Stability of the two-dimensional Fermi polaron

Marcel Griesemer* and Ulrich Linden†
Fachbereich Mathematik, Universität Stuttgart, D-70569 Stuttgart, Germany

February 12, 2018

Abstract

A system composed of an ideal gas of \(N \) fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number \(N \) of fermions. This result improves previous, \(N \)-dependent lower bounds and it complements a recent, similar bound for the Fermi polaron in three space dimensions.

1 Introduction

The system considered in this paper is composed of an ideal gas of \(N \) fermions and one additional particle, called impurity, in two space dimensions. The impurity interacts with the fermions by two-body point interactions. Informally, the Hamiltonian of the system may thus be written as

\[
- \frac{1}{M} \Delta_y - \sum_{i=1}^{N} \Delta x_i - g \sum_{i=1}^{N} \delta(x_i - y),
\]

(1)

where \(M > 0 \) is the mass of the impurity and \(g \) plays the role of a coupling constant. The problem of defining a self-adjoint Hamiltonian describing (1) is discussed and solved in [4, 5]. We are interested in its ground state energy, and we show, in this paper, that it is bounded below uniformly in \(N \), provided that \(M > 1.225 \). In the physics literature the system described above is called Fermi polaron [8]. It is a model for an ultra-cold gas of fermionic atoms interacting with an additional, impurity atom. One is interested in the form of the ground state as a function of the coupling strength and in two space dimensions one expects a sharp transition, related to the BEC-BCS crossover [6, 12].

Our approach for defining a self-adjoint Hamiltonian describing (1) follows [4, 5] and it is described in [7]. Here we only summarise the ingredients and facts needed in this paper.

*marcel.griesemer@mathematik.uni-stuttgart.de
†ulrich.linden@mathematik.uni-stuttgart.de
Some more details are given in the appendix. We work in the language of second quantisation. Let a_k and a_k^* denote the usual annihilation and creation operators in antisymmetric Fock space over $L^2(\mathbb{R}^2)$. Let $H_f = \int k^2 a_k^* a_k \, dk$ and $P_f = \int k a_k^* a_k \, dk$. The main operator to be analysed in this paper is not the Hamiltonian of the system, which is not available explicitly, but a self-adjoint operator $\phi(E)$ in $\mathcal{H}_{N-1} = \bigwedge^{N-1} L^2(\mathbb{R}^2)$, depending on a parameter $E < 0$ and defined by

$$\phi(E) = \alpha + \phi^0(E) + \phi^I(E),$$

where $\alpha \in \mathbb{R}$ and

$$\phi^0(E) := \frac{\pi}{1 + \frac{1}{M}} \log \left(\frac{1}{M + 1} P_f^2 + H_f - E \right)$$

$$\phi^I(E) := \int dp dq \ a_p^* \left(\frac{1}{M} (P_f + p + q)^2 + H_f + p^2 + q^2 - E \right) a_q.$$

Here α is a free parameter of the model that parametrises the coupling strength between fermions and impurity. To give it a physical interpretation we mention that $\alpha = -(\pi/(1 + M^{-1})) \cdot \log |E_B|$, where $E_B < 0$ is the ground state energy of the two-body system consisting of only one fermion and the impurity. A negative energy state is always present in the two-body system in two dimensions \[1\]. The point about $\phi(E)$ is that, for $E < 0$,

$$\phi(E) \geq 0 \quad \Rightarrow \quad H_N \geq E$$

where H_N denotes the self-adjoint realisation of \[1\] after separating off the center-of-mass motion (see Appendix \[A\]). The main result of this paper, Theorem \[1\] below, provides us with a number E, depending on M only, such that $\phi(E) \geq 0$ for $M > 1.225$. This implies, by \[5\], that $H_N \geq E$ uniformly in N. It is an open problem, whether or not an N-independent lower bound on H_N exists for arbitrary positive values of M. For a possible approach to this problem see \[7\].

For arbitrary $M > 0$ the Hamiltonian H_N is bounded below, but the lower bound may depend on N: using that $\phi^I(E)$ is bounded with $\|\phi^I(E)\| \leq \text{const} \cdot (N - 1)$ and $\phi^0(E) \geq (\pi/(1 + M^{-1})) \cdot \log(-E)$, we conclude, by \[5\], that

$$H_N \geq E_B \cdot \exp(C \cdot (1 + M^{-1}) \cdot (N - 1)).$$

This result can already be inferred from \[4\].

