ON NON-COMMUTING SETS AND CENTRALIZERS IN INFINITE GROUP

MOHAMMAD ZARRIN

Abstract. A subset X of a group G is a set of pairwise non-commuting elements if $ab \neq ba$ for any two distinct elements a and b in X. If $|X| \geq |Y|$ for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements and the cardinality of such a subset is denoted by $\omega(G)$. In this paper, among other things, we prove that, for each positive integer n, there are only finitely many groups G, up to isoclinic, with $\omega(G) = n$ (with exactly n centralizers).

Keywords. Pairwise non-commuting elements of a group; Isoclinic groups; n-centralizers.

Mathematics Subject Classification (2000). 20D60; 20F99.

1. Introduction and results

Let G be a non-abelian group. We call a subset X of G a set of pairwise non-commuting elements if $ab \neq ba$ for any two distinct elements a and b in X. If $|X| \geq |Y|$ for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements and the cardinality of such a subset is called the clique number of G and it is denoted by $\omega(G)$. By a famous result of Neumann [10] answering a question of Erdos, we know that the finiteness of $\omega(G)$ in G is equivalent to the finiteness of the factor group $G/Z(G)$, where $Z(G)$ is the center of G. Moreover, Pyber [11] showed that $\omega(G)$ is also related to the index of the center of G. In fact, he proved that there is some constant c such that $[G : Z(G)] \leq c^{\omega(G)}$. The clique number of groups was investigated by many authors, for instance see [1, 6, 7].

It is easy to see that, if H is an arbitrary abelian group and G is a group with $\omega(G) = n$, then $\omega(G \times H) = n$. Therefore, there can be infinitely many groups K with $\omega(K) = n$. In this paper, by using a notion of isoclinic groups [9], first we show that the cardinality of maximal subset of pairwise non-commuting elements of any two isoclinic groups are that same (see Lemma 2.1 below). Next, by this result, we show that, for each positive integer n, there are only finitely many groups G, up to isoclinic, with $\omega(G) = n$. Clearly, the relation isoclinic is an equivalence relation on any family of groups and any two abelian groups are isoclinic.

Our main results are.

Theorem 1.1. Let n be a positive integer and G be an arbitrary group such that $\omega(G) = n$. Then

1. There are only finitely many groups H, up to isoclinic, with $\omega(H) = n$.\n
There exists a finite group K such that K is isoclinic to G and $\omega(G) = \omega(K)$.

By this results, we give a sufficient condition for solvability by its the cardinality of maximal subset of pairwise non-commuting elements.

Theorem 1.2. Every arbitrary group G with $\omega(G) \leq 20$ is solvable and this estimate is sharp.

For any group G, let $\mathcal{C}(G)$ denote the set of centralizers of G. We say that a group G has n centralizers (G is a C_n-group) if $|\mathcal{C}(G)| = n$. Finally, we obtain similar results for groups with a finite number n of centralizers (see Lemma 3.2, Theorem 3.3, Theorem 3.4 and also Theorem 3.5, below).

2. Pairwise non-commuting elements

For prove the main results, we need the following Lemma.

Two groups G and H are said to be isoclinic if there are isomorphisms $\varphi : G/Z(G) \to H/Z(H)$ and $\phi : G' \to H'$ such that

$$\text{if } \varphi(g_1Z(G)) = h_1Z(H)$$

and $\varphi(g_2Z(G)) = h_2Z(H)$,

then $\phi([g_1, g_2]) = [h_1, h_2]$.

This concept is weaker than isomorphism and was introduced by P. Hall [9] as a structurally motivated classification for finite groups. A stem group is defined as a group whose center is contained inside its derived subgroup. It is known that every group is isoclinic to a stem group and if we restrict to finite groups, a stem group has the minimum order among all groups isoclinic to it, see [9] for more details.

Lemma 2.1. For every two isoclinic groups G and H we have $\omega(G) = \omega(H)$.

Proof. Suppose that G and H are two isoclinic groups.

Therefore, according to P. Hall [9], there exist the commutator maps

$$\alpha : G/Z(G) \times G/Z(G) \to G', \quad (xZ(G), yZ(G)) \mapsto ([x, y])$$

and

$$\alpha' : H/Z(H) \times H/Z(H) \to H', \quad (xZ(H), yZ(H)) \mapsto ([x, y])$$

and also isomorphisms

$$\beta : G/Z(G) \to H/Z(H), \text{ and } \gamma : G' \to H'$$

such that

$$\alpha' (\beta \times \beta) = \gamma (\alpha)$$

where

$$\beta \times \beta : G/Z(G) \times G/Z(G) \to H/Z(H) \times H/Z(H).$$

Now assume that the set $X = \{x_1, x_2, \ldots, x_n\}$ is a a maximal subset of pairwise non-commuting elements of G. It follows that $x_iZ(G) \neq x_jZ(G)$ for all $1 \leq i < j \leq n$. Therefore there exist n elements $y_i \in H \setminus Z(H)$ such that $\beta(x_iZ(G)) = y_iZ(H)$.

