Universality of finite time disentanglement

Raphael C. Drumond, Cristhiano Duarte, Marcelo Terra Cunha, and M. C. Nemes

1Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, CP 702, CEP 30123-970, Belo Horizonte, Minas Gerais, Brazil.
2Departamento de Matemática, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais, Brazil.
3Departamento de Matemática Aplicada, Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, CEP 13083-970, Campinas, São Paulo, Brazil.
4Departamento de Física, Universidade Federal de Minas Gerais, CP 702, CEP 30123-970, Belo Horizonte, MG - Brazil.

(Dated: December 14, 2015)

In this paper we investigate how common is the phenomenon of Finite Time Disentanglement (FTD) with respect to the set of quantum dynamics of bipartite quantum states with finite dimensional Hilbert spaces. Considering a quantum dynamics from a general sense, as just a continuous family of Completely Positive Trace Preserving maps (parametrized by the real time variable) acting on the space of the bipartite systems, we conjecture that FTD happens for all dynamics but those when all maps of the family are induced by local unitary operations. We prove this conjecture valid for two important cases: i) when all maps are induced by unitaries; ii) for pairs of qubits, when all maps are unital. Moreover, we prove some general results about unitaries/CPTP maps preserving product/pure states.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.Bg, 42.50.Pq

I. INTRODUCTION

Following the definition of entanglement as a resource for non-local tasks, as a consequence being quantified [1], the time evolution of this quantity was the subject of intense interest. Typically a composite system will lose its entanglement whenever its parts interact with an environment. It is of great interest then for practical implementations of quantum information protocols, that require entanglement, to understand how the amount of entanglement behaves in time [2].

One characteristic of entanglement dynamics that drew a lot of attention was the possibility of an initially entangled state to lose all its entanglement in a finite time, instead of asymptotically. The phenomenon was initially called “entanglement sudden death” [3], or Finite Time Disentanglement (FTD). The simplest explanation for this fact is essentially topological: for finite dimensional Hilbert spaces, the set of separable states, where entanglement is null, has non-empty interior, i.e., there are “balls” entirely consisted of separable states. Therefore, whenever an initially entangled state approaches a separable state in the interior of S, and given that the dynamics of the state is continuous, it must spend at least a finite amount of time inside the set, so entanglement will be null during this time interval [4].

In references [3, 4], the authors explored how typical the phenomenon is (for several paradigmatic dynamics of two qubits and two harmonic oscillators) when one varies the initial states for a fixed dynamics. Here we shall explore how typical it is with respect to the dynamics themselves. More explicitly, given a dynamics for a composite system, should one expect to find some initially entangled state exhibiting FTD? Here we argue that the answer is generally positive.

The paper is organized as follows. In Section II we discuss about the generic existence of FTD and illustrate this discussion with a well-known example of a family of maps. In Section III we go to the technical Lemmas and Theorems already used on Section II. We close this work with Section IV discussing further questions and open problems.

II. FINITE TIME DISENTANGLEMENT

In a very broad sense, we can think a (continuous time) quantum dynamical system as given by a family of completely positive trace preserving (CPTP) maps \(\Lambda_t \), parametrized by the real time variable \(t \) for, say, \(t \geq 0 \). If a quantum system is in some state given by a density operator \(\rho_0 \) at \(t = 0 \), for any \(t \geq 0 \) we have the system at the quantum state \(\rho(t) = \Lambda_t(\rho_0) \). Of course, one must have \(\Lambda_0 = I \), where \(I \) is the identity map. Although in some cases a discontinuous family of maps can be a good approximation to describe a process (for example, when a very fast operation is performed on a system, or when the system will not be accessed during some time interval), strictly speaking the family of maps should be at least continuous.
Generally speaking, fixed some dynamics Λ_t, we say that it shows finite time disentanglement (FTD) if there exists an entangled state ρ_{ent} and a time interval (a, b), with $0 < a < b \leq \infty$ such that $\Lambda_t(\rho_{\text{ent}})$ is a separable state for all $t \in (a, b)$. In Refs. [1, 2], the authors point out that the occurrence of such effect is a natural consequence of the set of separable states S having a non-empty interior. Indeed, if an initially entangled state is mapped at some time t to a state in the interior of S, given the dynamics continuity, it must spend some finite time inside S to reach that state. During that time interval entanglement is null, although initially the system had some entanglement. We shall formally state this fact for future reference:

Proposition 1. If a bipartite quantum dynamical system is such that, for some $t > 0$, there exists an initially entangled state ρ_{ent} where its evolved state at time t is in the interior of the separable states, there is FTD.

