Evidence suggests that lead and selected genes known to modify the toxicokinetics of lead—namely, those for the vitamin D receptor (VDR) and δ-aminolevulinic acid dehydratase (ALAD)—may independently influence blood pressure and hypertension risk. We report the relations among ALAD and VDR genotypes, three lead dose measures, and blood pressure and hypertension status in 798 Korean lead workers and 135 controls without occupational exposure to lead. Lead dose was assessed by blood lead, tibia lead measured by X-ray fluorescence, and dimercaptoposuccinic acid (DMSA)-chelatable lead. Among lead workers, 9.8% (n = 79) were heterozygous for the ALAD2 allele, and there were no ALAD2 homozygotes; 11.2% (n = 89) had at least one copy of the VDR B allele, and 0.5% (n = 4) had the BB genotype. In linear regression models to control for covariates, VDR genotype (BB and Bb vs. bb), blood lead, tibia lead, and DMSA-chelatable lead were all positive predictors of systolic blood pressure. On average, lead workers with the VDR B allele, mainly heterozygotes, had systolic blood pressures that were 2.7–3.7 mm Hg higher than did workers with the bb genotype. VDR genotype was also associated with diastolic blood pressure; on average, lead workers with the VDR B allele had diastolic blood pressures that were 1.9–2.5 mm Hg higher than did lead workers with the VDR BB genotype (p = 0.04). VDR genotype modified the relation of age with systolic blood pressure compared to lead workers with the VDR BB genotype. Lead workers with the VDR B allele also had a higher prevalence of hypertension compared to lead workers with the BB genotype [adjusted odds ratio (95% confidence interval) = 2.1 (1.0, 4.4), p = 0.05]. None of the lead biomarkers was associated with diastolic blood pressure, and tibia lead was the only lead dose measure that was a significant predictor of hypertension status. In contrast to VDR, ALAD genotype was not associated with the blood pressure measures and did not modify associations of the lead dose measures with any of the blood pressure measures. To our knowledge, these are the first data to suggest that the common genetic polymorphism in the VDR is associated with blood pressure and hypertension risk. We speculate that the BsmI polymorphism may be in linkage disequilibrium with another functional variant at the VDR locus or with a nearby gene. Key words: δ-aminolevulinic acid dehydratase, blood pressure, hypertension, lead, polymorphisms, vitamin D receptor, X-ray fluorescence.

Address correspondence to B.S. Schwartz, Division of Occupational and Environmental Health, Johns Hopkins School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA. Telephone: (410) 955-4158. Fax: (410) 955-1811; E-mail: bschwartz@jhsph.edu

This research was supported by grants R01 ES07198 (B.S. Schwartz) and ES050002 (K.T. Kelsey) from the U.S. National Institute of Environmental Health Sciences (NIEHS); HMP-97-M-40047 from the Ministry of Health and Welfare, Republic of Korea; and P42 ES05947 from the Environmental Protection Agency (U.S. EPA). Its content is solely the responsibility of the authors and does not necessarily represent official views of the NIEHS or the U.S. EPA.
visit from 933 subjects enrolled between 24 October 1997 and 19 August 1999. The study was reviewed and approved by institutional review boards at the Johns Hopkins School of Hygiene and Public Health and the Soochunhyang University School of Medicine.

Study population. Participation in the study was voluntary, and all participants provided written, informed consent. Subjects were paid approximately $30 for their participation. Lead workers were recruited from 24 different lead-using facilities, with participation in most facilities exceeding 80% (29). Retired workers from three facilities who had received medical surveillance services by Soochunhyang University for several years were also recruited to participate in the study. Routine, governmentally mandated industrial hygiene sampling revealed that the study plants did not have significant amounts of other heavy metals such as cadmium. Controls without occupational lead exposure were recruited from a central air conditioning assembly plant that did not use lead or other heavy metals and from hourly-wage workers of Soochunhyang University.

