An Extension of Birkhoff–James Orthogonality Relations in Semi-Hilbertian Space Operators

S. Mojtaba Enderami, Mortaza Abtahi, and Ali Zamani

Abstract. Let \(\mathcal{B}(\mathcal{H}) \) denote the \(\mathcal{C}^* \)-algebra of all bounded linear operators on a Hilbert space \((\mathcal{H}, \langle \cdot, \cdot \rangle) \). Given a positive operator \(A \in \mathcal{B}(\mathcal{H}) \), and a number \(\lambda \in [0, 1] \), a seminorm \(\| \cdot \|_{(A,\lambda)} \) is defined on the set \(\mathcal{B}_{A^{1/2}}(\mathcal{H}) \) of all operators in \(\mathcal{B}(\mathcal{H}) \) having an \(A^{1/2} \)-adjoint. The seminorm \(\| \cdot \|_{(A,\lambda)} \) is a combination of the sesquilinear form \(\langle \cdot, \cdot \rangle_A \) and its induced seminorm \(\| \cdot \|_A \). A characterization of Birkhoff–James orthogonality for operators with respect to the discussed seminorm is given. Moving \(\lambda \) along the interval \([0, 1]\), a wide spectrum of seminorms are obtained, having the \(A \)-numerical radius \(w_A(\cdot) \) at the beginning (associated with \(\lambda = 0 \)) and the \(A \)-operator seminorm \(\| \cdot \|_A \) at the end (associated with \(\lambda = 1 \)). Moreover, if \(A = I \) the identity operator, the classical operator norm and numerical radius are obtained. Therefore, the results in this paper are significant extensions and generalizations of known results in this area.

Mathematics Subject Classification. 46C05, 47A05, 47A12, 47B65, 47L05.

Keywords. Positive operator, Semi-inner product, Numerical radius, Usual operator norm, Birkhoff–James orthogonality.

1. Introduction and Preliminaries

Let \(\mathcal{B}(\mathcal{H}) \) be the algebra of all bounded linear operators on a complex Hilbert space \(\mathcal{H} \) with an inner product \(\langle \cdot, \cdot \rangle \) and the corresponding norm \(\| \cdot \| \). Let \(I \) stand for the identity operator on \(\mathcal{H} \). Throughout this paper, we assume that \(A \in \mathcal{B}(\mathcal{H}) \) is a positive operator, which induces a positive semidefinite sesquilinear form \(\langle \cdot, \cdot \rangle_A : \mathcal{H} \times \mathcal{H} \to \mathbb{C} \) defined by \(\langle x, y \rangle_A = \langle Ax, y \rangle \). We denote by \(\| \cdot \|_A \) the seminorm induced by \(\langle \cdot, \cdot \rangle_A \). For the semi-Hilbertian space \((\mathcal{H}, \| \cdot \|_A) \) the \(A \)-Cauchy–Schwartz inequality holds, that is, \(|\langle x, y \rangle_A| \leq \|x\|_A \|y\|_A \) for all \(x, y \in \mathcal{H} \). For \(T \in \mathcal{B}(\mathcal{H}) \), an operator \(S \in \mathcal{B}(\mathcal{H}) \) is called an \(A \)-adjoint operator of \(T \) if \(\langle Tx, y \rangle_A = \langle x, Sy \rangle_A \), for every \(x, y \in \mathcal{H} \). The
existence of an A-adjoint operator is not guaranteed. The set of all operators admitting $A^{1/2}$-adjoints is denoted by $\mathcal{B}_{A^{1/2}}(\mathcal{H})$. Clearly, $\langle \cdot, \cdot \rangle_A$ induces a seminorm on $\mathcal{B}_{A^{1/2}}(\mathcal{H})$. Indeed, if $T \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$, then
\[\|T\|_A = \sup \{ \|Tx\|_A : x \in \mathcal{H}, \|x\|_A = 1 \} < +\infty.\]

Notice that it may happen that $\|T\|_A = +\infty$ for some $T \in \mathcal{B}(\mathcal{H}) \setminus \mathcal{B}_{A^{1/2}}(\mathcal{H})$. It can be verified that, for $T \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$, we have $\|Tx\|_A \leq \|T\|_A \|x\|_A$ for all $x \in \mathcal{H}$.

Furthermore, the A-minimum modulus of T, denoted by $[T]_A$, is defined as
\[[T]_A = \inf \{ \|Tx\|_A : x \in \mathcal{H}, \|x\|_A = 1 \}. \]

More details on semi-Hilbertian space operators can be found in [2,9].

