NODAL COUNT FOR DIRICHLET-TO-NEUMANN OPERATORS WITH POTENTIAL

ASMA HASSANNEZHAD AND DAVID SHER

Abstract. We consider Dirichlet-to-Neumann operators associated to $\Delta + q$ on a Lipschitz domain in a smooth manifold, where q is an L^∞ potential. We prove a Courant-type bound for the nodal count of the extensions u_k of the kth Dirichlet-to-Neumann eigenfunctions ϕ_k to the interior satisfying $(\Delta + q)u_k = 0$. The classical Courant nodal domain theorem is known to hold for Steklov eigenfunctions, which are the harmonic extension of the Dirichlet-to-Neumann eigenfunctions associated to Δ. Our result extends it to a larger family of Dirichlet-to-Neumann operators. Our proof makes use of the duality between the Steklov and Robin problems.

Keywords. Dirichlet-to-Neumann operator, nodal count, Courant-type bound, Steklov problem.

Mathematics subject classification. 58J50, 35P15; 58J40; 58C40

1. Introduction

We consider Dirichlet-to-Neumann operators associated to the Laplace operator with a potential. Let M be a smooth Riemannian manifold, $\Omega \subseteq M$ a connected Lipschitz domain, and $q \in L^\infty(\Omega)$ a potential function. Consider the operator $\Delta_q := \Delta + q$ on Ω, where $\Delta = -\text{div} \nabla$ is the positive Laplacian. Denote by Δ^D_q the operator Δ_q with Dirichlet boundary condition on $\partial \Omega$. The operator Δ^D_q has discrete spectrum whose only accumulation point is $+\infty$.

Now let $\lambda \in \mathbb{R}$. We consider the Dirichlet-to-Neumann operator $D_{q,\lambda}$ associated to $\Delta_q - \lambda$. We first define this in the case where λ is not an eigenvalue of Δ^D_q. In that case, for any $g \in L^2(\partial \Omega)$, the equation

$$\begin{cases}
\Delta_{q,\lambda}u = 0 & \text{in } \Omega \\
u = f & \text{on } \partial \Omega
\end{cases}$$

has a unique solution u, and we set

$$D_{q,\lambda}f := \partial_n u,$$

where $\partial_n u$ is the outward pointing normal derivative of u along $\partial \Omega$. If λ is an eigenvalue of Δ^D_q, the solution is no longer unique, but we may still define $D_{q,\lambda}$ by projecting off the subspace consisting of normal derivatives of Dirichlet eigenfunctions. As we will see, in either event, $D_{q,\lambda}$ is a semi-bounded self-adjoint operator and has discrete, real spectrum whose only accumulation point is $+\infty$. We denote its eigenvalues, with multiplicity, by $\{\sigma_k\}_{k=1}^\infty$, and fix
a corresponding basis of eigenfunctions for $L^2(\partial \Omega)$ by $\{\phi_k\}_{k=1}^\infty$. Finally, define $\{u_k\}_{k=1}^\infty$ to be the interior extensions of ϕ_k, that is, the functions for which

$$\begin{cases} (\Delta_q - \lambda)u_k = 0 & \text{in } \Omega \\ u_k = \phi_k & \text{on } \partial \Omega, \end{cases}$$

again with the appropriate modifications when λ is an eigenvalue of Δ_q^D. As in the case $q = 0$, we call $\{u_k\}$ the corresponding Steklov eigenfunctions.

In this paper, we discuss the nodal counts of both the Steklov eigenfunctions u_k and the Dirichlet-to-Neumann eigenfunctions ϕ_k. Throughout, we let N_k be the number of nodal domains of u_k on Ω and let M_k be the number of nodal domains of ϕ_k on $\partial \Omega$.

In the case $q = 0$, it is well-known that we have an analogue of the Courant nodal domain theorem for Steklov eigenfunctions (see [11, 10, 8]). Specifically,

$$N_k \leq k.$$

In this case, the proof essentially uses three ingredients: the variational principle for eigenvalues, the unique continuation theorem for the solutions of a second order elliptic PDE, and the fact that harmonic functions are the unique minimizers of the Dirichlet energy for given boundary data. The statement does not hold when q is an arbitrary nonzero potential. However, as we show, there is a replacement:

Theorem 1.1. With terminology as above, let d be the number of non-positive Dirichlet eigenvalues of $\Delta_{q, \lambda}$, or equivalently the number of eigenvalues of Δ_q^D which are less than or equal to λ. Then for all $k \in \mathbb{N},$

$$N_k \leq k + d.$$

Remark 1.2. This theorem is sharp in the sense that for any $d \in \mathbb{N}$, there exists a domain Ω, a potential function q, and an integer k for which $N_k = k + d$.

