Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach

Ahmad Abu Turab Naqvi, Kisa Fatima, Taj Mohammad, Urooj Fatima, Indrakant K Singh, Archana Singh, Shaikh Muhammad Atif, Gururao Hariprasad, Gulam Mustafa Hasan, Md Imtaiyaz Hassan

Considerações a respeito do genoma, da estrutura, da evolução, da patogênese e do tratamento do SARS-CoV-2: abordagem genômico-estrutural

October, 2021
Outubro, 2021
FMRP - USP

Ana Luisa da Cunha Almeida (12536960)
Eduardo Barbosa de Lima (12565820)
Gabriel Silva Rio Lima Costa (12536869)
Isabela Nardo (10755662)
Introduction

Ana Luisa da Cunha Almeida

- Covid-19 is an infectious disease caused by SARS-CoV-2 virus;
- Infected >219 mi and killed > 4,55 mi people worldwide;
- Coronaviruses (CoVs) are a group of enveloped viruses, having a positive single-stranded RNA.
- SARS-CoV-2 is more pathogenic than SARS-CoV (2002) and MERS-CoV (2013);
- The SARS-CoV-2 genome share about 82% sequence identity with SARS-CoV and MERS-CoV;
- SARS-CoV-2 contains four structural proteins, that include spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins.
Three main enzymes: 3CLpro, PLpro and RdRp - potential drug targets;
Catalytic pockets as important regions for the development of inhibitors;
SARS-CoV-2 shares a high sequence identity in their RdRp and 3CLpro proteins to the SARS-CoV and MERS-CoV, but their RBD are significantly different.
The genome of SARS-CoV-2 is comprised of a single-stranded positive sense (+) mRNA.
The genetic makeup of SARS-COV 2 is composed of 13–15 ORFs (Open Reading Frames), containing ~30 000 nucleotides.

- 38% of GC content.
- 11 protein-coding genes, with 12 expressed proteins.

Observation: The ORFs represents the part of the reading frame that has the ability to be translated. So, it represents a valid frame between a start (AUG) and a stop codon (usually UAA, UAG, UGA).

ORF sample.

Source: https://en.wikipedia.org/wiki/Open_reading_frame#/media/File:Sampleorf.png
The ORFs are arranged as replicase (ORF-1a) and protease (ORF-1b) and major S, E, M and N proteins.

The SARS-CoV-2 whole genome encodes about 7096 residues long polyprotein.
- ORF-1a = encodes polyprotein pp1a
- ORF-1b = encodes polyprotein pp1ab (ribosomal frameshift mechanism of gene 1b)

These polyproteins: further processed by proteinases = produce 16 proteins (NSPs, conserved in all CoV belonging to the same family).
In addition to the capsid-forming structural proteins, the viral genome encodes many NSPs that perform numerous roles in the replication and virus assembly processes.

These proteins participate in viral pathogenesis by:
1. Modulating early transcription regulation;
2. Helicase activity;
3. Immunomodulation;
4. Countering the antiviral response;
5. Other functions.
Non-structural proteins (NSPs)
Proteínas Não-Estruturais

Eduardo Barbosa de Lima

Table 1
List of non-structural proteins in SARS-CoV-2 and their molecular functions.

