Liver function impairment in liver transplantation and after extended hepatectomy

Matteo Serenari, Matteo Cescon, Alessandro Cucchetti, Antonio Daniele Pinna

Matteo Serenari, Matteo Cescon, Alessandro Cucchetti, Antonio Daniele Pinna, General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, 40138 Bologna, Italy

Author contributions: Serenari M, Cucchetti A performed the literature search and wrote the paper; Cescon M provided critical expertise and reviewed the paper; Pinna AD helped with focusing the topics and provided critical expertise.

Correspondence to: Alessandro Cucchetti, MD, General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Policlinico Sant’Orsola-Malpighi, Via Massarenti 9, 40138 Bologna, Italy. aleqko@libero.it

Telephone: +39-51-6363721 Fax: +39-51-304902

Received: August 30, 2013 Revised: October 3, 2013 Accepted: October 13, 2013

Published online: November 28, 2013

Abstract

Extended hepatectomy, or liver transplantation of reduced-size graft, can lead to a pattern of clinical manifestations, namely "post-hepatectomy liver failure" and "small-for-size syndrome" respectively, that can range from mild cholestasis to irreversible organ non-function and death of the patient. Many mechanisms are involved in their occurrence but in the recent past, high portal blood flow through a relatively small liver vascular bed has taken a central role. Therefore, several techniques of inflow modulation have been attempted in cases of portal hyperperfusion first in liver transplantation, such as portocaval shunt, mesocaval shunt, splenorenal shunt, splenectomy or ligation of the splenic artery. However, high portal flow is not the only factor responsible, and before major liver resections, preoperative assessment of the residual liver function is necessary. Techniques such as portal vein embolization or portal vein ligation can be adopted to increase the future liver volume, preventing post-hepatectomy liver failure. More recently, a new surgical procedure, that combines in situ splitting of the liver and portal vein ligation, has gradually come to light, inducing remarkable hypertrophy of the healthy liver in just a few days. Further studies are needed to confirm this hypothesis and overcome one of the biggest issues in the field of liver surgery.

Key words: Small-for-size syndrome; Liver transplantation; Extended hepatectomy; Liver failure; Cirrhosis

Core tip: In this review we focus on the small-for-size syndrome and post-hepatectomy liver failure, the most feared complications of liver surgery, fundamentally similar in pathogenesis and clinical manifestations, occurring when the residual liver is not large enough to accommodate the markedly increased portal vein blood flow. Our aim is to simplify a concept, which has been a major concern in hepatic surgery for some time. Many efforts have been and are being made to overcome such an important problem in this field.

INTRODUCTION

The liver is a unique organ, capable of regeneration and functional recovery after parenchymal injury. When the volume is too small to satisfy the metabolic demand, the liver loses this peculiar ability, resulting in delayed synthetic dysfunction with poor bile production, coagulopathy, prolonged cholestasis and intractable ascites, which can lead to septic complications and high mortality. The
term “small-for-size syndrome” (SFSS) was first\(^3\) coined in liver transplantation as a consequence of size mismatch between graft and recipient, an event occurring especially in the setting of living donor liver transplantation (LDLT) or split liver transplantation\(^3\), where the use of partial grafts has gained worldwide acceptance to overcome the shortage of cadaveric organs. However, the same concept can also be applied to the field of liver resection, where patients with marginally resectable tumors are at high risk of developing post-hepatectomy liver failure (PHLF)\(^8\), a clinical manifestation comparable to the SFSS.

DEFINITION

There is not full consensus about the definition of SFSS. It was introduced in 1996 by Emond et al\(^1\) and regarded the clinical manifestation following transplantation of small grafts in LDLT. The term SFSS on the basis of personal working experience, and no threshold values of liver function tests, was suggested. In 2005, Dahn et al\(^9\) proposed a more precise definition. These authors described SFSS after liver transplantation as the presence of two of the following criteria recorded on three consecutive postoperative days: serum bilirubin > 100 \(\mu\text{mol/L} (6 \text{ mg/dL})\), international normalized ratio (INR) > 2 and presence of encephalopathy grade III or IV. The small-for-size syndrome usually occurs during the first postoperative week and is diagnosed after the exclusion of other causes such as technical complications (e.g., arterial or portal occlusion, outflow congestion, bile leak) and/or rejection or infections (e.g., cholangitis, sepsis).

The same concept is applicable to the field of hepatic surgery, where extended resections can lead to the development of PHLF. Many different definitions of PHLF have been proposed in the literature\(^10\). In trying to propose a more standardized definition, in 2011, Rahbani et al\(^1\) suggested a simple and easily applicable definition of PHLF as a “postoperative acquired deterioration in the ability of the liver to maintain its synthetic, excretory and detoxifying functions, which are characterized by an increased INR and concomitant hyperbilirubinemia on or after postoperative day 5”. They differentiated severity in three grades (A, B, C), according to whether changes in clinical management of the patient or invasive treatments are required. It is of interest that even if SFSS and PHLF can be viewed as the same manifestation of liver function impairment, the two terms and their relative definitions are currently separated. It would probably be of interest to join the two definitions into a single one, but at present no suggestions, regarding this topic, are present in the literature.