This proposition is one of the main reasons of why we believe the following general conjecture is valid:

Conjecture 2. Given a bipartite quantum dynamical system with finite dimensional Hilbert space $\mathcal{H}_A \otimes \mathcal{H}_B$ and a continuous family of CPTP maps Λ_t, there is no finite time disentanglement if, and only if, for all $t > 0$ there exists unitary operations $U_{A,t}$ and $U_{B,t}$ acting on \mathcal{H}_A and \mathcal{H}_B, respectively, such that $\Lambda_t(\cdot) = (U_{A,t} \otimes U_{B,t})(\cdot)(U_{A,t} \otimes U_{B,t})^*$.

In physical terms, this says that FTD do not takes place only in the extremely special situation where the pair of systems is closed (or at most interacting with a classical external field) and non-interacting. That is, whatever interaction they may have, with each other or with a third quantum system (such as a reservoir), FTD takes place for some entangled state. From now on, we denote the family of dynamics contained in Conjecture 2 by $\mathcal{F}_{\mathcal{H}_A, \mathcal{H}_B}$, that is:

$$\mathcal{F}_{\mathcal{H}_A, \mathcal{H}_B} = \{\{\Lambda_t(\cdot)\}_{t \geq 0}; \{\Lambda_t(\cdot)\}_{t \geq 0} \text{ is continuous and} \quad \Lambda_t(\cdot) = (U_{A,t} \otimes U_{B,t})(\cdot)(U_{A,t} \otimes U_{B,t})^*\}. \quad (1)$$

Once again, the intuition behind Conjecture 2 is geometrical. Figure (a) shows a pictorial representation of the set of quantum states when the Hilbert space is finite dimensional, with the distinguishing property of the set of separable states having non-empty interior. In Figure 2 the arrows indicates the mapping of initial states to their corresponding evolved ones, on an instant of time $t > 0$. Note that all CPTP maps must have at least one fixed point, and all other states can not increase their distance to that fixed one, therefore for each instant of time $t \geq 0$ we can identify a “direction” for the flow of states. It is expected that if the flow is directed towards a separable state, some entangled states will be mapped inside the separable set (2a). But even in the case where the flow is directed towards an entangled one, if the displacement is small enough, some entangled state located “behind” the set of separable states will be mapped inside it (2b).

Below we prove this statement under some special conditions.

Closed systems

We start with the additional assumption that the bipartite system dynamics is induced by unitary operations for all $t > 0$ [there is some U_t acting on \mathcal{H}_{AB} such that $\Lambda_t(\cdot) = U_t(\cdot)U_t^*$]. That is, the pair of systems may have any interaction with each other and they can even interact with classical external sources (for instance, their
Hamiltonian may vary in time due to an external control of some of its parameters). Under such conditions, FTD is a consequence of Proposition 11 above and Theorem 11 (discussed in Section III):

Theorem 3. If a bipartite system have dynamics given by \(\Lambda_t(\cdot) = U_t(\cdot)U_t^* \) for all \(t > 0 \), there is no FTD if, and only if, \(\{\Lambda_t\}_{t \geq 0} \in \mathcal{F}_{H_A,H_B} \).

Proof. Indeed, if the family \(\Lambda_t \) is such that, for some \(t > 0 \), \(U_t \) is not a local unitary operation, there exists an entangled state \(|\psi_E\rangle \) such that \(|\psi_P\rangle = U_t|\psi_E\rangle \) is a product state (see Corollary 12). Take small enough \(0 < \lambda < 1 \) such that \(\rho_E = \lambda \rho_{dA|dA} + (1 - \lambda) |\psi_E\rangle \langle \psi_E| \) is still an entangled state. We then have that \(\Lambda(\rho_E) = \lambda \rho_{dA|dA} + (1 - \lambda) |\psi_P\rangle \langle \psi_P| \) is a state in the interior of the set of separable states (a convex combination of an arbitrary point of a convex set with a point in the interior of it, results in an element also in its interior [7]). By Proposition 11 FTD takes place. \(\square \)

Pair of qubits

Physically, although Theorem 3 allows for very general interactions between the systems, it is restrictive with respect to their interaction with their environment, since this environment must be effectively classical. Here we greatly relax this restriction, on the expense of diminishing the range of quantum systems considered.

Theorem 4. If a bipartite system with Hilbert space \(\mathcal{H}_{AB} \), where \(\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B) = 2 \), have a dynamics such that \(\Lambda_t(1) = 1 \) for all \(t \geq 0 \) (i.e. each map is unital), there is no FTD if, and only if, \(\{\Lambda_t\}_{t \geq 0} \in \mathcal{F}_{H_A,H_B} \).

