Topological Indices of Certain Transformed Chemical Structures

Xuewu Zuo,1 Jia-Bao Liu,2 Hifza Iqbal,3 Kashif Ali,4 and Syed Tahir Raza Rizvi4

1Department of Common Courses, Anhui Xinhua University, Hefei 230088, China
2School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
3Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
4Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan

Correspondence should be addressed to Kashif Ali; akashifali@gmail.com

Received 24 September 2019; Accepted 27 February 2020; Published 15 April 2020

Academic Editor: Daniele Dondi

Topological indices like generalized Randić index, augmented Zagreb index, geometric arithmetic index, harmonic index, product connectivity index, general sum-connectivity index, and atom-bond connectivity index are employed to calculate the bioactivity of chemicals. In this paper, we define these indices for the line graph of \(k\)-subdivided linear \([n]\) Tetracene, fullerene networks, tetracenonic nanotori, and carbon nanotube networks.

1. Introduction

In chemical graph theory, we apply the concepts of graph theory to describe the mathematical model of a variety of chemical structures. The atoms of the molecules correspond to the vertices, and the chemical bond is reflected by edges. Topological indices are numerical parameters of chemical graphs associated with quantitative structure property relationship (QSPR) and quantitative structure activity relationship (QSAR). The major topological indices are distance based, degree based, and eccentricity based. Among these classes, degree-based topological indices are of great importance and are helpful tools for chemists. The concept of topological index came from the work done by Wiener, when he was working on boiling point of paraffin [1]. The Wiener index is the first and most studied topological index. The degree-based topological indices for line graph of some subdivided graphs were studied in [2]. In [3], the bounds of topological indices for some graph operations are discussed. Baca et al. studied some indices for families of fullerene graph in [4]. Baig et al. found the topological indices for poly oxide, poly silicate, DOX, and DSL networks in [5]. Liu et al. found the different topological indices for Eulerian graphs, fractal graphs, and generalized Sierpinski networks in [6–8]. The number of spanning trees and normalized Laplacian of linear octagonal quadrilateral networks were studied in [9]. Recently, Liu et al. in [10] calculated the generalized adjacency, Laplacian, and signless Laplacian spectra of the weighted edge corona networks. In [11], Gao et al. found the forgotten topological index on chemical structure in drugs. Imran et al. calculated the degree-based topological indices for different networks in [12–15]. In 2018, Mufti et al. [16] found the topological indices for para-line graphs of pentacene. Nadeem et al. calculated the degree-based topological indices for para-line graphs of V-Phenylene nanostructures in [17].

Randić in 1975 introduced the Randić index [18]. Bollobas and Erdos generalized the Randić index for any real number \(\alpha\) and named it as generalized Randić index:

\[
R_\alpha (G) = \sum_{uv \in E(G)} (d_u d_v)^{\alpha}.
\] (1)

Recall that the augmented Zagreb index is [19]

\[
A(G) = \sum_{uv \in E(G)} \left(\frac{d_u d_v}{d_u + d_v - 2} \right)^3.
\] (2)

Furtula et al. defined the geometric arithmetic index as [19]
Further, for subdivision

\[k \text{-linear}[n] \text{Tetracene with } G \text{ respectively. Let } n \text{,} 2(\text{respectively. Similarly, for subdivision } G \text{ obtained by replacing each edge of graph } G \text{ by a path } P_{k+1}. A line graph } L(G) \text{ of graph } G \text{ is a transformed graph having } q \text{ vertices and two vertices have common neighbourhood in } L(G) \text{ if and only if their corresponding edges are adjacent in } G. \]

\[R(G) = \sum_{uv \in E(G)} \frac{1}{d_u d_v}. \]

(5)

The general sum-connectivity index has been introduced in 2010, as [21]

\[X_a(G) = \sum_{uv \in E(G)} (d_u + d_v)^a. \]

(6)

One of the well-known degree-based topological indices is the atom-bond connectivity (ABC) index of a graph, proposed by Estrada et al. and defined as [22]

\[ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}. \]

(7)

The remaining article is characterized as follows. In Section 2, the topological indices for the line graph of subdivided graph of different nanostructures have been discussed. The conclusion has been drawn in Section 3.

2. Main Results

Let G be a finite, simple, and connected graph with order p and size q. For \(k \geq 1 \), a k-subdivided graph G(k) of G is obtained by replacing each edge of graph G by a path \(P_{k+1} \). A line graph L(G) of graph G is a transformed graph having q vertices and two vertices have common neighbourhood in L(G) if and only if their corresponding edges are adjacent in G.

