3PSDF: Three-Pole Signed Distance Function for Learning Surfaces with Arbitrary Topologies

Weikai Chen Cheng Lin Weiyang Li Bo Yang
Digital Content Technology Center, Tencent Games
{weikaichen,arnolin,kimonoli,brandonyang}@tencent.com

Figure 1. We show three groups of shape reconstruction results generated by NDF [10] (in cyan) and our proposed 3PSDF (in gold) respectively. Our method is able to faithfully reconstruct high-fidelity, intricate geometric details including both the closed and open surfaces, while NDF suffers from the meshing problems. Each NDF result is reconstructed from a dense point cloud containing 1 million points while ours are reconstructed using an equivalent resolution.

Abstract

Recent advances in learning 3D shapes using neural implicit functions have achieved impressive results by breaking the previous barrier of resolution and diversity for varying topologies. However, most of such approaches are limited to closed surfaces as they require the space to be divided into inside and outside. More recent works based on unsigned distance function have been proposed to handle complex geometry containing both the open and closed surfaces. Nonetheless, as their direct outputs are point clouds, robustly obtaining high-quality meshing results from discrete points remains an open question. We present a novel learnable implicit representation, called three-pole signed distance function (3PSDF), that can represent non-watertight 3D shapes with arbitrary topologies while supporting easy field-to-mesh conversion using the classic Marching Cubes algorithm. The key to our method is the introduction of a new sign, the NULL sign, in addition to the conventional in and out labels. The existence of the null sign could stop the formation of a closed isosurface derived from the bisector of the in/out regions. Further, we propose a dedicated learning framework to effectively learn 3PSDF without worrying about the vanishing gradient due to the null labels. Experimental results show that our approach outperforms the previous state-of-the-art methods in a wide range of benchmarks both quantitatively and qualitatively.

1. Introduction

The choice of representation for 3D shapes and surfaces has been a central topic for effective 3D learning. Various 3D representations, including mesh [18,41], voxels [36,42], and point cloud [31,32], have been extensively studied over the past years. Recently, the advent of neural implicit functions (NIF) [6,20,26,29] has brought impressive advances to the state-of-the-art of learning-based 3D reconstruction and modeling.

Classic NIF approaches are built upon the signed distance function (SDF); they train a deep neural network to classify continuous 3D locations as inside or outside the surface via occupancy prediction or regressing the SDF. However, they can only model closed surfaces that support the in/out test for level surface extraction. Recent advances that leverage unsigned distance function (UDF) [10,39,40] have made it possible to learn open surfaces from point clouds. But instantiating this field into an explicit mesh remains cumbersome and is prone to artifacts. It requires the gen-
eration of dense point cloud and leveraging UDF’s gradient field to iteratively push the points onto the target surface. Such process is vulnerable to complex gradient landscape, e.g., parts with many details, and could easily get stuck at a local minima. In addition, reconstruction of mesh from UDF has to use the Ball Pivoting (BP) algorithm which has several drawbacks. 1) It is very sensitive to the input ball radius. A slightly larger or smaller radius would lead to an incomplete meshing result. 2) It is prone to generate self-intersections and disconnected face patches with inconsistent normals even with surfaces of moderate complexity (see the clothing result in Figure 3). 3) The BP algorithm is very time-consuming especially dealing with dense point clouds. Finally, learning UDF becomes a regression task instead of classification like for SDF, making the training more difficult. We show in the closeups of Figure 1 that NDF cannot reconstruct the face details of the first character even with 1 million sampling points.

We overcome the above limitations by presenting a new learnable implicit representation, called Three-Pole Signed Distance Function (3PSDF), which is capable of representing highly intricate geometries containing both closed and open surfaces with high fidelity (see Figure 1). In addition, 3PSDF makes the learning an easy-to-train classification task, and is compatible with classic and efficient isosurface extraction techniques, e.g. the Marching Cubes algorithm. The key idea of our approach is the introduction of a direction-less sign, the NULL sign, into the conventional binary-sided signed distance function. Points with null sign will be assigned with nan value, preventing the decision boundary to be formed between them and their neighbors. Therefore, by properly distributing the null signs over the space, we are able to cast surfaces with arbitrary topologies (see Figure 2). Similar to previous works based on occupancy prediction [6, 26], we train a neural network to classify continuous points into 3 categories: inside, outside, and null. The resulting labels can be converted back to the 3PSDF using a simple mapping function to obtain meshing result.

