Purely infinite simple C*-algebras associated to integer dilation matrices

Ruy Exel
Universidade Federal de Santa Catarina

Astrid an Huef
University of Otago

Iain Raeburn
University of Wollongong, raeburn@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers

Part of the Engineering Commons, and the Science and Technology Studies Commons

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Purely infinite simple C*-algebras associated to integer dilation matrices

Abstract
Given an n×n integer matrix A whose eigenvalues are strictly greater than 1 in absolute value, let σA be the transformation of the n-torus Tn = Rn/Zn defined by σA(e2πix) = e2πiAx for x ∈ Rn. We study the associated crossed-product C*-algebra, which is defined using a certain transfer operator for σA, proving it to be simple and purely infinite and computing its K-theory groups.

Keywords
dilation, integer, associated, matrices, algebras, purely, c, simple, infinite

Disciplines
Engineering | Science and Technology Studies

Publication Details
Exel, R., Huef, A. an. & Raeburn, I. (2011). Purely infinite simple C*-algebras associated to integer dilation matrices. Indiana University Mathematics Journal, 60 (3), 1033-1058.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/862
Purely Infinite Simple C*-Algebras Associated to Integer Dilation Matrices

RUY EXEL, ASTRID AN HUEF & IAIN RAEBURN

ABSTRACT. Given an \(n \times n \) integer matrix \(A \) whose eigenvalues are strictly greater than 1 in absolute value, let \(\sigma_A \) be the transformation of the \(n \)-torus \(\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n \) defined by \(\sigma_A(e^{2\pi i x}) = e^{2\pi i Ax} \) for \(x \in \mathbb{R}^n \). We study the associated crossed-product C*-algebra, which is defined using a certain transfer operator for \(\sigma_A \), proving it to be simple and purely infinite and computing its \(K \)-theory groups.

1. INTRODUCTION

Exel has recently introduced a new kind of crossed product for an endomorphism \(\alpha \) of a C*-algebra \(B \) [6]. The crucial ingredient in his construction is a transfer operator, which is a positive linear map \(L : B \to B \) satisfying \(L(\alpha(a)b) = aL(b) \). In the motivating example, \(B = C(X) \), \(X \) is a compact Hausdorff space, \(\alpha \) is the endomorphism \(\alpha : f \mapsto f \circ \sigma \) associated to a covering map \(\sigma : X \to X \), and \(L \) is defined by

\[
L(f)(x) = \frac{1}{|\sigma^{-1}(\{x\})|} \sum_{\sigma(y) = x} f(y)
\]

(see [3, 7, 8], for example; transfer operators themselves have been used in dynamics for many years [26]). Exel’s crossed product \(B \rtimes_{\alpha,L} \mathbb{N} \) can be constructed in several ways, but here we view it as the Cuntz-Pimsner algebra \(\mathcal{O}(M_L) \) of a right-Hilbert \(B \)-bimodule \(M_L \) constructed from \(L \), as discussed in [2] (see also Section 2.2 below).

We became interested in this circle of ideas when we noticed that the bimodule \(M_L \) associated to the covering map \(\sigma : z \mapsto z^N \) of the unit circle \(\mathbb{T} \) plays a key...
role in work of Packer and Rieffel on projective multi-resolution analyses [18]–[21]. The module elements $m \in M_L$ such that $\langle m, m \rangle$ is the identity of $C(X)$ are precisely the quadrature mirror filters arising in signal processing and wavelet theory, and orthonormal bases for M_L are what engineers call “filter banks with perfect reconstruction” (as observed and exploited in [16] and [10], for example.)

We then noticed further, using results from [8], that the associated crossed product $C(\mathbb{T}) \rtimes_{\alpha_N, L} \mathbb{N}$, where α_N is the endomorphism of $C(\mathbb{T})$ given by σ, is simple, and accordingly computed its K-theory, finding that $K_0 = \mathbb{Z} \oplus (\mathbb{Z}/(N-1)\mathbb{Z})$ and $K_1 = \mathbb{Z}$. But then we saw this K-theory occurring elsewhere, and we gradually realised that the C^*-algebra $C(\mathbb{T}) \rtimes_{\alpha_N, L} \mathbb{N}$ had already been studied by many authors under other guises. (An almost certainly incomplete list includes [1, Theorem 2.12; 5, Example 3; 12, Example 4.1; 14, Appendix A; 29, Theorem 2.1].

Multiplication by N, however, is just one of many dilations of interest in wavelet theory (see, for example, [27]). Here we consider the covering maps σ_A of $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ induced by integer matrices A whose eigenvalues λ satisfy $|\lambda| > 1$, and the crossed products of the associated systems $(C(\mathbb{T}^d), \alpha_A, L)$, where σ_A is the endomorphism of $C(\mathbb{T}^d)$ given by σ_A.

We will show, using results from [8] and [14], that the crossed products $C(\mathbb{T}^d) \rtimes_{\alpha_A, L} \mathbb{N}$ are simple and purely infinite, and hence by the Kirchberg-Phillips theorem are classified by their K-theory. The computation of the K-theory groups of $C(\mathbb{T}^d) \rtimes_{\alpha_A, L} \mathbb{N}$ therefore has a special significance, and one of the main goals of this paper is to carry out this computation.

Since $C(\mathbb{T}^d) \rtimes_{\alpha_A, L} \mathbb{N}$ is a Cuntz-Pimsner algebra, one should in principle be able to compute its K-theory using the exact sequence of [23, Theorem 4.8], but in practice we were not able to compute some of the homomorphisms in that sequence. So we have argued directly from the six-term exact sequence associated to the Toeplitz algebra of the bimodule M_L, and we hope that our computation will be of independent interest.

Our computation is based on a six-term exact sequence which is valid for any system (B, α, L) for which the bimodule M_L is free as a right Hilbert B-module. Using an orthonormal basis for M_L, we build a homomorphism $\Omega : B \to M_N(B)$ which has the property that $\Omega \circ \alpha(a)$ is the diagonal matrix $a_1 N$ with N copies of a down the diagonal, and which we view as a K-theoretic left inverse for α. When the bimodule is obtained from an integral matrix A, as above, this map is closely associated to the classical adjoint of A.

We then show that there is an exact sequence
in which \(j_B \) is the canonical embedding of \(B \) in the Cuntz-Pimsner algebra \(\mathcal{O}(M_L) \). When \((B, \alpha, L) = (C(\mathbb{T}^d), \alpha_A, L) \), we know from [20] that \(C(\mathbb{T}^d)_L \) is free, so this exact sequence applies; since we also know from [11] that \(K_*(C(\mathbb{T}^d)) = K_*(\mathbb{T}^d) \) is isomorphic to the exterior ring generated by a copy of \(\mathbb{Z}^d \) in \(K^1(\mathbb{T}^d) \), we can in this case compute \(\Omega_* \), and derive explicit formulas for \(K_i(\mathcal{O}(M_L)) \).

2. Crossed Products by Endomorphisms

2.1. Cuntz-Pimsner algebras. A right-Hilbert bimodule over a \(C^* \)-algebra \(B \), also known as a correspondence, is a right Hilbert \(B \)-module \(M \) with a left action of \(B \) implemented by a homomorphism \(\varphi \) of \(B \) into the \(C^* \)-algebra \(L(M) \) of adjointable operators on \(M \). In this paper \(B \) is always unital, the bimodule \(M \) is always essential in the sense that \(1 \cdot m = m \) for \(m \in M \), and the bimodule has a finite Parseval frame or quasi-basis: a finite subset \(\{ m_j : 0 \leq j \leq N - 1 \} \) for which we have the reconstruction formula

\[
(2.1) \quad m = \sum_{j=0}^{N-1} m_j \cdot \langle m_j, m \rangle \quad \text{for every } m \in M.
\]

The reconstruction formula can be reformulated in terms of the rank-one operators \(\Theta_{m,n} : x \mapsto m \cdot \langle n, x \rangle \) as

\[
(2.2) \quad \varphi(a) = \sum_{j=0}^{N-1} \Theta_{a \cdot m_j, m_j} \quad \text{for every } a \in B
\]

and hence implies that the homomorphism \(\varphi \) takes values in the algebra \(\mathcal{K}(M) \) of compact operators on \(M \).

The obvious examples of Parseval frames are orthonormal bases:

Lemma 2.1. Suppose that \(\{ m_j : 0 \leq j \leq N - 1 \} \) are vectors in a right-Hilbert bimodule \(M \) over a unital \(C^* \)-algebra \(B \). If the \(m_j \) generate \(M \) as a Hilbert \(B \)-module and satisfy \(\langle m_j, m_k \rangle = \delta_{j,k} 1_B \), then \(\{ m_j : 0 \leq j \leq N - 1 \} \) is a finite Parseval frame for \(M \), and \(m \mapsto (\langle m_j, m \rangle)_j \) is an isomorphism of \(M \) onto \(B^N \).

Proof. A quick calculation gives the reconstruction formula for \(m \) of the form \(m_k \cdot b \), and then linearity and continuity give it for arbitrary \(m \). For the last assertion, check that \((b_0, \ldots, b_{N-1}) \mapsto \sum_j m_j \cdot b_j \) is an inverse. \(\square \)

Remark 2.2. If \(P \in L(M) \) is a projection and \(\{ n_j \} \) is an orthonormal basis for \(M \), then \(\{ Pn_j \} \) is a Parseval frame for \(P(M) \), and Frank and Larson have shown that every Parseval frame \(\{ m_j \} \) has this form because \(m \mapsto (\langle m_j, m \rangle)_j \) is an isomorphism of \(M \) onto a complemented submodule of \(B^N \) [9, Theorem 5.8]. However, many interesting bimodules have Parseval frames but are not obviously presented as direct summands of free modules. For example, for a bimodule of the form \(C(X)_L \), one can construct a Parseval frame directly using a partition of unity (see, for example, [8, Proposition 8.2]).
A Toeplitz representation of a right-Hilbert bimodule M in a C^*-algebra C consists of a linear map $\psi : M \to C$ and a homomorphism $\pi : B \to C$ satisfying $\psi(m^*)\psi(n) = \pi(\langle m, n \rangle)$ and $\psi(\varphi(a)m) = \pi(a)\psi(m)$; we then also have $\psi(m \cdot a) = \psi(m)\pi(a)$. The Toeplitz algebra $T(M)$ is generated by a universal Toeplitz representation (i_M, i_B) of M (either by theorem [23] or by definition [9]).

The following lemma is implicit in the proof of [2, Corollary 3.3].

Lemma 2.3. Suppose M is an essential right-Hilbert bimodule over a unital C^*-algebra B and (ψ, π) is a Toeplitz representation of M on a Hilbert space H. Then the subspace $\pi(1)H$ is reducing for (ψ, π), and $(\psi, \pi) = (\psi_{\pi(1)H} \oplus 0, \pi_{\pi(1)H} \oplus 0)$.

Proof. It is standard that $\pi = \pi_{\pi(1)H} \oplus 0$, and each $\psi(m) = \psi(1 \cdot m) = \pi(1)\psi(m)$ has range in $\pi(1)H$, so it suffices to show that $h \perp \pi(1)H$ implies $\psi(m)h = 0$. Suppose $h \perp \pi(1)H$. Then $\pi(\langle m, m \rangle)h \in \pi(1)H$, so that

$$
\|\psi(m)h\|^2 = (\psi(m)h \mid \psi(m)h) = (\psi(m)^*\psi(m)h \mid h) = (\pi(\langle m \mid m \rangle)h \mid h) = 0.
$$

\[\square\]

Remark 2.4. Lemma 2.3 implies that the Toeplitz algebra $T(M)$ is universal for Toeplitz representations (ψ, π) in which π is unital, and we shall assume from now on that in all Toeplitz representations (ψ, π), π is unital.

