Expression and bioactivity identification of soluble MG7 scFv

Zhao-Cai Yu, Jie Ding, Bo-Rong Pan, Dai-Ming Fanm, Xue-Yong Zhang

Zhao-Cai Yu, Jie Ding, Dai-Ming Fan, Xue-Yong Zhang, Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
Bo-Rong Pan, Oncological Center, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
Supported by the Foundation for Medical Research of PLA (No. 962047)
Correspondence to: Prof. Xue-Yong Zhang, Department of Gastroenterology, Xijing Hospital, Fourth Military Medical University, Xi’an 710033, Shaanxi Province, China. xzyzhang@fmmu.edu.cn.
Telephone: +86-029-3374576
Received 2001-09-25 Accepted 2001-10-29

Abstract

AIM: To examine the molecular mass and identify the bioactivity of MG7 scFv for its application as a targeting mediator in gene therapy of gastric cancer.

METHODS: Two strongly positive recombinant phage clones screened from MG7 recombinant phage antibody library were separately transfected into E.coli TG1. Plasmid was isolated from the transfected E.coli TG1 and digested by EcoR I and Hind III to examine the length of exogenous scFv gene. Then, the positive recombinant phage clones were individually transfected into E.coli HB2151. The transfectant was cultured and induced by IPTG. Perplasmic extracts were prepared from the induced transfectant by osmotic shock. ELISA was used to examine the antigen-binding affinity of the soluble MG7 scFv. Immunodotting assay was adopted to evaluate the yield of soluble MG7 scFv produced by transfected E.coli HB2151. Western blot was used to examine the molecular mass of MG7 scFv. Finally, the nucleotide sequence of MG7 scFv was examined by DNA sequencing.

RESULTS: Two positive recombinant phage clones were found to contain the exogenous scFv gene. ELISA showed that MG7 scFv had strong antigen-binding affinity. Immunodotting assay showed that transfected E.coli HB2151 could successfully produce the soluble MG7 scFv with high yield via induction by IPTG. The molecular mass of MG7 scFv was 30 kDa by western blot. DNA sequencing demonstrated that the Vh and Vl genes of MG7 scFv were 363bp and 321bp, respectively.

CONCLUSION: We have successfully developed the soluble MG7 scFv which possessed strong antigen-binding affinity.

Yu ZC, Ding J, Pan BR, Fan DM, Zhang XY. Expression and bioactivity identification of soluble MG7; scFv. World J Gastroenterol 2002;8(1):99-102

INTRODUCTION

Gastric cancer takes the leading place in the incidence of various tumors in china[1]. Many conventional approaches, including surgical, chemical and physical treatments, appear palliative in most advanced cases. Because these conventional approaches cannot selectively target at the tumor cells and completely eradicate them, and recurrence and metastasis of tumor may develop due to the existence of residual tumor cells. Therefore, targeting therapy for tumor is badly needed to achieve a greater curative effect and overcome the obstacle existing in the conventional approaches[2-13]. Recent studies showed that the targeting therapy had a promise in the treatment of gastric cancer[14-20]. In the present study, we produced the soluble MG7 scFv and evidenced that MG7 scFv is a favorable mediator for targeting therapy of gastric cancer.

MATERIALS AND METHODS

Restriction analysis of the strong recombinant phage clones

The strongly positive recombinant phage clones (3 µL containing 2×10⁹ pfu) were separately added into 5mL log-phase E.coli TG1 and incubated for 1 h at 37°C with shaking at 250 r·min⁻¹. Plasmid was isolated from the culture product and digested by EcoRI and Hind III. Electrophoresis was performed to check the digested product.

Production and antigen-binding affinity test of the soluble MG7 scFv

The strongly positive recombinant phage clones (3 µL containing 2×10⁹ pfu) were separately added into 5mL log-phase E.coli HB2151 and incubated for 1 h at 37°C with shaking at 250 r·min⁻¹. 10 µL IPTG (isopropyl β-D-thiogalactopyranoside) were added and incubated overnight at 37°C with shaking at 250 r·min⁻¹. Cells were precipitated by centrifugation and supernatant was also collected. The precipitated cells were subjected to osmotic shock for preparation of soluble MG7 scFvs. KATOIII cells in log phase were transferred into a 96 wells-plate and immobilized on the wall by centrifugation at 1000g for 10min, and finally fixed in 0.25% glutaraldehyde. 0.2 mL perplasmic extracts and supernatant were applied to each well and incubated at 4°C overnight. 0.2 mL anti-E tag antibody were applied to each well and incubated at 37°C for 2 h. 0.1 ml HRP-labeled goat anti-mouse (HRP-GAM) Ig solution was added into each well. The absorbance value (A) at 450nm of reactant in each well was measured after incubation for 1 h at 37°C and staining with TMB.

