New cheloniellid arthropod with large raptorial appendages from the Silurian of Wisconsin, USA

Andrew J. Wendruff, Loren E. Babcock, Donald G. Mikulic, Joanne Kluessendorf

1 Department of Biology and Earth Science, Otterbein University, Westerville, Ohio, United States of America, 2 Department of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America, 3 Illinois Geological Survey, Champaign, Illinois, United States of America, 4 Weis Earth Science Museum, University of Wisconsin-Fox Valley, Menasha, Wisconsin, United States of America

*Wendruff1@otterbein.edu

Abstract

Cheloniellids comprise a small, distinctive group of Paleozoic arthropods of whose phylogenetic relationships within the Arthropoda remain unresolved. A new form, Xus yus, n. gen, n. sp. is reported from the Waukesha Lagerstatte in the Brandon Bridge Formation (Silurian: Telychian), near Waukesha, Wisconsin, USA. Exceptionally preserved specimens show previously poorly known features including biramous appendages; this is the first cheloniellid to show large, anterior raptorial appendages. We emend the diagnosis of Cheloniellida; cephalic appendages are uniramous and may include raptorial appendages; trunk appendages are biramous.
Introduction

Non-biomineralized or lightly skeletonized arthropods are common in Paleozoic Konservat-lagerstätten (e.g., [1–4]. However, owing to preservational biases and a high degree of morphological diversity, their affinities are commonly difficult to interpret. Non-biomineralized arthropods with raptorial or grasping appendages are often referred to as ‘great appendage arthropods’ or ‘megacheirans’ until their affinities have been resolved (e.g., [5–6]). The ‘great appendage arthropods’ comprise a morphologically diverse assortment of species. The term probably refers to a taxonomic wastebasket, and relationships to each other and within the Arthropoda are ambiguous (e.g., [5–18]).

Here we report a new arthropod with large raptorial appendages that suggests inclusion as a ‘great appendage arthropod’ in the broad sense, but which is also referable to the order Cheloniellida (Figs. 1, 2). A large number of specimens from the Waukesha Lagerstätte in the Brandon Bridge Formation (Silurian) of southeastern Wisconsin offer the opportunity to describe previously unknown or little-known features in the group. Cheloniellids are a group of non-biomineralized or lightly skeletonized Paleozoic arthropods characterized by a wide, ovoidal carapace, forward curved or angled posterior cephalic margin and pleural tips that are anterolaterally directed at the front and become increasingly posterolaterally directed toward the rear (e.g., [19–20]). This new form is among the best preserved fossil cheloniellids and allows for a rediagnosis of the group.

Material and Methods
This study is based principally on five of the better preserved specimens collected from the Waukesha Lagerstätte at the Waukesha Lime and Stone Company quarry near Waukesha, Wisconsin. Specimens are deposited in the University of Wisconsin Geology Museum, Madison, Wisconsin, USA (UWGM).

Specimens were photographed with a Canon EOS Rebel T3i Digital SLR with a Canon MP-E 65 mm macro lens and full spectrum lighting. Specimens, where noted, were whitened with ammonium chloride to enhance contrast. Images were z‐stacked using Adobe Photoshop CC and measurements were made using ImageJ.

Geological Setting

Exceptionally preserved fossils occur in a 12 cm layer of finely laminated dolomitized plattenkalk at the base of the Brandon Bridge Formation [21–23]. The Brandon Bridge Formation (Silurian) in southeastern Wisconsin contains graptolites of the Oktavites spiralis Zone, which suggests correlation with the Llandovery Series, Telychian Stage [21–22, 24–25]. Fossils occur either in thinly laminated, fissile, organic-rich, argillaceous dolomudstone (termed flinz; see [26]) or thinly laminated, non-fissile, dolomudstone (termed fäule; see [26]). All but one specimen reported here is preserved in flinz. Specimens from flinz layers are preserved by a coating of authigenic phosphate overlying a thin dark organic film and are generally more detailed [24–25]. UWGM 2345 is in a fäule layer and is preserved by a thin coating of organic film.

