Comparison of 14C and U-Th ages of two Holocene phreatic overgrowths on speleothems from Mallorca (Western Mediterranean): Environmental implications

Paola Tuccimei1, Mark Van Strydonck2, Angel Ginés3,*, Joaquín Ginés3, Michele Soligo1, Igor M. Villa4,*, Joan J. Fornós3

Abstract:

Paola Tuccimei, Mark Van Strydonck, Angel Ginés, Joaquín Ginés, Michele Soligo, Igor M. Villa, Joan J. Fornós. 2011. Comparison of 14C and U-Th ages of two Holocene phreatic overgrowths on speleothems from Mallorca (Western Mediterranean). Environmental implications. International Journal of Speleology, 40(1), 1-8. Tampa, FL (USA). ISSN 0392-6672. DOI: 10.5038/1827-806X.40.1.1

This investigation reports on the comparison between ICP-MS U-Th and AMS 14C ages of Phreatic Overgrowths on Speleothems (POS) from two different caves on the island of Mallorca (Spain). These speleothem encrustations form at the water table of coastal caves in a low-amplitude tide-controlled microenvironment and are used to reconstruct past sea level changes. The aim of this study is to evaluate if this particular type of speleothem is datable using 14C method and to investigate possible problems connected with the incorporation of dead carbon inherited from the dissolution of 14C-free limestone. The results show that 14C ages are strongly site dependant and appear related to local residence time of water infiltration through the soil and epikarst. When short transit time and limited interaction with soil and bedrock, as in Cova de Cala Varques A, the so-called “reservoir” effect is negligible and 14C and U-Th ages corresponds within the error range. When the residence time is longer, as in Cova des Pas de Vallgomerà, 14C ages are steadily 2,300-2,400 years older than the U-Th data, as shown by the mean value (25%) of estimated percent dead carbon proportions and by higher and better correlated contents of major and trace elements in the vadose support of this speleothem encrustation. The potential use of this multi-method approach to paleoenvironmental studies is also suggested.

Keywords: 14C, U-Th dating, Holocene, speleothem, coastal karst, Mallorca

Received 22 June 2010; Revised 30 August 2010; Accepted 14 September 2010

INTRODUCTION

The use of radiocarbon dating in speleothem chronology is considered problematic, principally because of potential variability in the contribution of “dead carbon” from the host limestone (Hendy, 1970). Precipitating waters may contain a proportion of carbon inherited from the dissolution of 14C-free limestone through the karst system that varies according to the extent of open system conditions and incongruent dissolution (Wigley et al., 1978). Where soil organic matter (SOM) turnover rates is longer than 10 years, soil 14CO$_2$ cannot be considered in equilibrium with the atmosphere and uncorrected 14C ages overestimate the true age of deposition (Genty et al., 1999). Because of these problems, relatively few speleothem chronologies are based on 14C ages. However, where independent ages were calculated, the dead carbon proportion (dcp), due to the dissolution of the limestone and to “slow” oxidation of SOM was found to range between 10 and 20% (Bastin & Gewelt, 1986; Holmgren et al., 1994; Genty et al., 1999). Because of these problems, relatively few speleothem chronologies are based on 14C ages. However, where independent ages were calculated, the dead carbon proportion (dcp), due to the dissolution of the limestone and to “slow” oxidation of SOM was found to range between 10 and 20% (Bastin & Gewelt, 1986; Holmgren et al., 1994; Genty et al., 1999). Because of these problems, relatively few speleothem chronologies are based on 14C ages. However, where independent ages were calculated, the dead carbon proportion (dcp), due to the dissolution of the limestone and to “slow” oxidation of SOM was found to range between 10 and 20% (Bastin & Gewelt, 1986; Holmgren et al., 1994; Genty et al., 1999). Because of these problems, relatively few speleothem chronologies are based on 14C ages. However, where independent ages were calculated, the dead carbon proportion (dcp), due to the dissolution of the limestone and to “slow” oxidation of SOM was found to range between 10 and 20% (Bastin & Gewelt, 1986; Holmgren et al., 1994; Genty et al., 1999).

Another problem could arise from the contamination of speleothems with younger carbon from soil organic matter that might be deposited in the original structure of porous speleothems and subsequently decay, releasing CO$_2$ that could precipitate as carbonate (Goslar et al., 2000). In addition to that, bomb-14C may affect modern speleothems leading to an apparent age that is younger than corresponding U-Th age (Genty et al., 1998).

