Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

Hongnan Sun, Binbin Huang, Run Lin, Chao Yang and Wujiong Xia

Abstract

The metal-free synthesis of 2-substituted and 2,3-disubstituted morpholines through a one-pot strategy is described. A simple and inexpensive ammonium persulfate salt enables the reaction of aziridines with halogenated alcohols to proceed via an S_N2-type ring opening followed by cyclization of the resulting haloalkoxy amine.

Introduction

Morpholines are common structural cores of a broad range of biological and pharmacological natural or synthetically important organic molecules [1]. In particular, a number of 2-substituted and 2,3-disubstituted morpholines are clinically available drugs (Figure 1). For example, the trans-2,3-disubstituted morpholine, phendimetrazine (bontril), is a clinically available appetite suppressant [2], the 2-substituted morpholine, reboxetine, is a clinically active, efficacious, and well-tolerated antidepressant drug [3-5], and the cis-2,3-disubstituted morpholine, aprepitant, is approved for the use in the prevention of chemotherapy-induced nausea and vomiting [6].

In addition to pharmacological properties, morpholines are also used in organic synthesis as bases, catalysts, and chiral auxiliaries [7-13]. Thus, up to now, numerous strategies toward the synthesis of substituted morpholines have been reported [14-23]. Despite these advances, the synthetic approach to 2-substituted and 2,3-disubstituted morpholines is still scarce. Recently, Ghorai and co-workers disclosed an intriguing strategy for the synthesis of substituted morpholines through Cu(OTf)$_2$-catalyzed ring-opening/closing reactions of aziridines and halogenated alcohols in high yield and enantioselectivity (Scheme 1a) [21]. However, this method suffered from the need for transition metal catalysts and low temperatures in the initial stage. Thus, the discovery of an operationally simple and eco-friendly synthetic approach is a desirable complement to current methodologies.

Recently we have reported the visible light-mediated ring opening of aziridines by a number of nucleophiles, such as LiBr, NaN$_3$ and alcohols [24]. As a part of an ongoing program on the ring opening of aziridines [25-31], we have developed an
efficient method for the synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines utilizing a simple and inexpensive ammonium persulfate salt as the oxidant at room temperature (Scheme 1b) [32,33].

Results and Discussion

Our investigation started with the treatment of 2-phenyl-N-tosylaziridine (1a) with 2-chloroethanol in the presence of sodium persulfate at room temperature for 13 h (Table 1). To our delight, NMR studies showed that chloroethoxyamine 2a is observed as the only ring-opening product. After screening different persulfates, in concordance with Zeng [32], we found that ammonium persulfate ((NH₄)₂S₂O₈) is superior to Na₂S₂O₈ and K₂S₂O₈ in the transformation, leading to chloroethoxyamine 2a in an excellent yield (93%) in short time.

Table 1: Metal-free ring opening of 2-phenyl-N-tosylaziridine (1a) with 2-chloroethanol using different persulfates as oxidant.

Entry	S₂O₈²⁻	Time (h)	Yield (%)^b
1	Na₂S₂O₈	13	94
2	K₂S₂O₈	16	96
3	(NH₄)₂S₂O₈	0.5	93

^aAziridine 1a (0.3 mmol), (NH₄)₂S₂O₈ (0.6 mmol, 2 equiv) in 2-chloroethanol (10 equiv) as the solvent; ^bIsolated yield.

Encouraged by the result that treatment of 2a with KOH at room temperature in THF led to morpholine 3a in 90% yield, we performed the reaction by addition of KOH to the mixture of 1a and (NH₄)₂S₂O₈ in 2-chloroethanol after the reaction and hoped to prepare 3a in one pot. Gratifyingly the reaction proceeded smoothly to furnish 3a in 93% yield (Scheme 2).
To investigate the scope of this methodology, various substituted aziridines were prepared from the corresponding alkenes and submitted them to the reaction conditions. As shown in Table 2, both electron-deficient and electron-rich 2-aryl-substituted aziridines 1a–j were well tolerated and the desired morpholines 3a–j were obtained in good yields (Table 2, entries 1–10). N-Tosylaziridine 1k was also a viable substrate for the reaction leading to the corresponding bicyclic morpholine 3k.