PATHOPHYSIOLOGY

The magnitude of the effect of increased portal flow after hepatectomy on the development of PHLF, though recognized, is currently not yet well established and most of the studies regarding this topic come from the transplantation experience.

High portal blood venous flow (PVF) has gained a central role in the pathogenesis of SFSS. Under normal physiological conditions, portal vein blood flow accounts for 75% of total hepatic inflow, or 90 mL/min per 100 g of liver tissue, while the hepatic artery contributes for 20%-25\%\(^8\). The portal vein lacks intrinsic auto-regulation. Hence, after extended hepatectomy or transplantation of small grafts, the remnant liver is subjected to the portal flow destined to a whole liver, through a reduced micro-vascular bed\(^1\). Such a substantial increase of PVF and shear-stress on sinusoidal lining cells is inversely related to graft size. In > 75% partial hepatectomy, PVF increases by more than twice the baseline values, resulting in PHLF, with high morbidity and mortality\(^10\).

Although shear-stress is considered to be a necessary stimulus for hepatic regeneration\(^11\), excessive forces can be detrimental to both the function and survival of the reduced-size organ: the result is damage of sinusoidal spaces with release of inflammatory cytokines, responsible for progressive hepatocyte necrosis\(^12\). Pathological findings include hepatocyte ballooning, tremendous mitochondrial swelling, irregular large gaps between sinusoidal lining cells, and collapse of the space of Disse\(^13\).

Although portal vein pressure (PVP) is considered a reliable predictor of graft failure\(^14\), the latter and PVF do not run parallel to each other; furthermore, the lack of correlation between graft weight/recipient body weight ratio (GRWR) and PVP has been investigated\(^15\).

Blood flow regulation, which allows a steady rate of hepatic perfusion, depends not only on the classical arterial intrinsic regulation but also on an inverse relationship between portal and hepatic arterial flow, also known as hepatic arterial buffer response (HABR)\(^16\). When the portal blood flow increases, this leads to an elevated wash-out of adenosine levels in the space of Mall, contracting the hepatic artery\(^17\). Adenosine is unlikely to be the sole vascular regulator and other vaso-active compounds may contribute to HABR\(^18\). The consequences of such a diminished arterial blood flow manifest in the peripheral circulation as a centrilobular microvesicular steatosis or infaracts, or, in severely affected cases, as ischemic cholangitis in the hilum\(^19\). Hence, the clinical manifestations can range from mild cholestasis to liver failure. However, the optimal rate needed to sustain liver regeneration and function, without damage to the liver, is still not known and further experimental studies on animal models are needed.

PREOPERATIVE PREDICTION

Hepatectomy remains the first curative option for neoplasms of the liver. The mortality rate after major liver resections, i.e., the removal of three or more Couinaud segments, ranges from 3% to 7% in non-injured liver parenchyma and increases up to 32% in patients with cirrhosis\(^20\). Thus, the extent of parenchymal resection...
is an essential parameter in establishing both the operability of each patient and the risk of PHLF and this, to date, is still a subject of debate, probably due to different methods of measurement, variability in the segment volumetric distribution and degree of underlying disease.

The 3D volumetric computed tomography reconstruction allows preoperative calculation of the liver volume, even of the single segments, and, more important, of the future liver remnant (FLR). With a normal function, FLR should range between 20% and 30% of total liver volume, whereas smaller volumes are correlated with increase of liver failure and infections. Care must be taken when an underlying liver disease pre-exists. In “injured” livers, steatosis, cholestasis, fibrosis, cirrhosis or chemotherapy) the FLR should be greater than 30%-40%. Therefore, an accurate preoperative assessment of liver function is needed.

In patients with cirrhosis, the Child-Pugh score and the hepatic vein pressure gradient are the two most important restrictive criteria in selecting candidates for surgery, even if they do not provide precise assessment of liver resectability. Metabolic tests based on the detoxifying properties of the liver have the advantage of providing a more reliable estimation of the hepatic function, and they are based on quantitative measures. Indocyanine green clearance is the most popular test, especially in Eastern countries, where it constitutes the pillar of preoperative algorithms for liver resection. Other quantitative tests, such as the monooethylglycinexylidide test, have led to good prediction of PHLF, but they have gained less popularity and are not routinely used. A simple and non-invasive method of measurement of liver stiffness (Fibroscan) has recently been gaining broad consensus for predicting PHLF in selected patients, but further studies are needed to establish its potential role in patient selection for surgery.

Chemotherapy-induced liver injury is common in patients that received chemotherapy for colorectal liver metastases, and the two typical patterns are sinusoidal injury (sinusoidal obstruction syndrome) in oxaliplatin-based regimens, and steatohepatitis (CASH), associated with irinotecan treatment. More than 6 cycles of oxaliplatin need a longer time interval before major hepatectomy, even though accountability for PHLF still remains a matter of debate, whereas irinotecan is associated with an increased risk of peri-operative mortality after hepatectomy. Biopsy of the liver before surgery might be helpful to assess the grade of steatosis or the histological features of CASH, thus defining more precise windows between drug administration and surgery.

