In vitro activity of mecillinam, temocillin and nitroxoline against MDR Enterobacterales

Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Medical faculty and University Hospital of Cologne, Cologne, Germany; "German Centre for Infection Research, partner site Bonn-Cologne (DZIF), Cologne, Germany; 3Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany

*Corresponding author. E-mail: axel.hamprecht@uol.de
†These authors share first authorship.
© The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Background: With increasing resistance to common antibiotics the treatment of urinary tract infections has become challenging and alternative therapeutic options are needed. In the present study, we evaluate the activity of three older and less frequently used antibiotics against MDR Enterobacterales.

Methods: Susceptibility of mecillinam, temocillin and nitroxoline was assessed in Enterobacterales isolated from urinary specimens with elevated MICs of third-generation cephalosporins. Susceptibility was determined by the recommended reference MIC methods and additionally by disc diffusion. All isolates were characterized for common β-lactamases by phenotypic and molecular assays.

Results: In total 394 Enterobacterales were included. The most common resistance mechanisms were ESBLs (n = 273), AmpC (n = 132), carbapenemases (n = 12, including OXA-48-like (n = 8), VIM (n = 2), KPC (n = 1) and NDM (n = 1)) or others (n = 2). Resistance was observed in 59% of isolates to ceftazidime, in 41% to piperacillin/tazobactam and in 54% to ciprofloxacin. In comparison, resistance was less frequent against mecillinam (15%), temocillin (13%) or nitroxoline (2%). Mecillinam showed higher activity in Enterobacter spp., Escherichia coli and in OXA-48-like-producing isolates compared with temocillin, which was more active in Proteus mirabilis and in ESBL-producing isolates. Activity of nitroxoline was high against all isolates, including carbapenemase-producing isolates. Correlation between disc diffusion and MIC methods was good for mecillinam and moderate for temocillin and nitroxoline.

Conclusions: Mecillinam, temocillin and nitroxoline show good to excellent in vitro activity in MDR Enterobacterales. The activity of mecillinam and temocillin was higher in certain species and restricted depending on β-lactamase production while nitroxoline showed universally high activity irrespective of species or β-lactamase present.

Introduction

With increasing antibiotic resistance the therapy of urinary tract infections (UTI) has become more and more difficult and the need for alternative therapies has led to regained interest in older drugs such as mecillinam, temocillin and nitroxoline. Gram-negative bacteria resistant to carbapenems or third-generation cephalosporins are particularly concerning. Facing the paucity in the development of new antibiotics, the revival of older antibiotics has become an important strategy to fight the antimicrobial resistance (AMR) crisis.

Mecillinam, temocillin and nitroxoline were developed in the 1950s–80s. The current use of these drugs is mostly limited to infections of the urinary tract. Pivmecillinam, the oral prodrug of mecillinam, has been used in Scandinavian countries for the treatment of uncomplicated UTI (uUTI) for decades. Both pivmecillinam and nitroxoline are recommended as oral agents in the guideline on uUTI in Germany. In contrast parenteral temocillin is also used for invasive infections, yet experience is limited to some European countries, especially UK, France and Belgium. All three agents may remain active against MDR pathogens and side effects are rare.

Mecillinam and temocillin are both β-lactam antibiotics. Nitroxoline is a quinoline derivate and the mode of action is based on ion chelation with subsequent effects on microbial enzymatic pathways (including transcription factors) and effects on the
charge of cellular compartments. Mecillinam, temocillin and nitroxoline differ in the route of administration: For mecillinam oral and IV administration is possible; in contrast temocillin can only be applied IV while nitroxoline is available only in oral form.

With the increasing number of infections by MDR strains there is regained interest in these older antibiotics. Hence, over the past 12 years, EUCAST has issued breakpoints for all three drugs, which are currently limited to certain species. Additionally, breakpoints for mecillinam and nitroxoline apply only to uUTI while for temocillin breakpoints are also valid for complicated UTI (cUTI).

To date, only limited data on susceptibility testing of these drugs and correlation of testing methods are available, as reference methodologies are laborious (i.e. agar dilution for mecillinam) and not available in most clinical microbiology laboratories.

Currently only few studies on the susceptibility of mecillinam, temocillin and nitroxoline have been performed and to the best of our knowledge none has compared the activity of all three substances in MDR Enterobacteriales isolates.

