A GAP THEOREM OF SELF-SHRINKERS

QING-MING CHENG AND GUOXIN WEI

Abstract. In this paper, we study complete self-shrinkers in Euclidean space and prove that an n-dimensional complete self-shrinker with polynomial volume growth in Euclidean space \mathbb{R}^{n+1} is isometric to either \mathbb{R}^n, $S^n(\sqrt{n})$, or $\mathbb{R}^{n-m} \times S^m(\sqrt{m})$, $1 \leq m \leq n-1$, if the squared norm S of the second fundamental form is constant and satisfies $S < \frac{10}{7}$.

1. Introduction

Let $X : M \to \mathbb{R}^{n+1}$ be a smooth n-dimensional immersed hypersurface in the $(n+1)$-dimensional Euclidean space \mathbb{R}^{n+1}. The immersed hypersurface M is called a self-shrinker if it satisfies the quasilinear elliptic system:

$$H = -X^N,$$

where H denotes the mean curvature vector of M, X^N denotes the orthogonal projection of X onto the normal bundle of M.

It is known that self-shrinkers play an important role in the study of the mean curvature flow because they describe all possible blow up at a given singularity of a mean curvature flow.

For $n = 1$, Abresch and Langer [1] classified all smooth closed self-shrinker curves in \mathbb{R}^2 and showed that the round circle is the only embedded self-shrinkers. For $n \geq 2$, Huisken [9] studied compact self-shrinkers. He proved that if M is an n-dimensional compact self-shrinker with non-negative mean curvature H in \mathbb{R}^{n+1}, then $X(M) = S^n(\sqrt{n})$. We should notice that the condition of non-negative mean curvature is essential. In fact, let Δ and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respectively and $\langle \cdot, \cdot \rangle$ denotes the standard inner product of \mathbb{R}^{n+1}. Because

$$\Delta H - \langle X, \nabla H \rangle + SH - H = 0,$$

we obtain $H > 0$ from the maximum principle if the mean curvature is non-negative. Furthermore, Angenent [2] has constructed compact embedded self-shrinker torus $S^1 \times S^{n-1}$ in \mathbb{R}^{n+1}.

Huisken [10] and Colding and Minicozzi [5] have studied complete and non-compact self-shrinkers in \mathbb{R}^{n+1}. They have proved that if M is an n-dimensional complete embedded self-shrinker in \mathbb{R}^{n+1} with $H \geq 0$ and with polynomial volume

2001 Mathematics Subject Classification: 53C44, 53C42.

Key words and phrases: the second fundamental form, elliptic operator, self-shrinkers.

The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (B): No. 24340013. The second author was partly supported by grant No. 11001087 of NSFC.
growth, then M is isometric to either the hyperplane \mathbb{R}^n, the round sphere $S^n(\sqrt{n})$, or a cylinder $S^m(\sqrt{m}) \times \mathbb{R}^{n-m}$, $1 \leq m \leq n - 1$.

Without the condition $H \geq 0$, Le and Sesum [11] proved that if M is an n-dimensional complete embedded self-shrinker with polynomial volume growth and $S < 1$ in Euclidean space \mathbb{R}^{n+1}, then $S = 0$ and M is isometric to the hyperplane \mathbb{R}^n, where S denotes the squared norm of the second fundamental form. Furthermore, Cao and Li [3] have studied the general case. They have proved that if M is an n-dimensional complete self-shrinker with polynomial volume growth and $S \leq 1$ in Euclidean space \mathbb{R}^{n+1}, then M is isometric to either the hyperplane \mathbb{R}^n, the round sphere $S^n(\sqrt{n})$, or a cylinder $S^m(\sqrt{m}) \times \mathbb{R}^{n-m}$, $1 \leq m \leq n - 1$.

Recently, Ding and Xin [6] have studied the second gap on the squared norm of the second fundamental form and they have proved that if M is an n-dimensional complete self-shrinker with polynomial volume growth in Euclidean space \mathbb{R}^{n+1}, there exists a positive number $\delta = 0.022$ such that if $1 \leq S \leq 1 + 0.022$, then $S = 1$.

Motivated by the above results of Le and Sesum, Cao and Li, Ding and Xin, we consider the second gap for the squared norm of the second fundamental form and prove the following classification theorem for self-shrinkers:

Theorem 1.1. Let M be an n-dimensional complete self-shrinker with polynomial volume growth in \mathbb{R}^{n+1}. If the squared norm S of the second fundamental form is constant and satisfies

$$S \leq 1 + \frac{3}{7},$$

then M is isometric to one of the following:

1. the hyperplane \mathbb{R}^n,
2. a cylinder $\mathbb{R}^{n-m} \times S^m(\sqrt{m})$, for $1 \leq m \leq n - 1$,
3. the round sphere $S^n(\sqrt{n})$.

2. Preliminaries

In this section, we give some notations and formulas. Let $X : M \to \mathbb{R}^{n+1}$ be an n-dimensional self-shrinker in \mathbb{R}^{n+1}. Let $\{e_1, \ldots, e_n, e_{n+1}\}$ be a local orthonormal basis along M with dual coframe $\{\omega_1, \ldots, \omega_n, \omega_{n+1}\}$, such that $\{e_1, \ldots, e_n\}$ is a local orthonormal basis of M and e_{n+1} is normal to M. Then we have

$$\omega_{n+1} = 0, \quad \omega_{n+1} = \sum_{j=1}^n h_{ij} \omega_j, \quad h_{ij} = h_{ji},$$

where h_{ij} denotes the component of the second fundamental form of M. $H = \sum_{j=1}^n h_{jj} e_{n+1}$ is the mean curvature vector field, $H = |H| = \sum_{j=1}^n h_{jj}$ is the mean curvature and $II = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j e_{n+1}$ is the second fundamental form of M. The Gauss equations and Codazzi equations are given by

$$R_{ijkl} = h_{ik} h_{jl} - h_{il} h_{jk}, \quad (2.1)$$

$$h_{ijk} = h_{ikj}, \quad (2.2)$$
where R_{ijkl} is the component of curvature tensor, the covariant derivative of h_{ij} is defined by
\[\sum_{k=1}^{n} h_{ijk} \omega_k = dh_{ij} + \sum_{k=1}^{n} h_{kj} \omega_{ki} + \sum_{k=1}^{n} h_{ik} \omega_{kj}. \]
Let
\[F_i = \nabla_i F, \quad F_{ij} = \nabla_j \nabla_i F, \quad h_{ij} = \nabla_k h_{ij}, \quad h_{ijkl} = \nabla_l \nabla_k h_{ij}, \]
where ∇_j is the covariant differentiation operator, we have
\[h_{ijkl} - h_{ijlk} = n \sum_{m=1}^{n} h_{im} R_{mjk} + \sum_{m=1}^{n} h_{mj} R_{imk}. \]
The following elliptic operator \mathcal{L} is introduced by Colding and Minicozzi in [5]:
\[\mathcal{L}f = \Delta f - \langle X, \nabla f \rangle, \]
where Δ and ∇ denote the Laplacian and the gradient operator on the self-shrinker, respectively and $\langle \cdot, \cdot \rangle$ denotes the standard inner product of \mathbb{R}^{n+1}. By a direct calculation, we have
\[\mathcal{L}h_{ij} = (1 - S) h_{ij}, \quad \mathcal{L}H = H(1 - S), \quad \mathcal{L}X_i = -X_i, \quad \mathcal{L}|X|^2 = 2(n - |X|^2), \]
(2.6) $\frac{1}{2} \mathcal{L}S = \sum_{i,j,k} h_{ijk}^2 + S(1 - S)$.
If S is constant, then we obtain from (2.4) and (2.6)
(2.7) $\sum_{i,j,k} h_{ij}^2 = S(S - 1)$,
and hence one has either
(2.8) $S = 0$, or $S = 1$, or $S > 1$.
We can choose a local field of orthonormal frames on M^n such that, at the point that we consider,
\[h_{ij} = \begin{cases} \lambda_i, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases} \]
then
\[S = \sum_{i,j} h_{ij}^2 = \sum_{i} \lambda_i^2, \]
where λ_i is called the principal curvature of M. From (2.1) and (2.3), we get
\[h_{ijij} - h_{jiij} = (\lambda_i - \lambda_j) \lambda_i \lambda_j. \]
By a direct calculation, we obtain
(2.10) $\sum_{i,j,k,l} h_{ijkl}^2 = S(S - 1)(S - 2) + 3(A - 2B)$,
where $A = \sum_{i,j,k} \lambda_i^2 h_{ijk}^2$, $B = \sum_{i,j,k} \lambda_i \lambda_j h_{ijk}^2$.
We define two functions f_3 and f_4 as follows:

$$f_3 = \sum_{i,j,k} h_{ij} h_{jk} h_{ki} = \sum_{j=1}^{n} \lambda_j^3,$$
$$f_4 = \sum_{i,j,k,l} h_{ij} h_{jk} h_{kl} h_{li} = \sum_{j=1}^{n} \lambda_j^4,$$

then we have

Lemma 2.1. Let M be an n-dimensional complete self-shrinker without boundary and with polynomial volume growth in \mathbb{R}^{n+1}. Then

