Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines

Nisana Tepsiri, Liengchai Chaturat, Banchob Sripa, Wises Namwat, Sopit Wongkham, Vajarabhongsa Bhudhisawasdi, Wichittra Tassaneeyakul

Abstract

AIM: To study the effect of a number of chemotherapeutic drugs on five human intrahepatic cholangiocarcinoma (CCA) cell lines. The expressions of genes that have been proposed to influence the resistance of chemotherapeutic drugs including thymidylate synthase (TS), dihydropyrimidine dehydrogenase (DPD), glutathione-S-transferase P1 (GSTP1), multidrug resistance protein (MDR1) and multidrug resistance-associated proteins (MRPs) were also determined.

METHODS: Five human CCA cell lines (KKU-100, KKU-M055, KKU-M156, KKU-M214 and KKU-OCA17) were treated with various chemotherapeutic drugs and growth inhibition was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Semi-quantitative levels of gene expression were determined by a reverse transcriptase polymerase chain reaction (RT-PCR). Results of IC₅₀ values and the ratios of gene expression were analyzed by linear regression to predict their relationship.

RESULTS: Among five CCA cell lines, KKU-M055 was the most sensitive cell line towards all chemotherapeutic drugs investigated, particularly taxane derivatives with IC₅₀ values of 0.02-3 nmol/L whereas KKU-100 was apparently the least sensitive cell line. When compared to other chemotherapeutic agents, doxorubicin and pirarubicin showed the lowest IC₅₀ values (<5 µmol/L) in all five CCA cell lines. Results from RT-PCR showed that TS, MRP1, MRP3 and GSTP1 were highly expressed in these five CCA cell lines while DPD and MRP2 were only moderately expressed. It should be noted that MDR1 expression was only found between the level of MRP3 expression and the IC₅₀ values of etoposide, doxorubicin and pirarubicin (r = 0.86-0.98, P<0.05).

CONCLUSION: Sensitivity to chemotherapeutic agents is not associated with the histological type of CCA. Choosing of the appropriate chemotherapeutic regimen for the treatment of CCA requires knowledge of drug sensitivity. MRP3 was correlated with resistance of CCA cell lines to etoposide, doxorubicin and pirarubicin, whereas other chemotherapeutic drugs showed no association. The role of this multidrug resistance-associated protein, MRP3, in chemotherapeutic resistance in CCA patients needs to be further investigated.
risk factors of CCA in that population are still unclear. At present, only surgical resection of all detectable tumors is correlated with the improvement in 5-year survival[5,6]. Evidence from clinical studies demonstrated that the response rate of this cancer to chemotherapy is relatively poor in which partial responses have been observed in only approximately 10-20% of cases[7-9]. Improvement in the survival of CCA patients will probably not only rely on more aggressive or advanced surgical techniques but also from the improvement in treatment with chemotherapy. When compared to other cancers, data concerning drug sensitivity and drug resistance in CCA are still limited, this may be due to the fact that this cancer has previously been considered as a rare cancer in developed countries[10-13].

Resistance of cancerous cells to chemotherapeutic drugs is a major cause of the chemotherapeutic failure of chemotherapy[14-16]. Several factors have been hypothesized to play a role in chemotherapeutic drug resistance in cancers including high expression of drug efflux pumps (e.g. multidrug resistance protein [MDR1] and multidrug resistance-associated proteins [MRPs][17]), an increase in detoxification of chemotherapeutic drugs (e.g. glutathione S-transferases [GST][18] and dihydropyrimidine dehydrogenase [DPD][19]), alteration of drug targets and suppression of drug-induced apoptosis[20]. Several lines of evidence suggest that both MDR1 and MRP1 are the major contributors of the multidrug resistance phenotypes observed in a number of tumor cells[21-23].

It has been demonstrated in a CCA cell line, SK-ChA-1, that the resistance of this CCA cell line to 5-FU resulted from an increase in activity of thymidylate synthase (TS), a target enzyme for 5-FU[24,25]. 5-FU resistance in CCA cell lines has also been proposed as a target enzyme for 5-FU from an increase in activity of thymidylate synthase (TS), a rate-limiting enzyme in catabolism of 5-FU has also been proposed as a target enzyme for 5-FU from an increase in activity of thymidylate synthase (TS), a rate-limiting enzyme in catabolism of 5-FU[26].

