Colloquium: Coherent Diffusion of Polaritons in Atomic Media

O. Firstenberg,1,2 M. Shuker,1 A. Ron,1 and N. Davidson3
1Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
2Department of Physics, Harvard University, Cambridge, MA 02138, USA
3Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel

Coherent diffusion pertains to the motion of atomic dipoles experiencing frequent collisions in vapor while maintaining their coherence. Recent theoretical and experimental studies on the effect of coherent diffusion on key Raman processes, namely Raman spectroscopy, slow polariton propagation, and stored light, are reviewed in this Colloquium.

Contents

I. INTRODUCTION

II. Raman spectra of diffusing atoms

A. The Doppler-Dicke transition

B. Motional broadening in Raman processes

1. Weak-collisions formalism

2. Strong-collisions formalism

C. The Raman resonance at the diffusion limit

III. Polaritons Dynamics in Diffusive Media

A. Transverse spreading of light

B. Diffusion and motional-induced diffraction

C. Induced drift and artificial vector-potential

IV. Coherent diffusion of stored light

A. Diffusion of a stored coherence field

B. Shape-preserving modes of coherent diffusion

V. Finite-size beams, Ramsey narrowing

A. Repeated interaction

B. Diffusion solution

VI. Outlook

References

I. INTRODUCTION

Coherent Raman processes, in which two or more electromagnetic modes resonantly dress and excite an atomic-like system, provide a powerful interface between light and matter. They are potentially a cornerstone for future quantum information schemes and quantum-technology sensors, allowing the initialization, control, and monitoring of the quantum state of either the material or the light. Various Raman processes have been studied to date, namely, coherent population trapping (CPT) (Arimondo, 1996a), nonlinear magneto-optical rotation (NMOR) (Budker et al., 2002), electromagnetically-induced transparency (EIT) (Fleischhauer et al., 2005), and slow and stored light (Hammerer et al., 2010; Lukin, 2003). These were all first demonstrated in a hot atomic vapor, perhaps the epitome of quantum-optics systems, combining high optical depth, low relaxation rates, and weak atom-atom interactions with the simplicity of both the experiments and the theoretical modeling. Indeed — from the pioneering work of Alzetta et al. (1976) and Arimondo and Orriols (1976) on dark resonances, through later manifestations of elaborate Raman processes and dark-state polaritons (Budker et al., 1999; Harris, 1997; Phillips et al., 2001), and to state-of-the-art magnetometers, gyrometers, and miniature atomic clocks (Budker and Romalis, 2007; Knappe et al., 2004; Smiciklas et al., 2011) — thermal atomic media have been at the frontier of experimental progress.

Two profound mechanisms underlie the dynamics of coherent processes in vapor: the continuous thermal motion of the atoms and the collisions amongst themselves and with the walls of the vapor cell. Collisions damage the internal atomic quantum state and set an upper limit on the coherence time of the system. Although a record coherence time of one minute was recently obtained by Balabas et al. (2010) with an anti-relaxation coating of the inner glass walls, it is often desirable to add a foreign buffer-gas into the cell to delay the active atoms from leaving the illuminated region and approaching the walls (Happer, 1972). Selected species, such as noble gases or nitrogen molecules, have been known for many years to preserve the ground-state coherence of alkali-metal atoms upon collisions (Walker, 1989). Buffered cells are now commonly used in coherent Raman experiments (Brandt et al., 1997; Ezekiel et al., 1995; Graf et al., 1995).

Frequent velocity-changing collisions, although preserving the coherence, affect the atomic motion and modify the light-matter interaction. The original descriptions, by C. Doppler, W. Voigt, and others, of the interplay between a moving radiator and the electromagnetic field were augmented by R. H. Dicke (1953) to incorporate frequent changes in the radiator velocity. Dicke predicted that, when collisions dominate, the Doppler-broadened spectrum of a thermal gas will be narrowed. The Dicke effect is closely related to motional narrowing in NMR, treated previously in the pioneering paper by Bloembergen et al. (1948). Subsequently, Galatry (1961) formulated the spectral lineshape of a thermal atom undergoing frequent collisions in a buffer gas. Nevertheless it was only in 2003 when a signature of Dicke narrowing was detected in the optical regime (Dutier et al., 2003), because of the fundamental requirement that the mean free-path between collisions Λ be much smaller the wavelength $\lambda = 2\pi/|\mathbf{q}|$, where \mathbf{q} is the wavevector.

In Raman processes, however, the relevant wavevec-
tor for the Doppler and the Dicke mechanisms is due to the difference between the two fields involved \(\mathbf{k} = \mathbf{q} - \mathbf{q}_e \), leading to the residual Doppler and Dicke effects (Cyr et al., 1993). Broadening is avoided only in the so-called Doppler-free arrangement, in which one light beam excites an atom and a collinear beam of the same frequency de-excites it, yielding \(\mathbf{k} = \mathbf{q} - \mathbf{q} = 0 \). However, in general either a small angular deviation or a small frequency difference between the two beams yield a non-zero Raman wavelength \(\lambda_R = 2\pi/|\mathbf{k}| \) as small as a micrometer or as large as a centimeter, which affects the process. Residual Dicke narrowing of a Raman transition at the GHz frequency range is therefore readily obtained at moderate buffer-gas pressures, as exemplified in Fig. 1 for a Raman dark-resonance. Correspondingly, general multimode light fields that span a spectrum in \(\mathbf{k} \)-space exhibit a generalized motional effect.

From the spatial viewpoint, the consequence of velocity-changing collisions in buffered cells is a Brownian or diffusion motion of the atoms. The internal atomic dipoles, e.g., those corresponding to the superposition between the two Raman levels, diffuse across the variations of the light fields. It is the near degeneracy of the Raman levels and the relatively large Raman wavelength that make the coherent diffusion effectual. The spatial effect is most clearly appreciated in light-storage experiments, in which the relative amplitude of the Raman fields is imprinted onto the spatial field of dipoles, which subsequently undergoes diffusion. The evolution becomes more complicated in slow-light experiments, in which the propagation of polaritons — a combined excitation of light and atomic coherence — is affected simultaneously by optical diffraction and atomic diffusion.

This field of research is largely motivated by applications, namely, high-precision measurements, especially with spatial multi-pixel resolution (Komnin et al., 2003); multi-mode quantum memories (Vasilyev et al., 2010); and spatial information processing, either classical or quantum (Marino et al., 2009). Atomic motion crucially affects the spectral and spatial resolution, sensitivity, and coherence time of these applications.

In this Colloquium, we review the recent progress in the understanding of motional effects in Raman processes. Spin-exchange among the active atoms and with a polarizable buffer-gas (Walker and Happer, 1997) as well as pressure broadening (Corey and McCourt, 1984; Peach, 1981) are beyond the scope of the paper. We emphasize mostly the regime of a dense inert buffer gas, in which the active atoms undergo perfect diffusion in the medium, and employ the complementary spectroscopic and spatial viewpoints. In doing so, we hope to illustrate the underlying mechanisms and their consequences in hot atomic media as well as in similar systems.

II. RAMAN SPECTRA OF DIFFUSING ATOMS

A. The Doppler-Dicke transition

The Doppler shift of a radiator moving at a velocity \(\mathbf{v} \) is given by \(\omega_{\text{Doppler}} = \mathbf{v} \cdot \mathbf{q} \). The spectrum exhibits side-bands at \(\pm \mathbf{v} \mathbf{q} \), if the radiator is confined within two walls and periodically flips its direction. When the direction flips are frequent, spectral components at the original frequency, as well as higher-order harmonics emerge. For very frequent collisions, the carrier prevails, completely suppressing the Doppler effect. This narrowing phenomenon is named after Dicke (1953). The distance between collisions \(\Lambda \), with respect to the radiation wavelength \(\lambda \), determines the narrowing factor. A movie clip in the Supplementary Material illustrates the Doppler-Dicke transition in the acoustic spectrum of a moving emitter, obtained numerically by following Dicke (1953).

Doppler broadening in vapor originates from a picture of individual atoms distributed among velocity groups and experiencing distinct Doppler shifts. The Maxwell-Boltzmann distribution \(F(\mathbf{v}) = (2\pi v^2)^{-3/2} e^{-v^2/(2\mathbf{v}^2)} \) results in an inhomogenous broadening of

\[
\Gamma_{\text{Doppler}} = v_T|\mathbf{q}|, \tag{1}
\]

where \(v_T = \sqrt{k_B T/m} \) is the thermal velocity and \(m \) the atomic mass (\(\Gamma_{\text{Doppler}} \) refers to 1σ).

In a buffer-gas environment or due to confined cell geometries, the velocity-groups picture breaks down, as collisions redistribute the velocities faster than it takes the resonance to stabilize. Consequently, as we shall establish in this section, the light merely faces fluctuations in the atomic velocities, leading to a crossover from the Gaussian (inhomogenous) to a Lorentzian (homogenous) lineshape. The average velocity associated with these fluctuations is reduced with respect to \(v_T \) by the Dicke narrowing factor: \(2\sigma \Lambda/\lambda \). The homogenous Dicke half-width is thus given by (Galatry, 1961),

\[
\Gamma_{\text{Dicke}} \approx 2\pi \frac{\Lambda}{\lambda} \Gamma_{\text{Doppler}} \ll \Gamma_{\text{Doppler}}. \tag{2}
\]
The Doppler effect corresponds to a ballistic motion of the atoms ($\Lambda \gg \lambda$) and the Dicke effect to a diffusive motion ($\Lambda \ll \lambda$). One finds that Γ_{Dicke} is proportional to the diffusion coefficient $D = v_f \Lambda$ and quadratic in the radiation wavenumber (Corey and McCourt, 1984; Nelkin and Ghatak, 1964),

$$\Gamma_{\text{Dicke}} = D |q|^2. \quad (3)$$

Equations (1) and (2) can intuitively be understood as the inverse time an atom travels a distance λ ballistically ($\propto \lambda/v_f$) or diffusively ($\propto \lambda^2/D$). Therefore, they are also interpreted as a transit-time broadening, as illustrated in Fig. 2. At low buffer-gas densities, when the mean-free path is comparable to the wavelength ($\lambda/\Lambda \sim 2\pi$), the spectral width can be expressed as (Rautian and Sobelman, 1967)

$$\Gamma_{\text{Dicke}} \simeq \frac{v_f}{\Lambda} \frac{4}{a^2} H \left(2\pi a \frac{\lambda}{\Lambda} \right), \quad (4)$$

where $a^2 = 2/\ln 2$, and $H(x) = e^{-x} - 1 + x$ converges at its limits the Doppler trend $[H(x \to \infty) = x]$ and the Dicke trend $[H(x \to 0) = x^2/2]$.

The condition $\Lambda \ll \lambda$ can hardly be satisfied for optical resonances without introducing to much decoherence due to collisions. For instance, room-temperature rubidium with $v_f \approx 170$ m/s exhibits $\Gamma_{\text{Doppler}} \approx 220$ MHz at $\lambda = 780$ nm. For this wavelength, neon buffer-gas at a pressure of about 200 Torr is required for entering the Dicke regime $2\pi \Lambda/\lambda \sim 1$. At this pressure, the optical resonance results in an overwhelming pressure broadening of about 2 GHz (Ottinger et al., 1975). Optical lines therefore remain Doppler broadened in nearly all thermal media.

