Dissipative processes in superfluid quark matter

Massimo Mannarelli
Universitat de Barcelona

massimo@ecm.ub.es

arXiv:0807.3264 arXiv:0904.3023 arXiv:0909.4486

Collaborators: M.A. Escobedo, C. Manuel, B.A. Sa’d, M.Ruggieri, R.Anglani, G.Colucci
OUTLINE

✦ QCD phase diagram
✦ Color flavor locking
✦ Superfluids
✦ Dissipative processes
✦ R-mode oscillations

Reviews: hep-ph/0011333, hep-ph/0102047, hep-ph/0202037, 0709.4635
QCD phase diagram

T

T_c

QGP

Hadron gas

Nuclear liquid

Color Superconductor

μ
QCD PHASE DIAGRAM

QGP

Hadron gas

T

T_c

Nuclear liquid

Color Superconductor

μ
QCD PHASE DIAGRAM

- QGP
- Color Superconductor
- Hadron gas
- Nuclear liquid
- Compact stars

Temperature (T) vs Chemical Potential (μ)
QCD PHASE DIAGRAM

Warning: At high density ab initio calculations using QCD not available
Warning: At high density ab initio calculations using QCD not available
QCD PHASE DIAGRAM

Warning: At high density ab initio calculations using QCD not available

Confined Strong coupling Weak coupling

Hadrons CSC phase? quarkyonic phase? CFL
Color superconductor

Confined	Strong coupling	Weak coupling

\[\mu \]
Color superconductor

Confined \[\xrightarrow{\text{Strong coupling}}\] Weak coupling

\[\mu\]
Color superconductor

Confined Strong coupling Weak coupling

- Degenerate system of quarks
- Attractive interaction between quarks

\[3 \times 3 = \bar{3}_A + 6_S \]

attractive channel

\[p, p' \simeq p_f \]
Using quarks as building blocks, one has color, flavor as well as spin degrees of freedom: the game is complicated.

QCD, allows for a zoo of colored phases and one has to single out the one with the smallest free-energy.
\[\mu \gg m_s \]

CFL phase

Alford, Rajagopal, Wilczek hep-ph/9804403

\[\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta \epsilon_{I\alpha\beta} \epsilon_{Iij} \]

\[SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2 \]
Xtreme density

\[\mu \gg m_s \]

CFL phase

Alford, Rajagopal, Wilczek hep-ph/9804403

\[\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta \epsilon_{I\alpha\beta} \epsilon_{Iij} \]

\[SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2 \]

\[<\psi_L \psi_L> \quad <\psi_R \psi_R> \]
$\mu \gg m_s$

CFL phase

Alford, Rajagopal, Wilczek hep-ph/9804403

$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta \epsilon_{I\alpha \beta} \epsilon_{I i j}$

$$SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2$$

$SU(3)_L$ rotation
$\mu \gg m_s$

CFL phase

$\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta \epsilon_{I\alpha\beta} \epsilon_{Iij}$

$SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2$
\[\mu \gg m_s \]

CFL phase

Alford, Rajagopal, Wilczek hep-ph/9804403

\[\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta \epsilon_{I \alpha \beta} \epsilon_{I ij} \]

\[SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \rightarrow SU(3)_{c+L+R} \times Z_2 \]
Xtreme density

\[\mu \gg m_s \]

CFL phase

Alford, Rajagopal, Wilczek hep-ph/9804403

\[\langle \psi_{\alpha i} C \gamma_5 \psi_{\beta j} \rangle \sim \Delta \epsilon_{I\alpha\beta} \epsilon_{Iij} \]

\[SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \to SU(3)_{c+L+R} \times Z_2 \]

Gluons acquire a Meissner mass by Higgs mechanism

8 pseudo Nambu-Goldstone bosons

All quarks are paired; quasiparticles with a gapped excitation spectrum

No electrons

1 Nambu-Goldstone boson \(\to \) Superfluid
UNVISCID (DRY) FLUID

Continuity equation
\[\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0 \]

Euler equation
\[\frac{\partial v}{\partial t} + (v \cdot \nabla)v = -\frac{\nabla p}{\rho} - \nabla \phi \]

Vorticity \(\Omega = \nabla \times v \)
Unviscid fluid \(\Omega = 0 \)

The flow is permanently irrotational \(v = \nabla \varphi \)
VISCOUS (WET) FLUID

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = -\nabla p - \rho \nabla \phi + \eta \nabla^2 \mathbf{v} + \left(\frac{\eta}{3} + \zeta \right) \nabla (\nabla \cdot \mathbf{v})
\]