For every Toeplitz representation (ψ, π) of M, there is a unique representation $(\psi, \pi)(1)$ of the algebra $K(M)$ of compact operators on M (see, for example, [9, Proposition 1.6]). When $\varphi : B \to L(M)$ has range in $K(M)$, we say that (ψ, π) is Cuntz-Pimsner covariant if $\pi = (\psi, \pi)(1) \circ \varphi$, and the Cuntz-Pimsner algebra $\mathcal{O}(M)$ is the quotient of $T(M)$ which is universal for Cuntz-Pimsner covariant representations. The algebra $\mathcal{O}(M)$ is generated by a canonical Cuntz-Pimsner covariant representation (j_M, j_B).

Now we investigate what this all means when M has an orthonormal basis. Compare with [7, Section 8] and [8, Proposition 7.1], which use quasi-bases.

Lemma 2.5. Suppose that M is an essential right-Hilbert bimodule over a unital C^*-algebra B, and that $\{m_j : 0 \leq j \leq N - 1\}$ is an orthonormal basis for M. Let (ψ, π) be a Toeplitz representation of M. Then

1. $\{\psi(m_j) : 0 \leq j \leq N - 1\}$ is a Toeplitz-Cuntz family of isometries such that $\sum_{j=0}^{N-1} \psi(m_j)\psi(m_j)^*$ commutes with every $\pi(a)$; and
2. (ψ, π) is Cuntz-Pimsner covariant if and only if $\{\psi(m_j) : 0 \leq j \leq N - 1\}$ is a Cuntz family.

As is always the case here; when the left action on the bimodule M contains non-compact operators, there are several competing definitions of $\mathcal{O}(M)$.
Proof. (1) The relations \(\psi(m_j)^* \psi(m_j) = \pi(\langle m_j, m_j \rangle) = \pi(1) \) and our convention that \(\pi(1) = 1 \) (see Remark 2.4) imply that the \(\psi(m_j) \) are isometries. Next, we fix \(a \in B \), let \(q := \sum_{j=0}^{N-1} \psi(m_j) \psi(m_j)^* \), and compute the following using the reconstruction formula (2.1):

\[
q \pi(a) q = \sum_{j,k=0}^{N-1} \psi(m_j) \psi(m_j)^* \pi(a) \psi(m_k) \psi(m_k)^* = \sum_{j,k=0}^{N-1} \psi(m_j) \pi(\langle m_j, a \cdot m_k \rangle) \psi(m_k)^* = \sum_{k=0}^{N-1} \psi(a \cdot m_k) \psi(m_k)^* = \pi(a) q.
\]

Taking \(a = 1 \) in (2.3) shows that \(q^2 = q \), and since \(q \) is self-adjoint, it is a projection. Since each \(\psi(m_j) \) is an isometry, each \(\psi(m_j) \psi(m_j)^* \) is a projection, and since their sum is a projection, their ranges must be mutually orthogonal. Thus \(\{ \psi(m_j) \} \) is a Toeplitz-Cuntz family. Next we use (2.3) again to see that \(q \pi(a) = (\pi(a^*) q)^* = (q \pi(a^*) q)^* = q \pi(a) q = \pi(a) q \), and we have proved (1).

(2) Suppose that \((\psi, \pi)\) is Cuntz-Pimsner covariant. Plugging the formula (2.2) for \(a = 1 \) into \((\psi, \pi)(1)(\phi(1)) = \pi(1) = 1 \) shows that \(\sum_j \psi(m_j) \psi(m_j)^* = 1 \), so \(\{ \psi(m_j) \} \) is a Cuntz family. On the other hand, if \(\{ \psi(m_j) \} \) is a Cuntz family, then we can deduce from (2.2) that

\[
(\psi, \pi)(1)(\phi(a)) = \sum_{j=0}^{N-1} \psi(m_j) \psi(a^* \cdot m_j)^* = \sum_{j=0}^{N-1} \psi(m_j) \psi(m_j)^* \pi(a) = \pi(a),
\]

and \((\psi, \pi)\) is Cuntz-Pimsner covariant.

2.2. Exel systems and crossed products. Let \(\alpha \) be an endomorphism of a unital \(\mathcal{C}^* \)-algebra \(B \). A transfer operator \(L \) for \((B, \alpha)\) is a positive linear map \(L : B \to B \) such that \(L(\alpha(a)b) = aL(b) \) for all \(a, b \in B \). We call the triple \((B, \alpha, L)\) an Exel system.

Given an Exel system \((B, \alpha, L)\), we construct a right-Hilbert \(B \)-module \(M_L \) over \(B \) as in [6] and [2]. Let \(B_L \) be a copy of the underlying vector space of \(B \). Define a right action of \(a \in B \) on \(m \in B_L \) by \(m \cdot a = m \alpha(a) \), and a \(B \)-valued pairing on \(B_L \) by

\[
\langle m, n \rangle = L(m^* n) \quad \text{for } m, n \in B_L.
\]
Modding out by \(\{ m : \langle m, m \rangle = 0 \} \) and completing yields a right Hilbert \(B \)-module \(M_L \). The action of \(B \) by left multiplication on \(B_L \) extends to an action of \(B \) by adjointable operators on \(M_L \) which is implemented by a unital homomorphism \(\varphi : B \to \mathcal{L}(M_L) \), and thus makes \(M_L \) into a right-Hilbert bimodule over \(B \).

Exel’s crossed product is constructed in two stages. First he forms a Toeplitz algebra \(T(B, \alpha, L) \), which is isomorphic to \(T(M_L) \) (see [2, Corollary 3.2]). Then the crossed product \(B \rtimes_{\alpha, L} \mathbb{N} \) is the quotient of \(T(M_L) \) by the ideal generated by the elements

\[
i_B(a) - (i_{M_L}, i_B)^{(1)}(\varphi(a)) \quad \text{for } a \in K_\alpha := \varphi^{-1}(\mathcal{K}(M_L)) \cap B \overline{\alpha(B)B}
\]

(see [2, Lemma 3.7]). When \(M_L \) has a finite Parseval frame and the projection \(\alpha(1) \) is full, we have \(\varphi^{-1}(\mathcal{K}(M_L)) = B = K_\alpha \), and \(B \rtimes_{\alpha, L} \mathbb{N} \) is the Cuntz-Pimsner algebra \(\mathcal{O}(M_L) \).

For us, the main examples of Exel systems come from surjective endomorphisms \(\sigma \) of a compact group \(K \) with finite kernel: the corresponding Exel system \((C(K), \alpha, L)\) has \(\alpha(f) = f \circ \sigma \) and \(L \) defined by averaging over the fibres of \(\sigma \), as in (1.1). The next lemma is a mild generalisation of [20, Proposition 1].

Lemma 2.6. Suppose that \(\sigma : K \to K \) is a surjective endomorphism of a compact abelian group \(K \) with finite kernel: \(N := |\ker \sigma| < \infty \), and \((C(K), \alpha, L)\) is the corresponding Exel system. Then the norm on \(C(K)_L \) defined by the inner product is equivalent to the usual sup-norm, and \(C(K)_L \) is complete. It has an orthonormal basis \(\{ m_j : 0 \leq j \leq N - 1 \} \).

Proof: The assertions about the norm and the completeness are proved in [16, Lemma 3.3], for example. Since \(y \mapsto y|_{\ker \sigma} \) is surjective and \(|(\ker \sigma)^{\wedge}| = |\ker \sigma| = N \), we can find a subset \(\{ y_i : 0 \leq i \leq N - 1 \} \) of \(\hat{K} \) such that \(\{ y_i|_{\ker \sigma} \} \) is all of \((\ker \sigma)^{\wedge} \). Then

\[
\langle y_i, y_j \rangle_{L}(k) = \frac{1}{N} \sum_{\sigma(\ell) = k} \overline{y_i(\ell)} y_j(\ell)
\]

\[
= \frac{1}{N} \sum_{\zeta \in \ker \sigma} \overline{y_i(\zeta \ell_0)} y_j(\zeta \ell_0) \quad \text{for any fixed } \ell_0 \text{ such that } \sigma(\ell_0) = k
\]

\[
= \frac{1}{N} \overline{y_i(\ell_0)} y_j(\ell_0) \sum_{\zeta \in \ker \sigma} (\overline{y_i} y_j)(\zeta).
\]

If \(i \neq j \), then \((y_i^{-1} y_j)|_{\ker \sigma} \) is a nontrivial character of \(\ker \sigma \), and its range is a nontrivial subgroup of \(\mathbb{T} \), so the sum vanishes. If \(i = j \), then the sum is \(N \). So \(\{ y_j \} \) is orthonormal.

We still need to see that \(\{ y_j \} \) generates \(C(K)_L \) as a Hilbert module. The Stone-Weierstrass theorem implies that the characters of \(K \) span a dense \(\ast \)-subalgebra of \(C(K) \), and hence by the equivalence of the norms, they also span a dense subspace of \(C(K)_L \). So it suffices to show that each \(y \in \hat{K} \) is in the submodule
generated by \{y_j\}. Since \((\ker \sigma)\wedge = \{y_j\}\), there exists \(j\) such that \(y_{\ker \sigma} = y_j\). Then \(y_j^{-1} \gamma\) vanishes on \(\ker \sigma\), and there is a character \(\chi\) such that \(y_j^{-1} \gamma = \chi \circ \sigma\). This equation unravels as \(\gamma = y_j (\chi \circ \sigma) = y_j \alpha(\chi) = y_j \cdot \chi\), so it implies that \(\gamma\) belongs to the submodule generated by \{\gamma_j\}.

Example 2.7. Suppose that \(A \in M_d(\mathbb{Z})\) is an integer matrix with \(|\det A| > 1\), and \(\sigma_A\) is the endomorphism of \(T^d\) given by \(\sigma_A(e^{2\pi ix}) = e^{2\pi iAx}\) for \(x \in \mathbb{R}^d\). Then \(\sigma_A\) is surjective (because \(A: \mathbb{R}^d \to \mathbb{R}^d\) is), and \(\ker \sigma_A\) has \(N := |\det A|\) elements. A function \(m \in C(\mathbb{T}^d)\) such that \(\langle m, m \rangle(z) = 1\) for all \(z\) is called a** quadrature mirror filter** for dilation by \(A\), and an orthonormal basis for \(C(\mathbb{T}^d)\) is a** filter bank**. Lemma 2.6 says that for every \(A\), filter banks exist.

Remark 2.8. Although the dilation matrices \(A\) are greatly relevant to wavelets, the filter banks we constructed in the proof of Lemma 2.6 are not the kind which are useful for the construction of wavelets. There one wants the first filter \(m_0\) to be low-pass, which means roughly that \(m_0(1) = N^{1/2}\), \(m_0\) is smooth near 1, and \(m_0\) does not vanish on a sufficiently large neighbourhood of 1; for the basis in Lemma 2.6, we have \(|m_0(z)| = 1\) for all \(z\), and \(m_0\) is all-pass. The **matrix completion problem** considered in [20] asks whether, given a low-pass filter \(m_0\), one can find a filter bank \{\(m_j\)\} which includes the given \(m_0\). This amounts to asking that the submodule \(m_0^\perp := \{m \in C(\mathbb{T}^d) : \langle m, m_0 \rangle = 0\}\) is free. In [20, Section 4], Packer and Rieffel show by example that it need not be free if \(|\det A| > 2\) and \(d > 4\). Of course, since \(m_0^\perp\) is a direct summand of a free module, it always has a Parseval frame.