Immunodotting test of the yield of soluble MG7 scFv

40 µL of perplasmic extracts and supernatant were separately dotted onto the Hybond-C super membrane and dried at 60°C for 30 min. After being blocked by 50 mL·L⁻¹ nonfat milk for 2 h, the Hybond-C super membrane was incubated in 5mL diluted anti-E tag antibody solution at 37°C for 2 h. 5 mL HRP- labeled goat anti-mouse (HRP-GAM) Ig solution were added for another incubation at 37°C for 1 h and eventually stained by DAB.

Western blot test of the molecular mass of soluble MG7 scFv

40 µL of perplasmic extracts and supernatant were firstly analyzed by SDS-PAGE and then transferred onto the Hybond-C super membrane. After being blocked by 50 mL·L⁻¹ nonfat milk, the Hybond-C super membrane was incubated in 5mL diluted anti-E tag antibody solution at 37°C for 2 h. 5 mL of HRP- labeled goat anti-mouse (HRP-GAM) Ig solution were added for another incubation at 37°C for 1 h and
eventually stained by DAB.

DNA sequencing of MG7 scFv

DNA sequencing was performed by ABI PRISM™ 377 DNA sequencer.

RESULTS

Restriction analysis of the strong positive recombinant phage clones

Two strongly positive clones were found to be recombinant clones which contained the exogenous gene. One of the two strongly positive clones contained a 450bp fragment of exogenous gene (Lane 1) and the other one contained a 750bp fragment of exogenous gene (Lane 2, Figure 1).

Antigen-binding affinity of the soluble MG7 scFv by ELISA

One of the strong positive clones was shown to produce soluble form of MG7 scFv with Antigen-binding activity (Table 1). This clone was confirmed to contain a 750bp fragment of exogenous gene by restriction analysis above and chosen for later use.

Table 1 ELISA of the soluble MG7 scFv for binding with KATOII cells (A value)

ELISA	Number of strong positive clones	Neg. ctrl	
First round	0.287	0.776	0.201
Second round	0.346	0.802	0.223

The yield of soluble MG7 scFv

The positive signal displayed on the dotting site with perplasmic extracts from induced *E. coli* HB2151 was significantly stronger than that from non-induced *E. coli* HB2151 (Figure 2). It implied that *E. coli* HB2151 had successfully produced the soluble MG7 scFv via induction by IPTG.

The molecular mass of MG7 scFv

A protein band with positive signal was found at Mr 30 indicating that the soluble MG7 scFv was a protein of Mr 30 (Figure 3).

DNA sequence of MG7 scFv

The VH and VL genes of MG7 scFv were respectively 363 bp and 321 bp in length. The VH gene has two conserved codon for cysteine at 67-69bp and 289-291bp. The VL gene has two conserved codon for cysteine at 472-474bp and 664-666bp. Both of the VH and VL genes are highly homologous with the variable fragment of some known antibodies (Figure 4).

![Figure 1](image1.png)

Restriction analysis of the strong positive recombinant phage clones. M: λ/EcoR I and Hind II; 1: Recombinant clones

![Figure 2](image2.png)

Immunodotting of soluble MG7 scFv. 1: Perplasmic extracts from induced *E. coli* HB2151; 2: Supernatant from induced *E. coli* HB2151; 3: Perplasmic extracts from non-induced *E. coli* HB2151

![Figure 3](image3.png)

Western blot of the molecular mass of soluble MG7 scFv. M: Protein marker; 1: Perplasmic extracts from induced *E. coli* HB2151; 2: Supernatant from induced *E. coli* HB2151; 3: Perplasmic extracts from non-induced *E. coli* HB2151

![Figure 4](image4.png)

