Crystal structures of two dioxomolybdenum complexes stabilized by salan ligands featuring phenyl and cyclohexyl backbones

Tristanh Trieu-Tran, Stephenie N. Martinez, Jacob P. Brannon, S. Chantal E. Stieber and Alex John*

Chemistry & Biochemistry Department, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA. *Correspondence e-mail: ajohn@cpp.edu

Two cis-dioxomolybdenum complexes based on salan ligands with different backbones are reported. The first complex, dioxido[2,2'-][1,2-phenylenebis(iminomethylene)]bis(phenolato)molybdenum(VI) dimethylformamide disolvate, [Mo(C20H18N2O2)O2]C12C3H7NO (PhLMoO2, 1b), features a phenyl backbone, while the second complex, (6,6'-[[cyclohexane-1,2-diyl]bis(azane-diyl)]bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate, [Mo(C36H56N2O2)O2]C12CH3OH (CyLMoO2, 2b), is based on a cyclohexyl backbone. These complexes crystallized as solvated species, 1b·2DMF and 2b·2MeOH. The salan ligands PhLH2 (1a) and CyLH2 (2a) coordinate to the molybdenum center in these complexes 1b and 2b in a κ²Nκ²O fashion, forming a distorted octahedral geometry. The Mo—N and Mo—O distances are 2.3475 (16) and 1.9567 (16) Å, respectively, in 1b while the corresponding measurements are Mo—N = 2.3412 (12) Å, and Mo—O = 1.9428 (10) Å for 2b. A key geometrical feature is that the N—Mo—N angle of 72.40 (4)° in CyLMoO2 is slightly less than that of the PhLMoO2 angle of 75.18 (6)°, which is attributed to the flexibility of the cyclohexane ring between the nitrogen as compared to the rigid phenyl ring in the PhLMoO2.

1. Chemical context

Molybdenum centers are present in the active sites of various enzymes including nitrogenases, sulfite oxidase, xanthine oxidase, and DMSO reductase that catalyze two-electron redox processes (Hille et al., 2014; Enemark et al., 2004; Hille, 1996). This is attributed to the large number of stable oxidation states and coordination environments that can be achieved, as well as the solubility of molybdate salts in water. A majority of these enzymes are referred to as oxo-molybdenum enzymes due to the presence of at least one Mo=O moiety in the active site. The sulfite oxidase family of enzymes contains a cis-dioxo molybdenum(VI) (L₆MoO₂) center in its active site (Hille et al., 2014). Apart from being studied as models to understand biological systems, oxomolybdenum complexes have also found utility in processes such as olefin metathesis, olefin epoxidation, cytotoxic studies, and cyclic ester polymerizations (Hossain et al. 2020; Mayilmurugan et al. 2013; Yang et al. 2007). Mononuclear molybdenum complexes are generally distinguished by stretching frequencies [υ(O=Mo=O)] in the 910–950 cm⁻¹ and 890–925 cm⁻¹ regions, which are characteristic of a cis-MoO₂ fragment (Chakravarthy & Chand, 2011). A variety of ligand architectures have been successful in stabilizing the oxomolyb-
denum core in these complexes (Ziegler et al. 2009; Subramanian et al. 1984; Rajan et al. 1983). Dioxomolybdenum complexes stabilized by salan ligands have been used extensively for various applications (Roy et al., 2017; Whiteoak et al., 2009). The modular nature for the synthesis of salan ligands allows for incorporation of steric and electronic variations in the ligand framework to tune the reactivity of the molybdenum center. We are exploring the utility of dioxomolybdenum complexes in catalyzing the deoxydehydration (DODH) reaction with a focus on understanding ligand effects on catalytic activity. This work reports synthesis and crystal structures of two molybdenum complexes including a crystallographically uncharacterized complex, dioxido[2,2'-[1,2-phenylenebis(iminomethylene)bis(phenolato)]molybdenum(VI), PbLMoO2 (1b) (Rajan et al., 1983). The second is a known complex with a new unit cell, (Ziegler et al., 2009), 6,6'[[[(cyclohexane-1,2-diyli)bis(azanediyl)]bis(methylene)]bis(2,4-di-tert-butylphenolato)]dioxidomolybdenum(VI), CyLMoO2 (2b).

2. Structural commentary

The asymmetric unit of PbLMoO2 (1b) contains two molecules of PbLMoO2 and four molecules of dimethylformamide (DMF), as shown in Fig. 1. Fig. 2 shows one molecule of PbLMoO2 with hydrogen atoms and solvent removed for clarity. In this system, the salan ligand PbLH2 (1a) coordinates to the molybdenum center in a κ²N,κ²O fashion, forming a distorted octahedral geometry. The angles formed around the molybdenum core are 80.23 (6)° for O1—Mo01—N1, 157.78 (6)° for O1—Mo01—O2, 75.18 (6)° for N1—Mo01—N2, and 109.80 (7)° for O3—Mo01—O4. These angles are consistent with a system that is significantly distorted from octahedral geometry with bond angles resulting from the salan ligand ranging from 75.18 (6)° to 84.38 (7)°, while the angle between the ‘oxo’ oxygens of 109.80 (7)° is close to the ideal tetrahedral angle of 109.5°. Analogous bond angles in the second molecule in the unit cell are the same within 0.01 Å.

The bond distances between the molybdenum center and ligand atoms for Mo01—N1 and Mo01—O1 are 2.3475 (16) Å and 1.9567 (16) Å, respectively. The notable bond distances from the salan ligand ranging from 75.18 (6)° to 84.38 (7)°, while the angle between the ‘oxo’ oxygens of 109.80 (7)° is close to the ideal tetrahedral angle of 109.5°. Analogous bond angles in the second molecule in the unit cell are the same within 0.01 Å as distances for O1—C1 and N1—C8, respectively. The other bond distances have variations of 0.2–0.3 Å, with N3—C27 at 1.519 (3) Å, C26—C27 at 1.490 (3) Å, and C28—C33 at 1.392 (3) Å.

The asymmetric unit of CyLMoO2 (2b) contains one molecule of CyLMoO2 and two molecules of methanol (MeOH) (Fig. 3). The salan ligand CyLH2 (2a) binds in the same κ²N,κ²O fashion that complex 1b does. Fig. 4 shows CyLMoO2 with the hydrogen atoms removed for clarity. The complex also has a distorted octahedral geometry with angles of O3—Mo01—O1 at 96.36 (5)°, O1—Mo01—N1 at 76.73 (4)°, N1—Mo01—N2 at 72.40 (4)°, O2—Mo01—O3 at 72.40 (4)°, N2—Mo01—O2 at 78.91 (4)°, O2—Mo01—O4 at 100.19 (5)°, O2—Mo01—O3 at 94.58 (5)°. These...
angles are between 5 and 10° of the ideal 90° for octahedral geometry. The N1—Mo01—N2 angle at 72.40 (4)° is slightly less than that of the PhLMoO2 angle of 75.81 (6)°, which is attributed to the flexibility of the cyclohexane ring between the nitrogen atoms compared to the rigid phenyl ring in the PhLMoO2. Metal–ligand bond distances are found for Mo01—O1 at 1.9428 (10) Å, Mo01—O2 at 1.9484 (10) Å, Mo01—O3 at 1.7125 (10) Å, Mo01—O4 at 1.7226 (11) Å, Mo01—N1 at 2.3412 (12) Å, and Mo01—N2 at 2.3384 (12) Å. Other ligand distances and bond lengths within the phenyl rings are consistent with analogous distances in PhLMoO2 (1b). The cyclohexane bond distances are consistent with single C—C bonds. The bond lengths observed are not statistically different than those reported by Ziegler et al. (2009). There are a few statistically different angles, specifically around the molybdenum center where Table 1 shows the correlating bond angles. These bond-angle differences are most likely due to improved R1 of 2.78% as compared to the previously reported R1 of 5.5% and higher solvent disorder in the reported structure.

3. Supramolecular features

PhLMoO2 (1b): A single molecule of PhLMoO2 is hydrogen bonded to one disordered DMF molecule, as shown in Fig. 5, with a distance of 2.03 Å for O11⋯H008 (Table 2). A second hydrogen bond interaction is between O9—H00D with a distance of 2.16 (3) Å. Corresponding hydrogen bond distances in the second molecule in the unit cell are similar. There are three formula units within the contents of the unit cell. Perpendicular π-stacking between PhLMoO2 molecules is observed between C5 and the aryl ring centroid (C35–C39) with a distance of 4.597 Å.

CyLMoO2 (2b): There are four molecules of CyLMoO2 in the unit cell of this system and the complex is stabilized via hydrogen bonding to the solvent MeOH molecule (1.94 Å for O4⋯H5A and 2.00 Å for O5⋯H2; Table 3), as seen in Fig. 6. There is no indication that there are π-stacking interactions between the two molecules. In comparing the hydrogen bonding interactions in the two complexes, PhLMoO2 demonstrates a tighter packing arrangement due to the rigid phenyl ring compared to the flexible cyclohexane ring in CyLMoO2.
bonding with the previously reported structure, the main difference is the formation of hydrogen-bonded tetramers containing two molecules of 2b and two molecules of methanol in the current structure. The previously reported structure had one resolved molecule of methanol and one disordered oxygen atom, which form a hydrogen-bonded trimer with one molecule of \(^{31}\)LMoO\(_2\) (Ziegler et al., 2009).

4. Database survey

A database search of the Cambridge Structural Database (CSD; Groom et al., 2016) (webCSD accessed September 22, 2021) and SciFinder (SciFinder, 2021) did not yield any exact matches to the crystal structure for \(^{31}\)LMoO\(_2\) (1b). There was a similar crystal structure found with the imine form of the ligand (Salen)MoO\(_2\). A search for \(^{31}\)LMoO\(_2\) (2b) in the CSD (webCSD accessed September 22, 2021) shows that there is a known structure of the molecule with a different unit cell with accession code HUWGOW (Ziegler et al., 2009). The SciFinder search resulted in the same sources being found. The current structure for \(^{31}\)LMoO\(_2\) (2b) was solved in space group \(P\frac{2_1}{n}\) compared with \(P\frac{3_1}{1}\) for HUWGOW. The primary additional differences in the structures is an improved R1 of 2.78% and more clearly resolved methanol solvent, as compared to the previously reported R1 of 5.5% and more disordered methanol solvent (Ziegler et al., 2009).

5. Synthesis and crystallization

The salan ligands used for stabilizing [MoO\(_2\)]\(^{2+}\) in the complexes \(^{31}\)LMoO\(_2\) (1b) (Rajan et al., 1983) and \(^{31}\)LMoO\(_2\) (2b) (Ziegler et al., 2009) were synthesized by the reductive amination of the corresponding salicylaldehyde and diamine. The ligands \(^{31}\)LH\(_2\) (1a) and \(^{31}\)LH\(_2\) (2a) were synthesized as off-white solids in 86% and 58% yields, respectively. The reaction scheme is shown in Fig. 7. Both ligands were successfully characterized by NMR and IR spectroscopy. A salient feature in the \(^1\)H NMR spectra of both ligands as compared to the precursor salen compounds was the disappearance of the aldimine peak (~8.50 ppm) and the appearance of the benzonic resonances ~4.00 ppm. The molybdenum complexes \(^{31}\)LMoO\(_2\) (1b) and \(^{31}\)LMoO\(_2\) (2b) were synthesized in 86% and 42% yields, respectively, by the reaction of the corresponding ligands with MoO\(_2\)(acac)\(_2\) in methanol or acetonitrile as solvent. Complexes 1b and 2b were also characterized by NMR and IR spectroscopy. Both complexes exhibited stretches [[(Mo=O) = 916 and 876 cm\(^{-1}\) (1b); 903 and 875 cm\(^{-1}\) (2b)] characteristic of a cis-dioxo molybdenum core in the IR spectrum.

