BOUNDDEDNESS OF DENOMINATORS OF SPECIAL VALUES OF THE L-FUNCTIONS FOR MODULAR FORMS

HIDENORI KATSURADA

Abstract. For a cuspidal Hecke eigenform F for $Sp_n(\mathbb{Z})$ and a Dirichlet character χ let $L(s, F, \chi, St)$ be the standard L-function of F twisted by χ. In [3], Böcherer showed the boundedness of denominators of the algebraic part of $L(m,F,\chi, St)$ at a critical point m when χ varies. In this paper, we give a refined version of his result. We also prove a similar result for the products of Hecke L-functions of primitive forms for $SL_2(\mathbb{Z})$.

1. Introduction

Let $\Gamma^{(n)} = Sp_n(\mathbb{Z})$ be the Siegel modular group of genus n. For a cuspidal Hecke eigenform F for $\Gamma^{(n)}$ and a Dirichlet character χ let $L(s, F, \chi, St)$ be the standard L-function of F twisted by χ. In [3], Böcherer showed the boundedness of denominators of the algebraic part of $L(m,F,\chi, St)$ at a critical point m when χ varies (cf. Remark 2.5). To prove this, Böcherer used congruence of Fourier coefficients of modular forms. In this paper, we give a refined version of the above result without using congruence. We state our main results more precisely. Let $M_k(\Gamma^{(n)})$ be the space of modular forms of weight k for $\Gamma^{(n)}$, and $S_k(\Gamma^{(n)})$ its subspace consisting of cusp forms. We suppose that $k \geq n + 1$. Let F_1, \ldots, F_e be a basis of the space $M_k(\Gamma^{(n)})$ consisting of Hecke eigenforms such that $F_1 = F$. Let $L_{n,k}$ be the composite field of $\mathbb{Q}(F_1), \ldots, \mathbb{Q}(F_{e-1})$ and $\mathbb{Q}(F_e)$. Let \mathfrak{E}_F' be the ideal of $L_{n,k}$ generated by all $\prod_{i=2}^e (\lambda_F(T_{i-1}) - \lambda_{F_i}(T_{i-1}))$'s $(T_1, \ldots, T_{e-1} \in L'_n)$ and put $\mathfrak{E}_F = \mathfrak{E}_F' \cap \mathbb{Q}(F)$, where L'_n is the Hecke algebra for the Hecke pair $(GSp^+_n(\mathbb{Q}) \cap M_{2n}(\mathbb{Z}), \Gamma^{(n)})$. Then, by Theorem 2.2, \mathfrak{E}_F is a non-zero ideal, and therefore \mathfrak{E}_F is a non-zero ideal of $\mathbb{Q}(F)$. Let

Date: April 8, 2022.

2020 Mathematics Subject Classification. 11F46, 11F67.

Key words and phrases. Standard L-function, Siegel modular form.

The author is partially supported by JSPS KAKENHI Grant Number (B) No.16H03919.
\(\mathcal{I}(l, F, \chi) \) be a certain fractional ideal of \(\mathbb{Q}(F, \chi) \) associated with the value \(L(l, F, \chi, St) \) as defined in Section 2, where \(\mathbb{Q}(F, \chi) \) is the field generated over the Hecke field \(\mathbb{Q}(F) \) of \(F \) by all the values of \(\chi \). Then we prove that we have

\[
\mathcal{I}(m, F, \chi) \subset \langle (C_{n,k} \mathcal{E}_F)^{-1} \rangle_{\mathbb{Q}(F, \chi)[N^{-1}]}
\]

for any positive integer \(m \leq k - n \) and primitive character \(\chi \mod N \) satisfying a certain condition, where \(C_{n,k} \) is a positive integer depending only on \(k \) and \(n \). (For a precise statement, see Theorem 2.3). By this we easily see the following result (cf. Corollary 2.4):

Let \(\mathcal{P}_F \) be the set of prime ideals \(\mathfrak{p} \) of \(\mathbb{Q}(F) \) such that

\[
\text{ord}_\mathfrak{p}(N_{\mathbb{Q}(F, \chi)/\mathbb{Q}(F)}(\mathcal{I}(m, F, \chi))) < 0
\]

for some positive integer \(m \leq k - n \) and primitive character \(\chi \) with conductor not divisible by \(\mathfrak{p} \) satisfying the above condition. Then \(\mathcal{P}_F \) is a finite set. Moreover, there exists a positive integer \(r = r_{n,k} \) depending only on \(n \) and \(k \) such that we have

\[
\text{ord}_\mathfrak{q}(\mathcal{I}(m, F, \chi)) \geq -r[\mathbb{Q}(F, \chi) : \mathbb{Q}(F)]
\]

for any prime ideal \(\mathfrak{q} \) of \(\mathbb{Q}(F, \chi) \) lying above a prime ideal in \(\mathcal{P}_F \) and positive integer \(m \leq k - n \) and primitive character \(\chi \) with conductor not divisible by \(\mathfrak{q} \) satisfying the above condition.

We have also similar results for the products of Hecke \(L \) functions of primitive forms for \(SL_2(\mathbb{Z}) \).

The author thanks Shih-Yu Chen, Tobias Keller, Takashi Ichikawa, and Masataka Chida for valuable discussions. He also thanks the referee for many useful comments.

Notation We denote by \(\mathbb{Z}_{>0} \) and \(\mathbb{Z}_{\geq 0} \) the set of positive integers and the set of non-negative integers, respectively.

For a commutative ring \(R \), let \(M_{mn}(R) \) denote the set of \(m \times n \) matrices with entries in \(R \), and especially write \(M_n(R) = M_{nn}(R) \). We often identify an element \(a \) of \(R \) and the matrix \((a) \) of size 1 whose component is \(a \). If \(m \) or \(n \) is 0, we understand an element of \(M_{mn}(R) \) is the empty matrix and denote it by \(\emptyset \). Let \(GL_n(R) \) be the group consisting of all invertible elements of \(M_n(R) \), and \(\text{Sym}_n(R) \) the set of symmetric matrices of size \(n \) with entries in \(R \). Let \(K \) be a field of characteristic 0, and \(R \) its subring. We say that an element \(A \) of \(\text{Sym}_n(R) \) is non-degenerate if the determinant \(\det A \) of \(A \) is non-zero. For a subset \(S \) of \(\text{Sym}_n(R) \), we denote by \(S^{\text{nd}} \) the subset of \(S \) consisting of non-degenerate matrices. For a subset \(S \) of \(\text{Sym}_n(\mathbb{R}) \) we denote by \(S_{\geq 0} \) (resp. \(S_{>0} \)) the subset of \(S \) consisting of semi-positive definite matrices.
(resp. positive definite) matrices. We say that an element $A = (a_{ij})$ of $\text{Sym}_n(K)$ is half-integral if a_{ii} $(i = 1, \ldots, n)$ and $2a_{ij}$ $(1 \leq i \neq j \leq n)$ belong to R. We denote by $\mathcal{H}_n(R)$ the set of half-integral matrices of size n over R. We note that $\mathcal{H}_n(R) = \text{Sym}_n(R)$ if R contains the inverse of 2. For an (m, n) matrix X and an (m, m) matrix A, we write $A[X] = {}^tXAX$, where tX denotes the transpose of X. Let G be a subgroup of $GL_n(R)$. Then we say that two elements B and B' in $\text{Sym}_n(R)$ are G-equivalent if there is an element g of G such that $B' = B[g]$. For two square matrices X and Y we write $X \perp Y = \begin{pmatrix} X & O \\ O & Y \end{pmatrix}$.

We often write $x \perp Y$ instead of $(x) \perp Y$ if (x) is a matrix of size 1. We denote by 1_m the unit matrix of size m and by $O_{m,n}$ the zero matrix of type (m, n). We sometimes abbreviate $O_{m,n}$ as O if there is no fear of confusion.

Let \mathfrak{b} be a subset of K. We then denote by $(\mathfrak{b})_R$ the R-sub-module of K generated by \mathfrak{b}. For a non-zero integer M, we put

$$R[M^{-1}] = \{aM^{-s} \mid a \in R, \ s \in \mathbb{Z}_{\geq 0}\}$$

Let K be an algebraic number filed, and $\mathcal{O} = \mathcal{O}_K$ the ring of integers in K. For a prime ideal \mathfrak{p} of \mathcal{O}, we denote by $\mathcal{O}(\mathfrak{p})$ the localization of \mathcal{O} at \mathfrak{p} in K. Let \mathfrak{a} be a fractional ideal in K. If $\mathfrak{a} = \mathfrak{p}^e\mathfrak{b}$ with a fractional ideal \mathfrak{b} of K such that $\mathcal{O}(\mathfrak{p})\mathfrak{b} = \mathcal{O}(\mathfrak{p})$ we write $\text{ord}_\mathfrak{p}(\mathfrak{a}) = e$. We make the convention that $\text{ord}_\mathfrak{p}(\mathfrak{a}) = \infty$ if $\mathfrak{a} = \{0\}$. We simply write $\text{ord}_\mathfrak{p}(c) = \text{ord}_\mathfrak{p}((c))$ for $c \in K$. For an ideal \mathfrak{j} of K, let \mathfrak{j}^{-1} the inverse ideal of \mathfrak{j}.

For a complex number x put $e(x) = \exp(2\pi \sqrt{-1}x)$.

