Comparison of chemoradiotherapy with radiotherapy alone for “biopsy only” anaplastic astrocytoma

Jing Wu¹*, Ting Zou¹*, Harrison Xiao Bai², Xuejun Li⁵, Zishu Zhang⁶, Bo Xiao³, MacLean Nasrallah⁴, Giorgos Karakousis⁷, Ya Cao⁸, Paul J. Zhang⁴ and Li Yang¹

¹ Department of Neurology, The Second Xiangya Hospital, Central South University, Hunan, China
² Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
³ Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
⁴ Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
⁵ Department of Neurosurgery, Xiangya Hospital, Central South University, Hunan, China
⁶ Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
⁷ Department of Surgery, Hospital of the University of Pennsylvania, Silverstein, Philadelphia, Pennsylvania, United States of America
⁸ Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China

* These authors have contributed equally to this study

Correspondence to: Li Yang, email: yangli762@gmail.com

Keywords: chemoradiotherapy, anaplastic astrocytoma, national cancer data base, radiotherapy, survival

Received: December 16, 2016 Accepted: March 17, 2017 Published: April 26, 2017

ABSTRACT

BACKGROUND: It has become increasingly common to incorporate adjuvant chemotherapy with radiotherapy in the treatment of resected anaplastic astrocytoma based on results from recent phase II/III randomized trials. However, whether or not combined chemoradiotherapy is associated with improved survival outcome in patients who undergo “biopsy only” is less clear.

METHODS: The US National Cancer Data Base was used to identify patients with histologically confirmed, biopsy-only anaplastic astrocytoma who received either radiotherapy alone or combined chemoradiotherapy from 2006 through 2014.

RESULTS: In total, 1896 patients with biopsy-only anaplastic astrocytoma were included, among whom 363 (19.1%) received radiotherapy alone and 1533 (80.9%) received combined chemoradiotherapy. The median age at diagnosis was 60 years. Combined chemoradiotherapy was associated with a significant survival benefit when compared with radiotherapy alone on univariable analysis (median, 13.2 versus 5.6 months; hazard ratio [HR], 0.57; 95% confidence interval [CI], 0.50-0.65; p < 0.001) and on multivariable analysis (HR, 0.62; 95% CI, 0.55-0.71; p < 0.001). A significant survival benefit for combined chemoradiotherapy persisted in a propensity score-matched analysis (HR, 0.67; 95% CI, 0.56-0.78; p < 0.001).

CONCLUSIONS: Our results suggest that combined chemoradiotherapy may be associated with significantly improved survival over radiotherapy alone in patients with anaplastic astrocytoma who undergo biopsy only.

INTRODUCTION

Anaplastic astrocytoma (AA) is a diffusely infiltrating and malignant primary brain tumor with a median age at diagnosis of 41 years [1, 2]. It constitutes 4% of all malignant central nervous system (CNS) tumors and 10% of all gliomas [3]. AA is defined by the World Health Organization (WHO) as grade III anaplastic glioma [4]. In the new 2016 WHO classification of CNS tumors, WHO grade III AAs are further divided into
IDH1-mutant, IDH-wild type and NOS categories [4]. The European Association of Neuro Oncology (EANO) recommends maximal safe surgical resection followed by radiotherapy (RT) alone or chemotherapy (temozolomide [TMZ] or procarbazine, lomustine, and vincristine [PCV]) alone for the treatment of newly diagnosed AA [2]. With conventional treatment, median overall survival (OS) and 5-year survival rates are 3 years and 28%, respectively [3, 5]. Age at diagnosis, neurological function, extent of surgery resection and Karnofsky Performance Status (KPS) have been shown to influence prognosis in adult patients [5-8].

Preliminary results from the CATNON clinical trial showed that concurrent chemoradiotherapy (adjuvant TMZ following RT) was associated with improved survival outcome over RT alone in patients with surgically resected AA [9]. In a recent analysis of 4807 AA patients diagnosed from 2004 to 2014 who underwent surgery using data from the National Cancer Database (NCDB), Shin et al. found that those who received CRT had significantly higher 5-year survival rates than those who received other adjuvant treatment types [10]. However, for about a third of the patients, surgical resection was not the appropriate treatment because the disease was multifocal, their overall health status was poor, or tumor location was difficult to access surgically or in close proximity of critical structures that would increase the chance of procedural morbidity. It is unclear if CRT results in improved OS for AA patients who undergo biopsy only when compared to RT alone. Existing studies, which are often based on a mixture of patients who underwent resection or biopsy, show conflicting results regarding the possible benefit of adding chemotherapy to RT [11, 12].