Data collection. Data collection methods have been reported previously (29). In brief, data were collected either at the Institute of Industrial Medicine at Soochunhyang University in Chonan or on the premises of the study's lead-using facilities. The following were collected or measured on all study subjects: a standardized interview for demographics, medical history, and occupational history; a neurobehavioral test battery consisting of examiner-administered tests: blood pressure; peripheral vibration threshold and pinch and grip strength; a 10-mL blood specimen taken by venipuncture that was stored at −70°C as whole blood, plasma, and red blood cells; a spot urine sample; tibia lead concentration assessed by venipuncture that was stored at −70°C as whole blood, plasma, and red blood cells; and from hourly-wage workers of Soochunhyang University.

Articles • Lee et al.

VOLUME 109 | NUMBER 4 | April 2001 • Environmental Health Perspectives
blood pressure (i.e., there were substantive changes in the coefficients of predictor variables after inclusion of potential confounding variables). To evaluate effect modification by ALAD and VDR genotype, we added cross-product terms of the genetic factors and the lead dose measures and age to the models of systolic and diastolic blood pressure, one cross-product term at a time.

We defined hypertension as systolic blood pressure > 160 mm Hg or diastolic blood pressure > 96 mm Hg or a patient's currently taking medications for high blood pressure, to increase the specificity of the categorization and to be consistent with prior research (2, 41). We evaluated associations between ALAD and VDR genotype and hypertension in contingency tables using odds ratios and 95% exact confidence limits calculated with Epi Info version 6.04b (Centers for Disease Control and Prevention, Atlanta, GA). We used logistic regression to model hypertension status, controlling for confounding variables, after evaluating the potential covariates described above for systolic and diastolic blood pressure. We added cross-product terms to the logistic regression models of hypertension one at a time to evaluate effect modification by ALAD or VDR genotype.

Results

Demographics and dose measures. Compared to nonexposed controls, lead-exposed subjects were older (40.5 vs. 34.5 years), had lower education levels (49.9% vs. 19.2% did not complete high school), and had a lower proportion of male subjects [79.4% vs. 91.9% (Table 1)]. The majority of both nonexposed and exposed subjects were current users of tobacco and alcohol products. There was a wide range of blood lead (4–86 µg/dL), tibia lead (–7–338 µg/g), and DMSA-chelatable lead (4.8–2,103 µg) levels among lead workers (Table 1). The corresponding values among nonexposed control subjects were low (Table 1).

Prevalence and associations of genotypes. Among lead workers, 9.9% (n = 79) were heterozygous for the ALAD² allele and there were no ALAD² homozygotes. A total of 11.2% (n = 89) had at least one copy of the VDR^B allele and 0.5% (n = 4) had the BB genotype. The corresponding values for nonexposed controls were 8.1% (n = 11) for the ALAD² allele and 8.9% (n = 12) and 0.7% (n = 1) for one and two copies of the VDR^B allele, respectively. Because of the small number of subjects with the BB genotype, they were combined with the heterozygous variant allele carriers for all subsequent analysis.

There were no differences in age, job duration, lead dose measures, or systolic or diastolic blood pressure by ALAD genotype. In contrast, subjects with the VDR^B allele were older, had higher DMSA-chelatable lead levels, and had higher systolic and diastolic blood pressures (all p-values < 0.05; Table 2).

Analysis comparing lead workers and controls. Compared to lead workers, control subjects without occupational exposure to lead evidenced no average difference in systolic or diastolic blood pressure after adjustment for age, sex, body mass index, antihypertensive medication use, current alcohol use, blood lead, and ALAD and VDR genotypes (data not shown). There was

Table 1. Description of study subjects, October 1997–August 1999, Republic of Korea.

Characteristic	Mean (SD)	Range	Mean (SD)	Range
Age, years	40.5 (10.1)	17.8–64.8	40.1 (9.7)	17.8–64.8
Job duration, years	8.2 (6.6)	0.1–36.2	8.2 (5.8)	0.1–36.2
Blood lead, µg/dL	31.7 (14.9)	34.2–15.9	31.4 (21.5)	34.2–15.9
Tibia lead, µg/g	37.5 (40.6)	31.4–29.5	37.1 (41.2)	31.4–29.5
DMSA-chelatable lead, µg	180.3 (181.2)	161.7–143.0	173.5 (176.8)	161.7–143.0
Systolic blood pressure, mm Hg	123.4 (16.5)	122.3–14.5	122.6 (15.5)	122.3–14.5
Diastolic blood pressure, mm Hg	75.9 (11.9)	73.3–12.5	75.3 (11.7)	73.3–12.5

* p < 0.05 comparing VDR^B to VDR^{Bb}.

