Original Research Article

Study on outcome of tympanopanoplasty: a two year institutional study

Vivek K. Pathak*, Rohit Saxena, Pradeepti Nayak, Sonali Tyagi

Department of Otolaryngology, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India

Received: 02 January 2021
Revised: 19 January 2021
Accepted: 20 January 2021

*Correspondence:
Dr. Vivek K. Pathak,
E-mail: drvkp83@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Tympanoplasty is one of the common surgical procedure performed in CSOM (TTD), this study was undertaken to determine the outcome of tympanoplasty at a tertiary care teaching hospital.

Methods: This analytical observational study was conducted in the department of E.N.T, School of Medical Sciences and Research, from January 2017 to December 2018. Informed consent was taken to participate in the study pure tone audiometry (PTA) was performed before surgery and post-operatively six months. Air-bone gap (ABG) was calculated in pre- and postoperative PTA. The data were analyzed using SPSS (version 20). The p value ≤0.05 was considered statistically significant.

Results: Over a period of 2 years 168 patients underwent type 1 tympanoplasty 86 were male 21 (51.19%), female 82 (48.80%), age (range 15–53 years). Mean pre-operative air conduction of 43.12 dB was significantly reduced to 16.12 dB with p value of <0.05. Similarly the pre-operative mean air bone gap on PTA of 35.63±6.35 dB was also reduced to statistically significant level of 7.41±3.51 dB on post-operative PTA with p value of <0.05. Graft was taken up well in 152 cases (90.2%).

Conclusions: According to our study surgical outcome of tympanoplasty is fairly good and should be done if patient gives consent.

Keywords: Chronic otitis media, Tympanoplasty, Air bone gap

INTRODUCTION

Chronic otitis media (COM) is common treatable cause of hearing loss in developing world.1 With the use of antibiotics management has improved which compliments surgery i.e. tympanoplasty.2,3 Tympanoplasty is the surgery of reconstruction of tympanic membrane (TM) perforation and ossicular chain. Wullstien in 1952 introduced term tympanoplasty and a wide range of graft materials are available for tympanoplasty like temporalis fascia, fat, perichondrium dura mater.4,5 Temporalis fascia preferred graft material used with success rate of 90–96% in primary tympanoplasties.5,6 Its advantages it has that it can be harvested through same post aural incision of tympanoplasty, available in sufficient amount, its basal metabolic rate and thickness have great resemblance with TM.4 However failure of fascia graft are reported in subtotal or total perforation and eustachian tube dysfunction. The postoperative results of fascia graft is unpredictable due to its irregularly arranged elastic and fibrous tissues, in literature varius techniques of cartilage tympanoplasty have been described, like palisade technique, perichondrium cartilage island, cartilage shield technique and inlay butterfly graft technique.5,7 The reported success rate of cartilage tympanoplasty in literature is more than 98%. The use of cartilage and perichondrium as graft material was popularized by Goodhill with observed low rejection rate, sufficient and easy availability, best tensile strength, possessing conductive qualities similar to tympanic membrane.5,7
Moreover cartilage metabolism is slow and it receives nutrition by diffusion, cartilage remains stable in poor condition like negative pressure and eustachian tube dysfunction.9 Disadvantages cartilage graft are that hearing outcome is less as compared to temporalis fascia as it can hide underlying residual cholesteatoma.6 The factors resulting in failure of tympanoplasty are eustachian tube dysfunction, active suppuration, unfavorable middle ear mucosa, large and subtotal perforations and revision myringoplasty.5 Mesodermal origin graft materials like fascia, vein and perichondrium are superior to all other graft material.10

The rationale this study was to look for outcome of tympanoplasty in our hospital to add on available literature.

METHODS

This analytical observational study was conducted in the department of E.N.T, School of Medical Sciences and Research, Sharda university from January 2017 to December 2018 in the department of E.N.T, Head and Neck Surgery sample size was 168, by after getting approval from hospital ethical board, an informed consent was taken from all the patients explaining them the procedure, and its outcomes.

Inclusion criteria

The study included patients of: all CSOM (TTD) with dry ear patients consenting for surgery, patients in the age range 15–53 years, COM (inactive) without discharge for at 1 months, conductive hearing loss with minimum air-bone gap (ABG) of 15 dB on PTA.

Exclusion criteria

Patients with COM (squamosal) disease, ossicular chain erosion, active mucosal COM and sensori-neural hearing loss were excluded from the study.

All the patients met inclusion criterion a detailed history, examination was done. On otoscopic examination side, size of perforation noted as par standard performa. Pure tone audiometry (PTA) was performed pre-operative and post-operatively six months, PTA was performed by audiota audiometer pre- and postoperative. The ABG was evaluated in pre- and postoperative PTA. Successful outcome was shown by graft take, closure in ABG. All the patients were followed for at least six months. The data were collected on a preformed proforma, which was analyzed using SPSS (version 20). Chi-square (X2) test of significance was used for comparison of two qualitative parameters. The p value ≤0.05 was considered significant.