The A-numerical radius and the A-Crawford number of $T \in \mathcal{B}(\mathcal{H})$ are defined, respectively, by
\[w_A(T) = \sup \{ \|Tx\|_A : x \in \mathcal{H}, \|x\|_A = 1 \}, \]
\[c_A(T) = \inf \{ \|Tx\|_A : x \in \mathcal{H}, \|x\|_A = 1 \}. \]

In particular, if we consider $A = I$ in the definitions of A-operator seminorm, A-minimum modulus, A-numerical radius and A-Crawford number of T then we get the classical operator norm, minimum modulus, numerical radius and Crawford number, respectively, i.e., $\|T\|_A = \|T\|$, $[T]_A = [T]$, $w_A(T) = w(T)$ and $c_A(T) = c(T)$. It is known that $w_A(\cdot)$ defines a seminorm on $\mathcal{B}_{A^{1/2}}(\mathcal{H})$, and that
\[\frac{1}{2} \|T\|_A \leq w_A(T) \leq \|T\|_A, \quad T \in \mathcal{B}_{A^{1/2}}(\mathcal{H}). \]

For other related information on the numerical radius of operators in semi-Hilbertian spaces, we refer the reader to [12,14,16] and the references therein.

In normed spaces, there are several notions of orthogonality, all of which are generalizations of orthogonality in a Hilbert space. Among them, the Birkhoff–James orthogonality is one of the most important. Given two elements x, y in a normed space $(X, \| \cdot \|)$, it is said that x is orthogonal to y, in the Birkhoff–James sense [6,8], denoted by $x \perp_B y$, if
\[\|x + \xi y\| \geq \|x\|, \quad \xi \in \mathbb{C}. \]

The Birkhoff–James orthogonality plays a central role in approximation theory. On a Hilbert space \mathcal{H}, an operator $T \in \mathcal{B}(\mathcal{H})$ is a best approximation of $S \in \mathcal{B}(\mathcal{H})$ from a linear subspace \mathbb{M} of $\mathcal{B}(\mathcal{H})$ if, and only if, T is a Birkhoff–James orthogonal projection of S onto \mathbb{M}; see [7] and references therein. Bhatia and Šemrl in [4, Remark 3.1] and Paul in [13, Lemma 2] independently proved that $T \perp_B S$ if and only if there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that
\[\lim_{n \to \infty} \|Tx_n\| = \|T\| \quad \text{and} \quad \lim_{n \to \infty} \langle Tx_n, Sx_n \rangle = 0. \]
It follows that if the Hilbert space \mathcal{H} is finite-dimensional, then $T \perp_B S$ if and only if there is a unit vector $x \in \mathcal{H}$ such that $\|Tx\| = \|T\|$ and $\langle Tx, Sx \rangle = 0$. A number of authors have recently extended the well-known result of Bhatia and Šemrl; see, e.g., [5,7,10,15,17].

In this paper, we define a new seminorm on $\mathbb{B}_{A^{1/2}}(\mathcal{H})$, which generalizes simultaneously the A-operator seminorm and the A-numerical radius. We give a necessary and sufficient condition to hold that the seminorm of the sum of elements in $\mathbb{B}_{A^{1/2}}(\mathcal{H})$ is equal to the sum of their seminorms. We also characterize Birkhoff–James orthogonality of semi-Hilbertian space operators with respect to this seminorm. Our results cover and extend some theorems in [1,3,4,11,17]. In particular, related to a result due to Bhatia and Šemrl [4], we give another equivalent condition of the Birkhoff–James orthogonality for Hilbert space operators.

2. Main Results

We start the section with the following definition.

Definition 2.1. Let $(\mathcal{H}, \langle \cdot , \cdot \rangle)$ be a Hilbert space, $A \in \mathbb{B}(\mathcal{H})$ be a positive operator and $\lambda \in [0,1]$. For every $T \in \mathbb{B}_{A^{1/2}}(\mathcal{H})$, define

$$\| T \|_{(A,\lambda)} = \sup \left\{ \sqrt{\lambda \| Tx \|_A^2 + (1-\lambda) |\langle Tx, x \rangle_A|^2} : x \in \mathcal{H}, \| x \|_A = 1 \right\}.$$

Remark 1. For $T \in \mathbb{B}_{A^{1/2}}(\mathcal{H})$ we have $\| T \|_{(A,0)} = w_A(T)$ and $\| T \|_{(A,1)} = \| T \|_A$.

First of all, let us prove that $\| \cdot \|_{(A,\lambda)}$ is a seminorm on $\mathbb{B}_{A^{1/2}}(\mathcal{H})$ sitting between the A-numerical radius and A-operator seminorm.