Table 2. Selected study variables (mean ± SD) by gene status in 798 lead-exposed subjects, October 1997–August 1999, Republic of Korea.

Characteristic	ALAD genotype (n = 795)	VDR genotype (n = 798)		
	1-1	1-2	bb	Bb or BB
Number (%)	716 (90.1)	79 (9.9)	709 (88.8)	89 (11.2)
Age, years	40.5 ± 10.2	40.1 ± 9.7	40.2 ± 10.0[*]	47.2 ± 10.3[*]
Job duration, years	8.2 ± 6.6	8.2 ± 5.8	8.4 ± 6.6	7.2 ± 5.6
Blood lead, µg/dL	31.7 ± 14.9	34.2 ± 15.9	31.6 ± 14.8	34.8 ± 16.1
Tibia lead, µg/g	37.5 ± 40.6	31.4 ± 29.5	37.1 ± 41.2	38.1 ± 33.5
DMSA-chelatable lead, µg	180.3 ± 181.2	161.7 ± 143.0	173.5 ± 176.8	217.2 ± 179.7
Systolic blood pressure, mm Hg	123.4 ± 16.5	122.3 ± 14.5	122.6 ± 15.5[*]	129.1 ± 20.6[*]
Diastolic blood pressure, mm Hg	75.9 ± 11.9	73.3 ± 12.5	75.3 ± 11.7[*]	79.4 ± 13.5[*]

* <p > 0.05 comparing VDR^{Bb} or BB to VDR^{bb}.

NA, not applicable. The 4-hr urine collection was performed only in subjects who received DMSA.

[*]DMSA-chelatable lead (µg) was estimated as 4-hr urinary lead excretion after oral administration of 10 mg/kg DM SA, in lead-exposed subjects only (784 subjects completed the urine collection).
no significant association of hypertension status by current occupational lead exposure status (lead workers vs. controls) without occupational exposure to lead, in crude (odds ratio (OR) (95% CI) = 0.7 (0.4, 1.3)) or adjusted analyses controlling for age, sex, body mass index, current alcohol use, and ALAD and VDR genotype (OR (95% CI) = 1.8 (0.9, 3.9)). In controls, there was no effect modification by ALAD or VDR genotype on the relations of blood lead or tibia lead with the blood pressure measures, but the numbers of controls with the less prevalent genotypes were small (data not shown).

Predictors of systolic blood pressure. In linear regression models in lead workers only, VDR genotype (BB and Bb vs. bb), blood lead, tibia lead, and DMSA-chelatable lead were all positive predictors of systolic blood pressure, controlling for age (linear and quadratic terms), sex, body mass index, antihypertensive medication use, and cumulative lifetime alcohol drinks (divided into quartiles) (Table 3). In the model with tibia lead (model 1, Table 3), adding blood urea nitrogen to the model increased the \(\beta \) coefficient for VDR genotype to 2.73 \(\mu \)g per mg H Hg higher than did workers with the bb genotype (depending on the model). Models in which two lead dose measures were included at a time suggested that DMSA-chelatable lead was the best predictor of systolic blood pressure (models 4 and 5, Table 3). Neither ALAD nor VDR genotype was associated with systolic blood pressure in linear regression models with controls only, but there were only 11 and 13 controls with the ALAD2 or VDR B alleles, respectively.

VDR genotype modified the relation of age with systolic blood pressure (models 6, Table 3 and Figure 1). Lead workers with the VDR B allele had higher elevations in blood pressure with increasing age than did lead workers with the VDR bb genotype. These elevations in blood pressure were also observed at younger ages. In contrast, ALAD genotype, VDR genotype, and age did not modify the relations of blood lead, tibia lead, DMSA-chelatable lead, sex, body mass index, or job duration with systolic blood pressure.

