Scott T. Kay, Michael W. Peel, C. J. Short, Peter A. Thomas, Owain E. Young, Richard A. Battye, Andrew R. Liddle and Frazer R. Pearce

1 Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL
2 Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH
3 Department of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD

This draft was generated on 31 January 2012

ABSTRACT

Large surveys using the Sunyaev-Zel’dovich (SZ) effect to find clusters of galaxies are now starting to yield large numbers of systems out to high redshift, many of which are new discoveries. In order to provide theoretical interpretation for the release of the full SZ cluster samples over the next few years, we have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples that the intrinsic (spherical) $Y_{500} - M_{500}$ relation has very little scatter ($\sigma_{\text{log} Y} \approx 0.04$), is insensitive to cluster gas physics and evolves to redshift one in accord with self-similar expectations. Our pre-heating and feedback models predict scaling relations that are in excellent agreement with the recent analysis from combined Planck and XMM-Newton data by the Planck Collaboration. This agreement is largely preserved when r_{500} and M_{500} are derived using the hydrostatic mass proxy, $Y_{X,500}$, albeit with significantly reduced scatter ($\sigma_{\text{log} Y} \approx 0.02$), a result that is due to the tight correlation between Y_{500} and $Y_{X,500}$. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line-of-sight, by extracting cluster Y_{500} values from fifty simulated 5° × 5° sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) $Y_{500} - M_{500}$ relation increases in the pre-heating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r_{500} in all cases. The profiles themselves are well described by generalised Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter. In conclusion, our results support the notion that Y_{500} is a robust mass proxy for use in cosmological analyses with clusters.

Key words: hydrodynamics - methods: numerical - X-rays: galaxies: clusters - galaxies: clusters: general

1 INTRODUCTION

The Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zel’dovich 1972) is a powerful method for discovering new clusters of galaxies. It arises generically due to the scattering of Cosmic Microwave Background (CMB) photons off free electrons, leading to a predictable spectral distortion in the CMB that is, in the non-relativistic limit, linearly dependent on the line integral of the electron pressure (Birkinshaw 1999). In modern theories of structure formation, the dominant contribution to the SZ signal comes from the intracluster medium (ICM), a diffuse plasma within clusters that is approximately in hydrostatic equilibrium within the dark-matter dominated potential (see Voit 2003; Allen, Evrard & Mantz 2011 for recent reviews). The key SZ observable is the Y parameter, defined as

$$ Y = \int y \, d\Omega, \quad (1) $$

E-mail: Scott.Kay@manchester.ac.uk
where the integral is performed over the solid angle subtended by the cluster. The Compton-y parameter is determined by the thermal structure of the ICM

\[y = \frac{\sigma_T k}{m_e c^2} \int n_e T_e \, dl, \]

where \(n_e \) and \(T_e \) are the density and temperature of the free electrons respectively and \(dl \) is the differential line element along the line-of-sight. Since \(Y \) can be expressed as a volume integral of the pressure (when the redshift and cosmological parameters are specified), it measures the total thermal energy of the gas, a property that ought to be strongly correlated with the cluster’s mass through the virial theorem. This means that \(Y \) ought to be relatively insensitive to the complex micro-physics taking place in the cluster core, unlike other global properties such as X-ray luminosity.

Early observational studies confirmed the detection of an SZ signal towards known massive clusters of galaxies and used this to estimate the Hubble constant (e.g. Jones et al. 1993; Birkinshaw & Hughes 1994). Over the past decade, SZ observations of known bright X-ray bright clusters have become routine, allowing the investigation of cluster scaling relations to be performed (e.g. McCarthy et al. 2003; Benson et al. 2004; Morandi, Ettori & Macciò 2006; Bonamente et al. 2008; Huang et al. 2010; Lancaster et al. 2011). One potential shortcoming of this approach is that the samples are X-ray selected and therefore biased towards luminous, cool-core systems at low redshift.

In the past few years, SZ science has entered the exciting new phase of blind surveys, where detections of new clusters have become possible (Staniszewski et al. 2000). Indeed, SZ surveys are now yielding large numbers of SZ-selected clusters, many of them new detections, especially from the South Pole Telescope (SPT; Vanderlinde et al. 2010; Andersson et al. 2011; Williamson et al. 2011), the Atacama Cosmology Telescope (ACT; Marriage et al. 2011; Selgas et al. 2011) and the Planck satellite (Planck Collaboration 2011b). Since the SZ effect is effectively independent of redshift, the SZ selection function tends to favour higher redshift systems than the X-ray counterpart, assuming similar angular resolution. As a result, the new blind SZ surveys are starting to find new massive systems at \(z \sim 1 \) (Planck Collaboration 2011b; Foley et al. 2011; Menanteau et al. 2011). In the near future, we should expect to see these numbers increase substantially as the full SZ effect along the line-of-sight, to assess the projection effects of large-scale structure. Finally, we attempt to produce results for the SZ \(Y-M \) relation measured within a radius corresponding to a mean internal density equal to 200 times the critical density, \(r_{200} \).

The aim of this paper is to use these Millennium Gas simulations to focus in more detail on predictions of the SZ effect and, in particular, the \(Y-M \) relation for clusters. Our paper builds on the Stanek et al. 2010] work in three important ways. Firstly, we add a third model that includes a more realistic treatment of feedback, both from supernovae and active galactic nuclei. This model has already been shown to successfully match many of the X-ray properties of non-cool core clusters (Short & Thomas 2009; Short et al. 2010).

Secondly, we include in our analysis simulated maps of the full SZ effect along the line-of-sight, to assess the projection effects of large-scale structure. Finally, we attempt to produce results for our \(Y-M \) scaling relations using methods that are more closely matched with observations. In particular, we present our results for the smaller \(r_{200} \) and investi-
gate the impact of assuming hydrostatic equilibrium and a mass proxy \(Y_X \) \cite{Krivtsov2006} on the \(Y - M \) relation. We organise the remainder of the paper as follows. In Section 2 we outline the simulation details and our methods used to define cluster properties. We also present some basic properties of the sample and SZ maps. Sections 3 \& 4 contain our main results: in Section 3 we present an analysis of the hot gas pressure profiles, before going on to study SZ scaling relations in Section 4 and the impact of hydrostatic bias in Section 5. Finally, in Section 6 we summarise our main conclusions and outline future work.

2 SIMULATION DETAILS

Our results are drawn from the Millennium Gas simulations, a set of large, cosmological hydrodynamics simulations of the \(\Lambda \)CDM cosmology \((\Omega_m = 0.25, \Omega_{\Lambda} = 0.75, \Omega_b = 0.045, h = 0.73, \sigma_8 = 0.9) \). In this section we summarise the details of these simulations and present our methods for constructing simulated cluster properties and SZ sky maps.

2.1 Millennium Gas simulations

The Millennium Gas simulations \cite{Hartley2008, Stanek2010, Short2010, Young2011} were constructed to provide hydrodynamic versions of the Virgo Consortium’s dark matter Millennium Simulation \cite{Springel2005}. The simulations were therefore started from the same realisation of the large-scale density field within the same comoving box-size, \(L = 500 h^{-1}\text{Mpc} \) and used the same set of cosmological parameters. The MGS were run with the publicly-available GADGET2 \(N \)-body/hydrodynamics code \cite{Springel2005}. Due to the increased computational requirements from the inclusion of gas particles, the simulations were run with fewer \((5 \times 10^8 \text{each of gas and dark matter}) \) particles in total than the MS. The particle masses were therefore set to \(m_{\text{gas}} = 3.1 \times 10^3 h^{-1}\text{M}_\odot \) and \(m_{\text{dm}} = 1.4 \times 10^{10} h^{-1}\text{M}_\odot \) for the gas and dark matter respectively. Gravitational forces were softened at small separations using an equivalent Plummer softening length of \(\epsilon = 100 h^{-1}\text{kpc} \), held fixed in comoving co-ordinates. At low redshift \((z < 3) \) the softening was then fixed to \(\epsilon = 25 h^{-1}\text{kpc} \) in physical co-ordinates.

Two versions of the MGS were run with the above properties. Both runs started from identical initial conditions but differed in the way the gas was evolved. In the first run, the gas was modelled as an ideal non-radiative fluid. In addition to gravitational forces, the gas could undergo radiative changes in regions of non-zero pressure gradients, modelled using the Smoothed Particle Hydrodynamics formalism \cite{SPH; see Springel & Hernquist 2002 for the version of SPH used in GADGET2}. Additionally, in regions where the flow was convergent the bulk kinetic energy of the gas is converted into internal energy using an artificial viscosity term; this is essential to capture shocks and thus generate quasi-hydrostatic atmospheres within virialised dark matter haloes. In accord with previous studies \cite{Young2011}, we refer to this simulation as the GO (Gravitation Only) model.

It is well known that a non-radiative description of intracluster gas does not agree with the observed X-ray properties of clusters, especially at low masses, where an excess of core gas is required to produce a steeper X-ray luminosity-temperature relation \cite[e.g.][]{Voit2005}. A simple method capable of generating this excess entropy is to pre-heat the gas at high redshift before cluster collapse \cite{Kaiser1991, Evrard&Henry1991}. We implemented an analysis in a second simulation by raising the minimum entropy \(Y_{\text{pre-heat}} \) of the gas \((\text{by increasing its temperature}) \) to \(K_{\text{min}} = 200 \text{keV cm}^2 \) at \(z = 4 \). The entropy level was then fixed to match the mean \(\sigma = 0 \) X-ray luminosity-temperature relation \cite{Hartley2008}. We also included radiative cooling, an entropy sink. However, this made very little difference, as the cooling time of the pre-heated gas is very long compared to the Hubble time and therefore gas could no longer cool and form stars before the end of the simulation. We refer to this simulation using the label PC, for Pre-Heating plus Cooling.

We also consider a third model when analysing the SZ properties from individual clusters. This is the Feedback Only (hereafter FO) model developed by \cite{Short&Thomas2010} and then applied to MGS clusters by \cite{Short&Thomas2010}, where full details of the method may be found. Briefly, it uses the semi-analytic galaxy formation model of \cite{DeLucia&Blazek2007}, run on dark-matter-only resimulations of MS clusters, to provide information on the effects of star formation and feedback on the intracluster gas. The model works as follows. Galaxy merger trees are first generated by applying the semi-analytic model to the dark matter distribution. Various properties of the galaxies \((\text{such as their position, stellar mass and black hole mass}) \) are stored at each snapshot of the simulation. The clusters are then re-simulated with gas, assuming that the gas particles have zero gravitational mass; this guarantees that the dark matter distributions \((\text{and therefore galaxy positions}) \) are identical to those in the parent dark-matter-only simulation. At each snapshot time, two important changes are made to the gas. Firstly the increase in stellar mass of each cluster galaxy is used to convert local intracluster gas into stars, a requirement for generating sensible stellar and gas fractions \cite{Young2011}. This change in stellar mass is also used to heat the gas from supernova explosions. Secondly, any increase in black hole mass is used to heat the gas on the basis that such accretion leads to an Active Galactic Nucleus \((\text{AGN}) \). The heating rate, known as AGN feedback, is taken from \cite{Bower2008} and is given by

\[
E_{\text{cool}} = \min \left(\epsilon_{\text{SMBH}} L_{\text{Edd}}, \epsilon M_{\text{BH}} \right),
\]

where \(\epsilon_{\text{SMBH}} = 0.02 \) dictates the maximum heating rate \((\text{in units of the Eddington luminosity}) \) and \(\epsilon = 0.1 \) is the efficiency with which the accreted mass is converted into feedback energy. This is particularly important because AGN are the dominant feedback mechanism on cluster scales.

We analyse the same sample of 337 clusters studied by \cite{Short&Thomas2010}, comprising all objects in the MS with

\(1\) In the usual way, we take entropy to mean the quantity \(K = kT/n_e^2/\mu M_{\odot} \), where \(T \) is the gas temperature and \(n_e \) the free electron density.
virial mass $M_{\text{vir}} > 5 \times 10^{14} h^{-1} M_\odot$ and a random sample at lower mass $(1.7 \times 10^{13} h^{-1} M_\odot \leq M_{\text{vir}} \leq 5 \times 10^{14} h^{-1} M_\odot)$ chosen such that there were a fixed number of objects within each logarithmic mass bin. The FO model successfully generates the required excess entropy of the low redshift population and provides a good match to the structural properties of non-cool core clusters. The main shortcoming of this model is that it neglects the effects of radiative cooling and therefore cannot reproduce the most X-ray luminous cool core population (Short et al. 2010). This failure may not be as serious as it seems, however, since there is some evidence that the X-ray cool core population diminishes with increasing redshift, both from observations (e.g. Maughan et al. 2011) and simulations (e.g. Kay et al. 2007). Furthermore, as we will demonstrate, the SZ Y parameter (which measures the global thermal energy of the intracluster gas) is reasonably insensitive to changes in gas physics that predominantly affect the cluster core. Issues relevant to this study where cooling could impact upon our results are the degree to which the ICM is hydrostatic and the effect of gas clumping on the X-ray quantity, Y_X, used as a cluster mass proxy. We note that a first step towards including radiative cooling in the model has been made and shows promising results (Short, Thomas & Young 2012). Ultimately, a fully self-consistent scheme is desirable, where the same cooling and heating rates are used in both the semi-analytic model and hydrodynamic simulation.

2.2 Cluster definitions and estimation of global properties

Clusters are defined in exactly the same way as in Kay et al. (2007). Firstly, a friends-of-friends code is run on the dark matter particles for each snapshot. The dimensionless linking length (in units of the mean inter-particle separation) is set to $b = 0.1$, chosen to minimise the probability of linking two haloes together outside of their respective virial radii. The dark matter particle with the most negative gravitational potential energy is then identified for each group and this is taken to be the centre.

