Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

Gerrit Volkmann, Xiang-Qin Liu*

Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada

Abstract

Background: Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling.

Methodology: A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrated in this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein.

Conclusions: We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescence labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.

Introduction

Proteomics has become one of the fastest growing fields in life science research, and the demand for tools to analyze proteins has increased substantially. Engineering and modifying proteins in vitro or in vivo can aid the understanding of the biological function and structure-function relationship of proteins. Labeling a protein with a chemical entity, such as a fluorescent group, can facilitate protein characterization with respect to the protein’s three-dimensional structure, folding behavior, and interaction with other proteins. Although protein labeling and modification are invaluable tools of proteomics, they can aid the understanding of the biological function and structure-function relationship of proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling.

One chemical method can target the N-terminus of a protein specifically [1], however it requires the N-terminus to be solvent-exposed and also depends on the nature of the N-terminal amino acid side chain.

Methodology: A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrated in this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein.

Conclusions: We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescence labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.

Abstract

Background: Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling.

Methodology: A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrated in this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein.

Conclusions: We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescence labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.

Introduction

Proteomics has become one of the fastest growing fields in life science research, and the demand for tools to analyze proteins has increased substantially. Engineering and modifying proteins in vitro or in vivo can aid the understanding of the biological function and structure-function relationship of proteins. Labeling a protein with a chemical entity, such as a fluorescent group, can facilitate protein characterization with respect to the protein’s three-dimensional structure, folding behavior, and interaction with other proteins. Although protein labeling and modification are invaluable tools of proteomics, they can aid the understanding of the biological function and structure-function relationship of proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling.

One chemical method can target the N-terminus of a protein specifically [1], however it requires the N-terminus to be solvent-exposed and also depends on the nature of the N-terminal amino acid side chain.

Methodology: A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrated in this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein.

Conclusions: We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescence labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.
the type of labels or modifications that can be introduced into proteins.

An intein-based protein cleavage reaction was used cleverly to generate a thioester at the C-terminus of recombinant proteins, which led to specific labeling of the protein C-terminus in a subsequent chemical reaction. Inteins are protein sequences embedded within a host protein, from which the intein catalyzes a protein splicing reaction to excise itself and concomitantly ligate the flanking host protein sequences (N- and C-exteins) [14]. In the absence of a C-extein or splicing, an intein can catalyze a cleavage reaction at its N-terminal, which can be harnessed to create a thioester at the C-terminus of N-extein [15,16]. This thioester, in the expressed protein ligation method [17], can react with the N-terminal cysteine residue of a polypeptide to achieve protein ligation [17], or with labeled cysteine analogues [18,19] and bifunctional azides in combination with labeled alkynyl compounds [20] to achieve C-terminal labeling of the N-extein (target protein). A limitation of this method is that it generally requires or introduces a cysteine residue into the labeled protein. In addition, this thioester reaction is not an enzymatic reaction and therefore has some of the limitations common to chemical reactions, such as requiring a relatively high protein concentration.

Protein trans-splicing, which is catalyzed by split-inteins, provides another avenue for protein labeling. A split-intein consists of an N-intein and a C-intein, which can associate non-covalently to reconstitute the active intein [21,22]. A trans-splicing reaction takes place between two polypeptides, with one polypeptide consisting of an N-extein fused to the N-intein, and with another polypeptide consisting of the C-intein fused to a C-extein. The trans-splicing reaction excises the two inteins and concomitantly ligates the two exteins with a peptide bond. To achieve protein C-terminal labeling, a target protein containing an N-intein has been successfully trans-spliced with a synthetic peptide containing a C-intein [23,24], using the naturally occurring Ssp DnaE split-intein. However, the N-intein and C-intein of this and other conventional split-inteins are typically larger than 100 and 35 aa, respectively, which makes it difficult and expensive to produce the synthetic labeling peptide containing the N- or C-intein. Recently a non-canonical split-intein (Ssp DnaB S1) was engineered to have a small (11 aa) N-intein and a large (>120 aa) C-intein [25], and it has been used successfully in a trans-splicing reaction to label the N-terminus of recombinant proteins in vitro [26] and on the surface of mammalian cells [27]. However this trans-splicing method cannot be used to label the C-terminus of proteins, because the C-intein is too large to be included in a synthetic labeling peptide.

In this report we aim to produce a method for the C-terminal labeling of recombinant proteins, using an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. For this purpose, we took advantage of the recently reported non-canonical split-intein (Ssp GyrB S11) that consisted of an extremely small (6 aa) C-intein and a large (150 aa) N-intein [28]. We showed for the first time that this S11 split-intein could trans-splice proteins with synthetic peptides containing different chemical modifications, although it had been shown before to trans-splice a protein with only an unmodified peptide. We achieved site-specific labeling of different recombinant proteins at the C-terminus both in vitro and in vivo on cell surfaces. Our findings produced a general method for site-specific and efficient chemical labeling or modification of recombinant proteins, which has a number of unique advantages over previously reported methods. Potential usefulness of this method in protein engineering and research are discussed.

Results

Protein C-terminal labeling through trans-splicing with a labeled synthetic peptide

A strategy of protein C-terminal labeling was designed and shown in Figure 1, by taking advantage of the recently engineered
Ssp GyrB S11 split-intein [28]. A recombinant precursor protein contains the 150-aa N-intein (IN) sandwiched between a target protein and an affinity binder that facilitates purification of the precursor protein. A synthetic peptide contains the 6-aa C-intein (IC) followed by a small linker and the labeling group. The short linker begins with a nucleophilic amino acid residue (Serine in this case) required for the splicing reaction. When the precursor protein and the synthetic peptide are incubated together, the large N-intein and the small C-intein are expected to recognize one another, associate non-covalently, form an active intein conformation, and catalyze a protein trans-splicing reaction. As a result, the C-terminus of the target protein will be joined through a peptide bond to the small linker followed by the labeling group, with the N-intein (followed by the affinity binder) and the C-intein excised.

To demonstrate the above strategy of C-terminal labeling, a precursor protein and a labeling peptide were produced. The precursor protein MlNC, which was produced through recombinant DNA and gene expression in E. coli, contained a maltose binding domain (M) as the target protein, a chitin binding domain (C) as the affinity binder, and the N-intein sequence (IN) in the middle (Figure 2A). The precursor protein was purified using amylose resin, although it could also be purified using chitin beads (see below). The labeling peptide IC-L was a 12-aa synthetic peptide having the sequence GVVFHNSAGSGK-L, in which GVFVHN was the C-intein, SAGSGK was the C-extein (or linker), and L was the labeling group (5-carboxy-fluorescein; λ_exc = 492 nm, λ_em = 517 nm) linked to the side chain of the lysine (K) residue of the C-extein.