Predictors of diastolic blood pressure. On average, lead workers with VDR BB or Bb genotype had diastolic blood pressures that were 1.9 mm Hg higher than did lead workers with VDR bb, controlling for age, sex, body mass index, antihypertensive medication use, cumulative alcohol consumption, and blood lead levels \(\times \text{p} = 0.09)\). After addition of 4-hr creatinine clearance to this model, lead workers with VDR BB or Bb genotypes had diastolic blood pressures that were 2.5 mm Hg higher than lead workers with the VDR bb genotype \(\times \text{p} = 0.04)\). There were no significant associations of tibia lead, blood lead, DMSA-chelatable lead, job duration, or ALAD genotype with diastolic blood pressure (data not shown). ALAD and VDR genotype did not modify the relations of blood lead, tibia lead, DMSA-chelatable lead, or age with diastolic blood pressure.

Predictors of hypertension. In crude analysis, VDR genotype was associated with hypertension status; lead workers with the VDR B allele had a higher prevalence of hypertension compared to lead workers with the bb genotype (OR (95% CI) = 2.0 (1.1, 3.9); Table 4). This association persisted after adjustment, using logistic regression, for age, sex, body mass index, tibia lead, and current alcohol use (OR = 2.1 (1.0, 4.4)). In this model (Table 4), tibia lead was also a predictor of hypertension status (OR = 1.005 (1.000, 1.010) per \mu g/g). This relation of tibia lead as a continuous variable, \(\times \text{p} = 0.05)\). Blood lead, DMSA-chelatable lead, and ALAD genotype were not associated with hypertension status in the lead workers. ALAD genotype, VDR genotype, and age did not modify the relations of the three lead dose measures with hypertension status.

Discussion. In the lead workers under study, blood lead, tibia lead, and DMSA-chelatable lead were all predictors of systolic blood pressure; none of these three lead dose measures was associated with diastolic blood pressure and tibia lead was the only predictor of hypertension status. Taken as a whole, the associations of the lead biomarkers with the blood pressure measures and hypertension suggest that both acute and chronic mechanisms may be involved in the relations of lead exposure and blood pressure (2,41). An interesting new observation was that, on average, lead workers with the VDR B allele, compared to lead workers with the VDR bb genotype, had higher systolic blood pressure, diastolic blood pressure, and prevalence of hypertension, even after adjustment for important confounding variables. Furthermore, VDR genotype modified the relation of age with systolic blood pressure; lead workers with the B allele had earlier and larger elevations of systolic blood pressure with increasing age than did workers with the bb genotype. These suggestions that release of lead from bone stores, which may be influenced by VDR genotype (4), may play a role in the observed blood pressure elevations.

Our priori expectation was that ALAD and VDR genotypes would directly influence blood lead, tibia lead, and DMSA-chelatable lead levels (3,4). We thus did not expect that the two genotypes would modify the relations among the lead biomarkers and the blood pressure measures because, first, the three lead biomarkers were measured...
directly, thus accounting for any genetic influence, and, second, lead is not likely to be influencing blood pressure via the ALAD or VDR gene products. Our data suggest that lead and VDR genotype are each independently associated with blood pressure; VDR modifies the toxicokinetics of lead, not the direct influence of lead on blood pressure.

The magnitude of the VDR genotype effect was relatively large. On average and after controlling for covariates, subjects with the B allele, mainly heterozygotes, had systolic blood pressures that were approximately 2.7–3.7 mm Hg higher than those of lead workers with the bb genotype, and had a 2-fold increased risk of hypertension. The magnitude of the VDR association was largest when blood urea nitrogen was added to the regression models of systolic blood pressure, raising the possibility that lead, the VDR, and the kidney independently contribute to elevations in blood pressure. Prior studies of bone mineral density suggest that the B allele has a dose effect, in that the influence of the allele increases with more copies (25,40,42,43). If this is the case with blood pressure, then the average effect of the B allele may be even larger in populations with larger numbers of BB homozygotes.

The BB genotype has a prevalence of 7–32% in Caucasians (25), but only 0.5% of the Korean lead workers had that genotype.