Proof. For an arbitrary instant of time \(t \), we have the following four possibilities for the corresponding CPTP map \(\Lambda_t \): i) it is induced by a local unitary operation; ii) it is induced by a composition of a local unitary operation with the SWAP operator; iii) it is induced by a unitary operation which is neither local nor the composition of a local unitary with the SWAP operator; iv) it is not induced by any unitary. Let us look to each situation:

i) Of course, if this holds for all \(t > 0 \), we do not have FTD.

iii) Here we can just apply Theorem 3 to show that there is FTD.

iv) We can find a maximally entangled state \(\rho_E \) such that \(\Lambda_t(\rho_E) \) is mixed (see Theorem 10). If \(\lambda_{-}(\rho) \) is the smallest eigenvalue of the partial transposition of \(\rho \), we have that \(\Lambda_{-}(\rho_E) = -\frac{1}{2} \) and \(\Lambda_{-}[\Lambda(\rho_E)] = \delta > -\frac{1}{2} \) (see Ref. 8). We can choose \(0 < p < 1 \) such that \(\lambda_p[\rho_E + (1 - p)\frac{1}{2}] = p(-\frac{1}{2} - \frac{1}{4}) + \frac{1}{2} < 0 \) and \(\lambda_p[\rho_E + (1 - p)\frac{1}{2}] = p(\frac{1}{2} - \frac{1}{4}) + \frac{1}{2} > 0 \). That is, the initial state \(\rho_m[\rho_E + (1 - p)\frac{1}{2}] \) is entangled but its time evolved state at \(t \), \(\rho[A_t(\rho_E) + (1 - p)\frac{1}{2}] \) is in the interior of the set of separable states. By Proposition 11 we have FTD.

Example: Markovian dynamics

A Markovian dynamics [9] is distinguished by a semi-group property satisfied by the family of CPTP maps:

\[
\Lambda_{t+t'} = \Lambda_t \circ \Lambda_{t'},
\]

for all \(t, t' \geq 0 \). It holds then [10] that the dynamics can be equivalently described by a differential equation (a Lindblad equation):

\[
\frac{d\rho(t)}{dt} = -i[H,\rho] + \sum_{i=1}^{N} \left(A_i \rho A_i^* - \frac{1}{2} \{A_i^* A_i, \rho\} \right),
\]

where \(H \) is self-adjoint while \(A_i \) are linear operators.

Lindbladian equations can describe a plethora of physical phenomena, such as the dissipation of electromagnetic field modes of a cavity, spontaneous emission of atoms, spin dephasing due to a random magnetic field and so on. Therefore, despite the fact that the semi-group condition is somewhat restrictive, it is satisfied by many relevant quantum systems. The first term in the r.h.s. generates a unitary evolution and can usually be interpreted as the Hamiltonian evolution of the isolated system. The term involving the operators \(A_i \) is usually called dissipator, being responsible for the contractive part of the dynamics.

When an operator \(A_i \) is proportional to the identity it does not contribute to the dynamics. Moreover, the dynamics will preserve the purity of initial states if, and only if, all operators \(A_i \) are of such kind (that is, the dynamics is Hamiltonian):

Lemma 5. For a solution of Eq. (3) with initial condition \(|\psi\rangle \langle \psi| \), it holds that \(\lim_{t \to 0} \frac{d\text{Tr}[\rho(t)]}{dt} = 0 \) for all \(|\psi\rangle \) and only if, \(A_i = \lambda_i I \) for \(i = 1, ..., N \).

Proof. Indeed, for \(t > 0 \)

\[
\frac{d\text{Tr}[\rho(t)]}{dt} = 2\text{Tr} \frac{d\rho(t)}{dt} = 2\text{Tr} \left(-i[H,\rho] + \sum_{i=1}^{N} A_i \rho A_i^* - \frac{1}{2} \{A_i^* A_i, \rho\} \right)
\]

Since \(\lim_{t \to 0} \rho = |\psi\rangle \langle \psi| \), it follows that:

\[
\lim_{t \to 0} \frac{d\text{Tr}[\rho(t)]}{dt} = 2 \sum_{i=1}^{N} \left(\|A_i|\psi\rangle\langle \psi|\|^2 - \|A_i^*|\psi\rangle\langle \psi|\|^2 \right).
\]
By the Cauchy-Schwarz inequality,
\[|\langle \psi | A_i | \psi \rangle|^2 \leq ||\psi||^2 ||A_i|\psi\rangle^2 = ||A_i|\psi\rangle^2,\]
we can conclude the r.h.s of eq. (3) is zero iff all terms in the sum are zero and \(|\psi\rangle \propto A_i |\psi\rangle \) for every \(i = 1, \ldots, N \). These proportionality relations holds for all \(|\psi\rangle \) if, and only if, all \(A_i \) are proportional to the identity operator.

The above lemma shows that, for every \(t > 0 \), the CPTP map defined by eq. (3) is not induced by a unitary operation. It is also easy to check that every CPTP maps given by eq. (3) is unital as long as \(\sum_{i=1}^{N} (A_i A_i^* - A_i^* A_i) = 0 \). With this in hand, by Theorem 4 we can state:

Corollary 6. If a bipartite system with Hilbert space \(\mathcal{H}_{AB} \), where \(\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B) = 2 \), have a dynamics described by eq. (3), where some \(A_i \) is not a multiple of the identity and \(\sum_{i=1}^{N} (A_i A_i^* - A_i^* A_i) = 0 \), there is FTD.