In three space dimensions, \[5\] still holds with $\phi(E)$ defined by \[2\], \[1\], see \[4\][11], and

$$\phi^0(E) = \frac{2\pi^2}{(1 + \frac{1}{M})^{3/2}} \cdot \sqrt{\frac{1}{M + 1} P_f^2 + H_f - E}.$$

In contrast to the two-dimensional case, however, the operator $\phi^I(E)$ is not bounded anymore. Instead, from \[2\] it follows that

$$\phi^I(E) \geq -C(M,N) \cdot \phi^0(E),$$

which implies $\phi(E) \geq \alpha + (1 - C(M,N)) \phi^0(E)$. Provided that $C(M,N) < 1$, we may choose $|E|$ large enough, using that $\phi^0(E) \geq (2\pi^2/(1 + M^{-1})^{3/2})\sqrt{-E}$, such that $\phi(E) \geq 0$.
and hence $H_N \geq E$. This improves an earlier result [9,10]. The condition $C(M,N) < 1$ is satisfied if M is larger than the critical mass $M^*(N)$ defined by $C(M^*(N),N) = 1$. In [2], (7) is shown for a function $C(M,N)$ for which $M^*(N) \propto N$ as $N \to \infty$, and, moreover, it is shown that $\phi(E)$ is unbounded from below if $N \geq 2$ and $M < M^*(2) \approx 0.0735$. Recently, (7) was shown to hold with a constant $C(M)$ that is independent of N [11]. This constant satisfies $C(M) < 1$ if $M > M^* \approx 0.36$. It follows that H_N is bounded below uniformly in N provided that $M > 0.36$. In fact, $H_N \geq 0$ if $M < M^*(2) \approx 0.0735$. Recently, (7) was shown to hold with a constant $C(M)$ that is independent of N [11]. This constant satisfies $C(M) < 1$ if $M > M^* \approx 0.36$. It follows that H_N is bounded below uniformly in N provided that $M > 0.36$. In fact, $H_N \geq 0$ if $\alpha \geq 0$ and $H_N \geq -\tilde{C}(M) \cdot \alpha^2$ for a constant $\tilde{C}(M) > 0$ if $\alpha < 0$. While the present paper, on a technical level (i.e. in the proof of Lemma 5 below), has strongly benefited from [11], it solves an additional infrared problem, which arises due to the lower dimension. The main result can also be found in [7].

2 An N-independent lower bound for the Fermi polaron in \mathbb{R}^2

Theorem 1. Let $E_B < 0$. Set

$$\alpha(M) := \frac{1}{2(M+1)} + \frac{1}{2} \int_0^1 \frac{1}{\beta(u)(M+1-u)} du,$$

where

$$\beta(u) := \min \left\{ 1, \frac{(M+1-u)(M+2)}{M^2+3M+1-u} \right\},$$

and suppose that $\alpha(M) < M/(M+1)$, which is satisfied if $M > 1.225$. Then, for every $\lambda > 0$, the unique solution $\mu < 0$ of the equation

$$\left(\frac{M}{M+1} - \alpha(M) \right) \log \left(\frac{\mu}{E_B} \right) - \sqrt{\frac{\lambda}{-\mu}} - \sqrt{\frac{\lambda}{\lambda-\mu}} - \alpha(M) \log \left(E_B \left(\frac{1}{\mu} - \frac{1}{\lambda} \right) \right) - \alpha(M) = 0$$

(10)

satisfies $\phi(\mu) \geq 0$ and hence $H_N \geq \mu$ for all $N \in \mathbb{N}$.

Remarks.

(i) The left hand side of (10) can be written as

$$\frac{M}{M+1} \log \left(\frac{\mu}{E_B} \right) - \sqrt{\frac{\lambda}{-\mu}} - \sqrt{\frac{\lambda}{\lambda-\mu}} - \alpha(M) \log \left(1 - \frac{\mu}{\lambda} \right) - \alpha(M),$$

which is obviously negative for $E_B \leq \mu < 0$. Thus, all solutions of (10) satisfy $\mu < E_B$.

(ii) For fixed $E_B < 0$ and $\lambda > 0$ the left hand side of (10) is a strictly monotonically decreasing function of μ on the interval $(-\infty,E_B]$. It tends to $+\infty$ as $\mu \to -\infty$ and it attains a negative value for $\mu = E_B$. Thus, there is a unique solution $\mu < E_B$ of (10) for fixed λ and E_B.

