Combination of Alpha-Melanocyte Stimulating Hormone with Conventional Antibiotics against Methicillin Resistant Staphylococcus aureus

Madhuri Singh1, Ravishekar Gadepalli2, Benu Dhawan2, Kasturi Mukhopadhyay1*

1 School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India, 2 Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India

Abstract

Our previous studies revealed that alpha-melanocyte stimulating hormone (α-MSH) is strongly active against Staphylococcus aureus (S. aureus) including methicillin resistant S. aureus (MRSA). Killing due to α-MSH occurred by perturbation of the bacterial membrane. In the present study, we investigated the in vitro synergistic potential of α-MSH with five selected conventional antibiotics viz., oxacillin (OX), ciprofloxacin (CF), tetracycline (TC), gentamicin (GM) and rifampicin (RF) against a clinical MRSA strain which carried a type III staphylococcal cassette chromosome mec (SCCmec) element and belonged to the sequence type (ST) 239. The strain was found to be highly resistant to OX (minimum inhibitory concentration (MIC) > 1024 µg/ml) as well as to other selected antimicrobial agents including α-MSH. The possibility of the existence of intracellular target sites of α-MSH was evaluated by examining the DNA, RNA and protein synthesis pathways. We observed a synergistic potential of α-MSH with GM, CF and TC. Remarkably, the supplementation of α-MSH with GM, CF and TC resulted in ≥64-, 8- and 4-fold reductions in their minimum bactericidal concentrations (MBCs), respectively. Apart from membrane perturbation, in this study we found that α-MSH inhibited ~53% and ~47% DNA and protein synthesis, respectively, but not RNA synthesis. Thus, the mechanistic analogy between α-MSH and CF or GM or TC appears to be the reason for the observed synergy between them. In contrast, α-MSH did not act synergistically with RF which may be due to its inability to inhibit RNA synthesis (<10%). Nevertheless, the combination of α-MSH with RF and OX showed an enhanced killing by ~45% and ~70%, respectively, perhaps due to the membrane disrupting properties of α-MSH. The synergistic activity of α-MSH with antibiotics is encouraging, and promises to restore the lost potency of discarded antibiotics.

Introduction

Infections due to methicillin resistant Staphylococcus aureus (MRSA) are becoming untreatable and putting tremendous pressure on healthcare systems [1–3]. MRSA is the most common cause of infection at a variety of sites including skin and soft tissues, respiratory tract, bloodstream, and prosthetic devices [4]. Beta lactam antibiotics, the wonder drugs of the past, are now no longer effective against these resistant bacteria. Likewise, promising new antibiotics of various classes, recently approved by the Food and Drug Administration (FDA), including linezolid (an oxazolidinone) and daptomycin (a cyclic lipopeptide), could not significantly improve the outcomes of infections caused by MRSA [5,6]. In fact, emergence of resistance to these new classes of antibiotics may hinder the use of these drugs in the future. With this existing scenario, an effective solution may be the development of combination therapies involving antimicrobial agents with different mechanisms of inhibitory action [7,8]. For example, pairing of vancomycin with rifampin or gentamicin has been often successful in the treatment of endocarditis caused by MRSA [9]. The potential benefits of combination therapy over single therapy include, reduction in the dose of toxic antibiotics, decreased resistance development, and broader antibacterial activity [10,11].
the lost antibacterial efficacy of conventional antibiotics. For this purpose, we evaluated the in vitro combination effect of α-MSH with five different antibiotics viz., oxacillin (OX), gentamicin (GM), rifampicin (RF), tetracycline (TC), and ciprofloxacin (CF) against a clinical MRSA strain which was resistant to all these five antibiotics at high concentrations. We observed a dramatic increment in the staphylococidal effect of each antibiotic even at lower doses when combined with an ineffective dose of α-MSH in vitro. These results are very encouraging as combining α-MSH with currently discarded traditional antibiotics might be useful for the treatment of fatal infections due to resistant microorganisms.

Materials and Methods

Materials

All the antibiotics viz., oxacillin sodium salt, ciprofloxacin hydrochloride, tetracycline hydrochloride, rifampicin, gentamicin sulfate, synthetic α-MSH were purchased from Sigma-Aldrich (USA). Brain heart infusion (BHI), cation-adjusted Mullin Hinton broth (CAMHB), and agar were purchased from HiMedia (India). Scintillation cocktail ‘O’ in toluene was bought from Spectrochem (Mumbai, India). Tricarboxylic acid, MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), trypan blue, tritonX−100 and dimethyl sulfoxide (DMSO) were purchased from Fisher Scientific (Germany). [methyl-3H] thymidine, [4,5-3H] leucine and [5-3H] uridine were purchased from the Board of Radiation and Isotope Technology (BRIT, India). The purity of α-MSH was >97% and its concentration was determined spectrophotometrically (UV-2450 UV-VIS spectrophotometer, Shimadzu). Stocks of all the antibiotics and α-MSH were stored at 4°C.

