CONGENITAL BRONCHOBILIARY FISTULA: A CASE REPORT AND REVIEW OF THE LITERATURE

Tian-Yu Li, Zhi-Bo Zhang

ORCID number: Tian-Yu Li (0000-0003-1981-5771); Zhi-Bo Zhang (0000-0002-2563-5366).

Author contributions: The two authors contributed equally to this work.

Informed consent statement: Informed consent was obtained from the patient for publication of this report and any accompanying images.

Conflict-of-interest statement: The authors declare no conflict of interest for this article.

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Received: November 26, 2018
Peer-review started: November 26, 2018

Abstract

BACKGROUND

Congenital bronchoiliary fistula is a rare developmental abnormality with an abnormal fistula between the respiratory system and biliary tract. The aim of this report is to analyze and summarize the clinical features and experience of diagnosing and treating congenital bronchobiliary fistula (CBBF) occurring in the neonatal period.

CASE SUMMARY

The onset of symptoms was 3 d after birth in our patient with progressive cyanosis and respiratory distress, and a large amount of green fluid was noticed in her respiratory secretion. We performed computed tomography (CT), fiberoptic bronchoscopy, and cholangiography to make a diagnosis, as well as fistulography with a bronchoscope for the first time. These examinations provided us with valuable images to make a correct diagnosis. The fistula was dissected and removed with excellent results. Surgical removal of the fistula was successful, and the baby recovered well and was discharged. She has been followed for 4 mo without any signs of discomfort.

CONCLUSION

The main symptom of CBBF is bile-like sputum. CT, bronchoscopy, fistulography, and intraoperative cholangiography can provide important evidence for diagnosis. Surgical resection of the fistula is the first choice of treatment.

Key words: Congenital bronchobiliary fistula; Neonate; Computed tomography; Bronchoscopy; Fistulography; Case report

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Congenital bronchobiliary fistula is a rare developmental abnormality with an
abnormal fistula between the respiratory system and biliary tract. We summarize the clinical data, and review related papers on it. The aim of this report is to analyze and summarize the clinical features and experience of diagnosing and treating congenital bronchobiliary fistula occurring in the neonatal period.

Citation: Li TY, Zhang ZB. Congenital bronchobiliary fistula: A case report and review of the literature. *World J Clin Cases* 2019; 7(7): 881-890

URL: https://www.wjgnet.com/2307-8960/full/v7/i7/881.htm

DOI: https://dx.doi.org/10.12998/wjcc.v7.i7.881

INTRODUCTION

Congenital bronchobiliary fistula (CBBF) is a rare developmental abnormality with an abnormal fistula between the respiratory system (trachea or bronchus) and biliary tract. Patients with this anomaly may develop symptoms at any time from neonate age to adulthood, but most of them present with signs of apnea, bilious saliva, and choking, within just a few days after birth. Generally, the earlier the symptoms appear, the more serious the condition is. CBBF is often accompanied by biliary tract developmental anomalies, such as biliary atresia. Surgical resection of the fistula is the ultimate choice of treatment. Presently, this anomaly is believed to be caused by abnormal development of the foregut\(^1\)-\(^3\). In this paper, we describe a patient with CBBF who showed the symptom of apnea at 3 d after birth, summarize the clinical data, and review the related papers on CBBF.

CASE PRESENTATION

Chief complaints

Intermittent cyanosis for 3 d.

History of present illness

A full-term female baby of 5 d was referred to our hospital because of intermittent cyanosis. She secreted a large amount of yellowish and green saliva and started choking since 3 d of age. Respiratory distress became increasingly severe after admission, so tracheal intubation and a ventilator were applied thereafter. After intubation, yellowish green fluid kept flowing out of the tracheal tube. Gastroesophageal reflux complicated by a tracheoesophageal fistula was considered first, but nasogastric depression produced colorless fluid, which was not in accordance with the aforementioned findings.

Physical examination upon admission

Jaundice.

Laboratory examinations

Total bilirubin 172.4 μmol/L.

Imaging examinations

We performed 3-dimensional (3D) computed tomography (CT) of the baby’s chest. Her trachea and esophagus were reconstructed, and an abnormal fistula originated from the right bronchus; the fistula formed down along the esophagus and passed through the diaphragm into the intrahepatic biliary tract at the site of the esophageal hiatus. Gas was noticed in the intrahepatic biliary tract and common hepatic duct. Furthermore, pneumonia was evident in both lungs, especially in the lower lobes (Figure 1A-C). CBBF was diagnosed accordingly.