For ground-state atomic transitions, buffer gases at the 1 – 100 Torr levels have been used since 1955 to delay the atomic motion and reduce Doppler and transit-time broadening (Happer, 1972). Since these transitions survive millions of collisions with the buffer gas before decohering, and since the associated microwave and rf wavelengths are much larger than the optical wavelength, Dicke narrowing becomes far more reachable (Frueholz and Volk, 1985). As laid out in a pioneering work by Cyr et al. (1993) and discussed in the rest of this section, all-optical Raman processes based on these transitions were shown to exhibit roughly the same motional broadening behavior, with the necessary adjustments due to the optical Doppler broadening.

B. Motional broadening in Raman processes

We consider as a model system dark resonances created via EIT in a Λ–configuration, depicted in Fig. 3(a). In Λ–EIT, a probe field \mathbf{E} and a coupling field \mathbf{E}_c couple two states from the atomic ground level ($|1\rangle$ and $|2\rangle$) to a common excited state ($|3\rangle$). The fields are here after assumed to be classical and characterized by the Rabi frequencies Ω and Ω_c via $\mathbf{E} = \text{Re}(\hbar \epsilon \Omega/\mu_31)$ and $\mathbf{E}_c = \text{Re}(\hbar \epsilon_c \Omega_c/\mu_{32})$, where ϵ, ϵ_c are the field polarizations and μ_{31}, μ_{32} the transition dipole moments. In the absence of the coupling field, the probe experiences resonant absorption $\text{exp}(-2\alpha L)$, determined by the absorption coefficient 2α and the medium length L. The combined action of the probe and the coupling fields (the latter being usually much stronger, $|\Omega_c|^2 \gg |\Omega|^2$) drives the atoms into a dark state — a coherent superposition of the two lower states that inhibits the absorption of the probe, rendering the medium transparent. One can easily verify that the dark state on resonance $\Omega_c^* |1\rangle - \Omega^* |2\rangle$ is decoupled from the excited state $|3\rangle$ under the influence of the interaction Hamiltonian

$$H_I = -\hbar \Omega_c |1\rangle \langle 3| - \hbar \Omega |3\rangle \langle 2| + \text{h.c.}, \quad (5)$$

essentially due to destructive interference between the two excitation paths to $|3\rangle$.

The dark resonance depends on the two-photon (Raman) detuning $\Delta = \Delta_p - \Delta_c$, where Δ_p and Δ_c are, respectively, the one-photon (optical) detunings of the probe and coupling fields, and requires that Δ be smaller than the Raman linewidth. The latter varies from Hz to tens of MHz in thermal vapor and is determined primarily by the ground-state decoherence rate γ_0, power broadening from the coupling light, and motional broadening. For comparison, in most cases, the optical linewidth is much broader, varying from a few MHz for stationary (cold) atoms to a few hundreds of MHz in Doppler-broadened systems. Therefore a narrow transparency window forms at $\Delta_p = \Delta_c$ within the optical absorption line (Boller et al., 1991), as can be seen in Fig. 3(b).
At the same time, the probe also experiences very steep dispersion $\omega(dn/d\omega) \gg 1$ (dashed curve), leading to a much reduced group-velocity. Ultra-narrow dark resonances are used in a wide variety of processes, such as slow light (Hau et al., 1999), stored light (Lukin, 2003), and non-linear optics at low light levels (Harris and Hau, 1999; Peyronel et al., 2012).

The Raman detuning is sensitive to the difference between the Doppler shifts of the probe and the coupling fields. When $q = q_c$, there is no residual Doppler effect, and only the optical transitions are Doppler broadened. In a general situation however, the Raman wavevector

$$k = q - q_c$$

(6)
does not vanish, and the expected residual widths are

$$\Gamma_{\text{Doppler}}^{\text{res.}} = v_f k ; \quad \Gamma_{\text{Dicke}}^{\text{res.}} = Dk^2.$$

(7)

where $k = |k|$. The ratio between $\Gamma_{\text{Doppler}}^{\text{res.}}$ and $\Gamma_{\text{Dicke}}^{\text{res.}}$, the Dicke narrowing factor, ranges between 10^{-1} to 10^{-5} for typical experimental conditions.

A chief example is the dark resonance among the two hyperfine sublevels of ground-state alkali atoms, such as rubidium or cesium (Akulshin et al., 1991). The hyperfine splitting, on the order of a few GHz, results in a Raman wavelength $\lambda_R = 2\pi/k$ on the order of a few centimeters for collinear beams, implying a residual Doppler width of tens of kHz in the absence of a buffer gas. With a typical buffer-gas pressure of 10 Torr, the mean free-path of the alkali atoms in the buffer gas is on the order of micrometers (alkali-alkali collisions cause decoherence but are much more rare). The narrowing factor is therefore on the order of $\Lambda/\lambda_R = 10^{-4}$, eliminating completely the residual Doppler effect. A systematic measurement of Dicke narrowing in dark resonances was reported by Brandt et al. (1997) for cesium (Fig. 1), and later on by Erhard et al. (2000) for rubidium, accompanied by a numerical model (Erhard and Helm, 2001). The remaining homogenous width, due to alkali-alkali collisions, transit-time broadening, wall collisions, and spin-destruction collisions with the buffer gas, is on the order of tens of Hz, enabling the implementation of high accuracy all-optical frequency standards (Cyr et al., 1993; Knappe et al., 2004; Nagel et al., 1999).

Carvalho et al. (2004) measured the residual Doppler broadening in hyperfine dark-resonances by introducing an angular deviation θ between the probe and the coupling beams. Measurements of residual Dicke narrowing in buffered cells were performed by Bolkart et al. (2005) (Fig. 2, right) and Shuker et al. (2007) (Fig. 4) in a degenerate Λ-scheme, using two Zeeman states from the same hyperfine level so that $|q| = |q_c|$. In this scheme, $k = |q - q_c| \approx \theta |q|$ for small θ, featuring $\lambda_R \approx 1$ mm for $\theta = 1$ mrad. For a mean free-path of a few micrometers, one finds $\lambda < \Lambda \ll \lambda_R$, i.e., the Raman resonance is in the Dicke regime, while the optical resonance ($\lambda \lesssim 1 \mu$m) is Doppler broadened. The latter is virtually insensitive to θ and can be as large as a few GHz, also due to pressure broadening. The θ dependence in Fig. 4 exhibits the quadratic signature of diffusion, with a clear narrowing effect: at $\theta = 0.5$ mrad, the measured width is $\Gamma_{\text{Dicke}}^{\text{res.}} = 2$ kHz, much smaller than $\Gamma_{\text{Doppler}}^{\text{res.}} = 250$ kHz.

The light intensity has a strong effect on the Raman spectra, due to optical pumping and the accompanying decoherence. The latter results in the so-called power broadening of the natural width γ_0. For an atom at rest, the optical pumping rate and the EIT power-broadening are given by $\gamma_p = |\Omega_c|^2/\Gamma$. Both become smaller in a Doppler broadened medium, because the effectiveness of the pumping varies between the different velocity groups. This is a one-photon motional effect, in which each velocity group experiences different pumping and decoherence rates, providing inhomogenous 'conditions' for the Raman process. The velocity-selective optical pumping (Aminoff and Pinard, 1982; Gawlik, 1986)

FIG. 3 (color online) Electromagnetically-induced transparency in a Λ-scheme. (a) The Raman resonance $|1\rangle \leftrightarrow |2\rangle$ is excited via the state $|3\rangle$ by 'probe' and 'coupling' light fields. (b) Top: transmission of the probe (solid line) in the absence of the coupling field and accompanied refraction (dashed line). Bottom: dark resonance induced by the coupling field.
results in correlations between the Raman and optical processes, similar to those employed in the well-known techniques of Doppler-free saturated-absorption spectroscopy (Hänsch et al., 1971) or laser-induced line narrowing (Feld and Javan, 1969). Naturally, buffer gas and velocity-changing collisions play an important role here, for example by allowing the cumulative optical pumping of the whole Doppler profile or, alternatively, by limiting the interaction time with a certain velocity group (Bjorkholm et al., 1982). These correlations were studied for dark resonances\(^1\) in experiments by Ye and Zibrov (2002) and later by Figueroa et al. (2006) and Goldfarb et al. (2008), along with theoretical analysis by Javan et al. (2002) and Lee et al. (2003). Being essentially a one-photon effect, it is beyond the scope of this review; further details can be found in recent papers by Xiao (2009) and Ghosh et al. (2009), and in references therein.

In the absence of additional relaxation, the spectral line at the extreme Doppler and Dicke limits is always, respectively, a Gaussian and a Lorentzian. In the intermediate regime, however, it is determined by the nature of the collisions. Depending mostly on the colliding species, the collisions may either be strong (=hard) or weak (=soft), resulting in, respectively, a large or small relative change in the velocity upon a single collision. A phenomenological characterization of the collision strength is given by the relative change in the velocity redistribution (\(\gamma_{c}^{-1} = \Lambda/\nu_{T}\)). There is a vast literature dealing with the sensitivity of atomic spectra to the nature of collisions, see Ciuryla et al. (2001); Liao et al. (1980); Rothberg and Bloembergen (1984), and references therein. Steady-state experiments, and spectroscopy in particular, depend relatively weakly on the collision strength, as shown in Fig. 5. More elaborate schemes are required to directly quantify the collision kernels, e.g., tagging of velocity groups by selective optical pumping in dilute buffer-gas and the subsequent probing of the velocity redistribution (Gibble and Gallagher, 1991; McGuyer et al., 2012; Morgan and Happer, 2010). An analogous problem with trapped cold atoms undergoing elastic collisions was addressed by Sagi et al. (2010).

Most of the work discussed in this Colloquium is carried out at the limits \(\lambda R/\Lambda \gg 2\pi\) or \(\Lambda R/\Lambda \ll 2\pi\), in which the collision strength has negligible effect. In what follows, we shall nevertheless introduce both approaches, \(i.e.,\) the Gaussian process at the weak-collision limit and the Boltzmann relaxation at the strong-collision limit, and show their equivalence in the far Doppler and Dicke limits. A reader less interested in the mathematical derivation of the spectra may proceed directly to subsection II.C.