(2.11) $$\mathcal{L} f_3 = 3(1 - S) f_3 + 6 \sum_{i,j,k} \lambda_i h_{ijk}^2,$$

(2.12) $$\mathcal{L} f_4 = 4(1 - S) f_4 + 4(2A + B).$$

Proof. By the definition of f_3, f_4, $\mathcal{L} f_3$ and $\mathcal{L} f_4$, we have the following calculations:

$$f_{3m} = 3 \sum_{i,j,k} h_{ijm} h_{jk} h_{ki},$$
$$f_{3mm} = 3 \sum_{i,j,k} h_{jk} h_{kl} h_{ijm} + 3 \sum_{i,j,k} h_{ijm} h_{jm} h_{ki} + 3 \sum_{i,j,k} h_{ijm} h_{jk} h_{kim},$$
$$\Delta f_3 = \sum_{m} f_{3mm} = 3 \sum_{i,j,k} h_{jk} h_{kl} \Delta h_{ij} + 6 \sum_{i,j,m} \lambda_i h_{ijm}^2,$$
$$< X, \nabla f_3 > = 3 \sum_{i,j,k} h_{jk} h_{ki} < X, \nabla h_{ij} >,$$
$$\mathcal{L} f_3 = \Delta f_3 - < X, \nabla f_3 >$$
$$= 3 \sum_{i,j,k} h_{jk} h_{ki} \mathcal{L} h_{ij} + 6 \sum_{i,j,m} \lambda_i h_{ijm}^2$$
$$= 3(1 - S) f_3 + 6 \sum_{i,j,k} \lambda_i h_{ijk}^2,$$

and

$$f_{4m} = 4 \sum_{i,j,k,l} h_{ijm} h_{jk} h_{kl} h_{li},$$
$$f_{4mm} = 4 \sum_{i,j,k,l} h_{ijmm} h_{jk} h_{kl} h_{li} + 4 \sum_{i,j,k,l} h_{ijm} h_{jk} h_{kl} h_{li}$$
$$+ 4 \sum_{i,j,k,l} h_{ijm} h_{jk} h_{kl} h_{lim},$$
$$\Delta f_4 = \sum_{m} f_{4mm} = 4 \sum_{i,j,k,l} h_{jk} h_{kl} h_{li} \Delta h_{ij} + 4 \sum_{i,j,m} \lambda_j^2 h_{ijm}^2 + 4 \sum_{i,j,k} \lambda_i \lambda_j h_{ijk}^2 + 4 \sum_{i,j,m} \lambda_j^2 h_{ijm}^2,$$
$$< X, \nabla f_4 > = 4 \sum_{i,j,k,l} h_{jk} h_{kl} h_{li} < X, \nabla h_{ij} >.$$
\[\mathcal{L}f_4 = \Delta f_4 - \langle X, \nabla f_4 \rangle \]
\[= 4 \sum_{i,j,k,l} h_{ijkl} h_{iij} \mathcal{L}h_{iij} + 8 \sum_{i,j,m} \lambda_i^2 h_{ijm}^2 + 4 \sum_{i,j,m} \lambda_i \lambda_j h_{ijm}^2 \]
\[= 4(1 - S)f_4 + 4(2A + B). \]

\[\square \]

3. SOME ESTIMATES

In this section, we will give some estimates which are needed to prove our theorem.

From now on, we denote
\[S - 1 = tS, \]
where \(t \) is a positive constant if we assume that \(S \) is constant and \(S > 1 \), then
\[(1 - t)S = 1, \quad \sum_{i,j} h_{ijk}^2 = tS^2. \]

By a direct calculation, one obtains
\[\sum_{i,j,k,l} h_{ijkl}^2 \geq \sum_i h_{iiii}^2 + \frac{3}{4} \sum_{i \neq j} (h_{ijij} + h_{jiji})^2 + \frac{3}{4} \sum_{i \neq j} (h_{ijij} - h_{jiji})^2 \]
\[= \sum_i h_{iiii}^2 + \frac{3}{4} \sum_{i \neq j} (h_{ijij} + h_{jiji})^2 \]
\[+ \frac{3}{2} \left[S \sum_i \lambda_i^4 - (\sum_i \lambda_i^3)^2 \right], \]

we next have to estimate \(S \sum_i \lambda_i^4 - (\sum_i \lambda_i^3)^2 \) since we want to give the estimate of \(\sum_{i,j,k,l} h_{ijkl}^2 \). Define
\[f \equiv \sum_i \lambda_i^4 - \frac{1}{S} \left(\sum_i \lambda_i^3 \right)^2 = f_4 - \frac{1}{S} (f_3)^2. \]

Firstly, we have

Lemma 3.1. There is one point \(x \in M \) such that the following identity holds at the point.

\[tS^2 \left[\frac{c}{S} \left(\sum_i \lambda_i^3 \right)^2 - \sum_i \lambda_i^4 \right] \]
\[= c \left(\sum_{i,j,k} 2 \lambda_i h_{ijk}^2 \right) \sum_i \lambda_i^3 - (2A + B)S + 3c \sum_j \left(\sum_i \lambda_i^2 h_{iiij} \right)^2, \]

where \(c \) is a real number.
Proof. Define a function
\[F = \frac{1}{4} S \sum_i \lambda_i^4 - \frac{1}{6} c \left(\sum_i \lambda_i^3 \right)^2 = \frac{1}{4} S f_4 - \frac{1}{6} c (f_3)^2, \]
we have from Lemma 2.1,
\[\mathcal{L}F = \mathcal{L}\left(\frac{1}{4} S f_4 - \frac{1}{6} c (f_3)^2 \right) \]
\[= S(1 - S)f_4 - c \left((1 - S)f_3^2 + 2 \sum_{i,j,k} \lambda_i h_{ijk} f_3 \right) + 3 \sum_j \left(\sum_i \lambda_i^2 h_{iij} \right)^2 \]
\[+ (2A + B)S. \]

On the other hand, we have from Stokes formula,
\[\int_M \mathcal{L}F e^{-\frac{|X|^2}{2}} dv = 0, \]
hence there is a point \(x \in M \) such that
\[S(1 - S)f_4 - c \left((1 - S)f_3^2 + 2 \sum_{i,j,k} \lambda_i h_{ijk} f_3 + 3 \sum_j \left(\sum_i \lambda_i^2 h_{iij} \right)^2 \right) + (2A + B)S = 0 \]
at the point because of the continuity of the function.

\[\square \]

Secondly, we have

Lemma 3.2.
\[f = f_4 - \frac{f_3^2}{S} \geq \frac{(\lambda_1 - \lambda_2)^2}{\lambda_1^4 + \lambda_2^4} (\lambda_1 \lambda_2)^2, \]
where \(\lambda_1 = \max_i \{ \lambda_i \}, \lambda_2 = \min_i \{ \lambda_i \} \).

