A bound on the scrambling index of a primitive matrix using Boolean rank

Mahmud Akelbeka,b,\ast, Sandra Fitalb, Jian Shena,1

aDepartment of Mathematics, Texas State University, San Marcos, TX 78666
bDepartment of Mathematics, Weber State University, Ogden, UT 84408

Abstract

The scrambling index of an $n \times n$ primitive matrix A is the smallest positive integer k such that $A^k (A^t)^k = J$, where A^t denotes the transpose of A and J denotes the $n \times n$ all ones matrix. For an $m \times n$ Boolean matrix M, its Boolean rank $b(M)$ is the smallest positive integer b such that $M = AB$ for some $m \times b$ Boolean matrix A and $b \times n$ Boolean matrix B. In this paper, we give an upper bound on the scrambling index of an $n \times n$ primitive matrix M in terms of its Boolean rank $b(M)$. Furthermore we characterize all primitive matrices that achieve the upper bound.

\textit{AMS classification}: 15A48; 05C20; 05C50; 05C75

\textit{Key words}: Scrambling index; Primitive matrix; Boolean rank

1 Introduction

For terminology and notation used here we follow \cite{3}. A matrix A is called \textit{nonnegative} if all its elements are nonnegative, and denoted by $A \geq 0$. A matrix A is called \textit{positive} if all its elements are positive, and denoted by $A > 0$. For an $m \times n$ matrix A, we will denote its (i,j)-entry by A_{ij}, its ith entry...
row by A_i, and its jth column by A_j. For $m \times n$ matrices A and B, we say that B is dominated by A if $B_{ij} \leq A_{ij}$ for each i and j, and denote $B \leq A$.

We denote the $m \times n$ all ones matrix by $J_{m,n}$ (and by J_n if $m = n$), The $m \times n$ all zeros matrix by $O_{m,n}$, the all zeros n-vector by j_n, the $n \times n$ identity matrix by I_n, and its ith column by $e_i(n)$. The subscripts m and n will be omitted whenever their values are clear from the context.

For an $n \times n$ nonnegative matrix $A = (a_{ij})$, its digraph, denoted by $D(A)$, is the digraph with vertex set $V(D(A)) = \{1, 2, \ldots, n\}$, and (i, j) is an arc of $D(A)$ if and only if $a_{ij} \neq 0$. Then, for a positive integer $r \geq 1$, the (i,j)-th entry of the matrix A^r is positive if and only if $i \rightarrow j$ in the digraph $D(A)$. Since most of the time we are only interested in the existence of such walks, not the number of different directed walks from vertex i to vertex j, we interpret A as a Boolean $(0,1)$-matrix, unless stated otherwise. A Boolean $(0,1)$-matrix is a matrix with only 0’s and 1’s as its entries. Using Boolean arithmetic, $(1 + 1 = 1, 0 + 0 = 0, 1 + 0 = 1)$, we have that AB and $A + B$ are Boolean $(0,1)$-matrices if A and B are.

Let $D = (V, E)$ denote a digraph (directed graph) with vertex set $V = V(D)$, arc set $E = E(D)$ and order n. Loops are permitted but multiple arcs are not. A $u \rightarrow v$ walk in a digraph D is a sequence of vertices $u, u_1, \ldots, u_t, v \in V(D)$ and a sequence of arcs $(u, u_1), (u_1, u_2), \ldots, (u_t, v) \in E(D)$, where the vertices and arcs are not necessarily distinct. We shall use the notation $u \rightarrow v$ and $u \leftrightarrow v$ to denote, respectively, that there is an arc from vertex u to vertex v and that there is no such an arc. Similarly, $u \not\rightarrow v$ and $u \not\leftrightarrow v$ denote, respectively, that there is a directed walk of length k from vertex u to vertex v, and that there is no such a walk.

