Bell inequalities for two-photon experiments testable at low detection efficiency without assuming fair sampling

Emilio Santos
Departamento de Física, Universidad de Cantabria,
39005 Santander, Spain

December, 27, 2006

Abstract
A family of local models containing two angles as hidden variables is defined for experiments measuring polarization correlation of optical photons. Searching for the best model of the family, that is giving predictions most close to quantum mechanics, allows deriving Bell-type inequalities which may be tested with relatively low detection efficiency.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ states, etc.) - 42.50.Ar Photon statistics and coherence theory

1 Introduction
More than forty years have elapsed since John Bell[1] proposed his celebrated inequalities. These inequalities, which involve measurable quantities, provide necessary conditions for local realism and, in some experiments with ideal set-ups, contradict the predictions of quantum mechanics. Many empirical tests have been performed of local realism against quantum mechanics, via the Bell inequalities, but no experiment has been conclusive. In fact although the results have generally agreed with the predictions of quantum mechanics, no experiment has given results incompatible with local realism, as is
shown by the existence of local realistic models for all of them. The inability to perform a true empirical test of local realism is commonly disguised with the claim that it has already been refuted by the experiments, modulo some irrelevant loopholes. But I think that the extreme difficulty to make a loophole-free test, proved by the unsuccessful effort of forty years, does not support the common wisdom that the question of local realism is settled. On the contrary the conclusion is that further research is needed.

Locality should be understood in the relativistic sense, that is as impossibility of superluminal communication. Thus testing locality requires measurements made in regions spatially separated, in the sense of relativity theory. As a consequence the tests are extremely difficult with massive particles and reliable experiments must be performed with photons. On the other hand, tests with high energy photons are not possible due to the lack of efficient polarization analyzers. These difficulties have caused that most of the experimental tests have been performed with optical photons, where good polarization analyzers exist and locality may be insured. However these experiments suffer from a detection loophole, due to the fact that a good overall detection efficiency has not yet been achieved. In fact, it is well known that efficiencies as high as 80% are required for loophole-free tests of local realism. Detectors with high quantum efficiency already exist, but there are other difficulties reducing the overall efficiency to about 30% or less in practice.

It is common to formulate the question of local realism in terms of local hidden-variables (LHV) theories. That is, an experiment refutes local realism if there is no LHV model compatible with their results. Bell inequalities are necessary conditions for LHV theories but, as said above, they are very difficult to test. Actually all inequalities empirically violated till now are not genuine Bell inequalities, derived from the conditions of realism and locality alone, but inequalities whose derivation requires auxiliary assumptions. It is rather obvious that violations of such inequalities do not refute the whole family of LHV theories but only restricted families, namely those fulfilling the auxiliary assumptions. In my opinion the families of local hidden variables theories so far refuted by the experiments are rather unfeasible. This is the case, in particular, for those fulfilling the fashionable “fair sampling hypothesis”. This is the assumption that the photons actually detected are representative of the whole set of photons emitted. But the role of hidden variables is precisely to distinguish, from each other, several physical systems in the same pure quantum state, that is systems which are identical according
to the standard interpretation of quantum mechanics. Thus in any LHV model of an experiment it is natural to assume that the photons detected and those not detected correspond to different values of the hidden variables and consequently the sample of detected photons is not representative of the whole set. In conclusion, the fair sampling assumption amounts at dismissing all sensible hidden variables theories from the start.

In the present paper I study a new family of LHV models which is rather natural, in my opinion, and it allows the derivation of inequalities able to discriminate between the said family and quantum mechanics. The inequalities are easily testable in optical experiments, in particular the tests would require only moderate detection efficiencies, of the order of 30%. The said family was already considered in a previous publication [4], where an inequality fulfilled by some sub-family was proposed. That inequality has been tested empirically with the result that it was fulfilled and the quantum predictions contradicted although, according to the authors of the experiment [5], the contradiction cannot be considered a violation of quantum mechanics. In the present paper I propose inequalities which should hold true for all members of the said LHV family, but are contradicted by the quantum predictions in some cases.

2 A natural family of local hidden variables models

For the sake of clarity I shall consider experiments measuring the polarization correlation of optical photon pairs, although the generalization to other cases is possible. The set-up consists of a source of photon pairs each member of the pair travelling in a different direction, crossing a lens system, a polarization analyzer and arriving at a detector. If the polarization planes of the analyzers are determined by the angles ϕ_1 and ϕ_2, respectively, the results of the experiment may be summarized in two single rates, $R_1(\phi_1)$ and $R_2(\phi_2)$, and a coincidence rate $R_{12}(\phi_1, \phi_2)$. (In recent experiments four coincidence rates, rather than one, are measured because two-channel polarizers are used, a situation which will be considered below). In a polarization correlation experiment the detection rates should be obtained from appropriately defined probabilities p_1, p_2 and p_{12}, that is

$$R_j(\phi_j) = R_0 p_j(\phi_j), \ j = 1, 2, \ R_{12}(\phi_1, \phi_2) = R_0 p_{12}(\phi_1, \phi_2), \quad (1)$$
where R_0 is the production rate of photon pairs in the source, a quantity not measurable in standard experiments. (Here it is assumed that all photocounts come from photons produced in pairs in the source. In practice there may be counts of a different origin, e.g. dark counts in each detector, but they will be neglected for the moment, see section 4 below). Following Bell a LHV model consists of three functions, $f(\lambda), Q_1(\lambda, \phi_1), Q_2(\lambda, \phi_2)$, where λ stands for one or several hidden variables, such that the detection probabilities could be obtained by means of the integrals

\[p_j(\phi_j) = \int f(\lambda)Q_j(\lambda, \phi_j)d\lambda, \quad p_{12}(\phi_1, \phi_2) = \int f(\lambda)Q_1(\lambda, \phi_1)Q_2(\lambda, \phi_2)d\lambda. \]