The MlNC precursor protein was incubated with the IC-L labeling peptide in a splicing buffer at room temperature for 16 hours to achieve trans-splicing. Analysis of the reaction products, by SDS-polyacrylamide gel electrophoresis and Western blotting using antibodies against the chitin binding domain (anti-C antibodies), revealed two new protein bands that corresponded in size to the predicted products of the trans-splicing reaction (Figure 2B). They were the spliced protein M' (the target protein with the C-terminal labeling group) and the excised N-intein (the IC fragment), while the excised C-intein was too small (6 aa) to be seen on the gel. The M' protein showed the expected green fluorescence in a fluorescence scan (Figure 2B), while the precursor protein and the excised N-intein did not, all as predicted. Diffuse background fluorescence was also visible in the fluorescence scan, but it did not correspond to a labeled protein species, as the Coomassie-stained gel did not show a protein band at the corresponding position.

A significant amount of the precursor protein remained, indicating that the trans-splicing reaction did not go to completion. The splicing efficiency, which was defined as the percentage of the precursor protein that underwent splicing, was estimated to be ~30%, but increased to ~70% when the reducing agent TCEP was present in the splicing buffer. Kinetic analysis of the labeling reaction between MlNC protein and IC-L peptide revealed pseudo first-order rate constants k_obs of (3.0±0.7)×10⁻⁵ s⁻¹ and (3.8±0.6)×10⁻⁵ s⁻¹ in the absence and presence of TCEP, respectively (Figure 2C).

The spliced protein M' was further identified through mass spectrometry analyses. An electron spray ionization mass spectrometry (ESI-MS) analysis of the M' protein determined a molecular mass of 43814.0 Da (Figure 3A), which was in close agreement with the calculated mass of 43830.7 Da. After trypsin digestion of the M' protein, an ESI-MS analysis revealed an [M+2H]²⁺ peptide ion having a deconvoluted mass of 1378.0 Da, which corresponded well with the calculated mass (1378.964 Da).

Figure 2. Protein C-terminal labeling with a fluorophore.

A. Schematic illustration of the labeling reaction. IN and IC: components of the Ssp GyrB S11 split-intein. M: maltose binding protein as the target protein to be labeled. C: chitin-binding domain as the affinity binder for purification of the precursor protein. L: 5-carboxyfluorescein as the labeling group. In the synthetic peptide IC-L, IC is connected to L by the sequence SAGSGK, with L attached to the side chain of the K (lysine) residue. B. Analysis of the labeling results. The purified precursor protein was incubated at room temperature for 16 hours, with or without the peptide and the reducing agent TCEP, as indicated. The reaction products were resolved through SDS-PAGE and visualized either by Coomassie staining, by Western blotting using anti-C antibodies, or by fluorescence scan (excitation at 488 nm, filter for 520 nm). Positions of the precursor protein (MlNC), the labeled protein (M'), and the excised N-intein (IC) are indicated. Lane 1, a minor protein band at the same position as M' is the endogenous E. coli maltose binding protein that is known to be co-purified in the amylose affinity chromatography. C. Time-course of the reaction between MlNC precursor protein and IC-L peptide in the presence or absence of TCEP. Labeling efficiency was calculated from densitometry analysis on anti-C Western blots. Error bars represent standard deviations from triplicate experiments.

doi:10.1371/journal.pone.0008381.g002
Figure 3. Mass spectrometry identification of the fluorescently labeled maltose binding protein M\(^L\). A. ESI-MS analysis of the labeled protein. The determined molecular weight of 43814 Da was in close agreement with the calculated mass (43830.7 Da) of the labeled protein M\(^L\). B. MS/MS analysis of the labeled protein after trypsin digestion. The deconvoluted spectrum of a 1378-Da peptide corresponded well to the calculated mass (1378.964 Da) of the C-terminal peptide of M\(^L\). The y-fragment ions of this peptide yielded to the amino acid sequence given below the spectrum, which unambiguously identified the trans-spliced peptide at the C-terminus of the labeled M\(^L\) protein.

doi:10.1371/journal.pone.0008381.g003
of the expected C-terminal trypsin peptide of the spliced protein \(M^4\). The amino acid sequence of this C-terminal trypsin peptide was determined by tandem mass spectrometry (MS/MS) analysis to be GTLEGSGASGG (Figure 3B), in which GTLEGG matched the C-terminal sequence of the \(M\) protein, and SAGSG matched the \(G\)-extein sequence of the \(IC_2\)-L peptide, all as expected. The C-terminal Lys residue with the fluorophore was also revealed as a fragment ion of 504.2 Da, which matched closely with the calculated mass of 503.91 Da. All together, these mass spectrometry analyses clearly identified the spliced protein, which confirmed a successful production of the fluorescently labeled \(M^4\) protein by trans-splicing.

Distinguishing trans-splicing from N-cleavage

Protein trans-splicing may sometimes be accompanied by N- or C-cleavages as undesirable side reactions, in which the peptide bond at the intein’s N- or C-terminus is broken without forming a new peptide bond as in splicing. In this study, the spliced (labeled) protein band (\(M^4\)) in Figure 2B could possibly be a mixture of the splicing product and the N-cleavage product, because these two protein products had similar molecular masses (43930.72 Da and 42984.47 Da, respectively). To test this possibility, the following experiments were carried out.

Protein products of the C-terminal labeling reaction were digested with the site-specific protease Factor Xa to produce a short C-terminal peptide. As illustrated in Figure 4A, this peptide from the splicing (C-terminally labeled) product would have a molecular mass of 1378 Da, whereas the peptide from the N-cleavage product would have a molecular mass of 532 Da. This size difference and the highly hydrophilic nature of the fluorophore on the C-terminally labeled peptide allowed easy separation of the two peptides by reverse phase high performance liquid chromatography (RP-HPLC). As shown in Figure 4B, the RP-HPLC analysis revealed a single strong signal (peak) of the C-terminal labeled peptide corresponding to the splicing product. No signal was observed for the unlabeled peptide corresponding to the N-cleavage product, whose position was predicted using a control peptide, indicating that there was no detectable amount of the N-cleavage product.

Further detection of possible N-cleavage product was also carried out, using a more sensitive method. Protein products of the above C-terminal labeling reaction, after digestion with protease Factor Xa, were analyzed by liquid chromatography (under conditions different from the above RP-HPLC) followed by tandem mass spectrometry (LC-MS/MS). As shown in Figure 4C, the liquid chromatography revealed a large peak corresponding to the labeled peptide from splicing and a tiny peak corresponding to the unlabeled peptide from N-cleavage, with both peptides being identified through MS/MS analysis (data not shown). The relative peak areas of the two peptides were measured to be \(7.14 \times 10^2\) and \(5.75 \times 10^2\), respectively, which were used to estimate the relative amounts of the labeled (spliced) product and the N-cleavage product. Based on this estimation, the labeling (trans-splicing) reaction made up ~98.7% of the total, while the N-cleavage reaction made up the remaining ~1.3%.

