Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: http://hdl.handle.net/10985/8405

To cite this version:
Lamice DENGUIR, José OUTEIRO, Guillaume FROMENTIN, Vincent VIGNAL, Rémy BESNARD
- Influence of cutting process mechanics on surface integrity and electrochemical behavior of OFHC copper - In: 2nd CIRP CSI, United Kingdom, 2014-05-29 - Procedia CIRP - 2014

Any correspondence concerning this service should be sent to the repository Administrator: archiveouverte@ensam.eu
INFLUENCE OF CUTTING PROCESS MECHANICS
ON SURFACE INTEGRITY AND ELECTROCHEMICAL BEHAVIOR
OF OFHC COPPER

PhD student:
Eng. Lamice DENGUIR (LaBoMaP – AMPT)

Supervised by:
Prof. Guillaume FROMENTIN (LaBoMaP – AMPT)
Prof. José OUTEIRO (LaBoMaP – AMPT)
Prof. Vincent VIGNAL (ICB – UB)
Eng. Rémy BESNARD (CEA – Valduc)
Outline

Introduction

Objectives

Experimental procedure and parameters

Results and discussion

Conclusion and outlook
Introduction

Comprehension of cutting mechanics

Surface integrity

Tool / Flank contact

Residual Stresses

Microstructure

Topography

F, T°, RS, DRX

Sub-surface layers ?

Experimental study

Numerical modeling

Tool / Flank contact

Experimental study

Sub-surface layers ?

Tool

Workpiece

Chip

Tool

Non machined surface

Machined surface

Residual Stresses

Microstructure

Topography

Corrosion resistance of OFHC copper

Electrochemical behavior

Resistance in salt fog atmosphere

Experimental study

Phenomenological modeling

Numerical modeling

Experimental study

Tool

Workpiece

Chip

Resistance in salt fog atmosphere

Electrochemical behavior

Corrosion resistance of OFHC copper

Surface integrity

Comprehension of cutting mechanics
Objectives

Compare a typical 3D turning with orthogonal cutting

- Influence of superfinishing machining conditions on surface integrity and corrosion resistance of OFHC copper

Orthogonal cutting

Is orthogonal cutting process able to provide a surface integrity similar to that one generated by 3D cutting?
Experimental procedure and parameters

Face turning of OFHC copper

\[
\begin{align*}
\text{feed } f &= 0.1 ; 0.15 ; 0.2 \text{ mm/rev} \\
\text{depth of cut } a_p &= 0.15 ; 0.30 ; 0.50 \text{ mm} \\
\text{cutting speed } V_c &= 120 \text{ m/min} \\
\text{air cooling} \\
\text{inclinatory angle } \alpha &= 7^\circ \\
\text{pressure angle } \gamma &= 20^\circ \\
\text{radius } r_\beta &= 9 \mu m \\
\end{align*}
\]

3D Face turning

- Forces
- Topography
- RS

Local electro-chemical tests

Polarization

Electrochemical behavior

Roughness measurement directions

Cutting mechanics

Surface integrity

Electrochemical behavior
Experimental procedure and parameters

- $V_c = 120 \text{ m/min}$
- $h = 0.01; 0.03; 0.05; 0.07; 0.10 \text{ mm}$
- $b = 4 \text{ mm}$
- Air cooling
- $-5\pm1^\circ \text{C}$

Orthogonal cutting tests

- NC machining
- QST

Orthogonal cutting of OFHC copper

Electrochemical behavior

- Polarization

- Statistical Analysis basing on Pearson’s correlation coefficient:

$$\text{Correl}(X,Y) = \frac{\sum(x - \bar{x})(y - \bar{y})}{\sqrt{\sum(x - \bar{x})^2 \sum(y - \bar{y})^2}}$$
Results and discussion: Cutting mechanics

Local forces in face turning \([f(h_{\text{max}})]\)

Applied to the entire uncut chip cross section

Applied to the studied section
Results and discussion: Surface integrity

- h_{max} is correlated to R_a, R_t and S_a by > 97%.
- The influence of h on the surface roughness is opposite to the orthogonal cutting.

- Cutting instability for very low h/r_{β} ratios and very large b.

- $h > 0.05 \, \text{mm}$: R_a tends to a steady state and depends only of the tool wear.
Results and discussion: Surface integrity

- No significant influence of $h_{s\text{ max}}$ or h on RS

- Surface RS are tensile for face turning and orthogonal cutting.

- Surface σ_{rad} in orthogonal cutting is higher than that in face turning (~ 0)

- Local forces are inversely correlated with surface σ_{cir} [face turning: >99%], as well as with the surface σ_{rad} in orthogonal cutting (>74%).
Results and discussion:
Surface integrity

- Below the surface, compressive stresses are generated by face turning, while orthogonal cutting generates tensile stresses for depth greater than 20 µm.
Results and discussion: Local electrochemical behavior

Polarization curve composition

E_{cor} and E_{piq} evolution [f(h or h_{s max})]
Results and discussion: Correlations between SI parameters and electrochemical reactivity parameters

- σ_{rad}, $R_{a,\text{peak}}$ (face turning) and R_a (orthogonal cutting) are the parameters influencing significantly the local electrochemical reactivity.
Conclusion and Outlook

- $h_{s\,\text{max}}$ (face turning) and h (orthogonal cutting) are strongly correlated to the local forces and surface roughness, but not to the surface residual stresses.

- Concerning to the in-depth residual stress profiles, face turning generates a thicker layer having compressive residual stresses, while orthogonal cutting generates a thicker layer having tensile residual stresses.

- Correlation analysis has proven that $R_{a\,\text{peak}}$ (face turning) and R_a (orthogonal cutting) are the most influencing parameters on the local electrochemical reactivity.
Conclusion and Outlook

The present results are not enough to confirm the hypothesis that identical deformation process is applied to generate the machined surface in both superfinishing turning and orthogonal cutting.

Further experiments are required with closer analysis to the thermal and mechanical phenomena developed at the tool flank contact.
Thanks for listening