WEAK Z-STRUCTURES AND ONE-RELATOR GROUPS

M. CÁRDENAS, F. F. LASHERAS, AND A. QUINTERO

Abstract. Motivated by the notion of boundary for hyperbolic and $CAT(0)$ groups, Bestvina [2] introduced the notion of a (weak) Z-structure and (weak) Z-boundary for a group G of type F (i.e., having a finite $K(G,1)$ complex), with implications concerning the Novikov conjecture for G. Since then, some classes of groups have been shown to admit a weak Z-structure (see [15] for example), but the question whether or not every group of type F admits such a structure remains open. In this paper, we show that every torsion free one-relator group admits a weak Z-structure, by showing that they are all properly aspherical at infinity; moreover, in the 1-ended case the corresponding weak Z-boundary has the shape of either a circle or a Hawaiian earring depending on whether the group is a virtually surface group or not. Finally, we extend this result to a wider class of groups still satisfying a Freiheitssatz property.

1. Introduction

We recall that a compact metrizable space W is a compactification of a (path connected) locally compact metrizable space X if it contains a homeomorphic copy $X \subset W$ as a dense open subset. Furthermore, we say that W is a Z-compactification of X if $Z = W - X$ is a Z-set in W, i.e., for every open set $U \subset W$ the inclusion $U - Z \hookrightarrow U$ is a homotopy equivalence; equivalently (if X is an ANR), there is a homotopy $H : W \rightarrow W$ with $H_0 = id_W$ and $H_t(W) \subset X$ for all $t > 0$. And in this case, we say that Z is a Z-boundary for X. The model example is that in which W is a compact manifold and $Z \subseteq \partial W$ is a closed subset.

From now on all spaces will be ANRs; in fact, we will deal with (connected) locally finite CW-complexes.

In [2] Bestvina introduced the notion of Z-structure and Z-boundary for a group (of type F) as an attempt to generalize the already existing notion of boundary for hyperbolic and $CAT(0)$ groups; namely,

Definition 1.1. A Z-structure on a group G is a pair (W, Z) of spaces satisfying:

1. W is a contractible ANR,
2. Z is a Z-set in W,
3. $X = W - Z$ admits a proper, free and cocompact action by G, and
4. (nullity condition) For any open cover of W, and any compact subset $K \subseteq X$, all but finitely many translates of K lie in some element of the cover.

Observe that it is not necessary that W be finite-dimensional, by [26, 17]. If only conditions (1)-(3) are satisfied, then (W, Z) is called a weak Z-structure on G, and we refer to Z as a (weak) Z-boundary for G.
An additional condition can be added to the above:

(5) The action of G on X can be extended to W.

If conditions (1)-(5) are satisfied, then (W, Z) is called an EZ-structure on G. It was shown in [11] that the Novikov conjecture holds for any (torsion free) group admitting an EZ-structure. Examples of groups admitting an EZ-structure are (torsion free) δ-hyperbolic and $CAT(0)$ groups, see [3, 2].

Although not stated explicitly, it follows that such a group G as in Definition 1.1 must be of type F (see [15, Prop. 1.1]). The more conditions on a Z-structure on a group the better; nonetheless, a weak Z-boundary already carries significant information about the group and, when it exists, it is well-defined up to shape, and it is always a first step towards finding a stronger structure on it. The question whether or not every group of type F admits a (weak) Z-structure still remains open. In this paper, we give a positive answer to this question for a class of groups containing all torsion free one-relator groups. For this, we first use some previous work from [4, 21] to show that they are all properly aspherical at infinity, and then combine this with some recent work in [5] to characterize the corresponding boundary in the 1-ended case. Our main results are Theorems 1.2 and 1.6 below.

Theorem 1.2. Every finitely generated, torsion free one-relator group G admits a weak Z-structure. Moreover, if G is 1-ended then the corresponding weak Z-boundary has the shape of either a circle or a Hawaiian earring depending on whether G is a virtually surface group or not.

Bestvina [2] already pointed out that the Baumslag-Solitar group $\langle x, t; t^{-1}xt = x^2 \rangle$ admits a Z-boundary homeomorphic to the Cantor-Hawaiian earring, which is shape equivalent to the ordinary Hawaiian earring (see [24] as a general reference for shape theory). It is worth mentioning that for the particular class of Baumslag-Solitar groups a stronger EZ-structure has been recently described in [18].

