Orthogonal Functions for Evaluating Social Distancing Impact on CoVID-19 Spread

Genghmun Eng
PhD Physics 1978, University of Illinois at Urbana-Champaign
geng001@socal.rr.com
June 20, 2020

Abstract

Early CoVID-19 growth often obeys: \(N(t) = N_0 \exp[+K_0 t] \), with \(K_0 = (\ln 2)/(t_{dbl}) \), where \(t_{dbl} \) is the pandemic doubling time, prior to society-wide Social Distancing. Previously, we modeled Social Distancing with \(t_{dbl} \) as a linear function of time, where \(N(t) = 1 + (1 + \gamma_0 t) \) is used here. Additional parameters besides \(\{K_0, \gamma_0\} \) are needed to better model different \(\gamma \) shapes. Thus, a new Orthogonal Function Model [OFM] is developed here using these orthogonal function series:

\[
N(Z) = \sum_{m=0}^{M_F} g_m L_m(Z) \exp[-Z],
\]

\[
R(Z) = \sum_{m=0}^{M_F} c_m L_m(Z) \exp[-Z],
\]

where \(N(Z) \) and \(Z(t) \) form an implicit \(N(t) \equiv N(Z(t)) \) function, giving:

\[
G_0 \equiv [K_A/\gamma_0], Z(t) \equiv +[G_0/(1 + \gamma_0 t)],
\]

\[
\rho[t] \equiv [\gamma_0/G_0] Z^2 R(Z),
\]

with \(L_m(Z) \) being the Laguerre Polynomials. At large \(M_F \) values, nearly arbitrary functions for \(N(t) \) and \(\rho[t] = dN(t)/dt \) can be accommodated. How to determine \(\{K_A, \gamma_0\} \) and the \(\{g_m; m = (0,+M_F)\} \) constants from any given \(N(Z) \) dataset is derived, with \(\rho[t] \) set by:

\[
c_{M_F-k} = \sum_{m=0}^{m=k} g_m.
\]

The bing.com USA CoVID-19 data was analyzed using \(M_F = (0, 1, 2) \) in the OFM. All results agreed to within about 10 percent, showing model robustness. Averaging over all these predictions gives the following overall estimates for the number of USA CoVID-19 cases at the pandemic end:

\[< N_{\text{max}} > = 5,009,677 \pm 269,450 \quad \text{(data to 5/3/20)}, \]

\[< N_{\text{max}} > = 4,422,803 \pm 162,580 \quad \text{(data to 6/7/20)}, \]

which compares the pre- and post-early May bing.com revisions. The CoVID-19 pandemic in Italy was examined next. The \(M_F = 2 \) limit was inadequate to model the Italy \(\rho[t] \) pandemic tail. Thus, regions with a quick CoVID-19 pandemic shutoff may have additional Social Distancing factors operating, beyond what can be easily modeled by just progressively lengthening pandemic doubling times (with 13 Figures).
1 Introduction

The early stages of the CoVID-19 coronavirus pandemic around the world showed a nearly exponential rise in the number of infections with time. If a significant fraction of the population gets infected ("saturated pandemic"), exponential growth no longer applies. However, Social Distancing can also mitigate exponential growth, enabling pandemic shut-off with only a small fraction of the population being infected ("dilute pandemic"). Let N be the total number of CoVID-19 cases in any given region, with $\rho(t)$ being the predicted number of daily new CoVID-19 cases, so that:

$$N(t) = \int_{t_0}^{t} \rho(t') \, dt'.$$ \[1.1a\]

$$\rho(t) = dN(t) / dt.$$ \[1.1b\]

On 3/25/2020, the Institute of Health Metrics and Evaluation, University of Washington (IHME) released their initial model for CoVID-19 spread where:

"The cumulative death rate for each location is assumed to follow a parametrized Gaussian error function."

Since the IHME used Gaussians, their projections assumed that the rise to the pandemic peak and its subsequent fall would be symmetric. Their implicit assumption was that the amount of Social Distancing was exactly what was needed to make their model predictions true. Given a sharp rise, our concern was that the IHME model did not allow the $\rho(t)$ to decrease gradually.

As a result, we developed an alternative CoVID-19 spread model, which assumed Social Distancing gradually lengthens the CoVID-19 doubling time. The initial exponential growth factor $K_0 = [(\ln 2) / \text{tdbl}]$ was used as a starting point, where tdbl was the initial doubling time. A new Social Mitigation Parameter [SMP] α_S was introduced to account for society-wide Social Distancing measures. A linear function was used for doubling time lengthening as a simple extension beyond a constant K_0, giving:

$$N(t) \approx N_I \exp[+ K_0 \alpha_S (t - \hat{t}) / (1 + \alpha_S \hat{t})] ,$$ \[1.2a\]

$$N(t \to \infty) \approx N_I \exp[+ K_0 / \alpha_S] = N_{\text{max}} ,$$ \[1.2b\]

as an Initial Model for the number of CoVID-19 cases, where $\hat{t} = 0$ was the start of society-wide Social Distancing. Both $N_I = N(\hat{t} = 0)$ and $N_F = N(\hat{t} = \text{t}_{\text{end}})$, as the most recently available data, were treated as fixed points. A minimum root-mean-square (rms) error data fits, using a logarithmic Y-axis, sets the $\{K_0, \alpha_S\}$ values. The resulting $N(\text{t} \to \infty)$ of Eq. 1.2b is the predicted final number of CoVID-19 cases at the pandemic end.

On 4/29/2020, we sent our preprint to the IHME, the Los Angeles Department of Public Health (LADPH), and to Profs. Goldenfeld and Maslov at UOI (University of Illinois at Urbana-Champaign), who were preparing a 2-day nationwide CoVID-19 remote-learning seminar for 5/6/2020 and 5/8/2020.

Also, on 4/29/2020, the IHME electronically published their 12th update, using their 3/25/2020 model. A graphic display of their most recent $\rho(t)$ projections showed a symmetric rise and fall. This graph was widely publicized by Dr. Alan Boyle, who was following the IHME work, summarizing it...
for general audiences. Since our Eqs. [1.2a]-[1.2b] model gave substantially different \(\rho(t) \) predictions than IHME, we added a note to that effect in our pre-print, submitting the final pre-print to MedRxiv on 5/4/2020, where it was accepted and published on-line on 5/8/2020.

Concurrently, on 5/4/2020, IHME published their 13th CoVID-19 update, where everything changed. Dr. Alan Boyle summarized those changes with a note that: "[IHME] researchers acknowledged that their previous modeling wasn’t sophisticated enough." Both IHME graphical predictions for 4/29/2020 and 5/4/2020 are shown in Figure 1, to highlight this change.

On 5/6/2020 and 5/8/2020, Profs. Goldenfeld and Maslov presented their UOI team’s supercomputer-based \(\rho(t) \) CoVID-19 projections, which also were very asymmetric. Although mathematical details for the UOI and new IHME projections are not known, virtually all \(\rho(t) \) CoVID-19 projections are now asymmetric, as the developing CoVID-19 data also appears to be.

Since our Initial Model had only two data fitting parameters \(\{K_o, \alpha_S\} \), we became concerned that those two parameters might not be sufficient to adequately describe all the different \(\rho(t) \) shapes observed. To correct this potential defect, a new Orthogonal Function Model [OFM] is developed here to allow more accurate descriptions for a variety of \(\rho(t) \) shapes, using additional mathematical techniques derived herein. This OFM extends Eqs. [1.2a]-[1.2b], and provides additional fitting parameters to improve \(\rho(t) \) projections.

2 Orthogonal Function Model [OFM] Elements

The following items and methods were developed as part of this OFM to improve CoVID-19 projections for a variety of \(\rho(t) \) data shapes.

First, the \(t = 0 \) point in Eq. [1.2a] was time-shifted so that \(N[t = 0] \equiv 1 \). This \(t = 0 \) point now provides an estimate for the CoVID-19 pandemic starting point, replacing the above \(N(t) \) with this time-shifted version:

\[
\begin{align*}
N(t) &\approx 1 \exp[+K_A \frac{t}{1 + \gamma_o t}] = \exp[+G_o \exp[-Z]], \\
G_o &\equiv \frac{K_A}{\gamma_o}, \\
Z(t) &\equiv \frac{t}{1 + \gamma_o t}, \\
N[t \to \infty, Z \to 0] &\approx 1 \exp[+K_A / \gamma_o] = \exp[+G_o] = N_{\text{max}}, \\
\rho[t] &= \frac{dN[t]}{dt}, \\
N[t] &= \int_{t'=0}^{t} \rho[t'] dt',
\end{align*}
\]

which enables Eq. [2.1a] to become a 1-term approximation for a larger function series. Actual data provides the \(\{N_f, N_F\} \) values. However, these \(\{t = t_f, N[t_f] \equiv N_f\} \) and \(\{t = t_F, N[t_F] \equiv N_F\} \) limits are now used to set \(K_A, G_o, \gamma_o > 0 \), so that the \(N_{\text{max}} \) of Eq. [1.2b] and Eq. [2.1d] match exactly.

