Richardson extrapolation allows truncation of higher order digital nets and sequences*

Takashi Goda†

May 25, 2018

Abstract

We study numerical integration of smooth functions defined over the s-dimensional unit cube. A recent work by Dick et al. (2017) has introduced so-called extrapolated polynomial lattice rules, which achieve the almost optimal rate of convergence for numerical integration and can be constructed by the fast component-by-component search algorithm with smaller computational costs as compared to interlaced polynomial lattice rules. In this paper we prove that, instead of polynomial lattice point sets, truncated higher order digital nets and sequences can be used within the same algorithmic framework to explicitly construct good quadrature rules achieving the almost optimal rate of convergence. The major advantage of our new approach compared to original higher order digital nets is that we can significantly reduce the precision of points, i.e., the number of digits necessary to describe each quadrature node. This finding has a practically useful implication when either the number of points or the smoothness parameter is so large that original higher order digital nets require more than the available finite-precision floating point representations.

1 Introduction

In this paper we study numerical integration of multivariate functions defined over the s-dimensional unit cube. For an integrable function \(f: [0,1]^s \to \mathbb{R} \), we denote the integral of \(f \) by

\[
I(f) = \int_{[0,1]^s} f(x) \, dx.
\]

We consider approximating \(I(f) \) by a linear algorithm of the form

\[
A_N(f) = \sum_{h=0}^{N-1} w_h f(x_h),
\]

*This work was supported by JSPS Grant-in-Aid for Young Scientists No. 15K20964.
†School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan (goda@frcer.t.u-tokyo.ac.jp)
where x_0, \ldots, x_{N-1} and w_0, \ldots, w_{N-1} denote the quadrature nodes and the weights, respectively. We call the algorithm A_N a quasi-Monte Carlo (QMC) rule if the weights are given by $w_0 = \cdots = w_{N-1} = 1/N$.

For a normed function space V with norm $\| \cdot \|_V$, the worst-case error of A_N is defined by

$$e_{\text{wor}}(A_N, V) := \sup_{f \in V, \|f\|_V \leq 1} |I(f) - A_N(f)|.$$

Our aim is then to design a good quadrature rule A_N such that $e_{\text{wor}}(A_N, V)$ is made as small as possible, since for any function $f \in V$ we have

$$|I(f) - A_N(f)| \leq \|f\|_V \cdot e_{\text{wor}}(A_N, V),$$

meaning that a single algorithm works well for all functions belonging to V. In this paper we are particularly interested in Banach-Sobolev spaces with dominating mixed smoothness $\alpha \in \mathbb{N}$, $\alpha \geq 2$, consisting of functions which have partial mixed derivatives up to order α in each variable (see Section 2.1 for more details). Such function spaces have been motivated by Dick et al. (2014) for the study of partial differential equations with random coefficients.

For Sobolev spaces of our interest, QMC rules using higher order digital nets and sequences as quadrature nodes are known to achieve the almost optimal rate of convergence of the worst-case error, which is $O(N^{-\alpha+\varepsilon})$ with arbitrarily small $\varepsilon > 0$. The concept and explicit construction of higher order digital nets and sequences were originally introduced by Dick (2007, 2008) (see Section 2.2 for more details). Since then, on the one hand, further theoretical investigations on them have been made (see, e.g., Baldeaux et al. 2011, Goda et al. 2017, 2018, Hinrichs et al. 2016). On the other hand, how to efficiently search for good quadrature node sets in a weighted function space setting as considered by Sloan & Woźniakowski (1998) have also attracted some interests (see, e.g., Baldeaux et al. 2014, Goda 2015, Goda & Dick 2015, Goda et al. 2016). In particular, so-called interlaced polynomial lattice rules originated by Goda & Dick (2015) and Goda (2015), which are based on the digit interlacing composition due to Dick (2007, 2008), have been applied in the context of partial differential equations with random coefficients (see, e.g., Dick et al. 2014, Kuo & Nuyens 2016).

Recently, a new approach alternative to interlaced polynomial lattice rules has been developed by Dick et al. (2017). Instead of searching for a single interlaced polynomial lattice point set, their approach is to search for α classical polynomial lattice point sets with geometric spacing of N first, and then to apply Richardson extrapolation recursively to α numerical values $A_N(f)$. Such extrapolated polynomial lattice rules have been proved to achieve the almost optimal rate of convergence, and moreover, the fast component-by-component algorithm can be used to find good rules with smaller computational costs as compared to interlaced polynomial lattice rules. A further advantage can be found in the fact that the fast QMC matrix-vector multiplication technique from Dick et al. (2015) applies to extrapolated polynomial lattice rules, whereas it is not straightforwardly applicable to interlaced ones.

In this paper, as a continuation of Dick et al. (2017), we push forward the idea of applying Richardson extrapolation to QMC rules for achieving high order of convergence for multivariate numerical integration. In particular, we consider QMC rules using truncated higher order digital nets or sequences as quadrature
nodes, where truncation is done in the following way: we apply the following map

\[\text{tr}_m : [0,1) \rightarrow [0,1) \] component-wise to each node \(x_h = (x_{h,1}, \ldots, x_{h,s}) \in [0,1]^s \) of higher order digital nets with prime base \(p \) and size \(N = p^m \):

\[\text{tr}_m \left(\sum_{i=1}^{\infty} \frac{\xi_i}{p^i} \right) = \sum_{i=1}^{m} \frac{\xi_i}{p^i} \] with \(\xi_i \in \{0,1, \ldots, p-1\} \). (1)

Then we prove that, by applying Richardson extrapolation recursively to QMC rules using such truncated higher order digital nets or sequences with geometric spacing of \(N \), the resulting linear algorithm to approximate \(I(f) \) achieves the almost optimal rate of convergence.

Our finding has the following practically useful implication, especially when \(p = 2 \). The original digit interlacing composition approach to constructing higher order digital nets with size \(N = p^m \) requires \(\alpha m \) digits in the \(p \)-adic expansion of each component of each node. Hence the round-off error is inevitable when \(\alpha m \) is larger than what is available via finite-precision floating point representations (for instance, 24 and 53 for IEEE 754 single- and double-precision floating-point formats, respectively). Since our extrapolation approach can reduce the necessary number of digits from \(\alpha m \) to \(m \), the round-off error problem will be postponed and importantly becomes independent of the smoothness parameter \(\alpha \). Therefore, with the help of Richardson extrapolation, higher order QMC rules become available for wider ranges of \(N \) and \(\alpha \) than ever.

The rest of this paper is organized as follows. After describing the necessary background and notation in Section 2, we propose an extrapolation-based quadrature rule using truncated higher order digital nets or sequences, and prove the worst-case error bound of the proposed rule in Sobolev spaces with dominating mixed smoothness in Section 3. In the same section, we further provide another possible, similar but different quadrature rule, together with its worst-case error bound. We conclude this paper with numerical experiments in Section 4.

2 Preliminaries

Throughout this paper we denote the set of positive integers by \(\mathbb{N} \) and write \(\mathbb{N}_0 = \mathbb{N} \cup \{0\} \). For a prime \(p \), let \(\mathbb{F}_p \) be the finite field with \(p \) elements, which is identified with the set of integers \(\{0,1, \ldots, p-1\} \subset \mathbb{Z} \) equipped with addition and multiplication modulo \(p \). For an \(s \)-dimensional vector \(x = (x_1, \ldots, x_s) \) and a subset \(u \subseteq \{1, \ldots, s\} \), we write \(x_u = (x_j)_{j \in u} \), and denote the cardinality and complement of \(u \) by \(|u| \) and \(-u := \{1, \ldots, s\} \setminus u \), respectively.

2.1 Banach-Sobolev spaces with dominating mixed smoothness

Following [Dick et al. 2014], here we introduce the definition of function spaces which we consider in this paper. Let \(\alpha \in \mathbb{N} \), \(\alpha \geq 2 \), and \(1 \leq q, r \leq \infty \) be real numbers. Further let \(\gamma = (\gamma_u)_{u \subseteq \{1, \ldots, s\}} \) be a set of non-negative real numbers called weights, which has been introduced by Sloan & Woźniakowski [1998] to moderate the relative importance of different variables or groups of variables. In this paper we do not discuss the dependence of the worst-case error on the
dimension, and just consider the weights for making consistent use of the notations with previous works.