S. No.	Range	Protein name and ID	Description	Proposed function
1	1–180	Nsp1	NP1 is the N-terminal product of the viral replicate	Leader protein host translation inhibitor. Mediates RNA replication and processing. Involved in mRNA degradation [41].
2	181–818	Nsp2	Nsp2 is a replicate product essential for proofreading viral replication.	Modulation of host cell survival signalling pathway by interacting with host PHB and PHB2 [42].
3	819–2763	Nsp3	Nsp3 is a papain-like protease contains several domains.	Functions as a protease to separate the translated polyprotein into its distinct proteins [43,44].
4	2764–3263	Nsp4	A membrane-spanning protein contains transmembrane domain 2 (TM2)	Believed to anchor the viral replication-transcription complex to modified ER membranes [45].
5	3264–3569	Nsp5	3C-like protease and main protease	Involved in viral polyprotein processing during replication [46].
6	3570–3859	Nsp6	Putative transmembrane domain	Plays a role in the initial induction of autophagosomes from host endoplasmic reticulum.
7	3860–3942	Nsp7	Nsp7 is an RNA-dependent RNA polymerase	It forms a hexadecameric super-complex with nsp8 that adopts a hollow cylinder-like structure implicated replication [47,48].
8	3943–4140	Nsp8	Multimeric RNA polymerase; replicase	It forms a hexadecamer super-complex with nsp7 that adopts a hollow cylinder-like structure implicated replication [47,48].
9	4141–4253	Nsp9	A single-stranded RNA-binding viral protein	Participate in viral replication by acting as an ssRNA-binding protein [49].
10	4254–4392	Nsp10	Growth-factor-like protein contains two zinc-binding motifs	In viral transcription by stimulating both nsp14 3’-5’ exoribonuclease and nsp16 2’-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation [50].
11	4393–5324	Nsp12	RNA-dependent RNA polymerase (Pol/RdRt)	Responsible for replication and transcription of the viral RNA genome [51].
12	5325–5925	Nsp13	Zinc-binding domain, NTPase/helicase domain, RNA 5’-triphosphatase	A helicase core domain that binds ATP. Zinc-binding domain is involved in replication and transcription [52,53].
13	5926–6452	Nsp14	Proofreading Exoribonuclease domain (ExoN/nsp14)	Exoribonuclease activity acting in a 3’ to 5’ direction and N7-guanine methyltransferase activity. Mn(2+)-dependent endoribonuclease activity
14	6453–6798	Nsp15	EndoRNAs; nsp15A and nsp15B-NendoU	
15	6799–7096	Nsp16	2’-O-ribose methyltransferase	Methyltransferase that mediates mRNA cap 2’-O-ribose methylation to the 5’-cap structure of viral mRNAs [54].
16	4393–4405	Nsp11	Made of 13 amino acids (sadaqfslngay) and identical to the first segment of Nsp12.	Unknown
Non-structural proteins (NSPs)
Proteínas Não-Estruturais

Tendency of disorder: it’s a concept that reflects the amount of intrinsically unstructured regions in proteins.
- Proteins with a high disorder ratio lack a fixed or ordered three-dimensional structure.
- In SARS-Cov-2: some NSPs have a high disorder ratio (NSP-3, for example).
- Viral proteins with a high disorder ratio difficult the structure-based drug discovery.

The graph in the next slide shows the dis ordering tendency of each residue in SARS-Cov-2 polyprotein, considering a reference score (S)
- $S > 0.5$ = residues are **intrinsically disordered**;
- $0.2 < S < 0.5$ = residues are **flexible**.
Non-structural proteins (NSPs)

Proteínas Não-Estruturais

- VLXT, VL3, VSL2 and IUPred are different types of predictors used on the analysis;
- The interval of high scores 920/1020 shows the intrinsically unstructured regions of SARS-Cov-2 NSP-3.

Source: the article.
Coronaviruses are a large family of viruses that usually cause mild to moderate upper-respiratory tract illnesses.

Sometimes those viruses, commonly found on animals, jump to humans and can cause disease, as the SARS-Cov-2, virus responsible for covid-19 disease.

Viruses in the same family share much of their genetic identity. Proteins loaded and translated from their genetic material will also be similar. So, with similar target proteins, will the therapeutic methods, as the use of drugs, be the same as well?

Viruses used in this comparative research:

- SARS-Cov-2
- SARS-Cov
- MERS-Cov
- BAT-Cov
What will be the focus of the drugs used?