In the next stage, a sphere is centred on each friends-of-friends group and its radius increased until the total mass (from dark matter, gas and stars, when present) satisfies

$$M_\Delta = \frac{4\pi}{3} r_\Delta^3 \Delta \rho_{\text{crit}}(z),$$

where r_Δ is the proper radius of the sphere, Δ is a specified density contrast, $\rho_{\text{crit}}(z) = (3H_0^2 / 8\pi G)E(z)^2$ is the critical density and $E(z)^2 = \Omega_m (1 + z)^3 + \Omega_\Lambda$ for a flat universe. We assume $\Delta = 500$ for the main results in this study as this value is commonly adopted for observational studies (some of which we will compare to) because r_{500} is sufficiently large to make many integrated properties insensitive to variations in core structure, while also being small enough to be within reach for detailed X-ray observations of many objects. We occasionally use the value of Δ appropriate for the virial radius, r_{vir}, as defined by the spherical top-hat collapse model. This is a redshift-dependent quantity, $\Delta = \Delta(z)$, which we calculate using the fitting formula given by Bryan & Norman (1998). Note that at $z = 0$, $\Delta \simeq 94$ and $r_{\text{vir}} \simeq 2r_{500}$.

Once the cluster’s mass and radius is defined, we calculate various properties of the hot gas, the most important being the SZ flux. The frequency independent part is given by

$$Y_{500} = \frac{1}{D_A^2} \frac{\sigma_T}{m_e c^2} \int n_e kT_e \, dV,$$

where D_A is the (cosmology-dependent) angular diameter distance to the cluster and the integral is performed over the entire cluster sphere. To simplify matters, we re-define the integrated SZ Y parameter

$$Y_{500} D_A^2 \rightarrow Y_{500},$$

since this combination is directly proportional to the integrated thermal energy of the gas which is the physical property of interest. Note that the dimensions of Y_{500} are now that of area; we will therefore present values in $h^{-2}\text{Mpc}^2$ units. The value of Y_{500} is estimated for each cluster using

$$Y_{500} = \left(\frac{\sigma_T k m_{\text{gas}}}{\mu_e m_h c^2} \right) \sum_{i=1}^{N_{\text{hot}}} T_i,$$

where the sum runs over all hot $(T > 10^7\text{K})$ gas particles within r_{500}, with mass m_{gas} and temperature T_i. We adopt the value $\mu_e = 1.14$ for the mean molecular weight per free electron, appropriate for a fully ionised plasma of hydrogen (with mass fraction $X = 0.76$) and helium (with mass fraction $Y = 1 - X$). We also assume equipartition of energy between the electrons and nuclei, thus $T = T_e$.

We estimate the X-ray temperature of the ICM using the spectroscopic-like temperature T_{sl} (Mazzotta et al. 2004), appropriate for bremsstrahlung in hot $(kT > 3\text{keV})$ clusters

$$T_{sl} = \frac{\sum_{i=1}^{N_{\text{hot}}} \rho_i T_i^{1/4}}{\sum_{i=1}^{N_{\text{hot}}} \rho_i T_i^{-1/4}},$$

where ρ_i is the density of particle i and in this case the sum runs over all hot gas particles with $kT_i > 0.5\text{keV}$. We measure T_{sl} in the region outside the cluster core ($x_{\text{core}} < r/r_{500} < 1$, where $x_{\text{core}} = 0.1$ for the GO and PC models, and 0.15 for the FO model) to provide a closer match to observed X-ray temperature measurements (where a larger variation in core temperature is seen than in our simulations).

A quantity related to Y_{500} is $Y_{X,500} \propto M_{\text{gas}} T_X$, estimated from X-ray data. Introduced by Kravtsov, Vikhlinin & Nagai (2006), it was shown to be a low-scatter proxy for cluster mass (due to scatter in X-ray temperature being negatively correlated with scatter in gas mass). We estimate this quantity as

$$Y_{X,500} = \left(\frac{\sigma_T k}{\mu_e m_h c^2} \right) M_{\text{gas},500} T_{sl},$$

where $M_{\text{gas},500}$ is the mass of hot gas within r_{500}, although we occasionally present $Y_{X,500}$ in its native $(h^{-1} \text{M}_\odot\text{keV})$ units, i.e. simply assuming $Y_{X,500} = M_{\text{gas,500}} k T_{sl}$. The main

2 The GO/PC and FO data were processed independently and different choices for x_{core} were made at those times. However, the effect of this difference on T_{sl} is small; we checked by recalculating the GO/PC temperatures at $z = 0$ using $x_{\text{core}} = 0.15$ and found only a 2-3 per cent increase, on average.
difference between \(Y\) and \(Y_X\) is that the former depends on the mass-weighted temperature while the latter depends on the X-ray temperature, which is more heavily weighted by lower entropy gas (Mazzotta et al. 2004). Comparing \(Y\) with \(Y_X\) therefore implicitly tests the clumpiness of the ICM since clumpy gas will be cooler and therefore lower the X-ray temperature relative to the mass-weighted temperature (e.g. Kay et al. 2008). As we show below, this effect is model dependent but is of minimal importance in the PC and FO simulations.

2.3 Cluster sample

Table 1 summarises the number of clusters in each of the runs at redshifts, \(z = 0, 0.5\) and 1. For our fiducial sample we have employed a lower mass cut of \(M_{500} > 10^{14}\ h^{-1}\ M_\odot\), a useful limit for comparing with SZ cluster data. The GO and PC simulations have similar numbers, although the latter is slightly smaller due to the effect of pre-heating on the gas fraction (Stanek, Rudd & Evrard 2009). Note the number of clusters increases with redshift in all models, from around 10 per cent at \(z = 0\) to 25 per cent at \(z = 1\), in the GO and PC models. Again, the different method for cluster selection in the FO model modifies the result but nevertheless the trend of increasing disturbed fraction with redshift is still seen.

2.4 Cluster profiles

We discuss hot gas pressure profiles in Section 3 as these are important for understanding the relative contribution to the SZ signal from different radii. The profiles are constructed by first identifying all hot gas particles within a radius \(r_{500}\) of the cluster centre. This sphere is then sub-divided into spherical shells with fixed radial thickness in log\(_{10}(x)\), where \(x = r/r_{500}\). The pressure within the shell is then estimated using a mass-weighted average

\[
P(x) = \frac{1}{V(x) \mu m_H} \sum_{i=1}^{N_{\text{part}}} m_i T_i,
\]

where the sum runs over all hot gas particles within the shell at radial position \(x\), \(V\) is the volume of the shell and \(\mu = 0.59\) is the mean molecular weight for an ionised plasma (assuming zero metallicity).

2.5 Cluster maps

We also compute the thermal SZ effect due to an individual cluster by constructing Compton-\(y\) maps. This allows us to separate the cluster contribution (within a cylinder) from the total integrated signal along the line-of-sight. Each map is constructed by first identifying all hot gas particles within a cuboid of size \(2r_{500} \times 2r_{500} \times 6r_{500}\), centred on the cluster. The particles are then projected along the long axis of the cuboid and smoothed on to a 2D grid, creating the \(y\) distribution. We estimate \(y\) at the location of each pixel, \(R_p = (x, y, z)\), as

\[
y(R_p) = \frac{\sigma_Y k T_{\text{gas}}}{A_{\text{pix}} \mu m_H m_e c^2} \sum_i \int w(|R_i - R_p|, h_i) T_i,
\]

where \(A_{\text{pix}}\) is the area of a single pixel and \(w\) is the projected version of the SPH kernel used by GADGET2. The main sum runs over all hot gas particles with projected position \(R_i\), temperature \(T_i\) and SPH smoothing length \(h_i\). The sum in the denominator runs over all pixels and normalises the kernel for each particle.

Fig. 1 illustrates Compton-\(y\) maps for two massive clusters in our simulations at \(z = 0\): a regular \((s \simeq 0.02)\) cluster with a virial mass \(M_{\text{vir}} \simeq 2.9 \times 10^{15}\ h^{-1}\ M_\odot\) (the most massive object in the MS) and a merging \((s \simeq 0.1)\) cluster with \(M_{\text{vir}} \simeq 1.5 \times 10^{15}\ h^{-1}\ M_\odot\). The left panels show results for the GO simulation, the middle panels for the PC simulation and the right panels for the FO simulation.

As has been seen in previous simulations (e.g. Motl et al. 2004), the \(y\) distribution is very smooth. The most significant features are sharp edges associated with shocks; this is especially clear in the case of the merging cluster. Qualitatively, the maps look structurally similar between models although their \(y\) values within a given pixel can be significantly different, with the GO and PC models

Table 1. Number of clusters in our samples at redshifts, \(z = 0, 0.5\) and 1. Column 1 gives the model label and column 2 the redshift. Column 3 lists the total number of clusters in each sample with \(M_{500} > 10^{14}\ h^{-1}\ M_\odot\), while columns 4 and 5 sub-divide the sample into the regular and disturbed populations respectively, using the \(s\) parameter defined in equation (10).

Model	Redshift	\(N_{\text{clus}}\)	\(N_{\text{clus}}(s \leq 0.1)\)	\(N_{\text{clus}}(s > 0.1)\)
GO	0.0	1110	986	124
	0.5	567	457	110
	1.0	139	103	36
PC	0.0	883	799	84
	0.5	436	355	81
	1.0	102	78	24
FO	0.0	188	154	34
	0.5	148	122	26
	1.0	75	51	24
Figure 1. Top panels: Compton-y maps for the most massive cluster at $z = 0$ in the MS ($M_{\text{vir}} \approx 2.9 \times 10^{15} h^{-1} M_\odot$, which we classify as regular) with X-ray surface brightness contours overlaid. Results are shown, from left to right, for the cluster in the GO, PC and FO models respectively. Images in the bottom panels are similar except a massive disturbed cluster (with $M_{\text{vir}} \approx 1.6 \times 10^{15} h^{-1} M_\odot$) is shown. Each panel is $2r_{\text{vir}}$ across and the scale and value of r_{vir} is shown in the left-hand panels. The range of y values is given for each cluster in the scale at the bottom of each row; note the disturbed cluster has a lower maximum value than the regular cluster. The X-ray contours illustrate levels that are 10 per cent and 1 per cent of the maximum value in the map. The gross features are similar in all 3 models for both clusters, although the X-ray maps reveal that the gas in the the PC clusters is the smoothest, while the GO clusters contain gas with the most small-scale structure.

3 X-ray surface brightness maps are calculated by replacing T_i in equation (12) with $\rho_i \Lambda(T_i, Z)$, where ρ_i is the density of hot gas particle i and $Z = 0.3 Z_\odot$ is the assumed metallicity. The low entropy gas associated with substructures in the cluster. Again, the pre-heating has smoothed these out by raising the entropy of the gas at high redshift. These features are also seen in the FO clusters, where heating is localised to haloes in which AGN feedback is occurring.

2.6 Sky maps
We also analyse simulated sky maps of the thermal SZ effect for the GO and PC models, using the stacked box approach pioneered by da Silva et al. (2000). This is an approximate cooling function, $\Lambda(T, Z)$, is calculated for the soft [0.5-2] keV band. We normalise each surface brightness map to the maximum pixel value.
method for generating past light-cones using a finite number of outputs. To do this we first compute the lookback time corresponding to a comoving distance of $50 \, h^{-1}\text{Mpc}$. We then calculate successive lookback times, increasing the comoving distance in steps of $\Delta_{\text{map}} = 100 \, h^{-1}\text{Mpc}$. These lookback times are used to find the nearest output time when simulation data are stored (a total of 160 snapshots were generated). We also calculate the comoving width required at each lookback time, corresponding to a fixed opening angle of $\theta_{\text{map}} = 5^\circ$. The final lookback time is chosen such that the comoving width is still smaller than the box-size, to avoid replication of the particles. The choice of θ_{map} allows us to integrate the SZ effect out to a maximum redshift, $z_{\text{max}} = 4.7$, using 47 snapshots; this is sufficiently large for the mean y signal to be converged in our simulations (see Fig. 3, discussed below).

Once the required volumes are defined to make up the lightcone, the second stage is to use a random number generator to construct a table of random translations, rotations (in steps of $\pi/2$ radians) and reflections about each of the three axes. This is done in order to minimise the chance of the lightcone containing the same cluster at different redshifts (note the volume required at each time is always less than 20 per cent of the full simulation box because of our choice of Δ_{map}). The list of operations are then used to determine which particles are required to compute the contribution to the SZ signal from each redshift (used to create a so-called partial map) This stage is repeated 50 times to allow us to generate 50 quasi-independent realisations.

The final stage is to generate the partial maps themselves, by smoothing the appropriate gas particles on to a 2D grid. This is done using the same technique as for individual clusters but now using a map area corresponding to $\theta_{\text{map}} \times \theta_{\text{map}}$ at each redshift and a comoving depth of Δ_{map}. Each partial map contains 1200×1200 pixels such that each pixel has an angular size, $\theta_{\text{pix}} = 0.25$ arcmin, comfortably smaller than the typical resolution of current SZ telescopes (1-10 arcmin). The 47 partial maps are then stacked for each realisation to make final maps of the y parameter.

Fig. 2 shows an example Compton-y sky map for realisation 46, chosen because it contains a relatively large cluster. Both the GO (left panel) and PC (right panel) versions are shown. The maps were smoothed using a Gaussian kernel with a full-width half-maximum of 1 arcmin, similar to the resolution of modern ground-based SZ telescopes such as SPT and ACT.