III. UNITAL PURE STATE PRESERVING MAPS AND PRODUCT PRESERVING UNITARIES

In this section we prove some results about CPTP maps, such as the characterization of unital and pure state preserving ones, which were used in the Section II.

Consider a bipartite quantum system with finite dimensional Hilbert space \(\mathcal{H} \). We say that a CPTP map \(\Lambda \), acting on the set of all density operators \(\mathcal{D}(\mathcal{H}) \), is pure state preserving if \(\Lambda(|\psi\rangle\langle\psi|) \) is a pure state for every \(|\psi\rangle \). Trivial examples of such maps are those induced by unitary operations \(\Lambda(\rho) = U\rho U^\dagger \), for \(U \) unitary acting on \(\mathcal{H} \) and the constant maps \(\Lambda(\rho) = |\phi_0\rangle\langle\phi_0| \) where \(|\phi_0\rangle \) is a fixed state. Moreover a CPTP map is said to be unital if it maps the maximally mixed state on itself.

Theorem 7. Every pure state preserving unital map \(\Lambda: \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H}) \), where \(\dim(\mathcal{H}) = d < \infty \), is induced by a unitary operation.

Proof. Take a Naimark dilation of \(\Lambda \), that is, a unitary \(U \) acting on a larger space \(\mathcal{H} \otimes \mathcal{R} \) and a fixed vector \(|R\rangle \in \mathcal{R} \), such that \(\Lambda(\rho) = \text{Tr}_\mathcal{R}[U(\rho \otimes |R\rangle\langle R|)U^\dagger] \) for all \(\rho \in \mathcal{D}(\mathcal{H}) \).

It must be the case that \(U |\phi\rangle \otimes |R\rangle \) is a product vector for all \(|\phi\rangle \in \mathcal{H} \), since otherwise \(\text{Tr}_\mathcal{R}[U(|\phi\rangle\langle\phi| \otimes |R\rangle\langle R|)U^\dagger] \) would not be a one-dimensional projector and \(\Lambda \) would not preserve pure states.

Now, if \(\{|\phi_{ij}\rangle\}_{j=1}^{d} \) is an orthonormal basis, we have that \(\Lambda(|\phi_i\rangle\langle\phi_j|) = P_j \) for some one-dimensional projectors \(P_j \). From \(\Lambda \) being unital, it holds that \(\sum_{j=1}^{d} P_j = I \), so the projectors \(P_j \) must be mutually orthogonal.

With the last two paragraphs in mind it must be true that, for \(j = 1, \ldots, d \), there are normalized vectors \(|\psi_j\rangle \in \mathcal{H} \) and \(|R_j\rangle \in \mathcal{R} \), such that \(U |\phi_j\rangle \otimes |R_j\rangle = |\psi_j\rangle \otimes |R_j\rangle \).

Moreover, the set \(\{|\psi_j\rangle\}_{j=1}^{d} \) must be orthonormal. On the other hand, for \(j = 2, \ldots, d \),
\[U(|\phi_1\rangle + |\phi_j\rangle) \otimes |R_j\rangle = |\psi_1\rangle \otimes |R_1\rangle + |\psi_j\rangle \otimes |R_j\rangle. \]

For the vectors on the r.h.s of this equation being product, given that \(|\phi_1\rangle \) is orthogonal to \(|\phi_j\rangle \), it must hold that \(|R_j\rangle = z_j |R_1\rangle \) for some \(z_j \in \mathbb{C} \) of unity modulus. If we define a unitary \(V \) acting on \(\mathcal{H} \) by \(V |\phi_j\rangle = z_j |\psi_j\rangle \) for \(j = 1, \ldots, d \), we get \(\Lambda(\rho) = V \rho V^\dagger \) for all density operators \(\rho \).

Lemma 8. Let \(\mathcal{H}_A, \mathcal{H}_B \) be two bi-dimensional Hilbert spaces. If \(|\phi\rangle, |\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \), and \(|\phi\rangle + e^{i\theta} |\psi\rangle \) is a product vector for all \(\theta \in \mathbb{R} \), then \(|\phi\rangle \) and \(|\psi\rangle \) are product too.

Proof. Let be \(|\psi\rangle = a |00\rangle + b |11\rangle \) a Schmidt decomposition for \(|\psi\rangle \), and \(|\phi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle \) the expression for \(|\phi\rangle \) with respect to the basis \(\{|00\rangle, |01\rangle, |10\rangle, |11\rangle\} \). For arbitrary \(z \in \mathbb{C} \), we can define the family of vectors:
\[|z\rangle = |\phi\rangle + z |\psi\rangle = (az + \alpha) |00\rangle + (bz + \delta) |11\rangle + \beta |01\rangle + \gamma |10\rangle. \]

For each \(z \), the above state factorizes if, and only if, the following determinant is zero:
\[D = \begin{vmatrix} (az + \alpha) & \beta \\ (bz + \delta) & \gamma \end{vmatrix} = abz^2 + (a\delta + b\alpha)z + a\alpha + \beta \gamma. \]

If \(a, b \neq 0 \) (i.e., \(|\psi\rangle\) is entangled), \(D \) can not be identically zero for all values of \(z \). Therefore, \(|\psi\rangle\) must be product. By similar reasoning, we conclude \(|\phi\rangle\) is also product.