We evaluate 3PSDF on three different tasks with gradually increased difficulty: shape reconstruction, point cloud completion and single-view reconstruction. 3PSDF can consistently outperform the state-of-the-art methods over a wide range of benchmarks, including ShapeNet [5], MGN [4], Maximo [1], and 3D-Front [16], both quantitatively and qualitatively. We also conduct comparisons of field-to-mesh conversion time with NDF and analyze the impact of different resolutions and sampling strategies on our approach. Our contributions can be summarized as:

- We propose a simple yet effective learning paradigm for 3PSDF that enables it to handle challenging task like single-view reconstruction.
- We obtain SOTA results on three applications across a wide range of benchmarks using 3PSDF.

2. Related Work

Learning with explicit representations. Explicit representations of 3D shapes are often well regularized and structured. Voxel based methods [11, 17, 19] are compatible with convolutional neural networks for learning; to reduce the high memory cost, octree-based partitions are adopted [23, 36, 42]. However, inner parts of objects usually occupy a large portion of the voxels, leading to compromised 3D accuracy due to memory limitation. Mesh-based methods mostly deform a pre-defined mesh to approximate a given 3D shape [14, 18, 28, 41]. One key limitation of such methods is the difficulty of changing mesh topologies, confining its 3D representation capability. Point clouds have achieved much attention recently [32, 33, 38, 44] due to its simplicity. Although such methods are convenient for shape analysis, generating 3D shapes with high precision remains difficult.

Implicit function learning. With the development of deep learning, implicit representation of 3D shapes has achieved great progress in recent years [6, 8, 15, 24, 27, 35]. A good example is signed distance field (SDF), which creates a continuous implicit field in 3D space [29, 30] where outside and inside points are denoted by positive and negative SDFs. Zero-isosurface, i.e., the object’s surface, can be efficiently extracted by Marching Cubes [25]. Such representation supports infinite resolution and can simplify the SDF learning as a binary classification process [26]. However, SDF is only applicable to objects with closed surfaces.

To deal with open surfaces, unsigned distance field (UDF) [10] and deep unsigned distance embeddings [40] are proposed. These methods use absolute distance to describe point position, and the zero-isosurface is extracted by Ball-Pivoting algorithm [3]. However they have several major limitations: 1) learning UDF is a regression problem, harder than that in SDF; 2) ball pivoting [3] is more computational expensive and less stable than Marching Cubes [25]; 3) gradient vanishes on the surface, resulting in artifacts. Venkatesh et al [39] proposed Closest Surface-Point (CSP) representation to prevent gradient vanishing and improve the speed. Zhao et al. [45] proposed Anchor UDF to improve reconstruction accuracy. However, the first two limitations of UDF-type methods still remain.
3. Three-Pole Signed Distance Function

3.1. Definition

A watertight 3D shape can be implicitly represented by a signed distance function. Given a 3D query point \(\mathbf{p} \in \mathbb{R}^3 \), previous works apply deep neural networks to either predict the occupancy of \(\mathbf{p} \) as \(f(\mathbf{p}) : \mathbb{R}^3 \rightarrow [0, 1] \) \(^{(20)}\) or directly regress SDF as \(f(\mathbf{p}) : \mathbb{R}^3 \rightarrow \mathbb{R} \). \(^{(29, 43)}\) Our key observation is that the formation of closed surface is inevitable as long as both the positive and negative signs exist in the space (note that we do not consider space clipping where SDF is only computed in a limited bounding area). To resolve this issue, we introduce the third direction-less pole – the NULL sign into the field such that the “curse” of closeness can be lifted: no iso-surfaces can be formed at the bisector of either positive/null or negative/null pairs. Therefore, the NULL sign acts as a surface eliminator that cancels out unwanted surfaces and thus can flexibly cast arbitrary topologies including those with open surfaces.

