Article

Coefficient Bounds for Certain Classes of Analytic Functions Associated with Faber Polynomial

Adel A. Attiya 1,2, Abdel Moneim Lashin 2,3, Ekram E. Ali 1,4 and Praveen Agarwal 5,6,7,8,*

1 Department of Mathematics, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia; aatiya@mans.edu.eg (A.A.A.); ekram_008eg@yahoo.com (E.E.A.)
2 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; alashin@mans.edu.eg
4 Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said 42521, Egypt
5 Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India
6 International Center for Basic and Applied Sciences, Jaipur 302029, India
7 Department of Mathematics, Harish-Chandra Research Institute, Allahabad 211 019, India
8 Department of Mathematics, Netaji Subhas University of Technology, New Delhi 110078, India
* Correspondence: praveen.agarwal@anandice.ac.in or praveen2011@gmail.com

Abstract: In this paper, we introduce a family of analytic functions in the open unit disk which is bi-univalent. By the virtue of the Faber polynomial expansions, the estimation of \(n - th \) \((n \geq 3)\) Taylor–Maclaurin coefficients \(|a_n|\) is obtained. Furthermore, the bounds value of the first two coefficients of such functions is established.

Keywords: Faber polynomial; coefficient bounds; uniformly convex; uniformly starlike; univalent functions; bi-univalent functions

1. Introduction

Faber polynomials, which were introduced by Faber in 1903 [1], play an important role in the theory of functions of a complex variable and different areas of mathematics and there is a rich literature [2–7] describing their properties and their applications. Given a function \(h(z) \) of the form

\[
h(z) = z + b_0 + b_1 z^{-1} + b_2 z^{-2} + \ldots,
\]

consider the expansion

\[
\frac{\zeta h'\left(\zeta\right)}{h\left(\zeta\right) - w} = \sum_{n=0}^{\infty} \Psi_n(w) \zeta^{-n},
\]

valid for all \(\zeta \) in some neighborhood of \(\infty \). The function \(\Psi_n(w) = w^n + \sum_{k=1}^{n} a_{nk} w^{n-k} \) is a polynomial of degree \(n \), called the \(n \)-th Faber polynomial with respect to the function \(h(z) \). In particular,

\[
\Psi_0(w) = 1, \quad \Psi_1(w) = w - b_0,
\]
\[
\Psi_2(w) = w^2 - 2b_0w + (b_0^2 - 2b_1),
\]
\[
\Psi_3(w) = w^3 - 3b_0w^2 + (3b_0^2 - 3b_1)w + (b_0^3 + 3b_1b_0 - 3b_2).
\]

Let \(\Psi_n(0) = F_n(b_0, b_1, \ldots, b_n), n \geq 0, \) see ([8], p. 118). Let \(A \) denote the class of all functions of the form:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]
which are analytic in the open unit disc \(U = \{ z : z \in \mathbb{C} \text{ and } |z| < 1 \} \) and let \(S \) be the class of all functions in \(A \) which are univalent in \(U \). By using the Faber polynomial expansion of functions of the form (1), Airault and Bouali [9], p. 184 showed that

\[
\frac{z f'(z)}{f(z)} = 1 - \sum_{j=2}^{\infty} F_{j-1}(a_2, a_3, \ldots, a_j) z^{j-1},
\]

where \(F_{j-1}(a_2, a_3, \ldots, a_j) \) is the Faber polynomial given by:

\[
F_{j-1}(a_2, a_3, \ldots, a_j) = \sum_{i_1+2i_2+\ldots+(j-1)i_{j-1}=j-1} A(i_1, i_2, \ldots, i_{j-1})(a_2^{i_1}, a_3^{i_2}, \ldots, a_j^{i_{j-1}})
\]

and

\[
A(i_1, i_2, \ldots, i_{j-1}) := (-1)^{(j-1)+2i_1+\ldots+j_{i_{j-1}}}(i_1+i_2+\ldots+i_{j-1}-1)! \frac{(j-1)!}{(i_1)!(i_2)\ldots(i_{j-1})!}.
\]

The first few terms of the Faber polynomials \(F_{j-1}, j \geq 2 \), are given by (e.g., see [10], p. 52)

\[
\begin{align*}
F_1 &= -a_2, \\
F_2 &= a_2^2 - 2a_3, \\
F_3 &= -a_2^3 + 3a_2a_3 - 3a_4, \\
F_4 &= a_2^4 - 4a_2^2a_3 + 4a_2a_4 + 2a_5 - 4a_6 \\
F_5 &= -a_2^5 + 5a_2^3a_3 + 5a_2^2a_4 - 5a_2a_5^2 - a_5 + 5a_3a_4 - 5a_6.
\end{align*}
\]

The Koebe one-quarter theorem [8], p. 31 ensures the range of every function of the class \(S \) contains the disc \(\{ w : |w| < \frac{1}{4} \} \). Thus every univalent function \(f \in S \) has an inverse \(f^{-1} \), which is defined by

\[
f^{-1}(f(z)) = z \quad (z \in U)
\]

and

\[
f(f^{-1}(\omega)) = \omega \quad (|\omega| < \frac{1}{4}).
\]

The inverse map \(g := f^{-1} \) of the function \(f \in A \) has Taylor expansion given by (see [9], p. 185)

\[
g(\omega) = f^{-1}(\omega) = w + \sum_{n=2}^{\infty} \frac{1}{n!} K_{n-1}^{-n}(a_2, a_3, \ldots, a_n) \omega^n
\]

\[
= w - a_2\omega^2 + (2a_2^2 - a_3)\omega^3 - (5a_2^3 - 5a_2a_3 + a_4)\omega^4 + \ldots,
\]
where the coefficients $K_n^p(a_2, a_3, \ldots, a_n)$ are given by

\[
K_1^p = pa_2, \quad K_2^p = \frac{1}{2}p(p - 1)a_2^2 + pa_3, \\
K_3^p = p(p - 1)a_2a_3 + pa_4 + \frac{p(p - 1)(p - 2)}{3!}a_2^3, \\
K_4^p = p(p - 1)a_2a_4 + pa_5 + \frac{p(p - 1)(p - 2)}{2}a_2^2a_3 + \frac{p(p - 1)(p - 2)(p - 3)}{24}a_2^4 + \frac{p(6p - 11)}{24}a_2^3a_4, \\
\vdots \\
K_n^p = \frac{p!}{(p - n)!n!}a_2^n + \frac{p!}{(p - n + 1)!(n - 2)!}a_2^{n-2}a_3 + \frac{p!}{(p - n + 2)!(n - 3)!}a_2^{n-3}a_4 + \frac{p!}{(p - n + 3)!(n - 4)!}a_2^{n-4}a_5 + \frac{p!}{(p - n + 4)!(n - 5)!}a_2^{n-5}a_6 + \sum_{j=6}^{n} a_2^{n-j}V_j
\]

(3)

and V_j is homogeneous polynomial of degree j in the variables a_3, \ldots, a_n, see ([11], p. 349 and [9], p. 183 and p. 205).

Lemma 1. (Schwarz lemma [8], p. 3) Let $\omega(z)$ be analytic in the unit disc U, with $\omega(0) = 0$ and $|\omega(z)| < 1$ in U. Then $|\omega(z)| < |z|$ and $|\omega'(0)| < 1$ in U.

If f and g are analytic functions in U, we say that f is subordinate to g, written $f(z) \prec g(z)$ if there exists a Schwarz function $\omega(z)$ such that $f(z) = g(\omega(z))$. Let ϕ be an analytic function with positive real part in U, satisfying $\phi(0) = 1, \phi'(0) > 0$, and $\phi(U)$ is symmetric with respect to the real axis. Such a function has a Taylor series of the form

\[
\phi(z) = 1 + B_1z + B_2z^2 + B_3z^3 + \ldots (B_1 > 0).
\]

(4)

Using this ϕ, Ma and Minda [12] considered the classes

\[
S(\phi) = \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec \phi(z), \ z \in U \right\}
\]

and

\[
K(\phi) = \left\{ f \in A : zf'(z) \in S(\phi), \ z \in U \right\}
\]

Several well-known classes can be obtained by specializing of the function ϕ, for instance

1. By taking $\phi(z) = \frac{1+Az}{1+Bz}, -1 < B < A \leq 1$, we obtain the classes $S[A, B]$ and $K[A, B]$ of the well-known Janowski starlike and convex functions.
2. If we set $\phi(z) = \frac{1}{1+z^{\alpha}}$, we obtain the classes $S^{\alpha}(a)$ and $K(a)$ of starlike and convex functions of order $a(0 \leq a < 1)$.
3. The class $S_{\frac{1}{2}} := S(\sqrt{1+z})$ was considered by Sokol and Stankieicz [13], consisting of functions f such that $\frac{f(z)}{1+z}$ lies in the region bounded by the right half of the Bernoulli lemniscate given by $|w^2 - 1| < 1$.
4. Taking $\phi(z) = \left(\frac{1+z}{1+z^{\alpha}} \right)^{\delta} (0 < \delta \leq 1)$ yields the classes of strongly starlike and convex functions.
5. The function class $S^*_{C}: = S(z + \sqrt{1 + z^2})$ was considered by Raina and Sokol [14], consisting of normalized starlike functions f satisfying the inequality
\[
\left\{ \frac{zf'(z)}{f(z)} \right\}^2 - 1 < 2 \left| \frac{zf'(z)}{f(z)} \right|.
\]

6. Kanas et al. [15] considered the family of analytic functions $S\left(\frac{1}{1 - z^2}\right)$ and $K\left(\frac{1}{1 - z^2}\right)$ with the property that $zf'(z)$ and $1 + z^2f''(z)$ lie in a domain bounded by a hyperbola $\beta = \rho(s) = (2 \cos \frac{s}{2})^{-1}(0 < s \leq 1, |\phi| < \frac{\pi}{2})$.

