Utility of serum CA19-9 in diagnosis of cholangiocarcinoma: In comparison with CEA

Xing-Lei Qin, Zuo-Ren Wang, Jing-Sen Shi, Min Lu, Lin Wang, Quan-Ru He

Xing-Lei Qin, Zuo-Ren Wang, Jing-Sen Shi, Lin Wang, Department of Hepatobiliary Surgery, First Hospital of Xi’an Jiaotong University, Xi’ an 710061, Shaanxi Province, China
Min Lu, Quan-Ru He, Luoyang Central Hospital, Luoyang 471009, Henan Province, China

Correspondence to: Dr. Xing-Lei Qin, M.D., Department of Hepatobiliary Surgery, First Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China. qinxinglei@yahoo.com.cn
Telephone: +86-29-5274739 Fax: +86-29-5269313
Received: 2003-06-05 Accepted: 2003-07-24

INTRODUCTION

Cholangiocarcinoma is a malignant tumor arising from bile duct epithelium. Unlike most human cancers, a pathological diagnosis of cholangiocarcinoma is often extremely difficult because of its location, size, and desmoplastic characteristics[1-3]. Percutaneous fine needle aspiration is frequently not possible because many of these tumors are located in the liver hilum amid large vascular structures[4,5]. Furthermore, tumor masses are often not even identifiable by CT, ultrasound, or magnetic resonance imaging[6-8]. Endoscopic approaches are also of limited usefulness in tissue diagnosis because of the desmoplastic nature of these cancers. Indeed, bile cytology obtained at endoscopic retrograde cholangiography has a sensitivity of only 33-56%,[9,10] endobiliary brush cytology of 50-68%,[12,14], and endoscopic transpapillary biopsy of 53-86% for detecting cholangiocarcinoma[15-18]. Because of the problems in obtaining diagnostic tissues, treatment and management decisions for patients with biliary disease that may be malignant are problematic.

Of the two possible tumor markers available for detecting cholangiocarcinomas, carcinoembryonic antigen (CEA) is a glycoprotein tumor marker with the immunodeterminant present on the protein moiety of the molecule. The other, carbohydrate antigen 19-9 (CA19-9), is a mucin-type glycoprotein in serum with the immunodeterminant present on the carbohydrate moiety of the molecule. Both tumor markers have been investigated for the diagnosis of malignancies in the stomach, colon and pancreas[19-23] but have not been gained widespread use in bile duct. It has been reported that the sensitivity and specificity for CA19-9 value >37 KU·L^-1 for cholangiocarcinoma with primary sclerosing cholangitis (PSC) were 60% to 93% and 78% to 98%, respectively[24-27]. The corresponding index of CEA value >22 µg·L^-1 were 53% to 84% and 50% to 79%,[23-30]. Although widely used as a tumor marker, the clinical value of serum CA19-9 determination in the diagnosis of cholangiocarcinoma in the absence of PSC is unknown. Thus, the objective of this study was to determine the clinical usefulness of CA19-9 value for cholangiocarcinoma.

MATERIALS AND METHODS

Patients

From January 1995 to February 2003, we prospectively obtained serum samples from patients undergoing evaluation for benign and malignant biliary disease at the First Hospital of Xi’an Jiaotong University and Luoyang Central Hospital. Serum samples were also prospectively obtained from healthy individuals who served as the disease control group. Patients with the diagnosis of PSC were excluded from this study. Clinical information was obtained by a thorough review of...
the medical histories. This study included 35 patients with cholangiocarcinoma, 92 patients with benign biliary diseases, and 15 healthy individuals. Of the 35 patients with cholangiocarcinoma, the diagnosis was established by surgical biopsy in 25 patients, endoscopic biopsy and brushing in six patients, and fine needle aspiration in four patients. In patients with cholangiocarcinoma, the stage and resectability of the tumors were ascertained using information obtained by imaging studies or at the time of surgery. Unresectability was defined by Bismuth stage 4 cancer arising from the right and left hepatic ducts and extending intrahepatically. Patients with intra- and extrahepatic metastasis were also deemed unresectable.

The benign biliary diseases group consisted of 92 patients and included 26 patients with benign bile duct stricture, 36 patients with cholecystolithiasis, 20 patients with cholecytic polyp, and 10 patients with chronic cholecystitis. The other control group consisted of 15 healthy individuals without any disease.

