A short note on learning discrete distributions

Clément L. Canonne*

February, 2020

Abstract

The goal of this short note is to provide simple proofs for the “folklore facts” on the sample complexity of learning a discrete probability distribution over a known domain of size k to various distances ε, with error probability δ.

Contents

1 Total variation distance
2 Hellinger distance
3 χ^2 and Kullback—Leibler divergences
4 Briefly: Kolmogorov, ℓ_∞, and ℓ_2 distances

Notation. For a given distance measure d, we write $\Phi(d, k, \varepsilon, \delta)$ for the sample complexity of learning discrete distributions over a known domain of size k, to accuracy $\varepsilon > 0$, with error probability $\delta \in (0, 1]$. As usual, asymptotics will be taken with regard to k going to infinity, ε going to 0, and δ going to 0, in that order. Without loss of generality, we hereafter assume the domain is the set $[k] := \{1, \ldots, k\}$.

1 Total variation distance

Recall that $d_{TV}(p, q) = \sup_{S \subseteq [k]} (p(S) - q(S)) = \frac{1}{2} \|p - q\|_1 \in [0, 1]$ for any $p, q \in \Delta([k])$.

Theorem 1. $\Phi(d_{TV}, k, \varepsilon, \delta) = \Theta \left(\frac{k + \log(1/\delta)}{\varepsilon^2} \right)$.

We focus here on the upper bound. The lower bound can be proven, e.g., via Assouad’s lemma (for the k/ε^2 term), and from the hardness of estimating the bias of a coin ($k = 2$) with high probability (for the $\log(1/\delta)/\varepsilon^2$ term).

First proof. Consider the empirical distribution \tilde{p} obtained by drawing n independent samples s_1, \ldots, s_n from the underlying distribution $p \in \Delta([k])$:

$$\tilde{p}(i) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{\{s_j = i\}}, \quad i \in [k]$$

(1)

*The latest version of this note can be found at github.com/ccanonne/probabilitydistributiontoolbox.
• First, we bound the expected total variation distance between \(\bar{p} \) and \(p \), by using \(\ell_2 \) distance as a proxy:

\[
\mathbb{E}[d_{TV}(\bar{p}, p)] = \frac{1}{2} \mathbb{E}[\|p - \bar{p}\|_1] = \frac{1}{2} \sum_{i=1}^{k} \mathbb{E}[|p(i) - \bar{p}(i)|] \leq \frac{1}{2} \sum_{i=1}^{k} \sqrt{\mathbb{E}[(p(i) - \bar{p}(i))^2]}
\]

the last inequality by Jensen. But since, for every \(i \in [k] \), \(n\bar{p}(i) \) follows a Bin\((n, p(i))\) distribution, we have \(\mathbb{E}[(p(i) - \bar{p}(i))^2] = \frac{1}{n^2} \text{Var}[n\bar{p}(i)] = \frac{1}{n^2}p(i)(1-p(i)) \), from which

\[
\mathbb{E}[d_{TV}(\bar{p}, p)] \leq \frac{1}{2\sqrt{n}} \sum_{i=1}^{k} \sqrt{p(i)} \leq \frac{1}{2} \sqrt{\frac{k}{n}}
\]

the last inequality this time by Cauchy–Schwarz. Therefore, for \(n \geq \frac{k}{\varepsilon} \) we have \(\mathbb{E}[d_{TV}(\bar{p}, p)] \leq \frac{\varepsilon}{2} \).

• Next, to convert this expected result to a high probability guarantee, we apply McDiarmid’s inequality to the random variable \(f(s_1, \ldots, s_n) := d_{TV}(\bar{p}, p) \), noting that changing any single sample cannot change its value by more than \(c := 1/n \):

\[
\mathbb{P}\left[|f(s_1, \ldots, s_n) - \mathbb{E}[f(s_1, \ldots, s_n)]| \geq \frac{\varepsilon}{2} \right] \leq 2e^{-\frac{2\left(\frac{\varepsilon}{2}\right)^2}{2c^2}} = 2e^{-\frac{1}{4n}\varepsilon^2}
\]

and therefore as long as \(n \geq \frac{\varepsilon^2}{4c^2} \), we have \(|f(s_1, \ldots, s_n) - \mathbb{E}[f(s_1, \ldots, s_n)]| \leq \frac{\varepsilon}{2} \) with probability at least \(1 - \delta \).