(iii) The choice of the parameter $\lambda > 0$ is an opportunity for optimization of the lower bound μ.
(iv) The fermionic nature of the N identical particles enters the model through the anti-symmetric product in the definition of \mathcal{F}_N and \mathcal{F}_{N-1} and the sign of $\phi^j(E)$ in (9). In fact in the case of N identical bosons, in which an N-independent lower bound for H_N cannot be established, $\phi^j(E)$ has to be replaced by $-\phi^j(E)$. Therefore, it is important to consider only the negative part of $\phi^j(E)$ when deriving a lower bound for $\phi(E)$ in the proof of Theorem 1.

Choosing $\lambda = -E_B$ in Theorem 1 (10) turns into an equation for M and μ/E_B only and we obtain the following statement.

Corollary 2. Let $E_B < 0$ and assume that $\alpha(M) < M/(M + 1)$. Then,

$$H_N \geq \gamma_M \cdot E_B,$$

where $\gamma_M > 1$ depends on M only and is defined as the unique positive solution of

$$\left(\frac{M}{M + 1} - \alpha(M)\right) \log(\gamma_M) - \frac{1}{\sqrt{\gamma_M}} - \frac{1}{\sqrt{1 + \gamma_M}} - \alpha(M) \log \left(1 + \frac{1}{\gamma_M}\right) = \alpha(M).$$

3 Proofs

This section is devoted to the proof of Theorem 1. We show that π times the left hand side of (10) is a lower bound for $\phi(\mu)$ if $\mu < 0$. In view of (13), we then obtain $H_N \geq \mu$ for every solution μ of (10). For $r > 0$ let $\chi_r := \chi_{B(0, \sqrt{r})}$ be the characteristic function of the ball $B(0, \sqrt{r}) \subset \mathbb{R}^2$. The parameter $\lambda > 0$ is fixed in the following and plays the role of an infrared cutoff. For $p^2 \leq \lambda$ and $q^2 \leq \lambda$ we rewrite the part (4) of the operator $\phi(\mu)$, making use of the pull-through formulas

$$a_p f(P_f) = f(P_f + p)a_p \quad \text{and} \quad a_p g(H_f) = g(H_f + p^2)a_p,$$

and the canonical anti-commutation relations, in such a way that

$$\phi(\mu) = \frac{\pi}{1 + \frac{1}{\mathcal{M}}} \log \left(\frac{\mathcal{M}}{\mathcal{M} + 1} + \frac{P_f^2 + H_f - \mu}{-E_B}\right) + \int \frac{dp}{\mathcal{M}} \frac{1}{(P_f + p)^2 + H_f + p^2 - \mu}

- a(\chi_n) \frac{1}{\mathcal{M}} \frac{P_f^2 + H_f - \mu}{a^*(\chi_n)} - a(\chi_n - \chi_n) \frac{1}{\mathcal{M} P_f^2 + H_f - \mu}

= \frac{\int \frac{dp dq}{\mathcal{M}} a^*_p \left(\frac{1}{(P_f + p + q)^2 + H_f + p^2 + q^2 - \mu}\right) a_q + o(1)}{\lambda < p^2, q^2 \leq n}$$

as $n \to \infty$. The remainder term converges to zero strongly. Here and in the following $\lambda < p^2, q^2 \leq n$ means that $\lambda < p^2 \leq n$ and $\lambda < q^2 \leq n$. The first two terms of (12) are positive for $\mu < E_B$. The last three terms of (12) are estimated, uniformly in n and N, in Lemma 3 and Lemma 5 below.

Lemma 3. For $n > \lambda \geq 0$ and $\mu < 0$,

$$\left\|\left(\frac{1}{\mathcal{M}} P_f^2 + H_f - \mu\right)^{-1} a^* (\chi_n - \chi_\lambda)\right\| \leq \sqrt{\frac{\pi}{\lambda - \mu}}.$$
Proof. The lemma follows from

\[
\left\|(\frac{1}{M} P_f^2 + H_f - \mu)^{-1} a^* (\chi_n - \chi)\right\| \leq \left\|(H_f - \mu)^{-1} a^* (\chi_n - \chi)\right\|
\]

\[
= \left\| a(\chi_n - \chi)(H_f - \mu)^{-2} a^* (\chi_n - \chi)\right\|^{1/2},
\]

and

\[
a(\chi_n - \chi) \frac{1}{(H_f - \mu)^2} a^* (\chi_n - \chi)
\]

\[
= \int dp\, dq\, a_p \frac{1}{(H_f - \mu)^2} a^*_q = \int dp\, \frac{1}{(H_f + p^2 - \mu)^2} - \int dp\, dq\, a^*_q \frac{1}{(H_f + p^2 + q^2 - \mu)^2} a_p
\]

\[
\leq \int dp\, \frac{1}{(p^2 - \mu)^2} = \frac{\pi}{\lambda - \mu},
\]

which is true because of the positivity of

\[
\int dp\, dq\, a^*_q \frac{1}{(H_f + p^2 + q^2 - \mu)^2} a_p
\]

\[
= \int ds\, \int dt\, \int dp\, dq\, a^*_q e^{-(s+t)q^2} e^{-(s+t)(H_f - \mu)} e^{-(s+t)p^2} a_p.
\]

For the proof of Lemma 4 below, we need the following lemma, which is a version of the Schur test.