7. The function class $S^*_\alpha: = S(e^\alpha)$ was introduced and studied by Shams et al. [18].

8. The classes $S_\alpha(z) := S(e^\alpha)$ and the class $S \alpha = S(e^\alpha)$ are convex and hence starlike functions.

Moreover, the exponential function $\phi(z) = e^\alpha$ has positive real part in U, maps U onto a domain $\phi(U) := \{w \in C : |log w| < 1\}$ which is symmetric about the real axis.

An interesting families of the domains that are bounded by a conic sections were introduced and studied by Shams et al. [18], they introduced the class $SD(\alpha, \beta)$ of β-uniformly starlike functions of order α $(0 \leq \alpha < 1)$ in U consisting of functions $f \in A$ which satisfy the following inequality
\[
\Re \left\{ \frac{zf'(z)}{f(z)} - \alpha \right\} > \beta \left| \frac{zf'(z)}{f(z)} - 1 \right| \quad (\beta \geq 0; 0 \leq \alpha < 1; z \in U). \tag{5}
\]

and class $KD(\alpha, \beta)$ of β-uniformly convex of order α $(0 \leq \alpha < 1)$, defined by
\[
f \in KD(\alpha, \beta) \iff zf'(z) \in SD(\alpha, \beta).
\]

Since $Re(w > \alpha|w - 1| + \gamma$ if and only if $Re\{w(1 + \alpha \theta) - \alpha e^{i\theta}\} > \gamma$ (see [19]), then the condition (5) is equivalent to
\[
\Re \left\{ 1 + \beta e^{i\theta} \frac{zf'(z)}{f(z)} - \beta e^{i\theta} \right\} > \alpha.
\]

Motivated by the classes $SD(\alpha, \beta)$ and $KD(\alpha, \beta)$ we now introduce and investigate the following subclasses of A, and obtain some interesting results.

Definition 1. A function $f(z) \in A$ is said to be in the class $M(\lambda, \beta, \gamma, \phi)$ if it satisfies
\[
(1 + \beta e^{i\gamma}) \frac{zf''(z) + \lambda z f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} - \beta e^{i\gamma} < \phi(z) \quad (z \in U),
\]

where $\beta \geq 0, 0 \leq \lambda \leq 1$ and $-\pi \leq \gamma < \pi$.

We note that:

1. The class $M(0, 0, \gamma, \phi) = S(\phi)$ and the class $M(1, 0, \gamma, \phi) = K(\phi)$.
2. The class $M(0, \beta, \gamma, \frac{1 + (1 - 2\alpha \phi)}{1 - \phi}) = SD(\alpha, \beta)$ and the class $M(1, \beta, \gamma, \frac{1 + (1 - 2\alpha \phi)}{1 - \phi}) = KD(\alpha, \beta)$.
3. The class $M(\lambda, 0, \gamma, \frac{1 + (1 - 2\alpha \phi)}{1 - \phi})$ was introduced and studied by Aouf et al. [20].
Definition 2. A function \(f(z) \in A \) is said to be in the class \(S(\lambda, \beta, \gamma, \phi) \) if it satisfies

\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{zf'(z)}{f(z)} + \lambda (1 + \frac{zf''(z)}{f'(z)}) \right] - \beta e^{i\gamma} \prec \phi(z) \quad (z \in U),
\]

where \(\beta \geq 0, 0 \leq \lambda \leq 1 \) and \(-\pi \leq \gamma < \pi \).

We note that:
1. The class \(S(0,0,\gamma,\phi) = S(\phi) \) and \(S(1,0,\gamma,\phi) = K(\phi) \).
2. \(M(1,\beta,\gamma, \frac{1+\lambda-2\alpha}{1-\alpha}) = SD(\alpha, \beta) \) and \(S(0,\beta,\gamma, \frac{1+\lambda-2\alpha}{1-\alpha}) = KD(\alpha, \beta) \).

A single-valued function \(f \) analytic in a domain \(D \subset \mathbb{C} \) is said to be univalent there if it never take the same value twice; that is, if \(f(z_1) \neq f(z_2) \) for all points \(z_1 \) and \(z_2 \) in \(D \) with \(z_1 \neq z_2 \) (see [8], p. 26). A function \(f \in A \) is said to be bi-univalent in \(U \) if \(f \) and its inverse map \(f^{-1} \) are univalent in \(U \). Let \(\sigma \) denote the class of bi-univalent functions in \(U \) given by (1). The class of analytic bi-univalent functions was first introduced and studied by Lewin [21] and showed that \(|a_2| < 1.51\). Recently, many authors found non-sharp estimates on the first two Taylor–Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for various subclasses of bi-univalent functions, see for example, ([22–43]). For other related topics see also, ([44–47]).

Definition 3. A function \(f \in \sigma \) given by (1) is said to be in the class \(M_C(\lambda, \beta, \gamma, \phi) \) if both \(f \) and its inverse map \(g = f^{-1} \) are in \(M(\lambda, \beta, \gamma, \phi) \).

We note that:
1. The class \(M_C(0,1,\gamma,\phi) = \mathbb{H}_c(\phi) \) was introduced and studied by Darwish et al. [48].
2. The class \(M_C(0,0,\gamma, \frac{1+\lambda-2\alpha}{1-\alpha}) = S[A,B] \) was introduced and studied by Hamidi and Jahangiri [49].

Definition 4. A function \(f \in \sigma \) given by (1) is said to be in the class \(S_C(\lambda, \beta, \gamma, \phi) \) if both \(f \) and its inverse map \(g = f^{-1} \) are in \(S(\lambda, \beta, \gamma, \phi) \).

We note that:
1. The class \(S_C(0,1,\gamma,\phi) = \mathbb{H}_c(\phi) \).
2. The class \(S_C(0,0,\gamma, \frac{1+\lambda-2\alpha}{1-\alpha}) = S[A,B] \).
3. The class \(S_C(\lambda,0,\gamma,\phi) = M^*_C(\lambda, \phi) \) was introduced and studied by Goyal and Kumar [50], see also Zireh et al. [51].

In this paper, we use the Faber polynomial expansions to obtain bounds for the general coefficients \(|a_n|\) of bi-univalent functions in \(M_C(\lambda, \beta, \gamma, \phi) \) and \(S_C(\lambda, \beta, \gamma, \phi) \) as well as we provide estimates for the initial coefficients of these functions.

2. Coefficient Estimates for the Class \(M_C(p, \lambda, \tau, \phi) \)

Theorem 1. Let the function \(f \in \sigma \) given by (1) be in the class \(M_C(\lambda, \beta, \gamma, \phi) \). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then

\[
|a_n| \leq \frac{B_1}{(n-1)[1+\lambda(n-1)]} \frac{1+\beta e^{i\gamma}}{|1+\beta e^{i\gamma}|} \quad n \geq 3.
\]

Proof. If we set \(F(z) := (1-\lambda)f(z) + \lambda zf'(z) = z + \sum_{n=2}^{\infty} [1+\lambda(n-1)]a_nz^n := z + \sum_{n=2}^{\infty} \delta_nz^n \),

then

\[
f \in M(\lambda, \beta, \gamma, \phi) \Leftrightarrow (1 + \beta e^{i\gamma}) \frac{zf'(z)}{f(z)} - \beta e^{i\gamma} \prec \phi(z).
\]
Since, both functions f and its inverse map $g = f^{-1}$ are in $M(\lambda, \beta, \gamma, \phi)$, by the definition of subordination, there are analytic functions $u, v : U \to U$ with $u(0) = v(0) = 0$, $|u(z)| < 1$ and $|v(z)| < 1$, such that

\[
(1 + \beta e^{i\gamma}) \frac{zF(z)}{F(z)} - \beta e^{i\gamma} = \phi(u(z)) \quad (z \in U)
\]

and

\[
(1 + \beta e^{i\gamma}) \frac{wG'(w)}{G(w)} - \beta e^{i\gamma} = \phi(v(w)) \quad (z \in U),
\]

where $G(z) := (1 - \lambda)g(z) + \lambda zg'(z) = z + \sum_{n=2}^{\infty} [1 + \lambda(n - 1)]d_n z^n := z + \sum_{n=2}^{\infty} \zeta_n z^n$ and $d_n = \frac{1}{n} K_{n-1}(a_2, a_3, \ldots, a_n)$. Define the functions $u(z)$ and $v(z)$ by

\[
u(z) = \sum_{n=1}^{\infty} b_n z^n, \quad v(z) = \sum_{n=1}^{\infty} c_n z^n \quad (z \in U).
\]

It is well known that (see Duren [8], p. 265)

\[
|b_n| \leq 1, |c_n| \leq 1 \quad n = 2, 3, \ldots.
\]

By a simple calculation, we have

\[
\phi(u(z)) = 1 - B_1 \sum_{n=1}^{\infty} K_n^{-1}(b_1, b_2, \ldots, b_n, B_1, B_2, B_3, \ldots, B_n) z^n
\]

\[
= 1 + B_1 b_1 z + (B_1 b_2 + B_2 b_1^2) z^2 + \ldots \quad (z \in U),
\]

and

\[
\phi(v(\omega)) = 1 - B_1 \sum_{n=1}^{\infty} K_n^{-1}(c_1, c_2, \ldots, c_n, B_1, B_2, B_3, \ldots, B_n) w^n
\]

\[
= 1 + B_1 c_1 \omega + (B_1 c_2 + B_2 c_1^2) \omega^2 + \ldots \quad (\omega \in U),
\]

In general (see [52], p. 649), the coefficients $K_n^\mu(k_1, k_2, \ldots, k_n, B_1, B_2, B_3, \ldots, B_n)$ are given by

\[
K_n^\mu(k_1, k_2, \ldots, k_n, B_1, B_2, B_3, \ldots, B_n)
\]

\[
= \frac{p!}{(p - n)!} k_1^{n-1} k_2^{(1)n-1} B_n \frac{B_1}{B_1} + \frac{p!}{(p - n + 1)!} k_1^{n-2} k_2^{(1)n-1} B_{n-1} \frac{B_1}{B_1} - \frac{p!}{(p - n + 2)!} (\mu - 3)! B_{n-2} k_1^{n-3} k_3^{(1)n-1} B_1
\]

\[
+ \frac{p!}{(p - n + 3)!} k_1^{n-4} [k_4^{(1)n-2} B_{n-3} \frac{B_1}{B_1} + \frac{p - n + 3}{2} k_1^{n-5} (\mu - 1)^n B_{n-2} + \sum_{j=5}^{\infty} \frac{p!}{(p - n + 4)!} X_j]
\]

where X_j is a homogeneous polynomial of degree j in the variables k_2, \ldots, k_n.