More generally, we may construct the following class C of finitely presented groups starting off from one-relator group presentations as follows. Let G and H be finitely generated one-relator groups, and assume $P = \langle X; r \rangle$ and $Q = \langle Y; s \rangle$ are presentations of G and H with a single relation, respectively. Let $V \subset X$ and $W \subset Y$, together with a bijection $\eta : V \rightarrow W$, be (possibly empty) subsets not containing all the generators involved in any of the relators of the corresponding presentation. We declare the corresponding amalgamated product $G \ast_F H$ associated with η (over a free group of rank $\text{card}(V) = \text{card}(W)$) to be in our class C together with the obvious presentation for it obtained from P and Q. It seems natural to consider the class C of all finitely generated one-relator groups together with those finitely presented groups which can be obtained by successive applications of the construction above, so that C is closed under amalgamated products (over free subgroups) of the type just described. The group presentations obtained in this way still satisfy a Freiheitssatz property, see [21] for more details. Henceforth, we will refer to those groups as in C as “generalized” one-relator groups.

Remark 1.3. The first interesting examples of groups in the class C (other than one-relator groups and their free products) are those groups G given by a presentation of the form $\langle X; r, s \rangle$, where r, s are cyclically reduced words so that $r \in F(Y)$, $Y \subset X$, and $s \in F(X) - F(Y)$ misses at least one generator in Y which occurs in r. Indeed, one can obtain G as an amalgamated product $\langle Y; r \rangle \ast_F \langle (X - Y) \cup Z; s \rangle$.
over a free group of rank $\text{card}(Z)$, where $Z \subset Y$ is the subset consisting of those generators in Y which occur in s.

Remark 1.4. From the above remark, one can see that Higman’s group H, with presentation $(a, b, c, d; a^{-2} b^{-1} a b, b^{-2} c^{-1} b c, c^{-2} d^{-1} c d, d^{-2} a^{-1} d a)$, is in \mathcal{C}. Indeed, H can be expressed as an amalgamated product (of the type described above) of two copies of $(x, y, z; x^{-2} y^{-1} x y, y^{-2} z^{-1} y z)$ over a free subgroup of rank 2 (see [13]).

Remark 1.5. It was also shown in [21] that every finitely presented group G given by a staggered presentation P is in \mathcal{C}. We recall that $(X; R)$ is defined to be a staggered presentation if there are subsets $X_0 \subset X$ so that both R and X_0 are linearly ordered in such a way that: (i) each relator $r \in R$ contains some $x \in X_0$; (ii) if r, r' are relators with $r < r'$, then r contains some $x \in X_0$ that precedes all elements of X_0 occurring in r', and r' contains some $y \in X_0$ that comes after all those occurring in r (see [22]).

Theorem 1.2 above together with the results in [21] yield the following generalization.

Theorem 1.6. Every torsion free, 1-ended generalized one-relator group $G \in \mathcal{C}$ admits a weak Z-structure. Moreover, the corresponding weak Z-boundary has the shape of either a circle or a Hawaiian earring depending on whether G is a virtually surface group or not.

2. Preliminaries

Given a non-compact (strongly) locally finite CW-complex Y, a *proper ray* in Y is a proper map $\omega : [0, \infty) \to Y$. Recall that a proper map is a map with the property that the inverse image of every compact subset is compact. We say that two proper rays ω, ω' define the same end if their restrictions to the natural numbers $\omega|\mathbb{N}, \omega'|\mathbb{N}$ are properly homotopic. This equivalence relation gives rise to the notion of *end determined by* ω as the corresponding equivalence class, as well as the space of ends $\mathcal{E}(Y)$ of Y as a compact totally disconnected metrizable space (see [12] [13]). The CW-complex Y is *semistable* at the end determined by ω if any other proper ray defining the same end is in fact properly homotopic to ω; equivalently, if the fundamental pro-group $\pi_1(Y, \omega)$ is pro-isomorphic to a tower of groups with surjective bonding homomorphisms (see [13] Prop. 16.1.2). Recall that the homotopy pro-groups $\pi_n(Y, \omega)$ are represented by the inverse sequences (tower) of groups

$$\pi_n(Y, \omega(0)) \xrightarrow{\phi_1} \pi_n(Y - C_1, \omega(t_1)) \xrightarrow{\phi_2} \pi_n(Y - C_2, \omega(t_2)) \leftarrow \cdots$$

where $C_1 \subset C_2 \subset \cdots \subset Y$ is a filtration of Y by compact subspaces, $\omega([t_i, \infty)) \subset Y - C_i$ and the bonding homomorphisms ϕ_i are induced by the inclusions and basepoint-change isomorphisms. One can show the independence with respect to the filtration. Also, properly homotopic base rays yield pro-isomorphic homotopy pro-groups π_n, for all n. If Y is semistable at each end then we will simply say that Y is semistable at infinity, and in this case two proper rays representing the same end yield the same (up to pro-isomorphism) homotopy pro-groups π_n. We refer to [13] [24] for more details.

