SDF-1 expression after preoperative chemoradiotherapy is associated with prognosis in patients with advanced lower rectal cancer

Shohei Okikawa, Jun Higashijima, Masaaki Nishi, Toshiaki Yoshimoto, Shohei Eto, Chie Takasu, Hideya Kashihara, Takuya Tokunaga, Kozo Yoshikawa, and Mitsuo Shimada

Department of Digestive and Pediatric Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan

Abstract: Stromal cell-derived factor-1 (SDF-1) expression is associated with cancer progression, as a biomarker of prognosis. We clarified the significance of SDF-1 expression on chemoradiotherapy (CRT) resistance and prognosis in advanced lower rectal cancer patients. We evaluated 98 patients with advanced lower rectal cancer who underwent preoperative CRT. All patients received 40 Gy of radiation therapy, with concurrent chemotherapy containing fluorinated pyrimidines, followed by surgical resection. SDF-1 expression in surgical specimens was examined by immunohistochemistry. We divided the patients into SDF-1-positive (n = 52) and SDF-1-negative groups (n = 46) and compared the clinicopathological factors and survival rates. The SDF-1-positive group was more resistant to CRT than the SDF-1-negative group (non-responder rate, 63.5% vs. 47.8%, respectively; p = 0.12). Overall survival (OS) in the SDF-1 positive group was significantly poorer vs. the SDF-1-negative group (5-year OS, 73.4% vs. 88.0%, respectively; p = 0.02), and disease-free survival (DFS) was worse (5-year DFS, 61.0% vs. 74.1%, respectively; p = 0.07). Multivariate analysis confirmed that SDF-1 expression was a significant independent prognostic predictor of OS (p = 0.04). SDF-1 expression after preoperative CRT is significantly associated with a poor prognosis in advanced lower rectal cancer patients and is a promising biomarker.

Keywords: Rectal cancer, Stromal derived factor-1, Radiation resistance, Preoperative chemoradiotherapy

INTRODUCTION

Preoperative chemoradiotherapy (CRT) is widely used as a major treatment modality in advanced lower rectal cancer patients to control local tumor progression, allow sphincter-sparing surgery, and improve survival (1, 2). However, the rate of distant metastasis after CRT followed by radical operation in advanced lower rectal cancer patients remains high at 15%–20% (2-4). New biomarkers are necessary to select patients with a high risk of recurrence and allow for personalized therapy.

Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine and is also known as CXC motif chemokine ligand-12 (CXCL12). SDF-1 is ubiquitously expressed in almost all organs, and is essential for hematopoiesis, vascular development, angiogenesis, and neurogenesis (5-7). CXC chemokine receptor-4 (CXCR4), which is an SDF-1 receptor, expresses on the cell surface of hematopoietic stem cells and T and B lymphocytes, and SDF-1 is implicated in the homing of these cells (8, 9). CXCR4 also express on the surfaces of malignant cells; the SDF-1/CXCR4 axis enhances cancer cell survival, proliferation, angiogenesis, and metastasis (10, 11). In addition, high expression of SDF-1 in cancer cells attracts CXCR4-positive cells, such as cancer-associated fibroblasts (CAF) or immune cells, including myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg) and tumor-associated macrophages (TAM), to the tumor sites and converts the tumor microenvironment (TME) to immune tolerance (12-14). Therefore, SDF-1 might have potential as a new therapeutic target, and could be a useful biomarker for patients with malignant tumors.

SDF-1 expression in cancer cells promotes the progression of breast cancer, lung cancer, and lymphoma, and could be a biomarker for a poor prognosis (15-17). The significance of SDF-1 expression remains unclear, and few reports have focused on SDF-1 expression in advanced lower rectal cancer (18, 19). Recently, several reports described that SDF-1 was a factor related to resistance to radiotherapy for glioblastoma, and head and neck cancer (20, 21). In this study, we evaluated whether SDF-1 expression in cancer cells could induce radiation resistance and lead to a poor prognosis in advanced lower rectal cancer patients undergoing preoperative CRT.