Assume that a function \(f: [0, 1)^s \rightarrow \mathbb{R} \) has partial mixed derivatives up to order \(\alpha \) in each variable. We define the norm of \(f \) by

\[
\|f\|_{s, \alpha, q, r} := \sum_{u \subseteq \{1, \ldots, s\}} \left(\gamma_u^{-q} \sum_{v \subseteq u} \sum_{\tau_u \in \{1, \ldots, \alpha\}^{u \setminus v}} \int_{[0,1)^{s-|v|}} f^{(\tau_u \setminus v, \alpha_v, 0)}(x) \, dx \right)^{r/q},
\]

with the obvious modification if either \(q \) or \(r \) is infinite. Here \((\tau_u \setminus v, \alpha_v, 0) \) denotes the vector \(\beta = (\beta_1, \ldots, \beta_s) \) such that

\[
\beta_j = \begin{cases}
\tau_j & \text{if } j \in u \setminus v, \\
\alpha & \text{if } j \in v, \\
0 & \text{otherwise,}
\end{cases}
\]

and \(f^{(\tau_u \setminus v, \alpha_v, 0)} \) denotes the partial mixed derivative of order \((\tau_u \setminus v, \alpha_v, 0) \) of \(f \). If there exist subsets \(u \) such that \(\gamma_u = 0 \), then we assume that the corresponding inner double sum is 0 and formally set \(0/0 = 0 \). Now we define the Banach-Sobolev space with dominating mixed smoothness \(\alpha \) by

\[
W_{s, \alpha, q, r} := \{ f: [0, 1)^s \rightarrow \mathbb{R} : \|f\|_{s, \alpha, q, r} < \infty \}.
\]

For \(\tau \in \mathbb{N} \), we denote the Bernoulli polynomial of degree \(\tau \) by \(B_\tau: [0, 1) \rightarrow \mathbb{R} \) and we put \(b_\tau(\cdot) = B_\tau(\cdot)/\tau! \). With a slight abuse of notation, we write \(b_\tau = b_\tau(0) \). Further, we denote the one-periodic extension of the polynomial \(b_\tau \) by \(\tilde{b}_\tau: \mathbb{R} \rightarrow \mathbb{R} \). As shown below, we have a point-wise representation for functions in \(W_{s, \alpha, q, r} \).

Lemma 1. For \(f \in W_{s, \alpha, q, r} \), we have

\[
f(x) = \sum_{u \subseteq \{1, \ldots, s\}} f_u(x_u),
\]

where each \(f_u \) depends only on \(x_u \) and is given by

\[
f_u(x_u) = \sum_{v \subseteq u} (-1)^{(\alpha+1)|v|} \sum_{\tau_u \in \{1, \ldots, \alpha\}^{u \setminus v}} \prod_{j \in u \setminus v} b_{\tau_j}(x_j) \int_{[0,1)^s} f^{(\tau_u \setminus v, \alpha_v, 0)}(y) \prod_{j \in v} \tilde{b}_{\alpha}(y_j - x_j) \, dy.
\]

Moreover, we have

\[
\|f\|_{s, \alpha, q, r}^r = \sum_{u \subseteq \{1, \ldots, s\}} \|f_u\|_{s, \alpha, q, r}^r.
\]

Proof. See the proof of [Dick et al. (2014), Theorem 3.5].

2.2 Higher order digital nets and sequences

2.2.1 Digital construction scheme

We first introduce a class of point sets called digital nets originally due to Niederreiter (1992).
Definition 1 (Digital nets). For a prime p and $m,n \in \mathbb{N}$, let $C_1, \ldots, C_s \in \mathbb{F}_p^{n \times m}$. For $h \in \mathbb{N}_0$, $h < p^m$, we denote the p-adic expansion of h by

\[h = \eta_0 + \eta_1 p + \cdots + \eta_{m-1} p^{m-1}. \]

Set $x_h = (x_{h,1}, \ldots, x_{h,s}) \in [0,1)^s$ where

\[x_{h,j} = \frac{\xi_{h,j,1}}{p} + \frac{\xi_{h,j,2}}{p^2} + \cdots + \frac{\xi_{h,j,n}}{p^n}, \]

in which $\xi_{h,j,1}, \xi_{h,j,2}, \ldots$ are given by

\[(\xi_{h,j,1}, \xi_{h,j,2}, \ldots) = (\eta_0, \eta_1, \ldots) \cdot C_j^\top \]

for $1 \leq j \leq s$. Then the set of points $P_{m,n} = \{ x_h : 0 \leq h < p^m \}$ is called a digital net over \mathbb{F}_p (with generating matrices C_1, \ldots, C_s).

It is easy to see from the definition that the parameter m determines the total number of points, while n does the precision of points.

It is straightforward to extend the definition of digital nets to digital sequences that are infinite sequences of points in $[0,1)^s$.

Definition 2 (Digital sequences). For a prime p, let $C_1, \ldots, C_s \in \mathbb{F}_p^{n \times N}$. For each $C_j = (c_{k,l}^{(j)})_{k,l \in \mathbb{N}}$, assume that there exists a function $K_j : \mathbb{N} \to \mathbb{N}$ such that $c_{k,l}^{(j)} = 0$ if $k > K_j(l)$. For $h \in \mathbb{N}_0$, we denote the p-adic expansion of h by

\[h = \eta_0 + \eta_1 p + \cdots, \]

where all but a finite number of η_i’s are 0. Set $x_h = (x_{h,1}, \ldots, x_{h,s}) \in [0,1)^s$ where

\[x_{h,j} = \frac{\xi_{h,j,1}}{p} + \frac{\xi_{h,j,2}}{p^2} + \cdots, \]

in which $\xi_{h,j,1}, \xi_{h,j,2}, \ldots$ are given by

\[(\xi_{h,j,1}, \xi_{h,j,2}, \ldots) = (\eta_0, \eta_1, \ldots) \cdot C_j^\top \]

for $1 \leq j \leq s$. Then the sequence of points $S = \{ x_h : h \in \mathbb{N}_0 \}$ is called a digital sequence over \mathbb{F}_p (with generating matrices C_1, \ldots, C_s).

In this definition, the existence of functions K_j is assumed to ensure that every number $x_{h,j}$ is uniquely written in a finite p-adic expansion.

2.2.2 Dual nets

Next we introduce the concept of dual nets and also the weight function due to [Dick 2008] who generalizes the original weight function introduced independently by [Niederreiter 1986] and [Rosenbloom & Tsfasman 1997]. Thereafter we give the definition of higher order digital nets and sequences.

Definition 3 (Dual nets). For a prime p and $m,n \in \mathbb{N}$, let $P_{m,n}$ be a digital net over \mathbb{F}_p with generating matrices $C_1, \ldots, C_s \in \mathbb{F}_p^{n \times m}$. The dual net of $P_{m,n}$, denoted by $P_{m,n}^\perp$, is defined by

\[P_{m,n}^\perp := \{ \kappa = (\kappa_1, \ldots, \kappa_s) \in \mathbb{N}_0^s : C_1^\top \nu_1(k_1) \oplus \cdots \oplus C_s^\top \nu_s(k_s) = 0 \in \mathbb{F}_p^m \}, \]

where we write $\nu_\alpha(k) = (\kappa_0, \ldots, \kappa_{n-1})^\top$ for $k \in \mathbb{N}_0$ whose p-adic expansion is given by $k = \kappa_0 + \kappa_1 p + \cdots$, where all but a finite number of κ_i’s are 0.
Definition 4 (Weight function). Let $\alpha \in \mathbb{N}$. We denote the p-adic expansion of $k \in \mathbb{N}$ by

$$k = \kappa_1 p^{c_1 - 1} + \kappa_2 p^{c_2 - 1} + \cdots + \kappa_v p^{c_v - 1}$$

with $\kappa_1, \ldots, \kappa_v \in \{1, \ldots, p - 1\}$ and $c_1 > c_2 > \cdots > c_v > 0$. Then we define the weight function $\mu_\alpha : \mathbb{N}_0 \to \mathbb{N}_0$ by

$$\mu_\alpha(k) := \min_{i=1}^{\min(\alpha, v)} c_i,$$

and $\mu_\alpha(0) = 0$. In case of vectors in \mathbb{N}_0^s, we define

$$\mu_\alpha(k_1, \ldots, k_s) := \sum_{j=1}^s \mu_\alpha(k_j).$$

Now we are ready to introduce higher order digital nets and sequences.