Given a CW-complex X, with $\pi_1(X) \cong G$, we will denote by \tilde{X} the universal cover of X, constructed as prescribed in ([13], §3.2), so that G is acting freely on
the CW-complex \tilde{X} via a cell-permuting left action with $G\backslash \tilde{X} = X$. The number of ends of an (infinite) finitely generated group G represents the number of ends of the (strongly) locally finite CW-complex \tilde{X}, for some (equivalently any) CW-complex X with $\pi_1(X) \cong G$ and with finite 1-skeleton, which is either 1, 2 or ∞ (finite groups have 0 ends [13, 27]). If G is finitely presented, then G is \textit{semistable at infinity} if the (strongly) locally finite CW-complex \tilde{X} is so, for some (equivalently, any) CW-complex X with $\pi_1(X) \cong G$ and with finite 2-skeleton. Observe that any finite-dimensional locally finite CW-complex is strongly locally finite, see [13].

The following result will be crucial for the proof of the main result in this paper.

\textbf{Proposition 2.1.} Let $\mathcal{P} = (X; r)$ be a finite presentation of a torsion free group with a single (cyclically reduced) relator $r \in F(X)$, and consider the associated 2-dimensional CW-complex $K_\mathcal{P}$. Then, the (contractible) universal cover $\tilde{K}_\mathcal{P}$ is properly aspherical at infinity, i.e., for any choice of base ray, the homotopy pro-groups $\text{pro} - \pi_n(\tilde{K}_\mathcal{P}) = 0$ are pro-trivial for $n \geq 2$. Furthermore, the fundamental pro-group $\text{pro} - \pi_1(\tilde{K}_\mathcal{P})$ is pro-(finitely generated free).

Observe that the universal cover $\tilde{K}_\mathcal{P}$ above is already known to be contractible (see [8]) and semistable at infinity (see [25]), and hence its homotopy pro-groups do not depend (up to pro-isomorphism) on the choice of the base ray.

\textbf{Remark 2.2.} Recall that the (finite) 2-dimensional CW-complex $K_\mathcal{P}$ associated to \mathcal{P} is constructed as follows. The 0-skeleton consists of a single vertex and the 1-skeleton $K_1^\mathcal{P}$ consists of a bouquet of circles, one for each element of the basis $x_i \in X$, all of them sharing the single vertex in $K_\mathcal{P}$. Finally $K_\mathcal{P}$ is obtained from $K_1^\mathcal{P}$ by attaching a 2-cell d via a PL map $S^1 \to K_1^\mathcal{P}$ which spells out the single relator r. Note that every lift in the universal cover $\tilde{d} \subset \tilde{K}_\mathcal{P}$ of the 2-cell $d \subset K_\mathcal{P}$ is a disk as r is a cyclically reduced word. Moreover, by the Magnus’ Freiheitssatz (see [22, 23]) every subcomplex of the 1-skeleton $K_1^\mathcal{P}_\mathcal{P}$ not containing all the 1-cells involved in the relator r lifts in the universal cover $\tilde{K}_\mathcal{P}$ to a disjoint union of trees.

Proposition [24] follows immediately from the following lemma, which is an enhancement of [3, Prop. 2.7].

\textbf{Lemma 2.3.} Let $\mathcal{P} = (X; r)$ be a finite, torsion free group presentation with a single (cyclically reduced) relator $r \in F(X)$, and consider the associated 2-dimensional CW-complex $K_\mathcal{P}$. Then, the universal cover $\tilde{K}_\mathcal{P}$ is proper homotopy equivalent to another 2-dimensional CW-complex $\tilde{K}_\mathcal{P}$ which has a filtration $\tilde{C}_1 \subset \tilde{C}_2 \subset \cdots \subset \tilde{K}_\mathcal{P}$ by finite contractible subcomplexes satisfying (for any choice of base ray):

(a) The tower $\{1\} \leftarrow \pi_1(\tilde{K}_\mathcal{P} - \tilde{C}_1) \leftarrow \pi_1(\tilde{K}_\mathcal{P} - \tilde{C}_2) \leftarrow \cdots$ consists of finitely generated free groups of increasing rank, with the bonding maps being the obvious projections, and

(b) The tower $\{1\} \leftarrow \pi_n(\tilde{K}_\mathcal{P} - \tilde{C}_1) \leftarrow \pi_n(\tilde{K}_\mathcal{P} - \tilde{C}_2) \leftarrow \cdots$ is the trivial tower, $n \geq 2$.