Remark 1.3. If Ω is a fixed subdomain of \mathbb{R}^n and q is sufficiently small, then perturbation theory (see e.g. [14, Page 76]) implies that Δ_q has only positive Dirichlet eigenvalues. The same is true when $q \geq 0$. Thus, by Theorem 1.1 $N_k \leq k$ for the operator $\mathcal{D}_{q, 0}$ in these cases.

Very little is known about the nodal count of the Dirichlet-to-Neumann eigenfunctions ϕ_k. See Open Problem 9 in [8]. The statement that $M_k \leq k$ is certainly not true in general, for the same reasons as for N_k. In fact, the situation is worse, as $\partial \Omega$ may be disconnected, in which case, even if $q = 0$, the Courant nodal domain theorem cannot hold for the ground state $k = 1$. When $q = 0$ and the dimension of Ω is two, the fact that no nodal line is a closed curve implies an estimate on M_k in terms of k and the topology of the domain. For example, for a simply connected domain, the bound is $2k$ [1, Lemma 3.4]. However, for $q \neq 0$ no such bound exists. See Example 1 below. In higher dimension, nothing is known regarding bounds for M_k even when
The main difficulty is that \(\mathcal{D}_{q,\lambda} \) is nonlocal and the method of the proof we employ to study the nodal count of \(u_k \) cannot be generalised to study the nodal count of the Dirichlet-to-Neumann eigenfunctions \(\phi_k \).

We conjecture the following asymptotic version of the Courant nodal domain theorem:

Conjecture 1.4. With terminology as above,

\[
\limsup_{k \to \infty} \frac{M_k}{k} \leq 1.
\]

Remark 1.5. Note that the corresponding result for \(N_k \),

\[
\limsup_{k \to \infty} \frac{N_k}{k} \leq 1,
\]

follows immediately from Theorem 1.1.

Remark 1.6. If Conjecture 1.4 is true, it would immediately imply

\[
M_k \leq k + o(k).
\] (1)

This would yield a partial answer to Open Question 9 in [8].

We also conjecture the following sharpened version in dimension at least three. This is motivated by the Pleijel theorem for the nodal count of the Laplace operator [5, 13].

Conjecture 1.7. When the dimension of \(\Omega \) is at least three,

\[
\limsup_{k \to \infty} \frac{M_k}{k} < 1
\]

and

\[
\limsup_{k \to \infty} \frac{N_k}{k} < 1.
\]

In fact, this sharpened version is true in a number of special cases. For example, suppose that \(\Omega \) is a cylinder \([0,1] \times \Sigma\), where \(\Sigma \) is a compact manifold of dimension at least two. One can use separation of variables and Pleijel’s theorem [5, 13] to show that

\[
\limsup_{k \to \infty} \frac{M_k}{k} \leq c < 1.
\]

The same result is true if \(M_k \) is replaced by \(N_k \). A similar result holds if \(\Omega \) is a ball in \(\mathbb{R}^n \), with \(n \geq 3 \).

The key example to keep in mind is the following, motivated by [7, Figure 1]. In particular, it shows that \(\frac{N_k}{k} \) and \(\frac{M_k}{k} \) are only asymptotically bounded by one.
Example 1. Let Ω be the unit disk, set $\lambda = 0$, and let q be the constant function $-\mu$ for some $\mu \geq 0$. Then the spectrum of $D_{q,\lambda}$ is of the form
\[
\left\{ \frac{\sqrt{\mu} J_n'(\mu)}{J_n(\mu)}, \ n \in \mathbb{N}_0 \right\},
\]
with a corresponding basis of eigenfunctions $J_n(\sigma r) e^{\pm i n \theta}$.

