Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease

Yujia Li,1 Weiguo Fan,2 Frederik Link,1 Sai Wang,1,* Steven Dooley1,*

Summary
Transforming growth factor-β (TGF-β) is a potent effector in the liver, which is involved in a plethora of processes initiated upon liver injury. TGF-β affects parenchymal, non-parenchymal, and inflammatory cells in a highly context-dependent manner. Its bioavailability is critical for a fast response to various insults. In the liver – and probably in other organs – this is made possible by the deposition of a large portion of TGF-β in the extracellular matrix as an inactivated precursor form termed latent TGF-β (L-TGF-β). Several matrisomal proteins participate in matrix deposition, latent complex stabilisation, and activation of L-TGF-β. Extracellular matrix protein 1 (ECM1) was recently identified as a critical factor in maintaining the latency of deposited L-TGF-β in the healthy liver. Indeed, its depletion causes spontaneous TGF-β signalling activation with deleterious effects on liver architecture and function. This review article presents the current knowledge on intracellular L-TGF-β complex formation, secretion, matrix deposition, and activation and describes the proteins and processes involved. Further, we emphasise the therapeutic potential of toning down L-TGF-β activation in liver fibrosis and liver cancer.

Keywords: Latent TGF-β; ECM1; TGF-β activation; TGF-β signalling; Liver disease

Received 16 September 2021; received in revised form 28 October 2021; accepted 1 November 2021; available online 18 November 2021

© 2021 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Smad proteins consist of three classes with distinct functions, the receptor-regulated Smads (R-Smads), the co-mediator Smads (Co-Smads), and the inhibitory Smads (I-Smads). Ligand-activated type I kinase receptors phosphorylate R-Smads (Smad1, 2, 3, 5, and 8) at C-terminal serines. Phosphorylated R-Smads form hetero-oligomers with Co-Smads (Smad4). The activated heteromeric complexes then translocate into the nucleus, where they bind nuclear co-activators or co-repressors to direct chromatin decondensation and regulate target gene transcription in a context-dependent manner (Fig. 1B). Finally, the Smads may interact with a plethora of DNA-binding partners to initiate gene promoter activation or repression. Among the multiple potential target genes of Smad signalling are the I-Smads, Smad6 and Smad7. Both form negative feedback loops, inhibiting R-Smads activation and mediating posttranslational degradation of activated receptor complexes by recruiting the E3 ubiquitin ligases Smad ubiquitin regulatory factors 1/2 (Smurf 1/2) to the TGF-β receptor complex. In addition, I-Smads interfere with R-Smad and Co-Smad interactions, thus preventing transcriptionally active complex formation.

The canonical Smad pathway, TGF-β family ligands may also directly affect other major intracellular signalling mediators, including JNK, p38, ERK, PI3K-AKT, TAK1-IKK-NFκB, and Rho family GTPases (Fig. 1C). Activated by ligand-receptor complexes, non-Smad signalling transducers affect downstream cellular responses either by themselves or in crosstalk with the canonical Smad pathway. Non-Smad pathways significantly contribute to the complexity of TGF-β effects, providing multiple options for intracellular signal branching and mutual interactions at regulatory nodes, resulting in a strongly context-dependent cellular response.

Thus, although the TGF-β signalling pathway seems simple and linear, we know today that embedding the core components of the canonical TGF-β-Smad pathway within an extensive network of hierarchical protein-protein interactions leads to regulatory nodes at multiple levels that allow for substantial and network of hierarchical protein-protein interactions leads to downstream pathway branching and co-factor recruitment, to target gene promoter binding.

The pro-TGF-β dimer is cleaved into the TGF-β ligand and the latency-associated peptide (LAP) to form the small latent complex (SLC) via non-covalent interactions. The SLC is disulphide-bonded to the latency-associated peptide (LAP) to form the large latent complex (LLC). The LLC is secreted and stored as latent TGF-β (L-TGF-β) in the extracellular matrix via the LTBP.

L-TGF-β activation is mediated by several signals, including integrins, thrombospondin, proteases, as well as compounds and chemicals which act through proteolysis or induction of structural alterations, all resulting in dissociation of the LAP.

Extracellular matrix protein 1 (ECM1) protects L-TGF-β from integrin-mediated activation by competitively binding to the arginine-glycine-aspartic acid (RGD) motif present in most integrins.

ECM1 depletion in the liver leads to robust spontaneous L-TGF-β activation, the release of the active ligand, and massive R-Smads activation in target cells, especially hepatic stellate cells, leading to progressive fibrosis and rapid mortality, indicating ECM1 as a gatekeeper for homeostasis in a healthy liver.

Intracellular formation and secretion of the latent TGF-β complex

TGF-β family mRNA is translated into pre-pro-TGF-β protein, which is transported into the endoplasmic reticulum (ER) after cleavage of the N-terminal signal peptide, where two pro-TGF-β polypeptide chains fold into a disulphide-bonded dimer. Upon trafficking into the trans-Golgi, furin or furin-like proteases remove the mature TGF-β family ligand by proteolytic cleavage from the pro-polypeptide, which, however, remains non-covalently associated. The dimeric complex consisting of the pro-peptides (latency-associated peptide (LAP)) and the TGF-β dimer is termed the small latent complex (SLC). The non-covalent association of the components in the SLC involves extensive but reversible structural changes in the LAP. Three cysteines in LAP are required for LAP-mediated activation by competitively binding to the arginine-glycine-aspartic acid (RGD) motif present in most integrins. Cell death is induced, indicating ECM1 as a gatekeeper for homeostasis in a healthy liver.

Thus, although the TGF-β signalling pathway seems simple and linear, we know today that embedding the core components of the canonical TGF-β-Smad pathway within an extensive network of hierarchical protein-protein interactions leads to regulatory nodes at multiple levels that allow for substantial and highly context-dependent versatility. For example, at the receptor level, accessory receptors such as TGF-βRIII and endoglin facilitate ligand binding. Furthermore, TGF-β receptor trafficking has also emerged as an essential regulator of Smad signalling, indicating that the availability and activity of numerous components of the endosomal and trafficking system may have a critical impact. Finally, TGF-β signalling has cell type-specific outcomes. For example, TGF-β receptor modulates apical-basal polarity through Par6 and other components of the polarity complex in epithelial cell types, a feature that is disturbed during epithelial-to-mesenchymal transition (Fig. 1D).

In fibroblasts, TGF-β drives cellular activation, in immune cells it is principally anti-inflammatory, whereas its effect on endothelial cells is pro-angiogenic.

The present review will focus on the regulation of ligand bioavailability by intracellular and extracellular mechanisms at the TGF-β family protein level. We will describe the mechanisms and interactions that facilitate or interfere with the conversion of extracellular matrix (ECM)-deposited latent TGF-β (L-TGF-β) into an active signalling ligand (Tables 1 and 2).

Key points

- Transforming growth factor-β (TGF-β) signalling from the cell surface to the nucleus is regulated at multiple levels, starting from ligand activation, receptor complex formation, endocytosis, and recycling, via downstream pathway branching and co-factor recruitment, to target gene promoter binding.

- The pro-TGF-β dimer is cleaved into the TGF-β ligand and the latency-associated peptide (LAP) to form the small latent complex (SLC) via non-covalent interactions. The SLC is disulphide-bonded to the latent TGF-β binding protein (LTBP) to form the large latent complex (LLC). The LLC is secreted and stored as latent TGF-β (L-TGF-β) in the extracellular matrix via the LTBP.

- L-TGF-β activation is mediated by several signals, including integrins, thrombospondin, proteases, as well as compounds and chemicals which act through proteolysis or induction of structural alterations, all resulting in dissociation of the LAP.

- Extracellular matrix protein 1 (ECM1) protects L-TGF-β from integrin-mediated activation by competitively binding to the arginine-glycine-aspartic acid (RGD) motif present in most integrins.

- ECM1 depletion in the liver leads to robust spontaneous L-TGF-β activation, the release of the active ligand, and massive R-Smads activation in target cells, especially hepatic stellate cells, leading to progressive fibrosis and rapid mortality, indicating ECM1 as a gatekeeper for homeostasis in a healthy liver.
ALK-4, ALK-5, ALK-7 and ALK-1, ALK-2, respectively) form hetero-oligomers with Co-Smads (Smad4), and the heteromeric complexes then translocate into the nucleus, where, in conjunction with variant co-factors and DNA-binding partners, such as c-Fos, c-Jun, ELF, or Ski, SnoN, and CEBP, they modulate chromatin decondensation and regulate target gene transcription. The I-Smads Smad6 and Smad7, which are direct transcriptional targets of Smad signalling, form crucial negative feedback loops to TGF-β signalling. They inhibit TGF-β-stimulated proliferation and are less prone to hepatic fibrosis.

Table 1. Compounds, nucleic acids and peptides described as extracellular modulators of TGF-β signalling activation (in the order of appearance).