Definition 5 (Higher order digital nets). Let $\alpha \in \mathbb{N}$. For a prime p and $m, n \in \mathbb{N}$, let $P_{m,n}$ be a digital net over \mathbb{F}_p. We call $P_{m,n}$ an order α digital (t, m, s)-net over \mathbb{F}_p if there exists an integer $0 \leq t < \alpha m$ such that the following holds:

$$\mu_\alpha(P_{m,n}^\perp) := \min_{k \in P_{m,n}^\perp \setminus \{0\}} \mu_\alpha(k) > \alpha m - t.$$

Remark 1. It follows from Definition 5 that $(p^n, 0, \ldots, 0) \in P_{m,n}^\perp$, which gives

$$\mu_\alpha(P_{m,n}^\perp) \leq \mu_\alpha(p^n, 0, \ldots, 0) = n + 1.$$

Thus in order for $P_{m,n}$ to be an order α digital (t, m, s)-net, it is necessary to have $n \geq \alpha m - t$. Together with Remark 2 below, this means that the precision n should scale linearly with α and m.

Definition 6 (Higher order digital sequences). Let $\alpha \in \mathbb{N}$. For a prime p, let S be a digital sequence over \mathbb{F}_p. We call S an order α digital (t, s)-sequence over \mathbb{F}_p if there exists $t \in \mathbb{N}_0$ such that the first p^m points of S are an order α digital (t, m, s)-net over \mathbb{F}_p for any $m > t$.

2.2.3 Explicit constructions

It is important to note that higher order digital nets and sequences can be constructed explicitly. In fact, many explicit constructions of order 1 digital (t, s)-sequences with small t-values for arbitrary s have been known already. Among them are those by Sobol’ (1967), Faure (1982), Niederreiter (1988), Tezuka (1993) and Niederreiter & Xing (2001). Some of them hold the property on functions K_j in Definition 2 such that $K_j(l) \leq l$ for all $j, l \in \mathbb{N}$. This means, the first p^m points of such digital sequences is an order 1 digital (t, m, s)-net over \mathbb{F}_p with the precision $n \leq m$. We refer to Dick & Pillichshammer (2010, Chapter 8) for more information on these special constructions.

Moreover the digit interlacing composition due to Dick (2007, 2008) enables us to construct order α digital (t, m, s)-nets and (t, s)-sequences in the following
way. For \(\alpha \in \mathbb{N}, \alpha \geq 2 \), let us consider a generic point \(\mathbf{x} = (x_1, \ldots, x_\alpha) \in [0, 1)^\alpha \). We denote the \(p \)-adic expansion of each \(x_j \) by

\[
x_j = \frac{\xi_{j,1}}{p} + \frac{\xi_{j,2}}{p^2} + \cdots,
\]

which is understood to be unique in the sense that infinitely many of \(\xi_{j,i} \)'s are different from \(p - 1 \). Then we define the map \(D_\alpha : [0, 1)^\alpha \to [0, 1] \) by

\[
D_\alpha(x_1, \ldots, x_\alpha) := \sum_{i=1}^{\infty} \sum_{j=1}^{\alpha} \frac{\xi_{j,i}}{p^{i(\alpha - 1) + j}}.
\]

We extend the map \(D_\alpha \) to vectors by setting

\[
D_\alpha : [0, 1)^{\alpha s} \to [0, 1]^s,
\]

\[
(x_1, \ldots, x_{\alpha s}) \mapsto \left(D_\alpha(x_1, \ldots, x_\alpha), \ldots, D_\alpha(x_{(\alpha - 1)s + 1}, \ldots, x_{\alpha s})\right),
\]

i.e., \(D_\alpha \) is applied to non-overlapping consecutive \(\alpha \) components of \((x_1, \ldots, x_{\alpha s}) \). Using this digit interlacing composition \(D_\alpha \), we can construct higher order digital nets and sequences explicitly as follows.

Lemma 2. Let \(\alpha \in \mathbb{N}, \alpha \geq 2, \) and \(p \) be a prime.

1. For \(m \in \mathbb{N} \), let \(P_{m,m} \) be an order 1 digital \((t, m, \alpha s) \)-net over \(\mathbb{F}_p \). Then

\[
D_\alpha(P_{m,m}) := \{D_\alpha(x) : x \in P_{m,m}\} \subset [0, 1)^s
\]

is an order \(\alpha \) digital \((t', m, s) \)-net over \(\mathbb{F}_p \) with

\[
t' = \alpha \min \left\{m, t + \left\lfloor \frac{s(\alpha - 1)}{2} \right\rfloor\right\}.
\]

2. Let \(S \) be an order 1 digital \((t, \alpha s) \)-net over \(\mathbb{F}_p \). Then

\[
D_\alpha(S) := \{D_\alpha(x) : x \in S\} \subset [0, 1)^s
\]

is an order \(\alpha \) digital \((t', s) \)-sequence over \(\mathbb{F}_p \) with

\[
t' = \alpha t + \frac{s\alpha(\alpha - 1)}{2}.
\]

Proof. See Baldeaux et al. (2011, Corollary 3.4) and Dick (2008, Theorems 4.11 and 4.12) for the proofs of the first and second items, respectively.

Remark 2. Let \(S \) be an order 1 digital \((t, \alpha s) \)-net over \(\mathbb{F}_p \) with generating matrices \(C_1, \ldots, C_{\alpha s} \in \mathbb{F}_p^{N \times N} \). We denote the \(l \)-th row of \(C_j \) by \(c^{(j)}_l \). Then \(D_\alpha(S) \) is a digital sequence over \(\mathbb{F}_p \) with generating matrices \(D_1, \ldots, D_s \in \mathbb{F}_p^{N \times N} \), where each \(D_j \) whose \(l \)-th row is denoted by \(d^{(j)}_{\alpha(l-1)+h} \) is given by

\[
d^{(j)}_{\alpha(l-1)+h} = c^{(\alpha(j-1)+h)}_{l}
\]

for \(l \geq 1 \) and \(1 \leq h \leq \alpha \). If each \(C_j = (c^{(j)}_{kl}) \) satisfies \(c^{(j)}_{kl} = 0 \) whenever \(k > l \), i.e., if \(K_j(l) \leq l \) holds, each \(D_j = (d^{(j)}_{kl}) \) satisfies \(d^{(j)}_{kl} = 0 \) whenever \(k > \alpha l \). This means, the first \(p^n \) points of \(D_\alpha(S) \) is an order \(\alpha \) digital \((t', m, s) \)-net over \(\mathbb{F}_p \) with the precision \(n \leq \alpha m \).
2.3 Walsh functions

Finally, in this section, we recall the definition of Walsh functions which play a central role in the quadrature error analysis of QMC rules using (higher order) digital nets and sequences.

Definition 7 (Walsh functions). For a prime \(p \), we write
\[
\omega_p = \exp\left(2\pi \sqrt{-1}/p\right).
\]
For \(k \in \mathbb{N}_0 \) whose \(p \)-adic expansion is given by
\[
k = \kappa_0 + \kappa_1 p + \cdots,
\]
where all but a finite number of \(\kappa_i \)'s are 0, the \(k \)-th Walsh function \(\text{wal}_k : [0,1) \to \{1, \omega_p, \ldots, \omega_p^{p-1}\} \) is defined by
\[
\text{wal}_k(x) := \omega_p^{\kappa_0 \xi_1 + \kappa_1 \xi_2 + \cdots},
\]
where we denote the \(p \)-adic expansion of \(x \in [0,1) \) by \(x = \xi_1/p + \xi_2/p^2 + \cdots \), which is understood to be unique in the sense that infinitely many of \(\xi_i \)'s are different from \(p^{-1} \).