Lemma 4. Let \(\Omega \subseteq \mathbb{R}^d \) be a measurable set and let \(G : \Omega \times \Omega \to \mathcal{L}(\mathcal{F}(L^2(\mathbb{R}^d))) \) be a measurable map. Thus for every \((p, q) \in \Omega \times \Omega\), \(G(p, q) \) is a bounded operator on the (antisymmetric) Fock space over \(L^2(\mathbb{R}^d) \). Assume that \(G(p, q)^* = G(p, q) = G(q, p) \) for all \(p, q \in \Omega \). Moreover, let \(h : \Omega \to \mathbb{R}_+ \) be a positive measurable function. Then,

\[
\int_{\Omega \times \Omega} dp\, dq\, a^*_p G(p, q) a_q \leq \int_{\Omega} dp\, h(p) a^*_p \left(\int_{\Omega} dq\, |G(p, q)| \frac{|G(p, q)|}{h(q)} \right) a_p.
\]

Proof. Let \(\psi \in \mathcal{F}(L^2(\mathbb{R}^d)) \). Writing \(G(p, q) = \text{sgn}(G(p, q)) \cdot |G(p, q)| \) with the help of the functional calculus, we obtain

\[
\int_{\Omega \times \Omega} dp\, dq\, \langle a_p \psi, G(p, q) a_q \psi \rangle \leq \int_{\Omega \times \Omega} dp\, dq\, \left\| |G(p, q)|^{1/2} a_p \psi \right\| \cdot \left\| |G(p, q)|^{1/2} a_q \psi \right\|
\]

\[
\leq \left(\int_{\Omega \times \Omega} dp\, dq\, \frac{h(p)}{h(q)} \left| |G(p, q)|^{1/2} a_p \psi \right|^2 \right)^{1/2} \left(\int_{\Omega \times \Omega} dp\, dq\, \frac{h(q)}{h(p)} \left| |G(p, q)|^{1/2} a_q \psi \right|^2 \right)^{1/2}
\]

\[
= \int_{\Omega \times \Omega} dp\, dq\, h(p) \langle \psi, a^*_p \frac{|G(p, q)|}{h(q)} a_q \psi \rangle.
\]
Lemma 5. Let $\mu < 0$. Then the operator

$$P := \int \frac{dp \, dq \, a_p^*}{\lambda < p^2, q^2 \leq n} \frac{1}{M^2 (P_f + p + q)^2 + H_f + p^2 + q^2 - \mu} a_q$$

admits the estimate

$$P \geq -\pi \alpha(M) \left(1 + \log \left(1 + \frac{H_f - \mu}{\lambda}\right)\right).$$

Remark. Our proof of Lemma 5 follows the arguments in [11], but in contrast to the three-dimensional case, the infrared contributions with $p^2 \leq \lambda$ or $q^2 \leq \lambda$ require a separate treatment.

Proof. Setting $\widehat{p} := p + \frac{1}{M+2} P_f$ and $\widehat{q} := q + \frac{1}{M+2} P_f$ we can rewrite the denominator in the expression defining P as

$$(1 + \frac{1}{M})(\widehat{p}^2 + \widehat{q}^2) + \frac{2}{M} \widehat{p} \cdot \widehat{q} + \frac{1}{M+2} P_f^2 + H_f - \mu.$$