Second, when \(Z \to 0 \) in Eq. [2.1c] then \(t \to \infty \); while \(Z \to \infty \) corresponds to \(t \to (-1/\gamma_o) + \varepsilon \), where \(\varepsilon \) is arbitrarily small and positive. Since \(N[t = 0] = 1 \), the \(t < 0 \) domain has \(N[t] < 1 \), while setting a particular time as the \(N[t = 0] \) point. Since the \(1 > N[t] > 0 \) regime has no impact on this overall analysis, virtually any decreasing function tail for the \(Z \to +\infty \) limit should be allowed.
Third, instead of generalizing Eq. [2.1a] using time, it is easier to use functions of Z, where Z is given by Eq. [2.1c]. It results in these $N(Z)$ and $R(Z)$ substitutes for $N[t]$ and $\rho[t]$

$$N(Z) \equiv \int_{Z''=+\infty}^{Z'=+\infty} R(Z') \, dZ'. \tag{2.2}$$

Given explicit functions of Z, both $N(Z)$ and $R(Z)$ in Eq. [2.2] go from large $-Z$ to smaller $-Z$ values at longer times, eventually approaching the $Z = 0$ point. Together, $N(Z)$ and $Z[t]$ create an implicit $N(Z[t]) \equiv N[t]$ function, and $R(Z)$ and $Z[t]$ create another implicit $R(Z[t]) \equiv R[t]$ function. A standard change of variables converts them back into being explicit functions of time:

$$N[t] \equiv \int_{Z[Z]}^{Z[t]} R(Z[t']) \, dZ' \tag{2.3}$$

This gives these equivalences between and Eq. [2.2] and Eq. [2.1f]:

$$N[t] \equiv \int_{Z[Z]}^{Z[t]} \rho[t'] \, dt', \tag{2.4a}$$

$$\rho[t] \equiv (\gamma_o / G_o) Z^2 R(Z), \tag{2.4b}$$

$$Z[t] \equiv G_o / (1 + \gamma_o t). \tag{2.4c}$$

Fourth, to allow additional data fitting parameters, the OFM replaces the 1-term approximation of Eq. [2.1a] with these orthogonal function series:

$$N(Z) = \sum_{m=0}^{M_F} g_m \, L_m(Z) \, \exp[-Z], \tag{2.5a}$$

$$R(Z) = \sum_{m=0}^{M_F} c_m \, L_m(Z) \, \exp[-Z]. \tag{2.5b}$$

These series have $\exp[-Z]$ as their weighting function, while keeping the Eqs. [2.1b]-[2.1c] definitions for $\{Z, G_o, \gamma_o\}$. The $\{g_m; m = (0,+M_F)\}$ and $\{c_m; m = (0,+M_F)\}$ coefficients are constants that can be derived from each dataset. For a wide range of $N(Z)$ and $R(Z)$ functions, larger M_F values and more $\{L_m(Z); m = (0,+M_F)\}$ terms give progressively better matches to practically any arbitrary function. This feature is what enables improved data fits over a variety of measured $N[t]$ and $\rho[t]$ curves.

Fifth, the OFM uses the $\{N[t], N_F[t_F]\}$ data end-points to set $\{G_o, \gamma_o\}$ in Eq. [2.4e], and define Z, allowing the OFM to provide best fits over the whole data range of Z or t, while these end points are fixed in the Initial Model.

The difference between: (a) using the whole data range for fitting, versus (b) using the data end points for fitting, is most evident when comparing Eq. [2.1a] to Eq. [2.5a]. In Eq. [2.1a], $N[t] = G_o \exp[-Z]$ where G_o has a pre-set value, whereas in Eq. [2.5a], $N(Z) = g_0 \exp[-Z]$ for $M_F = 0$, the g_0 parameter is determined by fitting over the whole data range.

Sixth, both Z and t essentially span from $\{0,+\infty\}$. Using $\exp[-Z]$ as a weighting function over that domain makes the choice of $L_m(Z)$ in Eq. [2.5a]-[2.5b] unique. They are the Laguerre Polynomials, with the first few being:
Some important properties of the Laguerre Polynomials are:

\[Z = +\infty \int_{Z=0}^{Z'} L_m(Z) L_n(Z) \exp(-Z) dZ = \delta_{m,n} , \quad [2.7a] \]

\[\delta_{m,n} = \left\{ \begin{array}{ll} 1 & \text{for } m = n \\ 0 & \text{otherwise} \end{array} \right. , \quad [2.7b] \]

\[Z = Z' \int_{Z'}^{Z=+\infty} L_m(Z') \exp(-Z') dZ' = [L_m(Z) - L_{m-1}(Z)] \exp(-Z) , \quad [2.7c] \]

\[L_m(Z) \exp(-Z) = \frac{1}{m!} \frac{d^m}{dZ^m} [Z^m e^{-Z}] = e^{-Z} \sum_{k=0}^{k=m} (-1)^k \frac{m!}{k!(m-k)!} \left[\frac{Z^k}{k!} \right] , \quad [2.7d] \]

\[L_{m \geq 2}(Z) = [2 - \frac{(Z+1)}{m}] L_{m-1}(Z) - \left[1 - \frac{1}{m^2} \right] L_{m-2}(Z) , \quad [2.7e] \]

where Eq. [2.7a] defines an orthogonal function set. Given \(n \) is an integer in Eq. [2.7d], \(n \)-factorial (\(n! \)) is defined as the product:

\[n! = (n)(n-1)(n-2)(n-3)...(3)(2)(1) , \quad [2.8a] \]

\[1! = 0! = 1 , \quad [2.8b] \]

along with factorials involving negative integers not being allowed.

Seventh, when data are used to determine the \(\{ g_m; m = (0, M_F) \} \) constants for the Eq. [2.5a] \(N(Z) \) analytic approximation, an equivalently precise \(R(Z) \) is set by Eq. [2.2] and Eq. [2.5b], with its \(\{ c_m; m = (0, M_F) \} \) constants being:

\[c_{M_F-k} = \sum_{m=0}^{m=k} g_m . \quad [2.9] \]

This simple form of Eq. [2.9] arises from the fact that \(L_m(Z = 0) = 1 \).

Also, Eq. [2.5a] and Eq. [2.9] combine to give:

\[N(Z = 0) = N(0) = N[t \to \infty] = c_0 \equiv \sum_{m=0}^{m=M_F} g_m , \quad [2.10] \]

as a new predicted total number of CoVID-19 cases at pandemic end.

Eighth, the \(\{ g_m; m = (0, M_F) \} \) constants can be arranged in a \(\vec{g} \)-vector form, with comparable constants for \(R(Z) \) from Eq. [2.2] arranged in a \(\vec{C} \)-vector form. It allows Eq. [2.9] to be written as:

\[\vec{C} = \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{M_F} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ \vdots \\ 0 & 0 & 1 \end{pmatrix} \vec{g} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ \vdots \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} g_0 \\ g_1 \\ \vdots \\ g_{M_F} \end{pmatrix} . \quad [2.11] \]

Once the \(\{ g_m; m = (0, M_F) \} \) constants are found, the \(c_0 \) value in Eq. [2.11] becomes the \(M_F + 1 \)-term replacement value for the predicted total number of CoVID-19 cases at the pandemic end, which refines the initial \(N_{\max}^o \) value of Eq. [1.2b] or Eq. [2.1d]. How to determine \(\{ K_A, G_m, \gamma_o \} \) and the \(\{ g_m; m = (0, M_F) \} \) constants in Eq. [2.5a] from a given set of data, is derived next.
3 Finding \(\{K_A, \gamma_0\} \) for \(Z[t] \) from Data

For a given dataset, the OFM begins with using Eq. [1.2a] to set \(\{K_o, \alpha_S\} \), as in our Initial Model. Society-wide Social Distancing is assumed to occur at or before the time \(t_I \), where \(N_I \) cases are already observed. Since the most recently available data at \(t_F \) has \(N_F \) cases, Eq. [2.1a] becomes:

\[
\begin{align*}
N[t_I] & \approx 1 \exp([+K_A t_I / (1 + \gamma_o t_I)]) = N_I, \\
N[t_F] & \approx 1 \exp([+K_A t_F / (1 + \gamma_o t_F)]) = N_F, \\
N[t \to \infty] & \approx 1 \exp([+K_A / \gamma_o]) = N_{max},
\end{align*}
\]

which using the new \(t = 0 \) point for the OFM. Evaluating \(N[t < t_I] \) for \(t < t_I \) estimates what the pandemic prior history might have been, had society-wide Social Distancing already been in place. Evaluating \(N[t > t_F] \) for \(t > t_F \) estimates how the pandemic evolves assuming these Social Distancing measures remain in place. The prior Eq. [1.2a] gave:

\[
N[t_F] = N_I \exp([+K_o (t_F - t_I)] / [1 + \alpha_S (t_F - t_I)]),
\]

with the \(t_F \to 0 \) limit of Eq. [3.2] giving:

\[
N_I \exp(\frac{-K_o t_I}{1 - \alpha_S t_I}) = 1,
\]

\[
t_I = \ln(N_I) / [K_o + \alpha_S \ln(N_I)].
\]

Here, Eq. [3.3b] sets the precise \(t_I \) time shift needed to convert from Eq. [1.2a] to Eq. [2.1a], which is easier to generalize. In addition, the \(t = 0 \) point of Eq. [2.1a] gives \(N[t \to 0] = 1 \) as an estimate for the pandemic starting point. Since \(t_I \) and \((t_F - t_I) \) sets \(t_F \), the Eqs. [3.1a]-[3.1b] fully determine \(\{K_A, \gamma_0\} \), without needing any recalculation on the original dataset. Taking various ratios of Eq. [3.1b] to Eq. [3.1a] gives:

\[
\begin{align*}
\ln(N_F) / \ln(N_I) & = \frac{t_F}{t_I} \frac{(1 + \gamma_o t_I)}{(1 + \gamma_o t_F)}, \\
\ln[N_F / N_I] & = K_A \frac{t_F}{(1 + \gamma_o t_F)} - \frac{t_I}{(1 + \gamma_o t_I)},
\end{align*}
\]

as separable equations to first find \(\gamma_o \), then \(K_A \), with these results:

\[
\gamma_o = \left\{ \left[\ln(N_I) / t_I \right] - \left[\ln(N_F) / t_F \right] \right\} / \left[\ln(N_F) - \ln(N_I) \right],
\]

\[
K_A = \left[\left(1 / t_I \right) - \left(1 / t_F \right) \right] / \left\{ \left[1 / \ln(N_I) \right] - \left[1 / \ln(N_F) \right] \right\},
\]

which sets the \(Z[t] \) function in Eq. [2.1c] or Eq. [2.4c].