(2)

The essential requirements of realism and locality imply that the said functions fulfil the conditions

\[f(\lambda) \geq 0, \quad \int f(\lambda)d\lambda = 1, \quad 0 \leq Q_j(\lambda, \phi_j) \leq 1. \]

(3)

A natural, but relatively simple, family of local hidden variables model is obtained if we assume that the set λ of hidden variables may be written $\lambda \equiv \{\chi_1, \mu_1, \chi_2, \mu_2\}$, where χ_1 and μ_1 (χ_2 and μ_2) are variables of the first (second) photon of a pair and χ_j is a polarization angle, so that χ_j and $\chi_j + \pi$ represent the same polarization. Actually we may assume that μ_1 and μ_2 label a set of variables each, rather than a single one. In principle the function $f(.)$ gives the correlation amongst the four (sets of) variables. But simplifies a lot the model to assume that the variables, or sets of variables, μ_1 and μ_2 are uncorrelated amongst themselves (this is a consequence of locality) and uncorrelated with the polarization angles (this is an assumption of simplicity), so that the functions $f(\lambda)$ and $Q_j(\lambda, \phi_j)$ may be written

\[f(\lambda) \equiv \rho(\chi_1, \chi_2)g_1(\mu_1)g_2(\mu_2), \quad Q_j(\lambda, \phi_j) \equiv Q_j(\chi_j, \mu_j, \phi_j), \]

(4)

where ρ and g_j are positive and normalized. When eqs.(4) are inserted in (2) and the integrals in μ_j performed we get

\[p_j(\phi_j) = \int \rho(\chi_1, \chi_2)P_j(\chi_j, \phi_j)d\chi_1d\chi_2, \]

\[p_{12}(\phi_1, \phi_2) = \int \rho(\chi_1, \chi_2)P_1(\chi_1, \phi_1)P_2(\chi_2, \phi_2)d\chi_1d\chi_2. \]

(5)
where

\[P_j(\chi_j, \phi_j) = \int g_j(\mu_j)Q_j(\chi_j, \mu_j, \phi_j)d\mu_j. \]

(6)

Thus our model requires defining only the functions \(\rho \) and \(P_j \), which fulfill conditions of positivity and normalization similar to those of \(f \) and \(Q_j \), respectively, in eqs. (3).

In order to derive testable inequalities from our LHV model we shall consider firstly experiments where there is rotational symmetry, which is common at least approximately in actual experiments. That is, we assume that the single rates \(R_j \) do not depend on the orientation of the polarizers (i.e. the angle \(\phi_j \)) and the coincidence rate depends only on the difference \(\phi_1 - \phi_2 = \phi \). We shall also assume symmetry amongst the polarizer-detector systems so that \(P_1 = P_2 \). (See section 4 below for the study of cases where these symmetries do not hold true). In these conditions it is appropriate to replace eqs. (5) by

\[p_{12}(\phi) = \int \rho(\chi_1 - \chi_2)P(\chi_1 - \phi_1)P(\chi_2 - \phi_2)d\chi_1d\chi_2, \]

(7)

\[p_j = \int \rho(\chi_1 - \chi_2)P(\chi_j - \phi_j)d\chi_1d\chi_2, \quad j = 1, 2. \]

(8)

where here and below all functions are periodic with period \(\pi \) and the integrals go from \(-\pi/2 \) to \(\pi/2 \). In addition the functions \(\rho \) and \(P \) possess the following properties of positivity, symmetry and normalization (\(\rho \) is normalized so that \(p_{12}(\phi) = 1 \) if \(P = 1 \) in (7))

\[\rho(x) = \rho(-x) \geq 0, \quad \int \rho(x)dx = 1/\pi, \quad 0 \leq P(x) = P(-x) \leq 1. \]

(9)

I shall add the following two conditions which are plausible on physical grounds

\[\frac{d\rho(x)}{d|x|} \leq 0, \quad \frac{dP(x)}{d|x|} \leq 0. \]

(10)

The first inequality means that the pairs where \(\chi_1 = \chi_2 \) are most likely produced in the source (this equality may correspond to parallel or perpendicular polarization, depending on the actual experiment). The second inequality means that the detection is most probable when the incoming photon has the polarization close to the plane of the analyzer. Eqs. (7) to (10) define our “natural” family of LHV models.
For later convenience I make the change of variables
\[\chi_1 - \phi_1 = u, \chi_2 - \phi_2 = v, \phi_1 - \phi_2 = \phi, \] (11)
which leads to
\[p_{12}(\phi) = \int \rho(u - v + \phi)P(u)P(v)dudv. \] (12)
Hence we get the following results
\[\int p_{12}(\phi)d\phi = p_1p_2, \ p_1 = p_2 = C_0/\pi, \ \int p_{12}(\phi) \cos 2\phi \ d\phi \equiv C_1^2/\pi, \] (13)
where the constants \(C_k \) are defined by
\[C_k \equiv \int P(x) \cos (2kx) \ dx. \] (14)
It is also convenient to introduce the new function
\[f(y) = f(-y) = \int P(x + \frac{y}{2})P(x - \frac{y}{2})dx. \] (15)
whence we get
\[p_{12}(\phi) = \int \rho(y + \phi)f(y)dy = \int \rho(y)f(y - \phi)dy, \] (16)
the latter equality following from the periodicity of the functions involved.