Nucleotide sequence of MG7 scFv

ATG GCC CAG GTG AAG CTG CAG TCT GTG CCT GAA GTG GTA AAG CCT GGG GCT TCA GTG AAG TTG TCC TTC TGC AAG GCT TCT GCC TAC TTC ACA ACA TAT GAT GTA TAA GAG TGG GCT AAG CAG CCG CTT GAG TGG ATT GGA TGG ATT TTT CCT GGA GAG GGG AGT ACT GAA TAC AAT GAG AAG TTC AAG GGC AGG GCC ACA CTG

VH

AGT GTA GAC AAG TCC TCC AGC ACA GCC TAT ATG GAG CTC ACT AGG CTG ACA TCT GAG GAC TCT GCT GTC TAT TTC TCT GCT AGA GGG GAC TAC TAT AGG CGC TAC TTT GAC TGT TGG GGC CAA GGG ACC AGC GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA GCC GGA GGT GCC TCT GGC GGT GGA TGC GAC ATC GAG CTC ACT CAG

Linker

TCT CCA GCA ATC ATG TCT GCA TCC CAA GGG GAG AGG GTC ACC ATG ACC TGC AGT GCC AGC TCA AGT ATA CGT TAC ACA TAT TGG TAC CAA CAG AAG CCT GGA TCC TCC CCC AGA CTC CGT ATT TAT GAC ACA TCC AAC GTG GCT

VL

CCT GGA GTC CTT TTT CGC TTC AGT GGC AGT GGG TCT GGG ACC TCT TAT TCT CTC ACA ATC AAC CGA ATG GAG GGT GAG GTG GCT GCC ACT TAT TAC TGC CAG GAG TGG AGT GGT TAT CCG TAC ACG TCC GGA GGG GCA CCA AGC TGG GAA ATC AAA CGG
DISCUSSION

MG7, a monoclonal antibody against human gastric cancer, was proved to possess quite high specificity and sensitivity to gastric cancer associated antigen. It was successfully used in experimental targeting therapy in nude mice bearing transplanted human gastric cancer[60]. But owing to its murine origin, like many other similar antibodies, MG7 antibody can elicit anti-mouse immunoreaction in man and thus its use in clinical practice is restricted[31,32]. One of the efficient strategies to this problem is to remove the constant region of antibody which makes main contribution to the immunogenicity of the murine antibody to human being[33-34]. On the other hand, antibody without constant region, termed scFv, is less antigenic and induces weaker repulsive reaction. In addition, it is a smaller molecule and comprises 1/6 of its original antibody in molecular mass which ensure that scFv can more readily penetrate into the tumor tissue in vivo and be easily cleared up from the normal tissue[35,36]. Besides, the scFv is more available than its original antibody by gene engineering technology which can provide an economical means for diagnosis of gastric cancer[33-34].

As mentioned above, the scFv is advantageous to its original antibody in clinical practice. Therefore, developing the MG7 scFv is of great significance in both early diagnosis and therapy of gastric cancer. For example, MG7 scFv fused with avidin can be used as a reagent in immuno-PCR for early diagnosis of gastric cancer. Additionally, a new immunotoxin for treatment of gastric cancer can be developed by fusing the MG: ScFv and A subunit of ricin together. MG7 scFv can direct the A subunit of ricin to MG7 positive gastric cancer cells[34-35]. In our previous study, the MG7 recombinant phage antibody derived from MG7 hybridoma was constructed and subsequently two strong positive phage antibody clones were screened out from this library[31].

Targeting therapy for tumors in the last decade has become a highlight in the field of tumor therapy[32-33]. In past, the discoveries of many tumor specific antigen (TSA) and tumor associated antigen (TAA) assured the practicability of antibody as a tool in tumor targeting therapy[34-36]. Ascribed to its high specificity and sensitivity in recognizing associated antigen, antibody is the optimal candidate for targeting mediator. Therefore, targeting therapy mediated by antibody still remains as a promising curative modality among the ways of tumor therapy and attracts worldwide attention[37].

This study was conducted with the purpose to produce the soluble MG7 scFv, identify its antigen-binding affinity, determine its molecular mass and get an understanding of its nucleotide sequence. We first examined the length of exogenous MG7 scFv gene harbored in the two strong positive phage antibody clones by restriction analysis and found that one of the phage antibody clones contained a 750bp fragment of exogenous gene which was identical to many discovered scFvs in length. Secondly, we prepared the periplasmic a 750bp fragment of exogenous gene which was identical to many analysis and found that one of the phage antibody clones contained in the two strong positive phage antibody clones by restriction.