Bacterial Strains

The clinical strain of S. aureus was isolated from a patient admitted to the All India Institute of Medical Sciences (AIIMS), New Delhi, India with skin and soft tissue infection (SSTI). Ethical approval was obtained from the Institute Ethics Committee, AIIMS, New Delhi, India. S. aureus was identified using standard biochemical tests using multiplex PCR. Cefoxitin disk diffusion method and mecA PCR was used to characterize the strain as MRSA [24]. Additionally, one prototype ATCC MRSA 33591 and ATCC MSSA 29213 were used to perform quality control as recommended by the Clinical Laboratory Standard Institute (CLSI) [25]. Strains were stored at −80°C in 15% glycerol until sub-cultured onto BHI agar plate followed by secondary culture in BHI broth. The mid log phase grown cells (OD600 nm = 0.5) were used for all the experiments. The cell suspension of desired density was prepared in 10 mM sodium potassium phosphate buffer used for all the experiments. The cell concentration was determined by the Microbial Cell Density Meter (MCDM) [26]. The assay was repeated on three days independently, and a constant MIC value was found. MIC values of OX >2 μg/ml [29], GM >0.25 μg/ml [29], CF >0.25 μg/ml [30], TC >0.25 μg/ml [31], and RF >0.015 μg/ml [29] were considered resistant. MIC value of α-MSH could not be determined as MHB/BHI medium tends to reduce its antibacterial activity. The same inhibitory effect of MHB medium for another cationic antimicrobial peptide, i.e., LL-37 has also previously been reported by Turner et al., [32]. Nevertheless, they had found that the peptide was very active when they performed the killing assays by viable colony count method using PBS buffer [32].

Minimum Bactericidal Concentration (MBC)

MBC was determined by the killing assay using 105 to 109 CFU/ml of mid log culture as described elsewhere [22,23,32,33]. Briefly, the cells were incubated with each of the selected antibiotic (2 μg/ml to 2048 μg/ml) and α-MSH (2 μg/ml to 160 μg/ml) individually in PBS. The mixture was incubated at 37°C for 2 h and the aliquots were 10-fold diluted two times serially in PBS (to reduce the drug carry over and to allow accurate colony count) followed by plating on BHI agar plate in triplicate. Viable colonies were counted after overnight incubation and percentage of killing of treated sample was determined with respect to the untreated samples (control). The concentrations at which ≥50%, and ≥90% of cells were killed, were defined as MBC50 and MBC90, respectively. MBC values of OX >0.5 μg/ml [28], GM >6.5 μg/ml [34], CF >2 μg/ml [35], TC >3 μg/ml [36], and RF >0.125 μg/ml [37] were considered resistant.

Synergy Studies

For determining synergism, both the pairing agents (antibiotic and α-MSH) were administered at doses which did not show significant bacterial killing (≥80% cell survival) when used alone. The methodology was similar to the killing assay protocol as described above. Briefly, the cells (105 to 109 CFU/ml) were treated with ineffective doses of each antibiotic alone ranging from 2 to 32 μg/ml and in presence and absence of α-MSH (3 μg/ml). For example, to test synergism between α-MSH and OX, cells were treated with OX alone in the concentration range of 2 to 32 μg/ml and in the presence of 8 μg/ml of α-MSH. An MBC50 and MBC90 value was calculated for each antibiotic alone and in the presence of α-MSH. A ≥4-fold reduction in MBC90 value in the presence of α-MSH was considered a synergistic relation between α-MSH and that antibiotic [20].