4 Determining the \(g_m \) Constants from Data

When data for \(N_{data}(Z) \) are given over the whole \(Z = \{0^+, \infty^-\} \) range, the \(g_n \) constants for Eq. [2.5a] are exactly determined via:

\[
N_{data}(Z) = \sum_{m=0}^{m=M_F} g_m L_m(Z) \exp[-Z].
\]

\[
\int_{Z=0}^{Z=+\infty} L_n(Z) N_{data}(Z) dZ = \sum_{m=0}^{m=M_F} g_m \int_{Z=0}^{Z=+\infty} L_n(Z) L_m(Z) \exp[-Z] dZ \equiv g_n,
\]

where the Laguerre Polynomial orthogonality condition of Eq. [2.7a] forces the Eq. [4.1b] sum to reduce to one term.
When the \(N_{data}(Z) \) only spans a finite range of: \(t_i < t < t_F \) and \(Z_{min} < Z < Z_{max} \), an extrapolation of \(N_{data}(Z) \) for \((Z < Z_{min}) \) and \((Z > Z_{max}) \) is needed. One method could set \(N_{data}(Z < Z_{min}) = 0 \) and \(N_{data}(Z > Z_{max}) = 0 \), which results in these Eqs. [4.1a]-[4.1b] cogenerated:

\[
N_{data}(Z) = \sum_{m=M_F}^{m=M_F} \hat{g}_m L_m(Z) \exp[-Z] , \quad [4.2a]
\]

\[
Z = Z_{max} \quad \sum_{m=M_F}^{m=M_F} \hat{g}_m \int_{Z=Z_{min}}^{Z=+\infty} L_n(Z) N_{data}(Z) dZ = \quad [4.2b]
\]

\[
\sum_{m=M_F}^{m=M_F} \hat{g}_m \int_{Z=Z_{min}}^{Z=+\infty} L_n(Z) L_m(Z) \exp[-Z] dZ \equiv \hat{g}_n .
\]

Its advantages are: (a) for \(m \neq n \), every \(\hat{g}_m \) and \(\hat{g}_n \) are independent, as in orthogonal functions; and (b) these \(g_m \) values provide new estimates for the \(N_{data}(Z < Z_{min}) \) and \(N_{data}(Z > Z_{max}) \) regimes. But since \(N_{data}(Z < Z_{min}) \) and \(N_{data}(Z > Z_{max}) \) were originally assumed to vanish, this method is inconsistent. Alternatively, adding reasonable "tails" to the data could extend the original \(N_{data}(Z) \) domain, but those functions are not always known.

The third path, used here, takes the Eq. [4.1a] "final answer" as a self-consistent extrapolation for \((Z < Z_{min}) \) and \((Z > Z_{max}) \), while retaining the \(N_{data}(Z) \) values for the \((Z_{max} \geq Z \geq Z_{min}) \) regime. It replaces Eq. [4.1b] with:

\[
g_n \equiv \sum_{m=M_F}^{m=M_F} g_m \int_{Z=Z_{min}}^{Z=+\infty} L_n(Z) L_m(Z) \exp[-Z] dZ = \quad [4.3a]
\]

\[
N(Z) = \sum_{m=M_F}^{m=M_F} g_m L_m(Z) \exp[-Z] . \quad [4.3b]
\]

The \(\{g_m; \ m = (0, M_F)\} \) now appears on both sides of each Eq. [4.3a] \(g_n \)-equation, which is handled as follows. Defining:

\[
Q_n \equiv \int_{Z=Z_{min}}^{Z=+\infty} L_n(Z) N_{data}(Z) dZ , \quad [4.4a]
\]

\[
K_{m,n} \equiv \int_{Z=Z_{min}}^{Z=+\infty} L_m(Z) L_n(Z) \exp(-Z) dZ = K_{n,m} , \quad [4.4b]
\]

Eqs. [4.3a]-[4.3b] can be re-written as a 3 \times 3 matrix \(\mathbf{M}_3 \), which relates a data-driven \(Q_3 \)-vector to a resultant \(\bar{g}_3 \)-vector:

\[
\begin{pmatrix}
Q_0 \\
Q_1 \\
Q_2
\end{pmatrix} = \begin{pmatrix}
K_{0,0} & K_{0,1} & K_{0,2} \\
K_{1,0} & K_{1,1} & K_{1,2} \\
K_{2,0} & K_{2,1} & K_{2,2}
\end{pmatrix}
\begin{pmatrix}
\hat{g}_0 \\
\hat{g}_1 \\
\hat{g}_2
\end{pmatrix} . \quad [4.5a]
\]

\[
\begin{pmatrix}
\mathbf{M}_3
\end{pmatrix}^{-1} \begin{pmatrix}
Q_3
\end{pmatrix} = \begin{pmatrix}
\bar{g}_3
\end{pmatrix} , \quad [4.5b]
\]

where \(\begin{pmatrix}
\mathbf{M}_3
\end{pmatrix}^{-1} \) is the matrix inverse of \(\mathbf{M}_3 \). When \(\{Z_{min}, Z_{max}\} \rightarrow \{0, +\infty\} \), this \(\mathbf{M}_3 \) becomes the Identity Matrix. The following \(k_{m,n}(Z) \) integrals set \(K_{m,n} \):

\[
k_{m,n}(Z) = \int_{Z'=Z}^{Z'=+\infty} L_m(Z') L_n(Z') \exp(-Z') dZ' = k_{n,m}(Z) , \quad [4.6a]
\]

\[
K_{m,n} \equiv k_{m,n}(Z_{min}) - k_{m,n}(Z_{max}) = K_{n,m} . \quad [4.6b]
\]
The \(k_{m,n}(Z) \) integrals can be determined using Eq. [2.7c], which gives:

\[
k_{0,0}(Z) = 1 \exp(-Z), \quad k_{1,1}(Z) = (1 + Z^2) \exp(-Z), \quad k_{2,2}(Z) = (1 + 2Z^2 - Z^3 + \frac{1}{4}Z^4) \exp(-Z), \quad k_{0,1}(Z) = (-Z) \exp(-Z), \quad k_{0,2}(Z) = (-Z) \{1 - \frac{1}{2}Z\} \exp(-Z), \quad k_{1,2}(Z) = (-Z) \{1 - Z + \frac{1}{2}Z^2\} \exp(-Z). \]

To extract \(\{g_0, g_1, g_2\} \), the \(3 \times 3 \) symmetric \(M_3 \) matrix needs inversion:

\[
M = \begin{pmatrix}
a & d & f \\
d & b & e \\
f & e & c \\
\end{pmatrix},
\]

\[
\text{det}[M] \equiv \begin{vmatrix}
ab - ac^2 - bf^2 - cd^2 + 2def
\end{vmatrix},
\]

\[
\text{det}[M] (M)^{-1} = \begin{pmatrix}
-\varepsilon - df & -\varepsilon^2 + f^2 & \varepsilon - df \\
\varepsilon^2 - df & -\varepsilon - f^2 & \varepsilon + df \\
\varepsilon + df & -\varepsilon + f^2 & \varepsilon - f^2 \\
\end{pmatrix},
\]

which determines \(\{g_0, g_1, g_2\} \) from the \(\{Q_0, Q_1, Q_2\} \) data. A best fit \(N(Z) \) for \(Z = \{0^+, \infty^-\} \) results, along with an equivalent fit for \(R(Z) \) using Eq. [2.9].

Instead of having to find the best \(\{g_0, g_1, g_2\} \) triplet, one could find the best \(\{g_0^+, g_1^+\} \) by just using \(\{Q_0, Q_1\} \) and an \(M_2 \) sub-matrix; or one could find the best \(\{g_0^+, g_1^+\} \) by itself by just using \(\{Q_0\} \) and an \(M_1 \) sub-matrix:

\[
\vec{Q}_2 = M_2 \vec{g}_2,
\]

\[
\begin{pmatrix}
Q_o \\ Q_1 \\ g_0 \\ g_1
\end{pmatrix} = \begin{pmatrix}
K_{0,0} & K_{0,1} \\ K_{1,0} & K_{1,1}
\end{pmatrix} \begin{pmatrix}
g_0' \\ g_1'
\end{pmatrix},
\]

\[
\begin{pmatrix}
K_{0,0} & K_{0,1} \\ K_{1,0} & K_{1,1}
\end{pmatrix}^{-1} \begin{pmatrix}
Q_o \\ Q_1
\end{pmatrix} = \begin{pmatrix}
K_{1,1} & K_{1,0} \\ K_{0,1} & K_{0,0}
\end{pmatrix} \begin{pmatrix}
Q_o \\ Q_1
\end{pmatrix},
\]

When the \(N_{data}(Z) \) is comprised of \(j = \{1, 2, \ldots J\} \) discrete values between \(\{Z_{\text{min}}, Z_{\text{max}}\} \), with each \(Z_j \) having an \(N_{data}(Z_j) \) value, the Eq. [4.4a] integral needs to be replaced by a sum. Let:

\[
Z_j = \lfloor \frac{G_0}{(1 + \gamma, t_j)} \rfloor,
\]

with \(Z_0 = Z_1 \) and \(Z_{J+1} = Z_J \), the \(Q_n \) replacement for Eq. [4.4a] is:

\[
Q_n = \sum_{j=1}^{J} L_n(Z_j) N_{data}(Z_j) \Delta_j.
\]

\[
\Delta_j = \frac{1}{2} [Z_{j+1} - Z_{j-1}],
\]

with the \(N[t] \) and \(\rho[t] \) being set by Eq. [2.3] and Eqs. [2.4a]-[2.4c].

