Smart Fashion: A Review of AI Applications in the Fashion & Apparel Industry

Seyed Omid Mohammadi
University of Tehran, College of Engineering, S.OmidMohammadi@alumni.ut.ac.ir

Ahmad Kalhor
University of Tehran, College of Engineering, AKalhor@ut.ac.ir

The fashion industry is on the verge of an unprecedented change. The implementation of machine learning, computer vision, and artificial intelligence (AI) in fashion applications is opening lots of new opportunities for this industry. This paper provides a comprehensive survey on this matter, categorizing more than 580 related articles into 22 well-defined fashion-related tasks. Such structured task-based multi-label classification of fashion research articles provides researchers with explicit research directions and facilitates their access to the related studies, improving the visibility of studies simultaneously. For each task, a time chart is provided to analyze the progress through the years. Furthermore, we provide a list of 86 public fashion datasets accompanied by a list of suggested applications and additional information for each.

CCS CONCEPTS • General and reference ~ Document types ~ Surveys and overviews • Computing methodologies ~ Artificial intelligence ~ Computer vision ~ Computer vision problems ~ Object detection; Object recognition; Object identification; Image segmentation • Applied computing ~ Electronic commerce ~ Online shopping

Additional Keywords and Phrases: Smart Fashion, Fashion Applications, Neural Networks, Recommender Systems, Fashion Try-on

Reference Format:
Seyed Omid Mohammadi, Ahmad Kalhor. 2021. Smart Fashion: A Review of AI Applications in the Fashion & Apparel Industry. 03, 06 (March 2021), 99 pages.

1 INTRODUCTION

Artificial intelligence brings many benefits to the fashion industry’s retailers and customers alike [1]. That is why more and more studies are dedicated to AI applications in the fashion industry every year, and AI will soon reshape this industry into smart fashion. As studies in this field proliferate, more branches and leaves are added to this enormous tree. It is a vast hierarchy that sometimes makes it hard to spot some novel ideas and deprive them of well-deserved attention. That is why, unlike previous review articles, we try to include as many examples as possible and not only state-of-the-art methods. Hopefully, this will increase the visibility of studies in each area, leading to better and more accurate future contributions.

* Corresponding author
Multiple survey and review articles cover the newest developments in smart fashion. We can separate these studies into two groups. Most of them belong to group one, which are application-based surveys focusing on a single application covering state-of-the-art and novel methods for that specific application. We cover these studies separately, each in their appropriate category. Survey articles in the second group have a broader focus, covering different applications. In 2014, [2] provided a short study of three components of the styling task. In 2018, [3] talked about computational fashion and the collision of fashion and multimedia technologies, providing a list of companies in the fashion industry and the applications they are currently working on. In 2019, [4] also reviewed previous research studies focusing on three groups of fashion applications, plus datasets and industry applications. In 2020, there are [5], a bibliometric survey, and [6], a fantastic review of the state-of-the-art methods in each application. Finally, the latest work is a comprehensive survey in 2021, which includes 232 significant studies in 4 main topics and 12 sub-categories [7].

Our focus is not only on significant works in the field but also on covering any relevant contribution. This way, we bring attention to possible unseen potentials, and also we can analyze the progress of smart fashion through the years with a broader range. We choose articles published in 2010-2020 (with some earlier/later exceptions), which leads to a massive number of 587 relevant studies in total. We categorized all these articles into multiple application classes and sub-classes with a multi-label scheme, meaning that one piece might contribute to various applications. These categories are shown in Figure 1. We assign each article to an application category only if it explicitly reports relevant results for that application.

The main contributions of our article are as follows:

• We provide a survey of AI applications in the fashion and apparel industry, and the scope of our work is more than twice the size of the most comprehensive study to date.
• We introduce more than 22 applications and list all relevant studies for each application separately with a multi-label scheme.
• We list 86 public fashion datasets along with the structural information and a list of suggested applications for each dataset. It is the most comprehensive public fashion dataset list to our knowledge, and we believe that it can help many researchers in the future as a quick reference.
• Every application category comes with a time chart of 2010-2020 articles. Thus, it helps analyze the progress speed of research in each category separately.
• We also provide a co-occurrence table for categories that summarizes how these applications are related to one another.

Sec. 2 reviews articles in each application category. It includes ten main categories and a total of 22 applications, as shown in Figure 1, each with a short introduction along with a list of relevant articles and a time chart showing the popularity trends and the progression of each application through the years. Sec. 3 summarizes public fashion datasets. In Sec. 4, we discuss further details of the future of AI in the fashion industry and draw our conclusions in Sec. 5.

2 APPLICATIONS

Here, we follow an application-based grouping of articles. Following the taxonomy of [3], [8] grouped these applications into three classes: 1) Low-Level fashion recognition, 2) Mid-Level fashion understanding, and 3) High-Level fashion applications. The categorization we provide here is based on the main focus of each study. Thus, bear in mind that there exist overlaps between these categories. Higher-level applications might consist of mid-level or multiple low-level applications, e.g., try-on applications might also cover parsing, labeling, classification, detection, etc. Each application comes with a summarized table of articles. Due to space limitations, we introduce the articles in a single-line format.
using the first author’s name, publication date, technical keywords, results (wherever possible). These technical keywords try to summarize used methods and are not the same as the article’s keywords. They provide rich, compact and simplified information about each article. Additionally, we use “Application Notes” to add a short but straightforward application detail to each article.

The nature of tables requires us to use the abbreviated form of words, including accuracy (Acc), precision (Prec), recall (Rec), mean (m), True Positive (TP), Human Studies/Score (HS), and other common technical words. Researchers should be aware when consulting these tables that different studies experiment on various datasets under different circumstances. We also use specific terms to talk about multiple fashion image types; Figure 2 introduces some examples of these terms. “Item” and “Title” refer to professional catalog images of one fashion article with a white or neutral background, while “Model” refers to a full/half-body image of a model wearing a single or several fashion items under standard conditions. “Shop” images are professional images with a neutral background and might be “Item,” “Model,” or a combination of both. “Street” images are out-of-the-studio good quality pictures usually focused on one professional model. They have more sophisticated backgrounds, different lighting conditions, and minor occlusion due to various yet standard poses. “Wild” photos, on the other hand, have no constraints at all. They are user-created amateur versions of Street photos, sometimes with heavy occlusion, bad lighting, cropping, and poor overall quality.

Figure 1: Diagram of smart fashion categories in this research.
2.1 Feature Extraction

Feature extraction has the goal of learning the mathematical representation of fashion items. It is a low-level but fundamental task. As it is used in many applications, especially for item similarity, we only report some examples in this section. Feature extraction is done either through classic methods and hand-crafted features or deep learning methods.

2.1.1 Classic Methods

Classic feature extraction methods and image processing techniques were widely used before the rise of artificial neural networks. Examples of these methods are Color Histograms, Local Binary Patterns (LBP), Histogram of Oriented Gradients (HOG), Scale-Invariant Feature Transformation (SIFT), and many more.

We can use any of these methods or a combination of them. For example, in 2009 [10] used LBP, HOG, and color histogram for its smart mirror fashion recommender. Yang et al. [11] used a combination of HOG, SIFT, DCT, and color histogram for clothing recognition in surveillance videos. We can also use these image processing techniques on images to preprocess them before using neural networks, e.g. [12] in 2019, applied Haar-Cascade and Difference of Gaussian (DoG) on image inputs of their inception based deep CNN to build a recommender.

2.1.2 Deep Learning Methods

With the emergence of artificial neural networks and deep convolutional neural networks, researchers shifted their focus to these networks for representation learning tasks. These networks soon replaced the high-effort task of feature engineering. Deep learning methods also allow us to learn fine-grained features. Some examples are: Fashion DNA [13], Fashion Style in 128 single-precision floats [14], Style2Vec [15], and [16] utilizing weakly annotated fashion images.

2.2 Classification

Classification is the task of systemically arranging items into groups. We further break this task into 1) Categorization and 2) Attribute Recognition. The terminology might seem a little confusing, but we need to separate these two. Although they might have some overlaps, they are two different problems with different levels of complexity.

2.2.1 Categorization

This article uses the term categorization to imply a form of classification based on a shared set of qualities and rules. Categorization is a subjective grouping of fashion items. This task focuses on predicting only the main category of a
fashion item (shirt, dress, pants, etc.). As each item can only exist in one class in a set of categories, this task is a single-label prediction most of the time.

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Yang [11]	2011	Linear SVM, HOG, BOW, DCT, 80% Rec	Surveillance videos clothing recognition
2	Hidayati [17]	2012	Classic, F-score of 92.25% on ~1000 images	Genre classification, Style elements
3	Willimon [18]	2013	Classic, C-S-H, Mid-level layers, 90% TP	Laundry items classification, 3 Categories
4	Kalantidis [19]	2013	SIFT, LBP, Multi-Probe LSH Index, 54% Avg Prec	For recommendation task
5	Kiapour [20]	2014	Classic, Between/Within-Class, above 70% Acc	Style classification of a whole outfit
6	Tong Xiao [21]	2015	CNN, Probabilistic graphical model	Noisy labels
7	Lao [22]	2015	AlexNet, 50.2% Acc for clothing style	Style recognition
8	Vittayakorn [23]	2015	Semantic parse, SVM, KNN, 27.8/57.8/12.9% Acc	Year/Season/Brand classification
9	Yamaizaki [24]	2015	Classic, Gabor Filters, Feature description	Clothes sorting, Bundled clothing
10	Surakarin [25]	2015	Classic, LDP, SURF, Bag of features, SVM	Seven categories of clothing
11	Z. Liu [26]	2016	VGG-16, FashionNet, Landmark, 82.58% Top-3 Acc	Benchmark, DeepFashion
12	Patki [27]	2016	New architecture better than VGG16, 41.1% Acc	Street photos
13	Arora [28]	2016	Modified VGG16, 92% and 71% Acc	Catalogue and street photos
14	R. Li [29]	2016	ELM, AE-ELM, Feature fusion, MLP	Efficiency and time comparison with MLP
15	Simo-Serra [14]	2016	CNN, 128 Floats, Triplet ranking, VGG-16, 61.5% IOU	Style Class., Street, Weak data, Features
16	Sun [29]	2017	SVM, LBP, SL TSD, and BSP features	Clothes sorting, Bundled, Single-Shot
17	Bhatnagar [30]	2017	CNN, 92.54% Acc	On Fashion-MNIST
18	Qian [31]	2017	Seg., ASPP, CRF, Faster R-CNN, VGG-16, 88.9% Acc	Pattern classification, Street photos
19	Chen [32]	2017	CNN, Distributed computing, 59% Acc	Multiple architectures & datasets
20	Corbierre [33]	2017	ResNet50, Bag-of-words, 86.30% Top-3 Acc	Weakly Annotated Data
21	Inoue [34]	2017	CNN, Multi-task label cleaning, 64.62% mAP	Multiple items
22	Dong [35]	2017	Multi-task curriculum transfer, 65.96% Prec	Street photos, Detection
23	X. Zhang [36]	2017	CNN, Alexnet, Avg. AUC of 81.2% on 3 datasets	Multiple items category detection
24	Lee [15]	2017	CNN, Style2vec, VGG, 61.13% Acc	Style Class., Representation learning
25	Takagi [37]	2017	CNN, VGG, Xception, Inception, ResNet50, 72% mAcc	Style Classification, Street
26	Gu [38]	2017	QuadNet, SVM, 65.37/42.80% Acc, 49.92% Prec	Season/Style/Garment, Street
27	Veit [39]	2017	Conditional similarity, CNN, Triplet, 53.67% ACC@1	Brand classification, Similarity learning
28	Bedelii [40]	2018	AlexNet, 73.3% Acc in Surveillance data	Forensics, Surveillance camera, Logos
29	Verma [41]	2018	StyleNet, CNN, Attention, ST-LSTM, 68.38% mAP	Multiple items, On Fashion144K
30	Zhang [42]	2018	Graph-based DCNN, CNN, VGG-16, ~85% mAcc	Style recognition
31	Dong [43]	2018	VGG-Net, Spatial pyramid pooling, 76.78% Acc	Style recognition
32	Schindler [44]	2018	CNN, comparing five networks, VGG16	Item, Gender classification, Person Detect.
33	Kuang [45]	2018	Hierarchical deep learning, Avg 85.63% Acc	Hierarchical classification
34	T. Nawaz [46]	2018	CNN, RmsProp, 89.22% Acc	Traditional clothing
35	Wazarkar [47]	2018	Linear convolution, Matching points, 71.4% TP	On Fashion 10K dataset
36	Bhatnagar [48]	2018	Compact bilinear CNN, 84.97% Top-3 Acc	Weak annotations
37	K-Gorripati [49]	2018	CNN, VGG16, 83% Acc	For recommendation task
38	Hidayati [50]	2018	Classic, SVM, Face detection, 88.40% mean F	16 clothing genres for upper/wear-underwear
39	Wang [51]	2018	VGG16, Fashion grammar, BCRNN, 90.99% Top-3 Acc	Landmark-driven and detection
40	Ye [52]	2019	Hard-Aware BackPropagation, GAN, 90.93% Top-3 Acc	Insufficient training data
41	F. Wang [53]	2019	CNN, Region Proposal Strategy, 91.7% Acc	Cashmere/Wool, Textile
42	Seo [54]	2019	Hierarchical CNN, VGG-Net, 93.33% Acc	On Fashion-MNIST
43	P. Li [55]	2019	Two-stream multi-task network, 93.01% Top-3 Acc	Landmark-driven
44	Madulid [56]	2019	CNN, Inception, 96.2% Acc, 0.981 Rec, 1 Prec	Seven categories of clothing
45	Umaasankar [57]	2019	Benchmark, ResNet34, 0.92 micro f-score	Benchmark, Atlas
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
----	-------------------	------	-----------------------------------	-------------------
46	Guo [58]	2019	CNN, Inception-BN, 88.2% Top-3 Acc	Benchmark, iMaterialist
47	J. Liu [59]	2019	Feature map upsampling, 91.16% Top-3 Acc	Landmark-Aware attention
48	Asiroglu [12]	2019	CNN, Inception, Haar-cascade, DoG, 86%/86%/98% Acc	Color/Gender/Pattern classification
49	Tuinhof [60]	2019	CNN, AlexNet, BN-Inception, 87%/80% Acc	Category/Texture, For recommendation
50	Tran [61]	2019	YOLO, Resnet18, 73.66% mAcc	Street images, 33 classes, For retrieval task
51	Park [62]	2019	CNN, SEResNeXt50, ~88.42% Top-3 Acc	Benchmark, Multiple methods
52	Stan [63]	2019	CNN, AlexNet, 83% Acc	For recommendation task
53	Ma [64]	2019	Bi-LSTM, ResNet-18, 47.88% Occ. & 73.95% Cat. Acc	Social media photos, Occasion & Category
54	Hidayati [65]	2019	Local features, Skin color, SURF, SVM, 73.15% F1	Genre classification, Street images
55	Alotaibi [66]	2020	Autoencoder, DeepAutoDNN, 93.4% Acc	On Fashion-MNIST
56	M. Nasir [67]	2020	CNN, Custom 17-layer, 97.9% Acc	Comic superheroes classification
57	Verma [68]	2020	Faster RCNN, MobileNet MTL, 73.5% Acc	For cold-start problem in recommenders
58	Shajini [69]	2020	Attentive CNN, VGG-16, 91.02% Top-3 Acc	Landmark-Driven
59	Z. Wang [70]	2020	CNN, Noise attention, A2NL, 6.4% test error	Attention-aware noisy label learning
60	J. Liu [71]	2020	Random Forest, VGG-IE, 93.97% Acc	On Fashion-MNIST
61	Rame [72]	2020	VGG-16, Attention, Illumination correction.	Color regression, Main and multiple colors
62	Ziegler [73]	2020	Category aware attention, 78.63% Top-3 Acc	Clothes sorting, Robotics, In-lab images
63	Jain [74]	2020	Data Mining, Compare 3 Methods, 86% Acc	Benchmark, Data mining techniques
64	Truong [75]	2020	ResNet, Soft attention, 98.55% Acc	Relation (what worn by who?)
65	Iqbal Hussain [76]	2020	ResNet-50, VGG-16, Rotation, 99.30% Acc	Fabric weave classification, Texture
66	Shubathra [77]	2020	Acc of 90.4% MLP, 93.3% CNN, 97.1% ELM	On Fashion-MNIST, Benchmark
67	Fengzi [78]	2020	VGG-16, InceptionV3, 88.6% Acc for article type	Master/Sub categories, Gender
68	Y. Zhang [79]	2020	TS-FashionNet, 89.94% Top-3 Acc	Landmark-Aware attention
69	Tian [80]	2021	Faster RCNN, Multi-grained Branches	Category grouping

![Figure 3: Time Analysis of Categorization Articles](image-url)
2.2.2 Attribute Recognition

Attributes are each item’s characteristics and objective qualities. Each item can have multiple attributes; that is why it is usually a multi-label task. For example, a dress (category) can have color, pattern, material, price, texture, style, etc., as attributes. Attribute recognition is a broader task than categorization; thus, it might predict the category as well.
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Bourdev [81]	2011	Classic, HOG, SVM, Poselets, Avg 65.18% Prec	Street photos, different viewpoints
2	Chen [82]	2012	Classic, Pose-adaptive, CRF, four combined features	Street photos, Pose estimation, Gender
3	S. Liu [83]	2012	Classic, HOG, LBP, Color Histogram	Magic closet
4	Di [84]	2013	Classic, SIFT, LBP, HOG, GIST, bag-of-words, SVM	Coat and jacket style
5	Bossard [85]	2013	Transfer forest, SURF, HOG, LBP, SSD, Avg 41.58% Acc	Natural scenes
6	Huang [86]	2015	DARN, NIN, MLPConv, SVR	Attribute-aware cross-domain retrieval
7	Q. Chen [87]	2015	Deep domain adaptation, R-CNN, NIN model	Street photos
8	Lao [82]	2015	AlexNet, 74.5% Acc across all labels	For clothing retrieval task
9	Yamaguchi [88]	2015	CRF, Localization, AlexNet, 67.8% F1	Considers inter-label correlation
10	X. Chen [89]	2015	Classic, Latent SVM, HOG, DPM detector	In-Lab & Internet photos, Kinect
11	K. Chen [90]	2015	Classic, SIFT, Pose estimation, SVM, 62.6% Acc	Fashion shows & street photos
12	Z. Liu [9]	2016	VGG-16, FashionNet, Landmark, 45.52% Top-3 Acc	Benchmark, DeepFashion
13	K. Liu [91]	2016	VGG-16, Decision fusion, 13.2% labels over 0.8 F1	View-Invariant, Catalog images, MVC
14	Patki [25]	2016	CNN, ZCA whitening, Avg 84.35% Acc	Street photos
15	Sha [92]	2016	Classic, Color matrix, ULBP, PHOG, Fourier, GIST	For recommendation task
16	Vaccaro [93]	2016	Polylngual topic model, Gibbs sampling, MALLET	Elements of fashion style
17	Sun [94]	2016	Classic features, Pose detection, LBP, PCA	Part-based clothing image annotation
18	Vittayakorn [95]	2016	CNN, Neural activations, KL divergence, 60% mAP	Street images
19	Z. Li [96]	2016	Domain-Adaptive Dict. Learning, K-SVD, PCA	Cross-Domain, Style recognition
20	R. Li [97]	2017	Multi-Weight CNN, Multi-Task, 55.23% mAP	Real-world clothing images
21	Corbiere [33]	2017	ResNet50, bag-of-words, 23.10% Top-3 Acc	Weakly Annotated Data
22	Dong [33]	2017	Multi-Task Curriculum Transfer, 64.35% mAP	Cross-Domain, Street photos, Detection
23	K. Chen [98]	2017	Pose estimation, SIFT, SVM, CRF, 62.6% Acc	Popularity of each attribute
24	Hsiao [29]	2017	Polylngual LDA, Topic model, 53% Avg AP	Unsupervised, Street images
25	Ly [100]	2018	Multi-task learning, LMTL-IDPS, 54.70% Avg Rec	Inner-group correlations, Imbalanced data
26	Liao [101]	2018	El tree, BLSTM, ResNet50, bi-directional Ranking Loss	Interpretable
27	S. Zhang [102]	2018	Triplet DCNN, fast R-CNN, VGG-16, Avg 87.93% mAP	Video (Fashion shows)
28	Lee [103]	2018	PAFs, SIFT, LBP, HSV, CNN, SVM	CNN and SVM comparison
29	Zheng [104]	2018	Polygon-RNN++, ResNet-50, Xception-65, 45.0% F1	Benchmark, ModaNet, Polygon, Color
30	Zakizadeh [105]	2018	Bilinear VGG-16, Pairwise ranking loss	Fine-grained attribute recognition
31	Deng [106]	2018	CNN, Color histogram, LBP, 77.38% Avg Acc	For a recommender application
32	Cardoso [107]	2018	VGG-16, Multi-modal Fusion, RNN, 85.58% Avg Acc	ASOS fashion e-commerce retailer
33	Hidayati [30]	2018	Classic, SVM, Face detection, 94.24% Avg F-score	Full-body images, 12 style elements
34	W. Wang [31]	2018	VGG-16, Fashion grammar, BCRNN, 51.53% Top-3 Acc	Landmark-Driven, Detection
35	Ye [32]	2019	Hard-aware BackPropagation, GAN, 52.82% Top-3 Acc	Insufficient training data
36	Yang [108]	2019	Tree-based models, GBDT, CNN, MLP	Interpretable, For mix-and-match
37	R. Li [109]	2019	Multi-task, Multi-weight, Multi-label, CNN	Imbalance, Benchmark 3 methods
38	He [110]	2019	DenseNet161, Separate networks, 97.72% mAP	2018 FashionAI Global Challenge
39	P. Li [55]	2019	Two-stream multi-task network, 59.83% Top-3 Acc	Landmark-Driven
40	Zou [111]	2019	AttributeNet, Hierachy, -86% Acc	Benchmark, FashionAI
41	J. Liu [59]	2019	Feature map upsampling, 54.69% Top-3 Acc	Landmark-Aware attention
42	Adhikari [112]	2019	ResNet-34, Branch network, 77.58% Avg Acc	Progressive attribute learning
43	Stan [63]	2019	CNN for each Cat., AlexNet, Two-stage, Avg 80.58% Acc	For a recommender system
44	Ma [64]	2019	CNN, Bi-LSTM, ResNet-18, 69.59% Acc	Social media photos
45	Q-Ferreira [113]	2019	OpenPose, VSAM, VGG-16, mean 49.22% Top-3 Acc	Pose-guided attention
46	S. Zhang [114]	2020	CNN, TAN, ResNet101, VGG-16, 69.72% mAvgP	Cross-Domain, Task-aware Attention
47	X. Liu [115]	2020	ResNet50, Landmark, 99.81% Top-5 Acc	MMFashion Toolbox
48	Chun [116]	2020	SAC, Grad-CAM, CNN, 81.02% Avg Acc	Self-attention mechanism
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
----	-------------------	------	------------------------------------	-------------------
49	Verma [68]	2020	Faster RCNN, MobileNet MTL, 89.1% Acc	For recommendation task
50	Shajini [69]	2020	Attentive CNN, VGG-16, 51.89% Top-3 Acc	Landmark-Driven
51	Z. Wang [70]	2020	CNN, Noise Attention, A2NL, 34.8% test error	Attention-aware noisy label learning
52	Yue [117]	2020	Design Issue Graphs, DCNN, 75.15% F1	Style recognition
53	Su [118]	2020	Inception-ResNet-v2, 46.0% AP	For retrieval task
54	Park [119]	2020	Machine learning, Hierarchical classification	Attribute classification system
55	Xiang [120]	2020	RCNN, ResNet-50, L-Softmax, 89.02% Prec	Attributes + Bounding box detection
56	Y. Zhang [79]	2020	TS-FashionNet, Two-Stream, 50.58% Top-3 Acc	Landmark-Aware attention
57	Shi [121]	2020	Faster R-CNN, Segmentation, 75% Acc	Trend Analysis, Fashion show Videos
58	Mohammadi [122]	2021	ResNet50, Shallow net, 44.4% IOU, 73.1% Prec, 48.4% Rec	For recommendation task

Figure 7: Time Analysis of Attribute Recognition Articles
Figure 8: a) Attributes of a woman shirt [120] b) Deepfashion attributes overlap [123] c) Attributes detection [120]

Figure 9: Attribute recognition on a) Item images [84] b) Model image [116] c) Wild images (with detection) [35] d) Fashion show videos [121]
2.3 Detection

Detection tasks aim to pinpoint a target’s location in images and are used in many higher-level applications. For example, it might be the location of a fashion item or just the informationally-rich areas of the picture. Thus, we break this task into three sub-categories: 1) Item Detection, 2) Parsing or Segmentation, and 3) Landmark Detection.

2.3.1 Item Detection

Item detection task focuses on finding fashion items in images/videos and usually outputs one or multiple bounding boxes containing the items.

Table 3: Articles Related to Item Detection

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Iwata [124]	2011	Face detection algorithm	Top/Bottom, Full-body Fashion magazines
2	S. Liu [83]	2012	Part-based detection scheme	Upper/Lower body, Magic closet
3	Bossard [85]	2013	Face detection, Calvin upper body detector	Natural scenes
4	Lao [22]	2015	R-CNN, Selective Search, 93.4% Val Acc	Street photos
5	Chen [89]	2015	Classic, Deformable-part-model, latent SVM	Component detection, Kinect
6	Qian [31]	2017	Region-based FCN, R-CNN, SSD, 83.4% mAP	Multiple items, Street photos
7	Shankar [125]	2017	VGG-16, Faster R-CNN, Avg 68.2% mAP	For the recommendation task, Wild images
8	Dong [35]	2017	Multi-Task Curriculum Transfer, Faster R-CNN	Street photos
9	Y. Liu [126]	2018	R-CNN body detection, 92.01% Avg Acc	Upper/Lower body, compare with part-based
10	S. Zhang [102]	2018	Fast R-CNN, VGG-16, 92.80% mAP	Video (Fashion shows)
11	Zheng [104]	2018	Faster R-CNN, SSD, YOLO, 82% mAP	Benchmark 3 methods, ModaNet
12	Manandhar [127]	2018	Faster R-CNN, RPN, 96% logo Acc, 98% item Acc	Item & Brand logo joint detection
13	Ramesh [128]	2018	Faster R-CNN, Inception, ResNet-V2, 84.01% mAP	4 Methods comparison
14	Ge [129]	2019	Mask R-CNN, Match R-CNN, 66.7% AP box	Benchmark, DeepFashion2, Street images
15	Tran [61]	2019	SSD 512, YOLO V3 300/416, ResNet50, 72%mAP	Street photos, For retrieval task
16	Sidnev [130]	2019	CenterNet, DeepMark, Hourglass, 72.3% AP box	DeepFashion2 Challenge, Multi items
17	H. Zhang [131]	2020	Faster R-CNN, SSD, YOLO V2, 97.99% mAP	Benchmark multiple methods
18	S. Zhang [114]	2020	SSD, VGG-16, 92.92% mAP	Street photos, Single item
19	X. Liu [115]	2020	MaskRCNN, ResNet50-FPN, 59.9% AP box	MMFashion Toolbox
20	Ji [132]	2020	Adaptive training sample selection, 72.8% AP	Wild image, For retrieval task
21	Ravi [133]	2020	Pose detection, Mask R-CNN, 78% mAP	Full frontal images, Multiple items
22	Sidnev [134]	2020	CenterNet, DeepMark++, 73.7% mAP box	Real-time, Smartphone use
23	Tian [48]	2021	RCNN Multi-grained branches, 69.02% AP	Category grouping
24	Kim [135]	2021	EfficientDet, CoordConv, 68.6% mAP box	Multiple items, Efficient time, Light power
Figure 10: Time Analysis of Item Detection Articles

![Graph showing time distribution of Item Detection articles](image)

Figure 11: Item detection for a) Multiple items, a single person [22] b) Multiple items, multi-person [31] c) Single item, logo detection [127] d) Single item, fashion show videos [162]
2.3.2 Parsing (Segmentation)

Fashion parsing is the semantic segmentation of clothing items, and each segment comes with a category label. The main difference between item detection and parsing is that the former generates only a bounding box around the object. In contrast, in parsing, we label fashion articles on a pixel level which is a much more complex task, especially for fashion items due to factors like human pose, occlusion, deformation, etc. Table 4 lists related articles. Abbreviations such as DR (Detection Rate) and NE (Normalized Error) are used whenever necessary.