Impact of α-MSH on Bacterial DNA, RNA and Protein Synthesis

To determine the effect of α-MSH on bacterial macromolecule synthesis, whole cell labeling was done with radioactive precursors of DNA, RNA and protein as described elsewhere [38,39]. In brief, −109 CFU/ml of S. aureus ATCC 29213 cells were labeled with 1 μCi of radioactive precursor of DNA, RNA or protein, respectively; either [methyl-3H] thymidine or [5-3H] uridine or [4,5-3H] leucine. This was followed by treatment with sub-lethal doses of α-MSH (2 μg/ml and 10 μg/ml) for 30 min, 60 min, and 120 min. In addition, 2 μg/ml of each of CF, TC and RF were used as positive controls for DNA, protein and RNA synthesis inhibition, respectively. At selected time points, aliquots were removed from the mixture, added to the chilled 10% tricarboxylic acid (TCA) for 30 min to stop the reaction and filtered through a manifold unit (Millipore). Cells were collected on Millipore filter paper (0.22 μm pore size), dried under infrared light, added to scintillation fluid and the radioactive signal was measured using a Scintillation Counter (Perkin Elmer, USA). Simultaneously, to
confirm that the chosen doses of α-MSH were not bactericidal, killing kinetics using the 2 and 10 μg/ml of α-MSH against ~10^6 CFU/ml of S. aureus ATCC 29213 were performed using duplicate samples prepared separately, without radioactive precursors. Three independent experiments were done in each case.

Hemolytic Activity of α-MSH

Fresh 5 ml aliquots of blood were collected from Swiss albino mouse in the presence of 2 mg/ml ethylenediaminetetraacetic acid (EDTA) and centrifuged at 400 rpm for 10 min and the red blood cells (RBCs) pellet was collected. The use of animals was approved by the Institutional Animal Ethics Committee of Jawaharlal Nehru University (IAEC-JNU), New Delhi, India. The pellet was washed 3 times in 10 mM PBS buffer, pH 7.4, and re-suspended in 4-fold volumes of the same buffer. 5 μl of this RBC solution was added to 995 μl of PBS buffer containing serially diluted α-MSH (100 μg/ml to 100 μg/ml). The RBC and α-MSH mixture was incubated at 37°C for 1 h or 18 h and centrifuged. To the 200 μl of supernatant 800 μl of PBS buffer was added and absorbance was measured at 413 nm using UV-VIS Spectrophotometer (Shimadzu, Japan). To ensure 100% (positive control) and 0% (negative control) hemolysis, 0.1% tritonX-100 (TX100) and PBS buffer were added, respectively, instead of α-MSH and absorbance at 413 nm was measured. Hemolysis due to the test peptide was determined as described elsewhere [40], % Hemolysis = 100×(absorbance in peptide – absorbance in PBS)/absorbance in TX100 - absorbance in PBS). The assay was done in duplicate.

Cytotoxicity Due to α-MSH by MTT Assay

The efficacy of the peptide to induce cell death in a 3T3 mouse fibroblast cell line was determined by MTT assay as described elsewhere [41]. This colorimetric assay is based upon the reduction of yellow tetrazolium dye, MTT, to an insoluble purple colored formazan product by the enzyme succinate dehydrogenase found in metabolically active cells. After treatment with MTT, the cells are solubilized in the presence of organic solvent (i.e., DMSO), and the released, solubilized formazan product is measured spectrophotometrically at 570 nm. Since reduction of MTT can only happen in metabolically active cells, the intensity of the colored formazan is directly proportional to the cell viability. Briefly, a monolayer of 1 day old 3T3 cells (10^3 cells/ml predetermined by trypan blue staining) were grown in DMEM medium supplemented with 10% fetal bovine serum on 24 well plates placed in a 5% CO₂ incubator. The cells were washed and re-suspended in PBS buffer and then treated with α-MSH (0.2 μg/ml to 20 μg/ml) for 2 h. Untreated cells in the presence of PBS buffer alone were taken as a negative control (100% intact cells). To the mixture, 20 μl of 5 mg/ml MTT solution was added and incubated in the dark at 37°C for 4.5 h, followed by addition of 200 μl DMSO and further incubation for 1 h. After incubation, 100 μl of this mixture was removed and added to 900 μl of double distilled H₂O and absorbance was measured at 570 nm against a background (100 μl DMSO+900 μl ddH₂O). The percentage cytotoxicity was calculated as described elsewhere [41], % of Cytotoxicity = 100×(absorbance of control - absorbance of sample)/absorbance of control). The above assay was done in triplicate.

Statistical Analysis

All data was compiled by using mean ± standard deviation calculated for three independent replicates using Microsoft office excel. Difference in mean values among % survival data-sets for various antibiotics alone and in the presence of α-MSH were calculated as described elsewhere [41], % of Cytotoxicity = 100×(absorbance of control - absorbance of sample)/absorbance of control). The above assay was done in triplicate.

Results

Genotypic Characterization of the Clinical MRSA Strain

The clinical MRSA strain carried a type III cassette, and MLST profiling classified this strain as ST239. The strain is close to UK EMRSA-1 (NCTC11931), and the Brazilian/Hungarian clone (ST239-SCCmec III) with allelic profile of 2-3-1-1-4-4-3 based on the DNA sequence of seven housekeeping genes. The predominance of the ST239 clone has been reported previously among Indian nosocomial MRSA strains [24,42].

