; Costa & Haimovici, 1990; Andriguetto & Haimovici, 1991; Costa & Fernandes, 1993; Costa, 1994; Barón, 2003b; Vidal et al., 2010, where the seasonal resurgence is able to increase local productivity, providing adequate conditions for the growth of paralarvae. Paralvae survival depends on specific oceanographic characteristics, being particularly responsible for the success of stock recruitment (Rodhouse et al., 1992; Moreno et al., 2009).

The mapping of catches of Loliginidae species was typically carried out using the cruise ship's on-board map system, indicating that the best yields were associated with the areas of higher productivity originated by the coastal resurgence of Cabo de São Tomé (RJ) and Cananeia (SP), (Costa & Haimovici, 1990). Thus, most of the efforts and accumulated data on biology and fishing potential of this species were related to the South and Southeast (Haimovici & Andriguetto, 1986;
Andriguetto, 1989; Andriguetto & Haimovici, 1991), which mostly is used to refer to the area around the Brazilian coast. It is known in several aspects of the fishing and ecological distribution of squid in the family Loliginidae. Consequently, several studies that have been already published on Loliginidae indicated that many species belonging to the benthic and nectonic communities of the South and Southeast are subject to the influence of oceanographic phenomena (Costa & Fernandes, 1993a; 1993b; Vidal et al., 2010).

In this review, we summarize the life history of squid of the Loliginidae family on the Continental Southeast Platform in relation to population structure, distribution of the paralarvae, abundance, age and growth, the migratory behaviors and spawning areas. These factors are fundamental for understanding the larval dispersion and mechanisms responsible for recruitment variability. In addition, we discuss the impacts of oceanographic variability on squid Loliginidae at regional scales. In view of this, we propose a mathematical modeling technique to describe the relationship between oceanographic characteristics and conditions with an understanding of relevant physical-biological processes and mechanisms. Our tests will contribute to develop the ability to predict the population dynamics of Loliginidae and improve the sustainable management of squid fishing resources.

In addition, the perception of recruitment and spawning were taken into account in the assessment of fisheries stocks and in fisheries management measures (Pierce et al., 2008; Moreno et al., 2009). And just as important, we note that Loliginidae squids are limited to productive coastal regions on the continental shelf, in all oceans, except the Arctic and Antarctica, extending to a depth of 200 meters (Boyle & Rodhouse, 2005). The representatives of this family have a characteristic that is dependent on the fund for the deposition of their eggs and also the preference for demersal prey as well as the water column (Boyle & Rodhouse, 2005; Rodhouse, 2005).

2. Life history of the squid in relation to oceanography

The hydrographic conditions of the Southeast region of Brazil between Cabo de São Tomé (22°S, Rio de Janeiro) and Cananeia (25°S, São Paulo), depend primarily on the spatial displacement of two bodies of water that touch the Continental Shelf: the Current of Brazil (CB) and the (CAT) Central Water of the South Atlantic (Castro et al., 2006; Brazil, 2006). In view of this, the spatial and temporal alternation of these bodies of water are directly dependent on the topography of the submarine floor and the prevailing wind regime (Costa, 1994).
In the region of Continental Southeast Platform (CSEP) it has a width of 50 to 230 km and the depth of the platform break varies between 120 and 180 meters (Castro et al., 2006; Araujo, 2013). With regard to sediments, the PCSE is mainly covered by sand and mud (Brasil, 2006; Araujo, 2013), with low water salinity, which comes from the mixture between tropical (AT), hot and saline water (T > 20ºC and S > 36.40). This is then transported via the superficial layer of the Current of Brazil (CB) and the Central Water of the South Atlantic (ACAS) which is relatively cold (T < 20ºC and S < 36.4). Additionally, the PCSE is as well as transported in the lower layer of the CB and Coastal Water (AC) that results from the mixture of continental freshwater discharge with those from the continental shelf, with the lowest salinity (S < 34) of the waters of the PCSE (Castro et al., 2006; Brazil, 2006).

Thus, in view of these hydrographic conditions in the South and Southeast of Brazil, we can find a large variety of squid representative of the Loliginidae family that has more than 40 species already described (Haimovici & Andrigueto - Filho, 1986), with great prominence within the group by its economic importance and the morphological diversity and body sizes (Haimovici et al., 1989). Therefore, the representatives who are part of this Family have as a characteristic the dependence on the fund for the deposition of their eggs and also the preference for demersal prey and the water column (Boyle & Boletzky, 1996; Boyle & Rodhouse, 2005).

In Brazil, five species of squid from the family Loliginidae were reported between Cabo de São Tomé (RJ) and Cananéia (RGS) shown in (Fig.1): *Doryteuthis plei* (Blainville, 1823), *Doryteuthis sanpaulensis* (Brakoniecki, 1984), *Pickfordioteuthis pulchella* (Voss, 1953) *Lolliguncula brevis* (Blainville, 1823) and *Sepioteuthis sepioidea* (Blainville, 1823). Importantly, it should be noted that the last two species mentioned above are known to be restricted to estuarine regions and coral reefs (Palacido, 1977; Juanicó, 1979; Haimovici & Andrigueto - Filho, 1986; Haimovici et al., 1989; Haimovici & Perez, 1991; Jereb et al., 2010). *Doryteuthis sanpaulensis* differs from other species by the relative proportion of the fins with a common feature of always exceeding 50% of the mantle length (Haimovici & Perez, 1991).

Among the representations of Loliginid squids, typically neritic, (*Doryteuthis plei* and *Doryteuthis sanpaulensis* formerly known as *Loligo*) is relatively more abundant in the southern region of Brazil (Haimovici & Perez, 1991; Haimovici & Andrigueto, 1986; Andrigueto & Haimovici, 1991; Costa & Fernandes, 1993a), as well as in northern Argentina 35 °S (Castellanos, 1967; Costa, 1994), sustaining a significant volume of catches (Costa & Haimavici, 1990; Perez, 2002; Gasalla
et al., 2005), Cape Hatteras (36 ° N) which is usually associated with the Brazilian hot current. It also includes the Gulf of Mexico as the dominant nectonic invertebrate species during some seasons (Dragovich & Kelly, 1967; Livingston et al., 1976), the Caribbean Sea, Bermuda and the islands of the Bahamas and the Caribbean (Migliavacca et al., 2020). The increase in catches may be a natural consequence of the decline in traditional fishing resources, which leads to increased availability and effort for capturing the potential of non-traditional species (Rodhouse, 2005).

According to Rodhouse (1998) and Gasalla et al. (2010), there is some evidence that the populations of Loliginid Cephalopods have increased in regions where their predators are overfished, which can be considered as ecological indicators. In the case of Doryteuthis plei, their commercial catches occur between Cabo Frio (Rio de Janeiro) and Cabo de Santa Marta Grande (Rio Grande do Sul), being the most important species Loliginidae in the States of São Paulo (SP) and Santa Catarina (SC), as it serves as food for cetaceans, pinnipeds, penguins, as well as several species of demersal and benthic teleost fish (Santos & Haimovici, 1998). Its distribution occurs widely in the Western Atlantic, associated with hot water currents, such as the Current of Brazil (Haimovice & Perez, 1991). On the other hand, the distribution of Doryteuthis sanpaulensis is concentrated further south of Brazil (in Argentina) and being captured mainly in the states of Rio Grande do Sul and Rio de Janeiro (in the Cabo Frio region) in association, respectively, with Subtropical Convergence and cold waters local resurgence (Haimovici & Perez, 1991; Costa & Fernandes, 1993). Both species are captured as fauna accompanying pink shrimp trawling and seasonally by artisanal fishing for squid in coastal regions. Given the ecological and commercial importance of these species, their biology on the southeastern-south Brazilian coast is relatively well known (Juanico, 1979; Haimovici et al., 1989; Costa & Haimovici, 1990; Haimovici & Perez, 1991a; Perez & Haimovici, 1991; Costa & Fernandes, 1993; Santos & Haimovici, 1998; Perez & Pezzuto, 1998; Perez, 1999; 1999; Perez, 2002a; b; Perez et al., 2002; Gasallia, 2005; Perez et al., 2006; Araujo, 2013).

The species Lolliguncula brevis has a wide distribution on the Brazilian coast of the states of Pernambuco, Rio de Janeiro, São Paulo, Paraná and Santa Catarina (Juanicó, 1979; Haimovici & Perez, 1991; Haimovici & Andrigueto Filho, 1986; Zaleski, 2010), being abundant in shallow waters (Zaleski, 2005; 2010). The small size species has shown its distribution along the west coast of the Atlantic from Delaware (39ºN and 76ºW) to southern Brazil (27ºS and 48ºW) (Vecchine et al., 1982). This species is also captured as fauna accompanying the fishing of the seven-bearded
shrimp (Perez, 1999), but different from squids of the genus *Doryteuthis* and has no commercial value (Zaleski; 2010). This Loliginid differs from other Loliginidae species as it is often found in estuaries and Bays, where the waters are less saline (Vecchione, 1991, Bartol *et al*., 2002). Further, it has respiratory pigments with high affinity for oxygen and little sensitivity for a wide range of salinity conditions which is due to low the pH dependency, which constitute characteristics responsible for the ability to explore hypoxic and euryhaline environments (Vecchione, 1991b), with an increase in abundance in salinity. In the Apalachicola estuary (Florida, USA), the most appropriate habitat for *Lolliguncula brevis* was found to be channels or passages with high speed currents and salinity of 20-30 ‰ (Laughlin & Livingston, 1982).

