Müller Cell Molecular Heterogeneity: Facts and Predictions

Monica Lamas¹ and Erick J. Martinez-Colin¹

Abstract
The retina was historically considered as an “approachable part of the brain”; advantageous, for its simplicity, to use as a model organ for deciphering cellular and molecular mechanisms underlying physiology and pathology of the nervous system. However, the most relevant discoveries arise precisely from unveiling the complexity of the retina. A complexity that partially relies on the layered organization of an extended variety of specialized neuronal and glial cellular types and subtypes. Based on functional, morphological or transcriptome data, over 40 subtypes of retinal ganglion cells or 60 subtypes of retinal amacrine cells have been described. A high degree of specialization, that may lead to segregation into functionally diverse subtypes, is also conceivable for Müller cells, a pleiotropic glial component of all vertebrate retinas. The essential role of Müller glia in retinal homeostasis maintenance involves participation in structural, metabolic and intercellular communication processes. Additionally, they are the only retinal cells that possess regenerative potential in response to injury or disease, and thus may be considered as therapeutic tools. In the assumption that functional heterogeneity might be driven by molecular heterogeneity this review aims to compile emerging evidence that could broaden our understanding of Müller cell biology and retinal physiology.

Summary statement
Müller glial cells exert multiple essential functions in retinal physiology and retinopathies reflecting perhaps the existence of distinct Müller cellular subpopulations. Harnessing Müller cell heterogeneity may serve to enhance new therapeutic approaches for retinal disease.

Keywords
molecular heterogeneity, retina, stem cell, transcriptome

Introduction
Müller cells are the main glial component of the retina and account for approximately 16% of the total number of retinal cells (Jeon et al., 1998). Both from anatomical and functional perspectives, the retina is considered to be built up by columnar units consisting of one Müller cell and a species-specific number of neurons (Reichenbach et al., 1993). Müller cells expand all the thickness of the retina and interact with retinal neurons to fulfill multiple functions that include neuronal support and nutrition, blood retinal barrier maintenance, and modulation of retinal synaptic activity by release and recycling of glio- and neuro- transmitters (excellently reviewed in Reichenbach & Bringmann, 2020; Vecino et al., 2016). While most of these functions are highly conserved from invertebrates to humans, an outstanding full regenerative capacity of Müller cells seems to be restricted to some teleost fish and amphibians such as zebrafish (Danio rerio) or Xenopus laevis (Langhe et al., 2017; Wan & Goldman, 2016). Although mammalian Müller glia appears to be able express the same molecular machinery involved in retinal regeneration in other species, so that they can awake a certain potential to reprogram and regenerate (reviewed in Salman et al., 2021), their efficiency is very limited.

¹Departamento de Farmacobiología. CINVESTAV-Sede Sur. México D.F. México

Corresponding Author:
M. Lamas, Departamento de Farmacobiología, Cinvestav Sede Sur, Calzada de los Tenorios 235, México D.F.
Email: mlamas@cinvestav.mx

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Notorious inter-species differences have since long been attributed to morphology (Ramón y Cajal, 1892), location in the peripheral or central retina (Boije et al., 2010), vascularization versus avascularization (Chidlow et al., 2019), adaptation to dim or intense light conditions (Karl et al., 2018), presence or absence of classical glial Kir 4.1 channels (Zayas-Santiago et al., 2014), or existence of a fovea (Reichenbach & Bringmann, 2020).

More subtle, but equally crucial differences, between individual cells in a single species suggest that Müller glia represent a heterogeneous group of cells. Heterogeneity may underly distinct functional capacities such as the activation of specific signal transduction pathways in response to a certain signal or the ability to mount a regenerative reaction.

To the best of our knowledge, at present human Müller cells are formally subdivided in only two categories associated to their presence in the central foveola or in the surrounding foveal walls (Reichenbach & Bringmann, 2020). Apart from regionalization, both subtypes differ in macular pigment content; Glial Fibrillary Acidic Protein (GFAP), Glutamine synthetase (GS) and glutamate transporter (GLAST) expression; neuronal support and capacity to improve light transmission (Reichenbach & Bringmann, 2020). In zebrafish, three populations of Müller glia may be distinguished by the combined expression of Stat3-Ascl1 in response to damage (Nelson et al., 2012).