This study reports on the comparison between Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) U-Th and Accelerator Mass Spectrometry (AMS) 14C ages of two Holocene POS from Mallorca (Spain). U-Th ages of POS are increasingly gaining attention from the scientific community because they allow to precisely constrain sea-level change.

1 Dipartimento di Scienze Geologiche, Università “Roma Tre”, Largo San Leonardo Murialdo 1, 00146 Roma, Italy
2 Institut Royal du Patrimoine Artistique, Parc du Cinquantenaire 1, B-1000 Bruxelles, Belgium
3 Departament de Ciències de la Terra, Universitat de les Illes Balears, ctra. Valldemossa km 7.5, Palma de Mallorca, 07122, Spain. email: agines.gracia@yahoo.es
4 Institut für Geologie, Universität Bern, Baltzerstrasse 3, 3012 Bern, Switzerland
5 Dipartimento di Scienze Geologiche e Geotecnologie, Università di Milano - Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milano, Italy
during the Holocene (Tuccimei et al., 2010) and Late Pleistocene (Vesica et al., 2000; Tuccimei et al., 2006; Dorale et al., 2010). These speleothem encrustations form a bulky belt-like band deposited at the water table of caves in unique karstic coastal settings having morphologies that can be directly related to sea level at the time of formation (see for details Ginés et al., 1981; Pomar et al., 1979; Vesica et al., 2000). U-Th ages of these samples -found at current sea level in the range of tidal fluctuation- have been recently reported by Tuccimei et al. (2009, 2010). These studies demonstrated that POS can readily be dated using U-series method, if the closed system condition can be verified. The aim of this study is to estimate if Holocene POS from two coastal caves in Mallorca are datable using 14C method and to assess potential problems related to future application of radiocarbon dating to speleothem overgrowths studies. Finally, this investigation highlights several environmental implications concerning water-soil-rock interaction processes, climatology and hydrology of coastal karst.

GEOLOGICAL SETTING AND SAMPLES DESCRIPTION

In the context of the Western Mediterranean plate tectonics, Mallorca was affected by two tectonic phases: the former -compressive- acting from the Paleogene to the Middle Miocene, the second -extensive- Upper Miocene in age, resulting in a structure formed by horsts and grabens (Gelabert et al., 1992) bounded by Upper Miocene normal faults. Both tectonic phases affect all carbonate lithologies occurring almost continuously since the Permo-Triassic to the present (Fornós & Gelabert, 1995). The horsts correspond to the mountain ranges (Serra de Tramuntana and Llevant) and consist of an imbricate thrust sheet system facing NW. The grabens correspond to the basins (Pla and Migjorn) filled with tabular postorogenic sediments, mainly Upper Miocene to Quaternary in age. Sediments deposited after the Middle Miocene are considered post-orogenic and do not present evident compressive structures. Consequently, Mallorca must be considered stable since the Upper Miocene (Fig. 1).

The two speleothems chosen for this investigation are VA-D1 and VL-D3 from two coastal caves in Mallorca (Spain): Cova de Cala Varques A and Cova des Pas de Vallgornera, respectively (Fig. 1). Both caves are developed within very porous calcarenites of the Upper Miocene Reef Complex (Fornós & Gelabert, 1995). The first one is located within 50 m from the coast line whereas the latter one at several hundreds meters inland.

Cova de Cala Varques A is located only few metres from the eastern coast of Mallorca and belongs to a system of three neighbour caves interconnected through underwater passages. The presence of bulky calcite overgrowths along the margins of extensive brackish water pools is noteworthy (Fig. 2a).

Cova des Pas de Vallgornera is the largest cave in Mallorca, with a passage development exceeding 63 km (Fornós et al., 2010). It consists of an impressive

Fig. 1. Geological map of Mallorca Island (Western Mediterranean) with the location of the studied caves.

Fig. 2. Carbonate crystallisations at the water table of coastal caves. a: calcite belt of POS in Cova de Cala Varques A (Manacor); white arrows emphasise water table position when the picture was taken, which was slightly higher than present mean sea level (Photo: B.P. Onac). b: aragonite belt of POS from Cova des Pas de Vallgornera (Llucmajor); the thickest part of the overgrowth band corresponds to the mean sea level; white arrows emphasise water table position when the picture was taken (Photo: A. Merino).
maze of passages and chambers developed roughly on two main levels (Ginés et al., 2009), of which, the lower is partially drowned by brackish waters. Among the many carbonate precipitates found in the cave, there are abundant aragonite deposits, formed at the surface of the subterranean pools. They include abundant delicate stalactites with tips coated by smooth yellowish aragonite overgrowths (Fig. 2b).