Proof. Since
\[Sf_4 - f_3^2 = \frac{1}{S} \sum_i (\lambda_i^2 S - f_3 \lambda_i)^2, \]
then
\[Sf_4 - f_3^2 \geq \frac{1}{S} \left(\lambda_1^2 S - f_3 \lambda_1 \right)^2 + \frac{1}{S} \left(\lambda_2^2 S - f_3 \lambda_2 \right)^2 \]
\[= S \lambda_1^4 + S \lambda_2^4 + \frac{f_3^2 (\lambda_1^2 + \lambda_2^2)}{S} - 2(\lambda_1^3 + \lambda_2^3) f_3 \]
\[\geq S (\lambda_1^4 + \lambda_2^4) - \frac{\lambda_1^2 + \lambda_2^2 (\lambda_1^3 + \lambda_2^3) S^2}{(\lambda_1^4 + \lambda_2^4)^2} \]
\[= \frac{S}{\lambda_1^4 + \lambda_2^4} \lambda_1^2 \lambda_2^2 (\lambda_1 - \lambda_2)^2. \]

\[\square \]

Thirdly, one has
Lemma 3.3.

\[
A - B \leq \frac{1}{3}(\lambda_1 - \lambda_2)^2 t S^2(1 - \alpha),
\]

where \(\alpha = \frac{\sum_i h^2_{iii}}{\sum_{i,j,k} h^2_{ijk} t S^2}. \)

Proof. By means of symmetry, we have

\[
A - B = \sum_{i,j,k} (\lambda_i^2 - \lambda_i \lambda_j) h^2_{ijk}
\]
\[
= \frac{1}{3} \sum_{i,j,k} (\lambda_i^2 + \lambda_j^2 + \lambda_k^2 - \lambda_i \lambda_j - \lambda_j \lambda_k - \lambda_k \lambda_i) h^2_{ijk}
\]
\[
= \frac{1}{3} \sum_{i,j} 3(\lambda_i - \lambda_j)^2 h^2_{ij}
\]
\[
+ \frac{1}{3} \sum_{i \neq j \neq k \neq i} (\lambda_i^2 + \lambda_j^2 + \lambda_k^2 - \lambda_i \lambda_j - \lambda_j \lambda_k - \lambda_k \lambda_i) h^2_{ijk}.
\]

Without loss of generality, we can assume that \(\lambda_i \leq \lambda_j \leq \lambda_k \) and consider

\[z = \lambda_i^2 + \lambda_j^2 + \lambda_k^2 - \lambda_i \lambda_j - \lambda_j \lambda_k - \lambda_k \lambda_i \]

as a function of \(\lambda_j \), which takes its maximum at one of the boundary points \(\lambda_i \) or \(\lambda_k \). On the other hand,

\[z_{\lambda_j = \lambda_i} = z_{\lambda_j = \lambda_k} = (\lambda_i - \lambda_k)^2 \leq (\lambda_1 - \lambda_2)^2. \]

Hence we get

\[
A - B \leq \frac{1}{3} \left[\sum_{i,j} 3(\lambda_i - \lambda_j)^2 h^2_{ij} + \sum_{i \neq j \neq k \neq i} (\lambda_1 - \lambda_2)^2 h^2_{ijk} \right]
\]
\[
\leq \frac{1}{3} (\lambda_1 - \lambda_2)^2 \left(\sum_{i,j,k} h^2_{ijk} - \sum_i h^2_{iii} \right).
\]

Combining (2.7) and the definition of \(\alpha \), we get \(0 \leq \alpha < 1 \) and (3.4).

From Lemma 3.1, one knows that the estimates of \(\sum_k (\sum_i \lambda_i^2 h_{ii})^2 \) and \(\sum_{i,j,k} h^2_{ijk} \lambda_i^2 \) are needed.

Lemma 3.4.

\[
\sum_k \left(\sum_i \lambda_i^2 h_{ii} \right)^2 \leq \frac{1 + 2\alpha}{3} t S^2 f,
\]

where \(\alpha = \frac{\sum_i h^2_{iii}}{t S^2} \).
Proof. Since $S = \sum_{ij} h_{ij}^2$ is constant, we have $\sum \lambda_i h_{iik} = 0$, then
\[
\sum_k \left(\sum_i \lambda_i^2 h_{iik} \right)^2 = \sum_k \left[\sum_i (\lambda_i^2 - a\lambda_i) h_{iik} \right]^2 \leq \sum_i (\lambda_i^2 - a\lambda_i)^2 \sum_{i,k} h_{iik}^2,
\]
for any constant a. Let $a = \frac{1}{3} f_3 = \frac{1}{3} \sum_i \lambda_i^3$, we have
\[
(3.6) \quad \sum_k \left(\sum_i \lambda_i^2 h_{iik} \right)^2 \leq \left[\sum_i \lambda_i^4 - \frac{1}{S} \left(\sum_i \lambda_i^3 \right)^2 \right] \sum_{i,k} h_{iik}^2 = f \sum_{i,k} h_{iik}^2.
\]
Since
\[
\sum_{i,j,k} h_{ijk}^2 = \sum_i h_{iik}^2 + 3 \sum_{i\neq j} h_{iij}^2 + \sum_{i\neq j \neq k \neq i} h_{ijk}^2,
\]
then
\[
(3.7) \quad \sum_{i,k} h_{iik}^2 \leq \frac{1}{3} \left(\sum_{i,j,k} h_{ijk}^2 + 2 \sum_i h_{iij}^2 \right) = \frac{1}{3} (1 + 2\alpha) \sum_{i,j,k} h_{ijk}^2 = \frac{1}{3} (1 + 2\alpha) tS^2,
\]
combining (3.6) and (3.7), we get (3.5).

Lemma 3.5.
\[
(3.8) \quad \left(\sum_{i,j,k} \lambda_i h_{ijk}^2 \right)^2 \leq \left[\frac{1}{3} (A + 2B) - \frac{4}{3} \sum_k \frac{1}{S + 2\lambda_k^2} \left(\sum_i \lambda_i^2 h_{iik} \right)^2 \right] tS^2.
\]

Proof. A straightforward computation gives
\[
\left(\sum_{i,j,k} \lambda_i h_{ijk}^2 \right)^2 = \left\{ \frac{1}{3} \sum_{i,j,k} [(\lambda_i + \lambda_j + \lambda_k) h_{ijk} - (a_i h_{jk} + a_j h_{ki} + a_k h_{ij})] h_{ijk} \right\}^2 \leq \frac{1}{9} \sum_{i,j,k} [(\lambda_i + \lambda_j + \lambda_k) h_{ijk} - (a_i h_{jk} + a_j h_{ki} + a_k h_{ij})]^2 \sum_{i,j,k} h_{ijk}^2 = \frac{1}{9} \left[3(A + 2B) - 12 \sum_{i,k} a_k \lambda_i^2 h_{iik} + 3 \sum_k (S + 2\lambda_k^2) a_k^2 \right] tS^2,
\]
for any constant $a_k \in \mathbb{R}$. Let
\[
a_k = 2 \frac{\sum_i \lambda_i^2 h_{iik}}{S + 2\lambda_k^2},
\]
then (3.8) follows. \[\square\]
4. Proof of Theorem 1.1

In this section, we will prove the Theorem 1.1. The proof has three parts. In the first part of proof, we will show that \(S > 1 + \frac{1}{5} = 1.2 \) if \(S > 1 \). In the second part, we will prove that \(S > \frac{1}{0.802} > 1.24688 \) if \(S > \frac{6}{5} = 1.2 \). In the third part, we will show that \(S > 1 + \frac{3}{7} \) if \(S > \frac{1}{0.802} \).

Proof of Theorem 1.1.

Part I: Claim: \(S > 1 + \frac{1}{5} = \frac{6}{5} \) if \(S > 1 \).

