Possibility and Impossibility of Reliable Broadcast in the Bounded Model

Danny Dolev∗
Hebrew University of Jerusalem
Jerusalem, Israel
dolev@cs.huji.ac.il

Meir Spielrien
Hebrew University of Jerusalem
Jerusalem, Israel
meir.spielrein@mail.huji.ac.il

November 17, 2016

Abstract

The Reliable Broadcast concept allows an honest party to send a message to all other parties and to make sure that all honest parties receive this message. In addition, it allows an honest party that received a message to know that all other honest parties would also receive the same message. This technique is important to ensure distributed consistency when facing failures.

In the current paper, we study the ability to use Reliable Broadcast to consistently transmit a sequence of input values in an asynchronous environment with a designated sender. The task can be easily achieved using counters, but cannot be achieved with a bounded memory facing failures. We weaken the problem and ask whether the receivers can at least share a common suffix. We prove that in a standard (lossless) asynchronous system no bounded memory protocol can guarantee a common suffix at all receivers for every input sequence if a single party might crash.

We further study the problem facing transient faults and prove that when limiting the problem to transmitting a stream of a single value being sent repeatedly we show a bounded memory self-stabilizing protocol that can ensure a common suffix even in the presence of transient faults and an arbitrary number of crash faults. We further prove that this last problem is not solvable in the presence of a single Byzantine fault. Thus, this problem separates Byzantine behavior from crash faults in an asynchronous environment.

∗Danny Dolev is Incumbent of the Berthold Badler Chair in Computer Science. The Rachel and Selim Benin School of Computer Science and Engineering Edmond J. Safra Campus. This work was supported in part by the HUJI Cyber Security Research Center in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. This work was supported in part by The Israeli Centers of Research Excellence (I-CORE) program, (Center No. 4/11).
1 Introduction

Many distributed algorithms make use of the ‘Reliable Broadcast’ technique that allows one party to send a message to all other parties guaranteeing that if any honest party receives a message, all honest parties will receive the same message. Reliable Broadcast is somewhat weaker than Consensus since it allows for more flexibility in dealing with a faulty sender - if the sender is faulty there is no requirement that any message will ever be received by honest parties. Therefore, Reliable Broadcast is solvable in an asynchronous environment despite of crash faults.

The current paper studies more deeply the ability to achieve Reliable Broadcast in a ‘Bounded Model’, in which the memory of honest parties is bounded by some constant, and the system is asynchronous. For a single message transmission, Reliable Broadcast is achievable with bounded memory in such a system. For transmitting a sequence of inbound messages via Reliable Broadcast we prove the impossibility of even guaranteeing the delivery of only a common suffix of the sequence of inputs, for some sequences of inputs, given that a single party might crash.

We study two variants of the Bounded Model. In the first variant, in addition to having a bounded memory, the capacity of each link is also bounded, i.e., there is a constant \bar{c} such that the number of messages simultaneously present over each link never exceeds \bar{c}. In the second variant, in addition to having a bounded memory, the links are unbounded and lossless (the standard asynchronous environment). In both models there is no assumption about message ordering over the links, thus, no FIFO is assumed.\(^1\) We show a common suffix impossibility results for both models.

We also study the problem in a system that is subjected to transient faults. For the self-stabilization model, we prove that a common suffix can be guaranteed for a stream of a single input value that repeats itself, even when facing any number of crash faults. The solution makes use of a link layer, inspired by [8, 10]. Our link layer (as we will explain later) guarantees that the number of ghost messages (messages that weren’t really sent) that might be received, following the last transient fault, is at most 3. The solution does not exchange acknowledge messages. The lower bound technique we developed for proving the previous lower bounds is extended to prove that a common suffix cannot be guaranteed even for a stream of a single value in the presence of a single Byzantine party. Thus, this problem shows a clear separation between crash and Byzantine faults.

It is important to point out that the problem discussed in this article is not equivalent to Total Ordering Reliable Broadcast. In this paper we consider a single sender in opposed to total ordering that considers multiple senders and tries to achieve a total order among all concurrent sending of messages. In addition the impossibility results of this paper are not derived from the FLP impossibility ([15]), since the single sender message sequence is solvable with infinite memory.

We are not the first to notice that sequential (repeated) Reliable Broadcast is unsolvable under the bounded model. [20, 5] also show relevant impossibility result, though the model assumes message loss. Here we show that message loss is not the source of the impossibility result and the same impossibility result can be achieved without assuming messages loss. In addition the impossibility result in previous papers is based on the observation that a party cannot generate a message that has been lost from the internal memory of every party. But this does not necessarily

\(^1\)If FIFO is assumed, the problem is trivially solvable for the unbounded link capacity variant. The lower bound for the bounded link capacity variant can be proved for FIFO links as well.
imply that the sequences received by different parties differ. For example, if the input sequence is periodic, a party that lost a message may still receive the same sequence, or the same suffix, it only needs to identify when the period starts. Moreover, the requirement that the input sequence will be generated by an external entity is not enough, the external entity may enter the same input to each party, so it is trivial to guarantee an identical sequence of received messages. [16] also mentioned that the repeated Reliable Broadcast problem is unsolvable when considering finite memory at each party.

There are many distributed problems that make use of Reliable Broadcast, Tal Rabin and Ran Canetti used a version of Reliable Broadcast in their paper Fast Asynchronous Byzantine Agreement with Optimal Resilience [3]. They called this version of Reliable Broadcast A-CAST protocol. They use this protocol to achieve an asynchronous secret sharing which leads to asynchronous Byzantine agreement.

In [18] a weaker version of Reliable Broadcast is used to replace digital signatures. In that version, there is a specific receiver that needs to be able to know that enough other parties received the sent messages. In [1] a version of repeated Reliable Broadcast is used to achieve approximate agreement with optimal resilience. In both articles, the repeated Reliable Broadcast protocol makes use of round numbers in the messages. This technique will clearly not hold in the bounded model. Can a bounded time stamp technique ([6, 7, 13]) be used to overcome this limitation?

We concentrate on the bounded memory and bounded links model when considering self-stabilization, since [11, 17] proved that when considering unbounded links, the construction of self-stabilizing links requires an unbounded memory.

In [2, 9, 12] the practically self-stabilize concept is introduced. A practically stabilizing protocol assumes that most protocols such as Paxos, under realistic operation have a lifetime that could not lead their counter to exceed a very high maximal value, e.g., of 2^{64}. This can only take place in the case where a transient fault occurs. Thus, a practically infinite run is a run that lasts a long enough number of successive steps, i.e., 2^{64} steps. A practically self-stabilize protocol needs to achieve this exact behavior and be able to reach the long enough run from any initial configuration. In the current paper, we consider the classical (strong) self-stabilization and require that the stabilized run will last forever.

2 The Model and Problem Definition

Let $\Pi = \{p_1, ..., p_n\}$ be a set of parties and let p_{sender} be a special party called the sender. An honest party follows the protocol’s instructions, a crashed party follows the protocol’s instructions until it crashes, and an adversary controls all Byzantine parties and instructs them what to do, regardless of the protocol’s instructions. Parties communicate via message passing. There is a finite set of possible messages that may be sent, thus one cannot use infinite counters, or damp all past history in a message. We assume a standard asynchronous environment with fully connected network graph, i.e., there are two directional links between any two parties. Pending messages over an incoming link may arrive at arbitrary order. p_{sender} has an external input stream containing values that the sender needs to broadcast to all receivers. The values are generated by an external source and this external source is not subjected to transient faults.

An Internal State of a party is the values of all internal variables. A Configuration, C, is the
internal states of all parties. The Network State, \(N \), contains all the links and the sets of messages in them. The System State is \(S = (C, N) \).

A step is a function from one system state to another. A step chooses a party, according to the party’s current internal state it potentially receives a pending message from one of its incoming links (if the chosen party is \(p_{\text{sender}} \), it may read the next value from the input stream). As a function of the specific message obtained (if any) it performs the instructed task, potentially sends messages to other parties and returns a new internal state. A step may also contain an action to deliver (output) some value, in this case, a single output is delivered in a step. Notice that not all actions can be taken at all system states. A step \(s \) is feasible at internal state \(C \) and network state \(N \) if \(s \) is the next step in \(C \) and \(s \) can be performed at \(N \), i.e., if the message (or input) received in \(s \) is in an incoming link (or at the top of the input stream) of the party.

When a party sends a message to another party, the message is added to the set of pending messages over the communication link connecting them. If the link is bounded and exceeds its maximal capacity, then an arbitrary message (either the new one or a pending one) is lost. When a party tries to receive a message it arbitrarily receives one of the messages present on one of its incoming links or none (if no message is being received), and the received message is removed from the respective link.

A run is a sequence of configurations and steps, \([c_1, s_1, ..., s_{n-1}, c_n]\) (could be infinite). A run specifies only the sequence of configurations and the steps that are performed. It does not specify the network states. Once a run is applied to a given network state it implies a sequence (could be infinite) of System States. A run is feasible at a network state \(N \), if for each \(i \), \(s_i \) is feasible at \((c_i, N_i)\), where \(N_i \) is the result of applying the prefix \([c_1, s_1, ..., s_{i-1}]\) to \(N \), and if \(c_{i+1} \) is the result of applying \(s_i \) on \(c_i \). The initial configuration is \(c_1 \). A partial run is a run that starts at some intermediate configuration of some run and includes some sequence of consecutive steps of that run.

Consider two models. The semi-bounded model, in which the memory is bounded and the links are reliable and unbounded. The fully bounded model, in which the memory is bounded and the links are unreliable, i.e., messages may get lost and the number of messages in transit over a link never exceeds some constant \(\bar{c} \). In the case of self-stabilization, as a result of a transient fault, the link may contain fake messages, The only way this may happened is because of transient faults. Thus, there can be at most \(\bar{c} \) fake messages that may arrive on that link. To eliminate adversarial link scheduling, assume that if a message is sent infinitely often it will arrive infinitely often.

Definition 1 (Suffix). Let \(a, b \) be two sequences (could be infinite). We say that \(a \) is a suffix of \(b \) if there is a location \(i \) in \(b \) such that the sub-sequence of \(b \) that starts from \(i \) is the sequence \(a \).