The aim of the present study was therefore to determine the activity of all three drugs in a collection of different MDR uropathogenic Enterobacteriales. Secondly, we assessed disc diffusion testing as an alternative method for susceptibility testing of the three drugs and compared it with current reference methods.

Materials and methods

Enterobacteriales with elevated MICs of cefotaxime and/or ceftazidime and/or ertapenem, imipenem or meropenem that had been isolated from urine specimens at the Institute for Medical Microbiology of the University Hospital Cologne between March 2019 and January 2020 were included in the study. Susceptibility testing of standard antibiotics was done on a Vitek 2 system using the AST N195 card (bioMérieux, Nürtingen, Germany) and results were interpreted according to EUCAST methodologies are laborious (i.e. agar dilution for mecillinam) and not available in most clinical microbiology laboratories.

In total 394 Enterobacteriales (Table 1 and Table S1, available as Supplementary data at JAC-AMR Online) were included in the study. E. coli was the most common species (n = 198), followed by Klebsiella pneumoniae (n = 66), Enterobacter spp. (n = 52) and other species (n = 78) (Figure S1). The most frequent isolation source was voided midstream urine (245 isolates), catheter urine (n = 98) and other sources (n = 51).

Most patients were female (214/394, 54%), the median age was 66 years. The majority of isolates were cultured from samples of inpatients (258/394, 65%) and from the urological department (137/394, 35%). For 20 of 394 isolates (5%) a coincident bloodstream infection with the same species and resistance phenotype was detected.

Overall, meropenem [MIC ≤ 0.25 mg/L] and nitroxoline (MIC ≤ 16 mg/L) were the most active antibiotics in vitro, followed by mecillinam (MIC ≤ 2 mg/L, 15% R), temocillin (MIC ≤ 2 mg/L, 13% R) and cefepime (MIC ≤ 64 mg/L, 24% R) (Figure 1 and Table S1). MICs > 2 mg/L were similar to ESBL/AmpC-producing isolates (MIC50/90 > 6/24 mg/L). For carbapenemase-producing Enterobacteriales (CPE) MICs of mecillinam and temocillin were higher (MIC50/90 > 64/128 mg/L for mecillinam and 6/16 mg/L for temocillin in AmpC isolates (Table 2).

In carbapenemase-producing Enterobacteriales (CPE) MICs of mecillinam and temocillin were higher (MIC50/90 > 64/128 mg/L for mecillinam and 6/16 mg/L for temocillin in AmpC isolates (Table 2).

Mecillinam
Mecillinam showed excellent in vitro activity in E. coli, Klebsiella aerogenes and Enterobacter spp., despite ESBL and/or AmpC overexpression (Table S1). In CPE, susceptibility was limited to isolates with OXA-48-like carbapenemases and low carbapenem MICs (4/8, 50%) (Table S2).

Of note, among Klebsiella spp., 10/12 K. aerogenes isolates (83%) were susceptible to mecillinam compared with 50/66 K. pneumoniae isolates (76%) and 0/9 K. oxytoca isolates (0%).

Particularly poorly active were demonstrated for MDR Proteus mirabilis (MIC >128 mg/L) and 5/8 isolates R).

All three isolates of Hafnia alvei showed low mecillinam MICs (0.5–4 mg/L) despite derepressed AmpC, but so far no EUCAST breakpoint has been defined for this species.

Temocillin
Stratified by species, temocillin was most active in P. mirabilis, E. coli, K. oxytoca and K. pneumoniae (Table 1). In ESBL-producing isolates temocillin was more active (20/273, 7% R) compared with
mecillinam (34/273, 12% R), but less active compared with nitrooxoline (4/273, 1% R).

As expected, no relevant activity was found in OXA-48-like producers while a KPC-expressing Citrobacter freundii and 2/3 MBL-producing isolates (VIM-1 and NDM-1, both P. mirabilis) were susceptible to temocillin (Table S2).