Finally, the Eqs. [4.7a]-[4.7f] \(k_{m,n}(Z) \) integrals are easy to compute for \(0 \leq m \leq 2 \) and \(0 \leq n \leq 2 \). But the general case is not well-known or tabulated in many Tables of Integrals. The key is how to express a product of two Laguerre Polynomials efficiently as a sum over a larger set of single Laguerre Polynomials, so as to convert the Eq. [4.6a] integrals into the Eq. [2.7c] form.
This problem was originally solved by G. N. Watson7 in 1938, and simplified by J. Gillis and G. Weiss8 in 1960. It is a sum of terms, where each coefficient contains four different factorials involving integers. Their key result is:

\[
L_r(Z) L_s(Z) = \sum_{t=[r-s]}^{t=(r+s)} C_{rst} L_t(Z),
\]

\[
C_{rst} = \int_{X=0}^{X=+\infty} L_r(X) L_s(X) L_t(X) \exp(-X) \, dX,
\]

\[
C_{rst} = \frac{(-1)^r}{r!} \sum_{n=(r+s)}^{n=(r+s-t)} \frac{(2^n)}{(r-n)! (r-s-n)! (2n-p)! (p-n)!},
\]

where all terms with negative arguments for the factorial must be omitted. Nowadays, this calculation can be done on a computer, but it would have been difficult in 1960, and nearly impossible in 1938.

5 USA: Orthogonal Function Model Results

This USA analysis only uses data after mid-March 2020, when several State Governors instituted mandatory Mitigation Measures. The widely available bing.com CoVID-19 data9 for the USA had these limits:

\[
N_I[t_I \rightarrow 3/21/2020]_{day#1} = \{25,722\},
\]

\[
N_F[t_F \rightarrow 5/03/2020]_{day#41} = \{1,183,653\},
\]

with \((t_F - t_I) = 43\) days. Our Initial Model of Eq. [1.2a] sets these parameter values for the USA:

\[
K_o = \{0.3248758/\text{day}\},
\]

\[
\alpha_S = \{0.06159/\text{day}\},
\]

\[
N[t \rightarrow \infty] \approx N_I \exp[+K_o / \alpha_S] = N_{max} \approx \{5,024,900\}.
\]

Using Eq. [3.3b] for \(t_I\) and \(t_F\) sets:

\[
t_I = \ln(N_I) / [K_o + \alpha_S \ln(N_I)] = \{10.685885\ \text{days}\},
\]

\[
t_F = t_I + \{43\ \text{days}\} = \{53.685885\ \text{days}\},
\]

for use in the OFM. Figures 2-3 show how this Initial Model, by itself, compares to the USA CoVID-19 data. Figure 2 uses a logarithmic Y-axis for the predicted total number of CoVID-19 cases, and Figure 3 shows the daily new CoVID-19 case predictions on a linear Y-axis plot.

The daily new case data exhibits large day-to-day variations, likely due to reporting delays, among other factors. This Initial Model for the USA has a predicted maximum of ~31,760 new cases per day at Day 37.686 on 4/17/2020, along with ~6,757 new cases per day still occurring at Day 200 on 9/26/2020.

The time axis in Figure 2 is different than in our previous paper2, due to the time shift of Eq. [2.1a], where the new \(t = 0\) point estimates the CoVID-19 pandemic starting point being on 3/10/2020. Even if Social Distancing had been in effect at the start of the pandemic, Figure 2 shows that the \(N_I[t_I] = \{25,722\}\) level still could have been reached in 10 – 11 days.
Figures 3 compares the measured data for the total number of CoVID-19 cases after Social Distancing started, to the early-time portion of this Initial Model. That comparison shows that the early-time data starts off a little below the curve; the later-time data rises a bit above the curve; and the final-time data again matches the curve, since it is a fixed point for this analysis.

These predictions assume: (I) The present Mitigation Measures are continued; (II) No "second wave" of infection or re-infection occurs; and (III) No further Mitigation Measures are taken to reduce the number of CoVID-19 cases.

These Initial Model results are first refined by applying the Eq. [2.1a] time shift, with Eqs. [3.5a]-[3.5b] setting these \(\gamma_0, K_A, G_0 \) values:

\[
\begin{align*}
\gamma_0 &= 0.1801634 \text{ /day} , \\
K_A &= 2.779906 \text{ /day} , \\
G_0 &= [K_A / \gamma_0] = 15.4299153 ,
\end{align*}
\]

where Eq. [3.1c] also gives:

\[
\lim_{t \rightarrow \infty} \left[\exp \left[\frac{K_A t}{1 + \gamma_0 t} \right] \right] = \exp [K_A / \gamma_0] = N_{\text{max}} \approx \{5,024,900\},
\]

which matches Eq. [5.2c], as it should. Then:

\[
Z[t] = \left[G_0 / (1 + \gamma_0 t) \right] = 15.4299153 / (1 + 0.1801634 \ t),
\]

defines \(Z \) for the OFM, where:

\[
\begin{align*}
Z_{\text{min}}[t_F] &\approx 53.686 \approx [G_0 / (1 + \gamma_0 t_F)] = 1.4458002586 , \\
Z_{\text{max}}[t_I] &\approx 10.686 \approx [G_0 / (1 + \gamma_0 t_I)] = 5.2748142044 .
\end{align*}
\]

The resultant Eq. [4.5b] \(M_3 \) matrix of \(k_{m,n} \) entries is:

\[
M_3 = \begin{pmatrix}
K_{0,0} & K_{0,1} & K_{0,2} \\
K_{1,0} & K_{1,1} & K_{1,2} \\
K_{2,0} & K_{2,1} & K_{2,2}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
+0.23044 & -0.31357 & -0.13858 \\
-0.31357 & +0.58041 & +0.05609 \\
-0.13858 & +0.05609 & +0.23635
\end{pmatrix}
\]

[5.8]

It has a rather small \(\det[M_3] = 0.001375 \) value, with an inverse of:

\[
(M_3)^{-1} = \begin{pmatrix}
97.478 & 48.246 & 45.707 \\
48.246 & 25.643 & 22.204 \\
45.707 & 22.204 & 25.762
\end{pmatrix}
\]

[5.9]

A convolution of \(L_m(Z) \) functions with the measured \(\widehat{Q}_3 \) dataset vector of Eqs. [4.11a]-[4.11b], along with the above \((M_3)^{-1} \), gives this final \(\widehat{g} \)-vector:

\[
(M_3)^{-1} \widehat{Q}_3 \equiv (M_3)^{-1} \begin{pmatrix} Q_0 \\ Q_1 \\ Q_2 \end{pmatrix} = (M_3)^{-1} \begin{pmatrix} +1,169,103 \\ -1,576,445 \\ -722,430 \end{pmatrix} \equiv
\]

\[
\widehat{g}_3 = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} +4,884,354 \\ -60,065 \\ -178,415 \end{pmatrix}
\]

[5.10]

determining the constants needed for \(N(Z) \) in Eq. [2.5a]. The coefficients for \(R(Z) \), which sets the predicted number of daily new CoVID-19 cases, are:

\[
\widehat{C}_3 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \widehat{g}_3 = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} +4,645,874 \\ -238,480 \\ -178,415 \end{pmatrix}
\]

[5.11]

determining the constants needed for \(R(Z) \) in Eq. [2.5b]. Using these \(\{g_0, g_1, g_2\} \) values along with Eq. [2.11] gives:

\[
N(0) \equiv N[t \rightarrow \infty] = c_0 \equiv \{4,645,874\},
\]

[5.12]
as a new predicted total number of CoVID-19 cases at the pandemic end for the OFM, which is a ~7.54% or 379,026 reduction in the number of cases, compared to the Initial Model N^o_{max} value of Eq. [5.5].

Using Eq. [2.4c] for $Z[t]$, and substituting the Eq. [5.12] values into Eq. [2.5b] gives $R(Z)$. The $p[t]$ in Eq. [2.4a] is derived from $R(Z)$ using Eq. [2.4b], with the resulting OFM $p[t]$ plotted in Figure 4, using a linear Y-axis, along with the $t > t_f$ raw data for the daily new CoVID-19 cases.

Raw data for $t < t_f$ was not included in these analyses, because they cover the exponential rise period, prior to Social Distancing. Those data are not applicable to estimating Social Distancing effects.

However, the Figure 4 OFM provides an extrapolation for those $t < t_f$ times, which shows what an exponential rise plus lengthening doubling times would have looked like, if both had been operating continuously from the CoVID-19 pandemic start. The companion $N[t]$ analytic result, plotted using a logarithmic Y-axis, along with the $t > t_f$ raw data for the total number of CoVID-19 cases, is shown in Figure 5.

Comparing the size and timing of the $p[t]$ pandemic peak, and its Day 200 value, between the Initial Model (Figs. 2-3) and OFM (Figs. 4-5), gives:

$$
\begin{array}{ll}
\text{Parameter} & \text{Initial Model} \quad \text{Orthog. Func. Model} \\
N[t \rightarrow \infty] & 5,024,900 \quad 4,645,874 \\
\max\{p[t_p]\} & 31,760 \text{ / day} \quad 32,069 \text{ / day} \\
[t_p] \text{ Date} & 4/17/2020 \quad 4/15/2020 \\
\frac{\rho(t)}{\rho_0} & 6,757 \quad 5,962 \text{ / day} \\
\end{array}
$$

This table shows that the OFM predicts fewer total cases (N^o_{max} vs c_o) and fewer daily new CoVID-19 cases at Day 200, as well as giving an earlier and higher pandemic peak prediction.