Table 4: Articles Related to Parsing

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	M. Yang [11]	2011	Region growing, Face Det., Canny Edge Det., Voronoai	Surveillance videos, Background removal
2	Wang [136]	2011	Layout model, Clothing & blocking forest, 92.8% Acc	Multi-person, Occlusion relation
3	Yamaguchi [137]	2012	CRF, Pose estimation, MAF, Superpixel, 89% Acc	Street photos
4	Kalantidis [19]	2013	Articulated pose Est., Graph-based, AGM, 80.2% Acc	For recommendation task, Street images
5	Dong [138]	2013	Deformable Mixture, Parselets, 84.6% mIOU	Street photos
6	Yamaguchi [139]	2013	Global, NN; and Transferred parse, 84.68% Acc	A combination of 3 methods
7	W. Yang [140]	2014	Pose estimation, MRF-based, Superpixel, 42.1% IOU	Image co-segmentation, Street photos
8	S. Liu [141]	2014	Pose estimation, MRF-based, Superpixel, 42.1% IOU	Weak color-category labels
9	Yamaguchi [142]	2014	Pose Est., Transferred parse, NN parse, 84.68% Acc	Similar styles retrieval for parsing
10	Kiapour [20]	2014	Pose estimation, Unrestricted parsing	Parsing for style indicator
11	S. Liu [143]	2015	Active learning, Pose Est., SIFT, Superpixel, 88.92% Acc	Video co-parsing, Multi-person
12	Simo-Serra [144]	2015	CRF, CPIC, clothelets, 84.88% Acc	Street photos
13	Liang [145]	2015	Active template regression, CNN, 91.11% Acc	Street photos, Chicopia10k
14	Liang [146]	2015	Co-CNN, Within-super-pixel smoothing, 97.06% Acc	Street photos, Chicopia10k
15	S. Liu [147]	2015	Quasi-parametric, Matching-CNN, KNN, 89.57% Acc	Street photos
16	Z. Li [96]	2016	FCN, Hierarchical superpixel merging, exemplar-SVM	Cross-Domain, For retrieval task
17	Qian [31]	2017	FCN, ASPP, CRF, FasterR-CNN, DeepLab, 59.66% mPA	Street photos
18	Tangseng [148]	2017	FCN+Side-branch, CRF, VGG-16, 92.39% Acc	Street photos
19	Xia [149]	2017	Part & Pose FCNs, FRSM, Pose Est., 64.39% mIOU	Multi-Person, Human part, Wild photos
20	J. Li [150]	2017	MH-Parser, Graph-GAN, 37.01% PFC Top-5% Overlaps	Multi-Person, Human parsing, Wild
21	Gong [151]	2017	DeepLabV2, SSL, FCN-8s, SegNet, 84.53% Acc	Benchmark, different methods
22	Zheng [104]	2018	FCN, CRFasRNN, DeepLabV3+, 51.14% Avg IOU	Benchmark, ModaNet
23	Gong [152]	2018	Parse grouping network, Deeplab-v2, 68.40% Avg IOU	Benchmark, CHP, Multi-person
24	Zhou [153]	2018	ATEN, Parsing-RCNN, convGRU, 37.9% mIOU	Benchmark, VIP, Video, Multi-person
25	Liang [154]	2018	Joint human parsing & pose Est., 51.37% mIOU	Benchmark, LIP, Parsing+Pose Est., Wild
26	Zhao [155]	2018	Nested adversarial network, 34.37% FCP0.5	Benchmark, MHP V2, Multi-person, Wild
27	Jain [156]	2019	Nearest neighbor, Pose distance, CRF, 85.92% Acc	Street photos
28	Ge [129]	2019	Mask R-CNN, Match R-CNN, 67.4% AP mask	Benchmark, DeepFashion2, Street images
29	Lasserre [157]	2019	CNN, U-net, ~97.8% mean Acc	Background removal, Street2Fashion2Shop
30	Griebel [158]	2019	Mask R-net, Feature pyramid network	Fashion Curation System
31	Xu [159]	2019	Multi-task learning, JNet, DeepLabV3+, 84.65% mIOU	Part parsing, For 3D modeling
32	Ruan [160]	2019	Context embedding+Edge perceiving, 56.50% mIOU	Multi-person, 1st in 2nd LIP Challenge
33	Hidayati [65]	2019	Price-collecting Steiner tree	Street images, for Genre recognition
34	Gong [161]	2019	Graph Transfer Learning, Graphonomy, 71.14% mIOU	Universal, Multiple datasets, Multi-person
35	Wang [162]	2019	Compositional neural information fusion, 57.74% mIOU	Multi-person, Multiple datasets
36	X. Liu [115]	2020	Mask R-CNN, ResNet50-FPN, 58.4% Ap mask	MMFashion Toolbox
37	Castro [163]	2020	Unet, SegNet, Atrous, FCN, DenseNet, 93% Acc	Compares different models
38	Zhang [164]	2020	Body generation, PConvNet, Graphonomy	Fine-grained parsing (e.g. right/left sleeves)
39	Shi [121]	2020	Mask R-CNN, Segmentation	Trend Analysis, Fashion show Videos
40	Chou [165]	2021	Cloth2pose, PGN, Pose-guided parsing translator	Change parsing based on clothing & pose
Figure 12: Time Analysis of Parsing (Segmentation) Articles

Figure 13: Semantic segmentation examples. a) Detected garments with probabilities [158] b) Parsing street images [140] c) Multi-human parsing [155]
2.3.3 Landmark Detection

First introduced in 2016 [9], landmark detection aims to find key points of fashion items. For example, landmarks for upper-body items can be left/right collar end, left/right sleeve end, etc. These landmarks also implicitly contain bounding boxes, and landmark pooling proved to enhance performance in certain applications [115].

Table 5: Articles Related to Landmark Detection

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Z. Liu [9]	2016	VGG-16, FashionNet, Landmark visibility, ~80% DR	Benchmark, DeepFashion
2	Z. Liu [167]	2016	VGG-16, Pseudo-labels, Network Cascade, 78.6% mDR	Benchmark, FLD, Wild images
3	Yan [168]	2017	Hierarchical recurrent spatial transformer, 73.8% mDR	Wild images
4	Chou [169]	2018	Key-point detection, CPM, Gaussian peak heatmap	For shoe try-on task
5	Wang [31]	2018	VGG-16, Fashion grammar, BCRNN 58.3% mDR	Wild images
6	Li [35]	2019	Two-stream multi-task network, Hourglass, 0.0467 NE	For classification On DeepFashion dataset
7	Ge [129]	2019	Mask R-CNN, Match R-CNN, 56.3% AP pt	Benchmark, DeepFashion2, Street images
8	J. Liu [39]	2019	Feature map upsampling, Gaussian filter, 0.0474 NE	For fashion analysis
9	Xu [159]	2019	Convolutional pose machines, ResNet-101, 0.0265 mNE	For 3D modeling
10	Sidnev [130]	2019	CenterNet, DeepMark, Hourglass, 53.2% mAP pt	DeepFashion2 Challenge, Multi items
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
----	-------------------	------	------------------------------------	-------------------
11	Lee [170]	2019	VGG-16, Global-local embedding, 0.0393 Avg NE	Wild images
12	Chen [171]	2019	Dual attention feature enhance, FPN, 0.0342 Avg NE	On DeepFashion, FLD, and DeepFashion2
13	X. Liu [115]	2020	Mask R-CNN, ResNet50-FPN, ~78% DR < 30 Pix. Distance	MMDelusion Toolbox
14	Lin [172]	2020	Homogeneity, Aggregation, Fine-tuning, 58.9% AP	1st in the DeepFashion2 Challenge 2020
15	Shajini [69]	2020	VGG-16, Multiscale, SDC, 0.0425 Avg NE	For attribute detection
16	Sidnev [134]	2020	CenterNet, DeepMark++, Hourglass, 59.1% mAP pt	Key-point grouping, Real-time
17	Sidnev [173]	2020	CenterNet, Hourglass, Clustering, 59.2% mAP	Key-point grouping
18	Ziegler [73]	2020	Feature map upsampling, Gaussian filter, 0.1047 Avg NE	Sorting, Robotics, In-lab & catalog images
19	Bu [174]	2020	Multi-depth dilated Net., B-OHKM, 0.0221 Avg NE	Street photos
20	Lai [175]	2020	Cascaded pyramid network	Multi-Person, For try-on task
21	Roy [176]	2020	Human/Fashion correlation layer	Human+Fashion landmarks, For try-on
22	Xie [177]	2020	Pose estimation, MSPN	For try-on task
23	Kim [135]	2021	EfficientDet, BiFPN, CoordConv, 45.0% mAP	Multiple items, Efficient time

Figure 15: Time Analysis of Landmark Detection Articles

Figure 16: a) Single-item landmark detection for Item, Model, and wild images [9] b) Multi-item landmark examples [129]
2.4 Virtual Try-on

Virtual try-on is a highly active field, primarily due to its potential applications in the online fashion retail industry and also offline intelligent software packages used in clothes stores. We separate virtual try-on into five sub-categories: 1) Image-Based Try-On, 2) 2D Modeling, 3) 3D Modeling, 4) Size & Fit, and 5) Magic Mirror. Remember that the image-based try-on task is also 2-dimensional, but it does not change the input image, just the clothing items. Reference [178] is a 2020 taxonomical survey on virtual try-on systems with GAN.

2.4.1 Image-Based Try-On

Image-based try-on systems usually take one image as input and change fashion items present in the photo according to the user’s need. The changes only take effect on specific regions of the input image, and the rest remains intact. There are also makeup transfer and hairstyle suggestion applications that we only report a few examples of and do not fully cover in this article. Image-based try-on systems typically take two inputs, one reference image, one target outfit, and transfer the outfit to the reference image. In Table 6, we try to report the exact type of this transfer using dual-keywords (Target-Reference) in the “Application Notes” section. These systems transfer qualities of the “Target” to the “Reference” image; for example, Model-Model designs transfer clothing from one human model image to another image with the human model present, whereas Title-Model systems need an in-shop catalog image of the desired outfit as target. Studies use different evaluation metrics such as Inception Score (IS), Human Score (HS), Structural Similarity (SSIM), and various others.

Table 6: Articles Related to Image-Based Try-On

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	W. Yang [179]	2012	Active shape model, Matting, Statistical learning	Hairstyle, Recommender
2	Hauswiesner [180]	2013	Image-based visual hull rendering, IBVH	Model-Model, In-lab images
3	Liu [181]	2014	Dual linear transformation, Guided filter, Alpha blending	Hairstyle & makeup, Recommender
4	S. Yang [182]	2016	Joint material-pose optimization, Pose Est.	Model-Model, Optimized virtual 3D outfit
5	Jetchev [183]	2017	Conditional Analogy GAN, PatchGAN	Title-Model, Upper body
6	Zhu [184]	2017	FashionGAN, Segmentation, Text-to-image, 82.6% mAP	Text-Model, Text-Guided, Upper body
7	Han [185]	2018	VITON, Multi-task Encoder-Decoder, TPS, 2,514 IS	Title-Model, Upper body, Also wild
8	Chou [189]	2018	Pose Invariant, PIVTONS, PatchGAN, Key-points	Shoe try-on, Title-Model
9	Raj [186]	2018	Segmentation, Dual-path U-net, DRAGAN, SwapNet	Model-Model, Swap clothes, Pose
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
----	-------------------	------	------------------------------------	-------------------
10	B. Wang [187]	2018	Characteristic-Preserving, CP-VTON, 84.5% HS	Title-Model, Upper body
11	Chen [188]	2018	CAGAN, LIP-SSL, Transform, 90.3% HS	Title-Model, Upper body
12	Zanfir [189]	2018	3D pose & Shape, DMHS, SMPL, HAS, 4.13 IS	Model-Model, Swap clothes
13	Han [190]	2018	FineNet, Pose Est., Encoder-decoder, VGG-19	Model-Model, Transfer using inpainting
14	Lomov [191]	2018	Pix2pix, CGAN, Perceptual loss functions, 3.098 IS	Title-Model, Upper body
15	Wu [192]	2019	Pose alignment, Texture refinement, M2E-TON, 83.7% HS	Model-Model
16	Ayush [193]	2019	Auxiliary learning, Human segmentation, 0.712 SSIM	Title-Model, Preserves characteristics
17	Yildirim [194]	2019	Modified Conditional Style GAN, 9.63 IS	Model-Model, Color transfer, High-Res.
18	Issenhuth [195]	2019	Warping U-net, WUTON, Geometric Trans., 0.101 LPIPS	Title-Model, Handles masked images
19	Han [196]	2019	Flow-based GAN, ClothFlow, Pyramid Net., 0.803 SSIM	Model-Model, Selective article transfer
20	Honda [197]	2019	Spatial Transformer, ST-GAN, 32% IOU@0.75 Glasses	Model-Model, Upper body
21	Pumarola [198]	2019	Auxiliary learning, Human segmentation, 0.712 SSIM	Title-Model, Preserves characteristics
22	Honda [199]	2019	Warping U-net, WUTON, Geometric Trans., 0.101 LPIPS	Title-Model, Handles masked images
23	R. Yu [200]	2019	Modified Conditional Style GAN, 9.63 IS	Model-Model, Color transfer, High-Res.
24	Han [201]	2019	Flow-based GAN, ClothFlow, Pyramid Net., 0.803 SSIM	Model-Model, Selective article transfer
25	Sun [202]	2019	Structural consistency, Mask R-CNN, U-net, GAN	Title-Model, Less missing body parts
26	Ayush [203]	2019	Multi-Scale Patch Adversarial Loss, 2.558 IS	Title-Model
27	Kubo [204]	2019	UV mapping, UVTON, DensePose, 59.38% HS	Title-Model
28	Zhang [205]	2019	Disentangled Representation, DMT, GAN, 0.992 SSIM	Makeup transfer, Four modes, Model-Model
29	W. Liu [206]	2019	Liquid warping GAN, Denoising Conv. auto-encoder	Model-Model, Also In-Lab images, Detailed
30	Pandey [207]	2020	Poly-GAN, Three stages in one network, 2.790 IS	Title-Model
31	Z. Yu [208]	2020	Unsupervised apparel simulation GAN, AS-GAN	Street-Street, CCTV, For person ReID task
32	Issenhuth [209]	2020	Student-teacher paradigm, Parser-Free, STN, 3.154 IS	Title-Model
33	Raffiee [210]	2020	GarmentGAN, Semantic parser, SPADE-style, 2.774 IS	Title-Model
34	Jeong [211]	2020	Graphonomy, SEAN, ResBlK, SEBlK, 0.865 SSIM	Model-Model, Selective article transfer
35	Minar [212]	2020	3D model-based, CloTH-VTON, U-Net, 3.111 IS	Title-Model, 3D cloth reconstruction
36	Minar [213]	2020	Content Generating & Preserving, ACGPN, 2.829 IS	Title-Model, Detail preservation
37	Hashmi [214]	2020	Neural Body Fit, GAN, RPN, STN, 76.62% Acc	User custom try-on
38	Neuberger [215]	2020	O-VITON, pix2pixHD, Segmentation, cGAN, 3.61 IS	Multiple Models-Model, Multi-item try-on
39	Lai [216]	2020	Key-points matching, KP-VTON, Mask R-CNN, 2.80 IS	Title-Model
40	Roy [217]	2020	Landmark Guided, LGVTON, TPS, cGAN, 2.71 IS	Model-Model
41	Xie [218]	2020	Landmark-Guided, LG-VTON, MSPN, TPS, 2.885 IS	Title-Model
42	Jandial [219]	2020	SieveNet, Coarse-to-Fine Warping, TPS, 2.82 IS	Title-Model, Robust
43	Song [220]	2020	Shape-Preserving, SP-VTON, DensePose, 2.656 IS	Title-Model
44	Li [221]	2020	U-Net, Shape Matching, Cascade Loss, 7.04 FID	Title-Model, Chooses best Title-Model pair
45	K. Wang [222]	2020	Unpaired shape transformer, AdaIN, 66.42 SSIM	Title-Model, Try-on/Take-off
46	Fincato [223]	2020	3D mesh-based, SMPL, TPS, CS-VTON	Title-Model, 3D cloth reconstruction
47	Minar [224]	2020	3D model-based, SMPL, TPS, CS-VTON	Title-Model, 3D cloth reconstruction
48	Minar [225]	2020	CP-VTON+, CNN geometric matching, 3.1048 IS	Title-Model, Shape & texture preserving
49	Kips [226]	2020	Color Aware, CA-GAN, PatchGAN	Makeup transfer, Model-Model
50	Meng [227]	2020	Attribute-Decomposed GAN, U-Net, AdaIN, VGG	Model-Model, Selective article transfer
51	Lewis [228]	2021	Unpaired style transfer, StyleGAN2, VOGUE, AdaIN, 32.21 FID	Model-Model, Selective article transfer
52	Minar [229]	2021	3D deformation, CloTH-VTON+, Segmentation, 2.787 IS	Title-Model, Method comparison
Figure 18: Time Analysis of Image-Based Try-On Articles

Figure 19: a) Glasses try-on [198] b) Makeup transfer [206] c) Hairstyle transfer [179] d) Hairstyle and makeup effects [181]
Figure 20: a) Item-Model try-on [210] b) Item-Model shoes try-on [169]

Figure 21: Model-Model try-on examples. a, b) Model and street try-on [182] c) Color transfer [194] d) Controllable try-on (selective article) [225]
2.4.2 2D Modeling

2D modeling is also image-based, with one main distinction. Here, the input image completely changes, and the output is a new 2-dimensional model of the original image. 2D modeling can be the synthesis of the same image from a different angle, pose-guided image synthesis of a person with a different pose (known as pose transformation), or even a graphical/cartoon model or an avatar of the input image. Most systems we label as 2D modeling are pose-guided try-on systems. There also exist pose-transfer systems that might not focus on fashion; however, their proposed methods can be implemented in 2D modeling try-on systems.
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Ma [227]	2017	PG+, U-Net-like, Conditional DCGAN, 3.090 IS	Human pose transfer
2	Raj [186]	2018	Dual-path U-Net, DRAGAN, SwapNet, 3.04 IS	Pose-guided, Swap clothes
3	Esser [228]	2018	Conditional variational U-Net, VGG19, 3.087 IS	Shape/Pose-guided person generator
4	Siarohin [229]	2018	Deformable skip connections, Def-GAN, 3.439 IS	Human pose transfer
5	Ma	2018	Disentangled representation, U-Net, PG+, 3.228 IS	Foreground/Background/Pose manipulation
6	Zafir [189]	2018	3D pose & shape, DMHS, SMPL, HAS, Layout warping	Appearance transfer, Model-Model, Pose
7	Qian [231]	2018	Pose-Normalization, PN-GAN	Pose transfer, For ReID task, CCTV
8	Dong [232]	2018	Soft-Gated Warping-GAN, Parsing, 3.314 IS	Human pose transfer
9	Si [233]	2018	Hourglass, CRF-RNN, 3D joints, 0.72 SSIM	Human pose transfer, In-lab images
10	Balakrishnan [234]	2018	Segmentation, U-Net, 0.863 SSIM	Pose transfer, Has problems with the face
11	Pumarola [235]	2018	Unsupervised, Conditioned bidirectional GAN, 2.97 IS	Human pose transfer, Unsupervised
12	Yildirim [194]	2019	Modified conditional style GAN, 9.63 FID	Try-on multiple items, Pose-guided
13	Hsieh [236]	2019	Conditional GAN, Fit-Me, Four stages, 3.336 IS	Pose-guided try-on
14	Dong [237]	2019	Flow-navigated warping, FW-GAN, CGAN, 6.57 FID	Video virtual try-on
15	Dong [238]	2019	MG-VTON, Conditional parsing, Warp-GAN, 3.368 IS	Multi-pose guided virtual try-on
16	Zheng [239]	2019	Attentive bidirectional GAN, 0.7541 SSIM	Pose-guided try-on
17	Han [202]	2019	Flow-based GAN, ClothFlow, Pyramid Net., 3.88 IS	Human pose transfer
18	Y. Li [240]	2019	Dual-path U-Net, Pixel warping, PatchGAN, 3.338 IS	Human pose transfer
19	Albahar [241]	2019	Bi-directional feature transformation, 3.22 IS	Human pose transfer
20	W. Liu [207]	2019	Liquid warping GAN, HMR, 3.419 SSIM	Pose/Outfit transfer, Motion, In-lab images
21	Sun [242]	2019	Bi-directional Conv. LSTM, U-Net, 3.006 IS	Human pose transfer
22	Zhu [243]	2019	HPE, Pose attention, VOG-19, 3.209 IS	Human pose transfer, Shape consistency
23	Song [244]	2019	Semantic parsing transformation, E2E, 3.441 IS	Human pose transfer, Unsupervised
24	Zhou [245]	2019	Multi-modal, LSTM, Attentional upsampling, 4.209 IS	Text-guided pose & appearance transfer
25	Jeong [246]	2020	Graphonomy, SEAN, ResBlK, SEBlK	Try-on and also human pose transfer
26	Hsieh [246]	2020	Parsing, CIHP, pix2pix, cGAN, U-Net, 3.191 IS	Pose-guided try-on, Good detail generation
27	Tsunashima [247]	2020	Unsupervised, Disentangled representation, UVIRT	Try-on using consumer clothing images
28	Men [223]	2020	Attribute-decomposed GAN, U-Net, AdaIN, 3.364 IS	Controllable person image generator, Pose
29	Ren [248]	2020	Differentiable global-flow local-attention, 10.573 FID	Human pose transfer
30	Huang [249]	2020	Appearance-aware pose stylizer, AdaNorm, 3.295 IS	Human pose transfer
31	Wang [250]	2020	Spatially adaptive instance Norm., SPAdaIn ResBlock	3D Mesh pose transfer
32	J. Liu [251]	2020	Dense local descriptors, Autoencoder, 0.959 SSIM	Human pose transfer, Try-on, Video
33	Gao [252]	2020	Semantic-aware attentive transfer, LGIR, 3.855 IS	Recapture, Pose+Body shape+Style, Video
34	K. Li [253]	2020	Pose-guided non-local attention, PoNA, GAN, 3.338 IS	Human pose transfer
35	Kuppa [254]	2021	DensePose, CP-VTON, GELU, ReLU, U-Net	Video virtual try-on
36	Chou [165]	2021	Template-free, TF-TIS, Parsing, cGAN, 3.077 IS	Pose-guided try-on, Good detail generation
37	Lewis [166]	2021	Pose-conditioned StyleGAN2, VOGUE, AdaIN, 32.21 FID	High-resolution pose transfer
Figure 23: Time Analysis of 2D Modeling Articles

Figure 24: a) Pose transfer on Model images [249] b) Pose-guided try-on [246] c) Model-Model pose transfer [194] d) Pose transfer in the wild [248]
2.4.3 3D Modeling

3D modeling applications include try-on and also 3D garment modeling. Some studies focus on 3D body scanning and geometry or texture modeling of garments, while others focus on 3D modeling and physical simulation from a 2D input image. 3D modeling of clothed humans is a highly active field, not only for fashion purposes but also partly due to its applications in the huge movie and animation industry and gaming graphics. We use dual keywords (Input-Output) in the “Application Notes” column of Table 8 to categorize systems whenever possible. For example, “Image-3D Body” shows a system that generates 3D body models from 2D images.
No	Article Reference	Year	Technical Keywords	Application Notes
1	D’Apuzzo [255]	2007	3D scanning, Overview of methods, Companies	3D scanning in the apparel industry
2	D’Apuzzo [256]	2009	3D scanning, Overview of methods, Application	3D scanning in the apparel industry
3	Y. Liu [257]	2010	Approaches, Human modeling, Garment design, Draping	Survey, CAD methods in 3D garment design
4	Robson [258]	2011	Context, Geometric modeling	Sketch-3D garment
5	Yuan [259]	2011	Face coordinates, Occlusion, Mixed reality	3D virtual glasses try-on
6	Niswar [260]	2011	Face reconstruction, Tracking, Fitting	Glasses, Head & face 3D modeling
7	Miguel [261]	2012	Data-driven estimation, Nonlinear models	Cloth simulation models, Deformations
8	Guan [262]	2012	DRAPE, Physics-based, Deformation gradients	Dress 3D bodies, Any shape, Any pose
9	Yasseen [263]	2013	Quad mesh, Discrete coons patches	Sketch-3D garment, Design
10	X. Chen [264]	2013	Deformable model, SCAPE, IK algorithm	Image-3D body, Clothed/Naked
11	Zhou [265]	2013	Pose estimation, Body shape, Shape-from-shading	Full body image-3D garment
12	Ionescu [266]	2013	KNN, KRR, Regression, Fourier embedding, LinkRNN	Benchmark, Image-Multiple 3D bodies
13	S. Wang [267]	2014	Parametric feature model, 3D scanner, Key points, VHMM	Human 3D model, Feature-based
14	Y. Yang [268]	2014	RGB-D camera, Object tracking, ICP, PCA	3D Footwear try-on, Live video
15	X. Chen [269]	2015	Depth camera, KinectFusion, 3D deformable template	Image-3D garment, In-lab, Kinect
16	Guan [269]	2016	Review, A section on 3D Try-on, Various methods	Apparel virtual try-on with CAD system
17	S. Yang [270]	2016	Physics-based, Parameter Est., Semantic parsing, Shape	Image-3D garment, Single image
18	Pons-Moll [270]	2017	ClothCap, Multi-part 3D model, Segmentation	4D Clothing capture & retargeting, Motion
19	Danéřek [271]	2017	Mocap sequence, CNN, 3D vertex displacement	Image-3D garment, Single image
20	Zhang [272]	2017	3D scans, Parametric model, SMPL, Single-frame	Clothed 3D scans-Naked 3D body, Accurate
21	Hong [273]	2018	3D Scanning, Rule-based model, Sensory descriptors	3D-to-2D garment design, Scoliosis
22	Daanen [274]	2018	Measures, Devices, Processing, Virtual fit	An overview on 3D body scanning
23	T. Wang [275]	2018	Shared shape space, PCA, Siamese network	Sketch-3D garment, Design, Retarget
24	Lähner [276]	2018	cGAN, DeepWrinkles, Pose Est., PCA, LSTM	4D scans-3D garment, Accurate, Realistic
25	Alldieck [277]	2018	Pose reconstruction, Unposed canonical frame	Video-3D clothed body
26	Bhatnagar [278]	2019	Multi-garment, MGN, SMPL, Vertex based PCA	3D try-on from multiple video frames (8)
27	Gundogdu [279]	2019	Two-stream, GarNet, Spatial transformer network, MLP	3D draping, 100x faster than physics-based
28	Xu [259]	2019	Multi-task learning, JFNet, ASPP, ResNet101, MLS	Two images-3D garment
29	Pumarola [280]	2019	CNN, Spherical area-preserving Param., GirNet	Image-3D clothed body
30	Lazova [281]	2019	DensePose, Segmentation, SMPL UV-space, cGAN	Image-3D avatar, Fully-textured
31	Alldieck [282]	2019	Canonical T-pose, SMPL+D, Octopus, CNN	Image-3D clothed body
32	Saito [283]	2019	Pixel-aligned implicit function, PIIF, Marching cube	Image-3D clothed body, High-resolution
33	Natsume [284]	2019	Silhouette-based, SiCloPe, Greedy sampling, GAN	Image-3D clothed body
34	Yu [285]	2019	SimulCap, DoubleFusion, Force-based mass-spring	Single-view 3D performance capture
35	Alldieck [286]	2019	SMPL, UV map, Pix2Pix, U-Net, PatchGAN	Image-3D body geometry, Detailed
36	Sattar [287]	2019	SMPL, Joint-based, Multi-photo optimization	Multiple images-3D body
37	Santesteban [288]	2019	Learning-based, Physics-based, RNN, MLP, PSD	3D try-on clothing animation, Wrinkles, Fit
38	Shin [289]	2019	Deep image matting, DCNN, Recursive Conv. Net.	Realistic garment rendering for 3D try-on
39	T. Wang [290]	2019	Intrinsic garment space, MLP, Motion-driven Autoenc.	Garment authoring, Animation
40	W. Liu [207]	2019	SMPL, HMR, NMR, Liquid warping GAN	In-lab image-3D Mesh, Motion transfer
41	Huang [291]	2020	Semantic deformation field, Stacked hourglass, U-Net	Image-Animatable 3D body
42	Zhu [292]	2020	Dataset, Pose Est., Graph CNN, SMPL, Pixel2Mesh	Image-3D garment, Bench., DeepFashion3D
43	Jin [293]	2020	CNN, Pixel-based framework, PCA, Deformations	Pose-3D garment, Pose-guided 3D clothing
44	Vidaurre [294]	2020	Parametric 3D mesh, SMPL, Graph CNN, U-Net	Parametric try-on, Garment/Body/Material
45	Mir [295]	2020	Silhouette shape, U-Net, Pix2Surf, SMPL, GrabCut	Item image-3D clothed body, Texture
46	Caliskan [296]	2020	Multiple-view loss, CNN, Stacked hourglass	Image-3D body
47	Minar [213]	2020	CloTH-VTON, SMPL, U-Net, Shape-context matching	Item image-3D garment, Image-based try-on
48	Tiwari [297]	2020	SizerNet, 3D parsing, SMPL+G, Encoder-decoder	Size sensitive 3D clothing, 3D parser
No.	Article Reference	Year	Technical Keywords	Application Notes
-----	-------------------	------	--------------------	-------------------
49	Patel [298]	2020	TailorNet, MLP, SMPL, PCA, Narrow bandwidth kernel	3D clothed body, Pose/Shape/Style, Detailed
50	Ju [299]	2020	Cusick’s drape, Two-stream NN, CLO3D simulator	Image (Static drape)-Cloth simulation
51	Ali [300]	2020	FoldMatch, Physics-based, Wrinkle-vector field	Garment fitting onto 3D scans, Accurate
52	Shen [301]	2020	eGAN, Non-rigid ICP, Voronoi diagram, SMPL	Sewing pattern image+3D body-3D garment
53	Li [302]	2020	Morphing salient points, MIP, Garment mapping	In-home 3D try-on App.
54	Ma [303]	2020	SMPL, Graph-CNN, mesh, Conditional MeshVAE-GAN	3D clothed body-3D scans
55	Bertiche [304]	2020	Learning-based, PSD, Physics-based simulation, MLP	Unsupervised garment pose space Deform.
56	Minar [305]	2020	Pose Est., SMPL, TPS, Shape-context matching	Item image-3D garment, Image-based try-on
57	Jiang [306]	2020	Layered garment Rep., SMPL, MLP, PCA, ResNet-18, GAT	Image-3D clothed body
58	Bertiche [307]	2020	SMPL, Conditional variational Auto-enc., Graph Conv.	Image-3D clothed body
59	Su [308]	2020	UV-position map with mask, ParamNet, CNN	3D scan clothed body shape & style editing
60	Bertiche [309]	2020	Local geometric descriptors, Graph Conv., MLP	Skinning, Deformation, Animation
61	Gundogdu [310]	2020	Physics-based, Curvature loss, GarNet++, MLP, KNN	3D Clothing draping
62	Revkov [311]	2020	FITTIN™, 3D model of foot/shoe, Smartphone	Online 3D shoe try-on
63	Saito [312]	2020	Multi-level, Trainable, PiFu, CNN, MLP, pix2pixHD	Image- Detailed High-Res. 3D model
64	L. Chen [313]	2021	Temporally & spatially consistent Deform., CNN	Deep deformation detail synthesis
65	Wu [314]	2021	Sensitivity-based distance, Taylor expansion, LBS	Real-time 3D clothing, Virtual agents
66	Yoon [315]	2021	Semi-supervised, Neural clothes retargeting, CRNet	Image-3D garment, Retarget
67	Minar [316]	2021	CloTH-VTON+, SMPL, TPS, Shape-context matching	Item image-3D garment, Image-based try-on

Figure 26: Time Analysis of 3D Modeling Articles

Figure 27: a) Mixed reality shoe try-on [268] b) Mixed reality glasses try-on [259] c) 3D modeling for glasses virtual try-on [260] d) Item image-3D garment [281]
Figure 28: a) Transfer image to 3D models [295] b) Model-3D garment [263]

Figure 29: a) 3D garment recovery from single image [182] b) Street-3D clothed model [264] c) 3D virtual try-on [302] d) Clothed 3D model capturing using a single RGBD camera [265] e) Video-3D model [277] f) 3D garment retargeting [278]
2.4.4 Size & Fit

Choosing the right clothing size and the best fit is one of the main reasons fitting rooms exist in the real world. Technology needs to provide solutions to this problem in online apparel shops. Studies link the perception of clothing fit in women to their body image in their mind, and they showed that a good choice of clothing fit helps improve confidence and cover perceived flaws [315]. Thus, we need systems to predict the size of clothing for different individuals and fashion articles’ fit based on the user’s body shape and size. One of the main approaches is 3D body scanning. Digitization technologies can measure specific body parts or even generate full body measurements in seconds. Thus, we can also consider various 3D modeling methods in sec 2.4.3 for this application.
Table 9: Articles Related to Size & Fit

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	D’Apuzzo [255]	2007	Measurement devices, Methods, 3D scanning	3D scanning in the apparel industry
2	Mpampa [316]	2010	Statistical analysis, Iterative, LS, Classification	Sizing systems, Mass customization
3	Apeagyei [317]	2010	3D scanner, CAD, Measurement extraction profile	3D scanning, Body measurement, Methods
4	Gaur [318]	2014	Graph, Multi-node multi-state, Bag-of-features, SVM	Aesthetics assessment of fashion images
5	Abdulla [319]	2017	Gradient boosting classification, Word2vec, 81.28% Acc	Size recommendation, E-commerce
6	Hidayati [320]	2018	BoVW, Auxiliary visual words, Affinity propagation	Fashion Recom. for personal body shape
7	Daanen [274]	2018	Measures, Devices, Processing, Sizing	An overview on 3D body scanning
8	Guigourès [321]	2018	Hierarchical Bayesian model, Mean-field approximation	Size recommendation
9	Sheikh [322]	2019	Content-collaborative, SFNet, Siamese, 76.0% Acc	Size & fit prediction, E-commerce
10	Du [323]	2019	Agglomerative clustering, Character-LSTM, QP	Automatic size normalization
11	Sattar [287]	2019	SMPL, 3D model, Multi-photo optimization	Clothing preference based on body shape
12	Dong [324]	2019	PCW-DC, Bayesian personalized ranking, MLP	Personalized capsule wardrobe, Body shape
13	Yang [325]	2020	SMPL, Non-rigid iterative closest point, Non-Lin. SVR	Measurements from 3D body scans
14	Tiwari [297]	2020	SizerNet, 3D parsing, SMPL+G, Encoder-decoder	Size sensitive 3D clothing
15	Hsiao [326]	2020	Visual body-aware embedding, 3D mesh, SMPL, HMD	Fashion Recom. for personal body shape
16	Yang [327]	2020	Multi-view, Semantic Seg., PSPNet, Clustering, Matching	Girth measurement, Stereo images, Design
17	Li [307]	2020	3D scanner, MPII, Salient anthropometric points	In-home 3D fitting room App.
18	Hu [328]	2020	Body PointNet, MLP, OBB Norm., Symmetric chamfer	Body shape under clothing from a 3D scan
19	Wolff [329]	2021	Structure sensor, Isometric bending, Var. surface cutting	3D Custom fit garment design, Pose
20	Foysal [330]	2021	SURF, Box filter, Bag-of-features, k-NN, CNN, 87.50% Acc	Body shape detection, Smartphone App.