A digraph D is called primitive if for some positive integer t there is a walk of length exactly t from each vertex u to each vertex v. If D is primitive the smallest such t is called the exponent of D, denoted by $\exp(D)$. Equivalently, a square nonnegative matrix A of order n is called primitive if there exists a positive integer r such that $A^r > 0$. The minimum such r is called the exponent of A, and denoted by $\exp(A)$. Clearly $\exp(A) = \exp(D(A))$. There are numerous results on the exponent of primitive matrices [3].

The scrambling index of a primitive digraph D is the smallest positive integer k such that for every pair of vertices u and v, there exists some vertex $w = w(u,v)$ (dependent of u and v) such that $u \rightarrow w$ and $v \rightarrow w$ in D. The scrambling index of D is denoted by $k(D)$. For $u,v \in V(D) \ (u \neq v)$, we define the local scrambling index of u and v as

\[k_{u,v}(D) = \min \{ k : u \rightarrow w \text{ and } v \rightarrow w \text{ for some } w \in V(D) \} \]
Then

\[k(D) = \max_{u,v \in V(D)} \{ k_{u,v}(D) \}. \]

An analogous definition for scrambling index can be given for nonnegative matrices. The scrambling index of a primitive matrix \(A \), denoted by \(k(A) \), is the smallest positive integer \(k \) such that any two rows of \(A^k \) have at least one positive element in a coincident position. The scrambling index of a primitive matrix \(A \) can also be equivalently defined as the smallest positive integer \(k \) such that \(A^k A^t = J \), where \(A^t \) denotes the transpose of \(A \). If \(A \) is the adjacency matrix of a primitive digraph \(D \), then \(k(D) = k(A) \). As a result, throughout the paper, where no confusion occurs, we use the digraph \(D \) and the adjacency matrix \(A(D) \) interchangeably.

In [1] and [2], Akelbek and Kirkland obtained an upper bound on the scrambling index of a primitive digraph \(D \) in terms of the order and girth of \(D \), and gave a characterization of the primitive digraphs with the largest scrambling index.

Theorem 1.1 [1] Let \(D \) be a primitive digraph with \(n \) vertices and girth \(s \). Then

\[k(D) \leq n - s + \left\{ \begin{array}{ll}
\frac{(s-1)n}{2}, & \text{when } s \text{ is odd}, \\
\frac{(n-1)s}{2}, & \text{when } s \text{ is even}.
\end{array} \right. \]

When \(s = n - 1 \), an upper bound on \(k(D) \) in terms of the order of a primitive digraph \(D \) can be achieved [1]. We state the theorem in terms of primitive matrices below.

Theorem 1.2 [1] Let \(A \) be a primitive matrix of order \(n \geq 2 \). Then

\[k(A) \leq \left\lfloor \frac{(n-1)^2 + 1}{2} \right\rfloor. \quad (1) \]

Equality holds in (1) if and only if there is a permutation matrix \(P \) such that \(PAP^t \) is one of the following matrices

\[W_2 = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{or} \quad J_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{when } n = 2, \]
The digraph $D(W_n)$ is called the Wielandt graph and denoted by $D_{n-1,n}$. It is a digraph with a Hamilton cycle $1 \to 2 \to \cdots \to n \to 1$ together with an arc from vertex $n-1$ to vertex 1. For simplicity, let $h_n = \left\lceil \frac{(n-1)^2+1}{2} \right\rceil$. The next proposition gives some information about the Wielandt graph $D_{n-1,n}$.

Proposition 1.3 \[1\] For $D_{n-1,n}$, where $n \geq 3$,

(a) $k_{n,\lceil \frac{n}{2} \rceil}(D_{n-1,n}) = h_n$, and for all other pairs of vertices u and v of $D_{n-1,n}$, $k_{u,v}(D_{n-1,n}) < h_n$.

(b) There are directed walks from vertices n and $\lfloor \frac{n}{2} \rfloor$ to vertex 1 of length h_n, that is $n \xrightarrow{h_n} 1$ and $\lfloor \frac{n}{2} \rfloor \xrightarrow{h_n} 1$.

For an $m \times n$ Boolean matrix M, we define its Boolean rank $b(M)$ to be the smallest positive integer b such that for some $m \times b$ Boolean matrix A and $b \times n$ Boolean matrix B, $M = AB$. The Boolean rank of the zero matrix is defined to be zero. $M = AB$ is called a Boolean rank factorization of M.