Procedure for synthesis of ligands

\(^{31}\)LH\(_2\) (1a): To a solution of 1,2-phenylenediamine (0.764 g, 7.20 mmol) in methanol (ca 7 ml) was added a solution of salicylaldehyde (1.76 ml, 14.9 mmol) in methanol (ca 8 ml). The mixture was stirred for 6 h at room temperature. The orange precipitate that formed during this period was filtered and washed with methanol, then dried under high vacuum to yield the salophen product as an orange solid (2.19 g, 98%).\(^1\)H NMR (CDCl\(_3\), 400 MHz, 300 K) \(\delta\) 13.0 (s, 2H), 8.63 (s, 2H), 7.38 (d, \(^3\)J\(_{HH}\) = 8 Hz, 2H), 7.35–7.33 (m, 2H), 7.26–7.22 (m, 2H), 7.05 (d, \(^3\)J\(_{HH}\) = 8 Hz, 2H), 6.92 (t, \(^3\)J\(_{HH}\) = 8 Hz, 2H).

To a mixture of methanol (ca. 8 ml) and diethyl ether (ca 8 ml), was added salophen (1.52 g, 4.81 mmol) followed by NaBH\(_4\) (1.67 g, 44.4 mmol), and the reaction mixture was stirred at room temperature for 1 h. When the yellow color of the solution changed to colorless, it was transferred into a separatory funnel and DI H\(_2\)O (ca 15 ml) was added followed by ethyl acetate (2 \(\times\) ca 15 ml) for extraction. The organic solution was separated and combined, then washed with saturated NaCl solution (ca 20 ml). The organic layer was dried over anhydrous Na\(_2\)SO\(_4\) and filtered. The filtrate was concentrated under vacuum to give a light-yellow solid, which was dried under high vacuum. The color of the solid changed

Table 2

D—H ··· A	D—H	H···A	D···A	D—H ··· A
N2—H008···O11	1.00	2.03	2.958 (2)	154
N4—H009···O10	1.00	1.99	2.924 (3)	154
N1—H00D···O12	0.85 (3)	2.15 (3)	2.949 (3)	157 (2)
N3—H00E···O9	0.79 (3)	2.16 (3)	2.885 (3)	154 (3)

Symmetry code: (i) \(-x+1, -y+1, -z+1\).

Table 3

D—H ··· A	D—H	H···A	D···A	D—H ··· A
N2—H2···O5'	1.00	2.00	2.9319 (16)	153
O5—H5A···O4	0.84	1.94	2.7837 (16)	177

Figure 6

View of four molecules of \(^{31}\)LMoO\(_2\) and six molecules of methanol in the unit cell with 50% probability ellipsoids, highlighting intermolecular distances. Distances between H atoms are listed without standard deviations because the H atoms were positionally fixed.
to light brown after 2 h under high vacuum to yield the product (1.32 g, 86%).\(^1\)H NMR (CDCl\(_3\), 400 MHz, 301 K) \(\delta\) 7.24–7.19 (m, 4H), 6.96–6.94 (m, 4H), 6.89 (t, \(J_{HH} = 8\) Hz, 2H), 6.86 (t, \(J_{HH} = 8\) Hz, 2H), 4.40 (s, 4H).

\(\text{CyLH}_2\) (2a): A 100 mL round-bottom flask was charged with trans-1,2-diaminocyclohexane (0.448 g, 4.38 mmol), methanol (ca. 16 mL), and 3,5-di-tert-butylsalicylaldehyde (2.05 g, 17.5 mmol). The solution was stirred for 24 h at room temperature. The solution resulted in a bright-yellow precipitate. The precipitate was dried under high vacuum to remove any residual solvent and yield the salen product (3.85 g, 81%).\(^1\)H NMR (CDCl\(_3\), 400 MHz, 301 K) \(\delta\) 17.5 mmol). NaBH\(_4\) (9 equivalents) was slowly added into the reaction mixture until the solution was colorless. The reaction mixture was then stirred for 10 min. The yellow precipitate that formed was filtered and then dried under vacuum to yield the complex as yellow solid (1.24 g, 86%).\(^1\)H NMR (DMSO-\(d_6\), 400 MHz, 301 K) \(\delta\) 7.55 (d, \(J_{HH} = 8\) Hz, 1H), 7.37–7.35 (m, 1H), 7.19–7.10 (m, 4H), 7.07–7.05 (m, 1H), 7.02–6.98 (m, 2H), 6.91 (d, \(J_{HH} = 8\) Hz, 1H), 6.85–6.83 (m, 1H), 6.80 (d, \(J_{HH} = 8\) Hz, 1H), 6.76–6.68 (m, 2H), 6.63 (d, \(J_{HH} = 8\) Hz, 1H), 6.59 (d, \(J_{HH} = 8\) Hz, 1H), 6.42 (d, \(J_{HH} = 12\) Hz, 1H), 5.24 (d, \(J_{HH} = 16\) Hz, 1H), 5.16 (d, \(J_{HH} = 16\) Hz, 1H), 4.94 (d, \(J_{HH} = 16\) Hz, 1H), 4.20 (d, \(J_{HH} = 12\) Hz, 1H). \(^{13}\)C{\(^1\)H} NMR (DMSO-\(d_6\), 100 MHz, 301 K) \(\delta\) 163.0, 160.2, 155.6, 148.0, 141.1, 130.5, 129.1, 129.0, 128.9, 128.0, 127.9, 125.9, 124.3, 122.9, 120.1, 119.2, 119.1, 118.9, 117.8, 115.3, 111.1, 53.7, 53.6. Selected IR (cm\(^{-1}\)): 3127 v(2′ N–H); 916, 876 v(Mo=O).

Crystals of \(\text{PhL}_{\text{MoO}}\) (1b) were grown by forming a supersaturated solution of the complex in DMF and layering with hexanes. The solution was placed in a refrigerator at 268 K for 1 month. Orange-yellow crystals were observed to grow for 1.5 months. Orange-yellow crystals were observed to grow and were collected for structural determination.

Procedure for synthesis of molybdenum complexes

Dioxido[2,2′-\{[(Cyclohexane-1,2-diyl)bis(azanediyl)]bis(methyl-\)ene\}]bis(2,4-di-tert-butylphenolato) dioxidomolybdenum(VI) (\(\text{C\text{yLMO}_2}\) 2b): A round-bottom flask equipped with a magnetic stirring bar was charged with MoO\(_2\)(acac\(_2\)) (0.165 g, 0.51 mmol) and methanol (ca. 10 mL). The solution was stirred, and 2a (0.27 g, 0.51 mmol) was added to the MoO\(_2\)(acac\(_2\)) dissolved in methanol. The solution was stirred overnight when it turned orange. The solution was filtered, and the solvent removed by evaporation under vacuum to obtain an orange precipitate. The precipitate was triturated with methanol, producing an orange solid, which was separated by gravity filtration and washed twice with cold methanol (0.108 g, 42%). \(^1\)H NMR (CDCl\(_3\), 400 MHz, 301 K) \(\delta\) 7.26 (s, 2H), 7.21 (d, \(J_{HH} = 12\) Hz, 2H), 7.18–7.15 (m, 4H), 7.07–7.05 (m, 1H), 6.91 (d, \(J_{HH} = 8\) Hz, 1H), 6.85–6.83 (m, 1H), 6.80 (d, \(J_{HH} = 8\) Hz, 1H), 6.76–6.68 (m, 2H), 6.63 (d, \(J_{HH} = 8\) Hz, 1H), 6.59 (d, \(J_{HH} = 8\) Hz, 1H), 6.42 (d, \(J_{HH} = 12\) Hz, 1H), 5.24 (d, \(J_{HH} = 16\) Hz, 1H), 5.16 (d, \(J_{HH} = 16\) Hz, 1H), 4.94 (d, \(J_{HH} = 16\) Hz, 1H), 4.20 (d, \(J_{HH} = 12\) Hz, 1H).

Figure 7

Synthesis of the dioxomolybdenum complexes 1b and 2b.
Table 4
Experimental details.

	1b	2b
Chemical data	[Mo(C₇₀H₆₀N₂O₂)O₂].2C₂H₇NO	[Mo(C₇₀H₆₀N₂O₂)O₂].2CH₂O
M₀	592.49	740.84
Crystal system, space group	Triclinic, P T	Monoclinic, P2₁/n
Temperature (K)	100	105
a, b, c (Å)	9.601, 12.860, 21.428	18.4889 (14), 10.9722 (8), 19.1517 (14)
α, β, γ (°)	91.44, 91.49, 93.22	90, 94.035 (2), 90
V (Å³)	2639.8	3875.6 (5)
Z	4	4
Radiation type	Mo Kα	Mo Kα
μ (mm⁻¹)	0.54	0.38
Crystal size (mm)	0.34 × 0.29 × 0.29	0.2 × 0.18 × 0.1
Data collection	Brucker APEXII CCD	Brucker APEXII CCD
Diffractometer	Bruker APEXII CCD	Bruker APEXII CCD
Absorption correction	Multi-scan (SADABS; Bruker, 2016)	Multi-scan (SADABS; Bruker, 2016)
No. of measured, independent and observed [I > 2σ(I)] reflections	146655, 7625, 6364	29075, 9532, 8724
Rₑₒₜ	0.056	0.026
(sin θλ)max (Å⁻¹)	0.641	0.667
Refinement		
R(F²) > 2σ(F²), W(R(F²)), S	0.035, 0.065, 1.06	0.028, 0.070, 1.07
No. of reflections	7625	9532
No. of parameters	683	440
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H-atom parameters constrained
∆ρmax, ∆ρmin (e Å⁻³)	0.35, −0.38	0.52, −0.52

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015), SHELXL (Sheldrick, 2008), and OLEX2 (Dolomanov et al., 2009).

Funding information
Funding for this research was provided by: National Science Foundation (grant No. 1800605 to Alex John; grant No. 1847926 to S. Chantal E. Stieber); US Department of Defense (grant No. W911NF-17-1-0537 to S. Chantal E. Stieber); MENTORES PPOHA (scholarship to Jacob P. Brannon).

References
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chakravarthy, R. D. & Chand, D. K. (2011). J. Chem. Sci. 123, 187–199.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Enemark, J. H., Cooney, J. J. A., Wang, J.-J. & Holm, R. H. (2004). Chem. Rev. 104, 1175–1200.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
Hille, R. (1996). Chem. Rev. 96, 2757–2816.
Hille, R., Hall, J. & Basu, P. (2014). Chem. Rev. 114, 3963–4038.
Hossain, M. K., Köhntopp, A., Haukka, M., Richmond, M. G., Lehtonen, A. & Nordlander, E. (2020). Polyhedron, 178, 114312.
Mayilmurugan, R., Traar, P., Schachner, J. A., Volpe, M. & Mösch-Zanetti, N. C. (2013). Eur. J. Inorg. Chem. 3644–3670.
Rajan, O. A., Spence, J. T., Leman, C., Minelli, M., Sato, M., Enemark, J. H., Kroneck, P. M. H. & Sulger, K. (1983). Inorg. Chem. 22, 3065–3072.

33.0, 31.6, 31.6, 31.5, 29.9, 29.9, 28.9, 24.5, 24.3, 24.1. Selected 1R (cm⁻¹): 903, 875 v(Mo=O).

