Cortisol, Prolactin, and Breastmilk Volume; A Promising Pattern for Reducing Postpartum Depression

Aznieh Syam1,*, Muhammad Qasim2, Imelda Iskandar3, Arisna Kadir4

1Department of Nursing, Sekolah Tinggi Ilmu Kesehatan Nani Hassanudin, Makassar, South Sulawesi, Indonesia; 2Department of Nursing, Sekolah Tinggi Ilmu Kesehatan Amanah, Makassar, South Sulawesi, Indonesia; 3Department of Midwifery, Sekolah Tinggi Ilmu Kesehatan Yapma, Makassar, South Sulawesi, Indonesia; 4Department of Midwife, Sekolah Tinggi Ilmu Kesehatan Nani Hassanudin, Makassar, South Sulawesi, Indonesia

Abstract

BACKGROUND: Research shows postnatal depression and shorter breastfeeding are consistently related, but their causal effect remains debatable. To reduce the impact of mental disorders in the perinatal period, lactation may give a significant neuroendocrine effect.

AIM: This study aimed to examine hormonal patterns and estimated breastmilk volume of mothers with depression.

MATERIALS AND METHODS: This study was conducted during the three-trimester to 6-week postnatal period. It involved 60 pregnant women from South Sulawesi, Indonesia. Analysis of variance with repeated measures was used to compare and review fluctuations and effect sizes of cortisol, prolactin, and breastmilk volume of mothers with depression symptoms.

RESULTS: The mean cortisol levels rose in the 4th week and decreased in the 6th week in both groups. There was no substantial difference in the cortisol levels between these periods (p = 0.534, p = 0.553; and p = 0.660), but the prolactin levels continuously increased by 2 weeks and substantially progressed in the 4th and 6th weeks (p < 0.028, p < 0.009), respectively. There was no positive association between cortisol and prolactin levels (p = 0.384). The breastmilk volume was higher every week only in mothers without depression and it slightly decreased in other categories. This study emphasized the prolactin’s protective effect size on a stressful environment characterized by high cortisol; a significant rise in prolactin levels occurred in the 2nd and 4th weeks of postnatal, marking the higher lactation.

CONCLUSIONS: Breastfeeding hormones may provide protection against postpartum depression in moms. It is critical to establish a history of prior trauma in nursing mothers in order to facilitate diagnosis and proper care.

Introduction

Both pregnant and postnatal mothers commonly experience mood disorder. Mood swing happens nearly every day in the forms of sadness, emptiness, hopelessness, and tearfulness. Such moods could be preliminary major depression symptoms. Peripartum depression is different from baby blues, which is characterized by short breastfeeding, mild symptoms, and minimal impact on mental health function. Women with peripartum depression have to undergo bipolar disorder, postnatal psychosis, and suicidal risk assessment [1]. Postnatal depression and shorter breastfeeding are consistently correlated, but their causal effect remains debatable [2], [3]. Breastfeeding is related to hormonal alteration such as a rise regulation of prolactin and down regulation of hypothalamic-pituitary-adrenal (HPA) axis. Research on brain shows that lactation could give neuroendocrine effects to modulate a stressful environment and reduce the impact of mental disorders during the perinatal period [4], [5], [6], [7]. It happens because women of reproductive age most likely develop physiological disorders. A recent review reported about 0.89–2.6 in 1000 women had postnatal psychosis [8]. During postnatal depression, the HPA is activated since stress worsens physiological response to the human body [9], [10], [11], [12]. Cortisol levels increase normally up to 4 times in the last term of pregnancy along with corticotrophin releasing hormone-binding protein (CRH-BP) which prevent the pathways to activate [13]. The CRH-BP level decreases soon after birth and cortisol begins to express and function properly [14]. In early pregnancy, cortisol suppresses the inflammatory system and prevents it from fetus organ failure through the adrenal zona fasciculata pathway [15]. It also supplies the placenta, brain, and lungs and it is less responsive to acute stress. Cortisol also prepares the nature of nurturing behavior in mothers [16]. The secretion increases in the morning to noon and it decreases at night since it depends on sleep time pattern [17]. It means sleep and depression could be affected by cortisol change pattern [18]. Cortisol
levels will decrease average in 3 weeks and mothers might be susceptible of depression [19], [20]. Although perinatal depression may be caused by severe internal disorders, hypo and hypersensitivity of HPA-axis activity will predict certain postnatal depression symptoms [21].

