Flavonoids: isolation, characterization, and health benefits

Abiche Ekalu* and James Dama Habila

Abstract

Background: The unique and vast pharmacological activities of flavonoids have made them of research interest. This led to the use of various techniques to isolate and characterize them, intending to determine their potential health benefits.

Main text: The medicinal values of plant-based flavonoids that this literature review tends to summarize the pharmacological activities of these secondary metabolites from 22 selected plant families. The pharmacological shreds of evidence reported in the literature have proven that flavonoids have shown anti-cancer, anti-microbial, anti-oxidant, anti-inflammatory, anti-fungal, anti-ulcer, and anti-edematogenic activities. Out of these, 30% showed to have anti-oxidant activity, key in protecting the body against free radicals. Besides, 18% of the references showed anti-microbial and anti-cancer activities. Further literature reports indicated that flavonoids from these families exhibited anti-inflammatory and anti-edematogenic (9%), anti-viral and anti-ulcer (5%), anti-fungal, anti-nociceptive, and anti-histamine (2%).

Conclusion: The pharmacological activities of flavonoids from the various sources reviewed in this study show that the secondary metabolites could provide a scaffold for the development of potent anti-cancer drugs in the future.

Keywords: Flavonoids, Isolation, Characterization, Health benefits

1 Background

Flavonoids are phytochemicals responsible for the various colors in the seeds, flowers, fruits, leaves, and bark [1]. Flavonoids are a large class of natural aromatic compounds as there are reported to be the most common plants’ phenolics [2, 3]. Over the years, flavonoids have represented a vast percentage of phytochemicals from natural sources. It has been reported that more than 10,000 different classes of flavonoids have been found in kingdom Plantae [4–6]. Flavonoids are secondary metabolites found in organs of these plants with different functions [7, 8]. Also, they have been reported from sources such as vegetables, wine, fruits, and beverages (tea) [9].

The chemical structures of flavonoids consist of C6-C3-C6 [10] rings which correspond to two aromatic rings A and B linked by three carbon atoms, which may lead to the formation of a third ring (C). Variations in this basic structure give the various subclasses of flavonoidal compounds. These are flavanones, isoflavones, flavones, flavanols (catechins), chalcones, flavonols, and anthocyanins [11–14]. The flavonoids present in the diet help in the prevention of cardiovascular disease [15]. The biological and oxidative properties of flavonoids are responsible for their anti-allergic, cardioprotective, anti-diabetic, anti-inflammatory, anti-oxidative activity, and free radical scavenging capacity [15, 16]. Also, flavonoids have been reported to exhibit anti-cancer activity [5]. Studies of flavonoids revealed that they are free radical scavengers and reducing agents [17]. Recent researches have focused on the health benefits of these secondary metabolites because of their preventive activity against diseases and anti-oxidative activity, anti-cancer activities, anti-viral activities, and anti-inflammatory [18, 19]. Aside from the anti-oxidant activity of flavonoids, chelating properties [20],
their usage as anti-aging substances [21], capillary permeability, and inflammatory response [22], anti-bacterial and therapeutic [23], gastro-protective, and anti-diabetic activity [3] of these phenolics have been reported.

The protective effects such as the anti-inflammatory, anti-oxidant, anti-viral, and anti-tumor activity of flavonoids from natural sources are well documented [24]. The anti-carcinogenic activity of flavonoids has been linked to their anti-oxidant properties [25] which is due to the hydroxyl groups on the structure of the flavonoids [26]. Because of the importance of these phytochemicals, this review summarizes the isolation, characterization, and health benefits of these flavonoids taking into consideration those phytochemicals responsible for these activities. The health benefits reviewed were anti-cancer, anti-microbial, anti-oxidant, anti-inflammatory, anti-fungal, anti-ulcer, and anti-edematogenic activities.

2 Main text

2.1 Methods

The search was done by using keywords such as flavonoids on “science direct,” “google scholar,” “Scopus” database, and many journal sites. Journals employed in the search are Elsevier and Springer. Other search engines used as well as papers published between 2006 and 2019.

3 Results

3.1 Flavonoids biosynthetic pathway

Flavonoids or stilbenes biosynthetic pathway (Fig. 1) follow the extension of 4-hydroxycinnamoyl-CoA with three malonyl-CoA units, in which the poly-β-keto chain folded in different ways, via Aldo or Claisen reactions. Stilbene synthase and chalcone synthase (enzymes) couple the three malonyl-CoA with cinnamoyl-CoA unit to give chalcones or stilbene. Chalcones are precursors for the vast range of flavonoids and their derivatives found in plants. The nucleophilic attack (Michael type) of a phenolic group on α, β-unsaturated ketone forms a six-membered heterocyclic ring such as naringenin. This isomerization reaction in an acid condition favors the flavanone while in basic condition, the chalcone [27]. Flavanones then give rise to variants of flavonoids such as flavonols, flavones, anthocyanidins, and catechins as shown in Fig. 1.

3.2 Sources and classification of flavonoids

The various sources of flavonoids have been reported [28] and are given in Table 1 while their classification [29] is shown in Table 2 showing the subclasses. Similarly, Fig. 2 showed the basic skeleton of flavonoids and their various classes.

