Observational study on the palatability and tolerability of oral prednisolone and oral dexamethasone in children in Saudi Arabia and the UK

Fahad Aljebab,1 Mofadhi Alanazi,2 Imti Choonara,1 Sharon Conroy1

ABSTRACT

Background Short-course oral corticosteroids are routinely used to treat acute asthma and croup. We evaluated their tolerability and palatability in Saudi Arabian (SA) and UK children.

Methods Prospective observational/interview study (3 months in each country). Palatability was evaluated using a 5-point facial Hedonicscale and tolerability by direct questioning of patient/parents.

Results In SA, of 122 patients (2–10 years) recruited, 52 received prednisolone base tablets, 37 prednisolone sodium phosphate syrup and 33 received dexamethasone elixir. In the UK, of 133 patients (2–16 years), 38 received prednisolone base tablets (mainly crushed and dispersed), 42 prednisolone sodium phosphate soluble tablets and 53 received dexamethasone sodium phosphate oral solution. In both countries, dexamethasone had the highest palatability scores (SA mean: 1.97; UK mean: 3) and prednisolone base tablets had the lowest (SA mean: 1.12; UK mean: 1.39). Palatability scores improved for all formulations of prednisolone with each subsequent daily dose. In SA, prednisolone base tablets were associated with more nausea (24 vs 7 patients) and vomiting (5 vs 0 patients) than sodium phosphate syrup (p=0.008 and p=0.073, respectively). In the UK, vomiting occurred more frequently with prednisolone (base) and sodium phosphate solubles (2 patients) (p=0.041). In both centres, dexamethasone was associated with less side effects. Vomiting (1 vs 0 patients), nausea (7 vs 3 patients) and abdominal pain (10 vs 8 patients) occurred more with dexamethasone sodium phosphate solution than dexamethasone elixir.

Conclusions Dexamethasone sodium phosphate solution was the most palatable preparation. Prednisolone base tablets were rated least palatable and were least well tolerated. Palatability scores improved with each dose taken.

INTRODUCTION

Corticosteroids are widely used to treat a variety of medical conditions. The palatability and tolerability of medication is an important factor influencing adherence to medication particularly in children. The European Medicines Agency advises that medicinal products should be made in formulations with an acceptable taste for children. Oral corticosteroids often have a bitter taste and are also associated with a wide variety of adverse effects.

What is already known on this topic?

- Oral prednisolone and dexamethasone are widely used in children to treat conditions such as asthma and croup.
- The taste of prednisolone in particular is an issue which may affect adherence to treatment in children.

What this study adds?

- Dexamethasone was rated as more palatable than prednisolone in two different countries.
- Prednisolone sodium phosphate seems to cause significantly less nausea and vomiting than prednisolone base and is rated more palatable.
- Experienced patients gave better taste scores for all formulations compared with naive patients.

Tolerability relates to several factors including taste and adverse symptoms such as vomiting, nausea and abdominal pain that can affect quality of life and willingness to continue treatment.

A recent systematic review found that gastrointestinal disorders including vomiting, nausea and abdominal pain were the most common side effects of oral corticosteroids given in short courses. In the studies where formulation was discussed, prednisolone sodium phosphate solution had a lower risk of vomiting than both prednisolone (base) solution and oral dexamethasone. Only one study compared both the palatability and tolerability of oral prednisolone and dexamethasone. This study found that dexamethasone was more likely to cause vomiting than prednisolone.

We describe a prospective observational study in the paediatric wards of Gurayat General Hospital (GGH) in Saudi Arabia (SA) andDerbyshire Children’s Hospital in the UK to evaluate and compare the tolerability and palatability of routinely used preparations of oral prednisolone for patients with asthma and oral dexamethasone for patients with croup.

METHODS

The study was conducted in the children’s emergency department (ED) of the two hospitals.
Drug therapy

Children suffering from asthma or croup, prescribed oral prednisolone or dexamethasone and able to understand the study’s palatability scale and communicate their response were approached for consent. The drugs and products administered were in accordance with standard practice in each department. Choice of product and routine care of the patients were unaffected by the study.

