Integration of Fungus-Specific CandA-C1 into a Trimeric CandA Complex Allowed Splitting of the Gene for the Conserved Receptor Exchange Factor of CullinA E3 Ubiquitin Ligases in Aspergilli

Anna M. Köhler,a Rebekka Harting,a Annika E. Langeneckert,a Oliver Valerius,a Jennifer Gerke,a Cindy Meister,a Anja Strohdiek,a Gerhard H. Brausa

*Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Goettingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany

ABSTRACT E3 cullin-RING ubiquitin ligase (CRL) complexes recognize specific substrates and are activated by covalent modification with ubiquitin-like Nedd8. Deneddylation inactivates CRLs and allows Cand1/A to bind and exchange substrate recognition subunits. Human as well as most fungi possess a single gene for the receptor exchange factor Cand1, which is split and rearranged in aspergilli into two genes for separate proteins. Aspergillus nidulans CandA-N blocks the neddylation site, and CandA-C inhibits the interaction to the adaptor/substrate receptor subunits similar to the respective N-terminal and C-terminal parts of single Cand1. The pathogen Aspergillus fumigatus and related species express a CandA-C with a 190-amino-acid N-terminal extension domain encoded by an additional exon. This extension corresponds in most aspergilli, including A. nidulans, to a gene directly upstream of candA-C encoding a 20-kDa protein without human counterpart. This protein was named CandA-C1, because it is also required for the cellular deneddylation/neddylation cycle and can form a trimeric nuclear complex with CandA-C and CandA-N. CandA-C and CandA-N are required for asexual and sexual development and control a distinct secondary metabolism. CandA-C1 and the corresponding domain of A. fumigatus control spore germination, vegetative growth, and the repression of additional secondary metabolites. This suggests that the dissection of the conserved Cand1-encoding gene within the genome of aspergilli was possible because it allowed the integration of a fungus-specific protein required for growth into the CandA complex in two different gene set versions, which might provide an advantage in evolution.

IMPORTANCE Aspergillus species are important for biotechnological applications, like the production of citric acid or antibacterial agents. Aspergilli can cause food contamination or invasive aspergillosis to immunocompromised humans or animals. Specific treatment is difficult due to limited drug targets and emerging resistances. The CandA complex regulates, as a receptor exchange factor, the activity and substrate variability of the ubiquitin labeling machinery for 26S proteasome-mediated protein degradation. Only Aspergillus species encode at least two proteins that form a CandA complex. This study shows that Aspergillus species had to integrate a third component into the CandA receptor exchange factor complex that is unique to aspergilli and required for vegetative growth, sexual reproduction, and activation of the ubiquitin labeling machinery. These features have interesting implications for the evolution of protein complexes and could make CandA-C1 an interesting candidate for target-specific drug design to control fungal growth without affecting the human ubiquitin-proteasome system.
Aspergilli are filamentous ascomycetes which can differentiate into an asexual and sexual spore-producing life cycle (1, 2). The 350 known *Aspergillus* species are ubiquitously distributed, mostly saprophytic in soil, and have harmful and beneficial properties to plants, animals, and humans (2). Some species are useful in biotechnology and the pharma industry through secondary metabolite production, like cholesterol-reducing lovastatin from *Aspergillus terreus* (3). *Aspergillus nidulans* is used as a genetic reference for fungal differentiation and secondary metabolism (4). The human pathogens *Aspergillus fumigatus* and *Aspergillus flavus* can cause pulmonary aspergillosis (5) or food spoilage by aflatoxin secretion on cereals and legumes (6). Invasive aspergillosis causes worldwide around 200,000 cases in humans per year, with limited availability of antifungal drugs to treat it (7).

Drug target search includes components of the ubiquitin-proteasome system (UPS), which is the prevailing conserved cellular protein destruction pathway in eukaryotes (8–11). Proteasome-targeted proteins are posttranslationally modified with ubiquitin mediated by E3 cullin-RING-ligases (CRLs) (12). The most common group of CRLs is the Skp1-Cul1-Fbx (SCF) complex, where Skp1 (S-phase kinase-associated protein 1) is the adaptor between the cullin scaffold and the Fbx (F-box) substrate receptor (13). SCFs are activated by the covalent modification of a lysine residue of cullin with the ubiquitin-like protein Nedd8 (neural precursor cell expressed, developmentally down-regulated 8) (14). SCFs have to be disassembled and reassembled with different F-box proteins carrying different substrates in order to provide a broad substrate range (15). The exchange of F-box receptor units requires the interplay between the COP9 signalosome (CSN) deneddylase and the substrate receptor exchange factor Cand1 (Cullin-associated-Nedd8-dissociated protein 1) (16–18). CSN inactivates the SCF by removing Nedd8 from cullins (19, 20). Cand1 sequesters the cullin by blocking the Nedd8 binding site with the N-terminal domain. Cand1’s β-hairpin in helix B25 of the C-terminal domain interferes with the Skp1-adaptor binding site (21). The 120-kDa Cand1 is ubiquitously found in eukaryotes, where Cand1 is mostly encoded by a single gene. *A. nidulans* and other fungi of the class Eurotiomycetes possess at least two candA genes transcribed in opposite directions and are separated by five open reading frames. The encoded two subunits form a complex and fulfill the same molecular function as a single subunit Cand1, suggesting that an originally fused gene was split by rearrangement during evolution in the Eurotiomycetes (22). Accordingly, the human Cand1 counterpart of *A. nidulans* includes CandA-N and CandA-C proteins in a single polypeptide. In this study, a third *A. nidulans* CandA subunit was identified which has no counterpart in human Cand1. This newly identified candA-C1 gene is located 269 bp upstream of candA-C. The human pathogen *A. fumigatus* found a different solution to cope with the split Cand proteins. It carries a fused gene where CandA-C1 is encoded by an additional exon, resulting in a 190-amino-acid N-terminal extension (NTE) of CanA. We found that an *Aspergillus*-specific CandA-C1, which is essential for E3 SCF activity, fungal growth, and development, was required to allow splitting of CandA in *Aspergillus* species. This resulted in a trimeric CandA complex in *A. nidulans* and a corresponding N-terminally extended dimeric complex in *A. fumigatus*. Antimycotic drug development aims to control fungal spreading. *A. nidulans* CandA-C1 and *A. fumigatus* CanA could serve as targets to specifically control the growth and spread of aspergilli to support human health and preserve agricultural products.