Molecules/compounds	Function	Ref.
MIR100HG	Long noncoding RNA, controls the magnitude of TGF-β signalling in carcinomas	39
GM6001	Metalloprotease inhibitor, abrogates αvβ3-mediated TGF-β activation in airway fibroblasts and SW480 cells	86,88
c8	Synthetic compound with inhibitory activity on αvβ3 integrin and downstream L-TGF-β activation in fibroblasts	103
CWHM12	Small molecule inhibitor of αv integrins, potential anti-fibrotic effects	105
LSLK	Peptide that blocks TSP-1-mediated TGF-β signalling activation	118
KRFK	TSP-1-derived TGF-β1 activating peptide	118
NDMA	Organic chemical, induction of hepatic fibrosis in mouse model	131
LAP-DP	Valuable biomarkers for monitoring L-TGF-β activation and the clinical course of chronic liver diseases	130
cRGD	Synthetic peptide blocking the interaction of αv integrin and L-TGF-β	182

LAP, latency-associated peptide; LAP-DP, LAP degradation product; L-TGF-β, latent TGF-β; NDMA, N-nitrosodimethylamine; TGF-β, transforming growth factor β; TSP-1, thrombospondin 1.

Fig. 1. The TGF-β-signalling pathway. The scheme comprises different ligands and receptors of the TGF-β family, canonical Smad and non-canonical signalling pathways, and the network of regulatory interactions at multiple levels from the cell surface to the nucleus. (A) TGF-β family members, including TGF-β1, TGF-β2, TGF-β3, activins, inhibins, BMPs, nodal, MIS, and GDFs, initiate multiple cellular responses and cell fate decisions. (B) Secreted as protein ligands in latent and inactive forms, upon activation they may be presented by type III receptors (TGFrIII or Endoglin) lacking kinase activity to the signalling receptor complex, consisting of heteromeric type II and type I receptors. Ligand binding to transmembrane type II receptors (e.g. TGFrII, ACTRII, BMPRII) leads to autophosphorylation, recruitment and phosphorylation of type I receptor kinases (e.g. ALK-4, ALK-5, ALK-7 and ALK-1, ALK-2), thus forming a ligand-receptor complex to phosphorylate and activate the canonical Smad signalling pathway. Activated R-Smads (Smad2, Smad3 and Smad1, Smad5, Smad8, can be phosphorylated by ALK-4, ALK-5, ALK-7 and ALK-1, ALK-2, respectively) form hetero-oligomers with Co-Smads (Smad4), and the heteromorphic complexes then translocate into the nucleus, where, in conjunction with variant co-factors and DNA-binding partners, such as c-Fos, c-Jun, ELK, or Smi, and CEBP, they modulate chromatin decondensation and regulate target gene transcription. The I-Smads Smad6 and Smad7, which are direct transcriptional targets of Smad signalling, form crucial negative feedback loops to TGF-β signalling. (C) Non-Smad TGFβRII signalling pathways are also frequently involved in regulating intracellular TGF-β signalling. TAK1 plays a central role, potentially coordinating the activation of MAPK signalling, including JNK, p38 MAPK, and NF-kB signalling. MEK-ERK, PI3K-AKT and some Rho family members like GTPases were also identified in the large TGF-β signalling crosstalk. (D) TGF-β signalling regulation occurs at multiple levels in extracellular and intracellular spaces. Thereby, the core components of the TGF-β-Smad signalling pathway are embedded within a huge network of hierarchical protein-protein interactions, leading to regulatory nodes at multiple levels. BMPs, bone morphogenetic proteins; Co-Smad, co-activator Smad; L-Smad, inhibitory Smad; GDFs, growth differentiation factors; MIS, Müllerian-inhibiting substance; R-Smad, receptor-regulated Smad; TGF-β, transforming growth factor β.

Protecting TGF-β from activation, and could be an important modulator of the biological activity of TGF-β in normal and diseased liver. Ltbp1 knockout (KO) mice exhibit reduced TGF-β activity and are less prone to hepatic fibrogenesis. Further, gene expression profiling of cultured hepatic stellate cells (HSCs) confirmed that Ltbp1 KO cells are less receptive to cellular activation and less prone to transdifferentiation into myofibroblasts, which indicates that LTBP-1 has essential functions in TGF-β-
mediated HSC activation. In hepatocellular carcinoma (HCC), mRNA analysis and immunostaining showed that while LTBP-1 was upregulated, LTBP-1D was not detectable in the matrix. LTBP-1 in circulating plasma has thus been suggested as a novel biomarker for the early detection of HCC. Aryl hydrocarbon receptor (AhR) signalling negatively regulates LTBP-1 expression. Myofibroblasts from Ahr KO mice overexpress LTBP-1 and secrete 4-fold more active TGF-β than those from wild-type mice. mRNA and protein levels of LTBP-2 are significantly upregulated in HCC tissues compared to adjacent normal liver.

Table 2. Physiological proteins able to modulate extracellular TGF-β signalling activation (in the order of appearance).

Physiological proteins	Function	Ref.
Fibrillin-1	ECM structural protein, facilitates the deposition of L-TGF-β	63
Fibronectin	ECM structural protein, facilitates the deposition of L-TGF-β	73,74
Decorin	Storage of TGF-β in the ECM, decreases TGF-β activity	75,76
rhDecorin	Inhibition of TGF-β activity in HSCs	79
αv Integrins	Cell adhesion molecules, activate L-TGF-β and downstream signalling	85,88
Thrombospondin	ECM protein, activates L-TGF-β	114,116
ADAMTS	Facilitates the activation of L-TGF-β in HSCs	123
ADAMTS16	Activates L-TGF-β in cardiac fibroblasts	124
MMPs	Facilitate the activation of L-TGF-β	126,127,131
BMP1/tolloid MMPs	Regulate L-TGF-β activation via cleavage of LTBP	134
Kallikreins	Facilitate the activation of L-TGF-β	136,137
Prostate-specific antigen	Specifically activates L-TGF-β in prostate cells	140
Plasmin	Regulates the activation of L-TGF-β in co-cultures of pericytes and endothelial cells, in retinoid-treated endothelial cells, and on activated macrophages surfaces	141,142,143-147
ECM1	Inhibits αv integrin-mediated L-TGF-β activation	170,183
rECM1	Inhibitory effect on L-TGF-β activation in BMDCs and HSCs	179

ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; BMDCs, bone marrow-derived dendritic cells; BMP1, bone morphogenetic protein 1; ECM, extracellular matrix; ECM1, extracellular matrix protein 1; HSCs, hepatic stellate cells; L-TGF-β, latent TGF-β; MMPs, matrix metalloproteinases; rECM1, recombinant ECM1; rhDecorin, recombinant human Decorin; TGF-β, transforming growth factor β.

Fig. 2. Graphical summary of TGF-β protein production, secretion, matrix deposition, and maturation. (A) (starting at the bottom) After translation of pre-pro-TGF-β, the N-terminal signal peptide is cleaved to yield pro-TGF-β which translocates into the ER (lower right), where pro-TGF-β molecules dimerise and form disulphide bonds to LTBP, forming a ternary complex. The TGF-β dimer is cleaved from its pro-peptide in the trans-Golgi (lower left) but remains strongly associated with the LAP via non-covalent interactions. TGF-β and LAP form the SLC, which together with LTBP comprise the LLC. (B) Once secreted (middle left), the latent TGF-β is deposited into the extracellular matrix (C) (upper left), thanks to the high affinity of LTBP to various matrix components, such as fibronectin, fibrillin, and decorin. (D) (upper right) Numerous factors, like physiological proteins including proteases, thrombospondin and integrins, physical conditions and chemicals, including ROS and lactic acid, participate in activation of latent TGF-β, leading to the release of the mature TGF-β signalling ligand. The active ligand then binds to the cell surface receptors (E) (middle right) to regulate a wide variety of downstream signalling pathways and cellular responses. 18 ER, endoplasmic reticulum; LAP, latency-associated peptide; LLC, large latent complex; LTBP, latent TGF-β binding protein; ROS, reactive oxygen species; SLC, small latent complex; TGF-β, transforming growth factor β.
non-tumour tissue. Similarly, patients with HCC display higher serum LTBP-2 levels than controls, in line with the tumour’s malignant degree, progression, differentiation, size, and stage, and with hepatitis virus infection, suggesting that LTBP-2 has prognostic implications in patients with HCC.49,50 LTBP-4 exists as two N-terminally distinct isoforms, LTBP-4S (short) and LTBP-4L (long). The liver mainly expresses LTBP-4L, whereby LTBP-4L is secreted as a complex with TGF-\(\beta\), whereas most LTBP-4S is free. Moreover, LTBP-4S is incorporated into the ECM, whereas LTBP-4L was not readily detectable in the ECM.51 LTBP-4 is present in muscle and was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice. Two different alleles were found: one, containing a 12 amino acid insertion in the hinge region, had an enhanced affinity for L-TGF-\(\beta\) and led to reduced muscle fibrosis. LTBP-4 protein lacking those 12 amino acids is more susceptible to proteolysis and L-TGF-\(\beta\) activation, further supporting the important role of the hinge region. Moreover, a monoclonal human anti-LTBP-4 antibody directed towards the hinge region bound LTBP-4, inhibited proteolytic cleavage, and was beneficial in a mouse model of muscular dystrophy. Combining treatment with anti-LTBP-4 plus prednisone, the standard of care treatment for Duchenne muscular dystrophy, further improved muscle function and protected against injury in mice.52