Letting \(c = 2 \) and applying Lemma 3.1, we get

\[
0 = (S - 1)\left[\frac{1}{2} Sf_4 - f_3^2 \right] + (2 \sum_{i,j,k} \lambda_i h_{ijk}) f_3
\]
\[
- \frac{S}{2} (2A + B) + 3 \sum_j \left(\sum_i \lambda_i^2 h_{ij} \right)^2
\]
\[
\leq (S - 1)\left[\frac{1}{2} Sf_4 - f_3^2 \right] + \frac{1}{2(S - 1)} \left(2 \sum_{i,j,k} \lambda_i h_{ijk}^2 \right)^2
\]
\[
+ \frac{S - 1}{2} f_3^2 - \frac{S}{2} (2A + B) + 3 \sum_j \left(\sum_i \lambda_i^2 h_{ij} \right)^2
\]
\[
(4.1)
\]
\[
\leq \frac{S - 1}{2} (Sf_4 - f_3^2) + S \left[\frac{2}{3} (A + 2B) - \frac{8}{9S} \sum_k \left(\sum_i \lambda_i^2 h_{ikk} \right)^2 \right]
\]
\[
- \frac{S}{2} (2A + B) + 3 \sum_j \left(\sum_i \lambda_i^2 h_{ij} \right)^2
\]
\[
\leq \frac{S - 1}{2} (Sf_4 - f_3^2) - \frac{S}{6} [2A - 5B] + \frac{19}{27} (1 + 2\alpha)tS^2 f
\]
\[
= -\frac{S}{6} (2A - 5B) + \frac{65}{54} + \frac{38}{2} \alpha \]tS^2 f,
\]

at the point \(x \), then it follows that

\[
(4.2) \quad -\frac{65}{9} tSf \leq -\frac{65(2A - 5B)}{65 + 76\alpha}.
\]

On the other hand, we have

\[
(4.3) \quad \frac{3}{2} Sf \leq S(S - 1)(S - 2) + 3(A - 2B).
\]
Combining (4.2) and (4.3), we obtain
\[
\frac{3}{2} \left[(1 - \frac{130}{27} t) Sf \right]
\leq S(S - 1)(S - 2) + 3(A - 2B) - \frac{65(2A - 5B)}{65 + 76\alpha}
\]
\[
= S(S - 1)(S - 2) + 4(A - B) - \frac{65(3A - 3B)}{65 + 76\alpha} - \frac{76\alpha(A + 2B)}{65 + 76\alpha}
\]
\[
\leq S(S - 1)(S - 2) + [4 - \frac{195}{65 + 76\alpha}](A - 2B) \quad \text{(Since } A + 2B \geq 0)\]
\[
\leq S(S - 1)(S - 2) + [4 - \frac{195}{65 + 76\alpha}] \frac{1 - \alpha}{3}(\lambda_1 - \lambda_2)^2 tS^2.
\]

Letting \(y = 65 + 76\alpha \), we get
\[
(4 - \frac{195}{65 + 76\alpha})(1 - \alpha) = \frac{1}{76}(4 - \frac{195}{y})(141 - y)
\]
\[
= \frac{1}{76}(564 + 195 - \frac{195 \times 141}{y} - 4y) \leq \frac{1}{76}(759 - 2\sqrt{4 \times 195 \times 141}) \equiv 3\gamma_1,
\]
where \(\gamma_1 = 0.4198 \cdots < 0.42\).

Since we assume \(t \leq \frac{1}{6} \), that is, \(1 \leq S \leq 1 + \frac{1}{5} = \frac{6}{5} \), then
\[
(4.4) \quad S(S - 1)(S - 2) + \frac{3\gamma_1}{3}(\lambda_1 - \lambda_2)^2 tS^2 \geq \frac{3}{2}(1 - \frac{130}{27} t)(\lambda_1 - \lambda_2)^2 (\lambda_1 \lambda_2)^2 S.
\]

We next consider two cases:

Case 1: \(\lambda_1(x)\lambda_2(x) \geq 0 \).

We see from (4.4) that
\[
S(S - 1)(S - 2) \geq -\gamma_1(\lambda_1 - \lambda_2)^2 tS^2 \geq -\gamma_1 tS^2,
\]
that is,
\[
S - 2 \geq -\gamma_1 S,
\]
then
\[
S \geq \frac{2}{1 + \gamma_1} \geq \frac{2}{1 + 0.42} > 1.4 > 1.2 = \frac{6}{5}.
\]

Case 2: \(\lambda_1(x)\lambda_2(x) < 0 \).

From (4.4), we obtain
\[
(S - 1)(S - 2) + \gamma_1 tS \geq (S - 1)(S - 2) + \gamma_1(\lambda_1^2 + \lambda_2^2)tS
\]
\[
\geq 2\gamma_1\lambda_1\lambda_2 tS + \frac{3}{2}(1 - \frac{130}{27} t)(\lambda_1\lambda_2)^2
\]
\[
\geq 2\gamma_1\lambda_1\lambda_2 tS + \frac{3}{2}(1 - \frac{130}{27} \times 6)(\lambda_1\lambda_2)^2
\]
\[
\geq -\frac{4\gamma_1^2 t^2 S^2}{4(\frac{3}{2} \times (1 - \frac{130}{27} \times 6))},
\]
that is,
\[
S \geq \frac{16 + 27\gamma_1^2}{8 + 8\gamma_1 + 27\gamma_1^2} > 1.286 > 1.2 = \frac{6}{5}.
\]
Hence we have proved

\[S > 1 + \frac{1}{5} = \frac{6}{5}. \]

Part II: Claim: \(S > \frac{1}{0.802} > 1.24688 \) if \(S > \frac{6}{5} \).

Letting \(c = \frac{9}{5} \) and applying Lemma 3.1, we have

\[
0 = (S - 1)\left[\frac{5}{9} S f_4 - f_3^2 \right] + (2 \sum_{i,j,k} \lambda_i h_{ijk}^2) f_3
- \frac{5S}{9} (2A + B) + 3 \left(\sum_i \lambda_i^2 h_{ii} \right)^2
\leq (S - 1)\left[\frac{5}{9} S f_3 - f_3^2 \right] + \frac{9}{16(S - 1)} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk})^2
+ \frac{4(S - 1)}{9} f_3^2 - \frac{5S}{9} (2A + B) + 3 \left(\sum_i \lambda_i^2 h_{ii} \right)^2
\leq \frac{5tS}{9} (S f) + \frac{9}{16tS} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk})^2 - \frac{5S}{9} S (2A + B) + 3 \left(\sum_i \lambda_i^2 h_{ii} \right)^2
\leq \frac{5tS^2 f}{9} + \frac{1}{9 \times 16tS} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk})^2 - \frac{5S}{9} S (2A + B)
+ \frac{5}{9} \left[\frac{4}{3} (A - 2B) - \frac{16}{9} \sum_i \lambda_i^2 h_{ii} \right] + 3 \left(\sum_i \lambda_i^2 h_{ii} \right)^2
\leq \frac{5tS^2 f}{9} + \frac{1}{144tS} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk})^2 - \frac{5S}{9} S (2A - 5B)
- \frac{5}{9} (2A + B) S + \frac{163}{81 \times 3} (1 + 2\alpha) tS^2 f
= \frac{5tS^2 f}{9} + \frac{1}{144tS} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk})^2 - \frac{5(2A - 5B)S}{27}
+ \frac{163}{81 \times 3} (1 + 2\alpha) tS^2 f,
\]

at the point \(x \), that is,

\[
0 \leq 3tS f + \frac{3}{80tS^2} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk}^2) - (2A - 5B) + \frac{163}{81 \times 3} \times \frac{27}{5} (1 + 2\alpha) tS f,
\]

