When Poly(A) Binding Proteins Meet Viral Infections, Including SARS-CoV-2

Jie Gao,a Yan-Dong Tang,c Wei Hu,a,d Chunfu Zhengb,e

aThe State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
bDepartment of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
cState Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
dState Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
eDepartment of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada

ABSTRACT Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses’ common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs’ roles during viral infection. This review summarizes a comprehensive perspective of PABPs’ roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.

KEYWORDS viral infection, host defense, poly(A)-binding protein (PABP)
To date, numerous studies have demonstrated that viruses target the translation initiation factor PABPs. Consequently, how viruses subvert PABPs during viral infections needs to be updated despite a review of PABP as a viral target being published more than a decade ago (3).

RNA-binding proteins (RBPs) regulate numerous post-transcriptional processes by binding to intended RNAs (4). A clear-identified and well-conserved group of RBPs is the PABPs subfamily. PABPs are a cluster of proteins that interact with polyadenylated mRNAs in eukaryotic cells. It was first discovered to be bound to the polyadenylated region of eukaryotic messenger RNAs (mRNAs) in the 1970s (5–7). In the early days, PABPs were mainly supposed to protect mRNA stability from deadenylation of the 3’-end poly(A) tail. In addition to its RNA-binding capabilities, PABPs are also critical mediators of gene expression at the level of RNA metabolism (8). Nevertheless, most studies claim the critical role of PABPs in enhancing the cellular translation initiation, which is PABPs binds poly(A) tail to 5’ cap of mRNA to facilitate the efficiency of translation initiation or regulates the length of 3’ poly(A) tail (PAT) for different translation purposes (8–10).

Moreover, PABPs act as enhancing factors of mRNA translation initiation and as translation factors themselves. They function as scaffold proteins, supporting protein-protein interactions with multiple translation factors, thus promoting translation initiation and regulating gene expression (11). To date, PABPs have been shown to take part in all the metabolic pathways of the mRNA, including mRNA polyadenylation, mRNA deadenylation, mRNA export, mRNA surveillance, mRNA translation and stability, mRNA decay, microRNA-associated regulation, and regulation of expression during development and so on (11–15). These metabolic pathways are good routines for the viruses to utilize in their infection strategies. Targeting PABPs by both DNA and RNA viruses again highlights the role of PABPs as central regulators of gene expression. This review updates an integrative account of the significance of PABP during viral infections.

THE CLASSIFICATION OF PABPS

There are significant differences in PABPs family proteins among different species from yeast to humans. Different species have different numbers of PABP proteins. For example, dicot Arabidopsis thaliana contains eight PABPs (16, 17), Xenopus laevis contains three PABPs (18–20), and Mus musculus contains two PABPs (21, 22). In humans, seven PABPs have been discovered. In irrespective of species, PABPs can be classified according to their distribution in cells. PABPs include cytoplasmic PABPs, nuclear PABP,
embryonic PABP, and the X chromosome-encoded protein. Cytoplasmic PABPs (PABPC) includes PABPC1 (also called PABP1), tPABP (testis-specific PABP, also called PABPC2 or PABPC3), iPABP (inducible PABP, also called PABPC4 or PABP4), and PABPC4L; embryonic PABP is called ePABP or PABPC1L, and X chromosome-encoded protein is named PABPC5; and the nuclear PABP is named PABPN1 (11, 23, 24). Nevertheless, the most well-studied PABPs during viral infections are PABP1. Only PABP1 was reported in virus infections. This review focus on how PABP1 (refer to PABPs in the following text) is manipulated during viral infections.

THE STRUCTURE OF PABPS

Cytoplasmic PABPs bind specifically to the poly(A) tail of eukaryotic mRNAs via its RNA-recognition motifs (RRMs), which have a lower affinity for poly(U) and poly(G), and no detectable binding to poly(C) (25–28). The structures of PABPs are highly conserved, with its N-terminus containing four non-identical RRMs, and its C-terminus consisting of a highly conserved carboxy-terminal helical domain named MLLE, previously known as PABC (Fig. 1A) (11, 29, 30). Proline-rich linker sequences connect the four RRM domains to the MLLE domain (31, 32). Despite that the RRM motifs are conserved for RNA recognition, their binding abilities to RNA and proteins appear to be specifically different (27, 28). For instance, RRM 1 and 2 exhibits highly poly(A) binding abilities to eIF4G and PABP-interacting protein 1 (Paip1), while RRM 3 and 4 provide lower binding affinity to poly(A) while binding to AU-rich RNA and mediate protein-protein interactions (25, 33, 34). Multiple genes encoding PABPs are found in metazoans and plant species.

Furthermore, not all PABPs encode four RRM domains. In plants such as PABPs in A. thaliana, only two of the eight PABP genes encode proteins containing four RRM domains(17). In plants, such as PABPs in N. tabacum, only one of the three expressed PABP genes have four RRMs (17). In contrast to RRMs roles, the MLLE is not required for RNA recognition but is necessary for interaction with initiation factors through its binding site, such as the release factor eRF3, translation repressor Paip1/Paip2. A 15-residue sequence “PABP interaction motif,” termed PAM2, is critical for this process. This oligomerization controls mRNA translation, deadenylation, and regulates PABPs binding ability to poly(A) tail and eIF4G (35–40).

VIRUSES USURP PABP FUNCTIONS FOR VIRAL INFECTIONS

Viruses have long been reported to shut off host protein synthesis, usually disrupting the translation initiation machinery. PABPs are general translation initiation factors targeted by viruses to promote viral propagation and/or thwart cell gene expression during infections. In eukaryotic cells, PABPs bind to the 3’-end poly (A) tail and indirectly bind to the 5’-end cap complex to promote efficient translation initiations (1). However, some viruses do not contain a canonical 5’-end cap and/or 3’-end poly(A) tail. Hence, viruses develop strategies to manipulate PABPs for viral replication and protein synthesis. Depending on distinct structures of viral mRNAs, different RNA viruses and DNA viruses favor different mechanisms to manipulate PABPs. In reported cases, viruses could commandeer PABPs to hinder the efficient host translation initiation through following ways, such as cleavage of PABPs by viral proteases, regulation of eIF4F-PABP translational complex, relocalization of cytoplasmic PABPs into the nucleus, interfering with PABPs containing stress granules (SGs), expressing viral translation factor analogs (3, 8, 41). The genomic structure of RNA viruses containing both canonical 5’-end cap and 3’-end poly(A) tail would prefer to use a cap-dependent translation initiation method to translate their mRNA while simultaneously shutting off the cellular and viral mRNA translation. In this situation, viruses would compensate their translation by distinct means to escape the whole translation shutoff. The more specific mechanism of how viruses escape their shutoff is summarized and discussed in each virus in this review. Coincidentally, DNA viruses transcripts are similar to host mRNAs, using a cap-dependent strategy. The genomic structure of RNA viruses lacking
a 5′-end cap usually bears an internal ribosomal entry site (IRES) in the 5′ untranslated region (5′UTR). They utilize cap-independent translation to promote viral mRNA translation and inhibit the host protein synthesis by degrading PABPs or eIF4F complex. When RNA viruses have a genomic structure without a classic poly(A) tail, they usually express PABPs surrogates in enhancing viral mRNA translation initiation by binding to viral 3′-end tail and redistributing the cytoplasmic PABPs into the nucleus. Although there seems to be a rule to follow by deciphering the relationship between the viral mRNA structures and their strategies in usurping PABPs, the underlying mechanisms that each virus subverts PABPs are distinct. In this regard, more studies are warranted to draw a map about how viruses hinder the host PABPs.