Tympanoplasty was performed in every patient. After endotracheal intubation patient in supine position, with operating ear up. Aseptic dressing and draping was done. Incision site was infiltrated with 2% lidocaine with 1:100,000 adrenaline. Post auricular skin incision was given in all the cases, temporalis fascia graft was harvested, margins of perforation freshened, tympanomeatal flap elevated, graft reposited medial to handle of malleus, abgel applied, after soft tissue and skin closure, mastoid dressing applied, mastpod dressing removed after 5 days, stitch removal done on 7th post-operative day, on follow up otoscopic. EUM done at every visit, post-operative PTA was done at 6th month.

RESULTS

In this study 168 patients underwent type 1 tympanoplasty 86 were male (51.19%) and female 82 (48.80%). Age group range was from 15-53 years and most patients were from 21-30 age group 79 947% (Table 1).

Age groups (years)	Numbers	Percentage (%)
<20	21	12
21-30	79	47
31-40	58	34
41-50	8	5
>50	2	2

On otoscopy tympanic membrane perforation was found on right side 98 (58.33%) and on left side 70 (41.66%).

Mean pre-operative air-conduction threshold of 43.12 dB was significantly reduced to 16.12 dB with p-value of <0.05. Similarly the pre-operative mean air bone gap on PTA of 35.63±6.35 dB was also reduced to statistically significant level of 7.41±3.51 dB on post-operative PTA with p value of <0.05 (Table 2). Graft was taken up well in 152 cases (90.2%).

Parameter	Pre-operative	Post-operative	P value
Air conduction threshold	43.2	16.2	<0.05
A-B gap	35.63±6.35 dB	7.41±3.51 dB	<0.05

DISCUSSION

In our study conducted on 168 patients 86 were male patients (51.19%) were male and 82 (48.80%) were female that is consistent with results of Subramania et al with 42 (52.55%) males, 38 (47.5%) females, and Dhanapala with 57 (57%) males, 43 (43%) female.11 However this study results regarding gender distribution differs from Vaishali, Hasaballah and Gupta having female predominance as female 55% male 45%, females 66.6% males 33.4%, and
females 70% males 30% respectively. In current study age range was 15–53 years and patients presented commonly in 2nd and 3rd decade of life i.e. 79 (47%). Similarly in Pareek’s study mean±SD age of the patient was 26.23±12.46 years with age range of 10 to 60 years. Hasaballah observed that mean±SD age was 24.9±9.5 years with age range 15–51 years. Vaishali also reported that mean age of patients was 29.12 years (range, 15–45 years) and majority of patients (40%) were in 3rd decade of life. In this study the mean pre-op air-conduction of 43.12 dB was significantly reduced to 16.12 dB. Similarly the pre-op mean air bone gap on PTA of 35.63±6.35 dB was also reduced to statistically significant level of 7.41±3.51 dB on post-op PTA, which is in conformity with result of Pareek, where mean±SD preoperative air conduction of 43.21±7.17 dB was reduced to mean±SD postoperative air conduction of 36.49±6.60 dB, which was statistically significant (p=0.00004), while mean±SD preoperative ABG of 25.45±8.44 dB was reduced to mean±SD postoperative ABG of 19.31±8.18 dB, that was also statistically significant (p=0.0014). In our study and graft taken up was in 152 patients 90%, which in accordance with Hodzic-Redzic with graft success rate was 92.5%. The results our study are compared to other studies tabulated in comparison of changes in ABG, p values and graft success rate of current study with other studies (Table 3).

Author	Year of study	No. of patients	Pre-operative ABG	Post-operative ABG	Success rate (%)
Subramania et al²	2017	40	22.4±6.14	14.8±10.2	77
Vaishali et al³	2017	40	22.6	13.6	77.5
Fattah et al⁴	2014	30	21±7	9.4±8.9	80
Gupta et al⁵	2015	28	33.27±4.29	12.67±5.68	90
Khan et al⁶	2011	40	32.46±5.02	9.21±3.28	100
Kumar et al⁷	2014	28	22.6	13.6	75
Aydin et al⁸	2015	40	21.1±9.7	13.0±8.4	96.7
Sahan et al⁹	2014	60	24.5±7.2	12.8±5.6	94
Dhamapala et al¹¹	2015	33	33.59±3.8	26.87±3.87	94
Hasaballah et al¹²	2014	100	26.0±4.4	13.8±5	100
Pareek et al¹³	2017	40	25.54±8.44	19.31±8.18	100
Shrikrishna et al¹⁴	2014	40	22	10	90
Patil et al¹⁵	2017	30	21.54±6.36	10.97±3.68	75
Hodzic-Redzic¹⁶	2015	120	47.35±18.93	28.94±5.5	95
Ocak et al¹⁷	2010	243	22.43±8.07	15.27±8.69	86.5
Khan et al¹⁸	2016	179	39.89±7.914	10.03±1.74	100
Our study	2018	168	35.63±7.914	10.03±1.74	90

Table 3: Various studies on outcome of tympanoplasty.

