Delineating FtsQ mediated regulation of cell division in *Mycobacterium tuberculosis*

Preeti Jain1, Basanti Malakar1, Mehak Zahoor Khan1, Savita Lochab1, Archana Singh2 & Vinay Kumar Nandicoori1*

1 National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067
2 CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, INDIA
* To whom correspondence may be addressed:
E.mail: vinaykn@nii.ac.in.
Tel.: 91-11-26703789; Fax: 91-11-26742125

Key words: FtsQ, cell division, growth regulation, tuberculosis, phosphorylation, mycobacteria, dcw operon, divisome, septation, cytokinesis

Identifying and characterizing the individual contributors to bacterial cellular elongation and division will improve our understanding of their impact on cell growth and division. Here, we delineated the role of ftsQ, a terminal gene of the highly conserved division cell wall (dcw) operon, in growth, survival, and cell length maintenance in the human pathogen *Mycobacterium tuberculosis* (Mt). We found that FtsQ overexpression significantly increases the cell length and number of multiseptate cells. FtsQ depletion in Mt resulted in cells that were shorter than WT cells during the initial growth stages (4 days after FtsQ depletion), but were longer than WT cells at later stages (10 days after FtsQ depletion), and compromised the survival in vitro and in differentiated THP1 macrophages. Overexpression of N- and C-terminal FtsQ regions altered the cell length, and the C-terminal domain alone complemented the FtsQ depletion phenotype. MS analyses suggested robust FtsQ phosphorylation on Thr-24, and although phospho-ablative and -mimetic mutants rescued the FtsQ depletion-associated cell viability defects, they failed to complement the cell length defects. MS and co-immunoprecipitation experiments identified 63 FtsQ-interacting partners, and we show that the interaction of FtsQ with the recently identified cell division protein SepIVA is independent of FtsQ phosphorylation and suggests a role of FtsQ in modulating cell division. FtsQ exhibited predominantly septal localization in both the presence and absence of SepIVA. Our results suggest a role for FtsQ in modulating the length, division, and survival of Mt cells both in vitro and in the host.

Cell division is fundamental to all living cells. Most of the proteins either involved or thought to be involved in this process are essential for in vitro growth of *Mycobacterium tuberculosis* (Mt) (1). In *E. coli*, the divisome, a macromolecular assembly arranged in a multilayered toroid shape for septation and cytokinesis, is governed by a set of ~30 proteins that function in coordinating partition of chromosome with septa initiation, divisome stabilization followed by the segregation of mother cell into two daughter progenies (2-6). Appropriate positioning of divisome assembly requires existence of specialized systems such as MinCDE or nucleoid occlusion system (SlmA in *E. coli* and Noc in *B. subtilis*) (7,8). Sequential recruitment of proteins in divisome occurs at two distinct stages with a short delay in between (9). Proto-ring comprising FtsZ, FtsA, ZipA are the early recruits to the divisome that ensure the constriction initiation and its stabilization (10). This is followed by recruitment of FtsK, FtsQ in complex with FtsB and FtsL (FtsQBL), peptidoglycan remodelers such as FtsW (transglycosylase), FtsI (transpeptidase), FtsN, carboxypeptidases, endopeptidases and number of other accessary protein, which are necessary for chromosome segregation and final cytokinesis (11-17). Recently, FtsN driven switch of FtsA and FtsQBL between on and off states has been proposed, implicating their functions in divisome activation (18,19). Additional recent emergence of FtsEX as a regulator of FtsA and amidases, indicates multistep regulation of divisome assembly (20). However, the precise functions of individual components and mechanism of signal transfer between components remains elusive.

Tight regulation of cell division is necessary for Mt to sustain bouts of active infection, dormancy and reactivation in the host. Heterogeneous cell population of Mt during growth is thought to be one among the primary reasons for prolonged treatment (21). Even though mycobacterium lacks specialized systems to ensure the accurate positioning of divisome, the combination of directional chromosome...
translocation along with unequal bipolar growth have been suggested as a compensatory mechanism (22). While homologs of FtsZ, FtsK, FtsB, FtsL, FtsQ, FtsI, and FtsW are annotated in mycobacteria, it lacks homologs for FtsA, ZipA and FtsN proteins found in *E. coli* (23,24). Presence of these homologous proteins and similar sequence of recruitment at mid cell suggests the partial preservation of elementary complexes and their functions in mycobacteria (24). In mycobacteria, FtsZ is the first protein to assemble at the mid-cell, which polymerizes and serves as an initiating site for recruitment of peptidoglycan (PG) remodelling proteins (25). Ternary complex comprising of FtsZ, FtsW (probable lipidII flippase), and FtsI (transpeptidase) is thought to stabilize the divisome assembly and regulate septal PG biosynthesis (26).

Homolog of FtsK in *M. smegmatis* (*Msmeg*) plays a role in translocation of chromosome prior to cytokinesis (22). In addition to the conserved proteins, other non-conserved proteins such as CrgA, Ssd, SepF and SepIVA have been identified to be involved in division (24,27,28). CrgA has been shown to interact with various other divisome members like FtsZ, FtsI, PbpA, FtsQ and CwsA, and is co-expressed along with mur genes, which suggests its function as a sensor of completion of DNA replication period in *M. smegmatis* (34). Structural investigation of the *ftsQ* gene has suggested further subdomain organization of the periplasmic region into alpha (α), beta (β) and gamma (γ) domains (35). Sequence alignment of FtsQ from *G. stearothermophilus* with its homologs showed preservation of this subdomain organization structure across bacterial kingdoms (35). These periplasmic subdomains play a role in appropriate localization and interactions with other cell division members (36,37). Even though interaction of FtsQ*_{Stb}* with FtsZ*_{Stb}* through Fip*_{Stb}* has been demonstrated in mycobacterium (38), the characterization of FtsQ for its role in cell division, shape maintenance and viability has not been investigated. In this report, we investigated the functionality of FtsQ in mycobacteria by overexpressing and conditionally depleting FtsQ.

Results

Overexpression of FtsQ increases the average cell length.

The *fitQ* gene in mycobacteria lies in a conserved division or cell wall cluster (dcw) operon and is co-expressed along with *mur* genes, which allows coordinated cell wall synthesis and division (Fig 1a). FtsQ contains N-terminal cytosolic domain connected through a transmembrane domain to the extracytoplasmic domain (Fig 1b). Based on the sequence alignment of FtsQ_{Mtb} with its homologs from *E. coli*, *B. subtilis* and *Streptococcus pneumoniae* (data not shown), the periplasmic domain of FtsQ could be further divided into alpha (α), beta (β) and gamma (γ) domains (Fig 1b). To delineate the function of FtsQ_{Mtb} first we sought to investigate the impact of FtsQ overexpression in mycobacterial growth and survival. *Msmeg* was electroporated with either pNit1 (vector) or pNit-FtsQ construct, wherein *fitQ* is cloned under the isovaleronitrile (IVN) inducible promoter. Western blot analysis of lysates prepared from *Msmeg::pNit* and *Msmeg::pNit-fitQ* cells grown in the presence or absence of 5 µM IVN showed significant expression of FtsQ in the presence of IVN (Fig 1c). Colony forming units (CFU) enumerated at 0, 14 and 28 h showed ~100 fold lower survival of the strain overexpressing FtsQ as compared to the wild type at 14 h, which reduced to ~10 fold at 28 h (Fig 1d). These results suggest an initial delay in the growth upon overexpression, which eventually seems to be converging with the wild type strain. Such growth patterns are typically observed upon overexpression of proteins critical for cell division (39). Interesstingly, analysis of cell length with the help of scanning electron microscopy (SEM) showed significant increase in the average mean cell length upon overexpression of FtsQ from 3.2 µm to 4.9 µm (Fig 1e & f).
Next, we wanted to determine the minimum levels of overexpression of FtsQ that is necessary and sufficient to exhibit increase in the average mean cell length. Towards this, the expression of FtsQ in Msmeg harbouring episomal copy of the gene was induced with different concentrations of IVN, which led to differential level of FtsQ expression, as evaluated by real time PCR and western blot (Fig 2a & b). With increasing concentration of IVN from 0.2, 1 and 5 µM, we observed ~10, 27 and 37 fold induction of the expression of ftsQ, respectively, as comparison with no inducer (Fig 2a). In agreement with this, we could detect expression of FtsQ only in lysates from 1 and 5 µM IVN induced cultures (Fig 2b). SEM analysis showed statistically significant increase in the cell length at all the concentrations including in the absence of inducer (3.8 vs 3.0 µm), suggesting that the leaky over-expression from episomal construct was sufficient to alter the average mean cell length (Fig 2c & d). To evaluate the impact of overexpression on the septum formation, we performed transmission electron microscopy (TEM) analysis. Interestingly, we observed multi-septate phenotype in cells overexpressing FtsQ. In order to quantify the percentage of such cells, we evaluated the septation pattern for ~60-65 cells / sample. We observed a significant increase from 4 to 14% in cells containing bi or multi-septa phenotype upon overexpression of FtsQ (Fig 2e & f). Taken together, our data indicate that overexpression of FtsQ results in elongated and multi-septate cells, implicating a crucial role of FtsQ in regulation of cell division.

Both N and C-terminal domains of FtsQ are critical for cell length maintenance.

N-terminus region of FtsQ including the transmembrane domain is 123 aa in length. The carboxy terminal domain of FtsQ in E. coli, B. subtilis and other bacterial kingdoms contains crucial alpha (α), beta (β) and gamma (γ) domains thought to be important for its function (35,40,41). In order to evaluate the impact of overexpressing N or C-terminal regions, we have cloned the respective fragment along with the membrane anchoring sequences into pNit1 vector. While the full length and N-terminal domain showed significant overexpression, the C-terminal fragment displayed relatively minimal overexpression (Fig 3a). The expression of full length, N- and C-terminal fragments led to compromised growth (Fig 3b), albeit to different extents. These observations were also reflected in the cellular morphology, wherein their expression led to increased cell length (Fig 3c & d). We think that the differences in the extent of growth defect or cell lengths upon N- or C-terminal fragment overexpression are most likely due to variations in the expressions of these fragments (Fig 3a). Thus, results suggest a definitive role for both N and C-terminal regions of FtsQ in regulating the cell division.

FtsQ is essential for bacterial viability in Mtb.

We sought to investigate the consequence of absence of FtsQ on the bacterial growth, morphology, and survival in the host. High throughput transposon based mutagenesis experiments suggested ftsQ to be an essential gene for the in vitro growth of the bacteria (42). Thus, we set out to alter the expression of ftsQ at its native locus into pristinamycin inducible expression. Towards this, we cloned -20 to 680 bp of ftsQ gene under pristinamycin inducible pptr promoter in a pAZ vector (43) that lacks Mtb origin of replication (suicide delivery vector) (Fig 4a). Single homologous recombination of the construct at the native locus replaces the native expression of ftsQ into a pristinamycin inducible gene (Fig 4a), which in absence of any inducer, would act as FtsQ knockdown mutant, RvΔfQ. Recombination at the native locus was confirmed by PCR analysis using different primers sets (Fig 4b). Streaking of Rv and RvΔfQ cultures on plates in presence or absence of inducer clearly demonstrated the inability of RvΔfQ strain to sustain growth in the absence of inducer (Fig 4c). CFU analysis (Fig 4d) showed compromised survival of the mutant from day 6, eventually resulting in ~1.5 log fold decrease in the survival on day 10 (Fig 4d). Next, we investigated the role of FtsQ in modulating the survival of pathogen in the host. Towards this the Rv or RvΔfQ grown in the presence or absence of pristinamycin were used for infecting differentiated THP1 cells. We enumerated CFUs at 0, 96 and 120 h post infection and found that 120 h post infection, intracellular bacillary survival was compromised upto 10 fold in FtsQ depleted sample (Fig 4e).