Cap-dependent RNA viruses. (i) **Coronaviridae.** The coronavirus (CoV) contains a single-stranded, positive-sense RNA genome, which resembles the structure of most eukaryotic cellular mRNA. CoV genomic RNA contains a cap structure at the 5′-end, a poly(A) tail at the 3′-end, and untranslated regions (UTRs) (42). During CoV infections, knockdown of PABPs could attenuate virus propagations. For instance, transmissible gastroenteritis virus (TEGV) is a member of the Coronaviridae family, and it was reported that PABPs play significant roles in virus RNA synthesis, possibly by binding to the TEGV genome through its 3′ end poly(A) tail (43) However, a new report showed that in bovine coronavirus (BCoV), it is the viral nucleocapsids (N) protein, not PABPs involving in RNA synthesis by binding to both 5′- and 3′-ends (44). Even though PABP is important for CoV replication (43, 45), it still unclear how PABPs influence virus RNA synthesis during the CoV life cycle.

Moreover, CoV competitively utilized PABPs as translation initiation factors with the host for viral mRNA translation. CoV could decrease the translation of host mRNA by its nucleocapsid (N) protein. For example, BCoV N protein competes with PABP to interact with poly(A) tail and eIF4E to decrease translation initiation efficiency of virus and host both in vitro and in vivo (46). This finding suggests that CoV can suppress host mRNA translation by competitively inhibiting the interaction between PABP and host mRNAs' poly(A) tails. Even this process could also harm viral mRNAs translation. However, N protein also binds to viral replicate proteins, which might be an important way to rescue the disturbance of viral mRNAs. Once viral replicate protein is synthesized, it associates with N protein and guides the N protein-associated viral mRNAs to the replication complex at the endoplasmic reticulum (ER) to promote viral mRNA synthesis (47). This process may compensate for viral mRNA quantity for later translation events.

A recent study demonstrated that CoV could manipulate PABPs in a different strategy. SARS-unique domain (SUD) is a non-conserved part of non-structural protein 3 (NSP3) shared by SARS-CoV-2 and SARS-CoV (48–50). Brunn et al. showed that SUD promoted PABP-interacting protein 1 (Papi1) and PABPs interactions by binding to 40S/80S ribosome, and Paip1 interacts with the RRM domains of PABPs to stimulate translation, thus increasing both viral and host mRNAs translation efficiency (36, 40, 51–53). However, viruses hinder host translation by specifically degrading host mRNAs and blocking them from binding to the 40S ribosome by viral protein NSP1 (54–56). Consequently, only viral but not host translation is enhanced by SARS-CoV-2 and SARS-CoV SUD (51).

In conclusion, the CoVs either evade cellular shutoff by compensating viral mRNA levels or blocking host mRNA translation by viral protein after stimulating a high activity of the translation system.

(ii) **Arteriviridae.** Porcine reproductive and respiratory syndrome virus (PRRSV) is a single-stranded positive-sense RNA virus containing a 5′-end cap, 3′-end poly(A) tail, and UTRs. Depending on the similar viral mRNA structures, PRRSV and CoV may use similar strategies to manipulate PABPs. However, this hypothesis is not verified as limited studies reported manipulating PABPs in PRRSV. Jiang et al. found that PRRSV N protein was responsible for redistributing cytoplasmic PABPs into the infected nuclei through the interaction with the C-terminal half of PABPs (57). Moreover, knockdown of PABPs significantly influences viral RNA synthesis and virus titers, suggesting that the mRNA translation or replication of PRRSV is closely related to PABPs (57). The
underlying mechanisms of how PRRSV N protein or other viral proteins manipulate PABPs need further investigation.

(iii) Togaviridae. The Rubella virus (RV) belongs to the Rubivirus genus of the Togaviridae family. Its genomic structure is a positive-strand, capped, and polyadenylated RNA. Like other viruses with similar RNA structures, such as PRRSV, RV would redistribute cytoplasmic PABPs into the nucleus (58). This phenomenon is also observed in rotavirus and herpes simplex virus (HSV), which have classic 5'-end cap mRNA. Notably, RV capsid protein binds to the C-terminal region of PABPs and co-localizes it to the perinuclear region of the cell in vitro and in vivo (58). PABPs levels increased in RV infected cells, but its activity in translation may be blocked, causing the inhibition of translation; however, this situation was alleviated by excess PABPs (58).

Nevertheless, it is still unclear whether the interactions between RV capsid protein and PABPs are associated with viral mRNA translation by restricting PABPs in the nucleus or hijacking PABPs to inhibit cellular protein synthesis. Furthermore, it was suggested that by sequestration of PABPs, the viral capsids could increase the efficiency of viral RNA packaging into capsids instead of viral RNA translation (58). If so, more nucleocapsid formation-related identifications need to be performed to verify this hypothesis (59).

(iv) Orthomyxoviridae. Influenza A contains a single-stranded, negative-sense RNA genome. Its genome is both capped and polyadenylated with 5'-UTR. Influenza A encodes a non-structural protein 1 (NS1) that binds to the 5'-UTR region of viral mRNA and functions in viral replication and protein synthesis (60, 61). NS1 also interacts with PABPs and eIF4G on its different binding domains (59). It does not evict PABPs from the eIF4G as relative amounts of eIF4G, and PABPs proteins are co-purified with NS1. NSP1 specifically accelerates PABPs and eIF4G to form a complex with it, and this complex is beneficial for viral translation initiation (62). This mechanism of manipulating PABPs is very different from other positive-sense RNA viruses.

(v) Rhabdoviridae. Some viruses induce SGs formation in infected cells, such as the rabies virus (RABV), the typical species of the Lyssavirus genus within the Rhabdoviridae family (63). The viral genome is a single-stranded, negative-sense RNA consisting of a 5'-end cap and 3'-end poly(A) tail (64). No report shows how RABV manipulates PABPs in a cap-dependent way. However, RABV might exploit PABPs to disrupt the formation of SGs. PABP-specific SGs are among the major distinguishable RNA particles in host cells (41, 65). It is an important component of host antiviral defense. Viral infection exerts pressure on the host cells to induce the formation of SGs (41). However, viruses must face the adverse environment from host immunity and take various strategies to block the formation of SGs and promote its infection and proliferation effectively. RABV mRNAs synthesize in cytoplasmic viral factories, known as Negri bodies (NBs), closely related to SGs (63). This close correlation of viral mRNAs accumulating around SGs reveals material communications between them and may inhibit the antiviral function of SGs (63). Nevertheless, it is unclear how the virus targets PABPs in RABV induced SGs, and the relationship between PABP-specific SGs and viral infections needs further explorations generally.

Cap-independent RNA viruses. (i) Picornaviridae. The genera Enterovirus, Rhinovirus, Hepatovirus, Parechovirus, Cardiovirus, and Aphthovirus belong to the Picornaviridae family. Picornavirus contains an uncapped and polyadenylated positive-strand RNA genome with UTRs. Lacking the 5'-end cap, they employ an IRES located in the 5'-UTR instead to initiate the translation of viral mRNAs (66). As a 5'-end cap is required in host cellular translation initiation, in this regard, IRES serves as a 5'-end cap-like element in picornavirus mRNA translation initiation. Picornavirus exhibits alternative translation control strategies based on the IRES structure of the viral genome.

