Orbital polarization in LiVO$_2$ and NaTiO$_2$

S.Yu.Ezhov1, V.I.Anisimov1, H.F.Pen2, D.I.Khomskii2, G.A.Sawatzky2

1Institute of Metal Physics, GSP-170, Ekaterinburg, Russia
2Laboratory of Applied and Solid State Physics, Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received ; accepted)

PACS. 71.15Mb – Density functional theory, local density approximation.
PACS. 71.27+a – Strongly correlated electron systems; heavy fermions.
PACS. 71.20−b – Electron density of states and band structure of crystalline solids.

Abstract. – We present a band structure study of orbital polarization and ordering in the two-dimensional triangular lattice transition metal compounds LiVO$_2$ and NaTiO$_2$. It is found that while in NaTiO$_2$ the degeneracy of t_{2g} orbitals is lifted due to the trigonal symmetry of the crystal and the strong on site Coulomb interaction, in LiVO$_2$ orbital degeneracy remains and orbital ordering corresponding to the trimerization of the two-dimensional lattice develops.

It is well known that transition metal compounds with orbital degeneracy will in some way restructure to remove that orbital degeneracy in the ground state. Well known is the example of a two-fold orbitally degenerate case of divalent Cu in octahedral symmetry with one hole in a e_g-like orbital. A similar case is trivalent Mn in O_h symmetry as in the now well known colossal magnetoresistance materials. In these so called strong Jan Teller systems local lattice distortions determine the type of orbital ordering. It is also well established that the relative spatial orientation of occupied orbitals on neighboring ions determines not only the magnitude but also the sign of the exchange interactions governing the magnetic structure of the system [1]. In the early 3d transition metal compounds only the t_{2g} orbitals are occupied leaving us with three-fold degeneracy in the cases of Ti$^{3+}$ and V$^{3+}$ with one and two 3d electrons respectively assuming also O_h symmetry. In contrast to the e_g orbitals the bonding to the neighboring O 2p orbitals is much weaker, bandwidths are much smaller and therefore the removal of the orbital degeneracy may be more subtle. It has for example recently been suggested that the orbital degeneracy in LiVO$_2$ can be lifted by a particular kind of orbital ordering driven by the nearest neighbor exchange interactions [2]. The orbital ordering proposed there is one which simultaneously removes the frustration in the spin Hamiltonian of this triangular two-dimensional lattice and results in a non magnetic singlet ground state. Another much discussed two-dimensional triangular lattice spin system is NaTiO$_2$ with spin 1/2 per Ti ion, which in case of uniform Heisenberg interaction would be a frustrated magnetic system, making it one of the few remaining possible examples of a resonating valence bond (RVB) ground state [3]. However also here the orbital degeneracy could have been lifted by

Typeset using EURO-$$\text{L}\!\!\text{T}\!\!\text{E}X$$
Fig. 1. – The fragment of the crystal structure of NaTiO$_2$ and LiVO$_2$. x, y, z are along the cubic crystal axes, the z' axis is the trigonal threefold rotation axis.

orbital ordering resulting in a non-uniform Heisenberg spin Hamiltonian and a subsequent removal of the frustration. In this paper we present a detailed band structure study of these two systems both with and without the inclusion of the on site d-d Coulomb interaction in a so called LDA+U approximation. We find that although LiVO$_2$ behaves as suggested by Pen et al. [2] NaTiO$_2$ should not be considered as orbitally degenerate and remains a candidate for an RVB ground state [3].

LiVO$_2$ and NaTiO$_2$ crystallize in an ordered rock salt-like structure with alternating [111] planes of Li(Na),O,V(Ti),O ions as shown in fig. 1. Each of these layers forms a triangular two dimensional lattice and since the layers containing the magnetic ions are so well separated the exchange interactions between layers is very small compared to that within a layer. Peculiar in these compounds is a change from a high temperature paramagnetic phase and a Curie-Weiss susceptibility with a large negative effective Curie temperature (which corresponds to strong antiferromagnetic coupling between local moments) to a low temperature nonmagnetic system without any sign of long-range order [4, 5]. This is usually explained by the frustration of the triangular lattice antiferromagnet leading to the possibility of an RVB ground state with a quantum liquid of randomly distributed spin singlet pairs [3]. However such models do not take into account orbital degeneracy and the possibility of orbital ordering, which can qualitatively change the type of exchange interactions as discussed above.

