‘BhAVI-23’-A spice-herb based dietary infusion possessing in-vitro anti-viral potential

Sudhanshu Saxena, Sanjeev Kumar, Sachin N. Hajare, Sumit Gupta, Satyendra Gautam*, Sunil K. Ghosh

Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India

Abstract

Background: Viruses cause many life threatening human diseases. Recently, COVID-19 pandemic has challenged the health care systems worldwide. As a disease preventive approach and to bring relief to the severity of the symptoms, an infusion termed as Bhabha Anti-Viral Infusion-23 (‘BhAVI-23’) was conceptualized and formulated which comprised of 23 selected spices and herbs.

Objective: The present study was conducted to assess the in vitro antiviral potential of the formulation, BhAVI-23.

Material and methods: The in-vitro anti-viral potential of BhAVI-23 was assessed through inhibition of HIV1 reverse transcriptase (RT) as well as through a novel P1 (virulent) bacteriophage based screening assay system. Anti-diabetic potential was assessed by non-enzymatic glycosylation of haemoglobin and the bioactive volatile components were detected through headspace gas chromatography followed by molecular docking analysis.

Results: The infusion displayed prominent anti-viral activity as evident from significant (57%) inhibition of the HIV1-RT as well as through reduction in the infectivity of P1 (virulent) bacteriophage. The infusion also exerted profound protection (~64%) to non-enzymatic glycosylation of haemoglobin. Headspace gas chromatography and mass spectrometric analysis confirmed the presence of at least 47 major compounds. Docking analysis indicated possible interaction of α-pinene and eugenol with SARS-CoV spike protein.

Conclusion: This ‘BhAVI-23’ infusion displayed prominent in-vitro anti-viral and anti-diabetic potential in different model systems. These attributes have relevance as diabetic patients are more prone to COVID-19 morbidity. ‘BhAVI-23’ opens the avenue for its potential inclusion as a supportive health care system upon due regulatory approval during the current pandemic.

© 2021 The Authors. Published by Elsevier B.V. on behalf of Institute of Transdisciplinary Health Sciences and Technology and World Ayurveda Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Viruses are known to be responsible for various human pathogeneses and recently, the coronavirus breakout was notified as a Public Health Emergency of International Concern and subsequently a pandemic by the WHO. COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has challenged health care systems worldwide [1,2]. SARS-CoV-2 is an enveloped coronavirus that possess single-stranded plus sense RNA genome and its cellular attachment is mediated through interaction of specific viral surface protein with cell surface ACE2 receptor [3,4]. Typical symptoms shown by the COVID-19 patients include coughing, chest congestion, fever, lung damage as well as some other associated systemic disorders [5].

Therefore a wide range of health preventive strategies are being deployed and one of the main treatment modalities in the absence of specific anti-COVID therapeutics is supportive care only. Under such prevailing circumstances, ancient system of Indian complementary herbal medicine ‘Ayurveda’ has the potential to provide relief to the patients through various mechanisms as well as boosting the immune system [6,7]. Based upon the scientific & medicinal information documented in ‘Charak Samhita’ and
‘Sushruta Samhita’ many herbs could exert health benefiting effects including anti-viral, anti-pyretic, anti-inflammatory, anti-haemorrhoid and anti-emetic properties [8]. Realizing the health benefiting properties associated with herbal medicine, WHO has indicated that traditional medicine could have important contributions towards achieving health security to the global population [9]. The Ministry of AYUSH, Government of India, has also released an advisory to deploy the Ayurvedic, Homeopathic and Unani ways of managing the COVID-19 pandemic and listed out a number of herbs and other combinations that could be adopted for countering the COVID-19 infection and subsequently suppression of associated life threatening symptoms [10]. Many individuals are increasingly turning to ayurvedic medicines and herbal products to augment their immunity [11]. Also, as the COVID-19 severity has been reported to be higher in people with diabetes, therefore inclusion of anti-diabetic-herbals in the treatment regime has been duly considered.

In these contexts, as an add-on supportive system and from disease preventive and health benefiting point of view, a spice-herb infusion named as ‘BhAVI-23’ (Bhabha Anti-Viral Infusion-23) comprising of 23 ingredients has been conceptualized & formulated. The basis of inclusion of these selected herbs & spices is reported to have broad-spectrum anti-viral properties and anti-diabetic activity, therefore a prospective counter-measure for the betterment and symptomatic relief of patients suffering from COVID-19.

2. Materials and methods

2.1. Preparation of ‘BhAVI-23’ infusion

Different spices and herbs (23 in nos.) were used to prepare ‘BhAVI-23’ mix. Many of these were picked from the centre’s botanical garden and whole spices were procured from authentic spice whole-seller in Mumbai, Maharashtra, India registered with Food Safety & Standards Authority of India (FSSAI). Thoroughly washed and solar dried ingredients were powdered and strained.

All the 23 ingredients were added in a proportion (total wt. 57.85 g) as detailed in Table S1. For preparation of infusion, approximately 1 small tablespoon (~1 g) of the powder was suspended in ~200 ml of water. This suspension was further boiled for 5 min and strained to obtain ready-to-be consumed hot beverage.

