Comparison of Different First-Line Systemic Therapies in Advanced Biliary Tract Cancer Based on Updated Random Controlled Trials: A Systematic Review and Network Meta-Analysis

Long Feng, Ying Wang, Haoqian Xu, and Fengming Yi

1Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
2Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang 330006, China

Correspondence should be addressed to Fengming Yi; ivandoctor@163.com

Research Article

Background and Aim. The prognosis of advanced biliary tract cancer (BTC) is relatively poor, with limited survival. Currently, the first-line standard of care treatment is gemcitabine plus cisplatin, whereas numerous trials are trying to explore new regimens and prolong the life span of these patients. Herein, we aim to compare the effectiveness of different treatments and conclude more promising regimens for patients with advanced BTC.

Methods. We searched PubMed, Web of Science, and Cochrane Library for abstracts and full-text articles published from database inception through May 2022. All the random controlled trials (RCTs) were assessed and collected as eligible studies. The primary outcome was overall survival (OS). The second outcome was progression-free survival (PFS). Results. Seventeen studies, including 3632 patients, were selected from 1361 records. In the network meta-analysis for OS, gemcitabine + cisplatin (GemCis) + cediranib (HR, 0.11; 95% CI, 0.00-2.88), GemCis + durvalumab (HR, 0.27; 95% CI, 0.06-1.29), and GemCis + merestinib (HR, 0.37; 95% CI, 0.03-4.36) showed the trend of OS benefit over standard treatment (GemCis), although there was no significant difference. GemCis, GemOxa, and gemcitabine + S1 (GemS1) did not differ when comparing OS. In the network meta-analysis for PFS, GemCis + merestinib (HR, 0.67; 95% CI, 0.54-0.83) and GemCis + durvalumab (HR, 0.22; 95% CI, 0.08-0.62) showed PFS benefit over standard treatment (GemCis) with a significant difference. GemCis, GemOxa, and GemS1 did not differ when comparing PFS. Conclusion. GemCis + durvalumab might be the most promising regimen for advanced BTC when considering OS and PFS. GemOxa and GemS1 could be alternative options for advanced BTC patients with nontolerance to GemCis.

1. Introduction

Biliary tract cancer (BTC) is a heterogeneous and aggressive malignancy that occurs in the epithelial cell of the biliary tree with varied epidemiology worldwide. The classification according to the anatomic structure includes intrahepatic cholangiocarcinoma (iCC), perihilar CCA (pCC), distal CCA (dCC), and gallbladder cancer (GC) [1, 2], and there are other classifications in terms of etiology, histology, or molecular patterns [1, 2]. The prognosis of BTC is extremely poor, with the 5-year survival rate being limited to 2%, as most patients are diagnosed at a late stage [3]. Surgical resection and transplantation are currently identified as curative approaches for BTC patients in the early stage. Systemic therapy is considered the mainstay treatment for patients with advanced BTC. When considering chemotherapy, the median overall survival (mOS) for the established regimens ranges from 6 months to 19 months [3]. Gemcitabine plus cisplatin (GemCis) represents the first-line standard of care regimen according to the ABC-02 randomized phase III study, with prolonged median OS from 8.1 months to 11.7 months when compared with gemcitabine monotherapy [4]. However, GemCis plus nab-paclitaxel presents the highest mOS with 19.2 months in
an open-label, single-arm phase II trial [5], and there needs to be a head-to-head clinical trial to verify it. Other chemotherapeutic regimens include gemcitabine plus oxaliplatin (GemOxa) [6], gemcitabine plus S-1 (GemS1) [7], and capcitabine plus oxaliplatin (XELOX) [8], also proved to be effective in first-line treatment for advanced or unresectable BTC.