Cholestasis impairs liver regeneration, and levels of bilirubin above 2.9 mg/dl are related to a higher rate of liver failure after major hepatectomy. Nevertheless, the use of preoperative biliary drainage is still controversial, except for acute cholangitis or small FLR that are candidates for portal vein embolization, in which case biliary drainage is highly recommended. Besides such patient-related factors, others, like age > 65 years, male sex and diabetes mellitus, are related to a high risk of PHLF. Obesity is not per se a major predictor of liver failure.

In the setting of transplantation, liver volume assessment is represented by the GRWR or graft volume/standard liver volume ratio (GV/SLV): in LDLT safe thresholds are at least 0.8% of GRWR or 30%-40% of GV/SLV, with greater values in patients affected by portal hypertension or advanced chronic liver disease. There are reports on the successful use of smaller grafts, but in association with some intraoperative inflow modulations: a case report of a left lobe LDLT as low as 0.34% of GRWR underwent splenectomy and did not develop post-operative SFSS. In liver transplantation, size is not always the sole factor responsible for graft post-transplant liver function, because graft quality is likewise important in order to avoid liver dysfunction or other complications. Aside from basic requirements for donor livers, the following donor factors have a negative impact on graft prognosis: age > 50 years, prolonged intensive care unit stay > 5 d, hypernatremia, prolonged cardiac/respiratory arrest and long ischemia times, administration of high dosage of vasopressors, severe systemic sepsis, steatosis > 30%, anatomic variations in vascular structure and, obviously, abnormal liver function, particularly with elevated serum bilirubin and gamma glutamyltransferase.

Prediction of SFSS and PHLF is feasible and is based on the calculation of liver volume up to the assessment of liver function. Evaluation of patient status can help to find the best candidate for surgery. In the field of liver transplantation, donor characteristics also have to be taken into account, defining which grafts are at higher risk of developing SFSS than others. A list of the above mentioned factors is shown in Table 1.

ATTENUATING SFSS IN LIVER TRANSPLANTATION

In the presence of high portal blood flow and/or small grafts (GRWR < 0.8%), several different technical flow manipulations can be performed to overcome graft hyperperfusion and reduce PVF, although there is no full consensus about their indications: portocaval shunt, mesocaval shunt, splenorenal shunt, splenectomy or ligation of the splenic artery. Boillot et al. reported the first

Table 1 Predictive factors of small-for-size syndrome and post-hepatectomy liver failure

Liver volume	Liver function	Patient-related	Other
FLR/TLV	CHILD-PUGH	CALI	Cholestasis
GRWR or GV/SLV	HVPG	Age > 65 yr	Liver stiffness
	ICG	Male sex	Donor factors
	MEGX	Diabetes mellitus	

FLR: Future liver remnant; TLV: Total liver volume; GRWR: Graft weight-recipient body weight ratio; GV: Graft volume; SLV: Standard liver volume; HVPG: Hepatic vein pressure gradient; ICG: Indocyanine green clearance; MEGX: Monoethylglycinexylidide; CALI: Chemotherapy-induced liver injury.
If the remnant liver volume is not sufficient to meet the future metabolic demand, a number of strategies can be adopted to increase the liver volume, preventing post-hepatectomy liver failure. Portal vein embolization (PVE) has become the most standardized procedure due to its safety and feasibility: it consists in the occlusion of portal flow ipsilateral to the lesion, inducing hypertrophy in the contralateral lobe. Makuuchi et al. first used this technique in 1982 to extend the limits of hepatic resection, thus increasing the number of cases suitable for curative surgery: in this early report, 14 patients underwent pre-operative PVE followed by major liver resection 6-41 d after embolization, with no occurrence of postoperative liver failure. After almost 30 years, the indications of PVE are still very poorly standardized: many authors indicate a residual liver volume less than 30% of total liver volume or up to 40% in injured livers as the critical threshold.[45-47] Surgery is usually performed 2-8 wk after PVE, with future liver remnant volume increased by 10%-46%. From 70% to 100% of patients who underwent PVE, a semi-hepatectomy or extended heptectomy could be performed. Following resection, the perioperative morbidity and mortality was less than 15% and 0%-7%, respectively.[48-50]

Portal vein ligation (PVL) represents a good alternative, although there are no controlled studies clearly showing the superiority of PVE vs PVL. Portal vein ligation requires laparotomy and, furthermore, the volume gain is often limited due to formation of collaterals between the two different lobes.[51] PVL is not considered such a standardized and safe procedure as PVE, but patients who are candidates for 2-stage heptectomy can benefit from this technique.[52,53] Recently adopted in a new surgical approach aimed at enhancing and accelerating the regeneration of the remnant liver,[54] in 2009, Schnitzbauer et al.[55] reported on a case series of 25 marginally resectable patients with massive involvement of the right lobe by neoplastic nodules, on which an innovative 2-step technique was carried out. In the first step, right portal vein ligation and in situ splitting of the liver on the right side of the falciform ligament was performed; in the second step, after a median time interval of 9 d, extended heptectomy (right trisectionectomy) was completed. The observed median increase in volume of the left lobe was 74%, but morbidity and mortality were significant (68% and 12%, respectively). Thereafter, the so-called advanced liver partition and PVL for staged heptectomy, also known by the acronym ALPPS,[56-58], has spread to many centers worldwide: the obtained median increase in volume ranges from 74% up to 87%, with surgery usually performed 5-30 d after the first step. However, mortality rates of 13%-22% are still reported.[59-61] Although the procedure is innovative and attractive, these latter figures make it imperative to increase the number of patients treated with this strategy to better define its feasibility and limits.[62]