According to Bartol *et al*. (2002), comparisons of combinations between temperature and water salinity revealed that capture increases with increasing salinity and in relation to depths only at low temperatures (5 to 9º C) and the highest abundances are usually registered between 5.0 and 15.0m. Due to its adaptability to brackish waters, small size and easy capture, this species has been used in biomedical studies, especially in the Northern Hemisphere (Boletzky & Hanlon, 1983; Brismar & Gilly, 1987; Magnum *et al*., 1994; Hanlon *et al*.; 1999; Bartol *et al*., 2002).

Studies that focus on reproductive aspects in cephalopods have indicated that the physiological and behavioral changes resulting from the reproductive process (gonad development, decreased or loss of food activity and somatic growth) are not reversed after spawning. Consequently, cephalopods (with a few exceptions) are considered Semelparous animals (have only a single reproductive period), more or less prolonged and dying afterwards (Costa, 1984; Costa *et al*., 1994; Haimovici, 1991).

The reproductive cycle of Loliginidae was studied from the monthly changes in the gonadosomatic indexes (IGN = gland index; IT = testis index) and the relative proportions appeared in different reproductive stages. For each individual, a stage of sexual maturation was assigned based on a macroscopic scale composed of four phases: (J) Juveniles (undetermined sex); (A) Immature; (B) Maturing (C) Mature and (D) Spawned. The scale was initially proposed by Juanicó (1979, 1983), and later changed and perfected by Brakoniecki (1984) as well as Andriguetto (1996). We observed that the average length of the first sexual maturation was defined in 50% of the population found in the reproductive process, where the estimate was based on the adjustment of the gonadosomatic indexes to a logistic function based on the model described by Pauly (1984).
The reproduction and spawning of squids of the genus *Doryteuthis* and *Lolliguncula* were continuous events throughout the year, with their peaks related to seasonality and the production of several micro-cohorts. (Costa & Fernandes, 1993b; Andriguetto & Haimovici, 1996; Perez et al., 2002; Zaleski, 2005; 2010; Rodrigues & Gasalla, 2008). The observed extensive pattern of reproduction and spawning suggests that these populations invest in seasonal spawning, allowing them to experience different environmental conditions during the year, and increasing the chances for successful recruitment (Boyle & Boletzky, 1996). With the growing commercial interest in the species of Loliginídes, there is a need for studies on their biology and population dynamics, which will subsidize a sustainable management of these peculiar fishing resources (Pierce & Guerra, 1994).

In the South and Southeast regions of Brazil, many studies have been carried out on cephalopod fishing industry (Haimovici & Andrigueto-Filho, 1986; Costa & Haimovici, 1990; Perez, 2002; Gasllia et al., 2005b; Postuma & Gasallia, 2010; ZaleskiI, 2010), biology and population dynamics (Costa & Fernandes, 1993a; Perez et al., 2002; Gasalla et al., 2005a), ecology and trophic relationships (Andrigueto-Filho & Haimovici, 1991; Haimovici & Perez, 1991; Santos & Haimvici, 2001; Santos & Haimovici, 2002; Martins & Perez, 2007; Gasalla et al., 2010), reproduction (Costa & Fernandes, 1993b; Andrigueto & Haimovici, 1996; Rodrigues & Gasalla, 2008), growth (Perez et al., 2006) and occurrence of paralarvae (Andriguette et al., 1996 & Vidal et al., 2010). However, in the study area between Cabo de São Tomé and Cananeia, studies on the biology and population dynamics of these species are still quite scarce, with the contributions based on the works of Palacio (1977), Juanicó (1979), Gasalla et al. (2005a; 2005b), Perez et al. (2005), Rodrigues & Gasalla (2008) and Postuma & Gasalla (2010).

The study of coastal cephalopods, in particular Loliginids occurring in tropical regions has revealed a new relevance in times of climate change and global warming. Since these Loliginids tolerate and even thrive in warm water conditions. This group can thrive be favorably when there is a rise in temperature caused by climate change (Santos & Haimvici, 2001; Jackson et al., 2008). Therefore, understanding how these organisms respond to environmental changes can help us to predict what kind of transformations will occur in ecosystems resulting from global warming.

In this sense, this review aims to provide some key information for the management of Loliginid family fishing, specifically the ones commercialized in the South and Southeast regions of Brazil (i.e. *Doryteuthis plei*, *Doryteuthis sanpaulensis* and *Lolliguncula brevis*, which presents
both industrial and artisanal expansion. In addition, providing an understanding of the strategies of the early stages of the squid's life cycle and the mechanisms responsible for availability to fishing is fundamental for the application of catch prediction models including the assessment of the impacts of climate change on fishing and consequently for planning adaptation and mitigation measures, as highlighted by Costa & Fernandes, 1993b Santos & Haimvici, 2001; Jackson et al., 2008; Rodrigues & Gasalla, 2008.

3. Impacts of Large-Scale Oceanographic Variability

3.1 Years of El Niño and La Niña Events

For species with a short life cycle, such as squid from the Loliginidae family, distribution and abundance are strongly influenced by oceanographic conditions (Boyle & Rodhouse, 2005). In the present review, we have discussed the different patterns of distribution and abundance of the main species of the Loliginidae family. Climate variability over Northeastern Brazil (NEB) is modulated by large-scale atmospheric and oceanic patterns that occur (together or not) over the Tropical
Pacific and Atlantic Oceans (Pezzi and Cavalcanti, 2001). So the classic example of interaction between the atmosphere and ocean is the phenomenon known as El Niño / Southern Oscillation (ENOS). El Niño (EN) is characterized by anomalous heating of the superficial and sub-superficial layer of the Central and Eastern Pacific Ocean (Rasmusson and Carpenter, 1982; Pezzi and Cavalcanti, 2001). The opposite condition characterizes the La Niña (LN) events. The Southern oscillation (OS) is an anomalous variation in tropical atmospheric pressure, being an air response of the EN which is associated with the change in the general circulation of the atmosphere (Rasmusson and Carpenter, 1982; Kayano and Andreoli, 2004). This interaction has been considered one of the causes of climatic variations on the NEB (Kayano at al., 1988; Pezzi and Cavalcanti, 2001).

This connection between the EN and the NEB occurs through atmospheric circulation, just as the drought related to the event is attributed to an eastward displacement of the Walker circulation, with anomalous upward movements over the central and eastern equatorial Pacific. This also includes the downward movements (inhibition of convection) over the Tropical Atlantic (AT) and the continental NEB area (Iizumi, Toshichika, Luo, Jing-Jia, Challinor, Andrew J, Sakurai, Gen, Yokozawa, Masayuki, Sakuma, Hirofumi, Brown, Molly E, & Yamagata, Toshio, 2014). Contrary anomalous patterns in atmospheric circulation, Sea Surface Temperature (TSM) and precipitation in NEB are observed in LN episodes (Kayano at al., 1988). However, the abundance of squids in the Loliginidae family usually fluctuates as influenced by normal and/or extreme environmental conditions with particular reference to the El Niño and La Niña events that begin with an unusually hot and cold temperature range developed in the central and eastern equatorial Pacific (Wolter & Timlin, 2011). The evolution of El Niño and La Niña can be identified in the space-time changes in SST, Chl-a concentration, primary productivity, zonal wind and anomalies of 20 ℃ isothermal depth (a proxy for thermocline depth) of the TAO / TRITON matrix data along the equator (Wei. et al., 2015).

ENSO (El Niño / South Oscillation) is the phenomenon best known as large-scale variability of the oceans, due to the ocean-atmosphere coupling, especially in the face of the current global warming scenario (Philander, 1985; Gigliotti et al., 2009; Wolter & Timlin, 2011; Faccin, 2019). This phenomenon can provide insight into the possible effects of climate change on squid fisheries (Jones et al., 2014).
The events *El Niño* and *La Niña* have an impact on the distribution and abundance of Loliginidae (Cephalopod: Myopsida). For example, Zaleski, 2010; Araújo, 2013; Jones *et al*., 2014) also reported on the fundamental consequences of the interannual variability of the *La Niña* / *El Niño* of Loliginidae events in the Southeast Atlantic. Chen *et al*. (2009), analyzed data from Chinese commercial fisheries with respect to environmental variables and suggested that the *La Niña* / *El Niño* events could cause differences in squid recruitment as a result of the influence of environmental conditions on the spawning areas. In addition, a *La Niña* event would result in a decrease in squid recruitment in the spawning area with displacements to the north of the fishing area, while an *El Niño* event could yield a favorable habitat for Loliginids in the spawning area with displacements to the south fisheries (Rasmusson and Carpenter, 1982, Wei. *et al*., 2015).

Furthermore, the relationship between *El Niño* / *La Niña* with other squids or long-lived species has been studied. According to Nevárez-Martínez *et al*. (2000) an *El Niño* event would cause a sharp decrease in the resources of *D. gigas* and that the forces of the resurgence currents were strengthened in a year of *La Niña*, which translated into an increase in the abundance of squid. In the view of Jackson and Domeier (2003) they observed that the sizes of the marketed *Loligo opalescens* squid emerged and grew in an *El Niño* year and found that the squid was notably smaller with a lower growth rate than in a *La Niña* year.

Based on the findings of Sugimoto *et al*., 2001 and Wei *et al*., 2015, there are several impacts of *El Niño* events on climate regime changes on living resources, including short- and long-lived species in the western North Pacific. However, existing studies are mainly focused on determining the correlation between squid abundance / distribution and *El Niño* / *La Niña*, and have only described how the recruitment, abundance and distribution of squid populations can change correspondingly with the environmental variability in their spawning and food grounds. Our understanding of the mechanisms by which the *El Niño* / *La Niña* events lead to spatio-temporal variability in the abundance and distribution of squid is still limited.

