Supplementary Figure 1. Regeneration of the QC-specific marker *WOX5* after root-tip excision at various distances from the tip.

Time-lapse of confocal median longitudinal section of single regenerating roots in *pWOX5::GFP* after root-tip excision at 70 μm (a), 130 μm (b), 200 μm (c), 270 μm (d) from the tip, at consecutive time points (dpc, days post cut; hpc, hours post cut); bars, 50 μm. Note that the *WOX5* marker appears earlier in roots cut at 70 μm than in roots cut more distally, as evident from the distal expression already at 5h in the presumptive endodermal file when cut at 70 μm (a compared to b or c).
Supplementary Figure 2. Cell type-specific markers during regeneration.

a,b, Time-lapse of confocal median longitudinal sections of single regenerating roots in plants expressing the pericycle-specific reporter E3754, source of lateral root initiation in intact roots (a; inset, mature region of the root with initiating lateral root), or the ground tissue-specific reporter J0571 (b). None of these fate-specific markers are expressed in the distal region during early reorganization at 1 dpc; bars, 50 μm.
Supplementary Figure 3. Cell cycle inhibition blocks regeneration.

a, b, Frequency of gravitropic response in CYCB1;1::GFP after excision at 130 μm from the tip compared to uncut, with treatments of different concentrations of the cell cycle inhibitors hydroxyurea (a, HU), n = 49 (uncut, 0 mM), 39 (uncut, 2 mM), 32 (uncut, 5 mM), 10 (cut, 0 mM), 23 (cut, 2 mM), 39 (cut, 5 mM), or L-Buthionine-sulfoximine (b, BSO), n = 44 (uncut, 0 mM), 65 (uncut, 0.5 mM), 82 (uncut, 1.0 mM), 57 (cut, 0 mM), 34 (cut, 0.5 mM), 51 (cut, 1.0 mM). At 2.0 mM of HU, or at 0.5 mM of BSO, a modest level of toxicity, as indicated by gravitropism of uncut roots, corresponded to a significant reduction of regeneration in cut roots; accordingly, morphological regeneration of the root tips was inhibited at 2.0 mM HU and 0.5 mM BSO. These treatments indicate that inhibition of cell cycle progression results in a significant reduction of root-tip regeneration competence, suggesting that normal cell cycle progression is a requirement for regeneration; error bars, s.e.m.
Supplementary Figure 4. *WOX5* and lugol staining during regeneration.
Confocal median longitudinal section (a,c,e) and lugol staining (b,d,f) of the same roots (a and b, c and d, e and f) at 1 dpc (a,b) and 2 dpc (c-f). Panels (a-d) are blow-ups of root tips shown in Fig. 2a of the main text. Identical cells in (a,b), (c,d) and (e,f) are marked by numbers. Blue asterisks in (b) and (d) indicate GFP-expressing cells, as shown in (a) and (c); white arrowheads point to strong starch granule staining. Blue arrowheads in (f) point to two cells with starch granule staining and GFP expression, as seen in (e); bars, 50 μm.
Supplementary Figure 5. Regeneration of *scr* and *plt1plt2* after excision at 70 µm from the tip.
Time-lapse of confocal median longitudinal sections of single regenerating roots in *scr* (a) and *plt1plt2* (b) plants, after root-tip excision at 70 µm, at consecutive dpc; bars, 50 µm.
Note that QC and stem cells are removed in both cuts (0 dpc).
Supplementary Figure 6. Gravitropism recovery in absence of functional stem cells.
Frequency of gravitropic response scored at various days after excision at 70 µm from the tip, in wild type ecotype Ws (n=66) and in mutants plt1plt2 (n=136) and scr (n=48). In all cases a continuous increase of the fraction of gravitropic individuals can be observed until a plateau is reached; error bars, s.e.m.
Supplementary Figure 7. *PLT1* and *PLT2* expression during regeneration.
Time-lapse of confocal median longitudinal sections of single regenerating roots in the transcriptional fusion *pPLT1::CFP* (a) and the translational fusion *PLT2::GFP* (b); bars, 50 μm.
Supplementary Figure 8. No induction of QC-specific, PLT-dependent genes during regeneration.

The figure shows that genes downstream of PLT1 and PLT2 were not induced in the plt1plt2 double mutant by potential backup mechanisms that might function in regeneration. Expression map of the QC-enriched transcripts that are significantly down-regulated in plt1plt2 double mutant root-tips compared to wild type were first identified (n=16, PLT1/2 dependent markers). At left, expression levels of PLT1/2 dependent markers in cell types and tissues of uncut roots; at right, expression levels of the marker set in uncut tips and regenerating stump of wild type (top) or plt1plt2 (bottom) at the indicated time-points after excision. At 22 h none of the markers appears significantly (q < 5%) up-regulated either in the wild type or in the mutant stumps compared to the wild type at 0 h; colour-coded values of each cell of the expression maps, as in Fig 1. The lack of induction in WT regenerating roots at 24 implies that PLT1/2 dependent genes are not induced until later in regeneration. The lack of induction in the plt1plt2 mutant shows that these genes are not upregulated by alternate mechanisms during regeneration in the plt1plt2 mutant.
Supplementary Figure 9. Perturbation of auxin flow blocks regeneration.
Time-lapse of confocal median longitudinal section of single regenerating roots in DR5::GFP (a,b) and pWOX5::GFP (c,d), untreated (a,c) or transferred to 50 μM NPA after the excision (b,d), at consecutive dpc; bars, 50 μm.
The DR5 reporter shows a perturbation in the auxin distribution at the tip of the stumps transferred to NPA. After 2 dpc, the roots transferred on NPA do not regenerate any further.
Supplementary Table 1. Number of cell divisions detected in the median planes of roots expressing CYCB1;1::GFP translational fusion with destruction box (marking G2/M transition). Each tissue observed (epi, epidermis; cor, cortex; endo, endodermis; peri, pericycle; stele) was divided in three longitudinal zones: 0-50 μm, 50-100 μm and 100-150 μm from the point of excision. The total numbers of cells expressing CYCB1;1::GFP in each tissue/zone is pooled in this table, from all the uncut (n=7) and the regenerating (n=12) roots analyzed.