RNA viruses of this family have been extensively responsible for PABPs and eIF4G cleavage by the viral proteases, facilitating viral translation by inhibiting cellular mRNA translation (Fig. 2). 3C is a viral cysteine protease that cleaves the proline-rich linker of the PABPs and eIF4G structure (67). The 3C proteases of coxsackievirus (CV), poliovirus (PV), encephalomyocarditis virus (EMCV), and duck hepatitis A virus (DHAV) target
PABPs to destabilize PABP-poly(A) association (68–71). These 3C proteases separate the N-terminus of PABPs from its C-terminus by cleaving its flexible linker. Even the recognition sites vary (Fig. 2B). PV 3C cleaves PABPs at Q537/G538, Q437/G438, and Q413/T414, while the cleavage sites on PABPs by EMCV and DHAV 3C are WTAQ437/G438 and Q367/G368, respectively (70, 72, 73). PABPs are also degraded by PV and coxsackievirus B3 (CVB3) 2A proteases between amino acids 486 and 487. Even this cleavage is not as efficient as 3C protease does (67, 70). Moreover, PV 2A protease would cut eIF4G, which evicts the N-terminus of eIF4G from the C-terminus, destabilizes the PABP-eIF4G interaction, and causes impaired cellular translation initiation (74).

Picornaviruses escape from their shutoff through a cap-independent initiation way. PV mRNA is translated using an IRES instead of a 5′-end cap, which does not require intact eIF4G (74–76). Intriguingly, the truncated eIF4G works more efficiently on the viral IRES-driven than the host cap-driven translation (77). PABPs might promote PV mRNA translation without eIF4G as it interacts with other eIFs. Although 3C protease mediates the proteolysis of PABPs, leading to the inhibition of host translation, there are still some uncleaved PABPs. These uncleaved PABPs promote PV mRNAs translation, and picornavirus could evade the complete shutoff by utilizing the uncleaved PABPs.

Concerning the cleavage of eIF4G, it is mediated by viral 2A, 3C protease, or other viral proteases. For example, foot-and-mouth disease virus (FMDV) 3C protease and leader (Lb) protease induce the cleavage of eIF4G at C-terminus residue 681/682 (79, 80). CVB3 2A proteases degrade eIF4G at 688/689, and 3C also cleaves eIF4G even with no evidence showing the cleavage site (81). SARS-CoV-2 3C-like protease, also called the main (M) protease or non-structural G protein 5 (NSP5), induces the cleavage of eIF4G at two sites LQ658/GI659 and LQ1127/QA1128, even the role of host cell shutoff behind this cleavage is not elucidated (82).

FMDV Lb protease also cleaves G3BP1 and G3BP2, the scaffold protein in the stress granules (SGs), to disturb the formation of SGs (83). G3BP1 interacts directly with the viral IRES region and negatively regulates viral translation. FMDV 3C protease cleaves G3BP1 at amino acid residue 284/285 to release the IRES site and destroy the G3BP1 role to activate innate immunity (84). Another picornavirus CVB3 3C protease cleave G3BP1 at amino acid residue 325/326, inhibiting SG formation and promoting CVB3 replication (85). In addition, Feline calicivirus (FCV) NS6 protease was reported to cleave G3BP1 to inhibit SG formation (86).
Caliciviridae. The family of Caliciviridae consists of Vesivirus, Lagovirus, Norovirus, Sapovirus, and Nebovirus genera. The genome structure is highly conserved with a positive-sense, single-stranded RNA. However, Calicivirus RNA contains a 3′-end poly(A) tail and short UTRs without a canonical 5′-end cap (87). Calicivirus genome is different but closely related with picornaviruses. Calicivirus does not contain IRES elements. Instead, the 5′-end covalently links with a small virus-encoded protein (VPg), which would interact with the classic translation initiation factors for translation (88). FCV and norovirus (NV) express 3C-like protease because it shares similarity to picornavirus 3C protease in the active site region. Viral 3C-like protease also inhibits cellular translation by the cleavage of PABPs. FCV and norovirus cleave PABPs within the proline-rich linker as well (89).

Retroviridae. Human immunodeficiency virus (HIV) is Lentivirus belonging to the Retroviridae family. Retrovirus genomic RNAs contain 5′-end cap, 3′-end poly(A) tail, and UTRs regions, resembling host cellular transcripts. HIV mRNA utilizes cap-dependent translation initiation. However, HIV mRNA also contains the IRES region, which uses IRES-dependent translation initiation (90). Retroviruses like HIV, simian immunodeficiency virus (SIV), or Moloney murine leukemia virus (MMLV) contain the IRES region (91–93), which may let the virus take advantage of cap-independent translation, even without intact eIF4G. Like picornavirus or calicivirus, which do not contain a classical 5′-end cap but an IRES part, HIV-1 and HIV-2 encode proteases to degrade eIF4G and PABPs (94). HIV-1 and HIV-2 proteases cleave PABPs at amino acid residue 237/238 and 477/478, while HIV-2 additionally cleaves at 410/411 (95). The reason may be based on the IRES region located in the 5′-UTR. Although these viral IRESs contain diverse sequences, many have similar secondary structures and facilitate translation through similar mechanisms (96).

Overall, these studies demonstrated that cytolytic RNA viruses, including the Piconaviridae, Caliciviridae, and Retroviridae, downregulate host metabolism mostly by drastically degrading cellular translation factors, such as PABPs and eIF4G, while viral translation continues via a cap-independent mechanism, which ensures that the translational machinery stays available only to viral mRNAs.

Non-polyadenylated RNA viruses. (i) Reoviridae. Rotavirus is a double-stranded RNA virus belonging to the Reoviridae family. The rotavirus mRNAs are capped but not polyadenylated. The rotavirus mRNA structure is quite different from the host mRNA, and the rotavirus uses distinct translation logic from the cap-dependent translation initiation. It is well known that the PABP-eIF4G complex is efficient for the translation initiation of cellular polyadenylated mRNAs, and rotavirus dispatched a viral non-structural protein NSP3 to compete with PABPs from binding to eIF4G (Fig. 3) (97). Consequently, rotavirus utilizes NSP3 to mediate the shutdown of host protein synthesis.
by suppressing the translation of cellular mRNAs. Poncet et al. found out that in infected cells, NSP3 is genetically linked to GACC-tailed mRNA, not poly(A)-tailed mRNA, competing with host for efficient translation initiation (98, 99). Notably, the 3’-end of rotavirus mRNA contains a conserved binding site (GACC motif) for NSP3 (99). The homodimerized NSP3 recognizes the specific motif and interacts with eIF4G to enhance viral mRNA translation, thus escaping from the host shutoff (100).

Rotavirus NPS3 usurps PABPs by working as a surrogate of PABPs to evict them from the translation initiation complex and redistributing the cytoplasmic PABPs into the nucleus. This redirect of PABPs requires the interaction of NSP3 with eIF4G and RoXaN (rotavirus X protein associated with NSP3) (101, 102). Another research showed that the nuclear localization of PABPs by NSP3 upon rotavirus infection simultaneously happens with the altered splicing of the stress-related transcription factor XBP1, and the eIF4G-binding domain of NSP3 is required for this process (103). XBP1 is a cellular factor involved in innate immunity and stress response (104). During infections, it could be possible that NSP3 evicts PABPs from eIF4G change the conformation of PABPs or eIF4G, thus exposing the nuclear import signal of cytoplasmic PABPs (103), and PABPs are relocalized into the nuclear to interact with XBP1 pre-RNA, causing retention of transcripts. Alter splicing of XBP1 could be a specific host response to rotavirus infection or virus cause nuclear localization of PABPs. Despite that NSP3 displaces PABPs’ roles in host protein translation initiation, the function or mechanism of rotavirus NSP3 needs to be elucidated for further understanding.