In the multivariate case, for \(k = (k_1, \ldots, k_s) \in \mathbb{N}_0^s \) and \(x = (x_1, \ldots, x_s) \in [0,1)^s \), the \(k \)-th Walsh function is defined by
\[
\text{wal}_k(x) := \prod_{j=1}^s \text{wal}_{k_j}(x_j).
\]

Lemma 3. For \(k \in \mathbb{N}_0 \) and \(n \in \mathbb{N} \) we have
\[
\prod_{h=0}^{p^n-1} \text{wal}_k\left(\frac{h}{p^n}\right) = \begin{cases} 1 & \text{if } p^n \text{ divides } k, \\ 0 & \text{otherwise}. \end{cases}
\]

Proof. Write \(k = k' + p^n l \) for \(0 \leq k' < p^n \) and \(l \geq 0 \). From the definition of Walsh functions, we see that \(\text{wal}_k(h/p^n) = \text{wal}_{k'}(h/p^n) \) for any \(0 \leq h < p^n \). Thus it suffices to prove the result for the case \(0 \leq k < p^n \). Actually, the result for \(k = 0 \) is trivial and the proof for \(1 \leq k < p^n \) is given by [Dick & Pillichshammer (2010, Lemma A.8)](Dick&2010).

Lemma 4. For a prime \(p \) and \(m, n \in \mathbb{N} \), let \(P_{m,n} = \{ x_h : 0 \leq h < p^m \} \) be a digital net over \(\mathbb{F}_p \). For \(k \in \mathbb{N}_0^s \) we have
\[
\prod_{h=0}^{p^m-1} \text{wal}_k(x_h) = \begin{cases} 1 & \text{if } k \in P^\perp_{m,n}, \\ 0 & \text{otherwise}. \end{cases}
\]

Proof. See [Dick & Pillichshammer (2010, Lemma 4.75)](Dick&2010) for the proof.

As shown in [Dick & Pillichshammer (2010, Theorem A.11)](Dick&2010), the system \(\{\text{wal}_k : k \in \mathbb{N}_0^s\} \) is a complete orthonormal system in \(L^2([0,1)^s) \). Therefore, we can define the Walsh series of \(f \in L^2([0,1)^s) \)
\[
\sum_{k \in \mathbb{N}_0^s} \hat{f}(k) \text{wal}_k(x),
\]
where \(\hat{f}(k) \) is the \(k \)-th Walsh coefficient of \(f \):
\[
\hat{f}(k) := \int_{[0,1)^s} f(x) \overline{\text{wal}_k(x)} \, dx.
\]
It is easy to see that $I(f) = \hat{f}(0)$.

For smooth functions $f \in W_{s, a, q, r}$, the above Walsh series converges to f point-wise absolutely, and moreover, the following bounds on the Walsh coefficients are known.

Lemma 5. Let u be a subset of $\{1, \ldots, s\}$ and $k_u \in \mathbb{N}^{[u]}$. The $(k_u, 0)$-th Walsh coefficient of $f \in W_{s, a, q, r}$ is bounded by

$$|\hat{f}(k_u, 0)| \leq \gamma_u \|f\|_{s, a, q, r} C_u^{\alpha} p^{-\nu_s(k_u)},$$

where f_u is given as in Lemma 4 and

$$C_u = \left(1 + \frac{1}{p} + \frac{1}{p(p+1)}\right)^{\alpha - 2} \left(3 + \frac{2}{p} + \frac{2p + 1}{p - 1}\right) \max_{1 \leq z < \alpha} \frac{2}{(2 \sin(\pi/p))^\alpha \max_{1 \leq z < \alpha} \frac{1}{(2 \sin(\pi/p))^z}}.$$

Proof. See Dick (2009, Theorem 15) and Dick et al. (2014, Theorem 3.5) for the proof.

3 Extrapolation of truncated higher order digital nets and sequences

3.1 Euler-Maclaurin formula

Before providing our extrapolation-based quadrature rules, here we show some necessary results as a preparation. In what follows, for $l \in \mathbb{N}$ and $k = (k_1, \ldots, k_s) \in \mathbb{N}_0^s$, we write $l \mid k$ if l divides k_j for all $1 \leq j \leq s$, and $l \nmid k$ if there exists at least one component k_j which is not divided by l. Further we write $k < l$ if $k_j < l$ holds for all $1 \leq j \leq s$.

Lemma 6. For a prime p and $m, n \in \mathbb{N}$, let $P_{m,n}$ be a digital net over \mathbb{F}_p with generating matrices $C_1, \ldots, C_s \in \mathbb{F}_p^{n \times m}$. Then we have

$$\{k \in \mathbb{N}_0^s : p^n \mid k\} \subseteq P_{m,n}^\perp,$$

and

$$P_{m,n}^\perp \setminus \{k \in \mathbb{N}_0^s : p^n \mid k\} = \{k + p^n l : k \in P_{m,n}^\perp, 0 \neq k < p^n, l \in \mathbb{N}_0^s\}.$$

Proof. The first statement is trivial, since for $k \in \mathbb{N}_0^s$ such that $p^n \mid k$, we have $\nu_n(k_1) = \cdots = \nu_n(k_s) = (0, \ldots, 0)^T$ which gives

$$C_1^T \nu_n(k_1) \oplus \cdots \oplus C_s^T \nu_n(k_s) = 0.$$

Hence $P_{m,n}^\perp$ always contains such k as an element.

Let us move on to the proof of the second statement. For $k, l \in \mathbb{N}_0$ with $k < p^n$, we have $\nu_n(k + p^n l) = \nu_n(k)$. This means that, for $k, l \in \mathbb{N}_0$ with $k < p^n$, whether $P_{m,n}^\perp$ contains $k + p^n l$ as an element does not depend on l, so that $k + p^n l \in P_{m,n}^\perp$ if and only if $k \in P_{m,n}^\perp$. Therefore we have

$$P_{m,n}^\perp = \{k + p^n l : k \in P_{m,n}^\perp, 0 \neq k < p^n, l \in \mathbb{N}_0^s\} = \{k + p^n l : k \in P_{m,n}^\perp, 0 \neq k < p^n, l \in \mathbb{N}_0^s\} \cup \{p^n l : l \in \mathbb{N}_0^s\},$$

where the last equality follows by separating the cases $k \neq 0$ and $k = 0$. Since the two sets on the right-most side above are disjoint, the result follows. \qed
Proof. Using the Walsh series of f, Lemma 3 and Lemma 6 we have

$$
\frac{1}{p^n} \sum_{h=0}^{p^n-1} f(x_h) = \frac{1}{p^n} \sum_{h=0}^{p^n-1} \sum_{k \in \mathbb{Z}_n^s} \hat{f}(k) \text{val}_h(x_h) = \sum_{k \in \mathbb{Z}_n^s} \frac{1}{p^n} \sum_{h=0}^{p^n-1} \text{val}_h(x_h)
$$

$$
= \sum_{k \in \mathbb{Z}_n^s} \hat{f}(k) = I(f) + \sum_{k \in \mathbb{Z}_n^s \setminus \{0\}} \hat{f}(k)
$$

$$
= I(f) + \sum_{l \in \mathbb{Z}_n^s} \sum_{k \in \mathbb{Z}_n^s \setminus \{0\}} \hat{f}(k + p^n l) + \sum_{k \in \mathbb{Z}_n^s \setminus \{0\}} \hat{f}(k). \quad (3)
$$