The most striking difference between the two maps is the contrast: the PC map has a higher background than the GO map, making it harder to visually pick out the SZ sources associated with the clusters. This is due to the extra thermal energy added to all the gas by the pre-heating process and can be quantified by measuring the mean y parameter, averaged over all 50 realisations. For the GO run, we find $\langle y \rangle = 2.3 \times 10^{-6}$, increasing by more than a factor of four to $\langle y \rangle = 9.9 \times 10^{-6}$ for the PC run. Although both values are below the current constraint from COBE/FIRAS, $\langle y \rangle < 1.5 \times 10^{-5}$ (Fixsen et al. 1996), it is unlikely to be the case that the true background is as high as in the PC model, as this would erase many of the weak neutral hydrogen absorption lines seen towards quasars (Theuns, Mo & Schaye 2005 RAS, MNRAS 000, 1–27).
The PC model therefore serves as an extreme test of the effect of a high background although we will remove the mean in the PC model, unlike in the GO case, where there is a small but non-negligible signal. This difference is due to the inclusion of radiative cooling in the former model which removes most of the (small amount of) ionised gas at these redshifts.

\section{HOT GAS PRESSURE PROFILES}

Fundamental to understanding the SZ effect from clusters is the hot gas pressure profile, since we can write the SZ Y parameter for a spherically symmetric cluster as

\begin{equation}
Y_{500} = \frac{\sigma_T}{m_e c^2} \int_0^{r_{500}} P_e(r) 4\pi r^2 \ln \frac{r}{r_d} \, dr,
\end{equation}

where $P_e = n_e k T_e$ is the electron pressure. The contribution to Y_{500} will therefore be highest at the radius where $r^2 P_e$ is maximal. If the gas is in hydrostatic equilibrium then the pressure profile ought to be structurally similar between different clusters since it is directly constrained by the underlying gravitational potential, which itself takes on a regular form (e.g. \cite{Navarro97} hereafter NFW).

We construct and compare spherically-averaged, hot gas mass-weighted pressure profiles using equation (11), for all clusters with $M_{500} > 10^{14} h^{-1} M_{\odot}$ in our three (GO, PC and FO) models at $z = 1$ and $z = 0$. The profiles are re-scaled such that we plot dimensionless quantities $x^3 P(x)/P_{500}$ against x, where $x = r/r_{500}$ and the scale pressure, $P_{500} \propto M_{500}^{2/3} E(z)^{8/3}$, is determined assuming a self-similar isothermal gas distribution \cite{Voit02}. If clusters formed a self-similar population then these re-scaled profiles would be identical for both varying mass and redshift.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure3}
\caption{Integrated contribution to the overall mean y signal from gas below a given redshift. The top panel is for the GO simulation and the bottom panel for the PC simulation. Light curves are for individual maps and the dark curve is the average over all 50 maps. Each curve is normalised to the mean y averaged over all 50 maps, highlighting the scatter in the integrated signal between realisations. The simulations predict dramatically different redshift dependencies: the mean signal in the GO simulation comes from low redshift ($z < 2$) whereas the opposite is the case for the PC simulation, due to the effect of pre-heating at $z = 4$.}
\end{figure}

The contribution to the mean y signal from gas at different redshifts is shown in Fig. 3. The top panel shows results for all 50 maps in the GO simulation and the bottom panel for the PC simulation. Again, the difference between the two models is striking: the majority of the y signal comes from low redshift in the GO model (around 80 per cent from $z < 2$) whereas the opposite is true for the PC model (around 80 per cent from $z < 3.5$). Most of the mean y comes from overdense regions (groups and clusters) in the GO model that are more abundant at low redshift. In the PC case, most of the mean signal comes from mildly overdense gas at high redshift (\cite{daSilva01}). Note also that the contribution from gas at $z > 4$ is approximately zero in the PC model, unlike in the GO case, where there is a small but non-negligible signal. This difference is due to the inclusion of radiative cooling in the former model which removes most of the (small amount of) ionised gas at these redshifts.

\section{HOT GAS PRESSURE PROFILES}

Fundamental to understanding the SZ effect from clusters is the hot gas pressure profile, since we can write the SZ Y parameter for a spherically symmetric cluster as

\begin{equation}
Y_{500} = \frac{\sigma_T}{m_e c^2} \int_0^{r_{500}} P_e(r) 4\pi r^2 \ln \frac{r}{r_d} \, dr,
\end{equation}

where $P_e = n_e k T_e$ is the electron pressure. The contribution to Y_{500} will therefore be highest at the radius where $r^2 P_e$ is maximal. If the gas is in hydrostatic equilibrium then the pressure profile ought to be structurally similar between different clusters since it is directly constrained by the underlying gravitational potential, which itself takes on a regular form (e.g. \cite{Navarro97} hereafter NFW).

We construct and compare spherically-averaged, hot gas mass-weighted pressure profiles using equation (11), for all clusters with $M_{500} > 10^{14} h^{-1} M_{\odot}$ in our three (GO, PC and FO) models at $z = 1$ and $z = 0$. The profiles are re-scaled such that we plot dimensionless quantities $x^3 P(x)/P_{500}$ against x, where $x = r/r_{500}$ and the scale pressure, $P_{500} \propto M_{500}^{2/3} E(z)^{8/3}$, is determined assuming a self-similar isothermal gas distribution \cite{Voit02}. If clusters formed a self-similar population then these re-scaled profiles would be identical for both varying mass and redshift.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure4}
\caption{Integrated contribution to the overall mean y signal from gas below a given redshift. The top panel is for the GO simulation and the bottom panel for the PC simulation. Light curves are for individual maps and the dark curve is the average over all 50 maps. Each curve is normalised to the mean y averaged over all 50 maps, highlighting the scatter in the integrated signal between realisations. The simulations predict dramatically different redshift dependencies: the mean signal in the GO simulation comes from low redshift ($z < 2$) whereas the opposite is the case for the PC simulation, due to the effect of pre-heating at $z = 4$.}
\end{figure}

Median scaled profiles are shown in Fig. 4, split into low-mass ($10^{14} h^{-1} M_{\odot} < M_{500} \leq 5 \times 10^{14} h^{-1} M_{\odot}$; triangles) and high-mass ($M_{500} > 5 \times 10^{14} h^{-1} M_{\odot}$; squares) sub-samples. Comparing the high-mass clusters between the three models at $z = 0$, it is immediately apparent that the largest contribution to Y_{500} comes from radii close to r_{500}, i.e. where $P(r) \propto r^{-3}$. The profiles rise sharply (by around an order of magnitude) from the core outwards then stay level or gradually decline at larger scales. The largest differences between the three models occur in the core region, where the PC and FO clusters have lower central pressures than the GO clusters due to the increase in core gas entropy from the extra heating.

The low-mass clusters have very similar median profiles to the high-mass clusters in the GO simulation, reflecting the similarity of objects in that model (\cite{Stanek10}). In the PC and FO models however, the pressure profiles of the low-mass clusters have markedly different shapes from their high-mass counterparts. In particular, the scaled pressure in low-mass clusters is lower in the central region and is higher in the outer region, indicating that they are less concentrated than the high-mass clusters. Again this reflects the breaking of self-similarity caused by the feedback/pre-heating which has a larger effect in the lower mass clusters;
the extra entropy given to the gas causes a re-distribution to take place, pushing the gas out to larger radius.

Comparing the low-mass clusters at low and high redshift, the GO model shows little evolution (the core pressures are slightly lower), while clusters in the PC model have significantly lower core pressures at $z = 1$. This reflects the larger impact of the pre-heating on the gas at high redshift, since a cluster of fixed mass has a lower characteristic entropy at higher redshift from gravitational heating $[K \sim M^{2/3} E(z)^{-2/3}]$. Interestingly, the scaled pressure profiles in the FO model show little evolution with redshift, although the pressure in the outskirts ($r > r_{500}$) is higher at $z = 0$, reflecting the late-time heating of the gas by AGN.

We also compare scaled pressure profiles between regular ($s \leq 0.1$) and disturbed ($s > 0.1$) clusters in Fig. 5 for our samples with $M_{500} > 10^{14} h^{-1} M_{\odot}$. The largest differences between the two sub-samples can be seen for the GO model, where the disturbed clusters (squares) have lower scaled pressure everywhere except around the maximum at $r \approx 0.9 r_{500}$. This is because the ongoing merger is compressing the gas (and therefore increasing its pressure) at large radius while the inner region has yet to respond to the increase in the mass of the system. Note that since Y_{500} is proportional to the area under the pressure profile, there will be a noticeable offset in the $Y_{500} - M_{500}$ relation, where a disturbed cluster has a smaller Y_{500} than a regular cluster with the same mass (see the next section). These differences are still present but at a lower level in the PC and FO models, where the higher entropy of the gas in lower-mass clusters means that it is less easily compressed. This in turn leads to a negligible offset between regular and disturbed clusters in the $Y_{500} - M_{500}$ relation, as we will show in the next section.

The shaded bands in Figs. 4 and 5 illustrate the 16/84 per centiles for the two respective sub-samples and thus give an indication of the cluster-to-cluster scatter. We show this more clearly in Fig. 6 where we have normalised the clusters in the low and high mass sub-samples to the generalised NFW model that best fits the median profile (see below). Although the scatter at fixed radius is quite low compared with some other properties such as X-ray surface brightness, it is nevertheless appreciable and can be as high as 30-50 per cent beyond r_{500}. Thus it is clearly not accurate to assume a
3.1 Generalised NFW model

In a previous study of hot gas pressure profiles in cosmological simulations, Nagai, Kravtsov & Vikhlinin (2007) found that the mean pressure profile of their simulated clusters could be well described by a generalised NFW model profile, assuming the median mass from our low and high-mass sub-samples respectively. In the outer regions ($r > 0.5r_{500}$) the high-mass clusters in the PC and FO models fit the latter profile quite well (to within 10 per cent or so), but the difference is larger for low-mass clusters, especially in the core regions.

single profile to describe all clusters, especially around r_{500} and beyond, where much of the SZ signal comes from.

Table 2. Best-fit parameters for the generalised NFW model when applied to our median hot gas pressure profiles. Column 1 gives the redshift; column 2 the simulation model and cluster sub-sample (LM and HM refer to the low and high-mass sub-samples, respectively); and columns 3-7 the parameter values (see text for their meanings).

Redshift	Clusters	P_0	c_{500}	γ	α	β
$z = 0$	GO/LM	33.788	2.925	0.267	0.944	1.970
	PC/LM	6.317	0.517	0.090	0.901	1.603
	FO/LM	4.732	1.052	0.298	1.108	2.371
	GO/HM	6.756	1.816	0.519	1.906	2.870
	PC/HM	0.938	0.183	0.584	1.114	11.885
	FO/HM	3.210	1.974	0.605	2.041	2.989
$z = 1$	GO/LM	11.994	0.700	0.345	0.837	3.610
	PC/LM	0.856	0.539	0.512	1.447	4.038
	FO/LM	2.734	0.349	0.375	1.055	5.049

Figure 6. As in Fig. 4 but the median pressure profiles (and scatter) are now shown relative to their best-fit generalised NFW model, clearly showing the size of cluster-to-cluster variations (that can be as large as 50 per cent). Solid and dashed curves are observed mean pressure profiles from low-redshift X-ray data (REXCESS; Arnaud et al. 2010), again scaled to our best-fit generalised NFW model profiles, assuming the median mass from our low and high-mass sub-samples respectively. In the outer regions ($r > 0.5r_{500}$) the high-mass clusters in the PC and FO models fit the latter profile quite well (to within 10 per cent or so), but the difference is larger for low-mass clusters, especially in the core regions.
3.2 Comparison with observational data

We also compare the simulated profiles with the pressure profile presented by Arnaud et al. (2010), compiled from low-redshift X-ray observations (for \(r < r_{500} \); the REXCESS sample) and other numerical simulations (for \(r > r_{500} \)). It therefore provides information on the realism of our simulated pressure profiles as well providing a useful comparison with other simulations (on large scales).

The Arnaud et al. (2010) profile is based on the GNFW model, modified to account for additional (weak) mass dependence in the observational data.

\[
P(x) = P_{\text{GNFW}} \left(\frac{M_{500}}{3 \times 10^{14} \text{M}_\odot} \right)^{\alpha_P},
\]

where \(P_{\text{GNFW}} \) is the GNFW pressure profile given in equation (13) with parameters, \([P_0, c_{500}, \gamma, \alpha, \beta] = [8.403, 1.177, 0.3081, 1.0510, 5.4905] \) and \(\alpha_P = 0.12 \). We show this profile, evaluated for the median mass values of our two sub-samples, in Fig. 6; the dashed curve is for the low-mass sample, plotted relative to our best-fit GNFW profile, while the solid curve is for the high-mass sample. The Arnaud et al. parameters are also shown as dashed lines in Fig. 7.

Comparing with our \(z = 0 \) results, as is most appropriate, the median GO profiles agree to within 30 per cent or so.
over the plotted range of radii and for both mass ranges. For the PC and FO clusters, the agreement is very good at large radius (\(r > 0.5r_{500}\)) for high-mass clusters, where the Arnaud et al. profile is only around 10 per cent higher and within the intrinsic scatter of our simulated profiles. The low-mass clusters are more discrepant, with the steeper Arnaud et al. profile being 20-30 per cent lower at \(r_{500}\). This suggests that our simulated clusters contain gas that is at higher pressure at \(r_{500}\) than in those used for the Arnaud et al. profile at large radius. Given that the feedback in our models is likely to be stronger than in the simulations used in the Arnaud et al. study, this discrepancy in pressure is probably due to the effects of radiative cooling, absent in our models and likely significant in the other simulations (see the discussion in Section 4.4; we also note that Arnaud et al. already corrected for the effects of baryon fraction). Even larger differences are present in the inner regions; there, the Arnaud et al. profile is significantly higher than our simulated results. Again, cooling is the likely culprit here as its effect is strongest in the densest regions.

