Data Article

Dataset of wind blow sand erosion test on ultrasonic surface treated cementitious composites

Y Shia, b,*, ZM Shia

a School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China
b Inner Mongolia Autonomous Region Engineering Research Center of Structure Inspection, Appraisal and Safety Assessment, Inner Mongolia University of Technology, Hohhot 010051, PR China

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 22 January 2020
Revised 14 June 2020
Accepted 24 June 2020
Available online 27 June 2020

\textbf{Keywords:}
Ultrasonic
Surface treatment
Wind blown sand
Erosion
Cementitious

\textbf{ABSTRACT}

In this paper, we take cement mortar and paste as specimens, a novelty method named ultrasonic surface treatment (UST) was employed to form a hardening surface layer on cementitious specimens to improve its wind-blown sand erosion resistance, surface hardness and apparent density. The specimens with curing ages of 1-day, 3-days, 7-days, and 28-days were adopted. The wind blown sand erosion test was carried out in a wind-blown sand erosion test system, which simulated a wind blown sand environment of a wind speed of 30 m/s and a sand feed rate of 30 g/min. The erosion angle of 30°, 60°, 90° were adopted. The mass loss in erosion process was measured, then the erosion resistance was calculated. The surface hardness was tested with a Vickers micro hardness tester. The apparent density of cement paste was measured with mass volume method. The data provided reveal the improvement on wind blown sand erosion resistance, surface hardnness and apparent density of cementitious materials with ultrasonic surface treatment. That may be used in the investigation on improving the erosion resistance and to evaluate the effectiveness of the UST method on cementitious materials.

* Corresponding author at: School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia, PR China.
\textit{E-mail address:} shiyong@imut.edu.cn (Y. Shi).

https://doi.org/10.1016/j.dib.2020.105943
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Mechanics of Materials
Specific subject area	Erosion resistance of ultrasonic surface treated cementitious composites
Type of data	Tables
How data were acquired	The erosion resistance R_E Wind blown sand erosion tests were tested in a wind-blown sand erosion test system, as shown in Fig. 1. The erosion resistance R_E(in cm3/cm2) that defined as the ratio between volumetric solid particle consumption and removed target material volume, was calculated in accordance with Eq. (1). The surface hardness was tested with a Vickers micro hardness tester, the surface of the UST and the contrast mortar specimens were polished properly before test. The apparent density was measured with mass volume method.

Data format | Analyzed |

Parameters for data collection | With a wind-blown sand erosion test system, the wind speed was 30 m/s and sand feed rate was 30 g/min; the diameter of the nozzle was 10 mm, the space between the specimens and the nozzle was 100 mm. Erosion angles were 30°, 60°, and 90°. The specimens with curing ages of 1-day, 3-days, 7-days, and 28-days were adopted. The surface hardness was tested with force of 0.1 kgf and a loading time of 10 s for each test point. |

Description of data collection | The total erosion duration was 30 min, and within 10 min the mass loss was measured each minute. Then, the mass loss was measured every 5 min. 9 specimens in a group for each curing age and 3 specimens in a group for each test angle. The contrast specimens had the same quantity. Then the erosion resistance R_E was calculated in accordance to Eq. (1). The surface hardness test, 33 data points were collected on each specimens and a 2 mm space between each sampling point was adopted. 3 specimens in a group. The apparent density of cement paste specimens was measured with growth of curing age, dried before testing, 3 specimens in a group. |

Data source location	Inner Mongolia University of Technology
	Hohhot, Inner Mongolia, China
	North latitude 40.846° and east longitude 111.677°:

Data accessibility	With the article
Related research article	Shi Y, Shi ZM. Ultrasonic surface treatment for improving wind-blow sand erosion resistance of cementitious materials, WEAR

Value of the Data

The data provided in this article revealed the improvement on wind blow sand erosion resistance, surface hardness and the apparent density of cementitious materials that treated with ultrasonic surface treat(UST) method.

These data can be used in the investigation on improving the erosion resistance and to evaluate the effectiveness of the UST method on cementitious materials.

1. Data description

Tables 1–4 is the erosion resistance R_E of 1, 3, 7, and 28day age cement mortar specimens. Table 5 is the accumulate erosion resistance R_E in a 30 min erosion.

