HALVES OF POINTS OF AN ODD DEGREE HYPERELLIPTIC CURVE IN ITS JACOBIAN

YURI G. ZARHIN

ABSTRACT. Let \(f(x) \) be a degree \((2g+1)\) monic polynomial with coefficients in an algebraically closed field \(K \) with \(\text{char}(K) \neq 2 \) and without repeated roots. Let \(\mathcal{R} \subset K \) be the \((2g+1)\)-element set of roots of \(f(x) \). Let \(C : y^2 = f(x) \) be an odd degree genus \(g \) hyperelliptic curve over \(K \). Let \(J \) be the jacobian of \(C \) and \(J[2] \subset J(K) \) the (sub)group of points of order dividing 2. We identify \(C \) with the image of its canonical embedding \(C \hookrightarrow J \) (the infinite point of \(C \) goes to the identity element of \(J \)). Let \(P = (a, b) \in C(K) \subset J(K) \) and

\[
M_{1/2,P} = \{a \in J(K) \mid 2a = P\} \subset J(K),
\]

which is \(J[2] \)-torsor. In a previous work we established an explicit bijection between the sets \(M_{1/2,P} \) and

\[
\mathcal{R}_{1/2,P} := \{r : \mathcal{R} \to K \mid r(\alpha)^2 = a - \alpha \forall \alpha \in \mathcal{R}; \prod_{\alpha \in \mathcal{R}} r(\alpha) = -b\}.
\]

The aim of this paper is to describe the induced action of \(J[2] \) on \(\mathcal{R}_{1/2,P} \) (i.e., how signs of square roots \(r(\alpha) = \sqrt{a-\alpha} \) should change).

1. INTRODUCTION

Let \(K \) be an algebraically closed field of characteristic different from 2, \(g > 1 \) a positive integer, \(\mathcal{R} \subset K \) a \((2g+1)\)-element set,

\[
f(x) = f_{\mathcal{R}}(x) := \prod_{\alpha \in \mathcal{R}} (x - \alpha)
\]

a degree \((2g+1)\) polynomial with coefficients in \(K \) and without repeated roots, \(C : y^2 = f(x) \) the corresponding genus \(g \) hyperelliptic curve over \(K \) and \(J \) the jacobian of \(C \). We identify \(C \) with the image of its canonical embedding

\[
C \hookrightarrow J, \quad P \mapsto \text{cl}(\{(P) - (\infty)\})
\]

into \(J \) (the infinite point \(\infty \) of \(C \) goes to the identity element of \(J \)). Let \(J[2] \subset J(K) \) be the kernel of multiplication by 2 in \(J(K) \), which is a \(2g \)-dimensional \(\mathbb{F}_2 \)-vector space. All the \((2g+1)\) points

\[
\mathfrak{M}_\alpha := (\alpha, 0) \in C(K) \subset J(K) \quad (\alpha \in \mathcal{R})
\]

[2010 Mathematics Subject Classification. 14H40, 14G27, 11G10.
Key words and phrases. Hyperelliptic curves, jacobians, Mumford representations.
Partially supported by Simons Foundation Collaboration grant
\# 585711.
This paper was written during my stay in May-July 2018 at the Max-Planck-Institut für Mathematik (Bonn, Germany), whose hospitality and support are gratefully acknowledged.]
lie in \(J[2] \) and generate it as the \(2g \)-dimensional \(\mathbb{F}_2 \)-vector space; they satisfy the only relation

\[
\sum_{\alpha \in R} \mathbb{W}_\alpha = 0 \in J[2] \subset J(K).
\]

This leads to a well known canonical isomorphism [3] between \(\mathbb{F}_2 \)-vector spaces \(J[2] \) and \((\mathbb{F}_2^R)^0 = \{ \phi : R \to \mathbb{F}_2 \mid \sum_{\alpha \in R} \phi(\alpha) = 0 \} \).

Namely, each function \(\phi \in (\mathbb{F}_2^R)^0 \) corresponds to

\[
\sum_{\alpha \in R} \phi(\alpha) \mathbb{W}_\alpha \in J[2].
\]

For example, for each \(\beta \in R \) the point \(W_\beta = \sum_{\alpha \neq \beta} \mathbb{W}_\alpha \) corresponds to the function \(\psi_\beta : R \to \mathbb{F}_2 \) that sends \(\beta \) to 0 and all other elements of \(R \) to 1.

If \(b \in J(K) \) then the finite set

\[
M_{1/2,b} := \{ a \in J(K) \mid 2a = b \} \subset J(K)
\]

consists of \(2^{2g} \) elements and carries the natural structure of a \(J[2] \)-torsor.

Let \(P = (a, b) \in C(K) \subset J(K) \).

Let us consider, the set

\[
R_{1/2,P} := \{ r : R \to K \mid r(\alpha)^2 = a - \alpha \forall \alpha \in R; \prod_{\alpha \in R} r(\alpha) = -b \}.
\]

Changes of signs in the (even number of) square roots provide \(R_{1/2,P} \) with the natural structure of a \((\mathbb{F}_2^R)^0\)-torsor. Namely, let

\[
\chi : \mathbb{F}_2 \to K^*
\]

be the additive character such that

\[
\chi(0) = 1, \chi(1) = -1.
\]

Then the result of the action of a function \(\phi : R \to \mathbb{F}_2 \) from \((\mathbb{F}_2^R)^0 \) to \(r : R \to K \) from \(R_{1/2,P} \) is just the product

\[
\chi(\phi) r : R \to K, \quad \alpha \mapsto \chi(\phi(\alpha)) r(\alpha).
\]

On the other hand, I constructed in [8] an explicit bijection of finite sets

\[
R_{1/2,P} \cong M_{1/2,P}, \quad r \mapsto a_r \in M_{1/2,P} \subset J(K).
\]

Identifying (as above) \(J[2] \) and \((\mathbb{F}_2^R)^0 \), we obtain a second structure of a \((\mathbb{F}_2^R)^0\)-torsor on \(R_{1/2,P} \). Our main result asserts that these two structures actually coincide. In down-to-earth terms this means the following.