An important uncertainty in the observed profile estimation is the effect of hydrostatic bias, i.e. systematic offsets in \(r_{500}\) and \(M_{500}\) from their true values, when estimated from the equation of hydrostatic equilibrium. As we will show in Section 5, hydrostatic mass is biased low with respect to the true mass and is most significant for the GO model (the estimated-to true mass ratio is around 0.7 for the GO model, compared with around 0.9 for the PC/FO models). The effect of this bias is to increase the scaled pressure at fixed scaled radius, as both the scale radius, \(r_{500}\), and the scale pressure, \(P_{500} \propto M_{500}^{2/3}\), decrease on average. We discuss the effect of hydrostatic bias on the \(Y_{500} - M_{500}\) relation in detail in Section 5 but note here that we have explicitly checked how this affects the pressure profiles for each model. To do this, we first re-defined our sub-samples using the estimated masses. We then compared the shift in pressure at the estimated value of \(r_{500}\) between the median scale profile and the Arnaud et al. profile, for both low-mass and high-mass sub-samples. We also re-computed the pressure profiles using the spectroscopic-like temperature, rather than the hot gas mass-weighted temperature, as this will be closer to the X-ray temperature profile used by Arnaud et al.

We find that the combined effect of these changes is largest for the GO model, where the median pressure profiles from both sub-samples are now within 10 per cent of the Arnaud et al. values at \(r_{500}\). The increase in the scaled pressure profile due to hydrostatic bias is counteracted by a decrease due to the use of spectroscopic-like temperature, which is lower than the mass-weighted temperature for this model (see Section 4.2). The two effects are smaller for the PC and FO models and so we see very similar results to those before these changes were applied. Thus, the scaled pressure profiles for the low-mass clusters in these models are still around 30 per cent lower than the Arnaud et al. profile at \(r_{500}\).

4 SZ SCALING RELATIONS

We now present SZ scaling relations for our simulations and compare them specifically with the recent analysis of data from Planck and XMM-Newton. We will also compare our results with recent simulations before going on to consider the effect of projection of large-scale structure along the line-of-sight. The effect of hydrostatic bias on the scaling relations will be considered in the next section.

We consider the scaling relations between \(Y_{500}\) and several other properties: the total mass, \(M_{500}\); the hot gas mass, \(M_{gas,500}\); the X-ray spectroscopic-like temperature, \(T_{sl}\); and the analogous X-ray quantity to \(Y_{500}\), \(Y_{X,500}\). We note that the \(Y_X - M_{500}\) relation (not considered here) has already been presented by [Short et al. (2010)] and scaling relations for the lower density contrast, \(\Delta = 200\), for the GO and PC models by [Stanek, Rudd & Evrard (2009)].

We follow the standard procedure and assume that the mean relationship between \(Y_{500}\) and the independent variable can be adequately described by a power law and is thus a linear relationship in log-space. We estimate the slope and normalisation of the relation by performing a least-squares fit to the data

\[
E(z)^{Y_{500}} = 10^A (X/X_0)^B, \tag{16}
\]

where \(A\) and \(B\) describe the best-fit normalisation and slope respectively and \(X_0\) is the pivot point, suitably chosen to minimise co-variance between the two parameters. For the power-law index \(\gamma\) we choose the appropriate value for self-similar evolution, so if our clusters evolve self-similarly we should see no change in the best-fit parameters \(A\) and \(B\).

We also estimate the scatter in \(\log_{10}(Y_{500})\), \(\sigma_{\log_{10} Y}\), as

\[
\sigma_{\log_{10} Y} = \left[\frac{1}{N-2} \sum_{i=1}^{N} [\log_{10} Y_i - \log_{10} Y_{fit}(X_i)]^2 \right]^{1/2}, \tag{17}
\]

where the index \(i\) runs over all \(N\) clusters included in the fit and \(Y_{fit}\) is the best-fit \(Y_{500}\) value for a cluster with property \(X_i\). Note that the scatter in \(\log Y\) is simply \(\sigma_{\log Y} = \ln(10) \sigma_{\log_{10} Y}\).

4.1 The \(Y_{500} - M_{500}\) relation

The most important scaling relation is that between SZ flux and mass. We present our \(Y_{500} - M_{500}\) relations in Fig. 5 for the GO model (top panels), PC model (middle panels) and FO model (bottom panels). Results are shown both for \(z = 1\) (left panels) and \(z = 0\) (right panels). The best-fit relation to all clusters in each panel with \(10^{14} h^{-1} M_\odot < M_{500} < 10^{15} h^{-1} M_\odot\) is shown as a solid line (best-fit parameter values and their uncertainties are listed in Table 3).

It is clear that there is a very tight correlation between \(Y_{500}\) and \(M_{500}\) in all three models at both low and high redshift. At \(z = 0\) the intrinsic scatter about the best-fit power law relation is only \(\sim 4\) per cent, with sub-per cent variations between models, making this particular relation one of the tightest known cluster scaling relations involving

4 We have independently verified that our GO and PC results, when using \(\Delta = 200\), are consistent with theirs, but as was pointed out by Viana et al. (2011) the \(Y_{200}\) values given in Stanek, Rudd & Evrard (2009) quoted with incorrect units.

5 Stanek et al. (2010) present quadratic fits to the PC data but we find this only to be important when the lower-mass groups are included, as was the case in that study.
gas; this finding is consistent with previous simulations with fewer clusters (e.g. da Silva et al. 2004; Nagai 2006). The distribution of residual Y_{500} values about the best-fit relation is well described by a log-normal distribution of width $\sigma = \sigma_{\text{ln} Y}$ (Fig. 10). This is in agreement with previous work (e.g. Stanek et al. 2010; Fabjan et al. 2011).

The normalisation of the $z = 0$ relation also varies very little between models, the maximum variation being around 7% per cent. The best-fit slope also varies by around 7% per cent, from 1.67 in the FO model (very close to the self-similar value of 5/3) to 1.79 in the PC model. As discussed in Short & Thomas (2009) for the $Y_X - M_{500}$ relation, the similarity between the models can be explained by the increase in gas temperature compensating for the drop in gas mass, required to maintain virial equilibrium (since $Y \propto M_{500} T$ and is thus proportional to the total thermal energy of the gas). The agreement between the GO and PC/FO models is better here than for the $Y_{500} - M_{500}$ relation as Y_X is defined using the spectroscopic-like temperature, T_{X}, which is weighted more heavily by low entropy gas; we discuss this point further below.

We have also investigated the dependence of the $Y_{500} - M_{500}$ relation on redshift. In the left-hand panels of Fig. 8 we present results for $z = 1$, allowing a simple comparison to be made with the $z = 0$ results for each model. It is evident that the clusters evolve close to the self-similar expectation in all three models, given that the normalisation and slope changes very little between the two redshifts (see also Table 3). To quantify this further, we have also plotted the best-fit normalisation, slope and scatter as a function of redshift in Fig. 10 where we used all available outputs from $z = 0$ to $z = 1$. (Equivalent plots for the other scaling relations are provided in the Appendix.)

The dependence of the best-fit slope with redshift for all three models is shown in the top panels of Fig. 10. For clarity we normalise the slope to the median value at $z < 0.3$ and the yellow bands indicate the uncertainties (using the 16/84 percentile values). All three models are consistent with no evolution in slope to $z = 0.3$, then some mild evolution is seen at higher redshift, where the number of massive clusters drops. This evolution is very minor, however, as the slope remains within around 5 per cent of the low redshift value.

The variation in normalisation with redshift is shown in the middle panels of Fig. 10. Here, we have fixed the slope at the $z < 0.3$ median value and just allowed the single normalisation parameter to vary. Again, we factored out the self-similar evolution and normalised to the $z = 0$ result, so a value consistent with zero corresponds to self-similar evolution. In the GO and PC cases, the normalisation is consistent with self-similar evolution to $z = 0.3$, afterwards there is some negative evolution (i.e. the relation evolves slightly more slowly than predicted from the self-similar model), especially in the PC case. The FO model shows different behaviour: at low redshift ($z < 0.3$), Y_{500} increases more rapidly with redshift than the self-similar case (at fixed mass), then at higher redshifts evolves in accordance with the self-similar expectation. These differences in evolution are likely to be real and reflect the varying gas physics.

© 2005 RAS, MNRAS 000, 13

Table 3. Best-fit parameters for simulated SZ scaling relations at $z = 0$ and $z = 1$. Column 1 gives the scaling relation being considered; column 2 the pivot point (in appropriate units); column 3 the redshift; column 4 the simulation model; and columns 5–7 the best-fit values for the normalisation, power-law index and scatter in $\log_{10} Y_{500}$ respectively. Quoted uncertainties correspond to either the 16th or 84th per centile (whichever is largest), estimated using the bootstrap re-sampling technique.

Relation	X_0	Redshift	Model	A	B	$\sigma_{\log_{10} Y}$
$E(z) -2/3 Y_{500} - M_{500}$	$3 \times 10^{14} h^{-1} M_\odot$	$z = 0$	GO	-4.754 ± 0.002	1.670 ± 0.007	0.041 ± 0.001
			PC	-4.774 ± 0.003	1.794 ± 0.009	0.045 ± 0.001
			FO	-4.744 ± 0.003	1.69 ± 0.02	0.043 ± 0.003
		$z = 1$	GO	-4.79 ± 0.01	1.60 ± 0.04	0.048 ± 0.003
			PC	-4.82 ± 0.01	1.83 ± 0.04	0.059 ± 0.005
			FO	-4.75 ± 0.01	1.63 ± 0.04	0.037 ± 0.004
$E(z) -2/3 Y_{500} - M_{\text{gas,}500}$	$3 \times 10^{13} h^{-1} M_\odot$	$z = 0$	GO	-5.098 ± 0.001	1.65 ± 0.007	0.029 ± 0.001
			PC	-4.887 ± 0.001	1.478 ± 0.008	0.018 ± 0.001
			FO	-4.889 ± 0.003	1.45 ± 0.01	0.025 ± 0.002
		$z = 1$	GO	-5.145 ± 0.004	1.61 ± 0.03	0.034 ± 0.003
			PC	-4.844 ± 0.006	1.46 ± 0.05	0.016 ± 0.005
			FO	-5.007 ± 0.004	1.53 ± 0.03	0.028 ± 0.006
$E(z) Y_{500} - T_{\text{X,}500}$	5 keV	$z = 0$	GO	-4.27 ± 0.03	2.5 ± 0.2	0.19 ± 0.02
			PC	-4.706 ± 0.006	3.16 ± 0.04	0.06 ± 0.002
			FO	-4.665 ± 0.006	3.11 ± 0.07	0.073 ± 0.007
		$z = 1$	GO	-4.3 ± 0.07	3.0 ± 0.6	0.16 ± 0.07
			PC	-4.910 ± 0.006	3.38 ± 0.06	0.047 ± 0.004
			FO	-4.54 ± 0.02	2.8 ± 0.1	0.08 ± 0.009
$E(z) -2/3 Y_{500} - E(z) -2/3 Y_X,500$	$1 \times 10^{-5} h^{-2} \text{Mpc}^2$	$z = 0$	GO	-4.952 ± 0.003	1.049 ± 0.008	0.058 ± 0.002
			PC	-5.02 ± 0.001	1.002 ± 0.002	0.015 ± 0.001
			FO	-5.012 ± 0.001	0.998 ± 0.004	0.018 ± 0.001
		$z = 1$	GO	-4.882 ± 0.009	1.05 ± 0.03	0.052 ± 0.004
			PC	-5.015 ± 0.002	0.999 ± 0.004	0.009 ± 0.001
			FO	-5.007 ± 0.003	0.99 ± 0.01	0.02 ± 0.004
S.T. Kay et al.

Figure 8. Scaling relations between the SZ flux, Y_{500}, and total mass, M_{500}, for the GO (top panels), PC (middle) and FO (bottom) models at $z = 1$ (left) and $z = 0$ (right panels). The Y_{500} values at $z = 1$ are re-scaled such that no change in the relation corresponds to self-similar evolution ($Y_{500} \propto E(z)^{2/3}$ at fixed mass). The solid diagonal line is a least-squares fit to the relation. The best-fit power-law to $z < 0.5$ Planck/XMM-Newton data [Planck Collaboration 2011d] is shown in all panels as a dashed line, while the box illustrates the intrinsic scatter in the observed relation. Triangles represent disturbed clusters (with $s > 0.1$) while squares are regular clusters. The results are very similar for all three models and there is no evidence for significant departure from self-similar evolution.

Finally, we illustrate how the scatter in the $Y_{500} - M_{500}$ relation evolves with redshift in the bottom panels of Fig. 8. The $z = 0$ value is also shown as a dashed horizontal line for clarity. Again, the picture is consistent with minimal change; the scatter only increases to $z = 1$ by 0.01 or so in the GO and PC cases, and decreases by less than 0.01 in the FO case.

Figure 9. Distribution of residual Y_{500} values about the best-fit $Y_{500} - M_{500}$ relation, plotted using natural logarithms, for each of the models at $z = 1$ and $z = 0$. A normal distribution of width $\sigma = \sigma_{\ln Y}$ is overlaid; it is clear that this provides a good description of the scatter.

