Salicylic Acid and Systemic Acquired Resistance Play a Role in Attenuating Crown Gall Disease caused by Agrobacterium tumefaciens

Ajith Anand, Srinivasa Rao Uppalapati, Choong-Min Ryu, Stacy N. Allen, Li Kang, Yuhong Tang, and Kirankumar S. Mysore

Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401

We investigated the effects of salicylic acid (SA) and systemic acquired resistance (SAR) on crown gall disease caused by Agrobacterium tumefaciens. Nicotiana benthamiana plants treated with SA showed decreased susceptibility to Agrobacterium infection. Exogenous application of SA to Agrobacterium cultures decreased its growth, virulence, and attachment to plant cells. Using Agrobacterium whole-genome microarrays, we characterized the direct effects of SA on bacterial gene expression and showed that SA inhibits induction of virulence (vir) genes and the repABC operon, and differentially regulates the expression of many other sets of genes. Using virus-induced gene silencing, we further demonstrate that plant genes involved in SA biosynthesis and signaling are important determinants for Agrobacterium infectivity on plants. Silencing of ICS (isochorismate synthase), NPR1 (nonexpresser of pathogenesis-related gene 1), and SABP2 (SA-binding protein 2) in N. benthamiana enhanced Agrobacterium infection. Moreover, plants treated with benzo-(1,2,3)-thiadiazole-7-carbothioic acid, a potent inducer of SAR, showed reduced disease symptoms. Our data suggest that SA and SAR both play a major role in retarding Agrobacterium infectivity.

Agrobacterium tumefaciens, a soil-borne phytopathogen, is the causal agent of crown gall disease in plants. Agrobacterium has a very broad host range that includes about 600 characterized plant species (DeCleene and DeLey, 1976). The process of tumor formation involves the transfer and integration of a specific segment of the Ti (tumor-inducing) plasmid, the T-DNA (transferred DNA), from the bacterium into the plant genome (Chilton et al., 1977). Crown gall disease causes significant economic losses worldwide, mostly pertaining to perennial horticulture plants, by reducing crop yield and increasing susceptibility to opportunistic pathogens (Agrios, 1997; Burr et al., 1998). Attempts to control crown gall disease have largely failed, with the exception of biological control by Agrobacterium radiobacter strain K84 (a nonpathogenic bacterium that produces agrocin 84, which is toxic to most A. tumefaciens strains that are able to utilize agrocinopine-type opines; Burr and Otten, 1999). However, this cross-protection is limited to only certain Agrobacterium strains. Alternate methods based on RNA interference to down-regulate auxin biosynthetic genes, including iaaM and ipt oncogenes (Escobar et al., 2001; Lee et al., 2003; Viss et al., 2003), were proposed for controlling the disease. However, these approaches are faced with limited practical application due to the need for developing transgenic lines. Therefore, there is a need to develop and adopt durable disease control measures for combating crown gall disease.

Plants are constantly attacked by pathogens, and as a result plants have evolved a plethora of constitutive and induced basal defenses to defend against pathogens. The phytohormones salicylic acid (SA), jasmonic acid, and ethylene are known to participate in regulating defenses in plants (Pieterse and Van Loon, 1999; van Wees et al., 2000; Glazebrook, 2001; Spoel et al., 2003; Thaler et al., 2004). SA is predominantly associated with resistance against biotrophic and hemibiotrophic pathogens, and triggering systemic acquired resistance (SAR; Grant and Lamb, 2006). Although the complete mechanism of SA-mediated plant defense is not understood, the central role of SA in plant defense is universally accepted (for review, see Pieterse and Van Loon, 1999; Shah, 2003; Grant and Lamb, 2006). Exogenous application of SA or its functional analogs, such as 2,6-dichloroisonicotinic acid and benzo-(1,2,3)-thiadiazole-7-carboxylic acid 5-methyl ester (BTH), induces SAR in plants, resulting in resistance to certain pathogens (Ryals et al., 1996; Achuo et al., 2004; Wang et al., 2005). Conversely, plants expressing the bacterial NahG gene (encoding salicylate hydroxylase, which
converts SA to catechol) are more susceptible to several pathogens (Gaffney et al., 1993). Direct evidence for the role of SA in plant defense comes from the identification and characterization of an Arabidopsis (Arabidopsis thaliana) isochorismate synthase (ICS) mutant (sid2-2) that is defective in SA biosynthesis (Wildermuth et al., 2001). Endogenous SA levels in plants can also affect their interaction with symbiotic microorganisms, as demonstrated by increased root nodulation and infection upon inoculation with Mesorhizobium loti, in transgenic Lotus japonicus and Medicago truncatula expressing NahG (Stacey et al., 2006). Only a limited number of studies has demonstrated the direct effects of SA on microbes including Pseudomonas aeruginosa (Prithiviraj et al., 2005b), Staphylococcus aureus (Prithiviraj et al., 2005a), Sinorhizobium meliloti (Martínez-Abarca et al., 1998), and, more recently, A. tumefaciens (Yuan et al., 2007).

Plants mount defense responses against Agrobacterium infection similar to those triggered by other bacterial pathogens (Veena et al., 2003; Zipfel et al., 2006). Furthermore, a virulent strain of Agrobacterium was shown to suppress host defenses at later times after infection (Veena et al., 2003). Using several approaches, we demonstrate the role of SA-mediated plant defense responses against Agrobacterium. Nicotiana benthamiana plants treated with SA were less susceptible to Agrobacterium infection, whereas N. benthamiana plants silenced for genes involved in SA biosynthesis and signaling were hypersusceptible to Agrobacterium infection. Exogenous application of SA to bacterial cultures impeded the growth and virulence of Agrobacterium. Furthermore, we show that SA interferes with the transcription of a set of Agrobacterium genes, including the vir regulon, the repABC operon, and genes associated with quorum sensing. We also show that SAR has a role in mitigating susceptibility to crown gall disease.

