Inactivation and Recovery of High Quality RNA From Positive SARS-CoV-2 Rapid Antigen Tests Suitable for Whole Virus Genome Sequencing

Guerrino Macori1*, Tristan Russell2†, Gerald Barry2, Siobhán C. McCarthy1, Leonard Koolman1, Patrick Wall1, Donal Sammin3, Grace Mulcahy2,4 and Séamus Fanning1

1Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland, 2School of Veterinary Medicine, University College Dublin, Dublin, Ireland, 3Department of Agriculture, Food and the Marine Laboratories, Celbridge, Ireland, 4Conway Institute, University College Dublin, Dublin, Ireland

The diagnostic protocol currently used globally to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is RT-qPCR. The spread of these infections and the epidemiological imperative to describe variation across the virus genome have highlighted the importance of sequencing. SARS-CoV-2 rapid antigen diagnostic tests (RADTs) are designed to detect viral nucleocapsid protein with positive results suggestive of the presence of replicating virus and potential infectivity. In this study, we developed a protocol for recovering SARS-CoV-2 RNA from “spent” RADT devices of sufficient quality that can be used directly for whole virus genome sequencing. The experimental protocol included the spiking of RADTs at different concentrations with viable SARS-CoV-2 variant Alpha (lineage B.1.1.7), lysis for direct use or storage. The lysed suspensions were used for RNA extraction and RT-qPCR. In parallel, we also tested the stability of the viral RNA in the RADTs and the RNA extracted from the RADTs was used as a template for tiling-PCR and whole virus genome sequencing. RNA recovered from RADTs spiked with SARS-CoV-2 was detected through RT-qPCR with Ct values suitable for sequencing and the recovery from RADTs was confirmed after 7 days of storage at both 4 and 20°C. The genomic sequences obtained at each time-point aligned to the strain used for the spiking, demonstrating that sufficient SARS-CoV-2 viral genome can be readily recovered from positive-RADT devices in which the virus has been safely inactivated and genomically conserved. This protocol was applied to obtain whole virus genome sequence from RADTs ran in the field where the omicron variant was detected. The study demonstrated that viral particles of SARS-CoV-2 suitable for whole virus genome sequencing can be recovered from positive spent RADTs, extending their diagnostic utility, as a risk management tool and for epidemiology studies. In large deployment of the RADTs, positive devices could be safely stored and used as a template for sequencing allowing the rapid identification of circulating variants and to trace the source and spread of outbreaks within communities and guaranteeing public health.

Keywords: antigen testing, RT-qPCR, whole virus genome sequencing, lateral flow device, rapid antigen diagnostic test
INTRODUCTION

The diagnostic protocol currently used globally to identify Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is RT-qPCR (1). RNA extracted from nasopharyngeal swabs is amplified to detect several viral structural and accessory genetic elements as suitable targets for this method (2). Although RT-qPCR has excellent sensitivity, the rapid spread of these infections and the epidemiological imperative to describe variation across the virus genome highlights the importance of sequencing (3). This in turn can enable refinement of detection methods (4) to facilitate the tracking of transmission pathways in nosocomial outbreaks (5) whilst highlighting superinfections and intra-host mutations resulting in the emergence of variants of concern (VOC) (6). SARS-CoV-2 rapid antigen detection tests (RADT) are designed to detect viral nucleocapsid protein with positive results suggestive of the presence of replicating virus and potential infectivity. RADT do not detect viral particle numbers as low as those detected by PCR, but are effective in detecting levels of virus likely to transmit infection (7). The frequent use of RADT testing in particular settings, such as meat processing plants (MPPs), can support risk-mitigation, in identifying and excluding highly infectious individuals from the workplace (8). The ability to recover viral RNA from spent positive RADT devices for subsequent whole virus genome sequencing (WvGS) would enable both the identification of virus lineage and definition of nucleotide polymorphisms, thus facilitating molecular epidemiological mapping of viral spread within these communities, as well as detecting the emergence of any new SARS-CoV-2 VOCs. This study provides proof of concept of using spent positive RADT kits to generate viral sequence data of sufficient quality to identify circulating variants and to trace the source and spread of outbreaks within communities.