1 Weak-collisions formalism

We shall derive the Raman spectrum in the weak-collisions limit for stationary uniform fields (plane waves), a weak probe, and no power broadening. Assuming the \(\Lambda\)-atom of Fig. 3 travels along the classical trajectory \(r = r(t)\), either ballistic or diffusive, we plug the time-dependent Rabi frequencies

\[
\tilde{\Omega}(t) = \tilde{\Omega} e^{i\beta(t) - i\omega t}, \quad \tilde{\Omega}_{c}(t) = \tilde{\Omega}_{c} e^{i\omega_{c} r(t) - i\omega_{c} t}
\]

into the Hamiltonian (5), with \(\omega = c|\mathbf{q}|\) and \(\omega_{c} = c|\mathbf{q}_{c}|\). To account for relaxations, the individual atom is represented by a density matrix \(\rho_{ss'}(t)\) \((s, s' = 1, 2, 3)\) in a master equation formalism, see for example, Cyr et al. (1993) and Nikonov et al. (1994). For brevity, we shall characterize the relaxation of the optical dipole \((3 \leftrightarrow 1, 2)\) with a single decay rate \(\Gamma\), dominated by pressure broadening. The ground-state relaxation rate is \(\gamma_{0}\). For a given atomic density \(n_{0}\), the absorption of the probe is calculated from the imaginary part of the linear susceptibility\(^2\)

\[
\chi(-\omega, \omega) = g / (\rho_{31}(t) / \tilde{\Omega}(t)) \quad \text{where} \quad g = |\mathbf{q}| n_{0} \rho_{31}^{2} / (\hbar \epsilon_{0}), \quad \epsilon_{0}\text{ is the vacuum permittivity, and} \quad \langle \rangle \equiv \lim_{T \rightarrow \infty} \int_{0}^{T} dt.
\]

We assume that the equilibrium state of the atom in the absence of the probe is \(|1\rangle \langle 1|\) \((\rho_{11} = 1)\), regardless of

\[\text{FIG. 5 (color) Absorption spectra of thermal atoms. In the absence of collisions, the homogenous linewidth } \Gamma \text{ is dominated by the Doppler width } \Gamma_{\text{Doppler}} = 100\Gamma.\text{ The transition from the (blue) Doppler limit to the (green) Dicke limit occurs when the effective mean free-path } \Lambda = v_{T} / \gamma_{c} \text{ is the velocity correlation time due to collisions) is comparable to the wavelength } \lambda \text{ (red). The spectra for the (solid line) weak and (dashed line) strong collisions are calculated from Eqs. (11) and (20), respectively, the differences between weak and strong collisions are not distinguishable at the far limits (blue and green).}\]

\[\text{\footnotesize 1 Even more intricate correlations arise in Raman schemes involving two coupling fields, such as 4-wave mixing and electromagnetically-induced absorption. Here, the optical dipoles, and not only the ground-state’s populations and damping, become velocity dependent (Tlikhin et al., 2011).}\]

\[\text{\footnotesize 2 We define a linear susceptibility } \chi, \text{ such that the transfer function of the probe field is } \exp(i\chi z), \text{ as opposed to the prevailing (unitless) definition } \exp(i|\mathbf{q}|\chi z/2) \text{ (Fleischhauer et al., 2005).}\]
the velocity and the instantaneous coupling power, which conforms with the limit of no power-broadening. The first-order correction to the equilibrium state in the non-saturated and weak-probe conditions \(\Omega \ll \Omega_c \ll \Gamma \) involves only the ground-state dipole \(\rho_{31}(t) \) and the probe transition dipole \(\rho_{21}(t) \) (Kofman, 1997):

\[
\frac{d}{dt}\rho_{31}^{i} = i\tilde{\Omega}_{c}(t)\rho_{21}^{i} + i\tilde{\Omega}(t)\rho_{11}^{eq} - i(\omega - \Delta_{p} - i\Gamma)\rho_{31}^{i},
\]

\[
\frac{d}{dt}\rho_{21}^{i} = i\tilde{\Omega}_{c}^{*}(t)\rho_{31}^{i} - i\omega_{c} - \Delta - i\gamma_{0})\rho_{21}^{i}.
\]

To obtain \(\rho_{31}(t) \), Eqs. (9) can be integrated and solved formally, by iterations up to first order in \(\rho_{31}^{i} \), a valid approximation in the absence of power broadening \([\Omega_{c}^{2}] \ll \Gamma_{0} \). In this regime, the susceptibility becomes a sum \(\chi(\omega, \omega) = \chi_{1}(\omega) - [\Omega_{c}^{2}]\chi_{II}(\omega) \) of the Raman resonance \([\Omega_{c}^{2}]\chi_{II} \) within the optical resonance \(\chi_{1} \) (Firstenberg et al., 2007):

\[
\chi_{1} = g\left\langle \int_{0}^{t} dt_{1} e^{(-i\Delta_{p}-\Gamma)(t-t_{1})} e^{i\Phi_{1}} \right\rangle, \quad (10a)
\]

\[
\chi_{II} = g\left\langle \int_{0}^{t_{1}} \int_{t_{1}}^{t_{2}} \int_{t_{2}}^{t_{3}} e^{(-i\Delta_{c}-\Gamma)(t-t_{1})+\omega_{c}} \int_{t_{2}}^{t_{3}} e^{(-i\Delta_{c}-\gamma_{0})(t_{2}-t_{3})} e^{i\Phi_{II}} \right\rangle. \quad (10b)
\]

The phases accumulated due to atomic motion though the light fields are \(\Phi_{1} = q_{c} [r(t) - r(t_{1})] \) and \(\Phi_{II} = q_{c} [r(t_{1}) - r(t_{2})] - q_{c} [r(t) - r(t_{3})] \).

At this point, one may recognize a homogenous Lorentzian line \(f d\tau e^{(-i\Delta_{p}-\Gamma)\tau} \) in Eq. (10a), broadened by the motional phase \(q_{c} \cdot r(\tau) \). This is where the weak-collisions limit enters: As laid out by Kubo (1962) and Rautian and Sobelman (1967), the assumption of a Gaussian process for the random variable \(\Phi_{1} \), together with a Markovian velocity relaxation \(\langle \dot{r}(t) \dot{r}(t - \tau) \rangle = 3v_{T}^{2}e^{-\gamma_{0}^{2}|r|} \), renders the dephasing \(\langle e^{i\Phi_{1}(t_{1},t_{2})} \rangle \approx e^{(-\Phi_{1}^{2})/2} \approx e^{-q_{c}^{2}x^{2}2H(\gamma_{0})}, \) with \(H(x) = e^{-x} - 1 + x \) and \(\Lambda = v_{T}/\gamma_{c} \). This result leads to an optical spectrum in the form of a Gumbel distribution (Galatry, 1961):

\[
\chi_{I}(\Delta_{p}) = ig\int_{0}^{\infty} d\tau e^{(-i\Delta_{p}-\Gamma)\tau} e^{-q_{c}^{2}2H(\gamma_{0})\tau}. \quad (11)
\]

The absorption line \(\text{Im} \chi_{I} \) is shown in Fig. 5: At the Doppler limit \(H(x) \approx x^{2}/2 \) (solid blue), it is a Gaussian \(\exp(-\Delta_{p}^{2}/\Gamma_{\text{Dopper}}^{2}/2) \); At the Dicke limit \(H(x) \approx x \) (green), it is a Lorentzian \([\Gamma + \Gamma_{\text{Dickle}}]/[\Delta^{2} + (\Gamma + \Gamma_{\text{Dickle}})^{2}] \); and in between (red), it is neither.

A more elaborate but analogous derivation was performed by Firstenberg et al. (2007) for the Raman dephasing \(\langle e^{i\Phi_{II}} \rangle \), resulting in a closed integral form for \(\chi_{II} \). The Dicke-Dicke transition of the Raman resonance was thereby formally obtained for the first time, for the predominant case of a Doppler broadened optical line and a nearly resonant coupling light:

\[
\chi_{II}(\Delta) = \frac{i\gamma}{4\omega} \int_{0}^{\infty} d\tau e^{i(\Delta - \gamma_{0})\tau} e^{-k^{2}A^{2}H(\gamma_{0})}. \quad (12)
\]

Remarkably, the transmission line (12) has the same form as the absorption line (11), with the Raman parameters \((k, \gamma_{0}) \) replacing the optical parameters \((|q|, \Gamma) \).

2. Strong-collisions formalism

For the strong-collisions formalism, we shall use a density-matrix distribution function in space and velocity \(\tilde{\rho}_{ss'} = \tilde{\rho}_{ss'}(r, v, t) \), constructed from the sum over (identical) individual atoms:

\[
\tilde{\rho}_{ss'} = \sum_{i} \rho_{ss'}^{i}(t) \delta(r - r_{i}(t)) \delta(v - v_{i}(t)). \quad (13)
\]

This approach, first used by May (1999) in this context, is general in that it allows atoms in different states to travel or diffuse between the illuminated and the dark areas, both in the real spatial space and in velocity space, and thereby circumvents the approximation of an open system (Nikonov et al., 1994). In a hot vapor, the density-matrix distribution can be taken as classical in the external-motion degrees of freedom, and evolves according to

\[
\left(\partial_{t} + v \cdot \partial_{r} \right) \tilde{\rho}_{ss'} + \left(\partial_{t} \tilde{\rho}_{ss'} \right)_{\text{col}}.
\]

\[
= \sum_{i} \left(\partial_{t} \rho_{ss'}^{i} \right) \delta(r - r_{i}(t)) \delta(v - v_{i}(t)),
\]

where \(\left(\partial_{t} \tilde{\rho}_{ss'} \right)_{\text{col}} \) accounts for collisions. The right-hand side of Eq. (14) describes the internal atomic dynamics, which can be taken from Eqs. (9). Here however, to set the stage for the description of polariton dynamics, let us generalize Eqs. (9) and employ a structured (time-dependent) probe and a structured (stationary) coupling:

\[
\tilde{\Omega} = \Omega(r, t) e^{iqr - iw_{t}}, \quad \tilde{\Omega}_{c} = \Omega_{c}(r) e^{iqr - iw_{t}}, \quad (15)
\]

where \(\Omega(r, t) \) and \(\Omega_{c}(r) \) are slowly-varying envelopes of the Rabi-frequencies. Correspondingly, we define the slowly-varying atomic densities \(\tilde{\rho}_{31} = \tilde{\rho}_{31} e^{iqr - iw_{t}} \) and \(\tilde{\rho}_{21} = \tilde{\rho}_{21} e^{i(q - r) - iw_{t}} \).

We shall now consider the strong-collisions limit. In this limit, a single collision is enough to completely randomize the atomic velocity. Here we assume that the post-collision velocity is drawn from the equilibrium distribution \(F(v) \), regardless of the pre-collision velocity; the generalization to velocity-dependent kernels can be performed along the same lines (Ghosh et al., 2009; Shapiro et al., 2001). These assumptions pertain to a Kubo-Anderson process, which in principle could be implemented in the individual-atom formalism used above for the weak-collisions limit (Brisaud and Frisch, 1974;
Sagi et al., 2010). In practice however, calculating the four-time dephasing of the Raman resonance [\(\Phi_{11} \) in Eq. (10b)] under the Kubo-Anderson assumptions is prohibitive. We thus resort to a more direct approach and invoke a Boltzmann collision term with a single relaxation rate \(\gamma_c \) (Nelkin and Ghatak, 1964):

\[
(\partial_t \tilde{g}_{ss'})_{\text{col}} = - \gamma_c [\tilde{g}_{ss'}(r, v, t) - \rho_{ss'}(r, t) F(v)],
\]

where the spatial density-matrix is

\[
\rho_{ss'}(r, t) = \int d^3v \tilde{g}_{ss'}(r, v, t).
\]

The physical meaning of \(\rho_{ss'}(r, t) \) is readily understood by identifying its diagonal elements \(\rho_{ss}(r, t) \) as the spatial density of atoms at state \(|s\rangle \), and its off-diagonal elements as the polarization density \(\mathbf{P}(t) \), e.g., \(\rho_{31}(r, t) = \epsilon \mathbf{P}_{31}(r, t)/r_{31}^2 \). Note that Eq. (16) does not consider pressure broadening, which we later introduce via the atomic decay rates (Corey and McCourt, 1984).