While the nearest neighbors of the transition metal ion (oxygen atoms) are arranged in an almost perfect octahedron with O_h symmetry, the overall symmetry of the crystal structure is trigonal, and in that case the t_{2g} level is split into a nondegenerate A_{1g} and double degenerate
Fig. 2. – Left panel – the total densities of states from LDA calculations. Right panel – the partial densities of states from LDA calculations: dotted line – A_{1g}, solid line – E_g. The Fermi energy is the zero energy.

E_g levels. (Note: in further discussion e_g and E_g have different meanings). The t_{2g}-orbitals can be represented as the set (d_{xy}, d_{yz}, d_{zx}) in the coordinate system with axes pointing towards the O-neighbors (fig. 1). In this coordinate system the A_{1g} and E_g-orbitals have the following form [6]:

$$A_{1g} : (d_{xy} + d_{yz} + d_{zx})/\sqrt{3} \quad E_g : \frac{1}{\sqrt{2}}(d_{zx} - d_{yz}) \quad \frac{1}{\sqrt{6}}(-2d_{xy} + d_{yz} + d_{zx})$$ (1)

The resulting orbital order will strongly depend on how this trigonal splitting will affect the resulting orbital polarization of the partially filled t_{2g} band. If the centre of gravity of the A_{1g} band is lower than E_g, then in the case of the d^1 configuration the degeneracy will be lifted, but the d^2 configuration will be still degenerate provided that the Hunds rule exchange is larger than this splitting which is certainly expected to be the case. If the E_g level is lower than A_{1g}, then the d^2 configuration in the high spin state will be nondegenerate.

In order to look into this problem we have performed band structure calculations for LiVO$_2$ and NaTiO$_2$ by LMTO method [7] in standard Local Density Approximation (LDA) [8] and also in LDA+U approach [9] which allows to take into account Coulomb correlations between 3d electrons of transition metal ions. We used the crystal structures and atomic positions as given by [10, 11]. The total DOS obtained in LDA and presented in the left panel of fig. 2 shows the O 2p band between -8 and -4 eV, (Ti,V) 3d band of t_{2g} symmetry crossing the Fermi level between -1 and 1 eV, and of e_g symmetry around 3 eV well above the Fermi energy. As
one can see, indeed the t_{2g}-e_g crystal field splitting is larger than the bandwidth and V $3d$ subbands of the t_{2g} and e_g symmetry are separated by a gap. We should mention that the e_g band width is even smaller than that of t_{2g}, this is because the e_g-e_g hopping of the neighboring transition metal ions goes through oxygen atoms and the angle of Me-O-Me bond is nearly 90°, so the e_g-e_g hybridization is small. In spite of the fact that there is a trigonal distortion of the lattice the t_{2g} band is not splitted due to the trigonal symmetry into A_{1g} and E_g subbands and a more delicate quantitative analysis is needed to clarify this problem.

In the right panel of fig. 2 the partial DOS for decomposition of the t_{2g} band into orbitals of the A_{1g} and E_g symmetry are presented. One can see that the situation can not be described in the simple terms of A_{1g}-E_g "splitting": both curves have the same width and they are approximately in the same energy region. We can estimate the actual splitting of the A_{1g} and E_g levels by calculating the values of the centres of gravity of these bands.