Wang (2012) revealed that the TSM seasonal index in the *El Niño* region of *El Niño*, the evolution and seasonal intensity of events such as SON, DJF, MAM and JJA can be observed. This study also states that each EN event has its own characteristics, does not have the same start and end month, in which positive TSM anomalies can be observed in the first two quarters of the SON and DJF event, which correspond to the development phase including the maturity of the EN as described in the literature.
Therefore, the seasonal indices for the North Atlantic (ATN) and South Atlantic (ATS) in the years of EN may also be perceived as a sign of positive anomalies which is in line with other studies that reveal that the ATN is influenced by EN (Sugimoto et al., 2001).

3.2. The currents of Brazil and the Guianas Current

The oceanographic environment in the South and Southeast Atlantic Ocean is dominated by the equatorial southern current, which flows from east to the west, by finding the northeast coast of Brazil, bifurcates, originating from the Current of Brazil, which runs in the south, and the current Das Guianas, which follows northwest toward the Caribbean. Both are hot superficial chains moving near to the coast. In the sunny days, in most tropical regions of Brazil, as in the North, Northeast and Southeast regions during the summer, the existing air on the continents is constantly heated during the day, becoming less dense and rising in the atmosphere and being replaced by marine air which is described to be relatively colder and consequently giving rise to the marine breeze (Gasalla et al., 2011; Pena et al., 2021). This double process interferes significantly in the variation of the weather conditions of coastal regions, determining the wind regime and in certain situations localized storms (Castro, 2008; Pena et al., 2021).

In this sense, the chain dominates the whole region near the edge of the continental shelf on the coast of Brazil is the current of Brazil, which takes the south direction, beginning from approximately 10°S, in the proximity of the Northeast coast, and extending to approximately 35-40°S, in northern Argentina. This chain carries heated waters denominated by waters from tropical water between 18°C and 28°C, and has mean values of salinity between 35.1 to 36.2 ppm (Martins, 2006 p. 20-27; Faccine, 2019).

In the southeastern coast, especially in Cabo Frio (RJ), there is descent of sea water temperature to up to 14 °C and greater density, in the months of January and February, which circulates low from the currents of Brazil and Malvinas. This happens due to the wind, which in the summer constantly blows from the northeast direction (Miranda, 1985; Araujo, 2013). Thus, this constant wind pushes the waters of the surface which had suffered insolation and therefore were heated (around 26°C) for the open ocean (Pena et al., 2021). Therefore, it causes a water gap next to the coast, which is filled by deep, much colder waters, which rise and reach the surface. In any case, this rise of cold waters is rich in nutrients, a phenomenon known as resurgence, and occurs mainly in the summer due to the winds coming from the Northeast and
Southeast, where it is usually observed in places of great fishing activity of Loliginidae (Pena et al., 2021). In terms of Loliginidae larvae that appeared in the northern region of the area of Cabo Frio (23ºS) between 20 and 80 meters and were associated with distinct oceanographic characteristics, the paralarvae identified as *D. Plei* occurred in warmer superficial waters, on the other hand, *L. Brevis* paralarvae were associated with surface waters with less salinity conditions (Martins & Perez, 2006; Gasalla et al., 2010; Araujo, 2013). With regard to salinity we observed that Brazil's current was in the North region, evidenced by salinity values > 36, characteristic of AT. From the vertical distribution maps of the water masses, the intrusion of ACAs was evident in the study area, close to the coast and mainly in the northern region. Based on the diagram, it was also possible to identify the presence of AC, AT and AP (platform water, from the mixture of the water mass).

Based on previous studies (Vechione, 1981,1991; Martins & Perez, 2006; Gonzales et al., 2005; Baron, 2003 and Vidal et al., 2010; Moreno et al., 2009; Rodrigues & Gasalla, 2008), we can conclude that the winding standard of Brazil's current and the strength of the gulf chain do not affect the spatial distribution of Loliginidae squid fisheries. The seasonal variability of Brazil's current causes different behavior of water masses due to the formation of vortices and meanders induced by the changes in the pattern of the winds, thus causing the rise of waters and dispersion of nutrients (Campos et al., 1995; Brazil, 2006). In the summer, Ekman transport generated by the dominance of northeast winds and vortex training in the chain of Brazil move from the superficial stratified water column, promoting intrusion and resurrect with the presence of ACAs below 15 meters deep, which is rich in nutrients and responsible for increasing primary productivity and favoring the survival of meroplanktonic larvae. The penetration of ACAs during the summer causes a stratification with the formation of a strong thermocline. Conversely, the water column becomes homogeneous during the winter due to its indent to the slope (Borzone et al., 1999; Brazil, 2006). During the new spring thermocline period a maximum gradient is recorded in February, when the temperature falls from 26°C to 7m to 16 °C to 14m deep (Borzone, 1999).

3.3. Synthesis of the occurrence and distribution of Loliginidae paralarvae

For short-term cycle species, as is the case of Loliginid squid, distribution and abundance are strongly influenced by the oceanographic conditions (Boyle & Rodhouse, 2005). In the present review, it was possible to observe different patterns of distribution and abundance of the main
species of Loliginidae. In this review, although paralarvae have occurred throughout the study area, they were mainly found close to the coast, but concentrated in distinct regions. In view of the oceanographic variation caused by the complex and dynamic hydrography of the study area (Young & Harman, 1988; Piatkowski, 1998).

Paralarvae distribution standards may also be related to the distribution of adults, since mature individuals in the Loliginidae family move to more shallow areas for reproduction and spawning (Rodrigues & Gasalla, 2008), thus becoming the target of the fishing activities (Postuma & Gasalla, 2010). More so, Lipiski (1998) found that the distribution and abundance of ripe cephalopods determines the distribution and abundance of paralarvae. However, Loliginidae paralarvae in coastal waters are often rare, even in situations where there is an incidence of reproduction and spawning aggregations (Hatfield & Rodhouse, 1994; Piatkowski, 1998). Regarding the horizontal distribution, the paralarvae occurred along the sampling area and approximately to a depth of 100 meters, standard verified for various species of Loliginidae (Doryteuthis pealei Vecchione, 1981; Lolliguncula brevis Vecchione, 1991b; Doryteuthis gahi Rodhouse et al., 1992; Doryteuthis Opalescens Zeidberg and Hamner, 2002; Loligo vulgaris Gonzalez et al., 2005; Doryteuthis Plei Martins & Perez, 2006; Loligo vulgaris Moreno et al., 2009; Doryteuthis sanpaulensis Vidal et al., 2010).

As for the vertical distribution, the paralarvae were collected to the stratum of 40 meters deep, and the largest abundance was found between 20 and 40 meters. However, few works were described for vertical distribution of paralarvae, the surface temperature of the sea (TSM °C), surface salinity of the sea (SSM), depth (M) for loliginidae, and can cite Vecchione, 1981; Zeidberg & Hamner 2002; Young, 1998; Gasalla at al., 2011; Araujo, 2013, who analyzed higher abundances on the surface, for Doryteuthis pealei, and up to 30 meters deep for Doryteuthis Opalescens, respectively.

For paralarvae of the species Doryteuthis sanpaulensis were the most abundant in the sampling area, distributing between Cabo Frio and the island of São Sebastião. As well as in Barón (2003b) and Vidal et al. (2010), the paralarvae were found only on the internal platform, up to 60 meters. The greatest abundance occurred during the summer wide of Cabo Frio.

In addition, the largest abundance of D. Sanpaulensis may be vigorously related to the occurrence of coastal resurgence in this region. During the summer and spring, the wind prevails in the east and northeast direction, causing removal from the surface waters of the chain of Brazil.
toward the open sea, through the transport of Ekman, allowing the outcrop of the ACAs, cold and rich water in nutrients (Miranda, 1985; González et al., 2005). The relationship between *D. Sanpaulensis* and the resurgence phenomenon was based on the evidence of the abundance of paralarvae observed in the Cabo Frio (González et al., 2005) in which it the increase of the abundance of *Loligo vulgaris* in periods of resurgence in the Galicia, Spain was also observed.

In the perspective of Vidal et al. (2010), resurgence phenomenon can be one of the main regulators of food availability for early stages of cephalopods and their growth, survival and recruitment. The relationship between the abundance of paralarvae and the resurgence show that this phenomenon can offer favorable conditions for the survival of the beginning stages of squid (Moreno et al., 2009; Gonzalez et al., 2005). However, low temperatures may lead to a reduction in growth rates, extending the period of the initial stages, exposing them to higher mortality rates and consequently harming the recruitment process (Postuma, 2010).

In the meantime, Baron (2003a) verified that the embryonic development of *D. Sanpaulensis*, South Atlantic, is usual at temperatures between 12 and 23°C, proving with the results obtained in the study which owes to the fact that the paralarvae of *D. Sanpaulensis* were found in seasons where TSM ranged from 14.7 to 23.8°C and SSM between 34.5 to 35.5. Regarding the vertical structure of the water column paralarvae were found in homogeneous waters, dominated by stratified waters and characterized by the presence of ACAs and AT.

