Genetic risk of Parkinson disease and progression:

Citation for published version:
Iwaki, H, Blauwendraat, C, Leonard, HL, Liu, G, Maple-grødem, J, Corvol, J, Pihlstrøm, L, Van Nimwegen, M, Hutten, SJ, Nguyen, KH, Rick, J, Eberly, S, Faghri, F, Auinger, P, Scott, KM, Wijeyekoon, R, Van Deerlin, VM, Hernandez, DG, Day-williams, AG, Brice, A, Alves, G, Noyce, AJ, Tysnes, O, Evans, JR, Breen, DP, Estrada, K, Wegel, CE, Danjou, F, Simon, DK, Ravina, B, Toft, M, Heutink, P, Bloem, BR, Weintraub, D, Barker, RA, Williams-gray, CH, Van De Warrenburg, BP, Van Hilten, JJ, Scherzer, CR, Singleton, AB & Nalls, MA 2019, 'Genetic risk of Parkinson disease and progression: An analysis of 13 longitudinal cohorts', *Neurology Genetics*, vol. 5, no. 4, pp. e348. https://doi.org/10.1212/NXG.0000000000000348

Digital Object Identifier (DOI):
10.1212/NXG.0000000000000348

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Neurology Genetics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Genetic risk of Parkinson disease and progression: An analysis of 13 longitudinal cohorts

Hirotaka Iwaki, MD, Cornelis Blauwendraat, PhD, Hampton L. Leonard, MS, Ganqiang Liu, PhD, Jodi Maples-Gradem, PhD, Jean-Christophe Corvol, MD, PhD, Lasse Pihlstrøm, MD, PhD, Marlies van Nimwegen, PhD, Samantha J. Hutten, PhD, Khanh-Dung H. Nguyen, PhD, Jacqueline Rick, PhD, Shirley Eberly, MS, Faraz Faghihi, MS, Peggy Auinger, MS, Kirsten M. Scott, MRCP, MPhil, Ruwani Wijekoon, MRCP, Viviana M. Van Deervel, MD, PhD, Dena G. Hernandez, PhD, Aaron G. Day-Williams, PhD, Alexis Brice, MD, Guido Alves, MD, PhD, Alastair J. Noyce, MRCP, PhD, Ole-Bjørn Tynes, MD, PhD, Jonathan R. Evans, MRCP, PhD, David P. Breen, MRCP, PhD, Karol Estrada, PhD, Claire E. Wegel, MPH, Fabrice Danjou, MD, PhD, David K. Simon, MD, PhD, Bernard Ravina, MD, Mathias Toff, MD, PhD, Peter Heutink, PhD, Bastiaan R. Bloem, MD, PhD, Daniel Weintraub, MD, Roger A. Barker, MRCP, PhD, Caroline H. Williams-Gray, MRCP, PhD, Bart F. van de Warrenburg, MD, PhD, Jacobs J. Van Hilten, MD, PhD, Clemens R. Scherzer, MD, Andrew B. Singleton, PhD, and Mike A. Nalls, PhD

Neuro Genet 2019;5:e348. doi:10.1212/NXG.0000000000000348

Abstract

Objective
To determine if any association between previously identified alleles that confer risk for Parkinson disease and variables measuring disease progression.

Methods
We evaluated the association between 31 risk variants and variables measuring disease progression. A total of 23,423 visits by 4,307 patients of European ancestry from 13 longitudinal cohorts in Europe, North America, and Australia were analyzed.

Results
We confirmed the importance of GBA on phenotypes. GBA variants were associated with the development of daytime sleepiness (p=3.07×10−5, hazard ratio [HR] 1.28 [1.69–6.34]) and possible REM sleep behavior (p=2.408×10−5, odds ratio 6.48 [2.04–20.60]). We also replicated previously reported associations of GBA variants with motor/cognitive declines. The other genotype-phenotype associations include an intergenic variant near LRKK2 and the faster development of motor symptom (Hoehn and Yahr scale 3.0 HR 1.33 [1.16–1.52] for the C allele of rs7604798) and an intronic variant in PMVK and the development of wearing-off effects (HR 1.66 [1.19–2.31] for the C allele of rs14138760). Age at onset was associated with TMEFI175 variant p.M393T (−0.72 [−1.21 to −0.23] in years), the C allele of rs199347 (intronic region of GPNMB, 0.70 [0.27–1.14]), and G allele of rs1106180 (intronic region of CCDC62, 0.62 [0.21–1.03]).

Conclusions
This study provides evidence that alleles associated with Parkinson disease risk, in particular GBA variants, also contribute to the heterogeneity of multiple motor and nonmotor aspects. Accounting for genetic variability will be a useful factor in understanding disease course and in minimizing heterogeneity in clinical trials.

From the Laboratory of Neurogenetics (H.I., C.B., H.L.L., F.F., A.B.S., M.A.N.), National Institute on Aging, National Institutes of Health, Bethesda; Data Tecnica International (H.I., M.A.N.), Glen Echo, MD; Precision Neurology Program (G.L., C.R.S.), Harvard Medical School, Brigham and Women’s Hospital; Neurogenomics Laboratory (G.L., C.R.S.), Harvard Medical School, Brigham and Women’s Hospital; Ann Romney Center for Neurologic Diseases (G.L., C.R.S.), Brigham and Women’s Hospital, Boston, MA; The Norwegian Centre for Movement Disorders (J.M.-G., G.A.), Stavanger University Hospital; Department of Chemistry (M.G., G.A.), Bioscience and Environmental Engineering, University of Stavanger, Norway; Assistance-Publique Hôpitaux de Paris (J.-C.C.), ICM, INSERM UMR 1127, CNRS 7225, ICM, Department of Neurology and CIC Neurosciences, Pitié-Salpêtrière Hospital, Paris, France; Department of Neurology (L.P., M.T.), Osaka University Hospital, Nara, Department of Neurology (M.N., B.R.B., B.P.W.), Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands; Michael J. Fox Foundation (E.J.H.), New York; Translational Genome Sciences (K.-D.H.N, I.C.E.), Biogen, Cambridge, MA; Department of Neurology University of Pennsylvania (E.R.), Philadelphia, PA; Department of Biostatistics and Computational Biology (E.E.), University of Rochester, NY; Department of Computer Science (F.F.), University of Illinois Urbana-Champaign; Department of Neurology (P.A.), Center for Health + Technology, University of Rochester, NY; Department of Clinical Neurosciences (K.M.S., R.W.), University of Cambridge, John van Geest Centre for Brain Repair, UK; Department of Pathology and Laboratory Medicine (V.M.V.D.), Center for Neurodegenerative Disease Research, PAREtnal School of Medicine at the University of Pennsylvania, Philadelphia; Genetics and Pharmacogenomics (A.G.D.-W.), Merck Research Laboratory, Boston, MA; Statistical Genetics (A.G.D.-W.), Biogen, Cambridge, MA; Institut du cerveau et de la moelle épinière (I.C.E.M.), Sorbonne Université SU (A.B.B.); INSERM UMR1127 (A.B.), Paris, France; Department of Neurology (G.A.), Stavanger University Hospital, Norway; Preventive Neurology Unit (A.J.N.), Wolfson Institute of Preventive Medicine, Queen Mary University of London; Department of Molecular Neuroscience (A.J.N.), UCL Institute of Neurology, London, UK; Department of Neurology (O.-B.T.), Haukeland University Hospital; University of Bergen (O.-B.T.), Bergen, Norway; Department of Neurology (J.A.E.), Nottingham University NHS Trust, UK; Centre for Clinical Brain Sciences (D.P.B.), University of Edinburgh; Anne Rowling Regenerative Neurology Clinic (D.P.B.), University of Edinburgh; Usher Institute of Population Health Sciences and Informatics (D.P.B.), University of Edinburgh, Scotland; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neurology (D.K.S.), Beth Israel Deaconess Medical Center; Harvard Medical School (D.K.S.), Boston, MA; Voyager Therapeutics (B.R.), Cambridge, MA; Department of Neurology (B.R.), University of Rochester School of Medicine, NY; Institute of Clinical Medicine (M.T.), University of Oslo, Norway; German Center for Neurodegenerative Diseases (Tübingen) (P.H.), HHH Tuebingen (P.H.), Germany; Department of Psychiatry (D.W.), University of Pennsylvania School of Medicine; Department of Veterans Affairs (D.W.), Philadelphia, PA; and Department of Clinical Neurosciences (R.A.B., C.H.W.-G.), University of Cambridge, UK; Department of Neurology (J.V.H.), Leiden University Medical Center, The Netherlands.

Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

The Article Processing Charge was funded by the NIH.
Parkinson disease is one of the most common neurodegenerative diseases, with an estimated lifetime risk as high as 1%–2%.1 Parkinson disease is traditionally characterized by motor features such as bradykinesia, rigidity, and tremor. However, in addition to these motor symptoms, patients with Parkinson disease also develop nonmotor symptoms (NMSs), which include depression, cognitive decline, sleep abnormalities, reduced olfaction, and autonomic dysfunction.2 Collectively, the combined spectrum of motor and NMSs more accurately reflects the multisystem nature of the disease. Patients with Parkinson disease may present with various combinations of symptoms and show differences in the rates of progression.3 The application of modern molecular genetic approaches over the last decade has revealed a significant number of genetic risk loci for idiopathic Parkinson disease.4–7 However, in comparison with case-control genome-wide association study (GWAS), analyzing how genetic factors influence clinical presentation and progression requires longitudinal cohorts with much more detailed observations. Such data are sparse, and individual cohorts are often small in size and quite varied, posing a challenge both in sample size and heterogeneity.

In an attempt to address these issues, we collected data from 13 distinct longitudinal Parkinson disease cohorts with detailed clinical data, including assessment of disease progression. We sought to determine whether Parkinson disease genetic risk factors, either in the form of known GWAS variants or an aggregate genetic risk score (GRS), are associated with changes in clinical progression and the disease features.

Methods

Study design and participants
A total of 13 Parkinson disease cohorts from North America, Europe, and Australia participated in the study. Nine were prospective observational cohorts and the rest were from randomized clinical trials. The observational cohorts were Drug Interaction with Genes in Parkinson’s Disease (DIGPD), Harvard Biomarkers Study (HBS), Oslo Parkinson’s Disease study (partly including retrospective data), The Norwegian ParkWest study (ParkWest), Parkinson’s Disease Biomarker Program (PDBP), Parkinsonism: Incidence and Cognitive and Non-motor heterogeneity In CambridgeShire (PICNICS), Parkinson’s Progression Markers Initiative (PPMI), Profiling Parkinson’s disease study (ProPark), and the Morris K. Udall Centers for Parkinson’s Research (Udall). The 4 cohorts from randomized clinical trials were Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP), NIH Exploratory Trials in Parkinson’s Disease Large Simple Study 1, ParkFit study (ParkFit), and Parkinson Research Examination of CEP-1347 Trial with a subsequent prospective study (PreCEPT/PostCEPT). Information on these cohorts can be found in appendix e-1 (links.lww.com/NXG/A169). Subsets of participants from the cohorts who provided DNA and were nonrelated participants with PD, diagnosed at age 18 years or later, and of European ancestry were included in the study. Participants’ information and genetic samples were obtained under appropriate written consent and with local institutional and ethical approvals.

Genotyping SNPs and calculation of GRS
Oslo samples were genotyped on the Illumina Infinium OmniExpress array, DIGPD samples were genotyped by Illumina Multi-Ethnic Genotyping Array, and all other samples were genotyped on the NeuroX array.8 The quality control process of variant calling included GenTrain score <0.7, minor allele frequency (MAF) >0.05 (for sample quality control but not in our analysis of rare risk factors), and Hardy-Weinberg equilibrium test statistic >10^-6. Sample-specific quality control included a sample call rate of >0.95, confirmation of sex through genotyping, homozygosity quantified by F within ± 3 SD from the population mean, European ancestry confirmed by principal-components analysis with 1000 Genomes data as the reference, and genetic relatedness of any 2 individuals <0.125. Detailed information regarding NeuroX and the quality control process has been described previously.9 In the present study, we investigated 31 single nucleotide polymorphisms (SNPs) previously shown to be significantly associated with Parkinson disease.10–12 In addition, we also calculated a GRS for each participant based on these variants. The scores were transformed into Z-scores within each cohort and treated as an exposure, with effect estimates based on 1 SD change from the population mean. The list of 31 SNPs and the GRS calculation method are provided in table e-1 (links.lww.com/NXG/A170).

Furthermore, principal components (PCs) were created for each data set from genotypes using PLINK. For the PC calculation, variants were filtered for MAF (>0.05), genotype missingness (<0.05), and Hardy-Weinberg equilibrium (p ≥ 10^-5).

Glossary

ESS = Epworth Sleepiness Scale; FDR = false discovery rate; GRS = genetic risk score; GWAS = genome-wide association study; HR = hazard ratio; HY = Hoehn and Yahr scale; MAF = minor allele frequency; MDS = Movement Disorder Society; MMSE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment; MSQ = Mayo Sleep Questionnaire; NMS = nonmotor symptom; OR = odds ratio; PC = principal component; PDDS = Parkinson’s Disease Sleep Scale; PPMI = Parkinson’s Progression Markers Initiative; RBD = rapid eye movement sleep behavior disorder; RBDSQ = RBD Screening Questionnaire; RLS = restless legs syndrome; SEADL = Schwab and England Activities of Daily Living Scale; UPDRS = Unified Parkinson’s Disease Rating Scale.
The remaining variants were pruned (using a 50-kb window, with a r^2 threshold of 0.5), and PCs were calculated using the pruned variants.

Measurements
The following clinical measurements and binomial outcomes were recorded longitudinally (table e-2 links.lww.com/NXG/A171): total and subscores of the Unified Parkinson’s Disease Rating Scale (UPDRS) or the Movement Disorder Society revised UPDRS version (MDS-UPDRS); modified Hoehn and Yahr scales (HY); modified Schwab and England Activities of Daily Living Scale; and scores for the Mini-Mental State Examination (MMSE), The Scales for Outcomes in Parkinson’s disease (SCOPA)-Cognition, and Montreal Cognitive Assessment (MoCA). Each was treated as a continuous outcome. For the UPDRS and MDS-UPDRS scores specifically, we took Z-scores of the total and subscores (except for part 4 at baseline) to compare the original and revised UPDRS versions. The conversion was applied to the scores for all subsequent visits. For UPDRS part 4, most participants had very low scores or 0 at baseline, so we normalized across all observations within each cohort. We also analyzed binomial outcomes. If we had access to the raw data, we used common cutoff values, which had been tested and reported specificity of 85% or more in patients’ population. The binomial outcomes include existence of family history (1st-degree relative. 1st- and 2nd-degree relatives in HBS, PreCEPT, ProPark, and Udall), hyposmia (University of Pennsylvania Smell Identification Test $<$ 21,18 or answering “yes” to question 2 in the NMS questionnaire), cognitive impairment (SCOPA-Cognition $<$ 23, MMSE $<$ 27, or MoCA $<$ 24,14,15 or diagnosed with The Diagnostic and Statistical Manual of Mental Disorders-IV criteria for dementia), wearing of PD medication (PPMI: ppmi-info.org/) or collaboration.