3.3 Isolation of flavonoids

The isolation of flavonoids involves various techniques available to natural products researchers that have simplified their isolation from crude extracts. These techniques are column chromatography (CC), high-performance liquid chromatography (HPLC), high-speed counter-current chromatography (HSCCC), counter-current chromatography (CCC), open centrifugal preparative thin layer chromatography (CPTLC), preparative thin-layer chromatography (PTLC), medium pressure liquid chromatography (MPLC), and high-pressure preparative liquid chromatography (HPLC) [29, 30]. The details of the extraction, steps, and the solvents used for the structural elucidation and characterization of the flavonoids summarized in this review are shown in Table 5.

3.4 Techniques used to elucidate the structure of flavonoids

Natural products researchers use the following spectroscopic techniques to elucidate the structure of flavonoids. These are infrared spectroscopy (IR), nuclear magnetic resonance (NMR), ultra-violet spectrophotometry (UV), mass spectrometry (MS), and physical properties as electronic circular dichroism (ECD), melting point (m.pt), and specific rotation power ([α]D) for flavonoids with a stereocenter for ECD and [α]D. Flavonoids have unique chemical shifts. These characteristic chemical shifts make it easier to characterize them. The characteristic chemical shift values reported [29] for some flavonoid classes are given (Table 3) and the UV absorption ranges for these flavonoids are shown (Table 4).

The isolation, characterization, and health benefits of these flavonoids are represented (Scheme 1).

4 Discussion

4.1 Health benefits of flavonoids

Extensive biological studies of flavonoids have revealed their health benefits including disease prevention [5, 72]. They have exhibited anti-oxidant, anti-inflammatory, antibacterial, and anti-viral activities [73], anti-oxidant [74], anti-allergic anti-carcinogenic properties [75]. The protective effects of flavonoids have been reported as they help to reduce oxidative stress in the body. The cholesterol-lowering activity, anti-cancer, anti-oxidant of myricetin, tricin, apigenin, luteolin, quercetin, and isorhamnetin has been reported [24]. The anti-viral, anti-bacterial, anti-cancer, cardioprotective, and anti-inflammatory activity [76], as chelating agents and, are strong topoisomerase inhibitors [24] anti-aggregational, anti-atherosclerotic, and detoxification activities [77] of various flavonoids have been reported. These biological activities depend to a larger extent on the hydroxyl group in the flavonoids [78]. Quercetin has reduced the risk of cancer, eye diseases, arthritis, and allergic disorders [9]. The decreased risk of cardiovascular disease by proanthocyanins and flavone-3-ols has been reported [23]. The techniques used for the isolation,
Fig. 1 Biosynthetic pathway of flavonoid

Ekalu and Habila Beni-Suef University Journal of Basic and Applied Sciences (2020) 9:45
Page 3 of 14
characterization, and the health benefits of these flavonoids are as shown in Table 5.

The pharmacological activities of the phytochemical constituents from 22 plant families reported in the literature as reviewed in Fig. 3 showed the percentages of these activities. Out of the references cited, 30% of the flavonoids showed anti-oxidant activity. Because of this vast anti-oxidant activity, flavonoids reduce aging by protecting the body against free radicals oxidation [26, 79].

4.2 Anti-oxidant activity
Anti-oxidants are compounds that slow or prevent oxidation in living cells. They act against the effects of free radicals. Flavonoids protect the body against reactive oxygen species. Chemically, flavonoids have hydroxyl groups and a highly conjugated π-electron system, which allows them to act as free radical scavengers [80]. Anti-oxidant activity of flavonoids [16, 20, 33, 76, 81], chelating properties [20], makes them act as protective agents against free radicals [26, 79]. In the body, anti-oxidants protect the human body from free radicals oxidation [17] thereby retarding the progress of many chronic diseases. Epicatechin, epigallocatechin, and gallocatechin have exhibited anti-oxidant activity [31].

Naringenin has shown anti-oxidant, anti-diabetic, anti-atherogenic, anti-depressant, immunomodulatory, antitumor, anti-inflammatory, and hypolipidaemic, activity [12]. Catechin, epicatechin, rutin, quercetin, and naringin have been reported for anti-oxidant activity against free radicals [32]. The anti-oxidant activity of spectaflovoside A, kaempferol-3-O-(2′′,3′′-di-O-acetyl)-α-L-rhamnopyranoside, kaempferol-3-O-(2′′,4′′-di-O-acetyl)-α-L-rhamnopyranoside, kaempferol, and kaempferol-3-O-(4′′-O-acetyl)-α-L-rhamnopyranoside were documented [36]. The anti-oxidant activity of flavonoids extracted from Phlomis bovei De Noé [82], quercetin, taxifolin, catechin, and galangin, anthocyanidin, kaempferol, catechins, and catechin gallate esters have been reported [83]. Quercetin, anthocyanidin and kaempferol, catechins, and catechin gallate esters are effective anti-oxidants against free radicals. Quercetin had shown excellent in vitro anti-oxidant capacity [59]. Quercimeritrin, scutellarein, and rutin isolated from C. angustifolia showed strong anti-oxidant activity against oxidative stress [54]. The phytochemical investigation of the ethanol extract of Ximenia parviflora Benth. Var led to the isolation of quercetin, kaempferol, and apigenin with anti-oxidant activity. Similarily, the naringenin, quercetin, and kaempferol isolated from the ethanolic extract of Viscum album L showed anti-oxidant activity [62]. Catechins have been reported for its protection against oxidative stress, cancer, and cardiovascular disorder [84]. In Fig. 4, the chemical structures of flavonoids reported for their benefits are as shown.

