Forced proximity promotes the formation of enduring cooperative relationships in vampire bats

Imran Razik1,2, Bridget K. G. Brown1 and Gerald G. Carter1,2

1The Ohio State University, Columbus, OH 43210, USA
2Smithsonian Tropical Research Institute, Balboa Ancón, Panama

Spatial assortment can be both a cause and a consequence of cooperation. Proximity promotes cooperation when individuals preferentially help nearby partners, and conversely, cooperation drives proximity when individuals move towards more cooperative partners. Although both forces are predicted by theory, these two causal directions are not easily distinguished with observational data.

Spatial assortment can be both a cause and a consequence of cooperation. Proximity promotes cooperation when individuals preferentially help nearby partners, and conversely, cooperation drives proximity when individuals move towards more cooperative partners. Although both forces are predicted by theory, these two causal directions are not easily distinguished with observational data.

1. Introduction

Spatial assortment can both be a cause and a consequence of cooperation. This principle, well understood from social evolution theory, applies to both ecological and evolutionary timescales, and across a great diversity of social life from microbes to humans [1–6]. Proximity drives cooperation when individuals primarily help nearby partners, and conversely, cooperation drives proximity when individuals move towards more cooperative partners. Although both forces are predicted by theory, these two causal directions are not easily distinguished with observational data.

Individuals forced to associate might form enduring cooperative relationships that persist beyond the period of forced proximity, similar to how randomly assigned first-year college roommates are more likely to be friends after graduating [7]. Several past results suggest that such a phenomenon occurs in common vampire bats (Desmodus rotundus), a species where preferred associations correlate with cooperative interactions, such as allogrooming and regurgitated food sharing [8–12]. Vampire bats housed together for months in captivity appeared to develop stronger social preferences for each other and then maintained these associations for at least 8 days after being released back into the wild [11]. Female pairs that were introduced to one another in
small cages started food sharing relationships faster than pairs that first met in a larger cage with more options for social partners [12]. In field sites where vampire bats switch roosts, pairwise roost-sharing rates predict allogrooming and food sharing [8,9,13]. However, all these studies lack the proper experimental controls to show causation.

Here, we experimentally tested if forcing proximity among randomly selected triads of female common vampire bats promotes the formation of enduring cooperative relationships. We measured allogrooming as a response because it is a cooperative and highly symmetrical investment of time and energy that is directed to individuals in need [14], sufficiently frequent during the formation of new relationships [12], and used by individuals to establish and maintain more costly food sharing relationships [12].

2. Material and methods

(a) Study colony
Experimental subjects were 21 uniquely banded and captive female common vampire bats. Seven bats were sourced from each of three different sites in Panama (Lake Bayano, Tolé, or La Chorrera) that were 120–350 km apart and they were housed in an outdoor flight cage at the Smithsonian Tropical Research Institute in Gamboa, Panamá. See Razik et al. [15] and the electronic supplementary material for more details on the captive colony.

(b) Experimental design
Subjects experienced three phases: pre-treatment (six weeks), forced proximity (one week) and post-treatment (nine weeks). During the pre-treatment phase, all bats could freely interact in a 2.1 × 1.7 × 2.3 m flight cage. During the treatment phase, we randomly assigned female bats into seven triads (including one bat from each site so that all individuals were previously unfamiliar), each housed in a 28 × 28 × 40 cm clear, acrylic observation cage. For the post-treatment phase, we released all bats back into the flight cage and monitored interactions (figure 1). We tracked grooming rates between all pairs and classified pairs into three types. We classified the 21 recently introduced pairs that were forced into proximity as ‘test dyads’, the other 126 recently introduced pairs as ‘control dyads’ and the 63 pairs of bats caught from the same site as ‘familiar dyads’.

To measure allogrooming, we used three infrared surveillance cameras (Foscam NVR Security System) to sample all social interactions among the uniquely banded bats for 3–6 h each day from 23 June 2019 to 14 October 2019. Over 114 days, we sampled 682 h of interactions, recording allogrooming bouts that were at least 5 s in duration, and noting both the actor and receiver. To measure dyadic allogrooming rates, we averaged the seconds of allogrooming per hour across all hours in which the actor and receiver could interact, first averaging the rates in both directions (most allogrooming is bidirectional), then transforming these values with natural log (x + 1), because the variance of allogrooming duration increases with the mean. We call these measures ‘allogrooming log rates’.