Purification of C-terminally labeled protein

We then showed that the target protein \(M\) could be labeled in and purified from a cell lysate in a single chromatographic step, which takes advantage of the affinity binder (chitin-binding domain in this case) fused to the C-terminal of the N-intein in the \(MIC_5\) protein. To achieve this, the \(MIC_5\) protein in an \(E.\ coli\) cell lysate was immobilized on chitin beads, the unbound proteins were washed away, and the beads were subsequently incubated with the labeling peptide \(IC_2\)-L. The subsequent trans-splicing reaction produced and simultaneously released the labeled protein \(M^4\) from the chitin beads (Figure 5A). The elution fraction also contained some \(MIC_5\) precursor protein, which likely fell off the chitin resin during the prolonged labeling incubation and could be removed by a subsequent passage of the sample through fresh chitin resin. The resulting purified \(M^4\) protein was able to bind to amylose resin (Figure 5B) and could subsequently be eluted with maltose-containing buffer (Figure 5C), which showed that the covalent attachment of 5-carboxyfluorescein to the C-terminus of the maltose binding protein did not interfere with the protein’s biochemical function.

Protein C-terminal biotinylation through peptide splicing

Because protein biotinylation can be an effective way of protein immobilization on streptavidin-coated protein chips [19,30], we tested whether our labeling method could achieve C-terminal biotinylation of recombinant proteins. For this purpose, we produced a synthetic peptide \(I\)-B having the sequence GVVFHNSAGSK-(Biotin), in which GVVFHN was the C-intein, SAGSK was the C-extein (or linker), and biotin was linked to the side-chain of the C-terminal Lys residue. Two new precursor proteins were also constructed, in addition to the \(MIC_5\) precursor protein described above, in order to assess the versatility of the C-terminal biotinylation reaction. The \(EL_4\) precursor protein contained an enhanced Green Fluorescent Protein (\(E\)) as the target protein, whereas in GST-ACP-I\(_5\)C the target protein was a fusion of a Glutathione-S-transferase (GST) and an acyl carrier protein (ACP). To facilitate protein purification and identification, the \(S\)cp GyrB S11 \(I_5\) sequence was followed either with a hexa-histidine tag (\(H\)) in the \(EL_4\) protein or a chitin binding domain (\(C\)) in the GST-ACP-I\(_5\)C protein.

A trans-splicing reaction of each precursor protein with the \(IC_2\)-B peptide produced a biotinylated protein, as revealed by Western blot analysis using antibodies against biotin (Figure 6A). The apparent sizes of these three biotinylated proteins matched closely with their predicted molecular weights, which were 43 kDa, 27 kDa, and 39 kDa, respectively, for target proteins generated from the \(MIC_5\), \(EL_4\), and GST-ACP-I\(_5\)C precursors. To estimate the efficiencies of the protein biotinylation, Western blots were carried out using antibodies against the chitin binding domain (\(C\)) for reactions involving \(MIC_5\) and GST-ACP-I\(_5\)C, or using antibodies against the hexa-histidine tag (\(H\)) for reactions involving \(EL_4\). After estimating the quantities of the precursor protein and the biotinylated protein on these Western blots, the efficiencies of the protein biotinylation was calculated to be 30–50% for the three different precursor proteins (Figure 6B).

To test whether the C-terminally biotinylated protein could be immobilized on a streptavidin-coated surface, we carried out co-purificational C-terminal biotinylation of the enhanced green fluorescent protein (Figure 7A). The precursor protein \(EL_4\) was first bound to chitin beads (column) through its chitin binding domain and then incubated with the I\(_5\)-B peptide to allow on-column trans-splicing, which biotinylated and simultaneously released the target protein. When this biotinylated protein was incubated with streptavidin-coated beads, strong green fluorescence was observed on the surface of the beads, indicating binding of the protein to the beads. In a negative control, no green fluorescence appeared on the bead surface after incubation with \(E.\ coli\) cell lysate containing the \(EL_4\)C precursor protein without biotinylation.

We then tested whether the protein C-terminal biotinylation and the immobilization on a solid surface could be achieved in one step when the I\(_5\)-B peptide was pre-bound to the streptavidin-
coated surface (Figure 7B). Streptavidin-coated beads were first incubated with the IC-B peptide to allow binding. After washing away any excessive unbound peptide, the beads were incubated with *E. coli* cell lysate containing the EINC protein to allow *trans*-splicing. After washing away any unbound protein, the beads showed bright green fluorescence, indicating that the enhanced green fluorescent protein was immobilized to the beads as a result of *trans*-splicing between the EINC precursor protein and the pre-bound IC-B peptide. In a negative control, no bright green fluorescence was observed when the same cell lysate was incubated with streptavidin-coated beads without the pre-bound IC-B peptide, and the dim green fluorescence was due to autofluorescence of streptavidin beads after the prolonged exposure time.

Fluorescent labeling of a cell surface receptor protein

We tested whether the C-terminal labeling method could label proteins on the surface of live cells under nearly physiological conditions. Human transferrin receptor (TfR) was chosen as the target protein, because the C-terminus of this well characterized protein is on the outer surface of the cell membrane. A recombinant fusion protein (TIR-Ig-HA), which consisted of TIR followed by the *S. pyogenes* GyrB S11 Ig sequence and a C-terminal peptide, and the dim green fluorescence was due to autofluorescence of streptavidin beads after the prolonged exposure time.
HA epitope, was successfully produced in TfR-deficient Chinese hamster ovary cells (CHO-TRVb [31]) through plasmid transformation, as evidenced by immunofluorescence and Western blotting (Figure 8A). Presence of this TfR-IN-HA protein on the cell surface, which was a prerequisite for the C-terminal labeling reaction, was further confirmed by the cellular uptake of rhodamine-labeled transferrin Rh-Tf (Figure 8B).

To carry out fluorescent labeling of the transferrin receptor, the above CHO-TRVb cells expressing the TfR-IN-HA fusion protein were incubated with an increasing amount of IC-L peptide. After washing away any excessive IC-L peptide, confocal microscopy revealed discrete green fluorescent spots associated with the cells (Figure 8C), indicating a successful fluorescent labeling of the transferrin receptor protein through a trans-splicing reaction between the TfR-IN-HA fusion protein and the IC-L peptide. The green fluorescence was sometimes observed inside the cell additional to the cell surface, and this was consistent with endocytic internalization of the labeled transferrin receptor protein, which is a known function of the transferrin receptor protein [32,33]. In a negative control, cells transfected with empty vector (pcDNA3.1), did not show any green fluorescence.

