PLANE AUTOMORPHISMS GIVEN BY POLYNOMIALS OF SCATTERED DEGREES

KYUNGYONG LEE

Abstract. We study the plane automorphisms given by polynomials with certain degree decompositions.

1. Introduction

The jacobian conjecture, raised by Keller [15], has been studied by many mathematicians: a partial list of related results includes [1], [3], [5], [7], [9], [12], [13], [14], [17], [18], [19], [21], [22], [23], [24], [25]. A survey is given in [11]. In this paper we exclusively deal with the plane case. This is the first in a series of papers that introduce a new computational approach, which is completely elementary.

Let k be a field of characteristic 0, and let $R = k[x, y]$. Throughout the paper, let $f, g \in R$ be polynomials satisfying the following:

Assumptions 1. Let n be any positive integer, and let \{ $d_1, ..., d_n$ \} be any set of n distinct positive integers with the following property:

(1.1) if $d_i + d_j = d_p + d_q$ for (not necessarily distinct) i, j, p, q, then \{ d_i, d_j \} = \{ d_p, d_q \}.

For each $d_i \in \{ d_1, ..., d_n \}$, let f_{d_i} and g_{d_i} be homogeneous polynomials of degree d_i in R, and assume that at least one of f_{d_i} and g_{d_i} is nonzero. Let $f = \sum_{i=1}^{n} f_{d_i}$ and $g = \sum_{i=1}^{n} g_{d_i}$. Let

$$J = \frac{\partial f}{\partial x} \frac{\partial g}{\partial y} - \frac{\partial f}{\partial y} \frac{\partial g}{\partial x} = \sum_{1 \leq i, j \leq n} \left(\frac{\partial f_{d_i}}{\partial x} \frac{\partial g_{d_j}}{\partial y} - \frac{\partial f_{d_i}}{\partial y} \frac{\partial g_{d_j}}{\partial x} \right).$$

Denote by $J_{i,j}$ the coefficient of $x^i y^j$ in J.

Theorem 2. If $J \in k \setminus \{0\}$, then $k[x, y] = k[f, g]$.

If $J \in k \setminus \{0\}$, then f and g must have linear parts, i.e., $1 \in \{ d_1, ..., d_n \}$. Assume $d_n = 1$. By linear change of variables, we can assume that $f_{d_n} = x$ and $g_{d_n} = y$. The case of $n = 2$, where (1.1) is trivially satisfied, has been proved in [2], [6, Corollary 6], [8], [10], [20] for the plane case under the assumption

(1.2) \[
\begin{pmatrix}
\frac{\partial (f-x)}{\partial x} & \frac{\partial (f-x)}{\partial y} \\
\frac{\partial (g-y)}{\partial x} & \frac{\partial (g-y)}{\partial y}
\end{pmatrix}^2 = 0,
\]

Research partially supported by NSF grant DMS 0901367.
and in [10 Corollary 2.2] without assuming [12]. The case of \(d_1, \ldots, d_n \leq 100\) is obtained as a special case of a result of Moh [21].

2. Proof

For any \(d_i \in \{d_1, \ldots, d_{n-1}\}\), let \(f_{d_i} = \sum_{j=0}^{d_i} s_{d_i-j,j} x^{d_i-j} y^j\) and \(g_{d_i} = \sum_{j=0}^{d_i} t_{d_i-j,j} x^{d_i-j} y^j\). Thanks to (1.1), the coefficients of \(x^{d_i-j} y^j\) in \(\left(\frac{\partial f_{d_i}}{\partial x} \frac{\partial g_{d_i}}{\partial y} - \frac{\partial f_{d_i}}{\partial y} \frac{\partial g_{d_i}}{\partial x} \right)\) are the only ones that contribute to the coefficient \(J_{d_i-j,j-1}\), which is equal to

\[(d_i - j + 1)s_{d_i-j+1,j-1} + j t_{d_i-j,j}\]

for \(1 \leq j \leq d_i\). Since \(J \in k \setminus \{0\}\) implies (2.1) = 0, there is an element, say \(c_{d_i-j+1,j}\), in \(k\) such that \(s_{d_i-j+1,j-1} = j c_{d_i-j+1,j}\) and \(t_{d_i-j,j} = -(d_i - j + 1)c_{d_i-j+1,j}\).