Association between 5-FU resistance and mRNA expression or high activity of DPD in colorectal tumors has been reported in which high activity and high mRNA expression of DPD have resulted in low sensitivity to 5-FU[27,28]. Although 5-FU is the most common chemotherapeutic drug used in the treatment of CCA, the roles of TS and DPD in that cancer are not clear[29-31]. Moreover, glutathione S-transferase P1 (GSTP1) has been found to be associated with drug resistance in some cancers including CCA[13,31].

In order to improve the efficacy of chemotherapy in CCA patients, better understanding in drug sensitivity and the mechanism of drug resistance of this cancer is essential. In the present study, we have screened the effect of a number of chemotherapeutic drugs against five intrahepatic CCA cell lines that represent different histological types. Moreover, the expression of genes that have been proposed to influence chemotherapeutic drug resistance was analyzed in order to characterize the molecular mechanism of drug resistance in CCA.

MATERIALS AND METHODS

Reagents

All chemotherapeutic drugs used in this study were obtained as commercial pharmaceutical products. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), oligo(dT)15, rRNasin ribonuclease inhibitor and M-MLV reverse transcriptase were obtained from Promega, Madison, WI, USA. Ham’s F12, trypsin-EDTA, penicillin G, streptomycin and Tag polymerase were obtained from Invitrogen, Carlsbad, CA, USA. Heat-inactivated fetal calf serum was purchased from Seromed Biochrom AG, Berlin, Germany. Other chemicals used were obtained from Sigma Chemical Co. Ltd., St Louis, MO, USA.

Human CCA cell lines

Five human intrahepatic CCA cell lines; namely KKU-100, KKU-M055, KKU-M156, KKU-M214 and KKU-OCA17 were used in this study. All cell lines were established in our institute from CCA patients residing in opisthorchasis endemic areas in Northeastern Thailand. KKU-100 was developed from a patient with poorly-differentiated adenocarcinoma. KKU-M055 was also from a patient with a primary tumor of poorly differentiated adenocarcinoma while KKU-M156 and KKU-M214, and KKU-OCA17 were derived from patients with moderately and well-differentiated adenocarcinoma, respectively. All cell lines were cultured in either Ham’s F12, containing 100 U/mL penicillin and 100 µg/mL streptomycin with 10% fetal bovine serum at 37 °C with 50 mL/L CO2. The presence of Mycoplasma contamination was periodically checked. These cell lines have been maintained in our laboratory for more than 5 years.

Cytotoxicity assay

Sensitivity of CCA cell lines to chemotherapeutic drugs was determined by MTS assay as described in a previous study[32]. Briefly, 100 µL of cell suspension (1×103 cells/mL) were added to each well of 96-well flat-bottomed microtiter plates and incubated for 24 h at 37 °C in a humidified 50 mL/L CO2 atmosphere. After incubation, 100 µL of medium containing drug or complete medium for untreated controls were distributed in the 96-well plates and plates were then incubated at 37 °C for 72 h. The culture medium was subsequently removed and 100 µL medium containing 20 µL MTS solution (20 mg/mL) was added to each culture well. The cultures were further incubated for 2 h at 37 °C in a humidified 50 mL/L CO2 atmosphere. Absorbency was measured at 492 nm using a microplate reader (Tecan Austria GmbH, Salzburg, Austria). The concentration of drug required to inhibit cell proliferation by 50% (IC50) was determined by plotting the percentage of cell growth inhibition vs the chemotherapeutic drug concentration as previously described[33].