However, Müller cell heterogeneity regarding many other aspects, including a differential genetic and epigenetic regulation of gene expression is revealed constantly in the specialized literature. Nonetheless, the scattered information has not allowed a proper understanding of the functional implication of these observations or the pertinence of a further subclassification of this cell type. In this review, we will compile reported data regarding Müller cell molecular differences and their associated functional features. We will also dare to advance some predictions regarding the application of a more profound knowledge of Müller glia complexity.

Müller Cell Molecular Heterogeneity: Facts

Authors of the earliest detailed profile of the Müller glia transcriptome at the single cell level (Roesch et al., 2008), already highlighted a certain degree of heterogeneity regarding the expression of house-keeping genes, Chx10 or Rlbp1. However, at the same time, these authors pointed out the limited knowledge about the significance and extent of this heterogeneity. Since then, accumulating reports reinforce the notion that Müller glia subpopulations may exist; and molecular discrepancies within these subpopulations may be contemplated from a functional perspective regarding well-known specific roles of Müller glia in the retina (Table 1).

Positional Considerations

As mentioned before, a large allowance in gene expression disparities relates to positional differences both through development and adulthood (Nelson et al., 2012; Reichenbach & Bringmann, 2020; Yamagata et al., 2021). Indeed, a complete atlas of the E18 chick retina based on single cell RNA sequencing has been recently reported that demonstrates the existence of distinct clusters of specific gene expression that reveal a positional foundation for the transcriptomic heterogeneity of Müller glia (Yamagata et al., 2021).

In vivo studies had previously demonstrated that Pax2, a paired homeobox family member involved in retinal morphogenesis, develops a restricted pattern of expression in the chicken retina that is maintained through adulthood and distinguishes central Pax2+ and peripheral Pax2- populations (Boije et al., 2010). The authors suggested possible functional consequences related to the existence of these two subclasses, but they ruled out a direct effect on the Müller cell proliferative or damage response. In human retinas, the differential expression of the PHGDH gene in Müller cells from the highly specialized macula served to reveal a higher susceptibility of macular cells to oxidative stress with respect to peripheral cells (Zhang et al., 2019). In addition, polyamines like the gliotransmitters spermine and spermidine, which maintain a predominant role of Müller cells such as potassium homeostasis, also display a significant retinal center versus periphery heterogeneity (Skatchkov et al., 2000).

Metabolic Considerations and Response to Light

Seminal articles described years ago that, in the chick retina at specific age points, only a subpopulation of Müller cells were able to respond to extracellular ATP with an increase of intracellular calcium concentration, and associated this observation with the developmentally regulated pattern of expression of the purinergic receptors P2Y (Uckermann et al., 2002).

In an excellent recent review, Pfeiffer et al. highlight an important fact: while the healthy Müller cells show a remarkably precise metabolic homogeneity, upon degeneration, stress or disease Müller cells diverge into numerous separable subclasses of metabolic phenotypes (Pfeiffer et al., 2020). Variable metabolites, enzymes and related proteins include polyamines, taurine, glutamate, glutamine, GS and CRALBP, all essential to normal Müller cell performance (Biedermann et al., 1998; Pfeiffer et al., 2016; Skatchkov et al., 2000). Many questions remain unanswered as to the mechanisms driving metabolic heterogeneity in disease and the observations point more to the appearance of individual metabolic profiles than to the existence of distinct Müller cell populations. Further studies are required to explore this crucial aspect of Müller cell physiology.

An exciting novel role for Müller glia in retinal physiology comes from the description of light-driven responses in chicken cultures that are sustained by the expression of specific opsins (Marchese et al., 2022; Rios et al., 2019). Interestingly, three subpopulations may be distinguished with respect to the intensity of the response to this stimulus.
Pathology and Aging: Regenerative and non-Regenerative Response to Damage

The evaluation of the behavior of Müller cells through disease has also yielded insight into molecular heterogeneity. Initial studies in two different mouse models of retinitis pigmentosa revealed differential expression of multiple transcripts among individual cells although a functional correlation between diverse subpopulations could not be provided (Roesch et al., 2012). A recent seminal study aiming to test the association between heterogeneous Müller subpopulations and the progression of age-related macular degeneration (AMD) features what we consider to be the most daring functional hypothesis based on the observed molecular differences (Menon et al., 2019). Thus, it has been proposed that the subpopulation-restricted expression of proteins with a central role in iron homeostasis or of regulators of the inflammatory response may attribute a crucial role for these subpopulations in AMD pathophysiology (Menon et al., 2019).