By letting \(s_{0,d_i} = (d_i + 1)c_{0,d_i+1}\) and \(t_{d_i,0} = (d_i + 1)c_{d_i+1,0}\), we have

\[f = \sum_{i=1}^{n-1} \sum_{j=1}^{d_i} j c_{d_i-j+1,j} x^{d_i-j+1} y^j + x, \quad \text{and} \]

\[g = -\sum_{i=1}^{n-1} \sum_{j=0}^{d_i} (d_i - j + 1)c_{d_i-j+1,j} x^{d_i-j} y^j + y.\]

In section 3, we will show that any \(2 \times 2\) minor of the matrix

\[
\begin{pmatrix}
 c_{d_i,1} & 2c_{d_i-1,2} & \cdots & (d_i + 1)c_{0,d_i+1} & c_{d_j,1} & 2c_{d_j-1,2} & \cdots & (d_j + 1)c_{0,d_j+1} \\
 (d_i + 1)c_{d_i+1,0} & d_i c_{d_i,1} & \cdots & c_{1,d_i} & (d_j + 1)c_{d_j+1,0} & d_j c_{d_j,1} & \cdots & c_{1,d_j}
\end{pmatrix}
\]

is equal to 0 for any \(d_i, d_j \in \{d_1, \ldots, d_{n-1}\}\).

Suppose that all \(2 \times 2\) minors of (2.2) are 0. Then it is straightforward to prove Theorem 2 as follows.

Case 1. Suppose that \(c_{d_i+1,0} = 0\) for some \(d_i\). Then \(c_{d_i,1} = \cdots = c_{1,d_i} = 0\). Since at least one of \(f_{d_i}\) and \(g_{d_i}\) is nonzero, \(c_{0,d_i+1} \neq 0\). Then \(c_{d_j+1,0} = c_{d_j,1} = \cdots = c_{1,d_j} = 0\) for any \(d_j \in \{d_1, \ldots, d_{n-1}\}\). Again since \(f_{d_j} \neq 0\) or \(g_{d_j} \neq 0\), we get \(c_{0,d_j+1} \neq 0\). So we have

\[f = \sum_{i=1}^{n-1} (d_i + 1)c_{0,d_i+1} y^{d_i} + x \quad \text{and} \quad g = y.\]

Then \(x = f - \sum_{i=1}^{n-1} (d_i + 1)c_{0,d_i+1} y^{d_i}\) and \(y = g\), hence \(k[f, g] = k[x, y]\).

Case 2. Suppose that \((d_i + 1)c_{d_i+1,0} \neq 0\) and \(c_{d_i,1} = 0\) for some \(d_i\). Then we use the same argument as in Case 1, and get

