Performance of impedance measurement algorithm applied in line with a compensation circuit

N Rohadi

Electrical Engineering Department, The Jakarta State of Polytechnic, Depok, Indonesia

E-mail: nnng_rohadi@yahoo.com

Abstract. This paper describes a performance of impedance measurement algorithms of SEL-421 distance relay protection when applied to protect series compensated line during fault conditions. The Performance is carried out by varying the value of uncertainty parameters to the accuracy of the impedance measurement algorithm of the relay for the simulated faults, which is measured from the located relay to the fault points. Experiments were carried out with a combination of DIgSILENT PowerFactory software to model and simulate electrical power protection systems with a system voltage of 400 kV and a line length of 300 km with compensation circuit placed in the middle of a protected transmission line. For a fault simulated 0.45 p.u. in front of compensation circuit, the relay still works correctly. However, there will be an operation failure of the relay for the fault simulated at 0.8 p.u. behind compensation circuit. Faults simulation and performances are performed automatically through the algorithm developed using the DIgSILENT Program Language (DPL). From the enclosed results, the developed method is applicable for testing the performance of the IEDs algorithm.

1. Introduction

Distance relay protection is a transmission line protection device in a high voltage system. Figure 1 shows a single line diagram of a power system model where a protected line located between two sources of voltage E_S and E_R is equipped with SEL-421 distance relay and series capacitor circuit as line compensation. The relay that is located at one of line terminal works based on the calculation of fault impedance Z_m and its performance is greatly influenced by some factors that will affect the calculation of fault impedance. More attention also needs to be taken into account when the use of series capacitor compensation that can affect the characteristic of the line [1]. The protected line, in this case, is electrically shorter. This existence of a series capacitor will compensate the value of the inductive reactance.

An impedance measurement system in one-ended distance relay, the algorithm function for measuring impedance is very important for the protection monitoring process where the response of the relay to the faults is based on positive-sequence of loop impedance based on the measurement of voltage and current locally on one side of the transmission line terminal. This protection relay is simple in its operation, but the accuracy of the impedance calculation is greatly influenced by some factors or called uncertainty parameters, which will affect the measurement of fault impedance Z_m.
[2,3]. In this case, the calculation of the Z_m will contain an error ΔZ_m which will affect the performance of the relay operation and consequently the relay does not work as expected.

Figure 1. Single-line diagram model for faults simulation (red color indicates uncertain parameters)

- F_1 - Location of fault before compensation circuit
- F_2 - Location of fault behind compensation circuit

Furthermore, the presence of series capacitor compensation SCs with Metal Oxide Varistors MOVs on protected line will also cause problems with impedance reduction for non-pilot distance relays algorithm [4]. In this case, the compensation circuit will produce uncertainty value from their response and finally will affect the performance of the algorithm [2,5].

Figure 1 is a simulation of faults at F_1 and F_2, where the voltage and current of the MOV as shown in Figure 2 can be expressed by the following equation [6].

$$i_{mov} = p \left(\frac{V_c}{V_{REF}} \right)^q$$

During fault, V_c is immediately protected by MOV_s after voltage capacitor V_c exceeds V_{REF} reference voltage. When a fault occurs at F_1, the capacitor does not affect the performance of the algorithm, however for the fault at/after the SCs, it will affect the performance of the algorithm [1].

Due to the influence of some uncertainty parameters, the presence of the compensation circuit and to view the performance of the distance relay, the application of testing with IEDs is needed. Practical problems and solutions to the performance of fault impedance algorithms with series capacitors, actually, have been carried out by the researcher [2,7-9], where performance studies are conducted to investigate relay performance based on the effect of just one factor.
Figure 1, 5 show the basic idea to explain some factors that can affect the accuracy of the impedance measurement algorithm during fault conditions. The fault points of F_1 and F_2 are simulated automatically for the fault of phase A to ground. The error of fault impedance calculation can occur and will impact the Z_m. There is a number of uncertainty parameter that can be investigated to see the effect on the accuracy of the impedance measurement algorithm, but we only focus on three factors, such as fault resistance r, zero-correction factors of impedance measurement algorithm k_o, and load flow angle δ_F.

![Figure 2. MOV Characteristic.](image)

In this publication, the proposed method was demonstrated for testing a specific algorithm that was implemented for SEL-421 multifunctional fault protection [10] when a circuit compensation $SC_s + MOV_s$ was placed in the middle of a protected transmission line.

2. The Issue of using Circuit Compensation

The application of on the transmission line is one alternative to increase the distribution of electrical power to the load and to improve power system stability [11, 12]. The relative stability of the generator can be improved which is needed by the generator to remain in synchronous condition during the fault [11].

Other on the contrary, problems will arise in the use of capacitors such as voltage inversion and reach of measurement of distance relay protection relays with impedance methods [3]. This condition is affected by series capacitors SC_s and nonlinear MOV_s which can change the characteristics of the line impedance and ultimately produce errors in the calculation of fault impedance Z_m.

2.1. Reduction of fault resistance

The use of series compensation circuit can reduce the value of the impedance measured by the located relay, in this case, X_{CO} will compensate the induction reactance X_L and hence the impedance can be expressed as $pX_L = X_L - X_{CO}$.

Figure 3 showed the simulation of fault impedance reduction for fault transmission lines with series capacitors ($SC_s + MOV_s$) with 60% line compensation and placed in the middle of the protected line. For the fault simulated in front of the capacitor (0.45 p.u.) at the point F_1, the impedance measurement is correct that is still in zone-1. In this case, series capacitors do not affect the accuracy.
of fault impedance measurement algorithm. The simulation uses the parameters system as shown in table-1 with fault resistance $R_f = 50$ Ω.

When the capacitor is in an active condition that is when the fault at F_2 (fault at the border of zone-1, 0.8 p.u.), $SC_s + MOV_s$ will change the characteristics of the fault impedance calculation. As a result, the zone-1 setting becomes overreaching due to the series capacitor; even the measured fault impedance is in zone-3. To avoid operating failure due to errors in calculating fault impedance (overreaching) for a fault at F_2 point, the zone-1 can need to be set smaller than 80% of the protected line.

![Mho fault impedance tracking](Image)

Figure 3. Mho fault impedance tracking.

2.2. **Reverse Voltage**

The reverse voltage is another problem experienced by IEDs when protecting a line with compensation circuits where V_{LS} and V_{LR} differ by 180°. This occurs when the capacitive reactance negative X_{CO} is greater than the positive reactivity of line pX_L when a fault simulated at point F_2. In real conditions, the bus voltage V_S is used by the IED, errors in the calculation of impedance will be generated in the fault of F_2. However, the opposite condition can occur if the total fault reactance loop is positive for fault in F_2, then the voltage read on the located relay is positive [13] just the same as when the fault occurred at F_1. In this condition, the relay will receive the correct voltage information, and the calculation of the impedance error will be accurate unless later affected by uncertainty parameters.

3. **Calculation of fault impedance for compensated line**

The application to analyze fault impedance algorithm as a function of the uncertainty parameters, the simulation of faults between two source terminals with compensation circuit located in the middle of
the line is applied (see Figure 1,4). The schematic of the power system is modeled with a Thevenin equivalent circuit with two sources of E_S and source impedances of Z_S and Z_R. All elements are modeled using the DlgSILENT PowerFactory software. In the figure, uncertainty parameters are expressed in red color. Phase A to the ground faults is simulated to see the effect of factors in different locations of F_1 and F_2 through fault resistance r.

For a fault, at F_1 (fault in front of $SC + MOV$) the impedance Z_{ms} at the located relay is the same as the uncompensated line (line without series capacitor). The performance index of the impedance algorithm calculated by SEL-421 algorithm is based on measuring voltage and current signals depending on the simulation scenarios.

![Figure 4](image_url)

Figure 4. Symmetrical components of two sources for phase-A to ground simulated at F_2

The impedance calculation is based on a zero-sequence current compensation method. The factor of k_0 depends on the impedance of the zero sequence Z_{OLS}, which is not known exactly. For a fault in F_2, a different analysis must be applied when $SC + MOV$ and other factors (identified in red color) can affect the accuracy of the impedance calculation. In this case, the fault impedance Z_{ms}
measured by the located relay to fault point at F_2 (distance = $d + m$) is not always the same as $Z_{LS} + pZ_{LR}$.