FtsQ depletion alters the mean cell length.

Overexpression of FtsQ in Msmeg resulted in elongated cells, indicating crucial role of FtsQ in regulating cell wall morphology (Fig 1). This prompted us to investigate the effect of FtsQ depletion in Mtb on the maintenance of average mean cell length. We performed SEM and TEM analysis of samples on day 4 and 10 (early and late log phase cultures; Fig 5a-c). While the cells looked quite healthy on day 4, they looked more ruffled with indentations in day 10, which was lot more palpable in FtsQ depleted cells (Fig 5a). Intriguingly, we observed two distinct phenotypes in cell lengths with respect to time. After 4 days post depletion, the cells appeared smaller when compared with the wild type
in FtsQ depleted samples, with the average cell length decreasing from 2.3 in wild type cells to 1.8 \(\mu m \) in FtsQ depleted samples (Fig 5a & b). On the other hand, upon 10 days of depletion, the average cell length increased from 2.2 \(\mu m \) in \(H37Rv \) cells to 2.7 \(\mu m \) in \(\Delta \text{fQ} \) in the presence of pristinamycin (inducer). Importantly, the cell length increased to 3.1 \(\mu m \) in \(\Delta \text{fQ} \) in the absence of inducer wherein FtsQ was depleted (Fig 5a & b). We think that the cell length differences observed could be because of differences in the levels of FtsQ protein in the cell. In the subsequent experiments, we used 4 days post depletion SEM analysis of samples to assess the functionality of FtsQ. TEM analysis showed presence of septum even in the smaller cells observed on 4th day after depletion, suggesting that division may be happening before cells reached appropriate length. To confirm that the defects are indeed due to depletion of FtsQ, we generated complementation strain in which the protein was expressed from the episomal pNit-FtsQ construct. While expression of vector alone could not rescue the survival defect of FtsQ mutant, complementation with vector, expressing FtsQ could restore the growth on plates in the absence of inducer (Fig 5d). Furthermore, CFU analysis of wild type, mutant, and complemented strains, showed restoration of viability defects upon complementation (Fig 5e). This ability of episomal FtsQ to functionally complement the phenotypic defects of FtsQ mutant was also reflected in the SEM analysis (performed 4 days after depletion), wherein the shorter cell length phenotype observed was restored to wild type lengths (Fig 5f).

Based on the above data, we suggest that the presence of shorter cells in the initial and longer at the later stages is indicative of regulatory role played by FtsQ in elongation and division.

Carboxy terminal domains are critical for the functionality of FtsQ.

Overexpression of either N- or C-terminal fragments of FtsQ increased the cell length of \(M.\text{smeg} \) (Fig 3). Thus we wanted to decipher, whether the phenotypes observed upon depletion of FtsQ in \(\Delta \text{fQ} \) strain could be complemented by the expression of either N- or C-terminal fragments. \(\Delta \text{fQ} \) strain was electroporated with pNit or pNit-FtsQ or pNit-FtsQ-N or pNit-FtsQ-C constructs to generate different complementation strains. We assessed the survival of these complementation strains on 7H11 plates with or without pristinamycin (Fig 6a). While the complementation with full length and C-terminal fragments resulted in growth in the absence of pristinamycin, neither the vector nor the N-terminal fragment could rescue the growth defects (Fig 6a). Next, we determined the CFU’s 10 days post depletion in these samples. In concurrence with the above data, while the C-terminal fragment successfully rescued the ~2.5 log fold decrease in the survival upon FtsQ depletion, N-terminal fragment failed to do so (Fig 6b). SEM analysis of 4 day depleted sample also suggested that episcopal expression of both full length FtsQ and the C-terminal fragment could restore the cell length to wild type level (Fig 6c). It is apparent from the data that C-terminal fragment is necessary and sufficient to rescue observed FtsQ depletion phenotypes. Since, C-terminal region contains alpha (\(\alpha \)), beta (\(\beta \)) and gamma (\(\gamma \)) domains; we further evaluated the impact of deleting either \(\gamma \) or both \(\beta-\gamma \) domains. Analysis of growth on 7H11 plates with or without pristinamycin suggested that the expression of either deletion mutants could not rescue the growth in the absence of inducer. The results obtained were in concurrence with the above conclusion, when we analyzed CFU’s 10 days post depletion, or the cell lengths 4 days post depletion (SEM) (Fig 6e & f). Together these results suggest that C-terminal domain and all the subdomains within are essential for functionality of FtsQ.

FtsQ is phosphorylated at T24 residue and phosphorylation influences cell division

We have performed high-throughput phosphoproteomics to identify novel targets of protein kinases in \(Mtb \) (data not shown). FtsQ is among the substrates that we identified consistently in every biological replicate. Moreover, FtsQ has also been identified as a target in other phosphoproteomic studies (44-46). We obtained one phospho-peptide corresponding to precursor mass of 2140.92, a doubly charged peptide from residues 13-32. MS/MS analysis of the precursor clearly identified T24 to be the phosphorylation site on FtsQ (Fig 7a). In order to determine the stoichiometry of phosphorylation, \(Mtb \) was electroporated with pNit-FtsQ, which contains N-terminal FLAG tag, and FLAG-FtsQ was immunoprecipitated and processed for LC-MS analysis. The sum of all isotopic peaks at MS1 level for any peptide is indicative of its quantity. We calculated the area of peaks for phospho and the corresponding unphosphorylated peptide using Precursor Ions Area Detector Node. The ratio of the area for the total phosphorylated peptide with respect to the corresponding area for the total unphosphorylated peptide provides the stoichiometry. Based on these calculations from two biologically independent experiments, the stoichiometry of T24 phosphorylation was observed to be ~28-30% (Fig 7b). To understand the role of phosphorylation, if any, in modulating the function...
of FtsQ, we generated phosphoablative (T24A) and phosphomimetic (T24E) mutants and electroporated \textit{Rv::pN}FtsQ strain with pNit constructs expressing the above mutants. In order to evaluate the ability of mutants to complement the growth, we analyzed three different aspects; the growth on 7H11 plates in the absence of pristinamycin (Fig 7e), growth in liquid media upon depletion (Fig 7d) and cell length 4 days post depletion (Fig 7e). Both phosphoablative and phosphomimetic mutants complemented the growth on 7H11 (Fig 7c) as well as in the liquid media (Fig 7c). While the phosphomimetic mutant could partially complement cell length defects observed 4 days post depletion, phosphoablative mutant completely failed to do so (Fig 7e). Based on the above data, we speculate that the cell viability and cell length defects associated with FtsQ depletion are independent traits, and are regulated at different levels. Phosphorylation seems to be playing a role in modulating the cell length defects but has no apparent role in cell viability.

\textbf{FtsQ interacts with SepIVA protein in a phosphorylation independent manner}

In \textit{E. coli}, FtsQ is known to be part of a macromolecular divisome assembly. We were interested in identifying interacting partners of \textit{Mtb} FtsQ in order to gain possible insights into its involvement in cell division. We electroporated \textit{Rv} with either pNit1, pNit-FtsQ, pNit-FtsQ-T24A or pNit-FtsQ-T24E constructs to generate \textit{Rv::pN}, \textit{Rv::pN-FtsQ}, \textit{Rv::pN-FtsQ-T24A} and \textit{Rv::pN-FtsQ-T24E} strains, wherein the expression of FLAG-FtsQ could be induced with IVN. The whole cell lysates prepared from three biological replicates were independently immunoprecipitated (IP) with FLAG-M2 beads. Western blot analysis of the samples clearly established efficient IP (Fig 8a). The IPed samples were loaded on SDS-PAGE, and a short while after the samples entered resolving gel, the run was terminated and the gel pieces were sliced out. The gel slices were trypsinized and the peptides were identified with the help of LC-MS/MS. Each sample was run twice through the mass spec and peptides that were found in the vector transformed \textit{Mtb} were subtracted from those found in the corresponding FLAG-FtsQ IP. We identified 117, 122 and 111 interacting partners in three independent replicates of FLAG-FtsQ IP, wherein 63 proteins were common to all three experiments (Fig 8b; Sup Table1). Similarly, three replicates of FLAG-FtsQ-T24A and FLAG-FtsQ-T24E IP samples were analyzed to investigate phosphorylation dependent interactions (Fig. 8c; Sup Table 1). We have found 6 and 24 interacting proteins common in all three biological replicates of FLAG-FtsQ-T24A and FLAG-FtsQ-T24E samples, respectively. After applying these stringent criteria, we identified four interacting partners in all nine samples from 18 mass spectrometry runs (Fig 8d; Sup Table 1). Presence of these four proteins in both phosphoablative and phosphomimetic IPed samples indicates that interactions of these proteins with FtsQ is phosphorylation independent. We have also identified one protein that specifically associated with FtsQ-T24E but not with FtsQ or FtsQ-T24A. We have identified 38 interacting partners that are not found either with T24A or with T24E. We do not know the implications of these findings yet. One of the four interacting partner that was consistently found is a recently characterized cell division protein, SepIVA (24). Similar to Wag31, SepIVA has a characteristic DivIVA domain, found in cell division proteins across bacterial kingdom (47). We sought to validate the interactome data by probing FtsQ and FtsQ-T24A and FtsQ-T24E IP samples with anti-SepIVA antibodies (Fig 8e). It is apparent from the data that SepIVA interacted with both wild type and phosphomutants of FtsQ, validating the interactome data. Taken together, we have identified cell division protein SepIVA to be novel phosphorylation independent interacting partner of FtsQ.

\textbf{FtsQ shows predominantly septal localization in both the presence and absence of SepIVA protein.}

As a constituent of divisome assembly, localization of FtsQ protein at the septal region is demonstrated in rod shaped bacteria (48). However, in polar growing bacteria like mycobacteria where divisome and elongosome components overlap at times, it is important to investigate the localization of proteins to get an insight about their involvement. Localization of Wag31 and FtsZ proteins at subpolar and septum, is thought to be suggestive of their roles in elongosome and divisome complexes, respectively (30). To investigate the localization of FtsQ, we have electroporated pN-GFP-FtsQ into \textit{mc2}cFGQ strain. We observed that FtsQ localizes at septal, subpolar and polar regions of cells (Fig. 9a). However, when we quantitated the localization of FtsQ in 150 independent cells, we observed that in \textsim\text{40}\% of the population it is localized to septal region, which is indicative of its probable role in divisome assembly (Fig. 9b).