Crystals of CH₃ using HFIX commands, and refined using a riding model (sin θλ)max > 2σ(I) reflections [Mo(C₇₀H₆₀N₂O₂)O₂] were grown by using a super-saturated solution of the complex dissolved in methanol and allowed to undergo slow evaporation over 2 d. A similar vial was also refrigerated where crystals were seen to form as well. The crystals from the slow evaporation set up were cropped and the orange–yellow crystals were used for structure determination.

6. Refinement
Crystal data, data collection, and refinement details are listed in Table 4. Hydrogen atoms were placed at ideal positions with C—H distances at 0.95 for CH and 0.99 Å for sp³ CH₂ and CH₃ using HFIX commands, and refined using a riding model with U(eq)(H) = 1.2U(eq)(C) for CH₃, CH₂, and CH₂. The structure for [Mo(C₇₀H₆₀N₂O₂)O₂] was initially refined in the trigonal crystal system P321; however, this resulted in the solvent DMF having a high level of disorder with many checkCIF errors.

Acknowledgements
Experimental work was carried out in the Chemistry & Biochemistry Department, College of Science at California State Polytechnic University in Pomona. AJ and SCES would like to acknowledge the Provost’s Teacher–Scholar award for facilitating research activities.
Roy, S., Mohanty, M., Pasayat, S., Majumder, S., Senthilguru, K.,
Banerjee, I., Reichelt, M., Reuter, H., Sinn, E. & Dinda, R. (2017).
J. Inorg. Biochem. **172**, 110–121.
SciFinder (2021). Chemical Abstracts Service: Colombus, OH, 2010;
RN 58-08-2 (accessed September 22, 2021).
Sheldrick, G. M. (2008). Acta Cryst. **A64**, 112–122.
Sheldrick, G. M. (2015). Acta Cryst. **A71**, 3–8.

Subramanian, P., Spence, J. T., Ortega, R. & Enemark, J. H. (1984).
Inorg. Chem. **23**, 2564–2572.
Whiteoak, C. J., Britovsek, G. J. P., Gibson, V. C. & White, A. J. P.
(2009). Dalton Trans. pp. 2337–2344.
Yang, H., Wang, H. & Zhu, C. (2007). J. Org. Chem. **72**, 10029–10034.
Ziegler, J. E., Du, G., Fanwick, P. E. & Abu-Omar, M. M. (2009).
Inorg. Chem. **48**, 11290–11296.
Crystal structures of two dioxomolybdenum complexes stabilized by salan ligands featuring phenyl and cyclohexyl backbones

Tristan Trieu-Tran, Stephenie N. Martinez, Jacob P. Brannon, S. Chantal E. Stieber and Alex John

Computing details

For both structures, data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(6,6′-[[Cyclohexane-1,2-diyl]bis(azanediyl)]bis(methylene)]bis(2,4-di-tert-butylphenolato))dioxidomolybdenum(VI) methanol disolvate (2b)

Crystal data

\[
\begin{align*}
\text{[Mo(C_{36}H_{56}N_{2}O_{2})O_{2}]} & \cdot 2\text{CH}_4\text{O} \\
M_r & = 740.84 \\
\text{Monoclinic, } P2_1/n & \\
a & = 18.4889 (14) \text{ Å} \\
b & = 10.9722 (8) \text{ Å} \\
c & = 19.1517 (14) \text{ Å} \\
\beta & = 94.035 (2)^\circ \\
V & = 3875.6 (5) \text{ Å}^3 \\
Z & = 4 \\
\end{align*}
\]

\[
F(000) = 1584 \\
D_\text{x} = 1.270 \text{ Mg m}^{-3} \\
\text{Mo } K\alpha \text{ radiation, } \lambda = 0.71073 \text{ Å} \\
\text{Cell parameters from 9945 reflections} \\
\theta = 5.3–51.4^\circ \\
\mu = 0.38 \text{ mm}^{-1} \\
T = 105 \text{ K} \\
\text{Prism, clear yellow} \\
0.2 \times 0.18 \times 0.1 \text{ mm}
\]

Data collection

Bruker APEXII CCD

diffractometer

\(\varphi\) and \(\omega\) scans

Absorption correction: multi-scan

(SADABS; Bruker, 2016)

\(T_{\text{min}} = 0.672, T_{\text{max}} = 0.750\)

29075 measured reflections

9532 independent reflections

8724 reflections with \(I > 2\sigma(I)\)

\(R_{\text{int}} = 0.026\)

\(\theta_{\text{max}} = 28.3^\circ, \theta_{\text{min}} = 5.3^\circ\)

\(h = -24 \rightarrow 24\)

\(k = -14 \rightarrow 14\)

\(l = -25 \rightarrow 25\)

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\(R(F^2 > 2\sigma(F^2)) = 0.028\)

\(wR(F^2) = 0.070\)

\(S = 1.07\)

9532 reflections

440 parameters

0 restraints

Primary atom site location: dual

Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

\(w = 1/[\sigma(F_c^2) + (0.0277P)^2 + 2.9594P]\)

