Maternal Immunological Adaptation During Normal Pregnancy

Bahaa Abu-Raya1,2,3,4†, Christina Michalski2,3,4†, Manish Sadarangani1,2,3,4 and Pascal M. Lavoie2,3,4

1 Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC, Canada, 2 BC Children’s Hospital Research Institute, Vancouver, BC, Canada, 3 Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada, 4 Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada

The risk and severity of specific infections are increased during pregnancy due to a combination of physiological and immunological changes. Characterizing the maternal immune system during pregnancy is important to understand how the maternal immune system maintains tolerance towards the allogeneic fetus. This may also inform strategies to prevent maternal fatalities due to infections and optimize maternal vaccination to best protect the mother-fetus dyad and the infant after birth. In this review, we describe what is known about the immunological changes that occur during a normal pregnancy.

Keywords: immune system, humoral immune response, cellular immune response, gestation, immunity, fetal

INTRODUCTION

During pregnancy, major adaptations occur in the maternal immune system to protect the mother and her future baby from pathogens while avoiding detrimental immune responses against the allogeneic fetus. While there is little evidence to support that the maternal immune system is globally suppressed during pregnancy, increased risks for certain types of infections indicate important qualitative immunological changes (1). Due to the complexity and unique circumstances surrounding a normal pregnancy, teasing out how specific endocrinological, physiological and immunological factors increase the risk of infection requires careful considerations. For example, urinary tract infections may be more common or pneumonia may be more severe during pregnancy largely because of circulatory changes and reduced functional residual lung capacity due to increased abdominal pressure (2, 3). Other types of infections may be simply more frequently reported because of their severe clinical consequences on the fetus (Table 1). A better understanding of immunological changes during pregnancy may also be important in considering optimal strategies for use of vaccines, such as influenza and pertussis, to protect both the pregnant woman and infant (73). Nonetheless, these examples reveal the complexity of understanding how physiological, hormonal and immunological adaptation during normal pregnancy directly impacts the risk of infection. Major adaptations at the maternal-fetal interface have been discussed in recent reviews (74, 75). Local immunological adaptation in the placenta has been reviewed (76). In this review article, we describe the dynamic changes occurring in the peripheral maternal immune system during normal pregnancy.
Complement System

Studies suggest increased complement activity during pregnancy (Table 2). Plasma levels of C3a, C4a, C5a, C4d, C3a, C3, C9, and the Serum Complement Membrane Attack Complex SC5b9 are elevated during pregnancy (77, 78, 106). Altogether, this increase in cleaved complement proteins suggests upregulation of complement activity in pregnant women while the balance is maintained through high levels of regulatory proteins such as factor H which blocks the alternative C3 convertase (79). Consistent with this, the complement inhibitor Decay-accelerating factor (DAF), also known as CD55, is increased in peripheral blood mononuclear cells during pregnancy (80). By blocking formation of C3 convertases, DAF effectively inhibits downstream effects of complement activation. Similarly, the C3 inhibitor pregnancy-associated plasma protein A (PAPPA) increases during the second and third trimesters (81, 82). Complement hemolytic activity (CH50) reflects activity of the classical complement pathway. Serum CH50 increase as pregnancy progresses (83, 84). Increased complement activity has been linked to pre-eclampsia and preterm birth (107), suggesting that balancing complement activation is necessary for a healthy pregnancy [reviewed in (108)].

Granulocytes

Eosinophil and basophil counts are not affected by pregnancy (Table 2) (85, 86). However, urinary eosinophil-derived neurotoxin secretion is elevated during the second and third trimester, suggesting increased eosinophil degranulation. In contrast, urinary N-methylhistamine concentrations are lower in the third trimester, suggesting decreased mast cell degranulation (87).

Neutrophils kill micro-organisms through phagocytosis, Neutrophil Extracellular Traps (NETs), production of toxic granules and reactive oxygen species (ROSs) (115). There is a gradual, marked increase in neutrophils from the first trimester onwards (85, 88). Consistent with this, G-CSF and GM-CSF, two cytokines mediating bone marrow neutrophil production, are also elevated during pregnancy (85, 116). The function of neutrophils may also be altered during pregnancy. Neutrophils are high-energy need cells that depend on glycolysis for ATP production, and reserve oxygen towards production of ROSs and nitrogen species by the mitochondria. To meet their metabolic demands, glucose is metabolized through the hexose monophosphate shunt, which produces NADPH for the oxidative burst. Activation of neutrophils leads to translocation of metabolic enzymes to the cell membrane where they form enzyme complexes, increasing efficiency of these anabolic processes. Neutrophils from pregnant women exhibit retrograde transport of these metabolic enzymes to centrosomes, suggesting active prevention of metabolic upregulation (89, 90): Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase remain functional in neutrophils during pregnancy, but since their activity is restricted to the cytoplasm, the metabolic output is dampened (89, 90). This may explain why in vitro activated neutrophils from pregnant women show reduced respiratory burst activity and are refractory to priming with IFN-γ (89–91). In contrast, unstimulated neutrophils from pregnant women have increased oxidative burst and produce ROS levels that are comparable to stimulated neutrophils from non-pregnant women (90, 92). In addition to ROS production, neutrophils also augment NETosis during pregnancy, with a continuous increase throughout gestation (117). Overall, these in vitro studies indicate that basal neutrophil function is increased at

Pregnancy is a hypercoagulable state, with a four-fold increased risk for deep vein thrombosis when compared to non-pregnant women (109). There is an interaction between acute phase proteins, the coagulation and the complement systems. C-reactive protein (CRP) activates C1, C4, C2, and C3 (110–112) and serum CRP levels are elevated during pregnancy (85). Fibrinogen and factor VII are part of the coagulation cascade that independently activates the complement system, for example, thrombin has been shown to cleave C3 and C5 [reviewed in (113)]. Fibrinogen and factor VII are also increased during pregnancy (86), further supporting the notion that the complement system is activated in pregnancy. High levels of procoagulant factors are counter-balanced by increased plasma levels of pregnancy-specific glycoproteins (PSGs). These placenta-derived molecules prevent platelet activation in an integrin-dependent manner (114).

TABLE 1 | Infections associated with increased maternal susceptibility or severity during pregnancy, or severe adverse fetal outcomes.

Infection	Reference
Increased maternal susceptibility	
Listeriallosis	4–10
Tuberculosis (during the puerperium)	11, 12
Malaria	13–16
Increased maternal severity	
Influenza	17–22
Varicella Zoster Virus infection	23–27
Hepatitis E virus infection	28–31
Malaria	14, 32–35
Invasive Haemophilus influenza infection	36–38
Invasive pneumococcal disease	39
Invasive group A streptococcal disease	39
Dengue fever	40
Lassa fever	41, 42
Ebola virus	41
Primary Herpes Simplex Virus infection	43–45
Coccidioidymycosis†	46–50
Measles	51, 52
Severe adverse fetal outcomes	
Toxoplasmosis	53, 54
Influenza	17, 19, 21, 55–58
Primary varicella zoster virus infection	24, 59
Malaria	33
Rubella	60–62
Parvovirus B19	65
Listeriosis	4, 9, 64, 65
Tuberculosis	66, 67
Zika virus	68, 69
Measles	52, 61, 70, 71
Mumps	70
Cytomegalovirus	72

†some data suggest increased maternal severity while other data do not suggest this association.

INNATE IMMUNITY

Studies suggest increased complement activity during pregnancy (Table 2). Plasma levels of C3a, C4a, C5a, C4d, C3a, C3, C9, and the Serum Complement Membrane Attack Complex SC5b9 are elevated during pregnancy (77, 78, 106). Altogether, this increase in cleaved complement proteins suggests upregulation of complement activity in pregnant women while the balance is maintained through high levels of regulatory proteins such as factor H which blocks the alternative C3 convertase (79). Consistent with this, the complement inhibitor Decay-accelerating factor (DAF), also known as CD55, is increased in peripheral blood mononuclear cells during pregnancy (80). By blocking formation of C3 convertases, DAF effectively inhibits downstream effects of complement activation. Similarly, the C3 inhibitor pregnancy-associated plasma protein A (PAPPA) increases during the second and third trimesters (81, 82). Complement hemolytic activity (CH50) reflects activity of the classical complement pathway. Serum CH50 increase as pregnancy progresses (83, 84). Increased complement activity has been linked to pre-eclampsia and preterm birth (107), suggesting that balancing complement activation is necessary for a healthy pregnancy [reviewed in (108)].
rest but decreased after activation during pregnancy. The distinction between resting and activated neutrophils may explain seemingly contradictory reports of the activity of neutrophils during pregnancy. The increased baseline neutrophil activity in pregnancy may lead to continuous production of ROSs without the need for re-stimulation.

Data support altered neutrophil phagocytosis during pregnancy (93). Elastase and lactoferrin are secreted from primary and secondary neutrophil granules, respectively, and are elevated in the first trimester (85). While elevated levels might indicate increased neutrophil activation, the amount of elastase or lactoferrin protein per granulocyte is unchanged or even lower as pregnancy progresses (85, 91). Thus, elevated plasma levels may simply reflect increased granulocyte numbers during pregnancy. Expression of the activation marker Human Neutrophil Antigen-2a (HNA-2a), also known as NB1 or CD177, increases during pregnancy and remains elevated for at least 4–8 weeks postpartum compared to non-pregnant women (85–88, 92).

TABLE 2 | Changes in complement, granulocytes and monocytes during normal pregnancy.