In addition to the above, more studies are needed to understand the exact mechanisms of hepatic regeneration, also through biopsy of the remnant liver before and after heptectomy, and measurements of portal flow.
and pressure should be provided. In fact, although the preserved functional capacity of the hypertrophied remnant liver could be established with functional tests (e.g., indocyanine green clearance) and through the uptake of 99mTc dimethyl iminodiacetic acid\(^{[64]}\), excessive portal flow represents one of the main problems, determining a possible discrepancy between the relevant increase in volume and the amount of actually functioning parenchyma. de Santibañes et al\(^{[3]}\), in 2012, claimed that the diseased right hemi-liver, left in place, acts as an auxiliary liver to assist the future liver remnant for the first and critical week after resection, but in true auxiliary transplantation, both the portal and arterial flows to two hemi-livers are maintained. Thus, contrary to auxiliary transplantation, in which the growth and functional recovery may progress harmonically with a real portal flow modulation, this phenomenon is not certain after extended hepatectomy with a small residual parenchyma. In other words, how can this “beneficial” re-direction of the entire portal flow to a “small-for-size” remnant liver comply with established principles of portal flow modulation in small-for-size transplantation? Research in animal models clearly shows that a portocaval shunt has a positive effect in attenuating liver injury after extensive hepatectomy, suggesting that a slower regeneration following reduction of portal flow may be more advisable than faster regeneration associated with temporary portal hyperflow\(^{[1,2]}\). In this view, more insights on the mechanisms and features of liver regeneration are needed to better understand the potential benefit of portal flow modulation to prevent postoperative liver failure\(^{[4]}\).

PHARMACOLOGICAL INTERVENTIONS

Many drugs have been demonstrated to be effective in attenuating SFSS after living donor liver transplantation of small grafts, but most of them have been tested only in animal models\(^{[7,8]}\), whereas clinical trials on human beings are still lacking. Furthermore, pharmacological portal flow modulation has been investigated: stress attenuation has been achieved by somatostatin\(^{[5]}\), through down-regulation of the endothelin-1 (sinusoidal vasoconstrictor) and up-regulation of heme-oxygenase-1 (vasodilatator and antioxidant). Nitric oxide pathway activation seems to be protective against ischemia-reperfusion injury both in liver resection and liver transplantation\(^{[9]}\). Therapeutic agents promoting liver regeneration, such as serotonin, are still a matter of debate for their controversial role\(^{[3]}\). Recently, autologous bone marrow stem cells have been used to increase liver regeneration prior to major liver resection. In particular, an enhanced parenchymal growth after portal vein embolization through the portal injection of CD133\(^+\) cells (in the non-embolized hepatic lobe) has been demonstrated, with a subsequent improvement of outcome after surgery\(^{[7]}\). Even though the specific effect of CD133\(^+\) cells is not completely understood\(^{[9]}\), this approach is intriguing due to the possibility of combination with other techniques favoring post-transplant or post-hepatectomy liver function recovery, such as procedures of portal flow modulation.

CONCLUSION

Post-hepatectomy liver failure and small-for-size liver syndrome can be viewed as two sides of the same coin, since both of them can lead to an identical pattern of clinical manifestations, that is cholestasis, impairment of coagulation and development of ascites, and that can range up to irreversible organ non-function and death of the patient. Safe thresholds of remnant liver volume differ between liver transplantation and after extended hepatectomy, probably due to graft denervation, immunosuppressive therapy and severity of ischemia-reperfusion injury. However, preoperative assessment of liver function and size is crucial, while intraoperative recording of hemodynamic changes, before and after hepatectomy or liver transplantation, should be mandatory in order to perform inflow modulation, if necessary. Other strategies, which include pharmacological perioperative protection of the liver and stem cell injection, are being explored, but further studies are needed before they can be applied in the clinical field.