where \(P = (F_c^2 + 2F_s^2)/3\)
(Δ/σ)_{max} = 0.002
\Delta \rho_{max} = 0.52 \text{ e Å}^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*/Ueq		
Mo01	0.59832 (2)	0.45373 (2)	0.68071 (2)	0.00996 (4)		
O1	0.67906 (5)	0.43892 (9)	0.62159 (5)	0.01218 (19)		
O3	0.64642 (6)	0.52033 (10)	0.75027 (6)	0.0154 (2)		
O2	0.51926 (5)	0.39987 (10)	0.73535 (5)	0.01299 (19)		
O4	0.55503 (6)	0.56653 (10)	0.63112 (6)	0.0166 (2)		
N2	0.54408 (6)	0.30514 (11)	0.60679 (6)	0.0124 (2)		
H2	0.562452	0.317877	0.559459	0.015*		
N1	0.64967 (6)	0.26557 (11)	0.71382 (6)	0.0108 (2)		
H1	0.621681	0.233132	0.752592	0.013*		
O5	0.44789 (6)	0.68127 (12)	0.54536 (6)	0.0239 (3)		
H5A	0.481126	0.646691	0.570127	0.036*		
C22	0.46379 (8)	0.32549 (14)	0.59954 (7)	0.0142 (3)		
H22A	0.442308	0.276831	0.559782	0.017*		
H22B	0.453789	0.412566	0.589333	0.017*		
C3	0.84869 (7)	0.31009 (13)	0.70189 (7)	0.0111 (3)		
H3	0.864314	0.255829	0.738559	0.013*		
C5	0.87410 (7)	0.43712 (13)	0.60581 (7)	0.0121 (3)		
H5	0.908405	0.472482	0.577181	0.015*		
C24	0.46022 (7)	0.32631 (13)	0.73127 (7)	0.0119 (3)		
C1	0.75049 (7)	0.41320 (13)	0.63556 (7)	0.0102 (2)		
C25	0.43157 (7)	0.28483 (13)	0.79316 (7)	0.0126 (3)		
C2	0.77461 (7)	0.33656 (13)	0.69077 (7)	0.0108 (2)		
C33	0.46569 (8)	0.32001 (14)	0.86602 (7)	0.0142 (3)		
C4	0.89997 (7)	0.36090 (13)	0.66085 (7)	0.0118 (3)		
C26	0.36957 (8)	0.21086 (14)	0.78600 (8)	0.0146 (3)		
H26	0.348850	0.184092	0.827336	0.017*		
C23	0.42907 (8)	0.28965 (14)	0.66554 (7)	0.0142 (3)		
C9	0.74008 (9)	0.66304 (14)	0.55600 (9)	0.0201 (3)		
H9A	0.697246	0.641207	0.580670	0.030*		
H9B	0.725631	0.716410	0.516425	0.030*		
H9C	0.775058	0.705636	0.588184	0.030*		
C6	0.80076 (7)	0.46405 (12)	0.59066 (7)	0.0111 (2)		
C15	0.72567 (7)	0.28252 (13)	0.74267 (7)	0.0110 (2)		
H15A	0.745494	0.202582	0.758523	0.013*		
H15B	0.725879	0.336533	0.784094	0.013*		
C7	0.77512 (8)	0.54657 (13)	0.52888 (7)	0.0128 (3)		
C10	0.83846 (8)	0.58516 (15)	0.48592 (8)	0.0170 (3)		
Atom	x	y	z	U(eq)		
-------	-------	-------	-------	--------		
C10	0.873925	0.631277	0.515788	0.025*		
C16	0.64240 (8)	0.17496 (13)	0.65555 (7)	0.0141 (3)		
H16	0.672705	0.202504	0.617289	0.017*		
C21	0.66673 (8)	0.04744 (13)	0.67866 (8)	0.0160 (3)		
H21A	0.642144	0.024197	0.720976	0.019*		
H21B	0.719628	0.047899	0.691019	0.019*		
C27	0.33673 (8)	0.17452 (14)	0.72175 (8)	0.0157 (3)		
C28	0.36837 (8)	0.21471 (14)	0.66180 (8)	0.0162 (3)		
H28	0.347797	0.190093	0.617174	0.019*		
C31	0.98156 (7)	0.33692 (13)	0.67445 (7)	0.0129 (3)		
C36	0.54757 (8)	0.29016 (15)	0.87359 (8)	0.0194 (3)		
H36A	0.555113	0.205208	0.860075	0.029*		
H36B	0.565991	0.302178	0.922347	0.029*		
H36C	0.573525	0.344170	0.843165	0.029*		
C19	0.56900 (10)	−0.04481 (15)	0.59694 (9)	0.0219 (3)		
H19A	0.539944	−0.068313	0.636294	0.026*		
H19B	0.559450	−0.104765	0.558777	0.026*		
C20	0.64927 (9)	−0.04664 (15)	0.62109 (9)	0.0224 (3)		
H20A	0.678364	−0.029062	0.580807	0.027*		
H20B	0.662603	−0.128871	0.638897	0.027*		
C14	1.02015 (9)	0.45629 (15)	0.69599 (9)	0.0222 (3)		
H14A	1.012181	0.516351	0.658365	0.033*		
H14B	1.072247	0.441111	0.704617	0.033*		
H14C	1.006671	0.487651	0.738759	0.033*		
C34	0.43001 (10)	0.25202 (16)	0.92482 (8)	0.0229 (3)		
H34A	0.378309	0.272408	0.923167	0.034*		
H34B	0.453306	0.276340	0.970230	0.034*		
H34C	0.435662	0.163973	0.918539	0.034*		
C12	0.99721 (8)	0.24308 (14)	0.73274 (8)	0.0161 (3)		
H12A	0.979753	0.274088	0.776503	0.024*		
H12B	1.049566	0.228556	0.739032	0.024*		
H12C	0.972342	0.166547	0.720004	0.024*		
C8	0.72060 (9)	0.47859 (16)	0.47828 (8)	0.0193 (3)		
H8A	0.677274	0.458088	0.502541	0.029*		
H8B	0.742917	0.403623	0.462137	0.029*		
H8C	0.706920	0.530810	0.437985	0.029*		
C35	0.45589 (9)	0.45675 (14)	0.87842 (8)	0.0205 (3)		
H35A	0.476047	0.502693	0.840440	0.031*		
H35B	0.481207	0.479742	0.923160	0.031*		
H35C	0.404140	0.475293	0.879611	0.031*		
C17	0.56291 (8)	0.17702 (14)	0.62828 (8)	0.0144 (3)		
H17	0.533304	0.155719	0.668282	0.017*		
C13	1.01268 (8)	0.28886 (15)	0.60759 (8)	0.0186 (3)		
H13A	0.987537	0.213576	0.592770	0.028*		
H13B	1.064551	0.272195	0.616823	0.028*		
H13C	1.005854	0.350083	0.570454	0.028*		
Atom	U\textsubscript{11}	U\textsubscript{22}	U\textsubscript{33}	U\textsubscript{12}	U\textsubscript{13}	U\textsubscript{23}
-------	----------------	----------------	----------------	----------------	----------------	----------------
Mo01	0.00740 (6)	0.01008 (6)	0.01251 (6)	0.00059 (4)	0.00143 (4)	0.00055 (4)
O1	0.0078 (4)	0.0146 (5)	0.0143 (5)	0.0017 (4)	0.0018 (4)	0.0034 (4)
O3	0.0134 (5)	0.0137 (5)	0.0190 (5)	−0.0010 (4)	0.0010 (4)	−0.0023 (4)
O2	0.0102 (4)	0.0154 (5)	0.0135 (5)	−0.0020 (4)	0.0023 (4)	−0.0009 (4)
O4	0.0135 (5)	0.0168 (5)	0.0197 (5)	0.0044 (4)	0.0030 (4)	0.0037 (4)
N2	0.0099 (5)	0.0152 (6)	0.0119 (5)	0.0022 (5)	0.0000 (4)	0.0012 (4)
N1	0.0079 (5)	0.0117 (5)	0.0127 (5)	−0.0015 (4)	0.0006 (4)	0.0002 (4)
O5	0.0216 (6)	0.0340 (7)	0.0158 (5)	0.0087 (5)	−0.0007 (4)	0.0025 (5)
C22	0.0102 (6)	0.0187 (7)	0.0133 (6)	−0.0004 (5)	−0.0014 (5)	0.0016 (5)
C3	0.0104 (6)	0.0096 (6)	0.0131 (6)	0.0002 (5)	−0.0002 (5)	0.0003 (5)
C5	0.0101 (6)	0.0122 (6)	0.0144 (6)	−0.0018 (5)	0.0029 (5)	0.0005 (5)
C24	0.0072 (6)	0.0128 (6)	0.0156 (6)	0.0009 (5)	0.0004 (5)	0.0007 (5)
C1	0.0077 (6)	0.0100 (6)	0.0131 (6)	−0.0003 (5)	0.0013 (5)	−0.0009 (5)
C25	0.0104 (6)	0.0125 (6)	0.0148 (6)	0.0023 (5)	0.0006 (5)	0.0009 (5)
C2	0.0094 (6)	0.0099 (6)	0.0131 (6)	−0.0020 (5)	0.0014 (5)	−0.0002 (5)
C33	0.0157 (7)	0.0140 (7)	0.0130 (6)	0.0010 (5)	0.0022 (5)	0.0004 (5)
C4	0.0090 (6)	0.0114 (6)	0.0150 (6)	−0.0002 (5)	0.0010 (5)	−0.0013 (5)
C26	0.0113 (6)	0.0144 (7)	0.0185 (7)	0.0013 (5)	0.0042 (5)	0.0029 (5)
C23 0.0115 (6) 0.0178 (7) 0.0133 (6) 0.0002 (5) −0.0001 (5) 0.0022 (5)
C9 0.0236 (8) 0.0144 (7) 0.0231 (7) 0.0052 (6) 0.0068 (6) 0.0051 (6)
C6 0.0108 (6) 0.0097 (6) 0.0129 (6) −0.0004 (5) 0.0018 (5) 0.0004 (5)
C15 0.0083 (6) 0.0126 (6) 0.0120 (6) −0.0017 (5) −0.0004 (5) 0.0018 (5)
C7 0.0116 (6) 0.0133 (6) 0.0135 (6) 0.0002 (5) 0.0019 (5) 0.0028 (5)
C10 0.0149 (7) 0.0197 (7) 0.0166 (7) −0.0022 (6) 0.0035 (5) 0.0055 (6)
C16 0.0140 (6) 0.0130 (7) 0.0150 (6) 0.0000 (5) −0.0013 (5) −0.0017 (5)
C21 0.0157 (7) 0.0118 (7) 0.0197 (7) 0.0019 (5) −0.0041 (5) −0.0005 (5)
C27 0.0093 (6) 0.0157 (7) 0.0219 (7) −0.0005 (5) 0.0003 (5) 0.0025 (6)
C28 0.0213 (6) 0.0189 (7) 0.0169 (7) −0.0008 (6) −0.0028 (5) 0.0014 (6)
C11 0.0077 (6) 0.0140 (7) 0.0169 (6) 0.0000 (5) 0.0006 (5) 0.0010 (5)
C36 0.0177 (7) 0.0221 (8) 0.0177 (7) 0.0026 (6) −0.0039 (6) 0.0001 (6)
C19 0.0274 (8) 0.0155 (7) 0.0218 (7) −0.0022 (6) −0.0057 (6) −0.0017 (6)
C20 0.0258 (8) 0.0136 (7) 0.0269 (8) 0.0028 (6) −0.0046 (6) −0.0039 (6)
C14 0.0144 (7) 0.0178 (7) 0.0336 (9) −0.0054 (6) −0.0043 (6) −0.0005 (6)
C34 0.0301 (9) 0.0251 (8) 0.0138 (7) −0.0048 (7) 0.0042 (6) 0.0027 (6)
C12 0.0118 (6) 0.0191 (7) 0.0175 (7) 0.0027 (6) 0.0011 (5) 0.0035 (6)
C8 0.0168 (7) 0.0261 (8) 0.0145 (7) −0.0049 (6) −0.0012 (5) 0.0026 (6)
C35 0.0274 (8) 0.0161 (7) 0.0183 (7) 0.0028 (6) 0.0031 (6) −0.0010 (6)
C17 0.0141 (6) 0.0133 (7) 0.0156 (7) −0.0007 (5) −0.0006 (5) 0.0005 (5)
C13 0.0134 (7) 0.0242 (8) 0.0185 (7) 0.0046 (6) 0.0033 (5) 0.0037 (6)
C18 0.0236 (8) 0.0161 (7) 0.0171 (7) 0.0005 (6) −0.0068 (6) −0.0025 (6)
C29 0.0103 (6) 0.0180 (7) 0.0270 (8) −0.0030 (6) 0.0014 (6) 0.0012 (6)
C30 0.0221 (8) 0.0218 (8) 0.0345 (9) −0.0053 (7) 0.0031 (7) −0.0032 (7)
C37 0.0202 (8) 0.0358 (10) 0.0230 (8) −0.0026 (7) 0.0027 (6) −0.0067 (7)
C32 0.0226 (8) 0.0354 (10) 0.0324 (9) −0.0141 (8) 0.0084 (7) 0.0008 (8)
C31 0.0135 (7) 0.0230 (9) 0.0563 (12) −0.0015 (7) −0.0078 (8) 0.0031 (8)
O0AA 0.0424 (9) 0.0457 (9) 0.0550 (10) 0.0012 (8) 0.0073 (7) −0.0082 (8)
C38 0.0409 (12) 0.0465 (13) 0.0479 (13) 0.0002 (10) 0.0118 (10) 0.0003 (10)

Geometric parameters (Å, °)