Doryteuthis Plei was the most frequent species in the samples analyzed which can be found mainly in the southern region of the sampling area between the island of São Sebastiao and Cananeia. In the cruises carried out in the summer paralarvae occurred between 25 and 65 meters of depth which can be associated with warmer TSM (24.8°C to 27.8°C). Regarding the vertical structure of the water column, the paralarvae were found mainly in stratified waters with the presence of AC, ACA and ATA found in the winter in homogeneous waters, characteristic of the sampling area (Baron, 2003a). The highest frequency of occurrence and plenty of *Doryteuthis Plei* were found around the island of São Sebastiao and Cananeia during the summer. Therefore, these results come according to the peak of reproductive activity already observed by (Martins & Perez, 2006; Rodrigues & Gasalla, 2008; Postuma, 2010). Significantly, the paralarvae of *D. Plei* were associated with warmer waters compared to *Sanpaulensis*. A characteristic also observed for adult populations of these two species (Juanico, 1979; Costa & Fernandes, 1993b) but the squid of *D. Plei* has preferences for warmer waters than the squid of *D. Sanpaulensis*.
However, during the summer and spring, the paralarvae of *D. Plei* were found in stations with the laminated water column which similar to the observations by Martins & Perez (2006) in Santa Catarina, and Gasalla *et al.* (2011) in São Sebastiao.

Lolloguncula Brevis are exclusively distributed in Santos Bay during the summer and only a single occurrence has been recorded near the coast in the Santos region during spring. Individuals belonging to this genus have peculiarities in relation to their habitat, since it is the only genus of the Loliginidae family that tolerates environments with low salinity water (Castellanos, 1967; Bartol *et al.*, 2002). According to Vecchione (1991b), in the coastal and estuarine region of Louisiana, in the United States paralarvae of this species associated with low salinity waters. From our search of the literature, we observed that the paralarvae are most often found in shallow and low salinity waters, in homogeneous waters and characterized with the presence of AC which also associated with TSM around 25°C.

Moreover, Loliginidae species were associated with stratified waters with distinct oceanographic characteristics for paralarvae identified as genus *Doryteuthis* and occurred in warmer superficial waters. However, the paralarvae of *L. Brevis* were mostly associated with less saline surface waters. It is worth stating that, the results observed and obtained in the study represented an important contribution to the knowledge of the fishing oceanography of loliginid squid in the regional marine ecosystem. The identification of essential habitats for the initial stages of the life cycle of commercially important species for fishing has relevance to the evaluation and management of inventories, as well as for their conservation.

![Diagram](image.png)

Fig. 2. Synthesis of the distribution patterns and oceanographic conditions associated with the Loliginidae sands, collected in the region between Cabo de São Tomé (RJ) and Cananeia (SP). TSM = sea surface temperature; SSM = surface salinity of the sea; AC = Coastal Water; ACAS = Central Water of the South Atlantic; AP = Platform Water; AT = Tropical Water (Araujo, 2013).
In addition, we can also observe that there was a positive correlation between abundance and the TSM interval, which were approximately between 21.5 to 22.5°C. Regardless of the influence of the Pacific Ocean, the variability of SST in the South Tropical Atlantic Ocean also presents its importance and impact on the climate of the NEB region (Hastenrath and Heller, 1977; Moura and Shukla, 1981; Andreoli, 2002; Kayano et al., 2004). Some studies such as those by Hastenrath and Heller, 1977; Hastenrath, 1978; Moura and Shukla, 1981, show that in years of drought, ATSM in the Tropical Atlantic show a positive GRADM behavior (positive ATSM in the north and negative in the south of Ecuador), for rainy years this behavior is reversed and GRADM is negative. For years in agreement on the Pacific and Atlantic, that is, EN and GRADM positive or LN and GRADM negative, the relationship between ATSM in the Tropical Atlantic and NEB precipitation is stronger and the amplitudes of precipitation anomalies are larger and more significant, with drought and rain conditions being observed, respectively, around or greater than the average. Generally, in divergent years (EN and negative GRADM or LN and positive GRADM) this relationship is weaker, since the Tropical Atlantic behaves in the opposite direction to the event in the Pacific, limiting or even reversing the sign of precipitation anomalies over the NEB (Pezzi and Cavalcanti, 2001, Moura and Shukla, 1981).

3.4. Atlantic multidecadal oscillation

For several decades, the existence of inter-dimensional and multi-dimensional internal climatic oscillations have been affirmed by numerous studies based on analyzes of historical observations, paleoclimatic data and simulations of climatic models. Therefore, a combination of observational data and simulations of forced climate models and state-of-the-art control was used to demonstrate the absence of consistent evidence for decadent or long-term internal oscillatory signals that are distinguishable from climate noise. Only the variability in the interannual band associated with El Niño / South Oscillation is distinguishable from background noise (Hastenrath and Heller, 1977). The existence of an oscillatory climate model centered in the Pacific basin with an interdecadal scale known as the Pacific Interdecadal Oscillation (PIO) or Pacific Decadal Oscillation (PDO) are two manifestations of the same phenomenon (Mann and Park, 1994; Mann et al., (2020), as it is also considered low frequency and having two distinct phases i.e. one is cold and the other described as hot. For Moura and Shukla (1981) this oscillation occurs on an annual and decadal scale, and is linked to the southern variation of the Zone of Intertropical Convergence (ZCIT),
which is one of the main mechanisms that causes precipitation in the north and also on the east of the NEB.

The evidence of a multidecadal climatic fluctuation (time scale of 50–70 years) during the 1980s centered on the North Atlantic originated in the work of Mann et al. (2020). In this sense, the Atlantic multidecadal oscillation (AMO) is a phenomenon of natural temporal climatic variability, of the sea surface temperature that occurs in the North Atlantic Ocean which is characterized by the alteration of the sea surface temperature (TSM) of the North region from the Atlantic Ocean between the Gulf of Mexico and Lower Iceland (Enfield et al., 2001; Siqueira, 2012; Mann et al., 2020).

We can also observe that in the absence of events over the Pacific (EN or LN), precipitation in the NEB correlates more strongly with the anomalies of the TSM (ATSM) of the South Tropical Atlantic - ATS than with those of the North Tropical Atlantic - ATN (Hastenrath and Heller, 1977). Therefore, the duration time is very long compared to the *El Niño* and *La Niña* phenomena.

Recently, some authors have begun to attach much importance to the interaction between the North and South Atlantic Ocean and the climate of Brazil. Among them are Siqueira and Molion (2008), who observed a correlation between moderate and strong with the precipitation over the northeast. Brazilian, Kayano and Capistrano (2013), who observed changes in the influence of *El Niño - Southeast Oscillation* from the Atlantic Multidecadal Oscillation (AMO).

According to Gamito et al. (2015) the variability in AMO coincides with the dynamics of some fishing resources, such as the reduction in landings of European sardines (*Sardina pilchardus*) and an increase in mackerel (*Scomber colias*). These results demonstrated the direct influence on the impacts of inter-decadal changes in the Atlantic climate on pelagic fisheries with repercussions on the economy of fishing regions in Portugal. These changes in climatic patterns may have effects under the reallocation of the capture potential at global levels until 2055 with gradual changes in the distribution of marine species (Cheung et al., 2010). The true sardine has its occurrence and fishing well demarcated along the Continental Southeast-South Platform of Brazil (CSSPB), between Cabo de São Tomé (Rio de Janeiro – 22°S) and Cabo de Santa Marta Grande (Santa Catarina - 29°S), although some juveniles have already been found in the southernmost position of the continental shelf 29°S and 35°S (Cergole & Valentini, 1994; Menezes et al., 2003; Castello, 2006; Moraes et al., 2012). However, previous studies have focused on long-term demersal fish stocks, while fewer studies have investigated the Atlantic Oscillation Decadal (ADO) interactions.
of Cephalopods Loliginidae. Some studies used data from chlorophyll-\(\alpha\) (Chl-\(\alpha\)) achieved by remote sensing, demonstrating the influence of global warming on the concentration of this important resource which an indication of ongoing primary production given its high sensitivity to changes in Sea Surface Temperature (TSM), Khan et al., 2013; Alvarez et al., 2012.

In the view of Khan et al. (2013), trends in the reduction of primary production are related to changes that occur in the oceans, linked to changes in temperature and thermal stratification which occur mainly during the warming period after the 1999 decade and that influenced the availability of nutrients for phytoplankton growth. The interference of climatic and oceanographic variations on the fishing activity is not limited only in long-term occurrences (multidecadals; decadals) since interannual fluctuations have also been observed. These fluctuations are directly responsible for El Niño - Southern Oscillation (ENSO), originating in the tropical Pacific (Moraes et al., 2012). ENSO (El Niño / South Oscillation) is the most well-known phenomenon among all modes of large-scale variability of the oceans due to the ocean-atmosphere coupling especially with the current global warming scenario (Philander, 1985; Sugimotoa et al., 2001; Wolter & Timlin, 2011; Faccin, 2013). This phenomenon can provide insights into the possible effects of climate change on fisheries (Jones et al., 2014).

Recently, Litz et al. (2011) indicated that the seasonal occurrence of D. gigas in the Northern California current was related to the PDO, while the squid density coincided with the amount of juvenile hake, corresponding to the same trends in the SST and PDO indexes. The parallel abundance of L. opalescens was found correlated to the El Niño-Oscilação South (ENSO) and PDO indices, which can be used in the development of adaptive management of squid fishing in the market (Litz et al. 2011; Moraes et al., 2012).

However, ENSO is represented through the Oceanic Index of El Niño used to verify the relationships between the variability of SST and El Niño / La Niña events with environmental and socio-economic impacts felt worldwide (Koslow and Allen, 2011; Iizumi et al., 2014). However, the space-time in relation to the CPUE of the sardine (Faccin, 2013), the participation of areas further to the south (Santa Catarina and Parana), and areas more to the north (São Paulo and Rio de Janeiro) prevailed. Therefore, we realize that in the North Atlantic Ocean, climatic phenomena have a different impact on CPUE depending on study sub-areas.