2. Main result

For a subring K of \mathbb{R} put

$$\text{GSp}_n^+(K) = \{\gamma \in GL_{2n}(K) \mid J_n[\gamma] = \kappa(\gamma)J_n \text{ with some } \kappa(\gamma) > 0\},$$

and

$$\text{Sp}_n(K) = \{\gamma \in \text{GSp}_n^+(K) \mid J_n[\gamma] = J_n\},$$

where $J_n = \begin{pmatrix} O_n & -1_n \\ 1_n & 0_n \end{pmatrix}$. In particular, put $\Gamma^{(n)} = \text{Sp}_n(\mathbb{Z})$ as in Introduction. We sometimes write an element γ of $\text{GSp}_n^+(K)$ as $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with $A, B, C, D \in M_n(K)$. We define subgroups $\Gamma^{(n)}(N)$ and $\Gamma_0^{(n)}(N)$ of $\Gamma^{(n)}$ as

$$\Gamma^{(n)}(N) = \{\gamma \in \Gamma^{(n)} \mid \gamma \equiv 1_{2n} \mod N\},$$

$$\Gamma_0^{(n)}(N) = \{\gamma \in \Gamma^{(n)} \mid \gamma \equiv 1_{2n} \mod N\}.$$
and
\[I_0^{(n)}(N) = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)} | C \equiv O_n \mod N \}. \]

Let \(H_n \) be Siegel’s upper half space of degree \(n \). We write \(\gamma(Z) = (AZ + B)(CZ + D)^{-1} \) and \(j(\gamma, Z) = \det(CZ + D) \) for \(\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in GSp_n^+(\mathbb{R}) \) and \(Z \in H_n \). We write \(F|_k \gamma(Z) = (\det \gamma)^{k/2} j(\gamma, Z)^{-k} f(\gamma(Z)) \) for \(\gamma \in GSp_n^+(\mathbb{R}) \) and a \(C^\infty \)-function \(f \) on \(H_n \). We simply write \(F|_k \gamma \) for \(F|_k \gamma(Z) \) if there is no confusion. We say that a subgroup \(\Gamma \) of \(\Gamma^{(n)} \) is a congruence subgroup if \(\Gamma \) contains \(\Gamma^{(n)}(N) \) with some \(N \). We also say that a character \(\eta \) of a congruence subgroup \(\Gamma \) is a congruence character if its kernel is a congruence subgroup. For a positive integer \(k \), a congruence subgroup \(\Gamma \) and its congruence character \(\eta \), we denote by \(M_k(\Gamma, \eta) \) (resp. \(M_k^\infty(\Gamma, \eta) \)) the space of holomorphic (resp. \(C^\infty \)) modular forms of weight \(k \) and character \(\eta \) for \(\Gamma \). We denote by \(S_k(\Gamma, \eta) \) the subspace of \(M_k(\Gamma, \eta) \) consisting of cusp forms. If \(\eta \) is the trivial character, we abbreviate \(M_k(\Gamma, \eta) \) and \(S_k(\Gamma, \eta) \) as \(M_k(\Gamma) \) and \(S_k(\Gamma) \), respectively. Let \(dv \) denote the invariant volume element on \(H_n \) defined by
\[dv = \det(\text{Im}(Z))^{-n-1} \wedge_{1 \leq j \leq t \leq n} (dx_{jl} \wedge dy_{jl}). \]

Here for \(Z \in H_n \) we write \(Z = (x_{jl}) + \sqrt{-1}(y_{jl}) \) with real matrices \((x_{jl})\) and \((y_{jl})\). For two elements \(F \) and \(G \) of \(M_k^\infty(\Gamma, \eta) \), we define the Petersson scalar product \(\langle F, G \rangle_\Gamma \) of \(F \) and \(G \) by
\[\langle F, G \rangle_\Gamma = \int_{\Gamma \backslash H_n} F(Z) \overline{G(Z)} \det(\text{Im}(Z))^k dv, \]
provided the integral converges. For \(i = 1, 2 \), let \(\Gamma_i \) be a congruence subgroup with a congruence character \(\eta_i \). Then there exists a congruence subgroup \(\Gamma \) contained in \(\Gamma_1 \cap \Gamma_2 \) and its congruence character \(\eta \) such that \(\eta |_\Gamma = \eta_2 |_\Gamma = \eta \). Then we have \(M_k^\infty(\Gamma, \eta) \supset M_k^\infty(\Gamma_1, \eta_1) \). For elements \(F_1 \) and \(F_2 \) of \(M_k^\infty(\Gamma, \eta_1) \) and \(M_k^\infty(\Gamma_2, \eta_2) \), respectively, the value \([f^{(n)} : \Gamma]^{-1} \langle F_1, F_2 \rangle_\Gamma \) does not depend on the choice of \(\Gamma \). We denote it by \(\langle F_1, F_2 \rangle \).

Let \(F \) be an element of \(M_k(\Gamma, \eta) \). Then, \(F \) has the following Fourier expansion:
\[F(Z) = \sum_{A \in \mathcal{H}_n(Z) \geq 0} c_F(A \frac{N}{N}) e(\text{tr}(A Z N)) \]
with some positive integer \(N \), where \(\text{tr} \) denotes the trace of a matrix. For a subset \(S \) of \(\mathbb{C} \), we denote by \(M_k(\Gamma, \eta)(S) \) the set of elements \(F \) of \(M_k(\Gamma, \eta) \) such that \(c_F(A \frac{N}{N}) \in S \) for all \(A \in \mathcal{H}_n(Z) \geq 0 \), and put
$S_k(\Gamma, \eta)(S) = M_k(\Gamma, \eta)(S) \cap S_k(\Gamma, \eta)$. If R is a commutative ring, and S is an R module, then $M_k(\Gamma, \eta)(S)$ and $S_k(\Gamma, \eta)(S)$ are R-modules.

For a Dirichlet character ϕ modulo N, let $\tilde{\phi}$ denote the character of $\Gamma_0^{(n)}(N)$ defined by $\Gamma_0^{(n)}(N) \ni \begin{pmatrix} A & B \\ C & D \end{pmatrix} \mapsto \phi(\det D)$, and we write $M_k(\Gamma_0^{(n)}(N), \phi)$ for $M_k(\Gamma_0^{(n)}(N), \tilde{\phi})$, and so on.

We denote by $L_n = L_\mathbb{Q}(\text{GSp}_n^+(\mathbb{Q}), \Gamma^{(n)})$ be the Hecke ring over \mathbb{Q} associated with the Hecke pair $(\text{GSp}_n^+(\mathbb{Q}), \Gamma^{(n)})$, and by $L'_n = L_\mathbb{Z}(\text{GSp}_n^+(\mathbb{Q}) \cap M_{2n}(\mathbb{Z}), \Gamma^{(n)})$ be the Hecke ring over \mathbb{Z} associated with the Hecke pair $(\text{GSp}_n^+(\mathbb{Q}) \cap M_{2n}(\mathbb{Z}), \Gamma^{(n)})$. For a Hecke eigenform F, we denote by $\mathbb{Q}(F)$ the field generated over \mathbb{Q} by the eigenvalues of all Hecke operators $T \in L_n$ with respect to F, and call it the Hecke field of F. For Dirichlet characters χ_1, \ldots, χ_r, we denote by $\mathbb{Q}(\chi_1, \ldots, \chi_r)$ the field generated over \mathbb{Q} by all the values of χ_1, \ldots, χ_r, and by $\mathbb{Q}(F, \chi_1, \ldots, \chi_r)$ the composite field of $\mathbb{Q}(F)$ and $\mathbb{Q}(\chi_1, \ldots, \chi_r)$. For a Hecke eigenform F in $S_k(\Gamma_0^{(n)}(N))$ and a Dirichlet character χ let $L(s, F, St, \chi)$ be the standard L function of F twisted by χ. For a Dirichlet character χ, we put $\delta_\chi = 0$ or 1 according as $\chi(-1) = 1$ or $\chi(-1) = -1$. Assume that χ is primitive, and for any positive integer $m \leq k - n$ such that $m - n \equiv \delta_\chi \text{ mod } 2$ define $\Lambda(m, F, \chi, St)$ as

$$\Lambda(m, F, \chi, St) = \frac{\chi(-1)^n \Gamma(m) \prod_{i=1}^n \Gamma(2k - n - i)L(m, F, St, \chi)}{(F, F) \pi^{-n(n+1)/2+nk+(n+1)m} \sqrt{-1}^{m+n} \tau(\chi)^{n+1}}.$$

$\tau(\chi)$ is the Gauss sum of χ. For a Dirichlet character χ let m_χ be the conductor of χ. The following proposition is essentially due to [4, Appendix, Theorem].

Proposition 2.1. Let F be a Hecke eigenform in $S_k(\Gamma^{(n)})(\mathbb{Q}(F))$. Let m be a positive integer not greater than $k - n$ and χ a primitive character χ satisfying the following condition:

(C) $m - n \equiv \delta_\chi \text{ mod } 2$, and $m > 1$ if $n > 1$, $n \equiv 1 \text{ mod } 4$ and χ^2 is trivial.

Then $\Lambda(m, F, \chi, St)$ belongs to $\mathbb{Q}(F, \chi)$.

Let \mathcal{V} be a subspace of $M_k(\Gamma^{(n)})$. We say that a multiplicity one holds for \mathcal{V} if any Hecke eigenform in \mathcal{V} is uniquely determined up to constant multiple by its Hecke eigenvalues.

Theorem 2.2. Suppose that $k \geq n + 1$. Then a multiplicity one theorem holds for $S_k(\Gamma^{(n)})$.

Proof. This is essentially due to Chenevier-Lannes [7, Corollary 8.5.4]. It was proved under a more stronger assumption without using [7,}
Let F be a Hecke eigenform in $S_k(\Gamma^{(n)})$ with $k \geq n + 1$. Then by Theorem 2.2 we have $cF \in S_k(\Gamma^{(n)})(\mathbb{Q}(F))$ with some $c \in \mathbb{C}$. Hence for $A, B \in \mathcal{H}_n(\mathbb{Z})_{>0}$ and an integer l satisfying (C), the value $c_F(A)\overline{c_F(B)}\Lambda(l, F, St, \chi)$ belongs to $\mathbb{Q}(F)$ and does not depend on the choice of c. For A and B and an integer l put

$$I_{A,B}(l, F, \chi) = c_F(A)\overline{c_F(B)}\Lambda(l, F, \chi, St).$$

Let $\mathcal{J}(l, F, \chi)$ be the $\mathfrak{O}_{\mathbb{Q}(F)}$-module generated by all $I_{A,B}(l, F, \chi)$’s. Then $\mathcal{J}(l, F, \chi)$ becomes a fractional ideal in $\mathbb{Q}(F, \chi)$. We note that it is uniquely determined by l and the system of eigenvalues of F. Let F_1, \ldots, F_d be a basis of $S_k(\Gamma^{(n)})$ consisting of Hecke eigenforms such that $F_1 = F$. Let $K_{n,k}$ be the composite filed $\mathbb{Q}(F_1) \cdots \mathbb{Q}(F_d)$ of $\mathbb{Q}(F_1), \ldots, \mathbb{Q}(F_d)$. We denote by \tilde{D}_F the ideal of $K_{n,k}$ generated by all $\prod_{i=2}^{d}(\lambda_{F}(T_{i-1}) - \lambda_{F_i}(T_{i-1}))$’s ($T_1, \ldots, T_{d-1} \in \mathfrak{I}'_n$), and put $\tilde{D}_F = D_F \cap \mathbb{Q}(F)$. We make the convention that $\tilde{D}_F = \mathfrak{O}_{K_{n,k}}$ if $d = 1$. Moreover, let \mathfrak{E}_F be the ideal of $\mathbb{Q}(F)$ defined in Section 1. Then our first main result is as follows.