The fact that Müller glia presents an heterogeneous response to damage has attracted considerable attention since understanding these responses may be instrumental to decipher the reason behind the impairment of the regenerative capacity of mammalian Müller glia or even the tool to awake a dormant neurogenic capacity in these same cells. Consecutive processes follow retinal injury. Initial steps, common to regenerative and non-regenerative species, encompass a rapid modification of Müller cell morphology sustained by

Table 1. Müller Cell Molecular Heterogeneity.

Gene/protein	Biological process	Heterogeneity	Species	Reference	
Bing4/Prss2/Ube1C/GNB1l	Müller-specific transcripts	Detected in 3 out of 5 cells analyzed	Mice	Roesch et al., 2008	Roesch et al., 2012
Pax6	Functional component of visual cycle	70% of the cells	Chicken	Rowan & Cepko, 2004	
Rlbp1	Cell differentiation	4 out of 5 cells	Chicken	Ghai et al., 2010	
CHx10	Development	Subpopulation in vivo	Chicken	Boije et al., 2010	
Pax2	Embryonic develop. Retinal regeneration	Higher expression in peripheral cells	Chicken	Too et al., 2017	
CD44	Cell-Matrix interaction	Restricted to peripherally located cells	Human	Zhang et al., 2019	
PHGDH	de novo serine metabolism	Higher expression in macular Müller cells	Human	Pfeiffer et al., 2016	
Clusters P2Y	Various	Positional restriction	Chicken	Uckermann et al., 2002	
Taurine Glutamate	Neuron-glia communication	Only a percentage	Chicken	Yamagata et al., 2021	
Glutamine GS/CRALBP	Potassium homeostasis	Variable express. in neighboring Müller glia during retinal deg.	Rabbit	Pfeiffer et al., 2020	
Endogenous Polyamines			Frog	Skatchkov et al., 2000	
Opsins	Response to light	Three distinct subpopulations in culture	Chicken	Rios et al., 2019	
Genes associated to AMD FTH1/FTL	Pathology	Subpopulation 1	Human	Menon et al., 2019	
Stat 3/Ascl1 GS/GFAP	Response to damage	Subpopulation in vivo	Zebrafish	Nelson et al., 2012	
Nestin Synemin	Cytoskeleton reorganization in response to damage	Increased expression in a subpopulation in culture	Rat	Luna et al., 2010	
Fyn kinase	Cell adhesion, proliferation	Expressed by a subpopulation in vivo and in culture	Mice	Chavez-Solano et al., 2016	

1 Single cell microarray; 2 in situ hybridization; 3 immunofluorescence; 4 immunohistochemistry; 5 RNA sequencing. Abbreviations: Ascl1, Achaete-scute homolog 1; Bing4, WD repeat containing protein (also known as WDR46); CD44, Cluster of differentiation 44; Chx10, CEH10 homeodomain-containing homolog (also known as VSX2); CRALBP, Cellular retinaldehyde-binding protein; FTH1/FTL, Ferritin heavy/light chain; GFAP, Glial fibrillary acidic protein; GLAST, Glutamate aspartate transporter; GNB1l, G protein subunit beta 1 like; GS, Glutamine synthetase.

an increased expression of intermediate filaments such as nestin, synemin or GFAP. A great variability among individual Müller cells with respect to the expression of these proteins have been demonstrated in rat and pig cell cultures (Luna et al., 2010; Vecino et al., 2016). Subsequently, specific changes in gene expression sustain the occurrence of molecular mechanisms that lead either to a regenerative dedifferentiation, acquisition of a stem cell-like phenotype, proliferation, migration and neuronal differentiation programs or to a non-regenerative gliotic response (García-García et al., 2020; Graca et al., 2018). In the gold-standard animal model for retinal regeneration, the zebrafish, the induction of the expression of transcription factor Stat3 in subsets of Müller glia define the existence of populations with different proliferative and regenerative capacities (Nelson et al., 2012). In human and chicken Müller cells the restricted peripheral expression of CD44, a cell surface glycoprotein, and the increased expression of Notch pathway-associated genes have been associated to a potential stem-cell favoring environment and a greater transdifferentiation capacity (Ghai et al., 2010; Too et al., 2017).