For $\psi \in \bigwedge^{N-1} L^2(\mathbb{R}^2)$, we define $\tilde{\psi} \in L^2(\mathbb{R}^2; \bigwedge^{N-2} L^2(\mathbb{R}^2))$ by $\tilde{\psi}(p) := a_p \psi$. Moreover, we define a unitary operator $T \in \mathcal{L}(L^2(\mathbb{R}^2; \bigwedge^{N-2} L^2(\mathbb{R}^2)))$ by

$$(T \varphi)(p; k_1, \ldots, k_{N-2}) := \varphi(p) + \frac{1}{M+2} \sum_{i=1}^{N-2} k_i; k_1, \ldots, k_{N-2},$$

where $(T \varphi)(p; k_1, \ldots, k_{N-2})$ and $\varphi(p; k_1, \ldots, k_{N-2})$ denote values of the functions $(T \varphi)(p)$ and $\varphi(p) \in \bigwedge^{N-2} L^2(\mathbb{R}^2)$, respectively. We obtain

$$\langle \psi, P \psi \rangle = \int \frac{dp \, dq \, \langle \tilde{\psi}(p), (1 + \frac{1}{M})(\widehat{p}^2 + \widehat{q}^2) + \frac{2}{M} \widehat{p} \cdot \widehat{q} + \frac{1}{M+2} P_f^2 + H_f - \mu \rangle \tilde{\psi}(q)}{\lambda < p^2, q^2 \leq n}$$

$$= \langle (\chi_n - \chi_\lambda) \tilde{\psi}, T \sigma T^* (\chi_n - \chi_\lambda) \tilde{\psi} \rangle,$$

where σ is the operator on $L^2(\mathbb{R}^2; \bigwedge^{N-2} L^2(\mathbb{R}^2))$ with operator-valued integral kernel

$$\sigma(p, q) = \frac{1}{(1 + \frac{1}{M})(p^2 + q^2) + \frac{2}{M} p \cdot q + \frac{1}{M+2} P_f^2 + H_f - \mu}.$$

Following [11] (3.9), we compute the negative part of σ explicitly. Its kernel is given by $\sigma^-(p, q) = \frac{1}{2}(\sigma(-p, q) - \sigma(p, q))$. We write $\sigma^-(p, q)$ as

$$\sigma^-(p, q) = \frac{1}{2} \left[\frac{1}{(1 + \frac{1}{M})(p^2 + q^2) - \frac{2}{M} p \cdot q + \frac{1}{M+2} P_f^2 + H_f - \mu} \right]_{n=-1}^{u=1}$$

$$= \frac{1}{2} \int_{-1}^{1} \frac{du}{du} \left[\frac{1}{(1 + \frac{1}{M})(p^2 + q^2) - \frac{2}{M} p \cdot q + \frac{1}{M+2} P_f^2 + H_f - \mu} \right]$$

$$= M p \cdot q \int_{-1}^{1} \frac{1}{[(M+1)(p^2 + q^2) - 2up \cdot q + B]^2},$$
where \(B := \frac{M}{M+2} P^2_f + MH_f - M\mu \). Then,

\[
P \geq - \int_{\lambda < p^2, q^2 \leq n} dp \, dq \, a^*_{p} \sigma^-(\hat{p}, \hat{q}) \, a_q \tag{13}
\]

\[
= -M \int_{\lambda < p^2, q^2 \leq n} dp \, dq \, a^*_{p} \left(\int_{-1}^{1} du \, \frac{\hat{p} \cdot \hat{q}}{((M+1)(\hat{p}^2 + \hat{q}^2) - 2u\hat{p} \cdot \hat{q} + B)^2} \right) a_q,
\]

and with Lemma [4] and \(h(p) = p^2 \) we obtain

\[
P \geq -M \int_{\lambda < p^2 \leq n} dp \, p^2 \, a^*_{p} f(p, P_f, H_f) \, a_p,
\]

where

\[
f(p, P_f, H_f) := \int_{\lambda < q^2 \leq n} dq \int_{-1}^{1} du \, \frac{\hat{p} \cdot \hat{q}}{q^2((M+1)(\hat{p}^2 + \hat{q}^2) - 2u\hat{p} \cdot \hat{q} + B)^2}.
\]

Our goal is now to find a function \(g \) with \(f(p, Q, E) \leq g(E + p^2) \). It then follows that

\[
P \geq -M \int_{\lambda < p^2 \leq n} dp \, p^2 \, a^*_{p} g(H_f + p^2) \, a_p
\]

\[
\geq -M \int_{\lambda < p^2 \leq n} dp \, p^2 \, a^*_{p} a_p \, g(H_f) \geq -MH_f g(H_f). \tag{14}
\]

