Effectiveness of web-based and mobile health interventions designed to enhance adherence to physical activity for people with inflammatory arthritis: a systematic review

Mandeep Sekhon¹, Claire White¹, Emma Godfrey¹, Aliya Amirova¹, Åsa Revenäs²,³,⁴, Sinead King¹, Joshua Pedro¹, Jamaal Quailey¹ and Lindsay Bearne¹

¹ School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
² Centre for Clinical Research, Region Västmanland-Uppsala University, Västerås, Sweden
³ School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden
⁴ Orthopedic Clinic, Västmanland Hospital Västerås, Västerås, Sweden

Corresponding Author: Dr Mandeep Sekhon, mandeep.sekhon@kcl.ac.uk

School of Population Health & Environmental Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, SE1 1UL, UK

© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Rheumatology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

Objective: The aim of this systematic review was to assess the evidence from randomised controlled trials (RCT) and cohort studies for the effectiveness of digital interventions designed to enhance adherence to physical activity (PA) for people with inflammatory arthritis (IA) and describe the intervention content using established coding criteria.

Methods: Six electronic databases were searched for published and unpublished studies. Independent data extraction and quality assessment (Cochrane risk of bias II or ROBIN I) were conducted by two reviewers. The primary outcome was self-reported adherence to PA post-intervention. Secondary outcomes included self-reported adherence to PA at other timepoints, level of PA or engagement with intervention at any follow-up timepoint. Intervention content was assessed using the Consensus on Exercise Reporting Template and the Behaviour Change Techniques taxonomy version 1.

Results: From 11,136 reports, four moderate risk of bias studies (three RCTs, one cohort study) including 1,160 participants with rheumatoid arthritis or juvenile inflammatory arthritis were identified. Due to heterogeneity of outcomes, a narrative synthesis was conducted. Only one RCT reported a small between group difference in adherence to PA [mean difference (95% confidence intervals) -0.46 (-0.82. -0.09)] in favour of the intervention. There were no between group differences in any secondary outcomes. Interventions included between 3-11 behaviour change techniques but provided minimal exercise prescription information.

Conclusion: There is currently limited moderate quality evidence available to confidently evaluate the effect of web-based and mobile health interventions on adherence to PA or level of PA post intervention in people with IA.
Keywords: Systematic review, inflammatory arthritis, digital health interventions, adherence, physical activity, exercise

Key messages

- Digital interventions to support adherence to physical activity in people with inflammatory arthritis seem promising.
- There is insufficient evidence to confidently evaluate the effect of digital interventions on physical activity.
- Future studies need to report intervention content in line with standardised reporting guidelines.

Introduction

Physical activity (PA) is a key management strategy for people with inflammatory arthritis (rheumatoid arthritis, psoriatic arthritis, axial spondyloarthritis, juvenile inflammatory arthritis) (IA). Guidance suggests that people with IA should complete at least 150 minutes of moderate intensity PA or equivalent per week and strengthening and flexibility exercises twice a week. The importance of PA was reinforced by World Health Organisation during the current Covid-19 pandemic, but adherence to PA in people with IA tends to be low. There are complex and distinctive barriers which hampers PA participation and makes the adoption and adherence to new health behaviours challenging, without appropriate support. However, restricted resources and increasing demand means access to face-to-face healthcare interventions to support PA uptake and maintenance is limited and this is exacerbated by social distancing requirements due to the COVID-19 pandemic. To address this need, there
has been a rapid reconfiguration of services and adoption and scale up of remote patient care including novel ways to increase and support adherence to PA.12-14

Interventions that employ digital technologies (e.g. mobile apps, websites and wearable devices) that can be delivered across a range of telecommunication devices (e.g. smartphones, tablets) offer a potential solution to supporting people with IA adhere to PA recommendations.15,16

However, changing PA behaviour can be complex and theory and evidence-based principles are recommended, when designing and implementing interventions.17-20 Previous reviews of the evidence for the effectiveness of digital interventions to support PA in people with IA highlight the limited number and low methodological quality of studies and poor integration or reporting of evidence-based intervention content.22-24 One narrative synthesis of four RCTs (492 participants with IA) identified no evidence of effect of interactive digital interventions on objectively measured PA and reported limited evidence of effect on self-reported PA.23 However, only evidence from RCTs were included, potentially missing evidence of effect from other study designs. Another systematic review including six studies (567 participants with Rheumatoid Arthritis (RA)) found limited evidence for the effectiveness for web-based rehabilitation interventions on self-management, health information and/or PA.22 This review only focused on people with RA which limits the generalisability of the findings to the IA population, and did not report the theoretical underpinning or assess intervention content for the inclusion of BCTs. Neither of the previous reviews assessed the content of the exercise prescriptions against established guidelines.
Consequently, whilst digital interventions appear promising, the effectiveness of interventions to support PA in people with IA is unclear. Thus, an up to date review is required, that also includes the evaluation of PA prescription and behavioural change techniques using standardized approaches such as the Consensus on Exercise Reporting Template (CERT)21 and behaviour change techniques taxonomy (BCTTv1).20 This will help healthcare professionals to identify the specific characteristics, or active ingredients associated with effectiveness in interventions.25,26

Aims and objectives

In this study, we aimed to (1) systematically identify and quality appraise the evidence from studies evaluating the effectiveness of digital interventions (web-based and mobile applications (apps)) on PA for people with IA conditions; (2) identify and describe the content of PA interventions using standardised reporting formats and (3) identify whether behavioural theory has been applied to underpin intervention development.

Materials and Methods

This review was conducted in accordance with the Cochrane Handbook for Systematic Reviews of Interventions, the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (see Supplementary Data S1, available at *Rheumatology Advances in Practice* online), and Synthesis Without Meta-Analysis (SWiM) reporting guidelines.27,28 The protocol was prospectively registered on the international prospective register of systematic reviews, PROSPERO: CRD35019129341.
Eligibility criteria

Types of studies: We included RCTs, quasi-experimental trials, prospective cohort studies, retrospective cohort analyses, before-after trials, which reported baseline and follow-up measurements of adherence to PA or PA levels in at least two groups.