The aim of this study was to investigate the significance of SDF-1 expression in advanced lower rectal cancer patients undergoing preoperative CRT.

PATIENTS AND METHODS

Patients

We evaluated 98 surgically-resected specimens from advanced lower rectal cancer patients who underwent preoperative CRT followed by radical resection from April 2006 to July 2018 at Tokushima University Hospital. The indications for preoperative CRT at our institution were previously reported (22). Briefly, preoperative CRT was offered to advanced lower rectal cancer patients who were diagnosed with locally advanced (≥T3 and/or ≥N1) cancer or to those who were estimated to have T2 cancer close to or involving the anal sphincter. Preoperative pelvic irradiation constituted a total dose of 4000 cGy at 200 cGy per fraction daily, five times weekly. The radiation field included...
the lateral pelvic lymph nodes, and radiation therapy was administered concomitantly with chemotherapy that included fluorinated pyrimidines. The regimen constituted tegafur-uracil (UFT) or S-1 orally, only (n = 18, n = 45, respectively); S-1 and oxaliplatin; bevacizumab (SOX + Bev, n = 39); or S-1 and CPT-11 (IRIS, n = 2).

This study was approved by the Institutional Review Board of Tokushima University (Tocms2901-1). This study was conducted according to the principles expressed in the Declaration of Helsinki. All tissue samples included in this investigation were obtained with the patients’ informed consent.

Immunohistochemical staining

The immunohistochemical method was reported previously (22). Briefly, paraffin sections were cut at 4-μm thicknesses from archival formalin-fixed paraffin-embedded tissue blocks. The sections were deparaffinized using xylene and dehydrated using a series of graded ethanol solutions. Endogenous peroxidase activity was blocked by administering 0.3% hydrogen peroxidase and methanol. After washing three times for 5 minutes (each wash) with phosphate-buffered saline (PBS), the sections were processed in 10 mM EDTA buffer (pH : 9) in a microwave for antigen retrieval. After cooling at room temperature, the sections were incubated with primary mouse monoclonal antibody for SDF-1 (MAB350, dilution 1 : 50 ; R&D Systems, Minneapolis, MN, USA) at 4℃, overnight, followed by three washes. The sections were then incubated with a Dako REAL EnVision/HRP detection system (Dako, Tokyo, Japan) for 1 hour. After three washes, 3,3′-diaminobenzidine tetrahydrochloride (DAB) was used to develop the peroxidase reaction. Nuclei were counterstained with Mayer’s hematoxylin solution to complete the procedure.

SDF-1 expression in cancer cells was scored by staining intensity (SI), as follows : no staining = 0 ; weak = 1 ; moderate = 2 ; and strong = 3 (23). We then categorized SDF-1 values into negative and positive groups (0, 1 : SDF-1-negative ; 2, 3 : SDF-1-positive).

Pathological evaluation

Evaluation of patients’ therapeutic responses to preoperative CRT was described previously (24). Briefly, the evaluation of surgical specimens was performed according to the histopathological response criteria of the general rules for clinical and pathological studies on cancer of the colon, rectum, and anus (Japanese Classification of Colorectal, Appendiceal, and Anal Carcinoma). All specimens with SDF-1-positive grade 2 or 3 were classified as responders, and specimens with grade 0 or 1 were classified as non-responders.

Statistical analyses

All statistical analyses were performed using JMP statistical software (version 8.0.1 ; SAS Institute Inc., Cary, NC, USA). The y2-test and Mann–Whitney U test were used to compare the clinicopathological variables between the two groups. Survival curves were created using the Kaplan–Meier method, and the curves were compared using the log-rank test. p<0.05 was considered statistically significant.