Methods

Blood samples obtained from patients were stored at -20 °C until used. CA19-9 and CEA were assayed by means of an immunoradiometric method with a commercially available CA19-9 RIA diagnostic kit (ELISA-CA19-9, CIS Bio International, France) and CEA RIA diagnostic kit (CIS Bio Industries, Gif-Sur-Yvette, France). Cutoff values recommended for diagnostic purpose were 37 KU·L⁻¹ for CA19-9 and 22 µg·L⁻¹ for CEA. Values above the cutoff concentrations were considered positive in this study. Sensitivity in detecting each group was compared between CA19-9 and CEA.

Statistics

The results were expressed as mean values ± standard deviation of the mean (mean±SD). Statistical analysis was performed using a statistical program (SPSS, 11.0 Inc, Chicago, IL). Statistical significance in mean values was evaluated by the Student's t test to compare the different groups, and the Mann-Whitney rank sum test was used for intergroup comparisons. The relationships between CA19-9 and CEA, total bilirubin, alkaline phosphatase, or AST were determined by linear regression analysis.

RESULTS

Patients' characteristics

The Table 1 shows some of the characteristics of the different groups. Patients with cholangiocarcinoma were significantly older than either patients with benign biliary diseases or healthy individuals. However, the mean total serum bilirubin and serum alkaline phosphatase values were significantly higher in patients with cholangiocarcinoma, compared to the other two groups (P<0.05). Thus, the patients with cholangiocarcinoma had a more marked cholestatic profile than the other two groups of patients.

Serum CA19-9 and CEA values in cholangiocarcinoma, benign biliary diseases and healthy individuals

The mean CA19-9 and CEA concentrations were significantly greater in the cholangiocarcinoma group than those in the benign biliary diseases group or healthy individuals group (Figure 1). Table 1 shows the mean serum CA19-9 concentration in patients with cholangiocarcinoma was 290.31±5.34 KU·L⁻¹ in comparison with 13.38±1.77 KU·L⁻¹ in the benign biliary diseases group and 12.78±3.69 KU·L⁻¹ in the healthy individuals group (P<0.001). Their corresponding mean serum CEA concentrations were 36.46±18.03 µg·L⁻¹, 13.84±3.85 µg·L⁻¹ and 11.48±3.37 µg·L⁻¹, respectively (P<0.05).

Comparison of CA19-9 and CEA levels in serum in patients with cholangiocarcinoma and benign diseases

Table 2 shows the distribution of serum CA19-9 and CEA values in patients with cholangiocarcinoma and benign biliary diseases. Of the 35 patients with cholangiocarcinoma, 27(77.14%) had a concentration exceeding 37 KU·L⁻¹ in serum CA19-9. Using a CA19-9 concentration of 37 KU·L⁻¹, the true negative rate of a CA19-9 for cholangiocarcinoma was 84.78% when

Table 1 Patients' characteristics in three groups (mean±SD)

Characteristics	Cholangiocarcinoma	Benign biliary diseases	Healthy individuals
N	35	92	15
Age (yr)	60.37±11.2	49.78±10.6	27.6±4.7
Sex (M/ F)	19/ 16	39/ 53	15/ 0
Total bilirubin (umol/ L)	47.4±3.1	8.3±0.7	8.6±0.9
AST (U/ L)	79±21.2	26±3.5	21±4.6
ALP (U/ L)	193±41.8	114±50.6	90±18.3
CA19-9 (KU/ L)	290.3±5.34	13.38±2.59	12.78±3.69
CEA (µg/ L)	36.46±18.03	13.84±3.85	11.48±3.37

*P <0.05, **P <0.001 vs benign biliary diseases or healthy individuals. P <0.05 vs serum CEA. AST=aspartate aminotransferase, ALP=alkaline phosphatase, CA19-9=carbohydrate antigen 19-9, CEA=carcinoembryonic antigen.