Sedimentary and microbial structures in the Brandon Bridge Formation indicate that organisms are parautochthonous, having been washed in from nearby areas and accumulated in
small sedimentary traps along a tidally influenced shoreline [24–25]. Organisms were neither consumed nor readily decayed, thus increasing their chances of preservation. High salinity or other environmental factors were evidently limiting to most macroscopic organisms. Limited bioturbation indicates that this environment was devoid of most burrowers and grazers that allowed a diverse microbial biota, including microbial mats, to develop and flourish. Microbial-mediated processes, such as authigenic mineralization, facilitated the preservation of much of the Waukesha Biota [24–25] including non-biomineralized and lightly skeletonized organisms (compare [27–32]).

Systematic paleontology

Phylum Arthropoda von Siebold, 1848 [33]

Class Uncertain

Order Cheloniellida Broili, 1932 [34]

Emended diagnosis. Small to medium-size, biramous, arthropods having wide, ovoidal, flattened, non-biomineralized or lightly skeletonized dorsal exoskeleton. Cephalon short, with suture separating procephalon from gnathocephalon; eyes present; trunk wider than cephalon, with 8 to 13 tergites; trunk normally with narrow, convex medial area and nearly flat plural areas; distal ends of first few tergites directed anterolaterally, becoming increasingly posterolaterally directed rearward. Terminal tergite cylindrical or round, bears anus, and encompassed by previous tergite. Caudal assembly consists of an elongate, forked, posteriormost segment bearing anus; elongate medial spine may articulate with it. Cephalic appendages
uniramous, consisting of long paired antennae and five pairs of endopods, all except the first endopod bear ganthobases. One appendage pair may be modified to raptorial appendages. Trunk appendages biramous, with one pair per segment, consisting of an endopod and shorter, brush-like exopod, not present on terminal tergite.

Discussion. Cheloniellids, as reviewed by Dunlop [20], range from the Early Ordovician (Tremadoc) to the Early Devonian (Emsian). Prior to this paper, six monospecific genera were described and referred to the group: Triopus drabowiensis [35] (Ordovician of the Czech Republic), Duslia insignis [36] (Ordovician of the Czech Republic and Morocco), Cheloniellon calmani [34] (Devonian of Germany), Neostrabops martini [37] (Ordovician of the USA), Pseudarthron whittingtoni [38] (Silurian of Scotland), and Paraduslia talimae [20] (Devonian of Russia). In addition, an undescribed cheloniellid, has been illustrated from the Ordovician of Morocco ([1], fig 2b; [39], figs 2a, b). Two arthropods left in open nomenclature, both from the Silurian, are here referred to the Cheloniellida. One species is from Ontario ([40], fig 2j), and the other, which is described from articulated material below, is from Wisconsin (previously illustrated [22], figs 16, 21). A head shield described as Drabovaspis complexa [35] (see [41–42]) from the Ordovician of the Czech Republic may also be a cheloniellid.

Affinities of the Cheloniellida within the Arthropoda are uncertain. In one early interpretation, Jahn [36] referred them to phylum Mollusca. All other authors have referred the group to the Arthropoda. By various authors they have been interpreted as Crustacea [35, 43], Trilobita [44], Arachnomorpha [45–46], Aglaspida [47], Xiphosura (Bergström [48] and as a sister group to Chelicerata [49].

Cheloniellids are characterized by a wide, ovoidal carapace; a procurved or forward angled
posterior cephalic margin; and a thickened or lobed medial region, except in *Neostrabops*. The anterior cephalic margin is often thickened (e.g., [50], fig 4; [39], figs 2a, b). With the exception of *Cheloniellon*, cheloniellids were reported to lack eyes. However, eyes are evident in published figures (e.g., [38], fig 4b; [51], plate 56, fig 5, on either side of the axial lobe; [52], figs, 6.2, 6.4, 6.10, 6.11, 6.12). Cephalic sutures were reported in some cheloniellids (e.g., [51], text-fig 1). *Cheloniellon* has a reduced head segment, which we regard as a procephalon, with a larger segment (gnathocephalon) bearing gnathobases.

Cheloniellids have a wide, ovoid trunk with between 8 (*Pseudarthron*) and 12 (*Xus* n. gen.) tergites. Tergites are narrow medially and wider laterally. The anterior 2-3 pleural tips are directed forward, and the rest become increasingly posterolaterally directed toward the rear. *Cheloniellon* has an expanded second to last tergite ([50], fig 11a). Some forms have a marginal spiny fringe around the entire organism (*Duslia*, Moroccan form and *Xus* n. gen.).