\textbf{Remark 2.4.} In fact, the proper homotopy equivalence in the statement of Lemma [24] can be replaced by a “strong” proper homotopy equivalence, i.e., a (possibly infinite) sequence of internal collapses and/or expansions, carried out in a proper fashion. See [4] for more details.
Proof. Indeed, the proof of this lemma is that of [4, Prop.2.7], only that now we extend it, by taking a closer look, so that it covers part (b) here. The proof there goes by induction on the length of the relator $r \in F(X)$ in such a presentation $\mathcal{P} = \langle X : r \rangle$. It consists of a simultaneous double induction argument keeping track of two possible cases, depending on whether there is a generator in X whose exponent sum in r is zero or not, see §3 and §4 in [4] respectively.

In the first case (§3 in [4]), one shows that the induction lies on the fact that $K_{\mathcal{P}}$, an intermediate cover of the CW-complex $K_{\mathcal{P}}$, is made out, up to homotopy, of blocks $K_{\mathcal{P}'}$, where \mathcal{P}' satisfies the inductive hypothesis. In fact, its universal cover $\tilde{K}_{\mathcal{P}'}$ is being slightly altered (within their proper homotopy type) to a CW-complexes $\tilde{K}_{\mathcal{P}'}$ so that their copies can be assembled together resulting into a new CW-complex $\tilde{K}_{\mathcal{P}}$ strongly proper homotopy equivalent to the universal cover of $K_{\mathcal{P}}$. This new CW-complex $\tilde{K}_{\mathcal{P}}$ consists of copies of the various CW-complexes $\tilde{K}_{\mathcal{P}'}$ above, glued together along trees (which were already present in the universal cover of $K_{\mathcal{P}}$, that correspond to the intersections of the different copies of $K_{\mathcal{P}'}$ and whose existence is a consequence of the Magnus’ Freiheitssatz, see Remark 2.2.

The desired filtration for $\tilde{K}_{\mathcal{P}}$ is then the result of assembling the filtrations we encounter on the various complexes $\tilde{K}_{\mathcal{P}'}$, which already have one by induction, as we grow towards infinity. This can be carefully done in such a way that if two of these CW-complexes $\tilde{K}_{\mathcal{P}'}$ meet along a tree inside $\tilde{K}_{\mathcal{P}}$ then each of the members of the corresponding filtration for each of them intersects that tree in a connected subtree.

Finally, given a compact subset $\tilde{C}_n \subset \tilde{K}_{\mathcal{P}}$ from this resulting filtration, the generalized van-Kampen theorem yields that the fundamental group $\pi_1(\tilde{K}_{\mathcal{P}} - \tilde{C}_n)$ is the free product of a free group together with the various $\pi_1(\tilde{K}_{\mathcal{P}'} - \tilde{C}_n')$ (finitely generated free by induction), where $\tilde{C}_n = \tilde{K}_{\mathcal{P}'} \cap \tilde{C}_n \neq \emptyset$.

The novelty here consists of adding part (b) of the statement to the induction hypothesis, and observing that each neighborhood of infinity of the form $U = \tilde{K}_{\mathcal{P}} - \tilde{C}_n$ is an assembly of the various neighborhoods of infinity $U' = \tilde{K}_{\mathcal{P}'} - \tilde{C}_n'$ (with $\tilde{C}_n = \tilde{K}_{\mathcal{P}'} \cap \tilde{C}_n \neq \emptyset$) together with all those (contractible) copies $\tilde{K}_{\mathcal{P}'} \subset \tilde{K}_{\mathcal{P}}$ which do not intersect \tilde{C}_n. Moreover, if two of the neighborhoods of infinity U' (corresponding to two different copies of $\tilde{K}_{\mathcal{P}'}$) intersect inside $\tilde{K}_{\mathcal{P}}$, then they do it along the various components of $T - \tilde{C}_n$, where $T \subset \tilde{K}_{\mathcal{P}}$ is the corresponding tree along which those copies of $\tilde{K}_{\mathcal{P}'}$ are glued together inside $\tilde{K}_{\mathcal{P}}$. This way, the universal cover \tilde{U} of $U = \tilde{K}_{\mathcal{P}} - \tilde{C}_n$ is the result of putting together the universal covers \tilde{U}' of the various neighborhoods of infinity $U' = \tilde{K}_{\mathcal{P}'} - \tilde{C}_n'$ glued along connected subtrees, together with all those copies $\tilde{K}_{\mathcal{P}'} \subset \tilde{K}_{\mathcal{P}}$ which do not intersect \tilde{C}_n, each one glued to the rest along a copy of the corresponding tree from the construction indicated above. Thus, the induction hypothesis guarantees that each \tilde{U}' is a contractible CW-complex and hence part (b) follows for $\tilde{K}_{\mathcal{P}}$.