In the case of NaTiO$_2$ with one d electron the center of gravity of the A_{1g} band is 0.1 eV lower than that of the E_g band. As a result the occupied part of t_{2g} band has slightly more A_{1g} character than E_g, and the occupancy of orbitals are .25 and .20 per spin-orbital for A_{1g} and for each E_g correspondingly. This means that the degeneracy of the t_{2g} orbitals is essentially lifted but the splitting is still much less than the band widths. This small splitting is non the
Fig. 4. – The t_{2g} holes from LDA+U calculations for LiVO$_2$. Only V atoms for one triangle in a hexagonal plane are drawn. The view is from the point directly above V-triangle.

less important since as we will see below if we turn on the d-d Coulomb interaction in LDA+U the A_{1g} band will be occupied and the E_g unoccupied now with a splitting mainly due to U. However the choice as to which band is occupied and which one not is dictated by the small crystal field splitting. The above result would also indicate that the A_{1g}-E_g local excitation energy would be only 0.1 eV or so and would contribute to charge conserving excitonic-like excitations. In this LDA+U calculation the d-d Coulomb interaction was found to be 3.6 eV (taking into account the screening of t_{2g} electrons by e_g electrons [12]) which is much larger than the t_{2g} band width and leads to the localization of a single d electron in the A_{1g} orbital.

The LDA+U calculations were carried out for both antiferromagnetic and ferromagnetic cases. For the AFM case we choose the simplest magnetic order with four nearest neighbors out of the six in the basal plane having anti-parallel spin orientation and other two parallel. Independent of the spin ordering a single d electron in the t_{2g} shell of the Ti ion turned out to be localized in the A_{1g} orbital. The occupation numbers for the majority spin are 0.9 for A_{1g} and 0.1 for E_g for both FM and AFM cases. The Ti(3d) projected density-of-states obtained from LDA+U calculations is shown in fig. 3(a). So we can say from the fig. 3(a) that the LDA+U solution for NaTiO$_2$ is almost fully orbitally polarized. One can see from eq. 1 that the A_{1g} orbital ($d_{3z^2-r^2}$ in fig. 3(a)) is symmetric in the hexagonal Ti-Ti plane and the occupation of this orbital leads to the isotropic exchange. This indicates that NaTiO$_2$ would still behave like a frustrated spin system.

In the case of LiVO$_2$ the centre of gravity of the A_{1g} band is only 0.025 eV lower then the centre of gravity of the E_g band, and the resulting occupancies are 0.37 and 0.36 for A_{1g} and for each E_g-orbitals correspondingly. In this situation orbital degeneracy is not lifted, since we now have two electrons one in a A_{1g} and one in a E_g orbital, because the Hund's rule exchange
strongly favours the high spin state. As a result the appearance of some kind of orbital order can be expected. In [2,13,14] the formation of local spin singlets on trimers containing V-atom triangles was suggested as the model explaining the low-temperature nonmagnetic behavior of LiVO$_2$. Those spin singlets were stabilized by a specific orbital order [2].

The LDA+U method is based on a mean-field approximation and can not fully reproduce the essentially many-electron singlet wave function, especially the correct energy difference of singlet-triplet configurations. However a single Slater determinant trial wave function can still describe the basic relationship between spin and orbital degrees of freedom. To imitate trimer spin singlets we performed LDA+U calculations with spin-order of the type "up-down-zero" on every triangle (closed circles on the fig. 1). The self-consistent calculations resulted in the orbital order of the same type as proposed in [2] from model calculations [fig. 3(b)]: on every V atom the occupied orbitals are xz and yz if in a local coordinate system z axis is directed towards the oxygen atom sitting just above the center of V-triangle, and x and y axes are directed towards other oxygens of an octahedron(fig. 1). We should also mention the fact that the LDA+U calculations give the correct semiconducting state for LiVO$_2$ [fig. 3(b)] instead of a metallic state from "normal" LDA (left panel of fig. 2).

In fig. 4 the angular distribution of the t_{2g} hole is presented as was obtained from the LDA+U calculations. It indicates the same orbital order proposed in [2] (fig. 1(a) in [2]): xz and yz orbitals are occupied, the t_{2g} hole is in xy orbital in a local coordinate system of every V atom.