We have consistently identified interaction between FtsQ and SepIVA, a recently identified cell division protein that contains a DivIVA domain (24). DivIVA domain containing proteins are membrane curvature sensitive proteins (49). We sought to
investigate whether the interaction between SepIVA and FtsQ is important for septal localization of FtsQ. Based on the high throughput transposon mutagenesis studies, SepIVA is identified to be essential for the in vitro growth of pathogen (42). Thus, we first integrated anhydrotetracycline (ATc) regulatable copy (tet off) of sepIVA_{Δlum} into the L5 site to generate a merodiploid mc2::sep_{Δlum} strain (Fig 9c). Next we replaced the native copy of sepIVA_{Δlum} with hyg⁺ and the replacement of sepIVA_{Δlum} at the native locus was confirmed by performing multiple PCR reactions (Fig 9e). Western blot analysis of lysates prepared from mc2::sep_{Δlum} strain at different time points post ATc addition clearly showed efficient depletion of FLAG-SepIVA_{Δlum} by 12 h (Fig 9f). 18 h post ATc addition, we observed significantly compromised growth (Fig 9g), confirming essentiality of SepIVA for the in vitro growth. So as to assess the localization of FtsQ in the presence and absence of SepIVA, we electroporated pN-GFP-FtsQ into mc2::sep_{Δlum} strain to generate mc2::sep_{Δlum};gfpQ. Localization of GFP-FtsQ was determined in the presence and absence of ATc. We have quantitated ~100 independent cells in the presence and absence of SepIVA (Fig 9h). We have not observed any statistically significant changes in the localization of GFP-FtsQ upon depletion of SepIVA (Fig 9h & i). These results suggest that recruitment of FtsQ during cell division precedes recruitment of SepIVA. Taken together, our data suggests a definitive role for FtsQ in modulating cell length, cell division, and eventual survival during in vitro growth.

Discussion

The ability of an organism to maintain its cell length necessitates stringent regulation of cellular elongation and division, which in turn is reliant on coordinated involvement of macromolecular elongosome and divisome assemblies, respectively. Identification and characterization of individual contributors to these complexes is necessary to understand the sequence of recruitment and their impact on the cell growth and division. Divisome assembly driven septation and cytokinesis mark the decisive last step of cell cycle and are well regulated for precise cell division. The divisomal components are known to maintain a constant stoichiometry by exhibiting intrinsic regulation. Elevated levels of divisomal components like FtsA, ZipA, ZapC (stabilizer of FtsZ bundling), FtsQ in *E. coli* (FtsQ_{Ec}) and FtsZ, CrgA, Ssd (Rv3660c) in mycobacterium have been shown to cause filamentation, suggesting concentration to be a major determinant for optimal cell division (25,27,28,50-52). Interestingly, it was observed that overexpression of FtsZ alleviates the cell division blockage induced by overexpression of FtsA, suggesting that appropriate ratios of cell division proteins is necessary in determining the rate and timing of cell division (53-55). In accordance with these observations, results showed that overexpression as well as the depletion of FtsQ led to changes in the average mean cell length (Fig 1 & 4). Interestingly, the perturbation in the levels of FtsQ need not to be very drastic; as we observed subtle changes in the level of FtsQ resulted in altered mean cell length (Fig 2 & 4).

The observed elongated phenotype upon FtsQ overexpression (Fig 1) could either be due to its role in peripheral PG biosynthesis (elongation) or due to inadequacy in undergoing septation (division). Inadequacy in undergoing septation could either be due to incompetent initiation or completion of septation process. Overexpression of ZipA in *E. coli* causes formation of smooth filaments, which is characterized by the absence of any visible invagination, suggesting that block is at early stage of cell division (51). On the other hand, overexpression of FtsQ in *E. coli* displays multiseptate pattern (52), suggesting block at completion of septation process. In our studies, we have observed increased proportion of bi-septate filamentous cells upon FtsQ overexpression, indicating that cell division was likely blocked at later stages of cell division and cells are able to initiate formation of second septa before completion of first, implying altered coordination among cell division members (Fig 2).

FtsN, late cell recruiter protein of *E. coli*, contains a cytoplasmic amino terminal region, and a carboxy terminal region containing sporulation related repeat domain (SPOR). The N-terminal region of FtsN plays a role in interaction with FtsA (early divisome protein) and the carboxy terminal SPOR domain is responsible for sensing PG and mediating mid cell localization (56-58). FtsQ, bitopic protein, encompasses N-terminal cytoplasmic region connected through a transmembrane domain to the C-terminal periplasmic region (Fig 1). FtsQ_{Ec} localizes to the mid cell and is involved in recruitment of interacting proteins necessary for the division (37). While the periplasmic region of FtsQ was found to be essential for its interaction with FtsB/FtsL in *E. coli* and PBP2B in *B. subtilis*, the functionality of N-terminal cytosolic region has not...
yet been elucidated (41,59). We observed that overexpression of both N- and C-terminal domains of mycobacterial FtsQ led to elongation of cells (Fig 3), suggesting that both the domains are independently important for its functionality. However, it remains elusive whether both N and C terminus domains interact with similar or differential set of proteins. We noticed that the number of bands detected in the western blot for FtsQ varied from one to three (Fig 1, 2, 3 and 8). The appearance of these additional bands is dependent on amount of protein loaded, resolution of the gel and the ECL exposure times. FtsQ is a single transmembrane containing protein and we speculate that it may be undergoing spontaneous cleavage during the storage at susceptible sites, which is likely to be responsible for multiple bands.

Deletion of many Fts proteins in E. coli is known to cause filamentation and hence they are categorized as divisome proteins (60,61). In contrast, a point mutation in FtsL (E88K) of E. coli shows smaller cells and enhanced cell division rate, subsequently leading to cell lysis. We observed that depletion of FtsQ in Mtb for 4 and 10 days, respectively gave two distinct phenotypes. While we observed shorter cells with distinct septa on day 4, the cells were longer at 10 days post depletion, eventually leading to cell death (Fig 4 & 5). The elongation phenotype observed at day 10 is consistent with a recent report, wherein depletion of FtsQ in M. megg was shown to result in elongated and branched cells (24). We speculate that distinct morphologies could be due to differences in the protein levels of FtsQ.

Depletion of FipA and PonA1/PonA2 is known to reduce bacterial replication in macrophages and murine infection models, respectively (38,62,63). Recent identification of C terminal and full length Wag31 induced production of T cell cytokines such as IL-10 and IL-17, suggest crucial role of cell division proteins in maintenance of bacilli survival during infection (64). The observed reduction in bacilli growth during macrophage infection with FtsQ depletion strain indicates that FtsQ plays an important role in maintenance of cell division and hence, persistent survival of pathogen during host infection (Fig 4). However, we observed marginal changes, if any, in the cell length upon infection in the presence or absence of FtsQ (data not shown).

We observed that overexpression of both N and C-terminal regions impacted the cell morphology (Fig 3). On the contrary, while both full length and C-terminal domain could complement the FtsQ functionality, N-terminal domain failed to do so (Fig 5 & 6). Similar observations were noted in both E. coli and B. subtilis, wherein cytoplasmic domain was found to be dispensable for the function of FtsQ and DivIB, respectively (65,66). Interestingly, a point mutation in the C-terminal α domain (V92D) of FtsQEc, made the cytoplasmic N-terminal domain essential for its functionality, suggesting possible crosstalk between domains (67). Thus, even though the N-terminal region of FtsQ fails to complement (Fig 6), its possible role in the optimal functionality of FtsQ cannot be overruled. In E. coli sub domains of FtsQ, 1-135 and 136-276 aa both complemented the mutant, suggesting that many of the interactions may have been mediated by both the domains (68). However, in Mtb the loss of viability as well as cell length defects upon FtsQ depletion, could not be complemented even in the absence of C-terminal γ domain, indicating that all the C-terminal sub domains are independently essential for its functionality (Fig 6).

Phosphorylation of cell division proteins such as FtsZ and Wag31 are shown to be important for modulating their functionality (69,70). Essential mycobacterial serine/threonine protein kinases PknA, PknB and the sole phosphatase PstP play an important role in regulating cell division and cell wall synthesis processes (71-74). Phosphorylation of FtsZ by PknA was reported to regulate its GTPase activity (69). Furthermore, PknA mediated phosphorylation of FtsZ on T343 and FipA on T77 are necessary for cell division under oxidative stress conditions (38). Phosphorylation of Wag31, a regulator of cell shape and cell wall synthesis, alters the growth rate as well as its interaction with its kinase PknA (70,75). In addition to FtsZ, FipA and Wag31, which have been biochemically shown to be the targets of PknA, high throughput phosphoproteomic studies have identified phosphorylation sites on other cell division proteins such as FtsI, FtsK and FtsQ (44-46). However, the functional implications of phosphorylation have not been elucidated. Our studies revealed that FtsQ is phosphorylated on T24 residue in the N-terminal domain with ~30% stoichiometry (Fig 7). Even though there were no significant changes in the viability upon complementation with phosphomimetic and ablative mutants, we observed that phosphoablative (T24A) mutant failed to complement the cell length defects observed (Fig 7). We hypothesize that the phosphorylation at T24 in FtsQ may be important in the context of recruitment of one or more proteins necessary for regulating cell length.
Previous studies have demonstrated a pairwise interaction between a numbers of cell division members such as LamA-PonA1, FtsZ-FtsW, FtsW-FtsI, FtsI-Wag31, Wag31-CwsA, CwsA-CrgA, CrgA-PBPA, CrgA-FtsQ, SepF-FtsZ and FtsZ-FipA-FtsQ, suggesting a complex and multiple interactions among the members of divisome in mycobacteria (26,27,30,38,76-78). In this report with the help of mass spectrometry, we have identified novel interacting partners for FtsQ (Fig. 8). Since mass spectrometry based identification is very sensitive, we have applied highly stringent criteria for the analysis. We have only considered those proteins, which were identified in all three biological replicates but not in the corresponding control IPs. We have identified 63 interacting proteins in all three biological replicates with wild type FtsQ. Significant numbers of these interacting partners were ribosomal proteins (Sup Table 1), which may be present because of their relative abundance. Interestingly, we did not find Wag31 or FtsZ in even one of these runs. However, one cannot rule out the possibility of transient interaction between FtsQ and the other cell division proteins at the pole or septum at specific stages of cell division.

While this manuscript was under consideration, Wu et al., reported characterization of novel septal factors in Msmeg (24). They have performed pull down experiments with cross-linked FtsQ-Strep and identified 48 Msmeg proteins, among which 41 proteins had homologs in Mtb. When we compared our list with that of Wu et al., we found only two proteins, namely SepIVA and FhaA to be common (Sup Table 1 & (24)). The limited overlap may be due to differences in the pull down protocol (vis a vis cross linking) and/or the species used for the experiment (Mtb vs Msmeg). We have identified four interacting proteins, which were found with wild type as well as phosphosite mutants. In addition to newly identified cell division protein SepIVA (24), we have identified transketolase, a metabolic enzyme; single stranded binding protein, involved in DNA replication; and a conserved hypothetical protein, whose function is unknown. Further, we have identified Rv3140 only in FtsQ-T24E sample. Rv3140 is annotated as a probable acyl-CoA dehydrogenase, which has not yet been characterized. With the exception of SepIVA, we have neither validated or explored the implications of these interactions any further.