3 Comparison with the quantum predictions

Now I will investigate whether the quantum predictions are compatible with the family of LHV models above defined. Quantum mechanics predicts, for experiments with rotational symmetry and both detectors having the same efficiency, \(\eta \),
\[p_j^Q = \frac{1}{2} \eta, \ p_{12}^Q(\phi) = \frac{1}{4} \eta^2 (1 + V \cos 2\phi). \] (17)
Our family of models (17) agrees with the quantum-mechanical prediction for the single probabilities, \(p_j \), provided we choose
\[C_0 = \int P(x)dx = \frac{\pi \eta}{2}. \] (18)
Then I will search for the best LHV model of the form (7), defining “best” by the condition that, for fixed \(\eta \) and \(V \), the prediction for the coincidence probability is as close as possible to the quantum prediction. That is the quantity \(S \) must be a minimum, where

\[
S \equiv \int d\phi \left[p_{12}(\phi) - \frac{1}{4} \eta^2 (1 + V \cos 2\phi) \right]^2,
\]

with \(p_{12}(\phi) \) given by (16) and (15) and the functions \(\rho(x) \) and \(P(x) \) fulfilling the conditions (9). For the solution of the problem I shall proceed in two steps. Firstly, for a given \(P(x) \) fulfilling (18), I search for the best positive and normalized function \(\rho(x) \). In the second step I shall look for the best \(P(x) \).

In the first step fixing \(P(x) \) amounts at fixing the function \(f(y) \) (see eq.(15)). For the solution of the variational problem, eq.(19), the positivity of \(\rho \) is insured writing

\[
\rho(x) = \psi(x)^2, \psi \in \mathbb{R},
\]

and the normalization constraint may be taken into account by means of a Lagrange parameter \(\lambda \). Thus the problem becomes

\[
\delta \left\{ S \left[\psi(x)^2 \right] + \lambda \int \psi(x)^2 dx \right\} = 0.
\]

Hence we get, after some algebra, that either \(\psi(x) = 0 \) or

\[
\int \psi(x)^2 dx \int d\phi f(x-\phi)f(y-\phi) = \lambda + \frac{1}{4} \eta^2 \int d\phi f(y-\phi)[1+V \cos 2\phi]. \tag{20}
\]

For the solution of this integral equation the properties of \(\rho(x) \), see (7), suggest the Fourier expansion

\[
\psi(x)^2 = \sum_{k=0}^{\infty} A_k \cos(2kx), \tag{21}
\]

which, inserted in eq.(20) leads to (see eq.(14))

\[
\sum_{k=0}^{\infty} A_k C_k^2 \cos(2ky) = \lambda + \frac{1}{4} \eta^2 \left[C_0^2 + V C_1^2 \cos(2y) \right]. \tag{22}
\]
Here I have used the following relation, easily derivable from the properties of the function $f(x)$ (see eq.(15)),

$$\int f(u - v) \cos(2ku) du = C_k^2 \cos(2kv).$$

Eq.(22) holds true for any y if

$$A_0 = \frac{4\lambda + \eta^2 C_0^2}{4C_0^4}, \quad A_1 = \frac{\eta^2 V}{4C_1^2}, \quad A_k = 0 \text{ for } k \geq 2.$$ \hfill (23)

Thus the function $\rho(x)$ will be

$$\rho(x) = \frac{4\lambda + \eta^2 C_0^2}{4C_0^4} \left[1 + \frac{\eta^2 C_0^4 V}{C_1^2 (4\lambda + \eta^2 C_0^2)} \cos 2x \right]_+, \hfill (24)$$

where $[.]_+$ means putting 0 if the quantity inside the parenthesis is negative and λ should be calculated from the normalization condition (see eq.(9)).

There are two cases which must be analyzed separately.

The first case corresponds to the function $P(x)$ fulfilling

$$\frac{C_1}{C_0} = \frac{\int P(x) \cos 2x \, dx}{\int P(x) \, dx} \geq \sqrt{V}.$$ \hfill (25)

Then we may take $\lambda = 0$ leading to

$$\rho(x) = \frac{1}{\pi^2} \left[1 + \frac{C_0^2}{C_1^2} V \cos 2x \right] = \frac{1}{\pi^2} \left[1 + \frac{\pi^2 \eta^2}{4C_1^2} V \cos 2x \right], \hfill (26)$$

where the choice of C_0, eq.(18), has been taken into account. This gives perfect agreement with the quantum predictions, (17), for both single and coincidence probabilities.

It is interesting to know the range of values of η and V where it is possible the agreement between the model and quantum predictions. Actually the constraints (9) and (18) put an upper bound to the left hand side of the inequality (25). It is not difficult to realize that the best function $P(x)$, that is the one saturating the bound, is

$$P(x) = 1 \text{ if } |x| \leq \pi \eta/4, \ 0 \text{ otherwise.}$$ \hfill (27)

This choice leads to

$$C_1 = \sin \left(\pi \eta/2\right),$$
whence (25) becomes

\[V \leq V_{\text{max}} = \frac{\sin^2(\pi \eta/2)}{(\pi \eta/2)^2} \simeq 1 - \frac{\pi^2 \eta^2}{12}, \quad (28) \]

the latter approximation being valid for \(\eta \ll 1 \). We stress that, if this inequality is fulfilled, there are LHV models of the type (7) giving complete agreement with quantum mechanics. In fact, the choice eq.(26) for \(\rho(x) \) and eq.(27) for \(P(x) \) gives the desired result.