Bond	Length (Å)	Angle (°)	
Mo01—O1	1.9428 (10)		
Mo01—O3	1.7125 (10)		
Mo01—O2	1.9484 (10)		
Mo01—O4	1.7226 (11)		
Mo01—N2	2.3384 (12)		
Mo01—N1	2.3412 (12)		
O1—C1	1.3586 (16)		
C2C2	1.3554 (17)		
N2—H2	1.0000		
N2—C22	1.4979 (18)		
N2—C17	1.4989 (19)		
N1—H1	1.0000		
N1—C15	1.4850 (17)		
N1—C16	1.4935 (18)		
O5—H5A	0.8400		
O5—C37	1.421 (2)		
Bond	Length (Å)	Bond	Length (Å)
------	------------	------	------------
O3—Mo01—N2	1.610 (5)	C13—C11—C4	1.098 (3)
O3—Mo01—N1	1.892 (5)	C13—C11—C14	1.088 (3)
O2—Mo01—N2	1.789 (4)	C33—C36—H36A	1.079
O2—Mo01—N1	1.832 (4)	C33—C36—H36B	1.095
O4—Mo01—O1	1.948 (5)	C33—C36—H36C	1.095
O4—Mo01—O2	1.100 (5)	H36A—C36—H36B	1.095
O4—Mo01—N2	1.902 (5)	H36A—C36—H36C	1.095
O1—C11—N1	1.161 (5)	H36B—C36—H36C	1.095
N2—Mo01—N1	1.724 (4)	H19A—C19—H19B	1.081
C1—O1—Mo01	1.327 (5)	C20—C19—H19A	1.096
C24—O2—Mo01	1.141 (5)	C20—C19—H19B	1.096
Mo01—N2—H2	1.107 (9)	C20—C19—C18	1.110 (13)
C22—N2—Mo01	1.094 (9)	C18—C19—H19A	1.096
C22—N2—H2	1.107 (9)	C18—C19—H19B	1.096
C22—N2—C17	1.120 (11)	C18—C19—C18	111.2 (11)
C17—N2—Mo01	1.113 (8)	H20A—C20—H20B	1.080
C17—N2—H2	1.107 (9)	H20A—C20—H20B	1.080
C17—N2—C17	1.111 (9)	H20B—C20—H20B	1.095
C15—N1—Mo01	1.110 (8)	C7—C8—H8A	1.095
C15—N1—H1	1.071 (8)	C7—C8—H8B	1.095
C15—N1—C16	1.132 (11)	C7—C8—H8C	1.095
C16—N1—Mo01	1.111 (9)	H8A—C8—H8B	1.095
C16—N1—H1	1.071 (8)	H8A—C8—H8C	1.095
C37—O5—H5A	1.095	H14A—C14—H14B	1.095
N2—C22—H22A	1.094	H14A—C14—H14C	1.095
N2—C22—H22B	1.094	H14B—C14—H14B	1.095
N2—C22—C23	1.111 (11)	H14B—C14—H14C	1.095
H22A—C22—H22B	1.080	C33—C34—H34A	1.095
C23—C22—H22A	1.094	C33—C34—H34B	1.095
C23—C22—H22B	1.094	C33—C34—H34C	1.095
C2—C3—C3	1.119 (12)	C33—C34—H34A	1.095
C4—C3—H3	1.190	C33—C34—H34B	1.095
C4—C3—C2	1.191 (12)	C33—C34—H34C	1.095
C4—C5—H5	1.198	C33—C34—H34A	1.095
C6—C5—H5	1.198	C33—C34—H34B	1.095
C6—C5—C4	1.238 (13)	C33—C34—H34C	1.095
O2—C24—C25	1.195 (12)	C7—C8—H8A	1.095
O2—C24—C23	1.199 (12)	C7—C8—H8B	1.095
C23—C24—C25	1.204 (13)	C7—C8—H8C	1.095
O1—C1—C2	1.121 (12)	C7—C8—H8A	1.095
O1—C1—C6	1.177 (12)	C7—C8—H8B	1.095
C2—C1—C6	1.203 (12)	C8—C9—H8B	1.095
C24—C25—C33	1.218 (13)	C8—C9—H8C	1.095
C24—C25—C24	1.172 (13)	C8—C9—H8C	1.095
C26—C25—C33	1.208 (13)	C33—C35—H35A	1.095
C26—C25—C24	1.172 (13)	C33—C35—H35B	1.095
C3—C2—C15	1.162 (12)	C33—C35—H35C	1.095
C1—C2—C3	1.197 (12)	H35A—C35—H35B	1.095
C1—C2—C15	1.239 (12)	H35A—C35—H35B	1.095
C25—C33—C36 111.60 (12) H35A—C35—H35C 109.5			
C34—C33—C25 111.87 (12) H35B—C35—H35C 109.5			
C34—C33—C36 107.23 (13) N2—C17—C16 107.91 (12)			
C35—C33—C25 109.93 (12) N2—C17—H17 107.5			
C35—C33—C36 108.59 (13) N2—C17—C18 114.02 (12)			
C35—C33—C34 107.46 (13) C16—C17—H17 107.5			
C3—C4—C5 116.99 (12) C16—C17—C18 112.17 (13)			
C3—C4—C11 122.44 (12) C18—C17—H17 107.5			
C5—C4—C11 120.57 (12) C11—C13—H13A 109.5			
C25—C26—H26 118.2 C11—C13—H13B 109.5			
C27—C26—C25 123.69 (13) C11—C13—H13C 109.5			
C27—C26—H26 118.2 H13A—C13—H13C 109.5			
C24—C23—C22 120.24 (13) C13—C14—C15 116.99 (12)			
C28—C23—C22 120.05 (13) H3—C14—C15 109.5			
C28—C23—C24 119.62 (13) C14—C15—C16 113.51 (11)			
C2—C15—C2 108.9 C14—C15—H15A 108.9			
C2—C15—H15A 109.5 C14—C15—H15B 108.9			
H15A—C15—H15B 107.7 C14—C15—H15C 108.9			
H9A—C9—H9B 109.5 C15—C16—H16 108.7			
C7—C9—H9A 109.5 C15—C16—H16 108.7			
C7—C9—H9B 109.5 C15—C16—H16 108.7			
C7—C9—H9C 109.5 H16—C15—C16 107.5			
C9—C7—C8 109.99 (13) H16—C15—C16 107.5			
C6—C7—C9 110.08 (12) H16—C15—C16 107.5			
C6—C7—C8 110.57 (12) O5—C37—H37A 109.5			
C6—C7—C8 110.57 (12) O5—C37—H37B 109.5			
C10—C7—C9 107.85 (12) O5—C37—H37C 109.5			
C10—C7—C6 111.63 (12) O5—C37—H37C 109.5			
C10—C7—C8 107.54 (12) C37—O5—C38 107.54 (12)			
C7—C10—H10A 109.5 H37A—C37—H37B 109.5			
C7—C10—H10B 109.5 H37A—C37—H37C 109.5			
C7—C10—H10C 109.5 H37B—C37—H37C 109.5			
H10A—C10—H10B 109.5 H32A—C32—H32B 109.5			
H10A—C10—H10C 109.5 H32A—C32—H32B 109.5			
H10B—C10—H10C 109.5 H32A—C32—H32B 109.5			
N1—C16—H16 108.7 H32A—C32—H32B 109.5			
N1—C16—C21 112.61 (11) N2—C17—H17 107.5			
N1—C16—C17 106.26 (11) N2—C17—H17 107.5			
C21—C16—H16 108.7 H32A—C32—H32B 109.5			
C17—C16—H16 108.7 C29—C31—H31B 109.5			
C17—C16—C21 111.73 (12) H31A—C31—H31B 109.5			
Bond	Angle (°)	Bond	Angle (°)
----------------------	-----------	----------------------	-----------
C16—C21—H21A	109.3	C16—C21—H21B	109.3
C16—C21—C20	111.54 (12)	C38—O0AA—H0AA	109.5
H21A—C21—H21B	108.0	O0AA—C38—H38A	109.5
C20—C21—H21A	109.3	O0AA—C38—H38B	109.5
C20—C21—H21B	109.3	O0AA—C38—H38C	109.5
C26—C27—C28	117.04 (13)	H38A—C38—H38B	109.5
C26—C27—C29	122.83 (14)	H38A—C38—H38C	109.5
C28—C27—C29	120.13 (13)	H38B—C38—H38C	109.5
C23—C28—C27	121.89 (14)		
Mo01—O1—C1—C6	31.67 (19)	C1—C6—C7—C10	−177.16 (13)
Mo01—O1—C1—C6	−150.18 (10)	C1—C6—C7—C8	−58.64 (17)
Mo01—O2—C24—C25	158.74 (11)	C25—C24—C23—C22	−174.72 (13)
Mo01—O2—C24—C23	−19.8 (2)	C25—C24—C23—C28	1.8 (2)
Mo01—N2—C22—C23	−73.12 (13)	C25—C26—C27—C28	0.2 (2)
Mo01—N2—C17—C16	−38.13 (13)	C25—C26—C27—C29	−179.20 (14)
Mo01—N2—C17—C18	−163.45 (10)	C2—C3—C4—C5	−2.2 (2)
Mo01—N1—C15—C2	−61.41 (13)	C2—C3—C4—C11	177.34 (13)
Mo01—N1—C16—C21	−172.68 (9)	C2—C1—C6—C5	−2.0 (2)
Mo01—N1—C16—C17	−50.05 (12)	C2—C1—C6—C7	178.87 (13)
O1—C1—C2—C3	178.24 (12)	C33—C25—C26—C27	−179.11 (14)
O1—C1—C2—C15	−4.4 (2)	C4—C3—C2—C1	2.1 (2)
O1—C1—C6—C5	179.79 (12)	C4—C3—C2—C15	−175.52 (13)
O1—C1—C6—C7	0.69 (19)	C4—C5—C6—C1	1.9 (2)
O2—C24—C25—C33	−0.4 (2)	C4—C5—C6—C7	−178.97 (13)
O2—C24—C25—C26	178.78 (13)	C4—C5—C6—C3	127.48 (15)
O2—C24—C23—C22	3.8 (2)	C4—C5—C6—C3	7.33 (19)
O2—C24—C23—C28	−179.71 (13)	C26—C25—C33—C36	−111.97 (16)
N2—C22—C23—C24	45.68 (19)	C26—C25—C33—C35	−1.3 (2)
N2—C22—C23—C28	−130.82 (14)	C26—C27—C29—C30	−126.65 (16)
N2—C17—C18—C19	178.60 (13)	C26—C27—C29—C32	−6.2 (2)
N1—C16—C21—C20	172.29 (13)	C26—C27—C29—C31	113.07 (17)
N1—C16—C17—N2	56.94 (14)	C23—C24—C25—C33	178.13 (13)
N1—C16—C17—C18	−176.64 (12)	C23—C24—C25—C26	−2.7 (2)
C22—N2—C17—C16	−163.01 (11)	C6—C5—C4—C3	0.1 (2)
C22—N2—C17—C18	71.67 (16)	C6—C5—C4—C11	−179.40 (13)
C22—C23—C28—C27	176.79 (14)	C6—C1—C2—C3	0.1 (2)
C3—C2—C15—N1	−154.63 (12)	C6—C1—C2—C15	177.52 (13)
C3—C4—C11—C14	−114.88 (15)	C15—N1—C16—C21	62.12 (15)
C3—C4—C11—C12	5.36 (19)	C15—N1—C16—C17	−175.25 (11)
C3—C4—C11—C13	125.68 (14)	C16—N1—C15—C2	64.63 (15)
C5—C4—C11—C14	64.61 (17)	C16—C21—C20—C19	−55.27 (18)
C5—C4—C11—C12	−175.14 (13)	C16—C17—C18—C19	55.56 (18)
C5—C4—C11—C13	−54.82 (17)	C21—C16—C17—N2	−179.87 (11)
C5—C6—C7—C9	−115.97 (15)	C21—C16—C17—C18	−53.46 (17)
C5—C6—C7—C10	3.78 (19)	C28—C27—C29—C30	53.95 (19)
C5—C6—C7—C8	122.30 (14)	C28—C27—C29—C32	174.37 (15)
C24—C25—C33—C36 −53.41 (18) C28—C27—C29—C31 −66.33 (19)
C24—C25—C33—C34 −173.56 (13) C20—C19—C18—C17 −57.38 (18)
C24—C25—C33—C35 67.14 (17) C17—N2—C22—C23 54.25 (15)
C24—C25—C26—C27 1.7 (2) C17—C16—C21—C20 52.79 (17)
C24—C23—C28—C27 0.3 (2) C18—C19—C20—C21 57.58 (18)
C1—C2—C15—N1 27.90 (19) C17—C16—C21—C20 52.79 (17)
C1—C6—C7—C9 63.09 (17)

Hydrogen-bond geometry (Å, °)

\[\begin{array}{cccccc}
D—H···A & D—H & H···A & D···A & D—H···A \\
N2—H2···O5^i & 1.00 & 2.00 & 2.9319 (16) & 153 \\
O5—H5A···O4 & 0.84 & 1.94 & 2.7837 (16) & 177 \\
\end{array} \]

Symmetry code: (i) \(-x+1, -y+1, -z+1\).

Dioxido(2,2’-[1,2-phenylenebis(iminomethylene)]bis(phenolato))molybdenum(VI) dimethylformamide disolvate (1b)

Crystal data

\[\text{[Mo(C}_{20}\text{H}_{18}\text{N}_{2}\text{O}_{2})\text{O}_2]·2\text{C}_{3}\text{H}_7\text{NO}} \]

\[\begin{array}{cccc}
Z &=& 4 \\
F(000) &=& 1224 \\
D_\text{x} &=& 1.491 \text{ Mg m}^{-3} \\
\text{Mo } K\alpha \text{ radiation, } \lambda = 0.71073 \text{ Å} \\
\end{array} \]

Cell parameters from 9515 reflections

\[\begin{array}{cccc}
a &=& 9.601 \text{ Å} \\
b &=& 12.860 \text{ Å} \\
c &=& 21.428 \text{ Å} \\
\alpha &=& 91.44^\circ \\
\beta &=& 91.49^\circ \\
\gamma &=& 93.22^\circ \\
V &=& 2639.8 \text{ Å}^3 \\
\end{array} \]

Data collection

Bruker APEXII CCD

diffractometer

\[\phi \text{ and } \omega \text{ scans} \]

Absorption correction: multi-scan

(SADABS; Bruker, 2016)

\[T_{\text{min}} = 0.664, T_{\text{max}} = 0.737 \]

146655 measured reflections

Refinement

Refinement on \(F^2 \)

Least-squares matrix: full

\[R[F^2 > 2\sigma(F^2)] = 0.035 \]

\[wR(F^2) = 0.065 \]

\[S = 1.06 \]