2.2. Assessment of the anti-viral potential

2.2.1. HIV reverse transcriptase inhibition assay

The anti-retroviral potential of ‘BhAVI-23’ extract was assessed through the colorimetric reverse transcriptase (RT) inhibition assay kit (Roche, Switzerland). This colorimetric assay utilizes the property of reverse transcriptase enzyme to synthesize fresh DNA from the template/primer hybrid incorporating digoxigenin and biotin labeled nucleotides. As a measure of the RT activity, the detection as well as quantification of the newly synthesized labeled DNA is achieved through enzyme-linked immunosorbent assay (ELISA).

The surface of the microplate is precoated with streptavidin which is achieved through enzyme-linked immunosorbent assay (ELISA). Reaction mix consisted of 20 µl diluted HIV-1-RT (6 ng) to which 20 µl of ‘BhAVI-23’ extract was added with varying concentrations. The mixture was incubated for 5 min followed by addition of 20 µl of reaction mixture containing dNTPs, template and primers in a reaction buffer. The samples were incubated (1 h at 37 °C) at room temperature. HIV-1-RT (6 ng, 20 µL) without any extract acted as a positive control. Post incubation, whole reaction mix (60 µL) was transferred into streptavidin coated well of micro-plate, and mixture was further incubated (1 h, 37 °C) in dark. After the removal of solution, wells were gently washed using washing buffer. 200 µL working solution of anti-DIG-POD (digoxigenin-peroxidase) was added per well followed by plate incubation (37 °C, 1 h). After the incubation, the wells were washed with washing buffer. Finally, to each well 200 µL of ABTS substrate solution was added and the plate was incubated at room temperature for 45 min. Quantification of the sample absorbance was done employing a microplate reader at 405 nm.

2.2.2. P1 bacteriophage based qualitative screening assay

Anti-viral potential of the infusion was also evaluated using a novel P1 (virulent) bacteriophage system. The P1 (virulent) bacteriophage is known to form plaques in host bacteria through host cell lysis. This property was employed to assess infectivity lowering potential of ‘BhAVI-23’ infusion against P1 virulent phage. Four different experimental conditions were set: A) Escherichia coli; B) E. coli + P1 (vir) lyssate; C) E. coli + P1 (vir) lyssate + ‘BhAVI-23’ extract (1.75%); D) E. coli + ‘BhAVI-23’ extract. These cultures were incubated (1 h, 37 °C) followed by pour plating using soft agar on LB agar plates. These plates were then incubated at 37 °C for 24 h for qualitative evaluation of the antiviral property of the ‘BhAVI-23’ extract.

2.3. Assay for anti-glycation property of infusion

Haemoglobin (Hb) undergoes non-enzymatic chemical linkage with sugars including glucose leading to the formation of glycated Hb and under hyperglycemic conditions the level of glycated Hb significantly rises. Therefore, the anti-diabetic potential of the ‘BhAVI-23’ infusion was assessed through non-enzymatic glycosylation assay of haemoglobin (Hb) [37]. The solutions of ampicillin (0.02%), glucose (2%), and haemoglobin (0.06%) were prepared in phosphate buffer (0.01 M, pH 7.4). Later, 1 ml each of these solutions were mixed followed by addition of 1 ml of ‘BhAVI-23’ extract at varying concentrations. The reaction mixture was incubated (72 h in dark) at room temperature followed by spectrophotometric measurement of haemoglobin glycosylation at 520 nm. Percentage inhibition of glycosylation was calculated based upon the absorbance of the samples along with control (without any extract).

2.4. Headspace gas chromatography–mass spectrometric analysis (HS-GCMS)

Headspace gas analysis was performed as per the method reported earlier [38]. A 15 ml of herbal extract (0.55%) was prepared (section 2.1) and taken in 40 ml SPME vial. In this extract 4.5 g of NaCl was added. 2-octanol (82 µg/L) was added as an internal standard. Samples were kept on a magnetic stirrer and equilibrated (10 min, 40 °C). Extraction was performed at 40 °C for 10 min employing a pre-conditioned (250 °C, 5 min) 50/30 µm polydimethylsiloxane/phenyl benzene solid phase micro extraction fiber. Extracted volatiles were injected in GC/MS by desorbing the fibre on the injection port kept at 250 °C for 2 min. The analytical procedure was performed on GC/MS having GC
capillary column Rxi-5 ms (l: 20 m, inner diameter: 0.18 mm, film thickness: 0.18 μm). Helium gas served as a carrier gas. The injector port was equipped with inlet liner (0.75 mm ID, Supelco) compatible for solid phase micro-extraction analysis. With a split ratio 5, the injections were done. Initial temperature setting of GC was 40 °C (hold time 3.2 min) which was further raised to 200 °C (rate of increase: 6.2 °C/min) and subsequently to 280 °C (15 °C/min) which was further maintained for 7 min. The mass-spectrometry parameters were: ionization voltage (70 eV), electron multiplier voltage (1 kV), and m/z 35–500. The identification of the detected peaks was performed by comparing the Kovat retention indices based on a homologous series of n-alkanes (C5–C24) with that of standards and also from the MS data accessible in the mass spectral library (NIST/EPA/NIH, 2014 Version). Internal standard was used for evaluating the peak areas of the targeted volatile compounds.