(ii) Nodaviridae. Nervous necrosis virus (NNV) is classified as the Betanodavirus genus of the Nodaviridae family. NNV has a positive, single-stranded RNA containing a 5’-end cap but lacks a 3’-end poly(A) tail. It is a pathogen causing viral nervous necrosis disease in marine fish, larvae, and juveniles (105). Chang et al. reported that NNV infections induced host shutoff by degrading host cytoplasmic PABPs and translocating it into the nucleus (106). The NNV sequestered PABPs in the infected nucleus via interaction with its coat protein (106). This interaction requires the N-terminal shell domain of NNV coat protein and proline-rich linker region of PABPs (106). This mechanism of host shutoff is also seen with RV (58). Moreover, PABPs were degraded up to the RRM3 domain at a later infection stage through the ubiquitin-proteasome system, distinct from viruses like picornaviruses, calicivirus, or other viruses retrovirus, which carry proteolytic enzymes to degrade PABPs. It is a relatively new mechanism found in manipulating PABPs during viral infection.

Plant RNA viruses. The studies between plant viruses and PABPs are limited. Despite some of the PABPs structures in plant cells may be distinct from human or animal cells, it was targeted by plant viruses to affect efficient translation initiation. In some plant RNA viruses, their viral mRNAs lack both 5’-end cap and/or 3’-end poly(A) tail. Its mRNAs have cap-independent translation enhancer elements (CITEs) located in the 3’ UTR, mediating their translation. For instance, in red clover necrotic mosaic virus (RCNMV), A-rich sequence (ARS) and 3’-end CITEs are substitutes for the 3’-end poly(A) tail and the 5’-end cap of eukaryotic mRNAs for translation initiation (107). PABPs bind to ARS in the viral 3’ UTR to facilitate translation of uncapped nonpolyadenylated viral mRNAs (107). Some plant viruses use IRES for translation initiation, like the picornavirus or calicivirus. However, unlike many IRES elements, the crucifer-infecting tobamovirus (CrTMV) contains a polypurine tract rather than a pyrimidine-rich tract for PABPs binding activities (108). For example, PABPs interact with the polypurine tract of CrTMV IRES in the presence of poly(A) tail to enhance IRES activity (108). In tobacco etch virus (TEV), PABPs play important roles in the kinetics and stability of eIF4F binding to IRES, thus facilitating viral mRNAs translation initiations (109). VPg of turnip mosaic virus (TuMV) plays an important role in the cap-independent initiation of viral protein synthesis by interacting with PABPs and eIF4B to eIF4F, which resembles what happens in calicivirus (110, 111).

DNA viruses. RNA viruses manipulate PABPs in diverse manners as the structures of viral mRNAs are diverse. DNA viruses have double-stranded DNA, and their viral
transcripts are both capped and polyadenylated; therefore, they are more likely to employ the canonical cap-dependent translation initiation way for their replications.

Poxviridae. Poxvirus genera is a large, complex, enveloped virus belonging to the Poxviridae family. Unlike herpesviruses, which take advantage of the host DNA and RNA polymerases, poxvirus could replicate in the cytosol as it encodes itself DNA and RNA polymerases. Poxvirus replicates in the cytoplasmic compartments known as DNA factories, containing viral mRNA, RNA-binding proteins, ribosomal proteins, viral transcription factors, and cellular translation initiation factors elf4E and elf4G (112). Poxvirus and herpesvirus mRNAs are translated via the classic cellular cap-dependent route. Vaccinia virus (VV), a model of the poxvirus, utilized its viral factors to inactivate the elf4E binding protein (4E-BP) (113). 4E-BP is a translational repressor that sequesters elf4E from its association with elf4G, a core bridge between PABPs and elf4F complex (114). VV negatively regulate elf4F to suppress cellular cap-dependent mechanism to translate their mRNAs by destroying 4E-BP (113). Moreover, in VV infected cells, elf4E, elf4F, and PABPs are redistributed to the distinct viral replication compartments in the cytoplasm (113). VV hijacks of the host translation apparatus to DNA factories enhance the efficiency of viral replication and thwart cellular protein synthesis.

Herpesviridae. Herpesviridae family comprises three subfamilies, including the Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae. Alphaherpesvirus and betaherpesvirus are represented by herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), respectively, whereas Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) are two models of a gammaherpesvirus. HSV-1 and KSHV induce host shutoff gene expression while HCMV does not. Besides this, they develop both similar and distinct mechanisms to ensure efficient viral mRNAs translation initiation.

Alphaherpesvirus. PABPs could shuttle between the cytoplasm and the nucleus under the assist of many viruses even without a typical nuclear export or import signal. For instance, PABPs are associated with HSV-1 ICP27 protein. HSV-1 immediately early gene-encoded protein ICP27 is a nucleo-cytoplasmic shuttling protein involved in transcriptional and posttranscriptional regulation of viral and cellular gene expression (115). Gromeier and colleagues investigated the significance of ICP27-PABP interaction. They reported that in HSV-1 ICP27 alone expressed HeLa cells, PABPs were largely relocated into the nucleus without affecting the expression levels and integrity of PABPs or their associating translation initiation factors (116). Moreover, the interaction of ICP27 and UL47 decreased PABPs interactions to their physiological binding partner elf4G and Paip2 (116). It is unknown whether the dissociation of elf4G or Paip2 from PABPs could also result from PABPs redistribution to the nucleus, causing fewer cytoplasmic PABPs ready for efficient translational initiation.

Another group investigated the ICP27-null mutant and discovered that ICP27 does not influence the relocalization of PABPs into the nucleus, suggesting that other HSV-1 encoded viral factors may influence PABPs relocalization (117). It is argued that redistribution of PABPs into the nucleus was vhs dependent (118). Again, more work needs to be done on understanding how HSV-1 manipulates PABPs during infection. Although both ICP27 and UL47 are RNA-binding proteins, abundant nuclear PABPs seem more convenient for interacting with viral mRNA poly(A) tails in the nucleus and facilitating viral mRNAs export from the nuclei. These findings suggest that HSV-1 targets PABPs by changing its subcellular localization and disrupting its binding to the translational initiation complex. Gray and colleagues found that HSV-1 ICP27 also form a complex with PABPs and elf4G to promote small ribosomal subunit recruitment for viral mRNAs translation purposes independently (119), suggesting PABP-elf4G interaction is not only targeted for mRNA repression but also activation. Besides, similar to VV, HSV-1 infection also enhances elf4F assembly by phosphorylation and proteasome-mediated degradation of the 4E-BP, thus negatively regulating elf4F complex formation (120), which is similar to what happens in VV infected cells. Consequently, viruses may also target PABPs to affect viral or cellular mRNA processing and transport in
addition to mRNA translation initiation. More viral and cellular factors related to this process await investigations to propose a clear and intact model to decipher how ICP27 or other associated proteins commandeer PABPs or other translation initiation factors during HSV-1 infections.

HSV-2 is another alphaherpesvirus that might utilize PABPs during infections. However, the interaction between PABPs and HSV-2 encoding factors is not clear. Viral protein \textit{vhs} is required to disrupt SGs, but the abundance of PABPs is not changed in SGs of infected cells (121). Whether PABPs or their binding partner were affected by \textit{vhs} or other viral factors is not clear, and future investigations are needed to explore if \textit{vhs} interact with PABPs to disrupt SGs integrity.