Emerging therapeutic strategies include molecular targeted therapy and immunotherapy based on current evidence. Molecular targets include fibroblast growth factor receptor...
Author/Publication year	Country	Cohort	Number	Gender (M/F)	Age (years old)	ECOG	Primary tumor	
Kang MJ, et al. [14]	Korea.	GemCis	49	31/18	59(32-77)	0-1:42(86%); 2.7(14%)	ICC20(41%); ECC29(59%)	
		S1Cis	47	31/16	60(36-77)	0-1:43(91%); 2.4(9%)	ICC18(38%); ECC29(62%)	
Li H, et al. [22]	China.	Gem	25	16/9	55.1±8.5	NR	NR	
		S1	25	19/6	56.8±7.9	NR	NR	
		GemS1	25	19/6	57.0±7.2	NR	NR	
Morizane C, et al. [15]	Japan.	GemS1	51	27/24	66.0(39-78)	0.39(76.5%); 1:12(23.5%)	ICC20(39.2%); GG9(17.6%); GC:19(37.3%); AV:3(5%)	
		S1	50	28/22	62.5(49-79)	0.37(74.0%); 1:13(26.0%)	ICC20(39.2%); ECC9(17.6%); GC:19(37.3%); AV:3(5%)	
Santoro A, et al. [9]	Italy.	Vandetanib	59	25/34	62.4±10.1	0.38(64.4%); 1.20(33.9%); 2.1(1.7%)	ICC:27(45.8%); ECC:16(27.1%); GC:11(18.6%); AV:5(8.5%)	
		Gem+Vandetanib	58	31/27	64.4±9.5	0.36(61.0%); 1.20(33.9%); 2.3(5.1%)	ICC:31(53.4%); ECC:10(17.3%); GB:13(22.4%); AV:4(6.9%)	
		Gem	56	25/31	64.0±8.8	0.34(61.8%); 1.20(36.4%); 2.1(1.8%)	ICC:29(52.7%); ECC:13(22.4%); GC:7(12.7%); AV:6(10.9%)	
Sharma A, et al. [6]	India.	BSC	27	6/21	Median:51	≤2.27(100%)	GC:27(100%)	
		FUFA	28	5/23	Median:47	≤2.28(100%)	GC:28(100%)	
		GemOxa	26	5/21	Median:49	≤2.26(100%)	GC:26(100%)	
Lee J, et al. [16]	Korea.	GemOxa	133	79/54	61(55-68)	0.20(15%); 1:00(75%); 2.13(10%)	CC:84(63%); GG:47(35%); AV:2(2%)	
		GemOxa+Erlotinib	135	91/44	59(54-66)	0.26(19%); 1:04(77%); 2.5(4%)	CC:96(71%); GG:35(26%); AV:4(3%)	
Malka D, et al. [10]	France. Germany.	GemOxa+Cetuximab	76	43/33	61(35-75)	0.35(46%); 1:36(47%); 2.0(0%)	CC:62(82%); GC:11(14%); AV:1(1%); Multifocal:1 (1%); Unspecified:5(7%)	
		GemOxa	74	42/32	62(39-75)	0.27(36%); 1:42(57%); 2.1(1%)	CC:61(82%); GC:11(15%); AV:0(0%); Multifocal:1; Unspecified:11(1%)	
Valle JW, et al. [11]	UK.	GemCis+Cediranib	62	34/28	68.0(60.4-73.0)	0.27(44%); 1:35(56%)	ICC:14(23%); ECC:24(39%); GC:20(32%); AV:4(6%)	
		GemCis	62	28/34	64.5(59.7-73.1)	0.28(45%); 1:34(55%)	ICC:15(24%); ECC:24(39%); GC:19(31%); AV:4(6%)	
Phelip JM, et al. [17]	France.	FOLFIRINOX	94	57/37	65(58-70)	0.45(47.9%); 1:48(52.1%)	ICC:60(63.8%); ECC:18(19.1%); GC:16(17.1%)	
		GemCis	96	47/49	63(55-67)	0.46(47.9%); 1:50(52.1%)	ICC:59(61.5%); ECC:20(20.8%); GC:17(17.7%)	
Valle JW, et al. [18]	UK.	GemCis +Ramucirumab	106	46/60	64(58-71)	0.45(43%); 1:58(55%); Missing:3(2%)	ICC:54(53%); GC:24(23%); ECC:18(17%); AV:8(8%)	
		GemCis +Merestinib	102	48/54	62(56-67)	0.52(51%); 1:50(49%); Missing:0(0%)	ICC:60(59%); GG:22(22%); ECC:14(14%); AV:6(6%)	
		GemCis	101	53/48	59(52-68)	0.61(60%); 1:39(39%); Missing:1(1%)	ICC:55(55%); GC:26(26%); ECC:14(14%); AV:5(5%)	
Author/Publication year	Country	Cohort	Number	Gender(M/F)	Age (years old)	ECOG	Primary tumor	
-------------------------	---------	-----------------	--------	-------------	-----------------	------	--------------	
Morizane C, et al. [7, 26]	Japan.	GemCis	175	99/76	67(41-78)	0:130(74%)	GC:68(39%)	ICC:50(29%) ECC:49(28%) AV:7(4%)
		GemS1	179	97/82	67(27-79)	0:124(69%)	GC:69(39%)	ICC:44(25%) ECC:59(33%) AV:6(3%)
Kim ST, et al. [8]	Korea	GemOxa	114	70/44	64.0(35.0-83.0)	0:25(22%)	GC:84(74%)	CC:30(26%)
		XELOX	108	74/34	62.0(28.0-84.0)	0:35(32%)	GC:77(71%)	ICC:31(29%)
Sasaki T, et al. [19]	Japan.	GemS1	30	16/14	68(47-83)	0:18(60%)	GC:16(53%)	ICC:8(27%) ECC:6(20%)
		Gem	32	20/12	75(55-86)	0:18(56%)	GC:14(44%)	ICC:8(25%) ECC:10(31%)
Valle J, et al. [4]	UK.	Gem	206	98/108	63.2(23.4-84.8)	0:64(31.1%)	GC:76(36.9%)	ICC:119(57.8%) AV:11(5.3%)
		GemCis	204	96/108	63.9(32.8-81.9)	0:66(32.4%)	GC:73(35.8%)	CC:122(59.8%) AV:9(4.4%)
Oh DY, et al.2022 [12]	Multiple counties	GemCis+Durvalumab	341	169/172	64(20-84)	0:50.7%	NR	
		GemCis	344	176/168	64(31-85)	0:47.4%	NR	
Sharma A, et al. [20]	India.	GemOxa	119	43/76	48.1(9.92)	0:7(5.9%)	GC:119(100%)	
		GemCis	124	39/85	47.8(12.05)	0:7(5.6%)	GC:124(100%)	
Leone F, et al. [21]	Italy.	GemOxa	45	17/28	63.9(46.7-78.5)	0:1(100%)	ICC: 21(46.7%)	ECC: 21 (26.7%) GC: 12 (26.6%)
		GemOxa+Panitumumab	44	15/29	64.2(36.8-78.5)	0:1(100%)	ICC: 21(47.7%)	ECC: 7 (15.9%) GC: 16 (36.4%)