2.5. Representative molecular docking study using α-pinene, eugenol and SARS-CoV spike protein

A representative molecular docking study was performed using Auto-dock Vina wizard. Ligands (α-pinene and eugenol) were downloaded from ChemDB Chemoinformatics Portal. The SARS CoV-2 spike protein structure file (PDB ID 6x8) was accessed and downloaded from the website of protein data bank. The protein molecule was processed using AutoDock tool. Water molecules and other associated ions were selectively eliminated whereas polar hydrogens were added to the spike protein molecule. Processed file was saved in *.pdbqt format. Region specific docking of α-pinene as well as eugenol was performed with SARS-CoV-2 spike protein. AutoDock Vina parameters for spike protein (PDB ID 6x8) were: center_x = 198.0, center_y = 198.0, center_z = 191.9, size_x = 28.0, size_y = 27.8, size_z = 28.0. The interaction was viewed in PMV viewer ver.1.5.6.

3. Results

3.1. Composition of herbal mixture ‘BhAVI-23’

‘BhAVI-23’ infusion was prepared using 23 different spice & herbs based upon the reported scientific evidences as detailed in Table S1 [39,40]. Their relative proportion was properly selected based upon their pharmacological properties and recommended dosage for an adult individual as shown in Tables S1 and S2 [12–36,39,40]. Ingredients were grouped in 4 different categories: major (4–6 g), medium (2–3 g), minor (1–1.5 g) and trace ingredients (0.1–0.5 g). Besides, the major pharmacological benefits of ‘BhAVI-23’ ingredients (based upon earlier scientific findings) are summarized in Table S2.

3.2. ‘BhAVI-23’ infusion possesses broad spectrum anti-viral property

3.2.1. Anti-retroviral potential

This assay was performed with major (A), medium (B), minor (C), trace (D) and total (T1: 1.4% and T2: 2.8%) components of ‘BhAVI-23’ mix (Table 1). The extracts displayed prominent RT inhibition and the extent of RT inhibition was found to be 30, 37, 36, 30, 47, 56%, respectively (Fig. 1 A, B). These observations also indicated about the possibility of synergism being shown at the level of HIV1–RT inhibition by the components of the ‘BhAVI-23’.

The retroviruses such as HIV, HTLV-1, HTLV-II are also implicated in several life threatening human diseases and the retroviral family member has a characteristic reverse transcriptase [41]. Involvement of this reverse transcriptase is a prerequisite in the initial stages of propagation including proviral DNA synthesis and thus many anti-retroviral therapeutic regimes target the reverse transcriptase enzyme.[42, 43] Therefore assaying the extract for the anti-retroviral transcriptase activity provided evidence ascertaining its anti-retroviral property.

3.2.2. P1 (virulent) phage infectivity lowering potential

P1 virulent phage is a temperate bacteriophage that is known to infect E. coli and some other bacteria [44]. A novel P1 virulent bacteriophage based qualitative screening assay was employed to further assess the antiviral potential of the ‘BhAVI-23’ infusion and the observations are shown in Fig. 2. Almost complete absence of growth of bacteria E. coli was observed when phage and bacteria were co-incubated together indicative of complete lysis of host bacteria (Fig. 2B). Interestingly, ‘BhAVI-23’ extract inhibited the infectivity of P1 (vir) bacteriophage as manifested by reduced plaque forming ability at the non-cytotoxic concentration of 1.75% of the infusion resulting in almost comparable bacterial growth (Fig. 2C). The negative control (E. coli co-incubated with BhAVI-23 extract) is displayed in Fig. 2D. These observations further corroborated the anti-retroviral activity as mentioned above.

3.3. Anti-glycation potential of ‘BhAVI-23’ extract and its relevance

Anti-glycation property of the infusion is shown in Fig. 3. The extract displayed significant anti-glycation property against glucose mediated glycation of haemoglobin thus conferring anti-diabetic property to ‘BhAVI-23’. Anti-glycation was found to be 22% and 64% at extract concentration of 250 and 1250 μg/ml, respectively.

3.4. Head space gas analysis confirmed the presence of antiviral components in ‘BhAVI-23’

Around 47 different compounds were detected and identified in the ‘BhAVI-23’ infusion upon head space gas analysis (Table 1). The concentration of eugenol was observed to be prominently higher as compared to other compounds. Many of these compounds have been reported for their potent anti-viral activities against wide variety of viruses [45–55].

3.5. Molecular docking analysis

Compounds showing antiviral activity were further selected for molecular docking analysis. Fig. 4 (A, B) shows binding pose of α-pinene and eugenol with the spike protein of SARS-CoV-2 and the predicted binding energy was found to be −6.4 & −6.3 kcal/mol, respectively. Different proteins of SARS CoV-2 have been discovered that could act as potentially important targets for the management of COVID-19. Some of the key protein targets of SARS-CoV-2 are main protease (Mpro), ADP-ribosyl-1-phosphatase (ADRP), endoribonuclease (Nsp 15/NendoU), the binding domain of the spike protein (SARS-CoV-2s), RNA-dependent RNA polymerase (RdRp), and hACE2 [56]. Docking study of both the ligands was also carried out with main protease (Mpro) (PDB ID 6wqj), Endoribonuclease (PDB ID 6x41) and RNA dependent RNA Polymerase (PDB ID 6m71). However, the docking score values for α pinene with Mpro, Endoribonuclease and RdRp were −1.3, −4.2 and −4.1 kcal/mol, respectively while that of eugenol were −3.7, −3.8 and −3.2 kcal/mol, respectively. In both the ligands, spike protein showed the lowest binding energy (indicating highest affinity) with the spike protein.
Table 1
Head space GC–MS analysis of the 'BhAVI-23' infusion and the identified compounds and their concentrations.

Compounds detected	Rt	RI cal	RI actual	Amount (µg/L)
1-Penten-3-ol	1.773	735	684	9.2 ± 2.32
3-Methyl butanal	1.905	740	652	4.93 ± 1
3-Methyl-1-butanol	2.411	758	736	0.65 ± 0.03
Dimethyl disulphide	2.493	761	746	1.4 ± 0.38
1-Pentanol	2.971	778	768	3.83 ± 1.02
2Z-Penten-1-ol	3.037	780	770	4.15 ± 0
Hexanal	3.609	800	800	9.79 ± 1.65
2-Hexanal	4.967	849	851	29.4 ± 7.51
3Z-Hexen-1-ol	5.105	854	856	22.15 ± 6.16
2 E-Hexen-1-ol	5.417	805	862	32.66 ± 11.85
1-Hexanol	5.492	868	868	34.28 ± 5.9
α-Pipene	7.199	929	937	2.4 ± 0.87
Benzaldehyde	7.967	956	962	2.23 ± 0.19
β-Pipene	8.418	972	979	4.12 ± 1.65
1-Octen-3-one	8.594	978	979	0.99 ± 0.04
1-Octen-3-ol	8.647	980	980	1.86 ± 0.24
6-Methyl-5-hepten-2-one	8.856	988	986	3.35 ± 0.31
β-Mycyrene	8.933	991	991	3.58 ± 1.42
Eucalyptol	9.996	1029	1032	112.24 ± 1.43
Benzyl alcohol	10.138	1034	1036	1.03 ± 0.15
Benzenecetadleyde	10.34	1042	1045	7.45 ± 0.29
γ-Terpine	10.774	1058	1060	5.64 ± 2.3
Fenchone	11.548	1086	1096	22.37 ± 0.84
cis-β-Terpinene	11.849	1097	1144	2.3 ± 0.08
Linalool	11.926	1099	1099	63.59 ± 3.75
Benzenepropanol	13.498	1161	1162	32.02 ± 1.58
endo-Borneol	13.593	1165	1166	36.37 ± 1.95
Terpinen-4-ol	13.888	1177	1182	22.88 ± 0.63
α-Terpinol	14.24	1190	1185	70.97 ± 3.17
3-p-Menthlen-7-al	14.309	1193	1196	7.45 ± 0.46
3-(1-Methylethyl)-phenol	15.214	1231	1228	2.59 ± 0.26
3-Phenylpropanol	15.262	1233	1232	1.94 ± 0.23
4-(1-Methylethyl)-benzaldehyde	15.515	1240	1239	384.09 ± 48.82
Thymoquinone	15.726	1252	1250	86.73 ± 10.66
E-Cinnamaldehyde	16.211	1272	1274	182.53 ± 12.9
2-Caren-10-al	16.522	1285	1289	123.63 ± 9.45
1,4-p-Menthlen-7-al	16.66	1291	1288	38.6 ± 3.74
2-Methyl-5-(1-methylethyl)-phenol	16.917	1302	1299	40.7 ± 0.27
3-phenyl-2-eprop-1-ol	17.041	1308	1313	1.43 ± 0.09
Eugenol	18.365	1367	1392	507.02 ± 80.26
Methyleneugenol	19.329	1410	1402	222.61 ± 29.51
Coumarin	19.953	1440	1441	18.18 ± 1.56
Acetic acid cinnamyl ester	20.084	1446	1445	4.41 ± 0.36
Eugenol acetate	21.801	1529	1524	19.78 ± 2.24
Ar-turmerone	24.514	1668	1660	6.09 ± 0.63
Hexadecanal	27.203	1817	1817	1.46 ± 0.01
Dimethyl palmitamine	28.731	1895	1894	83.9 ± 0.0

4. Discussion

Large scale drug and phytomedicine repurposing is being currently investigated as it is plausible that anti-retroviral therapy may also be effective against SARS coronavirus [57–60]. 'BhAVI-23' displayed prominent inhibition of HIV-1 RT activity as well as infectivity of P1 (vir) phage thus ascertaining its anti-viral potential. The reverse transcriptase assay based upon HIV-1 RT has been reported earlier as potentially beneficial for the assessment of RT activity against different retroviruses as well as screening tool for the prospective RT inhibitors [61].