As for the second case (§4 in [4]), in which there is no generator in X whose exponent sum in r is zero, the proof goes somehow the other way around. An auxiliary CW-complex $K_{\mathcal{P}}$ is built. For such $K_{\mathcal{P}}$, the induction hypothesis applies since it has a generator whose exponent sum is zero in the presentation \mathcal{P}', which lies under the inductive hypothesis for the previous case (§3 in [4]). As above, its universal cover can be slightly altered (within its proper homotopy type) to a new CW-complex $\tilde{K}_{\mathcal{P}'}$ which is made out of blocks, corresponding to copies of
our candidates for the CW-complex \hat{K}_P in question, glued together along copies of the real line. Given an appropriate filtration $C_n' \subset K_{P'}$ by compact subsets (provided by the induction hypothesis) satisfying the required properties for $K_{P'}$, one can get the desired filtration on each copy \hat{K}_P inside $\hat{K}_{P'}$ simply by considering the intersections $C_n = \hat{K}_P \cap C_n'$. Observe that this procedure may yield different choices for the desired filtration on each of those copies of \hat{K}_P, but they all satisfy the required properties (a)-(b). Indeed, by induction, each neighborhood of infinity in $\hat{K}_{P'}$ of the form $U' = \hat{K}_{P'} - C_n'$ has finitely generated free fundamental group and trivial higher homotopy groups. From here, the argument is similar to the one given above, concluding that the corresponding neighborhoods of infinity $U = \hat{K}_P - C_n$ in each copy \hat{K}_P inside $\hat{K}_{P'}$ behave in the same way (as each $\pi_1(U)$ is now a free factor of $\pi_1(U')$).

A tower of groups $F \equiv \{1 \leftarrow F_1 \leftarrow F_2 \leftarrow \cdots\}$ consisting of finitely generated free groups of non-decreasing rank and the obvious projections as bonding maps will be said to be “telescopic” (or of telescopic type). One can always associate to any given telescopic tower a 1-ended locally-finite (simply connected) 2-dimensional CW-complex Y_m, $0 \leq m \leq \infty$, whose fundamental pro-group realizes that telescopic tower as follows. Set $Y_0 = \{\ast\} \times [0,\infty)$ (a copy of \mathbb{R}_+). Assume Y_n constructed, $n \in \mathbb{N} \cup \{0\}$. Then, Y_{n+1} consists of the proper wedge of Y_n and a copy $S^1 \times [n,\infty) \cup D^2 \times \{n\}$ of \mathbb{R}^2 attached along Y_0. Finally, we set $Y_\infty = \cup_{n \geq 0} Y_n$. Indeed, one can easily check that for some $0 \leq m \leq \infty$ and some filtration $\{J_n\}_{n \geq 1}$ of Y_m, there is a pro-isomorphism $\psi = \{\psi_n\}_{n \geq 1} : \text{pro} - \pi_1(Y_m) \rightarrow F$, where each $\psi_n : \pi_1(Y_m - J_n) \rightarrow F_n$ is an isomorphism between finitely generated free groups. Observe that the proper homotopy type of Y_m can be represented by a subpolyhedron of \mathbb{R}^3, see the figure below.

![Figure 1](image_url)

Corollary 2.5. With the above notation, in the 1-ended case the universal cover \hat{K}_P is proper homotopy equivalent to either $Y_1(=\mathbb{R}^2)$ or Y_∞.