Note that $J_n(\mu)$ is zero if and only if μ is a Dirichlet eigenvalue of $\Delta + q = \Delta - \mu$. So fix a particular n and consider what happens as μ approaches the first zero $j_{n,1}$ of $J_n(x)$ from below. The eigenvalue of $D_{-\mu,\lambda}$ corresponding to that particular n will go to $-\infty$. (It is simple if $n = 0$ and double if $n > 0$.) Since the Dirichlet eigenvalues of a disk all have multiplicity at most 2, all other eigenvalues stay bounded below. If we choose $\mu = j_{n,1} - \epsilon$ for a sufficiently small $\epsilon > 0$, then the smallest eigenvalue of $D_{-\mu,\lambda}$ will be $\sigma = \frac{\sqrt{\mu} J_n'(\mu)}{J_n(\mu)}$, with eigenfunction(s) $J_n(\sigma r) e^{\pm i n \theta}$. So these eigenfunction(s) are the ground state eigenfunction(s) for $D_{-\mu,\lambda}$, i.e. they have $k = 1$. However, each of them has n boundary nodal domains and n interior nodal domains as well, so we have $N_k = M_k = n$. Since n is arbitrary, not only can we have $N_k > k$, but we can have as large a discrepancy as we like, illustrating the sharpness in Remark 1.2.

The key method for the proof of Theorem 1.1 is to make use of Steklov-Robin duality. This is the observation that the two-parameter problem
\[
\begin{align*}
\Delta_q u &= \lambda u & \text{in } \Omega \\
\partial_n u &= \sigma u & \text{on } \partial \Omega
\end{align*}
\]
may be viewed either as a Steklov problem for fixed λ, with eigenvalue parameter σ, or as a Robin problem for fixed σ, with eigenvalue parameter λ. This idea has a long history, at least in the case $q = 0$. It was first written down in [9] but seems to have been known to others, including Caseau and Yau (see the discussion in [3]). In 1991, L. Friedlander rediscovered it and used it to give a proof of the interlacing of Dirichlet and Neumann eigenvalues for domains in \mathbb{R}^n [6, 12]. In [2, 3], Arendt and Mazzeo generalized the Steklov-Robin duality to manifolds; though Friedlander’s inequalities fail in that setting, the duality results themselves still hold. Some duality results with nonzero potential, though nominally in the Euclidean setting only, are given in [4]. Finally, we should note that Steklov-Robin duality has been used to compare Steklov eigenvalues and eigenvalues of the boundary Laplacian, see for example [7], which gave us the idea for Example 1.

2. Modified Courant nodal domain theorem for Steklov eigenfunctions with potential

Let Ω be a Lipschitz domain in a smooth Riemannian manifold M. Let $q \in L^\infty(\Omega)$ be a potential. It is enough to prove Theorem 1.1 for $\lambda = 0$, as λ...
may be absorbed into the potential \(q \). Therefore, Theorem 1.1 is an immediate consequence of the following result:

Theorem 2.1. Suppose that \(\Omega \) and \(q \) are as above. Suppose that \(\{u_k\}_{k=1}^\infty \) is a complete set of Steklov eigenfunctions for \(\Delta_q \), and \(N_k \) is the number of nodal domains of \(u_k \) on \(\Omega \). Then

\[
N_k \leq k + d,
\]

where \(d \) is the number of non-positive eigenvalues of the following Dirichlet eigenvalue problem:

\[
\begin{align*}
\Delta_q u &= \lambda u \quad \text{in } \Omega \\
u &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]

The proof of Theorem 2.1 uses Steklov-Robin duality. Let introduce two parameters, \(\lambda \) and \(\sigma \), and consider the problem

\[
\begin{align*}
\Delta_q u &= \lambda u, \quad \text{in } \Omega \\
\partial_n u &= \sigma u, \quad \text{on } \partial \Omega.
\end{align*}
\]

One may consider \(\lambda \) as the spectral parameter, in which case we have a Robin problem with fixed \(\sigma \), or consider \(\sigma \) as the spectral parameter, in which case we have a Steklov-type problem with fixed \(\lambda \). We let \(\lambda_{q,k}(\sigma) \) be the \(k \)th eigenvalue of \(\Delta_{q,\sigma} \). Observe that the \(k \)th Steklov eigenfunction \(u_k \) is an eigenfunction with eigenvalue \(\lambda = 0 \) for the Robin problem:

\[
\begin{align*}
\Delta_q u &= \lambda u, \quad \text{in } \Omega \\
\partial_n u &= \sigma_k u, \quad \text{on } \partial \Omega.
\end{align*}
\]

The question is for which \(m \lambda_{q,m}(\sigma_k) \) is equal to 0.

The duality results we need essentially follow from [2], [3], and [4]. However, they are not stated in quite this much generality, and so we give a proof here. Our approach is modeled primarily on [3].

