Alternative scheme to generate a supersinglet state of three-level atoms

W.-C. Qiang1, W. B. Cardoso2,∗, A. T. Avelar2, and B. Baseia2

1Faculty of Science, Xi’an University of Architecture and Technology, 710055, Xi’an, China
2Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil
∗Email address: wesleybcardoso@gmail.com

In this paper we propose an alternative scheme to generate a supersinglet state of three-level atoms via a single-mode of a cavity QED based on the two-photon transitions described by the ‘full microscopical Hamiltonian approach’. In it, three three-level atoms prepared in suitable initial states are sequentially sent through the cavity originally prepared in its vacuum state. After an appropriate choice of the atom-cavity interaction times plus a field detection the state that describes the whole atom-field system is projected in the desired supersinglet state. The fidelity and success probability of the state as well as the practical feasibility of the scheme are discussed.

PACS numbers: 89.70.Cf, 03.67.Bg, 42.50.Ex, 03.65.Ud

INTRODUCTION

Entanglement of states is a fundamental resource for the quantum communication and quantum computation processes. To this end, there are some known entangled states useful for such works, namely: Einstein-Podolsky-Rosen (EPR) state [1], characterizing entangled qubits of two particles; Greenberger-Horne-Zeilinger (GHZ) [2] and W states [3], for qubits in a tripartite (or more) entanglement; Cluster states [4], corresponding to a class of four or more qubits in an entangled state; Werner states [5], a pure to mixed (or vice-versa) state controlled by a single parameter; etc. All these states violate the Bell’s inequality and are applied in quantum teleportation [6], quantum cryptography [7], one way quantum computer [8], etc.

Previously, three apparently unrelated problems without classical solution, namely, the “N-strangers”, “secret sharing”, and “liar detection”, were solved [9] via supersinglet entangled states \(|S^{(N)}\rangle\); the lower and upper indexes indicate the number of particles and the dimension in Hilbert space, respectively. Also, the liar detection problem was solved using the three-qubit triplet state \(|S^{(3)}\rangle\) [10] and the four-qubit singlet state \(|S^{(4)}\rangle\) [11]. Generally speaking, these states can be written in the form [9]

\[
|S^{(N)}\rangle = \frac{1}{\sqrt{N!}} \sum_{\text{permutations of } 01\ldots(N-1)} (-1)^{\tau[i,j,...,n]},
\]

where \(\tau\) is the number of transpositions of pairs of elements composed by those appearing in a canonical order, i.e., \(0, 1, 2, ..., N - 1\). As an example of Eq. (1), first consider the supersinglet \(|S^{(2)}_2\rangle\) with \(N = 2\) and the canonical order given by \([01]\). From the Eq. (1) one obtains \(|S^{(2)}_2\rangle = (|01\rangle - |10\rangle)/\sqrt{2}\). Another example is: for three three-level atoms the supersinglet \(|S^{(3)}_3\rangle\) reads (see Ref. [9] for more details)

\[
|S^{(3)}_3\rangle = \frac{1}{\sqrt{6}} \left[|gfe\rangle - |gef\rangle - |feg\rangle + |egf\rangle + |efg\rangle - |efg\rangle\right],
\]

where \(|g\rangle\), \(|f\rangle\), and \(|e\rangle\) (instead of 0, 1, and 2, respectively) represent the atomic levels configuration shown in Fig. 1.

Despite its relevance in the field of quantum information, as far as we know few experimental schemes have been proposed for the generation of the supersinglet states. Recently, a scheme for generation of the \(3 \times 3\) supersinglet states (2) was presented in the scenario of cavities [12]. It employs four three-level atoms, three cavities, and selective atomic detectors. In each cavity the atom-field interaction is governed by the Jaynes-Cummings model in which the atom works as two-level atom. However, in the present state of the art the manipulation of three cavities is missing yet. Then, inspired by the potential applications of the supersinglet states [9–11], in this paper we will propose an alternative scheme to generate the \(3 \times 3\) supersinglet state, as given in the Eq. (2). It uses only a single QED cavity, four three-level atoms in a ladder configuration, and selective atomic detectors. The atom-field interaction is described by the ‘full microscopical Hamiltonian approach’ that is a two-photon Jaynes-Cummings model. So, the use of a single cavity turns the present scheme more attractive in view of its experimental feasibility.