METHODS

Recovery of SARS CoV-2 RNA From “Spent” RADT Test Devices

In this study, we used the Abbott Panbio™ COVID-19 Ag Rapid Test Device kit (Nasal) (Abbott Laboratories Ltd., USA) as RADT spiked with viable SARS-CoV-2 variant Alpha, lineage B.1.1.7 (Human nCoV19 isolate/England/MIG457/2020) grown in Vero E6 cells with a titer of \(1.8 \times 10^4\) plaque forming units (PFU)/mL (9). For studying the correlation between recovery of the RNA from RADTs and concentration of SARS-CoV-2, the RADTs were inoculated in a 90° angle to the specimen well with 120 µL of neat SARS-CoV-2 and 700 µL of AVL buffer; alternatively, dilutions of neat SARS-CoV-2 with 1:16,000 dilution of SARS-CoV-2 were used in duplicate. The buffer provided in the RADTs was used for preparing the dilutions. After inoculation, the RADTs were maintained on a flat surface for 15 min at room temperature, in accordance with the manufacturers’ instructions. The appearance of control and test lines showed that the test was valid and capable of detecting cultured virus. The spent RADTs were then slowly filled with 700 µL viral lysis buffer (AVL) (QIAamp® Viral RNA Mini kit, Qiagen Ltd, UK) and then incubated for 10 min at room temperature. Each device was then transferred into a sterile 30 mL sample tube, vortexed for 5 s and centrifuged at 5,000 \(\times\) g for 1 min. The lysed suspension \((~700 \mu L)\) was then used as a template for RNA extraction using a programmable QIAcube Platform (Qiagen Ltd., UK) according to the manufacturer's instructions. The same protocol was used for the preparation of RADTs inoculated with neat and 1:16,000 dilution of SARS-CoV-2 with the aim of testing the stability of the RNA in these devices following incubation for maximum 7 days at 4 and 20°C after addition of buffer AVL.

In order to validate virus inactivation, eluate recovered from RADTs spiked with 120 µL of neat SARS-CoV-2 and 700 µL Buffer AVL was added to Vero E6 cells. Before addition to Vero E6 cells, cytotoxic components of the AVL buffer were eliminated from eluate using detergent removal spin columns (Thermofisher, UK), which were shown to recover 100% of virus (10). The protocol demonstrated that viable virus could no longer be detected in the eluate from positive RADT test devices to which AVL buffer was added, but viable virus was detected when 700 µL of PBS was added. RNA suitable for WvGS was recoverable.

Protocol for Safe Virus Inactivation and Use for RT-qPCR and WvGS

The protocol described above was modified to facilitate the safe handling of real-field positive RADTs. SARS-CoV-2 positive RADTs were inoculated on-site with 700 µL AVL provided in ready to use aliquots in 1.5 mL tubes and transferred gently drop-by-drop using a single-use polyethylene Pasteur pipette (Fisher Scientific Ireland). After an incubation of 10 min, the RADT were transferred into a 50 mL sample tube, sealed and maintained at 4 or 20°C, then delivered to the laboratory (Figure 1). The next steps were performed in containment biosafety laboratory category 2 (BSL-2) facilities using standard BSL-2 work practices. The tubes were centrifuged for 5,000 \(\times\) g for 1 min, and the discharged liquid collected in the bottom of the tubes (about 700 µL) was retrieved for RNA extraction and RT-qPCR using the method as described above. This protocol was used for the extraction of 30 RADTs from a number of MPPs in Ireland returning positive results. The samples were randomly chosen from a larger dataset of positive RADTs, including Abbott Panbio™ (Abbott Laboratories Ltd., USA) and Clinitest® Rapid COVID-19 Antigen Test (Siemens Healthineers, Germany) where voluntary participants from a number of MPPs provided their informed consent. Workers were invited to participate and provided with an information leaflet and consent form for signature. Anonymised data from the survey was provided to the research team, with ethical approval from UCD Human Research Ethics Committee (No.: LS-E-20-196-Mulcahy).