RESULTS

SA Application on Plants Decreases Agrobacterium Infection

We analyzed the direct effects of the phytohormone SA on Agrobacterium infectivity by exogenously applying SA to N. benthamiana through soil drenching. Exogenous application of SA or its analogs on plants has been shown to induce SA-mediated plant defenses to a broad range of pathogens (for review, see Vallad and Goodman, 2004). Our preliminary experiments suggested that exogenous application of SA at concentrations of 7.5 mM and above resulted in chlorosis, stunting, and cell death (data not shown). Therefore, SA was applied at lower concentrations (0–5 mM). Leaves from the SA-treated and mock-treated plants were collected 7 d posttreatment and subjected to stable and transient transformation assays as described (Anand et al., 2007b). The transient transformation assays were performed using strain A. tumefaciens GV2260 (Deblaere et al., 1985) harboring the binary vector pBISN1 (carrying a uidA-intron gene on its T-DNA enabling the characterization of transient and stable expression of the reporter gene in plants; Nam et al., 1999). Leaves derived from plants treated with SA (5 mM) showed a significant reduction in GUS activity at 2, 5, and 10 d postinfection (dpi) when compared with mock-inoculated plants (Fig. 1, A and B). Stable transformation assays were performed on leaf discs of mock- and SA-treated plants using tumorigenic strain A348 (pCC113; pTiA6NC; Garfinkel et al., 1981; bacterial concentration 10^7 cfu) as described (Anand et al., 2007b). A significant reduction in the biomass of the tumors (fresh and dry weight of the tumors incited on leaf discs infected with A348) was observed in the leaf discs derived from 5 mM SA-treated plants as compared with mock-treated plants (F test; P < 0.05; mock treatment, mean weight = 3.07/0.23 g; 5 mM SA, mean weight = 2.02/0.14 g; fresh/dry weights; n = 125). We therefore conclude that SA application partially blocks Agrobacterium-mediated plant transformation.

We quantified the free SA levels in the leaf tissues collected from SA-treated N. benthamiana plants using a quadrupole mass spectrometry system as described (Schmelz et al., 2004). SA levels in SA-treated (5 mM) plants showed >6.5-fold increase in endogenous free SA levels when compared with mock-treated plants (Fig. 1C). We also observed induction of PRIa (a marker for SA-mediated plant defense) following SA treatment (data not shown). Based on these results, we speculate that endogenous levels of SA may play a role in antagonizing Agrobacterium infection.

Transgenic Plants Expressing NahG Are Hypersusceptible to Agrobacterium Infection

The SA-dependent pathway has been analyzed in detail using transgenic plants expressing salicylate hydroxylase (NahG), which degrades SA to catechol (Gaffney et al., 1993; Delaney et al., 1994). NahG-expressing tomato (Solanum lycopersicum) plants show an increased susceptibility to viral and bacterial pathogens that is correlated with a block in expression of PRI (pathogenesis-related 1; Gaffney et al., 1993; Mur et al., 1997). To provide further evidence for the role of SA in Agrobacterium infectivity, wild-type and NahG-expressing tomato plants (Brading et al., 2000) were vacuum infiltrated with a low concentration (10^7 cfu) of the nontumorigenic strain A. tumefaciens GV2260 carrying the binary vector pBISN1. We performed GUS activity assays at 2 dpi. NahG-expressing plants were more susceptible to Agrobacterium infection, as indicated by the increased X-Gluc staining and higher GUS activity when compared with the wild-type tomato plants (Fig. 1, D and E). These results, together with the reduced Agrobacterium infectivity on SA-treated plants, further suggest that SA plays a role in protecting plants against Agrobacterium infection.
SA Inhibits Agrobacterium Growth in Vitro and Affects Its Virulence

On the basis of our observation that the endogenous SA levels in plants affect Agrobacterium infectivity (Fig. 1), we hypothesized that SA may be an important determinant of Agrobacterium pathogenicity. Although direct effects of SA have been proposed on pathogens and symbiotic microorganisms, only a few case studies have indicated the direct role of SA on bacterial growth and virulence (Martínez-Abarca et al., 1998; Prithiviraj et al., 2005a, 2005b; Yuan et al., 2007). To test whether SA affects Agrobacterium growth or virulence, we carried out in vitro experiments in which SA was added into the culture media at physiologically relevant concentrations (Delaney et al., 1994; Prithiviraj et al., 2005b; Huang et al., 2006), and growth of A. tumefaciens A348, A208 (pCNL65; pTiT37C; Chilton et al., 1977) and KAt153 (GV2260 harboring pDSKGFPuv; Wang et al., 2007) was monitored in both the minimal and rich media. Recently, Yuan et al., (2007) reported that SA at lower concentrations (5–8 μM) was effective in inhibiting the growth of Agrobacterium in the minimal media under acidic conditions. Similar results on Agrobacterium growth inhibition was observed when SA was supplemented in the minimal media (Supplemental Fig. S1). However, SA at low concentrations (5–15 μM) did not affect the growth of the bacteria in the rich media (Supplemental Fig. S2). SA at relatively higher concentrations (200 μM) impeded Agrobacterium growth in the rich media (Supplemental Fig. S2).

It has been suggested that salicylate plays a role in siderophore biosynthesis in bacteria (Neilands, 1995; Crosa and Walsh, 2002). However, the role of salicylate in bacterial iron metabolism is not clear. We tested whether exogenous application of iron sulfate had an effect on SA-mediated Agrobacterium growth inhibition. SA-mediated Agrobacterium growth inhibition was not significantly affected by addition of iron sulfate (0–150 mM) in the minimal media with SA (10 μM; Supplemental Fig. S3). However, agrobacteria grew more vigorously in the minimal media supplemented with iron sulfate (50 mM) when compared with the growth observed in the minimal media without iron, in the absence of SA (Supplemental Fig. S3). The effect of BTH (SA analog) and coronatine, a compound structurally similar to jasmonic acid, was also...
tested. Neither BTH (up to 1 mM) nor coronatine (13.7–54.8 nM) affected bacterial growth and multiplication (data not shown).

To test further if SA directly affects *Agrobacterium* virulence, we carried out leaf disc infection assays (Anand et al., 2007a, 2007b) with *A. tumefaciens* A348 treated with SA. SA was incorporated into the induction media (50 μM and 100 μM plus acetosyringone [AS]) for 4 h, and the virulence of the SA-treated bacteria was compared with the uninduced (minus AS) and induced cultures (AS, 100 μM), respectively. The biomass and size of tumors incited by *A. tumefaciens* A348 (uninduced or induced with AS) were more than those of the tumors incited by A384 treated with SA (Fig. 2A; Supplemental Fig. S4). The tumor biomass of the infected leaf discs was at least 1.5- to 2-fold higher with untreated *A. tumefaciens* A348 when compared with the leaf discs infected with SA-treated A348 (Supplemental Fig. S4). Based on these results, we conclude that exogenous application of SA, at a concentration of 50 μM, is sufficient to reduce the virulence of *Agrobacterium*.