RESULTS

A. fumigatus spp. possess an additional candA sequence as extension or separate gene. The conserved eukaryotic Cand1/A protein functions as a substrate receptor exchange factor for cullin-RING ligases. Most organisms encode a single Cand gene. *Aspergillus* spp. are an exception and carry at least two genes coding in *A. nidulans* for...
Both genes are separated in most aspergilli by five genes coding for putative proteins, including septation-associated SepK, vacuolar biosynthesis-related Pep5/Vps11, or chitin deacetylase (Fig. 1A; see also Fig. S1A in the supplemental material). Cand1/A proteins have an armadillo-type fold typical of HEAT repeat proteins (21, 23, 24). CandA-N and CanA carry N-terminal nuclear localization signal (NLS) sequences (RKRRR) (22). A. fumigatus CanA carries an NTE encoded in exon-1 that corresponds to the deduced protein encoded by A. nidulans AN12234, which we named CandA-C1. This gene is located only 269 bp upstream of candA-C and was not considered before to encode a CandA subunit. CandA-C1, as well as A. fumigatus CanA NTE, have an N-terminal RNase P Rpr2/Rpp21 domain motif, and, presumably, disordered C termini (Fig. 1A). This indicates that two A. fumigatus CanA
proteins correspond to three *A. nidulans* CandA proteins, with 59% identity between CandA-C1 and CanA-NTE and 79% identity of CandA with full-length CanA. The two N-terminal orthologs share 77% protein identity.

Bioinformatic analysis revealed that a majority of the 12 *Aspergillus* species carry the same two separated adjacent CandA-C1- and CandA-C-encoding genes as *A. nidulans*. Only *A. fumigatus*, *Aspergillus clavatus*, and *Aspergillus aculeatus* are annotated as expressing deduced fusion proteins with similar lengths and intron distributions (2) (Fig. 1B). These results suggest that *Aspergillus*-specific CandA-C1 could be linked to the conserved CandA protein family, mostly as an independent protein but also in some species as an N-terminal domain fusion to CandA-C. The surrounding positioning of homologous genes is conserved, indicating a common ancestor of all *Aspergillus* spp. which presumably had encountered a specific rearrangement of candA genes during evolution, which has not yet been described in other fungi.

* A. fumigatus expresses a single canA gene, and A. nidulans expresses two separate transcripts, candA-C1 and candA-C. The gene expression levels of candA-C1, candA-C, and candA-N in *A. nidulans* were compared by quantitative real-time PCRs (qRT-PCRs) from the wild type and a strain overexpressing candA-C1::gfp by the nitrate promoter. Fifty-fold overexpression of candA-C1 neither changed the fungal phenotype caused by overexpression of candA-C1::gfp nor altered the expression levels of candA-C and candA-N (Fig. 2A). This indicates that candA-C1 and candA-C are separate genes, and the 269-bp intergenic-open reading frame (iORF) region between candA-C1 and candA-C ORFs should include a terminator for candA-C1 and a promoter for the candA-C gene. RNA sequencing (RNA-seq) data deposited in FungiDB showed expressed sequences of both ORFs, with fewer candA-C1 fragments per kilobase of exon model per million mapped reads than candA-C, supporting differences in expression between the two genes.

The ORFs of candA-C1, candA-C, and a putative fusion of candA-C1::candA-C were amplified from wild-type genomic DNA (gDNA) and complementary DNA (cDNA), as well as of mutant strain cDNA, to examine the transcripts of the iORF region (Fig. 2B). Specific PCR products for candA-C1 were obtained from wild-type c/gDNA, ΔcandA-C mutant, and ΔiORF mutant strains (Fig. 2C). Except for a faint signal of candA-C amplification in the ΔiORF mutant strain, a significant PCR product of candA-C was only observed from PCRs on wild-type c/gDNA and when candA-C1 was deleted. This corresponds to the significant downregulation of candA-C expression when the iORF was missing in qRT-PCR, supporting the idea that the iORF includes the promoter sequence for candA-C (Fig. 2D). The candA-C1 gene expression was 3-fold increased in a candA-C deletion strain. These observations are consistent with the phenotypes of a strain lacking the candA-C1 start codon, the ΔiORF mutant, and the ΔcandA-C1/iORF mutant strain (Fig. 2C and S1B and C). A combined candA-C1::candA-C transcript was amplified and might be an antisense transcript, which is supported by FungiDB RNA-seq data. The *A. fumigatus* CanA-green fluorescent protein (CanA-GFP) (163 kDa) and *A. nidulans* CandA-C-GFP (142 kDa) exhibited different molecular weights in Western hybridization, and the expression of a fused *A. nidulans* candA gene resulted in a 170-kDa protein, which correlates with the sum of the single subunits (Fig. 2E). These results demonstrate that candA-C1 and candA-C are separate genes in *A. nidulans*, with an iORF containing candA-C1 terminator and candA-C promoter sequences, whereas the orthologous *A. fumigatus* CanA combines both peptides, including an NTE corresponding to CandA-C1.

CandA-C1 interacts with CandA-C and CandA-N. Localization of GFP-tagged CandA proteins from *A. nidulans* by fluorescence microscopy revealed that GFP-CandA-N and CandA-C-GFP are mainly localized to the cytosol and nuclei. CandA-C1-GFP is localized to the nuclei, nucleoli, cytosol, and, presumably, mitochondria (Fig. 3A). Bimolecular fluorescence complementation (BiFC) microscopy showed that CandA-C1 interacts with CandA-N and CandA-C in the nuclei and sometimes in mitochondria in

May/June 2019 Volume 10 Issue 3 e01094-19

mbio.asm.org 4
wild-type and culin deneddylation-deficient csnE deletion strains (Fig. 3B and S2A and B).

The CandA-C backpacks CandA-N into the nucleus (23), and its NLS (RKRRR) at amino acid positions 138 to 142 is required for CandA-C and CandA-N nuclear transport. Nuclear localization of CandA-C1 is independent of the CandA-C NLS and also of the presence of CandA-C or CandA-N. Conversely, CandA-N and CandA-C are also nuclear in the absence of CandA-C1 (Fig. 3C and S2C). Therefore, CandA-C1 and CandA-C travel independently into the nucleus, and only the nuclear transport of CandA-N is dependent on CandA-C.

* A. nidulans* CandA pulls only CulA, whereas *A. fumigatus* CanA recruits CulA and CulC. GFP-pulldown experiments from fungal cell extracts of *A. nidulans* strains expressing functional GFP-CandA-N, CandA-C-GFP (native promoter), and CandA-C1-GFP (overexpressing) and from *A. fumigatus* CanA-GFP (native promoter) were performed to compare the complexes from the two fungi. MaxQuant analysis of the liquid
chromatography-mass spectrometry (LC-MS) data yielded the identification of about 2,000 proteins. Downstream processing and filtering of the data with Perseus revealed 51 significantly enriched candidates (Table S1). Peptides of CandA-N and CandA-C showed highest log2(x) label-free quantification (LFQ) intensities in CandA-C-GFP and GFP-CandA-N pulldowns. CulA was identified as among the best candidates, whereas CulC or CulD could not be identified, indicating that *A. nidulans* CandA is specific for CulA-containing CRLs.

A. fumigatus CanA-GFP pulled CanA-N, both CulA and CulC, and RbxA (Fig. 4A and B). Western hybridization of the CandA-C1-GFP elution fraction using anti-Nedd8 antibody revealed signals of interacting neddylated cullins, as well as free Nedd8, whereas cullins were not identified in LC-MS data analysis of CandA-C1-GFP (Fig. 4C). Western hybridization and MS LFQ intensities corroborate the idea that CandA-C1 is part of a trimeric CandA complex and might exhibit additional cellular functions in *A. nidulans* independently of CandA-N or CandA-C.