Nitroxoline

Overall, nitroxoline demonstrated the highest in vitro activity in our challenge collection. In E. coli 99% (196/198) of isolates were nitroxoline susceptible. High nitroxoline MICs >16 mg/L were rare (n = 6) and were recorded in four ESBL-producing isolates [E. coli,

Species (n)	Mecillinam (S ≤ 8/R > 8 mg/L^a)	Temocillin (S ≤ 0.001/R > 16 mg/L^a)	Nitroxoline (S ≤ 16/R > 16 mg/L^a)
E. coli (198)	2/0.25 to 64	4/0.5 to >128	2/0.25 to 32
Klebsiella spp. (87)	8/0.5 to >128	4/0.5 to >128	4/1 to 64
K. pneumoniae (66)	4/0.5 to >128	4/0.5 to >128	4/1 to 64
K. aerogenes (12)	2/1 to >128	8/2 to 128	4/1 to 8
K. oxytoca (9)	64/32 to >128	4/1 to >128	4/1 to 8
Enterobacter spp. (52)	1/0.125 to >128	8/0.5 to >128	8/0.5 to 64
C. freundii (33)	2/0.125 to >128	8/0.25 to >128	4/0.5 to 16
Citrobacter koseri (1)	>128/0	16/4 to 64	4/0.5 to 16
M. morganii (11)	>128/0	16/4 to 64	4/0.5 to 16
P. mirabilis (8)	>128/2 to >128	4/1 to >128	4/1 to 8
H. alvei (3)	2/0.5 to 4	8/4 to 8	2/2
Raoultella ornithinolytica (1)	2/0	8/0	8/0
All isolates (394)	2/0.125 to >128	4/0.25 to >128	4/0.25 to 64

S, susceptible; R, resistant.

^aBreakpoint according to EUCAST for selected species.
(n=2), K. pneumoniae (n=2)) and two isolates with overexpressed AmpC [E. cloacae (n=2)]. The activity of nitroxoline was high irrespective of species and β-lactamase: MIC50/90 was 4/8 mg/L for isolates producing ESBLs, 4/16 mg/L for AmpC, 4/8 mg/L for CPE and 4/16 mg/L for isolates producing other β-lactamas.

Comparison of methods for susceptibility testing

The correlation of dilution methods and disc diffusion results over all species was excellent for mecillinam and moderate for temocillin and nitroxoline (Spearman’s correlation coefficient $r = -0.837$ for mecillinam, $r = -0.474$ for temocillin and $r = -0.352$ for nitroxoline ($P < 0.01$)) (Figure 2a–c and Figure S2a–c). For temocillin all errors concerned Morganella morganii, for which no EUCAST breakpoints have been defined.

Discussion

This study compares the activities of three drugs in a collection of 394 MDR Enterobacteriales isolates with different resistance mechanisms.

Compared with most other antibiotics, e.g. ceftazidime (59% R), piperacillin/tazobactam (41% R) or ciprofloxacin (54% R), the activity of mecillinam (15% R), temocillin (13% R) and nitroxoline (2% R) in this collection of MDR isolates was high.

Mecillinam was highly active against E. coli, K. aerogenes and Enterobacter spp. with ESBL production and/or AmpC overexpression, similar to results of previous studies.14 Susceptibility among CPE was limited to isolates with OXA-48-like carbapenemases with low carbapenem MICs, as previously shown.15 Some authors have suggested the use of mecillinam in cUTI or even bloodstream infections.24,25 However, only limited data on (pip)meccillinam serum and urinary levels are available.16,27 Higher maximum serum (peak 12 mg/L after 200 mg IV) and urinary concentrations have been shown after parenteral administration.28,29 Given the low mecillinam MICs recorded in the present study (198/394 isolates MIC ≤2 mg/L) the use of parenteral mecillinam could be a carbapenem-sparing alternative for infections with MDR Enterobacteriales and should be further studied.

The activity of temocillin was high in P. mirabilis, E. coli, K. oxytoca and K. pneumoniae and in ESBL-producing isolates. In CPE, susceptibility was retained in isolates producing KPC, VIM-1 and NDM-1, but not in OXA-48-like producers as previously shown.30 However, these results have to be interpreted with caution as the number of CPE isolates in this study was low.

With the ongoing discussion on breakpoints and dosing it should be emphasized that the EUCAST temocillin breakpoints apply to high exposure (2 g q8h) for wild-type populations (MIC 1–16 mg/L). Measured serum/urine concentrations for the above mentioned dosage scheme (peak 236 mg/L in serum and 68% in urine within 24 h) exceed MICs assessed in our study.3,30

In the present study Enterobacteriales species without breakpoints (e.g. E. cloacae and C. freundii) were included and showed similar MICs compared with E. coli or K. pneumoniae (MIC50/90 8/32 mg/L; 8/128 mg/L). Clinical success of temocillin treatment has been documented for infections caused by ESBL-producing isolates as well as Enterobacteriales with derepressed AmpC.30,31 However, in line with other studies, in our cohort MICs were higher in presence of AmpC overexpression (MIC50/90 of 8/64 mg/L versus 4/16 mg/L in absence of AmpC).31,32

Overall our data demonstrate that temocillin has high activity in MDR Enterobacteriales and may be used as an alternative drug to spare common broad spectrum antibiotics such as piperacillin/tazobactam or carbapenems.32 Temocillin could serve as a step-down therapy after susceptibility testing. However, more prospective data on the outcome of MDR infections treated with temocillin is needed, especially for those originating from non-urinary foci.

The highest susceptibility of Enterobacteriales was observed for nitroxoline. Of particular interest, nitroxoline shows excellent activity in presence of carbapenemases and was more active in CPE than meropenem, as previously demonstrated.32

Data on serum and urine concentrations of nitroxoline are highly diverging (conjugated form: serum peak 5–9.5 mg/L; unconjugated form: serum peak 0.5–400 mg/L; conjugated form: urinary peak 27–210 mg/L) and the role of the conjugated form is still unclear.33,34

However, serum and urine concentration levels of the unconjugated form exceed the MICs for most isolates of our collection, making nitroxoline a promising candidate for eradication of otherwise drug-resistant Enterobacteriales in uUTI.

On the other hand, therapeutic failure has been reported for patients with UTI caused by E. coli.35 Thus, despite promising in vitro data more in vivo data are needed, especially on the correlation of microbiological success and clinical outcome of UTI treated with nitroxoline.

As MIC determination by agar dilution and broth microdilution is laborious and only few commercial assays for MIC determination
are available, an alternative testing method is needed that can be carried out in clinical microbiology laboratories. Therefore, disc diffusion was assessed and results were compared with those from reference methods. Disc diffusion testing correlated

Mecillinam MIC (mg/L)	R	S
>128		
128	27	1
64	5	1
32	1	1
16	1	1
8	1	1
4	1	1
2	1	1
1	1	1
0.5	1	1
0.25	1	1
0.125	1	1

Mecillinam disc diffusion zone diameter (mm)

Temocillin MIC (mg/L)	I	R
>128		
128	5	
64	6	
32	2	
16	1	
8	1	
4	2	
2	2	
1	1	
0.5	1	
0.25	1	
0.125	1	

Temocillin disc diffusion zone diameter (mm)

Nitroxoline MIC (mg/L)	S	R
>128		
128	6	
64	1	
32	1	
16	2	
8	1	
4	1	
2	1	
1	1	
0.5	1	
0.25	1	
0.125	1	

Nitroxoline disc diffusion zone diameter (mm)

Figure 2. Comparison of MIC testing and disc diffusion for all isolates (n = 394). Dashed lines indicate EUCAST 12.0 breakpoints. S, susceptible at standard exposure; I, susceptible increased exposure; R, resistant. (a) Comparison of mecillinam agar dilution and disc diffusion. (b) Comparison of temocillin broth dilution and disc diffusion. (c) Comparison of nitroxoline broth dilution and disc diffusion.
excellently with MIC determination for mecillinam ($r = -0.837$), while for temocillin ($r = -0.474$) and nitroxoline ($r = -0.352$) the correlation was lower. It has to be taken into account that the number of resistant isolates was low for all three drugs, which limits the assessment of the correlation between MIC and inhibition zones.

No major or very major errors were recorded for mecillinam disc testing, which have previously been described for CPE isolates. This indicates that overestimation of mecillinam susceptibility in MDR Enterobacterales might be limited to some CPE, but does not apply to isolates with other resistance mechanisms.15

Overall, in this cohort of MDR Enterobacterales, therapeutical options are limited and mecillinam, temocillin and nitroxoline are valuable assets for UTI treatment. Isolates resistant to nitroxoline were very rare, despite expression of ESBL, AmpC overexpression or even carbapenemases. Our data further demonstrate that mecillinam and temocillin are often hydrolysed to a lesser extent than other β-lactams.26 In MDR Enterobacterales mecillinam may be particularly promising for ESBL-, AmpC- or OXA-48-like-producing E. coli and Enterobacter spp., while temocillin is particularly active in ESBL-expressing isolates.

Our study has some limitations. Most samples were from inpatients and therefore might not be completely representative for uUTI. The strength of our study is that it includes many MDR isolates compared with previous studies, and additionally assessed species other than E. coli including those without currently defined breakpoints. Additionally, we provide data on the performance of disc diffusion compared with MIC determination. This will likely be helpful for the determination of susceptibility in MDR isolates in routine laboratories that cannot perform susceptibility testing with laborious reference methods.

With the problem of continuously increasing AMR, all three drugs should be further investigated with in vivo studies either as definite therapy or as part of a combination therapy for MDR Enterobacterales.

Funding
This work was supported by the German Center for Infection Research (DZIF, to A.H.).

Transparency declarations
None to declare.

Supplementary data
Tables S1 and S2 and Figures S1 and S2 are available as Supplementary data at JAC-AMR Online.

References
1. Pinart M, Kranz J, Jensen K et al. Optimal dosage and duration of pivmecillinam treatment for uncomplicated lower urinary tract infections: a systematic review and meta-analysis. *Int J Infect Dis* 2017; **58**: 96–109.
2. El Sakka N, Gould JM. Role of old antimicrobial agents in the management of urinary tract infection. *Expert Rev Clin Pharmacol* 2016; **9**: 1047–56.
3. Alexandre K, Fantin B. Pharmacokinetics and pharmacodynamics of temocillin. *Clin Pharmacokinet* 2018; **57**: 287–96.
4. Pfeifer Y, Culik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. *Int J Med Microbiol* 2010; **300**: 371–9.
5. Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. *Front Microbiol* 2014; **5**: 551.
6. Slocombe B, Basker MJ, Bentley PH et al. BRL 17421, a novel β-lactam antibiotic, highly resistant to β-lactamases, giving high and prolonged serum levels in humans. *Antimicrob Agents Chemother* 1981; **20**: 38–46.
7. Petrow V, Sturgeon B. Some quinoline-5 : 8-quinones. *J Chem Soc* 1954: 570–4.
8. Lund F, Tybring L. 6-amidopenicillanic acids – a new group of antibiotics. *Nat New Biol* 1972; **236**: 135–7.
9. Kranz J, Schmidt S, Lebert C et al. The 2017 update of the German clinical guideline on epidemiology, diagnostics, therapy, prevention, and management of uncomplicated urinary tract infections in adult patients: part 1. *Urol Int* 2018; **100**: 263–70.
10. Balakrishnan I, Awad-El-Kariem FM, Aali A et al. Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC β-lactamase-producing Enterobacteriaceae. *J Antimicrob Chemother* 2011; **66**: 2628–31.
11. Zykov IN, Sundsfjord A, Smabrekke L et al. The antimicrobial activity of mecillinam, nitrofurantoin, temocillin and fosfomycin and comparative analysis of resistance patterns in a nationwide collection of ESBL-producing *Escherichia coli* in Norway 2010-2011. *Infect Dis (Lond)* 2016; **48**: 99–107.
12. Fuchs F, Hamprech A. Susceptibility of carbapenemase-producing Enterobacterales (CPE) to nitroxoline. *J Antimicrob Chemother* 2019; **74**: 2934–7.
13. Fuchs F, Hof H, Hofmann S et al. Antifungal activity of nitroxalone against *Candida auris* isolates. *Clin Microbiol Infect* 2021; **27**: 1697.e7–e10.
14. Fuchs F, Hamprech A. Results from a prospective in vivo study on the mecillinam (aminocillin) susceptibility of Enterobacterales. *Antimicrob Agents Chemother* 2019; **63**: 2402–18.
15. Fuchs F, Ahmadzada A, Plambeck L et al. Susceptibility of clinical Enterobacterales isolates with common and rare carbapenemases to mecillinam. *Front Microbiol* 2020; **11**: 627267.
16. Naber KG, Niggemann H, Stein G. Review of the literature and individual patients’ data meta-analysis on efficacy and tolerance of nitroxalone in the treatment of uncomplicated urinary tract infections. *BMC Infect Dis* 2014; **14**: 628.
17. Theuretzbacher U, Van Bambke F, Canton R et al. Reviving old antibiotics. *J Antimicrob Chemother* 2015; **70**: 2177–81.
18. EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0. 2022. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf.
19. Hamprech A, Rohde AM, Behnke M et al. Colonization with third-generation cephalosporin-resistant Enterobacteriaceae on hospital admission: prevalence and risk factors. *J Antimicrob Chemother* 2016; **71**: 2957–63.
20. Rohde AM, Zweijnger J, Wiese-Posselt M et al. Prevalence of third-generation cephalosporin-resistant Enterobacterales colonization on hospital admission and ESBL genotype-specific risk factors: a cross-sectional study in six German university hospitals. *J Antimicrob Chemother* 2020; **75**: 1631–8.
21. Hamprech A, Vehreschild JJ, Seifert H et al. Rapid detection of NDM, KPC and OXA-48 carbapenemases directly from positive blood cultures using a new multiplex immunochromatographic assay. *PLoS One* 2018; **13**: e0204157.
22. Boeza LL, Pfennigwerth N, Greissl C et al. Comparison of five methods for detection of carbapenemases in Enterobacteriales with proposal of a new algorithm. *Clin Microbiol Infect* 2019; **25**: 1286.e9–e15.
23 Hamprecht A, Sommer J, Willmann M et al. Pathogenicity of clinical OXA-48 isolates and impact of the OXA-48 IncI plasmid on virulence and bacterial fitness. Front Microbiol 2019; 10: 2509.

