Optimization for Hot-film Anti-icing Structure by BPNN and GA

Jie Liu* and Peng Ke2

1Department of Civil Helicopter Research and Development, China Helicopter Research and Development Institute, 35th Center Avenue, Binhai District, Tianjin, China
2Department of Transportation Science and Engineering, Beihang University, 37th Xueyuan Road, Haidian District, Beijing, China
*Email: liujie0430@buaa.edu.cn

Abstract. A coupled method combining the Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA) was developed to optimize a 2D design of aero-engine inlet anti-icing structure, which has a cover on the film heating ejection slot. The optimal goal is to maximize the heating effectiveness which was used to assess the performance of hot-air film. The film-heating ejection angle and the cover opening angle were selected as the design variables to be optimized. The training and testing samples employed in BPNN were obtained by numerical simulation, after which the objective function of GA was predicted. With a given flow rate of bled air, the optimal values of the two design variables were achieved as 22.6° and 15.1°, respectively. Compared to the previous optimal result of other researchers, the heating performance was improved by 16.7% with rapid progress. The result of this study illustrates that this hybrid optimal method can meet the accuracy requirements with high time-efficiency for optimization problems in aeronautics engineering.

1. Introduction
Ice accretion on aircraft for both rotor and fixed wing could cause serious effects on flight safety, such as mass imbalance and components damage [1-3]. Related requirements have been made in airworthiness regulatory to guarantee safe operation like FAR 33.68, FAR 25.1093, FAR 25.1419 as well as similar regulations in FAR29.

Hot air ice protection system is extensively used in the aeronautic industry, whose ability has been demonstrated to meet requirements of airworthiness regulations. The hot-film anti-icing system evolved from traditional impact heat transfer models. Through the aero-engine’s jet-hole, the hot air is bled and ejected out to form a hot-film covering the rear region of the outer structure wall. It can improve the utilization of hot bleed air by combing the internal impact of heat transfer and the external film-heating. Whereas the heat performance is still needed to be improved to reduce the effect caused on aero-engines by bleeding hot air [4-6].

Some researchers have studied the working principle of the hot-film anti-icing system of the aero-engine inlet vane, and found some structural factors could obviously affect the heating performance, the film-heating ejection angle, for instance. [7,8]. Moreover, the installation of a cover at the exit of slot could further improve the attachment of the hot-film to the rear region of out wall. Therefore, the
film-heating ejection angle as well as the cover opening angle were defined as design variables to find the optimal structure with the highest heating performance.

For the complexity of the anti-icing structure, such as the existence of jet-slot and cover, the flow field could be affected significantly, especially when taking characteristics of droplet impingement into consideration in further investigation. Thus, the functional relationship between the optimization objective and design variables is obviously nonlinear. Besides, discrete feature points were selected to evaluate the heating performance of the hot-film anti-icing system. Given the characteristics aforementioned, the traditional gradient-based methods cannot be applied, and there is a need to develop a new optimal method.

Many optimization problems with high complexity can be solved by GA through individuals’ evolution. Besides, it does not depend highly on the function continuity and the derivatives existence. BPNN can acquire a functional relationship using limit samples, which can serve as the input of GA. The combination optimization method using GA and ANN (Artificial Neural Network) shows good perspectives in many fields and attract more and more attention in recent years [9-12] Among those, Darvishvand [13] optimized the design of 3D radiant furnaces using this coupled method, where the uniform thermal conditions on a 3D irregular shape body’s surfaces were obtained. Krzywanski [14] et al. adopted the BPNN-GA method to optimize a tri-bed twin-evaporator adsorption chiller to realize the highest cooling capacity. Compared to the conventional method, the results showed that the computational time was significantly reduced.

In this study, an efficient optimization algorithm is established coupling BPNN and GA based on CFD results. The framework of optimization process is shown as figure 1.

![Figure 1. Framework of overall solution.](image)

2. CFD Numerical Simulation

CFD numerical simulation was done with the two dimensional hot-film anti-icing structure for the aero-engine inlet vane.

2.1. Structure of the Object

The object structure is shown in figure 2(a). The dimension is almost constant along the span wise due to good symmetry. Thus, half of the structure is chosen for the numerical simulation.
Figure 2. Model of the anti-icing structure of inlet vane.

The film-heating ejection angle (α) and the cover opening angle (β) are defined as design variables. Considering droplet impingement characteristics as well as limited by the structure, the constraints are set to: $\alpha \in [5^\circ, 150^\circ]$ and $\beta \in [10^\circ, 30^\circ]$. The optimization objective is identified to be reached when hot-film achieves its highest heating efficiency, assuming that the amount of bleed air has been determined. Thus, the front most position of the structure’s is (-0.0025m, 0m), and the backmost is (-0.1661m, 0m).

Numerical simulations were conducted with the control variable method. Heat conduction of solid was not considered since it does not influence the change rule of the heating performance obviously. Besides, the simulation of droplet impingement and ice accretion are not presented here due to focusing on the establishment of overall optimal process.

The definition of heating effectiveness η_t is as equation (1), in which T_{aw}, T_2, T_{∞} are the temperature of the adiabatic wall, the hot bleed air, and the cold air flow.

$$\eta_t = \frac{T_{aw} - T_{\infty}}{T_2 - T_{\infty}}$$ (1)

2.2. Independence Check of Mesh
The 2D structured grid when $\alpha=150^\circ$, $\beta=10^\circ$ is shown in figure 3 for instance. The calculation domain contains the inner thermo-jet field and the outer main cold airflow field. The grid around the junction of two fields aforementioned and the outer wall is locally encrypted, thus features of the hot-film can be better captured. Grids with different density have been used to conduct the grid independence check, as shown in figure 4. The grid with 70,000 cells is selected due to the comprehensive consideration between calculation cost and accuracy. The accuracy requirement of enhanced wall treatment $y^+<1$ near the outer wall can be met at each position except the tail end.

Figure 3. Example of meshing. Figure 4. Heating effectiveness with different mesh density.

2.3. Governing Equations and Boundary Conditions
Three conservation equations are solved with the assumption of compressible and statistically steady turbulent flow. RNG $k-\varepsilon$ turbulence model is adopted with the enhanced wall treatment. Besides, the fluid material is recognized as ideal-gas solved with the pressure-base coupled solver. Meanwhile, all of the convective terms are discretized with a second-order upwind interpolation scheme. The
governing equations aforementioned are solved using ANSYS Fluent. In addition, boundary conditions are illustrated as table 1.

Table 1. Settings of boundary conditions.

Type of boundary	Cold airflow inlet	Hot-jet inlet	Outlet
Mach	0.314	Depend on the blowing ratio	--
Temperature, K	253	413	253
Pressure, Pa	101325	202000	101325

For there is a certain similarity between the research object and a one-line thermo-jet confined channel, the latter was chosen in the verification of the simulation settings’ accuracy. Related work is contained in previous research of authors [15].

3. **BPNN Fitting**

BPNN consists of the input layer, the hidden layer and the output layer, which is a kind of multi-layer feed forward neural network. It can model complex physical phenomena with high computational speed as well as accurate prediction [9,12], thus overcoming the disadvantage of time-consuming experimental studies and simulation approaches. The most important thing is that BPNN can process fuzzy information, even when the functional relationship is uncertain [13,14]. The schematic diagram is shown as figure 5.

![Figure 5. Schematic diagram of BPNN.](image)

After extracting the outer wall temperature, the 18 groups of heating effectiveness are calculated according to equation (1). These can serve as training and testing samples in the prediction process using BPNN, which is illustrated as follows.

3.1. Fitting of a Continuous $x - \eta_i$ curve

For a certain set of (α, β), the distance x and corresponding heating effectiveness η_i are selected as input and output, respectively. Thus, a continuous $x - \eta_i$ curve can be obtained with discrete data points. Therefore, the internal change rule of the heating effectiveness along the outer wall can be explored. In addition, nine feature positions from 0m to 0.16m in 0.02m intervals (named as $P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9$ respectively) are selected that the heating performance can be better compared. The corresponding η_i calculated by the network result of this step is given in table 2.

Table 2. Calculated data.