Proposition 2.2. The function $\| \cdot \|_{(A,\lambda)}$ is a seminorm on $\mathbb{B}_{A^{1/2}}(\mathcal{H})$ and the following inequality holds for every $T \in \mathbb{B}_{A^{1/2}}(\mathcal{H})$:

$$w_A(T) \leq \| T \|_{(A,\lambda)} \leq \| T \|_A.$$

Proof. Let $T, S \in \mathbb{B}_{A^{1/2}}(\mathcal{H})$. It is trivial that $\| \alpha T \|_{(A,\lambda)} = |\alpha| \| T \|_{(A,\lambda)}$ for every $\alpha \in \mathbb{C}$. Therefore, to show that $\| \cdot \|_{(A,\lambda)}$ is a seminorm on $\mathbb{B}_{A^{1/2}}(\mathcal{H})$, it suffices to show that $\| \cdot \|_{(A,\lambda)}$ is subadditive.

Let $x \in \mathcal{H}$ with $\| x \|_A = 1$. We have

$$\lambda \| (T + S)x \|_A^2 + (1-\lambda) |\langle (T + S)x, x \rangle_A|^2$$

$$= \lambda \| Tx + Sx \|_A^2 + (1-\lambda) |\langle Tx, x \rangle_A + \langle Sx, x \rangle_A|^2$$

$$\leq \lambda (\| Tx \|_A + \| Sx \|_A)^2 + (1-\lambda) (|\langle Tx, x \rangle_A| + |\langle Sx, x \rangle_A|)^2$$

$$\leq (\lambda \| Tx \|_A^2 + (1-\lambda) |\langle Tx, x \rangle_A|^2)$$

$$+ 2 (\lambda \| Tx \|_A \| Sx \|_A + (1-\lambda) |\langle Tx, x \rangle_A| |\langle Sx, x \rangle_A|)$$

$$+ (\lambda \| Sx \|_A^2 + (1-\lambda) |\langle Sx, x \rangle_A|^2)$$

$$\leq (\lambda \| Tx \|_A^2 + (1-\lambda) |\langle Tx, x \rangle_A|^2)$$
+ 2\sqrt{\lambda\|Tx\|_A^2 + (1 - \lambda)|\langle Tx, x \rangle_A|^2} \sqrt{\lambda\|Sx\|_A^2 + (1 - \lambda)|\langle Sx, x \rangle_A|^2}

(by the Cauchy–Bunyakovsky–Schwarz inequality)

\leq \|T\|_{(A,\lambda)}^2 + 2\|T\|_{(A,\lambda)} \|S\|_{(A,\lambda)} + \|S\|_{(A,\lambda)}^2 = (\|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)})^2.

Therefore,

\sqrt{\lambda}\|(T + S)x\|_A^2 + (1 - \lambda)|\langle (T + S)x, x \rangle_A|^2 \leq \|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)}.

Taking supremum over all \(x \in \mathcal{H}\) with \(\|x\|_A = 1\) in the above inequality, we get

\|T + S\|_{(A,\lambda)} \leq \|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)}.

Furthermore, by the A-Cauchy–Schwarz inequality, for every A-unit vector \(x \in \mathcal{H}\) we have

\(|\langle Tx, x \rangle_A| = \sqrt{\lambda\|Tx\|_A^2 + (1 - \lambda)|\langle Tx, x \rangle_A|^2}

\leq \lambda\|Tx\|_A^2 + (1 - \lambda)|\langle Tx, x \rangle_A|^2

\leq \lambda\|Tx\|_A^2 + (1 - \lambda)\|Tx\|_A^2 = \|Tx\|_A^2,

and hence

\(|\langle Tx, x \rangle_A| \leq \sqrt{\lambda\|Tx\|_A^2 + (1 - \lambda)|\langle Tx, x \rangle_A|^2} \leq \|Tx\|_A.

This implies that \(w_A(T) \leq \|T\|_{(A,\lambda)} \leq \|T\|_A\) which completes the proof.

\[\square\]

Remark 2. Another lower and upper bound for the seminorm \(\| \cdot \|_{(A,\lambda)}\) of bounded linear operators can be presented as follows. Let \(T \in \mathbb{B}_{A^{1/2}}(\mathcal{H})\). For every \(x \in \mathcal{H}\) with \(\|x\|_A = 1\), by the arithmetic geometric mean inequality, we have

\[2\sqrt{\lambda(1 - \lambda)}c_A(T)\|Tx\|_A \leq 2\sqrt{\lambda(1 - \lambda)}|\langle Tx, x \rangle_A|\|Tx\|_A \leq \lambda\|Tx\|_A^2 + (1 - \lambda)|\langle Tx, x \rangle_A|^2 \leq \|T\|_{(A,\lambda)}^2.

Hence

\[2\sqrt{\lambda(1 - \lambda)}c_A(T)\|Tx\|_A \leq \|T\|_{(A,\lambda)}^2.