First, we define the Robin Laplacian \(\Delta_{q,\sigma} \) by using the weak formulation. Consider the form, for \(u, v \in H^1(\Omega) \),

\[
b_{q,\sigma}(u, v) = \int_{\Omega} (\nabla u \cdot \nabla v + quv) \, dV - \int_{\partial \Omega} u\sigma dV_{\partial \Omega}.
\]

Since \(q \in L^\infty \), this form is coercive, and so it determines an operator \(\Delta_{q,\sigma} \), which is the Robin Laplacian. The domain of \(\Delta_{q,\sigma} \) is the same as the domain of \(\Delta_{0,\sigma} \), namely

\[
\{ u : u \in L^2(\Omega), \Delta u \in L^2(\Omega), \partial_n u = \sigma u \text{ on } \partial \Omega \}.
\]

A Dirichlet Laplacian with potential, \(\Delta_q^D \), may also be defined as usual.

For each \(\lambda \) which is not in the spectrum of \(\Delta_q^D \), we define the Dirichlet-to-Neumann operator \(D_{q,\lambda} \). If \(g \in L^2(\partial \Omega) \) and \(u \in H^1(\Omega) \) is the unique solution of

\[
\begin{align*}
(\Delta_q - \lambda) u &= 0 \quad \text{in } \Omega \\
u &= f \quad \text{on } \partial \Omega
\end{align*}
\]
then we set $D_{q,\lambda}f = \partial_n u$. This is enough for many purposes. However, we need to consider λ which are in the Dirichlet spectrum of Δ_q. There are several ways to do this, the simplest of which is to restrict to the orthogonal complement of the kernel. Following [3], we define

$$K(\lambda) = \{ \partial_n w : \Delta_q w = \lambda w \text{ weakly}, w|_{\partial\Omega} = 0, \partial_n w \in L^2(\partial\Omega) \}.$$

Then $D_{q,\lambda}$ may in all cases be defined as an operator on $L^2(\partial\Omega) \cap (K(\lambda))^\perp$.

Proposition 2.2. For any $\lambda \in \mathbb{R}$, $D_{q,\lambda}$ is self-adjoint, has compact resolvent, and is bounded below.

Proof. A proof is given in [3] when $q = 0$. However, it depends on a result of Grégoire, Nédélec, and Planchard [9], which is only stated in the setting $q = 0$. We instead use the machinery of [4], which instead views the Dirichlet-to-Neumann operator as a graph, that is, as a multi-valued operator. From [4, Proposition 3.3], it suffices to prove that this graph is self-adjoint, has compact resolvent, and is bounded below. Yet this is essentially the content of [4, Example 4.9]. Although stated in the setting $M = \mathbb{R}^n$ and $\lambda = 0$, every assertion there holds when M is an arbitrary Riemannian manifold, and a nonzero λ may be treated as part of the potential. The three parts of our Proposition then follow from Theorem 4.5, Proposition 4.8, and Theorem 4.15 of [4]. □

As a consequence, the spectrum of $D_{q,\lambda}$ is contained in the real axis, discrete, and has only the accumulation point at infinity.

In what follows we use the notational conventions:

$$D_{q,0} := D_q, \quad D_{0,0} := D.$$

Obviously, we have $D_{q,\lambda} = D_{q-\lambda}$. However, it will be convenient to separate the role of λ from the potential q to highlight the connection between $D_{q,\lambda}$ and the Robin problem.

The following proposition, encapsulating the Steklov-Robin duality, is the analogue of [3, Theorem 3.1] and is proved in identical fashion.

Proposition 2.3. For any $\lambda, \sigma \in \mathbb{R}$, the trace map is an isomorphism from $\ker(\Delta_{q,\sigma} - \lambda)$ to $\ker(D_{q,\lambda} - \sigma)$.

Remark 2.4. Since $D_{q,\lambda} = D_{q-\lambda}$, Proposition 2.3 is equivalent to show that the trace map is an isomorphism from $\ker(\Delta_{q,\sigma})$ to $\ker(D_q - \sigma)$ for any $\sigma \in \mathbb{R}$ and $q \in L^\infty(\Omega)$.