RESULTS

Typical immunohistochemistry images of SDF-1-positive cells in lower rectal cancer tissues are shown in Figure 1. All patients were divided into an SDF-1-positive group (n = 52) or -negative group (n = 46). The clinicopathological characteristics of each group are shown in Table 1. SDF-1 expression correlated

![Figure 1. Representative immunohistochemical staining of stromal cell-derived factor-1 (SDF-1).](image)

Table 1. Comparison of the clinicopathological characteristics between the SDF-1-positive and -negative groups

Variable	SDF-1-negative (n=46)	SDF-1-positive (n=52)	p-value
Age (years)	63 ± 10	66 ± 9	0.11
Sex (M / F)	30 / 16	35 / 17	0.82
Location (Ra / Rb / P)	8 / 37 / 1	7 / 42 / 3	0.58
Depth of invasion (T1–2 / T3–4)	24 / 22	21 / 31	0.24
Lymph node metastasis (− / +)	38 / 8	34 / 18	0.05
Lymphatic invasion (− / +)	30 / 9	29 / 18	0.12
Venous invasion (− / +)	20 / 19	24 / 24	0.09
Differentiation (tub1 / tub2 / others)	22 / 22 / 2	20 / 29 / 3	0.47
Stage (0 / I / II / IIIa / IIIb / IV)	6 / 18 / 11 / 5 / 4 / 2	5 / 12 / 16 / 6 / 9 / 4	0.46
Neoadjuvant chemotherapy (UFT / S-1 / IRIS / SOX+Bev)	10 / 26 / 0 / 10	8 / 19 / 2 / 23	0.02
Adjuvant chemotherapy (− / +)	40 / 6	39 / 13	0.13

SDF-1, stromal cell-derived factor-1; y, years; M, male; F, female; Ra, rectum above the peritoneal reflection; Rb, rectum below the peritoneal reflection; P, proctos; tub1, well differentiated adenocarcinoma; tub2, moderately differentiated adenocarcinoma; UFT, uracil/tegafur; IRIS, irinotecan plus S-1; SOX, S-1 combined with oxaliplatin; Bev, bevacizumab
with lymph node metastasis and neoadjuvant chemotherapy regimens. We investigated whether there was a correlation between SDF-1 expression and the effect of radiation therapy. Approximately 63.5% of the patients in the SDF-1-positive group and 47.8% in the SDF-1-negative were non-responders to neoadjuvant CRT (p = 0.12, Fig. 2).

Overall survival (OS) in the SDF-1-positive group was significantly poorer than that in the SDF-1-negative group (5-year OS, 74.3% vs. 88.0%, respectively; p < 0.05; Fig. 3A), and disease-free survival (DFS) was also poorer (5-year DFS, 61.0% vs. 74.1%, respectively; p = 0.07; Fig. 3B). Univariate analysis showed that sex, pT, pN, lymphatic invasion, serum CEA concentration, and SDF-1-positive expression were significant prognostic factors for OS, and pT, pN, lymphatic invasion, and high expression of SDF-1 were prognostic factors for DFS (Table 2 and Table 3). Multivariate analysis showed that SDF-1 was a significant independent risk factor for both OS (relative risk, 2.85; p = 0.04; Table 2) and DFS (relative risk, 2.07; p = 0.06; Table 3).

Figure 2. Pathological response to neoadjuvant CRT after surgical resection
The Stromal cell-derived factor-1 (SDF-1)-positive group had more non-responders compared with the SDF-1-negative group.

Figure 3. Kaplan–Meier analysis of overall survival (A) and disease-free survival (B) for stromal cell-derived factor-1 (SDF-1) expression.

Table 2. Univariate and multivariate analysis of the prognostic factors for overall survival (OS)