Speleothem VA-D1 is a stalactite encrusted by a globular phreatic precipitate of 3–10 cm thickness, consisting of mm-scale elongated rhombohedral calcite crystals. Speleothem VL-D3 is a vadose stalactite covered by a globular phreatic overgrowth with a thickness of 0.5–2 cm. It is composed of 20 μm wide and 1 mm long acicular aragonite crystals with flat orthorhombic terminations, arranged in 0.3–1 mm thick successive growth bands of radial fan crystals (Tuccimei et al., 2010).

METHODS

Sampling

Five samples were selected from speleothem VA-D1 (Cova de Cala Varques A), one from the inner vadose support (subsample 14) and four (subsamples 1, 2, 3 and 4) from the phreatic overgrowth along a transect parallel to the growth axis, in correspondence with the larger thickness of the overgrowth (Fig. 3).

Three other samples (subsamples 2, 4 and 5) were obtained from speleothem VL-D3 (Cova des Pas de Vallgornera) along a transect parallel to the growth axis (Fig. 4). Finally, thin sections were cut from both speleothems along horizontal planes perpendicular to the inner vadose support for electron microprobe analyses.

Radiocarbon dating

CO₂ was extracted from the samples with phosphoric acid without any pre-treatment. Part of the released CO₂ was used for stable isotope measurements (δ¹³C) using a Finnigan-Mat-δ. The results are expressed in ‰ vs. V-PDB. The remaining CO₂ was used for the graphitization (with H₂ over a Fe catalyst) (Van Strydonck & Van der Borg, 1990-91) and preparation of an AMS target. ¹⁴C content of the graphite was measured using a 3 MEV Tandetron 4130 AMS machine (High Voltage Engineering) (Nadeau et al., 1998). Radiocarbon ages and δ¹³C values are reported in Table 1. Errors associated to the ages are quoted as 1σ according to Stuiver & Polach (1977).

U-Th dating

Carbonate samples were spiked with a mixed ²³⁶U–²²⁹Th tracer and dissolved in concentrated distilled HCl. The dried chloride was then converted to nitrate. U and Th were separated on miniaturized PTFE columns containing U-TEVA™ resin using HNO₃ and HCl. As the Th eluate is strongly bound to rather volatile organic matter washed from the resin, the Th fraction was evaporated at <50°C to avoid loss by evaporation. Organic molecules were oxidised according to the protocol described in Tuccimei et al. (2010). After oxidation, U samples were dissolved
Table 1. U-Th, 14C ages and dead carbon proportion results on VA-D1 and VL-D3 speleothems.

Sample name	U-Th age years (BP)	14C age years (BP)	a14C atm meas pMC	a14C meas pMC	dcp (%)	δ13C V-PDB (%)
VA-D1-1	2800±20	2820±30	71.15±0.35	70.36±0.26	1.11±0.79	-3.9
VA-D1-2	2300±700	2185±30	76.01±12.44	76.18±0.30	-0.22±23.15	-3.2
VA-D1-3	1500±35	1700±25	82.24±0.71	80.93±0.24	1.59±1.26	-3.14
VA-D1-4	1100±250	315±25	86.11±5.20	96.14±0.28	-11.65±8.55	-3.42
VA-D1-14	7700±100	7750±45	42.35±1.04	38.10±0.22	10.04±3.52	-8.42
VL-D3-2	1840±10	4120±35	78.94±0.20	59.89±0.27	24.13±0.58	-4.73
VL-D3-4	1350±5	3615±30	83.28±0.10	63.79±0.25	23.40±0.43	-5.23
VL-D3-5	610±5	3005±30	93.02±0.12	68.79±0.27	26.05±0.43	-5.19

14C atm meas = 14C activities of the atmosphere obtained by converting the U-Th age into a 14C activity by means of the calibration curve (intCal09, Reimer et al., 2009);
a14C meas = measured 14C activities;
dcp = dead carbon proportions;
δ13C values are referred to the standard V-PDB;
14C activities are expressed as pMC (percent modern carbon). For VA-D1 and VL-D3 subsample locations see Figures 3 and 4 respectively. All errors quoted as 1σ.

