ON RELATIVE RATIONAL CHAIN CONNECTEDNESS OF
THREEFOLDS WITH ANTI-BIG CANONICAL DIVISORS IN
POSITIVE CHARACTERISTICS

YUAN WANG

Abstract. In this paper we prove two results about the rational chain connectedness
for klt threefolds with anti-big canonical divisors in the relative setting.

1. INTRODUCTION

It is widely recognized that the geometry of a higher-dimensional variety is closely
related to the geometry of rational curves on it. A classical result in the early 90s by
Campana ([Cam92]) and Kollár-Miyaoka-Mori ([KMM92]) says that smooth Fano vari-
eties are rationally connected in characteristic zero and are rationally chain connected
in positive characteristics. This was later generalized by Zhang ([Zha06]) and Hacon-
McKernan ([HM07]) in characteristic zero. More recently using the minimal model pro-
gram by Hacon-Xu ([HX15]) and Birkar ([Bir13]), Gongyo-Li-Patakfalvi-Schwede-Tanaka-
Zong ([GLP+15]) proved that projective globally F-regular threefolds in characteristic
≥ 11 are rationally chain connected and this was later generalized to log Fano type three-
fold by Gongyo-Nakamura-Tanaka ([GNT15]).

The main result in [HM07] is as follows.

Theorem 1.1. [HM07, Theorem 1.2] Let (X, Δ) be a log pair, and let $f : X \to S$ be a
proper morphism such that $-K_X$ is relatively big and $-(K_X + \Delta)$ is relatively semiample.
Let $g : Y \to X$ be any birational morphism. Then the connected components of every
fiber of $f \circ g$ are rationally chain connected modulo the inverse image of the locus of log
canonical singularities of (X, Δ).

In this paper we prove a theorem similar to Theorem 1.1 for morphisms from a klt
threefold to a variety of dimension ≥ 1. More precisely, we have

Theorem A (Theorem 3.1). Let X be a normal \mathbb{Q}-factorial threefold over an algebraically
closed field k of characteristic ≥ 7 and (X,D) a klt pair. Let $f : X \to Z$ be a proper
morphism such that $f_*\mathcal{O}_X = \mathcal{O}_Z$, $\dim(Z) = 1$ or 2, Z is klt, $-K_X$ is relatively big,
$-(K_X + D)$ is relatively semi-ample and (X_z, D_z) is klt for general $z \in Z$. Let $g : Y \to X$ be any birational morphism. Then the connected components of every fiber of $f \circ g$ are rationally chain connected.

Motivated by Theorem A, we construct a global version of rational chain connectedness for threefolds.

Theorem B (Theorem 5.1). Let X be a projective threefold over an algebraically closed field k of characteristic $p > 0$, $f : X \to Y$ a projective surjective morphism from X to a projective variety Y such that $f_*\mathcal{O}_X = \mathcal{O}_Y$. Let D be an effective \mathbb{Q}-divisor, and X_η the geometric generic fiber of f. Assume that the following conditions hold.

1. (X, D) is klt, $-K_X$ is big and f-ample, $K_X + D \sim_\mathbb{Q} 0$ and the general fibers of f are smooth.
2. $p > \frac{2}{\delta}$, where δ is the minimum non-zero coefficient of D.
3. $D = E + f^*L$ where E is an effective \mathbb{Q}-Cartier divisor such that $p \nmid \text{ind}(E)$, $(X_\eta, E|_{X_\eta})$ is globally F-split, and L is a big \mathbb{Q}-divisor on Y.
4. $\dim(Y) = 1$ or 2.

Then X is rationally chain connected.

Here $\text{ind}(E)$ means the Cartier index of E.

The main ingredients of the proofs of Theorem A and Theorem B are the minimal model program constructed in [HX15], [Bir13] and [GLP+15]; some facts, especially Theorem 2.1, in [GLP+15]; some positivity results by Patakfalvi ([Pat14]) and Ejiri ([Eji15]); a canonical bundle formula constructed in Section 4 in the spirit of the paper [PS09] by Prokhorov and Shokurov. Note that the condition (3) in Theorem B is used in order to apply the result [Eji15, Theorem 1.1] of Ejiri to deduce that $-K_Y$ is big, and to apply Theorem 4.3 when $\dim Y = 2$. This creates enough rational curves on Y. Note that by [Eji15, Example 3.4], $(X_\eta, E|_{X_\eta})$ being globally F-split is equivalent to $S^0(X_\eta, E|_{X_\eta}, \mathcal{O}_{X_\eta}) = H^0(X_\eta, \mathcal{O}_{X_\eta})$.

Note that although the proof is independent, Theorem A can be implied by Theorem 4.1 of the paper [GNT15], which was put on arXiv before this paper. The proof of [GNT15, Theorem 4.1] relies on the minimal model program in dimension 3 in positive characteristic, which is only established in characteristic ≥ 7 so far. On the other hand, Theorem B covers some cases in characteristic < 7. In particular it does not rely on the minimal model program and is not implied by [GNT15, Theorem 4.1].

Acknowledgements. The author would like to express his gratitude to Christopher Hacon for suggesting this direction of research and a lot of valuable suggestions, comments, support and encouragement. He would like to thank Karl Schwede for answering many questions about F-singularities. He also thanks Omprokash Das, Honglu Fan and Zsolt Patakfalvi for helpful discussions. Finally he would like to thank the referee for many useful suggestions.
2. Preliminaries

We work over an algebraically closed field k of characteristic $p > 0$.

2.1. Preliminaries on rational connected varieties and the minimal model program.

Definition 2.1. For a variety X and a \mathbb{Q}-Weil divisor on X such that $K_X + \Delta$ is \mathbb{Q}-Cartier. Let $f : Y \to X$ be a log resolution of (X, Δ) and we write

$$K_Y = f^*(K_X + \Delta) + \sum a_i E_i$$

where E_i is a prime divisor. We say that (X, Δ) is

- sub Kawamata log terminal (sub-klt for short) if $a_i > -1$ for any i.
- Kawamata log terminal (klt for short) if $a_i > -1$ for any i and $\Delta \geq 0$.
- log canonical if $a_i \geq -1$ for any i and $\Delta \geq 0$.