Agrobacterium Treated with SA Is Defective in Attaching to Plant Cells

The effects of SA on early events of transformation were further investigated using the bacterial attachment assay described previously (Anand et al., 2007b; Wang et al., 2007). We treated *A. tumefaciens* KAt153 with SA (50–100 μM) for 2 h, and washed the bacterial cells free of residual SA and used it to infect *N. benthamiana* leaf discs by cocultivating for 12 h in a nonselective basal medium. As detailed earlier, treatment of *Agrobacterium* with SA (50–100 μM) for 2 h had no effect on bacterial multiplication and viability in the nutrient-rich medium (Supplemental Fig. S2). SA at 100 μM affected *Agrobacterium* attachment (Fig. 2, B and C), whereas SA at 50 μM concentration did not (Fig. 2C). More GFP fluorescence was observed along the cut surface of leaf discs inoculated with *Agrobacterium* that was not treated with SA compared with GFP fluorescence observed with *Agrobacterium* treated with 100 μM SA (Fig. 2B). Consistent with these observations, 20- to 30-fold fewer bacteria were detected on leaf discs inoculated with KAt153 treated with SA (100 μM) when compared with the assays with untreated KAt153 (Fig. 2C). Agrobacteria treated with AS plus SA were also defective in attaching to the leaf discs (data not shown). These findings suggest that SA may affect the virulence of *A. tumefaciens* by interfering with the attachment of *Agrobacterium* to plant cells.

SA Affects *Agrobacterium* Gene Expression

To study the effect of SA on genome-wide changes in *Agrobacterium* gene expression, we compared the transcriptome of strain A208 cultured in the induction medium (without AS) with the transcriptome of strain A208 following AS or AS plus SA (50 μM) using the custom-made whole-genome Affymetrix microarrays. The microarray data suggest that SA treatment significantly affected the expression of the Ti plasmid genes (36 of the 37 genes were induced by AS at 4 h and 103 of the 172 genes were induced by AS at 24 h, respectively; Fig. 3; Supplemental Table S1). SA repressed the expression of the bacterial virulence (*vir*) genes, the conjugal transfer (*tra*) genes, and plasmid replication genes (*repABC* operon; Fig. 3), which is in accord with a recent report (Yuan et al., 2007). Using real-time quantitative reverse transcription-PCR (qRT-PCR), we confirmed the differential expression of few selected genes (Table I). The results were in accordance with the microarray data, except that the fold changes of all the genes tested were much higher in qRT-PCR when compared with the microarray data. We also confirmed the induction of two chromosomal encoded genes, *Atu1525* and *Atu0377*, upon SA treatment. The *Atu0972*, *Atu1550*, and *Atu3610* genes did not show any differential expression upon AS and SA treatments and were used as controls for qRT-PCR. Taken together, these results suggest that SA has multiple effects on *Agrobacterium* resulting in reduced virulence.

Silencing of SA Biosynthetic and Signaling Genes in *N. benthamiana* Increases Susceptibility to Crown Gall Disease

To investigate the role of SA in limiting *Agrobacterium* infectivity in planta, we performed in planta tumor assays on the stems of *N. benthamiana* silenced for NbNPR1 (nonexpresser of PR gene 1; Cao et al., 1997), *NbsABP2* (SA-binding protein 2; Kumar and Klessig, 2003), *SICS* (Wildermuth et al., 2001; Upalapati et al., 2007), and GFP (control; GFP sequence does not have any homology to plant DNA and therefore will not cause gene silencing) as described (Anand et al., 2007b) using *A. tumefaciens* strain A348. We observed relatively larger tumors on the shoots of *ICS−, NPR1−*, and *SABP2−* silenced plants compared with the tumors on *Tobacco rattle virus* (TRV):*GFP*–inoculated and wild-type plants (Fig. 4A). The down-regulation of the *ICS*, *NPR1*, and *SABP2* genes in gene-silenced plants of *N. benthamiana* was confirmed by semiquantitative RT-PCR (Supplemental Fig. S5) and was in accord with the observations made by earlier workers (Ekengren et al., 2003; Kumar and Klessig, 2003). We also confirmed that the SA-mediated plant defense pathway was impaired in *ICS−, NPR1−*, and *SABP2−* silenced plants by monitoring the expression of *PR1a* (Supplemental Fig. S6).

The increased susceptibility of *ICS−, NPR1−*, and *SABP2−* silenced plants to *Agrobacterium* infection was further confirmed by performing leaf disc and transient transformation assays as described (Anand et al., 2007b). Two different bacterial concentrations (10⁷ and 10⁸ cfu of the tumorigenic strain A348) were used to detect the differences in the tumors incited on leaf discs of gene-silenced and control plants. The lower bacterial concentration (10⁷ cfu) yielded larger tumors.
and correspondingly higher tumor biomass in ICS-, NPR1-, and SABP2-silenced plants as compared with control plants (Fig. 4, B and C; Supplemental Fig. S7A). A similar trend was observed even with a higher bacterial concentration (10⁶ cfu; data not shown). In the transient transformation experiments, we observed significantly higher levels of GUS activity at 2 and 5 dpi in the leaf discs derived from ICS-, NPR1-, and SABP2-silenced plants (Fig. 4, D and E). These results indicate that SA biosynthetic and signaling genes also play a significant role in antagonizing Agrobacterium infection. To determine the effect of gene silencing on cell division, leaf discs (uninoculated with Agrobacterium) of the silenced plants (3 weeks postsilencing) were cultured on a nonselective callus-inducing medium (CIM) for 4 weeks. Uninfected leaf discs of ICS-, NPR1-, and SABP2-silenced plants formed calli on CIM, similar to leaf discs of nonsilenced control plants (Supplemental Fig. S7B). These data suggest that gene silencing of ICS, NPR1, and SABP2 had no observable effect on the cell division and cell proliferation potential of these plant cells.

