Data in Brief

Draft genome sequence of *Paenibacillus dauci* sp. nov., a carrot-associated endophytic actinobacteria

Qian Wu a,1, Liying Zhu c,1, Ling Jiang b,*, Xian Xu a, Qing Xu a, Zhidong Zhang d, He Huang a

a College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PR China
b College of Food Science and Light Industry, Nanjing Tech University, PR China
c College of Sciences, Nanjing Tech University, Nanjing 210009, PR China
d College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PR China

ARTICLE INFO

Article history:
Received 7 May 2015
Received in revised form 29 May 2015
Accepted 1 June 2015
Available online 14 June 2015

Keywords:
Paenibacillus dauci
Endophytic actinobacteria
Genome analysis

ABSTRACT

Paenibacillus dauci sp. nov., a new kind of endophytic actinobacteria, is separated from the inner tissues of carrot sample, which forms intimated associations with carrot acting as biological control agents. Here we report a 5.37-Mb assembly of its genome sequence and other useful information, including the coding sequences (CDSs) responsible for biological processes such as antibiotic metabolic process, antimicrobial metabolism, anaerobic regulation and the biosynthesis of vitamin B and polysaccharide. This novel strain can be a potential source of novel lead products for exploitation in the field of pharmaceutical, agriculture and industry.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications

Organism/cell/tissue
Strain
Sequence or array type
Data format
Experimental factors
Experimental features
Consent
Sample source location
Paenibacillus dauci sp. nov.
H9T
Illumina Hiseq 2000
Raw and processed
DNA extracted from a wild-type strain, no treatment
Draft genome sequencing of *Paenibacillus dauci*, assembly and annotation
N/A
A carrot sample from Xinjiang Uyghur Autonomous Region (China)

1. Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/nucleotide/LAQQQ00000000.

Endophytic actinobacteria have a capacity to produce numerous secondary metabolites with a mass of biological activity, such as antibiotics, antitumor and anti-infection agents, plant growth promoters and enzymes, and may promote plant establishment under adverse environmental stresses [1]. Introducing such bacterial strains to plant tissues can result in increased plant growth, usually due to suppression of plant pathogenic microorganisms [2]. It seems to be pivotal for obtaining a healthy microfloral balance within plants, soil appearing to be an important and moderating source of bacterial endophytes [3]. Recently, our group has isolated from a carrot sample from Xinjiang Uyghur Autonomous Region (China) a novel species of *Paenibacillus dauci* sp. nov. (= CGMCC 100608T = JCM30283T), which can produce potential antimicrobial substances playing the part of endophytic actinobacteria [4]. Comparisons with 16S rRNA gene sequences as shown in Fig. 1 revealed that the novel strain had the highest similarity to *Paenibacillus hunanensis* Fel05T (97%). However, the phylogenetic distances from recognized species (Fig. 2) indicated that *P. dauci* sp. nov. is not affiliated to any of these recognized species. We can therefore conclude that this strain represents a novel species of the genus *Paenibacillus*. What’s more, high nitrogenase activity, strong antagonism against plant pathogenic fungi, extensive carbon source utilization, and stress resistance were also uncovered. In consequence, investigation of the genetic information and characteristics of *P. dauci* is desired to further investigate its mechanism of metabolic regulation. Knowledge of the genome sequence and bioinformatics will be of great help in this regard.

Here we present the draft genome sequence of strain *P. dauci* H9T obtained using the Illumina Hiseq 2000 system, which was performed by Shenzhen BGI, Tech. Co., Ltd. The reads were assembled with SOAPdenovo [5,6], the version is 2.04, and the sequence was annotated using the RAST annotation server (Fig. 3) [7]. A library containing 500-bp inserts was constructed. Sequencing
was performed based on the paired-end strategy of 473 reads to produce 790 Mb of filtered sequences, representing a 126-fold coverage of the genome. The sequence of \textit{Paenibacillus algorifonticola} XJ259 was 5,449,237 bases with a G + C content of 46.5%, which was assembled into 26 contigs and 19 scaffolds. It contains 4766 open reading frames (ORFs), 77 tRNA genes, and 1 rRNA gene (Table 1) identified by Glimmer 3.02 [8], Genemark [9], tRNAscan-SE [10], and RNAmmer [11].