Component	Main findings	References
Complement	Elevated C3a, C4a, and C5a in the second and third trimester in comparison to non-pregnant women	77
	Elevated C4d, C3a, C3, C9, the Serum Complement Membrane Attack Complex SC5b9 during pregnancy.	78
Regulatory proteins	High levels of regulatory proteins (e.g. Factor H).	79
CH50	Increased levels of the complement inhibitor Decay-accelerating factor (CD55) on peripheral blood mononuclear cells during pregnancy.	80
	Increased levels of the C3 inhibitor pregnancy-associated plasma protein A during the second and third trimesters.	81, 82
	No change in serum CH50 titers during the first trimester but significantly increased in the second and third trimester as compared to non-pregnant women.	83
	Increase in CH50 levels in healthy pregnancy as compared to non-pregnant women and as pregnancy progressed, CH50 levels increased.	84
Granulocytes	Increased eosinophil and basophil counts were not affected by pregnancy.	85, 86
	Increased eosinophil degranulation during the second and third trimester and reduced mast cell degranulation during the last trimester, compared to non-pregnant women.	87
	Increased neutrophil counts from the first trimester onwards.	85, 88
	Neutrophils from pregnant women exhibit retrograde transport of metabolic enzymes to centrosomes, suggesting active prevention of metabolic upregulation.	89, 90
	In vitro activated neutrophils from pregnant women show reduced respiratory burst activity and are refractory to priming with IFN-γ.	89–91
	Unstimulated neutrophils from pregnant women produce ROS at levels comparable to stimulated non-pregnancy neutrophils and have increased oxidative burst.	90, 92
Monocytes	Eosinophil and basophil counts were not affected by pregnancy.	85
	Increased eosinophil degranulation during the second and third trimester and reduced mast cell degranulation during the last trimester, compared to non-pregnant women.	87
	Increased expression of the activation marker Human Neutrophil Antigen-2a during pregnancy and levels remained elevated for at least 4–8 weeks postpartum compared to non-pregnant women.	91, 92
	No difference in surface expression of the neutrophil activation markers CD11b, CD15, CD18, and CD62L between pregnant and non-pregnant women, neither in resting nor in stimulated neutrophils.	91, 92
	Elevated levels of CD11b expression on granulocytes in late pregnancy.	95
	Increased levels of TLR4 co-receptor CD14 and the Fc receptor CD64 on granulocytes in the second and third trimesters compared to non-pregnant women.	92
	Reduced expression of the neutrophil maturity marker CD16 and the MHC II molecule HLA-DR on granulocytes in pregnant women.	96
	Decrease in CD10 levels and increase in CD15 levels on neutrophils over the course of pregnancy.	97
	Increases in monocyte numbers during pregnancy, mainly due to a higher number of “intermediate” monocytes, where classical monocytes decrease, with no change in the proportion of non-classical monocytes.	98–101
	Elevated stimulation-induced IL-12 and TNFα production by monocytes from pregnant women throughout all three trimesters.	102, 103
	Increased levels of activation markers CD11a, CD11b, CD14, and CD64, and higher ROS production by monocytes from pregnant women.	88, 92
	Monocytes in pregnant women are anti-inflammatory and show phenotypic signs of endotoxin tolerance.	99, 104
	Reduced LPS-induced IL-12 and TNFα production by monocytes of third trimester pregnant women as compared to non-pregnant controls.	99
	Lower expression of several HLA coding genes on monocytes from first-trimester pregnant women compared to non-pregnant women.	98
	Uregulation of genes coding for IL-12 and TNFα and the negative immune regulator CD200, and a down-regulation of transcripts for IL8 and CXCL10 in monocytes from first trimester pregnancy.	98
	Reduction in non-classical monocytes and an increase in classical monocytes in the third trimester compared to healthy controls.	105

CH50, 50% haemolytic complement; IFN-γ, Interferon-γ; ROS, Reactive oxygen species; TLR, Toll-like receptors; MHC, major histocompatibility complex; HLA-DR, Human Leukocyte Antigen-DR; MDSC, myeloid-derived suppressor cell; TNFα, tumor necrosis factor α; LPS, Lipopolysaccharides; IDO, Indoleamine 2,3-dioxygenase.
women (91, 92). Neutrophils can present antigens to T lymphocytes through the MHC II molecule HLA-DR (119). Expression of the neutrophil maturity marker CD16 and HLA-DR were reduced on granulocytes in pregnant women in one study (92). Another study reported elevated CD11b expression on granulocytes in late pregnancy, but several of the women were in labor at the time of blood collection, which may have skewed the results (95). One study showed that TLR2 and TLR4 mRNA expression was comparable between pregnant and non-pregnant women (120). In contrast, expression of the TLR4 co-receptor CD14 and the Fc receptor CD64 were elevated on granulocytes in pregnant women (120). However, expression of the neutrophil maturity marker CD16 and HLA-DR were reduced as compared to non-pregnant controls (101). Moreover, concomitantly augmented levels in peripheral blood have been observed in adults (96, 98). This phenotype (CD10low, CD15high) was most pronounced during the third trimester and is characteristic of immature-like neutrophils (96). Many studies use density centrifugation to isolate neutrophils, which results in a loss of low-density immature-like neutrophils. The same low-density fraction also contains Myeloid-Derived Suppressor Cells (MDSCs), a heterogeneous group of mature, and immature-state monocyctic or granulocytic cells that have immunosuppressive function. MDSCs are not normally detected in peripheral blood of healthy adults but common in cancer patients or newborns (reviewed in [121]). The number of circulating granulocytic but not monocytic MDSCs is higher in pregnant women (97). Low MDSCs levels during pregnancy have been associated with miscarriage (122), thus, MDSCs might be important in maintaining adequate immunosuppression at the maternal-fetal interface.

Monocytes

Three main subsets of monocytes have been characterized in humans. Classical monocytes (CD14highCD16−) are the main subset in peripheral blood of healthy adults (~80% of all monocytes) and have phagocytic functions. Non-classical monocytes (CD14−CD16high) are inflammatory and high levels in peripheral blood have been observed in adults suffering from chronic or acute inflammatory diseases (123). Intermediate monocytes (CD14highCD16intermediate) may represent a transitional state, displaying both inflammatory and phagocytic capacity (123). Monocytes also present antigens to T cells, hence modulating adaptive immune responses.

The impact of pregnancy on maternal monocyte function has been reviewed elsewhere (124, 125) and we will only briefly summarize key points here. Monocytes increase during pregnancy, beginning in the first trimester (Table 2) (98, 99). This increase is mainly due to higher levels of “intermediate” monocytes, whereas classical monocytes decrease, with no change in the proportion of non-classical monocytes (100, 101). An increase in intermediate monocytes could explain observations of elevated stimulation-induced IL-12 and TNFα production by monocytes from pregnant women throughout pregnancy (102, 103) and decreased phagocytosis during pregnancy (93). Increased pro-inflammatory activity of monocytes is further corroborated by increased levels of activation markers CD11a, CD11b, CD14, and CD64, and higher ROS production by monocytes from pregnant women (88, 92). The increased numbers of non-classical monocytes and elevated monocyte activation may be partially caused by placenta-secreted molecules and cellular particles [reviewed in (125)]. For example, placenta-derived extracellular vesicles have been shown to induce monocyte maturation and activation ex vivo (126). Additionally, hormonal changes in pregnancy may influence monocyte activity (127).

Contrasting with the findings above, monocytes in pregnant women are anti-inflammatory and show phenotypic signs of endotoxin tolerance as observed during the later phase of sepsis (99, 104). In peripheral blood of third trimester pregnant women, LPS-induced IL-12 and TNFα production by monocytes was reduced as compared to non-pregnant controls (99, 127). Additionally, several HLA coding genes are expressed at lower levels on monocytes from first-trimester pregnant women compared to non-pregnant women (98) and surface expression of MHC II is reduced (101). Together, this is reminiscent of an anti-inflammatory state observed in sepsis where an initial strong pro-inflammatory response is followed by immune paralysis (128). As in sepsis, the timing of the blood draw during gestation might influence the immunological changes reported. Several studies reported increased TNFα and IL-12 production by monocytes from pregnant women using IFN-γ in their stimulation cocktail (102, 103). IFN-γ has long been known to reverse the paralysis in septic monocytes (129), hence it is plausible that during pregnancy, maternal monocytes are in a chronically, low-grade inflammatory but unresponsive state which can be overcome with adequate stimulation (130).

This pro-inflammatory state is balanced by upregulation of regulatory features. Genes coding for IL-10 and IDO and the negative immune regulator CD200 have been reviewed elsewhere (124, 125) and we will only briefly summarize key points here. Monocytes increase during pregnancy, beginning in the first trimester (Table 2) (98, 99). This increase is mainly due to higher levels of “intermediate” monocytes, whereas classical monocytes decrease, with no change in the proportion of non-classical monocytes (100, 101). An increase in intermediate monocytes could explain observations of elevated stimulation-induced IL-12 and TNFα production by monocytes from pregnant women throughout pregnancy (102, 103) and decreased phagocytosis during pregnancy (93). Increased pro-inflammatory activity of monocytes is further corroborated by increased levels of activation markers CD11a, CD11b, CD14, and CD64, and higher ROS production by monocytes from pregnant women (88, 92). The increased numbers of non-classical monocytes and elevated monocyte activation may be partially caused by placenta-secreted molecules and cellular particles [reviewed in (125)]. For example, placenta-derived extracellular vesicles have been shown to induce monocyte maturation and activation ex vivo (126). Additionally, hormonal changes in pregnancy may influence monocyte activity (127).

Contrasting with the findings above, monocytes in pregnant women are anti-inflammatory and show phenotypic signs of endotoxin tolerance as observed during the later phase of sepsis (99, 104). In peripheral blood of third trimester pregnant women, LPS-induced IL-12 and TNFα production by monocytes was reduced as compared to non-pregnant controls (99, 127). Additionally, several HLA coding genes are expressed at lower levels on monocytes from first-trimester pregnant women compared to non-pregnant women (98) and surface expression of MHC II is reduced (101). Together, this is reminiscent of an anti-inflammatory state observed in sepsis where an initial strong pro-inflammatory response is followed by immune paralysis (128). As in sepsis, the timing of the blood draw during gestation might influence the immunological changes reported. Several studies reported increased TNFα and IL-12 production by monocytes from pregnant women using IFN-γ in their stimulation cocktail (102, 103). IFN-γ has long been known to reverse the paralysis in septic monocytes (129), hence it is plausible that during pregnancy, maternal monocytes are in a chronically, low-grade inflammatory but unresponsive state which can be overcome with adequate stimulation (130).