The traditional Reliable Broadcast problem (cf. [4, 19]) focuses on a message delivery consistency. In the current paper we are interested only in a suffix consistency. The Suffix Reliable Broadcast (SuRB) problem is to implement a protocol that satisfies: \(p_{\text{sender}} \) sends a sequence of messages, subjected to:

S1) If an honest party delivers an infinite sequence of messages, every honest party delivers an infinite sequence of messages and all these sequences share a non-trivial common suffix.

S2) If \(p_{\text{sender}} \) is honest and broadcasts an infinite sequence of messages, all honest parties share a non-trivial common suffix with the input sequence of \(p_{\text{sender}} \).
3 Suffix Reliable Broadcast with Unbounded Lossless Links

We examine first the Suffix Reliable Broadcast in the semi-bounded model, thus links are lossless. The adversary may prevent a message from reaching its destination for as long as it wants, but eventually, all messages must reach their destinations. We show impossibility of SuRB, i.e., there is no protocol that can satisfy SuRB for all input sequences in the standard asynchronous model in the presence of a single crash fault. The proof technique is used later in the paper to prove the lower bound results for the transient-fault model.

We assume that parties do not have any prior knowledge regarding the input stream to be provided to the sender.

Since communication links are unbounded we need a compact representation of the network state. Let \(M = \{m_1, ..., m_M\} \) be the set of possible messages, which we assume is bounded. The total number of links in the system is \(\ell = n(n - 1) \). Define the network matrix, \(N \), to be a matrix of size \(M \times \ell \), where \(N[i, j] \) is the number of \(m_i \) messages currently in link \(j \). For two network matrices, \(N_1, N_2, N_1 \leq N_2 \) if for each entry \(i, j \), \(N_1[i, j] \leq N_2[i, j] \). Thus, the system state can be represented as \((C, N)\), where \(C \) is a configuration and \(N \) is a network matrix.

Let \(\text{R}_1 = [c_1^{(1)}, s_1^{(1)}, ..., c_n^{(1)}] \) be a run feasible at state \(N^{(1)} \) and \(\text{R}_2 = [c_1^{(2)}, s_1^{(2)}, ..., c_n^{(2)}] \) at \(N^{(2)} \). Let \(N^{(1)}_n = N^{(1)} \text{R}_1 \) be the resulting network state of applying \(\text{R}_1 \) on \(N^{(1)} \). Assume that \(c_n^{(1)} = c_1^{(2)} \) and \(N^{(2)} \leq N^{(1)}_n \). It is possible to concatenate \(\text{R}_1 \) and \(\text{R}_2 \) and receive a new partial run \(\text{R} = [c_1^{(1)}, s_1^{(1)}, ..., c_1^{(2)}, s_1^{(2)}, ..., c_n^{(2)}] \) feasible at state \(S_1 = (c_1^{(1)}, N^{(1)}) \). This concatenation is possible, because if a run is feasible from a given network matrix then the same run is also feasible at any greater or equal network matrix, since all the messages used during the run also exist in any greater or equal network matrix. Notice that \(\text{R}_2 \) could be infinite only if \(N^{(1)}_n = N^{(2)} \), since all messages need to eventually be delivered, so we need at some point to deliver messages that has not been delivered within \(\text{R}_2 \).

The following is the main result of this section. The full proof of this theorem appears in Section 3.2, and other missing proofs appear in the appendix, Section A.

Theorem 1 (SuRB impossibility with one crash). In the semi-bounded model with potentially a single crash fault, there is no protocol that satisfies the SuRB properties for all input sequences.

The following discussions are about the main elements of the proof of Theorem 1 for the semi-bounded model. The similar impossibility result for the fully-bounded model appears in the Appendix.

3.1 An Infinite Chain Existence

Definition 2 (Partial ordered Sequence). Let \(\text{Set}_S = \{a_1, ..., a_n\} \) be a partial ordered set of elements (could be infinite) and let \(\leq \) be the binary relation among elements of \(\text{Set}_S \). A sequence \(S = a_1, a_2, ... \) of the elements is called a Partial Ordered Sequence. \(S \) is called a Fully Ordered Sequence (or a Chain) if for every \(i < j \), \(a_i \leq a_j \).

Definition 3 (Chain in a Sequence). Let \(S = a_1, a_2, ... \) be a Partial Ordered Sequence (could be infinite). Let \(\sigma = t_1, t_2, ... \) be an increasing sequence of natural numbers (could be infinite). Let
\[
S'' = a_{t_1}, a_{t_2} \ldots \text{ be a sequence over some of the elements of } S. \text{ We say that } S'' \text{ is a Chain in } S \text{ if every two elements in } S'' \text{ are comparable.}
\]

Definition 4 (Antichain in a Sequence). Let \(S = a_1, a_2 \ldots \) be a Partial Ordered Sequence (could be infinite). Let \(\sigma = t_1, t_2 \ldots \) be an increasing sequence of natural numbers (could be infinite). Let \(S'' = a_{t_1}, a_{t_2} \ldots \) be a sequence over some of the elements of \(S. \) We say that \(S'' \) is a Antichain in \(S \) if each two elements in \(S'' \) are not comparable.

The new presentation of the network state enables us to talk about properties regarding sequences of network states. It is easy to see that a sequence of Network Matrices composes a partial order sequence. Dilworth’s lemma [14] states that each infinite Partial Order set must contain an infinite chain or an infinite Antichain. Unfortunately, the lemma does not refer to sequences. In order to use Dilworth’s lemma we must first expand it to sequences:

Lemma 1 (Dilworth’s lemma for sequences (infinite version)). A Partial Ordered Sequence with infinite number of elements must have an infinite Chain or an infinite Antichain.

A short intuition regarding the proof: Let us assume we have a partial order sequence. It is always possible to match each element with its corresponding index (its location in the sequence). This way we define a partial order set. Thanks to Dilworth’s lemma we know that this set must have a Chain or an Antichain. Let us assume it contains a chain. The elements composing the chain must also compose a chain in the original sequence. Similar arguments hold for an Antichain.

Looking at an infinite sequence of Network Matrices we can prove the following lemma:

Lemma 2 (An infinite Chain Existence). Let \(S \) be an infinite sequence of network matrices. \(S \) must contain an infinite Chain.

The main idea is to show that there is no infinite Antichain which directly leads to the inevitable conclusion (using Lemma 1), that there must be an infinite chain. We used reduction to show that there is no infinite Antichain. We look at the matrix as a long vector. The case for \(1 \times 1 \) vectors is trivial, since the vectors cells are natural numbers. Assume correctness on \(n \times 1 \) vectors and prove for \((n+1) \times 1 \) vectors. Assume to the contrary that there is an infinite Antichain. Let us look at the first \(n \) cells of this infinite Antichain, by the induction hypothesis those cells do not contain an infinite Antichain so they must contain an infinite chain. Looking at the element of this chain with the minimal value in the \(n+1 \) cell, call it \(\text{min element} \). The next element in the chain that comes right after \(\text{min element} \), must be greater or equal than \(\text{min element} \). So we found two elements located in this infinite Antichain that are comparable. This contradicts the assumption that this is actually an infinite Antichain.

3.2 SuRB Impossibility

We define the problematic sequence which we use to prove the impossibility result:

Definition 5 (Incremental Sequence of Messages). \(M_{x, \ell - \text{repeated}} \) is a sequence \(M = x, \ldots, x \) that contain only message \(x \) for \(\ell \) times. Let \(M = x_1, \ldots, x_n, \ldots \) be an infinite sequence of messages, where \(x_k \in \{0, 1\} \). We say that \(M \) is an Incremental Sequence of messages if for every sub-sequence \(M_{x, \ell - \text{repeated}} \) that ends at some position \(i \) in \(M \) there exists \(\ell' > \ell \) and a sub-sequence: \(M_{(1-x), \ell' - \text{repeated}} \) that starts at some position \(j \), where \(j > i \).
This sequence contains an increasing number of consecutive ones and zeros. This sequence is problematic because for each sub-sequence of such sequence we can always find a later sub-sequence such that those two sub-sequences do not share a common divider. Using Lemma 13 (appeared in the Appendix) we conclude that if there is no common divider, by switching these two subsequences we obtain a new and different sequence.

Now assume that there is a protocol that achieves the SuRB properties. The following lemma must hold for such a protocol (the full proof is in the appendix, Section A):

Lemma 3. Let \(PR \) be a protocol that satisfies the SuRB properties even when one party is prone to crash. Let \(S = (C_S, N_S) \) be a reachable System State. There is a partial run \(R \) of \(PR \) such that \(R \) starts from \(C_S \), feasible at \(N_S \) and in \(R \) there are two honest parties who do not deliver the same sequence of messages.

To obtain some intuition regarding the proof of the lemma assume that when the protocol reaches \(S \) the sequence given to \(p_{\text{sender}} \) via the input stream is an incremental sequence, \(inc - seq \). Assume that some party \(p \) crashes (or dormant) and takes no steps. There must be a run \(\bar{R} \) that starts at \(C_S \) feasible at \(N_S \) and in \(\bar{R} \) each honest party delivers a suffix of \(inc - seq \). Now wait until we reach the System State, \(S_{\text{start}} \), in which each party starts delivering the common suffix (except \(p \) who crashed). Look at the sequence of System States starting right after \(S_{\text{start}} \). Looking only at the Network Matrices of this sequence we gain an infinite sequence of Network Matrices. This infinite sequence must contain an infinite chain (Lemma 2). Looking at the configuration part of the infinite chain there must be a configuration that repeats itself infinitely many times (the memory is bounded so there is a finite number of possible configurations). We obtain an infinite sequence of System States located at \(R \) in which the Network Matrices are increasing and the Configurations repeat. Call this sequence \(repeated - seq \). Call the first, and the second elements of \(repeated - seq \): \(repeated - seq_1 \), and \(repeated - seq_2 \) and call the partial run that starts at \(repeated - seq_1 \) and ends at \(repeated - seq_2 \); \(repeated - seq_{1-2} \). Now we can take \(repeated - seq_{1-2} \) and repeat it again from \(repeated - seq_2 \) (because the Network Matrix is larger and the Configurations are the same). Call this new run \(R_1 \). We can also repeat \(repeated - seq_{1-2} \) from any system state in \(repeated - seq \). Let us choose to repeat it when we reach a System State at which the sequence given to \(p_{\text{sender}} \) in the partial run that starts at \(repeated - seq_2 \) does not share a common divider with the input sequence given to \(p_{\text{sender}} \) during \(repeated - seq_{1-2} \). Call this new run \(R_2 \). Notice that we build two runs that start at \(C_S \) feasible at \(N_S \) and in both of them the sequences that are given to \(p_{\text{sender}} \) are different (Lemma 13). In addition both runs are composed of the same partial runs so they both reach the same System State (we formally prove this in the Appendix). The crashed party \(p \) who starts taking steps at the common configuration cannot distinguish between the two runs and cannot know which sequence to deliver.