According to the genomic analysis of strain \textit{P. dauci}, we analyzed 36 ORFs related to antibiotic metabolic process. 10 ORFs related to the antimicrobial peptide transport system. 4 ORFs about plant growth promoting (PGP) were found. Additionally, 12 ORFs were also discovered related to trehalose, which makes us believe that it could be related to the shock-resistant mechanism since the trehalose is regarded as a molecular chaperone. What’s more, the biosynthesis of vitamin B was annotated in the strain \textit{P. dauci} as there were 19 ORFs related to vitamin B12 production and vitamin B6 metabolism. Further studies will be performed to confirm their functions, and a complete genome sequence will be included in the future to reveal the unique molecular characteristics of strain \textit{P. dauci}.

![Multiple sequence alignment of Paenibacillus](image-url)
Fig. 1 (continued).
Species	DNA Sequence	Length
taichungen	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	399
dauci	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	328
polymyxa	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	348
wulumuqian	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
FeL05	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
FeL11	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
IHB	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
Ch380	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
SG3	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
B17a	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
pabuli	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
HA39	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
HA62	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
F33	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
CH-3	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
hunanensis	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
BD3526	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337
YQ1	GCACTCTACGAGGACGAGCAGACATTGGCGATGCAAAGGGAGGAGA	337

Fig. 1 (continued).
Fig. 1 (continued).
Species	Sequence	Length
taichungen	GCGCCTTTTTTGTTGTTTAA	649
dauci	GCGCCTTTTTTGTTGTTTAA	638
polymyxia	GCGCCTTTTTTGTTGTTTAA	638
wulumuqian	GCGCCTTTTTTGTTGTTTAA	638
FeL05	GCGCCTTTTTTGTTGTTTAA	637
FeL11	GCGCCTTTTTTGTTGTTTAA	637
IHB	GCGCCTTTTTTGTTGTTTAA	637
Ch380	GCGCCTTTTTTGTTGTTTAA	637
SG3	GCGCCTTTTTTGTTGTTTAA	637
B17a	GCGCCTTTTTTGTTGTTTAA	637
pabuli	GCGCCTTTTTTGTTGTTTAA	629
HA39	GCGCCTTTTTTGTTGTTTAA	625
HA62	GCGCCTTTTTTGTTGTTTAA	623
F33	GCGCCTTTTTTGTTGTTTAA	617
CH-3	GCGCCTTTTTTGTTGTTTAA	617
hunanensis	GCGCCTTTTTTGTTGTTTAA	613
BD3526	GCGCCTTTTTTGTTGTTTAA	508
YQ1	GCGCCTTTTTTGTTGTTTAA	594
taichungen	TCGGACATGGTTGGCGAGTTGAAA	699
dauci	TCGGACATGGTTGGCGAGTTGAAA	688
polymyxia	TCGGACATGGTTGGCGAGTTGAAA	688
wulumuqian	TCGGACATGGTTGGCGAGTTGAAA	688
FeL05	TCGGACATGGTTGGCGAGTTGAAA	687
FeL11	TCGGACATGGTTGGCGAGTTGAAA	687
IHB	TCGGACATGGTTGGCGAGTTGAAA	687
Ch380	TCGGACATGGTTGGCGAGTTGAAA	687
SG3	TCGGACATGGTTGGCGAGTTGAAA	675
B17a	TCGGACATGGTTGGCGAGTTGAAA	687
pabuli	TCGGACATGGTTGGCGAGTTGAAA	679
HA39	TCGGACATGGTTGGCGAGTTGAAA	675
HA62	TCGGACATGGTTGGCGAGTTGAAA	673
F33	TCGGACATGGTTGGCGAGTTGAAA	667
CH-3	TCGGACATGGTTGGCGAGTTGAAA	667
hunanensis	TCGGACATGGTTGGCGAGTTGAAA	663
BD3526	TCGGACATGGTTGGCGAGTTGAAA	630
YQ1	TCGGACATGGTTGGCGAGTTGAAA	644
taichungen	TACCGGTGAAACCCCTAGTC	748
dauci	TACCGGTGAAACCCCTAGTC	737
polymyxia	TACCGGTGAAACCCCTAGTC	739
wulumuqian	TACCGGTGAAACCCCTAGTC	737
FeL05	TACCGGTGAAACCCCTAGTC	736
FeL11	TACCGGTGAAACCCCTAGTC	736
IHB	TACCGGTGAAACCCCTAGTC	736
Ch380	TACCGGTGAAACCCCTAGTC	736
SG3	TACCGGTGAAACCCCTAGTC	724
B17a	TACCGGTGAAACCCCTAGTC	736
pabuli	TACCGGTGAAACCCCTAGTC	728
HA39	TACCGGTGAAACCCCTAGTC	724
HA62	TACCGGTGAAACCCCTAGTC	722
F33	TACCGGTGAAACCCCTAGTC	716
CH-3	TACCGGTGAAACCCCTAGTC	716
hunanensis	TACCGGTGAAACCCCTAGTC	712
BD3526	TACCGGTGAAACCCCTAGTC	687
YQ1	TACCGGTGAAACCCCTAGTC	693