The terminal tergite is either cylindrical or round and partly surrounded by the previous tergite. Both Stürmer & Bergström [50] and Cotton & Braddy [49] reported a segment behind the terminal tergite that they referred to as a telson in cheloniellids. Cotton & Braddy [49] described a ‘faint tergite boundary’ on the terminal tergite indicating the presence of a small telson in *Duslia* ([51], plate 57, fig. 4). We consider this to likely be taphonomic in origin, though it could be construed as evidence of a median spine. Similarly, *Cheloniellon* was reconstructed with a large telsonic segment, behind the insertion of the furcae ([50], figs 1, 2). However, figured specimens do not appear to reflect this reconstructed morphology (compare [50], figs 10, 11). Unlike Stürmer & Bergström [50] and Cotton & Braddy [49], we find no evidence of a telson behind the terminal tergite in cheloniellids.

Cheloniellids display a wide range of morphological variation in the postabdomen.
Cheloniellid species with preserved posterior regions have caudal furcae attached to the terminal tergite. *Cheloniellon* possesses long, flexible furcae, whereas *Paraduslia, Duslia*, the Moroccan form and *Xus* n. gen. possess short furcae. Species with short furcae are further differentiated by the structure and shape of the furcae, seemingly being either flexible tassels (*Paraduslia*) or inflexible spines (*Duslia*, Moroccan form and *Xus* n. gen). *Xus* is further differentiated by the presence of a separate, longer medial spine.

Appendages are poorly known in cheloniellids. Prior to this description, *Cheloniellon* was the only described species with preserved appendages. *Cheloniellon* has six uniramous paired cephalic appendages, including long, narrow antennae and five endopods; the posterior four endopods bear gnathobases ([50], fig 7). An unusual brush-like structure was also noted by Stürmer & Bergström [50] on the second cephalic appendage but it was not included in the reconstruction or diagnosis. The undescribed Moroccan cheloniellid preserves long antennae; no other appendages are apparent ([1], fig 2b; [39], figs 2a, b). Trunk appendages are biramous, based on several frilled, ovoid elements on one specimen of *Cheloniellon* that are interpreted to be gilled exopods ([50], fig 8).

Genus *XUS* n. gen.

Etymology. From Latin, *X*, hunter, and *US*, extraordinary (masculine), in reference to the raptorial appendages.

Diagnosis. As for the species.
Type species. *Xus yus* n. sp.

Diagnosis. Exoskeleton small, wide, ovoidal, nearly flat except for convex eyes and axis with spiny marginal fringe. Cephalic shield short and wide; anterior margin rounded, thickened, upturned; posterior margin angled forward. Lateral eyes large, located midway from anterior margin; paired suture extending from anteromedial area to eyes; trunk with 11-12 tergites each with a thickened rim; first two tergites directed anterolaterally, third tergite directed laterally, remaining tergites become increasingly posterolaterally directed; terminal tergite round with centrally located anus; caudal apparatus articulates to terminal tergite and is composed of paired lateral spines and separate longer medial spine; cephalic appendages consisting of small paired setal appendages and large paired, laterally oriented raptorial appendages; trunk appendages biramous?, hooked endopod and possible brush-like exopod; appendages present on all but last tergite.

Discussion. *Xus yus* is most similar to two other cheloniellids, *Duslia* [51] and an undescribed cheloniellid from the Ordovician of Morocco ([1], fig 2b; [390, figs 2a, b). All three forms have spiny marginal fringes and forked spines (furcae). Neither *Duslia* nor the Moroccan form preserve evidence of raptorial appendages.

An unnamed arthropod, ROM 57980 ([40], fig 2J), may be congeneric based on the presence of putative raptorial appendages, a thickened medial region and a poorly preserved laterally expansive pleural region.

Xus yus n. sp.

Figure 1A–1L
1985a ?branchiopod crustacean Mikulic et al. [21], p. 716, fig. 2d.

1985b branchiopod or remipede crustacean Mikulic et al. [22], p. 80, fig. 16.

Etymology. From Latin, *yus*, a three-pronged spear, in reference to the caudal assembly.

Holotype. UWGM 2439 (Figs 1A, 1B, 1C).

Paratypes. UWGM 2345 (Fig 1D), UWGM 2436 (Figs 1E, 1F, 1H, 1J, 1K); UWGM 2575 (Figs 1G, 1I); UWGM 2437 (Fig 1L).

Additional material. 14 specimens.