TGF-\(\beta\) and its isoforms are principally secreted from cells in the latent and inactive form, either as SLC or LLC (Fig. 2B). After the cleavage process in the trans-Golgi, the LLC is prepared for secretion. LTBP’s serve as chaperones to enhance the folding and secretion of pro-TGF-\(\beta\).53 While SLC secretion has sometimes been observed, it takes longer than for LLC due to the lack of LTBP’s.54,55 Without LTBP’s, most of the SLC stays in the Golgi apparatus in a latent and immature form.56 Tryptic digestion confirmed that without LTBP’s, the precursor dimer contains improper disulphide bonding.57 Furthermore, transgenic mice with a LAP carrying a substitution of Cys-33, the cysteine required for the interaction with LTBP, exhibit an inflammatory and tumorigenic phenotype similar to Lgfb1 null mice.58 The secretion of LTBP-3 also depends on binding to TGF-\(\beta\), whereas LTBP-1, LTBP-2, and LTBP-4 can be secreted without linkage to TGF-\(\beta\).59,60 Secretion of L-TGF-\(\beta\) was also linked to autophagy since it was abrogated in macrophages with depleted RHOA (autophagic component).61 Additionally, a long noncoding RNA, MIR100HG, induced by muscular dystrophy, further improved muscle function and was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice.52

TGF-\(\beta\) and its isoforms are principally secreted from cells in the latent and inactive form, either as SLC or LLC (Fig. 2B). After the cleavage process in the trans-Golgi, the LLC is prepared for secretion. LTBP’s serve as chaperones to enhance the folding and secretion of pro-TGF-\(\beta\).53 While SLC secretion has sometimes been observed, it takes longer than for LLC due to the lack of LTBP’s.54,55 Without LTBP’s, most of the SLC stays in the Golgi apparatus in a latent and immature form.56 Tryptic digestion confirmed that without LTBP’s, the precursor dimer contains improper disulphide bonding.57 Furthermore, transgenic mice with a LAP carrying a substitution of Cys-33, the cysteine required for the interaction with LTBP, exhibit an inflammatory and tumorigenic phenotype similar to Lgfb1 null mice.58 The secretion of LTBP-3 also depends on binding to TGF-\(\beta\), whereas LTBP-1, LTBP-2, and LTBP-4 can be secreted without linkage to TGF-\(\beta\).59,60 Secretion of L-TGF-\(\beta\) was also linked to autophagy since it was abrogated in macrophages with depleted RHOA (autophagic component).61 Additionally, a long noncoding RNA, MIR100HG, induced by muscular dystrophy, further improved muscle function and was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice.52

Deposition of the latent TGF-\(\beta\) complex in the extracellular matrix

The secreted LLC is rapidly deposited in the ECM via the association of LTBP’s with ECM proteins.65 Immunofluorescence studies revealed two ECM-binding regions of LTBP-1, one at the N-terminus and another at the C-terminus.66 In addition, interaction studies showed that LTBP’s bind to fibrillin fibres, fibronectin, and decorin (Fig. 2C).

Fibrillin-1 is the main ECM structural protein in humans and comprises 43 calcium-binding epidermal growth factor-like domains, 7 TGF-\(\beta\) binding protein-like domains, and an integrin-binding region.67 The C-terminal domains of LTBP-1, LTBP-2, and LTBP-4 contain flexible linkers for binding to the N-terminus of fibrillin.68 LTBP-3 does not interact with fibrillin.63,64 In most cases, the assembly of the LLC with fibrillin fibres requires fibronectin, suggesting that a fibrillin/fibronectin network is responsible for the incorporation of LTBP/L-TGF-\(\beta\) into the ECM.65,66

Fibronectin (Fn) is an ECM glycoprotein that influences cell adhesion, migration, growth, and differentiation; it is particularly important in vertebrate development.67-69 Fn is strongly expressed by multiple cell types and displays a profusion of interactions with collagens, integrins, fibrin, syndecans, and heparan sulphate proteoglycans, thus playing a crucial role in assembling complex fibrillar networks. Fn contains an arginine-glycine-aspartic acid (RGD) motif, the most common sequence required for cell attachment to the ECM,70 which supports its central position in fibrillogenesis through binding to \(\alpha\)-class integrins.69,71 Functional Fn is usually a dimer of 220 to 250 kDa subunits, covalently linked at their C-termini by a pair of disulphide bonds. Fn possesses two aggregated forms, the soluble plasma Fn (pFn), and the insoluble cellular Fn (cFn). pFn is mainly synthesised in the liver by hepatocytes and circulates in the blood, while cFn is secreted by various cell types, including fibroblasts and HSCs.72 Upon synthesis and secretion, cFn joins the ECM. Colocalisation of Fn and LTBP-1 was documented by double immunofluorescence.73,74 Biochemical investigations indicate that Fn associates with a specific sequence of the LTBP-1 hinge domain, mediates localisation of the LLC into the ECM for storage, and is also required for subsequent activation by integrin \(\alpha\)\(v\)\(\beta\)6.

Decorin (DCN) is a small chondroitin-dermatan sulphate proteoglycan composed of a core protein with a single glycosaminoglycan chain near the N-terminus, 12 leucine-rich repeats, and N-glycosylation at three sites. The protein sequence comprises ten 24 amino acid repeats with a large proportion of leucine, also present in two other members of the DCN family, biglycan and fibromodulin. Decorin and biglycan do not bind L-TGF-\(\beta\), while all tested proteoglycans of the DCN family can bind the active forms of 3 TGF-\(\beta\) isoforms.75 Collagenase treatment induces the release of biologically active TGF-\(\beta\) from collagen-bound decorin, indicating that decorin participates in the storage of TGF-\(\beta\) in the ECM.76 Decorin decreases TGF-\(\beta\) activities in two ways, by sequestering the activated ligand into the ECM and by competitive inhibition of TGF-\(\beta\) binding to its receptors.77 In vivo, DCN plays a protective role in liver fibrogenesis insofar as its genetic ablation in mice leads to enhanced matrix deposition, impaired matrix degradation, and activation of HSCs. TGF-\(\beta\) exerts a more potent effect when DCN is absent.78 Blunting TGF-\(\beta\) in the Decorin KO setting is sufficient to reduce spontaneous collagen gel contraction activity, further confirming a regulatory interaction between decorin and TGF-\(\beta\).79 Recombinant human decorin (rhDecorin) treatment inhibits the proliferation of TGF-\(\beta\)-stimulated LX-2 cells, as well as the expression of metalloproteinase-2 (MMP-2), tissue inhibitor of metalloproteinase-1 (TIMP-1), alpha-smooth muscle actin (\(\alpha\)-SMA), collagen type III, and Smad2 phosphorylation.79 However, intrinsic expression of decorin along with TGF-\(\beta\) in liver tissue of 43 patients with chronic hepatitis cirrhosis did not prevent liver fibrosis progression.80 Overall, decorin is a highly specific natural inhibitor of TGF-\(\beta\).81

Activation of TGF-\(\beta\) signalling ligands from ECM storage

As mentioned, TGF-\(\beta\) is present in a latent complex in the ECM until a specific signal triggers its release.82 Several L-TGF-\(\beta\) regulators exist, including integrins, thrombospondin, proteases,
Integrins are transmembrane cell adhesion molecules. Heterodimeric receptors, consisting of α and β subunits on the outside of the cell surface, they link the ECM with the intracellular actin cytoskeleton and regulate specific signal transduction cascades.83 Hence, they mediate communications between the ECM and cells, for instance, to trigger tissue fibrosis initiation, maintenance, and resolution. They possess the RGD tripeptide binding domain required for their interaction with L-TGF-β.54-90

We currently know 24 integrin heterodimers. Eight of these, namely αvβ1, αvβ3, αvβ5, αvβ6, αvβ8, αvβ5, αvβ6, and αvβ13, can bind the RGD motif. Mice deficient in integrin subunit genes Itgb3, Itgb5, or Itgb6, and selectively deficient in Itgb8 in hematopoietic cells are still sensitive to carbon tetrachloride (CCl4)-induced experimental liver fibrosis in mice, whereas mice with myofibroblasts deficient in the Itgav gene are protected.95 Exaggerated inflammatory diseases develop in the lungs and skin of mice with alterations in the integrin β6 subunit.91 Inhibition of αvβ6 and αvβ8 reproduces the developmental phenotype of mice deficient in TGF-β1 and TGF-β3,92 suggesting that these two integrins are required for most of these TGF-β isoforms’ functions during development. Although, in principle, all αv integrins have the potential to activate L-TGF-β, mice deficient in αvβ3 or αvβ5 do not phenocopy TGF-β1 deficiency. Both are weaker binding integrins but may activate TGF-β1 signalling to some extent in vitro.93,94

L-TGF-β activation by αvβ6 integrins requires LAP’s RGD motif and the integrin’s cytoplasmic sequences that anchor the actin cytoskeleton. Upon secretion, cell surface-bound integrin provides cell contractile forces to the L-TGF-β complex via binding to the LAP’s RGD motif. Since LTBP-1 – part of the complex – is attached to the stiff ECM, the binding of integrin creates counter traction deforming LAP, thereby facilitating the release of mature TGF-β.95-97 This mechanism was experimentally confirmed by contracting myofibroblast cytoskeletons and integrins or anti-LAP antibody-coated ferromagnetic beads in a cell-free matrix.96 The activation of L-TGF-β by αvβ6 is different from αvβ6. αvβ8 activates L-TGF-β by presenting LAP complexes to cell surface matrix metalloproteinases (MMPs) for degradation, subsequently releasing TGF-β. αvβ8-mediated activation can be blocked by an MMP inhibitor (GM6001) and does not need integrin’s cytoplasmic domain, suggesting a traction-independent, probably protease-dependent mechanism involving the recruitment of MMPs to facilitate LAP cleavage.96,98

The physiological relevance of integrin-mediated L-TGF-β activation was confirmed in mice, where an RGE sequence was used to replace the RGD motif in TGF-β1-LAP, resulting in a phenotype similar to Tgfb1 KO mice with multiorgan inflammation and lack of epidermal Langerhans cells.92,99 The integrin-binding RGD sequence is thus essential for both αvβ6 and αvβ8 integrin-mediated L-TGF-β activation.