This pro-inflammatory state is balanced by upregulation of regulatory features. Genes coding for IL-10 and IDO and the negative immune regulator CD200 have been reviewed elsewhere (124, 125) and we will only briefly summarize key points here. Monocytes increase during pregnancy, beginning in the first trimester (Table 2) (98, 99). This increase is mainly due to higher levels of “intermediate” monocytes, whereas classical monocytes decrease, with no change in the proportion of non-classical monocytes (100, 101). An increase in intermediate monocytes could explain observations of elevated stimulation-induced IL-12 and TNFα production by monocytes from pregnant women throughout pregnancy (102, 103) and decreased phagocytosis during pregnancy (93). Increased pro-inflammatory activity of monocytes is further corroborated by increased levels of activation markers CD11a, CD11b, CD14, and CD64, and higher ROS production by monocytes from pregnant women (88, 92). The increased numbers of non-classical monocytes and elevated monocyte activation may be partially caused by placenta-secreted molecules and cellular particles [reviewed in (125)]. For example, placenta-derived extracellular vesicles have been shown to induce monocyte maturation and activation ex vivo (126). Additionally, hormonal changes in pregnancy may influence monocyte activity (127).
isolation has been shown to affect the ratio of non-classical to classical monocytes detected (123).

Innate Lymphoid Cells

Innate lymphoid cells (ILCs) lack CD3 and antigen-specific receptors (131). NK cells are the best characterized ILCs (132). In blood, most NK cells express low levels of the adhesion molecule CD56 and the Ig receptor CD16. These CD56dim cells are considered to be cytotoxic effector cells. Conversely, CD56bright NK cells are much less frequent in peripheral blood and also less cytotoxic due to a low CD16 expression, suggesting that they are immunomodulatory (132). NKT cells express both a T cell receptor (TCR) and NK cell associated markers. Type I NKT cells (classical or NKT [iNKT] cells), have limited TCR diversity and recognize α-galactosylceramide (αGalCer) lipid antigens in a CD1d dependent manner. Type II, or non-classical, NKT cells are also CD1d-restricted but react to lipids other than αGalCer and have more diversity in their TCR repertoire (133). NKT cells can be protective in infections and auto-immune diseases and, similar to NK cells, can produce cytokines in patterns mirroring Th subsets (133).

Specialized NK cells are found in the placental decidua and are essential for successful spiral artery development and fetal implantation in the first trimester of pregnancy [reviewed in (134)]. In contrast, less is known about the effect of pregnancy on circulating NK cells (Table 3). Most studies report no change in NK subsets (CD56dim, CD56bright), invariant NK T cells (iNKT) and type II non-classical NK T cells in peripheral blood between pregnant and non-pregnant women (135–137) despite a reduction in NK cell numbers (138, 139). NK cell subsets have sometimes been further divided into type 1 and type 2 immunity, depending on the cytokines they produce. By examining the surface expression of IL18R1 (type 1 immunity due to promoting IFN-γ production) and IL1RL1 (its activation by IL-33 promotes innate immunity), the ratio of type 1 to type 2 NK cells was found to decrease in the third trimester compared to healthy controls (140). Compared to non-pregnant controls, the percentage of IL18R1 expressing cells is significantly lower in the third trimester of pregnancy. In addition, the number of IL18R1 surface molecules per cell is reduced (140). It has also been shown that homing receptor expression is increased on type 2 CD56bright NK cells in the second trimester, compared to the first and third trimester. For type 2 CD56dim NK cells, homing receptor expression is highest in the third trimester (135). Whether this corresponds to increased migration of NK cells to the placenta at various stages during pregnancy remains to be investigated.

Maternal NK cells and monocytes have increased expression of the immune checkpoint protein TIM-3 in pregnancy (137, 141), potentially induced by high IL-4 and low IFN-γ levels (143). TIM-3 is important for NK cell-mediated IFN-γ production and may contribute to increased phagocytosis in pregnancy (143). High surface levels of TIM-3, a characteristic of lymphocyte exhaustion (144), potentially indicate that pregnancy NK cells are anergic. Plasma levels of Galectin-9 (TIM-3 ligand) are elevated throughout pregnancy (137). The high levels of this lectin may stem from a high placental production (137), however, its impact during pregnancy and whether it contributes to TIM-3 upregulation is unclear. The augmented inflammatory NK cell capacity during pregnancy is further supported by studies showing increased expression of the activation marker CD69 on CD4neg iNKT cells as pregnancy progresses (136). Similarly, expression of the degranulation marker LAMP-1 (CD107a) on CD56dim cells after PMA-ionomycin stimulation and baseline levels of the cytotoxic markers NKp46 (CD335) and CD38 are increased in the third trimester compared to non-pregnant women (101, 137, 145). Additionally, in vitro NK cell responses to influenza-infected or cancerous cells is higher in pregnancy (145). Together, this indicates elevated baseline activity and heightened potential to upregulate pro-inflammatory responses, underlining increased innate immunity during pregnancy. In contrast, IFN-γ

Table 3 | Changes in systemic innate lymphoid cells during normal pregnancy.

Component	Main findings	References
NK cells	No change in total numbers or frequency of NK subsets (CD56dim, CD56bright), iNKT and NKT cells in peripheral blood between non-pregnant and pregnant women, regardless of the trimester of pregnancy	135–137
	Reduction in NK cell numbers in pregnant vs. non-pregnant women	138, 139
	Decreased ratio of type 1 NK cells (defined as expressing IL18R1) to type 2 NK cells (defined as expressing IL1RL1) in the third trimester compared to healthy controls	140
	Lower percentage of IL18R1 expressing NK cells in the third trimester compared to non-pregnant controls	140
	Reduced number of IL18R1 surface molecules per NK cells	135
	Increased homing receptor expression on type 2 CD56bright NK cells in the second trimester, compared to the first and third trimester	135, 141
	Elevated plasma levels of Galectin-9 (TIM-3 ligand) throughout all trimesters of pregnancy	137
	Increased expression of the activation marker CD69 on CD4neg iNKT cells from the first to the third trimester, although the levels are not significantly different to age-matched non-pregnant controls	136
	Increased expression of the degranulation marker LAMP-1 (CD107a) on CD56dim cells after PMA-ionomycin stimulation and baseline levels of the cytotoxic markers NKp46 (CD335) and CD38 are increased in the third trimester compared to non-pregnant women	101, 137
	Reduced IFN-γ production and increased IL-10 production upon ex vivo stimulation with PMA-ionomycin by NK cells from the first trimester compared to non-pregnant women	142

NK, Natural killer; iNKT, Invariant natural killer T; NKT, natural killer T; TIM-3, T cell immunoglobulin- and mucin domain-containing-3; LAMP-1, lysosome-associated membrane protein-1; PMA, phorbol-12-myristate-13-acetate, IFN-γ, Interferon – γ
production is reduced and IL-10 production upon ex vivo stimulation with PMA-ionomycin is increased by NK cells from the first trimester, compared to non-pregnant women (142). This anti-inflammatory capacity could contribute to the dampening of the adaptive immune system.

Non-cytotoxic ILCs are grouped into three subtypes, ILC1, ILC2 and ILC3. These cell types have similar functions and phenotypes as Th1, Th2 and Th17, respectively (131). ILCs are found in the human placenta (146), but to the best of our knowledge, no study has assessed ILCs in other maternal tissues or blood during pregnancy.

ADAPTIVE IMMUNITY

T Cells

The absolute lymphocyte count and the percentage of total T cells does not differ significantly during the first, second, and third trimesters of pregnancy (147, 148), while the numbers of T cells during pregnancy are lower than before pregnancy (Table 4) (149).

Pregnancy has also been associated with changes in T cell subsets, although the data are conflicting and the significance is unclear (147–150). The percentages of CD4+ and CD8+ T cells of women at various stages of gestation do not differ significantly (147, 148). In another study, no significant changes were found in the percentage of CD4+ cells, CD8+ cells, nor of CD4+/CD8+ ratio at any stage of pregnancy (150). However, compared to pre-pregnancy, the number of T helper cells and cytotoxic T cells was lower in third and first trimesters of pregnancy, respectively, while the number of suppressor T cells was higher in the first trimester of pregnancy (149). At the end of the first trimester there is a surge in estrogen and progesterone, which leads to a reversible thymic involution, which could partially explain the observed decrease in both CD4+ and CD8+ cells (196, 197).

Studies investigated the ratio of Th2 to Th1 cells as measured by the circulatory levels of secreted Th1 or Th2 serum cytokines, or levels of CD4+ cells producing Th1 or Th2 cytokines, or expression of chemokine receptors CXCR3 (associated with Th1 cells) and CCR4 (associated with Th2 cells) on CD4+ T cells. The view of pregnancy as a Th2 state is supported by numerous studies (151–155), but also rejected by others (198). Viewing pregnancy as a Th2 state is supported by a rise in anti-inflammatory cytokines, and by studies showing that Th1 and Th17 -type autoimmune disorders are improved (199–201) while Th2-type autoimmune disorders worsen in pregnancy (202). A progressive shift from cell-mediated, pro-inflammatory, Th1 cell responses to humoral, anti-inflammatory, Th2 cell responses is initiated early in pregnancy (1, 156). This pregnancy-related Th2 phenotype resolves by 4 weeks postpartum (203). The percentage of IFN-γ-producing CD4+ cells is lower in the third trimester while no changes in IL-4-producing CD4+ T cells were observed in one study (158). Other studies have found no changes in Th1/ Th2 cells during pregnancy (158, 159), and stable proportion of CD3+CD8− IFN-γ+ cells across gestation (159). However, a recent study showed that plasma IL-2 levels (indicative of Th1 cells) were lower in the post-partum period when compared to all trimesters (157).

While pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α) increase in amniotic fluid throughout pregnancy and during labor (204, 205), plasmatic pro-inflammatory cytokines (e.g., IL-2 and IFN-γ) (206) decrease, and anti-inflammatory cytokines increase (e.g. IL-4 and IL-10) with pregnancy (175, 203). However, the numbers of IFN-γ and IL-4 secreting cells gradually increase as the pregnancy progresses compared with postpartum (160). In contrast, a recent study showed that the percentage of resting CD4+ cells expressing CXCR3 and CCR4 did not change significantly during different stages of pregnancy (159).