One phase fault (phase-A) to ground between series capacitors to the end of the line (fault at/in Figure 1) is more complex. The number of components of the voltage sequence for a fault at F_2 when there is a phase fault to the ground can be stated [1] as follow:

$$V_1 + V_2 + V_0 = 3R_F I_F$$

Eq.2 is the positive sequence of voltage, and currently see from terminal S and can be stated as:

$$V_i = V_{iAS} - V_{iLS} I_{LS} - V_{iC} - pZ_{LR} I_{LS}$$
$$V_2 = V_{2AS} - V_{2LS} I_{2S} - V_{2C} - pZ_{2LR} I_{2S}$$
$$V_0 = V_{0AS} - V_{0LS} I_{0S} - V_{0C} - pZ_{0LR} I_{0S}$$

p is expressed as the distance from point O to F2, and the measurement of impedance is then stated with

$$Z_m^r = \frac{V_{SA}^r}{I_{SA}^r} = Z_{LS} + \frac{3R_F I_F + V_C}{I_S^c}$$
$$= Z_{LS} + \Delta Z_{LSR}$$

where V_{SA} is the voltage of phase-A to the ground and I_S^c is I_{SA} of measured phase-A with compensated by the zero-sequence current I_{0SA} which is also measured by the relay and it is stated in.

$$I_{SA}^c = I_{SA} + k_0 I_{0SA}$$

Zero sequence compensation factor k_0 is defined as

$$k_0 = \frac{Z_{0LSR} + Z_{1LSR}}{Z_{1LSR}}$$

impedance measurement error ΔZ (2) is defined as a function of the uncertainty factor δF_{RF}.

$$\Delta Z = f\left(R_F, \delta F_{RF}\right)$$

4. Fault impedance simulation and Evaluation

The method for testing the SEL-421 algorithm is shown as in Figure 5. The current values $i(t)$ and voltage $v(t)$ for faults simulated at points F_1 and F_2 are generated by the power system model developed with DIgSILENT PowerFactory. The current and voltage magnitude disturbance measured from secondary CT and VT during the fault at/with system parameters for testing is shown in Table1.

Mho fault impedance for fault simulated in front of the capacitor (F_1) and after capacitor (F_2) with the random value of fault resistance R_F in the range 0-50 Ω is shown in Figure 6. The capacitor compensation value is determined as 70% of the protected transmission line and equipped with Metal...
Oxide Varistor (MOVₖ) and placed in the middle of the line. Figure 2 is the relationships between series capacitors and MOVₖ which is equated with Rᵥ resistance and Xᵥ reactance. From the figure, it is shown that the characteristics of the two values will depend on the current value of Iᵥ passing through the two components. Concerning this, two different analyses need to be done for at (F₁) and (F₂). Fault at the point F₂ will affect the performance of the algorithm function of the protection relay.

Figure 5. Block diagram of the automation testing.

4.1. Fault in front of the capacitor
Figure 3, 6 is the measurement of fault impedance simulated in front of the capacitor, which is 0.45 p.u with Rᵥ = 50 Ω and power angle δᵥ = 0°. The simulation results show how the measurement of Zₘ impedance is affected by /, which is the deviation from the actual impedance value of pZ₁LS. But when the fault current Iᵥ is supplied by two sources, the closed loop impedance is sensitive not only from Rᵥ but also from δᵥ [1,14].

4.2. Fault behind capacitor
In Figure 3,6 also shows the impedance measurement for the fault simulated after the capacitor, which is 0.8 p.u with Rᵥ = 50Ω and δᵥ = 0°. From the simulation, it is shown how Zₘ impedance measurement error is caused not only the effects of Rᵥ and but also the influence of the presence of the compensation circuit. The calculation of/ for a fault at F₂ is not constant when the values of Rᵥ and Xᵥ depend on current Iᵥ (Figure 2).
Figure 6. Fault impedance, $R_F = 0 - 50 \ \Omega$

Table 1. System parameters for testing.