In this study, we used a large national database to define prognostic factors for survival and to explore the survival benefit of CRT over RT alone in biopsy-only AA.

RESULTS

Patient and treatment characteristics

With our initial inclusion criteria, 11888 patients with histologically confirmed AA were identified from the NCDB between 2004 and 2014. Patients whose tumor was surgically resected or whose surgical status was unclear ($n = 7340$) were excluded. Only patients who did not undergo surgical resection performed or unknown ($n = 7340$) were included. Only patients who did not undergo surgery not performed due to patient risk factor or other reasons ($n = 496$) were included. Only patients who did not undergo neither RT nor CRT received or unknown ($n = 895$) were included. Only patients who did not undergo chemotherapy alone ($n = 137$) were included. Only patients who did not undergo radiation regimen other than external beam radiotherapy ($n = 39$) were included. Only patients who did not undergo non-single agent chemo or unknown ($n = 319$) were included. Only patients who did not undergo CRT not concurrent ($n = 272$) were included. Only patients who did not undergo missing data of the days RT started ($n = 138$) were included. Only patients who did not undergo diagnosed before 2006 ($n = 356$) were included. Only patients who did not undergo

![Flow diagram of the current study detailing the patient cohort and the treatment groups.](image-url)
Table 1: Demographic characteristics of the patient cohort

Characteristics	Number of patients (%)			P
	RT (n = 363)	CRT (n = 1533)	Total (n = 1896)	
Age, y				
Median	66	59	60	<0.001
≤49	72(19.8)	464(30.3)	536(28.3)	
50-59	56(15.4)	319(20.8)	375(19.8)	
60-69	80(22.0)	425(27.7)	505(26.6)	
70-79	91(25.1)	251(16.4)	342(18.0)	
≥80	64(17.6)	74(4.8)	138(7.3)	0.11
Gender				
Men	181(49.9)	835(54.5)	1016(53.6)	
Women	182(50.1)	698(45.5)	880(46.4)	
Race				<0.001
White	298(82.1)	1384(90.3)	1682(88.7)	
Black	37(10.2)	87(5.7)	124(6.5)	
other	23(6.3)	52(3.4)	75(4.0)	
unknown	5(1.4)	10(0.7)	15(0.8)	
Diagnosis year				0.001
2006-2008	140(38.6)	456(29.7)	596(31.4)	
2009-2014	223(61.4)	1077(70.3)	1300(68.6)	
Time from diagnosis to start of RT, d	28	28	28	0.87
Charlson-Deyo comorbidity score	0	265(73.0)	1197(78.1)	1462(77.1)
≥1	98(27.0)	336(21.9)	434(22.9)	
1p/19q co-deletion				0.07
Yes	0(0.0)	17(1.1)	17(0.9)	
No	16(4.4)	70(4.6)	86(4.5)	
Unknown	347(95.6)	1446(94.3)	1793(94.6)	
Tumor size				0.52
≤5cm	161(44.4)	739(48.2)	900(47.5)	
>5cm	51(14.0)	209(13.6)	260(13.7)	
Unknown	151(41.6)	585(38.2)	736(38.8)	
Tumor location				0.20
Frontal lobe	81(22.3)	341(22.2)	422(22.3)	
Temporal lobe	42(11.6)	225(14.7)	267(14.1)	
Parietal lobe	57(15.7)	172(11.2)	229(12.1)	
Occipital lobe	9(2.5)	24(1.6)	33(1.7)	
Brain stem	16(4.4)	48(3.1)	64(3.4)	
Cerebellum	4(1.1)	21(1.4)	25(1.3)	
Ventricle	2(0.6)	6(0.4)	8(0.4)	
Overlapping	57(15.7)	270(17.6)	327(17.2)	
Unknown	95(26.2)	426(27.8)	521(27.5)	
MGMT methylation				1.00
Methylated	6(1.7)	34(2.2)	40(2.1)	
Unmethylated	8(2.2)	47(3.1)	55(2.9)	
Unknown	349(96.1)	1452(94.7)	1801(95.0)	
surgical resection due to the reason that surgery was not part of the planned first course treatment (n = 4052) were included in the final analysis. Patients were excluded if they were only treated with supportive measures or if they had unknown treatment status (n = 895), chemotherapy only (n = 137), a nonstandard RT regimen (n = 39), multi-agent chemotherapy (n = 319), or chemotherapy that took place outside of the 14-day range of RT (n = 272). Patients were also excluded if they had missing value of the number of days between the date of diagnosis and the date on which RT was started (n = 138), or a diagnosis before 2006 (n = 356). In our final cohort, 1896 patients were included, 363 (19.1%) of whom received RT alone, and 1533 of whom (80.9%) received CRT. Our patient selection flowchart is shown in Figure 1.