Hormones can affect the differentiation of Th cells. Serum estradiol levels increase up to 500-fold during pregnancy (175). Low estradiol promotes Th1 responses, whereas high estradiol promotes Th2 responses (1). Elevated progesterone inhibits Th1 responses during pregnancy (207) and can induce Th2-type cytokines (e.g., IL-4 and IL-5) (208) further enhancing the polarization to Th2. Moreover, progesterone may exert anti-inflammatory responses as supported by higher IL-10 levels in women who received progesterone compared to placebo (209).

Th17 cells are important against extracellular bacteria or fungal pathogens (210). The ratio of Th17 cells to CD4+ T cells is similar to healthy non-pregnant women during all stages of pregnancy (161, 211). However, one study revealed a 60% fall in the percentage of CD3+CD8−IL17+ cells between the first and second trimesters of pregnancy (159).

Data on T cell function during pregnancy are scarce and inconsistent (Table 4). The methods used to measure proliferation matters in the interpretation of T cell function. For example, proliferation measured using 3H-thymidine incorporation into replicating DNA may underestimate the true proliferative response as it only detect cells in early division cycle, thus potentially missing cells that were already beyond the S phase of the cell cycle prior to the 3H-thymidine pulse (212).

B Cells

Maternal antibodies are the main maternal immune component that protect the neonate immediately after birth (213). Studies have shown that maternal B cell-produced non-cytotoxic antibodies directed against paternal antigens are detected in most women undergoing a normal pregnancy during the first trimester, whereas they are absent in a vast majority of women who experience a spontaneous abortion. This also indicates that these antibodies may be critical for a successful pregnancy (214). Peripheral blood B cell counts vary during normal pregnancy and the post-partum period, also compared to healthy non-pregnant women (Table 4) (149, 150, 165–174). A reduction in circulating B cells is particularly prominent during the third trimester, revealing a "physiological" B cell lymphopenia (175) due to the effect of elevated estrogens on lymphopoiesis (215, 216). This B cell lymphopenia has also been attributed to cellular migration into tissues, including the placental decidua, and suggests that B cells play a particularly important role maintaining tolerance at the maternal-fetal interface (217). In a mouse model, treatment of
Changes in T cells, B cells, and Immunoglobulins during normal pregnancy.

Component	Main findings	References
T cells		
Total levels	Lower levels of T cells during pregnancy than before pregnancy.	149
Subsets	No differences in the absolute total lymphocyte count and the percentage of total T cells during the first, second, and third trimesters.	147, 148
Function	Reduced PHA-Stimulated T lymphocytes proliferation in pregnant women at various times throughout gestation compared with those from non-pregnant controls.	162
B cells		
Total B cells	Lower numbers and/or frequency of total B cells in pregnant women compared to post-partum levels or to healthy non-pregnant women.	149, 150, 165−175
Subsets of B cells	Decrease in the absolute levels of total B cells during the entire course of pregnancy.	149, 168, 177
Markers of B cell activation and function	No difference in the percentage of activated B cells during the three trimesters compared to non-pregnant women.	178
Immunoglobulins		
Total IgG levels	No significant changes in total IgG levels during pregnancy.	181−183
Subclass levels	Higher IgG1 levels in the three trimesters when compared to non-pregnant women.	179
Glycosylation	Increase in galactosylation and sialylation of the Fc portion of IgG.	190−192
Asymmetric IgG	Increase in asymmetric IgG antibodies in pregnancy with maximum increase in the second trimester.	193, 194
IgA		
Total levels	No significant change in IgA levels during pregnancy.	166, 182, 183, 186
IgM		
Total levels	No changes total IgM levels during the course of pregnancy.	166, 182, 184, 186

(Continued)
mice with estrogen upregulated expression of CD22 receptor and the intracellular tyrosine phosphatase SHP-1 genes in B cells. Overexpression of these genes led to diminished calcium response in B cells after activation of BCR, thus supporting a role of these molecules in reduction in B cell receptor signaling (218).

Pregnancy is also associated with changes in B cell subsets, specifically lower innate B-1 cells during pregnancy until delivery and during the early postpartum period (149, 165, 169, 173). B-1 cells are the major source of "innate" IgM antibodies, playing a protective role in the early stage after infection (219).

The function of B cells also decreases as pregnancy advances. Loss of responsiveness to mitogens and infectious agents, which may increase the risk of infection, has been reported (Table 4) (180). Analyses of serum markers of B cell function and activation such as soluble CD23 (sCD23) and B cell activating factor (BAFF) provide further insights into changes in B cell biology during pregnancy. CD23 is expressed on earliest B cells exiting the bone marrow while the post-germinal center B cells are CD23 negative. Following B cell activation, CD23 is cleaved and thus sCD23 levels, which are stable for 12 h, are a marker of the turnover from naïve to memory B Cells (MBC) (220).

In non-pregnant populations, high sCD23 has been associated with marker of the turnover from naïve to memory B Cells (MBC) (220). Cleaved and thus sCD23 levels, which are stable for 12 h, are a marker of the turnover from naïve to memory B Cells (MBC) (220). Following B cell activation, CD23 is cleaved and thus sCD23 levels, which are stable for 12–24 h, are a marker of the turnover from naïve to memory B Cells (MBC) (220). In non-pregnant populations, high sCD23 has been associated with inflammatory and lymphoproliferative disorders (221, 222), and relapse of rheumatoid arthritis (223). Plasma levels of sCD23 levels decrease during the third trimester of pregnancy (179), suggesting lower turnover from naïve to MBCs and may reflect an anti-inflammatory state in pregnancy. BAFF expression in trophoblasts and decidua has been associated with early recurrent spontaneous abortion (224). Plasma levels of BAFF increase during the third trimester (179), suggesting that BAFF may play an important role in the implantation of the embryo. Moreover, peripheral B cell levels are inversely correlated with serum BAFF functions as Fc-linked glycans alter the three-dimensional structure of the protein, thus influencing the binding to Fc receptors (230, 231). Glycan–glycan interactions occur between IgG and Fc Receptor IIIa (232), with core fucose decreasing the affinity of this interaction (233). Thus, high fucosylation of the Fc portion of the IgG, that is reported to occur during pregnancy, has the potential to inhibit the binding with Fc Receptor IIIa expressed on NK cells, and thus decreasing ADCC activity, suggesting that this post-translational modification might be associated with an increased risk for infections in pregnancy.

Asymmetric IgG are characterized by the presence of an oligosaccharide group of the high mannose type in only one of the two Fab fragments and are present in mammalian sera in

Immunoglobulins

Studies from the 1960s–1970s reported conflicting results regarding immunoglobulin (Ig) levels during pregnancy (Table 4). Some studies suggest that total IgG levels remain stable during pregnancy (181–183), while other studies show a decrease in late pregnancy (179, 184–189). IgG1 levels were higher in pregnancy compared to non-pregnant women, while IgG3 levels were higher in pregnant women in their second trimester, compared to non-pregnant women (178). IgG1 is the subclass of that most efficiently trans-placentally transferred to the newborn and is a stronger inducer of Fc-mediated effector mechanisms (e.g. antibody-dependent cellular cytotoxicity, complement dependent cytotoxicity, and antibody-dependent cellular phagocytosis (226), thus potentially providing critical protection for both the mother and the infant in early life. IgG2 and IgG4 levels remain stable during pregnancy and levels are comparable to non-pregnant women (178). The seemingly discrepant results of lower total IgG levels and changes in subclasses (higher IgG1 and IgG3, comparable IgG2 and IgG4), emphasize the challenges of interpreting and comparing results from different cohorts using different immunological assays. Another important caveat to these studies is that measuring antibody concentrations only certainly does not fully account for functional antibody changes unless other characteristics are examined, including avidity and more recently structural changes such as glycosylation that enhance antibody functions (227, 228).

IgGs are glycoproteins and contain N-glycans at both the Fc and Fab portion of IgGs. These N-glycans consist of a constant heptasaccharide core, fucose, N acetylgalactosamine (GlcNAc), galactose(s), and sialic acid(s) (190, 229). Pregnancy has been shown to be associated with changes in IgG Fc domain glycosylation, with an increase of galactosylation and sialylation of the Fc portion of IgG (190–192), whereas Fc fucosylation was shown to remain at high and very similar levels during pregnancy (190, 192). IgG Fc domain glycosylation can have immune regulatory functions and modulate IgG effector functions as Fc-linked glycans alter the three-dimensional structure of the protein, thus influencing the binding to Fc receptors (230, 231). Glycan–glycan interactions occur between IgG and Fc Receptor IIIa (232), with core fucose decreasing the affinity of this interaction (233). Thus, high fucosylation of the Fc portion of the IgG, that is reported to occur during pregnancy, has the potential to inhibit the binding with Fc Receptor IIIa expressed on NK cells, and thus decreasing ADCC activity, suggesting that this post-translational modification might be associated with an increased risk for infections in pregnancy.

Table 4 | Continued

Component	Main findings	References
Decrease in IgM levels in the second and third trimester when compared to first trimester.	181, 185, 187	
Increase in total IgM levels during late-third (36-42 WG) compared with early-third (27-33 WG) trimester.	185, 195	
Increase in total IgM levels in the first trimester as compared to non-pregnant women	178	
No difference in IgM levels in the third trimester compared to non-pregnant women.	179	
IgE Total levels	No change in IgE levels during the course of pregnancy.	178

IFN-γ: Interferon-γ; Th: T helper; PHA: Phytohemagglutinin; IgG, immunoglobulin G; Fc, fragment crystallization; IgA, immunoglobulin A; IgM, immunoglobulin M; IgE, immunoglobulin E.
~15% of total IgG. These antibodies are thought to act locally at the placental level to block placental antigens, thus preventing immunological attack by maternal natural killer (NK) cells and cytotoxic lymphocytes (193). Interestingly, pregnancy is associated with an increase in asymmetric IgG antibodies (193, 194).

While some evidence, mainly from the 1960s-1970s support that there is no significant change in IgA levels during pregnancy (166, 182, 183, 186, 189), other data suggest more dynamic changes to occur during pregnancy (178, 179, 187). Data on IgM levels during pregnancy are conflicting (166, 178, 179, 181, 182, 184–187, 195). Scarce data show that IgE levels remain stable during pregnancy (Table 4) (178).