Discussion

We have demonstrated an efficient method of protein C-terminal labeling, by trans-splicing recombinant proteins with synthetic peptides containing the labeling moieties. This trans-splicing method is uniquely suitable for protein C-terminal labeling, in contrast to a previously reported trans-splicing method using the S1 split-intein for protein N-terminal labeling [26,29]. This method has the following three advantages, when compared to previous trans-splicing methods using conventional split-inteins having a larger (>30 aa) C-intein. First, it uses an extremely small (6 aa) C-intein that can be accommodated in a synthetic peptide more easily and economically, particularly when the synthetic peptide needs to contain large and complex labeling groups. Second, the 6-aa S11 C-intein is free of amino acid residues commonly used for chemical modification (Lys, Cys, Glu), therefore any one or a combination of these residues may be added after the C-intein in the synthetic peptide to serve as specific site(s) for chemical attachment of desired labeling group(s). Third, the N-intein of the S11 split-intein resembles more closely the

Figure 5. On-column production of M\(^{+}\) protein. A. The co-purification labeling process was monitored through SDS-PAGE analysis with Coomassie blue staining or fluorescence scanning as indicated. Lanes 1 and 2: total E. coli proteins before and after IPTG-induced expression of the precursor protein M\(_{lc}\)C, respectively. Lane 3: soluble fraction of the cell lysate of lane 2. Lane 4: proteins of lane 3 bound to chitin beads. Lane 5: proteins released from the chitin beads of lane 4 after an overnight incubation with the labeling peptide L\(_{c}\)-L in the presence of TCEP. B. Amylose resin was incubated with (panels 1 and 2) or without (panels 3 and 4) the purified M\(^{+}\) protein. Panels 1 and 3 are differential interference contrast images, while panels 2 and 4 are fluorescence images. C. SDS-PAGE analysis of the M\(^{+}\) protein fractions eluted from the amylose resin of panels 3 and 4 of B using a maltose-containing elution buffer.

Figure 6. C-terminal biotinylation using the Ssp GyrB S11 split-intein. A. The three precursor proteins (M\(_{lc}\)C, E\(_{lH}\), and GST-ACP-I\(_{lC}\)) were incubated with (+) or without (−) the peptide L\(_{c}\)-L in the presence of 0.1 mM TCEP for 18 h at room temperature, and the reaction products were analyzed by Western blotting using antibodies against biotin. From the three precursor proteins, the three target proteins for biotinylation were a maltose binding protein (M, 43 kDa), an enhanced green fluorescent protein (E, 27 kDa), and a glutathione-S-transferase/acyl carrier fusion protein (GST-ACP, 39 kDa), respectively. B. Efficiency of C-terminal biotinylation of the three target proteins as determined by densitometry analysis on Western blots using anti-C antibodies (for M\(_{lc}\)C and GST-ACP-I\(_{lC}\)) and anti-H antibodies (for E\(_{lH}\)). Error bars represent standard deviations from triplicate experiments.

HA epitope, was successfully produced in TIR-deficient Chinese hamster ovary cells (CHO-TRVb [31]) through plasmid transformation, as evidenced by immunofluorescence and Western blotting (Figure 8A). Presence of this TIR-I\(_{c}\)-HA protein on the cell surface, which was a prerequisite for the C-terminal labeling reaction, was further confirmed by the cellular uptake of rhodamine-labeled transferrin Rh-Tf (Figure 8B).

To carry out fluorescent labeling of the transferrin receptor, the above CHO-TRVb cells expressing the TIR-I\(_{c}\)-HA fusion protein were incubated with an increasing amount of IC-L peptide. After washing away any excessive IC-L peptide, confocal microscopy revealed discrete green fluorescent spots associated with the cells (Figure 8C), indicating a successful fluorescent labeling of the transferrin receptor protein through a trans-splicing reaction between the TIR-I\(_{c}\)-HA fusion protein and the IC-L peptide. The green fluorescence was sometimes observed inside the cell additional to the cell surface, and this was consistent with endocytic internalization of the labeled transferrin receptor protein, which is a known function of the transferrin receptor protein [32,33]. In a negative control, cells transfected with empty vector (pcDNA3.1), did not show any green fluorescence.
Intein-Based Protein Labeling

Figure 7. Immobilization of biotinylated enhanced green fluorescent protein (Eβ) to a solid surface. A, The biotinylation-purification method. The precursor protein (EInc) in a cell lysate is first bound to chitin beads through its chitin binding domain (C). After washing away the unbound proteins, the beads are incubated with the peptide IC-B that consists of IC followed by the sequence SAGSK with biotin linked to the lysine (K) side chain. A trans-splicing reaction produces the biotinylated target protein (Eβ) that can bind to streptavidin-coated beads (S). In the experimental demonstration, streptavidin-coated beads were incubated either with the EInc precursor in a cell lysate (panels 1 and 2) or with the biotinylated and purified Eβ protein (panels 3 and 4). Panels 1 and 3 are differential interference contrast images, while panels 2 and 4 are fluorescence micrographs (45 ms exposure time). B, The biotinylation-fixation method. The IC-B peptide is first bound to streptavidin-coated beads and then incubated with the precursor protein EInc in a cell lysate to achieve trans-splicing, and the resulting biotinylated target protein (Eβ) is automatically fixed to the beads. In the experimental demonstration, streptavidin-coated beads with (panels 3 and 4) or without (panels 1 and 2) the pre-bound IC-B peptide were incubated with the EInc protein in an E. coli cell lysate for trans-splicing. After washing away unbound proteins, the beads were photographed as differential interference contrast images (panels 1 and 3) or as fluorescence images (panels 2 and 4, 600 ms exposure time).

doi:10.1371/journal.pone.0008381.g007
not produce a detectable amount of protein labeling under the conditions used in this study (data not shown).