RESULTS AND DISCUSSION

14C data were not calibrated because the source of carbon is unknown, possibly being a mixture of carbon from different reservoirs: air, dissolved rock, SOM and plants. In addition, mother solutions are phreatic brackish waters resulting from a mixture of fresh-groundwater and seawater; the mixing proportion at Cova de Cala Varques A is ~ 40% (Tuccimei et al., 2010), and possibly different ratio at Cova des Pas de Vallgornera. Age data are reported in Table 1, along with dead carbon proportion and δ13C values.

U-Th ages of subsamples from speleothem VA-D1 were corrected for the presence of a detrital component containing inherited 230Th according to a 3-D isochron approach, as shown in Tuccimei et al. (2010); measured 230Th/232Th activity ratio ranged between 0.4 and 7.1. U-Th ages of subsamples from VL-D3 speleothem, affected by a very minor contamination, were corrected for an initial (230Th/232Th) activity ratio of 0.85 ± 0.36 (upper crust value, Wedepohl, 1995). In this case, measured values of 230Th/232Th activity ratio ranged between 145 and 510 (Tuccimei et al., 2010).

Older samples from Cova de Cala Varques A speleothem encrustation (VA-D1-1, VA-D1-2 and VA-
Comparison of 14C and U-Th ages of two Holocene phreatic overgrowths on speleothems from Mallorca (Western Mediterranean): Environmental implications

VA-D1 vadose support

VL-D3 vadose support

D1-3) provided reasonably consistent U-Th and 14C ages, including the vadose support (sample VA-D1-14). U-Th ages are generally slightly younger than related 14C ages, while the youngest portion of the phreatic overgrowth (VA-D1-4) displays a 14C age younger than that obtained by U-Th method. In principle, this could be due to contamination with modern carbon from very young organic matter deposited in the original structure of porous speleothem and degraded by the microbial activity, but its δ^{13}C composition does not record any significant change when compared to other subsamples from the overgrowth. Actually, the δ^{13}C values of all subsamples from POS VA-D1 are quite constant (from -3.14 to -3.90 ‰ V-PDB), showing that the carbonate was deposited under the same conditions over time and assuming that the environment can be considered stable. Finally, the carbon isotopic composition of the vadose support (-8.43 ‰ V-PDB) is more negative than that of POS, indicating its meteoric origin.

The speleothem from Cova des Pas de Vallgornera (VL-D3-2, VL-D3-4, VL-D3-5) displays systematically older 14C ages that are steadily above 2,300-2,400 years older than U-Th data. The constant difference suggests that the system was stable over the entire period of speleothem precipitation. The temporal shift between the two dataset could be due to the so-called “reservoir effect” according to which the speleothem precipitates from a solution containing more 14C-free carbon from leached carbonate rocks or old SOM.

This observation is confirmed by magnesium, strontium, sodium and phosphorus contents of calcite vadose supports of VA-D1 and VL-D3 speleothems (Fig. 5), which reflect abundances of these elements in the mother solutions and thus an estimate of the interaction with the soil and bedrock.

VL-D3 speleothem is characterised by higher concentration of magnesium and sodium and markedly less strontium and phosphorus compared above Cova des Pas de Vallgornera (VL-D3) than above Cova de Cala Varques A (VA-D1). This is so because in temperate regions, solute acquisition by karst waters generally depends on water residence time and tends to increase during drier periods when residence times are longer (Fairchild et al., 2000). This seems to be true for Cova des Pas de Vallgornera, which is located farther inland under a bush Mediterranean scrub-cover, alternating with cultivated grassland, whereas
Cova de Cala Varques A opens very close to the coast line, beneath a rocky supralittoral karrenfield covered by a discontinuous and thin soil with very scarce natural vegetation. Furthermore, the thickness of the rock cover is greater above Cova des Pas de Vallgornera (approximately 20 m) compared to Cova de Cala Varques A where only reaches a few metres. Finally, looking at the carbon isotopic composition of VL-D3 POS, it is possible to observe that it is slightly more negative (from -4.73 to -5.23 ‰ VPDB) than that of Cova de Cala Varques A, but fairly homogeneous.