Susceptibility Profiles of S. aureus strains to the Selected Antibiotics by Microdilution Assay

MIC values of the selected antibiotics CF, GM, TC, RF and OX against the clinical MRSA isolate as well as ATCC MRSA 33591 and ATCC MSSA 29213 were determined and are presented in Table 1. The ATCC MRSA 33591 strain was resistant to OX (MIC = 128 μg/ml), RF (MIC = 0.5 μg/ml), and TC (MIC = 32 μg/ml), while it was susceptible to both GM and CF. However, the clinical MRSA isolate showed very high MIC values for all antibiotics tested indicating its resistance to both bacteriostatic (TC) and bactericidal (OX, GM, CF, RF) groups of drugs. For example, the MIC values for OX and GM were 1024 μg/ml and 128 μg/ml, respectively, which are 512-fold greater than the values in susceptible bacteria [43]. The rationale behind choosing the clinical MRSA over prototype ATCC MRSA 33591 for the synergistic study was its high resistance towards all the tested antibiotics.

Susceptibility Profile of Clinical MRSA to the Selected Antibiotics and to α-MSH by the Killing Assay

The killing activity of all selected antibiotics (at concentrations ranging from 64 to 2048 μg/ml) and α-MSH (2 to 160 μg/ml) was assessed against the clinical MRSA isolate. Taking into account the varying action time of the different chosen antibiotics, the antibiotic treatment was done for 2 h to allow sufficient time for both the slow-acting (i.e., OX) and fast-acting antibiotics (i.e., CF). Similarly, as shown in Fig. 1b, the percentage survival of S. aureus cells treated with α-MSH alone for 2 h. The concentrations at which an antibiotic showed 90% and 50% bacterial killing were taken as the MBC₉₀ and MBC₅₀ value, respectively, of that antibiotic. These values were determined from the killing curves of the tested antibiotics (Fig. 1a), and are summarized in Table 2. It is apparent from Fig. 1a and Table 2 that the clinical MRSA strain was highly resistant to all the selected antibiotics. The MBC₉₀ values of CF, TC and RF were 128 μg/ml, 128 μg/ml and 512 μg/ml, respectively (Table 2). However, in case of OX and GM, MBC₉₀ could not be achieved even at 2048 μg/ml. Similarly, as shown in Fig. 1b, the strain was poorly susceptible to α-MSH as no killing was observed up to 8 μg/ml of α-MSH, and only 71.7±3.3% killing was obtained at 160 μg/ml of α-MSH (p<0.001 when multiple data-set of % survival were compared among different concentrations of α-MSH). It is pertinent to note here that in our previous reports we observed >95% killing by α-MSH against S. aureus ATCC 29213 even at a concentration of 2 μg/ml [22,23].
Synergistic Interaction of \(\alpha \)-MSH with Selected Conventional Antibiotics

The synergistic potential of \(\alpha \)-MSH with the 5 different antibiotics was determined by the killing assay. The data with each antibiotic alone, and in the presence of 8 \(\mu \)g/ml of \(\alpha \)-MSH is presented in Fig. 2. A remarkable increase in the staphylocidal activity of each antibiotic was observed when combined with \(\alpha \)-

Table 1. Minimum Inhibitory concentration (MIC) values of selected antibiotics against \(S. \) aureus strains as determined by broth microdilution assay following CLSI guidelines [25].

Antibiotic	MIC (\(\mu \)g/ml) against ATCC MSSA 29213	MIC (\(\mu \)g/ml) against ATCC MRSA 33591	MIC (\(\mu \)g/ml) against Clinical MRSA
Oxacillin	1 (S)	128 (R)	1024 (R)
Ciprofloxacin	0.5 (S)	0.5 (S)	32 (R)
Tetracycline	0.5 (S)	32 (R)	8 (R)
Gentamicin	0.5 (S)	0.5 (S)	128 (R)
Rifampicin	0.25 (S)	0.5 (R)	64 (R)

Note: (S) Strain susceptible to tested antibiotic. (R) Strain resistant to tested antibiotic.