Our trans-splicing method also exhibited generality and versatility for protein C-terminal labeling. We have successfully demonstrated this method with three different target proteins (MBP, eGFP, and GST-ACP) and two different labeling groups (fluorescein, biotin). We showed that the N-intein could tolerate the C-terminal fusion of an affinity binder for easy purification of the precursor protein. The affinity binder was a chitin-binding domain or a hexa-histidine tag in this study, but potentially it could also be others such as glutathione-S-transferase. The affinity binder is conveniently removed along with the N-intein in the

Figure 8. Labeling of transferrin receptor (TfR) protein on live cells. A. Expression of the TfR-intein fusion protein. CHO-TRVb cells, which are Chinese hamster ovary cells deficient for endogenous TfR, were transfected with plasmid pCTR-HA expressing a human TfR fused to a C-terminal HA tag, plasmid pCTR-IN-HA expressing the TR fusion to the HA tag (TfR-HA fusion protein), or plasmid pcDNA3.1 as an empty vector, as indicated. On the left are confocal microscopy images of immunofluorescence using antibodies against the HA tag (α-HA), and the cells were counterstained with rhodamine-phalloidin for actin. On the right are Western blots using α-HA or α-TfR antibodies, with the monomeric and dimeric forms of the receptor proteins indicated. B. Function of the TfR-intein fusion protein. On the left, CHO-TRVb cells transfected with the indicated plasmids were incubated with rhodamine-labeled transferrin (Rh-Tf) to show function of the TfR-intein fusion protein in cellular uptake of transferrin. The cells were counterstained using antibodies against tubulin. On the right, cells transfected with the pCTR-IN-HA plasmid were incubated with Rh-Tf and also visualized by immunofluorescence using α-HA antibodies, which showed co-localization of the TfR-HA fusion protein with Rh-Tf. The cells were counterstained with TO-PRO-3 for the nucleus. C. Observation of labeling of TfR. CHO-TRVb cells transfected with the indicated plasmids were incubated with increasing amounts (as indicated) of the fluorescent IC-L peptide (described in Figure 2). Only cells expressing the TfR-intein fusion protein from the pCTR-IN-HA plasmid showed discrete green fluorescent spots, indicating successful labeling of TfR. The cells were counterstained with rhodamine-phalloidin for actin in the confocal microscopy.

doi:10.1371/journal.pone.0008381.g008
subsequent *trans*-splicing reaction for C-terminal labeling. This allowed us to carry out the labeling reaction with the precursor still bound to a protein purification column, which labeled and simultaneously released the target protein from the column, making this the first method of labeling and purifying a target protein in one step. We demonstrated C-terminal biotinylation of a protein either in solution or on a solid surface, which allowed site-specific (i.e. C-terminal) immobilization of the biotinylated target protein on a streptavidin-coated surface. We also achieved protein-specific biotinylation and immobilization in a complex protein mixture (E. coli cell lysate) without purifying the precursor protein, which is a considerable advantage of this method for high-throughput protein immobilization on protein chips. Finally, we were able to label a membrane receptor protein on the surface of a live mammalian cell, because the labeling (*trans*-splicing) reaction could occur under nearly physiological conditions.

In conclusion, we have produced an efficient and useful method for the C-terminal labeling of recombinant proteins, using an intein-catalyzed *trans*-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. This method has a number of unique advantages over previously reported methods and is expected to have many potential applications in protein engineering and research. Adding a fluorophore to the C-terminus of a protein, both in solution and on the membrane surface of a live cell, can be a useful tool for monitoring protein folding, location, and trafficking in cells. The C-terminal biotinylation of a protein can be a superior way of protein fixation on streptavidin-coated surfaces including protein microchips used in proteomics. Potentially many other chemical groups can be added to the C-terminus of proteins using this method, which is limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups.

Materials and Methods

Plasmid construction and protein purification

Plasmid pMINC was constructed by replacing the Ssp DnaB intein sequence in the pMST plasmid [39] with coding sequence of the Ssp GyrB S11 IX, and replacing the thioredoxin sequence with coding sequence of the chitin binding domain. Plasmid pTEINC was constructed by replacing the double-intein ORF of the pTWIN vector (New England Biolabs) with the coding sequence of the chitin binding domain. Plasmid pMINC was constructed by replacing the sequence of enhanced green fluorescent protein, followed by the Ssp GyrB S11 IX and the chitin binding domain. In plasmid pTEINC, the chitin binding domain coding sequence of pTEINC was replaced with a sequence for a hexahistidine tag. The plasmid pGST-ACP-InC was obtained by cloning the coding sequence for the pGST-ACP-INC was obtained by cloning the coding sequence for a hexahistidine tag. The plasmid pMINC was constructed by replacing the double-intein ORF of the pMST plasmid [39] with coding sequence of the chitin binding domain. Plasmid pMINC was constructed by replacing the sequence of enhanced green fluorescent protein, followed by the Ssp GyrB S11 IX and the chitin binding domain. In plasmid pTEINC, the chitin binding domain coding sequence of pTEINC was replaced with a sequence for a hexahistidine tag.

In _vitro_ protein labeling

For fluorescent labeling, ~5 μM MlsC protein was incubated with 125 μM peptide IC-L (sequence: GVFVHNSAGSGK-(5-carboxyfluorescein) purchased from New England Peptide) in optimized Splicing Buffer (oSB: 20 mM Tris-HCl, 250 mM NaCl, 1 mM EDTA; pH 8.5) in the presence or absence of 0.1 mM TCEP for 16 h at room temperature. Reactions were stopped with SDS sample buffer, and samples were run on a 12.5% SDS-PAGE gel in the dark. After completion of electrophoresis, the gel was equilibrated in 10% ethanol/7% acetic acid and scanned for fluorescence using the Typhoon 9410 equipment (Amersham Biosciences) with excitation wavelength of 488 nm and an emission filter for 520 nm. Afterwards, the gel was stained with Coomassie Brilliant Blue and destained using standard procedures.

For biotinylation, ~5 μM precursor proteins were incubated with 250 μM peptide IC-L (sequence: GVFVHNSAGSK-biotin, purchased from New England Peptide) in oSB in the presence of 0.1 mM TCEP. Reactions were separated by 12.5% SDS-PAGE, and subjected to Western blotting using mouse anti-Biotin antibody (Sigma Aldrich). Additional Western blotting was carried out with antibodies against the chitin binding domain (mouse anti-C antibody) and the His-tag (mouse anti-H antibody), which were purchased from New England Biolabs and Sigma Aldrich, respectively. All primary antibodies were used in combination with a secondary rabbit-anti-mouse IgG HRP-linked antibody (GE Healthcare). Chemiluminescence was performed with the ECL Plus Western Detection Kit according to manufacturer’s guidelines (GE Healthcare).

Simultaneous protein purification and labeling

Precursor proteins MlsC and ElsC were expressed in _E. coli_ (DH5α and BL21(DE3), respectively, and the cells were lysed in oSB. The soluble fraction of the cell lysate was loaded onto chitin resin. After washing away unbound proteins with oSB, the resin was incubated in oSB containing 0.1 mM TCEP and either 0.1 μM IC-L (for MlsC protein) or 125 μM IC-L (for ElsC protein), sequence: GVFVHNSAGSK-biotin, purchased from GenScript), and the incubation was continued overnight at room temperature. Proteins released from the resin were collected and further purified using a small amount of freshly equilibrated chitin resin. The purified protein was then concentrated using Amicon Ultra Centrifugal Filter Devices (Millipore) and analyzed by SDS-PAGE as above.