In SA, patients were treated with prednisolone base 5 mg tablets (Gupisone, Julphar, UAE), prednisolone sodium phosphate 15 mg/5 mL syrup (Predo, Jazeera Pharmaceutical Industries, SA) and dexamethasone 0.5 mg/5 mL elixir (Decadron, Algorithm Pharmaceutical Manufacturers, Lebanon). The study was conducted for 3 months between 1 February and 30 April 2015 in GGH. It included only children ≤12 years of age as paediatric admissions in SA are limited to this age.

In the UK, children (2–18 years) were treated with prednisolone base 5 mg tablets (prednisolone, Actavis UK, UK),
prednisolone sodium phosphate 5 mg soluble tablets (soluble prednisolone, Amidpharm UK, UK) and dexamethasone sodium phosphate 2 mg/5 mL solution (dexamethasone, Focus Pharmaceuticals, UK). The study was conducted in the children’s accident & emergency (A&E) department and hospital wards, for 3 months between 15 September and 21 December 2015.

We used a 5-point facial Hedonic Scale to assess palatability in both countries, as used previously in studies comparing the taste of analgesic and corticosteroid preparations in children. The study was conducted in the children’s accident & emergency department and hospital wards, for 3 months between 15 September and 21 December 2015. We used a 5-point facial Hedonic Scale to assess palatability in both countries, as used previously in studies comparing the taste of analgesic and corticosteroid preparations in children. The scale was explained to the patient and parent by the researcher who were then asked to rate the palatability of the medication within 10 min of taking the drug where possible, by pointing to the appropriate face. To evaluate taste in younger patients who were unable to self-report, parents were asked to help in interpreting what their child thought of the taste of the medication.

Tolerability (nausea, vomiting and abdominal pain) as reported by the parent/patient in response to direct questions was documented 30–60 min after each drug administration. To evaluate tolerability of oral corticosteroids in Sa, we used a 5-point facial Hedonic Scale to assess palatability in both countries, as used previously in studies comparing the taste of analgesic and corticosteroid preparations in children. The study was conducted in the children’s accident & emergency (A&E) department and hospital wards, for 3 months between 15 September and 21 December 2015. The scale was explained to the patient and parent by the researcher who were then asked to rate the palatability of the medication within 10 min of taking the drug where possible, by pointing to the appropriate face. To evaluate taste in younger patients who were unable to self-report, parents were asked to help in interpreting what their child thought of the taste of the medication.

Tolerability (nausea, vomiting and abdominal pain) as reported by the parent/patient in response to direct questions was documented 30–60 min after each drug administration. To evaluate taste in younger patients who were unable to self-report, parents were asked to help in interpreting what their child thought of the taste of the medication.

Tolerability (nausea, vomiting and abdominal pain) as reported by the parent/patient in response to direct questions was documented 30–60 min after each drug administration. To evaluate taste in younger patients who were unable to self-report, parents were asked to help in interpreting what their child thought of the taste of the medication.

Tolerability (nausea, vomiting and abdominal pain) as reported by the parent/patient in response to direct questions was documented 30–60 min after each drug administration. To evaluate taste in younger patients who were unable to self-report, parents were asked to help in interpreting what their child thought of the taste of the medication.
Drug therapy

ty-two children were enrolled to the study (table 1). Most of them were with asthma (89) aged 2–10 years, and the others had croup (33) aged 2–5.5 years. The patients with asthma received two formulations of prednisolone (52 received prednisolone base soluble tablets and 37 received prednisolone sodium phosphate syrup). The croup patients all received oral dexamethasone elixir. Prednisolone base tablets were crushed and dispersed in water and a few patients followed administration by a drink of blackcurrant juice if the patient chose to when offered this by a nurse. Only five patients received solid prednisolone base tablets. Most patients were aged between 2 and 5 years old in all corticosteroid groups. The dose between prednisolone groups was almost the same. Most patients in the prednisolone groups had received oral steroids previously, while in the dexamethasone group most patients had not received oral steroids before.