L-TGF-β activation by integrins is an important cell fate decision mechanism during development and in response to TGF-β-driven organ diseases, especially fibrosis,100 wherein depletion of integrins in mouse models attenuates disease severity in the liver, lungs, and kidneys.85,101 Integrin αvβ6 mRNA is increased in patients with fibrotic liver disease secondary to various aetiologies (primary biliary cholangitis, alcohol-induced liver disease, hepatitis B and C), and a correlation with fibrosis stage has been documented for hepatitis C.102 In contrast, no protective effect on liver fibrogenesis was found in the liver of αvβ6-deficient mice.

c8, a synthetic compound with inhibitory activity on αvβ1 integrin, can interfere with the adhesion of TGF-β1 LAP to fibroblasts.103 Systemic delivery of c8 reduces CCL4-mediated liver fibrosis in mice.89 Current knowledge on the role of integrins in the induction of TGF-β activity suggests that RGD binding could be a promising target for antifibrotic therapies. CWM12M, a small molecule integrin antagonist that simultaneously and selectively targets several profibrogenic integrins, improved liver, lung, muscle, and pancreatic fibrosis in mouse injury models.104,105 Recently, hepatic steatosis, liver injury, inflammation, and fibrogenesis due to long-term high-fat diet feeding were decreased by CWM12M treatment.106 Extensive in vitro assays using a two-cell integrin-dependent TGF-β reporter system could discriminate L-TGF-β activation mechanisms in TGF-β1, 2, and 3, suggesting that the latent forms of TGF-β2 and TGF-β3 can be activated by integrin-independent mechanisms, which is not the case for TGF-β1. The presence of integrin further increased TGF-β3-dependent reporter activity by another 51%, which was blunted by mutating the RGD motif. Since TGF-β2 lacks an RGD motif, its activation is probably completely independent of integrin. Further, the furin cleavage sites conserved in all three TGF-β isoforms are required for integrin-dependent as well as for integrin-independent TGF-β activation. Finally, it has been shown that LAP1 more efficiently inhibits receptor binding of all three TGF-β isoforms than LAP2 or LAP3, suggesting that the respective LAP domains are involved in the observed intrinsic activities of TGF-β2 and TGF-β3.107

Thrombospondin (TSP) is a secreted matrisomal protein deposited in the ECM or bound to cellular receptors found in connective tissues and platelets. During tissue injury and repair its expression is rapidly induced by growth factors, including TGF-β, leading to the conversion of L-TGF-β to its biologically active mature form through a non-proteolytic mechanism.108,109 This action, confirmed in different environments like in solution, at the cell surface, or in the extracellular milieu,110 is relevant to diverse health conditions, including wound healing, immune responses, renal fibrosis, diabetes, myocardial infarction, tumour progression, and experimental autoimmune uveoretinitis.111 TSPs are disulphide-linked homotrimers (subgroup A, comprising TSP-1 and TSP-2) or homopentamers (subgroup B, comprising TSP-3, TSP-4, TSP-5).112,113 The interaction between TSPs and TGF-β is specific to TSP subgroup A members.114 The WSHWS/SPW motif in the second thrombospondin type 1 repeat (TSR) of TSP-1 and TSP-2 can bind to VLAL motifs present in both TGF-β1 and the LAP,114,115 thus localising inactive TGF-β1 at specific sites within the ECM or in proximity to cell surfaces.114 Another interaction between a KRKF sequence of the second TSR and a conserved LSKL motif in the LAP can activate all three mammalian TGF-β isoforms by triggering their release from the SLC.114,116 TSP-2 cannot activate TGF-β due to the lack of a KRKF motif but can competitively antagonise TSP-1-mediated TGF-β activation.114

Colony formation assays showed that TSP is similarly efficient in activating the large (platelet-derived) and small forms of L-TGF-β. Gel permeation chromatography suggested a direct binding of TSP to the LAP. Furthermore, a polyclonal antibody specific for the N-terminal region of the LAP inhibits TSP-mediated activation of L-TGF-β.117 Young Tgfb1 KO and Tsp1 KO mice exhibit remarkably similar histological abnormalities in 9 organ systems, suggesting that TSP-1 is also largely responsible for TGF-β1 activation in vivo, in contrast to many other binding partners involved in storage and activation of L-TGF-β. Systemic
treatment with a peptide (LSKL) blocking the activation of TGF-β1 by TSP-1 is sufficient to induce pathologies in the lungs and pancreas that are similar to those observed in Tgfb1 KO mice. In contrast, when using a TSP-1 peptide (KRFK) that activates TGF-β1, biologically active TGF-β can be detected in situ, and the abnormalities are reverted. In addition, the TSP-1 derived from antigen-presenting cells that activates L-TGF-β2 is essential for the adaptive regulatory immune response induced by TGF-β2-expressing antigen-presenting cells and subsequent peripheral immune tolerance in TGF-β2-expressing tissues.

TSP-1 is expressed in quiescent and activated cultured HSCs, and to a minor extent in Kupffer cells and liver sinusoidal endothelial cells in normal livers, but not in hepatocytes. Platelet-derived growth factor BB, a profibrogenic mediator, and to a minor extent TNFα, induce TSP-1 expression in HSCs, thus enhancing TSP-1-dependent TGF-β/Smad signalling. In HSCs, an LSKL peptide, specifically blunting the interaction between TSP-1 and L-TGF-β or antibodies against TSP-1, similarly inhibits the activation of L-TGF-β and active TGF-β3's downstream effects. Liver TSP-1 levels were increased in experimental obese and insulin-resistant NAFLD/NASH mouse models and in obese patients with NASH. Tsp1 deletion in adipocytes does not protect mice from diet-induced NAFLD/NASH, whereas myeloid/macrophage-specific Tsp1 deletion protects mice against liver injury. Autocrine-acting macrophage-derived TSP-1 suppresses SPPDL3B expression, thereby increasing Toll-like receptor 4-injury. Autocrine-acting macrophage-derived TSP-1 suppresses SPPDL3B expression, thereby increasing Toll-like receptor 4-injury. Autocrine-acting macrophage-derived TSP-1 suppresses SPPDL3B expression, thereby increasing Toll-like receptor 4-injury. Autocrine-acting macrophage-derived TSP-1 suppresses SPPDL3B expression, thereby increasing Toll-like receptor 4-injury. Autocrine-acting macrophage-derived TSP-1 suppresses SPPDL3B expression, thereby increasing Toll-like receptor 4-injury.

Recently, BMP-1 was shown to be an activator of TSP-1 and an antagonist of TGF-β signalling. Besides acting as a vital regulator of TGF-β activation, TSP also has TGF-β-independent biological functions, e.g., on haemostasis, growth factor regulation, cell adhesion, migration, vascular barrier function, inflammation, inhibition of angiogenesis, and nitric oxide signalling through association with multiple integrins and other receptors.

Several proteases belonging to different categories can activate L-TGF-β in vitro, including cysteine proteases like ADAMTS, and numerous serine proteases like MMPs, kallikreins, and plasmin. However, the relevance of these various proteases for L-TGF-β activation in vivo is unclear, as mice lacking individual proteases fail to show Tgfb KO phenotypes, perhaps due to functional redundancy.

A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) may activate L-TGF-β leading to increased expression of TGF-β target genes in HSCs, which themselves produce more ADAMTS1 when activated. ADAMTS1 expression is also upregulated in mice with CCL3-induced liver fibrosis in parallel with type 1 collagen. Another protease of this family, ADAMTS16, may activate L-TGF-β in cardiac fibroblasts via its RRFR-motif.

Matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases. Despite documented activity on L-TGF-β, their actual physiological impact on TGFβ activation is not clear-cut. When presented to the tumour cell surfaces via CD44 during angiogenesis, MMP2 and MMP9 activate L-TGF-β. MMP3 from chondrocyte-derived vesicles can activate small L-TGF-β1 whereas MMP2, also present in the same vesicles, cannot. None of the many mice lacking these proteases clearly showed Tgfb KO phenotypes. MMP3 inactivation produces mice with no obvious abnormalities, and mice lacking MMP13 develop only minor skeletal defects. Mice lacking both MMP2 and MMP9 expression can survive, like mice lacking MMP9 and MMP13, although these mice are very small because of the defects in their growth plates. Levels of activated TGF-β and the fibrogenic markers connective tissue growth factor, α-SMA, type I collagen, and TIMP-1 are significantly decreased in Mmp13 KO mice compared to WT mice following N-nitosodimethylamine treatment. Mice deficient in Mmp14 display osteopenia, dwarfism, and fibrosis, but this is likely due to collagen turnover deficiencies rather than insufficient TGF-β activation. MMP2- and MMP14-deficient mice suffer from respiratory failure, abnormal vascular development, immature muscle fibres, and die soon after birth. However, it is difficult to match these phenotypes to defective TGF-β signalling. Bmp1/tolloid1 MMPs also regulate L-TGF-β activation. Rather than degrading LAP directly, they promote the cleavage of LTBP-1 from the ECM, thereby freeing L-TGF-β bound to LTBP-1, which subsequently requires activation by other mediators, like MMPs. Bmp1 KO mice with additional deletion of the closely related tolloid1 (Tll1) protease exhibit excessive deposition of LTBP-1 and reduced positive staining of phospho-Smad2/3 in embryonic tissues, suggesting a defect in L-TGF-β activation. Mice deficient in both BMP1 and Tll1 expression die before birth. However, their impacts on various other matrix and signalling molecules, and their importance for L-TGF-β activation in vivo, warrant further investigations.