Besides, assessment of anti-glycation potential has significance due to growing evidence strongly suggesting that the evaluation of hemoglobin glycation is relatively more advantageous in forecasting the risk of developing diabetes [62]. 'BhAVI-23' has been conceptualized to also confer additional potential benefits to people suffering from diabetes because such people belong to high risk categories and can have serious illness if they get infected to the coronavirus. Herbs and spices are known for their prophylactic anti-diabetic and immunomodulatory attributes [63,64]. Acute hyperglycemia may be alarming because significantly glycosylated ACE2 receptor is conducive for cellular intrusion of the coronavirus subsequently leading to a pronounced COVID-19 infection with increased disease seriousness [65]. Hyperglycemia may escalate viral proliferation, inhibit & weaken the anti-viral immune response and may also affect pulmonary function [66]. In a recently conducted clinical study at the United States, COVID-19 patients suffering from diabetes had a longer stay in hospital and prominently higher mortality (28%) as compared to non-diabetic patients (6.2%). Therefore, it was further recommended and advised that inpatient hyperglycemia is effectively and safely treated by the medical management [67].

Different compounds detected during head-space analysis have been reported for their anti-viral activities. Tumerones detected have been reported to have activity against H5N1 influenza virus, whereas, coumarins have been shown to possess activity against RNA viruses like HCV, HIV and influenza virus. Eugenol has been found to display direct inhibitory activity against both intracellular and extracellular viruses including Herpes Simplex virus [45]. Carvacrol has been reported to be active against HSV-1 by direct inhibition of virus particle. This compound possessed anti-murine norovirus activity too [46,47]. The α and β-pinene detected are...
naturally found in black cumin and clove, respectively. The α-pinene has been reported to display prominent antiviral activity against IBV, SARS-CoV as well as HSV-1 [48]. The β-myrcene detected possessed anti HSV-1 activity [48]. Besides, linalool which was detected in the infusion has been reported earlier for its activity against Influenza A virus [49]. Recently, antiviral activities of borneol and isoborneol derivatives against Influenza A virus has been reported [50]. Terpinen-4-ol found has been reported for its significant activity against Influenza A virus [51]. Thymoquinones and curcumin have been reported for their antiviral activity and could boost immune response [52,53]. Curcumin has also been reported for its potential health importance in severe pneumonia [53]. Cinnamaldehyde was one of the major compounds detected in ‘BhAVI-23’ infusion and shown to inhibit adenovirus type 3 & influenza A/PR/8 virus in earlier reports [54,55]. Selection of target proteins of virus for docking study is an important step during evaluation of compounds for antiviral activity. Different viral proteins are responsible for crucial functions in viral entry, replication and its assembly and spread to other host cells. Main protease (Mpro) is required to cleave the polyprotein into different nonstructural proteins required for viral activity. Spike protein is required for recognition and high affinity binding with the functional ACE-2 receptor of the host cell while endoribonuclease degrades polyuridine sequence of viral RNA to prevent detection of virus by host immune cells [68]. RNA dependent RNA polymerase is required to generate multiple copies of viral genome. Different researchers have carried out in-silico docking analysis of number of essential oil compounds for the SARS CoV-2 proteins mentioned above [69,70,71]. These include the major compounds detected in BhAVI-23 extract. β-myrcene showed highest docking score (−98.7 kJ/mol) normalized for molecular weight with main protease. In case of endoribonuclease, endo-borneol showed highest docking score (−918.0 kJ/mol), while for rest of the 4 proteins, eugenol showed highest docking score [69]. Docking study exclusively for eucalyptol with main protease has been reported earlier [70]. They obtained full fitness as well as binding affinity values of −2291.07 and −6.04 kcal/mol, respectively. They concluded that eucalyptol showed significantly high binding affinity, however, further validation is required to confirm the interaction of eucalyptol with main protease [70]. Screening of different natural derivatives of coumarin for the selective inhibition of Mpro has also been performed earlier and the ΔG values ranged from −6.80 to −8.57 kcal/mol [72]. Besides, in another docking study thymoquinones displayed binding affinity values for COVID-19 Mpro and ACE-2 as −4.7 and −5.5 kcal/mol, respectively [72]. Representative docking result is depicted in Fig. 4 where α-pinene and eugenol were used as a ligand for spike protein. α-pinene was selected as this molecule has been shown to possess anti-SARS CoV activity while eugenol was selected since it was the most abundant molecule present in BhAVI extract. As seen from the figure, the ligand is binding into the pocket formed by 3D assembly of three spike protein polypeptides. Different researchers have carried out in-silico docking analysis of number of necessary oil compounds for the SARS CoV-2 proteins mentioned above [69,70,71]. These include the major compounds detected in BhAVI-23 extract. β-myrcene showed highest docking score (−98.7 kJ/mol) normalized for molecular weight with main protease. In case of endoribonuclease, endo-borneol showed highest docking score (−918.0 kJ/mol), while for rest of the 4 proteins, eugenol showed highest docking score [69]. Docking study exclusively for eucalyptol with main protease has been reported earlier [70]. They obtained full fitness as well as binding affinity values of −2291.07 and −6.04 kcal/mol, respectively. They concluded that eucalyptol showed significantly high binding affinity, however, further validation is required to confirm the interaction of eucalyptol with main protease [70]. Screening of different natural derivatives of coumarin for the selective inhibition of Mpro has also been performed earlier and the ΔG values ranged from −6.80 to −8.57 kcal/mol [72]. Besides, in another docking study thymoquinones displayed binding affinity values for COVID-19 Mpro and ACE-2 as −4.7 and −5.5 kcal/mol, respectively [72]. Representative docking result is depicted in Fig. 4 where α-pinene and eugenol were used as a ligand for spike protein. α-pinene was selected as this molecule has been shown to possess anti-SARS CoV activity while eugenol was selected since it was the most abundant molecule present in BhAVI extract. As seen from the figure, the ligand is binding into the pocket formed by 3D assembly of three spike protein polypeptides. However, the binding affinity score reflects slightly weak affinity of α-pinene with the spike protein assembly. Besides, eugenol also displayed significant binding with the spike protein. Likewise, other ligands present in
the spice herbal infusion can have higher binding affinities with the spike protein assembly, exerting synergism in inactivating this protein.

