Schwarzschild geometry emerging from matrix models

Daniel N Blaschke and Harold Steinacker

Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
E-mail: daniel.blaschke@univie.ac.at and harold.steinacker@univie.ac.at

Received 18 May 2010, in final form 9 July 2010
Published 9 August 2010
Online at stacks.iop.org/CQG/27/185020

Abstract
We demonstrate how various geometries can emerge from Yang–Mills-type matrix models with branes, and consider the examples of Schwarzschild and Reissner–Nordström geometries. We provide an explicit embedding of these branes in $\mathbb{R}^{2,5}$ and $\mathbb{R}^{4,6}$, as well as an appropriate Poisson resp. symplectic structure which determines the non-commutativity of spacetime. The embedding is asymptotically flat with the asymptotically constant $\theta_{\mu\nu}$ for large r, and therefore suitable for a generalization to many-body configurations. This is an illustration of our previous work (Blaschke and Steinacker 2010 Class. Quantum Grav. 27 165010 (arXiv:1003.4132)), where we have shown how the Einstein–Hilbert action can be realized within such matrix models.

PACS numbers: 02.40.Gh, 04.50.Kd, 11.10.Nx

1. Background and introduction
It has been argued in numerous publications that combining the basic aspects of quantum mechanics and general relativity strongly suggests a quantum structure of spacetime itself near the Planck scale—see for example [2]. One approach to realize this idea is to replace classical spacetime by a quantized, or non-commutative (NC), spacetime. The coordinate functions x^μ are promoted to the Hermitian operators X^μ acting on a Hilbert space \mathcal{H}, which satisfy certain non-trivial commutation relations
\[[X^\mu, X^\nu] = i\theta^{\mu\nu}. \] (1)

In the simplest case one may consider a Heisenberg algebra, corresponding to a constant $\theta^{\mu\nu}$ which commutes with X^μ. This has been studied extensively in the past (cf [3–5] for a review of such ‘NC’ field theories). However, in the context of gravity it seems essential that this commutator $\theta^{\mu\nu}$ becomes dynamical. Indeed, semi-classically it determines a Poisson structure on spacetime, as we will discuss below.

It has been shown previously [6–8] that matrix models of Yang–Mills type naturally realize this idea, and incorporate at least some version of (quantized) gravity; see [9] for a review. Hence we start our discussion with the matrix model action
\[S_{\text{YM}} = -\text{Tr}[X^a, X^b][X^c, X^d]\eta_{ac}\eta_{bd}, \] (2)
where η_{ab} denotes the (flat) metric of a D-dimensional embedding space, with arbitrary signature. The ‘covariant coordinates’ X^a are Hermitian matrices, resp. operators acting on a Hilbert space \mathcal{H}. It was shown in [10] that if one considers some of the coordinates to be the functions of the remaining ones such that $X^a \sim x^a = (x^\mu, \varphi^i(x^\mu))$ in the semi-classical limit, one can interpret x^a as defining the embedding of a $2n$-dimensional submanifold $\mathcal{M}^{2n} \hookrightarrow \mathbb{R}^D$ equipped with a non-trivial induced metric

$$g_{\mu\nu}(x) = \partial_\mu x^a \partial_\nu x^b \eta_{ab},$$

via pullback of η_{ab}. In the present case we consider this submanifold to be a four-dimensional spacetime \mathcal{M}^4, and following [10] we can interpret $[X^\mu, X^\nu] \sim i \theta^{\mu\nu}(x)$

as a Poisson structure on \mathcal{M}^4. Furthermore, we assume that $\theta^{\mu\nu}$ is non-degenerate, so that its inverse matrix $\theta^{-1}_{\mu\nu}$ defines a symplectic form

$$\Theta = \theta^{-1}_{\mu\nu} d x^\mu \wedge d x^\nu$$
on \mathcal{M}^4.

The essential point is now that the Poisson structure $\theta^{\mu\nu}$ and the induced metric $g_{\mu\nu}$ combine to the effective metric

$$G^{\mu\nu} = e^{-\sigma} \theta^{\mu\rho} \theta^{\nu\sigma} g_{\rho\sigma}, \quad e^{-\sigma} \equiv \frac{\sqrt{\det \theta^{-1}_{\mu\nu}}}{\sqrt{\det G_{\rho\sigma}}}.\tag{5}$$

It is, in fact, this effective metric $G_{\mu\nu}$ which is ‘seen’ by matter [6] (i.e. scalar fields, gauge fields and fermions possibly up to conformal factors), and which therefore must be interpreted in terms of gravity. In the present work, we restrict ourselves to the special case of $G_{\mu\nu} = g_{\mu\nu}$ in a four-dimensional spacetime \mathcal{M}^4. It is easy to see that this is equivalent to $\theta^{-1}_{\mu\nu}$ being (anti)self-dual, by which in the case of the Minkowski signature we mean $\ast g \Theta = \pm i \Theta$. This requires that $\theta^{\mu\nu}$ is complexified, as discussed in section 2.2. The Yang–Mills action (2) then reduces in the semi-classical limit to

$$S_{YM} = - \text{Tr}[X^a, X^b][X^c, X^d] \eta_{ac} \eta_{bd} \sim 4 \int \sqrt{g},$$

which in general relativity (GR) is interpreted as cosmological constant. We also recall that (2) leads to the following equation of motion for $\theta^{\mu\nu}$:

$$\nabla^\sigma (e^\sigma \eta^{-1}_{\nu\mu}) = G_{\mu\rho} \theta^{\rho\sigma} \partial_\sigma \eta, \quad \eta \equiv \frac{e^\sigma}{4} G^{\mu\nu} g_{\mu\nu} = \left|_{G=g} \right. e^\sigma.\tag{7}$$

This equation holds identically for $G_{\mu\nu} = g_{\mu\nu}$, i.e. for self-dual $\theta^{\mu\nu}$, and is therefore not restricted to model (2).

Einstein–Hilbert action. In a previous paper [1], we have shown that the following combination of higher order terms in the matrix model semi-classically leads to the Einstein–Hilbert type of action:

$$S_{E-H} = \text{Tr}(2T^{ab} \Box X^a \Box X^b - T^{ab} \Box H_{ab}) \sim -2 \int \sqrt{g} e^{2\sigma} R[g],$$

where

$$T^{ab} = \frac{1}{2} [[X^a, X^c], [X^b, X^c]]_s = \frac{1}{2} \eta^{ab} [X^c, X^d][X_c, X_d],$$

$$H_{ab} = \frac{1}{2} [[X^a, X^c], [X^b, X^c]]_s,$$

$$\Box Y \equiv [X^a, [X_a, Y]].\tag{9}$$

The Latin indices are pulled down with the (flat) background metric η_{ab} (i.e. $X_a = \eta_{ab} X^b$), and $R[g]$ denotes the Ricci scalar with respect to the metric $G = g$ of the submanifold \mathcal{M}^4. Such actions can be added by hand, but they will also arise upon quantization of the Yang–Mills
matrix model (2). It was argued in [1] that the factor \(e^{2\sigma} \) sets the scale and introduces the gravitational constant \(G \).

Under reasonable conditions (such as global hyperbolicity), every four-dimensional manifold can be equipped with a self-dual (complexified) symplectic form \(\Theta \). Then the classical embedding theorems [11, 12] imply that one can realize every four-dimensional geometry as semi-classical configuration in the matrix model with \(g_{\mu\nu} = G_{\mu\nu} \). In the present paper, we illustrate this general fact by providing an explicit construction of the most important solution: the Schwarzschild geometry. Subsequently, we also construct Reissner–Nordström (RN) geometry by following the same steps.

There are several possible actions which extend (8) beyond the case \(g = G \) and which may imply different equations for \(\theta^{\mu\nu} \) and for \(e^\sigma \). We therefore restrict ourselves to the construction of geometries which are solutions to GR, equipped with self-dual \(\theta^{\mu\nu} \). We do not check here in detail whether the above action (8) admits these spaces with self-dual \(\theta^{\mu\nu} \) as solutions. Indeed additional terms in the action should be expected, leading e.g. to a potential for \(\sigma \) and possibly to deviations from \(\theta^{\mu\nu} \) being self-dual. The point of this paper is not to present final answers but to illustrate how geometries such as Schwarzschild are expected to arise within this class of matrix models. In the same vein, we will also assume that the Yang–Mills resp. vacuum energy term (6) is negligible compared with the Einstein–Hilbert action (8), thus setting the cosmological constant to zero. There are several intriguing hints that the role of vacuum energy in this framework may be different than in GR [9].

