Effect of Conductive Ink on Properties of Tactile Sensors

J. Volf, V. Novak, V. Ryzhenko
Czech University of Life Sciences Prague, Faculty of Engineering, Kamýcká 129, Prague 6, Czech Republic
Email: volf@tf.czu.cz

Abstract. The present paper deals with tactile sensors with circular electrodes in which conductive ink was used as a converter converting pressure into an electric signal. The dependence was studied on the thickness of the deposited ink layer and the properties were compared. Also the properties of identical tactile sensors in which a conductive elastomer Yokohama rubber CS57-7RSC was used were compared with those with conductive ink.

Keywords: Conductive Elastomer, Conductive Ink, Tactile Sensors and Transducers

1. Introduction

Up till now the conductive elastomer Yokohama rubber CS57-7RSC was used in the production of tactile sensors [1] - [6], [8]. Properties of different polymers are described in [9] - [10]. Due to some of its negative properties, and due to changes in the design of the Plantograf measuring system, we searched for another type of material for the conversion of the imposed pressure into an electric signal. The decision was to use conductive ink. Four types of conductive inks were obtained for the tests: KH WS SWCNT from the Korean firm KH Chemicals, Luxor from the Taiwanese firm Luxor, NGAP FI Ag-4101 from the Spanish firm NANOGAP and DZT-3K. The last type of ink was the only used in the measurements since owing to its composition it could form a relatively high-quality conductive layer. Carbon particles were used here as a filler. The other inks did not meet the requirements, either they were too thin and did not form a continuous layer or did not adhere to the substrate (first two, both water-based, inks) or were excessively conductive – the resistance was only in units of Ω. The filler in this case was silver (third ink).

2. Subject and Methods

Production of DZT-3K ink specimens

The selected DZT-3K ink was deposited on the surface of a PET foil and applied to the electrodes similarly as the conductive elastomer. The thickness of the selected PET foil was 0.3 mm. The ink was deposited on the foil by a TG 130 spray gun which can spray very low amounts of ink and enables fine control of spraying. A unique 12V Škoda 8P0012615A compressor originally used for inflating tyres was used as a compressor. Three thicknesses were selected of the deposited ink layer: 7 μm, 15 μm and 23 μm. The thicknesses were obtained by 6-fold, 12-fold and 18-fold repeated application. The spray applications were performed through a template made of the same foil with 3mm holes in view of the 2.5mm outer diameter of the circular electrodes. The thickness of the deposited ink layer was measured with a Mitutoyo SR44x1 digital micrometer with a measuring range of 0-25 mm and accuracy of 0.001 mm.

Shape of the measured electrodes

The dimensions of the measured electrodes are in Fig.1. The measurements were performed on a scanning matrix comprising circular electrodes with a 2.5mm diameter. The same sizes of the electrodes as in paper [8] were used to enable comparison of the properties of tactile sensors with a conductive elastomer with those with a conductive ink. Also the designation of
the electrodes was the same. The electrodes were placed on a Cuflex printed circuit board. Conductors were soldered to the outlets of lines and columns which enabled easy choice of a particular electrode. The electrodes are denoted accordingly to their marking “PD”: φE=2.5 mm, φd=0.1 mm, M=0.1 mm.

Fig.1. Dimensions of the measured electrodes.

Measurement method
Measurements of the properties of conductive ink were performed at a robotized workplace equipped with a Turbo Scara SR60 robot. Pressure was imposed by means of the vertical motion of the robot’s arm. A Hottinger DF2S-3 tensometer force sensor with a measuring tip with a φ3mm circular surface was fixed to the end of the robot’s arm. The foil with the deposited inks was placed on the electrode field. The measuring tip with its circular φ3mm surface, which is larger than the diameter of the electrodes, touched down on the surface of one tactile point and pressed on the conductive ink deposited on the foil against the circular electrodes via which the electric resistance of the conductive ink was measured. The pressure imposed on the electrodes was calculated from the known area of the surface of the measuring tip and the exerted force. The output voltage of the type DF2S-3 tensometer force sensor was measured by an Almemo 2890-9 Data Logger [7]. Frequency response of system is possible to measure by [11] eventually.

3. Results
The measured results for LD-type electrodes for all 3 thicknesses of the ink layers - 7 μm, 15 μm and 23 μm – were represented graphically. All measurements were repeated 10 times and the total (combined) measurement uncertainty was calculated and graphically represented by respective intervals for each measured value. In all diagrams both the loading cycle (triangle points) and the unloading cycle (round points) were repeated.

Fig. 2 presents this graphical result for the conductive ink of thickness 7 μm. Hysteresis is apparent in all electrodes, similarly as in the case when a conductive elastic material was used, however, it is much lower [8]. Initial insensitivity is apparent in all electrodes which are obviously caused by the force necessary for the touch-down of the foil with the deposited ink on the electrodes.