The two-photon transition in three-level atoms interacting with a single cavity-field mode was realized in Ref. [13]. As applications of this study we have proposed a teleportation of zero- and two-photon superposition [14], an entanglement swapping protocol [15], and a scheme for generation of the two-photon EPR and W states [16]. We have also investigated the entropy of the entanglement swapping [17] and the dynamics of a two-atom entanglement and the entanglement sudden death [18].

The paper is organized as follows: In the Sec. II we present an overview of the model; in Sec. III we show the scheme of generation of the supersinglet state; Sec. IV displays the numerical results and in the Sec. V we concludes the paper.
Consider a three-level atom that interacts with a single cavity-field mode via a two-photon Jaynes-Cummings model described in the interaction picture by the Hamiltonian [19]

\[
H_I = \hbar g_1 (a|e\rangle\langle f|e^{-i\delta t} + a^\dagger|f\rangle\langle e|e^{i\delta t}) + \hbar g_2 (a|f\rangle\langle g|e^{i\delta t} + a^\dagger|g\rangle\langle f|e^{-i\delta t})
\]

where \(g_1 \) and \(g_2 \) stand for the one-photon coupling constant with respect to the transitions \(|e\rangle \leftrightarrow |f\rangle\) and \(|f\rangle \leftrightarrow |g\rangle\), respectively. The detuning \(\delta \) is given by

\[
\delta = \Omega - (\omega_e - \omega_f) = (\omega_f - \omega_g) - \Omega,
\]

where \(\Omega \) is the cavity-field frequency and \(\omega_e, \omega_f, \) and \(\omega_g \) are the frequencies associated with the atomic levels \(|e\rangle\), \(|f\rangle\), and \(|g\rangle\), respectively. Fig. 1 shows a schematic representation of the atomic levels.

The state describing the combined atom-field system reads

\[
|\psi(t)\rangle = \sum_n [C_{e,n}(t)|e,n\rangle + C_{f,n}(t)|f,n\rangle + C_{g,n}(t)|g,n\rangle],
\]

where \(|k,n\rangle\), with \(k = e, f, g \), indicate the atom in the state \(|k\rangle\) and the field in the Fock state \(|n\rangle\). The coefficients \(C_{k,n}(t) \) stand for the corresponding probability amplitudes.

Inserting the Eqs. (3) and (5) into the time dependent Schrödinger equation one obtains the coupled first-order differential equations for the probability amplitudes

\[
\frac{dC_{e,n}(t)}{dt} = -ig_1 C_{f,n+1}(t)\sqrt{n+1}e^{-i\delta t},
\]

\[
\frac{dC_{f,n+1}(t)}{dt} = -ig_1 C_{e,n}(t)\sqrt{n+1}e^{i\delta t} - ig_2 C_{g,n+2}(t)\sqrt{n+2}e^{i\delta t},
\]

\[
\frac{dC_{g,n+2}(t)}{dt} = -ig_2 C_{f,n+1}(t)\sqrt{n+2}e^{-i\delta t}.
\]

As usually, we consider that the entire atom-field system is decoupled at the initial time \(t = 0 \),

\[
C_{e,n}(0) = C_e C_n(0),
\]

\[
C_{b,n+1}(0) = C_f C_{n+1}(0),
\]

\[
C_{c,n+2}(0) = C_g C_{n+2}(0),
\]

where the \(C_n(0) \) stand for the amplitudes of the arbitrary initial field state and the \(C_{e,n} \) are atomic amplitudes of the (normalized) initial atomic state

\[
|\chi\rangle = C_e |e\rangle + C_f |f\rangle + C_g |g\rangle.
\]