Localization of FtsQ at septal region in E. coli indicates its predominant function during division (48). We have also detected predominant septal localization of FtsQ in mycobacteria indicating its possible function during division (Fig 9). These results are in agreement with a recent report, in which FtsL, FtsQ, FtsL and FtsB proteins were found to be at the septum (24). With the exception of SepIVA, we have not identified any other protein involved in cell division process as an interacting partner (Sup Table 1). However, we cannot exclude the possibility of transient spatio temporal interactions between FtsQ and other cell division proteins. SepIVA protein is known to possess a conserved DivIVA domain and is recently reported to be localized to the septum and its depletion results in elongated cells, thus indicating its involvement in cell division process (24). Since both FtsQ and SepIVA are localized to the septum and they interact with each other, we investigated the localization of FtsQ in the presence or absence of SepIVA. We did not find significant differences in the localization of FtsQ in the absence of SepIVA (Fig 9). These results suggest that SepIVA is recruited to the septum after FtsQ. The domains of FtsQ and SepIVA involved in their interaction and the biological impact of abrogating their interaction on cell division would be investigated in future.

Methods
Reagents, bacterial strains, and growth conditions.
Restriction/modification enzymes were procured from New England Biolabs (NEB) and MBI Fermentas (Thermo Scientific). Oligonucleotide primers were procured from Sigma Aldrich. Analytical grade chemicals were purchased from Sigma Aldrich, Amresco, Merck or Biobasic Canada. Pristinamycin 1A was purchased from Molcon Corporation, Canada. pENTR/Directional TOPO Cloning Kit was purchased from Invitrogen. pNit1 vector (79) was a kind gift from Christopher M. Sassetti. Anti-FLAG monoclonal antibody was purchased from Sigma. Electron microscopy chemicals were obtained from Electron Microscopy Sciences and growth media components were acquired from BD. E. coli DH5a strain (Invitrogen) was used for cloning, which was grown in LB broth at 200 revolutions per minute (rpm) or LB-agar in the presence of either Kanamycin (50 µg/ml) or Hygromycin (150 µg/ml). Msmeg mc2155 or Mtb H37Rv strains were grown at 100 rpm/ 37°C in Middlebrook 7H9 broth (BD) supplemented with 10% ADC (5% bovine serum albumin fraction V, 2% Dextrose, 0.85% NaCl, catalase 0.004%) and 0.05% Tween-80 in the absence or presence of Kanamycin (25 µg/ml) or Hygromycin (100 µg/ml). Msmeg mc2155 or Mtb strains were plated on Middlebrook 7H10 plates supplemented with OADC (ADC + 0.06% oleic acid).
Generation of ftsQ expression constructs and
Rv ΔfQ gene replacement mutant.

Full length Mtb H37Rv ftsQ was amplified from
H37Rv genomic DNA using gene specific primers and
Phusion DNA polymerase (NEB), and the
amplicons were cloned into the NdeI-HindIII sites in
pNit1 vector. pNit-FtsQ-N (1-369 bp), pNit-FtsQ-C
(300-945 bp), pNit-FtsQ-Cα (1-579 bp), pNit-FtsQ-
Cβ (1-783bp) were generated by amplifying the
respective regions using specific forward and reverse
primers and cloning the amplicons into the NdeI-
HindIII sites on pNit1 vector. All point mutations
were generated by overlapping PCR using
appropriate mutagenic primers and the mutations
were confirmed by DNA sequencing. To generate
the gene replacement mutant in Mtb, -20 to 680 bp
region of ftsQ was PCR amplified and the amplicons
were cloned into the NeoI-SphI sites under the
pristinamycin inducible promoter in the vector
pAZI9479 (43) to generate pAZ -ftsQ. The suicide
delivery vector pAZ-ftsQ was electroporated into
H37Rv, and colonies were selected on 7H10 agar
containing hygromycin and pristinamycin (2
µg/ml). Gene replacement at the native locus was confirmed
with the help of specific PCRs.

Growth kinetics, SEM and TEM experiments.

To analyze the growth pattern of wild type and
recombinant strains of Msmeg, cultures grown till
A600 ~0.8 were washed once with PBS containing 0.05%
Tween80 and were seeded at an initial A600 of 0.02 or
0.05 in the absence or presence of varied
concentrations of IVN (0.2 to 5 µM). The growth
was monitored every 3 h for 30 h. Rv or RvΔfQ
mutant or RvΔfQ complemented strains were grown
till A600~0.8 in presence of inducer pristinamycin 1A
and then seeded at A600 of 0.05 in presence or
absence of pristinamycin 1A or 0.2 µM IVN. The
growth was monitored every 24 h for 10 days. To
evaluate the bacteriostatic or bactericidal effects of
FtsQ, Rv or RvΔfQ mutant or RvΔfQ complemented
strains were withdrawn on 0 & 10 days and different
dilutions were spotted on plates containing
pristinamycin. SEM and TEM experiments were
performed as described previously (80,81). For SEM,
cells were visualized under the microscope with 10000X
or 15000X magnifications after coating with gold
particles (Carl Zeiss, Evo LS SEM). For TEM, cells
were sliced and stained, followed by its examination
under Tecnai G2 20 twin (FEI) transmission electron
microscope.

THP1 macrophage infection experiments.

Bacterial cultures Rv and RvΔfQ grown in the
presence of pristinamycin were seeded in presence or
absence of pristinamycin in 7H9 media at A600~0.1.
THP1 cells were cultured, maintained in RPMI-1640 +
10% FBS (heat inactivated) + 1% Pen-Strep
medium. For CFU enumeration, 2 x 10^5 Cells / 24
well plates were seeded in triplicates for each sample.
The cells were differentiated with phorbol 12-
myristate 13- acetate (PMA) and were infected as
described previously (80) at MOI of 1:5 with Rv and
RvΔfQ in presence or absence of pristinamycin. Cells
were lysed after 96 and 120 h, and CFUs were
enumerated.

Identification of interacting partners and
phosphorylation sites.

In order to identify interacting partners, the
cultures of Rv::pN-FtsQ, Rv::pN-FtsQ-T24A
and Rv::pN-FtsQ-T24E were seeded at A600 ~0.1 in
the presence of 5 µM IVN. Western blot was
performed to evaluate the expression and 1 mg of
lysate was immunoprecipitated using FLAG-M2
beads (Sigma). The bound FtsQ and interacting
partners were eluted by adding 2X SDS sample dye
to the beads. Samples were resolved on 10%
polyacrylamide gel till the dye front is ~1.5 cm into
the resolving gel. Gel pieces were sliced and
processed for trypsinization as described earlier (82).
MS and MS/MS analysis was performed as described
previously to determine the stoichiometry of
phosphorylation and interacting partners (83).

Validation of SepIVA-FtsQ interaction.

The coding sequence of sepIVA was PCR
amplified using H37Rv genomic DNA as the
template. The amplicon was digested with NdeI-
HindIII enzymes and cloned into the corresponding
sites in pQE2 vector (Qiagen). The construct was
transformed into E. coli BL21-DE3 codon plus strain
and expression was induced with 0.1 mM IPTG at
22°C for 12-16 h. His tagged protein was purified as
described earlier (84). To prepare antiserum against
SepIVA, 4 Balb/c mice were immunized
subcutaneously with a mixture containing 50 µg
protein and equal volume of Freund's incomplete
adjuvant (Sigma). The immunization procedure was
repeated twice (2 weeks apart). Two weeks after the
last immunization, mice were euthanized and the sera
were collected. In order to validate the interaction of
FtsQ with SepIVA, 1 mg whole cell lysates (WCLs)
from strains expressing FLAG-FtsQ wild type and
mutants, were IPed. 1/10th IP was probed with a-
FLAG antibody and 9/10th IP was probed with a-
SepIVA antibody (1:2000 d).
Generation of mc2::sep mutant.

To generate the integrating construct sepIVA was amplified from mc2 genomic DNA using gene specific primers and the amplicon was cloned into the Ndel-HindIII sites in pST-KirT vector (80). The construct was electroporated in mc2 to generate a mc2::sep merodiploid strain. Two independent mc2::sep merodiploid colonies were assessed for depletion of FLAG-SepIVA upon ATc addition (200 ng/ml) by probing WCLs with anti-FLAG antibody. 5’ and 3’ genomic flank sequences of sepIVA (~800 bps each) were amplified and allelic exchange substrate (AES) was generated as described earlier (85,86). Linearization of AES, electroelution, mutant generation and confirmation was performed as previously described (87).

Localization of GFP-FtsQ in Msmeq and mc2::sep deletion strains.

The genes encoding gfp and ftsQ were amplified from plasmids pMN437 (88) and pNit-FtsQ, respectively. The gfp and ftsQ amplicons were digested with Ndel-SapI and SapI-HindIII, respectively and cloned into the Ndel-HindIII sites in pNit1 to generate pN-GFP-FtsQ construct. The construct was electroporated into Msmeq and mc2::sep strains to generate mc2::gfp and mc2::sep::gfp strains. Culture of mc2::gfp were seeded at A600~0.1 at 30°C for 14 h to express GFP fused FtsQ protein. mc2::sep::gfp strain was seeded at A600~0.25 in the presence and absence of 200 ng/ml ATc for overnight at 37°C. These cultures were subcultured at A600~0.25 at 30°C for 10 h in the presence or absence of ATc (25 ng/ml) and GFP-FtsQ expression was induced with 0.2 µM IVN. Cells were harvested, fixed with 4% paraformaldehyde and imaged using LSM 510 Meta Zeiss confocal microscope, as described in previous reports (72).

Acknowledgements

This work was supported by the funding provided by Department of Science and Technology (DST), Government of India (EMR/2014/000877) to VKN. We thank Prof. Christopher M. Sassetti and Dr. Francesca Forti for their kind gift of pNit1 and pAZI9479 vectors. We thank the Scanning Electron Microscopy, confocal microscopy and Mass spectrometry facilities at National Institute of Immunology (NII) and Mrs. Rekha Rani and Mrs. Shanta Sen for their support in managing these facilities. We thank the Transmission Electron Microscopy Facility at Institute of Genomics and Integrative Biology (IGIB).

Author Contributions

P.J. designed and performed the experiments. V.K.N. supervised the design and execution of the experiments. P.J and V.K.N wrote the manuscript. B.M and P.J. prepared, analyzed the samples and results of mass spectrometry M.Z.K. generated and characterized the sepIVA mutant and antibody. P.J. and S.L. performed microscopy. A.S. performed TEM.