REFERENCES

1. Emond JC, Renz JF, Ferrell LD, Rosenthal P, Lim RC, Roberts JP, Lake JR, Ascher NL. Functional analysis of grafts from living donors. Implications for the treatment of older recipients. *Ann Surg* 1996; 224: 552-554 [PMID: 8857588 DOI: 10.1097/00000658-199610000-00012]
2. Kiuchi T, Kasahara M, Uryuhara K, Inomata Y, Uemoto S, Asonuma K, Egawa H, Fujita S, Hayashi M, Tanaka K. Impact of graft size mismatching on graft prognosis in liver transplantation from living donors. *Transplantation* 1999; 67: 321-327 [PMID: 10075602 DOI: 10.1097/00007890-199901200-00024]
3. Jarnagin WR, Gonen M, Fong Y, DeMatteo RP, Ben-Porat L, Little S, Corvera C, Weber S, Blumgart LH. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. *Ann Surg* 2002; 236: 397-406 [PMID: 12366667 DOI: 10.1097/00000658-200201000-00001]
4. Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. *Am J Transplant* 2005; 5: 2605-2610 [PMID: 16212618 DOI: 10.1111/j.1600-6143.2005.01081.x]
5. Balzan S, Belghiti J, Farges O, Ogata S, Sauvanet A, Delesfosse D, Durand F. The “50-50 criteria” on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. *Ann Surg* 2005; 242: 824-828, discussion 828-829 [PMID: 16327492 DOI: 10.1097/01.sla.0000189131.90876.9e]
6. Mullen JT, Ribero D, Reddy SK, Donadon M, Zorzi D, Gautam S, Abdalla EK, Curley SA, Capussotti L, Clary BM, Vauthy JN. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. *J Am Coll Surg* 2007; 204: 854-862, discussion 862-864 [PMID: 17481498 DOI: 10.1016/j.jamcollsurg.2006.12.032]
7. Rahbari NN, Garden OJ, Padbury R, Brooke-Smith M, Crawford M, Adam R, Koch M, Makuuchi M, Dematteo RP, Christophi C, Banting S, Usatoff V, Nagino M, Maddern G.
Hugh TJ, Vauthay JN, Greig P, Rees M, Yokoyama Y, Fan ST, Nimura Y, Figueras J, Capussotti L, Büchler MW, Weitz J. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011; 149: 713-724 [PMID: 21264855 DOI: 10.1016/j.surg.2010.10.001]

8 Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. *Physiol Rev* 2009; 89: 1269-1339 [PMID: 19789382 DOI: 10.1152/physrev.00027.2008]

9 Glanemann M, Eipel C, Nußler AK, Vollmar B, Neuhaus P. Hyperperfusion syndrome in small-for-size livers. *Eur Surg Res* 2005; 37: 335-341 [PMID: 16465057 DOI: 10.1159/000090333]

10 Troisi R, Ricciardi S, Smeets P, Petrovic M, Van Maele G, Colle I, Van Vlierberghe H, de Hemptinne B. Effects of hemi-portocaval shunts for inflow modulation on the outcome of small-for-size grafts in living donor liver transplantation. *Ann J Transplant* 2005; 5: 1397-1404 [PMID: 15888047 DOI: 10.1111/j.1600-6143.2005.00850.x]

11 Schoen M, Wang HH, Minuk GY, Lauw Wt, Shear stress-induced nitric oxide release triggers the liver regeneration cascade. *Nitric Oxide* 2001; 5: 453-464 [PMID: 11387560 DOI: 10.1006/niox.2001.0373]

12 Panis Y, McMullan DM, Emond JC. Progressive necrosis after hepatectomy and the pathophysiology of liver failure after massive resection. *Surgery* 1997; 121: 142-149 [PMID: 9037225 DOI: 10.1016/S0039-6060(97)90285-x]

13 Man K, Fan ST, Lo CM, Liu CL, Fung PC, Liang TB, Lee TK, Tsui SH, Ng IO, Zhang Ww, Wong J. Graft injury in relation to graft size in right lobe donor liver transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intrahepatocyte gene expression. *Ann Surg* 2003; 237: 256-264 [PMID: 12560794 DOI: 10.1097/0000048976118246.7]

14 Sainz-Barriga M, Scudeller L, Costa MG, de Hemptinne B, Troisi RI. Lack of a correlation between portal vein flow and pressure: toward a shared interpretation of hemodynamic stress governing inflow modulation in liver transplantation. *Liver Transpl* 2011; 17: 836-848 [PMID: 21384528 DOI: 10.1002/lt.22295]

15 Ito T, Kuchi T, Yamamoto H, Oike F, Ogura Y, Fujimoto Y, Hirohashi K, Tanaka AK. Changes in portal venous pressure in the early phase after living donor liver transplantation: pathogenesis and clinical implications. *Transplantation* 2003; 75: 1304-1317 [PMID: 1271222]

16 Smyrniotis V, Kostopanagiotou G, Kondi A, Gamaletos E, Theodoraki K, Kehagias D, Mystakidou K, Kontis J. Hemodynamic interaction between portal vein and hepatic artery flow in small-for-size split liver transplantation. * TRANSPL INT 2002; 15: 355-360 [PMID: 12122512 DOI: 10.1111/j.1434-2277.2002.tb00178.x]

17 Eipel C, Abshagen K, Vollmar B. Regulation of hepatic blood flow: the hepatic arterial buffer response revisited. *World J Gastroenterol* 2010; 16: 6046-6057 [PMID: 21182219 DOI: 10.3748/wjg.v16.i48.646]

18 Mathie RT. Alexander B. The role of adenosine in the hyperemic response of the hepatic artery to portal vein occlusion (the ‘buffer response’). *Br J Pharmacol* 1990; 100: 626-630 [PMID: 1697200 DOI: 10.1111/j.2374-5681.1990.tb18587.x]