Variable	5-year OS (%)	Univariate p-value	Multivariate p-value	
Age (<60 / ≥60 years)	87.5 / 78.7	0.51	0.84 (0.25–2.82)	0.77
Sex (M / F)	81.4 / 79.1	0.70	1.15 (0.40–3.24)	0.78
Tumor differentiation (tub1, tub2 / others)	80.9 / 80.0	0.92	0.79 (0.09–6.82)	0.83
T stage (T1–2 / T3–4)	87.0 / 75.5	0.02	1.40 (0.45–4.32)	0.55
Lymph node metastasis (− / +)	88.1 / 58.8	<0.01	2.09 (0.54–8.09)	0.28
Lymphatic invasion (− / +)	88.6 / 57.3	<0.01	3.04 (0.94–9.81)	0.06
Venous invasion (− / +)	84.1 / 71.6	0.17	2.41 (0.84–6.91)	0.10
CEA (<5 ng/ml / ≥5 ng/ml)	81.3 / 71.4	0.01	4.53 (1.14–17.93)	0.03
Adjuvant chemotherapy (− / +)	83.0 / 71.2	0.19	3.27 (0.81–11.14)	0.08
SDF-1 (negative / positive)	88.0 / 74.3	0.02	2.85 (1.00–8.11)	0.04

HR, hazard ratio; CI, confidence interval; y, years; M, male; F, female; tub1, well differentiated adenocarcinoma; tub2, moderately differentiated adenocarcinoma; CEA, carcinoembryonic antigen; SDF-1, stromal cell-derived factor-1
DISCUSSION

In the current study, we identified the significance of SDF-1 expression as a biomarker for predicting the prognosis of advanced lower rectal cancer patients undergoing preoperative CRT, using immunohistochemical staining.

SDF-1 activates the downstream signal pathways, such as PI3K/AKT/mTOR and ERK1/2, and enhances cancer cell survival, proliferation, and chemotaxis by binding to CXCR4 (25). High SDF-1 expression was associated with a poor prognosis in esophageal, gastric, pancreatic, and lung cancer patients in two meta-analyses (26, 27). In CRC patients, the significance of SDF-1 expression in cancer cells remains controversial because SDF-1 is reported to be both tumor promoting (28) and tumor suppressing (29). There are only a few reports of the significance of SDF-1 expression in cancer cells regarding prognosis in advanced lower rectal cancer patients (18, 19). In cancer cells, the SDF-1/CXCR4 axis activates intracellular signaling through the MEK/ERK and PI3K/AKT pathways and promotes cell survival and proliferation, and metastasis (30, 31). In addition, SDF-1 can attract CXCR4-positive cells, such as CAF, MDSC, Treg, or TAM, to the tumor sites and assist tumor progression in the TME (10, 32). There are only a few reports of the significance of SDF-1 expression in cancer cells. In a future study, we will investigate the relationship between SDF-1 expression in tumors and immune cell infiltration.

Increasing experimental evidence suggests using the SDF-1/CXCR4 axis as a therapeutic target. Some researchers showed that inhibiting the SDF-1/CXCR4 axis improved tumor malignancy and survival. For example, AMD3100, an anti-CXCR4 drug, was associated with reduced proliferation and metastasis of cancer cells in ovarian cancer (39), and NOX-A12, an anti-SDF-1 aptamer, improved the survival of irradiated rats with glioblastoma (40). Other researchers have also suggested that modulating the SDF-1/CXCR4 axis could revert the tolerogenic polarization of the TME, and modulate immunotherapy with anti-CTLA-4 or anti–PD-1 antibody (13, 41).

Table 3. Univariate and multivariate analysis of the prognostic factors for disease-free survival (DFS)

Variable	5-year DFS (%)	Univariate p-value	Multivariate p-value	HR (95% CI)
Age (<60 y / ≥60 y)	79.1 / 63.7	0.31	1.34 (0.51–3.54)	0.54
Sex (M / F)	67.9 / 66.3	0.79	0.58 (0.26–1.27)	0.17
Tumor differentiation (tub1, tub2 / others)	67.5 / 60.0	0.73	0.76 (0.16–3.65)	0.73
T stage (T1–2 / T3–4)	84.1 / 53.5	<0.01	1.61 (0.59–4.34)	0.34
Lymph node metastasis (− / +)	76.9 / 42.3	<0.01	3.02 (1.03–8.40)	0.04
Lymphatic invasion (− / +)	74.8 / 36.6	<0.01	3.11 (1.34–7.19)	<0.01
Venous invasion (− / +)	70.3 / 55.1	0.11	1.61 (0.70–3.71)	0.25
CEA (<5 ng/ml / ≥5 ng/ml)	69.0 / 42.8	0.09	2.87 (0.82–10.06)	0.09
Adjuvant chemotherapy (− / +)	71.2 / 52.6	0.06	2.63 (1.3–1.05)	0.06
SDF-1 (negative / positive)	74.1 / 61.0	0.07	2.07 (0.94–4.55)	0.06