Wang SH, Wang HT, Jiang SC. Selection of human anti-HAV McAb from a phage antibody library. Zhongguo shengwu jishu Zazi 1998; 14: 173-180.

REFERENCE

1. Niu WX, Qin XY, Liu H, Wang CP. Clinicopathological analysis of patients with gastric cancer in 1200 cases. World J Gastroenterol 2001; 7: 281-284.
2. Wang SH, Wang HT, Jiang SC. Selection of human anti-HAV McAb from a phage antibody library. Zhongguo shengwu jishu Zazi 1998; 14: 173-178.
3. Lu XP, Li BJ, Chen SL, Lu B and Jiang NY. Effect of chemotherapy or targeting chemotherapy on apoptosis of colorectal carcinoma. Shijie Huanue Xiaohua Zazhi 1999; 7: 3332-3334.
4. Liu HE, Liu WW, Fang DC. Induction of apoptosis in human gastric carcinoma cell line SGC7901 by anti-Fas monoclonal antibody. Shijie Huanue Xiaohua Zazhi 1999; 7: 476-487.
5. Ning XY, Yang DH. Research and progress is in vivo gene therapy for primary liver cancer. Shijie Huanue Xiaohua Zazhi 2000; 8: 89-93.
6. Cheng JP, Lin C, Xie CP, Zhang XY, Fu M, Deng YP, Wei Y and Wu M. Transduction efficiency, biologic effect and mechanism of recombinant RA538, antisense C- myc adenosine virus on different cell lines. Shijie Huanue Xiaohua Zazhi 2000; 8: 286-270.
7. Guo SY, Gu QL, Liu BV, Zhu ZG, Yin HR and Lin YZ. Experimental study on the treatment of gastric cancer by TK gene combined with mIg-2 gene. Shijie Huanue Xiaohua Zazhi 2000; 8: 974-978.
8. Pan X, Pan W, Ni CR, Ke CW, Cao GW and Qi ZT. Killing effect of tetracycline-controlled expression of DT/VEGF system on liver cell cancer. Shijie Huanue Xiaohua Zazhi 2000; 8: 867-873.
9. Leng JJ, Chen YQ, Leng XS. Genetic therapy for pancreatic neoplasms. Shijie Huanue Xiaohua Zazhi 2000; 8: 916-918.
10. Pan X, Pan W, Ke CW, Zhang B, Cao GW, Qi ZT. Tetracycline controlled DT/VEGF system gene therapy mediated by adenovirus vector. Shijie Huanue Xiaohua Zazhi 2000; 8: 979-984.
11. Wang FS, Wu ZZ. Current situation in studies of gene therapy for liver cirrhosis and liver fibrosis. Shijie Huanue Xiaohua Zazhi 2000; 8: 371-396.
12. Pan X, Ke CW, Pan W, He X, Cao GW, Qi ZT. Killing effect of DT/ VEGF system on gastric carcinoma cell. Shijie Huanue Xiaohua Zazhi 2000; 8: 393-396.
13. Cao GW, Qi ZT, Pan X, Pan W, He X, Ke CW. Gene therapy for human colorectal carcinoma using promoter controlled bacterial ADF-ribosylating toxin genes human CEA, PEA and DTA gene transfer. World J Gastroenterol 1998;4:388-391.
14. Lu XP, Li BJ, Chen ZQ, Jiang ZG. Anti-CEA monoclonal antibody targeting therapy for colorectal carcinoma. Shijie Huanue Xiaohua Zazhi 1999;7:329-331.
15. Engelstadter M, Bobkova M, Baire M, Stitz J, Holtkamp N, Chu TH, Kurth R, Dornburg R, Buchholz CJ, Cichutek K. Targeting human T cell by retroviral vectors displaying antibodies. Detection of human antibodies selected from a phage display library. Hum Gene Ther 2000; 11:293-303.
16. Wu YD, Song XQ, Zhou DN, Hu XH, Gan YQ, Li ZG, Liao P. Experimental and clinical study on targeting treatment of liver cancer using radionuclide- anti-AFP antibody -MMC doublet. Shijie Huanue Xiaohua Zazhi 1999; 7: 387-390.
17. Zhang J, Liu YF, Yang SJ, Sun ZW, Qiao Q and Zhang SZ. Construction and expression of mouse/humanized ScFv and their fusion to humanized mutant TNF-α against hepatocellular carcinoma. Shijie Huanue Xiaohua Zazhi 2000; 8: 616-620.
18. Chen ZN, Bian HJ, Jiang JJ. Recent progress in anti-hepatoma monoclonal antibody and its application. Shijie Huanue Xiaohua Zazhi 1998; 6: 461-462.
19. Romanaczuk H, Galer CE, Zabner J, Barsomian G, Wadsworth SC, O'Riordan CR. Modification of an adenoviral vector with biologically active eukaryotic expression vector of sense and antisense VEGF165 and its regulated fusion gene. J Environ Pathol Toxicol Oncol 2000; 19: 61-68.
20. Wang W, Zhou J, Xu L and Zhen Y. Antineoplastic effect of intracellular expression of a single-chain antibody directed against type IV collagenase. J Environ Pathol Toxicol Oncol 2000; 19: 61-68.
21. Li J, Wang Y, Li Q. Construction and expression of ScFv from anti-human gastric cancer McAb 3H11. Zhonghua Zhongliu Zazhi 1998; 20: 85-87.
22. Wei XC, Wang XJ, Chen K, Zhang L, Liang Y, Lin XL. Killing effect of TNF-related apoptosis inducing ligand (TRAIL) and regulated by tetracycline on gastric cancer cell line NCI-N87. World J Gastroenterol 2001; 7: 559-562.
23. Liu DH, Zhang W, Su YP, Zhang XY, Huang YX. Construction of eukaryotic expression vector of sense and antisense VEGF163 and its expression regulation. Shijie Huanue Xiaohua Zazhi 2001; 9: 866-891.
24. Liu CY, Wu MX, Ren J, Zhang XY, Pan BR. Anti-tumor activity of defensin on gastric cancer cell line in vitro. Shijie Huanue Xiaohua Zazhi 2001; 9: 622-626.
25. Yang J, Fang DC, Yang SM, Luo YH, Lu R, Luo KL, Liu WW. Construction of sense and antisense hTR eukaryotic expression vector. Shijie Huanue Xiaohua Zazhi 2000; 8: 491-495.
26. Huang ZH, Qian WF, Chi DB, Jiang ZS. Apoptosis in human colorectal cancer Lovo cells induced by HSV-tK/GCV system. Shijie Huanue Xiaohua Zazhi 2000; 8: 974-978.
27. Qian WF, Huang ZH, Chi DB. Herpes simplex virus thymidine kinase/ ganciclovir system combined with 5-FU for the treatment of experimental colorectal cancer. Shijie Huanue Xiaohua Zazhi 2000; 8: 190-193.
28. Xu DX, Chen WS, Ye ZJ. The antisense gene of growth factor receptor for primary liver cancer. Shijie Huanue Xiaohua Zazhi 2000; 8: 974-978.
reversing the malignant phenotype of human hepatoma cells. Shijie Huaren Xiaoxia Zachi 2001; 9: 175-179