During the ultrasonographic examination, we discovered an abnormal fistula similar to that detected by CT. Ultrasonography also detected an accumulation of gas in both intrahepatic bile ducts, the common hepatic duct, and gallbladder, and gas bubbles in the biliary system moved with the patient’s breathing. No signs of biliary atresia were noticed during the ultrasonographic examination.

Flexible fiberoptic bronchoscopy showed an abnormal opening at the right main bronchus; contrast was injected via the opening, and beside radiography was performed, which showed the outlines of the fistula, biliary tract, gallbladder, and
Figure 1 Computed tomography images. A and B: Computed tomography (CT) scan and tracheoesophageal reconstruction; the arrow indicates the abnormal connection between the right bronchus and biliary tract. C: CT scan; the white arrow indicates gas in the biliary tract.

duodenum (Figure 2).

FINAL DIAGNOSIS
Congenital bronchobiliary fistula.

TREATMENT
We initially performed laparoscopic biliary tract exploration and cholangiography to rule out biliary tract malformations. We found that the gallbladder was filled with green viscous bile, and the distal bile duct was patent. The abnormal fistula that bridged the intrahepatic bile duct and right bronchus was visible (Figure 3). Then, we performed posterolateral right thoracotomy at the sixth intercostal space. Green bile salt was deposited extensively beneath the visceral pleura. We dissected the mediastinal pleura and detected the fistula alongside the esophagus. The fistula formed down from the right bronchus to the right side of the hiatus, and it was about 4 mm in diameter and as soft as the esophagus. We punctured the lumen but produced nothing; then 10 mL of methylene blue was injected into the gallbladder, and the blue material was noticed subsequently at the puncture site and intratracheal tube (Figure 4). The fistula was confirmed accordingly. We separated the fistula and dissected it from the bronchus to the hiatus; both ends were securely ligated and sutured. Lastly, a thoracic drainage tube was placed.

OUTCOME AND FOLLOW-UP
On the day 3 postoperatively, the child was successfully weaned from the ventilator. She was in good condition with satisfactory pulmonary expansion and feeding tolerance. We attempted to remove the thoracic drainage tube but failed; subsequently, the baby developed pneumothorax and subcutaneous emphysema, which were considered due to improper operation, so the tube was reinserted. On day 7 postoperatively, the child developed cholestasis with a total bilirubin level of 71.6 μmol/L and conjugated bilirubin level of 58.1 μmol/L. Ultrasonography showed mild obstruction of the extrahepatic bile duct and slight dilation of the common bile duct. Two possibilities were considered: first, the extrahepatic bile duct was not patent enough to drain all the bile produced by the liver sufficiently; and second, inflammation and edema caused by the operation resulted in partial obstruction of the bile duct. Methylprednisolone was administered, and her bilirubin level decreased to normal range 3 d later. On day 10 postoperatively, growing chylous fluid was noticed in the drainage, so the oral feeding was withdrawn accordingly. Ten days later, the drainage gradually decreased, oral feeding was resumed without adverse reactions, and the drainage tube was removed. The baby recovered well and was discharged. She has been followed for 4 mo without any signs of discomfort.

A microscopic examination was performed separately for three parts of the removed fistula. Scattered mature and naive hyaline cartilage surrounded by clustered bronchial glands could be seen at the part near to the bronchus.
Hyperplasia, angulation, aggregation, and columniation of the biliary glandular epithelial cells were found at the biliary end. The middle part was characterized by scattered, clustered glands, columniation of the glandular epithelia, squamous metaplasia, and cartilaginous tissue around the bronchial glands (Figure 5A-C).

DISCUSSION

CBBF can manifest as a series of symptoms caused by an abnormal connection between the hepatic duct and trachea or bronchus. The onset time and severity of symptoms are related to the diameter of the fistula; therefore, the symptoms can appear at any age from newborn to adulthood. However, most of them occur in newborns and infants. The main clinical features of CBBF are recurrent coughing, bilious sputum, or bile-stained sputum in tracheal intubation. Patients generally develop progressive dyspnea, cyanosis, severe pneumonia, respiratory distress syndrome, and even apnea; shortly after birth, mechanical ventilation is often needed. Bile-stained expectoration is the most typical sign among the aforementioned symptoms. It has been often misdiagnosed as an esophagotracheal fistula, gastroesophageal reflux, aspiration pneumonia, or high intestinal obstruction [4,5].