The small machinery of proteins that contributes to the pathogenesis by helping the vírus entry into the host cell:

1. spike glycoprotein (S)
2. envelope protein (E)
3. membrane protein (M)
4. nucleoprotein (N)
5. and two isoforms of replicase polyprotein
1. SPIKE PROTEIN - main protein to be studied

- The S protein initiates the infection by sticking the virion to the host cell: the receptor-binding domain (RBD), in **S1 subunit** of SPIKE PROTEIN, bounds strongly to human angiotensin-converting enzyme 2 (ACE2) receptors, generating the viral attachment, fusion and entry.

- The RBD of spike protein is the most variable part of the SARS-CoV-2:

 Of 6 residues of RBD of SARS-CoV2 that are critical for binding to ACE 2, 5 are different from SARS-CoV.

Comparison: aminoacid sequence of spike RBD protein
Potential Drug Targets

Potenciais Alvos de Drogas

Gabriel S. Rio Lima Costa

Fig. 6. Structural comparison of RBDs of S protein for all four strains. A. Superposed image of BAT-CoV S RBD protein (lime green) and SARS-CoV-2 (red) (RMSD: 2.3 Å). B. Surface representation of superimposed RBD of BAT-CoV and SARS-CoV-2. C. Superposed image of RBD of MERS-CoV S protein (light orange) and SARS-CoV-2 (light blue) (RMSD: 8.6 Å). D. Surface representation of the RBD of MERS-CoV and SARS-CoV-2. E. Superposed image of RBD of SARS-CoV S protein (warm pink) and SARS-CoV-2 (slate) (RMSD: 1.5 Å). F. Surface representation of the RBD of SARS-CoV and SARS-CoV-2.
2. **Envelope (E)** is only present in small quantities and most likely forms ion channels.
 - The sequences of E protein for all four strains are **highly conserved**.

3. **Matrix/Membrane (M)** is the most abundant structural protein of the virus. M proteins are responsible for membrane curvature of the viral envelope.
 - **Higher sequence conservation** among BAT-CoV, SARS-CoV, and SARS-CoV-2.
4. **Nucleocapsid (N)** binds to the viral RNA genome and ensures the maintenance of the RNA in a ‘beads-on-a-string’ conformation

- MSA profile of N protein from the BAT-CoV, SARS-CoV, and SARS-CoV-2 show **highly conserved** regions.
5. The two isoforms of replicase polyprotein: The coronavirus replicase is a polyprotein that mediate the synthesis of genome in the virus-infected cell.

- MSA of replicase polyprotein la shows a **conserved region** among all three domains except for the main protease where regions of least sequence conservation are present.
Results of MSA (multiple sequence alignment):

- Membrane proteins (M)
- Envelope proteins (E)
- Nucleoproteins (N)
- The two replicase isoforms

Did not show any significant structural differences between the compared coronaviruses.

As observed, the S protein (spike protein), more specifically the RBD domain, contains the most structurally diverse regions as compared to other target proteins:
CONCLUSION:
In spite of The SARS-CoV-2 genome share about 82% sequence identity with SARS-CoV and MERS-CoV and > 90% sequence identity for essential enzymes and structural proteins, those variations on the RBD domain of Spike protein change completely the mechanism of the pathology, making each of the coronaviruses unique.

And this uniqueness can only be treated with specific drugs.

Viruses in the same family share much of their genetic identity. Proteins loaded and translated from their genetic material will also be similar. So, with similar target proteins, will the therapeutic methods, as the use of drugs, be the same as well?
Inflammation Pathways and Cytokine Response

Via Inflamatória e Resposta de Citocinas

Isabela Nardo

Innate immune response: first line of defense
- If dysregulated → excessive inflammation/death
- CoV infections → cytokine storm
 - intracellular pattern recognition receptors → activation of signalling cascades → release of cytokines and chemokines → recruitment of immune cells to the site of infection

ORF8a and ORF9b	trigger cellular apoptosis
ORF8b	induces DNA synthesis and suppressing viral envelope protein expression
ORF7a	activates nuclear factor-κB (NF-κB)
ORF6	limits interferon production
ORF3a	induces necrotic cell death
ORF9b	alters interferon responses by promoting the degradation of mitochondrial antiviral signalling protein
Comparing the inflammatory pathways during SARS-CoV, MERS-CoV and SARS-CoV-2 infections:

MERS-CoV

- **N-protein** of MERS-CoV binds to the E3 ubiquitin ligase of triple motif protein 25 \rightarrow prevention of the interaction between the triple motif protein 25 and retinoic acid-inducible gene I \rightarrow **blocking the ubiquitination and activation of the retinoic acid-inducible gene I** mediated by triple motif protein 25 ultimately \rightarrow **inhibition of type-I IFN production** (the N protein of CoV regulates the host's immune response against the virus).
Comparing the inflammatory pathways during SARS-CoV, MERS-CoV and SARS-CoV-2 infections:

SARS-CoV and MERS-CoV

- MERS-CoV and SARS-CoV: induce similar pathogen recognition receptor genes and pro-inflammatory cytokine genes related to interleukin 17 (IL-17) signalling by IL-17A and IL-17 F cytokines, but MERS-CoV infection downregulates the genes involved in antigen presentation pathway.
Comparing the inflammatory pathways during SARS-CoV, MERS-CoV and SARS-CoV-2 infections:

SARS-CoV-2

- **Cytokine dysregulation similar** to SARS-CoV and MERS-CoV
- Abnormally low levels of antiviral cytokines and **high levels of pro-inflammatory cytokines** including IL-1, IL-2, IL-6, IL-8, IL-17, G-CSF, GM-CSF and chemokines such as IP-10 and MCP-1 → **lung dysfunction** by leading to the **accumulation of immune cells** within the lungs
- **Increased concentrations of IL-6** are associated with increased viral load and the recruitment of inflammatory monocytes. **Suppressor of cytokine signalling 3 (SOCS3)** regulates the negative feedback mechanism of IL-6, which is found to be **reduced** in the patients with COVID-19.

In summary, the three viral infections have marginal difference in terms of innate immune responses but greatly differ in terms of morbidity and mortality.
Divided into acting:
- on targets of the human immune system or human cells
- on the virus itself

Management of patients:
- ventilation assistance
- symptomatic approach

Prevention:
- hand washing
- avoiding touching of the face
- social distancing

Several drug molecules have been tried in the last couple of months as a treatment strategy.
List of drugs that have been found to have clinical effectiveness in COVID-19 therapy.

S. No	Drug	Target	Impact	Impact
1.	Remdesivir	Broad-spectrum antiviral inhibitor that inhibits RdRP of RNA viruses, including SARS-CoV and MERS-CoV.	Adenosine analog, which incorporates into the nascent viral RNA chains during synthesis and causes premature termination.	
2.	Chloroquine	Anti-malarial drug. Works at entry and post-entry stages of viral infection.	Increases endosomal pH required for virus-cell fusion. Interferes with the glycoprotein of cellular receptors of SARS-CoV.	
3.	Ferritin	JAK2 and JAK3-like tyrosine kinase 3	Inhibition of JAK2 inhibits phosphorylation of STAT 3 and 5, which prevents cell division and induces apoptosis.	
4.	Lopinavir	Protease inhibitor with in vitro antiviral activity against SARS-associated coronavirus	Inhibition of coronavirus main protease interferes in the processing of polypeptide translation products.	
5.	Oseltamivir	Neuraminidase inhibitor	Inhibits the neuroaminidase activity of the virus, subsequently preventing viral replication.	
6.	Favipiravir	RNA-dependent RNA polymerase	A guanine analog inhibits the RdRP activity of several RNA viruses (influenza, Ebola, Yellow fever, and Chikungunya)	
7.	Ribavirin	Nucleoside inhibitor An approved of HCV and RSV patients with SARS and MERS.	A nucleoside inhibitor that interferes with viral RNA synthesis and mRNA capping.	
8.	Gilead sorvix	RNA polymerase	Disrupts RNA polymerase activity, causing premature termination of the elongating viral RNA strand	
9.	Nafinamostat	Serine proteases inhibitors	Prevents membrane fusion by reducing the release of cathepsin B.	
10.	Lianhuangwen	Herbal medicine commonly used for the prevention and treatment of viral influenza in China.	Chinese patent herbal medicine composed of 11 different herbs played significant roles in the treatment of COVID-19.	
11.	Baricitinib	Janus kinase (JAK) inhibitor	May block viral entry by inhibiting adaptor-associated protein kinase 1 and cyclin G-associated kinase	
12.	Tocilizumab (mAb)	IL-6 inhibitor	Inhibition of IL-6 may attenuate pulmonary inflammation by controlling cytokine storm.	
13.	Anti-TNF alpha agents	TNF alpha	TNF-α promotes the production of other chemokines and cytokines, controls endotoxin induced septic shock	
Remdesivir