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Statistical analysis

Two way Anova was used to analyze the significance of results, unless otherwise specified. GraphPad Prism version 5.0 was used for the plotting the results and modified using adobe illustrator CS5.1.
Role of FtsQ in cell division

References

1. DeJesus, M. A., Gerrick, E. R., Xu, W., Park, S. W., Long, J. E., Boutte, C. C., Rubin, E. J., Schnappinger, D., Ehr, S., Fortune, S. M., Sassetti, C. M., and Ioerger, T. R. (2017) Comprehensive Essentiality Analysis of the Mycobacterium tuberculosis Genome via Saturating Transposon Mutagenesis. mBio 8

2. Soderstrom, B., Skoog, K., Blom, H., Weiss, D. S., von Heijne, G., and Daley, D. O. (2014) Disassembly of the divisome in Escherichia coli: evidence that FtsZ dissociates before compartmentalization. Mol Microbiol 92, 1-9

3. Fu, G., Huang, T., Buss, J., Coltharp, C., Hensel, Z., and Xiao, J. (2010) In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLoS One 5, e12682

4. Haeusser, D. P., and Margolin, W. (2016) Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 14, 305-319

5. Lutkenhaus, J., Pichoff, S., and Du, S. (2012) Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton 69, 778-790

6. Du, S., and Lutkenhaus, J. (2017) Assembly and activation of the Escherichia coli divisome. Mol Microbiol 105, 177-187

7. Bernhardt, T. G., and de Boer, P. A. (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18, 555-564

8. Wu, L. J., and Errington, J. (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117, 915-925

9. Aarsman, M. E., Piette, A., Fraipont, C., Vinkenvleugel, T. M., Nguyen-Disteche, M., and den Blaauwen, T. (2005) Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 55, 1631-1645

10. Rico, A. I., Krupka, M., and Vicente, M. (2013) In the beginning, Escherichia coli assembled the proto-ring: an initial phase of division. J Biol Chem 288, 20830-20836

11. Mannik, J., Bailey, M. W., O’Neill, J. C., and Mannik, J. (2017) Kinetics of large-scale chromosomal movement during asymmetric cell division in Escherichia coli. PLoS genetics 13, e1006638

12. Glas, M., van den Berg van Saparoea, H. B., McLaughlin, S. H., Roseboom, W., Liu, F., Koningstein, G. M., Fish, A., den Blaauwen, T., Heck, A. J., de Jong, L., Bitter, W., de Esch, I. J., and Luijink, J. (2015) The Soluble Periplasmic Domains of Escherichia coli Cell Division Proteins FtsQ/FtsB/FtsL Form a Trimeric Complex with Submicromolar Affinity. J Biol Chem 290, 21498-21509

13. Botta, G. A., and Park, J. T. (1981) Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. J Bacteriol 145, 333-340

14. Cho, H., Wivagg, C. N., Kapoor, M., Barry, Z., Rohs, P. D., Suh, H., Marto, J. A., Garner, E. C., and Bernhardt, T. G. (2016) Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat Microbiol, 16172

15. Pichoff, S., Du, S., and Lutkenhaus, J. (2015) The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Mol Microbiol 95, 971-987

16. Goehring, N. W., and Beckwith, J. (2005) Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol 15, R514-526

17. Priyadarshini, R., Popham, D. L., and Young, K. D. (2006) Daughter cell separation by penicillin-binding proteins and peptidoglycan amidases in Escherichia coli. J Bacteriol 188, 5345-5355

18. Liu, B., Persons, L., Lee, L., and de Boer, P. A. (2015) Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol Microbiol 95, 945-970

19. Tsang, M. J., and Bernhardt, T. G. (2015) A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Mol Microbiol 95, 925-944

20. Du, S., Pichoff, S., and Lutkenhaus, J. (2016) FtsEX acts on FtsA to regulate divisome assembly and activity. Proc Natl Acad Sci U S A 113, E5052-5061

21. Aldridge, B. B., Fernandez-Suarez, M., Heller, D., Ambraianewsaran, V., Irimia, D., Toner, M., and Fortune, S. M. (2012) Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335, 100-104

22. Singh, B., Nitharwal, R. G., Ramesh, M., Pettersson, B. M., Kirsebom, L. A., and Dasgupta, S. (2013) Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol Microbiol 88, 64-76

23. Hett, E. C., and Rubin, E. J. (2008) Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72, 126-156, table of contents

24. Wu, K. J., Zhang, J., Baranowski, C., Leung, V., Rego, E. H., Morita, Y. S., Rubin, E. J., and Boutte, C. C. (2018) Characterization of Conserved and Novel Septal Factors in Mycobacterium smegmatis. J Bacteriol 200

25. Dziadek, J., Madiraju, M. V., Rutherford, S. A., Atkinson, M. A., and Rajagopal, M. (2002) Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. Microbiology 148, 961-971

26. Datta, P., Dasgupta, A., Singh, A. K., Mukherjee, P., Kundu, M., and Basu, J. (2006) Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62, 1655-1673
Role of FtsQ in cell division

27. Plocinski, P., Ziolkiewicz, M., Kiran, M., Vadrevu, S. I., Nguyen, H. B., Hugonnet, J., Veckerle, C., Artbur, M., Dziadek, J., Cross, T. A., Madiraju, M., and Rajagopalan, M. (2011) Characterization of CrgA, a new partner of the Mycobacterium tuberculosis peptidoglycan polymerization complexes. J Bacteriol 193, 3246-3256

28. England, K., Crew, R., and Slayden, R. A. (2011) Mycobacterium tuberculosis septum site determining protein, Sed encoded by rv3660c, promotes filamentation and elicits an alternative metabolic and dormancy stress response. BMC Microbiol 11, 79

29. Matrici, D., Marakalala, M. J., Holton, J. M., Prigozhin, D. M., Gee, C. L., Zhang, Y. J., Rubin, E. J., and Alber, T. (2014) Mycobacterium tuberculosis FtsX extracellular domain activates the peptidoglycan hydrolase, RipC. Proceedings of the National Academy of Sciences of the United States of America

30. Rego, E. H., Audette, R. E., and Rubin, E. J. (2017) Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153-157

31. Griffin, J. E., Pandey, A. K., Gilmore, S. A., Mizrahi, V., McKinney, J. D., Bertozzi, C. R., and Sassetti, C. M. (2012) Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and metabolic adaptations. Chem Biol 19, 218-227

32. Thompson, L. S., Beech, P. L., Real, G., Henriques, A. O., and Harry, E. J. (2006) Requirement for the cell division protein DivIB in polar cell division and engulfment during sporulation in Bacillus subtilis. J Bacteriol 188, 7677-7685

33. Daniel, R. A., and Errington, J. (2000) Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol Microbiol 36, 278-289

34. Sackett, M. J., Kelly, A. I., and Brun, Y. V. (1998) Ordered expression of ftsQA and ftsZ during the Caulobacter crescentus cell cycle. Mol Microbiol 28, 421-434

35. Robson, S. A., and King, G. F. (2006) Domain architecture and structure of the bacterial cell division protein DivIB. Proc Natl Acad Sci USA 103, 6700-6705

36. Sanchez-Pulido, L., Devos, D., Genevois, S., Vicente, M., and Valencia, A. (2003) POTRA: a conserved domain in the FtsQ family and a class of beta-barrel outer membrane proteins. Trends Biochem Sci 28, 523-526

37. van den Ent, F., Vinkenvleugel, T. M., Ind, A., West, P., Veprintsev, D., Nanninga, N., den Blaauwen, T., and Lowe, J. (2008) Structural and mutational analysis of the cell division protein FtsQ. Mol Microbiol 68, 110-123

38. Sureka, K., Hossain, T., Mukherjee, P., Chatterjee, P., Datta, P., Kundu, M., and Basu, J. (2010) Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLoS One 5, e8590

39. Ramos, A., Honrubia, M. P., Valbuena, N., Vaquera, J., Mateos, L. M., and Gil, J. A. (2003) Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149, 3531-3542

40. Noirelre-Savoye, M., Le Gouellec, A., Morlot, C., Dideberg, O., Vernet, T., and Zupan, A. (2005) In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co-localization at the division site in Streptococcus pneumoniae. Mol Microbiol 55, 413-424

41. Masson, S., Kern, T., Le Gouellec, A., Giustini, C., Simorre, J. P., Callow, P., Vernet, T., Gabel, F., and Zupan, A. (2009) Central domain of DivIB caps the C-terminal regions of the FtsL/DivIC coiled-coil rod. J Biol Chem 284, 27687-27700

42. Griffin, J. E., Gawronski, J. D., Dejesus, M. A., Ieroerger, T. R., Akerley, B. J., and Sassetti, C. M. (2011) High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLos Patog 7, e1002251

43. Forti, F., Crosta, A., and Ghisotti, D. (2009) Pristinamycin-inducible gene regulation in mycobacteria. J Biotechnol 140, 270-277

44. Prisic, S., Dankwa, S., Schwartz, D., Chou, M. F., Locasale, J. W., Kang, C. M., Beamis, G., Church, G. M., Steen, H., and Husson, R. N. (2010) Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc Natl Acad Sci USA 107, 7521-7526

45. Fortuin, S., Tomazella, G. G., Nagaraj, N., Sampson, S. L., Gey van Pittius, N. C., Wiker, H. G., de Souza, G. A., and Warren, R. M. (2015) Phosphoproteomics analysis of a clinical Mycobacterium tuberculosis Beijing isolate: expanding the mycobacterial phosphoproteome catalog. Frontiers in microbiology 6, 6

46. Verma, R., Pinto, S. M., Patil, A. H., Advani, J., Subha, P., Kumar, M., Sharma, J., Dey, G., Ravi Kumar, R., Buggi, S., Sathishchandra, P., Sharma, K., Saur, M., Tripathy, S. P., Chauhan, D. S., Gowda, H., Pandey, A., Gandotra, S., and Prasad, T. S. (2017) Quantitative proteomic and phosphoproteomic analysis of H37Ra and H37Rv strains of Mycobacterium tuberculosis. J Proteome Res

47. Kaval, K. G., and Halbedel, S. (2012) Architecturally the same, but playing a different game: the diverse species-specific roles of DivIVA proteins. Virulence 3, 406-407

48. Buddelmeijer, N., Aarsman, M. E., Kolk, A. H., Vicente, M., and Nanninga, N. (1998) Localization of cell division protein FtsQ by immunofluorescence microscopy in dividing and nondividing cells of Escherichia coli. J Bacteriol 180, 6107-6116

49. Lenarcic, R., Halbedel, S., Visser, L., Shaw, M., Wu, L. J., Errington, J., Marenduzzo, D., and Hamoen, L. W. (2009) Localization of DivIVA by targeting to negatively curved membranes. The EMBO Journal 28, 2272-2282
50. Ortiz, C., Casanova, M., Palacios, P., and Vicente, M. (2017) The hypermorph FtsA* protein has an in vivo role in relieving the Escherichia coli proto-ring block caused by excess ZapC. *PLoS One* **12**, e0184184

51. Hale, C. A., and de Boer, P. A. (1997) Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in *E. coli*. *Cell* **88**, 175-185

52. Carson, M. J., Barondess, J., and Beckwith, J. (1991) The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. *J Bacteriol* **173**, 2187-2195

53. Dai, K., and Luktenhaus, J. (1992) The proper ratio of FtsZ to FtsA is required for cell division to occur in *Escherichia coli*. *J Bacteriol* **174**, 6145-6151

54. Dewar, S. J., Begg, K. J., and Donachie, W. D. (1992) Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. *J Bacteriol* **174**, 6314-6316

55. Rueda, S., Vicente, M., and Mingorance, J. (2003) Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the *Escherichia coli* cell cycle. *J Bacteriol* **185**, 3344-3351

56. Busiek, K. K., and Margolin, W. (2014) A role for FtsA in SPOR-independent localization of the essential cell division protein FtsN. *Mol Microbiol* **92**, 1212-1226

57. Ursinus, A., van den Ent, F., Brechtel, S., de Pedro, M., Holbtc, J. V., Lowe, J., and Vollmer, W. (2004) Murcin (peptidoglycan) binding property of the essential cell division protein FtsN from *Escherichia coli*. *J Bacteriol* **186**, 6728-6737