While the above analysis used $M_F = 2$ with Eq. [5.10] setting the best $\{g_0, g_1, g_2\}$ values, the OFM also provides estimates for the simpler $M_F = \{0,1\}$ cases, as outlined by Eqs. [4.9a]-[4.9f]. For $M_F = 1$, the best two $\{g'_0, g'_1\}$ values are gotten by only using $\{Q_0, Q_1\}$ and an M_2 sub-matrix of M_3. For $M_F = 0$, the best $\{g^+_0\}$ by itself is derived by using $\{Q_0\}$ and the M_1 sub-matrix. These alternative estimates give:

$$
\bar{g}_2 = \begin{pmatrix} g'_0 \\ g'_1 \end{pmatrix} = \begin{pmatrix} +0.23044 & -0.31357 \\ -0.31357 & +0.58041 \end{pmatrix}^{-1} \begin{pmatrix} +1,169,103 \\ -1,576,445 \end{pmatrix} = \begin{pmatrix} 5,200,870 \\ 93,713 \end{pmatrix},
$$

$$
\bar{g}_1 = \begin{pmatrix} g^+_0 \end{pmatrix} = \begin{pmatrix} +0.23044 \end{pmatrix}^{-1} \begin{pmatrix} +1169103 \end{pmatrix} = \begin{pmatrix} 5,073,351 \end{pmatrix}.
$$

These additional calculations give the following progression of estimates for $N[t \rightarrow \infty]$, which is the final number of CoVID-19 cases at the pandemic end:

$$
\begin{pmatrix} N^o_{\text{max}} \\ g^+_o \\ c'_o = g'_0 + g'_1 \\ c_o = g_0 + g_1 + g_2 \end{pmatrix} = \begin{pmatrix} 5,024,900 \\ 5,073,351 \\ 5,294,583 \\ 4,645,874 \end{pmatrix},
$$

These Eq. [5.15] results show that the $N[t \rightarrow \infty]$ projected final number of CoVID-19 cases remains fairly stable, even as the number of data fitting
parameters is increased from 0 to 3. The average and 1σ standard deviation among these $N[t \to \infty]$ projections is:

$$< N_{\text{max}} > = 5,009,677 \pm 269,450,$$

where 1σ is ~5.4% of the overall average.

Comparing the results among Figs. 2-5 highlights several items:

(a) All $\rho[t]$ functions have a sharp rise, and a much slower decreasing tail.
(b) The overall fit-to-data, as given in Fig. 3 and Fig. 5, shows that the extra parameters in the OFM can fit the $\rho[t]$ shape better.
(c) The OFM helps to estimate the uncertainty in the Initial Model, which Eq. [5.16] showed was ~5.4%.
(d) These results, taken together, exhibit only a relatively small change in the $N[t \to \infty]$ limits. Thus, the Initial Model function captures much of the progression to pandemic shutoff.

The $\rho[t]$ tail may still differ from these predictions, due to factors such as:

(i) The CoVID-19 dynamics may change in the long-term low $\rho[t]$ regime;
(ii) A "second wave" or multiple waves of $\rho[t]$ rise and fall may occur; both of which are beyond the scope of this CoVID-19 pandemic modeling;
(iii) Using just an exponential rise at the CoVID-19 pandemic start, plus lengthening doubling times, may limit how much mitigation can be easily modeled using only a few adjustable parameters.

Figure 4 provides some evidence for the above (iii) possibility. While lengthening the doubling time enables pandemic shutoff in the long time dilute pandemic limit; Figure 4 also shows that this model tends to approach final pandemic shutoff rather slowly.

6 USA Data: The bing.com Change

This analysis of the bing.com USA data begins at mid-March 2020, when mandatory Mitigation Measures were instituted. However, in early-May, bing.com changed their entire database, revising all numerical values back to the start of their reporting history.

The revised bing.com USA data from mid-March through early-June is analyzed next, which had these values:

$$N'_I[t \to 3/21/2020]_{\text{day#1}} = \{23,710\},$$
$$N'_J[t \to 5/03/2020]_{\text{day#44}} = \{1,177,014\},$$
$$N'_F[t \to 6/07/2020]_{\text{day#79}} = \{1,920,628\},$$

covering $(t_F - t_I) = 78$ days, as compared to the original bing.com data, which was used in above analyses, and only spanned $(t_F - t_I) = 43$ days. The Eqs. [6.1a]-[6.1b] revised $\{\text{day #1, day #44}\}$ values are ~7.82%, ~0.56% lower than the original Eqs. [5.1a]-[5.1b] data.

Applying the Initial Model to this revised dataset gives:

$$K'_o = \{0.3471686/\text{day}\},$$
$$\alpha'_S = \{0.06618/\text{day}\},$$

$$N[t \to \infty] \approx N'_I \exp\left[+K'_o / \alpha'_S\right] = N^1_{\text{max}} \equiv \{4,499,494\}.$$

Using Eq. [3.3b] gives these t'_I and t'_F results:
\[t'_r = \ln(N'_t) / [K'_o + \alpha'_S \ln(N'_t)] = \{9.9361076\ \text{days}\}, \quad [6.3a] \]
\[t'_F = t_1 + \{78\ \text{days}\} = \{87.9361076\ \text{days}\}, \quad [6.3b] \]

for use in the OFM. The Eq. [6.2c] calculated \(N'_{t_{\text{max}}} \) value is ~10.456% lower than the prior \(N'_{t_{\text{max}}} \) of Eq. [5.5]. Since the Initial Model uses an rms best fit on logarithmic axes for \(N[t] \), it emphasizes differences at low \(N[t] \) values, where the revised bing.com data changes were larger. Thus, some of the ~10.456% change in \(N'_{t_{\text{max}}} \) may be due to the revised bing.com data, but the longer \((t'_F - t'_r) \) data interval also contributes to modifying the \(\{K'_o, \alpha'_S\} \) values.

The Initial Model datafit for the revised USA data is shown in Figures 6-7, and is a better datafit than the Initial Model results of Figures 2-3. Comparing the OFM result of Eq. [5.12], which gave \(N[t \to \infty] = \{4,645,874\} \), to the Initial Model result of Eq. [6.2c] shows that they differ by just ~3.25%.

Next, the OFM is applied to further refine this Initial Model prediction. Those results are shown in Figure 8 and Figure 9, which were derived as follows. First, the Eqs. [2.1a]-[2.1d] time-shift was done:

\[\gamma'_o = \{0.183266685\ \text{/day}\}, \quad [6.4a] \]
\[K'_A = \{2.96074425\ \text{/day}\}, \quad [6.4b] \]
\[G'_o \equiv [K'_A / \gamma'_o] = \{15.31947555\}, \quad [6.4c] \]
\[N[t] = 1 \exp[+K'_A / (1 + \gamma'_o) t] = \exp[+G'_o \exp[-Z] = N'_{t_{\text{max}}}, \quad [6.4d] \]
\[Z[t] = +[G'_o / (1 + \gamma'_o) t] = 15.31947555 / (1 + 0.183266685 t) \], \quad [6.4e] \]

for this dataset. Next, using Eqs. [6.3a]-[6.3b] for \(t'_r, t'_F \) gives:

\[Z_{\text{min}}[t'_F] \approx 87.936 = +[G'_o / (1 + \gamma'_o) t'_F] = 0.851312775, \quad [6.5a] \]
\[Z_{\text{max}}[t'_r] \approx 10.686 = +[G'_o / (1 + \gamma'_o) t'_r] = 5.245823369. \quad [6.5b] \]

The \(\mathbf{M}_3 \) matrix of \(K_{m,n} \) entries, as set by the \(\{Z_{\text{min}}, Z_{\text{max}}\} \) values, is:

\[
\mathbf{M}_3 = \begin{pmatrix}
K_{0,0} & K_{0,1} & K_{0,2} \\
K_{1,0} & K_{1,1} & K_{1,2} \\
K_{2,0} & K_{2,1} & K_{2,2}
\end{pmatrix} = \begin{pmatrix}
+0.421584 & -0.335744 & -0.253505 \\
-0.335744 & +0.585931 & +0.077270 \\
-0.253505 & +0.077270 & +0.306047
\end{pmatrix},
\]

and it has an inverse of:

\[
(\mathbf{M}_3)^{-1} = \begin{pmatrix}
12.309835 & 5.9056154 & 8.7054293 \\
5.9056154 & 4.5986723 & 3.7306718 \\
8.7054293 & 3.7306718 & 9.5364244
\end{pmatrix}. \quad [6.7]
\]

The \(\mathbf{Q}_3 \)-vector for this dataset gives this updated \(\overline{\mathbf{g}}_3 \)-vector:

\[
(\mathbf{M}_3)^{-1} \mathbf{Q}_3 = \begin{pmatrix}
Q_o \\
Q_1 \\
Q_2
\end{pmatrix} = \begin{pmatrix}
+1,896,161 \\
-1,507,039 \\
-1,156,648
\end{pmatrix}
\]

\[
\overline{\mathbf{g}}_3 = \begin{pmatrix}
g_0 \\
g_1 \\
g_2
\end{pmatrix} = \begin{pmatrix}
+4,372,319 \\
-47,455 \\
-145,659
\end{pmatrix}, \quad [6.8]
\]

where \(c_0 = (g_0 + g_1 + g_2) = (4,179,205) = N[t \to \infty] \) is the new OFM predicted total number of CoVID-19 cases, which is down from the Initial Model value of \(\exp[+K'_A / \gamma'_o] = N'_{t_{\text{max}}} = (4,499,494) \) from Eq. [6.2c]. This ~7.12% reduction is similar to the ~7.42% change between Eq. [5.12] and Eq. [5.5]. A similar analysis for \(\overline{\mathbf{g}}_2 \) and \(\overline{\mathbf{g}}_1 \), using Eqs. [4.9a]-[4.9f], gives this summary:
(\begin{align*}
 N_{\text{max}}^1 \\
 g_0^1 \\
 c' &= g_0 + g_1' \\
 c_0 &= g_0 + g_1 + g_2
\end{align*}) = \begin{pmatrix} 4,499,494 \\
4,497,699 \\
4,514,812 \\
4,179,205 \end{pmatrix}. \quad [6.9]

The $N[t \to \infty]$ projected final number of CoVID-19 cases in Eq. [6.9] remains fairly stable, even as the number of data fitting parameters is increased from 0 to 3. This result is similar to the Eq. [5.15] analysis of the original data, which spanned only $(t_F - t_I) = 43 \text{ days}$. The average and 1σ standard deviation among these Eq. [6.9] calculations for $N[t \to \infty]$ is:

$$< N_{\text{max}} > = 4,422,803 \pm 162,580,$$

where 1σ is ≈3.68% of the overall average. It is somewhat lower than the ≈5.14% value of Eq. [5.16]. Thus, having $(t_F' - t_I') = 78 \text{ days} of data for analysis reduces the overall uncertainty in these projections.