\[g = -\sum_{i=1}^{n-1} (d_i + 1)c_{d_i+1,0} x^{d_i} + y \quad \text{and} \quad f = x.\]
Case 3. Suppose that \((d_i + 1)c_{d_i+1,0} \neq 0\) and \(c_{d_i,1} \neq 0\) for any \(d_i \in \{d_1, \ldots, d_{n-1}\}\). Then we obtain
\[
f_{d_i} = c_{d_i,1} \left(x + \frac{c_{d_i,1}}{(d_i + 1)c_{d_i+1,0}} y \right)^{d_i} \quad \text{and} \quad g_{d_i} = -(d_i + 1)c_{d_i+1,0} \left(x + \frac{c_{d_i,1}}{(d_i + 1)c_{d_i+1,0}} y \right)^{d_i}.
\]
Note that \(\frac{c_{d_i,1}}{(d_i + 1)c_{d_i+1,0}} = \frac{c_{d_j,1}}{(d_j + 1)c_{d_j+1,0}}\) for any \(d_i, d_j \in \{d_1, \ldots, d_{n-1}\}\). So
\[
f = x + \sum_{j=1}^{n-1} c_{d_j,1} \left(x + \frac{c_{d_j,1}}{(d_j + 1)c_{d_j+1,0}} y \right)^{d_j}, \quad \text{and} \quad g = y - \sum_{j=1}^{n-1} (d_j + 1)c_{d_j+1,0} \left(x + \frac{c_{d_j,1}}{(d_j + 1)c_{d_j+1,0}} y \right)^{d_j}.
\]
Then it is easy to check that
\[
x = f - \sum_{j=1}^{n-1} c_{d_j,1} \left(f + \frac{c_{d_j,1}}{(d_j + 1)c_{d_j+1,0}} g \right)^{d_j}, \quad \text{and} \quad y = g + \sum_{j=1}^{n-1} (d_j + 1)c_{d_j+1,0} \left(f + \frac{c_{d_j,1}}{(d_j + 1)c_{d_j+1,0}} g \right)^{d_j}.
\]

3. The vanishing of \(2 \times 2\) minors of \((2.2)\)

For any \(p \in \{1, \ldots, n-1\}\), let
\[
A_p = \begin{pmatrix} c_{d_p,1} & 2c_{d_p-1,2} & \cdots & (d_p + 1)c_{0,d_p+1} \\ (d_p + 1)c_{d_p+1,0} & d_p c_{d_p,1} & \cdots & c_{1,d_p} \end{pmatrix}.
\]
Let \((A_p)_{i,j}\) be the determinant of the submatrix of \(A_p\) obtained by concatenating the \(i\)-th and \(j\)-th columns, that is,
\[
(A_p)_{i,j} = \det \begin{pmatrix} \ic_{d_p-i+1,i} & jc_{d_p-j+1,j} \\ (d_p + 2 - i)c_{d_p-i+2,j-1} & (d_p + 2 - j)c_{d_p-j+2,j-1} \end{pmatrix}.
\]

For simplicity, let \(d = d_p\), \(A = A_p\) and \(A_{(i,j)} = (A_p)_{i,j}\).

Proposition 3. Any \(2 \times 2\) minor of \(A\) is equal to 0.

Proof. This is an immediate consequence of the following two lemmas. \(\square\)

Lemma 4. Let \(m\) be any positive integer \(\leq d + 1\). If \(A_{(1,j)} = 0\) for \(j \in \{1, \ldots, m\}\), then \(A_{(i,j)} = 0\) for \(i, j \in \{1, \ldots, m\}\).

Proof. We use induction on \(m\). If \(m = 1\) then trivial. Suppose that the statement holds for \(m - 1\), and that \(A_{(1,m)} = 0\). If at least one of \(c_{d_1}, c_{d+1,0}, c_{d-m+1,m}, c_{d-m+2,m-1}\) is equal to 0, then it is easy to show that \(c_{d,1} = \cdots = c_{d-m+2,m-1} = 0\) and that \(c_{d+1,0} = 0\) or \(c_{d-m+1,m} = 0\). If not, \(\begin{pmatrix} m c_{d-m+1,m} \\ (d + 2 - m)c_{d-m+2,m-1} \end{pmatrix}\) is a multiple of \(\begin{pmatrix} c_{d,1} \\ (d + 1)c_{d+1,0} \end{pmatrix}\), so \(A_{(2,m)} = \cdots = A_{(m-1,m)} = 0\) follows from \(A_{(2,1)} = \cdots = A_{(m-1,1)} = 0\). \(\square\)
Lemma 5. Let \(m \) be any positive integer \(\leq d + 1 \). Then \(A_{(1,j)} = 0 \) for \(j \in \{1, \ldots, m\} \).