Prolactin, on the other hand, is likely related to breastfeeding, stress modulation, and motherhood maturity hormone [22], [23]. The basal level increases during pregnancy and returns to average after 3 weeks, but it stays above the average in breastfeeding mothers compared to mothers with partial breastfeeding [6]. Prolactin works by producing, secreting, and maintaining breastmilk volume [24]. Stimulation and activation of breastmilk occur in mammary epithelial cells through the paraventricular nucleus signaling pathway [25], while the main synthesis pathway of proteins is activated through janus kinase-signal transducer and activation of transcription such as casein, lactoglobulin, and lactoferrin [26], [27]. Mothers who breastfeed longer will maintain lactation with a higher prolactin level [28]. In other circumstances, deficit or excessive prolactin after birth might cause maternal anxiety, motherhood malfunction, perinatal depression, and a lower milk supply [29], [30]. Stress due to environmental factors might increase reactivity in prolactin production, leading to an insufficient milk supply and early weaning [5], [12]. While research has been investigating the causal relationship between depression and breastfeeding, lactation may have significant neuroendocrine effects to modulate a stressful environment and reduce the impact of mental disorders during the perinatal and postnatal period. This preventive impact of breastfeeding could be the risk of developing mental disorders during the first 2 years of life. Most importantly, it is important to consider how the hormone cortisol and prolactin affect mothers with depression symptoms and how the interaction between these two hormones affects breastmilk production. According to the issues above, this study was aimed to examine the patterns of hormones and estimated breastmilk volume in breastfeeding mothers with depression symptoms.

Materials and Methods

Research design and subject selection

A longitudinal study was conducted from the third trimester up to 6 weeks of postnatal. It invited 60 eligible pregnant mothers who participated in an antenatal care program in one primary health-care provider in South Sulawesi, Indonesia. The monitoring on the mothers was followed up every 2 weeks after birth. The selected subjects were in part of baseline data from a previous published grant project [31]. The research was conducted from 2019 to 2021 [18]. The current selected samples were recruited at the end of September 2020–January 2021. The findings of the study were compared with other previous studies to see the consistency or contradiction in the results [32].

Ethics

Mothers were given sufficient explanation about the research purposes and procedures. Those who agreed to participate signed the informed consent form accompanied by their families (husband or grandmothers) and midwives in charge on the site. All of the procedures were approved by the Research Ethics Committee of Makassar Health Polytechnic No. 00737/KEPK-PTKMKS/X/2020.

Baseline data collection

Data on sociodemographics, parity, and body mass index (BMI) were collected at the beginning of the research procedures using a validated instrument adopted from a previous study [18]. Sociodemographics contain seven questions regarding mother age, education, working status, monthly family income, housing, and numbers of family living under the same roof. Parity was related to the number of livebirths. BMI was measured from weight before pregnancy and classified as underweight, healthy, overweight, and obese [33].

Prolactin and cortisol measurement

The amount of 3cc blood samples was obtained from the brachial vein shortly after birth by a trained laboratory assistant, and this protocol repeated at the end of 2 and 4 weeks of postnatal. Prolactin and cortisol serum levels were then determined using an enzyme immunoassay kit (Demeditec Diagnostics GmBH, Kiel, Germany) as directed by the manufacturer.