Furthermore, we only consider the semi-classical limit of the matrix model in the present paper. Thus we will recover precisely the Schwarzschild geometry (resp. RN geometry), and the central singularity will be reflected by an embedding which escapes to infinity as one approaches the center. Of course, the main appeal for this framework compared with other descriptions of gravity is the fact that it goes beyond the classical concepts of geometry. Spacetime is not put in by hand but emerges, realized as NC space with an effective geometry, along with gauge fields and matter. Hence one should expect that NC modifications become important as one approaches the singularity. However, this requires to go beyond the semi-classical approximations of this paper, which we will indicate by briefly discussing higher order terms in the star product in appendix B.

Finally, we want to emphasize that the actions under consideration are expected to arise upon quantization of Yang–Mills matrix models, such as the IKKT model [13]. In particular the latter model is a promising candidate for a quantum theory of fundamental interactions including gravity. Of course, much more work remains to be done in order to fully understand this class of models.

2. The Schwarzschild geometry

We now show how the most important solution of GR can emerge from the class of extended matrix model action presented in the previous section: the Schwarzschild geometry. We will restrict ourselves to the semi-classical limit here; however, a possible way to obtain higher order corrections in \(\theta^{\mu\nu} \) is discussed in appendix B.

2.1. Embedding of Schwarzschild geometry

Our construction involves two steps:

1. the choice of a suitable embedding \(\mathcal{M}^4 \subset \mathbb{R}^D \) such that the induced geometry on \(\mathcal{M}^4 \) given by \(g_{\mu\nu} \) is the Schwarzschild metric, and
2. a suitable non-degenerate Poisson structure on \mathcal{M}^4 which solves the e.o.m. $\nabla^\mu \theta^{-1}_{\mu\nu} = 0$ for the self-dual symplectic form θ.

Both steps are far from unique a priori. However, the freedom is considerably reduced by requiring that the solution should be a ‘local perturbation’ of an asymptotically flat (or nearly flat) ‘cosmological’ background. This is clear on physical grounds, having in mind the geometry near a star in some larger cosmological context: it must be possible to approximately ‘superimpose’ our solution, allowing e.g. for systems of stars and galaxies in a natural way. This eliminates the well-known embeddings of the Schwarzschild geometry in the literature [14–16], which are highly non-trivial for large r and cannot be superimposed in any obvious way. In fact we require that the embedding is asymptotically harmonic $\Box \lambda^a \rightarrow 0$ for $r \rightarrow \infty$, in view of the fact that there may be terms in the matrix model which depend on the extrinsic geometry, and which typically single out such harmonic embeddings\(^1\).

Furthermore, we insist that $\theta^{\mu\nu}$ be non-degenerate, and $\theta^{\mu\nu} \rightarrow \text{const.} \neq 0$ as $r \rightarrow \infty$. This is again motivated by the requirement that physics at large distances should not be affected by a localized mass. In particular, e^σ defines essentially the scale of non-commutativity, and certainly enters in some way e.g. the physics of elementary particles (in fact, e^σ determines the strength of the gauge coupling in the matrix model [6, 10]). Therefore, e^σ should be asymptotically constant and non-vanishing. This is an important difference to previous proposals for a NC Schwarzschild geometry (see in particular [18, 19] and references therein), where the Poisson structure is degenerate and/or not asymptotically constant. Hence $\theta^{\mu\nu}$ will be viewed as some cosmological background field which is locally perturbed by a mass. Recall that such a background is essentially invisible, since there are no fields in the matrix model which are charged under the corresponding $U(1)$. It enters the effective actions only through the gravitational metric $G_{\mu\nu}$.

Note that these boundary conditions for $\theta^{\mu\nu}$ are not in conflict with the idea that $\theta^{\mu\nu}$ may be locally fluctuating and should perhaps be averaged over or integrated out. We will discuss this possibility further below.

In order to obtain an appropriate embedding, keeping in mind the conditions we have just discussed, we consider Eddington–Finkelstein coordinates and define

$$t = t_S + (r^* - r), \quad r^* = r + r_c \ln \left| \frac{r}{r_c} - 1 \right|, \quad (10)$$

where t_S denotes the usual Schwarzschild time, r_c is the horizon of the Schwarzschild black hole and r^* is the well-known tortoise coordinate. The metric in the Eddington–Finkelstein coordinates $\{t, r, \vartheta, \varphi\}$ is

$$ds^2 = -\left(1 - \frac{r_c}{r}\right) dt^2 + \frac{2r_c}{r} dt dr + \left(1 + \frac{r_c}{r}\right) dr^2 + r^2 d\Omega^2 \quad (11)$$

which is asymptotically flat for large r, and manifestly regular at the horizon r_c. Thus, we only need to find a good embedding of this metric. To reproduce the mixed term, consider first

$$\phi_1 + i \phi_2 \equiv h(r)e^{i(x + y(r))}, \quad (12)$$

which satisfies

$$\partial_\vartheta \phi^i \partial_\vartheta \phi^i = \omega^2 h^2, \quad (13)$$

$$\partial_\vartheta \phi^i \partial_\vartheta \phi^i = \omega g^2 h^2, \quad (13)$$

$$\partial_\vartheta \phi^i \partial_\vartheta \phi^i = g^2 h^2 + h/2.$$

\(^1\) This can hold only asymptotically, since Ricci-flat geometries can in general not be embedded harmonically [17].
So we demand
\[\omega g' h^2 = \frac{r_c}{r} = \omega^2 h^2, \tag{14} \]
which is satisfied for
\[h(r) = \frac{1}{\omega} \sqrt{\frac{r_c}{r}}, \quad g(r) = \omega r. \tag{15} \]
Furthermore, since \(g'^2 h^2 = \omega g' h^2 = \frac{r_c}{r} \), we need to cancel the \(h'^2 \) term in equation (13) above. Hence, we need another coordinate
\[\phi_3 = h(r), \tag{16} \]
with time-like embedding. So we have
\[\phi_1 + i \phi_2 = \phi_3 e^{i \omega(t + r)} \]
and the embedding of \(M^4 \subset \mathbb{R}^7 \) is given by
\[x^a = \begin{pmatrix} t \\ \frac{1}{\omega} \sqrt{r_c} \cos (\omega(t + r)) \\ \frac{1}{\omega} \sqrt{r_c} \sin (\omega(t + r)) \\ \frac{1}{\omega} \sqrt{r_c} \cos \varphi \sin \theta \\ \frac{1}{\omega} \sqrt{r_c} \sin \varphi \sin \theta \\ \frac{1}{\omega} \sqrt{r_c} \cos \varphi \cos \theta \end{pmatrix}, \tag{18} \]
(i.e. we consider \(D = 7 \) in this example). Together with the background metric
\[\eta_{ab} = \text{diag}(-, +, +, +, +, +, -), \tag{19} \]
this induces precisely the Eddington–Finkelstein metric (11) above.

Before we proceed to determine the symplectic form, let us take a closer look at the properties of this embedding. First, note that \(\omega \) (appearing in the \(\phi_3 \)) does not enter the effective four-dimensional metric, i.e. it is ‘hidden’ in the three extra dimensions. Furthermore, we must emphasize that \(\phi_3 \) is an additional time-like direction. Asymptotically, i.e. for \(r \to \infty \), equation (18) describes flat four-dimensional Minkowski space where the extra dimensions \(\phi_i \sim \frac{1}{r} \) become infinitesimally small. On the other hand, when one approaches the singularity of the Schwarzschild black hole at \(r = 0 \), these extra dimensions blow up and become arbitrarily large. In particular, note that then \(\phi_3 \) should be interpreted as asymptotic time (which is unbounded), i.e.
\[T := \phi_3, \quad r = r_c \frac{1}{\omega^2 T^2}, \tag{20} \]
so that
\[x^a = \begin{pmatrix} x^0 \\ x^i \\ \phi_1 + i \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} t \\ r_c \frac{1}{\omega T^2} \sin \varphi \sin \theta \cos \varphi \cos \theta \\ r_c \frac{1}{\omega T^2} \sin \varphi \sin \theta \cos \varphi \sin \theta \\ r_c \frac{1}{\omega T^2} \cos \varphi \sin \theta \cos \varphi \cos \theta \end{pmatrix}, \tag{21} \]
Figure 1. Embedded Schwarzschild black hole. On the top, a schematic view of the outer region of the Schwarzschild black hole is shown. After passing through the horizon $r = r_c$, the extra dimensions ϕ_i 'blow up' in a cone-like manner. As indicated in the lower half of this figure, every point of the cone is in fact a sphere whose radius r becomes smaller toward the bottom of the cone (i.e. $T \propto 1/\sqrt{r}$). The twisted vertical lines drawn in the cone are the lines of equal time t.