In the absence of specific anti-COVID-19 therapeutics, the major treatment regime is directed on targeting the symptoms [73]. Immunomodulatory activity to several compounds detected in the ‘BhAVI-23’ infusion such as butanal, 3-methylhexanal, 2-hexenal, β-myrcene, gamma-terpinene, terpinen-4-ol and α-terpineol is also reported [74]. Immunity is known to play a vital role in COVID-19 pathogenesis in early non-severe as well as during the severe stage of the disease. Corona viruses are proficient in eluding immune detection and weakening the immune responses [75,76].

Fig. 4. Representative simulation of lowest energy docked pose of (A) α-pinene and (B) eugenol with SARS-CoV-2 spike protein.
Thus, the treatments targeting immune system could potentially help COVID-19 affected patients.

In this context, traditional Indian herbs of prophylactic relevance could serve as effective strategy to counter viruses like SARS-CoV-2 and have potential to prevent disease deterioration into a critical state [8,77]. Recently in silico and experimental observations affirmed therapeutic potency of Qingfei Paidu Decoction in treating COVID-19 patients in China [78]. Many of the selected herbs and spices comprising ‘BhAVI-23’ have been reported for their prophylactic and therapeutic health benefits including immune boosting property (Table S2).

5. Conclusion

‘BhAVI-23’ comprising of 23 natural ingredients displayed in-vitro antiviral property against reverse transcriptase as well as infectivity of P1 (vir) phage. This infusion also displayed in-vitro anti-diabetic property as indicated by its anti-glycation activity. These attributes ascertain the potential broad-spectrum antiviral action of this ‘BhAVI-23’ mix besides having already reported immunomodulatory functions of the spice-herbal components conferring antiviral properties. The health benefits effects including antiviral activity could potentially mitigate the severity of COVID-19 symptoms in the current pandemic. Further studies in higher systems including animal models and/or trial study in human volunteers could be proposed to be pursued upon due regulatory approvals to corroborate the initial in-vitro findings and affirm an antiviral health claim to ‘BhAVI-23’.

Source(s) of funding

None.

Conflict of interest

None.

Acknowledgement

Authors wish to thank Devesh Narayan, BARC for providing herbal samples from the BARC botanical garden.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jaim.2020.11.005.