For the whole cohort, the median age was 60 years (range 3-90); 53.5% of the patients were male, 88.7% were white, and 22.9% had notable co-morbid conditions (Charlson-Deyo score 1 or 2). The median RT starting time, defined as the period between diagnosis was made and RT was initiated, was 28.5 days. The median RT completion period was 44.0 days. The treatment groups did not differ in terms of gender or the median RT starting time. A summary of the characteristics of our cohort is shown in Table 1. On univariable logistic regression analysis, patients were more likely to receive CRT than RT alone if they were younger than 70 years old (p < 0.001), white (p < 0.001), diagnosed from 2009 to 2014 (p < 0.001) or with a Charlson-Deyo score of 0 (p = 0.04). Multivariable logistic regression analysis showed that patients were more likely to receive CRT than RT alone if they were younger than 70 years of age (p < 0.001), white (p < 0.001), or diagnosed from 2009 to 2014 (p < 0.001) (Table 2).

Survival outcome

The median follow-up time for the entire patient cohort was 10.1 months. Five-year survival rate for the study population was 10.3%. Patients diagnosed at age < 70 years had significantly longer OS than those diagnosed at age > 70 years (median OS: 14.6 versus 4.9 months; log-rank p < 0.001). Patients receiving CRT had significantly longer OS than patients receiving RT alone (median OS: 13.2 versus 5.6 months; log-rank p < 0.001). The difference in OS between patients who received CRT and

KPS	CRT	RT	1.00
≤70	14(3.8)	45(2.9)	59(3.1)
>70	10(2.8)	83(5.4)	93(4.9)
Unknown	339(93.4)	1405(91.7)	1744(92.0)

Abbreviations: CRT, chemoradiotherapy; RT, radiotherapy; d, day; y, year; KPS, Karnofsky Performance Status

Figure 2: Overall survival is illustrated for patients who received either radiotherapy (RT) alone or chemoradiotherapy (CRT).
those who received RT alone was statistically significant starting at 6 months and lasted until 36 months after diagnosis. In both treatment groups, long-term survival at 72 months was dismal (4.5% and 10.8%, respectively) (Figure 2, Table 3).

After adjusting for differences in age, gender, race, year of diagnosis, Charlson-Deyo score, and median RT starting time, CRT was independently associated with longer OS compared with RT alone (adjusted HR, 0.62; 95% confidence interval [CI], 0.55-0.71; p < 0.001). RT beginning > 30 days after diagnosis (adjusted HR, 0.75; 95% CI, 0.67-0.83; p < 0.001) and a Charlson-Deyo score of 0 (adjusted HR, 0.79; 95% CI, 0.64-0.99; p = 0.04) were associated with shorter OS (Table 4).

Patients were divided into two subgroups based on age (< 70 vs. > 70 years), and subgroup analyses were performed. Consistent with the whole-group analysis, CRT resulted in longer median OS in elderly patients when compared to the RT alone (5.9 vs. 3.4 months; log-rank p < 0.001). In patients older than 70 years, CRT was identified as an independent predictor of longer OS on multivariable analysis (adjusted HR, 0.51; 95% CI, 0.41-0.63; p < 0.001). In addition, patients with RT beginning > 30 days (adjusted HR, 0.75; 95% CI, 0.61-0.92; p = 0.007) after diagnosis and a Charlson-Deyo score of 0 (adjusted HR, 0.79; 95% CI, 0.64-0.99; p = 0.04) were associated with shorter OS (Table 4).