Lemma 9. Let \(\mathcal{H}_A, \mathcal{H}_B \) be two Hilbert spaces with dimension \(d \geq 2 \). If \(|\phi\rangle, |\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \), and \(|\phi\rangle + e^{i\theta} |\psi\rangle \) is a product state for all \(\theta \in \mathbb{R} \), then \(|\phi\rangle\) and \(|\psi\rangle\) are product too.

Proof. Let us argue by contradiction. Suppose that \(|\psi\rangle\) is entangled, thus in the Schmidt decomposition \(|\psi\rangle = \sum_{i=1}^{d} \psi_i |I_i|\rangle \) there are, at least two indexes \(I_1, I_2 \) such that \(\psi_{I_1}, \psi_{I_2} \neq 0 \). Writing \(|\phi\rangle = \sum_{j,k} \phi_{k,j} |k_j\rangle \) in the same basis as \(|\psi\rangle\), and defining \(\psi_{k,j} = \psi_{k} \delta_{k,j} \), we get:
\[\forall \theta \in \mathbb{R} : |\theta\rangle = |\psi\rangle + e^{i\theta} |\phi\rangle = \sum_{k,j} (\psi_{k,j} + e^{i\theta} \phi_{k,j}) |k_j\rangle. \]

Therefore \(|\theta\rangle\) is product, by hypothesis, for all \(\theta \in \mathbb{R} \). Projecting \(|\theta\rangle\) at the subspace generated by \(\{|l_1 I_1\rangle, |l_1 I_2\rangle, |l_2 I_1\rangle, |l_2 I_2\rangle\} \) we obtain:
\[|\xi_\theta\rangle = \sum_{k,j \in \{l_1 I_1\}} (\psi_{k,j} + e^{i\theta} \phi_{k,j}) |k_j\rangle. \]

Since \(|\xi_\theta\rangle\) \(\in \mathbb{C}^2 \otimes \mathbb{C}^2 \) is product for all values of \(\theta \), we can apply Lemma 8 and obtain the desired contradiction.
Theorem 10. If Λ is a unital map acting on $\mathcal{H}_{AB} = C^2 \otimes C^2$ and preserves the purity of maximally entangled states, then Λ is induced by an unitary operation.

Proof. Take a representation of Λ in terms of a unitary U acting on a larger space $\mathcal{H}_R = \mathcal{H}_R \otimes \mathcal{H}_R$, such that

$$\Lambda(\rho) = \text{Tr}_R[U(\rho \otimes |R\rangle\langle R|)U^*],$$

where $|R\rangle \in \mathcal{H}_R$. With $U(|00\rangle \otimes |R\rangle) = |\psi\rangle$ and $U(|11\rangle \otimes |R\rangle) = |\phi\rangle$, we have, for all $\theta \in \mathbb{R}$:

$$(|00\rangle + e^{i\theta}|11\rangle) \otimes |R\rangle \xrightarrow{U} |\psi\rangle + e^{i\theta}|\phi\rangle.$$

As Λ preserves the purity of $(|00\rangle + e^{i\theta}|11\rangle)$, the state $|\psi\rangle + e^{i\theta}|\phi\rangle$ is product for all θ, with respect to $\mathcal{H}_{AB} \otimes \mathcal{H}_R$. Lemma 9 implies that $|\psi\rangle$ and $|\phi\rangle$ are both product, that is:

$$|00\rangle \otimes |R\rangle \xrightarrow{U} |\psi_{00}\rangle \otimes |R_{00}\rangle \quad (8a)$$

$$|11\rangle \otimes |R\rangle \xrightarrow{U} |\phi_{11}\rangle \otimes |R_{11}\rangle. \quad (8b)$$

Let $\mathfrak{B} = \{|\Phi_{\pm}\rangle, |\Psi_{\pm}\rangle\}$ be the Bell basis in \mathcal{H}_{AB}. The map Λ satisfies:

$$I = \Lambda(I) = \Lambda(|\Phi_{+}\rangle \langle \Phi_{+}|) + |\Phi_{-}\rangle \langle \Phi_{-}| + |\Psi_{+}\rangle \langle \Psi_{+}| + |\Psi_{-}\rangle \langle \Psi_{-}|).$$

Since the images $\Lambda(|\Phi_{\pm}\rangle \langle \Phi_{\pm}|)$ and $\Lambda(|\Psi_{\pm}\rangle \langle \Psi_{\pm}|)$ are 4 unidimensional projectors (Λ preserves purity of maximally entangled states) that sum up to the identity, they must be mutually orthogonal.