Definition 2.2. [Kol96, IV.3.2] Suppose that X is a variety over k.

1. We say that X is rationally chain connected (RCC) if there is a family of proper and connected algebraic curves $g : U \to Y$ whose geometric fibers have only rational components and there is a cycle morphism $u : U \to X$ such that $u(2) : \overline{U \times_k U} \to X \times_k X$ is dominant.
2. We say that X is rationally connected (RC) if (1) holds and moreover the geometric fibers of g in (1) are irreducible.

Proposition 2.3. Let X be a klt \mathbb{Q}-factorial threefold over an algebraically closed field k and $\text{char}(k) \geq 7$. Let $g : W \to X$ be a log resolution and assume that $K_W + E = g^*K_X + B$, where E and B are exceptional divisors and the coefficients in E are all 1. Then relative minimal model for (W, E) over X exists. Denote this process by

$$W = W_0 \to W_1 \to \cdots \to W_N = W'.$$

Then we actually have $W' = X$. Moreover if we have a morphism $h : X \to Y$ such that every fiber of h is RCC, then every fiber of $h \circ g$ is RCC.

Proof. The existence of this minimal model program is by [GLP+15, Theorem 3.2]. So we have a morphism $g' : W' \to X$ and we want to show that g' is the identity. Denote the strict transform of E by E', then $K_{W'} + E' = g'^*K_X + B'$ for some exceptional \mathbb{Q}-divisor B'. By construction of the minimal model program we know that $g'^*K_X + B'$ is nef over X which means that B' is g'-nef and since X is klt the support of B' is the whole exceptional locus of g'. So we can get that $B' = 0$ by negativity lemma, and since X is \mathbb{Q}-factorial we will get $W' = X$.

The proof of the last statement follows the proof of [GLP+15, Proposition 3.6]. Without loss of generality we can do a base change and assume that the base field k is uncountable.
Define F in the following way: if f_i is a divisorial contraction, then let $E_0 = E$, $E_{i+1} = f_{i,*}E_i$ and F an arbitrary component of E_i; if f_i is a flip and C is any flipping curve then let F be a component of E_i that contains C. Let $K_F + \Delta_F := \left(K_{W_i} + E_i - \frac{1}{n}(E_i - F) \right) |_{F}$ where $n \gg 0$. By assumption $K_{W_i} + E_i - \frac{1}{n}(E_i - F)$ is plt, then by adjunction $K_F + \Delta_F$ is klt, hence by [Tan14, Theorem 14.4] F is \mathbb{Q}-factorial. We also know that $-(K_{W_i} + E_i)$ is f_i-ample by assumption, then $-(K_F + \Delta_F)$ is ample. Moreover by [Pro01, Corollary 2.2.8] the coefficients of Δ_F are in the standard set $\{1 - \frac{1}{n} | n \in \mathbb{N}\}$. Let \tilde{F} be the normalization of F. Then by [HX15, Theorem 3.1] we know that $(\tilde{F}, \Delta_{\tilde{F}})$ is strongly F-regular and by [HX15, Theorem 4.1] F is a normal surface.

Next we consider three cases.

Case 1: If f_i is a divisorial contraction and the exceptional divisor is contracted to a point, then since $-(K_F + \Delta_F)$ is ample, by [Kaw94, Lemma 2.2] F is a rational surface, in particular it is rationally connected.

Case 2: If f_i is a divisorial contraction and the exceptional divisor is contracted to a curve, then let $p : F \to B$ be the Stein factorization of $f_i|_{F}$. By assumption $-(K_F + \Delta_F)$ is f_i-ample, so it is p-ample. Then for a general fiber D of p we have

$$(K_F + D) \cdot D = (K_F + \Delta_F + D - \Delta_F) \cdot D = (K_F + \Delta_F) \cdot D - \Delta_F \cdot D < 0.$$

Here D is reduced and irreducible by [Bäd01, Theorem 7.1]. Hence by [Tan14, Theorem 5.3] $D \cong \mathbb{P}^1$. Therefore every component of every fiber of f_i is a rational curve.

Case 3: If f_i is a flip, then let C be an arbitrary flipping curve. By assumption we have $(K_F + \Delta_F) \cdot C < 0$, $C^2 < 0$ and $0 \leq \operatorname{coeff}_{C} \Delta F < 1$, so $(K_F + C) \cdot C < 0$. Again by [Tan14, Theorem 5.3] $C \cong \mathbb{P}^1$.

We denote a fiber of h over $y \in Y$ by $F_{X,y}$. There is a morphism from W_i to Y for every i, and we denote the fiber of this morphism over y as $F_{W_i,y}$. Then there is a rational map $F_{W_i,y} \dashrightarrow F_{W_{i+1},y}$. From the above Case 1-3 we see that compared to $F_{W_i,y}$, there are only rational curves or a rational surface generated in $F_{W_{i+1},y}$. So the RCC-ness of $F_{W_{i+1},y}$ implies the RCC-ness of $F_{W_i,y}$. By assumption $F_{X,y}$ is RCC, so $F_{W,y}$ is RCC.

Proposition 2.4. Let X be a klt \mathbb{Q}-factorial threefold over an algebraically closed field k and char(k) ≥ 7. Let $f : X \to Y$ be a morphism from X to a normal surface Y. Suppose we run a K_X-minimal model program and it terminates at $g : X' \to Y$. If every fiber of g is RCC then every fiber of f is RCC.

Proof. This can be easily deduced from Proposition 2.3 by taking a common resolution of X and X'. The proof of [GLP⁺15, Proposition 3.6] works as well.