(This figure is in colour only in the electronic version)

for large T. This is a helicoid-like (cone-like) geometry in $\{T, t\}$ with (increasing) radius T and t playing the role of the angle variable, times a contracting sphere of the radius $1/T$. The geometry of the submanifold $M^{1,3} \subset \mathbb{R}^{2,5}$ is completely regular, and the central singularity is reflected by an embedding which escapes to infinity. Near this singularity, the geometry is effectively two dimensional. An illustration is given in figure 1.

Of course, quantum effects will play a major role near $r = 0$. This implies that the semi-classical approximation we are currently considering will break down in the vicinity of that region. We expect that these NC effects will regularize the would-be singularity. For example, the contracting sphere of the radius $1/T$ may become fuzzy [20], so that for large T the present geometry could become effectively two dimensional with an extra-dimensional fuzzy sphere.

In order to understand the meaning of the extra dimensions ϕ_i at large distances $r \rightarrow \infty$ from the Schwarzschild black hole, it is instructive to consider the following modification resp. higher dimensional extension of the Schwarzschild geometry. Consider the six-dimensional space $\mathbb{R}^4 \times \text{AdS}^2 \subset \mathbb{R}^7$ defined by

$$\phi_1^2 + \phi_2^2 - \phi_3^2 = R^2. \quad (22)$$

Here the ϕ_i describe an AdS2 space embedded in \mathbb{R}^3, which can be parametrized as

$$\phi_1 + i\phi_2 = \sqrt{\phi_3^2 + R^2 e^{i\omega u}},$$
$$\phi_3 = \phi_3. \quad (23)$$
The Schwarzschild manifold described above is then recovered by setting
\[u = t + r, \quad \phi_3 = \frac{1}{\omega} \sqrt{\frac{r_c}{r}} \quad \text{and} \quad R = 0, \] (24)
while \(R \neq 0 \) corresponds to a modification of the Schwarzschild geometry. The length element of \(\text{AdS}^2 \subset \mathbb{R}^3 \) is given by
\[ds^2 = d\phi_3^2 + d\phi_3^2 - d\phi_3^2 = \omega^2 \left(\phi_3^2 + R^2 \right) du^2 - \frac{R^2}{\phi_3^2 + R^2} d\phi_3^2. \] (25)

Note that there is no contribution from the time-like coordinate \(d\phi_3^2 \) for \(R = 0 \) since it is embedded in a null direction. The metric on \(\text{AdS}^2 \) then becomes degenerate and space-like, with very small radius as \(r \to \infty \). Hence, this extra \(\text{AdS}^2 \) can be interpreted as physical extra dimension which naturally becomes 'invisible' for large \(r \), i.e. far away from the Schwarzschild black hole. The point is that such an \(\text{AdS}^2 \) could arise naturally in matrix models similar to fuzzy spheres, and may play an interesting physical role, cf [21–24].

2.2. Symplectic form

As mentioned in the introduction we consider the simple class of self-dual geometries where the effective metric \(G_{\mu\nu} \) equals the induced metric \(g_{\mu\nu} \). Hence we need to find an (anti)self-dual symplectic form \(\Theta \) so that
\[G_{\mu\nu} = e^\sigma \theta^{\mu\rho} \theta^{\nu\sigma} g_{\rho\sigma} = g^{\mu\nu}. \] (26)

At this point, we recall that
\[J_{\eta\gamma} = e^{-\sigma/2} \theta^{\gamma\rho} g^{\eta\rho} \] (27)
satisfies
\[J^2 = -1 \iff \star \Theta = \pm i \Theta \iff g_{\mu\nu} = G_{\mu\nu}, \] (28)
so that we are dealing with an almost complex manifold. Moreover, the symplectic structure is necessarily complexified in a way which is determined by \(J^2 = -1 \). Thus the last relation specifies the 'real form' of \(\theta^{\mu\nu} \).

Furthermore, we require \(\Theta = \theta_{\mu\nu} dx^\mu \wedge dx^\nu \) to lead to an asymptotically constant \(e^{-\sigma} \) since, as mentioned previously, we would like to describe everything as a local perturbation of flat Moyal space. To be more specific, we demand
\[\lim_{r \to \infty} e^{-\sigma} = \text{const.} \neq 0. \] (29)

In order to find such a symplectic form \(\Theta \), we consider the following: the Schwarzschild metric has two Killing vector fields \(V_t = \partial_t \) and \(V_\varphi = \partial_\varphi \). Hence, in Schwarzschild coordinates this leads to the ansatz
\[\Theta = i \Theta_E + \Theta_B = i E \wedge dS + \Theta_B, \]
\[E = i V_t \Theta_E = E_t dr + E_\vartheta d\vartheta + E_\varphi d\varphi, \]
\[\Theta_B = B_t d\vartheta \wedge d\varphi + B_\vartheta dr \wedge d\varphi + B_\varphi d\vartheta \wedge dr = \star \Theta_E, \] (30)
which implements self-duality, i.e.
\[\star \Theta = i \Theta, \] (31)
\[^2 \text{In the case of the general geometries } g_{\mu\nu} \neq G_{\mu\nu} \text{ this is replaced by a quartic relation for } J [25]. \]
supplemented by the conditions

\[\mathcal{L}_{V_t} \Theta = 0, \]
\[\mathcal{L}_{V_\phi} \Theta = 0. \]

(32)

A solution which satisfies the required asymptotics (29) is then given by

\[E = c_1 \left(\cos \vartheta dr - r \left(1 - \frac{r_c}{r} \right) \sin \vartheta d\vartheta \right) = d(f(r) \cos \vartheta), \]
\[B = c_1 (r^2 \sin \vartheta \cos \vartheta d\vartheta + r \sin^2 \vartheta dr) = \frac{c_1}{2} d(r^2 \sin^2 \vartheta), \]
\[\Theta = iE \wedge dt_S + B \wedge d\varphi, \]

with \(f(r) = c_1 r \left(1 - \frac{r_c}{r} \right), \quad f' = c_1 \) const.,

from which one finds

\[e^{-\sigma} = c_1^2 \left(1 - \frac{r_c}{r} \sin^2 \vartheta \right). \]

(34)

Details of the computation are given in appendix A. This can be interpreted as a (complexified) electromagnetic field with asymptotically constant fields \(E, B \) pointing in the \(z \) direction, and \(e^{-\sigma} \) is indeed asymptotically constant. Other solutions are of course obtained by acting with the rotation group on the asymptotic \(E \) resp. \(B \) field.

Note in particular that we have obtained the metric-compatible Darboux coordinates (resp. Hamiltonian reduction) \(x^\mu_D = \{ H_{ts}, t_S, H_\varphi, \varphi \} \) corresponding to \(V_{ts}, V_\varphi \) where the symplectic form is constant:

\[\Theta = ic_1 dH_{ts} \wedge dt_S + c_1 dH_\varphi \wedge d\varphi, \]
\[= c_1 d(H_{ts} dt_S + H_\varphi d\varphi), \]
\[H_{ts} = r \cos \vartheta \left(1 - \frac{r_c}{r} \right), \quad H_\varphi = \frac{1}{2} r^2 \sin^2 \vartheta. \]

(35)

The Schwarzschild metric in Darboux coordinates reads

\[ds^2 = - \left(1 - \frac{r_c}{r} \right) dt_S^2 + \frac{e^{\sigma}}{\left(1 - \frac{r_c}{r} \right)} dH_{ts}^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^{\sigma}}{r^2 \sin^2 \vartheta} dH_\varphi^2, \]

(36)

with \(e^{\sigma} = c_1^2 e^{\sigma} = \left(1 - \frac{r_c}{r} \sin^2 \vartheta \right)^{-1} \). Note that no \(dH_{ts} dH_\varphi \)-term appears, i.e. the two Darboux blocks do not mix. The relations to the Killing vector fields are

\[E = c_1 dH_{ts} = c_1 E_\mu dx^\mu = i_{V_{ts}} \Theta, \quad E_\mu = V_{\mu}^{-1} \theta_{\mu}, \]
\[B = c_1 dH_\varphi = c_1 B_\mu dx^\mu = i_{V_\varphi} \Theta, \quad B_\mu = V_\varphi^{-1} \theta_{\mu}, \]

(37)

(cf equation (33) above). In order to obtain the Poisson brackets between the Cartesian matrix coordinates, we will transform \(t_S \) to the Eddington–Finkelstein time \(t \) and invert it so as to derive \(\theta^\mu \). Subsequently, we will extend the \(\theta \)-matrix to the seven-dimensional embedding space of equation (18) as that will provide us with the leading-order commutator relations between the coordinates, i.e. \([X^a, X^b] \sim i \theta^{ab}\). As shown in appendix B, this leads to the following semi-classical commutation relations for the seven-dimensional coordinates
the four-dimensional submanifold M.