Using the Faber polynomial expansion (2) yield the following identities

\[
(1 + \beta e^{i\gamma}) \frac{zF(z)}{F(z)} - \beta e^{i\gamma} = (1 + \beta e^{i\gamma}) [1 - \sum_{j=2}^{\infty} F_{j-1}(\delta_2, \delta_3, \ldots, \delta_j) z^{j-1}] - \beta e^{i\gamma},
\]
and
\[
(1 + \beta e^{i\gamma}) \frac{wG(w)}{G(w)} - \beta e^{i\gamma} = (1 + \beta e^{i\gamma}) [1 - \sum_{j=2}^{\infty} F_{j-1}(\zeta_2, \zeta_3, \ldots, \zeta_j) w^{j-1}] - \beta e^{i\gamma}.
\] (13)

Comparing the corresponding coefficients of (10) and (12) yields
\[
(1 + \beta e^{i\gamma}) F_{n-1}(\delta_2, \delta_3, \ldots, \delta_n) = B_1 K_{n-1}^{-1}(b_1, b_2, \ldots, b_{n-1}, B_1, B_2, B_3, \ldots, B_{n-1})
\] (14)
and similarly, from (11) and (13), we have
\[
(1 + \beta e^{i\gamma}) F_{n-1}(\xi_2, \xi_3, \ldots, \xi_n) = B_1 K_{n-1}^{-1}(c_1, c_2, \ldots, c_{n-1}, B_1, B_2, B_3, \ldots, B_{n-1}).
\] (15)
Since \(a_k = 0\) for \(2 \leq k \leq n - 1\), by substituting \(\delta_n = [1 + \lambda(n - 1)] a_n, \xi_n = [1 + \lambda(n - 1)] d_n\) and \(d_n = -a_n\) in (14) and (15), we have
\[
(1 + \beta e^{i\gamma})(n - 1) [1 + \lambda(n - 1)] a_n = B_1 b_{n-1}
\]
and
\[
-(1 + \beta e^{i\gamma})(n - 1) [1 + \lambda(n - 1)] a_n = B_1 c_{n-1}.
\]

By using (9), we conclude that
\[
|a_n| \leq \frac{B_1}{1 + \beta e^{i\gamma} [n(n-1)]} |1 + \lambda(n-1)|
\]
this completes the proof. \(\Box\)

To prove our next theorem, we shall need the following lemma.

Lemma 2. Ref. [52] Let the function \(\Phi(z) = \sum_{n=1}^{\infty} \Phi_n z^n\) be a Schwarz function with \(|\Phi(z)| < 1\), \(z \in U\). Then for \(-\infty < \rho < \infty\),
\[
|\Phi_2 + \rho \Phi_1^2| \leq \begin{cases}
1 - (1 - \rho) |\Phi_1^2| & \rho > 0 \\
1 - (1 + \rho) |\Phi_1^2| & \rho \leq 0
\end{cases}
\]

Theorem 2. Let the function \(f \in \sigma\) given by (1) be in the class \(M_\rho(\lambda, \beta, \gamma, \Phi)\), then
\[
|a_2| \leq \begin{cases}
\frac{B_1 \sqrt{B_1}}{\sqrt{1 + \beta e^{i\gamma}|(1 + 2\lambda - i^{2}) \beta_1^2 + (1 + \beta e^{i\gamma})^2(1 + \lambda)^2(B_1 + B_2)}} & (B_2 \leq 0, B_1 + B_2 \geq 0) \\
\frac{B_1 \sqrt{B_1}}{\sqrt{1 + \beta e^{i\gamma}|(1 + 2\lambda - i^{2}) \beta_1^2 + (1 + \beta e^{i\gamma})^2(1 + \lambda)^2(1 + B_1 - B_2)}} & (B_2 > 0, B_1 - B_2 \geq 0)
\end{cases}
\] (16)
and
\[
|a_3 - a_2^2| \leq \begin{cases}
\frac{B_1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|} & (B_1 \geq |B_2|) \\
\frac{|B_2|}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|} & (B_1 < |B_2|)
\end{cases}
\] (17)

Proof. Replacing \(n = 2\) and \(3\) in (14) and (15), respectively, we find that
\[
(1 + \beta e^{i\gamma})(1 + \lambda) a_2 = B_1 b_1,
\] (18)
\[
(1 + \beta e^{i\gamma})[2(1 + 2\lambda) a_3 - (1 + \lambda)^2 a_2^2] = [B_1 b_2 + B_2 b_3^2],
\] (19)
\[
-1 + \beta e^{i\gamma}(1 + \lambda) a_2 = B_1 c_1,
\] (20)
\[
(1 + \beta e^{i\gamma})[-2(1 + 2\lambda) a_3 + 4(1 + 2\lambda) - (1 + \lambda)^2 a_2^2] = [B_1 c_2 + B_2 c_3^2].
\] (21)
\[b_1 = -c_1. \] (22)

Adding (19) to (21) implies
\[2(1 + \beta e^{i\gamma})|2(1 + 2\lambda) - (1 + \lambda)^2|a_2^2 = B_1(b_2 + c_2) + B_2\left(b_1^2 + c_1^2\right). \] (23)

Taking the absolute values of both sides of the above equation, we get
\[|a_2|^2 \leq \frac{B_1}{2|1 + \beta e^{i\gamma}|(1 + 2\lambda - \lambda^2)}\left|b_2 + \frac{B_2}{B_1}b_1^2 + c_2 + \frac{B_2}{B_1}c_1^2\right|^2. \] (24)

Case 1. Let \(B_2 \leq 0. \) Applying Lemma 2 with \(\rho = \frac{B_2}{B_1} \leq 0 \) and using (22) we obtain
\[|a_2|^2 \leq \frac{B_1}{|1 + \beta e^{i\gamma}|(1 + 2\lambda - \lambda^2)}\left(1 - |\frac{B_1 + B_2}{B_1}|b_1|^2\right). \]

If \(B_1 + B_2 \geq 0, \) then (18) yields
\[|a_2| \leq \frac{B_1\sqrt{B_1}}{|1 + \beta e^{i\gamma}|(1 + 2\lambda - \lambda^2)B_1^2 + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2(B_1 + B_2)}. \] (25)

Case 2. Let \(B_2 > 0. \) Applying Lemma 2 with \(\rho = \frac{B_2}{B_1} > 0 \) and using (22), we obtain
\[|a_2|^2 \leq \frac{B_1}{|1 + \beta e^{i\gamma}|[2(1 + 2\lambda) - (1 + \lambda)^2]}\left(1 - |\frac{B_1 - B_2}{B_1}|b_1|^2\right). \]

If \(B_1 - B_2 \geq 0, \) then (18) gives
\[|a_2| \leq \frac{B_1\sqrt{B_1}}{|1 + \beta e^{i\gamma}|[1 + 2\lambda - \lambda^2]B_2^2 + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2(B_1 - B_2)}. \] (26)

From (25) and (26) we obtain the desired estimate of \(|a_2| \) given by (16). Next, from (19) and (21), we have
\[|a_3 - a_2|^2 \leq \frac{B_1}{4(1 + 2\lambda)|1 + \beta e^{i\gamma}|}\left|b_2 + \frac{B_2}{B_1}b_1^2 + c_2 + \frac{B_2}{B_1}c_1^2\right|^2. \] (27)

Let \(B_2 \leq 0. \) Applying Lemma 2 for \(\rho = \frac{B_2}{B_1} \leq 0, \) we get
\[|a_3 - a_2|^2 \leq \frac{B_1}{4(1 + 2\lambda)|1 + \beta e^{i\gamma}|}\left(\left|1 - \frac{B_1 + B_2}{B_1}|b_1|^2\right| + |1 - \frac{B_1 + B_2}{B_1}|c_1|^2\right). \] (28)

If \(B_1 + B_2 \geq 0, \) then (28) gives
\[|a_3 - a_2|^2 \leq \frac{B_1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}. \]

If \(B_1 + B_2 < 0, \) then (9) and (28) lead to
\[|a_3 - a_2|^2 \leq \frac{B_1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}\left[1 - \frac{B_1 + B_2}{B_1}\right] = -\frac{B_2}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}. \]
Let \(B_2 > 0 \). Applying Lemma 2 for \(\rho = \frac{B_2}{M} > 0 \), (27) gives
\[
|a_3 - a_2^2| \leq \frac{B_1}{4(2\lambda)|1 + \beta e^{i\gamma}|} \left(\left| 1 - \frac{B_1 - B_2}{B_1} |b_1| \right|^2 + \left| 1 - \frac{B_1 - B_2}{B_1} |c_1| \right|^2 \right).
\]
(29)
If \(B_1 - B_2 \geq 0 \), then (29) gives
\[
|a_3 - a_2^2| \leq \frac{B_1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]
If \(B_1 - B_2 < 0 \), then from (9) and (29) we have
\[
|a_3 - a_2^2| \leq \frac{B_1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|} \left(1 - \frac{B_1 - B_2}{B_1} \right) = \frac{B_2}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]
Which is the second part of assertion (17). This completes the proof of Theorem 2.