Statistical analysis
Cohort-level analysis
We analyzed the association between exposures and outcomes using appropriate additive models. Covariates of interest were not available for all cohorts; therefore, the model specifications were slightly different between cohorts (detailed in table e-3, links.lww.com/NXG/A172). Briefly, the associations between an SNP/GRS and age at onset were analyzed by linear regression modeling adjusting for population stratification (PC1 and PC2). The association between family history of Parkinson disease and SNP/GRS was analyzed with a logistic regression model adjusting for PC1/2. For continuous variables, linear regression modeling adjusting for sex, education, PC1/2, age at onset, years from diagnosis, family history, and treatment status was applied. For those who had multiple observations, random intercept was added to adjust for repeated measurements of the same individual. For binomial outcomes, the logistic regression at baseline observation was applied using the same covariates as the continuous models. Those that were negative at baseline were further analyzed by a Cox regression with the same covariates but with treatment status as a time-varying covariate. Observations with missing variables were excluded from the analyses.

Meta-analysis
We applied inverse weighting (precision method) for each combination of outcome-predictor association and combined the estimates from the 13 different cohorts in a fixed effect model. Multiple test correction for SNP/GRS was controlled with an overall false discovery rate (FDR) of 0.05 per outcome being considered significant. Similarly, multiple testing of outcomes for GRS was corrected with an FDR of 0.05, but across all traits. In addition, as a test of homogeneity, I^2 indices and forest plots were used for quantitative assessment. As a sensitivity analysis, we conducted up to 13 iterations of the meta-analyses for the 12 cohorts excluding each cohort per iteration. This analysis provides information regarding heterogeneity of the cohorts and how one specific cohort exclusion affects the results. The range of estimates and maximum p values for the iterations were included. Finally, we conducted the 13-cohort meta-analysis in a random effects model with restricted maximum likelihood estimation using the same multiple testing correction.

Data availability
Qualified investigators can request raw data through the organizations’ homepages (PDBP: pdbp.ninds.nih.gov/, PPMI: ppmi-info.org/) or collaboration.

Results
A total of 23,423 visits by 4,307 patients with a median follow-up period of 2.97 years (quartile range of [1.63–4.94] years) were eligible for the analysis. The baseline characteristics of the cohorts are shown in table 1. The mean ages at onset varied from 54 to 69 years; the average disease durations at cohort entry ranged from less than 1 to 10 years, and the mean observation periods were between 1.2 and 6.8 years. All DATATOP, ParkWest, PPMI, and PreCEPT participants
Table 1 Summary characteristics of 13 cohorts

Cohort size, n	DATATOP	DIGPD	HBS	NET-PD	Oslo	ParkFit	ParkWest	PDBP	PICNICS	PPMI	PreCEPT/PostCEPT	ProPark	Udall
440	311	580	406	317	335	150	422	120	357	321	296	252	
Follow-up duration, y	1.22 (0.41)	2.19 (1.51)	1.53 (0.87)	4.48 (1.45)	4.64 (3.10)	1.97 (0.00)	3.04 (0.09)	2.06 (1.70)	3.04 (1.63)	4.87 (1.35)	6.79 (0.95)	4.62 (1.14)	3.77 (1.81)
Female, n (%)	146 (33.2)	121 (38.9)	201 (34.7)	148 (36.5)	107 (33.8)	110 (32.8)	57 (38.0)	174 (41.2)	43 (15.8)	106 (33.0)	93 (29.2)	76 (25.9)	71 (28.4)
Family history, n (%)	86 (20.9)	69 (22.3)	148 (23.5)	59 (14.5)	43 (14.0)	—	17 (11.3)	54 (12.8)	0 (0.0)	0 (0.0)	202 (68.2)	215 (85.3)	
Age at onset, y	58.65 (9.17)	59.41 (9.80)	62.16 (10.46)	60.64 (9.45)	54.33 (10.06)	60.79 (8.65)	67.27 (9.26)	58.51 (10.28)	68.94 (9.34)	61.45 (9.55)	59.47 (9.22)	53.14 (10.60)	64.26 (8.64)
Baseline from diagnosis, y	1.14 (1.17)	2.60 (1.57)	4.09 (4.63)	1.50 (1.00)	10.13 (6.04)	5.18 (4.44)	0.13 (0.12)	5.68 (5.64)	0.23 (0.48)	0.54 (0.54)	0.80 (0.83)	6.56 (4.67)	6.21 (5.38)
Levodopa use, n (%)	198 (63.9)	415 (71.6)	207 (51.2)	—	—	255 (60.4)	—	—	22 (18.3)	0 (0.0)	—	—	—
Dopamine agonist use, n (%)	228 (73.3)	224 (38.6)	280 (69.3)	—	—	61 (14.5)	—	—	—	—	222 (75.0)	118 (46.8)	
Modified HY	1.61 (0.53)	1.75 (0.55)	2.14 (0.64)	—	2.19 (0.64)	2.08 (0.33)	1.86 (0.58)	2.04 (0.69)	2.19 (0.64)	2.05 (1.00)	2.14 (0.33)	1.86 (0.58)	2.04 (0.69)
UPDRS1	—	7.69 (4.50)	1.70 (1.59)	1.31 (1.45)	—	—	1.95 (1.76)	9.90 (6.11)	—	5.40 (3.97)	0.84 (1.19)	—	1.92 (1.99)
UPDRS2	—	7.72 (4.66)	9.21 (5.23)	7.29 (3.86)	—	—	8.19 (4.22)	11.14 (8.01)	—	5.80 (4.11)	6.11 (3.20)	—	10.74 (7.13)
UPDRS3	—	20.37 (10.23)	19.30 (9.58)	17.77 (8.32)	15.42 (10.30)	—	22.09 (9.77)	23.64 (13.08)	—	20.88 (9.00)	18.69 (7.65)	—	22.92 (11.09)
UPDRS4	—	0.66 (2.56)	2.25 (2.05)	1.34 (1.49)	—	—	0.57 (1.14)	2.20 (3.17)	—	—	—	2.02 (2.75)	
MDS_UPDRS total	—	36.43 (16.02)	—	—	—	—	46.88 (24.04)	47.27 (17.97)	—	—	—	—	
UPDRS total	24.68 (11.56)	—	32.33 (14.28)	27.67 (11.62)	—	32.11 (10.10)	32.79 (13.91)	—	—	25.39 (10.10)	—	32.64 (18.28)	
MMSE	28.99 (1.35)	28.38 (1.73)	28.35 (2.17)	—	—	28.09 (1.61)	27.88 (2.27)	—	28.71 (1.43)	29.29 (1.07)	27.05 (2.50)	26.83 (3.50)	
MoCA	—	—	—	—	—	—	25.44 (3.40)	—	27.17 (2.23)	—	—	24.37 (3.63)	
SEADL	91.55 (6.49)	80.55 (29.02)	—	91.59 (6.06)	—	89.40 (7.35)	85.11 (13.10)	—	93.18 (5.91)	92.77 (5.26)	—	80.53 (17.56)	
Hyposmia, n (%)	—	89 (28.9)	—	—	—	54 (36.0)	276 (65.4)	—	164 (45.9)	173 (63.8)	69 (67.0)		
Cognitive impairment, n (%)	26 (5.9)	3 (1.0)	74 (13.0)	29 (7.1)	—	55 (16.4)	27 (18.0)	96 (22.7)	11 (9.2)	28 (7.8)	3 (0.9)	77 (27.0)	29 (11.5)
Motor fluctuation, n (%)	—	40 (12.9)	228 (39.9)	103 (25.4)	—	—	4 (2.7)	129 (48.1)	1 (0.8)	—	—	94 (32.4)	75 (35.4)
Dyskinesia, n (%)	4 (0.9)	13 (4.2)	207 (36.2)	5 (1.2)	—	—	2 (1.3)	196 (64.4)	0 (0.0)	—	—	81 (27.6)	44 (22.8)