Furthermore, after dedifferentiation achievement of efficient retinal regeneration in the zebrafish requires Müller glia nuclei migration. The relevance of cell to cell adhesion in this process has been demonstrated (Nagashima et al., 2013). In this sense, the differential expression of Fyn kinase and its effect on the processes on cell adhesion and proliferation has been demonstrated in subpopulations of mice Müller cells in vivo and in culture although its effect on the regenerative capacity of Müller glia has not been explored (Chavez-Solano et al., 2016).

Epigenetic Considerations

The research effort towards unveiling the critical mechanisms that drive retinal regeneration in some species but impair this end in mammalian cells is rapidly turning to the evaluation of epigenetic landscapes in Müller cells. From early and seminal works in zebrafish the notion that DNA methylation, histone acetylation or microRNAs modulate the regenerative capacity of Müller glia arose (Mitra et al., 2018; Powell et al., 2012, 2013; Ramachandran et al., 2010; Thummel et al., 2006). These observations have been confirmed and enriched in other experimental models including rodent and human cells (Georgi & Reh, 2010; Jorstad et al., 2017; Reyes-Aguirre & Lamas, 2016). To our knowledge, the heterogeneity in the epigenetic responses in Müller cells has received scant attention, but our own preliminary unpublished observations using mice Müller cell primary cultures reveal epigenetic diversity translated into different degrees of immunoreactivity of histone and DNA methylation marks (H3K4Me3: Histone H3 trimethylated at lysine 4; and MeCP2: Methyl-CpG binding protein 2) within individual cells (Figure 1). If this is indeed the case, a further characterization of this feature will perhaps shed a light upon the need for a potential molecular-based functional subclassification of Müller cells.
Müller Cell Molecular Heterogeneity: Predictions

Heterogeneity among, what up-to-now are considered as, specific cell types is becoming a commonplace. Development of high-throughput single-cell transcriptomic profiling techniques has allowed comprehensive and high-resolution descriptions of retinal cell diversity in mouse, chicken and human (Lukowski et al., 2019; Macosko et al., 2015; Shekhar et al., 2016; Voigt et al., 2019; Yamagata et al., 2021). Multiplicity has been demonstrated for the neuronal population: photoreceptors, amacrine cells, ganglion cells, amacrine cells, they all have been subclassified in number that account for more than 150 classes in average (Macosko et al., 2015; Peng et al., 2019; Rheaueme et al., 2018; Shekhar et al., 2016; Tran et al., 2019; Yamagata et al., 2021; Yan et al., 2020). As for the macrogial populations of the retina, astrocytes reveal an extensive molecular heterogeneity in health and disease (Miller, 2018), and Müller cells are in the same pathway.

A pressing endeavor at this time must be establishing a proof of concept for distinct functional contributions of putative Müller cellular subsets. This should be facilitated by the development of roadmaps in the form of single-cell transcriptomic atlases that allow for the specific determination of biomarkers able to distinguish major cell subtypes, isolation of subpopulations and functional assessments. This knowledge should boost and enrich the, already in use, approach of stimulation of Müller glia potential through the manipulation of gene expression (Jorstad et al., 2017; reviewed in Lahne et al., 2020 and Martin & Poché, 2019). Subpopulation-specific targeted approaches could translate into more refined data and a higher efficiency of the procedures.