Proof. According to the above, by Lemma 2.3 (a), there is some $0 \leq m \leq \infty$ and a pro-isomorphism $\psi = \{\psi_n\}_{n \geq 1} : \text{pro} - \pi_1(Y_m) \rightarrow \text{pro} - \pi_1(\hat{K}_P)$, with each $\psi_n : \pi_1(Y_m - J_n) \rightarrow \pi_1(\hat{K}_P - C_n)$ being an isomorphism between finitely generated free groups. Moreover, by Lemma 2.3 (b) and [6] Prop. 3.3, there is a proper map $f : Y_m \rightarrow \hat{K}_P$ inducing the pro-isomorphism ψ; in fact, f is a weak proper homotopy equivalence, as Y_m is clearly properly aspherical at infinity as well, and hence f induces pro-isomorphisms between all the homotopy pro-groups. Therefore, by the corresponding proper Whitehead theorem (see [10] Thm. 5.5.3] or [11 § 8], for instance) f is in fact a proper homotopy equivalence.
It remains to show that \(m = 1 \) or \(\infty \). For this, observe that \(m > 0 \) since otherwise \(\hat{K}_P \) (and hence \(\tilde{K}_P \)) would be proper homotopy equivalent to a 3-manifold with a single plane on its boundary (as \(Y_0 = \mathbb{R}_+ \) thickens to a 3-dimensional half-space), which is not possible by [5, Cor. 5.14]. Furthermore, \(Y_m \) (and hence \(\tilde{K}_P \)) must be proper homotopy equivalent to a 3-manifold with boundary (by means of a regular neighborhood of the subpolyhedron of \(\mathbb{R}^3 \) in the figure above) which can only have either two or infinitely many plane boundary components, by [5, Cor. 5.11, 5.14]. The rest of the proof follows from this and the fact that the first option only occurs in the case of a virtually surface group, see [5, Thm. 5.17]. □

Remark 2.6. In terms of [5], every 1-ended, torsion free one-relator group is proper \(2 \)-equivalent to either \(\mathbb{Z} \times \mathbb{Z} \) or \(\mathbb{F}_2 \times \mathbb{Z} \) by [5, Thm 5.1], as one relator groups are properly 3-realizable, see [4, 21]; in fact, given a presentation \(\mathcal{P} \) as above, the universal cover of \(K_P \) itself is proper homotopy equivalent to a 3-manifold (by considering a regular neighborhood of the above subpolyhedron in \(\mathbb{R}^3 \)) with no need to take wedge with a single 2-sphere, thus answering in the affirmative a conjecture posed in [4] (in the torsion free case). Observe that the third option \(\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \) from [5, Thm 5.1] is ruled out by [5, Cor. 5.14], and the first option \(\mathbb{Z} \times \mathbb{Z} \) only occurs in the case of a virtually surface group, by [5, Thm. 5.17].

3. Proof of the main results

The purpose of this section is to prove Theorems 1.2 and 1.6. For this, we need the following previous result, which is a combination of other well known results.

Lemma 3.1. Let \(X \) be a locally finite \(n \)-dimensional (PL)CW-complex. If the following two conditions hold:

(a) \(X \) is inward tame, and
(b) For any choice of base ray, the fundamental pro-group \(\text{pro} \ - \pi_1(X) \) is pro-finitely generated free

then the product \(X \times I^{2n+5} \) admits a \(\mathbb{Z} \)-compactification, with \(I = [0,1] \).

Proof. Let \(I^\infty \) denote the Hilbert cube. It is well known that the product \(Y = X \times I^\infty \) is a Hilbert cube manifold (see [29, 9]) which satisfies again properties (a) and (b) from the statement, as \(I^\infty \) is compact and contractible and so \(X \) and \(Y \) are proper homotopy equivalent. In particular, \(Y \) is inward tame. Moreover, the Chapman-Siebenmann obstructions for a Hilbert cube manifold admitting a \(\mathbb{Z} \)-compactification ([7, Thms 3, 4], see also [16, §3.8.2]) vanish for \(Y \) since \(\text{pro} \ - \pi_1(Y) \)
can be represented by an inverse sequence
\[\pi_1(Y) \leftarrow \pi_1(N_1) \leftarrow \pi_1(N_2) \leftarrow \cdots \]
where \(\{N_i\}_i \) is a nested cofinal sequence of neighborhoods of infinity in \(Y \) with \(\pi_1(N_i) \) a finitely generated free group, \(i \geq 1 \); in fact, each \(N_i \) can be taken as a product \(N_i = M_i \times I^\infty \), where \(M_i \) is a neighborhood of infinity in \(X \). Thus \(Y = X \times I^\infty \) admits a \(\mathbb{Z} \)-compactification. Finally, the results in [12] show that \(X \times I^{2n+5} \) admits a \(\mathbb{Z} \)-compactification as well.

We now proceed with the proof of the main results.