Fig. 3 gives the comparison of the dependence of the variation of resistance on the pressure during loading of LD-type electrodes for various thicknesses of the deposited ink layer. From the diagram it is apparent that maximum sensitivity is achieved for a 7μm thickness of the deposited ink.
The aim was to measure the effect of conductive ink on the properties of a tactile transducer. Conductive ink was used as a converter of force to electric resistance. Electrodes are used in the Plantograf V12 apparatus. Here, however, up till now a conductive elastomer was used. We measured PD-type electrodes with conductive ink. Three differently thick ink layers were used for the measurements and their effect determined on the variation of the electric resistance of ink in dependence on the exerted force. Four different types of conductive inks with various properties were tested. Carbon ink DZT-3K appeared to be most appropriate. When applied to the surface of the electrodes it had a very low resistance to mechanical stress and hence an alternative method was selected, i.e. deposition of the ink on a foil substrate which was then pressed against the surface of the electrode.

The dependence of the variation of electric resistance of ink on the magnitude of the load was performed with a Turbo Scara SR60 robot. The measuring electrodes showed best results for
a 7μm thick ink layer. Such a combination of electrodes and ink thicknesses gave the best sensitivity, resolution and a partially linear character. Higher thicknesses increased the conductivity of the sensor and consequently decreased its resolution. All measurements showed hysteresis caused predominantly by the inaccuracy of positioning of the robot and relaxation of the ink and foil.

Measurements proved that conductive ink can act as a force transducer converting force to electric resistance. Its application, however, is affected by a number of factors and selection of the most appropriate ink is not easy. A great problem with ink is its adherence and resistance to mechanical stress on the surface of the electrodes. The measurements are expected to continue with other types of conductive inks.

Acknowledgements

The measurements were carried out within the IGA project of the Faculty of Engineering, Czech University of Life Sciences in Prague.

References

[1] Volf J, Trinkl A, Novák M, Bilek J, Prikner P, Neuberger P. Plantograf V12 with Optimal Size Determination Sensor Electrodes and its Using for Pressure Distribution Between Tire and Road. In XX World Congress IMEKO, Busan, 2012, 1-4, ISBN 978-89-950000-5-2 95400.

[2] Volf J, Papežová S, Vlček J, Novák P. Gait Locomotion Analysing System for Relevant Measurement Pressure Cognition. In Proceedings ISHF, Lisbon: Faculdade de Motricidade Humana, 2007, 155-160, ISBN 978-972-735-145-9.

[3] Volf J, Vlček J, Papežová S, Novák P. Orthopaedic Investigation System For Medical Non-Invasive Diagnostics. In IMEKO - XVIII World Congress and IV. Brazilian Congress of Metrology, Rio de Janeiro: IMEKO, 2006.

[4] Volf J, Holy S, Vlcek J. Using of Tactile Transducer for Pressure Distribution Measurement on Sole. Sensor and Actuators A62. Physical, ELSEVIER SEQUOIA S.A., 556-561, Lousanne, Switzerland 1997.

[5] Volf J, Trinkl A, Růžička M, Novák M. Optimal Size Determination of Tactile Sensor Plantograf V08 and its Electrodes. In 26th Symposium on Advances in Experimental Mechanics, Leoben, Austria 2009. ISBN: 978-3-902544-025.

[6] Volf J, Trinkl A, Novák M, Bilek J, Prikner P, Neuberger P. Plantograf V12 with Optimal Size Determination Sensor Electrodes and its Using for Pressure Distribution Between Tire and Road”. In XX World Congress IMEKO, Busan, 2012, 1-4, ISBN 978-89-950000-5-2 95400.

[7] Lufinka J. Effect of Conductive Ink on Properties of Tactile Transducers. Diploma thesis, CULS, Prague, 2014 (In Czech).

[8] Trinkl A, Optimization of Design of Flat Tactile Transducers. Dissertation, CULS, Prague, 2011 (In Czech).

[9] Souza F.G, Michel R.C, Soares B.G. A methodology for studying the dependence of electrical resistivity with pressure in conducting composites. POLYMER TESTING, 24 (8): 998-1004, 2005.

[10] Soares B. G, Amorim G.S, Souza F.G, et al. The in situ polymerization of aniline in nitrile rubber. SYNTHETIC METALS, 156 (2-4): 91-98, 2006.

[11] Pavlovkin, J. - Novák, D.: Messung der Frequenzcharakteristiken von Passivfilter mittels des Systems rc2000. EDUKACJA–TECHNIKA–INFORMATYKA, 3 (2) 257-264, 2012