Abbreviations: CI, confidence interval; OR, odds ratio; RT, radiotherapy.

Table 2: Logistic regression to determine odds of receiving chemoradiotherapy versus radiotherapy alone

Variable	Univariable analysis	Multivariable Analysis		
	OR(95% CI)	P	OR(95% CI)	P
Age: < 70 vs >70 y	2.75(2.15-3.51)	<0.001	2.94(2.29-3.78)	<0.001
Gender: men vs women	0.83(0.66-1.06)	0.11		
Race: white vs nonwhite	2.03(1.48-2.78)	<0.001	2.322(1.67-3.22)	<0.001
Diagnosis year: 2006-2008 vs 2009-2014	0.68(0.53-0.86)	0.001	0.64(0.49-0.81)	<0.001
Time from diagnosis to RT start: >30 vs <30d	1.01(0.81-1.28)	0.87		
Charlson-Deyo score: 0 vs 1-2	1.32(1.01-1.71)	0.04		0.37
Tumor size: >5cm vs ≤5cm	0.98(0.95-1.01)	0.21		
Location: supratentorial vs infratentorial	1.16(0.69-1.96)	0.56		

Figure 3: Overall survival is illustrated between the treatment groups for the propensity-matched analysis cohort.
also associated with longer OS (Table 5). Furthermore, in patients aged greater than 70 years with co-morbidity (Charlson-Deyo score of 1 or 2), the difference in OS between patients who received CRT and those who received RT alone remained (HR, 0.59; 95% CI, 0.40-0.88; \(p = 0.01 \)).

Finally, age, race, RT starting time and Charlson-Deyo score were matched between the two treatment groups based on propensity score. Covariates were well balanced as shown in Supplementary Figure 1. In the propensity-matched cohorts, CRT was associated with significantly longer OS than RT alone (median OS: 11.1 versus 5.7 months; HR, 0.67; 95% CI, 0.56-0.78; \(p < 0.001 \)) (Figure 3).

DISCUSSION

CRT or RT alone is regarded as the optimal treatment for AA patients who have undergone surgical resection [2, 13, 14]. However, there is limited data regarding the optimal therapy for patients with AA who only had biopsy. In this study, with a large cohort from a national database, a statistically significant survival benefit was demonstrated in biopsy-only AA patients who were treated with CRT when compared with those who were treated with RT alone.

There is increasing evidence that high-grade gliomas may benefit from CRT [14, 15]. In a meta-analysis of 12 randomized controlled trials comparing RT alone with CRT in high-grade glioma, survival was significantly prolonged with the addition of chemotherapy (HR of 0.85, CI 0.78-0.91, \(p < 0.0001 \)) [2]. However, the randomized controlled trials included in this meta-analysis were mostly based on PCV [2]. Over the past decade, TMZ has become increasingly preferred to PCV because of its safer profile and tolerability [2, 16]. TMZ damages the DNA by alkylating/methylating DNA at the N-7 or O-6 positions of guanine residues and triggers the death of tumor cells [17]. However, if a tumor cell expresses O\(^6\)-alkylguanine DNA alkyltransferase encoded in humans by the O-6-methylguanine-DNA methyltransferase (MGMT) gene, it can repair this type of DNA damage, and thus diminishes the therapeutic efficacy of TMZ [17]. Several studies comparing postoperative RT alone and CRT in AA patients have shown conflicting results [11, 12, 18]. First, only a small portion of the patients analyzed in these studies were biopsy-only. Second, the sample size was small and no subgroup analysis on biopsy-only patients was performed. Our study is the first in the literature to compare CRT and RT alone in a large cohort of AA patients who underwent only biopsy.

In our study, CRT was independently associated with longer OS when compared with RT alone. The median OS was 13.2 months for the CRT group, and only 5.6 months for the RT-alone group. This is a clinically significant increase in survival especially considering the poor prognosis for biopsy-only AA patients.