GemCis, gemcitabine plus cisplatin; GemOxa, gemcitabine plus oxaliplatin; GemS1, gemcitabine plus S-1; S1Cis, S1 plus Cisplatin; XELOX, capecitabine plus oxaliplatin; BSC, best supportive care; FUFA, Fluorouracil+folinic; FOLFIRINOX, Oxaliplatin plus irinotecan plus infusional fluorouracil; ICC, intrahepatic cholangiocarcinoma; eCC, extrahepatic cholangiocarcinoma; pCC, perihilar cholangiocarcinoma; dCC, distal cholangiocarcinoma; GC, gallbladder cancer; AV, ampulla of Vater; NR, not report.
Figure 2: RCT bias was evaluated by the Cochrane risk of bias tool: (a) risk of bias summary; (b) risk of bias graph.

Figure 3: Network plot and funnel plot of studies included GemCis, gemcitabine plus cisplatin; GemOxa, gemcitabine plus oxaliplatin; GemS1, gemcitabine plus S-1; S1Cis, S1 plus cisplatin; XELOX, capecitabine plus oxaliplatin; BSC, best supportive care; FUFA, fluorouracil-folinic; and FOLFIRINOX, oxaliplatin plus irinotecan plus infusional fluorouracil.
Drug	Hazard Ratio	95% CI	p-value
XELOX 0.01	0.00	0.00,972537	0.00
Vandetanib 51.26	0.13	0.00,5983.74	0.00
GemS1 18.22	1.12	1.02,197.64	0.00
+Panitumumab 1.35	1.12	1.02,197.64	0.00
+Ramucirumab 33.11	1.12	1.02,197.64	0.00
+Merestinib 1.35	1.12	1.02,197.64	0.00
+Durvalumab 2.46	1.12	1.02,197.64	0.00
GemCis	1.00	1.00,14.45	0.00
+Cediranib 0.11	1.00	1.00,14.45	0.00

Note: Hazard Ratio, 95% CI, and p-value are rounded to three decimal places.
TABLE 3: Surface under the cumulative ranking curve values for overall survival.

Treatment	SUCRA
GemCis+Cediranib	86.1
GemCis+Durvalumab	80.4
GemCis+Merestinib	74.7
GemOxa	71.5
GemOxa+ Erlotinib	69.9
XELOX	68.3
GemOxa+ Panitumumab	63.6
GemS1	60.3
GemCis	60.2
S1Cis	58.0
GemOxa+Cetuximab	51.8
Gem	38.7
Gem+Vandetanib	38.5
FOLFIRINOX	34.5
GemCis+Ramucirumab	28.5
Vandetanib	21.9
BSC	17.3
FUFA	17.3
S1	8.4

GemCis: gemcitabine plus cisplatin; GemOxa: gemcitabine plus oxaliplatin; GemS1: gemcitabine plus S-1; S1Cis: S1 plus cisplatin; XELOX: capecitabine plus oxaliplatin; BSC: best supportive care; FUFA: fluorouracil+folinic; FOLFIRINOX: oxaliplatin plus irinotecan plus infusional fluorouracil.