Taking supremum over all \(x \in \mathcal{H}\) with \(\|x\|_A = 1\) in the above inequality, we arrive at

\[2\sqrt{\lambda(1 - \lambda)}c_A(T)\|T\|_A \leq \|T\|_{(A,\lambda)}^2.

On the other hand, for every A-unit vector \(x \in \mathcal{H}\), by [16, p. 172], we have

\[\|Tx\|_A^2 \leq 2w_A(T) \left(w_A(T) + \sqrt{w_A^2(T) - c_A^2(T)} \right).

Therefore,
\[\lambda \|Tx\|^2 + (1 - \lambda) \langle Tx, x \rangle_A^2 \]
\[\leq 2\lambda w_A(T) \left(w_A(T) + \sqrt{w_A^2(T) - c_A^2(T)} \right) + (1 - \lambda) w_A^2(T) \]
\[= (1 + \lambda) w_A^2(T) + 2\lambda w_A(T) \sqrt{w_A^2(T) - c_A^2(T)}, \]

which yields
\[\|T\|^2_{(A,\lambda)} \leq (1 + \lambda) w_A^2(T) + 2\lambda w_A(T) \sqrt{w_A^2(T) - c_A^2(T)}. \]

In the following theorem, we give a necessary and sufficient condition for the equality \(\|T + S\|_{(A,\lambda)} = \|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)} \) to hold in \(\mathbb{B}_{A^{1/2}}(\mathcal{H}) \).

Theorem 2.3. Let \(T, S \in \mathbb{B}_{A^{1/2}}(\mathcal{H}) \). The following statements are equivalent.

(i) \(\|T + S\|_{(A,\lambda)} = \|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)} \).

(ii) There exists a sequence \(\{x_n\} \) of \(A \)-unit vectors in \(\mathcal{H} \) such that
\[\lim_{n \to \infty} \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) = \|T\|_{(A,\lambda)} \|S\|_{(A,\lambda)}. \]

Proof. (i)\(\Rightarrow\)(ii) Let \(\|T + S\|_{(A,\lambda)} = \|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)} \). Then, there exists a sequence of \(A \)-unit vectors \(\{x_n\} \) in \(\mathcal{H} \) such that
\[\lim_{n \to \infty} \left(\lambda \|T + S\|_{(A,\lambda)}^2 + (1 - \lambda) \|\langle T + S, x_n \rangle_A \|^2 \right) = (\|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)})^2. \]

For every \(n \in \mathbb{N} \), we have
\[\lambda \|\langle T + S, x_n \rangle_A \|^2 + (1 - \lambda) \|\langle T + S, x_n \rangle_A \|^2 \]
\[\leq \lambda \|Tx_n\|^2 + 2\text{Re} \left(\lambda \langle Sx_n, Tx_n \rangle_A \right) + \lambda \|Sx_n\|^2 + (1 - \lambda) \|Tx_n\|^2 \]
\[+ 2\text{Re} \left((1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) + (1 - \lambda) \|Sx_n, x_n \rangle_A \|^2 \]
\[= \lambda \|Tx_n\|^2 + (1 - \lambda) \|\langle Tx_n, x_n \rangle_A \|^2 + \lambda \|Sx_n\|^2 + (1 - \lambda) \|\langle Sx_n, x_n \rangle_A \|^2 \]
\[+ 2\text{Re} \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) \]
\[\leq \|T\|^2_{(A,\lambda)} + \|S\|^2_{(A,\lambda)} + 2 \left(\lambda \|Sx_n\|_A \|\langle Tx_n, x_n \rangle_A \| + (1 - \lambda) \|\langle Tx_n, x_n \rangle_A \| \|\langle Sx_n, x_n \rangle_A \| \right) \]
\[\leq \|T\|^2_{(A,\lambda)} + \|S\|^2_{(A,\lambda)} + 2 \lambda \|Tx_n\|_A \|Sx_n\|_A + (1 - \lambda) \|\langle Tx_n, x_n \rangle_A \| \|\langle Sx_n, x_n \rangle_A \| \]
\[\text{(by the A-Cauchy–Schwarz inequality)} \]
\[\leq \|T\|^2_{(A,\lambda)} + \|S\|^2_{(A,\lambda)} + 2 \|T\|_{(A,\lambda)} \|S\|_{(A,\lambda)} = (\|T\|_{(A,\lambda)} + \|S\|_{(A,\lambda)})^2, \]