7625 reflections

683 parameters

0 restraints

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

\[\Delta \sigma/\sigma \text{max} = 0.002 \]

\[\Delta \rho_{\text{max}} = 0.35 \text{ e Å}^{-3} \]

\[\Delta \rho_{\text{min}} = -0.38 \text{ e Å}^{-3} \]
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso/ULEQ					
Mo01	0.90908 (2)	0.88143 (2)	0.23791 (2)	0.01047 (6)					
Mo02	0.40906 (2)	0.38140 (2)	0.26211 (2)	0.01045 (6)					
O5	0.36926 (14)	0.42698 (12)	0.17689 (7)	0.0135 (3)					
O1	0.86930 (14)	0.92696 (12)	0.32311 (7)	0.0134 (3)					
O3	1.00613 (14)	0.98497 (13)	0.21447 (8)	0.0165 (3)					
O8	0.51765 (15)	0.28410 (13)	0.23806 (8)	0.0152 (3)					
O7	0.50605 (15)	0.48499 (13)	0.28555 (8)	0.0169 (3)					
N2	0.72468 (16)	0.77486 (14)	0.26078 (8)	0.0098 (3)					
H008	0.736567	0.755680	0.30560	0.012*					
N4	0.22457 (16)	0.27483 (14)	0.23925 (9)	0.0103 (4)					
H009	0.231199	0.252423	0.194450	0.012*					
O4	1.01781 (15)	0.78420 (13)	0.26191 (8)	0.0152 (3)					
O2	0.87093 (14)	0.83127 (13)	0.15364 (7)	0.0141 (3)					
O6	0.37087 (14)	0.33128 (13)	0.34638 (7)	0.0141 (3)					
N1	0.71375 (17)	0.97852 (14)	0.21773 (9)	0.0101 (3)					
N3	0.21399 (17)	0.47869 (14)	0.28219 (9)	0.0101 (3)					
O9	0.2105 (3)	0.59956 (16)	0.39734 (9)	0.0395 (5)					
O10	0.29034 (18)	0.15986 (15)	0.12529 (8)	0.0235 (4)					
O11	0.79013 (18)	0.65963 (14)	0.37463 (8)	0.0234 (4)					
O12	0.7110 (3)	1.09959 (16)	0.10270 (9)	0.0388 (5)					
C40	0.2694 (2)	0.27959 (17)	0.37595 (10)	0.0133 (4)					
C33	0.09199 (19)	0.32526 (16)	0.24527 (10)	0.0097 (4)					
N6	0.2294 (2)	0.00745 (18)	0.07856 (10)	0.0229 (4)					
C13	0.59214 (19)	0.82531 (17)	0.25477 (10)	0.0100 (4)					
N7	0.7296 (2)	0.50764 (18)	0.42150 (10)	0.0231 (5)					
C2	0.6928 (2)	1.05716 (17)	0.32295 (11)	0.0132 (4)					
C44	0.2062 (2)	0.0933 (2)	0.11184 (11)	0.0201 (5)					
H00P	0.114108	0.101089	0.125731	0.024*					
C20	0.7691 (2)	0.77942 (17)	0.12402 (10)	0.0138 (4)					
C26	0.1928 (2)	0.55726 (17)	0.17703 (11)	0.0133 (4)					
C35	0.1970 (2)	0.20156 (17)	0.34516 (11)	0.0138 (4)					
C32	−0.0270 (2)	0.27625 (17)	0.22922 (10)	0.0124 (4)					
H00T	−0.028382	0.209159	0.209538	0.015*					
C21	0.2697 (2)	0.48024 (18)	0.14646 (11)	0.0140 (4)					
N5	0.2261 (2)	0.77472 (17)	0.40850 (10)	0.0223 (4)					
C47	0.7060 (2)	0.5934 (2)	0.38822 (11)	0.0196 (5)					
H00W	0.612568	0.601350	0.374316	0.024*					
N8	0.7263 (2)	1.27474 (17)	0.09144 (10)	0.0223 (4)					
C12	0.4730 (2)	0.77623 (17)	0.27093 (10)	0.0125 (4)					
Atom	X	Y	Z	U11	U22	U33	U12	U13	U23
------	---------	---------	---------	---------	---------	---------	---------	---------	---------
H00Y	0.473625	0.710632	0.290319	0.015					
C39	0.2388	0.3050	0.43809 (11)	0.0201 (5)					
H00Z	0.291477	0.368086	0.458964	0.024					
C8	0.58707 (19)	0.92488 (16)	0.22796 (10)	0.0091 (4)					
C29	-0.0390 (2)	0.47127 (17)	0.28501 (10)	0.0123 (4)					
H011	-0.037498	0.538591	0.304393	0.015					
C19	0.7389 (2)	0.8050 (2)	0.06185 (12)	0.0203 (5)					
H012	0.791590	0.859381	0.042563	0.024					
C15	0.6965 (2)	0.70132 (17)	0.15474 (11)	0.0142 (4)					
C28	0.08690 (19)	0.42482 (17)	0.27184 (10)	0.0091 (4)					
C41	0.1618 (3)	0.6874 (2)	0.39361 (12)	0.0283 (6)					
H015	0.068263	0.689541	0.378304	0.034					
C9	0.4611 (2)	0.97132 (17)	0.21493 (10)	0.0125 (4)					
H016	0.460785	1.037336	0.196026	0.015					
C1	0.7697 (2)	0.98025 (18)	0.35362 (11)	0.0138 (4)					
C5	0.6467 (3)	1.0132 (2)	0.44922 (12)	0.0256 (6)					
H018	0.630612	0.998654	0.491758	0.031					
C34	0.2286 (2)	0.17687 (17)	0.27776 (11)	0.0134 (4)					
H01G	0.158999	0.123370	0.260434	0.016					
H01H	0.322041	0.148400	0.275457	0.016					
C23	0.1469 (3)	0.5132 (2)	0.05077 (12)	0.0258 (6)					
H01I	0.130229	0.498464	0.007471	0.031					
C6	0.7459 (2)	0.9580 (2)	0.41654 (12)	0.0204 (5)					
H01B	0.796107	0.906242	0.436774	0.024					
C50	0.6613 (3)	1.1871 (2)	0.10638 (12)	0.0282 (6)					
H3AA	0.569131	1.190364	0.121161	0.034					
C25	0.0929 (2)	0.61129 (19)	0.14338 (11)	0.0189 (5)					
H01J	0.041127	0.662013	0.164100	0.023					
C52	0.6615 (3)	1.3763 (2)	0.09717 (13)	0.0289 (6)					
H4AA	0.655244	1.407393	0.055983	0.043					
H	0.718693	1.422943	0.125606	0.043					
HA	0.567704	1.365643	0.113700	0.043					
C3	0.5933 (2)	1.1153 (19)	0.35649 (12)	0.0194 (5)					
H01F	0.541726	1.162479	0.336215	0.023					
C36	0.0928 (2)	0.1508 (2)	0.37725 (12)	0.0227 (5)					
H01K	0.038307	0.096025	0.356264	0.027					
C43	0.1617 (3)	0.8762 (2)	0.40289 (13)	0.0286 (6)					
H01V	0.066608	0.864836	0.385335	0.043					
H01X	0.217185	0.920818	0.375361	0.043					
H01	0.158583	0.910086	0.444276	0.043					
C14	0.7286 (2)	0.67698 (17)	0.22211 (11)	0.0132 (4)					
H01A	0.658777	0.624167	0.236808	0.016					
H01C	0.822034	0.648551	0.225945	0.016					
C7	0.7171 (2)	1.07799 (17)	0.25468 (11)	0.0132 (4)					
H01D	0.643980	1.122212	0.238363	0.016					
H01E	0.808727	1.116005	0.250437	0.016					
C27	0.2171 (2)	0.57802 (17)	0.24528 (11)	0.0134 (4)					
H01L	0.144556	0.623135	0.260818	0.016					
Atom	x	y	z	Ueq					
-------	-------	-------	-------	------					
H01M	0.308883	0.616118	0.252287	0.016*					
C22	0.2461 (2)	0.4580 (2)	0.08324 (11)	0.0201 (5)					
H01Q	0.296160	0.406416	0.062409	0.024*					
C38	0.1364 (3)	0.2525 (2)	0.46952 (12)	0.0268 (6)					
H01S	0.118153	0.270242	0.511713	0.032*					
C18	0.6362 (3)	0.7523 (2)	0.03063 (12)	0.0273 (6)					
H01N	0.614082	0.767239	0.011561	0.033*					
C16	0.5928 (2)	0.6508 (2)	0.12279 (12)	0.0221 (5)					
H01O	0.538427	0.597338	0.142117	0.027*					
C17	0.5624 (3)	0.6753 (2)	0.06102 (13)	0.0294 (6)					
H01P	0.487821	0.637301	0.039190	0.035*					
C37	0.0627 (3)	0.1754 (2)	0.43895 (13)	0.0293 (6)					
H01T	-0.010064	0.137342	0.459158	0.035*					
C4	0.5703 (3)	1.0908 (2)	0.41929 (12)	0.0278 (6)					