BTH-Induced SAR Impairs Agrobacterium Infectivity

We characterized the involvement of SAR in imparting resistance against crown gall disease by exogenously applying BTH to N. benthamiana and tomato plants prior to inoculation with tumorigenic strain A348. BTH can mimic SA and induces disease resistance in various host-pathogen systems (Friedrich et al., 1996; Gorlach et al., 1996; Lawton et al., 1996; Aacho et al., 2004). Our preliminary experiments suggested that N. benthamiana and tomato differed in their ability to tolerate BTH. Tomato plants treated with 1 mM BTH were stunted, whereas no growth defects were observed at a similar concentration in N. benthamiana plants (data not shown). Therefore, BTH was exogenously supplied at different concentrations: 1 mM on N. benthamiana and 0.1 to 0.33 mM on tomato plants. BTH did not induce SA accumulation in N. benthamiana in three independent experiments (Fig. 5A). Upon inoculation with A. tumefaciens A348, considerably smaller tumors were observed on shoots of BTH-treated N. benthamiana and tomato plants when compared with tumors observed on mock-treated plants (Fig. 5, B and C). In N. benthamiana, the average size of tumors (length and width) was 7.8 ± 1.2 mm (0.1 mM, BTH) and 18.3 ± 2.3 (mock-treated plants), while in tomato the tumors averaged 6.8 ± 1.0 mm (0.1 mM) to 4.0 ± 0.7 mm (0.3 mM) in the BTH-treated plants as compared with the larger tumors (23.5 ± 6.9 mm) on the mock-treated plants, respectively.

Figure 2. Effect of SA on Agrobacterium virulence and attachment to plant cells. A, Exogenous application of SA to Agrobacterium attenuates its capacity to incite tumors on leaf discs of N. benthamiana. The leaf disc tumorigenesis assays, as described (Anand et al., 2007a, 2007b), were performed with strain A348 induced with AS in the presence or absence of SA (50 μM). The virulence of A348 treated with SA was attenuated as seen from the reduced number of tumors incited when compared with the tumors produced by strain A348 induced in the SA minus medium. Pictures were taken 4 weeks postinfection. B and C, Agrobacterium attachment assay was performed as described (Anand et al., 2007b) with the disarmed strain A. tumefaciens KAt153 (carrying the binary vector pDSKGFPuv) that was mock or SA treated. Leaf discs derived from N. benthamiana plants were incubated with Agrobacterium and the fluorescent bacteria expressing GFPuv attached to the leaf tissues were visualized, as bacterial colonies, along the cut surfaces after 12 h of cocultivation, using a Leica TCS SP2 AOBS confocal system (left panel: GFP fluorescence; right panel: epifluorescence image). C, Quantification of attached bacteria. SA-treated (50 or 100 μM) agrobacteria that were attached to leaf discs were quantified using serial dilution plating as described (Anand et al., 2007b). Bacterial numbers are mean values for three independent experiments with five replicates each.
The effects of BTH on *Agrobacterium*-mediated plant transformation were further assessed by performing stable and transient transformation assays as described (Anand et al., 2007b) on wild-type, TRV::GFP-inoculated, and ICS-silenced plants following mock or BTH treatment. ICS-silenced plants were partially impaired in SA biosynthesis and did not show a significant increase in endogenous SA levels following BTH treatment (data not shown). We further confirmed that the SAR pathway is activated upon BTH treatment by monitoring the expression of *PR1a* (Supplemental Fig. S6). Tumors produced on leaf discs derived from both silenced and wild-type plants were smaller in BTH-treated plants as compared with tumors seen on leaf discs derived from mock-treated plants (Fig. 5, D and E). Leaves treated with BTH showed a significant reduction in GUS activity at 2 and 5 dpi in both silenced and wild-type plants (Fig. 5, F and G). On the basis of the above results, we suggest that BTH application partially blocks transient transformation and SAR plays a role in protecting plants from *Agrobacterium* infection.

DISCUSSION

The major goal of this study was to characterize the role of plant defenses against *Agrobacterium* infection. The broader implication of this study is to manipulate plant genes for effectively combating crown gall disease and to increase transformation efficiency in recalcitrant crops. We provide direct and indirect evidence to support that both SA and SA-mediated plant defenses play a key role in determining *Agrobacterium* infectivity on plants. The direct effects of SA on *Agrobacterium*-mediated plant transformation were assessed by exogenous application of SA to plants. SA application on plants induces endogenous SA accumulation accompanied by activation of SAR genes, which play an important role in conferring resistance to different pathogens (for review, see Ryals et al., 1996; Vallad and Goodman, 2004). The larger crown galls produced in *N. benthamiana* plants silenced for *ICS*, *NPR1*, and *SABP2* (only partially knocked down for gene expression) further suggest that SA-mediated plant defenses (Ross, 1961) are important determinants for *Agrobacterium* infection. Molecularly, SA-mediated plant defense signaling requires NPR1, which interacts with many TGA transcriptional factors.

Figure 3. Clustering of the differentially expressed *Agrobacterium* genes upon treatment with AS and SA. We selected all the genes on the Ti plasmid and a few chromosomal genes that were differentially regulated at 4 and 24 h by AS (A4 and A24) and AS plus SA (A+SA4 and A+SA24) for cluster analyses. Data for selected genes were transformed into log2 and gene tree was generated by hierarchical clustering using TMEV (http://www.tm4.org/mev.html). Color codes represent the differential gene expression values, wherein red and green represent the up- and down-regulation of genes, respectively. The genes highlighted in red were selected for validation by quantitative real-time PCR.

The effects of BTH on *Agrobacterium*-mediated plant transformation were further assessed by performing stable and transient transformation assays as described (Anand et al., 2007b) on wild-type, TRV::GFP-inoculated, and ICS-silenced plants following mock or BTH treatment. ICS-silenced plants were partially impaired in SA biosynthesis and did not show a significant increase in endogenous SA levels following BTH treatment (data not shown). We further confirmed that the SAR pathway is activated upon BTH treatment by monitoring the expression of *PR1a* (Supplemental Fig. S6). Tumors produced on leaf discs derived from both silenced and wild-type plants were smaller in BTH-treated plants as compared with tumors seen on leaf discs derived from mock-treated plants (Fig. 5, D and E). Leaves treated with BTH showed a significant reduction in GUS activity at 2 and 5 dpi in both silenced and wild-type plants (Fig. 5, F and G). On the basis of the above results, we suggest that BTH application partially blocks transient transformation and SAR plays a role in protecting plants from *Agrobacterium* infection.