RNA extraction and semi-quantitative RT-PCR reaction

Total RNA was extracted from the human CCA cell lines (2×105 cells) using an RNAeasy Mini Kit (QiAgen, Hilden, Germany), following the manufacturer’s instructions and quantified by spectrophotometry. Total RNA (5 µg) from each cell line was reverse-transcribed in 50 µL containing 250 pmoL of oligo(dT)15 primer, 40 units of rRNasin ribonuclease inhibitor and 250 units of M-MLV reverse transcriptase in 50 mmol/L Tris-HCl, 75 mmol/L KCl, 3 mmol/L MgCl2, 10 mmol/L DTT, and 0.5 mmol/L...
dNTPs. Initially, RNA and oligo(dT)
were mixed together and heated at 70 °C for 10 min and immediately chilled on ice for 5 min. Other reagents were then added and incubated for 15 min at 30 °C. First-strand cDNAs were synthesized at 42 °C for 60 min. PCR amplification was performed using specific primers for the gene of interest. The PCR primer sequences are shown in Table 1. Optimization of the number of PCR cycles and first strand cDNA concentration was determined for linear amplification conditions. The expression levels of mRNA were measured using human GAPDH mRNA as an internal control by being co-amplified with each gene in order to minimize tube-to-tube variation in the efficiency of PCR[34].

PCR was carried out in a final volume of 25 μL containing first-strand cDNA, 10 pmoL of each primer, 2 pmoL of each GAPDH primer, 1.25 units of Taq polymerase in 2.5 μL of 10× Taq buffer, 2 mmol/L MgCl₂ and 0.2 mmol/L dNTPs, using a RoboCycler gradient 40 (Stratagene, La Jolla, CA, USA). An initial denaturation step at 94 °C for 3 min was followed by 28 cycles comprising a denaturation step at 94 °C for 1 min, annealing at 62 °C (for TS, DPD and GSTP1, MRPI, MRP2 and MDR1) or at 56 °C (for TS, DPD and MRP3) for 1 min and extension at 72 °C for 1 min. The final extension was subsequently performed at 72 °C for 10 min. The PCR products were separated on 2% agarose gel electrophoresis containing 100 ng/mL of ethidium bromide. Gels were visualized and photographed on an Electronic Dual Light Transilluminator (Ultralum, Carson, CA, USA). The DNA bands were scanned with an image scanner (Canon Electronics Inc., Saitama, Japan) and analyzed with Image Master 1D (Ambersham Pharmacia Biotech, Piscataway, NJ, USA). The relative amount of mRNA of the gene of interest was expressed as a ratio to GAPDH mRNA.

Statistical analysis
The IC₅₀ values for each chemotherapeutic agent as tested in each of the five CCA cell lines were expressed as mean±SD. Student’s t-test was used for statistical analysis. Association between gene expression profiles and the IC₅₀ for the five CCA cell lines was examined using the linear regression analysis. A P value <0.05 was considered as statistically significant.

RESULTS

Cytotoxic effect
The results for cytotoxic effects of 13 chemotherapeutic agents on five human intrahepatic CCA cell lines are shown in Table 2. Among these cell lines, KKU-M055 showed the