and therefore, from (1), we obtain
\[\lim_{n \to \infty} \text{Re} \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) = \|T\|_{(A,\lambda)} \|S\|_{(A,\lambda)}. \]
In addition, for every \(n \in \mathbb{N} \), we have
\[
\Re \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right)
+ \Im \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right)
= \left| \lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right|^2
\leq \|T\|_{(A, \lambda)}^2 \|S\|_{(A, \lambda)}^2,
\]
and so by (2), we conclude that
\[
\lim_{n \to \infty} \Im \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) = 0.
\]
It follows from (2) that
\[
\lim_{n \to \infty} \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) = \|T\|_{(A, \lambda)} \|S\|_{(A, \lambda)}.
\]
(ii) \(\Rightarrow \) (i) Suppose that for a sequence of \(A \)-unit vectors \(\{x_n\} \) in \(\mathcal{H} \) we have
\[
\lim_{n \to \infty} \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) = \|T\|_{(A, \lambda)} \|S\|_{(A, \lambda)}.
\]
Hence
\[
\lim_{n \to \infty} \Re \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) = \|T\|_{(A, \lambda)} \|S\|_{(A, \lambda)}.
\]
Since, for every \(n \in \mathbb{N} \),
\[
\left| \lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right|^2
\leq \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right) \left(\lambda \|Sx_n\|_A^2 + (1 - \lambda) \|Sx_n, x_n\|_A^2 \right)
\leq \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right) \|S\|_{(A, \lambda)}^2
\leq \|T\|_{(A, \lambda)}^2 \|S\|_{(A, \lambda)}^2,
\]
we obtain
\[
\lim_{n \to \infty} \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right) = \|T\|_{(A, \lambda)}^2.
\]
By a similar argument, we get
\[
\lim_{n \to \infty} \left(\lambda \|Sx_n\|_A^2 + (1 - \lambda) \|Sx_n, x_n\|_A^2 \right) = \|S\|_{(A, \lambda)}^2.
\]
Therefore,
\[
\left(\|T\|_{(A, \lambda)} + \|S\|_{(A, \lambda)} \right)^2
= \lim_{n \to \infty} \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right)
+ 2 \lim_{n \to \infty} \Re \left(\lambda \langle Sx_n, Tx_n \rangle_A + (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right)
+ \lim_{n \to \infty} \left(\lambda \|Sx_n\|_A^2 + (1 - \lambda) \|Sx_n, x_n\|_A^2 \right)
= \lim_{n \to \infty} \left(\lambda \|(T + S)x_n\|_A^2 + (1 - \lambda) \|(T + S)x_n, x_n\|_A^2 \right)
\leq \|T + S\|_{(A, \lambda)}^2 \leq \left(\|T\|_{(A, \lambda)} + \|S\|_{(A, \lambda)} \right)^2.
\]
Hence, $\|T + S\|_{(A, \lambda)} = \|T\|_{(A, \lambda)} + \|S\|_{(A, \lambda)}$. \qed

As an immediate consequence of the preceding theorem, we obtain the following result due to Barraa and Boumazgour [3].

Corollary 2.4. [3, Theorem 2.1] Let $T, S \in \mathcal{B}(\mathcal{H})$. Then $\|T + S\| = \|T\| + \|S\|$ if and only if there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that

$$\lim_{n \to \infty} \langle Sx_n, Tx_n \rangle = \|T\|\|S\|.$$

Proof. Let $A = I$ and $\lambda = 1$, and apply Theorem 2.3. \qed

As another application of Theorem 2.3, by letting $A = I$ and $\lambda = 0$, we get a characterization of the equality $w(T + S) = w(T) + w(S)$ for Hilbert space operators (see [1]).

Corollary 2.5. ([1, Proposition 3.6]) For $T, S \in \mathcal{B}(\mathcal{H})$, the equality $w(T + S) = w(T) + w(S)$ holds if and only if there exists a sequence $\{x_n\}$ of unit vectors in \mathcal{H} such that

$$\lim_{n \to \infty} \langle x_n, Tx_n \rangle \langle Sx_n, x_n \rangle = w(T)w(S).$$

An operator $T \in \mathcal{B}(\mathcal{H})$ is called **Birkhoff–James numerical radius orthogonal** to $S \in \mathcal{B}(\mathcal{H})$, denoted by $T \perp_{w} S$, if $w(T + \xi S) \geq w(T)$, for all $\xi \in \mathbb{C}$. See [11] for characterization of the Birkhoff-James orthogonality with respect to numerical radius for Hilbert space operators. Analogously, we introduce a concept of (A, λ)-Birkhoff–James orthogonality for semi-Hilbertian space operators.