Different factors could explain a decrease of total Ig levels in pregnancy including depression of cell-mediated immunity, loss of protein in urine, hemodilution, transfer of IgG from mother to fetus across the placenta, or pregnancy-associated hormones, especially steroid hormones, which have effects on protein synthesis (234, 235). Hemodilution due to increased intravascular volume during pregnancy might explain the low Ig levels. However, one small study showed that although total IgG, IgM and IgA levels decreased from the first trimester to second trimester and in the third trimester also for IgG as compared to first trimester, this decrease was also accompanied by a decrease in the ratio of total IgG to serum protein in the second and third trimester, thus supporting that there is a true decrease in serum Ig levels not attributed only to a decrease in serum protein (187).

T Regulatory Cells

T regulatory cells (Tregs) induce peripheral tolerance by suppressing the proliferation and cytokine production of CD4 and CD8 T cells, Ig production by B cells, cytotoxic activity of NK cells, and maturation of dendritic cells (236, 237). Tregs express low levels of IL7R and high levels of the alpha chain of IL-2 receptor (CD25) (238) and the transcription factor Forkhead box p3 (Foxp3) (239). Other suppressive T cell subsets have been described (240) including, CD4+CD25Foxp3-type 1 regulatory T cells (Tr1), and CD4+CD25low Th3 cells (241, 242) that are induced by, and exert their suppressive activity through IL-10 (243) and TGF-β (244).

Tregs are important in regulating fetal rejection by maternal immune cells (245) and to suppress inflammation in the uterus during the implantation period (238, 246–249). The dynamics of Tregs during pregnancy are controversial, which might be in part due to difference in how Tregs are defined between studies (Table 5). Estrogen augmented Foxp3 expression in vitro and in vivo, and treatment with estrogen increased CD4+CD25+ “Tregs” in animal model, potential promoting maternal fetal tolerance (254). A decline in peripheral blood CD25brightCD4+ T cells was reported in pregnant women with spontaneous abortion compared to uncomplicated pregnancies (249) and compared to women with elective abortion (249, 255). However, because activated T cells also express CD25 this choice of markers may have led to overclassifying Treg. While CD25 and Foxp3 are often used as Treg markers, activated conventional T cells can also express Foxp3 in addition to dim levels of CD25 (256, 257). In one study, a higher percentage of CD4+CD25dim T cells was observed at term as compared to 17–24 weeks into gestation, however, no significant changes were observed in CD4+CD25bright T cells (251). In another study, the number of CD4+CD25FoxP3+ T cells decreased during the first trimester then increased at 24–30 weeks of gestation then again declined after 31 weeks until term (252). Some studies showed that the proportion of Tregs in circulation increases during early pregnancy (238, 249) and peaks in the second trimester (238, 250), with one study showing that these cells express Foxp3 (238) to further support that they are Tregs (Table 5). However, in the latter studies (238, 250), no distinction between CD4+CD25dim and CD4+CD25bright T cells was made, thus limiting the definite conclusion about the true dynamics of Tregs during human pregnancy. Comparing different Treg characterization methods, both CD4+CD25bright and CD4+CD127−CD25+ T cell subsets were significantly elevated at the time of delivery compared to non-pregnant women (258). CD4+Foxp3+ T cell proportions were also higher but not statistically significant. Further work is required to truly understand the dynamics of blood regulatory T cells in human pregnancy.

B Regulatory Cells

B regulatory cells (Bregs) express high levels of CD24, CD27, and/or CD38, and have the capacity to suppress T cell responses in part through production of the anti-inflammatory cytokine

Table 5 | Changes in systemic T- and B- regulatory cells during normal pregnancy.

Component	Main Findings	References
T regulatory cells	Increased proportion of T regulatory cells during early pregnancy, peaking in the second trimester and declining in the third trimester.	238, 250
	Higher percentage of CD4+CD25dim T cells in samples obtained at term (>37 weeks) as compared to 17–24 weeks, while no significant changes in CD4+CD25bright T cells.	251
	Increased CD4+CD25bright T cells during early pregnancy compared to non-pregnant women, from 6% to 8%.	249
	Decreased number of CD4+CD25FoxP3+ T cells from 5 to 23 weeks gestation, then increased during 24–30 weeks gestation, then declined after 31 weeks until term.	252
B regulatory cells	Lower absolute levels of IL-10-producing B cells and CD24+CD38+ B regulatory cells during the third trimester and on delivery day than those in the post-partum women.	174
	Increased CD19+CD24+CD27+ B cells in the first trimester as compared to non-pregnant women.	253
IL-10 (259–261). Breg-specific transcription factors have not been identified and there is phenotypic heterogeneity of Bregs indicating that Bregs may not represent a distinct lineage (262). CD19⁺CD24hiCD27⁺ Breg levels increase in the first trimester of pregnancy (253) (Table 5). Human chorionic gonadotropin (hCG) enhances the function of Bregs as hCG induces IL-10 production in B cells and ~95% CD19⁺CD24hiCD27⁺ cells expressed the hCG receptor (253). Absolute counts of IL-10-producing Bregs and CD24hiCD38hi Bregs are lower during the third trimester and at delivery than in women post-partum (174). Bregs’ main role during pregnancy may be to suppress maternal Th1 responses, thus preventing allogeneic responses against the fetus (253). However, the full mechanism behind the activation and expansion of Bregs in pregnancy remain unclear.

MATERNAL IMMUNE PATHOLOGY DRIVING ADVERSE PREGNANCY OUTCOMES

In this review, we have described how the maternal immune system undergoes major adaptation during a healthy pregnancy. Failure to induce these systemic changes predisposes women to adverse pregnancy outcomes and this may be more likely in women with underlying autoimmune diseases. Women with Systemic Lupus Erythematosus (SLE) are at a disproportionately high risk for pregnancy complications. Preterm birth occurs three times more often and post-partum infections are over four times more likely in pregnant women with SLE than in healthy women (263). Using whole blood transcriptomics, Hong et al. found that while signatures specific to SLE (e.g. elevated interferon responses) are retained, changes seen in healthy women’s pregnancies are surprisingly well recapitulated in SLE patients with uncomplicated pregnancies (264). However, in SLE patients with pregnancy complications, certain transcriptomic modules (e.g. plasma cell signatures) were not downregulated to the same extent as in healthy or uncomplicated SLE pregnancies.

While fetal and maternal obstetric outcomes are often adversely affected by autoimmune diseases, the disease severity or risk of relapse is often reduced during pregnancy. This is especially true for Th1 mediated autoimmune diseases such as rheumatoid arthritis (RA) and multiple sclerosis (MS) whereas Th2 mediated diseases such neuromyelitis optica spectrum disorders worsens during pregnancy [reviewed in (265)]. This dichotomy is attributed to the shift towards Th2 based immunity during pregnancy. Concomitant with the return to pre-pregnancy hormone levels and immune status in the post-partum period, many women affected by RA or MS experience a relapse and worsening of symptoms (266, 267). A better understanding of how specific alterations in the maternal immune system during pregnancy lead to symptom improvement could help guide the development of novel therapeutics in autoimmune diseases.

CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion, a large body of scientific literature that accumulated over years demonstrates significant systemic changes in maternal immune system components during pregnancy based on current literature. Trimester-specific changes that are not described in the literature are not shown and represented as gaps and stops in lines (i.e. complement activation and regulatory proteins, CH50 and B regulatory cells). Dashed lines indicate that reduction in B cell might happen during first or second trimester. There are controversies in the literature regarding the dynamics of total and subclasses of IgG combined to draw a definite pattern (thus it is not described in the figure, see full text for details). Fucosylation of Fc portion of IgG is similar to non-pregnancy but at very high levels. *Complement activation proteins: C3a, C4a, C5a, Serum Complement Membrane Attack Complex SC5b9; Complement regulatory proteins: Decay-accelerating factor (CD55), C3 inhibitor pregnancy-associated plasma protein A.
immunological adaptation during pregnancy (Figure 1). The changes indicate highly dynamic co-operative interactions between the maternal and fetal immune system, rather than a broad maternal immune suppression. Knowledge of these changes is helpful to interpret clinical immunology testing results. However, despite all these data, we still lack a clear understanding of how these immunological changes contribute to modulation of the risk of infection and the course of immunological disease during pregnancy. Also, pregnancy remains one of the most vulnerable periods in terms of morbidity and mortality, certainly for the fetus, but also for the mother. Indeed, sepsis alone accounts for about 12.5% of all deaths in women during or within 42 days of the end of pregnancy in the US (268). Major concurrent physiological changes clearly modulate these risks. Yet, teasing out the specific contribution of immunological changes on pregnancy outcomes will require more considerate approaches. Systems immunology can integrate a large amount of information in an unbiased way. When coupled to detailed clinical outcomes, these studies have proven extremely valuable in human health research where classic experimental approaches are not feasible for obvious ethical reasons (269). Most recently, multiparameter analyses incorporating blood counts, flow cytometry and proteomics, identified immunological changes tightly linked to fetal development stages (270). These approaches may also help understand whether and how specific Th2-mediated autoimmune conditions may worsen, while some immune-mediated diseases improve clinically during pregnancy as described above. Systems immunology may also provide insights into the early life origins of allergic sensitization (271) and the optimization of maternal vaccination schedules to best protect both the mother and her infant. In the end, the potential for these unbiased human immunology approaches to inform therapeutic interventions during pregnancy is enormous, but will require concerted efforts from clinicians, biostatisticians, epidemiologists and molecular immunologists.