Both LiVO$_2$ and NaTiO$_2$ were regarded as candidates for realization of Anderson’s “resonating valence bond” systems with a quantum liquid of randomly distributed spin singlet pairs. Our results show that while in LiVO$_2$ more complicated trimer spin singlets with corresponding orbital order are formed, no orbital order due to the crystal field lifting of the orbital degeneracy is present in NaTiO$_2$, and its magnetic properties are most probably explained by a nondegenerate model, so that it is indeed a good candidate for Anderson’s RVB state. What then is the nature of the structural phase transition observed in NaTiO$_2$ at T_c=250, remains an open question.

Summarizing, we have shown that the degeneracy of the t_{2g}-orbitals in NaTiO$_2$ is lifted because of the trigonal symmetry of the crystal and the large d-d Coulomb interaction and no orbital ordering occurs. In LiVO$_2$ orbital degeneracy remains in spite of the same trigonal distortion as in NaTiO$_2$, and in effect the orbital ordering consistent with the trimerization of the two-dimensional lattice takes place.

We thank Dr. S.J.Clarke for providing us with the detailed data of the NaTiO$_2$ crystal structure prior to publication. This investigation was supported by the Russian Foundation for Fundamental Investigations (RFFI grant 96 02-16167) and by the Netherlands Organization for Fundamental Research on Matter (FOM), with financial support by the Netherlands Organization for the advance of Pure Science (NWO).

REFERENCES

[1] K.I. KUGEL and D.I. KHMOSHKI, Sov. Phys. Usp., 25 231 (1982).
[2] H.F. PEN, J. VAN DEN BRINK, D.I. KHMOSHKI, G.A. SAWATZKY, Phys. Rev. Lett., 78 1323 (1997).
[3] P.W. ANDERSON, Science, 235 1196 (1987); P.W. ANDERSON, Mater. Res. Bull., 8 153 (1973).
[4] P.F. BONGERS, Ph.D. thesis, (University of Leiden) 1957.
[5] K. KOBAYASHI, K. KOSUGE, S. KASHI, Mater. Res. Bull., 4 95 (1969); L.P. CARDOSO, D.E. COX, T.A. HEWSTON, B.L. CHAMBERLAND, J.Solid State Chem., 72 234 (1988).
[6] K. Terakura, T. Oguchi, A.R. Williams, J. Kübler, *Phys. Rev. B*, **30** 4734 (1984).
[7] Andersen O.K., *Phys. Rev. B*, **12** 3060 (1975).
[8] P. Hohenberg, W. Kohn, *Phys. Rev.*, **136** B864 (1964); W. Kohn, L.J. Sham, *Phys. Rev.*, **140** A1133 (1965).
[9] V.I. Anisimov, J. Zaanen, Andersen O.K., *Phys. Rev. B*, **44** 943 (1991); V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, *J. Phys.: Condens. Matter*, **9** 767 (1997).
[10] Katsushiro Imai, Hiroshi Sawa, Masayoshi Koike, Masashi Hasegawa, Humihiko Takei, *J. Solid State Chem.*, **114** 184 (1995).
[11] S.J. Clarke, A.C. Duggan, A.J. Fowkes, A. Harrison, R.M. Ibberson, M.J. Rosseinsky, *Chem. Comm.*, (1996) 409; S.J. Clarke, (private communication).
[12] V.I. Anisimov, O. Gunnarsson, *Phys. Rev. B*, **43** 7570 (1991); W.E. Pickett, S.E. Erwin, E.C. Ethridge, (Preprint No. condens-matter/9611225).
[13] G.B. Goodenough, *Magnetism and the Chemical bond*, (Interscience Publishers, N.Y.) 1963 p. 269.
[14] G.B. Goodenough, G. Dutta, and A. Manthiram, *Phys. Rev. B.*, **43** 10170 (1991).