- **Shear viscosity** describes reaction to shear stresses
- **Bulk viscosity** describes reaction to compression/rarefaction

Using vorticity
\[
\frac{\partial \Omega}{\partial t} + \nabla \times (\Omega \times \mathbf{v}) = \frac{\eta}{\rho} \nabla^2 \Omega
\]

Vorticity generated by the shear viscosity
Viscous (Wet) Fluid

\[
\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} \right) = -\nabla p - \rho \nabla \phi + \eta \nabla^2 \mathbf{v} + \left(\frac{\eta}{3} + \zeta \right) \nabla (\nabla \cdot \mathbf{v})
\]

- **Shear viscosity** describes reaction to shear stresses.
- **Bulk viscosity** describes reaction to compression/rarefaction.

Using vorticity

\[
\frac{\partial \Omega}{\partial t} + \nabla \times (\Omega \times \mathbf{v}) = \frac{\eta}{\rho} \nabla^2 \Omega
\]

Vorticity generated by the shear viscosity.
NON-RELATIVISTIC SUPERFLUIDS

Landau two-fluid theory

\[\rho = \rho_n + \rho_s \quad \text{and} \quad \mathbf{j} = \rho_n \mathbf{v}_n + \rho_s \mathbf{v}_s \]

The two “components” correspond to two different motions of the fluid.
Non-relativistic superfluids

Landau two-fluid theory

\[\rho = \rho_n + \rho_s \]
\[\mathbf{j} = \rho_n \mathbf{v}_n + \rho_s \mathbf{v}_s \]

The two “components” correspond to two different motions of the fluid

Normal component: viscous fluid
Superfluid component: unviscid fluid

Not completely correct: neglects interactions
Dissipative terms in relativistic hydrodynamics:

\[\partial_\mu n^\mu = 0 \]
\[\partial_\mu (T^{\mu\nu} + T_d^{\mu\nu}) = 0 \]
\[u^\mu \partial_\mu \phi + \mu + \chi = 0 \]
RELATIVISTIC HYDRODYNAMICS

\[\partial \mu n^\mu = 0 \]
\[\partial \mu (T^{\mu \nu} + T_d^{\mu \nu}) = 0 \]
\[u^\mu \partial \mu \phi + \mu + \chi = 0 \]

dissipative terms

Close to equilibrium

\[\chi = -\zeta_3 \partial \mu (V^2 w^\mu) - \zeta_4 \partial \mu u^\mu \]
\[T_d^{\mu \nu} = \kappa (\Delta^{\mu \gamma} u^\nu + \Delta^{\nu \gamma} u^\mu) (\partial_\gamma T + T u^\delta \partial_\delta u_\gamma) \]
\[+ \eta \Delta^{\mu \gamma} \Delta^{\nu \delta} \left(\partial_\delta u_\gamma + \partial_\gamma u_\delta + \frac{2}{3} g_{\gamma \delta} \partial_\alpha u^\alpha \right) \]
\[+ \Delta^{\mu \nu} (\zeta_1 \partial_\gamma (V^2 w^\gamma) + \zeta_2 \partial_\gamma u^\gamma) \]

where

\[w^\mu = - (\partial^\mu \varphi + \mu u^\mu) \]
\[\Delta^{\mu \nu} = g^{\mu \nu} - u^\mu u^\nu \]
Bulk viscosity depends on the low energy spectrum of the theory.

Bulk Viscosity Phase	Authors and Ref.	ArXiv Number
CFL phase	Manuel and LLanes	0705.3909
Contribution of phonons	MM and Manuel	0909.4486
Contribution of kaons	Alford et al.	nucl-th/0701067
	Alford et al.	0707.2389
Spin 1 phase	Sa’d et al.	astro-ph/0607643
	Wang et al.	1006.1293
2SC phase	Alford and Schmitt	nucl-th/0608019

Large amplitude behavior of bulk viscosity: talk by Alford
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities) Son hep-ph/0204199

\[\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2 \]
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities)
Son hep-ph/0204199

\[\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2 \]

Scale separation

\[\varphi(x) = \bar{\varphi}(x) + \phi(x) \]
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities) Son hep-ph/0204199

\[\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2 \]

Scale separation

\[\varphi(x) = \bar{\varphi}(x) + \phi(x) \]
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities) \(\text{Son hep-ph/0204199} \)

\[
\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2
\]

Scale separation

\[
\varphi(x) = \bar{\varphi}(x) + \phi(x)
\]

- superfluid
- phonon
- bulk
- long-wavelength fluctuations
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities) Son hep-ph/0204199

\[\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2 \]

\varphi(x) = \bar{\varphi}(x) + \phi(x)