In \[1\], Gregory, Kirkland and Pullman obtained an upper bound on the exponent of primitive Boolean matrix in terms of Boolean rank.

Proposition 1.4 \[4\] Suppose that $n \geq 2$ and that M is an $n \times n$ primitive Boolean matrix with $b(M) = b$. Then

$$\exp(M) \leq (b - 1)^2 + 2.$$ \[2\]

In \[4\], Gregory, Kirkland and Pullman also gave a characterization of the matrices for which equality holds in (2). In \[5\], Liu, You and Yu gave a characterization of primitive matrices M with Boolean rank b such that $\exp(M) = (b - 1)^2 + 1$.

In this paper, we give an upper bound on the scrambling index of a primitive matrix M using Boolean rank $b = b(M)$, and characterize all Boolean primitive matrices that achieve the upper bound.
2 Main Results

We start with a basic result.

Lemma 2.1 Suppose that A and B are $n \times m$ and $m \times n$ Boolean matrices respectively, and that neither has a zero line. Then

(a) AB is primitive if and only if BA is primitive.

(b) If AB and BA are primitive, then

$$|k(AB) - k(BA)| \leq 1.$$ (3)

Proof. Part (a) was proved by Shao [6]. We only need to show part (b). Since AB and BA are primitive matrices, A and B has no zero rows. Then $AA^t \geq I_n$ and $BJ_nB^t = J_m$. Suppose $k(AB) = k$. By the definition of scrambling index

$$(AB)^k((AB)^t)^k = J_n.$$

Then

$$(BA)^k((BA)^t)^k + 1 = B(AB)^kAA^t((AB)^t)^kB^t \geq B(AB)^kI_n((AB)^t)^kB^t$$

$$= B(AB)^k((AB)^t)^kB^t = BJ_nB^t = J_m.$$

Thus $k(BA) \leq k + 1 = k(AB) + 1$. The result follows by exchanging the roles of A and B. □

Proposition 2.2 [5] Let M be an $n \times n$ primitive Boolean matrix, and $M = AB$ be a Boolean rank factorization of M. Then neither A nor B has a zero line.

Theorem 2.3 Let M be an $n \times n$ ($n \geq 2$) primitive matrix with Boolean rank $b(M) = b$. Then

$$k(M) \leq \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil + 1.$$ (4)

Proof. Let $M = AB$ be a Boolean rank factorization of M, where A and B are $n \times b$ and $b \times n$ Boolean matrices respectively. Then by Lemma 2.2 neither A nor B has a zero line. By lemma 2.1 we have

$$k(M) = k(AB) \leq k(BA) + 1.$$
Since BA is primitive and BA is a $b \times b$ matrix, by Theorem 1.2

$$k(BA) \leq \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil,$$

from which Theorem 2.3 follows. □

From (1) we see that no matrix of full Boolean rank n can attain the upper bound in (4). Further, since the only $n \times n$ primitive Boolean matrix with Boolean rank 1 is J_n, no matrix of Boolean rank 1 can attain the upper bound in (4). Thus we may assume that $2 \leq b \leq n - 1$.

For simplicity, let

$$h = \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil.$$

Recall from Theorem 1.2 that $k(W_b) = h$. We first make some observations about W_b. Recall that $D = D(W_b)$ is the Wielandt graph $D_{b-1,b}$ with b vertices.

Lemma 2.4 If $b \geq 3$, then the zero entries of $(W_b)_{h-1}^h(W_b^t)^{h-1}$ occur only in the $(b, \lfloor \frac{b}{2} \rfloor)$ and $(\lfloor \frac{b}{2} \rfloor, b)$ positions.