HR, hazard ratio; CI, confidence interval; y, years; M, male; F, female; tub1, well differentiated adenocarcinoma; tub2, moderately differentiated adenocarcinoma; CEA, carcinoembryonic antigen; SDF-1, stromal cell-derived factor-1

SDF-1 expression in rectal cancer

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

ACKNOWLEDGEMENTS

We thank Jane Charbonneau, DVM, from Edanz Group (https://en-author-services.edanz.com/ac) for editing a draft of this manuscript.
REFERENCES

1. Hupkens BJ, Martens MH, Stoot JH, Berbee M, Melenhorst J, Beets-Tan RG, Beets GL, Breukink SO: Quality of life in rectal cancer patients after chemoradiation: watch-and-wait policy versus standard resection - a matched-controlled study. Dis Colon Rectum 60 : 1032-1040, 2017

2. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens JH, Liersch T, Schmölzer H, Raab R, German Rectal Cancer Study Group: Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med 351 : 1731-1740, 2004

3. Bosset JF, Collette L, Calais G, Mineur L, Maingon P, Radosavljevic-Delic L, Daban A, Bardet E, Beny A, Ollier JC, EORTC Radiotherapy Group Trial 22921: Chemotherapy with preoperative radiotherapy in rectal cancer. N Engl J Med 355 : 1114-1123, 2006

4. Guillen JO, Chessin DB, Cohen AM, Shia J, Mazumdar M, Enker W, Paty PB, Weiser MR, Klimstra D, Saltz L, Minsky BD, Wang WD: Long-term oncologic outcome following preoperative combined modality therapy and total mesorectal excision of locally advanced rectal cancer. Ann Surg 241 : 829-836, 2005

5. Nagasawa T, Hirota S, Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata T, Hirota S, Kishimoto T, Nagasawa T: The chemokine CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 11 : 393 : 593-594, 1998

6. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kitamura T, Nagasawa T: The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393 : 595-599, 1998

7. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman RD: Function of the chemokine receptor CXCR4 in hematopoiesis and in cerebellar development. Nature 11 : 393 : 591-594, 1998

8. Susek KH, Kvávovi M, Alici E, Lundqvist A: The role of CXCR4 in chemokine receptors 1-4 on immune cells in the tumor microenvironment. Front Immunol 9 : 2519, 2018

9. Alsayed Y, Ngo H, Runnels J, Leuen X, Singhia UK, Pitsilides CM, Spencer JA, Kimlinger T, Gborell JM, Jia X, Lu G, Timm M, Kumar A, Côte D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson R: CXCL12 / CXCR4 blockade with preoperative radiotherapy in rectal cancer. N Engl J Med 355 : 1114-1123, 2006

10. Pansy K, Feichtinger J, Ehlal B, Uhl B, Sedej M, Roos I, Pursche B, Wolf A, Zoidl M, Steinbauer E, Gruber V, Greinix HT, Proecker KT, Thaller MG, Heinemann A, Beham-Schmid C, Neumeister P, Wodrich TM, Fechter K, Deutsch JA: The CXCR4-CXCL12-axis is of prognostic relevance in DLBCL and its antagonists exert pro-apoptotic effects in vitro. Int J Mol Sci 20 : 4740, 2019

11. Kim HJ, Baek SB, Jeong DJ, Kim ES, Kim CN, Park DG, Ahn TS, Cho SW, Shin ED, Lee MS, Baek MJ: Upregulation of stromal cell-derived factor 1α expression is associated with the resistance to neoadjuvant chemoradiotherapy of locally advanced rectal cancer: angiogenic markers of neoadjuvant chemoradiation. Oncol Rep 32 : 2493-2500, 2014