(FGFR), isocitrate dehydrogenase (IDH), RAS–RAF–MEK (MAP2K1)–ERK (MAPK3), HER2 (also known as ERBB2), DNA mismatch repair, and NTRK, which are shown to be the most promising treatments till now, whereas the targeted therapy is limited to a small number of patients with gene mutation or gene aberrant. Some trials are trying to explore the combination of chemotherapy and nonspecific molecular drugs or antibodies [9–11]. Trials on the use of immunotherapy in BTCs are limited. Nevertheless, many ongoing trials explore immunotherapy such as PD-1, PD-L1, and CTLA-4 antibodies [2]. A recent abstract posted in ASCO demonstrated that additional durvalumab (PD-L1 inhibitor) improved the outcome of gemcitabine-based chemotherapy for patients with advanced BTC [12].

Herein, we aim to compare the efficacy of different first-line treatment regimens for patients with advanced BTC and find out whether gemcitabine-based chemotherapy combined with targeted therapy or immunotherapy is the best option. Moreover, gemcitabine plus oxaliplatin and gemcitabine plus S1 are comparable to gemcitabine plus platinum, which might be alternative options for patients with non-tolerate GemCis.

2. Methods

This study was according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) statement. Informed consent did not need to be signed, as the current meta-analysis was not based on individual patient level.

2.1. Search Strategies and Selection Criteria. We searched PubMed, Web of Science, and Cochrane Library from database inception up through May 2022 for abstracts and full-text articles published about the first-line treatment for patients with advanced biliary duct cancer. Keywords included “advanced biliary/bile duct cancer/carcinoma”, “unresectable/metastatic biliary/bile duct cancer/carcinoma”, “cholangiocarcinoma”, “first line”, “systemic therapy”, and “systemic treatment” were used to search for the clinical trials. The authors (LF and YW) made an agreement after consensus-based discussions. Random controlled trials that compared the efficacy of different systemic treatments in advanced biliary duct cancer were collected. We excluded single-arm studies and locoregional therapy. We also excluded the duplicate publications or studies published in the same center with patient overlap.

Two reviewers (YW and FMY) independently assessed and extracted data from each study. The basic information of studies included author/publication year, country, cohort, patient number, gender distribution, age, Eastern Cooperative Oncology Group (ECOG), and primary tumor. The primary outcome was overall survival. The secondary outcome was progression-free survival.

2.2. Risk of Bias Assessment. The quality of the trials was assessed by the Cochrane risk of bias tool, which included the following domains: random sequence generation, allocation concealment, blinding, incomplete outcome data, and selective outcome reporting [13]. Two authors (HQX and FMY) assessed the studies independently and made a consensus after discussion.

2.3. Statistical Analysis. The statistical analysis was conducted using Stata software (version 16, Stata Corp. LP, College Station, TX, USA). Review Manager 5.3 software (Cochrane Collaboration, Oxford, UK) was used to assess the risk bias. The heterogeneity of direct evidence and indirect evidence was according to the inconsistency factor and the value of heterogeneity. Network meta-analyses (NMA) of different treatments were using a random-effects model. League tables were generated for back-transformed network estimates. Hazard ratios (HRs) and 95% confidence intervals (CI) were used to compare different treatments.

3. Results

3.1. Study Selection and Characteristics. Seventeen studies, including 3632 patients, were selected from 1361 records (Figure 1) [4, 6–12, 14–22]. The comparison of the studies included the following: GemCis vs. S1 Cisplatin (S1Cis); Gem vs. S1 vs. GemS1; GemS1 vs. S1; vandetanib vs. Gem+vandetanib vs. Gem; best supportive care (BSC) vs. fluorouracil+folinic (FUFA) vs. GemOxa; GemOxa vs. GemOxa +erlotinib; GemOxa+ cetuximab vs. GemOxa; GemCis+cetuximab vs. GemCis; oxaliplatin + irinotecan + infusional fluorouracil (FOLFIRINOX) vs. GemCis; GemCis+ ramucirumab vs. GemCis+ merestinib vs. GemCis; GemCis vs.
The global inconsistency between different comparisons did not show any difference ($p = 0.8428$). The local and loop inconsistency demonstrated no differences between the trials ($p > 0.05$). The network plot showed that GemCis was the standard treatment with the largest node size, and GemOxa was ranked the second node size; most other studies compared the treatment differences between them. Moreover, we could conclude that the evidence of GemCis+durvalumab should be more confident as the large node size represented the big sample size recruited. Most other treatments were restricted to one or two comparisons with limited patients (Figure 3).