This defines a Poisson structure on (35). Since in these coordinates the Poisson structure is constant, we can easily define a Moyal-type star product \[\{ g, h \} = g(xD) e^{-\gamma} \{ \theta_\mu^\nu \} h(xD), \] (40)

with

\[
\theta_\mu^\nu = e^{2\sigma} - \frac{\varepsilon}{\gamma^2} = e^{2\sigma} - \frac{\varepsilon}{\gamma^2}.
\]

This defines a Poisson structure on M^4, but it could also be viewed as a Poisson structure on the six-dimensional space defined by $\phi_1^2 + \phi_2^2 = \phi_3^2$ which admits M^4 as symplectic leaf. As a consistency check, the interested reader may verify that relation (26) is indeed fulfilled (on the four-dimensional submanifold M^4), and that the Jacobi identity holds as well.

2.3. Star product

So far, we have worked only in the semi-classical limit. In order to see some effects of the spacetime quantization, we may for instance compute the next-to-leading order commutation relations. For this purpose, recall the Darboux coordinates $x_D^\mu = (t, H_1, \phi, H_3)$ we derived in (35). Since in these coordinates the Poisson structure θ_μ^ν (of the four-dimensional submanifold M^4) is constant, we can easily define a Moyal-type star product \[[g, h] = g(x_D) e^{-\gamma} \{ \theta_\mu^\nu \} h(x_D), \] (38)

with

\[
f_{ij}^\pm (r_c) = \left(\frac{\gamma}{2r} \phi_i \pm \omega \phi_j \right).
\]

\[
y = \left(1 - \frac{r}{r_c} \right),
\]

\[
e^{-\sigma} = \frac{e^{-\sigma}}{c_1^2} = e^{2\sigma}.
\]

where $\varepsilon = 1/c_1 \ll 1$ denotes the expansion parameter. In order to derive a star product in terms of the Cartesian coordinates $x^\mu = (t, x, y, z)$, all we need is the coordinate transformation (B.3) of appendix B leading to

\[
(g \star h)(x_D) = g(x_D) e^{-\gamma} \{ \theta_\mu^\nu \} h(x_D),
\]

(41)
compute next-to-leading order contributions to the commutation relations (38). Some of the
relations can be computed to all orders\(^3\), i.e.
\[
\begin{align*}
[\tau \ast z] &= \epsilon e^{\tilde{z}}, \quad [x \ast y] = i\epsilon,
\tau \ast \phi_3 &= -\epsilon e^{\frac{2\tilde{z}\phi_3}{2r^2}}, \quad [z \ast \phi_3] = 0,
\end{align*}
\]
while the others receive corrections—see equations (B.5)–(B.10) in appendix B for the full
expressions. Hence, also the embedding constraint \(\phi_1^2 + \phi_2^2 = \phi_3^2\) is modified under the star
product, i.e. we have
\[
\begin{align*}
\frac{1}{2} [\phi_1 + i\phi_2 \ast \phi_1 - i\phi_2], = \phi_1 \ast \phi_1 + \phi_2 \ast \phi_2
&= \phi_3^2 + \epsilon^2 \phi_3^2 \frac{\tilde{z}^2}{8r^2} \left(1 - 3\frac{\epsilon^2 z^2}{r^2}\right) + \mathcal{O}(\epsilon^4),
\end{align*}
\]
while \(\phi_3 \ast \phi_3 = \phi_3^2\) to all orders. This could be interpreted as NC correction to the embedding
geometry.

3. The Reissner–Nordström geometry

In this section, we continue by presenting the semi-classical quantization of another geometry:
the RN geometry.

3.1. Embedding of the geometry

We start by considering the usual RN metric in the spherical coordinates \(x^\mu = \{t, r, \vartheta, \varphi\}\):
\[
d s^2 = -\left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right) d\tilde{t}^2 + \frac{1}{\left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right)} dr^2 + r^2 d\Omega,
\]
where \(m\) denotes the mass and \(q\) is the charge of the black hole. This geometry has two
concentric horizons at
\[
r_h = (m \pm \sqrt{m^2 - q^2}),
\]
and in the following, we assume that \(q^2 < m^2\). In order to transform this metric into
coordinates which are similar to Eddington–Finkelstein, we consider radial null geodesics.
These are given by
\[
\begin{align*}
0 &= -\left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right) \left(d\tilde{t}^2 - \frac{1}{\left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right)} dr^2\right)
&= -\left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right) (d\tilde{t}^2 - (d\tilde{r})^2),
\end{align*}
\]
\(^3\) It is also interesting to note that the quantities \(\{z, \phi_3, H_\vartheta\}\), where
\[
H_\vartheta = \frac{1}{2}[x_+, x_-] = \frac{1}{2}(s^2 + y^2) = \frac{1}{4}[x_+, x_-]_s, \quad x_s = x \pm iy,
\]
commute with each other to all orders in \(\epsilon\).
defining the tortoise-like coordinate r^*. The in and outgoing geodesics are $V = \tilde{t} + r^*$ and $U = \tilde{t} - r^*$, respectively. Explicitly, we have

$$r^* = r + m \ln |r^2 - 2mr + q^2| + \frac{2m^2 - q^2}{2\sqrt{m^2 - q^2}} \ln \left| \frac{\sqrt{m^2 - q^2} - (r - m)}{\sqrt{m^2 - q^2} + (r - m)} \right|. \tag{48}$$

As in the Schwarzschild case, we use this coordinate to shift the time coordinate according to

$$t = \tilde{t} + (r^* - r), \tag{49}$$

and arrive at the transformed RN metric

$$ds^2 = -\left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right)dt^2 + 2\left(\frac{2m}{r} - \frac{q^2}{r^2}\right)drd\Omega + \left(1 + \frac{2m}{r} - \frac{q^2}{r^2}\right)d\Omega^2. \tag{50}$$

Observe that metric (50) has exactly the same form as the Eddington–Finkelstein metric (11) of Schwarzschild geometry, but with the replacement

$$r_c \rightarrow \frac{2m}{r} - \frac{q^2}{r^2}. \tag{51}$$

Hence, motivated by the Schwarzschild geometry case, we can use the ten-dimensional embedding $M_{1,3} \hookrightarrow \mathbb{R}^{4,6}$ with the additional coordinates ϕ_i given by

$$\phi_1 + i\phi_2 = \phi_3 e^{i\omega t(r^*)}, \quad \phi_3 = \frac{1}{\omega} \sqrt{\frac{2m}{r}},$$
$$\phi_4 + i\phi_5 = \phi_6 e^{i\omega t(r^*)}, \quad \phi_6 = \frac{q}{\omega r}. \tag{52}$$

Note that ϕ_3, ϕ_4 and ϕ_5 are the time-like coordinates, i.e. we consider the background metric

$$\eta_{ab} = \text{diag}(-, +, +, +, +, +, - , - , - , +). \tag{53}$$

As in the previous case, ω does not enter the induced metric (50), but is hidden in the extra dimensions ϕ_i. For $r \to \infty$, the ϕ_i become infinitesimally small and hence asymptotically, the four-dimensional subspace becomes flat Minkowski spacetime.