RT-qPCR Detection of SARS-CoV-2 and Whole Viral Genome Sequencing

The presence of SARS-CoV-2 RNA in purified samples, either from the experimental protocols or positive RADTs from MPPs, was confirmed by RT-qPCR targeting the nucleocapsid genes 1 (N1) and 2 (N2) and the human RNase P (RP). Three single
FIGURE 1 | Protocol for safe virus inactivation of RADT on-site. The experimental protocol was modified to facilitate the safe handling of real-field positive RADTs. SARS-CoV-2 positive RADTs are inoculated on-site with 700 µL AVL provided in ready to use aliquots and transferred gently drop-by-drop. After an incubation of 10 min, the RADT is transferred into a 50 mL sample tube, sealed and maintained at 4 or 20 °C, then delivered to the laboratory.

TABLE 1 | Panel of primer and probes used for the RT-qPCR used in this study.

Label name	Description	Oligonucleotide sequence (5′ > 3′)	Label	Final conc.
2019- nCoV_N1-F	2019-nCoV_N1 Forward Primer	GAC CCC AAA ATC AGC GAA AT	None	500 nM
2019- nCoV_N1-R	2019-nCoV_N1 Reverse Primer	TCT GGT TAC TGC CAT TTG GAA CTG	None	500 nM
2019- nCoV_N1-P	2019-nCoV_N1 Probe	FAM-ACC CGG CAT TAC GGT TGG ACC-BHQ1	FAM, BHQ-1	125 nM
2019- nCoV_N2-F	2019-nCoV_N2 Forward Primer	TTA CAA ACA TTG GCC GCA AA	None	500 nM
2019- nCoV_N2-R	2019-nCoV_N2 Reverse Primer	GCG CGA CAT TGC GAA GAA	None	500 nM
2019- nCoV_N2-P	2019-nCoV_N2 Probe	FAM-ACA ATT GGC CCC CAG CGC TTC AG-BHQ1	FAM, BHQ-1	125 nM
RP-F	RNase P Forward Primer	AGA TTT GGA CCT GCG AGC G	None	500 nM
RP-R	RNase P Reverse Primer	GAG CGG CTG TCT CCA CAA GT	None	500 nM
RP-P	RNase P Probe	FAM – TTC TGA CCT GAA GGC TCT GCG CG – BHQ-1	FAM, BHQ-1	125 nM

RESULTS

RT-qPCR Detection of SARS-CoV-2 in Positive Spent RADT Test Device and Genomic Comparison Experimental Study

All RADT spiked with SARS-CoV-2 produced a test and control line within 15 min of inoculation. The RNA recovered from RADTs spiked with SARS-CoV-2 was detected through RT-qPCR and the Ct values ranged between 27.49 and 31.80 for the gene N1 and 28.19 and 31.91 for the gene N2 (Figure 2) with ∼1-Ct difference between each 1:2 dilution. There was no significant change in RNA detected by RT-qPCR overtime when RADTs were spiked with a high titer of SARS-CoV-2 (1 × 10³ PFU/mL) following storage of RADTs at 4 or 20 °C (Figure 3A) using neat concentration of cultured SARS-CoV-2, while the stability study demonstrated reduced detection
of viral RNA by RT-qPCR when RADTs were inoculated with the 1:16,000 dilution \((C_t = 31.63)\) at day 7. Low amounts of RNA in RADTs appear to be more stable when incubated at 4°C \((C_t = 33.38)\) compared to 20°C \((C_t = 37.85)\) (Figure 3B). A total of four RNA samples extracted from RADTs from the stability test were sequenced, including two RADTs stored at 4°C and two at 20°C after addition of buffer AVL and extracted after 2 and 7 days. The alignment of the sequences showed the perfect alignment with the sequence of the Human SARS-CoV-2 variant Alpha (lineage B.1.1.7, isolate England/MIG457/2020) \((17, 18)\) used for spiking the RADTs (Figure 4).
RT-qPCR Detection of SARS-CoV-2 in Positive Spent RADT Test Device and Genomic Comparison in Field Samples