Drug	Poorly differentiated	Moderately differentiated	Well differentiated
	IC₅₀ (μmol/L)		
Anthracyclines			
Doxorubicin	2.3±0.8²	1.8±1.0⁰	0.25±0.05
Pirarubicin	0.27±0.22²	0.35±0.06⁰	0.17±0.03³
Platinum derivatives			
Cisplatin	37.4³	222.3±8⁸	130.1±2³
Carboplatin	13.3³	229.3±6⁶	107.4⁴
Oxaliplatin	71.7±38.7³	7.0±4.7	38.0±6.7³
Pyrimidine analog			
5-Fluorouracil	1.018±326.4³	46±4.2	29.1±17.6³
Taxanes			
Paclitaxel	39.0±6.8³	10.9±5.8	2.62±0.7³
Docetaxel	41.2±7.2³	0.80±0.36	12.4±3.7³
Vinca-alkaloids			
Vincristine	216.2±52.1¹	2.05±0.68	85.1±9⁴
Vinorelbine	2.1±0.2³	0.23±0.01	164±120
Others			
Etoposide	416±131²	274±217³	54±2⁶
Irinotecan	23.6⁶	13.1±2.1⁴	43.4⁹
Mitomycin C	452²	187±6³	78±3²
	Data represents mean±SD of at least three experiments. *P<0.05, †P<0.01 vs KKU-M055; ‡P<0.05, §P<0.01 vs KKU-OCA17.		
highest sensitivity to all of the chemotherapeutic drugs investigated with the IC_{50} values <5 μmol/L (except for 5-FU). In addition, KKU-100 appeared to be the most resistant cell line to 5-FU (with the IC_{50} value >1 000 μmol/L) and to taxane compounds (with IC_{50} values of 40 μmol/L). All cell lines were sensitive to anthracycline compounds, doxorubicin and pirarubicin with IC_{50} values ranging from 0.04-2.3 μmol/L. In the case of platinum derivatives, KKU-M055 was highly sensitive to cisplatin, carboplatin and oxaliplatin (IC_{50} values <0.3 μmol/L) whereas KKU-M156 appeared to be resistant to cisplatin and carboplatin (IC_{50} values >200 μmol/L). With respect to vinca alkaloids, KKU-M055, KKU-M156 and KKU-OCA17 were sensitive to both vincristine and vinorabine (IC_{50} values <2 μmol/L) whereas KKU-M214 was appeared to be the least sensitive cell line (IC_{50} values ranging from 85 to 164 μmol/L). Most of the cell lines except for KKU-M214 were apparently sensitive to vinorabine, a new vinca alkaloid. In contrast to KKU-M055, the other four cell lines were apparently resistant to etoposide and mitomycin C. With regards to KKU-M214, the other four cell lines were apparently sensitive to new chemotherapeutic drugs including anthracyclins (pirarubicin and doxorubicin), vinca-alkaloid (vinorabine), taxanes (docetaxel, paclitaxel) and the camptothecin derivative (irinotecan). Although 5-FU is the most common drug used for treatment of CCA, poor response rates have been reported in CCA patients \cite{7,35} as well as new chemotherapeutic drugs in order to provide a preclinical rationale for treatment of this cancer. Our results demonstrated that variations in the sensitivity to chemotherapeutic drugs were observed among these five intrahepatic CCA cell lines and sensitivity to chemotherapeutic drugs was not associated with the histological type of CCA. However, all CCA cell lines investigated in this study were apparently sensitive to new chemotherapeutic drugs including anthracyclins (pirarubicin and doxorubicin), vinca-alkaloid (vinorabine), taxanes (docetaxel, paclitaxel) and the camptothecin derivative (irinotecan). Although 5-FU is the most common drug used for treatment of CCA, poor response rates have been reported in CCA patients \cite{7,38}. It should be noted that the IC_{50} values of 5-FU for CCA cell lines, particularly KKU-100 and KKU-M156, were much higher than those previously reported in colon carcinoma cell lines (i.e. HCC-48 and COLO20 with IC_{50} values of 8.6 and 16 μmol/L, respectively\cite{28}) and in the cervical squamous carcinoma cell lines (i.e. SiHa and HeLa with IC_{50} values of 11.4 μmol/L\cite{31} and 2.8 μmol/L\cite{30}, respectively).

Expression of mRNAs for TS, DPD, GSTP1, MDR1 and MRPs in CCA cell lines

Expression of TS, DPD, GSTP1, MDR1 and MRPs in five CCA cell lines were investigated by semi-quantitative RT-PCR using specific primers. As shown in Figure 1, mRNA for TS, DPD, GSTP1, and MRP1-MRP3 were detected in all CCA cell lines. High levels of MDR1 expression were observed only in KKU-OCA17. All CCA cell lines expressed mRNAs for TS, DPD, GSTP1, MDR1 and MRPs. mRNA of the gene of interest was co-amplified with GAPDH mRNA as an internal control. Total RNA was extracted and used for RT-PCR. Each lane was loaded with 25 μg of total RNA from KKU-100, KKU-M156, KKU-OCA17, KKU-M055 and KKU-M214, respectively.