AUTHOR CONTRIBUTIONS

BA drafted the adaptive immune system section and CM drafted the innate immune system section. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Kourtis AP, Read JS, Jamieson DJ. Pregnancy and infection. *N Engl J Med* (2014) 370:2211–8. doi: 10.1056/NEJMrar1213566
2. Schnarr J, Smaill F. Asymptomatic bacteriuria and symptomatic urinary tract infections in pregnancy. *Eur J Clin Invest* (2008) 38(Suppl 2):50–7. doi: 10.1111/j.1365-2362.2008.02009.x
3. Sheffield JS, Cunningham FG. Community-acquired pneumonia in pregnancy. *Obstet Gynecol* (2009) 114:915–22. doi: 10.1097/AOG.0b013e3181b8e76d
4. Jackson KA, Iwamoto M, Swerdlow D. Pregnancy-associated listeriosis. *Epidemiol Infect* (2010) 138:1503–9. doi: 10.1017/S0950268810000294
5. Gellin BG, Broome CV, Bbb WF, Weaver RE, Gaventa S, Mascola L. The epidemiology of listeriosis in the United States–1986. Listeriosis Study Group. *Am J Epidemiol* (1991) 133:392–401. doi: 10.1093/oxfordjournals.aaj.115893
6. Schuchat A, Deaver KA, Wenger JD, Pikayitis BD, Mascola L, Pinner RW, et al. Role of foods in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study Group. *Am J Epidemiol* (1992) 135:2041–5. doi: 10.1001/jama.1992.03501520411
7. MacDonald PD, Whitwam RE, Boggs JD, MacCormack JD, Anderson KL, Readon JW, et al. Outbreak of listeriosis among Mexican immigrants as a result of consumption of illicitly produced Mexican-style cheese. *Clin Infect Dis* (2005) 40:677–82. doi: 10.1086/427303
8. Silk BJ, Date KA, Jackson KA, Pouliott R, Holt KG, Graves LM, et al. Invasive listeriosis in the Foodborne Diseases Active Surveillance Network (FoodNet), 2004–2009: further targeted prevention needed for higher-risk groups. *Clin Infect Dis* (2012) 54(Suppl 5):S396–404. doi: 10.1093/cid/cis268
9. Mylonakis E, Paliou M, Hohmann EL, Calderwood SB, Wing EL. Listeriosis during pregnancy: a case series and review of 222 cases. *Med (Baltimore)* (2002) 81:260–9. doi: 10.1097/00005792-200207000-00002
10. Goulet V, Hebert M, Hedberg C, Laurent E, Vaillant V, De Valk H, et al. Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. *Clin Infect Dis* (2012) 54:652–60. doi: 10.1093/cid/cir902
11. Cheng VC, Woo PC, Lau SK, Cheung CH, Yung RW, Yam LY, et al. Peripartum tuberculosis as a form of immunorestitution disease. *Eur J Clin Microbiol Infect Dis* (2003) 22:313–7. doi: 10.1007/s10096-003-0927-1
12. Zenner D, Kruijshaar ME, Andrews N, Abubakar I. Risk of tuberculosis in pregnancy: a national, primary care-based cohort and self-controlled case series study. *Am J Respir Crit Care Med* (2012) 185:779–84. doi: 10.1164/rccm.201106-1083OC
13. Okoko BJ, Enwere G, Ota MO. The epidemiology and consequences of maternal malaria: a review of immunological basis. *Acta Trop* (2003) 87:193–205. doi: 10.1016/s0001-706x(03)00097-4
14. Rijken MJ, McGready R, Boel ME, Poepoprodjo R, Singh N, Sufraudin D, et al. Malaria in pregnancy in the Asia-Pacific region. *Lancet Infect Dis* (2012) 12:75–88. doi: 10.1016/S1473-3099(11)70315-2
15. McGregor IA. Epidemiology, malaria and pregnancy. *Am J Trop Med Hyg* (1984) 33:517–25. doi: 10.4269/ajtmh.1984.33.517
16. Taylor SM, van Eijk AM, Hand CC, Mtwandagilwa K, Messina JP, Tshefu AK, et al. Quantification of the burden and consequences of pregnancy-associated malaria in the Democratic Republic of the Congo. *J Infect Dis* (2011) 204:1762–71. doi: 10.1093/infdis/iir625
17. Siston AM, Rasmussen SA, Honein MA, Fry AM, Sieb K, Callaghan WM, et al. Pandemic 2009 influenza A(H1N1) virus illness among pregnant women in the United States. *JAMA* (2010) 303:1517–25. doi: 10.1001/jama.2010.479
18. Rasmussen SA, Jamieson DJ, Bresee JS. Pandemic influenza and pregnant women. *Emerg Infect Dis* (2008) 14:945–100. doi: 10.3201/eid1401.070667
19. Mosby LG, Rasmussen SA, Jamieson DJ. 2009 pandemic influenza A (H1N1) in pregnancy: a systematic review of the literature. *Am J Obstet Gynecol* (2011) 205:10–8. doi: 10.1016/j.ajog.2010.12.033
20. Dodds L, McNeil SA, Fell DB, Allen VM, Coombs A, Scott J, et al. Impact of influenza exposure on rates of hospital admissions and physician visits because of respiratory illness among pregnant women. *CMAJ* (2007) 176:463–8. doi: 10.1503/cmaj.061435
21. Neuzil KM, Reed GW, Mitchel EF, Simonsen L, Grif...
Abu-Raya et al. Maternal Immune System During Pregnancy

68. Meaney-Delman D, Hills SL, Williams C, Galang RR, Iyengar P, Hennennent AK, et al. Zika Virus Infection Among U.S. Pregnant Travelers - August 2015-February 2016. MMWR Morb Mortal Wkly Rep (2016) 65:211–4. doi: 10.15585/mmwr.mm6508e1

69. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika Virus and Birth Defects—Reviewing the Evidence for Causality. N Engl J Med (2016) 374:1981–7. doi: 10.1056/NEJMra1604338

70. Siegel M, Fuerst HT, Peress NS. Comparative fetal mortality in maternal virus diseases. A prospective study on rubella, measles, mumps, chicken pox and hepatitis. N Engl J Med (1966) 266:768–71. doi: 10.1056/NEJM19660407241404

71. Attmar RL, Englund JA, Hammill H. Complications of measles during pregnancy. Clin Infect Dis (1992) 14:217–26. doi: 10.1093/clinids/14.1.217

72. Dollard SC, Grosse SD, Ross DS. New estimates of the prevalence of rubella and rubella virus infection in the United States. J Infect Dis (1985) 152:56–62. doi: 10.1093/infdis/152.1.56

73. Abu Raya B, Edwards KM, Scheifele DW, Halperin SA. Pertussis and maternal pertussis vaccination during pregnancy. Pediatr Infect Dis J (2004) 23:979–84. doi: 10.1097/01.PID.0000134283.27082.93

74. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Semin Immunol (2010) 22:93–101. doi: 10.1016/j.smim.2010.01.012

75. Prabhudas M, Bonney E, Caron K, Dey S, Erlebach A, Fazelabas A, et al. Immune mechanisms at the maternal-fetal interface: perspectives and challenges. Nat Immunol (2015) 16:328–34. doi: 10.1038/nri.3131

76. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol (2017) 17:469–82. doi: 10.1038/11r.2017.64

77. Richani K, Soto E, Romero R, Espinoza J, Chaiworapongsa T, Nien JK, et al. Normal pregnancy is characterized by systemic activation of the complement system. J Matern Fetal Neonatal Med (2005) 17:239–45. doi: 10.1080/14767050500072722

78. Derzsy Z, Prohászka Z. Monocytes are progressively activated in the circulation of pregnant women. J Immunol (2003) 171:467–73. doi: 10.4049/jimmunol.171.1.467

79. Blazkova J, Gupta S, Liu Y, Gaudilliere B, Ganio EA, Bolen CR, et al. Multicenter Systems Analysis of Human Blood Reveals Immature Neutrophils in Males and During Pregnancy. J Immunol (2017) 198:2479–88. doi: 10.4049/jimmunol.1601855

80. Köstlin N, Kugel H, Spring B, Leiber A, Marmé H, Henes M, et al. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur J Immunol (2014) 44:2582–91. doi: 10.1002/eji.201344200

81. Koldhoff H, Cierna B, Steckel NK, Beelen DW, Elmaagacli AH. Maternal molecular features and gene profiling of monocytes during first trimester pregnancy. J Reprod Immunol (2013) 99:96–8. doi: 10.1016/j.jri.2013.07.001

82. Crocker IP, Baker PN, Fletcher J. Neutrophil function in pregnancy and rheumatoid arthritis. Ann Rheum Dis (2000) 59:555–64. doi: 10.1136/ard.59.7.555

83. Naccasha N, Gervasi MT, Chaiworapongsa T, Berman S, Yoon BH, Maymon E, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol (2001) 185:1118–23. doi: 10.1067/mob.2001.117682

84. Baines MG, Millar KG, Mills P. Studies of complement levels in normal pregnancy. J Pathol (1984) 143:13–7. doi: 10.1002/path.1711430104

85. Baines MG, Millar KG, Mills P. Fluctuations in C-reactive protein concentration and neutrophil activation during pregnancy-induced hypertension. J Clin Invest (1974) 53:66–70. doi: 10.1172/JCI107794

86. Baschat AA, van Doornik A, van der Veen I, van der Velden GB, van der Velden GB, et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy. J Reprod Immunol (2009) 81:92–100. doi: 10.1016/j.jri.2013.07.001

87. Taniguchi K, Nagata H, Katsuki T, Nakashima C, Onodera R, Hiraoka A, et al. Significance of human neutrophil antigen-2a (NB1) expression and NB1-positive cells in normal pregnancy. J Biol Chem (2009) 284:28642–51. doi: 10.1074/jbc.M109.011359

88. Kindzelzki AL, Ubki T, Michielhs H, Chaiworapongsa T, Romero R, Petty HR. 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase form a supramolecular complex in human neutrophils that undergoes retrograde trafficking during pregnancy. J Immunol (2004) 172:6373–81. doi: 10.4049/jimmunol.172.10.6373

89. Kindzelzki AL, Ubki T, Michielhs H, Chaiworapongsa T, Romero R, Petty HR. 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase form a supramolecular complex in human neutrophils that undergoes retrograde trafficking during pregnancy. J Immunol (2004) 172:6373–81. doi: 10.4049/jimmunol.172.10.6373

90. Kindzelzki AL, Ubki T, Michielhs H, Chaiworapongsa T, Romero R, Petty HR. 6-phosphogluconate dehydrogenase and glucose-6-phosphate dehydrogenase form a supramolecular complex in human neutrophils that undergoes retrograde trafficking during pregnancy. J Immunol (2004) 172:6373–81. doi: 10.4049/jimmunol.172.10.6373
predispose to preeclampsia: a genetic analysis of the PROMISSE cohort. *PloS Med* (2011) 8:e1001013. doi: 10.1371/journal.pmed.1001013

108. Denny KJ, Woodruff TM, Taylor SM, Callaway LK. Complement in pregnancy: a delicate balance. *Am J Reprod Immunol* (2013) 69:3–11. doi: 10.1111/aji.12000

109. Heit JA, Kobbervig CE, James AH, Petterson TM, Bailey KR, Melton LJ. Trends in the incidence of venous thromboembolism during pregnancy or postpartum: a 30-year population-based study. *Ann Intern Med* (2005) 143:697–706. doi: 10.7326/0003-4819-143-10-200511150-00006

110. Mold C, Gewurz H, Du Clos TW. Regulation of complement activation by C-reactive protein. *Immunopharmacology* (1999) 42:23–30. doi: 10.1016/S0162-3109(99)00007-7

111. Berman S, Gewurz H, Mold C. Binding of C-reactive protein to nucleated cells leads to complement activation without cytolysis. *J Immunol* (1986) 136:1354–9

112. Biró A, Rowó Z, Papp D, Cervenak L, Varga L, Fust G, et al. Studies on the interactions between C-reactive protein and complement proteins. *Immunology* (2007) 121:40–50. doi: 10.1111/j.1365-2567.2007.02535.x

113. Amara U, Rittirsch D, Flieri M, Bruckner U, Klos A, Gebbard F, et al. Interaction between the coagulation and complement system. *Adv Exp Med Biol* (2008) 632:71–9. doi: 10.1007/978-3-87952-1_6

114. Shalney DK, Kiley PA, Golla K, Allen S, Martin K, O’Riordan RT, et al. Pregnancy-specific glycoproteins bind integrin αvβ3 and inhibit the platelet–fibrinogen interaction. *PLoS One* (2013) 8:e57491. doi: 10.1371/journal.pone.0057491

115. Kolaczkowska EI, Kubbes P. Neutrophil recruitment and function in health and inflammation. *Nat Rev Immunol* (2013) 13:159–75. doi: 10.1038/nri3393

116. Makinoda S, Mikuni M, Furuta I, Okuyama K, Sagawa T, Fujimoto S. Serum Myeloperoxidase accumulates at the neutrophil surface and enhances cell activation scheme linked to diverse effector functions. *Nat Rev Immunol* (2010) 10:189–202. doi: 10.1038/nri2754

117. Kirolf AK, Al-Ahmadie HA, Leppert M, Kedzierska K, Blumberg RS. Antagonizes the Pro-NETotic Effect of Estrogen and G-CSF. *J Immunol* (2014) 193:4945–57. doi: 10.4049/jimmunol.1400113

118. Makinoda S, Mikuni M, Furuta I, Okuyama K, Sagawa T, Fujimoto S. Serum Myeloperoxidase accumulates at the neutrophil surface and enhances cell activation scheme linked to diverse effector functions. *Nat Rev Immunol* (2014) 13:159–75. doi: 10.1038/nri3393

119. Vono M, Lin A, Norby-Teplund A, Koup RA, Liang F, Lore[342]́ro A, Rovo Z, Papp D, Cervenak L, Varga L, Fust G, et al. Studies on the interactions between C-reactive protein and complement proteins. *Immunology* (2007) 121:40–50. doi: 10.1111/j.1365-2567.2007.02535.x

120. Nair RR, Sinha P, Khanna A, Singh K. Reduced Myeloid-derived Suppressor Cells in the Blood and Endometrium is Associated with Early Miscarriage. *J Reprod Immunol* (2018) 19:108. doi: 10.1016/j.jri.2018.06.009

121. Göhner C, Plösch T, Faas MM. Immune-modulatory effects of syncytiotrophoblast extracellular vesicles in pregnancy and preeclampsia. *Placenta* (2017) 56(Suppl 1):S41–51. doi: 10.1016/j.placenta.2017.06.004

122. Tönsor S, Redman CWG, Sargent IL. Peripheral blood invariant natural killer T cells throughout pregnancy and in preeclamptic women. *J Reprod Immunol* (2014) 87:52–6. doi: 10.1016/j.jri.2014.03.002

123. Faas MM, de Vos P. Maternal monocytes in pregnancy and pre-eclampsia. *Front Immunol* (2014) 5:298. doi: 10.3389/fimmu.2014.00298

124. Artis D, Spits H. The biology of innate lymphoid cells. *Nature* (2015) 517:293–301. doi: 10.1038/nature14189

125. Southcombe J, Redman CWG, Sargent I. Peripheral blood invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. *Nat Rev Immunol* (2013) 13:101–17. doi: 10.1038/nri3369

126. Makinoda S, Mikuni M, Furuta I, Okuyama K, Sagawa T, Fujimoto S. Serum Myeloperoxidase accumulates at the neutrophil surface and enhances cell activation scheme linked to diverse effector functions. *Nat Rev Immunol* (2010) 10:189–202. doi: 10.1038/nri2754

127. Ziegler SM, Feldmann CN, Hagen SH, Richert I, Barkhausen T, Godezke J, et al. Innate immune responses to toll-like receptor stimulation are altered during the course of pregnancy. *J Reprod Immunol* (2018) 128:30–7. doi: 10.1016/j.jri.2018.05.009

128. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. *Lancet Infect Dis* (2013) 13:260–8. doi: 10.1016/S1473-3099(13)70001-X

129. Döcke WD, Randow F, Syrbe U, Krausch D, Asadullah K, Reinke P, et al. Interaction between the coagulation and complement system. *Immunol Lett* (1999) 63:71. doi: 10.1016/S0165-2478(99)00359-X
149. Watanabe M, Iwatai Y, Kaneda T, Hidaka Y, Mitsuda N, Morimoto Y, et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. *Am J Reprod Immunol* (1997) 37:368–77. doi: 10.1111/j.1600-0897.1997.tb00246.x

150. Kühnert M, Strohmüller R, Stegmüller M, Halberstadt E. Changes in lymphocyte subsets during normal pregnancy. *Eur J Obstet Gynecol Reprod Biol* (1998) 76:147–51. doi: 10.1016/S0301-2115(97)00180-2

151. Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon? *Immunol Today* (1993) 14:535–6. doi: 10.1016/0167-6569(93)90235-D

152. Wegmann TG. Foetal protection against abortion: is it immunosuppression by decidual T cells in unexplained recurrent abortions. *Microbiol Immunol* (1998) 42:379–93. doi: 10.1111/j.1600-0897.1998.tb00235.x

153. Szekeres-Bartho J, Wegmann TG. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. *J Reprod Immunol* (1996) 31:81–95. doi: 10.1016/0165-0378(96)00964-3

154. Piccinini MP, Beloni L, Livi C, Maggi E, Scarselli G, Romagnani S. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidua of patients with recurrent miscarriage. *Clin Exp Immunol* (1996) 104:104–9. doi: 10.1109/immun.1996.721996

155. Saito S, Sakai M, Sasaki Y, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and in unexplained recurrent spontaneous abortion. *Hum Reprod* (2000) 15:713–8. doi: 10.1093/humrep/15.3.713

156. Aghaeepour N, Ganio EA, Mcilwain D, Tsai AS, Tingle M, Van Gassen S, et al. Characterization of type 1 and type 2 cytokine production profile in maternal lymphocytes during normal pregnancy and in unexplained recurrent miscarriage. *Clin Sci (Lond)* (2014) 126:347–54. doi: 10.1042/CS20130247

157. Agahsepour N, Gario EA, McIwain D, Tsai AS, Tingle M, Van Gassen S, et al. An immune clock of human pregnancy. *Sci Immunol* (2017) 2: doi: 10.1126/sciimmunol.aan2946

158. Saito S, Sakai M, Sasaki T, Tanebe K, Tsuda H, Michimata T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio during normal human pregnancy and pre-eclampsia. *Clin Exp Immunol* (1999) 117:550–5. doi: 10.1046/j.1365-2249.1999.00997.x

159. Lissauer D, Goodyear O, Khazumi R, Moss PA, Kilby MD. Profile of maternal CD4 T-cell effector function during normal pregnancy and in women with a history of recurrent miscarriage. *Clin Sci (Lond)* (2014) 126:347–54. doi: 10.1042/CS20130247

160. Matthiesen L, Berg G, Ernerudh J, Håkansson L. Lymphocyte subsets and mitogen stimulation of blood lymphocytes in normal pregnancy. *Am J Reprod Immunol* (1996) 35:70–9. doi: 10.1111/j.1600-0896.1996.tb00100.x

161. Lima J, Martins C, Leandro MJ, Nunes G, Sousa MJ, Branco JC, et al. Characterization of B cells in healthy pregnant women from late pregnancy to post-partum: a prospective observational study. *BMC Pregnancy Childbirth* (2016) 16:139. doi: 10.1186/s12884-016-0972-7

162. Pazos M, Spering RS, Moran TM, Kraus TA. The influence of pregnancy on systemic immunity. *Immunol Res* (2012) 54:254–61. doi: 10.1007/s12026-012-8303-9

163. Dodson MG, Kerman RH, Lange CF, Stefani SS, O’Leary JA. T and B cells in pregnancy. *Obstet Gynecol* (1997) 49:299–302.

164. Bailey K, Herrod HG, Younger R, Shaver D. Functional aspects of T-cell immunity to the placental allograft in women with a history of recurrent miscarriage. *Clin Exp Immunol* (1997) 104:104–9. doi: 10.1109/immun.1997.620351

165. Christiansen JS, Andersen AR, Ostherr K, Peitersen B, Bach-Mortensen N, et al. Changes of serum immunoglobins IgG, IgA, IgM and IgE during pregnancy and in unexplained recurrent spontaneous abortion. *Am J Obstet Gynecol* (1983) 149:299–302. doi: 10.1016/0002-9378(93)90301-7

166. Christiansen JS, Andersen AR, Ostherr K, Peitersen B, Bach-Mortensen N. Changes of serum immunoglobulins IgG, IgA, IgM, and IgE during pregnancy. *Obstet Gynecol* (1978) 52:415–20.