4.3 Anti-microbial activity
The broth microdilution assay of spectaflovoside A, kaempferol-3-O-(2′′,3′′-di-O-acetyl)-α-L-rhamnopyranoside, kaempferol-3-O-(3′′,4′′-di-O-acetyl)-α-L-rhamnopyranoside, kaempferol-3-O-(4′′-O-acetyl)-α-L-rhamnopyranoside, kaempferol, and kaempferol-3-O-(2′′,4′′-di-O-acetyl)-α-L-rhamnopyranoside showed that these flavonoids exhibited remarkable anti-bacterial activities with a MIC values between 62.50 μg/mL and 500 μg/mL against E. coli, K. pneumoniae, S. aureus, and B. cereus [36]. In another study, luteolin, 3,5-dihydroxy-6,7,8-tetramethoxyflavone, apigenin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, apigenin 7-O-glucoside, apigenin 4′′-O-glucoside, kaempferol 3-O-glucoside, luteolin 4′′-O-glucoside, luteolin 4′,7-O-diglucoside, kaempferol, kaempferol 7-O-glucoside, and quercetin 3-O-glucoside.

Table 1 Sources of flavonoids [28]
Flavonoids
Flavonoids
Flavanones
Flavonones
Flavanones
Anthocyanids
Isoflavonones

Table 2 Classification of flavonoids [29]
Flavonoids
Flavanones
Flavones
Anthocyanins
Flavanones
Chalcones
Flavonols
Isoflavonoids
were reported for their vast anti-microbial activities against *P. aeruginosa* [38]. Apigenin and isoflavones exhibited anti-bacterial activity [16]. Genistein, kaempferol, naringenin, and catechin isolated from Brassica *oleracea* var. Capitata L. possessed anti-bacterial activity against *E. coli* and *S. aureus* [52].

The flavonoids, 3-hydroxy flavone derivatives, and 3-methyl flavanone showed activity against Gram +ve bacteria [75]. Scandenone, kaempferol-3,7-O-α-L-dirhamnoside tiloside, quercetin-3,7-O-α-L-dirhamnoside showed anti-microbial activity [43]. 7-Methoxy-3, 3′,4′,6-tetrahydroxyflavone, 3,3′,4′,7-tetrahydroxyflavone (fisetin), naringenin, 2′,7-dihydroxy-4′, 5′-dimethoxyisoflavon, 3′-hydroxylaidzein and xenognosin B exhibited the anti-bacterial activities against *B. subtili* ATCC 6633, *S. aureus* ATCC25932, and *B. cereus* ATCC7064 [48].

![Fig. 2 The basic skeleton of flavonoids and their various classes](image)

The basic skeleton of flavonoids and their various classes

Table 3 Characteristic chemical shifts for flavonoids [29]

Chemical shifts (ppm)	¹H	¹³C
2–3	H-3 (flavanone, CH₃ aromatic)	C-4 (flavanol)
4–6	H-2 (dihydroflavonol, flavanone)	Non-oxygenated (C-2,C-3-flavanone/flavanol)
6–8	A and B ring protons	Non-oxygenated aromatic carbons
8–8.5	H-2 (isoflavone)	Non-oxygenated aromatic carbons
12–14	5-OH when C=O at C4 (DMSO d6)	Oxygenated aromatic carbons
Chemical shifts (ppm)	**¹¹C**	**C=O**
28–35	5-OH when C=O at C4 (DMSO d6)	
7(2,2-dimethylchromeno)-2′-methoxy-γ,γ-dimethylallylflavone, artocarpin, pyranocycloartobiloxanthone A, and cyclohetraphyllin isolated from Artocarpus lowii King and Artocarpus anisophyllus Miq showed activity against \textit{S. aureus}, \textit{P. putida}, \textit{B. cereus}, \textit{E. coli}, \textit{C. albicans}, and \textit{C. glabrata} [49].