Formally, for a 3D point \(\mathbf{p} \in \mathbb{R}^3 \), we propose that in addition to a continuous signed distance, it can be also be mapped to null value: \(\Psi(\mathbf{p}) : \mathbb{R}^3 \rightarrow \{0, nan\} \). Hence, given an input surface \(\mathcal{S} \), we aim to learn such a mapping function \(\Psi \) so that

\[
\arg\min_{\Psi} ||\mathcal{S} - \mathcal{M}(\Psi(\mathbf{p}))||,
\]

where \(\mathcal{M} \) is the meshing operator that converts the resulting field into an explicit surface and \(||\cdot|| \) returns the surface to surface distance. Next, we will introduce how to compute the corresponding 3PSDF for a given shape.

3.2. Field Computation

For non-watertight surface without closed boundaries, it is not possible to perform in/out test for a query point. Hence, we leverage the surface normal to determine the sign of the distance. In particular, we decompose the 3D space into grid of local cells. As shown in Figure 2, for each cell \(\mathcal{C}_i \), if it does not contain any surface of interest, we set its enclosed space as null region and any sample point \(\mathbf{p}_i \) that lies inside \(\mathcal{C}_i \) has nan distance to the target surface \(\mathcal{S} \):

\[
\Psi(\mathbf{p}_i, \mathcal{S}) = nan, \text{ if } \mathbf{p}_i \in \mathcal{C}_i \text{ and } \mathcal{C}_i \cap \mathcal{S} = \emptyset
\]

For a local cell \(\mathcal{C}_i \) that encloses a surface patch \(\mathcal{S}_i \), given a query point \(\mathbf{p}_i \in \mathcal{C}_i \), we find \(\mathbf{p}_i \)'s closest point \(\mathbf{q}_i \) on \(\mathcal{S}_i \). We set the surface normal at \(\mathbf{q}_i \) as \(\mathbf{n}(\mathbf{q}_i) \). If vector \(\mathbf{q}_i \mathbf{p}_i \) aligns with \(\mathbf{n}(\mathbf{q}_i) \), i.e. \(\mathbf{n}(\mathbf{q}_i) \cdot \mathbf{q}_i \mathbf{p}_i \geq 0 \), we set \(\mathbf{p}_i \)'s distance to the input surface \(\mathcal{S} \) as positive; otherwise, it is negative. The computation can be summarized as:

\[
\Psi(\mathbf{p}_i, \mathcal{S}_i) = \begin{cases}
\mathbf{d}(\mathbf{p}_i, \mathcal{S}_i) & \text{if } \mathbf{n}(\mathbf{q}_i) \cdot \mathbf{q}_i \mathbf{p}_i \geq 0, \\
-\mathbf{d}(\mathbf{p}_i, \mathcal{S}_i) & \text{otherwise},
\end{cases}
\]

where \(\mathbf{d}(\mathbf{p}_i, \mathcal{S}_i) \) returns the absolute distance between \(\mathbf{p}_i \) and \(\mathcal{S}_i \). With finer decomposition of 3D space, cells containing geometry would only distribute around the surface of interest while the null cells would occupy the majority of the space. This differs a lot from the conventional signed distance field, where the entirety of the space is filled with distances of either positive or negative sign. Our proposed 3PSDF better reflects the nature of 3D surface of any topology – the high sparsity of surface occupancy.

Surface approximation ability. If an enclosed surface subdivides its hosting cell into several closed sub-regions, our implicit representation can faithfully approximate the original shape without loss of accuracy (Figure 2(c)). If a local cell contains protruding open surface(s), our approach is prone to generate elongated surface patch (Figure 2(d)). However, such approximation error only happen locally and is limited to the size of the local cell. Hence, with a denser 3D decomposition, we can significantly reduce the approximation error. We provide additional experiments in Sec-

![Figure 2. 2D illustration of 3PSDF. (a) Conventional signed distance function (SDF) can only represent closed surface. (b) By introducing the null sign into SDF, 3PSDF can disable specified decision boundaries to cast arbitrary topologies that contain open surfaces. We propose practical framework for computing 3PSDF based on local cells ((c) and (d)). While 3PSDF may introduce approximation error (the yellow dash line in (d)) for open surface enclosed within a cell, the approximation error can be significantly reduced with finer space decomposition. We propose octree-based subdivision approach (e) to improve approximation performance with high computation efficiency.](image-url)
tion 4.5 showing different reconstruction performance with respect to varying sampling resolutions.