Solving these coupled differential equations with the initial conditions in (7) we get the time dependent coefficients as

\[
C_{e,n}(t) = \left[\frac{g_1^2(n+1)}{\Lambda_n \alpha_n^2} \gamma_n(t) + 1 \right] \tan(\Lambda_n t)e^{-i\delta t} C_e C_{n+1} + \frac{g_1 g_2 \gamma_n(t)}{\Lambda_n \alpha_n^2} C_g C_{n+2},
\]
of the entire system is given by

\[C_{f,n+1}(t) = -\frac{g_1 \sqrt{n+1}}{\Lambda_n} \sin(\Lambda_n t)e^{i\frac{\delta}{2} C_C} C_{n} + \left(\cos(\Lambda_n t) - \frac{i\delta}{2\Lambda_n} \sin(\Lambda_n t) \right) e^{i\frac{\delta}{2} C_f} C_{f,n+1} \]

\[-i \frac{g_2 \sqrt{n+1}}{\Lambda_n} \sin(\Lambda_n t)e^{i\frac{\delta}{2} C_C} C_{n+2}, \]

(10)

and

\[C_{g,n+2}(t) = \frac{g_2 \sqrt{(n+1)(n+2)}}{\Lambda_n \alpha_n^2} \gamma_n(t) C_{n} - i \frac{g_2 \sqrt{n+1}}{\Lambda_n} \sin(\Lambda_n t)e^{-i\frac{\delta}{2} C_f} C_{f,n+1} \]

\[+ \left[\frac{g_2^2 (n+2)}{\Lambda_n \alpha_n^2} \gamma_n(t) + 1 \right] C_{g} C_{n+2}, \]

(11)

where

\[\gamma_n(t) = \left[\Lambda_n \cos(\Lambda_n t) + \frac{\delta}{2} \sin(\Lambda_n t) - \Lambda_n e^{i\frac{\delta}{2} t} \right] e^{-i\frac{\delta}{2} t}, \]

(12)

\[\Lambda_n = \sqrt{\frac{\delta^2}{4} + \alpha_n^2}, \]

(13)

\[\alpha_n = \sqrt{g_2^2 (n+1) + g_2^2 (n+2)}, \]

(14)

\(\Lambda_n \) being the Rabi frequency. The substitutions \(n \to n - 1 \) in Eq. (10) and \(n \to n - 2 \) in Eq. (11) allow one to obtain the \(C_{f,n}(t) \) and \(C_{g,n}(t) \), respectively.

\section*{GENERATION OF SUPERSINGLET}

In this section, we consider three three-level atoms plus a single cavity field mode previously prepared in the vacuum state \(|\{0\}_C\rangle \). Firstly, we send the atom 1, in the excited state \(|e\rangle_1 \), to interact with the cavity field mode, leading the atom-field system to the state

\[|\psi\rangle_{1C} = C_{c_0}^{(e)}(t_1)|e,0\rangle_{1C} + C_{f_1}^{(e)}(t_1)|f,1\rangle_{1C} + C_{g_2}^{(e)}(t_1)|g,2\rangle_{1C}, \]

(15)

where the \(C_{m}^{(kl)} \), with atomic indexes \(m, k = e, f, g \) and cavity indexes \(n, l = 0, 1, 2, \ldots \), are the coefficients given by Eqs.(9-11).

In a second step the atom 2, previously prepared in the intermediate state \(|f\rangle_2 \), crosses the cavity in a way that the state of the atom-field system is written as

\[|\psi\rangle_{2C} = C_{c_0}^{(e)}(t_1)|C_{f_0}^{(e)}(t_2)|e,f,0\rangle_{12C} + C_{g_1}^{(e)}(t_2)|e,g,1\rangle_{12C} + C_{f_1}^{(f)}(t_1)|C_{f_1}^{(f)}(t_2)|f,f,1\rangle_{12C} + C_{g_2}^{(f)}(t_2)|f,g,2\rangle_{12C} + C_{g_2}^{(e)}(t_1)|C_{f_2}^{(e)}(t_2)|f,g,2\rangle_{12C} + C_{g_3}^{(f)}(t_2)|g,g,3\rangle_{12C} + C_{g_3}^{(e)}(t_1)|g,g,3\rangle_{12C}. \]