24 Boel JB, Antsupova V, Knudsen JD et al. Intravenous mecillinam compared with other β-lactams as targeted treatment for Escherichia coli or Klebsiella spp. bacteraemia with urinary tract focus. J Antimicrob Chemother 2021; 76: 206–11.

25 Jansaker F, Frimodt-Moller N, Benfield TL et al. Mecillinam for the treatment of acute pyelonephritis and bacteremia caused by Enterobacteriaceae: a literature review. Infect Drug Resist 2018; 11: 761–71.

26 Kern MB, Frimodt-Moller N, Espersen F. Urinary concentrations and urine ex-vivo effect of mecillinam and sulphamethizole. Clin Microbiol Infect 2004; 10: 54–61.

27 Roholt K, Nielsen B, Kristensen. Pharmacokinetic studies with mecillinam and pivmecillinam. Chemotherapy 1975; 21: 146–66.

28 Roholt K. Pharmacokinetic studies with mecillinam and pivmecillinam. J Antimicrob Chemother 1977; 3 Suppl B: 71–81.

29 Hopkins KL, Meunier D, Mustafa N et al. Evaluation of temocillin and meropenem MICs as diagnostic markers for OXA-48-like carbapenemases. J Antimicrob Chemother 2019; 74: 3641–3.

30 Layios N, Visee C, Mistretta V et al. Modelled target attainment after temocillin treatment in severe pneumonia: systemic and epithelial lining fluid pharmacokinetics of continuous versus intermittent infusions. Antimicrob Agents Chemother 2022; 66: e0205221.

31 Kresken M, Pfeifer Y, Werner G. Temocillin susceptibility in Enterobacteriaceae with an ESBL/AmpC phenotype. Int J Antimicrob Agents 2021; 57: 10623.

32 Livermore DM, Hope R, Fagon EJ et al. Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. J Antimicrob Chemother 2006; 57: 1012–4.

33 Wagenlehner FM, Munch F, Pilatz A et al. Urinary concentrations and antibacterial activities of nitroxoline at 250 milligrams versus trimethoprim at 200 milligrams against uropathogens in healthy volunteers. Antimicrob Agents Chemother 2014; 58: 713–21.

34 Wijma RA, Huttner A, Koch BCP et al. Review of the pharmacokinetic properties of nitrofurantoin and nitroxoline. J Antimicrob Chemother 2018; 73: 2916–26.

35 Forstner C, Kwetkat A, Makarewicz et al. Nitroxoline in geriatric patients with lower urinary tract infection fails to achieve microbiologic eradication: a noncomparative, prospective observational study. Clin Microbial Infect 2018; 24: 434–5.

36 Mischnik A, Baumert P, Hamprecht A et al. Susceptibility to penicillin derivatives among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. Diagn Microbiol Infect Dis 2017; 87: 71–3.