Proof. By Proposition 1.3 we know that $k_{\lfloor \frac{b}{2} \rfloor, b}(D_{b-1,b}) = h$, and for all other pairs of vertices u and v, $k_{u,v}(D_{b-1,b}) < h$. Therefore in W_{b}^{h-1} every pair of rows intersect with each other except rows b and $\lfloor \frac{b}{2} \rfloor$. Thus the only zero entries of $(W_b)_{h-1}^h(W_b^t)^{h-1}$ are in the $(b, \lfloor \frac{b}{2} \rfloor)$ and $(\lfloor \frac{b}{2} \rfloor, b)$ positions. □

For an $n \times n$ ($n \geq 2$) matrix A, let $A(\{i_1, i_2\}, \{j_1, j_2\})$ be the submatrix of A that lies in the rows i_1 and i_2 and the columns j_1 and j_2.

Lemma 2.5 For $b \geq 3$, $W_b^{h-1}(\{\lfloor \frac{b}{2} \rfloor, \{b-1, b\})$ is either $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ or $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

Proof. By Proposition 1.3 we know that $k_{\lfloor \frac{b}{2} \rfloor, b}(D_{b-1,b}) = h$ and $\lfloor \frac{b}{2} \rfloor \rightarrow 1$ and $b \rightarrow 1$. From the digraph $D_{b-1,b}$, we know that the directed walks of length h from vertices $\lfloor \frac{b}{2} \rfloor$ and b to vertex 1 is either

$$\lfloor \frac{b}{2} \rfloor \rightarrow 1 \rightarrow 1,$$

$$b \rightarrow b \rightarrow 1,$$

or

$$\lfloor \frac{b}{2} \rfloor \rightarrow b \rightarrow 1,$$

$$b \rightarrow b \rightarrow 1.$$
For the first case, if \(\left[\frac{b}{2} \right] \) \(b \rightarrow b - 1 \) and \(b \rightarrow b - 1 \), then \(b \rightarrow b - 1 \) and \(\left[\frac{b}{2} \right] \) \(b \rightarrow b - 1 \). Otherwise it contradicts to \(k(\frac{1}{2}, b) = h \). Similarly, for the second case if \(\left[\frac{b}{2} \right] \) \(b \rightarrow b - 1 \) and \(b \rightarrow b - 1 \), then \(b \rightarrow b - 1 \) and \(\left[\frac{b}{2} \right] \) \(b \rightarrow b - 1 \). The result follows by applying these to the matrix \(W_b^{h-1} \).

Theorem 2.6 Suppose \(M \) is an \(n \times n \) primitive Boolean matrix with \(3 \leq b = b(M) \leq n - 1 \). Then

\[
k(M) = \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil + 1
\]

if and only if \(M \) has a boolean rank factorization \(M = AB \), where \(A \) and \(B \) have the following properties:

(i) \(BA = W_b \),
(ii) some row of \(A \) is \(e_i^{(\frac{b}{2})}(b) \), some row of \(A \) is \(e_i(b) \), and
(iii) no column of \(B \) is \(e_{b-1}(b) e_b(b) \).

Proof. First suppose \(M \) is primitive with \(k(M) = h + 1 \), and \(M = \tilde{A}\tilde{B} \) is a Boolean rank factorization of \(M \). By Lemma 2.1 \(\tilde{B}\tilde{A} \) is primitive and \(k(\tilde{B}\tilde{A}) \geq h \). But \(\tilde{B}\tilde{A} \) is a \(b \times b \) matrix. By Theorem 1.2, \(k(\tilde{B}\tilde{A}) \leq h \). Therefore \(k(\tilde{B}\tilde{A}) = h \). Also by Theorem 1.2 there is a permutation matrix \(P \) such that \(P\tilde{B}\tilde{A}P^t = W_b \). Let \(B = \tilde{P}\tilde{B} \) and \(A = \tilde{A}P^t \). Then \(AB = \tilde{A}P^t\tilde{P}\tilde{B} = \tilde{A}\tilde{B} = M \). Thus \(A \) and \(B \) satisfy condition (i).