Betaherpesvirus. In HSV-1, HCMV, and KSHV-infected cells, viral mRNAs compete with host mRNAs for translation by stimulating the assembly of cellular translation initiation factors eIF4F (122, 123). However, only HCMV increases host eIF4F components (eIF4E, eIF4G, and eIF4A) and cytoplasmic PABPs levels, and this process requires the inactivation of cellular translational repressor 4E-BP (124). HSV-1 and KSHV exclude PABPs from the eIF4F complex by restricting them in the nucleus (116, 125). By contrast, HCMV manipulates PABPs in a cytoplasmic-dependent manner. PABPs in HCMV infected cells aggregate in the cytoplasm and are sensitive to rapamycin complex 1 (mTORC1)-mediated inhibition of 4E-BP phosphorylation (Fig. 4) (124). HCMV UL38 preserves the role of mTORC1 activity to inactivate 4E-BP. mTORC1 kinase mediates the inactivation of 4E-BP, the inactivated 4E-BP resulted in the release of eIF4E, leading to more efficient eIF4E-eIF4G interaction for more efficient translation initiation (122, 126, 127). Finally, the accumulated PABPs in the cytoplasm are ready to bind to eIF4F and promote efficient translation of viral mRNAs. Moreover, UL38 is an HCMV encoded target of mTORC1 activator, which translationally increases PABPs synthesis by regulating terminal oligopyrimidine (TOP) elements found on PABP mRNA 5’ UTR (127). The HCMV-induced PABPs accumulation promotes eIF4F assembly, thus increasing host translation initiation factors to foster viral protein synthesis and stimulate virus replication (127). Another HCMV UL69 protein also antagonizes the active state of 4E-BP by a different mechanism. UL69 interacts directly with eIF4A, excluding 4E-BP from the cap-binding complex and PABPs (128). In the meantime, the host is trying to restrict HCMV
by increasing Paip2 levels (129). Paip2 is a gene expression repressor that is tightly regulated with PABPs. Despite the cellular Paip2 functioning as an innate defense to impede virus propagation, HCMV could sufficiently increase PABP levels to overcome its repression caused by Paip2 (129). VV, HSV-1, and HCMV can inactivate 4E-BP to promote the initiation of viral mRNA, even exploiting different mechanisms. Thus, depending on these discoveries, it is still worth studying how other HSV-1 and HCMV proteins manipulate PABPs and propose a working model of different herpesviruses, which might be good antiviral targets for the future.

Gammaherpesvirus. Redistribution of PABPs into the nucleus is, at least in part, a typical method utilized by viruses to induce host shut off. In KSHV, viral protein K10/10.1 may target PABPs for their redistribution into the infected nuclei, which would mediate host translation defects. However, the importance and mechanism of this interaction are not elucidated due to the unknown function of the K10/10.1 protein in KSHV (130). Additionally, KSHV ORF37 encodes a protein named SOX which strongly induces a host shut off (131, 132). KSHV SOX was shown to possess both endonuclease and exonuclease activity and facilitates host shut off by promoting cytoplasmic mRNA degradation, nuclear mRNA hyperadenylation, and their nuclear retention (133–137), causing retaining of host mRNAs in infected nuclei and mediating mRNA export defects (125, 137); The nuclear import signals of PABPs are masked when bind to RNA in the cytoplasm, and SOX is sufficient to mediate nuclear relocalization of PABPs by degrading mRNAs on PABPs, resulting in RNA-free PABPs imported into the nucleus (138).

Moreover, during KSHV lytic infections, an intronless viral long noncoding (Inc) RNA called polyadenylated nuclear (PAN) RNA is transcribed at high levels (139). SOX upregulates the accumulation of PAN RNA in the nucleus further to restrict PABPs in the nucleus (139). These measures taken by SOX are consistent with the host shut off effect. In addition to that, PAN RNA might promote viral gene expression at the late stage of infections as knockdown of PAN RNA is associated with the reduced amount of virus released into cell culture media (139).

ORF57 induces the translocation of PABPs from the cytoplasm to the nucleus, similar to SOX protein (140). Moreover, KSHV ORF57 is responsible for the stability of viral PAN RNA structures (140, 141). PABPs inhibit PAN RNA accumulation by destabilizing its structure in the absence of ORF57. However, the N-terminus of ORF57 interacts with the RRM of PAPBs, colocalizing PABPs with nuclear PAN RNA and alleviating the negative effect of PAPBs on PAN (140). As the relocating nuclear PABPs interrupt mRNA nuclear export and cause subsequent hyperventilation, one of the functions of ORF57 is probably to prevent viral RNA from hyperadenylation in the nucleus.

KSHV expressed another protein, ORF10, which directly targeted the nuclear export pathway by interacting with Rae1 (142), a highly conserved eukaryotic cellular export factor to inhibit nuclear mRNA exit. Export of mRNA-ribonucleoprotein (mRNP) complex requires the transit of them through the nucleopore complex (NPC), and Rae1 was involved in mRNA export by interacting with Nup98 at NPC, disrupting Rae1 and Nup98 complex working in nuclear mRNA export (133, 142). EBV and murine gamma-HV 68 (MHV68) encode homologs of KSHV SOX: BGLF5 and muSOX, respectively (143). KSHV SOX roles are mimicked by these two homologs suggesting the universal roles of KSHV SOX and the possible representative mechanism model in gammaherpesviruses (Fig. 5).

Epstein-Barr virus (EBV) encodes an RNA-binding protein EB2 to facilitate translation initiation of viral mRNA through association with PABP-elf4F (144). EB2 protein is encoded to promote the recruitment of viral mRNAs in the cytoplasm. Most of the viral genes of herpesvirus are intronless, and herpesvirus requires a specific mechanism of mRNA export and translation for efficient expression of their non-intron mRNAs. EBV EB2 can shuttle between the nucleus and the cytoplasm and enhance the nuclear export of intronless viral mRNAs (145). Gruffat et al. provided a model showing how EB2 of EBV facilitates the efficient translation of viral mRNAs (144). They reported that EB2 (Fig. 5) first binds to mRNA’s cap-binding complex (CBC) in the nucleus. After the formation of mature mRNAs, mRNPs are transported into the cytoplasm by CBC (144). The mature
viral mRNAs then interacted with the N-terminus of eIF4G and PABPs to facilitate translation initiation in the cytoplasm (144). HSV-1 ICP27, HCMV UL69, and KSHV ORF57 are homologs of EBV EB2. They play important roles in viral mRNA translation, and their mechanisms are different and not fully explored. For example, KSHV ORF57 proteins recruited a cellular factor PYM to promote viral mRNAs translation, and the interaction between ORF57 and PYM links the 40S subunit of ribosomes and initiation factors (146). ICP27 of HSV-1 and UL69 from HCMV were both claimed to target PABPs and eIF4A/eIF4G to facilitate translation initiation as described above (119, 128, 147, 148). The Herpesviridae could relocate PABPs into the nucleus. However, it looks like only gamma-herpesvirus would accelerate host mRNA decay to promote this process. The mechanism models of how the Herpesviridae target PABPs await further clarifications.

Summary and future perspectives. The host mRNA translation apparatus has long been recognized as a base to attack during viral infections. PABPs are the number one targets as they play significant roles in translation initiation. Manipulating PABPs would impede host translation efficiency and hijack them to work for viral mRNA synthesis simultaneously. In general, there are a few ways to control PABPs activities.