The first findings on CBBF were reported in 1952 by Neuhauser et al. [6]. Altogether, there were 43 additional cases reported in English and 1 in Chinese thereafter (Table 1), and CBBF was more common in women than in men. An abnormal fistula can be opened at different positions around the carina: right main bronchus (20/44, 45.4%), carina (19/44, 43.2%), and left main bronchus (5/44, 11.4%). Fistulas generally passed through the esophageal hiatus and entered into the abdominal cavity; all fistulas communicated with the intrahepatic bile duct (left hepatic duct), except one fistula that opened at the common bile duct [7].

The pathogenesis of this disease is not clear yet. Abnormal development of the bronchial bud, which fuses with the bile duct, was regarded as the cause of the anomaly. Other reports postulated that CBBF was the result of digestive tract duplication and the upper respiratory tract [1,6,8-10].

As in most reports, the proximal part of the fistula had the characteristics of the respiratory tract, consisting of cartilage, pulmonary epithelia, glands, and smooth muscle, whereas the distal part was similar to the gastrointestinal tract. In our case, by examining the proximal, middle, and distal parts of the fistula, we found scattered mature hyaline cartilage, relatively naive cartilage, and clusters of bronchial glands at the bronchus end; whereas, glandular epithelia of the bile duct and interstitial cholestasis were found at the distal part of the fistula. In the middle part, the lumen was partly covered by pseudo-ciliated columnar epithelia. Cartilage rings lay beneath the mucosa. Co-existing single-layer columnar epithelium could also be seen in the same field. These histological findings could further verify the pathogenesis of CBBF.

CBBF was often complicated by biliary atresia, diaphragmatic hernia, esophageal atresia, and tracheoesophageal fistula, and the incidence of biliary malformation in this group was about 30% [11-15]. As long as this possibility was considered, the diagnosis of CBBF was not difficult. Magnetic resonance imaging, 3D-CT reconstruction, bronchoscopy, and ultrasonography can provide valuable clues.
Figure 3 Intraoperative cholangiogram showing the connection between the biliary tract and right bronchus and patent distal bile duct; the white arrow indicates the biliary tract.

Bronchoscopy was the most common method for making a diagnosis, as it can be used to find the abnormal opening of the fistula and the overflowing bile via the opening\[13,14,16-19\]. 3D-CT reconstruction can accurately detect the existence of the fistula, which is of great significance for diagnosing CBBF. In the present case, the CT scan provided us with the first evidence of the abnormal fistula. Then fiberoptic bronchoscopy was performed, and a contrast dye was injected into the fistula once the opening was confirmed. Next, a radiographic examination was conducted; thus, the opening, shape, and connection of the fistula were all confirmed. The result of our treatment was excellent, and to our knowledge, this method has not been reported previously.

Surgical resection was the ultimate treatment of choice, but a specific method must be considered according to different anatomical structures\[20-22\]. According to previous reports, different kinds of operative methods have been used, such as hepatic lobectomy, anastomosis of the gallbladder or intestine with abnormal fistulas, and fistula resection. We think that it is necessary to consider whether there is a biliary tract anomaly when preparing an operative plan. If a biliary anomaly exists, biliary reconstruction must be considered\[4,14\]. We performed laparoscopic cholangiography first during the operation to exclude biliary atresia, and achieved a satisfactory result. We performed thoracotomy subsequently, and explored and identified the fistula in the mediastinum; the fistula formed down the right side of the esophagus. We punctured the lumen for assurance because there are many important structures nearby, and then we injected methylene blue into the gallbladder; the dye was seen flowing out of the puncture site, thus the fistula was confirmed. Because the extrahepatic biliary tract was normal, reconstruction was unnecessarily considered. Instead, we just separated the fistula and ligated and sutured it at the upper end and at the hiatus, and then the fistula was removed.

The overall mortality of CBBF was 15.91% (7/44) according to the literature, and three patients died of respiratory complications without surgery. Our patient experienced chylothorax shortly after thoracotomy, which may be due to injury of the thoracic duct when we dissected the fistula at the hiatus. Fortunately, she recovered after short-term conservative management. Cholestasis was another main complication encountered postoperatively, and ultrasonography showed slight dilatation of the bile duct. We evaluated her conditions and prescribed methylprednisolone. Cholestasis resolved after three doses; therefore, we deduced that the jaundice may have been due to temporary inflammation of the biliary tract.