A special focus should be directed towards the evaluation of single-cell epigenomes as it has been repeatedly shown that epigenetic mechanisms such as DNA methylation or Histone modification may impair, for example, the regenerative capacity of Müller cells (Mitra et al., 2018; Reyes-Aguirre & Lamas, 2016; VandenBosch et al., 2020) or the role of these cells in pathology (Zorrilla-Zubilete et al., 2018). This more complex vision of Müller glia leads to many outstanding questions, and some “required-to-be-tested” hypothesis. This heterogeneity extend to less explored, but nevertheless exciting, new functional traits of Müller glia such as light transmission (Franze et al., 2007), photoreceptor-to-glia electrical and signaling coupling (Zayas-Santiago et al., 2014) or neuron-Müller communication through retinal development (Rosa et al., 2015)? Would it be possible that the regenerative or healing capacity of Müller cells, or even their normal function in the healthy retina could depend on the interaction of multiple Müller cell types? If so, could it be possible to refine current cell-based therapeutic approaches in ocular disease? Could we envision the existence of subtype specific mechanisms of Müller-to-Müller intercellular communication that could induce the enrichment of a distinct subclass that could be either more susceptible or more resistant to a certain damage? All these questions indeed augur very exciting research avenues to come in the next future.

Acknowledgments
The authors are grateful to all members of the research group for discussions and acknowledge the excellent assistance of I. Lezama. Graphical Abstract created with BioRender.com

Funding
Supported by CONACyT [A1-S-25777] to ML and PhD fellowship CVU 924940 to E J Martinez-Colin.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Consejo Nacional de Ciencia y Tecnología, (grant number CONACyT [A1-S-25777] to ML, PhD fellowship CVU 924940 to E J M-C.).

ORCID iD
Monica Lamas https://orcid.org/0000-0002-0297-4218

References
Biedermann, B., Skatchkov, S. N., Brunk, I., Bringmann, A., Pannicke, T., Bernstein, H. G., Faude, F., Germer, A., Veh, R., & Reichenbach, A. (1998). Spermine/spermidine is expressed by retinal glial (Müller) cells and controls distinct K+ channels of their membrane. Glia, 23(3), 209–220. https://doi.org/10.1002/(SICI)1098-1136(199807)23:3<209::AID-GLIA4>3.0.CO;2-#
Boije, H., Ring, H., López-Gallardo, M., Prada, C., & Hallböök, F. (2010). Pax2 is expressed in a subpopulation of Müller cells in the central chick retina. Developmental Dynamics, 239(6), 1858–1866. https://doi.org/10.1002/dvdy.22309
Chavez-Solano, M., Ibarra-Sanchez, A., Treviño, M., Gonzalez-Espinosa, C., & Lamas, M. (2016). Fyn kinase genetic ablation causes structural abnormalities in mature retina and defective müller cell function. Molecular and Cellular Neuroscience, 72, 91–100. https://doi.org/10.1016/j.mcn.2016.01.008
Chidlow, G., Wood, J. P. M., Sia, P. I., & Casson, R. J. (2019). Distribution and activity of mitochondrial proteins in vascular and avascular retinas: Implications for retinal metabolism. Investigative Ophthalmology & Visual Science, 60(1), 331–344. https://doi.org/10.1167/iovs.18-25536
Franze, K., Grosche, J., Skatchkov, S. N., Schinkinger, S., Foja, C., Schild, D., Uckermann, O., Travis, K., Reichenbach, A., & Guck, J. (2007). Müller Cells are living optical fibers in the vertebrate retina. Proceedings of the National Academy of Sciences of the United States of America 2007 May 15, 104(20), 8287–8292. https://doi.org/10.1073/pnas.0611180104
García-García, D., Locker, M., & Perron, M. (2020). Update on Müller glia regenerative potential for retinal repair. Current Opinion in Genetics & Development, 64, 52–59. https://doi.org/10.1016/j.gde.2020.05.025

Georgi, S. A., & Reh, T. A. (2010). Dicer is required for the transition from early to late progenitor state in the developing mouse retina. Journal of Neuroscience, 30(11), 4048–4061. https://doi.org/10.1523/JNEUROSCI.4982-09.2010

Ghai, K., Zelinka, C., & Fischer, A. J. (2010). Notch signaling influences neuroprotective and proliferative properties of mature Müller Glia. Journal of Neuroscience, 30(8), 3101–3112. https://doi.org/10.1523/JNEUROSCI.4919-09.2010

Graca, A. B., Hippert, C., & Pearson, R. A. (2018). Müller Glia reactivity and development of gliosis in response to pathological conditions. Advances in Experimental Medicine and Biology, 1074, 303–307. https://doi.org/10.1007/978-3-319-75402-4_37