DISCUSSION

We have investigated the sensitivity of five CCA cell lines in response to a number of different classes of chemotherapeutic agents including the drugs that are commonly used in CCA patients (i.e. 5-FU, mitomycin C and doxorubicin\cite{7,35}) as well as new chemotherapeutic drugs in order to provide a preclinical rationale for treatment of this cancer. Our results demonstrated that variations in the sensitivity to chemotherapeutic drugs were observed among these five intrahepatic CCA cell lines and sensitivity to chemotherapeutic drugs was not associated with the histological type of CCA. However, all CCA cell lines investigated in this study were apparently sensitive to new chemotherapeutic drugs including anthracyclins (pirarubicin and doxorubicin), vinca-alkaloid (vinorabine), taxanes (docetaxel, paclitaxel) and the camptothecin derivative (irinotecan). Although 5-FU is the most common drug used for treatment of CCA, poor response rates have been reported in CCA patients\cite{7,38}. It should be noted that the IC_{50} values of 5-FU for CCA cell lines, particularly KKU-100 and KKU-M156, were much higher than those previously reported in colon carcinoma cell lines (i.e. HCC-48 and COLO20 with IC_{50} values of 8.6 and 16 μmol/L, respectively\cite{28}) and in the cervical squamous carcinoma cell lines (i.e. SiHa and HeLa with IC_{50} values of 11.4 μmol/L\cite{31} and 2.8 μmol/L\cite{30}, respectively).

Figure 2 Relationships between the relative mRNA expression of MRP3 and the IC_{50} value of etoposide. (A) doxorubicin; (B) and pirarubicin; (C) in five CCA cell lines.
The expression of genes that have been reported to be involved in chemotherapeutic drug resistance has also been investigated in the present study (Figure 2). TS, DPD, GSTP1, MRP1, MRP2 and MRP3 were expressed in all CCA cell lines albeit at different levels while MDR1 expression was detected only in one cell line. To determine whether these genes could be candidates for determining drug-resistance-phenotypes in CCA, linear regression analysis was performed and results demonstrated that the expression of MRP3 was significantly correlated with the resistance of these CCA cell lines to etoposide, doxorubicin and pirurubicin. Consistent with our finding, a strong association between MRP3 mRNA levels and response to doxorubicin has been reported in lung cancer.39

In contrast to the previous report in a metastatic CCA cell line, SK-ChA-1[20], we did not find any association between the sensitivity to 5-FU and the levels of TS and DPD expression among the CCA cell lines investigated. The level of expression of a detoxifying enzyme, GSTP1 mRNA, was markedly elevated in all CCA cell lines and this may explain why CCA is quite resistant to chemotherapeutic drugs. The MDR1 gene was highly expressed only in KKU-OCA17 but not observed in other cell lines suggesting that MDR1 is not constitutively expressed in most of CCA cells.

The levels of MDR1 expression in these five CCA cell lines were not correlated with the IC\textsubscript{50} value of any anticancer drug tested. These findings were inconsistent with those previously reported in 60 diverse cancer cell lines,[28] unlike MDR1, all three MRPs investigated were expressed in these five CCA cell lines. MRP1 which presents in non-expressing MDR1, all three MRPs investigated were expressed in these CCA cell lines were not correlated with the IC\textsubscript{50} value of any anticancer drug tested. The level of expression of MRP3 was significantly correlated with the resistance of these CCA cell lines to etoposide, doxorubicin and pirurubicin. These drugs have previously been reported to induce MDR1 and MRP1 expression in several tumor cell lines.[28,42-47]

In conclusion, the data obtained from this in vitro drug screening will be useful for selection of chemotherapeutic treatment in CCA patients. The role of MRP3 in the mechanism of chemotherapeutic drug resistance in CCA patients needs to be further investigated.

ACKNOWLEDGMENTS
We would like to thank Professor Prapon Wilairat, Faculty of Sciences, Mahidol University, Thailand and Professor James Will, University of Wisconsin, USA, for their valuable comments and critical review of the manuscript. The support from the Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Thailand is also appreciated.