Proof of Theorem 1.2. Suppose a given torsion free finitely presented group \(G \) admits a finite presentation \(\mathcal{P} = \langle X; r \rangle \) with a single (cyclically reduced) relator \(r \in F(X) \). If \(G \) is 2-ended then \(G \) must be the group of integers \(\mathbb{Z} \) (see [27, Thm. 5.12]) which easily admits a weak \(\mathbb{Z} \)-structure just by adding two points as its boundary. Assume now \(G \) is 1-ended. Then, by Corollary 2.5, the universal cover \(\widetilde{K}_\mathcal{P} \) is proper homotopy equivalent to either the plane \(\mathbb{R}^2 \) or the locally finite subpolyhedron of \(\mathbb{R}^3 \) shown in figure 1, which are both easily shown to be inward tame, and hence so is \(K_\mathcal{P} \). On the other hand, Proposition 2.1 ensures condition (b) in Lemma 3.1 above. Therefore, the (contractible) CW-complex \(\widetilde{K}_\mathcal{P} \times I^9 \) admits a \(\mathbb{Z} \)-compactification. Observe that the proper, free and cocompact \(G \) action on \(\widetilde{K}_\mathcal{P} \) yields a proper, free and cocompact \(G \) action on \(\widetilde{K}_\mathcal{P} \times I^9 \) in the obvious way, thus providing a weak \(\mathbb{Z} \)-structure on \(G \) whose associated weak \(\mathbb{Z} \)-boundary has the shape of the \(\mathbb{Z} \)-boundary of a \(\mathbb{Z} \)-compactification of either the plane or the subpolyhedron shown in figure 1, see [16, Cor. 3.8.15]. In the case of the plane this \(\mathbb{Z} \)-boundary has the shape of a circle, and in the second case one can easily show that the corresponding \(\mathbb{Z} \)-boundary has the shape of a Hawaiian earring, as claimed.

Finally, if \(G \) is infinite ended then \(G \) decomposes as a free product of groups (as \(G \) is torsion free) by the Stallings’s structure theorem (see [13,27]). Moreover, being \(G \) a one-relator group, it follows from Grushko’s theorem that \(G \) is a free product of a free group and a one-relator group with at most one end. See [22, Prop. II.5.13] for details. Both factors admit a weak \(\mathbb{Z} \)-structure and hence so does their free product, by the proof of [28, Thm. 2.9].

Just as we did in section §2 with respect to the work in [3], a closer look at the proofs of [21 Thm. 1.13] and [21 Prop. 1.18] yields the following generalization of Proposition 2.1 and Lemma 2.3 (in the 1-ended case).

Proposition 3.2. Let \(\mathcal{P} = \langle X; R \rangle \) be a finite aspherical presentation of a torsion free, 1-ended generalized one-relator group \(G \in \mathcal{C} \), with each \(r \in R \) being a cyclically reduced word in \(F(X) \), and consider the associated 2-dimensional CW-complex \(\widetilde{K}_\mathcal{P} \). Then, the (contractible) universal cover \(\widetilde{K}_\mathcal{P} \) is properly aspherical at infinity, i.e., for any choice of base ray, the homotopy pro-groups \(\pi_n(\widetilde{K}_\mathcal{P}) = 0 \) are pro-trivial for \(n \geq 2 \), and the fundamental pro-group \(\pi_1(\widetilde{K}_\mathcal{P}) \) is pro-isomorphic to a telescopic tower

Thus, the proof of Theorem 1.6 is the same as that of Theorem 1.2 in the 1-ended case.
Remark 3.3. It is worth pointing out that sometimes the strategy followed to prove that some classes of 1-ended groups admit a weak \mathcal{Z}-structure includes showing that the fundamental pro-group is pro-(finitely generated free). Under semistability at infinity, this property about the fundamental pro-group amounts to saying that the groups under study are \textit{properly 3-realizable}, i.e., they can be realized by a finite 2-dimensional CW-complex whose universal cover is proper homotopy equivalent to a 3-manifold. See [20, Thm. 1.2] and [5, Thm. 5.22]. The above is the case of this and other papers, see [15] for instance. At the time of writing it is unknown whether there is a relation between proper 3-realizability and the existence of a weak \mathcal{Z}-structure.