Table 2: Metal-free one-pot synthesis of morpholines from aziridines.\(^a\)

Entry	Substrate	Morpholine	Yield (%)\(^b\)
1	1a, R = H	3a, 93	
2	1b, R = 3-OMe	3b, 90	
3	1c, R = 4-Me	3c, 88	
4	1d, R = 4-t-Bu	3d, 84	
5	1e, R = 4-F	3e, 84	
6	1f, R = 4-Cl	3f, 80	
7	1g, R = 2-Cl	3g, 87	
8	1h, R = 4-CF\(_3\)	3h, 78	
9	1i, R = 4-NO\(_2\)	3i, 83	
10	1j	3j, 82	
11	1k	3k, 95	
12	1l	3l, 75	4l, 16
13	1m	3m, 40	4m, 47
14	1n, n-Bu	3n, 45	4n, 30

\(^a\)In all cases 2-chloroethanol served as the solvent; \(^b\)isolated yield.
95% yield (Table 2, entry 11). In addition, the reaction of 2,3-disubstituted aziridines (acyclic and/or cyclic ones), separable mixtures of regioisomers 3l,m and 4l,m were obtained arising from isomeric ring opening (Table 2, entries 12 and 13). We speculated that the observed regioselectivity might depend on the combined action of electronic effects and the position of substitution [31]. Under identical reaction conditions, the separable 2-butylmorpholine 3n and 3-butylmorpholine 4n could be easily prepared from aziridine 1n (Table 2, entry 14).

To further investigate the applicability of this strategy in organic synthesis, we next performed a series of experiments to determine the potential of the straightforward synthesis of optically pure morpholines from chiral aziridines. The initial investigation was carried out by the replacement of racemic 2-phenyl-N-tosylaziridine (1a) with optically pure (S)-2-phenyl-1-tosylaziridine under the standard reaction conditions. To our delight, (R)-3a was obtained in 93% yield and 70% ee (Scheme 3). For optically pure (S)-2-alkyl-substituted aziridines 1p.q, separable (R)-2-alkylmorpholines 3p.q and (S)-3-alkylmorpholines 4p.q were prepared in pure forms (95–99% ee) and low to moderate overall yields. Furthermore, the enantiospecific synthesis of seven and eight-membered homologues of morpholine was also conducted to extend the potential application of the strategy. For example, when 2-chloroethanol was replaced by 3-bromopropanol, the seven-membered product (R)-3ab was obtained in 72% yield and 84% ee. Similarly, reaction of (R)-2-phenyl-N-tosylazetidine (1o) with 2-bromoethanol and/or 3-bromopropanol under the one-pot reaction conditions, afforded the seven-membered product (S)-3o and the eight-membered compound (S)-3ob in 65% and 60% yield with 52% and 67% ee, respectively.

Based on the above results, a viable mechanism was proposed as shown in Scheme 4. Initially, aziridine 1a might participate in single-electron transfer (SET) with the persulfate anion to render the radical cation A [32,34]. Concerted ring opening and nucleophilic addition leads to amino radical intermediate B, which is converted to the haloalkoxy amine intermediate 2a after abstraction of one hydrogen atom from alcohol. Finally, an intramolecular ring closure affords the morpholine product 3a in the presence of KOH [21].

Conclusion

In conclusion, we have developed a simple and practicable metal-free protocol for the synthesis of 2-substituted and 2,3-disubstituted morpholines. Compared with the previous procedure, this reaction is conducted with a simple and inexpensive ammonium persulfate salt as the oxidant to realize the ring opening of aziridines for the reaction with haloalcohols through a radical cation intermediate pathway. Furthermore, a range of optically pure morpholines could be achieved by the use of chiral aziridines.

Experimental

General procedure for the one-pot synthesis of morpholines: A 10 mL round bottom flask equipped with a magnetic stirring bar was charged with aziridine/azetidine 1 (0.3 mmol, 1 equiv), (NH₄)₂S₂O₈ (137 mg, 0.6 mmol, 2 equiv) and haloalcohol (10 equiv). The mixture was stirred at rt for the appropriate time.
Scheme 4: Proposed mechanism.

until the starting material disappeared completely (monitored by TLC). Then, 5.0 mL THF and excess KOH (12 equiv) were added to the reaction mixture and the mixture was stirred at rt. After the reaction was completed, the resulting suspension was quenched with saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The organic layers were combined, washed with brine and dried over anhydrous sodium sulfate. Solvents were removed under reduced pressure and the residue was purified by column chromatography on silica gel using ethyl acetate/hexane mixtures to afford the pure products.