In general, CPUE in regions further north is less impacted by AAO and more influenced by PDO and the ONI index. Meanwhile sub-areas to the south, negative PDO favor higher values of
CPUE. ONI measures the intensity of ENSO events obtained from TSM anomalies in the Niño 3.4 region (5° N - 5°S, 120°E - 170°W). In this way, Paes & Moraes (2007) carried out studies on the influence of El Niño and La Niña events on productivity in the Continental Shelf Southeast of Brazil (PCSB) which comprises the region of ascension of the Brazil Current, ICCB - Intermediate Contour Current of the Brazil. The authors present the hypothesis that in El Niño years, it could increase the availability of pelagic fish, the opposite would happen under the effects of La Niña.

4. Impacts of Environmental Conditions on a Regional Scale in the Atlantic Ocean and South Pacific

In the Atlantic Ocean and South Pacific, the main squid species exploited commercially for the fishing fleets of Brazil, Ecuador, Peru, Chile and Argentina, especially the Loliginidae, have peculiar characteristics such as short life cycle (less than one year), semi-parity (single reproductive event, followed by death) and high growth rates, characteristics that significantly affect their availability for fishing (Rodhouse & Nigmatulin, 1996; Boyle & Rodhouse, 2005). In essence, many studies have described the distribution and abundance of Loliginidae families in relation to environmental conditions on a regional scale. In comparison with other local oceanographic variables, SST is generally considered the most suitable indicator for the search for Loliginidae fisheries, which also has a superior predictive power for estimating squid abundance (Chen and Chiu, 1999).

Loliginid fishing is usually formed in areas with a dense distribution of isothermal surface water layer, convergence of hot and cold water and thermal layer. According to Valentin (1984), the average phytoplankton biomass throughout the year is 0.4 mg/m³ of chlorophyll to 3.25 μg/L, with the peaks occurring during the summer, when it reached up to 6.0 mg/m³ of chlorophyll a. Valentin et al., 1990, estimated the average zooplankton biomass at around 66 mg/m³ over the year, with the highest values recorded in February and November, with more than 200 mg/m³.

The favorable period for resurgence (October to April) corresponds to the period in which the presence of subtropical waters (ACAS) and the passage of E-NE winds are more frequent and intense. Both water temperature and Chl-a concentration have a major influence on the distribution and abundance of Loliginids throughout their life cycle (Zaleski, 2010, Wei, et al., 2015).

According to Andriguetto & Haimovici (1996) and Araujo (2013), the abundance estimates for Doryteuthis sanpaulensis in the Costa do São Sebastia reveal similarities to that found in Cabo
Frio, where average catches (n/h and kg/h) were significantly higher in summer and the stock was concentrated at depths ranging from 7 to 113 meters, at temperatures between 14.7°C and 28.4°C. In this sense, several relevant studies based mainly on remotely detected ocean surface data, whose accuracy and reliability are considered questionable because Loliginids of the genus *Doryteuthis* are often found in estuaries and bays in warmer and less saline surface waters. Essentially, the parallel. *L. brevis* were associated with surface water with a temperature of 25°C, salinity in the range of 27 to 32.1, the pH was 7.6 ± 0.07 and the oxygen saturation was greater than 96% (Andrighetto & Haimovici, 1996). Even so, studies on the recruitment of *D. sanpaulensis, D.plei, L.brevis* based on variations in the concentration of SST and Chl-a in the spawning areas are considered reasonable because the planktonic squares of the squid inhabit the surface waters of the sea (Goçalo, 2008; Pena *et al.*, 2021). The abundance of Loliginidea is also associated with the height of the sea surface (SSH, also expressed as height from sea level, SLH or sea level anomaly, SLA) is another useful environmental indicator to assess the interannual variation in the distribution of Loliginidea during spawning and nursery periods in the subtropical frontal zone (Costa *et al.*, 1993). The ideal ranges for squid habitats are between −20 and −4 cm SSH (Costa, 1994).

However, with zooplankton biomass estimation, it can provide an effective way of exploiting the fisheries of *D.sanpaulensis, D.plei, L.brevis* based on field research in the Southeast Atlantic and South Pacific.

In fact, *D. sanpaulensis* appears to have a life cycle quite similar to that of other Loliginid species (Dragovich, 1967; Arnold, 1977; Andrigueto *et al.*, 1996; Araújo, 2013; Bartol, 2002), see also Boyle (2005) who classified these species as annual spawners but with peak activity at the population level. Young squids generally migrate to deeper waters along the continental shelf towards the slope while feeding and maturing. Adult animals migrate back to coastal areas to spawn and dying (or emigrating) from the area afterwards (Dragovich, 1967).

In this way, the life cycles of cephalopods can be classified into two phases: passive phase, when moving to areas with more favorable environmental conditions, and active phase, when using ideal environmental conditions to reach certain life stages at different stages of life process between generations (Pierce *et al.*, 2008). For commercial fishing purposes, most studies are focused on the active phase of adult Loliginids, while fundamental research focus on the early stages of life, especially the passive planktonic phase of juvenile and paralarvae. It should be noted
that both the physical environment and biological factors (swimming behavior and depth and spawning areas of the water) affect the transport and recruitment of fish early in life (Andriguetto, 1991).

The squid from the Loliginid family is characterized by a short life cycle and dies immediately after spawning, the abundance of which depends entirely on recruitment. Due to the high natural mortality in the embryonic and larval development stages *D. sanpaulensis, L. brevis* and *D. plei*, any minor variation in the marine environment can affect the growth, survival and recruitment in the stocks of this species of squid (Andriguetto, 1991,1996).

5. Conclusions and Future research

According to the above reviews, the abundance and distribution of squid from the Loliginidae family showed sensitivity and were strongly affected by changes in oceanographic conditions. The population dynamics of Loliginids in the North and Southeast Atlantic Ocean of Brazil is mediated mainly by medium-scale and large-scale climatic-oceanic phenomena (for example, Brazilian currents and Guyana Current) rather than small-scale environmental phenomena (for example, concentration of SST and Chl-a) because all oceanographic influences are imposed in the context of large-scale climate change.

Therefore, it should be noted that the Loliginidae analyzed showed differences in relation to the horizontal distribution, with respect to depth and latitude, and also to oceanographic conditions, whose variability varies over time and location with seasonal and geographical characteristics. Evidently, existing studies that reveal significant relationships between environmental factors and the populations of *D. sanpaulensis, L. brevis* and *D. plei* can explain the mechanism of oceanographic influences to a certain extent. However, difficulties still persist in the use of environmental variables that accurately predict the abundance and distribution of squid which can be attributed to the uncertainty and outdated effects of the climate. In response to climatic changes in marine environmental conditions, Loliginid species are usually subject to large fluctuations in their abundance (Valentin1, 984; Gonzalez-Rodriguez et al., 1992). However, it is urgent and necessary to draw a rational trajectory for the assessment of the stock of *Doryteuthis sanpaulensis, Doryteuthis plei*, and *Lolliguncula brevis* in order to achieve a better sustainable management of these resources and fisheries.
In addition to the analysis of short and medium-term variability in the environment, long-term changes in marine ecosystems associated with decadal scale variations in the structure and abundance of *Doryteuthis sanpaulensis*, *Doryteuthis plei* and *Lolliguncula brevis* should be studied. The fluctuation of the Atlantic decadal oscillation (ODA) in the abundance of *D. sanpaulensis*, *D. plei*, and *Lolliguncula brevis* was demonstrated by the evaluation of the response to the interference of climatic and oceanographic variations on fishing activity in the south and southeast of the Atlantic in Brazil where these changes may have effects under the reallocation of the capture potential at global levels (Cheung *et al*., 2010).

In view of this, we can consider that the life cycles of a cephalopods can be classified into two phases: passive phase which describes the movement to areas with more favorable environmental conditions, and active phase, when they rely on ideal environmental conditions to reach certain stages of life at different rates of growth between generations (Pierce & Guerra, 1994; Pierce *et al*., 2008). For economic purposes of fishing, most studies are focused on the active phase of *D. sanpaulensis*, *D. plei* adult, as fundamental research for the early stages of life, especially the passive planktonic stage of juvenile and paralarvae.

Therefore, the environmental, physical and biological factors events (spawning areas of the water, swimming performance and depth) have shown that they can affect the transport and recruitment of fish early in life (Juanico, 1979; Andriguetto, 1996). We can exemplify that the distribution and settlement of fry in the nursery during its four stages of pelagic life depend on the biological and physical environment of the location in the Middle Atlantic Bay where the flow conditions and climatic forces play significant roles in the transport of parapet from *D. sanpaulensis*, *D. Plei* and *Lolliguncula brevis* (Vidal *et al*., 2010; Vecchion, 1991b). For species with a short life cycle, such as loliginid squids, distribution and abundance are strongly influenced by oceanographic conditions (Boyle & Rodhouse, 2005). However, low temperatures can lead to a decrease in growth rates, prolonging the period of the early embryonic and larval development stages, exposing them to high natural mortality rates and consequently hindering recruitment in species stocks, (Pierce, 1994; Postuma, 2010).

With regard to the vertical structure of the water column, the parapets were always found in homogeneous waters which are dominated by ACAS and in stratified waters, with the presence of ACAS, AP and AT (Goçalo, 2008; Pena *et al*., 2021).
Knowledge of the history of the Loliginid family life and the interaction between its parallel and the physical environment are of great importance for predicting the abundance of squid. Therefore, fundamental studies must be carried out constantly to better understand the potential impacts of oceanic weather events on the biological behavior of the squid. It is also important to point out that physical forces that drive the variability of the stocks of *D. sanpaulensis, D. Plei* and *Lolliguncula brevis* needs to be addressed.