Types of participants: Participants with IA diagnosed according to established criteria were included, i.e., adults ≥ 18 years old with rheumatoid arthritis, psoriatic arthritis, axial spondylarthritides or children with juvenile inflammatory arthritis. Data from studies evaluating several rheumatic populations were included if data from different clinical populations were reported separately.

Types of interventions: All types of clinician guided, or self-directed digital interventions were included. We defined digital interventions as interventions delivered via the internet (static or interactive websites, or web-based apps), personal computers, social media, or smartphones (mobile websites or smartphone apps).

Types of comparison: The study comparison groups comprised either: interventions not including digital technologies, usual/standard care, information only or waiting list comparisons.

Types of outcomes: The primary outcome of interest was self-reported measure of adherence to PA at the end of the intervention. Outcomes could be reported as exercise diaries, questionnaires and self-reported data uploaded to an app (i.e. user recording exercise completion data). Secondary outcomes included: Self-reported measures of adherence to PA at any other follow up timepoint, levels of PA by any validated measure e.g. monitoring.
device (i.e. step-count, accelerometer) or engagement (i.e. actual usage of intervention, reported via number of times participant logged in, minutes active on webpage) at the end of intervention or any other follow-up timepoint, if available.

Search strategy

Search terms included MeSH, keyword and wild-card terms located in the title or abstract that reflected disease type, intervention (e.g. web-based, mobile app) and outcome (e.g. self-reported activity) (full search strategy in Supplementary Table S1, available at Rheumatology Advances in Practice online). Studies were retrieved by: (1) searching electronic databases [MEDLINE, CINAHL, PsychINFO, EMBASE, PEDro, Cochrane Central Register of Controlled Trials (CENTRAL), Opengrey]; (2) cross-referencing from retrieved studies, previous relevant systematic reviews and meta-analyses; and (3) soliciting studies from experts in the field and authors who have published studies of web-based and mobile applications interventions. Databases were searched from January 2005- June 2019. The final search was completed on 28th June 2019.

Study selection

The search results were exported to an online platform designed to facilitate systematic and transparent management of reviews- Covidence (http://www.covidence.org). Following de-duplication all retrieved titles and abstracts were examined by two independent reviewers against eligibility criteria. Conflicts were resolved by consensus. A third reviewer acted as arbiter if necessary. Reviewers were not masked to the name(s) of the study author(s), institution(s) or publication source. Authors were contacted when full-text manuscripts were not available or when additional information was needed.
Data extraction

Coding and data extraction from the full text of eligible studies were conducted by two trained reviewers independently (bespoke data extraction tool available on request). Conflicts were resolved by discussion and a third reviewer acted as an arbitrator if necessary.

Information was extracted regarding:

1) study characteristics (i.e. author, year of publication, study design, sample size);
2) characteristics of populations (i.e., number of patients included in each study, type of IA condition);
3) intervention details (i.e. type of intervention- web-based, mobile type, duration of intervention;
4) outcomes of interest (i.e. self-reported measure of adherence, levels of adherence and engagement (e.g. number of log ins/ access to webpages) at each assessment time point.
5) The content of the intervention. This included:

(i) theoretical underpinning of interventions (i.e. authors explicitly stated/ reported use of theory in manuscript, (yes/no)),
(ii) coding to identify the presence of BCTs. The BCT Taxonomy V1 presents 93 discrete BCTs that are “observable, replicable and irreducible component of an intervention designed to alter or redirect causal processes that regulate behavior.” (yes/no)
(iii) Completeness of reporting of the exercise prescriptions (Consensus of Exercise Reporting Template (CERT). The CERT consists of 16 items across seven domains applied to evaluate the reporting of exercise interventions. (yes/no/not applicable)
Risk of bias

Full texts were assessed for risk of bias by two independent reviewers. The risk of bias tool 2, developed by the Cochrane collaboration was used to assess RCTs. This tool comprises five domains: randomisation process, deviations from intended interventions, missing data, measurement of the outcome and selection of the reported results and is classified as having either the presence or potential presence of a source of bias (Yes), no risk of bias (No) or some concerns.

The Risk Of Bias in Non-randomized Studies - of Interventions (ROBINS-I) tool was applied to non-randomised controlled trials. This tool includes seven domains: bias due to cofounding, bias in selection of participants into the study, bias in classification of interventions, bias due to deviations from intended interventions, bias due to missing data, bias in measurement of outcomes and bias in selection of the reported results. Risk of bias was evaluated as being ‘low risk’, ‘moderate risk’, ‘serious risk’ or ‘critical risk’. Any disagreements were resolved through discussions with a third reviewer.

Data Analysis

We grouped studies according to type of study design (RCT, cohort), mode of intervention delivery (via intervention website, internet webpage) and population. Standardised Mean Differences (SMD) for within and between group differences on the primary outcome (self-reported adherence to PA) for all RCTs were calculated using Cochrane Review Manager (RevMan version 5.41). For SMDs, effect sizes were interpreted as 0.20 = small effect, 0.50 = moderate effect, and 0.80 = large effect. Studies with multiple interventions were grouped together and combined as recommended in the Cochrane handbook for systematic
reviews of interventions. In studies that reported *median* and *interquartile range*, we calculated the *mean* and *standard deviation* as recommended in Cochrane Handbook for Systematic Reviews of Interventions reporting the conversion in line with published recommendations. We assessed clinical heterogeneity by inspecting the type of participants, interventions and outcomes of each study. Due to the clinical and methodological heterogeneity, results could not be reliably combined to complete a meta-analysis. Therefore, a narrative synthesis without meta-analysis (SWIM) of all studies (RCTs and cohort studies) was conducted. Intervention engagement data (e.g., usage data) was reported as mean and standard deviation for the number of times participants logged into the intervention.

