Supporting Information

A fast route towards freestanding single crystalline oxide thin films by using YBa$_2$Cu$_3$O$_{7-x}$ as a sacrificial layer

Yao-Wen Chang1†, Ping-Chun Wu1†, Jhih-Bang Yi1, Yu-Chen Liu1, Yi Chou2, Yi-Chia Chou2, and Jan-Chi Yang1,3*

1Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan

2Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan

3Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan

Corresponding Author E-mail

janchiyang@phys.ncku.edu.tw
Figure S1. (a) Full width at half-maximum (FWHM) from the rocking curve around as grown LSMO (002) and (b) freestanding LSMO.

Figure S2. Transport behaviors of LSMO films with (a) 16 nm, (b) 30 nm, and (c) 60 nm in thickness were measured before and after freestanding process.
Figure S3. Surface morphology of (a) as grown SRO and (b) freestanding SRO.

Figure S4. Transport behaviors of SRO films with (a) 15 nm, (b) 40 nm, (c) 65 nm, and (d) 130 nm in thickness were measured before and after freestanding process.