A large body of literature reveals that the ALAD genotype modifies the toxicokinetics of lead (5); we were thus interested in evaluating whether these toxicokinetic modifications could influence lead’s effect on blood pressure. Human ALAD is encoded by a single gene on chromosome 9p34 (6,7). The prevalence of the ALAD B allele is approximately 10% in Asians and 20% in Caucasians (8–10). Subjects who have at least one copy of the ALAD B allele, compared to subjects with none, have higher blood lead levels (8–10), lower DM SA-chelatable lead levels (11), lower plasma aminolevulinic acid levels (12), a larger difference between trabecular and cortical bone lead levels (13), higher blood urea nitrogen and serum creatinine levels (13), less efficient uptake of lead into bone, especially trabecular (14), lower zinc protoporphyrin levels for given levels of blood lead (15), and lower urinary calcium and creatinine levels (16). ALAD has been identified as a principal lead-binding protein, and the proportion of lead bound to ALAD was greater for subjects with ALAD B (17).

These observations suggested to us that ALAD genotype could modify the influence of lead on blood pressure, but the current data did not support this hypothesis. It is possible that in populations with a higher prevalence of the ALAD B allele and with different distributions of other important genes such as VDR, ALAD genotype may modify the influence of lead on blood pressure and other health outcomes.

A second gene that has recently been the focus of lead research is that for VDR, located at chromosome 12cen-12q (44). Most studies of the VDR gene have focused on the BsmI polymorphism and the three resulting genotypes termed bb, Bb, and BB (although the FokI polymorphism has been receiving increasing attention). Study subjects (mainly women) with the BB genotype have bone mineral densities up to 10–15% lower than subjects with the bb genotype (25,40,42,43,45), with an overall difference across studies of 2–2.5% reported in a recent meta-analysis (25). We recently reported that subjects with the B allele had larger trabecular bone lead concentrations with increasing age and lower trabecular bone lead concentrations with increasing duration since last exposure to lead than did subjects without the B allele (4). In another study of VDR genotype in lead workers, of the subjects reported here, lead workers with the VDR B allele had significantly (p < 0.05) higher blood lead levels (on average, 4.2 µg/dL), chelatable lead levels (on average, 37.3 µg), and tibia lead levels (on average, 6.4 µg/g) than did workers with the VDR bb genotype, controlling for covariates (3).

Now we provide evidence that VDR genotype also had a direct effect on blood pressure and...
modified the elevations in blood pressure associated with age. VDR genotype did not modify the relations of the lead dose measures with blood pressure.

The most critical role of the active form of vitamin D, 1,25-dihydroxyvitamin D$_3$ [1,25(OH)$_2$D$_3$], is the activation of genes involved in intestinal calcium transport (46). 1,25(OH)$_2$D$_3$ binds to the VDR, and the activated VDR regulates the rate of transcription of vitamin-D-responsive genes (46). The VDR is found in intestine, bone, kidney, parathyroid glands, hematopoietic tissues, immune tissues, muscle, heart, skin, pancreas, and other sites, and 1,25(OH)$_2$D$_3$ has recognized actions in all these tissues (46). Several genetic polymorphisms have been found within the VDR, and these have been implicated in RANKL bone mineral density (25), the risk of primary hyperparathyroidism (47), parathyroid hormone levels and tubular resorption of phosphate (48), the response of psoriasis to vitamin D therapy (49), urinary calcium excretion and the risk of nephrolithiasis (50), and serum osteocalcin levels (40).

The links among calcium, lead, and blood pressure have been increasingly recognized. Calcium supplementation lowers blood pressure (51), several studies have reported that increased dietary calcium, especially from dairy products, is associated with lower blood pressure (52–54); and lower vitamin D intake has been associated with higher blood pressure in women (55). Moderate lead levels can cause elevations in blood pressure in 543 former organolead manufacturing workers. Arch Environ Health 55:85–92 (2000).

The functional significance of the Bsm polymorphism is unclear because it is not located at exon-intron boundaries, would not influence the structure of the VDR, and is not known to produce splicing errors; and recent in vitro studies have not demonstrated differences in VDR expression or cellular responsiveness to vitamin D treatment by genotype (24,59). This suggests that the Bsm polymorphism may be in linkage disequilibrium with another functional variant at the VDR locus or with a nearby bone metabolism gene (24). It is not known how the VDR polymorphism could influence blood pressure, but the links among lead, calcium, VDR, and blood pressure would clearly suggest biologic plausibility.

An important question is whether selection bias could account for the study results. Evidence from this study and prior ones (3,8) suggests that there may be selective movement of workers, by genotypes, out of lead-using workplaces. For selection by genotype or other factors to account for the observed association of the VDR B allele with blood pressure and hypertension, such a factor would have to increase the prevalence of VDR B and elevated blood pressure. While this type of selection is possible, it requires a complex interplay of a number of factors. First, there would have to be a behavioral response to lead exposure, perhaps mediated by development of symptoms, that would motivate persons to leave the workplace. Second, the behavioral response would have to be associated with both the VDR B allele and elevated blood pressure. We think this complex model of selection bias is unlikely to explain the association we observed. However, longitudinal analysis is less susceptible to these biases, and will be used in the future, after the completion of data collection, to evaluate these associations further.

REFERENCES AND NOTES

1. ATSDR. Toxicological Profile for Lead. Atlanta, GA: Agency for Toxic Substances and Disease Registry, 1997:27–37.

2. Schwartz BS, Stewart WF, Todd AC, Simon D, Links J. Different associations of blood lead, meso 2,3-dicarboxycotic acid (DMCA)-calchelable lead, and tubial lead levels with blood pressure in 543 former organolead manufacturing workers. Arch Environ Health 55:85–92 (2000).

3. Schwartz BS, Lee B-K, Lee G-S, Stewart WF, Simon D, Kelsey K. Todd AC. Associations of blood lead, dimercaptoposonic acid (DMSA)-calchelable lead, and tubia lead with hyperparathyroidism in 543 former organolead manufacturing workers. Arch Environ Health 58:95–100 (2000).

4. Schwartz BS, Lee B-K, Lee G-S, Stewart WF, Simon D, Kelsey K. Todd AC. Associations of blood lead with BsmI polymorphisms in the vitamin D receptor and 1,25-dihydroxyvitamin acid dehydrogenase genes. Environ Health Perspect 108:949–954 (2000).

5. Schwartz BS, Lee B-K, Lee G-S, Stewart WF, Simon D, Kelsey K. Todd AC. Associations of blood lead with BsmI polymorphisms in the vitamin D receptor in former organolead manufacturing workers. Environ Health Perspect 108:199–203 (2000).

6. Onalaja AO, Claudio L. Genetic susceptibility to lead poisoning: a clinical overview. Semin Nephrol 19:593–602 (1999).

7. Resnick LM. The role of dietary calcium in hypertension: a hierarchical overview. Am J Hypertens 12:99–112 (1999).

8. Groobbe DE, van Hoot JM, Hofman A. Calcium metabolism and the risk of hypertension. Semin Nephrol 19:512–518 (1999).

9. Bell PD, Mabashun D. Unial M. Calcium and lead excretion: a vasodilator that is defective in salt-sensitive hypertension. Acta Physiol Scand 168:209–214 (2000).

10. Hattton DC, Yue Q, M. R. McCarron DA. Mechanisms of calcium’s effects on blood pressure. Semin Nephrol 19:593–602 (1999).

11. Kneip TJ, Crable JV. Lead in urine. In: Methods for biological monitoring. A Manual for Assessing Human Exposure to Hazardous Substances. Washington, DC:American Public Health Association, 1988:199–201.

12. Todd AC, McNeille FE. In vivo measurements of lead in...
bone using a Cd spot source. In: Human Body Composition Studies. New York:Plenum Press, 1993;299–302.

36. Todd AC. Contamination of in vivo bone-lead measurements. Phys Med Biol 45:229–240 (2000).

37. Kim R, Aro A, Rotnitzky A, Amarasiwardena C, Hu H. K X-ray fluorescence measurements of bone lead concentration: the analysis of low-level data. Phys Med Biol 40:1475–1485 (1995).

38. Lee B-K, Schwartz BS, Stewart W, Ahn K-D. Urinary lead excretion after DMSA and EDTA: evidence for differential access to lead storage sites. Occup Environ Med 52:13–19 (1995).

39. Parsons PJ, Slavin W. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study. Spectrochim Acta Part B 54:853–864 (1999).

40. Morrison NA, Yeoman R, Kelly PJ, Eisman JA. Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci USA 89:6665–6669 (1992).

41. Hu H, Aro A, Payton M, Korrick S, Sparrow D, Weiss ST, Rotnitzky A, Korrick S, Sparrow D, Weiss ST, Rotnitzky A. The relationship of bone and blood lead to hypertension: the Normative Aging Study. J Am Med Assoc 275:1171–1176 (1996).