Now we write

$$
P^*_n := \left\{ \left(\frac{h_1}{p^n}, \ldots, \frac{h_s}{p^n} \right) : 0 \leq h_1, \ldots, h_s < p^n \right\},
$$

which is called regular grids. Using Lemma 3 for $k \in \mathbb{Z}_n^s$ we have

$$
\frac{1}{p^n} \sum_{h_1, \ldots, h_s=0}^{p^n-1} \text{val}_h \left(\frac{h_1}{p^n}, \ldots, \frac{h_s}{p^n} \right) = \prod_{j=1}^{s} \frac{1}{p^n} \sum_{h_j=0}^{p^n-1} \text{val}_{h_j} \left(\frac{h_j}{p^n} \right) = \begin{cases} 1 & \text{if } p^n \mid k, \\ 0 & \text{otherwise.} \end{cases}
$$

Using this result, we obtain

$$
\sum_{k \in \mathbb{Z}_n^s \setminus \{0\}} \hat{f}(k) = \sum_{k \in \mathbb{Z}_n^s \setminus \{0\}} \hat{f}(k) \frac{1}{p^n} \sum_{h_1, \ldots, h_s=0}^{p^n-1} \text{val}_h \left(\frac{h_1}{p^n}, \ldots, \frac{h_s}{p^n} \right)
$$

$$
= \frac{1}{p^n} \sum_{h_1, \ldots, h_s=0}^{p^n-1} \sum_{k \in \mathbb{Z}_n^s \setminus \{0\}} \hat{f}(k) \text{val}_k \left(\frac{h_1}{p^n}, \ldots, \frac{h_s}{p^n} \right)
$$

$$
= \frac{1}{p^n} \sum_{h_1, \ldots, h_s=0}^{p^n-1} f \left(\frac{h_1}{p^n}, \ldots, \frac{h_s}{p^n} \right) - I(f).
$$

This means that the last term of (3) is nothing but a signed integration error of QMC rule using regular grids P^*_n as quadrature nodes. It is shown by [Dick et al.] (2017, Theorem 2) that

$$
\frac{1}{p^n} \sum_{h_1, \ldots, h_s=0}^{p^n-1} f \left(\frac{h_1}{p^n}, \ldots, \frac{h_s}{p^n} \right) - I(f) = \sum_{\tau=1}^{\alpha-1} c_{\tau} f + R_{s, a, n}, \quad (4)
$$

Corollary 1. For a prime p and $m, n \in \mathbb{N}$, let $P_{m, n} = \{ x_h : 0 \leq h < p^m \}$ be a digital net over \mathbb{F}_p with generating matrices $C_1, \ldots, \tilde{C}_s \in \mathbb{F}_p^{n \times m}$. For $f \in W_{s, a, q, r}$ we have

$$
\frac{1}{p^n} \sum_{h=0}^{p^n-1} f(x_h) = I(f) + \sum_{l=0}^{p^n-1} \sum_{h \in \mathbb{Z}_n^s} \hat{f}(k + p^n l) + \sum_{\tau=1}^{\alpha-1} c_{\tau} f + R_{s, a, n}. \quad (2)
$$

where $c_{\tau} f$ depends only on f and τ, and $R_{s, a, n} \in O(p^{-a n})$. \hfill \blacksquare
where
\[c_\tau(f) = \sum_{\tau \in \{0,1,\ldots,\alpha-1\}^s} I(f(\tau)) \prod_{j=1}^{s} b_{\tau_j}, \]
with \(|\tau|_1 = |\tau_1| + \cdots + |\tau_s|\), and
\[|R_{s,\alpha,n}| \leq \frac{\|f\|_{s,\alpha,q,s}}{p^{an}} \left[\sum_{u \subseteq \{1,\ldots,s\}} \left(\gamma_u (\alpha+1)^{|u|/q'} D_\alpha^{|u|} \right)^{r'/r'} \right]^{1/r'}, \]
with \(q'\) an \(r'\) being the Hölder conjugates of \(q\) and \(r\), respectively, and
\[D_\alpha = \max \left\{ |b_1|, \ldots, |b_{\alpha-1}|, \sup_{x \in [0,1)} |\tilde{b}_\alpha(x)| \right\}. \]

We complete the proof by substituting (4) into the last term of (3).

3.2 An algorithm and its worst-case error bound

Throughout this subsection, let \(S\) be an order \(\alpha\) digital \((t,s)\)-sequence over \(\mathbb{F}_p\) with generating matrices \(C_1, \ldots, C_s\). For \(m, n \in \mathbb{N}\), we denote the upper-left \(n \times m\) submatrices of \(C_1, \ldots, C_s\) by \(C_1^{[n \times m]}, \ldots, C_s^{[n \times m]}\), and denote a digital net with generating matrices \(C_1^{[n \times m]}, \ldots, C_s^{[n \times m]}\) by \(P^{[n \times m]}\). In view of Remark 2, we assume that
\[P^{[\alpha m \times m]} = P^{[(\alpha m+1) \times m]} = \cdots = P^{[N \times m]}, \]
where the right-most side denotes the first \(p^n\) points of \(S\). It is easy to see that, for a finite \(n\), we have
\[P^{[n \times m]} = \text{tr}_n(P^{[N \times m]}), \]
where the map \(\text{tr}_n\) is defined as in (1), and also we have
\[\{ k \in P^{[n \times m]} : k < p^n \} = \{ k \in P^{[N \times m]} : k < p^n \}. \]

Furthermore, instead of \(A_N(f)\), we write
\[I(f; P) = \frac{1}{N} \sum_{x \in P} f(x) \]
for an \(N\)-element point set \(P \subset [0,1)^s\) to emphasize which point set is used in numerical integration.

Now let us consider the following algorithm:

Algorithm 1. Let \(S\) be an order \(\alpha\) digital \((t,s)\)-sequence over \(\mathbb{F}_p\). For \(m \in \mathbb{N}\) and \(f: [0,1)^s \to \mathbb{R}\), do the following:

1. For \(0 \leq i < \alpha\), compute
\[I^{(1)}_{m+i}(f) := I \left(f; P^{[(m+i) \times (m+i)]} \right). \]
2. For $1 \leq \tau < \alpha$, let
\[
I_{m+i}^{(\tau+1)}(f) := \frac{p^\tau I_{m+i+1}(f) - I_{m+i}^{(\tau)}(f)}{p^\tau - 1}
\text{ for } 0 \leq i < \alpha - \tau.
\]

3. Return $I_m^{(\alpha)}(f)$ as an approximation of $I(f)$.

We would emphasize that Algorithm 1 uses only digital nets with square generating matrices, which significantly reduces the necessary precision of points from αm (see Remarks 1 and 2) to m. Since the resulting estimate $I_m^{(\alpha)}(f)$ is given by a weighted sum of QMC rules with different sizes of nodes, $I_m^{(1)}(f), \ldots, I_m^{(\alpha-1)}(f)$, this quadrature rule is a linear algorithm with the total number of function evaluations
\[
N = p^m + \cdots + p^{m+\alpha-1}.
\]

As a main result of this paper, we show that our quadrature rule $I_m^{(\alpha)}(f)$ achieves the almost optimal rate of convergence of the worst-case error in $W_{s,\alpha,q,r}$.

Theorem 1. Let $\alpha \in \mathbb{N}$, $\alpha \geq 2$, and $1 \leq q, r \leq \infty$. The worst-case error of the algorithm $I_m^{(\alpha)}(f)$ in $W_{s,\alpha,q,r}$ is bounded above by
\[
\sup_{f \in W_{s,\alpha,q,r}} \left| I(f) - I_m^{(\alpha)}(f) \right| \leq \sum_{\emptyset \neq u \subseteq \{1, \ldots, s\}} \gamma_u U_{|u|,\alpha} \frac{(\log_p N)^{\alpha|u|}}{N^\alpha},
\]
where $U_{|u|,\alpha} > 0$ for all $\emptyset \neq u \subseteq \{1, \ldots, s\}$.

In order to prove Theorem 1 we need some preparations.