Continued
Table 1 Summary characteristics of 13 cohorts (continued)

Cohort	Depression, n (%)	RLS, n (%)	Constipation, n (%)	Daytime Sleepiness, n (%)	Insomnia, n (%)	HY ≥ 3.0, n (%)
PreCEPT/PostCEPT	13 (2.7)	44 (14.5)	9 (2.0)	13 (4.4)	45 (30.0)	0 (0.0)
ProPark	27 (22.5)	37 (10.9)	62 (20.3)	107 (35.1)	71 (24.0)	22 (14.5)
Udall	62 (20.3)	21 (6.4)	55 (15.4)	125 (42.6)	78 (21.8)	113 (37.8)
PreCEPT PostCEPT RSADL	73 (22.7)	179 (53.5)	176 (53.3)	157 (49.4)	130 (39.1)	93 (26.1)
ProPark Udall	113 (31.7)	25 (16.7)	25 (16.7)	15 (5.1)	19 (5.7)	23 (6.4)
LS1	27 (22.5)	197 (59.5)	197 (59.5)	95 (30.4)	126 (38.6)	117 (34.8)
Oslo	40 (10.9)	165 (48.6)	145 (43.5)	295 (93.9)	29 (8.8)	13 (3.9)
ParkFit	51 (15.4)	107 (31.4)	107 (31.4)	92 (27.3)	71 (21.8)	103 (31.0)
ParkWest	17 (51.5)	22 (66.7)	22 (66.7)	43 (12.8)	43 (12.8)	10 (3.0)
PICONICS	35 (10.9)	37 (10.9)	37 (10.9)	103 (31.4)	78 (23.0)	138 (42.6)
PDBP	44 (14.5)	44 (14.5)	44 (14.5)	133 (40.4)	83 (24.0)	57 (17.3)
PICNICS	0 (0.0)	4 (1.3)	4 (1.3)	107 (35.1)	81 (24.0)	0 (0.0)
PPMI	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	71 (24.0)	0 (0.0)
NET-PD	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
NET-PD/LS1	10 (2.5)	10 (2.5)	10 (2.5)	35 (10.9)	35 (10.9)	10 (2.5)
DATATOP	1.1 (1.1)	1.1 (1.1)	1.1 (1.1)	1.1 (1.1)	1.1 (1.1)	1.1 (1.1)
HBS	3.0 (3.0)	3.0 (3.0)	3.0 (3.0)	3.0 (3.0)	3.0 (3.0)	3.0 (3.0)
SeADL	7.0 (3.0)	7.0 (3.0)	7.0 (3.0)	7.0 (3.0)	7.0 (3.0)	7.0 (3.0)
SeADL	11 (2.5)	11 (2.5)	11 (2.5)	11 (2.5)	11 (2.5)	11 (2.5)
PPMI	4.3 (1.3)	4.3 (1.3)	4.3 (1.3)	4.3 (1.3)	4.3 (1.3)	4.3 (1.3)
PPMI	10 (2.5)	10 (2.5)	10 (2.5)	10 (2.5)	10 (2.5)	10 (2.5)
PPMI	21.0 (10.0)	21.0 (10.0)	21.0 (10.0)	21.0 (10.0)	21.0 (10.0)	21.0 (10.0)
PPMI	117.8 (64.6)	117.8 (64.6)	117.8 (64.6)	117.8 (64.6)	117.8 (64.6)	117.8 (64.6)
PPMI	57.0 (23.0)	57.0 (23.0)	57.0 (23.0)	57.0 (23.0)	57.0 (23.0)	57.0 (23.0)

Abbreviations: DATATOP = Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; DGPDP = Drug Interaction with Genes in Parkinson's Disease; HBS = Harvard Biomarkers Study; HY = Hoehn and Yahr scale; LS1 = Movement Disorder Society; MMESE = Mini-Mental State Examination; MoCA = Montreal Cognitive Assessment Program; NET-PD = National Ericsson Parkinson's Disease Study; NeuPD = National Parkinson's Disease Study; PICONICS = Parkinson's disease International Consortium on Next Generation Sequencing; PDBP = Profiling Parkinson's Disease study; PDBP = Profiling Parkinson's Disease study; ProPark = Profiling Parkinson's Disease study; RBD = REM sleep behavior disorder; RLS = restless legs syndrome; SeADL = Schwab and England Activities of Daily Living Scale; UPDRS = Unified Parkinson's Disease Rating Scale. Continuous variables were summarized as mean (SD).
Table 2 Meta-analysis for 13 cohorts and the results of sensitivity analysis