A general remark on these embeddings and the signature of \mathbb{R}^D is in order. As discussed in [9], ten-dimensional embedding spaces \mathbb{R}^{10} are strongly preferred from the point of view of quantization, and indeed it is known [12] that all four-dimensional analytic metrics can be (locally) realized as embeddings in \mathbb{R}^{10} with suitable signature [12]. Clearly, our embedding (18) of the Schwarzschild geometry in $\mathbb{R}^{2,5}$ can be extended to $\mathbb{R}^{4,6}$ which is used for the RN case. Nevertheless, one may question whether all relevant four-dimensional geometries can be embedded in a given \mathbb{R}^{10} with a fixed signature. However, we emphasize that it is enough to embed physically relevant geometries as realized in nature, rather than all conceivable four-dimensional geometries. Moreover, the above embeddings are of course not unique, even with the additional requirement of being asymptotically trivial. For example, it is easy to find an embedding of the Reissner–Nordström geometry in $\mathbb{R}^{2,5}$ similar as in the Schwarzschild case up to the inner horizon (46). In ‘real’ black holes this inner horizon is presumably extremely small as $m \gg q$, so that other effects (NC resp. quantum effects, corrections to the Ricci-flat geometry, deviations from $\theta^{\mu\nu}$ being self-dual, etc) are expected to become important and shed a different light on this issue. In view of the examples presented in this paper, it is certainly...
plausible that the present setting provides enough freedom to accommodate all physically relevant geometries up to the required precision.

3.2. Symplectic form

A self-dual symplectic form Θ can be computed in the same way as in the Schwarzschild case leading to the metric compatible Darboux coordinates $x^\mu_D = \{H_t, \tilde{t}, H_\varphi, \varphi\}$ with

\[
\begin{align*}
H_t &= r\gamma \cos \vartheta = z\gamma, \\
H_\varphi &= \alpha \frac{r^2}{2} \sin^2 \vartheta = \frac{\alpha^2}{2}, \\
\Theta &= idH_t \wedge d\tilde{t} + dH_\varphi \wedge \varphi,
\end{align*}
\]

\[
\begin{align*}
e^{-\sigma} &= \gamma \sin^2 \vartheta + \alpha^2 \cos^2 \vartheta = \gamma \left(1 - \frac{q^2 z^2}{r^2}\right) + \alpha \eta \frac{z^2}{r^2}, \\
\gamma &= \left(1 - \frac{2m}{r} + \frac{q^2}{r^2}\right), \\
\alpha &= \left(1 - \frac{q^2}{r^2}\right),
\end{align*}
\]

(54)

and the RN metric in Darboux coordinates reads

\[
\begin{align*}
ds^2 &= -\gamma d\tilde{t}^2 + e^{\sigma} \frac{e^\varphi}{\gamma} dH_t^2 + r^2 \sin^2 \vartheta d\varphi^2 + \frac{e^\varphi}{r^2 \sin^2 \vartheta} dH_\varphi^2,
\end{align*}
\]

(55)

a form similar to the according Schwarzschild metric (36). In the limit $q \to 0$ these expressions reduce to those in the Schwarzschild case. Furthermore, one can easily check that $\star \Theta = i\Theta$ and $G_{\mu\nu} = g_{\mu\nu}$.

3.3. Star product

A Moyal-type star product can easily be defined in Darboux coordinates as

\[
(g \star h)(x_D) = g(x_D)e^{-i \left(\frac{\bar{\theta}^\mu \bar{\theta}^\nu}{\epsilon} + \frac{1}{\epsilon} \theta^\mu \theta^\nu\right)}h(x_D),
\]

(56)

with

\[
\begin{align*}
\theta^\mu_D &= \epsilon \begin{pmatrix} 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \end{pmatrix}, \\
\epsilon &\in \mathbb{R}.
\end{align*}
\]

(57)

Transforming these Darboux coordinates back to the Cartesian ones, where

\[t = \tilde{t} + (r^2 - r), \quad r^2 = x^2 + y^2 + z^2,\]

(58)

we eventually find

\[
\begin{align*}
\partial_t &= \partial_{\tilde{t}}, \\
\partial_\varphi &= -r \partial_x + x \partial_y,
\end{align*}
\]

(59a)

\[
\begin{align*}
\partial H_t &= e^\theta \left[\frac{z}{r} \left(\frac{1}{\gamma} - 1 \right) \partial_\varphi + \left(1 - \frac{q^2 z^2}{r^4}\right) \partial_z - \frac{2qz}{r^3} (x \partial_x + y \partial_y) \right], \\
\partial H_\varphi &= e^\theta \frac{r}{\gamma - 1} \partial_{\tilde{t}} - \frac{\eta}{r} \partial_z + \frac{e^\sigma - \gamma}{x^2 + y^2} (x \partial_x + y \partial_y),
\end{align*}
\]

(59b)

\[
e^{-\sigma} = \left(\gamma + \frac{\eta z^2}{r^2}\right)
\]
(cf. the abbreviations defined in equation (54)). The star product in Cartesian coordinates hence reads

\[(g \ast h)(x) = g(x) \exp \left(\frac{ie}{2} \left(\frac{(1-\gamma) \partial}{r} + \frac{(1-\gamma) \partial}{r} + \frac{(1-\gamma) \partial}{r} + \frac{(1-\gamma) \partial}{r} \right) \right) h(x), \tag{60} \]

with equation (59a) and equation (59b), where once more the wedge stands for ‘antisymmetricized’, and when considering the expansion one must take care of the sequence of operators and the side they act on (left or right). The first-order results for the star commutators between the ten-dimensional embedding coordinates are given by equations (61):

\[
-i [x^\mu \ast x^\nu] \approx \theta^{\mu \nu} = e^{\sigma} \begin{pmatrix}
0 & -\frac{(1-\gamma) \partial}{r} + \frac{ie \mu z}{r^2} & -\frac{(1-\gamma) \partial}{r} + \frac{ie \nu z}{r^2} & -i \beta \\
-\frac{(1-\gamma) \partial}{r} & 0 & -\frac{(1-\gamma) \partial}{r} & -\frac{(1-\gamma) \partial}{r} \\
i \beta & -\frac{(1-\gamma) \partial}{r} & 0 & -\frac{(1-\gamma) \partial}{r} \\
\end{pmatrix}, \tag{61a} \]

\[
-i [\phi_i \ast \phi_j] \approx e^{\sigma} \begin{pmatrix}
0 & -\frac{i \omega z \phi_i}{r^2} & -\frac{i \omega z \phi_j}{r^2} & -\frac{i \omega z \phi_3}{r^2} & -\frac{i \omega z \phi_4}{r^2} \\
-\frac{i \omega z \phi_j}{r^2} & 0 & -\frac{i \omega z \phi_3}{r^2} & -\frac{i \omega z \phi_4}{r^2} & -\frac{i \omega z \phi_5}{r^2} \\
-\frac{i \omega z \phi_i}{r^2} & -\frac{i \omega z \phi_j}{r^2} & 0 & -\frac{i \omega z \phi_3}{r^2} & -\frac{i \omega z \phi_4}{r^2} \\
-\frac{i \omega z \phi_3}{r^2} & -\frac{i \omega z \phi_4}{r^2} & -\frac{i \omega z \phi_5}{r^2} & 0 & -\frac{i \omega z \phi_6}{r^2} \\
-\frac{i \omega z \phi_4}{r^2} & -\frac{i \omega z \phi_5}{r^2} & -\frac{i \omega z \phi_6}{r^2} & -\frac{i \omega z \phi_7}{r^2} & 0 \\
\end{pmatrix}, \tag{61b} \]

\[
-i [\phi_i \ast \phi_j] \approx e^{\sigma} \begin{pmatrix}
0 & \frac{i \omega z \phi_i}{r^2} & \frac{i \omega z \phi_j}{r^2} & \frac{i \omega z \phi_3}{r^2} & \frac{i \omega z \phi_4}{r^2} \\
\frac{i \omega z \phi_j}{r^2} & 0 & \frac{i \omega z \phi_3}{r^2} & \frac{i \omega z \phi_4}{r^2} & \frac{i \omega z \phi_5}{r^2} \\
\frac{i \omega z \phi_i}{r^2} & \frac{i \omega z \phi_j}{r^2} & 0 & \frac{i \omega z \phi_3}{r^2} & \frac{i \omega z \phi_4}{r^2} \\
\frac{i \omega z \phi_3}{r^2} & \frac{i \omega z \phi_4}{r^2} & \frac{i \omega z \phi_5}{r^2} & 0 & \frac{i \omega z \phi_6}{r^2} \\
\frac{i \omega z \phi_4}{r^2} & \frac{i \omega z \phi_5}{r^2} & \frac{i \omega z \phi_6}{r^2} & \frac{i \omega z \phi_7}{r^2} & 0 \\
\end{pmatrix}, \tag{61c} \]

with

\[f_{ij}^\beta(Y) = \left(\frac{Y}{r} \phi_i \pm \omega \phi_j \right), \quad \beta = \left(1 - \frac{q^2 z^2}{r^2} \right), \tag{61d} \]

and the abbreviations defined in equation (54). Although some of these commutators are exact to all orders, i.e.