Finally, identifying \(\rho_{11}^{eq} = n_0 F(v) \) in Eq. (9) and substituting the definitions (15)-(17) in Eq. (14), we obtain the equations of motion for the densities:

\[
[\partial_t + v \cdot \nabla - i \delta_p(v)] \tilde{g}_{31}(r, v, t) - i \delta_c(v) \tilde{g}_{21}(r, v, t) = \gamma_c \rho_{31}(r, t) F(v) + i \Omega(r, t) n_0 F(v),
\]

\[
[\partial_t + v \cdot \nabla - i \delta_p(v)] \tilde{g}_{21}(r, v, t) - i \delta_c(v) \tilde{g}_{31}(r, v, t) = \gamma_c \rho_{21}(r, t) F(v),
\]

where \(\delta_p(v) = \Delta_p - q \cdot v + i (\Gamma + \gamma_c) \) and \(\delta(v) = \Delta - (q - q_0) \cdot v + i (\gamma_0 + \gamma_c) \) are the Doppler-shifted complex detunings. These equations, together with a wave equation for the probe field, form the basis for the diffusion of polaritons presented in the next section.

To derive the Doppler-Dicke profiles at this stage, we restrict Eq. (18) to stationary plane waves,

\[
i \delta_1(v) \tilde{g}_{31}(v) + i \Omega_c \tilde{g}_{21}(v) = - (\gamma_c \rho_{31} + i \Omega n_0) F(v),
\]

\[
i \delta(v) \tilde{g}_{21}(v) + i \Omega_c^* \tilde{g}_{31}(v) = - \gamma_c \rho_{21} F(v).
\]

From Eqs. (19), Firstenberg et al. (2008) derived an exact integral form for the susceptibility\(^3\) \(\chi = (g/n_0) \rho_{31}/\Omega \) and exemplified numerically the Doppler-Dicke transition of the dark resonance. The transition is similar to but not exactly as that found in the weak-collisions limit. For the sake of elucidation, we may (as before) examine the one-photon spectrum by substituting \(\Omega_c = 0 \),

\[
\chi_1 = g \gamma_c G_1(\Delta_p),
\]

where \(G_1(\Delta_p) \) is the widely used Voigt profile:

\[
G_1(\Delta_p) = \frac{1}{\sqrt{2 \pi v_p}} \int du \frac{e^{-u^2/(2v_p^2)}}{\Delta_p - |q| u + i (\Gamma + \gamma_c)}.
\]

The spectrum in the form of Eq. (20) exhibits the Doppler-Dicke transition; see discussion by May (1999) and references therein. A comparison in Fig. 5 to the weak-collisions spectra reveals a maximal deviation of 10–20 percent at the Doppler-Dicke crossover.

\[\text{C. The Raman resonance at the diffusion limit}\]

We conclude this section by discussing the Raman line-shape at the Dicke limit, for nearly degenerate, nearly collinear beams, such that \(k = |q - q_0| \ll |q| \). In the vicinity of the Raman line (\(\Delta_p \approx \Delta_c \)), a closed set of equations was obtained by Firstenberg et al. (2008)\(^4\) for the optical dipoles \(\rho_{31}(r, t) \):

\[
\rho_{31}(r, t) = \frac{i}{\Omega} \left[\Omega(r, t)n_0 + \Omega_c(r) \rho_{21}(r, t) \right],
\]

and for the ground-state dipoles \(\rho_{21}(r, t) \):

\[
\partial_t - i \Delta + \gamma_0 + \gamma_p(r) - D(\nabla + i k)^2 \rho_{21}(r, t) = S(r, t).
\]

The ground-state dipoles obey a diffusion-like equation with the coefficient \(D = v_p^2/\gamma_c \) (\(\nabla \equiv \partial_r \) is the gradient). Here, \(S(r, t) = - n_0 \Omega_c(r) \Omega_c(r)/\Gamma' \) is a source term — the effective two-photon drive of the Raman resonance. \(\gamma_p(r) = |\Omega_c(r)|^2/\Gamma' \) is a spatially varying power-broadening rate. \(\Gamma' = \Gamma(\Delta_p) \equiv i \gamma_c/\chi \) is the one-photon (Voigt) spectrum from Eq. (20) \(\Gamma' = \Gamma + i \Delta_p \) for stationary atoms. Notably, atomic motion affects the Raman resonance both directly, due to dephasing of the Raman line, and indirectly via the power broadening.

It is important to realize that the diffusion term \(D \nabla^2 \) in Eq. (23) corresponds to the actual diffusion of the active atoms in the buffered cell. In fact, the description of spatial diffusion of the internal states of atoms and molecules in the form of Eq. (23) dates back to the seminal work by Torrey (1956) and has been the

\[\text{3 Briefly, Eq. (22) is obtained by integrating Eq. (18a) and solving for } \rho_{31}, \text{ assuming it does not depend on the non-equilibrium velocity-distribution of } \rho_{21}. \text{ Taking } \gamma_c \text{ as the dominant rate in the ground-state dynamics, Eq. (18b) is integrated over velocity to obtain a continuity equation and a diffusive-flux equation (Fick's first law) in terms of the current densities } J_{ss'}(r, t) = \int d^3v \tilde{g}_{ss'}(r, v, t). \text{ Finally, the condition } k \ll |q| \text{ yields Eq. (23)}.\]
common practice for optical-pumping experiments in buffered cells (Bicchi et al., 1980; Happer, 1972). Accordingly, the term DK^2 (for non-structured stationary beams $\partial_t = \nabla = 0$) accounts for the diffusion of atoms across the fields’ interference pattern. The linear susceptibility is then easily obtained from Eqs. (22) and (23):

$$\chi = \frac{g}{\nu_0} \rho_{31} \frac{i g}{\Gamma} \left(1 - \frac{\gamma_p}{\gamma + DK^2 - i\Delta}\right). \quad (24)$$

The two terms in the brackets correspond to the optical resonance and to the dark resonance. The latter is given as a complex Lorentzian, and its width is the sum of the linewidth for stationary atoms $\gamma \equiv \gamma_0 + \gamma_p$ and the motional broadening DK^2 (Fig. 4).

III. POLARITONS DYNAMICS IN DIFFUSIVE MEDIA

We have so far discussed the response of the atomic medium to a given arrangement of light beams from a spectroscopic viewpoint, but have not considered the spatial consequences of atomic motion. As these were taken into account in the dynamic description of the density-matrix distributions, we may now directly apply the results of the previous section to the evolution of the structured light fields in space and time. The non-local response arising from the atomic motion and reflected in the dependence of the linear susceptibility on the wavevector has been demonstrated in recent years through various processes and, in particular, with slow light. In principle, it is the effective delay of the light in the form of a light-matter polariton (Fleischhauer and Lukin, 2000), becoming comparable to the atomic motion through the beams, that renders these effects pronounced. That said, the description of the phenomena reviewed in this section is not always an obvious spatial consequence of atomic motion, and it is sometimes necessary to return to and employ the spectral picture of a manifold of Doppler-Dicke spectra.

Slow light structured in the plane normal to the propagation direction, denoted as slow images, exhibits remarkable properties. A notable example is the delay and preservation of spatial quantum coherence and entanglement, demonstrated by Marino et al. (2009). The 'image' may be complex, having both amplitude and phase patterns, conforming to the amplitude and phase of the polariton’s dark state. A typical setup for a slow-image experiment is shown in Fig. 6: while the coupling beam is large and uniform, the probe is patterned, imaged onto the cell, and eventually recorded. If the probe is also temporally modulated into a pulse, the pulse, and thus the whole image, is delayed in the medium.

The reduced group velocity of the probe follows directly from the linear susceptibility, $v_g^{-1} = [d(\Re \chi)/d\Delta]_{\Delta=0} = v_g \ll c$. At the diffusion limit, for nearly resonant light $(\Delta_r \approx \Delta_p \approx 0$, for which the damping rates Γ and γ_p are real), Eq. (24) gives $v_g = (\gamma + DK^2)^2 / (\alpha \gamma_p)$. Here, $2\alpha = 2g/\Gamma'$ is the absorption coefficient with no coupling field. As also shown by Kash et al. (1999) for the bufferless case (Doppler-broadened dark resonance), the group velocity is k-dependent and only reverts to the known expression $v_g = \gamma^2 / (\alpha \gamma_p)$ for small enough k. For typical values in hot vapor $\gamma \approx \gamma_p \approx 10^4 - 10^5$ Hz and $\alpha \approx 1$ cm, v_g is on the order of m/s to km/s (Budker et al., 1999). The group delay in a medium of length $L \approx 1 - 10$ cm is then $\tau_d = L/v_g \approx 1 - 10^5 \mu$s, easily comparable to the time at which atoms can travel through the beam, or through the 0.1 – 10 mm features of an image, in both buffered and bufferless cells. In contrast, slow images with 0.1-mm feature size delayed for only 10 ns using optical (not Raman) resonances by Camacho et al. (2007), showed no significant motional effects.

A. Transverse spreading of light

The reflection of atomic motion in the spatial variation of slow light was preceded by extensive research on general spatial consequences of EIT and similar Raman processes. The emphasis, in the first experiments by Kasapi et al. (1995), Moseley et al. (1995), and Jain et al. (1995), and in following years, was given to the implications of finite and inhomogenous strong beams, inducing inhomogenous absorption and refraction, and to the related effects of self-focusing and waveguiding. A direct observation of slow-light spreading due to atomic motion was reported by Pugatch et al. (2007), using a probe beam with a darkened (blocked) center. Images of the beam taken on and off resonance showed that the 50 µs slowing delay was enough for the atomic diffusion in the buffered cell to 'fill' the 0.5-mm-diameter dark center almost completely. In effect, the ground-state dipoles diffusing to the center stimulate the conversion of coupling light into probe light. The phase pattern of the dipoles
ensemble, originating from the incoming probe and coupling fields, acts as a directional source for this stimulated emission. In the alternative picture of polariton propagation, the filling of the center is interpreted as diffusion of the polaritons due to their atomic constituent.

A direct phase measurement of spreading light was reported by Xiao et al. (2008a). Here the ballistic atomic motion in a bufferless, wall-coated cell is used to coherently transfer light between adjacent optical modes, as shown in Fig. 7. Atomic coherence is created along the input channel and is maintained as the atoms spread in the cell and collide with the walls. While longitudinal spreading has no significance for the degenerate arrangement used ($q = q_c$), the transverse spreading stimulates the coherent excitation of a propagating pulse in the second channel.