Kallikreins can activate L-TGF-β, for example, in the context of TGF-β-mediated immunosuppression and downstream of lipopolysaccharide during liver regeneration. TGF-β1 LAP can be cleaved by plasma kallikrein in Arg-58 and Arg-59. The LAP degradation products (LAP-DP) are increased in liver tissue of patients with hepatic fibrosis. Similarly, in patients with chronic liver diseases, Arg-58/LAP-DP were found around the stages F1 than in more advanced stages. Similar observations in the plasma of patients suggest that plasma kallikrein-mediated TGF-β activation is an early step in liver fibrogenesis and that Arg-58 and Arg-59/LAP-DPs are valuable biomarkers for monitoring the clinical course of chronic liver diseases. The authors also observed significantly higher expression of tissue LAP-DP in liver samples of patients with NAFLD compared to patients with HCV-induced liver fibrosis, indicating a potential role of aetiology. Prostate-specific antigen, another kallikrein family member, may activate L-TGF-β, but not L-TGF-β.

Plasmin regulates TGF-β activation in co-cultures of pericytes and endothelial cells, an activation abrogated by antibodies against LTBP-1 and inhibitors of the mannose-6-phosphate receptor. Similarly, plasmin activates L-TGF-β in cultures of retinoid-treated endothelial cells and on the surface of activated macrophages. The activation by macrophages depends on plasmin and L-TGF-β bound to the cell surface by TSP1 and CD36.

Other binding proteins, including F-spondin, neuropilin, pregnancy-specific glycoprotein 1, tenasin-X, neuregulin, and cadherin-11 also, under certain conditions, have been identified as promoters of L-TGF-β activation, but more in-depth analyses are required. m-calpain’s 80 kDa subunit, which requires chondroitinase ABC-sensitive proteoglycan for attachment to cell surfaces, may also activate L-TGF-β independently of plasmin.

Activation by physical conditions and chemicals compounds Exposure to specific physical or chemical conditions, such as detergents, chaotropic agents, ionising or UV radiation,
reactive oxygen species (ROS) and physical shear stress, and extreme pH can activate L-TGF-β.

For example, in cell culture and cell-free systems, ROS activate L-TGF-β efficiently. ROS also seem to regulate L-TGF-β activation caused by ionising and UV-B radiation. Low pH-mediated L-TGF-β activation may play a physiological role in some circumstances. For example, extracellular pH is reduced to 4.5 by osteoclasts during bone resorption, which leads to L-TGF-β activation. Lactic acid might promote TGF-β activity at specific concentrations and therefore has a physiological function in idiopathic pulmonary fibrosis. Physical shear or stirring can facilitate the activation of L-TGF-β released by platelets, depending on LTBP binding to LAP. Although there is convincing evidence that many physicochemical factors play essential roles in TGF-β activation, the detailed biological mechanisms are still unclear.

ECM1 – a new player in latent TGF-β activation

Extracellular matrix protein 1 (ECM1) is an 85-kDa glycoprotein widely distributed in human tissues. It is present within the epidermis and the dermis, where it maintains skin integrity and homeostasis. ECM1 dysfunction may result in two skin diseases, lipidosis (a rare autosomal recessive genodermatosis) and lichen sclerosus (a common acquired inflammatory skin disorder). Both have common clinicopathological features, including skin hyperkeratosis, a hyaline appearance of the papillary dermis, and disruption of basement membranes. In addition, ECM1 can also regulate endochondral bone formation or enhance endothelial cell proliferation.

Most ECM1 functions are mediated via interaction with various extracellular and structural proteins, such as perlecain, fibulin-1C/D, and MMPs (e.g., MMP9). Specifically, ECM1 interacts via its C-terminal domain with the epidermal growth factor-like modules flanking the LG2 subdomain of perlecain’s domain V.

Disruption of this association seems to be responsible for some pathological features observed in lipidosis proteinosis and lichen sclerosus. ECM1’s second tandem repeat domain interacts with the main interactive domain of fibulin-1D and the C-terminal module of fibulin-1C. Fibulin-1D binding to ECM1 has been suggested to reduce endothelial cell proliferation and angiogenesis, thus reducing tumour transformation and invasion. ECM1’s C-terminal tandem repeat 2 interacts with MMP9, thereby inhibiting its proteolytic activity in vitro. In addition, ECM1 also interacts with αv integrin, one of the aforementioned physiological regulators of L-TGF-β activation.

ECM1 inhibits differentiation of IL-17-producing T helper (Th17) cells and the development of experimental autoimmune encephalomyelitis through interference with αv integrin-mediated L-TGF-β activation, suggesting clinical importance in multiple sclerosis. Furthermore, ECM1 levels are increased in most malignant epithelial tumours and in tumours with metastasis, indicating ECM1 involvement during cancer development.

Most evidence of crosstalk between ECM1 and TGF-β came from immunology. In order to elucidate the communication between ECM1 and L-TGF-β, Su et al. tested Tgfb mRNA expression in bone marrow-derived dendritic cells (BMDCs) grown in the presence of recombinant ECM1 protein (rECM1). Tgfb mRNA expression did not significantly change in BMDCs in the presence or absence of rECM1. However, when BMDCs in culture were treated with rECM1 protein and L-TGF-β, the level of active TGF-β in the culture supernatant was significantly reduced, as measured with a reporter cell line (HEK293T-cells stably transfected with a plasmogen activator inhibitor-1 (PAI1) promoter luciferase plasmid). For the first time, these results indicated that ECM1 has an inhibitory effect on L-TGF-β activation. Th17 cell differentiation was induced during the co-culture of dendritic cells and CD4+ T cells in the presence of IL-6, IL-23, IL-1β, and one of IgG, ECM1, or cyclic arginine-glycine-aspartic acid peptide (cRGD). TGF-β or L-TGF-β were then added to the co-culture system. The Th17 cell proportion – determined by intracellular cytokine staining for IL-17 and FACS analyses – was significantly reduced by adding rECM1 to the culture system in the presence of L-TGF-β but did not change in the presence of active TGF-β. rECM1 has a similar inhibitory effect to cRGD, which inhibits L-TGF-β activation by blocking the interaction of αv integrin and L-TGF-β.

Levels of active TGF-β in the supernatant decreased in the presence of rECM1, suggesting that ECM1 can suppress TGF-β maturation and Th17 cell differentiation as effectively as cRGD. Co-immunoprecipitation experiments identified a strong interaction between ECM1 and αv integrin, the latter being expressed on the surface of dendritic cells. When αv integrin was silenced in BMDCs, ECM1 could not inhibit Th17 differentiation in the co-culture system. Furthermore, in protein-protein interaction competition assays, ECM1 competed with the RGD peptide for αv integrin binding. ECM1 was thus identified as an inhibitor of L-TGF-β activation via binding to αv integrin, affecting TGF-β-driven Th17 cell differentiation.

We recently showed for the first time that ECM1 expression is a critical gatekeeper in the healthy liver, contributing to normal architecture and physiological homeostasis of cell-cell communication. Hepatocyte-specific Ecm1 KO leads to spontaneous and severe liver fibrosis. Via interaction with the αv integrin, ECM1 is critical for maintaining ECM-deposited TGF-β in its latent form (Fig. 3). Indeed, Ecm1 KO mice develop severe liver damage and fibrosis and die at between 8 and 12 weeks of age. Real-time-PCR results showed no significant differences in Tgfb mRNA levels between Ecm1 KO and WT mice. However, in Ecm1 KO mice, TGF-β signalling activation was dramatically induced, as evidenced by strongly upregulated levels of Smad3 phosphorylation. Immunoprecipitation and immunofluorescent staining confirmed that – like in inflammatory cells – ECM1, αv integrin, and L-TGF-β interact and co-localise in the hepatic sinusoids. We tested TGF-β activation in vitro in the different liver cell types isolated from Ecm1 WT and KO mice. Co-culturing them with NIH3T3-TGF-β signalling reporter cells stably transfected with the PAI1-promoter-based luciferase plasmid, in the presence or absence of rECM1 or CWHM12 – an αv integrin inhibitor – showed that TGF-β is expressed and secreted primarily from HSCs and Kupffer cells, and that the amount of active TGF-β is much higher in cells isolated from Ecm1 KO mice. As with CWHM12 treatment, the addition of rECM1 significantly reduced active TGF-β levels. These data suggest that ECM1 also affects L-TGF-β in the liver, which translates into HSC activation and progressive fibrosis. Significantly, injecting Ecm1 KO mice with a vector expressing a soluble TGF-β type II receptor led to a decrease in collagen deposition, ACTA2-positive HSCs, and hydroxyproline levels and to a more or less normal liver architecture, rescuing the liver damage phenotype. Taken together, hepatic ECM1 depletion leads to spontaneous L-TGF-β activation and release of the active ligand, resulting in strongly enhanced TGF-β signalling, especially in HSCs, and is responsible for the onset of hepatic fibrosis in mice.
Therapeutic strategies targeting TGF-β signalling

The profibrogenic, anti-inflammatory, and pro-oncogenic impact of the TGF-β signalling pathway has encouraged the development of targeted therapeutic approaches for fibrosis and cancer. Tools have been generated to interfere with various levels of the TGF-β signalling cascade, including antisense oligonucleotides, TGF-β ligand-targeting antibodies (e.g. fresolimunab and 1D11), ligand traps such as soluble TGF-β receptor II or AVID200, as well as small molecule inhibitors directed to the internal part of the signalling receptors or targeting Smad3 (SIS3).