Table 4 UV absorption ranges for flavonoids [29]

Absorption 1 (nm)	Absorption 2 (nm)	Types
250–280	250–280	Flavonoids (3-OH-free)
245–275	250–280	Flavonols (3-OH-substituted)
275–295	250–280	Flavonones and dihydroflavonols
230–270	250–280	Chalcones
270–280	250–280	Anthocyanidins and Anthocyanins

Scheme 1 Flavonoids: isolation, characterization, and health benefits

4.4 Anti-cancer activity
The term cancer refers to a disease in which cells of a tissue undergo uncontrolled and often rapid proliferation [85]. This is also the loss of control of growth [86]. Alternative medicine has been used to treat cancer [87].
Table 5 Isolation, characterization, and health benefits of flavonoids
Isolation/characterization
Epicatechin, epigallocatechin, and gallicatechin
Naringenin
Catechin, epicatechin, rutin, quercetin, naringenin
Naringin, hesperidin, quercetin
Quercetin. kaempferol, myricetin, luteolin, apigenin
Spectaflovoside A, kaempferol-3-O-(2′,3′,4′,5′-tetramethoxyflavone), apigenin 4′-O-glucoside, apigenin 7-O-glucoside, luteolin 4′-O-glucoside, kaempferol 3′-O-glucoside, kaempferol 7-O-glucoside, luteolin 4,7-O-digluicoside and quercetin 3-O-glucoside
Quercetin glycosides, catechins
Rutin, quercetin, quercetin, naringin, hesperidin, hesperetin, kaempferol, apigenin, naringenin, 7-OH flavone
Quercetin, morin-3-O-lxoside, quercetin-3-O-arabinoside, morin-3-O-arabinoside
Rutin, quercetin, quercetin, naringin, hesperidin, hesperetin, kaempferol, apigenin, naringenin, 7-OH flavone
Quercetin, rutin, and naringenin
5,7-dimethoxyflavanone-4′-O-D-glucopyranoside, rutin, naringenin-7-O-[β-D-glucopyranoside, 5,7,3-trihydroxyflavanone-4′-O-β-D-glucopyranoside, 5,7-dimethoxyflavanone-4′-O-[2′,3′-O-trans-cinnamoyl]-β-D-apiofuranosyl]-β-D-glucopyranoside, and nicothinol
Tiliroides, scandenone, kaempferol-3′,7-O-d-l-rhamnoside quercetin-3,7-O-a-L-dihamnoside
Quercetin
Table 5 Isolation, characterization, and health benefits of flavonoids (Continued)

Isolation/characterization

Luteolin-7-O-glucoside
Quercetin
7-methoxyflavanone, 3-acetoxy-4′,5′-dihydroxy-and naringenin
2′,7-dihydroxy-4′,5′-dimethoxyisoflavon, 3′-hydroxydaidzein, 7-methoxy-3, 3′, 4′,6-tetrahydroxyflavone 3,3′,4,7-tetrahydroxyflavone (fisetin), naringenin, and xenognosin B
2′,4′-dihydroxy-3-methoxy-3′-prenylidihydrochalcone, 4'-hydroxyxochalcone, isobavachalcone, 5,7-dihydroxy4′-methoxy-6'-prenyllavonane, 2′,4′-dihydroxy-3,4-(2′,2′-dimethylchromeno)-3′-prenylidihydrochalcone, 5-hydroxy-6,7-(2,2dimethylchromano)-4′-methoxyflavonane, 4,5′-dihydroxy-6,7-(2,2-dimethylchromeno)-2′-methoxy-8-γ-γ-dimethylallylflavone, artocarpin, pyranocycloartobiloxanthone A, and cycloheterophyllin
Apigenin
Luteolin
Genistein, kaempferol, naringenin, and catechin
Quercetin-3-O-β-D-glucuronide, luteolin-7-O-β-glucopyranoside, formononetin-7-O-β-D-glucoside
Quercimeritrin, scutellarein, and rutin
Luteolin
2′, 5-dihydroxy-7-methoxyflavone, 2′, 5V-dihydroxy-7-methoxyflavonane
Kaempferol
Pinostrobin
and flavonoids, especially from plant sources, have not been left out. The pharmacological properties of flavonoids have made them useful alternatives to inhibit cell damage [73]. Flavonoids have been reported to be good anti-cancer therapeutics [88]. Quercetin particularly has been reported to be effective in the treatment of stomach, lung, prostate, and breast cancers [29]. Pradhan et al. 2015 reported the anti-tumor activity of quercetin without toxicity on the breast cancer cell, MCF-7 [89]. The anti-cancer activity of quercetin has been linked to the inhibition of the enzyme (DNA gyrase) [90]. Luteolin isolated from the leaves of Struchium sparganophora has caused cell death of melanoma and ovarian cancer cell lines [51]. Luteolin-7-O-β-glucopyranoside, formonononetin-7-O-β-D-glucoside, and quercetin-3-O-β-d-glucuronide isolated from the leaves of Cassia tora L. were active against breast cancer (MCF7) [53]. Luteolin from the Vitex negundo LIN was an active anti-tumor agent [55]. In another study, the 2′, 5-dihydroxy-7-methoxyflavanone and 2′, 5-dihydroxy-7-methoxyflavone isolated from Andrographis glandulosa were active against HeLa, MIA PaCa, and U-8 [56]. Quercetin has been reported to induce

Table 5 Isolation, characterization, and health benefits of flavonoids (Continued)