When \(\alpha\) is the endomorphism of \(C(K)\) coming from a surjective endomorphism \(\sigma\) of \(K\), we know from Lemma 2.6 that \(M_L = C(K)_L\) admits an orthonormal basis, and the associated endomorphism \(\alpha: f \mapsto f \circ \sigma\) is unital, so \(\alpha(1) = 1\) is certainly full. Thus for the systems of interest to us, Exel’s crossed product \(B \rtimes_{\alpha, L} \mathbb{N}\) is isomorphic to the Cuntz-Pimsner algebra \(\mathcal{O}(M_L)\). We will use this identification without comment.

3. The Six-Term Exact Sequence

We assume throughout this section that \((B, \alpha, L)\) is an Exel system and that \(\{m_j : 0 \leq j \leq N - 1\}\) is a Parseval frame for \(M_L\). We write \(Q\) for the quotient map from \(T(M_L) \to \mathcal{O}(M_L)\), and \((\psi, \pi)\) for the universal Toeplitz covariant representation of \(M_L\) in \(T(M_L)\).

To construct our exact sequence for \(K_*(\mathcal{O}(M))\), we analyse the six-term exact sequence

\[
\begin{array}{ccccccc}
K_0(\ker Q) & \xrightarrow{\iota_*} & K_0(T(M_L)) & \xrightarrow{Q_*} & K_0(\mathcal{O}(M_L)) & \xrightarrow{\delta_0} & K_1(\mathcal{O}(M_L)) \\
\downarrow{\delta_1} & & \downarrow{\delta} & & & & \downarrow{\delta_0} \\
K_1(\mathcal{O}(M_L)) & \xleftarrow{Q_*} & K_1(T(M_L)) & \xleftarrow{\iota_*} & K_1(\ker Q).
\end{array}
\]
We begin by recalling from [23, Theorem 4.4] that the homomorphism \(\pi : B \to T(M_L) \) induces an isomorphism of \(K_i(B) \) onto \(K_i(T(M_L)) \), so we can replace \(K_i(T(M_L)) \) with \(K_i(B) \) provided we can identify the maps. Next we introduce our "\(K \)-theoretic left inverse" for \(\alpha \), and then we will work towards showing that \(B \) is a full corner in \(\ker Q \), so that we can replace \(\ker Q \) with \(K_i(B) \).

Part (3) of the next result will not be used in this section; it is included here because it shows how \(\Omega \) relates to \(\alpha \), and gives a hint of why we view it as a "\(K \)-theoretic left inverse" for \(\alpha \). (Rieffel used a similar construction in the proof of [24, Proposition 2.1], but the technicalities seem different.)

Lemma 3.1. Define \(\Omega : B \to M_N(B) \) by \(\Omega(a) = (\langle m_j, a \cdot m_k \rangle)_{j,k} \). Then

1. \(\Omega \) is a homomorphism of \(C^* \)-algebras;
2. \(\Omega \) is unital if and only if \(\{m_j : 0 \leq j \leq N - 1\} \) is an orthonormal basis;
3. if \(B \) is commutative and \(\{m_j : 0 \leq j \leq N - 1\} \) is orthonormal, then \(\Omega(\alpha(a)) \) is the diagonal matrix \(a1_N \) with diagonal entries \(a \).

Proof. For (1), we let \(a, b \in B \) and compute first

\[
\left(\Omega(a)\Omega(b) \right)_{j,k} = \sum_{\ell=0}^{N-1} \langle m_j, a \cdot m_\ell \rangle \langle m_\ell, b \cdot m_k \rangle = \langle m_j, a \cdot \left(\sum_{\ell=0}^{N-1} m_\ell \cdot \langle m_\ell, b \cdot m_k \rangle \right) \rangle = \langle m_j, a \cdot (b \cdot m_k) \rangle = \Omega(ab)_{j,k},
\]

and then

\[
\Omega(a^*) = (\langle m_j, a^* \cdot m_k \rangle)_{j,k} = (\langle a \cdot m_j, m_k \rangle)_{j,k} = (\langle m_k, a \cdot m_j \rangle^*)_{j,k} = \Omega(a)^*.
\]

Part (2) is easy. For (3), we let \(q_L : B_L \to M_L \) be the quotient map, and consider \(m = q(b) \in q(B_L) \). Then commutativity of \(B \) gives

\[
m \cdot a = q(b \cdot a) = q(b\alpha(a)) = q(\alpha(a)b) = \alpha(a) \cdot q(b) = \alpha(a) \cdot m,
\]

and this formula extends to \(m \in M_L \) by continuity. Thus

\[
\Omega(\alpha(a))_{j,k} = \langle m_j, \alpha(a) \cdot m_k \rangle = \langle m_j, m_k \cdot a \rangle = \langle m_j, m_k \rangle a = \delta_{j,k} a,
\]

as required. \(\square \)

To describe \(\ker Q \), we need some standard notation. We write \(M_L \otimes B^i \) for the \(i \)-fold internal tensor product \(M_L \otimes_B \cdots \otimes_B M_L \), which is itself a right-Hilbert bimodule over \(B \). There is a Toeplitz representation \((\psi^i, \pi) \) of \(M_L^i \) in \(T(M_L) \) such that \(\psi^i(\xi) = \prod_{i=1}^i \psi(\xi_i) \) for elementary tensors \(\xi = \xi_1 \otimes \cdots \otimes \xi_k \) in
$M_L^{\otimes k}$ (see [9, Proposition 1.8], for example). By convention, we set $M_L^{\otimes 0} := B$ and $\psi^{\otimes 0} := \pi$. Then from [9, Lemma 2.4] we have

\[(3.2) \quad T(M_L) = \text{span}\left\{\psi^{\otimes k}(\xi)\psi^{\otimes \ell}(\eta)^* : k, \ell \geq 0, \xi \in M_L^{\otimes k}, \eta \in M_L^{\otimes \ell}\right\}.
\]

We also recall from Lemma 2.5 (1) that the element $q := \sum_{j=0}^{N-1} \psi(m_j)\psi(m_j)^*$ of $T(M_L)$ is a projection which commutes with every $\pi(a)$.

Lemma 3.2. With the preceding notation, we have

1. $1 - q = 1 - \sum_{j=0}^{N-1} \psi(m_j)\psi(m_j)^*$ is a full projection in $\ker Q$;
2. $(1 - q)\psi^{\otimes k}(\xi) = 0$ for all $\xi \in M_L^{\otimes k}$ with $k \geq 1$; and
3. $\ker Q = \text{span}\left\{\psi^{\otimes k}(\xi)(1 - q)\psi^{\otimes \ell}(\eta)^* : k, \ell \geq 0, \xi \in M_L^{\otimes k}, \eta \in M_L^{\otimes \ell}\right\}$.

Proof. (1) The reconstruction formula implies that $\varphi(a) = \sum_{j=0}^{N-1} \Theta_a \cdot mj, mj$, and so

\[(3.3) \quad (\psi, \pi)^{(1)}(\varphi(a)) = \sum_{j=1}^{N-1} \psi(a \cdot mj)\psi(m_j)^* = \pi(a)q.
\]

This implies in particular that

$$Q(1 - q) = Q(\pi(1) - \pi(1)q) = Q(\pi(1) - (\psi, \pi)^{(1)}(\varphi(1))) = 0,$$

so $1 - q$ belongs to $\ker Q$. Since $\ker Q$ is by definition the ideal in $T(M_L)$ generated by the elements $\pi(a) - (\psi, \pi)^{(1)}(\varphi(a))$ for $a \in B$, (3.3) also implies that $\ker Q$ is generated by the elements $\pi(a)(1 - q)$, and hence by the single element $1 - q$. This says precisely that the projection $1 - q$ is full.

(2) First we consider $m \in M_L^{\otimes 1} = M_L$. The reconstruction formula gives

$$q\psi(m) = \sum_{j=0}^{N-1} \psi(m_j)\psi(m_j)^*\psi(m) = \sum_{j=0}^{N-1} \psi(m_j \cdot mj, mj) = \psi(m),$$

so $(1 - q)\psi(m) = 0$. Now for $k > 1$ and an elementary tensor $\xi = \xi_1 \otimes \cdots \otimes \xi_k$, we have $(1 - q)\psi^{\otimes k}(\xi) = (1 - q)(\prod_{i=1}^{k} \psi(\xi_i)) = 0$, and the result extends to arbitrary $\xi \in M^{\otimes k}$ by linearity and continuity.

(3) In consideration of part (2), we are able to deduce from (3.2) that $\ker Q = T(M_L)(1 - q)T(M_L)$ is spanned by the elements of the form

$$\psi^{\otimes k}(\xi)\pi(a)^*(1 - q)\pi(b)\psi^{\otimes \ell}(\eta)^* = \psi^{\otimes k}(\xi \cdot a)(1 - q)\psi^{\otimes \ell}(\eta \cdot b^*)^*$$

for $\xi \in M^{\otimes k}, \eta \in M^{\otimes \ell}$ and $a, b \in B$, which gives (3). □
Lemma 3.3. There is a homomorphism \(\rho : B \to \ker Q \) such that \(\rho(a) = \pi(a)(1 - q) \), and \(\rho \) is an isomorphism of \(B \) onto \((1 - q) \ker Q(1 - q) \).

Proof. Lemma 3.2 says that \(\pi(a)(1 - q) \) belongs to \(\ker Q \), and Lemma 3.1 says that \(q \) commutes with every \(\pi(a) \), so there is a homomorphism \(\rho : B \to (1 - q) \ker Q(1 - q) \subset \ker Q \) such that \(\rho(a) = \pi(a)(1 - q) \). From parts (2) and (3) of Lemma 3.2 we get

\[
(1 - q) \ker Q(1 - q) = \text{span}\{ (1 - q)\psi^* \otimes (1 - q)\psi \otimes \eta^* : k, \ell \geq 0 \}
\]

which is precisely the range of \(\rho \). So \(\rho \) is surjective.

To see that \(\rho \) is injective we choose a faithful representation \(\pi_0 : B \to B(\mathcal{H}) \) and consider the Fock representation \((\psi_F, \pi_F) \) of \(M_L \) induced from \(\pi_0 \), as described in [9, Example 1.4]. The underlying space of this Fock representation is \(F(M_L) \otimes_B \mathcal{H} := \bigoplus_{k \geq 0} (M_L^k \otimes_B \mathcal{H}) \); \(B \) acts diagonally on the left, and \(M_L \) acts by creation operators. The crucial point for us is that each \(\psi_F(m)^* \) is an annihilation operator which vanishes on the subspace \(B \otimes_B \mathcal{H} = M_L^0 \otimes_B \mathcal{H} \) of \(F(M_L) \otimes_B \mathcal{H} \).

Now suppose that \(a \in B \). Then

\[
0 = \psi_F \times \pi_F(\rho(a)) = \psi_F \times \pi_F(\pi(a)(1 - q)) = \pi_F(a) \left(1 - \sum_{j=0}^{N-1} \psi_F(m_j)\psi_F(m_j)^* \right).
\]

Since \(\psi(m_j)^* \) vanishes on \(B \otimes_B \mathcal{H} \), we have

\[
\rho(a) = 0 \implies \pi_F(a) \left(1 - \sum_{j=0}^{N-1} \psi_F(m_j)\psi_F(m_j)^* \right)(1 \otimes_B h) = 0 \quad \text{for all } h \in \mathcal{H}
\]

\[
\implies \pi_F(a)(1 \otimes_B h) = 0 \quad \text{for all } h \in \mathcal{H}
\]

\[
\implies a \otimes_B h = 0 \quad \text{for all } h \in \mathcal{H}
\]

\[
\implies \pi_0(a)h = 0 \quad \text{for all } h \in \mathcal{H},
\]

which implies that \(a = 0 \) because \(\pi_0 \) is faithful.