Proof. We use induction on \(m \). If \(m = 1 \) then trivial. Suppose that the statement holds for \(m - 1 \). Due to (1.1), \(J_{2d-m,m-2} \) is the coefficient of \(x^{2d-m}y^{m-2} \) in \(\frac{\partial f_d}{\partial x} \frac{\partial g_d}{\partial y} \). Looking at

\[
\frac{\partial f_d}{\partial x} = 1 \cdot dc_{d,1}x^{d-1} + 2(d-1)c_{d-1,2}x^{d-2}y + 3(d-2)c_{d-2,3}x^{d-3}y^2 + \cdots ,
\]

\[
-\frac{\partial g_d}{\partial y} = 1 \cdot dc_{d,1}x^{d-1} + 2(d-1)c_{d-1,2}x^{d-2}y + 3(d-2)c_{d-2,3}x^{d-3}y^2 + \cdots ,
\]

\[
\frac{\partial f_d}{\partial y} = 1 \cdot 2c_{d-1,2}x^{d-1} + 2 \cdot 3c_{d-2,3}x^{d-2}y + 3 \cdot 4c_{d-3,4}x^{d-3}y^2 + \cdots ,
\]

\[
-\frac{\partial g_d}{\partial x} = (d+1)c_{d+1,0}x^{d-1} + (d-1)dc_{d,1}x^{d-2}y + (d-2)(d-1)c_{d-1,2}x^{d-3}y^2 + \cdots ,
\]

we see that

\[
J_{2d-m,m-2} = -\sum_{i=1}^{m-1} (d - i + 1)(m - i)A_{(i,m-i+1)}
\]

By induction and Lemma 4, we have \(A_{(2,m-1)} = \cdots = A_{(m-1,2)} = 0 \). Since \(J_{2d-m,m-2} = 0 \), we obtain \(A_{(1,m)} = 0 \).

Now we will prove that \(2 \times 2 \) minors of \((2.2) \) are all 0. Fix two distinct integers \(p, q \in \{1, \ldots, n-1\} \). Let \(B_{(i,j)} \) be the determinant of the matrix obtained by concatenating the \(i \)-th column in \(A_p \) and \(j \)-th column in \(A_q \), that is,

\[
B_{(i,j)} = \det \left(\begin{array}{cccc}
(c_{d-p-i+1,i}^{i}) & \cdots & \cdots & \cdots \\
(d+p-2-i)c_{d-p-i+2,i-1} & \cdots & \cdots & \cdots \\
\end{array} \right).
\]

For simplicity, let \(d = d_p \) and \(e = d_q \).

Lemma 6. \(B_{(d+1,e+1)} = B_{(1,1)} = 0 \).

Proof. This is because

\[
B_{(d+1,e+1)}^2 = ((d+1)c_{0,d+1,c_1,e} - (e+1)c_{1,d}c_{0,e+1})^2
\]

\[
= \left(ec^{2}_{1,e} - 2(e + 1)c_{0,e+1}c_{2,e-1} \right) \frac{(d+1)^2}{e} c^{2}_{0,d+1}
\]

\[
+ \left(dc^{2}_{1,d} - 2(d+1)c_{0,d+1}c_{2,d-1} \right) \frac{(e+1)^2}{d} c^{2}_{0,e+1}
\]

\[
+ (2(d + 1))dc_{0,d+1}c_{2,e-1} - 2dec_{1,d}c_{1,e} + 2(e+1)ec_{2,d-1}c_{0,e+1} \frac{(d+1)(e+1)}{de} c_{0,d+1}c_{0,e+1}
\]

\[
= (A_p)_{(e+1)} \frac{(d+1)^2}{e} c^{2}_{0,d+1} + (A_p)_{(d+1)} \frac{(e+1)^2}{d} c^{2}_{0,e+1} + J_{0,d+e-2} \frac{(d+1)(e+1)}{de} c_{0,d+1}c_{0,e+1}
\]

\[
= 0,
\]

where the last equality follows from Proposition 3 and \(J_{0,d+e-2} = 0 \). Similarly (by symmetry of indices), we obtain \(B_{(1,1)} = 0 \).
For any \(m \in \{1, \ldots, e+1\} \), it is elementary to check that all \(2 \times 2 \) minors of