Since \(M \) is primitive, we have \(\sum_{i=1}^{b} A_{i} = j_n = \sum_{i=1}^{b} B_i \). Since \(k(M) = h + 1 \), the matrix \(M^h \) must have two rows that do not intersect. Without lost of generality, suppose rows \(p \) and \(q \) of \(M^h \) do not intersect. Then entries in the \((p, q) \) and \((q, p) \) positions of \(M^h(M^t)^h \) are zero. Since matrix \(B \) has no zero row, we have \(BB^t \geq I_b \). Thus

\[
M^h(M^t)^h = (AB)^h((AB)^t)^h = A(AB)^h-1BB^t((BA)^t)^h-1A^t
\]

\[
= A(W_b)^h-1BB^t(W_b^t)^h-1A^t
\]

\[
\geq A(W_b)^h-1I_b(W_b^t)^h-1A^t = A(W_b)^h-1(W_b^t)^h-1A^t
\]

\[
= AZA^t
\]

\[
= \left[j_{n,\left[\frac{b}{2} \right]-1} \left(\sum_{i=1}^{b-1} A_{i} \right) j_{n,\left[\frac{b}{2} \right]-1} \left(\sum_{i=1}^{b-1} A_{i} \right) \right] A^t
\]

\[
= j_n \left(\sum_{i=1}^{\left[\frac{b}{2} \right]-1} A_{i} \right)^t + j_n \left(\sum_{i=1}^{\left[\frac{b}{2} \right]+1} A_{i} \right)^t + j_n \left(\sum_{i=1}^{\left[\frac{b}{2} \right]+1} A_{i} \right)^t + j_n \left(\sum_{i=1}^{\left[\frac{b}{2} \right]+1} A_{i} \right)^t
\]

\[
\]
where $Z = (W_b)^{h-1}(W_b^t)^{h-1}$ is the $b \times b$ matrix which has zero entries only in the $(\lfloor \frac{b}{2} \rfloor, b)$ and $(b, \lfloor \frac{b}{2} \rfloor)$ positions. Since AZA^t is dominated by $M^h(M^t)^h$ and $M^h(M^t)^h$ has zero entries in the (p, q) and (q, p) positions, the entries in the (p, q) and (q, p) positions of AZA^t are also zero. Thus

$$
\sum_{i=1}^{\lfloor \frac{b}{2} \rfloor - 1} A_{qi} + \left(\sum_{i=1}^{b-1} A_{pi} \right) A_{q\lfloor \frac{b}{2} \rfloor} + \sum_{i=\lfloor \frac{b}{2} \rfloor + 1}^{b-1} A_{qi} + \left(\sum_{i=1}^{b} A_{pi} \right) A_{qb} = 0 \quad (5)
$$

and

$$
\sum_{i=1}^{\lfloor \frac{b}{2} \rfloor - 1} A_{pi} + \left(\sum_{i=1}^{b-1} A_{qi} \right) A_{p\lfloor \frac{b}{2} \rfloor} + \sum_{i=\lfloor \frac{b}{2} \rfloor + 1}^{b-1} A_{pi} + \left(\sum_{i=1}^{b} A_{qi} \right) A_{pb} = 0. \quad (6)
$$

Then $A_{qi} = 0$ and $A_{pi} = 0$ for $i = 1, \ldots, b - 1$ and $i \neq \lfloor \frac{b}{2} \rfloor$. Substitute these back to (5) and (6), we have

$$A_{q\lfloor \frac{b}{2} \rfloor}A_{p\lfloor \frac{b}{2} \rfloor} + A_{qb}A_{pb} = 0. \quad (7)
$$

If $A_{q\lfloor \frac{b}{2} \rfloor} \neq 0$, then $A_{p\lfloor \frac{b}{2} \rfloor} = 0$. Since every row of A is nonzero, we have $A_{pb} \neq 0$. By (7), $A_{qp} = 0$. Therefore some rows of A is $e_{\lfloor \frac{b}{2} \rfloor}(b)$ and some row of A is $e_1(b)$. This concludes (ii).