29 Tang YC, Li Y, Qian GX. Reduction of tumorigenicity of SMCC-7721 hepatoma cells by vascular endothelial growth factor antisense gene therapy. World J Gastroenterol 2001; 7: 22-27

30 Fan DM, Zhang XX, Zhan DB, Tan J, Chen BJ, Preparation and on the functional motif of transmembrane protein of Mabs against a poor differentiated gastrointestinal cancer line MKN-46-9. Tiejunjiu Xiuhe Zhai 1998; 13: 12-15

31 Klima A, Matthey B, Roovers RC, Barth S, Arends JW, Engert A, Hoogenboom HR. Human anti-CD30 recombinant antibodies by guided phage antibody selection using cell panning. Br J Cancer 2000; 83: 252-260

32 Watkins NA, Ouwendh WH. Introduction to antibody engineering and phage display. Vog Sang 2000; 78: 72-79

33 Zhai W, Davies J, Shang DZ, Chan SW, Allain JP. Human recombinant single chain antibody fragments, specific for the hypervariable region 1 of hepatitis C virus, from immune phage-display libraries. J Viral Hepat 1999; 6: 115-124

34 De Greeff A, van Alphen L, Smith HE. Selection of recombinant antibody phage display libraries. Infect Immun 2000; 68: 3949-3955