CONCLUSION

Most surgeons may not encounter CBBF in their professional career considering its rarity. Its clinical symptoms are typical and special such as bile-stained expectoration. As long as surgeons have some insight into this kind of condition, its diagnosis and treatment are not difficult, and the prognosis would be excellent for most patients.
Table 1 All cases of congenital bronchobiliary fistula reported to date

N	Year	Author	PMID	Type of fistula	Age	Sex	Diagnostic method	Operative method	Complications	Therapeutic effects
1	2018	Netto et al	2700583	Tracheal carina	21 d	F	CT	Surgical excision and ligation + selective left hepatectomy	None	Recovered after the hospital stay
2	2016	Pérez et al	27006661	Right main bronchus	22 d	M	Bronchus examination and CT	Laparoscopic excision + left hepatectomy and choanalgia ncreatostomy	Biliary dysplasia	Followed for 1 yr, normal
3	2016	Kwon et al	26628766	Right main bronchus	17 yr	M	Bronchus examination and CT and MR imaging	Surgical excision and ligation	None	Followed for 10 mo, normal
4	2015	Kumar et al	25559599	Tracheal carina	3 yr	F	Bronchus examination	Surgical excision and ligation	None	Survived
5	2015	Kim et al	25617079	Right main bronchus	17 yr	M	Bronchus examination and CT	Surgical excision and ligation	None	Survived
6	2015	Mo et al	27307938	Tracheal carina	5 d	M	Bronchus examination and CT	Wedge resection of the lung + resection of the intrahepatic tumor	Intrahepatic ductal papillary mucinous tumors	Survived
7	2015	Yu et al	21827062	Right main bronchus	52 yr	F	CT	Surgical excision and ligation	Biliary dysplasia	Followed for 6 mo, normal
8	2011	Hodgdon et al	21516501	Tracheal carina	2 yr 10 mo	M	Bronchus examination and CT	Surgical excision and ligation	None	Followed for 1 yr, normal
9	2011	Sachdev et al	21297506	Tracheal carina	2 mo	F	Bronchus examination and CT and MR imaging	Surgical excision and ligation	None	Followed for 7 mo, normal
10	2010	Tan et al	20672272	Right main bronchus near carina	51 yr	F	Bronchus examination and CT	Surgical excision and ligation	None	Recovered after the hospital stay
11	2010	Croes et al	20385268	Tracheal carina	3 d	F	Bronchus examination	Surgical excision and ligation	Biliary dysplasia	Survived
12	2009	Najdi et al	19586763	Tracheal carina	6 d	F	Bronchus examination and CT	Surgical excision and ligation	Meconium aspiration syndrome	Died on day 2 after surgery
13	2009	Gürlekmez et al	19101328	Left main bronchus	9 d	F	CT	Surgical excision and ligation	Extrahepatic biliary atresia	Followed for 9 mo, normal
14	2008	Uramoto et al	18628589	Tracheal carina	65 yr	F	Bronchus examination and CT	Surgical excision and ligation	No surgery	Died of lung cancer within 28 mo since diagnosis
15	2008	Chawla et al	18478221	Tracheal carina	< 28 d	M	CT	Surgical excision and ligation	Biliary dysplasia	Followed for 6 mo, normal
16	2005	Aguilar et al	16021209	Tracheal carina	6 yr	F	Bronchus examination	Surgical excision and ligation	None	Survived
Year	Reference	MR Imaging	Description	Followed for	Condition					
------	-----------	------------	-------------	--------------	-----------					
2004	Hourigan et al[1]	MR imaging	Right main bronchus	13 d	M	Right thoracotomy + Kasia procedure	Died			
2002	DiFiore et al[3]	Intuition intraoperatively	Right main bronchus	< 28 d	M	Surgical removal + right diaphragmatic hernia repair	Died			
2000	Duong et al[7]	Bronchus examination	Tracheal carina	3 yr	F	None	Survived			
2000	Tommasoni et al[5]	Bronchus examination	Tracheal carina	1 yr 9 mo	F	Gastroesophageal reflux	Followed for 6 yr, normal			
2000	Tommasoni et al[5]	Bronchus examination and angiography	Tracheal carina	2 yr 6 mo	M	Surgical excision and ligation	Followed for 4 yr, normal			
1998	Fischer et al[6]	Bronchus examination	Left main bronchus	16 d	F	None	Survived			
1996	Egrati et al[8]	Bronchus examination	Tracheal carina	3 d	F	None	Survived			
1996	Nishimura et al[9]	CT	Right main bronchus	57 yr	F	None	Died			
1994	Ferkol et al[10]	Bronchus examination	Left main bronchus	23 d	M	Surgical excision and ligation	Died			
1995	Tekant et al[11]	Bronchus examination	Tracheal carina	15 d	F	Biliary dysplasia	Survived			
1993	Gauderer et al[12]	Bronchus examination	Tracheal carina	2 yr	M	Biliary dysplasia	Survived			
1990	Yamaguchi et al[13]	Bronchus examination	Right main bronchus	32 yr	M	None	Survived			
1989	Mavunda et al[14]	CT	Left main bronchus	1 yr	F	Surgical excision and ligation	Died			
1988	de Carvalho et al[15]	Bronchus examination	Right main bronchus	32 yr	F	None	Followed for 1 yr, normal			
1987	Levasseur et al[16]	Bronchus examination	Tracheal carina	22 yr	F	Surgical excision and ligation	Survived			
1986	Lindahl et al[17]	Bronchus examination	Right main bronchus	15 d	F	None	Survived			
1985	Chang et al[18]	Bronchus examination	Right main bronchus	12 h	M	None	Survived			
1984	Chan et al[19]	Not mentioned	Right main bronchus	4 d	F	Biliary dysplasia	Died			
1976	Kalayoglu et al[20]	Not mentioned	Right main bronchus	4 d	F	None	Died			
1974	Cuadros et al[21]	Bronchus examination	Tracheal carina	6 yr	M	Surgical excision and ligation	Survived			
1971	Sane et al[22]	Bronchus examination	Right main bronchus	4 wk	F	Surgical excision and ligation	None	Survived		

