Escape from the swamp with spectator

多田 祐一郎 (名古屋大学)
w/ 小粥一寛 PRD 101, no.10, 103514 (2020)
Q. インフレーションは UV完全？

弦理論の低エネルギー有効理論の分類

弦理論から降りてくる“landscape”
UV 完全

弦理論から降りてこない“swampland”
UV 不完全

有効理論が landscape にいるべき条件

“swampland conjecture” Vafa ‘05

By Diego Delso, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=69468045
Q. インフレーションは UV完全？

インフレーションに関係する swampland conjecture

- distance conjecture Ooguri & Vafa '06
- dS conjecture Obied+ '18, Garg & Krishnan '18, Ooguri+ '18
- trans-Planckian censorship conjecture Bedroya & Vafa '19, Bedroya+ '19

\[V(\phi) = \frac{M_{\text{Pl}}^2}{2} \left(\frac{V'}{V} \right)^2 \gtrsim \mathcal{O}(1) \]

\[\eta_V = M_{\text{Pl}}^2 \frac{V''}{V} \lesssim -\mathcal{O}(1) \]

となる direction が１つはある
→ no (quasi-)stable dS
Q. インフレーションは UV完全？

インフレーションに関係する swampland conjecture

- distance conjecture
 - Ooguri & Vafa ’06
- dS conjecture
 - Obied+ ’18, Garg & Krishnan ’18, Ooguri+ ’18
- trans-Planckian censorship conjecture
 - Bedroya & Vafa ’19, Bedroya+ ’19

\[V(\phi) \]

\[\epsilon_V = \frac{M_{Pl}^2}{2} \left(\frac{V''}{V} \right)^2 \gtrsim \mathcal{O}(1) \]

\[\eta_V = M_{Pl}^2 \frac{V''}{V} \lesssim -\mathcal{O}(1) \]

or

\[V(\phi) \]

\[\epsilon_H = -\frac{\dot{H}}{H^2} \gtrsim \mathcal{O}(1) \]

加速膨張

となる direction が1つはある

→ no (quasi-)stable dS

Escape from the swamp with spectator

Yuichiro Tada
多段階インフレーション

最低限の観測的制限
- CMB スケールの ~ 10 e-folds は 1 つのインフレーション
- CMB スケールの ζ はフラット：$n_s - 1 \approx -0.035$

数 e-folds なら可能
→ 繰り返して total 60 e-folds
Background

どこまで頂点に近づける？

\[V(\phi) \]

\[\delta\phi \sim \frac{H}{2\pi} \sim \frac{\Lambda^2}{M_{\text{Pl}}} \]
Background

\[V(\phi) \]

\[\delta \phi \sim \frac{H}{2\pi} \sim \frac{\Lambda^2}{M_{Pl}} \]

\[\sqrt{\epsilon V} M_{Pl} \sim \frac{H}{2\pi} \iff \mathcal{P}_\zeta \sim 1 \]

どこまで頂点に近づける？
Background

\[V(\phi) \]

\[\delta \phi \sim \frac{H}{2\pi} \sim \frac{\Lambda^2}{M_{Pl}} \]

\[\sqrt{\epsilon_V M_{Pl}} \sim \frac{H}{2\pi} \Leftrightarrow P_\zeta \sim 1 \]

\[P_\zeta \lesssim 10^{-9} \]

どこまで頂点に近づける？

\[\epsilon \sim \frac{V}{M_{Pl}} \sim H \]

Escape from the swamp with spectator
Yuichiro Tada
5 /8
どこまで頂点に近づける？

\[\delta \phi \sim \frac{H}{2\pi} \sim \frac{\Lambda^2}{M_{Pl}} \]

\[\sqrt{\epsilon_V M_{Pl}} \sim \frac{H}{2\pi} \Leftrightarrow \mathcal{P}_\zeta \sim 1 \]

\[\mathcal{P}_\zeta \lesssim 10^{-9} \]

\[\frac{1}{2} \frac{d\sigma}{d\Omega} \lesssim \frac{1}{2} \Lambda M_{Pl} \]

\[\left| \eta_V \right| \]
Perturbation

inflaton $\phi : \zeta_\phi$

$$n_s - 1 \simeq - 6\epsilon_V + 2\eta_V \overset{!}{=} - 0.035$$
$$\text{どちらも} \gtrsim O(1) \times$$

spectator $\sigma : \zeta_\sigma$

$$n_s - 1 \simeq - 2\epsilon_H + \frac{2}{3} \frac{m_{\sigma, \text{eff}}^2}{H^2} \overset{!}{=} - 0.035$$
$$\ll 1 \sim - O(0.01) \checkmark$$

* σ が留まるために CMB インフレーションの後に $m_{\sigma, \text{eff}}$ は消える

$$\rightarrow \mathcal{L} \supset - \frac{c}{2} \frac{V(\phi_{\text{CMB}})}{M_{\text{Pl}}^2} \sigma^2, \quad c \sim - O(0.01)$$
Discussion

How $\delta\sigma \to \zeta$?

1. curvaton $\delta\rho_\sigma \to \zeta$

$$f_{NL} \text{が大きくなりすぎないために } \rho_\sigma \text{は宇宙を支配}$$

$$\begin{cases}
\rho_r \propto a^{-4} \\
\rho_\sigma \propto a^{-3}
\end{cases}$$

低エネルギーインフレーションすぎて ρ_σ が宇宙を支配できない …

2. modulated reheating

$$\Gamma_\phi(\sigma) = \Gamma_0 \left(1 + \alpha \frac{\sigma}{M} + \cdots\right) \checkmark$$

ただし cutoff scale $M \sim 10^3 \Lambda^2 / M_{Pl}^2 \sim \mathcal{O}(1 \text{ TeV})$
Conclusions

- 多段階インフレーション + スペクテータ は swampland conjecture (dS) と無矛盾
- curvaton は低エネルギーすぎてダメ
- modulated reheating は OK. ただし低エネルギーにカットオフスケールが必要