Remark 1. If we take \(\beta = 0 \) in Theorem 2 we obtain that the bounds on \(|a_3 - a_2^2| \) given by Deniz et al. [52] when \(\gamma = 1 \).

If we set
\[
\phi(z) = \frac{1 + A z}{1 + B z} = 1 + (A - B)z - B(A - B)z^2 + B^2(A - B)z^3 \ldots
\]
in Definition 3 of the bi-univalent function class \(M_\sigma(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(M_\sigma(\lambda, \beta, \gamma, A, B) \) given by Definition 5 below.

Definition 5. A function \(f \in \sigma \) given by (1) is said to be in the class \(M_\sigma(\lambda, \beta, \gamma, A, B) \), \(-1 \leq B < A \leq 1\), if the following conditions are satisfied:
\[
(1 + \beta e^{i\gamma}) \frac{zf'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} - \beta e^{i\gamma} (1 + \frac{A z}{1 + B z}) (z \in U)
\]
and
\[
(1 + \beta e^{i\gamma}) \frac{zg'(\omega) + \lambda z^2 g''(\omega)}{(1 - \lambda)g(\omega) + \lambda zg'(\omega)} - \beta e^{i\gamma} (1 + \frac{A \omega}{1 + B \omega}) (\omega \in U),
\]
where \(g = f^{-1} \).

Using the parameter setting of Definition 5 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 1. Let the function \(f \in M_\sigma(\lambda, \beta, \gamma, A, B) \) be given by (1). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then
\[
|a_n| \leq \frac{(A - B)}{(n - 1)(1 + \lambda(n - 1))|1 + \beta e^{i\gamma}|} \quad n \geq 3.
\]

Corollary 2. If the function \(f \in \sigma \) given by (1) be in the class \(M_\sigma(\lambda, \beta, \gamma, A, B) \), then
\[
|a_2| \leq \left\{ \begin{array}{ll}
\left(\frac{A - B}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|} \right) & (B \geq 0) \\
\left(\frac{A - B}{\sqrt{|1 + \beta e^{i\gamma}|(1 + 2\lambda - A^2)|1 + \beta e^{i\gamma}|^2(1 - B)^2(1 - B)^2}} \right) & (1 \leq B < 0)
\end{array} \right.
\]
and
\[
|a_3 - a_2^2| \leq \frac{A - B}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]
If we set
\[\phi(z) = \left(\frac{1 + z}{1 - z} \right)^{\delta} = 1 + 2\delta z + 2\delta^2 z^2 + \ldots (0 < \delta \leq 1, z \in U) \]

in Definition 3 of the bi-univalent function class \(M_{\sigma}(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(M_{\sigma}(\lambda, \beta, \gamma, \phi) \) given by Definition 6 below.

Definition 6. Let \(0 < \delta \leq 1 \). A function \(f \in \sigma \) given by (1) is said to be in the class \(M_{\sigma}(\lambda, \beta, \gamma, \phi) \), if the following conditions are satisfied:

\[
\left| \arg \left(\frac{zf'(z) + \lambda z^2 f''(z) - \beta e^{i\gamma}}{(1 - \lambda)f(z) + \lambda zf'(z)} \right) \right| \leq \frac{\pi}{2} \delta (z \in U) \\
\]

and

\[
\left| \arg \left(\frac{zg'(\omega) + \lambda z^2 g''(\omega) - \beta e^{i\gamma}}{(1 - \lambda)g(\omega) + \lambda zg'(\omega)} \right) \right| \leq \frac{\pi}{2} \delta (\omega \in U),
\]

where \(g = f^{-1} \).

Using the parameter setting of Definition 6 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 3. Let the function \(f \in M_{\sigma}(\lambda, \beta, \gamma, \phi) \) be given by (1). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then

\[|a_n| \leq \frac{2\delta}{(n - 1)[1 + \lambda(n - 1)]} |1 + \beta e^{i\gamma}|, \quad n \geq 3. \]

Corollary 4. Let \(0 < \delta \leq 1 \). If the function \(f \in \sigma \) given by (1) be in the class \(M_{\sigma}(\lambda, \beta, \gamma, \phi) \), then

\[|a_2| \leq \frac{2\delta}{\sqrt{[1 + \beta e^{i\gamma}]^2[1 + 2\lambda - 2\delta] + (1 + \beta e^{i\gamma})^2(1 + \lambda)^2(1 - \delta)}} \\
\]

and

\[|a_3 - a_2^2| \leq \frac{\delta}{(1 + 2\lambda)[1 + \beta e^{i\gamma}]}. \]

If we set
\[\phi(z) = \frac{1 + (1 - 2v)z}{1 - z} = 1 + 2(1 - v)z + 2(1 - v)z^2 + \ldots (0 \leq v < 1, z \in U) \]

in Definition 3 of the bi-univalent function class \(M_{\sigma}(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(M_{\sigma}(\lambda, \beta, \gamma) \) given by Definition 7 below.

Definition 7. Let \(0 \leq v < 1 \). A function \(f \in \sigma \) given by (1) is said to be in the class \(M_{\sigma}(\lambda, \beta, \gamma) \) if the following conditions hold true:

\[
\Re \left(\frac{zf'(z) + \lambda z^2 f''(z) - \beta e^{i\gamma}}{(1 - \lambda)f(z) + \lambda zf'(z)} \right) > v (z \in U) \\
\]

and

\[
\Re \left(\frac{zg'(\omega) + \lambda z^2 g''(\omega) - \beta e^{i\gamma}}{(1 - \lambda)g(\omega) + \lambda zg'(\omega)} \right) > v (\omega \in U),
\]

where \(g = f^{-1} \).
Using the parameter setting of Definition 7 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 5. Let the function \(f \in M_0^\sigma(\lambda, \beta, \gamma) \) be given by (1). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then

\[
|a_n| \leq \frac{2(1 - v)}{(n - 1)|1 + \lambda(n - 1)||1 + \beta e^{i\gamma}|}, \quad n \geq 3.
\]

Corollary 6. Let the function \(f \in M_0^\sigma(\lambda, \beta, \gamma) \) be given by (1). Then

\[
|a_2| \leq \sqrt{\frac{2(1 - v)}{(1 + 2\lambda - \lambda^2)|1 + \beta e^{i\gamma}|}}
\]

and

\[
|a_3 - a_2^2| \leq \frac{(1 - v)}{(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]

If we set

\[
\phi(z) = \sqrt{1 + z} = 1 + \frac{1}{2}z - \frac{1}{8}z^2 + \ldots (z \in U)
\]

in Definition 3 of the bi-univalent function class \(M_\sigma(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(M_{L\sigma}(\lambda, \beta, \gamma) \) given by Definition 8 below.

Definition 8. A function \(f \in \sigma \) given by (1) is said to be in the class \(M_{L\sigma}(\lambda, \beta, \gamma) \), if the following conditions are satisfied:

\[
\left| \frac{(1 + \beta e^{i\gamma}) \frac{z f'(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda z f'(z)} - \beta e^{i\gamma}}{1} \right| < 1 \quad (z \in U)
\]

and

\[
\left| \frac{(1 + \beta e^{i\gamma}) \frac{z g'(\omega) + \lambda z^2 g''(\omega)}{(1 - \lambda)g(\omega) + \lambda z g'(\omega)} - \beta e^{i\gamma}}{1} \right| < 1 \quad (\omega \in U),
\]

where \(g = f^{-1} \).

Using the parameter setting of Definition 8 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 7. Let the function \(f \in M_{L\sigma}(\lambda, \beta, \gamma) \) be given by (1). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then

\[
|a_n| \leq \frac{1}{2(n - 1)|1 + \lambda(n - 1)||1 + \beta e^{i\gamma}|}, \quad n \geq 3.
\]

Corollary 8. If the function \(f \in \sigma \) given by (1) be in the class \(M_{L\sigma}(\lambda, \beta, \gamma) \), then

\[
|a_2| \leq \frac{1}{\sqrt{2}|1 + \beta e^{i\gamma}||1 + 2\lambda - \lambda^2| + 3|1 + \beta e^{i\gamma}|^2(1 + \lambda)^2}
\]

and

\[
|a_3 - a_2^2| \leq \frac{1}{4(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]

If we set

\[
\phi(z) = z + \sqrt{1 + z^2} = 1 + z + \frac{1}{2}z^2 - \frac{1}{8}z^4 \ldots (z \in U),
\]
in Definition 3 of the bi-univalent function class $M_{\sigma}(\lambda, \beta, \gamma, \phi)$, we obtain a new class $M_{\sigma}^{3}(\lambda, \beta, \gamma)$ given by Definition 9 below.

Definition 9. A function $f \in \sigma$ given by (1) is said to be in the class $M_{\sigma}^{3}(\lambda, \beta, \gamma)$ if the following conditions are satisfied:

$$\left| \frac{\left(1 + \beta e^{i\gamma}\right) zf(z) + \lambda z^2 f^\prime(z)}{(1 - \lambda)f(z) + \lambda zf(z)} - \beta e^{i\gamma} \right|^2 - 1 < 2 \left| \frac{zf(z) + \lambda z^2 f^\prime(z)}{(1 - \lambda)f(z) + \lambda zf(z)} - \beta e^{i\gamma} \right| (z \in \mathbb{U})$$

and

$$\left| \frac{\left(1 + \beta e^{i\gamma}\right) zg'(\omega) + \lambda z^2 g''(\omega)}{(1 - \lambda)g(\omega) + \lambda zg''(\omega)} - \beta e^{i\gamma} \right|^2 - 1 < 2 \left| \frac{g'(\omega) + \lambda z^2 g''(\omega)}{(1 - \lambda)g(\omega) + \lambda zg''(\omega)} - \beta e^{i\gamma} \right| (\omega \in \mathbb{U})$$

where $g = f^{-1}$.