Scale separation

\[S[\varphi] = S[\bar{\varphi}] + \frac{1}{2} \int d^4x \left. \frac{\partial \mathcal{L}_{\text{eff}}}{\partial (\partial_\mu \varphi) \partial (\partial_\nu \varphi)} \right|_{\bar{\varphi}} \partial_\mu \phi \partial_\nu \phi + \cdots \]
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities) Son hep-ph/0204199

$$\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2$$

Scale separation

$$\varphi(x) = \bar{\varphi}(x) + \phi(x)$$

Phonon's action

$$S[\phi] = \frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$
Fluid of quasiparticles (phonons) moving on the top of the superfluid background

Effective Lagrangian (low energy, asymptotic densities)
\[
\mathcal{L}_{\text{eff}} = \frac{3}{4\pi^2} \left[(\partial_0 \varphi - \mu_q)^2 - (\partial_i \varphi)^2 \right]^2
\]

Scale separation

\[
\varphi(x) = \bar{\varphi}(x) + \phi(x)
\]

Phonon’s action

\[
S[\phi] = \frac{1}{2} \int d^4x \sqrt{-g} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi
\]

Acoustic metric

\[
g_{\mu\nu} = \eta_{\mu\nu} + (c_s^2 - 1) v_\mu v_\nu
\]

Son hep-ph/0204199
Phonon contribution

phonon dispersion law \[\epsilon_p = c_s p + B p^3 + \mathcal{O}(p^5) \]

\[\partial_t N_{\text{ph}} + \text{div}(N_{\text{ph}} \mathbf{v}_n) = -\frac{\Gamma_{\text{ph}}}{T} \mu_{\text{ph}} \]

\[B > 0 \quad \phi \rightarrow \phi \phi \]
\[B < 0 \quad \phi \phi \rightarrow \phi \phi \phi \]
Phonon contribution

Phonon dispersion law \[\epsilon_p = c_s \rho + B \rho^3 + \mathcal{O}(\rho^5) \]

\[\partial_t N_{ph} + \text{div}(N_{ph} v_n) = -\frac{\Gamma_{ph}}{T} \mu_{ph} \]

\[B > 0 \quad \phi \rightarrow \phi\phi \]
\[B < 0 \quad \phi\phi \rightarrow \phi\phi\phi \]

\[\zeta_1 = -\frac{T}{\Gamma_{ph}} \frac{\partial N_{ph}}{\partial \rho} \left(N_{ph} - S \frac{\partial N_{ph}}{\partial S} - \rho \frac{\partial N_{ph}}{\partial \rho} \right) = -\frac{T}{\Gamma_{ph}} I_1 I_2 \]

\[\zeta_2 = \frac{T}{\Gamma_{ph}} \left(N_{ph} - S \frac{\partial N_{ph}}{\partial S} - \rho \frac{\partial N_{ph}}{\partial \rho} \right)^2 = \frac{T}{\Gamma_{ph}} I_2^2 \]

\[\zeta_3 = \frac{T}{\Gamma_{ph}} \left(\frac{\partial N_{ph}}{\partial \rho} \right)^2 = \frac{T}{\Gamma_{ph}} I_1^2 \]
Phonon contribution

phonon dispersion law \(\epsilon_p = c_s p + B p^3 + O(p^5) \)

\[
\partial_t N_{ph} + \text{div}(N_{ph} v_n) = -\frac{\Gamma_{ph}}{T} \mu_{ph}
\]

Notice that \(\zeta_1 = \zeta_2 \zeta_3 \) the system tends toward the state where bulk viscosity does not lead to dissipation
PHONONS IN CFL

Low temperatures \(T \lesssim 0.01 \text{ MeV} \)

In CFL \(B < 0 \)

Conformal limit

\[
\zeta_1 = \zeta_2 = 0 \quad \zeta_3 \sim \frac{\mu^6}{T \Delta^8}
\]

Conformal breaking due to \(m_s \)

\[
\zeta_1 \sim \frac{m_s^2 \mu^7}{T \Delta^8} \quad \zeta_2 \sim \frac{m_s^4 \mu^8}{T \Delta^8}
\]
Mutual friction

Force between the superfluid component and the normal component mediated by phonon-vortex interaction

\[
\rho_s \frac{d\mathbf{v}_s}{dt} = -\frac{\rho_s}{\rho} \nabla p - \rho_s \nabla \phi - \mathbf{F}^N
\]

\[
\rho_n \frac{d\mathbf{v}_n}{dt} = -\frac{\rho_n}{\rho} \nabla p - \rho_n \nabla \phi + \mathbf{F}_N^N + \eta \nabla^2 \mathbf{v}_n
\]
Mutual friction