Comparing Eq. [6.9] to Eq. [5.15] also shows the following trends. The 1-term calculations, using either $\{N_{\text{max}}\}$ or just $\{g_0^1\}$ by itself, give similar results. The 2-term calculations, using $\{g_0, g_1\}$ gives ≤10% higher results, while using $\{g_0, g_1, g_2\}$ gives ≤10% lower results. This oscillation around the average value of Eq. [6.10] shows that the Initial Model of Eq. [2.1a] and Eq. [6.4d] capture much of how Social Distancing enables pandemic shutoff.

Comparing the Fig. 6 Initial Model and the Fig. 8 OFM for the pandemic peak size, timing, and Day 200 values gives:

$$\begin{array}{c|c|c}
\text{Parameter} & \text{Initial Model} & \text{Orthog. Func. Model} \\
N[t \to \infty] & 4,499,494 & 4,179,205 \\
\text{max}\{\rho[t_p]\} & 30,727 / \text{day} & 30,909 / \text{day} \\
[t_p]_{\text{Date}} & 4/15/2020 & 4/13/2020 \\
\rho_{\text{Day}} & 5783 & 5140 / \text{day} \\
\end{array}. \quad [6.11]$$

The $\rho[t]$ at 200-days nearly scales with $N[t \to \infty]$, while the OFM predicts a higher and earlier $\rho[t]$ pandemic peak. Comparing the revised bing.com 78-day dataset up through 6/7/2020 of Eq. [6.11], to the original bing.com 43-day dataset up through 5/3/2020 of Eq. [5.13] gives:

$$\begin{array}{c|c|c}
\text{Parameter} & \text{Initial Model} & \text{Orthog. Func. Model} \\
N[t \to \infty] & -8.95\% & -9.00\% \\
\text{max}\{\rho[t_p]\} & -9.67\% & -9.64\% \\
[t_p]_{\text{Date}} & -2 \text{ days} & -2 \text{ days} \\
\rho_{\text{Day}} & -8.56\% & -8.62\% \\
\end{array}. \quad [6.12]$$

Both the Initial Model and the OFM found a comparable amount of change between the two datasets; likely due to the revised bing.com values being lower, along with the larger dataset enabling increased modeling precision.

The Initial Model and the OFM also provide self-consistent CoVID-19 predictions over the two different time periods. Each model held its predictive power to within <10% for over a month {43 days vs. 78 days}, without needing recalculations or parameter value changes, which provides a strong data-driven validation of the potential utility of these models. When the Initial Model is a somewhat good fit, this Orthogonal Function Model provides even better fits.
7 Italy: Revised $bing.com$ Data Analysis

This Italy analysis uses data beginning on Feb. 23, 2020, from the revised $bing.com$ CoVID-19 database, which has these values:

\[N_I(t_f) \leftarrow 2/23/2020 |_{day#1} = 150 \], \hspace{1cm} [7.1a] \\
\[N_F(t_F) \leftarrow 6/15/2020 |_{day#114} = 237,290 \], \hspace{1cm} [7.1b]

with $(t_F - t_I) = 113 \text{ days}$. The number of daily new CoVID-19 cases shows a sharp post-peak decrease for Italy, in contrast to the above USA data. That sharp decrease provides a near-worst case test for the OFM. The Initial Model best fit on a logarithmic Y-axis, gives these initial parameters:

\[K_o = \{0.665772/day\}, \hspace{1cm} [7.2a] \]
\[\alpha_S = \{0.08153/day\}. \hspace{1cm} [7.2b] \]

Using Eq. [3.3b] for t_I and t_F gives:

\[N[t \to \infty] \equiv N_I \exp[+K_o / \alpha_S] = N^o_{\text{max}} \equiv \{527,875\}, \hspace{1cm} [7.3a] \]
\[t_I = \ln(N_I) / [K_o + \alpha_S \ln(N_I)] = \{4.6614 \text{ days}\}, \hspace{1cm} [7.3b] \]
\[t_F = t_I + \{113 \text{ days}\} = \{117.6641 \text{ days}\}, \hspace{1cm} [7.3c] \]

for use in the OFM. The revised $bing.com$ Italy data and the Initial Model datafit are shown in Figure 10 and its inset. The Initial Model is not a good fit due to the high curvature of the data on the logarithmic Y-axis, which is similar to our previous results for Italy. The OFM is applied next.

Using Eqs. [3.5a]-[3.5b] sets these $\{\gamma_o, K_A, G_o\}$ values:

\[\gamma_o = \{0.1316771/day\}, \hspace{1cm} [7.4a] \]
\[K_A = \{1.734075/day\}, \hspace{1cm} [7.4b] \]
\[G_o = \{13.1691513\}. \hspace{1cm} [7.4c] \]

where Eq. [3.1c] also gives:

\[\lim_{t \to \infty} [1 \exp[+K_A / (1 + \gamma_o \cdot t)] = 1 \exp[+K_A / \gamma_o] = N^o_{\text{max}} \equiv \{527,875\}, \hspace{1cm} [7.5] \]

which matches Eq. [7.3a], as it should. Then:

\[Z[t] = \{G_o / (1 + \gamma_o \cdot t) = [13.1691513 / (1 + 0.1316771 \cdot t), \hspace{1cm} [7.6] \]

defines Z for the OFM, where:

\[Z_{\text{min}}[t_F \approx 117.664] = \{G_o / (1 + \gamma_o \cdot t_F) \equiv \{0.7995757039\}, \hspace{1cm} [7.7a] \]
\[Z_{\text{max}}[t_I \approx 4.664] = \{G_o / (1 + \gamma_o \cdot t_I) \equiv \{8.1659787106\}. \hspace{1cm} [7.7b] \]

The resultant symmetric matrix \mathbf{M}_3 of $K_{m,n}$ entries is:

\[
\mathbf{M}_3 = \begin{pmatrix}
K_{0,0} & K_{0,1} & K_{0,2} \\
K_{1,0} & K_{1,1} & K_{1,2} \\
K_{2,0} & K_{2,1} & K_{2,2}
\end{pmatrix} = \begin{pmatrix}
+.4492355 & -.3571046 & -.2228851 \\
-.3571046 & +.7176744 & -.1261928 \\
-.2228851 & -.1261928 & +.6411040
\end{pmatrix} \hspace{1cm} [7.8]
\]

It has an (\mathbf{M}_3) inverse of:

\[
(\mathbf{M}_3)^{-1} = \begin{pmatrix}
7.1590423 & 4.1432777 & 3.3044492 \\
4.1432777 & 3.8412565 & 2.1965449 \\
3.3044492 & 2.1965449 & 3.1409889
\end{pmatrix} \hspace{1cm} [7.9]
\]

A convolution of $L_m(Z)$ functions with the measured data sets \tilde{Q}_3 using Eqs. [4.11a]-[4.11b], with $(\mathbf{M}_3)^{-1}$ of Eq. [4.5c] giving this final \tilde{g}-vector:

\[
(\mathbf{M}_3)^{-1} \tilde{Q}_3 = (\mathbf{M}_3)^{-1} \begin{pmatrix}
Q_o \\
Q_1 \\
Q_2
\end{pmatrix} = (\mathbf{M}_3)^{-1} \begin{pmatrix}
+298, 131 \\
-206, 004 \\
-190, 856
\end{pmatrix} = \hspace{1cm} [?]
\]
\[\bar{g}_3 = \begin{pmatrix} g_0 \\ g_1 \\ g_2 \end{pmatrix} = \begin{pmatrix} 650,127 \\ 24,702 \\ -66,815 \end{pmatrix}. \]

[7.10]

The coefficients for \(R(Z) \), which set the predicted number of daily new CoVID-19 cases for the OFM, are given by:

\[\bar{c}_3 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad \bar{g}_3 = \begin{pmatrix} c_0 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} +608,013 \\ -42,113 \\ -66,815 \end{pmatrix}. \]

[7.11]

Using these \(\{g_0, g_1, g_2\} \) values along with Eq. [2.11] gives:

\[N(0) \equiv N[t \to \infty] = c_0 \equiv \{608,013\}, \]

[7.12]

as a new predicted total number of CoVID-19 cases at the pandemic end. It is a \(~15.18\% \) or 80,138 increase in number of cases, compared to the Initial Model \(N_{\text{max}}^0 \) value of Eq. [7.3a].

A graph of \(\rho[t] \) for the predicted number of daily new CoVID-19 cases is shown in Figure 11, using Eqs. [2.4b] and [2.5b]. For this fast pandemic shutdown case, the OFM improvement over the Initial Model is not large. When the initial \(\exp(-Z) \) function is not a good fit, which is likely for quicker pandemic shutdowns, a lot of terms, beyond the \(M_F = 2 \) value used here, are needed in Eq. [2.5a] for a good fit. An alternative method for choosing the initial \(\exp(-Z) \) function is examined next, to see if additional improvements result for that case.

8 Italy: An Alternative Starting Function

There is a wide latitude in the choice of an initial \(\exp(-Z) \) function for the Eqs. [2.5a]-[2.5b] orthogonal function expansions. However, when the Initial Model is not a good fit, the common practice of minimizing \(\text{rms} \) error using a logarithmic Y-axis for the Initial Model may not be optimal, since the Orthogonal Function Model [OFM] creates best fits using a linear Y-axis.