Lemma 7. Let P be an order α digital (t, m, s)-net over \mathbb{F}_p or be the first p^m points of an order α digital (t, s)-sequence over \mathbb{F}_p. For a non-empty subset $u \subseteq \{1, \ldots, s\}$, we write
\[
P_u^\perp = \{k_u \in \mathbb{N}^{|u|} : (k_u, 0) \in P_u^\perp\}.
\]
Then we have
\[
\sum_{k_u \in P_u^\perp} p^{-\mu_\alpha(k_u)} \leq E_{|u|,\alpha} \frac{(am - t + 2)^{|u|}}{p^{|u|}},
\]
where
\[
E_{|u|,\alpha} = p^{|u|} \left(\frac{1}{p} + \left(\frac{p}{p - 1} \right)^{\alpha|u|} \right).
\]

Proof. See Dick (2008, Lemma 5.2) and Dick & Pillichshammer (2010, Lemma 15.20) for the proof.

Lemma 8. For $n \in \mathbb{N}$ and $k, l \in \mathbb{N}_0^d$ with $k < p^n$, we have
\[
\mu_\alpha(k + p^n l) \geq \mu_\alpha(k) + \mu_\alpha(l).
\]
Proof. Noting that
\[\mu_\alpha(k + p^n l) = \sum_{j=1}^{s} \mu_\alpha(k_j + p^n l_j) \]
and
\[\mu_\alpha(k) + \mu_\alpha(l) = \sum_{j=1}^{s} (\mu_\alpha(k_j) + \mu_\alpha(l_j)), \]
it suffices to prove the statement for the one-dimensional case:
\[\mu_\alpha(k + p^n l) \geq \mu_\alpha(k) + \mu_\alpha(l), \]
for any \(k, l \in \mathbb{N}_0 \) with \(k < p^n \). Since the result is trivial if \(l = 0 \), we assume \(l > 0 \). We denote the \(p \)-adic expansions of \(k \) and \(l \) by
\[
k = \kappa_1 p^{\ell_1 - 1} + \cdots + \kappa_n p^{\ell_n - 1},
\]
\[
l = \tau_1 p^{d_1 - 1} + \cdots + \tau_w p^{d_w - 1},
\]
with \(\kappa_1, \ldots, \kappa_n, \tau_1, \ldots, \tau_w \in \{1, \ldots, p - 1\}, \kappa_1 > \cdots > \kappa_n > 0 \) and \(d_1 > \cdots > d_w > 0 \), respectively. Since \(k < p^n \), we have \(c_1 \leq n \) and \(v \leq n \). If \(w < \alpha \), we have
\[
\mu_\alpha(k + p^n l) = \mu_\alpha(\kappa_1 p^{\ell_1 - 1} + \cdots + \kappa_n p^{\ell_n - 1} + \tau_1 p^{d_1 - 1} + \cdots + \tau_w p^{d_w - 1})
\]
\[
= \sum_{i=1}^{w} (d_i + n) + \sum_{i=1}^{\min(\alpha, v)} c_i \geq \sum_{i=1}^{w} d_i + \sum_{i=1}^{\min(\alpha, v)} c_i = \mu_\alpha(l) + \mu_\alpha(k).
\]
On the other hand, if \(w \geq \alpha \), we have
\[
\mu_\alpha(k + p^n l) = \sum_{i=1}^{\alpha} (d_i + n) \geq \sum_{i=1}^{\alpha} d_i + \sum_{i=1}^{\min(\alpha, v)} c_i = \mu_\alpha(l) + \mu_\alpha(k).
\]
Thus we complete the proof. \(\square \)

Now we are ready to prove Theorem \(\ref{thm:main} \).

Proof of Theorem \(\ref{thm:main} \). Let \(f \in W_{s,\alpha,q,r} \). For each \(0 \leq i < \alpha \), Corollary \(\ref{cor:main} \) gives
\[
I_{m+i}^{(1)}(f) = I(f) + \sum_{i=0}^{\alpha-1} \sum_{k \in \mathbb{N}_0} \sum_{p^{(m+i)(n+1)} \parallel k, p^{m+i} l} \hat{f}(k + p^{m+i} l) + \frac{c_r(f)}{p^{(m+i)}} + R_{s,\alpha,m+i}.
\]
Using the result shown in \cite{Dick et al. 2017, Section 2.4}, we have
\[
I_{m}^{(\alpha)}(f) = I(f) + \sum_{i=0}^{\alpha-1} w_i \left(\sum_{k \in 0 \parallel k, p^{m+i} l} \hat{f}(k + p^{m+i} l) + R_{s,\alpha,m+i} \right).
\]

13
where
\[w_i = (-1)^{\alpha - 1 - i} \prod_{j=1}^{\alpha - 1} \left(\frac{1}{p^j - 1} \right) \sum_{u \subseteq \{1, \ldots, \alpha - 1\}} \prod_{j \in u} p^j. \]

It follows from the triangle inequality that
\[
|I^{(s)}_m(f) - I(f)| \leq \sum_{i=0}^{\alpha - 1} |w_i| \left(\sum_{l_u \in N^{|u|}_0} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} \sum_{0 \neq k < p^{m+i}} |\hat{f}(k + p^{m+i})| + |R_{s, \alpha, m+i}| \right)
\]
\[
= \sum_{i=0}^{\alpha - 1} |w_i| \left(\sum_{\emptyset \neq u \subseteq \{1, \ldots, s\}} \sum_{l_u \in N^{|u|}_0} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} \sum_{0 < k_u < p^{m+i}} |\hat{f}(k_u + p^{m+i}l_u, 0)| + |R_{s, \alpha, m+i}| \right).
\]

Using Lemmas 5 and 8, the inner double sum above for a given \(\emptyset \neq u \subseteq \{1, \ldots, s\} \) is bounded by
\[
\sum_{l_u \in N^{|u|}_0} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} |\hat{f}(k_u + p^{m+i}l_u, 0)| \leq \gamma_u \|f\|_{\alpha, \alpha, \alpha} C_{\alpha}^{\alpha} \sum_{l_u \in N^{|u|}_0} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} p^{-\mu_\alpha(k_u + p^{m+i}l_u)} \leq \gamma_u \|f\|_{\alpha, \alpha, \alpha} C_{\alpha}^{\alpha} \sum_{l_u \in N^{|u|}_0} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} p^{-\mu_\alpha(k_u)}.
\]

Applying (6) and Lemma 7 the inner sum over \(k_u \) is bounded by
\[
\sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} p^{-\mu_\alpha(k_u)} = \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} p^{-\mu_\alpha(k_u)} \leq E_{|u|, \alpha} \frac{(\alpha(m + i) - t + 2)^{\alpha|u|}}{p^{\alpha(m+i)}}.
\]

Regarding the sum over \(l_u \in N^{|u|}_0 \), Goda (2016, Lemma 7) gives
\[
\sum_{l_u \in N^{|u|}_0} p^{-\mu_\alpha(l_u)} = \left(\sum_{l \in N_0} p^{-\mu_\alpha(l)} \right)^{|u|} = A_{\alpha}^{|u|},
\]
where
\[A_{\alpha} = 1 + \sum_{w=1}^{\alpha - 1} \prod_{i=1}^{w} \left(\frac{p - 1}{p^i - 1} \right) + \left(\frac{p^{\alpha} - 1}{p^{\alpha} - p} \right) \prod_{i=1}^{\alpha - 1} \left(\frac{p - 1}{p^i - 1} \right). \]