Postnatal depression assessment

Postnatal depression was assessed 3 times: at birth, at 2 weeks, and at 4 weeks after birth, using an expert-translated and validated Indonesian scales adopted from Edinburgh postnatal depression scale (EPDS) [31]. Postnatal depression is described as an EPDS score above 12. Mothers would be categorized into mothers with depression symptoms if the third measurement of EPDS on average was consistently above 12.

Breast milk production assessment

Breastmilk volume was calculated using expressed breastmilk. Breastmilk pumping protocols were in accordance with the standard ethical procedures.
and approved by the ethics committee. The mothers received multiple home visits using the Medela Swing Double Pump at 2, 4, and 6 weeks of postnatal. Pumping was taken in the morning between 7:00 and 9:00 a.m. once a day for about 15 min. The total of breastmilk volume was then multiplied by eight (the average frequency of breastfeeding per day) to estimate daily breastmilk productions [34]. Mothers performed regular breastfeeding practice and were monitored online through video conference on a WhatsApp group as in-person monitoring was restricted due to COVID-19.

Statistics analysis

All parameters were tested for the normality using the Kolmogorov–Smirnov. EPDS score, prolactin, cortisol, and breastmilk volume (p > 0.005) were tested as well. The Chi-square test was used to analyze the baseline trait, followed by repeated measures analysis of variance to compare and review the fluctuations and effect size of cortisol level, prolactin level, and breast milk volume of breastfeeding mothers with depression symptoms.

Results

The homogeneity between the groups was similar based on the Chi-square continuity correction as indicated in Table 1. Mothers with depression symptoms (average score of EPDS greater than 12) made up 46.6% of the total subjects. The groups were most likely low socioeconomic families. The dominant mothers’ education was senior high school (p = 0.370); it was

Table 1: Sociodemographics of research subjects

Characteristics	EPDS ≤ 12 (n = 32)	EPDS > 12 (n = 28)	p*
Age (years)			
≤ 19	1	1	0.955
20–30	18	19	0.514
≥ 31	13	8	0.381
Education			
Postgraduate	6	8	0.370
Undergraduate	26	20	
Family			
Multiparous	11	13	0.342
Primiparous	21	15	0.417
History of abortion			
Yes	1	0	0.346
No	31	28	
Pre-pregnancy BMI			
Underweight	4	3	0.771
Normal	17	12	0.414
Overweight	10	11	0.524
Obese	1	2	0.667
Working mothers			
Yes	4	7	0.361
No	28	21	0.429
Family income			
≥ Wage standard	15	9	0.369
< Wage standard	17	19	
Family type			
Nuclear	20	16	0.673
Extended	12	12	
Living in			
Private/permanent house	6	5	0.929
Rent/temporary house	26	23	

*Chi-square test. BMI: Body mass index, EPDS: Edinburgh Postnatal Depression Scale.

The subjects were nuclear families (p = 0.673) who rented houses (p = 0.929). Nuclear families are married couples who live solely with their children, while extended families include more than one family member, such as a grandmother, grandfather, mother’s relatives, or father’s relatives. The data showed no difference in BMI (p = 0.771); however, it was a quite alarming percentage in overweight and obese among 41.6% of the mothers. Unhealthy pre-pregnancy was likely to be caused by BMI consider as one contributing risk in increasing anxiety and serious mental illness during postnatal [35]. Overall, there was no significant difference in all of these sociodemographics between two group.

Table 2 shows the difference in cortisol level, prolactin level, and breastmilk volumes over time. Mean cortisol levels in both groups increased in the 4th week and decreased in the 6th week without significant difference between intervals (p > 0.149). Prolactin levels in mothers without depression symptoms rose steadily over 2 weeks but reached the peak at the 4th and 6th week (p ≤ 0.001). Weekly breastmilk volume was higher in non-symptomatic mothers and slightly lower in the other group. The interaction (group x time) of depression symptoms affected fairly of 0.269 on prolactin and 0.617 on breastmilk volume.