Therefore, for future research it will be necessary to emphasize the following approaches as:

- Fully master the basic biology and life cycle of *D. sanpaulensis, D. Plei* and *Lolliguncula brevis*. Depending on growth and age, the entire life cycle of the squid should be divided into two phases: passive stage, including floating eggs, and planktonic parasites, and neotonic active stage, including juvenile, subadult and adult. Biological equations as a function of length and temperature should be used to parameterize the growth and mortality processes precisely for the passive processes of early life. Additionally, a Generalized Linear Model (GLM) should also be used in individuals to detect the factors that would explain the occurrence and abundance. Finally, a Redundancy Analysis (RDA) should be carried out to show the main distribution patterns of these Loliginidae species.

- Connection of physical and biological models, interacting with the dynamics of the squid population (growth, transport, abundance, distribution and mortality), identifying true dynamic factors that affect the passive drift life cycle processes and conducting various modeling tests in order to evaluate the influence of physical-biological processes on the *D. sanpaulensis, D. Plei* and *Lolliguncula brevis* populations.

- Define physical fields with time series, high resolution three-dimensional flow fields, temperature and salinity, mixed diffusion coefficient and optional vertical turbulent closure schemes in the South and South Atlantic Ocean by using the appropriate ocean dynamics models.

- Evaluate the survival rate and the distribution pattern of larvae and parasites of *D. sanpaulensis, D. Plei* and *Lolliguncula brevis* and predict the distribution and abundance of squid in the future.

In summary, this review elaborates on the life history of some representative species of the Loliginidea family and discusses the occurrence and distribution and variability of the paralarvae and abundance of squids related to large-scale oceanic weather phenomena (*El Niño, La*
Niña, currents of Brazil Guyana Current, ODA, OMA and PDO) and regional environmental variables (depth and Surface Temperature (TSM), sea surface height (SSH), sea surface salinity (SSS), Chl-a concentration (SST) and plankton density (DT). The stocks of *D. sanpaulensis, D. Plei* and *Lolliguncula brevis* are believed to be driven by large-scale oceanic weather events. Therefore, it is hereby recommended to make an assessment of population dynamics by coupling physical and biological models to simulate the initial squid life cycle process based on an accurate understanding of its initial life history.

Acknowledgments

The primitive work was supported by teachers of the fishing oceanic course of the curriculum of the Marine Sciences College Dr. Yu Wei and Professor Tian Siaquan, both belonging to the following research institutions; National Center for Ocean Fisheries Engineering, Shanghai Ocean University, Key Laboratory for Sustainable Exploration of Ocean Fishing Resources, Ministry of Education, Shanghai Ocean University, Collaborative Innovation Center for Fishing Waters, Shanghai 201306, PR China. We also recognize the brilliant contribution given to the work of Professor Dr. Dai Xiaojie and Dr. Richard Kindong, both belonging to the College of Marine Sciences, University of Shanghai Ocean, Shanghai, China.

References

Alvarez, I., Lorenzo, M. N., & Decastro, M. 2012. Analysis of chlorophyll a concentration along the Galician coast: Seasonal variability and trends. Ices journal of marine science, 69, 728–738.

Andreoli, R.V. Variabilidade e Previsibilidade da Temperatura da Superfície do Mar no Atlântico Tropical. 224 p. (INPE-9557-TDI/833). Tese (Doutorado em Meteorologia) -Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 2002.

Arnold, J. M. & L.D. Williams-Arnold. 1977. Reproduction of marine invertebrates, 4. Pages 243-290 in A. C. Giese & J. S. Pearse (Eds). Cephalopoda: Decapoda. London and New York: Academic Press.

Araújo, C.C., (2013). Oceanografia Pesqueira dos Estágios iniciais de Loliginidae(Cephalopoda: Myopsida): paralarvas ao longo da plataforma continental entre o cabo de são tomé (rj) e cananéia (sp) (22º!25ºs).

Aragão, J.O.R. A influência dos Oceanos Pacífico e Atlântico na Dinâmica do Tempo e do Clima do Nordeste do Brasil. Capítulo do Livro Oceanografia um cenário tropical. Org.: Eskinazi-Leça, E.; Neumann-Leitão; Costa, M.F.da. Universidade Federal de Pernambuco. Recife, 2004.
Andriguette, J. M.; Haimovici, M. Abundance and distribution of Loligo sanpaulensis Brakoniecki, 1984 (Cephalopoda: Loliginidae) in southern Brazil. Sci. Mar., v. 55, n. 4, p. 611–618, 1991.

Andriguette, J. M.; Haimovici, M. Reproductive cycle of Loligo sanpaulensis Brakoniecki, 1984 (Cephalopoda: Loliginidae) in southern Brazil. Sci. Mar., v. 60, n. 4, p. 443–450, 1996.

Bartol, I. K.; Mann, R.; Vecchione, M. Distribution of the euryhaline squid Lolliguncula brevis in Chesapeake Bay: effects of selected abiotic factors. Mar. Ecol. Prog. Ser., v. 226, p. 235–247, 2002.

Baron, P. J. Embryonic development of the South American long-fin squid Loligo sanpaulensis Brakoniecki, 1984. J. Moll. Stud., v. 69, p. 221–227, 2003a. Baron, P. J. The paralarvae of two South American sympatric squid: Loligo gahi and Loligo sanpaulensis. J. Plankton Res., v. 25, n. 11, p. 1347–1358, 2003b.

Boletzky, S. V. & Hanlon, R. T. 1983. A review of the laboratory maintenance, rearing and culture of cephalopod molluscs. In: STONE, D. M. Memoirs of the National Museum of Victoria, Vol. 44, pag. 147-187.

Boyle, P. R.; Roodhouse, P. G. Cephalopods: ecology and fisheries. Oxford: Blackwell Science. 2005. 452 p.

Brasil. Ministério do Meio Ambiente. Programa REVIZEE. Avaliação do potencial sustentável de recursos vivos na zona econômica exclusiva do Brasil: relatório executivo. Brasília: MMA, 2006, 280 p.

Brakoniecki, TF 1984. Uma descrição completa de Loligo sanpaulensis, Brakoniecki, 1984 e uma redescrição de Loligo gahi d’Orbigny, 1835, duas espécies de lula (Cephalopoda; Myopsida) do Atlântico Sudoeste. Bulletin of Marine Science, 34 (3): 435-448.

Brismar, T. & Gilly, W.F. 1987. Synthesis of sodium channels in the cell bodies of squid giant axons. Proceedings of the National Academy of Science, 84: 1489-1463. Borzone, C. A.; Pezzuto, P. R.; Marone, E. Oceanographic characteristics of a multi-specific fishing ground of the Central South Brazil Bight. Mar. Ecol., n. 20, v. 2, p. 131–146, 1999.

Castellanos, Z. J. A. 1967. Contribución al estudio biológico de Loligo brasiliensis. Bl. Bol. Inst. Biol. Mar., 14: 5-35.

Castro, B. M.; Miranda, L.B. Physical oceanography of the western Atlantic continental shelf located between 4° N and 34° S. In: Robinson, R.; Brink, K. H. (Ed.). The sea. New York: John Wiley & Sons, 1998. v. 11, p. 209–251.

Cergole, M.C., & Valentini, H. 1994. Growth and Mortality Estimates of Sardinella brasiliensis in the southeastern Brazilian Bight. Boletim do instituto oceanográfico de sao paulo, 42, 113–127.

Castello, J.P. 2006. Síntese sobre distribuição, abundância, potencial pesqueiro e biologia da sardinha-verdadeira (Sardinella brasiliensis), Pages 1–14 of: Avaliação do potencial sustentável de recursos vivos na zona econômica exclusiva mma. Série documentos revizee - análise/refinamento dos dados pretéritos sobre prospecção pesqueira.

Campos, E. J. D. Estudos da circulação oceânica no Atlântico Tropical e região oeste do Atlântico Subtropical Sul. 1995. 144 f. Tese (Livre Docência) – Instituto Oceanográfico, Universidade de São Paulo, São Paulo.

Costa, P. A. S.; Haimovici, M. A pesca de polvos e lulas no litoral do Rio de Janeiro. Ciên. Cult., v. 42, n. 12, p. 1124–1130, 1990.
Costa, P. A. S. (1994) Alimentação, Ciclo Reprodutivo e Associação de Loligo Sanpaulensis brakoniecki, 1984 (Cephalopoda: Loliginidae) com a Ictiofauna Demersal na Plataforma Costeira do Cabo Frio, RJ.

Costa, P. A. S.; Fernandes, F. C. Reproductive cycle of Loligo sanpaulensis (Cephalopoda: Loliginidae) in the Cabo Frio region, Brazil. Mar. Ecol. Progr. Ser., v. 101, p. 91–97, 1993b.

Chen, X. J., Liu, B. L., and Wang, Y. G. (2009a). Cephalopod in the World. Ocean Press, Beijing, 60-69 (in Chinese).

Chen, C. S., and Chiu, T. S., 1999. Abundance and spatial variation of Ommastrephes bartramii (Mollusca: Cephalopoda) in the eastern North Pacific observed from an exploratory survey. Acta Zoologica Taiwanica, 10: 135-144.

Cheung, William WL, Lam, Vicky WY, Sarmiento, Jorge L., Kearney, Kelly, Watson, Reg, Zeller, Dirk, & Pauly, Daniel. 2010. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global change biology, 16, 24–35.