Jeon, C. J., Strettoi, E., & Masland, R. H. (1998). The major cell populations of the mouse retina. J. Neurosci., 18, 8936–8946. https://doi.org/10.1523/JNEUROSCI.18-21-08936.1998

Jorstad, N. L., Wilken, M. S., Grimes, W. N., Wohl, S. G., VandenBosch, L. S., Yoshimatsu, T., Wong, R. O., Rieke, F., & Reh, T. A. (2017). Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature, 548(7665), 103–107. https://doi.org/10.1038/nature23283

Karl, A., Agte, S., Zayas-Santiago, A., Makarov, F. N., Rivera, Y., Beneditk, J., Francke, M., Reichenbach, A., Skatchkov, S. N., & Bringmann, A. (2018). Retinal adaptation to dim light vision in spectated caimans (Caiman crocodilus fuscus): Analysis of retinal ultrastructure. Experimental Eye Research, 173, 160–178. https://doi.org/10.1016/j.exer.2018.05.006

Lahne, M., Nagashima, M., Hyde, D. R., & Hitchcock, P. F. (2020). Reprogramming Müller Glia to regenerate retinal neurons. Annual Review of Vision Science, 6, 171–193. https://doi.org/10.1146/annurev-vision-121219-081808

Langhe, R., Chesneau, A., Colozza, G., Hidalgo, M., Ail, D., Locker, M., & Perron, M. (2017). Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia, 65(8), 1333–1349. https://doi.org/10.1002/glia.23165

Łukowski, S. W., Lo, C. Y., Sharov, A. A., Nguyen, Q., Fang, L., Hung, S. S., Zhu, L., Zhang, T., Grünert, U., Nguyen, T., Senabouth, A., Jabbari, J. S., Welby, E., Sowden, J. C., Waugh, H. S., Mackey, A., Pollock, G., Lamb, T. D., & Wang, P. Y., … & R. C. Wong (2019). A single-cell transcriptome atlas of the adult human retina. EMBO Journal, 38(18), e100811. https://doi.org/10.15252/embj.2018100811

Luna, G., Lewis, G. P., Banna, C. D., Skalli, O., & Fisher, S. K. (2010). Expression profiles of nestin and synemin in reactive astrocytes and Müller cells following retinal injury: A comparison with glial fibrillary acidic protein and vimentin. Molecular Vision, 16, 2511–2523.

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., Trombetta, J. J., Weitz, D. A., Sanes, J. R., Shalek, A. K., Regev, A., & McCarthy, S. A. (2015). Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

Marchese, N. A., Rios, M. N., & Guido, M. E. (2022). The intrinsic blue light responses of avian Müller glial cells imply calcium release from internal stores. ASN Neuro, 14, 17590914221076698. https://doi.org/10.1177/17590914221076698

Martin, J. F., & Poché, R. A. (2019). Awakening the regenerative potential of the mammalian retina. Development (Cambridge, England), 146, 23. dev182642. https://doi.org/10.1242/dev.182642

Menon, M., Mohammadi, S., Davila-Velderrain, J., Goods, B. A., Cadwell, T. D., Xing, Y., Stemmer-Rachamimov, A., Shalek, A. K., Love, J. C., Kellis, M., & Hafer, B. P. (2019). Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nature Communications, 10(1), 4902. https://doi.org/10.1038/s41467-019-12780-8

Miller, S. J. (2018). Astrocyte heterogeneity in the adult central nervous system. Frontiers in Cellular Neuroscience, 12, 401. https://doi.org/10.3389/fncel.2018.00401

Mitra, S., Sharma, P., Kaur, S., Khursheed, M. A., Gupta, S., Ahuja, R., Kurup, A. J., Chaudhary, M., & Ramachandran, R. (2018). Histone deacetylase-mediated Müller glia reprogramming through Her4.1-Lin28a axis is essential for retina regeneration in zebrafish. iScience, 7, 68–84. https://doi.org/10.1016/j.isci.2018.08.008

Nagashima, M., Barthel, L. K., & Raymond, P. A. (2013). A self-renewing division of zebrafish Müller glial cells generates neuroglial progenitors that require N-cadherin to regenerate retinal neurons. Development (Cambridge, England), 140(22), 4510–4521. https://doi.org/10.1242/dev.090738

Nelson, C. M., Gorsuch, R. A., Bailey, T. J., Ackerman, K. M., Kassen, S. C., & Hyde, D. R. (2012). Stat3 defines three populations of Müller glia and is required for initiating maximal Müller glia proliferation in the regenerating zebrafish retina. The Journal of Comparative Neurology, 520, 4294–4311. https://doi.org/10.1002/cne.23213

Peng, Y. R., Shekhar, K., Wan, Y., Herrmann, D., Sappington, A., Bryman, G. S., van Zyl, T., Do, M. T. H., Regev, A., & Sanes, J. R. (2019). Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell, 176, 1222–1237. https://doi.org/10.1016/j.cell.2019.01.004

Pfeiffer, R. L., Marc, R. E., & Jones, B. W. (2020). Müller cell metabolic signatures: Evolutionary conservation and disruption in disease. Trends in Endocrinology and Metabolism, 31(4), 320–329. https://doi.org/10.1016/j.tem.2020.01.005

Pfeiffer, R. L., Marc, R. E., Kondo, M., Terasaki, H., & Jones, B. W. (2018). Müller cell metabolic cycle during retinal degeneration. Experimental Eye Research, 150, 62–70. https://doi.org/10.1016/j.exer.2016.04.022

Powell, C., Elsaeidi, F., & Goldman, D. (2012). Injury-dependent Müller glia and ganglion cell reprogramming during tissue regeneration requires Apoeb2a and Apoeb2b. Journal of Neuroscience, 32(3), 1096–1109. https://doi.org/10.1523/JNEUROSCI.5603-11.2012

Powell, C., Grant, A. R., Cornblath, E., & Goldman, D. (2013). Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. Proceedings of the National Academy of Sciences of the United States of America, 110(49), 19814–19819. https://doi.org/10.1073/pnas.1312009110

Ramachandran, R., Fausett, B. V., & Goldman, D. (2010). Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway.
Rios, M. N., Marchese, N. A., & Guido, M. E. (2019). Expression of non-neuronal Opsins Opa3 and Opa5 in the developing inner retinal cells of birds. Light responses in Müller glial cells. Frontiers in Cellular Neuroscience, 13, 376. https://doi.org/10.3389/fncel.2019.00376

Roesch, K., Jadhav, A. P., Trimarchi, J. M., Stadler, M. B., Roska, B., Sun, B. B., & Cepko, C. L. (2012). Gene expression changes within Müller glial cells in retinitis pigmentosa. Molecular Vision, 18, 1197–1214.

Rosa, J. M., Box, R., Sack, G. S., Fortuny, C., Agarwal, A., Bergles, D. E., Flannery, J. G., & Feller, M. B. (2015). Neuron-glial signaling in developing retina mediated by neurotransmitter spillover. Elife 2015 Aug 14, 4, e09590. https://doi.org/10.7554/eLife.09590

Rowan, S., & Cepko, C. L. (2004). Genetic analysis of the homeodomain transcription factor Chx10 in the retina using a novel multifunctional BAC transgenic mouse reporter. Developmental Biology, 271(2), 388–402. https://doi.org/10.1016/j.ydbio.2004.03.039

Salman, A., McClements, M. E., & MacLaren, R. E. (2021). Insights on the regeneration potential of Müller glia in the mammalian retina. Cells, 10(8), 1957. https://doi.org/10.3390/cells10081957

Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk, M., Adiconis, X., Levin, J. Z., Nemesh, J., Goldman, M., McCarroll, S. A., Cepko, C. L., Regev, A., & Sanes, J. R. (2016). Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell, 166, 1308–1323. e30. https://doi.org/10.1016/j.cell.2016.07.054

Skatchkov, S. N., Eaton, M. J., Krusek, J., Veh, R. W., Biedermann, B., Bringmann, A., Pannicke, T., Orkand, R. K., & Reichenbach, A. (2000). Spatial distribution of spermine/spermidine content and K+ current rectification in frog retinal glial (Müller) cells. Glia, 31(1), 84–90. https://doi.org/10.1002/(SICI)1098-1136(200007)31:1<84::AID-GLIA80>3.0.CO;2-7