To understand the spreading of light within the Doppler-Dicke context, we return to Eq. (24) with nearly resonant beams ($\Delta_p \approx \Delta_c \approx 0$), for which the absorption spectrum of the probe is given by

$$\text{Im } \chi = \alpha \left[1 - \frac{\gamma_P (\gamma + D k^2)}{(\gamma + D k^2)^2 + \Delta^2} \right]. \quad (25)$$

The relative height at the center of the dark-resonance ($\Delta = 0$) depends on the Raman wavenumber k in the form of a Lorentzian $\gamma_P / (\gamma + D k^2)$ of width $k_0 = (\gamma / D)^{1/2}$, as confirmed by Bolkart et al. (2005) and Shuker et al. (2007) with a small deviation angle $\theta \approx k_0 / |q|$ between the coupling and probe beams (Fig. 8).

The dependency of the transmission on θ manifests itself in experiments with non-uniform, structured, light fields, due to the angular span of beam. In the decomposition of the field into a manifold of superimposed plane waves, high-order transverse modes and finely-patterned beams require a large angular span, which implies large Raman wavenumbers (top sketch in Fig. 6). When these are attenuated due to motional broadening, the fine structure of the beam deteriorates. A maximum acceptance angle $\theta = k_0 / |q|$ sets the minimum "pixel" size of $2\pi / k_0$ that can be efficiently transmitted, whereas smaller features are bound to spread. So atomic motion, via motional broadening, results in spreading of the light field.

B. Diffusion and motional-induced diffraction

At certain conditions, motional broadening results in an exact diffusion of the slow polaritons, as well as in a diffraction-like evolution. To this end, we employ the following arrangement: a plane-wave coupling field along the z-axis; a paraxial, nearly parallel, probe $q \parallel q_c$ with a finite envelope in the transverse plane (x, y); and a nearly degenerate Raman scheme $[q_c] \equiv |q| \equiv q$ so that the Raman wavevectors resulting from the probe’s structure have a negligible z-component (hyperfine splitting λ_R on the order of centimeters is still permitted). Note that the choice $q = q_c$ still allows for a small angular deviation between the beams via a phase term $e^{i\theta q x}$ in the probe’s envelope. In the paraxial approximation, the probe field obeys

$$\left(\frac{\partial_t}{c} + \frac{\partial_z}{c} - i\frac{\nabla^2}{2q} \right) \Omega (r, t) = i \frac{g}{n_0} \rho_{31} (r, t), \quad (26)$$

where $\nabla^2 = \partial_x^2 + \partial_y^2$ is the transverse Laplacian. Eqs. (22), (23), and (26) compose the full set of equations of motion for the slowly varying envelopes.

The group velocity v_g obtained on page 8 is applicable for pulses long enough such that their bandwidth (in the temporal frequency domain) is within the linear dispersion regime. If the pulses vary more slowly than any
other rate in the system, the time dependence can be treated parametrically, based on a quasi-steady-state assumption. The steady-state assumption can easily be lifted within the linear response approximation, which is valid as long as the coupling field is stationary and uniform. Keeping in mind that the traveling pulses are essentially delayed, it will still be meaningful in quasi-steady-state to translate distance to time via v_p.

The changes of the probe along z are due to its finite extent (in a pulsed experiment) and due to absorption and refraction in the medium; both are assumed to vary much more slowly than the envelope in the transverse plane, making the diffusion negligible in the z-direction. The relevant Raman wavevectors are thus identical with the transverse spatial frequencies. Taking the Fourier transform $(x, y) \rightarrow (k_x, k_y) = k_\perp$ of Eqs. (22), (23), and (26) while maintaining the explicit z dependence, one recovers the linear susceptibility $\chi(k_\perp) = i\alpha[1 - \gamma P/(\gamma - i\Delta)]$ and the steady-state evolution along z:

$$\partial_z \Omega(k_\perp; z) = \left[i\chi(k_\perp) - i\frac{k_\perp^2}{2q} \right] \Omega(k_\perp; z).$$

Clearly, the geometric effect of free-space diffraction $i\frac{k_\perp^2}{2q}$ influences slow images precisely as in free space. For a confined k_\perp-spectrum, the susceptibility can be expanded in orders of k_\perp^2 as $\chi(k_\perp) = \chi_0 + \left[\chi(k_\perp) \right]_{\text{motional}}$, where $\chi_0 = i\alpha[1 - \gamma P/(\gamma - i\Delta)]$ is the susceptibility for an atom at rest, and

$$i v_g \left[\chi(k_\perp) \right]_{\text{motional}} = -\frac{\gamma^2}{(\gamma - i\Delta)^2} Dk_\perp^2 + O(k_\perp^4),$$

with $v_g = \gamma^2/(\alpha\gamma P)$. The k_\perp^4 term is negligible when the probe’s spectrum is initially confined within $k_\perp \ll k_0 = (\gamma/D)^{1/2}$. The requirement $k_\perp \ll k_0$ is usually stricter than the optical paraxial condition (for example, the typical values $D = 10$ cm2/s and $\gamma = 10$ kHz give k_0 on the order of 0.01 mm$^{-1}$). Returning to (x, y) space,

$$\partial_z \Omega = \left[i\chi_0 + \left(\frac{D}{v_g} + i\frac{1}{2q} \right) \nabla_\perp^2 + O(\nabla_\perp^4) \right] \Omega,$$

we find an effective complex diffusion coefficient:

$$D = D \cdot \frac{1 - (\Delta/\gamma)^2}{[1 + (\Delta/\gamma)^2]^2} + i D \frac{2(\Delta/\gamma)}{[1 + (\Delta/\gamma)^2]^2}. $$

The real part of D corresponds to an actual diffusion of the polariton. The imaginary part causes quadratic dispersion within the k_\perp spectrum, with a functional form identical to that of the optical paraxial diffraction, and is thus referred to as motional-induced diffraction (MID).

On resonance $\Delta = 0$, the polariton diffusion matches precisely the atomic diffusion $D = D$. Besides an overall absorption and phase-shift originating from $i\chi_0$, the evolution of the polariton is a linear sum of optical diffraction with respect to the distance travelled $(\partial_z \Omega)_{\text{diffraction}} = i\nabla_\perp^2 \Omega/(2q)$ (due to the polaritons’ light constituent) and atomic diffusion with respect to time $(\partial_z \Omega)_{\text{diffusion}} = D\nabla_\perp^2 \Omega$ (due to its matter constituent). For the latter, we translated $v_g \partial_z \rightarrow \partial_t$. The relative weight of diffusion and diffusion is thus controlled by the group velocity. Off the Raman resonance $\Delta \neq 0$, the polariton diffusion slows down. The real part of D decreases with increasing $|\Delta|$, until vanishing completely at $\Delta = \pm \gamma$. At this detuning, the polariton does not experience any standard diffusion, while the remaining $O(\nabla_\perp^4)$ term gives rise to sub-diffusion evolution.

Moreover, at $\Delta \neq 0$ the MID becomes nonzero and adds up to the optical diffraction. The detuning determines the sign of the MID, with $\text{Im}(D) > 0$ at positive detuning adding to the optical diffraction, and $\text{Im}(D) < 0$ at negative detuning negating it. While the maximum MID is obtained at $\Delta = \pm 3^{1/2}\gamma$, the more interesting case is $\Delta = \pm \gamma$, in which $D = \mp i D/2$ is purely imaginary, inducing diffusion without diffusion. Here the ratio between $\pm D/v_g$ and $1/q$ determines the balance between the optical and induced diffraction, and, for given D and q, it is governed by the group velocity.

Firstenberg et al. (2009b) proposed utilizing MID to completely eliminate the paraxial diffraction in the medium, by choosing $\Delta = -\gamma$ and $v_g = qD$. At these conditions, both the imaginary and the real parts of the ∇_\perp^4 coefficient vanish in Eq. (29), rendering a diffusion-less, diffusion-less, medium. Conversely, at $\Delta = +\gamma$ the actual diffusion in the medium is twice that in free-space. The non-diffraction condition $v_g = qD$ can intuitively be derived by requiring the diffusion spreading

![FIG. 9 Polariton diffusion and motional-induced diffraction. A Zeeman EIT setup is used, similar to that in Fig. 6, with a cell length $L = 5$ cm and optical depth $2\alpha L = 6$. The free-space diffraction (bottom left) is compared to transmitted slow images at several Raman detunings (right). At $\Delta = 0$, the polariton is delayed by $\sim 6 \mu$s and experiences the combination of optical diffraction and diffusion ($D = 11$ cm2/s for 10 Torr of neon). At $\Delta < 0$, both diffusion and diffraction are reduced, and at $\Delta = -\gamma \approx -70$ kHz, they are completely suppressed ($Dq = v_g \approx 8700$ m/s). Numerical calculations confirm that the small difference between the input image and the transmitted image at $\Delta = -\gamma$ is primarily due to residual ∇_\perp^4 terms. At $\Delta = +\gamma$, no diffusion occurs, but the polariton experiences the sum of equal optical and motional-induced diffraction, as if the image has propagated a free-space distance of 2L. Adapted from Firstenberg et al. (2009a).](image-url)
of a focused Gaussian beam to be equal to its diffraction spreading after one Rayleigh distance $z_R = qv_0^2/2$, where w_0 is the beam waist-radius. Since the beam does not expand, it is virtually trapped in two dimensions by the diffusing atoms, in an interesting analogy to the mechanism of Doppler cooling of atoms by red-detuned light. The latter also relates to a proposal by Kocharovskaya et al. (2001) to stop light propagation using one-photon detuning in a bufferless cell.

These effects were studied by Firstenberg et al. (2009a) at the condition $v_\| = qD$ and are all demonstrated in Fig. 9: The image exhibits optical diffraction (far detuned), diffusion ($\Delta = 0$), non-diffraction ($\Delta = -\gamma$), and double diffraction ($\Delta = +\gamma$). Shwa et al. (2012) examined the MID of an array of optical vortices, as shown in Fig. 10.

As we mentioned earlier, extensive study was devoted to the manipulation of diffraction by modulating the susceptibility in real space, with either the coupling beam, the probe beam, or the medium itself inducing the necessary inhomogeneity of the refraction index. In all these schemes, specific transverse modes are maintained, but a general multi-mode field disperses and may perhaps regenerate after a certain self-imaging distance (Cheng and Han, 2007). In contrast, diffraction-manipulation with linear optics in k_\perp-space, in the form of Eq. (29), applies to multi-mode fields with arbitrary phase and intensity patterns. Since no actual waveguide is defined, the medium suspends the expansion of an incoming beam wherever it impinges on the input plane.