REFERENCES

1. Parkin DM, Ohshima H, Srivatanakul P, Vatanasapt V. Cholangiocarcinoma: epidemiology, mechanisms of carcinoma genesis and prevention. Cancer Epidemiol Biomarkers Prev 1993; 2: 537-544
2. Vatanasapt V, Martin N, Sriplung H, Chindavijak K, Sontipong S, Sriampon H, Parkin DM, Ferlay J. Cancer incidence in Thailand, 1988-1991. Cancer Epidemiol Biomarkers Prev 1995; 4: 475-483
3. Watanapa P, Watanapa WB. Liver fluke-associated cholangiocarcinoma. Br J Surg 2002; 89: 962-970
4. Blendis L, Halpern Z. An increasing incidence of cholangiocarcinoma: why? Gastroenterology 2004; 127: 1008-1009
5. Uttarakchien T, Bhudhisawasdi V, Pairojkul C, Pugkhem A. Intrahepatic cholangiocarcinoma in Thailand. J Hepatobiliary Pancreat Surg 1999; 6: 128-135
6. Ohatsu K, Hori H, Kimura F, Shimizu H, Togawa A, Yoshidome H, Shimamura F, Shimizu Y, Miyazaki M. Extended hepatic resection and outcomes in intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Surg 2003; 10: 259-264
7. Patt YZ, Hassan MM, Lozano RD, Waugh KA, Hoque AM, Frome AI, Lahoti S, Vauthey JN, Curley SA, Schnirer L, Raijman I. Phase II trial of cisplatin, interferon alpha-2b, doxorubicin, and 5-fluorouracil for biliary tract cancer. Clin Cancer Res 2001; 7: 3375-3380
8. Martin R, Jarnagin W. Intrahepatic cholangiocarcinoma. Current management. Minerva Chir 2003; 58: 469-478
9. Lee MA, Woo IS, Kang JH, Hong YS, Lee KS. Epirubicin, cisplatin, and protracted infusion of 5-FU (ECF) in advanced intrahepatic cholangiocarcinoma. J Cancer Res Clin Oncol 2004; 130: 346-350
10. Olnes MJ, Erlich R. A review and update on cholangiocarcinoma. Oncology 2004; 66: 167-179
11. Yamagawa Y, Mariefeld C, Meng F, Holick M, Patel T. Translational regulation of x-linked inhibitor of apoptosis protein by interleukin-6: a novel mechanism of tumor cell survival. Cancer Res 2004; 64: 1293-1298
12. Tanai M, Gammbliler A, Higuchi H, Wernberg N, Bronk SF, Farrugia DJ, Kaufmann SH, Gores GJ. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 2004; 64: 3517-3524
13. Nakajima T, Takayama T, Miyanishi K, Naboaka U, Hayashi T, Abe T, Kato J, Sakon K, Naniwa Y, Tanabe H, Niiy T. Reversal of multiple drug resistance in cholangiocarcinoma by the glutathione S-transferase-pi-specific inhibitor O1-hexadecyl-gamma-glutamyl-5-benzylcysteinyl-D-phenylglycine ethylester. J Pharmacol Exp Ther 2003; 306: 861-869
14. Tannock IF. Tumor physiology and drug resistance. Cancer Metastasis Rev 2001; 20: 123-132
15. Krishan A, Arya P. Monitoring of cellular resistance to cancer chemotherapy. Hematol Oncol Clin North Am 2002; 16: 357-372, vi
16. Lonning PE. Study of suboptimum treatment response: lessons from breast cancer. Lancet Oncol 2003; 4: 177-185
17. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48-58
18. Tew KD. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res 1994; 54: 4313-4320
19. Nita ME, Tominaga O, Nagawa H, Tsuruo T, Muto T. Dihydoroerythroidine dehydrogenase but not thymidylate synthase expression is associated with resistance to 5-fluorouracil in colorectal cancer. Hepatogastroenterology 1998; 45: 2117-2122
20. Stavrovskaya AA. Cellular mechanisms of multidrug resistance of tumor cells. Biochemistry (Moscow) 2000; 65: 95-106
21. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22: 7468-7485
22. Larkin A, O’Driscoll L, Kennedy S, Purcell R, Moran E, Crown J, Parkinson M, Clynes M. Investigation of MRP-1 protein and MDR-1 P-glycoprotein expression in invasive breast cancer: a prognostic study. Int J Cancer 2004; 112: 286-294
cells to TRAIL-mediated apoptosis by subtoxic concentrations in culture.