Table 2 Comparison of serum CA19-9 and CEA levels in patients with cholangiocarcinoma and benign biliary diseases

	CA19-9^{*1}	CA19-9	CEA	CA19-9 or CEA	CA19-9 and CEA
Sensitivity(true positive)*	65.71%(23/ 35)	77.14%(27/ 35)[*]	68.57%(24/ 35)	91.43%(32/ 35)	62.86%(22/ 35)
Specificity(true negative)*	88.04%(81/ 92)	84.78%(78/ 92)	81.52%(75/ 92)	76.09(70/ 92)	86.96%(80/ 92)
Positive predictive value	67.65%(23/ 34)	65.85%(27/ 41)	58.54%(24/ 41)	59.26%(32/ 54)	64.71%(22/ 34)
Negative predictive value	87.10%(81/ 93)	90.70%(78/ 86)	87.21%(75/ 86)	95.89%(70/ 73)	88.89%(80/ 90)
Accuracy	81.89%(104/ 127)	82.68%(105/ 127)	77.99%(99/ 127)	80.31%(102/ 127)	80.31%(102/ 127)
False positive rate	11.98%(11/ 92)	15.22%(14/ 92)	18.48%(17/ 92)	23.91%(22/ 92)	13.04%(12/ 92)

*Number of positive tests/ number of patients with cholangiocarcinoma. **Number of negative tests/ number of patients with benign biliary diseases. *P <0.05 vs CEA. [*]When the cutoff value of serum CA19-9 was 100 KU·L⁻¹,

ISSN 1007-9327 CN 14-1219/ R World J Gastroenterol February 1, 2004 Volume 10 Number 3
assessed as the benign biliary diseases. The sensitivity (true positive) and specificity (true negative) of CEA were 68.57% and 81.52%, respectively (Table 2). Among the 92 patients with benign biliary diseases, the false positive rates of serum CA19-9 >37 KU·L\(^{-1}\) and CEA >22 µg·L\(^{-1}\) were 15.22% (14/92) and 18.48% (17/92), respectively. The combination of CA19-9 and CEA showed the highest sensitivity and specificity, they were 91.43% and 76.09% when CA19-9 or CEA was positive, and they were 62.86% and 86.96% when both CA19-9 and CEA were positive, respectively. If the cutoff value was increased from 37 KU·L\(^{-1}\) to 100 KU·L\(^{-1}\), the sensitivity and specificity of CA19-9 were 65.71% (23/35) and 88.04% (81/92), respectively.

Table 3

Groups	CA19-9 (KU/L)	CEA (µg/L)
After the resectable (n=15)	62.01±47.43	28.69±11.03
Before the resectable (n=15)	286.41±4.36	39.41±24.35
The unresectable (n=20)	391.37±5.76	43.28±20.68

\(*p<0.001\), \(*p<0.01\), \(*p<0.05\) vs negative groups.

Figure 2

Mean postoperative serum CA19-9 and CEA levels of resectable group and mean serum CA19-9 and CEA levels of the unresectable group.

Relation between serum CA19-9 and CEA values and clinicopathologic features in 35 patients with cholangiocarcinoma

Perineural invasion by malignant cells was found in 23 of the 33 patients and more frequently encountered in cancer of the upper portion of extrahepatic bile ducts. Of the 35 tumors, lymph node metastasis was seen in 18 and venous invasion in 17. Histologically, 35 examples of cholangiocarcinoma were composed of 16 well-differentiated adenocarcinomas, 12 moderately-differentiated adenocarcinomas, 5 poorly-differentiated adenocarcinomas, 1 anaplastic carcinoma, and 1 adenosquamous carcinoma (Table 4). Table 4 shows statistically significant differences in serum CA19-9 and CEA between positive and negative lymph node metastases (\(P<0.01\), \(P<0.05\)), perineural invasion (\(P<0.01\), \(P<0.05\)), and venous invasion (\(P<0.05\)). However, there appears to be no relationship between the degrees of differentiation of carcinomas and the values of serum CEA and CA19-9.

Table 4

Clinicopathologic features	No. of patients	CA19-9 (KU/L)	CEA (µg/L)
Well-differentiated adenocarcinoma	16	261.67±6.31	34.37±11.29
Moderately-differentiated adenocarcinoma	12	270.56±5.77	38.42±19.23
Poorly-differentiated adenocarcinoma	5	302.71±5.81	48.23±23.64
Anaplastic carcinoma	1	468±18.47	64
Adenosquamous carcinoma	1	293±18.47	27
Perineural infiltration	23	310.12±7.11	37.64±10.35
Negative	10	195.16±6.48	21.28±13.15
Venous invasion	17	318.49±2.27	39.78±18.41
Positive	18	253.08±1.37	29.67±20.13
Negative	17	345.66±4.23	46.37±9.46
Lymph node metastasis	18	265.30±4.58	31.89±16.46

\(*p<0.01\), \(*p<0.05\) vs negative groups.