2.1. Linear [n] Tetracene. We will start the debate from linear [n] Tetracene, by defining its topology. It has the appearance of a pale orange powder. Tetracene is a four ringed member of the series of acenes. The original graph has order 18n and size 23n – 2. The line graph of subdivided graph has (2,2), (2,3), and (3,3) types of edges. For subdivision \(k = 1 \), the number of edges will be 8n + 10, 16n – 4, and 37n – 16, respectively. Similarly, for subdivision \(k = 2 \), the number of edges will be 24n + 12, 30n – 12, and 30n – 12, respectively. Further, for subdivision \(k \geq 3 \), the number of edges will be 24n + 12 + (k – 2)(23n – 2), 30n – 12, and 30n – 12, respectively. Let G(n,k) be the line graph of k-subdivided linear[n] Tetracene with \(k \geq 3 \) vertices. Its topological indices are calculated in the next theorems.

Theorem 1. Let G(n,k) be the line graph of k-subdividing linear [n] Tetracene with \(k \geq 3 \). The generalized Randić index, augmented Zagreb index, geometric arithmetic index, and harmonic index of G(n,k) are

1. \[R_G(G(n,k)) = 2^{2n} \cdot (k – 2)(23n – 2) + 3 \cdot 2^{2n+1} \cdot (2n + 1) + (2^{n+1} \cdot 3^{n+1} + 2 \cdot 3^{2n+1})(5n – 2) \]
2. \[A(G(n,k)) = 8(k – 2)(23n – 2) + (24759n/32) – (2187/16) \]
3. \[GA(G) = \sum_{uv \in E(G)} 2\sqrt{d_u d_v} \]

(3)

Moreover, the harmonic index is defined as follows [20]: \[H(G) = \sum_{uv \in E(G)} \frac{2}{d_u + d_v}. \]

(4)

The first degree-based connectivity index for graphs evolved by using vertex degree is product connectivity index (Randić index), proposed by the chemist Randić, as [18]

\[R(G) = \sum_{uv \in E(G)} \frac{1}{d_u d_v}. \]

(5)

The general sum-connectivity index has been introduced in 2010, as [21]

\[X_a(G) = \sum_{uv \in E(G)} (d_u + d_v)^a. \]

(6)

One of the well-known degree-based topological indices is the atom-bond connectivity (ABC) index of a graph, proposed by Estrada et al. and defined as [22]

\[ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d_u + d_v - 2}{d_u d_v}}. \]

(7)

The augmented Zagreb index is computed as

\[A(G(n,k)) = \sum_{uv \in E(G(n,k))} \left[\frac{d_u d_v}{d_u + d_v - 2} \right]^3 \]

\[= \sum_{uv \in E(2,2)} \left[\frac{d_u d_v}{d_u + d_v - 2} \right]^3 + \sum_{uv \in E(2,3)} \left[\frac{d_u d_v}{d_u + d_v - 2} \right]^3 \]

\[+ \sum_{uv \in E(3,3)} \left[\frac{d_u d_v}{d_u + d_v - 2} \right]^3 \]

\[= [(k – 2)(23n – 2) + 24n + 12] \cdot 4 \]

\[+ (30n – 12) \cdot 6 \]

\[= 2^{2n} \cdot (k – 2)(23n – 2) + 3 \cdot 2^{2n+1} \cdot (2n + 1) + (2^{n+1} \cdot 3^{n+1} + 2 \cdot 3^{2n+1})(5n – 2) \]

\[+ (2^{n+1} \cdot 3^{n+1} + 2 \cdot 3^{2n+1})(5n – 2) \]

(8)

Proof. The generalized Randić index of G(n,k) is computed as follows:

\[R_G(G(n,k)) = \sum_{uv \in E(G(n,k))} (d_u d_v)^a \]

\[= \sum_{uv \in E(2,2)} (d_u d_v)^a + \sum_{uv \in E(2,3)} (d_u d_v)^a \]

\[+ \sum_{uv \in E(3,3)} (d_u d_v)^a \]

(9)

Next, the geometric arithmetic index is computed as

\[\chi_a(G) = \sum_{uv \in E(G)} (d_u + d_v)^a. \]