Theorem 1.1. Let \(r \in R_{1/2,P} \) and \(\beta \in R \). Let us define \(r^\beta \in R_{1/2,P} \) as follows.

\[
r^\beta(\beta) = r(\beta), \quad r^\beta(\alpha) = -r(\alpha) \forall \alpha \in R \setminus \{\beta\}.
\]

Then

\[
a_{r^\beta} = a_r + 2\mathbb{W}_\beta = a_r + \left(\sum_{\alpha \neq \beta} \mathbb{W}_\alpha \right).
\]
Remark 1.2. In the case of elliptic curves (i.e., when \(g = 1 \)) the assertion of Theorem 1.1 was proven in [1, Th. 2.3(iv)].

Example 1.3. If \(P = W_\beta = (\beta, 0) \) then
\[
a_\tau + W_\beta = a_\tau - 2a_\tau = -a_\tau
\]
while
\[
-a_\tau = a_{-\tau}
\]
(see [8, Remark 3.5]). On the other hand, \(r(\beta) = \sqrt{\beta - \beta} = 0 \) for all \(r \) and
\[
r^\beta = r : \alpha \mapsto -r(\alpha) \quad \forall \alpha \in \mathcal{R}.
\]
This implies that
\[
a_\tau^\beta = a_{-\tau} = a_\tau + W_\beta.
\]
This proves Theorem 1.1 in the special case \(P = W_\beta \).

The paper is organized as follows. In Section 2 we recall basic facts about Mumford representations of points of \(J(K) \) and review results of [8], including an explicit description of the bijection between \(\mathcal{R}_{1/2,P} \) and \(\mathcal{M}_{1/2,P} \). In Section 3 we give explicit formulas for the Mumford representation of \(a + W_\beta \) when \(a \) lies neither on the theta divisor of \(J \) nor on its translation by \(W_\beta \), assuming that we know the Mumford representation of \(a \). In Section 4 we prove Theorem 1.1, using auxiliary results from commutative algebra that are proven in Section 5.

2. Halves and square roots

Let \(C \) be the smooth projective model of the smooth affine plane \(K \)-curve
\[
y^2 = f(x) = \prod_{\alpha \in \mathcal{R}} (x - \alpha)
\]
where \(\mathcal{R} \subset \mathbb{A} \) is a \((2g+1)\)-element subset of \(K \). In particular, \(f(x) \) is a monic degree \((2g+1)\) polynomial without repeated roots. It is well known that \(C \) is a genus \(g \) hyperelliptic curve over \(K \) with precisely one infinite point, which we denote by \(\infty \). In other words,
\[
C(K) = \{(a, b) \in K^2 \mid b^2 = \prod_{\alpha \in \mathcal{R}} (a - \alpha)\} \cup \{\infty\}.
\]
Clearly, \(x \) and \(y \) are nonconstant rational functions on \(C \), whose only pole is \(\infty \). More precisely, the polar divisor of \(x \) is \(2(\infty) \) and the polar divisor of \(y \) is \((2g+1)(\infty)\). The zero divisor of \(y \) is \(\sum_{\alpha \in \mathcal{R}} (\mathcal{M}_\alpha) \). In particular, \(y \) is a local parameter at \(\infty \).

We write \(\iota \) for the hyperelliptic involution
\[
\iota : C \rightarrow C, \quad (x, y) \mapsto (x, -y), \quad \infty \mapsto \infty.
\]
The set of fixed points of \(\iota \) consists of \(\infty \) and all \(\mathcal{M}_\alpha \) \((\alpha \in \mathcal{R})\). It is well known that for each \(P \in C(K) \) the divisor \((P) + \iota(P) - 2(\infty)\) is principal. More precisely, if \(P = (a, b) \in C(K) \) then \((P) + \iota(P) - 2(\infty)\) is the divisor of the rational function \(x - a \) on \(C \). In particular, if \(P = W_\alpha = (\alpha, 0) \) then
\[
2(W_\alpha) - 2(\infty) = \text{div}(x - \alpha).
\]
In particular, \(x - \alpha \) has a double zero at \(\mathcal{M}_\alpha \) (and no other zeros). If \(D \) is a divisor on \(C \) then we write \(\text{supp}(D) \) for its support, which is a finite subset of \(C(K) \).
We write J for the jacobian of C, which is a g-dimensional abelian variety over K. If D is a degree zero divisor on C then we write $\text{cl}(D)$ for its linear equivalence class, which is viewed as an element of $J(K)$. Elements of $J(K)$ may be described in terms of so called Mumford representations (see [3, Sect. 3.12], [7, Sect. 13.2] and Subsection 2.3 below).

We will identify C with its image in J with respect to the canonical regular map $C \hookrightarrow J$ under which ∞ goes to the identity element of J. In other words, a point $P \in C(K)$ is identified with $\text{cl}((P) - (\infty)) \in J(K)$. Then the action of ι on $C(K) \subset J(K)$ coincides with multiplication by -1 on $J(K)$. In particular, the list of points of order 2 on C consists of all \mathfrak{M}_α ($\alpha \in \mathfrak{A}$).

2.1. Since K is algebraically closed, the commutative group $J(K)$ is divisible. It is well known that for each $b \in J(K)$ there are exactly 2^{2g} elements $a \in J(K)$ such that $2a = b$. In [8] we established explicitly the following bijection $\mathfrak{r} \mapsto a_\mathfrak{r}$ between the 2^{2g}-element sets $\mathfrak{R}_{1/2,p}$ and $M_{1/2,p}$.