Proof of Theorem 1. Assume that there is a protocol that satisfies the SuRB properties even when one party is prone to crash. Let \(PR \) be such a protocol. Let \(S_{\text{init}} = (C_{\text{init}}, N_{\text{init}}) \) be the initial System State of \(PR \). By Lemma 3, there is a run \(R \) starting from \(C_{\text{init}} \) and feasible at \(N_{\text{init}} \) such that when applying \(R \) on \(N_{\text{init}} \) there are two honest parties, \(p_1 \) and \(p_2 \), that do not deliver the same sequence of messages. If the changes in the delivered sequences between \(p_1 \) and \(p_2 \) is infinite we are done (since there is no common suffix), otherwise look at System State, \(S_1 = (C_1, N_1) \), in which \(p_1 \) and \(p_2 \) start delivering the same sequence of messages. Look at system state \(S_2 = (C_2, N_2) \) in which all messages that were present in the link in \(N_1 \) already reached their
destination (at some point all messages must reach their destination). We know that S_2 is a legal System State because we have a partial run that starts at the initial configuration, feasible at the initial Network State and reaches S_2. Now applying again Lemma 3 on S_2 we receive another partial run, R_1, that starts at the C_2, feasible at N_2 and contains two honest parties that do not deliver the same sequence of messages.

We can repeat this argument. If we reach a point in which there are two parties that do not share a common suffix then we are done, otherwise we actually construct an infinite run in which there is always a pair of parties that do not deliver the same sequence of messages and all messages eventually had reached their destinations i.e. this is a legal run in which there is no common suffix.

\[\square \]

4 Self-stabilized SuRB of a Single Repeated Message

Self-stabilization is an important objective that robust systems should satisfy. It gives the system the ability to overcome transient faults and continue functioning even when the most unexpected transient fault takes place. A self-stabilized system does not assume any initial system configuration, and a proof of correctness is proving that whatever the initial configuration is, the system converges to perform the desired behavior. It is assumed, though, that the external source generating the values given to the sender via the input stream is not subjected to transient faults.

The impossibility results of the previous section clearly hold also for the self-stabilizing case. Therefore, the question stands on what are the extra assumptions under which the SuRB properties may hold. It turns out that if the input stream is composed of a single value being repeated forever SuRB can be satisfied, even when facing transient faults.

In the fully-bounded model we show that when assuming that the input stream is a stream of a single message repeated forever, one can guarantee a suffix reliable broadcast with any number of crash faults. But there is no solution in the presence of even a single Byzantine fault, i.e., this shows a clear separation between Byzantine to crash faults.

We decided to investigate the case of a single repeated message because when considering self-stabilization the sender needs to repeatedly broadcast the same message. If the sender does not follow this approach the system may start in a configuration in which each honest party believes that it already received the broadcasted message, in this case the right message may never be received by the honest parties.

4.1 Self-stabilized SuRB with Crash Faults

Before describing the protocol we build a link layer abstraction that satisfies some basic properties. The idea is inspired by [8] and can be expanded to a more complex model as described in [10]. This link layer will allow us to bound the convergence time of the protocol.

Link-Layer Definitions:

1. Lost message: a message m that was sent by party P_1 to party P_2 is called a ‘Lost Message’ if m was sent by P_1 but will never be received by P_2.

2. Ghost message: a message m that was sent by party P_1 to party P_2 is called a ‘Ghost Message’ if m was received by P_2 but was never sent by P_1.

8
3. **Duplicated message**: a message m that was sent by party P_1 to party P_2 is called a ‘Duplicated Message’ if m was sent by P_1 and arrived to P_2 more than once.

4. **Reorder Messages**: messages m_1 and m_2 that were sent by party P_1 to party P_2 are called ‘Reordered Messages’ if m_1 was sent by P_1 before m_2 but P_2 received m_2 before m_1.

Definition 6 ($\alpha, \beta, \gamma, \lambda$)-Stabilizing Data-Link. We call a communication abstraction between two parties P_1 and P_2, where P_1 is the sender and P_2 is the receiver, an $(\alpha, \beta, \gamma, \lambda)$-Stabilizing Data-Link if the following condition holds:

1. If P_1 is honest- the sending operation eventually terminates.
2. If P_1 and P_2 are honest then:
 (a) Only the first α messages after the last transient fault may be lost.
 (b) Only the first β messages after the last transient fault may be duplicated.
 (c) Only the first γ messages after the last transient fault may be ghost.
 (d) Only the first λ messages after the last transient fault may be reordered.
3. If P_1 and P_2 are honest and P_1 sends m infinitely many times in a row then P_2 will deliver m infinitely many times.

We show a protocol that provides an $(\infty, 0, 3, 0)$-Stabilizing Data-Link. The protocol ensures that at most three ghost messages will be received following a transient fault. The main idea in the protocol is that a message that has been received $\bar{c} + 1$ times cannot be a ghost message (since there can only be \bar{c} ghost messages in a link following a transient fault). So if the receiver receives a message $\bar{c} + 1$ times it delivers this message. To enable the receiver to receive the sent message $\bar{c} + 1$ times the sender sends each message $\bar{c} + 1$ times. Notice that we do not claim to achieve any reliability at this layer, therefore, no ACK messages are used. An infinite number of messages may still get lost. One last observation that we need to mention is that in [8] it has been proven that there is no protocol that can guarantee zero duplicated messages. Here we claim to achieve such a protocol (with zero duplicated messages). The impossibility result obtains in [8] assuming the duplication occur because of a ghost message. Here we simply count these messages as ghost messages and not as duplicate messages. It is simply a matter of interpretation that does not affect the protocol.

The Link Layer Protocol:

Algorithm 1: The Link-Layer sender pseudocode

Function	Send(msg)
For $i = 0$ to $\bar{c} + 1$ do	
Send msg; /* \bar{c} is the link capacity */	
End.	

Algorithm 1 is the link-layer sender algorithm. The sender simply sends the given message $\bar{c} + 1$ times and returns. **Algorithm 2** is the link-layer receiver Algorithm. The algorithm maintains two variables: $LastMessage$ is the last message the receiver received from the sender, and $Counter$ that counts the number of times the receiver received $LastMessage$. When receiving a message from the sender the receiver checks whether the new message is the same as $LastMessage$, if so it increases the $Counter$ by one and if the $Counter$ reaches $\bar{c} + 1$ it delivers the message, otherwise it sets $LastMessage$ to be the new message and resets the $Counter$ to 1.
Algorithm 2: The Link-Layer receiver pseudocode

```
Data LastMessage, Counter;
On Receiving msg;
    if msg = LastMessage then
        Counter + 1;
        if Counter ≥ \bar{c} + 1 then /* \bar{c} the link capacity */
            deliver msg;
            LastMessage := null;
            Counter := 0;
        else
            LastMessage := msg;
            Counter := 1;
End.
```

Theorem 2. In the fully bounded model, where the bound on any link capacity is \(\bar{c} \), the Link Layer protocol (Algorithm 1, Algorithm 2) satisfies the \((\infty, 0, 3, 0)\)-Stabilizing Data-Link specifications.

Proof.

Claim 1 (Link Layer Claim 1 - Sending termination (condition 1)). If \(P_1 \) is honest then the sending function eventually terminates.

The send function is sending the given message \(\bar{c} + 1 \) times. So eventually it terminates.

Claim 2 (Link Layer Claim 2 - Non-triviality (condition 3)). If \(P_1 \) and \(P_2 \) are honest and \(P_1 \) sends \(m \) infinitely many times in a row then \(P_2 \) will deliver \(m \) infinitely many times.

From the link properties we know that if \(P_1 \) sends \(m \) infinitely many times in a row then \(P_2 \) will receive \(m \) infinitely many times. Which means that \(P_2 \) will see \(m \bar{c} + 1 \) times in a row infinitely many times.

Claim 3 (Link Layer Claim 3 - No duplication (condition 2.b)). Let \(P_1 \) and \(P_2 \) be two honest parties. Assume \(P_1 \) sends \(m \) to \(P_2 \) \(k \) times. \(P_2 \) will deliver \(m \) no more than \(k \) times (unless \(m \) was delivered by \(P_2 \) as a ghost message but this can happen no more than 4 times as we will see later).

If \(P_1 \) sends \(m \) to \(P_2 \) \(k \) times then the message is actually being sent \(m (\bar{c}+1)k \) times. \(P_2 \) delivers \(m \) when it sees it \(\bar{c} + 1 \) times in a row. The communication layer does not duplicate messages so \(P_2 \) will receive \(m \) no more than \((\bar{c}+1)k \) times and will deliver \(m \) no more than \(k \) times.

Claim 4 (Link Layer Claim 4 - No reordering (condition 2.d)). Let \(P_1 \) and \(P_2 \) be two honest parties and let \(m_1 \) and \(m_2 \) be messages sent by \(P_1 \) to \(P_2 \). If \(P_1 \) sends \(m_1 \) before \(m_2 \) then \(P_2 \) will not deliver \(m_2 \) before \(m_1 \).

Assume that \(P_1 \) sends \(m_2 \) after it sends \(m_1 \). Once \(P_1 \) starts sending \(m_2 \), it stops sending \(m_1 \) so when \(P_1 \) starts sending \(m_2 \) there is at most \(\bar{c} m_1 \) messages that may arrive to \(P_2 \) after \(m_2 \). So when \(m_2 \) first arrives to \(P_2 \) there is not enough messages left in the communication link for \(m_1 \) to be delivered by \(P_2 \). So if \(m_1 \) was delivered by \(P_2 \) it must be before \(m_2 \) is delivered.

Claim 5 (Link Layer Claim 5 - At most three ghost messages (condition 2.c)). Let \(P_1 \) and \(P_2 \) be two honest parties and let \(m_i (i = 1,...,4) \) be four messages delivered after the last transient fault by \(P_2 \) (in this order), then \(m_4 \) must be a real message that was sent by \(P_1 \).
First Ghost Message: Because of the transient fault P_2 can start believing that it has to deliver m_1, so m_1 may be fake.