DISCUSSION

The major goal of this study was to characterize the role of plant defenses against *Agrobacterium* infection. The broader implication of this study is to manipulate plant genes for effectively combating crown gall disease and to increase transformation efficiency in recalcitrant crops. We provide direct and indirect evidence to support that both SA and SA-mediated plant defenses play a key role in determining *Agrobacterium* infectivity on plants. The direct effects of SA on *Agrobacterium*-mediated plant transformation were assessed by exogenous application of SA to plants. SA application on plants induces endogenous SA accumulation accompanied by activation of SAR genes, which play an important role in conferring resistance to different pathogens (for review, see Ryals et al., 1996; Vallad and Goodman, 2004). The larger crown galls produced in *N. benthamiana* plants silenced for *ICS*, *NPR1*, and *SABP2* (only partially knocked down for gene expression) further suggest that SA-mediated plant defenses (Ross, 1961) are important determinants for *Agrobacterium* infection. Molecularly, SA-mediated plant defense signaling requires NPR1, which interacts with many TGA transcriptional factors.

Figure 3. Clustering of the differentially expressed *Agrobacterium* genes upon treatment with AS and SA. We selected all the genes on the Ti plasmid and a few chromosomal genes that were differentially regulated at 4 and 24 h by AS (A4 and A24) and AS plus SA (A+SA4 and A+SA24) for cluster analyses. Data for selected genes were transformed into log2 and gene tree was generated by hierarchical clustering using TMEV (http://www.tm4.org/mev.html). Color codes represent the differential gene expression values, wherein red and green represent the up- and down-regulation of genes, respectively. The genes highlighted in red were selected for validation by quantitative real-time PCR.
to modulate the expression of SAR-dependent genes, including PR proteins (for review, see Shah, 2003). We observed larger tumors on the NPR1-silenced plants due to the increased *Agrobacterium* infectivity in these plants, which further suggests a role for SAR signaling in *Agrobacterium*-mediated pathogenesis. The above data contradict a recent observation reported by Yuan et al. (2007) but are in accord with the results obtained by another group (S. Gelvin, personal communication). The differences in plant species and plant tissues used in the infection assays could have contributed to this discrepancy. SABP2 has strong affinity to conjugated SA, such as methyl salicylate, and is crucial for plant innate immunity (Kumar and Klessig, 2003; Forouhar et al., 2005; Park et al., 2007). Furthermore, pathogen-associated molecular patterns (PAMPs) such as flagellin and EF-Tu, which are key activators of plant innate immunity (Zipfel and Felix, 2005; Ingle et al., 2006; Jones and Dangl, 2006), suppresses *Agrobacterium*-mediated plant transformation, suggesting that PAMPs play an important role in orchestrating plant innate immunity against *Agrobacterium* (Zipfel et al., 2006). Although *Agrobacterium*-derived flagellin is inactive as an elicitor in plants, we cannot rule out that other *Agrobacterium* PAMPs, such as EF-Tu, could activate plant defenses restricting *Agrobacterium*-mediated plant transformation (Zipfel et al., 2006). Moreover, PAMPs were shown to contribute significantly to SAR initiation and activation in Arabidopsis (Mishina and Zeier, 2007). This provides a scenario wherein SA is likely induced in plants in response to and recognition of *Agrobacterium* PAMPs, leading to activation of SAR and induced defenses.

Accumulation of SA is associated with many physiological and immune responses in plants (Raskin, 1992; Shah, 2003). There are several studies suggesting that endogenous SA in plants plays a critical role in pathogenesis by its direct effects on the pathogen (for review, see Shah, 2003). However, only limited studies have demonstrated the direct effects of SA on phytopathogens in vitro. SA at concentrations of 150 μM and above showed strong effect on *M. loti* growth at 4 dpi (Stacey et al., 2006), whereas concentrations of 25 μM did not significantly affect growth of *S. meliloti* over prolonged incubation periods (Martinez-Abarca et al., 1998). Furthermore, in the *S. meliloti*-alfalfa (*Medicago sativa*) interaction, 25 μM SA inhibited nodulation (Martinez-Abarca et al., 1998), whereas 100 μM SA had no apparent effect on root nodulation by *M. loti* on *L. japonicus* (van Spronsen et al., 2003). Yuan and co-workers (Yuan et al., 2007) recently demonstrated that SA at very low concentrations (8 μM and above) significantly affects the growth of *Agrobacterium* in acid-
ified minimal media, but had no growth effects under neutral conditions. We further showed that the growth effects seen on *Agrobacterium* in the presence of SA are not due the indirect effects resulting from alterations in iron metabolism. *A. tumefaciens* is known to synthesize a number of siderophores (Ong et al., 1979; Hiroyuki et al., 2002), and recently a siderophore biosynthetic gene cluster was identified from C58 allowing them to grow under low iron conditions (Rondon et al., 2004).

In this study, we show a correlation between endogenous SA levels in SA-treated plants and reduced susceptibility to *Agrobacterium* infection. Besides triggering the defense responses, SA had direct effects on *Agrobacterium* fitness and virulence and therefore plays a central role in *Agrobacterium*-plant interactions. Consistent with these results are the observations that exogenously applied SA retards the infectivity of *S. meliloti* on alfalfa (Martínez-Abarca et al., 1998) and down-regulates virulence factors of *P. aeruginosa* (Prithiviraj et al., 2005b). SA is also shown to have an effect on attachment of *P. aeruginosa* and *S. aureus* to glass surfaces and their virulence on Arabidopsis (Prithiviraj et al., 2005a, 2005b). However, we cannot rule out the possibility that the reduced *Agrobacterium* virulence and attachment on SA-treated plants are a result of elicitation of plant defense responses by SA.