2.1. Linear [n] Tetracene. We will start the debate from linear [n] Tetracene, by defining its topology. It has the appearance of a pale orange powder. Tetracene is a four ringed member of the series of acenes. The original graph has order 18n and size 23n – 2. The line graph of subdivided graph has (2,2), (2,3), and (3,3) types of edges. For subdivision \(k = 1 \), the number of edges will be 8n + 10, 16n – 4, and 37n – 16, respectively. Similarly, for subdivision \(k = 2 \), the number of edges will be 24n + 12, 30n – 12, and 30n – 12, respectively. Further, for subdivision \(k \geq 3 \), the number of edges will be 24n + 12 + (k – 2)(23n – 2), 30n – 12, and 30n – 12, respectively. Let G(n,k) be the line graph of k-subdivided linear[n] Tetracene with \(k \geq 3 \) vertices. Its topological indices are calculated in the next theorems.
Proof. The product connectivity index of $G(n, k)$ is computed as

$$R(G(n, k)) = \sum_{uv \in E(G(n,k))} \frac{1}{\sqrt{d_u d_v}},$$

$$= \sum_{uv \in E(2,2)} \frac{1}{\sqrt{d_u d_v}} + \sum_{uv \in E(2,3)} \frac{1}{\sqrt{d_u d_v}} + \sum_{uv \in E(3,3)} \frac{1}{\sqrt{d_u d_v}},$$

$$= [(k - 2)(23n - 2) + 24n + 12] \frac{1}{\sqrt{4}} + (30n - 12) \frac{1}{\sqrt{9}}$$

$$+ (k - 2)(23n - 2) + 6(2\sqrt{6} + 9)n - \frac{24\sqrt{6}n}{5}.$$ \hspace{1cm} (10)

Moreover, the harmonic index is defined as follows:

$$H(G(n, k)) = \sum_{uv \in E(G(n,k))} \frac{2}{d_u + d_v},$$

$$= \sum_{uv \in E(2,2)} \frac{2}{d_u + d_v} + \sum_{uv \in E(2,3)} \frac{2}{d_u + d_v} + \sum_{uv \in E(3,3)} \frac{2}{d_u + d_v},$$

$$= [(k - 2)(23n - 2) + 24n + 12] \frac{2}{2 + 2} + (30n - 12) \frac{2}{2 + 3} + (30n - 12) \frac{2}{2 + 3},$$

$$= \frac{(k - 2)}{2} (23n - 2) + 6(2\sqrt{6} + 9)n - \frac{14}{5},$$ \hspace{1cm} (11)

which completes the proof of the theorem. \hfill \Box

Theorem 2. The product connectivity index, general sum-connectivity index, and atom-bond connectivity index of $G(n, k)$ are

1. $R(G(n, k)) = [(k - 2)/2)(23n - 2) + (22 + (10\sqrt{3} / \sqrt{2})n - 2(\sqrt{6} + 1)] \frac{2 + 2}{4}$
2. $\chi_a(G(n, k)) = 2^{2a}(k - 2)(23n - 2) + (6.5^a + 2^{a+1} \cdot 3^{a+1}) (5n - 2)$
3. $ABC(G(n, k)) = ((k - 2)/\sqrt{2})(23n - 2) + (27\sqrt{2} + 20)n - 8$

Proof. The product connectivity index of $G(n, k)$ is computed as

$$GA(G(n, k)) = \sum_{uv \in E(G(n,k))} \frac{2\sqrt{d_u d_v}}{d_u + d_v}$$

$$= \sum_{uv \in E(2,2)} \frac{2\sqrt{d_u d_v}}{d_u + d_v} + \sum_{uv \in E(2,3)} \frac{2\sqrt{d_u d_v}}{d_u + d_v} + \sum_{uv \in E(3,3)} \frac{2\sqrt{d_u d_v}}{d_u + d_v},$$

$$= [(k - 2)(23n - 2) + 24n + 12] \frac{2\sqrt{4}}{2 + 2} + (30n - 12) \frac{2\sqrt{9}}{3 + 3}$$

$$+ (k - 2)(23n - 2) + 6(2\sqrt{6} + 9)n - \frac{24\sqrt{6}n}{5},$$ \hspace{1cm} (10)

The general sum-connectivity index is computed as

$$\chi_a(G(n, k)) = \sum_{uv \in E(G(n,k))} (d_u + d_v)^a$$

$$= \sum_{uv \in E(2,2)} (d_u + d_v)^a + \sum_{uv \in E(2,3)} (d_u + d_v)^a + \sum_{uv \in E(3,3)} (d_u + d_v)^a$$

$$= [(k - 2)(23n - 2) + 24n + 12] (2^a) + (30n - 12) (2^a + 3^a + 30n - 12) (3^a)$$

$$= 2^{2a}(k - 2)(23n - 2) + (6.5^a + 2^{a+1} \cdot 3^{a+1}) (5n - 2).$$ \hspace{1cm} (13)