We pass to analyze the second of the two cases in eq.(24) which, by the arguments of the previous paragraph, will correspond to the violation of the inequality (28). In this case the function \(\rho(z) \) may be written, correctly normalized according to eq.(9),

\[
\rho(z) = \frac{1}{\pi} \left[\pi + \tan(2\varepsilon) - 2\varepsilon \right]^{-1} \left(1 + \frac{\cos 2z}{\cos 2\varepsilon} \right), \quad \varepsilon \in \left(0, \frac{\pi}{4} \right) \quad (29)
\]

and I will search for the departures between the model and quantum-mechanical predictions using that function. For the single detection probability, \(p_j \), there is no departure, that is the predictions exactly agree, provided we make the choice (18). However there is disagreement for the coincidence probability, which may be most conveniently exhibited expanding (29) in a Fourier series of the form

\[
\rho(z) = \frac{1}{\pi^2} \sum_{n=0}^{\infty} a_n \cos (2n\varepsilon). \quad (30)
\]

We get \(a_0 = 1 \), as it should \(\rho(z) \) being normalized in the sense of (9), and

\[
\begin{align*}
a_1 &= \left[\pi + \tan(2\varepsilon) - 2\varepsilon \right]^{-1} \left[\frac{\pi - 2\varepsilon}{\cos (2\varepsilon)} + \sin (2\varepsilon) \right] = 1 + 2\varepsilon^2 - \frac{8\varepsilon^3}{\pi} + O(\varepsilon^4), \\
a_n &= \frac{2}{n(n^2 - 1)} (-1)^n \frac{\sin (2n\varepsilon) - n \tan (2\varepsilon) \cos (2n\varepsilon)}{\pi + \tan(2\varepsilon) - 2\varepsilon} \\
&= (-1)^n \frac{16}{3\pi} \varepsilon^3 + O(\varepsilon^5) \text{ for } n \geq 2,
\end{align*} \quad (31)
\]

Hence it is straightforward to get the model predictions for \(p_{12} \) from (12) and (27), that is

\[
p_{12}(\phi) = \frac{1}{4} \eta^2 \left[1 + \sum_{n=1}^{\infty} a_n \frac{C_n^2}{(\pi \eta/2)^2} \cos(2n\phi) \right], \quad (32)
\]
where C_n was defined in eq.\((14)\).

Our aim is to find the best local model, in the sense of S \((19)\) being a minimum for given η with $P(x)$ and $\rho(z)$ fulfilling, respectively, eqs.\((18)\) and \((29)\). It is not difficult to realize that the minimum S will correspond to $p_{12}(\phi)$ being of the form

$$p_{12}(\phi) = \frac{1}{4} \eta^2 \left[1 + V \cos(2\phi) + \delta(\phi) \right], \quad (33)$$

with $\delta(\phi)$ containing only terms with $n \geq 2$ in the Fourier expansion \((32)\).

For any choice of $P(x)$ this will be the case if the following relation between ε, η, V and C_1 holds true

$$V = \frac{C_1^2}{(\pi \eta/2)^2} a_1. \quad (34)$$

Now we shall choose $P(x)$ so that $|\delta(\phi)|$ is as small as possible. From eqs.\((31)\) we see that this requires that ε is small which, as a_1 increases with ε, implies that C_1 must be high (see eq.\((31)\)). Hence the best choice for $P(x)$ will correspond to the maximum possible value of C_1 compatible with eq.\((18)\), which happens if $P(x)$ is chosen as in eq.\((27)\). After that the value of ε may be obtained from eq.\((34)\) giving, to order $O(\varepsilon^2)$,

$$V = (1 + 2\varepsilon^2) \frac{\sin^2(\pi \eta/2)}{(\pi \eta/2)^2} + O(\varepsilon^3) \Rightarrow \varepsilon \approx \sqrt{\frac{1}{2} \left(V - \frac{\sin^2(\pi \eta/2)}{(\pi \eta/2)^2} \right)}, \quad (35)$$

an equality clearly showing that ε is a measure of the violation of the inequality \((28)\) ($\varepsilon = 0$ if the inequality holds true).

With the said choices of $P(x)$ and $\rho(z)$ the departure of the model from the quantum predictions is given by

$$\delta(\phi) = \sum_{n=2}^{\infty} a_n \frac{\sin^2(n \pi \eta/2)}{(n \pi \eta/2)^2} \cos(2n\phi). \quad (36)$$

Inserting here the expressions for a_n, eq.\((31)\), it is straightforward, although lengthy, to get the expression of $\delta(\phi)$. However the parameter ε will be very small in practice (i.e. $\varepsilon << \pi/4$), which allows working to lowest order in ε, that is $O(\varepsilon^3)$ (see \((31)\)). Although that approximation of a_n is good only for the terms with small n, the terms with high n contribute but slightly. We
may get the explicit form of \(\delta(\phi) \) to order \(O(\varepsilon^3) \) from eq. (36) with \(a_n \) given by eq. (31). We shall use the summation formula
\[
\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(nx) = \frac{x^2}{4} - \frac{\pi^2}{12}, \quad x \in [-\pi, \pi],
\]
but we must substitute \((-1)^n \cos(n(x-\pi)) \) for \(\cos(nx) \) whenever \(x > \pi \) (but \(x \leq 2\pi \)) and a similar change if \(x < -\pi \). In this case the summation formula needed is
\[
\sum_{n=1}^{\infty} \frac{1}{n^2} \cos(nx) = \frac{(x - \pi)^2}{4} - \frac{\pi^2}{12}, \quad x \in [0, 2\pi].
\]
Thus the term \(\delta(\phi) \) is given up to order \(O(\varepsilon^3) \) by
\[
\delta(\phi) = \frac{8\varepsilon^3}{3\pi} \left[2\sin^2\left(\frac{\pi\eta}{2}\right) \cos(2\phi) - 1 + \frac{2}{\eta^2} \left[\eta + \frac{2}{\pi} |\phi| - 1 \right] \Theta\left(|\phi| - \frac{\pi}{2}(1 - \eta)\right) \right].
\]
where \(\Theta(x) \) is the Heaviside function, fulfilling \(\Theta(x) = 1 \) if \(x > 0 \), \(\Theta(x) = 0 \) if \(x < 0 \). (Of course we shall take \(\delta(\phi) = 0 \) if eq. (23) holds true.)