Outcome	rsNo	Known gene or nearest gene	No. of cohorts	Scale of the effect	Fixed effect model	Leave-one-out analysis	Random effect model	
					Estimate (95% CI)	p	Estimate (Min to Max) Max p	Estimate (95% CI) p
Wearing-off	rs114138760	intron_PMVK	9	Multiplicative (HR)	1.66 (1.19 to 2.31)	2.62E-03	1.66 (1.44 to 1.81) 6.22E-02	1.65 (1.14 to 2.38) 7.39E-03
Dyskinesia	rs76763715	GBA:N370S	8	Multiplicative (HR)	3.01 (1.81 to 5.01)	2.17E-05	3.00 (1.98 to 4.05) 2.26E-02	2.49 (1.06 to 5.86) 3.73E-02
HY ≥ 3.0	rs76763715	GBA:N370S	6	Multiplicative (HR)	4.59 (2.60 to 8.10)	1.58E-07	4.59 (4.02 to 5.41) 2.00E-05	4.59 (2.60 to 8.10) 1.58E-07*
Wearing-off	rs76763715	GBA:N370S	6	Multiplicative (HR)	2.03 (1.28 to 3.21)	0.021	2.02 (1.61 to 2.65) 8.67E-02	1.92 (0.85 to 4.33) 1.14E-01
Daytime sleepiness	rs76763715	GBA:N370S	6	Multiplicative (HR)	3.28 (1.69 to 6.34)	4.24E-04	3.30 (2.85 to 4.38) 3.75E-03	3.28 (1.69 to 6.34) 4.24E-04*
HY ≥ 3.0	rs75548401	GBA:T408M	8	Multiplicative (HR)	1.93 (1.34 to 2.78)	4.40E-04	1.93 (1.70 to 2.41) 1.08E-02	1.96 (1.22 to 3.14) 5.22E-03
pRBD (baseline)	rs75548401	GBA:T408M	2	Multiplicative (OR)	6.48 (2.04 to 20.60)	1.53E-07	6.25 (1.02 to 38.20) 4.72E-02	—
HY	rs2230288	GBA:E365K	12	Continuous	0.10 (0.04 to 0.16)	1.53E-03	0.10 (0.08 to 0.11) 1.02E-02	0.11 (0.02 to 0.21) 1.88E-02
Cognitive impairment	rs2230288	GBA:E365K	8	Multiplicative (OR)	2.37 (1.53 to 3.66)	1.09E-04	2.37 (2.20 to 2.59) 8.57E-04	2.37 (1.53 to 3.66) 1.09E-04*
Cognitive impairment	rs2230288	GBA:E365K	9	Multiplicative (HR)	2.78 (1.88 to 4.11)	2.97E-07	2.78 (2.41 to 2.98) 5.08E-05	2.78 (1.88 to 4.11) 2.97E-07*
pRBD	rs2230288	GBA:E365K	2	Multiplicative (HR)	2.57 (1.43 to 4.63)	1.69E-03	—	2.57 (1.43 to 4.63) 1.69E-03*
Age at onset	rs34311866	TMEM175: M393T	13	Continuous	−0.72 (−1.21 to −0.23)	3.87E-03	−0.72 (−0.83 to −0.58) 2.83E-02	−0.72 (−1.21 to −0.23)
Age at onset	rs34311866	TMEM175: M393T	13	Continuous	0.70 (0.27 to 1.14)	1.42E-03	0.70 (0.60 to 0.77) 1.12E-02	0.70 (0.27 to 1.14) 1.42E-03*
HY ≥ 3.0	rs76904798	LRRK2	13	Multiplicative (HR)	1.33 (1.16 to 1.52)	5.27E-05	1.33 (1.26 to 1.43) 1.64E-03	1.34 (1.11 to 1.63) 2.80E-03*
Family history	rs34637584	LRRK2:G2019S	8	Multiplicative (OR)	3.54 (1.72 to 7.29)	6.06E-04	3.54 (2.78 to 3.98) 1.66E-02	3.54 (1.72 to 7.29) 6.06E-04*
Age at onset	rs11060180	intron_CCDC62	13	Continuous	0.62 (0.21 to 1.03)	3.32E-03	0.62 (0.49 to 0.75) 2.74E-02	0.55 (−0.00 to 1.11) 5.14E-02
Age at onset	rs11060180	intron_CCDC62	13	Continuous	−0.60 (−0.89, −0.31)	5.33E-05	−0.60 (−0.65, −0.52) 9.02E-04	−0.60 (−0.89, −0.31) 5.33E-05*

Abbreviations: FDR = false discovery rate; GRS = genetic risk score; HR = hazard ratio; HY = Hoehn and Yahr scale; OR = odds ratio; pRBD = possible REM sleep behavior disorder.
pRBD was only available in 2 cohorts and a leave-one-out analysis was not conducted for this outcome.

* Significant after FDR adjustment in a random effect model.
progression rates. Among these, GBA coding variants showed clear associations with the rate of cognitive decline (binomial outcome or UPDRS part 1 score) and motor symptom progression (HY, HY3), consistent with previous studies.12,21–25

In addition, we found associations between GBA variants and RBD and daytime sleepiness. A previous cross-sectional study with 120 Ashkenazi-Jewish patients reported a higher frequency of RBDSQ-detected RBD symptoms in GBA variant carriers.26
Our finding suggests that GBA is associated not only with baseline clinical presentation but also with disease progression.

An association between GBA and daytime sleepiness has been rarely documented. One study reported an association between sleep problems (as assessed by the Parkinson’s Disease Sleep Scale) and GBA. However, this scale is a combined measure of daytime sleepiness and other aspects of sleep problems.

Finally, a GBA variant (p.N370S) was also associated with treatment-related complications of wearing-off and dyskinesia. Two studies have reported the association of GBA variants with these complications, with 1 positive and 1 negative result. The negative result may be due to insufficient power with only 19 patients with GBA mutations.

Overall, our study provides a distinct clinical profile of patients with GBA variants compared with those without. We note that with 63 carriers for p.N370S, 166 for p.T408M, and 217 for p.E365K, we have a reasonable power, but the number is yet not enough. And this may affect the results in seemingly different magnitudes of associations and the association for different traits per variants (e.g., motor complications with p.N370S and cognitive impairment with p.E365K). Another possible explanation is that although the effects are associated with the same gene, the biological activity or molecular mechanism could be different. Such an example has already been reported for LRRK2 p.G2019S and p.G2385R.

Aside from GBA variants, the associations between close intergenic (5’ end) variant of LRRK2, rs76904798, and the faster development of motor symptom, and the intronic region variant of PMVK, rs114138760, and the development of wearing-off, were significant. This variant is 4.3 kb upstream from the 5’ end of LRRK2 and reported to be associated with LRRK2 gene expression changes in recent blood cis-

Figure 2 Forest plots for GBA (p.E365K) variants and symptoms of Parkinson disease

rs2230288_A (GBA:E365K) on REM sleep behavior disorder	rs2230288_A (GBA:E365K) on cognitive impairment	rs2230288_A (GBA:E365K) on HY	
PDBP	0.70 (-0.54, 1.95)	**DATATOP**	1.12 (0.04, 2.20)
PPMI	1.01 (0.35, 1.68)	**HBS**	1.24 (-0.25, 2.74)
All	0.94 (0.35, 1.53)	**NET–PD_LS1**	0.36 (-1.04, 1.76)
Observed outcome	**ParkWest**	0.94 (-0.67, 2.56)	
rs2230288_A (GBA:E365K) on cognitive impairment	**PDBP**	0.58 (-0.89, 2.05)	
PPMI	-0.56 (-2.87, 1.74)	**PreCEPT**	1.02 (0.06, 1.98)
All	0.94 (0.35, 1.53)	**ProPark**	0.47 (-0.72, 1.66)
Observed outcome	**Udall**	1.30 (0.44, 2.16)	
All	1.02 (0.63, 1.41)	**u374**	1.84 (0.83, 2.85)

DATATOP = Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism; **DIGPD** = Drug Interaction with Genes in Parkinson’s Disease; **HBS** = Harvard Biomarkers Study; **NET–PD_LS1** = NIH Exploratory Trials in Parkinson’s Disease Large Simple Study 1; **Oslo** = Oslo PD study; **ParkFit** = ParkFit study; **ParkWest** = the Norwegian ParkWest study; **PDBP** = Parkinson’s Disease Biomarker Program; **PICNICS** = Parkinsonism: Incidence and Cognitive and Non-motor heterogeneity in Cambridgeshire; **PPMI** = Parkinson’s Progression Markers Initiative; **PreCEPT/PostCEPT** = Parkinson Research Examination of CEP-1347 Trial with a subsequent prospective study; **ProPark** = Profiling Parkinson’s Disease study; **Udall** = Morris K. Udall Centers for Parkinson’s Research. * Indicates Beta in a Cox model; ** indicates Beta in a logistic model at baseline; *** indicates Beta in a linear mixed model.
expression quantitative trait loci (eQTL) study from the eQTLGen Consortium. In contrast, we did not find an association between rs34637584, LRRK2 coding mutation (p.G2019S) and motor progression. The p.G2019 variant is a rare variant (MAF 0.5% in our study), and our sample size was not adequate barring an extremely large effect size. The intronic region variant of PMVK, rs114138760, and the development of wearing-off was another finding. The biological effect of PMVK on PD has not been reported, but the variant is also located at close proximity of the GBA-SYT11 locus, so it is possible that its association was through a similar mechanism as GBA. Including the results of cross-sectional analysis, the associations of age at onset with rs34311866 (TMEM175, p.M393T), rs199347 (intron of GPNMB), and rs11060180 (intron of CCDC62) were found. TMEM175 has been reported to impair lysosomal and mitochondrial function and increase α-synuclein aggregation, although no functional data for this missense variant were studied. Of interest, the variant has recently been reported in another study as being associated with the age at onset. rs199347 is an eQTL increasing the
brain expression of GPNMB, suggesting a causal link. Regarding rs1160180, no functional data are available in this locus.