In the network meta-analysis for OS (Table 2), GemCis+cediranib (HR, 0.11; 95% CI, 0.00-2.88), GemCis+durvalumab (HR, 0.27; 95% CI, 0.06-1.29), and GemCis+merestinib (HR, 0.37; 95% CI, 0.03-4.36) showed the trend of OS benefit over standard treatment (GemCis), although there was no significant difference. However, the trials on GemCis+cediranib, and GemCis+merestinib were based on phase II studies with a limited number of participants, and the primary endpoints were not OS, which might cause the bias of the results. We could conclude that GemCis+durvalumab was an effective combination with confident evidence from the abstract posted [12], and we were looking forward to the final publication of the trial. The combination of different chemotherapeutic drugs did not show any difference when comparing OS; then, we concluded that GemOxa and GemS1 could be alternative treatments for GemCis. The ranking of different treatments according to surface under cumulative ranking curve (SUCRA) was as follows (Table 3 and Figure 4): GemCis + cediranib, 86.1%; GemCis + durvalumab, 80.4%; GemCis + merestinib, 74.7%; GemOxa, 71.5%; GemOxa + erlotinib, 69.9%; XELOX, 68.3%; GemOxa + panitumumab, 63.6%; GemS1, 60.3%;
	GemCis	gemcitabine + cisplatin	GemOxa	gemcitabine + oxaliplatin	GemSti	gemcitabine + S-1	SICis	S1 plus cisplatin	XELOX	capécitabine plus oxaliplatin	BSC	best supportive care	FUFA: fluorouracil+folinic acid	POFIBINOX: oxaliplatin plus irinotecan plus infusional fluorouracil
Total	72.95	20.10	9.90	3.44	4.74	0.72	1.17	0.80	0.90	2.19	0.81	0.90	0.27	0.49
P value	0.010	0.012	0.014	0.014	0.04	0.003	0.009	0.003	0.002	0.008	0.001	0.002	0.001	0.001
Odds ratio	1.25	0.90	0.90	1.12	0.44	0.57	0.80	0.90	0.80	0.90	0.80	0.90	0.27	0.49
95% CI	(1.18, 1.40)	(0.84, 1.06)	(0.84, 1.06)	(0.94, 1.20)	(0.38, 0.60)	(0.33, 0.74)	(0.78, 0.93)	(0.84, 1.06)	(0.80, 0.90)	(0.90, 0.90)	(0.80, 0.90)	(0.80, 0.90)	(1.18, 1.40)	(0.84, 1.06)

Table 4: League table of network meta-analysis for progression-free survival.
Table 5: Surface under the cumulative ranking curve values for progression-free survival.

Treatment	SUCRA
GemOxa+Erlo tinib	91.2
GemCis+Durvalumab	82.7
GemOxa+Panitumumab	81.2
GemOxa+Cetuximab	79
XELOX	76
GemOxa	69.5
GemCis+Cediranib	66
GemCis+Merestinib	64.2
GemS1	63.7
GemCis	51.9
S1Cis	50.5
GemCis+Ramucirumab	49
FOLFIRINOX	37.1
S1	22.5
Gem	21.6
FUFA	13.9
Gem+Vandetanib	13.3
Vandetanib	10.5
BSC	6.2

GemCis: gemcitabine plus cisplatin; GemOxa: gemcitabine plus oxaliplatin; GemS1: gemcitabine plus S-1; S1Cis: S1 plus cisplatin; XELOX: capecitabine plus oxaliplatin; BSC: best supportive care; FUFA: fluorouracil plus folinic acid; FOLFIRINOX: oxaliplatin plus irinotecan plus infusional fluorouracil.