(16)

Next, we send the atom 3, previously prepared in the ground state \(|g\rangle_3 \), to interact with the cavity field. In this way, the state of the entire system is given by

\[|\psi\rangle_{123C} = C_{c_0}^{(e)}(t_1)|C_{f_0}^{(e)}(t_2)|e,f,0\rangle_{123C} + C_{g_1}^{(e)}(t_2)|C_{g_1}^{(e)}(t_3)|e,g,1\rangle_{123C} + C_{f_1}^{(f)}(t_1)|C_{f_1}^{(f)}(t_2)|f,f,0\rangle_{123C} + C_{g_2}^{(f)}(t_2)|f,g,2\rangle_{123C} + C_{g_2}^{(g)}(t_3)|g,g,2\rangle_{123C} + C_{g_3}^{(f)}(t_1)|C_{f_2}^{(f)}(t_2)|g,g,2\rangle_{123C} + C_{g_3}^{(g)}(t_2)|C_{g_3}^{(g)}(t_3)|g,g,3\rangle_{123C} + C_{g_3}^{(e)}(t_3)|g,g,3\rangle_{123C} + C_{g_3}^{(e)}(t_1)|g,g,3\rangle_{123C}. \]

(17)
FIG. 2: Plot of the fidelity versus the detuning. In (a) we consider the value of coupling constant as $t = 23 \mu s$, $t_2 = 1 \mu s$, and $t_3 = 45 \mu s$. In (b) we use $g = 17.5 \text{MHz}$ with $t_1 = 15 \mu s$, $t_2 = 38 \mu s$, and $t_3 = 95 \mu s$.

Now, we assume a cavity detection in the vacuum state. This can be realized by sending an auxiliary atom in its ground state to interact with the cavity field, and so after the atomic measurement projects the state of the cavity (see Appendix for details).

In this way the state given in Eq. (17) is reduced to

$$|\psi^{'}\rangle_{123} = |\mathcal{N}\{C^{(e_0)}_0(t_1)C^{(g_0)}_{f_0}(t_2)e,f,g\rangle_{123} + C^{(e_0)}_0(t_1)C^{(g_0)}_{g_0}(t_2)C^{(g_1)}_{f_0}(t_3)e,f,g\rangle_{123}
+ C^{(e_0)}_1(t_1)C^{(f_1)}_{j_1}(t_2)C^{(g_1)}_{f_0}(t_3)f,f,f\rangle_{123} + C^{(e_0)}_0(t_1)C^{(f_1)}_{e_0}(t_2)f,f,g\rangle_{123}
+ C^{(e_0)}_0(t_1)C^{(f_2)}_{e_0}(t_2)C^{(g_2)}_{e_0}(t_3)|g,f,e\rangle_{123}
+ C^{(e_0)}_0(t_1)C^{(f_1)}_{e_1}(t_2)C^{(g_1)}_{f_0}(t_3)|g,f,e\rangle_{123}\},$$

(18)

with a success probability given by

$$P_S = |\mathcal{N}|^{-2} = |C^{(e_0)}_0(t_1)C^{(f_0)}_{f_0}(t_2)|^2 + |C^{(e_0)}_0(t_1)C^{(g_0)}_{g_0}(t_2)C^{(g_1)}_{f_0}(t_3)|^2
+ |C^{(e_0)}_1(t_1)C^{(f_1)}_{j_1}(t_2)C^{(g_1)}_{f_0}(t_3)|^2 + |C^{(e_0)}_0(t_1)C^{(f_1)}_{e_0}(t_2)f,f,f\rangle_{123}^2
+ |C^{(e_0)}_0(t_1)C^{(f_2)}_{e_0}(t_2)C^{(g_2)}_{e_0}(t_3)|^2 + |C^{(e_0)}_0(t_1)C^{(f_1)}_{e_1}(t_2)C^{(g_1)}_{f_0}(t_3)|^2.$$

(19)