4.2 Relationship between Y_{500} and observables

We also present scaling relations between Y_{500} and other key X-ray observables. Fig. 11 shows $Y_{500} - M_{\text{gas, } 500}$ relations, laid out as before. This relation is interesting to study because it essentially probes non-self-similar behaviour in the mass-weighted temperature, T_m, of the gas, since $Y \propto M_{\text{gas}} T_m$ and thus M_{gas} appears on both axes. Here we fit data within the range, $2 \times 10^{13} h^{-1} M_\odot < M_{\text{gas, } 500} < 2 \times 10^{14} h^{-1} M_\odot$. As with the $Y_{500} - M_{500}$ relation, the slope from the GO model at $z = 0$ is close to the self-similar value of 5/3. The PC and FO models have shallower slopes, due to the increase in the temperature of the gas in low-mass clusters. As might be expected, the scatter in the relation is even tighter than for the $Y_{500} - M_{500}$ relation, and is typically 0.02-0.03. The distribution of the scatter is also close to log-normal. From comparing the $z = 1$ and $z = 0$ results, both GO and PC models predict evolution that is close to self-similar (the normalisation is within 5 per cent of the $z = 0$ value out to $z = 1$) but the FO relation evolves more slowly with redshift (~ 10 per cent lower at $z = 1$), again due to the increase in feedback from the AGN at late times that additionally heats the gas. This evolutionary behaviour is confirmed when studying the relation at all available redshifts from $z = 0$ to $z = 1$, in Fig. A1 which also shows that the slope and scatter vary little.

We also consider scaling relations between Y_{500} and X-
Figure 10. The dependence of the slope, normalisation and scatter of the $E(z)^{-2/3}Y_{500} - M_{500}$ relation with redshift, for the GO (left), PC (middle) and FO (right) simulations. Results are plotted from $z = 0$ to $z = 1$. In the top panels, the best-fit slope at each redshift is normalised to the median slope for outputs at $z < 0.3$ (shown as a vertical line). The middle panels illustrate the redshift dependence of the normalisation after the self-similar dependence has been taken out; the normalisation is divided by the $z = 0$ value in this case. In the bottom panels, the rms scatter in log Y_{500}, $\sigma_{\log Y_{500}}$, is shown as a function of redshift. For both the normalisation and scatter values, the slope was fixed to the $z < 0.3$ median value when performing the fits. The bands in all panels illustrate 16 and 84 per centiles, calculated by bootstrap resampling the data. All three models predict very little evolution in the slope and normalisation of the $E(z)^{-2/3}Y_{500} - M_{500}$ relation to $z = 1$ and the intrinsic scatter remains small ($\sigma_{\log Y_{500}} < 0.06$).

Ray spectroscopic-like temperature, T_{sl}, and show results in Fig. 12 with the redshift dependence of the slope, normalisation and scatter illustrated in Fig. A2. Here, we further restrict our sample to contain only clusters with $kT_{sl} > 3$ keV, as the spectroscopic-like temperature only applies to hot clusters where thermal bremsstrahlung dominates the X-ray emission. This reduces our samples to 136 (12), 583 (102) and 179 (73) clusters at $z = 0$ ($z = 1$) in the GO, PC and FO models respectively. Note the more severe reduction in the GO case; the non-gravitational heating in the PC and FO models increases T_{sl} at fixed mass, relative to the GO case, and thus increases the number of clusters in their X-ray temperature-limited samples. Best-fit relations are then calculated for clusters in the range, 3 keV $< kT_{sl} < 10$ keV.

The GO model relation has a slope that is consistent with the self-similar expectation ($B = 5/2$) at $z = 0$ and $z = 1$. The relation evolves slightly faster than the self-similar model (the normalisation is around 10 per cent higher than expected at $z = 1$), while the scatter is approximately constant at all redshifts, but is much higher than for the previous relations ($\sigma_{\log Y_{500}} \simeq 0.15 - 0.2$). This last point is due to T_{sl} being a much noisier property as it is sensitive to the clumpy, low entropy gas that is prevalent in this model. We also note that the scatter is poorly described by a log-normal distribution. In comparison, the PC and FO models, which have much smoother gas, typically have lower scatter, $\sigma_{\log Y_{500}} \simeq 0.05 - 0.1$, that is well described by a log-normal distribution. The slope in these two models is significantly steeper ($B \simeq 3$) and the evolution of this relation shows the largest departure from self-similarity (up to 20 per cent lower/higher at $z = 1$ in the PC/FO models).

Finally, in Fig. 13 we plot Y_{500} against $Y_{X,500}$ for our cluster samples and show the redshift dependence of the scaling relation parameters in Fig. A3. We do this to di-
directly highlight how the choice of gas temperature affects the results: any deviation from $Y_{500} = Y_{X,500}$ must be due to differences between mass and X-ray weighted temperatures. No significant deviation is seen in the PC and FO models (the difference in normalisations at $E(\frac{z}{10})^{-2/3}Y_{X,500} = 10^{-3} h^{-2} \text{Mpc}^2$ is less than 5 per cent) and there is very little scatter ($\sigma_{\log Y_{500}} \simeq 0.01 - 0.02$) at low and high redshift, that again has a distribution that is log-normal. The GO model, on the other hand, shows a significant bias, such that $Y_{500} \simeq 1.1 Y_{X,500}$ at $z = 0$, increasing to $Y_{500} \simeq 1.3 Y_{X,500}$ at $z = 1$. The scatter is also significantly larger than for the other two models, $\sigma_{\log Y_{500}} \simeq 0.05$, and the distribution is skewed to lower values. Again, these results demonstrate that the clumpier gas in the GO model has a stronger effect on the X-ray properties than the SZ properties. As we shall see in Section 5 this has important consequences for our hydrostatic mass estimates.

4.3 Effect of dynamical state

It is also interesting to consider whether clusters undergoing mergers are offset from the main Y_{500} scaling relations as they could add to the intrinsic scatter. We mark our disturbed ($s > 0.1$) sub-samples as triangles in each of the figures presenting scaling relations, discussed above (Figs. 8). Note that while a large value of s is indicative of an ongoing merger, not all dynamically disturbed clusters have large values of s (Rowley, Thomas & Kay 2004).

As predicted from studying the hot gas pressure profiles in Section 3, the only significant offset seen between regular and disturbed clusters is for the GO model, where disturbed objects lie slightly below the $Y_{500} - M_{500}$ and $Y_{500} - M_{\text{gas}, 500}$ relations, and above the $Y_{500} - Y_{X,500}$ relation (there are not enough disturbed clusters to say anything conclusive for the $Y_{500} - T_{\text{sl}}$ relation). This suggests that there is a significant difference in the fraction of unthermalised energy between regular and disturbed clusters in this model. In the case of the $Y_{500} - M_{500}$ and $Y_{500} - M_{\text{gas}, 500}$ relations, the mass-weighted temperature is lower for disturbed clusters of the same mass than regular clusters, leading to the negative offset. The effect is exacerbated when T_{sl} is considered (since it is weighted towards the cooler component), leading to a positive offset in the $Y_{500} - Y_{X,500}$ relation.

4.4 Comparison of $Y_{500} - M_{500}$ relation from other simulations

Given the importance of the $Y_{500} - M_{500}$ relation for cosmological applications and its apparent insensitivity to cluster gas physics, it is important to compare our results to those of other simulations. It is also interesting to consider whether clusters undergoing mergers are offset from the main Y_{500} scaling relations as they could add to the intrinsic scatter. We mark our disturbed ($s > 0.1$) sub-samples as triangles in each of the figures presenting scaling relations, discussed above (Figs. 8). Note that while a large value of s is indicative of an ongoing merger, not all dynamically disturbed clusters have large values of s (Rowley, Thomas & Kay 2004).

As predicted from studying the hot gas pressure profiles in Section 3, the only significant offset seen between regular and disturbed clusters is for the GO model, where disturbed objects lie slightly below the $Y_{500} - M_{500}$ and $Y_{500} - M_{\text{gas}, 500}$ relations, and above the $Y_{500} - Y_{X,500}$ relation (there are not enough disturbed clusters to say anything conclusive for the $Y_{500} - T_{\text{sl}}$ relation). This suggests that there is a significant difference in the fraction of unthermalised energy between regular and disturbed clusters in this model. In the case of the $Y_{500} - M_{500}$ and $Y_{500} - M_{\text{gas}, 500}$ relations, the mass-weighted temperature is lower for disturbed clusters of the same mass than regular clusters, leading to the negative offset. The effect is exacerbated when T_{sl} is considered (since it is weighted towards the cooler component), leading to a positive offset in the $Y_{500} - Y_{X,500}$ relation.

© 2005 RAS, MNRAS 000, 1–27
from other groups using different simulations. A number of studies have been performed with varying assumptions for both the cosmology and gas physics, as well as the use of different algorithms for the N-body and hydrodynamics solvers (e.g. White, Hernquist & Springel 2002; da Silva et al. 2004; Motl et al. 2003; Nagai 2006; Bonaldi et al. 2007; Hallman et al. 2007; Aghanim, da Silva & Nunes 2009; Yang, Bhattacharya & Ricker 2010; Krause et al. 2011; Battaglia et al. 2011).

We choose to compare our results with the work of Nagai (2006) and Krause et al. (2011) for two reasons. Firstly, both groups presented results for $\Delta = 500$ and are thus most readily comparable with ours. Secondly, the two groups used very different codes, so it is useful to also include that uncertainty in our comparison. In Fig. 14 we compare our best-fit $Y_{500} - M_{500}$ relation at $z = 0$ from the FO model (solid line) with the results of these authors. To highlight the differences between simulations, we normalise all results to our best-fit FO relation. We also have to make a correction for the different baryon fractions used in the simulations, since $Y \propto f_b$. In both cases, the baryon fraction is lower than our adopted value of $f_b = 0.18$ (Nagai 2006 assumed $f_b = 0.14$ and Krause et al. 2011 assumed $f_b = 0.133$). Note that this is not a perfect correction as it does not account for the non-self-similar behaviour of the baryon fraction with cluster mass.

Figure 14. Comparison between the FO $Y_{500} - M_{500}$ scaling relation and results from other simulations at $z = 0$. All results are normalised to the best-fit FO $Y_{500} - M_{500}$ relation and Y_{500} values from other simulations have been re-scaled to account for differences in baryon fraction (see text for details). The square symbols are individual cluster Y_{500} values from the FO model and the dashed line the best-fit FO relation. The dot-dashed lines are best-fit relations from Nagai (2006); the upper line corresponds to their non-radiative (AD) simulation and the lower line their run with cooling and star formation (CSF). Finally, the triple-dot-dashed lines are taken from Krause et al. (2011) for their restricted A and B samples (upper and lower lines respectively).

Nagai (2006) presented results for 11 clusters simulated with the ART code (e.g. Kravtsov, Klypin & Hoffman 2002), that uses the adaptive mesh refinement technique to model hydrodynamics. Two sets of runs were studied, a non-radiative run (labelled AD) and a run with cooling and star formation (labelled CSF). Out of the 11 clusters, 6 have $M_{500} > 10^{14} h^{-1} M_\odot$ (c.f. our FO model with 188 clusters in this mass range). The upper dot-dashed line in Fig. 14 is their best-fit relation to the AD clusters. The slope of their relation (1.66 ± 0.09) is in agreement with our (non-radiative) GO result (1.670 ± 0.007; dashed line) while the normalisation is within 10 per cent of ours. Such good agreement is reassuring given the different hydrodynamic methods used, although the large difference in sample size must be borne in mind. Their CSF result is shown as the lower dot-dashed curve in Fig. 14 comparing with our FO relation, their normalisation is significantly lower (20-30 per cent). As the author points out, the reduction in SZ signal in the CSF run is mainly due to the lower gas fraction caused by (over-)cooling and star formation that removes hot gas from the ICM. As we discussed earlier, the gas fractions in the FO run are also lower than in the non-radiative case but the mechanism responsible (strong feedback) compensates for this by heating the gas to a higher temperature.

Krause et al. (2011) present results for two cluster samples, A and B, shown as the upper and lower triple-dot-dashed lines in the figure. Both samples were simulated with the same GADGET2 N-body/SPH code as used in this study but contained different assumptions for the gas physics. Sample A contained 39 clusters re-simulated from a large sample of 2048 clusters using the ART code (e.g. Kravtsov, Klypin & Hoffman 2002). Sample B contains 26 clusters re-simulated from a large sample of 1024 clusters using the ART code (e.g. Kravtsov, Klypin & Hoffman 2002). Their CSF result is shown as the upper dot-dashed line in Fig. 14; comparing with our FO relation, their normalisation is significantly lower (20-30 per cent). As the author points out, the reduction in SZ signal in the CSF run is mainly due to the lower gas fraction caused by (over-)cooling and star formation that removes hot gas from the ICM. As we discussed earlier, the gas fractions in the FO run are also lower than in the non-radiative case but the mechanism responsible (strong feedback) compensates for this by heating the gas to a higher temperature.
parent volume while sample B was a mass-limited sample of 117 objects, taken from a single simulation. While both samples are larger than in Nagai (2006), the number of massive clusters is still significantly smaller than in our FO sample.

The two samples (we show results restricted to clusters with $M_{500} > 2 \times 10^{14} h^{-1} M_\odot$) compare well with ours once the different baryon fraction is scaled out. The normalisation in both cases is within 10 per cent or so, although the slope is slightly flatter, a result that appears only marginally significant (the slope of sample B is 1.64 ± 0.03 compared with the FO slope of 1.69 ± 0.02).

4.5 Comparison with observational data

We have also compared our results to observational data, now that blind SZ surveys are starting to yield significant numbers of (SZ-selected) clusters, enabling estimates of the $Y_{500} - M_{500}$ relation to be performed (Andersson et al. 2011). Planck Collaboration (2011c, hereafter PXMM). Here, we compare our results with those from the Planck Collaboration (2011d, hereafter PXMM), although we note that their best-fit $Y_{500} - M_{500}$ relation is similar to the SPT result derived from a lower number of clusters by Andersson et al. (2011).