Line	[km]	[kV]	[%]	[Ω]	[Ω]	[nF/km]	[nF/km]
length	300	400					
voltage compensation sequence impedance	60						
positive sequence impedance	8.25+j94.5						
zero sequence impedance	82.5+j308						
positive sequence capacitance	13						
zero sequence capacitance	8.5						

MOVs

reference current	[kA]	1
reference voltage	[kV]	150
exponent	[-]	23

Sistem R,S

positive sequence impedance	[Ω]	1.32+j15
zero sequence impedance	[Ω]	2.33+j26.6
system frequency	[Hz]	60

5. Conclusion
The method for testing fault impedance algorithm of SEL-421 for protection of line with series compensation circuit has been presented. The developed technique can show that the performance of algorithms that are affected by uncertainty parameters and compensation circuit can be observed. The factor of fault resistance R_F is very dominant in affecting the measurement results even though the relay can still work well for the fault simulated at 0.45 p.u (fault at the front of the SCs). However, the operation failure of the relay occurs for fault after compensation circuit (e.g., fault at 0.8 p.u).
where the effect of $SC_s + MOV_{s,1}$ and other factors will cause the relay to fail, i.e., there is a fault reading to zone-2 or zone-3 for faults simulated in zone-1. The fault simulation scenarios are implemented in DIgSILENT PowerFactory software, and testing automation is carried out through algorithms developed with DPL (DIgSILENT Programming Language).

References

[1] J Izykowski, et al. 2009 ATP-EMTP investigation of detection of fault position concerning the compensating bank in series compensated line by determining the contents of dc components in phase currents in International Conference on Power Systems Transients (IPST’09) in Kyoto, Japan on June 2009, pp. 3-6.

[2] D Novosel, et al. 1997 Problems and solutions for microprocessor protection of series compensated lines in Sixth International Conference on Development in Power System Protection, Nottingham, UK, 1997, pp. 18-23.

[3] M Bockarjova, et al. 2006 Statistical algorithm for power transmission lines distance protection in Probabilistic Methods Applied to Power Systems, 2006. PMAPS 2006. International Conference on 2006, pp. 1-7.

[4] J Izykowski 2008 location on power transmission lines: Oficyna Wydawnicza Politechniki Wroclawskiej.

[5] H J Altuve, et al. 2009 Advances in Series-Compensated Line Protection in Protective Relay Engineers, 2009 62nd Annual Conference for, pp. 263-275.

[6] J Izykowski, et al. 1998 Fundamental Frequency Equivalenting of Series Capacitors Equipped with MOVs Under Fault Condition of A Series-compensated Line in Proceeding of the 8th International Symposium on Short-Circuit Currents in Power Systems, Brussels, Belgium, October 1998, pp. 13-18.

[7] M Saha et al. 1999 A new accurate fault locating algorithm for series compensated lines Power Delivery, IEEE Transactions on, vol. 14, pp. 789-797.

[8] M. Saha, et al. 2000 Fault location in uncompensated and series-compensated parallel lines in Power Engineering Society Winter Meeting, 2000. IEEE, pp. 2431-2436.

[9] E Rosolowski, et al. 2011 Optimization of distance protection algorithm for the series-compensated transmission line in PowerTech, 2011 IEEE Trondheim, pp. 1-7.

[10] Schweitzer, et al. 2007 SEL-421 Relay Protection and Automation System User’s Guide. USA, 2007, http://www.selinc.com.

[11] A A Cuello-Reyna, et al. Transient Performance for a Series-Compensation in a High Voltage Transmission System.

[12] Altuve and H J 2009 Advances in series-compensated line protection,” Protective Relay Engineers, Annual Conference for, p. P 263.

[13] J L V D Berg Protection Problems and Solutions Associated with Series Compensated Transmission Lines Technikon Pretoria.

[14] N Rohadi and R Zivanovic 2011 Sensitivity analysis of impedance measurement algorithms used in distance protection in TENCON 2011-2011 IEEE Region 10 Conference, pp. 995-998.