Occurrence. Silurian (Llandovery, Telychian), occurring in a 12 cm layer in the lower Brandon Bridge Formation, Waukesha Lime and Stone Company quarry, north of State Highway 164, Waukesha, Wisconsin, USA.

Diagnosis. As for genus.

Description. Exoskeleton nearly flat except for eyes and axis and likely weekly mineralized. Length ranging to at least 45 mm. Body width approximately 70% of the body length excluding furcae. Cephalic shield has short, wide, rounded anterior margin with upturned edge; posterior margin angled forward. Lateral eyes large, ovoid located midway between anterior and posterior margins, directed anteromedially. Cephalic shield raised medially between eyes extending
posteriorly through trunk.

Abdomen ovoid, wider than cephalon with 11-12 tergites present. Trunk widest at tergites 5 and 6. Medial region moderately wide with thickened cuticle. Pleural region cuticle thin, commonly poorly preserved. Tergites appear wider laterally and thinner medially. Anterior two pleural tips directed forward, third tergite is directed laterally and the rest become increasingly posterolaterally directed toward the rear. Terminal tergite is circular and bears anus medially.

Caudal apparatus composed of two parts, a forked sclerite with stout, bowed posteriorly directed spines and a moderately long, stout median spine. Forked sclerite abuts and wraps around edges of the terminal segment. Lateral spines situated ventrally, whereas the median spine is dorsally situated.

Two pairs of appendages observed on the cephalic shield. Small paired setae bearing appendages and raptorial appendages extending anterolaterally, consisting of approximately five elongate podomeres. Base of the raptorial appendage attaches adjacent to inferred position of the mouth. Distal podomere articulates at 90° to preceding podomere; terminates in a sharp, stout, tip. Trunk limbs extend just beyond the medial region and consist of sharply hooked endopod. Brush-like structures may represent exopods.

Discussion. *Xius yus* is one of the more common organisms reported by Mikulic et al. [21–22] from the Waukesha Lagerstätte. It is known from more than 20 specimens. UWGM 2439 (Figs 1A, 1B) and UWGM 2345 (Fig. 1D) are preserved in dorsal view, and all others are in ventral view. Some specimens are partly split through the exoskeleton (Figs 1A, 1B, 1E, 1I, 1L). Studied specimens are predominately incomplete and show varied preservational conditions including the loss of cephalic appendages (Fig 1L), differential preservation of medial and pleural regions of
the abdomen (Fig 1E, 1I), and secondary authigenic, early mineralization (Fig 1E). Often specimens do not preserve the pleural regions well, giving the appearance of a more slender organism (compare Fig 1E to 1D). This condition entered into the original interpretation of this unusual arthropod ([22], fig 21). The positions of the pleural margins in some specimens can be approximated by the more easily identifiable microbial decay halo (see [53]), which lies just beyond the ends of the tergites (Figs 1F, 1L). The cuticle of the pleural regions may have been quite thin in life, which leads to some difficulty in interpretation. Sufficiently well-preserved material is necessary for correct interpretation of morphology and affinities. Without the thin lateral areas of the carapace, this animal resembles a branchiopod crustacean (as noted by Mikulic et al. [21–22]).

Non-biomineralized arthropod cuticle, primarily composed of chitin, is relatively rare in the fossil record [54]. In most environments, it is readily digested by microorganisms and macroorganisms [53]. Specific environments have been shown to limit biodegraders and the biodegradation of chitin, allowing the chitin to survive long enough to fossilize. Mikulic et al. [21–22], Wendruff [24] and Wendruff et al. [25] discussed paleoenvironmental and depositional conditions leading to exceptional preservation in the Waukesha Lagerstätte. The Waukesha Biota was deposited in a microbially-rich environment that facilitated exceptional preservation [24–25]. Macroorganisms including *Xus yus* were transported into a nearshore environment where breakdown of chitin was inhibited. Non-biomineralized and lightly skeletonized arthropods in the Waukesha Lagerstätte tend to be compressed and have secondary phosphatic overgrowths [24–25, 55]. Overgrowths are commonly crinkled and tend to distort or obscure morphologic features [24–25, 55].