Prolactin levels and estimated breastmilk volume likely contributed to the risk of depression symptoms. Figure 1 shows a difference point in measurement intervals between cortisol level, prolactin level, and breastmilk volume. Prolactin levels and estimated breastmilk volume were higher in non-depressive mothers. Although cortisol levels between the groups were comparable, surprisingly mothers with depression symptoms had lower cortisol levels. These

Figure 1: The difference pattern of cortisol level, prolactin level, and breastmilk volume between measurement intervals
results indicate that prolactin level could protect mothers from depression and motivate them to continually breastfeed. Since prolactin levels only slightly decreased over time, a periodical score of EPDS >12 in mothers with depression symptoms did not always have a strong impact on lowering breastmilk volume. In this case, we confirm that during breastfeeding, mothers who exhibit depressive symptoms can be protected from breastfeeding failure by maintaining high prolactin levels for lactational function.

Discussion

In this study, women either with or without depression symptoms had higher cortisol levels at the 1st–2nd week and lower at the 4th week. Interestingly, women without depression symptoms had overall higher cortisol levels in all measurement intervals. By the end of 4th week, both mothers with and mothers without depression symptoms demonstrated a slight difference in mean cortisol levels of 660 μg/ml and 620 μg/ml, respectively. Given that both groups were still fully breastfeeding, the higher cortisol levels may be a response to a stress-increasing environment in the early period of breastfeeding that correlates with increased prolactin levels in the first and second measurements. Higher prolactin levels were also accompanied by an increase in breastmilk volume in both groups. Increased levels of prolactin and lactation are physiological mechanisms of breastfeeding [36], [37], [38]. In a stressful environment, a nursing mother will continue to breastfeed and produce milk without disrupting the lactation cycle by high cortisol levels. It is too early in this study to confirm that a decrease in cortisol levels at the 4th week has an impact on prolactin or prolactin triggers a decrease in cortisol levels at week 4 despite the correcting effect of lactation in hypercortisolomen pregnancies [10].

Lactation has been reported to ameliorate physiologic hypercortisolism in pregnancy and maintain the downregulation of HPA axis activity that occurs after delivery. Maternal levels of adrenocorticotropic hormone (ACTH) and cortisol drop dramatically when the baby starts to suckles the nipple for the first time [6], [7]. This study demonstrates promising protection from exclusive breastfeeding in a stressful environment. Another study in 741 women found consistently lower cortisol levels at wake and at night in breastfeeding women compared to non-breastfeeding or nulliparous women up to 1 year after delivery [39].

Breastfeeding is also associated with decreased HPA axis reactivity during physical stress and psychosocial condition in postnatal mothers [40], [41]. Mothers who breastfeed show a sharp decrease in cortisol peaks in the morning to lows in the evening compared to those who do not breastfeed [42], [43]. In this study, there was a sharp decrease in cortisol levels measured in the morning during the 2nd and 4th weeks in both groups regardless of the different stress conditions thought to influence intense lactation. A similar study [42] has also shown that higher cortisol trajectories are associated with deleterious physical and psychosocial conditions. In other words, breastfeeding can optimize the circadian rhythm of cortisol secretion. Many studies have found a role for breastfeeding in endocrine regulation through higher levels of prolactin and oxytocin. As a result, the secretion of androgens, estrogens, vasopressin, and glucocorticoid ACTH is lower. This reverse condition reduces the risk of postnatal destructive psychology. In addition, prolactin may contribute to stress control through downregulation of prolactin receptors in lactating mice [44]. Expression of the prolactin receptor gene was also found to be higher in mothers who had more breastmilk volume and breastfeeding intensity [45], [46]. Downregulation of prolactin receptors enhances responses to anxiety through the increase in ACTH release; however, administration of prolactin to female rats causes hyperprolactinemia, giving anxiolytic effects and triggering the suppression of ACTH, corticosterone, and noradrenaline [47]. The anxiolytic role of prolactin answers the mechanism of lactation on the activation of the HPA axis. High circulating prolactin levels, which likely increase consecutively, will increase the duration and reduce deep sleep disturbances that occur slowly [48], [49], while one of the risk factors for depression is poor sleep quality in mothers [18]. At the end of breastfeeding, there is a reversal control of dopamine tonic inhibitors [50], [51]. In breastfeeding mothers with a history of depression in adolescence when high dopamine levels trigger symptoms of manic depression and psychosis [52]. Mothers with a history of depression who weaned prematurely were more likely to have a more severe depressive disorder. Low dopamine levels because of the mechanism of prolactin are likely a protector against psychosis symptoms in breastfeeding mothers. However, the validation of dopamine and postnatal psychosis needs more comprehensive clinical research. This study has delineated the relationship of the hormonal pattern of cortisol, prolactin, and breastmilk volume through

Table 2: Results of repeated measures ANOVA between measurement intervals (n = 60)

Indicators	EPDS ≤ 12 (n = 32)	EPDS > 12 (n = 28)	F	p	Effect size										
	T1	T2	T3												
	X	SD	X	SD	X										
Cortisol	684.8	227.9	869.7	289.4	660.2	144.7	544.2	254.2	878.7	316.2	1031.7	0.001	2.140	0.149	0.036
Prolactin	264.8	102.5	279.1	103.0	285.6	103.1	241.0	88.3	228.4	93.9	223.1	97.6	21.316	0.001	0.269
Breastmilk volume	1036.3	228.4	1460.4	1918.7	1768.9	1100.8	533.0	547.7	400.6	475.7	372.0	442.2	93.248	0.001	0.617

p values (group×time measurement) for repeated-measures ANOVA test, df = 1. T1: First measurement, T2: Second measurement, T3: Third measurement. SD: Standard deviation, EPDS: Edinburgh Postnatal Depression Scale.
standardized repeated measurements. This study emphasized the prolactin’s protective effect size on a stressful environment characterized by high cortisol; a significant rise in prolactin levels occurred in the 2nd and 4th weeks of postnatal, marking the higher lactation.

Limitation

The depression symptoms were solely measured using the repeated and validated EPDS method and they may differ subjectively from the diagnosis and clinical measurement. As a result, the genuine clinical context of acute or chronic depression disorder in the postnatal period cannot be confirmed by this investigation. However, the study was unable to determine the long-term influence of postnatal depression on childbearing outcomes such as child growth, especially among mothers who reported weaning after 6 weeks of online monitoring.

Conclusion

Breastfeeding hormones may protect mothers from postnatal depression. Mothers who are prone to postnatal depression should be encouraged to breastfeed for a longer period. It is critical to discover mothers with prenatal depression symptoms as early as possible through a history of depression during adolescence and childhood trauma. Therefore, preventive treatments and better breastfeeding quality are required.

Acknowledgment

Our gratitude goes to the Indonesian Ministry of Higher Education, Science, and Technology for fully funding the research. We thanked all of the mothers and family for their contribution.

Authorship Contribution Statement

A.S. planned and drafted the text, analyzed the data, and wrote the article. A.K. was responsible for field data collection and quality assessment, I.I. was responsible for online monitoring and follow-up throughout the research, and M.Q. was in charge of analysis and data acquisition. All of the authors read and approved the final article.

References

1. American Psychiatric Association. Cautionary statement for forensic use of DSM-5. In: Diagnostic and Statistical Manual of Mental Disorders. 5th ed. United States: American Psychiatric Publishing, Inc.; 2013. https://doi.org/10.1016/0002-9378(76)90154-x

2. Chowdhury R, Sinha B, Sankar MJ, Taneja S, Bhandari N, Rollins N, et al. Breastfeeding and maternal health outcomes: A systematic review and meta-analysis. Acta Paediatr. 2015;104(467):96-113. https://doi.org/10.1111/apa.13102 PMId:26172878