DISCUSSION

Since koprowski et al.\(^{19}\) discovered CA19-9 from the human colon cancer cell line, which has been commonly used in the

Figure 1

Mean serum CA19-9 and CEA concentrations. \(*p<0.001\), \(*p<0.05\) vs benign biliary diseases or healthy individuals. \(*p<0.05\) vs serum CEA.

Correlation between serum CA19-9 and total bilirubin, ALP, AST or CEA in patients with cholangiocarcinoma

In patients with cholangiocarcinoma, no correlation was found between CEA and CA19-9 concentration (\(r=0.036\)). Likewise, no correlation was found among serum CA19-9, or ALP, AST, and total bilirubin (\(r=0.015\), \(r=0.037\) and \(r=0.145\), respectively). Thus, elevated serum CA19-9 value could not be attributed to either cholestasis or hepatocellular injury.

Decrease of serum CA19-9 values in patients with cholangiocarcinoma after undergoing curative resection

Of the 35 patients with cholangiocarcinoma, 15 patients underwent curative resection and 20 had unresectable cancer. The mean preoperative and postoperative serum CA19-9 levels in the resectable group were 286.41±4.36 KU·L\(^{-1}\) and 62.01±17.43 KU·L\(^{-1}\), respectively. The corresponding indexes of serum CEA were 39.41±24.35 µg·L\(^{-1}\) and 28.69±11.03 µg·L\(^{-1}\), respectively (Figure 2 and Table 3). Thus, patients after curative resection had significantly lower mean serum CA19-9 and CEA concentrations than those before operation (\(P<0.001\) and \(P<0.05\)). The mean serum CA19-9 concentration in the resectable group was 286.41±4.36 KU·L\(^{-1}\) as compared to 391.37±5.76 KU·L\(^{-1}\) in the unresectable group (Figure 2 and Table 3). Thus, patients with unresectable disease had a significantly higher mean serum CA19-9 concentration than those with respectable disease (\(P<0.05\)).

Table 3

Groups	CA19-9 (KU/L)	CEA (µg/L)
After the resectable (n=15)	62.01±7.43	28.69±11.03
Before the resectable (n=15)	286.41±4.36	39.41±24.35
The unresectable (n=20)	391.37±5.76	43.28±20.68

\(*p<0.001, *p<0.01, *p<0.05\) vs the respectable group.
diagnosis of pancreatic and biliary malignant diseases. Recently, its usefulness has been demonstrated in the staging, evaluation of resectability, and assessment of prognosis and recurrence, as well as in the initial diagnosis of malignant disorders, especially pancreatic cancer.

Elevated concentration of serum CA19-9 (>37 KU·L⁻¹) in biliary duct cancers has been frequently reported. Torzilli et al. described a positive rate of 97% in patients with cholangiocarcinoma, whereas Hultcrantz et al. described a rate of 76%, and Caturelli et al. described a 68% rate. We have also found an elevation of CA19-9 in 77.14% of cholangiocarcinomas, which was comparable to the rates reported in other studies. Furthermore, as shown in Table 2, the application of CA19-9 for differentiating cancer from benign biliary diseases was inspiring in our study because of its high sensitivity and specificity. The sensitivity and specificity in our study were 77.14% and 84.78%, respectively, which were similar to 78.2% and 81.4% reported by kau et al. However, the concentration of CA19-9 could raise in patients with benign inflammatory conditions as well as in malignant disease.