In above table, R_E(in cm3/cm2) were calculated in accordance with Eq. (1).

$$R_E = \frac{\rho_M m_p}{\Delta m \rho_p}$$ \hspace{1cm} (1)

In Eq. (1), ρ_M is the target material density, that is 2.204 g/cm3; m_p is the mass of grit consumption, that is 30 g/min; ρ_p is the grit bulk density, that is 1.440 g/cm3; Δm is the target specimen mass loss. The total erosion duration was 30 min, and within 10 min the mass loss was measured each minute. Then, the mass loss was measured every five minutes.

Table 6 is the surface hardness of the specimens with curing age of 1, 3, 7, 14 and 28 days.
Table 1
Erosion resistance of 1day age specimens(cm³/cm³).

Erosion time(minutes)	1	2	3	4	5	6	7	8	9	10	15	20	25	30	
30°	CS	621	706	1312	1640	2187	2417	2701	2870	3532	3280	3764	4415	4685	
	UV														
60°	CS	429	883	1391	1996	2296	1837	2296	2701	2551	2733	3532	3891	3891	
	UV														
90°	CS	516	778	1312	1583	2417	2187	2551	2701	2551	2733	3532	4592	4865	
	UV														

Table 2
Erosion resistance of 3day age specimens(cm³/cm³).

Erosion time(minutes)	1	2	3	4	5	6	7	8	9	10	15	20	25	30	
30°	CS	1351	3061	3532	3826	4174	2551	3826	5740	5102	3532	5600	7174	7917	
	UV														
60°	CS	866	2087	2820	3532	3532	3826	3826	4174	5339	5740				
	UV														
90°	CS	850	464	1275	1435	1312	1913	1996	1837	2087	2367	2701	2071	2251	
	UV														

Table 7 is the apparent density of the cement paste specimens that cured for 1, 3, 7, 14, 21 and 28 days.

In these tables, “UV” represents specimens which were treated with ultrasonic, “CS” represents the contrast specimens (Fig. 1).

2. Experimental design, materials, and methods

2.1. Experimental design

Wind blown sand erosion affecting the durability of cementitious composites in a windy sand environment [1,2]. Most researches focused on the erosion mechanism [3-5], a few studies focused on improving the erosion resistance [6,7]. In this paper, we take cement mortar and paste
Table 3
Erosion resistance of 7day age specimens(cm³/cm²).

Erosion time (minutes)	1	2	3	4	5	6	7	8	9	10	15	20	25	30
30° CS	1338	2453	2759	2870	2870	3061	2943	2943	3679	4014	6132	6132	7884	8830
30° UV	1226	2324	3280	3154	3679	3154	3154	3061	6307	4014	6132	7358	8176	8830
30° CS	849	1766	2597	3679	3154	3532	3826	3679	4906	6307	6493	7612	8176	11,038
30° UV	1208	2087	2870	3826	5102	4592	5102	4592	4592	4592	4592	4592	4592	8503
60° CS	900	1913	2187	2296	2187	2551	2417	2087	2417	2187	3327	3532	3958	3958
60° UV	866	1640	1701	1913	2087	2187	2187	2187	2296	2296	3102	3479	3703	4028
90° CS	1093	1913	2087	2296	2187	2417	2187	2187	2296	2296	3102	3479	3703	4028
90° UV	957	1640	1837	1913	2087	2187	2187	2187	2296	2296	3102	3479	3703	4028

Table 4
Erosion resistance of 28day age specimens(cm³/cm²).

Erosion time (minutes)	1	2	3	4	5	6	7	8	9	10	15	20	25	30
30° CS	1391	1996	2551	2417	2701	4174	4592	5102	4592	5102	6752	8503	10,436	6752
30° UV	1208	1640	2087	2701	3061	3280	3532	5740	5102	3826	5600	7917	8503	17,983
30° CS	1837	3280	3826	5740	7653	5740	6500	6500	9183	8503	8503	11,479	9982	
30° UV	1435	2701	3280	3826	4174	4174	5740	4592	5339	6774	7174	8199	9183	9982
60° CS	1068	1701	2296	2296	2417	2417	2417	2551	3061	3061	3061	3061	3061	3061
60° UV	937	1701	2296	2296	2417	2417	2417	2551	3061	3061	3061	3061	3061	3061
90° CS	1351	2087	2870	2417	2296	2296	2296	2296	2551	3061	3061	3061	3061	3061
90° UV	883	1391	1766	2087	2087	2087	2087	2087	2551	3764	3764	4028	4592	4991

Table 5
Accumulate erosion resistance R_t(cm³/cm²) in 30 min.