Minimizing the \(\text{rms} \) error between the Initial Model and data using a linear Y-axis is done to provide an alternative \(\exp(-Z) \) function. This alternative starting point gives these parameter values, replacing Eqs. [7.2b]-[7.2c]:

\[K^L_\phi = \{1.1863559 / \text{day}\}, \]

[8.1a]

\[\alpha^L_S = \{0.15220 / \text{day}\}. \]

[8.1b]

The \(N(t_I) = N_I \) and \(N(t_F) = N_F \) values are still needed to properly set the above \(\{K^L_{A'\phi}, \gamma^L_\phi\} \) values for \(Z[t] \). Using Eq. [3.3b] for \(t_I \) and \(t_F \) gives:

\[N[t \to \infty] = N_I \exp[K^L_\phi / \alpha^L_S] = N_{\text{max}}^L = \{364,161\}, \]

[8.2a]

\[t_I^L = \ln(N_I) / [K^L_\phi + \alpha^L_S \ln(N_I)] = \{2.570908 \text{ days}\}, \]

[8.2b]

\[t_F^L = t_I^L + \{113 \text{ days}\} = \{115.570908 \text{ days}\}, \]

[8.2c]

for use in the OFM, while still using this linear Y-axis initial fit. Figure 12 and its inset show how this alternative Initial Model compares to the Italy CoVID-19 data. Using Eqs. [3.5a]-[3.5b] sets these new \(\{\gamma^L_\phi, K^L_A, G^L_\phi\} \) values:

\[\gamma^L_\phi = \{0.2500379 / \text{day}\}, \]

[8.3a]

\[K^L_A = \{3.2018233 / \text{day}\}, \]

[8.3b]

\[G^L_\phi = [K^L_A / \gamma^L_\phi] = \{12.8053524\}, \]

[8.3c]

where Eq. [3.1c] also gives:
\[
\lim_{t \to \infty} \{1 \exp\left(\frac{K_{\ell} t}{1 + \gamma_{\ell} t}\right)\} = 1 \exp\left(\frac{K_{\ell}}{1 + \gamma_{\ell}}\right) = N_{\text{max}}^L \equiv \{364, 161\},
\]

which matches Eq. [8.2a], as it should. Then:
\[
Z^L[t] = +[G_o^L / (1 + \gamma_o^L t)] = [12.8053524 / (1 + 0.2500379 t)],
\]
defines \(Z^L\) for this alternative fit analysis, where:
\[
Z_{\text{min}}^L[t_f \approx 115.5709] = +[G_o^L / (1 + \gamma_o^L t_f)] = 0.428314107,
\]
\[
Z_{\text{max}}^L[t_f \approx 2.5709] = +[G_o^L / (1 + \gamma_o^L t_f)] = 7.79471714 .
\]

The resultant symmetric matrix \(\mathbf{M}_3\) of \(K_{m,n}\) entries is:
\[
\mathbf{M}_3 = \begin{pmatrix}
K_{0,0} & K_{0,1} & K_{0,2} \\
K_{1,0} & K_{1,1} & K_{1,2} \\
K_{2,0} & K_{2,1} & K_{2,2}
\end{pmatrix}
\begin{pmatrix}
+6511948 & -2758817 & -2286253 \\
-2758817 & +7457076 & -1094322 \\
-2286253 & -1094322 & +6094403
\end{pmatrix}.
\]

It has an \((\mathbf{M}_3)\) inverse of:
\[
(\mathbf{M}_3)^{-1} = \begin{pmatrix}
2.3414686 & 1.0220827 & 1.0619049 \\
1.0220827 & 1.8234538 & 0.71084659 \\
1.0619049 & 0.71084659 & 2.1668535
\end{pmatrix}.
\]

A convolution of \(L_{m}(Z^L)\) functions with the measured data sets \(\mathbf{Q}_3\) using Eqs. [4.11a]-[4.11b], with \((\mathbf{M}_3)^{-1}\) of Eq. [4.5c] giving this final \(\mathbf{g}\) vector:
\[
(\mathbf{M}_3)^{-1} \mathbf{Q}_3 = (\mathbf{M}_3)^{-1} \begin{pmatrix}
Q_o \\
Q_1 \\
Q_2
\end{pmatrix} = (\mathbf{M}_3)^{-1} \begin{pmatrix}
+188,281 \\
-10,274 \\
-61,526
\end{pmatrix}
\]

\[
\mathbf{g}_3 = \begin{pmatrix}
g_0 \\
g_1 \\
g_2
\end{pmatrix} = \begin{pmatrix}
365,018 \\
129,969 \\
59,315
\end{pmatrix}.
\]

The coefficients for \(R(Z)\), which set the predicted number of daily new CoVID-19 cases for the OFM, are given by:
\[
\mathbf{C}_3 = \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
\mathbf{g}_3 = \begin{pmatrix}
c_0 \\
c_1 \\
c_2
\end{pmatrix} = \begin{pmatrix}
+554,303 \\
189,284 \\
59,315
\end{pmatrix}.
\]

Using these \(\{g_0, g_1, g_2\}\) values along with Eq. [2.11] gives:
\[
N(0) \equiv N[t \to \infty] = 0 \equiv \{554,303\},
\]
as a new predicted total number of CoVID-19 cases at the pandemic end. It is a \(\approx 5.00\% or 26,428\ increase in number of cases, compared to the Initial Model \(N_o^\text{max}\) value of Eq. [7.3a]. A graph of \(\rho[t]\) for the predicted number of daily new CoVID-19 cases is shown in Figure 13, using Eqs. [2.4b] and [2.5b]. A tabulated summary for all of these Italy calculations is:

Parameter	Initial	Orthog.	Init.Model	Orthog.Func.
\(N[t \to \infty]\)	527,875	608,013	364,161	554,303
\(\max\{\rho(t_p)\}\)	2,860 / day	3,886 / day	3,848 / day	4,073 / day
\(t_p\)	4/2/2020	3/29/2020	3/14/2020	3/26/2020

The Initial Model shapes for \(\rho[t]\) were very different, depending on whether initial datafit was performed by minimizing \(\text{rms}\) error using a logarithmic Y-axis (Figure 10) or a linear Y-axis (Figure 12, Initial Model Re-do) as expected. However, comparing the two OFM (Figure 11 vs Figure 13) calculations, shows that their overall \(\rho[t]\) shapes are quite similar.
While the max{ρ[t]} calculated pandemic peaks generally increase, they are all below the data near-peak values of ~4,800 – 6,500 cases/day shown in Figs. 10-13. Thus, for quick pandemic shutoffs, the Initial Model [exp(−Z)] function is less important than needing more MF terms. When the Initial Model is not a good fit, the OFM only gives limited improvements for MF = 2.

9 Summary and Conclusions

The early stages of the CoVID-19 coronavirus pandemic began with a nearly exponential rise in the number of infections with time. Let N[t] be the total number of CoVID-19 cases vs time. Our Initial Model used this basic function:

\[N[t] \approx 1 \exp\left[+K_A t / (1 + \gamma_o t)\right] = \exp[+G_o \exp[-Z]], \quad [9.1a] \]
\[Z[t] \equiv \left[G_o / (1 + \gamma_o t)\right], \quad [9.1b] \]

where \(\gamma_o = 0 \) limit of Eq. [9.1a] corresponds to a purely exponential rise. This Initial Model enables calculation of a pandemic shutoff with only a small fraction of the total population becoming infected ("dilute pandemic").

To allow more data fitting parameters than just \(\{K_A, \gamma_o\} \), an Orthogonal Function Model [OFM] was developed, using these orthogonal function series:

\[N(Z) = \sum_{m=0}^{M_F} g_m L_m(Z) \exp[-Z], \quad [9.2a] \]
\[R(Z) = \sum_{m=0}^{M_F} c_m L_m(Z) \exp[-Z], \quad [9.2b] \]
\[c_{M_F-k} = \sum_{m=0}^{k} g_m, \quad [9.2c] \]

where \(N[t] = N(Z[t]) \). The \(\{g_m; m = (0,+M_F)\} \) are a set of constants that are determined from each dataset. Using \(\exp[-Z] \) as a weighting function, with \(L_m(Z) \) as an orthonormal function set on the \(Z = \{0^+, -\infty^-\} \) interval, the choice of \(L_m(Z) \) becomes unique. They are the Laguerre Polynomials, with several important properties given in Eqs. [2.6a]-[2.7c].

The expected number of daily new CoVID-19 cases, \(\rho[t] \), is given by:

\[N[t] \equiv \int_{t'=(-1/\gamma_o)}^{t'} \rho[t'] \, dt', \quad [9.3a] \]
\[\rho[t] \equiv (\gamma_o / G_o) Z^2 R(Z). \quad [9.3b] \]

For a wide range of \(N(Z) \) data, larger \(M_F \) and more \(\{L_m(Z); m = (0, +M_F)\} \) terms gives progressively better matches to almost any arbitrary function, enabling improved data fitting for a variety of \(N[t] \) and \(\rho[t] \) shapes.

Methods are developed here to derive \(\{K_A, \gamma_o\} \), and determine the \(\{g_m; m = (0, +M_F)\} \) and \(\{c_m; m = (0, +M_F)\} \) constants from any given \(N[t] \) dataset. Whereas our Initial Model was an \(M_F = 0 \) case, the \(M_F = 2 \) case was used here for data analysis, as an OFM example.

These methods were applied to the CoVID-19 pandemic data for the USA. Analysis results using the original bing.com up data to ~5/3/2020 are given in
Figures 2-5 and Eq. [5.13]. During early-May, bing.com revised their entire database, all the way back to their earliest values. This revised USA bing.com data, which included an extended time period into June 2020, was also analyzed, with results given in Figures 6-9 and Eq. [6.11].

For the USA, the Initial Model and OFM results differed by only ~10%, showing that the Initial Model was a somewhat good fit, while the OFM is a better fit. Comparing our calculations using the 43-day 5/3/2020 original bing.com dataset to the 78-day 6/7/2020 revised bing.com dataset, showed that our early-May USA projections predicted the June data to within \(\lesssim 10\% \) for the same model. Thus, both models provided self-consistent CoVID-19 projections, holding their predictive power for over a month \{43 days vs. 78 days\}, without recalculation or parameter value changes.