No.	Year	Authors	Side of Bronchus	Age	Gender	Procedure	Diagnosis	Outcome	
39	1970	Wagget et al.[44]	Left main bronchus	3 wk	F	Bronchus examination	Surgical excision and ligation	Survived	
40	1968	Weitzman et al.[45]	Right main bronchus	2 yr 9 mo	M	Bronchus examination	Surgical excision and ligation	None	Survived
41	1966	Stigol et al.[2]	Right main bronchus	1 yr 2 mo	F	Bronchus examination	Surgical excision and ligation	None	Survived
42	1963	Enjoji et al.[6]	Right main bronchus	7 mo	M	Biopsy	No surgery	Biliary dysplasia	Died
43	1952	Neuhauser et al.[46]	Right main bronchus	5 mo	F	Bronchus examination	No surgery	None	Died
44	2013	Zheng et al.[23]	Tracheal carina	27 d	F	Bronchus examination and CT	Surgical excision and ligation	Biliary atresia	Survived

CBBF: Congenital bronchobiliary fistula; CT: Computed tomography; MR: Magnetic resonance; F: Female; M: Male.

Figure 4 Methylene blue was injected into the gallbladder, and it flowed out from the puncture site; the white arrow indicates the puncture site.

Figure 5 A microscopic examination performed separately for three parts of the removed fistula. A: The red arrow indicates the lumen that was partly covered by pseudo-ciliated columnar epithelium. The blue arrow indicates the cartilage rings that lay beneath the mucosa; B: The arrow indicates the clusters of bronchial glands at the end of the bronchus; C: The arrow indicates the glandular epithelia of the bile duct and interstitial cholestasis.

REFERENCES
1. Levasseur P, Navajas M. Congenital tracheobiliary fistula. Ann Thorac Surg 1987; 44: 318-319 [PMID: 3632120 DOI: 10.1016/S0003-4975(10)62085-1]
2. Stigol LC, Traversaro J, Trigo ER. Carinal trifurcation with congenital tracheobiliary fistula. Pediatrics 1966; 37: 89-91 [PMID: 5902432 DOI: 10.1016/s0022-3468(66)80029-5]
3. Uramoto H, Kawano O, Sugimoto M, Yamagata H, Kohrogi H. Congenital bronchobiliary fistula in a 65-year-old woman. Intern Med 2008; 47: 1367-1370 [PMID: 18628589 DOI: 10.2169/internalmedicine.47.0943]
4. Gauderer MW, Oiticica C, Bishop HC. Congenital bronchobiliary fistula: management of the involved hepatic segment. J Pediatr Surg 1993; 28: 452-455 [PMID: 8468661 DOI: 10.1016/0022-3468(93)90247-3]
Repair for Congenital Bronchobiliary Fistula in an Adult.