For completes the proof it is enough to show that the set $Y = \{y_1, y_2, \ldots, y_n\}$ is a a subset of pairwise non-commuting elements of H. Suppose, on the contrary,
that there exist $y_i, y_j \in H$ for some $1 \leq i \neq j \leq n$, such that $[y_i, y_j] = 1$. Now, as mentioned above, we obtain that
\[
\alpha'(\beta \times \beta)((x_iZ(G), x_jZ(G))) = \gamma(\alpha)(x_iZ(G), x_jZ(G))
\]
and so $\alpha'(y_iZ(H), y_jZ(H)) = \gamma([x_i, x_j])$ and so $1 = [y_i, y_j] = \gamma([x_i, x_j])$. It follows that $[x_i, x_j] = 1$, a contradiction. Thus $\omega(G) = |X| = |Y| \leq \omega(H)$ and so $\omega(G) \leq \omega(H)$. Similarly, we get $\omega(H) \leq \omega(G)$ and this completes the proof. □

By the above Lemma we prove Theorem 1.1.

Proof of Theorem 1.1. (1) Assume that G is a group with $\omega(G) = n$. According to the Pyber [11], there is some constant c such that $[G : Z(G)] \leq \omega(G) \leq f(n)$. Therefore, by Schur’s Theorem, the derived subgroup G' is finite and also $|G'| \leq f(n)^{2f(n)^3}$. Therefore there are finitely many isomorphism types of $G/Z(G)$ and G' which are bounded above by a function of n. Therefore for every choice of $G/Z(G)$ and G', there are only finitely many commutator maps from $G/Z(G) \times G/Z(G)$ to G'. It follows, in view of Lemma 2.1 that G is determined by only finitely isoclinism types.

(2) As $\omega(G) = n$, by Pyber [11], G is a center-by-finite group. On the other hand, according to the main Theorem of P. Hall [9], p. 135), there exists a group K such that G is isoclinic to K and $Z(K) \leq [K, K] = K'$. It follows, as G is isoclinic to K, that K is center-by-finite and so, according to Schur’s Theorem, K' is finite. Therefore $Z(K)$ and $K/Z(K)$ are finite, so K is finite and so Lemma 2.1 completes the proof.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. Assume that G is a group with $\omega(G) \leq 20$. Then according to Theorem 1.1, there exists a finite group K such that G is isoclinic to K and $\omega(G) = \omega(K)$. Thus replacing G by the factor group $G/Z(G)$, it can be assumed without loss of generality that G is a finite group with $\omega(G) \leq 20$. But in this case the result follows from the main result of [8] (note that the alternating group of degree 5, A_5 is a group with $\omega(A_5) = 21$ and so the estimate is sharp).

3. Groups with a finite number of centralizers

It is now appropriate to consider groups with a finite number n of centralizers (C_n-groups), since there exist the interesting relations between centralizers and pairwise non-commuting elements. For instance, as mentioned in the introduction, the finiteness of $\omega(G)$ in G is equivalent to the finiteness of the factor group $G/Z(G)$. On the other hand, because of centralizers are subgroups containing the center of the group, the finiteness of the factor group $G/Z(G)$ follows that G has finite number of centralizers. Also if G has finite number of centralizers then it is easy to see that $\omega(G)$ is finite. Therefore we can summarize the latter results in the following theorem.

Theorem 3.1. For any group G, the following statements are equivalent.

(1) G has finitely many centralizers.
(2) G is a center-by-finite group.
(3) G has finitely many of pairwise non-commuting elements.
It is clear that a group is a C_1-group if and only if it is abelian. The class of C_n-groups was introduced by Belcastro and Sherman in [5] and investigated by many authors, for instance see [2] [3] [12] [13] [15].

As every group G with a finite number of centralizers is center-by-finite and so, by an argument similar to the one in the proof of Lemma 2.1 we will obtain the following result.

Lemma 3.2. For every two isoclinic groups G and H we have $|\mathcal{C}(G)| = |\mathcal{C}(H)|$.