then

\[
- \frac{298 + 326\alpha}{45} tS f \leq \frac{3}{80tS^2} (2 \sum_{i,j,k} \lambda_i^2 h_{ijk}^2) - (2A - 5B).
\]
Since
\[
(2 \sum_{i,j,k} \lambda_i h_{ijk}^2)^2 \leq 4S^2 \left[\sum_i h_{iii}^2 + \frac{1}{4} \sum_{i \neq j} (h_{ijij} + h_{jiji})^2 \right] \\
\leq 4S^2 \left[\sum_i h_{iii}^2 + \frac{3}{4} \sum_{i \neq j} (h_{ijij} + h_{jiji})^2 \right] \\
\leq 4S^2 \left[\sum_{i,j,k,l} h_{ijkl}^2 - \frac{3}{2} \frac{Sf}{S} \right] \\
= 4S^2 [S(S-1)(S-2) + 3(A-2B) - \frac{3}{2}Sf],
\]
then one obtains
\[
\frac{3}{2}Sf + \frac{(2 \sum_{i,j,k} \lambda_i h_{ijk}^2)^2}{4S^2} \leq S(S-1)(S-2) + 3(A-2B).
\]
We now assume \(\frac{1}{6} < t \leq 0.198 \), that is, \(S \leq \frac{1}{0.802} \), then we will get a contradiction. From (4.7), we have
\[
(4.10) \quad -\frac{298}{225} Sf \leq \frac{9}{40S^2} (2 \sum_{i,j,k} \lambda_i h_{ijk}^2)^2 - \frac{298}{298 + 326\alpha} (2A-5B).
\]
Noting \(A + 2B \geq 0 \), we see from (4.9) and (4.10) that
\[
(4.11) \quad \frac{79}{450} Sf \leq S(S-1)(S-2) - \frac{3}{4} \frac{3 \times 298}{298 + 326\alpha} \left(\frac{\lambda_1 - \lambda_2}{3} \right)^2 tS^2 (1 - \alpha).
\]
On the other hand,
\[
(4.12) \quad \frac{1}{3} \left(4 - \frac{3 \times 298}{298 + 326\alpha} \right) (1 - \alpha) \\
= \frac{1}{3 \times 326} \left(4 - \frac{3 \times 298}{Z} \right) (624 - z) \\
= \frac{1}{3 \times 326} (2496 + 894 - 4z - \frac{3 \times 298 \times 624}{Z}) \\
\leq \frac{1}{3 \times 326} (2496 + 894 - 2 \sqrt{4 \times 3 \times 298 \times 624}) \\
\equiv \gamma_2 = 0.41146 \cdots < 0.4115,
\]
where \(Z = 298 + 326\alpha \).
From (4.11), we have
\[
(4.13) \quad 0 \leq S(S-1)(S-2) + \gamma_2 (\lambda_1 - \lambda_2)^2 S^2 t - \frac{79}{450} Sf \\
\leq S(S-1)(S-2) + \gamma_2 (\lambda_1 - \lambda_2)^2 S^2 t \\
- \frac{79}{450} S^2 \frac{(\lambda_1 - \lambda_2)^2}{\lambda_1^2 + \lambda_2^2} (\lambda_1 \lambda_2)^2,
\]
then it follows that

$$S(S - 1)(S - 2) \geq (\lambda_1 - \lambda_2)^2 \left(-\gamma_2 t S^2 + \frac{79}{450} (\lambda_1 \lambda_2)^2 \right).$$

We next consider two cases:

Case 1: $\lambda_1(x) \lambda_2(x) > 0$.

From (4.14), we have

$$S(S - 1)(S - 2) \geq (\lambda_1 - \lambda_2)^2 (-\gamma_2 t S^2) \geq -\gamma_2 t S^2$$

that is,

$$S - 2 \geq -\gamma_2 S,$$

then

$$S \geq \frac{2}{1 + \gamma_2} \geq \frac{2}{1 + 0.42} > \frac{1}{0.802}.$$

Case 2: $\lambda_1(x) \lambda_2(x) \leq 0$.

From (4.13), we obtain

$$S(S - 1)(S - 2) + \gamma_2 StS^2 \geq S(S - 1)(S - 2) + \gamma_2 (\lambda_1^2 + \lambda_2^2) S^2 t$$

$$\geq \frac{79}{450} S(\lambda_1 - \lambda_2)^2 (\lambda_1 \lambda_2)^2 + \gamma_2 (2 \lambda_1 \lambda_2) t S^2$$

$$\geq \frac{79}{450} S(\lambda_1 \lambda_2)^2 + 2 \gamma_2 \lambda_1 \lambda_2 t S^2$$

$$\geq -\left(\frac{2 \gamma_2 t S^2}{4 \times \frac{79}{450} S} \right) = -\frac{450}{79} \frac{\gamma_2^2 t^2 S^4}{},$$

that is,

$$S \geq \frac{2 + \frac{450}{79} \gamma_2^2}{1 + \gamma_2 + \frac{450}{79} \gamma_2^2} > 1.247456 > 1.2469 > \frac{1}{0.802}.$$

It is a contradiction, hence we have proved

$$S > \frac{1}{0.802}.$$

Part III: Claim: $S > \frac{10}{7}$ if $S > \frac{1}{0.802}$.

Before we prove the above Claim, we will prove the following Lemma.

Lemma 4.1. Let M be an n-dimensional complete self-shrinker without boundary and with polynomial volume growth in \mathbb{R}^{n+1}. If the squared norm S of the second fundamental form is constant, then for any constant $\delta > 0$, $c_0 \geq 0$ and c_1 satisfying

$$(\beta + t) c_0 \delta = (\delta - 1 + \delta c_0)^2,$$

and $\beta \geq 0$, there exists a point $p_0 \in M$ such that at p_0,
\[tS^2(S - 2) \geq (2 - \delta t + c_1\delta)Sf - (5 - 2\delta + c_1\delta + \frac{\beta}{3})A + (6 + \delta + 2c_1\delta - \frac{2}{3}\beta)B \]
\[+ \left[4\sqrt{\frac{2\beta}{3\delta}} - \frac{2}{t} - 3(1 + c_0)\delta \right] \frac{1}{S} \sum_i (\sum_k \lambda_i^2 h_{iik})^2. \]

Proof. From [6], we have

\[\int_M (A - 2B - Sf)e^{-\frac{|X|^2}{2}}dv = 0, \]
then for any constant \(c_1 \), we have

\[\int_M c_1 S(A - 2B)e^{-\frac{|X|^2}{2}}dv = \int_M c_1 S^2fe^{-\frac{|X|^2}{2}}dv \]
since \(S \) is constant. From (3.3), we have

\[\int_M (1 - S)(cf_3^2 - Sf_4)e^{-\frac{|X|^2}{2}}dv \]
\[= \int_M [(2A + B)S - 2cf_3 \sum_{i,j,k} \lambda_i h_{ijk}^2 - 3c \sum_j (\sum_i \lambda_i^2 h_{ij})^2]e^{-\frac{|X|^2}{2}}dv, \]
then

\[\int_M (c_1 S^2 f - tS^2 f_4 + ctS f_3^2)e^{-\frac{|X|^2}{2}}dv \]
\[= \int_M \left\{ 2cf_3 \sum_{i,j,k} \lambda_i h_{ijk}^2 - (2A + B)S + 3c \sum_j (\sum_i \lambda_i^2 h_{ij})^2 \right. \]
\[+ c_1 S(A - 2B) \} e^{-\frac{|X|^2}{2}}dv, \]
thus we have that there exists a point \(p_0 \in M \) such that, at \(p_0 \),

\[c_1 S^2 f - tS^2 f_4 + ctS f_3^2 \]
\[= 2cf_3 \sum_{i,j,k} \lambda_i h_{ijk}^2 - (2A + B)S + 3c \sum_j (\sum_i \lambda_i^2 h_{ij})^2 + c_1 S(A - 2B), \]
then,

\[c_1 S^2 f - tS(Sf_4 - f_3^2) \]
\[= (1 - c)tS f_3^2 + 2cf_3 \sum_{i,j,k} \lambda_i h_{ijk}^2 - (2A + B)S \]
\[+ 3c \sum_j (\sum_i \lambda_i^2 h_{ij})^2 + c_1 S(A - 2B). \]
Putting $c = 1 + c_0$ with $c_0 \geq 0$, we get
\begin{equation}
(c_1 S^2 - t S^2) f = -c_0 t S f_3^2 + 2(c_0 + 1) f_3 \sum_{i,j,k} \lambda_i h_{ijk}^2 - (2A + B) S
+ 3(1 + c_0) \sum_j \left(\sum_i \lambda_i^2 h_{ijj} \right)^2 + c_1 S (A - 2B).
\end{equation}