We claim B cannot have a column which is equal to u. Otherwise, suppose some column of B is u. Since B has no zero row, by Proposition 2.2, $BB^t \geq I_b + uu^t$. Thus

$$M^h(M^t)^h = (AB)^h((AB)^t)^h = A(BA)^{h-1}BB^t((BA)^t)^{h-1}A^t$$

$$= A(W_b)^{h-1}BB^t(W_b^t)^{h-1}A^t$$

$$\geq A(W_b)^{h-1}(I_b + uu^t)(W_b^t)^{h-1}A^t$$

$$= A[(W_b)^{h-1}(W_b^t)^{h-1} + (W_b)^{h-1}u(W_b^t)^{h-1}u]^tA^t.$$

By lemma 2.3, $W_b^{h-1}([\lfloor \frac{b}{2} \rfloor, b], \{b - 1, b\})$ is either \[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \] or \[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]. Then $W_b^{h-1}u \geq e_{\lfloor \frac{b}{2} \rfloor}(b) + e_b(b)$. By Lemma 2.3, the zero entries of $W_b^{h-1}(W_b^t)^{h-1}$ are in the $(b, \lfloor \frac{b}{2} \rfloor)$ and $(\lfloor \frac{b}{2} \rfloor, b)$ positions. Therefore $W_b^{h-1}(W_b^t)^{h-1} + (W_b)^{h-1}u(W_b^t)^{h-1}u^t = J_b$. Since A has no zero lines, we have $M^h(M^t)^h = AJ_bA^t = J_n$, which is a contradiction to $k(M) = h + 1$. This proves (iii).
Finally, suppose that \(M = AB \) is a Boolean rank factorization of \(M \) and \(A \) and \(B \) satisfy (i), (ii) and (iii). By Lemma 2.1(a) and Theorem 1.2, the matrix \(M \) is primitive and \(k(M) \leq h + 1 \) by Lemma 2.1(b) and . But it follows from Lemma 2.4 and conditions (i), (ii) and (iii) that \(M^h \) has zero entries. So we conclude that \(k(D) = h + 1 \).

Next we will reinterpret conditions (i), (ii) and (iii) of Theorem 2.6 to show that if \(k(M) = h + 1 \), then \(M \) is one of the three basic types of matrices in Theorem 2.7.

\[\begin{array}{c}
M_1 = \\
\begin{bmatrix}
0 & J & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & J & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & J & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & J & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{array} \]

\[\begin{array}{c}
M_2 = \\
\begin{bmatrix}
0 & J & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & J & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & J & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & J & 0 \\
0 & 0 & \cdots & 0 & 0 & J & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{array} \]

\[\begin{array}{c}
M_3 = \\
\begin{bmatrix}
0 & J & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & J & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & J & 0 & J \\
0 & 0 & \cdots & 0 & 0 & J & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
J & 0 & \cdots & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\end{array} \]

Theorem 2.7 Suppose \(M \) is an \(n \times n \) Boolean matrix with \(b(M) = b \), where \(3 \leq b \leq n - 1 \). Then \(M \) is primitive with \(k(M) = h + 1 \) if and only if there is a permutation matrix \(P \) such that \(PMP^t \) has one of the forms in Table 1.
In Table 1 the rows and columns of M_1, M_2 and M_3 are partitioned conformally, so that each diagonal block is square, and the top left hand submatrix common to each has b blocks in its partitioning.

Proof. Suppose M is primitive, $b \geq 3$, and $k(M) = h + 1$. Then by Theorem 2.6(i), M has a Boolean rank factorization $M = AB$ such that $BA = W_b$. Since A has no zero row, each column of B is dominated by a column of W_b. Similarly, each row of A is dominated by a row of W_b. Thus each column of B is in the set $S_1 = \{e_1(b), e_2(b), \cdots, e_b(b), u\}$, where $u = e_{b-1}(b) + e_b(b)$. Similarly, each row of A is in the set $S_2 = \{e_1'(b), e_2'(b), \cdots, e_b'(b), v\}$, where $v = e_1(b) + e_b(b)$. But by Theorem 2.6(iii), no column of B is u. Hence each column of B is in the set $S'_1 = \{e_1(b), e_2(b), \cdots, e_b(b)\}$.