All observed specimens of *Xus yus* are articulated. Taphonomic experiments demonstrate
that arthropods can remain at the sediment surface for weeks before complete disarticulation [56–57]. Limbs and gills are among the first structures to be lost in arthropods. They begin to separate from the exoskeleton in about one week [56–58]. Endopods are commonly present, whereas the gilled exopods are commonly lost. Babcock & Chang [56] and Babcock et al. [57] found that the first structures to disarticulate in extant arthropods are gills, followed by limbs. Most specimens retain some walking legs. All but one specimen of X. yus has lost the brush-like structures. If these structures are gills, then the gills were the first body parts lost in X. yus, which would suggest burial within about two weeks of death.

Ambiguity in the limb structure of cheloniellids should be noted. Within the cephalon of Cheloniellon, unusual brush-like structures were noted on ‘uniramous’ appendages by Stürmer & Bergström ([50], fig 5). Similar structures are preserved on a ventrally preserved specimen of Xus yus (Figs 1G, 1I) across the head and trunk. These brush-like elements may represent gilled exopods or possibly structures that supported the marginal frill. We infer that these structures were lost quite readily, whether they functioned as gills or not, and we do not suggest homology or function.

The general morphology of Xus yus indicates affinity with cheloniellids supported by the posterior margin of the head, widely ovoid body, posterolaterally trending tergites and caudal furcae among other features. However, it possesses some unusual morphology that is unique within the cheloniellids including raptorial appendages (Fig 1J) and a medial spine (Fig 1K). Originally, X. yus was interpreted by Mikulic et al. [21–22] as bearing affinities to either branchiopod or remipedian crustaceans on the basis of large, specialized cephalic appendages. Without a large number of differentially preserved specimens, the inferred affinities of X. yus would be different.
In general, cheloniellids could easily be confused with a number of other Paleozoic arthropods that have grossly similar body forms including the trilobite *Burlingia* [59] (see also [60–62]) and non-biomineralized arthropods, such as *Arthroaspis* [63] and aglaspid-like arthropods [64]. Even some extant arthropods share similar morphology including serolid isopods (compare [65]) and larval water penny beetles (compare [66]). Cheloniellids such as *Xus yus* also could be confused with great appendage arthropods. Without a preserved pleural region, the raptorial appendages appear as more prominent structures.

Raptorial appendages within arthropods greatly vary in function and form. Anomlocaridid-type grasping appendages (e.g., [13, 67]) and mantis-shrimp-like raptorial appendages (e.g., [5, 68]) are common in Paleozoic arthropods and functioned dorso-ventrally. The raptorial appendages of *Xus yus* appear to have functioned laterally with the appendage tips meeting at the midline, possibly to pierce and immobilize prey. Dorso-ventral oriented appendages were more likely used for crushing, slicing or capturing prey. In this respect, the appendages of *Xus yus* are apparently unique among known raptorial appendage-bearing Paleozoic arthropods.

Acknowledgments

We wish to thank Rodney M. Feldmann, William I. Ausich and John Hunter for valuable advice and comments on earlier versions of this work. Carrie Eaton graciously provided access to specimens at UWGM. Special thanks Jerry Gunderson and Ron Meyer for donating specimens vital to this study.

References
Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, el Hariri K, Briggs DEG. Ordovician faunas of Burgess Shale type. Nature. 2010; 465:215–218.

2. Caron J-B, Gaines RR, Aria C, Mángano MG, Streng M. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nat Commun. 2014; 5:3210.

3. Patterson JR, García-Bellido DC, Jago JB, Gehling JG, Lee MSY, Edgecombe GD. The Emu Bay Shale Konservat-Lagerstätte: a few of Cambrian life from East Gondwana. J Geol Soc. 2015; 173:1–11.

4. Rust J, Bergmann A, Bartels C, Schoenemann B, Sedlmeier S, Kühl G. The Hunsrück biota: a unique window into the ecology of Lower Devonian arthropods. Arthropod Struct Dev. 2016; 45:140–151.

5. Chen J, Waloszek D, Maas A. A new ‘great-appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia. 2004; 37:3–20.

6. Kühl G, Briggs DEG, Rust J. A great-appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science. 2009; 323:771–773.

7. Waloszek D, Chen J, Maas A, Wang X. Early Cambrian arthropods—new insights into arthropod head and structural evolution. Arthropod Struct Dev. 2005; 24:189–205.

8. Scholtz G, Edgecombe GD. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol. 2006; 216:395–415.

9. Briggs DEG, Liebermann BS, Hendricks JR, Halgedahl SL, Jarrard RD. Middle Cambrian arthropods from Utah. J Paleontol. 2008; 82:238–254.