35 Long MC, Jager S, Mah DC, Jebailey L, Mah MA, Masri SA, Nagata Kupsch JM, Tidman NH, Kang NV, Truman H, Hamilton S, Patel N, Yi K, Chung J, Kim H, Kim I, Jung H, Kim J, Choi I, Suh P, Chung H. Expression and characterization of anti-NCA-95 ScFv (CEA 79 ScFv) in a prokaryotic expression vector modified to contain a Sfi I and Not I site. World J Gastroenterol 1999; 6(Suppl 3): 53-58

36 Johns M, George AJ, Ritter MA. In vivo selection of ScFv from phage display libraries. J Immunol Methods 2000; 239: 137-151

37 Miao S, Gao C, Lo CH, Wirsching P, Wong CH, Janda KD. Phage-display library selection of high-affinity human single-chain antibodies to tumor-associated carbohydrate antigens sia1y Lewisx and Lewisx. Proc Natl Acad Sci U S A 1999; 96: 6953-6958

38 Kupsch JM, Timah NA, Kang NV, Truman H, Hamilton S, Patel N, Newton Bishop JA, Leigh IM, Crowe JS. Isolation of human tumor-specific antibodies by selection of an antibody phage library on melanoma cells. J Clin Cancer Res 1999; 5: 925-931

39 Francon R, Roggero P, Pirazzai A, Perri AJ, Desiderio A, Bitt O, Pashkoulov D, Matti B, Bracci L, Masenga V, Milne RG, Benvenu E. Functional expression in bacteria and plants of an ScFv antibody fragment library. Proc Natl Acad Sci U S A 1999; 96: 7060-7064

40 Yi K, Chung J, Kim H, Kim I, Jung H, Kim J, Choi I, Suh P, Chung H. Expression and characterization of an anti-HER2/neu/anti-CD16 bispecific scFv that triggers CD16-monoclonal antibody HAb18 against hepatoma F(ab') 2 fragment and HIV. J Immunol Methods 2000; 231: 53-63

41 Adams GP, Schier R. Generating improved single-chain Fv molecules for tumor targeting. J Immunol Methods 1999; 231: 249-260

42 McCall AM, Adams GP, Amoroso AR, Nielsen UB, Zhang L, Horak E, Simmons H, Schier R, Marks JD, Weiner LM. Isolation and characterization of an anti-HER2/neu/anti-CD16 bispecific scFv that triggers CD16-dependent tumor cytosis. Mol Immunol 1999; 36: 433-445

43 Winthrop MD, DeNardo SJ, DeNardo GL. Development of a hyperimmune anti-MUC-1 single chain antibody fragments phage display library for targeting breast cancer. Clin Cancer Res 1999; 5(Suppl): 3088s-3094a

44 Stanier BM. Antibody production without animals. Dev Biol Stand 1999; 101: 45-58

45 Topping KP, Hough VC, Monson JR, Greenman J. Isolation of human colorectal tumour reactive antibodies using phage display technology. Int J Oncol 1999; 16: 187-195

46 Adams GP, Schier R. Improving generated single-chain Fv molecules for tumor targeting. J Immunol Methods 1999; 231: 249-260

47 Lekkerkerker A, Logtenberg T. Phage antibodies against human dendritic cell subpopulations obtained by flow cytometry-based selection on freshly isolated cells. J Immunol Methods 1999; 231: 53-63

48 van Kuppevelt TH, Dennissen MA, van den Broeck WJ, Hoet RM, Veerkamp JH. Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 1998; 273: 12960-12966

49 Cheng H, Liu YF, Zhang HZ, Shen WA, Zhang SZ. Construction and expression of anti-HCC immunotoxin of sf-TNF-f and GFP fusion proteins. Shijie Huaren Xiaoxia Zachi 2001; 9: 640-644

50 Rodenburg CM, Mernaugh R, Bilbao G, Khazaei MB. Production of a single chain anti-CEA antibody from the hybridoma cell line T84. 66 using a modified colony-lift selection procedure to detect antigen-positive ScFv bacterial clones. Hybridoma 1998; 17: 1-8

51 Yu ZC, Ding J, Nie YZ, Fan DM and Zhang XY. Preparation of single chain variable fragment of MG mAb by phage display technology. World J Gastroenterol 2001; 7: 510-514