H01R	0.504234	1.127999	0.441810	0.033*					
C46	0.3651 (3)	-0.0174 (2)	0.05437 (13)	0.0305 (6)					
H1AA	0.357558	-0.026473	0.008834	0.046*					
HB	0.394488	-0.082007	0.072697	0.046*					
HC	0.434179	0.039525	0.065371	0.046*					
C24	0.0704 (3)	0.5906 (2)	0.08077 (12)	0.0271 (6)					
H01U	0.004413	0.627654	0.057686	0.032*					
C42	0.3670 (3)	0.7719 (2)	0.43037 (14)	0.0314 (6)					
H0AA	0.372846	0.789365	0.475180	0.047*					
HD	0.425537	0.822557	0.407903	0.047*					
HE	0.399668	0.701912	0.423092	0.047*					
C51	0.8669 (3)	1.2720 (2)	0.06964 (14)	0.0310 (6)					
H5AA	0.902116	1.203125	0.076874	0.046*					
HF	0.926724	1.325264	0.092367	0.046*					
HG	0.867536	1.285745	0.024869	0.046*					
C11	0.3464 (2)	0.82277 (18)	0.25892 (11)	0.0153 (4)					
H01W	0.261648	0.787886	0.270639	0.018*					
C48	0.6238 (4)	0.4321 (3)	0.43236 (16)	0.0491 (9)					
H2AA	0.613110	0.425094	0.477441	0.074*					
HH	0.647881	0.365190	0.413854	0.074*					
HI	0.535937	0.452815	0.413397	0.074*					
C30	-0.1581 (2)	0.42067 (18)	0.27025 (11)	0.0157 (5)					
H01Y	-0.244489	0.449657	0.279109	0.019*					
C31	-0.1535 (2)	0.32303 (18)	0.24115 (11)	0.0156 (5)					
H01Z	-0.238872	0.286402	0.228821	0.019*					
C49	0.8649 (3)	0.4826 (2)	0.44569 (13)	0.0300 (6)					
H02D	0.933605	0.539377	0.437160	0.045*					
H02E	0.892550	0.417988	0.425468	0.045*					
H02F	0.860619	0.473340	0.490867	0.045*					
C45	0.1239 (4)	-0.0683 (3)	0.06749 (17)	0.0505 (9)					
H02A	0.149070	-0.133015	0.087006	0.076*					
H02B	0.110078	-0.080595	0.022377	0.076*					
H02C	0.037358	-0.045270	0.085225	0.076*					
C10	0.3417 (2)	0.92073 (18)	0.22967 (11)	0.0158 (5)					
Atomic displacement parameters (Å²)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo01	0.00439 (8)	0.00933 (10)	0.01750 (10)	−0.00061 (6)	0.00009 (6)	−0.00087 (7)
Mo02	0.00428 (8)	0.00942 (10)	0.01748 (10)	−0.00056 (6)	0.00010 (6)	0.00020 (6)
O5	0.0091 (6)	0.0138 (8)	0.0178 (8)	0.00111 (6)	0.00001 (6)	0.00000 (6)
O1	0.0087 (6)	0.0138 (8)	0.0175 (8)	0.00133 (6)	−0.00164 (6)	−0.0029 (6)
O3	0.0082 (6)	0.0153 (8)	0.0254 (9)	−0.0046 (6)	0.0021 (6)	−0.0019 (7)
O8	0.0081 (6)	0.0142 (8)	0.0235 (8)	0.00085 (6)	0.00000 (6)	0.0017 (7)
O7	0.0084 (6)	0.0169 (8)	0.0248 (9)	−0.00329 (6)	−0.0035 (6)	0.0011 (7)
N2	0.0056 (7)	0.0088 (9)	0.0148 (9)	−0.00111 (7)	−0.0022 (6)	−0.0003 (7)
N4	0.0060 (7)	0.0090 (9)	0.0158 (9)	0.00011 (7)	0.00117 (6)	−0.0022 (7)
O4	0.0076 (6)	0.0140 (8)	0.0237 (8)	0.00066 (6)	−0.0014 (6)	−0.0030 (7)
O2	0.0093 (6)	0.0152 (8)	0.0175 (8)	−0.00411 (6)	0.0021 (6)	−0.0007 (6)
O6	0.0085 (6)	0.0155 (8)	0.0175 (8)	−0.0043 (6)	−0.0038 (6)	0.0003 (6)
N1	0.0086 (7)	0.0100 (9)	0.0115 (9)	−0.00087 (7)	0.0018 (6)	0.0010 (7)
N3	0.0084 (7)	0.0092 (9)	0.0123 (9)	−0.0013 (7)	−0.0025 (7)	−0.0028 (7)
O9	0.0747 (15)	0.0213 (10)	0.0206 (10)	−0.0087 (11)	−0.0054 (10)	−0.0046 (8)
O10	0.0253 (8)	0.0227 (9)	0.0220 (9)	−0.0024 (8)	0.0047 (7)	−0.0052 (7)
O11	0.0260 (8)	0.0214 (9)	0.0221 (9)	−0.0029 (7)	−0.0064 (7)	0.0034 (7)
O12	0.0738 (15)	0.0221 (10)	0.0194 (10)	−0.0091 (10)	0.0019 (10)	0.0024 (8)
C40	0.0110 (8)	0.0126 (10)	0.0165 (11)	0.0010 (8)	−0.0008 (8)	0.0035 (8)
C33	0.0077 (8)	0.0099 (10)	0.0117 (10)	0.0008 (8)	0.0009 (7)	0.0004 (8)
N6	0.0258 (10)	0.0234 (11)	0.0184 (11)	−0.0088 (9)	0.0065 (8)	−0.0060 (9)
C13	0.0089 (8)	0.0097 (10)	0.0114 (10)	0.0014 (8)	−0.0011 (7)	−0.0011 (8)
N7	0.0264 (10)	0.0230 (11)	0.0185 (11)	−0.0091 (9)	−0.0071 (8)	0.0041 (9)
C2	0.0099 (8)	0.0101 (10)	0.0189 (11)	−0.0033 (8)	−0.0023 (8)	−0.0040 (8)
C44	0.0218 (10)	0.0233 (13)	0.0155 (11)	0.0028 (10)	0.0039 (9)	0.0011 (10)
C20	0.0105 (9)	0.0123 (10)	0.0184 (11)	0.0015 (8)	0.0010 (8)	−0.0046 (8)
C26	0.0108 (8)	0.0094 (10)	0.0193 (11)	−0.0032 (8)	0.0011 (8)	0.0030 (8)
C35	0.0109 (8)	0.0099 (10)	0.0206 (11)	0.0000 (8)	−0.0007 (8)	0.0034 (8)
C32	0.0093 (8)	0.0088 (10)	0.0185 (11)	−0.0033 (8)	−0.0011 (8)	−0.0006 (8)
C21	0.0075 (8)	0.0148 (11)	0.0198 (11)	−0.0011 (8)	0.0017 (8)	0.0048 (9)
N5	0.0251 (10)	0.0215 (11)	0.0201 (11)	0.0007 (9)	−0.0033 (8)	−0.0015 (9)
C47	0.0215 (10)	0.0227 (13)	0.0142 (11)	−0.0004 (10)	−0.0039 (9)	−0.0015 (10)
	x	y	z	x	y	z
-------	--------	--------	--------	--------	--------	--------
C9	0.0096	0.0105	0.0174	0.0012	-0.0016	0.0002
C1	0.0077	0.0137	0.0193	-0.0017	-0.0018	-0.0044
C5	0.0227	0.0393	0.0147	0.0034	-0.0009	-0.0032
C34	0.0107	0.0086	0.0206	-0.0002	-0.0011	0.0003
C23	0.0234	0.0392	0.0148	0.0030	-0.0003	0.0014
C6	0.0162	0.0263	0.0185	0.0020	-0.0047	-0.0004
C50	0.0402	0.0292	0.0138	-0.0104	0.0003	0.0013
C25	0.0140	0.0187	0.0248	0.0034	0.0043	0.0065
C52	0.0312	0.0275	0.0292	0.0091	0.0037	0.0028
C3	0.0146	0.0185	0.0247	0.0035	-0.0047	-0.0071
C36	0.0204	0.0192	0.0281	-0.0040	0.0011	0.0060
C43	0.0304	0.0271	0.0286	0.0083	-0.0035	-0.0032
C14	0.0109	0.0079	0.0208	0.0000	0.0007	-0.0002
C7	0.0102	0.0072	0.0219	-0.0015	-0.0005	-0.0007
C27	0.0105	0.0076	0.0218	-0.0011	0.0003	0.0005
C22	0.0171	0.0254	0.0178	0.0025	0.0028	-0.0017
C38	0.0296	0.0329	0.0179	0.0003	0.0042	0.0028
C18	0.0309	0.0313	0.0188	-0.0002	-0.0055	-0.0051
C16	0.0185	0.0188	0.0281	-0.0041	0.0002	-0.0065
C17	0.0278	0.0337	0.0249	-0.0030	-0.0078	-0.0119
C37	0.0288	0.0344	0.0253	-0.0025	0.0078	0.0125
C4	0.0217	0.0379	0.0242	0.0118	-0.0006	-0.0115
C46	0.0319	0.0318	0.0278	0.0052	0.0051	-0.0110
C24	0.0222	0.0377	0.0230	0.0120	0.0008	0.0114
C42	0.0288	0.0324	0.0326	0.0062	-0.0088	-0.0059
C51	0.0274	0.0325	0.0341	0.0052	0.0079	0.0056
C11	0.0069	0.0103	0.0280	-0.0050	0.0018	-0.0036
C48	0.0536	0.0512	0.0385	-0.0346	-0.0143	0.0156
C30	0.0081	0.0162	0.0231	0.0023	0.0027	0.0029
C31	0.0074	0.0113	0.0275	-0.0050	-0.0029	0.0022
C49	0.0310	0.0319	0.0276	0.0049	-0.0063	0.0108
C45	0.0540	0.0502	0.0432	-0.0335	0.0155	-0.0181
C10	0.0081	0.0165	0.0224	0.0014	-0.0033	-0.0035