If $\mathfrak{r} \in \mathfrak{R}_{1/2,p}$ then for each positive integer $i \leq 2g + 1$ let us consider the ith basic symmetric function $s_i(\mathfrak{r}) \in K$ in $(2g + 1)$ elements $\{\mathfrak{r}(\alpha) \mid \alpha \in \mathfrak{A}\}$ (notice that all $\mathfrak{r}(\alpha)$ are distinct, since their squares $\mathfrak{r}(\alpha)^2 = a - \alpha$ are distinct). Let us consider the degree g monic polynomial

$$U_\mathfrak{r}(x) = (-1)^g \left[(a - x)^g + \sum_{j=1}^{g} s_{2j}(\mathfrak{r})(a - x)^{g-j} \right],$$

and the polynomial

$$V_\mathfrak{r}(x) = \sum_{j=1}^{g} (s_{2j+1}(\mathfrak{r}) - s_1(\mathfrak{r})s_{2j}(\mathfrak{r})) (a - x)^{g-j}$$

whose degree is strictly less than g. Let $\{c_1, \ldots, c_g\} \subset K$ be the collection of all g roots of $U_\mathfrak{r}(x)$, i.e.,

$$U_\mathfrak{r}(x) = \prod_{j=1}^{g} (x - c_j) \in K[x].$$

Let us put

$$d_j = V_\mathfrak{r}(c_j) \ \forall j = 1, \ldots, g.$$

It is proven in [8, Th. 3.2] that $Q_j = (c_j, d_j)$ lies in $C(K)$ for all j and

$$a_\mathfrak{r} = \text{cl} \left(\sum_{j=1}^{g} (Q_j) \right) - g(\infty) \in J(K)$$

satisfies $2a_\mathfrak{r} = P$, i.e., $a_\mathfrak{r} \in M_{1/2,p}$. In addition, none of Q_j coincides with any \mathfrak{M}_α, i.e.,

$$U_\mathfrak{r}(\alpha) \neq 0, \ c_j \neq \alpha, \ d_j \neq 0.$$

The main result of [8] asserts that the map

$$\mathfrak{R}_{1/2,p} \rightarrow M_{1/2,p}, \ \mathfrak{r} \mapsto a_\mathfrak{r}$$

is a bijection.
Remark 2.2. Notice that one may express explicitly \(r \) in terms of \(U_t(x) \) and \(V_t(x) \). Namely [8, Th. 3.2], none of \(\alpha \in R \) is a root of \(U_t(x) \) and

\[
v_t(\alpha) = s_1(t) + (-1)^g \frac{V_t(\alpha)}{U_t(\alpha)} \quad \text{for all } \alpha \in R.
\]

In order to determine \(s_1(t) \), let us fix two distinct roots \(\beta, \gamma \in R \). Then [8, Cor. 3.4]

\[
\frac{V_t(\gamma)}{U_t(\gamma)} \neq \frac{V_t(\beta)}{U_t(\beta)}
\]

and

\[
s_1(t) = \frac{(-1)^g}{2} \times \frac{\beta + \left(\frac{V_t(\beta)}{U_t(\beta)} \right)^2 - \left(\gamma + \left(\frac{V_t(\gamma)}{U_t(\gamma)} \right)^2 \right)}{\left(\frac{V_t(\gamma)}{U_t(\gamma)} \right) - \left(\frac{V_t(\beta)}{U_t(\beta)} \right)}.
\]

2.3. Mumford representations (see [3, Sect. 3.12], [7, Sect. 13.2, pp. 411–415, especially, Prop. 13.4, Th. 13.5 and Th. 13.7]). Recall [7, Sect. 13.2, p. 411] that if \(D \) is an effective divisor on \(C \) of (nonnegative) degree \(m \), whose support does not contain \(\infty \), then the degree zero divisor \(D - m(\infty) \) is called semi-reduced if it enjoys the following properties.

- If \(M_\alpha \) lies in \(\text{supp}(D) \) then it appears in \(D \) with multiplicity 1.
- If a point \(Q \) of \(C(\infty) \) lies in \(\text{supp}(D) \) and does not coincide with any of \(M_\alpha \) then \(\nu(Q) \) does not lie in \(\text{supp}(D) \).

If, in addition, \(m \leq g \) then \(D - m(\infty) \) is called reduced.

It is known ([3, Ch. 3a], [7, Sect. 13.2, Prop. 3.6 on p. 413]) that for each \(a \in J(K) \) there exist exactly one nonnegative \(m \) and (effective) degree \(m \) divisor \(D \) such that the degree zero divisor \(D - m(\infty) \) is reduced and \(\text{cl}(D - m(\infty)) = a \). If

\[
m \geq 1, \quad D = \sum_{j=1}^{m} (Q_j) \quad \text{where} \quad Q_j = (a_j, b_j) \in C(K) \quad \text{for all} \quad j = 1, \ldots, m
\]

(here \(Q_j \) do not have to be distinct) then the corresponding

\[
a = \text{cl}(D - m(\infty)) = \sum_{j=1}^{m} Q_j \in J(K).
\]

The Mumford representation of \(a \in J(K) \) is the pair \((U(x), V(x))\) of polynomials \(U(x), V(x) \in K[x] \) such that

\[
U(x) = \prod_{j=1}^{m} (x - a_j)
\]

is a degree \(m \) monic polynomial while \(V(x) \) has degree \(< m = \deg(U) \), the polynomial \(V(x)^2 - f(x) \) is divisible by \(U(x) \), and

\[
b_j = V(a_j), \quad Q_j = (a_j, V(a_j)) \in C(K) \quad \text{for all} \quad j = 1, \ldots, m.
\]

Such a pair always exists, is unique, and (as we have just seen) uniquely determines not only \(a \) but also divisors \(D \) and \(D - m(\infty) \).

Conversely, if \(U(x) \) is a monic polynomial of degree \(m \leq g \) and \(V(x) \) a polynomial such that \(\deg(V) < \deg(U) \) and \(V(x)^2 - f(x) \) is divisible by \(U(x) \) then there exists exactly one \(a = \text{cl}(D - m(\infty)) \) where \(D - m(\infty) \) is a reduced divisor such that \((U(x), V(x))\) is the Mumford representation of \(a = \text{cl}(D - m(\infty)) \).
2.4. In the notation of Subsect. 2.1, let us consider the effective degree \(g \) divisor

\[
D_\varepsilon = \sum_{j=1}^{\infty} (Q_j)
\]

on \(C \). Then \(\text{supp}(D_\varepsilon) \) (obviously) does contain neither \(\infty \) nor any of \(\mathfrak{M}_a \)'s. It is proven in [8] that the divisor \(D_\varepsilon - g(\infty) \) is reduced and the pair \((U_\varepsilon(x), V_\varepsilon(x))\) is the Mumford representation of

\[
a_\varepsilon := \text{cl}(D_\varepsilon - g(\infty)).
\]

In particular, if \(Q \in C(K) \) lies in \(\text{supp}(D) \) (i.e., is one of \(Q_j \)'s) then \(\iota(Q) \) does not.