The PXMM sample consists of 62 clusters with $z < 0.5$ and used X-ray data from XMM-Newton to define the size (r_{500}) and mass (M_{500}) of each cluster, calibrated using the X-ray $M_{500} - Y_{500}$ relation previously derived by Arnaud et al. (2010). Once the cluster size was defined, the SZ flux was measured using a multi-frequency matched-filter technique, based on the ICM pressure profile of Arnaud et al. (2010). We show their best-fit results to the $Y_{500} - M_{500}$, $Y_{500} - M_{500,500}$ and $Y_{500} - T_{500}$ relations as dashed lines and illustrate their intrinsic scatter with boxes, in Figs. S12 (Note we show these in both panels to help gauge the sense of evolution in our simulated relations, but the observed fits are more applicable to our $z = 0$ results.)

It is remarkable how well the PXMM results agree with our PC and FO models; only the $Y_{500} - T_{500}$ relation shows any significant numbers of (SZ-selected) clusters, enabling estimates of the $Y_{500} - T_{500}$ relation here.

Another interesting result from the PXMM sample is that the results are consistent with $Y_{500} = Y_{500,500}$ on average (again like our PC and FO models), however the scatter in the observed relation is significantly larger than ours (observationally, $\sigma_{\log Y} = 0.1$, around a factor of 5 larger than for our PC and FO simulations). As a result, the scatter in the other observed PXMM scaling relations are also larger than ours; e.g. the scatter is 2-3 times larger for the $Y_{500} - M_{500}$ relation. Thus if our PC and FO simulations, calibrated to X-ray data, provide faithful estimates of the mean SZ/X-ray scaling relations, observational estimates of the quantities must somehow increase the scatter without introducing significant bias. One potential source of scatter is due to the projection of large-scale structure along the line-of-sight; we investigate this below.

4.6 Projection effects

As detailed in Section 2.6, we have constructed 50 $5^\circ \times 5^\circ$ mock realisations of the SZ sky (Compton y maps) from our GO and PC simulations. Unfortunately, it is not currently possible to do this for the FO model as it was not run on the full Millennium volume.) We use these maps to estimate the (cylindrical) Y_{500} for the clusters that are present, as follows.

Firstly, we cross-match our 50 maps with cluster catalogues at all available redshifts (catalogues are constructed for all snapshots used to make the maps, providing there are objects above our mass limit of $M_{500} = 10^{14} h^{-1} M_\odot$). This is done by performing the same operations (translation, rotation, reflection) on the cluster centre co-ordinates as was done with each of the snapshots, then finding the pixel in the map that corresponds with the cluster centre, for those objects within the map region. We then identify which pixels fall within the projected radius, $R_{500} = r_{500}$, and compute the SZ Y_{500} value which we define as

$$Y_{500}^{\text{sky}} = D_p^2 \delta \sum_{i,j} y_{i,j},$$

where the sum is performed over all relevant pixels (with indices, i,j) and δ is the solid angle of each pixel (we use 1200×1200 pixels so assume $\delta \Omega = 0.25 \times 0.25 \text{arcmin}^2$). Finally, we throw away clusters that have a more massive neighbour whose centre lies within its own radius, R_{500}, as this interloper would dominate the estimated SZ flux. Our final catalogue is restricted to clusters with $M_{500} > 10^{14} h^{-1} M_\odot$ and $z < 1$; for comparative purposes we split this into a low-redshift ($z < 0.5$) and high-redshift ($z > 0.5$) sub-samples. The number of clusters in each of these subsamples for the GO and PC models are listed in Table 4. The larger numbers in the high-redshift sample are expected due to the larger volume there (for fixed solid angle). Note that the same cluster could appear more than once (in a different realisation or redshift).

In order to extract the cluster signal from the rest of the large-scale structure along the line-of-sight, we also compute cylindrical Y_{500} values due to the cluster region itself. To do this, we apply equation 15 to our cluster maps, detailed in Section 2.6. As a reminder, the length of the cylinder, centred on the cluster, is $z = 12r_{500}$; this approximately corresponds to three virial radii from the centre in each direction along the line-of-sight. We refer to this Y value as Y_{500}^{clus}, clearly $Y_{500}^{\text{clus}} > Y_{500}^{\text{sky}}$ by definition.

The squares in Fig. 15 represent the $Y_{500}^{\text{clus}} - M_{500}$ relation for our GO (top panels) and PC (bottom panels) models at high (left panels) and low (right panels) redshifts. We re-scale cluster Y_{500}^{clus} values by $E(z)^{-2/3}$ to account for evolution across the redshift range in each panel. Best-fit parameters $(A, B, \sigma_{\log Y})$ are given in Table 4, a pivot mass of $3 \times 10^{14} h^{-1} M_\odot$ was adopted for all the fits. The GO model relations show similar trends to those seen in the spherical $Y_{500} - M_{500}$ relation; the slope is close to self-similar and the scatter is small. The PC relations again have slopes that are steeper than the selfsimilar value but also have slightly larger scatter ($\sigma_{\log Y} \approx 0.07 - 0.08$), reflecting in part the effect of additional evolution with redshift.

The stars in Fig. 15 are for when Y_{500}^{clus} values are used and thus contain the additional signal from beyond the clus-
Table 4. Best-fit parameters for simulated SZ scaling relations using projected (cylinder) values from cluster and sky maps (see text for further details). Column 1 gives the scaling relation being considered; column 2 the redshift range; column 3 the simulation model; column 4 the number of clusters used in the fit; columns 5 & 6 list the best-fit values for the normalisation and slope parameters respectively; and column 7 lists the estimated scatter in $\sigma_{\log_{10} Y}$. Quoted uncertainties correspond to either the 16th or 84th per centile (whichever is largest), estimated using the bootstrap re-sampling technique.

Flux	Redshift	Model	N_{clus}	A	B	$\sigma_{\log_{10} Y}$
$Y_{500}^{\text{clus}} - M_{500}$	$0 < z < 0.5$	GO	1346	-4.677 ± 0.003	1.650 ± 0.007	0.045 ± 0.001
		PC	1074	-4.671 ± 0.004	1.72 ± 0.01	0.068 ± 0.002
	$0.5 < z < 1$	GO	2952	-4.702 ± 0.002	1.613 ± 0.007	0.050 ± 0.001
		PC	2199	-4.699 ± 0.003	1.74 ± 0.01	0.077 ± 0.001
$Y_{500}^{\text{sky}} - M_{500}$	$0 < z < 0.5$	GO	1346	-4.622 ± 0.003	1.507 ± 0.009	0.059 ± 0.001
		PC	1074	-4.455 ± 0.003	1.23 ± 0.01	0.059 ± 0.001
	$0.5 < z < 1$	GO	2952	-4.677 ± 0.003	1.524 ± 0.007	0.062 ± 0.001
		PC	2199	-4.556 ± 0.003	1.32 ± 0.02	0.071 ± 0.001
$Y_{500}^{\text{sky,sub}} - M_{500}$	$0 < z < 0.5$	GO	1346	-4.686 ± 0.004	1.71 ± 0.01	0.074 ± 0.003
		PC	1074	-4.683 ± 0.005	1.80 ± 0.02	0.106 ± 0.003
	$0.5 < z < 1$	GO	2952	-4.719 ± 0.003	1.666 ± 0.009	0.071 ± 0.001
		PC	2199	-4.721 ± 0.004	1.80 ± 0.01	0.104 ± 0.002

Figure 15. Projected $Y_{500} - M_{500}$ relations for clusters in the GO (top panels) and PC (bottom panels) sky maps with $0 < z < 0.5$ (left panels) and $0.5 < z < 1$ (right panels). The stars correspond to Y_{500}^{sky} values, i.e. calculated from the full sky map. The squares correspond to Y_{500}^{clus} values, i.e. from the cluster region. In both cases the true M_{500} values were used. The dashed line is a best-fit to the $Y_{500}^{\text{clus}} - M_{500}$ relation and the solid line to the $Y_{500}^{\text{sky}} - M_{500}$ relation. The Y_{500}^{sky} values are higher on average than Y_{500}^{clus}, especially in the PC simulation at low mass and low redshift, where the difference is a factor of 2-3.

Figure 16. As in Fig. 15 but the Y_{500}^{sky} values have had the mean background signal subtracted. The two best-fit relations are now very similar in all panels.

substantially increased the thermal energy of the gas, as indicated by the three-fold increase in the mean y signal. Such widespread heating is likely to be unrealistic as it would require a huge amount of energy and would boil off the small amount of neutral hydrogen and helium in the IGM (Theuns, Mo & Schaye 2001; Borgani & Viel 2009), so the PC result represents a worse-case scenario for the effects of projection on the Y signal.

Observations of the SZ effect made with the Planck satellite are unable to measure the mean y signal as at each frequency, spatial temperature fluctuations are measured with respect to the all-sky mean. It is therefore more
realistic to compare the background-subtracted values of \(Y_{500}^{sky} \) to the cluster values. To do this we compute the projected angular area for each cluster and compute the expected contribution to \(Y_{500} \) from the mean \(y \):

\[
y_{500}^{sky} = Y_{500}^{sky} - \langle y \rangle \right D_{500}^{\beta} \Omega_{500},
\]

where \(\Omega_{500} \) is the solid angle subtended by the cluster out to a projected radius, \(R_{500} \). The results of this procedure are shown in Fig. 10 with best-fit parameters for the \(Y_{500}^{sky} - M_{500} \) relations given in Table 4.

Interestingly, the two best-fit relations are now almost identical for each run and within each redshift range. A simple background subtraction therefore removes any bias in the mean relation generated from the additional hot gas along the line-of-sight. The scatter is considerably larger in the \(Y_{500}^{sky} - M_{500} \) relation, in part due to the fact that the additional signal is not constant everywhere. The PC relations again contain the largest scatter, comparable to the observed scatter in the PXMM data \(\sigma_{700} \leq 5 \times 10^{-1} \). Although the result is model dependent, it is clear that part (if not all) of the observed scatter can be attributed to projection effects.

5 HYDROSTATIC BIAS

In the previous section, we saw that our PC and FO models produced SZ/X-ray scaling relations that were in good agreement with the PXMM observational data. A significant uncertainty in the observational determination of scaling relations is the (direct or indirect) assumption of hydrostatic equilibrium (HSE), required for deriving the cluster mass \((M_{500}) \) and radius \((r_{500}) \). It is therefore interesting to look at the accuracy of this assumption in our simulations as the good agreement between our results and the observations can only be preserved if hydrostatic bias is small (in the absence of additional systematic effects).

For a cluster in HSE, the pressure gradient in the ICM is sufficient to balance gravity; the total mass of the cluster can then be calculated as

\[
M_{500}^{\text{HSE}} (r < r_{500}) = - \frac{k T r}{G \mu m_H} \left[\frac{d \ln \rho}{d \ln r} - \frac{d \ln T}{d \ln r} \right]
\]

where \(\mu = 0.59 \) is the mean molecular weight for an ionised plasma (assuming zero metallicity). We use the spectroscopic-like temperature to evaluate the local temperature, \(T(r) \) and its gradient, \(d \ln T/d \ln r \), at radius, \(r \).

Estimation of the cluster mass based on hydrostatic equilibrium can be biased for three reasons. Firstly, the estimated mass within a fixed radius can be different from the true mass because the intracluster gas is not perfectly hydrostatic. Previous simulations have shown that mass estimates can be too low by up to 20 per cent, due to incomplete thermalisation of the gas (e.g. Evrard, Metzler & Navarro 1993; Rasia, Tormen & Maccacaro 2004; Kay et al. 2004; Rasia et al. 2006; Kay et al. 2007; Nagai, Vikhlinin & Kravtsov 2007; Nagai, Kravtsov & Vikhlinin 2007; Piffaretti & Valdarnini 2008; Ameglio et al. 2009; Lau, Kravtsov & Nagai 2009). A second effect is that the X-ray temperature of the gas can be lower than the mean (mass-weighted) temperature. Such an effect depends on the thermal structure of the gas (in particular, the low entropy tail associated with substructure) and can be particularly severe when radiative cooling effects are strong. Finally, the cluster’s size itself is usually defined as a scale radius (e.g. \(r_{200} \)) which is mass-dependent so also depends on the assumption of hydrostatic equilibrium.

To study how these combined effects impact upon our scaling relations, we estimate the hydrostatic mass of each cluster as follows. Firstly, we compute the hot gas \((T > 10^7 \text{K}) \) and density profiles. In lower mass clusters the profiles can get rather noisy due to limited particle numbers which can affect the estimation of the pressure gradient. To avoid this, we fit a cubic polynomial function to each profile (in log space) to generate a smoothed representation. (This also has the advantage that the gradient can be derived analytically.) We then use these model profiles to estimate the mass, \(M_{500}^{\text{HSE}} \), using equation (20), then vary the radius, \(r \), until the following equation is satisfied

\[
M_{500}^{\text{HSE}} = \frac{4 \pi}{3} \left(\frac{r_{500}^{\text{HSE}}}{3} \right)^3 \rho_{500} \sigma(z),
\]

where \(M_{500}^{\text{HSE}} \) and \(r_{500}^{\text{HSE}} \) are our estimated mass and radius respectively. Once the radius is known we can use this to estimate the SZ flux which we will denote \(Y_{500}^{\text{HSE}} \). Again, this is the flux from within a sphere centred on the cluster; all that has changed is the assumed value of \(r_{500} \). In what follows, we only consider the sub-set of clusters in the estimated mass range, \(10^{14} h^{-1} M_\odot < M_{500} < 10^{15} h^{-1} M_\odot \). The numbers of clusters are listed for each model and redshift in Table 6.