doi:10.1371/journal.pone.0073815.t001

Impact of \(\alpha \)-MSH on Bacterial DNA, RNA and Protein Synthesis

To examine the effect of sub-lethal doses of \(\alpha \)-MSH (2 and 10 \(\mu \)g/ml) on macromolecular synthesis of \(S. \) aureus ATCC 29213 cells, incorporation of radioactive precursor [methyl-\(^{3} \)H] thymidine, [\(5^{-} \)H] uridine and [\(4,5^{-} \)H] leucine into DNA, RNA and protein, respectively, was observed over a period of 2 h and percent radioactivity of these precursors is presented in Fig. 3a–c. Additionally, ciprofloxacin, rifampicin and tetracycline treated samples (2 \(\mu \)g/ml each) were included as positive controls of DNA, RNA and protein synthesis inhibition, respectively [44]. As can be seen from Fig. 3a and Fig. 3c, a reduction in the incorporation of [methyl-\(^{3} \)H] thymidine and [\(4,5^{-} \)H] leucine was observed in the \(\alpha \)-MSH treated samples. For example, [methyl-\(^{3} \)H] thymidine
radioactivity showed a reduction from 100% (untreated control) to 77.6 ± 6.6% and 67.0 ± 8.5% when treated with 2 and 10 μg/ml of α-MSH, respectively, for 30 min. It further reduced to 53.2 ± 5.9% and 50.8 ± 11.6% after 2 h of treatment (Fig. 3a). Likewise, a 18 ± 4.5% and 34.5 ± 2.1% decrease in the incorporation of [4,5-3H] leucine was observed in samples treated with 2 and 10 μg/ml of α-MSH, respectively, for 30 min (Fig. 3c), and was further decreased by 40.9 ± 6.3% and 47 ± 1.4%, after 2 h treatment with α-MSH (Fig. 3c). The radioactive labeling assay indicated that there was inhibition of both DNA and protein synthesis in the bacterial cells on exposure to sub-lethal concentrations of α-MSH. However, less than a 10% decrease in the incorporation of [5-3H] uridine was observed in the α-MSH treated samples compared to the untreated controls, suggesting that α-MSH had only a marginal effect on RNA synthesis (<10%) (Fig. 3b).

To confirm that the chosen doses of α-MSH were not bactericidal, killing kinetics using the 2 and 10 μg/ml of α-MSH against ~10^9 CFU/ml of S. aureus ATCC 29213 were performed simultaneously, and the killing results are shown in Fig. 3d. The data showed that only ~12% and 40 ± 6.9% killing was observed in cells treated with 2 μg/ml and 10 μg/ml of α-MSH, respectively, over a period of 2 h.

Effect of α-MSH Toxicity on Mouse Red Blood Cells (RBCs) and Fibroblast Cell Lines

The hemolysis of mouse RBCs exposed to a range of α-MSH concentrations (100 pg/ml to 100 μg/ml) was examined (Fig. 4a). As can be seen from this figure, less than 10% hemolysis was observed after 1 h treatment with α-MSH even at a concentration of 100 μg/ml, and only ~3% further increase in hemolysis was observed when exposure time was increased to 18 h. Fibroblast

| Table 2. Minimum bactericidal concentration (MBC₅₀ and MBC₉₀) values of selected antimicrobial agents when used alone and in the presence of 8 μg/ml of α-MSH against clinical MRSA strain. |
|-----------------|-----------------|-----------------|-----------------|
| Antibiotic | MBC₅₀/MBC₉₀ (μg/ml) | MBC₅₀/MBC₉₀ (μg/ml) | Fold reduction in MBC values (MBC₅₀/MBC₉₀) of antibiotic when combined with α-MSH |
| Oxacillin | 2048/>2048 | 4/>32 | 512/NA* |
| Ciprofloxacin | 64/128 | 2/16 | 32/8 |
| Tetracycline | 64/128 | 2/32 | 32/4 |
| Gentamicin | 2048/>2048 | 2/32 | 1024/>64 |
| Rifampicin | >256/512 | 8/>32 | >32/NA* |

Note: Fold reduction = (MBC₅₀ of antibiotic alone/MBC₅₀ in presence of α-MSH).
NA* means MBC₉₀ not achieved.

doi:10.1371/journal.pone.0073815.t002

Figure 2. Killing curves of each of antibiotic alone and in presence of α-MSH against clinical MRSA isolate. (a) Gentamicin, (b) Tetracycline, (c) Ciprofloxacin, (d) Oxacillin, and (e) Rifampicin. Symbols; antibiotic alone (diamond) and antibiotic+α-MSH (8 μg/ml) (square). Experiments were repeated on three independent days. p value ≤0.05 (when multiple comparisons were done among % survival data-sets of different concentrations of same antibiotic with and without α-MSH).

doi:10.1371/journal.pone.0073815.g002
cell cytotoxicity due to α-MSH exposure was measured using MTT assay (Fig. 4b). The survival of cells was 100% upon exposure to 2 μg/ml α-MSH, and a mere 9.8% loss in cell viability occurred on exposure to 20 μg/ml α-MSH. Taken together, it is evident that α-MSH has negligible hemolytic and cytotoxic effects at concentrations well above the dose required for its antibacterial effect.