Lemma 3.3 implies that we can replace \(K_i(\ker Q) \) in (3.1) by \(K_i(B) \), as claimed. Now we need to check what this replacement does to the map \(t_* \).
Proposition 3.4. The following diagram commutes for \(i = 0 \):

\[
\begin{array}{ccc}
K_i(B) & \xrightarrow{\text{id} - \Omega_*} & K_i(B) \\
\rho_* \downarrow & & \pi_* \downarrow \\
K_i(\ker Q) & \xrightarrow{i_*} & K_i(T(ML)).
\end{array}
\]

(3.4)

If \(\{m_j : 0 \leq j \leq N - 1\} \) is orthonormal, then the diagram also commutes for \(i = 1 \).

Since \(\Omega : B \rightarrow M_N(B) \), the \(\Omega_* \) in the diagram is really the composition of \(\Omega_* : K_i(B) \rightarrow K_i(M_N(B)) \) with the isomorphism \(K_i(M_N(B)) \rightarrow K_i(B) \); the latter is induced by the map which views an element in \(M_r(M_N(B)) \) as an element of \(M_{rN}(B) \).

The proof needs two standard lemmas. The first says, loosely, that if we rewrite an \(r \times r \) matrix of \(N \times N \) blocks as an \(N \times N \) matrix of \(r \times r \) blocks, then the resulting \(rN \times rN \) matrices are unitarily equivalent. We agree that this cannot be a surprise to anyone, and we apologise for failing to come up with more elegant notation.

Lemma 3.5. Suppose that \(B \) is a C*-algebra, \(r \geq 1 \) and \(N \geq 2 \) are integers, and

\[
\{b_{j,s;k,t} : 0 \leq j, k \leq N - 1 \text{ and } 0 \leq s, t < r\}
\]

is a subset of \(B \). For \(m, n \) satisfying \(0 \leq m, n \leq rN - 1 \), we define

\[
c_{m,n} = b_{j,s;k,t} \quad \text{where } m = sN + j \text{ and } n = tN + k,
\]

and

\[
d_{m,n} = b_{j,s;k,t} \quad \text{where } m = jr + s \text{ and } n = kr + t.
\]

Then there is a scalar unitary permutation matrix \(U \) such that the matrices \(C := (c_{m,n}) \) and \(D := (d_{m,n}) \) are related by \(C = UDU^* \).

Proof. For \(0 \leq p, q \leq rN - 1 \), we define

\[
u_{p,q} = \begin{cases} 1 & \text{if there exist } k, t \text{ such that } p = tN + k \text{ and } q = kr + t, \\ 0 & \text{otherwise.} \end{cases}
\]

Each row and column contains exactly one 1, so \(U := (u_{p,q}) \) is a scalar permutation matrix, and we can verify that both \((CU)_{m,q} \) and \((UD)_{m,q} \) are equal to \(b_{j,s;k,t} \) where \(m = sN + j \) and \(q = kr + t \), so \(CU = UD \). \(\square \)

Lemma 3.6. Suppose that \(S \) is an isometry in a unital C*-algebra \(B \). Then

\[
U := \begin{pmatrix} S & 1 - SS^* \\ 0 & S^* \end{pmatrix}
\]

is a unitary element of \(M_2(B) \) and its class in \(K_1(B) \) is the identity.
Proof. A straightforward calculation shows that U is unitary.

Let $T = C^*(v)$ be the Toeplitz algebra. By Coburn’s Theorem [4] there is a homomorphism $\pi_S : T \to B$ such that $\pi_S(v) = S$. Since $K_1(T) = 0$ (see, for example, [28, Remark 11.2.2]),

$$\begin{bmatrix} v & 1 - vv^* \\ 0 & v^* \end{bmatrix} = [1] \quad \text{in } K_1(T),$$

and hence

$$\begin{bmatrix} S & 1 - SS^* \\ 0 & S^* \end{bmatrix} = (\pi_S)_* \left(\begin{bmatrix} v & 1 - vv^* \\ 0 & v^* \end{bmatrix} \right)$$

$$= (\pi_S)_*([1]) = [1] \quad \text{in } K_1(B).$$

Proof of Proposition 3.4. We start with $i = 0$. Let $a = (a_{s,t})$ be a projection in $M_r(B)$. For $\pi : A \to B$, we write π_r for the induced homomorphism of $M_r(A)$ into $M_r(B)$. Then we have

$$\rho_*([a]) = [(\rho(a_{r,s}))] = [((\pi(a_{s,t}))(1 - q))] = [((\pi(a_{s,t}))(1 - q)1_r)]$$

$$= [\pi_r(a)((1 - q)1_r)] = [\pi_r(a) - ((\pi_r(a)(q1_r))],$$

and

$$\pi_* \circ (\text{id} - \Omega_*)([a]) = [\pi_r(a)] - \pi_* \circ \Omega_*([a]),$$

so it suffices to show that $[\pi_r(a)(q1_r)] = \pi_* \circ \Omega_*([a])$ in $K_0(T(M_L))$. The class $\pi_* \circ \Omega_*([a])$ appears as the class of the $r \times r$ block matrix $\pi_{rN}(\Omega_r(a))$ whose (s, t) entry is the $N \times N$ block $(\pi((m_j, a_{s,t} \cdot m_k)))_{j,k}$. In other words, with $b_{j,s,k,t} = \pi((m_j, a_{s,t} \cdot m_k))$, the matrix $\pi_{rN}(\Omega_r(a))$ is the matrix $C = (c_{m,n})$ in Lemma 3.5.

We now consider the matrix T in $M_N(M_r(T(M_L)))$ defined by

$$T = \begin{pmatrix} \psi(m_0)1_r & \cdots & \psi(m_{N-1})1_r \\ 0_r & \cdots & 0_r \\ \vdots & \cdots & \vdots \end{pmatrix}. \quad (3.5)$$

Computations show that $TT^* = (q1_r) \oplus 0_{r(N-1)}$, and since $\pi_r(a)$ is a projection which commutes with $q1_r$, we deduce that $(\pi_r(a) \oplus 0_{r(N-1)})T$ is a partial isometry which implements a Murray-von Neumann equivalence between $T^*(\pi_r(a) \oplus 0_{r(N-1)})T$ and $(\pi_r(a) \oplus 0_{r(N-1)})TT^* = (\pi_r(a)(q1_r)) \oplus 0_{r(N-1)}$. Thus we have

$$[\pi_r(a)(q1_r)] = [\pi_r(a)(q1_r) \oplus 0_{r(N-1)}]$$

$$= [T^*(\pi_r(a) \oplus 0_{r(N-1)})T].$$
Another computation shows that the \((j,k)\) entry of \(T^* (\pi_r(a) \oplus 0_{r(N-1)}) T\) is the \(r \times r\) matrix \((\pi_r((m_j, a_{s,t} \cdot m_k) 1_r))_{s,t}\). Thus with the same choice of \(b_{j,s,k,t} = \pi((m_j, a_{s,t} \cdot m_k))\), \(T^* (\pi_r(a) \oplus 0_{r(N-1)}) T\) is the matrix \(D = (d_{m,n})\) in Lemma 3.5. Since unitarily equivalent projections have the same class in \(K_0\), we can therefore deduce from Lemma 3.5 that

\[
(3.6) \quad [\pi_r(a)(q 1_r)] = [T^* (\pi_r(a) \oplus 0_{r(N-1)}) T] = [\pi_r(N(\Omega_r(a)))] = \pi_* \circ \Omega_* ([a]).
\]

Thus Diagram 3.4 commutes when \(i = 0\).

Now consider \(i = 1\), where we assume in addition that \(\{m_j\}\) is orthonormal. Let \(u\) be a unitary in \(M_r(B)\). To compute \(\rho_* : K_1(B) \to K_1(\ker Q)\), we observe that \(\rho\) is the composition of a unital isomorphism of \(B\) onto \((1 - q) \ker Q(1 - q)\), which takes \([u]\) to

\[
[\rho_r(u)] = [\pi_r(u)((1 - q) 1_r)],
\]

with the inclusion of \((1 - q) \ker Q(1 - q)\) as a full corner in the non-unital algebra \(\ker Q\), which takes \([\pi_r(u)((1 - q) 1_r)]\) to \([\pi_r(u)((1 - q) 1_r) + q 1_r] \in K_1((\ker Q)^+) = K_1(\ker Q)\). On the other hand,

\[
\pi_* \circ (\id - \Omega_*)([u]) = [\pi_r(u)] - [\pi_r(N \circ \Omega_r(u)].
\]

So we need to show that

\[
(3.7) \quad [\pi_r(u)((1 - q) 1_r) + q 1_r) \oplus 1_{r(N-1)}] = [\pi_r(u) \oplus 1_{r(N-1)}] - [\pi_r(N \circ \Omega_r(u)]
\]

in \(K_1(\mathcal{T}(M_L))\). To this end, we note that the left-hand side of (3.7) is unchanged by pre- or post-multiplying by any invertible matrix \(C \in M_{2rN}(\mathcal{T}(M_L))\) whose \(K_1\) class is 1. In particular, we can do this when \(C\) is

- a unitary of the form
 \[
 C = \begin{pmatrix}
 S & 1 - SS^* \\
 0 & S^*
 \end{pmatrix},
 \]
 where \(S \in M_{rN}(\mathcal{T}(M_L))\) is an isometry (see Lemma 3.6);
- an upper- or lower-triangular matrix of the form
 \[
 C = \begin{pmatrix}
 1 & A \\
 0 & 1
 \end{pmatrix} \quad \text{or} \quad C = \begin{pmatrix}
 1 & 0 \\
 A & 1
 \end{pmatrix}
 \]
 (which are connected to \(1_{2rN}\) via \(t \mapsto \begin{pmatrix} 1 & tA \\ 0 & 1 \end{pmatrix}\) and its transpose);
- any constant invertible matrix \(C\) in \(M_{2rN}(\mathbb{C})\) (because \(GL_{2rN}(\mathbb{C})\) is connected); this implies that we can perform row and column operations without changing the class in \(K_1\).
Since \(\{ m_j \} \) is an orthonormal basis, the matrix \(T \) defined at \((3.5) \) is an isometry in \(M_{rN}(\mathcal{T}(M_L)) \). Thus
\[
\left[(\pi_r(u)((1 - q)1_r) + q1_r) \oplus 1_{r(N-1)} \right]
= \left[\begin{pmatrix} T & 1_{rN} - TT^* \\ 0_{rN} & T^* \end{pmatrix} \right]
\left[\begin{pmatrix} (\pi_r(u)((1 - q)1_r) + q1_r) \oplus 1_{r(N-1)} \\ 0_{rN} \end{pmatrix} \right]
\left[\begin{pmatrix} T & (1 - q)1_r \oplus 1_{r(N-1)} \\ 0_{rN} & T^* \end{pmatrix} \right]
= \left[\begin{pmatrix} (\pi_r(u)((1 - q)1_r) + q1_r) \oplus 1_{r(N-1)} \end{pmatrix} \right],
\]
which, since \((1 - q)\psi(m_i) = 0 \) by Lemma 3.2 (2), is
\[
= \left[\begin{pmatrix} T & \pi_r(u)((1 - q)1_r) \oplus 1_{r(N-1)} \\ 0_{rN} & T^* \end{pmatrix} \right]
\left[\begin{pmatrix} 1_{rN} & T^*(\pi_r(u) \oplus 1_{r(N-1)}) \\ 0_{rN} & 1_{rN} \end{pmatrix} \right]
= \left[\begin{pmatrix} T & \pi_r(u) \oplus 1_{r(N-1)} \\ 0_{rN} & T^* \end{pmatrix} \right],
\]
since \(TT^* = q1_r \oplus 0_{r(N-1)} \) and \((q1_r)\pi_r(u) = \pi_r(u)(q1_r) \). By an elementary row operation this is
\[
= \left[\begin{pmatrix} \pi_r(u) \oplus 1_{r(N-1)} & T \\ 0_{rN} & T^* \end{pmatrix} \right]
= \left[\begin{pmatrix} \pi_r(u) \oplus 1_{r(N-1)} & T \\ 0_{rN} & T^* \end{pmatrix} \right]
\left[\begin{pmatrix} 1_{rN} & -(\pi_r(u^{-1}) \oplus 1_{r(N-1)})T \\ 0_{rN} & 1_{rN} \end{pmatrix} \right]
= \left[\begin{pmatrix} \pi_r(u) \oplus 1_{r(N-1)} & 1_{rN} \\ 0_{rN} & -T^*(\pi_r(u^{-1}) \oplus 1_{r(N-1)})T \end{pmatrix} \right]
= \left[\begin{pmatrix} 1_{rN} & 0_{rN} \\ 0_{rN} & -T^*(\pi_r(u^{-1}) \oplus 1_{r(N-1)})T \end{pmatrix} \right]
\left[\begin{pmatrix} \pi_r(u) \oplus 1_{r(N-1)} & 1_{rN} \\ 0_{rN} & -1_{rN} \end{pmatrix} \right]
= \left[\pi_r(u) \oplus 1_{r(N-1)} \right] + \left[T^*(\pi_r(u^{-1}) \oplus 1_{r(N-1)})T \right].
\]
Now we recall from the argument in the second paragraph (see \((3.6) \)) that
\[
[T^*(\pi_r(u^{-1}) \oplus 1_{r(N-1)})T] = [\pi_{rN}(\Omega_r(u^{-1}))] = -[\pi_{rN} \circ \Omega_r(u)],
\]
and we see that we have proved what we wanted. \(\square \)