If a long residence time in the soil and epikarst of Cova des Pas de Vallgornera and a shorter one at Cova de Cala Varques A are inferred, the relative dead carbon proportion (dcp) in all subsamples, can be calculated from the following equation by Genty et al. (1999):

\[
dcp = 1\left(\frac{a^{14}C_{\text{init}}}{a^{14}C_{\text{atm,init}}}\right) \cdot 100\%
\]

where \(a^{14}C_{\text{init}} \) is the initial \(^{14}\)C activity of the calcite and \(a^{14}C_{\text{atm,init}} \) is the atmospheric \(^{14}\)C activity at time of deposition.

Since the initial \(^{14}\)C activity of calcite is equal to:

\[
a^{14}C_{\text{init}} = a^{14}C_{\text{meas}} / \exp(\lambda \cdot t)
\]

where \(a^{14}C_{\text{meas}} \) is the measured radiocarbon activity corrected for isotopic fractionation, \(\lambda \) is the \(^{14}\)C decay constant, calculated from the Libby half-life and \(t \) is time, and the initial \(^{14}\)C activity of the atmosphere is given by the following equation:

\[
a^{14}C_{\text{atm,init}} = a^{14}C_{\text{atm,meas}} / \exp(\lambda \cdot t)
\]

where \(a^{14}C_{\text{atm,meas}} \) represents the \(^{14}\)C activity of the atmosphere obtained by converting the U-Th age into a \(^{14}\)C activity by means of the calibration curve (intCal09) (Reimer et al. 2009), then, the first equation becomes:

\[
dcp = \left[1\left(\frac{a^{14}C_{\text{meas}}}{a^{14}C_{\text{atm,meas}}}\right)\right] \cdot 100\%
\]

Calculated dead carbon proportion values are reported in Table 1 and displayed in Fig 6. Table 1 also reports \(a^{14}C_{\text{atm,meas}} \) and \(a^{14}C_{\text{meas}} \) data used to calculate the values of dcp.

The pooled mean of percent dcp values calculated for subsamples from the phreatic overgrowth of Cova de Cala Varques A is 1.08±0.35 (1σ) and there is 95 % probability that all of them represent the same true value (t-test). The pooled mean takes into account the precision of data (standard deviation) and consequently the weight of dcp calculated for subsamples VA-D1-2 and VA-D1-4 is low because of the large uncertainties. This highlights the negligible effect of water-soil-rock interaction has on \(^{14}\)C data of the carbonate encrustation (subsamples 1, 2 and 3). The negative proportion of dead carbon recorded by subsample 4 is not statistically different from that of other subsamples. Consequently, no consideration on the addition of modern carbon from organic matter to the porous structure of outermost layers of this overgrowth can be advanced and documented.

Values of percent dead carbon proportion calculated from speleothems VL-D3 are very constant and the pooled mean is 24.61±0.25. This mean value is significantly higher than that obtained for POS VA-D1. Our results approach the range in dcp of 10-20 % reported by Bastin & Gewelt (1986), Holmgren et al. (1994), Genty et al. (1998) and Beck et al. (2001) for Holocene and Pleistocene speleothems from different parts of the world.

The values of dcp confirm a stronger water-soil-rock interaction of precipitating water in Cova des Pas de Vallgornera compared to Cova de Cala Varques A. A longer residence time of percolation water is in turn related to a stronger solute acquisition by karst waters that presumably favoured the precipitation of aragonite instead of calcite at Cova des Pas de Vallgornera. Actually, the precipitation of aragonite was probably promoted by the high magnesium content of precipitating waters, as clearly inferred from the electron microprobe analyses of VL-D3 vadose support (Fig. 5). The intense water-soil-rock interaction caused a strong enrichment in magnesium, which may have inhibited calcite precipitation over the vadose support. This hypothesis agrees with Berner’s (1975) experiments, where dissolved magnesium appears to decrease the rate of calcite crystal growth but have no effect on aragonite crystallization.

CONCLUSIONS

U-Th ages of phreatic overgrowths on speleothems from coastal caves of Mallorca (Spain) are increasingly gaining attention from the scientific community because they allow to precisely constraining sea-level changes during the Holocene (Tuccimei et al., 2010) and Late Pleistocene (Vesica et al., 2000; Tuccimei et al., 2006; Dorale et al., 2010).
Here we investigate the potential of these speleothem encrustations to be ^{14}C dated by comparing radiocarbon age results of Holocene speleothems with U-series data. ^{14}C data were not calibrated because the source of carbon is unknown, possibly representing a mixture of carbon from different reservoirs.