Results

Articles identified

Figure 1 presents a flow diagram of study selection. We identified 11,136 studies. After deduplication (n= 3,615) 7,521 titles and abstracts were screened for eligibility and 33 manuscripts progressed to full review. Four publications reporting three trials and one cohort study were included. No unpublished studies were included.

General characteristics of included studies and population

The characteristics of included studies are presented in Table 1. Included studies were published between 2008-2016. The RCTs were completed in Switzerland, the Netherlands, and USA and the cohort study was conducted in the Canada.

The review included a total of 1,160 participants (1,061 participants in three RCTs, and 99 participants in one cohort study). One RCT included adults with rheumatoid arthritis, one
trial included people with rheumatoid arthritis, osteoarthritis and fibromyalgia, but the results were reported separately for each condition at baseline 6 month and 12 month follow up\(^4^3\) and one trial included children with JIA.\(^4^2\) No studies included people with psoriatic arthritis or ankylosing spondylitis. The cohort study included adults with rheumatoid arthritis and osteoarthritis, and the results were presented separately for each condition at baseline and three months follow up.\(^4^4\) Sample size ranged from 49\(^\text{42}\) to 855 participants\(^4^3\) and the mean age of participants ranged from 10.6 years\(^4^2\) to 56.4 years.\(^4^4\)

Self-reported adherence to PA was measured in the three RCTs. Two RCTs\(^4^1,4^3\) employed the Exercise Behaviours Scale\(^4^2\) and another trial used an activity diary post intervention.\(^4^2\) One trial measured self-reported PA immediately after intervention delivery\(^4^1\) and a further trial assessed self-reported PA after intervention delivery, and at 12 month follow up.\(^4^2\) One trial did not assess self-reported adherence to PA post intervention but assessed it at 6 months and delivery and 12 months post-intervention.\(^4^3\)

One trial assessed moderate to vigorous physical activity (MVPA) post intervention and at 12 month follow up using an accelerometer during a seven-day period.\(^4^2\) One cohort study assessed the percentage of RA participants intention to apply exercises two weeks post intervention, and assessed the percentage of participants that applied the exercises at three-month follow up.\(^4^4\)

Characteristics of intervention and comparators

All studies investigated interventions delivered via the internet and no studies evaluated interventions delivered via mobile applications (Table 1). Intervention duration ranged from 2 weeks\(^4^4\) to 14 weeks.\(^4^2\) Interventions included in one RCT\(^4^3\) and one cohort study\(^4^4\) were
delivered remotely. One RCT evaluated an intervention which included access to an online support forum as part of the intervention41 and another RCT investigated a digital intervention for JIA participants that was supplemented with four group sessions.42 Comparisons groups consisted of usual care with no access to the web-based interventions in two trials 41,43 and in another trial the control group received standard care and were not restricted in any activities.42

Risk of bias

Figure 2 summarises the sources of risk of bias for included RCT studies. There were three moderate risk of bias RCTs. 41-43 Table 2 provides details for the one moderate risk bias cohort study.44 Specifically, the measurement bias, classification bias, and intended intervention bias was unclear due to the lack of reporting of relevant details. All RCTs reported appropriate methods for randomisation. Since it is not possible to blind participants to the nature of the intervention, risk of bias from this source was universally high and this domain was excluded from the rating of overall study quality. An appropriate analysis for estimating the effect of assignment (intention-to-treat analysis, ITT) was performed in two trials.41,43 High dropout rate (72-78\%) was present in one RCT, contributing to the missing data bias, and this study also did not report the blinding of the assessor.43 The pre-planned analysis was not published and described in detail before the start of all three trials. Thus, the main sources of bias include deviations from intended intervention for two trials;41,42 missing outcome data and measurement of outcome for one trial;43 and selection of reported bias for all three trials.41-43

Effect of adherence to physical activity
Table 3 displays the between and within group differences for our primary outcome (adherence to PA post intervention) and secondary outcome (PA level) for included studies. There was a small between group difference in adherence to PA at the end of the intervention in one moderate risk of bias trial (-0.46 (95% C.I. -0.82, -0.09) where four interventions were combined and compared to a single comparator group, favouring the intervention. However, there were no differences in individual intervention group compared to the comparison group in this trial. There was a substantial baseline difference between the control group and intervention groups.

Similarly, there were no between group differences in self-reported adherence to PA in two other moderate risk of bias trials post intervention, at 6 month follow up or at 12 month follow up.

For all three moderate risk of bias trials, no within group differences were identified. The moderate risk of bias cohort study found that 74% of RA participants had the intention to use a specific self-management technique relating to strengthening exercises for the hand, two weeks after accessing the online Facebook page. At three months post intervention, 78% of participants followed through on completing the hand strengthening exercises.

Effect on physical activity levels

Only one trial measured PA level. Post intervention there were no within or between group differences in objectively measured PA levels post intervention in one moderate risk of bias trial. Only participants randomised to the intervention group were followed up at 12 months and no within group difference in objectively measured PA levels was identified.
Engagement

Two trials reported data on intervention engagement (usage data).42,43 In one moderate risk of bias trial, 24/355 participants randomised to the ASMP intervention group did not engage with the web-based intervention (11 participants dropped out from the study before being assigned to a group session and 13 participants did not log in after being assigned).43 A total of 409 participants logged in 31.6 (24.5) (mean (SD) times (range 1–220) over 6 weeks, and 25/355 participants generated between 400-600 posts on the bulletin board.43