Proof. First we show that the trace map indeed maps into the indicated space. Suppose that $u \in \ker(\Delta_{q,\sigma} - \lambda)$. Then $u \in H^1(\Omega)$, so certainly $\text{Tr}(u) \in L^2(\partial\Omega)$. Since u is in the domain of $\Delta_{q,\lambda}$, $\partial_n u$ exists and equals $\sigma \text{Tr}(u)$. And as long as $\text{Tr}(u) \in (K(\lambda))^\perp$, it is in the domain of $D_{q,\lambda}$. In that event, we can say that $D_{q,\lambda}(\text{Tr}(u)) = \sigma \text{Tr}(u)$, hence $\text{Tr}(u) \in \ker(D_{q,\lambda} - \sigma)$.
To show that $\text{Tr}(u) \in (K(\lambda))^\perp$, suppose that $\partial_n w \in K(\lambda)$, with $w \in \ker(\Delta^D - \lambda)$. Then by Green’s identity,
\[
\langle \partial_n w, \text{Tr}(u) \rangle_{L^2(\partial\Omega)} = \langle \nabla w, \nabla u \rangle_{L^2(\Omega)} - \langle \Delta_0^D w, u \rangle_{L^2(\Omega)}.
\]
Using Green’s identity again, combined with the facts that w is in the domain of the Dirichlet Laplacian and $w \in \ker(\Delta^D q - \lambda)$, we have
\[
\langle \partial_n w, \text{Tr}(u) \rangle_{L^2(\partial\Omega)} = \langle w, \Delta u \rangle_{L^2(\Omega)} - \langle (\lambda - q) w, u \rangle_{L^2(\Omega)}.
\]
(3)

However, since $u \in \ker(\Delta^D q, \sigma - \lambda)$, we know that $\Delta u = (\lambda - q)u$. Since $\lambda \in \mathbb{R}$ and q is real-valued, the right-hand side of (3) is zero. Thus $\text{Tr}(u) \in (K(\lambda))^\perp$ and therefore the trace map does indeed map into $\ker(D^q_\sigma - \lambda)$.

To show that the trace map is injective, suppose that $u \in \ker(\Delta^D q, \sigma - \lambda)$ with $\text{Tr}(u) = 0$. From our definition of D^q_σ, we know that for any $g \in (K(\lambda))^\perp$, the problem
\[
\begin{cases}
(\Delta q - \lambda)u = 0 & \text{in } \Omega \\
u = g & \text{on } \partial\Omega
\end{cases}
\]
has a unique solution whose trace is in $(K(\lambda))^\perp$. Since both u and 0 are solutions to this problem with $g = 0$, we must have $u = 0$.

Finally, surjectivity is straightforward: suppose that $g \in \ker(D^q_\sigma - \lambda)$. By definition there is a function $u \in H^1(\Omega)$ such that $(\Delta q - \lambda)u = 0$, $\text{Tr}(u) = g$, and $\partial_n u = \sigma g$. This u is an element of $\ker(\Delta^D q, \sigma - \lambda)$ whose trace is g. □

An immediate consequence is

Corollary 2.5. For any $\lambda, \sigma \in \mathbb{R}$, σ is an element of the (Steklov) spectrum of D^q_λ if and only if λ is an element of the (Robin) spectrum of $\Delta^D q, \sigma$. Moreover their geometric multiplicities are the same.

The following statement describes its behaviour as σ varies.

Proposition 2.6. For every $k \geq 1$ the following hold:

(a) $\lambda_{q,k}(\sigma)$ is strictly decreasing.

(b) $\lambda_{q,k}$ as a function of σ is continuous on $[-\infty, \infty)$. In particular,
\[
\lim_{\sigma \to -\infty} \lambda_{q,k}(\sigma) = \lambda^D_k,
\]
where λ^D_k is the k-th Dirichlet eigenvalue of $\Delta^D q$.

(c) $\lim_{\sigma \to \infty} \lambda_{q,k}(\sigma) = -\infty$.

The proof of this proposition follows, nearly verbatim, the proof presented in [3, Proposition 3] and [2, Section 2]. For the sake of completeness and the reader’s convenience, we give the proof.