Ahrendt et al. reported a moderate increase in CA19-9 concentration in 13.8% of patients with benign biliary tract diseases. The positive serum rate was 28% in patients with acute cholangitis, as reported by Ker et al. and 35.6% in patients with bile duct stones, as reported by Shiozawa et al. In our present study, an increased concentration of CA19-9 was found in 15.22% of patients with benign biliary diseases. According to Ker et al., CA19-9 was synthesized by normal biliary ductal cells and malignant cells. If bile flow is blocked by biliary obstruction in benign conditions, such as choledocholithiasis, epithelial cells will be markedly impaired by inflammation and will proliferate concurrently. As a result, more CA19-9 may be secreted and leaked out into the bloodstream. An elevated CA19-9 level often returns to normal with appropriate decompression of the common duct or relief of acute cholangitis. However, the increment of CA19-9 in benign diseases is usually not significant, and a concentration of CA19-9 exceeding 480 KU·L⁻¹ is rare. In our study, only 2(2.17%) patients with benign biliary diseases exhibited CA19-9 levels >480 KU·L⁻¹. CEA is mainly secreted by digestive glandular cancers and their metastases. It has also been found in other types of cancer such as breast, lung, ovary, thyroid cancers. The sensitivity and specificity of serum CEA in our study were 68.57% and 81.52%, respectively, which were similar to 63.3% and 78.4% reported by Ramage et al. The false positive rate of serum CEA was 18.48% (14/92). Serum CA19-9 was obviously superior to serum CEA in the diagnosis of cholangiocarcinoma and often considered the standard marker for pancreatic cancer and cholangiocarcinoma, with which other markers were compared. Our data also showed a much higher sensitivity with serum CA19-9 than with serum CEA in detecting cholangiocarcinomas, but the sensitivity and specificity could be raised by combining these two tumor markers. Furthermore, no correlation between the levels of serum CEA and CA19-9 was found (r=0.036).

Serum CA19-9 has been reported to be able to predict resectability of cholangiocarcinoma. In our study, marked elevation of serum CA19-9 tended to associate with advanced and unresectable biliary cancers. Both serum CA19-9 and CEA levels had a positive correlation with tumor stage. This positive correlation is theoretically helpful in assessing the therapeutic effect and monitoring tumor recurrence after treatment. CA19-9 and CEA have been claimed to have a prognostic value in cholangiocarcinomas. When applied to cholangiocarcinomas, both tumor markers could provide valuable prognostic information. In our study, serum CA19-9 and CEA concentrations were measured in 15 of 35 patients with cholangiocarcinoma after undergoing curative resection. Within two weeks after operation, the average concentration of serum CA19-9 and CEA was 62.01±17.43 KU·L⁻¹ and 28.69±11.03 μg·L⁻¹, respectively, with an obvious decrease compared with those before operation (P<0.001 and P<0.05). Hence, serum CA19-9 could provide more important diagnostic and prognostic values than CEA in cholangiocarcinoma.

In summary, serum CA19-9 is an effective tumor marker in diagnosing cholangiocarcinoma, deciding whether the tumor has been radically resected and monitoring the effect of treatment. Serum CA19-9 determination is a useful adjunct in our diagnostic armamentarium for cholangiocarcinoma. However, serum CA19-9 has limitations in diagnosing cholangiocarcinoma. Indeed, our data clearly demonstrated that a negative test could not exclude cholangiocarcinoma. Moreover, for a patient suspected of having biliary cancer, consideration of the presence of acute cholangitis or cholestasis is suggested. If the patient has no evidence of acute cholangitis or cholestasis, a cutoff value of 37 KU·L⁻¹ may be appropriate. However, if a patient shows symptoms and signs of acute cholangitis or cholestasis, application of CA19-9 should be delayed until after recovery from acute conditions or a cutoff value of 100 KU·L⁻¹ should be used. Additional bile-or serum-based tests are needed in the diagnosis of cholangiocarcinoma. Ultimately, a profile of tests analogous to liver biochemistry measurement of serum or bile tumor markers and genetic analysis for cholangiocarcinoma-associated mutations will need to be developed to assist in the diagnosis of this disease.

ACKNOWLEDGMENT

This work was supported by the Department of Hepatobiliary Surgery, First Hospital of Xi’an Jiaotong University and Luoyang Central Hospital.