Firstly, PABPs are cleaved by viral proteases. Enterovirus (PV and CV), Hepatovirus (HAV and HCV), Caliciviridae (FCV and NV), Lentiviruses (HIV-1 and HIV-2) encoding proteases mediate proteolysis of PABPs and/or the eIF4G, which directly decrease the translation initiation efficiency. In addition, in PV and CV, PABPs were observed to facilitate viral RNA replication directly via an unknown mechanism. Secondly, PABPs are displaced from the translation initiation complex. For example, rotavirus NSP3 displaces PABPs in the interaction with eIF4G and evicts PABPs to mediate host shutoff. Thirdly, a virus may target PABPs for their presence in virus-induced host SGs via an unclear mechanism. More work is needed to understand how the virus regulates PABPs in SGs. Last but not least, PABPs are redistributed from the cytoplasm into the nucleus to shut off host translation initiation. Different viruses could use different strategies to achieve the same aim. For example, rotavirus and herpesvirus use different mechanisms to restrict PABPs in the nucleus.

Although similar measures are taken to target PABPs, the underlying mechanisms are disparate, and virus replication would be promoted differently (see Table 1). Most investigations on PABPs focus on it as an initiation factor, but it has additional roles in RNA metabolism, such as RNA splicing, RNA decay, and others. Whether these additional ways are served as targets for viral manipulations remains future investigations. Besides, are there more viral and cellular factors involved? More specifically, an overview view of how viruses target PABPs needs to be elucidated. In the meantime, the cytoplasmic PABPs are the most studied at present. Other members of the PABPs family are less explored during viral infections. The specific functions of other PABP family
members are still vague and need to be further clarified during viral infection. According to the current research results, the roles of PABPs were investigated in cell lines and may vary from case to case. Organoids are recommended to mimic viral infections in actual circumstances to improve the consistency of the virology study and warranty fidelity.

PABPs have roles in RNA metabolism, including cellular mRNA decay, mRNA deadenylation, mRNA export, mRNA surveillance. PABPs may regulate viral mRNAs identified by the innate immune system through pattern recognition receptors (PRRs) (149). How PABPs mediate, viral mRNAs metabolism is unrevealed. It reminds us that viruses may target PABPs to metabolize viral RNAs to escape PRRs arrest, suggesting PABPs’ possible roles in innate immunity, an undiscovered and promising area during viral infections.

Although the importance of PABPs during viral infections has been concerned in the last decades, their function in infected cells is not fully addressed in many aspects. With the progress of cell research technology, different views on the roles of PABPs during viral infection and the whole organism may appear. Here, we have outlined and discussed the current knowledge of the PABPs during viral infection and provided information for future study of PABPs.

ACKNOWLEDGMENTS

Our work is supported by the Natural Sciences Foundation of Inner Mongolia Autonomous Region of China grant 2021BS03013, the Inner Mongolia University High-level Talents Award 10000-21311201/057. We apologize to colleagues whose work could not be cited because of length restrictions.

REFERENCES

1. Pestova TV, Lorsch JR, Hellen CUT. 2007. The mechanism of translation initiation in eukaryotes, p 87–128. In Mathews MB, Sonenberg N, Hershey JBW (ed), Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, NY.

2. Kahvejian A, Roy G, Sonenberg N. 2001. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. Cold Spring Harbor Symp Quant Biol 66:293–300. https://doi.org/10.1101/sqb.2001.66.293.
3. Smith RW, Gray NK. 2010. Poly(A)-binding protein (PABP): a common viral target. Arch Biochem Biophys 492:1-12. https://doi.org/10.1016/j.abb.2009.10.026

4. Nostrand E, Freese P, Pratt GA, Wang X, Wei X, Blue SM, Dominguez D, Cody N, Olson S, Sundaramaran B. 2017. A large-scale binding and functional map of human RNA binding proteins. Nature 543:711–719.

5. Morris RJ, McSherry E, Sebastian A. 1973. An adenylate-acid-rich sequence in messenger RNA of HeLa cells and its possible relationship to reiterated sites in DNA. Harvard Business Rev 68–71.

6. Blobel G. 1973. A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc Natl Acad Sci U S A 70:924–928. https://doi.org/10.1073/pnas.70.3.924

7. Edmonds M, Vaughan MH, Nakazato H. 1971. Polyadenylacylase sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. Proc Natl Acad Sci U S A 68:1336–1340. https://doi.org/10.1073/pnas.68.6.1336.

8. Goss DJ, Kleinman FE. 2013. Poly(A) binding proteins: are they all created equal? Wiley Interdiscip Rev RNA 4:167–179. https://doi.org/10.1002/wrna.1151.

9. Nicholson AL, Pasquinelli AE. 2019. Tales of detailed poly(A) tails. Trends Biochem Sci 44:151–166. https://doi.org/10.1016/j.tibs.2018.10.008.

10. Laishram RS. 2014. Poly(A) polymerase (PAP) diversity in gene expression regulation. Wiley Interdiscip Rev RNA 5:61–70. https://doi.org/10.1002/wrna.1151.

11. Blobel G. 1973. A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc Natl Acad Sci U S A 70:924–928. https://doi.org/10.1073/pnas.70.3.924

12. Edmonds M, Vaughan MH, Nakazato H. 1971. Polyadenylacylase sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. Proc Natl Acad Sci U S A 68:1336–1340. https://doi.org/10.1073/pnas.68.6.1336.

13. Kühn U, Wahle E. 2004. Structure and function of poly(A) binding proteins. FEBS Lett 578:2185–2197. https://doi.org/10.1016/j.febslet.2004.05.029.

14. Kühn U, Wahle E. 2004. Structure and function of poly(A) binding proteins. FEBS Lett 578:2185–2197. https://doi.org/10.1016/j.febslet.2004.05.029.

15. Mangus DA, Evans MC, Jacobson A. 2003. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Gene 314:1–14.

16. Funakoshi Y, Doi Y, Hosoda N, Uchida N, Osawa M, Shimada I, Tsujimoto M, Suzuki T, Kataoka T, Hoshino S-I. 2007. Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes Dev 21:3135–3148. https://doi.org/10.1101/gad.1597707.

17. Eliseeva IA, Lyabin DN, Ovchininikov LP. 2013. Poly(A)-binding proteins: structure, domain organization, and activity regulation. Biochemistry (Mosc) 78:1377–1391. https://doi.org/10.1134/S0006297913130014.

18. Smith RW, Blee TK, Gray NK. 2014. Poly(A)-binding proteins are required for diverse biological processes in metazoans. Biochem Soc Trans 42:1229–1237. https://doi.org/10.1042/BST20140111.

19. Gorgoni B, Richardson WA, Burgess HM, Anderson RC, Wilkie GS, Gautier P, Martins J, Brook M, Sheets M, Gray NK. 2011. Poly(A)-binding proteins are functionally distinct and have essential roles during vertebrate development. Proc Natl Acad Sci U S A 108:7844–7849. https://doi.org/10.1073/pnas.1011664108.

20. Galille DR, Liu R. 2014. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants. BMC Evol Biol 14:238. https://doi.org/10.1186/s12862-014-0238-4.

21. Belostotsky DA. 2003. Unexpected complexity of poly(A)-binding protein gene families in flowering plants: three conserved lineages that are at least 200 million years old and possible auto- and cross-regulation. Genetics 163:311–319. https://doi.org/10.1093/genetics/163.1.311.

22. Cosson B, Braun F, Paillard L, Blackshear P, Osborne HB. 2004. Identification of a novel Xenopus laevis poly(A) binding protein. Biochem Biophys Res Commun 319:519–519. https://doi.org/10.1016/j.bbrc.2004.04.006.