Observe that the combinations $(|\psi_{00}\rangle \otimes |R_{00}\rangle) \pm (|\psi_{11}\rangle \otimes |R_{11}\rangle)$ must be product with respect to $\mathcal{H}_{AB} \otimes \mathcal{H}_R$, because they are images of $|\Phi_{\pm}\rangle \otimes |R\rangle$ under U. We state that $|R_{00}\rangle = e^{i\gamma} |R_{11}\rangle$.

Otherwise, $|\psi_{00}\rangle \propto |\psi_{11}\rangle$, and then $\Lambda(|\Phi_{+}\rangle \langle \Phi_{+}|) = |\Psi_{00}\rangle \langle \Psi_{00}| = \Lambda(|\Phi_{+}\rangle \langle \Phi_{-}|)$ contradicting the fact that $\Lambda(|\Phi_{\pm}\rangle \langle \Phi_{\pm}|)$ are mutually orthogonal. Again, from

$$|01\rangle \otimes |R\rangle \xrightarrow{U} |\psi_{01}\rangle \otimes |R_{01}\rangle,$$

$$|10\rangle \otimes |R\rangle \xrightarrow{U} |\phi_{10}\rangle \otimes |R_{10}\rangle,$$

we derive that $|R_{01}\rangle = e^{i\delta} |R_{10}\rangle$. Now, define $|\xi\rangle = a|\Phi_{+}\rangle + b|\Phi_{-}\rangle + c|\Psi_{+}\rangle + d|\Psi_{-}\rangle$, for a suitable choice of constants $a, b, c, d \neq 0$ such that $|\xi\rangle$ is maximally entangled. Therefore

$$U(|\xi\rangle \otimes |R\rangle) = (a|\psi_{00}\rangle + be^{-i\gamma}|\psi_{11}\rangle) \otimes |R_{00}\rangle + (c|\psi_{10}\rangle + de^{-i\delta}|\psi_{10}\rangle) \otimes |R_{10}\rangle,$$

and then $|R_{00}\rangle = e^{i\beta} |R_{01}\rangle$. We can define a unitary operator V, acting on \mathcal{H}_{AB}, given by:

$$|00\rangle \xrightarrow{V} |\psi_{00}\rangle,$$

$$|11\rangle \xrightarrow{V} e^{-i\gamma} |\psi_{11}\rangle,$$

$$|01\rangle \xrightarrow{V} e^{i(\delta-\beta-\gamma)} |\psi_{01}\rangle,$$

$$|10\rangle \xrightarrow{V} e^{-i(\delta+\gamma)} |\psi_{10}\rangle.$$

With this definition, we have $\Lambda(\cdot) = V(\cdot)V^*$.

When $\mathcal{H}_A = \mathcal{H}_B$, we can define the so-called SWAP operator S, by $S(|\phi\rangle \otimes |\psi\rangle) = |\psi\rangle \otimes |\phi\rangle$. If the Hilbert spaces are not the same, but have the same dimension, we can take any isomorphism $\Psi : \mathcal{H}_A \rightarrow \mathcal{H}_B$ between them and define the operators $S_{\Psi} = (\Psi^{-1} \otimes I_B) \circ S \circ (\Psi \otimes I_B)$, where I_B is the identity operator on \mathcal{H}_B, i.e., $S_{\Psi} |\phi\rangle \otimes |\psi\rangle = \Psi^{-1}(|\psi\rangle) \otimes \Psi(|\phi\rangle)$ which we shall also denote by SWAP.

The theorem below characterizes unitary operations acting on composite Hilbert spaces that preserve product vectors:

Theorem 11. Let U be a unitary operation acting on a Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_B$, where $\mathcal{H}_{A(B)}$ has finite dimension $d_{A(B)} \geq 2$. Then U is product preserving if, and only if, it is a local unitary operation or, for the case $\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B)$, a composition of a local unitary operation with a SWAP operator.