RESULTS

Overview

In SA, 141 children were approached for the study. Nineteen children were not recruited: 11 because the parents refused to take part and 8 children were missed for observation (see online supplementary figure 1). One hundred and twenty-two children were enrolled to the study (table 1). Most of them were with asthma (89) aged 2–10 years, and the others had croup (33) aged 2–5.5 years. The patients with asthma received two formulations of prednisolone (52 received prednisolone base soluble tablets and 37 received prednisolone sodium phosphate syrup). The croup patients all received oral dexamethasone elixir. Prednisolone base tablets were crushed and dispersed in water in all cases. Most patients were aged between 2 and 5 years old in all corticosteroid groups. The dose between prednisolone groups was almost the same. Around half of the patients in the prednisolone groups had received oral corticosteroids in previous disease episodes, while in the dexamethasone group no patients had oral steroids before.

In the UK, a total of 147 children were approached. Fourteen children were not recruited: 6 because the parents refused to take part and 8 children were missed for observation (see online supplementary figure 2). One hundred and thirty-three children were enrolled to the study (table 1). Most of them were with asthma (80) aged 2–16 years and the others had croup (53) aged 2–10 years. The patients with asthma received two formulations of prednisolone (38 received prednisolone base tablets and 42 received prednisolone sodium phosphate soluble tablets), and all patients with croup received oral dexamethasone sodium phosphate solution. Crushed prednisolone base tablets and prednisolone sodium phosphate soluble tablets were dispersed/dissolved in water and a few patients followed administration by a drink of blackcurrant juice if the patient chose to

significance level of $p<0.05$ was accepted as significant for all the tests.

In SA, ethical approval (Ref: 620/13/54) was obtained from the hospital Quality and Patient Safety Committee (QPS&C) on 23 December 2014. In the UK, ethical approval (REC Ref: 15/EM/0057) was obtained from East Midlands—Derby Research Ethics Committee on 19 March 2015.

Palatability

In SA, the majority of the children on the first day disliked the taste of the medicines (100% of prednisolone base tablet group, 89% of prednisolone sodium phosphate group and 76% of dexamethasone group) and no patients stated that they liked the taste on any day (table 2). Prednisolone base was disliked the most (89%), and dexamethasone was disliked the least (27%) ($p<0.0001$). Both prednisolone base tablets and prednisolone sodium phosphate syrup were rated significantly more palatable day by day (see online supplementary table 1).

The children who had received oral corticosteroids before (experienced patients) reported different palatability scores compared with the children who received the medicine for the first time (naive patients). These differences in taste scores were statistically significant on the first 3 days (figure 2).

In the UK, the majority of the children on the first day disliked the taste of the medicines (90% of prednisolone base tablet group, 62% of prednisolone sodium phosphate group and 34% of dexamethasone group) (table 3). On day 1, most patients that received prednisolone base (77%) disliked the medication very much as did 36% of the prednisolone sodium phosphate group. Only 6% of patients disliked dexamethasone very much ($p<0.0001$). Both prednisolone base tablets and prednisolone sodium phosphate soluble tablets were rated significantly more palatable day by day (see online supplementary table 1).

The children who had received oral corticosteroids before (experienced patients) reported different palatability scores compared with the children receiving the medicine for the first time (naive patients). These differences in taste scores were statistically significant on day 3 only (figure 2). Most treatment naive croup patients disliked the taste a little (40%) or were neutral (40%), while 33.3% of experienced patients were neutral,

Figure 2 Mean taste scores of prednisolone base and prednisolone sodium phosphate according to drug history in SA and in the UK. Pred. Base, prednisolone base; Pred. Na3PO4, prednisolone sodium phosphate; E, experienced patients; N, naive patients; SA, Saudi Arabia.
Table 3 Palatability of oral corticosteroids in the UK