Theorem 2.3. Let F be a Hecke eigenform in $S_k(\Gamma^{(n)})$. Then we have

$$\mathcal{J}(m, F, \chi) \subset \langle (\mathfrak{O}^{(n,k)}A_{n,k}\mathfrak{E}_F)^{-1} \rangle_{\mathbb{Q}(F, \chi)[N^{-1}]}$$

for any positive integer $m \leq k - n$ and primitive character $\chi \mod N$ satisfying the condition (C), where $\alpha(n,k)$ is a non-negative integer depending only on k and n, and $A_{n,k} = \text{LCM}_{n+1 \leq m \leq k}\{\prod_{i=1}^{n}(2l-2i)(2l-2i+1)\!\}$. In particular if $m \leq k - n - 1$, then

$$\mathcal{J}(m, F, \chi) \subset \langle (\mathfrak{O}^{(n,k)}A_{n,k}\tilde{D}_F)^{-1} \rangle_{\mathbb{Q}(F, \chi)[N^{-1}]}.$$

We will prove the above theorem in Section 5.

Corollary 2.4. Let F be a Hecke eigenform in $S_k(\Gamma^{(n)})$. Let \mathcal{P}_F be the set of prime ideals \mathfrak{p} of $\mathbb{Q}(F)$ such that

$$\text{ord}_{\mathfrak{p}}(\mathcal{N}_{\mathbb{Q}(F, \chi)/\mathbb{Q}(F)}(\mathcal{J}(m, F, \chi))) < 0$$

for some positive integer $m \leq k - n$ and primitive character χ with conductor not divisible by \mathfrak{p} satisfying (C). Then \mathcal{P}_F is a finite set. Moreover, there exists a positive integer r such that we have

$$\text{ord}_{\mathfrak{p}}(\mathcal{J}(m, F, \chi)) \geq -r[\mathbb{Q}(F, \chi) : \mathbb{Q}(F)]$$

Conjecture 8.4.22]. As is written in the postface in that book, this conjecture has been proved [11], and the same proof is available at least even when $k \geq n + 1$. □
for any prime ideal \(q \) of \(\mathbb{Q}(F, \chi) \) lying above a prime ideal in \(\mathcal{P}_F \) and integer \(l \) and primitive character \(\chi \) with conductor not divisible by \(q \) satisfying the condition (C).

Proof. By Theorem 2.3, we have \(p \mid 2^{\alpha(n,k)} A_{n,k} \tilde{E}_F \) if \(p \in \mathcal{P}_F \). This proves the first assertion. Let \(2^{\alpha(n,k)} A_{n,k} \tilde{E}_F = p_1^{e_1} \cdots p_s^{e_s} \) be the prime factorization of \(2^{\alpha(n,k)} A_{n,k} \tilde{E}_F \), where \(p_1, \ldots, p_s \) are distinct prime ideals and \(e_1, \ldots, e_s \) are positive integers. We note that for any prime ideal \(p \) of \(\mathbb{Q}(F) \) and prime ideal \(q \) of \(\mathbb{Q}(F, \chi) \) lying above \(p \) we have \(\text{ord}_q(p) \leq [\mathbb{Q}(F, \chi) : \mathbb{Q}(F)] \). Hence \(r = \max\{e_i\}_{1 \leq i \leq s} \) satisfies the required condition in the second assertion. □

Remark 2.5. (1) Let

\[
\Lambda(F, m, \chi) = \frac{\Gamma(m) \prod_{i=1}^{n} \Gamma(2k - n - i)L(m, F, \text{St}, \chi)}{(F, F)_{\pi - n(n+1)/2 + nk+(n+1)m}}.
\]

Then, if \(m \) and \(\chi \) satisfy the condition (C), \(\Lambda(F, m, \chi) \) belongs to \(\mathbb{Q}(F, \chi, \zeta_N) \), where \(\mathbb{Q}(F, \chi, \zeta_N) \) is the field generated over the Hecke field \(\mathbb{Q}(F) \) of \(F \) by all the values of \(\chi \) and the primitive \(N \)-th root \(\zeta_N \) of unity. In [3, Theorem], a similar result has been proved for \(\Lambda(F, m, \chi) \). Our \(L \)-value belongs to \(\mathbb{Q}(F, \chi) \), which is included in \(\mathbb{Q}(F, \chi, \zeta_N) \). Therefore, our result can be regarded as a refinement of Böcherer’s.

(2) Böcherer [3] excluded the case \(m = k - n \). However, we can include this case. We also note that we can get a sharper result if we restrict ourselves to the case \(m < k - n \) as stated in the above theorem.

(3) In [3], the main result was formulated without assuming multiplicity one theorem. However, such a formulation is now unnecessary.

3. Pullback of Siegel Eisenstein series

To prove our main result, first we express a certain modular form as a linear combination of Hecke eigenforms (cf. Theorem 3.7). We have carried out it in [12, Appendix], and here we treat it in a more general setting. We also correct some inaccuracies in [12, Appendix] (cf. Remark 3.8). For a non-negative integer \(m \), put

\[
\Gamma_m(s) = \pi^{m(m-1)/4} \prod_{i=1}^{m} \Gamma\left(s - \frac{i - 1}{2}\right).
\]
For a Dirichlet character χ we denote by $L(s, \chi)$ the Dirichlet L-function associated to χ, and put
\[
\mathcal{L}_n(s, \chi) = \Gamma_n(s)\pi^{-ns}L(s, \chi) \prod_{i=1}^{[n/2]} L(2s - 2i, \chi^2) \\ \times \begin{cases}
\pi^{n/2-s}\Gamma(s - n/2) & \text{if } n \text{ is even} \\
1 & \text{if } n \text{ is odd.}
\end{cases}
\]
Let n, l and N be positive integers. For a Dirichlet character ϕ modulo N such that $\phi(-1) = (-1)^l$, we define the Eisenstein series $E_{n,l}^\ast(Z; N, \phi, s)$ by
\[
E_{n,l}^\ast(Z; N, \phi, s) = (\det \text{Im}(Z))^s \mathcal{L}_n(l + 2s, \phi) \\ \times \sum_{\gamma \in T^{(n)}(N) \setminus T^{(n)}(N)} \phi^\ast(\gamma)j(\gamma, Z)^{-l}j(\gamma, Z)^{-2s},
\]
where
\[
T^{(n)}(N) = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)} | A \equiv O_n \mod N \}, \\
T^{(n)}(N)_{\infty} = \{ \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma^{(n)} | B \equiv O_n \mod N, C = O_n \},
\]
and $\phi^\ast(\gamma) = \phi(\det C)$ for $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in T^{(n)}(N)$. Then $E_{n,l}^\ast(Z; N, \phi, s)$ converges absolutely as a function of s if the real part of s is large enough. Moreover, it has a meromorphic continuation to the whole s-plane, and it belongs to $M_l^{\infty}(\Gamma_0^{(n)}(N), \phi)$. Moreover it is holomorphic and finite at $s = 0$, which will be denoted by $E_{n,l}^\ast(Z; N, \phi)$. In particular, if $E_{n,l}^\ast(Z; N, \phi)$ belongs to $M_l(\Gamma_0^{(n)}(N), \phi)$, it has the following Fourier expansion:
\[
E_{n,l}^\ast(Z; N, \phi) = \sum_{A \in \mathcal{H}_n(Z) \geq 0} c_{n,l}(A, N, \phi)e(\text{tr}(AZ)).
\]
To see the Fourier coefficient of $E_{n,l}^\ast(Z; N, \phi)$, we define a polynomial attached to local Siegel series. For a prime number p let \mathbb{Q}_p be the field of p-adic numbers, and \mathbb{Z}_p the ring of p-adic integers. For an element $B \in \mathcal{H}_n(\mathbb{Z}_p)$, we define the Siegel series $b_p(B, s)$ as
\[
b_p(B, s) = \sum_{R \in \text{Sym}_n(\mathbb{Q}_p)/\text{Sym}_n(\mathbb{Z}_p)} e_p(\text{tr}(BR))\nu(R)^{-s},
\]
where e_p is the additive character of \mathbb{Z}_p such that $e_p(m) = e(m)$ for $m \in \mathbb{Z}[p^{-1}]$, and $\nu_p(R) = [R\mathbb{Z}_p^n + \mathbb{Z}_p^n : \mathbb{Z}_p^n]$. We define $\chi_p(a)$ for $a \in \mathbb{Q}_p^\times$
as follows:

\[\chi_p(a) := \begin{cases}
+1 & \text{if } Q_p(\sqrt{a}) = Q_p, \\
-1 & \text{if } Q_p(\sqrt{a})/Q_p \text{ is quadratic unramified,} \\
0 & \text{if } Q_p(\sqrt{a})/Q_p \text{ is quadratic ramified.}
\end{cases} \]

For an element \(B \in \mathcal{H}_n(\mathbb{Z}_p) \) with \(n \) even, we define \(\xi_p(B) \) by

\[\xi_p(B) := \chi_p((-1)^n/2 \det B). \]

For a nondegenerate half-integral matrix \(B \) of size \(n \) over \(\mathbb{Z}_p \) define a polynomial \(\gamma_p(B,X) \) in \(X \) by

\[\gamma_p(B,X) := \begin{cases}
(1 - X) \prod_{i=1}^{n/2} (1 - p^{2i}X^2)(1 - p^{n/2} \xi_p(B)X)^{-1} & \text{if } n \text{ is even,} \\
(1 - X) \prod_{i=1}^{(n-1)/2} (1 - p^{2i}X^2) & \text{if } n \text{ is odd.}
\end{cases} \]

Then it is well known that there exists a unique polynomial \(F_p(B,X) \) in \(X \) over \(\mathbb{Z} \) with constant term 1 such that

\[b_p(B,s) = \gamma_p(B,p^{-s})F_p(B,p^{-s}) \]

(e.g. \([9]\)). More precisely, we have the following proposition.