It is a near consensus that increasing age is a negative predictor of survival in patients with gliomas [21]. Previous studies have suggested alternative treatment regimens for elderly patients [22, 23]. In a retrospective study of 42 patients aged greater than 65 years with new-diagnosed AA who underwent surgical resection or biopsy, Tanaka et al. found that CRT was associated with longer OS when compared to RT alone (\(p = 0.01 \)) [24]. On multivariable analysis after adjusting for age, we observed that CRT was still associated with a longer OS when compared with RT alone (\(p = 0.01 \)) [24].

We would like to acknowledge a few limitations of our study. First, there was no central pathology review so
presumably some samples may have been misdiagnosed as AA. Second, data on rescue therapies post primary course of treatment was not available in NCDB. Therefore, we could not determine if the two groups were balanced on any therapies (e.g. bevacizumab, reirradiation) received following the primary treatment. Third, the NCDB lacked data on IDH1 mutation and had only limited data on KPS, 1p19q codeletion status and MGMT promoter status which precluded any meaningful analysis. These molecular markers have been shown to be significant prognostic factors in patients with AA [25, 26]. It is difficult to evaluate if the CRT and RT alone treatment groups were balanced on these factors mentioned above. In addition, even though our study of biopsy-only AA patients has demonstrated a survival benefit of CRT over RT alone in a national sample, the inherent selection bias of a retrospective study can only be excluded with a prospective randomized control trial.

In conclusion, our results suggest that CRT may be associated with significantly improved OS over RT alone in patients with AA who undergo biopsy only. Future studies with a randomized design or including subgroup analysis based on molecular data are needed to confirm these results.

MATERIALS AND METHODS

Study population

The data used in this study were extracted from NCDB which included hospital registry data set that capture approximately 70% of all newly diagnosed malignancies in the United States. NCDB is a joint project of the Commission on Cancer of the American College of Surgeons and the American Cancer Society. The data used in this study were derived from a deidentified NCDB data file. The American College of Surgeons and the Commission on Cancer have not verified and are not responsible for the analytic or statistical methodology used, or for the conclusions drawn, from these data by the investigators.

Our study population consisted of 1896 patients diagnosed with AA from 2006 to 2014. We only included patients after 2006 since the standard of treatment changed from PCV to TMZ as a consequence of the EORTC-NCIC trial whose results were published in 2005 [16]. The patient population was limited to AA patients who underwent biopsy only without surgical resection, and

Table 4: Cox regression demonstrating predictors of overall survival

Variable	Univariable analysis	Multivariable analysis
	HR (95% CI)	P
Treatment: CRT vs RT	0.57(0.50-0.65)	<0.001
Age: >70 vs <70 y	2.67(2.36-3.02)	<0.001
Gender: men vs women	1.05(0.94-1.17)	0.37
Race: white vs nonwhite	1.02(0.86-1.21)	0.83
Diagnosis year: 2009-2014 vs 2006-2008	0.99(0.88-1.10)	0.81
Time from diagnosis to RT start: >30 vs <30d	0.75(0.67-0.84)	<0.001
Charlson-Deyo score: 1-2 vs 0	1.61(1.43-1.83)	<0.001
Tumor size: >5 cm vs <5 cm	0.99(0.97-1.00)	0.11
Location: supratentorial vs infratentorial	1.00(0.77-1.31)	0.95

Abbreviations: AHR, adjusted hazard ratio; CI, confidence interval; CRT, chemoradiotherapy; HR, hazard ratio; RT, radiotherapy.

Table 5: Cox Regression to Determine Predictors of Survival in the Elderly Patients (age>70)

Variable	Univariable Analysis	Multivariable Analysis
	HR (95% CI)	P
Treatment: CRT vs RT	0.51(0.41-0.63)	<0.001
Gender: men vs women	1.11(0.90-1.37)	0.31
Race: white vs nonwhite	0.89(0.60-1.32)	0.57
Diagnosis year: 2009-2014 vs 2006-2008	0.81(0.65-1.01)	0.06
Time from diagnosis to RT start: >30 vs <30d	0.74(0.60-0.92)	0.006
Charlson-Deyo score: 0 vs 1-2	0.81(0.65-1.00)	0.05
Location: supratentorial vs infratentorial	1.11(0.45-2.71)	0.81

Abbreviations: AHR, adjusted hazard ratio; CI, confidence interval; CRT, chemoradiotherapy; HR, hazard ratio; RT, radiotherapy.
their diagnosis was confirmed by microscopic histology. Patients were excluded if their diagnosis was not confirmed by histology, or if it was unclear if their tumors were surgically removed. In addition, since single-agent chemotherapy is most consistent with TMZ treatment, we only included patients who received single-agent chemotherapy in the study population. In this study, we defined CRT as combined chemoradiation treatment where chemotherapy was given within 14 days of RT. In the study cohort, radiotherapy refers to external beam radiotherapy only. A summary of our study cohort is shown in Figure 1. We also performed subgroup analyses among the elderly patients (defined as age greater than 70 years) in both cohorts.