(c) Statistical analyses
To test for an effect of forced proximity, we compared the mean change in allogrooming log rates from the pre-treatment to the post-treatment phase for test dyads, control dyads and familiar dyads, then calculated 95% confidence intervals (CI) for all mean changes using bootstrapping (percentile method in the boot R package) [16]. Using the same bootstrapping method, we calculated the 95% CI for the mean change in the proportion of total allogrooming log rates directed to familiar versus previously unfamiliar partners. To assess evidence of a trade-off between grooming familiar versus previously unfamiliar partners, we also tested for a negative correlation between the actor’s mean change in grooming to these two partner types. To test if the mean change in allogrooming log rates differed more than expected by chance between test and control groups, we used a permutation test. We compared the observed difference to a distribution of 5000 expected differences obtained from running the same analysis after randomly re-assigning bats from different capture sites into possible new forced-proximity triads. To check the robustness of our original result from this analysis, we also conducted several alternative analyses (see electronic supplementary material, information). Briefly, our results hold when (i) excluding 17 control dyads with pre-treatment allogrooming rates higher than the maximum rate observed in test dyads (to account for regression to the mean effects), (ii) removing two bats that were sampled fewer times than other females, (iii) removing bats that had a Staph infection during the pre-treatment period and (iv) drawing inferences from a mixed-effect model. All analyses confirm the original result of a clear difference between test and control groups.

To test if allogrooming log rates in the 21 test dyads during the forced-proximity phase predicted changes in allogrooming log rates between the pre-treatment and post-treatment phase, we fit a

Figure 1. Experimental design. (a) Pre-treatment, (b) forced proximity and (c) post-treatment. Nodes are bats. Node colour/shape shows capture site (Lake Bayano = blue circles, Tolé = yellow squares, La Chorrera = red triangles). The widths of the grey links show the relative allogrooming log rates during the six-week pre-treatment phase, the one week of forced proximity and the nine-week post-treatment phase.
proximity were more clearly correlated with post-treatment test
allogrooming (treatment allogrooming when controlling for the baseline
that allogrooming ranks among the 21 test dyads during the
(5000 permutations).

We found that just one week of forced proximity between recently
introduced and unrelated females increased their allogrooming
rates, relative to a control group, after the manipulation ended.
From the pre-treatment to the post-treatment phase, bats
increased the proportion of their allogrooming directed to
bats from different capture sites (mean increase = 0.66 log s h
−1 [0.37, 0.97], for control dyads = 0.17 log s h
−1 [0.04, 0.30];
difference = 0.50 log s h
−1 , p = 0.002). This effect was evident
throughout the post-treatment period (electronic supplementary
material, figure S1). Although the bats formed new grooming
relationships (figure 2), we found no evidence of a negative cor-
relation between grooming directed to familiar versus relatively
new partners (r = 0.25 [−0.21, 0.61], n = 21, p = 0.27).
Within the 21 test dyads, allogrooming rates during forced
proximity were more clearly correlated with post-treatment rates
(Spearman’s ρ = 0.49, p = 0.025) than pre-treatment rates
(ρ = 0.33, p = 0.15); however, we failed to find clear evidence
that allogrooming ranks among the 21 test dyads during the
forced proximity phase predicted changes in allogrooming
(β = 0.28, p = 0.206, permutation test p = 0.15), or post-
treatment allogrooming when controlling for the baseline
pre-treatment allogrooming (β = 0.32, p = 0.096, permutation
test p = 0.074; electronic supplementary material, figure S5).

3. Results

We introduced previously unfamiliar and unrelated vampire
bats in captivity, allowing them to freely associate for six
weeks in an outdoor flight cage, then forced randomly
selected triads into proximity for one week. Over the next
nine weeks, while bats could again freely associate, the allo-
grooming rates of pairs forced into proximity increased
more than those of control pairs or previously unfamiliar
pairs that were not forced into proximity. This finding
shows that manipulating proximity can promote the for-
mation of enduring cooperative relationships that persist
beyond the manipulation period.

Although the bats formed new grooming relationships, we
found no clear evidence that this required partner switching,
which makes sense because the bats were removed from
their wild social networks and presumably lost most of
their original social ties. Animals capable of individual
social recognition are likely to have a familiarity bias, leading
to social preferences among individuals that happen to
meet earlier in time or be closer in space. Early-life associations
can be a cue for kin discrimination (e.g. [17]) and lead
to strong preferences later in life [18–21]. For example, new-
born pipistrelle bats (Pipistrellus kuhlii) raised in separate
groups for six weeks preferred to associate with and groom
familiar conspecifics and heterospecifics after being released
into a common flight cage [20,21]. Preferred associations
can also develop quickly during adulthood. For instance,
guppies (Poecilia reticulata) develop new schooling preferences
for familiar individuals over just 12 days, and the effect
of familiarity appears stronger than that of phenotypic
similarity [22,23].