We also evaluated the association between genetic risk variants and clinical outcomes by 2-step meta-analysis. This analysis is exploratory, and we acknowledge that this is biased toward the null due to power issues when partitioning studies randomly. However, we believe that it is helpful to assess the rigorousness of the associations we found in the primary analysis and to explore potential missed associations.

A strength of the current study was its design, incorporating multiple distinct independent Parkinson disease cohorts with longitudinal follow-ups. Although the cohorts contained patients at different disease stages, and some of the definition of outcomes were not identical, we analyzed each cohort separately and combined the results. Thus, the significant findings are consistent and applicable to the wider Parkinson disease populations. The forest plots showed that most of the estimates agree with each other despite the relative differences in the cohort characteristics. Another strength is the size of the study. The total number of genotyped and phenotyped patients with Parkinson disease (N = 4,307) is one of the largest to date for an investigation of disease progression.

The limitations of our study were as follows. First, we only included patients of European ancestry. It is uncertain whether the associations in the current study are also applicable to people from different ethnic backgrounds and further research is needed. Second, the current analysis could not distinguish causality, only basic associations. Different approaches, such as molecular-level assessment and Mendelian randomization, are crucial. Third, interaction effects between genes and other factors are another important research target not addressed in this report because of power constraints. For example, gene-by-smoking interactions for Parkinson disease were indicated recently and highlight the importance of correctly modeling gene-environment interactions. Finally, compared with the typical GWAS analysis (which includes tens of thousands of cases), the number of participants was small, and the outcomes of interest were not as simple or easily defined as with case-control distinctions in GWAS. Acknowledging the limitations, the list of associations provided here is valuable as a foundation for further studies and as an example that illustrates the potential of efforts to define the genetic basis of variability in presentation and course. Accounting for this variability, even in part, has the potential to positively affect etiology-based clinical trials by reducing variability between placebo and treatment groups and by providing better predictions of expected individual progression.

Acknowledgment
The authors thank all study participants and their family, investigators, and members of the following studies: Parkinson Study Group: Deprenyl and Tocopherol Antioxidative Therapy of Parkinsonism (DATATOP); Drug Interaction with Genes in Parkinson’s Disease (DIGPD); Harvard Biomarkers Study (HBS); NET-PD_LS1, NIH Exploratory Trials in Parkinson’s Disease Large Simple Study 1; Oslo PD study; ParkFit study; The Norwegian ParkWest study (ParkWest); Parkinson’s Disease Biomarker Program (PDBP); Parkinsonism: Incidence and Cognitive and Non-motor heterogeneity In CambridgeShire (PICNICS); Parkinson’s progression markers initiative (PPMI); Parkinson Study Group: Parkinson Research Examination of CEP-1347 Trial (PreCEPT) and its following study (PostCEPT); Profiling Parkinson’s disease study (ProPark); and Morris K. Udall Centers for Parkinson’s Research (Udall). They also thank the following grants and financial supporters of above studies; DATATOP was supported by a Public Health Service grant (NS24778) from the NINDS; by grants from the General Clinical Research Centers Program of the NIH at Columbia University (RR00645), the University of Virginia (RR00847), the University of Pennsylvania (RR00040), the University of Iowa (RR00059), Ohio State University (RR00034), Massachusetts General Hospital (RR01066), the University of Rochester (RR00044), Brown University (RR02038), Oregon Health Sciences University (RR00334), Baylor College of Medicine (RR00350), the University of California (RR00827), Johns Hopkins University (RR00035), the University of Michigan (RR00042), and Washington University (RR00036), the Parkinson’s Disease Foundation at Columbia-Presbyterian Medical Center, the National Parkinson Foundation, the Parkinson Foundation of Canada, the United Parkinson Foundation, Chicago, the American Parkinson’s Disease Association, New York, and the University of Rochester; DIGPD is supported by Assistance Publique Hôpitaux de Paris, funded by a grant from the French Ministry of Health (PHRC 2008, AOM08010) and a grant from the Agence Nationale pour la Sécurité des Médicaments (ANSM 2013); HBS is supported by the Harvard NeuroDiscovery Center, Michael J Fox Foundation, NINDS U01NS082157, U01NS100603, and the Massachusetts Alzheimer’s Disease Research Center NIA P50AG005134; NET-PD_LS1 was supported by NINDS grants U01NS043128; OSLO is supported by the Research Council of Norway and South-Eastern Norway Regional Health Authority; ParkFit is supported by ZonMw (the Netherlands Organization for Health Research and Development [75020012]) and the Michael J Fox Foundation for Parkinson’s research, VGZ (health insurance company), GlaxoSmithKline, and the National Parkinson Foundation; ParkWest is supported by the Research Council of Norway, the Western Norway Regional Health Authority, Stavanger University Hospital Research Funds, and the Norwegian Parkinson’s Disease Association; PDBP is a consortium with NINDS initiative; PICNICS has received funding from the Cure Parkinson’s Trust, the Van Geest Foundation and is supported by the NIH Research Cambridge Biomedical Research Centre; PPMI is supported by the Michael J Fox Foundation for Parkinson’s research; PreCEPT and PostCEPT were funded by NINDS U01NS050905-05, Department of Defense Neurotoxin Exposure Treatment Parkinson’s Research Program (Grant Number: W23RRXX7022N606), the Michael J Fox Foundation for Parkinson’s Research, Parkinson’s Disease Foundation,
Lundbeck Pharmaceuticals, Cephalon Inc, Lundbeck Inc, John Blume Foundation, Smart Family Foundation, RJG Foundation, Kinetics Foundation, National Parkinson Foundation, Amarin Neuroscience LTD, CHDI Foundation Inc, NIH (NHGRI and NINDS), and Columbia Parkinson’s Disease Research Center; ProPARK is funded by the Alkemede-Keuls Foundation, Stichting Parkinson Fonds, Parkinson Vereniging, and The Netherlands Organization for Health Research and Development; Udall is supported by the NINDS.

Study funding

This study is supported by the Intramural Research Program, the National Institute on Aging (NIA, Z01-AG000949-02), Biogen Idec, and the Michael J Fox Foundation for Parkinson’s Research. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The authors had full access to the data in the study and had final responsibility for the decision to submit for publication.