Putting it all together, we obtain that \(d_{TV}(\bar{p}, p) \leq \varepsilon \) with probability at least \(1 - \delta \), as long as \(n \geq \max\left(\frac{k}{\varepsilon^2}, \frac{2}{\delta^2} \ln \frac{2}{\delta} \right) \). \(\square \)

Second proof – the “fun” one. Again, we will analyze the behavior of the empirical distribution \(\bar{p} \) over \(n \) i.i.d. samples from the unknown \(p \) (cf. (1)) – because it is simple, efficiently computable, and it works. Recalling the definition of total variation distance, note that \(d_{TV}(p, \bar{p}) > \varepsilon \) literally means there exists a subset \(S \subseteq [k] \) such that \(\bar{p}(S) > p(S) + \varepsilon \). There are \(2^k \) such subsets, so… let us do a union bound.

Fix any \(S \subseteq [k] \). We have

\[
\bar{p}(S) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j \in S} 1_{\{s_j = i\}}
\]

and so, letting \(X_j := \sum_{i \in S} 1_{\{s_j = i\}} \) for \(j \in [n] \), we have \(\bar{p}(S) = \frac{1}{n} \sum_{j=1}^{n} X_j \) where the \(X_j \)'s are i.i.d. Bernoulli random variable with parameter \(p(S) \). Here comes the Chernoff bound (actually, Hoeffding, the other Chernoff):

\[
\mathbb{P}[\bar{p}(S) > p(S) + \varepsilon] = \mathbb{P}\left[\frac{1}{n} \sum_{j=1}^{n} X_j > \mathbb{E}\left[\frac{1}{n} \sum_{j=1}^{n} X_j \right] + \varepsilon \right] \leq e^{-2\varepsilon^2n}
\]

and therefore \(\mathbb{P}[\bar{p}(S) > p(S) + \varepsilon] \leq \frac{\delta}{2} \) for any \(n \geq \frac{k\ln 2 + \log(1/\delta)}{2\varepsilon^2} \). A union bound over these \(2^k \) possible sets \(S \) concludes the proof:

\[
\mathbb{P}[\exists S \subseteq [k] \text{ s.t. } \bar{p}(S) > p(S) + \varepsilon] \leq 2^k \cdot \frac{\delta}{2^k} = \delta
\]

and we are done. **Badda bing badda boom**, as someone\(^1\) would say. \(\square \)

\(^1\)John Wright.
2 Hellinger distance

Recall that \(d_H(p, q) = \frac{1}{\sqrt{2}} \sqrt{\sum_{i=1}^{k} \left(\sqrt{p(i)} - \sqrt{q(i)} \right)^2} = \frac{1}{\sqrt{2}} \| p - q \|_2 \) for any \(p, q \in \Delta([k]) \). The Hellinger distance has many nice properties: it is well-suited to manipulating product distributions, its square is subadditive, and is always within a quadratic factor of the total variation distance; see, e.g., [Can15, Appendix C.2].

Theorem 2. \(\Phi(d_H, k, \varepsilon, \delta) = O\left(\frac{k+\log(1/\delta)}{\varepsilon^2} \right) \).

This theorem is “highly non-trivial” to establish, however; for the sake of exposition, we will show increasingly stronger bounds, starting with the easiest to establish.

Proposition 3 (Easy bound). \(\Phi(d_H, k, \varepsilon, \delta) = O\left(\frac{k+\log(1/\delta)}{\varepsilon^2} \right) \), and \(\Phi(d_H, k, \varepsilon, \delta) = \Omega\left(\frac{k+\log(1/\delta)}{\varepsilon^2} \right) \).

Proof. This is immediate from **Theorem 9**, recalling that \(\frac{1}{2} \text{d}_{TV}^2 \leq d_H^2 \leq \text{d}_{TV} \). \(\square \)

Proposition 4 (More involved bound). \(\Phi(d_H, k, \varepsilon, \delta) = O\left(\frac{k+\log(1/\delta)}{\varepsilon^4} \right) \).

Proof. As for total variation distance, we consider the empirical distribution \(\hat{p} \) (cf. (1)) obtained by drawing \(n \) independent samples \(s_1, \ldots, s_n \) from \(p \in \Delta([k]) \).