\[[z \ast \phi_3] = [z \ast \phi_6] = [\phi_3 \ast \phi_6] = 0, \quad [t \ast z] = -ie \omega \beta, \]

\[[t \ast \phi_3] = ie \omega \frac{z \phi_6}{2r^2}, \quad [t \ast \phi_6] = ie \omega \frac{z \phi_3}{2r^2}, \]

\
higher order corrections in other commutators and relations appear as in the Schwarzschild case above. For example

\[\phi_1 \star \phi_2 \neq \phi_2 \star \phi_1, \]
\[\phi_2 \star \phi_3 \neq \phi_3 \star \phi_2, \]
\[\phi_2 \star \phi_3 \star \phi_4 \neq \phi_4 \star \phi_3 \star \phi_2, \]
\[\phi_3 \star \phi_4 \neq \phi_4 \star \phi_3, \]
\[\phi_4 \star \phi_5 \neq \phi_5 \star \phi_4, \]
\[\phi_5 \star \phi_6 \neq \phi_6 \star \phi_5, \]
\[(63) \]

which again could be interpreted as NC correction to the embedding geometry.

4. Discussion and conclusion

In this paper, we have provided explicit realizations of the Schwarzschild and the RN geometry as NC spaces in the framework of matrix models. Our construction is based on suitable embeddings of these classical geometries \(M^4 \subset \mathbb{R}^D \) (‘branes’) in higher dimensional flat spaces. These four-dimensional branes are equipped with certain self-dual symplectic structures, which define the NC form of these spaces via a star product. These embeddings and the corresponding symplectic structure are chosen such that they are asymptotically constant. To be more precise, for \(r \to \infty \) they reduce to the usual Groenewold–Moyal quantum plane which is trivially embedded in \(\mathbb{R}^D \). At the semi-classical level, the central singularity is reflected by the fact that the embedding escapes to infinity. Non-commutative effects are expected to modify this behavior, which is however not addressed in the present paper.

The requirement of asymptotic triviality is not satisfied by the standard embeddings e.g. of the Schwarzschild geometry in the literature [14–16]. This requirement is strongly suggested by the matrix model framework because the effective action may contain terms which depend on the embedding of \(M \subset \mathbb{R}^D \) and not only on its intrinsic geometry. In fact, flat Groenewold–Moyal quantum planes are always solutions of this class of matrix models, independent of e.g. vacuum energy contributions. Asymptotic triviality is also natural since we want to consider our solution as a perturbation of some larger cosmological context through a localized mass. In other words, the embedding presented here should naturally generalize to many-particle configurations.

Another important aspect is that \(e^{-\sigma} \), which essentially sets the scale of non-commutativity is also asymptotically constant and non-vanishing. This must be so because \(e^{-\sigma} \) determines the strength of the non-Abelian gauge coupling in the matrix model [25]. We found that \(g_{\mu \nu} = G_{\mu \nu} \) (i.e. the embedding metric coincides with the effective metric, which is certainly very natural) is indeed compatible with asymptotically constant \(\theta^{\mu \nu} \) and \(e^{-\sigma} \). However, \(e^{-\sigma} \) becomes non-trivial as one approaches the horizon. In fact, it turns out to vanish on a circle on the horizon, where the ‘would-be \(U(1) \) gauge fields’ corresponding to \(\theta^{-1}_{\mu \nu} \) vanish. This result, if taken literally, is somewhat problematic from the physics point of view: if \(\theta^{\mu \nu} \) is really a rigid condensate determined by its asymptotics at infinity, then the rotation on the earth with respect to such a background would lead to small variations of the gauge coupling constant during a revolution (however other quantities may also depend on \(e^{-\sigma} \) and lead to cancellations of such an effect). There are stringent bounds on the variations of the fine-structure constants [26], which might exclude such an effect. If so, this would not rule out the framework, but it would strongly support the idea that the Poisson structure \(\theta^{\mu \nu} \) should be integrated out resp. averaged over, rather than being a large-scale physical condensate. This is indeed very natural, since some of the degrees of freedom in \(\theta^{\mu \nu} \) essentially decouple from the other fields [9]. The effective action would then only depend on a single effective metric \(G_{\mu \nu} \). This is a very attractive possibility which will be pursued elsewhere.
We also remind the reader that the appropriate equations governing $\theta^{\mu\nu}$ and therefore $e^{-\sigma}$ depend on the precise form of the action. $G_{\mu\nu} = g_{\mu\nu}$ is certainly natural and appropriate for Yang–Mills models, but was simply assumed here; this will be clarified in a forthcoming paper [27]. There are a lot of other obvious issues arising from our construction which deserve further studies, and the present paper should be seen as a first step of a more general line of investigation. In any case, we have shown how realistic gravity can arise within this class of matrix models, in a very explicit and accessible manner. This should be enough motivation for further work.

Acknowledgments

HS would like to thank Peter Schupp and Paolo Aschieri for useful discussions. This work was supported by the ‘Fonds zur Förderung der Wissenschaftlichen Forschung’ (FWF) under contract P21610-N16.

Appendix A. Derivation of the symplectic form equation (33)

Considering equation (30) we can make the additional ansatz that Θ is invariant under the Killing vector fields, i.e. $\mathcal{L}_{V} \Theta = 0$, and moreover $\mathcal{L}_{V} \ast = \ast \mathcal{L}_{V}$. This implies $d E = 0 = \mathcal{L}_{V} E$, and together with $\mathcal{L}_{V} E = 0$ we obtain

$$E = E_{r}(r, \vartheta) dr + E_{\vartheta}(r, \vartheta) d\vartheta = d_{X} E(r, \vartheta). \quad (A.1)$$

Similarly, $\mathcal{L}_{V_{o}} \Theta = 0$ implies $\Theta_{B} = B \wedge d\varphi$ with

$$B = B_{r} d\vartheta + B_{\vartheta} dr = d_{X} B(r, \vartheta). \quad (A.2)$$

Now we need to work out

$$\ast \Theta = \frac{1}{2\sqrt{|g|}} g_{\mu\nu} \varepsilon^{\alpha\beta\gamma\delta} \theta_{\mu\nu}^{-1} dx^{\alpha} \wedge dx^{\beta}, \quad (A.3)$$

where in Schwarzschild coordinates

$$g_{tt} = \left(1 - \frac{r_{c}}{r}\right), \quad g_{rr} = \left(1 - \frac{r_{c}}{r}\right)^{-1},$$
$$g_{\vartheta\vartheta} = r^{2}, \quad g_{\varphi\varphi} = r^{2} \sin^{2} \vartheta,$$
$$\sqrt{|g|} = r^{2} \sin \vartheta. \quad (A.4)$$

So if we define

$$\Theta_{B} := \ast \Theta_{E} = \ast(E_{r}dr + E_{\vartheta}d\vartheta) \wedge dr$$

$$= \frac{1}{r^{2} \sin \vartheta} \left(r^{4} \sin^{2} \vartheta E_{r} d\vartheta d\varphi - r^{2} \left(1 - \frac{r_{c}}{r}\right)^{-1} \sin^{2} \vartheta E_{\vartheta} dr d\varphi\right)$$
$$= \sin \vartheta \left(r^{2} E_{r} d\vartheta - \left(1 - \frac{r_{c}}{r}\right)^{-1} E_{\vartheta} dr\right) \wedge d\varphi$$
$$= (B_{r} d\vartheta + B_{\vartheta} dr) \wedge d\varphi, \quad (A.5)$$

and if that is closed, then $\Theta = i \Theta_{E} + \ast \Theta_{E}$ is self-dual. Explicitly, for