Na KJ, Jung JC, Hwang Y, Lee HJ, Park IK, Kang CH, Jang JY, Kim YT. Minimally Invasive Surgical
Na KJ: 11-13 [DOI: 10.1016/s0022-3468(96)90133-5]

1996; 785-786 [PMID: 8783103 DOI: 10.1016/S0022-3468(99)90039-7]

Chawla SC, Jha P, Breiman R, Farmer D, Gooding C. Congenital tracheobiliary fistula diagnosed with
Lindahl H, Nyman R. Congenital bronchobiliary fistula successfully treated at the age of three days. J Pediatr Surg 1986; 21: 734-735 [PMID: 3746610 DOI: 10.1016/s0022-3468(86)80299-2]

Ferkol T, McDowell KM, Gaustad JW, Alpert SE. Sinopulmonary manifestations of congenital bronchobiliary fistula. Clin Pediatr (Phila) 1994; 33: 181-184 [PMID: 8194299 DOI: 10.1017/s0022280400300314]

Chawla SC, Jha P, Breiman R, Farmer D, Gooding C. Congenital tracheobiliary fistula successfully treated at the age of three days. J Pediatr Surg 1986; 21: 734-735 [PMID: 3746610 DOI: 10.1016/s0022-3468(86)80299-2]

Br Google Scholar
Li K, Zheng S, Xiao XM, Cao Y, Wang LS. Neonatal congenital bronchobiliary fistula: a case report and
Li K, Zheng S, Xiao XM, Cao Y, Wang LS. Neonatal congenital bronchobiliary fistula: a case report and

WJCC https://www.wjgnet.com

Li TY et al. Congenital bronchobiliary fistula

April 6, 2019 Volume 7 Issue 7
38 Kumar P, Mehta P, Ismail J, Agarwala S, Jana M, Lodha R, Kabra SK. Brocho-biliary fistula: A rare complication after ruptured liver abscess in a 3½ year old child. Lung India 2015; 32: 489-491 [PMID: 26628766 DOI: 10.4103/0970-2113.164157]

39 Nishimura S, Nakagawa Y, Saka T, Suga M, Ando M. Brocho-biliary fistula. Nihon Kyobu Shikkan Gakkai Zasshi 1996; 34: 689-693 [PMID: 8741536]

40 Yamaguchi M, Kanamori K, Fujimura M, Watanabe Y, Matsuda T. Congenital broncho-chylothoracic fistula in adults. South Med J 1990; 83: 851-852 [PMID: 2371668 DOI: 10.1097/00007611-199007000-00032]

41 Mavunda K, Heiba S, Oiticica C, Sfakianakis GN, Birriel JA, Mckey RM. Congenital broncho-biliary fistula. Diagnosis by hepatobiliary scintigraphy. Respiratory Care 1989; 34: 731-733

42 de Carvalho CR, Barbas CS, Guarnieri RM, de Campos JR, Filomeno LT, Saldiva PH, Barbas Filho JV. Congenital broncho-biliary fistula: first case in an adult. Thorax 1988; 43: 792-793 [PMID: 3206388 DOI: 10.1136/thx.43.10.792]

43 Cuadros J, Arkansay A, Nistral M, Montero J. Fistula tra`queobiliar congé′nita. An Esp Pediatr 1974; 7: 256-262

44 Wagget J, Stool S, Bishop HC, Kurtz MB. Congenital bronchobiliary fistula. J Pediatr Surg 1970; 5: 566-569 [DOI: 10.1016/0022-3468(70)90012-6]

45 Weitzman JJ, Cohen SR, Woods LO, Chadwick DL. Congenital bronchobiliary fistula. J Pediatr 1968; 73: 329-334 [PMID: 5667415 DOI: 10.1016/S0022-3476(68)90108-4]

46 Enjoji M, Nakamura Y, Watanabe H. A case report-congenital bilio-tracheal fistula with trifurcation of bronchi. Annales paediatrici 1963; 200: 321