Statistical methods

All data analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL). Factors that influenced the liability of receiving either RT alone or CRT were identified by comparing the demographic and clinicopathologic data of patients between RT alone and CRT groups using the chi-square test and the logistic regression multivariate analysis. Patients’ co-morbidity, or the lack of, was evaluated by the Charlson-Deyo score. Charlson-Deyo score (0, 1, or 2) was assigned according to NCDB guidelines based on how many co-morbid conditions were reported and their relative severity. Kaplan-Meier analyses were used to analyze OS between the RT alone and CRT groups. Univariable Cox regression followed by multivariable Cox proportional hazard regression was used to calculate hazard ratios (HRs) for survival and identify independent prognostic factors for OS. A two-sided p value of < 0.05 was considered statistically significant. To balance confounding factors between groups, we used MatchIt package in R to create matched cohorts based on propensity scores (MatchIt packages in R). Matching was performed using independent factors that had association with survival on univariate cox regression or significantly more likely to be in patients receiving CRT as opposed to RT. Next, the same survival analyses were performed in the matched cohorts.

Abbreviations

RT, Radiotherapy; CRT, Chemoradiotherapy; OS, Overall Survival; AA, Anaplastic Astrocytoma.

Author contributions

Li Yang, Harrison Xiao Bai and Jing Wu conceptualized the project. Harrison Xiao Bai obtained the data used for this study. All authors contributed to data analysis and editing of the article.

ACKNOWLEDGMENTS AND FUNDING

This work was supported by the Natural Science Foundation of China (81472594 to Xuejun Li), and China Ministry of Education Doctoral Program Spot Foundation (20130162120061 to L.Y.). Shenghua Yuying Project of Central South University to L.Y..

CONFLICTS OF INTEREST

The authors have declared that no competing interests exist.

REFERENCES

1. Grimm SA and Chamberlain MC. Anaplastic astrocytoma. CNS Oncol. 2016; 5:145-157.
2. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, Falini A, Cohen-Jonathan-Moyal E, Frappaz D, Henriksson R, Balana C, Chinot O, Ram Z, Reifenberger G, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. The Lancet Oncology. 2014; 15:e395-403.
3. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C and Barnholtz-Sloan J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncology. 2014; 16 Suppl 4:iv1-63.
4. Louis DN, Perry A, Reifenberger G, von Deimling A, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P and Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131:803-820.
5. Prados MD, Gutin PH, Phillips TL, Wara WM, Larson DA, Sneed PK, Davis RL, Ahn DK, Lamborn K and Wilson CB. Highly anaplastic astrocytoma: a review of 357 patients treated between 1977 and 1989. International journal of radiation oncology, biology, physics. 1992; 23:3-8.
6. Tortosa A, Vinolas N, Villa S, Verger E, Gil JM, Brell M, Caral L, Pujol T, Acebes JJ, Ribalta T, Ferrer I and Graus F. Prognostic implication of clinical, radiologic, and pathologic features in patients with anaplastic gliomas. Cancer. 2003; 97:1063-1071.
7. Compostella A, Tosoni A, Blatt V, Franceschi E and Brandes AA. Prognostic factors for anaplastic astrocytomas. J Neurooncol. 2007; 81:295-303.
8. Stupp R, Reni M, Gatta G, Mazza E and Vecht C. Anaplastic astrocytoma in adults. Critical reviews in oncology/hematology. 2007; 63:72-80.
9. Van den Bent M, Erridge S, Vogelbaum M, Nowak A, Sanson M and Brandes A. Results of the interim analysis of the EORTC randomized phase III CATNON trial on concurrent and adjuvant temozolomide in anaplastic glioma without 1p/19q co-deletion: An Intergroup trial. J Clin Oncotarget
10. Shin JY and Diaz AZ. Anaplastic astrocytoma: prognostic factors and survival in 4807 patients with emphasis on receipt and impact of adjuvant therapy. J Neurooncol. 2016; 129:557-565.