$$E = d(f(r) \cos \vartheta) = f' \cos \vartheta dr - f \sin \vartheta d\vartheta = E_{r} dr + E_{\vartheta} d\vartheta \quad (A.6)$$
we need
\[0 = d \left(r^2 E_r \sin \vartheta \frac{d}{dr} \left(1 - \frac{r_c}{r} \right)^{-1} \right) E_\vartheta \sin \vartheta \frac{d}{dr} \]
\[= d \left(r^2 f' \sin \vartheta \cos \vartheta \frac{d}{dr} + f \left(1 - \frac{r_c}{r} \right)^{-1} \sin^2 \vartheta \right) \]
\[= \partial_r \left(r^2 f' \right) \sin \vartheta \cos \vartheta \frac{d}{dr} \wedge d\vartheta + 2 f \left(1 - \frac{r_c}{r} \right)^{-1} \sin \vartheta \cos \vartheta \frac{d}{dr} \wedge dr, \]
so
\[\partial_r \left(r^2 f' \right) = 2 f \left(1 - \frac{r_c}{r} \right)^{-1}, \]
\[r^2 f'' + 2 rf' - 2 f \left(1 - \frac{r_c}{r} \right)^{-1} = 0, \] (A.7)
which has the solution
\[f(r) = c_1 r \left(1 - \frac{r_c}{r} \right) + c_2 \frac{1}{r^2} \left(1 - \frac{r_c}{r} \right) \ln \left(1 - \frac{r_c}{r} \right). \] (A.8)
For \(c_2 = 0 \) we get equation (33) which has the desired asymptotics as an asymptotically constant external field. Then
\[\sqrt{\left| \theta \right|^{-1}} = \text{Pfaff}(\theta_{\mu\nu}^{-1}) = \frac{1}{8} \epsilon_{\mu\nu\rho\sigma} \theta_{\mu\nu}^{-1} \theta_{\rho\sigma}^{-1} \]
\[= (\theta_{rr}^{-1} \theta_{\varphi\varphi}^{-1} - \theta_{\varphi r}^{-1} \theta_{r\varphi}^{-1}) \]
\[= (E_r B_r - E_\vartheta B_\vartheta) \]
\[= \left(f^2 r^2 \cos^2 \vartheta \sin \vartheta + f^2 \sin^3 \vartheta \left(1 - \frac{r_c}{r} \right)^{-1} \right) \]
\[= c_2^2 r^2 \sin \vartheta \left(1 - \sin^2 \vartheta \frac{r_c}{r} \right), \] (A.10)
which yields (34).

Appendix B. Commutation relations for Schwarzschild geometry

From equation (35) we can immediately read off \(\theta_{\mu\nu}^{-1} \) in Darboux coordinates, and its inverse leads to the Poisson brackets
\[\left\{ x^\mu_D, x^\nu_D \right\} = \epsilon \begin{pmatrix} 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \] (B.1)
where \(\epsilon = 1/c_1 \). Using the relations
\[H_t = r \gamma \cos \vartheta = z \left(1 - \frac{r_c}{r} \right), \]
\[H_\varphi = \frac{1}{2} r^2 \sin^2 \vartheta = \frac{1}{2} (x^2 + y^2), \]
\[t_S = t - r_c \ln \left| \frac{r}{r_c} - 1 \right|, \]
\[r = \sqrt{x^2 + y^2 + z^2}, \] (B.2)
we transform the set of coordinates to \([H_t, t_S, H_\phi, \phi] \rightarrow \{t, x, y, z\}\), and get

\[
\begin{align*}
\partial H_t &= e^\sigma \left(\frac{r_c z}{r (r - r_c)} \partial_t + \partial_2 \right), \\
\partial t_S &= \partial t, \\
\partial H_\phi &= e^\sigma \left(\frac{r_c z}{r^2} \partial_2 - \frac{r_c z}{r^3} \partial_1 \right) + \frac{1}{x^2 + y^2} (x \partial_x + y \partial_y), \\
\partial \phi &= -y \partial_x + x \partial_y,
\end{align*}
\]

where \(e^{-\sigma} = e^{-\bar{\sigma}}\) is the Jacobian determinant of the transformation. We hence arrive at the following Poisson brackets in terms of the Cartesian coordinates \(x^\mu = \{t, x, y, z\}\):

\[
\{x^\mu, x^\nu\} = e e^\sigma \begin{pmatrix}
0 & -\frac{r_c y}{r^2} & \frac{r_c 4}{r^3} & -i \\
\frac{r_c y}{r^2} & 0 & e^{-\sigma} & -\frac{r_c z}{r^3} \\
-\frac{r_c z}{r^3} & -e^{-\sigma} & 0 & \frac{r_c z}{r^3} \\
i & \frac{r_c z}{r^3} & -\frac{r_c z}{r^3} & 0 \end{pmatrix}.
\]

Using these, one easily works out the remaining Poisson brackets with the embedding functions \(\phi_i\) of equation (17), namely \(\{x^\mu, \phi_i(x)\}\) and \(\{\phi_i(x), \phi_j(x)\}\), leading finally to (38).

Next-to-leading order commutation relations. To third order in the expansion parameter \(\epsilon\) one finds the star commutators

\[
\begin{align*}
[t \star x] &= -i \epsilon \frac{r_c e^\sigma}{r^3} y - \epsilon^3 y F_{txy} + \mathcal{O}(\epsilon^5), \\
[t \star y] &= i \epsilon \frac{r_c e^\sigma}{r^3} x + \epsilon^3 x F_{txy} + \mathcal{O}(\epsilon^5), \\
[t \star z] &= \epsilon e^\sigma, \\
[x \star y] &= i \epsilon, \\
[x \star z] &= -i \epsilon x \frac{r_c z e^\sigma}{r^3} - \epsilon^3 y F_{zxy} + \mathcal{O}(\epsilon^5), \\
[y \star z] &= -i \epsilon x \frac{r_c z e^\sigma}{r^3} + \epsilon^3 x F_{zxy} + \mathcal{O}(\epsilon^5),
\end{align*}
\]

with the abbreviations

\[
\begin{align*}
F_{txy} &= r_c e^\frac{\sigma}{24 r^6} \left(\gamma^2 r^6 (3 r_c^2 - 9 r_c r + 8 r^2) - \gamma r_r r^4 (6 \gamma r_c + 17 r) z^2 + r_c^2 (3 r_c^2 + 3 r_c r + 2 r^2) z^4 \right), \\
F_{zxy} &= r_c z e^\frac{\sigma}{8 r^{12}} \left(\gamma^2 r^6 (r_c^2 - 4 r_c r + 5 r^2) + 2 \gamma (r^2 - 3) r_c r^2 z^2 + r_c^4 z^4 \right).
\end{align*}
\]

Note that some expressions (i.e. the ones where \(\mathcal{O}(\epsilon^5)\) is omitted) are exact to all orders\(^4\).

\(^4\) However, while this is the case for the commutator \([x \star y] = i \epsilon\), the according anticommutator does in fact have higher order contributions, i.e.

\[
[x \star y]_+ = 2 xy - xy \left(\frac{\epsilon^2}{(x^2 + y^2)^2} - \frac{\epsilon^4}{4(x^2 + y^2)^4} \right) + \mathcal{O}(\epsilon^6).
\]
Furthermore, we find for the embedding functions ϕ_i to third order in ε:

\[
[t \star \phi_1] = -\varepsilon e^0 z f_{12}^r(0) + O(\varepsilon^5) = -\varepsilon e^0 z \left(\frac{\phi_1}{2r} + \omega \phi_2 \right) + \varepsilon^3 \phi_2 F_{\omega \phi 12} + O(\varepsilon^5),
\]

\[
[t \star \phi_2] = -\varepsilon e^0 \omega z f_{12}^r(0) + O(\varepsilon^5) = -\varepsilon e^0 \omega \left(\frac{\phi_2}{2r} - \omega \phi_1 \right) - \varepsilon^3 \phi_1 F_{\phi \phi 12} + O(\varepsilon^5),
\]

\[
[t \star \phi_3] = -\varepsilon e^0 z^2 \phi_3 \frac{2}{2r^2}.
\]

\[
[x \star \phi_1] = -i e^0 \omega z f_{12}^r(r_c) + \varepsilon^3 y F_{x y}(\phi_1, \phi_2) + O(\varepsilon^5),
\]

\[
[x \star \phi_2] = -i e^0 \omega z f_{12}^r(r_c) + \varepsilon^3 y F_{x y}(-\phi_2, \phi_1) + O(\varepsilon^5),
\]

\[
[x \star \phi_3] = -i e^0 \omega \phi_3 \frac{2}{2r^2} + \varepsilon^3 y F_{\phi 3 y} + O(\varepsilon^5),
\]

\[
[y \star \phi_1] = i e^0 \omega \phi_1 - \varepsilon^3 x F_{x y}(\phi_1, \phi_2) + O(\varepsilon^5),
\]