Figure 31: Time Analysis of Size & Fit Articles
Figure 32: a) Automatic body sizes extraction [255] b) Settings for girth measurement [327] c) Tightness visualization in 3D modeling [274] d) Size-sensitive 3D models [297] e,f) Body shapes [324] and their corresponding 3D models [318]

Strawberry Shape	Suitable	Unsuitable
	![Images](image1)	![Images](image2)

Pear Shape	Suitable	Unsuitable
	![Images](image3)	![Images](image4)

Figure 33: a) Recommendations for different body shapes [324] b) Body shape estimation and personalized recommendation [326] c) 3D custom fit garment design [327] d) Automated fashion size normalization [323]
2.4.5 Magic Mirror

They were introduced in 2009 by the name of Smart Mirror [10] as a retrieval system and recommender. Then again, in 2016, by the name of Magic Mirror [331], this time as a virtual fashion consultant. In fact, magic mirrors can be much more than that. They can be the ultimate implementation of all fashion applications, including analysis, recommendation, try-on, synthesis, etc., combined with an interactive system and augmented reality. Our focus here is on studies that explain system architectures and shine some light on the hardware and schemes needed to implement magic mirrors.

Table 10: Articles Related to Magic Mirror

No	Article Reference	Year	Technical Keywords	Application Notes
1	Chao [10]	2009	Smart mirror, Classic, HOG, LBP, Web camera	Style recommender
2	Yuan [259]	2011	Face coordinates, Occlusion, AR, Two-way mirror	Glasses try-on, Mixed reality
3	Yang [268]	2014	RGB-D camera, Object tracking, ICP, PCA	3D Footwear try-on, Mixed reality, Live
4	Liu [331]	2016	Kinect, Bimodal deep autoencoder, Correlative label	Magic mirror, Fashion compatibility
5	Fu [332]	2017	Kinect, User preference, Genetic algorithm, Fashion trend	Demo, Fashion compatibility
6	Asiroglu [12]	2019	Embedded Linux system, Haar-cascade, DoG, CNN	Recommender, Color, Gender, Pattern
7	Boardman [333]	2020	Augmented reality, Virtual reality, Case study	Review, AR & VR in fashion retail

Figure 34: a) Mixed reality glasses try-on [259] b,c,d) Magic mirror schemes [331], [332]
2.5 Fashion Synthesis

Fashion synthesis emphasizes synthesizing new fashion item images and designs from scratch. Bear in mind that try-on applications also synthesize images, but with a different purpose. In try-on applications, the focus is on the human presence in the photo, while in fashion synthesis, the main focus is on creating novel and unseen fashion items. Comprehensive research on consumer responses to GAN-generated fashion images can be found in [334]. Various approaches exist, and different inputs are used to guide the system to generate the final output. We try to report each system’s output in the “Application Notes” column of Table 11 or use dual keywords (Input-Output) wherever possible. For example, “Model-Item” shows that the system takes one fashion image with a human model and generates the fashion article’s catalog image. Bear in mind that image synthesis is not the final goal of all synthesis systems, and some try to generate designs and ideas leading to the physical production of fashion items.

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	J. Wang [335]	2011	Garment surface style, 3D pattern style, Silhouette curves	Mass customization, 3D garment design
2	Mok [336]	2013	Interactive genetic algorithm, Parametric design, SDA	Sketch, Fashion design support system
3	Yoo [337]	2016	GAN, Pixel-level domain transfer, MSE, 0.21 C-SSIM	Model-Item, Item-Model, Street photos
4	J-Y. Zhu [338]	2016	Manifold approximation, DCGAN, AlexNet, L-BFGS-B	Attr. Manipulation, Shape, Color
5	Kang [339]	2017	Siamese CNN, CNN-F, GAN, LSGAN, BPR, 7.652 IS	User preference-Recommended items
6	S. Zhu [340]	2017	FashionGAN, Segmentation, Compositional mapping	(Text+Model)-Model, Attr. manipulation
7	Date [341]	2017	Segmentation, VGG-19, SVM, L-BFGS	Multiple items-Item, Style transfer
8	A. Yu [342]	2017	Semantic Jitter, Attribute2Image, CVAE, MLP	Synthesize varying Attr. Images, Shoes
9	Lassner [343]	2017	ClothNet, VAE, CVAE, Image-to-image Trans.	Seg. body map-Person image, Pose, Color
10	Hong [275]	2018	3D Scanning, Rule-based model, Sensory descriptors	3D-to-2D garment design, Scoliosis
11	Kato [344]	2018	Case study, DeepWear, DNN, DCGAN	Models-New models, Design, Fashion show
12	J. Zhu [345]	2018	CNN, Nonnegative matrix factorization, VAE	Popular items-New items, Design
13	Rostamzadeh [345]	2018	Progressive GAN, StackGAN-v1/v2, 7.91 IS	Text-Model, Fashion-Gen, Challenge
14	Yang [346]	2018	Siamese, BPR, GAN, SE-Net, Inception-V3, 6.823 IS	Generates fashion collocations, Item image
15	Günel [347]	2018	Feature-wise linear modulation, GAN, fastText, 2.58 IS	(Text+Model)-Model, Attr. manipulation
16	Esser [328]	2018	Conditional variational U-Net, VGG19, 3.087 IS	Sketch-Image, Matching, For human Gen.
17	Xian [348]	2018	TextureGAN, VGG-19, Scribbler, Texture patch	(Sketch+Texture)-Image, Bag, Shoe, Clothes
18	Ye [32]	2019	Semi-supervised GAN, Hard-aware, MR-GAN, 27.28 FID	Sample generation for Hard-aware learning
19	Han [190]	2019	FNet, Human parser, Encoder-decoder, 36.6% HS	Fashion image inpainting
20	Ak [349]	2019	Enhanced AttnGAN, Feature-wise Lin. Modul., 4.77 IS	Text-Model, Semantically consistent
21	Hsiao [350]	2019	Fashion++, Semantic segmentation, CGAN, VAE	Minimal edits for outfit improvement
22	Kumar [351]	2019	Conditional distribution, c+GAN, DCT, Faster R-CNN	Upper body image-Compatible bottom
23	Yildirim [191]	2019	Modified conditional style GAN, 9.63 FID	Multiple items-Clothed Model, High-Res.
24	Lin [352]	2019	Co-supervision, FARM, Variational transformer, DCGNN	(Item+Text)-Compatible item, Recom.
25	Ping [353]	2019	Attribue-aware, Multi-objective AttGAN	Attribute manipulation, Color
26	Ravi [354]	2019	VGG-19, Style transfer CNN, Super Resolution SRCNN	(Silhouette+Pattern)-Item, Style transfer
27	Albahar [241]	2019	Bi-directional feature transformation, 3.22 IS	(Sketch+Texture)-Item, Image translation
28	C. Yu [355]	2019	Personalization, VGG-16, LSGAN, Siamese, 4.262 IS	(Item+User preference)-Compatible item
29	Ak [356]	2019	CNN, AMGAN, Class activation mapping, 79.48% mAcc	Attribute manipulation
30	H. Zhang [131]	2020	Category-supervised GAN, cGAN, PatchGAN, pix2pix	Model-Item, Take-off, For retrieval
31	Chen [357]	2020	TailorGAN, Encoder-decoder, Self-attention mask	(Ref. item-Attr. item)-Item, Attr. editing
32	Kim [358]	2020	Dilated partial Conv., U-Net-like, Self-attention, CNN	Inpainting, Irregular holes, Benchmark
33	Tango [359]	2020	GAN, pix2pix, Minimax game, U-Net, 30.38 FID	Anime character image-Real item, Cosplay
34	Sarmiento [360]	2020	Variational autoencoder, Latent code, User interface	Interactive synthesis, Attr. manipulation
35	K. Wang [220]	2020	Unpaired shape transformer, AdaIN, 61.19 SSIM	Model-Item, Clothing take-off

Table 11: Articles Related to Fashion Synthesis
No.	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
36	Li [361]	2020	Bi-colored edge Rep., Residual Conv., cGAN, 4.076 SSIM	(Sketch+Texture)-Item, Interactive
37	Dong [362]	2020	Adversarial parsing learning, FE-GAN, U-net, 0.938 SSIM	Fashion editing, Sketch, Inpainting
38	P. Zhang [364]	2020	PCovNet, Graphonomy, U-Net. Parsing	Inpainting of fashion model images
39	Ak [363]	2020	e-AttnGAN, LSTM, FiLM-ed ResBlock, 4.98 IS	Text-Model, Semantically consistent
40	Gu [364]	2020	Multi-modal, GAN, PatchGAN, 3.124 IS	(Pose+Text)-Model, Fashion translation
41	Z. Zhu [365]	2020	Semantically multi-modal, GroupDNet, VAE, SPADE	(Parsing map+Where to change)-Model
42	Zhan [366]	2020	Appearance-preserved, PNAPGAN, U-Net, Triplet loss	Street photo-Item, Street2shop generation
43	Wolff [329]	2021	3D Scans, Pose, Design out of standard size garments	3D Custom fit garment design

Figure 35: Time Analysis of Fashion Synthesis Articles

Figure 36: a) Controllable fashion inpainting [190] b) Irregular holes fashion image inpainting [358] c) Anime images to real-life clothing image synthesis [359]
Figure 37: a) Controllable fashion image synthesis [365] b) Color-controlled clothed person image synthesis [342] c) Appearance mixture [365] d) Pose and text-guided Model image synthesis [364] e) Text-guided fashion synthesis [184]

Figure 38: a) Outfit-to-Model high-resolution Model image synthesis [194] b) Street-to-Item synthesis (clothing take-off) [366] c) Design support system for fashion designs [336]
Figure 39: a) 3D garment design and mass personalization [335] b) Item color editing [353] c) User-controlled attribute manipulation [338] d) Style mixing [340] e) Attribute manipulation [356] f) Pattern transfer for fast fashion design [354] g) Controllable attribute editing [357]

Figure 40: a) Interactive Item image synthesis using sketches [361] b) Texture-guided sketch-to-image synthesis [348]
2.6 Fashion Retrieval

This application is devoted to the search and retrieval of fashion items in a database of images. A keyword search cannot always describe the complexities of fashion and target the users’ needs; thus, we use content-based retrieval instead to capture the visual features of each item. In this section, by retrieval, we mean ‘exact match’ retrieval. Note that ‘similar item’ retrieval also exists, but it has a heavy overlap with recommender systems, and we cover it in the next section. The ultimate goal of retrieval is to find an exact match in the item database for the fashion item query input. These systems fall into three sub-categories: 1) Domain-Specific, 2) Cross-Domain, and 3) Attribute Manipulation.
2.6.1 Domain-Specific Retrieval

These systems are trained to retrieve the exact items on a specific image domain, which means the input and the outputs belong to the same domain. Examples are retrieving a clothing item image with a different angle or model pose in online shops (view-invariant clothing retrieval/in-shop retrieval) or retrieving a person with the same outfit from different CCTV camera images. We try to report each study’s work domain in the “Application Notes” section of Table 12 using single keywords (Wild, Street, Shop, Item, Model).

Table 12: Articles Related to Domain-Specific Retrieval

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	X. Wang [367]	2011	Color-based BoW, LS posterior classifier, ~45% Prec.	Wild, Dominant color, Attributes
2	S. Liu [368]	2012	Parts alignment, Classic features, ~67% P@10	Shop/Street, Upper/Lower body
3	Fu [369]	2012	BoW, Detection, Hierarchical Vocab. tree, ~61.5% P@10	Shop/Street, Upper/Lower body
4	Q. Chen [370]	2013	Bundled features matching, SIFT, MSER, LWF	Wild images
5	Yamaguchi [119]	2013	Parsing, Style descriptor, KNN, KD-tree	Street, Style retrieval for parsing
6	Lin [371]	2015	AlexNet, Binary code, Hierarchical search, ~59% P@10	Model, Fast
7	Vittayakorn [23]	2015	Low-level features, Semantic parse, SVM, 73-76% AUC	Runway images
8	Z. Liu [9]	2016	VGG-16, FashionNet, Landmark, ~72% Acc@10	Shop, Benchmark, DeepFashion
9	K. Liu [91]	2016	VGG-16, Decision fusion, Euclidean Dist., ~19.74% P@10	Model, View-Invariant, MVC
10	Sha [92]	2016	Classic, Seg., Color matrix, ULBP, PHOG, Fourier, GIST	Model, Attribute-specific retrieval
11	Sun [94]	2016	Classic features, Pose Det., PCA, ~78% Avg. Prec.	Street, Part-based annotation & search
12	Z. Chen [372]	2017	Relevance feedback, Feature re-weighting, Bayesian	Shop/Street, Query-free, Interactive
13	Z. Wang [373]	2017	Visual attention, CNN, ImpDrop, ~88.7% Acc@10	Street/Shop
14	He [374]	2017	BoW, CNN, DML, HOG, LAB, Triplet ranking, 92% P@10	Runway images
15	Corbiere [33]	2017	ResNet50, Bag-of-words, ~71% Acc@10	Model, Weakly Annotated Data
16	Yang [375]	2017	ResNet50, Binary hash, Gradient boosting, ~26% P@10	Wild/Shop, Ebay, Speed, Memory, System
17	Verma [41]	2018	StyleNet, CNN, Attention, ST-LSTM, ~72% mAcc@10	Shop/Shop, Multiple items
18	X. Wang [376]	2018	CNN, Center loss, 99.89% Retrieval Acc	Fabric & Pattern retrieval
19	Meng [377]	2018	Classic, Voting-based, Color, Shape, Back projection	Material image retrieval, Fashion accessory
20	Kuang [45]	2018	Hierarchical, CNN, Divide-and-conquer, 73.80% mAcc	Street, Hierarchical, Path-based
21	Bhatnagar [48]	2018	Compact bilinear CNN, Triplet, 76.26% Acc@20	Model, Weak annotations
22	Manandhar [127]	2018	Faster-RCNN, RPN, PMAC, VGGNet, 53.60% mAP	Shop, Brand-aware retrieval
23	Dinh [378]	2018	MobileNet SSD, Quantization indexing, 78.21% mAP	Shop, Low latency, Benchmark
24	Lodkaw [379]	2018	Parsing, VGG, DenseNet, Euclidean Dist., ~9% P@20	Street, Instagram, Fashion Finder
25	Zakizadeh [380]	2018	Bilinear CNN, VGG16, Multi-Attr., ~86% Acc@10	Model, Fine-grained, Mobile-device
26	Ak [381]	2018	AlexNet, Global pooling, Global ranking, ~59% Acc@10	Item, Weakly supervised localization
27	Manandhar [382]	2018	Attribute-guided triplet, Multi-task CNN, 71.25% mAP	Shop, Tiered similarity search
28	Kashilani [383]	2018	Summary of techniques, Table of 10 previous works	Review
29	R. Li [169]	2019	Multi-task, Multi-weight, Multi-label, CNN, Attr.	Shop, Benchmark 3 methods, Imbalance
30	Kini [384]	2019	Capsule Net., Grid Conv., Conv. block, 76.50% R@10	Model, Triplet-based
31	Chopra [385]	2019	Inception-v1, Grid Search, Transformation, 95.9% R@10	Wild/Shop, Robust
32	Park [62]	2019	Multiple methods, CNN, SEResNetXt50, ~92% Acc@10	Wild/Shop, Benchmark
33	X. Liu [115]	2020	MaskRCNN, ResNet50, Landmark, ~60% Acc@10	Model, MMFashion Toolbox
34	Ji [132]	2020	Detection, WBF, PCA, KNN, Re-ranking, 85.4% Acc@10	Wild, 2nd in DeepFashion2 2020 challenge
35	Jo [386]	2020	Implicit profiling, CNN, cGAN, 80.9% P@10	Shop, Also sketch-based retrieval
36	Sarmiento [360]	2020	VAE, Log-Likelihood, K-Means, 95.5% mAP@10	Item, Retrieve from synthesized images
37	Fadhilla [387]	2020	DenseNet121, Cosine similarity, 86.23% Acc@10	Model, Multi-view clothing search
38	Zhang [79]	2020	TS-FashionNet, Two-Stream, 79.04% R@30	Model, Landmark-aware attention
39	Ma [388]	2020	ASEN, Attribute-aware attention, ACA, ASA, ResNet50	Model, Attribute-specific retrieval
Figure 42: Time Analysis of Domain-Specific Retrieval Articles

Time distribution of Domain-Specific Retrieval articles

![Graph showing time distribution of articles from 2010 to 2020.]

Figure 42: Time Analysis of Domain-Specific Retrieval Articles

Figure 43: a) In-shop clothing retrieval [122], [127] b) Clothing retrieval in wild images [132], [385] c) Attribute-specific retrieval [92] d) Fabric and pattern retrieval [376] e) Fashion accessory material retrieval [377]
2.6.2 Cross-Domain Retrieval

Unlike domain-specific retrieval, these systems bridge the gap between different domains. One example is sketch-to-image retrieval. Another important example is street-to-shop retrieval which uses a user photo to find the exact item in online shops and directly connects street photos to shop items. This task is usually more complex than its domain-specific counterpart and requires particular training data or methods. Multi-modal retrieval systems also do the same, mixing various input types to search in a second domain, e.g., text-to-image retrieval systems and search engines. The first dual keyword (Input domain-Search domain) in the "Application Notes" column of Table 13 shows each work’s input and output domains.

Table 13: Articles Related to Cross-Domain Retrieval

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	S. Liu	2012	Classic, Parts alignment, Auxiliary set, ~67.5% P@10	Street-Shop, Upper/Lower body
2	Fu	2012	BoW, Detection, Hierarchical Vocab. tree, ~53% P@10	Street-Shop, Upper/Lower body
3	Huang	2015	DARN, NIN, MLPConv, SVR, PCA, ~4% Acc@10	Wild-Street/Shop, Attribute-aware
4	Chen	2015	DDAN, R-CNN, SVR, NIN, Alignment cost layer	Street-Shop, Deep domain adaptation
5	Kiapour	2015	CNN, Selective search, Pairs, 30.59% mAcc@20	Street-Shop, Three methods
6	Vittayakorn	2015	Low-level features, Semantic parse, SVM, 53-55% AUC	Runway-Street
7	Z. Liu	2016	VGG-16, FashionNet, Landmark, ~15% Acc@10	Wild-Street, Benchmark, DeepFashion
8	Jiang	2016	Bi-directional cross-triplet, AlexNet, 20.34% mAcc@20	Street-Shop, Shop-Street
9	Z. Liu	2016	DFA, VGG-16, Pseudo-labels, Cascading network	Wild-Street, For landmark detection
10	X. Wang	2016	Robust contrastive loss, Siamese, 37.24% mAcc@20	Wild-Shop/Street
11	Yu	2016	Triplet-ranking, Siamese, Sketch-a-Net, 87.83% Acc@10	Sketch-Item, Shoes, Sketch-based retrieval
12	Z. Li	2016	Seg., SVM, Domain-adaptive Dict., K-SVD, ~72% P@10	Street-Shop, Upper/Lower body
13	Z. Wang	2017	Visual attention, CNN, ImpDrop, ~35% Acc@10	Wild-Street/Shop
14	Garcia	2017	Feat. tracking, Binary features, KD-tree, FIFO, 87% Acc	Video-Shop
15	Jaradat	2017	CNN, Segmentation, MNC, Localization, VGG-19, LDA	Street (Instagram)-Shop, Methodology only
16	Shankar	2017	VisNet, VGG-16, Faster R-CNN, Triplet, 50.46% mAcc@20	Wild-Shop, System speed, Memory
17	He	2017	BoW, CNN, DML, HOG, LAB, Triplet ranking, 48% HS	Runway-Street
18	Cheng	2017	VGG-16, LSTM, Spatial pyramid pooling, ~33% Acc@10	Video-Shop
19	Verma	2018	StyleNet, CNN, Attention, ST-LSTM, ~14% mAcc@10	Wild-Street/Shop, Multiple items
No.	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
-----	-------------------	------	------------------------------------	-------------------
20	Bhatnagar [48]	2018	Compact bilinear CNN, Triplet, 17.49% Acc@20	Wild-Street/Shop
21	Gajic [396]	2018	Siamese, ResNet50, Triplet loss, SGD, ~38% Acc@10	Wild-Street/Shop
22	Jiang [397]	2018	Robust contrastive loss, Siamese, Inception, ~19% Acc@10	Wild-Street/Shop
23	Lasserre [398]	2018	fDNA, VGG-16, PCA, 71.2% Acc@10	Street/Model-Item
24	Kucer [399]	2019	Mask R-CNN, RMAC, Triplet, Ensemble, 60.4% Acc@20	Street-Shop, Detect then retrieve
25	Ge [129]	2019	Mask R-CNN, Match R-CNN, 52.2% Acc@10	Wild-Street, Benchmark, DeepFashion2
26	Sharma [400]	2019	RankNet, Siamese, Fractional Distance, 88.57% R@20	Wild-Shop, Multi-scale
27	Tran [61]	2019	YOLO, ResNet-18, KNN, Background augmentation	Street-Shop, Detect then retrieve
28	Lasserre [137]	2019	CNN, Seg., U-net, fDNA1.1, 78.5% Acc@10	Street/Model-Item, Background removal
29	Park [62]	2019	Multiple methods, CNN, SENetResNet50, ~29% Acc@10	Wild-Street/Shop, Benchmark
30	Luo [401]	2019	DMCH, LSTM, CNN, Sequential learning, ~7% P@10	Street-Shop, Efficient
31	Wu [402]	2019	CNN, Multi-modal transformer, 38.62% mR@10	Natural language-Shop, Fashion IQ
32	H. Zhang [131]	2020	CatGAN, Yolo v2, VGG-19, 53.97% P@10, 2.16% F1@10	Model-Item, Retrieve from generated items
33	X. Liu [113]	2020	MaskRCNN, ResNet50, Landmark, ~10% Acc@10	Wild-Street/Shop, MMFashion Toolbox
34	J. Jo [386]	2020	Implicit user profiling, CNN, cGAN, 49.3% P@10	Sketch-Item
35	D. Gao [403]	2020	BERT, WordPieces, Adaptive loss, 55.74% Rank@10	Text-Shop, FashionBERT
36	Y. Jo [404]	2020	CNN, LSTM, RNN, VGG-16, Pseudo-SQL, 86.60% F1	(Gender+Cat.+Color)-Shop, Multi-modal
37	Su [118]	2020	Attentional bilinear Net., Landmark, 53.5%Acc@10	Wild-Street/Shop
38	Miao [405]	2020	Feature fusion, Quadruplet loss, ResNet-50, ~29% P@10	Wild-Street/Shop
39	Y. Zhang [79]	2020	TS-FashionNet, Two-Stream, 70.40% Rg@20	Wild-Street/Shop, Landmark-aware
40	Ma [388]	2020	ASN, Attribute-aware, ACA, ASA, ResNet, 61.02% mAP	Wild-Street/Shop, Attribute-specific Retr.
41	Y. Gao [406]	2020	Graph reasoning, Similarity pyramid, ~57% Acc@10	Wild-Shop
42	Zhao [386]	2020	PNAPGAN, U-Net, Triplet loss, 78.89% mAP@10	Wild-Item, Pose normalization
43	Y. Zhang [407]	2021	Detector, DLA-34, NLP, Tracklet, Audio to text, 16.8% mR	Video-Shop, Live, Multi-modal, Demo

Figure 45: Time Analysis of Cross-Domain Retrieval Articles
Figure 46: Different cross-domain retrieval schemes. a) Model-Item \cite{398} b) Item-Wild \cite{390} c) Street-Shop \cite{96} d) Wild-Shop \cite{389}, \cite{399} e) Wild-Street \cite{167}

Figure 47: a) Attribute-specific Wild-Shop retrieval \cite{388} b) Fashion retrieval from videos \cite{393}
2.6.3 Retrieval with Attribute Manipulation

Sometimes we need a match for our item, but with a bit of change, that is when attribute manipulation comes in. These systems change some attributes of the query item based on the user’s specification, then retrieve item matches. For example, they can retrieve a long-sleeved version of a short-sleeve shirt or a red version of a blue dress. Meaning, all attributes of the item stay intact until we specifically change any of them. Another example is interactive search using relative attributes, asking the system for a “more comfortable” shoe or a “less formal” dress. We use dual keywords (Input item-Target attribute) to show the input types of each system in Table 14 if possible.

Table 14: Articles Related to Retrieval with Attribute Manipulation

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Liu [368]	2012	Classic, Part-based, Multi-task sparse representation	Mix features from different parts
2	Kovashka [408]	2012	Binary relevance feedback, Re-ranking, SVMRank	Relative Attr. feedback, Interactive
3	Yu [409]	2014	Classic, Local learning, Relative attributes, ITML	Visual comparison, Fine-grained, Shoes
4	Koike [410]	2015	Icons, User interface, Graph, Force-directed, Space-filling	Category, Color, Pattern, Interactive
5	Kovashka [411]	2015	Classic, WhittleSearch, Binary search tree, SVMRank	Relative Attr. feedback, Interactive
6	Zhou [412]	2016	Classic, Hybrid topic, HOG, LBP, BOW, 0.66 NDCG@20	Graphical user interface
7	Lee [15]	2017	CNN, Representation learning, Style2Vec, VGG, Style set	Item-Item, Style manipulation
8	Han [413]	2017	GoogleNet, BOW, Word2vec, EAAM, ~20% mAcc@10	Model-Text, Concept discovery
9	Zhao [414]	2017	AMNet, CNN, Memory-augmented, 0.39 NDCG@20	Street/Shop-Text

Figure 48: a) Multimodal (category/Boolean/SQL) search and retrieval [404] b) Dialog-based fashion search [402] c) Sketch-Item shoe retrieval [392]
No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
10	Liao [101]	2018	El tree, BLSTM, ResNet50, Ranking loss, ~65% R@10	Street/Shop-Text, Interpretable retrieval
11	Laenen [415]	2018	Text Seg., Word embedding, BVLC CaffeNet CNN	Shop-Text, Multi-modal search
12	Ak [383, 416]	2018	AlexNet, ROI, Global ranking, Triplet, ~25% Acc@10	Item images, Replace Attr., Localization
13	Tan [417]	2018	SCE-Net, CNN, Condition weight branch, Triplet	Similarity condition masks, Multi-modal search
14	Tautkute [418]	2019	DeepStyle, ResNet-50, CBOW, KNN, Fusion	Item-Text, Multi-modal search
15	Wu [402]	2019	CNN, Multi-modal transformer, 38.62% mR@10	Relative Attr. feedback, Interactive

Figure 49: Time Analysis of Attribute Manipulation Articles

Figure 50: a) Manipulation of style factors [15] b) Interactive fashion search with manipulation [412] c) Attribute manipulation on Item [418], Model [413], and Street [414] images
2.7 Recommender Systems

Recommender systems suggest fashion items based on similarity, style, color, user preference, and many more different schemes. Recommender systems study is a highly active research field, and recommenders are already used in many online shops, including Amazon, Google Shopping, and Shop It To Me. These systems are not only beneficial to online fashion retail shops, but they are also finding their way to physical stores. We group these systems into four subcategories: 1) Single-Item Recommender, 2) Style or Outfit Recommender, 3) Personalized Recommender, and 4) Fashion Compatibility. We can also use attribute-specific retrieval systems in Sec. 2.6 as attribute-guided recommender systems.