2.2. Preliminaries on F-singularities. In this article, for a proper variety X, a \mathbb{Q}-divisor Δ and the line bundle M we will use the concepts of strongly F-regular, the non F-pure ideal $\sigma(X, \Delta)$ and $S^0(X, \sigma(X, \Delta) \otimes M)$. The definitions of these can be found
in many papers related to F-singularities (e.g. [HX15]). For a pair (X, Δ) where Δ is a \mathbb{Q}-Cartier divisor we also follow the definition of globally F-split in [Eji15].

Lemma 2.5. Let X be a surface, D an effective \mathbb{Q}-divisor on X, $f : X \to C$ a morphism from X to a smooth curve C, and (X_c, D_c) is a strongly F-regular pair for general $c \in C$. Assume that $-K_X$ is big, $K_X + D \sim_{\mathbb{Q}} 0$, then $C \cong \mathbb{P}^1$.

Proof. By Kodaira’s Lemma we can write $D \sim_{\mathbb{Q}} \epsilon f^*H + E$ where H is an ample \mathbb{Q}-divisor on C, $0 < \epsilon \in \mathbb{Q}$, E is an effective \mathbb{Q}-divisor on X and (X_c, E_c) is also strongly F-regular for general $c \in C$ (since X_c is a curve). Suppose that C is not isomorphic to \mathbb{P}^1. We know that $K_{X/C} + E \sim_{\mathbb{Q}} f^*(-K_C - \epsilon H)$ is f-nef and $K_{X_c} + E_c$ is semi-ample for general $c \in C$, so by [Pat14, Theorem 3.16], $K_{X/C} + E = K_X - f^*K_C + E$ is nef. Since we have assumed that $g(C) > 0$ we have that $K_X + E$ is nef. However this is impossible since $K_X + E \sim_{\mathbb{Q}} -\epsilon f^*H$ where H is ample and $\epsilon > 0$. \qed

2.3. **Weak positivity.** Let Y be a non-singular projective variety, \mathcal{F} a torsion-free coherent sheaf on Y. We take $i : \hat{Y} \to Y$ to be the biggest open subvariety such that $\mathcal{F}|_{\hat{Y}}$ is locally free. Let $\hat{S}^k(\mathcal{F}) := i_*S^k(i^*\mathcal{F})$.

Definition 2.6. [Vie83, Definition 1.2] We call \mathcal{F} weakly positive, if there is an open subset $U \subseteq Y$ such that for each ample line bundle \mathcal{H} on Y and every positive number α there exists some positive number β such that $\hat{S}^{\alpha \cdot \beta}(\mathcal{F}) \otimes \mathcal{H}^\beta$ is generated by global sections over U.

Lemma 2.7. Weakly positive line bundles are nef.

Proof. This easily follows from Definition 2.6. \qed

3. Relative rational chain connectedness

In this section we prove the following

Theorem 3.1. Let X be a normal \mathbb{Q}-factorial threefold over an algebraically closed field k of characteristic ≥ 7 and (X, D) a klt pair. Let $f : X \to Z$ be a proper morphism such that $f_*\mathcal{O}_X = \mathcal{O}_Z$, $\dim(Z) = 1$ or 2, Z is klt, $-K_X$ is relatively big, $-(K_X + D)$ is relatively semi-ample and (X_z, D_z) is klt for general $z \in Z$. Let $g : Y \to X$ be any birational morphism. Then the connected components of every fiber of $f \circ g$ are rationally chain connected.

Proof. First we observe that (X_z, D_z) being klt implies that X_z is normal (in particular reduced) and irreducible.

Next we prove that if every fiber of f is RCC, then every fiber of $f \circ g$ is RCC. We take a log resolution of Y and denote it by $p : Y' \to Y$ and let $q = g \circ p$. If we have $K_{Y'} = q^*K_X + \tilde{B}$ then $K_{Y'} - \tilde{B} = q^*K_X$ and the coefficients of $-\tilde{B}$ are < 1. Then we can
add another effective divisor to make all the coefficients 1, and we denote this divisor by \(\tilde{E} \). Now we run a relative \((K_{Y'} + \tilde{E})\)-MMP of \(Y' \) over \(X \). By Proposition 2.3 we see that if every fiber of \(f \) is RCC then every fiber of \(f \circ g \circ p \) is RCC, hence every fiber of \(f \circ g \) is RCC.

Therefore it suffices to show that every fiber of \(f \) is RCC. We consider the cases of \(\dim(Z) = 2 \) and \(\dim(Z) = 1 \) respectively.

Case 1: \(\dim(Z) = 2 \).

If \(\dim(Z) = 2 \) then a general fiber of \(f \) being normal and \(-K_X\) being relatively big implies that a general fiber of \(f \) is a smooth rational curve. Next we run a relative minimal model program over \(Z \) and denote this process as:

\[
X = X_0 \xrightarrow{f_0} X_1 \xrightarrow{f_1} \cdots \xrightarrow{f_{N-1}} X_n = X'.
\]

Since \(-K_X\) is relatively big we end up with a Mori fiber space \(X' \xrightarrow{h} Z' \xrightarrow{p} Z \) where \(Z' \) is also a surface. Then the general fibers of \(h \) are rational curves. Moreover since \(p_*O_{Z'} = O_Z \) we know that \(p \) is birational.