- adenosine analog
- terminates the synthesis of viral RNA chains by incorporating in place of real nucleotide
- has been effective against single-stranded RNA viruses including MERS and SARS-CoV. Effectively inhibited SARS-CoV-2 in vitro.
- WHO recommends against the use of remdesivir in COVID-19 patients
 https://www.who.int/news-room/feature-stories/detail/who-recommends-against-the-use-of-remdesivir-in-covid-19-patients

Chloroquine

- antimalarial
- antiviral effects by increasing endosomal and lysosomal pH causes an impaired release of the virus from the endosome or lysosome and thus recommended to handle severe COVID-19 patients
- Hydroxy-chloroquine, a less toxic derivative of chloroquine, also found is effective in inhibiting SARS-CoV-2 infection
Renin–angiotensin–aldosterone system (RAAS)

- Central to SARS-CoV-2 infection
- Angiotensinogen: converted into angiotensin I by plasma renin released by the liver
- Angiotensin I: converted to angiotensin II by the ACE found on the surface of vascular endothelial cells of lungs. Angiotensin II acts on the AT1 receptor to cause vasoconstriction and also stimulates the secretion of the hormone aldosterone, which increases the reabsorption of sodium, thereby increasing blood pressure
- Angiotensin I and II are degraded by ACE2 to angiotensin (1–9) and angiotensin (1–7), respectively.
- Angiotensin (1–9) and angiotensin (1–7) act on the Mas receptor to effect vaso-dilation.
Renin–angiotensin–aldosterone system (RAAS)

SARS-CoV-2 infection requires the binding of the virus to the membrane-bound form of ACE2 and internalization of the S protein of the virus to the extracellular domain of ACE2, a membrane receptor.
Association between COVID-19 infection and Cardiovascular Diseases

- Many patients with hypertension or other cardiovascular diseases are routinely treated with RAAS blockers and statins.
- Clinical concerns remain whether these patients are at greater risk for SARS-CoV-2 infection due to enhanced ACE2 expression.
- More laboratory and clinical evidence are required to establish the roles of antihypertensive agents, ACE2 expression outcomes of COVID-19 in patients with cardiovascular disease.
Mesenchymal Stem Cell (MSC) Therapy

- **Promising option** *(immunomodulatory function)*
- Studies suggested that *intravenous transplantation of MSCs* into patients is effective in the treatment of COVID-19 with *lesser side effects*.
- The successful infusion of MSCs resulted in increased pulmonary function of the subjected patients to this therapy.

Convalescent Plasma

- Potential therapy for **severe** COVID-19 patients
- The convalescent plasma is retrieved from the *fully recovered patients* of viral disease and is *transfused in the infected* person as a treatment strategy
- During the time of the COVID-19 pandemic, the successful application of this therapy is effective in some of the patients
● this study provides a possible hypothesis for the pathogenesis and transmission of the disease in humans

● efforts in the short term should be focused on developing a vaccine or inhibitors that help to prevent the infection by targeting the major viral proteins such as S, E, M, N, proteins, RdRP and proteases

● the three infections have marginal differences in terms of innate immune responses but greatly differ in terms of morbidity and mortality