Second Ghost Message: Because of transient fault P_2 can start the run when its LastMessage are set to m_2 and its counter is set to 1 (or higher). Also there could be $\bar{c} m_2$ messages in the communication link. So m_2 may also be fake.

Third Ghost Message: Because of the transient fault P_1 can start the run inside the loop of the send function believing it is sending m_3 and so m_3 may be received by P_2. So the third message may also be fake.

The Fourth message cannot be Fake: Assume m_4 is also fake. That means that P_1 did not send m_4. m_4 must be in the system somehow before it was received by P_2. It is not in the LastMessage variable of P_2 (because it was caught by m_3). So m_4 must arrive from the communication link but in this case there are at most $\bar{c} m_4$ messages that may arrive so m_4 cannot be delivered by P_2. And so m_4 cannot be a fake message.

The self-stabilized SuRB Protocol:

Algorithm 3: p_{sender} pseudo-code, SuRB_broadcast

```
While true do
    Input Message
    Send Message to all parties using the Link-Layer;
End.
```

Algorithm 4: p_i pseudo-code

```
On Receiving from the Link-Layer msg from $p_{sender}$:
    SuRB_deliver(msg).
```

Theorem 3. When assuming an input stream of a single message repeated forever the self-stabilized SuRB protocol (Algorithm 3, Algorithm 4) satisfies the SuRB properties for any number of crash fault.

Proof. We first prove the S2 property of SuRB: If the sender is honest and the input stream contains a single message m repeated forever, then each honest party must have a suffix of delivered messages that contains only m. By the link layer properties, we know that at most three messages could be ghost messages. So from the fourth message on, all the messages delivered by each honest party must be real. p_{sender} is honest so he sends m infinitely many times. The link layer properties imply that eventually each honest party will receive m and only m, which means that eventually each honest party will deliver m and only m. In addition, after each honest party delivered three messages, at the latest, we can be sure that all following messages that will be delivered by every honest party will be m and only m.

We now prove the S1 property. If p_{sender} is honest, from S2 we conclude that eventually each honest party will deliver only the message that has been given to the sender via the input stream and so all honest parties will share a common suffix.
If \(p_{\text{sender}} \) is has crashed (dishonest) then eventually each honest party will stop receiving messages from \(p_{\text{sender}} \) and will stop delivering messages. This means that there is no party that delivers an infinite number of messages and so condition S1 clearly holds, since it considers only the case in which there is an honest party delivering an infinite number of messages.

4.2 Self-Stabilize SuRB Impossibility When Facing a Byzantine Party

In this section we will prove that even when the input stream given to the sender is a stream of a single message repeated forever, it is impossible to achieve the SuRB properties assuming transient faults and a single Byzantine party. The SuRB impossibility proof (Theorem 1) does not directly apply here, since we do not consider all possible inputs, but rather a stream of a single message. We introduce few changes to the definitions we used in the SuRB impossibility proof. Self-stabilization does not require an initial System State and therefore any System State may be the initial System State. Also we need to consider the possibility of transient faults and the maliciousness of one party so now a run may contain the possibility to move from one configuration to another without applying any step. The only way such things may happen is because of transient faults, which cause parties to change their internal states, or because of maliciousness of one party, which also causes it to change its internal state. All the missing proofs appear in the appendix, Section B.1.

Self-Stabilization obligates us to continuously keep delivering messages. If at some point the protocol stops delivering messages then it could be that the run would start at this point and no messages will ever be delivered and there is no way that any party will share a common suffix with the input stream. This leads to the following lemma:

Lemma 4. Assume that the input stream given to \(p_{\text{sender}} \) is a stream of a single message repeated forever. Let \(PR \) be a protocol that satisfies the conditions of the SuRB problem and is resistant to one malicious party. Let \(S = (C, N) \) be an arbitrary System State. For each party \(p' \in P, p' \neq p_{\text{sender}} \), there is always a run \(R \) that starts from \(C \) and is feasible at \(N \) such that \(p' \) takes no steps in \(R \) and each honest party delivers an infinite number of messages.

A transient fault may cause parties to change their internal state illegally, which will cause the System State to change without any step taken. In addition, a Byzantine party is also able to change its internal state illegally, which will also cause the System State to change without any step taken. These observations imply the following lemma:

Lemma 5 (Concatenation of runs using a transient fault or a Byzantine sender). Assume that the input stream given to \(p_{\text{sender}} \) is a stream of a single message repeated forever. Let \(PR \) be a protocol that satisfies the conditions of a SuRB problem and resistant to one Byzantine party. Let \(R_1 = [c_1^{(1)}, s_1^{(1)}, \ldots, c_n^{(1)}] \) and \(R_2 = [c_1^{(2)}, s_1^{(2)}, \ldots, c_n^{(2)}] \) be two runs such that \(c_n^{(1)} \) and \(c_1^{(2)} \) are different only in the internal state of \(p_{\text{sender}} \). Let \(N_1 \) be a network state such that \(R_1 \) is feasible at \(N_1 \) and let \(N_2 \) be the resulting network state of applying \(R_1 \) on \(N_1 \). Assume that \(R_2 \) is feasible at \(N_2 \). If \(p_{\text{sender}} \) is Byzantine or a transient fault causes the last configuration of \(R_1 \) to be the same as the first configuration of \(R_2 \), then we can concatenate \(R_1 \) and \(R_2 \) and receive a new run \(R = [c_1^{(1)}, s_1^{(1)}, c_n^{(1)}, c_1^{(2)}, s_1^{(2)}, \ldots, c_n^{(2)}] \) feasible at \(N_1 \).

Lemma 4 and **Lemma 5** allow us to concatenate an infinite number of runs together and create a run in which each honest party delivers an incremental sequence.
Lemma 6. Assume that the input stream given to \(p_{\text{sender}} \) is a stream of a single message repeated forever. Let \(PR \) be a protocol that satisfies the conditions of the SuRB problem and resistant to one Byzantine party. For each party \(p' \in P, p' \neq p_{\text{sender}}, \) and for each System State \(S = (C, N) \) there is a run \(R \) that starts from \(C \) and is feasible at \(N \) such that \(p' \) takes no steps in \(R \) and each honest party delivers an infinite incremental sequence. Also, the only party that might change its internal state illegally in \(R \) (because of transient fault or maliciousness) is \(p_{\text{sender}} \).

In the proof of Lemma 6 we build a run \(R_{\text{final}} \) that causes every honest party (other than \(p' \)) to deliver an incremental sequence by concatenating an infinite number of runs together. The basic idea is that we can let \(p_{\text{sender}} \) sends some message, say \(m_0 \), repeatedly, until (using condition S2) every honest party delivers that message. Then, using a transient fault, cause \(p_{\text{sender}} \) to start sending a different message, say \(m_1 \), until every honest party delivers a longer suffix of \(m_1 \) than it delivered \(m_0 \) before. Now we can switch back to \(m_0 \) to deliver even a longer suffix. Because in all those runs \(p' \) takes no steps it means that \(p' \) takes no steps in \(R_{\text{final}} \). So \(p' \) clearly assumed to be failed (or Byzantine), since an honest party must start, at some point, taking steps.

The only way we could concatenate those runs is by using transient faults that occasionally change the internal state of the sender. This means that \(R_{\text{final}} \) contains an infinite number of transient faults. But it should not concern us since in the proof below we use \(R_{\text{final}} \) only to construct an adversarial behavior of a Byzantine sender, and we wake up the sleeping party \(p' \).

Theorem 4 (SuRB impossibility assuming a transient fault and a single Byzantine party). Assuming that the input stream is a stream of a single messages repeated forever. In an asynchronous system and fully bounded model, there is no self-stabilizing protocol that solves the SuRB problem in the presence of a single Byzantine party.

Proof outline: Let \(p' \) (\(p' \neq p_{\text{sender}} \)) be a party in \(P \) and let \(S = (C, N) \) be an arbitrary system state. By Lemma 6 we know that there is a run \(R \) that starts in \(C \) and is feasible at \(N \) such that \(p' \) takes no steps in \(R \) and each honest party delivers an infinite incremental sequence of messages.

Let’s look at the sequence \(S_{\text{seq}} = S_1, ..., S_n, ... \) of System States we receive by applying \(R \) on \(N \). Let \(S_{\text{seq}_i} \) be a sequence of System States from \(S_{\text{seq}} \) such that the next step that follows each of the System States of \(S_{\text{seq}_i} \) is that \(p_{\text{sender}} \) reads an input from the input queue. The memory of each party is bounded and the network links are also bounded so there must be a System State that repeats itself infinitely many times during \(S_{\text{seq}_i} \). Let’s call this System State \(S_{\text{inf}} \) and let \(S_{\text{inf-seq}} \) be the sequence of \(S_{\text{inf}} \)’s in \(S_{\text{seq}} \). Notice that all the configurations in \(S_{\text{inf-seq}} \) are the same and the network states are also the same. Let \(seq \) be the sequence of input values used in the construction of the run \(R \) in the proof of Lemma 6.

Now we can continue the same way as Lemma 3 and Theorem 1 (SuRB impossibility in the fully-bounded model) and prove that there is a run \(R_{\text{final}} \) in which there is no common suffix. The only problem is that we compose \(R_{\text{final}} \) from \(R \) and in \(R \) there is an infinite number of transient faults, which means that \(R_{\text{final}} \) does not necessarily contain a common suffix. Looking at the proofs of Lemma 3 and Theorem 1 we will notice that during the proof we woke up the sleepy party, which means that now we can assume that the “illegal” changes in the internal state of \(p_{\text{sender}} \) is because of maliciousness and not because of transient faults, i.e., the Byzantine sender invents these values (\(seq \)) whenever a value needs to be read to produce \(R \). Now \(R_{\text{final}} \) contains no transient faults, which means that it must contain a common suffix but it actually doesn't. □
5 Discussion of the Impossibility Results

The SuRB impossibility shows that self-stabilization has serious limitations even in the fully bounded model. It surfaces the main difference between Byzantine behavior and weaker fault models. It shows that there is no general technique that can take a Byzantine tolerant distributed protocol and stabilize it. Asynchrony, Byzantine and self-stabilization are necessary to prove the impossibility result and without any one of them the problem is solvable.