In the network meta-analysis for PFS (Table 4), there was a trial with insufficient result that we eliminated [19]. GemCis+merestinib (HR, 0.67; 95% CI, 0.54-0.83) and GemCis+durvalumab (HR, 0.22; 95% CI, 0.08-0.62) still showed PFS benefit over standard treatment (GemCis) with significant difference. However, as GemOxa+merestinib was based on a phase II study with a limited number of participants and negative PFS benefit. We believed that GemCis+duvalumab was an effective combination with confident evidence when considering PFS from the abstract [12]. GemOxa+erlotinib (HR, 0.07; 95% CI, 0.00-1.38) ranked as the highest SUCRA, whereas there was no significant PFS benefit in the study when compared to GemOxa alone. GemOxa+panitumumab (HR, 0.15; 95% CI, 0.01-1.37) and GemOxa+cetuximab (HR, 0.20; 95% CI, 0.01-3.57) were also ranked as the appropriate choices for patients with wild-type KRAS, although there was no significant difference between them. The combination of different chemotherapeutic drugs did not show any difference when comparing PFS. The ranking of different treatments according to SUCRA was as follows (Table 5, Figure 5): GemOxa+erlotinib, 91.2%; GemCis+durvalumab, 82.7%; GemOxa+panitumumab, 81.2%; GemOxa+cetuximab, 79%; XELOX, 76%; GemOxa, 69.5%; GemCis+cediranib, 66%; GemCis+merestinib, 64.2%; GemS1, 63.7%; GemCis, 51.9%; S1Cis, 50.5%; GemCis + ramucirumab, 49%; FOLFIRINOX, 37.1%; S1, 22.5%; Gem, 21.6%; FUFA, 13.9%; Gem + vandetanib, 13.3%; Vandetanib, 10.5%; BSC, 6.2%.

4. Discussion

BTC is a heterogeneous cancer with a poor prognosis, as over 70% of BTCs are diagnosed at the locally advanced or metastatic stage without curative treatment [23]. Systemic therapy, including cytotoxic chemotherapy, targeted therapy, and immunotherapy, is trying to prolong the life span of these patients, and some of the trials show encouraging results.

Since the phase III randomized study ABC-02 established the combination of gemcitabine and cisplatin as the standard of care first-line treatment for locally advanced or metastatic biliary tract cancers, which improved PFS and OS for advanced biliary cases, there was still another exploration on different combinations of cytotoxic chemotherapy. The representation was the combination of gemcitabine and oxaliplatin [6, 8, 20], which showed comparable effectiveness with GemCis. The two regimens demonstrated similar efficacy in BTC cases when considering OS and PFS in our study. The second combination was gemcitabine and S1 [7, 15, 19], which also demonstrated noninferiority to the GemCis regimen. Our study confirmed it. GemS1 should be considered a convenient standard of care option for patients with advanced BTC that did not need hydration. Moreover, the combination of oxaliplatin and capcitabine also showed significant noninferiority to GemOxa, and it could be an alternative first-line treatment of BTCs [8], and our study also confirmed it. Taken together, our study demonstrated that GemCis was the basic cytotoxic chemotherapy; GemOxa and GemS1 could be alternative cytotoxic chemotherapeutics for patients with advanced BTCs.

However, there was still a long way to reach an expected overall survival for these patients. Although numerous targeted therapies focused on FGFR, IDH1, EGFR, HER2, VEGF, NTRK, BRAF, and MEK, some demonstrated encouraging effectiveness [3]. Nevertheless, these molecular or antibodies targeted specific genes or receptors, restricting their application in limited patients. There were some trials on targeted therapy with nonpecific genes, including vandetanib [9], erlotinib [16], cediranib [11], merestinib [18], ramucirumab [18], panitumumab [21], and cetuximab [10]. As the KRAS mutation was not common (<20%) [10], we recruited the trial one panitumumab [21] and cetuximab [10] in our study. Among them, the addition of erlotinib to gemcitabine and oxaliplatin showed the trend of extending the OS and PFS, confirmed by our research. Other tyrosine kinase inhibitors also demonstrated the trend of improving OS or PFS, but there should be more investigations to confirm them.

When it comes to immunotherapy, numerous ongoing trials were trying to explore the effectiveness of PD-1/PD-L1 in advanced BTCs [24–26], including immune monotherapy, immunotherapy plus targeted therapy, and immuno-therapy plus cytotoxic chemotherapy. In a recent ASCO, Oh D-Y posted an encouraging result on PD-L1 antibody
Figure 5: Surface under the cumulative ranking curve for different regimens on progression-free survival. GemCis: gemcitabine plus cisplatin; GemOxa: gemcitabine plus oxaliplatin; GemS1: gemcitabine plus S-1; S1Cis: S1 plus cisplatin; XELOX: capecitabine plus oxaliplatin; BSC: best supportive care; FUFA: fluorouracil+folinic; FOLFIRINOX: oxaliplatin plus irinotecan plus infusional fluorouracil.

durvalumab plus GemCis for advanced BTC cases. It showed improvement in OS and PFS when compared to GemCis. Our study confirmed them; the durvalumab plus GemCis ranked as the most effective regimen compared to other combinations in both OS and PFS.