23. A BC, A AC A RLG, B JM, C BC, C GZ, A MP. 2002. Characterization of the poly(A) binding proteins expressed during oogenesis and early development of Xenopus laevis. Biology of the Cell 94:217–231.

24. Voeltz GK, Ongkasuwon J, Standart N, Steitz JA. 2001. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA degradation in Xenopus egg extracts. Genes Dev 15:774–788. https://doi.org/10.1101/gad.87201.

25. Galille DR, Liu R. 2014. Phylogenetic analysis reveals dynamic evolution of the poly(A)-binding protein gene family in plants. BMC Evol Biol 14:238. https://doi.org/10.1186/s12862-014-0238-4.

26. Kleene KC, Wang MY, Cutler M, Hall C, Shih D. 1994. Developmental expression of poly(A) binding protein mRNAs during spermatogenesis in the mouse. Mol Reprod Dev 40:273–285. https://doi.org/10.1002/mrd.1080400303.

27. Kühn U, Wahle E. 2004. Structure and function of poly(A) binding proteins. FEBS Lett 578:2185–2197. https://doi.org/10.1016/j.febslet.2004.05.029.

28. Yang H, Duckett CS, Lindsten T. 1995. IPABP, an inducible poly(A)-binding protein detected in activated human T cells. Mol Cell Biol 15:6770–6776. https://doi.org/10.1128/MCB.15.12.6770.
46. Tsai TL, Lin CH, Lin CN, Lo CY, Wu HY. 2018. Interplay between the poly(A) tail, poly(A)-binding protein, and coronavirus nucleocapsid protein regulates gene expression of coronavirus and the host cell. J Virol 92. https://doi.org/10.1128/JVI.01162-18.

47. Madhugiri R, Fricke M, Marz M, Ziebuhr J. 2016. Coronavirus cistron-acting RNA elements. PLoS Adv Virus Res. 96:127–163. https://doi.org/10.1080/00222836.2016.80565-9.

48. Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cu J, Shi ZL. 2017. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698. https://doi.org/10.1371/journal.ppat.1006698.

49. Yang XL, Hu B, Wang B, Wang MN, Zhang Q, Zhang W, Wu LJ, Ge XY, Zhang YZ, Daszak P, Wang LF, Shi ZL. 2015. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus. J Virol 90:3253–3256. https://doi.org/10.1128/JVI.01543-15.

50. Snijder EJ, Breidenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331:991–1004. https://doi.org/10.1016/S0022-2836(03)00865-9.

51. Lei J, Ma-Lauer Y, Han Y, Thoms M, Buschauer R, Jores J, Thiel V, Beckmann R, Deng W, Leonhardt H, Hilgenfeld R, von Brunn A. 2021. The SARS-unique domain (SUD) of SARS-CoV and SARS-CoV-2 interacts with human 40S to enhance viral RNA translation. EMBO J 40:e102277. https://doi.org/10.15252/embj.2019102277.

52. Pfefferle S, Schönfels D, Müller MA, Carbajo-Lozoya J, Schubert K, Karousis ED, Jomaa A, Scaiola A, Echeverria B, Gurzeler LA, Schlegel M, Wang N, Zhang Y, Daszak P, Wang LF, Li B, Xie J, Shi ZL. 2012. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient cleavage of the host poly(A)-binding protein. Proc Natl Acad Sci U S A 99:10694–10699. https://doi.org/10.1073/pnas.100933199.

53. Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL. 2015. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698. https://doi.org/10.1371/journal.ppat.1006698.

54. Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL. 2015. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698. https://doi.org/10.1371/journal.ppat.1006698.

55. Hale BG, Randall RE, Ortín J, Jackson D. 2008. The multifunctional NS1 protein is upregulated during recovery from heat shock in HeLa cells. FEMS J 276:552–570. https://doi.org/10.1111/j.1742-4658.2008.00803.x.

56. Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R. 2015. Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res 206:62–73. https://doi.org/10.1016/j.virusres.2015.01.012.

57. Joachims M, Breugec PC, Lloyd RE. 1999. Cleavage of poly(A)-binding protein by enterovirus proteases coincurs with inhibition of translation in vitro. J Virol 73:718–727. https://doi.org/10.1128/JVI.73.1.718-727.1999.

58. Bo Z, Grazella M, Verena GM, Yuki K. 2007. Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation. Nucleic Acids Res 35:5975–5984.

59. Kerekes T, Keiper BD, Badroff C, Cai A, Knowlton KU, Rhodes RE. 1999. Cleavage of poly(A)-binding protein by coxsackievirus A2 protease in vitro and in vivo: another mechanism for host protein synthesis shutdown. J Virol 73:705–717. https://doi.org/10.1128/JVI.73.2.705-717.1999.

60. Hale BG, Randall RE, Ortín J, Jackson D. 2008. The multifunctional NS1 protein is upregulated during recovery from heat shock in HeLa cells. FEMS J 276:552–570. https://doi.org/10.1111/j.1742-4658.2008.00803.x.

61. Hale BG, Randall RE, Ortín J, Jackson D. 2008. The multifunctional NS1 protein is upregulated during recovery from heat shock in HeLa cells. FEMS J 276:552–570. https://doi.org/10.1111/j.1742-4658.2008.00803.x.

62. Burgui I, Aragón T, Ortín J, Nieto A. 2003. PABP1 and eIF4GI associate with human 40S to enhance viral RNA translation. EMBO J 40:e102277. https://doi.org/10.15252/embj.2019102277.

63. Nikolic J, Civas A, Lama Z, Lagaudrière-Gesbert C, Blondel D. 2016. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories. PLoS Pathog 12:e1005942. https://doi.org/10.1371/journal.ppat.1005942.

64. Ogino M, Ito N, Sugiyama M, Ogino T. 2016. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP PolynucleotidekinasedTransferase Activity. Viruses 8:144. https://doi.org/10.3390/v8050144.

65. Ma S, Bhattacharjee RB, Bag J. 2009. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. FEMS J 276:552–570. https://doi.org/10.1111/j.1742-4658.2008.00803.x.

66. Lin, Y. 2010. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors cap-independently. J Virol 84:2427–2433. https://doi.org/10.1128/JVI.00136-22.
83. Vissel JL, Medina GN, Rabouev HH, de Groot RJ, Langereis MA, de Los Santos T, van Kuppevelt FJM. 2019. Foot-and-mouth disease virus leader protease cleaves G3BP1 and G3BP2 and inhibits stress granule formation. J Virol 93. https://doi.org/10.1128/JVI.00922-18.

84. Ye X, Pan T, Wang D, Fang L, Ma J, Zhu X, Shi Y, Zhang K, Zheng H, Chen H, Li K, Xiao S. 2018. Foot-and-mouth disease virus counterattacks on internal ribosome entry site suppression by G3BP1 and inhibits G3BP1-mediated stress granule assembly via post-translational mechanisms. Front Immunol 9:142. https://doi.org/10.3389/fimmu.2018.01412.

85. Fung G, Ng CS, Zhang J, Shi J, Kang R, Han L, Chu F, Jagdeo J, Jan E, Fujita T, Luo H. 2013. Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVA3 infection. PLoS One 8: e79546. https://doi.org/10.1371/journal.pone.0079546.

86. Humoud MN, Doyle N, Royall E, Wilcocks MM, Songolo F, van Kuppevelt F, Roberts LO, Goodfellow IG, Langereis MA, Locker N. 2016. Feline coronavirus infection disrupts assembly of cytoplasmic stress granules and induces G3BP1 cleavage. J Virol 90:6489–6501. https://doi.org/10.1128/JVI.00647-16.

87. Alhatli B, Vashist S, Goodfellow I. 2015. Functions of the 5' and 3' ends of calicivirus genomes. Virus Res 206:134–143. https://doi.org/10.1016/j.virusres.2015.02.007.

88. Goodfellow I. 2011. The genome-linked protein VPg of vertebrate viruses - a multifaceted protein. Curr Opin Virol 1:355–362. https://doi.org/10.1016/j.coviro.2011.09.003.

89. Kuyumcu-Martinez M, Belliot G, Sosnovtsev SV, Chang KO, Green KY, Carrasco L. 2009. HIV-1 protease inhibits Cap- and poly(A)-dependent translation within cytoplasmic poxvirus factories. J Virol 83:11906. https://doi.org/10.1128/JVI.00538-12.

90. Duarte M, Vende P, Charpilienne A, Gratia M, Laroche C, Ponceot D. 2019. Rotavirus infection alters splicing of the stress-related transcription factor XBP1. J Virol 93. https://doi.org/10.1128/JVI.01740-09.

91. Cheng C-L, Yu J-M, Chang M-H, Fang K-Y, Li C-H, Chen C-W, Wang Y-S, Chang C-Y, Ou J-HJ. 2011. Nervous necrosis virus coat protein mediates host translation shutoff through nuclear translationalization and degradation of polycladenylate binding protein. J Virol 95:e02364-20. https://doi.org/10.1128/JVI.02364-20.

92. Ikawaoka HO, Tajima Y, Taniguchi T, Kaido M, Mise K, Tomari Y, Taniguchi H, Okuno T. 2012. Poly(A)-binding protein facilitates translation of an uncapped/nonpolyadenylated viral RNA by binding to the 3' untranslated region. J Virol 86:7836–7849. https://doi.org/10.1128/JVI.00538-12.

93. Marlon L, Hen-Avivi S, Pinchasdi C, Chekanova JA, Belostotsky DA, Elroy-Stein O. 2009. Diverse poly(A) binding proteins mediate internal translation initiation by a plant viral IRES. RNA Biol 6:446–454. https://doi.org/10.4161/rna.6.4.8951.

94. Yumak H, Khan MA, Goss DJ. 2010. Poly(A) tail affects equilibration and thermodynamic behavior of tobacco etch virus mRNA with translation initiation factors eIF4F, eIF4B and PABP. Biochem Biophys Acta 1799:653–658. https://doi.org/10.1016/j.bbadisc.2010.08.003.

95. Khan MA, Goss DJ. 2018. PABP and eIF4B effects binding affinity and kinetic rates of genome linked viral protein (VPg) with eukaryotic initiation factor 4F. FEBS J 32. https://doi.org/10.1002/febs.20183217_supplement.652.19.

96. Khan MA, Goss DJ. 2019. Poly(A) binding protein enhances the binding affinity of potyvirus VPg to eukaryotic initiation factor eIF4F and activates in vitro translation. Int J Biol Macromol 121:947–955. https://doi.org/10.1016/j.ijbiomac.2018.10.135.

97. Katsanfas GC, Moss B. 2007. Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2:221–228. https://doi.org/10.1016/j.chom.2007.08.005.

98. Walsh D, Arias C, Perez C, Halladin D, Escandón M, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Mohr I. 2008. Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus-infected cells. Mol Cell Biol 28:2648–2658. https://doi.org/10.1128/MCB.01631-07.

99. Moerk NJ, Aktas H, Chen H, Cantel S, Reibark MH, Fahmy A, Gross JD, Degterev A, Yuan J, Choue M, Halperin JA, Wagner G. 2007. Small-molecule inhibition of the interaction between the translation initiation factors eIF4F and eIF4B. Cell 128:257–267. https://doi.org/10.1016/j.cell.200611046.

100. Sandri-Goldin RM. 2011. The many roles of the highly interactive HSV protein ICP27, a key regulator of infection. Future Microbiol 6:1261–1277. https://doi.org/10.2217/fmb.11.119.

101. Dobrikićova E, Shevygott M, Walters R, Gromee M. 2010. Herpes simplex virus proteins ICP27 and UL47 associate with polycladenylate-binding protein and control its subcellular distribution. J Virol 84:270–279. https://doi.org/10.1128/JVI.01740-09.

102. Salaun C, MacDonald AI, Larralde O, Howard L, Lochtie K, Burgess HM, Brook M, Malik P, Graham SV, Gray NK. 2010. Poly(A)-binding protein 1 activity and ki- netic properties harness PABP and eIF4G to promote translation initiation downstream of cap binding. Proc Natl Acad Sci U S A 114:6310–6315. https://doi.org/10.1073/pnas.1610417114.
120. Walsh D, Mohr I. 2006. Assembly of an active translation initiation factor complex by a viral protein. Genes Dev 20:461–472. https://doi.org/10.1101/gad.137506.

121. Finnen RL, Pangka KR, Banfield BW. 2012. Herpes simplex virus 2 infection impacts stress granule accumulation. J Virol 86:8119–8130. https://doi.org/10.1128/JVI.00313-12.

122. Walsh D, Perez C, Notary J, Mohr I. 2005. Regulation of the translation initiation factor eIF-4F by multiple mechanisms in human cytomegalovirus-infected cells. J Virol 79:8057–8064. https://doi.org/10.1128/JVI.79.13.8057-8064.2005.

123. Arias C, Walsh D, Harbell J, Wilson AC, Mohr I. 2009. Activation of host translational control pathways by a viral developmental switch. PLoS Pathog 5:e1000334. https://doi.org/10.1371/journal.ppat.1000334.

124. Perez C, McKinney C, Chunbaatar U, Mohr I. 2011. Translational control of the abundance of cyttoplasmic poly(A) binding protein in human cytomegalovirus-infected cells. J Virol 85:156–164. https://doi.org/10.1128/JVI.01778-10.

125. Lee YJ, Glaunsinger BA, Sugden B. 2009. Aberrant herpesvirus-induced polyadenylation correlates with cellular messenger RNA destruction. PLoS Biol 7:e1001007. https://doi.org/10.1371/journal.pbio.1001007.

126. Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. 2004. Human cytomegalovirus endonuclease SOX. Nucleic Acids Res 46:11968–11979. https://doi.org/10.1093/nar/gkz932.

127. Covarrubias S, Richner JM, Clyde K, Lee YJ, Glaunsinger BA. 2009. Host shutoff is a conserved phenotype of gammaherpesvirus infection and is orchestrated exclusively from the cytoplasm. J Virol 83:9554–9566. https://doi.org/10.1128/JVI.01051-09.

128. Glaunsinger B, Ganem D. 2004. Lytic KSHV infection inhibits host gene expression by accelerating global mRNA turnover. Mol Cell 13:713–723. https://doi.org/10.1016/S1097-2765(04)00091-7.

129. Larralde O, Smith RW, Wilkie GS, Malik P, Gray NK, Clements JB. 2006. Epstein-Barr virus EB2 protein stimulates translation initiation factor 4F assembly and excluding 4EBP1. Proc Natl Acad Sci U S A 103:2645–2650. https://doi.org/10.1073/pnas.0509708103.

130. Katano SH. 2006. Expression of Kaposi’s sarcoma-associated herpesvirus ORF57 in accumulation of polyadenylated nuclear RNA, a viral long noncoding RNA. J Virol 80:1588–1600. https://doi.org/10.1128/JVI.02395-07.

131. Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273. https://doi.org/10.1128/CMR.00046-08.