	0-50 μm				50-100 μm				100-150 μm						
	epi	cor	endo	peri	stele	epi	cor	endo	peri	stele	epi	cor	endo		
Uncut (n = 7)	8	14	4	3	4	0	0	2	0	0	0	0	0		
Cut (n = 12)	0	9	15	9	12	6	12	8	4	2	6	7	3	2	5
Supplementary Table 2. All marker sets and gene lists described in the manuscript with probe identification and AGI number of the gene. The procedures used to generate each list are described in Methods Summary and Supplementary Methods.

Columella-enriched marker set	251081_at	AT5G02070	255637_at	AT4G00750
245245_at AT1G44318	251293_at	AT3G61930	255645_at	AT4G00880
245250_at AT4G17490	251643_at	AT3G57550	255823_at	AT2G40470
245393_at AT4G16260	251739_at	AT3G56170	256319_at	AT1G35910
245528_at AT4G15530	251770_at	AT3G55970	256595_x_at AT3G28530	
246097_at AT5G20270	251835_at	AT3G55180	256676_at	AT3G52180
246434_at AT5G17520	251906_at	AT3G53720	256720_at	AT2G34140
246682_at AT5G33290	252505_at	AT3G46170	257466_at	AT1G62840
246922_at AT5G25110	252606_at	AT3G45010	257722_at	AT3G18490
247610_at AT5G60630	253014_at	AT4G37940	258295_at	AT3G23400
247802_at AT5G58580	253113_at	AT4G35985	258683_at	AT3G08760
247874_at AT5G57710	253155_at	AT4G35720	259102_at	AT3G11660
247921_at AT5G57660	253217_at	AT4G34970	259150_at	AT3G10320
248431_at AT5G51470	253425_at	AT4G32190	259181_at	AT3G01690
248687_at AT5G48300	253791_at	AT4G28640	259235_at	AT3G11600
248819_at AT5G47050	253808_at	AT4G28300	259277_at	AT3G01180
248909_at AT5G45810	253936_at	AT4G26880	259527_at	AT1G12600
248926_at AT5G45880	253956_at	AT4G26700	259596_at	AT1G28130
248934_at AT5G46080	254027_at	AT4G25835	260248_at	AT1G74310
249420_at AT5G39820	254053_s_at AT4G25300	260456_at	AT1G72490	
250062_at AT5G17760	254575_at	AT4G19460	260723_at	AT1G48070
250724_at AT5G06330	254754_at	AT4G13210	260925_at	AT1G21340
250802_at AT5G04970	254917_at	AT4G11350	260947_at	AT1G06020
250803_at AT5G04980	255070_at	AT4G09020	261100_at	AT1G63020
251039_at AT5G02020	255564_s_at AT4G01750	261142_at	AT1G19780	
Gene ID	Description	Gene ID	Description	
--------	---	--------	-------------	
261166_s_at	AT1G34570	250105_at	AT5G16630	
261211_at	AT1G12780	250326_at	AT5G12080	
261260_at	AT1G26680	245055_at	AT2G26470	
261643_at	AT1G27720	245130_at	AT2G45340	
262213_at	AT1G74870	245499_at	AT4G16480	
262517_at	AT1G17180	245793_at	AT1G32220	
262548_at	AT1G31280	246295_at	AT3G56690	
262759_at	AT1G10800	246426_at	AT5G17430	
262959_at	AT1G54290	246864_at	AT5G25900	
263543_at	AT2G21610	246983_at	AT5G67200	
264312_at	AT1G70450	247153_at	AT5G65700	
264510_at	AT1G09530	247163_at	AT5G65685	
264682_at	AT1G65570	247310_at	AT5G63950	
264741_at	AT1G62290	247985_at	AT5G56790	
264775_at	AT1G22880	248016_at	AT5G56380	
264868_at	AT1G24090	248091_at	AT5G55120	
264929_at	AT1G23160	248132_at	AT5G54840	
26494_at	AT1G23040	248209_at	AT5G53990	
264956_at	AT1G23210	248372_at	AT5G51850	
265194_at	AT1G05010	248696_at	AT5G48360	
265245_at	AT2G43060	248789_at	AT5G47440	
265345_at	AT2G22680	248938_at	AT5G45780	
265354_at	AT2G16700	249894_at	AT5G45140	
266362_at	AT2G32430	249080_at	AT5G43990	
266391_at	AT2G41290	249318_at	AT5G40870	
266710_at	AT2G46850	249803_at	AT5G23780	
267300_at	AT2G30140	249938_at	AT5G22330	
267489_s_at	AT2G19120	250051_at	AT5G17800	
267496_at	AT2G30550	250079_at	AT5G16650	
Gene ID				
-----------	-----------	-----------	-----------	-----------
256899_at	AT3G24660	264529_at	AT1G30820	257722_at
256960_at	AT3G13510	265087_at	AT1G03760	260248_at
256971_at	AT3G21100	265355_at	AT2G16760	262517_at
256978_at	AT3G21110	265987_at	AT2G24240	264868_at
257012_at	AT3G26120	266034_at	AT2G06005	267300_at
257180_at	AT3G13180	266314_at	AT2G27040	267496_at
257460_at	AT1G75580	266689_at	AT2G19930	
257956_at	AT3G25400	266917_at	AT2G45830	
257976_at	AT3G20840	267012_at	AT2G39220	
258139_at	AT3G24520	267054_at	AT2G38370	
258252_at	AT3G15720			
258254_at	AT3G26780			
258861_at	AT3G02060			
259017_at	AT3G07310	245250_at	AT4G17490	245393_at
259363_at	AT1G13270	245528_at	AT4G15530	247921_at
259823_at	AT1G66250	246097_at	AT5G20270	250724_at
260109_at	AT1G63260	246682_at	AT5G33290	254027_at
260974_at	AT1G53440	247874_at	AT5G57710	259102_at
261202_at	AT1G12910	248819_at	AT5G47050	259596_at
262010_at	AT1G35612	251039_at	AT5G02020	260925_at
262194_at	AT1G77930	251906_at	AT3G53720	264741_at
262278_at	AT1G68640			264775_at
262563_at	AT1G34210	252606_at	AT3G45010	265354_at
262600_at	AT1G15340	253014_at	AT4G37940	266391_at
262912_at	AT1G59740	253113_at	AT4G35985	
263360_at	AT2G03830	254917_at	AT4G11350	
263789_at	AT2G24560	255823_at	AT2G40470	
263977_at	AT2G42660	256720_at	AT2G34140	
264091_at	AT1G79110	257466_at	AT1G62840	