For any positive constant $\delta > 0$, we have from (4.22),
\begin{equation}
\delta t S f = c_1 \delta S f + c_0 \delta t f_3^2 - 2(1 + c_0) \frac{f_3}{S} \delta \sum_{i,j,k} \lambda_i h_{ijk}^2
+ (2\delta - c_1 \delta) A + (\delta + 2c_1 \delta) B
- 3(1 + c_0) \delta \frac{1}{S} \sum_j \left(\sum_i \lambda_i^2 h_{ijj} \right)^2.
\end{equation}

Putting
\begin{equation}
u_{ijkl} = \frac{1}{4} (h_{ijkl} + h_{klij} + h_{klji} + h_{ijlk}),
\end{equation}
by a direct computation, we have
\begin{equation}
\sum_{i,j,k,l} h_{ijkl}^2 \geq \sum_{i,j,k,l} u_{ijkl}^2 + \frac{3}{4} \sum_{i,j} (h_{ijj} - h_{jij})^2
= \sum_{i,j,k,l} u_{ijkl}^2 + \frac{3}{4} \sum_{i,j} (\lambda_i - \lambda_j)^2 \lambda_i^2 \lambda_j^2
= \sum_{i,j,k,l} u_{ijkl}^2 + \frac{3}{2} (S f_4 - f_3^2).
\end{equation}

From (2.10) and (4.26), we obtain
\begin{equation}
S(S - 1)(S - 2) + 3(A - 2B) \geq \sum_{i,j,k,l} u_{ijkl}^2 + \frac{3}{2} S f.
\end{equation}

By a direct calculation, we can get
\begin{equation}
\sum_{i,j,k,l} u_{ijkl}^2 \geq \frac{1}{2} S f + \frac{4}{t S^2} \sum_i \lambda_i^2 \left(\sum_j \lambda_j^2 h_{jji} \right)^2
- 2 A
+ \frac{2 f_3}{S} \sum_{i,j,k} \lambda_i h_{ijk}^2 + \frac{1}{S^2} \sum_{i,j,k} \lambda_i^2 h_{ijkl}^2.
\end{equation}

Combining (4.27) and (4.28), we have
\begin{equation}
S(S - 1)(S - 2) + 3(A - 2B)
\geq 2 S f - 2 A + \frac{4}{t S^2} \sum_i \lambda_i^2 \left(\sum_j \lambda_j^2 h_{jji} \right)^2
+ \frac{2 f_3}{S} \sum_{i,j,k} \lambda_i h_{ijk}^2 + \frac{1}{S^2} \sum_{i,j,k} \lambda_i^2 h_{ijkl}^2.
\end{equation}
From (4.24), one has

\[
\delta t S f + \frac{4}{t S^2} \sum_i \lambda_i^2 \left(\sum_j \lambda_j^2 h_{jji} \right)^2 + \frac{2f_3}{S} \sum_{i,j,k} \lambda_i h_{ijk}^2 + \frac{1}{S^2} \left(\sum_{i,j,k} \lambda_i^2 h_{ijk}^2 \right)^2 = c_1 \delta S f + c_0 \delta t f_3^2 - \frac{2[(1 + c_0) \delta - 1]}{S} \sum_{i,j,k} \lambda_i h_{ijk}^2 \\
+ \frac{1}{S^2} \left(\sum_{i,j,k} \lambda_i h_{ijk}^2 \right)^2 + (2 \delta - c_1 \delta) A + (\delta + 2c_1 \delta) B
\]

(4.30)

\[
\geq c_1 \delta S f + \left[t - \left[\frac{(1 + c_0) \delta - 1}{c_0 \delta} \right] \right] \frac{1}{t S^2} \left(\sum_{i,j,k} \lambda_i h_{ijk}^2 \right)^2 \\
+ (2 \delta - c_1 \delta) A + (\delta + 2c_1 \delta) B
\]

\[
+ \frac{1}{S} \sum_j \left(\frac{4 \lambda_j^2}{t S} - 3(1 + c_0) \delta \right) \left(\sum_i \lambda_i^2 h_{iij} \right)^2.
\]

Taking \(\delta \) and \(c \), such that,

(4.31) \[(\beta + t) c_0 \delta = [(c_0 + 1) \delta - 1]^2, \]

with \(\beta \geq 0 \), we have from Lemma 3.5

\[
\delta t S f + \frac{4}{t S^2} \sum_i \lambda_i^2 \left(\sum_j \lambda_j^2 h_{jji} \right)^2 + \frac{2f_3}{S} \sum_{i,j,k} \lambda_i h_{ijk}^2 + \frac{1}{S^2} \left(\sum_{i,j,k} \lambda_i^2 h_{ijk}^2 \right)^2
\geq c_1 \delta S f - \beta \left[\frac{1}{3} (A + 2B) - \frac{4}{3} \sum_k \frac{1}{S + 2 \lambda_k^2} \left(\sum_i \lambda_i^2 h_{iij} \right)^2 \right] \\
+ (2 \delta - c_1 \delta) A + (\delta + 2c_1 \delta) B
\]

(4.32)

\[
+ \frac{1}{S} \sum_j \left(\frac{4 \lambda_j^2}{t S} - 3(1 + c_0) \delta \right) \left(\sum_i \lambda_i^2 h_{iij} \right)^2
\]

\[
= c_1 \delta S f + (2 \delta - c_1 \delta - \frac{\beta}{3}) A + (\delta + 2c_1 \delta - \frac{2 \beta}{3}) B
\]

\[
+ \sum_k \left[\frac{4 \lambda_k^2 \beta}{3 (S + 2 \lambda_k^2)} + \frac{4 \lambda_k^2}{t S^2} - \frac{3(1 + c_0) \delta}{S} \right] \left(\sum_i \lambda_i^2 h_{iik} \right)^2
\geq c_1 \delta S f + (2 \delta - c_1 \delta - \frac{\beta}{3}) A + (\delta + 2c_1 \delta - \frac{2 \beta}{3}) B
\]

\[
+ \left[\frac{4 \sqrt{\frac{2 \beta}{3 t}} - 2}{t} - 3(1 + c_0) \delta \right] \frac{1}{S} \sum_k \left(\sum_i \lambda_i^2 h_{iik} \right)^2.
\]

From (4.29), we have
\begin{equation}
tS^2(S - 2) + 3(A - 2B) \\
\geq 2Sf - 2A - \delta tSf + c_1 \delta Sf + (2\delta - c_1 \delta - \frac{\beta}{3})A + (\delta + 2c_1 \delta - \frac{2\beta}{3})B \\
+ \left[4\sqrt{\frac{2\beta}{3t}} - \frac{2}{t} - 3(1 + c_0)\delta \right] \frac{1}{S} \sum_k (\sum_i \lambda_i^2 h_{iik})^2.
\tag{4.33}
\end{equation}

that is,
\begin{equation}
tS^2(S - 2) \\
\geq (2 - \delta t + c_1 \delta)Sf - (5 - 2\delta + c_1 \delta + \frac{\beta}{3})A \\
+ (6 + \delta + 2c_1 \delta - \frac{2\beta}{3})B \\
+ \left[4\sqrt{\frac{2\beta}{3t}} - \frac{2}{t} - 3(1 + c_0)\delta \right] \frac{1}{S} \sum_k (\sum_i \lambda_i^2 h_{iik})^2.
\tag{4.34}
\end{equation}

\[
\begin{align*}
&\text{Taking } 6 + \delta + 2c_1 \delta - \frac{2\beta}{3} = 5 - 2\delta + c_1 \delta + \frac{\beta}{3}, \text{ we have from (4.15) that } \\
&\beta = c_1 \delta + 3\delta + 1, \ (\beta + t)c_0 \delta = ((c_0 + 1)\delta - 1)^2. \text{ Taking } \delta = \frac{17}{6}, \ c_0 = \frac{6}{17} \text{ and applying Lemma 4.1, we obtain } \\
&\beta = \frac{54}{5} - t, \ c_1 = -\frac{2}{17} - \frac{5}{17}t,
\end{align*}
\tag{4.35}
\]