12. Tamas K, Domanska UM, van Dijk TH, Timmer-Bosscha H, Havenga K, Karrenbeld A, Sluiter WJ, Beulka JC, van Vugt MATM, de Vries EGB, Hespers GAP, Wallenkamp AME: CXCR4 and CXCL12 expression in rectal tumors of stage IV patients before and after local radiotherapy and systemic neoadjuvant treatment. Curr Pharm Des 21 : 2276-2283, 2015

13. Righi E, Kashiwagi S, Yuan J, Sipos B, Fend F, Mauz PS, Tinhofer I, Budach V, Abu Jawad J, Stuschke M, Balmares M, Rödel C, Grosu AL, Abdollahi A, Debus J, Belka C, Ganswindt U, Pigorsch S, Combs SE, Lohaus F, Linge A, Krause M, Baumann M, Zips D, DKTK-ROG: CXCL12 / CXCR4 expression is an independent negative prognostic biomarker in patients with head and neck cancer after primary radiochemotherapy. Radioter Oncol 126 : 125-131, 2018

14. Takasu C, Shimada M, Kurita N, Iwata T, Sato H, Nishikawa M, Morimoto S, Yoshikawa K, Miyatani T, Kashihara H, Utsunomiya T, Uehara H: Survivin expression can predict the effect of chemoradiotherapy for advanced lower rectal cancer. Int J Clin Oncol 18 : 869-876, 2013

15. Sakai K, Yoshidome H, Shida T, Kimura F, Shimizu H, Ohtsuka M, Takeuchi D, Sakakibara M, Miyazaki M: CXCR4 / CXCL12 expression profile is associated with tumor microenvironment and clinical outcome of liver metastases of colorectal cancer. Clin Exp Metastasis 29 : 101-110, 2012

16. Hupkins BJ, Martens MH, Stoot JH, Berbee M, Melenhorst J, Beets-Tan RG, Beets GL, Breukink SO: Quality of life in rectal cancer patients after chemoradiation: watch-and-wait policy versus standard resection - a matched-controlled study. Dis Colon Rectum 60 : 1032-1040, 2017

17. Li X, Bo W, Meng L, Liu X, Wang S, Jiang L, Ren M, Fan Y, Sun H: CXCL12 / CXCR4 pathway orchestrates CSC-like properties byCAF recruited tumor associated macrophage in OSCC. Exp Cell Res 378 : 131-138, 2019

18. Fujita M, Takai K, Miyamoto Y, Tagawa T, Oda Y, Maehara Y: Correlation between CXCR4 / CXCR7 / CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci 109 : 154-165, 2018

19. Guo F, Taub DD, Longo DL: Involvement of mTOR in CXCL12 mediated T cell signaling and migration. PLoS One 6 : e24667, 2011

20. Fearon DT: Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 110 : 20212-20217, 2013

21. Li X, Bo W, Meng L, Liu X, Wang S, Jiang L, Ren M, Fan Y, Sun H: CXCL12 / CXCR4 pathway orchestrates CSC-like properties by CAF recruited tumor associated macrophage in OSCC. Exp Cell Res 378 : 131-138, 2019

22. Kang H, Watkins G, Parr C, Douglas-Jones A, Mansel RE, Jiang WG: Stromal cell derived factor 1α: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res 7 : R402-410, 2005