Using the parameter setting of Definition 9 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 9. Let the function $f \in M_{\sigma}^{3}(\lambda, \beta, \gamma)$ be given by (1). If $a_k = 0$ for $2 \leq k \leq n - 1$, then

$$|a_n| \leq \frac{1}{(n - 1)|1 + \lambda(n - 1)|1 + \beta e^{i\gamma}|}, \quad n \geq 3.$$

Corollary 10. If the function $f \in \sigma$ given by (1) be in the class $M_{\sigma}^{3}(\lambda, \beta, \gamma)$, then

$$|a_2| \leq \sqrt{\frac{2}{2|1 + \beta e^{i\gamma}||1 + 2\lambda - \lambda^2| + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2}}$$

and

$$|a_3 - a_2^2| \leq \frac{1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.$$

If we set

$$\phi(z) = \frac{1}{(1 - z)^s} = 1 + sz + \frac{s(s + 1)}{2}z^2 + \frac{s(s + 1)(s + 2)}{6}z^3 \ldots$$

$$= 1 + \sum_{n=1}^{\infty} \frac{s(s + 1) \ldots (s + n - 1)}{n!}z^n \quad (z \in U),$$

in Definition 3 of the bi-univalent function class $M_{\sigma}(\lambda, \beta, \gamma, \phi)$, we obtain a new class $M_{\sigma}(\lambda, \beta, \gamma, s)$ given by Definition 10 below.

Definition 10. Let $0 < s \leq 1$. A function $f \in \sigma$ given by (1) is said to be in the class $M_{\sigma}(\lambda, \beta, \gamma, s)$, if the following conditions are satisfied:

$$\left| \frac{(1 + \beta e^{i\gamma}) zf(z) + \lambda z^2 f^\prime(z)}{(1 - \lambda)f(z) + \lambda zf(z)} - \beta e^{i\gamma} \right| < \frac{1}{(1 - z)^s} \quad (z \in \mathbb{U})$$
and

\[(1 + \beta e^{i\gamma}) \frac{zg'(\omega) + \lambda z^2 g''(\omega)}{(1 - \lambda)g(\omega) + \lambda zg'(\omega)} - \beta e^{i\gamma} \lesssim \frac{1}{(1 - \omega)^s} \quad (\omega \in U),\]

where \(g = f^{-1} \).

Using the parameter setting of Definition 10 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 11. Let the function \(f \in M_\sigma(\lambda, \beta, \gamma, s)\) be given by (1). If \(a_k = 0\) for \(2 \leq k \leq n - 1\), then

\[|a_n| \leq \frac{s}{(n - 1)[1 + \lambda(n - 1)][1 + \beta e^{i\gamma}]^s} \quad n \geq 3.\]

Corollary 12. If the function \(f \in \sigma\) given by (1) be in the class \(M_\sigma(\lambda, \beta, \gamma, s)\), then

\[|a_2| \leq \frac{\sqrt{2s}}{\sqrt{[1 + \beta e^{i\gamma}][1 + 2\lambda - \lambda^2]2s + [1 + \beta e^{i\gamma}]^2(1 + \lambda)^2(1 - s)}},\]

and

\[|a_3 - a_2| \leq \frac{s}{2(1 + 2\lambda)[1 + \beta e^{i\gamma}]}.\]

If we set

\[\phi(z) = e^z = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \ldots \quad (z \in U),\]

in Definition 3 of the bi-univalent function class \(M_\sigma(\lambda, \beta, \gamma, \phi)\), we obtain a new class \(M_{\sigma\sigma}(\lambda, \beta, \gamma)\) given by Definition 11 below.

Definition 11. A function \(f \in \sigma\) given by (1) is said to be in the class \(M_{\sigma\sigma}(\lambda, \beta, \gamma)\) if the following conditions are satisfied:

\[\left| \log \left(1 + \beta e^{i\gamma} \right) \frac{zf(z) + \lambda z^2 f''(z)}{(1 - \lambda)f(z) + \lambda zf'(z)} - \beta e^{i\gamma} \right| < 1 \quad (z \in U),\]

and

\[\left| \log \left(1 + \beta e^{i\gamma} \right) \frac{zg'(\omega) + \lambda z^2 g''(\omega)}{(1 - \lambda)g(\omega) + \lambda zg'(\omega)} - \beta e^{i\gamma} \right| < 1 \quad (\omega \in U),\]

where \(g = f^{-1} \).

Using the parameter setting of Definition 11 in Theorems 1 and 2, respectively, we get the following corollaries.

Corollary 13. Let the function \(f \in M_\sigma(\lambda, \beta, \gamma, s)\), be given by (1). If \(a_k = 0\) for \(2 \leq k \leq n - 1\), then

\[|a_n| \leq \frac{1}{(n - 1)[1 + \lambda(n - 1)][1 + \beta e^{i\gamma}]^s} \quad n \geq 3.\]

Corollary 14. If the function \(f \in \sigma\) given by (1) be in the class \(M_\sigma(\lambda, \beta, \gamma, s)\), then

\[|a_2| \leq \frac{2}{\sqrt{[1 + \beta e^{i\gamma}][1 + 2\lambda - \lambda^2] + [1 + \beta e^{i\gamma}]^2(1 + \lambda)^2}}.\]
and
\[|a_3 - a_2| \leq \frac{1}{2(1 + 2\lambda)[1 + \beta e^{i\gamma}]} \]

3. Coefficient Estimates for the Class \(S_c(\lambda, \beta, \gamma, \phi) \)

Theorem 3. Let the function \(f \in \sigma \) given by (1) be in the class \(S_c(\lambda, \beta, \gamma, \phi) \). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then
\[
|a_n| \leq \frac{B_1}{[1 + \beta e^{i\gamma}][n - 1][1 + (n - 1)\lambda]} \quad n \geq 3.
\]

Proof. Since, both functions \(f \) and its inverse map \(g = f^{-1} \) are in \(S_c(\lambda, \beta, \gamma, \phi) \), by the definition of subordination, there are analytic functions \(u, v : U \to U \) given by (8) such that
\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{z f'(z)}{f(z)} + \lambda \left(\frac{z f'(z)}{f(z)} \right)' \right] - \beta e^{i\gamma} = \phi(u(z))
\]
and
\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{w g'(w)}{g(w)} + \lambda \left(\frac{w g'(w)}{g(w)} \right)' \right] - \beta e^{i\gamma} = \phi(v(\omega)).
\]
Now, from (2), we get that
\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{z f'(z)}{f(z)} + \lambda \left(\frac{z f'(z)}{f(z)} \right)' \right] - \beta e^{i\gamma}
\]
\[
= 1 - (1 + \beta e^{i\gamma}) \sum_{j=2}^{\infty} [(1 - \lambda)F_{j-1}(a_2, a_3, \ldots, a_j) + \lambda F_{j-1}(2a_2, 3a_3, \ldots, ja_j)]z^{j-1}, \tag{30}
\]
and
\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{w g'(w)}{g(w)} + \lambda \left(\frac{w g'(w)}{g(w)} \right)' \right] - \beta e^{i\gamma}
\]
\[
= 1 - (1 + \beta e^{i\gamma}) \sum_{j=2}^{\infty} [(1 - \lambda)F_{j-1}(d_2, d_3, \ldots, d_j) + \lambda F_{j-1}(2d_2, 3d_3, \ldots, jd_j)]w^{j-1}, \tag{31}
\]
where \(d_n = \frac{1}{n}K_{n-1}^{-a_n}(a_2, a_3, \ldots, a_n) \). Now, upon comparing the corresponding coefficients in (10) and (30), we get
\[
(1 + \beta e^{i\gamma})[(1 - \lambda)F_{n-1}(a_2, a_3, \ldots, a_n) + \lambda F_{n-1}(2a_2, 3a_3, \ldots, na_n)]
\]
\[
= B_1K_{n-1}^{-1}(b_1, b_2, \ldots, b_{n-1}, B_1, B_1, B_2, B_3, \ldots, B_{n-1}) \tag{32}
\]
and similarly, from (11) and (31), we have
\[
(1 + \beta e^{i\gamma})[(1 - \lambda)F_{n-1}(d_2, d_3, \ldots, d_n) + \lambda F_{n-1}(2d_2, 3d_3, \ldots, nd_n)]
\]
\[
= B_1K_{n-1}^{-1}(c_1, c_2, \ldots, c_{n-1}, B_1, B_1, B_2, B_3, \ldots, B_{n-1}). \tag{33}
\]
Since \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), by using \(d_n = -a_n \) and \(F_n-1(a_2, a_3, \ldots, a_n) = -(n-1)a_n \), we have

\[
(1 + \beta e^{i\gamma})(n - 1)[1 + (n - 1)\lambda]a_n = B_1b_{n-1}
\]

and

\[
-(1 + \beta e^{i\gamma})(n - 1)[1 + (n - 1)\lambda]a_n = B_1c_{n-1}.
\]

By using (9), we conclude that

\[
|a_n| \leq \frac{B_1}{1 + \beta e^{i\gamma}([n - 1][1 + (n - 1)\lambda]).
\]

\[
\Box
\]

Remark 2. If we take \(\beta = 0 \) in Theorem 3, then we have the results which were given by Zireh et al. [51] when \(\varphi(z) = 1 \).