Results from preclinical studies targeting TGF-β in fibrosis or cancer have been very promising. However, translating these approaches for clinical use has been and remains a challenge. Indeed, TGF-β signalling is critical for maintaining tissue homeostasis, and TGF-β displays pleiotropic effects. In addition to the “diseased” target cells, healthy tissues can be compromised by systemic or organ-wide delivery of TGF-β signalling-directed drugs, which can and frequently do lead to unwanted side effects and safety concerns.

To overcome these drawbacks and tap the full potential of TGF-β as a therapeutic target while increasing safety and efficacy, we need i) a better understanding of the molecular mechanisms by which TGF-β signalling controls homeostatic and disease processes, ii) predictive biomarkers from tissue and blood signatures to stratify patients that may benefit from TGF-β targeting, iii) careful dosing or pulsatile treatment windows, and iv) a selection of potential targets from specific branches of TGF-β signalling pathways as is nicely summarised in the review article of ten Dijke and colleagues. Targeting the mechanisms underpinning L-TGF-β activation is one such approach for a more fine-tuned interference with TGF-β. For example, EMD527040, a selective antibody against \(\alpha v \beta 6 \) integrin, blocks the activation of L-TGF-β and inhibits fibrogenesis in bile duct ligated rats and \(Mdr2 \) KO mice. Similarly, antibodies against \(\alpha v \beta 6 \) or \(\alpha v \beta 3 \) integrin also display anti-tumour activity in preclinical mouse models through suppression of TGF-β signalling, and clinical translation for patients with cancer is currently envisaged. Small molecules to target L-TGF-β integrin interactions are also available. For example, the cyclic RGD pentapeptide cilengitide (EMD121974) was efficiently used in several preclinical models of solid tumours and is now being tested in clinical studies in patients with cancer, as summarised in ten Dijke’s review.

Furthermore, the small molecule CWHM12 pharmacologically blocks \(\alpha v \)-containing integrins, thus attenuating fibrosis in the liver and lung. We hypothesise that delivery of ECM1 protein to the chronically damaged liver may be another promising approach that can delay the process of disease progression without major side effects.

Outlook

The bioavailability of TGF-β and TGF-β family members is just one of the multiple levels of regulation to fine-tune initiation, strength, duration, branching, crosstalk, and target gene regulation of TGF-β family signalling. Multiple major components can modulate TGF-β signalling in complex and diverse ways, as indicated in the Snapshot on TGF-β signalling regulation by Wrana and Taylor. This complexity is the primary reason for the highly context-dependent impacts of activated TGF-β...
signalling on cell types and the difficulties of developing specific therapeutics that do not induce unmanageable side effects. Our current knowledge on TGF-β bioavailability shows that, at least in the liver, a significant amount of L-TGF-β is deposited in the ECM and can be activated immediately without the need for de novo synthesis. We can assume that this will also be true for other tissues, although that must be proven. Thus, mRNA measurement might, in many cases, reflect a second wave of pathophysiological responses, e.g., to replenish the emptied ECM deposits. It also seems that such an available reservoir of L-TGF-β is required for a spatially restricted response, e.g., at the place of injury, where immediate action of the cytokine might be necessary. In such cases, local activation is controlled by changes in the cell-cell and cell-ECM communication that lead to direct interactions between the L-TGF-β, structural proteins of the ECM, and components located at the cell surface of neighbouring cells. Proteolytic activity and mechanical forces will lead to L-TGF-β activation and cell signalling initiation. Importantly, local interference with TGF-β activation might be a safer therapeutic strategy than targeting the activated ligand, since it may tone down instead of totally blunting the effects of TGF-β.

Abbreviations

α-SMA, alpha-smooth muscle actin; BMDCs, bone marrow-derived dendritic cells; BMPs, bone morphogenetic proteins; cFn, cellular fibronectin; Co-Smad, co-mediator Smad; cRGD, cyclic arginine-glycine-aspartic acid peptide; ECM, extracellular matrix; ECM1, extracellular matrix protein 1; rECM1, recombinant ECM1 protein; HCC, hepatocellular carcinoma; HSCs, hepatic stellate cells; I-Smad, inhibitory Smad; LAP, latency-associated proteinase; PAI-1, plasminogen activator inhibitor-1; pFn, plasma fibronectin; RGD, arginine-glycine-aspartic acid; ROS, reactive oxygen species; R-Smad, receptor-regulated Smad; SLC, small latent complex; TGF-β, transforming growth factor β; TIMP-1, tissue inhibitor of metalloproteinase-1; TSP, thrombospondin.

Financial support

This work was supported by the Federal Ministry of Education and Research (BMBF) Programs [Liver Systems Medicine (LiSyM), grant number PTJ-03110043 and LiSyM-HCC, grant number grant PTJ-03110257A; to SD], Deutsche Forschungsgemeinschaft (DFG) [grant number DO 373/20-1 SD; to SW], [grant number DO 373/19-1 SD; to YL].

Conflict of interest

The authors declare that they have no conflict of interest.

Authors’ contributions

YL, FL, SW, and SD wrote the original draft. YL, WF, SW, and SD reviewed and edited the manuscript. SW and SD share the co-corresponding authorship.

Acknowledgments

We thank Nicolas Gambardella for support in editing the manuscript.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhepr.2021.100397.

References

Author names in bold designate shared co-first authorship

[1] Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB. New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci U S A 1981;78:5339–5343.
[2] Taipale J, Saharinen J, Keski-Oja J. Extracellular matrix-associated transforming growth factor-beta: role in cancer cell growth and invasion. Adv Cancer Res 1998;75:87–134.
[3] Laibo M, Keski-Oja J. Transforming growth factors-beta as regulators of cellular growth and phenotype. Crit Rev Oncog 1992;3:1–26.
[4] Morikawa M, Derynck R, Miyazono K. TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol 2016;8:a021873.
[5] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685–700.
[6] Nickel J, Ten Dijke P, Mueller TD. TGF-beta family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018;50:12–36.
[7] Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997;390:465–471.
[8] Huse M, Muir TW, Xu L, Chen YC, Kurijan J, Massague J. The TGF-beta receptor activation process: an inhibitor- to substrate-binding switch. Mol Cell 2001;8:671–682.
[9] Itoh S, Itoh F, Goumans MJ, Ten Dijke P. Signalling of transforming growth factor-beta family members through Smad proteins. Eur J Biochem 2000;267:6954–6967.
[10] Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000;1:169–178.
[11] Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci 2001;114:4359–4369.
[12] Fransen P, ten Dijke P, Ichijo H, Yamashita H, Schulz P, Heldin CH, et al. Cloning of a TGF-beta type I receptor that forms a heteromeric complex with the TGF-beta type II receptor. Cell 1993;75:681–692.
[13] ten Dijke P, Fransen P, Yamashita H, Ichijo H, Heldin CH, Miyazono K. Serine/threonine kinase receptors. Prog Growth Factor Res 1994;5:55–72.
[14] Vander Ark A, Cao J. Li X. TGF-beta receptors: in and beyond TGF-beta signaling. Cell Signal 2018;52:112–120.
[15] Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002;298:1912–1934.
[16] Derynck R, Budi EH. Specificity, versatility, and control of TGF-beta family signaling. Sci Signal 2019;12:eaav5183.
[17] Chen YC. Endocrine regulation of TGF-beta signaling. Cell Res 2009;19:58–70.
[18] Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997;89:1165–1173.
[19] Nakao A, Afrakhte M, Moreen A, Nakayama T, Christian JL, Heuchel R, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGFbeta signalling. Nature 1997;389:631–635.
[20] Izz L, Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 2004;23:2071–2078.
[21] Miyazawa K, Miyazono K. Regulation of TGF-beta family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol 2017;9:a022055.
[22] Moustakas A, Heldin CH. Non-Smad TGF-beta signals. J Cell Sci 2005;118:3573–3584.
[23] Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res 2009;19:128–139.
[24] Zhang YE. Non-Smad signaling pathways of the TGF-beta family. Cold Spring Harb Perspect Biol 2017;9:a022129.
[25] Taylor IW, Wrana JL. SnapShot: the TGFbeta pathway interactome. Cell 2009;138:58–59.
[26] Derynck R, Budi EH. Specificity, versatility, and control of TGF-beta family signaling. Sci Signal 2019;12:eaav5183.
Saharinen J, Keski-Oja J. Specificity of transforming growth factor-beta binding protein-1 to the mature polypeptide. Mol Cell Biol 1988:8:4162–4168.