The SuRB problem does not require honest parties to deliver an infinite sequence of messages if the sender is faulty. Hypothetically, someone may find a protocol that satisfies the conditions and stop delivering messages at some point. The self-stabilizing SuRB impossibility result shows that no such protocol exists. Notice that the requirement that each honest party will deliver an infinite sequence of messages does not come from the problem definition but from the system model. This is why the self-stabilizing SuRB impossibility result is more surprising than the impossibility result of the repeated Reliable Broadcast. In the Reliable Broadcast problem we can intuitively understand that we cannot save the delivered sequence forever, while in the self-stabilized SuRB problem with transient faults we only have to agree on one message. Our proof shows that we cannot agree on a single message when we consider asynchrony, self-stabilization, and Byzantine concurrently.

In [2], a “practically” self-stabilizing Paxos with crashed faults is introduced. It looks like this result contradicts the impossibility result of the SuRB problem. Our result actually reinforces the protocol presented in [2]. [2] doesn’t solve a regular self-stabilization, but rather requires stabilized run to last only long enough for any concrete system’s time-scale. A run is divided into epochs. Each epoch is a stabilized run. When an epoch terminates, the history is cleared and a “blank” history is started.

In this article we showed that when considering the case in which the sender sends a single repeated message the SuRB problem is solvable considering transient and crash faults. Also we showed that the problem is not solvable considering all possible input sequences. It is interesting to understand what are the minimal assumptions about the input sequence in which the problem is solvable. We leave it open to draw the line that will turn the problem to be solvable.

References

[1] Ittai Abraham, Yonatan Amit, and Danny Dolev. Principles of Distributed Systems: 8th International Conference, OPODIS 2004, Grenoble, France, December 15-17, 2004, Revised Selected Papers, chapter Optimal Resilience Asynchronous Approximate Agreement, pages 229–239. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[2] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, and Sylvie Delaët. Self-stabilizing paxos. CoRR, abs/1305.4263, 2013.

[3] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC ’93, pages 42–51, 1993.

[4] Jo-Mei Chang and N. F. Maxemchuk. Reliable broadcast protocols. ACM Trans. Comput. Syst., 2(3):251–273, August 1984.
[5] Carole Delporte-Gallet, Stphane Devismes, Hugues Fauconnier, Franck Petit, and Sam Toueg. With finite memory consensus is easier than reliable broadcast. In Theodore Baker, Alain Bui, and Sbastien Tixeuil, editors, Principles of Distributed Systems, volume 5401 of Lecture Notes in Computer Science, pages 41–57. Springer Berlin Heidelberg, 2008.

[6] D. Dolev and N. Shavit. Bounded concurrent time-stamp systems are constructible. In Proceedings of the Twenty-first Annual ACM Symposium on Theory of Computing, STOC ’89, pages 454–466, 1989.

[7] Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SIAM Journal on Computing, 26(2):418–455, 1997.

[8] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, and Sébastien Tixeuil. Stabilizing data-link over non-fifo channels with optimal fault-resilience. CoRR, abs/1011.3632, 2010.

[9] Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, and Elad M. Schiller. Stabilization, Safety, and Security of Distributed Systems: 17th International Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Proceedings, chapter Self-stabilizing Virtual Synchrony, pages 248–264. Springer International Publishing, Cham, 2015.

[10] Shlomi Dolev, Ariel Hanemann, Elad Michael Schiller, and Shantanu Sharma. Self-stabilizing end-to-end communication in (bounded capacity, omitting, duplicating and non-fifo) dynamic networks. In AndraW. Richa and Christian Scheideler, editors, Stabilization, Safety, and Security of Distributed Systems, volume 7596 of Lecture Notes in Computer Science, pages 133–147. Springer Berlin Heidelberg, 2012.

[11] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Self-stabilization of dynamic systems assuming only read/write atomicity. Distributed Computing, 7(1):3–16.

[12] Shlomi Dolev, Ronen I. Kat, and Elad M. Schiller. When consensus meets self-stabilization. Journal of Computer and System Sciences, 76(8):884 – 900, 2010.

[13] Cynthia Dwork and Orli Waarts. Simple and efficient bounded concurrent timestamping and the traceable use abstraction. J. ACM, 46(5):633–666, September 1999.

[14] Martin J. Erickson. Introduction to Combinatorics. Wiley Series in Discrete Mathematics and Optimization. Wiley, 2013.

[15] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty processor. Journal of the ACM, 32(2):374–382, 1985.

[16] Ajei Gopal and Sam Toueg. Reliable broadcast in synchronous and asynchronous environments (preliminary version). In Jean-Claude Bermond and Michel Raynal, editors, Distributed Algorithms, volume 392 of Lecture Notes in Computer Science, pages 110–123. Springer Berlin Heidelberg, 1989.

[17] Mohamed G. Gouda and Nicholas J. Multari. Stabilizing communication protocols. Computers, IEEE Transactions on, 40(4):448–458, Apr 1991.
[18] Leslie Lamport. Byzantizing paxos by refinement. In David Peleg, editor, Distributed Computing: 25th International Symposium, DISC 2011, Rome, Italy, September 20-22, 2011. Proceedings, pages 211–224, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[19] Michel Raynal. Communication and agreement abstractions for fault-tolerant asynchronous distributed systems. Synthesis lectures on distributed computing theory. Morgan & Claypool Publishers, San Rafael, Calif., 2010.

[20] Aleta Ricciardi. Impossibility of (repeated) reliable broadcast. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Computing, PODC ’96, pages 342–, 1996.
Appendix

A SuRB Impossibilities

A.1 SuRB Impossibility with Unbounded Lossless links

Lemma 7. Let \(R \) be a run and let \(S_1 = (c, N_1), S_2 = (c, N_2) \) be two System State such that \(R \) is feasible at \(S_1 \) and at \(S_2 \). Assume that after applying \(R \) on \(S_1 \) we reach System State \(S'_1 = (c', N'_1) \) and after applying \(R \) on \(S_2 \) we reach System State \(S'_2 = (c'_2, N'_2) \). Assume that for some \(i, j \), \(N_1[i, j] = k_1 \) and \(N'_1[i, j] = k_1 + t_1 \) (the \(i, j \) location of \(N_1 \) changes by \(t_1 \) after applying \(R \) on \(S_1 \), \(t_1 \) can be negative). Assume that \(N_2[i, j] = k_2 \) and \(N'_2[i, j] = k_2 + t_2 \) (the \(i, j \) location of \(N_2 \) changes by \(t_2 \) after applying \(R \) on \(S_2 \), \(t_2 \) can be negative). It must be that \(t_1 = t_2 \).

Proof. The run \(R \) added and removed the same number of message \(m_i \) from link \(j \) so after applying it on \(S_2 \) and on \(S_1 \) the difference of the number of \(m_i \) messages on link \(j \) must be the same. \(\square \)

Lemma 8. Let \(N \) be some network state. Let \(R \) be a partial run. Assume that \(R \) is feasible at \(N \) and let \(N_1 = NR \). Assume that \(N \leq N_1 \). \(R \) is feasible at \(N_1 \) and \(N_2 = N_1R \) satisfies \(N_1 \leq N_2 \).

Proof. Since \(N \leq N_1 \) it is clear that \(R \) is feasible at \(N_1 \). All that is left to show is that \(N_1 \leq N_2 \). For each \(i, j \) there is a \(k \geq 0 \) such that after applying \(R \) on \(N \) the \((i, j) \) cell of \(N \) changes by \(k \) (\(k \) is greater than or equal to zero because \(N \leq N_1 \)). So we conclude that \(N_1[i, j] = N[i, j] + k \). Now when applying \(R \) on \(N_1 \), by Lemma 7 the \((i, j) \) cell of \(N_1 \) changes by \(k \), so \(N_2[i, j] = N_1[i, j] + k \). And this is true for each valid \((i, j) \) so it must be that \(N_1 \leq N_2 \). \(\square \)

Lemma 9. Let \(S \) be a Set of network matrices along with the binary relation ‘\(\leq \)’ as defined above. \(S \) is a partial ordered set.

Proof. In order to show that \(S \) is a partial order set we need to prove three properties: reflexivity, antisymmetry, transitivity.

Reflexivity: let \(a \) be a network matrix. It is clear that each cell in \(a \) is less than or equal to itself and so \(a \leq a \).

Antisymmetry: let \(a, b \) be two network matrices. Assume that \(a \leq b \) and \(b \leq a \). It is clear the \(a[i, j] \leq b[i, j] \) and \(b[i, j] \leq a[i, j] \) for each valid \(i \) and \(j \) (\(i \) and \(j \) that do not exceed the matrix size). So it is clear that for each such \(i \) and \(j \), it holds that \(a[i, j] = b[i, j] \) so it is clear that \(a = b \).

Transitivity: let \(a, b, c \) be three network matrices such that \(a \leq b \) and \(b \leq c \). It is clear the \(a[i, j] \leq b[i, j] \) and \(b[i, j] \leq a[i, j] \) for each valid \(i \) and \(j \) (\(i \) and \(j \) that do not exceed the matrix size). So it is clear that for each such \(i \) and \(j \), it holds that \(a[i, j] \leq c[i, j] \) and so \(a \leq c \). \(\square \)

Lemma 10 (Dilworth’s lemma (infinite version [14] section 3.5)). A partial order set with infinite number of elements must have an infinite Chain or an infinite Antichain.

Lemma 1. [repeated - Dilworth’s lemma for sequences (infinite version)] A Partial Ordered Sequence with infinite number of elements must have an infinite Chain or an infinite Antichain.
Proof. Let S be an infinite Partial Ordered Sequence with the binary relation ‘\leq’. We will build a set S' of tuples (n, a) in the following way: for each $i > 0$ let a be the i-th element in S. Add to S' the element (i, a). We define the binary relation ‘\leq’ on S' in the following way: let $a = (i, a'), b = (j, b')$ be two elements in S', $a \leq b$ iff $i \leq j$ and $a' \leq b'$. First we will show that S' along with the binary relation ‘\leq’ is a partial order set.

Reflexivity: let $a = (i, a')$ be an element in S'. It is clear that $i \leq i$ and since S is a partial order it is also clear that $a' \leq a'$ so it is clear that $a \leq a$.

Antisymmetry: let $a = (i, a'), b = (j, b')$ be two elements in S'. Assume that $a \leq b$ and $b \leq a$. So it is clear that $i \leq j$ and $j \leq i$ so $i = j$. It is also clear that $a' \leq b'$ and $b' \leq a'$ so $a' = b'$. So we conclude that $a = b$.