Theorem 4. If the function \(f \in \sigma \) given by (1) be in the class \(S_{\varphi}(\lambda, \beta, \gamma, \phi) \), then

\[
|a_2| \leq \begin{cases}
\frac{B_1\sqrt{B_1}}{\sqrt{1 + \beta e^{i\gamma}|(1 + \lambda)B_1^2 + [1 + \beta e^{i\gamma}]^2(1 + \lambda)^2(B_1 + B_2)}} & (B_2 \leq 0, B_1 + B_2 \geq 0) \\
\frac{B_1\sqrt{B_1}}{\sqrt{1 + \beta e^{i\gamma}|(1 + \lambda)B_1^2 + [1 + \beta e^{i\gamma}]^2(1 + \lambda)^2(B_1 - B_2)}} & (B_2 > 0, B_1 - B_2 \geq 0)
\end{cases}
\]

and

\[
|a_3 - a_2^2| \leq \begin{cases}
\frac{B_1}{2[1 + \beta e^{i\gamma}(1 + 2\lambda)]} & (B_1 \geq |B_2|) \\
\frac{B_1}{2[1 + \beta e^{i\gamma}(1 + 2\lambda)]} & (B_1 < |B_2|)
\end{cases}
\]

Proof. Letting \(n = 2 \) and \(3 \) in (32) and (33), respectively, we find that

\[
(1 + \beta e^{i\gamma})(1 + \lambda)a_2 = B_1b_1,
\]

\[
(1 + \beta e^{i\gamma})[2(1 + 2\lambda)a_3 - (1 + 3\lambda)a_2^2] = B_1b_2 + B_2b_1^2,
\]

\[
-(1 + \beta e^{i\gamma})(1 + \lambda)a_2 = B_1c_1,
\]

\[
(1 + \beta e^{i\gamma})\{ -2(1 + 2\lambda)a_3 + [4(1 + 2\lambda) - (1 + 3\lambda)a_2^2 \} = B_1c_2 + B_2c_1^2.
\]

Equations (38) and (40) lead to

\[
b_1 = -c_1.
\]

Adding (39) and (41) yields

\[
2(1 + \beta e^{i\gamma})(1 + \lambda)a_2^2 = B_1(b_2 + c_2) + B_2\left(b_1^2 + c_1^2\right)
\]

or

\[
|a_2^2| \leq \frac{B_1}{2[1 + \beta e^{i\gamma}(1 + \lambda)]}\left(|b_2 + \frac{B_2}{B_1}b_1^2| + |c_2 + \frac{B_2}{B_1}c_1^2|\right).
\]

First, let \(B_2 \leq 0 \). Applying Lemma 2 with \(\rho = \frac{B_2}{B_1} \leq 0 \) and using (42), we get

\[
|a_2^2| \leq \frac{B_1}{1 + \beta e^{i\gamma}(1 + \lambda)}\left(1 - \left|\frac{B_1 + B_2}{B_1}\right|b_1^2\right)
\]
If \(B_1 + B_2 \geq 0 \), then (38) yields
\[
|a_2| \leq \frac{B_1}{\sqrt{1 + \beta e^{i\gamma}}(1 + \lambda) B_1^2 + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2(B_1 + B_2)}.
\]
(45)

Similarly, for \(B_2 > 0(\rho = \frac{B_2}{\rho_1} > 0, B_1 - B_2 \geq 0) \), we have
\[
|a_2| \leq \frac{B_1}{\sqrt{1 + \beta e^{i\gamma}}(1 + \lambda) B_1^2 + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2(B_1 - B_2)}.
\]
(46)

From (45) and (46) we obtain the desired estimate of \(|a_2|\) given by (36).

Next, in order to find the bound on \(|a_3 - a_2^2|\), by subtracting (41) from (39), we have
\[
|a_3 - a_2^2| \leq \frac{B_1}{4|1 + \beta e^{i\gamma}|(1 + 2\lambda)} \left(\left| B_2 + \frac{B_2}{B_1} |b_1|^2 \right| + \left| c_2 + \frac{B_2}{B_1} c_1^2 \right| \right).
\]
(47)

Let \(B_2 \leq 0 \). Applying Lemma 2 with \(\rho = \frac{B_2}{\rho_1} \leq 0 \), we get
\[
|a_3 - a_2^2| \leq \frac{B_1}{4|1 + \beta e^{i\gamma}|(1 + 2\lambda)} \left(1 - \frac{B_1 + B_2}{B_1} |b_1|^2 \right) + \left| 1 - \frac{B_1 + B_2}{B_1} |c_1|^2 \right| \right).
\]
(48)

If \(B_1 + B_2 \geq 0 \), then (48) gives \(|a_3 - a_2^2| \leq \frac{B_1}{2|1 + \beta e^{i\gamma}|(1 + 2\lambda)}\).

If \(B_1 + B_2 < 0 \), then (9) and (48) give
\[
|a_3 - a_2^2| \leq \frac{B_1}{2|1 + \beta e^{i\gamma}|(1 + 2\lambda)} \left(1 - \frac{B_1 + B_2}{B_1} \right) + \left| 1 - \frac{B_1 + B_2}{B_1} |c_1|^2 \right| \right).
\]
(49)

Let \(B_2 > 0 \). Applying Lemma 2 with \(\rho = \frac{B_2}{\rho_1} > 0 \), (47) gives
\[
|a_3 - a_2^2| \leq \frac{B_1}{4|1 + \beta e^{i\gamma}|(1 + 2\lambda)} \left(\left| B_2 + \frac{B_2}{B_1} |b_1|^2 \right| + \left| 1 - \frac{B_1 + B_2}{B_1} |c_1|^2 \right| \right).
\]
(49)

If \(B_1 - B_2 \geq 0 \), then (49) gives
\[
|a_3 - a_2^2| \leq \frac{B_1}{2|1 + \beta e^{i\gamma}|(1 + 2\lambda)}.
\]

If \(B_1 - B_2 < 0 \), then from (9) and (49) we get
\[
|a_3 - a_2^2| \leq \frac{B_1}{2|1 + \beta e^{i\gamma}|(1 + 2\lambda)} \left(1 - \frac{B_1 - B_2}{B_1} \right) = \frac{B_2}{2|1 + \beta e^{i\gamma}|(1 + 2\lambda)}.
\]

This completes the proof of Theorem 3. \(\Box \)

Remark 3. If we set \(\beta = 0 \) in Theorem 4, then we obtain the results of Goyal and Kumar [50] when \(\phi(z) = 1 \).

If we set \(\phi(z) = \left(\frac{1+z}{1-z} \right)^{\delta} (0 < \delta \leq 1, z \in U) \) in Definition 4 of the bi-univalent function class \(S_c(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(S_c^\delta(\lambda, \beta, \gamma) \) given by Definition 12 below.
Definition 12. Let $0 < \delta \leq 1$. A function $f \in \sigma$ given by (1) is said to be in the class $S_{\varphi}^{\delta}(\lambda, \beta, \gamma)$ if the following subordinations hold:

$$\left| \arg\left(1 + \beta e^{i\gamma}\right) \left((1 - \lambda)\frac{zf(z)}{f(z)} + \lambda(1 + \frac{zf''(z)}{f'(z)})\right) - \beta e^{i\gamma}\right| \leq \frac{\pi}{2}\delta \ (z \in U)$$

and

$$\left| \arg\left(1 + \beta e^{i\gamma}\right) \left((1 - \lambda)\frac{wg'(w)}{g(w)} + \lambda(1 + \frac{wg''(w)}{g'(w)})\right) - \beta e^{i\gamma}\right| \leq \frac{\pi}{2}\delta \ (\omega \in U),$$

where $g = f^{-1}$.

Using the parameter setting of Definition 12 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 15. Let the function $f \in S_{\varphi}^{\delta}(\lambda, \beta, \gamma)$ be given by (1). If $a_k = 0$ for $2 \leq k \leq n - 1$, then

$$|a_n| \leq \frac{2\delta}{(n - 1)(1 + \lambda(n - 1))\left|1 + \beta e^{i\gamma}\right|}, \quad n \geq 3.$$

Corollary 16. Let $0 < \gamma \leq 1$. If the function $f \in \sigma$ given by (1) be in the class $S_{\varphi}^{\delta}(\lambda, \beta, \gamma)$, then

$$|a_2| \leq \frac{2\delta}{\sqrt{2|1 + \beta e^{i\gamma}|(1 + \lambda)\delta + \left|1 + \beta e^{i\gamma}\right|^2(1 + \lambda)^2(1 - \delta)}$$

and

$$|a_3 - a_2^2| \leq \frac{\delta}{\left|1 + \beta e^{i\gamma}\right|(1 + 2\lambda)}.$$

If we set $\phi(z) = \frac{1 + (1 - 2z)}{1 - z} (0 \leq v < 1, z \in U)$ in Definition 4 of the bi-univalent function class $S_{\varphi}(\lambda, \beta, \gamma, \phi)$, we obtain a new class $S_{\varphi}(\lambda, \beta, \gamma, v)$ given by Definition 13 below.

Definition 13. Let $0 \leq v < 1$. A function $f \in \sigma$ given by (1) is said to be in the class $S_{\varphi}(\lambda, \beta, \gamma, v)$, if the following conditions are satisfied:

$$\Re\left(1 + \beta e^{i\gamma}\right) \left((1 - \lambda)\frac{zf(z)}{f(z)} + \lambda(1 + \frac{zf''(z)}{f'(z)})\right) - \beta e^{i\gamma}\right) > v \ (z \in U)$$

and

$$\Re\left(1 + \beta e^{i\gamma}\right) \left((1 - \lambda)\frac{wg'(w)}{g(w)} + \lambda(1 + \frac{wg''(w)}{g'(w)})\right) - \beta e^{i\gamma}\right) > v \ (\omega \in U),$$

where $g = f^{-1}$.