4 Testable inequalities for the family of local models

A parameter giving a quantitative measure of the discrepancy between quantum mechanics and the best model of the family defined by eqs. (7) and (8) is, from eq. (36),
\[
\Delta^2 = \langle \delta(\phi)^2 \rangle \equiv \frac{1}{\pi} \int \delta(\phi)^2 d\phi = \frac{1}{2} \sum_{n=2}^{\infty} a_n^2 \frac{\sin^4(n\pi\eta/2)}{(n\pi\eta/2)^4},
\]
The summation in \(n \) would be straightforward but lengthy and, as all terms in the sum are positive, a lower bound is provided by the first few terms. With just one term we get
\[
\Delta \geq \frac{\sqrt{2}\sin^3(2\varepsilon)}{3[(\pi - 2\varepsilon)\cos 2\varepsilon + \sin 2\varepsilon]} \frac{\sin^2(\pi\eta)}{\pi^2\eta^2} \approx \frac{8\sqrt{2}}{3\pi} \frac{\sin^2(\pi\eta)}{\pi^2\eta^2} \varepsilon^3.
\]
Actually it is easy to calculate Δ to order $O(\varepsilon^3)$ either performing the sum involved in eq.(38) or directly integrating the square of the expression (37). I get

$$
\Delta = \frac{4}{3\pi} \sqrt{\frac{2}{3\eta} - \frac{1}{2} - \frac{\sin^4 \left(\frac{\pi\eta/2}{(\pi\eta/2)^4}\right)}{\left(\pi\eta/2\right)^2}} \left(\frac{V}{\sin^2 \left(\frac{\pi\eta/2}{(\pi\eta/2)^2}\right)}\right)^{1/2} + D(\eta),
$$

(40)

where I have taken ε from eq.(35) (as before $(.)_+$ means putting zero if the quantity inside the bracket is negative). The quantity $D(\eta)$ gives the deviation, as defined in eq.(37), between the best local model and quantum mechanics. Thus in any experiment whose results are compatible with the family of local models defined by eqs.(7) and (8), the deviation will be greater than $D(\eta)$. That deviation Δ_{exp} may be obtained from the measurement of the coincidence detection rates, $R_{12}(\phi)$, at different angles, taking $\delta(\phi)$ to be the difference of that quantity appropriately normalized minus the best cosinus fit of $p_{12}(\phi)$. Thus we get

$$
\Delta_{\text{exp}} = \left\{ \frac{1}{n} \sum_{j=1}^{n} \left[\frac{R_{12}(\phi_j)}{\langle R_{12}(\phi) \rangle} - 1 - V \cos 2\phi_j \right]^2 \right\}^{1/2} \geq D(\eta),
$$

(41)

whilst quantum mechanics predicts $\Delta_{\text{exp}} = 0$. This inequality has the virtue that it may be tested even at relatively low detection efficiencies (provided that V is close enough to unity as is usual), so removing the biggest obstacle in the standard tests of Bell’s inequalities. It replaces the previously proposed inequality (14) of Ref.[4], which is stronger but valid only for a family of LHV theories more restricted than (7).

From the practical point of view the inequality (41) requires the measurement of the coincidence detection rate at different values of the angle, ϕ, between the polarizers. I may consider n angles defined by

$$
\phi_j = \frac{j}{n} \pi, j = 1, 2...n,
$$

and approximate the integral in the left hand side of (41) by a sum, so leading to the inequality

$$
\Delta_{\text{exp}} = \left\{ \frac{1}{n} \sum_{j=1}^{n} \left[\frac{R_{12}(\phi_j)}{\langle R_{12} \rangle} - 1 - V \cos 2\phi_j \right]^2 \right\}^{1/2} \geq D(\eta),
$$

(42)
where

\[\langle R_{12} \rangle \equiv \frac{1}{n} \sum_{j=1}^{n} R_{12}(\phi_j). \]

The quantity \(V \) should be taken from the quantum prediction for the actual experiment, but the inequality holds true for any value of \(V \) provided we use that same \(V \) in the calculation of \(D(\eta) \), eq. (41). It is interesting to use the value of \(V \) giving the minimum value to \(\Delta_{\text{exp}} \) for the given empirical rates \(\{R_{12}(\phi_j)\} \), that is

\[V = 2 \frac{\sum_{j=1}^{n} R_{12}(\phi_j) \cos 2\phi_j}{\sum_{j=1}^{n} R_{12}(\phi_j)}, \quad (43) \]

where I have taken into account the equalities

\[\sum_{j=1}^{n} \cos 2\phi_j = 0, \quad \sum_{j=1}^{n} \cos^2 2\phi_j = \frac{n}{2}. \]

In this case I get

\[\Delta_{\text{min}} = \left\{ \frac{n \sum_{j=1}^{n} R_{12}^2(\phi_j) - 2 \left(\sum_{j=1}^{n} R_{12}(\phi_j) \cos 2\phi_j \right)^2}{\left(\sum_{j=1}^{n} R_{12}(\phi_j) \right)^2} - 1 \right\}^{1/2} \geq D(\eta), \quad (44) \]

this inequality making possible empirical tests of the family of local models defined by eqs. (7) and (8) without any reference to quantum mechanics, whilst eq. (42) allows tests of the local models versus quantum mechanics.