Proposition 3.1. Let \(B \in \mathcal{H}_m(\mathbb{Z}_p) \). Then there exists a polynomial \(H_p(B,x) \) in \(X \) over \(\mathbb{Z} \) such that

\[F_p(B,X) = H_p(B,p^{[m+1]/2}X). \]

Proof. The assertion follows from \([14]\), Theorem 2. \(\square \)

For \(B \in \mathcal{H}_m(\mathbb{Z}) \) with \(m \) even, let \(B_B \) be the discriminant of \(\mathbb{Q}(\sqrt{(-1)^{m/2} \det B})/\mathbb{Q} \), and \(\chi_B = (\frac{\mathbb{Q}}{4}) \) the Kronecker character corresponding to \(\mathbb{Q}(\sqrt{(-1)^{m/2} \det B})/\mathbb{Q} \). We note that we have \(\chi_B(p) = \xi_p(B) \) for any prime \(p \). We also note that

\[(-1)^{m/2} \det(2B) = B_B \]

with \(B_B \in \mathbb{Z}_{>0} \). We define a polynomial \(F_p^*(T,X) \) for any \(T \in \mathcal{H}_n(\mathbb{Z}_p) \) which is not-necessarily non-degenerate as follows: For an element \(T \in \mathcal{H}_n(\mathbb{Z}_p) \) of rank \(r \geq 1 \), there exists an element \(\tilde{T} \in \mathcal{H}_r(\mathbb{Z}_p) \) such that \(T \sim_{\mathbb{Z}_p} \tilde{T} \perp O_{n-r} \). We note that \(F_p(\tilde{T},X) \) does not depend on the choice of \(\tilde{T} \). Then we put \(F_p^*(T,X) = F_p(\tilde{T},X) \). For an element \(T \in \mathcal{H}_n(\mathbb{Z}) \) of rank \(r \geq 1 \), there exists an element \(\tilde{T} \in \mathcal{H}_r(\mathbb{Z}) \) such that \(T \sim_{\mathbb{Z}} \tilde{T} \perp O_{n-r} \). Then \(\chi_{\tilde{T}} \) does not depend on the choice of \(\tilde{T} \). We write \(\chi_{T}^* = \chi_{\tilde{T}} \) if \(r \) is even. For a non-negative integer \(m \) and a primitive character \(\phi \) let \(B_{m,\phi} \) be the \(m \)-th generalized Bernoulli number for \(\phi \). In the case \(\phi \) is the principal character, we write \(B_m = B_{m,\phi} \), which is the \(m \)-th Bernoulli number. For a Dirichlet character \(\phi \) we denote by \(\phi_0 \) the primitive character associated with \(\phi \).
Proposition 3.2. Let n and l be positive integers such that $l \geq n + 1$, and ϕ a primitive character mod N. Then $E_{2n,l}^*(Z; N, \phi)$ is holomorphic and belongs to $M_l(I_0^{(2n)}(N), \phi)$ except the following case:

$l = n + 1 \equiv 2 \mod 4$ and $\phi^2 = 1_N$.

In the case that $E_{2n,l}^*(Z; N, \phi)$ is holomorphic we have the following assertion:

(1) Suppose that $N = 1$ and ϕ is the principal character 1, Then for $B \in \mathcal{H}_{2n}(\mathbb{Z})_{\geq 0}$ of rank m, we have

$$c_{2n,l}(B, 1, 1) = (-1)^{l/2+n(n+1)/2}2^{l-1}2^{1/2} \prod_{p | \det(2B)} F_p(B, p^{-m-1})$$

$$\times \left\{ \begin{array}{ll}
\prod_{i=m/2+1}^{n} \zeta(1+2i-2l)L(1+m/2-l, \chi_B^*) & \text{if } m \text{ is even,} \\
\prod_{i=(m+1)/2}^{n} \zeta(1+2i-2l) & \text{if } m \text{ is odd.}
\end{array} \right.$$}

Here we make the convention that $F_p(B, p^{-m-1}) = 1$ and $L(1+m/2-l, \chi_B^*) = \zeta(1-l)$ if $m = 0$.

(2) Suppose that $N > 1$. Then, $c_{2n,l}(B, N, \phi) = 0$ if $B \in \mathcal{H}_{2n}(\mathbb{Z})_{\geq 0}$ is not positive definite. Moreover, for any $B \in \mathcal{H}_{2n}(\mathbb{Z})_{> 0}$ we have

$$c_{2n,l}(B, N, \phi) = (-1)^{n+1}2^{n-1}2^{l-1} \prod_{p | \phi | B} (1-p^{n-l}(\phi \chi_B)_0).$$

Proof. (1) The assertion follows from [11], Theorem 2.3] remarking that

$$L_{2n}(l, 1) = \zeta(1-l) \prod_{i=1}^{n} \zeta(1-2l+2i)(-1)^{(n(n+1)+l)/2}2^{l-1}.$$}

(2) The first assertion follows from [11, Section 5]. Let $B \in \mathcal{H}_{2n}(\mathbb{Z})_{> 0}$. Then,

$$c_{2n,l}(B, N, \phi) = (-1)^{n+1}2^{n-1}2^{l-1} \prod_{p | \phi | B} F_p(B, p^{-m-1}(\phi \chi_B)_0) L(l-n, \phi \chi_B) \prod_{p | \phi | B} (1-p^{n-l}(\phi \chi_B)_0).$$

We have

$$L(l-n, \phi \chi_B) = L(l-n, (\phi \chi_B)_0) \prod_{p | \phi | B} (1-p^{n-l}(\phi \chi_B)_0).$$
\[\Gamma(l - n)L(l - n, (\phi \chi_B)_0) = (-1)^{(l - \delta(\phi \chi_B)_0)/2} 2^{l - n - 1} |\phi \chi_B|_0 \sqrt{-1}^{-\delta(\phi \chi_B)_0} \times L(1 - l + n, (\phi \chi_B)_0). \]

Moreover, by the functional equation of \(F_p(B, X) \) (cf. [9]), we have
\[\phi^{2l - 2n - 1}_B \prod_p F_p(B, p^{-l} \phi(p)) = \prod_p F_p(p^{l - 2n - 1} \phi(p), B). \]

Thus the assertion is proved remarking that \(\det(2B) = |\mathfrak{O}_B/\mathfrak{F}_B|. \] \(\square \)

Corollary 3.3. Let the notation be as above.

1. Suppose that \(N = 1 \). Then, \(c_{2n, l}(B, 1, 1) \) belongs to \(\langle \prod_{i=1}^{n} ((2l - 2i)(2l - 2i + 1))^{-1} \rangle_Z \) for any \(B \in H_{2n}(\mathbb{Z}) \).

2. Suppose that \(N > 1 \). Then for \(B \in H_{2n}(\mathbb{Z}) \), \(c_{2n,l}(B, N, \phi) \) is an algebraic number. In particular if \(\text{GCD}(\det(2B), N) = 1 \), then \(\tau(\phi)^{-1} \sqrt{-1}^{-l} c_{2n,l}(B, N, \phi) \) belongs to \(\langle (l - n)^{-1} \rangle_{\mathfrak{O}_Q[N^{-1}]} \).

Proof. (1) By Proposition 3.1, the product \(\prod_{p|\det(2B)} F_p^*(B, l - m - 1) \) is an integer for any \(m \) and \(B \in H_n(\mathbb{Z}) \) with rank \(m \). By Clausen-von-Staudt theorem, \(\zeta(1 - 2l + 2i) \) belongs to \(\langle ((2l - 2i)(2l - 2i + 1))^{-1} \rangle_Z \). By [2], (5.1), (5.2) and Clausen-von-Staudt theorem, for any positive even integer \(m \) and \(\tilde{B} \in H_m(\mathbb{Z}) \), \(L(1 - l + m/2, \chi_{\tilde{B}}) \) belongs to \(\langle ((2l - m)(2l - m + 1))^{-1} \rangle_Z \). This proves the assertion.

(2) It is well known that \(L(1 - l + n, (\phi \chi_B)_0) \) is algebraic. This proves the first part of the assertion. Suppose that \(\det(2B) \) is coprime to \(N \). Then \(\phi \chi_B \) is a primitive character of conductor \(N|\mathfrak{O}_B| \) and
\[\tau(\phi \chi_B) = \phi(|\mathfrak{O}_B| \chi_B(N)) \tau(\phi) \tau(\chi_B) = \phi(|\mathfrak{O}_B| \chi_B(N)) \tau(\phi)|\mathfrak{O}_B|^{|1/2} \sqrt{-1}^{-\delta \chi_B}. \]

By [6] or [15], \(N(l - n)L(1 - l + n, \phi \chi_B) \) belongs to \(\mathfrak{O}_{\mathbb{Q}(\phi)} \), and by Proposition 3.1, \(\prod_p F_p(p^{l - 2n - 1} \phi(p), B) \) is an element of \(\mathfrak{O}_{\mathbb{Q}(\phi)} \). Thus the assertion has been proved remarking that \(\sqrt{-1} = \pm \sqrt{-1}^{-\delta \chi_B} \). \(\square \)

Let \(D_{n, \nu}^\phi \) be the differential operator in [4], which maps \(M^\infty_{l_0}(I_{0, 2n}^\nu(N)) \) to \(M^\infty_{l_0+k}(I_{0, 2n}^\nu(N)) \otimes M^\infty_{l_0+k}(I_{0, 2n}^\nu(N)) \). Let \(\chi \) be a primitive character mod \(N \). For a non-negative integer \(\nu \leq k \), we define a function \(\mathfrak{c}_{2n}(Z_1, Z_2, N, \chi) \)
on \(H_n \times H_n \) as
\[
\mathcal{E}_{2n}^{k,\nu}(Z_1, Z_2, N, \chi) = (2\pi \sqrt{-1})^{-\nu} \tau(\chi)^{-n-1} \sqrt{-1}^{-k+\nu} \\
\times D_{n,k-\nu}^0 \left(\sum_{X \in M_n(\mathbb{Z})} \chi(\det X) E^*_2 n,k-\nu(\ast, N, \chi)_{k-\nu} \left(\binom{12n}{O} S(X/N) \right) \right) (Z_1, Z_2)
\]
for \((Z_1, Z_2) \in H_n \times H_n\), where \(S(X/N) = \begin{pmatrix} O_n & X/N \\ tX/N & O_n \end{pmatrix} \). Let \(X \) be a symmetric matrix of size \(2n \) of variables. Then there exists a polynomial \(P_{n,l}(X) \) in \(X \) such that
\[
D_{n,l}^0 \left(\mathbf{e}(\text{tr}(\begin{pmatrix} A_1 & R/2 \\ tR/2 & A_2 \end{pmatrix} \begin{pmatrix} Z_1 & Z_{12} \\ tZ_{12} & Z_2 \end{pmatrix})) \right)
= (2\pi \sqrt{-1})^\nu P_{n,l}^\nu \left(\begin{pmatrix} A_1 & R/2 \\ tR/2 & A_2 \end{pmatrix} \right) \mathbf{e}(\text{tr}(A_1 Z_1 + A_2 Z_2))
\]
for \(\begin{pmatrix} A_1 & R/2 \\ tR/2 & A_2 \end{pmatrix} \in H_{2n}(\mathbb{Z}) \geq 0 \) with \(A_1, A_2 \in H_n(\mathbb{Z}) \geq 0 \) and \(\begin{pmatrix} Z_1 & Z_{12} \\ tZ_{12} & Z_2 \end{pmatrix} \in H_{2n} \) with \(Z_1, Z_2 \in H_n \).