3. Dias CC, Figueiredo B. Breastfeeding and depression: A systematic review of the literature. J Affect Disord. 2015;171:142-54. PMid:25305429

4. Cox EQ, Stuebe A, Pearson B, Grewen K, Rubinow D, Meltzer-Brody S. Oxytocin and HPA stress axis reactivity in postpartum women. Psychoneuroendocrinology. 2015;55:164-72. https://doi.org/10.1016/j.psyneuen.2015.02.009 PMId:25768266

5. Donaldson-Myles F. Can hormones in breastfeeding protect against postnatal depression? Br J Midwifery. 2012;20(2):85-93. https://doi.org/10.12968/bjom.2012.20.2.88

6. Anderson SM, MacLean PS, McManaman JL, Neville MC. Lactation and its hormonal control. In: Knobil and Neil’s Physiology of Reproduction. Netherlands: Elsevier; 2015. p. 2055-105. https://doi.org/10.1098/rsp.1995.0046-6

7. Stuebe AM, Grewen K, Pedersen CA, Propper C, Meltzer-Brody S. Failed lactation and perinatal depression: Common problems with shared neuroendocrine mechanisms? J Womens Health (Larchmt). 2012;21(3):264-72. https://doi.org/10.1089/jwh.2011.3083 PMId:22204416

8. VanderKruik R, Barreix M, Chou D, Allen T, Say L, Cohen LS, et al. The global prevalence of postpartum psychosis: A systematic review. BMC Psychiatry. 2017;17(1):272. https://doi.org/10.1186/s12888-017-1427-7 PMId:28754094

9. de Rezende MG, Garcia-Leal C, de Figueiredo FP, Cavalli Rde C, Spanghero MS, Barbieri MA, et al. Altered functioning of the HPA axis in depressed postpartum women. J Affect Disord. 2016;193:249-56. https://doi.org/10.1016/j.jad.2015.12.065 PMId:26773916

10. Gillespie CF, Nemeroff CB. Hypercortisolemia and depression. Psychosom Med. 2005;67(1):S26-8. PMId:15953796

11. Zom JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25-36. https://doi.org/10.1016/j.psyneuen.2016.11.036 PMId:28012291

12. Napso T, Yong HEJ, Lopez-Tello J, Sferruzzi-Perri AN. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol. 2018;9:1091. https://doi.org/10.3389/fphys.2018.01091 PMId:30174608

13. Iliadis SI, Comasco E, Sylvén S, Hellgren C, Sundström Poromaa I, Skalkidou A. Prenatal and postpartum evening salivary cortisol levels in association with peripartum depressive symptoms. PLoS One. 2015;10(8):e0135471. https://doi.org/10.1371/journal.pone.0135471 PMId:26322643

14. Parry BL, Sorensen DL, Meliska CJ, Basavaraj N, Zirpoli GG,
15. Vigod SN, Buist A, Steiner M. Mood, anxiety and obsessive compulsive disorders in pregnancy and the postpartum period: Phenomenology and epidemiology. In: Castle DJ, Abel KM, editors. Comprehensive Women’s Mental Health. Cambridge: Cambridge University Press; 2016. p. 101-21. https://doi.org/10.1017/cbo9781107045132.011

16. Martinez-Torteya C, Dayton CJ, Beeghly M, Seng JS, McGinnis E, Broderick A, et al. Maternal parenting predicts infant biobehavioral regulation among women with a history of childhood maltreatment. Dev Psychopathol. 2014;26(2):379-92. https://doi.org/10.1017/s0954579414000017

17. Balbo M, Leproult R, Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234. https://doi.org/10.1155/2010/759234

18. Syam A, Iskandar I, Kadir A, Usman AN. Identifying risk factors of prenatal depression among mothers in Indonesia. Enferm Clin. 2020;30(2):550-4. https://doi.org/10.1016/j. enclf.2019.07.158

19. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr., et al. HPA axis in major depression: Cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry. 2017;22(4):527-36. https://doi.org/10.1038/mp.2016.120