Dragovich, A. & Kelly –Junior, J.A. (1967). Occurrence of the squid, Lolliguncula brevis, in some coastal waters of western Florida. Bulletin of Marine Science, 17 (4): 840-844

Enfield, D. B., A. M. Mestas-Nunes and P.J. Trimble. (2001). The Atlantic multidecadal oscillation and it's relation to rainfall and river flows in the continental U.S. Geophysical Research Letters, Vol. 28, 2077-2080.

Faccin, J. R. M., (2019). Efeitos das Mudanças Climáticas sobre a operação da frota de cerco direcionada à captura da Sardinha-verdadeira no Sudeste-Sul do Brasil.

Fields, WG 1965. A estrutura, desenvolvimento, relações alimentares, reprodução e história de vida da lula Loligo opalescens Berry. California Fish and Game Bulletin , 131: 1-108.

Gamito, Rita, Teixeira, Célia M., Costa, Maria J., & Cabral, Henrique N. 2015. Are regional fisheries catches changing with climate? Fisheries research, 161, 207–216.

Gasalla, M. A.; Rodrigues, A. R.; Postuma, F. A. The trophic role of the squid Loligo plei as a keystone species in the South Brazil Bight ecosystem. ICES J. Mar. Sci., v. 67, 2010, p. 1413–1424.

Gasalla, M. A.; Migotto, A.; Martins, R. S. First occurrence of Doryteuthis plei (Blainville, 1823) egg capsules off São Sebastião, Southeastern Brazil, and characteristics of embryos and newly-hatched paralarvae. In: International Symposium Coleoid Cephalopods Through Time, 4., 2011. Stuttgart, Alemanha. Abstract# Stuttgart: Staaliches Museum fuer Naturkunde Stuttgart, 2011. p. 29/31.

Gigliotti, S., Paes, E.T. T., Guimarães, a.S. S., & Katsuragawa, M. (2009). Variação da abundância de larvas da sardinha-verdadeira (Sardinella brasiliensis) na plataforma continental Sudeste do Brasil e suas relações com a temperatura superficial do oceano. Pages 6487–6494 of: Anais xiv simpósio brasileiro de sensoriamento remoto.

Goçalo, C. G. (2008). Distribuição e abundância de larvas de Phosichthyidae e condições oceanográficas na região entre o cabo de São Tomé (RJ) e a ilha de São Sebastião (SP). 164 f. Dissertação (Mestrado) – Instituto Oceanográfico, Universidade de São Paulo.

Gonzalez, F.; Otero, J.; Guerra, A; Prego, R.; Rocha, F.; Dale, A. W. Distribution of common octopus and common squid paralarvae in a winddriven upwelling area (Ria of Vigo, northwestern Spain). J. Plankton Res., v. 27, n. 3, p. 271–277, 2005.

Granados-Amores, J.; García-Rodríguez, FJ; Hochberg, F. & Salinas-Zavala, CA 2014. A taxonomia e morfometria de lulas da família Loliginidae (Cephalopoda: Myopsida) da costa do Pacífico do México. American Malacological Bulletin, 32 (2): 198-208.
Haimovici, M. E.; Perez, J. A. A. (1991). Coastal cephalopod fauna of southern Brazil. Bull. Mar. Sci., v. 49, n. 1–2, p. 221–230.

Hastenrath, S.; Heller, L. (1977). Dynamics of climatic hazards in Northeast Brazil. Quarterly Journal of the Royal Meteorological Society, vol. 102, 77-92.

Hastenrath, S. (1978). On modes of tropical circulation and climate anomalies. Journal of Atmospheric Sciences, 35(12): 2222-2231.

Iizumi, Toshichika, Luo, Jing-Jia, Challinor, Andrew J, Sakurai, Gen, Yokozawa, Masayuki, Sakuma, Hirofumi, Brown, Molly E, & Yamagata, Toshio. 2014. Impacts of El Niño Southern Oscillation on the global yields of major crops. Nature communications, 5(May), 3712.

Jackson, G. D.; Meekan, M. G.; Wotherspoon, S.; Jackson, C. H. Distributions of young cephalopods in the tropical waters of western Australia over two consecutive summers. ICES J. Mar. Sci., v. 65, n. 2, p. 140–147, 2008.

Jackson, G. D., and Domeier, M. L., 2003. The effects of an extraordinary El Niño/La Niña event on the size and growth of the squid Loligo opalescens off Southern California. Marine Biology, 142: 925-935.

Jones, Miranda C., Dye, Stephen R., Pinnegar, John K., Warren, Rachel, & Cheung, William W. L. (2014). Using scenarios to project the changing profitability of fisheries under climate change. Fish and fisheries, 1–20.

Juanicó, M. Contribuição ao estudo da biologia dos cefalópodes Loliginidade do Atlântico Sul Ocidental entre o Rio de Janeiro e Mar del Plata. 1979. 102 f. Tese (Doutorado) – Instituto Oceanográfico, Universidade de São Paulo.

Juanicó, M. 1983. Squid maturity scales for population analysis. Pages 341-378 in J. F. Caddy (Ed.). Advances in assessment of world cephalods resources. FAO Fish Tech. Paper 231.

Khan, A. H., Levac, E., & Chmura, G. L. 2013. Future sea surface temperatures in Large Marine Ecosystems of the Northwest Atlantic. Ices journal of marine science, 70(5), 915 921.

Kayano, M.T.; Andreoli, R.V. Decadal variability of northern northeast Brazil rainfall and its relation to tropical sea surface temperature and global sea level pressure anomalies. Journal Geophysical Research-Oceans, v. 109, n. C11011, Nov. 2004.

Koslow, J. A., and Allen, C., 2011. The influence of the ocean environment on the abundance of market squid, Doryteuthis (Loligo) opalescens, paralarvae in the southern California bight. California Cooperative Oceanic Fisheries Investigations Reports, 52: 205-213.

Laughlin, R. A. & Livingstone, R. J. 1982. Environmental and trophic determinants of the spatial/temporal distribution of the brief squid (Lolliguncula brevis) in the Apalachicola Estuary (North Florida, USA). Bulletin of Marine Science,32: 487- 497.

Litz, M. N., Phillips, A. J., Brodeur, R. D., and Emmett, R. L., 2011. Seasonal occurrences of Humboldt squid (Dosidicus gigas) in the northern California Current System. CalCOFI Rep, 52: 97-108.

Lipinski, M. R. Cephalopod life cycles: patterns and exceptions. S. Afr. J. Mar. Sci., v. 20, p. 439–447, 1998.

Mann, M. E. & Park, J. Global-scale modes of surface temperature variability on interannual to century timescales. J. Geophys. Res. 99, 25819 (1994).

Mann, Michael E.; Steinman, Byron A.; Miller, Sonya K. (2020). «Absence of internal multidecadal and interdecadal oscillations in climate model simulations». Nature Communications (em inglês). 11 (1): 1–9. ISSN 2041-1723. doi:10.1038/s41467-019-13823-w.
Martins, R. S.; Perez, J. A. A.; Schettini, C. A. F. The squid around Santa Catarina Island, Southern Brazil: ecology and Interactions with the coastal oceanographic environment. J. Coastal Res., v. 39, p. 1285–1290, 2006. Special issue.

Martins, R. S.; Perez, J. A. A. The ecology of loliginid squid in shallowwaters around Santa Catarina Island, southern Brazil. Bull. Mar. Sci., v. 80, n. 1, p. 125–145, 2007.

Menezes, Naércio Aquino, Buckup, Paulo Andreas, Figueiredo, José Lima De, & Moura, Rodrigo Leão De. 2003. Catálogo das Espécies de Peixes Marinhos do Brasil.

Miranda, L. B. Forma de correlação T-S de massas de água das regioes costeiras e oceânicas entre cabo de São Tomé (RJ) e Ilha de São Sebastião (SP). Bolm. Inst. Oceanogr., São Paulo, v. 33, n. 2, p. 105–119, 1985.

Migliavacca, P. P. Simone, L. R. L. (2020). Comparação morfológica entre Doryteuthis pleii e D. sanpaulensis (Cephalopoda, M yopsida, Loliginidae) do Brasil. Versão impressa ISSN 0031-1049 Versão online ISSN 1807-0205

Moraes, Luiz Eduardo De Souza, Gherardi, Douglas Francisco Marcolino, Katsuragawa, Mario, & Paes, Eduardo Tavares. 2012. Brazilian sardine (Sardinella brasiliensis Steindachner, 1879) spawning and nursery habitats: Spatial-scale partitioning and multiscale relationships with thermohaline descriptors.

Moura, A.D.; Shukla, J. On the dynamics of droughts in northeast Brazil: observations, theory e numerical experiments with a general circulation model. J. Atmos. Sci., 38, 2653 – 2675, 1981.

Moreno, A.; Santos, A.; Piatkowski, U.; Santos, A. M. P.; Cabral, H. Distribution of cephalopod paralarvae in relation to the regional oceanography of the western Iberia. J. Plankton Res., v. 31, n. 1, p. 73–91, 2009.

Nevárez-Martínez, M. O., Hernández-Herrera, A., Morales- Bojórquez, E., Balmori-Ramírez, A., Cisneros-Mata, M. A., and Morales-Azpeitia, R., 2000. Biomass and distribution of the jumbo squid (Dosidicus gigas; d’Orbigny, 1983) in the Gulf of California, Mexico. Fisheries Research, 49 (2): 129- 140.

Paes, T. & Moraes, L. E.S. (2007. A new hypothesis about the influence of El Niño / La Niña on biological, ecological and fishery productivity in southern Brazil 2 (2): 94-102 96.