Various types of recommender systems exist, including collaborative filtering (CF), content-based (CB), knowledge-based (KB), and hybrid systems. Different systems use purchase history, images, reviews, user ratings, clicks, temporal information, and various other input data to generate recommendation lists. A list of survey studies on deep learning-based recommender systems is provided in Table 15.

It is essential to mention that pure content-based recommender systems have significant overlap with retrieval systems. Researchers should be aware that although these are two different applications with distinct purposes, the fundamentals of these two systems can be very similar. We do not want exact matches in recommender systems, however, obtaining the exact match is the goal of retrieval systems. The methods to tackle these two problems sometimes
are the same, and it is only a matter of perspective on how to use them. These two applications both take advantage of the similarity between items; thus, a recommender system might find two items 100% similar and actually retrieve that item. On the other hand, we can use a retrieval system to list items, emit the exact match and use the rest as recommendations. So it is a good idea also to consult Sec. 2.6 to know more about different retrieval methods.

Table 15: Survey Articles on Recommender Systems

No	Article Reference	Year	Information
1	Guan [269]	2016	Empirical review, Market (A list of online apparel recommendation platforms), Methods, Types
2	Liu [420]	2018	Not fashion-specific, Different datasets, Models, Application
3	Zhang [421]	2019	Not fashion-specific, Comprehensive, Techniques, Analysis, Applications, Future research
4	Sachdeva [422]	2020	Interactive systems, A table of 11 studies, each with an objective and the proposed solution
5	Chakraborty [423]	2020	Image-based style prediction & Recom., A table of 64 studies with key features of each study
6	Laenen [424]	2020	Comparative study of attention-based fusion methods, Fashion compatibility, Four benchmarks
7	Gong [425]	2021	Comprehensive, Different Recom. systems (Full explanation), Aesthetics, Personalization

2.7.1 Single-Item Recommenders

These systems only recommend one fashion item may it be a shirt, dress, shoe, etc. They can be content-based recommender systems that retrieve similar articles based on visual features of images or semantic attributes. The system input can be a query image or text, and the output is a sorted list of recommended fashion items. One thing to keep in mind is that these recommenders only work within clothing categories. If the input is an image of a shirt, the output list will be the same and not from another category. Table 16 lists these recommender systems. Some systems only target one fashion article in each full-body photo; on the other hand, other systems detect multiple pieces in each image and provide a separate list of recommendations for each item. We assign the “Multiple” keyword to these systems in the last column. We also report each work domain using a single keyword (Item, Model, Shop, etc.) or dual keywords (Input domain-Search domain) for cross-domain systems wherever needed.

Table 16: Articles Related to Single-Item Recommenders

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Chao [10]	2009	Classic, ROI, HOG, LBP, Web camera	Smart mirror, Style, Robust
2	Goh [426]	2011	Framework only, Color-based, RFID tag, Prototype	Smart wardrobe, Occasion, Mood
3	Sekozawa [427]	2011	Classic, AHP, Cluster analysis, Market basket analysis	Online system
4	Huang [428]	2013	Active learning, Support vector regression, Sparse coding	Shop
5	Kalantidis [19]	2013	Seg., Multi-Probe LSH, LBP, Randomized kd-tree, 54% HS	Street-Item, Multiple, Detection
6	Hu [429]	2014	Classic, Hybrid, Collaborative, Cluster, HOG, HSV	Features+Ratings
7	Bhawaj [430]	2014	Crowd-sourcing, Deterministic/Stochastic Recom.	User understanding
8	He [431]	2015	VBPR, Matrix factorization, Deep CNN, 0.7364 mAUC	Shop, Visual BPR, Personalized
9	Lao [22]	2015	Classification, Attributes, R-CNN, AlexNet, KNN	Wild images
10	McAuley [8]	2015	CNN, Shifted sigmoid, Mahalanobis, KNN, 91.13% mAcc	Amazon, Substitutes, Complements
11	Vriaro de M. [432]	2015	Eye fixation & saccade, Semantic parts, 0.58% AP@9	Eye tracking, Human visual attention
12	He [433]	2016	One-Class CF, CNN, Temporal dynamics, TVBPR+	Item, Temporal-aware
13	K. Liu [91]	2016	VGG-16, Decision fusion, Euclidean Dist., ~69% P@10	Model, View-Invariant, MVC
14	He [434]	2016	Fashionista, One-Class CF, MF, Deep CNN, t-SNE	Item, Graphical interface
15	Sha [92]	2016	Classic, Seg., Color matrix, ULBP, PHOG, Fourier, GIST	Model/Street, Attribute-guided
16	Vaccaro [93]	2016	Polylinguistic topic model, Gibbs sampling, MALLET	(Street+Natural language)-Item
17	Bracher [13]	2016	fDNA, k-means, Logistic factorization, DNN, CNN	Item, Content+Sale data
No.	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
-----	------------------	------	-------------------------------------	------------------
18	Zhou [435]	2017	Statistical NLP, Fuzzy Math., Clustering, 97.96% HS	Item, Also mix & match
19	Sharma [436]	2017	Classic, MATLAB, Gabor filter, Circle Hough transform	Shop, Lines and patterns, GUI, Server
20	Qian [33]	2017	Seg., ASP, CRF, Faster R-CNN, k-means, VGG-16	Street-Shop, Multiple, Color, Pattern
21	Shankar [123]	2017	VGG-Net, VGG-16, Faster R-CNN, Triplet, 97% HS	Wild-Shop, Retrieval, Speed, Memory
22	Chen [437]	2017	CNN, Distributed computing, -55.5% P@10	Wild-Street, Four Architectures, Datasets
23	Kang [339]	2017	Siamese CNN, MF, GAN, BPR, 0.7547 mAUC	Shop-Shop/Synthesized images
24	Y. Liu [438]	2017	Advanced user-based CF, Cosine similarity, 22.87% Prec	Shop
25	Heinz [439]	2017	Classic, MATLAB, Gabor filter, Circle Hough transform	Street, Multiple, Scenario-Oriented, Color
26	Qian [340]	2017	Seg., ASPP, CRF, Faster R-CNN, 97.96% HS	Item, Learning specific notions of similarity
27	Shankar [124]	2017	VGG-Net, VGG-16, Faster R-CNN, Triplet, 97% HS	Shop, Offline shopping
28	Qian [341]	2017	Siamese CNN, MF, GAN, BPR, 0.7547 mAUC	Shop, Offline shopping
29	Verma [41]	2018	StyleNet, CNN, Attentional LSTM, Spatial transformer	Street, Multiple, Part-based
30	Yu [441]	2018	CNN, Brain-inspired deep Net., DCFA, BPR, -5% R@10	Shop, Aesthetic-based
31	Andreeva [442]	2018	ResNet101, VGG-Net, Multi-label, Shallow, -16% R@10	Shop
32	Li [443]	2018	ResNet101, VGG-Net, Multi-label, Shallow, -16% R@10	Shop
33	Vasileva [444]	2018	CNN, Type-aware embedding, Euclidean Dist., Triplet	Item, Compatibility
34	Ramesh [128]	2018	Graph, Auxiliary visual words, BoVW, AP clustering	Street, Scenario-oriented, Events
35	Deng [445]	2018	CNN, CF, LBP, Fine-grained Attr., 71.44% F@15	Mobile application
36	Yu [446]	2018	CNN, Brain-inspired deep Net., DCFA, BPR, -5% R@10	Shop, Aesthetic-based
37	Andreeva [447]	2018	ResNet101, VGG-Net, Multi-label, Shallow, -16% R@10	Shop
38	Ramesh [129]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
39	Deng [448]	2018	CNN, CF, LBP, Fine-grained Attr., 71.44% F@15	Mobile application
40	Andreeva [449]	2018	ResNet101, VGG-Net, Multi-label, Shallow, -16% R@10	Shop
41	Ramesh [130]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
42	Andreeva [450]	2018	ResNet101, VGG-Net, Multi-label, Shallow, -16% R@10	Shop
43	Ramesh [131]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
44	Ramesh [132]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
45	Ramesh [133]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
46	Ramesh [134]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
47	Ramesh [135]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
48	Ramesh [136]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
49	Ramesh [137]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
50	Ramesh [138]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
51	Ramesh [139]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
52	Ramesh [140]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
53	Ramesh [141]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
54	Ramesh [142]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
55	Ramesh [143]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
56	Ramesh [144]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
57	Ramesh [145]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
58	Ramesh [146]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering
59	Ramesh [147]	2018	Object detection, Faster RCNN, NN parse, 0.82 NDCG	Item, Unsupervised deep clustering

Notes: Please note that the list continues with similar information for additional articles.
Figure 52: Time Analysis of Single-Item Recommender Articles

Figure 53: Different kinds of single-item recommendation systems. a) In-shop Recom. [8] b) Explainable semantic region guided Recom. [44] c) Model images [123] d) Personalized Recom. image synthesis [339] e) Selective Item Recom. from full shot images [133] f) Explainable body shape-aware Recom. [226] g) Similar Street images [92]
Figure 54: a) Street images Recom. with selective article [41] b) Street-Shop multiple items Recom. [19] c) Natural Language guided Street-to-Item Recom. [93] d) Wild images Recom. [22] e) Wild-Shop Recom. [22]

Figure 55: a) Scenario-oriented Recom. [128] b) Location-oriented Recom. [36]
2.7.2 Outfit Style Recommenders

Style recommenders do not focus on one item but on all clothing items in an image as a style and fashion instead. This task should not be confused with a single-item style recommender because, unlike single-item versions, these systems output a single image of an entire outfit. Other versions might output multiple images of items that make a whole outfit; these systems are discussed in Sec. 2.7.3.

Table 17: Articles Related to Outfit Style Recommenders

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Yu-Chu [456]	2012	Classic, Modified Bayesian Net., User feedback	Color, Season, Occasion, Usage history
2	Liu [83]	2012	Latent SVM, Non-convex cutting plane, 0.75 NDCG@10	Magic closet, Scenario/Occasion-oriented
3	Simo-Serra [457]	2015	Conditional random field, BoW, DNN, 17.36% IOU	Fashionability, Neuroaesthetics
4	Hsiao [29]	2017	Polylngual LDA, Topic model, 28.48% mAP	Style-coherent, Mix styles, Street
5	Ding [458]	2018	Bilinear supervised hashing, SURF	Fashion shows images
6	Verma [68]	2020	Faster RCNN, MobileNet MTL, Feature-weighted clusters	Occasion-oriented style Recom.
7	Kavitha [454]	2020	CNN, VGG-16, BoW, Word2Vec, TDF-IDF	Text to Model outfit image
8	Zheng [459]	2020	Multi-modal, VGG-19, Seg., Triplet, MLP, 24.20% R@10	Street images, Hashtags, Social media

Figure 56: Outfit style recommenders. a) Style-coherent Street images [99] b) Scenario-oriented [83] c) Text-guided scenario-oriented [454] d) Personalized Recom. from social media activities [459] e) Improve outfit fashionability (scores in parenthesis) [457]
2.7.3 Fashion Compatibility

These systems predict whether different fashion items go together or not. This application is also known as Fashion Collocation, Outfit Matching, Mix & Match, and Fill In The Blank problem. It can also be seen as a cross-category item recommender, which recommends a list of shoes compatible with a query image of jeans, for example. These recommender systems bridge different fashion item categories; instead of recommending substitutes, they suggest complementary items. Various systems exist in this category; some only need one input item to recommend multiple missing articles and form a compatible set of clothing; on the other hand, others take several items as input and recommend one missing item to make an outfit whole known as “Fill in the Blank (FITB)” task. The number of recommended output articles also varies in different structures; we report this, using keywords in the “Application Notes” column of Table 18 if needed. For example, “Top/Bottom” shows a dual-item system, “Outfit” shows three or more predefined outputs, and “Multiple” refers to other systems with various input/output lengths.

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Iwata [124]	2011	Probabilistic topic model, SIFT, LDA, ~55% mAcc	Top/Bottom, Full-body shots, Detection
2	S. Liu [83]	2012	SVM, Non-convex cutting plane, ~0.70 mNDCG@10	Top/Bottom, Scenario/Occasion-oriented
3	Jagadeesh [460]	2014	Gaussian mixture, KNN Consensus, Markov chain LDA	Top/Bottom
4	Veit [461]	2015	Siamese CNN, Heterogeneous dyads, 0.826 AUC	Outfit, Shirt/Jeans/Shoes
5	McAuley [8]	2015	CNN, Shifted sigmoid, Mahalanobis, 91.02% mAcc	Outfit, Amazon, Complements
6	Hu [462]	2015	Tensor Fact., Functional gradient descent, 0.251 NDCG	Top/Bottom/Shoes, FITB, Multi-modal
7	Huang [463]	2016	ResNet-50, Binary classifier, MLP, 84% Acc	Outfit scorer, Good/Bad
8	W. Zhou [435]	2017	NLP, NLTK, NN+Fuzzy Math., Score matrix, 96.94% HS	Feature/CATEGORY level mix & match
9	Qian [31]	2017	Seg., ASPP, CRF, R-FCN, k-means, VGG-16	Top/Bottom, Complimentary color/pattern
10	Han [463]	2017	Inception-V3, Bi-LSTM, Multi-modal, 68.6% FITB	Multiple, FITB, Text, Image, Outfit scorer
11	Y. Li [463]	2017	CNN, Word2vec, AlexNet, GloVe, MLP, RNN, 36.4% AP	Outfit, Scorer, FITB
12	X. Zhang [36]	2017	Detection, mCNN-SVM, AlexNet, Label correlations	Street, Co-occurrence, Color, Location
13	Song [466]	2018	Category2vec, Siamese, Metric learning, 3.72% mR@10	Top/Bottom/Street/Shop
14	Yuan [467]	2018	Item-based CF, K-RecSys, Time discounting	Clicks, Sales, Preference
15	Han [440]	2018	Faster R-CNN, Dual Siamese, AlexNet, ~2.25 NDCG@10	Top/Bottom, Street
16	Tangseng [468]	2018	ResNet-50, MLP, Beam search, 84.26% Acc	Multiple, Scorer, Item, Outfit generation
17	Z. Zhou [469]	2018	Hierarchical topic model, BoW, VGG-16, 45.4% mAP	Top/Bottom, Trends, Street
18	Strakovskaia [470]	2018	Inception, Random forest, Transfer Learn., 96% P@10	Top/Bottom/Shoes, Lack of data problem
19	Valle [471]	2018	Semantic compositional Net., SkipGram, 72.4% R@10	Semantics, Style, Occasions, Season
20	Vasileva [446]	2018	CNN, ResNet-18, Triplet, 65.0% FITB, 0.93 Comp. AUC	FITB, Item, Type-aware embedding
21	Sun [472]	2018	Siamese CNN, Probabilistic matrix factorization	Top/Bottom, Social circle, Style consistency
22	Z. Yang [546]	2018	Siamese, BPR, DCGAN, LSGAN, SE-Net, Inception-V3	Outfit, Co-location item image synthesis
23	He [473]	2018	FashionNet, CNN, VGG, Rank loss, MLP, 81.82% R@10	Top/Bottom/Shoes, Personalized, Item
24	Huynh [474]	2018	Adversarial feature transformer, Unsupervised, ~70% HS	Top/Bottom, Street
25	Huynh [475]	2018	Subset selection, Correlated topic models, ResNet-50	Capsule wardrobes, Item, Wild
26	Feng [476]	2018	Partitioned embedding, VAE, GAN, Composition graph	Outfit, Item, Interpretable, Trend
27	Song [477]	2018	Attentive knowledge distillation, CNN, BPR, Word2vec	Top/Bottom, Item
28	Nakamura [478]	2018	CNN, BiLSTM, VSE, Autoencoder, 73.2% FITB Acc	Multiple, FITB, Style-guided outfit
29	Dalma [479]	2018	Social media mining, Encoder-decoder RNN, LSTM	Multiple, Item
30	L. Chen [480]	2018	Deep mixed-category metric learning, Triplet, 45% R@20	Outfit, Mixed-category, Street
31	W. Chen [481]	2019	Multi-modal, TextCNN, CF, Transformer, 68.71% FITB	Outfit, Personalized, Alibaba
No.	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
-----	-------------------	------	-----------------------------------	-------------------
33	Lei [482]	2019	MF, Variant time SVD++, Hierarchical clustering	Item matching, User preference
34	Yin [483]	2019	CNN, AlexNet, Triplet, VBPR, 0.7077 mAUC	Top/Bottom
35	Gao [484]	2019	BPR-TAE, Siamese, AlexNet, Triple AutoEncoder, BoW	Top/Bottom
36	X. Yang [485]	2019	Tree-based model, GBDT, CNN, MLP, 50.66% Hit@10	Item pair, Attribute-based, Interpretable
37	J. Liu [486]	2019	BPR-MAE, Multiple autoencoder, BoW, 0.8377 AUC	Top/Bottom, Bottom/Shoe, Multi-modal
38	Kang [487]	2019	ResNet-50, Local/Global compatibility, Triplet, 75.3% Acc	Scene-based, Street query-Shop item
39	Tan [488]	2019	SCE-Net, CNN, Condition weight branch, Triplet	Similarity conditions learning, Item
40	Liu [489]	2019	FHN, Binary code, HashNet, CNN, 64.61% FITB	Top/Bottom/Shoes, Personalized, Item
41	Yus. Lin [490]	2019	CNN, DenseNet, Xavier, 69.5% F1	Outfit, Personalized, Scorer
42	Griebel [491]	2019	MaskRCNN, Bidirectional LSTM, VGG-16, Triplet	Social media, Detection, Style, Matching
43	Han [492]	2019	FiNet, Human parser, Encoder-decoder, VGG-19	Fashion image inpainting, Compatibility
44	Stan [493]	2019	CNN, AlexNet, Two-stage, Category & Attribute	GUI, User-Item & Item-Item scores
45	Shin [494]	2019	Style features, Siamese, GoogLeNet, 0.8779 AUC	Top/Bottom/Shoes, Shop
46	K. Li [495]	2019	Multi-modal, ResNet18, BERT, FCNN, 62.8% FITB	Outfit, Natural language, Controllable
47	Cucurulli [496]	2019	Graph auto-encoder, GCN, Metric learning, 62.2% FITB	Context-aware, FITB, Compatibility
48	Cui [497]	2019	Node-wise graph Neural Net., Multi-modal, 78.13% FITB	Outfit, Item, FITB, Compatibility
49	Bettaney [498]	2019	GORDN, Multi-modal, GloVe, LSTMs, VGG, 0.75 mAUC	Top/Bottom/Shoes, Model images
50	Kumar [499]	2019	cGAN, ResNet-50, DCT, Faster R-CNN	Shirt/Pants, Synthesis, Street
51	Yuj. Lin [500]	2019	Variational transformer, DCNN, BoW, 74.5% AUC	Top/Bottom, Image+Text, Synthesis
52	Polania [501]	2019	Siamese, VGG-16, Color Hist., 4.42X P@12 than random	Substitute, Complementary, Item
53	Wu [502]	2019	Sampling, ZSF-c, STAMP, CNN, FDNA, 29.41% R@5	Session-based, Personalized, Shop, Zalando
54	Kuhn [503]	2019	Neural Net. Word2vec, Attention mechanism, 36.6% AP	Pair/Outfit generation, Shop
55	Wang [504]	2019	Multi-Layered comparison Net., CNN, MLP, 64.35% FITB	Outfit, Comp. prediction/diagnosis/revision
56	Song [505]	2019	GP-BPR, CNN, TextCNN, BPR, MLP, 0.8388 AUC	Top/Bottom, Item, Personalized
57	Dong [506]	2019	PCW-DC, BPR, Bi-LSTM, MLP, Body shape modeling	Capsule wardrobe, Personalized, Shop
58	Yu [507]	2019	VGG-16, LSGAN, Encoder-decoder, Siamese	Top/Bottom, Synthesis, Personalized
59	X. Yang [508]	2019	TransNFCM, TextCNN, AlexNet, Triplet, 38.1% Hit@10	Translation-Based, Category Comp., Item
60	X. Liu [509]	2020	ResNet50, Metric learning, 55.6% FITB, 0.85 Comp. AUC	FITB, Outfit scorer, Shop, MMFashion
61	Yuj. Lin [510]	2020	NOR, Mutual attention, MLP, GRU, RNN, 12.51% mAP	Top/Bottom, Comment generator, Item
62	E. Li [511]	2020	Unified embedding, SE-ResNet101, Triplet, 68.8% R@10	Outfit, Complete The Look, Pinterest, Item
63	Denk [512]	2020	Contextual BERT, Global state, 29.40% R@5	Outfit, FITB, Item
64	Jo [513]	2020	Implicit profiling, CNN, cGAN, Ranking loss, 80.9% P@10	Top/Bottom, Shop, Also sketch retrieval
65	Sarmiento [514]	2020	VAE, Log-Likelihood, K-Means, Fixed-epsilon sampling	Using synthesized item images
66	Y. Lin [515]	2020	CNN, Category-based subspace Attn. Net., 63.73% FITB	Multiple, FITB, Compatibility, Item
67	Moosaei [516]	2020	Relation Net., FashionRN-VSE, DenseNet, 0.88 AUC	Multiple, FITB, Scorer, Item
68	De Divitiis [517]	2020	Memory augmented Net., MF, Best-of-K, 45% Acc@10	Top/Bottom, Item
69	X. Li [518]	2020	Hierarchical graph Net., Self-attention, BPR, 87.97% FITB	Outfit, Personalized, Item, FITB
70	S. Liu [519]	2020	Adversarial inverse RL, MVAE, BERT, MDP, -43% mAUC	Top/Bottom/Shoes, Street/Shop, Text
71	H. Zhang [520]	2020	Graph, Color palette, K-means, Pseudo label, 59.9% FITB	Multiple, Color compatibility, Item
72	Liu [521]	2020	Neural graph filtering, CNN, Aggregation, 58.8% FITB	Multiple, Item, Diverse
73	Sun [522]	2020	VSEF, LSTM, CNN, ResNet, Fusion, Triplet, 0.968 AUC	Top/Bottom, Item, Multi-modal (Text)
74	X. Yang [523]	2020	Deep relational embedding Propa., Graph, 73.1% mR@5	Outfit, Personalized
75	X. Yang [524]	2020	Mixed category attention, Triple triplet, 84.13% mFITB	Multiple, Controllable, Alternative, Text
76	Sagar [525]	2020	PAI-BPR, Attri-aware, Nwjk2vec, AlexNet, 0.8502 AUC	Top/Bottom, Personalized, Item, Attr.
77	Zou [526]	2020	CNN, ResNet-18, Grad-CAM-like, Manual decision tree	Top/Bottom, Comment generator, Item
78	Kim [527]	2020	Self-supervised, Shapeless local patch, 55.8% FITB	Unsupervised, Color, Texture
79	Lai [528]	2020	CNN, Theme Attention, Res. block, Triplet, 76.87% FITB	Theme-aware, Occasion, Fit, Style, Gender
80	Tangseng [529]	2020	Dominant color, Canny edge, K-mean, CNN, 76.36% Acc	Outfit, Flaw detection, Scorer, Explainable
Figure 57: Time Analysis of Fashion Compatibility Articles

Figure 58: a) Different outfit representations [492] b) Different models for compatibility learning [512] c) Fill In The Blank [497]

Figure 59: a) Outfit compatibility scoring [492] b) Explainable outfit compatibility evaluation [514]
Figure 60: a) Outfit flaw detection [517] b) Outfit revision to improve compatibility [497] c) Compatible fashion inpainting [190]

Figure 61: Single-product-based compatible item recommenders. a) For Item images [417] b) Text-guided, with synthesis [352] c) Scenario-oriented [83] d) For Street images [126] e) Trend-aware [469] f) Explainable via comment generation [500] g) Top/Bottom synthesis for Street images [351] h) Top/Bottom/Shoe synthesis for Shop images [346] i) Mixed-category set [480]
2.7.4 Personalized Recommenders

These systems primarily focus on the users’ preferences to build their recommendation list. It is noteworthy that all recommender systems implicitly use some data to personalize their recommendations, but this section is devoted to the strategies that target the user preference or the users’ history to tailor unique results for each user.
Table 19: Articles Related to Personalized Recommenders

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Yu-Chu [456]	2012	Classic, Modified Bayesian Net., User feedback	Outfit Recom., Usage history, Feedback
2	R. He [431]	2015	VBPR, Matrix factorization, Deep CNN, 0.7364 mAUC	Visual appearance, Shop
3	McAuley [8]	2015	CNN, Shifted sigmoid, Mahalanobis, 91.15% mAcc	Co-purchases, Amazon, Shop
4	Woiceshyn [518]	2017	Learning-based personalization, Android, MLR, SGD	Social robot, User storage, GUI, Activity
5	Liu [519]	2017	DeepStyle, CNN, BPR, Style features, 0.7961 AUC	Style, Item
6	Kang [539]	2017	DVBPR, Siamese CNN, MF, GAN, BPR, 0.7547 mAUC	User ratings, Shop
7	Packer [442]	2018	MF, BPR, I-TVBP , Temporal dynamics, 0.7215 AUC	Users’ visual preferences, Time
8	P. Li [419]	2018	User-based CF, CB, FAST, PCA, K-Means, 26.70% HS	Offline shopping
9	Agarwal [520]	2018	CF, ALS-MF, BPR, 4.37% mAP@15	Browsing behavior
10	T. Yang [443]	2018	Classic, Knowledge base, Matching rules	Expert knowledge, Age, Body, Skin, Color
11	Sun [472]	2018	Siamese, GoogleNet, Probabilistic matrix factorization	User social circle, Style consistency
12	X. Chen [521]	2018	Attentive NN, CF, VGG-19, GRU, 1.21% mF1@5	User history, Textual review, Explainable
13	Z. Yang [346]	2018	Siamese, BPR, DCGAN, LSGAN, SE-Net, 0.769 AUC	User rating, Collocation image synthesize
14	T. He [473]	2018	FashionNet, CNN, VGG, Rank loss, MLP, 81.82% R@10	User-specific preferences, Outfit
15	Hou [448]	2019	SAERS, CNN, Siamese, Grad-AAM, ROI, ResNet-50, BPR	Shop image +User history, Explainable
16	W. Chen [481]	2019	POG, FOM, TextCNN, CF, Transformer, -22.5% CTR	User clicks, Outfit, Alibaba
17	Lei [487]	2019	MF, Variant time SVD++, Hierarchical clustering	User preference, Item matching
18	Lu [488]	2019	FHN, Binary code, BPR, HashNet, CNN, 0.9156 mAUC	User-outfit, Top/Bottom/Shoes
19	Lin [488]	2019	CNN, DenseNet, Xavier, 69.5% F1	Personal outfit scorer
20	X. Chen [522]	2019	VECF, VGG-19, LSTM, GRU, 3.65% mF1@10	User history, Textual review, Explainable
21	J. Wu [495]	2019	ZSF-c, STAMP, CNN, FDNA, +6.23% CTR improvement	Session-based, Shop, Zalando
22	Song [499]	2019	GF-BPR, CNN, TextCNN, BPR, MLP, 0.8388 AUC	User history, Outfit, Top/Bottom
23	Dong [524]	2019	PCW-DC, BPR, Bi-LSTM, MLP, 80.56% Success rate	Personalized capsule wardrobe, Body shape
24	Yu [355]	2019	VGG-16, LSGAN, Siamese, 4.262 IS	Compatible item, User preference, Synthesis
25	X. Li [506]	2020	Hierarchical graph, Self-attention, BPR, 28.33% Hit@10	User-item-Outfit relation, FITB
26	Sagar [513]	2020	PAI-BPR, Attr.-aware, Nwjc2vec, AlexNet, MLP	User-item interaction, Compatibility
27	Zheng [459]	2020	Multi-modal, VGG-19, Seg., Triplet, MLP, 27.98% R@10	Users’ social media, Street images, Hashtags
28	Q. Wu [523]	2020	VTJEI, Bidir. two-layer adaptive attention, 22.29% Hit@10	User history, Textual review, Explainable
29	Su [524]	2020	Multiclass SVM, Hybrid RCNN, LGBPHTS, 85.4% AP	Users’ facial expressions, Emotions
30	Mohammadi [122]	2021	ResNet-50, DenseNet, Clustering, -25% R@10	User history, Textual reviews, Ratings

Figure 64: Time Analysis of Personalized Recommender Articles
Figure 65: a) Personalized outfit Recom. [473] b) Personalize capsule wardrobe [324] c) Recom. for social robot [518]

Figure 66: Personalized recommendations based on user history. a) Similar item Recom. [346] b) Alibaba iFashion outfit Recom. [481] c) Visually explainable item Recom. [448] d) Top/Bottom compatibility Recom. [513] e) Top/Bottom compatibility synthesis [355] f) Recom. synthesis [339] g) Compatibility Recom. combined with the user’s social circle [472]

Figure 67: Personalized Recom. using user’s social media pictures and hashtags [459]
2.8 Fashion Analysis & Trends

Some studies focus on fashion analysis, delving deep into fashionability, aesthetics, popularity, geographic analysis of the perception of fashion and beauty, the effects of fashion shows on real-life street fashion, and other related subjects.

AI systems can also significantly help with fashion trends forecasting (such as color trends, seasonal trends, popularity, and regional trends), sales/demand prediction, and all kinds of fashion data analysis.