Disclosure

H. Iwaki—grants: Michael J Fox Foundation. J. Maple-Groden—grants: Norwegian Parkinson’s Disease Association. J.-C. Corvol—advisory boards: Biogen, Air Liquide, BrainEver, Theranexus, BMS, Zambon, Pfizer, Ipsen, and AbbVie; grants: MJFF, Actelion, and Ipsen. L. Pilhström—grants: Norwegian Health Association, South-East Norway Regional Health Authority, Norwegian Parkinson Research Fund, and Michael J. Fox Foundation. K.-D.H. Nguyen—stock ownership in medically related fields: Biotech/Pharmaceutical Industry. K.M. Scott—grants: Wellcome Trust PhD Fellowship. V.M. Van Deerlin—grants: NIH NS-053488. A.G. Day-Williams—stock ownership in medically related fields: Biogen and Merck. A. Brice—advisory boards: FWO and ERC; grants: JPN, ANR, Eranet Neuron, and Association France Parkinson. A.J. Noyce—honoraria: Britannia Pharmaceuticals; grants: Parkinson’s UK (G-1606). J.R. Evans—advisory boards: AbbVie, Global Kinetics, and Allergan; honoraria: UCB, Allergan, and AbbVie. K. Estrada—stock ownership in medically related fields: Biogen. D.K. Simon—consultancies: Lysosomal Therapeutics, Inc.; advisory boards: Weston Brain Institute; honoraria: Parkinson Study Group, Harvard Medical School, Michael J Fox Foundation, and Biogen; grants: NIH, Weston Brain Institute, Mission Therapeutics, Inc., and BioElectron Technologies. B. Ravina—stock ownership in medically related fields: Voyager Therapeutics; consultancies: Michael J Fox Foundation. M. Toft—honoraria: Roche; grants: Research Council of Norway, South-Eastern Norway Regional Health Authority, and Michael J. Fox Foundation. B.R. Bloem—consultancies: AbbVie and Zambon; advisory boards: Michael J Fox Foundation; honoraria and speaker fees: AbbVie, Zambon, and Bial; grants: The Netherlands Organization for Scientific Research, the Michael J Fox Foundation, UCB, AbbVie, the Stichting Parkinson Fonds, the Hersenstichting Nederland, the Parkinson’s Foundation, Verily Life Sciences, the Topsector Life Sciences and Health, and the Parkinson Vereniging. D. Weintraub—consultancies: Acadia, Alkahest, Anavex Life Sciences, BlackThorn Therapeutics, Bracket, Clintrex LLC, Sunovion, Theravance Biopharma, and the CHDI Foundation. R.A. Barker—consultancies: CDI and Oxford Biomedica; royalties: Springer and Wiley; grants: EU, NIH, PUK, CPT, Rosetrees Trust, MRC, Wellcome Trust, and Evelyn Trust. C.H. Williams-Gray—grants: MRC Clinician Scientist fellowship, the NIHR Cambridge Biomedical Research Centre, the Michael J Fox Foundation, the Rosetrees Trust, the Evelyn Trust, and Addenbrookes Charitable Trust. B.P. van de Warrenburg—advisory boards: member of medical advisory boards and patient organizations; royalties: Reed Elsevier (for chapter in Dutch Neurology textbook); grants: Radboud University Medical Centre, ZonMW, Herkstichting, and Bioblast Pharma. J.J. Van Hilten—grants: Alkemede-Keuls Foundation, Stichting Parkinson Fonds, Parkinson Vereniging, and The Netherlands Organisation for Health Research and Development. C.R. Scherzer—grants: NIH grants U01NS082157, U01NS095736, and U01NS100603. M.A. Nalls—consultancies: Lysosomal Therapies Inc., Vivid Genomics Inc., Kleiner Perkins Caufield & Byers, and Michael J. Fox Foundation. Go to Neurology.org/NG for full disclosures.

Publication history

Received by Neurology: Genetics November 13, 2018. Accepted in final form April 30, 2019.

Appendix Authors

Name	Location	Role	Contributions
Hirotaka Iwaki, MD, PhD	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Literature search; study design; data analysis; data interpretation; and writings
Cornelis Blauwendraat, PhD	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Literature search; data analysis; data interpretation; and critical review
Hampton L. Leonard, MS	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Critical review
Ganqiang Liu, PhD	Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA	Author	Data collection and critical review
Jodi Maple-Groden, PhD	The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway	Author	Data collection and critical review

Continued
Name	Location	Role	Contributions
Jean-Christophe Corvol, MD, PhD	Assistance-Publique Hôpitaux de Paris, ICM, INSERM UMR5 1127, CNRS 7225, ICM, Department of Neurology and CIC Neurosciences, Pitié-Salpêtrière Hospital, Paris, France	Author	Data collection and critical review
Lasse Pihlstrom, MD, PhD	Department of Neurology, Oslo University Hospital, Oslo, Norway	Author	Data collection and critical review
Marlies van Nimwegen, PhD	Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands	Author	Data collection and critical review
Samantha J. Hutten, PhD	Michael J Fox Foundation, New York, NY	Author	Data collection and critical review
Khanh-Dung H. Nguyen, PhD	Translational Genome Sciences, Biogen, Cambridge, MA	Author	Data collection and critical review
Jacqueline Rick, PhD	Department of Neurology University of Pennsylvania, Philadelphia, PA	Author	Data collection and critical review
Shirley Eberly, MS	Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY	Author	Data collection and critical review
Faraz Faghri, MS	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Data collection and critical review
Peggy Auinger, MS	Department of Neurology, Center for Health + Technology, University of Rochester, Rochester, NY	Author	Data collection and critical review
Kirsten M. Scott, MRCP, MPhil	Department of Clinical Neurosciences, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge, UK	Author	Data collection and critical review
Ruwani Wijeyekoon, MRCP	Department of Clinical Neurosciences, University of Cambridge, John van Geest Centre for Brain Repair, Cambridge, UK	Author	Data collection and critical review
Viviana M. Van Deerlin, MD, PhD	Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Parelman School of Medicine at the University of Pennsylvania, Philadelphia, PA	Author	Data collection and critical review
Dena G. Hernandez, PhD	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Data collection and critical review
Aaron G. Day-Williams, PhD	Genetics and Pharmacogenomics, Merck Research Laboratory, Boston, MA	Author	Data collection and critical review
Alexis Brice, MD	Institut du cerveau et de la moelle épineure ICM, Paris, France	Author	Data collection and critical review
Guido Alves, MD, PhD	The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway	Author	Data collection and critical review
Alastair J. Noyce, MRCP, PhD	Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK	Author	Data collection and critical review
Ole-Bjørn Tysnes, MD, PhD	Department of Neurology, Haukeland University Hospital, Bergen, Norway	Author	Data collection and critical review
Jonathan R. Evans, MRCP, PhD	Department of Neurology, Nottingham University NHS Trust, Nottingham, UK	Author	Data collection and critical review
David P. Breen, MRCP, PhD	Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, Scotland	Author	Data collection and critical review
Karol Estrada, PhD	Translational Genome Sciences, Biogen, Cambridge, MA	Author	Data collection and critical review
Claire E. Wegel, MPH	Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN	Author	Data collection and critical review
Fabrice Danjou, MD, PhD	Institut du cerveau et de la moelle épineure ICM, Paris, France	Author	Data collection and critical review
Appendix (continued)

Name	Location	Role	Contributions
David K. Simon, MD, PhD	Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA	Author	Data collection and critical review
Bernard Ravina, MD	Voyager Therapeutics, Cambridge, MA	Author	Data collection and critical review
Mathias Toft, MD, PhD	Department of Neurology, Oslo University Hospital, Oslo, Norway	Author	Data collection and critical review
Peter Heutink, PhD	German Center for Neurodegenerative Diseases-Tuebingen, Tuebingen, Germany	Author	Data collection and critical review
Bastiaan R. Bloem, MD, PhD	Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands	Author	Data collection and critical review
Daniel Weintraub, MD	Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA	Author	Data collection and critical review
Roger A. Barker, MRCP, PhD	Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK	Author	Data collection and critical review
Caroline H. Williams-Gray, MRCP, PhD	Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK	Author	Data collection and critical review
Bart P. van de Warrenburg, MD, PhD	Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands	Author	Data collection and critical review
Jacobus J. Van Hilten, MD, PhD	Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands	Author	Data collection and critical review
Clemens R. Scherzer, MD	Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA	Author	Data collection and critical review