The atom-bond connectivity (ABC) index is computed as

$$ABC(G(n, k)) = \sum_{uv \in E(G(n,k))} \sqrt{d_u + d_v - 2}$$

$$= \sum_{uv \in E(2,2)} \sqrt{d_u + d_v - 2} + \sum_{uv \in E(2,3)} \sqrt{d_u + d_v - 2} + \sum_{uv \in E(3,3)} \sqrt{d_u + d_v - 2},$$

$$= [(k - 2)(23n - 2) + 24n + 12] \sqrt{2 + 2 - 2}{4}$$

$$+ (30n - 12) \sqrt{3 + 3 - 2}{9}$$

$$= \frac{(k - 2)}{\sqrt{2}} (23n - 2) + (27\sqrt{2} + 20)n - 8,$$ \hspace{1cm} (14)

which completes the proof of the theorem. \hfill \Box
2.2. Tetracenic Nanotubes. Next, we have nanostructures F, G, K, and L. The original graph of each structure has same order 18pq, and size of F is 27pq - 4p - 2q, G is 27pq - 4p - K is 27pq - 2q, and L is 27pq. Let r and s be the number of vertices with degree 2 and 3, respectively. The types of edges of line graph of subdivided graph for each nanostructure will be (2,2), (2,3), and (3,3). For subdivision k = 1, the number of edges for F will be 2q + r + 4, 16p + 4q - 8, and 27pq - 20p - 8q + 3s + 4, respectively, the number of edges for G will be r, 16p, and 27pq - 20p + 3s, respectively, the number of edges for K will be 2q + r, 4q, and 27pq - 8q + 3s, respectively, and the number of edges for L will be r, 0, and 27pq + 3s, respectively. Similarly, for subdivision k = 2, the number of edges for F will be 16p + 8q + r, 54pq - 24p - 12q, and 3s, respectively, the number of edges for G will be 16p + r, 54pq - 24p, and 3s, respectively, the number of edges for K will be 8q + r, 54pq - 12q, and 3s, respectively, and the number of edges for L will be r, 54pq, and 3s, respectively. Further, for subdivision k ≥ 3, the number of edges for F will be 16p + 8q + r + (27pq - 4p - 2q)(k - 2), 54pq - 24p - 12q, and 3s, respectively, the number of edges for G will be 16p + r + (27pq - 4p)(k - 2), 54pq - 24p, and 3s, respectively, the number of edges for K will be 8q + r + (27pq - 2q)(k - 2), 54pq - 12q, and 3s, respectively, and the number of edges for L will be r + 27pq(k - 2), 54pq, and 3s, respectively.

Theorem 3. Let G(n,k) be the line graph obtained after subdividing nanostructures F, G, K, and L by k ≥ 3 vertices. Their connectivity indices, i.e., product connectivity index, general sum-connectivity index, and atom-bond connectivity index, are as follows.

For F:

1. \[R_e(G(n,k)) = 2^{2a}[(k - 2)(27pq - 4p - 2q) + 16p + 8q + r] + 2^{2a + 1} \cdot 3^{9a + 1} \cdot s \]
2. \[A(G(n,k)) = 8[(k - 2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r] + (2187s) / 64 \]
3. \[GA(G(n,k)) = (k - 2)(27pq - 2q) + 8q + r + 3s + (12\sqrt{6}/5)(9pq - 4p - 2q) \]
4. \[H(G(n,k)) = ((k - 2)/2)(27pq - 2q) + (108/5)pq - (8/5)p + (r/2) + s \]

For G:

1. \[R_e(G(n,k)) = 2^{2a}[(k - 2)(27pq - 4p - 2q) + 16p + r] + 2^{2a + 1} \cdot 3^{9a + 1} \cdot s \]
2. \[A(G(n,k)) = 8[(k - 2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r] + (2187s) / 64 \]
3. \[GA(G(n,k)) = (k - 2)(27pq - 4p - 2q) + 16p + 8q + r + 6.5^a(9pq - 4p - 2q) + 2^{2a} \cdot 3^{9a + 1} \cdot s \]
4. \[H(G(n,k)) = ((k - 2)/2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r + 2s \]

For K:

1. \[R_e(G(n,k)) = 2^{2a}[(k - 2)(27pq - 4p - 2q) + 8q + r] + 2^{2a + 1} \cdot 3^{9a + 1} \cdot s \]
2. \[A(G(n,k)) = 8[(k - 2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r] + (2187s) / 64 \]
3. \[GA(G(n,k)) = (k - 2)(27pq - 2q) + 8q + r + 3s + (12\sqrt{6}/5)(9pq - 4p - 2q) \]
4. \[H(G(n,k)) = ((k - 2)/2)(27pq - 2q) + (108/5)pq - (8/5)p + (r/2) + s \]

For L:

1. \[R_e(G(n,k)) = 2^{2a}[(k - 2)(27pq + 9\sqrt{6}pq + r) + (r/2) + s \]
2. \[A(G(n,k)) = 2^{2a}[(k - 2)(27pq + r) + 54.5^a pq + 2^{2a} \cdot 3^{9a + 1} \cdot s \]
3. \[GA(G(n,k)) = (1/\sqrt{2}][(k - 2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r] + 2s \]

Proof: By using equations (1)–(4), we get the required results.

Theorem 4. Let G(n,k) be the line graph obtained after subdividing nanostructures F, G, K, and L by k ≥ 3 vertices. Their connectivity indices, i.e., product connectivity index, general sum-connectivity index, and atom-bond connectivity index, are as follows.

For F:

1. \[R(G(n,k)) = ((k - 2)/2)(27pq - 4p - 2q) + 9\sqrt{6}pq + 4(2 - \sqrt{6})p + 2(2 - \sqrt{6})q + (r/2) + s \]
2. \[\chi_s(G(n,k)) = 2^{2a}[(k - 2)(27pq - 4p - 2q) + 16p + 8q + r + 6.5^a(9pq - 4p - 2q) + 2^{2a} \cdot 3^{9a + 1} \cdot s \]
3. \[ABC(G(n,k)) = (1/\sqrt{2}][(k - 2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r] + 2s \]

For G:

1. \[R(G(n,k)) = ((k - 2)/2)(27pq - 4p - 2q) + 9\sqrt{6}pq + 4(2 - \sqrt{6})p + (r/2) + s \]
2. \[\chi_s(G(n,k)) = 2^{2a}[(k - 2)(27pq - 4p - 2q) + 16p + 8q + r + 6.5^a(9pq - 4p - 2q) + 2^{2a} \cdot 3^{9a + 1} \cdot s \]
3. \[ABC(G(n,k)) = (1/\sqrt{2}][(k - 2)(27pq - 4p - 2q) + 54pq - 8p - 4q + r] + 2s \]

For K:

1. \[R(G(n,k)) = ((k - 2)/2)(27pq - 2q) + 9\sqrt{6}pq + 2(2 - \sqrt{6})q + (r/2) + s \]
2. \[\chi_s(G(n,k)) = 2^{2a}[(k - 2)(27pq - 2q) + 8q + r + 6.5^a(9pq - 2q) + 2^{2a} \cdot 3^{9a + 1} \cdot s \]
3. \[ABC(G(n,k)) = (1/\sqrt{2}][(k - 2)(27pq - 2q) + 54pq - 8p - 4q + r] + 2s \]

For L:

1. \[R(G(n,k)) = ((k - 2)/2)27pq + 9\sqrt{6}pq + (r/2) + s \]
2. \[\chi_s(G(n,k)) = 2^{2a}[(k - 2)(27pq + r) + 54.5^a pq + 2^{2a} \cdot 3^{9a + 1} \cdot s \]
3. \[ABC(G(n,k)) = (1/\sqrt{2}][(k - 2)27pq + 54pq + r] + 2s \]
Proof. By using equations (5), (6), and (8), we get the required results.