Discussion

We face a grave health risk due to the failure of existing antibiotics in treating multidrug resistant strains of S. aureus both in the hospital and community settings [45,46,47]. Enormous efforts have been made worldwide to develop novel sustainable antibacterial agents. Although HDPs have the potential to be developed as a new class of therapeutics [48], their toxicity at the required doses is a major drawback. To address this problem, among the different strategies, the combination of HDPs with conventional antibiotics is receiving wide attention [49,50].

In our previously published studies, we demonstrated the strong antibacterial activity of a neuropeptide, α-MSH, against various strains of S. aureus, including the MRSA strains [21,22]. We further proved that α-MSH caused membrane damage leading to leakage of cellular content and depolarization, and eventual cell-killing. In the present study, we explored the in vitro synergistic potential of α-MSH with GM, CF, TC, OX, and RF against a clinical isolate of S. aureus ATCC 29213.
respectively (Fig. 2a, b, & c). The fold reduction in MBC90 values
tically with GM, CF and TC. For example, 2 h incubation with
S. aureus of MSH (100 pg/ml to 100 g/ml) on mice RBCs after 1 h (diamond) and
18 h (square) of incubation, (b) cytotoxic effect of a-MSH (0.2 μg/ml to
20 μg/ml) on the mouse fibroblast cell lines. Each assay was done in
triple on two different days.
doi:10.1371/journal.pone.0073815.g004

S. aureus identified as MRSA (ST239-SCCmec III). The ST239 has
been identified as a major cause of MRSA infections in Asian healthcare settings, including India [24,42,51]. The antibiotics
were chosen because they belonged to different classes of
 antimicrobial agents and their modes of action are quite different
from one another. For example, GM and TC primarily act on
protein synthesis whereas CF targets DNA replication [44,52]. RF
inhibits DNA-dependent RNA polymerase activity in bacterial
cells [53] and OX belongs to the β-lactam family, interferes with
bacterial cell wall synthesis by attachment with penicillin binding
protein [44].

Our present study strongly suggests that a-MSH acts synergistically with GM, CF and TC. For example, 2 h incubation with
32 μg/ml of GM, CF and TC showed 17%, 14% and 45% killing of S. aureus cells, respectively. When used in combination with
8 μg/ml a-MSH, killing activity increased to 91%, 93% and 90%,
respectively (Fig. 2a, b, & c). The fold reduction in MBC90 values
of GM, CF and TC was >64, 8, and 4, respectively, when used in
combination with a-MSH. This suggests that 90% killing was
achieved with a much lower dose of these antibiotics when used
with a-MSH. Synergy was robust with the combination
of GM and a-MSH with a >64-fold reduction in MBC90
(Table 2). GM is effective against staphylococcal infection but
exhibits dose-limiting toxicities [54]. Since the addition of a-MSH
with GM lowered the required dose of the antibiotic, it could be an
alternative and effective treatment for staphylococcal infections.

The addition of a-MSH to OX substantially increased the bacterial killing (Fig. 2d). However, >90% bactericidal activity
could not be achieved using this combination. This may be
attributed to the fact that the strain used was highly resistant to
OX (MIC = 1024 μg/ml) and the maximum dose of OX tested in
the study was 32 μg/ml. Synergy may be observed upon using a
higher dose of OX and increasing the incubation time. The
combination of a-MSH and RF was only additive (Fig. 2e) as only
~45% increase in killing of RF was obtained when combined with
a-MSH.

We next sought to further delineate the mechanism of action of
a-MSH on S. aureus cells. We have previously shown that
membrane permeabilization was a major mechanism of staphy-
lococidal action of a-MSH. However, other targets could not be
ruled out [22]. This was because a time lag was observed between
bacterial cell death (occurring within 15 minutes of peptide
exposure) and substantial membrane damage (occurring between
30–120 min after a-MSH exposure) [23]. In an attempt to
understand whether membrane damage due to a-MSH exposure
was the lone cause of cell death, or whether like other HDPs
(LL–37 and human α-defensin) [55], a-MSH also caused
pleiotropic intracellular effects, we evaluated the impact of a-
MSH on DNA, RNA and protein synthesis. Radioactive whole-
cell labeling assays showed 53% and 47% reduction in the
incorporation of thymidine and leucine into DNA and protein,respectively, in the presence of sub-inhibitory doses of a-MSH. In
contrast, only a marginal (<10%) reduction in the incorporation
of uridine into RNA (Fig. 3b.) was observed in a-MSH treated
cells. Taken together, these observations indicate that besides
membrane damaging properties; a-MSH possesses the capability
of hampering DNA replication and protein synthesis of S. aureus
ATCC 29213, directly or indirectly, with little effect on RNA
synthesis.