The test of the inequalities involve the measurement of \(n/2 + 1 \) rates if \(n \) is even or \((n+1)/2\) rates if \(n \) is odd, once we take into account the symmetry \(R_{12}(\phi_j) = R_{12}(\pi - \phi_j) \). For even \(n \geq 4 \), eq. (44) may be related to the Fourier expansion eq. (38) using the interpolation formula

\[\frac{R_{12}(\phi_j)}{\langle R_{12} \rangle} = 1 + \sum_{k=1}^{n/2} b_k \cos (2k\phi_j), \quad (45) \]

whence the left hand side of (44) may be interpreted as

\[\Delta_{\text{min}} = \left\{ \frac{1}{2} \sum_{k=2}^{n/2-1} b_k^2 + b_{n/2}^2 \right\}^{1/2}. \quad (46) \]
The most simple non-trivial case corresponds to \(n = 4 \), that is the choice of the angles 0, \(\pi/4 \) and \(\pi/2 \). In this case eqs.(41) and (44) lead to the inequality
\[
\Delta_{\text{min}} = \frac{R_{12}(0) + R_{12}(\frac{\pi}{2}) - 2R_{12}(\frac{\pi}{4})}{R_{12}(0) + R_{12}(\frac{\pi}{2}) + 2R_{12}(\frac{\pi}{4})} \gtrsim D(\eta), \tag{47}
\]
Strictly speaking, from eq.(44) we may only conclude that the modulus of the left hand side fulfils the inequality, but we may take that side as positive because \(a_2 > 0 \) in the expansion (30). At a difference with (41) the inequality (47) is not rigorous due to the approximation made in going from eq.(41) to (42), the possible error being greater as the number of measured rates is smaller.

In addition to the inequalities it is possible to derive some predictions of the proposed local models for measurable quantities. For instance, defining
\[
V_A \equiv \frac{R_{12}(0) - R_{12}(\frac{\pi}{2})}{R_{12}(0) + R_{12}(\frac{\pi}{2})}, \quad V_B \equiv \sqrt{2} \frac{R_{12}(\frac{\pi}{8}) - R_{12}(\frac{3\pi}{8})}{R_{12}(\frac{\pi}{8}) + R_{12}(\frac{3\pi}{8})}, \tag{48}
\]
their difference may be estimated. The former quantity is called the visibility (or contrast) of the polarization correlation curve and the latter is the quantity measured in the standard tests of Bell’s inequalities. According to quantum mechanics both quantities should be equal to the parameter \(V \), (17), but in our model there is a difference. In fact, from eq.(45) it follows that
\[
V_A = \frac{b_1 + b_3}{1 + b_2 + b_4} \simeq b_1 + b_3 - b_2 - b_4, \quad V_B = \frac{b_1 - b_3}{1 - b_4} \simeq b_1 - b_3 + b_4,
\]
where I have taken into account that, from a comparison of the empirical quantities \(b_k \) with the model quantities of eqs.(36) and (35), we get
\[
b_4 \lesssim |b_3| \lesssim b_2 \ll 1 \simeq b_1 \equiv V.
\]
Hence the family of LHV models here studied predicts (see eqs.31 and 35)
\[
V_B - V_A \simeq b_2 - 2b_3 + 2b_4 \simeq \frac{20\sqrt{2}}{3\pi} K \left(V - \frac{\sin^2(\pi\eta/2)}{(\pi\eta/2)^2} \right)^{3/2}, \tag{49}
\]
K being a number of order unity. In some experiments it is reported, instead of \(V_A \), the value of \(V \), which is obtained from a fit to the empirical coincidence
rates $R_{12}(\phi_j)$. In this case the model predicts

$$V_B - V \simeq -b_3 \simeq \frac{4\sqrt{2}}{3\pi} K \left(V - \frac{\sin^2(\pi\eta/2)}{\sin^2(\pi\eta/2)} \right)^{3/2}.$$ \hspace{1cm} (50)

I stress that these estimates are correct only for the “best” local model of the family. Thus their value is only indicative of the order of magnitude to be expected in actual experiments if they are compatible with the said family of local models.

In recent optical tests of Bell’s inequalities people use two-channel polarizers and four coincidence rates are measured, $p_{++}(\phi), p_{+-}(\phi), p_{-+}(\phi), p_{--}(\phi)$. Typically there is symmetry between the two channels, at least approximate. In this case our model may be extended to these experiments using two functions $P_+ (\phi)$ and $P_-(\phi) = P_+(\phi + \pi/2)$ instead of only one, $P (\phi)$, as in eq.(7). Assuming the form (27) for $P_+ (\phi)$ we get the prediction

$$R_{++}(\phi + \pi/2) = R_{--}(\phi + \pi/2) = R_{++}(\phi) = R_{--}(\phi),$$ \hspace{1cm} (51)

the latter given by eq.(33) (putting $\varepsilon = 0$ if the inequality (28) holds true).

The quantity reported in the experiments is the correlation, defined by

$$E (\phi) = \frac{R_{++}(\phi) + R_{--}(\phi) - R_{-+}(\phi) - R_{+-}(\phi)}{R_{++}(\phi) + R_{--}(\phi) + R_{-+}(\phi) + R_{+-}(\phi)},$$ \hspace{1cm} (52)

for which our model predicts

$$E (\phi) = V \cos(2\phi) - \delta (\pi/2 + \phi),$$ \hspace{1cm} (53)

where $\delta (\phi)$ is given by eq.(37). The parameter most accurately measured in the experiments is

$$S = |3E(\pi/8) - E(3\pi/8)| \equiv 2\sqrt{2}V_B,$$ \hspace{1cm} (54)

which is predicted to have the value $2\sqrt{2}$ according to quantum mechanics in ideal experiments with 100% detection efficiency, but S should be less than 2 for any LHV model fulfilling the “fair sampling hypothesis” (see the Introduction section.)