2.3. Fullerene Networks. The next model we are going to add is of fullerene. It is a regular graph of degree 3. Let KB_m^n be the Klein-bottle fullerene and H_m^n be the toroidal fullerene for $n \geq 2$ even and $m \geq 1$ having order $2mn$ and size $3mn$ and $KB_{m+1/2}^{m+1/2}$ be the Klein-bottle fullerene for $n \geq 2$ even and $m \geq 1$ with order $2n(m+1/2)$ and size $3n(m+1/2)$. The line graph of subdivided graph for $k = 1$ each structure is a 3-regular graph, with KB_m^n and H_m^n, having same $9mn$ edge count, whereas $KB_{m+1/2}^{m+1/2}$ has $9n(m+1/2)$ edges. Similarly, for subdivision $k = 2$, the types of edges are (2, 3) and (3, 3). Both KB_m^n and H_m^n have same count $6mn$ in each type of edges, and for $KB_{m+1/2}^{m+1/2}$, each type has again same count $6n(m+1/2)$. For subdivision $k \geq 3$, the fullerenes KB_m^n and H_m^n have (2,3), (3,3) and (2,2) types of edges with counts $6mn$, $6mn$ and $3mn(k-2)$, respectively. The fullerene $KB_{m+1/2}^{m+1/2}$ also has (2,3), (3,3) and (2,2) types of edges, and their count is $3n(2m+1)$, $3n(2m+1)$, and $3n(m+1/2)(k-2)$, respectively.

Theorem 5. Let $G(n,k)$ be the line graph of k-subdivided Klein-bottle fullerenes, KB_m^n and H_m^n for $n \geq 2$ even and $m \geq 2$, further Klein-bottle fullerene, $KB_{m+1/2}^{m+1/2}$ for $n \geq 2$ even and $m \geq 1$, with $k \geq 3$. Their generalized Randić index, general Zagreb index, augmented Zagreb index, geometric arithmetic index, and harmonic index are

For KB_m^n:

1. $R_k(G(n,k)) = [3,2^{2k}(k-2)+2^{2k+1},3^{k+1}+2 \cdot 3^{2k+1}]mn$
2. $A(G(n,k)) = [3,8(k-2) + (1241/32)mn$
3. $GA(G(n,k)) = [3,8(k-2) + (4\sqrt{6}/5) + 2mn$
4. $H(G(n,k)) = [(3(k-2)/2) + (22/5)]mn$

For H_m^n:

1. $R_k(G(n,k)) = [3,2^{2k}(k-2)+2^{2k+1},3^{k+1}+2 \cdot 3^{2k+1}]mn$
2. $A(G(n,k)) = [3,8(k-2) + (1241/32)m(n + (1/2))$
3. $GA(G(n,k)) = [3,8(k-2) + (4\sqrt{6}/5) + 2m(n + (1/2))$
4. $H(G(n,k)) = [(3(k-2)/2) + (22/5)]m(n + (1/2))$

Theorem 6. Let $G(n,k)$ be the line graph of k-subdivided Klein-bottle fullerene, KB_m^n and toroidal fullerene, H_m^n for $n \geq 2$ even and $m \geq 2$, further Klein-bottle fullerene, $KB_{m+1/2}^{m+1/2}$ for $n \geq 2$ even and $m \geq 1$, by $k \geq 3$. Their connectivity indices, i.e., product connectivity index, general sum-connectivity index, and atom-bond connectivity index, are

For KB_m^n:

1. $R_k(G(n,k)) = [(3(k-2)/2) + \sqrt{6} + 2]mn$
2. $\chi_k(G(n,k)) = [3,2^{2k}(k-2)+2^{2k+1},3^{k+1}]mn$
3. $ABC(G(n,k)) = [3,((k-2)/\sqrt{2}) + \sqrt{2} + 4]mn$

For H_m^n:

1. $R_k(G(n,k)) = [(3(k-2)/2) + \sqrt{6} + 2]mn$
2. $\chi_k(G(n,k)) = [3,2^{2k}(k-2)+2^{2k+1},3^{k+1}]mn$
3. $ABC(G(n,k)) = [3,((k-2)/\sqrt{2}) + \sqrt{2} + 4]mn$

Proof. By using equations (5)-(7), we get the required results.

2.4. Carbon Nanotube Networks. Let NA_m^n be the nanotube, for $m,n \geq 2$ with order $2m(n+1)$ and size $m(3n+2)$. Let NB_m^n be the nanotube, for $n \geq 2$ even and $m \geq 1$ with order $2n(m+1)$ and size $n(3m+2)$. In the line graph of subdivided graph, both structures have (2,2), (2,3), and (3,3) types of edges. For $k = 1$, NA_m^n has $2m$, $4m$, and $9mn-2m$ edges, respectively, whereas NB_m^n has $3n$, $2n$, and $9mn-n$ edges, respectively. Similarly, for subdivision $k = 2$, NA_m^n has $6m$ and last two types have same $6mn$ count of edges, whereas NB_m^n has $6n$ and again last two types have same $6mn$ count of edges. Further, for subdivision $k \geq 3$, NA_m^n has $6m$ and last two types have same $6mn$ count of edges, whereas NB_m^n has $6n$ and last two types have same $6mn$ count of edges.