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Ni [525]	2011	Two-stage dynamic model, Autoregressive decision tree	Sales forecasting
2	Yu [526]	2012	Systematic comparison of ARIMA, ANN, GM, GRA-ELM	Color trend forecasting
3	Choi [527]	2012	Comparison of: ANN, GM, Markov regime-switching	Color trend forecasting, Very few data
4	Q. Chen [528]	2013	Active clustering, Window search, Latent structural SVM	Which makes dresses fashionable?
5	Nenni [529]	2013	Short review, Analysis of the products & approaches	Demand forecasting
6	Kiapour [20]	2014	Pose estimation, Style indicators, Linear kernel SVM	Discovering the elements of styles in outfits
7	Yamaguchi [530]	2014	TF-IDF, Style descriptor, 81.65% mAcc@75%	Visual popularity in social networks
8	Hidayati [531]	2014	Classic, Face Det., HSV, HOG, KNN, SVM, 80.63% Acc	New York Fashion Trends, Season, Catwalk
9	Choi [532]	2014	Book: Review, Methods, Applications	Intelligent fashion forecasting systems
10	Simo-Serra [457]	2015	Conditional random field, BoW, DNN, 17.36% IOU	Fashionability analysis, Country, Income
11	Vittayakorn [23]	2015	Classic features, KNN retrieval, Semantic parse, SVM	Influence of runways on street fashion
12	K. Chen [90]	2015	Classic, SIFT, Attr. learning, Pose Est., SVM, CRF	Influence of runways on street fashion
13	Wang [533]	2015	Classic, Feature selection, Color harmonic templates, SVR	Shopping photos aesthetic quality predictor
14	He [433]	2016	One-Class CF, CNN, Temporal dynamics, TVBPR+	Visual evolution of fashion trends
15	Y. Liu [531]	2016	Bimodal deep autoencoder guided by correlative labels	Aesthetic rules, Top/Bottom influence
16	Jia [534]	2016	Stacked DAE, SVM, Correlative labels, 0.2366 MAE	Mapping visual features to aesthetic words
17	Zou [533]	2016	SIFT, RCC, BoW, IFV, Clustering, CN, LBP	Effects of style/color/texture on fashion
18	Park [536]	2016	ML, Vader, Decision tree, Random Forest, AdaBoost	Predict fashion model success, Instagram
19	Al-Halah [537]	2017	CNN, AlexNet-like, NMF, Exponential smoothing model	Forecast visual style popularity in fashion
20	Matzen [538]	2017	CNN, GoogLeNet, Isotonic regression, Clustering, PCA	Exploring worldwide clothing styles
21	K. Chen [98]	2017	Pose Est., VGG-16, SIFT, SVM, CRF, 62.6% Acc	Attribute popularity seasonal trends
22	Aghaei [539]	2017	Social signal processing, Brunswik lens model	Influence of clothing on people's impression
23	Ma [540]	2017	Bimodal correlative deep autoencoder, Decision tree	Style analysis, Trend, Co-occurrence
24	Takagi [37]	2017	CNN, VGG, Xception, Inception, ResNet-50, 72% mAcc	Style analysis, What makes a style
25	Ha [541]	2017	CNN, ResNet-50, Multi-label classification	Fashion conversation data on Instagram
26	Gu [48]	2017	QuadNet, Neighbor-constrained, SVM, t-SNE	Fashion trends analysis, Street
27	Abe [542]	2017	Fashion trend descriptor, StyleNet, BoW	Fashion trends analysis, Cities, Street
28	Chang [543]	2017	DNN, Prize-collecting Steiner tree, VGG19, ILP	Fashion world map, World trends, Colors
29	R. Liu [544]	2017	Systematic coding scheme, Image content+element	Style bloggers Analysis, Instagram
30	Vittayakorn [545]	2017	AlexNet, VGG, SVM, SVR, 11.54 MAE years	Style analysis, Trend, Co-occurrence
31	Packer [442]	2018	MF, BPR, f-TVBP, Temporal dynamics, 0.7215 AUC	Fashion trends analysis and tracking
32	Tang [546]	2018	Group decision-making, Ordinal consensus, HFLPRs	Fashion sales forecasting
33	Jiang [547]	2018	Probabilistic linguistic linear least absolute regression	Fashion trend forecasting
34	Mall [548]	2019	Trust region reflective, TF-IDF, CNN, GoogLeNet	World temporal trends, Events
35	Kataoka [549]	2019	Fashion style distribution, K-means, StyleNet + SVM	World-wide fashion culture analysis, FCDB
36	Ma [64]	2019	CNN, Bi-LSTM, ResNet-18, Weak label modeling	Fashion knowledge analysis, Social media
37	Lo [550]	2019	Deep temporal sequence, LSTM, InceptionV3, Word2Vec	Style popularity analysis
38	Mall [551]	2020	Multi-task CNN, K-means, Analogy-inspired encoding	Underground neighborhood maps of cities
39	Al-Halah [552], [553]	2020	GoogLeNet, ResNet-18, NMF, Granger causality test, MLP	Fashion style influences around the world
40	Getman [554]	2020	ML classifier, Pattern recognition, 92.18% Acc	Fashion item trend tracking, Baseball cap
41	Shi [121]	2020	Faster R-CNN, Segmentation, 75% Acc	Trend analysis, Fashion show videos
Figure 68: Time Analysis of Fashion Analysis & Trends articles

Figure 69: a) Visual popularity analysis [530] b) Style popularity trend forecasting [537] c) Fashion trends in different cities [542] d) Fashion influence of different cities and different brands [553]
Figure 70: a) Fashion world map [543] b) Fashion events around the world [548] c) New York city fashion map [551] d) Worldwide fashionability and beauty map [457] e) Item (jacket) worldwide trend and frequency analysis [538] f) Detect visual fashionability factors [528]

Figure 71: a) Part of a fashion history timeline [555] b) Temporal estimation for fashion trend analysis [545] c) Aesthetic quality assessment of online fashion shopping photos [533]
2.9 Production, Quality & Inspection

Computer, machine learning, and AI systems can shape apparel and textile production, introducing new, complex, more optimized, and environment-friendly fashion items. These systems are also used in factories’ apparel production lines to check the quality and inspect the materials. Although these applications are out of our focus and this paper does not fully cover them due to the vast domain of such industrial applications of AI, this section presents some examples in Table 21. One can refer to [556], a review study dedicated to this matter published in 2011, for more information. The research mentioned earlier studies 95 articles focusing on AI applications in various domains of the apparel industry, including design, manufacturing, retailing, and supply chain management.

Table 21: Articles Related to Production, Quality & Inspection

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes	Notes
1	Satam [557]	2011	Intelligent design systems, CAD, CAM, CAPP	2D/3D Garment mass customization	
2	Gale [558]	2018	Influence of AI, big data, and new textile technologies	Complex textile, Waste management	
3	Guo [559]	2018	Hybrid intelligent optimization framework	Optimized production/delivery operations	
4	Wei [560]	2018	Faster RCNN, VGG16, Region proposal Net., 95.8% Acc	Fabric defect detection	
5	Lv [561]	2018	Cartoon-texture decomposition, DCNN	Fabric defect detection	
6	X. Wang [576]	2018	CNN, Inception-ResNet-v1, SqueezeNet, 99.89% Acc	Fabric identification	
7	Tong [562]	2018	Optimal Gabor filtering, Adaptive threshold, CoDE	Striped fabric defect detection	
8	Meng [577]	2018	Classic, Robust feature extraction, Color, Edge	Material image retrieval	
9	Zhou [563]	2018	Rough possibilistic clustering, Shadowed Set, RCM	Fabric image segmentation	
10	Gao [564]	2018	CNN, Binary classification, 96.52% Acc	Woven fabric defect detection	
11	F. Wang [53]	2019	CNN, Region Proposal Strategy, 91.7% Acc	Cashmere/Wool classification	
12	McQuillan [565]	2020	Digital 2D/3D design, 3D software	Zero-waste fashion design	
2.10 Miscellaneous

Here we list some inspiring fashion-related applications of ML and AI, including fashion captioning (natural language description, comment, or feedback generation on fashion images), apparel sorting (using humanoids or robots to sort, fold/unfold, and handle clothing articles automatically), and other miscellaneous applications that are out of the domain for our other categories. These articles are listed in Table 22.

No	Article Reference	Year	Technical Keywords/Claimed Results	Application Notes
1	Kita [566]	2010	Classic, Visual recognition in cooperation with actions	Clothes sorting
2	Kita [567]	2011	Classic, Recognition by strategic observation	Clothes sorting
3	Bourdev [81]	2011	Classic, Classification, Poselet, HOG, Linear SVM	Fashion image captioning, Gender, Wild
4	Song [568]	2011	Det., HOG, LBP, Lasso-based sparse coding, 52.01% Acc	Occupation recognition, Clothing, Context
5	Shao [569]	2013	Classic, HOG, SVM, NMS-like greedy search, 41.1% mAP	Occupation recognition, Clothing, Context
6	Doumanoglou [570]	2014	POMDP, Random decision Forest, Hough Forest	Clothes sorting, Unfolding, Grasp selection
7	Zhang [571]	2014	Part detections, Latent structured SVM, HOG	Human pose detection using clothing Attr.
8	Sadeh [572]	2019	CNN, ResNet-18, SSD, MMI, RNN LM, LSTM, 0.56 BLEU4	Natural language fashion image feedback
9	Lin [500]	2020	NOR, Mutual attention, MLP, GRU, RNN, 37.21 BLEU	Outfit matching, Comment generation
10	Qian [573]	2020	Region segmentation, U-Net, 70% Grasp success	Clothes sorting, Unfolding, Grasp selection
11	Nguyen [574]	2020	Encoder-Decoder, CNN-RNN, LSTM, Attention	Fashion image captioning, Shop
12	Banerjee [575]	2020	ResNet101, Attention-based LSTM, 32% Acc	Fashion image captioning, Shop
13	Yang [576]	2020	RL, ResNet, LSTM, Attribute/Sentence semantic reward	Fashion image captioning, Shop
Figure 74: a) Clothes handling by a humanoid

b) Clothes unfolding by a robot

Ground Truth Caption: Silvery embroidery and glittering beadwork turns a simply styled mesh sheath into a cocktail-hour stunner.

AL Model Caption: Ornate soutache embroidery adds elegant texture to an elegant cocktail sheath cut to a figure elongating knee length

Baseline Model Caption: A floral print adds rich texture to an elegant midi length dress that falls just below the knee.

Your white pants complement your striped sweater.

Your denim skirt pairs well with your white blouse.

Soldier Student Teacher Waiter

Figure 75: a) Natural language fashion image feedback
b) Fashion image captioning
c) Occupation recognition
d) Human pose estimation via clothing attributes
3 DATASETS

As most fashion datasets are multi-task and can be used in various fashion applications based on their structure, we thought it would be misleading to report them in each section separately. Thus, we dedicate this section to the available fashion datasets. We report “suggested applications” for each dataset, meaning that the applications are not limited to these mentioned in Table 23; the primary application for each dataset comes first, then the rest follow. Although all studies use some datasets, many of them will not publish the data. Even amongst those who promise to do so, numerous datasets never make it to the internet due to copyright or other issues. Thus, unlike former survey studies, we only report easily accessible and publicly released datasets because they significantly contribute to the field and help the researchers.

Table 23: List of Fashion Datasets. Name of applications including Categorization (C), Attribute recognition (A), Item detection (I), Parsing (P), Landmark detection (L), image-based Try-on (T), 2D Modeling (2D), 3D Modeling (3D), Size & Fit (SF), Magic Mirror (M), fashion Synthesis (S), Domain-specific Retrieval (DR), Cross-domain Retrieval (CR), Attribute manipulation Retrieval (AR), Single-item Recommender (SR), Outfit style Recommender (OR), Fashion Compatibility (FC), Personalized Recommender (PR), and fashion Analysis & Trend (AT) are abbreviated.

No	Dataset	Year	#Images	#Category	#Attributes	Type	Suggested Applications
1	Clothing Attributes [82]	2012	1,856	7	26	Street	C, A, DR
2	Fashionista [137]	2012	158,235	56	-	Street	P, Pose, C
3	Apparel Classification with Style [85]	2013	80,000	15	78	Street	C, A, DR
4	Colorful Fashion Parsing Data (CFPD) [141]	2013	2,682	23	-	Street	P, C
5	PaperDoll [139]	2013	339,797	56	Tags	Street	P, C, A
6	Fashion-focused Creative Commons Social Dataset [577]	2013	4,810	154	11,691	Mixed	C, A
7	Human3.6M [266]	2013	3.6M	17*	-	3D poses/Image	3D, 2D, Pose
8	Fashion 10000 [528]	2014	32,398	262	56,275*	Wild	DR
9	Clothing Co-parsing (CCP) [140]	2014	1,000 images with super-pixel tags, others with image-level tags, High-resolution				
10	HipsterWars (Style) [20]	2014	1,893	5*	-	Street	AT, Style classification
11	Chictopia [530]	2014	328,604	Tags	Tags	Street	A, C, DR, OR, AT
12	UT-Zap50K [409]	2014	34,327 users, Popularity indicators: Votes, Comments, Bookmarks				
13	Aesthetics Based on Fashion Images [318]	2014	50,025	4*	4 Item	Comparison tasks, A, DR	
14	Dual Attribute-aware Ranking Network (DARN) [86]	2014	1,064	11	4*	Model	SF, Body shape, A
15	Exact Street2Shop (WTB) [389]	2014	453,983*	9	179	Wild/Shop	CR, A
			425,040*	11	Tags	Street/Shop	CR, SR, C, I

*Scenarios, 32 Joints, 11 actors, Pixel-level 24 body parts, Person bounding box

*Body shapes, 120 configurations (body shape with specific top/bottom categories)

*Now 214,619 excluding dead links, 91,390 image pairs, ~800 × 500

*20,357 street+404,683 shop, 39,479 exact street2shop matches, Bboxes

Annotated with 23 binary-class attributes and 3 multi-class attributes.
685 fully parsed images, Pose, tags, comments, links, and Person-tag, Chictopia.
Upper body, 8 Classes: Color, Pattern, Material, Structure, Look, Person, Sleeve
Pixel-level 13 colors/23 classes labels
Over 1 million pictures from chictopia, Color, Style, Occasion, Type, Brand
Also general images, Tags (17.9 per image), Comments, Favorites, Contexts, Notes
*Scenarios, 32 Joints, 11 actors, Pixel-level 24 body parts, Person bounding box
*Tags, Geotag, Comment, Note, Favorite, Context
*1000 images with super-pixel tags, others with image-level tags, High-resolution
*Styles: Bohemian, Goth, Hipster, Pinup, or Preppy. Style ratings
*Only shoes in 4 categories, Metadata, 4k image pairs with +350 relative attributes
*Body shapes, 120 configurations (body shape with specific top/bottom categories)
"Now 214,619 excluding dead links, 91,390 image pairs, ~800 × 500"
"20,357 street+404,683 shop, 39,479 exact street2shop matches, Bboxes"
No	Dataset	Year	#Images	#Category	#Attributes	Type	Suggested Applications
16	Amazon 2014 [8]	2015	773,465	Shop	C, A, DR, SR, OR, PR, AT	Clothing, Shoes, Jewelry, User-Item relations, Rating, Reviews, Geotags, K-cores	
17	Fashion144K [457]	2015	144,169 Tags	Tags	Street	C, Style, A, AT	Worldwide user posts containing diverse images, textual, and metadata + Geo-tags
18	Runway To Realway [23]	2015	348,598 Tags	Tags	Runway	C, Brand, A, AT	Season, Category, 852 Brands, Date, Description
19	HumanParsing (ATR)/Chictopia10k [145] [146]	2015	10,000 18"	-	Wild	P, C	12 clothing+background+5 features parsing labels, Frontal standing view
20	Deepfashion (DF) [9]	2016	800,000 50 1,000	Wild/Shop	CR, SR	300K cross-pose/cross-domain pairs, 78,979 for Try-on, 4-8 landmarks	
21	Multi-View Clothing (MVC) [91]	2016	161,638 * 264"	Model	DR, T, C, A, S, SR	*Hierarchical (Gender, Category, Attributes), Multiview (4+), 37,499 items, High-Res.	
22	DeepFashion Alignment [167]	2016	123,016 8"	-	Wild	L	*Landmarks, Annotated with Clothing type, Pose, Visibility, Bbox, and Joints
23	Fashion144K (StyleNet) [14]	2016	89,502 Tags	Tags	Street	C, AT	Built on Fashion 144k, Images centered, Bad images removed, Text, Tags, Votes
24	Sketch Me That Shoe [392]	2016	419* 2 21	Item	S, CR, A	*Sketch-photo pairs, Shoes with fine-grained triplet ranking annotations	
25	LookBook [337]	2016	84,748	-	Street/Item	S, CR, T, Domain transfer	Upper body, Item image+Models wearing that item, 9,732 Items-75,016 Models
26	WIDER Attribute [579]	2016	13,789 30°	14†	Street	A, C (Event), I	*Event/Scene class, ♩ Human attributes, 57,254 Human Bbox, Not fashion specific
27	StreetStyle-27K [538]	2017	27,000*	-	Wild	AT, A	*All labeled+14.5 million unlabeled, From around the world, Geotag
28	Fashion550K [34]	2017	1,061,468 Tags	Tags	Street	C, Style, A	*Noisy, ♩ Tags, 55,661 posts, Extension on Fashion144K and StyleNet, 5.300 cleaned
29	FashionGAN [184]	2017	78,979 50 1,000	Model	T, S, P	A subset of DeepFashion attribute enriched with sentence captions and Seg, Maps	
30	Maryland Polyvore [464]	2017	70,000 10	-	Item, Grayscale	C	*Items forming 21,889 full outfits (max 8 items in each), Name, Price, Likes
31	Fashion-MNIST [380]	2017	28x28 grayscale images from Zalando	4,000 1 10*	Item	S, A	200K+ images, 300K+ labels
32	UT-Zappos50K Synthetic Shoes [341]	2017	6,000*	-	4D	3D	Only shoes, *Relational attribute pairs, ~2,000 pair labels per attribute
33	Bodies Under Flowing Fashion (BUFF) [272]	2017	32,133 2"	Many	Street	AT, Style, A, OR	*Models, ♩ Garments, 5 subjects, 2 clothing styles, 3 motions, Real, RGB, 0.4cm Res.
34	Fashion Semantic Space (FSS) [540]	2017	13,126 14"	-	Street	C (Style), OR	"Top/Bottom, Full-body fashion show images annotated with visual + style features
35	FashionStyle14 [37]	2017	3,533 14"	-	Wild	P, Pose	"Japanese fashion style classes, No additional Info.
36	PASCAL-Person-Part [149]	2017	4,980 18"	-	Wild	P (Multi-person)	"Human joints, Multiple humans per image, Unconstrained poses, Occlusions
37	Multiple Human Parsing (MHP) V1 [130]	2017	14,411 14"	-	Street, 3D	P, Pose, 3D	"Body parts+11 Clothing, Multiple persons (at least two, three on average)
38	Extended Chictopia [342]	2017	209,544 5 4,404	Shop	A, C	"Human joints, Chictopia10k+face annotations, pose and shape by 3D SMPL model	
39	Fashion200K [413]	2017	3 Cleared (All 300K are also available), Includes product descriptions, Lyst.com	*			
No	Dataset	Year	#Images	#Category	#Attributes	Type	Suggested Applications
----	---	------	----------	-----------	-------------	---------------------	--
40	Learning the Latent "Look" [99]	2017	18,878	-	195	Street	AT, Style, A
41	Fashion Conversation Data On Instagram [541]	2017	24,752	-	-	Street	AT (Social), PR
42	Street Fashion Style (SFS) [38]	2017	293,105	Tags	Tags	Street	AT, C, A
43	FashionGen (FG) [345]	2018	293,008	169	-	Shop	S, C, A, DR, Captioning
44	ModaNet [104]	2018	55,176	13	-	Street	P, I, C, A
45	Polyvore Outfits [446]	2018	365,054*	19	-	Item	FC, C, A
46	VITON (Zalando) [185]	2018	16,253	-	-	Frontal-view woman	Top clothing item-model image pairs
47	Style4BodyShape [320]	2018	347,948	5	-	Female celebrities	SF, AT, CR
48	Shared Shape Space For Multimodal Garment Design [275]	2018	270	3	3D/2D Sketch	SF	3D
49	People-Snapshot [277]	2018	264	-	-	Video Sequence	3D
50	3DPW [581]	2018	38,280	20	-	Wild	P (Multi-person)
51	Crowd Instance-level Human Parsing (CHIP) [152]	2018	50,462	20	-	Wild	P (Single-person), Pose
52	Video Instance-level Parsing (VIP) [153]	2018	404	19	-	Video	P (Video, Multi-person)
53	Look into Person (LIP) [154]	2018	583,464*	80	-	Item	FC, PR, C
54	Multiple Human Parsing (MHP) V2 [155]	2018	801K	13	873K	Wild	13 Poses
55	Personalized Outfit Generation (POG) [481]	2018	11 Body parts+47 Clothing, Multiple persons (at least two, three in average)	3D/2D Sketch	3D, 2D, Pose	Model/Zoomed	C
56	Atlas [57]	2019	491,000	13	-	Wild/Street	L, P, C, I, Pose, CR
57	Deepfashion2 (DF2) [129]	2018	801K	6*	245	Mixed	C, A
58	FashionAI (FAI) [111]	2019	183,996	52	-	Model/Zoomed	C
59	Fashionpedia [582]	2019	48,287	46	294	Wild	P, I, C, A
60	iMaterialist [58]	2019	1,012,947	105	228	Shop	A, C
61	Shop The Look (STL-Fashion) [486]	2019	93,274	10	-	Street/Item	CR, SR, C, I, FC
62	Multi-Garment Network (MGN) [278]	2019	356*	5	-	3D garments	3D
63	GarNet [279]	2019	600	3	-	3D	3D
64	3DPeople [280]	2019	2M	-	-	3D	3D
No	Dataset	Year	#Images	#Category	#Attributes	Type	Suggested Applications
----	--------------------------------	------	---------	-----------	-------------	-------------	--
65	Amazon [583]	2018	2,685,059	Many	Shop	PR, C, A, DR, SR, OR, AT	Clothing, Shoes, Jewelry, User-Item relations, Rating, 32M Reviews, Geotags, K-cores
66	Fashion IQ [492]	2019	77,684	3	1,000†	Shop	Model/Item
						2D, T, CR, S	Images with caption, *(Dress, Shirt, Top&Tee), †In 5 groups
67	MPV [238]	2019	62,780*	-	-	-	"Triplets of two model images in different poses+corresponding item image
68	Fashion Culture DataBase (FCDB) [549]	2019	25,707,690	16*	Wild	2D, T, CR, S	World people, "Geo-tags (Cities), Person-tag, Person Bboxes, Time-stamp
69	FashionTryOn [239]	2019	28,714*	-	Shop	2D, T, CR, S	"Triplets of two model images in different poses+corresponding item image
70	THUman [584]	2019	7,000*	-	3D	3D	'Real-world human textured surface mesh, Clothing, Shapes, Poses, ~28K images
71	Impersonator (iPER) [207]	2019	206*	-	Video	Transfer	'Video sequences, 241,564 frames, 30 subjects (Height, Shape, Gender), 103 clothes
72	Polyvore-T [497]	2019	19,835*	5	Item	FC, OR, AT, C	Cleaned Polyvore, "Outfits (3-8 items each), Name, Price, Likes
73	IOON3000 [498]	2019	672,335*	Yes	Item	FC, A, PR, C, AT	'Items forming 308,747 full outfits, 3,568 users, Attributes, Description, Price, Likes
74	BodyFashion [324]	2019	116,532*	-	Shop	FC, PR, SF	'User-item purchase records+Body shape+Size, Rating, 75,695 items, 11,784 users
75	Kaggle, Fashion Product Images [585]	2019	44,000*	52*	199†	Shop	130K descriptions, Each item 6~7 images, Colors, Poses, 1560×2392
76	Kaggle, Nitin Singh Fashion [586]	2019	15,703*	17*	Street	C (Dress type), I, SR	Only Dress, 'Dress types+Confidence level, Bboxes drawn on images
77	Deep Fashion3D [292]	2020	2,078*	10	3D	3D	'Models, Real, Multi-view stereo, 3D body pose & feature lines
78	Long-Term Cloth-Changing Person (LTCC) [587]	2020	17,138	-	Wild	DR	Re-ID, 152 identities with 478 outfits, Person with same/different outfits & angles
79	SIZER [297]	2020	2,000*	10	3D	3D	'Scans of 100 subjects, Same garment different sizes, Seg., SMPL+G, Body shape
80	TailorNet [298]	2020	55,800*	20†	3D	3D	'Frames, †Aligned real static garments, 1782 poses, 9 body shapes, 1cm Res, RGB
81	Fashion32 [516]	2020	40,667*	32†	152	Item/Model	'Items, 51,415 models, 13,914 outfits, †Themes, Description, Style, Fit, Gender
82	VIBE [326]	2020	1,957*	2	Tags	Item	'958 dresses+999 tops, Each front+back view, 68 models, Garment and Body sizes
83	Fashion Captioning Dataset (FACAD) [576]	2020	993,000	78	990	Shop	Captioning, C, A
84	CAPE [303]	2020	130K	6~7 images	Shop	3D	140K frames, 10 male+5 female models, 3D mesh scans, Pose
85	CLOTH3D [306]	2020	8,000*	7	-	3D	'Sequences, 2.1M frames of 11.3K 3D garments, Texture data, RGB, Pose, 1cm Res.
86	Attribute-Specific Embedding Network [588]	2020	180,000*	Yes	8+	Mixed	Rebuilds DARN, FashionAI, and DeepFashion with attribute-specific annotations
4 DISCUSSION AND FUTURE PATH

The implementation of computer vision and AI in the fashion industry is happening inevitably fast, but not fast enough. Although the past decade has witnessed a dramatic growth of research in this area (see Figure 77), the immense size of the area, including various applications and the increased need for online fashion retail shops throughout the world due to Covid-19 pandemic situations, show that still much work needs to be done.

A more thorough look at the fashion-related applications in Figure 78 helps us understand which areas need more attention. Needless to say, all of these fashion-related tasks (and many more we did not cover here) are incredibly useful in the fashion industry, and the proper implementation of each and every one of them can be highly profitable for companies. Therefore, Figure 78 is just a means to track which tasks are already hot topics, today’s market needs and fast-growing, and which are neglected, thus have fantastic potential and are very promising in the coming years. We also did a keyword analysis on all the articles mentioned in this survey and the result, in Figure 79, is fascinating. We can see that the frequency of tags does not entirely reflect the frequency of tasks, as in Figure 78. Part of it is because each research article might contribute to more than one of these tasks or even study a higher-level task composed of several low-level tasks. It is clear that researchers need something more accurate than conventional keyword-based
search engines to access the right resources, hence the need for this survey. We also present Table 24, a co-occurrence of different fashion-related tasks in articles, hoping to shine some light on the relationship between various tasks and how often they were analyzed simultaneously in different research articles. Each cell in the table is the rounded percentage of intersection over union, showing what ratio of articles related to every two tasks study these tasks simultaneously.

![Different applications article count](image)

Figure 78: Article count based on different fashion tasks (One article may contribute to multiple applications)

There are still multiple challenges along the way. One main challenge is the lack of a clean, large-scale fashion dataset from different sources. Fortunately, with the massive amount of data at hand and various ever-growing social media networks, the lack of data is no longer a problem. What we need is a good-enough annotation scheme to leverage this data. Many works in this area use small datasets tailored for their own needs, and even many of these datasets are never published. Although we introduce 86 different public datasets in this survey, it should be noted that almost none of them is a unified, universal fashion dataset. They are either small, task-sensitive or from a single or very few sources. Larger datasets are usually for general tasks, and more specific datasets are usually very small; thus, it would be fantastic to have it all in one dataset. It can actually be tough to find suitable and uniformly labeled datasets for some specific tasks.

Another problem is the lack of assessment techniques for some specific fashion tasks (e.g., recommendation, synthesis, and compatibility). It is hard to define objective metrics to reflect many notions in fashion like beauty, novelty, compatibility, fashionability, and many more. As a result, many tasks still use subjective assessments, which can be inaccurate and biased. Although one might introduce a metric that works in the same direction (e.g., use co-purchase as a sign of compatibility), the definition of a well-structured objective metric for many tasks is still an unsolved problem.

"Is smart fashion ready yet?" is the final question we need to answer. The performance of such systems is still of concern to fashion companies as many of these tasks still cannot compete with trained human assessors. Nevertheless, this should not stop them from using these technologies. Based on the remarkable improvements we have witnessed in such a short period, it will not take long before seeing smart fashion at its peak. Many researchers worldwide are
contributing to the field to improve not only the performance of such systems but also the computational efficiency and cost-effectiveness of them as these features play an essential role in the usability of such systems and implementation on mobile phones and other smart devices.

Table 24: Co-Occurrence Table Of Fashion-Related Applications (Rounded Percentage Of Intersection Over Union)

Total Count	Task	Categorization	Attribute	Detection	Parsing	Landmark	Try-On	2D Modeling	3D Modeling	Size & Fit	Magic Mirror	Synthesis	Ret: Domain	Ret: Cross-D.	Ret: Attr.	Rec: Item	Rec: Outfit	Rec: Personal	Rec: Analysis	Production	Datasets
69	Categorization	100%																			
58	Attribute	13%	100%																		
24	Detection	5%	11%	100%																	
41	Parsing	5%	4%	6%	100%																
23	Landmark	7%	7%	11%	5%	100%															
54	Try-On	0%	0%	0%	1%	5%	100%														
37	2D Modeling	0%	0%	0%	0%	0%	0%														
67	3D Modeling	0%	1%	1%	1%	4%	1%														
21	Size & Fit	0%	0%	0%	0%	0%	0%														
7	Magic Mirror	1%	0%	0%	0%	0%	0%														
43	Synthesis	1%	1%	1%	1%	4%	4%														
40	Ret: Domain	7%	8%	5%	4%	3%	0%														
43	Ret: Cross-D.	6%	6%	7%	5%	6%	0%														
16	Ret: Attr.	1%	1%	0%	0%	0%	0%														
63	Rec: Item	8%	6%	6%	3%	0%	0%														
8	Rec: Outfit	1%	5%	3%	0%	0%	0%														
80	Compatibility	2%	3%	5%	2%	1%	1%														
30	Rec: Personal	0%	1%	0%	0%	0%	0%														
43	Analysis	4%	4%	0%	0%	0%	0%														
13	Production	1%	0%	0%	0%	0%	0%														
87	Datasets	6%	6%	3%	12%	3%	2%														

5 CONCLUSION

All the research through the years led to the birth of these fantastic smart fashion technologies, and they still have a long way to fulfill their true potential. Leading fashion industry companies are beginning to see the many advantages of intelligent fashion and are focusing their attention on this research area; thus, the field is now so vast that a mere customary keyword search might not be enough to access related research articles. This fact highlights the importance of this unified fashion-related task-based survey to draw new researchers’ attention to the subject and point them towards correct research directions and sources. This field is becoming enormous, we categorized more than 580 articles into multiple task-based groups, and there are still many more. The observed trends and growth speed guarantees that we will soon witness numerous significant improvements that close the human-machine gap.
REFERENCES

[1] Y. Liang, S.-H. Lee, and J. E. Workman, "Implementation of Artificial Intelligence in Fashion: Are Consumers Ready?," Cloth. Text. Res. J., vol. 38, no. 1, pp. 3–18, Jan. 2020, doi: 10.1177/0887302XI9873437.

[2] H. Wang and K. Rasheed, "Artificial intelligence in clothing fashion," Proc. 2014 Int. Conf. Artif. Intell. ICAI 2014 - WORLDCOMP 2014, pp. 275–281, 2014.