The Affymetrix *Agrobacterium* whole-genome arrays facilitated us to characterize the effects of SA on *Agrobacterium* virulence under laboratory conditions. We used two different time points (4 and 24 h) to monitor the effects of SA on the transcriptome of *Agrobacterium* and this is different from the recently reported study (Yuan et al., 2007). Our transcript profiling experiment validated the data recently published (Cho and Winans, 2005; Yuan et al., 2007). We believe that the interference in the induction of the bacterial sensory system, virulence, plasmid replication, and conjugal transfer could have significantly
contributed to reduced Agrobacterium infectivity in plants inoculated with SA-treated Agrobacterium. SA also shares structural similarity with other natural inhibitors of vir gene induction, such as indole-3-acetic acid (Liu and Nester, 2006). We speculate that SA, like other natural inhibitors of vir gene induction, namely, indole-3-acetic acid and other benzoxazinones, competes with AS (Zhang et al., 2000; Liu and Nester, 2006). It has been proposed that the simplest way to down-regulate vir gene expression is to com-
pette physically with the phenolic inducer (Liu and Nester, 2006). Based on our transcript profiling data, we speculate that SA competes with AS for direct or indirect interaction with VirA. One issue we have not directly answered in this study relates to the concentration of SA in planta or in the crown galls to which Agrobacterium would be exposed. However, we demonstrated that the exogenous application of SA results in increased endogenous SA levels and retards Agrobacterium infectivity in SA-treated plants. It is likely that the SA levels reached in microenvironments around an infected cell could be much higher than the total measurable SA levels detected in whole infected or systemic leaves (Huang et al., 2006). There are also reports suggesting that SA can accumulate to >70 μM at the site of infection in other host-pathogen systems (Shirasu et al., 1997). It still warrants further investigation to determine if the SA concentrations used in this study are biologically relevant during Agrobacterium–plant interactions in nature. Nevertheless, it is still interesting to note that SA had a direct effect, under laboratory conditions, on Agrobacterium growth and virulence. The results presented in this article support the hypothesis that a direct role for SA in plant defense is possibly articulated by Agrobacterium through down-regulation of the de novo biosynthesis of SA or by modulating plant basal defenses (Gaspar et al., 2004). Therefore, exogenous application of SA or its analogs before the onset of crown gall disease presents a possible means for achieving durable disease control.

MATERIALS AND METHODS

Plant Treatment, Virus-Induced Gene Silencing, and Transformation Assays

Nicotiana benthamiana, NahG-expressing tomato (Solanum lycopersicum; Brading et al., 2000), and wild-type tomato (‘MoneyMaker’) plants were used in the experiments. Details for plant growth and maintenance were as described (Anand et al., 2007a, 2007b). SA (sodium salt; Sigma-Aldrich) was used in this study as indicated. For the leaf disc transformation and transient transformation assays, axenic leaf discs derived from control and gene-silenced plants were inoculated with A. tumefaciens A348 or GV2260 (carrying the binary vector pRH51), and incubated on hormone-free Murashige and Skoog medium or CIM, respectively, as described (Anand et al., 2007b). Leaves were collected from the gene-silenced and control plants with or without BTH treatment (72 hpi) to perform the leaf disc tumorigenesis assays.

RNA Extraction and PCR

RNA extraction, first-strand cDNA synthesis, and semiquantitative RT-PCR on plant samples (N. benthamiana) were performed using standard protocols as described (Anand et al., 2007b). The effectiveness of VIGS and BTH application was tested in the gene-silenced plants of ICS, SAPB2, and NPR1 by semiquantitative RT-PCR. The primers used for detecting the relative transcripts of NPR1 and SAPB2 are detailed elsewhere (Ekengren et al., 2003; Kumar and Klessig, 2003), while the primer combination ICSF 5′-ATCTTAAACCTCATACTCCTTACC-3′ and ICSR 5′-GCAAGCTTTCCGGCATT-CATTGC-3′ was used for detecting the relative transcripts of ICS in the gene-silenced plants. The BTH- and SA-induced expression of SAR genes was monitored by profiling the expression of PRIa at 0 h, 48 h, 72 h, and 7 dpi using the primer combination NbPRIaF 5′-GGTCTCTTTTCAACCAGTGCC-3′ and NbPRIaR 5′-CTAGGTCTTCATCAATTG-3′.

SA Quantification

N. benthamiana leaves (approximately 300 mg) were used to extract SA as described earlier (Schmelz et al., 2004) using a quadrupole mass spectrometry system (5890 GC; Agilent) connected to a 5998B mass selective detector (Agilent) with selective-ion monitoring (selected ion ± 0.5 mass unit) in electron spray ionization mode. SA was separated on a RTX-5 column (30 m × 0.25 mm × 0.25 mm; Restek) using the conditions described earlier (Schmelz et al., 2004; Uppalapati et al., 2007). The pH of the plant tissue in the extraction reagent was carefully adjusted to pH 2 to 3 with concentrated hydrochloric acid to recover the acidic phytohormones. The retention times and mass units of the methyl esters analyzed were: SA-ME, 8.35 min, 152; and [M+H]SA-ME, 7.18 min, 156. Isotopically labeled SA was purchased from CDN Isotopes.

Effect of Exogenous Application of SA on A. tumefaciens

For determining the effect of SA on bacterial multiplication, three different strains of A. tumefaciens (A348, A218, and Kanin, 2003), Sinorhizobium meliloti AB57, Escherichia coli DH5α, and Pseudomonas syringae pv. glycinea 786 were selected for the study. The Agrobacterium strains were grown in either AB minimal media (pH 5.5 and 7.0) or in rich media (Agrobacterium and E. coli in LB medium; S. meliloti in tryptone yeast medium; P. syringae in King’s B medium), unless otherwise stated. For the growth experiments, all the bacterial cultures were grown to OD600 approximately 1, diluted 1:10 (OD600 approximately 0.1) into fresh media in the presence or absence of SA (5–200 μM), and grown in 20-mL culture tubes, respectively. The possible effect of SA on bacterial multiplication was tested by taking 100-μL aliquots, measuring the OD600 at regular intervals with four replicates up to 48 h posttreatment. For studying the effects of the iron on Agrobacterium growth, Fe(SO4)3·9H2O salts were dissolved in water, filter sterilized, and incorporated into AB minimal media with or without SA at concentrations ranging from 0 to 150 μM. Agrobacterium virulence and attachment assays were performed as described (Anand et al., 2007b). Briefly, Agrobacterium suspensions (105 cfu/mL) were treated with or without SA (50–100 μM) in the induction media containing or lacking AS (100 μM), washed free of SA, and allowed to infect leaf tissues.