Now we prove that \(h \) is equidimensional. Suppose that this is not the case, then there is a fiber \(\tilde{F} \) of \(h \) over a point \(\tilde{z} \in Z' \) which contains a 2-dimensional irreducible component. If \(\tilde{F} \) is reducible then let \(\tilde{F}_1 \subseteq \tilde{F}_2 \) such that \(\tilde{F}_1 \cdot \tilde{C}_2 > 0 \). On the other hand if we take a general point \(z' \in Z' \) then \(h^{-1}(z') \) is an irreducible curve and \(h^{-1}(z') \cdot \tilde{F}_2 = 0 \). This is a contradiction to the fact that \(\rho(X'/Z') = 1 \). If \(\tilde{F} \) is irreducible, by Bertini’s Theorem we have a very ample divisor \(H \subseteq X' \) such that \(H \cap \tilde{F} \) is an irreducible curve which we denote by \(\tilde{C} \). We do the Stein factorization of \(h|_H \) and denote the process as:

\[
H \xrightarrow{h_1} Z'' \xrightarrow{h_2} Z',
\]

then \(h_1 \) is birational and \(\tilde{C} \) is an exceptional curve of \(h_1 \). After possibly replacing \(Z'' \) by its normalization we can assume that \(Z'' \) is normal. Now \(\tilde{F} \cdot \tilde{C} \) is equal to \(\tilde{C}^2 \) viewed as the self-intersection of \(\tilde{C} \) in \(H \), so by the Negativity Lemma it is \(< 0 \). On the other hand we can still take a general point \(z' \in Z' \) as above such that \(h^{-1}(z') \cdot \tilde{F} = 0 \). This is also a contradiction to the fact that \(\rho(X'/Z') = 1 \).

Since \(h \) is equidimensional, by [Deb01, Lemma 3.7] the components of every fiber of \(h \) are rational curves. Then by Proposition 2.4 every fiber of \(f \) is RCC.

Case 2: \(\dim(Z) = 1 \).

Without loss of generality we can do a base change and assume that the base field \(k \) is uncountable. By passing to the normalization of \(Z \) we can assume that \(Z \) is smooth. Then since every closed point of \(Z \) is a Cartier divisor, every fiber of \(f \) is also Cartier, hence \(f \) is equidimensional.
We first show that the general fibers of f are rationally chain connected. Let F be a general fiber of f. Since we assume that $(F, D|_F)$ is klt, by adjunction we know that

$$K_X|_F \equiv_{	ext{num}} (K_X + F)|_F = K_F + \text{Diff}_F(0),$$

where $\text{Diff}_F(0) \geq 0$ (cf. [Kol92, Proposition-Definition 16.5]). So $-(K_F + \text{Diff}_F(0))$, hence $-K_F$, is big. Therefore $\kappa(F) = -\infty$ and F is birationally ruled by classification of surfaces. To prove that the general fibers of f are RCC it suffices to prove that F is rational. By assumption $-(K_F + D|_F) = -(K_X + D)|_F$ is semiample, so there exists an effective \mathbb{Q}-divisor H such that $H \sim_{\mathbb{Q}} -(K_F + D|_F)$ and $(F, D|_F + H)$ is klt. We define $\Delta := D|_F + H$. Let $\pi : F' \to F$ be a minimal resolution of $(F, \text{Diff}_F(0))$, then F' maps to a ruled surface F'' over a smooth curve B via a sequence of blow-downs and we denote the morphism by ψ. The situation is as follows.

$$\pi \quad \psi$$

Since we have that (F, Δ) is klt, by [KM98, Thmorem 4.7] π and ψ only contract \mathbb{P}^1s. So F is RCC if and only if F'' is RCC. We define Δ'' on F'' via the following

$$K_{F''} + \Delta'' = \psi_*\pi^*(K_F + \Delta).$$

Then (F, Δ) being klt implies that (F'', Δ'') is klt.

We denote a general fiber of q by R. By construction $R \cong \mathbb{P}^1$, so we know that $(R, \Delta''|_R)$ is klt and hence strongly F-regular. Then by applying Lemma 2.5 on F'' we know that $B = \mathbb{P}^1$. So F is rational. Therefore we have proven that the general fibers of f are RCC.

Since we have assumed that the base field k is uncountable, by [Kol96, Ch. IV Corollary 3.5.2] we know that every fiber of f is RCC.

4. A Canonical Bundle Formula for Threefolds in Positive Characteristics

In this section following the idea of the proof of [PS09] we construct a canonical bundle formula in characteristic p for a morphism from a threefold to a surface, whose general fibers are \mathbb{P}^1. There are similar constructions in [CTX13, 6.7] and [DH15, Theorem 4.8].

Let $\overline{M}_{0,n}$ be the moduli space of n-pointed stable curves of genus 0, $f_{0,n} : \mathcal{U}_{0,n} \to \overline{M}_{0,n}$ the universal family, and $\mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_n$ the sections of $f_{0,n}$ which correspond to the marked points. Let $d_j (j = 1, 2, ..., n)$ be the rational numbers such that $0 < d_j \leq 1$ for all j, $\sum_j d_j = 2$ and $D = \sum_j d_j \mathcal{P}_j$.
Lemma 4.1. [DH15, Lemma 4.6][Kaw97, Theorem 2]

1. There exists a smooth projective variety $\mathcal{U}_{0,n}^*$, a \mathbb{P}^1-bundle $g_{0,n} : \mathcal{U}_{0,n}^* \to \overline{\mathcal{M}}_{0,n}$, and a sequence of blowups with smooth centers

\[\overline{\mathcal{U}}_{0,n} = \mathcal{U}^{(1)} \xrightarrow{\sigma_2} \mathcal{U}^{(2)} \xrightarrow{\sigma_3} \ldots \xrightarrow{\sigma_{n-2}} \mathcal{U}^{(n-2)} = \mathcal{U}_{0,n}^* \]

2. Let $\sigma : \overline{\mathcal{U}}_{0,n} \to \mathcal{U}_{0,n}^*$ be the induced morphism, and $\mathcal{D}^* = \sigma_* \mathcal{D}$. Then $K_{\overline{\mathcal{U}}_{0,n}} + \mathcal{D} - \sigma^*(K_{\mathcal{U}_{0,n}^*} + \mathcal{D}^*)$ is effective.