20. Seth S, Lewis AJ, Galbally M. Perinatal maternal depression and cortisol function in pregnancy and the postpartum period: A systematic literature review. BMC Pregnancy Childbirth. 2016;16:124. https://doi.org/10.1186/s12884-016-0915-y

21. Qin DD, Rizak J, Feng XL, Yang SC, Lü LB, Pan L, et al. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour. Sci Rep 2016;6:30187. https://doi.org/10.1038/srep30187

22. Macias H, Hinck L. Mammary gland development. Wiley Interdiscip Rev. 2012;1(4):533-57. https://doi.org/10.1002/wdev.35

23. Larsen CM, Grattan DR. Prolactin, neurogenesis, and maternal behaviors. Brain Behav Immun. 2012;26(2):201-9. https://doi.org/10.1016/j.bbi.2011.07.233

24. Pang WW, Hartmann PE. Initiation of human lactation: Secretory differentiation and secretory activation. J Mammary Gland Biol Neoplasia. 2007;12(4):211-21. https://doi.org/10.1007/s10911-007-9054-4

25. Bernard V, Young J, Chanson P, Binart N. New insights in prolactin: Pathological implications. Nat Rev Endocrinol. 2015;11(5):285-75. https://doi.org/10.1038/nrendo.2015.36

26. Radhakrishnan A, Raju R, Tuladhar N, Subbannayya T, Thomas JK, Goel R, et al. A pathway map of prolactin signaling. J Cell Commun Signal. 2012;6(3):169-73. https://doi.org/10.1007/s10877-010-9182-0

27. Oliver CH, Watson CJ. Making milk. JAKSTAT. 2013;2(2):e23228. PMid:24058804

28. Muck-Seiler D, Pivac N, Mustapic M, Crmcevic Z, Jakovljevic M, Sagud M. Platelet serotonin and plasma prolactin and cortisol in healthy, depressed and schizophrenic women. Psychiatry Res. 2004;127(3):217-26. https://doi.org/10.1016/j.psychres.2004.04.001

29. Damiano JS, Wasserman E. Molecular pathways: Blockade of the PRLR signaling pathway as a novel anthromphal approach for the treatment of breast and prostate cancer. Clin Cancer Res. 2013;19(7):1644-50. https://doi.org/10.1158/1078-0432.ccr-12-0138

30. Larsen CM, Grattan DR. Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology. 2010;151(8):3805-14. https://doi.org/10.1210/en.2009-1385

31. Syam A, Qasim M, Kadirani E, Kadir A. Factor structure of the Edinburgh postnatal depression scale Indonesian version. Med Clin Práct. 2021;4:100238. https://doi.org/10.1016/j.mcpsp.2021.100238

32. Syam A, Iskandar I, Hendrarti W, Salam A. Prenatal depression and successful lactation. Med Clin Práct. 2021;4:100234. https://doi.org/10.1016/j.mcpsp.2021.100234

33. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157-63.

34. Gardner H, Kent JC, Prime DK, Lai CT, Hartmann PE, Geddes DT. Milk ejection patterns remain consistent during the first and second lactations. Am J Hum Biol. 2017;29(3):22960. https://doi.org/10.1002/ajhb.22960

35. Molyneaux E, Poston L, Ashurst-Williams S, Howard LM. Obesity and mental disorders during pregnancy and postpartum. Obstet Gynecol. 2014;123(4):857-67.

