A shift-splitting preconditioner for asymmetric saddle point problems

Shi-Liang Wu · Davod Khojasteh Salkuyeh

Received: 6 March 2020 / Revised: 3 June 2020 / Accepted: 16 October 2020 / Published online: 6 November 2020
© SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2020

Abstract
In this paper, we execute the shift-splitting preconditioner for asymmetric saddle point problems with its (1,2) block’s transposition unequal to its (2,1) block under the removed minus of its (2,1) block. The proposed preconditioner is stemmed from the shift splitting (SS) iteration method for solving asymmetric saddle point problems, which is convergent under suitable conditions. The relaxed version of the shift-splitting preconditioner is obtained as well. The spectral distributions of the related preconditioned matrices are given. Numerical experiments from the Stokes problem are offered to show the convergence performance of these two preconditioners.

Keywords Asymmetric saddle point problems · Shift-splitting preconditioner · Spectral distribution · Convergence

Mathematics Subject Classification 65F10

Communicated by Ke Chen.

The research work of the first author is supported by National Natural Science Foundation of China (No. 11961082). The work of the second author is supported by University of Guilan and the Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC).

Shi-Liang Wu
wushiliang1999@126.com
Davod Khojasteh Salkuyeh
khojasteh@guilan.ac.ir

1 School of Mathematics, Yunnan Normal University, Kunming 650500, Yunnan, People’s Republic of China
2 Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
3 Center of Excellence for Mathematical Modelling, Optimization and Combinational Computing (MMOCC), University of Guilan, Rasht, Iran
1 Introduction

Nowadays, a shift splitting iteration scheme has been successfully used to solve the large sparse system of linear equations

\[Ax = b \] \hspace{1cm} (1)

with \(A \) being non-Hermitian positive definite, which is deemed as one of the efficient stationary solvers and is first introduced in Bai et al. (2006), and works as follows: Given an initial guess \(x^{(0)} \), for \(k = 0, 1, 2, \ldots \) until \(\{x^{(k)}\} \) converges, compute

\[(\alpha I + A)x^{(k+1)} = (\alpha I - A)x^{(k)} + 2b, \] \hspace{1cm} (2)

where \(\alpha \) is a given positive constant. It is noteworthy that this shift splitting iteration scheme (2) not only is unconditionally convergent, but also can induce an economical and effective preconditioner \(P = \alpha I + A \) for the non-Hermitian positive definite linear system (1). This induced preconditioner is called as the shift-splitting preconditioner. When the shift-splitting preconditioner \(P = \alpha I + A \) together with Krylov subspace methods are employed to solve the non-Hermitian positive definite linear system (1), its highly efficiency has been confirmed by numerical experiments in Bai et al. (2006).

Since both the shift splitting iteration scheme and the shift-splitting preconditioner are economical and effective, they have drawn much attention. Not only that, this approach has been successfully extended to other practical problems, such as the classical saddle point problems

\[\begin{bmatrix} A & B^T \\ -B & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} p \\ q \end{bmatrix}, \] \hspace{1cm} (3)

where \(A \in \mathbb{R}^{n \times n} \) is symmetric positive definite (SPD), \(B \in \mathbb{R}^{m \times n} \) with \(\text{rank}(B) = m \leq n \), see Cao et al. (2014). Whereafter, Chen and Ma (2015) proposed the two-parameter shift-splitting preconditioner for saddle point problems (3). Based on the work in Chen and Ma (2015), Salkuyeh et al. (2015) use the two-parameter shift-splitting preconditioner for the saddle point problems (3) with symmetric positive semidefinite (2, 2)-block, and for the same problem when the symmetry of the (1,1)-block is omitted in Salkuyeh et al. (2015), Cao et al. (2015) considered the saddle point problems (3) with nonsymmetric positive definite (1, 1)-block, Cao and Miao (2016) considered the singular nonsymmetric saddle point problems (3), and so on.

On the other hand, combining the shift splitting technique with the matrix splitting technique, some new efficient preconditioners have been developed, such as the modified shift-splitting preconditioner (Zhou et al. 2016), the generalized modified shift-splitting preconditioner (Huang et al. 2017), the extended shift-splitting preconditioner (Zheng and Lu 2017), a general class of shift-splitting preconditioner (Cao 2019), the modified generalized shift-splitting preconditioner (Huang et al. 2018; Salkuyeh and Rahimian 2017), the generalized double shift-splitting preconditioner (Fan et al. 2018), and so on.

In this paper, we consider the asymmetric saddle point problems of the form

\[Ax = \begin{bmatrix} A & B^T \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} b \\ q \end{bmatrix} = f, \] \hspace{1cm} (4)
where $A \in \mathbb{R}^{n \times n}$ is SPD, $B, C \in \mathbb{R}^{m \times n}$, $m \leq n$. Moreover, the matrices B and C are of full rank. In Cao (2008), Cao proposed the augmentation block triangular preconditioner

$$P_{\text{Aug}} = \begin{bmatrix} A + B^T W^{-1} C & B^T \\ 0 & W \end{bmatrix},$$

for the system obtaining from multiplying the second block row of (4) by -1, where $W \in \mathbb{R}^{m \times n}$ is nonsingular and such that $A + B^T W^{-1} C$ is invertible. The performance of the preconditioner P_{Aug} was compared with several preconditioners presented in Cao (2006, 2010) and Murphy et al. (2000). In Li et al. (2010), the authors presented the partial positive semidefinite and skew-Hermitian splitting (for short, PPSS) iteration method for the system (4). The PPSS iteration method induces the preconditioner

$$P_{\text{PPSS}} = \frac{1}{2\alpha}(\alpha I + H)(\alpha I + S),$$

where $\alpha > 0$,

$$H = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 0 & B^T \\ -C & 0 \end{bmatrix}.$$

Numerical results presented in Li et al. (2010) show that the P_{PPSS} preconditioner outperforms the classical HSS preconditioner (Benzi and Golub 2004). Although the shift-splitting iteration scheme and the shift-splitting preconditioner have been successfully used to solve the classical saddle point problems, they have not been applied to the asymmetric saddle point problems (4). Based on this, our goal of this paper is to use the shift-splitting iteration scheme and the shift-splitting preconditioner for the asymmetric saddle point problems. One can see Elman (1999), Greif and Schötzau (2007, 2006), Cafieri et al. (2007) and Rees and Greif (2007); Benzi et al. (2005) for more details. Theoretical analysis shows that the shift-splitting iteration method is convergent under suitable conditions and the spectral distributions of the corresponding preconditioned matrices are better clustered. Numerical experiments arising from a model Stokes problem are provided to show the effectiveness of the proposed two preconditioners.