Proof. Consider an orthonormal basis in each space $\{ |j\rangle \}_{j=0}^{d_{A(B)}-1}$, $\{ |k\rangle \}_{k=0}^{d_{A(B)}-1}$. The unitary operation must map states $|j\rangle_A \otimes |k\rangle_B$ into elements $|\psi_{jk}\rangle_A \otimes |\phi_{jk}\rangle_B$, which are mutually orthogonal. Since the images of the product vectors $|j\rangle_A + |j'\rangle_A \otimes |k\rangle_B$, that is $|\psi_{jk}\rangle_A \otimes |\phi_{jk}\rangle_B + |\psi_{j'k}\rangle_A \otimes |\phi_{j'k}\rangle_B$ are also product vectors, we must have one of two options

$$|\psi_{jk}\rangle_A \perp |\psi_{j'k}\rangle_A \quad \text{and} \quad |\phi_{jk}\rangle_B \propto |\phi_{j'k}\rangle_B,$$

or

$$|\phi_{jk}\rangle_B \perp |\phi_{j'k}\rangle_B \quad \text{and} \quad |\psi_{jk}\rangle_A \propto |\psi_{j'k}\rangle_A.$$

For a fixed k, if one of the options is valid for a pair j and j', it must be valid for all such pairs. Indeed, suppose that the first option is valid for, say, $j = 0$ and $j' = 1$ and the second for $j = 0$ and $j' = 2$. The image of the product vector $(|1\rangle_A + |2\rangle_A) \otimes |k\rangle_B$, given by $|\psi_{1k}\rangle_A \otimes |\phi_{1k}\rangle_B + |\psi_{2k}\rangle_A \otimes |\phi_{2k}\rangle_B$ would be an entangled vector, since we would have $|\psi_{1k}\rangle_A \propto |\psi_{1k}\rangle_A \propto |\psi_{0k}\rangle_A, |\phi_{1k}\rangle_B \propto |\phi_{0k}\rangle_B$ and $|\phi_{2k}\rangle_B \propto |\phi_{0k}\rangle_B$. Therefore, $|\psi_{1k}\rangle_A \perp |\psi_{2k}\rangle_A \propto |\psi_{1k}\rangle_A,$ (14a)

or

$$|\phi_{jk}\rangle_B \perp |\phi_{j'k}\rangle_B \quad \text{and} \quad |\psi_{jk}\rangle_A \propto |\psi_{j'k}\rangle_A.$$

Again, similarly to what we have above, if one of the option is valid for a pair k and k', for fixed j, it must be valid for all such pairs. But given that (13a) is true, now only (14a) can also be. Indeed, if (14b) were true, we would have, for example, the subspace generated by the vectors $\{ |j\rangle_A \otimes |0\rangle_B, |0\rangle_A \otimes |k\rangle_B \}$, of dimension $\dim(\mathcal{H}_A) + \dim(\mathcal{H}_B) - 1$, mapped to the subspace...
\(\mathcal{H}_A \otimes |\phi_{00}\rangle \), of dimension \(\dim(\mathcal{H}_A) \), contradicting the fact the \(U \) is unitary.

Since we have that \(14b \) is true, we can write \(U |j\rangle_A \otimes |k\rangle_B = e^{i\theta_{jk}} |\psi_{0j}\rangle_A \otimes |\phi_{0k}\rangle_B \). Using this expression, and demanding that the states \((|j\rangle_A + |j'\rangle_A) \otimes (|k\rangle_B + |k'\rangle_B) \) are of the product form for all pairs \(j, j' \) and \(k, k' \), we obtain \(e^{i(\theta_{jk} + \theta_{j'k'})} = e^{i(\theta_{j'k} + \theta_{jk})} \). In particular, if \(k' = j' = 0 \), we get \(\theta_{jk} = \theta_{j0} + \theta_{0k} \) (mod 2\(\pi \)), since \(\theta_{00} = 0 \) by construction. Finally, we have \(U = U_A \otimes U_B \) with \(U_A |j\rangle_A = e^{i\theta_{j0}} |\psi_{0j}\rangle_A \) and \(U_B |k\rangle_B = e^{i\theta_{0k}} |\phi_{0k}\rangle_B \).

ii) Assume that \(14k \) is true. Note firstly that it is necessary to have \(\dim(\mathcal{H}_A) \geq \dim(\mathcal{H}_B) \) since, for fixed \(k \), we are varying over \(\dim(\mathcal{H}_A) \) orthonormal vectors on \(A \), which therefore give rise to a set of orthonormal vectors \(|\phi_{jk}\rangle_B \) in \(\mathcal{H}_B \). So \(U(|j\rangle_A \otimes |k\rangle_B) = e^{i\theta_{jk}} |\psi_{0j}\rangle_A \otimes |\phi_{0k}\rangle_B \).

Now only the option \(14b \) can be true, so again we have \(\dim(\mathcal{H}_B) \geq \dim(\mathcal{H}_A) \), and therefore \(\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B) \), which allows us to write \(U(|j\rangle_A \otimes |k\rangle_B) = e^{i\theta_{jk}} |\psi_{0j}\rangle_A \otimes |\phi_{0k}\rangle_B \). Considering again that the image of the states \((|j\rangle_A + |j'\rangle_A) \otimes (|k\rangle_B + |k'\rangle_B) \) must be product vectors, we have \(\theta_{jk} = \theta_{j0} + \theta_{0k} \) (mod 2\(\pi \)). In other words \(U = (U_A \otimes U_B) \circ S_\Psi \), where \(U_A |j\rangle_A = e^{i\theta_{j0}} |\psi_{0j}\rangle \), \(U_B |k\rangle_B = e^{i\theta_{0k}} |\phi_{0k}\rangle \) and \(\Psi |k\rangle_A = |\phi_{k}\rangle_B \).