10. Hendricks JR, Lieberman BS. New phylogenetic insights into the Cambrian radiation of
arachnomorph arthropods. J Paleontol. 2008; 82:585–594.

11. Budd GE, Telford MJ. The origin and evolution of arthropods. Nature. 2009; 457:812–817.

12. Vannier J, García-Bellido DC, Hu S-X, Chen A-L. Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas. Proc R Soc B Biol Sci. 2009; 276:2567–2574.

13. Daley AC, Budd GE. New anomalocaridid appendages from the Burgess Shale, Canada. Paleontol. 2010; 53:721–738.

14. Edgecombe GD. Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev. 2010; 39:74–87.

15. Edgecombe GD, García-Bellido DC, Paterson JR. A new leanchoillid megacheira arthropod from the lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontol Pol. 2011; 56:385–400.

16. Babcock LE, Zhao YL, Peng J, Yang XL. A new Cambrian arthropod, Leanchoilia robisoni, from the Kaili Lagerstätte, Guizhou, China. J Guizhou Uni (Nat Sci). 2012; 29:10–15.

17. Edgecombe GD, Legg DA. Origins and early evolution of arthropods. Palaeontol. 2014; 57:457–468.

18. Ortega-Hernández J, Budd GE. The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. Arthropod Struct Dev. 2016; 45:185–199.

19. Dunlop JA, Selden PA. The early history and phylogeny of the chelicerates. In: Fortey RA, Thomas RH, editors. Arthropod Relationships. London: Chapman & Hall; 1998. p.
20. Dunlop JA. Arthropods from the Lower Devonian Sevrnaya Zemlya Formation of October Revolution Island (Russia). Geodiversitas. 2002; 24:349–379.

21. Mikulic DG, Briggs DEG, Kluessendorf J. A Silurian Soft-bodied Biota. Science. 1985; 228:715–717.

22. Mikulic DG, Briggs DEG, Kluessendorf J. A New Exceptionally Preserved Biota from the Lower Silurian of Wisconsin, U.S.A. Philos Trans R Soc Lond B Biol. 1985; 311:75–85.

23. Kluessendorf J, Mikulic DG. An early Silurian sequence boundary in Illinois and Wisconsin. Geol Soc of Am Spec Pap. 1996; 306:177–185.

24. Wendruff AJ. Paleobiology and Taphonomy of Exceptionally Preserved Organisms from the Brandon Bridge Formation (Silurian), Wisconsin, USA. Ph.D. Thesis, The Ohio State University. 2016. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=osu1468844814

25. Wendruff AJ, Babcock LE, Mikulic DG, Kluessendorf J. Palaeobiology and Taphonomy of Exceptionally Preserved Organisms from the Waukesha Biota (Silurian), Wisconsin, USA. Lethaia. Forthcoming.

26. Barthel KW, Swinburne NHM, Conway-Morris S. Solnhofen: A Study in Mesozoic Palaeontology. Cambridge: Cambridge University Press; 1990.

27. Allison PA. The decay and mineralization of proteinaceous microfossils. Paleobiology. 1998; 14:139–154.

28. Allison PA, Briggs, DEG. Taphonomy of soft-bodied animals. In: Donovan SK, editor. The Processes of Fossilization. Belhaven Press; 1991. pp. 120–140.
29. Allison, PA, Briggs DEG. Taphonomy of nonmineralized tissues. In: Allison PA, Briggs DEG, editors. Taphonomy. Plenum Press; 1991. pp. 25–70.

30. Wilby PR, Briggs DEG, Bernier P, Gaillard C. Role of microbial mats in the fossilization of soft tissues. Geology. 1996; 24:787–790.

31. Briggs DEG. The Role of Decay and Mineralization in the Preservation of Soft-bodied Fossils. Annu Rev Earth Planet Sci. 2003; 31:275–301.

32. Briggs DEG, Moore RA, Shultz JW, Schweigert G. Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proc R Soc B Biol Sci. 2005; 272:627–632.

33. von Siebold CT. Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. Erster Theil. In: von Siebold CT, Stannius H, editors. Lehrbuch der vergleichenden Anatomie. Berlin: Verlag von Veit and Comp; 1848.

34. Broili F. Ein neuer Krustazee aus dem rheinischen Unterdevon. Sitzungsberichte Bayerische Akademie der Wissenschaften. 1932; 1932:27–38.