36. Kent JC, Gardner H, Geddes DT. Breastmilk production in the first 4 weeks after birth of term infants. Nutrients. 2016;8(12):756. https://doi.org/10.3390/nu8120756

37. Kent JC. How breastfeeding works. J Midwifery Womens Health. 2007;52(6):564-70. PMid:17983993

38. Kent JC, Prime DK, Garbin CP. Principles for maintaining or increasing breast milk production. J Obstet Gynecol Neonatal Nurs. 2012;41(1):114-21. https://doi.org/10.1111/j.1552-6909.2011.01313.x

39. Thayer ZM, Agustin Bechayda S, Kuzawa CW. Circadian cortisol dynamics across reproductive stages and in relation to breastfeeding in the Philippines. Am J Hum Biol. 2018;30(4):e23115. https://doi.org/10.1002/ajhb.23115

40. Ford LR, Willi SM, Hollis BW, Wright NM. Supression and recovery of cortisol dynamics across reproductive stages and in relation to breastfeeding in the Philippines. Am J Hum Biol. 2018;30(4):e23115. https://doi.org/10.1002/ajhb.23115

41. Heinrichs M, Meinschmidt G, Neumann M, Wagner S, Kirschbaum C, Ehleit U, et al. Effects of suckling on hypothalamic-pituitary-adrenal axis responses to psychosocial stress in postpartum lactating women. J Clin Endocrinol Metab. 2001;86(10):4798-804. https://doi.org/10.1210/jcem.86.10.7919

42. Simon CD, Adam EK, McKinney CO, Krohn JB, Shalowitz MU. Breastfeeding, bed-sharing, and maternal

https://oamjms.eu/index.php/mjms/index
cortisol. Clin Pediatr (Phila). 2016;55(5):470-8. https://doi.org/10.1177/0009922815601981
PMid:26330120

43. Baddock SA, Purnell MT, Blair PS, Pease AS, Elder DE, Gallard BC. The influence of bed-sharing on infant physiology, breastfeeding and behaviour: A systematic review. Sleep Med Rev. 2019;43:106-17. https://doi.org/10.1016/j.smrv.2018.10.007
PMid:30553183

44. Torner L, Toschi N, Nava G, Clapp C, Neumann ID. Increased hypothalamic expression of prolactin in lactation: Involvement in behavioural and neuroendocrine stress responses. Eur J Neurosci. 2002;15(8):1381-9. https://doi.org/10.1046/j.1460-9568.2002.01965.x
PMid:11994132

45. Augustine RA, Kokay IC, Andrews ZB, Ladyman SR, Grattan DR. Quantitation of prolactin receptor mRNA in the maternal rat brain during pregnancy and lactation. J Mol Endocrinol. 2003;31:221-32. https://doi.org/10.1677/jme.0.0310221
PMid:12914538

46. Iskandar I. Gene prolactine receptor (PRLR) and signal transducer and activator of transcription 5 (STAT5) on milk production. Med Clin Práct. 2021;4:100223. https://doi.org/10.1016/j.mcpssp.2021.100223

47. Donner N, Bredewold R, Maloumby R, Neumann ID. Chronic intracerebral prolactin attenuates neuronal stress circuitries in virgin rats. Eur J Neurosci. 2007;25(6):1804-14. https://doi.org/10.1111/j.1460-9568.2007.05416.x
PMid:17432967

48. Blyton DM, Sullivan CE, Edwards N. Lactation is associated with an increase in slow-wave sleep in women. J Sleep Res. 2002;11(4):297-303. https://doi.org/10.1046/j.1365-2869.2002.00315.x
PMid:12464097

49. Isaac J, Matos-Pires A. Breastfeeding, prolactin release and sleep. J Sleep Res. 2018;11:1-26.

50. Romanò N, Yip SH, Hodson DJ, Guillou A, Parnaudeau S, Kirk S, et al. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J Neurosci. 2013;33:4424-33. https://doi.org/10.1523/jneurosci.4415-12.2013
PMid:23467359

51. Grattan DR. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-prolactin axis. J Endocrinol. 2015;226(2):T101-22. https://doi.org/10.1530/joe-15-0213
PMid:26101377

52. Schmidt KA, Palmer BA, Frye MA. Mixed mania associated with cessation of breastfeeding. Int J Bipolar Disord. 2016;4(1):18. https://doi.org/10.1186/s40345-016-0059-z
PMid:27593209