Total no of patients (n=133)	Taste of medication								
	Dislike very much (%)	Dislike a little (%)	Not sure or neutral (%)	Like a little (%)	Like very much (%)	Mean of taste score (1–5)*	SD	95% CI for mean	p-Value
Day 1	Prednisolone base	38	29 (77)	5 (13)	2 (5)	2 (5)	0	1.39	0.82
	Prednisolone sodium phosphate	42	15 (36)	11 (26)	10 (24)	5 (12)	1 (2)	2.19	1.1
	Dexmethasone	53	3 (6)	15 (28)	20 (38)	9 (17)	6 (11)	3	1.1
Day 2	Prednisolone base	31	19 (61)	6 (20)	5 (16)	1 (3)	0	1.61	0.88
	Prednisolone sodium phosphate	24	4 (17)	14 (58)	4 (17)	1 (4)	1 (4)	2.21	0.93
Day 3	Prednisolone base	31	13 (42)	8 (26)	8 (26)	2 (6)	0	1.97	0.98
	Prednisolone sodium phosphate	24	1 (4)	13 (54)	7 (30)	2 (8)	1 (4)	2.54	0.88
Day 4	Prednisolone base	6	3 (49)	1 (17)	1 (17)	1 (17)	0	2	1.27
	Prednisolone sodium phosphate	6	0	3 (100)	0	0	0	2	–
Day 5	Prednisolone base	6	3 (49)	1 (17)	1 (17)	1 (17)	0	2	1.27
	Prednisolone sodium phosphate	3	0	3 (100)	0	0	0	2	–

*1=dislike very much, 2=dislike a little, 3=not sure, 4=like a little, 5=like very much.
†Significant results.

Discussion

Discuss the acceptability of medication and possible explanations for the variation in palatability of different formulations. Emphasize the importance of taste in adherence and consider factors such as formulation, country, and patient demographics.

In SA, 33% liked the taste very much, 33.3% liked the taste a little, 17% liked the taste very much, and 33% were neutral. In the UK, 29% liked the taste very much, 33.3% liked the taste a little, 17% liked the taste very much, and 33% were neutral. Differences were statistically significant (p=0.021).
nausea and vomiting. A previous meta-analysis also found that vomiting was more frequent with prednisolone compared with dexamethasone.\(^4\)

If improved taste and less side effects were the only deciding factors, prednisolone sodium phosphate would appear to be the best choice for asthmatic children of the commonly used medications, but other factors also need to be considered. Oral dexamethasone has been shown to be an effective alternative to oral prednisolone in the treatment of acute asthma in children.\(^1\) Keeney et al suggested that 2 days of oral dexamethasone is similarly effective to 5 days of oral prednisolone with evidence that dexamethasone might be better tolerated and require shorter duration of therapy.\(^1\) Since dexamethasone was the overall most palatable and best-tolerated preparation when given as a single dose for croup, this may suggest that it would be a useful alternative in the treatment of children with acute asthma episodes.

Another factor which must also be considered is the cost of the medication, with prednisolone sodium phosphate tablets costing 60 times more than prednisolone base tablets in the UK (see online supplementary table 2).\(^1\) As a result, many centres in the UK have moved to using prednisolone base tablets despite patients finding them less palatable and tolerable. Annual cost savings of up to £44,000 in a single UK hospital have been predicted.\(^1\)

Taste ratings improved throughout the duration of the treatment. In addition, children who had received oral corticosteroids before (experienced patients) reported significantly higher (more favourable) palatability scores than children who received the medicine for the first time (naïve patients) in both countries studied. Research suggests that the physiology and neurobiological mechanisms underlying the taste function mean that the impression of taste changes with time and experience and leads to adaptation of taste perception.\(^1\) The experienced patient who is familiar with the medication taste may therefore have adapted and started to accept it. This may also explain our findings that the taste ratings of all medications improved in both countries day by day. It is also possible that as treatment becomes effective and children start to feel better, they become more cooperative and tolerant. No other studies identified, however, have made this observation of increased tolerability with time or with experience for these drugs.