We use the following notations throughout the paper. For a given matrix S, $\mathcal{N}(S)$ stands for the null space of S. The spectral radius of a square matrix G is denoted by $\rho(G)$. For a vector $x \in \mathbb{C}^n$, x^* is used for the conjugate transpose of x. The real and imaginary parts of any $y \in \mathbb{C}$ are denoted by $\Re(y)$ and $\Im(y)$, respectively. For two vectors x and y, the MATLAB notation $[x; y]$ is used for $[x^T, y^T]^T$. Finally, for two vectors $x, y \in \mathbb{C}^n$, the standard inner product of x and y is denoted by $\langle x, y \rangle = y^* x$.

The layout of this paper is organized as follows. In Sect. 2, the shift splitting iteration scheme and the related shift-splitting preconditioner are presented for the asymmetric saddle point problems (4). In Sect. 3, numerical experiments are provided to examine the convergence behaviors of the shift-splitting preconditioner and its relaxed version for solving the asymmetric saddle point problems (4). Finally, some conclusions are described in Sect. 4.

2 The shift-splitting method

Here, three lemmas are given for later discussion.
Lemma 1 (Cao 2008) The saddle point matrix
\[A = \begin{bmatrix} A & B^T \\ -C & 0 \end{bmatrix} \] (7)
is nonsingular if and only if \(\text{rank}(B) = \text{rank}(C) = m \), \(\mathcal{N}(A) \cap \mathcal{N}(C) = \{0\} \) and \(\mathcal{N}(A^T) \cap \mathcal{N}(B) = \{0\} \).

Lemma 2 (Wu et al. 2009) Let \(\lambda \) be any root of the quadratic equation \(x^2 - ax + b = 0 \), where \(a, b \in \mathbb{R} \). Then \(|\lambda| < 1 \) if and only if \(|b| < 1 \) and \(|a| < 1 + b \).

Lemma 3 (Bai and Wang 2008) Let \(\lambda \) be any root of the quadratic equation \(x^2 - \phi x + \psi = 0 \), where \(\phi, \psi \in \mathbb{C} \). Then \(|\lambda| < 1 \) if and only if \(|\psi| < 1 \) and \(|\phi - \phi^* \psi| + |\psi|^2 < 1 \).

First, to guarantee the unique solution of the asymmetric saddle point problems (4), Lemma 4 is obtained.

Lemma 4 Let \(A \) be a SPD matrix and \(\text{rank}(B) = \text{rank}(C) = m \). Then saddle point matrix (7) is nonsingular.

Proof It is an immediate result of Lemma 1.

Similarly, for every \(\alpha > 0 \) and under the conditions of Lemma 4, the matrix
\[\alpha I + A = \begin{bmatrix} \alpha I + A & B^T \\ -C & \alpha I \end{bmatrix} \]
is nonsingular.

Next, under the condition of Lemma 4, we can establish the shift-splitting (SS) iteration method for solving the asymmetric saddle point problems (4). To this end, the shift-splitting of the coefficient matrix \(A \) in (4) can be constructed as follows:
\[A = \frac{1}{2}(\alpha I + A) - \frac{1}{2}(\alpha I - A) = \frac{1}{2} \begin{bmatrix} \alpha I + A & B^T \\ -C & \alpha I \end{bmatrix} - \frac{1}{2} \begin{bmatrix} \alpha I - A & -B^T \\ C & \alpha I \end{bmatrix}, \]
where \(\alpha > 0 \) and \(I \) is the identity matrix. This matrix splitting naturally leads to the shift splitting (SS) iteration method for solving the asymmetric saddle point problems (4) and works as follows.

The SS iteration method: Let the initial vector \(x^{(0)} \in \mathbb{R}^{n+m} \) and \(\alpha > 0 \). For \(k = 0, 1, 2, \ldots \) until the iteration sequence \(\{x^{(k)}\}_{k=0}^{\infty} \) is converged, compute \(x^{(k+1)} \), by solving the linear system
\[\begin{bmatrix} \alpha I + A & B^T \\ -C & \alpha I \end{bmatrix} x^{(k+1)} = \begin{bmatrix} \alpha I - A & -B^T \\ C & \alpha I \end{bmatrix} x^{(k)} + 2 \begin{bmatrix} b \\ q \end{bmatrix}. \] (8)

Clearly, the iteration matrix \(M_\alpha \) of the SS method is
\[M_\alpha = \begin{bmatrix} \alpha I + A & B^T \\ -C & \alpha I \end{bmatrix}^{-1} \begin{bmatrix} \alpha I - A & -B^T \\ C & \alpha I \end{bmatrix}. \] (9)

To study the convergence property of the SS method, the value of the spectral radius \(\rho(M_\alpha) \) of the corresponding iteration matrix \(M_\alpha \) is necessary to be estimated. As is known, when \(\rho(M_\alpha) < 1 \), the SS iteration method is convergent. Thereupon, we assume that \(\lambda \) is an...
eigenvalue of the matrix M_{α} and its corresponding eigenvector is $x = [x; y]$. Therefore, we have

$$
\begin{bmatrix}
\alpha I - A & -B^T \\
C & \alpha I
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
= \lambda
\begin{bmatrix}
\alpha I + A & B^T \\
-C & \alpha I
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix},
$$

which is equivalent to

$$
\begin{align}
(\lambda - 1)\alpha x + (\lambda + 1)Ax + (\lambda + 1)B^Ty &= 0, \\
(1 + \lambda)Cx - \alpha(\lambda - 1)y &= 0.
\end{align}
$$

To obtain the convergence conditions of the SS method, the following lemmas are given.