Theorem 7. Let $G(n,k)$ be the line graph of k-subdivided NA_m^n nanotube, for $m,n \geq 2$, and NB_m^n nanotube, for $n \geq 2$ even and $m \geq 1$ with $k \geq 3$. Their generalized Randić index, general Zagreb index, augmented Zagreb index, geometric arithmetic index, and harmonic index are

For NA_m^n

1. $R_k(G(n,k)) = 2^{2k}(k-2)(3mn + 2m) + 3^{2k+1}m + (3^{k+1},2^{2k+1},3^{2k+1})mn$
2. $A(G(n,k)) = 8(k-2)(3mn + 2m) + 48m + (2187/32)mn$
(3) \(GA(G(n,k)) = (k-2)(3mn+2m)+6m+6(2\sqrt{6}/5+1)mn \)

(4) \(H(G(n,k)) = ((k-2)/2)(3mn+2m)+3m+(17/5)mn \)

For \(NB_m^n \):

(1) \(R_n(G(n,k)) = 2^{2x}(k-2)(3mn+2n)+3.2^{2x+1}n+(3^{x+1}2^x+2.3^{2x+1})mn \)

(2) \(A(G(n,k)) = 8(k-2)(3mn+2n)+48n+(2187/32)mn \)

(3) \(GA(G(n,k)) = (k-2)(3mn+2n)+6n+6((2\sqrt{6}/5)+1)mn \)

(4) \(H(G(n,k)) = ((k-2)/2)(3mn+2n)+3n+(17/5)mn \)

Proof. By using equations (1)–(4), we get the required results. \(\square\)

Theorem 8. Let \(G(n,k) \) be the line graph of \(k \)-subdivided \(N_{A_m^*} \) nanotube, for \(m,n \geq 2 \), and \(N_{B_m^*} \) nanotube, for \(n \geq 2 \) even and \(m \geq 1 \) with \(k \geq 3 \). Their connectivity indices, i.e., product connectivity index, general sum-connectivity index, and atom-bond connectivity index, are

For \(N_{A_m^*} \):

(1) \(R(G(n,k)) = ((k-2)/2)(3mn+2m)+3m+(\sqrt{6}+2)mn \)

(2) \(\chi_a(G(n,k)) = 2^{2x}(k-2)(3mn+2m)+3.2^{2x+1}m+(6.5^x+2^{x+1}3^{2x+1})mn \)

(3) \(ABC(G(n,k)) = ((k-2)/\sqrt{2})(3mn+2m)+3\sqrt{2}m+(3\sqrt{2}+4)mn \)

For \(N_{B_m^*} \):

(1) \(R(G(n,k)) = ((k-2)/2)(3mn+2n)+3n+(\sqrt{6}+2)mn \)

(2) \(\chi_a(G(n,k)) = 2^{2x}(k-2)(3mn+2n)+3.2^{2x+1}n+(6.5^x+2^{x+1}3^{2x+1})mn \)

(3) \(ABC(G(n,k)) = ((k-2)/\sqrt{2})(3mn+2n)+3\sqrt{2}n+(3\sqrt{2}+4)mn \)

Proof. By using equations (5)–(7), we get the required results. \(\square\)

3. Conclusion

All graphs are simple in this article. We have found different degree-based topological indices for the line graph of subdivided \(k \geq 3 \) graph of linear \([n]\) Tetracene, Klein bottle fullerene, V-tetracenic nanotube, H-tetracenic nanotube, tetracenic nanotori, toroidal fullerene, and carbon nanotubes.

4. Future Work

In future, degree-based topological indices for some additional structures can be studied. Moreover, can we study degree-based topological indices for line graph of \(k \)-subdivided graph, having any kind of edge degree sequence and type of edges?

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

This research was supported by the Anhui Xinhua University School-Level Natural Science Foundation (project no. 2019zr006) and Anhui Provincial Natural Science Foundation (project no. KJ2017A622).

References

[1] H. Wiener, "Structural determination of paraffin boiling points," Journal of the American Chemical Society, vol. 69, no. 1, pp. 17–20, 1947.

[2] M. F. Nadeem, S. Zafar, and Z. Zahid, "On topological properties of the line graphs of subdivision graphs of certain nanostructures," Applied Mathematics and Computation, vol. 273, pp. 125–130, 2016.