11. Shonka NA, Theeler B, Cahill D, Yung A, Smith L, Lei X and Gilbert MR. Outcomes for patients with anaplastic astrocytoma treated with chemoradiation, radiation therapy alone or radiation therapy followed by chemotherapy: a retrospective review within the era of temozolomide. Journal of Neuro-Oncology. 2013; 113:305-311.

12. Scoccianti S, Magrini SM, Ricardi U, Detti B, Krengli M, Parisi S, Bertoni F, Sotti G, Cipressi S, Tombolini V, Dall’oglio S, Lioce M, Saieva C, et al. Radiotherapy and temozolomide in anaplastic astrocytoma: a retrospective multicenter study by the Central Nervous System Study Group of AIRO (Italian Association of Radiation Oncology). Neuro-oncology. 2012; 14:798-807.

13. Le Rhun E, Taillibert S and Chamberlain MC. Anaplastic glioma: current treatment and management. Expert review of neurotherapeutics. 2015; 15:601-620.

14. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B and Belanger K. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. The lancet oncology. 2009; 10:459-466.

15. van den Bent MJ. Practice changing mature results of RTOG study 9802: another positive PCV trial makes adjuvant chemotherapy part of standard of care in low-grade glioma. Neuro-oncology. 2014; 16:1570-1574.

16. Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C and Bogdahn U. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England Journal of Medicine. 2005; 352:987-996.

17. Jacinto FV and Esteller M. MGMT hypermethylation: a prognostic foe, a predictive friend. DNA repair. 2007; 6:1155-1160.

18. Kizilbash SH, Giannini C, Voss JS, Decker PA, Jenkins RB, Hardie J, Laack NN, Parney IF, Uhm JH and Buckner JC. The impact of concurrent temozolomide with adjuvant radiation and IDH mutation status among patients with anaplastic astrocytoma. Journal of neuro-oncology. 2014; 120:85-93.

19. Cairncross G, Wang M, Shaw E, Jenkins R, Brachman D, Buckner J, Fink K, Souhami L, Laperriere N, Curran W and Mehta M. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J Clin Oncol. 2013; 31:337-343.

20. van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, Bernsen HJ, Frenay M, Tijssen CC, Grisold W, Sipos L, Enting RH, French PJ, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013; 31:344-350.

21. Tabatabai G, Stupp R, Wick W and Weller M. Malignant astrocytoma in elderly patients: where do we stand? Curr Opin Neurol. 2013; 26:693-700.

22. Malmström A, Grønberg BH, Marosi C, Stupp R, Frappaz D, Schultz H, Abacioglu U, Tavelin B, Lhermitte B and Hegi ME. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. The lancet oncology. 2012; 13:916-926.

23. Keime-Guibert F, Chiniot O, Taillardier L, Cartalat-Carel S, FraUeny M, Kantor G, Guillamo JS, Jadaud E, Colin P, Bondiau PY, Menei P, Loiseau H, Bernier V, et al. Radiotherapy for glioblastoma in the elderly. The New England journal of medicine. 2007; 356:1527-1535.

24. Tanaka S, Meyer FB, Buckner JC, Uhm JH, Yan ES and Parney IF. Presentation, management, and outcome of elderly patients with newly-diagnosed anaplastic astrocytoma. Journal of neuro-oncology. 2012; 110:227-235.

25. Minniti G, Scaringi C, Arcella A, Lanzetta G, Di Stefano D, Scarpino S, Boszoo A, Pace A, Villani V, Salvati M, Esposito V, Giangaspero F and Enrici RM. IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy. Journal of Neuro-Oncology. 2014; 118:377-383.

26. Qi S-T, Yu L, Lu Y-T, Ou Y-H, Li Z-Y, Wu L-X and Yao F. IDH mutations occur frequently in Chinese glioma patients and predict longer survival but not response to concomitant chemoradiotherapy in anaplastic gliomas. Oncology reports. 2011; 26:1479.