Reversed-phase high-performance liquid chromatography (RP-HPLC)

The concentrated eluate from on-column labeling of MlsC with IC-L (~10 μg protein) was incubated with 1 μg Factor Xa (New England Biolabs) in oSB for 18 h at room temperature. Half of the reaction was analyzed by reverse phase HPLC using a Spirit Peptide C18 column (Apprec: 3 μm, 25×0.4 cm) and Beckman System Gold equipment (Programmable Solvent Module 126, Programmable Detector Module 166, Software Gold712). Mobile phase A was 0.1% TFA in water, while mobile phase B was 0.1% TFA in acetonitrile. A gradient was run (mobile phase B from 2% to 60% in 45 minutes), followed by 80% B for 5 min and re-equilibration with 2% B for 10 min. The flow rate was set to 0.8 mL/min and detection was done at both 210 nm and 295 nm. The peptide standard pep5KΔ (sequence: GTLEGG, purchased from GenScript) at a quantity of 10 nmol was analyzed in a similar fashion.

Mass spectrometry analysis (MS)

MS analysis was performed on (a) MlsC protein excised from a Coomassie-stained SDS-polyacrylamide gel and digested with

In _vitro_ protein labeling

For fluorescent labeling, ~5 μM MlsC protein was incubated with 125 μM peptide IC-L (sequence: GVFVHNSAGSGK-(5-carboxyfluorescein) purchased from New England Peptide) in optimized Splicing Buffer (oSB: 20 mM Tris-HCl, 250 mM NaCl, 1 mM EDTA; pH 8.5) in the presence or absence of 0.1 mM TCEP for 16 h at room temperature. Reactions were stopped with SDS sample buffer, and samples were run on a 12.5% SDS-PAGE gel in the dark. After completion of electrophoresis, the gel was equilibrated in 10% ethanol/7% acetic acid and scanned for fluorescence using the Typhoon 9410 equipment (Amersham Biosciences) with excitation wavelength of 488 nm and an emission filter for 520 nm. Afterwards, the gel was stained with Coomassie Brilliant Blue and destained using standard procedures.

For biotinylation, ~5 μM precursor proteins were incubated with 250 μM peptide IC-L (sequence: GVFVHNSAGSK-biotin, purchased from New England Peptide) in oSB in the presence of 0.1 mM TCEP. Reactions were separated by 12.5% SDS-PAGE, and subjected to Western blotting using mouse anti-Biotin antibody (Sigma Aldrich). Additional Western blotting was carried out with antibodies against the chitin binding domain (mouse anti-C antibody) and the His-tag (mouse anti-H antibody), which were purchased from New England Biolabs and Sigma Aldrich, respectively. All primary antibodies were used in combination with a secondary rabbit-anti-mouse IgG HRP-linked antibody (GE Healthcare). Chemiluminescence was performed with the ECL Plus Western Detection Kit according to manufacturer’s guidelines (GE Healthcare).

Simultaneous protein purification and labeling

Precursor proteins MlsC and ElsC were expressed in _E. coli_ DH5α and BL21(DE3), respectively, and the cells were lysed in oSB. The soluble fraction of the cell lysate was loaded onto chitin resin. After washing away unbound proteins with oSB, the resin was incubated in oSB containing 0.1 mM TCEP and either 0.1 μM IC-L (for MlsC protein) or 125 μM IC-L (for ElsC protein), sequence: GVFVHNSAGSK-biotin, purchased from GenScript), and the incubation was continued overnight at room temperature. Proteins released from the resin were collected and further purified using a small amount of freshly equilibrated chitin resin. The purified protein was then concentrated using Amicon Ultra Centrifugal Filter Devices (Millipore) and analyzed by SDS-PAGE as above.

Reversed-phase high-performance liquid chromatography (RP-HPLC)

The concentrated eluate from on-column labeling of MlsC with IC-L (~50 μg protein) was incubated with 1 μg Factor Xa (New England Biolabs) in oSB for 18 h at room temperature. Half of the reaction was analyzed by reverse phase HPLC using a Spirit Peptide C18 column (Apprec: 3 μm, 25×0.4 cm) and Beckman System Gold equipment (Programmable Solvent Module 126, Programmable Detector Module 166, Software Gold712). Mobile phase A was 0.1% TFA in water, while mobile phase B was 0.1% TFA in acetonitrile. A gradient was run (mobile phase B from 2% to 60% in 45 minutes), followed by 80% B for 5 min and re-equilibration with 2% B for 10 min. The flow rate was set to 0.8 mL/min and detection was done at both 210 nm and 295 nm. The peptide standard pep5KΔ (sequence: GTLEGG, purchased from GenScript) at a quantity of 10 nmol was analyzed in a similar fashion.

Mass spectrometry analysis (MS)

MS analysis was performed on (a) MlsC protein excised from a Coomassie-stained SDS-polyacrylamide gel and digested with
trypsin, (b) a standard in vitro labeling reaction of M1S-C and Ic-L without the liquid chromatography step, and (c) peptide products of a labeling reaction after digestion with Factor Xa (see above). For (a), the M1-containing polyacrylamide gel slice was reduced with DTT, carboxamidomethylated with iodoacetamide, and digested with trypsin (Promega, sequencing grade) for 7.5 h at 37°C. Peptides were extracted with 70% acetonitrile and 1% formic acid in HPLC-grade water. The reaction was automated on a ProGest digestion robot (Genomic Solutions). The extraction solvent was removed under vacuum using a speed vac, and tryptic peptides were resuspended in 30 μL of 5% methanol, 0.5% formic acid in HPLC-grade water. For (b), prior to sample injection, salts and excess Ic-L peptide were removed from the labeling reaction sample using Zeba Micro Desalt Spin Columns (Pierce). For (c), ~50 μg of a protein labeling reaction was incubated with 1 μg Factor Xa (New England Biolabs) in oSB for 18 h at room temperature.

LC-MS/MS was performed using an Ultimate pump and Famos auto-sampler (LC Packings, Amsterdam, Netherlands) interfaced to the nanoflow ESI source of a hybrid triple quadrupole linear ion trap (Qtrap) mass spectrometer (Applied Biosystems, Foster City, CA, USA). Samples (3 μL) were injected onto a capillary column (0.10×150 mm Chromolith C18, monolithic, Merck) at a flow rate of 1.2 μL/min. A linear gradient was run (5% solvent B to 35% B over 35 min), followed by 90% B for six minutes and re-equilibration at 5% B. Solvent A consisted of 2% acetonitrile, 0.1% formic acid in water, solvent B was 98% acetonitrile, 0.1% formic acid. The sample was sprayed through a distal coated fused silica emitter tip (75 μm ID with 15 μm ID tip, New Objectives ProTip). The capillary voltage was 2.10 kV with a declustering potential of 60 V, the curtain gas was set to 15 (arbitrary units). Spectra were acquired using the Information Dependent Acquisition mode.