Thus, with an appropriate choice of the interaction times (t_1, t_2, and t_3) one obtains from (18) and (2) the fidelity, defined as $F_S = |\mathcal{N}|\langle S_3 |\psi^{'}\rangle_{123}|^2$, given by

$$F_S = \frac{|\mathcal{N}|^2}{6} - |C^{(e_0)}_0(t_1)C^{(f_0)}_{f_0}(t_2) + C^{(e_0)}_0(t_1)C^{(g_0)}_{g_0}(t_2)C^{(g_1)}_{f_0}(t_3)
+ C^{(e_0)}_1(t_1)C^{(f_1)}_{j_1}(t_2) + C^{(e_0)}_0(t_1)C^{(f_1)}_{e_0}(t_2)f,f,f\rangle_{123}
+ C^{(e_0)}_0(t_1)C^{(f_2)}_{e_0}(t_2)C^{(g_2)}_{e_0}(t_3) - C^{(e_0)}_0(t_1)C^{(f_1)}_{e_1}(t_2)C^{(g_1)}_{f_0}(t_3)|^2.$$

(20)

NUMERICAL RESULTS

In this section we present some numerical results. By choosing appropriate interaction times t_1, t_2, and t_3 we obtain larger values of the fidelity (F_S). However, we must also choose convenient values of the detuning (δ) since it appears in the present configuration as shown in Fig. 1 (also in Ref. [13]). The control of the parameter δ can be done via the Stark-shift effect due to an external electric field [20]. In the present protocol our calculations show that the fidelity decreases when the detuning δ increases. Figs. 2a and 2b display the fidelity of the supersinglet state versus the detuning for $g = 1 \text{MHz}$ (with $t_1 = 23 \mu s$, $t_2 = 1 \mu s$, and $t_3 = 45 \mu s$) and $g = 17.5 \text{MHz}$ (with $t_1 = 15 \mu s$, $t_2 = 38 \mu s$, and $t_3 = 95 \mu s$), respectively.

In Tables I and II some values of the fidelity with the corresponding success probability are listed for different values of times t_1, t_2, and t_3, considering $g_1 = g_2 = g = 1 \text{MHz}$ with $\delta = 0$ and $\delta = 0.1 g$, respectively. Tables III and IV use the same convention of Tables I and II, except for $g_1 = g_2 = g = 17.5 \text{MHz}$.

For more details we have displayed the fidelity for a fixed interaction time $t_1 = 23 \mu s$ (considering $g = 1 \text{MHz}$ and $\delta = 0$) in Fig. 3a and $t_1 = 15 \mu s$ (considering $g = 17.5 \text{MHz}$ and $\delta = 0$) in Fig. 3b.
to interact with the cavity field, obeying the following possibilities:

\[|g, 0 \rangle_{a,C} \rightarrow |g, 0 \rangle_{a,C}, \]
\[|g, 1 \rangle_{a,C} \rightarrow C_{g_1}^{(1)}(t')|g, 1 \rangle_{a,C} + C_{f_0}^{(1)}(t')|f, 0 \rangle_{a,C}, \]
\[|g, 2 \rangle_{a,C} \rightarrow C_{g_2}^{(2)}(t')|g, 2 \rangle_{a,C} + C_{f_1}^{(2)}(t')|f, 1 \rangle_{a,C} + C_{e_0}^{(2)}(t')|e, 0 \rangle_{a,C}, \]
\[|g, 3 \rangle_{a,C} \rightarrow C_{g_3}^{(3)}(t')|g, 3 \rangle_{a,C} + C_{f_2}^{(3)}(t')|f, 2 \rangle_{a,C} + C_{e_1}^{(3)}(t')|e, 1 \rangle_{a,C}. \]

\(\delta = 0 \) in Fig. 3b. We note that the fidelity is more sensitive to the interaction time for larger values of the coupling constant. For example, this is shown by comparing Fig. 3b (\(g = 17.5 \text{MHz}, n \sim 50 \)), where the fidelity becomes more sensitive to fluctuations in the interaction times, and Fig. 3a (\(g = 1 \text{MHz}, n \sim 90 \)), where it suffers a little change.