It is instructional to define an index of diffraction $n_{\text{diff}} = (1 - qD/v_\|)^{-1}$, equivalent to the index of refraction as far as paraxial diffraction is concerned. Without atomic motion ($D = 0$), diffraction is not altered ($n_{\text{diff}} = 1$). At the non-diffraction conditions, the index diverges ($n_{\text{diff}} \to \infty$). Snell’s law, $\sin \theta_\| = n_{\text{diff}} \sin \theta_\perp$, then implies no angular divergence inside the medium $\theta_\| = 0$ regardless of the incident angle θ_\perp and hence no diffraction, as illustrated in Fig. 11a.

Now, consider the possibility of reducing $v_\|$, still with $\Delta = -\gamma$, so that the (negative) MID be further strengthened. Then, both the overall diffraction of the polariton and the index of diffraction become negative. The medium undoes a paraxial diffraction that already took place, manifesting a negative-index lens in the spirit of Vaselago (1968) and Pendry (2000). Remarkably, the imaging conditions of such a lens are insensitive to its position between the object and the image, as shown for $n_{\text{diff}} = -1$ in Fig. 12.

An important caveat when working at large Raman detunings is the reduced transmission; even for high coupling intensities ($\gamma = \gamma_\| > 0$), the absorption at $\Delta = +\gamma$ cannot be rendered lower than $\text{Im} \chi_0 \approx \alpha/2$. This translates to a low transmission, of about $\exp(-5)$, at the Rayleigh distance of a beam with $w_0 = \pi/k_0$, which is the minimal pixel size allowed under the $k_\perp \ll k_0$ condition. The experiments by Firstenberg et al. (2009b) took place under these conditions.

5 Electromagnetically-induced focusing by an inhomogenous coupling field was realized by Moseley et al. (1995) in hot vapor and by Mitsuagsa et al. (2000) in a cold ensemble. Schemes in which certain transverse modes evolve without diffracting due to the non-uniformity of the coupling field were referred to as induced solitons (Bortman-Arbit et al., 1998), induced waveguides (Kapoor and Agarwal, 2000; Truscott et al., 1999), and transverse confinement (Andre et al., 2005; Cheng et al., 2005). Waveguiding was also demonstrated using the inhomogenous density in a cold atomic cloud (Tarhan et al., 2007; Vengalattore and Prentiss, 2005). Lastly, it was proposed that self-focusing via a Kerr-like effect will support spatial solitons (Friedler et al., 2005; Hong, 2003).
C. Induced drift and artificial vector-potential

The attentive reader may have already realized that, while \(n_{\text{diff}} \) alters the refraction at the entrance and the exit of the medium, it is the direction of the coupling beam that determines the virtual plane of incidence for this refraction. In fact, since the real index of refraction in dilute vapor is only marginally different than unity \((n = 1 \pm 10^{-6})\), the actual entrance plane of the cell has no optical significance. It is thus the virtual plane perpendicular to the coupling-beam direction which defines the incident and refraction angles for the modified Snell’s law \(\sin(\theta_{\text{i}} - \theta_{\text{c}}) = n_{\text{diff}} \sin(\theta_{\text{r}} - \theta_{\text{c}}) \), where \(\theta_{\text{r}} = 0 \) for an axially coupling beam. Therefore, tilting the coupling beam results in an angular deflection of the probe beam in the cell. For a straight-on incidence \((\theta_{\text{i}} = 0) \), the modified Snell’s law yields \(\theta_{\text{r}} = \theta_{\text{r}}(1 - n_{\text{diff}}^{-1}) \) (see Fig. 11b). In particular, at the non-diffraction conditions \((n_{\text{diff}} \rightarrow \infty)\), the probe deflects exactly onto the direction of the coupling beam \((\theta_{\text{r}} = \theta_{\text{r}}) \), as shown in Fig. 11c.

Mathematically, tilting the coupling beam superimposes a transverse phase grating \(\exp(\pm iq\theta) \) on the Raman interference pattern, replacing \(Dk_{\perp}^2 \) in Eq. (28) by \(D(k_{\perp} - q\theta)\hat{x})^2 \). For angles small enough \((q\theta \ll k_0)\), the resulting term in Eq. (29), \(2(D/v_\gamma)\nabla_{\perp} \cdot \cdot q\theta\hat{c} \), induces a directional deflection on the probe at an angle \(\theta_{\text{r}} = \mp(qD/v_\gamma)\theta_{\text{r}} = \mp(1 - n_{\text{diff}}^{-1})\theta_{\text{r}} \), in accordance with the modified Snell’s law. It is worthwhile emphasizing that the deflection effect does not involve an actual refraction of the optical wavevector \(q \). Similarly to the walk-off phenomenon in birefringent crystals, the wave fronts (equal phase planes) maintain their original orientation. Hence, the deflection is unobservable for plane waves and has meaning only for finite beams. In analogy to a group velocity, which can be modified either via \(n \) or via the dispersion \(dn/d\omega \), the deflection here is a (spatial) group effect, in which the transverse dispersion \(\sim dn/dk_{\perp} \) changes the propagation trajectory.

In the popular analogy between paraxial light propagation and the Schrödinger dynamics of a massive particle in two-dimensions, the wavevector plays the role of the mass. When the MID at \(\Delta = \pm \gamma \) dominates the optical diffraction, and one translates \(z \rightarrow v_\gamma t \) in Eq. (29), the effective mass is \(m = \pm \hbar/D \). A phase gradient imposed by the coupling fields thus translates to a vector potential (VP) for a charged particle:

\[
\Im \hbar \partial_t \Omega(x, y) = \frac{1}{2m} \Im \hbar \nabla_{\perp} + c A(x, y)^2 \Omega(x, y),
\]

where \(\mathbf{A} = \hbar \nabla_{\perp} \ln \Omega^2(r) \) and \(c = 1 \).

As reviewed by Dalibard et al. (2011), artificial VP created by the optical dressing of neutral atoms is a major field of study. Here however, the polaritons, and not the atoms themselves, experience the artificial VP. As a result, the coupling beam can be used to mimic the operation of electromagnetic fields on the polariton. In particular, a tilted coupling beam \(\Omega_{\text{r}}(r) = \Omega_{\text{r}} \exp(ixq\theta) \) produces a uniform VP \(\mathbf{A} = \hbar \mathbf{q} \theta \), explaining the deflection effect via a momentary electric ‘kick’ at the entrance of the cell \(\mathbf{E}_{\text{in}} = -\partial_t \mathbf{A} = \delta(t - t_m)\hbar \mathbf{q} \theta \hat{x} \), after which the probe propagates in a straight trajectory. A second kick at the exist face defects the probe back to its original direction. Alternatively, a vortex coupling beam with a helical phase \(\exp(i\mathbf{m}\phi) \) (\(\phi \) the azimuthal angle) inflicts a kick in the azimuthal direction. The underlying VP \(\mathbf{A} = \hbar \nabla_{\perp} \phi \) implies an artificial magnetic field \(\mathbf{B} = \partial_y A_y - \partial_x A_x = 2\pi \mathbf{\hat{z}}(x)\delta(y)\hbar \) along the dark vortex core, whereas the probe can only propagate at the brightened areas around the core. Altogether, a probe in the form of a ring of lobes is predicted to rotate while propagating in the medium and cease rotating upon exiting (Yankelev, 2012).

IV. COHERENT DIFFUSION OF STORED LIGHT

Diffusion and diffraction of dark-state polaritons, discussed in the previous section, arise from the interplay between the atomic motion and the propagating excitation. Perhaps more elementary is the effect of the atomic motion on the atomic coherence in the absence of the light, as occurs during light storage. In light storage, the polariton is transformed into a matter-only excitation and the Schrödinger dynamics of a massive particle.

\[
A \neq \hbar \nabla_{\perp} \ln \Omega^2(r) \text{ implies an artificial magnetic field } \mathbf{B} = \partial_y A_y - \partial_x A_x = 2\pi \mathbf{\hat{z}}(x)\delta(y)\hbar \text{ along the dark vortex core, whereas the probe can only propagate at the brightened areas around the core. Altogether, a probe in the form of a ring of lobes is predicted to rotate while propagating in the medium and cease rotating upon exiting (Yankelev, 2012).}
\]
When light storage is performed with a single quantum, ideally by storing a single photon, it realizes a quantum memory — a fundamental building block for quantum communication and computation (Duan et al., 2001; Hammerer et al., 2010). In atomic ensembles, the single quantum is stored in the collective state of all atoms. Unconditional storage of light on the level of single-photons was recently achieved by Hosseini et al. (2011a) using GEM in a hot buffered cell. However, most of the experiments so far have used spontaneous Raman scattering to generate the spin wave, conditioned on the detection of a scattered photon (Bashkansky et al., 2012; Chou et al., 2004; Eisaman et al., 2005; Matsukevich et al., 2006; Zhao et al., 2008c). Diffusion of the atoms before the spin wave is converted back to light poses the same issues as in unconditional storage, as we describe in this section.

A. Diffusion of a stored coherence field

When storage is performed, the three-dimensional spatial envelope of the probe $\Omega(r)$ is linearly mapped onto the ground-state coherence $\rho_{12}(r, \tau = 0)$. The dynamics during the storage time τ is governed by

$$\partial_\tau \rho_{12}(r, \tau) = D(\nabla + i k)^2 \rho_{12}(r, \tau) - \gamma_0 \rho_{12}(r, \tau),$$

which derives from Eq. (23) in the absence of light. Even for a uniform envelope and negligible damping ($\nabla \to 0, \gamma_0 \to 0$), the diffusion of atoms through the Raman wave results in a dephasing of rate Dk^2. Fleischhauer and Lukin (2002) and Mewes and Fleischhauer (2005) show that the decoherence of the quantum memory (in terms of the fidelity of the stored state) is proportional to this dephasing.

In a recent experiment, Zhao et al. (2008a) showed that the memory time in a cold atomic gas reduces with the angle between the Raman beams and is determined by the time it takes the atoms to (ballistically) move one Raman wavelength ($\tau_d \approx k^{-1} \propto \theta^{-1}$). Indeed, memory times as long as milliseconds were achieved by Zhao et al. (2008a) and by Zhang et al. (2009) using collinear beams ($k \approx 0$), and by Zhao et al. (2008c) with an optical trap that confines the atomic motion in the direction of k. Furthermore, Schnorrberger et al. (2009) demonstrated light storage with ultra-cold atoms trapped in a three-dimensional optical lattice (a Mott insulator). The confinement of atomic motion to a site much smaller than the optical wavelength allowed Schnorrberger et al. to imprint phase gradients of wavenumbers $k = \theta q$, with θ as large as 25 mrad, while maintaining the memory for more than 0.1 ms. All this of course does not apply to a BEC where, due to its long-range coherence, stored light was retrieved even after the atoms moved numerous λ_R (Ginsberg et al., 2007).