The mechanism underlying the increased allogrooming
remains unclear, but it was likely caused by some combination
of elevated association (e.g. bats increased allogrooming with
partners that were nearby more often) and interaction (e.g.
bats increased allogrooming with partners that groomed
them more). Although we failed to detect a clear correlation
between allogrooming intensity within the forced-proximity
period and changes in allogrooming afterwards, our power
to detect this effect is far worse than our ability to detect the
effect of forced proximity for three reasons: (i) we did not
directly manipulate grooming, (ii) the forced-proximity
grooming rates were based on far fewer observations (one
week versus six/nine weeks) and (iii) we had far fewer
dyads in the analysis (21 versus 147 dyads). Furthermore,
past work on vampire bats strongly suggests that spatial prox-
imacy alone cannot entirely explain either the large variation in
cooperative behaviour across individuals and pairs living in
proximity in captivity [12,24] or the changes in cooperative
relationships owing to manipulations of experience [12]. For
example, allogrooming was a better predictor of new food
sharing relationships within periods of forced proximity than
within periods of free association [12]—the opposite of what
is expected if food sharing is caused only by forced proximity.
Decisions to help are therefore determined, at least in part, by
partner experiences or traits. If individuals use frequent associ-
ation as an honest cue of partner availability, and if availability
is desirable in a social partner, then this could result in a posi-
tive feedback loop during the social bonding process, where
bats preferentially groom frequent associates and preferen-
tially associate with frequent groomers. Future experiments
should disentangle the roles of interactions versus association
in social bonding.

4. Discussion

We introduced previously unfamiliar and unrelated vampire
bats in captivity, allowing them to freely associate for six

Figure 2. Changes in allogrooming in familiar, control and test dyads. Blue points
are bat pairs. Larger black points are means with 95% CIs. Familiar dyads are from
the same capture site. Test and control dyads are pairs of bats from different capture
sites that were either forced into proximity or not, respectively.

linear model with the change in allogrooming as a ranked response
and forced-proximity allogrooming ranks as the effect. To test if
forced-proximity allogrooming ranks predicted allogrooming
during the post-treatment phase after controlling for baseline
levels, we fit a linear model with post-treatment allogrooming rank
as a response and both pre-treatment and forced-proximity allo-
grooming ranks as effects. Alongside parametric p-values, we
present one-sided p-values from a permutation test (permutation-
p) comparing the observed coefficients to those expected when allo-
grooming rates are randomized within each forced-proximity cage
(5000 permutations).
compare how social bonding varies across species. Many aspects of the social bonding process remain mysterious. If individuals that were forced to associate in the same small cage similarly perceived these shared experiences as negative, would this weaken or strengthen the process of social bonding? Animals might prefer partners with whom they share rewarding experiences because of simple associative learning; alternatively, negative or stressful experiences that are shared might facilitate or reinforce partner choice [25]. For instance, guppies that were exposed to an environment where they perceived high predation risk were found to exhibit stronger partner preferences for one another than those that were not [26]. Furthermore, to what extent is the process of social bonding influenced by the quantity and quality of other available partners? Vampire bats form new relationships faster in the absence of familiar partners [12], and the benefits of having fewer stronger bonds versus many weak ties could vary with many aspects of the social environment, such as social stability [24] and the number of alternative relationships. If social bonds require long-term cooperative investments, then do individuals have 'investment strategies' that depend on the marginal return on each additional unit of investment? Answering such questions will require controlling association while carefully manipulating interactions within pairs.

References

1. Hamilton WD. 1964 The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–16. (doi:10.1016/0022-5193(64)90038-4)

2. Fisher JA, Doebeli M. 2009 A simple and general explanation for the evolution of altruism. Proc. R. Soc. B 282, 13–19. (doi:10.1098/rspb.2008.0829)

3. Axelrod R, Hamilton WD. 1981 The evolution of cooperation. Science 211, 1390–1396. (doi:10.1126/science.6766396)

4. Noë R, Hammerstein P. 1994 Biological markets: actions within pairs.

5. Axelrod R, Hamilton WD. 1984 Reciprocal food sharing in the vampire bat. Nature 308, 45–51. (doi:10.1038/308455a0)

6. Wilkinson GS. 1986 Social grooming in the common vampire bat, Desmodus rotundus. Anim. Behav. 34, 1880–1889. (doi:10.1016/S0003-3472(86)80274-3)