23. Katsura M, Shoji F, Okamoto T, Shimamatsu S, Hirai F, Toyokawa G, Morodomi Y, Tagawa T, Oda Y, Maehara Y: CXCR4 expression is able to predict response to chemoradiotherapy in rectal cancer. Mol Clin Oncol 1 : 137-142, 2013
25. Scala S : Molecular pathways : targeting the CXCR4-CXCL12 axis—untapped potential in the tumor microenvironment. Clin Cancer Res 21 : 4278-4285, 2015
26. Samarendra H, Jones K, Petrinic T, Silva MA, Reddy S, Soonawalla Z, Gordon-Weeks A : A meta-analysis of CXCL12 expression for cancer prognosis. Br J Cancer 117 : 124-135, 2017
27. Meng D, Wu YX, Heerah V, Pong S, Chu MD, Xu YJ, Xiong WN, Xu SY : CXCL12 G801A polymorphism and cancer risk : an updated meta-analysis. J Huazhong Univ Sci Technol Med Sci 35 : 319-326, 2015
28. Akishima-Fukasawa Y, Nakanishi Y, Ino Y, Moriya Y, Kanai Y, Hirohashi S : Prognostic significance of CXCL12 expression in patients with colorectal carcinoma. Am J Clin Pathol 132 : 202-210, 2009
29. Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinnell MB : Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25 : 4986-4997, 2006
30. Teicher BA, Fricker SP : CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16 : 2927-2931, 2010
31. Otsuka S, Bebb G : The CXCR4 / SDF-1 chemokine receptor axis : a new target therapeutic for non-small cell lung cancer. J Thorac Oncol 3 : 1379-1383, 2008
32. Farhood B, Khodamoradi E, Hoseini-Ghafarokhi M, Motevaseli E, Mirtavaos-Mahtari H, Elejo Musa A, Najafi M : TGF-β in radiotherapy : mechanisms of tumor resistance and normal tissues injury. Pharmacol Res 155 : 104745, 2020
33. Ashrafizadeh M, Farhood B, Elejo Musa A, Taeb S, Najafi M : The interactions and communications in tumor resistance to radiotherapy : therapy perspectives. Int Immunopharmacol 87 : 106807, 2020
34. Li Q, Zong Y, Li K, Jie X, Hong J, Zhou X, Wu B, Li Z, Zhang S, Wu G, Meng R : Involvement of endothelial CK2 in the radiation induced perivascular resistant niche (PVRN) and the induction of radioresistance for non-small cell lung cancer (NSCLC) cells. Biol Res 52 : 22, 2019
35. Liang H, Deng L, Hou Y, Meng X, Huang X, Rao E, Zheng W, Mauceri H, Mack M, Xu M, Fu YX, Weichselbaum RR : Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun 8 : 1736, 2017
36. Kachikwu EL, Iwamoto KS, Liao YP, DeMarco JD, Agazaryan N, Economou JS, McBride WH, Schaeu D : Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys 81 : 1128-1135, 2011
37. Takahashi R, Amaro H, Ito Y, Eshima K, Satoh T, Iwamura M, Nakamura M, Kitasato H, Uematsu S, Raouf J, Jakobsson PI, Akira S, Majima M : Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b + Gr1 + MDSCs from bone marrow. Biomed Pharmacother 121 : 109581, 2020
38. Costa A, Kieffer Y, Scholer-Dahrel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C, Bonneau C, Kondratova M, Kuperstein I, Zinov'ev A, Givel AM, Purrini MC, Soumelis V, Vincent-Salomon A, Mechta-Grigoriou F : Fibroblast heterogeneity and immuno-suppressive environment in human breast cancer. Cancer Cell 33 : 463-479, 2018
39. Kajiyama H, Shibata K, Terauchi M, Ino K, Nawa A, Kikkawa F : Involvement of SDF-1alpha / CXCR4 axis in the enhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer 122 : 91-99, 2008
40. Liu SC, Alomran R, Chernikova SB, Larrey F, Stafford J, Jang T, Merchant M, Zborsalski D, Zöller S, Kruschinski A, Klussmann S, Recht L, Brown JM : Blockade of SDF-1 after irradiation inhibits tumor recurrences of autochthonous brain tumors in rats. Neuro Oncol 16 : 21-28, 2014
41. Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, Ochiai H, Kitahara S, Unan EC, Reddy TP, Fan C, Huang P, Bardeesy N, Zhu AX, Jain RK, Duda DG : CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 61 : 1591-1602, 2015