The RNA extracted from positive RADTs from meat plants were tested for the presence of RNA of SARS-CoV-2 with the RT-qPCR. All the samples resulted positive with a Ct value included between 18.39 and 34.67 (Supplementary Table 1). All the samples were sequenced and the clade 21K (Omicron) was identified for 26 samples and four resulted 21L (Omicron). According to Nextclade Pango nomenclature, were identified seven different lineages: 9 BA.1.1.15 (30.0 %), 5 BA.1 (16.7 %), 4 BA.1.19 (13.3 %), 4 BA.1.1 (13.3 %), 4 BA (13.3 %), 3 BA.1.17 (10.0 %), and 1 BA.1.10 (3.3%). In addition the genome coverage ranged between 67.4 and 98.8% (Supplementary Table 1) while other parameters and details on the genomics sequence are presented in the Supplementary Table 2. The phylogenetic tree (Figure 5) highlighted the relationship among the samples clustered according to the MPPs and dates of positivity. In total were identified six clusters and four of them (BA.2, BA.1.1, BA.1.19, and BA.1) grouped samples originated from the same MPP. The cluster grouping the lineage BA.1.1.15 included samples from three different MPPs (U, J, and I), while samples
from MP R generated two distinct clusters with two lineages (BA.2 and BA.1.19) of the variant Omicron (clade 21L and 21 K respectively).

DISCUSSION

WvGS can be used to identify VOCs in the population at large (18) and can also be used at higher resolution to support epidemiological investigation of outbreaks (1, 5, 6, 17–19). As more of the Irish population is vaccinated, the application of WvGS becomes increasingly important to quickly identify and control new and emerging variants that could escape vaccine protection particularly in elderly and vulnerable individuals (6). In this context, the source and spread of future virus outbreaks should be more aggressively tracked and traced to expedite its elimination from the Irish population.

RADTs in which virus has been inactivated have been used for years for example when transferring foot-and-mouth disease virus test samples from remote field locations to reference laboratories for characterization (20). The present study provides proof of the concept that sufficient SARS-CoV-2 viral genome can be readily recovered from positive RADT devices in which the virus has been safely inactivated to allow for high resolution sequencing. This is a useful extended finding which should be viewed in the context outlined above, as providing an additional source of material for WvGS.

Detection of lineages of the Omicron VOC from field samples and one lineage of the Alpha VOC experimentally, means there is no guarantee that other VOCs could be detected by the method described here. Only two different RADTs were used in this study and either the lysis buffers provided or the makeup of the lateral flow devices provided with other RADT kits could prevent the isolation of viral RNA for sequencing by the method described here. Further application of this method to recover RNA from positive RADTs and detect circulating variants will determine if this method can be utilized to detect other VOCs and be used with other RADT kits. Interestingly, the phylogenetic analysis highlighted the relationship among samples, and different clusters were identified, grouping in some cases, samples from the same MPPs. The limited number of samples for this trial and the relatively short period of time of the survey couldn’t support the same MPPs. The limited number of samples for this trial and the relatively short period of time of the survey couldn’t support more speculations on the direction of the infections however, the significant additional benefit derived from this study was proof of the concept that viral genome sequences could be obtained from spent positive RADTs. As the pandemic has evolved, tracking the spread of VOCs has become a priority for public health authorities. This study demonstrates the possibility of rapidly sequencing viruses associated with infections in workplace environments, such as MPPs, both to monitor the viral variants and lineages in circulation, and in future, with the validation of other available RADTs and the availability of WvGS obtained using this protocol, could be potentially applied to identify sources of infection, and the direction of person-to-person spread within workplaces.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: https://www.ncbi.nlm.nih.gov/genbank/, ON077632, ON077631, ON075499.1, ON075498.1.

AUTHOR CONTRIBUTIONS

SF, DS, and GMu designed the project. GMa, TR, GB, PW, and SF designed the experiments and wrote the manuscript. GMa and TR performed the experiments. GMa performed the genomic analysis. TR and GB cultivated SARS-CoV-2 and performed the experiment in CL3. LK and SM contributed on the extraction and library preparation for sequencing for the field-study. All authors read and approved the submitted version of the manuscript.

FUNDING

This work was supported by the COVID Rapid Response Grant 20/COV/8436 from Science Foundation Ireland.