3.3. Learning Framework

Though the introduction of the null sign provides the flexibility of eliminating unwanted surface, the nan value prohibits computing meaningful gradient required for updating a deep neural network. To resolve this issue, a straightforward way is to combine binary classification (nan vs. non-nan) and regression, where the former generates a mask of the valid narrow band around the surface and the latter regresses the surface within this narrow band. While we experimentally validate that it is possible to learn 3PSDF via this approach, additional challenges would arise in aligning the narrow-band mask from binary classification and the regressed decision boundary from the regression branch. A misalignment of the two branches’ results would lead to discontinuity in the final reconstruction. Hence, we propose an alternative learning framework that formulates the learning of 3PSDF as a 3-way classification problem as elaborated below. While we provide the method and results of the 3-way classification framework in the main paper, we provide detailed comparisons between the two learning methods in the supplemental materials.

Similar to the previous works on occupancy prediction [6, 26], the 3-way classification method proposes to approximate the target function (Equation 2 and 3) with a neural network that infers per-point label: \{in, out, null\}. We represent the label semantics using discrete numbers without loss of generality. Formally, we aim to learn a mapping function \(o : \mathbb{R}^3 \mapsto \{0, 1, 2\} \), where the labels \{0, 1, 2\} represent inside, outside, and null respectively.

When applying such a network for downstream tasks (e.g. 3D reconstruction) based on observation of the object (e.g. point cloud, image, etc.), the network must be conditioned on the input. Therefore, in addition to the coordinate of points \(\mathbf{p} \in \mathbb{R}^3 \), the network also consumes the observation of object \(\mathbf{x} \in \mathcal{X} \) as input. Specifically, such a mapping function can be parameterized by a neural network \(\Phi_{\theta} \) that takes a pair \((\mathbf{p}, \mathbf{x}) \) as input and outputs its 3-class label:

\[
\Phi_{\theta}(\mathbf{p}, \mathbf{x}) : \mathbb{R}^3 \times \mathcal{X} \mapsto \{0, 1, 2\}.
\]

Training. To learn the parameters \(\theta \) of the neural network \(\Phi_{\theta}(\mathbf{p}, \mathbf{x}) \), we train the network using batches of point samples. For the \(i \)-th sample in a training batch, we sample \(N \) points \(\mathbf{p}_{ij} \in \mathbb{R}^3, j = 1, \ldots, N \). The mini-batch loss \(L_B \) is:

\[
L_B = \frac{1}{|B|N} \sum_{i=1}^{|B|} \sum_{j=1}^N L(\Phi_{\theta}(\mathbf{p}_{ij}, \mathbf{x}_i), y_{ij}),
\]

where \(L(\cdot, \cdot) \) computes the cross-entropy loss, \(x_i \) is the \(i \)-th observation of batch \(B \), \(y_{ij} \) denotes the ground-truth label for point \(\mathbf{p}_{ij} \).

Octree-based subdivision. Since the computation of 3PSDF is done locally, to ensure a high reconstruction accuracy, it would be preferable not to include too many intricate geometric details and open surfaces in one cell. We propose an octree-based subdivision [37, 42] method as shown in Figure 2(e). We only subdivide a local cell if it intersects with the input shape. As the subdivision depth increases, the complexity of surface patch contained by each local cell decreases, leading to better approximation accuracy. In addition, since regions containing no shapes will not be further divided, we are able to accomplish a balanced trade-off between the computational complexity and reconstruction accuracy. In all of our experiments, we use the octree-based subdivision for ground truth computation unless otherwise stated. Our experiments in Section 4.5 validate the benefits of performance from octree-based sampling.

3.4. Surface Extraction

Once the network is learned, we are able to label each query point with our predictions. To extract the iso-surface, we first convert the inferred discrete labels back to the original 3PSDF representation. Points with labels 0, 1, and 2 are assigned with sdf values as \(-1, 1\), and nan, respectively. The reconstructed surface can then be extracted as zero-level surface. Note that the iso-surface represented by 3PSDF can be directly extracted using the classic Marching Cubes (MC) algorithm. The existence of null value would naturally prevent MC from extracting valid iso-surfaces at locations that contain no shapes. In the meantime, in the vicinity of target surface, the iso-surface extraction can be performed normally just as the conventional signed distance field. After MC computation, we only need to remove all the nan vertices and faces generated by the null cubes. The remaining vertices and faces serve as the meshing result.