\[
[y \star \phi_2] = i e^0 \omega \phi_2 - \varepsilon^3 x F_{x y}(-\phi_2, \phi_1) + O(\varepsilon^5),
\]

\[
[y \star \phi_3] = i e^0 \omega \phi_3 - \varepsilon^3 x F_{\phi 3 y} + O(\varepsilon^5),
\]

\[
[z \star \phi_1] = e^0 \omega \phi_2 + \varepsilon^3 \phi_2 F_{\phi \phi 12} + O(\varepsilon^5),
\]

\[
[z \star \phi_2] = -e^0 \omega \phi_1 - \varepsilon^3 \phi_1 F_{\phi \phi 12} + O(\varepsilon^5),
\]

\[
[z \star \phi_3] = 0,
\]

with

\[
F_{\phi 12} = \frac{r_c z^{13/4} e^{20\varepsilon}}{24r^3}\left(27e^{3\varepsilon}(z^2 + r^2\gamma(1 + \gamma)) - 6\gamma r^2 + 3(7 + \gamma(9 + 5\gamma))r^2 + 2z^2\right)
- 3e^{2\varepsilon}(9 + 2\gamma(8 + 7\gamma))r^2 + 7z^2),
\]

\[
F_{\phi 3 y} = i e^{5\varepsilon} \frac{y\phi_3}{64\gamma^{10}} (15\gamma^4 r^4 - 2\gamma(8 + \gamma(9 + \gamma(15\gamma - 32)))r^2 + 2\gamma^2)
+ (1 - \gamma)^2(20 + \gamma(15\gamma - 34))z^2),
\]

\[
F_{\phi 12} = \frac{\omega e^{3\varepsilon}}{8r^4} (e^0 - 1)((9e^0 - 4)z^2 - r^2),
\]

and

\[
F_{x y}(\phi_i, \phi_j) = -\frac{i e^{5\varepsilon}}{192r^{14}} \left(8e^{-20\varepsilon} \omega^3 \phi_1 r^{11} - 12\omega^2 \phi_1 r^3 \left[(r_c - 3r)\gamma^2 r^6 + 2r_c^2 z^2 \gamma r^3
+ r_c^2 (r_c + 3r) z^2\right] - 2\omega \phi_2 r^7 \left[(15r_c^2 - 40rr_c + 33r^2) r^{2\gamma} r^3 \gamma
+ 2r_c (15r_c^2 - 16rr_c - 33r^2) z^2 + r_c^2 (15r_c^2 + 8rr_c + 9r^2) \frac{z^4}{r^4}\right] - 3\gamma \phi_1 [15\gamma^4 r^8
+ 2r_c (15r_c^2 - 10r^2) z^2 \gamma^3 + r_c^2 (15r_c^2 + 4rr_c + r^2) z^4]\right). \tag{B.9}
\]
Finally we also have
\[
\begin{align*}
[\phi_1 \star \phi_2] &= \epsilon e^{\alpha_2 \phi_1^2 / 2r^2} + e^3 e^{3/2 \phi_2^3 / 16r^6} (4e^{\phi_1^2} (r^2 + z^2) - r^2 - 9z^2 e^{2\phi_2}) + O(\epsilon^5), \\
[\phi_1 \star \phi_3] &= \epsilon e^{\alpha_3 \phi_2^2 / 2r^2} + \epsilon^3 \phi_1 = 2 \phi_3 + O(\epsilon^5), \\
[\phi_2 \star \phi_3] &= -\epsilon e^{\alpha_3 \phi_2^2 / 2r^2} - \epsilon^3 \phi_1 = 2 \phi_3 + O(\epsilon^5),
\end{align*}
\]
with
\[
F_{\phi_312} = \frac{e^{3/2 \phi_3^2 / 64r^6}}{64r^6} \left((1 - 22e^{\phi_3^2} + 36e^{2\phi_3^2}) (x^2 + y^2) - (7 - 38e^{\phi_3^2} + 36e^{2\phi_3^2}) r^2 \right). \tag{B.10}
\]

References

[1] Blaschke D N and Steinacker H 2010 Curvature and gravity actions for matrix models Class. Quantum Grav. 27 165010 (arXiv:1003.4132)
[2] Doplicher S, Fredenhagen K and Roberts J E 1995 The quantum structure of space-time at the Planck scale and quantum fields Commun. Math. Phys. 172 187–220 (arXiv:hep-th/0303037)
[3] Douglas M R and Nekrasov N A 2001 Noncommutative field theory Rev. Mod. Phys. 73 977–1029 (arXiv:hep-th/0106048)
[4] Szabo R J 2003 Quantum field theory on noncommutative spaces Phys. Rep. 378 207–99 (arXiv:hep-th/0109162)
[5] Rivasseau V 2007 Non-commutative renormalization Quantum Spaces—Poincaré Seminar 2007 ed B Ducliant and V Rivasseau (Basle: Birkhäuser) (arXiv:0705.0705)
[6] Steinacker H 2007 Emergent gravity from noncommutative gauge theory J. High Energy Phys. JHEP12(2007)049 (arXiv:0708.2426)
[7] Grosse H, Steinacker H and Wohlgenannt M 2008 Emergent gravity, matrix models and UV/IR mixing J. High Energy Phys. JHEP04(2008)023 (arXiv:0802.0973)
[8] Klammer D and Steinacker H 2008 Fermions and emergent noncommutative gravity J. High Energy Phys. JHEP08(2008)074 (arXiv:0805.1157)
[9] Steinacker H 2010 Emergent geometry and gravity from matrix models: an introduction Class. Quantum Grav. 27 133001 (arXiv:1003.4134)
[10] Steinacker H 2009 Emergent gravity and noncommutative branes from Yang–Mills matrix models Nucl. Phys. B 810 1–39 (arXiv:0806.2032)
[11] Clarke C 1970 On the global isometric embedding of pseudo-Riemannian manifolds Proc. R. Soc. A 314 417
[12] Friedman A 1961 Local isometric embedding of Riemannian manifolds with indefinite metric J. Math. Mech. 10 625
[13] Ishibashi N, Kawai H, Kitazawa Y and Tsuchiya A 1997 A large-N reduced model as superstring Nucl. Phys. B 498 467–91 (arXiv:hep-th/9611215)
[14] Kasner E 1921 Geometrical theorems on Einstein’s cosmological equations Am. J. Math. 43 126
[15] Fronsdal C 1959 Completion and embedding of the Schwarzschild solution Phys. Rev. 116 778–781
[16] Kerner R and Vitale S 2009 Approximate solutions in general relativity via deformation of embeddings arXiv:0801.4868
[17] Nielsen B 1987 Minimal immersions, Einstein’s equations and Mach’s principle J. Geom. Phys. 4 1
[18] Schupp P and Solodukhin S 2009 Exact black hole solutions in noncommutative gravity arXiv:0906.2724
[19] Öh T and Schenkel A 2009 Symmetry reduction in twisted noncommutative gravity with applications to cosmology and black holes J. High Energy Phys. JHEP01(2009)084 (arXiv:0810.4885)
[20] Madore J 1992 The fuzzy sphere Class. Quantum Grav. 9 69–88
[21] Ho P-M and Li M 2000 Large N expansion from fuzzy AdS(2) Nucl. Phys. B 590 198–212 (arXiv:hep-th/0005268)
[22] Aleskseev A Y, Recknagel A and Schomerus V 2000 Brane dynamics in background fluxes and non-commutative geometry J. High Energy Phys. JHEP05(2000)010 (arXiv:hep-th/0003187)
[23] Iso S, Kimura Y, Tanaka K and Wakatsuki K 2001 Noncommutative gauge theory on fuzzy sphere from matrix model Nucl. Phys. B 664 121–47 (arXiv:hep-th/0101102)
[24] Aschieri P, Grammatikopoulos T, Steinacker H and Zoupanos G 2006 Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking J. High Energy Phys. JHEP09(2006)026 (arXiv:hep-th/0606021)
[25] Steinacker H 2009 Covariant field equations, gauge fields and conservation laws from Yang–Mills matrix models
 J. High Energy Phys. JHEP02(2009)044 (arXiv:0812.3761)

[26] Rosenband T et al 2008 Frequency ratio of Al$^+$ and Hg$^+$ single-ion optical clocks; metrology at the 17th decimal place Science 319 1808

[27] Blaschke D N and Steinacker H 2010 Curvature and gravity actions for matrix models II arXiv:1007.2729