α	β	η_1	η_2	η_3	η_4	η_5	η_6	η_7	η_8	η_9
5°	10°	0.6037	0.3569	0.2904	0.2511	0.2216	0.1990	0.1817	0.1677	0.1583
5°	15°	0.8841	0.4632	0.3599	0.3033	0.2619	0.2293	0.2052	0.1851	0.1714
5° 20° 0.8644 0.4066 0.3073 0.2630 0.2194 0.2005 0.1776 0.1595 0.1518
5° 25° 0.8310 0.3312 0.2412 0.1968 0.1721 0.1533 0.1405 0.1306 0.1252
5° 30° 0.7820 0.3125 0.2174 0.1794 0.1548 0.1409 0.1266 0.1205 0.1147
30° 10° 0.8729 0.4486 0.3429 0.2866 0.2492 0.2228 0.2016 0.1861 0.1751
30° 15° 0.9189 0.3922 0.3121 0.2653 0.2377 0.2069 0.1929 0.1716 0.1649
30° 20° 0.7453 0.3328 0.2471 0.2040 0.1804 0.1619 0.1480 0.1375 0.1322
30° 25° 0.7825 0.3213 0.2156 0.1745 0.1448 0.1242 0.1203 0.1152
30° 30° 0.6558 0.3220 0.2023 0.1630 0.1409 0.1267 0.1179 0.1090 0.1076
90° 10° 0.0404 0.5044 0.3653 0.3044 0.2581 0.2337 0.2110 0.1910 0.1781
90° 15° 0.0457 0.6247 0.4747 0.3785 0.3032 0.2617 0.2262 0.1929 0.1805
90° 20° 0.0576 0.5741 0.3581 0.2729 0.2249 0.1909 0.1618 0.1499 0.1355 0.1285
90° 25° 0.0665 0.5027 0.2972 0.2226 0.1909 0.1471 0.1350 0.1214 0.1193
90° 30° 0.0710 0.4866 0.2675 0.2043 0.1673 0.1471 0.1350 0.1214 0.1193
150° 10° 0.0068 0.7030 0.4917 0.3824 0.3055 0.2548 0.2160 0.1900 0.1712
150° 15° 0.0118 0.7590 0.4122 0.2930 0.2332 0.1970 0.1737 0.1571 0.1433
150° 20° 0.0070 0.6608 0.3248 0.2353 0.1880 0.1663 0.1441 0.1327 0.1249

3.2. Fitting of $\langle \alpha, \beta \rangle - \eta_t$ Curve at Feature Points

Trained with the dataset in table 2, a two-input nine-output BPNN can be obtained. Thus, the internal relationship between η_t and its corresponding set of $\langle \alpha, \beta \rangle$ can be found. Instead of traditional optimal methods, it does not need to conduct extremely time-consuming simulations with a lot of data.

3.3. Verification of BPNN

Comparison between the BPNN fitting results and the numerical simulation data has been made. The verification within and beyond 18 groups of sampling are elaborated respectively in the following contents.

Firstly, (30°,15°) and (90°,20°) were selected for instance in the verification of the fitting accuracy within sampling. It is illustrated in figure 6 that, the predicted η_t at feature points match well with the CFD data. The relative error is less than $3e^{-5}$.

Secondly, two conditions namely (60°,18°) and (120°,24°) were selected to further verify the fitting accuracy beyond sampling. The film heating effectiveness of feature points were predicted by BPNN trained in section 3.2, and corresponding simulations were conducted. Figure 7 indicates the comparison of the fitting results and simulation data. The overlap ratio indicates that the fitting accuracy of BPNN is adequate enough to be employed in prediction of the objective function in constrains of design variables.
Figure 6. Comparison between CFD and fitting within samples.

Figure 7. Comparison between CFD and fitting beyond samples.

4. GA Optimization

GA is inspired by natural selection and evolution theories. It can attain the extremum results making use of group search, thus being considered as one of the most efficient optimization algorithms. Starts from numerous points simultaneously, the search process is of high efficiency, robustness and quick reaction capability [16]. Instead of having expensive cost in computational aspect than traditional techniques to some extent, GA has reliable ability to detect the global optima thus it has been adopted in aerodynamic optimization researches progressively [17]. The main factors affecting the solving efficiency and result accuracy are listed.

- method of chromosome encoding.
- fitness function of individual evaluation.
- genetic operators and its probability.
- population size, iterations, etc.