Next, we note that for each $1 \leq i \leq b$, the product B_iA_i is dominated by W_b. Since each B_j and A_i must be in S'_1 and S_2 respectively and (B_j, A_i) must be one of the following pairs: (e_i, e_i^t), $1 \leq i \leq b-1$, (e_{b-1}, e_{b-1}^t), (e_b, e_1^t), or (e_b, v^t), where $e_i = e_i(b)$ for any $i \in \{1, 2, \cdots, b\}$. Thus, for each i, $1 \leq i \leq b-1$, $(e_i, e_{i+1}^t) = (B_{k_i}, A_{k_i})$ for some k_i. Some outer product B_jA_j has a 1 in the $(1,1)$ position, hence $(B_{k_b}, A_{k_b}) = (e_b, e_1^t)$ for some k_b. Finally some outer product B_jA_j must have a 1 in the $(b-1,1)$ position, hence for some k_{b+1}, $(B_{k_{b+1}}, A_{k_{b+1}})$ is one of (e_b, e_1^t) or (e_b, v^t). It follows from the above argument that there is an $n \times n$ permutation matrix Q such that

$$BQ^t = [\tilde{B} | \tilde{B}]$$

and

$$QA = \begin{bmatrix} \bar{A} \\ \bar{A} \end{bmatrix},$$

where

$$\tilde{B} = [e_1 j_{n_1}^t | e_2 j_{n_2}^t | \cdots | e_b j_{n_b}^t]$$

and

$$\bar{A} = \begin{bmatrix} j_{n_1} e_2^t \\ j_{n_2} e_3^t \\ \cdots \\ j_{n_{b-1}} e_b^t \\ j_{n_b} e_1^t \end{bmatrix}$$

for some $n_1, \cdots, n_b \geq 1$, and where each (\tilde{B}_i, \bar{A}_i) is one of (e_{b-1}, e_1^t) or (e_{b-1}, v^t). Thus \tilde{B} and \bar{A} can be one of the following pairs of matrices:

$$\tilde{B}_1 = e_{b-1} j_{m_1}^t, \quad \bar{A}_1 = j_{m_1} e_1^t \text{ for some } m_1 \geq 1;$$

$$\tilde{B}_2 = e_{b-1} j_{m_2}^t, \quad \bar{A}_2 = j_{m_2} v^t \text{ for some } m_2 \geq 1;$$

$$\tilde{B}_3 = [e_{b-1} j_{m_3}^t | e_{b-1} j_{p_2}^t], \quad \bar{A}_3 = \begin{bmatrix} j_{m_3} e_1^t \\ j_{p_3} v^t \end{bmatrix} \text{ for some } m_3, p_3 \geq 1.$$
It is now readily verified that

\[
\begin{bmatrix}
\overline{A} \\
\bigg| \\
\overline{A}_i
\end{bmatrix}
\begin{bmatrix}
\overline{B} |
\overline{B}_i
\end{bmatrix} = M_i \quad \text{for } 1 \leq i \leq 3,
\]

so that \(QMQ^t\) is one of the matrices in Table 1.

Finally, since the Boolean rank factorization

\[
M_i = \begin{bmatrix}
\overline{A} \\
\bigg| \\
\overline{A}_i
\end{bmatrix}
\begin{bmatrix}
\overline{B} |
\overline{B}_i
\end{bmatrix}
\]

satisfies conditions (i), (ii) and (iii) of Theorem 2.6, each \(M_i\) is primitive and \(k(M) = h + 1\).

When \(b(M) = 2\), we have the following result.

Theorem 2.8 Suppose \(M\) is an \(n \times n\) primitive Boolean matrix with \(b(M) = b = 2\). Then \(k(M) = 2\) if and only if \(M\) has a boolean rank factorization \(M = AB\), where \(A\) and \(B\) have the following properties:

(i) \(BA = W_2\) or \(BA = J_2\),

(ii) some row of \(A\) is \(e_1^t(2)\), some row of \(A\) is \(e_2^t(2)\), and

(iii) no column of \(B\) is \(e_1(2) + e_2(2)\).