From eq.(48) it is easy to see that, in our LHV family of models, the quantities V_B and V_A defined in (48) correspond, respectively, to $2\sqrt{2}$ times the quantity S of eq.(52) and to

$$V_A = \frac{1}{2} (E(0) - E(\pi/2)).$$ \hspace{1cm} (55)
This allows testing the model prediction eq.(49) in experiments involving two-channel polarizers from measurements of the correlation $E(\phi)$, eq.(52), at the four angles $0, \pi/8, 3\pi/8$ and $\pi/2$. Also the prediction eq.(50) may be tested getting V_B from (54) and V from a fit of $E(\phi)$ as shown in eq.(53).

5 From ideal to real experiments

In the previous sections I have analyzed rather idealized experiments. In actual polarization correlation experiments involving parametric down converted photons the results obtained are not so simple as assumed in eqs.(1) and (17). Indeed it is frequent that the coincidence detection rate is not rotationally invariant in the sense that $R_{12}(\phi_1, \phi_2)$ does depends on the angles ϕ_1 and ϕ_2 separately rather than on the difference $\phi = \phi_1 - \phi_2$ only. In addition, the single rates may depend on the positions of the polarizers, that is $R_j = R_j(\phi_j)$, and the efficiencies, η_1 and η_2, of the detectors may not be the same. Finally not all photons may arrive in pairs at the detectors (ether because there is some single photon production or because a fraction of the photons do not enter the apertures.) The relevance of these nonidealities will be analyzed in the present section.

The quantities which may be measured in typical experiments involving single channel polarizers are: Two single rates, R_1 and R_2, the rate R_{12} of counts in the second detector conditional to counts in the first detector (within an appropriate time window) and the quantum efficiencies of the two detectors, η_1, η_2 (these measured in auxiliary experiments). In order to apply the analysis of Bell[1] to the experiments we should define single and coincidence probabilities. But for the test of the family of LHV theories studied in this paper (defined by eqs.(7) and (8)) we do not need the single probabilities and the single rates, R_j, are not used. In order to obtain the coincidence probability, p_{12}, I introduce the rate, R_0, of pair production in the source, whence I may get the p_{12} using Bayes rule of probability theory as follows

$$p_{12} = p_1 \times p_{2/1} = \frac{R_1}{R_0} \times \frac{R_{12}}{R_1} = \frac{R_{12}}{R_0}.$$ (56)

The adequacy of this definition of p_{12} requires that all photons leaving the source are produced in pairs, with no more than one pair within each time-window. That is, eq.(56) amounts at neglecting single photon production, dark counts and the possible production of several photon pairs within one
time-window. I shall assume that all these difficulties are avoided by a subtraction of “accidental coincidences”, which is a standard practice in polarization correlation experiments. (I stress that this is so because we are attempting to test a restricted family of LHV models, given by eqs. (5), but would not be valid if we attempted to refute the whole family of LHV theories [2].) Actually the pair production rate R_0 cannot be measured in the experiments but this is not a real difficulty. Indeed the inequalities fulfilled by the LHV family of models proposed in this paper involve only the dependence of the coincidence probability on the positions of the polarizers, determined by the angles ϕ_1 and ϕ_2. In the experiments this dependence is usually studied by measurements with a polarizer at a fixed position, say ϕ_2 fixed, and the other polarizer’s position varied. Typically the measurements are made at two different positions of the second polarizer, say $\phi_2 = 0$ and $\phi_2 = \pi/8$. An appropriate interpolation leads to the following parametrization

$$p_{12} \propto R_{12} \propto 1 + [V_m + (V_M - V_m) \cos 4\phi_2 \cos 2\phi], \quad (57)$$

where $V_M(V_m)$ is the maximum (minimum) visibility of the detection coincidence curve when the angle $\phi_+ \pm$ is varied.

A local hidden-variables model able to reproduce eq. (57) for not too high detection efficiencies is given by the functions ρ and P_j (see eqs. (5))

$$\rho (\chi_1, \chi_2) = \frac{1}{\pi^2} \left\{ 1 + \left[W_m + (W_M - W_m) \cos 4\chi_2 \right] \cos 2\chi \right\},$$

$$P_j (\chi_j, \phi_j) = \beta_j \Theta \left(\frac{\pi \eta_j}{4 \beta_j} - |\chi_j - \phi_j| \right), \quad j = 1, 2, \quad (58)$$

with any $\beta_j \in [\eta_j, 1]$ and appropriate choices for W_M and $W_m \leq W_M$. Here $\chi = \chi_1 - \chi_2$ and $\Theta (.)$ is the Heaviside function $\Theta (x) = 1$ if $x \geq 0$, zero otherwise. However if the detection efficiencies are high enough and the value of V_M in (57) is close enough to unity, then it is not possible to reproduce the quantum predictions. In fact, the conditions (58) imply $W_M \leq 1$ (in addition to $\beta_j \leq 1$) which give after some algebra the constraint

$$V_M \leq \frac{1}{3} (V_M + V_m) \left(s_1^2 + s_2^2 \right) + \frac{4}{\pi^2} s_1 s_2 \left[1 - \frac{2}{3} \left(s_1^2 + s_2^2 \right) \right], \quad s_j \equiv \sin \left(\frac{\pi \eta_j}{2} \right). \quad (59)$$