In another trial, all participants randomised to the intervention group logged in to the intervention 53.7 (93.1) mean (SD) times.42 Participants within the gaming, and social support plus gaming groups accessed the website mean (SD) 66.8 (112.4) times, whereas participants in the information, and information plus social support groups accessed the website less frequently (mean (SD) 26.2 (27.1) times).42

Theoretical underpinning of intervention and behaviour change techniques

Three studies explicitly reported a theory or model to underpin the design of the interventions.42-44 One trial42 was based on Pender’s Health Protection Model46 and another trial43 was underpinned by self-efficacy theory.47 The included cohort study44 was underpinned by the knowledge to action cycle.48,49

BCTs were identified in all interventions and, ranged from 3 BCTs44 to 11 BCTs.42 (Table 1). There was no single BCT applied across all four studies. The most commonly included BCT in three interventions included problem solving 41-43 and prompts and ques.42-43 Most studies
shared a minimum of two BCTs, these included information about health consequences,41,42 credible source41,44 as well as goal setting and action planning.42,43 Only one trial43 applied one BCT (material reward) to the control group.

Consensus on Exercise Reporting Template (CERT)

None of the RCTs41-43 provided sufficient details to be coded against the CERT.21 Only the included cohort study44 provided details on the non-exercise components (item 10) and information regarding the setting in which the exercises are to be performed (item 12) resulting in a total CERT score of 2/16. (Supplementary Table S2 and Supplementary Data S2, available at *Rheumatology Advances in Practice* online).

Discussion

This systematic review shows that there is currently limited moderate quality evidence available to confidently evaluate the effect of web-based and mobile health interventions on adherence to PA post intervention in people with RA and JIA. Only one of three trials found a small improvement in adherence to PA post intervention. Similarly, there is insufficient evidence of the effects of digital interventions on PA level at any time point, as few studies evaluated this outcome. No studies evaluated the effect of PA mobile applications designed for people with IA, and, surprisingly, no studies evaluated the impact of web-based interventions in people with PsA or AS.

Our findings broadly concur with the findings from previous reviews of web-based interventions in people with IA23 and in people with RA.22 One narrative synthesis identified no trials that reported any significant between group differences in objectively measured PA and only one low risk of bias trial found a significant between group difference in self-
reported vigorous but not moderate PA in people with IA23. Another systematic review including six studies also found limited evidence for the effectiveness for web-based rehabilitation interventions on self-management, health information and/or PA in people with RA22.

Our review updates and extends these findings by including a broad range of IA populations, study designs and intervention content evaluation. Despite the fast-paced development of digital interventions, broad review eligibility criteria and updated, comprehensive searches our review only included four studies and confirmed that there is a paucity of high-quality evidence evaluating web-based and mobile health interventions on PA adherence or activity level in people with IA. However, the COVID-19 pandemic has accelerated the adoption and evaluation of digital interventions so more evidence may become available50.

Surprisingly, our review did not include any studies that investigated mobile applications to support adherence to PA. Mobile apps that aim to support adherence to PA are available for people with IA conditions51-55 although app content and quality is heterogeneous and integrated measures to assess PA are often not evidence based24. A recent review identified one high quality mobile app that was designed for people with RA although its effectiveness has not been established24.

To our knowledge, our review is one of the first reviews to also synthesise findings on user engagement with digital interventions. Whilst no within or between group differences were detected in our included studies, in one RCT, intervention groups with access to social support had a greater number of logins to the web-based intervention41. This suggests interventions that includes a component of social support, may enhance participation and
interaction with the intervention itself.

For example, in a self-management PA mobile internet service co-designed by people with RA, the inclusion of an interactive forum also enhanced participant engagement with the intervention.

Whilst three studies investigated interventions that were underpinned by theory, the trial that showed a small effect on adherence to physical activity was not underpinned by theory.

The application of theory is strongly advocated to underpin an intervention, because theory provides guidance on what should be the targeted focus of an intervention (i.e. behavioural determinant) and guidance on how to target the specified behavioural determinants (e.g. what constructs would be most effective, or application of BCTs). However, our findings suggests that identifying the most appropriate theory that effectively targets determinants that influence adherence to PA is challenging and no included studies described how theory was applied during the development of the digital intervention investigated.

All interventions in the studies included in our review incorporated between 3 BCTs and 11 BCTs. The most commonly reported BCTs was problem solving included in all three RCTs. In this review, the intervention with the small effect included a total of seven BCTs. Whilst there is limited evidence with regards to the optimum number of BCTs and dosage to support adherence to PA a recent review suggested interventions with less than seven BCTs are most effective at enhancing adherence to prescribed exercise in individuals with musculoskeletal conditions.

We evaluated the explicit reporting of PA intervention content using a standardised tool, (CERT) for the first time. Only one cohort study provided some limited details of the intervention PA content. This was disappointing and was predominantly because the
intervention descriptions did not provide specific details of intervention delivery, exercise
dosage or adaptations.

It is crucial that future digital interventions include evidence–based PA prescriptions that are
aligned to public health guidance and the European League for Rheumatology (EULAR)2 for
people with inflammatory arthritis recommendations (i.e. at least 150 minute of moderate
PA/week and twice weekly strengthening and flexibility exercises)3 Exercises formats and
dosages should be accurately described and the options for tailoring, progression and
regression of exercises highlighted so that they can be safely replicated.3,62 Interventions
should also optimise an individual’s capacity, motivation, and opportunity to adhere to PA.
Evidence informed BCTs such as goal setting, instruction and demonstration of appropriate
PA, strategies to facilitate regular practice and social support should be incorporated.

This review has a number of methodological considerations. Our review included a
comprehensive search strategy and broad eligibility criteria were applied, thus extending and
updating previous reviews.22,23 A rigorous assessment of risk of bias of studies28, 34 was
completed and intervention content was described via a recognised taxonomy20 and exercise
reporting template.21

However, the findings of this review are compromised by the paucity and quality of the
included studies e.g. measures of PA adherence were often self-reported. The only study that
reported an intervention effect had a substantial between group difference at baseline and this
may have masked the true impact of the intervention.41 Our review included a wide range of
IA populations to try to estimate the effect of digital interventions on PA. However, this
resulted in a substantial age heterogeneity in the population of participants in our included
studies. This may have influenced our interpretation of the effect of digital interventions on PA because children and young people might find hand-held mobile devices easier to use and be more inclined to engage with digital interventions than other generations. Children and adults may also have different life commitments that could impact on adherence to PA. However, because there is only limited research on the effect of digital interventions on PA in people with IA, we were unable to explore this aspect within our review. Whilst we reported some data on intervention engagement, this review did not consider whether participants were involved in the development of the web-based interventions or extracted data on the participant experience and acceptability of the interventions.

Conclusion

Our review findings indicate that there is limited evidence evaluating the effect of digital interventions on adherence to PA in people with IA. The available evidence suggests that there is likely to be no effect of digital interventions on adherence to PA post intervention or other follow up timepoints. Consequently, clinicians do not have an evidence base to help them select digital interventions to support PA. Future trials need to ensure that the content of web-based and mobile health interventions are reported in line with standardised reporting guidelines, report the specific exercise prescriptions, and apply validated measures for PA adherence (e.g. Exercise Adherence Reporting Scale (EARS) and objective measures for PA level (e.g. accelerometers).
Conflict of interest

The authors have declared no conflicts of interest.

Funding statement

No specific funding was received from any funding bodies in the public, commercial or not-for-profit sectors to carry out the work described in this manuscript.

Data availability

All data are incorporated into the article and its online supplementary material.
References

1. Van der Heijde D, Ramiro S, Landewé R, Baraliakos X, Van Den Bosch F, Sepriano A, et al. 2016 update of the ASAS-EULAR management recommendations for axial spondyloarthritis. Ann Rheum Dis 2017; 76: 978–91

2. Osthoff AK, Niedermann K, Braun J, Adams J, Brodin N, Dagfinrud H, Duruoz T, Esbensen BA, Günther KP, Hurkmans E, Juul CB. 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Annals of the rheumatic diseases. 2018 Sep 1;77(9):1251-60.

3. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British journal of sports medicine. 2020 Dec 1;54(24):1451-62.

4. World Health Organisation. 2020. #healthyAtHome- Physical activity
https://www.who.int/news-room/campaigns/connecting-the-world-to-combat-coronavirus/healthyathome/healthyathome---physical-activity

5. Pedersen BK, Saltin B. Exercise as medicine—evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian journal of medicine & science in sports. 2015 Dec;25:1-72

6. O'Dwyer T, Rafferty T, O'Shea F, Gissane C, Wilson F. Physical activity guidelines: is the message getting through to adults with rheumatic conditions? Rheumatology (Oxford) 2014; 53: 1812–7

7. Bell K, Hendry G, Steultjen M. Physical activity and sedentary behaviour in people with inflammatory joint disease: a cross sectional study. Arthritis Care & Research. 2020 Sep 4.

8. Meade LB, Bearne LM, Godfrey EL. “It’s important to buy in to the new lifestyle”: barriers and facilitators of exercise adherence in a population with persistent musculoskeletal pain. Disability and Rehabilitation. 2019 Jun 24:1-1.

9. Manning VL, Hurley MV, Scott DL, Bearne LM. Are patients meeting the updated physical activity guidelines? Physical activity participation, recommendation, and preferences among inner-city adults with rheumatic diseases. JCR: Journal of Clinical Rheumatology. 2012 Dec 1;18(8):399-404.
10. Baxter S, Smith C, Treharne G, Stebbings S, Hale L (2016) What are the perceived barriers, facilitators and attitudes to exercise for women with rheumatoid arthritis? A qualitative study. Disabil Rehabil Int Multidiscip J 38(8):773–780

11. Ndosi M, Ferguson R, Backhouse MR, Bearne L, Ainsworth P, Roach A, Dennison E, Cherry L. National variation in the composition of rheumatology multidisciplinary teams: a cross-sectional study. Rheumatology international. 2017 Sep 1;37(9):1453-9.

12. Torous J, Myrick KJ, Rauseo-Ricupero N, Firth J. Digital mental health and COVID-19: Using technology today to accelerate the curve on access and quality tomorrow. JMIR mental health. 2020;7(3):e18848.

13. Kirby T. Rheumatologists rapidly adjust patient care during COVID-19 pandemic. The Lancet Rheumatology. 2020 May;2(5):e258.

14. Pinto AJ, Dunstan DW, Owen N, Bonfâ E, Gualano B. Combating physical inactivity during the COVID-19 pandemic. Nature Reviews Rheumatology. 2020 Apr 30:1-2.

15. van den Berg MH, de Boer IG, le Cessie S, Breedveld FC, Vlieland TP. Most people with rheumatoid arthritis undertake leisure-time physical activity and exercise in the Netherlands: an observational study. Australian Journal of Physiotherapy. 2007 Jan 1;53(2):113-8.

16. Becker S, Miron-Shatz T, Schumacher N, Krocza J, Diamantidis C, Albrecht UV. mHealth 2.0: experiences, possibilities, and perspectives. JMIR Mhealth Uhealth 2014 May 16;2(2):e24

17. Carey R, Jenkins E, Williams P, Evans F, Horan M, Johnston M, West R, Michie S. A taxonomy of modes of delivery of behaviour change interventions: development and evaluation. Eur Health Psychol. 2017.

18. Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, Moore L, O’Cathain A, Tinati T, Wight D, Baird J. Process evaluation of complex interventions: Medical Research Council guidance. bmj. 2015 Mar 19;350.

19. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. Bmj. 2008 Sep 29;337:a1655.

20. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, Eccles MP, Cane J, Wood CE. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the
reporting of behavior change interventions. Annals of behavioral medicine. 2013 Aug 1;46(1):81-95.

21. Slade SC, Dionne CE, Underwood M, Buchbinder R. Consensus on Exercise Reporting Template (CERT): explanation and elaboration statement. British journal of sports medicine. 2016 Dec 1;50(23):1428-37.

22. Srikesavan C, Bryer C, Ali U, Williamson E. Web-based rehabilitation interventions for people with rheumatoid arthritis: A systematic review. Journal of telemedicine and telecare. 2019 Jun;25(5):263-75.

23. Griffiths AJ, White CM, Thain PK, Bearne LM. The effect of interactive digital interventions on physical activity in people with inflammatory arthritis: a systematic review. Rheumatology international. 2018 Sep 1;38(9):1623-34

24. Bearne LM, Sekhon M, Grainger R, La A, Shamali M, Amirova A, Godfrey EL, White CM. Smartphone Apps Targeting Physical Activity in People With Rheumatoid Arthritis: Systematic Quality Appraisal and Content Analysis. JMIR mHealth and uHealth. 2020;8(7):e18495.

25. Michie S, Prestwich A. Are interventions theory-based? Development of a theory coding scheme. Health psychology. 2010 Jan;29(1):1

26. Meade LB, Bearne LM, Sweeney LH, Alageel SH, Godfrey EL. Behaviour change techniques associated with adherence to prescribed exercise in patients with persistent musculoskeletal pain: Systematic review. British Journal of Health Psychology. 2019;24(1):10-30.

27. Higgins, J.P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J. and Welch, V.A. eds., 2019. Cochrane handbook for systematic reviews of interventions. John Wiley & Sons.

28. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS med. 2009 Jul 21;6(7):e1000097.

29. Aletaha, D., Neogi, T., Silman, A. J., Funovits, J., Felson, D. T., Bingham III, C. O., ... & Combe, B. (2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis & rheumatism, 62(9), 2569-2581.
30. Rudwaleit, M. V., van der Heijde, D., Landewé, R., Akkoc, N., Brandt, J., Chou, C. T., ... & Van den Bosch, F. (2011). The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. *Annals of the rheumatic diseases, 70*(1), 25-31.

31. Taylor, W., Gladman, D., Helliwell, P., Marchesoni, A., Mease, P., & Mielants, H. (2006). Classification criteria for psoriatic arthritis: development of new criteria from a large international study. *Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 54*(8), 2665-2673.

32. Martini A, Ravelli A, Avcin T, Beresford MW, Burgos-Vargas R, Cuttica R, Ilowite NT, Khubchandani R, Laxer DJ, Petty RE. Toward new classification criteria for juvenile idiopathic arthritis: first steps, pediatric rheumatology international trials organization international consensus. The Journal of rheumatology. 2019 Feb 1;46(2):190-7.

33. Yardley L, Spring BJ, Riper H, Morrison LG, Crane DH, Curtis K, Merchant GC, Naughton F, Blandford A. Understanding and promoting effective engagement with digital behavior change interventions. American journal of preventive medicine. 2016 Nov 1;51(5):833-42.

34. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, Henry D, Altman DG, Ansari MT, Boutron I, Carpenter JR. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. bmj. 2016 Oct 12;355.

35. Cochrane Training. Review Manager (RevMan). Accessed on 07 Aug 2020 https://training.cochrane.org/online-learning/core-software-cochrane-reviews/revman

36. Cohen J. Statistical Power Analysis Jbr the Behavioral. Sciences. Hillsdale (NJ): Lawrence Erlbaum Associates. 1988:18-74.

37. Shi J, Luo D, Weng H, Zeng XT, Lin L, Chu H, Tong T. Optimally estimating the sample standard deviation from the five-number summary. Research Synthesis Methods. 2020 Sep;11(5):641-54.

38. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Statistical methods in medical research. 2018 Jun;27(6):1785-805.
39. Allam A, Kostova Z, Nakamoto K, Schulz PJ. The effect of social support features and gamification on a Web-based intervention for rheumatoid arthritis patients: randomized controlled trial. Journal of medical Internet research. 2015;17(1):e14.

40. Campbell M, McKenzie JE, Sowden A, Katikireddi SV, Brennan SE, Ellis S, Hartmann-Boyce J, Ryan R, Shepperd S, Thomas J, Welch V. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. bmj. 2020 Jan 16;368

41. Allam A, Kostova Z, Nakamoto K, Schulz PJ. The effect of social support features and gamification on a Web-based intervention for rheumatoid arthritis patients: randomized controlled trial. Journal of medical Internet research. 2015;17(1):e14.

42. Armbrust W, Bos GJ, Wulffraat NM, van Brussel M, Cappon J, Dijkstra PU, Geertzen JH, Legger GE, van Rossum MA, Sauer PJ, Lelieveld OT. Internet program for physical activity and exercise capacity in children with juvenile idiopathic arthritis: a multicenter randomized controlled trial. Arthritis Care & Research. 2017 Jul;69(7):1040-9.

43. Lorig KR, Ritter PL, Laurent DD, Plant K. The internet-based arthritis self-management program: A one-year randomized trial for patients with arthritis or fibromyalgia. Arthritis Care & Research: Official Journal of the American College of Rheumatology. 2008 Jul 15;59(7):1009-17.

44. Brosseau L, Wells GA, Brooks S, De Angelis G, Bell M, Egan M, Poitras S, King J, Casimiro L, Loew L, Novikov M. People getting a grip on arthritis II: an innovative strategy to implement clinical practice guidelines for rheumatoid arthritis and osteoarthritis patients through Facebook. Health Education Journal. 2014 Jan;73(1):109-25.

45. Lorig K, Stewart A, Ritter P, Lynch J, Gonzalez V, Laurent D. Outcome measures for health education and other health care interventions. Sage; 1996 Apr 18.