Gentry LE, Lioubin MN, Purchio AF, Marquardt H. Molecular events in the processing of recombinant type 1 pro-transforming growth factor beta to the mature polypeptide. Mol Cell Biol 1990:10:1238–1239.

Gray AM, Mason AJ. Requirement for activin A and transforming growth factor-beta 1 pro-regions in homodimer assembly. Science 1996:270:10618–10624.

Saharinen J, Hyytinen M, Taipale J, Keski-Oja J. Latent transforming growth factor-beta binding proteins (LTBPs)—structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev 1999:10:99–117.

Lawrence DA, Pircher R, Kryceve-Martinerie C, Jullien P. Normal embryo directed mutagenesis of cysteine residues in the pro region of the transforming growth factor beta 1 precursor. Expression and characterization of mutant proteins. J Biol Chem 1989:264:13660–13664.

Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB. Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta 1. J Biol Chem 1996:271:29891–29896.

Miyazono K, Hellman U, Wernstedt C, Heldin CH. Latent high molecular weight complex of transforming growth factor-beta 1. Purification from hepatocytes and structural characterization. J Biol Chem 1988:263:6407–6415.

Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta 1 protein with an eight-cysteine repeat of its binding protein LTB-1. EMBO J 1996:15:245–253.

Robertson IB, Horiuchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol 2015:47:44–53.

Saharinen J, Keski-Oja J. Specific sequence motif of β-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 2000:11:2691–2704.

Mangasser-Stephan K, Gartung C, Lahme B, Gressner AM. Expression of isoforms and splice variants of the latent transforming growth factor beta binding protein (LTBP) in cultured human liver myofibroblasts. Liver 2001:21:105–113.

Lawrence DA, Pircher R, Kryceve-Martinerie C, Jullien P. Normal embryo directed mutagenesis of cysteine residues in the pro region of the transforming growth factor beta 1 precursor. Expression and characterization of mutant proteins. J Biol Chem 1989:264:13660–13664.

Robertson IB, Horiuchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol 2015:47:44–53.

Saharinen J, Keski-Oja J. Specific sequence motif of β-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 2000:11:2691–2704.

Gleizes PE, Beavis RC, Mazzieri R, Shen B, Rifkin DB. Identification and characterization of an eight-cysteine repeat of the latent transforming growth factor-beta binding protein-1 that mediates bonding to the latent transforming growth factor-beta 1. J Biol Chem 1996:271:29891–29896.

Miyazono K, Hellman U, Wernstedt C, Heldin CH. Latent high molecular weight complex of transforming growth factor-beta 1. Purification from hepatocytes and structural characterization. J Biol Chem 1988:263:6407–6415.

Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta 1 protein with an eight-cysteine repeat of its binding protein LTB-1. EMBO J 1996:15:245–253.

Robertson IB, Horiuchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol 2015:47:44–53.

Saharinen J, Keski-Oja J. Specific sequence motif of β-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 2000:11:2691–2704.

Mangasser-Stephan K, Gartung C, Lahme B, Gressner AM. Expression of isoforms and splice variants of the latent transforming growth factor beta binding protein (LTBP) in cultured human liver myofibroblasts. Liver 2001:21:105–113.

Lawrence DA, Pircher R, Kryceve-Martinerie C, Jullien P. Normal embryo directed mutagenesis of cysteine residues in the pro region of the transforming growth factor beta 1 precursor. Expression and characterization of mutant proteins. J Biol Chem 1989:264:13660–13664.

Robertson IB, Horiuchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol 2015:47:44–53.

Saharinen J, Keski-Oja J. Specific sequence motif of β-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 2000:11:2691–2704.

Mangasser-Stephan K, Gartung C, Lahme B, Gressner AM. Expression of isoforms and splice variants of the latent transforming growth factor beta binding protein (LTBP) in cultured human liver myofibroblasts. Liver 2001:21:105–113.

Lawrence DA, Pircher R, Kryceve-Martinerie C, Jullien P. Normal embryo directed mutagenesis of cysteine residues in the pro region of the transforming growth factor beta 1 precursor. Expression and characterization of mutant proteins. J Biol Chem 1989:264:13660–13664.

Robertson IB, Horiuchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB. Latent TGF-beta-binding proteins. Matrix Biol 2015:47:44–53.

Saharinen J, Keski-Oja J. Specific sequence motif of β-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta. Mol Biol Cell 2000:11:2691–2704.

Mangasser-Stephan K, Gartung C, Lahme B, Gressner AM. Expression of isoforms and splice variants of the latent transforming growth factor beta binding protein (LTBP) in cultured human liver myofibroblasts. Liver 2001:21:105–113.
Buscemi L, Ramonet D, Klingberg F, Formey A, Smith-Clerc J, Meister JJ, et al. Fibrinogen regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. J Biol Chem 2005;280:18871–18880.

Taipale J, Saharanen J, Hedman K, Keski-Oja J. Latent transforming growth factor-beta 1 and its binding protein are components of extra-cellular matrix microfibres. J Histochim Cytochem 1996;44:875–808.

Hildebrand A, Romaris M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta. Biochem J 1994;302(Pt 2):527–534.

Schonherr E, Broszat M, Brandan E, Bruckner P, Kresse H. Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen. Arch Biochem Biophys 1998;355:241–248.

Baghy K, Izzo RV, Kovalszky I. Decorin-TGFbeta axis in hepatic fibrosis and cirrhosis. J Histochim Cytochem 2012;60:262–268.

Ferdous Z, Wei VM, Izzo R, Hook M, Grande-Allen KJ. Decorin-transformation growth factor-β1 (TGFβ1) interaction regulates matrix organization and mechanical properties of three-dimensional collagen matrices. J Biol Chem 2007;282:35887–35898.

Shi YF, Zhang Q, Cheung PY, Shi L, Fong CC, Zhang Y, et al. Effects of rhDecorin on TGF-β1-induced human hepatic stellate cells LX-2 activation. Biochim Biophys Acta 2006;1760:1587–1595.

Buday J, Kovalszky I, Gallai M, Nagy JO, Schaff Z, Knittel T, et al. Expression of collagen I, transforming growth factor-beta 1, tissue inhibitor metalloproteinase-1 and 2, and type IV collagenases in chronic hepatitis. Am J Clin Pathol 2001;115:725–735.

Noble NA, Harper JR, Border WA. In vivo interactions of TGF-beta and extracellular matrix. Prog Growth Factor Res 1992;4:369–382.

Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003;116:217–224.

Takada Y, Ye X, Simon S. The integrins. Genome Biol 2007;8:215.

Annes JP, Rifkin DB, Munger JS. The integrin alphaVbeta6 binds and activates latent TGFbeta3. FEMS Lett 2002;511:65–68.

Henderson NC, Arnold TD, Katamura Y, Giacomin MM, Rodriguez JD, McCarty JH, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013;19:1617–1624.

Mu D, Cambier S, Fijelbirleland L, Baron JL, Munger JS, Kawakatsu H, et al. The integrin alphaVbeta6 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGFbeta. J Cell Biol 2002;157:493–507.

Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alphaVbeta6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999;96:319–328.

Nishimura SL. Intergenic-mediated transforming growth factor-beta activation, a potential therapeutic target in fibrogenic disorders. Am J Pathol 2009;175:1362–1370.

Reed NJ, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, et al. The alphavbeta6 integrin plays a critical role in vivo role in tissue fibrosis. Sci Transl Med 2015;7:288ra279.

Wortonhing J, Klementowicz JE. Travis MA. TGFPeta: a sleeping giant awoken by integrins. Trends Biochem Sci 2011;36:47–54.

Huang XZ, Wu JF, Cass D, Erle DJ, Corry D, Young SG, et al. Nativation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J Cell Biol 1996;133:921–928.

Aluowahre P, Mu Z, Zhao Y, Wu D, Weinebr PR, Horan GS, et al. Mouse that lack activity of alphav6- and alphav6-integrins reproduce the abnormalities of Tgfb1- and Tgfb3-null mice. J Cell Sci 2009;2007:1227–232.

Asano Y, Ihn H, Yamane K, Kubo M, Tamiaki K. Increased expression levels of integrin alphavbeta5 on sclerodema fibroblasts. Am J Pathol 2004;164:1275–1292.

Sarrazy V, Koehler A, Chow ML, Zimina E, Li CX, Kato H, et al. Integrins alphavbeta6 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovasc Res 2010;142:407–417.

Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin alphavbeta6-mediated activation of latent TGF-beta1 requires the latent TGF-beta-binding protein-1. J Biol Chem 2004;279:723–734.

Buscemi L, Ramonet D, Klingenf St, Formey A, Smith-Clerc J, Meister JJ, et al. The single-molecule mechanics of the latent TGF-beta1 complex. Curr Biol 2011;21:2046–2054.
Holmbeck K, George J, Tsutsumi M, Tsuchishima M. MMP-13 deletion decreases procollagen I expression in two distinct mechanisms in hepatic stellate cells. Gut 2005;54:673–681.