Theorem 3.7. Let \((B, \alpha, L) \) be an Exel system with \(B \) unital and separable, and suppose that \(M_L \) has an orthonormal basis \(\{ m_j \}_{j=0}^{N-1} \). Let \((j_{M_L}, j_B) \) be the canonical
Cuntz-Pimsner covariant representation of M_L in $O(M_L)$. Then there is an exact sequence

\[
\begin{array}{cccc}
K_0(B) & \xrightarrow{\id - \Omega_*} & K_0(B) & \xrightarrow{j_B} K_0(O(M_L)) \\
\rho^{-1} \circ \delta_1 & & \rho^{-1} \circ \delta_0 & \\
K_1(O(M_L)) & \xleftarrow{j_B} & K_1(B) & \xleftarrow{\id - \Omega_*} K_1(B).
\end{array}
\]

Proof: The canonical representation (j_{ML}, j_B) is the composition of the universal Toeplitz representation (ψ, π) of M_L in $T(M_L)$ with the quotient map Q, and in particular $j_B = Q \circ \pi$. Since B is separable, [18, Theorem 4.4] says that the homomorphism $\pi : B \to T(M_L)$ induces an isomorphism $\pi^* : K_1(B) \to K_1(T(M_L))$, and since $\rho : B \to \ker Q$ is an isomorphism onto a full corner, ρ^* is an isomorphism. So splicing the commutative diagram of Proposition 3.4 into (3.1) gives the result. □

4. ENDOMORPHISMS ARISING FROM DILATION MATRICES

Throughout this section, d is an integer ≥ 2 and $A \in M_d(\mathbb{Z})$ is an integer dilation matrix, by which we mean that all the complex eigenvalues λ of A satisfy $|\lambda| > 1$. We consider the surjective endomorphism σ_A of T^d defined by $\sigma_A(e^{2\pi i x}) = e^{2\pi i Ax}$ for $x \in \mathbb{R}^d$, which has $|\ker \sigma_A| = |\det A|$, and the associated Exel system $(C(T^d), \alpha_A, L)$, where α_A is the endomorphism of $C(T^d)$ given by σ_A.

We need the following lemma on the operator norms of A^n acting on \mathbb{R}^d; it must be well known, but we lack a reference.

Lemma 4.1. We have $\|A^{-n}\| \to 0$ as $n \to \infty$.

Proof: For each n in \mathbb{N}, let $a_n = \|A^{-n}\|^{1/n}$. By the spectral radius formula we know that the limit of the a_n, as n tends to infinity, coincides with the spectral radius $r(A^{-1})$. By hypothesis we know that $r(A^{-1}) < 1$, so we may choose c with $r(A^{-1}) < c < 1$. Therefore, for all sufficiently large n, we have that $a_n < c$, and hence

$$\lim_{n \to \infty} \|A^{-n}\| = \lim_{n \to \infty} a_n^n \leq \lim_{n \to \infty} c^n = 0.$$
Proposition 4.2. The Cuntz-Pimsner algebra $\mathcal{O}(M_L)$ is simple and purely infinite.

Proof. We show that $\mathcal{O}(M_L)$ is simple using [8, Theorem 11.2], which says that $C(\mathbb{T}^d) \rtimes_{\alpha_L} \mathbb{N}$ is simple if and only if σ_A is irreducible. We recall from [8, Section 11] that $x, y \in \mathbb{T}^d$ are trajectory-equivalent, written $x \sim y$, if there are $n, m \in \mathbb{N}$ such that $\sigma_A^n(x) = \sigma_A^m(y)$, and a subset $Y \subseteq \mathbb{T}^d$ is invariant if $x \sim y \in Y$ implies that $x \in Y$; σ_A is irreducible if the only closed invariant sets are \emptyset and \mathbb{T}^d.

Let Y be a non-empty closed invariant subset of \mathbb{T}^d, and pick a point $e^{2\pi i y} \in Y$. We need to show that $Y = \mathbb{T}^d$. Fix $e^{2\pi i z} \in \mathbb{T}^d$. Since the unit cube in \mathbb{R}^d has diameter \sqrt{d}, for every $n \in \mathbb{N}$ we can find $k_n \in \mathbb{Z}^d$ such that $|A^n z - (y + k_n)| \leq \sqrt{d}$. Then $x_n := A^{-n} (y + k_n)$ has $\sigma_A^n(e^{2\pi i x_n}) = e^{2\pi i A^n x_n} = e^{2\pi i y} \in Y$, and invariance implies that $e^{2\pi i x_n} \in Y$ also. Lemma 4.1 implies that

$$|z - x_n| \leq \|A^{-n}\| \|A^n z - (y + k_n)| \leq \|A^{-n}\| \sqrt{d} \to 0 \quad \text{as} \quad n \to \infty,$$

so $x_n \to z$ in \mathbb{R}^d and $e^{2\pi i x_n} \to e^{2\pi i z}$. Since Y is closed, this implies that $e^{2\pi i z} \in Y$, as required. Thus σ_A is irreducible, and $\mathcal{O}(M_L)$ is simple.

To show that $\mathcal{O}(M_L)$ is purely infinite, we realise $\mathcal{O}(M_L) = C(\mathbb{T}^d) \rtimes_{\alpha_L} \mathbb{N}$ as $C^*(E)$ with $E = (\mathbb{T}^d, \mathbb{T}^d, \text{id}, \sigma_A)$. Since $C^*(E) = \mathcal{O}(M_L)$ is simple, E is minimal by [14, Proposition 1.11]. So by [14, Theorem A] it suffices to prove that E is contracting at some vertex $v_0 \in E^0$ in the sense of Definition 2.3 of [14]; we will show that E is contracting at $v = (1, 1, \ldots, 1)$. First, we need to see that the positive orbit $\{z : \sigma^n_A(z) = v\}$ of v is dense in $E^0 = \mathbb{T}^d$. The positive orbit of v contains all points of the form $e^{2\pi i A^n x}$ for $n \in \mathbb{N}$ and $k \in \mathbb{Z}^d$, and it follows from our proof of the irreducibility of σ_A above (with $y = 0$) that this positive orbit is dense in E^0.

Second, we fix a neighbourhood V of v; we need to show that V contains a contracting open set W (see [14, Definition 2.3]). For this, it suffices to find an open neighbourhood W of v such that $W \subset V$ and $W \nsubseteq \sigma^k_A(W)$ for some $k \geq 1$. By Lemma 4.1 we can choose k such that $\|A^{-k}\| < 1$. Then for every $\varepsilon > 0$ and every x in the closed unit ball $B(0, \varepsilon)$ in \mathbb{R}^d, we have $|A^{-k}x| < \varepsilon$, so $x = A^k(A^{-k}x)$ belongs to $A^k(B(0, \varepsilon))$. Thus $B(0, \varepsilon) \subset A^k(B(0, \varepsilon))$. The inequality $\|A^kA^{-k}\| \leq \|A^k\| \|A^{-k}\|$ implies that $\|A^k\| > 1$, so for every $\varepsilon > 0$ there exists $y \in B(0, \varepsilon)$ such that $|A^k y| > \varepsilon$, and $B(0, \varepsilon) \nsubseteq A^k(B(0, \varepsilon))$. If ε is small enough to ensure that $x \sim e^{2\pi i x}$ is one-to-one on $A^k(B(0, \varepsilon))$, then $W := \{e^{2\pi i x} : x \in B(0, \varepsilon)\}$ satisfies $W \nsubseteq \sigma^k_A(W)$, and by taking ε smaller still we can ensure that $W \subset V$. Thus E is contracting, and the result follows from [14, Theorem A].

We now want to calculate the K-theory of $C(\mathbb{T}^d) \rtimes_{\alpha_L} \mathbb{N} = \mathcal{O}(M_L)$, and we aim to use Theorem 3.7. To do this, we need descriptions of $K_*(C(\mathbb{T}^d))$ and the map Ω_x.

\[\square\]
Lemma 4.3. Suppose that \((B, \alpha, L)\) is an Exel system with \(B\) commutative, that \(M_L\) admits an orthonormal basis \(\{m_j : 0 \leq j \leq N - 1\}\), and that \(\Omega : B \to M_N(B)\) is the homomorphism described in Lemma 3.1. Then \(\Omega_* \circ \alpha_*\) is multiplication by \(N\) on both \(K_0(B)\) and \(K_1(B)\).

Proof: We know from Lemma 3.1 (3) that \(\Omega \circ \alpha(a) = a1_N\). Now take \(b = (b_{ij})\) in \(M_r(B)\). Then \((\Omega \circ \alpha)_r(b)\) is the \(r \times r\) block matrix with \((i, j)\) block equal to \(b_{ij}1_N\). If we view \((\Omega \circ \alpha)_r(b)\) as an element of \(M_N(M_r(B))\), as in Lemma 3.5, it becomes \(b \oplus b \oplus \cdots \oplus b\). Whether \(b\) is a projection or a unitary, \([b \oplus \cdots \oplus b]\) = \(N[b]\). Thus by Lemma 3.5, we have

\[
\Omega_* \circ \alpha_*([b]) = (\Omega \circ \alpha)_*([b]) = ([\Omega \circ \alpha](b)) = [b \oplus \cdots \oplus b] = N[b].
\]

Ji proved in [11] that the Chern character is a \(\mathbb{Z}/2\)-graded ring isomorphism of \(K^*(C(\mathbb{T}^d)) = K^*(\mathbb{T}^d)\) onto the integral cohomology ring

\[
H^*(\mathbb{T}^d, \mathbb{Z}) := \bigoplus_{k \in \mathbb{Z}} H^k(\mathbb{T}^d, \mathbb{Z}) = \bigoplus_{k=0}^d H^k(\mathbb{T}^d, \mathbb{Z}),
\]

which in turn is isomorphic as a \(\mathbb{Z}\)-graded ring to the exterior algebra \(\bigwedge^* \mathbb{Z}^d\). Thus the ring \(H^*(\mathbb{T}^d, \mathbb{Z})\) is generated by \(H^1(\mathbb{T}^d, \mathbb{Z})\), which is isomorphic to the set of homotopy classes of continuous functions from \(\mathbb{T}^d\) to \(\mathbb{T}\), and is the free abelian group generated by the coordinate functions \(u_k : \mathbb{Z} = (z_1, \ldots, z_n) \to z_k\). Since the homomorphism \(\alpha_*\) is induced by a continuous map \(\sigma_A : \mathbb{T}^d \to \mathbb{T}^d\), the corresponding ring homomorphism on \(H^*(\mathbb{T}^d, \mathbb{Z})\) is the map \(\sigma_A^*\), which respects the \(\mathbb{Z}\)-grading. Thus we can compute \(\alpha_*\) on \(\bigwedge^* \mathbb{Z}^d\) by working out what \(\sigma_A^*\) does on \(H^1(\mathbb{T}^d, \mathbb{Z})\) using the basis \(\{e_k := \[u_k]\) : 1 \leq k \leq d\}\), and then taking exterior powers. Once we know what \(\alpha_*\) is, we can use the formula for \(\Omega_* \circ \alpha_*\) in Lemma 4.3 to work out what \(\Omega_*\) is.