46. Srof BJ, Velsor-Friedrich B. Health promotion in adolescents: A review of Pender’s health promotion model. Nursing Science Quarterly. 2006 Oct;19(4):366-73.

47. Bandura A, Freeman WH, Lightsey R. Self-efficacy: The exercise of control. 1997.

48. Graham ID, Logan J, Harrison MB, Straus SE, Tetroe J, Caswell W, Robinson N. Lost in knowledge translation: time for a map?. Journal of continuing education in the health professions. 2006 Dec;26(1):13-24.

49. Straus S, Tetroe J, Graham ID, editors. Knowledge translation in health care: moving from evidence to practice. John Wiley & Sons; 2013 May 31.
50. Budd J, Miller BS, Manning EM, Lampos V, Zhuang M, Edelstein M, Rees G, Emery VC, Stevens MM, Keegan N, Short MJ. Digital technologies in the public-health response to COVID-19. Nature medicine. 2020 Aug 7;1-0.

51. Najm A, Gossec L, Weill C, Benoist D, Berenbaum F, Nikiphorou E. Mobile Health Apps for Self-Management of Rheumatic and Musculoskeletal Diseases: Systematic Literature Review. JMIR Mhealth Uhealth. 2019;7(11):e14730.

52. Luo D, Wang P, Lu F, Elias J, Sparks JA, Lee YC. Mobile Apps for Individuals With Rheumatoid Arthritis: A Systematic Review. J Clin Rheumatol. 2019;25(3):133-41.

53. Knitza J, Tascilar K, Messner E-M, Meyer M, Vossen D, Pulla A, et al. German Mobile Apps in Rheumatology: Review and Analysis Using the Mobile Application Rating Scale (MARS). JMIR Mhealth Uhealth. 2019;7:e14991.

54. Kwan YH, Ong WJ, Xiong M, Leung YY, Phang JK, Wang CT, Fong W. Evaluation of Mobile Apps Targeted at Patients With Spondyloarthritis for Disease Monitoring: Systematic App Search. JMIR mHealth and uHealth. 2019;7(10):e14753

55. Grainger R, Townsley H, White B, Langlotz T, Taylor WJ. Apps for People With Rheumatoid Arthritis to Monitor Their Disease Activity: A Review of Apps for Best Practice and Quality. JMIR Mhealth Uhealth. 2017;5(2):e7

56. Perski O, Blandford A, West R, Michie S. Conceptualising engagement with digital behaviour change interventions: a systematic review using principles from critical interpretive synthesis. Translational behavioral medicine. 2017 Jun 1;7(2):254-67.

57. Revenäs Å, Opava CH, Ahlén H, Brusewitz M, Pettersson S, Åsenlöf P. Mobile internet service for self-management of physical activity in people with rheumatoid arthritis: evaluation of a test version. RMD open. 2016 Apr 1;2(1).

58. Michie S, Johnston M, Francis J, Hardeman W, Eccles M. From theory to intervention: mapping theoretically derived behavioural determinants to behaviour change techniques. Applied psychology. 2008 Oct;57(4):660-80

59. Brand R, Cheval B. Theories to explain exercise motivation and physical inactivity: Ways of expanding our current theoretical perspective. Frontiers in Psychology. 2019 May 21;10:1147.
60. Michie S, Abraham C, Whittington C, McAteer J, Gupta S. Effective techniques in healthy eating and physical activity interventions: a meta-regression. Health Psychology. 2009 Nov;28(6):690.

61. Bishop FL, Fenge-Davies AL, Kirby S, Geraghty AW. Context effects and behaviour change techniques in randomised trials: a systematic review using the example of trials to increase adherence to physical activity in musculoskeletal pain. Psychology & health. 2015 Jan 2;30(1):104-21.

62. Boniface G, Gandhi V, Norris M, Williamson E, Kirtley S, O’Connell NE. A systematic review exploring the evidence reported to underpin exercise dose in clinical trials of rheumatoid arthritis. Rheumatology. 2020 Nov 1;59(11):3147-57.

63. Hoffmann TC, Glasziou PP, Bouton I, Milne R, Perera R, Moher D, Altman DG, Barbour V, Macdonald H, Johnston M, Lamb SE. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. Bmj. 2014 Mar 7;348.

64. Meade LB, Bearne LM, Godfrey EL. Comprehension and face validity of the Exercise Adherence Rating Scale in patients with persistent musculoskeletal pain. Musculoskeletal care. 2018 Sep 1;16(3):409-12.

65. Newman-Beinart NA, Norton S, Dowling D, Gavriloff D, Vari C, Weinman JA, Godfrey EL. The development and initial psychometric evaluation of a measure assessing adherence to prescribed exercise: the Exercise Adherence Rating Scale (EARS). Physiotherapy. 2017 Jun 1;103(2):180-5.
Figure 1. Flow diagram illustrating study selection.