19 Demetris AJ, Kelley DM, Eghtesad B, Fontes P, Wallis Marsh J, Tom K, Tan HP, Shaw-Stiffel T, Boig L, Novelli P, Planinsic R, Fung JJ, Marcos A. Pathophysiological observations and histopathologic recognition of the portal hyperperfusion syndrome. *Ann J Surg Pathol* 2006; 30: 986-993 [PMID: 16861970 DOI: 10.1016/j.0005-8543(99)00099-9]

20 Broering DC, Hillert C, Krupski G, Fischer L, Mueller L, Achilles EG, Schulte am Esch J, Rogiers X. Portal vein embolization vs. portal vein ligation for induction of hypertrophy of the future liver remnant. *J Gastrointest Surg* 2002; 6: 905-913; discussion 913 [PMID: 12504230 DOI: 10.1016/S1091-255X(02)01222-1]

21 Schindl MJ, Redhead DN, Fearon KC, Garden OJ, Wigmore SJ. The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. *Gut* 2005; 54: 289-296 [PMID: 15647196 DOI: 10.1136/gut.2004.04524]
Portal vein embolization for major liver resection: a meta-analysis. J Vasc Interv Radiol 2008; 19: 953-962 [PMID: 18600763 DOI: 10.1016/j.jvir.2008.06.006]

Abulkhir A, Limongelli P, Healey AJ, Damrah O, Tait JGastrointest Surg 2009; 13: 1992-1999 [PMID: 19993826 DOI: 10.1007/s11604-009-0795-1]

Farges O, Regimbeau JM, Fuks D, Le Treut YP, Cherqui D, Barchellier P, Mabrut JY, Adham M, Pruvo FR, Gigot JF. Multicentre European study of preoperative biliary drainage for hilar cholangiocarcinoma. Br J Surg 2013; 100: 274-283 [PMID: 2342470 DOI: 10.1016/j.bjs.8950]

Iacono C, Ruzzenente A, Campagnaro T, Bortolasi L, Valdegamberi A, Gregielma A. Role of preoperative biliary drainage in jaundiced patients who are candidates for pancreatoduodenectomy or hepatic resection: highlights and drawbacks. Ann Surg 2013; 257: 191-204 [PMID: 23013805 DOI: 10.1097/SLA.0b013e3182e64b0e]

Hamm CS, Gha IN, Bergmann J, Lobo DN. Prediction, prevention and management of postresection liver failure. Br J Surg 2011; 98: 1188-1200 [PMID: 21725970 DOI: 10.1002/bjs.6760]

Cucchiatti A, Cescon M, ERColani G, DEGAIO P, PERI E, PINna AD. Safety of hepatic resection in overweight and obese patients with cirrhosis. Br J Surg 2011; 98: 1147-1154 [PMID: 21509752 DOI: 10.1016/j.bjs.7516]

Lo CM, Fan ST, LIU CL, CHAN JK, LAM BK, LAM GK, WEI WI, WONG J. Minimum graft size for successful living donor liver transplantation. Transplantation 1999; 68: 1112-1116 [PMID: 10551638]

Kawasaki S, Makuuchi M, MATsurnami H, Hashikura Y, Ikekami T, NAKawaza Y, CHISUWA H, TERADA M, MIYAGAWA S. Living related liver transplantation in adults. Ann Surg 1998; 227: 269-274 [PMID: 9488526 DOI: 10.1097/00000658-199810000-00004]

Masetti M, Siniscalchi A, DE PIetri L, Braglia V, Benedetto F, DI CAtiero N, Bensi G, BENOttE A, Miller CM, PINna AD. Living donor liver transplantation with left liver graft. Am J Transplant 2004; 4: 1713-1716 [PMID: 15367230 DOI: 10.1111/j.1600-6143.2004.00548.x]

Lauro A, DiGo A, Uso T, Quintini C, DI Benedetto F, DAZZI A, DE Ruvo N, Masetti M, CAUtero N, RISaliti A, ZANFI C, RAMACCIATI G, PINna AD. Adult-to-adult living liver liver transplantation using left lobes: the importance of surgical modalities on portal graft infow. Transplant Proc 2007; 39: 1847-1874 [PMID: 17692638 DOI: 10.1016/j.transproced.2007.05.052]

Kiuchi T, Onishi Y, Nakamura T. Small-for-size graft: not defined solely by being small for size. Liver Transpl 2010; 16: 815-817 [PMID: 20053777 DOI: 10.1002/11.22113]

Tucker ON, Heaton N. The ‘small for size’ liver syndrome. Curr Opin Crit Care 2005; 11: 150-155 [PMID: 15798596 DOI: 10.1097/00006763-200502000-00017]

Boillot O, Daflosse B, MÉchet I, Boucaud C, Pouyet M. Small-for-size partial liver graft in an adult recipient; a new transplantation technique. Lancet 2002; 359: 406-407 [PMID: 11844516 DOI: 10.1016/S0140-6736(02)17946-1]

Troisi R, De Hemptinne B. Clinical relevance of adapting portal vein flow in living donor liver transplantation in adult patients. Liver Transpl 2003; 9: 536-541 [PMID: 12942477 DOI: 10.1053/jlts.2003.5020]