3. There exists a semi-ample \mathbb{Q}-divisor \mathcal{L} on $\overline{\mathcal{M}}_{0,n}$ such that

\[K_{\mathcal{U}_{0,n}^*} + \mathcal{D}^* \sim_{\mathbb{Q}} g_{0,n}^*(K_{\overline{\mathcal{M}}_{0,n}} + \mathcal{L}). \]

Definition 4.2. Let $f : X \to Y$ be a surjective proper morphism between two normal varieties and $K_X + D \sim_{\mathbb{Q}} f^* L$, where D is a boundary divisor on X and L is a \mathbb{Q}-Cartier \mathbb{Q}-divisor on Y. Let (X, D) be log canonical near the generic fiber of f, i.e., $(f^{-1}U, D|_{f^{-1}U})$ is log canonical for some Zariski dense open subset $U \subseteq Y$. We define

\[D_{\text{div}} := \sum (1 - c_Q)Q, \]

where $Q \subset Z$ are prime Weil divisors on Z and

\[c_Q = \sup \{ c \in \mathbb{R} : (X, D + cf^* Q) \text{ is log canonical over the generic point } \eta_Q \text{ of } Q \}. \]

Next we define

\[D_{\text{mod}} := L - K_Y - D_{\text{div}}, \]

so $K_X + D = f^*(K_Y + D_{\text{div}} + D_{\text{mod}})$.

Theorem 4.3. Let $f : X \to Y$ be a proper surjective morphism, where X is a normal threefold and Y is a normal surface over an algebraically closed field k of characteristic $p > 0$. Assume that $Q = \sum_i Q_i$ is a divisor on Y such that f is smooth over $(Y - \text{Supp}(Q))$ with fibers isomorphic to \mathbb{P}^1. Let $D = \sum_i d_i D_i$ be a \mathbb{Q}-divisor on X where $d_i = 0$ is allowed, which satisfies the following conditions:

1. $(X, D \geq 0)$ is klt on a general fiber of f.
2. Suppose $D = D^h + D^v$ where D^h is the horizontal part and D^v is the vertical part of D. Then $p = \text{char}(k) > \frac{2}{5}$, where δ is the minimum non-zero coefficient of D^h.
3. $K_X + D \sim_{\mathbb{Q}} f^*(K_Y + M)$ for some \mathbb{Q}-Cartier divisor M on Y.

Then we have that D_{mod} is \mathbb{Q}-linearly equivalent to an effective \mathbb{Q}-divisor. Here D_{mod} is defined as in Definition 4.2. Moreover if (X, D) is klt then there exists an effective \mathbb{Q}-divisor $\overline{\mathcal{D}}_{\text{mod}}$ on Y such that $\overline{\mathcal{D}}_{\text{mod}} \sim_{\mathbb{Q}} D_{\text{mod}}$ and $(Y, D_{\text{div}} + \overline{\mathcal{D}}_{\text{mod}})$ is klt.

Proof. First we reduce the problem to the case where all components of D^h are sections. Let D_{i_0} be a horizontal component of D and $D_{i_0} = D_{i_0}^h \to Y$ be the Stein factorization of $f|_{D_{i_0}}$. Let $Y' \to D_{i_0}^h$ be the normalization of $D_{i_0}^h$, then $Y' \to Y$ is a finite surjective
morphism of normal surfaces. Let X' be the normalization of the component of $X \times_Y Y'$ dominating Y.

\[
\begin{array}{ccc}
X & \xrightarrow{\nu'} & X' \\
f & & f' \\
Y & \xleftarrow{\nu} & Y'
\end{array}
\]

Let $m = \deg(\mu : Y' \to Y)$ and l be a general fiber of f. Then

\begin{equation}
(4.1) \quad m = D_i \cdot l \leq \frac{1}{d_i}(D \cdot l) = \frac{1}{d_i}(-K_X \cdot l) = \frac{2}{d_i} \leq \frac{2}{\delta} < \text{char}(k).
\end{equation}

Therefore ν is a separable and tamely ramified morphism.

Let D' be the log pullback of D under ν', i.e.

\[K_{X'} + D' = \nu'^*(K_X + D).\]

More precisely by [Kol92, 20.2] we have

\[D' = \sum_{i,j} d'_{ij}D'_{ij}, \quad \nu'(D'_{ij}) = D_i, \quad d'_{ij} = 1 - (1 - d_i)e_{ij},\]

where e_{ij} is the ramification indices along D'_{ij}.

By construction X dominates Y. Also, since ν is étale over a dense open subset of Y, say $\nu^{-1}U \to U$, and étale morphisms are stable under base change, $(f' \circ \nu)^{-1}U \to f^{-1}U$ is étale. Thus the ramification locus Λ of ν' does not contain any horizontal divisor f', i.e. $f'(\Lambda) \neq Y'$. Therefore D' is a boundary near the generic fiber of f', i.e. D'^h is effective. We observe that the coefficients of D'^h can be computed by intersecting with a general fiber of $f' : X' \to Y'$, hence they are equal to the coefficient of $D^h \subseteq X$. Thus the condition $p > \frac{2}{\delta}$ remains true for D' on X'.

After finitely many such base changes we get a family $f'' : X'' \to Y''$, such that all of the horizontal components of D'' are rational sections of f''. Here D'' is the log pullback of D via the induced finite morphism $\alpha : X'' \to X$, i.e. $K_{X''} + D'' = \alpha^*(K_X + D)$.

By construction of $\overline{\mathcal{M}}_{0,n}$ there is a generically finite rational map $Y'' \dashrightarrow \overline{\mathcal{M}}_{0,n}$. Let $\beta_0 : \tilde{Y} \to Y''$ be a morphism that resolves the indeterminacies of $Y'' \to \overline{\mathcal{M}}_{0,n}$ and \tilde{X} the normalization of $X'' \times_{Y''} \tilde{Y}$. We have a morphism $\tilde{Y} \to \overline{\mathcal{M}}_{0,n}$ and let $\tilde{X} = \tilde{Y} \times_{\overline{\mathcal{M}}_{0,n}} \overline{U}_{0,n}$. Let X^\sharp be a common resolution of \tilde{X} and \hat{X}. We have the following diagram:
Let D^\sharp and \hat{D} be \mathbb{Q}-divisors on X^\sharp and \hat{X} respectively, defined by

$$K_{X^\sharp} + D^\sharp = \pi^*(K_X + D)$$

and

$$K_{\hat{X}} + \hat{D} = \mu_* (K_{X^\sharp} + D^\sharp).$$

We also define D''_{mod} and D''_{div} on Y'' for (X'', D'') as in Definition 4.2, such that

$$K_{X''} + D'' = f''_* (K_{Y''} + D''_{\text{mod}} + D''_{\text{div}}),$$

and we define \hat{D}_{mod} and \hat{D}_{div} on \hat{Y} in a similar way. Since $K_{X^\sharp} + D^\sharp$ is the pullback of some \mathbb{Q}-divisor from the base \hat{Y} we get

$$K_{X^\sharp} + D^\sharp = \mu^*(K_{\hat{X}} + \hat{D}).$$

Since D_{div} does not depend on the birational modification of the family (see [PS09, Remark 7.3]), we will define it with respect to $\hat{f} : \hat{X} \to \hat{Y}$.