Lemma 2.5. Let \(D \) be an effective divisor on \(C \) of degree \(m > 0 \) such that \(m \leq 2g+1 \) and \(\text{supp}(D) \) does not contain \(\infty \). Assume that the divisor \(D - m(\infty) \) is principal.

(1) Suppose that \(m \) is odd. Then:

(i) \(m = 2g + 1 \) and there exists exactly one polynomial \(v(x) \in K[x] \) such that the divisor of \(y - v(x) \) coincides with \(D - (2g+1)(\infty) \). In addition, \(\deg(v) \leq g \).

(ii) If \(\mathfrak{M}_a \) lies in \(\text{supp}(D) \) then it appears in \(D \) with multiplicity 1.

(iii) If \(b \) is a nonzero element of \(K \) and \(P = (a,b) \in C(K) \) lies in \(\text{supp}(D) \) then \(\iota(P) = (a, -b) \) does not lie in \(\text{supp}(D) \).

(iv) \(D - (2g + 1)(\infty) \) is semi-reduced (but not reduced).

(2) Suppose that \(m = 2d \) is even. Then:

(i) there exists exactly one monic degree \(d \) polynomial \(u(x) \in K[x] \) such that the divisor of \(u(x) \) coincides with \(D - m(\infty) \);

(ii) every point \(Q \in C(K) \) appears in \(D - m(\infty) \) with the same multiplicity as \(\iota(Q) \);

(iii) every \(W_\alpha \) appears in \(D - m(\infty) \) with even multiplicity.

Proof: All the assertions except (2)(iii) are already proven in [8, Lemma 2.2]. In order to prove the remaining one, let us split the polynomial \(v(x) \) into a product \(v(x) = (x - \alpha)^d v_1(x) \) where \(d \) is a nonnegative integer and \(v_1(x) \in K[x] \) satisfies \(v_1(\alpha) \neq 0 \). Then \(\mathfrak{M}_a \) appears in \(D - m(\infty) \) with multiplicity \(2d \), because \((x - \alpha) \) has a double zero at \(\mathfrak{M}_a \). (See also [4].)

Let \(d \leq g \) be a positive integer and \(\Theta_d \subset J \) be the image of the regular map

\[
C^d \to J, \ (Q_1, \ldots, Q_d) \mapsto \sum_{i=1}^{d} Q_i \subset J.
\]

It is well known that \(\Theta_d \) is an irreducible closed \(d \)-dimensional subvariety of \(J \) that coincides with \(C \) for \(d = 1 \) and with \(J \) if \(d = g \); in addition, \(\Theta_d \subset \Theta_{d+1} \) for all \(d < g \). Clearly, each \(\Theta_d \) is stable under multiplication by \(-1\) in \(J \). We write \(\Theta \) for the \((g - 1)\)-dimensional theta divisor \(\Theta_{g-1} \).

Theorem 2.6 (See Th. 2.5 of [8]). Suppose that \(g > 1 \) and let

\[
C_{1/2} := 2^{-1} \bar{C} \subset J
\]

be the preimage of \(C \) with respect to multiplication by \(2 \) in \(J \). Then the intersection of \(C_{1/2}(K) \) and \(\Theta \) consists of points of order dividing 2 on \(J \). In particular, the intersection of \(C \) and \(C_{1/2} \) consists of \(\infty \) and all \(\mathfrak{M}_a \)'s.
3. Adding Weierstrass points

In this section we discuss how to compute a sum \(a + \mathfrak{M}_\beta \) in \(J(K) \) when \(a \in J(K) \) lies neither on \(\Theta \) nor on its translation \(\Theta + \mathfrak{M}_\beta \). Let \(D - g(\infty) \) be the reduced divisor on \(C \), whose class represents \(a \). Here

\[
D = \sum_{j=1}^{g} (Q_j)
\]

where \(Q_j = (a_j, b_j) \in C(K) \setminus \{\infty\} \)

is a degree \(g \) effective divisor. Let \((U(x), V(x)) \) be the Mumford representation of \(\text{cl}(D - g(\infty)) \). We have

\[
\deg(U) = g > \deg(V)
\]

\[
U(x) = \prod_{j=1}^{g} (x - a_j), \quad b_j = V(a_j) \forall j
\]

and \(f(x) - V(x)^2 \) is divisible by \(U(x) \).

Example 3.1. Assume additionally that none of \(Q_j \) coincides with \(\mathfrak{M}_\beta = (\beta, 0) \), i.e.,

\[U(\beta) \neq 0. \]

Let us find explicitly the Mumford representation \((U^{[\beta]}(x), V^{[\beta]}(x))\) of the sum

\[
a + \mathfrak{M}_\beta = \text{cl}(D-m(\infty)) + \text{cl}((\mathfrak{M}_\beta)-(\infty)) = \text{cl}((D+(\mathfrak{M}_\beta))-(g+1)(\infty)) = \text{cl}(D_1-(g+1)(\infty)).
\]

where

\[
D_1 := D + \mathfrak{M}_\beta = \left(\sum_{j=1}^{g} (Q_j) \right) + \mathfrak{M}_\beta
\]

is a degree \((g + 1)\) effective divisor on \(C \). (We will see that \(\deg(U^{[\beta]})(x) = g \).) Clearly, \(D_1 - (g + 1)(\infty) \) is semi-reduced but not reduced.