If $\eta_j << 1$ and both V_M and V_m are close to unity, as is usually the case in typical experiments (where $V_m \gtrsim 0.96, \eta_j \lesssim 0.3$), the inequality becomes
\[V_M \lesssim 1 - \frac{\pi^2}{24} \left(\eta_1^2 + \eta_2^2 \right). \] (60)

I stress that the quantities \(\eta_j \) refer here to the efficiencies of the photon detectors and not to the overall detection efficiency (which may be substantially smaller than \(\eta_j \) due to several losses). Agreement between the model and quantum predictions is possible only if eq. (59) (or eq. (60)) is fulfilled. If this is not the case, the model predicts inequalities which are violated by quantum mechanics. In the following I study this case, which allows empirical discrimination of the family of local models here proposed versus quantum mechanics.

From the results of section 3 we see that the best choice for the functions \(P_j \) is provided by eq. (27) (or, what is the same, eq. (58) with \(\beta_j = 1 \).) “Best” is defined in the sense that the disagreement with the quantum prediction is a minimum, the disagreement being measured by an appropriate generalization of eq. (19). In order to get the best function \(\rho \) we may assume that the empirical results to be compared with the LHV model prediction are obtained with a fixed \(\phi_2 \) (see eq. (57)). In this case all inequalities of section 4 are valid with the effective visibility, \(V_{\text{eff}} \), of the correlation curve substituted for \(V \), where we define

\[V_{\text{eff}} \equiv [V_m + (V_M - V_m) \cos 4\phi_2]. \]

It is easy to see that the stringent inequalities are obtained when \(V_{\text{eff}} \equiv V_M \), corresponding to \(\phi_2 = 0 \). Thus the inequalities derived in the previous section apply, with \(V_M \) substituted for \(V \), including the extension to experiments using two-channel polarizers and four detectors (a trivial change is required if the efficiencies of the detectors are not the same).

6 Discussion

Empirical tests of the models defined by eqs. (7) and (8) are possible by means of the inequalities (28) and (12), any experiment where one of these inequalities holds true being compatible with a local hidden variables model of the family. The tests are not difficult because visibilities about 97% and detection efficiencies of the order of 20% would be enough and these conditions have already been achieved in performed experiments. For instance the experiment by Kurtsiefer et al. [6] reports \(V_M = 0.982 \pm 0.001 \) and \(V_m = 0.970 \pm 0.001 \) after an appropriate subtraction of accidentals. Any of these values, combined
with the efficiency $\eta = 0.214$, leads to a violation of the inequality (28), thus making the test possible using the inequalities (42) or (47). The quantities reported in the published paper do not allow a test of the inequalities but the experiment clearly shows that the empirical tests may be easily performed with present technology.

The discrimination between the family of local models and quantum mechanics is substantially more difficult than just to test the models. In fact, calculating the predictions of quantum mechanics in actual (non-ideal) experiments is far from trivial. For instance, in the ideal case the quantum prediction is given by eq.(17) with both the detection efficiency and the visibility of the coincidence curve equal to unity, i.e. $V = \eta = 1$. With these values both inequalities (28) and (42) are violated, which excludes all local models of the family here studied. This agrees with the well known fact that no local hidden variables model is compatible with quantum mechanics for all (ideal) experiments. Nevertheless the non-perfect behaviour of detectors lowers their efficiency, η, making the results compatible with local models in all experiments performed till now, also a well known fact[2].

A restricted family of local models, like the one studied in this paper, may be empirically refuted with a moderate value of the detection efficiency, η, combined with a relatively high value of the visibility, V, provided that there is rotational symmetry, as assumed in section 3. However in the fashionable parametric fluorescence experiments rotational invariance does not hold true which makes easier the construction of local models compatible with the experiments. In particular it is not obvious that quantum mechanics, with all non-idealities taken into account, predicts a detection counting rate of the form (57). If this is not the case the fulfillment of the inequalities (42) or (47) would not imply a violation of quantum predictions.

In summary, the non-ideal behaviour of any actual experiment increases substantially the range of parameters where quantum mechanics is compatible with local hidden variables theories, thus making the empirical discrimination rather difficult. It may even be the case that no actual, i.e. non-ideal, experiment allows discriminating local hidden variables versus quantum mechanics.
References

[1] J. S. Bell, *Speakable and unspeakable in quantum mechanics*. Cambridge University Press, Cambridge, 1987. This book contains reprints of most of Bell’s papers about foundations of quantum mechanics.

[2] E. Santos. The failure to perform a loophole-free test of Bell’s inequality supports local realism. *Found. Phys.* **34**, 1643-1673 (2004).

[3] E. Santos. Constraints for the violation of the Bell inequality in Einstein-Podolsky-Rosen-Bohm experiments. *Phys. Lett. A* **200**, 1-6 (1995).

[4] E. Santos. Proposed optical test of Bell’s inequalities not resting upon the fair sampling assumption. *Phys. Lett. A* **327**, 33-37 (2004).

[5] M. Genovese, G. Brida, E. Caglierio, M. Gramegna, and A. Predazzi. Review of recent experimental progresses in Foundations of Quantum Mechanics and Quantum Information obtained in Parametric Down Conversion experiments at IENGF. *Optics and Spectroscopy* **99**, 185 (2005); e-Print Archive: quant-ph/0409054 (2004).

[6] C. Kurtsiefer, M. Oberparleiter and H. Weinfurter. High efficiency entangled photon pair collection in type II parametric fluorescence. *Phys. Rev. A* **64**, 023802 (2001).