Using the parameter setting of Definition 13 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 17. Let the function $f \in S_{\varphi}(\lambda, \beta, \gamma, v)$ be given by (1). If $a_k = 0$ for $2 \leq k \leq n - 1$, then

$$|a_n| \leq \frac{2(1 - v)}{(n - 1)(1 + \lambda(n - 1))\left|1 + \beta e^{i\gamma}\right|}, \quad n \geq 3.$$
Corollary 18. Let $0 \leq \nu < 1$. If the function $f \in S_\sigma(\lambda, \beta, \gamma, \nu)$ be of the form (1), then

$$|a_2| \leq \sqrt{\frac{2(1 - \nu)}{|1 + \beta e^{i\gamma}||1 + \lambda|}}$$

and

$$|a_3 - a_2^2| \leq \frac{(1 - \nu)}{|1 + \beta e^{i\gamma}||1 + 2\lambda|}.$$

If we set $\phi(z) = \frac{1 + A_z}{1 + B_z}$ in Definition 4 of the bi-univalent function class $S_\sigma(\lambda, \beta, \gamma, \phi)$, we obtain a new class $S_\sigma(\lambda, \beta, \gamma, A, B)$ given by Definition 14 below.

Definition 14. A function $f \in \sigma$ given by (1) is said to be in the class $S_\sigma(\lambda, \beta, \gamma, A, B)$, $-1 \leq B < A \leq 1$, if the following conditions are satisfied:

$$(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{zf'(z)}{f(z)} + \lambda(1 + \frac{zf''(z)}{f'(z)}) \right] - \beta e^{i\gamma} \prec \frac{1 + Az}{1 + Bz} (z \in U)$$

and

$$(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{wg'(w)}{g(w)} + \lambda(1 + \frac{wg''(w)}{g'(w)}) \right] - \beta e^{i\gamma} \prec \frac{1 + A\omega}{1 + B\omega} (w \in U),$$

where $g = f^{-1}$.

Using the parameter setting of Definition 14 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 19. Let the function $f \in S_\sigma(\lambda, \beta, \gamma, A, B)$ be given by (1). If $a_k = 0$ for $2 \leq k \leq n - 1$, then

$$|a_n| \leq \frac{(A - B)}{(n - 1)|1 + \lambda(n - 1)||1 + \beta e^{i\gamma}|} \quad n \geq 3.$$

Corollary 20. If the function $f \in \sigma$ given by (1) be in the class $S_\sigma(\lambda, \beta, \gamma, A, B)$, then

$$|a_2| \leq \begin{cases}
\frac{(A - B)}{\sqrt{|1 + \beta e^{i\gamma}||1 + \lambda(A - B) + |1 + \beta e^{i\gamma}||1 - B|}} & (B \geq 0) \\
\frac{(A - B)}{\sqrt{|1 + \beta e^{i\gamma}||1 + \lambda(A - B) + |1 + \beta e^{i\gamma}||1 + B|}} & (-1 \leq B < 0)
\end{cases}$$

and

$$|a_3 - a_2^2| \leq \frac{A - B}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.$$

Remark 4. If we put $\beta = \lambda = 0$ in Corollaries 19 and 20, then we obtain the results of Hamidi and Jahangiri [49].

If we set $\phi(z) = \sqrt{1 + z}$ in Definition 4 of the bi-univalent function class $S_\sigma(\lambda, \beta, \gamma, \phi)$, we obtain a new class $S_{\sigma L}(\lambda, \beta, \gamma)$ given by Definition 15 below.

Definition 15. A function $f \in \sigma$ given by (1) is said to be in the class $S_{\sigma L}(\lambda, \beta, \gamma)$ if the following conditions are satisfied:

$$\left| \left(1 + \beta e^{i\gamma}\right) \left[(1 - \lambda) \frac{zf'(z)}{f(z)} + \lambda(1 + \frac{zf''(z)}{f'(z)}) \right] - \beta e^{i\gamma} \right|^2 \prec 1 \quad (z \in U)$$
where $g = f^{-1}$.

Using the parameter setting of Definition 15 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 21. Let the function $f \in S_{Lr}(\lambda, \beta, \gamma)$, be given by (1). If $a_k = 0$ for $2 \leq k \leq n - 1$, then

$$|a_n| \leq \frac{1}{2(n-1)|1 + \lambda(n-1)||1 + \beta e^{i\eta}|}, \quad n \geq 3.$$

Corollary 22. If the function $f \in \sigma$ given by (1) be in the class $S_{Lr}(\lambda, \beta, \gamma)$, then

$$|a_2| \leq \frac{1}{\sqrt{2|1 + \beta e^{i\eta}|(1 + \lambda) + 3|1 + \beta e^{i\eta}|^2(1 + \lambda)^2}}$$

and

$$|a_3 - a_2^2| \leq \frac{1}{4(1 + 2\lambda)|1 + \beta e^{i\eta}|}.$$

If we set $\phi(z) = z + \sqrt{1 + z^2}$ in Definition 4 of the bi-univalent function class $S_{Lr}(\lambda, \beta, \gamma, \phi)$, we obtain a new class $S^\alpha_{Lr}(\lambda, \beta, \gamma)$ given by Definition 16 below.

Definition 16. A function $f \in \sigma$ given by (1) is said to be in the class $S^\alpha_{Lr}(\lambda, \beta, \gamma)$ if the following conditions are satisfied:

$$\left| \left(1 + \beta e^{i\eta} \right) \left[(1 - \lambda) \frac{w g'(w)}{g(w)} + \lambda \left(1 + \frac{w g''(w)}{g'(w)}\right) - \beta e^{i\eta} \right] - 1 \right| < 2 \left| \left(1 + \beta e^{i\eta} \right) \left[(1 - \lambda) \frac{w g'(w)}{g(w)} + \lambda \left(1 + \frac{w g''(w)}{g'(w)}\right) - \beta e^{i\eta} \right] \right| (z \in U)$$

and

$$\left| \left(1 + \beta e^{i\eta} \right) \left[(1 - \lambda) \frac{w g'(w)}{g(w)} + \lambda \left(1 + \frac{w g''(w)}{g'(w)}\right) - \beta e^{i\eta} \right] - 1 \right| < 2 \left| \left(1 + \beta e^{i\eta} \right) \left[(1 - \lambda) \frac{w g'(w)}{g(w)} + \lambda \left(1 + \frac{w g''(w)}{g'(w)}\right) - \beta e^{i\eta} \right] \right| (w \in U)$$

where $g = f^{-1}$.

Using the parameter setting of Definition 9 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 23. Let the function $f \in S^\alpha_{Lr}(\lambda, \beta, \gamma)$, be given by (1). If $a_k = 0$ for $2 \leq k \leq n - 1$, then

$$|a_n| \leq \frac{1}{(n-1)|1 + \lambda(n-1)||1 + \beta e^{i\eta}|}, \quad n \geq 3.$$
Corollary 24. If the function \(f \in \sigma \) given by (1) be in the class \(S^{\phi}_{\lambda}(\lambda, \beta, \gamma) \), then
\[
|a_2| \leq \sqrt{\frac{2}{2|1 + \beta e^{i\gamma}|(1 + \lambda) + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2}}
\]
and
\[
|a_3 - a_2^2| \leq \frac{1}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]

If we set \(\phi(z) = \frac{1}{(1 - z)^2} \) in Definition 4 of the bi-univalent function class \(S_{\phi}(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(S_{\phi}(\lambda, \beta, \gamma, s) \) given by Definition 17 below.

Definition 17. Let \(0 < s \leq 1 \). A function \(f \in \sigma \) given by (1) is said to be in the class \(S_{\phi}(\lambda, \beta, \gamma, s) \), if the following conditions are satisfied:

\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{z f'(z)}{f'(z)} + \lambda(1 + \frac{z f''(z)}{f'(z)}) \right] - \beta e^{i\gamma} < \frac{1}{(1 - z)^s} \quad (z \in U)
\]

and
\[
(1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{w g'(w)}{g'(w)} + \lambda(1 + \frac{w g''(w)}{g'(w)}) \right] - \beta e^{i\gamma} < \frac{1}{1 - (1 - \omega)^s} \quad (\omega \in U),
\]

where \(g = f^{-1} \).

Using the parameter setting of Definition 17 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 25. Let the function \(f \in S_{\phi}(\lambda, \beta, \gamma, s) \) be given by (1). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then
\[
|a_n| \leq \frac{s}{(n - 1)(1 + \lambda(n - 1))|1 + \beta e^{i\gamma}|} \quad n \geq 3.
\]

Corollary 26. If the function \(f \in \sigma \) given by (1) be in the class \(S_{\phi}(\lambda, \beta, \gamma, s) \), then
\[
|a_2| \leq \frac{\sqrt{2}s}{\sqrt{1 + \beta e^{i\gamma}|(1 + \lambda)2s + |1 + \beta e^{i\gamma}|^2(1 + \lambda)^2(1 - s)}}
\]

and
\[
|a_3 - a_2^2| \leq \frac{s}{2(1 + 2\lambda)|1 + \beta e^{i\gamma}|}.
\]

If we set \(\phi(z) = e^z \) in Definition 4 of the bi-univalent function class \(S_{\phi}(\lambda, \beta, \gamma, \phi) \), we obtain a new class \(S_{\phi}(\lambda, \beta, \gamma) \) given by Definition 18 below.