Supporting Information
Supporting Information File 1
Experimental procedures, characterization data and copies of 1H and 13C NMR spectra for products. [http://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-11-59-S1.pdf]

Acknowledgements
We are grateful for the financial supports from China NSFC (Nos. 21002018, 21072038 and 21472030), SKLUWRE (No. 2015DX01), the Fundamental Research Funds for the Central Universities (Grant No. HIT.BRETIV.201310) and HLJNSF (B201406).

References
1. Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E.; van Delft, F. L.; Blaauw, R. H.; Rutjes, F. P. J. T. Synthesis 2004, 641–662. doi:10.1055/s-2004-816003
2. Rothman, R. B.; Baumann, M. H. Curr. Top. Med. Chem. 2006, 6, 1845–1859. doi:10.2174/156802806778249766
3. Hajós, M.; Fleishaker, J. C.; Filipak-Reisner, J. K.; Brown, M. T.; Wong, E. H. F. CNS Drug Rev. 2004, 10, 23–44. doi:10.1111/j.1527-3458.2004.600002.x
4. Wong, E. H. F.; Sonders, M. S.; Amara, S. G.; Tinholt, P. M.; Piercey, M. F. P.; Hoffmann, W. P.; Hyslop, D. K.; Franklin, S.; Porsolt, R. D.; Bonsignori, A.; Carfagna, N.; McArthur, R. A. Biol. Psychiatry 2000, 47, 818–829. doi:10.1016/S0006-3223(99)00291-7
5. Scates, A. C.; Doraismwary, P. M. Ann. Pharmacother. 2000, 34, 1302–1312. doi:10.1345/aph.19335
6. Pendergrass, K.; Hargreaves, R.; Petty, K. J.; Carides, A. D.; Evans, J. K.; Horgan, K. J. Drugs Today 2004, 40, 853–863. doi:10.1358/dot.2004.40.10.863745
7. Takahata, H.; Takahashi, S.; Kono, S.-i.; Momose, T. J. Org. Chem. 1998, 63, 2224–2231. doi:10.1021/ja971995f
8. Betancourt, J. M.; Barbas, C. F., III. Org. Lett. 2001, 3, 3737–3740. doi:10.1021/ol0101670
9. Dave, R.; Sasaki, N. A. Org. Lett. 2004, 6, 15–18. doi:10.1021/ol035998s
10. Mayer, S.; List, B. Angew. Chem., Int. Ed. 2006, 45, 4193–4195. doi:10.1002/anie.200600512
11. Quin, Y.-C.; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273–277. doi:10.1002/anie.200503206
12. Nelson, S. G.; Wang, K. J. Am. Chem. Soc. 2006, 128, 4232–4233. doi:10.1021/ja058172p
13. Mossé, S.; Laars, M.; Kriis, K.; Kanger, T.; Alexakis, A. Org. Lett. 2006, 8, 2559–2562. doi:10.1021/ol0607490
14. Leonard, N. J.; Jann, K. J. Am. Chem. Soc. 1960, 82, 6418–6419. doi:10.1021/ja01059a061
15. Lenoard, N. J.; Jann, K. J. Am. Chem. Soc. 1962, 84, 4806–4813. doi:10.1021/ja00883a035
16. Kogami, Y.; Okawa, K. Bull. Chem. Soc. Jpn. 1987, 60, 2963–2965. doi:10.1246/bcsj.60.2963
17. Pedrosa, R.; Andrès, C.; Mendiguchia, P.; Nieto, J. J. Org. Chem. 2006, 71, 8854–8863. doi:10.1021/jo061547k
18. Sladojevich, F.; Trabocchi, A.; Guarin, A. J. Org. Chem. 2007, 72, 4254–4257. doi:10.1021/jo070036a
19. Metro, T.-X.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2008, 73, 707–710. doi:10.1021/jo701554h
License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.11.59