Agrobacterium Arrays and Transcript Profiling

The whole Agrobacterium C58 genome arrays were custom designed from Affymetrix containing 7,862 probes representing all the known or predicted genes, intergenic regions, and controls. The probe sequences were also annotated using genome annotation information provided by Virginia Bioinformatics Institute (http://agro.vbi.vt.edu/public/). A. tumefaciens strain A208 (pCNL65; pT177; napaline-type Ti plasmid) was grown in LB medium, pelleted, washed with saline (0.9% NaCl), and resuspended in induction medium (Gelvin, 2006) supplemented with or without AS (100 μM) or AS plus SA (50 μM), and were allowed to grow for 4 and 24 h, respectively. The initial
Validation of the Agrobacterium Arrays

The Agrobacterium array data were validated for a set of differentially expressed genes identified from the transcriptome analysis representing genes on different chromosomes, namely, Atu0377, Atu0972, Atu1550, Atu1525, Atu2022, and Atu2283 (circular chromosome); Atu3610 and Atu3707 (linear chromosome); and Atu6164, Atu6168, Atu6182, Atu6188, and Atu6190 (Ti plasmid) using qRT-PCR. Random primed first-strand cDNA was generated from 3 µg of total RNA using SuperScript III reverse transcriptase (Invitrogen). Each reaction was performed in triplicate plus a negative control using a 7900HT fast real-time PCR system (Applied Biosystems). Power SYBR Green PCR Master Mix (Applied Biosystems) was used for the PCR reaction according to the manufacturer’s protocol, except that 0.1 µM primers were used in a final volume of 10 µL. The primer details are provided as supporting data (Supplemental Table S2).

For microarray analysis, the CEL file for each sample was exported from the GeneChip Operating System program (Affymetrix). Between-chip normalization was conducted using robust multichip average (Bolstad et al., 2003). Differentially expressed genes were selected using Associative Analysis as described (Dozmorov and Centola, 2003). Type I family-wise error rate was reduced using the Bonferroni corrected P-value threshold of 0.05/N, where N represents the number of genes present on the chip. The false discovery rate for selected genes was monitored and controlled by calculating the Q value (false discovery rate) using extraction of differential gene expression (EDGE; http://www.biosat.washington.edu/software/storeyy/edge/; Storey and Tibshirani, 2003; Leek et al., 2006). Genes that showed the most difference in transcript levels (>2-fold or greater, P value < 6.3947e-006) between comparison groups are presented in Supplemental Table S1. The selected genes were clustered and visualized using TIGR Multiple Experiment Viewer (TMEV; http://www.tm4.org/mev.html).

Data Analysis and Gene Clustering

Leaf disc transformation data were subjected to ANOVA using JMP software Version 4.0.4 (SAS Institute) or by ANOVA. When significant results using F test were obtained at P < 0.05, separation of treatment means was determined by Fisher’s protected LSD.

For microarray analysis, the CEL file for each sample was exported from the GeneChip Operating System program (Affymetrix). Between-chip normalization was conducted using robust multichip average (Bolstad et al., 2003). Differentially expressed genes were selected using Associative Analysis as described (Dozmorov and Centola, 2003). Type I family-wise error rate was reduced using the Bonferroni corrected P-value threshold of 0.05/N, where N represents the number of genes present on the chip. The false discovery rate for selected genes was monitored and controlled by calculating the Q value (false discovery rate) using extraction of differential gene expression (EDGE; http://www.biosat.washington.edu/software/storeyy/edge/; Storey and Tibshirani, 2003; Leek et al., 2006). Genes that showed the most difference in transcript levels (>2-fold or greater, P value < 6.3947e-006) between comparison groups are presented in Supplemental Table S1. The selected genes were clustered and visualized using TIGR Multiple Experiment Viewer (TMEV; http://www.tm4.org/mev.html).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Effect of SA on Agrobacterium growth in different media and various concentrations of SA.

Supplemental Figure S2. Effect of SA on Agrobacterium viability.

Supplemental Figure S3. Exogenous incorporation of SA (50–100 μM) in agroinduction medium with AS attenuates the tumors incited on the leaf disks of N. benthamiana plants.

Supplemental Figure S4. Semi-quantitative RT-PCR analyses confirm the down-regulation of ICS, NPR1, and SABP2 gene transcripts in the gene-silenced plants of N. benthamiana.

Supplemental Figure S5. Semi-quantitative RT-PCR analyses confirm the induced expression of PRIA upon BTH treatment in the gene-silenced plants.

Supplemental Figure S6. Leaf disk assays to characterize the effect of gene silencing on leaf tumorigenesis by Agrobacterium and on cell division.

Supplemental Table S1. The differential expression of selected genes from Agrobacterium in response to SA.

Supplemental Table S2. The primer combinations used for validating the microarray data by qRT-PCR.

ACKNOWLEDGMENTS

We thank Drs. Kelly Craven and Jeremy Murray for critical reading of the manuscript, Dr. Stan Gelvin for sharing unpublished data, and Candice Jones for her assistance with tumorigenesis assays.

Received October 18, 2007; accepted December 14, 2007; published December 21, 2007.

LITERATURE CITED

Achuo EA, Audenaert K, Meziane H, Hofte M (2004) The salicylic acid-dependent defense pathway is effective against different pathogens in tomato and tobacco. Plant Pathol 53: 65–72

Agrios GN (1997) Plant Pathology. Ed 4. Academic Press, San Diego

Anand A, Krichevsky A, Schornack S, Lahaye T, Tzifra T, Tang Y, Citovsky V, Mysore KS (2007a) Arabidopsis VirE2 interacting protein 2 is required for Agrobacterium T-DNA integration in plants. Plant Cell 19: 1695–1708

Anand A, Vagchhipawala Z, Ryu CM, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS (2007b) Identification of plant genes involved in Agrobacterium-mediated transformation by using virus-induced gene silencing as a functional genomics tool. Mol Plant Microbe Interact 20: 41–52

Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193

Brading PA, Hammond-Kosack KE, Perr A, Jones JDG (2000) Salicylic acid is not required for CI-2- and CI-9-dependent resistance of tomato to Cladosporium fulvum. Plant J 23: 305–318

Burr TJ, Razzi C, Sule S, Otten L (1998) Biology of Agrobacterium vitis and the development of disease control strategies. Plant Dis 82: 1288–1297

Burr TJ, Otten L (1999) Crown gall of grape: biology disease management. Annu Rev Phytopathol 37: 53–80

Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6: 1583–1592

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 56–63

Chilton MD, Drummond MH, Merlo DJ, Sciby D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271

Cho H, Winans SC (2005) VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proc Natl Acad Sci USA 102: 14843–14848

Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microboll Mol Biol Rev 66: 223–249
Deblaere R, Byetebier B, DeGreve H, Deboeck J, Van Montagu M (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13: 4777–4788
DeCleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389–466
Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, et al (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250
Dozmorov I, Centola M (2003) An associative analysis of gene expression array data. Bioinformatics 14: 204–211
Ekenkeng SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Plant disease resistance in tomato. Plant J 36: 905–917
Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) Genetic analysis of crown gall: fine structure map of the T-DNA insert from Agrobacterium tumefaciens. Genes Genet Syst 76: 1347–13442
Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Dozmorov I, Centola M, Ream LW (1979) Agrobacterium—a siderophore from Agrobacterium tumefaciens. J Biol Chem 254: 1860–1865
Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2002) Myxyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 111–116
Pfalz MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: E45
Pietere CMJ, Van Loo LC (1999) Salicylic acid-independent plant defense pathways. Trends Plant Sci 4: 52–57
Prithiviraj B, Bais HP, Jha AK, Vivanco JM (2005a) Staphylococcus aureus pathogenicity on Arabidopsis thaliana is mediated either by a direct effect of salicylic acid on the pathogen or by SA-dependent, NPR1-indepen- dent host responses. Plant J 42: 417–432
Prithiviraj B, Bais HP, Jha AK, Suresh B, Najarro E, Dayakar BV, Schweizer HP, Vivanco JM (2005b) Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its viru- lence on Arabidopsis thaliana and Cenorhabditis elegans. Infect Immun 73: 5319–5328
Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 439–460
Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefaciens C58. Microbiology 150: 3857–3866
Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340–358
Ryals JA, Neuenschwander UH, Willis MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809–1819
Schmelz EA, Engelbert J, Tumlinson JH, Block A, Albort HT (2004) The role of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J 39: 790–808
Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365–371
Shirasu K, Nakajima H, Rajasekhar V, Dixon R, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 261–270
Spoel SH, Koornneef A, Claessens SMC, Korzus EJ, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, et al (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760–770
Stacey G, McAlvin CR, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141: 1473–1481
Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci USA 100: 9440–9445
Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135: 530–538
Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in

Liu Y, Nakayama N, Schiff M, Dinesh-Kumar SP (2004) Involvement of MEKK1, MAPKK, NTF6, MAPK, WRKY/MYB transcription factors, CO11 and CTR1 in N-mediated resistance to tobacco mosaic virus. Plant J 38: 800–809
Martinez-Abarca F, Herrera J, Bueno P, Sanjuan J, Bisseling T, Olivares J (1998) Involvement of salicylic acid in the establishment of the Rhizobium meliloti-alalfa symbiosis. Mol Plant Microbe Interact 11: 153–155
Mishina TE, Zeier J (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50: 500–513
Mur L, BI YM, Darby RM, Firek S, Draper J (1997) Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV-infected tobacco. Plant J 12: 1113–1126
Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG, Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol Gen Genet 261: 429–438
Nelands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270: 26723–26726
Ong SA, Peterson T, Neill JR (1995) Agrobacitin, a siderophore from Agrobacterium tumefaciens. J Biol Chem 260: 1860–1865
Pieterse CMJ, Van Loo LC (2001) Salicylic acid-independent plant defense pathways. Trends Plant Sci 4: 52–57
Prithiviraj B, Bais HP, Jha AK, Suresh B, Najarro E, Dayakar BV, Schweizer HP, Vivanco JM (2005b) Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infect Immun 73: 5319–5328
Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 439–460
Rondon MR, Ballering KS, Thomas MG (2004) Identification and analysis of a siderophore biosynthetic gene cluster from Agrobacterium tumefa- ciens C58. Microbiology 150: 3857–3866
Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340–358
Ryals JA, Neuenschwander UH, Willis MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809–1819
Schmelz EA, Engelbert J, Tumlinson JH, Block A, Albort HT (2004) The use of vapor phase extraction in metabolic profiling of phytohormones and other metabolites. Plant J 39: 790–808
Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6: 365–371
Shirasu K, Nakajima H, Rajasekhar V, Dixon R, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 261–270
Spoel SH, Koornneef A, Claessens SMC, Korzus EJ, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, et al (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760–770
Stacey G, McAlvin CR, Kim SY, Olivares J, Soto MJ (2006) Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus and Medicago truncatula. Plant Physiol 141: 1473–1481
Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci USA 100: 9440–9445
Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135: 530–538
Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in
tomato inoculated with *Pseudomonas syringae* pv. tomato DC3000. Mol Plant Microbe Interact 20: 955–965

Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44: 1920–1934

van Spronsen PC, Tak T, Rood AMM, van Brussel ANN, Kijne JW, Boot KJM (2003) Salicylic acid inhibits indeterminate-type nodule formation but not determinate-type nodule formation. Mol Plant Microbe Interact 16: 1357–1365

van Wees SCM, de Swart EAM, van Pelt JA, van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in *Arabidopsis thaliana*. Proc Natl Acad Sci USA 97: 8711–8716

Veena, Jiang H, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by *Agrobacterium tumefaciens* induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J 35: 219–226

Viss W, Humann JL, Cook M, Driver J, Ream W (2003) Crown-gall-resistant transgenic apple trees that silence *Agrobacterium tumefaciens* T-DNA oncogenes. Mol Breed 12: 283–295

Wang D, Weaver ND, Kesarwani M, Dong X (2005) Induction of protein secretory pathway is required for systemic acquired resistance. Science 308: 1036–1040

Wang K, Kang L, Anand A, Lazarovits G, Mysore KS (2007) Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. New Phytol 174: 212–223

Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414: 562–565

Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quorumone-quenching genes in *Agrobacterium*. Proc Natl Acad Sci USA 104: 11790–11795

Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG (2000) At the maize/*Agrobacterium* interface: natural factors limiting host transformation. Chem Biol 7: 611–621

Zipfel C, Felix G (2005) Plants and animals: a different taste for microbes? Curr Opin Plant Biol 8: 353–360

Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts *Agrobacterium*-mediated transformation. Cell 125: 749–760