In conclusion, dexamethasone was rated more palatable than prednisolone. For patients with asthma, prednisolone base tablets were rated the least palatable preparation and were also the least well tolerated. Prednisolone sodium phosphate was associated with a significantly lower incidence of nausea and vomiting and better taste score, compared with prednisolone base. Best practice suggests that prednisolone sodium phosphate or dexamethasone should be used.

STUDY COORDINATING CENTRE
Paediatric Medicines Research Group, Division of Medical Sciences & Graduate EntryMedicine, School of Medicine, Faculty of Medicine & Health Sciences, University of Nottingham, Royal Derby Hospital Centre (RDH).

Acknowledgements We thank all the paediatric nurses, parents and children in each centre who allowed us to observe them during the study. Also, we would like to extend our greatest appreciation to all ward staff for their kind assistance and cooperation throughout the observation period in each centre. In addition, we also thank Janine Abramson and Coral Smith for assisting during the study period and recruitment.

Contributors FA, IC and SC conceived the idea and designed the study as part of FA’s PhD. FA did the data collection and analysed the data and wrote the first draft. MA, IC and SC reviewed and validated the data and revised the paper.

Competing interests No direct funding; however, the author FA is a postgraduate student and would like to acknowledge his sponsor the Saudi Arabian government (Prince Mohammed Medical City).

Patient consent Obtained.

Ethics approval East Midlands-Derby Research Ethics Committee.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

REFERENCES

1. Eur Med Agency. Guideline on pharmaceutical development of medicines for paediatric use. 2013 http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/07/WC00147002.pdf (accessed 1 Aug 2015).
2. Doty RL, Shah M, Bromley SM. Drug-induced taste disorders. Drug Saf 2008;31:199–215.
3. EMEA. Reflection paper: formulations of choice for the paediatric population EMEA/CHMP/PG/1948/10/2005. London, 2006. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003782.pdf (accessed 27 Aug 2016).
4. Aljebab F, Choonara I, Conroy S. Systematic review of the toxicity of short-course oral corticosteroids in children. Arch Dis Child 2016;101:365–70.
5. Alakiss IJ, Hope ME, Stafford L, et al. Comparison of paediatric steroid mixtures. Aust J Hosp Pharm 1998;28:246–9.
6. Hames H, Seaarbrook JA, Matsui D, et al. A palatability study of a flavored dexamethasone preparation versus prednisolone liquid in children. Can J Clin Pharmacol 2008;15:e95–8.
7. Smith CJ, Sammons HM, Fakis A, et al. A prospective study to assess the palatability of oral medicines in children. J Adv Nurs 2013;69:655–63.
8. Dawson KP, Penna C, Penna AC. Tolerance and compliance of oral prednisolone therapy during acute childhood asthma. Aust J Hosp Pharm 1992;22:278–82.
9. Dawson KP, Sharpe C. A comparison of the acceptability of prednisolone tablets and prednisolone sodium phosphate solution in childhood acute asthma. Aust J Hosp Pharm 1993;23:320–3.
10. Kim MK, Yen K, Redman RL, et al. Vomiting of liquid corticosteroids in children with asthma. Pediatr Emerg Care 2006;22:397–401.
11. Mitchell JC, Counselman FL. A taste comparison of three different liquid steroid preparations: prednisone, prednisolone, and dexamethasone. Acad Emerg Med 2003;10:400–3.
12. Meyer JS, Riese J, Biondi E. Is dexamethasone an effective alternative to oral prednisone in the treatment of pediatric asthma exacerbations? Hosp Pediatr 2014;4:172–80.
13. Keeney GE, Gray MP, Morrisson AK, et al. Dexamethasone for acute asthma exacerbations in children: a meta-analysis. Pediatrics 2014;133:493–9.
14. Medicines Complete. BNF for children. https://www.medicinescomplete.com/bnf/current/index.htm (accessed 20 Sep 2016).
15. Li G, Almosawi D, Dulfeker H, et al. A really wheezy way to save money. Arch Dis Child 2016;101:e28–42.
16. Mennella JA, Spector AC, Reed DR, et al. The bad taste of medicines: overview of basic research on bitter taste. Clin Ther 2013;35:1225–46.