Let us consider the polynomials

\[
U_1(x) = (x - \beta)U(x), \quad V_1(x) = V(x) - \frac{V(\beta)}{U(\beta)} U(x) \in K[x].
\]

Then \(U_1 \) is a degree \((g + 1)\) monic polynomial, \(\deg(V_1) \leq g \),

\[
V_1(\beta) = 0, \quad V_1(a_j) = V(a_j) = b_j \forall j
\]

and \(f(x) - V_1(x)^2 \) is divisible by \(U_1(x) \). (The last assertion follows from the divisibility of both \(f(x) \) and \(V_1(x) \) by \(x - \beta \) combined with the divisibility of \(f(x) - V(x)^2 \) by \(U(x) \).) If we put

\[
a_g + 1 = \beta, \quad b_{g+1} = 0, \quad Q_{g+1} = W_\beta = (\beta, 0)
\]

then

\[
U_1(x) = \prod_{j=1}^{g+1} (x - a_j), \quad D_1 = \sum_{j=1}^{g+1} (Q_j) \quad \text{where} \quad Q_j = (a_j, b_j) \in C(K), \quad b_j = V_1(a_j) \forall j
\]

and \(f(x) - V_1(x)^2 \) is divisible by \(U_1(x) \). In particular, \((U_1(x), V_1(x))\) is the pair of polynomials that corresponds to semi-reduced \(D_1 - (g + 1)(\infty) \) as described in [7, Prop. 13.4 and Th. 3.5]. In order to find the Mumford representation of
cl(D_1 - (g + 1)(\infty)), we use an algorithm described in [7, Th. 13.9]. Namely, let us put
\[\tilde{U}(x) = \frac{f(x) - V_1(x)^2}{U_1(x)} \in K[x]. \]
Since \(\deg(V_1(x)) \leq g \) and \(\deg(f) = 2g + 1 \), we have
\[\deg(V_1(x)^2) \leq 2g, \quad \deg(f - V_1(x)^2) = 2g + 1, \quad \deg(\tilde{U}(x)) = g. \]
Since \(f(x) \) is monic, \(f(x) - V_1(x)^2 \) is also monic and therefore \(\tilde{U}(x) \) is also monic, because \(U_1(x) \) is monic. By [7, Th. 13.9], \(U^{[\beta]}(x) = \tilde{U}(x) \) (since the latter is monic and has degree \(g \leq g \)) and \(V^{[\beta]}(x) \) is the remainder of \(-V_1(x) \) with respect to division by \(\tilde{U}(x) \). Let us find this remainder. We have
\[-V_1(x) = -\left(V(x) - \frac{V(\beta)}{U(\beta)} U(x) \right) = -V(x) + \frac{V(\beta)}{U(\beta)} U(x). \]
Recall that
\[\deg(V_1) < g = \deg(U) = \deg(\tilde{U}). \]
This implies that the coefficient of \(V_1 \) at \(x^g \) equals \(V(\beta)/U(\beta) \) and therefore
\[V^{[\beta]}(x) = \left(-V(x) + \frac{V(\beta)}{U(\beta)} U(x) \right) - \frac{V(\beta)}{U(\beta)} \tilde{U}(x) = -V(x) + \frac{V(\beta)}{U(\beta)} \left(U(x) - \tilde{U}(x) \right). \]
Using formulas above for \(U_1, V_1, \tilde{U} \), we obtain that
\[U^{[\beta]}(x) = \frac{f(x) - \left(V(x) - \frac{V(\beta)}{U(\beta)} U(x) \right)^2}{(x - \beta)\tilde{U}(x)}, \]
\[V^{[\beta]}(x) = -V(x) + \frac{V(\beta)}{U(\beta)} \left(U(x) - \frac{f(x) - \left(V(x) - \frac{V(\beta)}{U(\beta)} U(x) \right)^2}{(x - \beta)\tilde{U}(x)} \right). \]

Remark 3.2. There is an algorithm of David Cantor [7, Sect. 13.3] that explains how to compute the Mumford representation of a sum of arbitrary divisor classes (elements of \(J(K) \)) when their Mumford representations are given.

Remark 3.3. Suppose that \(a \in J(K) \) and \(P = 2a \) lies in \(C(K) \) but is not the zero of the group law. Then \(a \) does not lie on the theta divisor (Theorem 2.6) and satisfies the conditions of Example 3.1 for all \(\beta \in \mathfrak{R} \) (see Subsect. 2.1).

4. Proof of Main Theorem

Let us choose an order on \(\mathfrak{R} \). This allows us to identify \(\mathfrak{R} \) with \(\{1, \ldots, 2g, 2g+1\} \) and list elements of \(\mathfrak{R} \) as \(\{\alpha_1, \ldots, \alpha_{2g}, \alpha_{2g+1}\} \). Then
\[f(x) = \prod_{i=1}^{2g+1} (x - \alpha_i) \]
and the affine equation for \(C \setminus \{\infty\} \) is
\[y^2 = \prod_{i=1}^{2g+1} (x - \alpha_i). \]
Slightly abusing notation, we denote \(\mathfrak{M}_{\alpha_i} \) by \(\mathfrak{M}_i \).
Let us consider the closed affine K-subset $\tilde{\mathcal{C}}$ in the affine K-space A^{2g+1} with coordinate functions $z_1, \ldots, z_{2g}, z_{2g+1}$ that is cut out by the system of quadratic equations

$$z_1^2 + \alpha_1 = z_2^2 + \alpha_2 = \cdots = z_{2g+1}^2 + \alpha_{2g+1}.$$

We write x for the regular function $z_1^2 + \alpha_1$ on $\tilde{\mathcal{C}}$, which does not depend on a choice of i. By Hilbert’s Nullstellensatz, the K-algebra $K[\tilde{\mathcal{C}}]$ of regular functions on $\tilde{\mathcal{C}}$ is canonically isomorphic to the following K-algebra. First, we need to consider the quotient A of the polynomial $K[x]$-algebra $K[x][T_1, \ldots, T_{2g+1}]$ by the ideal generated by all quadratic polynomials $T_i^2 - (x - \alpha_i)$. Next, $K[\tilde{\mathcal{C}}]$ is canonically isomorphic to the quotient $A/N(A)$ where $N(A)$ is the nilradical of A. In the next section (Example 5.3) we will prove that A has no zero divisors (in particular, $N(A) = \{0\}$) and therefore $\tilde{\mathcal{C}}$ is irreducible. (See also [2].) We write y for the regular function

$$y = -\prod_{i=1}^{2g} z_i \in K[\tilde{\mathcal{C}}].$$

Clearly, $y^2 = \prod_{i=1}^{2g} (x - \alpha_i)$ in $K[\tilde{\mathcal{C}}]$. The pair (x, y) gives rise to the finite regular map of affine K-varieties (actually, curves)