CONCLUSION

The ‘\(N \)-strangers’, the ‘secret sharing’, the ‘liar detection’, and the ‘Byzantine agreement’ are examples of unsolvable problems using the classical computation. On the other hand, they can be solved using quantum mechanics [9–11]. The supersinglet states are the key of this procedure. So motivated, we have presented here a feasible scheme for generation of the 3 \(\times \) 3 supersinglet state using three-level atoms. The present scheme sounds experimentally advantageous [20] in comparison with that in Ref. [12] since it uses only a single cavity. In our numerical simulations we have used two values for the coupling constant, given by \(g = 1 \text{MHz} \) [21] and \(g = 17.5 \text{MHz} \) [13], and Rydberg atoms with quantum number \(n \sim 90 \) and \(n \sim 50 \), respectively. We note that the fidelity of the wanted state increases for small values of the detuning. For example, for \(t_1 = 23 \mu s, t_2 = 1 \mu s, \) and \(t_3 = 45 \mu s (g = 1 \text{MHz} \text{ and } \delta = 0) \) the fidelity and success probability are 97.6\% and 62.9\%, respectively; for \(t_1 = 15 \mu s, t_2 = 38 \mu s, \) and \(t_3 = 95 \mu s (g = 17.5 \text{MHz} \text{ and } \delta = 0) \) the fidelity and success probability are 96.3\% and 32.0\%, respectively; etc. It is worth stressing that a nonideal fidelity does not forbid the application of this supersinglet to solve some protocols. For example, in the liar detection [9] a lot of supersinglet states are requested to provide a list of possible detections of the components. In this case, the occurrence of a few errors in the list due to imperfections in the state does not affect the main result. Also, the atomic decay and the control of the velocity distributions can be neglected regarding the fidelity of the scheme, since the lifetime of Rydberg atoms with \(n \sim 50 \) is about 30 ms, i.e., \(10^7 \) times higher than the interaction times considered here and the velocity distribution of the atomic beam presents a small deviation, around 0.3\% [20]. In conclusion, taking into account the potential applications of this state and the feasibility of the scheme we believe that this supersinglet state can be experimentally implemented.

Acknowledgments

We thank the CAPES, CNPq, and FUNAPE/GO, Brazilian agencies, for the partial supports. This work is also partially supported by Natural Science Basic Research Plan in the Shaanxi Province of China (program no: SJ08A13), the Natural Science Foundation of the Education Bureau of Shaanxi Province, China under Grant O9jK534.

Appendix

The detection of the cavity-field mode is discussed below. To this end, we consider an auxiliary atom in its ground state \(|g\rangle_a\) to interact with the cavity field, obeying the following possibilities:

\[|g, 0 \rangle_{a,C} \rightarrow |g, 0 \rangle_{a,C}, \]
\[|g, 1 \rangle_{a,C} \rightarrow C_{g_1}^{(1)}(t')|g, 1 \rangle_{a,C} + C_{f_0}^{(1)}(t')|f, 0 \rangle_{a,C}, \]
\[|g, 2 \rangle_{a,C} \rightarrow C_{g_2}^{(2)}(t')|g, 2 \rangle_{a,C} + C_{f_1}^{(2)}(t')|f, 1 \rangle_{a,C} + C_{e_0}^{(2)}(t')|e, 0 \rangle_{a,C}, \]
\[|g, 3 \rangle_{a,C} \rightarrow C_{g_3}^{(3)}(t')|g, 3 \rangle_{a,C} + C_{f_2}^{(3)}(t')|f, 2 \rangle_{a,C} + C_{e_1}^{(3)}(t')|e, 1 \rangle_{a,C}. \]