Putting these results together we have the following:

Corollary 12. If \(U \) is a unitary operator acting on a Hilbert space \(\mathcal{H}_A \otimes \mathcal{H}_B \), where \(\mathcal{H}_A(B) \) has finite dimension and preserves entangled states, then it is a local unitary operation or, for the case \(\dim(\mathcal{H}_A) = \dim(\mathcal{H}_B) \), a composition of a local unitary operation with a SWAP operator.

Proof. If \(U \) preserves entangled states, its inverse \(U^{-1} \) preserves product states. From Theorem 11 there are unitaries \(V_A \) and \(V_B \) acting on \(\mathcal{H}_A \) and \(\mathcal{H}_B \), respectively, such that \(U^{-1} = V_A \otimes V_B \) or \(U^{-1} = S \circ V_A \otimes V_B \), therefore \(U = U_A \otimes U_B \) or \(U = U_A \otimes U_B \circ S \), with \(U_A = V_A^{-1} \) and \(U_B = V_B^{-1} \).

IV. DISCUSSION

Although we could not prove Conjecture 2 in its full generality, we manage to do it for some large and important families of quantum dynamics. They include all possible dynamics for a bipartite closed system, whatever interaction the parts might have and whatever time variation their Hamiltonian may have. For qubits a much larger class of dynamics possibilities were considered, only requiring a technical condition (unitarity) on CPTP maps describing the time evolution. Since the proof for qubits seems quite technical and the geometric ingredients are the same for other finite dimensions, the Conjecture that the only class of bipartite dynamics not to show FTD is the local unitaries must hold, but still demands a final proof.

The requirement of finite dimensional Hilbert spaces seems to be a common feature. Indeed, the geometrical insight is based on the fact that the set of separable states has non-empty interior, which ceases to be true whenever one of the Hilbert spaces is of infinite dimension. Of course, even in that case, where generically one does not expect FTD, many physically relevant dynamics actually can show it, such as those preserving Gaussian states.

Other situation where topology changes, and consequently entanglement dynamics changes, is when one restricts to pure states. There, the set of separable states (indeed, product states) has empty interior. For these systems, FTD can only happen if “hand tailored”, e.g.: starting from an entangled state, some family of global unitaries is applied up to a time when the state is product, from this time on, only local unitaries are applied. This is clearly not generic in the set of dynamics.

As a last commentary, it is natural to remember that for practical implementations of quantum information processing, it is important to fight against FTD. Our results about the generically of FTD do not make this fight impossible. Even for dynamics where FTD does happen, is it natural to search for initial states where can be avoided, or, at least, delayed.

Acknowledgments

We thank Marcelo F. Santos for interesting discussions and CNPQ, FAPEMIG and CAPES for financial support. This work is part of the Brazilian National Institute of Quantum Information.

[1] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, *Phys. Rev. Lett.* **78**, 2275
[2] L. Aolita, F. de Melo, and L. Davidovich, *Rep. Prog. Phys.* **78**, 042001 (2015)
[3] K. Życzkowski, P. Horodecki, M. Horodecki, and R. Horodecki, *Phys. Rev. A* **65**, 012101 (2001); T. Yu and J. H. Eberly, *Phys. Rev. B* **66**, 193306 (2002); L. Diósi, *Lect. Notes Phys.* **622**, 157 (2003); P. J. Dodd and J. J. Halliwell, *Phys. Rev. A* **69**, 052105 (2004); M. França Santos, P. Milman, L. Davidovich, and N. Zagury Phys. Rev. A **73** 040305(R) (2006).
[4] M. O. Terra Cunha, *New J. Phys.* **9** 237 (2007).
[5] R. C. Drumond and M. O. Terra Cunha, *J. Phys. A: Math. Theor.* **42** 285308 (2009).
[6] R. C. Drumond, L. A. M. Souza, and M. Terra Cunha *Phys. Rev. A* **82**, 042302 (2010).
[7] Rockafellar, R. Tyrrell, *Convex analysis* (Princeton university press, 1970).
[8] F.G.S.L. Brandão, *Phys. Rev. A* **72**, 022310 (2005); D. Cavalcanti, F.G.S.L. Brandão, and M.O. Terra Cunha,
[9] A. Rivas, S. F. Huelga and M. B. Plenio, Rep. Prog. Phys. 77 094001 (2014).
[10] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[11] R. Clifton and H. Halvorson, Phys. Rev. A, 61 012108 (1999).
[12] F. Benatti, R. Floreanini, and U. Marzolino, Phys. Rev. A, 85, 042329 (2012).
[13] U. Marzolino, Europhysics Letters, 104, 4 (2013).