[3] S. Song and T. Mei, "When Multimedia Meets Fashion," IEEE Multimed., vol. 25, no. 3, pp. 102–108, Jul. 2018, doi: 10.1109/MMUL.2018.2875860.

[4] X. Zou, W. K. Wong, and D. Mo, "Fashion Meets AI Technology," in Advances in Intelligent Systems and Computing, vol. 849, 2019, pp. 255–267.

[5] S. Wazarkar, S. Patil, and S. Kumar, "A Bibliometric Survey of Fashion Analysis using Artificial Intelligence," Libr. Philos. Pract., vol. 2020, pp. 1–17, 2020. [Online]. Available: https://www.researchgate.net/publication/345755324_A_Bibliometric_Survey_of_Fashion_Analysis_using_Artificial_Intelligence.

[6] X. Gu, F. Gao, M. Tan, and P. Peng, "Fashion analysis and understanding with artificial intelligence," Inf. Process. Manag., vol. 57, no. 5, p. 102276, Sep. 2020, doi: 10.1016/j.ipm.2020.102276.

[7] W.-H. Cheng, S. Song, C.-Y. Chen, S. C. Hidayati, and J. Liu, "Fashion Meets Computer Vision: A Survey," arXiv, Mar. 2020, [Online]. Available: http://arxiv.org/abs/2003.13988.

[8] J. McAuley, C. Targett, Q. Shi, and A. van den Hengel, "Image-Based Recommendations on Styles and Substitutes," in Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Aug. 2015, pp. 43–52, doi: 10.1145/2766462.2767755.

[9] Z. Liu, P. Luo, S. Qiu, X. Wang, and X. Tang, "DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, vol. 2016-Decem, no. 1, pp. 1096–1104, doi: 10.1109/CVPR.2016.124.

[10] X. Chao, M. J. Huiskes, T. Gritti, and C. Ciuhu, "A framework for robust feature selection for real-time fashion style recommendation," in Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics - IMCE '09, 2009, p. 35, doi: 10.1145/1631040.1631047.

[11] M. Yang and K. Yu, "Real-time clothing recognition in surveillance videos," in 2011 18th IEEE International Conference on Image Processing, Sep. 2011, pp. 2937–2940, doi: 10.1109/ICIP.2011.6116276.

[12] B. Asiroglu, M. I. Atalay, A. Balkaya, E. Tuzunkan, M. Dagtekin, and T. Ensari, "Smart Clothing Recommendation System with Deep Learning," in 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Oct. 2019, no. 2, pp. 1–4, doi: 10.1109/ISMSIT.2019.8932738.

[13] C. Bracher, S. Heinz, and R. Vollgraf, "Fashion DNA: Merging Content and Sales Data for Recommendation and Article Mapping," 28th Mod. Artif. Intell. Cogn. Sci. Conf. MAICS 2017, pp. 189–190, Sep. 2016, doi: 10.1145/1235.

[14] E. Simo-Serra and H. Ishikawa, "Fashion Style in 128 Floats: Joint Ranking and Classification Using Weak Data for Feature Extraction," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, vol. 2016-Decem, pp. 298–307, doi: 10.1109/CVPR.2016.39.

[15] H. Lee, J. Seol, and S. Lee, "Style2Vec: Representation Learning for Fashion Items from Style Sets," arXiv, Aug. 2017, [Online]. Available: http://arxiv.org/abs/1708.04014.

[16] H. Zhang, S. Li, S. Cai, H. Jiang, and C.-C. Jay Kuo, "Representative Fashion Feature Extraction by Leveraging Weakly Annotated Online Resources," in 2018 25th IEEE International Conference on Image Processing (ICIP), Oct. 2018, pp. 2640–2644, doi: 10.1109/ICIP.2018.8451125.

[17] S. C. Hidayati, W.-H. Cheng, and K.-L. Hua, "Clothing genre classification by exploiting the style elements," in Proceedings of the 20th ACM international conference on Multimedia - MM ’12, 2012, p. 1137, doi: 10.1145/2393347.2396482.

[18] B. Willimon, I. Walker, and S. Birchfield, "A new approach to clothing classification using mid-level layers," in 2013 IEEE International Conference on Robotics and Automation, May 2013, pp. 4271–4278, doi: 10.1109/ICRA.2013.6631181.

[19] Y. Kalantidis, L. Kennedy, and L. J. Li, "Getting the look: Clothing recognition and segmentation for automatic product suggestions in everyday photos," in ICMR 2013 - Proceedings of the 3rd ACM International Conference on Multimedia Retrieval, May 2013, pp. 105–112, doi: 10.1145/2461486.2461485.
[20] M. H. Kiapour, K. Yamaguchi, A. C. Berg, and T. L. Berg, "Hipster Wars: Discovering Elements of Fashion Styles," in *European conference on computer vision*, vol. 8689 LNCS, no. PART 1, Cham: Springer, 2014, pp. 472–488.

[21] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang, "Learning from massive noisy labeled data for image classification," in *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun. 2015, vol. 07-12-June, pp. 2691–2699, doi: 10.1109/CVPR.2015.7298885.

[22] B. Lao and K. Jagadeesh, "Convolutional Neural Networks for Fashion Classification and Object Detection," *CVCV Comput. Vis.*, pp. 120–129, 2015.

[23] S. Vittayakorn, K. Yamaguchi, A. C. Berg, and T. L. Berg, "Runway to Realway: Visual Analysis of Fashion," in *2015 IEEE Winter Conference on Applications of Computer Vision*, Jan. 2015, pp. 951–958, doi: 10.1109/WACV.2015.131.

[24] K. Yamazaki, "Instance recognition of clumped clothing using image features focusing on clothing fabrics and wrinkles," in *2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)*, Dec. 2015, pp. 1102–1108, doi: 10.1109/ROBIO.2015.7418919.

[25] W. Surakarin and P. Chongstitvatana, "Predicting types of clothing using SURF and LDP based on Bag of Features," in *2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)*, Jun. 2015, pp. 1–5, doi: 10.1109/ECTICon.2015.7207101.

[26] R. Patki and S. Suresha, "Apparel Classification using CNNs," 2016.

[27] A. Arora and P. Srivastava, "Fashion Classification and Detection Using Convolutional Neural Networks," pp. 1–6, 2016.

[28] R. Li, W. Lu, H. Liang, Y. Mao, and X. Wang, "Multiple Features With Extreme Learning Machines For Clothing Image Recognition," *IEEE Access*, vol. 6, no. c, pp. 36283–36294, 2018, doi: 10.1109/ACCESS.2018.2848966.

[29] Y. Qian, F. Giaconne, M. Sasdelli, E. Vasquez, and B. Sengupta, "Algorithmic clothing: hybrid recommendation, from street-style-to-shop," *arXiv*, May 2017, [Online]. Available: http://arxiv.org/abs/1705.09451.

[30] J.-C. Chen and C.-F. Liu, "Deep net architectures for visual-based clothing image recognition on large database," *Soft Comput.*, vol. 21, no. 11, pp. 2923–2939, Jun. 2017, doi: 10.1007/s00500-017-2585-8.

[31] N. Inoue, E. Simo-Serra, T. Yamasaki, and H. Ishikawa, "Multi-label Fashion Image Classification with Minimal Human Supervision," in *2015 IEEE International Conference on Computer Vision Workshops (ICCVW)*, Oct. 2017, pp. 2247–2253, doi: 10.1109/ICCVW.2015.263.

[32] X. Gu, Y. Wong, P. Peng, L. Shou, G. Chen, and M. S. Kankanhalli, "Understanding Fashion Trends from Street Photos via Neighbor-Constrained Embedding Learning," in *Proceedings of the 25th ACM international conference on Multimedia*, Oct. 2017, pp. 190–198, doi: 10.1145/3123266.3123441.
M. Bedeli, Z. Geradts, and E. van Eijk, "Clothing identification via deep learning: forensic applications," Forensic Sci. Res., vol. 3, no. 3, pp. 219–229, Jul. 2018, doi: 10.1080/20961790.2018.1526251.

S. Verma, S. Anand, C. Arora, and A. Rai, "Diversity in Fashion Recommendation Using Semantic Parsing," in 2018 25th IEEE International Conference on Image Processing (ICIP), Oct. 2018, pp. 500–504, doi: 10.1109/ICIP.2018.8451164.

C. Zhang, X. Yue, W. Liu, and C. Gao, "Fashion Style Recognition with Graph-Based Deep Convolutional Neural Networks," in Advances in Intelligent Systems and Computing, vol. 849, 2018, pp. 269–275.

C.-Y. Dong, Y.-Q. Shi, and R. Tao, "Convolutional Neural Networks for Clothing Image Style Recognition," DEStech Trans. Comput. Sci. Eng., no. cmsms, pp. 592–597, Sep. 2018, doi: 10.12783/dtces/cmssns2018/25262.

A. Schindler, T. Lidy, S. Karner, and M. Hecker, "Fashion and Apparel Classification using Convolutional Neural Networks," CEUR Workshop Proc., vol. 2009, pp. 24–27, Nov. 2018, [Online]. Available: http://arxiv.org/abs/1811.04374.

Z. Kuang, J. Yu, Z. Yu, and J. Fan, "Ontology-Driven Hierarchical Deep Learning for Fashion Recognition," in 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Apr. 2018, pp. 19–24, doi: 10.1109/MIPR.2018.00012.

M. M. Tanzim Nawaz, R. Hasan, M. A. Hasan, M. Hassan, and R. M. Rahman, "Automatic Categorization of Traditional Clothing Using Convolutional Neural Network," in 2018 IEEE/ACIS 17th International Conference on Computer and Information Science (ICIS), Jun. 2018, pp. 98–103, doi: 10.1109/ICIS.2018.8466523.

W. Wang, W. Wang, Y. Xu, J. Shen, and S.-C. Zhu, "Attentive Fashion Grammar Network for Fashion Landmark Detection and Clothing Category Classification," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 4271–4280, doi: 10.1109/CVPR.2018.00449.

Y. Ye, Y. Li, B. Wu, W. Zhang, L. Duan, and T. Mei, "Hard-Aware Fashion Attribute Classification," arXiv, pp. 1–15, Jul. 2019, [Online]. Available: http://arxiv.org/abs/1907.10839.

P. Li, Y. Li, X. Jiang, and X. Zhen, "Two-Stream Multi-Task Network for Fashion Recognition," in Proceedings of the 2019 2nd International Conference on Information Science and Systems, Mar. 2019, vol. Part F1483, pp. 3–7, doi: 10.1145/3322645.3322646.

V. Umaashankar, G. S. S, and A. Prakash, "Atlas: A Dataset and Benchmark for E-commerce Clothing Product Categorization," arXiv, pp. 1–12, Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.08984.

S. Guo et al., "The iMaterialist Fashion Attribute Dataset," in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Oct. 2019, pp. 3113–3116, doi: 10.1109/ICCVW.2019.00377.

J. Liu and H. Lu, "Deep Fashion Analysis with Feature Map Upsampling and Landmark-Driven Attention," in Proceedings of the European Conference on Computer Vision (ECCV) Workshops, vol. 11131 LNCS, 2019, pp. 30–36.
L. Fengzi, S. Kant, S. Araki, S. Bangera, and S. S. Shukla, "Neural Networks for Fashion Image Classification and Visual Search," SSRN Electron. J., 2020, doi: 10.2139/ssrn.3602664.

Y. Zhang, P. Zhang, C. Yuan, and Z. Wang, "Texture and Shape Biased Two-Stream Networks for Clothing Classification and Attribute Recognition," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 13535–13544, doi: 10.1109/CVPR42600.2020.01355.

Q. Tian, S. Chanda, K. C. A. Kumar, and D. Gray, "Improving Apparel Detection with Category Grouping and Multi-grained Branches," arxiv, pp. 1–10, Jan. 2021, [Online]. Available: https://storage.googleapis.com/openimages/

L. Bourdev, S. Maji, and J. Malik, "Describing people: A poselet-based approach to attribute classification," in 2011 International Conference on Computer Vision, Nov. 2011, pp. 1543 – 1550, doi: 10.1109/ICCV.2011.6126413.

Y. Chen, A. Gallagher, and B. Girod, "Describing Clothing by Semantic Attributes," in European conference on computer vision, vol. 7574 LNCS, no. PART 3, Berlin, Heidelberg: Springer, 2012, pp. 609–623.

S. Liu et al., "Hi, magic closet, tell me what to wear!," in Proceedings of the 20th ACM international conference on Multimedia - MM ’12, 2012, p. 619, doi: 10.1145/2393347.2393433.

W. Di, C. Wah, A. Bhardwaj, R. Piramuthu, and N. Sundaresan, "Style Finder: Fine-Grained Clothing Style Detection and Retrieval," in 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2013, pp. 8–13, doi: 10.1109/CVPRW.2013.6.

L. Bossard, M. Dantone, C. Leistner, C. Wengert, T. Quack, and L. Van Gool, "Apparel Classification with Style," in Asian conference on computer vision, vol. 7727 LNCS, no. PART 4, Berlin, Heidelberg: Springer, 2013, pp. 321–335.

J. Huang, R. Feris, Q. Chen, and S. Yan, "Cross-Domain Image Retrieval with a Dual Attribute-Aware Ranking Network," in 2015 IEEE International Conference on Computer Vision (ICCV), Dec. 2015, vol. 2015 Inter, pp. 1062–1070, doi: 10.1109/ICCV.2015.127.

Q. Chen, J. Huang, R. Feris, L. M. Brown, J. Dong, and S. Yan, "Deep domain adaptation for describing people based on fine-grained clothing attributes," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, vol. 07-12-June, pp. 5315–5324, doi: 10.1109/CVPR.2015.7299169.

K. Yamaguchi, T. Okatani, K. Sudo, K. Murasaki, and Y. Taniguchi, "Mix and Match: Joint Model for Clothing and Attribute Recognition," in Proceedings of the British Machine Vision Conference 2015, 2015, pp. 51.1-51.12, doi: 10.5244/C.29.51.

X. Chen, B. Zhou, F. Lu, L. Wang, L. Bi, and P. Tan, "Garment modeling with a depth camera," ACM Trans. Graph., vol. 34, no. 6, pp. 1–12, Nov. 2015, doi: 10.1145/2816795.2818059.

K. Chen, K. Chen, P. Cong, W. H. Hsu, and J. Luo, "Who are the Devils Wearing Prada in New York City?", in Proceedings of the 23rd ACM international conference on Multimedia, Oct. 2015, pp. 177–180, doi: 10.1145/2733373.2809930.

K. H. Liu, T. Y. Chen, and C. S. Chen, "MVC: A dataset for view-invariant clothing retrieval and attribute prediction," in ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, Jun. 2016, pp. 313–316, doi: 10.1145/2911996.2912058.

D. Sha, D. Wang, X. Zhou, S. Feng, Y. Zhang, and G. Yu, "An Approach for Clothing Recommendation Based on Multiple Image Attributes," in International conference on web-age information management, vol. 9658, no. 1, Cham: Springer, 2016, pp. 272–285.

K. Vaccaro, S. Shivakumar, Z. Ding, K. Karahalios, and R. Kumar, "The Elements of Fashion Style," in Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Oct. 2016, pp. 777–785, doi: 10.1145/2984511.2984573.

G.-L. Sun, X. Wu, and Q. Peng, "Part-based clothing image annotation by visual neighbor retrieval," Neurocomputing, vol. 213, pp. 115–124, Nov. 2016, doi: 10.1016/j.neucom.2015.12.141.

S. Vittayakorn, T. Umeda, K. Murasaki, K. Sudo, T. Okatani, and K. Yamaguchi, "Automatic Attribute Discovery with Neural Activations," in European Conference on Computer Vision, vol. 9908 LNCS, Cham: Springer, 2016, pp. 252–268.

Z. Li, Y. Li, W. Tian, Y. Pang, and Y. Liu, "Cross-scenario clothing retrieval and fine-grained style recognition," in 2016 23rd International Conference on Pattern Recognition (ICPR), Dec. 2016, vol. 0, pp. 2912–2917, doi: 10.1109/ICPR.2016.7900079.

R. Li, Y. Mao, I. Ahmad, F. Feng, and X. Wang, "Improving deep convolutional neural networks for real-world clothing image," in 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Jul. 2017, pp. 837–843, doi:
[98] K. T. Chen and J. Luo, "When fashion meets big data: Discriminative mining of best selling clothing features," in 26th International World Wide Web Conference 2017, WWW 2017 Companion, 2017, pp. 15–22, doi: 10.1145/3041021.3054141.

[99] W.-L. Hsiao and K. Grauman, "Learning the Latent ‘Look’: Unsupervised Discovery of a Style-Coherent Embedding from Fashion Images," in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, vol. 2017-October, no. c, pp. 4213–4222, doi: 10.1109/ICCV.2017.451.

[100] N. Q. Ly, T. K. Do, and B. X. Nguyen, "Enhanced Fashion Attribute Learning Framework adapts to Attributes’ inner-group Correlations and Imbalanced Data," in 2018 10th International Conference on Knowledge and Systems Engineering (KSE), Nov. 2018, pp. 358–363, doi: 10.1109/KSE.2018.8573386.

[101] L. Liao, X. He, B. Zhao, C.-W. Ngo, and T.-S. Chua, "Interpretable Multimodal Retrieval for Fashion Products," in Proceedings of the 26th ACM international conference on Multimedia, Oct. 2018, pp. 1571–1579, doi: 10.1145/3240508.3240646.

[102] S. Zhang, S. Liu, X. Cao, Z. Song, and J. Zhou, "Watch fashion shows to tell clothing attributes," Neurocomputing, vol. 282, pp. 98–110, Mar. 2018, doi: 10.1016/j.neucom.2017.12.027.

[103] W. Lee, S. Jo, H. Lee, J. Kim, M. Noh, and Y. S. Kim, "Clothing Attribute Extraction Using Convolutional Neural Networks," in Pacific Rim Knowledge Acquisition Workshop, vol. 11016 LN, Cham: Springer International Publishing, 2018, pp. 241–250.

[104] S. Zheng, M. Hadi Kiapour, F. Yang, and R. Piramuthu, "ModaNet: A large-scale street fashion dataset with polygon annotations," in MM 2018 - Proceedings of the 2018 ACM Multimedia Conference, Oct. 2018, pp. 1670–1678, doi: 10.1109/MM.2018.3240652.

[105] R. Zakizadeh, M. Sasdelli, Y. Qian, and E. Vazquez, "Improving the Annotation of DeepFashion Images for Fine-grained Attribute Recognition," arXiv, Jul. 2018, [Online]. Available: http://arxiv.org/abs/1807.11674.

[106] Q. Deng, R. Wang, Z. Gong, G. Zheng, and Z. Su, "Research and Implementation of Personalized Clothing Recommendation Algorithm," in 2018 7th International Conference on Digital Home (ICDH), Nov. 2018, pp. 219–223, doi: 10.1109/KICDC.2018.00046.

[107] A. Cardoso, F. Daolio, and S. Vargas, "Product characterisation towards personalisation: Learning attributes from unstructured data to recommend fashion products," in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Jul. 2018, pp. 80–89, doi: 10.1145/3219819.3219888.

[108] X. Yang et al., "Interpretable Fashion Matching with Rich Attributes," in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul. 2019, pp. 775–784, doi: 10.1145/3331184.3331242.

[109] R. Li, F. Feng, I. Ahmad, and X. Wang, "Retrieving real world clothing images via multi-weight deep convolutional neural networks," Cluster Comput., vol. 22, no. 53, pp. 7123–7134, May 2019, doi: 10.1007/s10586-017-1052-8.

[110] J. He, X. Jia, J. Li, S. Yu, and L. Shen, "Fine-Grained Apparel Image Recognition Based on Deep Learning," in Advances in Intelligent Systems and Computing, vol. 849, 2019, pp. 171–178.

[111] X. Zou, X. Kong, W. Wong, C. Wang, Y. Liu, and Y. Cao, "FashionAI: A Hierarchical Dataset for Fashion Understanding," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVFW), Jun. 2019, vol. 2019-June, pp. 296–304, doi: 10.1109/CVFW.2019.00039.

[112] S. S. Adhikari, A. Rajagopal, S. Singh, and A. Rajan, "Progressive Fashion Attribute Extraction," arXiv, 2019, doi: 10.1109/1122445.1122456.

[113] B. Quintino Ferreira, J. P. Costeira, R. G. Sousa, L.-Y. Gu, and J. P. Gomes, "Pose Guided Attention for Multi-Label Fashion Image Classification," in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Oct. 2019, pp. 3125–3128, doi: 10.1109/ICCVW.2019.00388.

[114] S. Zhang, Z. Song, X. Cao, H. Zhang, and J. Zhou, "Task-Aware Attention Model for Clothing Attribute Prediction," IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 4, pp. 1051–1064, Apr. 2020, doi: 10.1109/TCSVT.2019.2902268.

[115] X. Liu, J. Li, J. Wang, and Z. Liu, "MMFashion: An Open-Source Toolbox for Visual Fashion Analysis," arXiv, pp. 1–4, May 2020, [Online]. Available: http://arxiv.org/abs/2005.08847.

[116] Y. Chun, C. Wang, and M. He, "A Novel Clothing Attribute Representation Network-Based Self-Attention Mechanism," IEEE Access, vol. 8, pp. 201762–201769, 2020, doi: 10.1109/ACCESS.2020.3035781.
and Pattern Recognition, Jun. 2012, no. Fig 1, pp. 3570–3577, doi: 10.1109/CVPR.2012.6248101.

[138] J. Dong, Q. Chen, W. Xia, Z. Huang, and S. Yan, "A Deformable Mixture Parsing Model with Parselets," in 2013 IEEE International Conference on Computer Vision, Dec. 2013, pp. 3408–3415, doi: 10.1109/ICCV.2013.423.

[139] K. Yamaguchi, M. H. Kiapour, and T. L. Berg, "Paper Doll Parsing: Retrieving Similar Styles to Parse Clothing Items," in 2013 IEEE International Conference on Computer Vision, Dec. 2013, pp. 3519–3526, doi: 10.1109/ICCV.2013.437.

[140] W. Yang, P. Luo, and L. Lin, "Clothing Co-parsing by Joint Image Segmentation and Labeling," in 2014 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2014, no. 2013, pp. 3182–3189, doi: 10.1109/CVPR.2014.407.

[141] S. Liu et al., "Fashion Parsing With Weak Color-Category Labels," IEEE Trans. Multimed., vol. 16, no. 1, pp. 253–265, Jan. 2013, doi: 10.1109/TMM.2013.2285526.

[142] K. Yamaguchi, M. H. Kiapour, L. E. Ortiz, and T. L. Berg, "Retrieving Similar Styles to Parse Clothing," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 5, pp. 1028–1040, May 2014, doi: 10.1109/TPAMI.2014.2353624.

[143] S. Liu, X. Liang, L. Liu, K. Lu, L. Lin, and S. Yan, "Fashion Parsing with Video Context," in Proceedings of the 22nd ACM international conference on Multimedia, Nov. 2015, vol. 17, no. 8, pp. 467–476, doi: 10.1145/2647868.2654952.

[144] E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and R. Urtasun, "A High Performance CRF Model for Clothes Parsing," in Asian conference on computer vision, vol. 9005, Cham: Springer, 2015, pp. 64–81.

[145] X. Liang et al., "Matching-CNN meets KNN: Quasi-parametric human parsing," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, vol. 07-12-June, pp. 1419–1427, doi: 10.1109/CVPR.2015.298748.

[146] P. Tangseng, Z. Wu, and K. Yamaguchi, "Looking at Outfit to Parse Clothing," arXiv, Mar. 2017, [Online]. Available: http://arxiv.org/abs/1703.01386.

[147] F. Xia, P. Wang, X. Chen, and A. L. Yuille, "Joint Multi-person Pose Estimation and Semantic Part Segmentation," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 6080–6089, doi: 10.1109/CVPR.2017.644.

[148] J. Li et al., "Multiple-Human Parsing in the Wild," arXiv, pp. 1–19, May 2017, [Online]. Available: http://arxiv.org/abs/1705.07206.

[149] K. Gong, X. Liang, D. Zhang, X. Shen, and L. Lin, "Look into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 6757–6765, doi: 10.1109/CVPR.2017.715.

[150] K. Gong, X. Liang, Y. Li, Y. Chen, M. Yang, and L. Lin, "Instance-Level Human Parsing via Part Grouping Network," in Proceedings of the European Conference on Computer Vision (ECCV), vol. 11208 LNCS, 2018, pp. 805–822.

[151] Q. Zhou, X. Liang, K. Gong, and L. Lin, "Adaptive Temporal Encoding Network for Video Instance-level Human Parsing," in Proceedings of the 26th ACM international conference on Multimedia, Oct. 2018, pp. 1527–1535, doi: 10.1145/3240508.3240660.

[152] X. Liang, K. Gong, X. Shen, and L. Lin, "Look into Person: Joint Body Parsing & Pose Estimation Network and a New Benchmark," IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 4, pp. 871–885, Apr. 2018, doi: 10.1109/TPAMI.2018.2820063.

[153] J. Zhao, J. Li, Y. Cheng, T. Sim, S. Yan, and J. Feng, "Understanding humans in crowded scenes: Deep nested adversarial learning and a new benchmark for multi-human parsing," in MM 2018 - Proceedings of the 2018 ACM Multimedia Conference, Oct. 2018, vol. 1, no. c, pp. 792–800, doi: 10.1145/3240508.3240509.

[154] P. Jain, A. Kankani, and D. Geraldine Besiss Amali, "A New Technique for Accurate Segmentation, and Detection of Outfit Using Convolution Neural Networks," in Advances in Intelligent Systems and Computing, vol. 862, Springer Singapore, 2019, pp. 169–177.

[155] J. Lasserre, C. Bracher, and R. Vollgraf, "Street2Fashion2Shop: Enabling Visual Search in Fashion e-Commerce Using Studio Images," in
[158] M. Griebel et al., "A Picture Is Worth More Than a Thousand Purchases: Designing an Image-Based Fashion Curation System," in 2019 ECIS, 2019, no. August, pp. 0–11, [Online]. Available: https://aisel.aisnet.org/ecis2019_rip/27.

[159] Y. Xu, S. Yang, W. Sun, L. Tan, K. Li, and H. Zhou, "3D Virtual Garment Modeling from RGB Images," in 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Oct. 2019, pp. 37–45, doi: 10.1109/ISMAR.2019.00-28.

[160] T. Ruan, T. Liu, Z. Huang, Y. Wei, S. Wei, and Y. Zhao, "Devil in the Details: Towards Accurate Single and Multiple Human Parsing," Proc. AAAI Conf. Artif. Intell., vol. 33, pp. 4814–4821, Jul. 2019, doi: 10.1609/aaai.v33i01.33014814.

[161] K. Gong, Y. Gao, X. Liang, X. Shen, M. Wang, and L. Lin, "Graphonomy: Universal Human Parsing via Graph Transfer Learning," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 5702–5712, doi: 10.1109/CVPR.2019.00580.

[162] H. Castro and M. Ramirez, "Segmentation task for fashion and apparel," arXiv, Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.11375.

[163] Z. Liu, S. Yan, P. Luo, X. Wang, and X. Tang, "Fashion Landmark Detection in the Wild," in European Conference on Computer Vision, vol. 9906 LNCS, Cham: Springer, 2016, pp. 229–245.

[164] S. Yan, Z. Liu, P. Luo, S. Qin, X. Wang, and X. Tang, "Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks," in Proceedings of the 25th ACM international conference on Multimedia, Oct. 2017, pp. 172–180, doi: 10.1145/3123266.3123276.

[165] C.-L. Chou, C.-Y. Chen, C.-W. Hsieh, H.-H. Shuai, J. Liu, and W.-H. Cheng, "Template-Free Try-on Image Synthesis via Semantic-guided Optimization," arxiv, pp. 1–14, Feb. 2021, [Online]. Available: http://arxiv.org/abs/2102.03305.

[166] K. M. Lewis, S. Varadharajan, and I. Kemelmacher-Shlizerman, "VOLGUE: Try-On by StyleGAN Interpolation Optimization," arxiv, Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.02985.

[167] Z. Liu, S. Yan, P. Luo, X. Wang, and X. Tang, "Fashion Landmark Detection in the Wild," in European Conference on Computer Vision, vol. 9906 LNCS, Cham: Springer, 2016, pp. 229–245.

[168] S. Yan, Z. Liu, P. Luo, S. Qin, X. Wang, and X. Tang, "Unconstrained Fashion Landmark Detection via Hierarchical Recurrent Transformer Networks," in Proceedings of the 25th ACM international conference on Multimedia, Oct. 2017, pp. 172–180, doi: 10.1145/3123266.3123276.

[169] C.-T. Chou, C.-H. Lee, K. Zhang, H.-C. Lee, and W. H. Hsu, "PIVTONS: Pose Invariant Virtual Try-On Shoe with Conditional Image Completion," in Asian Conference on Computer Vision, vol. 11366 LNCS, Cham: Springer, 2018, pp. 654–668.

[170] M. Chen, Y. Qin, L. Qi, and Y. Sun, "Improving Fashion Landmark Detection by Dual Attention Feature Enhancement," in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Oct. 2019, pp. 3101–3104, doi: 10.1109/ICCVW.2019.00274.

[171] T.-H. Lin, "Aggregation and Finetuning for Clothes Landmark Detection," arXiv, pp. 2–5, May 2020, [Online]. Available: http://arxiv.org/abs/2005.00419.

[172] A. Sidnev, E. Krasikova, and M. Kazakov, "Efficient grouping for keypoint detection," arxiv, Oct. 2020, [Online]. Available: http://arxiv.org/abs/2010.12990.

[173] Q. Bu, K. Zeng, R. Wang, and J. Feng, "Multi-depth dilated network for fashion landmark detection with batch-level online hard keypoint mining," Image Vis. Comput., vol. 99, p. 103930, Jul. 2020, doi: 10.1016/j.imavis.2020.103930.

[174] P. D. Lai, "Keypoints-Based 2D Virtual Try-on Network System," J. Korea Multimed. Soc., vol. 23, no. 2, pp. 186–203, 2020, doi: 10.15358/232.2.186.

[175] D. Roy, S. Santra, and B. Chanda, "LGVTON: A Landmark Guided Approach to Virtual Try-On," arXiv, pp. 1–10, 2020.