The flow chart of GA is illustrated as figure 8.

![Flow chart of GA](image)

Figure 8. Solution frame of GA.

4.1. Definition of Evaluation Index

The fitness function needs to be defined after population initialization to evaluate the performance of different individuals. For the hot-film anti-icing structure optimization, the following indexes can be considered as fitness function based on different design objectives.

- The maximum arithmetic mean heating effectiveness of several feature positions. These positions uniformly distribute from the leading-edge to the tail end of the structure. It can represent the overall best heating performance of the whole region.
- The single-point maximum heating effectiveness. It represents the existence of highest heating performance at a certain position.
- The maximum average heating effectiveness behind the slot. It represents the best protection of the area behind the jet-slot, which is within the focus area of ice protection problems. However, the region in front of the slot could not be considered using this evaluation index.
- The maximum weighted-average heating effectiveness within the droplet impingement limit. This can protect the icing region but needs to determine the droplet impingement limit first.

In this study, the fourth is selected as the evaluation index for better consideration of the realistic droplet impingement problem. Because the profile of the inlet vane is similar to an NACA0012 airfoil to some extent, the droplet impingement limit could be determined refer to that of the airfoil.
The droplet impingement limit of a NACA0012 airfoil with 0.15m in chord length is about 0.042m. Thus, the feature points \(P_1, P_2, P_3 \), are in the range of the droplet impingement limit, whose weight is given as 20% each. Considering the backflow beyond the droplet impingement limit could still freeze, the weight of \(P_4, P_5, P_6 \) is given as 10% each as these points may exist in the backflow area. Besides, the remaining 10% is divided equally by the other points.

Therefore, the weight of nine selected feature points can be defined as:

\[
\mathbf{w}_i = \begin{cases}
20\% & i = 1, 2, 3 \\
10\% & i = 4, 5, 6 \\
3.3\% & i = 4, 5, 6
\end{cases}
\]

(2)

4.2. Parameter Setting of Algorithm

According to the evaluation index selected in section 4.1, the fitness function is defined as equation (3).

\[
f = \sum_{i=1}^{9} [\eta_i(i) \times \mathbf{w}_i] \quad i = 1, ..., 9
\]

(3)

Considering droplet impingement characteristics as well as structure limit, the constraints are set to:

\[
\alpha \in [5^\circ, 150^\circ], \quad \beta \in [10^\circ, 30^\circ]
\]

(4)

The single-point crossover GA based on binary coding is adopted. The maximum number of iteration is set as 100 with a population which has 100 individuals after several attempts. The probability of crossover and mutation are set as 0.5 and 0.05, respectively. The precision is defined as 0.1° taking the design accuracy and time-consuming problem into consideration comprehensively.

4.3. Optimal results and CFD verification

The final optimal design is obtained as the film-heating ejection angle \(\alpha = 22.6^\circ \) and the cover opening angle \(\beta = 15.1^\circ \), the temperature distribution of which is displayed in figure 9.

![Figure 9. Temperature contour of the optimal design.](image)

The iteration convergence is illustrated as figure 10, from which it can be seen that the fitness value does not change after 22 iterations or so. Furthermore, CFD simulation was done to compare the heating effectiveness of the optimal design with Lu’s simulation results [18], in which the optimal values of the same design variables are \(\alpha = 5^\circ \) and \(\beta = 20^\circ \), as shown in figure 11. The heating performance of the optimal condition in this study is better, indicating that the BPNN-GA method can improve the optimization efficiency.
5. Conclusions
An integrated BPNN-GA optimization method is developed in this research, where a feedforward neural network was built using 18 groups of samples generated by CFD simulation, the maximum relative error of which is about $3e^{-5}$. The optimal design for a hot-film anti-icing structure of aero-engine inlet vane is obtained after repeatability checking, where the film-heating ejection angle and the cover opening angle are 22.6° and 15.1°, respectively. Compared to the optimal result obtained in Lu’s research, the optimal heating performance has been improved by 16.73%.