To find such a function \(g \) we first note that \(2u\hat{p} \cdot \hat{q} \leq 0 \) on half of the \(u \)-interval \([-1, 1]\) and hence the quotient in the definition of \(f \) goes up and becomes independent of \(u \) if we drop this term. Second, we use \(\hat{p}^2 + \hat{q}^2 \geq 2|\hat{p} \cdot \hat{q}| \) and \(B \geq 0 \) in the denominators. Explicitly,

\[
\int_{-1}^{1} du \, \frac{\hat{p} \cdot \hat{q}}{q^2((M+1)(\hat{p}^2 + \hat{q}^2) - 2u\hat{p} \cdot \hat{q} + B)^2}
\]

\[
\leq \frac{\hat{p} \cdot \hat{q}}{q^2((M+1)(\hat{p}^2 + \hat{q}^2) + B)^2} + \int_{0}^{1} du \, \frac{\hat{p} \cdot \hat{q}}{q^2((M+1)(\hat{p}^2 + \hat{q}^2) - 2u|\hat{p} \cdot \hat{q}| + B)^2}
\]

\[
\leq \frac{1}{2q^2(M+1)((M+1)(\hat{p}^2 + \hat{q}^2) + B)} + \int_{0}^{1} du \, \frac{1}{2q^2(M+1-u)((M+1-u)(\hat{p}^2 + \hat{q}^2) + B)}.
\tag{15}
\]

One can easily verify that

\[
(M + 1)\hat{p}^2 + \frac{M}{M+2} P^2_f \geq \frac{M(M+1)(M+2)}{M^2 + 3M + 1} p^2 \geq Mp^2 \tag{16}
\]

and, more generally,

\[
(M + 1 - u)\hat{p}^2 + \frac{M}{M+2} P^2_f \geq \frac{M(M + 1 - u)(M+2)}{M^2 + 3M + 1 - u} p^2 \geq M\beta(\mu)p^2, \tag{17}
\]
where $\beta(u)$ was defined in (9). From (15), (16) and (17) we obtain the estimate

$$f(p, P_f, H_f) \leq \int dq \frac{1 - \chi\lambda(q)}{q^2} \left(\tilde{f}(\hat{q}, 0) + \int_0^1 du \tilde{f}(\hat{q}, u) \right)$$

(18)

with

$$\tilde{f}(q, u) = \frac{1}{2(M + 1 - u)^2} \cdot \frac{1}{q^2 + A(u)} \quad \text{and} \quad A(u) = \frac{M[H_f + \beta(u)p^2 - \mu]}{M + 1 - u}.$$

In order to estimate (18), we replace $(1 - \chi\lambda(q))/q^2$ by the symmetric decreasing function $j\lambda(q) := (1 - \chi\lambda(q))/q^2 + \chi\lambda(q)/\lambda$. We then employ a rearrangement inequality that allows us to replace $\hat{q} = q + \frac{1}{M+2}P_f$ by q in the argument of \tilde{f}. For an arbitrary $u \in [0, 1]$ this reads

$$\int dq \frac{1 - \chi\lambda(q)}{q^2} \tilde{f}(\hat{q}, u) \leq \int dq j\lambda(q) \tilde{f}(q, u)$$

$$= \frac{\pi}{2(M + 1 - u)^2 A(u)} \left(\frac{A(u)}{\lambda} \log \left(1 + \frac{\lambda}{A(u)} \right) + \log \left(1 + \frac{A(u)}{\lambda} \right) \right)$$

$$\leq \frac{\pi}{2M(M + 1 - u)\beta(u)} \frac{1}{H_f + p^2} \left(1 + \log \left(1 + \frac{H_f + p^2 - \mu}{\lambda} \right) \right),$$

(19)

where we used $\log(1 + x) \leq x$ if $x \geq 0$ for the first logarithm in (19), $A(u) \leq H_f + p^2 - \mu$ in the argument of the second logarithm and $(M + 1 - u)A(u) \geq M\beta(u)(H_f + p^2)$ in the overall prefactor $1/A(u)$. Combining (18) and (19), we arrive at

$$f(p, P_f, H_f) \leq \frac{\pi \alpha(M)}{M} \frac{1}{H_f + p^2} \left(1 + \log \left(\frac{H_f + p^2 - \mu}{\lambda} \right) \right),$$

which is of the form $g(H_f + p^2)$ as desired. In view of (14) the lemma is proven.

Proof of Theorem

We combine (12), Lemma 3, Lemma 5 and $\|a(\chi\lambda)\| = \|a^*(\chi\lambda)\| = \sqrt{\pi\lambda}$. In the limit $n \to \infty$ we find

$$\phi(\mu) \geq \frac{\pi}{1 + \frac{\pi}{\lambda}} \log \left(\frac{1 + P_f^2 + H_f - \mu}{-E_B} \right) - \pi \sqrt{\frac{\lambda}{-\mu}} - \pi \sqrt{\frac{\lambda}{\lambda - \mu}}$$

$$- \pi \alpha(M) \left(1 + \log \left(1 + \frac{H_f - \mu}{\lambda} \right) \right)$$

$$\geq \pi \left(\frac{M}{M + 1} - \alpha(M) \right) \log \left(\frac{\mu}{E_B} \right) - \pi \sqrt{\frac{\lambda}{-\mu}} - \pi \sqrt{\frac{\lambda}{\lambda - \mu}}$$

$$- \pi \alpha(M) \log \left(-E_B \left(\frac{1}{\lambda} + \frac{1}{-\mu} \right) \right) - \pi \alpha(M).$$

By (5), this completes the proof of Theorem.
It would be very interesting to know whether the conclusion of Theorem 1 still holds for \(M < 1.225 \). One could address this question with the help of some numerics as follows. Using the pull-through formula and Lemma 4 with \(h(p) = p^2 \) one obtains from (13)

\[
\sqrt{\frac{H_f - \mu}{\log(1 + \frac{H_f - \mu}{\lambda})}} P \sqrt{\frac{H_f - \mu}{\log(1 + \frac{H_f - \mu}{\lambda})}} \geq -\int_{\lambda < p^2 \leq n} dp \int_{\lambda < q^2 \leq n} dq \frac{1}{q^2} \sqrt{\frac{H_f + p^2 - \mu}{\log(1 + \frac{H_f + p^2 - \mu}{\lambda})}} \sigma^-(\tilde{p}, \tilde{q}) \sqrt{\frac{H_f + q^2 - \mu}{\log(1 + \frac{H_f + q^2 - \mu}{\lambda})}} a_p
\]

with

\[
C := \sup_{p,Q \in \mathbb{R}^2, \tau > 0} \sqrt{\frac{\tau + p^2 - \mu}{\log(1 + \frac{\tau + p^2 - \mu}{\lambda})}} \times \int_{\lambda < q^2} dq \frac{1}{q^2} \sqrt{\frac{\tau + q^2 - \mu}{\log(1 + \frac{\tau + q^2 - \mu}{\lambda})}} \left((1 + \frac{1}{\lambda})(\tilde{p}^2 + \tilde{q}^2) + \frac{2}{\lambda^2}(\tilde{p} \cdot \tilde{q}) \right)
\]

where \(\tilde{p} := p + \frac{1}{M+2} Q \) and \(\tilde{q} := q + \frac{1}{M+2} Q \). This yields \(P \geq -C \cdot \log(1 + \frac{H_f - \mu}{\lambda}) \). One could now attempt to evaluate the constant \(C \) numerically and compare it with the prefactor \(\pi/(1 + \frac{1}{\lambda^2}) \) in the definition of \(\phi^0(E) \) given in (3). A corresponding numerical analysis was done successfully in the three-dimensional case (11).

A Appendix

In this appendix we briefly explain the connection between \(\phi(E) \) defined in the introduction, the Hamiltonian \(H_N \) that occurs in (3), and (11), see also Section 5.1 of [7].

Let \(H_0 := M^{-1} P_f^2 + H_f \), and for \(E < 0 \) let \(R_E:= V(H_0 - E)^{-1} \in \mathcal{L}(\mathcal{H}_N, \mathcal{H}_{N-1}) \), where \(V : D(H_0) \cap \mathcal{H}_N \to \mathcal{H}_{N-1} \) is defined by

\[
V\psi := \lim_{n \to \infty} \int_{k^2 \leq n} dk a_k \psi.
\]

The existence of this limit is easily established with the help of the pull-through formula \(a_k(H_0 - E)^{-1} = (H_0 + k^2 - E)^{-1} a_k \) [5,7]. The domain \(D(H_N) \) of \(H_N \) can be characterised as follows: a vector \(\psi \in \mathcal{H}_N \) belongs to \(D(H_N) \) if and only if there is a vector \(w_\psi \in D(\phi) \subseteq \mathcal{H}_{N-1} \) such that for some (and hence all) \(E < 0 \)

\[
\psi - R_E^*w_\psi \in D(H_0), \tag{20}
\]

and

\[
V(\psi - R_E^*w_\psi) = \phi(E)w_\psi. \tag{21}
\]

For \(\psi \in D(H_N) \) the action of \(H_N \) is given by

\[
(H_N - E)\psi = (H_0 - E)(\psi - R_E^*w_\psi). \tag{22}
\]
By \((21), (22)\), and the definition of \(R_E\),

\[
\langle \psi, (H_N - E)\psi \rangle = \langle \psi - R_E^* w_\psi, (H_0 - E)(\psi - R_E w_\psi) \rangle + \langle w_\psi, \phi(E)w_\psi \rangle
\]

which proves Condition \((5)\).