ACKNOWLEDGMENTS

We thank John Browne and Stephen Gordon for training and access to the Containment Level 3 facility in the UCD Veterinary Science Center.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh.2022.863862/full#supplementary-material

Supplementary Table 1 | Dataset 30 samples of RADTs resulted positive from a survey in MPPs in Ireland. The table presents the qualitative results of the sequencing and report of the results of the Nextstrain SARS-CoV-2 tool.

Supplementary Table 2 | Dataset 30 samples of RADTs resulted positive from a survey in MPPs in Ireland. The table presents metadata and results of the RT-qPCR and qualitative results of the sequencing, including Ct values, Nextclade Pango, total Nucelotide Missing and % completion genome.

REFERENCES

1. Cassaniti I, Novazzi F, Giardina F, Salinaro F, Sachs M, Perlini S, et al. Performance of VivaDiag COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J Med Virol. (2020) 92:1724–7. doi: 10.1002/jmv.25800

2. Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): current status, challenges, and countermeasures. Rev Med Virol. (2020) 30:e2106. doi: 10.1002/rmv.2106

3. V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. (2021) 19:155–70. doi: 10.1038/s41579-020-00468-6
4. Tyson JR, James P, Stoddart D, Sparks N, Wickenhagen A, Hall G, et al. Improvements to the ARTIC multiplex PCR method for SARS-CoV-2 genome sequencing using nanopore. bioRxiv. [Preprint]. (2020). doi: 10.1101/2020.09.04.283077

5. Lucey M, Macori G, Mullane N, Sutton-Fitzpatrick U, Gonzalez G, Coughlan S, et al. Whole-genome sequencing to track severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in nosocomial outbreaks. Clin Infect Dis. (2021) 72:e727–35. doi: 10.1093/cid/ciaa1433

6. Lynch M, Macori G, Fanning S, O'Regan E, Hunt E, O'Callaghan D, et al. Genomic Evolution of SARS-CoV-2 Virus in Immunocompromised Patient, Ireland. Emerg Infect Dis J. (2021) 27:159. doi: 10.3201/eid2709.211159

7. Jääskeläinen A, Ahava MJ, Jokela P, Szirovicza L, Pohjala S, Vapalahti O, et al. Evaluation of three rapid lateral flow antigen detection tests for the diagnosis of SARS-CoV-2 infection. J Clin Virol. (2021) 137:104785. doi: 10.1016/j.jcv.2021.104785

8. Welch SR, Davies KA, Buczko H, Burgess RA, Hunter DJ, Riboli E, et al. Universal weekly testing as the UK COVID-19 lockdown exit strategy. Lancet. (2020) 395:1420–1. doi: 10.1016/S0140-6736(20)30936-3

9. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An amplicon-based sequencing framework for accurately measuring intra-host virus diversity using PrimalSeq and iVar. Genome Biol. (2019) 20:1–19. doi: 10.1186/s13059-018-1618-7

10. Grubaugh ND, Gangavarapu K, Quick J, Matteson NL, De Jesus JG, Main BJ, et al. An amplicon-based sequencing framework for accurately measuring intra-host virus diversity using PrimalSeq and iVar. Genome Biol. (2019) 20:1–19. doi: 10.1186/s13059-018-1618-7

11. O'Toole Á, Underwood A, Jackson B, Hill V, McCrone JT, et al. Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool. Virus Evol. (2021) 7:veab064. doi: 10.1093/ve/veab064

12. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. (2013) 30:772–80. doi: 10.1093/molbev/mst010

13. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. (2018) 34:4121–3. doi: 10.1093/bioinformatics/bty407

14. Rambaut A, Holmes EC, O’Toole Á, Hill V, McCrone JT, Ruis C, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. (2020) 5:1403–7. doi: 10.1038/s41564-020-0770-5

15. Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data - from vision to reality. Euro Surveill. (2017) 22:494. doi: 10.2807/1560-7917.ES.2017.22.13.30494

16. Longjam N, Deb R, Sarmah A, Tayo T, Awachat V, Saxena V. A brief review on diagnosis of foot-and-mouth disease of livestock: conventional to molecular tools. Vet Med Int. (2011) 2011:905768. doi: 10.4061/2011/905768

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Macori, Russell, Barry, McCarthy, Koolman, Wall, Sammin, Mulcahy and Fanning. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.