Isolation/characterization	Solvents used	Sources	Family	Health benefits	Ref.	
Cyanarodide	CC, TLCNMR, GC-MS	EtOH, EtOAc †	H. chillensis	Asteraceae	Anti-cancer activity	[59]
Procyanidin A, procyanidin B, and catechin/epicatechin	LC-MS, HPLC DAD-MS/MS	H₂O	Ximenia americana L.	Olacaceae	Anti-ulcerogenic activity	[60]
Quercetin, kaempferol, and apigenin	HPLC-DAD	EtOH (50, 80, and 100%, v/v)	Ximenia parviflora Benth. var.	Olacaceae	Anti-oxidant activity	[61]
Naringenin, quercetin, and kaempferol	HPLC	EtOH 70% (1:10, w/v)	Viscum album L.	Santalaceae	Anti-oxidant activity	[62]
Catechin, rutin, quercetin, quercetin, and kaempferol	HPLC-DAD	H₂O 100% EtOH (1:1)	Ximenia americana L.	Olacaceae	Anti-oxidant activity	[63]
Kaempferol 3-Orutinoside, kaempferol-7-O-β-D-glucopyranoside, Spi-nacetin 3-O-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside]-7-O-[α-Lrhamnopyranoside], and quercetin 7-O-β-D-glucopyranoside	TLC, NMR and ESI-MS	EtOH	Anvillea garcinii	Asteraceae	Anti-ulcer activity	[64]
Hesperidin	TLC, IR and HPLC	MeOH	Citrus sinensis (L.) Osbeck	Rutaceae	Anti-ulcer activity	[65]
Apigenin 4′-Oβ-D-glucopyranoside, isoorquercetin, nicotiflorin and apigenin 6-Cα-L-arabinopyranoside-8-Cβ-D-glucopyranoside	TLC, NMR	EtOH	Vicia sativa	Fabaceae	Anti-oxidant activity (P < 0.05)	[66]
cirsiliol, isorhamnetin 3-O-b-D-glucoside, chrysoplenol D, artemetin	TLC, NMR, FT-IR	100% MeOH	Chrysanthemum moniliflorum	Asteraceae	Anti-inflammatory activity	[67]
Armetetin	CC and NMR	Acetone	Cordia curassavica DC	Boraginaceae	Anti-oxidant activity	[68]
3-methoxy quercetin	TLC, NMR	n-butanol	Garcinia kola Heckel	Clusiaceae	Anti-inflammatory activity	[69]
Quercetin 3-O-β-L-arabinopyranosyl (1→2) -L-rhamnopyranoside	HPLC, NMR	H₂O₂ EtOH (1:1)	Kalanchoe pinnata (Lamarck) Persoon	Crassulaceae	Anti-inflammatory, anti-nociceptive, and anti-edematogenic activity	[70]
3, 5-dihydro-7-methoxy anthocyanidines	PTLC, NMR	CHCl₃: EtOAc (9:1)	Monanthotaxis littoralis	Annonaceae	Anti-fungal activity	[71]

*MPLC medium pressure liquid chromatography, LC-ESI/MS liquid chromatography electrospray ionization mass spectrometry, TLC thin layer chromatography, VLC vacuum liquid chromatography, LC-MS liquid chromatography-mass spectrometry, HPLC-MS high-performance liquid chromatography-mass spectrometry, EIMS electrospray ionization mass spectrometry, HPLC-DAD high-performance liquid chromatography with diode array detection, GC-MS gas chromatography-mass spectrometry, MIC minimum inhibitory concentration
† Increasing polarity
‡ A review journal

Ekalu and Habila Beni-Suef University Journal of Basic and Applied Sciences (2020) 9:45 Page 9 of 14
cytotoxicity in cancer cells [91]. Kaempferol isolated from Ageratum conyzoides L. exhibited activity against lung cancer, gastric cancer, colon cancer, and glioma cancer [57]. Pinostrobin isolated from Cajanus cojan exhibited anti-leukemia activity [58]. The cynaroside isolated from H. chillensis was active against OVACAR-8, HCT-116, and SF-295 [59]. Nobiletin at 20 μM inhibited human ovarian cancer [76].

Quercetin, kaempferol, myricetin, luteolin, and apigenin isolated from the aqueous and/or alcohol extracts of Khlu leaves exhibited anti-cancer activities [34]. Quercetin has shown anti-tumor activity [25]. Myricetin and quercetin inhibited mammalian TrxRs with IC₅₀ values of 0.62 and 0.97 Mmol/L, respectively [92]. Apigenin has been reported to arrest HT29 colon cancer [50]. Oncamex showed a strong anti-tumor effect against breast cancer while hesperetin was active against lung and carcinoma cancer cells [93]. Hesperidin and naringin isolated from the alcoholic extract of Colvillea racemosa were active against colon carcinoma cell lines (HCT-116) [40]. Quercitin, morin, and myricetin have shown protective effects in the prevention of liver, cardiovascular diseases, and cancer [16].