Fig. 1 (continued).
taichungen: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 798
dauci: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 797
polymyxa: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 799
wulsumugian: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 787
FeL05: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 786
FeL11: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 786
IHB: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 787
Ch380: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 786
SG3: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 774
B17a: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 786
pabuli: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 778
HA39: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 774
HA62: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 772
F33: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 766
CH-3: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 766
hunanensis: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 762
BD3526: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 737
YQ1: CTCTTGGGCTTAACTGAGGCGCAAGACGTCGTTAAGGGGACACAC: 743

Fig. 1 (continued).
taichungen: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 946
dauci: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 935
dolichos: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 939
polymyxa: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 935
wulumuqile: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 934
FeL05: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 934
FeL11: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 934
IHB: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 935
Ch380: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 934
SG3: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 922
B17a: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 934
pabuli: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 926
HA39: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 922
HA62: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 920
F33: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 914
CH-3: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 914
hunanensis: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 910
BD3526: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 885
YQ1: TGGGG AGTACGCTCAG AGAAGTCAAAACGAGAAACGGGAGCC : 891

Fig. 1 (continued).
taichungen	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1096
dauci	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1085
polymyxna	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1089
wulumugien	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1085
Fe105	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1084
Fe111	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1084
IHB	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1084
Ch380	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1084
SG3	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1072
B17a	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1076
pabuli	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1079
B139	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1064
CH-3	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1064
hunanensis	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1060
BD3526	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1035
YQ1	:GGGACGAGAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1041

taichungen	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1146
dauci	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1135
polymyxna	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1139
wulumugien	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1135
Fe105	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1134
Fe111	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1134
IHB	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1134
Ch380	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1134
SG3	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1122
B17a	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1134
pabuli	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1126
B139	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1122
CH-3	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1114
hunanensis	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1110
BD3526	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1095
YQ1	:ATTTGGTTAATACGGCCACACAGCCGACACCTTGTATGTTATCCCA	:1091

taichungen	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1195
dauci	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1185
polymyxna	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1189
wulumugien	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1185
Fe105	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1184
Fe111	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1184
IHB	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1184
Ch380	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1184
SG3	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1171
B17a	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1175
pabuli	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1171
B139	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1171
CH-3	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1171
hunanensis	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1164
BD3526	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1135
YQ1	:CAACTGGCCCTCTCAGGAGAGACCAAGCAGCTGCTGTTCTGTCTCGTCGCTGTGGAG	:1141

Fig. 1 (continued).
Name	Sequence	Length
taichungen	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1245
dauci	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1235
polymyxa	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1239
wulumuqien	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1235
Fel05	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1234
Fel11	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1234
IHB	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1234
Ch380	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1234
SG3	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1233
B17a	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1221
pabuli	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1225
HA39	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1221
HA62	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1219
F33	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1213
CH-3	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1214
hunanensis	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1210
BL3526	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1185
YQ1	5TTGGGATGCTAGCAATCGGCAACTGCCTGAACATGTCCTGTGCTACGACATCC	1191

Name	Sequence	Length
taichungen	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1295
dauci	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1285
polymyxa	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1289
wulumuqien	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1285
Fel05	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1284
Fel11	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1284
IHB	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1284
Ch380	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1283
SG3	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1281
B17a	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1283
pabuli	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1275
HA39	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1271
HA62	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1269
F33	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1263
CH-3	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1264
hunanensis	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1260
BL3526	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1235
YQ1	CTACTACAATGGCCTCAGCTAACGACGTAGTTCAATGGACGACATCC	1241