Definition 2.6. Let $T, S \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$. The operator T is called **(A, λ)-Birkhoff–James orthogonal** to S, in short, $T \perp_{(A, \lambda)} S$, if

$$\|T + \xi S\|_{(A, \lambda)} \geq \|T\|_{(A, \lambda)}, \quad \xi \in \mathbb{C}.$$

Obviously, this is a generalization of both the concept of Birkhoff–James orthogonality and the concept of Birkhoff–James numerical radius orthogonality of Hilbert space operators.

In the next theorem, some characterizations of (A, λ)-Birkhoff–James orthogonality for bounded linear operators in semi-Hilbertian spaces are presented.

Theorem 2.7. Let $T, S \in \mathcal{B}_{A^{1/2}}(\mathcal{H})$. Then the following statements are equivalent.

(i) For each $\theta \in [0, 2\pi)$ there exists a sequence $\{x_n\}$ of A-unit vectors in \mathcal{H} such that the following two conditions hold.

(i-1) $\lim_{n \to \infty} \left(\lambda \|Tx_n\|^2_A + (1 - \lambda)\|\langle Tx_n, x_n \rangle_A \| \right) = \|T\|^2_{(A, \lambda)},$

(ii) $\lim_{n \to \infty} \Re(e^{i\theta} \lambda \langle Sx_n, Tx_n \rangle_A + e^{i\theta} (1 - \lambda)\langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A) \geq 0.$

(ii) For all $\xi \in \mathbb{C}$, $\|T + \xi S\|^2_{(A, \lambda)} \geq \|T\|^2_{(A, \lambda)} + |\xi|^2m^2_{(A, \lambda)}(S)$, where

$$m_{(A, \lambda)}(S) = \inf \left\{ \sqrt{\lambda \|Sx\|^2_A + (1 - \lambda)\|\langle Sx, x \rangle_A \|^2} : x \in \mathcal{H}, \|x\|_A = 1 \right\}. $$
(iii) \(T \perp_{(A, \lambda)} S \).

Proof. (i)⇒(ii) Suppose that (i) holds and let \(\xi \in \mathbb{C} \). Then there exists \(\theta \in [0, 2\pi) \) such that \(\xi = |\xi|e^{i\theta} \). Let \(\{x_n\} \) be a sequence of \(A \)-unit vectors in \(\mathcal{H} \) such that (i-1) and (i-2) hold. For \(n \in \mathbb{N} \) we have

\[
\|T + \xi S\|^2_{(A, \lambda)} \geq \lambda \|Tx_n + |\xi|e^{i\theta} Sx_n\|^2_A + (1 - \lambda)\langle(T + |\xi|e^{i\theta} S)x_n, x_n\rangle_A^2
\]

\[
= \lambda \|Tx_n\|^2_A + (1 - \lambda)\|Tx_n, x_n\|_A^2
\]

\[
+ |\xi|^2\left(\lambda\|Sx_n\|^2_A + (1 - \lambda)\langle Sx_n, x_n\rangle_A^2\right)
\]

\[
+ 2|\xi|Re\left(e^{i\theta}\lambda\langle Sx_n, Tx_n\rangle_A + e^{i\theta}(1 - \lambda)\langle x_n, Tx_n\rangle_A\langle Sx_n, x_n\rangle_A\right),
\]

and so

\[
\|T + \xi S\|^2_{(A, \lambda)} \geq \|T\|^2_{(A, \lambda)} + |\xi|^2 \limsup_{n \to \infty} \left(\lambda\|Sx_n\|^2_A + (1 - \lambda)\langle Sx_n, x_n\rangle_A^2\right)
\]

\[
\geq \|T\|^2_{(A, \lambda)} + |\xi|^2 m^2_{(A, \lambda)}(S).
\]

Hence \(\|T + \xi S\|^2_{(A, \lambda)} \geq \|T\|^2_{(A, \lambda)} + |\xi|^2 m^2_{(A, \lambda)}(S) \).

(ii) ⇒ (iii) This implication is trivial.

(iii) ⇒ (i) Let \(T \perp_{(A, \lambda)} S \). Then \(\|T + \xi S\|^2_{(A, \lambda)} \geq \|T\|^2_{(A, \lambda)} \) for every \(\xi \in \mathbb{C} \). We may assume that \(\|T\|_{(A, \lambda)} \neq 0 \) otherwise (i) trivially holds. Let \(\theta \in [0, 2\pi) \). Thus \(\|T\|_{(A, \lambda)} \leq \|T + \frac{e^{i\theta}}{n} S\|_{(A, \lambda)} \) for all \(n \in \mathbb{N} \). Since \(\|T\|_{(A, \lambda)} > 0 \), for sufficiently large \(n \), we have

\[
0 < \|T\|_{(A, \lambda)} - \frac{1}{n^2} < \|T\|_{(A, \lambda)} \leq \|T + \frac{e^{i\theta}}{n} S\|_{(A, \lambda)}.
\]