- First, we bound the expected squared Hellinger distance between \(\hat{p} \) and \(p \); using the simple fact that
 \(d_H(p, q)^2 = 1 - \sum_{i=1}^{k} \sqrt{p(i)q(i)} \) for any \(p, q \in \Delta([k]) \),
 \[
 \mathbb{E}\left[d_H(p, \hat{p})^2 \right] = 1 - \sum_{i=1}^{k} \sqrt{p(i) \cdot \mathbb{E}\left[\sqrt{p(i)} \right]}
 \]

Now we would like to handle the square root inside the expectation, and of course Jensen’s inequality is in the wrong direction. However, for every nonnegative r.v. \(X \) with positive expectation, letting \(Y := X/\mathbb{E}[X] \), we have that
\[
\mathbb{E}\left[\sqrt{X} \right] \geq \sqrt{\mathbb{E}[X]} \cdot \mathbb{E}\left[\sqrt{Y} \right] = \sqrt{\mathbb{E}[X]} \cdot \mathbb{E}\left[\sqrt{1 + (Y - \mathbb{E}[Y])} \right]
\]
\[
\geq \sqrt{\mathbb{E}[X]} \left(1 + \frac{1}{2} \mathbb{E}[|Y - \mathbb{E}[Y]|] - \frac{1}{6} \mathbb{E}[\left(Y - \mathbb{E}[Y] \right)^2] \right) = \sqrt{\mathbb{E}[X]} \left(1 - \frac{\text{Var} X}{6 \mathbb{E}[X]^2} \right)
\]
where we used the inequality \(\sqrt{1+x} \geq 1 + \frac{x}{2} - \frac{x^2}{8} \), which holds for \(x \geq 0 \). Since, for every \(i \in [k] \), \(np(i) \) follows a \(\text{Bin}(n, p(i)) \) distribution, we get
\[
\mathbb{E}\left[d_H(p, \hat{p})^2 \right] \leq 1 - \frac{1}{\sqrt{n}} \sum_{i=1}^{k} \sqrt{p(i) \cdot np(i) \left(1 - np(i) \frac{1 - np(i)}{6np(i)^2} \right)} \leq 1 - \sum_{i=1}^{k} \frac{p(i) \left(1 - \frac{1}{6np(i)} \right)}{6n} = \frac{k}{6n}.
\]

Therefore, for \(n \geq \frac{k}{6} \), we have \(\mathbb{E}\left[d_H(p, \hat{p})^2 \right] \leq \frac{k}{6n} \).

- Next, to convert this expected result to a high probability guarantee, we would like to apply McDiarmid’s inequality to the random variable \(f(s_1, \ldots, s_n) := d_H(p, \hat{p})^2 \) as in the (first) proof of **Theorem 9**; unfortunately, changing a sample can change the value by up to \(c \approx 1/\sqrt{n} \), and McDiarmid will yield only a vacuous bound.\(^3\) Instead, we will use a stronger, more involved concentration inequality:

\(^2\)And is inspired by the Taylor expansion \(\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^3) \): there is some intuition for it.

\(^3\)Try it: it’s a real bummer.
Theorem 5 ([BLM13, Theorem 8.6]). Let \(f : \mathcal{X}^n \to \mathbb{R} \) be a measurable function, and let \(X_1, \ldots, X_n \) be independent random variables taking values in \(\mathcal{X} \). Define \(Z := f(X_1, \ldots, X_n) \). Assume that there exist measurable functions \(c_i : \mathcal{X}^n \to [0, \infty) \) such that, for all \(x, y \in \mathcal{X}^n \),

\[
f(y) - f(x) \leq \sum_{i=1}^{n} c_i(x) \mathbb{I}_{\{x \neq y_i\}}.
\]

Then, setting \(v := \mathbb{E} \sum_{i=1}^{n} c_i(x)^2 \) and \(v_\infty := \sup_{x \in \mathcal{X}^n} \sum_{i=1}^{n} c_i(x)^2 \), we have, for all \(t > 0 \),

\[
\Pr[Z \geq \mathbb{E}[Z] + t] \leq e^{-\frac{t^2}{2v}} \quad \Pr[Z \leq \mathbb{E}[Z] - t] \leq e^{-\frac{t^2}{2v_\infty}}.
\]

For our \(f \) above, we have, for two any different \(x, y \in [k]^n \), that

\[
f(y) - f(x) = \frac{1}{\sqrt{n}} \sum_{i=1}^{k} \sqrt{p(i)} \left(\sqrt{\sum_{j=1}^{n} \mathbb{I}_{\{x_j = i\}}} - \sqrt{\sum_{j=1}^{n} \mathbb{I}_{\{y_j = i\}}} \right)
\]

\[
\leq \frac{1}{\sqrt{n}} \sum_{i=1}^{k} \sqrt{p(i)} \left(\sum_{j=1}^{n} \mathbb{I}_{\{x_j = i\}} - \sum_{j=1}^{n} \mathbb{I}_{\{y_j = i\}} \right)
\]

\[
\leq \frac{1}{\sqrt{n}} \sum_{i=1}^{k} \sqrt{p(i)} \sum_{j=1}^{n} \mathbb{I}_{\{x_j = i\}} \mathbb{I}_{\{y_j \neq i\}} = \sum_{j=1}^{n} \left(\frac{\sum_{j=1}^{n} \mathbb{I}_{\{x_j = i\}} \mathbb{I}_{\{y_j \neq i\}}}{c_j(x)} \right) \mathbb{I}_{\{x_j \neq y_j\}}.
\]

In view of Theorem 5, we then must evaluate

\[
v := \sum_{j=1}^{n} \mathbb{E}[c_j(X)^2] = \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{k} p(i)^2 \cdot \mathbb{E} \left[\frac{1}{1 + \sum_{\ell \neq j} \mathbb{I}_{\{X_i = i\}}} \right]
\]

where that last expectation is over \((x_\ell)_{\ell \neq j}\) drawn from \(p^{\otimes (n-1)} \). Since \(\sum_{\ell \neq j} \mathbb{I}_{\{X_i = i\}} \) is Binomially distributed with parameters \(n - 1 \) and \(p(i) \), we can use the simple fact that, for \(N \sim \text{Bin}(r, \rho) \),

\[
\mathbb{E} \left[\frac{1}{N + 1} \right] = \frac{1 - (1 - \rho)^{r+1}}{\rho(r + 1)} \leq \frac{1}{\rho(r + 1)}
\]

to conclude that \(v \leq \frac{1}{n} \sum_{j=1}^{n} \sum_{i=1}^{k} p(i) = \frac{1}{n} \). By Theorem 5, we obtain

\[
\Pr \left[\left| f(s_1, \ldots, s_n) - \mathbb{E}[f(s_1, \ldots, s_n)] \right| \geq \frac{\varepsilon^2}{2} \right] \leq e^{-\frac{1}{2}n \varepsilon^4}
\]

and therefore, as long as \(n \geq \frac{8}{\varepsilon^2} \ln \frac{1}{\delta} \), we have \(\left| f(s_1, \ldots, s_n) - \mathbb{E}[f(s_1, \ldots, s_n)] \right| \leq \frac{\varepsilon^2}{2} \) with probability at least \(1 - \delta \).

Putting it all together, we obtain that \(d_H(p, \hat{p})^2 \leq \varepsilon^2 \) with probability at least \(1 - \delta \), as long as \(n \geq \max \left(\frac{k}{\varepsilon^2}, \frac{8}{\varepsilon^2} \ln \frac{1}{\delta} \right) \).

We finally get to the final, optimal bound:

Proof of Theorem 2. We will rely on a recent – and quite involved – result due to Agrawal [Agr19], analyzing the concentration of the empirical distribution \(\hat{p} \) in terms of its Kullback–Leibler (KL) divergence with regard to the true \(p \),

\[
\text{KL}(\hat{p} \mid \mid p) = \sum_{i=1}^{k} \hat{p}(i) \ln \frac{\hat{p}(i)}{p(i)} \in [0, \infty].
\]

Observing that \(d_H(p, q)^2 \leq \frac{1}{2} \text{KL}(p \mid \mid q) \) for any distributions \(p, q \), the aforementioned result is actually stronger than what we need:
\textbf{Theorem 2} \cite{KOPS15, Agr19} \textit{Agr19}\textit{.} \textit{Suppose }n \geq \frac{k-1}{\alpha}. \textit{Then}

\[
\Pr[\text{KL}(\hat{p} \| p) \geq \alpha] \leq e^{-n\alpha \left(\frac{e\alpha n}{k-1}\right)^{k-1}}.
\]

In view of the above relation between Hellinger and KL, we will apply this convergence result with \(\alpha := 2\varepsilon^2\), obtaining

\[
\Pr[\text{d}_H(\hat{p}, p) \geq \varepsilon] \leq e^{-2n\varepsilon^2 + (k-1)\ln \frac{2n\varepsilon^2}{k}}.
\]

\textbf{Fact 7.} \textit{For }n \geq \frac{15k}{2k-2}, \textit{we have } (k-1)\ln \frac{2n\varepsilon^2}{k} \leq n\varepsilon^2.\]

\textit{Proof.} The conclusion is equivalent to \(2e \cdot \ln \frac{2n\varepsilon^2}{k} \leq 2n\varepsilon^2 + (k-1)\ln \frac{2n\varepsilon^2}{k}\), and thus follows from the fact that \(x \geq 2e \ln x\) for \(x \geq 15\). \(\square\)

This fact implies that, for \(n \geq \frac{15k}{2k-2}\), \(\Pr[\text{d}_H(\hat{p}, p) \geq \varepsilon] \leq e^{-n\varepsilon^2}\). Overall, we obtain that \(\text{d}_H(p, \hat{p}) \leq \varepsilon\) with probability at least \(1 - \delta\) as long as \(n \geq \max\left(\frac{15k}{2k-2}, \frac{1}{\varepsilon^2} \ln \frac{1}{\delta}\right)\), as desired. \(\square\)

\section{\(\chi^2\) and Kullback—Leibler divergences}

In view of the previous section, some remarks on Kullback--Leibler (KL) and chi-squared (\(\chi^2\)) divergences. Recall their definition, for \(p, q \in \Delta([k])\),

\[
\text{KL}(p \| q) = \sum_{i=1}^{k} p(i) \ln \frac{p(i)}{q(i)}, \quad \chi^2(p \| q) = \sum_{i=1}^{k} \frac{(p(i) - q(i))^2}{q(i)}
\]

both taking values in \([0, \infty]\); as well as the chain of (easily checked) inequalities

\[
2d_{TV}(p, q)^2 \leq \text{KL}(p \| q) \leq \chi^2(p \| q),
\]

where the first one is Pinsker’s. Importantly, KL and \(\chi^2\) divergences are unbounded and asymmetric, so the order of \(p\) and \(q\) matters \textit{a lot}: for instance, it is easy to show that, without strong assumptions on the unknown distribution \(p \in \Delta([k])\), the empirical estimator \(\hat{p}\) cannot achieve \(\text{KL}(p \| \hat{p}) < \infty\) (resp., \(\chi^2(p \| \hat{p}) < \infty\)) with any finite number of samples.\(^4\) So, that’s uplifting. (On the other hand, \textit{other} estimators than the empirical one, e.g., add-constant estimators, do provide good learning guarantees for those distance measures: see for instance \cite{KOPS15}).

We are going to focus here on getting \(\text{KL}(\hat{p} \| p)\) and \(\chi^2(\hat{p} \| p)\) down to \(\varepsilon\). Of course, in view of the inequalities above, the latter is at least as hard as the former, and a lower bound on both follows from that on \(d_{TV}\): \(\Omega\left((k + \log(1/\delta))/\varepsilon^2\right)\). And, behold! The result of Agrawal \cite{Agr19} used in the proof of \textbf{Theorem 2} does provide the optimal upper bound on learning in KL divergence – and it is achieved by the usual suspect, the empirical estimator:

\textbf{Theorem 8.} \(\Phi(\text{KL}, k, \varepsilon, \delta) \leq \Theta\left(\frac{k + \log(1/\delta)}{\varepsilon}\right), \text{where by KL we refer to minimizing } \text{KL}(\hat{p} \| p).\]

The optimal sample complexity of learning in \(\chi^2\) as a function of \(k, \varepsilon, \delta\), however, remains open.

\(^4\)You can verify this: intuitively, the issue boils down to having to non-trivially learn even the elements of the support of \(p\) that have arbitrarily small probability.
4 Briefly: Kolmogorov, ℓ_∞, and ℓ_2 distances

To conclude, let us briefly discuss three other distance measures: Kolmogorov (a.k.a., “ℓ_∞ between cumulative distribution functions”), ℓ_∞, and ℓ_2:

$$d_K(p, q) = \max_{i \in [k]} \left| \sum_{j=1}^{i} p(i) - \sum_{j=1}^{i} q(i) \right|$$

and

$$\ell_2(p, q) = \|p - q\|_2 = \sqrt{\sum_{i=1}^{k} (p(i) - q(i))^2}, \quad \ell_\infty(p, q) = \|p - q\|_\infty = \max_{i \in [k]} |p(i) - q(i)|.$$

A few remarks first. The Kolmogorov distance is actually defined for any distribution on \mathbb{R}, not necessarily discrete; one can equivalently define it as $d_K(p, q) = \sup_{f \in C} (\mathbb{E}_p[I_{f^{-1}(\infty, a)}] - \mathbb{E}_q[I_{f^{-1}(\infty, a)}])$. This has a nice interpretation: recalling the definition of TV distance, both are of the form $\sup_{f \in C} (\mathbb{E}_p[f] - \mathbb{E}_q[f])$ where C is a class of measurable functions.\(^5\) For TV distance, C is the class of indicators of all measurable subsets; for Kolmogorov, this is the (smaller) class of indicators of intervals of the form $(-\infty, a]$. (For Wasserstein/EMD distance, this will be the class of continuous, 1-Lipschitz functions.)

Second, because of the above, and also monotonicity of ℓ_p norms, Cauchy–Schwarz, the fact that $\ell_1(p, q) = 2d_{TV}(p, q)$, and elementary manipulations, we have

$$\ell_2(p, q) \leq 2d_{TV}(p, q) \leq \sqrt{k} \ell_2(p, q)$$

$$\ell_\infty(p, q) \leq \ell_2(p, q) \leq \sqrt{\ell_\infty(p, q)},$$

$$\frac{1}{2} \ell_\infty(p, q) \leq d_K(p, q) \leq d_{TV}(p, q).$$

That can be useful sometimes. Now, I will only briefly sketch the proof of the next theorem: the lower bounds follow from the simple case $k = 2$ (estimating the bias of a biased coin), the upper bounds are achieved by the empirical estimator (again). Importantly, the result for Kolmogorov distance still applies to continuous, arbitrary distributions.

Theorem 9. $\Phi(d_K, k, \varepsilon, \delta), \Phi(\ell_\infty, k, \varepsilon, \delta), \Phi(\ell_2, k, \varepsilon, \delta) = \Theta \left(\frac{\log(1/\delta)}{\varepsilon^2} \right)$, independent of k.

Sketch. The proof for Kolmogorov distance is the most involved, and follows from a very useful and non-elementary theorem due to Dvoretzky, Kiefer, and Wolfowitz from 1956 [DKW56] (with the optimal constant due to Massart, in 1990 [Mas90]):

Theorem 10 (DKW Inequality). Let \hat{p} denote the empirical distribution on n i.i.d. samples from p (an arbitrary distribution on \mathbb{R}). Then, for every $\varepsilon > 0$,

$$\Pr\{d_K(\hat{p}, p) > \varepsilon\} \leq 2e^{-2n\varepsilon^2}.$$

Note, again, that this holds even if p is a continuous (or arbitrary) distribution on an unbounded support.

The proof for ℓ_∞ just follows the Kolmogorov upper bound and the aforementioned inequality $\ell_\infty(p, q) \leq 2d_K(p, q)$ (which hinges on the fact that $p(i) = \sum_{j=1}^{i} p(i) - \sum_{j=1}^{i-1} p(i)$ and the triangle inequality). Finally, the proof for ℓ_2 is a nice exercise involving analyzing the expectation of the ℓ_2 distance achieved by the empirical estimator, and McDiarmid’s inequality.

Acknowledgments. I would like to thank Gautam Kamath and John Wright for suggesting “someone should write this up as a note,” and to Jiantao Jiao for discussions about the Hellinger case.

\(^5\)Such metrics on the space of probability distributions are called integral probability metrics.
References

[Agr19] Rohit Agrawal. Multinomial concentration in relative entropy at the ratio of alphabet and sample sizes. *CoRR*, abs/1904.02291, 2019. 6, 3

[BLM13] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration inequalities: A nonasymptotic theory of independence*. Oxford University Press, 2013. 5

[Can15] Clément L. Canonne. A Survey on Distribution Testing: Your Data is Big. But is it Blue? *Electronic Colloquium on Computational Complexity (ECCC)*, 22:63, 2015. 2

[DKW56] Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. *Ann. Math. Statist.*, 27:642–669, 1956. 4

[KOPS15] Sudeep Kamath, Alon Orlitsky, Dheeraj Pichapati, and Ananda Theertha Suresh. On learning distributions from their samples. In *Proceedings of The 28th Conference on Learning Theory*, volume 40 of *Proceedings of Machine Learning Research*, pages 1066–1100. PMLR, 2015. 3

[Mas90] Pascal Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. *Ann. Probab.*, 18(3):1269–1283, 1990. 4