mous cell carcinoma cell lines and primary tumors. Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squa-

colorectal cancer. messenger RNA level reflects tumor progression in human phosphorlase.
rouracil have low gene expression levels of dihydropyrimidine RB, Danenberg PV. Colorectal tumors responding to 5-fluoro-

factors. Low-dose cisplatin and 5-fluorouracil in combination can repress increased gene expression of cellular resistance deter-
multidrug resistance proteins MRP3, MRP1, and MRP2 in human lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin Cancer Res 2001; 7: 1798-1804

High expression of thymidylate synthase leads to resistance to 5-fluorouracil in biliary tract carcinoma in vitro. Ipn J Can-

Kogure T, Ueno Y, Iwasaki T, Shimosegawa T. The efficacy of the combination therapy of 5-fluorouracil, cisplatin and leucovorin for hepatocellular carcinoma and its predictable factors. Cancer Chemother Pharmacol 2000; 53: 296-304

Nishiyama M, Yamamoto W, Park JS, Okamoto R, Hanaoka H, Takano H, Saito N, Matsukawa M, Shirasaka T, Kurihara M. Low-dose cisplatin and 5-fluorouracil in combination can repress increased gene expression of cellular resistance determinants to themselves. Clin Cancer Res 1999; 5: 2620-2628

Salonga D, Danenberg KD, Johnson M, Metzger R, Grosen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322-1327

Shirota Y, Ichikawa W, Uetake H, Yamada H, Nihei Z, Sugihara K. Intratumoral dihydropyrimidine dehydrogenase messenger RNA level reflects tumor progression in human colorectal cancer. Ann Surg Oncol 2002; 9: 599-603

Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR. Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res 2003; 63: 8097-8102

Cory AH, Owen TC, Barltrip JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 1991; 3: 207-212

Mizutani Y, Nakanishi H, Yoshida O, Fukushima M, Bonavida B, Miki T. Potentiation of the sensitivity of renal cell carcinoma cells to TRAIL-mediated apoptosis by subtoxic concentrations of 5-fluorouracil. Eur J Cancer 2002; 38: 167-176

Li J, Xu LZ, Ke KL, Guo WJ, Zheng YH, Xia P, Chen Y. Reversal effects of nomegestrol acetate on multidrug resistance in MDR1-overexpressing HeLa cells. Biol Pharm Bull 2001; 24: 1032-1036

Young LC, Camping BG, Cole SP, Deelew RG, Gerlach JH. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Jpn J Cancer Res 2001; 92: 1127-1132

Kogure T, Ueno Y, Iwasaki T, Shimosegawa T. The efficacy of the combination therapy of 5-fluorouracil, cisplatin and leucovorin for hepatocellular carcinoma and its predictable factors. Cancer Chemother Pharmacol 2000; 53: 296-304

Nishiyama M, Yamamoto W, Park JS, Okamoto R, Hanaoka H, Takano H, Saito N, Matsukawa M, Shirasaka T, Kurihara M. Low-dose cisplatin and 5-fluorouracil in combination can repress increased gene expression of cellular resistance determinants to themselves. Clin Cancer Res 1999; 5: 2620-2628

Salonga D, Danenberg KD, Johnson M, Metzger R, Grosen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322-1327

Shirota Y, Ichikawa W, Uetake H, Yamada H, Nihei Z, Sugihara K. Intratumoral dihydropyrimidine dehydrogenase messenger RNA level reflects tumor progression in human colorectal cancer. Ann Surg Oncol 2002; 9: 599-603

Cullen KJ, Newkirk KA, Schumaker LM, Aldosari N, Rone JD, Haddad BR. Glutathione S-transferase pi amplification is associated with cisplatin resistance in head and neck squamous cell carcinoma cell lines and primary tumors. Cancer Res 2003; 63: 8097-8102

Cory AH, Owen TC, Barltrip JA, Cory JG. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 1991; 3: 207-212