[176] Z. Xie, J. Lai, and X. Xie, "LGVTON: Fashion Landmark Meets Image-Based Virtual Try-On," in Chinese Conference on Pattern Recognition and Computer Vision (PRCV), vol. 12307 LNCS, no. 61876104, Cham: Springer, 2020, pp. 286–297.

[177] A. Jong, M. Moh, and T.-S. Moh, "Virtual Try-On With Generative Adversarial Networks: A Taxonomical Survey," in Advancements in Computer
[179] W. Yang, M. Toyoura, and X. Mao, "Hairstyle Suggestion Using Statistical Learning," in International Conference on Multimedia Modeling,, Berlin, Heidelberg: Springer, 2012, pp. 277–287.

[180] S. Hauswiesner, M. Straka, and G. Reitmayr, "Virtual Try-on through Image-Based Rendering," IEEE Trans. Vis. Comput. Graph., vol. 19, no. 9, pp. 1552–1565, Sep. 2013, doi: 10.1109/TVCG.2013.67.

[181] L. Liu, J. Xing, S. Liu, H. Xu, X. Zhou, and S. Yan, "Wow! You Are So Beautiful Today!," ACM Trans. Multimed. Comput. Commun. Appl., vol. 11, no. 1s, pp. 1–22, Oct. 2014, doi: 10.1145/2659234.

[182] S. Yang et al., "Detailed Garment Recovery from a Single-View Image," arxiv, Aug. 2016. [Online]. Available: http://arxiv.org/abs/1608.01250.

[183] N. Jetchev and U. Bergmann, "The Conditional Analogy GAN: Swapping Fashion Articles on People Images," in 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), Oct. 2017, vol. 2018-Janua, pp. 2287–2292, doi: 10.1109/ICCVW.2017.269.

[184] S. Zhu, S. Fidler, R. Urtasun, and C. C. Loy, "Be Your Own Prada: Fashion Synthesis with Structural Coherence," in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, vol. 2017-Octob, no. Figure 1, pp. 1689–1697, doi: 10.1109/ICCV.2017.186.

[185] X. Han, Z. Wu, Z. Wu, and S. Davis, "VITON: An Image-Based Virtual Try-on Network," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 7543–7552, doi: 10.1109/CVPR.2018.00787.

[186] A. Raj, P. Sangkloy, H. Chang, J. Hays, D. Ceylan, and J. Lu, "SwapNet: Image based garment transfer," in European Conference on Computer Vision, vol. 11216 LNCS, Cham: Springer, 2018, pp. 679–695.

[187] B. Wang, H. Zheng, X. Liang, Y. Chen, L. Lin, and M. Yang, "Toward Characteristic-Preserving Image-Based Virtual Try-On Network," in Proceedings of the European Conference on Computer Vision, vol. 11217 LNCS, 2018, pp. 607–623.

[188] S.-Y. Chen, K.-W. Tsoi, and Y.-Y. Chuang, "Deep Virtual Try-on with Clothes Transform," in Communications in Computer and Information Science, vol. 1013, Springer Singapore, 2018, pp. 207–214.

[189] M. Zanfir, A.-I. Popa, A. Zanfir, and C. Sminchisescu, "Human Appearance Transfer," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 5391–5399, doi: 10.1109/CVPR.2018.00565.

[190] X. Han, Z. Wu, W. Huang, M. Scott, and L. Davis, "FiNet: Compatible and Diverse Fashion Image Inpainting," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 4480–4490, doi: 10.1109/ICCV.2019.00458.

[191] I. Lomov and I. Makarov, "Generative Models for Fashion Industry using Deep Neural Networks," in 2019 2nd International Conference on Computer Applications & Information Security (ICCAIS), May 2019, pp. 1–6, doi: 10.1109/CAIS.2019.8769486.

[192] Z. Wu, Q. Tao, G. Lin, and J. Cai, "M2E-try on NET: Fashion from model to everyone," in MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia, Oct. 2019, pp. 293–301, doi: 10.1145/3343031.3351083.

[193] K. Ayush, S. Jandial, A. Chopra, and B. Krishnamurthy, "Powering Virtual Try-on via Auxiliary Human Segmentation Learning," in 2019 IEEE/CVF International Conference on Computer Vision (ICCVW), Oct. 2019, pp. 3193–3196, doi: 10.1109/ICCVW.2019.00397.

[194] G. Yildirim, N. Jetchev, R. Vollgraf, and U. Bergmann, "Generating High-Resolution Fashion Model Images Wearing Custom Outfits," in 2019 IEEE/CVF International Conference on Computer Vision (ICCVW), Oct. 2019, pp. 3161–3164, doi: 10.1109/ICCVW.2019.00389.

[195] T. Issenhuth, J. Mary, and C. Calauzènes, "End-to-End Learning of Geometric Deformations of Feature Maps for Virtual Try-On," arXiv, pp. 1–12, Jun. 2019. [Online]. Available: http://arxiv.org/abs/1906.01347.

[196] L. Yu, Y. Zhong, and X. Wang, "Inpainting-Based Virtual Try-on Network for Selective Garment Transfer," IEEE Access, vol. 7, pp. 134125–134136, 2019, doi: 10.1109/ACCESS.2019.2941378.

[197] S. Honda, "LA-VITON: A Network for Looking-Attractive Virtual Try-On," Eur. Assoc. Comput. Graph. - 46th Annua. Conf. EUROGRAPHICS 2019 - Posters, no. 1, pp. 1–9, 2019, doi: 10.2312/egp.20191043.

[198] K. Kikuchi, K. Yamaguchi, E. Simo-Serra, and T. Kobayashi, "Regularized Adversarial Training for Single-Shot Virtual Try-On," in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Oct. 2019, pp. 3149–3152, doi: 10.1109/ICCVW.2019.00386.

[199] A. Pumarola, V. Goswami, F. Vicente, F. De la Torre, and F. Moreno-Noguer, "Unsupervised Image-to-Video Clothing Transfer," in 2019
[200] S. Honda, "VITON-GAN: Virtual try-on image generator trained with adversarial loss," *Eur. Assoc. Comput. Graph. - 40th Annu. Conf. EUROGRAPHICS 2019 - Posters*, pp. 9–10, 2019, doi: 10.2312/egg.20191043.

[201] R. Yu, X. Wang, and X. Xie, "VTNFP: An Image-Based Virtual Try-On Network With Body and Clothing Feature Preservation," in *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, Oct. 2019, vol. 2019-Octob, pp. 10510–10519, doi: 10.1109/ICCV.2019.01061.

[202] X. Han, W. Huang, X. Hu, and M. Scott, "ClothFlow: A Flow-Based Model for Clothed Person Generation," in *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, Oct. 2019, vol. 2019-Octob, no. 1, pp. 10470–10479, doi: 10.1109/ICCV.2019.01057.

[203] F. Sun, J. Guo, Z. Su, and C. Gao, "Image-Based Virtual Try-on Network with Structural Coherence," in *2019 IEEE International Conference on Image Processing (ICIP)*, Sep. 2019, pp. 519–523, doi: 10.1109/ICIP.2019.8803811.

[204] K. Ayush, S. Jandial, A. Chopra, M. Hemani, and B. Krishnamurthy, "Robust Cloth Warping via Multi-Scale Patch Adversarial Loss for Virtual Try-On Framework," in *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, Oct. 2019, vol. 2019-Octob, pp. 1279–1281, doi: 10.1109/ICCVW.2019.00161.

[205] S. Kubo, Y. Iwasawa, M. Suzuki, and Y. Matsuo, "UVTON: UV Mapping to Consider the 3D Structure of a Human in Image-Based Virtual Try-On Network," in *2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW)*, Oct. 2019, pp. 3105–3108, doi: 10.1109/ICCVW.2019.00375.

[206] H. Zhang, J. Tian, W. Chen, H. He, and Y. Jin, "Disentangled makeup transfer with generative adversarial network," *arXiv*, 2019.

[207] W. Liu, Z. Piao, J. Min, W. Luo, L. Ma, and S. Gao, "Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis," in *2019 IEEE/CVF International Conference on Computer Vision (ICCV)*, Oct. 2019, vol. 2019-Octob, pp. 5903–5912, doi: 10.1109/ICCV.2019.00600.

[208] N. Pandey and A. Savakis, "Poly-GAN: Multi-conditioned GAN for fashion synthesis," *Neurocomputing*, vol. 414, pp. 356–364, Nov. 2020, doi: 10.1016/j.neucom.2020.07.092.

[209] Z. Yu et al., "Apparel-invariant feature learning for apparel-changed Person Re-identification," *arXiv*, pp. 1–10, 2020.

[210] T. Issenhuth, J. Mary, and C. Calauzènes, "Do Not Mask What You Do Not Need to Mask: A Parser-Free Virtual Try-On," in *Computer Vision – ECCV 2020*, vol. 12365 LNCS, Springer, 2020, pp. 619–635.

[211] A. H. Raffiee and M. Sollami, "GarmentGAN: Photo-realistic Adversarial Fashion Transfer," *arXiv*, Mar. 2020, [Online]. Available: http://arxiv.org/abs/2003.01894.

[212] Y. Jeong and C.-B. Sohn, "Readily Design and Try-On Garments by Manipulating Segmentation Images," *Electronics*, vol. 9, no. 9, p. 1553, Sep. 2020, doi: 10.3390/electronics9091553.

[213] M. R. Minar and H. Ahn, "CloTH-VTON: Cloth Three-Dimensional Reconstruction for Hybrid Image-Based Virtual Try-ON," in *Proceedings of the Asian Conference on Computer Vision*, vol. 12628, I. Sato and B. Han, Eds. Cham: Springer International Publishing, 2020, pp. 154–172.

[214] H. Yang, R. Zhang, X. Guo, W. Liu, W. Zuo, and P. Luo, "Towards Photo-Realistic Virtual Try-On by Adaptively Generating + Preserving Image Content," in *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun. 2020, pp. 7847–7856, doi: 10.1109/CVPR42600.2020.00787.

[215] M. F. Hashmi, B. K. K. Ashish, A. G. Keskar, N. D. Bokde, and Z. W. Geem, "FashionFit: Analysis of Mapping 3D Pose and Neural Body Fit for Custom Virtual Try-On," *IEEE Access*, vol. 8, pp. 91603–91615, 2020, doi: 10.1109/ACCESS.2020.2993574.

[216] A. Neuberger, E. Borenstein, B. Hilleli, E. Oks, and S. Alpert, "Image Based Virtual Try-On Network From Unpaired Data," in *2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun. 2020, pp. 5183–5192, doi: 10.1109/CVPR42600.2020.00523.

[217] S. Jandial, A. Chopra, K. Ayush, M. Hemani, A. Kumar, and B. Krishnamurthy, "SieveNet: A Unified Framework for Robust Image-Based Virtual Try-On," in *2020 IEEE Winter Conference on Applications of Computer Vision (WACV)*, Mar. 2020, pp. 2171–2179, doi: 10.1109/WACV45572.2020.9093458.

[218] D. Song, T. Li, Z. Mao, and A.-A. Liu, "SP-VITON: shape-preserving image-based virtual try-on network," *Multimed. Tools Appl.*, vol. 79, no. 45–46, pp. 33757–33769, Dec. 2020, doi: 10.1007/s11042-019-08363-w.
K. Li, M. J. Chong, J. Liu, and D. Forsyth, "Toward Accurate and Realistic Virtual Try-on Through Shape Matching and Multiple Warps," arXiv, pp. 1–17, Mar. 2020, [Online]. Available: http://arxiv.org/abs/2003.10817.

K. Wang, L. Ma, J. O. M, L. Van Gool, and T. Tuytelaars, "Unpaired Image-To-Image Shape Translation Across Fashion Data," in 2020 IEEE International Conference on Image Processing (ICIP), Oct. 2020, vol. 2020-October, pp. 206–210, doi: 10.1109/ICIP40778.2020.9190940.

M. Fincato, F. Landi, M. Cornia, F. Cesari, and R. Cucchiara, "VITON-GT: An Image-based Virtual Try-On Model with Geometric Transformations," 2020.

M. R. Minar, T. T. Tuan, H. Ahn, P. L. Rosin, and Y.-K. Lai, "3D Reconstruction of Clothes using a Human Body Model and its Application to Image-based Virtual Try-On," in The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Vol. 2. No. 3., 2020, pp. 2–5, [Online]. Available: http://smplify.is.tue.mpg.de/.

M. R. Minar, T. T. Tuan, H. Ahn, P. Rosin, and Y. Lai, "CP-VTON+: Clothing Shape and Texture Preserving Image-Based Virtual," IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work., vol. 2, no. 3, 2020, [Online]. Available: https://minar09.github.io/cpvtonplus/cvprw20_cpvtonplus.pdf.

R. Kips, P. Gori, M. Perrot, and I. Bloch, "CA-GAN: Weakly Supervised Color Aware GAN for Controllable Makeup Transfer," in arXiv, 2020, pp. 280–296.

Y. Men, Y. Mao, Y. Jiang, W.-Y. Ma, and Z. Lian, "Controllable Person Image Synthesis With Attribute-Decomposed GAN," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 5083–5092, doi: 10.1109/CVPR42600.2020.00513.

M. R. Minar, T. T. Tuan, and H. Ahn, "CloTH-VTON+: Clothing Three-Dimensional Reconstruction for Hybrid Image-Based Virtual Try-ON," IEEE Access, vol. 9, pp. 30960–30978, 2021, doi: 10.1109/ACCESS.2021.3059701.

L. Ma, X. Jia, Q. Sun, B. Schiele, T. Tuytelaars, and L. Van Gool, "Pose Guided Person Image Generation," Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 406–416, May 2017, [Online]. Available: http://arxiv.org/abs/1705.09368.

P. Esser and E. Sutter, "A Variational U-Net for Conditional Appearance and Shape Generation," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 8857–8866, doi: 10.1109/CVPR.2018.00923.

A. Siarohin, E. Sangineto, S. Lathuiliere, and N. Sebe, "Deformable GANs for Pose-Based Human Image Generation," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 3408–3416, doi: 10.1109/CVPR.2018.00359.

L. Ma, Q. Sun, S. Georgoulis, L. Van Gool, B. Schiele, and M. Fritz, "Disentangled Person Image Generation," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 99–108, doi: 10.1109/CVPR.2018.00018.

X. Qian et al., "Pose-Normalized Image Generation for Person Re-identification," in Proceedings of the European conference on computer vision (ECCV), vol. 11213 LNCS, 2018, pp. 661–678.

H. Dong, X. Liang, K. Gong, H. Lai, J. Zhu, and J. Yin, "Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis," Adv. Neural Inf. Process. Syst., vol. 2018-Decem, pp. 474–484, Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.11610.

C. Si, W. Wang, L. Wang, and T. Tan, "Multistage Adversarial Losses for Pose-Based Human Image Synthesis," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 118–126, doi: 10.1109/CVPR.2018.00020.

G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and J. Guttag, "Synthesizing Images of Humans in Unseen Poses," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 8340–8348, doi: 10.1109/CVPR.2018.00870.

A. Pumarola, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, "Unsupervised Person Image Synthesis in Arbitrary Poses," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 8620–8628, doi: 10.1109/CVPR.2018.00899.

C.-W. Hsieh, C.-Y. Chen, C.-L. Chou, H.-H. Shuai, and W.-H. Cheng, "Fit-me: Image-Based Virtual Try-on With Arbitrary Poses," in 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019, vol. 2019-September, no. 1, pp. 4694–4698, doi: 10.1109/ICIP.2019.8803681.

H. Dong, X. Liang, X. Shen, B. Wu, B.-C. Chen, and J. Yin, "FW-GAN: Flow-Navigated Warping GAN for Video Virtual Try-On," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, vol. 2019-Octob, pp. 1161–1170, doi: 10.1109/ICCV.2019.00125.

H. Dong et al., "Towards Multi-Pose Guided Virtual Try-On Network," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 9025–9034, doi: 10.1109/ICCV.2019.00912.
A. Niswar, I. R. Khan, and F. Farbiz, "Virtual try-on of eyeglasses using 3D model of the head," in Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry - VRCAI '11, Jan. 2011, no. 1, pp. 356–361, doi: 10.1145/2087756.2087838.

E. Miguel et al., "Data-Driven Estimation of Cloth Simulation Models," Comput. Graph. Forum, vol. 31, no. 2pt2, pp. 519–528, May 2012, doi: 10.1111/j.1467-8659.2012.03031.x.

B. Zhou, X. Chen, C. Fu, K. Guo, and P. Tan, "Garment Modeling from a Single Image," Comput. Graph. Forum, vol. 32, no. 7, pp. 85–91, Oct. 2013, doi: 10.1111/cgf.12215.

C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, "Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments," IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 7, pp. 1325–1339, Jul. 2013, doi: 10.1109/TPAMI.2013.248.

S. Wang, S. Qin, and C. Guan, "Feature-Based Human Model for Digital Apparel Design," IEEE Trans. Autom. Sci. Eng., vol. 11, no. 2, pp. 620–626, Apr. 2014, doi: 10.1109/TASE.2014.2300876.

Y.-I. Yang, C.-K. Yang, and C.-H. Chu, "A virtual try-on system in augmented reality using RGB-D cameras for footwear personalization," J. Manuf. Syst., vol. 33, no. 4, pp. 690–698, Oct. 2014, doi: 10.1016/j.jmsy.2014.05.006.

C. Guan, S. Qin, W. Ling, and G. Ding, "Apparel recommendation system evolution: an empirical review," Int. J. Cloth. Sci. Technol., vol. 28, no. 6, pp. 854–879, Nov. 2016, doi: 10.1108/IJCST-09-2015-0100.

G. Pons-Moll, S. Pujades, S. Hu, and M. J. Black, "ClothCap: Seamless 4D clothing capture and retargeting," ACM Trans. Graph., vol. 36, no. 4, pp. 1–15, Jul. 2017, doi: 10.1145/3072959.3073711.

R. Daněřek, E. Dibra, C. Öztireli, R. Ziegler, and M. Gross, "DeepGarment: 3D Garment Shape Estimation from a Single Image," Comput. Graph. Forum, vol. 36, no. 2, pp. 269–280, May 2017, doi: 10.1111/cgf.13125.

C. Zhang, S. Pujades, M. Black, and G. Pons-Moll, "Detailed, Accurate, Human Shape Estimation from Clothed 3D Scan Sequences," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 5484–5493, doi: 10.1109/CVPR.2017.582.

Y. Hong, X. Zeng, P. Bruniaux, and Y. Chen, "Evaluation of Fashion Design Using Artificial Intelligence Tools," in Artificial Intelligence for Fashion Industry in the Big Data Era., Singapore: Springer, 2018, pp. 245–256.

H. A. M. Daanen and A. Paikuta, "3D body scanning," in Automation in Garment Manufacturing, no. January, Elsevier, 2018, pp. 237–252.

T. Y. Wang, D. Ceylan, J. Popovic, and N. J. Mitra, "Learning a Shared Shape Space for Multimodal Garment Design," arXiv, Jun. 2018, [Online]. Available: http://arxiv.org/abs/1806.11315.

Z. Lähner, D. Cremers, and T. Tung, "DeepWrinkles: Accurate and Realistic Clothing Modeling," in Proceedings of the European Conference on Computer Vision (ECCV), vol. 11208 LNCS, 2018, pp. 698–715.
[280] A. Pumarola, J. Sanchez, G. P. T. Choi, A. Sanfeliu, and F. Moreno, "3DPeople: Modeling the Geometry of Dressed Humans," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 2242–2251, doi: 10.1109/ICCV.2019.00233.

[281] V. Lazova, E. Insafutdinov, and G. Pons-Moll, "360-Degree Textures of People in Clothing from a Single Image," in 2019 International Conference on 3D Vision (3DV), Sep. 2019, pp. 643–653, doi: 10.1109/3DV.2019.00076.

[282] T. Alldieck, M. Magnor, B. L. Bhatnagar, C. Theobalt, and G. Pons-Moll, "Learning to Reconstruct People in Clothing From a Single RGB Camera," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 1175–1186, doi: 10.1109/CVPR.2019.00127.

[283] S. Saito, Z. Huang, R. Natsume, S. Morishima, H. Li, and A. Kanazawa, "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, vol. 2019-Octob, pp. 2304–2314, doi: 10.1109/ICCV.2019.00239.

[284] R. Natsume et al., "SiCloPe: Silhouette-Based Clothed People," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 4475–4485, doi: 10.1109/CVPR.2019.00461.

[285] T. Yu et al., "SimulCap: Single-View Human Performance Capture With Cloth Simulation," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, vol. 2019-June, pp. 5499–5509, doi: 10.1109/CVPR.2019.00565.

[286] T. Alldieck, G. Pons-Moll, C. Theobalt, and M. Magnor, "Tex2Shape: Detailed Full Human Body Geometry From a Single Image," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 2293–2303, doi: 10.1109/ICCV.2019.00238.

[287] H. Sattar, G. Pons-Moll, and M. Fritz, "Fashion Is Taking Shape: Understanding Clothing Preference Based on Body Shape From Online Sources," in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Jan. 2019, pp. 968–977, doi: 10.1109/WACV.2019.00108.

[288] I. Santesteban, M. A. Otaduy, and D. Casas, "Learning-Based Animation of Clothing for Virtual Try-On," Comput. Graph. Forum, vol. 38, no. 2, pp. 355–366, May 2019, doi: 10.1111/cgf.13643.

[289] D. Shin and Y. Chen, "Deep Garment Image Matting for a Virtual Try-on System," in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Oct. 2019, vol. 1, no. 1, pp. 3141–3144, doi: 10.1109/ICCVW.2019.00384.

[290] T. Y. Wang, T. Shao, K. Fu, and N. J. Mitra, "Learning an intrinsic garment space for interactive authoring of garment animation," ACM Trans. Graph., vol. 38, no. 6, pp. 1–12, Nov. 2019, doi: 10.1145/3355089.3356512.

[291] Z. Huang, Y. Xu, C. Lassner, H. Li, and T. Tung, "ARCH: Animatable Reconstruction of Clothed Humans," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 3090–3099, doi: 10.1109/CVPR42600.2020.00316.

[292] H. Zhu et al., "DeepFashion3D: A Dataset and Benchmark for 3D Garment Reconstruction from Single Images," in European Conference on Computer Vision, vol. 12346 LNCS, Cham: Springer, 2020, pp. 512–530.

[293] N. Jin, Y. Zhu, Z. Geng, and R. Fedkiw, "A Pixel-Based Framework for Data-Driven Clothing," Comput. Graph. Forum, vol. 39, no. 8, pp. 135–144, Dec. 2020, doi: 10.1111/cgf.14108.

[294] R. Vidaurre, I. Santesteban, E. Garces, and D. Casas, "Fully Convolutional Graph Neural Networks for Parametric Virtual Try-On," Comput. Graph. Forum, vol. 39, no. 8, pp. 145–156, Dec. 2020, doi: 10.1111/cgf.14109.

[295] A. Mir, T. Alldieck, and G. Pons-Moll, "Learning to Transfer Texture From Clothing Images to 3D Humans," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 7021–7032, doi: 10.1109/CVPR42600.2020.00705.

[296] A. Caliskan, A. Mustafa, E. Imre, and A. Hilton, "Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People," arXiv, pp. 1–17, Sep. 2020, [Online]. Available: http://arxiv.org/abs/2009.14162.

[297] G. Tiwari, B. L. Bhatnagar, T. Tung, and G. Pons-Moll, "SIIZER: A Dataset and Model for Parsing 3D Clothing and Learning Size Sensitive 3D Clothing," in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12348 LNCS, 2020, pp. 1–18.

[298] C. Patel, Z. Liao, and G. Pons-Moll, "TailorNet: Predicting Clothing in 3D as a Function of Human Pose, Shape and Garment Style," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 7363–7373, doi: 10.1109/CVPR42600.2020.00739.

[299] E. Ju and M. G. Choi, "Estimating Cloth Simulation Parameters From a Static Drape Using Neural Networks," IEEE Access, vol. 8, pp. 195113–
J.-A. Sarmiento, "Exploiting Latent Codes: Interactive Fashion Product Generation, Similar Image Retrieval, and Cross-Category Recommendation using Variational Autoencoders," arXiv, Sep. 2020, [Online]. Available: http://arxiv.org/abs/2009.01053.

Y. Li, X. Yu, X. Han, N. Jiang, K. Jia, and J. Lu, "A deep learning based interactive sketching system for fashion images design," arXiv, Oct. 2020, [Online]. Available: http://arxiv.org/abs/2010.04413.

H. Dong et al., "Fashion Editing With Adversarial Parsing Learning," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 8117–8125, doi: 10.1109/CVPR42600.2020.00814.

K. E. Ak, J. H. Lim, J. Y. Tham, and A. A. Kassim, "Semantically consistent text to fashion image synthesis with an enhanced attentional generative adversarial network," Pattern Recognit. Lett., vol. 135, no. 3, pp. 22–29, Jul. 2020, doi: 10.1016/j.patrec.2020.02.030.

X. Gu, J. Yu, Y. Wong, and M. S. Kankanahalli, "Toward Multi-Modal Conditioned Fashion Image Translation," IEEE Trans. Multimed., vol. 9210, 2020, doi: 10.1109/TMM.2020.3009500.

Z. Zhu, Z. Xu, A. You, and X. Bai, "Semantically Multi-Modal Image Synthesis," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 5466–5475, doi: 10.1109/CVPR42600.2020.00551.

H. Zhan, C. Yi, B. Shi, J. Lin, L.-Y. Duan, and A. C. Kot, "Pose-Normalized and Appearance-Preserved Street-to-Shop Clothing Image Generation and Feature Learning," IEEE Trans. Multimed., vol. 23, no. c, pp. 133–144, 2020, doi: 10.1109/TMM.2020.2978669.

X. Wang and T. Zhang, "Clothes search in consumer photos via color matching and attribute learning," in Proceedings of the 19th ACM international conference on Multimedia - MM ’11, 2011, p. 1353, doi: 10.1145/2072298.2072013.

S. Liu, Z. Song, M. Wang, C. Xu, H. Lu, and S. Yan, "Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set," in MM 2012 - Proceedings of the 20th ACM International Conference on Multimedia, 2012, pp. 1335–1336, doi: 10.1145/2393347.2396471.

J. Fu, J. Wang, Z. Li, M. Xu, and H. Lu, "Efficient Clothing Retrieval with Semantic-Preserving Visual Phrases.," in Asian conference on computer vision, vol. 7725 LNCS, no. PART 2, Berlin, Heidelberg: Springer, 2012, pp. 420–431.

Q. Chen, J. Li, Z. Liu, G. Lu, X. Bi, and B. Wang, "Measuring clothing image similarity with bundled features," Int. J. Cloth. Sci. Technol., vol. 25, no. 2, pp. 119–130, May 2013, doi: 10.1016/S0955-6221(13)298619.

K. Lin, H.-F. Yang, K.-H. Liu, J.-H. Hsiao, and C.-S. Chen, "Rapid Clothing Retrieval via Deep Learning of Binary Codes and Hierarchical Search," in Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, Jun. 2015, pp. 499–502, doi: 10.1145/2671188.2749318.

Z. Chen, Z. Xu, Y. Zhang, and X. Gu, "Query-Free Clothing Retrieval via Implicit Relevance Feedback," IEEE Trans. Multimed., vol. 20, no. 8, pp. 2126–2137, Aug. 2017, doi: 10.1109/TMM.2017.2785253.

Z. Wang, Y. Gu, Y. Zhang, J. Zhou, and X. Gu, "Clothing retrieval with visual attention model," in 2017 IEEE Visual Communications and Image Processing (VCIP), Dec. 2017, vol. 2018-Janua, pp. 1–4, doi: 10.1109/VCIP.2017.8305144.

Y. He and L. Chen, "Fast Fashion Guided Clothing Image Retrieval: Delving Deeper into What Feature Makes Fashion," in Asian Conference on Computer Vision, vol. 10115 LNCS, Cham: Springer, 2017, pp. 134–149.

F. Yang et al., "Visual Search at eBay," in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug. 2017, vol. Part F1296, pp. 2101–2110, doi: 10.1145/3097983.3098162.

X. Wang, G. Wu, and Y. Zhong, "Fabric Identification Using Convolutional Neural Network," in Advances in Intelligent Systems and Computing, vol. 849, 2018, pp. 93–100.

Y. Meng, D. Mo, X. Guo, Y. Cui, J. Wen, and W. K. Wong, "Robust Feature Extraction for Material Image Retrieval in Fashion Accessory Management," in Advances in Intelligent Systems and Computing, vol. 849, 2018, pp. 299–305.

T. H. Dinh, T. P. Van, T. M. Thanh, H. N. Thanh, and A. P. Hoang, "Large Scale Fashion Search System with Deep Learning and Quantization Indexing," in Proceedings of the Ninth International Symposium on Information and Communication Technology - SoICT 2018, 2018, pp. 106–113, doi: 10.1109/3287921.3287964.

T. Lodkaew, W. Suphobhumoon, K. Pasupa, and C. K. Loo, "Fashion Finder: A System for Locating Online Stores on Instagram from Product Images," in 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE), Jul. 2018, pp. 500–505, doi: 10.1109/ICITEE.2018.8534871.
R. Sharma and A. Vishvakarma, "Retrieving Similar E-Commerce Images Using Deep Learning," arXiv, pp. 1–9, Jan. 2019, [Online]. Available: http://arxiv.org/abs/1901.03546.

Y. Luo, Z. Wang, Z. Huang, Y. Yang, and H. Lu, "Snap and Find: Deep Discrete Cross-domain Garment Image Retrieval," arXiv, pp. 1–10, Apr. 2019, [Online]. Available: http://arxiv.org/abs/1904.02887.

H. Wu et al., "Fashion IQ: A New Dataset Towards Retriving Images by Natural Language Feedback," arXiv, May 2019, [Online]. Available: http://arxiv.org/abs/1905.12794.

D. Gao et al., "FashionBERT: Text and Image Matching with Adaptive Loss for Cross-modal Retrieval," in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul. 2020, pp. 2251–2260, doi: 10.1145/3397271.3401430.

Y. Jo, J. Wi, M. Kim, and J. Y. Lee, "Flexible Fashion Product Retrieval Using Multimodality-Based Deep Learning," Appl. Sci., vol. 10, no. 5, p. 1569, Feb. 2020, doi: 10.3390/app10051569.

Y. Miao, G. Li, C. Cao, J. Zhang, and J. Wang, "ClothingNet: Cross-Domain Clothing Retrieval With Feature Fusion and Quadruplet Loss," IEEE Access, vol. 8, pp. 142669–142679, 2020, doi: 10.1109/ACCESS.2020.3013631.