Transitivity: let $a = (i, a'), b = (j, b'), c = (t, c')$ be three elements in S'. Assume that $a \leq b$ and $b \leq c$. So it is clear that $i \leq j$ and $j \leq t$ so $i \leq t$. It is also clear that $a' \leq b'$ and $b' \leq c'$ so $a' \leq c'$. So we conclude that $a \leq c$.

Now by Lemma 10 we get that S' contains an infinite Chain or an infinite Antichain. Assume that S' contains an infinite Chain. Let $S'' = (i_1, a_1), ..., (i_l, a_l), ...$ be that chain. Let’s order S'' by the i-th entry of each tuple and get only the a's entries. We receive a Chain in S. We can do the same on an Antichain and receive an Antichain in S.

□

Lemma 11 (An infinite Antichain Inexistence). Let S be an infinite sequence of network matrices along with the binary relation ‘\leq’ as defined above. S does not contain an infinite Antichain.

Proof. We will prove the lemma by induction on the network matrix size. We can map the network matrices to vectors such that each cell of the network matrix is mapped to a cell on this vector. Vector a is greater than or equal to vector b iff its corresponding matrix, a', is greater than or equal to the corresponding matrix of b.

Assume that S contains an infinite Antichain. This means that there is an infinite sequence of elements from S such that each two distinct elements in this sequence are incomparable. Call this sequence S'.

We prove the lemma by induction of the vector length. First, assume that the vector size is 1 (i.e., Network matrix of size 1×1). Since network matrix entries are non-negative natural number, it is clear that there is no infinite Antichain, S'.

Now assume correctness for vectors of size n and prove it on vectors of size $n + 1$. Assume to the contrary that such S' exists. Let’s look first only at the first n cells of all vectors in S' (the infinite Antichain). From the inductive hypothesis we know that when considering only those n cells, there is no infinite Antichain. By Lemma 1, we know that each infinite Partial Ordered Sequence must contain an infinite Chain or an infinite Antichain. Since looking at the first n cells we do not get an infinite Antichain, there is an infinite Chain S'' such that when looking only at the first n cells of the elements in S'' we get a totally ordered sequence (remember that S'' is a sequence of elements from S' and S'' is infinite). Now look at the $n + 1$-st cell of the elements of S''. Call the element with the minimum value in the $n + 1$ cell $\text{min}_{\text{element}}$. The element that appears in S'' right after $\text{min}_{\text{element}}$ must be greater or equal $\text{min}_{\text{element}}$ in the $n + 1$-st cell and in the other n cells. This way we actually find two comparable elements in S' which implies that S' is not an infinite Antichain.

□
Lemma 2. [repeated] Let S be an infinite sequence of network matrices. S must contain an infinite Chain.

Proof. By Lemma 1 we conclude that S must contain an infinite Chain or an infinite Antichain. By Lemma 11 we conclude that S does not contain an infinite Antichain, so S must contain an infinite Chain.

Lemma 12. Let $S = (c, N)$ be some configuration and let R_1 and R_2 be two partial runs feasible at S. Assume that the initial and final internal configurations of both R_1 and R_2 are the same and equal c. Assume that R_2 is feasible at NR_1 and R_1 is feasible at NR_2. Then $NR_1 R_2 = NR_2 R_1$.

Proof. We assumed that R_1 and R_2 ended in the same system internal state so $NR_1 R_2$ and $NR_2 R_1$ system internal states are the same and equal c. All that is left to show is that the network matrices are the same. Let $N[i, j]$ be the value of the i, j cell of N. Let N_1 be the resulting network matrix of applying R_1 on C. There is a value k such that $N_1[i, j] = N[i, j] + k$ (k could be negative).

Let N_2 be the network matrix of $N_1 R_2$. There exists a value d such that $N_2[i, j] = N_1[i, j] + d = N[i, j] + k + d$ ($k + d$ could be negative). Let N_3 be the resulting network matrix of applying R_2 on C. By Lemma 7 R_2 changes the i, j cell of N by d so $N_3[i, j] = N[i, j] + d$. Let N_4 be the network matrix of $N_3 R_1$. By Lemma 7 R_1 changes the i, j cell of N_3 by k so $N_4[i, j] = N_3[i, j] + k = N[i, j] + d + k$. This is true for each valid i, j so $N_4 = N_2$.

Definition 7. Let Seq be a sequence of elements and let q be a natural number. $qSeq$ is a sequence of concatenating Seq to itself q times.

Lemma 13 (The Common Divider Lemma). Let a_1 and a_2 be two non-empty sequences such that the size of a_2 is greater than the size of a_1. Let’s look at two compositions of a_1 and a_2, $b_1 = a_1 + a_1 + a_2$ and $b_2 = a_1 + a_2 + a_1$. $b_1 = b_2$ iff there exists a sequence S of size less than or equal the size of a_1 and two natural numbers $n, r > 0$ such that $a_1 = nS$ and $a_2 = rS$, we call S the common divider.

Proof. If $a_1 = nS$ and $a_2 = rS$ then $b_1 = a_1 + a_1 + a_2 = (2n + r)S$ and $b_2 = a_1 + a_2 + a_1 = (2n + r)S$ so $b_1 = b_2$. Now assume that $b_1 = b_2$. Sequences b_1 and b_2 are the same iff $a_1 + a_2$ is the same as $a_2 + a_1$. We will show that for this to happened there must be a sequence, S, and two natural number n, r such that $a_1 = nS$ and $a_2 = rS$. We will use recursion. We first assume that the size of a_1 is 1 and it equals x. If there is no natural number $n > 1$ such that $a_2 = nx$ then there must be a location, i, in $a_2 + a_1$ such that the value in i is not x and the value in $i + 1$ is x, in $a_1 + a_2$ this location moves one index foreword, so the value in the location $i + 1$ of $a_1 + a_2$ and $a_2 + a_1$ is not the same and so the sequences are not the same. Let $u < v$ be two numbers. Assume that for each i, j such that $i < u, j < v, i < j$ and the size of a_1 and a_2 is i and j respectively, $a_1 + a_2$ is the same as $a_2 + a_1$ if there is a sequence, S, and two natural number n, r such that $a_1 = nS$ and $a_2 = rS$. We will prove the same result for a_1 of size u and a_2 of size v. Let $a_2[0 : u]$ be a sub-sequence of a_2 that starts at position 0 and ends at position u, it must be that $a_1 = a_2[0 : u]$. Now for $a_1 + a_2$ to be the same as $a_2 + a_1$, $a_2[u : 2u]$ must be the same as $a_2[0 : u]$ which equals a_1. We can repeatedly continue until we reach the end of a_2, if a_1 fits exactly to a_2 we are done, otherwise there must be $z < u$ such that $a_2[v - z, v] + a_1[0, u - z] = a_1$ (notice that in such case there exists q such that $a_2 = qa_1 + a_2[v - z, v]$, see figure 1). But we also know that $a_1[u - z, u] = a_2[v - z, v]$. So we know
that there exits z such that $a_1 = a_1[0 : u - z] + a_1[u - z : u] = a_1[u - z : u] + a_1[0 : u - z]$ but by
induction we know that for this to be true there must be a sequence S and two natural numbers
l, h such that $a_1[u - z : u] = lS$ and $a_1[0 : u - z] = hS$. So we conclude that $a_1 = (l + h)S$ and
$a_2 = (q(l + h))S + lS = (q(l + h) + l)S$ and we are done.

Lemma 14. Let S be an incremental sequence of messages. Let $S[i, j]$ be a sub-sequence of S
that starts at position i and ends at position j. There exists $t > j$ such for each $r > t$ there are
no natural numbers $n, k > 0$ for which there exists a sequence Seq such that $S[i, j] = nSeq$ and
$S[j, r] = kSeq$ i.e., there is no common divider.

Proof. Let’s look at some i, j such that $i < j$. Assume that $S[i, j]$ contains only zeros. Since S
is an incremental sequence of messages, there must be a subsequence of S, S', that contains only
ones and appears in S at position x after j. For each $x' > x$ there is no natural numbers $n, k > 0$
for which there exists a sequence Seq such that $S[i, j] = nSeq$ and $S[j, x'] = kSeq$. The proof for the
case in which $S[i, j]$ contains only ones is the same. Now if $S[i, j]$ contains also ones and zeros.
Since S is an incremental sequence of messages then there must be a subsequence of S, S', of
size greater then $2(j - i)$ that contains only ones and appears in S at position x after j. Let x' be a
position in S in which S' already finished. For each $x'' > x'$ there is no natural numbers $n, k > 0$
for which there exists a sequence Seq such that $S[i, j] = nSeq$ and $S[j, x'] = kSeq$ because $S[j, x'']$
contains a subsequence, S_{sub}, of size greater than $2(j - i)$ that contains only ones. For Seq to
exists, S_{sub} must contain it but $S[i, j]$ contains ones and zeros and S_{sub} contains only ones. So if
S_{sub} contains Seq it cannot be that $S[i, j]$ also contains it.
Definition 8 (Legal System State). Let \(PR \) be a protocol. Let \(S \) be a System State. We say that \(S \) is a legal System State (or reachable system state) if there is a partial run \(R \) that starts from the initial configuration of \(PR \), feasible at the initial network state of \(PR \) and ends in \(S \).

Lemma 3. [repeated] Let \(PR \) be a protocol that satisfies the SuRB properties even when one party is prone to crash. Let \(S = (C_S, N_S) \) be a reachable System State. There is a partial run \(R \) of \(PR \) such that \(R \) starts from \(C_S \), feasible at \(N_S \) and in \(R \) there are two honest parties who do not deliver the same sequence of messages.

Proof. First, we know that there is a run that starts from the initial configuration and reached \(S \). Assume that when we reach \(S \) the input sequence, \(M \), of \(p_{sender} \) is an infinite incremental sequence of messages. Let \(R_S \) be the run that starts at \(C_S \), feasible at \(N_S \) and causes each party (except one party, \(p' \neq p_{sender} \), that takes no steps in \(R \), crashed) to deliver \(M \). We know that \(R_S \) exists because \(S \) is legal System State so there must be a run feasible at \(S \) satisfying the SuRB conditions even when one party may crash and the input sequence of \(p_{sender} \) is \(M \).