Columella markers induced at regeneration 13 hrs compared to regeneration 0 hrs

Gene ID
245250_at
245528_at
246097_at
246682_at
247874_at
248819_at
251039_at
251906_at
252606_at
253014_at
253113_at
254917_at
255823_at
256720_at
257466_at

Columella markers induced at regeneration 5 hrs compared to regeneration 0 hrs

Gene ID
247921_at
250724_at
254027_at
259102_at
259596_at
260925_at
264741_at
264775_at
244520_at
250802_at
251081_at
253155_at

Columella markers induced at regeneration 22 hrs compared to regeneration 0 hrs

Gene ID
247610_at
249420_at
250802_at
251081_at
253155_at
Genes in the starch metabolism pathway induced at regeneration 5 hrs

Gene Probe ID	Gene Accession
253217_at	AT4G34970
253956_at	AT4G26700
254053_s_at	AT4G25300
254754_at	AT4G13210
255070_at	AT4G09020
255564_s_at	AT4G01750
256676_at	AT3G52180
257466_at	AT1G62840
258295_at	AT3G23400
259181_at	AT3G01690
260456_at	AT1G72490
260723_at	AT1G48070
262959_at	AT1G54290
264510_at	AT1G09530
264892_at	AT1G23160
264894_at	AT1G23040
265194_at	AT1G05010
266710_at	AT2G46850

Intersection of Root and Callus competence markers

Gene Probe ID	Gene Accession
244984_at	AT5G13520
245035_at	AT2G26400
245055_at	AT2G26470
245122_at	AT2G47420
245130_at	AT2G45340
245143_at	AT2G45450
245144_at	AT2G45240
245180_at	AT5G12410
245194_at	AT1G67820

PLT1/2 downstream markers that are also QC enriched

Gene Probe ID	Gene Accession
256861_at	AT3G23920
264903_at	AT1G23190
260207_at	AT1G70730
248687_at	AT5G48300
245180_at	AT5G12410
245194_at	AT1G67820

Gene Probe ID	Gene Accession				
246060_at	AT5G08420				
246070_at	AT5G20160				
246088_at	AT5G20600				
246094_at	AT5G19300				
246103_at	AT5G28640				
246196_at	AT4G37090				
246212_at	AT4G36930				
246315_at	AT3G56870				
246317_at	AT3G56900				
246346_at	AT3G56810				
Gene ID	Description	Gene ID	Description	Gene ID	Description
------------	-------------	------------	-------------	------------	-------------
246415_at	AT5G17160	247039_at	AT5G67270	247904_at	AT5G57390
246457_at	AT5G16750	247046_at	AT5G66540	247943_at	AT5G57170
246461_at	AT5G16930	247063_at	AT5G66820	247962_at	AT5G56580
246478_at	AT5G15980	247093_at	AT5G66350	247988_at	AT5G56910
246479_at	AT5G16060	247167_at	AT5G65850	248036_at	AT5G55915
246505_at	AT5G16250	247228_at	AT5G65140	248093_at	AT5G55210
246527_at	AT5G15750	247241_at	AT5G64680	248105_at	AT5G55280
246538_at	AT5G15520	247244_at	AT5G64710	248154_at	AT5G54400
246548_at	AT5G14910	247247_at	AT5G64650	248173_at	AT5G54580
246559_at	AT5G15550	247268_at	AT5G64080	248178_at	AT5G54370
246581_at	AT1G31760	247277_at	AT5G64420	248186_at	AT5G53880
246610_at	AT5G35400	247367_at	AT5G63290	248299_at	AT5G53080
246743_at	AT5G27750	247449_at	AT5G62290	248326_at	AT5G52820
246765_at	AT5G27330	247483_at	AT5G62420	248357_at	AT5G52380
246768_at	AT5G27400	247497_at	AT5G61770	248362_at	AT5G52470
246794_s_at	AT5G27010	247520_at	AT5G61310	248370_at	AT5G52170
246809_s_at	AT5G27140	247555_at	AT5G61020	248385_at	AT5G51910
246842_at	AT5G26731	247580_at	AT5G61330	248404_at	AT5G51460
246864_at	AT5G25900	247603_at	AT5G60930	248413_at	AT5G51600
246882_at	AT5G26180	247608_at	AT5G60990	248431_at	AT5G51470
246904_at	AT5G25480	247610_at	AT5G60630	248463_at	AT5G51130
246906_at	AT5G25475	247642_at	AT5G60590	248473_at	AT5G50810
246910_at	AT5G25800	247670_at	AT5G60190	248481_at	AT5G50930
246920_at	AT5G25090	247671_at	AT5G60210	248547_at	AT5G50280
246965_at	AT5G24840	247676_at	AT5G59980	248614_at	AT5G49560
247009_at	AT5G67600	247705_at	AT5G59460	248678_at	AT5G48870
247010_at	AT5G67510	247745_at	AT5G59030	248696_at	AT5G48360
247015_at	AT5G66960	247771_at	AT5G58590	248710_at	AT5G48480
247032_at	AT5G67240	247818_at	AT5G58370	248737_at	AT5G48120
248739_at AT5G48030 250099_at AT5G17300 250732_at AT5G06480					
248740_at AT5G48130 250104_at AT5G16610 250758_at AT5G06000					
248854_at AT5G46580 250146_at AT5G14660 250762_at AT5G05990					
248857_at AT5G46640 250179_at AT5G14440 250786_at AT5G05540					
248963_at AT5G45700 250180_at AT5G14450 250825_at AT5G05210					
248975_at AT5G45040 250181_at AT5G14460 250845_at AT5G04600					
249010_at AT5G44580 250196_at AT5G14580 250868_at AT5G03860					
249028_at AT5G44740 250215_at AT5G14080 251007_at AT5G02610					
249138_at AT5G43070 250222_at AT5G14050 251014_at AT5G02520					
249253_at AT5G42060 250225_at AT5G14105 251022_at AT5G02150					
249258_at AT5G41650 250227_at AT5G13830 251067_at AT5G01910					
249425_at AT5G39790 250228_at AT5G13840 251070_at AT5G01940					
249426_at AT5G39840 250284_at AT5G13290 251092_at AT5G01470					
249464_at AT5G39710 250291_at AT5G13280 251098_at AT5G01650					
249528_at AT5G38720 250309_at AT5G12220 251113_at AT5G01370					
249659_s_at AT5G36710 250326_at AT5G12080 251117_at AT3G63390					
249700_at AT5G35530 250328_at AT5G11780 251139_at AT5G01230					
249747_at AT5G24600 250371_at AT5G11450 251184_at AT3G62840					
249821_at AT5G23690 250372_at AT5G11460 251206_at AT3G63090					
249826_at AT5G23310 250394_at AT5G10910 251313_at AT3G61360					
249859_at AT5G22840 250413_at AT5G11160 251355_at AT3G61100					
249886_at AT5G22320 250418_at AT5G11240 251366_at AT3G61340					
249901_at AT5G22650 250426_at AT5G10510 251371_at AT3G60360					
249954_at AT5G18920 250489_s_at AT5G09710 251378_at AT3G60660					
249961_at AT5G18770 250528_at AT5G08600 251483_at AT3G59650					
249975_s_at AT5G18790 250529_at AT5G08610 251486_at AT3G59540					
249993_at AT5G18570 250538_at AT5G08620 251525_at AT3G59000					
250027_at AT5G18250 250546_at AT5G08180 251539_at AT3G58690					
250075_at AT5G17670 250711_at AT5G06110 251558_at AT3G57810					
Gene 1	Gene 2	Gene 3	Gene 4	Gene 5	
---	---	---	---	---	---
254626_at	AT4G18400	255782_at	AT1G19850	257005_at	AT3G14190
254628_at	AT4G18593	255934_at	AT1G12740	257115_at	AT3G20150
254649_at	AT4G18570	255968_at	AT1G22270	257131_at	AT3G20240
254748_at	AT4G13120	256065_at	AT1G07070	257132_at	AT3G20230
254778_at	AT4G12750	256077_at	AT1G18090	257140_at	AT3G28910
254800_at	AT4G13070	256125_at	AT1G18250	257153_at	AT3G27220
254831_at	AT4G12600	256140_at	AT1G48650	257188_at	AT3G13150
254955_at	AT4G10920	256204_at	AT1G50840	257229_at	AT3G16490
254964_at	AT4G11080	256248_at	AT3G66652	257290_at	AT3G15560
254975_at	AT4G10500	256270_at	AT3G12300	257334_at	
254986_at	AT4G10640	256274_at	AT3G12080	257352_at	AT2G34900
254991_at	AT4G10620	256288_at	AT3G12270	257395_at	AT2G15630
255018_at	AT4G10090	256302_at	AT1G69526	257398_at	AT2G01990
255035_at	AT4G09550	256320_at	AT3G12170	257426_at	AT1G54850
255176_s_at	AT4G07950	256373_at	AT1G66740	257460_at	AT1G75580
255227_at	AT4G05440	256438_s_at	AT3G11120	257483_at	AT1G49620
255278_at	AT4G04940	256447_at	AT1G33440	257487_at	AT1G71850
255449_at	AT4G02820	256612_at	AT3G29280	257648_at	AT3G16840
255535_at	AT4G01790	256652_at	AT3G18850	257652_at	AT3G16810
255542_at	AT4G01860	256654_at	AT3G18880	257658_at	AT3G13230
255544_at	AT4G01880	256750_at	AT3G27150	257694_at	AT3G12860
255557_at	AT4G01990	256754_at	AT3G25690	257724_at	AT3G18510
255583_at	AT4G01510	256794_at	AT3G22230	257725_at	AT3G18525
255597_at	AT4G01730	256797_at	AT3G18600	257740_at	AT3G27330
255650_s_at	AT4G00930	256864_at	AT3G23890	257815_at	AT3G25130
255685_s_at	AT4G00600	256881_at	AT3G26410	257897_at	AT3G18030
255729_at	AT1G25470	256890_at	AT3G23830	258009_at	AT3G19440
255759_at	AT1G16790	256910_at	AT3G24080	258028_at	AT3G27473
255767_at	AT1G16740	256950_at	AT3G19080	258067_at	AT3G25980
Gene ID	Description				
--------	-------------				
258074_at	AT3G25890				
258098_at	AT3G23870				
258106_at	AT3G23580				
258135_at	AT3G24506				
258166_at	AT3G21540				
258202_at	AT3G13940				
258252_at	AT3G15720				
258284_at	AT3G16080				
258292_at	AT3G23330				
258296_at	AT3G23390				
258297_at	AT3G23325				
258299_at	AT3G23410				
258318_at	AT3G22680				
258376_at	AT3G17680				
258397_at	AT3G15357				
258462_at	AT3G17350				
258477_at	AT3G02680				
258480_at	AT3G02640				
258502_at	AT3G02490				
258505_at	AT3G06530				
258521_at	AT3G06680				
258522_at	AT3G06660				
258526_at	AT3G06790				
258530_at	AT3G06840				
258534_at	AT3G06730				
258538_at	AT3G06950				
258576_at	AT3G04230				
258630_at	AT3G02820				
258859_at	AT3G02120				
260824_at AT1G06720 261951_at AT1G64490 262777_at AT1G13030					
260827_at AT1G06740 261972_at AT1G64600 262906_at AT1G59760					
260872_at AT1G21350 262000_at AT1G33810 262941_at AT1G79490					
260895_at AT1G29250 262001_at AT1G33790 262953_at AT1G75670					
260898_at AT1G29070 262056_at AT1G80245 263017_at AT2G17620					
260945_at AT1G05950 262112_at AT1G02870 263039_at AT1G23280					
260957_at AT1G06080 262118_at AT1G02850 263239_at AT2G16570					
261002_at AT1G26520 262206_at AT2G01090 263264_at AT2G38810					
261019_at AT1G26470 262222_at AT1G74700 263369_at AT2G20480					
261023_at AT1G12200 262278_at AT1G68640 263371_at AT2G20490					
261178_at AT1G04760 262336_at AT1G64220 263375_s_at AT2G20530					
261207_at AT1G12830 262338_at AT1G64185 263420_at AT2G17240					
261262_at AT1G26760 262402_at AT1G49410 263427_at AT2G22260					
261294_at AT1G48430 262410_at AT1G34770 263435_at AT2G28600					
261364_at AT1G53140 262411_at AT1G34640 263441_at AT2G28620					
261368_at AT1G53070 262416_at AT1G49390 263447_s_at AT2G31640					
261377_at AT1G18850 262434_at AT1G47670 263474_at AT2G31725					
261401_at AT1G79640 262494_at AT1G21810 263481_at AT2G40405					
261406_at AT1G18800 262534_at AT1G17040 263585_at AT2G25210					
261524_at AT1G14300 262538_at AT1G17140 263607_at AT2G16270					
261618_at AT1G33110 262539_at AT1G17200 263679_at AT1G59990					
261660_at AT1G18370 262544_at AT1G15425 263777_at AT2G46450					
261738_s_at AT1G47820 262584_at AT1G15440 263824_at AT2G40360					
261750_at AT1G76120 262586_at AT1G15480 263843_at AT2G37020					
261780_at AT1G76310 262594_at AT1G15250 263960_at AT2G36200					
261840_at AT1G16070 262618_at AT1G06560 263974_at AT2G42720					
261859_at AT1G50490 262699_at AT1G75980 264025_at AT2G21050					
261898_at AT1G80720 262752_at AT1G16330 264048_at AT2G22400					
261911_at AT1G80750 262758_at AT1G10780 264118_at AT1G79140					
Gene ID	Accession 1	Accession 2	Accession 3	Accession 4	Accession 5
---------	-------------	-------------	-------------	-------------	-------------
264128_at	AT1G79190	265171_at	AT1G23790	266579_at	AT2G23930
264131_at	AT1G79150	265189_at	AT1G23840	266641_at	AT2G35605
264173_at	AT1G02160	265274_at	AT2G28450	266655_at	AT2G25880
264175_at	AT1G02050	265326_at	AT2G18220	266687_at	AT2G19670
264177_at	AT1G02150	265339_at	AT2G18230	266790_at	AT2G28950
264179_at	AT1G02180	265442_at	AT2G20940	266806_at	AT2G30000
264203_at	AT1G22780	265468_at	AT2G37210	266822_at	AT2G44860
264265_at	AT1G09280	265518_at	AT2G06040	266893_at	AT2G26070
264317_at	AT1G70310	265519_at	AT2G06030	266903_at	AT2G34570
264337_at	AT1G70350	265596_at	AT2G20020	266916_at	AT2G45860
264352_at	AT1G03270	265614_at	AT2G25355	266948_at	AT2G18850
264357_at	AT1G03360	265724_at	AT2G32100	267004_at	AT2G34260
264377_at	AT2G25060	265730_at	AT2G32220	267075_at	AT2G41070
264465_at	AT1G10230	265742_at	AT2G01290	267102_at	AT2G41500
264471_at	AT1G67120	265831_at	AT2G14460	267174_at	AT2G37600
264553_s_at	AT1G09480	265847_at	AT2G35750	267232_at	AT2G44190
264678_at	AT1G09760	265865_at	AT2G01740	267276_at	AT2G30130
264689_at	AT1G09900	266009_at	AT2G37420	267309_at	AT2G19385
264731_at	AT1G62150	266076_at	AT2G40700	267312_at	AT2G34750
264803_at	AT1G08580	266079_at	AT2G37860	267314_at	AT2G34730
264821_at	AT1G03470	266093_at	AT2G37990	267371_at	AT2G44510
264846_at	AT2G17850	266135_at	AT2G45100	267402_at	AT2G26180
264895_at	AT1G23100	266180_at	AT2G02470	267430_at	AT2G34860
264897_at	AT1G23220	266223_at	AT2G28790	267474_at	AT2G02740
264971_at	AT1G67210	266225_at	AT2G28900	267506_at	AT2G45520
265006_at	AT1G61570	266237_at	AT2G29540	267507_at	AT2G45710
265082_at	AT1G03830	266335_at	AT2G32440	267529_at	AT2G45490
265147_at	AT1G51380	266427_at	AT2G07170	267561_at	AT2G45590
265154_at	AT1G30960	266511_at	AT2G47680	267636_at	AT2G42110
Intersection of Root, Callus, and Leaf Competence Markers

Probe ID	Gene ID	Log2 Fold Change	
247671_at	AT5G60210	251483_at	
247943_at	AT5G57170	251486_at	
247962_at	AT5G56580	251539_at	
244984_at	AT5G55280	251778_at	
245180_at	AT5G12410	248186_at	
245494_at	AT4G16390	248299_at	
245523_at	AT4G15910	248385_at	
245612_at	AT4G14440	248404_at	
245739_at	AT1G44110	248413_at	
245800_at	AT1G46264	248473_at	
245849_at	AT5G13520	248678_at	
246060_at	AT5G08420	248696_at	
246088_at	AT5G20600	248963_at	
246346_at	AT3G56810	248975_at	
246415_at	AT5G17160	249138_at	
246505_at	AT5G16250	249425_at	
246538_at	AT5G15520	249659_s_at	
246548_at	AT5G14910	249700_at	
246768_at	AT5G27400	249826_at	
246906_at	AT5G25475	249993_at	
246920_at	AT5G25090	250180_at	
247010_at	AT5G67510	250228_at	
247032_at	AT5G67240	250284_at	
247039_at	AT5G67270	250371_at	
247046_at	AT5G66540	250372_at	
247268_at	AT5G64080	250413_at	
247580_at	AT5G61330	250758_at	
247603_at	AT5G60930	251113_at	
247608_at	AT5G60990	251184_at	
AT4G31840	AT3G14190	259563_s_at	AT1G20590
AT4G31290	AT3G20150	259592_at	AT1G27950
AT4G30840	AT3G20230	259760_at	AT1G77580
AT4G30800	AT3G28910	259763_at	AT1G77630
AT4G30220	AT2G34900	259894_at	AT1G71430
AT4G29410	AT1G54850	259912_at	AT1G72670
AT4G26500	AT3G18525	259978_at	AT1G76540
AT4G24750	AT3G18030	260028_at	AT1G29980
AT4G23800	AT3G25980	260209_at	AT1G68550
AT4G20130	AT3G23670	260329_at	AT1G80370
AT4G18400	AT3G24506	260368_at	AT1G69700
AT4G18570	AT3G23390	260404_at	AT1G69950
AT4G11080	AT3G23410	260502_at	AT1G47270
AT4G09550	AT3G17680	260565_at	AT2G43800
AT4G01730	AT3G02640	260682_at	AT1G17510
AT1G25470	AT3G06680	260683_at	AT1G17560
AT1G16790	AT3G06660	260817_at	AT1G06900
AT1G16740	AT3G06840	260872_at	AT1G21350
AT1G19850	AT3G02820	260898_at	AT1G29070
AT1G07070	AT3G02120	260957_at	AT1G06080
AT1G18090	AT3G01410	261364_at	AT1G53140
AT1G18250	AT3G04920	261660_at	AT1G18370
AT3G12080	AT3G02210	261780_at	AT1G76310
AT3G12170	AT3G09150	261859_at	AT1G50490
AT3G11120	AT3G01160	261911_at	AT1G80750
AT3G29280	AT3G11500	262000_at	AT1G33810
AT3G18850	AT3G11520	262434_at	AT1G47670
AT3G23890	AT3G05060	262494_at	AT1G21810
AT3G23830	AT1G13270	262538_at	AT1G17140
Transcription Factors in the intersection list of Root, Callus and Leaf markers

All genes significantly induced or repressed in regenerating tissue at 5 hours post-cutting
Gene Symbol	Accession	Accession	Accession	Accession	
247985_at	AT5G56790	250994_at	AT5G02490	254361_at	AT4G22212
247989_at	AT5G56350	251287_at	AT3G61820	254559_at	AT4G19200
248068_at	AT5G55610	251513_at	AT3G59220	255039_at	AT4G09570
248101_at	AT5G55200	251640_at	AT3G57450	255064_at	AT4G08950
248419_at	AT5G51550	251895_at	AT3G54420	255261_s_at	AT4G05110
248582_at	AT5G49910	252070_at	AT3G51680	255430_at	AT4G03320
248611_at	AT5G49520	252195_at	AT3G50190	255524_at	AT4G02330
248686_at	AT5G48540	252198_x_at	AT3G50250	255647_at	AT4G00900
248710_at	AT5G48480	252437_at	AT3G47380	255727_at	AT1G25510
248789_at	AT5G47440	252751_at	AT3G43430	255782_at	AT1G19850
248819_at	AT5G47050	252956_at	AT4G38580	255955_at	AT1G22030
249237_at	AT5G42050	252988_at	AT4G38410	256100_at	AT1G13750
249310_at	AT5G41520	252997_at	AT4G38400	256442_at	AT3G10930
249388_at	AT5G40090	253008_at	AT4G38210	256543_at	AT1G42480
249459_at	AT5G39580	253100_at	AT4G37400	256720_at	AT2G34140
249580_at	AT5G37740	253101_at	AT4G37430	256806_at	AT3G20910
249814_at	AT5G23840	253113_at	AT4G35985	257087_at	AT3G20500
249894_at	AT5G22580	253203_at	AT4G34710	257142_at	AT3G20090
249971_at	AT5G19110	253292_at	AT4G33985	257611_at	AT3G26580
249983_at	AT5G18470	253485_at	AT4G31800	258062_at	AT3G26000
249988_at	AT5G18310	253571_at	AT4G31000	258108_at	AT3G23570
250199_at	AT5G14180	253581_at	AT4G30660	258764_at	AT3G10720
250270_at	AT5G12980	253627_at	AT4G30650	258941_at	AT3G09940
250277_at	AT5G12940	253712_at	AT4G29330	259021_at	AT3G07540
250296_at	AT5G12020	254042_at	AT4G25810	259069_at	AT3G11710
250350_at	AT5G12010	254061_at	AT4G25360	259293_at	AT3G11580
250358_at	AT5G11740	254076_at	AT4G25340	259342_at	AT3G03890
250426_at	AT5G10510	254085_at	AT4G24960	259426_at	AT1G01470
250469_at	AT5G10130	254293_at	AT4G23060	259592_at	AT1G27950
Gene ID	Description	Gene ID	Description		
--------------	--------------------------------------	--------------	--------------------------------------		
259604_at	AT1G56450	263865_at	AT2G36910		
259656_at	AT1G55200	263977_at	AT2G42660		
260023_at	AT1G30040	264000_at	AT2G22500		
260028_at	AT1G29980	264131_at	AT1G79150		
260225_at	AT1G74590	264188_at	AT1G54690		
260350_at	AT1G69410	264254_at	AT1G09150		
260386_at	AT1G74010	264299_s_at	AT1G78860		
260406_at	AT1G69920	264415_at	AT1G43160		
260438_at	AT1G68290	264436_at	AT1G10370		
260528_at	AT2G47260	264645_at	AT1G08940		
260551_at	AT2G43510	264752_at	AT1G23010		
260556_at	AT2G43620	264953_at	AT1G77120		
260602_at	AT1G55920	265276_at	AT2G28400		
260842_at	AT1G29150	265422_at	AT2G20800		
261227_at	AT1G20200	265442_at	AT2G20940		
261648_at	AT1G27730	265670_s_at	AT2G32210		
261728_at	AT1G76160	265674_at	AT2G32190		
261756_at	AT1G08320	265683_at	AT2G24400		
261858_at	AT1G50570	265740_at	AT2G01150		
261865_at	AT1G50430	266119_at	AT2G02100		
261933_at	AT1G22410	266168_at	AT2G38870		
262001_at	AT1G33790	266458_at	AT2G47710		
262041_at	AT1G80100	266461_at	AT2G47730		
262458_at	AT1G11280	266485_at	AT2G47630		
262517_at	AT1G17180	266581_at	AT2G46140		
262766_at	AT1G13160	266712_at	AT2G46750		
263153_s_at	AT1G54010	266743_at	AT2G02990		
263553_at	AT2G16430	266746_s_at	AT2G02930		
263736_at	AT1G60000	266846_at	AT2G25970		

Genes shown to be induced by auxin and induced in regenerating tissue within 24hrs
267300_at AT2G30140
245304_at AT4G15630
245501_at AT4G15620
248968_at AT5G45280
250907_at AT5G03670
258075_at AT3G25900
258764_at AT3G10720
259426_at AT1G01470
265272_at AT2G28350
267008_at AT2G39350
267300_at AT2G30140
267590_at AT2G39700
245304_at AT4G15630
253579_at AT4G30610
252988_at AT4G38410
259426_at AT1G01470
259841_at AT1G52200
263216_s_at AT1G30720
SUPPLEMENTARY METHODS

Plants and Microscopy: *Arabidopsis thaliana* ecotypes Wassilewskija (Ws), Columbia (Col) and C24 were used. Origins and ecotypes of mutant and transgenic lines are as follows: CycB1;1::GFP translational fusion\(^1,2\) (Col, courtesy of P. Doerner), \(pWOX5::GFP\)\(^3\) (Col, courtesy of R. Heidstra and B. Scheres), \(plt1-1plt2-4\)\(^4\) and \(scr-4\)\(^5,6\) (both Ws, courtesy of B. Scheres), \(DR5::GFP\) is \(DR5rev::GFP\)\(^7\) (Col, TAIR cs9361), \(PIN1::GFP\) translational fusion\(^8\) (Col, TAIR cs9362), \(PIN2::GFP\) translational fusion\(^9\) (Col, courtesy of J. Friml), \(PIN7::GFP\) translational fusion\(^3\) (Col, courtesy of J. Friml), \(PET111\)\(^10\) (Col, courtesy of B. Scheres), J0571 (C24, Haseloff GAL4GFP lines http://www.plantsci.cam.ac.uk/Haseloff/biosystems/Arabidopsis/fluorescent.htm), E3754 (Col, Poethig GAL4GFP lines http://enhancertraps.bio.upenn.edu).

Seeds were sterilized in 50% household bleach (Sodium Hypochlorite, 5%) for 3 minutes and rinsed six times in sterile water. Standard germination procedures were on 0.8% agar solid medium (1X MS, 0.5% sucrose, 0.05% MES, pH 5.7), on square plates kept in vertical position in a growth chamber (Percival, CU36L5; 22 °C, light intensity 35 \(\mu\)mol/m\(^2\)sec, on a 6 h/18 h darkness/light cycle). Lugol staining was performed with 25% Lugol solution (Riedel-deHaën) for 2 min, followed by clearing with chloral hydrate:glycerol:water = 8:1:3 (w:v:v) for 4 min, rinsed, mounted in water and imaged with Nomarski optics (Nikon, Eclipse 90i). For confocal images of live single roots, the plantlet was transferred from the standard solid media to a microscope slide and mounted with filter-sterilized 10 % \(\mu\)g/ml propidium iodide (PI) to stain cell walls (red signal), and visualized with a confocal laser scanning system (Leica, DMRE microscope equipped with TCS SP2). After image acquisition, the same plantlet was transferred back to the standard solid medium and returned to the growth chamber. To visualize GFP and lugol staining in the same root (Fig. 2a and Supplementary Fig.4), the plantlet was first mounted on 5 % \(\mu\)g/ml PI and imaged under confocal microscopy; subsequently, without moving the plant or the cover-slip, a paper-tissue (Kimwipes,
Kimberly-Clark) was used to absorb the PI from one side of the cover-slip while from the opposite side a clearing: Lugol = 1:1 solution (see above) was allowed to seep under the cover-slip by capillary action. After about 10 minutes of clearing and staining, the root was visualized under Nomarski optics.

Root Excisions and RNA Isolation: All root-tip excisions were performed at 4 dpg. To cut roots, plantlets were transferred onto a plate with 5.0% agar solid medium (1X MS, 0.5% sucrose, 0.05% MES, pH 5.7) and root-tips were cut by hand with a 30G sterile dental needle (ExcelInt) under a dissecting microscope (Nikon, SMZ645 at 75X magnification). The plantlets were then returned to the standard 0.8% agar solid medium and returned to the growth chamber for recovery. Excisions were performed at 130 μm from the tip unless otherwise stated. For microarray analysis, 130 μm of the tip was cut off to initiate regeneration and then 70 μm of regenerating stumps were excised for sampling of regenerating tissue at various time points; sets of 5 tissue samples were collected in 2.5 μl of extraction buffer (XB) of the Pico Pure RNA Isolation Kit (Arcturus), flash-frozen in liquid nitrogen and ground with micropestels mounted on a small electric drill. At least 25 samples were pooled for each experimental replicate (4 replicates). Isolated total RNA was double-amplified using the Eukaryotic Small Sample Target Labeling Assay (Affymetrix), and hybridized to the ATH-121501 full genome Arabidopsis microarray (Affymetrix).

Gravitropic Assay: Square plates with standard 0.8% agar solid medium (see above) were placed in a vertical position and oriented so that plantlet roots (either cut or uncut) were perpendicular to the gravity vector. Positive gravitropic response was scored when the root-tip showed a re-alignment with the gravity vector (approximately 90° bent from the initial root direction). The frequency of regeneration is defined as the fraction of the plants that showed root regeneration at 6 dpc, measured by positive gravitropic response and confirmed by root-tip morphology.
Cell-cycle and auxin transport inhibitions: In hydroxyurea (HU) treatments (cell-cycle inhibition), seeds were germinated in standard plates, transferred at 2 dpg to standard media supplemented with HU at the indicated concentration. Roots were left undisturbed for another 11 days, cut (or not) and then rotated for the gravitropism assay; gravitropism was scored at 3 dpc. In L-Buthionine-sulfoximine (BSO) treatments (cell-cycle inhibition), seeds were germinated on standard media already containing the indicated concentration of BSO, cut at 4 dpg and rotated for the gravitropism assay; gravitropism was scored at 3 dpc. In 1-N-naphthylphthalamic acid (NPA) treatments (auxin efflux inhibitor), seeds were germinated as described, cut at 4 dpg and immediately transferred to standard solid medium containing 50 μM NPA.

Leaf Excision: Third and fourth rosette leaves were used for excisions, at 4 or 14 days after leaf emergence. These time-points approximately correspond to leaf developmental stages sampled at 9 and 22 days after sowing used in the transcriptional profiling of first and second rosette leaves. Leaves were cut in half approximately perpendicular to the midvein with Vannas micro-scissors (World Precision Instruments, 15 μm straight blades). Regenerating leaves were imaged with a dissecting microscope (Leica, MZ16F).

Microarray and Statistical Analysis. Microarray profiles were normalized using the MAS 5.0 method with a target intensity of 250. Cell type-specific markers sets were generated by identifying transcripts whose signal was significantly enriched in a given cell type compared to all other cell types, using Significance Analysis of Microarrays (SAM) with a false discovery rate (q) cut-off < 5% and a two-fold enrichment cut off. To increase stringency for cell specificity and assure no overlap between columella and QC markers, we also required a two fold enrichment in columella average signal over the average signal in each of the other cell types of the root-tip (for example, columella markers were two-fold enriched over QC and lateral root cap individually). The same procedure was followed for QC markers, ensuring a two-fold enrichment over columella
and lateral root cap. In addition, the root-tip specific cell types also needed to show a two-fold enrichment in root-tip over proximal meristem expression.

For analysis of percent columella and QC identity recovery, ranked gene expression was tested for a significant fit to modelled expression patterns representing an increase in expression at either 5 h, 13 h, or 22 h using the quantitative function of SAM (q < 5%). For example, genes that increase significantly at the 5 h regeneration time point fit the pattern 1 2 2 2, where 1 represents expression of replicates at time 0 and 2 represents replicates at the subsequent time points of regeneration (5,13, and 22 h). The rank method in SAM was used.

For evaluating \textit{PLT} downstream markers, a two-class unpaired test in SAM (q < 5%) was used to find QC markers significantly down-regulated in the \textit{plt1plt2} mutant tips compared to wild type tips (termed the \textit{PLT1/2} dependent set). Subsequent analysis tested whether any members of the \textit{PLT1/2} dependent set were significantly up-regulated in wild type (WT) stumps at 0 h vs. WT stumps at 24 h (testing for early regulation of \textit{PLT1/2} dependent set in WT) or WT stumps at 0 h vs. \textit{plt1plt2} stumps at 24 h (testing for potential regulation of the \textit{PLT1/2} dependent set in the \textit{plt1plt2} mutant during regeneration, \textit{i.e.}, alternate regulatory mechanisms) using the two-class unpaired test in SAM (q < 5%).

Lists of competence markers for root, callus, and leaves were generated sequentially and the intersection of each set was taken. To generate root competence markers, a two-class unpaired test in SAM was performed to find genes significantly up-regulated in tissue freshly harvested at 130-200 μm (competent zone) vs. tissue freshly harvested at 270-340 μm (non-competent zone) with a q < 5%. This procedure yielded 1,538 genes (root competence markers). To identify competence markers in tissue explants undergoing auxin treatment to generate callus, a quantitative analysis in SAM (q < 5%) was used querying for genes that showed a monotonic increase in the callus induction
samples over days 0, 2, 4, 7 and 10 on Callus Inducing Media (CIM) with data from using the rank method so that replicates for each time point were labelled: 1, 2, 3, 4, 5 respectively (callus competent markers). The intersection of the root and callus competent sets was 647 genes. To identify potential competence markers in leaf, genes significantly up-regulated in 9-day-old leaves vs. to 22-day-old leaves (with data from) were determined using a two-class unpaired test in SAM (q < 5%) (leaf competent markers). The intersection of the root, callus, and leaf competent marker sets was 209 genes.

To find all genes that were significantly regulated in regenerating stumps 5 hours after tip-cutting, we used a two-class unpaired test in SAM (q < 5%) comparing replicates in regenerating tips at 0 h vs. 5 h. We found the intersection of that list and the list of auxin-induced genes from to generate the list of genes induced at 5 h after tip cutting that were also induced by auxin. Among the genes that were differentially regulated in root stumps in the first five hours after cutting (n=182, Supplementary Table 2), 22 have been shown to respond to auxin.

Expression Maps: Clustering and visualization steps were performed in Matlab version 7.3.0. In summary, the color-coded value of each cell is the log2 of the ratio between the signal of the cell (average of replicates) and the average for its row. In Fig.1, left and right panels are normalized separately, in this way.

Genes were clustered on the regenerating stump profiles (0-22 h) using the 'clustergram' routine in Matlab using the Pearson correlation distance metric and an average linkage method. The row ordering from that clustering procedure was then imposed on the cell specific heat-maps to maintain the same order of genes between the cell-specific and the regeneration time course heat-maps. In the map of Fig. 3, each series was row normalized separately, so that separate row means were calculated for root, callus, and leaf experiments. The 647 genes that represented the intersection of root and callus
competence markers were mapped in Fig. 3. The Matlab colormap is available upon request.

SUPPLEMENTARY NOTES

1. Colon-Carmona, A., You, R., Haimovitch-Gal, T. & Doerner, P. Technical advance: spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. *Plant J* **20**, 503-8 (1999).

2. Reddy, G. V., Heisler, M. G., Ehrhardt, D. W. & Meyerowitz, E. M. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidops thaliana. *Development* **131**, 4225-37 (2004).

3. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. *Nature* **433**, 39-44 (2005).

4. Aida, M. et al. The PLETHORA Genes Mediate Patterning of the Arabidopsis Root Stem Cell Niche. *Cell* **119**, 109-120 (2004).

5. Heidstra, R., Welch, D. & Scheres, B. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. *Genes Dev* **18**, 1964-9 (2004).

6. Sabatini, S., Heidstra, R., Wildwater, M. & Scheres, B. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. *Genes Dev* **17**, 354-8 (2003).

7. Friml, J. et al. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. *Nature* **426**, 147-53 (2003).

8. Benkova, E. et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. *Cell* **115**, 591-602 (2003).

9. Xu, J. & Scheres, B. Dissection of Arabidopsis ADP-RIBOSYLATION FACTOR 1 function in epidermal cell polarity. *Plant Cell* **17**, 525-36 (2005).
10. Nawy, T. et al. Transcriptional profile of the Arabidopsis root quiescent center. *Plant Cell* **17**, 1908-25 (2005).

11. Vernoux, T. et al. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. *Plant Cell* **12**, 97-109 (2000).

12. Beemster, G. T., Vercruysse, S., De Veylder, L., Kuiper, M. & Inze, D. The Arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. *J Plant Res* **119**, 43-50 (2006).

13. Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. *Proc Natl Acad Sci U S A* **98**, 5116-21 (2001).

14. Che, P., Lall, S., Nettleton, D. & Howell, S. H. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. *Plant Physiol* **141**, 620-37 (2006).

15. Nemhauser, J. L., Hong, F. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. *Cell* **126**, 467-75 (2006).