58. Gerding, M. A., Liu, B., Bendezu, F. O., Hale, C. A., Bernhardt, T. G., and de Boer, P. A. (2009) Self-enhanced accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR domain (*DamX*, *DedD*, and *RlpA*) in *Escherichia coli* cell constriction. *J Bacteriol* **191**, 7383-7401

59. Rowland, S. L., Wadsworth, K. D., Robson, S. A., Robichon, C., Beckwith, J., and King, G. F. (2010) Evidence from artificial septal targeting and site-directed mutagenesis that residues in the extracytoplasmic beta domain of DivIB mediate its interaction with the divisomal transpeptidase *PBP* 2B. *J Bacteriol* **192**, 6116-6125

60. Spratt, B. G. (1977) Temperature-sensitive cell division mutants of *Escherichia coli* with thermolabile penicillin-binding proteins. *J Bacteriol* **131**, 293-305

61. Ricard, M., and Hirota, Y. (1993) Process of cellular division in *Escherichia coli*: physiological study on thermosensitive mutants defective in cell division. *J Bacteriol* **161**, 314-322

62. Kieser, K. J., Boutte, C. C., Kester, J. C., Baer, C. E., Barczak, A. K., Meniche, X., Chao, M. C., Rego, E. H., Sassetti, C. M., Fortune, S. M., and Rubin, E. J. (2004) Phosphorylation of the FtsZ Polyphosphate Synthase PonA Governs the Rate of Polar Elongation in *Mycobacteria*. *PLoS Pathog* **11**, e1005010

63. Zhang, Y. J., Nyayapathy, S., Lee, J. Y., Suh, J. W., and Husson, R. N. (2008) *Wag31*, a homologue of the cell division protein FtsN. *Mol Microbiol* **63**, 7383-7401

64. Thakur, M., and Chakraborti, P. K. (2006) GTPase activity of mycobacterial *FtsZ* is impaired due to its function solely through their external domains in both vegetative and sporulation division. *J Bacteriol* **188**, 6116-6125

65. Gerding, M. A., Liu, B., Bendezu, F. O., Hale, C. A., Bernhardt, T. G., and de Boer, P. A. (2009) Self-enhanced accumulation of FtsN at Division Sites and Roles for Other Proteins with a SPOR domain (*DamX*, *DedD*, and *RlpA*) in *Escherichia coli* cell constriction. *J Bacteriol* **191**, 7383-7401

66. Katis, V. L., and Wake, R. G. (1999) Membrane-bound division proteins DivIB and DivIC of *Bacillus subtilis* governs the Rate of Polar Elongation in *Mycobacteria*. *PLoS Pathog* **11**, 1296-1308

67. Samtens, B., Fanni, S., Sarva, K., Yi, N., Madiraju, M., and Rajagopalan, M. (2016) Modulation of human T cell cytokines by the *Mycobacterium tuberculosis*-secreted protein *Wag*31. *Tuberculosis (Edinb)* **101**, S99-S104

68. Dai, K., Xu, Y., and Luktenhaus, J. (1996) Topological characterization of the essential *Escherichia coli* cell division protein FtsN. *J Bacteriol* **178**, 1328-1334

69. Goehring, N. W., Petrovska, I., Boyd, D., and Beckwith, J. (2007) Mutants, suppressors, and wrinkled colonies: mutant alleles of the cell division gene *ftsQ* point to functional domains in *FtsQ* and a role for domain 1C of *FtsA* in divisome assembly. *J Bacteriol* **189**, 633-645

70. D’Ulisse, V., Fagioli, M., Ghelardini, P., and Paolozzi, L. (2007) Three functional subdomains of the *Escherichia coli* FtsQ protein are involved in its interaction with the other division proteins. *Microbiology* **153**, 124-138

71. Thakur, M., and Chakraborti, P. K. (2006) GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, *PknA*. *J Biol Chem* **281**, 40107-40113

72. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W., and Husson, R. N. (2008) *Wag*31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in *Mycobacteria*. *Microbiology* **154**, 725-735

73. Chawla, Y., Upadhyay, S., Khan, S., Nagarajan, S. N., Forti, F., and Nandicoori, V. K. (2014) Protein kinase B (*PknB*) of *Mycobacterium tuberculosis* is essential for growth of the pathogen in vitro as well as for survival within the host. *J Biol Chem* **289**, 13858-13875

74. Nagarajan, S. N., Upadhyay, S., Chawla, Y., Khan, S., Naz, S., Subramanian, J., Gandotra, S., and Nandicoori, V. K. (2015) Protein kinase A (*PknA*) of *Mycobacterium tuberculosis* is independently activated and is critical for growth in vitro and survival of the pathogen in the host. *J Biol Chem* **290**, 9626-9645

75. Sharma, A. K., Arora, D., Singh, L. K., Gangwal, A., Sajid, A., Molle, V., Singh, Y., and Nandicoori, V. K. (2016) Serine/Threonine Protein Phosphatase PstP of *Mycobacterium tuberculosis* Is Necessary for Accurate Cell Division and Survival of Pathogen. *J Biol Chem* **291**, 24215-24230
Role of FtsQ in cell division

74. Kang, C. M., Abbott, D. W., Park, S. T., Dascher, C. C., Cantley, L. C., and Husson, R. N. (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. *Genes Dev* **19**, 1692-1704

75. Lee, J. J., Kan, C. M., Lee, J. H., Park, K. S., Jeon, J. H., and Lee, S. H. (2014) Phosphorylation-dependent interaction between a serine/threonine kinase PknA and a putative cell division protein Wag31 in Mycobacterium tuberculosis. *The new microbiologist* **37**, 525-533

76. Datta, P., Dasgupta, A., Bhakta, S., and Basu, J. (2002) Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. *J Biol Chem* **277**, 24983-24987

77. Plocinski, P., Arora, N., Sarva, K., Blaszczyk, E., Qin, H., Das, N., Plocinska, R., Ziolkiewicz, M., Dziadek, J., Kiran, M., Gorla, P., Cross, T. A., Madiraju, M., and Rajagopalan, M. (2012) Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA-CwsA complex is involved in peptidoglycan synthesis and cell shape determination. *J Bacteriol* **194**, 6398-6409

78. Gupta, S., Banerjee, S. K., Chatterjee, A., Sharma, A. K., Kundu, M., and Basu, J. (2015) Essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division. *Microbiology* **161**, 1627-1638

79. Pandey, A. K., Raman, S., Proff, R., Joshi, S., Kang, C. M., Rubin, E. J., Husson, R. N., and Sassetti, C. M. (2009) Nitrile-inducible gene expression in mycobacteria. *Tuberculosis (Edinb)* **89**, 12-16

80. Soni, V., Upadhayay, S., Suryadevara, P., Samla, G., Singh, A., Yogeeswari, P., Sirim, D., and Nandicoori, V. K. (2015) Depletion of M. tuberculosis GlimU from Infected Murine Lungs Effects the Clearance of the Pathogen. *PLoS Pathog* **11**, e1005235

81. Ghosh, J., Larsson, P., Singh, B., Pettersson, B. M., Islam, N. M., Sarkar, S. N., Dasgupta, S., and Kirschihom, L. A. (2009) Sporulation in mycobacteria. *Proc Natl Acad Sci U S A* **106**, 10781-10786

82. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nature protocols* **1**, 2856-2860

83. Rajanala, K., Sarkar, A., Jhingan, G. D., Priyadarshini, R., Jalan, M., Sengupta, S., and Nandicoori, V. K. (2014) Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. *J Cell Sci* **127**, 3505-3520

84. Tiwari, D., Singh, R. K., Goswami, K., Verma, S. K., Prakash, B., and Nandicoori, V. K. (2009) Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. *J Biol Chem* **284**, 27467-27479

85. Jain, P., Hsu, T., Arai, M., Biermann, K., Thaler, D. S., Nguyen, A., Gonzalez, P. A., Tufariello, J. M., Kriakov, J., Chen, B., Larsen, M. H., and Jacobs, W. R., Jr. (2014) Specialized transduction designed for precise high-throughput unmarked deletions in Mycobacterium tuberculosis. *MBio* **5**, e01245-01214

86. Khan, M. Z., Bhaskar, A., Upadhyay, S., Kumar, P., Rajmani, R. S., Jain, P., Singh, A., Kumar, D., Bhavesh, N. S., and Nandicoori, V. K. (2017) Protein kinase G confers survival advantage to Mycobacterium tuberculosis during latency-like conditions. *J Biol Chem* **292**, 16093-16108

87. Arora, D., Chawla, Y., Malakar, B., Singh, A., and Nandicoori, V. K. (2018) The transpeptidase PbpA and non-canonical transglycosylase RodA of Mycobacterium tuberculosis play important roles in regulating bacterial cell lengths. *J Biol Chem*

88. Song, H., Sandie, R., Wang, Y., Andrade-Navarro, M. A., and Niederweis, M. (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. *Tuberculosis (Edinb)* **88**, 526-544
Figure Legends-

Figure-1. Overexpression of FtsQ increases the average cell length. a. Schematic representation of the Rv2160c-ftsQ operon. b. Schematic depiction of various domains of FtsQ. N-terminal (N), transmembrane (TM), carboxy terminal regions (C), the subdomains α, β and γ in the C-terminal regions are indicated. c. Fresh cultures of mc2::pNit and mc2::pN-FtsQ were seeded at A600~0.02 and induced with 5 µM IVN for 14 h. 30 µg and 10 µg of the WCLs prepared from these samples were resolved, transferred to nitrocellulose membrane and probed with α-FLAG and α-PknB antibodies, respectively. d. Cultures of mc2, mc2::pNit and mc2::pN-FtsQ were seeded at A600~0.02 and induced with 5 µM IVN. CFUs were enumerated at 0, 14 and 28 h, grown in the presence of 5 µM IVN. e. Cultures of mc2, mc2::pNit and mc2::pN-FtsQ strains were seeded at A600~0.02 and induced with 5 µM IVN for 14 h. The samples were processed for SEM and morphologies were observed at 15000X. f. The cell lengths for ~200 cells / samples from (e) were measured using Smart Tiff software and plotted as scattered dot plot. Mean and standard deviation (SD) were calculated using GraphPad Prism6. Mean cell lengths obtained are

Figure-2. Overexpression of FtsQ results in multi-septate phenotype. a. Quantification of differential level of FtsQ expression in mc2::pN-FtsQ overexpression strain, induced with differential concentration of IVN. Fold change in mRNA levels of ftsQ at 0.2, 1 and 5 µM IVN, calculated with respect to the transcript levels in the absence of inducer by qRT-PCR. Mean with standard deviation is from three replicates. b-d. Cultures of mc2, mc2::pNit and mc2::pN-FtsQ strains were seeded at A600~0.02 and grown in the presence of 5, 1, 0.2 µM or no IVN for 14 h. b. 30 µg and 10 µg of the WCLs prepared from these samples were resolved, transferred to nitrocellulose membrane and probed with α-FLAG and α-PknB antibodies, respectively. * indicates band due to probable cleavage of full length FtsQ. c. Samples were processed for SEM analysis and representative images at 15000X are shown. Scale bar, 1 µm. d. Cell lengths of ~200 cells / sample from (c) were measured independently using Smart Tiff software and plotted scattered dot plot with mean and SD values. Mean cell lengths obtained are me 2 - 3.1 µm; mc2::pNit - 3.3 µm; mc2::pN-FtsQ - 3.9 µm; mc2::pN-FtsQ + 0.2 µM - 3.9 µm; mc2::pN-FtsQ + 1.0 µM - 3.7 µm; mc2::pN-FtsQ + 5 µM - 4.1 µm. e. Samples were processed for TEM analysis and the representative TEM images are shown. Scale bar, 0.5 µm. f. 65 to 75 cells/ sample from (e) were analyzed to calculate the percentage of non-septate, uni-septate and bi/multiseptate cells. 1- mc2 + 5 µM; 2- mc2::pNit + 5 µM; 3- mc2::pN-FtsQ + 5 µM; 4- mc2::pN-FtsQ + 1.0 µM; 5- mc2::pN-FtsQ + 0.2 µM and 6- mc2::pN-FtsQ. Statistical analysis was performed with the help of two way ANOVA. *** P<0.0001; ns, non-significant.