A. nidulans CandA is required for SCF activation. The CulA neddylation status in *A. nidulans* candA deletion strains was investigated with *in vitro* deneddylation assays to analyze whether all three subunits have an impact on cullin neddylation. Deneddylated CulA is visualized as lower and neddylated CulA as higher migrating signals in Western hybridization experiments (17, 25). Larger amounts of deneddylated CulA were visible in the ΔcandA-C1, ΔcandA-C, ΔcandA-N, and ΔcandA-N/A-C mutant strains than...
in the wild type, with the most pronounced 2-fold-higher effect in the absence of CandA-N. Fewer ubiquitinated proteins were observed in all candA deletion strains and are presumably a direct consequence of increased inactive CulA. Double- and triple-deletion strains of candA with deneddylation-deficient csnE showed increased neddylated CulA levels, like those of a csnE single-deletion strain. The total neddylated cullins were similar in the ΔcandA mutant strains (Fig. 5A and B). Therefore, all three CandA subunits contribute to the accurate ratio of neddylated relative to deneddylated CulA within the fungal cell.

CandA-C1 overexpression can therefore only rescue defects in the CulA neddlylation cycle caused by the absence of CandA-C, but not of CandA-N, and it increases the total neddylated cullin pool. These data further suggest that after the initial deneddylation of CRLs by CSN and subsequent CandA-mediated CRL disassembly, CandA has an additional novel function. It is also required to initiate a new cycle of neddlylation and activation of CRLs with another substrate receptor. Therefore, CRL activity is not only dependent on a functional CSN but also on the interplay of CandA-N, CandA-C1, and CandA-C.
CandA-C1 and CanA promote growth and development in *A. nidulans* and *A. fumigatus*. Single- and double-deletion *A. nidulans* candA-N and candA-C mutant strains showed colony diameters similar to those of the wild type but produced fewer conidia. The hyphae and surrounding media were colored dark red-brown, indicating an altered secondary metabolism (Fig. 6A). Analysis of secondary metabolites from asexual development by LC-MS revealed that both strains produce cichorine (VII) that was hardly detectable in the wild type or ΔcandA-C1 mutant. Peak VIII, present in the ΔcandA-C and ΔcandA-N mutants, corresponds to an unknown metabolite with mass of m/z 210.0761 [M+H]+ and deduced molecular formula C_{10}H_{11}NO_{4}. Austinol (I), dehydroaustinol (II), asperthecin (III), emericellin (IV), and shamixanthone/epishamixanthone (V and VI) were increased in the ΔcandA-C1 mutant strain in comparison to the wild type, which does not produce detectable asperthecin (Fig. 6D and Data Set S1).

The ΔcandA-C1 mutant grew 6 times slower but produced 1.5 to 2 times more conidia than the candA-N/A-C single- and double-deletion strains, which was still 30 times less than the amount of spores produced by the wild type (Fig. 6A to C). Conidial formation was increased, but the colony radius decreased when candA-C1 was overexpressed in the ΔcandA-C or ΔcandA-N/A-C mutant but not in the ΔcandA-N mutant strain, suggesting that candA-C1 expression can rescue conidiation defects caused by the loss of candA-C (Fig. S3B to D). CandA-C1 therefore has a distinct additional cellular function and promotes vegetative growth and conidial formation.
FIG 6
A. *nidulans* CandA-C1 and *A. fumigatus* CanA are required for growth and asexual development. (A) *A. nidulans* conidia (4×10^3) were point inoculated on solid minimal medium supplemented with para-aminobenzoic acid and incubated at 37°C in light for 5 days. Pictures were taken from the top and bottom views of the plate. Binocular pictures show asexual spores (scale bars = 100 μm). (B and C) Quantification of colony diameter (B) and amount of spores after 5 days of asexual growth (C) in percentage (%) relative to the wild type. Error bars represent the standard error of the mean (SEM) ($n=3$). (D) LC-MS combined with photodiode array detection (PDA) analysis of secondary metabolites extracted from 7-day-old asexually developed mycelium revealed differences in all tested strains. The wild type and Δ*candA-C1* mutant produce similar amounts of austinol (I) and dehydroaustinol (II). The Δ*candA-C1* mutant produces asperthecin (III) and greater amounts of emericellin (IV) and shamixanthone/epishamixanthone (V and VI) than does the wild type. Metabolites III, IV, V, and VI were absent in the Δ*candA-C* and Δ*candA-N* mutants, but both produced cichorine (VII) and a metabolite (VIII) with high-resolution–electrospray ionization–MS (HR-ESI-MS) at m/z 210.0761 [M+H]$^+$ (calculated for $C_{10}H_{12}NO_4$, m/z 210.0766). (E) *A. fumigatus* conidia (4×10^3) were point inoculated on solid modified minimal medium and incubated at 37°C, 30°C, and 42°C for 3 to 7 days. The Δ*canA* mutant strains are growth defective at all tested temperatures. (F) Micrographs of Δ*canA* mutant colonies after 3 and 7 days of growth at 37°C and micrograph of Δ*candA-A/C/candA-N-N* mutant after 14 days at 30°C shows colorless conidia, which did not germinate. (G) *A. nidulans* conidia (4×10^3) were point inoculated on solid minimal medium supplemented with para-aminobenzoic acid and incubated at 30°C and 42°C in light for 5 days. The candA mutant strains grew like the wild type at 30°C and 42°C, except for the Δ*candA-C1* mutant, which grew better at 30°C than at 37°C and was unable to germinate at 42°C.
The A. fumigatus canA and canAΔexon1 deletion mutant strains were delayed in germination and showed a significant growth retardation and adjourned development, suggesting that CanA promotes spor germination and colony growth. Single deletions of \textit{ΔcanA-N} or of the \textit{canA} domain (bp 838 to 4078) corresponding to \textit{A. nidulans candA-C}, as well as the double-deletion strain, showed a delay in conidial formation that was visible as a white halo surrounding the colony. CandA/CanA supports growth at different temperatures, and the full \textit{A. fumigatus} CanA complex is required for spore germination at 30°C (Fig. 6E to G and S3F).

The \textit{A. fumigatus} canA and canAΔexon1 deletion mutant strains were delayed in germination and showed a significant growth retardation and adjourned development, suggesting that CanA promotes spor germination and colony growth. Single deletions of \textit{ΔcanA-N} or of the \textit{canA} domain (bp 838 to 4078) corresponding to \textit{A. nidulans candA-C}, as well as the double-deletion strain, showed a delay in conidial formation that was visible as a white halo surrounding the colony. CandA/CanA supports growth at different temperatures, and the full \textit{A. fumigatus} CanA complex is required for spor germination at 30°C (Fig. 6E to G and S3F).

The conservation of the function of candA-C1 from both species was examined. The construction of an \textit{A. fumigatus} strain with integrated An\textsubscript{canA} sequence into the genomic locus of \textit{Af_canAexon1} and an \textit{A. nidulans} strain with the replacement of \textit{canAexon1} with the \textit{A. nidulans candA-C1} sequence revealed that the two sequences are interchangeable (Fig. 7A). Generation of a CandA-like fusion protein in \textit{A. nidulans} displayed a CandA-C1–CandA-C–GFP fusion protein migrating at higher molecular weight than CandA-C-GFP (Fig. 7B). A comparison of \textit{A. nidulans} with \textit{A. fumigatus candA/canA} mutants revealed that CandA-C1 supports vegetative growth. The CandA orthologs have conserved functions in conidiation, although \textit{A. nidulans} has a trimeric complex and \textit{A. fumigatus} a dimeric complex.

CandA is required for sexual development, and CandA-C1 coordinates secondary metabolite genes other than those encoding CandA-C and CandA-N. The sexual life cycle of \textit{A. nidulans} serves for overwintering of ascospores (26, 27). Hülle cells protect and nurse the early nests that develop to primordia and mature in 7 days to fruiting bodies (cleistothecia) (28). Each cleistothecium contains several asci, with each harboring eight ascospores. Strains missing candA-N and candA-C are blocked in sexual development at the stadium of early nest production (22). The colony of the \textit{ΔcandA-C1} mutant strain was covered with yellowish Hülle cells forming nests after 7 days of development and produced a volcano-like phenotype by growing vertically with a hole in the middle of the colony. Nests of the \textit{ΔcandA-C1} mutant contained only primordia after 7 days, and sexual fruiting bodies with a moderately soft and fragile surface were present after 14 days, indicating a delayed sexual development. These cleistothecia did not contain any ascospores but did contain a complex network of ascogenous hyphae (Fig. 8A to F). Large amounts of CandA-C1-GFP were not sufficient to rescue cleistothecia.
ecial formation in the candA-C and candA-N deletion strains (Fig. S3E). These data show that CandA-C and CandA-N are required for nest formation and primordial development, whereas CandA-C1 has a later function. CandA-C1 is required for stable cleistothecial wall formation and ascospore development.

Analysis of secondary metabolite production after 7 days of sexual development showed that ΔcandA-C and ΔcandA-N mutants produce cichorine and metabolite VIII, similar to what is observed in asexual development. Asperthecin, the red dye of cleistothecia, as well as emericellin and shamixanthone/epishamixanthone, were de-

![Figure 8](image_url)

FIG 8 Ascospore formation is dependent on candA-C1 in A. nidulans. Solid minimal medium was point inoculated with 4 × 10^3 conidia and incubated in the dark and with limited oxygen supply for seven and 14 days. (A) Pictures of sexual phenotypes were taken after 7 days. (B) Micrograph pictures show cleistothecia (c) covered by Hülle cells (h) for wild-type (wt) and the candA-C1 complementation strain. The candA-C1 deletion strain has nests (n) after 7 days which develop to empty cleistothecia (c∗) after 14 days. candA-C and candA-N deletion strains only produce early nests (en) but cannot undergo a complete sexual life cycle. (C) Micrograph pictures of Hülle cell-free cleistothecia. candA-C1 has soft cleistothecia with dents, indicated with red arrows. (D and E) Microscopic pictures of squeezed cleistothecia never showed any mature ascospores for the candA-C1 deletion strain (D) but did show ascogenous hyphae (ah) (E). (F) Closeup view of the ΔcandA-C1 mutant colony. Black scale bars = 100 μm; white scale bar = 1,000 μm, d, days. (G) LC-MS combined with photodiode array detection (PDA) analysis of secondary metabolites extracted from 7-day-old sexually developed mycelium revealed that the ΔcandA-C1 mutant produces asperthecin (III). The wild type and ΔcandA-C1 mutant produce similar amounts of emericellin (IV) and shamixanthone/epishamixanthone (V and VII). Small amounts of cichorine (VII) were detected in the ΔcandA-C mutant, which were increased in the ΔcandA-N mutant. The ΔcandA-C and ΔcandA-N mutants produced compound VIII with HR-ESI-MS at m/z 210.0761 [M+H]^+ (calculated for C_{10}H_{12}NO_{4}, m/z 210.0766).
tected by LC-MS in the ΔcandA-C1 mutant strain (Fig. 8G and Data Set S1), indicating that CandA-C1 coordinates secondary metabolite genes other than those for CandA-C and CandA-N.

In summary, we demonstrate that a likely genomic rearrangement of a single fungal candA gene during evolution required an additional component which had to be integrated and resulted in changes in the subunit compositions of CandA in aspergilli. *A. fumigatus* and *A. nidulans* represent two different groups with different solutions, dimeric, which includes an N-terminal extension, versus a trimeric CandA complex including similar genetic information. The NTE found in *A. fumigatus* CanA corresponds to the separated single CandA-C1 subunit of *A. nidulans*. This trimeric CandA complex is required for CRL activity, supports asexual and sexual development, and thereby has influence on the secondary metabolism.

DISCUSSION

The ubiquitin-proteasome pathway includes the dynamic interplay of the substrate receptor exchange factor CandA and three macromolecular multiprotein complexes, SCF E3 ubiquitin RING ligase, CSN deneddylase, and the 26S proteasome. The three ZOMES complexes CSN, proteasomal lid, and translation eukaryotic initiation factor 3 (eIF3) presumably have a common origin because they share similar subunits in a common architecture, with some variations in subunit compositions (29, 30, 64). Similarly, the subunit composition of the CSN antagonist Cand1/A is divergent in eukaryotes. The putative ancestor of all Aspergillus spp. might have had one candA gene encoding a single subunit CandA with N- and C-terminal domains corresponding to human Cand1. *A. fumigatus* is a representative of a group of species with a dimeric complex, which includes the N-terminal (CanA-N) and an extended C-terminal (CanA) part of human Cand1. *A. nidulans* represents a larger group of aspergilli which even form a trimeric CandA substrate receptor exchange factor complex, where the N-terminal extension of *A. fumigatus* CanA corresponds to the third subunit CandA-C1 in addition to the split CandA-N and CandA-C subunits, which we described earlier (22) (Fig. 9A). This represents an interesting example of evolutionary protein complex formation based on the splitting of one gene into two and combining the protein products with a polypeptide of an additional open reading frame providing additional functions, which is expressed as additional exon or as separate gene. The candA-C1 gene was presumably a separate gene which encodes a putative RNase P subunit with an Rpr2/Rpp21 motif in the N-terminus that is also found in *A. fumigatus* CanA. RNase P is a RNA-protein complex (ribozyme) which can cleave RNAs, such as, 5′ precursors of tRNAs, and exists in different compositions of proteins and RNA, whereby *A. nidulans* encodes one nuclear and one mitochondrial RNA and seven associated proteins, including CandA-C1 (Table S2) (29, 30). It is currently elusive whether CandA-C1 is still part of a RNA complex. It is specific for Eurotiomycetes in the division of Ascomycota, whereas higher eukaryotes lack an ortholog. The current gene order of the candA genes could be caused by a DNA double-strand break and subsequent rearrangement. The position of the candA-C gene changed to a position downstream of candA-C1. The *A. nidulans* iORF includes a terminator of candA-C1 and a candA-C promoter. It is elusive whether CandA-C1 was already functionally linked to CandA before the rearrangement or as result of reordering of genes. The consequences of the rearrangement of the *A. nidulans* candA genes are separate expression of candA-C1, candA-C, and candA-N. In *A. fumigatus*, the rearranged canA C-terminal sequence hijacked the upstream candA-C1 gene, which resulted in a fused gene encoding a CanA protein with an N-terminal extension and a separate canA-N gene. The fusion of these genes might have facilitated the response to stress, like temperature, oxidative, or heavy-metal stress, and sterol-biosynthesis-inhibiting triazole fungicides (31–33). The different organization of canA genes in *A. fumigatus* could be due to selective pressure that maintains the diversity of pathogens to avoid detection by the host immune system or might correlate with the heterothallism and thereby limited recombination by the sexual life cycle (31, 34).

BiFC microscopy and pulldown experiments showed that CandA-N/A-C single sub-
units interact with CandA-C1. The pulldown data also suggest that *A. nidulans* has a dimeric complex of CandA-N/A-C. Overexpression candA-C1 in the absence of candA-C balanced the neddylation ratio of CulA and complemented the conidiation defect. These results underline the idea that CandA-C1 interacts with CandA-N. The two proteins together can partially take over functions of the CandA-N/A-C or CandA-N/A-C1/A-C complexes. The stoichiometry of the complexes needs further investigation. The deneddylation assay supports the idea that all three *A. nidulans* CandA proteins are required for CRL disassembly, are obligatory for CRLs that lack a substrate, and are therefore deneddylated by the CSN. Disassembled and deneddylated cullins can bind other adaptor-receptor complexes for new substrate ubiquitination cycles, allowing the ubiquitination of diverse substrates involved in different cellular pathways, like the *A. nidulans* carbon catabolite repression, as recently shown (35). The CandA proteins are essential for optimal CRL activity, as was also shown by a mathematical modeling investigation by Liu and coworkers (15, 16).

This work demonstrates that CandA-C1 nuclear import is independent of CandA-C. Pulldowns revealed that CandA-C1 interacts with the importin-α/β1 homologs KapA (AN2142) and KapB (AN0906), which have nuclear and perinuclear localization, respectively (36, 37). *A. nidulans* KapA transports the master regulator of secondary metabolism VeA in complex with VeLB into the nucleus (38–40). CandA-C1’s nucleolar localization might be due to interaction with the nonessential KapJ that was reported to have a nucleocytoplasmic and nucleolar localization (37). CandA localized to mitochon-

FIG 9 A trimeric CandA is required for growth, development, a coordinated secondary metabolism (Sec. Met.), and the CRL cycle in *Aspergillus* spp. (A) Scheme of a putative *Aspergillus* ancestor and DNA rearrangement of the candA loci. The ancestor of all *Aspergillus* spp. presumably had one gene containing sequence information of candA-N and candA-C. A DNA double-strand break, followed by ligation, has changed the position of candA-C five open reading frames upstream of candA-N and directly downstream of candA-C1 in *A. nidulans*. In *A. fumigatus*, the candA-C1-like sequence fused to the rearranged canA. (B) *A. fumigatus* CanA N-terminal extension is essential for properly timed spore germination and vegetative growth. CanA and CanA-N promote germination and vegetative growth during low-temperature stress and promote conidiophore development. (C) *A. nidulans* CandA-C1 promotes germination and vegetative growth. CandA-N and CandA-C are essential for multicellular sexual fruiting bodies from the stage of early nest formation. CandA-C1 is required for properly timed cleistothecia formation and is essential for the development of ascospores. All three CandA proteins support the CRL cycle and conidiophore development. Furthermore, CandA contributes to secondary metabolism control.
dria, indicating that it regulates the activity of CRLs that are connected to the outer mitochondrial membrane (41, 42). The deletion of candA genes caused fragmented mitochondria (Fig. S3G), similar to what was reported for a strain lacking the proteasome lid subunit SemA (43). The observed mitochondrial dysfunctions might depend on CandA being required for development and secondary metabolism, and on CandA-C1 as essential vegetative growth factor, which might provide additional RNase-associated functions. A connection between asexual development and secondary metabolism was also shown recently for the transcription factor ScIB that activates the central regulatory pathway for conidiation (44). All three CandA subunits are obligatory for the multicellular development of sexual ascospores, supporting the idea that regulation of the CRL cycle is required for complex organisms. This corroborates with the embryonic lethality of csn or cand dysfunction in higher eukaryotes (45–48). A. fumigatus CanA NTE is obligatory for growth, and the CanA complex is required to cope with low-temperature stress. It is known that the major stress resistance factor for spores in A. fumigatus is trehalose (49). Whether CanA mediates trehalose stability through the UPS to improve stress resistance needs further investigation. The spread of fungal pathogens is difficult to control (50). The discovered impact of CanA on growth and the fact that the CandA-C1 protein domain is not conserved in higher eukaryotes could be beneficial for drug design against Aspergillus-derived diseases, like aspergillosis.

CandA-C1 coordinates secondary metabolite genes other than CandA-N and CandA-C. The ∆candA-C and ∆candA-N mutant strains produced cichorine and an unknown metabolite. From the mass of m/z 210.0761 [M+H]+, the molecular formula C_{10}H_{11}NO_{4} was deduced. A literature search indicated that this substance is most probably emerimidine, which is related to cichorine but was not identified in A. nidulans so far. Emerimidine produced by Emericella variecolor CLB38 was shown to have antimicrobial activity against multidrug-resistant microorganisms like Bacillus subtilis and Staphylococcus aureus but also antifungal activity against Candida albicans and A. fumigatus (51). The thin-layer chromatogram of the extracts from asexually and sexually developed ΔcandA-C and ΔcandA-N mutants showed a blue spot at 366 nm at an R_{f} of 0.43 (Fig. S3H), which is in accordance with the literature (51). The similarity between the UV-Vis spectra of cichorine and emerimidine, which fit very well with the literature, indicates that the two have the same core structure (51, 52). Cichorine is synthesized from a nonreducing polyketide synthase, CicF (AN6448) (52). This metabolite is a known phytotoxin, and compounds with a similar framework have been connected to antitumor and antimicrobial activities (52–54). Cichorine was also identified in a ΔvelB mutant strain that is impaired in sterigmatoxin synthesis (55, 56). Previous studies found orsellinic acid and derivatives in candA, csn, veA, and velB deletion strains and connected these compounds to the dark pigment secreted by those strains (22, 57, 58). These compounds were not identified in the present study under the growth and metabolite extraction conditions used. Austinol and dehydroaustinol from the aus gene cluster were nearly absent in candA-C and candA-N deletion strains, correlating with the reduced amount of conidia (59). Conidia were observed when candA-C1 was missing, and austinol, dehydroaustinol, and emericellin, as well as xanthones from the mdp cluster, were isolated, which are all connected to asexual development and are present in the wild type (60). The metabolite asperthecin is known as the red pigment of cleistothecia (ascospores) and was found after 7 days in a sexually developed ΔcandA-C1 mutant strain, although no mature cleistothecia or ascospores were present, indicating that CandA-C1 supports the asperthecin synthesis but is impaired in the production of cleistothecia with mature ascospores (61).

This work demonstrates an evolutionarily changed CandA complex that comprises the newly identified 20-kDa CandA-C1 subunit in Aspergillus nidulans, which is part of the CanA C-terminal subunit in A. fumigatus. This additional subunit is required in both aspergillus for vegetative growth and asexual conidial formation (Fig. 9B and C). A. nidulans CandA proteins are required to fulfill the sexual life cycle and all together are a prerequisite for priming CRL assembly, conferring dynamic protein turnover. There-
fore, a trimeric CandA complex is as possible as a dimer of CandA-N/A-C or CandA-N/A-C1, whereby CandA-C1 has a dual function in CRL regulation and putatively as an RNase P subunit. With all this information, *Aspergillus* CandA-C1 is an promising target to control fungal spread.

MATERIALS AND METHODS

Strains and media. The oligonucleotides and plasmids used for strain design are described in the supplemental material (Text S1). Strains were cultivated in liquid or solid minimal medium (MM) (44). Modified minimal medium (32) was used for *A. fumigatus* spotting or Western hybridization experiments. Four thousand conidiospores were used for spot tests. *A. nidulans* plates were incubated at 37°C (unless otherwise specified) in the light for asexual development, or plates were sealed with Parafilm and incubated in darkness for sexual development. Vegetative mycelium was obtained from liquid MM or modified MM cultures inoculated with 1 × 10⁶ to 2 × 10⁶ spores/ml at 37°C for 20 h with agitation. Conidia were quantified as described previously (44).

Isolation of fungal genomic DNA and RNA and cDNA synthesis. gDNA was extracted with DNA lysis buffer (200 mM Tris-HCl [pH 8.5], 250 mM NaCl, 25 mM EDTA, 0.5% [wt/vol] SDS) and 8 M potassium acetate solution from ground mycelia obtained from liquid overnight cultures. gDNA was precipitated with isopropanol and the pellets resolved in distilled water (dH₂O). RNA was isolated according to the RNeasy plant minikit (Qiagen) protocol. cDNA was transcribed from 0.8 µg RNA using the QuantiTect reverse transcription kit (Qiagen).

Gene expression measurements. Transcription levels were analyzed by qRT-PCR with the primers from Table S3, using the equipment described previously (32). Expression levels were quantified relative to the housekeeping gene (h2A) with the ΔΔCT method (62). cDNA amplification assay. PCRs were performed with 2 µL cDNA (~2 µg) per reaction with the primers listed in Table S3 and Phusion high-fidelity DNA polymerase (Thermo Fisher Scientific), according to the manufacturer's instructions. PCR fragments were analyzed by agarose gel electrophoresis.

Protein extraction from *A. nidulans* and *A. fumigatus*. Protein crude extracts, SDS-PAGE, and Western hybridization experiments were prepared as described before (25). See Text S1 for a detailed protocol of *in vitro* protein pulldown, in-gel digestion of proteins with trypsin, and peptide analysis with LC-MS. For this study, the primary antibodies anti-GFP (B-2, catalog no. sc-9996; Santa Cruz), anti-red fluorescent protein (anti-RFP; 5F8; Chromotek), anti-hemagglutinin (anti-HA, clone HA-7; Sigma-Aldrich), anti-ubiquitin 05-944 (Merck), or anti-tubulin antibody T0926 (Sigma-Aldrich) were used. Anti-goat mouse (115-035-003; Jackson Immunoresearch) or anti-goat rabbit (A-2087; Invitrogen) served as secondary antibodies.

Microscopy. Strain morphology was analyzed using an SZX12 stereo microscope (Olympus) and Axioskop light microscope (Zeiss). Liquid MM in an 8-well microscopy chamber (Ibidi) was inoculated with 0.1% (vol/vol) formic acid in H₂O with 0.1% (vol/vol) formic acid gradient (from 5% to 95% [vol/vol]) at a flow rate of 0.8 ml/min at 30°C was applied. The measurements were conducted in a mass range of m/z 70 to 1,050 in positive mode. For tandem MS (MS2) spectra, a stepped collision energy of 20, 30, and 40 eV was applied. Data were analyzed with Xcalibur 4.1 (Thermo Fisher Scientific) and FreeStyle 1.4 (Thermo Fisher Scientific).

LC-MS of primary metabolites. Two agar plates were inoculated with 10⁶ spores per strain and incubated for 7 days under asexual or sexual development-inducing conditions. Two plugs were punched out per plate with a 50-ml Falcon tube. The plugs were homogenized with a 20-ml syringe and mixed with 8 ml H₂O (LC-MS grade; Merck) and 8 ml ethyl acetate (LC-MS grade; Roth) at 220 rpm agitation at 20°C overnight. Samples were centrifuged at 2,500 rpm for 10 min at 4°C. The upper phase was collected and evaporated. The remaining metabolites were reconstituted in methanol (LC-MS grade; Fisher Scientific) for LC-MS analysis.

LC-MS analysis of secondary metabolites. A Q Exactive Focus Orbitrap mass spectrometer coupled with an UltiMate 3000 high-performance liquid chromatography (HPLC; Thermo Fisher Scientific) was used to examine the reconstituted metabolites. The HPLC column (Acclaim 120, C₁₆, 5 µm, 120 Å, 4.6 by 100 mm; Thermo Fisher Scientific) was loaded with 5 µL extract per sample and a linear acetonitrile with 0.1% (vol/vol) formic acid in H₂O with 0.1% (vol/vol) formic acid gradient (from 5% to 95% [vol/vol]) acetonitrile with 0.1% formic acid in 20 min, with an additional 10 min with 95% (vol/vol) acetonitrile with 0.1% formic acid at a flow rate of 0.8 ml/min at 30°C was applied. The measurements were conducted in a mass range of m/z 70 to 1,050 in positive mode. For tandem MS (MS²) spectra, a stepped collision energy of 20, 30, and 40 eV was applied. Data were analyzed with Xcalibur 4.1 (Thermo Fisher Scientific) and FreeStyle 1.4 (Thermo Fisher Scientific).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio.01094-19.

TEXT S1, DOCX file, 0.1 MB.

FIG S1, TIF file, 0.7 MB.

FIG S2, TIF file, 0.6 MB.

FIG S3, TIF file, 1.2 MB.

TABLE S1, DOCX file, 0.1 MB.

TABLE S2, DOCX file, 0.1 MB.
ACKNOWLEDGMENTS

This research has been supported by grants from the Deutsche Forschungsgemeinschaft (DFG: SFB860 and BR1502/15). We acknowledge support by the Open Access Publication Funds of the University of Göttingen.

The funders had no role in the study design.

We thank G. Heinrich for excellent technical assistance and Kerstin Schmitt for her help with LC-MS data collection and analysis. We thank Christina Sasse and Elena Beckmann for providing plasmids and primers.

REFERENCES

1. Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mourino-Pérez RR, Takeshita N, Fischer R. 2018. Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82:e00068-17. https://doi.org/10.1128/MMBR.00068-17.

2. de Vries RP, Riley R, Wiebenga A, Aguilar-Orsigo G, Amillis S, Uchima CA, Anderluh G, Assadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Canovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, Dos Santos RA, Damásio AR, Díallinas G, Emri T, Fekete E, Filippi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainault M, Harispe CHL, Henriass B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kráševc N, Kuo A, Kusch H, LaBuiti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, et al. 2017. Comparative genomics reveals high biological diversity and species adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:28. https://doi.org/10.1186/s13059-017-1151-0.

3. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J, Alberts-Schonberg G, Hensens O, Hirshfield J, Hoogsteen K, Liesch J, Springer J. 1980. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A 77:3957–3961. https://doi.org/10.1073/pnas.77.7.3957.

4. Pontecorvo G, Roper JA, Chemmons LM, Macdonald KD, Butfon AWJ. 1953. The genetics of Aspergillus nidulans, p 141–238. In Demerec M (ed), Advances in genetics. Academic Press, Cambridge, MA.

5. Challa S. 2018. Pathogenesis and pathology of invasive aspergillosis. Curr Fungal Infect Rep 12:23–32. https://doi.org/10.1007/s12281-018-0310-4.

6. Bossou YM, Serssar Y, Allou A, Vitry S, Momas I, Seta N, Menotti J, Achard P, Braus GH. 2015. Integration of the catalytic subunit activates deneddylase activity in vivo as final step in fungal COP9 signalosome assembly. Mol Microbiol 97:110–124. https://doi.org/10.1111/mmi.13017.

7. Pal M. 2017. Morbidity and mortality due to fungal infections. J Appl Microbiol Biochem 1:1–3.

8. Collins I, Wang H, Caldwell JJ, Chopra R. 2017. Chemical approaches to targeted protein degradation through modulation of the ubiquitin–proteasome pathway. Biochem J 474:1127–1147. https://doi.org/10.1042/BJC20160762.

9. Lauringer L, Li J, Shostak A, Cemel IA, Na H, Zhang Y, Merkl PE, Obermeyer S, Stankovic-Valentín N, Schafmeier T, Weger WJ, Bowers AA, Carter KP, Palmer AE, Tschochner H, Melchior F, Deshaies RJ, Brunner M, Dierfel R, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Aebersold R, Pernstiubay C, Peter M, Braus GH. 2016. Structure of the catalytic subunit activates deneddylase activity in vivo as final step in fungal COP9 signalosome assembly. Mol Microbiol 97:110–124. https://doi.org/10.1111/mmi.13017.

10. Schinke J, Kolog Gulko M, Christmann M, Valeria O, Stumpf SK, Stirz M, Braus GH. 2016. The DenA/DEN1 interacting phosphatase DipA controls septa positioning and phosphorylation-dependent stability of cytoplasmic DenA/DEN1 during fungal development. PLoS Genet 12:e1005949. https://doi.org/10.1371/journal.pgen.1005949.

11. Cavadini S, Fischer ES, Bunker RD, Potenza A, Lingaraju GM, Goldie KN, Mohamed WI, Fatty M, Petzold G, Beckwith REJ, Tichkule RB, Hassiepen U, Abdulrahman W, Pantelic RS, Matsumoto S, Sugasawa K, Stahlberg H, Thomas NH. 2016. Cullin–RING ubiquitin ligase E3 ligase regulation by the COP9 signalosome. Nature 531:598–603. https://doi.org/10.1038/nature17416.

12. Mosadeghi R, Reichermeier KM, Winkler M, Schreiber A, Reitsma JM, Zhang Y, Stengel F, Cao J, Kim M, Sveredoski MJ, Hess S, Leitner A, Aebersold R, Peter M, Deshaies RJ, Enchev Rl. 2016. Structural and kinetic analysis of the COP9-signalosome activation and the cullin-RING ubiquitin ligase neddylation cycle. Elife 5:e12102. https://doi.org/10.7554/ eLife.12102.

13. Goldenberg JS, Ciacco TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N. 2004. Structure of the Cand1–Cui1–Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119:517–528. https://doi.org/10.1016/j.cell.2004.10.019.

14. Helma STA, Seebacher EU, Christmann M, Nahluk K, Westermann M, Harting R, Grund S, Busch S, Braus GH. 2011. Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 22:153–164. https://doi.org/10.1091/mbc.E10-08-0732.
23. Gul IS, Hulstau P, Saeyes Y, van Roy F. 2017. Metazoan evolution of the armadillo repeat repeat in flies. Cell Mol Life Sci 74:525–541. https://doi.org/10.1007/s00018-016-2319-6.

24. Fournier D, Palidwor GA, Shcherbinin S, Sengel A, Schaefner MH, Perez-Iratxeta C, Andrade-Navarro MA. 2013. Functional and genomic analyses of alpha-solenoid proteins. PLoS One 8:e78994. https://doi.org/10.1371/journal.pone.0078994.

25. Köhler A, Meister C, Braus G. 2016. In vitro dedifferentiation assay. Bio-Protocol 6:e1756. https://doi.org/10.1021/acsbiotechnology.6b00081.

26. Busch S, Braus GH. 2007. How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876. https://doi.org/10.1111/j.1432-1327.2007.05711.x.

27. Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH. 2016. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87:30–53. https://doi.org/10.1016/j.fgb.2016.01.004.

28. Pöggeler S, Nowroussian I, Teichert I, Beier A, Kück U. 2018. Fruiting-body development in Ascomycetes, p 1–56. In Anke T, Schüffler A (ed), Physiology and genetics: selected basic and applied aspects. The Mycotta XV: a comprehensive treatise on fungi and experimental systems for basic and applied research, 2nd ed. Springer, Berlin, Heidelberg, Germany.

29. Frank DN, Pence RR. 1996. Ribonuclease F: unity and diversity in a tRNA processing ribonuclease. Rev Biochem 67:153–180. https://doi.org/10.1146/annurev.biochem.67.1.1153.

30. Han SJ, Lee BJ, Kang HS. 1998. Purification and characterization of the nuclear ribonuclease P of Aspergillus nidulans. Eur J Biochem 251:244–251. https://doi.org/10.1046/j.1432-1327.1998.2510244.x.

31. Paulussen C, Hallsworth JE, Álvarez-Pérez S, Nierman WC, Hamill PG, Blair D, Rediers H, Lievens B. 2017. Ecology of aspergillomycosis: insights into the pathogenicity of Aspergillus fumigatus and some other Aspergillus species. Microbi Biotechnol 10:296–322. https://doi.org/10.1111/1751-7915.12367.

32. Bakti F, Sass E, Heinkepamp T, Pöcs I, Braus GH. 2018. Heavy metal induced expression of PcaA provides Cadmium tolerance to Aspergillus fumigatus and supports its virulence in the Galleria mellonella model. Front Microbiol 9:744. https://doi.org/10.3389/fmicb.2018.00744.

33. Zhong J, van der Heijden J, Debetz H, Luttropp L, Wang WX, Wu T, Wernsdorfer WG, Zwaan JB, Schoustra SE. 2017. Evolution of cross-resistance to medical triazoles in Aspergillus fumigatus through selection pressure of environmental fungicides. Proc Biol Sci 284:20170635. https://doi.org/10.1098/rspb.2017.0635.

34. Cissé OH, Ma L, Wei Huang D, Kelh PP, Dekker JP, Kutty G, Bishop L, Liu Y, Deng X, Hauser PM, Pagni M, Hirsch V, Lempicki RA, Stajich JE, Cuomo CA, Wortman J, Wiemann P, Throckmorton K, Pfannenstiel BT, Zhao X, Wortman J, Wiemann P, Throckmorton K, Breytenbach JC, van Dyk S, van den Heever I, Allin SM, Hodkinson CC, Dormoy L, Carattini-Rivera S, Zhao Q, Vogel H, Nie J, Justice MJ, Bradley A, Lepski JR, 2013. The Arabidopsis COP9 signalosome subunit 4 (CSN4) is involved in a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans model. Front Mol Neurosci 10:120. https://doi.org/10.1039/c2md20055d.

35. Bok JW, Soukup AA, Chadwick E, Chiang Y-M, Wang CCC, Keller NP. 2013. How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876. https://doi.org/10.1111/j.1432-1327.2007.05711.x.

36. Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH. 2016. Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87:30–53. https://doi.org/10.1016/j.fgb.2016.01.004.

37. Markina-Iñarrairaegui A, Etxebeste O, Herrero-García E, Araújo-Bazán L, Breytenbach JC, van Dyk S, van den Heever I, Allin SM, Hodkinson CC, Dormoy L, Carattini-Rivera S, Zhao Q, Vogel H, Nie J, Justice MJ, Bradley A, Lepski JR, 2013. The Arabidopsis COP9 signalosome subunit 4 (CSN4) is involved in a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans model. Front Mol Neurosci 10:120. https://doi.org/10.1039/c2md20055d.

38. Bok JW, Soukup AA, Chadwick E, Chiang Y-M, Wang CCC, Keller NP. 2013. How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876. https://doi.org/10.1111/j.1432-1327.2007.05711.x.

39. Sarikaya Bayram Ö, Bayram Ö, Valerius O, Thieme S, Karimi R, Heinrich AK, Finkenberg F, Smith K, Bode HB, Freitag M, Ram AFJ, Braus GH. 2018. Velcro domain protein VoSa represses the zinc cluster transcription factor Scb regulatory network for Aspergillus nidulans axenial development, oxidative stress response and secondary metabolism. PLoS Genet 14:e1007511. https://doi.org/10.1371/journal.pgen.1007511.

40. Bayram Ö, Jaccouy M, Corvol J-C, Corti O. 2017. PINK1/Parkin-dependent mitochondrial surveillance: from pleiotropy to Parkinson’s disease. Front Mol Neurosci 10:120. https://doi.org/10.3389/fnmol.2017.0120.

41. Kolog Gulko M, Heinrich G, Gross C, Popova B, Valerius O, Neumann P, Pfannenstiel BT, Zhao X, Wortman J, Wiemann P, Throckmorton K, Breytenbach JC, van Dyk S, van den Heever I, Allin SM, Hodkinson CC, Dormoy L, Carattini-Rivera S, Zhao Q, Vogel H, Nie J, Justice MJ, Bradley A, Lepski JR, 2013. The Arabidopsis COP9 signalosome subunit 4 (CSN4) is involved in a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans model. Front Mol Neurosci 10:120. https://doi.org/10.1039/c2md20055d.

42. Bok JW, Soukup AA, Chadwick E, Chiang Y-M, Wang CCC, Keller NP. 2013. How to build a fungal fruit body: from uniform cells to specialized tissue. Mol Microbiol 64:873–876. https://doi.org/10.1111/j.1432-1327.2007.05711.x.

43. Markina-Iñarrairaegui A, Etxebeste O, Herrero-García E, Araújo-Bazán L, Breytenbach JC, van Dyk S, van den Heever I, Allin SM, Hodkinson CC, Dormoy L, Carattini-Rivera S, Zhao Q, Vogel H, Nie J, Justice MJ, Bradley A, Lepski JR, 2013. The Arabidopsis COP9 signalosome subunit 4 (CSN4) is involved in a global regulator LaeB leads to the discovery of novel polyketides in Aspergillus nidulans model. Front Mol Neurosci 10:120. https://doi.org/10.1039/c2md20055d.

44. Thieme KG, Gerke J, Sasse C, Valerius O, Thieme S, Karimi R, Heinrich AK, Finkenberg F, Smith K, Bode HB, Freitag M, Ram AFJ, Braus GH. 2018. Velcro domain protein VoSa represses the zinc cluster transcription factor Scb regulatory network for Aspergillus nidulans axenial development, oxidative stress response and secondary metabolism. PLoS Genet 14:e1007511. https://doi.org/10.1371/journal.pgen.1007511.

45. Bayram Ö, Jaccouy M, Corvol J-C, Corti O. 2017. PINK1/Parkin-dependent mitochondrial surveillance: from pleiotropy to Parkinson’s disease. Front Mol Neurosci 10:120. https://doi.org/10.3389/fnmol.2017.0120.
J, Hoppert M, Schwier E, Opitz L, Westermann M, Grond S, Feussner K, Goebel C, Kaever A, Meinicke P, Feussner I, Braus GH. 2010. The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Mol Microbiol 78:964–979. https://doi.org/10.1111/j.1365-2958.2010.07384.x.

59. Rodríguez-Urra AB, Jiménez C, Nieto MI, Rodríguez J, Hayashi H, Ugalde U. 2012. Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem Biol 7:599–606. https://doi.org/10.1021/cb200455u.

60. Inoue N, Wakana D, Takeda H, Yaguchi T, Hosoe T. 2018. Production of an emericellin and its analogues as fungal biological responses for Shimbu-to extract. J Nat Med 72:357–363. https://doi.org/10.1007/s11418-017-1156-8.

61. Neelakantan S, Pocker A, Raistrick H. 1957. Studies in the biochemistry of micro-organisms. 101. The colouring matters of species in the Aspergillus nidulans group. 2. Further observations on the structure of asperthecin. Biochem J 66:234–237. https://doi.org/10.1042/bj0660234.

62. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262.

63. Popova B, Kleinknecht A, Arendarski P, Mischke J, Wang D, Braus GH. 2018. Sumoylation protects against β-synuclein toxicity in yeast. Front Mol Neurosci 11:94. https://doi.org/10.3389/fnmol.2018.00094.

64. Pick E, Pintard L. 2009. In the land of the rising sun with the COP9 signalosome and related zomes. Symposium on the COP9 signalosome and related zomes. Symposium on the COP9 signalosome and related zomes. EMBO Rep 10:343–348. https://doi.org/10.1038/embor.2009.27.