Y. Gao et al., "Fashion Retrieval via Graph Reasoning Networks on a Similarity Pyramid," IEEE Trans. Pattern Anal. Mach. Intell., vol. 1, 2020, doi: 10.1109/TPAMI.2020.3025062.

Y. Zhang et al., "Fashion Focus: Multi-modal Retrieval System for Video Commodity Localization in E-commerce," arxiv, Feb. 2021, [Online]. Available: http://arxiv.org/abs/2102.04727.

A. Kovashka, D. Parikh, and K. Grauman, "WhittleSearch: Interactive Image Search with Relative Attribute Feedback," Int. J. Comput. Vis., vol. 115, no. 2, pp. 185–210, Nov. 2015, doi: 10.1007/s11263-015-0814-0.

Z. Zhou, Y. Xu, J. Zhou, and L. Zhang, "Interactive Image Search for Clothing Recommendation," in Proceedings of the 24th ACM international conference on Multimedia, Oct. 2016, pp. 754–756, doi: 10.1145/2964284.2973834.

X. Han et al., "Automatic Spatially-Aware Fashion Concept Discovery," in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 1472–1480, doi: 10.1109/ICCV.2017.163.

K. Laenen, S. Zoghbi, and M.-F. Moens, "Web Search of Fashion Items with Multimodal Querying," in Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Feb. 2018, pp. 342–350, doi: 10.1145/3159652.3159716.

K. E. Ak, A. A. Kassim, J. H. Lim, and J. Y. Tham, "FashionSearchNet: Fashion Search with Attribute Manipulation," in Proceedings of the European Conference on Computer Vision (ECCV) Workshops, vol. 11131 LNCS, 2018, pp. 45–53.

R. Tan, M. Vaxileva, K. Saenko, and B. Plummer, "Learning Similarity Conditions Without Explicit Supervision," in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2019, pp. 7185–7195, doi: 10.1109/ICCV.2019.01047.

I. Tautkute, T. Trzcinski, A. P. Skorupa, K. Lukasze, and K. Marasek, "DeepStyle: Multimodal Search Engine for Fashion and Interior Design," IEEE Access, vol. 7, pp. 84613–84628, 2019, doi: 10.1109/ACCESS.2019.2925552.

P. Li, G. Zhang, L. Chao, and Z. Xie, "Personalized Recommendation System for Offline Shopping," in 2018 International Conference on Audio, Language and Image Processing (ICALIP), Jul. 2018, pp. 445–449, doi: 10.1109/ICALIP.2018.8455252.

J. Y. Liu, "A Survey of Deep Learning Approaches for Recommendation Systems," J. Phys. Conf. Ser., vol. 1087, no. 6, p. 062022, Sep. 2018, doi: 10.1088/1742-6596/1087/6/062022.
H. Hwangbo, Y. S. Kim, and K. J. Cha, "Recommendation system development for fashion retail e-commerce," *Electron. Commer. Res. Appl.*, vol. 28, pp. 94–101, Mar. 2018, doi: 10.1016/j.elerap.2018.01.012.

Y. Wen, X. Liu, and B. Xu, "Personalized Clothing Recommendation Based on Knowledge Graph," in *2018 International Conference on Audio, Language and Image Processing (ICALIP)*, Jul. 2018, pp. 1–5, doi: 10.1109/ICALIP.2018.8455311.

C. Packer, J. McAuley, and A. Ramisa, "Visually-Aware Personalized Recommendation using Interpretable Image Representations," *arXiv*, Jun. 2018, [Online]. Available: http://arxiv.org/abs/1806.09820.

T. Yang, J. Feng, J. Chen, C. Dong, Y. Shi, and R. Tao, "A Clothing Recommendation System Based on Expert Knowledge," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 1–7.

W. Yu, H. Zhang, X. He, X. Chen, L. Xiong, and Z. Qin, "Aesthetic-based Clothing Recommendation," in *Proceedings of the 2018 World Wide Web Conference on World Wide Web - WWW ’18*, 2018, vol. 2, pp. 649–658, doi: 10.1145/3178876.3186146.

E. Andreeva, D. I. Ignatov, A. Grachev, and A. V. Savchenko, "Extraction of Visual Features for Recommendation of Products via Deep Learning," in *International Conference on Analysis of Images, Social Networks and Texts*, vol. 11179 LNCS, Cham: Springer International Publishing, 2018, pp. 201–210.

M. I. Vasileva, B. A. Plummer, K. Dusad, S. Rajpal, R. Kumar, and D. Forsyth, "Learning Type-Aware Embeddings for Fashion Compatibility," in *Proceedings of the European Conference on Computer Vision (ECCV)*, Springer, 2018, pp. 405–421.

Ok, Lee, and Kim, "Recommendation Framework Combining User Interests with Fashion Trends in Apparel Online Shopping," *Appl. Sci.*, vol. 9, no. 13, p. 2634, Jun. 2019, doi: 10.3390/app9132634.

M. Hou, L. Wu, E. Chen, Z. Li, V. W. Zheng, and Q. Liu, "Explainable Fashion Recommendation: A Semantic Attribute Region Guided Approach," in *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence*, Aug. 2019, vol. 2019-Augus, pp. 4681–4688, doi: 10.24963/ijcai.2019/650.

C. Yan, U. S. Malhi, Y. Huang, and R. Tao, "Unsupervised Deep Clustering for Fashion Images," in *Communications in Computer and Information Science*, vol. 1027, Springer International Publishing, 2019, pp. 85–96.

A. Vishvakarma, "MILDNet: A Lightweight Single Scaled Deep Ranking Architecture," *arXiv*, Mar. 2019, [Online]. Available: http://arxiv.org/abs/1903.09895.

Z. Cheng, X. Chang, L. Zhu, R. C. Kanjirathinkal, and M. Kankanhalli, "MMalIM: Explainable recommendation by leveraging reviews and images," *ACM Trans. Inf. Syst.*, vol. 37, no. 2, pp. 1–28, Mar. 2019, doi: 10.1145/3291060.

H. Ramampiaro, H. Langseth, T. Almenningen, H. Schistad, M. Havig, and H. T. Nguyen, "New Ideas in Ranking for Personalized Fashion Recommender Systems," in *Business and Consumer Analytics: New Ideas*, Cham: Springer International Publishing, 2019, pp. 933–961.

J. Sherman, C. Shukla, R. Textor, S. Zhang, and A. A. Winemaker, "Assessing Fashion Recommendations: A Multifaceted Offline Evaluation Approach," *arXiv*, Sep. 2019, [Online]. Available: http://arxiv.org/abs/1909.04496.

K. Kavitha, S. Laxman Kumar, P. Pravalika, K. Sruthi, R. V. S. Lalitha, and N. V. Krishna Rao, "Fashion compatibility using convolutional neural networks," *Mater. Today Proc.*, no. xxxx, Oct. 2020, doi: 10.1016/j.matpr.2020.09.365.

M. T. Kotouza, S. Tsarouchis, A.-C. Kyprianidis, A. C. Chrysopoulos, and P. A. Mitkas, "Towards Fashion Recommendation: An AI System for Clothing Data Retrieval and Analysis," in *IFIP Advances in Information and Communication Technology*, vol. 584 IFIP, I. Maglogiannis, L. Iliadis, and E. Pimenidis, Eds. Cham: Springer International Publishing, 2020, pp. 433–444.

L. Yu-Chu, Y. Kawakita, E. Suzuki, and H. Ichikawa, "Personalized Clothing-Recommendation System Based on a Modified Bayesian Network," in *2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet*, Jul. 2012, pp. 414–417, doi: 10.1109/SAIN.2012.75.

E. Simo-Serra, S. Fidler, F. Moreno-Noguer, and R. Urtasun, "Neuroaesthetics in fashion: Modeling the perception of fashionability," in *2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, Jun. 2015, vol. 07-12-June, pp. 869–877, doi: 10.1109/CVPR.2015.7296888.

Y. Ding and W. K. Wong, "Fashion Outfit Style Retrieval Based on Hashing Method," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 187–195.

H. Zheng, K. Wu, J.-H. Park, W. Zhu, and J. Luo, "Personalized Fashion Recommendation from Personal Social Media Data: An Item-to-Set
Metric Learning Approach," arXiv, May 2020, [Online]. Available: http://arxiv.org/abs/2005.12439.

[460] V. Jagadeesh, R. Piramuthu, A. Bhardwaj, W. Di, and N. Sundaresan, "Large scale visual recommendations from street fashion images," in Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, Aug. 2014, pp. 1925–1934, doi: 10.1145/2623380.2623332.

[461] A. Veit, B. Kovacs, S. Bell, J. McAuley, K. Bala, and S. Belongie, "Learning Visual Clothing Style with Heterogeneous Dyadic Co-Occurrences," in 2015 IEEE International Conference on Computer Vision (ICCV), Dec. 2015, vol. 591, pp. 4642–4650, doi: 10.1109/ICCV.2015.527.

[462] Y. Hu, X. Yi, and L. S. Davis, "Collaborative fashion recommendation: A functional tensor factorization approach," in MM 2015 - Proceedings of the 2015 ACM Multimedia Conference, Oct. 2015, pp. 129–138, doi: 10.1145/2733373.2806239.

[463] Y. Huang and T. Huang, "Outfit Recommendation System Based on Deep Learning," in Proceedings of the 2nd International Conference on Computer Engineering, Information Science & Application Technology (ICCEIA 2017), 2017, vol. 74, no. Iccia, pp. 170–174, doi: 10.2991/iccia-17.2017.26.

[464] X. Han, Z. Wu, Y.-G. Jiang, and L. S. Davis, "Learning Fashion Compatibility with Bidirectional LSTMs," in Proceedings of the 25th ACM international conference on Multimedia, Oct. 2017, no. 1, pp. 1078–1086, doi: 10.1145/3123266.3123394.

[465] Y. Li, L. Cao, J. Zhu, and J. Luo, "Mining Fashion Outfit Composition Using an End-to-End Deep Learning Approach on Set Data," IEEE Trans. Multimed., vol. 19, no. 8, pp. 1946–1955, Aug. 2017, doi: 10.1109/TMM.2017.2690144.

[466] X. Song, F. Feng, J. Liu, Z. Li, L. Nie, and J. Ma, "NeuroStylist: Neural compatibility modeling for clothing matching," in MM 2017 - Proceedings of the 2017 ACM Multimedia Conference, Oct. 2017, pp. 753–761, doi: 10.1145/3123266.3123314.

[467] H. Yuan, G. Liu, H. Li, and L. Wang, "Matching Recommendations Based on Siamese Network and Metric Learning," in 2018 15th International Conference on Service Systems and Service Management (ICSSSM), Jul. 2018, pp. 1–6, doi: 10.1145/3240508.3240596.

[468] P. Tangseng, K. Yamaguchi, and T. Okatani, "Recommending Outfits from Personal Closet," in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Mar. 2018, vol. 2018-Janua, pp. 269–277, doi: 10.1109/WACV.2018.00036.

[469] Z. Zhou, X. Di, W. Zhou, and L. Zhang, "Fashion Sensitive Clothing Recommendation Using Hierarchical Collocation Model," in Proceedings of the 26th ACM international conference on Multimedia, Oct. 2018, pp. 1119–1127, doi: 10.1145/3240508.3240596.

[470] A. Iliukovich-Strakovskaia, V. Tsvetkova, E. Dral, and A. Dral, "Non-personalized fashion outfit recommendations: The problem of cold starts," in Advances in Intelligent Systems and Computing, vol. 747, 2018, pp. 41–52.

[471] D. Valle, N. Ziviani, and A. Veloso, "Effective Fashion Retrieval Based on Semantic Compositional Networks," in 2018 International Joint Conference on Neural Networks (IJCNN), Jul. 2018, vol. 2018-July, pp. 1–8, doi: 10.1109/IJCNN.2018.8489494.

[472] G.-L. Sun, Z.-Q. Cheng, X. Wu, and Q. Peng, "Personalized clothing recommendation combining user social circle and fashion style consistency," Multimed. Tools Appl., vol. 77, no. 14, pp. 17731–17754, Jul. 2018, doi: 10.1007/s11042-017-5245-1.

[473] T. He and Y. Hu, "FashionNet: Personalized Outfit Recommendation with Deep Neural Network," arXiv, pp. 1–9, Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.02443.

[474] C. F. Huynh, A. Ciptadi, A. Tyagi, and A. Agrawal, "CRAFT: Complementary Recommendations Using Adversarial Feature Transformer," arXiv, Apr. 2018, [Online]. Available: http://arxiv.org/abs/1804.10871.

[475] W.-L. Hsiao and K. Grauman, "Creating Capsule Wardrobes from Fashion Images," in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 7161–7170, doi: 10.1109/CVPR.2018.00748.

[476] Z. Feng, Z. Yu, Y. Yang, Y. Jing, J. Jiang, and M. Song, "Interpretable Partitioned Embedding for Customized Multi-item Fashion Outfit Composition," in Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval, Jun. 2018, pp. 143–151, doi: 10.1145/3206025.3206048.
A. Dalmia, S. Joshi, R. Singh, and V. Raykar, "Styling with Attention to Details," arXiv, Jul. 2018, [Online]. Available: http://arxiv.org/abs/1807.01182.

L. Chen and Y. He, "Dress fashionably: Learn fashion collocation with deep mixed-category metric learning," 32nd AAAI Conf. Artif. Intell. AAAI 2018, pp. 2103–2110, 2018.

W. Chen et al., "POG: Personalized Outfit Generation for Fashion Recommendation at Alibaba iFashion," in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Jul. 2019, pp. 2662–2670, doi: 10.1145/3292500.3330652.

Y. Lei, L. Chen, and Z. Guan, "Cloth Recommender System Based on Item Matching," IOP Conf. Ser. Mater. Sci. Eng., vol. 533, no. 1, p. 012044, May 2019, doi: 10.1088/1757-899X/533/1/012044.

R. Yin, K. Li, J. Lu, and G. Zhang, "Enhancing Fashion Recommendation with Visual Compatibility Relationship," in The World Wide Web Conference on - WWW ’19, 2019, pp. 3434–3440, doi: 10.1145/3308558.3313739.

G. Gao, L. Liu, L. Wang, and Y. Zhang, "Fashion clothes matching scheme based on Siamese Network and AutoEncoder," Multimed. Syst., vol. 25, no. 6, pp. 593–602, Dec. 2019, doi: 10.1007/s00530-019-00617-9.

J. Liu, X. Song, Z. Chen, and J. Ma, "Neural fashion experts: I know how to make the complementary clothing matching," Neurocomputing, vol. 359, pp. 249–263, Sep. 2019, doi: 10.1016/j.neucom.2019.05.081.

W.-C. Kang, E. Kim, J. Leskovec, C. Rosenberg, and J. McAuley, "Complete the Look: Scene-Based Complementary Product Recommendation," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 10524–10533, doi: 10.1109/CVPR.2019.01078.

Z. Lu, Y. Hu, Y. Jiang, Y. Chen, and B. Zeng, "Learning Binary Code for Personalized Fashion Recommendation," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 10554–10562, doi: 10.1109/CVPR.2019.01081.

G. Cucurull, P. Taslakian, and D. Vazquez, "Context-Aware Visual Compatibility Prediction," in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 12609–12618, doi: 10.1109/CVPR.2019.01290.

Z. Cui, Z. Li, S. Wu, X. Zhang, and L. Wang, "Dressing as a Whole: Outfit Compatibility Learning Based on Node-wise Graph Neural Networks," in The World Wide Web Conference, May 2019, pp. 307–317, doi: 10.1145/3308558.3313444.

E. M. Bettaney, S. R. Hardwick, O. Zisimopoulos, and B. P. Chamberlain, "Fashion Outfit Generation for E-commerce," arXiv, no. March, Mar. 2019, [Online]. Available: http://arxiv.org/abs/1904.00741.

L. F. Polania and S. Gupte, "Learning Fashion Compatibility Across Apparel Categories for Outfit Recommendation," in 2019 IEEE International Conference on Image Processing (ICIP), Sep. 2019, pp. 4489–4493, doi: 10.1109/ICIP.2019.8803587.

J.-C. Wu, J. A. S. Rodriguez, and H. J. C. Pampin, "Session-based Complementary Fashion Recommendations," arXiv, pp. 2–6, Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.08327.

T. Kuhn et al., "Supporting stylists by recommending fashion style," arXiv, Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.09493.

X. Wang, B. Wu, and Y. Zhong, "Outfit Compatibility Prediction and Diagnosis with Multi-Layered Comparison Network," in Proceedings of the 27th ACM International Conference on Multimedia, Oct. 2019, pp. 329–337, doi: 10.1145/3343031.3350909.

X. Song, J. Chen, X. Han, X. S. Xu, Y. Li, and L. Nie, "GP-BPR: Personalized compatibility modeling for clothing matching," in MM 2019 - Proceedings of the 27th ACM International Conference on Multimedia, Oct. 2019, pp. 320–328, doi: 10.1145/3343031.3350956.

X. Yang, Y. Ma, L. Liao, M. Wang, and T.-S. Chua, "TransNFCM: Translation-Based Neural Fashion Compatibility Modeling," Proc. AAAI Conf.
Q. Liu, S. Wu, and L. Wang, "Deepstyle: Learning user preferences for visual recommendation," in *SIGIR 2017 - Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval*, Aug. 2017, no. 1, pp. 841–844, doi: 10.1145/3077136.3080658.

P. Agarwal, S. Vempati, and S. Borar, "Personalizing Similar Product Recommendations in Fashion E-commerce," arXiv, Jun. 2018. [Online]. Available: http://arxiv.org/abs/1806.11371.

X. Chen, Y. Zhang, H. Xu, Y. Cao, Z. Qin, and H. Zha, "Visually Explainable Recommendation," arXiv, Jan. 2018. [Online]. Available: http://arxiv.org/abs/1801.10288.

X. Chen et al., "Personalized Fashion Recommendation with Visual Explanations based on Multimodal Attention Network," in *Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval*, Jul. 2019, pp. 765–774, doi: 10.1145/3331184.3331254.

Q. Wu, P. Zhao, and Z. Cui, "Visual and Textual Jointly Enhanced Interpretable Fashion Recommendation," *IEEE Access*, vol. 8, pp. 68736–68746, 2020, doi: 10.1109/ACCESS.2020.297872.

X. Su, M. Gao, J. Ren, Y. Li, and M. Rätsch, "Personalized Clothing Recommendation Based on User Emotional Analysis," *Discret. Dyn. Nat. Soc.*, vol. 2020, no. 2, pp. 1–8, Mar. 2020, doi: 10.1155/2020/7954393.

Y. Ni and F. Fan, "A two-stage dynamic sales forecasting model for the fashion retail," *Expert Syst. Appl.*, vol. 38, no. 3, pp. 1529–1536, Mar. 2011, doi: 10.1016/j.eswa.2010.07.065.

Y. Yu, C.-L. Hui, and T.-M. Choi, "An empirical study of intelligent expert systems on forecasting of fashion color trend," *Expert Syst. Appl.*, vol. 39, no. 4, pp. 4383–4389, Mar. 2012, doi: 10.1016/j.eswa.2011.09.153.

T.-M. Choi, C.-L. Hui, S.-F. Ng, and Y. Yu, "Color Trend Forecasting of Fashionable Products with Very Few Historical Data," *IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev.*), vol. 42, no. 6, pp. 1003–1010, Nov. 2012, doi: 10.1109/TSMCC.2011.2176725.

Q. Chen, G. Wang, and C. L. Tan, "Modeling fashion," in *2013 IEEE International Conference on Multimedia and Expo (ICME)*, Jul. 2013, pp. 1–6, doi: 10.1109/ICME.2013.6607545.

M. E. Nenni, L. Giustiniano, and L. Pirolo, "Demand Forecasting in the Fashion Industry: A Review," *Int. J. Eng. Bus. Manag.*, vol. 5, no. SPL. ISSUE, p. 37, Jan. 2013, doi: 10.5772/56840.

K. Yamaguchi, T. L. Berg, and L. E. Ortiz, "Chic or social: Visual popularity analysis in online fashion networks," in *MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia*, Nov. 2014, pp. 773–776, doi: 10.1145/2647868.2654958.

S. C. Hidayati, K.-L. Hua, W.-H. Cheng, and S.-W. Sun, "What are the Fashion Trends in New York?," in *Proceedings of the 22nd ACM international conference on Multimedia*, Nov. 2014, pp. 197–200, doi: 10.1145/2647868.2656405.

T. M. Choi, C. L. Hui, and Y. Yu, *Intelligent Fashion Forecasting Systems: Models and Applications*. Springer Berlin Heidelberg, 2014.

J. Wang and J. Allebach, "Automatic assessment of online fashion shopping photo aesthetic quality," in *2015 IEEE International Conference on Image Processing (ICIP)*, Sep. 2015, pp. 2915–2919, doi: 10.1109/ICIP.2015.7351336.

J. Jia et al., "Learning to appreciate the aesthetic effects of clothing," *30th AAAI Conf. Artif. Intell. AAAI 2016*, pp. 1216–1222, 2016.

Q. Zou, Z. Zhang, Q. Wang, Q. Li, L. Chen, and S. Wang, "Who Leads the Clothing Fashion: Style, Color, or Texture? A Computational Study," *arxiv*, Aug. 2016, [Online]. Available: http://arxiv.org/abs/1608.07444.

J. Park, G. L. Ciampaglia, and E. Ferrara, "Style in the age of instagram: Predicting success within the fashion industry using social media," in *Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW*, Feb. 2016, vol. 27, pp. 64–73, doi: 10.1145/2818048.2820065.

Z. Al-halah, R. Stiefelhagen, and K. Grauman, "Fashion Forward: Forecasting Visual Style in Fashion Supplementary Material," *Proceeding IEEE Int. Conf. Comput. Vision, Venice, Italy*, pp. 22–29, 2017.

K. Matzen, K. Bala, and N. Snavely, "StreetStyle: Exploring world-wide clothing styles from millions of photos," *arXiv*, Jun. 2017, [Online]. Available: http://arxiv.org/abs/1706.01869.

M. Aghaei, F. Parezzan, M. Dimiccoli, P. Radeva, and M. Cristani, "Clothing and People - A Social Signal Processing Perspective," in *2017 12th
Y. Ma, J. Jia, S. Zhou, J. Fu, Y. Liu, and Z. Tong, "Towards better understanding the clothing fashion styles: A multimodal deep learning approach," 31st AAAI Conf. Artif. Intell. AAAI 2017, pp. 38–44, 2017.

Y. I. Ha, S. Kwon, M. Cha, and J. Joo, "Fashion conversation data on Instagram," in 11th AAAI Conference on Web and Social Media, 2017, no. icwsm, pp. 418–427.

K. Abe, T. Suzuki, S. Ueta, A. Nakamura, Y. Satoh, and H. Kataoka, "Changing Fashion Cultures," arXiv. Mar. 2017. [Online]. Available: http://arxiv.org/abs/1703.07920.

Y. T. Chang, W. H. Cheng, B. Wu, and K. L. Hua, "Fashion world map: Understanding cities through streetwear fashion," in MIM 2017 - Proceedings of the 2017 ACM Multimedia Conference, Oct. 2017, pp. 91–99, doi: 10.1145/3123266.3123268.

R. Liu and A. Suh, "Self-Branding on Social Media: An Analysis of Style Bloggers on Instagram," Procedia Comput. Sci., vol. 124, pp. 12–20, 2017, doi: 10.1016/j.procs.2017.12.124.

S. Vittayakorn, A. C. Berg, and T. L. Berg, "When was that made?,” in 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Mar. 2017, no. October 2008, pp. 715–724, doi: 10.1109/WACV.2017.85.

M. Tang and H. Liao, "Multiple Criteria Group Decision-Making Based on Hesitant Fuzzy Linguistic Consensus Model for Fashion Sales Forecasting," in Advances in Intelligent Systems and Computing, vol. 849, 2019, pp. 329–336.

L. Jiang, H. Liao, and Z. Li, "Probabilistic Linguistic Linear Least Absolute Regression for Fashion Trend Forecasting," in Advances in Intelligent Systems and Computing, vol. 849, 2019, pp. 337–346.

Z. Al-Halah and K. Grauman, "From Paris to Berlin: Discovering Fashion Style Influences Around the World," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2020, pp. 10133–10142, doi: 10.1109/CVPR42600.2020.01015.

Z. Al-Halah and K. Grauman, "Modeling Fashion Influence from Photos," IEEE Trans. Multimed., pp. 1–1, 2020, doi: 10.1109/TMM.2020.3037459.

R. R. Getman et al., "Machine Learning (ML) for Tracking Fashion Trends: Documenting the Frequency of the Baseball Cap on Social Media and the Runway," Cloth. Text. Res. J., p. 0887302X2093119, Jun. 2020, doi: 10.1177/0887302X20931195.

W.-L. Hsiao and K. Grauman, "From Culture to Clothing: Discovering the World Events Behind A Century of Fashion Images," arXiv, Feb. 2021, [Online]. Available: http://arxiv.org/abs/2102.01690.

Z. Guo, W. Wong, S. Leung, and M. Li, "Applications of artificial intelligence in the apparel industry: a review," Text. Res. J., vol. 81, no. 18, pp. 1871–1892, Nov. 2011, doi: 10.1177/0040517511411968.

D. Satam, Y. Liu, and H. J. Lee, "Intelligent design systems for apparel mass customization," J. Text. Inst., vol. 102, no. 4, pp. 353–365, Apr. 2011, doi: 10.1080/00405000.2010.482351.

C. Gale, "Complex Textile Products and Reducing Consumer Waste," in Advances in Intelligent Systems and Computing, vol. 849, 2019, pp. 315–320.

Z. Guo, J. Chen, G. Ou, and H. Liu, "Coordinated Optimization of Production and Delivery Operations in Apparel Supply Chains Using a Hybrid Intelligent Algorithm," in Advances in Intelligent Systems and Computing, vol. 849, 2018, pp. 9–15.
B. Wei, K. Hao, X. Tang, and L. Ren, "Fabric Defect Detection Based on Faster RCNN," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 45–51.

Y. Lv, X. Yue, Q. Chen, and M. Wang, "Fabric Defect Detection with Cartoon–Texture Decomposition," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 277–283.

L. Tong, X. Zhou, J. Wen, and C. Gao, "Optimal Gabor Filtering for the Inspection of Striped Fabric," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 291–297.

J. Zhou, C. Gao, and J. Yin, "Rough Possibilistic Clustering for Fabric Image Segmentation," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 247–253.

C. Gao, J. Zhou, W. K. Wong, and T. Gao, "Woven Fabric Defect Detection Based on Convolutional Neural Network for Binary Classification," in *Advances in Intelligent Systems and Computing*, vol. 849, 2018, pp. 307–313.

McQuillan, H., "Digital 3D design as a tool for augmenting zero-waste fashion design practice," *Int. J. Fash. Des. Technol. Educ.*, vol. 13, no. 1, pp. 89–100, Jan. 2020, doi: 10.1080/17543266.2020.1737248.

Y. Kita, E. S. Neo, T. Ueshiba, and N. Kita, "Clothes handling using visual recognition in cooperation with actions," in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2010, vol. 1, pp. 2710–2715, doi: 10.1109/IROS.2010.5651222.

Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, "Clothes handling based on recognition by strategic observation," in 2011 11th IEEE-RAS International Conference on Humanoid Robots, Oct. 2011, pp. 53–58, doi: 10.1109/Humanoids.2011.6100817.

Z. Song, Meng Wang, Xian-sheng Hua, and S. Yan, "Predicting occupation via human clothing and contexts," in 2011 International Conference on Computer Vision, Nov. 2011, pp. 1084–1091, doi: 10.1109/ICCV.2011.6126355.

M. Shao, L. Li, and Y. Fu, "What Do You Do? Occupation Recognition in a Photo via Social Context," in 2013 IEEE International Conference on Computer Vision, Dec. 2013, pp. 3631–3638, doi: 10.1109/ICCV.2013.451.

A. Doumanoglou, A. Kargakos, T.-K. Kim, and S. Malassiotis, "Autonomous active recognition and unfolding of clothes using random decision forests and probabilistic planning," in 2014 IEEE International Conference on Robotics and Automation (ICRA), May 2014, pp. 987–993, doi: 10.1109/ICRA.2014.6906974.

W. Zhang, J. Shen, G. Liu, and Y. Yu, "A Latent Clothing Attribute Approach for Human Pose Estimation," in *Asian Conference on Computer Vision*, vol. 9003, Cham: Springer, 2015, pp. 146–161.

G. Sadeh, L. Fritz, G. Shalev, and E. Oks, "Generating diverse and informative natural language fashion feedback," *arXiv*, 2019.

J. Qian, T. Weng, L. Zhang, B. Okorn, and D. Held, "Cloth Region Segmentation for Robust Grasp Selection," *arXiv*, Aug. 2020, [Online]. Available: http://arxiv.org/abs/2008.05626.

B. T. Nguyen, O. Prakash, and A. H. Vo, "Attention Mechanism for Fashion Image Captioning," in *Advances in Intelligent Systems and Computing*, vol. 1284, 2020, pp. 93–104.

R. H. Banerjee, A. Ravi, and U. K. Dutta, "Attr2Style: A Transfer Learning Approach for Inferring Fashion Styles via Apparel Attributes," *arXiv*, pp. 1–7, Aug. 2020, [Online]. Available: http://arxiv.org/abs/1906.06619.

X. Yang et al., "Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards," in *Computer Vision – ECCV 2020*, vol. 12358 LNCS, 2020, pp. 1–17.

B. Loni et al., "Fashion-focused creative commons social dataset," in *Proceedings of the 4th ACM Multimedia Systems Conference on - MMSys ’13*, 2013, pp. 72–77, doi: 10.1145/2483977.2483984.

B. Loni, L. Y. Cheung, M. Riegler, A. Bozzon, L. Gottlieb, and M. Larson, "Fashion 10000: An enriched social image dataset for fashion and clothing," in *Proceedings of the 5th ACM Multimedia Systems Conference, MMSys 2014*, no. March, pp. 41–46, doi: 10.1145/2557642.2556375.

Y. Li, C. Huang, C. C. Loy, and X. Tang, "Human Attribute Recognition by Deep Hierarchical Contexts," in *European Conference on Computer Vision*, vol. 9919 LNCS, Cham: Springer, 2016, pp. 684–700.

H. Xiao, K. Rasul, and R. Vollgraf, "Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms," *arXiv*, pp. 1084–
99