Since $\hat{\phi}$ is generically finite and D^* is horizontal it follows that $\hat{\phi}^* D^*$ is horizontal too. Since \hat{D}^h is also horizontal one sees that

$$(4.2) \quad \hat{D}^h = \hat{\phi}^* D^*.$$

From the construction of $\sigma : \Omega_{0,n} \to U_{0,n}^*$ we see that $(F, D^*|_F)$ is log canonical for any fiber F of $g_{0,n} : U_{0,n}^* \to \Omega_{0,n}$. Since the fibers of $\hat{f} : \hat{X} \to \hat{Y}$ are isomorphic to the fiber of $g_{0,n}$, $(\hat{F}, \hat{D}^h|_{\hat{F}})$ is also log canonical, where \hat{F} is any fiber of \hat{f}. Let \hat{D}^u be a component of \hat{D}^v and η the generic point of $\hat{f}(\hat{D}^u)$. Then by inversion of adjunction we know that $(\hat{X}_\eta, (\hat{D}^v + \hat{D}^h)|_{\hat{X}_\eta})$ is log canonical. Since the fibers of \hat{f} are reduced, the log canonical threshold of $(\hat{X}, \hat{D}; \hat{D}^u)$ over the generic point of \hat{D}^u is $(1 - \text{coeff} \hat{D}^u)$. Hence we get

$$\hat{D}^v = \hat{f}^* \hat{D}_{\text{div}}. \quad \text{Note that the coefficients of } \hat{D}^v \text{ can be } > 1.$$

By definition of \hat{D}_{mod} we have

$$(4.3) \quad K_{X} + \hat{D}^h \sim_{\mathbb{Q}} \hat{f}^*(K_{\hat{Y}} + \hat{D}_{\text{mod}}).$$

Then we have

$$(4.4) \quad K_{X} + \hat{D}^h - \hat{f}^*(K_{\hat{Y}} + \phi_0^* \mathcal{L}) = K_{X/\hat{Y}} + \hat{D}^h - \hat{\phi}^* K_{U_{0,n}^*/\Omega_{0,n}} - \hat{\phi}^* D^* \sim_{\mathbb{Q}} 0,$$
where the first equality follows from (4.3) and Lemma 4.1 (3), and the second relation from (4.2) and [Liu02, Chapter 6 Theorem 4.9 (b) and Example 3.18].

Since \(\hat{f} \) has connected fibers, by (4.3) and (4.4) and projection formula we get
\[
\hat{D}_{\text{mod}} \sim_{\mathbb{Q}} \phi_0^* \mathcal{L},
\]
i.e. \(\hat{D}_{\text{mod}} \) is semi-ample.

Now since \(\alpha_0 : Y'' \to Y \) is a composition of finite morphisms of degree strictly less than \(\text{char}(k) \) and \(\beta_0 \) is a birational morphism, by [Amb99, Theorem 3.2 and Example 3.1] we get
\[
K_{Y''} + D_{\text{div}}'' \sim_{\mathbb{Q}} \alpha_0^*(K_Y + D_{\text{div}})
\]
and
\[
K_Y + \hat{D}_{\text{div}} \sim_{\mathbb{Q}} \beta_0^*(K_{Y''} + D_{\text{div}}'').
\]
So \(\alpha_0^* D_{\text{mod}} \sim_{\mathbb{Q}} D_{\text{mod}}'' \), and \(\beta_0^* D_{\text{mod}}'' \sim_{\mathbb{Q}} \hat{D}_{\text{mod}} \). By the projection formula we have
\[
D_{\text{mod}}'' \sim_{\mathbb{Q}} \beta_0^* \hat{D}_{\text{mod}}.
\]

Then since \(\alpha_0 \) is finite,
\[
\psi_{0, *} \hat{D}_{\text{mod}} \sim_{\mathbb{Q}} \alpha_0^* \beta_0^* \hat{D}_{\text{mod}} \sim_{\mathbb{Q}} \alpha_0^* \alpha_0^* \hat{D}_{\text{mod}} \sim_{\mathbb{Q}} \alpha_0^* \alpha_0^* \alpha_0^* D_{\text{mod}} \sim_{\mathbb{Q}} D_{\text{mod}}.
\]

Here we view the push-forward through \(\alpha_0 \) as push-forward of cycles. Therefore \(D_{\text{mod}} \) is \(\mathbb{Q} \)-linearly equivalent to an effective divisor.

Next we prove the second statement. Since \(\alpha \) is finite, by [Kol13, Corollary 2.42] we know that \((X'', D'')\) is klt, and as \(\beta, \lambda \) and \(\mu \) are birational we know that \((X, \hat{D})\) is sub-klt, in particular \(\hat{D}'' \) has coefficients \(< 1 \). Since \(\hat{f} \) is a \(\mathbb{P}1 \) fibration and \((\hat{Y}, \hat{D}_{\text{div}})\) is log smooth we have that \((\hat{Y}, \hat{D}_{\text{div}})\) is sub-klt. By construction \(\hat{D}_{\text{mod}} \) is semi-ample, so by [Tan15, Theorem 1] we know that \((\hat{Y}, \hat{D}_{\text{div}} + \hat{D}_{\text{mod}})\) is sub-klt up to \(\mathbb{Q} \)-linear equivalence. Then \(K_{Y''} + D_{\text{mod}}'' + D_{\text{div}}'' \sim_{\mathbb{Q}} \beta_0^*(K_{\hat{Y}} + \hat{D}_{\text{div}} + \hat{D}_{\text{mod}}) \) is also sub-klt. Finally using [Kol13, Corollary 2.42] again and the fact that \(D_{\text{mod}} + D_{\text{div}} \geq 0 \) we get that \((Y, D_{\text{mod}} + D_{\text{div}})\) is klt.

5. Global rational chain connectedness

In this section we prove the following theorem.

Theorem 5.1. Let \(X \) be a projective threefold over an algebraically closed field \(k \) of characteristic \(p > 0 \), \(f : X \to Y \) a projective surjective morphism from \(X \) to a projective variety \(Y \) such that \(f_* \mathcal{O}_X = \mathcal{O}_Y \). Let \(D \) be an effective \(\mathbb{Q} \)-divisor, and \(X_\eta \) the geometric generic fiber of \(f \). Assume that the following conditions hold.

1. \((X, D)\) is klt, \(-K_X\) is big and \(f \)-ample, \(K_X + D \sim_{\mathbb{Q}} 0 \) and the general fibers of \(f \) are smooth.
2. \(p > \frac{2}{\delta} \), where \(\delta \) is the minimum non-zero coefficient of \(D \).
(3) \(D = E + f^*L\) where \(E\) is an effective \(\mathbb{Q}\)-Cartier divisor such that \(p \nmid \text{ind}(E)\),
\((X_\eta,E|_{X_\eta})\) is globally \(F\)-split, and \(L\) is a big \(\mathbb{Q}\)-divisor on \(Y\).

(4) \(\dim(Y) = 1\) or \(2\).

Then \(X\) is rationally chain connected.

Remark 5.2. The smoothness of the general fibers of \(f\) holds in characteristic \(p \geq 11\) when \(\dim Y = 1\) by \([\text{Hir04, Theorem 5.1 (2)}]\), and in characteristic \(p \geq 5\) when \(\dim Y = 2\) by adjunction and a theorem of Tate (cf. \([\text{Lie13, Theorem 5.1}]\)).

Proposition 5.3. Let \(f : X \to Y\) be a projective surjective morphism between normal varieties with \(f_*\mathcal{O}_X = \mathcal{O}_Y\). Assume that the following conditions hold.

1. The general fibers of \(f\) are isomorphic to \(\mathbb{P}^1\).
2. \(Y\) is rationally chain connected.

Then \(X\) is rationally chain connected.

Proof. The proof is essentially the same as \([\text{GLP}^+15, \text{Lemma 3.12 and Proposition 3.13}]\). We take two general points \(x_1, x_2 \in X\) and let \(y_1 = f(x_1), y_2 = f(x_2)\), by construction \(f^{-1}(y_1) \cong f^{-1}(y_2) \cong \mathbb{P}^1\). By assumption \(y_1\) and \(y_2\) can be connected by a chain of rational curves, say \(C_1, C_2, ..., C_n\). Let \(\overline{C_i} \to C_i\) be the normalization for each \(C_i\), \(S_i := f^{-1}(C_i)\), \(\overline{S_i} := S_i \times_{\overline{C_i}} C_i\) and \(g_i : \overline{S_i} \to S_i\) the induced morphisms. Now the morphism \(\overline{S_i} \to \overline{C_i}\) is a flat projective morphism whose general fibers are \(\mathbb{P}^1\), by \([\text{dJS03, Theorem}]\) it has a section which we denote by \(\tilde{C_i}\). Then \(x_1\) and \(x_2\) is connected by \(f^{-1}(y_1), f^{-1}(y_2), g_i(\tilde{C_i})\) and the fibers of \(f\) over the intersection points of \(\{C_i\}\), which is a union of rational curves by \([\text{Deb01, Lemma 3.7}]\). \(\square\)

Proof of Theorem 5.1. We first prove the following lemma.

Lemma 5.4. Under the condition of Theorem 5.1, \(-K_Y\) is big.

Proof. By assumption \(m(K_{X_\eta} + E|_{X_\eta}) \sim_{\mathbb{Q}} 0\) for sufficiently large and divisible \(m\), in particular the \(k(\eta)\)-algebra \(\bigoplus_{m \geq 0} H^0(am(K_{X_\eta} + E|_{X_\eta}))\) is finitely generated. On the other hand since \((X_\eta,E|_{X_\eta})\) is globally \(F\)-split we have that

\[S^0(X_\eta,\sigma(X_\eta,E|_{X_\eta}) \otimes \mathcal{O}_{X_\eta}(m(K_{X_\eta} + E|_{X_\eta}))) = H^0(X_\eta,\mathcal{O}_{X_\eta}(m(K_{X_\eta} + E|_{X_\eta}))).\]

Here we would like to mention that for a line bundle \(M\) and a \(\mathbb{Q}\)-Cartier divisor \(\Delta\), the notation \(S^0(X,\Delta, M)\) is the same as the standard notation \(S^0(X,\sigma(X,\Delta) \otimes M)\) (cf. \([\text{HX15, between Lemma 2.2 and Proposition 2.3}]\)). Therefore by \([\text{Eji15, Theorem 1.1}]\) we know that

\[f_*\mathcal{O}_X(am(K_{X/Y} + E)) \cong f_*\mathcal{O}_X(f^*(-am(K_Y + L))) = \mathcal{O}_Y(-am(K_Y - L))\]

is weakly positive for \(m \gg 0\). By Lemma 2.7, \(-K_Y - L\) is nef, so \(-K_Y\) is big. \(\square\)
Next we consider the following two cases.

Case 1: Y is 1-dimensional.

After possibly taking the normalization of Y we can assume that Y is smooth. Then Lemma 5.4 implies that $g(Y) = 0$, i.e. $Y \cong \mathbb{P}^1$. Let F be a general fiber of f. By assumption F is smooth and K_F is anti-ample, hence F is separably rationally connected. By [dJS03, Theorem] we know that f has a section which we denote by s. Then $s(Y)$ is a rational curve in X which dominates Y. Therefore we get that X is rationally chain connected.

Case 2: Y is 2-dimensional.

By assumption, a general fiber of f is isomorphic to \mathbb{P}^1. Now by Lemma 5.4 we know that $-K_Y$ is big. On the other hand since (X, D) is klt, by Theorem 4.3 there is a nonzero effective \mathbb{Q}-Cartier divisor M on Y such that $K_Y + M \sim_{\mathbb{Q}} 0$ and (Y, M) is klt. Then by the proof of Case 2 of Theorem 3.1 we know that Y is rational. Finally by Proposition 5.3 we get that X is rationally chain connected.

□

References

[Amb99] F. Ambro. The adjunction conjecture and its applications. *Thesis (Ph.D.)–The Johns Hopkins University*, 1999.

[Båd01] L. Bădescu. *Algebraic Surfaces*. Springer-Verlag, New York, 2001.

[Bir13] C. Birkar. Existence of flips and minimal model for 3-folds in char p. *to appear in Ann. Sci. École Norm. Sup.*, 2013.

[Cam92] F. Campana. Connexité rationnelle de variétés de Fano. *Ann. Sci. École Norm. Sup.*, 25(5):539–545, 1992.

[Cor07] A. Corti, editor. *Flips for 3-folds and 4-folds*. 35. Oxford University Press, Oxford, 2007.

[CTX13] P. Cascini, H. Tanaka, and C. Xu. On base point freeness in positive characteristic. *arXiv: 1305.3502*, 2013.

[Deb01] O. Debarre. *Higher-Dimensional Algebraic Geometry*. Springer-Verlag, New York, 2001.

[DH15] O. Das and C. D. Hacon. On the Adjunction Formula for 3-folds in characteristic $p > 5$. *arXiv: 1505.05903*, 2015.

[dJS03] A. J. de Jong and J. Starr. Every rationally connected variety over the function field of a curve has a rational point. *Amer. J. Math.*, 125(3):567–580, 2003.

[Eji15] S. Ejiri. Weal positivity theorem and Frobenius stable canonical rings of geometric generic fibers. *arXiv: 1508.00484v1*, 2015.

[GLP+15] Y. Gongyo, Z. Li, Z. Patakfalvi, K. Schwede, H. Tanaka, and H. Zong. On rational connectedness of globally F-regular threefolds. *Adv. in Math.*, 280:47–78, 2015.

[GNT15] Y. Gongyo, Y. Nakamura, and H. Tanaka. Rationa points on log Fano threefolds over a finite field. *arXiv: 1512.05003v1*, 2015.

[Hir04] M. Hirokado. Deformations of rational double points and simple elliptic singularities in characteristic p. *Osaka J. Math.*, 41(3):605–616, 2004.

[HM07] C. D. Hacon and J. McKernan. On Shokurov’s rational connectedness conjecture. *Duke Math. J.*, 138(1), 2007.
[HP15] C. D. Hacon and Z. Patakfalvi. On the characterization of abelian varieties in characteristic $p > 0$. arXiv: 1602.01791, 2015.

[HX15] C. D. Hacon and C. Xu. On the three dimensional minimal model program in positive characteristics. J. Amer. Math. Soc., 28(3):711–744, 2015.

[Kaw94] Y. Kawamata. Semistable minimal models of threefolds in positive or mixed characteristic. J. Algebraic Geom., 3(3):463–491, 1994.

[Kaw97] Y. Kawamata. Subadjunction of log canonical divisors for a subvariety of codimension 2. Contemp. Math., 207:79–88, 1997.

[KM98] J. Kollár and S. Mori. Birational Geometry of Algebraic Varieties. Cambridge University Press, Cambridge, 1998.

[KMM92] J. Kollár, Y. Miyaoka, and S. Mori. Rational connectedness and boundedness of Fano manifolds. J. Differential Geom., 36:765–779, 1992.

[Kol92] J. Kollár. Flips and abundance for algebraic threefolds. Société Mathématique de France, Paris, 1992.

[Kol96] J. Kollár. Rational Curves on Algebraic Varieties. Springer-Verlag, Berlin, 1996.

[Kol13] J. Kollár. Singularities of the minimal model program. Cambridge University Press, Cambridge, 2013.

[Lie13] C. Liedtke. Algebraic surfaces in positive characteristic. arXiv: 0912.4291v4, 2013.

[Liu02] Q. Liu. Algebraic geometry and arithmetic curves. Oxford University Press, Oxford, 2002.

[Pat14] Z. Patakfalvi. Semi-positivity in positive characteristics. Ann. Sci. École Norm Sup., 47(5):991–1025, 2014.

[Pro01] Y. Prokhorov. Lectures on complements on log surfaces. Mathematical Society of Japan, Tokyo, 2001.

[PS09] Y. Prokhorov and V. Shokurov. Towards the second main theorem on complements. J. Algebraic Geom., 18(1):151–199, 2009.

[Tan14] H. Tanaka. Minimal models and abundance for positive characteristic log surfaces. Nagoya Math. J., 216:1–70, 2014.

[Tan15] H. Tanaka. Semiample perturbations for log canonical varieties over an F-finite field containing an infinite perfect field. arXiv: 1503.01264v3, 2015.

[Vie83] E. Viehweg. Weak positivity and the additivity of the Kodaira dimension for certain fiber spaces. Adv. Stud. Pure Math., 1:329–353, 1983.

[Zha06] Q. Zhang. Rational connectedness of log Q-Fano varieties. J. Reine Angew. Math., 590:131–142, 2006.

Department of Mathematics
University of Utah
155 South 1400 East
Salt Lake City, UT 84112-0090
USA
E-mail address: ywang@math.utah.edu