Proof. To prove a), note that by the max-min principle for eigenvalues, we have
\[
\lambda_{q,k}(\sigma) = \sup_{V_{n-1}} \inf \{ b_{q,\sigma}(u) : u \in V_{n-1}, \|u\|_{L^2(\Omega)} = 1 \}
\]
where the supremum is taken over all subspaces $V_{n-1} \subset H^1(\Omega)$ of codimension $n - 1$. Since $b_{q,\sigma}(u)$ is strictly decreasing in σ, it follows that $\lambda_{q,k}(\sigma)$ is decreasing. To show that it is strictly decreasing, assume to the contrary that for some $\sigma < \tilde{\sigma}$, $\lambda_{q,k}(\sigma) = \lambda_{q,k}(\tilde{\sigma})$. It implies that $\lambda := \lambda_{q,k}(\sigma)$ is constant on $[\sigma, \tilde{\sigma}]$. By Corollary 2.5, $[\sigma, \tilde{\sigma}]$ must be a subset of the spectrum of $D_{q,\lambda}$. This contradicts the fact that the spectrum of $D_{q,\lambda}$ is discrete.

To prove b), we first show the continuity of the resolvents $(\mu + \Delta_{q,\sigma})^{-1}$, $\sigma \in [-\infty, \infty)$. It was shown for sufficiently large μ, in the $q = 0$ case, in [2, Proposition 2.6]. The proof remains the same and the statement remains true. Thus, for μ large enough,

$$\lim_{s \to \sigma}(\mu + \Delta_{q,s})^{-1} = (\mu + \Delta_{q,\sigma})^{-1}$$

and in particular when $\sigma = -\infty$, $\Delta_{q,-\infty} = \Delta_q^D$. Hence

$$\lim_{s \to -\infty} (\mu + \Delta_{q,s})^{-1} = (\mu + \Delta_q^D)^{-1}.$$

We can now use [2, Proposition 2.8] to conclude that for every $k \geq 1$ and $s \in [-\infty, \infty)$,

$$\lim_{\sigma \to s} \lambda_{q,k}(\sigma) = \lambda_{q,k}(s).$$

In particular, for $s = -\infty$

$$\lim_{\sigma \to -\infty} \lambda_{q,k}(\sigma) = \lambda_{q,k}^D.$$

For c), assume that $\lambda_{q,k}(\sigma)$ is bounded below by some $\lambda \in \mathbb{R}$ for all $\sigma \in \mathbb{R}$, i.e.

$$\lambda_{q,k}(\sigma) > \lambda, \quad \sigma \in \mathbb{R}.$$

Note that $\lambda < \lambda_{q,k}(\sigma) \leq \lambda_{q,k+1}(\sigma)$ for all σ. By Corollary 2.5, we have that the spectrum of $D_{q,\lambda}$ is the set

$$\{ \sigma \in \mathbb{R} : \lambda = \lambda_{q,j}(\sigma) \text{ for some } j = 1, \ldots, k - 1 \}.$$

However, this set is finite by part a). This is impossible. \hfill \Box

Proposition 2.7. For any $\lambda \in \mathbb{R}$, consider $d \in \mathbb{N} \cup \{0\}$ such that $\lambda_{q,d}^D \leq \lambda < \lambda_{q,d+1}^D$. By convention $\lambda_{q,0}^D = -\infty$. Then for every $k \geq 1$, there exists a unique $s_k \in \mathbb{R}$ such that $\lambda_{q,k+d}(s_k) = \lambda$. Moreover, $s_k = \sigma_k(D_{q,\lambda})$ for every $k \geq 1$.

The proof follows the same line of argument as in the proof of Proposition 4.5 in [2]; see also [3, Proposition 4].

Proof. By Proposition 2.6, we have

$$\lim_{\sigma \to -\infty} \lambda_{q,k+d}(\sigma) = \lambda_{q,k+d}^D > \lambda \geq \lambda_{q,d}^D, \quad \lim_{\sigma \to -\infty} \lambda_{q,k}(\sigma) = -\infty,$$

for every $k \geq 1$. Thus, the existence and uniqueness of $s \in \mathbb{R}$ follows from the fact that $\lambda_{q,k+d}$ is a strictly decreasing continuous function. If $s \in \{ \sigma_j(D_{q,\lambda}) \}$, then there exists $m \in \mathbb{N}$ such that $\lambda_{q,m}(s) = \lambda$. Hence, $m \geq d + 1$ and $s = s_k$, where $k = m - d$. Indeed, thanks to Proposition 2.6, for every $m \leq d$ and $s \in \mathbb{R}$, $\lambda_{q,m}(s) < \lambda_{q,d}^D \leq \lambda$. This shows that $\{ \sigma_j(D_{q,\lambda}) \}$ and $\{ s_j \}$ are
equal as sets. It remains to show that they are equal as multisets, i.e. their multiplicities are equal.