4.5 Anti-inflammatory

Inflammation is a normal biological process in response to pathogen infection, tissue injury, or chemical irritation [16]. The anti-inflammatory properties of anthocyanins have been reported [81]. Previous in vitro studies of flavonoids showed inhibition against LPS-induced TNF-α production [94]. The report of the phytochemical investigation of Vicia sativa led to the isolation of apigenin 4’-Oβ-D-glucopyranoside, isoquercetin, nicotiflorin, and apigenin 6-Cα-L-arabinopyranoside-8-Cβ-D-glucopyranoside that showed significant anti-edematogenic activity (P < 0.05) [66]. Iso-rhamnetin 3-O-b-D-glucoside, cirsiliol, chrysosplenol D, and artemetin isolated from Chrysanthemum morifolium Ramat inhibited the NO production in LPS-induced RAW 264.7 cells [67]. Daidzein, quercetin, genistein, and kaempferol have inhibited the production of both STAT-1 and NF-κB [95]. Similarly, the 3-methoxy quercetin isolated from Garcinia kola Heckel at concentrations (25 and 125 μM) inhibited the production of TNF-α [69]. The quercetin 3-O-L-arabinopyranosyl(1→2)-L-rhamnopyranoside isolated from Kalanchee pinnata (Lamarck) Persoon showed anti-inflammatory activity [70]. At higher doses, flavonoids have shown a decrease in proliferation, CD14 surface marker, and NO production [96]. The flavonoids, artocarpone A, artocarpanone, and heteroflavanones B and C have shown a remarkable inhibitory effect on iNOS protein expression and NO production in RAW 264.7 cells [97].

4.6 Anti-fungal activity

The flavonoids, diglycosylflavones, flavonol-3-O-glycosides, and proanthocyanidins isolated from Ephedra alata showed anti-fungal activity [22], nobiletin and langeritin, and hesperidin exhibited strong and weak anti-fungal activities, respectively [2]. The flavonoid, baicalein, showed anti-candidal activity against C. tropicalis ATCC 170.06, C. albicans ATCC 64550, and C. parapsilosis with the MIC₅₀ of 2.6, 26, and 13 μg mL⁻¹, respectively [98]. The 3, 5-dihydroxy-7-methoxy anthocynidines isolated from Monanthotaxis littoralis was active against mycotoxicogenic [71]. (-)-epicatechin-3-Oβ-glucopyranoside, 6-p-hydroxybenzyltaxifolin-7-O-b-D-glucoside, 5-hydroxy-3-(4-hydroxyphenyl) pyrano[3,2-g]chromene-4(8H)-one (-)-epicatechin(2(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol, and quercetin-3-O-a-glucopyranosyl-(1→2)-b-D-glucopyranoside isolated from Mangifera indica L exhibited anti-fungal activity [99].

4.7 Anti-ulcer activity

An ulcer is a disease of the alimentary tract caused by an inflamed break in the mucus lining membrane [100]. The anti-ulcer activity of quercetin in animals has been reported [72]. The phytochemical investigation of the
aqueous extract of *Ximenia americana* led to the isolation of procyanidins B and C as well as catechin/epicatechin which were active against acute gastric ulcer [60]. The spinacetin 3-0-[α-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside]-7-O-[α-L-rhamnopyranoside], kaempferol-3-Orutinoside, kaempferol-7-O-β-D-glucopyranoside, and quercetin-7-O-β-D-glucopyranoside isolated from the ethanol extracts of *Anvillea garcinii* showed a powerful anti-ulcer [64]. The hesperidin isolated from *Citrus sinensis* showed anti-ulcer activity [65].

4.8 Anti-edematogenic activity
Catechin, rutin, quercitrin, quercetin, and kaempferol isolated from the H2O 100% EtOH (1:1) of *Ximenia americana* L showed anti-edematogenic activity against ear edema in rat [63]. Artemetin isolated from *Cordia curassavica* DC exhibited remarkable anti-edematogenic activity [68].

5 Conclusions
Twenty-two members of the different families containing flavonoids studied for their health benefits confirmed the medicinal importance of these phytochemicals from these sources. The pharmacological pieces of evidence reported in the literature has proven that these flavonoids have shown anti-cancer, anti-microbial, anti-oxidant, anti-inflammatory, anti-fungal, anti-ulcer, and anti-edematogenic activity. Out of the references cited, 30% focused on the anti-oxidant activity of flavonoids, key in protecting the body against free radicals and oxidative stress. Also, 18% of the references showed anti-microbial and anti-cancer activities. Further literature reports indicated that flavonoids from these families exhibited anti-inflammatory and anti-edematogenic (9%), antiviral and anti-ulcer (5%), anti-fungal, anti-nociceptive, and anti-histaminic (2%). The pharmacological activities of flavonoids from the various sources reviewed in this study show that the secondary metabolites could provide a scaffold for the development of potent anti-cancer drugs in the future.

Abbreviations
MPLC: Medium pressure liquid chromatography; LC-ESI/MS: Liquid chromatography electrospray ionization mass spectrometry; TLC: Thin layer chromatography; VLC: Vacuum liquid chromatography; LC-MS: Liquid chromatography-mass spectrometry; HPLC-MS: High-performance liquid chromatography-mass spectrometry; EIMS: Electrospray ionization mass spectrometry; HPLC-DAD: High-performance liquid chromatography with diode array detection; GC-MS: Gas chromatography-mass spectrometry

Acknowledgements
The authors acknowledge the efforts of Dr. Eduard Mas Claret, a research fellow at the Department of Chemistry, University of Surrey, the UK, for reviewing the manuscript.