Lemma 4.4. With respect to the basis \(\{[u_k]\}, \alpha_* : \text{span}\{[u_k]\} \to \text{span}\{[u_k]\}\) is multiplication by the transpose \(A^T\) of \(A\).

Proof: We have \(\alpha_*([u_k]) = [\alpha(u_k)] = [u_k \circ \sigma_A]\). Since

\[
u_k \circ \sigma_A(e^{2\pi i x}) = u_k(e^{2\pi i Ax}) = e^{2\pi i \sum_j a_{k,j} x_j} = \prod_j e^{2\pi i a_{k,j} x_j} = \prod_j (e^{2\pi i x_j})^{a_{k,j}} = \prod_j u_j(e^{2\pi i x})^{a_{k,j}},\]

we have \(u_k \circ \sigma_A = \prod_j u_j^{a_{k,j}}\). Hence \([u_k \circ \sigma_A] = \sum_j a_{k,j}[u_j]\). □

Since the 0-graded component is isomorphic to \(H^0(\mathbb{T}^d, \mathbb{Z})\), the free abelian group generated by the connected components, the action of \(\alpha_*\) on the 0-component \(\bigwedge^0(\mathbb{Z}) = \mathbb{Z}\) is the identity map. For \(n = 1\), Lemma 4.4 implies that \(\alpha_* = A^T\).
For $n > 1$, we use the basis
\[E_n = \left\{ e_J = e_{j_1} \land \cdots \land e_{j_n} : J \subset \{1, \ldots, d\}, |J| = n, J = \{ j_1 < \cdots < j_n \} \right\} \]
for $\land^n \mathbb{Z}^d$. For $e_K \in E_n$, we write $K' = \{1, \ldots, d\} \setminus K$. With K and K' listed in increasing order as $K = \{ k_1 < \cdots < k_n \}$ and $K' = \{ k_{n+1} < \cdots < k_d \}$, we let τ_K be the permutation $i \mapsto k_i$ for $1 \leq k \leq d$. For subsets K, J of the same size, we write $A_{K,J}$ for the submatrix of A whose entries belong to the rows in K and the columns in J. The following lemma is essentially Lemma 1 of Chapter 5 in [17]; we have included a short proof because the conventions of [17] are different (matrices act on the right of vector spaces, for example).

Lemma 4.5. Let $1 \leq n \leq d$. The matrix C_n of $\alpha^*| : \land^n \mathbb{Z}^d \to \land^n \mathbb{Z}^d$ with respect to the basis E_n has (J,K) entry $\det A_{K,J}$.

Proof. Fix $e_K \in E_n$ with $K = \{ k_1 < \cdots < k_n \}$. Then
\[
\left(\land^n A^T \right)(e_K) = \left(\land^n A^T \right)(e_{k_1} \land \cdots \land e_{k_n}) = A^T e_{k_1} \land \cdots \land A^T e_{k_n}
\]
\[= \sum_{m_1=1}^d \cdots \sum_{m_n=1}^d a_{k_1,m_1} \cdots a_{k_n,m_n} (e_{m_1} \land \cdots \land e_{m_n})
\]
\[= \sum_{e_J \in E_n} \sum_{\{ m_1, \ldots, m_n \} = J} a_{k_1,m_1} \cdots a_{k_n,m_n} (e_{m_1} \land \cdots \land e_{m_n})
\]
\[= \sum_{e_J \in E_n} \sum_{\sigma \in S_n} a_{k_1,\sigma(j_1)} \cdots a_{k_n,\sigma(j_n)} (e_{\sigma(j_1)} \land \cdots \land e_{\sigma(j_n)})
\]
\[= \sum_{e_J \in E_n} \sum_{\sigma \in S_n} (-1)^{\deg \sigma} a_{k_1,\sigma(j_1)} \cdots a_{k_n,\sigma(j_n)} (e_{j_1} \land \cdots \land e_{j_n})
\]
\[= \sum_{e_J \in E_n} (\det A_{K,J}) e_J. \]

We are now ready to compute the matrix B_n of Ω_* on $\land^n \mathbb{Z}^d$ with respect to the same basis E_n. The answer must, of course, be an integer matrix. But Lemma 4.3 implies that C_n is invertible as a real matrix, and hence if we can find matrices B_n such that $B_nC_n = N1_n$, then uniqueness of the real inverse tells us that B_n is the matrix of Ω_*.

Proposition 4.6. Let $B_0 = |\det A|$, $B_d = \text{sign}(\det A)$, and
\[
B_n = \begin{cases}
\left((-1)^{\deg(\tau_K \tau_L)} \det(A_{K',L'}) \right)_{K,L} & \text{if } \det A > 1, \\
-\left((-1)^{\deg(\tau_K \tau_L)} \det(A_{K',L'}) \right)_{K,L} & \text{if } \det A < -1.
\end{cases}
\]

(1) Then $B_nC_n = |\det A| 1_n$, where 1_n is the $(d^n) \times (d^n)$ identity matrix.
(2) We have \(1 - B_0 = 1 - |\det A| < 0\), \(\det(1 - B_n) \neq 0\) for \(1 \leq n < d\), and
\[
1 - B_d = \begin{cases}
0 & \text{if } \det A > 1, \\
2 & \text{if } \det A < -1.
\end{cases}
\]

For the proof of Proposition 4.6 we need the following lemma; its first part appears as equation (5.3.7) in [17], for example.

Lemma 4.7. Fix \(n\) satisfying \(1 \leq n \leq d - 1\).

1. If \(e_J \in E_n\), then
\[
\det A = \sum_{e_K \in E_n} (-1)^{\deg(\tau_K \tau_J)} \det(A_{K,J}) \det(A_{K',J'}).
\]

2. If \(e_J, e_L \in E_n \) and \(L \neq J\), then
\[
\sum_{e_K \in E_n} (-1)^{\deg(\tau_K \tau_J)} \det(A_{K,J}) \det(A_{K',L'}) = 0.
\]

Proof:

(1) Fix \(e_J \in E_n\). We have
\[
\det A = \sum_{\sigma \in S_d} (-1)^{\deg \sigma} a_{\sigma(1),1} \ldots a_{\sigma(d),d}
= (-1)^{\deg \tau_J} \sum_{\sigma \in S_d} (-1)^{\deg \sigma} a_{\sigma(1),j_1} \ldots a_{\sigma(d),j_d},
\]
which, by reordering the sum according to the image of \(I_n := \{1, \ldots, n\}\) under \(\sigma\), is
\[
(4.1) (-1)^{\deg \tau_J} \sum_{e_K \in E_n} \sum_{\{\sigma: \sigma(I_n) = K\}} (-1)^{\deg \sigma} a_{\sigma(1),j_1} \ldots a_{\sigma(d),j_d}.
\]
Note that for fixed \(\sigma \in S_n\) such that \(\sigma(I_n) = K\), we have
\[
\sigma = (\sigma_K \times \sigma_{K'}) \circ \tau_K,
\]
where \(\sigma_K(k_i) := \sigma(i)\) and \(\sigma_{K'}(k_\ell) := \sigma(\ell)\). So
\[
(4.1) = (-1)^{\deg \tau_J} \sum_{e_K \in E_n} \sum_{\{\sigma: \sigma(I_n) = K\}} (-1)^{\deg \tau_K (\sigma - 1)^{\deg(\sigma_K \times \sigma_{K'})}} a_{\sigma_K(k_1),j_1} \ldots a_{\sigma_K(k_n),j_n}
\times a_{\sigma_{K'}(k_{n+1}),j_{n+1}} \ldots a_{\sigma_{K'}(k_d),j_d}
= (-1)^{\deg \tau_J} \sum_{e_K \in E_n} (-1)^{\deg \tau_K} \sum_{\alpha \in S_K, \beta \in S_{K'}} (-1)^{\deg \alpha} a_{\alpha(k_1),j_1} \ldots a_{\alpha(k_n),j_n}
\times (-1)^{\deg \beta} a_{\beta(k_{n+1}),j_{n+1}} \ldots a_{\beta(k_d),j_d}
= \sum_{e_K \in E_n} (-1)^{\deg(\tau_K \tau_J)} \det(A_{K,J}) \det(A_{K',J'}).
(2) If \(L \neq J \), then \(L' \neq J' \) and \(L' \cap J \neq \emptyset \). Consider the matrix \(D \) whose entries are those of \(A \) except that the \(L \setminus J \) columns of \(D \) have been replaced by copies of the \(J \setminus L \) columns of \(A \). Thus \(\det D = 0 \). Note that \(A_{K,J} \) and \(D_{K,L} \) have the same columns up to permutation, so \(\det(A_{K,J}) = \pm \det(D_{K,L}) \). For every \(K \) we have \(D_{K',L'} = A_{K',L'} \), so using (1) we get

\[
\sum_{e_k \in E_n} (-1)^{\deg(\tau_k \tau_J)} \det(A_{K,J}) \det(A_{K',L'}) = \pm \sum_{e_k \in E_n} (-1)^{\deg(\tau_k \tau_J)} \det(D_{K,L}) \det(D_{K',L'}) = \det D = 0. \]

\[\square\]

Remark 4.8. In [17, page 92], it is observed that the coefficient \((-1)^{\deg(\tau_k \tau_J)}\) can be realised as the product \(\prod_{i=1}^n (-1)^{j_i+k_i} \). To see this, first observe that \((-1)^{\deg(\tau_J)} = \prod_{i=1}^n (-1)^{j_i-i}\) (because \(j_n - n \), for example, is the number of transpositions required to move \(j_n \) to its correct place in \(J' \) without changing the ordering of \(J' \)), and then \((-1)^{\deg(\tau_k \tau_J)} = \prod_{i=1}^n (-1)^{(j_i-i)+(k_i-i)}\).

Proof of Proposition 4.6. Say \(\det A > 1 \). Then the \((J, L)\) entry of \(C_n B_n \) is

\[
\sum_{e_k \in E_n} \det(A_{K,J})(-1)^{\deg(\tau_k \tau_L)} \det(A_{K',L'}),
\]

which, by Lemma 4.7, equals \(\delta_{J,L}(\det A)1 \). If \(\det A < -1 \), the same calculation gives \(-\delta_{J,L}(\det A)1 = \delta_{J,L}|\det A|1 \). Thus \(C_n B_n = |\det A|1 = B_n C_n \). This gives (1).