It is easy to observe that
\[s_k \leq s_{k+1}. \]
Indeed, if \(s_k > s_{k+1} \), then
\[\lambda_{q,d+k+1}(s_{k+1}) = \lambda = \lambda_{q,d+k}(s_k) < \lambda_{q,d+k+1}(s_{k+1}) \]
gives a contradiction. Assume that \(s_k \) has multiplicity \(p \) and \(s := s_k < s_{k+p} \). Hence, \(\lambda_{q,k+d+j}(s) = \lambda, \ j = 0, \ldots, p-1 \). But \(\lambda_{q,k+d+j}(s) < \lambda_{q,k+d+1}(s_{k+p}) \). Therefore, in both cases, the multiplicity of \(\lambda_{q,k+d}(s) \) is equal to \(p \) and so, by Proposition 2.3, is the multiplicity of \(\sigma_k(D_{q,\lambda}) \).

\[\square \]

Theorem 2.1 is now an immediate consequence of Propositions 2.7 and 2.3.

Acknowledgements

The authors are grateful to Graham Cox and Alexandre Girouard for helpful discussions. A.H. gratefully acknowledges the support from EPSRC grant EP/T030577/1. D.S. is grateful for the support of an FSRG grant from DePaul University.

References

[1] G. Alessandrini and R. Magnanini. Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. *SIAM J. Math. Anal.*, 25(5):1259–1268, 1994.
[2] W. Arendt and R. Mazzeo. Spectral properties of the Dirichlet-to-Neumann operator on Lipschitz domains. *Ulmer Seminaire*, Heft 12:28–38, 2007.
[3] W. Arendt and R. Mazzeo. Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. *Comm. Pure. Appl. Anal.*, 11(6):2201–2212, 2012. DOI:10.3934/cpaa.2012.11.2201.
[4] W. Arendt, A.F.M. ter Elst, J.B.Kennedy, and M.Sauter. The Dirichlet-to-Neumann operator via hidden compactness. *J. Funct. Anal.*, 266(3):1757–1786, 2014. DOI: 10.1016/j.jfa.2013.09.012.
[5] P. Bérard and D. Meyer. Inégalités isopérimétriques et applications. *Ann. Sci. École Norm. Sup. (4)*, 15(3):513–541, 1982.
[6] L. Friedlander. Some inequalities between Dirichlet and Neumann eigenvalues. *Arch. Rat. Mech. Anal.*, 116:153–160, 1991.
[7] A. Girouard, M. Karpukhin, M. Levitin, and I. Polterovich. The Dirichlet-to-Neumann map, the boundary Laplacian, and Hörmander’s rediscovered manuscript, 2021.
[8] A. Girouard and I. Polterovich. Spectral geometry of the Steklov problem (survey article). *J. Spectr. Theory*, 7(2):321–359, 2017.
[9] J.P. Grégoire, J.C. Nédélec, and J. Planchard. A method of finding the eigenvalues and eigenfunctions of self-adjoint elliptic operators. *Comp. Meth. Appl. Mech. Eng.*, 8:201–214, 1976.
[10] M. Karpukhin, G. Kokarev, and I. Polterovich. Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces. *Ann. Inst. Fourier (Grenoble)*, 64(6):2481–2502, 2014.
[11] J. R. Kuttler and V. G. Sigillito. An inequality of a Stekloff eigenvalue by the method of defect. *Proc. Amer. Math. Soc.*, 20:357–360, 1969.
[12] R. Mazzeo. Remarks on a paper of L. Friedlander concerning inequalities between Neumann and Dirichlet eigenvalues. *Int. Math. Res. Not.*, 4:41–48, 1991.
[13] Å. Pleijel. Remarks on Courant's nodal line theorem. *Comm. Pure Appl. Math.*, 9:543–550, 1956.
[14] F. Rellich. *Perturbation theory of eigenvalue problems*. Gordon and Breach Science Publishers, New York-London-Paris, 1969. Assisted by J. Berkowitz, With a preface by Jacob T. Schwartz.

University of Bristol, School of Mathematics, Fry Building, Woodland Road, Bristol, BS8 1UG, U.K.

Email address: asma.hassannezhad@bristol.ac.uk

DePaul University, Department of Mathematical Sciences, 2320 N Kenmore Ave., Chicago, IL, 60614, U.S.A.

Email address: dsher@depaul.edu