FIG. 3: Plot of the fidelity versus \(t_3 \) and \(t_2 \) for a fixed interaction time \(t_1 \). In (a) we consider the value of coupling constant as \(g = 1 \text{MHz} \) and detuning \(\delta = 0 \), as well as \(t_1 = 23 \mu s \). In (b) we use \(g = 17.5 \text{MHz} \) and \(\delta = 0 \) with \(t_1 = 15 \mu s \).
To ensure that the cavity is in its vacuum state, we set the interaction time \((t')\) appropriately to maximize the probability of photon absorption. As an example, considering the case with \(\delta = 0, g = 1 \text{MHz}\), and adjusting \(t' = 4.71 \mu\text{s}\), we obtain a maximum error of 0.0005\%, 1.8\%, or 1.7\% for the detection of the ground state in the cases with one-, two-, or three-photons, respectively (in Eqs. (21b-21d)). So, the selective atomic detection in the ground state guarantees the generation of the supersinglet state (2) with a success probability greater than 98.2\% using a single auxiliary atom. Note that by the support of more atoms (previously prepared in the ground state \(|g\rangle\), where the interaction time is tuned with the same value of \(t'\)) this error can be reduced even more, e.g., in the case of another auxiliary atom the maximum error in the absorption is about 0.03\% (success probability \(\geq 99.97\%\)).

References

[1] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47 (1935) 777.
[2] D.M. Greenberger, M.A. Horne, A. Zeilinger, Bell's Theorem, Quantum Theory, and Conceptions of the Universe, Dordrecht: Kluwer, 1989.
[3] W. Dür, G. Vidal, J.I Cirac, Phys. Rev. A 62 (2000) 062314.
[4] H.J. Briegel, R. Raussendorf, Phys. Rev. Lett. 86 (2001) 910.
[5] R.F. Werner, Phys. Rev. A 40 (1989) 4277.
[6] C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70 (1993) 1895.
[7] C.H. Bennett, G. Brassard, A. Ekert, Sci. Am. 267 (1992) 50;
 N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74 (2002) 145.
[8] R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86 (2001) 5188.
[9] A. Cabello, Phys. Rev. Lett. 89 (2002) 100402.
[10] M. Fitzi, N. Gisin, U. Maurer, Phys. Rev. Lett. 87 (2001) 217901.
[11] A. Cabello, Phys. Rev. A 68 (2003) 012304.
[12] G.S. Jin, S.S. Li, S.L. Feng, H.Z. Zheng, Phys. Rev. A 71 (2005) 034307.
[13] M. Brune, J.M. Raimond, P. Goy, L. Davidovich, S. Haroche, Phys. Rev. Lett. 59 (1987) 1899.
[14] A.D. dSouza, W.B. Cardoso, A.T. Avelar, B. Baseia, Physica A 388 (2009) 1331.
[15] A.D. dSouza, W.B. Cardoso, A.T. Avelar, B. Baseia, Phys. Scr. 80 (2009) 065009.
[16] W.B. Cardoso, W.C. Qiang, A.T. Avelar, B. Baseia, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 155502.
[17] W.C. Qiang, W.B. Cardoso, X.H. Zhang, Physica A 389 (2010) 5109.
[18] W.B. Cardoso, A.T. Avelar, B. Baseia, N.G. de Almeida, J. Phys. B: At. Mol. Opt. Phys. 42 (2009) 195507.
[19] A.H. Toor, M.S. Zubairy, Phys. Rev. A 45 (1992) 4951.
[20] J.M. Raimond, M. Brune, S. Haroche, Rev. Mod. Phys. 73 (2001) 565.
[21] P.J. Blythe, B.T.H Varcoe, New J. Phys. 8 (2006) 231.
TABLE I: Fidelity and corresponding success probability as functions of t_1, t_2, and t_3 with $g = 1\text{MHz}$ and $\delta = 0$.

t_1, t_2, t_3 (μs)	P_s	$P_s(\%)$
1,1,45	0.953017	70.9
5,1,1	0.952057	42.0
5,1,46	0.951075	50.5
12,1,1	0.953527	51.3
12,1,2	0.970373	73.9
12,1,20	0.968870	75.5
12,1,27	0.968235	76.3
12,1,34	0.953858	49.3
12,1,45	0.975297	67.0
12,1,46	0.965878	59.8
23,1,1	0.968455	46.8
23,1,2	0.969310	69.7
23,1,20	0.966943	71.4
23,1,27	0.967875	72.0
23,1,34	0.955247	45.8
23,1,45	0.976124	62.9
23,1,46	0.975231	55.3
34,1,1	0.957197	42.7
34,1,45	0.951170	58.9
34,1,46	0.957395	51.2
41,1,2	0.968149	74.6
41,1,20	0.966810	76.2
41,1,27	0.965816	77.1
41,1,34	0.951813	49.8
41,1,45	0.972791	67.7
41,1,46	0.961744	60.7
TABLE II: Fidelity and corresponding success probability as functions of t_1, t_2, and t_3 with $g = 1$MHz and $\delta = 0.1g$.