Proposition 3.4. Under the above notation and the assumption, for a non-negative integer \(l \leq k \) write \(\mathcal{E}_{2n}^{k,k-l}(Z_1, Z_2, N, \chi) \) as
\[
\mathcal{E}_{2n}^{k,k-l}(Z_1, Z_2, N, \chi) = \sum_{A_1, A_2 \in H_n(\mathbb{Z}) \geq 0} c_{2n}^{k,k-l}(Z_1, Z_2, N, \chi)(A_1, A_2) \mathbf{e}(\text{tr}(A_1 Z_1 + A_2 Z_2))
\]
Then we have
\[
c_{2n}^{k,k-l}(Z_1, Z_2, N, \chi)(A_1, A_2)
= \sum_{R \in M_n(\mathbb{Z})} D_{n,l}^{k-l}(\begin{pmatrix} A_1 & R/2 \\ tR/2 & A_2 \end{pmatrix}) c_{2n}^{k,k-l}(\begin{pmatrix} A_1 & R/2 \\ tR/2 & A_2 \end{pmatrix}) \chi(\det R) \tau(\chi)^{-1} \sqrt{-1}^{-l}
\]

Corollary 3.5. For any \(A_1, A_2 \in H_n(\mathbb{Z})_0 \), \(c_{2n}^{k,k-l}(Z_1, Z_2, N, \chi)(A_1, A_2) \) belongs to \(\widehat{\mathbb{Q}} \), and in particular if \(\det \left(\begin{pmatrix} 2A_1 & R \\ tR & 2A_2 \end{pmatrix} \right) \) is prime to \(N \), then \(a_{n,l} c_{2n}^{k,k-l}(Z_1, Z_2, N, \chi)(A_1, A_2) \) belongs to \(\mathcal{D}_{\mathbb{Q}(\chi)}[N^{-1}] \), where \(a_{n,l} = \prod_{i=1}^{n} (2l - 2i)(2l - 2i + 1)! \).

Suppose that \(l \leq k \). Then \(\mathcal{E}_{2n}^{k,k-l}(Z_1, Z_2, N, \chi) \) can be expressed as
\[
\mathcal{E}_{2n}^{k,k-l}(Z_1, Z_2, N, \chi) = \sum_{A \in L_n(\mathbb{Z})_0} \mathcal{E}_{2n}^{k,k-l}(Z_1, A, N, \chi) \mathbf{e}(\text{tr}(AZ_2))
\]
with $\mathcal{E}^{k,k-l}_{2n}(Z_1, A, N, \chi)$ a function of Z_1. Put

$$\mathcal{G}^{k,k-l}_{2n}(Z_1, A, N, \chi) = \sum_{\gamma \in I_0^{(n)}(N^2) \setminus I^{(n)}} (\mathcal{E}^{k,k-l}_{2n})_{\gamma}(Z_1, A, N, \chi).$$

It is easily seen that $\mathcal{E}^{k,k-l}_{2n}(Z_1, A, N, \chi)$ belongs to $M_k(I_0^{(n)}(N^2))$, and therefore $\mathcal{G}^{k,k-l}_{2n}(Z_1, A, N, \chi)$ belongs to $M_k(\Gamma^{(n)})$. In particular, if $l < k$, then $\mathcal{G}^{k,k-l}_{2n}(Z_1, A, N, \chi)$ belongs to $S_k(\Gamma^{(n)})$.

Proposition 3.6. Suppose that $l \leq k$ and let $A \in \mathcal{H}_n(\mathbb{Z})$. Then $a_{n,l}\mathcal{G}^{k,k-l}_{2n}(Z_1, N^2 A, N, \chi)$ belongs to $M_k(\Gamma^{(n)})(\mathcal{O}_{\mathbb{Q}(\chi,\zeta)}[N^{-1}])$. In particular, if $l < k$, it belongs to $S_k(\Gamma^{(n)})(\mathcal{O}_{\mathbb{Q}(\chi,\zeta)}[N^{-1}])$.

Proof. We have

$$c_{n,l}^{\mathcal{G}^{k,k-l}_{2n}}(Z_1, z_2, N, \chi)(B, N^2 A) = \sum_{R \in M_n(\mathbb{Z})} P_{n,l}^{k-l} \left(\begin{pmatrix} B & R/2 \\ tR/2 & N^2 A \end{pmatrix} \right) C_{n,l} \left(\begin{pmatrix} B & R/2 \\ tR/2 & N^2 A \end{pmatrix} \right) \bar{\chi}(\det R) \tau(\chi)^{-1} \sqrt{-1}^{-l}.$$

We note that det $\begin{pmatrix} 2B \\ tR/2 & 2N^2 A \end{pmatrix}$ is prime to N if and only det R is prime to N. Therefore, by Corollary 3.3, $a_{n,l}\mathcal{E}^{k,k-l}_{2n}(Z_1, N^2 A, N, \chi)$ belongs to $M_k(I_0^{(n)}(N^2))(\mathcal{O}_{\mathbb{Q}(\chi,\zeta)}[N^{-1}])$. By q-expansion principle (cf. [8], [10]), for any $\gamma \in \Gamma^{(n)}$, $a_{n,l}\mathcal{E}^{k,k-l}_{2n}|_{\gamma}(Z_1, N^2 A, N, \chi)$ belongs to $M_k(I^{(n)}(N^2))(\mathcal{O}_{\mathbb{Q}(\chi,\zeta)}[N^{-1}])$. Hence, $a_{n,l}\mathcal{G}^{k,k-l}_{2n}(Z_1, N^2 A, N, \chi)$ belongs to $M_k(I^{(n)}(N^2))(\mathcal{O}_{\mathbb{Q}(\chi,\zeta)}[N^{-1}]) \cap M_k(\Gamma^{(n)}) = M_k(\Gamma^{(n)})(\mathcal{O}_{\mathbb{Q}(\chi,\zeta)}[N^{-1}])$. This proves the first of the assertion. The latter is similar. \qed

Theorem 3.7. Let $\{F_i\}_{i=1}^d$ be an orthogonal basis of $S_k(\Gamma^{(n)})$ consisting of Hecke eigenforms, and $\{F_i\}_{d+1 \leq i \leq e}$ be a basis of the orthogonal complement $S_k(\Gamma^{(n)})^\perp$ of $S_k(\Gamma^{(n)})$ in $M_k(\Gamma^{(n)})$ with respect to the Petersson product. Then we have

$$\mathcal{G}^{k,k-l}_{2n}(Z, N^2 A, N, \chi) = \sum_{i=1}^d c(n, l) N^{nl} A(l - n, F_i, \chi, \text{St}) c_{F_i}(A) F_i(Z) + \sum_{i=d+1}^e c_i F_i(Z)$$

where $c(n, l) = (-1)^{a(n,l)} 2^{b(n,l)}$ with $a(n,l), b(n,l)$ integers, and c_i is a certain complex number. Moreover we have $c_i = 0$ for any $d+1 \leq i \leq e$ if $l < k$.

Proof. Put
\[\mathfrak{G}^{k,k-l}_{2n}(Z_1, Z_2, N, \chi) = \sum_{\gamma \in \Gamma_0(n)(N^2) \setminus \Gamma(n)} \mathfrak{G}^{k,k-l}_{2n}(|k\gamma Z_1, Z_2, N, \chi). \]
Then we have
\[\mathfrak{G}^{k,k-l}_{2n}(Z_1, Z_2, N, \chi) = \sum_{A \in \mathcal{L}_n(\mathbb{Z}) > 0} \mathfrak{G}^{k,k-l}_{2n}(Z_1, A, N, \chi)e(\text{tr}(AZ_2)) \]
By [H, (3.24)], for any \(\gamma \in \Gamma(n) \) we have
\[\langle F_i, \mathfrak{G}^{k,k-l}_{2n}(|k\gamma *, -Z_2, N, \chi) \rangle \]
\[= \langle F_i | k\gamma, \mathfrak{G}^{k,k-l}_{2n}(|k\gamma *, -Z_2, N, \chi) \rangle \]
\[= \langle F_i, \mathfrak{G}^{k,k-l}_{2n}(*, -Z_2, N, \chi) \rangle \]
\[= (-1)^{a'(n,l)2^b(n,l)N^{nl}}(\chi)(-1)^{n[n(\Gamma(n) : \Gamma_0(n)(N^2))]^{-1}n(l-k)n-(2n+1)l+n(n+1)/2} \]
\[\times L(l-n, F_i, \bar{\chi}, St)\Gamma(l-n)\tau(\chi)^{-n-1}\sqrt{1-l} F_i(N^2 Z_2) \]
\[\times \frac{\Gamma_{2n}(l)\Gamma_n(k-n/2)\Gamma_n(k-(n+1)/2)}{\Gamma_n(l)\Gamma_n(l-n/2)}, \]
with \(a'(n,l), b'(n,l) \in \mathbb{Z} \). We note that we take the normalized Petersson inner product. We also note that
\[\Gamma_{2n}(l) = \pi^{n/2}\Gamma_n(l)\Gamma_n(l-n/2), \]
and
\[\Gamma_n(k-n/2)\Gamma_n(k-(n+1)/2) = 2^{\gamma'(n,l)}\pi^{n/2} \prod_{i=1}^{n} \Gamma(2k-n-i) \]
with an integer \(\gamma'(n,l) \). Hence we have
\[\langle F_i, \mathfrak{G}^{k,k-l}_{2n}(|k\gamma *, -Z_2, N, \chi) \rangle \]
\[= c(n, l)[\Gamma(n) : \Gamma_0(n)(N^2)]^{-1}N^{nl}\Lambda(l-n, F_i, \bar{\chi}, St)\langle F_i, F_i \rangle F_i(N^2 Z_2), \]
where \(c(n, l) = (-1)^{a(n,l)2^b(n,l)} \) with \(a(n,l), b(n,l) \) integers. On the other hand, we have
\[\langle F_i, \mathfrak{G}^{k,k-l}_{2n}(*, -Z_2, N, \chi) \rangle = \sum_{A \in \mathcal{L}_n(\mathbb{Z}) > 0} \langle F_i, \mathfrak{G}^{k,k-l}_{2n}(*, A, N, \chi) \rangle e(\text{tr}(AZ_2)). \]
Hence we have
\[\langle F_i, \mathfrak{G}^{k,k-l}_{2n}(*, A, N, \chi) \rangle = c(n, l)N^{nl}\Lambda(l-n, F_i, \bar{\chi}, St)\langle F_i, F_i \rangle c_{F_i}(N^{-2} A) \]
for any A. Now $G_{2n}^{k,k-l}(Z, A, N, \chi)$ can be expressed as

