NEW SPECIES

‘Lactomassilus timonensis,’ a new anaerobic bacterial species isolated from the milk of a healthy African mother

A. H. Togo1, A. Camara2, S. Konaté2, O. K. Doumbo2, D. Raoult1 and M. Million1

1) Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Faculté de médecine, Marseille, France and 2) Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, FMOS-FAPH, University of Science, Techniques and Technologies, Bamako, Mali

Abstract

We here report the main characteristics of a new anaerobic bacterial genus and species ‘Lactomassilus timonensis,’ strain Marseille-P4641T (CSUR = P4641), isolated by microbial culturomics from the milk of a 35-year-old healthy lactating mother from Mali. © 2017 The Author(s). Published by Elsevier Ltd.

Keywords: Culturomics, Human breast milk microbiota, Lactomassilus timonensis, Taxonomy

Original Submission: 13 October 2017; Revised Submission: 1 December 2017; Accepted: 7 December 2017
Article published online: 14 December 2017

In an assessment study of breast milk microbiota by culturomics [1], we isolated a new anaerobic bacterial species from the milk of a 35-year-old lactating Malian woman. We previously reported Veillonella massiliensis [2] as the first culturomics species isolated from human milk of a French woman. Here we report the first culturomics species isolated from the breast milk of an African woman. This is important because milk is a main vector for the vertical transmission of the human gut microbiota [3]. Moreover, healthy milk microbiota is critical for the later development of healthy mature anaerobic gut microbiota in offspring [3]. According to this new species could be a potential natural probiotics for children and could more generally benefit human health. Written consent was obtained from each participant before sampling according to the Declaration of Helsinki and council for international organizations of medical sciences (CIOMS) 2016. The study and the consent procedure were approved by the ethics committee of Institut fédératif de recherche (IFR) 48 under consent number 09-022, 2010, and by the FMPOS institutional ethics committee (Mali, comité d’éthique-Faculté de Médecine de Pharmacie et d’Odontostomatologie (CE-FMPOS)).

Initial growth was obtained after 21 days of preincubation in a blood culture bottle (BACTEC Lytic/10 Anaerobic/F Culture Vials; Le Pont de Claix, Isère, France) enriched with 4 mL of sheep’s blood and 4 mL of rumen under anaerobic atmosphere at 37°C. Light colonies with a mean diameter of 1 to 2 mm and agar-grown (Columbia agar + 5% sheep’s blood; bioMérieux, Marcy l’Etoile, France) were observed after 48 hours of incubation in anaerobic conditions for each isolate. Cells were Gram positive and rod shaped. Sequencing of the 16S rRNA gene was performed because colonies were not identified by matrix-assisted desorption ionization—time of flight mass spectrometry (MALDI-TOF MS) screening on a Microflex BioTyper spectrometer (Bruker Daltonics, Bremen, Germany). The 16S rRNA gene was sequenced using fD1–rP2 primers as previously described, using a 3130-XL sequencer (Applied Biosciences, Saint Aubin, France) [4]. Strain Marseille-P4641T exhibited 90% and 85.5% of 16S rRNA sequence similarity with Solobacterium moorei RCA59-74 = CIP 106864 = JCM 10645 and Bulleidia extructa strain W1219, respectively [5,6], the phylogenetically closest species with standing in nomenclature (Fig. 1). The 16S rRNA sequence divergences of >1.3% and >5% (9.3%) suggest a new species and new genus, respectively [7]. Phylogenies were inferred by the Genome-to-Genome Distance Calculator (GGDC) Web server.
using the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) phylogenomics pipeline adapted to single genes. These results suggest the creation of a new genus and species for which the names Lactomassilus and L. timonensis are proposed. In addition, we investigated the presence of 16S rRNA from Strain Marseille-P4641T in the high throughput DNA and RNA sequence read archive (SRA) using an open resource online (https://www.imngs.com). We found metagenomics sequences with a similarity greater than 97% with Strain Marseille-P 4641T in several gut metagenomes (human, bovine and pig gut, food, freshwater and waste). Lactomassilus (lacto.massilus, N.L. masc.) is from lacto, ‘milk,’ and massilus, referring to Massilia, the Latin name of Marseille, where the strain was isolated. ‘L. timonensis’ (ti.mon.ensis, N.L. gen. n.) refers to timonensis, the name of La Timone hospital, where the strain was isolated. The species Lactomassilus timonensis and the strain Marseille-P4641T are the type species and the type strain of the new genus and the new species Lactomassilus gen. nov. and L. timonensis sp. nov., respectively.

Microbial culturomics has again succeeded in extending the microbial catalogue of the healthy human microbiome. This could hasten future medical progress because milk microbiota are a critical determinant of human health.

MALDI-TOF MS spectrum

The MALDI-TOF MS spectrum of this strain is available online (http://mediterranee-infection.com/article.php?laref=256&titre=urms-database).

Nucleotide sequence accession number

The 16S r RNA gene sequence was deposited in GenBank under accession number LT934541.

Deposit in a culture collection

Strain Marseille-P4641T (CSUR P 4641T) was deposited in the Collection de Souches de l’Unité des Rickettsies (CSUR = P 4641).

Conflict of interest

None declared.

Acknowledgements

The authors thank M. Lardière for English-language review. This work was funded by the Fondation Méditerranée Infection and by Malaria Research and Training Center-Département d’épidémiologie et des affections parasitaires/Unité mixte de recherche internationale (MRTC-DEAP/UMI3189) Centre national de la recherche scientifique (CNRS) and Fondation Mérieux (FMERIEUX) grants.

References

[1] Lagier JC, Khelafia S, Alou MT, Ndongo S, Dione N, Hugon P, et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016;1:16203.
[2] Togo AH, Des Robert C, Bonnet M, Fournier PE, Raoult D, Million M. ‘Veillonella massiliensis,’ a new anaerobic species isolated from human colostrum. Hum Microbiome J 2017;4:1–1.
[3] Million M, Diallo A, Raoult D. Gut microbiota and malnutrition. Microb Pathog 2017;106:127–38.
[4] Drancourt M, Bollet C, Carlao A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 2000;38:3623–30.

© 2017 The Author(s). Published by Elsevier Ltd. NMNI, 21, 122–124
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
[5] Kageyama A, Benno Y. Phylogenetic and phenotypic characterization of some Eubacterium-like isolates from human feces: description of Solo-bacterium moorei gen. nov., sp. nov. Microbiol Immunol 2000;44:223–7.

[6] Downes J, Olsvik B, Hiom SJ, Spratt DA, Cheeseman SL, Olsen I, et al. Bulleidia extructa gen. nov., sp. nov., isolated from the oral cavity. Int J Syst Evol Microbiol 2000;50:979–83.

[7] Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006;33:152–5.

[8] Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 2013;14:60.

[9] Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V, Fiebig A, et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2.