t_1, t_2, t_3 (μs)	F_s	P_s (%)
1,1,1	0.917148	55.9
1,1,2	0.947847	77.6
1,1,9	0.845914	54.4
1,1,13	0.818697	50.7
1,32,5	0.851816	78.4
2,30,3	0.883008	3.5
5,1,1	0.936816	42.6
5,1,2	0.923425	65.1
5,1,8	0.837938	44.4
5,1,9	0.804010	45.0
5,1,15	0.846834	26.4
5,32,5	0.834717	66.1
5,32,10	0.823751	33.1
6,30,1	0.815561	44.6
6,30,2	0.845026	62.7
8,1,2	0.829526	83.7
8,1,9	0.810296	54.5
12,1,1	0.876137	52.8
12,1,2	0.899566	74.7
12,1,8	0.805662	55.9
12,1,9	0.814788	52.4
12,1,13	0.808298	48.5
12,32,5	0.818571	75.5
50,1,1	0.827253	54.7
50,1,2	0.835046	76.5
50,1,48	0.801231	50.7
TABLE III: Fidelity and corresponding success probability as functions of t_1, t_2, and t_3 with $g = 17.5$MHz and $\delta = 0$.

t_1, t_2, t_3(µs)	F_s	$P_s(\%)$
15,38,19	0.955450	34.1
15,38,47	0.955040	29.6
15,38,53	0.956239	39.3
15,38,61	0.953247	31.6
15,38,89	0.956397	42.0
15,38,95	0.963001	32.0
32,38,19	0.951438	32.9
32,38,47	0.954557	28.5
32,38,53	0.951940	38.1
32,38,61	0.951898	30.4
32,38,89	0.951164	40.7
32,38,95	0.961062	30.8
38,38,89	0.951349	47.6
49,38,95	0.956297	29.7
55,38,19	0.952102	38.1
55,38,25	0.950950	54.3
55,38,53	0.952674	43.7
55,38,89	0.955947	46.3
55,38,95	0.952517	36.1
72,38,19	0.955415	36.9
72,38,25	0.952313	52.9
72,38,53	0.956310	42.4
72,38,89	0.958697	45.0
72,38,95	0.957923	34.9
89,38,25	0.951564	51.6
89,38,95	0.961521	33.7
TABLE IV: Fidelity and corresponding success probability as functions of t_1, t_2 and t_3 with $g = 17.5$ MHz and $\delta = 0.1g$.

t_1, t_2, t_3 (μs)	F_s	P_s (%)
10,30,17	0.842295	58.4
10,30,21	0.837639	46.8
10,30,43	0.803492	62.4
10,30,46	0.855158	87.6
13,30,9	0.816954	49.0
13,30,17	0.854786	58.3
13,30,21	0.819474	46.6
13,30,34	0.806463	68.8
13,30,46	0.848566	86.5
13,30,49	0.825522	68.2
15,27,50	0.809714	18.8
18,27,11	0.844388	53.4
18,27,14	0.832976	23.3
18,27,36	0.870633	27.4
18,27,40	0.830723	24.5
18,27,50	0.921186	20.4
21,27,36	0.802649	30.3
21,27,50	0.868293	23.1
39,30,17	0.805561	57.6
39,30,21	0.828222	45.7
39,30,43	0.811022	62.6
39,30,46	0.862737	83.8
42,30,9	0.861602	46.4
42,30,17	0.831920	56.9
42,30,21	0.835240	45.0
42,30,34	0.836005	64.8