(2) The statements in (2) about \(B_0 \) and \(B_d \) are immediate, so we suppose \(1 \leq n \leq d - 1 \). To compute \(\det(I - B_n) \) we work over \(\mathbb{C} \), and choose a basis for \(\mathbb{C}^d \) such that \(A \) is upper-triangular. We claim that if

\[
J = \{j_1 < \cdots < j_n\} > K = \{k_1 < \cdots < k_n\}
\]

in the lexicographical order, then \(\det(A_{J,K}) = 0 \). If \(J > K \), then there exists \(m \) such that \(j_i = k_i \) for \(i < m \) and \(j_m > k_m \). Since \(A \) is upper-triangular, \(j_m > k_m \) implies \(a_{j_m,k_m} = 0 \). Moreover, \(j_{n-m+1} > \cdots > j_m + 1 > j_m > k_m \), so \(A_{J,K} \) has the form

\[
A_{J,K} = \begin{pmatrix} U \ast & \ast \\ 0 & V \end{pmatrix},
\]

where \(U \) is an \((m - 1) \times (m - 1)\) upper-triangular matrix and \(V \) is a square matrix with the first column consisting of zeros. Thus \(\det(A_{J,K}) = 0 \), as claimed. So if we order \(E_n \) with the lexicographic order, then the matrix \((\det(A_{K,J}))_{J,K} \) of \(\alpha_\ast \) is lower-triangular. Hence its inverse \((\det A)^{-1}B_n \) is also lower-triangular, and so is \(B_n \). The diagonal entries of \(B_n \) are \(\det(A_{K',K'}) = \prod_{k \in K'} a_{k,k} \); since each \(a_{k,k} \) is an eigenvalue of \(A \), we have \(|a_{k,k}| > 1\), and each diagonal entry of \(B_n \) has absolute value greater than 1. Since \(B_n \) is lower-triangular, it follows that \(\det(1 - B_n) \neq 0 \). \[\square\]
Theorem 4.9. Let A be a dilation matrix in $GL_d(\mathbb{Z})$ with $d \geq 1$, and define B_n as in Proposition 4.6. Let M_L be the bimodule for the Exel system $(C(\mathbb{T}^d), \alpha_A, L)$ and for which $C(\mathbb{T}^d) \rtimes_{\alpha_A, L} \mathbb{N} = O(M_L)$.

(1) If $\det A > 1$, then

\[
K_0(O(M_L)) = \bigoplus_{n \text{ even}, n < d} \ker(1 - B_n) \oplus \mathbb{Z},
\]

\[
K_1(O(M_L)) = \bigoplus_{n \text{ odd}, n < d} \ker(1 - B_n) \oplus \mathbb{Z}.
\]

(2) If $\det A < -1$, then

\[
K_0(O(M_L)) = \bigoplus_{n \text{ even}, n \leq d} \ker(1 - B_n),
\]

\[
K_1(O(M_L)) = \bigoplus_{n \text{ odd}, n \leq d} \ker(1 - B_n).
\]

Proof: We identify

\[
K_1(C(\mathbb{T}^d)) \cong \bigoplus_{n \text{ odd}, n \leq d} \mathbb{Z}^d \quad \text{and} \quad K_0(C(\mathbb{T}^d)) \cong \bigoplus_{n \text{ even}, n \leq d} \mathbb{Z}^d.
\]

Suppose that $\det A > 1$. By Lemma 4.3, $(\Omega \circ \alpha)_*$ is multiplication by $|\det A|$, and by Proposition 4.6 (1) the matrix C_n of $\alpha_*| \phi$ has inverse $|\det A|^{-1}B_n$; it follows that the map $\id - \Omega_*$ appearing in Diagram 3.8 is

\[
\bigoplus_{\text{even } n \leq d} (1 - B_n) \quad \text{and} \quad \bigoplus_{\text{odd } n \leq d} (1 - B_n)
\]

on $K_0(C(\mathbb{T}^d))$ and $K_1(C(\mathbb{T}^d))$, respectively. By Proposition 4.6 (2), each $1 - B_n$ with $n < d$ is injective, and $1 - B_d = 0$.

Suppose that d is odd. Then $\bigoplus_{\text{even } n \leq d} (1 - B_n)$ is injective and

\[
\ker \left(\bigoplus_{\text{odd } n \leq d} (1 - B_n) \right) = \ker(1 - B_d) = \mathbb{Z}.
\]

Thus Diagram 3.8 gives

\[
K_1(O(M_L)) \cong \bigoplus_{n \text{ odd}, n \leq d} \ker(1 - B_n)
\]

and an exact sequence

\[
0 \rightarrow \bigoplus_{n \text{ even, } n < d} \ker(1 - B_n) \rightarrow K_0(O(M_L)) \rightarrow \mathbb{Z} \rightarrow 0.
\]
Since \(Z \) is free this sequence splits, and the formula for \(K_0 \) follows.

The proof for even \(d \) is similar, though this time the zero summand \(1 - B_d \) appears in the map \(\text{id} - \Omega_* \) on \(K_1(\mathbb{C}(\mathbb{T}^d)) \) rather than in the map on \(K_0(\mathbb{C}(\mathbb{T}^d)) \).

For part (2), we just note that Proposition 4.6 (2) implies that

\[
\bigoplus_{n \text{ even}, n \leq d} (1 - B_n) \quad \text{and} \quad \bigoplus_{n \text{ odd}, n \leq d} (1 - B_n)
\]

are injective, and the result follows.

For small \(d \), we can identify the \(B_n \) in more familiar terms. Both \(B_0 \) and \(B_d \) are just numbers (or rather, multiplication by those numbers on \(Z \)). Next we have the following result:

Proposition 4.10. For every \(d \), we have \(B_1 = |\det A|(A^T)^{-1} \). If we list the basis for \(\bigwedge^{d-1} \mathbb{Z}^d \) as \(f_k := e_{[1, \ldots, d] \setminus \{k\}} \), then \(B_{d-1} \) is the matrix with \((k, \ell)\) entry \((-1)^{k+\ell} a_{k,\ell} \) (if \(\det A > 0 \)) or \((-1)^{k+\ell+1} a_{k,\ell} \) (if \(\det A < 0 \)).

Proof. For each singleton set \(\{k\} \), the permutation \(\tau_{\{k\}} \) is the cycle which pulls \(k \) to the front and moves the elements \(1, \ldots, k-1 \) to the right, which has degree \(k \). The complements \(\{k\}' \) are the sets \(\hat{k} \) which move \(k \) to the back and the last \(d-k \) terms one forward, which has degree \(d-k+1 \). Since \(A_{\{k\}' \setminus \{k\} \setminus \{\ell\}'} \) is the \(1 \times 1 \) matrix with entry \(a_{k,\ell} \), we have

\[
(\det A_{\{k\}' \setminus \{k\} \setminus \{\ell\}'}) = (\det A_{\{k\}' \setminus \{k\} \setminus \{\ell\}'}) = (-1)^{d-1} \det A_{\hat{k},\hat{\ell}} (-1)^{k+\ell} \det A_{\hat{k},\hat{\ell}}
\]

is the \((\ell, k)\) entry in \((\det A)A^{-1}\), and the \((k, \ell)\) entry in \((\det A)(A^T)^{-1}\). The extra minus sign in the formula for \(B_1 \) when \(\det A < 0 \) shows that \(B_1 = (|\det A|)(A^T)^{-1} \).

The \((k, \ell)\) entry in the matrix of \(B_{d-1} \) with respect to the basis \(\{f_k\} \) is the \((\hat{k}, \hat{\ell})\) entry in the matrix with respect to the basis \(E_{d-1} \). For \(K = \hat{k} \), \(\tau_K \) is the cycle which moves \(k \) to the back and the last \(d-k \) terms one forward, which has degree \(d-k+1 \). Since \(A_{\{\hat{k}\}' \setminus \{\hat{k}\} \setminus \{\hat{\ell}\}'} \) is the \(1 \times 1 \) matrix with entry \(a_{k,\ell} \), we have

\[
(-1)^{d-1} \det A_{\{\hat{k}\}' \setminus \{\hat{k}\} \setminus \{\hat{\ell}\}'} = (-1)^{d-1+\deg \tau_K + \deg \tau_L} \det A_{\hat{k},\hat{\ell}} = (-1)^{k+\ell} \det A_{\hat{k},\hat{\ell}}
\]

This immediately gives the result for \(\det A > 0 \), and for \(\det A < 0 \), the extra minus sign in the formula for \(B_{d-1} \) means we need to replace \((1)^{k+\ell} \) by \((-1)^{k+\ell+1} \). □

We can now sum up our results for small \(d \): The first statement of Corollary 4.11 is well-known, as we observed in the introduction, but the second statement and Corollary 4.12 were a bit of a surprise.

Corollary 4.11. Suppose \(N \) is a non-zero integer, and consider the Exel system \((\mathbb{C}(\mathbb{T}), \alpha_N, L)\) associated to the covering map \(\mathbb{Z} \to \mathbb{Z}^N \).
(1) If $N > 1$, then
\[K_0(C(T) \rtimes_{\alpha_{N,L}} N) = (\mathbb{Z}/(N-1)\mathbb{Z}) \oplus \mathbb{Z} \]
and
\[K_1(C(T) \rtimes_{\alpha_{N,L}} N) = \mathbb{Z}. \]

(2) If $N < -1$, then
\[K_0(C(T) \rtimes_{\alpha_{N,L}} N) = \mathbb{Z}/(|N| - 1)\mathbb{Z} \]
and
\[K_1(C(T) \rtimes_{\alpha_{N,L}} N) = \mathbb{Z}/2\mathbb{Z}. \]

Corollary 4.12. Suppose that $A = (a_{ij}) \in M_2(\mathbb{Z})$ is a dilation matrix. Then
\[K_0(C(T^2) \rtimes_{\alpha_{A,L}} N) = \begin{cases} \mathbb{Z}/(|\det A| - 1)\mathbb{Z} \oplus \mathbb{Z} & \text{if } \det A > 1, \\ \mathbb{Z}/(|\det A| - 1)\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) & \text{if } \det A < -1, \end{cases} \]
and
\[K_1(C(T^2) \rtimes_{\alpha_{A,L}} N) = \begin{cases} \mathbb{Z} \oplus \coker \begin{pmatrix} 1 - a_{11} & a_{12} \\ a_{21} & 1 - a_{22} \end{pmatrix} & \text{if } \det A > 1, \\ \coker \begin{pmatrix} 1 + a_{11} & -a_{12} \\ -a_{21} & 1 + a_{22} \end{pmatrix} & \text{if } \det A < -1. \end{cases} \]

Proof: The statement about K_0 follows immediately from Theorem 4.9. For K_1, we use the description of $B_1 = B_{2,-1}$ in Proposition 4.10. (If we had used the description of B_1 as $|\det A|(A^T)^{-1}$, we would have gotten a different matrix, because we would then be calculating it with respect to the basis $\{e_1, e_2\}$ rather than $\{f_1, f_2\} = \{e_2, e_1\}$. However, the two matrices are conjugate in $M_2(\mathbb{Z})$, and hence have isomorphic cokernels.)

We now look at the implications of these results for some concrete examples of dilation matrices. The first two were used in [19] to provide examples of projective multi-resolution analyses.

Examples 4.13.