BPNN-GA is verified to be accurate and time-efficient rather than solving time-consuming CFD simulation for each possible design point. It should be noted that, the inlet vane structure was taken as an example to demonstrate the feasibility of using the BPNN-GA couple method to conduct the optimization work on engineering problems. This method is of strong utilizability and can be applied to optimization problems in many other engineering fields, such as the optimal design of component structure and intelligent selection of system performance parameters of both fixed-wing or rotor aircraft.

Acknowledgments
The authors thank the Nature Science Foundation of China (Grant No.51706244) and AECC Commercial Aircraft Engine Co., Ltd. to financially support this work.

References
[1] Shen X B, Lin G P, Yu J, Bu X Q and Du C H 2013 Three-dimensional numerical simulation of ice accretion at the engine inlet J. Aircraft 50 635-42
[2] Mu Z D, Shen X B, Lin G P, and Bu X Q 2016 Numerical simulation for ice accretion on rotating cowling considering water film shedding AIAA Aerospace Science Meeting (San Diego)
[3] Zeppetelli D and Habashi W G 2012 In-flight icing risk management through computational fluid dynamics-icing analysis J. Aircraft 49 611-21
[4] Dong W, Zhu J, Zheng M Lei G L and Zhou Z X 2015 Experimental study on icing and anti-icing characteristics of engine inlet guide vanes J. Propul and Power 31 1330-37
[5] Zhang Y, Ke P, Yang C X and 2016 Investigation of hot film jet vortex effects on droplets characteristics over aero engine inlet strut Proc. ASME Turbo Expo 2016 (Seoul)
[6] Yang H Y, Ke P, Yang C X 2016 Analysis of droplet impingement characteristics of aero-engine nose cone with hot air film Proc. ASME Turbo Expo 2016 (Seoul)
[7] Ke P, Zhang Y, Yu G F and 2017 Influence of exterior hot-film on droplet impingement characteristics over aero engine inlet strut J. Aerospace Power 32 621-9
[8] Peng L, Bu X Q, Lin G P and 2014 the study on influence of structural parameters on the thermal performance of anti-icing cavity J. Aerodynamic 32 848-53
[9] Irani R, Nasimi R and Shahbazi M 2015 Approximate predictive control of a distillation column using an evolving artificial neural network coupled with a genetic algorithm Energy Sources Part A: Recovery, Utilization, and Environmental Effects 37 518-35
[10] Jaroslaw K, Hongtao F, Yi F and 2018 Genetic algorithms and neural networks in optimization of sorbent enhanced H2 production in FB and CFB gasifiers Energ Convers Manage 171 1651-61
[11] Alimoradi H and Shams M 2017 Optimization of subcooled film boiling in a vertical pipe by using artificial neural network and multi objective genetic algorithm Appl Therm Eng 111 1039-51
[12] Zuo M C, Dai G M and Peng L 2019 Multi-agent generic algorithm with controllable mutation probability utilizing back propagation neural network for global optimization of trajectory design Eng Optimiz 51 120-39
[13] Darvishvand L, Kamkari B and Kowsary F 2018 Optimal design approach for heating irregular-shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm-artificial neural network method Eng Optimiz 50 452-70
[14] Krzywanski J, Grabowska K, Herman F, Pryka P, Sosnowski M, Prauzner T and Nowak W 2017 Optimization of a three-bed absorption chiller by genetic algorithms and neural networks Energ Convers Manage 153 313-22
[15] Liu J and Ke P 2019 Aero-Engine Inlet Vane Structure Optimization for Anti-Icing with Hot Air Film using Neural Network and Genetic Algorithm SAE 2019 International Conference on Icing of Aircraft, Engines and Structures
[16] Leila D, Babak K and Farshad K 2018 Optimal design approach for heating irregular shaped objects in three-dimensional radiant furnaces using a hybrid genetic algorithm–artificial neural network method Eng Optimiz 50 452-70
[17] Carole EI A, Wahid G and Ibrahim H 2015 Aerothermal shape optimization for a double row of discrete film cooling holes on the suction surface of a turbine vane Eng Optimiz 47 1384-404
[18] Lu Y, Chernykh O and Ke P 2017 Joint airworthiness education for heat transfer characteristic researches on aero-engine inlet strut with film-slot cap Conf. Asian Workshop on Aircraft Design Education (Nanjing) 166-77