Putting \(g_1(t) = 4\sqrt{\frac{2(54/5 - 1)}{5t}} - \frac{2}{t} - \frac{69}{5},\) we can obtain that

\[
\begin{align*}
g_1(t) &< 0,
\end{align*}
\]

when \(t > 0.1978.\) Since
\begin{equation}
(g_1(t))' = \frac{2}{t^2} - \frac{36\sqrt{6}}{5\sqrt{-1 + 54t^2}} < 0
\tag{4.36}
\end{equation}

when \(1 > t > 0.14,\) then we have \(g_1(t) \leq g_1(0.1978) < 0\) when \(0.1978 < t \leq \frac{3}{10}.$
From Lemma 3.3 and Lemma 3.4, we have

\[
\begin{align*}
tS^2(S-2) & \geq \left(\frac{8}{5} - \frac{22t}{5} \right)Sf - \left(\frac{7}{5} - \frac{4t}{3} \right)(A-B) \\
& \quad + \frac{1}{5}\left[4\sqrt{\frac{2}{3}\left(\frac{54}{5t} - 1 \right) - \frac{2}{t} - \frac{69}{5} } \sum_k \sum_i \lambda_i^2 h_{iik} \right]^2 \\
& \geq \left(\frac{8}{5} - \frac{22t}{5} \right)Sf - \left(\frac{7}{5} - \frac{4t}{3} \right) \frac{1-\alpha}{3} (\lambda_1 - \lambda_2)^2 tS^2 \\
& \quad + \left[4\sqrt{\frac{2}{3}\left(\frac{54}{5t} - 1 \right) - \frac{2}{t} - \frac{69}{5} } \frac{1+2\alpha}{3} tSf \right] \\
& = -\left(\frac{7}{15} - \frac{4t}{9} \right)(1-\alpha)(\lambda_1 - \lambda_2)^2 tS^2 \\
& \quad + \left\{ \left[\frac{8}{5t} + 4\sqrt{\frac{2}{3}\left(\frac{54}{5t} - 1 \right) - \frac{2}{3t} - 9} \right] \\
& \quad + \left[\frac{8}{3} \sqrt{3\left(\frac{54}{5t} - 1 \right) - \frac{4}{3t} - \frac{46}{5} } \alpha \right] \right\} tSf.
\end{align*}
\]

If \(t > \frac{3}{10} \), the result is obvious true. If \(t \leq \frac{3}{10} \), we will obtain a contradiction. In this case, we have \(0.198 \leq t \leq \frac{3}{10} \). Putting

\[
\begin{align*}
a(t) & = \frac{8}{5t} + 4\sqrt{\frac{2}{3}\left(\frac{54}{5t} - 1 \right) - \frac{2}{3t} - 9}, \\
b(t) & = -\frac{8}{3} \sqrt{3\left(\frac{54}{5t} - 1 \right) + \frac{4}{3t} + \frac{46}{5}},
\end{align*}
\]

then we have

\[
\begin{align*}
tS^2(S-2) & \geq -\left(\frac{7}{15} - \frac{4t}{9} \right)(1-\alpha)(\lambda_1 - \lambda_2)^2 tS^2 + [a(t) - b(t)\alpha]tSf. \\
\end{align*}
\]

Since \(a'(t) = -\frac{14}{15t^2} - \frac{12\sqrt{5}}{5\sqrt{-1+\frac{14}{5t^2}}} < 0 \), we have

\[
\begin{align*}
a(t) & \geq a\left(\frac{3}{10} \right) = -\frac{52}{9} + 4\sqrt{\frac{70}{3}} \approx 0.662834 > 0.
\end{align*}
\]

Since \(b'(t) = -\frac{4}{3t^2} + \frac{24\sqrt{7}}{5\sqrt{-1+\frac{24}{5t^2}}} > 0 \) if \(t > 0.14 \), we have that \(b(t) \) is an increasing function of \(t \in [0.198, \frac{3}{10}] \), then

\[
\begin{align*}
b(t) & \leq b\left(\frac{3}{10} \right) = \frac{614}{45} - \frac{8}{3} \sqrt{\frac{70}{3}} \approx 0.763221 > 0.
\end{align*}
\]
Therefore we get

\[tS^2(S - 2) \geq -(\frac{7}{15} - \frac{4t}{9})(1 - \alpha)(\lambda_1 - \lambda_2)^2tS^2 + \left[a(\frac{3}{10}) - b(\frac{3}{10})\alpha \right] \lambda_1 - \lambda_2 Sf. \]

(4.43)

We next consider two cases:

Case 1: \(a(\frac{3}{10}) - b(\frac{3}{10})\alpha \leq 0. \)

In this case \(\frac{a(\frac{3}{10})}{b(\frac{3}{10})} \leq \alpha \leq 1. \) Since \(\lambda_1, \lambda_2 \) are the maximum and minimum of the principal curvatures at any point of \(M, \) we obtain, for any \(j, \)

\[\lambda_j + \lambda_1 \geq \lambda_2 + \lambda_1, \]

\[(\lambda_1 - \lambda_j)(\lambda_1 + \lambda_j) \geq (\lambda_1 - \lambda_j)(\lambda_1 + \lambda_2). \]

So we get

\[\lambda_j^2 - (\lambda_1 + \lambda_2)\lambda_j \leq -\lambda_1\lambda_2, \]

and

\[f_4 - (\lambda_1 + \lambda_2)f_3 \leq -\lambda_1\lambda_2S, \]

then

\[Sf = Sf_4 - f_3^2 \leq -f_3^2 + (\lambda_1 + \lambda_2)f_3 - \lambda_1\lambda_2S^2, \]

(4.44)

\[Sf \leq \frac{(\lambda_1 - \lambda_2)^2}{4}S^2. \]

(4.45)

From (4.43) and (4.45), we have

\[tS^2(S - 2) \geq -(\frac{7}{15} - \frac{4t}{9})(1 - \alpha)(\lambda_1 - \lambda_2)^2tS^2 + \left[a(\frac{3}{10}) - b(\frac{3}{10})\alpha \right] \frac{(\lambda_1 - \lambda_2)^2}{4}tS^2. \]

(4.46)

Since \(a(\frac{3}{10}) - b(\frac{3}{10})\alpha \leq 0, \) using \(-2\lambda_1\lambda_2 \leq \lambda_1^2 + \lambda_2^2 \leq S, \) we see from (4.46)

\[S - 2 \geq \left\{ -2(\frac{7}{15} - \frac{4t}{9}) + \frac{1}{2}a(\frac{3}{10}) \right\} S. \]

(4.47)

Since

\[2(\frac{7}{15} - \frac{4t}{9}) - \frac{1}{2}b(\frac{3}{10}) \geq 2(\frac{7}{15} - \frac{4t}{9} \times \frac{3}{10}) - \frac{1}{2} \times 0.77 = \frac{2}{3} - \frac{1}{2} \times 0.77 > 0, \]

(4.48)

we have from (4.47)

\[S - 2 \geq -2(\frac{7}{15} - \frac{4t}{9}) \left[1 - a(\frac{3}{10}) \right] S. \]

(4.49)

On the other hand,

\[\frac{a(\frac{3}{10})}{b(\frac{3}{10})} \approx 0.86847 > 0.86, \]
then from (4.49), we see

\[
S - 2 \geq -2\left(\frac{7}{15} - \frac{4t}{9}\right)(1 - 0.86)S
\]

(4.50)

\[
\geq -2\left(\frac{7}{15} - \frac{4}{9} \times 0.198 \times 0.14S
\right.
\]

\[
> 0.1061S,
\]

hence

(4.51)

\[
S > \frac{2}{1 + 0.1061} > 1.8 > \frac{10}{7}.
\]

This is impossible.

Case 2: \(a\left(\frac{3}{10}\right) - b\left(\frac{3}{10}\right)\alpha > 0\).