Force between the superfluid component and the normal component mediated by phonon-vortex interaction

\[
\rho_s \frac{d\mathbf{v}_s}{dt} = -\frac{\rho_s}{\rho} \nabla p - \rho_s \nabla \phi - F^N
\]

\[
\rho_n \frac{d\mathbf{v}_n}{dt} = -\frac{\rho_n}{\rho} \nabla p - \rho_n \nabla \phi + F^N + \eta \nabla^2 \mathbf{v}_n
\]
Forces acting on a Vortex

Magnus force
\[
F^M = \kappa \rho_s (v_s - v_L) \times \hat{z}
\]

Friction force
\[
F^N = D(v_n - v_L) + D' \hat{z} \times (v_n - v_L)
\]

Standard hydrodynamic force

Scattering of phonons off vortices
Forces acting on a Vortex

- **Magnus force**
 \[\mathbf{F}^M = \kappa \rho_s (\mathbf{v}_s - \mathbf{v}_L) \times \hat{z} \]

- **Friction force**
 \[\mathbf{F}^N = D(\mathbf{v}_n - \mathbf{v}_L) + D' \hat{z} \times (\mathbf{v}_n - \mathbf{v}_L) \]

- **Standard hydrodynamic force**

- **Scattering of phonons off vortices**

- **Mutual friction**
Forces acting on a Vortex

- **Magnus force**
 \[F^M = \kappa \rho_s (v_s - v_L) \times \hat{z} \]

- **Friction force**
 \[F^N = D(v_n - v_L) + D' \hat{z} \times (v_n - v_L) \]

- **Mutual friction**

Standard hydrodynamic force

Scattering of phonons off vortices

Elastic scattering off vortices

\[
\frac{d\sigma}{d\theta} = \frac{c_s}{2\pi E} \frac{\cos^2 \theta}{\tan^2 \frac{\theta}{2}} \sin^2 \left(\frac{\pi E}{\Lambda} \right)
\]
Forces acting on a Vortex

Magnus force

\[F^M = \kappa \rho_s (v_s - v_L) \times \hat{z} \]

Friction force

\[F^N = D(v_n - v_L) + D'\hat{z} \times (v_n - v_L) \]

Mutual friction

- Elastic scattering off vortices
 \[\frac{d\sigma}{d\theta} = \frac{c_s}{2\pi} \cos^2 \theta \tan^2 \frac{\theta}{2} \sin^2 \frac{\pi E}{\Lambda} \]

- Inelastic scattering on vortices
 work in progress
 see the talk by Anglani

Standard hydrodynamic force

Scattering of phonons off vortices
R-mode instability

Modes retrograde in the corotating frame (but prograde in the inertial frame) are unstable.

See also Andersson, Kokkotas gr-qc/0010102

Lindblom, astro-ph/0101136
Dissipative processes and stars oscillations

R-mode instability

Modes retrograde in the corotating frame (but prograde in the inertial frame) are unstable.
See also Andersson, Kokkotas gr-qc/0010102

R-mode oscillations difficult to damp in CFL stars
Madsen, Phys. Rev. Lett. 85, 10 (2000)

Emitting gravitational radiation the star quickly spins down
Dissipative Processes and Stars Oscillations

R-mode instability

Modes retrograde in the corotating frame (but prograde in the inertial frame) are unstable.

See also Andersson, Kokkotas gr-qc/0010102

R-mode oscillations difficult to damp in CFL stars

Madsen, Phys. Rev. Lett. 85, 10 (2000)

Emitting gravitational radiation the star quickly spins down

CFL

R-mode instability

Gravitational Radiation

Lindblom, astro-ph/0101136

Dissipative processes effective for $\nu \lesssim 1$ Hz

see however 1005.1163
DISSIPATIVE PROCESSES AND STARS OSCILLATIONS

R-mode instability

Modes retrograde in the corotating frame (but prograde in the inertial frame) are unstable. See also Andersson, Kokkotas gr-qc/0010102

R-mode oscillations difficult to damp in CFL stars
Madsen, Phys. Rev. Lett. 85, 10 (2000)

Emitting gravitational radiation the star quickly spins down

dissipative processes effective for $\nu \lesssim 1$ Hz

For more details see the talk by Sedrakian

Lindblom, astro-ph/0101136

CFL

see however 1005.1163
Summary

- CFL is a superfluid
- Contribution of phonons to the bulk viscosity coefficients of CFL
- For rotating superfluids one has to include the mutual friction force
- Damping of star oscillations, especially gravitationally unstable r-modes