Thummel, R., Burket, C. T., & Hyde, D. R. (2006). Two different transgenes to study gene silencing and re-expression during zebrafish caudal fin and retinal regeneration. Scientific World Journal, 6(Suppl 1), 65–81. https://doi.org/10.1100/tsw.2006.328

Too, L. K., Gracie, G., Hasic, E., Iwakura, J. H., & Cherepanoff, S. (2017). Adult human retinal Müller glia display distinct peripheral and macular expression of CD117 and CD44 stem cell-associated proteins. Acta Histochemica, 119, 142–149. https://doi.org/10.1016/j.acthis.2016.12.003

Tran, N. M., Shekhar, K., Whitney, I. E., Jacobi, A., Benhar, I., Hong, Y., Yan, W., Adiconis, X., Arnold, M. E., Lee, J. M., Levin, J. Z., Lin, D., Wang, C., Lieber, C. M., Regev, A., He, Z., & Sanes, J. R. (2019). Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron, 104, 1039–1055. https://doi.org/10.1016/j.neuron.2019.11.006

Uckermann, O., Grosche, J., Reichenbach, A., & Bringmann, A. (2002). ATP-evoked calcium responses of radial glial (Müller) cells in the postnatal rabbit retina. Journal of Neuroscience, 70(2), 209–218. https://doi.org/10.1002/jnr.10406

VandenBosch, L. S., Wolff, S. G., Wilken, M. S., Hooper, M., Finkbeiner, C., Cox, K., Chipman, L., & Reh, T. A. (2020). Developmental changes in the accessible chromatin, transcriptome and Ascl1-binding correlate with the loss in Müller Glial regenerative potential. Scientific Reports, 10(1), 13615. https://doi.org/10.1038/s41598-020-70334-1

Vecino, E., Rodriguez, F. D., Ruzafa, N., Pereiro, X., & Sharma, S. C. (2016). Glia-neuron interactions in the mammalian retina. Progress in Retinal and Eye Research, 51, 1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003

Voigt, A. P., Whitmore, S. S., Flamme-Wiese, M. J., Riker, M. J., Wiley, L. A., Tucker, B. A., Stone, E. M., Mullins, R. F., & Scheetz, T. E. (2019). Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. Experimental eye research, 184, 234–242. https://doi.org/10.1016/j.exer.2019.05.001

Wan, J., & Goldman, D. (2016). Retina regeneration in zebrafish. Current Opinion in Genetics & Development, 40, 41–47. https://doi.org/10.1016/j.gde.2016.05.009

Yamagata, M., Yan, W., & Sanes, J. R. (2021). A cell atlas of the chick retina based on single-cell transcriptomics. Elife, 10, e63907. https://doi.org/10.7554/elife.63907

Yan, W., Laboulaye, M. A., Tran, N. M., Whitney, I. E., Benhar, I., & Sanes, J. R. (2020). Mouse retinal cell atlas: Molecular identification of over sixty amacrine cell types. Journal of Neuroscience, 40, 5177–5195. https://doi.org/10.1523/JNEUROSCI.0741-20.2020

Zayas-Santiago, A., Agte, S., Rivera, Y., Benedikt, J., Ulbricht, E., Karl, A., Dávila, J., Savinov, A., Kucheryavykh, Y., Inyushin, M., Cubano, L. A., Pannicke, T., Veh, R. W., Francke, M., Verkhrotskaya, A., Eaton, M. J., Reichenbach, A., & Skatchkov, S. N. (2014). Unidirectional photoreceptor-to-Müller glia coupling and unique K+ channel expression in caiman retina. PLoS One 2014 May 15, 9(5), e97155. https://doi.org/10.1371/journal.pone.0097155

Zhang, T., Zhu, L., Madigan, M. C., Liu, W., Shen, W., Cherepanoff, S., Zhou, F., Zeng, S., Du, J., & Gillies, M. C. (2019). Human macular Müller cells rely more on serine biosynthesis to combat oxidative stress than those from the periphery. Elife, 8, e43598. https://doi.org/10.7554/elife.43598

Zorrilla-Zubilete, M. A., Yeste, A., Quintana, F. J., Toiber, D., Mostoslavsky, R., & Silberman, D. M. (2018). Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6. Journal of Neurochemistry, 144(2), 128–138. https://doi.org/10.1111/jnc.14243