The Hamiltonian \(H_N\) as described above is a self-adjoint operator \([2, 7]\) and it represents the formal expression \((1)\) in the center-of-mass frame, or, which is the same, in the sector of total momentum zero. To explain this let us rewrite \((1)\) in terms of center-of-mass and relative coordinates, \(R = (My + \sum_{i=1}^{N} x_i)/(M + N)\) and \(r_i = x_i - y\), respectively. One obtains the sum of the kinetic energy of the center-of-mass motion, \(-(M + N)^{-1} \Delta_R\), and

\[
\frac{1}{M} \left(\sum_{i=1}^{N} i \nabla r_i \right)^2 - \sum_{i=1}^{N} \Delta r_i - g \sum_{i=1}^{N} \delta(r_i). \tag{23}
\]

Here we recognise in the first two terms the free Hamiltonian \(H_0\). We expect that \(H_N\) agrees with \(H_0\) away from the support of the \(\delta\)-potentials. Indeed, for \(\psi \in D(H_0) \cap \text{Ker}(V)\) we may choose \(w_\psi = 0\). It follows that \(\psi \in D(H_N)\) and that \(H_N \psi = H_0 \psi\). Thus \(H_N\) is an extension of \(H_0\) restricted to \(D(H_0) \cap \text{Ker}(V)\). Now, for a smooth function \(\psi \in \mathcal{H}\), the condition \(\psi \in \text{Ker}(V)\) is equivalent to \(\psi(x_1, \ldots, x_N) = 0\) whenever \(x_k = 0\) for some \(k\). In the literature, an extension of \(H_0\), characterized by a condition of the form \((21)\), is known as Skornyakov-Ter-Martirosyan (STM) extension. In the analogous situation in three dimensions with suitable values of the system parameters, a variety of different STM extensions is known to exist \([3]\).

Acknowledgements: Ulrich Linden thanks Robert Seiringer and Thomas Moser for encouraging discussions and the hospitality at the IST Austria. His work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Research Training Group 1838: Spectral Theory and Dynamics of Quantum Systems.

References

[1] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden. Solvable models in quantum mechanics. AMS Chelsea Publishing, Providence, RI, second edition, 2005.

[2] M. Correggi, G. Dell’Antonio, D. Finco, A. Michelangeli, and A. Teta. Stability for a system of \(N\) fermions plus a different particle with zero-range interactions. Rev. Math. Phys., 24(7):1250017, 32, 2012.

[3] M. Correggi, G. Dell’Antonio, D. Finco, A. Michelangeli, and A. Teta. A class of Hamiltonians for a three-particle fermionic system at unitarity. Math. Phys. Anal. Geom., 18(1):Art. 32, 36, 2015.

[4] G. F. Dell’Antonio, R. Figari, and A. Teta. Hamiltonians for systems of \(N\) particles interacting through point interactions. Ann. Inst. H. Poincaré Phys. Théor., 60(3):253–290, 1994.
[5] J. Dimock and S. G. Rajeev. Multi-particle Schrödinger operators with point interactions in the plane. *J. Phys. A*, 37(39):9157–9173, 2004.

[6] M. Koschorreck, D. Pertot, E. Vogt, B. Frohlich, M. Feld, and M. Kohl. Attractive and repulsive fermi polarons in two dimensions. *Nature*, 485(7400):619–622, 2012. 10.1038/nature11151.

[7] U. Linden. Energy estimates for the two-dimensional Fermi polaron. PhD thesis. Universität Stuttgart, 2017.

[8] P. Massignan, M. Zaccanti, and G. M. Bruun. Polarons, dressed molecules and itinerant ferromagnetism in ultracold fermi gases. *Rep. Prog. Phys.*, 77(3):034401, 2014.

[9] R. Minlos. On point-like interaction between n fermions and another particle. *Mosc. Math. J.*, 11(1):113–127, 182, 2011.

[10] R. Minlos. Remark on my paper “On point-like interaction between n fermions and another particle” [mr2808213]. *Mosc. Math. J.*, 11(4):815–817, 822, 2011.

[11] T. Moser and R. Seiringer. Stability of a Fermionic $N + 1$ Particle System with Point Interactions. *Commun. Math. Phys.*, 356(1):329–355, 2017.

[12] M. M. Parish and J. Levinsen. Highly polarized fermi gases in two dimensions. *Phys. Rev. A*, 87:033616, 2013.