\[
\begin{pmatrix}
 dB_{(d+1,m)} & B_{(d,m)} \\
 (d-1)B_{(d,m)} & 2B_{(d-1,m)} \\
 (d-2)B_{(d-1,m)} & 3B_{(d-2,m)} \\
 \vdots & \vdots \\
 B_{(2,m)} & dB_{(1,m)}
\end{pmatrix}
\]

are equal to 0. For example,

\[
2dB_{(d+1,e+1)}B_{(d-1,e+1)}
= 2d((d+1)c_{0,d+1}c_{1,e} - (e+1)c_{1,d}c_{0,e+1})((d-1)\cdots - (e+1)c_{3,d-2}c_{0,e+1})
= d(d-1)(2d+1)c_{0,d+1}c_{2,d-1} - dc_{1,d}c_{1,e}c_{1,e}
+ (d-1)(dc_{1,d}c_{1,e} - 2(e+1)c_{2,d-1}c_{0,e+1})(dc_{1,d}c_{1,e} - 2(e+1)c_{2,d-1}c_{0,e+1})
+ 2d(e+1)(d-1)c_{2,d-1}c_{1,d} - 3(d+1)c_{3,d-2}c_{0,e+1}+1c_{1,e}
+ 2(e+1)^2(3dc_{1,d}c_{3,d-2} - 2(d-1)c_{2,d-1}c_{2,d-1})c_{0,e+1}c_{0,e+1}
= -d(d-1)(A_p)(d,d+1)c_{1,e}c_{1,e}
+ 2d(e+1)B_{(d,e+1)}B_{(d,e+1)}
+ 2d(e+1)^2(A_p)(d-1,d)c_{0,e+1}c_{1,e}
- 2(e+1)^2A_p(d-1,d)c_{0,e+1}c_{0,e+1}
\]

implies that \(2dB_{(d+1,e+1)}B_{(d-1,e+1)} - (d-1)B_{(d,e+1)}B_{(d,e+1)} = 0 \), which is a consequence of Proposition 3.

Then \(B_{(d+1,e+1)} = 0 \) implies that \(B_{(i,e+1)} = 0 \) for all \(2 \leq i \leq d \). Note that the coefficients of \(y^{d+e-2} \) in \(\left(\frac{\partial f_i}{\partial x} \frac{\partial g_j}{\partial y} - \frac{\partial f_j}{\partial y} \frac{\partial g_i}{\partial x} \right) \) and \(\left(\frac{\partial f_i}{\partial y} \frac{\partial g_j}{\partial y} - \frac{\partial f_j}{\partial y} \frac{\partial g_i}{\partial y} \right) \) are the only ones that contribute to \(J_{0,d+e-2} \), because of \(\text{[1]} \). Then we can see that \(J_{0,d+e-2} \) is a linear combination of \(B_{(d+1,e)} \) and \(B_{(d,e+1)} \) with nonzero coefficients, so we get \(B_{(d+1,e)} = 0 \). Then this implies that \(B_{(i,e)} = 0 \) for all \(2 \leq i \leq d \). Since \(J_{1,d+e-3} \) is a linear combination of \(B_{(d+1,e-1)}, B_{(d,e)} \) and \(B_{(d-1,e+1)} \) with nonzero coefficients, we get \(B_{(d+1,e-1)} = 0 \). Repeating this argument, we get \(B_{(i,j)} = 0 \) for all \(2 \leq i \leq d + 1 \) and \(1 \leq j \leq e + 1 \). Similarly (by symmetry of indices), we obtain \(B_{(1,j)} = 0 \) for all \(1 \leq j \leq e + 1 \). The proof is completed.