5.1 Effect of hydrostatic assumption on cluster mass

We quantify the effect of the hydrostatic assumption on cluster mass by considering the distribution of the estimated-to-true mass ratio, \(R_M = \log_{10}(M_{500}^{\text{HSE}}/M_{500}) \), for our models at \(z = 1 \) and \(z = 0 \). (Note that \(R_M \) directly measures the resulting shift along the logarithmic mass axis.) The results are shown in Fig. 17.

At \(z = 0 \), the GO results show a significant spread in mass ratios as well as a large negative bias; the median value is \(R_M = -0.14 \). In the PC and FO models, the spread and bias is smaller, with the median increasing to around \(-0.05 \). A similar situation is evident at \(z = 1 \). The disturbed sub-sample, where HSE should definitely not be a good approximation, shows a small offset in the median \(R_M \) from the overall sample; in the PC and FO cases the offset is positive whereas in the GO case it is negative.

It is perhaps not surprising that the discrepancy between estimated and true mass from the GO simulation is significantly higher than for the PC and FO models. As is evident from the \(Y_{500} - Y_{X,500} \) relation (Fig. 13), the former model predicts a more clumpy intracluster medium due to the persistence of low entropy gas that is unable to cool. This gas by its very nature has not completely thermalised to the global cluster temperature and has significant residual bulk kinetic energy. In the latter two runs, the non-gravitational...
heating generates a smoother distribution that is evidently closer to hydrostatic equilibrium.

5.2 Effect of hydrostatic assumption on Y_{500} and $Y_{X,500}$

The use of hydrostatic mass estimates also affects the SZ flux through the use of r_{500}^{HSE} to define the cluster radius; a smaller radius will result in a lower value for Y. We define a similar quantity to the mass ratio, $R_Y \equiv \log_{10}(Y_{500}^{\text{HSE}}/Y_{500})$, and present the distribution of values in Fig. [18]. Again, we present the ratio in this way as it directly gives the shift in $\log_{10} Y$ values due to the hydrostatic estimate.

As was the case with the total mass estimates, there is a larger bias (and scatter) in the Y_{500} values for the GO run but the overall effect is smaller as it is entirely due to the (small) shift in r_{500}. The median R_Y is -0.03 for GO at $z = 0$, increasing to only -0.02 for the PC and FO runs. Since $r_{500}^{\text{HSE}} < r_{500}$ on average, the integrated flux is also smaller. Again, the results are not significantly different at high redshift or when only the disturbed clusters are selected. We have also checked the equivalent result for the $Y_{X,500}$ values and they are very similar to the Y_{500} results.

5.3 Estimated $Y_{500} - M_{500}$ relation directly from HSE

We now put together these results to study how the $Y_{500} - M_{500}$ relation is affected by the hydrostatic assumption. These results are shown in Fig. [19] for the GO, PC and FO runs at $z = 1$ and $z = 0$. The best-fit $Y_{500}^{\text{HSE}} - M_{500}^{\text{HSE}}$ relation is shown as a solid line and we also plot the best-fit (true) $Y_{500} - M_{500}$ relation as the dashed line in each panel. Values for the parameters describing the best-fit relations (normalisation, A; slope, B; and scatter, $\sigma_{\log_{10} Y/M}$) are given in Table 5.

The offset in M_{500} values ($R_M = -0.14$ at $z = 0$) in the GO model is clearly visible in the top-right panel of Fig. [19] where the best-fit relation is offset to larger Y_{500} values for a given value of M_{500}^{HSE}. The large spread in the R_M distribution is also evident as the scatter has increased significantly ($\sigma_{\log_{10} Y} \simeq 0.19$, c.f. Fig. [18] where $\sigma_{\log_{10} Y} \simeq 0.04$). The offset is insensitive to mass in this model, resulting in a relation that has similar slope (1.6) to the true $Y_{500} - M_{500}$ relation. The offset in normalisation has also led to a significant drop in the number of clusters in the sample at each redshift; as a result there are only 98 clusters at $z = 1$, making a reliable estimate of the relation difficult (but the trends are nevertheless consistent with those seen at $z = 0$).

The best-fit $Y_{500}^{\text{HSE}} - M_{500}^{\text{HSE}}$ relation from the PC run at $z = 0$ is remarkably similar to the underlying relation, although the scatter has also increased considerably to $\sigma_{\log_{10} Y} \simeq 0.11$. Results at $z = 1$ prefer a flatter slope but this is somewhat affected by a few higher mass clusters (the slope is 1.5 ± 0.1). The estimated relation for the FO model is also similar to the true relation, with a preference for a slightly flatter slope and larger scatter ($\sigma_{\log_{10} Y} \simeq 0.13$ at $z = 0$). The disturbed cluster sub-sample is most strongly biased in the PC results at $z = 0$, where the clusters have larger HSE masses for their flux, relative to the regular systems.

5.4 Estimated $Y_{500} - M_{500}$ relation using $Y_{X,500}$

When mass estimates are required for larger samples of clusters, the direct hydrostatic method discussed above can be prohibitively expensive as it requires the den-
of equation (21). In practice, this equation must be solved iteratively: a value for \(r_{500} \) is first guessed then \(Y_{X,500} \) is calculated within this radius (from the integrated gas mass and average X-ray temperature), allowing a new value for \(r_{500} \) to be computed from equation (22). This is repeated until convergence is achieved. Since clusters do not all lie on this relation (even though this particular relation is chosen for its low scatter) the derived \(r_{500} \) may be inaccurate for an individual cluster, but the overall relation should be unbiased.

We have applied this procedure to our simulated clusters and will refer to the resulting \(Y_{500} - M_{500} \) relation as the \(Y_{500}^{\text{HSE}} - M_{500}^{\text{HSE}} \) relation. We first show our derived \(M_{500}^{\text{HSE}} - Y_{X,500}^{\text{HSE}} \) relations, required for equation (22), for the three models at \(z = 1 \) and \(z = 0 \) in Fig. 20. Since \(Y_X \) (and not mass) is on the x-axis, we restrict our fits to clusters with \(3 \times 10^{14} h^{-1} M_\odot \text{keV} < Y_{X,500}^{\text{HSE}} < 10^{15} h^{-1} M_\odot \text{keV} \), as this approximately matches our adopted mass range \((10^{14} - 10^{15} h^{-1} M_\odot)\) for the PC and FO models.

Qualitatively, the same conclusions can be drawn as for the \(Y_{500}^{\text{HSE}} - M_{500}^{\text{HSE}} \) relation (Fig. 19): the GO model shows a large scatter and the relation is offset due to the mass estimates being systematically low. As expected, however, the PC and FO results agree very well with the best-fit underlying relation with still relatively small scatter, \(\sigma_{\log M} = 0.06 - 0.08 \). We also compare our results to the observed best-fit relation at low redshift from Arnaud et al. (2010), shown as the dot-dashed line. The agreement be-

Figure 17. Distribution of estimated-to-true mass ratios, \(R_{500} \), within the estimated \(r_{500} \) for clusters at \(z = 1 \) (left panels) and \(z = 0 \) (right panels). The top panels show results from the GO model, middle panels from PC and bottom panels from FO. The green histogram is for the whole cluster sample while the blue histogram is for the disturbed sub-sample. Vertical dashed lines indicate the median mass ratio for each case, with values given in the legend. The median \(R_{500} \) is significantly smaller in the runs with non-gravitational heating.

Figure 18. As in Fig. 17 but for the ratio of estimated-to-true \(Y_{500} \) values, \(R_Y \). The difference in \(\log(Y_{500}) \) is very small in the runs with non-gravitational heating.
The $Y_{500}^{\text{HSE}} - M_{500}^{\text{HSE}}$ relations (i.e. using estimated values for each cluster assuming the gas is hydrostatic) for the GO, PC and FO models at $z = 1$ and $z = 0$. The squares correspond to regular clusters while the triangles are disturbed clusters. The solid line is the best-fit relation while the dashed line shows the best-fit true $Y_{500} - M_{500}$ relation. Fits are performed for all clusters with $10^{14} h^{-1} M_\odot < M_{500}^{\text{HSE}} < 10^{15} h^{-1} M_\odot$ and best-fit parameter values are given in Table 5. It is clear that the hydrostatic assumption is more robust for the PC and FO runs than for the GO run.

Figure 20. As in Fig. 19 but for the $M_{500}^{\text{HSE}} - Y_{X,500}$ relation. Clusters are now selected with $3 \times 10^{13} < Y_{X,500}^{\text{HSE}} < 10^{15}$ which, for the PC and FO models, matches well to our normal mass range. The solid line is the best-fit to the relation and the dashed line the true relation. The dot-dashed line is the best-fit relation from REXCESS (XMM-Newton) data as found by Arnaud et al. (2010).

a larger-than-average Y_{500}. This was also true for the disturbed sub-sample hence the reason why these clusters are unbiased with respect to the overall sample.

6 SUMMARY AND CONCLUSIONS

Large surveys are now being performed at millimetre wavelengths exploiting the Sunyaev-Zel’dovich (SZ) effect to detect large samples of galaxy clusters out to high redshift. Such samples will then be used to produce competitive constraints on cosmological parameters, as well as to study the variation in physical properties of the intracluster gas (especially the gas pressure) with mass and redshift. The cosmological application relies on the statistical estimation of cluster mass through the SZ $Y - M$ relation. In recent work (e.g. [Andersson et al. 2011; Planck Collaboration 2011c]) the first SZ-selected samples of clusters have already been used to estimate the cluster $Y - M$ relation and full results of cosmological analyses are expected over the next few years.

In this paper, we have analysed some of the largest N-body/hydrodynamic simulations of structure formation (the Millennium Gas Simulations) to study the dependence of SZ cluster properties on gas physics, at both low ($z = 0$) and
high ($z = 1$) redshift. The large volume used in these simulations produces significant (hundreds to thousands) samples of clusters over the interesting range of cluster masses ($10^{14} - 10^{15} \; h^{-1} M_{\odot}$). We considered three cluster gas physics models: a non-radiative (gravitational heating only) simulation that ought to produce an approximately self-similar cluster population; and two simulations that incorporate additional non-gravitational heating (a model that uniformly pre-heats the gas at high redshift and a model that includes feedback from stars and active galactic nuclei in galaxies). The feedback model is our most realistic, in that it has already been shown to reproduce many of the scaling properties of X-ray clusters, especially those with non-cool cores (Short et al. 2010).

We started by investigating the hot gas pressure profiles of our simulated clusters and how they compare to the pressure profile advocated by Arnaud et al. (2010). We then compared our derived SZ scaling relations (between Y_{500} and total mass, hot gas mass, X-ray temperature and the X-ray analogue to the SZ Y parameter, Y_X) with the recent observational results, in particular those obtained from a combined SZ+X-ray analysis performed by the Planck Collaboration. We also tested two of the key assumptions used in the observed analysis, namely that the mean $Y_{500} - M_{500}$ relation is unaffected by the assumption that the gas is hydrostatic and by the presence of any other hot gas along the line-of-sight. Our main conclusions can be summarised as follows:

- In accord with previous studies, our simulation with non-radiative hydrodynamics produces a (spherical) $Y_{500} - M_{500}$ relation that has a self-similar slope ($5/3$) and also evolves with redshift according to the self-similar expectation, $E(z)^{2/3}$. Simulations with non-gravitational heating (both pre-heating and feedback cases) create slightly steeper $Y_{500} - M_{500}$ relations (with a slope of $1.7-1.8$, when clusters across the mass range, $10^{14} \; h^{-1} M_{\odot} < M_{500} < 10^{15} \; h^{-1} M_{\odot}$, are considered) but the evolution with redshift is still close to self-similar.
- The simulations were compared with the Planck+XMM results at $z < 0.5$ (Planck Collaboration 2011c) and very good agreement was found for a number of scaling relations (Y_{500} versus M_{500}, $M_{500,500}$ and kT_X) for the pre-heating and feedback models. The scatter in the $Y_{500} - M_{500}$ relation is smaller than observed, however, with $\sigma_{M500} Y \simeq 0.04$.
- Intracluster gas in the non-radiative simulation contains a significant unthermalised component, due to the presence of low-entropy, clumpy gas. This causes an offset in the $Y_{500} - Y_{X,500}$ relation, which tests the difference between the mass-weighted and X-ray temperatures. As a result, hydrostatic mass estimates are biased low by 20-30 per cent. The pre-heating and feedback simulations on the other hand predict smoother gas distributions, with $Y_{500} \simeq Y_{X,500}$ and much smaller hydrostatic bias (estimated masses are only ~ 10 per cent lower).
- The estimated $M_{500} - Y_{X,500}$ relations (assuming the gas is hydrostatic) are in good agreement with the recent observational determination by Arnaud et al. (2010). When $Y_{X,500}$ is used as a mass proxy to predict the SZ $Y_{500} - M_{500}$ relation, only a small (~ 20 per cent) offset in normalisation from the true relation (and thus the observed relation from Planck+XMM data) is found. The scatter in the recovered relation is very small ($\sigma_{M500} \simeq 0.02$) due to the strong correlation between Y_{500} and $Y_{X,500}$. Clusters that are undergoing major mergers are not significantly offset from the mean relation.
- Hot gas pressure profiles are well described by generalised NFW profiles, as suggested by Nagai, Kravtsov & Vikhlinin (2007) and show that the majority of the contribution to the SZ Y parameter (where $r^{3} P(r)$ is maximal) comes from radii close to r_{500}. Splitting the cluster samples into low and high-mass sub-samples, we find little difference between the two in the run with non-radiative hydrodynamics, as expected. The runs with non-gravitational heating predict that low-mass clusters have lower core pressures and higher pressures in the cluster outskirts, when scaled according to the self-similar expectation. This non-self-similar-behaviour can be attributed to the heating that is more effective in low-mass clusters and acts to push the gas out to large radii. There is also significant cluster-cluster scatter, especially in the core region and in the outskirts, where individual pressure profiles can be 50 per cent higher than the median profile.
- We also compared our median pressure profiles with...
the Arnaud et al. profile and found good agreement (within 10 per cent) for our high-mass clusters at $r > 0.5 r_{500}$, in the pre-heating and feedback models. Low-mass clusters are especially discrepant in the core regions, likely due to the absence of radiative cooling in our models. Using the X-ray temperature (rather than hot gas mass-weighted temperature) in the pressure calculation, as well as using hydrostatic estimates of r_{500} and M_{500}, only makes a significant (> 10 per cent) difference to the non-radiative simulation for the reasons already mentioned.