(1) For $A = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$ we have $\det A = -2 < -1$. So $K_1(C(T^2) \rtimes_{\alpha_{A,L}} N)$ is the cokernel of $\begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}$; since this matrix has determinant -1, it is invertible over \mathbb{Z}, and we have
\[K_0(C(T^2) \rtimes_{\alpha_{A,L}} N) = \mathbb{Z}/2\mathbb{Z} \quad \text{and} \quad K_1(C(T^2) \rtimes_{\alpha_{A,L}} N) = 0. \]

These K-groups are the same as those of O_3, but the class of the identity is different. To see the last statement, note that the class $[1]$ of the identity in $K_0(C(T^2))$
is the image of \(1 \in \mathbb{Z} = \bigwedge^0 \mathbb{Z}^2 \), and when \(|\det A| = 2 \), \(1 - B_0 \) is invertible, so \([1]\) belongs to the range of \(\text{id} - \Omega \). Thus the class of the identity \(1_{C(T^2) \rtimes \alpha_{A,L}} = j_{C(T)}(1) \) in \(K_0(\mathbb{C}(\mathbb{T}^2) \rtimes \alpha_{A,L} \mathbb{N}) \) is 0. For \(\mathcal{O}_3 \), on the other hand, \([1]\) is the generator of \(K_0(\mathcal{O}_3) \).

In \(K_0(M_2(\mathcal{O}_3)) \), however, the class of the identity is twice the generating class \([1, e_{11}]\), which is also zero in \(K_0(\mathcal{O}_3) = \mathbb{Z}/2\mathbb{Z} \). Thus the classification theorem of Kirchberg and Phillips \([15, 22, 25]\) implies that \(C(T^2) \rtimes \alpha_{A,L} \mathbb{N} \) is isomorphic to \(M_2(\mathcal{O}_3) \). (We thank the referee for pointing this out.)

(2) The matrix \(A = \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} \) has \(\det A = 2 > 1 \). So Corollary 4.12 implies that

\[
K_0(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = \mathbb{Z} \quad \text{and} \quad K_1(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = \mathbb{Z}.
\]

(3) The vanishing of \(K_1 \) in Example (1) is something of an accident. Consider the matrix \(A = \begin{pmatrix} 0 & 1 \\ k & 0 \end{pmatrix} \) for \(k \in \mathbb{Z} \) with \(k > 2 \). We have \(\det A = -k < 0 \), the map \((m, n) \mapsto m + n \pmod{(k - 1)}\) induces an isomorphism of \(\text{coker}(1 - B_1) = \text{coker} \left(\begin{pmatrix} -1 \\ -k \end{pmatrix} \right) \) onto \(\mathbb{Z}/(k - 1)\mathbb{Z} \), and we have \(K_1(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = \mathbb{Z}/(k - 1)\mathbb{Z} \).

(4) The matrix \(A = \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix} \) has \(\det A = 5 > 1 \). Thus

\[
K_0(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = (\mathbb{Z}/4\mathbb{Z}) \oplus \mathbb{Z} \quad \text{and} \quad K_1(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}).
\]

(5) The matrix \(A = \begin{pmatrix} 2 & -1 \\ 1 & -3 \end{pmatrix} \) has determinant \(-5\), and

\[
K_0(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = (\mathbb{Z}/4\mathbb{Z}) \oplus (\mathbb{Z}/2\mathbb{Z}) \quad \text{and} \quad K_1(C(T^2) \rtimes \alpha_{A,L} \mathbb{N}) = \mathbb{Z}/5\mathbb{Z}.
\]

It is interesting to compare with the matrix \(A = \begin{pmatrix} 0 & 1 \\ 5 & 0 \end{pmatrix} \) in Example (3), which also has \(\det A = -5 \), but has \(K_1 = \mathbb{Z}/4\mathbb{Z} \). So the K-theory of \(C(T^2) \rtimes \alpha_{A,L} \mathbb{N} \) is not completely determined by \(\det A \).

Remark 4.14. The referee asked us whether we could describe the range of \(K \)-invariant on our class of algebras. We know from Proposition 4.6 that the matrices \(1 - B_n \) appearing in the formulas in Theorem 4.9 are all invertible over \(\mathbb{Q} \), and hence all the cokernels appearing there are finite abelian groups. In the examples above, the cokernels happen to be cyclic, but in general they will not be, as is easily seen by considering diagonal matrices \(A \). For large \(d \), therefore, the torsion parts of \(K_0 \) and \(K_1 \) could be large direct sums of finite cyclic groups. The rank of \(K_0 \) and \(K_1 \), on the other hand, is completely determined by Theorem 4.9: it is 1 if \(\det A > 1 \), and 0 if \(\det A < -1 \).

Acknowledgement. This research was partially supported by the Australian Research Council and the National Council for Scientific and Technological Development (CNPq) of Brazil.

References

[1] B. BRENKEN, C*-algebras associated with topological relations, J. Ramanujan Math. Soc. 19 (2004), no. 1, 35–55. MR2054608 (2004m:46134)
[2] N. Brownlowe and I. Raeburn, *Exel's crossed product and relative Cuntz-Pimsner algebras*, Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 3, 497–508. http://dx.doi.org/10.1017/S030500410600956X. MR2281412 (2007i:46067)

[3] T.M. Carlsen and S. Silvestrov, *On the Exel crossed product of topological covering maps*, Acta Appl. Math. 108 (2009), no. 3, 573–583. http://dx.doi.org/10.1007/s10440-008-9372-6. MR2563500 (2010k:46071)

[4] L.A. Coburn, *The C∗-algebra generated by an isometry*, Bull. Amer. Math. Soc. 73 (1967), 722–726. http://dx.doi.org/10.1090/S0002-9904-1967-11845-7. MR0213906 (35 #4760)

[5] V. Deaconu, *Groupoids associated with endomorphisms*, Trans. Amer. Math. Soc. 347 (1995), no. 5, 1779–1786. http://dx.doi.org/10.2307/2154972. MR1233967 (95h:46104)

[6] R. Exel, *A new look at the crossed-product of a C∗-algebra by an endomorphism*, Ergodic Theory Dynam. Systems 23 (2003), no. 6, 1733–1750. http://dx.doi.org/10.1017/S0143385702001797. MR2032486 (2004k:46119)

[7] R. Exel and A. Vershik, *C∗-algebras of irreversible dynamical systems*, Canad. J. Math. 58 (2006), no. 1, 39–63. http://dx.doi.org/10.4153/CJM-2006-003-x. MR2195591 (2007d:46058)

[8] M. Ionescu and P.S. Muhly, *Groupoid methods in wavelet analysis*, Group Representations, Ergodic Theory, and Mathematical Physics: a Tribute to George W. Mackey, Contemp. Math., vol. 449, Amer. Math. Soc., Providence, RI, 2008, pp. 193–208. MR2391805 (2009k:46126)

[9] R. Ji, *On the Crossed Product C∗-Algebras Associated with Furstenberg Transformations on Tori*, Ph.D. Thesis, State University of New York, Stony Brook, 1986. ProQuest LLC, Ann Arbor, MI, pp. 95. MR2635148

[10] T. Katsura, *Algebras of C∗-algebras generalizing both graph algebras and homeomorphism C∗-algebras. I. Fundamental results*, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322 (electronic). http://dx.doi.org/10.1090/S0002-9947-04-03636-0. MR2067120 (2005b:46119)

[11] T. Katsura, *Algebras of C∗-algebras generalizing both graph algebras and homeomorphism C∗-algebras. IV. Pure infiniteness*, J. Funct. Anal. 254 (2008), no. 5, 1161–1187. http://dx.doi.org/10.1016/j.jfa.2007.11.014. MR2386934 (2008m:46143)

[12] E. Kirchberg, *Exact C∗-algebras, tensor products, and the classification of purely infinite algebras*, (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 943–954. MR1403994 (97g:46074)

[13] N.S. Larsen and I. Raeburn, *Projective multi-resolution analyses arising from direct limits of Hilbert modules*, Math. Scand. 100 (2007), no. 2, 317–360. MR2339372 (2008m:42059)

[14] D.G. Northcott, *Multilinear Algebra*, Cambridge University Press, Cambridge, 1984. http://dx.doi.org/10.1017/CBO9780511565939. MR0773853 (86m:13001)

[15] J.A. Packer, *Projective multiresolution analyses for dilations in higher dimensions*, J. Operator Theory 57 (2007), no. 1, 147–172. MR2304920 (2008b:46098)

[16] J.A. Packer, P.E.T. Jorgensen, and K.D. Merrill (eds.), *Representations, Wavelets, and Frames*, Applied and Numerical Harmonic Analysis, Birkhäuser Boston Inc., Boston, MA, 2008, Papers presented at Current Trends in Harmonic Analysis and Its Applications: Wavelets and Frames, A Celebration of the Mathematical Work of Lawrence W. Baggett, Boulder, CO, May 18–20, 2006. http://dx.doi.org/10.1007/978-0-8176-4683-7. MR2459309 (2009h:42002)
[20] J.A. PACKER and M.A. RIEFFEL, *Wavelet filter functions, the matrix completion problem, and projective modules over* $C(\mathbb{T}^n)$, J. Fourier Anal. Appl. 9 (2003), no. 2, 101–116. \url{http://dx.doi.org/10.1007/s00041-003-0010-4}. MR1964302 (2003m:42063)

[21] ______, *Projective multi-resolution analyses for* $L^2(\mathbb{R}^2)$, J. Fourier Anal. Appl. 10 (2004), no. 5, 439–464. 10.1007/s00041-004-3065-y. MR2093911 (2005f:46133)

[22] N.C. PHILLIPS, *A classification theorem for nuclear purely infinite simple C*-algebras*, Doc. Math. 5 (2000), 49–114 (electronic). MR1745197 (2001d:46086b)

[23] M.V. PIMSNER, *A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by* \mathbb{Z}, Free Probability Theory (Waterloo, ON, 1995), Fields Inst. Commun., vol. 12, Amer. Math. Soc., Providence, RI, 1997, pp. 189–212. MR1426840 (97k:46069)

[24] M.A. RIEFFEL, *C*-algebras associated with irrational rotations*, Pacific J. Math. 93 (1981), no. 2, 415–429. MR623572 (83b:46087)

[25] M. RÖRDAM, *Classification of nuclear, simple C*-algebras*, Classification of Nuclear C*-algebras. Entropy in Operator Algebras, Encyclopaedia Math. Sci., vol. 126, Springer, Berlin, 2002, pp. 1–145. MR1878882 (2003i:46060)

[26] D. RUELLE, *The thermodynamic formalism for expanding maps*, Comm. Math. Phys. 125 (1989), no. 2, 239–262. \url{http://dx.doi.org/10.1007/BF01217908}. MR1016871 (91a:58149)

[27] R.S. STRICHARTZ, *Construction of orthonormal wavelets*, Wavelets: Mathematics and Applications, Stud. Adv. Math., CRC, Boca Raton, FL, 1994, pp. 23–50. MR1247513 (94i:42047)

[28] N.E. WEGGE-OLSEN, *K-theory and C*-algebras. A Friendly Approach*, Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1993. MR1222415 (95c:46116)

[29] S. YAMASHITA, *Circle correspondence C*-algebras*, Houston J. Math. 37 (2011), no. 4, 1181–1202. MR2875265

RUY EXEL:
Departamento de Matemática
Universidade Federal de Santa Catarina
88040-900 Florianópolis SC, Brazil
E-MAIL:exel@mtm.ufsc.br

ASTRID AN HUEF:
Department of Mathematics and Statistics
University of Otago
Dunedin 9054, New Zealand
E-MAIL:iraeburn@maths.otago.ac.nz

IAIN RAEBURN:
School of Mathematics and Applied Statistics
The University of Wollongong
NSW 2522, AUSTRALIA

KEY WORDS AND PHRASES: crossed product, endomorphism, transfer operator, integer dilation matrix, purely infinite, simple, K-theory.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 46L55.

Received: March 10, 2010; revised: August 3, 2010.

Article electronically published on August 5, 2010.