Curing time Species	1d curing CS	3d curing CS	7d curing CS	28d curing CS
	4332	5046	5464	6238
	3054	3848	4854	5083
1	2717	4991	5238	4991
2	2296	5140	4854	5083
3	2482	4833	4696	4973
	2438	2834	3102	2888
	2152	2846	3109	2805
	2187	2624	2840	2852
	2187	2478	3124	3152
	2322	2834	3550	3311
	2285	3218	2969	3327
	2685	3327	4075	

Erosion angle
as specimens, a novelty method named ultrasonic surface treatment (UST) was employed to form a hardening surface layer on specimens to improve its wind-blown sand erosion resistance and surface hardness, and to improve the apparent density of the cement paste.

Cement mortar specimens treated with and without UST method were prepared for wind blown sand erosion test and surface hardness test, 9 specimens in a group for each curing age and 3 specimens in a group for each erosion angle, and the contrast specimens had the same quantity. Cement paste specimens treated with and without UST method were prepared for apparent density measurement.

2.2. Materials

The specification of cement was PII52.2, the aggregate was ISO standard sand, The erosion particles was aelidi sand collected in Hobq Desert located at the Ordos Plateau, Inner Mongolia, China.
2.3. Methods

The composition and the mixing of the mortar specimens was in accordance with ISO 679:2009(E) [8]. The ultrasonic surface treatment was applied on mortar surface 30 min after pouring with a special mould, as shown in Fig. 2. The ultrasonic vibration power was 30 W with a duration of 30 min. The specimens were cut into blocks with a length of 50 mm and a thickness of 25 mm with curing age of 1, 3, 7, 28 days. The wind blown sand test was carried out in a wind-blown sand erosion test system, the wind speed was 30 m/s and the sand feed rate was 30 g/min, the erosion angle was 30, 60, 90°. The mass was weighed and the erosion resistance was calculated.
The surface hardness was tested with a Vickers micro hardness tester, the surface of the UST and the contrast specimens were polished properly. The data of the specimens with curing age of 1, 3, 7, 14 and 28 day were collected. 33 data points on each specimens and 2 mm space between each sampling point was adopted.

The apparent density was tested in accordance with mass-volume method. The cement paste specimens were cut into rectangles and the volume was measured, the mass was weighed with curing age of 1, 3, 7, 14, 21, 28 days, then the apparent density was calculated. The specimens were dried in 60 °C for 3 h before weighing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

We thank the supporting from the foundation of Inner Mongolia university of technology for the publication of this paper. (grant numbers: X200841).

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.105943.

References

[1] K.C. Goretta, M.L. Burdt, M.M. Cuber, L.A. Perry, D. Singh, A.S. Wagh, J.L. Routbort, W.J. Weber, Solid-particle erosion of Portland cement and concrete, Wear 224 (1) (1999) 106–112.

[2] A.W. Momber, Effects of target material properties on solid particle erosion of geomaterials at different impingement velocities, Wear 319 (1) (2014) 69–83.

[3] A.W. Momber, The erosion of cement paste, mortar and concrete by gritblasting, Wear 246 (1) (2000) 46–54.
[4] P. Laplante, P.C. Aitcin, D. Vézina, Abrasion resistance of concrete, J. Mater. Civ. Eng. 3 (1) (1991) 19–28.
[5] C.V. Silva, J.E. Zorzi, R.C.D. Cruz, D.C.C. Dal Molin, Experimental evidence that micro and macrostructural surface properties markedly influence on abrasion resistance of concretes, Wear 422–423 (2019) 191–200.
[6] T. Yen, T.-H. Hsu, Y.-W. Liu, S.-H. Chen, Influence of class F fly ash on the abrasion – erosion resistance of high-strength concrete, Constr. Build. Mater. 21 (2) (2007) 458–463.
[7] Z. He, X. Chen, X. Cai, Influence and mechanism of micro/nano-mineral admixtures on the abrasion resistance of concrete, Constr. Build. Mater. 197 (2019) 91–98.
[8] ISO, Cement — Test methods — Determination of Strength, International Organization for Standardization (ISO), Switzerland, 2009.