REFERENCES

1. Ohtsuka M, Ito H, Kimura F, Shimagi H, Togawa A, Yoshidome H, Miyaizaki M. Results of surgical treatment for intrahepatic cholangiocarcinoma and clinicopathological factors influencing survival. Br J Surg 2002; 89: 1525-1531.
2. Ueno N, Sano T, Kanamaru T, Tanaka K, Nishihara T, Iide Y, Yamamoto M, Okuno T, Kawaguchi K. A desmosquamous cell carcinoma arising from the papilla major. Oncol Rep 2002; 9: 317-320.
3. Saito M, Higue T, Tomaru U, Shibata M, Asaka M. Combined hepatocellular carcinoma and cholangiocarcinoma growing into the common bile duct. J Gastroenterol 2003; 38: 842-847.
4. Matsumoto A, Imanura M, Kagi Y, Kaibara A, Ohkita K, Mizobe T, Isomoto H, Aoyagi S. A case report of disseminated recurrence of inferior bile duct carcinoma in PTCD fistula. Kurume Med J 2002; 49: 71-75.
5. Siqueira E, Schoen RE, Silverman W, Martin J, Rabinovitz M, Weissfield JL, Abu-Elmaaegd K, Madariaga JR, Silvka A, Martini J. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis. Gastrointest Endosc 2002; 56: 40-47.
6. Qin LX, Tang ZY. Hepatocellular carcinoma with obstructive jaundice: diagnosis, treatment, and prognosis. World J Gastroenterol 2003; 9: 385-391.
7. Kinoshita H, Tanimura H, Uchiyama K, Tani M, Onishi H, Yamaue H. Prognostic factors of intrahepatic cholangiocarcinoma after surgical treatment. Oncol Rep 2002; 9: 97-101.
8. Kijima H, Takeshita T, Suzuki H, Tani H, Ito K, Aoyagi S, Idei Y, Asaka M. Comparison of two tumor markers, CA19-9 and CEA, in patients with cholangiocarcinoma. Gastrointest Endosc 1998; 48: 405-410.
9. Desa LA, Akosa AB, Lazzara S, Domizio P, Krausz T, Benjamin IS. Cytodiagnosis in the management of extrahepatic biliary stricture. Gut 1993; 32: 1188-1191.
Davison B, Varsamidakis N, Dooley J, Deery A, Dick R, Kurzawinski T, Hobbs K. Value of exfoliative cytology for investigating bile duct strictures. Gut 1992; 33: 1408-1411

Shiota K, Taguchi J, Nakashima O, Nakashima M, Kojiro M. Clinicopathologic study on cholangiocellular carcinoma. Oncol Rep 2001; 8: 263-268

Jiao W, Yukashii H, Kitajima Y, Ogawa A, Miyazaki K. Establishment and characterization of human hilar bile duct carcinoma cell line and cell strain. J Hepatobiliary Pancreat Surg 2000; 7: 417-425

Chalasani N, Baluyut A, Isnal M, Zaman A, Sood G, Ghalib R, McCashland TM, Reddy KR, Zervos X, Anbari MA, Hoen H. Cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study. Hepatology 2000; 31: 7-11

Kurzawinski T, Deery A, Dooley J, Dick R, Hobbs K, Davison B. A prospective controlled study comparing brush and bile exfoliative cytology for diagnosing bile duct strictures. Gut 1992; 33: 1675-1677

Ferrari junior AP, Lichtenstein DR, Slivka A, Chang C, Carr-Locke DL. Brush cytology during ERCP for the diagnosis of biliary and pancreatic malignancies. Gastrointest Endosc 1994; 40(2 Pt 1): 140-145

Sugiyama M, Atomi Y, Wada N, Kuroda A, Muto T. Endoscopic transpapillary bile duct biopsy without sphincterotomy for diagnosing biliary strictures: a prospective comparative study with bile and brush cytology. Am J Gastroenterol 1996; 91: 465-467

Pugliese V, Conio M, Nicolo G, Saccamanno S, Gattesschi E. Endoscopic retrograde forceps biopsy and brush cytology of biliary strictures: a prospective study. Gastrointest Endosc 1995; 42: 520-526

Lindberg B, Arnello U, Bergquist A, Thorne A, Hjerpe A, Lichtenstein DR, Stenman UH, Haglund C. Combination of HCCbeta, CA 19-9 and CEA with logistic regression improves accuracy in gastrointestinal malignancies. Anticancer Res 2002; 22: 1759-1764

Nanashima A, Yamaguchi H, Nakagoe T, Matsuo S, Sumida Y, Tsuji T, Sawai T, Yamaguchi E, Yasutake T, Ayabe H. High serum concentrations of sialyl Tn antigen in carcinomas of the biliary tract and pancreas. J Hepatobiliary Pancreat Surg 1999; 6: 391-395

Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Herlyn D, Furber P. Colorectal carcinoma antigens detected by hybridoma antibodies. Somatic Cell Genet 1979; 5: 957-971

Louhim J, Finne P, Alftahm H, Stenman UH, Haglund C. Combination of HCCbeta, CA 19-9 and CEA with logistic regression improves accuracy in gastrointestinal malignancies. Anticancer Res 2002; 22: 1759-1764