$$\mathfrak{h} : \tilde{\mathcal{C}} \to \mathcal{C} \setminus \{\infty\}, \quad (r_1, \ldots, r_{2g}, r_{2g+1}) \mapsto (a, b) = \left(r_1^2 + \alpha_1, -\prod_{i=1}^{2g+1} r_i\right)$$

of degree 2^{2g}. For each

$$P = (a, b) \in K^2 = A^2(K) \text{ with } b^2 = \prod_{i=1}^{2g+1} (a - \alpha_i)$$

the fiber $\mathfrak{h}^{-1}(P)$ consists of (familiar) collections of square roots $r = \{r_i = \sqrt{a - \alpha_i} \mid 1 \leq i \leq 2g + 1\}$ with $\prod_{i=1}^{2g+1} r_i = -b$. Each such r gives rise to $a_r \in J(K)$ such that

$$2a = P \in \mathcal{C}(K) \subseteq J(K)$$

(see [8, Th. 3.2]). On the other hand, for each $\mathfrak{m}_l = (\alpha_l, 0)$ (with $1 \leq l \leq 2g+1$) the sum $a_r + \mathfrak{m}_l$ is also a half of P and therefore corresponds to the certain collection of square roots. Which one? The answer is given by Theorem 1.1. We repeat its statement, using the new notation.

Theorem 4.1. Let $P = (a, b)$ be a K-point on \mathcal{C} and $r = (r_1, \ldots, r_{2g}, r_{2g+1})$ be a collection of square roots $r_i = \sqrt{a - \alpha_i} \in K$ such that $\prod_{i=1}^{2g+1} r_i = -b$. Let l be an integer that satisfies $1 \leq l \leq 2g + 1$ and let

$$r^{[l]} = \left(r_1^{[l]}, \ldots, r_{2g}^{[l]}, r_{2g+1}^{[l]}\right) \in \mathfrak{h}^{-1}(P) \subseteq \tilde{\mathcal{C}}(K)$$

be the collection of square roots $r_i^{[l]} = \sqrt{a - \alpha_i}$ such that

$$r_i^{[l]} = r_i, \quad r_i^{[l]} = -r_i \text{ for } \forall i \neq l.$$

Then

$$a_r + \mathfrak{m}_l = a_r^{[l]}.$$
Example 4.2. Let us take as P the point $\mathfrak{M}_l = (\alpha_l, 0)$. Then
\[r_l = \sqrt{\alpha_l - \alpha_l} = 0 \quad \forall \tau = (r_1, \ldots, r_{2g}, r_{2g+1}) \in \mathfrak{h}^{-1}(\mathfrak{M}_l) \]
and therefore
\[v^{[l]} = (-r_1, \ldots, -r_{2g}, -r_{2g+1}) = -\tau. \]
It follows from Example 1.3 (if we take $\beta = \alpha_l$) that
\[a_\tau + \mathfrak{M}_l = a_\tau - W_l = a_\tau - 2a_\tau = -a_\tau = a_{\tau[l]}. \]
This proves Theorem 4.1 in the case of $P = \mathfrak{M}_l$. We are going to deduce the general case from this special one.

4.3. Before starting the proof of Theorem 4.1, let us define for each collections of signs
\[\varepsilon = \{ \epsilon_i = \pm 1 \mid 1 \leq i \leq 2g + 1, \prod_{i=1}^{2g+1} \epsilon_i = 1 \} \]
the biregular automorphism
\[T_\varepsilon : \tilde{C} \rightarrow \tilde{C}, \ z_i \mapsto \epsilon_i z_i \ \forall i. \]
Clearly, all T_ε constitute a finite automorphism group of \tilde{C} that leaves invariant every K-fiber of $h : \tilde{C} \rightarrow C \setminus \{\infty\}$, acting on it transitively. Notice that if T_ε leaves invariant all the points of a certain fiber $h^{-1}(P)$ with $P \in \mathcal{C}(K)$ then all the $\epsilon_i = 1$, i.e., T_ε is the identity map.

Proof of Theorem 4.1. Let
\[s^{[l]} : \tilde{C} \rightarrow \tilde{C} \]
be the automorphism (involution) of \tilde{C} defined by (15). We need to define another (actually, it will turn out to be the same) involution (and therefore an automorphism)
\[t^{[l]} : \tilde{C} \rightarrow \tilde{C} \]
that is defined by
\[a_{t^{[l]}(\tau)} = a_\tau + \mathfrak{M}_l \]
as a composition of the following regular maps. First, $\tau \in \tilde{C}(K)$ goes to the pair of polynomials $(U_\tau(x), V_\tau(x))$ as in Remark 2.2, which is the Mumford representation of a_τ (see Subsect. 2.4). Second, $(U_\tau(x), V_\tau(x))$ goes to the pair of polynomials $(U^{[l]}(x), V^{[l]}(x))$ defined in Section 3, which is the Mumford representation of $a_\tau + W_l$. Third, using Remark 2.2 applied to $(U^{[l]}(x), V^{[l]}(x))$, we get at last $t^{[l]}(\tau) \in \mathcal{C}(K)$ such that
\[a_{t^{[l]}(\tau)} = a_\tau + W_l. \]
Clearly, $t^{[l]}$ is a regular map of \tilde{C} into itself that is an involution, which implies that $t^{[l]}$ is a biregular automorphism of \tilde{C}. It is also clear that both $s^{[l]}$ and $t^{[l]}$ leave invariant every fiber of $h : \tilde{C} \rightarrow C \setminus \{\infty\}$ and coincide on $h^{-1}(\mathfrak{M}_l)$, thanks to Example 4.2. This implies that $u := (s^{[l]})^{-1} t^{[l]}$ is a biregular automorphism of \tilde{C} that leaves invariant every fiber of $h : \tilde{C} \rightarrow C \setminus \{\infty\}$ and acts as the identity map on $h^{-1}(\mathfrak{M}_l)$. The invariance of each fiber of h implies that $\mathcal{C}(K)$ coincides with the finite union of its closed subsets \mathcal{C}_ε defined by the condition
\[\tilde{C}_\varepsilon := \{ Q \in \tilde{C}(K) \mid u(Q) = T_\varepsilon(Q) \}. \]
Since \(\tilde{C} \) is irreducible, the whole \(\tilde{C}(K) \) coincides with one of \(\tilde{C}_z \). In particular, the fiber
\[
\mathfrak{h}^{-1}(\mathfrak{M}_l) \subset \tilde{C}_z
\]
and therefore \(T_z \) acts identically on all points of \(\mathfrak{h}^{-1}(\mathfrak{M}_l) \). In light of arguments of Subsect. 4.3, \(T_z \) is the identity map and therefore \(u \) acts identically on the whole \(\tilde{C}(K) \). This means that \(s^{[l]} = t^{[l]} \), i.e.,
\[
a_t + \mathfrak{M}_l = a_t^{[l]}.
\]