- Finally, we considered the effects of projection due to large-scale structure along the line-of-sight, by analysing 50 $5^\circ \times 5^\circ$ maps of the thermal SZ effect. By measuring the cylindrical SZ flux associated with each cluster and comparing to the flux from the cluster region alone, we were able to discern the contribution from additional structures, in the non-radiative and pre-heating simulations. The pre-heating model showed the largest bias, where low-mass clusters ($M_{500} \approx 10^{14} h^{-1} M_\odot$) had cylindrical Y_{500} values that were around 2-3 times higher than the value from the cluster region. This is due to the large amount of thermal energy injected into the gas at high redshift, as evidenced by the three-fold increase in the mean-y parameter. Subtracting the contribution from an assumed mean background we find the recovered $Y_{500} - M_{500}$ relation to be unbiased with respect to the cluster relation, with some additional scatter that is model-dependent.

In summary, we can conclude that when our more realistic models for the intracluster gas are employed (namely those that raise the entropy of the gas to match global X-ray scaling relations), the SZ $Y - M$ relation is in good agreement with the observations (Fig. 8) and is largely unaffected by two of the main sources of systematic uncertainty: hydrostatic bias (Figs. 19 and 21) and projection effects from large-scale structure (Fig. 16).

While our analysis has been one of the most comprehensive to date and used some of the largest and most sophisticated simulation models, there are some significant shortcomings that still need to be addressed. Firstly, the effects of radiative cooling were not included in our most realistic (feedback) model, so the model cannot yet match the full X-ray cluster population (namely the brightest objects with cool cores, Short et al. 2010). As we argued, this omission is likely not a significant problem for the $Y - M$ relation but will affect the hot gas pressure profile so it should be addressed in future work. Secondly, we were unable to test projection effects for the feedback model as we only have a sample of clusters rather than the full cosmological volume. Finally, the cosmological model adopted for the simulations (identical to that used in the original Millennium Simulation) is no longer favoured; in particular the value of σ_8 is higher than the current best estimate ($\sigma_8 = 0.9$ in the simulations, c.f. $\sigma_8 \approx 0.8$ from the WMAP 7-year data; Komatsu et al. 2011). Using the presently-favoured cosmological model is likely to reduce the scale of projection effects, however, as in it structure formation will be less advanced.

We are currently preparing a new generation of Millennium Gas simulations that will rectify all of these problems, starting with a new version of our existing feedback model that will deal with the second and third issues. This new simulation, which is also being run at higher resolution and with an updated semi-analytic galaxy formation model (Guo et al. 2010), will additionally allow cosmology-dependent statistical predictions for the SZ signal to be performed, namely the SZ power spectrum.

ACKNOWLEDGEMENTS

We thank the reviewer, Stefano Borgani, for his insightful comments. The simulations used in this paper were performed at the University of Nottingham HPC Facility and on the ICC Cosmology Machine, which is part of the DiRAC Facility jointly funded by STFC, Large Facilities Capital Fund of BIS and Durham University. STK, MWP and RAB were supported by STFC through grant ST/G002592/1. CJS, PAT and ARL was supported by STFC through grants ST/F002858/1 and ST/I000976/1. OEY was supported by an STFC quota studentship.

REFERENCES

Aghanim N., de Luca A., Bouchet F.R., Gispert R., Puget J.L., 1997, A&A, 325, 9
Aghanim N., da Silva A.C., Nunes N.J., 2009, A&A, 496, 637
Allen S.W., Evrard A.E., Mantza A.B., 2011, ARA&A, 49, 409
Ameglio S., Borgani S., Pierpaoli E., Dolag K., Ettori S., Morandi A., 2009, MNRAS, 394, 479
Andersson K. et al., 2011, ApJ, 738, 48
Arnaud M., Pointecouteau E., Pratt G.W., 2007, A&A, 474, L37
Arnaud M., Pratt G.W., Piffaretti R., Böhringer H., Croston J.H., Pointecouteau E., 2010, A&A, 517, 92
Battye R.A., Weller J., 2003, PhysRevD, 68, 083506
Barbosa D., Bartlett J.G., Blanchard A., Oukbir J., 1996, A&A, 314, 13
Bartlett J.G., Silk J., 1994, ApJ, 423, 12
Battaglia N., Bond J.R., Pfommer C., Sievers J.L., 2011, ApJ, submitted (arXiv:1109.3709)
Bonaldi A., Tormen G., Dolag K., Moscardini L., 2007, MNRAS, 378, 1248
Benson B.A., Church S.E., Ade P.A.R., Bock J.J., Ganga K.M., Henson C.N., Thompson K.L., 2004, ApJ, 617, 829
Birkinshaw M., Hughes J.P., 1994, ApJ, 420, 33
Birkinshaw M., 1999, Phys. Rep., 310, 97
Bonamente M., Joy M., LaRoque S.J., Carlstrom J.E., Nagai D., Marrone D., 2008, ApJ, 675, 106
Borgani S., Viel M., 2009, MNRAS, 392, L26
Bower R.G., McCarthy I.G., Benson A.J., 2008, MNRAS, 390, 1399
Bryan G.L., Norman M.L., 1998, ApJ, 495, 80
Carlstrom J.E., Holder G.P., Reese E.D., 2002, ARA&A, 40, 464
Cole S., Kaiser N., 1988, MNRAS, 233, 637
da Silva A.C., Barbosa D., Liddle A.R., Thomas P.A., 2000, MNRAS, 317, 37
da Silva A.C., Kay S.T., Liddle A.R., Thomas P.A., Pearce F.R., Barbosa D., 2001, ApJ, 561, L15

© 2005 RAS, MNRAS 000, 1-12
da Silva A.C., Kay S.T., Liddle A.R., Thomas P.A., 2004, MNRAS, 348, 1401
De Lucia G., Blaiziot J., 2007, MNRAS, 375, 2
Ebeling H., Edge A.C., Henry J.P., 2001, ApJ, 553, 668
Eke V.R., Cole S., Frenk C.S., 1996, MNRAS, 282, 263
Evrard A.E., Henry J.P., 1991, ApJ, 383, 95
Evrard A.E., Metzler C.A., Navarro J.F., 1996, ApJ, 469, 494
Fabjan D., Borgani S., Rasia E., Bonafede A., Dolag K., Murante G., Tornatore L., 2011, MNRAS, 416, 801
Fixsen D.J., Cheng E.S., Gales J.M., Mather J.C., Shafer R.A., Wright E.L., 1996, ApJ, 473, 576
Foley R.J. et al., 2011, ApJ, 731, 86
Golwala S.R. et al., 2009, Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 96
Guo Q., White S.D.M., Li C., Boylan-Kolchin M., 2010, MNRAS, 404, 1111
Hallman E.J., O’Shea B.W., Burns J.O., Norman M.L., arXiv:1109.0953
Hartley W.G., Gazzola L., Pearl E.F., Kay S.T., Thomas P.A., 2008, MNRAS, 386, 2015
Huang C.-W.L. et al., 2010, ApJ, 716, 758
Jones M. et al., 1993, Nature, 365, 320
Kaiser N., 1986, ApJ, 308, 104
Krause E., Pierpaoli E., Dolag K., Borgani S., 2012, MNRAS, 419, 1766
Kravtsov A.V., Klypin A., Hoffman Y., 2002, ApJ, 571, 563
Kravtsov A.V., Vikhlinin A., Nagai D., 2006, ApJ, 640, 128
Lancaster K. et al., 2011, MNRAS, 418, 1441
Lau E.T., Kravtsov A.V., Nagai D., 2009, ApJ, 705, 1129
Marriage T.A. et al., 2011, ApJ, 737, 61
Maughan B.J., 2007, ApJ, 668, 772
Maughan B.J., Giles P.A., Randall S.W., Jones C., Forman W.R., 2011, MNRAS, submitted (arXiv:1108.1200)
Mazzotta P., Rasia E., Moscardini L., Tormen G., 2004, MNRAS, 354, 10
McCarthy I.G., Babul A., Holder G.P., Babolh M.L., 2003, ApJ, 591, 515
McCarthy I.G., Holder G.P., Babul A., Babolh M.L., 2003, ApJ, 591, 526
Mehta N. et al., 2011, MNRAS, submitted, arXiv:1106.3056
Menanteau F. et al., 2011, ApJ, submitted (arXiv:1109.0953)
Morandi A., Ettori S., Moscardini L., 2007, MNRAS, 379, 518
Motl P.M., Hallman E.J., Burns J.O., Norman M.L., 2005, ApJ, 623, L63
Nagai D., 2006, ApJ, 650, 538
Nagai D., Vikhlinin A., Kravtsov A.V., 2007, ApJ, 655, 98
Nagai D., Kravtsov A.V., Vikhlinin A., 2007, ApJ, 668, 1
Navarro J.F., Frenk C.S., White S.D.M., 1997, ApJ, 490, 493
Piffaretti R., Valdarnini R., 2008, A&A, 491, 71
Planck Collaboration, 2011a, A&A, 536, A8
Planck Collaboration, 2011b, A&A, 536, A9
Planck Collaboration, 2011c, A&A, 536, A11
Planck Collaboration, 2011d, A&A, 536, A26
Poole G.B., Babul A., McCarthy I.G., Fardal M.A., Bildfell C.J., Quinn T., Mahdavi A., 2007, MNRAS, 380, 437
Press W.H., Schechter P., 1974, ApJ, 187, 425
Rasia E., Tormen G., Moscardini L., 2004, MNRAS, 351, 237
Rasia E., Ettori S., Moscardini L., Mazzotta P., Borgani S., Dolag K., Tormen G., Cheng L.M., Diaferio A., 2006, MNRAS, 369, 2013
Romer A.K., Viana P.T.P., Liddle A.R., Mann R.G., 2001, ApJ, 2, 594
Rowley D.R., Thomas P.A., Kay S.T., 2004, MNRAS, 352, 508
Sehgal N. et al., 2011, ApJ, 732, 44
Shang C., Crotts A., Haiman Z., 2007, ApJ, 671, 136
Shaw L.D., Holder G.P., Bode P., 2008, ApJ, 686, 206
Shimwell T.W. et al., submitted, arXiv:1101.5590
Short C.J., Thomas P.A., 2009, ApJ, 704, 915
Short C.J., Thomas P.A., Young O.E., Pearce F.R., Jenkins A., Muwanwong O., 2010, MNRAS, 408, 2213
Short C.J., Thomas P.A., Young O.E., 2012, MNRAS, submitted, arXiv:1201.1104
Springel V., Hernquist L., 2002, MNRAS, 333, 649
Springel V. et al., 2005, Nature, 435, 629
Springel V., 2005, MNRAS, 364, 1105
Stanek R., Rudi D., Evrard A.E., 2009, MNRAS, 394, L11
Stanek R., Rasia E., Evrard A.E., Pearce F.R., Gazzola L., 2010, ApJ, 715, 1508
Staniszewski Z. et al., 2009, ApJ, 701, 32
Sun M., Sehgal N., Voit G.M., Donahue M., Jones C., Forman W., Vikhlinin A., Sarazin C., 2011, ApJ, 727, L49
Sunyaev R.A., Zel’dovich Y.B., 1972, Comments on Astrophysics and Space Physics, 4, 173
Theuns T., Mo H.J., Schaye J., 2001, MNRAS, 321, 450
Thomas P.A. et al., 1998, MNRAS, 296, 1061
Vanderlinde K. et al., 2010, ApJ, 722, 1180
Viana J.P., Thomas P.A., Young O.E., Pearson F.R., Gazzola L., 2010, ApJ, 715, 1508
Viana P.T.P. et al., 2011, MNRAS, submitted, arXiv:1109.1828
Voit G.M., 2005, Rev.Mod.Phys., 77, 207
White M., Hernquist L., Springel V., 2002, ApJ, 579, 16
Williamson R., Thomas P.A., 2007, MNRAS, 380, 437
Young O.E., Thomas P.A., Short C.J., Pearce F., 2011, MNRAS, 413, 691
APPENDIX A: EVOLUTION OF SCALING RELATIONS

The following figures (Figs. A1, A2 and A3) illustrate the evolution of the slope, normalisation and scatter with redshift for the \(Y_{500} - M_{\text{gas},500} \), \(Y_{500} - T_{\text{sl}} \) and \(Y_{500} - Y_{X,500} \) relations respectively. Details of what is plotted in each panel are identical to Fig. 10 and are discussed in Section 4.2.

This paper has been typeset from a \LaTeX{} file prepared by the author.
Figure A2. As in Fig. 10 but for the $Y_{500} - T_d$ relation.

Figure A3. As in Fig. 10 but for the $Y_{500} - Y_{X,500}$ relation.