Mizutani Y, Nakanishi H, Yoshida O, Fukushima M, Bonavida B, Miki T. Potentiation of the sensitivity of renal cell carcinoma cells to TRAIL-mediated apoptosis by subtoxic concentrations of 5-fluorouracil. Eur J Cancer 2002; 38: 167-176

Li J, Xu LZ, Ke KL, Guo WJ, Zheng YH, Xia P, Chen Y. Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line. Breast Cancer Res 2001; 3: 253-263

Chen JS, Lin YC, Jan YY, Liau CT. Mitomycin C with weekly 24-h infusion of high-dose 5-fluorouracil and leucovorin in patients with biliary tract and periampullar carcinomas. Anti-
ticancer Drugs 2001; 12: 339-343

Hasuike Y, Motoori M, Hattori T, Fujita J, Mishima H, Sawamura T, Nishishou I, Kikkawa N, Sai H, Hosoki T, Mitomo M. A case report: successful resection of advanced intrahepatic cholangiocarcinoma responding to preoperative hepatic artery infusion of 5-Flu. Gan To Kagaku Ryoho 1999; 26: 1909-1912

Laohchariyakul P, Ponglikitmongkol M, Mankhetkorn S. Functional study of intracellular P-gp- and MRPI-mediated pumping of free cytosolic pirarubicin into acidic or-ganelles in intrinsic resistant SiHa cells. Can J Physiol Pharmacol 2003; 81: 790-799

Iida N, Takara K, Ohmoto N, Nakamura T, Kimura T, Wada A, Hira M, Sakaeda T, Okumura K. Reversal effects of antifungal drugs on multidrug resistance in MDR1-overexpressing HeLa cells. Biochem Pharmacol 2000; 60: 673-680

Young LC, Camping BG, Voskoglou-Nomikos T, Cole SP, Deelew RG, Gerlach JH. Expression of multidrug resistance protein-related genes in lung cancer: correlation with drug response. Clin Cancer Res 1999; 5: 673-680

Lee DW, Deelew RG, Cole SP. Biology of the multidrug resistance-associated protein, MRP. Eur J Cancer 1996; 32A: 945-957

Scheller GL, Kool M, de Haas M, de Vree JM, Pijnenborg AC, Bosman DK, Elferink RP, van der Valk P, Borst P, Scheper RJ. Tissue distribution and induction of human multidrug resis-tant protein 3. Lab Invest 2002; 82: 193-201

Uchiyama-Kokubu N, Watanabe T. Establishment and character-ization of adriamycin-resistant human colorectal adenocarci-noma HCT-15 cell lines with multidrug resistance. Anti-cancer Drugs 2001; 12: 769-779

Nagata J, Kijima H, Hatanaka H, Asai S, Miyachi H, Takagi A, Miwa T, Mine T, Yamazaki H, Nakamura M, Kondo T, Scanion KJ, Ueyama Y. Reversal of cisplatin and multidrug resistance by ribozyme-mediated glutathione suppression. Biochem Biophys Res Commun 2001; 286: 406-413

Kubota T, Furukawa T, Tanino H, Suto A, Otan Y, Watanabe M, Ikeda T, Kitajima M. Resistant mechanisms of anthracycline-pirarubicin might partly break through the P-glycoprotein-mediated drug-resistance of human breast cancer tissues. Breast Cancer 2001; 8: 333-338

Marbeuf-Gueye C, Salerno M, Quidu P, Garnier-Suillerot A. Inhibition of the P-glycoprotein- and multidrug resistance protein-mediated efflux of anthracyclines and calcineurinocetylomethyl ester by PAK-104P. Eur J Pharmacol 2000; 391: 207-216

Loric A, Rappa G, Finch RA, Yang D, Flavell RA, Sartorelli AC. Disruption of the murine MRP (multidrug resistance protein) gene leads to increased sensitivity to etoposide (VP-16) and increased levels of glutathione. Cancer Res 1997; 57: 5238-5242

Harvie RM, Davey MW, Davey RA. Increased MRP expression is associated with resistance to radiation, anthracyclines and etoposide in cells treated with fractionated gamma-radiation. Int J Cancer 1997; 73: 164-167

Science Editor Guo SY Language Editor Elsevier HK