However, there were limitations in this NMA. Firstly, the primary sites of the BTC were not paired enough. For example, some trials included patients with more iCC or limited GBC. Secondly, the studies were designed differently with different allocation concealment and different blinding of participants and personnel, which impacted the results. Moreover, some treatment is a single-center trial with a limited number of patients recruited, which might restrict the application of the treatment.

In conclusion, first-line treatments’ effectiveness in patients with advanced BTCs varies in trials. However, durvalumab plus GemCis shows promising improvement on OS and PFS, although it is reported by an abstract. GemCis remains the standard of care with moderate effectiveness on OS and PFS; GemOxa and GemS1 could be alternative options for patients with nontolerance to GemCis.

Consent

Informed consent did not need to be signed, as the current meta-analysis is not based on individual patient level.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed to the article and approved the submitted version. FMY designed the study; LF and YW searched the literature; YW and FMY evaluated and extracted data from each study; HQX and FMY evaluated the bias of the studies; LF and FMY drafted the manuscript. Long Feng, Ying Wang, and Haoqian Xu contributed equally to this work and share the first authorship.

Acknowledgments

The study was supported by the Jiangxi Provincial Department of Science and Technology 20203BBGL73144. We acknowledged the authors of the studies included in this study.

Data Availability

The original contributions presented in the study are included in the article; further inquiries can be directed to the corresponding author.
References

[1] P. J. Brindley, M. Bachini, S. I. Ilyas et al., "Cholangiocarcinoma," *Nature Reviews. Disease Primers*, vol. 7, no. 1, p. 65, 2021.

[2] A. Vignone, F. Biancaniello, M. Casadio et al., "Emerging therapies for advanced cholangiocarcinoma: an updated literature review," *Journal of Clinical Medicine*, vol. 10, no. 21, p. 4901, 2021.

[3] A. E. Kam, A. Masood, and R. T. Shroff, "Current and emerging therapies for advanced biliary tract cancers," *The Lancet Gastroenterology & Hepatology*, vol. 6, no. 11, pp. 956–969, 2021.

[4] J. Valle, H. Wasan, D. H. Palmer et al., "Cisplatin plus gemcitabine versus cisplatin for biliary tract cancer," *The New England Journal of Medicine*, vol. 362, no. 14, pp. 1273–1281, 2010.

[5] R. T. Shroff, M. M. Javle, L. Xiao et al., "Gemcitabine, cisplatin, and nab-paclitaxel for the treatment of advanced biliary tract cancers: a phase 2 clinical trial," *JAMA Oncology*, vol. 5, no. 6, pp. 824–830, 2019.

[6] A. Sharma, A. D. Dwary, B. K. Mohanti et al., "Best supportive care compared with chemotherapy for unresectable gallbladder cancer: a randomized controlled study," *Journal of Clinical Oncology*, vol. 28, no. 30, pp. 4581–4586, 2010.

[7] C. Morizane, T. Okusaka, J. Mizusawa et al., "Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT (JCOG1113) randomized phase III clinical trial," *Annals of Oncology*, vol. 30, no. 12, pp. 1950–1958, 2019.

[8] S. T. Kim, J. H. Kang, J. Lee et al., "Capecitabine plus oxaliplatin versus gemcitabine plus oxaliplatin as first-line therapy for advanced biliary tract cancers: a multicenter, open-label, randomized, phase III, noninferiority trial," *Annals of Oncology*, vol. 30, no. 5, pp. 788–795, 2019.

[9] A. Santoro, V. Gebbia, T. Pressiani et al., "A randomized, multicenter, phase II study of vandetanib monotherapy versus vandetanib in combination with gemcitabine versus gemcitabine plus placebo in subjects with advanced biliary tract cancer: the VanGogh study," *Annals of Oncology*, vol. 26, no. 3, pp. 542–547, 2015.

[10] D. Malka, P. Cervera, S. Foulon et al., "Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary tract cancer (BINGO): a randomised, open-label, non-comparative phase 2 trial," *The Lancet Oncology*, vol. 15, no. 8, pp. 819–828, 2014.

[11] J. W. Valle, H. Wasan, A. Lopes et al., "Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised phase 2 trial," *The Lancet Oncology*, vol. 16, no. 8, pp. 967–978, 2015.