Authors’ contributions
This research was designed by AE and HDJ. AE wrote the manuscript under the supervision of HDJ. All authors read and approved the final manuscript.
44. Zahoor M, Shafiq S, Ullah H, Sadique A, Ullah F (2018) Isolation of quercetin and mandelic acid from Aesculus indica fruit and their biological activities. BMC Biochem 19:1–14

45. Geğbişeler H (2017) In Vitro Biological Activity Studies on Tanacetum abrotanifolium (L.) Drude (Asteraceae). Anatolu Univ J Sci Technol A-Appi Sci Eng 18(2):439–455. https://doi.org/10.18039/autuba.2644996

46. Sharma Y, Nagar A, Srivastava NS, Bhat C (2017) Antioxidant activity of polyphenolic flavonoid of stem of Nicotiana tabacum. Am J Drug Discov Dev 7(1):25–32. https://dx.doi.org/10.9232/ajdd.2017.25.32

47. Fukuda M, Ohkishi E, Makino M, Fujiimoto Y (2006) Studies on the constituents of the leaves of Baccharis dracunculifolia (Asteraceae) and their cytotoxic activity. Chem Pharm Bull 54:1655–1660. https://doi.org/10.1248/cpb.s54165

48. Taechrionsavan T, Channapat S, Ruenwasan W, Phuthawang WS (2014) Antibacterial activity of new flavonoids from Strepotyces sp. BT01; an endophyte in Boesenbergia rotundata (L.) mansf. J Appl Pharm Sci 4(4):18–33. https://dx.doi.org/10.37234/JAPS.2014.40402

49. Jamil S, Lathiff SMA, Abdullah S, Jemnon N, Sirat HM (2014) Antimicrobial flavonoids from Anacardus anticarpius miq. and antacardus Iowi King. J Teknik 71(1):95–99. https://dx.doi.org/10.1111/nca.12030

50. Sadjadi SE, Ghadianian M, Haghighi M (2016) Isolation and identification of two phenolic compounds from a moderately cytotoxic fraction of Cousinia verrucosfolia Bunge. Adv Biomed Res 6:1–5. https://dx.doi.org/10.4103/2277-9175.190980

51. Kasim LS, Ferro V, Odukoya OA, Ukpo GE, Seidel V, Gray AI, Waigh R (2011) Cytotoxicity of isolated compounds from the extracts of Stachium platyphyllum (Acanthaceae) leaves. Pak J Pharm Sci 24(6):675–478

52. Satish A, Farha SS, Urooj A (2018) Quantification of flavonoids by UPLC-MS and its antibacterial activity of Brassica oleracea var. Capitata L. GSC Biol Pharm Sci 51(1):109–114

53. Vijayalakshmi A, Masilamani K, Nagarajan E, Ravichandiran V (2015) In vitro antioxidant and anticancer activity of flavonoids from Cassia tora linn. leaves against human breast carcinoma cell lines. Der Pharma Chem 7(9):122–129

54. Ahmed SI, Hayat MQ, Tahir M, Mansoor Q, Ismail M, Keck K, Bates RB (2016) Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Cassia angustifolia Vahl. BMC Complement Altern Med 16:1–9. https://dx.doi.org/10.1186/s12929-016-1443-z

55. Chowdhury AR, Sharma S, Mandal S, Goswami A, Mukhopadhyay S, Majumder HK (2002) Luteolin, an emerging anti-cancer flavonoid, poisons cancer cells. J Ethnopharmacol 81:213–217. https://doi.org/10.1016/S0378-8741(02)00109-0

56. Cherukupalli N, BhumiReddy SR, Akella SSV, Satyania A, Sripada P, Khaereud VR, Vedum DR (2017) Phytochemical profiling and in vitro anticancer activity of purified flavonoids of Andrographis glauca: Planta Medica Int Op 4:24–34. https://dx.doi.org/10.1055/s-0034-1383724

57. Tan NH, Akindahunsi AA, Zeng GZ, Zhang YM, Adebayo AH (2010) Anticancer activity of the extracts of Ageratum conyzoides (Linn) Ktze asteraceae. Pak J Pharm Sci 24(4):475

58. Geçibesler HI (2017) Pharmacologically active flavonoids from the anticancer, antioxidant and antimicrobial extracts of Ekalu and Habila Beni-Suef University Journal of Basic and Applied Sciences. https://doi.org/10.7324/JAPS.2014.40402

59. Sharma Y, Nagar A, Srivastava NS, Bhat C (2017) Antioxidant activity of polyphenolic flavonoid of stem of Nicotiana tabacum. Am J Drug Discov Dev 7(1):25–32. https://dx.doi.org/10.9232/ajdd.2017.25.32

60. Aragão TP, dos Prazeres LDKT, Brito SA, PJR N, Rolim LA, da Silva AJRG, Caldas J (2018) Contribution of secondary metabolites to the gastroprotective effect of aqueous extract of Muntingia Calabura leaves and fruits aqueous extracts of Muntingia Calabura in mice. J Pharm Biochem Biotechnol 4(1):81. https://dx.doi.org/10.5667/tang.2011.0016