Appendix (continued)

Name	Location	Role	Contributions
Andrew B. Singleton, PhD	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Study design and critical review
Mike A. Nalls, PhD	Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD	Author	Study design; data analysis; data interpretation; and critical review

References

1. Elbaz A, Bower JH, Maragore DM, et al. Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 2002;55:25–31.
2. Chaudhuri KR, Healy DG, Schapira AHJ. National Institute for Clinical Excellence. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006;5:235–245.
3. Lewis SJG, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA. Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 2005;76:343–348.
4. Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 2009;41:1303–1307.
5. Simon-Sanchez J, Shultheis M, Bras JM, et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 2009;41:1308–1312.
6. Chang D, Nalls MA, Hallgrimson J, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 2017;49:1511–1516.
7. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, et al. Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 2011;377:641–649.
8. Nalls MA, Bras J, Hernandez DG, et al. NeurX, a fast and efficient genotyping platform for investigation of neurodegenerative diseases. Neurobiol Aging 2015;36:1605.e7–1605.e12.
9. Nalls MA, Escott-Price V, Williams NM, et al. Genetic risk and age in Parkinson’s disease: continuum not stratum. Mov Disord 2015;30:850–854.
10. Nalls MA, McLean CY, Rick J, et al. Diagnosis of Parkinson’s disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol 2015;14:1002–1009.
11. Parkrantz N, Beecham GW, De Stefano AL, et al. Meta-analysis of Parkinson’s disease identification of a novel locus, RTF2. Ann Neurol 2012;71:370–384.
12. Davis AA, Andruska KM, Benitez BA, Racette BA, Perlmutter JS, Cruchaga C. Variants in GBA, SNCA, and MAPT influence Parkinson disease risk, age at onset, and progression. Neurobiol Aging 2016;37:209.e1–209.e7.
13. Picillo M, Pellecchia MT, Erro R, et al. The use of university of Pennsylvania Smell identification test in the diagnosis of Parkinson’s disease in Italy. Neurol Sci 2014;35:379–383.
14. Hoops S, Nazem S, Siderowf AD, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 2009;73:1738–1745.
15. Verhaan D, van Roorden SM, van Hilten JJ, Rijswijk MR. Prevalence and clinical profile of restless legs syndrome in Parkinson’s disease. Mov Disord 2010;25:2142–2147.
16. Goodarzi Z, Melkas KJ, Roberts DJ, Jette N, Pringsheim T, Holroyd-Leduc J. Detecting depression in Parkinson disease: a systematic review and meta-analysis. Neurology 2016;87:426–437.
17. Simuni T, Caspall-Garcia C, Coffey C, et al. Correlates of excessive daytime sleepiness in de novo Parkinson’s disease: a case control study. Mov Disord 2015;30:1371–1381.
18. Boeve BF, Molano JR, Ferman TJ, et al. Validation of the Mayo sleep questionnaire to screen for REM sleep behavior disorder in an aging and dementia cohort. Sleep Med 2011;12:445–453.
19. Nomura T, Inoue Y, Kagimura T, Uemura Y, Nakashima K. Utility of the REM sleep behavior disorder screening questionnaire (RBDSQ) in Parkinson’s disease patients. Sleep Med 2011;12:711–713.
20. Boeve BF, Molano JR, Ferman TJ, et al. Validation of the Mayo sleep questionnaire to screen for REM sleep behavior disorder in a community-based sample. J Clin Sleep Med 2013;9:475–480.
21. Davis MY, Johnson CO, Leverenz JB, et al. Association of GBA mutations and the E36K polymorphism with motor and cognitive progression in Parkinson disease. JAMA Neurol 2016;73:1127–1124.
22. Winder-Rhodes SE, Evans JR, Ban M, et al. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain 2013;136:392–399.

23. Brockmann K, Srulijes K, Pfleiderer S, et al. GBA-associated Parkinson’s disease: reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord 2015;30:407–411.

24. Liu G, Boot B, Locascio JJ, et al. Specifically neuropathic Gaucher’s mutations accelerate cognitive decline in Parkinson’s. Ann Neurol 2016;80:674–685.

25. Liu G, Locascio JJ, Corvol JC, et al. Prediction of cognition in Parkinson’s disease with a clinical-genetic score: a longitudinal analysis of nine cohorts. Lancet Neurol 2017;16:620–628.

26. Gan-Or Z, Mirelman A, Postuma RB, et al. GBA mutations are associated with rapid eye movement sleep behavior disorder. Ann Clin Transl Neurol 2015;2:941–945.

27. Brockmann K, Srulijes K, Hauser AK, et al. GBA-associated PD presents with non-motor characteristics. Neurology 2011;77:276–280.

28. Oeda T, Umemura A, Mori Y, et al. Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson’s disease. Neurobiol Aging 2015;36:3306–3313.

29. Jesús S, Huertas J, Bernal-Bernal J, et al. GBA variants influence motor and non-motor features of Parkinson’s disease. PLoS One 2016;11:e0167749.

30. Marras C, Alcalay RN, Caspell-Garcia C, et al. Motor and nonmotor heterogeneity of LRRK2-related and idiopathic Parkinson’s disease. Mov Disord 2016;31:1192–1202.

31. Vosa U, Clarinbold P, Westra HJ, et al. Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis. bioRxiv Epub 2018 Oct 19.

32. Jinn S, Drolet RE, Cramer PE, et al. TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc Natl Acad Sci U S A 2017;114:2389–2394.

33. Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, Coelln Rvon, Pihlstrøm L. Parkinson disease age at onset GWAS: defining heritability, genetic loci and α-synuclein mechanisms. Mov Disord Epub 2019 Apr 7.

34. UKBEC; Murthy MN, Blauwendraat C, Guidi S, et al. Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson’s disease on chromosome 7p15.3. Neurogenetics 2017;18:121–133.

35. Lee PC, Ahmed I, Loriot MA, et al. Smoking and Parkinson disease: evidence for gene-by-smoking interactions. Neurology 2018;90:e583–e592.
Genetic risk of Parkinson disease and progression:: An analysis of 13 longitudinal cohorts
Hirotaka Iwaki, Cornelis Blauwendraat, Hampton L. Leonard, et al.
Neurol Genet 2019;5:
DOI 10.1212/NXG.0000000000000348

This information is current as of July 9, 2019
Updated Information & Services	including high resolution figures, can be found at: http://ng.neurology.org/content/5/4/e348.full.html
References	This article cites 33 articles, 2 of which you can access for free at: http://ng.neurology.org/content/5/4/e348.full.html##ref-list-1
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s):
 - **Association studies in genetics** http://ng.neurology.org//cgi/collection/association_studies_in_genetics
 - **Cohort studies** http://ng.neurology.org//cgi/collection/cohort_studies
 - **Parkinson's disease with dementia** http://ng.neurology.org//cgi/collection/parkinsons_disease_with_dementia
 - **Parkinson's disease/Parkinsonism** http://ng.neurology.org//cgi/collection/parkinsons_disease_parkinsonism
 - **Prognosis** http://ng.neurology.org//cgi/collection/prognosis |
| **Permissions & Licensing** | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://ng.neurology.org/misc/about.xhtml#permissions |
| **Reprints** | Information about ordering reprints can be found online: http://ng.neurology.org/misc/addir.xhtml#reprintsus |

Neurol Genet is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2019 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.