Kinetic analysis of the labeling reaction

The M1S-C precursor protein was incubated with the Ic-L peptide in the presence or absence of TCEP at room temperature for 24 h, during which samples were removed from the reaction at specific time points, and the reaction was stopped by addition of SDS sample buffer. Samples were subjected to SDS-PAGE followed by Western blotting analysis using anti-C antibody (see above). Densitometry analysis of protein signals corresponding to M1S-C and the Ic-C fragment was performed with the program ImageJ 1.342. Labeling efficiencies were calculated using the formula (AM1S-C/AM1S-C + AMIc-C) *100, where A represents the densitometry peak area of the respective protein signal. The amount of Ic-C fragment represented that of the spliced (labeled) protein, because these two protein products from the splicing reaction had essentially equal molar amounts (see Figure 4). Densitometry analysis for end-point efficiencies was performed similarly. For time-course analysis, the efficiencies were plotted as a function of time, and pseudo-first order rate constants (kobs) were determined as described for trans-splicing of the Spy DNAE split-intein[36] and using the program KaleidaGraph 4.02.

Activity of the fluorescence-labeled maltose binding protein (M1)

Amylose resin (New England Biolabs) was equilibrated with Amylose Column Buffer (ACB: 20 mM Tris-HCl, 200 mM NaCl; pH 7.4) and incubated for 1 h at 4°C with M1 protein. The resin was then washed extensively with ACB (sixty-times resin volume), and a small aliquot was viewed under a fluorescence microscope (AxioVert 200M, Zeiss) with excitation at 489 nm and a filter for emission at 520 nm. Proteins bound to the amylose resin were then eluted with ACB + 10 mM maltose, and samples were analyzed by SDS-PAGE, fluorescence scanning and Coomassie-staining as described above.

C-terminal biotinylation of Enhanced Green Fluorescent Protein (E2)

Streptavidin-coated magnetic beads (Dynal Biotech) were washed three times with PBS-T (10 mM sodium phosphate, 0.9% NaCl, 0.1% Tween-20; pH 7.4) and incubated with either concentrated E2 protein (see above) or the soluble fraction from pTEIC-C expression for 1 h at room temperature in the dark. Alternatively, beads were treated with or without 500 μM Ic-B peptide for 1 h at room temperature before incubation with the soluble pTEIC-C fraction in the presence of 0.1 mM TCEP for 10 h at room temperature. Unbound proteins were washed away, and beads were resuspended in PBS-T and spotted onto a glass slide for fluorescence microscopy as described.

Labeling of transferrin receptor on live cells

CHO-TRVb cells were cultured in F12 nutrient mixture supplemented with 5% fetal bovine serum, 10 U/mL penicillin, and 0.1 mg/mL streptomycin at 37°C in a humidified chamber with an atmosphere of 3% CO2.

Actively growing cells (1.5×10⁶) were transfected with 0.5 μg plasmid DNA using the MicroPorous MP-100 (Digital Bio) with 10 μL Gold tips and the following settings: 1500 V, 5 ms pulse width, 10 pulses. Cells were seeded in 6-well plates and maintained as above in culture medium without antibiotics. For subsequent microscopy experiments, cells were seeded on sterilized cover slips.

For SDS-PAGE, 24 h post-transfection, cells were washed once with PBS, scraped gently from the surface of the well into 1 mL PBS, and harvested by centrifugation (3,000×g, 2 min, RT). The cell pellet was resuspended in a lysis buffer (0.5% sodium deoxycholate, 1% Triton X-100, 1 mM EDTA, 50 mM NaCl, 50 mM Tris-HCl (pH 7.4) supplemented with a protease inhibitor cocktail (BioShop) prior to use) and lysed by sonication (7 pulses at output 2).

For immunofluorescence, transfected cells were washed three times for 3 min each with 1 mL PBS, and fixed using 3.7% formaldehyde in PBS. After an additional wash step with PBS, cells were permeabilized with 0.05% Triton X-100 in PBS for 9 min at −20°C, and washed again with PBS. After blocking for 30 min with PBS-B (3% BSA in PBS), cells were incubated with primary antibody (α-HA diluted 1:250, α-tubulin [BII both diluted 1:1,000 in PBS-B] for 1 h at RT. After washing with PBS-B, cells were incubated with secondary antibody (goat anti-mouse IgG, conjugated with AlexaFluor 488 (Molecular Probes) and diluted 1:2,000 in PBS-B) for 45 min at RT. Cells were finally washed three times with PBS, and coverslips were mounted on Superfrost Plus Microscopic Slides (Thermo Scientific) using Mowiol 4-88. Depending on the experiment, cells were counterstained for actin by adding rhodamine-phalloidin (10 ng/mL final concentration) to the secondary antibody solution. Nuclear DNA was sometimes stained by incubating coverslips with 100 nM TO-PRO-3 (Molecular Probes) for 5 min at RT prior to mounting. Cell imaging was performed on a LSM510 META Laser Scanning Microscope (Zeiss) at 100× magnification with excitation wavelength/band-path filter pairs (nm/nm) of 488/530 (Ar laser), 543/585 (HeNe laser) and 633/650 (HeNe laser), respectively.

Uptake of transferrin was assessed by incubating transfected cells 24 h post-transfection with tetramethylrhodamine-labeled human holo-transferrin (Molecular Probes), diluted to 15 μg/mL in F12 nutrient mixture containing 5% FBS, for 5–15 min at 37°C. Cells were then subjected to immunofluorescence as described above.
For receptor labeling, 24 hours post transfection, cells were washed twice with PBS, overlaid with labeling solution (buffer HBS, 124 mM NaCl, 3 mM KCl, 5 mM D-glucose, 10 mM HEPES (pH 7.4), 2 mM CaCl2, 1 mM MgCl2) containing 0.1 mM TCEP and various concentrations of peptide IC-L) and incubated for 18 h at 23 °C/5% CO2. Cells were then prepared for microscopy by fixation, permeabilization, and counterstaining with rhodamine-phallodin as described above.

Acknowledgments

We thank Jan Rainey and David Langlea for assistance with RP-HPLC, and Elden Rowland for mass spectrometry analyses. We also greatly acknowledge Barbara Karten for access to the Microporator, for providing the α-tubulin antibody, and for suggesting buffer HBS for cell surface receptor labeling. We further thank Paola Marignani for kindly providing rhodamine-phallodin, and Timothy McGraw for the kind gift of the CHO-TRVb cell line.

Author Contributions

Conceived and designed the experiments: GV. Performed the experiments: GV. Analyzed the data: GV. Contributed reagents/materials/analysis tools: QXL. Wrote the paper: GV.