The Italy CoVID-19 pandemic data was studied next, as a worst-case test of the OFM. The post-May 2020 revised bing.com database was used, with results presented in Figures 10-13. Italy had a much sharper CoVID-19 pandemic shutoff for \(\rho(t) \) compared to the USA. While the OFM can give substantial improvements, here \(M_F = 2 \) does not provide enough extra parameters, to convert an Initial Model result that was not a good fit, into a substantially better fit. A larger \(M_F \) and additional orthogonal function terms are needed.

Even then, the long-term tail can be inaccurate, since both the Initial Model and the OFM extension have natural \(\rho(t) \) asymptotic limits of \(\rho(t) \sim [1/t^2] \). Larger \(M_F \) values could allow multiple terms to cancel, but a polynomial-like tail of \(\rho(t) \sim [1/t^P] \), with \(P \geq 2 \), would likely remain, making it difficult to estimate the functional form of the CoVID-19 tail for quick pandemic shutoffs.

Overall, both the Initial Model and this Orthogonal Function Model show how progressively lengthening the pandemic doubling time enables CoVID-19 pandemic shutoff, even in the dilute pandemic limit. However, there may be a natural limit to how fast this one mitigation factor can achieve pandemic shutoff. For cases like Italy, other Social Distancing factors may be operating that enable and enhance quick CoVID-19 pandemic shutoff, which are not effectively being modeled by just lengthening the pandemic doubling times.

10 List of Figures

Figure 1: Comparison of IHME CoVID-19 Projections, 29 April 2020 vs 4 May 2020. CDC CoVID-19 Website highlighted IHME Projections prior to the IHME May 2020 update.

Figure 2: Initial Model for USA CoVID-19 Projections using data up to 5/3/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 31,760 cases/day on 4/17; with 5,024,900 cases total; and ~6,757 new cases/day at Day 200 on 9/26/2020.

Figure 3: Initial Model for USA CoVID-19 Projections vs data up to 5/3/2020. Original bing.com data up to 5/3/2020 are shown, prior to their new reporting method. Data starts slightly below, then goes slightly above the Initial Model prediction line.
Figure 4: Orthogonal Function Model, USA CoVID-19 Projections, data to 5/3/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 32,069 cases/day on 4/15; with 4,645,874 cases total; and ~5,962 new cases/day at Day 200 on 9/26/2020.

Figure 5: Orthogonal Function Model, USA CoVID-19 Projections, data to 5/3/2020. Original bing.com data up to 5/3/2020 are shown, prior to their new reporting method. Orthogonal Function Model matches data a bit better than the Initial Model.

Figure 6: Initial Model for USA CoVID-19 Projections vs data up to 6/7/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 30,727 cases/day on 4/15; with 4,499,494 cases total; and ~5,783 new cases/day at Day 200 on 9/27/2020.

Figure 7: Initial Model for USA CoVID-19 Projections vs data up to 6/7/2020. Revised bing.com data, circa 5/3/2020, changed all values back to the pandemic start. Initial Model appears to be a good data fit by itself.

Figure 8: Orthogonal Function Model, USA CoVID-19 Projections, data to 6/7/2020. Revised bing.com data; daily # of CoVID-19 Cases Peak at 30,909 cases/day on 4/13/2020; with 4,179,205 cases total; and ~5,140 new cases/day at Day 200 on 9/27/2020.

Figure 9: Orthogonal Function Model, USA CoVID-19 Projections, data to 6/7/2020. Revised Orthogonal Function Model, USA CoVID-19 Projections, data posted circa 5/3/2020, changed values back to the pandemic start. Orthogonal Function Model matches the data a bit better than the Initial Model.

Figure 10: Initial Model for Italy CoVID-19 Projections vs data up to 6/15/2020. Initial Model matches Total Number of Cases at data start and data end, but best fit using a logarithmic Y-axis does not give a good fit for Predicted Number of Daily CoVID-19 cases.

Figure 11: Orthogonal Function Model for Italy CoVID-19 data up to 6/15/2020. Orthogonal Function Model gives improved data fit, but 3-terms in orthogonal function series is insufficient to accurately predict a rapidly decreasing Number of Daily CoVID-19 cases.

Figure 12: Initial Model re-do, Italy CoVID-19 data to 6/15/2020. New starting point is a best fit function on a linear Y-axis, instead of having a best fit using a logarithmic Y-axis. Alternative method may allow a few-term orthogonal function series to better match the data.

Figure 13: Orthogonal Function Model re-do, Italy CoVID-19 data to 6/15/2020. Orthogonal Function Model re-do gives a slightly better small-series fit. Other Social Distancing impacts likely exist besides just lengthening pandemic doubling times.

11 References

1. https://www.MedRxiv.org/ ID=MedRxiv/2020/043752v1, 03.25.2020, "Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months",
IHME COVID-19 Health Service Utilization Forecasting Team.

2. https://www.MedRxiv.org/content/10.1101/2020.05.04.20091207v1, https://doi.org/10.1101/2020.05.04.20091207, "Initial Model for the Impact of Social Distancing on CoVID-19 Spread", Genghmun Eng

3. https://www.geekwire.com/2020/univ-washington-epidemiologists-predict-80000-covid-19-deaths-u-s-july, "Univ. of Washington researchers predict 80,000 COVID-19 deaths in U.S. by July", Alan Boyle, GeekWire, March 26, 2020.

4. https://www.yahoo.com/finance/news/coronavirus-modelers-raise-projected-u-041641553.html, "Coronavirus modelers raise projected U.S. death toll and lengthen state-by-state recovery timeline", Alan Boyle, GeekWire, April 27, 2020.

5. https://finance.yahoo.com/news/pandemic-projection-puts-u-death-220824741.html, "New pandemic projection puts U.S. death toll at nearly 135,000, due to less social distancing", Alan Boyle, GeekWire, May 4, 2020.

6. http://www.healthdata.org/covid/updates "COVID-19: What’s New for May 4, 2020: Updated IHME COVID-19 projections: Predicting the Next Phase of the Epidemic", IHME COVID-19 Health Service Utilization Forecasting Team.

7. G. N. Watson, "A Note of the Polynomials of Hermite and Laguerre", Journal of the London Mathematical Society, 13(1938), pp. 29-32.

8. J. Gillis and G. Weiss, "Products of Laguerre Polynomials", Math. Comput., 14(69), Jan. 1960, pp. 60-63

9. www.bing.com/covid: 'Bing COVID-19 Tracker', and https://www.bing.com/covid?form=CPVD07.
Figure 1: Comparison of IHME CoVID-19 Projections, 29 April 2020 vs 4 May 2020. CDC CoVID-19 Website highlighted IHME Projections prior to the IHME May 2020 update.
Initial Model for USA CoVID-19 Pandemic, 5/03/20 Update: Peak= 4/17/2020

K/A\l=2.779906/day, \(\nu/\sigma\)=0.1801634/day: Peak=31,760/day, on Day 37.686

Figure 2: Initial Model for USA CoVID-19 Projections using data up to 5/3/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 31,760 cases/day on 4/17; with 5,024,900 cases total; and ~6,757 new cases/day at Day 200 on 9/26/2020.
Figure 3: Initial Model for USA CoVID-19 Projections vs data up to 5/3/2020. Original bing.com data up to 5/3/2020 are shown, prior to their new reporting method. Data starts slightly below, then goes slightly above the Initial Model prediction line.
Predicted Number of Daily CoVID-19 Cases has a peak of 32,069 cases/day on 4/15; with 4,645,874 cases total; and ~5,962 new cases/day at Day 200 on 9/26/2020.
Figure 5: **Orthogonal Function Model, USA CoVID-19 Projections, data to 5/3/2020.**
Original bing.com data up to 5/3/2020 are shown, prior to their new reporting method. **Orthogonal Function Model** matches data a bit better than the **Initial Model**.
Figure 6: *Initial Model* for USA CoVID-19 Projections vs data up to 6/7/2020. Predicted Number of Daily CoVID-19 Cases has a peak of 30,727 cases/day on 4/15; with 4,499,494 cases total; and ~5,783 new cases/day at Day 200 on 9/27/2020.
Figure 7: Initial Model for USA CoVID-19 Projections vs data up to 6/7/2020. Revised bing.com data, circa 5/3/2020, changed all values back to the pandemic start. Initial Model appears to be a good datafit by itself.
Figure 8: Orthogonal Function Model, USA COVID-19 Projections, data to 6/7/2020. Revised bing.com data; daily# of COVID-19 Cases Peak at 30,909 cases/day on 4/13/2020; with 4,179,205 cases total; and ~5,140 new cases/day at Day 200 on 9/27/2020.
Figure 9: **Orthogonal Function Model, USA CoVID-19 Projections, data to 6/7/2020.** Revised bing.com data, posted circa 5/3/2020, changed values back to the pandemic start. *Orthogonal Function Model* matches the data a bit better than the *Initial Model*.
Figure 10: *Initial Model for ITALY CoVID-19 Projections vs data up to 6/15/2020.*

Initial Model matches Total Number of Cases at data start and data end, but best fit using a logarithmic Y-axis does not give a good fit for Predicted Number of Daily CoVID-19 cases.
Figure 11: *Orthogonal Function Model* for ITALY CoVID-19 data up to 6/15/2020. *Orthogonal Function Model* gives improved data fit, but 3-terms in orthogonal function series is insufficient to accurately predict a rapidly decreasing Number of Daily CoVID-19 cases.
Figure 12: Initial Model re-do, ITALY CoVID-19 data to 6/15/2020. New starting point is a best fit function on a linear Y-axis, instead of having a best fit using a logarithmic Y-axis. Alternative method may allow a few-term orthogonal function series to better match the data.
Figure 13: Orthogonal Function Model re-do, ITALY CoVID-19 data to 6/15/2020. Orthogonal Function Model re-do using linear Y-axis gives a slightly better small-series fit. Other Social Distancing impacts likely exist besides just lengthening pandemic doubling times.