The outcomes of ^{14}C ages are strongly site dependent and appear related to the local residence time of water infiltration through the soil and epikarst. When the water transit is fast and has limited interaction with soil and bedrock, as seem to be the case at Cova de Cala Varques A, the so-called “reservoir” effect is negligible and ^{14}C and U-Th ages corresponds within the error range. However, when the residence time is longer (as probably occurs in Cova des Pas de Vallgonerana), ^{14}C ages are significantly older, as shown by the high values (25%) of dcp; these data, as well as the ^{3}H composition of speleothems, result quite constant demonstrating the stability of these chemical systems over the last 2,800 years. This investigation provides a first contribution to assess potential problems related to future application of radiocarbon dating to speleothem overgrowths (POS) studies. Environmental implications concerning water-soil-bedrock interaction processes, climatology and hydrology in coastal karst systems are suggested.

In conclusion, it is worth noting that studies on POS chronology based on ^{14}C dating should be integrated with investigation on trace elements distribution along growth profiles of vadose supports in order to collect information on the interaction among the freshwater component of precipitating solutions, the soil and the epikarst. Abundances and correlations among elements could provide further evidence of longer residence time and possible incorporation of dead carbon.

This study shows that the use of radiocarbon dating in generating POS chronologies is promising, but in some situations still problematic, whereas U-Th dating remains the best approach to study these speleothem encrustations.

ACKNOWLEDGEMENTS

This work was supported by the research fund of MICINN-FEDER Project CGL2006-11242-C03-01 and MICINN Project CGL2009-07392 of the Spanish Government (JJF). Andrea Cavallo and Silvio Mollo are thanked for EMP analyses. Bogdan Onac is also thanked for his improvements on the former manuscript.

REFERENCES

Bastin B. & Gewelt M., 1986 - Analyse pollinique et datation ^{14}C des concrétions stalagmitiques Holocènes: Apports complementaires des deux méthodes. Géographie Physique et Quaternaire, 40: 185-196.

Beck J.W., Richards D.A., Edwards R.L., Silverman B.W., Smart P.L., Donahue D.J., Hererra-Osterheld S., Burr G.S., Calsoyas L., Jull A.J.T. & Biddulph D., 2001 - Extremely large variations of atmospheric ^{14}C concentration during the last glacial period. Science, 292: 2453-2458.

Berner R.A., 1975 - The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta, 39: 489-494.

Cheng H., Edwards R.L., Hoff J., Gallup C.D., Richards D.A. & Asmero Y., 2000 - The half-lives of uranium-234 and thorium-230. Chemical Geology, 169: 17-33.

Dorale J.A., Onac B.P., Fornós J.J., Ginés J., Ginés A., Tuccimei P. & Peate D.W., 2010 - Sea level high stand 81,000 years ago in Mallorca. Science, 327: 860-863.

Fairchild I.J., Borsato A., Tooth A., Friis S., Hawkesworth C.J, Yiming H., McDermott F. & Sapiro B., 2000 - Control on trace element (Sr-Mg) compositions of carbonate cave water: implications for speleothem climatic records. Chemical Geology, 166: 255-269.

Fleitmann D., Burns S.J., Mangini A., Mudelsee M., Kramers J., Villa I.M., Neff U., Al-Subbary A.A., Buettner A., Hippler D. & Matter A., 2007 - Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Soqotra). Quaternary Science Reviews, 26: 170-188.

Fornós J.J. & Gelabert B., 1995 - Lithology and tectonics of the Mallorcan karst. In: Ginés A. & Ginés J. (Eds.) - Karst and Caves of Mallorca, Endins, 20: 27-43.

Fornós J.J., Ginés A., Ginés J., Gràcia F., Merino A., Cifre J. & Hierro F., 2010 - Hypogène speleogenetic evidences in the development of Cova des Pas de Vallgonerana (Mallorca island, western Mediterranean). In: Andreo B., Carrasco F., Durán J.J. & LaMoreaux J.W. (Eds.) - Advances in Research in Karst Media. Springer-Verlag: 349-354.

Gelabert B., Sábat F. & Rodriguez-Perea A., 1992 - An structural outline of the Serra de Tramuntana of Mallorca (Balearic Islands). Tectonophysics, 203: 167-183.

Genty D., Vokal B., Obelic B. & Massault M., 1998 - Bomb ^{14}C time history recorded in two modern stalagmites – importance for soil organic matter dynamics and bomb ^{14}C distribution over continents. Earth Planetary Science Letters, 160: 795-809.