Proof. Let x be an element of G and β is the isomorphism $\beta : G/Z(G) \rightarrow H/Z(H)$. Therefore there exists a subgroup K of H such that $\beta(C_G(x)/Z(G)) = K/H$. By an argument similar to the one in the proof of Lemma 2.1 we show that there exist an element $y \in K$ such that $K = C_H(y)$ and $yZ(H) = \beta(xZ(G))$. Now as the isomorphism β induces a bijection between the subgroups of G containing $Z(G)$ and the subgroups of H containing $Z(H)$ the result follows. \Box

Again, by an argument similar to the one in the proof of Theorems 1.1 we obtain the following result.

Theorem 3.3. Let n be a positive integer and G be an arbitrary C_n-group. Then

1. There are only finitely many groups H, up to isoclinic, with $|\mathcal{C}(H)| = n$;
2. There exists a finite group K such that K is isoclinic to G and $|\mathcal{C}(G)| = |\mathcal{C}(K)|$.

For any group G, it is easy to see that if $x, y \in G$ and $xy \neq yx$, then $C_G(x) \neq C_G(y)$, from which it follows easily that $1 + \omega(G) \leq |\mathcal{C}(G)|$ (note that $C_G(e) = G$, where e is the trivial element of G). Thus, by using Theorem 2.1, we generalize Theorem A of [14].

Theorem 3.4. Every arbitrary group G with $|\mathcal{C}(G)| \leq 20$ is solvable and this estimate is sharp.

Finally, by using Theorem 3.3 (Case (2)), we generalize the main results of [2] [3] [4] [5] for infinite groups, as follows:

Theorem 3.5. Let G be an arbitrary C_n-group. Then

1. $G/Z(G) \cong C_2 \times C_2$ if and only if $n = 4$.
2. $G/Z(G) \cong C_3 \times C_3$ or S_3 if and only if $n = 5$.
3. $G/Z(G) \cong D_8$, A_4, $C_2 \times C_2 \times C_2$ or $C_2 \times C_2 \times C_2 \times C_2$ whenever $n = 6$.
4. $G/Z(G) \cong C_5 \times C_5$, D_{10} or $\langle x, y | x^5 = y^4 = 1, xy = x^3 \rangle$ if and only if $n = 7$.
5. $G/Z(G) \cong C_2 \times C_2 \times C_2$, A_4 or D_{12} whenever $n = 8$.

Proof. For prove it is enough to note that there exists a finite C_n-group K such that K is isoclinic to G so $G/Z(G) \cong K/Z(K)$ and so the result follows from the main results in [2] [3] [4] [5]. \Box

References

[1] A. Abdollahi, A. Azad, A. Mohammadi Hassanabadi and M. Zarrin, On the Clique Numbers of Non-commuting Graphs of Certain Groups, Algebra Colloq. 17 (2010), 611-620.

[2] A. Abdollahi, S. M. Jafarian Amiri and A. Mohammadi Hassanabadi, Groups with specific number of centralizers, Houston J. Math. 33 (2007), 43-57.

[3] A.R. Ashrafi, On finite groups with a given number of centralizers, Algebra Colloq. 7 (2000), 139-146.
[4] A.R. Ashrafi, Counting the centralizers of some finite groups, Korean J. Comput. Appl. Math. 7 (2000), No.1, 115-124.
[5] S.M. Belcastro and G.J. Sherman, Counting centralizers in finite groups, Math. Mag. 5 (1994), 111-114.
[6] E.A. Bertram, Some applications of graph theory to finite groups, Discrete Math. 44 (1983), 31-43.
[7] A.Y.M. Chin, On non-commuting sets in an extraspecial p-group, J. Group Theory 8 (2005), 189-194.
[8] G. Endimioni, Groupes finis satisfaisant la condition $(N; n)$, C. R. Acad. Sci. Paris (Ser. I) 319 (1994) 1245-1247.
[9] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 182 (1940), 130-141.
[10] B.H. Neumann, A problem of Paul Erdos on groups, J. Aust. Math. Soc. Ser. A 21 (1976), 467-472.
[11] L. Pyber, The number of pairwise non-commuting elements and the index of the centre in a finite group, J. London Math. Soc. 35(2) (1987), 287-295.
[12] M. Zarrin, Criteria for the solubility of finite groups by its centralizers, Arch. Math. (Basel) 96 (2011), 225-226.
[13] M. Zarrin, Derived length and centralizers of groups, J. Algebra Appl., to appear.
[14] M. Zarrin, On solubility of groups with finitely many centralizers, Bull. Iran. Math. Soc. 39 (2013), 517-521.
[15] M. Zarrin, On element-centralizers in finite groups, Arch. Math. (Basel) 93 (2009), 497-503.

Department of Mathematics, University of Kurdistan, P.O. Box: 416, Sanandaj, Iran
E-mail address: m.zarrin@uok.ac.ir, zarrin@ipm.ir