[3] S. Akhter, M. Imran, and Z. Raza, "Bounds for the general sum-connectivity index of composite graphs," Journal of Inequalities and Applications, vol. 2017, no. 1, p. 76, 2017.

[4] M. Bača, J. Horvátová, M. Mokrišová, and A. Suháňiová, "On topological indices of fullerene," Applied Mathematics and Computation, vol. 251, pp. 154–161, 2015.

[5] A. Q. Baig, M. Imran, and H. Ali, "On topological indices of poly oxide, poly silicate, DOX, and DSL networks," Canadian Journal of Chemistry, vol. 93, no. 7, pp. 730–739, 2015.

[6] J.-B. Liu, C. Wang, S. Wang, and B. Wei, "Zagreb indices and multiplicative Zagreb indices of eulerian graphs," Bulletin of the Malaysian Mathematical Sciences Society, vol. 42, no. 1, pp. 67–78, 2019.

[7] J.-B. Liu, J. Zhao, J. Min, and J. D. Cao, "On the Hosoya index of graphs formed by a fractaled graph," Fractals-Complex Geometry Patterns and Scaling in Nature and Society, vol. 27, no. 8, 2019.

[8] J.-B. Liu, J. Zhao, H. He, and Z. Shao, "Valency-based topological descriptors and structural property of the generalized Sierrpiński networks," Journal of Statistical Physics, vol. 177, no. 6, pp. 1131–1147, 2019.

[9] J.-B. Liu, J. Zhao, and Z. X. Zhu, "On the number of spanning trees and normalized Laplacian of linear octagonal quadrilateral networks," International Journal of Quantum Chemistry, vol. 119, p. 25971, 2019.

[10] J.-B. Liu, J. Zhao, and Z.-Q. Cai, "On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks," Physica A: Statistical Mechanics and Its Applications, vol. 540, Article ID 123073, 2020.

[11] W. Gao, M. K. Siddiqui, M. Imran, M. K. Jamil, and M. R. Farahani, "Forgotten topological index on chemical structure in drugs," Saudi Pharmaceutical Journal, vol. 3, no. 24, pp. 258–264, 2016.

[12] M. Imran, S. Hayat, and M. K. Shafiq, "On topological indices of nanoastar dendrimers and polynimo chains," Optoelectronics And Advanced Materials Rapid Communications, vol. 8, no. 9, pp. 948–954, 2014.
[13] M. Imran, S. Hayat, and M. Y. H. Malik, “On topological indices of certain interconnection networks,” *Applied Mathematics and Computation*, vol. 244, pp. 936–951, 2014.

[14] M. Imran, S. A. Bokhary, and S. Manzoor, “On molecular topological properties of dendrimers,” *Canadian Journal of Chemistry*, vol. 94, no. 2, pp. 120–125, 2016.

[15] M. Imran, M. K. Siddiqui, A. Q. Baig, W. Khalid, and H. Shaker, “Topological properties of cellular neural networks,” *Journal of Intelligent and Fuzzy Systems*, vol. 3, no. 37, pp. 3605–3614, 2019.

[16] Z. S. Mufti, M. F. Nadeem, W. Gao, and Z. Ahmad, “Topological study of the para-line graphs of certain pentacene via topological indices,” *Open Chemistry*, vol. 16, no. 1, pp. 1200–1206, 2018.

[17] I. Nadeem, H. Shaker, M. Hussain, and A. Naseem, “Topological indices of para-line graphs of V-phenylenic nanostructures,” *Open Mathematics*, vol. 17, no. 1, pp. 260–266, 2019.

[18] M. Randić, “Characterization of molecular branching,” *Journal of the American Chemical Society*, vol. 97, no. 23, pp. 6609–6615, 1975.

[19] B. Furtula, A. Graovac, and D. Vukićević, “Augmented Zagreb index,” *Journal of Mathematical Chemistry*, vol. 48, no. 2, pp. 370–380, 2010.

[20] X. Xu, “Relationships between harmonic index and other topological indices,” *Applied Mathematical Sciences*, vol. 6, pp. 2013–2018, 2012.

[21] B. Zhou and N. Trinajstić, “On general sum-connectivity index,” *Journal of Mathematical Chemistry*, vol. 47, no. 1, pp. 210–218, 2010.

[22] E. Estrada, L. Torres, L. Rodriguez, and I. Gutman, “An atom-bond connectivity index: modelling the enthalpy of formation of alkanes,” *Ind. J. Chem., A*, vol. 37A, pp. 849–855, 1998.