Yoshizumi T, Taketomi A, Soejima Y, Ikegami T, Uchiyama H, Kayashima H, Harada N, Yamashita Y, Kawanaka H, Yoshizumi T. A, Regge D, Delpero JR. Portal vein ligation as an efficacious portal decompression technique that improves the outcome of live donor liver transplantation. Ann Surg 2013; 210: 833-842 [PMID: 18482177 DOI: 10.1097/SLA.0b013e31822227.2008.00678.x]

Umeda Y, Yagi T, Sadamori H, Matsukawa H, Matsuda H, SHinoura S, IWamoto T, SATOH D, IWAGAKI H, TANAKA N. Preoperative proximal splenic artery embolization: a safe and efficacious portal decompression technique that improves the outcome of live donor liver transplantation. Transpl Int 2007; 20: 947-955 [PMID: 17617180 DOI: 10.10111/j.1342-2277.2007.00513.x]

Cheng YF, Huang TL, Chen TY, Concejero A, Tsang LL, Wang CC, Wang SH, Sun CK, Lin CC, Liu YW, Yang CH, Yong CC, Ou SY, Yu CY, Chiu KW, Jawan B, Eng HL, Chen CL. Liver graft-to-recipient spleen size ratio as a novel predictor of portal hyperperfusion syndrome in living donor liver transplantation. Am J Transplant 2006; 6: 2994-2999 [PMID: 17061957 DOI: 10.1111/j.1610-0696.2006.00152.x]

Oura T, Taniguchi M, Shimamura T, Suzuki T, Yamashita K, Uno M, Goto R, Watanabe M, KAMIYAMA T, Matsushita M, Furukawa H, Todo S. Does the permanent portacaval shunt for a small-for-size graft in a living donor liver transplantation do more harm than good? Am J Transplant 2008; 8: 250-252 [PMID: 18093277 DOI: 10.1111/j.1600-6143.2007.02045.x]

Botha JF, Campos BD, Johann J, Mercer D, Grant W, Langnas A. Endovascular closure of a hemiportocaval shunt after small-for-size adult-to-adult left lobe living donor liver transplantation. Liver Transpl 2009; 15: 1671-1675 [PMID: 19938118 DOI: 10.1016/J.JCIRJ.21944]

Gyu Lee S, Min Park K, Hwang S, Hun Kim K, Nak Choi D, hyung Joo S, Soo Anh C, Won Nah Y, Yeong Joen J, Hoop Park S, Suck Koh K, Hoon Han S, Taek Choi K, Sam Hwag K, Sugawara Y, Makuuchi M, Chul Min P. Modified right liver graft from a living donor to avoid congestion. Transplantation 2002; 74: 54-59 [PMID: 12134099]

Carratal MJ, Molinari M, Vollmer CM, McGilvray I, Wei A, Walsh M, Adcock L, Marks N, Lilly L, Girgrah N, Levy G, Greig PD, Grant DR. Living-donor right hepatectomy with or without inclusion of middle hepatic vein: comparison of morbidity and outcome in 56 patients. Am J Transplant 2004; 4: 751-757 [PMID: 15084170 DOI: 10.1111/j.1600-6143.2004.00405.x]

Sugawara Y, Makuuchi M, Sano K, Imamura H, Kaneko J, Ohkubo T, Matsuy K, Kokudo N. Vein reconstruction in modified right liver graft for living donor liver transplantation. Ann Surg 2003; 237: 180-185 [PMID: 12560775 DOI: 10.1097/01.FSLA.0000048444.40498.AJ]

Makuuchi M, Thai BL, Takayasu K, Takayama T, Kosuge T, GUVen P, Yamazaki S, HASegawH, OZAKI H. Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma: a preliminary report. Surgery 1990; 107: 521-527 [PMID: 2333592]

Capussotti L, Muratore A, Baracchi F, Lelong B, Ferrero A, Regge D, Delpero JR. Portal vein ligation as an efficient method of increasing the future liver remnant volume in the surgical treatment of colorectal metastases. Arch Surg 2008; 143: 978-982; discussion 982 [PMID: 18903677 DOI: 10.1001/archsurg.143.10.978]
resection for initially unresectable multiple and bilobar colorectal liver metastases. *Ann Surg* 2004; **240**: 1037-1049; discussion 1049-1051 [PMID: 15570209 DOI: 10.1097/01.SLA.0000145965.86383.89]

Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, Fichtner-Feigl S, Lorf T, Goralyck A, Hörbelt R, Kroemer A, Loss M, Rümmele P, Scherer MN, Padberg W, Königsrainer A, Lang H, Obed A, Schlitt HJ. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. *Ann Surg* 2012; **255**: 405-414 [PMID: 22330038 DOI: 10.1097/01.SLA.0b013e31824856f5]

de Santibañes E, Alvarez FA, Ardiles V. How to avoid postoperative liver failure: a novel method. *World J Surg* 2012; **36**: 125-128 [PMID: 22045448 DOI: 10.1007/s00268-011-1331-0]

Alvarez FA, Ardiles V, Sanchez Clara R, Pekoli J, de Santibañes E. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): tips and tricks. *J Gastrointest Surg* 2013; **17**: 814-821 [PMID: 23188224 DOI: 10.1007/s11605-012-2092-2]