Therefore, there exists a sequence \(\{x_n\} \) of \(A \)-unit vectors in \(\mathcal{H} \) such that

\[
\left(\|T\|_{(A, \lambda)} - \frac{1}{n^2}\right)^2 < \lambda \|T + \frac{e^{i\theta}}{n} S\|_{A}^2 + (1 - \lambda)\langle(T + \frac{e^{i\theta}}{n} S)x_n, x_n\rangle_A^2.
\]

It follows from (3) that

\[
\|T\|^2_{(A, \lambda)} - \frac{2}{n^2}\|T\|_{(A, \lambda)} + \frac{1}{n^4}
\]

\[
< \lambda \|Tx_n\|^2_A + (1 - \lambda)\|Tx_n, x_n\|_A^2
\]

\[
+ \frac{1}{n^2}\left(\lambda\|Sx_n\|^2_A + (1 - \lambda)\langle Sx_n, x_n\rangle_A^2\right)
\]

\[
+ \frac{2}{n}Re\left(e^{i\theta}\lambda\langle Sx_n, Tx_n\rangle_A + e^{i\theta}(1 - \lambda)\langle x_n, Tx_n\rangle_A\langle Sx_n, x_n\rangle_A\right),
\]

and hence

\[
\frac{n}{2}\left(\|T\|^2_{(A, \lambda)} - \lambda \|Tx_n\|^2_A - (1 - \lambda)\|Tx_n, x_n\|_A^2\right)
\]

\[
< \frac{1}{n}\|T\|_{(A, \lambda)} - \frac{1}{2n^3} + \frac{1}{2n}\left(\lambda\|Sx_n\|^2_A + (1 - \lambda)\|Sx_n, x_n\|^2\right)
\]
\[+ \text{Re} \left(e^{i\theta} \lambda \langle Sx_n, Tx_n \rangle_A + e^{i\theta} (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right). \]

Since \(\|T\|_{(A, \lambda)}^2 - \lambda \|Tx_n\|_A^2 - (1 - \lambda) \|Tx_n, x_n\|_A^2 \geq 0 \), we obtain
\[0 < \frac{1}{n} \|T\|_{(A, \lambda)}^2 - \frac{1}{2n^2} + \frac{1}{2n} \left(\lambda \|Sx_n\|_A^2 + (1 - \lambda) \|Sx_n, x_n\|_A^2 \right) \]
\[+ \text{Re} \left(e^{i\theta} \lambda \langle Sx_n, Tx_n \rangle_A + e^{i\theta} (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right). \] (4)

By letting \(n \to \infty \) in (4) and passing through a subsequence if necessary, we get
\[\lim_{n \to \infty} \text{Re} \left(e^{i\theta} \lambda \langle Sx_n, Tx_n \rangle_A + e^{i\theta} (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right) \geq 0. \]

Further, by (3), we have
\[\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \]
\[> \left(\|T\|_{(A, \lambda)}^2 - \frac{1}{n^2} \right)^2 - \frac{1}{n^2} \left(\lambda \|Sx_n\|_A^2 + (1 - \lambda) \|Sx_n, x_n\|_A^2 \right) \]
\[- \frac{2}{n} \text{Re} \left(e^{i\theta} \lambda \langle Sx_n, Tx_n \rangle_A + e^{i\theta} (1 - \lambda) \langle x_n, Tx_n \rangle_A \langle Sx_n, x_n \rangle_A \right), \]
and therefore, by letting \(n \to \infty \), we obtain
\[\lim_{n \to \infty} \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right) \geq \|T\|_{(A, \lambda)}^2. \]

Since \(\lim_{n \to \infty} \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right) \leq \|T\|_{(A, \lambda)}^2 \), we conclude that
\[\lim_{n \to \infty} \left(\lambda \|Tx_n\|_A^2 + (1 - \lambda) \|Tx_n, x_n\|_A^2 \right) = \|T\|_{(A, \lambda)}^2. \]

Hence, (i-1) and (i-2) hold. \(\square \)

The following corollary is a direct consequence of Theorem 2.7. It gives a characterization of the Birkhoff–James orthogonality for Hilbert space operators.

Corollary 2.8. Let \(T, S \in \mathcal{B}(\mathcal{H}) \). The following statements are equivalent.

1. For each \(\theta \in [0, 2\pi] \) there exists a sequence \(\{x_n\} \) of unit vectors in \(\mathcal{H} \) such that \(\lim_{n \to \infty} \|Tx_n\| = \|T\| \) and \(\lim_{n \to \infty} \text{Re} (e^{i\theta} \langle Sx_n, Tx_n \rangle) \geq 0 \).
2. For all \(\xi \in \mathbb{C} \), \(\|T + \xi S\|^2 \geq \|T\|^2 + |\xi|^2 |S|^2 \).
3. \(T \perp_B S \).