Figure 2. Risk of bias for included randomised controlled trials.
Author, year, country	Study design	Population	Sample size	Mean age years (S.D), % male	Intervention group (n) and description intervention	Comparator group (n) and description of intervention	Intervention duration	Length of follow up	Measure adherence to PA	Measure of Levels of PA	Theory, BCTs (n)		
Allam et al., 2015, Switzerland	RCT	Rheumatoid Arthritis	157	53.46 (9.96) 54%	Information (n=30); Information and social support (n=29); Gaming (n=28); Social support and gaming (n=28)	Information on RA management delivered via the web page; Social support provided via online forum	Control group (n=40)	No access to website	8 weeks	2 months (post-intervention)	Self-report completion of exercise (mins/week)	N/A	No theory reported
					Intervention group (n=115)	Comparator group (n=115)	Intervention duration	Length of follow up	Measure adherence to PA	Measure of Levels of PA	Theory, BCTs (n)		
Armbrust et al, 2017, Netherlands	RCT	Juvenile idiopathic Arthritis	49	10.2 (9-10.8) 43%	Intervention group (n=28)	Web-based cognitive behavioural program to improve physical activity. Combination of internet based and individual instruction,	Standard care (n=21)	Standard care, not restricted in any activities	14 weeks	14 weeks (post-intervention)	Self-report 7-day activity diary, moderate to vigorous physical activity duration (mins/week)	Accelerometer readings over 7 days moderate to vigorous physical activity duration (mins/week)	Pender's Health Protection Model (ref:) Goal setting (behaviour), information about health consequences, problem solving, social support (practical) (n=7)
Study	Design	Condition	Sample Size	Intervention Detailed Description	Comparison	Duration	Outcomes	Other Details					
-------------------------------	--------	-----------	-------------	--	------------	----------	----------	---------------					
Lorig et al., 2008† USA	RCT	Intervention group (n=425)	855	The Internet Arthritis Self-Management Programme (ASMP): interactive, Web-based instruction; Web-based bulletin board discussion; individually tailored tools, such as exercise logs, medication diaries, and an exercise program	Usual care (n=441)	6 weeks	6 months	Self-report aerobic exercise (mins/week)					
Brosseau et al., 2014† Canada	Cohort	Intervention group (n=99)	N/A	Online educational programme. Focusing on self-management in RA delivered via Facebook	N/A	2 weeks	2 weeks (post intervention)	Self-reported intention to use s. to complete hand strengthening exercises, (%)					

BCT: behaviour change technique

https://mc.manuscriptcentral.com/rheumap
Table 2: ROBIN -I risk of bias for included cohort studies

Author, year	Bias due to cofounding	Bias in selection of participants into the study	Bias in classification of interventions	Bias due to deviations from intended outcomes	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of related result
Brosseau et al., 2014*	Moderate risk	Low risk	Unclear risk	Unclear risk	Low risk	Unclear risk	Low risk

*Downloaded from https://academic.oup.com/rheumap/advance-article/doi/10.1093/rap/rkab016/6157732 by guest on 23 March 2021
Table 3: Baseline, Post-intervention, between and within group differences for primary and secondary outcome

Author, year	Intervention description	Measures	Assessment time point	Baseline	Follow up	Between group difference	Within-group difference					
				Intervention group	Control group	Intervention group	Control group	SMD (95% CI)	SMD (95% CI)			
				N	N	N	N					
			2 months					-0.45	-0.12			
Allam et al., 2015⁴¹	Information	Adherence to PA: Self-report completion of exercise (minutes per week)	30	30.67 (23.13)	40	50.5 (22.03)	29	33.36 (26.55)	40	44.12 (29.69)	-0.45 (-0.93; 0.04)	-0.12 (-0.63, 0.39)
Allam et al., 2015⁴¹	Information and Social support	Adherence to PA: Self-report completion of exercise (minutes per week)	29	32.41 (31.92)	40	50.5 (22.03)	29	28.10 (29.68)	40	44.12 (29.69)	-0.64 (-1.13; -0.15)	0.14 (-0.38, 0.65)
Allam et al., 2015⁴¹	Gaming	Adherence to PA: Self-report completion of exercise (minutes per week)	28	33.57 (32.59)	40	50.5 (22.03)	28	33.30 (32.43)	40	44.12 (29.69)	-0.41 (-0.90; 0.08)	0.01 (-0.52, 0.53)
Allam et al., 2015⁴¹	Social support and gaming	Adherence to PA: Self-report completion of exercise (minutes per week)	28	26.96 (27.10)	40	50.5 (22.03)	28	28.21 (27.39)	40	44.12 (29.69)	-0.66 (-1.16; -0.17)	-0.05 (-0.57, 0.48)
Allam et al., 2015⁴¹	Intervention groups combined	Adherence to PA: Self-report completion of exercise (minutes per week)	115	30.91 (28.60)	40	50.5 (22.03)	114	30.8 (31.4)	40	44.12 (29.69)	-0.46 (-0.82, -0.09)	0.00 (-0.26, 0.26)
Lorig et al., 2008⁴³	The Internet Arthritis Self-Management Programme (ASMP)	Adherence to PA: Self-report aerobic exercise (minutes per week)	441	99.1 (104)	425	88.5 (100)	310	103 (102.7)	331	90.5 (93.9)	-0.13 (-0.29, 0.02)	-0.04 (-0.19, 0.10)
			12 months									
			6 months					-0.13	-0.04			
			12 months									
			6 months					-0.13	-0.04			
			12 months									

https://mc.manuscriptcentral.com/rheumap
Study	Intervention	Adherence to PA	Physical Activity level
Armbrust et al, 2017[42]	Web-based cognitive behavioural program	14 weeks 28 58.73 (38.04) 21 70.9 (25.60) 28 82.8 (51.24) 21 77.6 (65.35)	14 weeks 28 44.04 (18.44) 21 41.24 (20.43) 28 41.52 (18.44) 21 51.71 (21.94)
		12 months 22 58.89 (40.34) N/A 22 93.85 (73.31) N/A N/A N/A N/A	12 months 21 43.92 (19.64) N/A 21 43.67 (18.76) N/A N/A N/A N/A
Brosseau et al., 2014[44]	Self-management in RA delivered via Facebook	Adherence to PA Self-reported intention to complete hand strengthening exercises, (%) and actual follow through on using techniques (%)	2 weeks (intention) % self-reported intention to complete strengthening exercises for the hand 74%
			3 months (follow through) % followed through on intention to use strengthening exercises for the hand 78%

SD = Standard Deviation; % = Percentage; SMD = Standard Mean Difference; CI = Confidence Intervals; N/A = not applicable
Figure 1. Flow diagram illustrating study selection.
Figure 2. Risk of bias for included randomised controlled trials.