4. Experiments

4.1. Experimental Setup

Tasks and datasets. We validate the proposed 3PSDF using three types of experiments. First, we analyze the representation power of 3PSDF by examining how the 3PSDF can reconstruct complex 3D shapes from a learned latent embedding. This gives us an upper bound on the results we can achieve when conditioned on other inputs. Second, we condition the learning of 3PSDF on sparse point cloud and test its performance by feeding 3D features. Finally, we use image features as input and provide validation on the challenging task of single-view reconstruction. All experiments are compared with the SOTA methods for better verification. The experiments are conducted on a wide range of 3D datasets including ShapeNet [5], MGN [4], 3D-Front [16], and Maximo [1]. The specific settings are detailed in the following experiments.
Table 1. Quantitative comparisons of shape reconstruction using different neural implicit representations.

Metric	Method	ShapeNet	MGN	Mixamo				
		car	plane	boat	lamp	chair		
CD ($\times 10^{-5}$) ↓	NDF	0.63	0.25	0.33	0.34	0.45	0.08	0.52
	DeepSDF	2.71	0.58	0.61	1.99	0.91	0.09	1.82
	Ours	0.44	0.21	0.24	0.30	0.35	0.07	0.32
EMD ($\times 10^{2}$) ↓	NDF	2.39	2.46	2.11	2.05	1.47	0.33	2.81
	DeepSDF	4.23	2.56	2.29	2.78	1.66	0.62	4.56
	Ours	2.10	2.23	2.04	1.92	1.38	0.21	2.55

Figure 3. Visual comparisons of shape reconstruction result using different neural implicit representations.

Implementation details. For the task of reconstruction from point cloud, we use the same point encoder (IF-Net) and hyper-parameters with NDF [10]. For single-view reconstruction, we use VGG16 [34] with batch normalization as the image encoder. Similar to DISN [43], we use both multi-scale local and global features to predict the 3PSDF value. We re-orient the normals of the ground-truth surfaces based on visibility [13] to make them consistent. We refine the results by filling small holes and smoothing the surfaces. The ground-truth 3PSDF values are generated with resolution 1283 and the results are evaluated using resolution 2563. We use octree-based importance sampling for all experiments. To ease the learning of 3PSDF, we ensure the size of the minimum leaf octree cell to be consistent across different objects by using a unified bounding box for all samples.

4.2. Shape Reconstruction

To evaluate the capability of 3PSDF of modeling complex geometry, we perform the shape reconstruction experiment comparing with other SOTA neural implicit representations: DeepSDF [29] and NDF [10]. Similar to the auto-encoding method in [29], we embed each training sample with a 512 dimensional latent code and train neural networks to reconstruct the 3D shape from the embedding. We perform evaluations on five representative categories of ShapeNet that contain the most intricate geometry, and two datasets with open surfaces: MGN [4] and Mixamo [1].

Since we are only interested in reconstructing the training data, we do not use validation and test set for this experiment. As DeepSDF cannot handle open surfaces, we generate its ground-truth SDF value using [21] which converts complex open surfaces into closed ones using winding number. For training and evaluation, we use 10 as the depth for octree-based sampling for our method and the equivalent resolution of 1024 for DeepSDF. To ensure similar density of sampling, we generate 1 million surface points for the NDF. All the NDF results (including the following experiments) are generated using the post-processing scripts released by the authors to ensure fair comparison. We show the visual comparisons in Figure 1 and 3 and the quantitative comparisons in Table 1. While DeepSDF is able to reconstruct fine details, it cannot handle open surfaces like hair, clothing, and the windshield. NDF can deal with all topologies, but suffers from meshing problems – lots of self-intersections and flipped faces are introduced. Our method can faithfully reconstruct all the intricate geometries while achieving the best performance in quantitative comparisons.

4.3. Reconstruction from Point Cloud

We further validate 3PSDF on the task of shape reconstruction from sparse point clouds. Following NDF [10],
Reconstruction of closed shapes. To compare with the SOTA methods: OccNet [26], IF-Net [9], and DMC [22], we train on the ShapeNet car category pre-processed by [43] with all open surfaces closed and inner structures removed. We show the reconstruction results using 300 and 3000 points as input both qualitatively and quantitatively in Figure 4 and Table 2 respectively. Compared to the other methods, our approach can better reconstruct the sharp geometry details while outperforming all baselines in quantitative measurement.