4.4. Let \(\phi : \mathcal{R} \rightarrow \mathbb{F}_2 \) be a function that satisfies \(\sum_{\alpha \in \mathcal{R}} \phi(\alpha) = 0 \), i.e. \(\phi \in (\mathbb{F}_2^{\mathcal{R}})^0 \). Then the finite subset
\[
\text{supp}(\phi) = \{ \alpha \in \mathcal{R} \mid \phi(\alpha) \neq 0 \} \subset \mathcal{R}
\]
has even cardinality and the correspondent point of \(J[2] \) is
\[
\mathfrak{T}_\phi = \sum_{\alpha \in \mathcal{R}} \phi(\alpha) \mathfrak{M}_\alpha = \sum_{\alpha \in \text{supp}(\phi)} \mathfrak{M}_\alpha = \sum_{\gamma \notin \text{supp}(\phi)} \mathfrak{M}_\gamma.
\]

Theorem 4.5. Let \(r \in \mathcal{R}_{1/2,P} \). Let us define \(r^{(\phi)} \in \mathcal{R}_{1/2,P} \) as follows.
\[
r^{(\phi)}(\alpha) = -r(\alpha) \forall \alpha \in \text{supp}(\phi); \quad r^{(\phi)}(\gamma) = r(\gamma) \forall \gamma \notin \text{supp}(\phi).
\]
Then
\[
a_t + \mathfrak{T}_\phi = a_t^{(\phi)}.
\]

Remark 4.6. If \(\phi \) is identically zero then
\[
\mathfrak{T}_\phi = 0 \in J[2], \quad r^{(\phi)} = r
\]
and the assertion of Theorem 4.5 is obviously true. If \(l \in \mathcal{R} \) and \(\phi = \psi_l \), i.e. \(\text{supp}(\phi) = \mathcal{R} \setminus \{ l \} \) then
\[
\mathfrak{T}_\phi = \mathfrak{M}_l \in J[2] \quad r^{(\phi)} = r^{[l]}
\]
and the assertion of Theorem 4.5 follows from Theorem 4.1.

Proof of Theorem 4.5. We may assume that \(\phi \) is not identically zero. We need to apply Theorem 4.1 \(d \) times where \(d \) is the (even) cardinality of \(\text{supp}(\phi) \) in order to get \(r' \in \mathcal{R}_{1/2,P} \) such that
\[
a_t + \sum_{\alpha \in \text{supp}(\phi)} \mathfrak{M}_\alpha = a_t^{r'}.
\]
Let us check how many times do we need to change the sign of each \(r(\beta) \). First, if \(\beta \notin \text{supp}(\phi) \) then we need to change to sign of \(r(\beta) \) at every step, i.e., we do it exactly \(d \) times. Since \(d \) is even, the sign of \(r(\beta) \) remains the same, i.e.,
\[
r'(\beta) = r(\beta) \forall \beta \notin \text{supp}(\phi).
\]
Now if \(\beta \in \text{supp}(\phi) \) then we need to change the sign of \(r(\beta) \) every time when we add \(W_\alpha \) with \(\alpha \neq \beta \) and it occurs exactly \((d - 1)\) times. On the other hand, when we add \(\mathfrak{M}_\beta \), we don’t change the sign of \(r(\beta) \). So, we change the sign of \(r(\beta) \) exactly \((d - 1)\) times, which implies that
\[
r'(\beta) = -r(\beta) \forall \beta \in \text{supp}(\phi).
\]
Combining the last two displayed formula, we obtained that
\[
r' = r^{(\phi)}.
\]
5. Useful Lemma

The following result is probably well known but I did not find a suitable reference. (However, see [2, Lemma 5.10].)

Lemma 5.1. Let n be a positive integer, E a field provided with n distinct discrete valuation maps

$$\nu_i : E^* \to \mathbb{Z}, \ (i = 1, \ldots, n).$$

For each i let $O_{\nu_i} \subset E$ the discrete valuation ring attached to ν_i and $\pi_i \in O_{\nu_i}$ its uniformizer, i.e., a generator of the maximal ideal in O_{ν_i}. Suppose that for each i we are given a prime number p_i such that the characteristic of the residue field O_{ν_i}/π_i is different from p_i for all $k \neq i$. Let us assume also that

$$\nu_i(\pi_k) = \delta_{ik} \ \forall i, k = 1, \ldots, n,$$

i.e., each π_i is a ν_k-adic unit if $i \neq k$.

Then the quotient $B = E[T_1, \ldots, T_n]/(T_i^{p_i} - \pi_1, \ldots, T_n^{p_n} - \pi_n)$ of the polynomial E-algebra $E[T_1, \ldots, T_n]$ by the ideal generated by all $T_i^{p_i} - \pi_i$ is a field that is an algebraic extension of E of degree $\prod_{i=1}^n p_i$. In addition, the set of monomials

$$S = \{ \prod_{i=1}^n T_i^{e_i} \mid 0 \leq e_i \leq p_i - 1 \} \subset E[T_1, \ldots, T_n]$$

maps injectively into B and its image is a basis of the E-vector space B.

Proof. First, the cardinality of S is $\prod_{i=1}^n p_i$ and the image of S generates B as the E-vector space. This implies that if the E-dimension of B is $\prod_{i=1}^n p_i$ then the image of S is a basis of the E-vector space B. Second, notice that for each i the polynomial $T_i^{p_i} - \pi_i$ is irreducible over E, thanks to the Eisenstein criterion applied to ν_i and therefore $E[T_i]/(T_i^{p_i} - \pi_i)$ is a field that is an algebraic degree p_i extension of E. In particular, the E-dimension of $E[T_i]/(T_i^{p_i} - \pi_i)$ is p_i. This proves Lemma for $n = 1$.