All together, the inner double sum for \(\emptyset \neq u \subseteq \{1, \ldots, s\} \) is bounded by
\[
\sum_{l_u \in N^{|u|}_0} \sum_{k_u \in P^{[(m+1)\times (m+1)]}_{\perp}^{|u|}} |\hat{f}(k_u + p^{m+i}l_u, 0)| \leq \gamma_u \|f\|_{\alpha, \alpha, \alpha} C_{\alpha}^{\alpha} A_{\alpha}^{|u|} E_{|u|, \alpha} \frac{(\alpha(m + i) - t + 2)^{\alpha|u|}}{p^{\alpha(m+i)}}.
\]
Recall that the total number of function evaluations is \(N = p^m + \cdots + p^{m+\alpha-1} \). Using the above result and (5), the integration error for \(f \in W_{s,\alpha,q,r} \) is bounded by

\[
\left| I_{m}^{(\alpha)}(f) - I(f) \right| \leq \sum_{i=0}^{\alpha-1} |w_i| \sum_{\emptyset \neq u \subseteq \{1,\ldots,s\}} \gamma_u \|f\|_{s,\alpha,q,r} \frac{A_{\alpha}^{[u]} C_{\alpha}^{[u]} E_{u,\alpha}(\alpha(m + i) - t + 2)^{\alpha[u]} + (\alpha + 1)^{\alpha[u]} D_{\alpha}^{[u]}}{p^{\alpha(m+i)}}
\]

\[
\leq \|f\|_{s,\alpha,q,r} \sum_{\emptyset \neq u \subseteq \{1,\ldots,s\}} \gamma_u \frac{(\log p N)^{\alpha[u]}}{N^\alpha}
\]

\[
\times \left(A_{\alpha}^{[u]} C_{\alpha}^{[u]} E_{u,\alpha} + (\alpha + 1)^{\alpha[u]} D_{\alpha}^{[u]} \right) \sum_{i=0}^{\alpha-1} |w_i| \frac{N^\alpha}{p^{\alpha(m+i)}} \frac{(\alpha(m + i) - t + 2)^{\alpha[u]}}{(\log p N)^{\alpha[u]}}.
\]

For any \(0 \leq i < \alpha \) we have

\[
\frac{N^\alpha}{p^{\alpha(m+i)}} \leq \left(\frac{\alpha p^m + \alpha - 1}{p^{\alpha(m+i)}} \right)^\alpha = (\alpha p^{\alpha+1-i})^\alpha,
\]

and

\[
(\alpha(m + i) - t + 2)^{\alpha[u]} \leq (\alpha(m + i + 2/\alpha))^{\alpha[u]} \leq (\alpha(m + i + 1))^{\alpha[u]}
\]

\[
\leq (2\alpha (m + i))^{\alpha[u]} \leq (2\alpha \log p N)^{\alpha[u]}.
\]

Thus the inner sum of (7) is bounded independently of \(m \) as

\[
\sum_{i=0}^{\alpha-1} |w_i| \frac{N^\alpha}{(\log p N)^{\alpha[u]}} \frac{(\alpha(m + i) - t + 2)^{\alpha[u]}}{p^{\alpha(m+i)}} \leq (2\alpha)^{\alpha[u]} \sum_{i=0}^{\alpha-1} |w_i| (\alpha p^{\alpha+1-i})^\alpha.
\]

This leads to a worst-case error bound:

\[
\sup_{f \in W_{s,\alpha,q,r}} \frac{\|f\|_{s,\alpha,q,r} \leq 1} I_{m}^{(\alpha)}(f) - I(f) \leq \sum_{\emptyset \neq u \subseteq \{1,\ldots,s\}} \gamma_u U_{|u|,\alpha} \frac{(\log p N)^{\alpha[u]}}{N^\alpha},
\]

where

\[
U_{|u|,\alpha} = (2\alpha)^{\alpha[u]} \left(A_{\alpha}^{[u]} C_{\alpha}^{[u]} E_{u,\alpha} + (\alpha + 1)^{\alpha[u]} D_{\alpha}^{[u]} \right) \sum_{i=0}^{\alpha-1} |w_i| (\alpha p^{\alpha+1-i})^\alpha.
\]

Hence we complete the proof. \(\square \)

Remark 3. Algorithm (3) is naturally extensible with respect to \(m \) in the following way: For \(m_{\text{min}}, m_{\text{max}} \in \mathbb{N}, m_{\text{max}} - m_{\text{min}} \geq \alpha \) and \(f: [0,1)^s \rightarrow \mathbb{R} \), do the following:

1. For \(m_{\text{min}} \leq i \leq m_{\text{max}} \), compute

\[
I_i^{(1)}(f) := I(f; P^{[i],[i]}).
\]
2. For $1 \leq \tau < \alpha$, let

$$I_i^{[\tau + 1]}(f) := \frac{p^\tau I_{i+1}^{[\tau]}(f) - I_i^{[\tau]}(f)}{p^\tau - 1}$$

for $m_{\text{min}} \leq i \leq m_{\text{max}} - \tau$.

Then we obtain a sequence of the approximate values $I_{m_{\text{min}}}^{(\alpha)}, I_{m_{\text{min}}+1}^{(\alpha)}, \ldots, I_{m_{\text{max}}-\alpha+1}^{(\alpha)}$.

If one wants to increase m_{max} by 1, it suffices to compute $I_{m_{\text{max}}}^{(1)}(f)$ instead of whole $I_{m_{\text{max}}-\alpha+1}^{(1)}(f), \ldots, I_{m_{\text{max}}+1}^{(1)}(f)$. This is a key advantage as compared to another possible algorithm which we introduce below.

3.3 Another possible algorithm

It is clear from the proof of Theorem 1 that, in order to vanish the main terms of (2), i.e.,

$$\sum_{\tau=1}^{\alpha-1} c_{\tau}(f) p^\tau n^\alpha$$

by applying Richardson extrapolation recursively, there is no need to set $n = m$ and to change them at the same time. In fact we can fix m and change n only, although the resulting algorithm is no longer extensible in m.

Algorithm 2. Let $P_{m,\alpha m}$ be an order α digital (t, m, s)-net over \mathbb{F}_p with generating matrices $C_1, \ldots, C_s \in \mathbb{F}_p^{m \times m}$. For $f : [0, 1)^s \to \mathbb{R}$, do the following:

1. For $0 \leq i < \alpha$, compute

$$J_{m+i}^{(1)} := I(f; p_{m,\alpha m}^{(m+i) \times m})$$

where $p_{m,\alpha m}^{(m+i) \times m}$ denotes a digital net with generating matrices $C_1^{(m+i) \times m}, \ldots, C_s^{(m+i) \times m}$.

2. For $1 \leq \tau < \alpha$, let

$$J_{m+i}^{(\tau + 1)} := \frac{p^\tau J_{m+i+1}^{(\tau)} - J_{m+i}^{(\tau)}}{p^\tau - 1}$$

for $0 \leq i < \alpha - \tau$.

3. Return $J_{m}^{(\alpha)}$ as an approximation of $I(f)$.

We see that the total number of function evaluations used in $J_m^{(\alpha)}$ is $N = \alpha p^m$. Similarly to Algorithm 1 this alternative algorithm achieves the almost optimal rate of convergence as shown below. Since we can prove the result exactly in the same way as Theorem 1, we omit the proof.

Theorem 2. Let $\alpha \in \mathbb{N}$, $\alpha \geq 2$, and $1 \leq q, r \leq \infty$. The worst-case error of the algorithm $J_m^{(\alpha)}(f)$ in $W_{\alpha, q, r}$ is bounded above by

$$\sup_{f \in W_{\alpha, q, r}} \|f\|_{r,q,r} \leq \sum_{\emptyset \neq u \subseteq \{1, \ldots, s\}} \gamma_u V_{|u|, \alpha} (\log_p N)^{\alpha |u|} N^{-\alpha},$$

where $V_{|u|, \alpha} > 0$ for all $\emptyset \neq u \subseteq \{1, \ldots, s\}$.

This content is extracted from a mathematical document discussing numerical methods, particularly focusing on the approximation of integrals using digital nets and the application of Richardson extrapolation. The text introduces two algorithms for approximating integrals, highlighting the advantages of one over the other and proving the convergence rates for each method.
4 Numerical experiments

Finally we conduct some numerical experiments to see the effectiveness of our extrapolation-based quadrature rules. For all the experiments, we use higher order Sobol’ nets and sequences from Dick (2007, 2008).

4.1 Low-dimensional cases

First let us consider the simplest case \(s = 1 \). The test function we use is

\[
 f_1(x) = xe^x.
\]

Note that \(I(f_1) = 1 \). Figure 1 shows the absolute integration error obtained by using Algorithm 1 (and Remark 3) with \(\alpha = 2 \) and \(\alpha = 3 \). In both cases, the integration error of \(I_m^{(1)} \) achieves the convergence of order \(N^{-1} \) almost exactly. We can see that the order of convergence of the integration error is improved from \(N^{-1} \) to \(N^{-2} \) by applying Richardson extrapolation. In case of \(\alpha = 3 \), the recursive application of Richardson extrapolation further improves the order of convergence to approximately \(N^{-3} \). This convergence behavior is in good agreement with our theoretical result.