Reconstruction of complex surfaces. To validate the ability of 3PSDF of handling raw, unprocessed data, we train 3PSDF to reconstruct complex shapes from sparse point clouds on three datasets: unprocessed cars from ShapeNet [5], garments with open surfaces from MGN [4], and the living room scenes from 3D-Front [16]. We use NDF [10] and SAL [2] as the baselines for reconstructing unprocessed cars. Since SAL is built upon traditional SDF, we use the closed shapes as ground truth. We provide visual comparisons of the reconstructed results in Figure 5 and 6. SAL struggles to model the open surfaces, e.g. the windshield and the thin outer structure of car. NDF can generate dense point clouds close to the target surface. However, the output points are prone to be clustered (as shown in the closeups of Figure 6) which prevent the BP algorithm from generating high-quality meshing results. In contrast, 3PSDF is able to faithfully reconstruct the interior structures as well as the open surfaces. The quantitative comparisons in Table 2 and Figure 6 also validates our advantage over the baselines.

4.4. Single-view 3D Reconstruction

In this experiment, we apply 3PSDF to single-view 3D reconstruction (SVR) tasks to further demonstrate its representational ability. We evaluate on the MGN dataset [4] and ShapeNet [5]. We use Chamfer-L^2_2 distance and F-score ($\tau = 1\%$ volume diagonal length) as the evaluation metrics. We compare against the representative SVR methods using implicit fields, including IMNet [7], OccNet [26] and
Figure 6. Comparisons of point cloud completion performance on MGN and 3D-Front. Chamfer-L_2 ($\times 10^{-4}$) comparison: MGN: NDF - 0.035; ours - 0.033; 3D-Front: NDF - 1.452; ours - 1.378.

Figure 7. Qualitative comparison on MGN dataset with state-of-the-art single-view reconstruction methods based on implicit functions. The quantitative evaluation results in terms of CD ($\times 10^{-3}$) and F-score ($\times 10^{-2}$) metrics on the testing set of MGN are: 1.03 and 69.8 (DISN); 1.01 and 71.0 (OccNet); 0.98 and 71.2 (Ours).

Figure 8. Qualitative comparison results with SOTA single-view reconstruction methods based on implicit functions.

DISN [43]. We further implement an image-based NDF [10] estimator but find reasonable results cannot be generated by solely using image features. Since the models in these two datasets usually contain non-watertight surfaces which cannot be directly handled by the baseline methods, we first convert these models to watertight ones. Note that our representation is directly trained on the original shapes without this extremely time-consuming process.

Single-view reconstruction on MGN. The models in the MGN dataset [4] are represented as open freeform surfaces with single sheets, which is challenging to the existing single-view reconstruction methods with implicit functions. We render an RGB image using the textured mesh for each garment model, and train a network conditioned on images to predict the shape representations. As shown in Figure 7, our results capture the original open-surface structure as well as more high frequency geometric features such as the wrinkles. The 3PSDF representation also achieves the best quantitative results on the testing set.

Single-view reconstruction on ShapeNet. We use a subset of ShapeNet [5] for evaluation, from which we choose 5 categories (airplane, car, lamp, chair, boat) resulting in 17803 shapes. We use the same image renderings (24 views per shape) and train/test split as Choy et al. [12]. Figure 8 shows a set of qualitative comparisons. Despite being designed for handling open surfaces, 3PSDF is still a versatile representation for reconstructing various 3D shapes in the ShapeNet with either closed or open surfaces. We not only faithfully preserve the original structure of the target shape, but also captures more detailed geometries. Instead, the existing implicit functions always rely on watertight shapes, which substantially limits their representational ability and usually leads to over-smoothed geometries, lack of details, as well as inconsistent typologies. As shown in Table 3, 3PSDF achieves state-of-the-art performance compared to
Table 3. Quantitative comparisons of single-view reconstruction. Chamfer-L_2 and F-score are reported in $\times 10^{-3}$ and $\times 10^{-2}$ respectively.

4.5. Further Discussions

Reconstruction accuracy/appearance with different resolutions. Since 3PSDF is continuously defined in the 3D space, it can represent a shape using arbitrary resolution. Figure 9 gives a coarse-to-fine shape approximation results, where we discretize the volumetric space and use different grid resolutions to represent a 3D shape. The experimental results show that the approximation quality of 3PSDF increases as the resolution grows, leading to smoother shape boundaries and higher reconstruction accuracies.