References

1. S.S. Abhyankar and T.T. Moh, *Embeddings of the line in the plane*, J. Reine Angew. Math. **276** (1975), 148–166.
2. K. Adjamagbo, A.R.P. van den Essen, *Eulerian operators and the Jacobian conjecture. III*, J. Pure Appl. Algebra **81** (1992), 111–116.
3. H. Bass, E. Connell, and D. Wright, *The Jacobian Conjecture: Reduction of Degree and Formal Expansion of the Inverse*, Bull. Amer. Math. Soc. **7** (1982), 287–330.
4. A. Belov-Kanel, M. Kontsevich, *The Jacobian conjecture is stably equivalent to the Dixmier conjecture*, Mosc. Math. J. **7** (2007), 209–218.
5. Nguyen Van Chau, *Plane Jacobian conjecture for simple polynomials*, Ann. Polon. Math. **93** (2008), 247–251.
[6] C.C. Cheng and S.S.-S. Wang, *A case of the Jacobian conjecture*, J. Pure Appl. Algebra 96 (1994), 15–18.
[7] C.C. Cheng and S.S.-S. Wang, *Radial similarity of Newton polygons*, Automorphisms of affine spaces (Curaçao, 1994), 157–167, Kluwer Acad. Publ., Dordrecht, 1995.
[8] E. Connell, J. Zweibel, *Subgroups of polynomial automorphisms*, Bull. Amer. Math. Soc. (N.S.) 23 (1990), 401–406.
[9] L.M. Drużkowski, *An Effective Approach to Kellers Jacobian Conjecture*, Math. Ann. 264 (1983), 303–313.
[10] A.R.P. van den Essen, H. Tutaj, *A remark on the two-dimensional Jacobian conjecture*, J. Pure Appl. Algebra 96 (1994), 19–22.
[11] A.R.P. van den Essen, *Polynomial automorphisms and the Jacobian conjecture*, Algèbre non commutative, groupes quantiques et invariants (Reims, 1995), 55–81, Sém. Congr., 2, Soc. Math. France, Paris, 1997.
[12] A.R.P. van den Essen, D. Wright, W. Zhao, *On the image conjecture*, J. Algebra 340 (2011), 211–224.
[13] J. Gwoździewicz, *Injectivity on one line*, Bull. Sci. Łódź 7 (1993), 59–60, Série: Recherches sur les déformationes XV.
[14] E.-M.G.M. Hubbers, *The Jacobian Conjecture: Cubic Homogeneous Maps in Dimension Four*, Masters thesis, University of Nijmegen, 1994, directed by A.R.P. van den Essen.
[15] O. H. Keller, *Ganze Cremona-Transformationen*, Monats. Math. Physik 47 (1939), 299–306.
[16] M. Kirezci, *The Jacobian conjecture. I, II*, İstanbul Tek. Üniv. Bül. 43 (1990), 421–436, 451–457.
[17] J. Lang and S. Maslamani, *Some results on the Jacobian Conjecture in higher dimension*, J. Pure Appl. Algebra 94 (1994), 327–330.
[18] A. Magnus, *On polynomial solutions of a differential equation*, Math. Scand. 3 (1955), 255–260.
[19] L. Makar-Limanov, U. Umirbaev, *The Freiheitssatz for Poisson algebras*, J. Algebra 328 (2011), 495–503.
[20] G. Meisters, C. Olech, *Power-exact, nilpotent, homogeneous matrices*, Linear and Multilinear Algebra 35 (1993), 225–236.
[21] T.T. Moh, *On the Jacobian conjecture and the configurations of roots*, J. Reine Angew. Math. 340 (1983), 140–212.
[22] M. Nagata, *Some remarks on the two-dimensional Jacobian Conjecture*, Chin. J. Math. 17 (1989), 1–7.
[23] S.S.-S. Wang, *A Jacobian criterion for separability*, J. Algebra 65 (1980), 453–494.
[24] A.V. Yagzhev, *On Kellers problem*, Siberian Math. J. 21 (1980), 747–754.
[25] J.-T. Yu, *On the Jacobian Conjecture: reduction of coefficients*, J. Algebra 171 (1995), 515–523.

Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

E-mail address: klee@math.wayne.edu