Genty D., Massault M., Gilmour M., Baker A., Verheyden S. & Keppens E., 1999 - Calculation of past dead carbon proportion and variability by the comparison of AMS ^{14}C and TIMS U/Th ages on two Holocene stalagmites. Radiocarbon, 41 (3): 251-270.

Ginés J., Ginés A., Fornós J.J., Merino A. & Gràcia F., 2009 - On the role of hypogène speleogenesis in shaping the coastal endokarst of southern Mallorca (Western Mediterranean). In: Klimchouk A.B. & Ford D.C. (Eds.) - Hypogène Speleogenesis and Karst Hydrogeology of Artesian Basins. Ukrainian Institute of Speleology and Karstology, Special Paper 1: 91-99.

Ginés J., Ginés A. & Pomar L., 1981 - Morphological and mineralogical features of phreatic speleothems occurring in coastal caves of Majorca (Spain). Proc. of 8th International Congress of Speleology, Bowling Green, USA, 2: 529-532.

Goslar T., Hercman H. & Pazdur A., 2000 - Comparison of U-series and radiocarbon dates of speleothems. Radiocarbon, 42 (3): 403-414.

Hendy C.H., 1970 - The use of ^{14}C in the study of cave processes. Twelfth Symposium Radiocarbon Variations and Absolute Chronology. Almqvist and Wiksell, Stockholm and Wiley and Sons, New York: 419-443.
Holmgren K., Lauritzen S.E. & Possnert G., 1994 - U/Th/234U and 14C dating of a Late Pleistocene stalagmite in Lobatse II Cave, Botswana. Quaternary Science Reviews, 13: 111-119.

Ludwig K.R., 2003 - Using Isoplot/Ex, version 3. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Ctr. Spec. Pub, 4.

Nadeau M.-J., Grootes P.M., Schliecher M., Hasselberg P., Rieck A. & Bitterling M., 1998 - Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon, 40: 239-245.

Pomar L., Ginés A & Ginés J., 1979 - Morfología, estructura y origen de los espeleotemas epaciáticos. Endins, 5/6: 3-17.

Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Burr G.S., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer R.W., Richards D.A., Southon J.R., Talamo S., Turney C.S.M, van der Plicht J. & Weyhenmeyer C.E., 2009 - IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51 (4): 1111-1150.

Stuiver M. & Polach H., 1977 - Reporting 14C data. Radiocarbon, 19 (3): 355-365.

Tuccimei P., Ginés J., Delitala M.C., Ginés A., Gracia F., Fornós J.J. & Taddeucci A., 2006 - Last interglacial sea level changes in Mallorca island (Western Mediterranean). High precision U-series data from phreatic overgrowth on speleothems. Zeitschrift für Geomorphologie, 50: 1-21.

Tuccimei P., Soligo M., Fornós J.J., Ginés A., Ginés J., Onac B.P. & Villa I.M, 2009 - Precipitation of phreatic overgrowths at the water table of meteoric-marine mixing zones in coastal cave systems: a useful tool in sea level change reconstruction. In: White W.B. (Ed.), Proc. of 15th International Congress of Speleology, Kerrville, USA, symposia, part 1: 554-560.

Tuccimei P., Soligo M., Ginés J., Ginés A., Fornós J., Kramer J. & Villa I.M., 2010 - Constraining Holocene sea levels using U-Th ages of phreatic overgrowth on speleothems from coastal caves in Mallorca (Western Mediterranean). Earth Surface Processes and Landforms, 35: 782-790.

Van Strydonck M. & Van der Borg K., 1990-91 - The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin Kon. Inst. v. h. Kunstpatrimonium, 23: 228-234.

Vesica P., Tuccimei P., Turi B., Fornós J.J., Ginés A. & Ginés J., 2000 - Late Pleistocene paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca (Spain). Quaternary Science Reviews, 19: 865-879.

Vogel J.C. & Kronfeld J., 1997 - Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites. Radiocarbon, 39: 27-32.

Wedepohl K.H., 1995 - The composition of the continental crust. Geochimica Cosmochimica Acta, 59: 1217-1239.

Wigley T.M.L., Plummer L.N. & Pearson F.J., 1978 Mass transfer and carbon isotope evolution in natural waters systems. Geochimica Cosmochimica Acta, 42: 1117-1140.