Let \(C_{R_S} \) be a sequence of the System States obtained by applying \(R_S \) on \(N_S \). Let \(CR \) be a sequence of System States from \(C_{R_S} \) such that the next step that follows each of those System States is that \(p_{sender} \) reads a value from the external input queue. \(CR \) contains an infinite number of configurations. We know that the memory of each party is bounded so there must be at least one configuration that repeats itself infinitely many times during \(CR \), let’s call it \(C_{repeated} \). Let \(CR_{repeated} \) be the sequence that contains all System States of \(CR \) that their configuration equals \(C_{repeated} \). Let’s look at the sequence of network matrices appearing in \(CR_{repeated} \), by Lemma 2 we know that this sequence contains an infinite Chain. Let \(CR_{repeated-chain} \) be the sequence of elements from \(CR_{repeated} \) that composes the infinite Chain. \(CR_{repeated-chain} \) is a sequence of the form \((C_{repeated}, N_1), \ldots, (C_{repeated}, N_n), \ldots \) such that for each \(i < j \), \(N_i \leq N_j \).

Let \(S_{inf-1} = (C_{repeated-1}, N_1) \) (i.e., \(S_{inf-1} \) is the first System State in \(CR_{repeated-chain} \)). Let \(x_1 \) be an index of a message \(m_1 \) that is about to be read by \(p_{sender} \) after \(S_{inf-1} \). Let \(S_{inf-2} = (C_{repeated-2}, N_2) \) be the second System State in \(CR_{repeated-chain} \) and let \(x_2 \) be an index of a message \(m_2 \) that is about to be read by \(p_{sender} \) after \(C_{inf-2} \). Let \(x_3 \) be an index of messages in \(m_3 \) such that the size of \(M[x_1, x_2] \) is less than the size of \(M[x_2, x_3] \). By Lemma 14, we know that there is an index \(x_4 \) such that for each index \(x_5 > x_4 \) the sub-sequences \(M[x_1, x_2] \) and \(M[x_2, x_5] \) do not share a common divider. Let \(S_{inf-3} = (C_{repeated-3}, N_3) \) be the System State in \(CR_{repeated-chain} \) in which \(p_{sender} \) already received the message in position \(Max(x_3, x_4) \) as input.

Notice that by the construction of \(CR_{repeated-chain} \), the configurations of \(S_{inf-1}, S_{inf-2}, S_{inf-3} \) are the same and the network matrix of \(S_{inf-3} \) is greater than or equal to the network matrix of \(S_{inf-2} \), which is also greater than or equal to the network matrix of \(S_{inf-1} \).

Let’s now separate \(R \) to four runs. The first, \(R_1 \), starts at \(C_S \), feasible at \(N_S \) and ends in \(C_{repeated-1} \). The second, \(R_2 \), starts at \(C_{repeated-1} \), feasible at \(N_2 \) and ends in \(C_{repeated-2} \), the third, \(R_3 \), starts at \(C_{repeated-2} \), feasible at \(N_2 \) and ends in \(C_{repeated-3} \) and the last, \(R_4 \), starts at \(C_{repeated-3} \), feasible at \(N_3 \) and continues infinitely with some legal run.

By Lemma 8 and the fact that the network matrices are increasing, after reaching \(S_{inf-2} \) we can run \(R_2 \) again, reaching a new System State \(S_{inf-2-1} \) such that the network matrix of \(S_{inf-2} \) is less than or equal to the network matrix of \(S_{inf-2-1} \). Now we can run \(R_3 \), reaching a new System State \(S_{inf-3-1} \). To sum up we constructed a new partial run \(R_5 = R_1 + R_2 + R_2 + R_3 \) feasible at \(N_S \).
By Lemma 8 and the fact that the network matrices are increasing, after reaching S_{inf-3} we can run R_2 again and reach a new System State $S_{inf-3-2}$ such that the network matrix of S_{inf-3} is less than or equal to the network matrix of $S_{inf-3-2}$. To sum up we construct a new partial run $R_6 = R_1 + R_2 + R_3 + R_2$ feasible at N_S.

Let M_5, M_6 be the sequence of messages delivered by applying R_5, R_6 on N_S respectively. By Lemma 12 we conclude that both R_5 and R_6 ends in the same System State after applying them on N_S so $S_{inf-3-2} = S_{inf-3-1}$. Now if p' wakes up in $S_{inf-3-1}$ (or $S_{inf-3-2}$) it cannot distinguish between R_5 and R_6. There is a scenario in which p' delivers M_5 while all other parties deliver M_6 and there is a scenario in which p' delivers M_6 while all other parties deliver M_5. So it is enough to show that M_5 and M_6 are different. Let M_{R_2} be the sequence given to p_{sender} in R_2 and let M_{R_3} be the sequence given to p_{sender} in R_3. For M_5 and M_6 to be the same, $M_{R_2} + M_{R_2} + M_{R_3}$ must be the same as $M_{R_2} + M_{R_3} + M_{R_3}$ (notice that by construction of R_2 and R_3, the size of M_{R_2} is less than the size of M_{R_3}). By Lemma 13 we know that for $M_{R_2} + M_{R_2} + M_{R_3}$ to be the same as $M_{R_2} + M_{R_3} + M_{R_2}$, those two sequences must share a common divider. But we constructed those two sequences such that this scenario will not happen and so M_5 and M_6 must be different. □

A.2 SuRB Impossibility with Bounded links

The proof of Theorem 1 uses only Lemma 3, therefore in order to prove the impossibility result, it is enough to show that Lemma 3 holds when links are bounded.

Lemma 15. Let M be an infinite incremental sequence of messages. For each index x_1 there are two sub-sequences of M, $M_{0,t-repeated}$ and $M_{1,t-repeated}$, such that the first time those sequences appear in M is after x_1.

Proof. Because M is an infinite incremental sequence of messages we can assume that there is an infinite increasing sequence $L = ℓ_1, ℓ_2, ...$ such that $M_{0,t-repeated}$ appears in M for each $ℓ ∈ L$ and there is an infinite increasing sequence $T = t_1, t_2, ...$ such that $M_{1,t-repeated}$ appears in M for each $t ∈ T$. There is only a finite number of messages that appear before x_1 so there is a finite number of $ℓ ∈ L$ such that $M_{0,t-repeated}$ starts before x_1 and so we can always find $ℓ ∈ L$ such that the first time that $M_{0,t-repeated}$ appears in M is after x_1. Also there is a finite number of $t ∈ T$ such that $M_{1,t-repeated}$ starts before x_1 and so we can always find $t ∈ T$ such that the first time that $M_{1,t-repeated}$ appears in M is after x_1. □

The following lemma is a general claim about sequences. These sequences may not reflect any possible run. When it is used later we will make sure that the sequences belong to feasible runs.

Lemma 16. Let M be an infinite sequence of messages. Let M' be the same sequence as M without M_{sub}, then M is different from M'.

Proof. Let x be the index in M at which M_{sub} ends. We know that there is a sub-sequence of M, $m_{i,t-repeated}$, that appears in M for the first time after x (Lemma 15). Let x_1 be the index at which $M_{i,t-repeated}$ first appears in M. In M' we delete the sequence M_{sub} which comes before $M_{i,t-repeated}$ and is not empty, so the first time $M_{i,t-repeated}$ appears in M' must be before it appears in M.

22
Let x_2 be the index in M' at which $M_{i,\ell-repeated}$ first appears in M' (remember that by definition $M_{i,\ell-repeated}$ contains only messages m_i). There must be an index x_3 such that $x_2 \leq x_3 \leq x_2 + \ell$ such that the value of M at x_3 is not m_i, otherwise, the first time the sequence $M_{i,\ell-repeated}$ appears in M is at x_2, where $x_2 < x_1$, but we assumed that the first time $M_{i,\ell-repeated}$ appears in M is at x_1 so we reach a contradiction. So there must be an index x_3 such that the value of M in this index is different from the value of M' at this index and so it must be that M is different from M'.

Lemma 3. Let PR be a protocol that satisfies the SuRB properties even when one party is prone to crash. Let $S = (C_S, N_S)$ be a reachable System State. There is a partial run R of PR such that R starts from C_S, feasible at N_S and in R there are two honest parties who do not deliver the same sequence of messages.

Proof. First, we know that there is a run that starts from the initial configuration and reached S. Assuming that when we reach S the input sequence, M, of p_{sender} is an infinite incremental sequence of messages. Let R_S be the run that starts at C_S, feasible at N_S and causes each party (except one party, $p' \neq p_{sender}$, that takes no steps in R, crashed) to deliver M. We know that R_S exists because S is legal System State so there must be a run feasible at S satisfying the SuRB conditions even when one party may crash and the input sequence of p_{sender} is M. Let C_{RS} be a sequence of the System States obtained by applying R_S on N_S. Let CR be a sequence of System States from C_{RS} such that the next step that follows each of those System States is that p_{sender} reads a value from the input queue. CR contains an infinite number of system states. We know that the memory of each party is bounded and so is the links, so there must be at least one system state that repeats itself infinitely many times during CR, let’s call it $S_{inf} = (C_{inf}, N_{inf})$.

Let $S_{inf^{-1}} = (C_{inf^{-1}}, N_{inf^{-1}})$ be the first time S_{inf} appears in R_S. Let x_1 be an index of a message, m_0, in M such that in $S_{inf^{-1}}, p_{sender}$ didn’t already read m_0. From Lemma 15 we know that there exists $\ell > 0$ and a sequence $M_{0,\ell-repeated}$ in M such that the first time that $m_{0,\ell-repeated}$ appears in M is after x_1. Let S_1 be a system state in R_S in which p_{sender} already read all the messages in $M_{0,\ell-repeated}$ and let $S_{inf^{-2}} = (C_{inf^{-2}}, N_{inf^{-2}})$ be the first time S_{inf} appears in R_S
Let x_2 be an index of a message, m_1, in M such that in $S_{\text{inf}-2}$, p_{sender} already read m_1. From Lemma 15 we know that there exists $t > 0$ and a sequence $M_{1,t}$ repeated in M such that the first time that $M_{1,t}$ repeated appears in $S_{\text{inf}-2}$ is after x_2. Let $S_2 = (C_2, N_2)$ be a system state in R_S in which p_{sender} already read all the messages in $M_{1,t}$ repeated (see Figure 2).

Let’s now separate R to four runs. The first, R_1, starts at C_S, feasible at N_S and ends in $C_{\text{inf}-1}$. The second, R_2, starts at $C_{\text{inf}-1}$, feasible at N_2 and ends in $C_{\text{inf}-2}$, the third, R_3, starts at $C_{\text{inf}-2}$, feasible at N_2 and ends in C_2 and the last, R_4, starts at C_2, feasible at N_3 and continues infinitely as R_S.