Gwag T, Reddy Moori RG, Li D, Lee S, Lee EY, Wang S. Macrophage-derived thrombospondin 1 promotes obesity-associated non-alcoholic fatty liver disease. JHEP Rep 2021;3:100193.

Anastasi C, Rousselle P, Talamintke M, Tessler A, Cluzel C, Bachmann A, et al. BMP-1 disrupts cell adhesion and enhances TGF-beta activation through cleavage of the matricellular protein thrombospondin-1. Sci Signal 2020;13:eab3880.

Bourd-Boitkin K, Bonnier D, Levyne A, Mari B, Tuffery P, Samson M, et al. Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin domain type 1 motif, 1 as a central activator of transforming growth factor beta. Hepatology 2011;54:2173–2184.

Yao Y, Hu C, Song Q, Li Y, Da X, Yu Y, et al. ADAMTS16 activates latent TGF-beta, accentuating fibrosis and dysfunctions of the pressure-overloaded heart. Cardiovasc Res 2020;116:956–969.

Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 2007;15:2223–2268.

Yu Q, Stamenkovic I. Cell surface-localized matrix metalloprotease-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Gen Dev 2000;14:183–196.

Maeda S, Dean DD, Gay I, Schwartz Z, Boyan BD. Activation of latent transforming growth factor beta by stromelysin 1 in extracts of growth plate chondrocyte-derived matrix vesicles. J Bone Miner Res 2001;16:1281–1290.

Johnson JL, Deshpande A, Somervelle M, George SJ, Newby AG. Matrix metalloproteinase (MMP)-3 activates MMP-9-mediated vascular smooth muscle cell migration and neointima formation in mice. Arterioscler Thromb Vasc Biol 2011;31:e35–e44.

Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 2004;131:5883–5895.

Garg P, Vijay-Kumar M, Wang L, Gewirtz AT, Merlin D, Sitaraman SV, et al. Activation of latent TGF-beta by co-cultures of endothelial and smooth muscle cells. J Cell Biol 1993;120:995–1002.

Dennis PA, Rifkin DB. Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci U S A 1991;88:380–384.

Kojima S, Rifkin DB. Mechanism of retinoid-induced activation of latent transforming growth factor-beta in bovine endothelial cells. J Cell Physiol 1993;155:323–332.

Jenkins G. The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 2008;40:1068–1078.

Nunes I, Shapiro RL, Rifkin DB. Characterization of latent TGF-beta activation by murine peritoneal macrophages. J Immunol 1995;155:1450–1459.

Yehualaeshet T, O’Connor R, Green-Johnson J, Mai S, Silverstein R, Murphy-Ullrich JE, et al. Activation of rat alveolar macrophage-derived latent transforming growth factor-beta 1 by plasmin requires interaction with thrombospondin-1 and its cell surface receptor, CD36. Am J Pathol 1999;155:841–851.

Attur MC, Palmer GD, Al-Mussawir HE, Dave M, Teixeira CG, Rifkin DB, et al. F-spondin, a neuroregulatory protein, is up-regulated in osteoarthritic joints and regulates cartilage metabolism via TGF-beta activation. FASEB J 2009;23:79–89.

Glinka Y, Prud’homme GJ. Neurotrophin-1 is a receptor for transforming growth factor-beta-1, activates its latent form, and promotes regulatory T cell activity. J Leukoc Biol 2008;84:302–310.

Grandclément C, Pallandre JR, Valmary Degano S, Viel E, Bouard A, Ballard J, et al. Neurotrophin-2 expression promotes TGF-beta1-mediated epithelial to mesenchymal transition in colorectal cancer cells. PLoS One 2011;6:e20444.

Blois SM, Sulkowski G, Tirado-Gonzalez I, Warren J, Freitag N, Klapp BF, et al. Pregnancy-specific glycoprotein 1 (PSG1) activates TGF-beta and prevents dextran sodium sulfate (DSS)-induced colitis in mice. Mucosal Immunol 2014;7:348–358.

Alcaraz LB, Exposito JY, Chuvin N, Pommier RM, Cluzel C, Martel S, et al. Tenasin-X promotes epithelial-to-mesenchymal transition by activating latent TGF-beta. J Cell Biol 2014;205:409–428.

Carlson CM, Turpin EA. Moser LA, O’Brien KB, Cline TD, Jones JC, et al. Transforming growth factor-beta: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog 2010;6:e1001136.

Schultz-Cory S, Hinswah VS. Influenza virus neuraminidase activates latent transforming growth factor beta. J Virol 1996;70:8624–8629.

Lodyga M, Cambridge E, Karvonem HM, Pakshir P, Wu B, Bao S, et al. Cadherin-11-mediated activation of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta. Sci Signal 2019;12:eaao3469.

Abe M, Oda N, Sato Y. Cell-associated activation of latent transforming growth factor-beta by calpain. J Cell Physiol 1998;174:186–193.

Biswas S, Guix M, Rinehart C, Dugger TC, Chytil A, Moses HL, et al. Inhibition of TGF-beta with neutralizing antibodies prevents radiation-induced acceleration of metastatic cancer progression. J Clin Invest 2007;117:1305–1313.

Wang H, Kochevar IE. Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radic Biol Med 2005;38:890–897.

Barcellos-Hoff MH, Dix TA. Redox-mediated activation of latent transforming growth factor-beta1. Mol Endocrinol 1996;10:1077–1083.

Brown PD, Wakefield LM, Levinson AD, Sporn MB. Physicochemical activation of recombinant latent transforming growth factor-beta’s 1, 2, and 3. Growth Factors 1990;3:35–43.

Ahamed J, Burg N, Yoshinaga K, Janczak CA, Rifkin DB, Coller BS. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-beta1. Blood 2008;112:3650–3660.

Lyons RM, Kesi-Oja J, Moses HL. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J Cell Biol 1988;106:1659–1665.
Extracellular matrix protein 1 inhibits the activity of matrix metalloproteinase 9 through high-affinity interaction with alpha5beta1 integrin protect genetically fat Zucker rat livers from cold ischemia/reperfusion injury. Transpl Proc 2005;37:1679–1681.

Fan W, Liu T, Chen W, Hammad S, Longricher T, Haussier I, et al. ECM1 prevents activation of transforming growth factor beta, hepatic stellate cells, and fibrogenesis in mice. Gastroenterology 2019;157:1532–1567 e1315.

Schlingensiepen R, Goldbrunner M, Szych MN, Stauder G, Jachimczak P, Bodahn U, et al. Intracerebral and intrathecal infusion of the TGF-beta 2-specific antisense phosphorothioate oligonucleotide AP 12009 in rabbits and primates: toxicology and safety. Oligonucleotides 2005;15:94–104.

Dropmann A, Dooley S, Dewidar B, Hammad S, Dediu T, Werle J, et al. TGF-beta2 silencing to target biliary-derived liver diseases. Gut 2020;69:1677–1690.

Sercu S, Zhang L, Merregaert J. The extracellular matrix protein 1: its molecular interaction and implication in tumor progression. Cancer 2017;3:56.

Farrington DL, Yingling JM, Fill JA, Yan L, Qian YW, Shou J, et al. Development and validation of a phosphorylated SMAD ex vivo stimulation diagnostics of the TGF-beta receptor blocker galunisertib in HCC. Cell Death Dis 2017;8:e2634.

Cao Y, Agarwal R, Dituri F, Lupo L, Trerotoli P, Mancarella S, et al. NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-beta receptor blocker galunisertib in HCC. Cell Death Dis 2017;8:e2634.

Cao Y, Agarwal R, Dituri F, Lupo L, Trerotoli P, Mancarella S, et al. NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-beta receptor blocker galunisertib in HCC. Cell Death Dis 2017;8:e2634.

Huxyn LK, Hipolito CJ, Ten Dijke P. A perspective on the development of TGF-beta inhibitors for cancer treatment. Biomolecules 2019;9:743.

Shou J, Cao J, Zhang S, Sun R, Zhao M, Chen K, et al. SIS3, a specific inhibitor of smad3, attenuates bleomycin-induced pulmonary fibrosis in mice. Biochem Biophys Res Commun 2018;503:757–762.

Colak S, Ten Dijke P. Targeting TGF-beta signaling in cancer. Trends Cancer 2017;3:56–71.

Huynh LK, Hipolito CJ, Ten Dijke P. A perspective on the development of TGF-beta inhibitors for cancer treatment. Biomolecules 2019;9:743.

Cao Y, Agarwal R, Dituri F, Lupo L, Trerotoli P, Mancarella S, et al. NGS-based transcriptome profiling reveals biomarkers for companion diagnostics of the TGF-beta receptor blocker galunisertib in HCC. Cell Death Dis 2017;8:e2634.

Farrington DL, Yingling JM, Fill JA, Yan L, Qian YW, Shou J, et al. Development and validation of a phosphorylated SMAD ex vivo stimulation assay. Biomarkers 2007;12:313–330.

Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman SL, Schuppman D. Inhibition of integrin alphavbeta6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. J Pathol 2019;249:332–342.

Weller M, Silgner M, Goodman SL, Hasenbach K, Thies S, Tatababi PS, et al. Effect of the integrin inhibitor cilengitide on TGF-beta1 signaling. J Clin Oncol 2012;30:2055.