Proof. Apply Theorem 2.7 with \(A = I \) and \(\lambda = 1 \). \(\square \)

Finally, we get the following result due to Mal et al. [11].

Corollary 2.9. ([11, Theorem 2.3]) Let \(T, S \in \mathcal{B}(\mathcal{H}) \). The following statements are equivalent.

1. For each \(\theta \in [0, 2\pi] \) there exists a sequence \(\{x_n\} \) of unit vectors in \(\mathcal{H} \) such that \(\lim_{n \to \infty} \|Tx_n, x_n\| = w(T) \) and \(\lim_{n \to \infty} \text{Re} (e^{i\theta} \langle x_n, Tx_n \rangle \langle Sx_n, x_n \rangle) \geq 0 \).
2. For all \(\xi \in \mathbb{C} \), \(w^2(T + \xi S) \geq w^2(T) + |\xi|^2 c^2(S) \).
(iii) $T \perp_{B} S$.

Proof. It follows immediately from Theorem 2.7 with $A = I$ and $\lambda = 0$. □

Acknowledgements

The authors thank the referees for helpful comments and suggestions.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

[1] Abu-Omar, A., Kittaneh, F.: Notes on some spectral radius and numerical radius inequalities. Stud. Math. **227**(2), 97–109 (2015)

[2] Arias, M.L., Corach, G., Gonzalez, M.C.: Metric properties of projections in semi-Hilbertian spaces. Integr. Equ. Oper. Theory **62**(1), 11–28 (2008)

[3] Barraa, M., Boumazgour, M.: Inner derivations and norm equality. Proc. Am. Math. Soc. **130**(2), 471–476 (2002)

[4] Bhatia, R., Šemrl, P.: Orthogonality of matrices and some distance problems. Linear Algebra Appl. **287**(1–3), 77–85 (1999)

[5] Bhunia, P., Feki, K., Paul, K.: A-numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications. Bull. Iran. Math. Soc. **47**, 435–457 (2021)

[6] Birkhoff, G.: Orthogonality in linear metric spaces. Duke Math. J. **1**, 169–172 (1935)

[7] Bottazzi, T., Conde, C., Moslehian, M.S., Wójcik, P., Zamani, A.: Orthogonality and parallelism of operators on various Banach spaces. J. Aust. Math. Soc. **106**, 160–183 (2019)

[8] James, R.C.: Orthogonality in normed linear spaces. Duke Math. J. **12**, 291–302 (1945)

[9] Majdak, W., Secelean, N.A., Suciu, L.: Ergodic properties of operators in some semi-Hilbertian spaces. Linear Multilinear Algebra **61**(2), 139–159 (2013)

[10] Mal, A., Paul, K.: Birkhoff–James orthogonality to a subspace of operators defined between Banach spaces. J. Oper. Theory **85**, 463–474 (2021)

[11] Mal, A., Paul, K., Sen, J.: Birkhoff-James orthogonality and numerical radius inequalities of operator matrices. Monatsh. Math. **197**(4), 717–731 (2022)

[12] Moslehian, M.S., Xu, Q., Zamani, A.: Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces. Linear Algebra Appl. **591**, 299–321 (2020)

[13] Paul, K.: Translatable radii of an operator in the direction of another operator. Sci. Math. **2**, 119–122 (1999)
[14] Rout, N.C., Sahoo, S., Mishra, D.: Some A-numerical radius inequalities for semi-Hilbertian space operators. Linear Multilinear Algebra 69(5), 980–996 (2021)

[15] Sen, J., Sain, D., Paul, K.: Orthogonality and norm attainment of operators in semi-Hilbertian spaces. Ann. Funct. Anal. 12(1), 1–12 (2021)

[16] Zamani, A.: A-numerical radius inequalities for semi-Hilbertian space operators. Linear Algebra Appl. 578, 159–183 (2019)

[17] Zamani, A.: Birkhoff–James orthogonality of operators in semi-Hilbertian spaces and its applications. Ann. Funct. Anal. 10(3), 433–445 (2019)

S. Mojtaba Enderami, Mortaza Abtahi and Ali Zamani
School of Mathematics and Computer Sciences,
Damghan University
P.O.BOX 36715-364
Damghan
Iran
e-mail: abtahi@du.ac.ir

S. Mojtaba Enderami
e-mail: sm.enderami@std.du.ac.ir

Ali Zamani
e-mail: zamani.ali85@yahoo.com

Received: November 20, 2021.
Revised: January 16, 2022.
Accepted: August 4, 2022.