61. Sánchez-Gutiérrez JA, Vázquez-Sánchez M, Álvarez-Bernal D, Mares-Quiriones MD, Vallenite-Banuet JJ, Medina-Medrano JR, Villar-Luna E (2018) Determination of phenolic compounds and the antioxidant capacity of Ximenia pistaciaefolia Benth. var. pistaciaefolia (Olacaceae) fruit by high-performance liquid chromatography with diode array detection. Anal Lett 51:1986–1998. https://doi.org/10.1080/00032719.2017.1404098

62. Serrano Turla LM, Bahrin LG (2017) Flavonoids: Important Biocompounds in Food. Intech Open:354–369

63. Sajjadi SE, Ghanadian M, Haghighi M (2016) Isolation and identification of polyphenolic flavonoid of stem of Nicotiana tabacum. Am J Drug Discov Dev 7(1):25–32. https://dx.doi.org/10.9232/ajdd.2017.25.32

64. Sharma Y, Nagar A, Srivastava NS, Bhat C (2017) Antioxidant activity of polyphenolic flavonoid of stem of Nicotiana tabacum. Am J Drug Discov Dev 7(1):25–32. https://dx.doi.org/10.9232/ajdd.2017.25.32

65. Fukuda M, Ohkishi E, Makino M, Fujiimoto Y (2006) Studies on the constituents of the leaves of Baccharis dracunculifolia (Asteraceae) and their cytotoxic activity. Chem Pharm Bull 54:1655–1660. https://doi.org/10.1248/cpb.s54165
85. Pawar SR, Jangam S, Waghmare S (2018) Anti-cancer herbal drugs: an overview. J Drug Deliv Ther 8(4):48–58
86. Elnour AM, Penech F, Mesaik AM (2018) Four selected sudanese medicinal plants induce anticancer and cytotoxic effects in prostate cancer cell line. Clin Med Biochem 3(2):3–6. https://doi.org/10.4172/2471-2663.1000134
87. Roy A, Ahuja S, Bharadwaja N (2017) A review on medicinal plants against cancer anticancer activity of medicinal plants. J Plant Sci Agric Res 2(1):1–5
88. Ragazzon PA, Iley J, Missalidis S (2009) Structure-activity studies of the binding of the flavonoid scaffold to DNA. Anticancer Res 29:2285–2293
89. Pradhan D, Pradhan RK, Tripathy G, Pradhan S (2015) Inhibition of proteasome activity by the dietary flavonoid Quercetin associated with growth inhibition in cultured breast cancer cells and xenografts. J Young Pharm 7(3):225–233. https://doi.org/10.5530/jyp.2015.3.13
90. Cushnie TPT, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
91. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, Choudhary R, Raghavan SC (2016) Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep 6:1–13. https://doi.org/10.1038/srep24049
92. Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A (2006) Inhibition of mammalian thioredoxin reductase by some flavonoids: Implications for myricetin and quercetin anticancer activity. Cancer Res 66(8):4410–4418. https://doi.org/10.1158/0008-5472.CAN-05-3310
93. Staniscic D, Costa FA, Favaro FW, Tasic L, Siebra AB, Duran N (2018) Anticancer activities of hesperidin and hesperetin in vivo and their potentiality against bladder cancer. J Nanomed Nanotechnol 9(5). https://doi.org/10.4172/2157-7439.1000515
94. Ueda H, Yamaizaki C, Yamaizaki M (2004) A hydroxyl group of flavonoids affects oral anti-inflammatory activity and inhibition of systemic tumor necrosis factor-α production. Biosci Biotechnol Biochem 68(1):119–125. https://doi.org/10.1271/bbb.68.119
95. Nieminen R, Vuorela P, Heinonen M, Mollanen E (2007) Anti-inflammatory effects of flavonoids: genistein, kaempferol, quercetin, and daidzein inhibit STAT-1 and NF-κB activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only NF-κB activation along with their inhibitory. Mediat Inflamm 2007:1–10. https://doi.org/10.1155/2007/45673
96. Gupta A, Chaphalkar SR (2016) Anti-inflammatory and immunosuppressive activities of flavonoids from medicinal plants. J Herb Med Pharmacol 5(3):120–124
97. Bai-Luh W, Jing-Ru W, Pao-Hui C, Chi-Feng H, Jih-Pyang W, Lin C (2005) Antinflammatory Flavonoids from Antacurpus heterophyllus and Antacurpus communis. J Agric Food Chem 53:3867–3871
98. Serpa R, Franc EK, Furlaneto-maia L, Andrade CGTJ, Diniz A, Furlaneto MC (2012) In vitro antifungal activity of the flavonoid baicalein against Candida species. J Med Microbiol 61:1704–1708. https://doi.org/10.1099/jmm.0.047852-0
99. Kanavala Q, Hussain I, Siddiqui HL, Javid A (2010) Antifungal activity of flavonoids isolated from mango (Mangifera indica L) leaves. Nat Prod Res 24(20):1907–1914. https://doi.org/10.1080/14786419.2010.488628
100. Vimala G, Shoba FG (2014) A review on antulcer activity of few indian medicinal plants. Int J Microbiol 2014:1–14

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.