Knoefel WT, Gabor I, Rehders A, Alexander A, Krausch M, Schulte am Esch J, Topp SA. In situ liver transaction with portal vein ligation for rapid growth of the future liver remnant in two-stage liver resection. *Br J Surg* 2013; **100**: 388-394 [PMID: 23124776 DOI: 10.1002/bjs.8955]

Torres OJ, Fernandes Ede S, Oliveira CV, Lima CX, Waechter FL, Moraes-Junior JM, Linhares MM, Pinto RD, Herman P, Machado MA. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS): the Brazilian experience. *Arq Bras Cir Dig* 2013; **26**: 40-43 [PMID: 23702869 DOI: 10.1590/S0102-67202013000100009]

Li J, Girotti P, Königsrainer I, Ladurner R, Königsrainer A, Nadalin S. ALPPS in right trisectionectomy: a safe procedure to avoid postoperative liver failure? *J Gastrointest Surg* 2013; **17**: 956-961 [PMID: 23288719 DOI: 10.1007/s11605-012-2132-3]

Shindo H, Vauthney JN, Zimmitti G, Curley SA, Huang SY, Mahvash A, Gupta S, Wallace MJ, Aloia TA. Analysis of the efficacy of portal vein embolization for patients with extensive liver malignancy and very low future liver remnant volume, including a comparison with the associating liver partition with portal vein ligation for staged hepatectomy approach. *J Am Coll Surg* 2013; **217**: 126-133; discussion 133-134 [PMID: 23632095 DOI: 10.1016/j.jamcollsurg.2013.03.004]

de Santibañes E, Clavien PA. Playing Play-Doh to prevent postoperative liver failure: the «ALPPS» approach. *Ann Surg* 2012; **255**: 415-417 [PMID: 22330039 DOI: 10.1097/SLA.0b013e318248577d]

Iida T, Yagi S, Taniguchi K, Hori T, Uemoto S. Improvement of morphological changes after 70% heptectomy with portocaval shunt: preclinical study in porcine model. *J Surg Res* 2007; **143**: 238-246 [PMID: 18023647]

Wang H, Ohkoehchi N, Enomoto Y, Usuda M, Miyagi S, Masuoka H, Sekiguchi S, Kawagishi N, Fujimori K, Sato A, Satomi S. Effect of portocaval shunt on residual extreme small liver after extended heptectomy in porcine. *World J Surg* 2006; **30**: 204-2022; discussion 2023-2024 [PMID: 16927066 DOI: 10.1007/s00268-005-0249-4]

YamanaKA K, Hatae O, Iguchi K, Yamamoto G, Sato M, Torizuguchi K, Tanabe K, Takemoto K, Nakamura K, Koyama N, Narita M, Nagata H, Taura K, Uemoto S. Effect of olliprine on liver microstructure in rat partial liver transplantation. *J Surg Res* 2013; **183**: 391-396 [PMID: 23246009 DOI: 10.1016/j.jss.2012.11.033]

Golse N, Bucur PO, Adam R, Castaing D, Sa Cunha A, Vibert E. New paradigms in post-hepatectomy liver failure. *J Gastrointest Surg* 2013; **17**: 593-605 [PMID: 23161285 DOI: 10.1007/s11605-012-2048-6]

Xu X, Man K, Zheng SS, Liang TB, Lee TK, Ng KT, Fan ST, Lo CM. Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. *Liver Transpl* 2006; **12**: 621-627 [PMID: 16555322 DOI: 10.1002/lt.20630]

Siriussawakul A, Zaky A, Lang JD. Role of nitric oxide in hepatic ischemia-reperfusion injury. *World J Gastroenterol* 2010; **16**: 6079-6086 [PMID: 21182222 DOI: 10.3748/wjg.v16.i48.6079]

Papadimas GK, Tzirogiannis KN, Mykoniatis MG, Grypioti AD, Manta GA, Panoutsopoulos GI. The emerging role of serotonin in liver regeneration. *Swiss Med Wkly* 2012; **142**: w13548 [PMID: 22495635 DOI: 10.4414/smw.2012.13548]

am Esch JS, Schmelzle M, Fürst G, Robson SC, Krieg A, Duhme C, Tustas RV, Alexander A, Klein HM, Topp SA, Bode JC, Häussinger D, Eisenberger CF, Knoefel WT. Infiltration of CD133+ bone marrow-derived stem cells after selective portal vein embolization enhances functional hepatic reserves after extended right hepatectomy: a retrospective single-center study. *Ann Surg* 2012; **255**: 79-85 [PMID: 22156926 DOI: 10.1097/SLA.0b013e31823d7408]

Fürst G, Schulte am Esch J, Poll LW, Hosch SB, Fritz LB, Klein M, Godehardt E, Krieg A, Wecker B, Stoldt V, Stockschläder M, Eisenberger CF, Mödler U, Knoefel WT. Portal vein embolization and autologous CD133+ bone marrow stem cells for liver regeneration: initial experience. *Radiology* 2007; **243**: 171-179 [PMID: 17312278 DOI: 10.1148/radiol.2430106025]

P-Reviewers: De Nardi P, Eghtesad B, Smith RC
S-Editor: Ma YJ L-Editor: A E-Editor: Liu XM