Figure 3- Both N and C-terminal domains of FtsQ are critical for cell length maintenance. a. Fresh cultures of mc2, mc2::pNit, mc2::pN-FtsQ, mc2::pN-FtsQ-N and mc2::pN-FtsQ-C were seeded at A600~0.05 and induced with 5 µM IVN for 14 h. 30 µg and 10 µg of WCLs prepared from these samples were resolved, transferred and probed with α-FLAG and α-PknB antibodies, respectively. Bands indicated by white arrows arose probably due to cleavage of full length FtsQ. b. Cultures of me2, mc2::pNit, mc2::pN-FtsQ, mc2::pN-FtsQ-N and mc2::pN-FtsQ-C strains were seeded at A600~0.05 and grown in the presence of 5 µM IVN. CFUs were enumerated at 0, 14 and 28 h. Error bars represent standard error. c. The samples were processed for SEM after 14 h and morphologies were observed at 15000 X. Scale bar - 1 µm. d. The cell lengths for ~200 cells / samples from (c) were measured using Smart Tiff software and plotted as scattered dot plot. Mean and SD were calculated using GraphPad Prism6. Mean cell lengths obtained were mc2 - 3.1 µm; mc2::pNit - 3.2 µm; mc2::pN-FtsQ - 5.7 µm; mc2::pN-FtsQ-N - 5.9 µm and mc2::pN-FtsQ-C - 4.4 µm. Data is representative of two biologically independent experiments. Statistical analysis was performed with the help of two way ANOVA. *** P<0.001, ****P<0.0001.

Figure-4. FtsQ is essential for bacterial viability in Mtb a. Schematic depiction of the methodology used to generate gene replacement mutant (RdsQ). Primer pairs used for PCR confirmation are indicated. b. 1% agarose gel showing PCR amplification using genomic DNA from Rv and RdsQ as templates. Mr. denotes 1 kb ladder. Left panel shows ftsQ (0.94 kb) gene amplicon in both Rv and RdsQ. Middle panel shows differential PCR amplicon of (1.1kb) obtained only in RdsQ. Right panel shows specific amplification of 0.8 kb fragment in RdsQ. c-d. Rv and RdsQ grown in the presence of 1 µg/ml pristinamycin till A600~0.8 were washed twice with PBS containing 0.05% tween-80 and fresh cultures were seeded at A600~0.05 in triplicates. c. 10 µl of freshly inoculated cultures was streaked on 7H11 agar plates in the presence or absence of 1 µg/ml
pristinamycin. d. CFUs were enumerated at 0, 2, 4, 6, 8 and 10 days. f. Intra-macrophage survival of RvΔftsQ (+/- p) was compared with Rv (+/- p) strain after infection in PMA differentiated THP1. Data is representative of one of the two biologically independent experiments. Statistical analysis was performed with the help of two way ANOVA. ** P<0.01; *** P<0.001; **** P<0.0001; ns- non significant.

Figure-5. FtsQ depletion alters the mean cell length a-c. Fresh cultures of Rv, RvΔftsQ were seeded at A600~0.05 and grown in the presence (+p) or absence (-p) of inducer. Samples were harvested after day 4 and 10. a. The samples were processed for SEM and morphologies were observed at 15000 X. Representative images are shown. Scale bar - 1 µm. b. The cell lengths for ~200 cells / samples from (a) were measured and plotted. Mean cell lengths obtained at day 4 are Rv +p - 2.3 µm; RvΔftsQ +p - 2.2 µm and RvΔftsQ -p - 1.8 µm and at day 10 are Rv +p - 2.1 µm; RvΔftsQ +p - 2.7 µm and RvΔftsQ -p - 3.2 µm. c. Representative TEM images for Rv +p, RvΔftsQ +p and RvΔftsQ -p at day 4 and day 10. Scale bar, 0.5 µm. d. RvΔftsQ strain was transformed with pNit and pNit-FtsQ constructs to generate RvΔftsQ:pN and RvΔftsQ:ftsQ, respectively. Cultures were seeded at A600~0.05 and 10 µl were streaked on 7H11 agar in absence or presence of 1 µg/ml pristinamycin. e. Cultures were seeded at A600~0.05 in the presence or absence of 1 µg/ml pristinamycin or 0.2 µg/ml IVN as indicated. CFUs were enumerated at 0, 10 days. Error bars represent standard error. f. Experiment was performed as described above except that cells were harvested at day 4 and processed for SEM. The cell lengths for ~200 cells / samples were measured and plotted. Mean cell length values were; Rv +p -2.2 µm; RvΔftsQ:pN +p 2.3 µm; RvΔftsQ:pN -p -1.8 µm; and RvΔftsQ:ftsQ -p - 2.2 µm. Data is representative of two biologically independent experiments. Statistical analysis was performed with the help of two-way ANOVA. ** P<0.01; **** P<0.0001; ns- non significant.

Figure-6. Carboxy terminal domains are critical for the functionality of FtsQ. a-c. RvΔftsQ was electroporated with pNit, pNit-FtsQ, pNit-FtsQ-N and pNit-FtsQ-C to generate RvΔftsQ:pN, RvΔftsQ-FtsQ, RvΔftsQ-fqtsQ-N and RvΔftsQ-fqtsQ-C. Cultures were seeded at A600~0.05 in the presence of 0.2 µM IVN and in the presence (+p) or absence (-p) of pristinamycin. a. 10 µl of freshly inoculated cultures were streaked on 7H11 agar in absence or presence of 1 µg/ml pristinamycin. b. CFUs were enumerated at 0, 10 days. Error bars represent standard error. c. Cells were harvested at day 4 and processed for SEM. The cell lengths for ~200 cells / samples were measured and plotted. Mean cell lengths obtained at day 4; Rv +p - 2.5 µm; RvΔftsQ:pN +p - 2.6 µm; RvΔftsQ:pN -p - 1.8 µm; RvΔftsQ:ftsQ -p - 2.5 µm; RvΔftsQ:ftsQ-N -p - 1.6 µm and RvΔftsQ:ftsQ-C -p - 2.5 µm. d. RvΔftsQ was electroporated with pNit-FtsQs, pNit-FtsQ-C, pNit-FtsQ-Cα and pNit-FtsQ-Cβ to generate RvΔftsQ::ftsQ, RvΔftsQ::ftsQ-C, RvΔftsQ::ftsQ-Cα and RvΔftsQ::ftsQ-Cβ. 10 µl of freshly inoculated cultures were streaked on 7H11 agar in absence or presence of 1 µg/ml pristinamycin. e. CFUs of Rv +p, RvΔftsQ:pN +p, RvΔftsQ:pN -p, RvΔftsQ:ftsQ -p, RvΔftsQ::ftsQ-Cα -p, RvΔftsQ::ftsQ-Cβ -p were enumerated at 0, 10 days. Error bars represent standard error. f. Cells were harvested at day 4 and processed for SEM. The cell lengths for ~200 cells / samples were measured and plotted. Mean cell lengths obtained at day 4 are RvΔftsQ::ftsQ -p - 2.1 µm, RvΔftsQ::ftsQ-Cα -p - 1.9 µm, RvΔftsQ::ftsQ-Cβ -p - 1.8 µm. Data is representative of two biologically independent experiments. Statistical analysis was performed with the help of two way ANOVA. ** P<0.01; *** P<0.001; **** P<0.0001; ns- non significant.

Figure-7. FtsQ is phosphorylated at T24 residue and phosphorylation influences cell division. a-b. RvΔftsQ:T24 strain was inoculated at A600~0.1, induced with 5 µM IVN and grown till A600~0.8. FLAG tagged FtsQ was immunoprecipitated, fragmented using trypsin and subjected to LC-MS as described previously (83). a. MS/MS spectrum of precursor m/z 1070.45949 (+2) and MH + 2140.91899 Da, of the semi-tryptic MS/MS spectrum of precursor m/z 1070.45949 (+2) and MH + 2140.91899 Da, of the semi-tryptic phosphopeptide VADDAAEEAV(εT)ELPLATESK. The unambiguous location of the intact phosphate group on T24 was determined by the presence of the b and y ion series containing b6,11, b13, b15:7 and y4, y8, Y1:7. b. Tabular representation of identified stoichiometry of phosphorylation for T24 site. c-e. RvΔftsQ was electroporated with pNit, pNit-FtsQ, pNit-FtsQ-T24E and pNit-FtsQ-T24A to generate RvΔftsQ::pN, RvΔftsQ::ftsQ, RvΔftsQ::ftsQ-T24E and RvΔftsQ::ftsQ-T24A. Cultures were seeded at A600~0.05 in the presence of 0.2 µM IVN and in the presence (+p) or absence (-p) of pristinamycin. c. 10 µl of freshly inoculated cultures were streaked on 7H11 agar in absence or presence of 1 µg/ml pristinamycin. d. CFUs were enumerated at 0, 10 days. Error bars represent standard error. e. Cells were harvested at day 4 and processed for SEM. The cell lengths for ~200 cells / samples were measured and plotted. Mean cell lengths obtained at day 4; Rv +p -2.3 µm, RvΔftsQ::pN +p - 2.2 µm, RvΔftsQ::pN -p -1.7 µm, RvΔftsQ::ftsQ -p - 2.2 µm, RvΔftsQ::ftsQ-T24E -p - 1.9 µm.
and RsAfQ::ftsQ-T24A -p - 1.7 µm. Data is representative of two biologically independent experiments. Statistical analysis was performed with the help of two-way ANOVA. * P<0.1, ** P<0.01; *** P<0.001; **** P<0.0001; ns- non significant.