Figure 9. Reconstruction results of a shape using different resolutions. From the left to right, the CD ($\times 10^{-3}$) values for these shapes are: 14.49, 2.52, 2.21 and 2.12; the EMD ($\times 10^2$) values are: 3.42, 0.336, 0.267 and 0.227.

Timing cost for field-to-mesh conversion. We quantitatively evaluate the timing cost for field-to-mesh conversion in different output sampling densities. For the octree depth of 6 (64^3), 7 (128^3), 8 (256^3) and 9 (512^3), the average field-to-mesh conversion times of 3PSDF for a single shape are 0.006s, 0.11s, 0.54s, and 3.72s respectively. In contrast, the conversion times for NDF [10] given the comparable number of sampling points are: 2.1s, 15mins, 3hrs, 34hrs, using the provided post-processing setting (radius=0.005) by NDF. The experiments are conducted on a machine with a 48-Core AMD EPYC CPU and 64GB memory.

Different sampling strategies. We further study the impact of different sampling strategies on the performance of

Table 4. Reconstruction accuracy using different sampling strategies.

3PSDF; we evaluate on the task of shape reconstruction from point cloud on the unprocessed car data. Three strategies are used to generate sampling points: 1) randomly draw samples in the space; 2) uniform sampling which generates adjacent points in equal distance; 3) octree-based sampling that uses the corner points of leaf octree cells as training samples. We use around 18 million sampling points for all strategies. Table 4 shows that the octree-based sampling yields the best result. Compared to the other methods, octree-based sampling is able to densely sample points with inside/outside labels, generating a more balanced training set containing all the 3 labels. We use octree-based sampling for all of our experiments unless otherwise stated.

Limitation. 3PSDF has difficulty in reconstructing multi-layer surfaces that are very close to each other, especially when the resolution is low. This is because 3PSDF requires denser sampling rate compared to SDF in order to insert a null layer in between to prevent artifact surface. Besides, given the enhanced representational ability of 3PSDF, it requires more informative features to learn and longer time to train; for example, the network converges much faster and achieves better geometry given point clouds as input, compared to single images.

5. Conclusions and Discussions

We introduce 3PSDF, a learnable implicit distance function to represent 3D shapes with arbitrary topologies. Different from the widely used implicit representations like SDF that can only encode watertight shapes, 3PSDF can faithfully represent various shapes with both open and close surfaces. The key insight of the 3PSDF is the introduction of the NULL sign to additionally indicate the inexistence of surface. We further formulate a classification-based learning paradigm to effectively learn this representation. As a result, the representational power of the distance function is significantly enhanced. Extensive evaluations demonstrate that 3PSDF is a versatile implicit representation that accommodates various 3D reconstruction tasks.

Future work. We have shown in the supplemental that 3PSDF can be learned via an alternative method that combines binary classification and regression. Compared to 3-way classification, such a method has the potential to generate smoother surface with fewer sampling points at training time. However, it is not as robust as the 3-way counterpart as it requires the results of the two branches align well in order to prevent holes and artifacts. It would be an interesting future avenue to investigate how to resolve this issue.
References