Limitation

Our study comprise of 168 participants over a period of two years, more studies are required of longer duration in future.

CONCLUSION

Our study shows that success rate of tympanoplasty are very good in respect to graft uptake and hearing outcome and should always be the option if patient consents for surgery.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. ElBatawi AM, ElTaher MA, Sabaa MAE. Tympanic membrane grafting, underlay peristomal versus inlay cartilage grafts: a comparative study. J Otolaryngol ENT Res. 2018;10(5):274-7.

2. Subramania Biju C, Jade Anselm Shyras D. A comparative study of hearing outcomes in type I tympanoplasty with temporalis fascia and tragal cartilage-perichondrium composite graft. Med Pulse Int J ENT. 2017;1(3):62-3.

3. Vaishali S, Rakesh K, Kalpana Rk, Rao SP. A Comparative study of use of temporalis fascia graft vs tragal perichondrium graft in tympanoplasty. Paripex – Indian J Res. 2017;6:438-40.

4. Fattah MA, Tantawy A, Ibrahim AW, El-Nemr M. Comparative study between fat and perichondrium graft myringoplasty. ZUMJ. 2014;20(3):470-9.
5. Gupta S, Lade H, Verma D, Malik NUD. Cartilage Palisade Type I Tympanoplasty: Anatomical and Audiological Outcomes. Int J Otorhinolaryngol Clin. 2015;7(3):117-20.
6. Khan MM, Parab SR. Reinforcement of Sliced Tragal Cartilage Perichondrium Composite Graft with Temporalis Fascia in Type I Tympanoplasty: Our Techniques and Results. J Rhinolaryngoscopy. 2013;1(1):1-6.
7. Kumar R, Suman RK, Garje YA, Rao SP. Comparative Study of Underlay Tympanoplasty with Temporalis Fascia and Tragal Perichondrium. IOSR J Dent Med Sci. 2014;13(5):89-98.
8. Aydin R, Ceylan ME, Dalgic A, Düzenli U, Celik C, Olgun L. Outcomes of perichondrium and composite cartilage-perichondrium island grafts in type 1 tympanoplasty: A Randomized Controlled Trial. TR-ENT. 2018;28(1):15-20.
9. Sahan M, Derin S, Deveer M, Saglam O, Cullu N, Sahan L. Factors Affecting Success and Results of Cartilage- Perichondrium Island Graft in Revision Tympanoplasty. Int Adv Otol. 2014;10(1):64-7.
10. Santhanakrishnan K, Bhat PS. A comparative study of the outcomes of temporalis fascia graft versus tragal perichondrium graft in type 1 tympanoplasty in our experience. Int J Otorhinolaryngol Head Neck Surg. 2018;4:60-2.
11. Dhanapala N, Hussain SM, Reddy LS, Bandadka R. Comparative study of clinical and audiological outcome between anterior tucking and circumferential flap methods of type I tympanoplasty in large central perforation. Indian J Otol. 2018;24:190-3.
12. Hasaballah MS, Abdel Hamid OAM, Hamdy TAH. Audiological and otological outcome in Bi-island chondroperichondrial graft type I tympanoplasty. Egyptian J Ear Nose Throat Allied Sci. 2014;15:183-8.
13. Pareek YK, Rawat DS, Aseri Y, Tailor MK, Verma PC, Singh BK. A prospective study of outcome of boomerang-shaped chondroperichondrial graft in Type-I tympanoplasty. Indian J Otol. 2018;24:179-83.
14. Shrikrishna BH, Jyothi AC. Composite chondroperichondrial clip myringoplasty: our experience. Int J Otorhinolaryngol Head Neck Surg. 2016;2(4):249-53.
15. Patil K, Baisakhiya N, Deshmukh PT. Evaluation of different graft material in type 1 tympanoplasty. Indian J Otol. 2014;20:106-14.
16. Hodzic-Redzic S, Kovac-Bilic L, Branica S. Comparison of tragal perichondrium and temporal fascia grafts in tympanoplasties. Indian J Otol. 2018;24:168-71.
17. Ocak E, Beton S, Tas V, Meco C. Cartilage reinforcement graft versus fascia graft in tympanoplasty. Turk J Med Sci. 2017;47:1124-7.
18. Khan MM, Parab SR. Sliced Island Tragal Cartilage Perichondrial Composite Graft in Type I Tympanoplasty: Early Results and Experience. J Rhinolaryngoscopy. 2014;2(1):4-9.

Cite this article as: Pathak VK, Saxena R, Nayak P, Tyagi S. Study on outcome of tympanopanoplasty: a two year institutional study. Int J Otorhinolaryngol Head Neck Surg 2021;7:336-9.