Definition 18. A function \(f \in \sigma \) given by (1) is said to be in the class \(S_{\phi}(\lambda, \beta, \gamma) \), if the following conditions are satisfied:

\[
\left| \log \left((1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{z f'(z)}{f'(z)} + \lambda(1 + \frac{z f''(z)}{f'(z)}) \right] - \beta e^{i\gamma} \right) \right| < 1 \quad (z \in U)
\]

and
\[
\left| \log \left((1 + \beta e^{i\gamma}) \left[(1 - \lambda) \frac{w g'(w)}{g'(w)} + \lambda(1 + \frac{w g''(w)}{g'(w)}) \right] - \beta e^{i\gamma} \right) \right| < 1 \quad (\omega \in U),
\]
where \(g = f^{-1} \).

Using the parameter setting of Definition 18 in Theorems 3 and 4, respectively, we get the following corollaries.

Corollary 27. Let the function \(f \in S_\sigma(\lambda, \beta, \gamma, s) \), be given by (1). If \(a_k = 0 \) for \(2 \leq k \leq n - 1 \), then
\[
|a_n| \leq \frac{1}{(n-1)[1+\lambda(n-1)][1+\beta e^{i\gamma}]}, \quad n \geq 3.
\]

Corollary 28. If the function \(f \in \sigma \) given by (1) be in the class \(S_\sigma(\lambda, \beta, \gamma, s) \), then
\[
|a_2| \leq \frac{2}{\sqrt{2[1+\beta e^{i\gamma}][(1+\alpha) + |1+\beta e^{i\gamma}|^2(1+\alpha)^2}}
\]
and
\[
|a_3 - a_2^2| \leq \frac{1}{2(1+2\lambda)[1+\beta e^{i\gamma}]}.\]

Author Contributions: All authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research has been funded by Scientific Research Deanship at University of Hai‘l- Saudi Arabia through project number RG-20020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research has been funded by Scientific Research Deanship at University of Hai‘l- Saudi Arabia through project number RG-20020.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Faber, G. Über polynomische Entwickelungen. *Math. Ann.* 1903, 57, 389–408, ISSN 0025-5831, doi:10.1007/BF01444293.
2. Curtiss, J.H. Faber Polynomials and the Faber Series. *Am. Math. Mon. Math. Assoc. Am.* 1971, 78, 577–596, doi:10.2307/2316567, ISSN 0002-9890.
3. Faber, G. Über Tschebyscheffsche Polynome. *J. Reine Angew. Math.* 1919, 150, 79–106, ISSN 0075-4102. (In German)
4. Grunsky, H. Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen. *Math. Z.* 1939, 45, 29–61, ISSN 0025-5874, doi:10.1007/BF01580272.
5. Schur, I. On Faber polynomials. *Am. J. Math.* 1945, 67, 33–41, ISSN 0002-9327, doi:10.2307/2371913.
6. Suetin, P.K. *Series of Faber Polynomials; Analytical Methods and Special Functions*, 1; Gordon and Breach Science Publishers: New York, NY, USA, 1998; ISBN 978-90-5699-058-9.
7. Suetin, P.K. *Faber Polynomials*; Encyclopedia of Mathematics; EMS Press: Berlin, Germany: 2001.
8. Duren, P.L. *Univalent Functions*, Grundlehren Math. Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
9. Airault, H.; Bouali, A. Di erential calculus on the Faber polynomials. *Bull. Sci. Math.* 2006, 130, 179–222.
10. Bouali, A. Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions. *Bull. Sci. Math.* 2006, 130, 49–70.
11. Airault, H.; Ren, J. An algebra of di erential operators and generating functions on the set of univalent functions. *Bull. Sci. Math.* 2002, 126, 343–367.
12. Ma, W.C.; Minda, D. A uniied treatment of some special classes of univalent functions. In Proceedings of the Conference on ComplexAnalysis, Tianjin, China, 19–23 June 1992; pp. 157–169.
13. Sokol, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. *Zesz. Nauk. Politech. Rzesz. Mat.* 1996, 19, 101–105.
14. Raine, R.K.; Sokol, J. Some properties related to a certain class of starlike functions. *C. R. Math. Acad. Sci. Paris* 2015, 353, 973–978.
15. Kanas, S.; Masih, V.S.; Ebadian, A. Relations of a planar domain bounded by hyperbola with family of holomorphic functions. *J. Inequalities Appl.* 2019, 246, 1–14.
16. Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. *Bull. Malays. Math. Sci. Soc.* 2015, 38, 365–386.
17. Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. *Bull. Malays. Math. Sci. Soc.* 2020, 43, 957–991.
18. Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. *Int. J. Math. Math. Sci.* 2004, 55, 2959–2961.
19. Hussain, S.; Rasheed, A.; Zaighum, M.A.; Darus, M. A Subclass of Analytic Functions Related to k-Uniformly Convex and Starlike Functions. *J. Funct. Spaces* 2017, 2017, 9010964.
20. Aouf, M.K.; Hossen, H.M.; Lasahin, A.Y. On certain families of analytic functions with negative coefficients. *Indian J. Pure Appl. Math.* 2000, 31, 999–1015.
21. Lewin, M. On a coefficient problem for bi-univalent functions. *Proc. Am. Math. Soc.* 1967, 18, 63–68.
22. Altınkaya, S. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. *Turk. J. Math.* 2020, 44, 533–560.
23. Altınkaya, S.; Yalcn, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. *Comptes Rendus Math.* 2015, 353, 1075–108.
24. Aouf, M.K.; El-Ashwah, R.M.; Abd-Eltawab, A.M. New subclasses of bi-univalent functions involving Dzio–Srivastava operator. *Int. Sch. Res. Not.* 2013, 2013, 387178.
25. Bulut, S. Coefficient estimates for new subclasses of analytic and bi-univalent functions defined by Al-Oboudi differential operator. *J. Funct. Spaces Appl.* 2013, 2013, 181932.
26. Bulut, S. Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product. *J. Complex Anal.* 2014, 2014, 302019.
27. Caglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclasses of bi-univalent functions. *Filomat* 2013, 27, 1165–1171.
28. Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. *J. Class. Anal.* 2013, 2, 49–60.
29. Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. *Pan-Am. Math. J.* 2012, 22, 15–26.
30. Jahangiri, J.M.; Hamidi, S.G. Faber polynomial coefficient estimates for analytic bi-bazilevic functions. *Mat. Vesn.* 2015, 67, 123–129.
31. Lashin, A.Y. On certain subclasses of analytic and bi-univalent functions. *J. Egypt. Math. Soc.* 2016, 24, 220–225.
32. Lashin, A.Y. Coefficient estimates for two subclasses of analytic and bi-univalent functions. *Ukr. Math. J.* 2019, 70, 1484–1492.
33. Lashin, A.Y.; L-Emam, F.Z.E. Coefficient estimates for certain subclasses of analytic and biunivalent functions. *Turk. J. Math.* 2020, 44, 1345–1361.
34. Magesh, N.; Rosy, T.; Varma, S. Coefficient estimate problem for a new subclass of bi-univalent functions. *J. Complex Anal.* 2013, 2013, 474231.
35. Magesh, N.; Yamini, J. Coefficient bounds for certain subclasses of bi-univalent functions. *Int. Math. Forum.* 2013, 8, 1337–1344.
36. Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent functions. *Abstr. Appl. Anal.* 2013, 2013, 573017.
37. Peng, Z.-G.; Han, Q.-Q. On the coefficients of several classes of bi-univalent functions. *Acta Math. Sci. Ser. B Engl. Ed.* 2014, 34, 228–240.
38. Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. *J. Egypt. Math. Soc.* 2013, 21, 190–193.
39. Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. *Filomat* 2013, 27, 831–842.
40. Srivastava, H.M.; Murugusundaramoorthy, G.; Magesh, N. Certain subclasses of bi-univalent functions associated with the Hohlov operator. *Glob. J. Math. Anal.* 2013, 1, 67–73.
41. Srivastava, H.M.; Murugusundaramoorthy, G.; Vijaya, K. Coefficient estimates for some families of bi-Bazilevic functions of the Ma–Minda type involving the Hohlov operator. *J. Class. Anal.* 2013, 2, 167–181.
42. Srivastava, H.M.; Motamednezhad, A.; Adegani, E.A. Faber Polynomial Coefficient Estimates for bi-univalent functions defined by using differential subordina-tion and a certain fractional derivative operator. *Mathematics* 2020, 8, 172.
43. Tang, H.; Deng, G.-T.; Li, S.-H. Coefficient estimates for new subclasses of Ma–Minda bi-univalent functions. *J. Inequalities Appl.* 2013, 2013, 317.
44. Agarwal, P.; Nieto, J.J. Some fractional integral formulas for the Mittag-Leffler type function with four parameters. *Open Math.* 2015, 1, 537–546.
45. Agarwal, P.; Chand, M.; Baleanu, D.; O’Regan, D.; Jain, S. On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. *Adv. Differ. Equ.* 2018, 2018, 249, 13.
46. Alderremy, A.A.; Saad, K.M.; Agarwal, P.; Aly, S.; Jain, S. Certain new models of the multi space-fractional Gardner equation. *Phys. A* 2020, 545, 11.
47. Saoudi, K.; Agarwal, P.; Kumam, P.; Ghanmi, A.; Thounthong, P. The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative. *Adv. Differ. Equ.* 2018, 263, 18.
48. Darwish, H.E.; Lashin, A.Y; El-Ashwah, R.M.; Madar, E.M. Coefficient estimates of some classes of rational functions. *Int. J. Open Probl. Complex Anal.* 2019, 11, 16–30.
49. Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. *Comptes Rendus Math.* 2016, 354, 365–370.
50. Goyal, S.P.; Kumar, R. Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions. *Math. Slovaca* 2015, 65, 533–544.
51. Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. *Math. Slovaca* 2018, 68, 369–378.
52. Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kina, S.K. Faber polynomial coefficients for generalized bi-subordinate functions of complex order. *J. Math. Inequalities* 2018, 12, 645–653.