Nevertheless, even when $k \approx 0$, atomic motion plays an important role in the storage of finite-size and structured fields. Diffusion of the atomic coherence $\partial_\tau \rho_{12} = D \nabla^2 \rho_{12}$ can be observed directly by comparing the input image to the retrieved image at different storage durations. This is especially true when the propagation time before and after storage is much shorter than the storage duration itself, as is often the case. Figure 13 (right) presents measurements of diffusion with stored images (Shuker et al., 2008). Diffusion is clearly observed by the smearing of the digits’ image and is more pronounced as the storage duration increases. The spreading of stored information was used by Zibrov et al. (2002) to perform storage and retrieval at two distant locations in the cell. As a complementary concept, Novikova et al. (2005b) demonstrated two retrievals from the same location due to diffusion of coherence out and back into the beam area.

Let us now take an ideal case with $k = 0$ and a coupling beam that covers the whole medium. Naively it might seem that the total power of the restored probe is not altered by diffusion, as diffusion is a conserving process, $\int \rho_{12} = \text{const}$. However, it is the light-field amplitude $\Omega \propto \rho_{12}$, rather than its intensity $|\Omega|^2$, that effectively diffuses, and the total power $P \propto \int |\Omega|^2$ decays. For example, a stored Gaussian beam that doubles its area due to diffusion conveys a half of its initial power. This geometric effect was shown to limit the storage time of images and of narrow beams in buffered cells (Glorieux et al.,

6 Alternatively, in spontaneous storage, the superposition of the coupling beam and a spontaneously generated photon heralding the storage is saved on the coherence field $\rho_{12}(r, \tau = 0)$.

7 Note that the ground-state populations, $\rho_{11}(r)$ and $\rho_{22}(r)$, diffuse in a similar manner, but, in the weak-probe regime, their contribution to the storage is small.
In free-space optics, the paraxial-diffraction equation \(\partial_z \Omega = i \nabla_z^2 \Omega / (2q) \) has several sets of shape-preserving solutions. These are notably the polynomial-Gaussian modes, including the well-known standard Hermite-Gauss (sHG) or Laguerre-Gauss (sLG) modes. Their transverse intensity pattern is maintained along the propagation direction \(z \) and scaled according to the beam radius \(w_z = w_0 \sqrt{1 + (z/z_R)^2} \), where \(z_R = qu_0^2/2 \) is the Rayleigh distance. For example, the sHG mode \(E_{n,m}^\text{HG}(x, y, z; w_0) \) has the form

\[
H_n \left(\sqrt{2} \frac{x}{w_z} \right) H_m \left(\sqrt{2} \frac{y}{w_z} \right) \exp \left(-\frac{x^2 + y^2}{w_z^2} \right),
\]

where \(w_z = \sqrt{2(z_R - iz)}/q \) is the complex radius and \(H_k \) the Hermite polynomials. \(N = n + m \) is the total mode order.

A less familiar solution for paraxial diffraction is the set of elegant modes, first studied by Siegman (1986) for their nearer mathematical form. The elegant Hermite-Gauss (eHG) mode \(E_{n,m}^\text{eHG}(x, y, z; w_0) \) has the form

\[
H_n \left(\frac{x}{w_z} \right) H_m \left(\frac{y}{w_z} \right) \exp \left(-\frac{x^2 + y^2}{w_z^2} \right).
\]

Contrast this with the standard mode above, here the polynomial and the Gaussian have a mutual (complex) scaling, and the \(\sqrt{2} \) in the polynomial argument is absent. A corresponding elegant form for the circular-symmetric LG modes also exists.

The elegant modes are not shape-preserving in free-space optics and are thus rarely used. Remarkably, at the focal plane \(z = 0 \), they were found to be the basis for the shape-preserving solutions of coherent diffusion in two dimensions (Firstenberg et al., 2010). Substituting \(E_{n,m}^\text{eHG} \Rightarrow \rho_{12} \) in Eq. (32) with \(k = 0 \), one finds

\[
E_{n,m}^\text{retrieved}(\tau) = e^{-\gamma_0 \tau} s(\tau)^{-(N+1)} E_{n,m}^\text{eHG}(x, y, z = 0; w_0) \quad (33)
\]
where \(w_\tau = w_0 s(\tau) \) is the expanding waist radius and \(s(\tau) = (1 + 4D\tau/w_0^2)^{1/2} \) is the stretching factor. The shape is therefore preserved, while expanding, throughout the outdiffusion. The algebraic decay \(s(\tau)^{-2(N+1)} \) of the total power \(P \propto \int |E|^2 \), explicated previously for the Gaussian \((N = 0)\) case, becomes faster with increasing mode order due to interference between atoms diffusing through the oscillating phase patterns.

Note that the standard and elegant sets differ only in their polynomial terms, and therefore low-order HG and all vortices \((\text{LG}_{p=0})\) are common to both sets and preserve their shape under the simultaneous action of diffusion and diffraction. They are thus the natural modes for slow light — a result which is standard and elegant, in both meanings of the words.

The diffusion of low-order (common) LG and HG modes during light storage in EIT is presented in Fig. 16. After scaling and normalization, the cross-sections at different storage durations of each of the modes collapse to a single curve. Higginbottom et al. (2012) used GEM to demonstrate the shape-preserving evolution of HG modes and the associated algebraic decay. By probing an optically pumped medium, the diffusion of LG beams with radial or azimuthal polarization (vector beams) was observed by Fatemi (2011). Yankelev et al. (2012) experimented with the high-order modes sHG\(_{22}\) and eHG\(_{22}\) (Fig. 17). As expected, the shape of the sHG\(_{22}\) mode is preserved during diffraction while dramatically altering during diffusion, and vice-versa for the eHG\(_{22}\).

Quite an interesting effect occurs when diffusion is performed away from the focal plane of the beam. The radial phase-oscillations in the transverse plane, due to the curved phase-fronts of the diverging beam, lead to destructive interference at the outskirts of the beam during diffusion. The result is a shape-preserving contraction of the beam, as shown in Fig. 18, in contrast to the obvious consequence of diffusion. In effect, diffusion acts to (virtually) expand the waist radius at the focal plane \((z = 0)\), even if this plane lies outside the medium, which leads initially to contraction at \(|z| > z_B \) (see sketch in Fig. 18). This effect is directly related to the contraction of slow light out of focus, presented in Fig. 8.

V. FINITE-SIZE BEAMS, RAMSEY NARROWING

Up until now, we have mainly considered a large and uniform coupling beam, such that any inhomogeneity experienced by the atoms was set by the weak probe. In fact, the atoms are constantly driven towards the dark state by the perpetual coupling field, and those that are slow enough can adiabatically follow the local dark-state \(\propto \Omega^*_{\mathbf{r}} |1\rangle - \Omega^*_{\mathbf{r}} (\mathbf{r}) |2\rangle \). However this situation is not prevalent, especially when the Raman fields (in a single or two...
beams) have a more symmetric role, such as in CPT and NMOR. There is often a finite ‘bright’ region, covered by the light, and a remaining large ‘dark’ region. The atomic motion within these regions and between them is the subject of this section.

Finite excitation times of ground-state coherence is a well-studied phenomena, as described by Gawlik (1986) and Arimondo (1996b), with the atoms either spatially leaving the illuminated area or shifting out of resonance due to some inhomogenous mechanism. The observed spectra are more elaborate than those we have studied hitherto, because the finite pumping time rules out the linear response assumption. Instead of an instantaneous pumping action, the process becomes kinetic, with different atomic trajectories contributing differently to the spectra. An example of a non-Lorentzian, cusplike spectrum, was presented by Pfleghaar et al. (1993). Pfleghaar et al. fully described the spectrum by using an exact geometrical transit-time model, taking into account the possible atomic trajectories through the inhomogeneous beam. Trajectories with a transit time short compared to the pumping and damping rates $\tau_t \ll \gamma_0^{-1}$, γ_P^{-1} contribute to the transit-time-limited broad feature; trajectories with long transit time contribute to the narrower central part of ultimate width $\gamma \approx \gamma_0 + \gamma_P$. We note here that non-Lorentzian spectra also arise for atoms at rest, when non-uniform power broadening dominates (Naichenachen et al., 2004).

Coherently pumped atoms that have left the beam may return in a later time before losing their coherence. Coherent recurrence occurs in wall-coated or buffered cells, and has long been known as a narrowing mechanisms in standard rf spectroscopy (Robinson and Johnson, 1982). While the homogenous damping rate (γ_0) sets a lower limit on the width of any spectral feature, transit-time broadening (τ_t^{-1}) is reduced by recurring atoms that effectively increase the interaction time, and power broadening (γ_P) is reduced because the recurring atoms have evolved predominantly in the dark. The initial pumping of the atoms in the bright region, the subsequent evolution in the dark, and their contribution to the spectrum upon return, correspond to the Ramsey method of separated oscillating fields (Ramsey, 1950). The associated narrowing was therefore named Ramsey narrowing. For all-optical Raman resonance, Ramsey narrowing was first observed in wall-coated cells with NMOR (Budker et al., 1998; Kanorsky et al., 1995) and EIT (Klein et al., 2006). In both processes, the spectrum exhibits a broad pedestal feature, attributed to single-transit trajectories, and a narrow peak, due to coherent atoms returning after long times in the dark (Budker et al., 2002, 2005). Diffusion-induced Ramsey narrowing in buffered cell was observed in various Raman processes (Alipieva et al., 2003; Novikova et al., 2005a,b; Zibrov et al., 2001), as exemplified in Fig. 19 (left).

The difficulty of writing a linear susceptibility in the form of Eq. (24) originates from the nonlinear terms in Eq. (23). Even for negligible power-broadening $\gamma_P(r) \to 0$, the source term $\Omega_c(r)\Omega(r)$ yields a convolution in k-space that, although accurate, makes it hard to solve for the spectrum. The following two approaches to calculate the spectrum thus stay in real space.

A. Repeated interaction

Following the original ideas by Frueholz and Volk (1985), the repeated-interaction model builds the spectrum from an ensemble average of stochastic atomic trajectories, as delineated by Xiao et al. (2008b). Trajectories may comprise a single transit time (t_{in}), a Ramsey process ($t_{in}/t_{out}/t_{in}$), or any longer sequence ($t_{in}/t_{out}/t_{in}/t_{out}/t_{in}$ · · ·). The contribution of longer trajectories is smaller due to the constant damping γ_0, and the sum thus converges. During the dark period, the ground-state dipole oscillates at the Raman-detuning frequency Δ with respect to the beating frequency of the
Raman beams. An atom leaving the beams in a perfect dark-state will have the probability \(\text{Re}[e^{-(i\Delta+\gamma_0)t}] \) of returning in-phase (in the dark state), resulting in Ramsey fringes with respect to \(\Delta \). These can be measured by a fixed pulse sequence as shown in Fig. 20 (left). As with Ramsey spectroscopy, the fringes’ period is set by the dark time \(t_{\text{out}}^{-1} \) and their envelope by the bright time \(t_{\text{in}}^{-1} \). Ramsey fringes were observed with Ramo processes by separations in the velocity, time, and space domains (Buhr and Mlynek, 1986; Schuh et al., 1993; Zanon et al., 2005; Zibrov and Matsko, 2001).

Due to the distribution of the times spent in the bright and dark areas, a weighted average of such Ramsey fringes constitutes the spectrum. Xiao et al. (2006) calculated the time probability-distribution of staying in the bright area \(P_{\text{in}}(t) \) and dark area \(P_{\text{out}}(t) \) for atoms diffusing through a cylindrical beam (Fig. 20, right). Similar analysis for ballistic motion in wall-coated cells was carried out by Klein et al. (2011). The calculations assume two spatial dimensions, as the process is virtually insensitive to the axial motion of the atoms. If the dipole amplitude \(A \) of an atom leaving the beam was fixed, the ensemble average would have read

\[
A \int_0^\infty dt P_{\text{out}}(t)e^{-(i\Delta+\gamma_0)t} = AP_{\text{out}}(s),
\]

where \(s = i\Delta + \gamma_0 \) and \(P_{\text{out}}(s) \) is Laplace transform of \(P_{\text{out}}(t) \). The full repeated interaction model involves nested integrals essentially similar to that of Eq. (34). To calculate the more intricate evolution in the bright stages, which involves dark-state pumping, Xiao et al. (2008b) use the 3-element vector model by Shahriar et al. (1997). The model reduces the master equation of the density matrix into a set of three Bloch equations, under the assumption of negligible \(\gamma_0 \). The evolution of the reduced vector has a closed mathematical solution in the form of a damped precession. A Ramsey sequence is then obtained by chaining three (in/out/in) solutions. Xiao et al. (2008b) generalize the vector model to account for finite \(\gamma_0 \) and obtain an analytic expression for all Ramsey spectra. Integrating over the trajectories using \(P_{\text{in}}(t) \) and \(P_{\text{out}}(t) \), the reconstructed spectrum agrees very well with the measurements (Fig. 19, left) for a range of experimental parameters. Klein et al. (2011) augment the model with a forth atomic state, to account for optical pumping out of the \(\Lambda \)-system due to strong light fields. Indeed, for both ballistic and diffusing atoms, the distribution of bright times turns the Ramsey envelope into a broad spectral feature, while the distribution of dark times wipes out the Ramsey fringes, leaving a single pronounced narrow feature at the line center.

Recently, Pugatch et al. (2009) analyzed the limit of an infinitely small beam, for which the transit-time broadening, and hence the fringes envelope, is very large. Since \(P_{\text{in}}(t > 0) \to 0 \), the bright periods have a negligible effect on the spectrum, which becomes independent of the beam size and, in that respect, universal. While the atoms are essentially always in the dark, a non-zero ground-state dipole is sustained by the weak beam. The average dipole is given by an infinite sum of multiple periods in the dark, each one given by Eq. (34), \(A \sum_i P_{\text{out}}(s)^i = A/[1 - P_{\text{out}}(s)] \). As evidenced by this expression, the resulting complex spectrum, measured by Pugatch et al. (2009) (Fig. 21, left), constitutes a direct signature of the time distribution in the dark. Moreover, as the beam is infinite small, \(P_{\text{out}}(t) \) is equivalent to the so-called first return-time distribution \(\text{FRT}(t) \), which is the universal probability distribution for a random walker of returning to the origin at time \(t \). In one dimensional diffusion, corresponding to the sheet-like beam used in the experiment, \(\text{FRT}(s) = P_{\text{out}}(s) = (4Ds)^{-1/2} \), in striking contrast to the complex Lorentzian spectrum \(\propto s^{-1} \). These power-low decays are shown in Fig. 21, right.

B. Diffusion solution

Although providing insight into the Ramsey-narrowing process, the repeated-interaction model applies the same physics already contained in the diffusion-equation formalism of the previous sections. One can essentially obtain the spectra from the coupled internal and external dynamics of the density-matrix distribution. To this end, we express the spatially dependent source and pumping rates, \(S(r, t) \) and \(\gamma P(r) \) in Eq. (23), using the profiles of the beams, \(\Omega(x, y) \) and \(\Omega_c(x, y) \), and then solve the diffusion equation for the steady-state distribution of the ground-state dipoles \(\rho_{31}(x, y) \). The optical dipole \(\rho_{31}(x, y) \) is calculated from Eq. (22), and an integration over the beam profile yields the absorption spectrum \(P \propto \text{Im} \int dx dy \Omega^* \rho_{31} \). As a matter of fact, such mathematical procedure conflicts with a previous notion, that steady-state solutions cannot accurately describe transit-time-limited spectra (Gawlik, 1986).

Xiao et al. (2008b) wrote a similar diffusion equation using the 3-element vector model and by that generalized Eq. (23) to include a non-weak probe — and essentially any ratio between the Raman beams, including the balanced case. Numerical solution of the diffusion equation in this model, for a small Gaussian beam, was shown by...
Xiao et al. to agree with the repeated-interaction model. For a few simple geometries, it is possible to obtain closed-form expressions for the spectra, as corrections $R(\Delta)$ to the stationary spectrum $\chi_0 \to \chi_0(1 - R)$. For a stepwise light sheet (1d) or a top-hat beam (2d) of widths $2a$, and absorbing boundary conditions at the walls at a distance b, the diffusion solution gives

$$R^{1d}(\Delta) = \frac{1}{\kappa_0} \frac{\tanh(\kappa a)}{1 + (\kappa/\kappa_0) \tanh(\kappa a) \tanh(\kappa_0(b - a))},$$

$$R^{2d}(\Delta) = \frac{2}{\kappa a} \left[\frac{I_0(\kappa a)}{I_1(\kappa a)} + \frac{\kappa_0}{\kappa} \frac{K_0(\kappa_0 a)}{K_1(\kappa_0 a)} (1 - \beta) \right]^{-1},$$

(35)

where $\beta = K_0(\kappa_0 b) K_0^{-1}(\kappa_0 a) I_0^{-1}[\kappa_0(b - a)]$ is due to the walls. Here, κ and κ_0 are defined via $D\kappa^2 = \gamma_0 + \gamma_r - i\Delta$ (inside the beam) and $D\kappa_0^2 = \gamma_0 - i\Delta$ (outside), and I_n, K_n are the modified Bessel functions. These expressions revert to the transit-time limit for a circumferential wall ($b = a$) that depolarizes all atoms before they recur. The solution with no walls ($b \to \infty$) was presented by Firstenberg et al. (2008) and shown in Fig. 19 (right): The reduction of power broadening is clearly visible on the central feature. One may also recover the asymptotic universal behavior shown in Fig. 21 by taking $a \to 0$. Finally, minor corrections for non-flat beams where solved by Romanenko and Yatsenko (2008).

VI. OUTLOOK

We have presented the physics of Raman processes with hot atoms, whose internal coherence is preserved despite their external motion. The unique combination of rapid atomic motion, large Raman wavelengths, long lifetimes, and large group delays, was shown to have diverse, significant spectral and spatial consequences. The same physical principles hold for a rich variety of Raman schemes and matter systems that are either out of the scope of this Colloquium or yet to be explored.

The spectra we have been studying derive from the exponential or Gaussian dephasing rate, pertaining to regular thermal motion. In two dimensional systems, power-law decay of the velocity correlation is manifested by Lévy-like Raman spectra, whereas more intriguing spectra are expected for non-equilibrium one dimensional systems. These are realizable with cold atoms, for which it is also exciting to explore anomalous diffusion, ballistic motion, and billiard dynamics. Oscillatory motion in a confining trap adds a modulated component to the velocity correlation function, which is also measurable as periodic revivals of spatial structures.

Various matter-wave phenomena can find their analogue in polariton diffusion, as diffusion manifests the diffraction equation in imaginary time. Thus, a speckle field of ‘traps’ that locally depolarize the dark state relates to the Anderson problem in one or two dimensions, and is measurable spectrally and spatially. Here one can extend the study to the sub-diffusive, sub-diffusive (∇^4) evolution (Stalinas and Herrero, 2006) by controlling the slow-light parameters. Identifying the transverse modes of either ordered or disordered configurations is an important, instructive stage for understanding these systems (Wang and Genack, 2011). Extensions to the nonlinear realm can be performed with diffusion and diffraction manipulation in Raman 4-wave mixing schemes, which will further allow optical conjugation and gain (Katzir et al., 2012; Marino et al., 2009). These promising avenues, which represent a subset of what is currently being explored in this exciting field, are not only of fundamental interest, but could also have a profound impact on future quantum-technology applications.

We thank R. Pugatch for years of inspiring collaboration and gratefully acknowledge discussions with P. Lon- don, Y. Sagi, and D. Yanekelv. OF acknowledges support from the Harvard Quantum Optics Center. ND acknowledges support by the ISF, DIP and Minerva foundations.

References

Akulshin, A. M., A. A. Celikov, and V. L. Velichansky, 1991, Opt. Comm. 84, 139.
Alipiева, E., S. Gateva, E. Taskова, and S. Cartaleva, 2003, Opt. Lett. 28, 1817.
Alzetta, G., A. Gozzini, L. Moi, and G. Orrisoli, 1976, Nuovo Cimento Soc. Ital. Fis., B 36, 5.
Aminoff, C. G., and M. Pinard, 1982, J. Physique 43, 263.
Andre, A., M. Bajcys, A. S. Zibrov, and M. D. Lukin, 2005, Phys. Rev. Lett. 94, 063902.
Arimondo, E., 1996a, "Coherent Population Trapping in Laser Spectroscopy", Progress in Optics (Elsevier, Amsterdam), volume 35.
Arimondo, E., 1996b, Phys. Rev. A 54, 2216.
Arimondo, E., and G. Orrisoli, 1976, Lett. Nuovo Cimento Soc. Ital. Fis. 17, 333.
Balabas, M. V., T. Karaulnov, M. P. Ledbetter, and D. Budker, 2010, Phys. Rev. Lett. 105, 070801.
Bashkansky, M., F. F. Fatemi, and I. Vurgaftman, 2012, Opt. Lett. 37, 142.
Bicchi, P., L. Moi, P. Savino, and B. Zambon, 1980, Nuovo Cimento 55B, 1.
Bjorkholm, J. E., P. F. Liao, and A. Wokaun, 1982, Phys. Rev. A 26, 2643.
Bloembergen, N., E. M. Purcell, and R. V. Pound, 1948, Phys. Rev. 73, 679.
Bolkart, C., D. Rostohar, and M. Weitz, 2005, Phys. Rev. A 71, 043816.
Boller, K.-J., A. Imamouli, and S. E. Harris, 1991, Phys. Rev. Lett. 66, 2593.
Bortman-Arbiv, D., A. D. Wilson-Gordon, and H. Friedmann, 1998, Phys. Rev. A 58, R3403.
Brandt, S., A. Nagel, R. Wynands, and D. Meschede, 1997, Phys. Rev. A 56, R1063.
Brisaud, A., and U. Frisch, 1974, J. Math. Phys. 15, 524.
Budker, D., W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weiss, 2002, Rev. Mod. Phys. 74, 1153.
tovtsev, G. R. Welch, and M. O. Scully, 2002, Phys. Rev. Lett. 88, 103601.
Zibrov, A. S., I. Novikova, and A. B. Matsko, 2001, Opt. Lett. 26, 1311.