Palacio, F. J. A study of coastal cephalopods from Brazil with reference to Brazilian zoogeography. 1977. 311 f. Thesis (Ph. D) - University of Miami, Miami. 1977.

Pauly, D. 1984. Fish population dynamics in tropical waters: A manual for use with programmable calculators. ICLARM, Manila, Filipinas, 325 p.

Perez, J. A. A. Padronização do esforço de pesca de arrasto em Santa Catarina: o caso da pesca da lula, Loligo plei. Notas Téc. FACIMAR, v. 3, n. 1, p. 47–56, 1999.

Perez, J. A. A. Biomass dynamics of the squid Loligo plei and the development of a small-scale seasonal fishery off southern Brazil. Bull. Mar. Sci., v. 71, n. 2, p. 633–651, 2002.

Perez, J. A. A.; Aguilar, D. C.; Oliveira, U. C. Biology and population dynamics of the long-finned squid Loligo plei (Cephalopods: Loliginidae) in southern Brazilian waters. Fish. Res., v. 58, n. 267–279, 2002.

Perez, J. A. A.; Gasalla, M. A.; Aguilar, D. C.; Oliveira, U. C.; Marques, C. A.; Tomás, R. G. Loligo plei (Blainville, 1823). In: Cergole, M. C.; Ávila-da-Silva, A. O.; Rossi-Wongtschowski, C. L. B. (Ed.). Análise das principais pesca rias comerciais da região Perez, J. A. A.; Aguilar, D. C.; Santos, J. A. T. Glaudius and statolith as tools age and growth studies of the squid Loligo plei (Teuthida: Loliginidae) off Southern Brazil. Braz. Arch. Biol. Technol., v. 49, p. 747–755, 2006.
Pena, Rodolfo F. Alves. "Influência das correntes marítimas no clima"; Brasil Escola. Disponível em: https://brasilescola.uol.com.br/geografia/influencia-das-correntes-maritimas-no-clima.htm. Acesso em 14 de março de 2021.

Philander, S.G.H. 1985. *El Niño* and La Niña. Journal of the atmospheric sciences, 42(23), 11.

Quadro, Mario Francisco Leal De, Pezzi, Luciano Ponzi, & Rosa, Eliana Bertol. 2016. O Climanálise e o monitoramento da ZCAS nos últimos 30 anos. Revista climanálise, 04(1992), 29–25.

Piatkowski, U. Modern target sampling techniques provide new insights into the biology of early life stages of pelagic cephalopods. Biol. Mar. Mediterr., v. 5, p. 260–272, 1998.

Pierce, G. J.; Guerra, A. Stock assessment methods used for cephalopod fisheries. Fish. Res., v. 21, p. 255-285, 1994.

Pierce, G.J.; Valavanis, V. D.; Guerra, A.; Jereb, P.; OrsiSI-Relini, L.; Bellido, J. M.; Kaara, I.; Piatkowski, U.; Pereira, J.; Balaguerias, E.; Sobrino, Ignacio; Lefkaditou, E.; Wang, J.; Santurtun, M.; Boyle, P. R.; Hastie, L. C.; Macleod, C. D.; Smith, J. M.; Viana, M.; Gonzales, A. F.; Zuur, A. F. A review of cephalopod-environment interactions in European Seas. Hydrobiologia, v. 612, p. 49–70, 2008.

Pezzi, L.P.; Cavalcanti, I.F.A. The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: A numerical study. Climate Dynamics, 17: 205-212, 2001.

Postuma, F. A. Biologia pesqueira da lula *Loligo plei* capturada na Ilha de São Sebastião (SP) e dinâmica da atividade pesqueira associada. 2010. 107f. Dissertação (Mestrado) - Instituto de Pesca, Secretaria de Agricultura e Abastecimento, São Paulo.

Postuma, F. A.; Gasalla A, M. A. On the relationship between squid and the environment: artisanal jigging for *Loligo plei* at São Sebastião Island (24°S), southeastern Brazil. ICES J. Mar. Sci., v. 67, p. 1353–1362, 2010.

Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Monthly Weather Review, 110: 354-384, 1982.

Rodhouse, P. G.; Symon, C.; Hatfield, E. M. C. Early life cycle of cephalopods in relation to the major oceanographic features of the southwest Atlantic Ocean. Mar. Ecol. Progr. Ser., v. 89, p. 183–195, 1992.

Rodhouse, P. G.; Nigmatullin, C. M. Role as consumers. Phil. Trans. R. Soc. London B, v. 351, n.1343, p. 1003–1022, 1996.

Rodhouse, P. G. World Squid Resources. FAO Fish. Tech. Pap., v. 457, p. 175–187, 2005.

Ropke, A.; Nellen, W.; Piatkowski, U. A comparative study on the influence of pycnocline on the vertical distribution of fish larvae and cephalopod paralarvae in three ecologically different areas of the Arabian Sea. Deep-sea res., Part 2, Top. stud. oceanogr., v. 40, p. 801 819, 1993.

Rodrigues, A. R.; Gasalla. M. A. Spatial and temporal patterns in size and maturation of *Loligo plei* and *Loligo Sanpaulensis* (Cephalopoda: Loliginidae) in southeastern Brazilian waters, between 23°S and 27°S. Sci. Mar., v. 72, n. 4, p. 631–643, 2008.

Sudeste-Sul do Brasil: dinâmica populacional das espécies em explotação. São Paulo: Instituto Oceanográfico-USP. (Série documentos REVIZEE: Score Sul). 2005, p. 62–68.

Santos, R. A.; Haimovici, M. Trophic relationships of the long-finned squid *Loligo sanpaulensis* on the Southern Brazilian Shelf. S. Afr. J. Mar. Sci., v. 20, p. 81–91, 1998.
Santos, R. A.; Haimovici, M. Cephalopods in the trophic relations off southern Brazil. Bull. Mar. Sci., v. 71, n. 2, p. 753–770, 2002.

Siqueira, A. H. B.; Molion, L. C. B. El Niño-Oscilação Sul e a Oscilação Decenal do Pacífico. IX Simpósio de Recursos Hídricos do Nordeste, 2008, Salvador. Anais – IX Simpósio de Recursos Hídricos do Nordeste, 2008.

Sugimotoa, T., Kimuraa, S., and Tadokoro, K., 2001. Impact of El Niño events and climate regime shift on living resources in the western North Pacific. Progress in Oceanography, 49: 113-127.

Valentin, J. L. 1984. Analyse des parametres hydrobiologiques dans la remontee de Cabo Frio (Bresil). Mar. Biol. 82: 259-276.

Valentin, J.L. & R.Coutinho. 1990. Modelling maximum chlorophill in the Cabo Frio Brazil) upwelling: a preliminary approach. Ecol. Model. 52: 103-113.

Vecchion, M. Observations on the paralarval ecology of a euryhaline squid Lolliguncula brevis (Cephalopoda: Loliginidae). Fish. Bull., v. 83, n. 3, p.515–521, 1991b.

Vecchione, M., Morphology and development of planktonic Lolliguncula brevis (Cephalopoda: Myopsida). Proc. Biol. Soc. Wash., v. 95, n. 3, p. 602–609, 1982.

Vecchione, M.; Shea, E.; Bussarawit, S.; Anderson, F.; Alexeyev, D.; Lu, CC; Okutani, T.; Roeleveld, M.; Chotiyaputta, C. & Roper, CFE 2005. Systematics of Indo-West Pacific Loliginids. Phuket Marine Biological Center Research Bulletin, 66: 23-26.

Vecchione, M. & Young, RE 2010a. Loliginidae Lesueur, 1821. Versão 02 de setembro de 2010. http://tolweb.org/Loliginidae/19422/2010.09.02 in The Tree of Life Web Project, http://tolweb.org. Acesso em: 24/2021.

Vidal, E. A. G.; Haimovici, M.; Hackbart, C. S. Distribution of paralarvae and small juvenile cephalopods in relation to primary production in an upwelling area off Southern Brazil. ICES J. Mar. Sci., v. 67, p. 1346–1352, 2010.

William W. L. 2014. Using scenarios to project the changing profitability of fisheries under climate change. Fish and fisheries, 1–20.

Saccardo, Suzana Anita, Rossi-Wongtschowski, Carmen L. D. B, Cergole, Maria Cristina, & Bittencourt, Maria Mercedes. 1988. Age and growth of the southeastern Brazilian sardine, Sardinella brasiliensis.

Wolter, Klaus, & Timlin, Michael S. 2011. El Niño/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International journal of climatology, 31(7), 1074–1087.

Wang, C. Z., Deser, C., Yu, J. Y., Nezio, P. D., and Clement, A., 2012a. El Niño and Southern Oscillation (ENSO): A review. Coral Reefs of the Eastern Pacific, 1-45.

Wei.Y, Chen. X; Yi.Q and Tian. S. (2015). A Review of Interaction Between Neon Flying Squid (Ommastrephes bartramii) and Oceanographic Variability in the North Pacific Ocean.

Young, R. E.; Harman, R. F. Larva, paralarva and subadult in cephalopod terminology. Malacologia, v. 29, p. 201–207, 1988.

Zaleski, T. Posição sistemática e dinâmica populacional da lula Lolliguncula brevis (MOLLUSCA: CEPHALOPODA). 2005. 176 f. Dissertação (Mestrado) - Universidade Federal do Paraná.

Zaleskii, T. Ciclo de vida e ecologia da lula Lolliguncula brevis na Armação de Itapocoroy, Santa Catarina, Brasil. 2010. 187 f. Tese (Doutorado) - Universidade Federal do Paraná.