References

1. Gilmore JM, Scheck RA, Eseri-Kahn AP, Joshi NS, Francis MB (2006) N-terminal protein modification through a biomimetic transamination reaction. Angew Chem Int Ed Engl 45: 3307–3311.
2. Tsien RY (2009) Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew Chem Int Ed Engl 48: 5612–5626.
3. McCann CM, Bareyre FM, Lichtman JW, Sanes JR (2005) Peptide tags for labeling membrane proteins in live cells with multiple fluorophores. Biotechniques 39: 945–950.
4. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281: 269–272.
5. Guignet EG, Hovius R, Vogel H (2004) Reversible site-selective labeling of membrane proteins in live cells. Nat Biotechnol 22: 440–444.
6. GuY, Jaroni CA, Dufresne S, Michauck Sk, Skene WG, et al. (2007) Convergent preparation and photophysical characterization of dimaleimide danyl fluorogen: elucidation of the maleimide fluorochrome quenching mechanism. J Am Chem Soc 129: 11969–11977.
7. Keppler A, Grendezig S, Gronenmeyer T, Pick H, Vogel H, et al. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21: 86–89.
8. George N, Pick H, Vogel H, Johnson N, Johnson K (2004) Specific labeling of cell surface proteins with chemically diverse compounds. J Am Chem Soc 126: 8896–8897.
9. Yin J, Liu F, Li X, Walsh CT (2004) Labeling proteins with small molecules by site-specific posttranslational modification. J Am Chem Soc 126: 7754–7755.
10. Chen I, Howarth M, Lin W, Ting AV (2005) Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat Methods 2: 99–104.
11. Lin CW, Ting AV (2006) Transglutaminase-catalyzed site-specific conjugation of small-molecule probes to proteins in vitro and on the surface of living cells. J Am Chem Soc 128: 4542–4543.
12. Tsukui S, Nagamune T (2009) Sortase-mediated ligation: a gift from Gram-positive bacteria to protein engineering. ChemBiochem 10: 787–796.
13. Xie J, Schulte PG (2006) A chemical toolbox for proteins—an expanded genetic code. Nat Rev Genet 7: 1393–1402.
14. Perler FB, Davis EO, Dean GE, Gimbble FS, Jack WE, et al. (1994) Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res 22: 1123–1127.
15. Chong S, Mersha FB, Comb DG, Scott ME, Landry D, et al. (1997) Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 192: 271–281.
16. Evans TC Jr, Bennet J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. J Am Chem Soc 120: 2265–2266.
17. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72: 249–209.
18. Wood RJ, Maco B, Brown ZK, Meddliom CT, Krick M, et al. (2004) Optimized conjugation of a fluorescent label to proteins via intein-mediated activation and ligation. Bioconjug Chem 15: 366–372.
19. Liu Y, Chen GY, Hu Y, Zhang Q, Yao SQ (2004) Versatile protein biotinylation strategies for potential high-throughput proteomics. J Am Chem Soc 126: 1053–1062.
20. Kalia J, Raines RT (2006) Reactivity of intein thioesters: appending a functional group to a protein. ChemBioChem 7: 1375–1383.
21. Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaB gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 95: 9226–9231.
22. Southworth MW, Adam E, Parne D, Byer R, Kaszt R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17: 918–926.
23. Evans TC Jr, Martin D, Kelly R, Parne D, Sun L, et al. (2000) Protein transsplicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem 275: 9091–9094.
24. Kwon Y, Coleman MA, Camarero JA (2006) Selective immobilization of proteins onto solid supports through split-intein-mediated protein trans-splicing. Angew Chem Int Ed Engl 45: 1726–1729.
25. Sun W, Yang J, Liu XQ (2004) Synthetic two-piece and three-piece split inteins for protein trans-splicing. J Biol Chem 279: 35211–35216.
26. Ludwig C, Pirri M, Linne U, Mootz HD (2006) Ligation of a synthetic peptide to the N terminus of a recombinant protein using semisynthetic protein trans-splicing. Angew Chem Int Ed Engl 45: 5218–5221.
27. Ayc T, Tsuchi S, Tanaka T, Nakamura T (2007) Construction of a small-molecule-integrated semisynthetic split intein for in vivo protein labeling. Chem Commun (Camb). pp 4995–4997.
28. Appleby JJH, Zhou K, Volkman G, Liu XQ (2009) Novel Split Intein for trans-Splicing Synthetic Peptide onto U’ Terminus of Protein. J Biol Chem 284: 6194–6197.
29. Ludwig C, Schwarzer D, Mootz HD (2008) Interaction studies and alanine scanning analysis of a semisynthetic split intein reveal thiazole ring formation from an intermediate of the protein splicing reaction. J Biol Chem 283: 29264–29272.
30. Lesicherre ML, Lu Y, Chen GY, Zhu Q, Yao SQ (2002) Intein-mediated biotinylation of proteins and its application in a protein microarray. J Am Chem Soc 124: 6708–6709.
31. McGraw TE, Greenfield L, Maxfield FR (1987) Functional expression of the human transferrin receptor cDNA in Chinese hamster ovary cells deficient in endogenous transferrin receptor. J Cell Biol 105: 207–214.
32. Ciechanover A, Schwartz AL, Daury-Varsat A, Lodish HF (1983) Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem 258: 9601–9609.
33. Daury-Varsat A, Ciechanover A, Lodish HF (1983) pH and the recycling of transferrin during receptor-mediated endocytosis. Proc Natl Acad Sci U S A 80: 1055–1059.
34. Kupfers T, Mootz HD (2007) Regioselective cysteine bioconjugation by appending a labeled cysteine tag to a protein by using protein splicing in trans. Angew Chem Int Ed Engl 46: 5234–5237.
35. Kupfers T, Mootz HD (2008) Site-specific chemical modification of proteins with a prelabelled cysteine tag using the artificially split Mxe GyrA intein. Chembiochem 9: 2317–2325.
36. Martin DD, Xu MQ, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40: 11935–11942.
37. Brnzel S, Kupfers T, Mootz HD (2006) Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Sfp DnaB intein and comparison to the split Ssp VMA intein. Biochemistry 45: 1571–1576.
38. Martin DD, Xu MQ, Evans TC Jr (2001) Characterization of a naturally occurring trans-splicing intein from Synechocystis sp. PCC6803. Biochemistry 40: 11935–11942.
39. Wu H, Xu MQ, Liu XQ (1998) Protein trans-splicing and functional mini-inteins of a cytosymbial dnaB intein. Biochim Biophys Acta 1387: 422–432.
40. Gong H, Murphy PW, Langille GM, Minijly SJ, Murphy A, et al. (2008) Tryptophan fluorescence reveals induced folding of Vibrio harveyi acyl carrier protein upon interaction with partner enzymes. Biochim Biophys Acta 1784: 1835–1843.
41. Ding Y, Xu MQ, Ghou I, Chen X, Ferrandon S, et al. (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagus during protein splicing. J Biol Chem 278: 39133–39142.