35. Barrande J. Système silurien du centre de la Bohême, I., Supplément. Trilobites, Crustacés divers et Poissons. Prague and Paris: Recherche Paléontologiques; 1872.

36. Jahn JJ. Duslia, eine neue Chitonidengattung aus böhmischen Untersilur, nebst einigen Bemerkungen über die Gattung Triopus Barr. Sitzungsber Jungen der königlichen Akademie für Wissenschaften, Wien. 1893; 102:591–603.

37. Caster KE, Macke WB. An aglaspid merostome from the Upper Ordovician of Ohio. J Paleontol. 1952; 26:753–757.

38. Selden PA, White DE. A new Silurian arthropod from Lesmahagow, Scotland. Spec Pap Palaeontol. 1984; 30:43–49.
39. Van Roy P. New Insights from exceptional preserved Ordovician biotas from Morocco. In: Gutierrez-Maro JC, Rábano I, García-Bellido D, editors. Ordovician of the World. Instituto Geológico y Minero de España, Madrid, Cuadernos del Museo Geominero; 2011. p. 21–26

40. von Bitter PH, Purnell MA, Tetreault DK, Stott CA. Eramosa Lagerstätte–Exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology. 2007; 35:879–882.

41. Chlupáč I. Report on the merostomes from the Ordovician of Central Bohemia. Věstník Ústřední Ústav geologických. 1963; 38:399–403.

42. Ortega-Hernández J, Braddy SJ, Rak S. Trilobite and xiphosuran affinities for putative arthropods Caryon and Drabovaspis, Upper Ordovician, Czech Republic. Lethaia. 2010; 43:427–431.

43. Delle Cave L, Simonetta AM. Early Paleozoic arthropods and problems of arthropod phylogeny with some notes on taxa of doubtful affinities. In: Conway-Morris S, Simonetta AM, editors. The Early Evolution of Metazoa and the Significant of Problematic Taxa. Cambridge: Cambridge University Press; 1991. p. 189–244.

44. Broili F. Ein zweites Exemplar von Cheloniellon. Sitzungsberichte Bayerische Akademie der Wissenschaften. 1933; 1933:11–32.

45. Størmer L. On the relationships and phylogeny of fossils and recent Arachnomorpha. A comparative study of Arachnida, Xiphosura, Eurypterida, Trilobita and other fossil Arthropoda. Skrifter utgitt av Det Norske Videnskaps-Akadem i Oslo Matematisk-Naturvidenskapelig klasse. 1944; 5:1–158.

46. Størmer L. Arthropoda. General Features. In: Moore RC, editor. Treatise on Invertebrate
Palaeontology, Part O, Arthropoda 1. Arthropoda—General Features, Proarthropoda, Euarthropoda—General Features, Trilobotomorpha. Boulder: Geological Society of America and University of Kansas Press; 1959. p. 3–16.

47. Chlupác I. Xiphosuran merostomes from the Bohmeian Ordovician. Sborník Geologickych Ved, Paleontologie. 1965; 5:7–38.

48. Bergström J. 1968. *Eolimulus*, a Lower Cambrian xiphosurid from Sweden. Geologiska Föreningens i Stockholm Förhandlingar. 1968; 90:489–503.

49. Cotton TJ, Braddy SJ. The phylogeny of arachnomorpha arthropods and the origin of Chelicerata. Trans R Soc Edinb Earth Sci. 2004; 94:169–193.

50. Stürmer W, Bergström J. The arthropod *Cheloniellon* from the Devonian Hunsrück Shale. Paläont Z. 1978; 52:57–81.

51. Chlupác I. The enigmatic arthropod *Duslia* from the Ordovician of Czechoslovakia. Palaeontol. 1988; 31:611–620.

52. Van Roy P. Non-trilobite arthropods from the Ordovician of Morocco. Ph.D. Thesis, Ghent University. 2006. Available from: https://lib.ugent.be/en/catalog/rug01:001000213

53. Borkow PS, Babcock LE. Turning pyrite concretions outside-in: role of biofilms in pyritization of fossils. The Sed Rec. 2003; 1:4–7.