[1] Adobe. https://www.mixamo.com/, 2017. 2, 4, 5
[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning of shapes from raw data. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. 6
[3] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel Taubin. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5(4):349–359, 1999. 2
[4] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and Gerard Pons-Moll. Multi-garment net: Learning to dress 3d people from images. In IEEE International Conference on Computer Vision (ICCV). IEEE, oct 2019. 2, 4, 5, 6, 7
[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015. 2, 4, 6, 7
[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5939–5948, 2019. 1, 2, 4
[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5939–5948, 2019. 6
[8] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for 3d shape reconstruction and completion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6970–6981, 2020. 2
[9] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for 3d shape reconstruction and completion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, jun 2020. 6
[10] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned distance fields for implicit function learning. In Advances in Neural Information Processing Systems (NeurIPS), December 2020. 1, 2, 5, 6, 7, 8
[11] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3075–3084, 2019. 2
[12] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A unified approach for single and multi-view 3d object reconstruction. In European conference on computer vision, pages 628–644. Springer, 2016. 7
[13] Lei Chu, Hao Pan, Yang Liu, and Wenping Wang. Repairing man-made meshes via visual driven global optimization with minimum intrusion. ACM Transactions on Graphics (TOG), 38(6):1–18, 2019. 5
[14] Angela Dai and Matthias Nießner. Scan2mesh: From unstructured range scans to 3D meshes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5574–5583, 2019. 2
[15] Yueqi Duan, Haidong Zhu, He Wang, Li Yi, Ram Nevatia, and Leonidas J. Guibas. Curriculum DeepSDF. In Proceedings of the European Conference on Computer Vision (ECCV), pages 51–67, 2020. 2
[16] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Cao Li, Zengqi Xun, Chengyue Sun, Yiyun Fei, Yu Zheng, Ying Li, et al. 3d-front: 3d furnished rooms with layouts and semantics. arXiv preprint arXiv:2011.09127, 2020. 2, 4, 6
[17] Rohit Girdhar, David F Fouhey, Mikel Rodriguez, and Abhinav Gupta. Learning a predictable and generative vector representation for objects. In ECCV, pages 484–499. Springer, 2016. 2
[18] Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, pages 9785–9795, 2019. 1, 2
[19] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3D semantic segmentation with submanifold sparse convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 9224–9232, 2018. 2
[20] Zeng Huang, Tianye Li, Weikai Chen, Yajie Zhao, Jun Xing, Chloe LeGendre, Linjie Luo, Chongyang Ma, and Hao Li. Deep volumetric video from very sparse multi-view performance capture. In Proceedings of the European Conference on Computer Vision (ECCV), pages 336–354, 2018. 1, 3
[21] Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. Robust inside-outside segmentation using generalized winding numbers. ACM Transactions on Graphics (TOG), 32(4):1–12, 2013. 5
[22] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep marching cubes: Learning explicit surface representations. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2018. 6
[23] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. Neural sparse voxel fields. NeurIPS, 2020. 2
[24] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li. Learning to infer implicit surfaces without 3d supervision. Advances in Neural Information Processing Systems, 32, 2019. 2
[25] William E. Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction algorithm. ACM Transactions on Graphics (TOG), 21(4):163–169, 1987. 2
[26] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4460–4470, 2019. 1, 2, 4, 6
[27] Ryota Natsume, Shunsuke Saito, Zeng Huang, Weikai Chen, Chongyang Ma, Hao Li, and Shigeo Morishima. Siclope: Silhouette-based clothed people. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4480–4490, 2019. 2
[28] Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep mesh reconstruction from single rgb images
via topology modification networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9964–9973, 2019.

[29] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. DeepSDF: Learning continuous signed distance functions for shape representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 165–174, 2019.

[30] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. Convolutional occupancy networks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16, pages 523–540. Springer, 2020.

[31] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017.

[32] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Advances in neural information processing systems, pages 5099–5108, 2017.

[33] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3D point cloud generative adversarial network based on tree structured graph convolutions. In Proceedings of the IEEE International Conference on Computer Vision, pages 3859–3868, 2019.

[34] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[35] Jia-Heng Tang, Weikai Chen, Jie Yang, Bo Wang, Songrun Liu, Bo Yang, and Lin Gao. Octfield: Hierarchical implicit functions for 3d modeling. In The Thirty-Fifth Annual Conference on Neural Information Processing Systems (NeurIPS), 2021.

[36] Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs. In Proceedings of the IEEE International Conference on Computer Vision, pages 2088–2096, 2017.

[37] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating networks: Efficient convolutional architectures for high-resolution 3d outputs. In IEEE International Conference on Computer Vision (ICCV), 2017.

[38] Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Learning localized generative models for 3d point clouds via graph convolution. In International Conference on Learning Representations, 2019.

[39] Rahul Venkatesh, Tejani Karmali, Sarthak Sharma, Aurobrata Ghosh, László A Jeni, R Venkatesh Babu, and Maneesh Singh. Deep implicit surface point prediction networks. arXiv preprint arXiv:2106.05779, 2021.

[40] Rahul Venkatesh, Sarthak Sharma, Aurobrata Ghosh, Laszlo Jeni, and Maneesh Singh. Dude: Deep unsigned distance embeddings for hi-fidelity representation of complex 3d surfaces. arXiv preprint arXiv:2011.02570, 2020.