7. Marmaros D, Sacerdote B. 2006 How do friendships then do individuals have? (24) and the number of alternative relationships. If the quantity and quality of other available partners? Vampi- erate that are shared might facilitate or reinforce part- ner choice [25]. For instance, guppies that were exposed to an environment where they perceived high predation risk were found to exhibit stronger partner preferences for one another than those that were not [26]. Furthermore, to what extent is the process of social bonding influenced by the quantity and quality of other available partners? Vampi- re bond: Bootstrap R (S-Plus)

8. Wilkinson GS. 1986 Social grooming in the common vampire bat, Desmodus rotundus. Anim. Behav. 34, 1880–1889. (doi:10.1016/S0003-3472(86)80274-3)

9. Wilkinson GS. 1986 Social grooming in the common vampire bat, Desmodus rotundus. Anim. Behav. 34, 1880–1889. (doi:10.1016/0003-3472(86)80274-3)

10. Carter GG, Wilkinson GS. 2016 Common vampire bat contact calls attract past food-sharing partners. Anim. Behav. 116, 45–51. (doi:10.1016/j.anbehav.2016.03.005)

11. Ripperger SP et al. 2019 Vampire bats that cooperate in the lab maintain their social networks in the wild. Curr. Biol. 29, 4139–4144. (doi:10.1016/j.cub.2019.10.024)

12. Carter GG, Farine DR, Crisp RJ, Vrtilek JK, Ripperger SP, Page RA. 2020 Development of new food-sharing relationships in vampire bats. Curr. Biol. 30, 1275–1279. (doi:10.1016/j.cub.2020.01.055)

13. Carter G, Wilkinson G. 2013 Does food sharing in vampire bats demonstrate reciprocity? Commun. Int. Biol. 6, e25783. (doi:10.4161/cib.25783)

14. Narizano H, Carter GG. 2020 Do vampire bats groom others based on need? Front. Ecol. Evol. 8, 31. (doi:10.1007/s41377-019-00165)

15. Razik I, Brown B, Carter G. 2022 Spatial proximity between newboms influences the development of social relationships in bats. Ethology 118, 331–340. (doi:10.1111/eth.12955)

16. Ancillotto L, Allegreni C, Seangelti MT, Jones G, Russo D. 2015 Sociality across species: spatial proximity of newborns promotes heterospecific social bonding. Behav. Ecol. 26, 293–299. (doi:10.1093/beheco/arv193)

17. Griffiths SW, Maguran A. 1997 Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945–949. (doi:10.1006/anbe.1996.0315)

18. Busia L, Griggio M. 2020 The dawn of social bonds: what is the role of shared experiences in non-human animals? Sci. Rep. 10, 20170212. (doi:10.1038/s41598-020-62130-6)

19. Heathcote JR, Darden SK, Franks DW, Ramnarine IW, Croft DP. 2017 Fear of predation drives stable and differentiated social relationships in guppies. Sci. Rep. 7, 41679. (doi:10.1038/s41598-017-16799)

20. Ancillotto L, Seangelti MT, Russo D. 2012 Spatial proximity between newboms influences the development of social relationships in bats. Ethology 118, 331–340. (doi:10.1111/eth.12955)

21. Ancillotto L, Allegreni C, Seangelti MT, Jones G, Russo D. 2015 Sociality across species: spatial proximity of newborns promotes heterospecific social bonding. Behav. Ecol. 26, 293–299. (doi:10.1093/beheco/arv193)

22. Griffiths SW, Maguran A. 1997 Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945–949. (doi:10.1006/anbe.1996.0315)

23. Griffiths SW, Maguran A. 1999 Schooling decisions in guppies (Poecilia reticulata) are based on familiarity rather than kin recognition by phenotype matching. Behav. Ecol. Sociobiol. 45, 437–443. (doi:10.1007/3-642-1060605058)

24. Carter G, Farine D, Wilkinson G. 2017 Social bet- hedging in vampire bats. Biol. Lett. 13, 2017012. (doi:10.1098/rsbl.2017.0112)

25. Busia L, Griggio M. 2020 The dawn of social bonds: what is the role of shared experiences in non-human animals? Sci. Rep. 10, 20170212. (doi:10.1038/s41598-020-62130-6)

26. Heathcote JR, Darden SK, Franks DW, Ramnarine IW, Croft DP. 2017 Fear of predation drives stable and differentiated social relationships in guppies. Sci. Rep. 7, 41679. (doi:10.1038/s41598-017-16799)

27. Razik I, Brown B, Carter G. 2022 Data and R code for ‘forced proximity promotes the formation of enduring cooperative relationships in vampire bats’. FigShare. (doi:10.6084/m9.figshare.19077431.v3)