54. Plotnick RE. Taphonomy of modern shrimp: implications for the arthropod fossil record. Palaios. 1986; 1:286–293.

55. Moore RA, Briggs DEG, Braddy SJ, Anderson Ll, Mikulic DG, Kluessendorf J. A new Synziphosourine (Chelicerata: Xiphosura) from the Late Llandovery (Silurian) Waukesha Lagerstätte, Wisconsin, USA. J Paleontol. 2005; 79:242–250.

56. Babcock LE, Chang W. Comparative taphonomy of two nonmineralized arthropods:
Naraoia (Nektaspida; Early Cambrian, Chengjiang Biota, China) and Limulus (Xiphosurida; Holocene, Atlantic Ocean). Bull Natn Mus Nat Sci. 1997; 10: 233–250.

57. Babcock LE, Merriam DF, West RR. Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian–Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus. Lethaia. 2000; 33:129–141.

58. McCoy VE, Brandt DS. Scorpion taphonomy: criteria for distinguishing fossil scorpion molts and carcasses. J of Arachnol. 2009; 37:312–320.

59. Walcott CD. Cambrian geology and paleontology, No. 2. Cambrian trilobites. Smithson Misc Collect. 1908; 53:13–52.

60. Whittington HB. Burlingiids: Small proparian Cambrian trilobites of enigmatic origin. Palaeontol. 1994; 37:1–16.

61. Robison RA, Babcock LE. Systematics, paleobiology, and taphonomy of some exceptionally preserved trilobites form Cambrian Lagerstätten of Utah. Paleontologic contrib. 2011; 5:1–47.

62. Robison RA, Babcock LE, Gunther LE. Exceptional Cambrian fossils from Utah: a window into the age of trilobites. Utah Geol Survey, Misc Pub. 2015; 15-1:1–97.

63. Stein M, Budd GE, Peel JS, Harper DAT. Arthroaspis n. gen., a common element of the Sirius Passet Lagerstätte (Cambrian, North Greenland), sheds light on trilobite ancestry. BMC Evol Biol. 2013; 13:99.

64. Ortega-Hernández J, Legg DA, Braddy SJ. The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. Cladistics. 2010; 29:15–45.

65. Wägle JW. Polymorphism and distribution of Ceratoserolis trilobitoides (Eights, 1833) (Crustacea, Isopoda) in the Weddell Sea and Synonymy with C. cornuta (Struder, 1879).
Polar Biol. 1986; 6:127–137.

66. Murvosh CM. Ecology of the Water Penny Beetle *Psephenus herricki* (DeKay). Ecol Monograph. 1971; 41:79–96.

67. Lerosey-Aubril R, Hegna TA, Babcock LE, Bonino E, Kier C. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new occurrences of anomalocaridids in the Cambrian of Utah, USA. Bull Geosci. 2014; 89:269–282.

68. Haug JT, Waloszek D, Maas A, Liu Y, Haug C. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontol. 2012; 55:369-399.
Fig 1. *Xus yus*, n. gen. n. sp. from the Waukesha Lagerstätte in Brandon Bridge Formation, Silurian (Llandovery, Telychian), Wisconsin preserved in dolomudstone.

UWGM 2439, holotype, counterpart (A) photographed dry and part (B) photographed wet; (C) closeup of the small anterior appendage and spiny marginal fringe of the holotype, UWGM 2439; (D) UWGM 2345 preserving dorsal anatomy; (E) UGWM 2436 preserving ventral anatomy and limbs; (F) UWGM 2436 whitened with ammonium chloride and photographed under low-angle lighting, arrows indicate pleural segments; (G) closeup of brush-like (gills?) exopods of UWGM 2575; (H) closeup of hooked exopods of UWGM 2436; (I) UWGM 2575 preserving ventral anatomy and brush-like structures; (J) closeup and whitened raptorial appendages of UWGM 2436; (K) closeup of caudal apparatus of UWGM 2436; (L) UWGM 2437 preserving ventral anatomy with limbs and partially preserved pleural region, arrows indicates decay halo. Scale bar equals 5 mm for A, B, D–F, I, L; 2 mm for C, G, H, J, K.

Abbreviations: 1-11, numbered tergites; an, anus; e, eyes; en, endopod; ex, exopod; fs, facial suture; ls, lateral spines; mr, median region; ms, median spines; ra, raptorial appendage; rs, round sclerite; saa, small anterior appendage; smf, spiny marginal fringe; tcr, thickened cephalic rim; ttr, thickened tergite rim.

Fig 2. Reconstruction of *Xus yus*, n. gen. n. sp.