Induction by n. Suppose that $n > 1$ and consider the finite degree p_i field extension $E_n = E[T_n]/(T_n^{p_n} - \pi_n)$ of E.

Clearly, the E-algebra B is isomorphic to the quotient $E_n[T_1, \ldots, T_{n-1}]/(T_1^{p_1} - \pi_1, \ldots, T_{n-1}^{p_{n-1}} - \pi_{n-1})$ of the polynomial ring $E_n[T_1, \ldots, T_{n-1}]$ by the ideal generated by all polynomials $T_i^{p_i} - \pi_i$ with $i < n$. Our goal is to apply the induction assumption to E_n instead of E. In order to do that, let us consider for each $i < n$ the integral closure \tilde{O}_i of O_{ν_i} in E_n. It is well known that \tilde{O}_i is a Dedekind ring. Our conditions imply that E_n/E is unramified at all ν_i for all $i < n$. This means that if \mathcal{P}_i is a maximal ideal of \tilde{O}_i that contains $\pi_i\tilde{O}_i$ (such an ideal always exists) and

$$\text{ord}_{\mathcal{P}_i} : E_n^* \to \mathbb{Z}$$

is the discrete valuation map attached to \mathcal{P}_i then the restriction of $\text{ord}_{\mathcal{P}_i}$ to E^* coincides with ν_i. This implies that for all positive integers $i, k \leq n - 1$

$$\text{ord}_{\mathcal{P}_i}(\pi_k) = \nu_i(\pi_k) = \delta_{ik}.$$

In particular,

$$\text{ord}_{\mathcal{P}_i}(\pi_i) = \nu_i(\pi_i) = 1,$$
i.e., π_i is a uniformizer in the corresponding discrete valuation (sub)ring $O_{\text{ord} \pi_i}$ of E_n attached to $\text{ord} \pi_i$. Now the induction assumption applied to E_n and its $(n-1)$ discrete valuation maps $\text{ord} \pi_i$ ($1 \leq i \leq n-1$) implies that B/E_n is a field extension of degree $\prod_{i=1}^{n-1} p_i$. This implies that the degree
\[[B : E] = [B : E_n][E_n : E] = \left(\prod_{i=1}^{n-1} p_i \right) p_n = \prod_{i=1}^{n} p_i. \]
This means that the E-dimension of B is $\prod_{i=1}^{n} p_i$ and therefore the image of S is a basis of the E-vector space B. \square

Corollary 5.2. We keep the notation and assumptions of Lemma 5.1. Let R be a subring of E that contains 1 and all π_i ($1 \leq i \leq n$). Then the quotient $B_R = R[T_1, \ldots, T_n]/(T_1^{p_1} - \pi_1, \ldots, T_n^{p_n} - \pi_n)$ of the polynomial R-algebra $R[T_1, \ldots, T_n]$ by the ideal generated by all $T_i^{p_i} - \pi_i$ has no zero divisors.

Proof. There are the natural homomorphisms of R-algebra
\[R[T_1, \ldots, T_n] \to B_R \to B \]
such that the first homomorphism is surjective and the injective image of
\[S \subset R[T_1, \ldots, T_n] \subset E[T_1, \ldots, T_n] \]
in B is a basis of the E-vector space B. On the other hand, the image of S generates B_R as R-module. It suffices to prove that $B_R \to B$ is injective, since B is a field by Lemma 5.1.

Suppose that $u \in B_R$ goes to 0 in B is zero. Recall that u is a linear combination of (the images of) elements of S with coefficients in R. Since the image of u in B is 0, all these coefficients are zeros, i.e., $u = 0$ in B_R. \square

Example 5.3. We use the notation of Section 4. Let us put $n = 2g + 1$, $R = K[x], E = K(x), \pi_i = x - \alpha_i, p_i = 2$ and let
\[\nu_i : E^* = K(x)^* \to \mathbb{Z} \]
be the discrete valuation map of the field of rational functions $K(x)$ attached to α_i. Then $K[\tilde{C}] = B_R/\mathcal{N}(B_R)$ where $\mathcal{N}(B_R)$ is the nilradical of B_R. It follows from Corollary 5.2 that $\mathcal{N}(B_R) = \{0\}$ and $K[\tilde{C}]$ has no zero divisors, i.e., \tilde{C} is irreducible.

References

[1] B.M. Bekker, Yu.G. Zarhin, *The divisibility by 2 of rational points on elliptic curves*. Algebra i Analiz 29:4 (2017), 196–239; St. Petersburg Math. J. 29 (2018), 683–713.

[2] N. Bruin and E.V. Flynn, *Towers of 2-covers of hyperelliptic curves*. Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329–4347.

[3] D. Mumford, Tata Lectures on Theta. II. Progress in Math. 43, Birkhäuser, Boston Basel Stuttgart, 1984.

[4] M. Stoll, *Arithmetic of Hyperelliptic Curves*. Available at Summer Semester 2014, University of Bayreuth. http://www.mathe2.uni-bayreuth.de/stoll/teaching/ArithHypKurvenSS2014/Skript-ArithHypCurves-pub-screen.pdf.

[5] E. Schaefer, 2-descent on the Jacobians of hyperelliptic curves. J. Number Theory 51 (1995), no. 2, 219–232.

[6] J.-P. Serre, *Algebraic groups and class fields*. Graduate Texts in Math. 117, Springer-Verlag, New York, 1988.

[7] L.C. Washington, *Elliptic Curves: Number Theory and Cryptography*. Second edition. Chapman & Hall/CRC Press, Boca Raton London New York, 2008.
[8] Yu. G. Zarhin, *Division by 2 on odd degree hyperelliptic curves and their jacobians*. MPIM (Bonn) Preprint Series, 2018 (31); available at https://www.mpim-bonn.mpg.de/preblob/5876 .

Pennsylvania State University, Department of Mathematics, University Park, PA 16802, USA

E-mail address: zarhin@math.psu.edu