$$G_{2n}^{k,k-l}(Z, A, N, \chi) = \sum_{i=1}^{e} c_i F_i(Z)$$

with $c_i \in \mathbb{C}$. For $1 \leq i \leq d$ we have

$$\langle F_i, G_{2n}^{k,k-l}(*, A, N, \chi) \rangle = c_i \langle F_i, F_i \rangle.$$

Hence we have

$$c_i = c(n, l) N^d A(l - n, F_i, \chi, \text{St}) \langle F_i, F_i \rangle c_{F_i}(N^{-2}A).$$

We note that $\Lambda(l - n, F_i, \chi, \text{St}) = \Lambda(l - n, F_i, \chi, \text{St})$. This proves the assertion. □

Remark 3.8. There are errors in [12], Appendix.

1. The factor $\eta^*(\gamma)$ is missing in $E_{n,l}(Z, M, \eta, s)$ on [12], page 125, and it should be defined as

$$E_{n,l}(Z, M, \eta, s) = L(1 - l - 2s, \eta) \prod_{i=1}^{[n/2]} L(1 - 2l - 4s + 2i, \eta^2)$$

$$\times \det(\text{Im}(Z))^s \sum_{\gamma \in \Gamma^{(n)} \setminus \Gamma^{(n)}(M)} j(\gamma, Z)^{-l} \eta^*(\gamma) |j(\gamma, Z)|^{-2s}.$$

Then $E_{n,l}^*(Z, M, \eta, s) = E_{n,l}|W_M(Z, M, \eta, s)$ with $W_M = \begin{pmatrix} O & -1_n \\ M1_n & O \end{pmatrix}$ coincides with the Eisenstein series $E_{n,l}^*(Z, M, \eta, s)$ in the present paper up to elementary factor. However, to quote several results in [4] smoothly, we define $E_{n,l}^*(Z, M, \eta, s)$ as in the present paper. Accordingly we define $G_{2n}^{k,k-l}(Z, A, N, \chi)$ as in our paper. With these changes, Propositions 5.1 and 5.2, and (1) of Theorem 5.3 in [12] should be replaced with Corollary 3.3, Corollary 3.5, and Proposition 3.6, respectively, in the present paper.

2. In [12], we defined $L(m, F, \chi, \text{St})$ as

$$L(m, F, \chi, \text{St}) = \Gamma_C(m) \left(\prod_{i=1}^{n} \Gamma_C(m + k - i) \right) \frac{L(m, F, \chi, \text{St})}{\tau(\chi)^{n+1}(F, F)}.$$

where $\Gamma_C(s) = 2(2\pi)^{-s/2} \Gamma(s)$. However, the factor $\sqrt{-1}^{m+n}$ should be added in the denominator on the right-hand side of the above definition. With this correction, [12], Theorem 2.2 remains valid. Moreover, we
have
$$L(l - n, F, \chi, St) = \frac{\prod_{i=1}^{n} \Gamma_C(l - n + k - i)}{N^{\text{inc}}(n, l) \prod_{i=1}^{n} \Gamma(2k - n - i) \pi^{-n(n+1)/2+nk+(n+1)m}} \Lambda(l - n, F, \chi, St).$$
We note that
$$\prod_{i=1}^{n} \Gamma_C(l - n + k - i)$$
$$N^{\text{inc}}(n, l) \prod_{i=1}^{n} \Gamma(2k - n - i) \pi^{-n(n+1)/2+nk+(n+1)m}$$
is a rational number, and for a prime number p not dividing $N(2k-1)!$, it is p-unit. Therefore, (2) of Theorem 5.3 in [12] should be corrected as follows:

Put
$$\widetilde{G}^{k,k-l}_{2n}(Z, N^2 A, N, \chi) = \prod_{i=1}^{n} \Gamma_C(l - n + k - i)$$
$$N^{\text{inc}}(n, l) \prod_{i=1}^{n} \Gamma(2k - n - i) \pi^{-n(n+1)/2+nk+(n+1)m} \times G^{k,k-l}_{2n}(Z, N^2 A, N, \chi).$$
Then $\widetilde{G}^{k,k-l}_{2n}(Z, N^2 A, N, \chi)$ belongs to $G_k(\Gamma^{(n)})(\Omega_{Q(F, \chi, \zeta_N)} \mathfrak{P})$ for any prime ideal \mathfrak{P} of $Q(F, \chi, \zeta_N)$ not dividing $N(2k-1)!$, and we have
$$\widetilde{G}^{k,k-l}_{2n}(Z, N^2 A, N, \chi) = \sum_{i=1}^{d} L(l - n, F_i, \chi, St)c_{F_i}(A)F_i(Z).$$

4. Proof of the main result

Lemma 4.1. Let $r \geq 2$ and let $\{F_1, \ldots, F_r\}$ be Hecke eigenforms $M_k(\Gamma^{(n)}; \lambda_i)$ linearly independent over \mathbb{C}, and G an element of $M_k(\Gamma^{(n)})$. Write
$$F_i(Z) = \sum_{A} c_{F_i}(A)e(\text{tr}(AZ))$$
for $i = 1, \ldots, r$ and
$$G(Z) = \sum_{A} c_{G}(A)e(\text{tr}(AZ)).$$
Let K be the composite field of $Q(F_1), \ldots, Q(F_r)$, and L a finite extension of K. Let N be a positive integer. Assume that
(1) there exists an element $\alpha \in K$ such that $c_G(A)$ belongs to $\alpha \mathfrak{O}_L[N^{-1}]$ for any $A \in \mathcal{H}_n(\mathbb{Z})_{>0}$

(2) there exist $c_i \in L$ ($i = 1, \ldots, r$) and $A \in \mathcal{H}_n(\mathbb{Z})_{>0}$ such that

$$G(Z) = \sum_{i=1}^{r} c_i F_i(Z).$$

Then for any elements $T_1, \ldots, T_{r-1} \in \mathcal{L}'_n$ and $A \in \mathcal{H}_n(\mathbb{Z})_{>0}$ we have

$$\prod_{i=1}^{r-1} (\lambda_{F_1}(T_i) - \lambda_{F_{i+1}}(T_i)) c_1 c_{F_1}(A) \in \alpha \mathfrak{O}_L[N^{-1}].$$

Proof. We prove the induction on r. The assertion clearly holds for $r = 2$. Let $r \geq 3$ and suppose that the assertion holds for any r' such that $2 \leq r' \leq r - 1$. We have

$$G|_{T_{r-1}}(Z) = \sum_{i=1}^{r} \lambda_{F_i}(T_{r-1}) c_i F_i(Z),$$

and we have

$$G|_{T_{r-1}}(Z) - \lambda_{F_1}(T_{r-1}) G(Z) = \sum_{i=1}^{r-1} (\lambda_{F_i}(T_{r-1}) - \lambda_{F_i}(T_{r-1})) c_i F_i(Z).$$

By Theorem 4.1 and Proposition 4.2 of [10], we have

$$G|_{T_{r-1}}(Z) - \lambda_{T_{r-1}} G(Z) \in \alpha S_k(\Gamma^{(n)})(\mathfrak{O}_L[N^{-1}])$$

Hence, by the induction assumption we prove the assertion.

\[\square\]

Proof of Theorem 2.3 Let $b(n, l)$ be the integer in Theorem 3.7 and put $\alpha(n, k) = \max_{2 \leq l \leq n - 2} b(n, l)$. Then, $a_{n,k} g_{2n}^{k,l}(Z, N^2 A, N, \chi) \in 2^{\alpha(n,k)} M_k(\Gamma(n))(\mathfrak{O}_{\mathbb{Z}(\chi, \zeta, \bar{\eta})}[N^{-1}])$. Thus, by Theorem 3.7 and Lemma 4.1 for any $B \in \mathcal{H}_n(\mathbb{Z})_{>0}$, and $T_1, \ldots, T_e \in \mathcal{L}'_n$, the value

$$\prod_{i=1}^{r-1} (\lambda_{F_i}(T_i) - \lambda_{F_{i+1}}(T_i)) \Lambda(l - n, F, \chi, St) \tilde{c}_F(A)c_F(B)$$

belongs to $(2^{\alpha(n,k)} A_{n,k})^{-1} \mathfrak{O}_{L_{n,k}(\chi, \zeta, \bar{\eta})}[N^{-1}]$, where $e = \dim_{\mathbb{C}} M_k(\Gamma(n))$, and $L_{n,k}$ is the field stated in Section 1. In particular for any $v \in \mathfrak{C}_F$, the value $v \Lambda(l - n, F, \chi, St) \tilde{c}_F(A)c_F(B)$ belongs to $(2^{\alpha(n,k)} A_{n,k})^{-1} \mathfrak{O}_{L_{n,k}(\chi, \zeta, \bar{\eta})}[N^{-1}]$. On the other hand, by Proposition 2.1 the value $\Lambda(l - n, F, \chi, St) \tilde{c}_F(A)c_F(B)$ belongs to $\mathbb{Q}(F, \chi)$, and hence we have

$$v \Lambda(l - n, F, \chi, St) \tilde{c}_F(A)c_F(B) \in (2^{\alpha(n,k)} A_{n,k})^{-1} \mathfrak{O}_F[N^{-1}].$$
This implies that we have
\[\mathcal{I}(l - n, F, \chi) \subset \langle (2^{\alpha(n,k)}A_{n,k}\bar{E}_F)^{-1} \rangle_{\mathbb{Q}(F,\chi)[N^{-1}]} \cdot \]

Remark 4.2. Let the notation be as in Lemma 4.1. Then we have the following.