Zheng C, Zhou WH, Zhao JZ, Zheng D, Wang DP, He YL, Zheng Q. The prognostic value of preoperative serum levels of CEA, CA 19-9 and CA 72-4 in patients with colorectal cancer. World J Gastroenterol 2001; 7: 431-434

Hyman J, Wilczynski SP, Schwarz RE. Extraphepatic bile duct stricture and elevated CA 19-9 malignant or benign? South Med J 2003; 96: 89-92

Chen CY, Shieh SC, Tsao HC, Lin XZ. The assessment of biliary CA 125, CA 19-9 and CEA in diagnosing cholangiocarcinoma—the influence of sampling time and hepatothiasis. Hepatogastroenterology 2002; 49: 616-620

Kitagawa Y, Iwai M, Muramatsu A, Tanaka S, Mori T, Harada Y, Okanoue T, Kashima K. Immunohistochemical localization of CEA, CA 19-9 and DU-PAN-2 in hepatocellular carcinomas infected liver tissues. Histopathology 2002; 40: 472-479

Qin XL, Shi JS, Shi L, Wang ZR, Wang L. Clinical value of CA 19-9 determination in patients with bile duct carcinoma. Shijie Huaren Xinchua Zazhi 2002; 7: 814-815

Giannini E, Borro P, Bottà F, Chiaronbello B, Fasoli A, Malfatti F, Romagnoli P, Testa E, Rioso D, Lantieri PB, Antonucci A, Boccato M, Milone S, Testa R. Cholestasis is the main determinant of abnormal CA 19-9 levels in patients with liver cirrhosis. Int J Biol Markers 2000; 15: 226-230

Watanabe M, Chigusa M, Takahashi H, Nakamuk J, Tanaka H, Ohno T. High level of CA 19-9, CA 50, and CEA-producible human cholangiocarcinoma cell line changes in the secretion ratios in vitro or in vivo. In Vitro Cell Dev Biol Anim 2000; 36: 104-109

Qin XL, Li ZQ, Shi JS, Zhang L, Wang ZR, Wang L. Value of bile and serum CA 19-9 and CEA in diagnosing biliary tract carcinoma. Chin J Basic Clin Gener Surg 2000; 7: 161-163

Haglund C, Ylatupa S, Mertaniemi P, Partanen P. Cellular fibronectin concentration in the plasma of patients with malignant and benign diseases: a comparison with CA 19-9 and CEA. Br J Cancer 1997; 76: 777-783

Botting TC, Junginger T. Treatment of tumors of the pancreatic head with suspected but unproved malignancy: is a nihilistic approach justified? World J Surg 1999; 23: 158-162

Ogawa T, Yokoi H, Kawarada Y. A case of inflammatory pseudotumor of the liver causing elevated serum CA 19-9 levels. Am J Gastroenterol 1998; 93: 2551-2555

Montgomery RC, Hoffma JP, Ross EA, Riley LB, Ridge JA, Eisenberg BL. Biliary CA 19-9 values correlate with the risk of hepatic metastases in patients with adenocarcinoma of the pancreas. J Gastrointest Surg 1998; 2: 28-35

Goetz M, Steen PD. False elevation of CA 19-9 levels in a patient with a history of pancreatic cancer. Am J Gastroenterol 1997; 92: 1390-1391

Brown RW, Campagna LB, Dunn JK, Cagle PT. Immunohistological identification of tumor markers in metastatic adenocarcinoma. A diagnostic adjunct in the determination of primary site. Am J Clin Pathol 1997; 107: 12-19

Zhao XY, Yu SY, Da SP, Bai L, Guo XZ, Dai XJ, Wang YM. A clinical evaluation of serological diagnosis for pancreatic cancer. World J Gastroenterol 1998; 4: 147-149

Torzilli G, Makuuchi M, Ferrero A, Takayama T, Hui AM, Abe H, Inoue K, Nakahara K. Accuracy of the preoperative determination of tumor markers in the differentiation of liver mass lesions in surgical patients. Hepatogastroenterology 2002; 49: 740-745

Hultcrantz R, Olsson R, Danielsson A, Jannerot G, Loof L, Ryden BO, Wahren B, Broome U. A 3-year prospective study on serum tumor markers used for detecting cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol 1999; 30: 664-673