REFERENCES

[1] H. J. Baues, A. Quintero. Infinite Homotopy Theory. \textit{K-Monographs in Mathematics}, vol. 6, Kluwer, 2001.
[2] M. Bestvina. Local Homology Properties of Boundaries of Groups. \textit{Michigan Math. J.}, vol. 43, no. 4 (1996), 783-788.
[3] M. Bestvina, G. Mess. The boundary of negatively curved groups. \textit{J. Amer. Math. Soc.}, vol. 4, no. 3 (1991), 469-481.
[4] M. Cárdenas, F. F. Lasheras, A. Quintero, D. Repovš. One-relator groups and proper 3-realizability \textit{Rev. Mat. Iberoamericana}, vol. 25, no. 2 (2009), 739-756.
[5] M. Cárdenas, F. F. Lasheras, A. Quintero, R. Roy. A topological equivalence relation for finitely presented groups. \textit{J. Pure Appl. Algebra}, vol. 224, no. 7 (2020), 25 pp.
[6] M. Cárdenas, F. Muro, A. Quintero. The proper L-S category of Whitehead manifolds. \textit{Top. Appl.}, vol. 153 (2005), 557-579.
[7] T. A. Chapman, L. C. Siebenmann. Finding a boundary for a Hilbert cube manifold. \textit{Acta Math.}, vol. 137, no. 3-4 (1976), 171-208.
[8] E. Dyer, A. T. Vasquez. Some small aspherical spaces. \textit{J. Austral. Math. Soc.}, 16 (1973), 332-352.
[9] R. D. Edwards. Characterizing infinite-dimensional manifolds topologically (after Henryk Torunczyk). \textit{Séminaire Bourbaki (1978/79)}, Exp. No. 540, \textit{Lecture Notes in Math.}, 770 (1980), Springer, 278-302.
[10] D. A. Edwards, H. M. Hastings. Čech and Steenrod homotopy theories with applications to geometric topology. \textit{Lecture Notes in Mathematics}, vol. 542. Springer-Verlag, 1976.
[11] F. T. Farrell, J-F. Lafont. $\mathcal{E}Z$-structures and topological applications. \textit{Comment. Math. Helv.}, vol. 80 (2005), 103-121.
[12] S. C. Ferry. Stable compactifications of polyhedra. \textit{Michigan Math. J.}, vol. 47, no. 2 (2000), 287-294.
[13] R. Geoghegan. Topological Methods in Group Theory. \textit{Graduate Texts in Mathematics} 243, Springer, 2008.
[14] C. R. Guilbault. A non-\mathcal{Z}-compactifiable polyhedron whose product with the Hilbert cube is \mathcal{Z}-compactifiable. \textit{Fund. Math.}, vol. 168, no. 2 (2001), 165-197.
[15] C. R. Guilbault. Weak \mathcal{Z}-structures for some classes of groups. \textit{Algebr. Geom. Topol.}, vol. 14, no. 2 (2014), 1123-1152.
[16] C. R. Guilbault. Ends, shapes, and boundaries in manifold topology and geometric group theory. \textit{Topology and geometric group theory}, \textit{Springer Proc. Math. Stat.}, vol. 184 (2016), Springer, 45-125.
[17] C. R. Guilbault, M. A. Moran. Proper homotopy types and \mathcal{Z}-boundaries of spaces admitting geometric group actions. \textit{Expo. Math.}, vol. 37, no. 3 (2019), 292-313.
[18] C. R. Guilbault, M. A. Moran, C. J. Tirel. Boundaries of Baumslag-Solitar groups. \textit{Algebr. Geom. Topol.}, vol. 19 (2019), 2077-2097.
[19] G. Higman. A finitely generated infinite simple group. \textit{J. London Math. Soc.}, vol. 16 (1973), 332-352.
[20] F. F. Lasheras. Ascending HNN-extensions and properly 3-realizable groups. \textit{Bull. Austral. Math. Soc.}, vol. 72 (2005), 187-196.
[21] F. F. Lasheras, R. Roy. Relating the Freiheitsatz to the asymptotic behavior of a group. Rev. Mat. Iberoamericana, vol. 29, no. 1 (2013), 75-89.
[22] R. C. Lyndon, P. E. Schupp. Combinatorial Group Theory. Springer-Verlag, Berlin, 1977.
[23] W. Magnus. Über diskontinuierliche Gruppen mit einer definierenden Relation. (Der FHS) J. reine angew. Math., vol. 163 (1930), 141-165.
[24] S. Mardesic, J. Segal. Shape Theory. North-Holland, 1982.
[25] M. Mihalik, S. Tschchantz. One relator groups are semistable at infinity. Topology, vol. 31, no. 4 (1992), 801-804.
[26] M. A. Moran. Finite-dimensionality of \mathcal{Z}-boundaries. Groups Geom. Dyn., vol. 10, no. 2 (2016), 819-824.
[27] P. Scott, C. T. C. Wall. Topological methods in group theory. Homological Group Theory, London Math. Soc. Lecture Notes, Cambridge Univ. Press, Cambridge (1979), 137-204.
[28] C. J. Tirel. \mathcal{Z}-structures on product groups. Algebr. Geom. Topol., vol. 11 (2011), 2587-2625.
[29] J. E. West. Factoring the Hilbert cube. Bull. Amer. Math. Soc., vol. 76 (1970), 116-120.