Figure-8. *FtsQ* interacts with *SepIVA* protein in a phosphorylation independent manner. a. 30 and 10 µg of WCLs prepared from Rs:pN, Rs::pN-ftsQ, Rs::pN-ftsQ-T24A and Rs::pN-ftsQ-T24E strains, in the presence of 5 µM IVN, were resolved, transferred on SDS-PAGE and probed with α-FLAG and α-PknB antibodies, respectively. 1 mg of WCL was immunoprecipitated (IP) and 1/10th of IP was probed with α-FLAG. b. Venn diagram showing 63 interacting partners, found common in three biological replicates of FLAG-ftsQ, each containing 117, 122 and 111 unique proteins. Unique proteins were obtained after subtracting the proteins identified in the corresponding control IP. c. 63, 24 and 24 interacting proteins were identified in all three biological sets of FLAG-ftsQ, FLAG-ftsQ-T24A and FLAG-ftsQ-T24E, after subtracting the proteins identified in the corresponding control IP. Venn diagram showing 4 interacting partners, found common between FLAG-ftsQ, FLAG-ftsQ-T24A and FLAG-ftsQ-T24E. d. Table showing the list of four interacting partners. e. 30 µg of WCLs prepared from Rs:pN, Rs::pN-ftsQ, Rs::pN-ftsQ-T24A and Rs::pN-ftsQ-T24E strains in the presence of 5 µM IVN, were resolved, transferred on SDS-PAGE and probed with α-FLAG and α-SepIVA antibodies, respectively. 1 mg WCL from each sample was IPed and 1/10th of IP was probed with α-FLAG antibodies and 9/10th of the IP was probed with α-SepIVA antibodies. * indicates band due to probable cleavage of full length FtsQ.

Figure-9. *FtsQ* shows predominantly septal localization both in the presence and absence of *SepIVA* protein. a-b. Fresh cultures of mc2::gfQ were seeded at A600~0.1 and grown for 14 h at 30°C. Cells were harvested, fixed with 4% paraformaldehyde and washed with 1X PBS. Cells were imaged with the help of Zeiss Imager.M1 microscope. b. Bar graph represents percentage distribution of GFP-FtsQ in different localization patterns. ~150 cells were counted to calculate the percentage distribution. c-g. Generation and characterization of mc2::sep deletion strain in mc2. a. Schematic depiction of the methodology used to generate gene replacement mutant (mc2::sep). Primer pairs used for PCR confirmation are indicated. d. mc2 cultures were electroporated with pST-KirT-sep to generate merodiploid strain mc2::sep. Cultures of merodiploid strain was seeded at A600~0.1 in presence and absence of ATc. 30 and 10 µg of lysates were prepared, resolved, transferred and probed with α-FLAG and α-PknB antibodies, respectively. e. Genomic DNA was prepared from mc2 and mc2::sep mutant and PCR amplifications were performed with the primers as indicated. Left panel shows the amplification with primers specific for rodAMsm gene, which was used as control. The PCR products were resolved on 1% agarose gel; M-denotes 1 kb ladder. Second and third panel show the PCR amplification with F1-R1 and F2-R2 primers, respectively. 1.1 and 1.2 kb PCR product is expected only in the mc2::sep mutant, but not in the mc2. Right panel shows the PCR amplification using sepIVAMsm gene forward and reverse primers. Both mc2 and mc2::sep amplify ~0.7 kb sepIVAMsm gene due to the presence of native and integrated copy of the gene, respectively. However in case of mc2::sep we expect a 1.7 kb additional band due to presence of hygromycin at the native locus. f. mc2::sep mutant strain was seeded at A600~0.1 in presence or absence of ATc (200 ng/ml). 30 and 10 µg of WCLs from cultures grown in the absence or in the presence of ATc for 6 and 12 h were resolved, transferred and probed with α-FLAG and α-GroEL antibodies, respectively. g. Photographs of mc2::sep cultures grown in the absence or presence of ATc for 18 h. h. Fresh culture of mc2::sep::gfQ were seeded at A600~0.25 in the presence or absence of ATc (200 ng/ml) at 37°C for 12 h. These cultures were subcultured at A600~0.25 at 30°C for 10 h in the presence or absence of ATc (25 ng/ml) and GFP-FtsQ expression was induced with 0.2 µM IVN. Cells were harvested, fixed and imaged using LSM 510 Meta Zeiss confocal microscope. i. Bar graph represents percentage distribution of GFP-FtsQ in different localization patterns. ~100 cells were counted to calculate the percentage distribution.
Table 1. Strains used in the study.

Strains	Description	Source
mc2155	Wild type *M. smegmatis* mc2155 strain	ATCC, 700084
mc^2::pNit	*mc^2* strain electroporated with ectopic, IVN inducible pNit vector; Kan^r	This study
mc^2::pN-FtsQ	*mc^2* strain electroporated with pNit-FtsQ (aa 1-315) construct	This study
mc^2::pN-FtsQ-N	*mc^2* strain electroporated with pNit-FtsQ-N (aa 1-123) construct	This study
mc^2::pN-FtsQ-C	*mc^2* strain electroporated with pNit-FtsQ-C (aa 101-315) construct	This study
mc^2::gfQ	*mc^2* strain electroporated with pN-GFP-FtsQ construct	This study
mc^2::sep	*mc^2* strain electroporated with pST-KirT-SepIVA construct	This study
mc^2::sep::gfQ	*mc^2*::sep electroporated with linearized AES	This study
mc^2::sep::gfQ	*mc^2*::sep strain electroporated with pN-GFP-FtsQ	This study
Rv	Wild type *M. tuberculosis* H37Rv strain	ATCC
Rv::pN	Rv electroporated with pNit vector	This study
Rv::pN-ftsQ	Rv electroporated with pNit-FtsQ construct	This study
Rv::pN-ftsQ-T24A	Rv electroporated with pNit-FtsQ-T24A construct	This study
Rv::pN-ftsQ-T24E	Rv electroporated with pNit-FtsQ-T24E construct	This study
RvΔfQ	*Rv* ftsQ conditional mutant. *ftsQ* gene expression is under the regulation of pristinamycin inducible *pptr* promoter.	This study
RvΔfQ::pN	RvΔfQ electroporated with pNit vector	This study
RvΔfQ::ftsQ	RvΔfQ electroporated with pNit-FtsQ construct	This study
RvΔfQ::ftsQ-N	RvΔfQ electroporated with pNit-FtsQ-N construct	This study
RvΔfQ::ftsQ-C	RvΔfQ electroporated with pNit-FtsQ-C construct	This study
RvΔfQ::ftsQ-Cα	RvΔfQ electroporated with pNit-FtsQ-Cα construct	This study
RvΔfQ::ftsQ-β	RvΔfQ electroporated with pNit-FtsQ-β construct	This study
RvΔfQ::ftsQ-T24A	RvΔfQ electroporated with pNit-FtsQ-T24A construct	This study
RvΔfQ::ftsQ-T24E	RvΔfQ electroporated with pNit-FtsQ-T24E construct	This study

Role of FtsQ in cell division
Figure 1

a. Arrangement of Rv2160c-ftsQ operon

b. FtsQ

c. mc::pN-FtsQ

mc::pNit

mc^2

+ +

kDa

27

35

51

91

72

19

Cell length (μm)

ns

42

d. CFU Log10 / ml

0 h 14 h 28 h

Time

mc^2

mc::pNit

mc::pN-FtsQ
Figure 2

a. Graph showing fold change.

b. Bar graph showing cell length (μm) with various concentrations of IVN.

c. Images of cells with different treatments.

d. Graph showing cell length (μm) with various treatments.

e. Images of cells with different treatments.

f. Bar graph showing percentage of cells with different treatments.
Figure 4

a. Diagram of homologous recombination between murG, murC, and ftsQ in RvΔfQ and murG, murC, and oriC in RvΔfQ::pN.

b. Gel electrophoresis showing bands for F1-R1, F2-R1, and F2-R2.

c. Petri dishes showing + pristinamycin and - pristinamycin conditions.

d. Bar graph showing CFU Log10/ml over days 0 to 10 for Rv, RvΔfQ + p, and RvΔfQ - p.

e. Bar graph showing CFU Log10/ml over 0 h, 96 h, and 120 h for pristinamycin treatments.
Figure 6

(a) Comparison of RvΔfQ::ftsQ and RvΔfQ::ftsQ-C, with and without Pristinamycin.

(b) Bacterial counts (CFU) for three different strains: RvΔfQ::ftsQ, RvΔfQ::ftsQ-N, and RvΔfQ::ftsQ-C.

(c) Cell length measurements for each strain.

(d) Cloning experiment showing the growth of RvΔfQ::ftsQ and RvΔfQ::ftsQ-C.

(e) Further comparison of bacterial counts for strains RvΔfQ::ftsQ, RvΔfQ::ftsQ-N, and RvΔfQ::ftsQ-C.

(f) Additional data on cell length for each strain.
Figure 7

a. Schematic representation of the mass spectrometric analysis with a diagram showing m/z values and intensity on the x and y axes, respectively. The spectrum includes peaks at m/z 464.22, 1055.52, 1225.73, 1298.61, 1396.57, 1508.72, 1598.88, 1677.71, 1778.93, 2027.15, and 2817.86.

b. Table showing replicate peptide sequence, PSM (protein sequence matching) area, and stoichiometry:

Replicate	Peptide Sequence	PSM	Area	Stoichiometry
1	VADDADEAVTEPATESK	167	9.394 x 10^4	28.46%
	VADDADEAVpTEPATESK	25	3.737 x 10^4	
2	VADDADEAVTEPATESK	172	1.575 x 10^5	30.80%
	VADDADEAVpTEPATESK	101	7.007 x 10^4	

c. Photographs showing bacterial colonies with and without pristinamycin treatment.

d. Graphs showing CFU (colony-forming units) log10/ml for different treatments:

- Rv + p
- RvΔfQ::pN - p
- RvΔfQ::ftsQ - p
- RvΔfQ::ftsQ-T24E - p
- RvΔfQ::ftsQ-T24A - p

Comparison between Day 0 and Day 10 treatments across all conditions.

e. Graphs showing cell length (μm) for different treatments:

- Rv + p
- RvΔfQ::pN - p
- RvΔfQ::ftsQ - p
- RvΔfQ::ftsQ-T24E - p
- RvΔfQ::ftsQ-T24A - p

Comparison between Day 0 and Day 10 treatments across all conditions.
Figure 8

Rv number	Protein Name	Cellular Process
Rv2927	SepIVA	DivIVA domain containing cell division protein
Rv1449	Transketolase	Intermediary Metabolism
Rv2744	35kDa alanine rich antigen	Conserved hypothetical
Rv0054	Single stranded binding protein	Information pathway

Diagram a.

- $Rv::pN$-ftsQ
- $Rv::pN$-ftsQ-T24A
- $Rv::pN$-ftsQ-T24E

Diagram b.

- FtsQ-Replicate 1
- FtsQ-Replicate 2
- FtsQ-Replicate 3

Diagram c.

- FtsQ
- FtsQ-T24A

Diagram d.

- FtsQ-T24E

Diagram e.

- $Rv::pN$-ftsQ-T24E
- $Rv::pN$-ftsQ-T24A
- $Rv::pN$-ftsQ

[Downloaded from http://www.jbc.org/ by guest on July 24, 2018]
Figure 9

a. GFP-FtsQ

b.

Percentage of cells	polar	subpolar	septal	polar + septal	septal
	0	10	20	30	40

c.

d.

e. mc\text{Δ}sep M M' pc-ATc pc + 12 h pc + 18 h

f.

g.

h. GFP-FtsQ

i.

Percentage of cells	polar	subpolar	septal	polar + septal	subpolar + septal
	0	5	30	40	10
Delineating FtsQ mediated regulation of cell division in Mycobacterium tuberculosis
Preeti Jain, Basanti Malakar, Mehak Zahoor Khan, Savita Lochab, Archana Singh and Vinay K Nandicoori

J. Biol. Chem. published online June 14, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA118.003628

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts