On perturbations of dynamical semigroups defined by covariant completely positive measures on the semi-axis

G.G. Amosov*1

1Steklov Mathematical Institute of Russian Academy of Sciences, Gubkina str., 8, Moscow 119991, Russia

January 6, 2021

Abstract

We consider perturbations of dynamical semigroups on the algebra of all bounded operators in a Hilbert space generated by covariant completely positive measures on the semi-axis. The construction is based upon unbounded linear perturbations of generators of the preadjoint semigroups on the space of nuclear operators. As an application we construct a perturbation of the semigroup of non-unital *-endomorphisms on the algebra of canonical anticommutation relations resulting in the flow of shifts.

Keywords: perturbations of dynamical semigroups, covariant completely positive measures on the semi-axis, the flow of shifts on the algebra of canonical anticommutation relations

1 Introduction

The theory of one-parameter C_0-semigroups (strong continuous) of linear transformations $T_t : X \rightarrow X$, $t \geq 0$, on the Banach space X introduced in the pioneering papers [1][2] states the conditions for the closed linear operator \mathcal{L} with a dense domains $D(\mathcal{L}) \subset X$ to be a generator of $T = \{T_t, t \geq 0\}$
such that \(T_t = \exp(tL) \), \(t \geq 0 \). If \(X = \mathcal{S}_1(H) \) is the Banach space of nuclear operators in a Hilbert space \(H \) the claim of strong continuity for orbits of \(T \) possessing the property of non-increasing a trace is equivalent to weak continuity that is \(Tr(T_t(\rho)x) \to Tr(\rho x) \) if \(t \to 0 \) for all \(\rho \in \mathcal{S}_1(H) \) and \(x \in B(H) \) (the algebra of all bounded operators in \(H \)). In \([4]\) it was shown that the perturbation of the generator \(L \) by a linear map \(\Delta \) satisfying some additional conditions can be represented in the form of integral equation including the operator-valued measure generated by \(\Delta \). Together with a perturbation of \(T \) it is naturally to consider the corresponding perturbation of the adjoint semigroup \(T^* = \{ T_t^* : t \geq 0 \} \) on the algebra \(B(H) \). We realize this construction starting directly with the measure. As an example we construct a perturbation of the semigroup of non-unital *-endomorphisms on the algebra of canonical anticommutation relations (CAR). As a result of this perturbation we obtain the flow of shifts on the CAR algebra \([5]\). Earlier we have announce our result for the CAR algebra in \([6]\). Note that the perturbations of a semigroup on \(B(H) \) generated by the perturbation of the generator \(L \) of the corresponding preadjoint semigroup on \(\mathcal{S}_1(H) \) by a linear map with the domain containing \(D(L) \) form the basis for the construction of non-standard quantum dynamical semigroups \([7, 8]\).

2 Preliminaries

Let \(\Psi : \mathcal{S}_1(H) \to \mathcal{S}_1(H) \) be a linear bounded map on the Banach space of nuclear operators \(\mathcal{S}_1(H) \) in a Hilbert space \(H \). Since \((\mathcal{S}_1(H))^* = B(H) \) (the algebra of all bounded operators in \(H \)) the adjoint map \(\Phi = \Psi^* : B(H) \to B(H) \) is weak* continuous. \(\Psi \) is said to be preadjoint of \(\Phi \) and denoted \(\Psi = \Phi_* \). A one-parameter family of linear *-maps \(\Phi_t : B(H) \to B(H), t \geq 0 \), is said to be a dynamical semigroup if

(i) \(\Phi_{t+s} = \Phi_t \circ \Phi_s \), \(t, s \geq 0 \), \(\Phi_0 = Id; \)

(ii) each \(\Phi_t \) is completely positive and \(\Phi_t(I) \leq I, t \geq 0; \)

(iii) \(Tr(\rho \Phi_t(x)) \) is continuous in \(t \) for all \(x \in B(H), \rho \in \mathcal{S}_1(H) \).

In the case, \(\{ \Psi_t = (\Phi_t)_*, t \geq 0 \} \) is a \(C_0 \)-semigroup on \(\mathcal{S}_1(H) \) with the property \(Tr(\Psi_t(\rho)) \leq Tr(\rho) \) for all \(\rho > 0, \rho \in \mathcal{S}_1(H) \). Thus, there is a generator \(L \) with the dense domain \(D(L) \subset \mathcal{S}_1(H) \) such that \(\rho_t = \Phi_t(\rho), \rho \in \mathcal{S}_1(H) \) is a solution to the Cauchy problem

\[
\frac{d\Psi_t(\rho_t)}{dt} = L(\rho_t), \ t > 0, \\
\rho_0 = \rho.
\]
Following to [4] let us define a perturbation of \mathcal{L} of the form

$$\hat{\mathcal{L}} = \mathcal{L} + \Delta,$$

where the linear map $\Delta : \text{dom}\mathcal{L} \to \mathcal{S}_1(H)$ satisfies the properties

(i) for any positive definite matrix $||\rho_{jk}||$, $\rho_{jk} \in \text{dom} \mathcal{L}$ the matrix $||\Delta(\rho_{jk})||$ is positive definite;

(ii) $\text{Tr}(\Delta(\rho)) \leq -\text{Tr}(\mathcal{L}(\rho))$, $\rho \in \text{dom} \mathcal{L}$, $\rho > 0$.

Consider the measure \mathcal{M}_* with values in the set of complete positive maps on $\mathcal{S}_1(H)$ determined by the formula

$$\mathcal{M}_*([],s) = \int_t^s \Delta \circ \Psi_r dr. \quad (1)$$

By a construction the measure \mathcal{M} satisfies the relation

$$\mathcal{M}_*([],s) \circ \Psi_r = \mathcal{M}_*([],t+r,s+r), \ s, t, r \geq 0. \quad (2)$$

Then [4] the equation

$$\frac{d}{dt}\text{Tr}(\rho \hat{\Phi}_t(x)) = \text{Tr}((\mathcal{L} + \Delta)(\rho)\hat{\Phi}_t(x)), \ \rho \in \text{dom}\mathcal{L}, \ x \in B(H), \quad (3)$$

is equivalent to the integral equation

$$\hat{\Phi}_t - \int_0^t \mathcal{M}(dt) \circ \hat{\Phi}_{t-s} = \Phi_t, \ t \geq 0, \quad (4)$$

where the measure \mathcal{M} consists of maps on $B(H)$ adjoint to \mathcal{M}_*. Due to (2) the measure \mathcal{M} has the covariant property

$$\Phi_r \circ \mathcal{M}([],s) = \mathcal{M}(][t+r,s+r]), \ t, s, r \geq 0. \quad (5)$$

Given two completely positive maps Θ_1 and Θ_2 on $B(H)$ we shall use the notation

$$\Theta_1 \succ \Theta_2$$

iff

$$\Theta_1 - \Theta_2$$

is completely positive. In [4] it was considered the measures satisfying (5) generated by the formula

$$\mathcal{M}([],s) = \Phi_t \circ \Theta - \Phi_s \circ \Theta, \quad (6)$$

3
where \(\Theta \) is the excessive completely positive map in the sense that

\[
\Theta > \Phi_t \circ \Theta, \ t > 0.
\]

In the case, it was shown that (3) has a unique minimal solution \(\bar{\Phi}_t^\infty \) possessing the property that any other solution \(\hat{\Phi}_t \) satisfies

\[
\bar{\Phi}_t > \bar{\Phi}_t^\infty, \ t \geq 0.
\]

3 Perturbations generated by measures

We consider measures \(\mathcal{M} \) on Borel subsets of the semi-axis \(\mathbb{R}_+ \) such that given \(0 \leq t \leq s \leq +\infty \)

(i) \(\mathcal{M}([t,s]) : B(H) \to B(H) \) is a completely positive linear map;

(ii) \(\mathcal{M}([t,s])(I) \leq I; \)

(iii) \(\mu_{\rho,x}([t,s]) = Tr(\rho \mathcal{M}([t,s])(x)) \) is a \(\sigma \)-additive measure on \(\mathbb{R}_+ \) for any fixed \(\rho \in \mathcal{S}_1(H) \) and \(x \in B(H) \).

Together with \(\mathcal{M}([t,s]) \) it is naturally to examine a preadjoint map \(\mathcal{M}_*([t,s]) : \mathcal{S}_1(H) \to \mathcal{S}_1(H) \) possessing the property \(Tr(\mathcal{M}_*([t,s])(\rho)) \leq Tr(\rho) \) for all positive \(\rho \in \mathcal{S}_1(H) \).

Notice that if additionally \(\mathcal{M}(\mathbb{R})(I) = I \), then \(\mathcal{M} \) is said to be a completely positive instrument \([9]\). Nevertheless this property should not take place for our purposes.

The measure \(\mathcal{M} \) is said to be covariant with respect to dynamical semigroup \(\Phi \) if (5) holds true. It is not clear whether each covariant measure \(\mathcal{M} \) satisfying (5) can be obtained from some excessive map \(\Theta \) by means of (1). Developing the techniques of \([4]\) we suggest replacing (6) to an arbitrary measure \(\mathcal{M} \) with values in the set of completely positive maps satisfying (5).

Proposition 1. Given a measure \(\mathcal{M} \) covariant with respect to dynamical semigroup \(\Phi \) there exists a minimal solution to (4).

Proof. Following to \([4]\) let us consider the iteration process

\[
\Phi^{n+1}_t = \Phi^n_t + \int_0^t \mathcal{M}(dr) \circ \Phi^n_r.
\]

Due to \(\Phi_t(I) \leq I \) and \(\mathcal{M}([t,s])(I) \leq I, \ 0 \leq t \leq s \leq +\infty \) we get

\[
\Phi^{n+1}_t > \Phi^n_t, \ \Phi^n_t(I) \leq I.
\]

It results in \(\Phi^n_t \) tends to the minimal solution \(\bar{\Phi}_t \) of (4). \(\square \)
4 Perturbations of no-event semigroups

Following to [7] \(\Psi_0 = \{ \Psi_0^t : \mathcal{S}_1(H) \rightarrow \mathcal{S}_1(H), t \geq 0 \} \) is said to be a no-event semigroup if every pure state \(\rho = |\psi\rangle \langle \psi| \) is mapped to a multiple of a pure state. Such a semigroup necessary has the form

\[
\Psi_t(\rho) = T_t \rho T_t^*, \quad t \geq 0,
\]

where \(T_t = \exp(tK) \) is a \(C_0 \)-semigroups of contractions. Hence the generator \(K \) is a maximum dissipative operator due to [10]. The generator \(\mathcal{L} \) of \(\Psi \) is acting by the formula

\[
\mathcal{L}(\rho) = K \rho + \rho K, \quad \rho \in D(\mathcal{L}),
\]

where the domain \(D(\mathcal{L}) \) includes rank one operators \(|\psi\rangle \langle \xi| \), \(\psi, \xi \in D(K) \). Take linear operators \(L_j : D(K) \rightarrow H \) possessing the property

\[
\sum_j ||L_j \psi||^2 \leq -2 \text{Re} \langle \psi, K\psi \rangle
\]

and define a linear map \(\Delta : D(\mathcal{L}) \rightarrow \mathcal{S}_1(H) \) by the formula

\[
\Delta(|\psi\rangle \langle \xi|) = \sum_j |L_j \psi \rangle \langle L_j \xi|,
\]

\(\psi, \xi \in D(K) \). Consider the measure determined by (11). Then, it has the form (3), where the excessive completely positive map \(\Theta \) is given by the formula (11, Lemma 2)

\[
\langle \psi, \Theta(x) \psi \rangle = \int_0^{+\infty} \sum_j \langle L_j T_t \psi, x L_j T_t \psi \rangle dt, \quad \psi \in D(K), \quad x \in B(H).
\]

Below we shall give an example of perturbation for a no-event semigroup on the algebra of canonical anticommutation relations.

5 Algebra of canonical anticommutation relations \(\mathcal{A}(H) \)

Here we record the basic concepts about the algebra of canonical anticommutation relations [11]. Let \(H \) be a separable infinite dimensional Hilbert space. Fix the orthonormal basis \(\{|j\rangle\}_{j=1}^{+\infty} \) in \(H \). Then, the antisymmetric
Fock space $F(H)$ over one-particle Hilbert space H is a Hilbert space with the orthonormal basis $|0\rangle$, $|j_1 \ldots j_n\rangle$, where the indices $j_1 < j_2 < \cdots < j_n$ and n run over the set $\{1, 2, 3, \ldots\}$. The vector $|0\rangle$ is said to be vacuum. Let us define the ladder operators a_k^\dagger, a_k by the formula

$$a_k^\dagger |j_1 \ldots j_n\rangle = \begin{cases} (-1)^s |j_1 \ldots j_s k j_{s+1} \ldots j_n\rangle & \text{if } j_s < k < j_{s+1}, \\ 0 & \text{if } k \in \{j_1, \ldots, j_n\} \end{cases},$$

$$a_k |j_1 \ldots j_n\rangle = \begin{cases} (-1)^{s+1} |j_1 \ldots j_{s-1} j_{s+1} \ldots j_n\rangle & \text{if } j_s = k, \\ 0 & \text{if } k \notin \{j_1, \ldots, j_n\}. \end{cases}$$

$$a_k^\dagger |0\rangle = |k\rangle, \quad a_k |0\rangle = 0, \quad k = 1, 2, 3, \ldots$$

It follows that

$$a_k a_k^\dagger + a_k^\dagger a_k = I, \quad (a_k)^2 = (a_k^\dagger) = 0,$$

$$a_k a_j = -a_j a_k, \quad a_k^\dagger a_j^\dagger = -a_j^\dagger a_k^\dagger.$$

The C^*-algebra $\mathfrak{A}(H)$ generated by the ladder operators is said to be the algebra of canonical anticommutation relations (CAR) in the Fock representation. The CAR algebra $\mathfrak{A}(H)$ is generated by monomials $x_{j_1} \ldots x_{j_n}$, where $j_1 < j_2 < \cdots < j_n$ and $x_{j_s} \in \{a_{j_s}^\dagger, a_{j_s}, a_{j_s} a_{j_s}^\dagger\}$.

Let us define a linear map on rank one operators by the formula

$$\Xi_s(|j_1 \ldots j_n\rangle \langle r_1 \ldots r_m|) = \sum_{s,k} (-1)^{s+k} \delta_{j_s r_k} |j_1 \ldots j_{s-1} j_{s+1} \ldots j_n\rangle \langle r_1 \ldots r_{k-1} r_{k+1} \ldots r_m|, \quad (7)$$

$$\Xi_s(|0\rangle \langle r_1 \ldots r_m|) = \Xi_s(|j_1 \ldots j_n\rangle \langle 0|) = \Xi_s(|0\rangle \langle 0|) = 0.$$

Notice that (7) is the sum of partial traces over minimal subsystems [12].

Proposition 2. Formula (7) correctly determines a linear map on $\mathfrak{S}_1(F(H))$ which can be uniquely extended to the completely positive map on $B(F(H))$. This map doesn’t have the property of non-increasing a trace.

Proof. It is straightforward to check that

$$\Xi_s(|j_1 \ldots j_n\rangle \langle r_1 \ldots r_m|) = \sum_k a_k |j_1 \ldots j_n\rangle \langle r_1 \ldots r_m| a_k^\dagger.$$

It follows that Ξ_s can be uniquely extended to a completely positive map on $B(F(H))$. Denote

$$Q = \sum_k a_k^\dagger a_k.$$
Since
\[a_k^\dagger a_k \langle j_1 \ldots j_n \rangle = \sum_s \delta_{k,j_s} \langle j_1 \ldots j_n \rangle, \quad a_k^\dagger a_k \langle 0 \rangle = 0 \]
for any \(j_1 < j_2 < \cdots < j_n \) we get
\[Q \langle j_1 \ldots j_n \rangle = n \langle j_1 \ldots j_n \rangle. \]
Hence \(Tr(\Xi_* (\langle j_1 \ldots j_n \rangle \langle j_1 \ldots j_n \rangle)) = Tr(Q \langle j_1 \ldots j_n \rangle \langle j_1 \ldots j_n \rangle) = n \) and \(\Xi_* \) has not the property of non-increasing a trace.

Given \(f = \sum_j c_j |j\rangle, \quad \sum_j |c_j|^2 < +\infty \), let us define the ladder operators \(a^\dagger(f), a(f) \) over \(f \in H \) by the formula
\[a(f) = \sum_j c_j^* a_j, \quad a^\dagger(f) = \sum_j c_j a_j^\dagger \]
satisfying the relations
\[a(f)a^\dagger(g) + a^\dagger(g)a(f) = \langle f, g \rangle I, \]
\[a(f)a(g) + a(g)a(f) = a^\dagger(f)a^\dagger(g) + a^\dagger(g)a^\dagger(f) = 0. \]
It follows from the definition that the ladder operators
\[||a(f)|| = ||a^\dagger(f)|| = ||f|| \]
in the \(C^* \)-algebra \(\mathfrak{A}(H) \).

Let us introduce the outer multiplication \(\Lambda \) over indexes \(j_1 \ldots j_n \) such that if \(j_1 < j_2 < \cdots < j_n \), then
\[j_1 \Lambda j_2 \Lambda \ldots \Lambda j_n = |j_1 \ldots j_n \rangle \]
and
\[j_s \Lambda j_k = -j_k \Lambda j_s. \]
Following this way, for \(f_j = \sum_k c_{jk} |k\rangle, \quad \sum_k |c_{jk}|^2 < +\infty \), we can put
\[f_1 \Lambda \ldots \Lambda f_n = \sum_{k_1, \ldots, k_n} c_{1k_1} \ldots c_{nk_n} j_{k_1} \Lambda \ldots \Lambda j_{k_n} \]
Hence, given \(f_j, g_k \in H \) we can define vectors \(|f\rangle = f_1 \Lambda \ldots \Lambda f_n, |g\rangle = g_1 \Lambda \ldots \Lambda g_n \in H^{\otimes_n} \). Fix \(n \) and denote \(H^{\otimes_n} \) the closed linear envelope of
vectors $|f\rangle$ in the Fock space $F(H)$. Then, a restriction of the inner product in $F(H)$ to $H^{\otimes n}$ reads

$$\langle f|g\rangle_{H^{\otimes n}} = det|| \langle f_j|g_k\rangle||,$$

where the outer multiplication Λ satisfies the rule

$$f \Lambda g = -g \Lambda f, \ f, g \in H.$$

Alternatively we can define the orthogonal projection P_a in a tensor product $H^{\otimes n}$ as follows

$$P_a(f_1 \otimes \cdots \otimes f_n) = \frac{1}{n!} \sum_{\epsilon \in S_n} (-1)^{\mid \epsilon \mid} f_{\epsilon(1)} \otimes \cdots \otimes f_{\epsilon(n)},$$

where the sum is taken over the set of all permutations S_n and $|\epsilon|$ is a signature of permutation $\epsilon \in S_n$. By this way,

$$H^{\otimes n} = P_a(H^{\otimes n})$$

and is said to be an n-th antisymmetric tensor product of H.

Given $f \in H^{\otimes n}$ we denote

$$a(f) = a(f_1) \cdots a(f_n), \ a^\dagger(f) = a^\dagger(f_1) \cdots a^\dagger(f_n).$$

It follows that

$$a^\dagger(f)g = f \Lambda g$$

and

$$a(f)g = \sum_k (-1)^{k+1} \langle f, g_k \rangle g_1 \Lambda \cdots \Lambda g_{k-1} \Lambda g_k \Lambda \cdots \Lambda g_n,$$

where $f \in H$, $g \in H^{\otimes n}$.

6 The semigroup of shifts on $\mathfrak{A}(H)$

Put $H = L^2(\mathbb{R}_+)$ and define the semigroup of shifts in H by the formula

$$(S_t f)(x) = \begin{cases} f(x-t), & x > t; \\ 0, & 0 \leq x \leq t, \end{cases}$$

$t \geq 0, \ f \in H$. The conjugate semigroup of contractions $S_t^* = e^{td}$ has a generator

$$df = \frac{df}{dx}, \ f \in D(d) = \{ f \mid f' \in L^2(\mathbb{R}_+) \}.$$
We also need the semigroup of shifts in $F(H)$ obtained by lifting (S_t) as follows
\[\hat{S}_t(f_1 \Lambda \ldots \Lambda f_n) = S_t f_1 \Lambda \ldots \Lambda S_t f_n, \quad \hat{S}_t|0\rangle = |0\rangle, \tag{8} \]
$t \geq 0$, $f_j \in H$. The generator \hat{d} of its conjugate semigroup of contractions $\hat{S}_t^* = e^{itd}$ is given by the formula
\[\hat{d}|f\rangle = \sum_{j=1}^{n} f_1 \Lambda \ldots \Lambda f_{j-1} \Lambda df_j \Lambda f_{j+1} \Lambda \ldots \Lambda f_n, \quad \hat{d}|0\rangle = 0, \tag{9} \]
$f_j \in D(d)$. Along (9) we need a preconjugate operator acting by the formula
\[\hat{d}^*|f\rangle = -\sum_{j=1}^{n} f_1 \Lambda \ldots \Lambda f_{j-1} \Lambda df_j \Lambda f_{j+1} \Lambda \ldots \Lambda f_n, \quad \hat{d}^*|0\rangle = 0, \tag{9} \]
$f_j \in D(d^*) = \{ f \mid f' \in L^2(\mathbb{R}_+), \ f(0) = 0 \}$. Using (8) it is possible to determine the dynamical semigroup on $B(F(H))$ as follows
\[\Phi_t(x) = \hat{S}_t x \hat{S}_t^*, \tag{10} \]
t ≥ 0, $x \in B(F(H))$. The preadjoint semigroup $\Psi_t : \mathcal{S}_1(F(H)) \to \mathcal{S}_1(F(H))$ is given by the formula
\[\Psi_t(\rho) = \hat{S}_t^* \rho \hat{S}_t, \tag{11} \]
t ≥ 0, $\rho \in \mathcal{S}_1(F(H))$. Note that (11) can be directly extended to the semigroup of non-unital *-endomorphisms on $B(F(H))$. The generator L of (11) is determined by the formula
\[L(\rho) = [\hat{d}, \rho] = \hat{d}\rho - \rho \hat{d}, \]
where ρ belongs to the domain $D(L)$ which is dense in $\mathcal{S}_1(F(H))$. It is straightforward to see that $D(L)$ contains rank one operators
\[|f\rangle \langle g|, \quad |f\rangle \langle 0|, \quad |0\rangle \langle g|, \quad |0\rangle \langle 0|, \]
where $f_j, g_k \in D(d)$.

The semigroup of unital *-endomorphisms $\tilde{\Phi}_t$ on $\mathfrak{A}(H)$ defined by the relation
\[\tilde{\Phi}_t(a(f)) = a(S_t f), \quad t \geq 0, \tag{12} \]
is said to be the flow of shifts on the CAR algebra [5]. Denote $f_{i,j} = f_1 \Lambda \ldots \Lambda f_{j-1} \Lambda f_j \ldots \Lambda f_n$ and define a linear *-map on $D(L)$ by the formula
\[\Delta(|f\rangle \langle g|) = \sum_{j,k} (-1)^{j+k} f_j(0) \overline{g}_k(0) \langle f_{i,j} \rangle \langle g_{i,k}|, \tag{13} \]
f $j, k \in D(d)$.

9
Theorem 1.

\[\text{Tr}(\mathcal{L}(\ket{f}\bra{g}) + \Delta(\ket{f}\bra{g}))a(h)a^\dagger(e)) = \bra{f}(a(\hat{d}_e)h)a^\dagger(e) + a(h)a^\dagger(\hat{d}_e))\ket{g}. \]

\(f_j, g_k \in D(d), \ h_j, e_k \in D(d^\ast). \)

Proof. The trace

\[\text{Tr}(\mathcal{L}(\ket{f}\bra{g}))a(h)a^\dagger(e)) \]

can be represented as a sum of elements given as a multiplication of inner products of \(h_l, e_m \) and \(f_j, g_k \) as well as the derivatives of \(f_j, g_k \) such that only at least one of them could contain a derivative of the following possible forms

\[\bra{f'_j}e_k, \bra{f'_j}h_k, \bra{e_k}g'_j, \bra{h_k}g'_j \]

or

\[\bra{f'_j}g_k, \bra{f'_j}g'_k. \]

If (14) is implemented, then the derivative can be passed to the other side because \(e_j, h_k \in D(d^\ast) \) resulting in \(e_j(0) = h_k(0) = 0, \) e.g. \(\bra{f'_j}e_k = -\bra{f_j}e'_k. \)

Taking integration by parts in (15) we obtain the term outside the integral of the form \(f_j(0)g_k(0) \) but it is self destructing with the corresponding term in

\[\text{Tr}(\Delta(\ket{f}\bra{g}))a(h)a^\dagger(e)). \]

More formally,

\[\text{Tr}(\mathcal{L}(\ket{f}\bra{g}))a(h)a^\dagger(e)) = \bra{a^\dagger(h)g, a^\dagger(e)d^\ast f} + \bra{a^\dagger(h)g, a^\dagger(e)f} \]

The first term in (16) can be rewritten as

\[\bra{\hat{a}(h)g, a^\dagger(e)d^\ast f} = \sum_{j=1}^{n} \bra{h\Lambda f_1 \Lambda \cdots f_{j-1} \Lambda df_j \Lambda f_{j+1} \Lambda \cdots f_n} = \]

\[\bra{h\Lambda g, \hat{d}(e\Lambda f)} - \bra{h\Lambda g, (\hat{d} e)\Lambda f} = \]

\[\bra{h\Lambda g, \hat{d}(e\Lambda f)} + \bra{a^\dagger(h)g, a^\dagger(\hat{d}_e)\Lambda f} \]

because \(\hat{d}_e = -\hat{d} e \) if \(e \in D(\hat{d}^\ast). \) Integrating by parts the first term in (17) we obtain

\[\bra{h\Lambda g, \hat{d}(e\Lambda f)} = \bra{(\hat{d}_e)h\Lambda g, e\Lambda f} - \bra{h\Lambda(\hat{d}g), e\Lambda f} - \]

\[\sum_{j,k} (-1)^{j+k} f_j(0)g_k(0) \bra{h\Lambda g_{j,k}, e\Lambda f_{j,k}} \]

10
due to $e_j(0) = h_k(0) = 0$ in virtue of $e, h \in D(\hat{d}_*)$. Substituting (18) to (17) we get
\[
\langle a^\dagger(h)g, a^\dagger(e)\hat{d}f \rangle = \langle a^\dagger(\hat{d}_* h)g, a^\dagger(e)\hat{d}f \rangle
\]
\[
+ \langle a^\dagger(h)g, a^\dagger(\hat{d}_* e)\hat{d}f \rangle
\]
Comparing (16) and (19) completes the proof.

Let us define the map \mathcal{M}_* on measurable sets on \mathbb{R}_+ with values in the set of linear maps defined on rank one operators $|f\rangle \langle g|$ by the formula
\[
\mathcal{M}_*([t, s))(|f\rangle \langle g|) = \sum_{j,k} (-1)^{j+k} \int_t^s dr f_j(r) \overline{g_k(r)} \Psi_r(|f_j\rangle \langle g_k|),
\]
\[
\mathcal{M}_*([t, s))(|0\rangle \langle f|) = \mathcal{M}_*([t, s))(|f\rangle \langle 0|) = \mathcal{M}_*([t, s))(|0\rangle \langle 0|) = 0.
\]
Notice that formally
\[
\mathcal{M}_*([t, s]) = \int_t^s dr \Delta \circ \Psi_r,
\]
where Δ is defined by (13). Moreover,
\[
\lim_{t \to 0} \mathcal{M}_*([0, t))(|f\rangle \langle g|) = \Delta(|f\rangle \langle g|)
\]
for any choice of $f_j, g_k \in D(d)$.

Proposition 3. The map \mathcal{M} conjugate to (20) is the measure covariant with respect to Φ.

Proof. Analogously to the proof of Proposition 2 let us define a completely positive map by the formula
\[
\Xi_* (\delta)(\rho) = a(\chi_{[0, \delta]}(\rho) a^\dagger(\chi_{[0, \delta]}), \ \rho \in \mathcal{S}_1(H),
\]
where $\chi_{[0, \delta]}$ is a characteristic function of the segment $[0, \delta]$ and $\delta > 0$. Given $0 \leq t < s$ and integer n consider the auxiliary completely positive map
\[
\Sigma_n = \sum_{j=1}^n \Xi_* \left(\frac{s-t}{n} \right) \circ \Psi_{(\frac{s-t)}{n}}.
\]

For the Kraus operators $V_j = a(\chi_{[0, \frac{2t}{n}]}(t^n)) \hat{S}_{(s-t)}$ of Σ_n let us examine the sum

$$Q_n = \sum_{j=1}^{n} V_j^* V_j = \sum_{j=1}^{n} \hat{S}_{(s-t)}(t^n) a^\dagger(\chi_{[0, \frac{2t}{n}]}(t^n)) \hat{S}_{(s-t)}.$$

Taking into account

$$||a^\dagger(\chi_{[0, \frac{2t}{n}]}(t^n))|| = \frac{s-t}{n}$$

we obtain

$$Q_n < (s-t)I.$$

It follows that Σ_n is non-increasing a trace. Hence

$$M_s([t, s)) = \lim_{n \to +\infty} \Sigma_n$$

is a completely positive map and $Tr(M_s([t, s)))(\rho) \leq Tr(\rho)$ for all positive $\rho \in \mathcal{S}_1(H)$.

The flow of shifts $\hat{\Phi}_t$ determined by (12) has the generator $\hat{\mathcal{L}}$ acting by

$$\hat{\mathcal{L}}(a(h)a^\dagger(e)) = a(\hat{d}, h)a^\dagger(e) + a(h)a^\dagger(\hat{d}, e)$$

for any $h, e \in D(d^n)$. On the other hand, it follows from Theorem 1 that the generator $\hat{\mathcal{L}}_s$ of the preadjoint semigroup $\hat{\Psi}_t = (\hat{\Phi}_t)_s$ is equal to $\mathcal{L} + \Delta$. In the next theorem we show that $\hat{\Phi}_t$ satisfies the integral equation.

Theorem 2. The flow of shifts (12) is a solution to the integral equation

$$\hat{\Phi}_t - \int_0^t M(ds) \circ \hat{\Phi}_{t-s} = \hat{\Phi}_t, \quad t \geq 0,$$

where $M([t, s)) : B(F(H)) \to B(F(H))$ is the measure determined in Proposition 3.

Proof. The solution to (26) exists and defines a dynamical semigroup due to Proposition 4. Apply the left hand side of (26) to $a(h)a^\dagger(e)$, multiply to $|f\rangle \langle g|$ and take a trace, then

$$Tr(|f\rangle \langle g| \hat{\Phi}_t(a(h)a^\dagger(e))) - \int_0^t Tr(|f\rangle \langle g| M(ds) \circ \hat{\Phi}_{t-s}(a(h)a^\dagger(e))) =$$
\[Tr(\langle g | a(h) a^{\dagger}(e) \rangle) - \int_0^t Tr(\bar{\Phi}_{t-s} \circ \mathcal{M}_s(ds)(\langle f | a(h) a^{\dagger}(e) \rangle) \] (27)

Suppose that \(f_j, g_k \in D(d) \) and \(h_j, e_k \in D(d^*) \). Taking the derivative at zero from (27) we obtain

\[Tr(\langle g | (a(\hat{d}_s) a^{\dagger}(e) + a(h) a^{\dagger}(\hat{d}_s) e)) \rangle - Tr(\Delta(\langle f | a(h) a^{\dagger}(e) \rangle) \]

due to (21) and (25). Now the result follows from Theorem 1.

\[\Box \]

Taking into account (22), (23) and (24) we can conclude that for getting \(\bar{\Phi}_t \) to be unital the measure \(\mathcal{M} \) creates a particle with the wave function \(\chi_{r,r+dr} \) at each time moment \(r \) preceding \(t \).

7 Conclusion

We consider perturbations of a dynamical semigroup \(\Phi \) on the algebra of all bounded operators determined by solutions of integral equations with respect to measures \(\mathcal{M} \) on the semi-axis \(\mathbb{R}_+ \) with values in the set of completely positive maps which is covariant with respect to \(\Phi \) such that \(\Phi_{r} \circ \mathcal{M}([t,s]) = \mathcal{M}([t+r,s+r]), s,t,r \geq 0 \). As an example we construct the perturbation of the semigroup of non-unital *-endomorphisms on the algebra of canonical anticommutation relations resulting in the flow of shifts.

Acknowledgments

This work is supported by the Russian Science Foundation under grant 19-11-00086.

References

[1] E. Hille, Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, New York, 1948. 528 pp.

[2] K. Yosida, On the differentiability and the representation of one-parameter semi-group of linear operators. J. Math. Soc. Japan 1 (1948), 15–21.
[3] G.F. Dell’Antonio, On the limits of sequences of normal states, Commun. Pure Appl. Math. 20 (1967) 413–430.

[4] A. S. Holevo, Excessive maps, “arrival times” and perturbation of dynamical semigroups, Izv. Math., 59:6 (1995), 1311–1325.

[5] R.T. Powers, An index theory for semigroups of *-endomorphisms of $B(H)$ and type II$_1$ factors, Can. J. Math., 40:1 (1988) 86–114.

[6] G.G. Amosov, E.O. Kholmogorov, On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations, Russian Mathematics, 63:11 (2019), 67–70.

[7] I. Siemon, A.S. Holevo, R.F. Werner, Unbounded generators of dynamical semigroups. Open Syst. Inf. Dyn. 24 (2017), no. 4, 1740015, 24 pp.

[8] A. S. Holevo, On singular perturbations of quantum dynamical semigroups, Math. Notes, 103:1 (2018), 133–144.

[9] E.B. Davies, On the repeated measurement of continuous observables in quantum mechanics, J. Funct. Anal., 6:3 (1970) 318–346.

[10] G. Lumer, R.S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961) 679–698.

[11] O. Bratteli, D.W. Robinson, Operator algebras and quantum statistical mechanics II, Springer-Verlag, 1997.

[12] G.G. Amosov, S.N. Filippov, Spectral properties of reduced fermionic density operators and parity superselection rule, Quantum Inf. Process., 16:1 (2017) 2, 16 pp.