42. Barger-Lux MJ, Heaney RP, Hayes J, DeLuca JF, Johnson ML, Gong G. Vitamin D receptor gene polymorphism, bone mass, body size, and vitamin D receptor density. Calcif Tissue Int 57:161–162 (1995).

43. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles. Nature 367:284–287 (1994).

44. Taymans SE, Pack S, Pak E, Orban Z, Barsony J, Zhuang Z, Stratakis CA. The human vitamin D receptor gene (VDR) is localized to region 12cen-q12 by fluorescent in situ hybridization and radiation hybrid mapping: genetic and physical VDR map. J Bone Miner Res 14:1163–1186 (1999).

45. Gomez C, Navas Ml, Barrios Y, Diaz J B, Fernandez J L, Salido E, Torres A, Cannata J B. Vitamin D receptor gene polymorphisms, bone mass, bone loss and prevalence of vertebral fracture: differences in postmenopausal women and men. Osteoporos Int 10:175–182 (1999).

46. Brown A J, Dusso A, Slatomolipsky E. Vitamin D. Am J Physiol 277:F157–F175 (1999).

47. Carling T, Kindmark A, Hellman P, Lundgren E, Lijnghall S, Rastad J, Akerstrom G, Meilhus H. Vitamin D receptor genotypes in primary hyperparathyroidism. Nat Med 1:1309–1311 (1995).

48. Ferrari S, Manen D, Bonjour JP, Slosman D, Rizzoli R. Bone mineral mass and calcium and phosphate metabolism in young men: relationships with vitamin D receptor allelic polymorphisms. J Clin Endocrinol Metab 84:2043–2048 (1999).

49. Kontula K, Valimaki S, Kainulainen K, Vitainen AM, Keski-Oja J. Vitamin D receptor genotypes in primary hyperparathyroidism. Nat Med 1:1309–1311 (1995).

50. Ruggiero M, Pacini S, Aterini S, Chiarugi V. Association between vitamin D receptor gene polymorphism and nephrolithiasis. M iner Electrolyte Metab 25:185–190 (1999).

51. Hamet P, Dagniaux-Gélinas M, Lambert J, Ledoux M, Whissell-Cambioti L, Bélavance F, Mongeau E. Epidemiological evidence of an interaction between calcium and sodium intake impacting on blood pressure. A Montréal study. Am J Hypertens 5:378–385 (1992).

52. Jorde R, Banaa KH. Calcium from dairy products, vitamin D intake, and blood pressure: the Tromsø study. Am J Clin Nutr 71:1530–1535 (2000).

53. Osborne CG, McFadyen RB, Dudzik J, Roche KE, Scheuplein R, Silverstein B, Weinberg M S, Salkeld AA. Evidence for the relationship of calcium to blood pressure. Nutr Rev 54:365–381 (1996).

54. Miller GD, DiPienzo DD, Reusser M E, McCarron DA. Benefits of dairy product consumption on blood pressure in humans: a summary of the biomedical literature. J Am Coll Nutr 19(2 suppl):1475–1465 (2000).

55. Sowers MR, Wallace RB, Lemke J H. The association of intakes of vitamin D and calcium with blood pressure among women. Am J Clin Nutr 42:135–142 (1985).

56. Kristal-Boneh E, Froom P, Yerushalmi N, Harari G, Ribak J. Calcitropic hormones and occupational lead exposure. Am J Epidemiol 147:458–463 (1998).

57. Mason Hj, Somervaille JL, Wright AL, Chettle DR, Scott M C. Effect of occupational lead exposure on serum 1,25-dihydroxyvitamin D levels. Hum Exp Toxicol 9:29–34 (1990).

58. Jorde R, Sundsfjord J, Haug E, Banaa KH. Relation between low calcium intake, parathyroid hormone, and blood pressure. Hypertension 35:1154–1159 (2000).

59. Gross C, Musiol IM, Eccleshall TR, Malloy PJ, Feldman D, Vitamin D receptor gene polymorphisms: analysis of ligand binding and hormone responsiveness in cultured skin fibroblasts. Biochem Biophys Res Commun 242:467–473 (1998).