Proof. First suppose \(M\) is primitive with \(k(M) = 2\), and \(M = \overline{A} \overline{B}\) is a Boolean rank factorization of \(M\). By Lemma 2.4, \(\overline{B} \overline{A}\) is primitive and \(k(\overline{B} \overline{A}) \geq 1\). But \(\overline{B} \overline{A}\) is a \(2 \times 2\) matrix. By Theorem 1.2, \(k(\overline{B} \overline{A}) \leq 1\). Therefore \(k(\overline{B} \overline{A}) = 1\). Also by Theorem 1.2, there is a permutation matrix \(P\) such that \(P \overline{B} \overline{A} P^t = W_2\) or \(P \overline{B} \overline{A} P^t = J_2\). Let \(B = \overline{P} \overline{B}\) and \(A = \overline{P} \overline{A}^t\). Then \(AB = \overline{A} \overline{P}^t \overline{P} \overline{B} = \overline{A} \overline{B} = M\). Thus \(A\) and \(B\) satisfy condition (i).

Proof of the conditions (ii) and (iii) are similar to the proof of Theorem 2.6.

\(\square\)

By a similar argument, we can reinterpret conditions (i), (ii) and (iii) of Theorem 2.8 to show that if \(M\) satisfies \(k(M) = 2\), then \(M\) is one of the 21 basic types of matrices which we will show in the following.

Theorem 2.9 Suppose \(M\) is an \(n \times n\) Boolean matrix with \(b(M) = b = 2\). Let \(M = AB\) be a Boolean rank factorization. Then \(M\) is primitive with \(k(M) = 2\) if and only if there is a permutation matrix \(P\) such that \(PMP^t\) has one of the
forms in Table 2 if $BA = W_2$ or PMP^t has one of the forms in Table 3 if $BA = J_2$.

In Table 2 and Table 3 the rows and columns of each matrix are partitioned conformally, so that each diagonal block is square.

Table 2 ($b = 2$)

\[
\begin{bmatrix}
0 & J & 0 \\
J & 0 & J \\
0 & J & J
\end{bmatrix},
\begin{bmatrix}
0 & J & 0 \\
J & 0 & J \\
J & J & J
\end{bmatrix},
\begin{bmatrix}
0 & J & 0 \\
J & 0 & J \\
J & J & J
\end{bmatrix},
\begin{bmatrix}
0 & J & 0 \\
J & 0 & J \\
J & J & J
\end{bmatrix}.
\]

Table 3 ($b = 2$)

\[
\begin{bmatrix}
J & J & 0 & 0 \\
0 & 0 & J & J \\
J & J & 0 & 0 \\
0 & 0 & J & J
\end{bmatrix},
\begin{bmatrix}
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0
\end{bmatrix},
\begin{bmatrix}
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0
\end{bmatrix},
\begin{bmatrix}
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0
\end{bmatrix},
\begin{bmatrix}
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0
\end{bmatrix},
\begin{bmatrix}
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0
\end{bmatrix},
\begin{bmatrix}
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0 \\
J & J & 0 & 0
\end{bmatrix}.
\]
References

[1] M. Akelbek, S.J. Kirkland, Coefficients of ergodicity and the scrambling index, *Linear Algebra Appl.* 430 (2009), 1111–1130.

[2] M. Akelbek, S.J. Kirkland, Primitive digraphs with the largest scrambling index, *Linear Algebra Appl.* 430 (2009), 1099–1110.

[3] R.A. Brualdi, H.J. Ryser, *Combinatorial Matrix Theory*, Encyclopedia of Mathematics and its Applications 39, Cambridge University Press, Cambridge, 1991.

[4] D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, *Linear Algebra Appl.* 217 (1995), 101–116.

[5] B.L. Liu, L.H. You, G.X. Yu, On extremal matrices of second largest exponent by Boolean rank, *Linear Algebra Appl.* 422 (2007), 186-197.

[6] J.Y. Shao, On the exponent of primitive digraph, *Linear Algebra Appl.* 64 (1985), 21-31.