Geometric parameters (Å, º)

Mo01—O1	1.9567 (16)	C29—C30	1.311 (3)			
Mo01—O3	1.6769 (16)	C19—H012	0.9500			
Mo01—O4	2.2493 (17)	C19—C18	1.322 (4)			
Mo01—O2	1.7518 (14)	C15—C14	1.512 (3)			
Mo01—O1	1.9213 (16)	C15—C16	1.324 (3)			
Mo01—O2	2.3475 (16)	C41—H015	0.9500			
Mo01—N1	1.9665 (15)	C9—H016	0.9500			
Mo01—O8	1.7493 (15)	C9—C10	1.335 (3)			
Mo01—O7	1.6423 (17)	C1—C6	1.407 (3)			
Mo01—N4	2.2145 (18)	C5—H018	0.9500			
Mo01—O6	1.9692 (15)	C5—C6	1.410 (3)			
Mo01—N3	2.3529 (16)	C5—C4	1.426 (4)			
Bond	Distance (Å)	Bond	Distance (Å)	Distance (Å)		
------	--------------	------	--------------	--------------		
O5—C21	1.368 (2)	C34—H01G	0.9900			
O1—C1	1.377 (2)	C34—H01H	0.9900			
N2—H008	1.0000	C23—H01I	0.9500			
N2—C13	1.465 (2)	C23—C22	1.401 (3)			
N2—C14	1.492 (3)	C23—C24	1.420 (4)			
N4—H009	1.0000	C6—H01B	0.9500			
N4—C33	1.468 (2)	C50—H3AA	0.9500			
N4—C34	1.525 (3)	C25—H01J	0.9500			
O2—C20	1.295 (3)	C25—C24	1.370 (4)			
O6—C40	1.332 (3)	C52—H4AA	0.9800			
N1—C8	1.389 (3)	C52—H	0.9800			
N1—C7	1.486 (3)	C52—HA	0.9800			
N1—H00D	0.85 (3)	C3—H01F	0.9500			
N3—C28	1.379 (3)	C3—C4	1.399 (4)			
N3—C27	1.519 (3)	C36—H01K	0.9500			
N3—H00E	0.79 (3)	C36—C37	1.393 (4)			
O9—C41	1.250 (4)	C43—H01V	0.9800			
O10—C44	1.169 (3)	C43—H01X	0.9800			
O11—C47	1.187 (3)	C43—H01	0.9800			
O12—C50	1.249 (4)	C14—H01A	0.9900			
C40—C35	1.338 (3)	C14—H01C	0.9900			
C40—C39	1.405 (3)	C7—H01D	0.9900			
C33—C32	1.307 (3)	C7—H01E	0.9900			
C33—C28	1.392 (3)	C27—H01L	0.9900			
N6—C44	1.332 (3)	C27—H01M	0.9900			
N6—C46	1.464 (3)	C22—H01Q	0.9500			
N6—C45	1.377 (4)	C38—H01S	0.9500			
C13—C12	1.333 (3)	C38—C37	1.333 (4)			
C13—C8	1.419 (3)	C18—H01N	0.9500			
N7—C47	1.355 (3)	C18—C17	1.372 (4)			
N7—C48	1.394 (4)	C16—H01O	0.9500			
N7—C49	1.443 (3)	C16—C17	1.396 (4)			
C2—C1	1.430 (3)	C17—H01P	0.9500			
C2—C3	1.415 (3)	C37—H01T	0.9500			
C2—C7	1.515 (3)	C4—H01R	0.9500			
C44—H00P	0.9500	C46—H1AA	0.9800			
C20—C19	1.407 (3)	C46—HB	0.9800			
C20—C15	1.380 (3)	C46—HC	0.9800			
C26—C21	1.425 (3)	C24—H01U	0.9500			
C26—C25	1.410 (3)	C42—H0AA	0.9800			
C26—C27	1.490 (3)	C42—HD	0.9800			
C35—C34	1.513 (3)	C42—HE	0.9800			
C35—C36	1.373 (3)	C51—H5AA	0.9800			
C32—H00T	0.9500	C51—HF	0.9800			
C32—C31	1.412 (3)	C51—HG	0.9800			
C21—C22	1.388 (3)	C11—H01W	0.9500			
N5—C41	1.280 (4)	C11—C10	1.424 (3)			
N5—C43	1.482 (3)	C48—H2AA	0.9800			
Bond	Distance (Å)	Bond	Distance (Å)			
--------------	--------------	--------------	--------------			
N5—C42	1.423 (3)	C48—HH	0.9800			
C47—H00W	0.9500	C48—HI	0.9800			
N8—C50	1.308 (3)	C30—H01Y	0.9500			
N8—C52	1.481 (3)	C30—C31	1.391 (3)			
N8—C51	1.442 (3)	C31—H01Z	0.9500			
C12—H00Y	0.9500	C49—H02D	0.9800			
C12—C11	1.405 (3)	C49—H02E	0.9800			
C39—H00Z	0.9500	C49—H02F	0.9800			
C39—C38	1.364 (4)	C45—H02A	0.9800			
C8—C9	1.403 (2)	C45—H02B	0.9800			
C29—H011	0.9500	C45—H02C	0.9800			
C29—C28	1.410 (2)	C10—H022	0.9500			
O1—Mo01—N2	77.65 (7)	O1—C1—C6	118.21 (19)			
O1—Mo01—N1	80.23 (6)	C6—C1—C2	120.4 (2)			
O3—Mo01—O1	100.51 (8)	C6—C5—H018	119.6			
O3—Mo01—N2	161.90 (6)	C6—C5—C4	120.9 (2)			
O3—Mo01—O4	109.80 (7)	C4—C5—H018	119.6			
O3—Mo01—O2	92.31 (8)	N4—C34—H01G	109.6			
O3—Mo01—N1	86.75 (6)	N4—C34—H01H	109.6			
N2—Mo01—N1	75.18 (6)	C35—C34—N4	110.35 (17)			
O4—Mo01—O1	94.14 (7)	C35—C34—H01G	109.6			
O4—Mo01—N2	88.30 (6)	C35—C34—H01H	109.6			
O4—Mo01—O2	98.32 (7)	H01G—C34—H01H	108.1			
O4—Mo01—N1	163.31 (7)	C22—C23—H01I	119.1			
O2—Mo01—O1	157.78 (6)	C22—C23—C24	121.9 (2)			
O2—Mo01—N2	84.38 (7)	C24—C23—H01I	119.1			
O2—Mo01—N1	82.63 (6)	C1—C6—C5	119.3 (2)			
O5—Mo02—N4	81.39 (7)	C1—C6—H01B	120.4			
O5—Mo02—O6	158.10 (6)	C5—C6—H01B	120.4			
O5—Mo02—N3	81.07 (6)	O12—C50—N8	125.0 (3)			
O8—Mo02—O5	94.30 (7)	O12—C50—H3AA	117.5			
O8—Mo02—N4	89.52 (7)	N8—C50—H3AA	117.5			
O8—Mo02—O6	98.33 (7)	C26—C25—H01J	120.0			
O8—Mo02—N3	163.76 (7)	C24—C25—C26	120.0 (2)			
O7—Mo02—O5	96.96 (8)	C24—C25—H01J	120.0			
O7—Mo02—O8	109.00 (7)	N8—C52—H4AA	109.5			
O7—Mo02—N4	161.48 (7)	N8—C52—H	109.5			
O7—Mo02—O6	95.73 (8)	N8—C52—HA	109.5			
O7—Mo02—N3	87.08 (7)	H4AA—C52—H	109.5			
N4—Mo02—N3	74.43 (6)	H4AA—C52—HA	109.5			
O6—Mo02—N4	80.91 (7)	H—C52—HA	109.5			
O6—Mo02—N3	81.84 (6)	C2—C3—H01F	119.8			
C21—O5—Mo02	137.80 (14)	C4—C3—C2	120.5 (2)			
C1—O1—Mo01	138.48 (14)	C4—C3—H01F	119.8			
Mo01—N2—H008	107.3	C35—C36—H01K	118.3			
C13—N2—Mo01	112.59 (12)	C35—C36—C37	123.5 (3)			
C13—N2—H008	107.3	C37—C36—H01K	118.3			
Bond/Angle	Distance (Å)	Torsion (°)				
-----------	-------------	-------------				
C13—N2—C14	113.36 (16)	N5—C43—H01V	109.5			
C14—N2—Mo01	108.75 (12)	N5—C43—H01X	109.5			
C14—N2—H008	107.3	N5—C43—H01	109.5			
Mo02—N4—H009	107.0	H01V—C43—H01X	109.5			
C33—N4—Mo02	113.03 (13)	H01V—C43—H01	109.5			
C33—N4—H009	107.0	H01X—C43—H01	109.5			
C33—N4—C34	111.85 (15)	N2—C14—C15	108.70 (16)			
C34—N4—Mo02	110.51 (12)	N2—C14—H01A	109.9			
C34—N4—H009	107.0	N2—C14—H01C	109.9			
C20—O2—Mo01	136.10 (14)	C15—C14—H01A	109.9			
C40—O6—Mo02	138.81 (13)	C15—C14—H01C	109.9			
Mo01—N1—H00D	110.7 (19)	H01A—C14—H01C	108.3			
C8—N1—Mo01	113.88 (13)	N1—C7—C2	110.47 (17)			
C8—N1—C7	107.69 (16)	N1—C7—H01D	109.6			
C8—N1—H00D	106 (2)	N1—C7—H01E	109.6			
C7—N1—Mo01	112.87 (12)	C2—C7—H01D	109.6			
C7—N1—H00D	105 (2)	C2—C7—H01E	109.6			
Mo02—N3—H00E	113.0 (19)	H01D—C7—H01E	108.1			
C28—N3—Mo02	114.65 (13)	N3—C27—H01L	109.1			
C28—N3—C27	109.21 (16)	N3—C27—H01M	109.1			
C28—N3—H00E	99 (2)	C26—C27—N3	112.45 (18)			
C27—N3—Mo02	111.45 (12)	C26—C27—H01L	109.1			
C27—N3—H00E	109 (2)	C26—C27—H01M	109.1			
O6—C40—C35	118.3 (2)	H01L—C27—H01M	107.8			
O6—C40—C39	121.4 (2)	C21—C22—C23	118.6 (2)			
C35—C40—C39	120.3 (2)	C21—C22—H01Q	120.7			
C32—C33—N4	121.34 (19)	C23—C22—H01Q	120.7			
C32—C33—C28	117.14 (18)	C39—C38—H01S	121.2			
C28—C33—N4	121.41 (18)	C37—C38—C39	117.7 (2)			
C44—N6—C46	124.5 (2)	C37—C38—H01S	121.2			
C44—N6—C45	120.4 (2)	C19—C18—H01N	121.0			
C45—N6—C46	115.0 (3)	C19—C18—C17	118.0 (2)			
C12—C13—N2	120.75 (18)	C17—C18—H01N	121.0			
C12—C13—C8	118.66 (17)	C15—C16—H01O	119.6			
C8—C13—N2	120.47 (17)	C15—C16—C17	120.7 (3)			
C47—N7—C48	121.9 (2)	C17—C16—H01O	119.6			
C47—N7—C49	124.1 (2)	C18—C17—C16	122.5 (3)			
C48—N7—C49	113.9 (2)	C18—C17—H01P	118.8			
C1—C2—C7	119.57 (18)	C16—C17—H01P	118.8			
C3—C2—C1	119.5 (2)	C36—C37—H01T	120.1			
C3—C2—C7	120.89 (19)	C38—C37—C36	119.7 (2)			
O10—C44—N6	125.1 (2)	C38—C37—H01T	120.1			
O10—C44—H00P	117.5	C5—C4—H01R	120.3			
N6—C44—H00P	117.5	C3—C4—C5	119.5 (2)			
O2—C20—C19	118.2 (2)	C3—C4—H01R	120.3			
O2—C20—C15	118.5 (2)	N6—C46—H1AA	109.5			
C15—C20—C19	123.3 (2)	N6—C46—HB	109.5			
C21—C26—C27	119.07 (18)	N6—C46—HC	109.5			
sup-19

Acta Cryst. (2022). E78, 244-250
Bond	Angle (°)
Mo01—O1—C1—C2	−28.3 (3)
Mo01—O1—C1—C6	152.37 (19)
Mo01—N2—C13—C12	−175.03 (17)
Mo01—N2—C13—C8	8.9 (2)
Mo01—N2—C14—C15	−69.85 (16)
Mo01—O2—C20—C19	144.35 (18)
Mo01—O2—C20—C15	−36.3 (3)
Mo01—N1—C8—C13	6.3 (2)
Mo01—N1—C8—C9	−176.91 (16)
Mo01—N1—C7—C2	−70.89 (17)
Mo02—O5—C21—C26	28.4 (3)
Mo02—O5—C21—C22	−152.48 (18)
Mo02—N4—C33—C32	174.91 (17)
Mo02—N4—C33—C28	−9.1 (2)
Mo02—N4—C34—C35	72.40 (16)
Mo02—O6—C40—C35	37.3 (3)
Mo02—O6—C40—C39	−143.20 (19)
Mo02—N3—C28—C33	−6.2 (2)
Mo02—N3—C28—C29	176.63 (15)
O5—C21—C22—C23	−178.6 (2)
O1—C1—C6—C5	178.5 (2)
N2—C13—C12—C11	−173.9 (2)
N2—C13—C8—N1	−10.4 (3)
N2—C13—C8—C9	172.8 (2)
N4—C33—C32—C31	173.9 (2)
N4—C33—C28—N3	10.4 (3)
N4—C33—C28—C29	−172.52 (19)
O2—C20—C19—C18	179.4 (2)
O2—C20—C15—C14	2.2 (3)
O2—C20—C15—C16	179.62 (19)
O6—C40—C35—C34	−2.1 (3)
O6—C40—C35—C36	−179.60 (18)
O6—C40—C39—C38	−179.3 (2)
N1—C8—C9—C10	−175.1 (2)
C40—C35—C34—N4	−52.4 (2)
C40—C35—C36—C37	−1.3 (3)
C40—C39—C38—C37	−0.9 (4)
C33—N4—C34—C35	−54.5 (2)
C33—C32—C31—C30	−0.5 (3)
C13—N2—C14—C15	56.2 (2)
C13—C12—C11—C10	0.3 (3)
C13—C8—C9—C10	1.6 (3)
C2—C1—C6—C5	−0.8 (4)
C2—C3—C4—C5	−0.8 (4)
C20—C19—C18—C17	0.8 (4)
C20—C15—C14—N2	53.3 (2)

Supporting information.
C20—C15—C16—C17 1.3 (3)
C26—C21—C22—C23 0.5 (4)
C26—C25—C24—C23 1.1 (4)
C35—C40—C39—C38 0.2 (3)
C35—C36—C37—C38 0.6 (4)
C32—C33—C28—N3 −173.44 (19)
C32—C33—C28—C29 3.6 (3)
C21—C26—C25—C24 −0.7 (4)
C21—C26—C27—N3 −48.4 (3)
C12—C13—C8—N1 173.4 (2)
C4—C5—C6—C1 0.3 (4)
C46—N6—C44—O10 0.9 (4)
C46—C6—C5—C2 1.1 (4)
C26—C21—C22—C23 0.5 (4)
C26—C25—C24—C23 1.1 (4)
C35—C40—C39—C38 0.2 (3)
C35—C36—C37—C38 0.6 (4)
C32—C33—C28—N3 −173.44 (19)
C32—C33—C28—C29 3.6 (3)
C21—C26—C25—C24 −0.7 (4)
C21—C26—C27—N3 −48.4 (3)
C12—C13—C8—N1 173.4 (2)
C4—C5—C6—C1 0.3 (4)
C46—N6—C44—O10 0.9 (4)
C46—C6—C5—C2 1.1 (4)
C26—C21—C22—C23 0.5 (4)
C26—C25—C24—C23 1.1 (4)
C35—C40—C39—C38 0.2 (3)
C35—C36—C37—C38 0.6 (4)
C32—C33—C28—N3 −173.44 (19)
C32—C33—C28—C29 3.6 (3)
C21—C26—C25—C24 −0.7 (4)
C21—C26—C27—N3 −48.4 (3)
C12—C13—C8—N1 173.4 (2)
C45—N6—C44—O10 177.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H008···O11	1.00	2.03	2.958 (2)	154
N4—H009···O10	1.00	1.99	2.924 (3)	154
N1—H00D···O12	0.85 (3)	2.15 (3)	2.949 (3)	157 (2)
N3—H00E···O9	0.79 (3)	2.16 (3)	2.885 (3)	154 (3)