52 Darimont BD. The Hsp90 chaperone complex-A potential target for cancer therapy World J Gastroenterol 1999; 5: 195-198

53 Bi WX, Xu SD, Zhang PH, Kong F. Antitumor activity of low density lipoprotein acalocinimycin complex in mice bearing H22 tumor. World J Gastroenterol 2000; 6: 140-142

54 Yang CQ, Wang JY, Feng JT, Liu J, Guo JS. A comparison between immunosensor and peritoneal route on liver targeted uptake and expression of plasmid delivered by Glyco poly L-lysine. World J Gastroenterol 2000; 6: 508-512

55 Cheng H, Zhang L, Lu QS, Feng XR, Luo KX. Lactosamination of liposomes and hepatotropic targeting research. World J Gastroenterol 2000; 6: 747-749

56 He Y, Zhou J, Wu JS, Dou KF. Inhibitory effects of EGFR antisense oligodeoxynucleotide in human colorectal cancer cell line. World J Gastroenterol 2000; 6: 134-135

57 Wang XW, Yuan JH, Zhang RG, Guo LX, Xie Y, Xie H. Antibapetoma effect of alpha fetoprotein antisense phosphorothioate oligodeoxynucleotides in vitro and in mice. World J Gastroenterol 2001; 7: 345-351

58 Wang L, Lu W, Chen YG, Zhou XM, Gu JR. Comparison of gene expression between normal colon mucosa and colon carcinoma by means of messenger RNA differential display. World J Gastroenterol 1999; 5: 533-534

59 Kong XB, Yang ZK, Liang LJ, Huang JF, Lin HL. Overexpression of P-glycoprotein in hepatocellular carcinoma and its clinical implication. World J Gastroenterol 2000; 6: 134-135

60 Qin LL, Su JI, Li Y, Yang Z, Ban KC, Yuan Q. Expression of IGF-I, p53, p21 and HBxAg in precancerous events of hepatocarcinogenesis induced by AFBI and/or HBV in tree shrews. World J Gastroenterol 2000; 6: 134-135

61 Li, Feng CW, Zhao ZG, Zhou Q, Wang LD. A preliminary study on ras protein expression in human esophageal cancer and precancerous lesions. World J Gastroenterol 2000; 6: 276-280

62 Tian XJ, Wu J, Meng L, Dong ZW, Shou CC. Expression of VEGF121 in gastric carcinoma MGCL803 cell line. World J Gastroenterol 2000; 6: 281-283

63 Xu AG, Li SG, Liu JH, Gan AH. Function of apoptosis and protein expression of bcl2, p53 and C-myc in the development of gastric cancer. World J Gastroenterol 2000; 6(Suppl 3): 27-33

64 Li JY, Huang Y, Lin MF. Clinical evaluation of several tumor markers in the diagnosis of primary hepatic cancer. World J Gastroenterol 2000; 6(Suppl 3): 39-41

65 Lin CY, Chen ZL, Lu CM, Li Y, Wang J, Ping XJ, Huang R. Immuno- nohistochemical study on p53, Hrasp21, cerbB2 protein and FCNA expression in tumor tissues of Han and minority ethnic patients with primary hepatic carcinoma in Xinjiang. World J Gastroenterol 2000; 6(Suppl 3): 53-58

66 Fan ZR, Yang DH, Cui J, Qin HR, Huang CC. Expression of insulin like growth factor and its receptor in hepatocellular carcinogenesis. World J Gastroenterol 2001;7:285-288

67 Zheng CX, Zhan WH, Zhao JZ, Zheng D, Wang DP, He YL, Zheng ZQ. The prognostic value of preoperative serum levels of CEA, CA19-9 and CA72-4 in patients with colorectal cancer. World J Gastroenterol 2001;7:431-434

68 Xu AG, Li SG, Liu JH, Gan AH. Function of apoptosis and expression of the proteins Bcl-2, p53 and C-myc in the development of gastric cancer. World J Gastroenterol 2001; 7: 403-406

69 Li XC, Song JD, Wang YQ. Differential expression of a novel colorectal cancer differentiation-related gene in colorectal cancer. World J Gastroenterol 2001; 7: 551-554

70 Chen QK, Yuan SZ, Zeng ZY, Huang ZQ. Tumoricidal activation of murine resident peritoneal macrophages on pancreatic carcinoma by interleukin2 and monoclonal antibodies. World J Gastroenterol 2000; 6: 287-289