These observations have important implications in understand-
ing the synergy observed between the antibiotics and the peptide.

It has been reported that the membrane permeabilizing activity
of HDPs can increase the uptake of antibiotics in the resistant S.
aureus strains, thereby decreasing the effective antibiotic dose
[14,54–57]. As observed by others [56,57], the ability of a-MSH to
increase membrane permeability may have facilitated the entry of
all the antibiotics studied here, thus increasing their efficacy in
bacterial killing. The more pronounced synergistic activity in
the case of CF, GM, and TC may be due to a mechanistic analogy
between these antibiotics and a-MSH. For instance, CF targets
DNA replication and GM and TC target protein synthesis to cause
their antibacterial action. This study showed the diminishing effect
of a-MSH on DNA and protein synthesis. The common killing
mechanism (either inhibition of protein synthesis or inhibition of
dNA synthesis) along with other known (like membrane damaging
ability of the peptide) or unknown mechanisms make the
combination of GM or TC or CF with a-MSH synergistic.

The combination of OX with a-MSH was also very promising.
OX primarily acts on the staphylococcal cell wall and a-MSH
causes rapid changes in cell membrane permeability. Despite their
different targets, each agent may complement the effect of the
other, leading to substantial increase in bacterial cell death. On the
contrary, a moderate increase in the effect of RF and a-MSH
combination may be due to the absence of a common mechanism
of bactericidal action. This pair appeared to act additively rather
than synergistically. As already pointed out, the membrane
permeabilizing property of a-MSH probably helps RF in entering
the cells and hence an increase in antibacterial activity of RF was
obtained in presence of a-MSH.

The lack of any appreciable mammalian cell cytotoxicity and
hemolytic activity (Fig. 4) as a result of a-MSH exposure is
important since it further enhances its possible medical applica-
tions. Our previous studies had already suggested that α-MSH is a prospective candidate to be developed as an anti-staphylococcal agent. The findings of the present study, using a highly resistant staphylococcal strain, have further broadened the therapeutic potential of α-MSH.

We would also like to add a word of caution here. Mechanisms of resistance in S. aureus are multifactorial and vary significantly from strain to strain. Emergence of varied clonal complexes among MRSA strains indicates its extraordinary ability to adapt and develop resistance [45,47]. Therefore, more clinical strains from different genetic backgrounds need to be studied before α-MSH may be used against all strains of S. aureus. Detailed in vivo studies will also be required before this combination therapy moves from the bench to the bedside. Nevertheless, these results raise interesting possibilities for future studies.

In summary, we have shown for the first time that α-MSH acts synergistically and additively with various classes of conventional antibiotics by drastically reducing the required dose of the antibiotics as well as the peptide itself. In the long run, combination therapy involving antibiotics and antimicrobial peptides may perhaps be a viable strategy to improve the efficacy of treatment in a cost-effective manner.

Acknowledgments

We thank Prof. Sudha Bhattacharya (SES, JNU, New Delhi, India), Dr. Sneha Sudha Komath (SLS, JNU, New Delhi, India) for critical reading of the manuscript. We thank Dr. Ilora Ghosh (SES, JNU, New Delhi, India) for providing lab facilities and 3T3 mouse fibroblast cell line for conducting MIT assay.

Part of this work was presented at 10th ASM Biodiscovery and Emerging Disease Research Meeting, Washington DC, 26-to 29 February 2012.

Author Contributions

Conceived and designed the experiments: KM MS. Performed the experiments: MS RG. Analyzed the data: KM MS RG BD. Contributed reagents/materials/analysis tools: KM. Wrote the paper: KM MS BD.