References

[1] Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Publ Health 2020;13(5):667–73.
[2] Pascarella G, Strumia A, Pillego C, Bruno F, Buono RD, Costa F, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med 2020;288(2):152–206.
[3] Kim JYL, Yang JS, Kim JW, Kim VN, Chang H. The architecture of SARS-CoV-2 transcriptome. Cell 2020;181(4):914–21.
[4] Hisakazi K, Mamioko K. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors – lessons from available evidence and insights into COVID-19. Hypertens Res 2020. doi:10.1007/s10739-020-0546-5.
[5] Rothen HA, Byrareddy N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020;109:102433.
[6] Golecza M. Time to realise the true potential of Ayurveda against COVID-19. Brain Behav Immun 2020;87:130–1.
[7] Rastogi S, Pandey DN, Singh RH. COVID-19 pandemic: a pragmatic plan for ayurveda intervention. J Ayurveda Integr Med 2020. S0975-9476(20)30019-X.
[8] Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, et al. COVID-19: a promising cure for the global panic. Sci Total Environ 2020;725:138277. https://doi.org/10.1016/j.scitotenv.2020.138277.
[9] Orhan IE, Deniz FSS. Natural products as potential leads against coronaviruses: could they be encouraging structural models against SARS-CoV-2? Nat Prod Biol Sci 2020;10(14):171–88.
[10] Gautam S, Gautam A, Chhetri S, Bhattarai U. Immunity against COVID-19: potential role of ayush kwath. J Ayurveda Integr Med 2020. https://doi.org/10.1016/j.jaim.2020.08.003.
[11] Rajkumar RP. Ayurveda and COVID-19: where psychoneuroimmunology and the meaning response meet. Brain Behav Immun 2020;87:8–9.
[12] Kumar KPS, Bhowmik D, Chiranjib, Tiwari P, Kharel R. Indian traditional herbs Adhatoda vasa and its Medicinal application. J Chem Pharmaceut Res 2010;2(1):240–5.
[13] Gangwar AK, Ghosh AK. Medicinal uses and pharmacological activity of Adhatoda vasa. Int J Herb Med 2014;2(1):88–9.
[14] Tripathi MK, Singh F, Sharma S, Singh TP, Ethayathulla AS, Kaur P. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. J Biomet Struct Dyn 2020:1–14.
[15] Kumar V, Dhanjal JK, Bhargava P, Kaul A, Wang J, Zhang H, et al. Withanone and Withaferin-A are predicted to interact with transmembrane protease serine 2 (TMPRSS2) and block entry of SARS-CoV-2 into cells. J Biomet Struct Dyn 2020:1–13.
[16] Tiwari A, Mahadik KR, Gahre SY. Piperine: a comprehensive review of methods of isolation, purification, and biological properties. Med Drug Discov 2018;5(2):121–34. https://doi.org/10.1016/j.mdd.2020.100027.
[17] Jaiswal Y, Liang Z, Zhao Z. Botanical drugs in ayurveda and traditional Chinese medicine. J Ethnopharmacol 2016;194:245–50.
[18] Sukumar NP, Anilraj A, Gopi S. Neuropharmacological and cognitive effects of Bacopa monnieri (L.). Wettst – A review on its mechanistic aspects. Compl Ther Med 2019;44:68–82.
[19] Ribeiro-Santos R, Andrade M, Madella D, Martinazzo AP, Moura LAG, Melo NR, et al. Revisiting an ancient spice with medicinal purposes: Cinnamon. Trends Food Sci Technol 2017;62:154–69.
[20] Cortés-Rojas DF, de Souza CRF, Oliveira WP. Clove (Syzygium aromaticum): a precious spice. Asian Pac J Trop Bio 2014;4(2):90–6.
[21] Prachayaratitkul V, Prachayaratitkul S, Bucharawat S, Prachayaratitkul V. Coriander (Coriandrum sativum): a promising functional food toward the well-being. Food Res Int 2018;105:305–23.
[22] Srivasan K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects. Food Qual Saf 2018;2(1):1–16.
[23] Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J Nutr Biochem 2020;108486.
[24] Yadav UCS, Baquer NZ. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm Biol 2014;52(2):243–54.
[25] Badgujar SB, Patel VV, Bandivdekar AH. Foeniculum vulgare Mill: a review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Res Int 2014;2014:842674.
[26] Sharma P, Dwivedee BP, Bish D, Dash AK, Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon 2019;5. Article e02437.
[27] Kanetkar S, Singhal R, Kamat M. Gymnema sylvestre: a memoir. J Clin Biochem Nutr 2007;41(2):77–81.
[28] Arya SS, Pegur K, Sadawarte PD. Bioactive compounds and health benefits of jamun (Syzygium cumini). In: Méridon JM, Ramawat K, editors. Cham. Springer: 2018.
[29] Tan SP, Kha TC, Parks SE, Roach PD. Bitter melon (Momordica charantia L) bioactive composition and health benefits: a review. Food Res Int 2016;52(2):181–202.
[30] Shah G, Shiri R, Pandhal V, Sharma N, Singh B, Mann AS. Scientific basis for the therapeutic use of Cymbopogon citratus, staph (Lemon grass). J Adv Pharm Technol Res 2011;2(1):3–8.
[31] Kulpur MF, Li R, Mehmoed K, Waqs M, Li K, Li J. Potential influence of Nigella sativa (Black cumin) in reinforcing immune system: a hope to decelerate the COVID-19 pandemic. Phytochemistry 2020;152377. https://doi.org/10.1016/j.phytochem.2020.152377.
[32] Liu M, Zhang J, Chen X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J Funct Foods 2018;47:469–79.
[33] Subenthenar S, Choon TG, Cheong KC, Thayan R, Treck MB, Muniandy PK, et al. Curcico popoylo leaves juice significantly accelerates the rate of increase in platelet count among patients with dengue fever and dengue haemorrhagic fever. Evid Based Complement Alternat Med 2013:2013:616737.
[34] Kamrusszzaman Hakim MD, Hoq MD Obiyul. A review on ethnomedical, phytochemical and pharmacological properties of Phyllanthus niruri. J Med Plants Res 2016;4(6):181–186.
[35] Cohen MM. Tulsi - Ocimum sanctum: a herb for all reasons. J Ayurveda Integr Med 2014;5(4):251–9. https://doi.org/10.4103/0975-9476.146554.
[36] Solaiman V, Sehebakar A, Hosseinizadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin), as nontoxic and safe substances: Review. Phytother Res 2018;32(6):985–95.
[37] Rasheed S, Sanchez SS, Yousf S, Honoré SM, Choudhary MI. Drug repurposing: in-vitro anti-glycation properties of 18 common drugs. PLoS One 2018;13(1):e0190509. https://doi.org/10.1371/journal.pone.0190509.
Garozzo A, Gupta S, Varjary PS. Microbial quality assessment of minimally processed pineapple using GCMS and FTIR in tandem with chemometrics. Sci Rep 2020;10:6203.

Easy ayurveda. Website. https://www.easyayurveda.com. [Accessed 1 May 2020].

Drug information database. Website, https://www.drugs.com. [Accessed 1 May 2020].

Peterlin BM. Molecular biology of HIV. In: Levy JA, editor. The retroviridae. The viruses. Boston, MA: Springer; 1995.

Sarafianos SG, Markand B, Das K, Himmel DM, Farniak MA, Hughes SH. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 2009;385(3):693–713. https://doi.org/10.1016/j.jmb.2008.10.071.

Pauwels R, Andries K, Desmyter J, Schols D, Kuikla Mj, Breslin Hj, et al. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 1990;343:470–4.

Lobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, et al. Genome of bacteriophage P1. J Bacteriol 2004;186(21):7032–68.

Benencia F, Courrèges MC. In vitro and in vivo activity of eugenol on human herpesvirus. Phytother Res 2000;14(7):495–500.

Gilling DH, Kitajima M, Torrey JR. Bright KR. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J Appl Microbiol 2014;116(5):1149–63.

Kamalabadi M, Astani A, Nemati F. Anti-viral effect and mechanism of action of curcumin on Herpes Simplex virus type 1. Int J Med Microbiol 2009;49(6):806–19.

Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Immunol 2017;8:513–7.

Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, et al. Essential Oils as Potent Inhibitors of the Influenza A/PR/8 Virus Activity. Osong Public Health Res Perspect 2018;9(6):348–50.

Sanlier N, Gencer F. Role of spices in the treatment of diabetes mellitus: a mini-review. Trends Food Sci Technol 2020;90:441–9.

Yang RK, Yoon KH, Lee MK. Diabetes and COVID-19: global and regional perspectives. Diabetes Res Clin Pract 2020;166:108303.

Maleki Y, Khadem SK. COVID-19 and diabetes mellitus: an unholy interaction of two pandemics. Diabetes Metab Syndr 2020;14(4):513–7.

Bode B, Garrett V, Messler J, McFarland R, Crowe J, Booth R, et al. Glycemic characteristics and clinical outcomes of COVID-19 patients hospitalized in the United States. J Diabetes Sci Technol 2020;14(4):813–21.

Yoshimoto PK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2 or n-CoV19), the cause of COVID-19. Protein J 2020;39(3):198–216.

da Silva JKR, Figueirido PLB, Byler KG, Setzer WN. Essential Oils as Antiviral Agents. Phytochemistry. 2020;180:112626.

Bouchentouf S, Noureddine M. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronavirus (COVID-19): molecular docking studies. Preprints 2020;2020030455. https://doi.org/10.20944/preprints202003.0455.v1.

Bouchentouf S, Noureddine M. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronavirus (COVID-19): molecular docking studies. ChemRxiv. Preprint. 2020. https://doi.org/10.26434/chemrxiv.12055716.v1. Preprint.

Lyndem S, Sarmah S, Das S, Roy AS. In Silico screening of naturally occurring coumarin derivatives for the inhibition of the Main Protease of SARS-CoV-2. ChemRxiv. Preprint. 2020. https://doi.org/10.26434/chemrxiv.12234728.v1.

Yarnell E. Herbs for viral respiratory infections. Alternative Comp Ther. 2018;24(1).

Anastasiou C, Buchbauer G. Essential oils as immunomodulators: some examples. Open Chem 2017;15(1):352–70.

Catanzaro M, Fagiuni F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Sig Transduct Target Ther 2020;5:84.

García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 2020;11:1441.

Girija PLT, Sivan N. Ayurvedic treatment of COVID-19/SARS-CoV-2: a minireview. Trends Food Sci Technol 2020;99:441–5.

Iqbal MA, Choudhary M. Ayurvedic treatment of COVID-19 infection: a multi-targeted approach. Front Pharmacol 2017;8:656.

Rana MA, Thapa S, Chand A, Ibrar M, Javaid S, Ansari A, et al. Antiviral activity of Melaleuca alternifolia essential oil. Lett Appl Microbiol 2009;49(6):806–9.

Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, et al. Therapeutic potential and pharmacological development of thymoquinone: a multitargeted molecule of natural origin. Front Pharmacol 2017;8:656.

Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytostome and its potential use in the associated severe pneumonia. Front Cell Dev Biol 2020;8:479.

Harayshi K, Imanishi N, Kashiwayama Y, Teraasawa K, Shimaoda Y, Ochiai H, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomum cassia, on the replication of influenza A virus and the inhibited cell death. Med Chem Commun 2017;8(5):960–3.

Garozzo A, Timpanaro R, Biscaglia B, Burneri PM, Bisignano G, Fabiani A, et al. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett Appl Microbiol 2009;49(6):806–9.

Gil C, Ginexes MC, Lliu J, Casals J, Noguera JD, Giner A, et al. In silico and in vitro activity of eugenol against Hepatitis B virus. In Vivo 2011;25:145–50.

Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, et al. Therapeutic potential and pharmacological development of thymoquinone: a multitargeted molecule of natural origin. Front Pharmacol 2017;8:656.

Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol 2020;8:479.

Harayshi K, Imanishi N, Kashiwayama Y, Teraasawa K, Shimaoda Y, Ochiai H, et al. Inhibitory effect of cinnamaldehyde, derived from Cinnamomum cassia, on the replication of influenza A virus and the inhibited cell death. Med Chem Commun 2017;8(5):960–3.

Garozzo A, Timpanaro R, Biscaglia B, Burneri PM, Bisignano G, Fabiani A, et al. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett Appl Microbiol 2009;49(6):806–9.

Goyal SN, Prajapati CP, Gore PR, Patil CR, Mahajan UB, Sharma C, et al. Therapeutic potential and pharmacological development of thymoquinone: a multitargeted molecule of natural origin. Front Pharmacol 2017;8:656.