Caturalli E, Bisceglia M, Villani MR, de Maio G, Siena DA. CA 19-9 production by a cystadenoma with mesenchymal stroma of the common hepatic duct: a case report. Liver 1998; 18: 221-224

Kau SY, Shyr YM, Su CH, Wu CW, Liu WY. Diagnostic and prognostic values of CA 19-9 and CEA in periampullary cancers. J Am Coll Surg 1999; 188: 415-420

Minato H, Nakamuk Y, Terada T. Expression of blood group-related antigens in cholangiocarcinoma in relation to non-neoplastic bile ducts. Histopathology 1996; 28: 411-419

Bjornsson ES, Kilander A, Olsson R. CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver 1999; 19: 501-508

Lin CL, Changchien CS, Chen YS. Mirizzi's syndrome with a high CA 19-9 level mimicking cholangiocarcinoma. Am J Gastroenterol 1997; 92: 2303-2310

Hornsman Y, Laka A, van Beers BE, Descamps C, Gijots JF, Geubel AP. Hepatobiliary cystadenocarcinoma without ovarian stroma and normal CA 19-9 levels. Unusually prolonged evolution. Dig Dis Sci 1997; 42: 1406-1408

Ahrendt SA, Pitt HA, Nakeeb A, Klein LS, Lillenme K, Kallooo AN, Cameron JL. Diagnosis and management of cholangiocarcinoma in primary sclerosing cholangitis. J Gastrointest Surg 1999; 3: 357-367

Ker CG, Chen JS, Lee KT, Sheen PC, Wu CC, Lui WY. Assessment of serum and bile levels of CA 19-9 and CA 125 in cholangitis and bile duct carcinoma. J Gastroenterol Hepatol 1991; 6: 565-568

Shiozawa K, Ishii K, Mori T, Takamura N, Ikehara T, Shinohara M, Kawfuscune T, Sumino Y, Nonaka H. Heterochronous development of intrahepatic cholangiocellular carcinoma following hepatocellular carcinoma in a hepatitis B virus carrier. Intern Med 431
Ramage JK, Donaghy A, Farrant JM, Iorns R, Williams R. Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology 1995; 108: 865-869

Haglund C, Lundin J, Kuusela P, Roberts PJ. CA 242, a new tumor marker for pancreatic cancer: a comparison with CA 19-9, CA 50 and CEA. Br J Cancer 1994; 70: 487-492

Shimada M, Yamashita Y, Aishima S, Shirabe K, Takenaka K, Sugimachi K. Value of lymph node dissection during resection of intrahepatic cholangiocarcinoma. Br J Surg 2001; 88: 1463-1466

Tsuji M, Kashihara T, Terada N, Mori H. An immunohistochemical study of hepatic atypical adenomatous hyperplasia, hepatocellular carcinoma, and cholangiocarcinoma with alpha-fetoprotein, carcinoembryonic antigen, CA 19-9, epithelial membrane antigen, and cytokeratins 18 and 19. Pathol Int 1999; 49: 310-317

Ramage JK, Donaghy A, Farrant JM, Iorns R, Williams R. Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology 1995; 108: 865-869

Dorandeu A, Raoul JL, Siriser F, Leducq-Rioux N, Gosselin M, Martin ED, Ramee MP, Launois B. Carcinoma of the ampulla of Vater: prognostic factors after curative surgery: a series of 45 cases. Gut 1997; 40: 350-355

Forsmark CE, Lambiase L, Vogel SB. Diagnosis of pancreatic cancer and prediction of unresectability using the tumor-associated antigen CA19-9. Pancreas 1994; 9: 731-734

Yasue M, Sakamoto J, Teramukai S, Morimoto T, Yasui K, Kuno N, Kurimoto K, Ohashi Y. Prognostic values of preoperative and postoperative CEA and CA19-9 levels in pancreatic cancer. Pancreas 1994; 9: 735-740

Nakamura S, Suzuki S, Sakaguchi T, Konno H, Baba S, Kosugi I, Muro H. Second cancer during long survival after resection of biliary tract carcinoma. J Gastroenterol 1996; 31: 289-293

Su WC, Chan KK, Lin XZ, Lin PW, Chow NH, Shin JS, Chay CY, Tsao CJ. A clinical study of 130 patients with biliary tract cancers and periampullary tumors. Oncology 1996; 53: 488-493

Edited by Zhang JZ and Wang XL