Next let us consider a bi-variate test function

\[
 f_2(x, y) = ye^{xy},
\]

for which we have \(I(f_2) = 1 \). Figure 2 shows the absolute integration error by Algorithm 1 (and Remark 3) with \(\alpha = 2 \) and \(\alpha = 3 \). Similarly to the result for \(f_1 \), the integration errors of \(I_m^{(1)} \) and \(I_m^{(2)} \) achieve the convergence of order \(N^{-1} \) and (approximately) \(N^{-2} \), respectively. However, no further improvement is observed for \(\alpha = 3 \) after the recursive application of Richardson extrapolation. In fact, as can be seen from Figure 3 QMC rules using order 3 Sobol’ sequences do not achieve the convergence of order \(N^{-3} \), and the performances of order 2 and 3 Sobol’ sequences are comparable. This implies that, on the right-hand side of (2), \(c_1(f)/p^n \) is the most dominant term, but \(c_2(f)/p^{2n} \) is not the only
secondary dominant term and is comparable to
\[
\sum_{l \in \mathbb{N}^d} \sum_{k \in P_{m,n}} \hat{f}(k + p^n l).
\]

This is why our Algorithm 1 cannot achieve the desired rate of convergence for \(\alpha = 3 \). Thus, improving the performance of original higher order digital nets and sequences is important for our extrapolation-based rules to work well.

4.2 High-dimensional cases

Let us move on to the high-dimensional setting. Following [Dick et al. 2017], we consider the following two test functions:

\[
f_3(x) = \prod_{j=1}^{s} \left[1 + \gamma_j \left(x_j^{c_1} - \frac{1}{1 + c_1} \right) \right],
\]
\[f_4(x) = \prod_{j=1}^{s} \left[1 + \frac{\gamma_j}{1 + \gamma_j x_j^{c_2}} \right], \]

with parameters \(c_1, c_2 > 0 \), for which we have \(I(f_4) = 1 \) and

\[I(f_4) = \begin{cases} \prod_{j=1}^{s} [1 + \log(1 + \gamma_j)] & \text{if } c_2 = 1, \\ \prod_{j=1}^{s} [1 + \sqrt{\gamma_j} \tan^{-1} (\sqrt{\gamma_j})] & \text{if } c_2 = 2. \end{cases} \]

We put \(s = 100 \) and \(\gamma_j = j^{-2} \). We consider three quadrature rules: Algorithm 1 with \(\alpha = 2 \), denoted by \(I_m^{(2)} \), Algorithm 2 with \(\alpha = 2 \), denoted by \(J_m^{(2)} \), and QMC rules using order 2 Sobol’ sequences. Figure 4 shows the comparison of the absolute integration errors obtained by these three algorithms. In fact, there is no decisive difference in performance between these algorithms, and for \(f_4 \) with both \(c_2 = 1 \) and \(c_2 = 2 \), all of them achieve the desired rate of convergence, which is \(O(N^{-2+\varepsilon}) \). For \(f_3 \), the rate of convergence is not optimal but much better than the first order convergence. This result not only supports our theoretical result, but also indicates that Richardson extrapolation allows truncation of higher order digital nets and sequences without sacrificing the practical performance of them even for high-dimensional cases.

Acknowledgements

The author would like to thank Takehito Yoshiki for useful discussions and comments.

References

B{\textsc{aldeaux}}, J., D{\textsc{ick}}, J., L{\textsc{eobacher}}, G., N{\textsc{uyens}}, D. & Pillichshammer, F. (2012) Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules. Numer. Algorithms, 59, 403–431.

B{\textsc{aldeaux}}, J., D{\textsc{ick}}, J. & Pillichshammer, F. (2011) Duality theory and propagation rules for higher order nets. Discrete Math., 311, 362–386.

D{\textsc{ick}}, J. (2007) Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal., 45, 2141–2176.

D{\textsc{ick}}, J. (2008) Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal., 46, 1519–1553.

D{\textsc{ick}}, J. (2009) The decay of the Walsh coefficients of smooth functions. Bull. Austral. Math. Soc., 80, 430–453.

D{\textsc{ick}}, J., G{\textsc{oda}}, T. & Y{\textsc{oshiki}}, T. (2017) Richardson extrapolation of polynomial lattice rules. Preprint, arXiv:1707.03989.

D{\textsc{ick}}, J., K{\textsc{uo}}, F. Y., L{\textsc{e Gia}}, Q. T., N{\textsc{uyens}}, D. & Sch{\textsc{wab}}, C. (2014) Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal., 52, 2676–2702.
Figure 4: Comparison of integration errors by three algorithms for f_3 with $c_1 = 1.3$ (left top), f_4 with $c_2 = 1$ (right top) and f_4 with $c_2 = 2$ (bottom).

Dick, J., Kuo, F. Y., Le Gia, Q. T. & Schwab, C. (2015) Fast QMC matrix-vector multiplication. *SIAM J. Sci. Comput.*, 37, A1436–A1450.

Dick, J. & Pillichshammer, F. (2010) *Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration*. Cambridge: Cambridge University Press.

Faure, H. (1982) Discr´eances de suites associ´ees `a un syst`eme de num´eration (en dimension s). *Acta Arith.*, 41, 337–351.

Goda, T. (2015) Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces. *J. Comput. Appl. Math.*, 285, 279–294.

Goda, T. (2016) Quasi-Monte Carlo integration using digital nets with antithetics. *J. Comput. Appl. Math.*, 304, 26–42.

Goda, T. & Dick, J. (2015) Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. *Found. Comput. Math.*, 15, 1245–1278.

Goda, T., Suzuki, K. & Yoshiki, T. (2016) Digital nets with infinite digit expansions and construction of folded digital nets for quasi-Monte Carlo integration. *J. Complexity*, 33, 30–54.

Goda, T., Suzuki, K. & Yoshiki, T. (2017) Optimal order quasi-Monte Carlo integration in weighted Sobolev spaces of arbitrary smoothness. *IMA J. Numer. Anal.*, 37, 505–518.

Goda, T., Suzuki, K. & Yoshiki, T. (2018) Optimal order quadrature error bounds
for infinite-dimensional higher-order digital sequences. *Found. Comput. Math.*, 18, 433–458.

Hinrichs, A., Markhasin, L., Oettershagen, J. & Ullrich, T. (2016) Optimal quasi-Monte Carlo rules on order 2 digital nets for the numerical integration of multivariate periodic functions. *Numer. Math.*, 134, 163–196.

Kuo, F. Y. & Nuyens, D. (2016) Application of quasi-Monte Carlo methods to elliptic PDEs with random diffusion coefficients: a survey of analysis and implementation. *Found. Comput. Math.*, 16, 1631–1696.

Niederreiter, H. (1986) Low-discrepancy point sets. *Monatsh. Math.*, 102, 155-167.

Niederreiter, H. (1988) Low-discrepancy and low-dispersion sequences. *J. Number Theory*, 30, 51–70.

Niederreiter, H. (1992) *Random Number Generation and Quasi-Monte Carlo Methods*. CBMS-NSF Regional Conference Series in Applied Mathematics 63, Philadelphia: SIAM.

Niederreiter, H. & Xing, C. P. (2001) *Rational Points on Curves over Finite Fields: Theory and Applications*. London Mathematical Society Lecture Note Series 285, Cambridge: Cambridge University Press.

Rosenbloom, M. Yu. & Tsfasman, M. A. (1997) Codes for the m-metric. *Probl. Inf. Transm.*, 33, 55-63.

Sloan, I. H. & Woźniakowski, H. (1998) When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? *J. Complexity*, 14, 1–33.

Sobol', I. M. (1967) The distribution of points in a cube and approximate evaluation of integrals. *Zh. Vycisl. Mat. i Mat. Fiz.*, 7, 784–802.

Tezuka, S. Polynomial arithmetic analogue of Halton sequences. *ACM Trans. Model. Comput. Simul.*, 3, 99–107.