Fig. 1 (continued)
taichungen : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1394
dauci : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1384
polyzaxa : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1388
wulumeqian : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1384
Fei05 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1383
Fei11 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1383
IHB : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1383
Ch380 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1382
SG3 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1370
B17a : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1383
pabuli : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1375
HA39 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1371
HA62 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1369
P33 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1362
CH-3 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1363
hunansensis : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1359
BD3526 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1334
YQ1 : TGAAGTCGAAATGGCAGTGACAGCAGCGACGGAATTGCGCTGGCGCGGCTGGCCTAG : 1340

Fig. 1 (continued).
Paenibacillus hunanensis strain Y22 (JQ579632.1)
Paenibacillus sp. BD3526 (KM978955.1)
Paenibacillus sp. YQ1 (KF834271.1)
Paenibacillus dauci (This study)
Paenibacillus sp. CH-3 (HQ329105.1)
Paenibacillus hunanensis strain FeL11 (EU741039.2)
Paenibacillus polymyxa strain YRL13 (EU373421.1)
Paenibacillus hunanensis strain FeL05 (NR_116440.1)
Paenibacillus wulumuqien (KM243343.1)
Paenibacillus sp. B17a (EU558286.1)
Paenibacillus sp. HA62 (KF011646.1)
Paenibacillus sp. HA39 (KF011623.1)
Paenibacillus sp. P33 (AM906086.1)
Paenibacillus sp. SG3 (JX402418.1)
Paenibacillus sp. IHB B2283 (HM23974.1)
Paenibacillus sacheonensis strain JH8 (NR_115947.1)
Paenibacillus taichungensis strain JN1 (KF150330.1)
Paenibacillus sp. P33 (AM906086.1)
Paenibacillus sp. SG3 (JX402418.1)

Fig. 1 (continued)

Fig. 2. Phylogenetic tree analysis of Paenibacillus dauci sp. nov. in this study and other strains belonging to the genus Paenibacillus (MEGA 3.1).
2. Nucleotide sequence accession numbers

This whole genome shotgun project has been deposited at DDBJ/EMBL/GenBank under accession number LAQQ00000000. The version described in this paper is the first version, with accession number LAQQ01000000.

Conflict of interest

The authors declare that there is no conflict of interest on any work published in this paper.

Acknowledgments

This work was supported by the National Science Foundation for Young Scholars of China (21225626, 21406111), the National High Technology Research and Development Program of China (2012AA022101, 2012AA021700), the Natural Science Foundation of Jiangsu Province (BK20131406, BK20130917), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (14KJB530003).

References

[1] Q. Sheng, X. Ke, J. Jihong, et al., Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl. Microbiol. Biotechnol. 89 (2011) 457–473.
[2] M.B. Jesús, A.H.M.B. Peter, Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Anton. Leeuw. 92 (2007) 367–389.
[3] A.S. Monique, V.S. Antony, R.L. Rajasekaran, et al., Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253 (2003) 381–390.
[4] J. Zhu, W. Wang, S.H. Li, et al., Paenibacillus wulumuqiensis sp. nov. and Paenibacillus dauci sp. nov., two novel species of the genus Paenibacillus. Arch. Microbiol. 197 (2015) 489–495.
[5] R. Li, H. Zhu, J. Ruan, et al., De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20 (2010) 265–272.
[6] D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18 (2008) 821–829.
[7] R.K. Aziz, D. Bartels, A.A. Best, et al., The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9 (2008) http://dx.doi.org/10.1186/1471-2164-9-75.
[8] A.L. Delcher, K.A. Bratke, E.C. Powers, et al., Identifying bacterial genes and endosymbiont DNA with glimmer. Bioinformatics 23 (2007) 673–679.
[9] J. Besemer, A. Lomsadze, M. Borodovsky, GeneMarkS: a selftraining method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29 (2001) 2697–2707.
[10] K. Lagesen, P. Hallin, E.A. Rødland, et al., RNAsmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35 (2007) 3100–3108.
[11] T.M. Lowe, S.R. Eddy, RfamScan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25 (1997) 955–964.