Now we can concatenate R_1, R_3, R_4 and receive R_5 feasible at N_S such that in N_SR_5, p does not deliver the sequence of messages that it delivered during R_2 which is not empty (see Figure 3).

Now let’s cut R and R_5 in configuration C_2 and receive two new partial runs such that p' is honest and does not take steps until we reach configuration C_2. We call those partial runs R_6 and R_7, respectively (see Figure 4).

Let M_5, M_6 be the sequence of messages that p delivers in N_SR_5, N_SR, respectively. Let M_{R_2} be the sequence of messages that p delivers during R_2. Now if p' wakes up in S_2 it cannot distinguish between R_5 and R. There is a scenario in which p' delivers M_5 while all other parties deliver M_6 and there is a scenario in which p' delivers M_6 while all other parties deliver M_5. So it is enough to show that M_5 and M_6 are different. From Lemma 16 we know that those to sequences must be different so we are done.

B Self-Stabilize Reliable Broadcast

B.1 Self-Stabilize SuRB Impossibility with a Single Byzantine Party

Lemma 17. Assume that the input stream given to p_{sender} is a stream of a single message repeated forever. Let PR be a protocol that satisfies the conditions of the SuRB problem and is resistant to one Byzantine party. Let $S = (C, N)$ be an arbitrary System State. For each party $p' \in P$, $p' \neq p_{\text{sender}}$, there is a run R that starts at C and is feasible at N such that p' takes no steps and each honest party delivers a new message.
Proof. Assume that \(p' \) is Byzantine and takes no steps at all. \(PR \) is tolerant to one Byzantine party so it must satisfy the SuRB conditions even when \(p' \) takes no steps (\(p' \) might be Byzantine). Assume that there exists a System State \(S = (C, N) \) such that for each run \(R \) that starts at \(C \) and is feasible at \(N \) there is a party \(p \) that does not deliver a new message. This contradicts condition 2 of SuRB, because each honest party must have a suffix of delivered messages that contains only the input of \(p_{sender} \), the run may start at \(S \) and so \(p \) will not deliver any messages at all in particular \(p \) will not deliver the message sent by \(p_{sender} \). So from any System State \(S \) there is always a run \(R \) such that \(p' \) takes no steps in \(R \) and each honest party delivers a new message. \(\square \)

Lemma 4. [repeated] Assume that the input stream given to \(p_{sender} \) is a stream of a single message repeated forever. Let \(PR \) be a protocol that satisfies the conditions of the SuRB problem and is resistant to one malicious party. Let \(S = (C, N) \) be an arbitrary System State. For each party \(p' \in P, p' \neq p_{sender} \), there is always a run \(R \) that starts from \(C \) and is feasible at \(N \) such that \(p' \) takes no steps in \(R \) and each honest party delivers an infinite number of messages.

Proof. This is a direct result of Lemma 17. Let \(S = (C, N) \) be an arbitrary System State. We know that there is a run \(R_1 \) that starts at \(C \) and is feasible at \(N \) which causes each honest party to deliver a new message and \(p' \) takes no steps in \(R_1 \). Let \(C_{R_1} \) be the configuration in \(R_1 \) in which each honest party already delivered a new message and let \(N_{R_1} \) be the corresponding network state. Again from Lemma 17 we know that there is a run \(R_2 \) that starts in \(C_{R_1} \) and is feasible at \(N_{R_1} \) which causes each honest party to deliver a new message and \(p' \) takes no steps in \(R_2 \). Let \(C_{R_2} \) be the configuration in \(R_2 \) in which each honest party already delivered a new message and let \(N_{R_2} \) be the corresponding network state. We can now repeat the same arguments over and over again and receive \(R_3, ..., R_n, ... \). So we have an infinite sequence of runs such that each honest party delivers at least one new message in each run and each run starts with the same configuration in which the last run ended. In addition for each \(i \) the network state reached by applying \(R_i \) on \(N_i \) is \(N_{i+1} \). We can now concatenate all these runs and receive a new run that starts at \(C \) and is feasible at \(N \) in which each honest party delivers an infinite number of messages and \(p' \) takes no steps in it. \(\square \)

Lemma 5. [repeated] Assume that the input stream given to \(p_{sender} \) is a stream of a single message repeated forever. Let \(PR \) be a protocol that satisfies the conditions of a SuRB problem and resistant to one Byzantine party. Let \(R_1 = [c_1^{(1)}, s_1^{(1)}, ..., c_n^{(1)}] \) and \(R_2 = [c_1^{(2)}, s_1^{(2)}, ..., c_n^{(2)}] \) be two runs such that \(c_1^{(1)} \) and \(c_1^{(2)} \) are different only in the internal state of \(p_{sender} \). Let \(N_1 \) be a network state such that \(R_1 \) is feasible at \(N_1 \) and let \(N_2 \) be the resulting network state of applying \(R_1 \) on \(N_1 \). Assume that \(R_2 \) is feasible at \(N_2 \). If \(p_{sender} \) is Byzantine or a transient fault causes the last configuration of \(R_1 \) to be the same as the first configuration of \(R_2 \), then we can concatenate \(R_1 \) and \(R_2 \) and receive a new run \(R = [c_1^{(1)}, s_1^{(1)}, ..., c_n^{(1)}, c_1^{(2)}, s_1^{(2)}, ..., c_n^{(2)}] \) feasible at \(N_1 \).

Proof. If \(p_{sender} \) is Byzantine it can change its internal state whenever it wants, alternatively, by using a transient fault we can also change the internal state of \(p_{sender} \) whenever we want. Let’s look at \(R_1 \) and assume that when we reach configuration \(c_n^{(1)} \), \(p_{sender} \) changes its internal state to be the same as in \(c_1^{(2)} \) (could be because \(p_{sender} \) is Byzantine or because a transient fault happened). Let’s call this new configuration \(c_{fake} \) and let’s call this new run \(R_{fake} \). Notice that we
assumed that $c^{(1)}_n$ and $c^{(2)}_1$ are different only in the internal state of p_{sender}, so we can conclude that $c^{(1)}_{fake} = c^{(2)}_1$. We assumed that R_2 is feasible at N_2. In R_{fake} we only changed the internal state of p_{sender}, this step does not change the network state, so the resulting network state of applying R_{fake} on N_1 is also N_2. Now we can concatenate R_{fake} and R_2 and receive a new run $R = [c^{(1)}_1, s^{(1)}_1, ..., c^{(1)}_n, c^{(2)}_1, s^{(2)}_1, ..., c^{(2)}_n]$ feasible at N_1.

Lemma 6. [repeated] Assume that the input stream given to p_{sender} is a stream of a single message repeated forever. Let PR be a protocol that satisfies the conditions of the SuRB problem and resistant to one Byzantine party. For each party $p' \in P$, $p' \neq p_{sender}$, and for each System State $S = (C, N)$ there is a run R that starts from C and is feasible at N such that p' takes no steps in R and each honest party delivers an infinite incremental sequence. Also, the only party that might change its internal state illegally in R (because of transient fault or maliciousness) is p_{sender}.

Proof. Let $S = (C, N)$ be an arbitrary System State and p' be a party that is not p_{sender}. By Lemma 4, there is a run, R_1, that starts from C and is feasible at N such that p' takes no steps in R and each honest party delivers an infinite number of messages. Let's look at the sequence of configurations and network states obtained by applying R_1 on N. By condition S2 of SuRB, each honest party must have a suffix of the delivered messages that contains only the message given to p_{sender} via the input stream. Assume that p_{sender} is honest and the messages given to him via the input stream is m_0. Eventually we will reach a System State $S_1 = (C_1, N_1)$ such that in S_1, each honest party already performed deliver m_0 and from S_1 the only message that each honest party will deliver is m_0, also each honest party will deliver m_0 infinitely many times. Now we can stop R_1 in configuration C_1 and receive R_{1-sep} (see Figure 5).
Let C_{1-fake} be the configuration that is different from C_1 only in the internal state of p_{sender}. Let $S_{1-fake} = (C_{1-fake}, N_1)$. Assume that in C_{1-fake} each time p_{sender} reads from the input stream a transient fault causes the message read to change inside p_{sender} memory to m_1 (just like p_{sender} actually reads m_1 instead of m_0). Let’s start from S_{1-fake}. We know that there is a run, R_2, that starts from C_{1-fake} and is feasible at N_1 such that $p’$ takes no steps in R_2 and each honest party delivers an infinite number of messages (Lemma 4), also there is a suffix of delivered messages that contains only the input of p_{sender} (condition S2). Eventually we will reach a System State $S_2 = (C_2, N_2)$ such that from S_2 the only message that each honest party will deliver is m_1 and each honest party will deliver m_1 infinitely many times. Because each honest party will deliver m_1 infinitely many times, eventually we will reach a System State in which each honest party already delivered m_1 more times than it delivered m_0 consecutively before. Let’s call this System State $S_3 = (C_3, N_3)$. Now we can stop R_2 in configuration C_3 and receive R_{2-sep} (see Figure 6).

We can repeat the process from C_3 and receive a new System State $S_{3-fake} = (C_{3-fake}, N_3)$ and a run R_3 that starts in C_{3-fake} and is feasible at N_3 such that each honest party will have a suffix of delivered messages that contain only m_0 (we assume that in C_{3-fake}, p_{sender} reads the real value, m_0), also there must be a System State S_4 in which each honest party already delivered m_0 more times than it delivered m_1 consecutively before. Again we can obtain R_{3-sep} in the same way (see Figure 7).

We can repeat the process over and over again and receive an infinite sequence of runs such that when applying R_{i-sep} on N_i, each honest party delivered m_j consecutively more times than it delivered m_{j-1} consecutively before ($j \in \{1, 2\}$). Also for each $i > 0$ the last configuration in R_{i-sep} and the first configuration in $R_{i+1-sep}$ are different only in the internal state of p_{sender} and their network state are the same so by Lemma 5 we can concatenate all those runs (by using transient faults or maliciousness of the sender) and receive a run, R_{final}, feasible at N such that $p’$ takes no steps in R_{final} and when applying R_{final} on N each honest party delivers an infinite incremental sequence.

Figure 7: In C_4 each honest party delivers m_1 more times than it delivers m_2 consecutively before.