Let \(p \) be a prime ideal of \(K \). Assume that \(c_1c_{F_1}(A) \) belongs to \(K \) and that \(\text{ord}_p(c_1c_{F_1}(A)) < 0 \) for some \(A \in \mathcal{H}_n(\mathbb{Z}) > 0 \). Then there exists \(i \neq 2 \) such that we have
\[\lambda_{F_1}(T) \equiv \lambda_{F_i}(T) \mod p \quad \text{for any} \ T \in L_n' \cdot \]

This is a generalization of [10], Lemma 5.1, and it can be proved in the same way. Let \(K_{n,k} \) be the field defined in Section 2. Then, applying the above result to \(L = K_{n,k}(\chi,\zeta_N) \), and using a corrected version of [12], Theorem 5.3 in Remark 3.8 (2), we can remedy the proof of [12], Theorem 3.1.

We also remark that the \(M(2l - 1)! \) in [12], Theorem 3.1 should be \(M(2k - 1)! \).

5. **Boundedness of special values of products of Hecke \(L \)-functions**

For an element \(f(z) = \sum_{m=1}^{\infty} c_f(m)e(mz) \in S_k(SL_2(\mathbb{Z})) \) and a Dirichlet character \(\chi \), we define Hecke’s \(L \) function \(L(s, f, \chi) \) as
\[L(s, f, \chi) = \sum_{m=1}^{\infty} \frac{c_f(m)}{m^s}. \]

Let \(f \) be a primitive form. Then, for two positive integers \(l_1, l_2 \leq k - 1 \) and Dirichlet characters \(\chi_1, \chi_2 \) such that \(\chi_1(-1)\chi_2(-1) = (-1)^{l_1+l_2+1} \), the value
\[\frac{\Gamma_C(l_1)\Gamma_C(l_2)L(l_1, f, \chi_1)L(l_2, f, \chi_2)}{\sqrt{-1}^{l_1+l_2+1} \tau((\chi_1\chi_2)0)(f, f)} \]
belongs to \(\mathbb{Q}(f, \chi_1, \chi_2) \) (cf. [17]). We denote this value by \(\mathbf{L}(l_1, l_2; f; \chi_1, \chi_2) \).

In particular, we put
\[\mathbf{L}(l_1, l_2; f) = \mathbf{L}(l_1, l_2; f; \chi_1, \chi_2) \]
if \(\chi_1 \) and \(\chi_2 \) are the principal characters.

Theorem 5.1. Let \(f \) be a primitive form in \(S_k(SL_2(\mathbb{Z})) \). Then we have
\[\mathbf{L}(l_1, l_2; f; \chi_1, \chi_2) \in \langle (2^{b_k}\zeta(1-k)(k!)^2\bar{D}_f)^{-1} \rangle_{\mathbb{Q}(f;\chi_1,\chi_2)(N_1N_2)^{-1}} \]
with some non-negative integer b_k for any integers l_1 and l_2 and primitive characters χ_1 and χ_2 of conductors N_1 and N_2, respectively, satisfying the following conditions:

\[(D1)\] $$(\chi_1 \chi_2)(-1) = (-1)^{l_1+l_2+1}.$$
\[(D2)\] $$k - l_1 + 1 \leq l_2 \leq l_1 - 1 \leq k - 2.$$
\[(D3)\] Either $l_1 \geq l_2 + 2$, or $l_1 = l_2 + 1$ and χ_1 or χ_2 is non-trivial.

Proof. The proof will proceed by a careful analysis of the proof of [17, Theorem 4] combined with the argument in Theorem 2.3. For a positive integer $\lambda \geq 2$ and a Dirichlet character $\omega \mod N$ such that $\omega(-1) = (-1)^\lambda$ we define the Eisenstein series $G_{\lambda,N}(z,s,\omega)$ ($z \in \mathbb{H}_1$, $s \in \mathbb{C}$) by

\[G_{\lambda,N}(z,s,\omega) = \sum_{\gamma \in \Gamma_\infty \setminus \Gamma_0^{(1)}(N)} \omega(d)(cz+d)^{-\lambda}|cz+d|^{-2s} \gamma = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right),\]

where $\Gamma_\infty = \{ \pm \left(\begin{array}{cc} 1 & m \\ 0 & 1 \end{array} \right) \mid m \in \mathbb{Z} \}$. It is well known that $G_{\lambda,N}(z,s,\omega)$ is finite at $s = 0$ as a function of s, and put

\[G_{\lambda,N}(z,\omega) = G_{\lambda,N}(z,0,\omega).\]

$G_{\lambda,N}(z,\omega)$ is a (holomorphic) modular form of weight λ and character ω for $\Gamma_0^{(1)}(N)$ if $\lambda \geq 3$ or ω is non-trivial. In the case $\lambda = 2$ and ω is trivial, $G_{2,N}(z,\omega)$ is a nearly automorphic form of weight 2 for $\Gamma_0^{(1)}(N)$ in the sense of Shimura [18]. We also put

\[\widetilde{G}_{\lambda,N}(z,\omega) = \frac{2\Gamma(\lambda)}{(-2\pi)^{\lambda/2}} L_N(\lambda,\omega) G_{\lambda,N}(z,\omega),\]

where $L_N(s,\omega) = L(s,\omega) \prod_{p|N} (1 - p^{-s}\omega(p))$. Now let N_i be the conductor of χ_i for $i = 1, 2$. Then, by [16, Theorem 4.7.1] there exists a modular form g of weight $l_1 - l_2 + 1$ and character $\chi_1\chi_2$ for $\Gamma_0^{(1)}(N_1 N_2)$ such that

\[c_g(0) = \begin{cases} 0 & \text{if } \chi_1 \text{ is non-trivial} \\ \frac{-1(N_1 N_2)}{24} & \text{if } l_1 - l_2 = 1 \text{ and both } \chi_1 \text{ and } \chi_2 \text{ are trivial} \\ \frac{-B_{l_1-l_2+1,1} \chi_1 \chi_2}{2(l_1-l_2+1)} & \text{otherwise}, \end{cases}\]

\[c_g(m) = \sum_{0<d|m} \chi_1(m/d) \chi_2(d)d^{l_1-l_2} \quad (m \geq 1),\]

and

\[L(s, g) = L(s, \chi_1)L(s - l_1 + l_2, \chi_2).\]
Since we have \(k \geq l_2, l_1 \), all the Fourier coefficients of \(g \) belong to \((k!)^{-1}\mathcal{D}_{Q(\chi_1, \chi_2)}[(N_1N_2)^{-1}]\). Put \(\lambda = -k + l_1 + l_2 + 1 \). Let \(\delta^{(r)}_\lambda \) be the differential operator in [17], page 788. Then, [17], Lemma 7 we have

\[
g\delta^{(k|-l_1-1)}_{-k+l_1+l_2+1} \tilde{G}_{-k+l_1+l_2+1, N_1N_2}(z, \chi_1\chi_2) = \sum_{\nu=0}^{r} \delta^{(\nu)}_{k-2\nu} h_\nu(z)
\]

with some \(r < k/2 \), and \(h_\nu \in M_{k-2\nu}(\Gamma_0^{(1)}(N_1N_2)) \). By [17], (3.3) and (3.4) and the assumption, all the Fourier coefficients of \(\tilde{G}_{-k+l_1+l_2+1, N_1N_2}(z, \chi_1\chi_2) \) belongs to \((k!)^{-1}\mathcal{D}_{Q(\chi_1, \chi_2)}[(N_1N_2)^{-1}]\) if \(-k + l_1 + l_2 + 1 \geq 3\), or \(\chi_1\chi_2 \) is non-trivial. Moreover, by [17], page 795, \(\tilde{G}_{2, N_1N_2}(z, \chi_1\chi_2) \) is expressed as

\[
\tilde{G}_{2, N_1N_2}(z, \chi_1\chi_2) = \frac{c}{4\pi y} + \sum_{n=0}^{\infty} c_n e(nz),
\]

with \(c, c_n \in 2^{-1}\mathcal{D}_{Q(\chi_1, \chi_2)}[(N_1N_2)^{-1}]\) if \(-k + l_1 + l_2 + 1 = 2\) and \(\chi_1\chi_2 \) is trivial. Hence, by the construction of \(h_0 \), all the Fourier coefficients of \(h_0 \) belong to \((k!)^{-1}\mathcal{D}_{Q(\chi_1, \chi_2)}[(N_1N_2)^{-1}]\). Let \(f_1, \ldots, f_d \) be a basis of \(S_k(SL_2(\mathbb{Z})) \) consisting of primitive forms such that \(f_1 = f \). Then, by [17], Theorem 2, Lemmas 1 and 7], we have

\[
L(l_1, l_2, f_i; \chi_1, \chi_2) \langle f_i, f_i \rangle = d_0[S L_2(\mathbb{Z}) : \Gamma_0^{(1)}(N_1N_2)] \langle f, h_0 \rangle
\]

for any \(i = 1, \ldots, d \), where \(d_0 = (-1)^{a(k, l_1, l_2)} 2^{b(k, l_1, l_2)} \) with some \(a(k, l_1, l_2), b(k, l_1, l_2) \in \mathbb{Z} \). (We note that the Petersson product \(\langle *, * \rangle \) in our paper is \(\frac{n}{2} \) times that in [17].) Define \(h_0(z) \) by

\[
h_0 = d_0 \sum_{\gamma \in \Gamma_0^{(1)}(N_1N_2) \backslash SL_2(\mathbb{Z})} h_0|\gamma(z).
\]