In this case \(\frac{a\left(\frac{3}{10}\right)}{b\left(\frac{3}{10}\right)} > \alpha \geq 0\). From Lemma 3.2 and (4.43), we obtain

\[
tS^2(S - 2)
\]

\[
\geq -\left(\frac{7}{15} - \frac{4t}{9}\right)(1 - \alpha)(\lambda_1 - \lambda_2)^2tS^2 + \left[a\left(\frac{3}{10}\right) - b\left(\frac{3}{10}\right)\alpha\right]tSf
\]

(4.52)

\[
\geq -\left(\frac{7}{15} - \frac{4t}{9}\right)(1 - \alpha)(\lambda_1 - \lambda_2)^2tS^2
\]

\[
+ \left[a\left(\frac{3}{10}\right) - b\left(\frac{3}{10}\right)\alpha\right]\frac{(\lambda_1 - \lambda_2)^2}{\lambda_1^2 + \lambda_2^2}(\lambda_1\lambda_2)^2tS.
\]

Putting \(y = -\frac{\lambda_1\lambda_2}{S}\), we have \(-\frac{1}{2} \leq y = -\frac{\lambda_1\lambda_2}{S} \leq \frac{1}{2}\frac{\lambda_1^2 + \lambda_2^2}{S} \leq \frac{1}{2}\), then we infer from (4.52) that

\[
S - 2
\]

\[
\geq -\left(\frac{7}{15} - \frac{4t}{9}\right)(1 - \alpha)(1 + 2y)S + \left[a\left(\frac{3}{10}\right) - b\left(\frac{3}{10}\right)\alpha\right](1 + 2y)(-y)^2S
\]

(4.53)

\[
= \left\{\left[-\left(\frac{7}{15} - \frac{4t}{9}\right)(1 + 2y) + a\left(\frac{3}{10}\right)(1 + 2y)^2\right]
\right.
\]

\[
+ \left[(\frac{7}{15} - \frac{4t}{9})(1 + 2y) - b\left(\frac{3}{10}\right)(1 + 2y)^2\right]\alpha\right\}S.
\]

Defining two functions \(\rho(y)\) and \(\varrho(y)\) by

(4.54)

\[
\rho(y) = -\left(\frac{7}{15} - \frac{4t}{9}\right)(1 + 2y) + a\left(\frac{3}{10}\right)(1 + 2y)^2,
\]

(4.55)

\[
\varrho(y) = \left(\frac{7}{15} - \frac{4t}{9}\right)(1 + 2y) - b\left(\frac{3}{10}\right)(1 + 2y)^2.
\]
Since $n > 2$, we have $1 + 2y > 0$, then

$$
\rho(y) = \left(\frac{7}{15} - \frac{4t}{9}\right)(1 + 2y) - b\left(\frac{3}{10}\right)(1 + 2y)y^2
$$

(4.56)

$$
= (1 + 2y)\left[\frac{7}{15} - \frac{4t}{9} - b\left(\frac{3}{10}\right)y^2\right]
$$

$$
> (1 + 2y)\left[\frac{7}{15} - \frac{4}{9}\times\frac{3}{10} - 0.7633 \times \frac{1}{4}\right]
$$

$$
= (1 + 2y) \times 0.142508 > 0.
$$

$$
\rho(y) = -\left(\frac{7}{15} - \frac{4t}{9}\right)(1 + 2y) + a\left(\frac{3}{10}\right)(1 + 2y)y^2
$$

(4.57)

$$
= (1 + 2y)\left[-\frac{7}{15} + \frac{4}{9} + \frac{3}{10}\times0.663 \times \frac{1}{4}\right]
$$

$$
= (1 + 2y) \times (-0.1676) < 0.
$$

By a direct calculation, we obtain

$$
\rho'(y) = -2\left(\frac{7}{15} - \frac{4t}{9}\right) + a\left(\frac{3}{10}\right)[2y + 6y^2]
$$

(4.58)

$$
= -2\left[\frac{7}{15} - \frac{4t}{9} + a\left(\frac{3}{10}\right)y + 3a\left(\frac{3}{10}\right)y^2\right]
$$

$$
< -2\left[\frac{7}{15} - \frac{4}{9}\times\frac{3}{10} - \frac{1}{12}\times\frac{3}{10}\right]
$$

$$
< -2\left[\frac{1}{3} - \frac{1}{12}\times0.663\right] < 0,
$$

it follows that

(4.59) \hspace{1cm} \rho(y) \geq \rho\left(\frac{1}{2}\right) = -2\left(\frac{7}{15} - \frac{4t}{9}\right) + \frac{1}{2}a\left(\frac{3}{10}\right).

From the above arguments, we have

$$
S - 2 \geq (\rho(y) + g(y)\alpha)S
$$

(4.60)

$$
\geq (-2\left(\frac{7}{15} - \frac{4t}{9}\right) + \frac{1}{2}a\left(\frac{3}{10}\right))S
$$

$$
> (-\frac{14}{15}S + \frac{8}{9}(S - 1) + \frac{1}{2} \times 0.66 \times S)
$$

$$
= -\frac{2}{45}S + 0.33S - \frac{8}{9}S > 0.28S - \frac{8}{9},
$$

then

(4.61) \hspace{1cm} S > \frac{10}{9} \hspace{0.1cm} \frac{1}{1 - 0.28} > 1.54 > \frac{10}{7}.

It is a contradiction.

Hence, we have $t > \frac{3}{10}$, that is, $S > \frac{10}{7}$ if $S > 1$. This completes the proof of Theorem 1.1. \qed
References

[1] U. Abresch and J. Langer, *The normalized curve shortening flow and homothetic solutions*, J. Diff. Geom., 23 (1986), 175-196.

[2] S. Angenent, *Shrinking doughnuts*, In nonlinear diffusion equations and their equilibrium states, Birkhäuser, Boston-Basel-Berlin, 7, 21-38, 1992.

[3] H. -D. Cao and H. Li, *A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension*, to appear in Calc. Var. Partial Differential Equations, [arXiv:1101.0516](http://arxiv.org/abs/1101.0516).

[4] Q. -M. Cheng and H. C. Yang, *Chern's conjecture on minimal hypersurfaces*, Math. Z., 227 (1998), 377-390.

[5] T. H. Colding and W. P. Minicozzi II, *Generic mean curvature flow I; Generic singularities*, Ann. of Math., 175 (2012), 755-833.

[6] Q. Ding and Y. L. Xin, *The rigidity theorems of self shrinkers*, to appear in Trans. Amer. Math. Soc., [arXiv:1105.4962](http://arxiv.org/abs/1105.4962).

[7] Q. Ding and Y. L. Xin, *Volume growth, eigenvalue and compactness for self-shrinkers*, to appear in Asia J. Math., [arXiv:1101.1411](http://arxiv.org/abs/1101.1411).

[8] G. Huisken, *Flow by mean curvature of convex surfaces into spheres*, J. Diff. Geom., 22 (1984), 237-266.

[9] G. Huisken, *Asymptotic behavior for singularities of the mean curvature flow*, J. Diff. Geom., 31 (1990), 285-299.

[10] G. Huisken, *Local and global behaviour of hypersurfaces moving by mean curvature*, Differential geometry: partial differential equations on manifolds, 175-191, Proc. Sympos. Pure Math., 54 (1993), Amer. Math. Soc..

[11] Nam Q. Le and N. Sesum, *Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers*, Comm. Anal. Geom., 19 (2011), 1-27.

[12] H. Li and Y. Wei, *Classification and rigidity of self-shrinkers in the mean curvature flow*, to appear in J. Math. Soc. Japan, [arXiv:1201.4623](http://arxiv.org/abs/1201.4623).

Qing-Ming Cheng, Department of Applied Mathematics, Faculty of Sciences, Fukuoka University, 814-0180, Fukuoka, Japan, cheng@fukuoka-u.ac.jp

Guoxin Wei, School of Mathematical Sciences, South China Normal University, 510631, Guangzhou, China, weiguoxin@tsinghua.org.cn