References

1. Tiwari HK, Sapkota D, Nen MR (2008) High prevalence of multidrug-resistant Staphylococcus aureus at a tertiary care hospital of northern India. Infect Drug Resist 1: 57-63.
2. Otter JA, French GL (2008) The emergence of community-associated methicillin-resistant Staphylococcus aureus at a London teaching hospital, 2000–2006. Clin Microbiol Infect 14: 670-676.
3. Elefants RM, Morrison MA, Nadle J, Petri S, Gerdman K, et al. (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298: 1763-1771.
4. Fry DE, Barie PS (2011) The changing face of Staphylococcus aureus: a continuing surgical challenge. Surg Infect 12: 191-203.
5. Wong A, Reddy SP, Smyth DS, Aguero-Rosenfeld ME, Sakasdas G, et al. (2010) Polyphyletic emergence of linezolid-resistant staphylococci in the United States. Antimicrob Agents Chemother 54: 742-748.
6. Yang SJ, Xiong YQ, Dunman PM, Schrenzel J, François P, et al. (2009) Regulation of rpfF in daptomycin-non-susceptible Staphylococcus aureus strains. Antimicrob Agents Chemother 53: 2636-2637.
7. Jawetz E (1968) The use of combinations of antimicrobial drugs. Annu Rev Pharmacol 8: 151-170.
8. Krosgstad DJ, Moellering RC, Jr. (1980) Combinations of antibiotics; mechanisms of interaction against bacteria. In: V Lorian editor. Antibiotics in Laboratory Medicine. Baltimore. The Williams & Wilkins Co. 300-309.
9. Moreillon P, Que YA (2004) Infective endocarditis. Lancet 363: 139–149.
10. Klevens RM, Morrison MA, Nadle J, Petit S, Gerdman K, et al. (2007) Polyphyletic emergence of linezolid-resistant staphylococci in the United States. Antimicrob Agents Chemother 54: 742-748.
38. Yenugu S, Hamil KG, Radhakrishnan Y, French FS, Hall SH (2004) The androgen-regulated epididymal sperm-binding protein, human β-Defensin 118 (DEFB118) (Formerly ESC42), is an antimicrobial β-defensin. Endocrinology 145: 3165–3173.

39. Menzel TM, Tischer M, François P, Nickel J, Schrenzel J, et al. (2011) Mode-of-action studies of the novel bisquaternary bisnaphthalimide MT02 against Staphylococcus aureus. Antimicrob Agents Chemother 55: 311–320.

40. Chou HT, Wen HW, Kuo TY, Lin CC, Chen WJ (2010) Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 31: 1811–1820.

41. Khanavi M, Gheidarloo R, Sadati N, Ardekani MR, Nabavi SM, et al. (2010) Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line. Biol Res 43: 31–37.

42. Arakere G, Nadig S, Ito T, Ma XX, Hiramatsu K (2009) A novel type-III staphylococcal cassette chromosome mec (SCCmec) variant among Indian isolates of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 292: 141–146.

43. Turnidge J, Paterson DL (2007) Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20: 391–408.

44. Tenover FC (2006) Mechanisms of antimicrobial resistance in bacteria. The Am J Med 119: 83–10.

45. Wu K, Zhang K, McClure J, Zhang J, Schrenzel J, et al. (2013) A correlative analysis of epidemiologic and molecular characteristics of methicillin-resistant Staphylococcus aureus clones from diverse geographic locations with virulence measured by a Galleria mellonella host model. Eur J Clin Microbiol Infect Dis 32: 35–42.

46. Boucher HW, Corry GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46: S144–S149.

47. Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7: 629–641.

48. Rice LB (2008) Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis 197: 1079–1081.

49. Leszczyńska K, Namiot A, Janney PA, Bucki R (2010) Modulation of exogenous antibiotic activity by host cathelicidin LL-37. Acta Pathologica, Microbiologica et Immunologica Scandinavica 118: 830–836.

50. Sakoulas G, Bayer AS, Poglino J, Tsuji BT, Yang SJ, et al. (2012) Ampicillin enhances daptomycin- and cationic host defense peptide-mediated killing of ampicillin- and vancomycin-resistant Enterococcus faecium. Antimicrob Agents Chemother 56: 838–844.

51. Smyth DS, McDougal LK, Gran FW, Manoharan A, Enright MC, et al. (2009) Population structure of a hybrid clonal group of methicillin-resistant Staphylococcus aureus ST239-MRSA-III. PLos One 5: e5802.

52. Drifica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Bio Rev 61: 377–392.

53. Campbell EA, Kozheva N, Mustaev A, Murakami K, Nair S, et al. (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901–912.

54. Lopez-Novoa JM, Quiros Y, Vicente L, Morales AI, Lopez-Hernandez F (2011) New insights into the mechanism of aminoglycoside nephrotoxicity: an integrative point of view. Kidney Int 79: 53–63.

55. Xiong YQ, Yeaman MR, Bayer AS (1999) In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother 43: 1111–1117.

56. Yenugu S, Naradathka G (2010) The human male reproductive tract antimicrobial peptides of HE2 family exhibit potent synergy with standard antibiotics. J Pept Sci 16: 337–341.

57. Nadrah K, Sule F (2011) Antibiotic combinations with daptomycin for the treatment of Staphylococcus aureus infections. Chemother Res Pract 2011: 1–10.