Then, \(h_0 \) belongs to \(M_k(SL_2(\mathbb{Z})) \). We have

\[
\langle f_i, h_0|\gamma \rangle = \langle f_i, h_0 \rangle,
\]

for any \(\gamma \in SL_2(\mathbb{Z}) \), and hence

\[
L(l_1, l_2, f_i; \chi_1, \chi_2) \langle f_i, f_i \rangle = \langle f_i, h_0 \rangle,
\]

and hence we have

\[
h_0(z) = \alpha \tilde{G}_k(z) + \sum_{i=1}^{d} L(l_1, l_2, f_i; \chi_1, \chi_2) f_i(z)
\]

with \(\alpha \in \mathbb{C} \). Put \(b_k = \min\{\min_{l_1, l_2} b(k, l_1, l_2), 0\} \) and \(a_k = 2^{b_k(k!)} \), where \(l_1 \) and \(l_2 \) run over all integers satisfying the conditions (D2) and (D3). By q expansion principle, for any \(\gamma \in SL_2(\mathbb{Z}) \), \(h_0|\gamma \) belongs to \(M_k(\Gamma^{(1)}(N_1N_2))((a_k^{-1})\mathcal{D}_{Q(\chi_1, \chi_2, \zeta_N)}[(N_1N_2)^{-1}]) \). Therefore \(h_0 \) belongs to
Let \(M_k(I^{(1)}(N_1N_2))((a_k^{-1})_{D_{\mathbb{Q}(x_1,x_2,\zeta_N)}}(N_1N_2)\) \(-1)\cap M_k(SL_2(\mathbb{Z})) \). Put \(h = h_0 - \alpha \tilde{G}_k \). Then all the Fourier coefficients of \(h \) belong to \(\langle (2^{k_i}k_i^2\zeta(1 - k))^{-1} \rangle_{D_{\mathbb{Q}(x_1,x_2,\zeta_N)}}(N_1N_2)\). We note that \(L(l_1,l_2; f; \chi_1,\chi_2) \) belongs to \(\mathbb{Q}(f, \chi_1, \chi_2) \). Thus, using Lemma 4.1, we can prove the assertion in the same way as Theorem 2.3. \(\square \)

Corollary 5.2. Let \(f \) be a primitive form in \(S_k(SL_2(\mathbb{Z})) \). Let \(Q_f \) be the set of prime ideals \(p \) of \(\mathbb{Q}(f) \) such that

\[
\text{ord}_p(N_{Q(f,\chi_1,\chi_2)}/Q(f)) (L(l_1,l_2; f; \chi_1,\chi_2)) < 0
\]

for some positive integers \(l_1, l_2 \) and primitive characters \(\chi_1, \chi_2 \) with \(p \nmid m_{\chi_1}, m_{\chi_2} \) satisfying the condition (D1), (D2), (D3). Then \(Q_f \) is a finite set. Moreover, there exists a positive integer \(r \) such that we have

\[
\text{ord}_q(L(l_1,l_2; f; \chi_1,\chi_2)) \geq -r[Q(f, \chi_1, \chi_2) : Q(f)]
\]

for any prime ideal \(q \) of \(Q(f, \chi) \) lying above a prime ideal in \(Q_f \) and integer \(l_1, l_2 \) and primitive characters \(\chi_1, \chi_2 \) satisfying the above conditions.

For a prime ideal \(p \) of an algebraic number field, let \(p = p_0 \) be a prime number such that \((p_0) = \mathbb{Z} \cap p \). Let \(K \) a number field containing \(\mathbb{Q}(f) \). Then there exists a semi-simple Galois representation \(\rho_f = \rho_{f,p} : \text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \to GL_2(K_p) \) such that \(\rho_f \) is unramified at a prime number \(l \neq p \) and

\[
\det(1_2 - \rho_{f,p}(\text{Frob}_l^{-1}))X = L_l(X,f),
\]

where \(\text{Frob}_l \) is the arithmetic Frobenius at \(l \), and

\[
L_l(X,f) = 1 - c_f(l)X + l^{k-1}X^2.
\]

For a \(p \)-adic representation \(\rho \) let \(\bar{\rho} \) denote the mod \(p \) representation of \(\rho \). To prove our last main result, we provide the following lemma.

Lemma 5.3. Let \(p = p_0 \). Let \(k \) be a positive even integer such that \(k < p \). Let \(f \) be a primitive form in \(S_k(SL_2(\mathbb{Z})) \). Let \(a, b \) be integers such that \(-p + 1 < a < b < p - 1\). Suppose that

\[
\bar{\rho}_f^{ss} = \chi^a \oplus \chi^b,
\]

where \(\chi \) is the \(p \)-cyclotomic character. Then \((a,b) = (1-k,0)\).

Proof. By [5, Theorem 1.2] and its remark, \(\bar{\rho}_f^{ss} | I_p \) should be

\[
\chi^{1-k} \oplus 1
\]

or

\[
\omega_2^{1-k} \oplus \omega_2^{p(1-k)}
\]

with \(\omega_2 \) the fundamental character of level 2, where \(I_p \) denotes the inertia group of \(p \) in \(\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \). Thus the assertion holds. \(\square \)
Let \(f_1, \ldots, f_d \) be a basis of \(S_k(SL_2(\mathbb{Z})) \) consisting of primitive forms with \(f_1 = f \) and let \(\mathcal{O}_f \) be the ideal of \(\mathbb{Q}(f) \) generated by all \(\prod_{i=2}^{d}(\lambda_f(T(m)) - \lambda_f(T(m)))'s \) \(m \in \mathbb{Z}_{>0} \).

Theorem 5.4. Let \(f \) be a primitive form in \(S_k(SL_2(\mathbb{Z})) \). Let \(\chi_1 \) and \(\chi_2 \) be primitive characters of conductors \(N_1 \) and \(N_2 \), respectively, and let \(l_1 \) and \(l_2 \) be positive integers such that \(k - l_1 + 1 \leq l_2 \leq l_1 - 1 \leq k - 2 \). Let \(\mathfrak{p} \) be a prime ideal of \(\mathbb{Q}(f, \chi_1, \chi_2) \) with \(\mathfrak{p} \not| \mathfrak{p} \). Suppose that \(\mathfrak{p} \) divides neither \(\mathcal{O}_{fN_1N_2} \) nor \(\zeta(1-k) \). Then \(L(l_1, l_2; f; \chi_1, \chi_2) \) is \(\mathfrak{p} \)-integral.

Proof. The assertion follows from Theorem 5.1 if \(l_1, l_2 \) and \(\chi_1, \chi_2 \) satisfy the conditions \((D1), (D2), (D3) \). Suppose that \(l_1 = l_2 + 1 \) and \(\chi_1 \) and \(\chi_2 \) are trivial. By Lemma 5.3 there exists a prime number \(q_0 \) such that \(q_0 \) is \(\mathfrak{p} \)-unit and

\[
1 - c_f(q_0)q_0^{-l_2+1} + q_0^{k-2l_2+1} \not\equiv 0 \pmod{\mathfrak{p}}.
\]

As stated in the proof of Theorem 5.1 there exists a modular form \(g \in M_2(\Gamma_0(q_0))\langle \mathcal{O}(\mathfrak{p}) \rangle \) such that

\[
L(s, g) = \zeta(s)\zeta(s-1)(1-q_0^{-s+1}).
\]

We can construct a modular form \(h_0 \in M_k(\Gamma_0(1)(q_0)) \) in the same way as in the proof of Theorem 5.1. Then

\[
(1 - c_f(q_0)q_0^{-l_2+1} + q_0^{k-2l_2+1})L(l_1, l_2; f_i)\langle f_i, f_i \rangle \\
= d_0[SL_2(\mathbb{Z}) : \Gamma_0(1)(q_0)]\langle f_i, h_0 \rangle
\]

with some integer \(d_0 \) prime to \(\mathfrak{p} \) for any \(i = 1, \ldots, d \). Then by using the same argument as above, we can prove that

\[
\text{ord}_{\mathfrak{p}}(L(l_1, l_2; f)(1 - c_f(q_0)q_0^{-l_2+1} + q_0^{k-2l_2+1})) \geq 0.
\]

This proves the assertion. \(\square \)

References

[1] N. Arancibia, C. Mœglin and D. Renard, *Paquets d’Arthur des groupes classiques et unitaires*, Ann. Fac. Sci. Toulouse Math. (6), 27 (2018), 1023–1105.

[2] S. Böcherer, *Über die Fourierkoeffizienten der Siegelschen Eisensteinreihen*, Manuscripta Math. 45 (1984), 273–288.

[3] S. Böcherer, *On the denominators of values of certain L-functions when twisted by characters*, L-functions and automorphic forms, 25–38, Contrib. Math. Comput. Sci., 10, Springer, Cham, 2017.

[4] S. Böcherer and C.G. Schmidt, *p-adic measures attached to Siegel modular forms*, Ann. Inst. Fourier, 50 (2000), 1375–1443.

[5] K. Buzzard and T. Gee, *Explicit reduction modulo p of certain crystalline representations*, IMRN, 12 (2009), 2303–2317.
[6] L. Carlitz, *Arithmetic properties of generalized Bernoulli numbers*, J. reine angew. Math. **202** (1959), 174–182.

[7] G. Chenevier and J. Lannes, *Automorphic forms and even unimodular lattices*, Springer, 2019.

[8] T. Ichikawa, *Vector valued p-adic Siegel modular forms*, J. reine angew. Math. **690** (2014) 35–49.

[9] H. Katsurada, *An explicit formula for Siegel series*, Amer. J. Math. **121** (1999) 415–452.

[10] H. Katsurada, *Congruence of Siegel modular forms and special values of their zeta functions*, Math. Z. **259** (2008), 97–111.

[11] H. Katsurada, *Exact standard zeta values of Siegel modular forms*, Experiment. Math. **19** (2010), 65–77.

[12] H. Katsurada, *Congruence between Ikeda lifts and non-Ikeda lifts*, Comment. Math. Univ. Sanct. Pauli **64** (2015), 109–129.

[13] N. M. Katz, *p-adic properties of modular forms and modular schemes*. Lect. Notes. in. Math. **350** (1973), 69–190.

[14] Y. Kitaoka, *Dirichlet series in the theory of quadratic forms*, Nagoya Math. J. **95** (1984), 73–84.

[15] H. W. Leopoldt, *Eine Verallgemeinerung der Bernoullischen Zahlen*, Abh. Math. Sem. Hamburg, **22** (1958), 131–140.

[16] T. Miyake, *Modular forms*, Springer, 1989.

[17] G. Shimura, *The special values of the zeta functions associated with cusp forms*, Comm. pure appl. Math. **29**(1976), 783–804.

[18] G. Shimura, *On a class of nearly holomorphic automorphic forms*, Ann. of. Math. **123** (1986) 347–406.

Muroran Institute of Technology
27-1 Mizumoto, Muroran, 050-8585, Japan

Email address: hidenori@mmm.muroran-it.ac.jp