[12] D.-Y. Oh, A. R. He, S. Qin et al., "A phase 3 randomized, double-blind, placebo-controlled study of durvalumab in combination with gemcitabine plus cisplatin (GemCis) in patients (pts) with advanced biliary tract cancer (BTC): TOPAZ-1," *Journal of Clinical Oncology*, vol. 40, no. suppl, p. 378, 2022.

[13] J. P. Higgins, D. G. Altman, P. C. Gøtzsche et al., "The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials," *BMJ*, vol. 343, no. oct18 2, p. d5928, 2011.

[14] M. J. Kang, J. L. Lee, T. W. Kim et al., "Randomized phase II trial of S-1 and cisplatin versus gemcitabine and cisplatin in patients with advanced biliary tract adenocarcinoma," *Acta Oncologica*, vol. 51, no. 7, pp. 860–866, 2012.

[15] C. Morizane, T. Okusaka, J. Mizusawa et al., "Randomized phase II study of gemcitabine plus S-1 versus S-1 in advanced biliary tract cancer: a Japan Clinical Oncology Group trial (JCOG 0805)," *Cancer Science*, vol. 104, no. 9, pp. 1211–1216, 2013.

[16] J. Lee, S. H. Park, H. M. Chang et al., "Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary tract cancer: a multicentre, open-label, randomised, phase 3 study," *The Lancet Oncology*, vol. 13, no. 2, pp. 181–188, 2012.

[17] J. M. Philip, J. Desrme, J. Edeline et al., "Modified FOLFIRINOX versus CISGEM chemotherapy for patients with advanced biliary tract cancer (PRODIGE 38 AMEBICA): a randomized phase II study," *Journal of Clinical Oncology*, vol. 40, no. 3, pp. 262–271, 2022.

[18] J. W. Valle, A. Vogel, C. S. Detlinger et al., "Addition of ramucirumab or merestinib to standard first-line chemotherapy for locally advanced or metastatic biliary tract cancer: a randomised, double-blind, multicentre, phase 2 study," *The Lancet Oncology*, vol. 22, no. 10, pp. 1468–1482, 2021.

[19] T. Sasaki, H. Isayama, Y. Nakai et al., "A randomized phase II study of gemcitabine and S-1 combination therapy versus gemcitabine monotherapy for advanced biliary tract cancer," *Cancer Chemotherapy and Pharmacology*, vol. 71, no. 4, pp. 973–979, 2013.

[20] A. Sharma, B. Kalyan Mohanti, S. Pal Chaubhary et al., "Modified gemcitabine and oxaliplatin or gemcitabine + cisplatin in unresectable gallbladder cancer: results of a phase III randomised controlled trial," *European Journal of Cancer*, vol. 123, pp. 162–170, 2019.

[21] F. Leone, D. Marino, S. Cereda et al., "Panitumumab in combination with gemcitabine and oxaliplatin does not prolong survival in wild-type KRAS advanced biliary tract cancer: a randomized phase 2 trial (Vecti-BIL study)," *Cancer*, vol. 122, no. 4, pp. 574–581, 2016.

[22] H. Li, Z. Y. Zhang, Z. Q. Zhou, J. Guan, D. N. Tong, and G. W. Zhou, "Combined gemcitabine and S-1 chemotherapy for treating unresectable hilar cholangiocarcinoma: a randomized open-label clinical trial," *Oncotarget*, vol. 7, no. 18, pp. 26888–26897, 2016.

[23] D. Cowzer and J. J. Harding, "Advanced biliary duct cancers: a focused review on current and emerging systemic treatments," *Cancers (Basel)*, vol. 14, no. 7, p. 1800, 2022.

[24] D. J. N. Le DT, K. N. Smith, H. Wang et al., "Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade," *Science*, vol. 357, no. 6349, pp. 409–413, 2017.

[25] H. T. Arkenau, J. Martin-Liberal, E. Calvo et al., "Ramucirumab plus pembrolizumab in patients with previously treated advanced or metastatic biliary tract cancer: nonrandomized, open-label, phase 1 trial (JVDF)," *The Oncologist*, vol. 23, no. 12, article e136, 2018.

[26] M. Ueno, M. Ikeda, C. Morizane et al., "Nivolumab alone or in combination with cisplatin plus gemcitabine in Japanese patients with unresectable or recurrent biliary tract cancer: a non-randomised, multicentre, open-label, phase 1 study," *The Lancet Gastroenterology & Hepatology*, vol. 4, no. 8, pp. 611–621, 2019.