Lemma 5 Let the matrix A be SPD and rank(B) = rank(C) = m. If λ is an eigenvalue of the matrix M_{α}, then $\lambda \neq \pm 1$.

Proof If $\lambda = 1$, then based on Eqs. (10) and (11), we have

$$
\begin{align}
Ax + B^Ty &= 0, \\
-Cx &= 0.
\end{align}
$$

Based on Lemma 4, we deduce that $x = 0$ and $y = 0$. This is a contradiction, because $x = [x; y] = 0$ cannot be an eigenvector of M_{α}. Hence, $\lambda \neq 1$.

When $\lambda = -1$, based on Eqs. (10) and (11) we have $\alpha x = 0$ and $\alpha y = 0$. Since $\alpha > 0$, we get $y = 0$ and $x = 0$, which is a contradiction, since $[x; y]$ is an eigenvector. Hence $\lambda \neq -1$.

Based on the above discussion, the results in Lemma 6 are right.

Lemma 6 Let the conditions of Lemma 5 be satisfied. Let also λ be an eigenvalue of M_{α} and $x = [x; y]$ be the corresponding eigenvector. Then $x \neq 0$. Moreover, if $y = 0$, then $|\lambda| < 1$.

Proof When $x = 0$, from (11) we have $\alpha(\lambda - 1)y = 0$. Based on Lemma 5, $\lambda \neq 1$. Therefore, $y = 0$. This contradicts with the nonzero eigenvector $x = [x; y]$. Hence, $x \neq 0$.

When $y = 0$, based on Eq. (10), we get

$$
(\alpha I + A)^{-1}(\alpha I - A)x = \lambda x.
$$

Therefore, using the Kellogg’s lemma (see Marchuk 1984, page 13) we deduce

$$
|\lambda| \leq \|(\alpha I + A)^{-1}(\alpha I - A)\|_2 < 1,
$$

which completes the proof.

For later use, we define the set S as

$$
S = \{x \in \mathbb{C}^n : x = [x; y] \text{ is an eigenvector of } M_{\alpha} \text{ with } \|x\|_2 = 1\}.
$$

It follows from Lemma 6 that the members of S are nonzero.

Theorem 1 Let the conditions of Lemma 5 be satisfied. For every $x \in S$, let $a(x) = x^*Ax$, $s(x) = \Re(x^*B^TCx)$ and $t(x) = \Im(x^*B^TCx)$. For each $x \in S$, if $s(x) > 0$ and

$$
|t(x)| < a(x) \sqrt{s(x)},
$$

then

$$
\rho(M_{\alpha}) < 1, \quad \forall \alpha > 0,
$$
which implies that the SS iteration method (8) converges to the unique solution of the asymmetric saddle point problems (4).

Proof Based on Lemma 5, from (11), we have

$$y = \frac{\lambda + 1}{\alpha(\lambda - 1)} C x. \quad (14)$$

Substituting (14) into (10) leads to

$$(\lambda - 1)\alpha x + (\lambda + 1)A x + \frac{(\lambda + 1)^2}{\alpha(\lambda - 1)} B^T C x = 0. \quad (15)$$

Let $\|x\|_2 = 1$. Pre-multiplying x^* to the both sides of Eq. (15) leads to

$$a^2(\lambda - 1)^2 + a(\lambda^2 - 1)A x + (\lambda + 1)^2 x^* B^T C x = 0, \quad (16)$$

which is equivalent to

$$a^2(\lambda - 1)^2 + a(\lambda^2 - 1)a + (\lambda + 1)^2(s(x) + t(x)i) = 0. \quad (17)$$

For the sake simplicity in notations, we use s, t and a for $s(x)$, $t(x)$ and $a(x)$, respectively. It follows from Eq. (17), that

$$\lambda^2 + \frac{2(s + ti - a^2)}{\alpha^2 + \alpha a + s + ti} + \frac{\alpha^2 - \alpha a + s + ti}{\alpha^2 + \alpha a + s + ti} = 0. \quad (18)$$

Next, we will discuss two aspects: $t = 0$ and $t \neq 0$. When $t = 0$, from (18), we get

$$\lambda^2 + \frac{2(s - a^2)}{\alpha^2 + \alpha a + s} + \frac{\alpha^2 - \alpha a + s}{\alpha^2 + \alpha a + s} = 0. \quad (19)$$

By simple computations, we have

$$\left|\frac{\alpha^2 - \alpha a + s}{\alpha^2 + \alpha a + s}\right| < 1 \quad (20)$$

and

$$\left|\frac{2(s - a^2)}{\alpha^2 + \alpha a + s}\right| < 1 + \frac{\alpha^2 - \alpha a + s}{\alpha^2 + \alpha a + s}. \quad (21)$$

Based on Lemma 2, the inequalities (20) and (21) imply that the roots of the real quadratic equation (19) satisfy $|\lambda| < 1$.

If $t \neq 0$, then Eq. (18) can be written as $\lambda^2 + \phi \lambda + \psi = 0$, where

$$\phi = \frac{2(s + ti - a^2)}{\alpha^2 + \alpha a + s + ti} \quad \text{and} \quad \psi = \frac{\alpha^2 - \alpha a + s + ti}{\alpha^2 + \alpha a + s + ti}. \quad (22)$$

By some calculations, we get

$$\phi - \phi^* \psi = \frac{2(s + ti - a^2)}{\alpha^2 + \alpha a + s + ti} - \frac{2(s - ti - a^2)}{\alpha^2 + \alpha a + s - ti} - \frac{\alpha^2 - \alpha a + s + ti}{\alpha^2 + \alpha a + s + ti} = \frac{2(s - a^2 + ti)}{\alpha^2 + \alpha a + s + ti} \frac{2(s - a^2 - ti)}{\alpha^2 + \alpha a + s - ti} - \frac{\alpha^2 - \alpha a + s + ti}{\alpha^2 + \alpha a + s + ti} \frac{\alpha^2 - \alpha a + s + ti}{\alpha^2 + \alpha a + s + ti}

= 2\left[\frac{(s - a^2 + ti)(\alpha^2 + \alpha a + s - ti)}{(\alpha^2 + \alpha a + s + ti)^2} + \frac{(\alpha^2 - s - ti)(\alpha^2 - \alpha a + s + ti)}{(\alpha^2 + \alpha a + s + ti)^2 + t^2}\right].$$
\[= 2 \left(s - \alpha^2 + ti \left(\alpha^2 + \alpha a + s - ti \right) \right) + (\alpha^2 - s + ti) \left(\alpha^2 - \alpha a + s + ti \right) \]
\[= 4 \left(\alpha a(s - \alpha^2) + 2\alpha^2 ti \right) \]

Further, we have
\[
|\psi| = \sqrt{\frac{(\alpha^2 - \alpha a + s)^2 + t^2}{(\alpha^2 + \alpha a + s)^2 + t^2}} < 1, \quad \text{(22)}
\]
\[
|\phi - \phi^* \psi| = 4\sqrt{\frac{\alpha^2 a^2(s - \alpha^2)^2 + 4t^2\alpha^4}{(\alpha^2 + \alpha a + s)^2 + t^2}}.
\]

Based on Lemma 3, the necessary and sufficient condition for $|\lambda| < 1$ is
\[
|\phi - \phi^* \psi| + |\psi|^2 < 1. \quad \text{(23)}
\]

Substituting (22) into (23) and solving the inequality (23) for t, gives $|t| < a\sqrt{s}$, which completes the proof. \hfill \Box

According to the definition of $t(x)$, we have
\[
|t(x)| = |\Im(x^H B^T C x)| = |(B^T C x, x)|
\leq \|B^T C x\|_2 \|x\|_2 \quad \text{(Cauchy–Schwarz inequality)}
\leq \|B^T C\|_2 \|x\|_2 = \|B^T C\|_2.
\]

Also we have $a(x) = x^* A x \geq \lambda_{\min}(A)$, where $\lambda_{\min}(A)$ is the smallest eigenvalue of A. Therefore, the inequality (13) can be replaced by
\[
\|B^T C\|_2 \leq \lambda_{\min}(A) \sqrt{s(x)}.
\]

In the special case that $C = kB$ with $k > 0$, we can state the following theorem.

Theorem 2 Let the conditions of Lemma 5 be satisfied and $C = kB$ with $k > 0$. Then $\rho(M_\alpha) < 1$, $\forall \alpha > 0$, which implies that the SS iteration method (8) converges to the unique solution of the asymmetric saddle point problems (4).

Proof If $C = kB$ with $k > 0$, then the matrix $B^T C = kB^T B$ is symmetric positive semidefinite. Therefore, we have $s(x) = kx^* B^T B x \geq 0$ and $t(x) = 0$. According to Theorem 1, all we need is to prove the convergence for the case that $s(x) = 0$. If $s(x) = 0$, then we get $B x = 0$. Now, from Eq. (7), we deduce that
\[
\alpha^2(\lambda - 1)^2 + \alpha(\lambda^2 - 1)a = 0,
\]
which is equivalent to
\[
\alpha(\lambda - 1)(\alpha^2(\lambda - 1) + \alpha(\lambda + 1)a) = 0.
\]
Now, since $\alpha > 0$ and $\lambda \neq 1$ (from Lemma 5), we deduce that
\[
a^2(\lambda - 1) + \alpha(\lambda + 1)a = 0,
\]
which gives the following equation for λ
\[
\lambda = \frac{\alpha - a}{\alpha + a}.
\]
Therefore, since $a = x^* A x > 0$, we conclude that $|\lambda| < 1$, which completes the proof. \hfill \Box
Remark 1 When \(k = 1 \), Theorem 2 is the main result in Cao et al. (2014). That is to say, Theorems 1 and 2 are generalizations of Theorem 2.1 in Cao et al. (2014).

Finally, we consider the preconditioner induced by the SS iteration method (8). As is known, the advantage of matrix splitting technique often is twofold: one is to result in a splitting iteration method and the other is to induce a splitting preconditioner for improving the convergence speed of Krylov subspace methods in Bai et al. (2006). Based on the SS iteration method (8), the corresponding shift-splitting preconditioner can be defined by

\[
P_{SS} = \frac{1}{2} \begin{bmatrix} \alpha I + A & B^T \\ -C & \alpha I \end{bmatrix}.
\]

Since the multiplicative factor \(\frac{1}{2} \) in the preconditioner \(P_{SS} \) has no effect and can be removed when \(P_{SS} \) is used as a preconditioner, in the implementations, we only consider the shift-splitting preconditioner \(P_{SS} \) without the multiplicative factor \(\frac{1}{2} \). In this case, using \(P_{SS} \) with Krylov subspace methods (such as GMRES, or its restarted version GMRES(\(k \))) (Saad and Schultz 1986), a vector of the form

\[
z = P_{SS}^{-1}r
\]

need to be computed.

Let \(z = [z_1; z_2] \) and \(r = [r_1; r_2] \). Then \(z = P_{SS}^{-1}r \) is equal to

\[
\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} I & 0 \\ \frac{1}{\alpha} C & I \end{bmatrix} \begin{bmatrix} \alpha I + A + \frac{1}{\alpha} B^T C & 0 \\ 0 & \alpha I \end{bmatrix}^{-1} \begin{bmatrix} I & -\frac{1}{\alpha} B^T \\ 0 & I \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}.
\]

Based on Eq. (24), the following algorithm can be used to obtain the vector \(z \).

Algorithm 1

Let \(z = [z_1; z_2] \) and \(r = [r_1; r_2] \). Compute \(z \) by the following procedure:

1. Compute \(t = r_1 - \frac{1}{\alpha} B^T r_2 \);
2. Solve \((\alpha I + A + \frac{1}{\alpha} B^T C)z_1 = t \) for \(z_1 \);
3. Compute \(z_2 = \frac{1}{\alpha} (Cz_1 + r_2) \).

In Step 2 of Algorithm 1, in general the matrix \(\alpha I + A + \frac{1}{\alpha} B^T C \) is indefinite, hence the corresponding system can be solved exactly using the LU factorization or inexactly using a Krylov subspace method like GMRES or its restarted version. However, when \(C = kB \) with \(k > 0 \), this matrix is of the form \(\alpha I + A + \frac{k}{\alpha} B^T B \) which is SPD. Therefore, the corresponding system can be solved exactly using the Cholesky factorization or inexactly using the conjugate gradient (CG) method.

In general the matrix \(\alpha I + A + \frac{1}{\alpha} B^T C \) is dense (because of the term \(B^T C \)) and solving the corresponding system by a direct method may be impractical. Hence, it is recommended to solve the system by an iteration method, as we will shortly do in the section of the numerical experiments. From theoretical point of view, when \(\alpha = 0 \) the preconditioner \(P_{SS} = \alpha I + A \) coincides with the coefficient matrix of original system. In this case, implementation of the preconditioner would be as difficult as solving the original system. Hence, it is better to choose a small value of \(\alpha \) to obtain a more well-conditioned matrix. Since the condition of the matrix \(\alpha I + A + \frac{1}{\alpha} B^T C \) strongly depends on the term \(\frac{1}{\alpha} B^T C \), similar to Cao et al. (2015) and Golub and Greif (2003) we choose the parameter \(\alpha \) equals to

\[
\alpha_{est} = \frac{\| B^T C \|_2}{\| A \|_2}.
\]
which balances the matrices A and $B^T C$.

When Krylov subspace methods together with the preconditioner $P_{SS} = \alpha I + A$ are applied to solve the asymmetric saddle point problems (4), we need to establish the spectral distribution of the preconditioned matrix $P_{SS}^{-1} A$ to investigate the convergence performance of the preconditioner P_{SS} for Krylov subspace methods.

The following theorem on the spectral distribution of the preconditioned matrix $P_{SS}^{-1} A$ can be obtained.

Theorem 3 Let the conditions of Theorem 1 or 2 be satisfied. Then the preconditioned matrix $P_{SS}^{-1} A$ are positive stable for $\alpha > 0$ and its the eigenvalues satisfy $|\lambda| < 1$, where λ denotes the eigenvalue of the preconditioned matrix $P_{SS}^{-1} A$.

Proof It follows from $2P_{SS}^{-1} A = I - M_\alpha$, that for each $\mu \in \sigma(M_\alpha)$, there is a $\lambda \in \sigma(P_{SS}^{-1} A)$, such that $2\lambda = 1 - \mu$. Therefore, we

$$\frac{\mu}{2} = \frac{1}{2} - \lambda = \frac{1}{2} - \Re(\lambda) - i\Im(\lambda).$$

Hence, from the fact that $|\mu| < 1$ we conclude

$$\left(\frac{1}{2} - \Re(\lambda)\right)^2 + (\Im(\lambda))^2 < \frac{1}{4},$$

which shows that the eigenvalues of the preconditioned matrix $P_{SS}^{-1} A$ are contained in a circle with radius $\frac{1}{2}$ centered at $(\frac{1}{2}, 0)$. Hence, the real parts of the eigenvalues of the matrix $P_{SS}^{-1} A$ are all positive. This means that the matrix $P_{SS}^{-1} A$ is positive stable for $\alpha > 0$. On the other hand, from $|\mu| < 1$ we deduce that

$$2|\lambda| = |1 - \mu| \leq 1 + |\mu| < 2,$$

which completes the proof. \square

Here, we present a relaxed version of the shift-splitting preconditioner as well, which is defined by

$$P_{RSS} = \begin{bmatrix} A & B^T \\ -C & \alpha I \end{bmatrix}.$$

Similarly, using P_{RSS} with Krylov subspace methods (such as GMRES, or its restarted version GMRES(k)), a vector of the form

$$z = P_{RSS}^{-1} r$$

has to be computed as well. Let $z = [z_1; z_2]$ and $r = [r_1; r_2]$. Then we have

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} I & 0 \\ \frac{1}{\alpha} C & I \end{bmatrix} \begin{bmatrix} A + \frac{1}{\alpha} B^T C & 0 \\ 0 & \alpha I \end{bmatrix}^{-1} \begin{bmatrix} I - \frac{1}{\alpha} B^T \\ 0 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}. \quad (25)$$

Based on Algorithm 1, by a simple modification, we obtain Algorithm 2 to obtain the vector z as follows.

Algorithm 2 Let $z = [z_1; z_2]$ and $r = [r_1; r_2]$. Compute z by the following procedure...
1. Compute $t = r_1 - \frac{1}{\alpha} B^T r_2$;
2. Solve $(A + \frac{1}{\alpha} B^T C)z_1 = t$;
3. Compute $z_2 = \frac{1}{\alpha} (Cz_1 + r_2)$.

In the same way, we can obtain the spectral distribution of the preconditioned matrix $P_{RSS}^{-1} A$, as follows.

Theorem 4 Let the conditions of Theorem 1 be satisfied. Then the preconditioned matrix $P_{RSS}^{-1} A$ has an eigenvalue 1 with algebraic multiplicity n and the remaining eigenvalues are the eigenvalues of matrix $\frac{1}{\alpha} C(A + \frac{1}{\alpha} B^T C)^{-1} B^T$.

Proof By calculation, we get

$$P_{RSS}^{-1} A = \begin{bmatrix} I & 0 \\ \frac{1}{\alpha} C & I \end{bmatrix} \begin{bmatrix} A + \frac{1}{\alpha} B^T C & 0 \\ 0 & \alpha I \end{bmatrix}^{-1} \begin{bmatrix} I - \frac{1}{\alpha} B^T \\ 0 \end{bmatrix} \begin{bmatrix} A & B^T \\ -C & 0 \end{bmatrix}$$

$$= \begin{bmatrix} (A + \frac{1}{\alpha} B^T C)^{-1} & 0 \\ \frac{1}{\alpha} C(A + \frac{1}{\alpha} B^T C)^{-1} \frac{1}{\alpha} I \end{bmatrix} \begin{bmatrix} I - \frac{1}{\alpha} B^T \\ 0 \end{bmatrix} \begin{bmatrix} A & B^T \\ -C & 0 \end{bmatrix}$$

$$= \begin{bmatrix} (A + \frac{1}{\alpha} B^T C)^{-1} & 0 \\ \frac{1}{\alpha} C(A + \frac{1}{\alpha} B^T C)^{-1} - \frac{1}{\alpha^2} C(A + \frac{1}{\alpha} B^T C)^{-1} B^T + \frac{1}{\alpha} I \end{bmatrix} \begin{bmatrix} A & B^T \\ -C & 0 \end{bmatrix}$$

$$= \begin{bmatrix} I & (A + \frac{1}{\alpha} B^T C)^{-1} B^T \\ 0 & \frac{1}{\alpha} C(A + \frac{1}{\alpha} B^T C)^{-1} B^T \end{bmatrix}.$$
as soon as the residual 2-norm is reduced by a factor of 10^2 and the maximum number of iterations is set to be 100. Similar to the outer iterations, a null vector is used as an initial guess. Finally, for the augmentation block triangular preconditioner the matrix W is set to be $W = \alpha I$ with $\alpha > 0$. In this case, the preconditioner P_{Aug} takes the following form:

$$P_{\text{Aug}} = \begin{bmatrix} A + \frac{1}{\alpha} B^T C & B^T \\ 0 & \alpha I \end{bmatrix}.$$

For all the methods the optimal value of parameter are obtained experimentally (denoted by α^*) and are the ones resulting in the least numbers of iterations. We also report the numerical results for the parameter $\alpha_{\text{est}} = \|B^T C\|_2 / \|A\|_2$. We present the numerical results in the tables. In the tables, “CPU” and “Iters” stand for the elapsed CPU time (in second) and the number of iterations for the convergence. A dagger (†) means that the iteration has not converged in 1000 iterations. All runs are implemented in MATLAB R2017, equipped with a Laptop with 1.80 GHz central processing unit (Intel(R) Core(TM) i7-4500), 6 GB memory and Windows 7 operating system.

Example 1 Let the asymmetric saddle point problems (4) be given by

$$A = \begin{bmatrix} I \otimes T + T \otimes I & 0 \\ 0 & I \otimes T + T \otimes I \end{bmatrix} \in \mathbb{R}^{2s^2 \times 2s^2}$$

and

$$B^T = \begin{bmatrix} I \otimes F \\ F \otimes I \end{bmatrix} \in \mathbb{R}^{2s^2 \times s^2}, \quad C = kB,$$

with

$$T = \frac{\mu}{h^2} \text{tridiag}(-1, 2, -1) \in \mathbb{R}^{s \times s}, \quad F = \frac{1}{h} \text{tridiag}(-1, 1, 0) \in \mathbb{R}^{s \times s}, \quad k > 0,$$

where \otimes denotes the Kronecker product and $h = 1/(s + 1)$ is the discretization mesh-size. Therefore, the total number of variables $n = 3s^2$.

This asymmetric saddle point problems (4) can be obtained by using the upwind scheme to discretize the Stokes problem in the region $\Omega = (0, 1) \times (0, 1) \subset \mathbb{R}^2$ with its boundary being $\partial \Omega$: find u and p such that

$$\begin{cases} -\mu \Delta u + \nabla p = f, & \text{in } \Omega, \\ \nabla \cdot u = g, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega, \\ \int_{\Omega} p(x)dx = 0, \end{cases}$$

where μ, Δ, u and p are the viscosity scalar, the componentwise Laplace operator, a vector-valued function representing the velocity, and a scalar function representing the pressure, respectively.

We set $s = 16, 32, 64, 128, 256$ and $k = 2$. Generic properties of the test matrices are presented in Table 1. In this table, nnz(.) stands for number of nonzero entries of the matrix. Numerical results for $\mu = 1$ and $\mu = 0.1$ are presented in Tables 2 and 3, respectively. From the numerical results in Tables 2 and 3, it is easy to find that the computational efficiency of GMRES can not be satisfy when it is directly used to solve the asymmetric saddle point problems (4). Whereas, FGMRES together with these four preconditioners for solving the asymmetric saddle point problems (4) can rapidly converge. This also confirms that all
Table 1 Matrix properties for Example 1

s	n	m	nnz(A)	nnz(B)	nnz(C)
16	512	256	2432	992	992
32	2048	1024	9894	4032	4032
64	8192	4096	40,448	16,256	16,256
128	32,768	16,384	162,816	65,280	65,280
256	131,072	65,536	653,312	261,632	261,632

Table 2 Numerical results of FGMRES for Example 1 with $\mu = 1$

s	α_s	No Prec.	P_{SS}	P_{RSS}	P_{PPSS}	P_{Aug}	P_{SS}	P_{RSS}	
16	α_s	\cdots	0.10	0.20	98.50	0.11	α_{est}	2.03	2.03
	Iters	133	8	8	38	21	Iters	12	11
	CPU	0.13	0.03	0.02	0.05	0.06	CPU	0.03	0.03
	R_k	8.1e−8	8.4e−8	5.9e−8	1.0e−7	7.5e−8	R_k	6.6e−8	9.3e−8
32	α_s	\cdots	0.20	0.34	100.60	0.10	α_{est}	2.01	2.01
	Iters	285	9	9	45	21	Iters	13	12
	CPU	2.93	0.06	0.05	0.14	0.14	CPU	0.06	0.06
	R_k	9.6e−8	2.4e−8	9.6e−8	1.0e−7	8.9e−8	R_k	5.2e−8	7.4e−8
64	α_s	\cdots	0.60	1.50	102.20	0.37	α_{est}	2.01	2.01
	Iters	617	12	12	63	29	Iters	14	13
	CPU	36.20	0.39	0.3	0.89	0.74	CPU	0.38	0.36
	R_k	9.6e−8	7.5e−8	8.2e−8	9.3e−8	8.2e−8	R_k	5.6e−8	6.4e−8
128	α_s	\cdots	0.60	0.64	103.90	4.20	α_{est}	2.02	2.02
	Iters	†	22	23	111	31	Iters	24	23
	CPU	†	2.37	2.48	8.69	3.19	CPU	2.55	2.33
	R_k	†	8.4e−8	8.5e−8	8.8e−8	6.5e−8	R_k	5.2e−8	5.4e−8
256	α_s	\cdots	1.39	1.39	102.00	22.00	α_{est}	2.02	2.02
	Iters	†	57	52	217	78	Iters	64	54
	CPU	†	34.89	32.38	175.49	47.18	CPU	40.66	33.84
	R_k	†	9.5e−8	8.1e−8	9.9e−8	7.1e−8	R_k	9.5e−8	4.2e−8

four preconditioners indeed can improve the convergence speed of GMRES. Among the preconditioners, P_{SS} and P_{RSS} outperform the others from the iteration steps and the CPU time point of review. On the other hand, we observe the parameter α_{est} often gives suitable results, especially for large problems.

In the sequel, we investigate the spectral distribution of four preconditioned matrices $P_{SS}^{-1}A$, $P_{RSS}^{-1}A$, $P_{PPSS}^{-1}A$ and $P_{Aug}^{-1}A$. To do so, we set $s = 16$ and use the optimal value of the parameters given in Tables 2 and 3. Figures 1 and 2 plot the spectral distribution of the matrices. Figure 1 plots the spectral distribution of five matrices A, $P_{SS}^{-1}A$, $P_{RSS}^{-1}A$, $P_{PPSS}^{-1}A$ and $P_{Aug}^{-1}A$ with $\mu = 1$ and Fig. 2 for $\mu = 0.1$. From the spectral distribution in Figs. 1 and 2, four preconditioners P_{SS}, P_{RSS}, P_{PPSS} and P_{Aug} improve the spectral distribution of the original coefficient matrix A. As we observe, the eigenvalues of $P_{SS}^{-1}A$ are $P_{RSS}^{-1}A$ better clustered than the two other preconditioned matrices. Moreover, the spectral distribution of $P_{SS}^{-1}A$ and $P_{RSS}^{-1}A$ are almost in line with the theoretical results, see Theorems 3 and 4.
Table 3 Numerical results of FGMRES for Example 1 with $\mu = 0.1$

s	No Prec.	P_{SS}	P_{RSS}	P_{PPSS}	P_{Aug}	α_{est}	P_{SS}	P_{RSS}
16	α_s	0.25	0.25	15.40	0.53	α_{est}	18.34	18.34
	Iters 117	8	8	36	17	Iters 28	12	
	CPU 0.16	0.02	0.02	0.04	0.04	CPU 0.02	0.02	
	R_k 8.9e-8	1.5e-8	1.4e-8	9.4e-8	8.6e-8	R_k 8.2e-8	6.6e-8	
32	α_s	0.23	0.23	29.80	2.42	α_{est}	19.45	19.45
	Iters 238	11	11	56	20	Iters 31	13	
	CPU 1.67	0.07	0.07	0.16	0.11	CPU 0.08	0.06	
	R_k 9.0e-8	9.0e-8	5.6e-8	9.2e-8	1.0e-7	R_k 6.9e-8	5.3e-8	
64	α_s	1.50	2.1	53.20	4.60	α_{est}	19.87	19.87
	Iters 483	11	11	86	26	Iters 32	14	
	CPU 22.48	0.26	0.25	0.95	0.65	CPU 0.46	0.38	
	R_k 9.9e-8	9.7e-8	5.8e-8	9.6e-8	9.4e-8	R_k 8.8e-8	4.2e-8	
128	α_s	4.90	6.4	92.80	19.10	α_{est}	19.98	19.98
	Iters 908	18	19	129	39	Iters 33	20	
	CPU 302.64	1.91	1.96	7.07	4.06	CPU 3.07	2.17	
	R_k 9.9e-8	9.2e-8	7.2e-8	9.9e-8	9.9e-8	R_k 7.4e-8	9.2e-8	
256	α_s	10.90	12.96	131.00	25.90	α_{est}	20.05	20.05
	Iters †	30	37	192	90	Iters 37	46	
	CPU –	26.03	22.73	151.26	55.38	CPU 23.26	29.10	
	R_k –	9.0e-8	9.6e-8	9.7e-8	7.8e-8	R_k 6.2e-8	9.1e-8	

Fig. 1 Spectra distribution of Example 1 for $s = 16$ with $\mu = 1$ and $k = 2$
Fig. 2 Spectra distribution of Example 1 for \(s = 16 \) with \(\mu = 0.1 \) and \(k = 2 \)

Table 4 Matrix properties for Example 2

Matrix	\(n \)	\(m \)	\(\text{nnz}(A) \)	\(\text{nnz}(B) \)	\(\text{nnz}(C) \)
Szczerba/Ill_Stokes	15,672	5224	73,650	58,242	59,476

Example 2 We use the matrix Szczerba/Ill_Stokes from the UF Sparse Matrix Collection\(^1\), which is an ill-conditioned matrix arisen from computational fluid dynamics problems. Generic properties of the test matrix are given in Table 4. The FGMRES (GMRES) method without preconditioning fails to converge in 1000 iterations. So, we present the numerical results of the FGMRES method with the preconditioners \(P_{SS} \), \(P_{RSS} \), \(P_{PPSS} \) and \(P_{Aug} \) for different values of the parameter \(\alpha \) in Table 5. As we observe all the preconditioners reduce the number of iterations of the GMRES method. The minimum value of the CPU time for each of the preconditioner have been given in the boldface type. As we see the minimum value of the CPU time is due to the \(P_{SS} \) preconditioner. Numerical results of the preconditioners \(P_{SS} \) and \(P_{RSS} \) have been presented in Table 6. As we there is a good agreement between the results of the \(P_{SS} \) and \(P_{RSS} \) preconditioners with \(\alpha_s \) and those of with \(\alpha_{est} \).

4 Conclusion

For the asymmetric saddle point problems, we have presented the shift-splitting preconditioner and its relaxed version to improve the convergence speed of Krylov subspace method (such as GMRES/FGMRES). The eigenvalue distribution of the related preconditioned matrices have been provided. Moreover, we have proved that the shift-splitting iteration method

\(^1\) https://www.cise.ufl.edu/research/sparse/matrices/Szczerba/Ill_Stokes.html.
α	P_{SS}	P_{RSS}	P_{PPSS}	P_{Aug}								
	Iters	CPU	R_k									
0.1	471	31.32	9.8e−8	179	15.11	9.7e−8	467	22.97	1.0e−7	188	8.31	9.9e−8
0.05	358	22.14	9.9e−8	169	13.57	9.8e−8	348	13.65	9.7e−8	180	7.94	9.6e−8
0.01	210	13.56	9.7e−8	145	11.44	9.7e−8	164	5.19	9.1e−8	171	7.23	9.9e−8
0.005	173	11.40	9.6e−8	134	10.12	9.9e−8	121	444	9.2e−8	175	7.19	9.9e−8
0.001	115	7.49	9.9e−8	110	7.21	9.5e−8	66	6.97	9.1e−8	193	7.61	9.8e−8
0.0005	99	5.84	9.8e−8	97	5.93	9.8e−8	66	15.23	9.0e−8	208	8.20	9.7e−8
0.0001	64	3.91	9.7e−8	63	3.95	1.0e−7	84	123.13	9.4e−8	311	16.30	1.0e−7
0.00005	62	4.26	9.6e−8	61	4.23	1.0e−7	92	168.02	9.3e−8	313	18.61	9.9e−8
Table 6 Numerical results for Example 2 for α_{est}

α_{est}	Iters	CPU	R_k	α_{est}	Iters	CPU	R_k
0.000169	74	4.57	9.5e−8	0.000169	73	4.24	9.9e−8

for the asymmetric saddle point problems is convergent under suitable conditions. Numerical experiments from the Stokes problem are given to verify the efficiency of the shift-splitting preconditioner and its relaxed version.

Acknowledgements The authors would like to thank the anonymous referee for helpful comments and suggestions.

References

Bai Z-Z, Wang Z-Q (2008) On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl 428:2900–2932

Bai Z-Z, Yin J-F, Su Y-F (2006) A shift-splitting preconditioner for non-Hermitian positive definite matrices. J Comput Math 24:539–552

Benzi M, Golub GH (2004) A preconditioner for generalized saddle point problems. SIAM J Matrix Anal Appl 26:20–41

Benzi M, Golub GH, Liesen J (2005) Numerical solution of saddle point problems. Acta Numer 14:1–137

Cafieri S, D’Apuzzo M, De Simone V, Di Serafino D (2007) On the iterative solution of KKT systems in potential reduction software for large-scale quadratic problems. Comput Optim Appl 38:27–45

Cao Z-H (2006) A note on block diagonal and constraint preconditioners for non-symmetric indefinite linear systems. Int J Comput Math 83:383–395

Cao Z-H (2008) Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Numer Linear Algebra Appl 15:515–533

Cao Z-H (2010) Block triangular Schur complement preconditioners for saddle point problems and application to the Oseen equations. Appl Numer Math 3:193–207

Cao Y (2019) A general class of shift-splitting preconditioners for non-Hermitian saddle point problems with applications to time-harmonic eddy current models. Comput Math Appl 77:1124–1143

Cao Y, Miao S-X (2016) On semi-convergence of the generalized shift-splitting iteration method for singular nonsymmetric saddle point problems. Comput Math Appl 71:1503–1511

Cao Y, Du J, Niu Q (2014) Shift-splitting preconditioners for saddle point problems. J Comput Appl Math 272:239–250

Cao Y, Li S, Yao L-Q (2015) A class of generalization shift-splitting preconditioners for nonsymmetric saddle point problems. Appl Math Lett 49:20–27

Chen C, Ma C-F (2015) A generalized shift-splitting preconditioner for nonsymmetric saddle point problems. Appl Math Lett 43:49–55

Elman HC (1999) Preconditioning for the steady-state Navier-Stokes equations with low viscosity. SIAM J Sci Comput 20:1299–1316

Fan H-T, Zhu X-Y, Zheng B (2018) The generalized double shift-splitting preconditioner for nonsymmetric generalized saddle point problems from the steady Navier-Stokes equations. Comput. Appl. Math. 37:3256–3266

Greif C, Schötzau D (2003) On solving block-structured indefinite linear systems. SIAM J Sci Comput 24:2076–2092

Greif C, Schötzau D (2006) Preconditioners for saddle point linear systems with highly singular (1,1) blocks. ETNA 22:114–121

Greif C, Schötzau D (2007) Preconditioners for the discretized time-harmonic Maxwell equations in mixed form. Numer Linear Algebra Appl 14:281–297

Huang Z-G, Wang L-G, Xu Z, Cui J-J (2017) The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems. Appl Math Comput 299:95–118
Huang Z-G, Wang L-G, Xu Z, Cui J-J (2018) A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems. Numer Algorithms 78:297–331
Li J-L, Huang T-Z, Li L (2010) The spectral properties of the preconditioned matrix for nonsymmetric saddle point problems. J Comput Appl Math 235:270–285
Marchuk GI (1984) Methods of numerical mathematics. Springer, New York
Murphy MF, Golub GH, Wathen AJ (2000) A note on preconditioning for indefinite linear systems. SIAM J Sci Comput 21:1969–1972
Rees T, Greif C (2007) A preconditioner for linear systems arising from interior point optimization methods. SIAM J Sci Comput 29:1992–2007
Saad Y (1993) A flexible inner-outer preconditioned GMRES algorithm. SIAM J Sci Comput 14:461–469
Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia
Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Comput 7:856–869
Salkuyeh DK, Masoud M, Hezari D (2015) A preconditioner based on the shift-splitting method for generalized saddle point problems. The 46th annual Iranian mathematics conference. Yazd University, Yazd, pp 25–28
Salkuyeh DK, Rahimian M (2017) A modification of the generalized shift-splitting method for singular saddle point problems. Comput Math Appl 74:2940–2949
Salkuyeh DK, Masoudi M, Hezari D (2015) On the generalized shift-splitting preconditioner for saddle point problems. Appl Math Lett 48:55–61
Wu S-L, Huang T-Z, Zhao X-L (2009) A modified SSOR iterative method for augmented systems. J Comput Appl Math 228:424–433
Zheng Q-Q, Lu L-Z (2017) Extended shift-splitting preconditioners for saddle point problems. J Comput Appl Math 313:70–81
Zhou S-W, Yang A-L, Dou Y, Wu Y-J (2016) The modified shift-splitting preconditioners for nonsymmetric saddle-point problems. Appl Math Lett 59:109–114

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.