167. Marolis GB, Buckley RH, Younger JB. Serum immunoglobulin concentrations during normal pregnancy. *Am J Obstet Gynecol* (1971) 109:971–6. doi: 10.1016/0002-9378(71)90275-4.
189. Larsson A, Palm M, Hansson LO, Basu S, Axelson O. Reference values for alpha1-acid glycoprotein, alpha1-antitrypsin, albumin, haptoglobin, C-reactive protein, IgA, IgG and IgM during pregnancy. Acta Obstet Gynecol Scand (2008) 87:1084–8. doi: 10.1080/00016340802248146

190. Bondt A, Rombouts Y, Selman MH, Hensenberg PJ, Reiding KR, Hazes JM, et al. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics (2014) 13:3029–39. doi: 10.1074/mcp.M114.039357

191. Zelenscu AC, Gentile T, Kortebani G, Margni A, Margni R. Asymmetric antibodies and pregnancy. Am J Reprod Immunol (2001) 45:289–94. doi: 10.1111/j.1600-0891.2001.00045.x

192. Gutierrez G, Gentile T, Miranda S, Margni RA. Asymmetric antibodies: a protective arm in pregnancy. Curr Opin Rheumatol (2014) 26:329–33. doi: 10.1097/BOR.0000000000000045

193. Pozzilli C, Pugliatti M, Group P. An overview of pregnancy-related issues in patients with multiple sclerosis. J Neuroimmunol (2011) 235:136–43. doi: 10.1016/j.jneuroim.2011.09.009

194. Panpatana P, Wasi C, Ruangpairoj T, Chunarmchai S, Theeravuthichai J, Jitpomjai J, et al. Fc speciﬁc IgG glycosylation proﬁling by robust nano-reverse phase HPLC-MS using a sheath-ﬂow ESI sprayer interface. J Proteomics (2012) 75:1318–29. doi: 10.1016/j.jprot.2011.11.003

195. Abu-Raya B, Giles ML, Kollmann TR, Sadarangani M. The Effect of Timing of Tetanus-Diphtheria-Acellular Pertussis Vaccine Administration in Pregnancy on the Avidity of Pertussis Antibodies. J Immunol (1995) 155:128–33.

196. Croy BA, Chantakru S, Esadeg S, Ashkar AA, Wei Q. Decidual natural killer cells: key regulators of placental development (a review). J Reprod Immunol (2002) 57:151–68. doi: 10.1016/S0165-5728(02)00005-0

197. Muzzio D, Zelenscu AC, Jensen F. The role of B cells in pregnancy: the good and the bad. Am J Reprod Immunol (2013) 69:408–12. doi: 10.1111/aji.12079

198. Prieto JMB, Felippe MJB. Development, phenotype, and function of non-conventional B cells. Immunol Today (1995) 15:34–8. doi: 10.1016/0140-6736(95)82094-Y

199. Hussein MR, Abd-Elwahed AR, Abodeif ES, Abdulfarouh SR. Decidual immune cell inﬁltrate in hydatidiform mole. Cancer Invest (2009) 27:60–6. doi: 10.1080/07357900802161054

200. Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest (2002) 109:1625–33. doi: 10.1172/JCI214873

201. Prieto JMB, Felippe MJB. Development, phenotype, and function of non-conventional B cells. Comp Immunol Microbiol Infect Dis (2017) 54:38–44. doi: 10.1016/j.cimid.2017.08.002

202. Bansal AS, Haeney MR, Cochrane S, Pumphrey RS, Green LM, Bhavnani M, et al. Serum soluble CD23 in patients with hypogammaglobulinaemia. Clin Exp Immunol (1994) 97:239–41. doi: 10.1111/j.1600-0625.1994.tb06074.x

203. Yoshihata T, Namba T, Kato H, Kori K, Inamoto T, Kumagai S, et al. Soluble Fc epsilon RII/CD23 in patients with autoimmune diseases and Epstein-Barr virus-related disorders: analysis by ELISA for soluble Fc epsilon RII/CD23. Immunomethods (1999) 4:65–71. doi: 10.1006/imtm.1999.1008

204. Goller ME, Kneitz C, Mehringer C, Müller K, Jelley-Gibbs DM, Gosselin EJ, et al. Regulation of CD23 isoforms on B-chronic lymphocytic leukemia. Leuk Res (2002) 26:795–802. doi: 10.1016/S0145-2126(02)00007-3

205. Cambidge G, Perry HC, Nogueira L, Serre G, Parsons HM, De La Torre I, et al. Effect of B-cell depletion therapy on serological evidence of B-cell and plasmablast activation in patients with rheumatoid arthritis over multiple cycles of rituximab treatment. J Autoimmun (2014) 50:67–76. doi: 10.1016/j.jaut.2013.12.002

206. Guo WJ, Qu X, Yang MX, Zhang WD, Liang L, Shao QQ, et al. Expression of BAFF in the trophoblast and decidua of normal early pregnant women and patients with recurrent spontaneous miscarriage. Chin Med J (Engl) (2008) 121:309–15.

207. Kreuzaler M, Rauch M, Salzer U, Birmeljan J, Ruzzi M, Grimbacher B, et al. Soluble BAFF levels inversely correlate with peripheral B cell numbers and the expression of BAFF receptors. J Immunol (2012) 188:497–503. doi: 10.4049/jimmunol.1102321

208. de Taeye SW, Rispen T, Vidarsson G. The Ligands for Human IgG and Their Effector Functions. Antibodies (Basel) (2019) 8: doi: 10.3390/antib8020030

209. Jennenein MF, Goldfarb I, Dolatshahi S, Cosgrove C, Noletti FT, Krykbaeva M, et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell (2019) 178:202–15.e14. doi: 10.1016/j.cell.2019.05.044

210. Abu-Raya B, Giles ML, Kollmann TR, Sadarangani M. The Effect of Timing of Tetraxus-Diphtheria-Accellular Pertussis Vaccine Administration in Pregnancy on the Avidity of Pertussis Antibodies. Front Immunol (2019) 10:2423. doi: 10.3389/fimmu.2019.02423

211. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human
immunoglobulins. *Anna Rev Immunol* (2007) 25:21–50. doi: 10.1146/annurev.immunol.25.022106.141702

230. Neisig TC, Raju Y. FcR binding and immune effector function to aglycosylated immunoglobulin G1. *J Mol Recognit* (2012) 25:147–54. doi: 10.1002/jmr.2155

231. Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW, et al. Aglycosylated IgG variants expressed in bacteria that selectively bind FcγammaRII potentiate tumor cell killing by monocyte-dendritic cells. *Proc Natl Acad Sci U S A* (2010) 107:604–9. doi: 10.1073/pnas.0908590107

232. Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, et al. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγammaRII and antibodies lacking core fucose. *Proc Natl Acad Sci U S A* (2011) 108:26699–74. doi: 10.1073/pdb5g/pdb

233. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG N-linked oligosaccharide improves binding to human FcγammaRII and antibody-dependent cellular toxicity. *J Biol Chem* (2002) 277:26733–40. doi: 10.1074/jbc.M202069200

234. Tandon R, Bhatia BD, Narang P. Neonatal infections: I—Maternal and cord serum IgG levels in relation to gestation and intrauterine growth. *Indian J Pediatr* (1984) 51:521–7. doi: 10.1007/BF02776614

235. Pitcher-Wilmott RW, Hindoacha P, Wood CB. The placental transfer of IgG subclasses in human pregnancy. *Clin Exp Immunol* (1980) 41:303–8.

236. Sanz I. Naturalising FcγRIIIa CD4+CD25+ regulatory T cells in immunological tolerance to self and non-self. *Nat Immunol* (2005) 6:345–52. doi: 10.1038/nii78

237. Akbar AN, Vukmanovic-Stjepic M, Taams LS, Macallan DC. The dynamic co-parallelisms of regulatory T cell subsets involved in the pathogenesis of preeclampsia? *Clin Immunol* (2008) 129:401–12. doi: 10.1016/j.clim.2008.07.032

238. Rollé L, Memarzadeh Tehran M, Morell-Garcia A, Raeva Y, Schumacher A, Hartig R, et al. Cutting Edge: IL-10-Producing Regulatory B Cells in Early Human Pregnancy. *Am J Reprod Immunol* (2013) 70:448–53. doi: 10.1111/aji.12157

239. Chen X, Cai J. Cutting edge: estrogen drives expansion of the CD4+CD25(bright) regulatory T cell compartment. *J Immunol* (2004) 173:2227–30. doi: 10.4049/jimmunol.173.4.2227

240. Steinborn A, Haensch GM, Mahnke K, Schmitt E, Toermer A, Meuer S, et al. Distinct subsets of regulatory T cells during pregnancy: is the imbalance of these subsets involved in the pathogenesis of preeclampsia? *Clin Immunol* (2008) 129:401–12. doi: 10.1016/j.clim.2008.07.032

241. Wolfs F, Elschner C, Kupfer G, Staudt M, Lanz C, Böhm C, et al. Avidity confers FcγRIIIa CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. *Hum Reprod* (2004) 10:347–53. doi: 10.1093/molehr/gah044

242. Tilburgs T, Roelen DL, van der Mast BJ, van Schip JP, Kleijburg C, de Groot-Swings GM, et al. Differential distribution of CD4+CD25(bright) and CD8+CD28(−) T-cells in decidua and maternal blood during human pregnancy. *Placenta* (2006) 27(Suppl A):S47–53. doi: 10.1016/j.placenta.2005.11.008

243. Sanz I. Rationale for B cell targeting in SLE. *Immunology* (2007) 75:71–7. doi: 10.1111/j.1365-2567.2004.01869.x

244. Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance to self and non-self. *Nat Clin Immunol* (2010) 7:345–7. doi: 10.1111/j.1365-2958.2009.01178.x

245. Sanz I. Regulatory B cells: origin, phenotype, and function. *Semin Immunopathol* (2013) 35:1–10. doi: 10.1007/s00294-013-0430-x

246. Tilburgs T, Roelen DL, Van Der Mast BJ, De Groot-Swings GM, Kleijburg C, Scherjon SA, et al. Evidence for a selective migration of fetus-specific CD4+CD25(bright) regulatory T cells from the peripheral blood to the decidua in human pregnancy. *J Immunol* (2008) 180:5737–45. doi: 10.4049/jimmunol.180.8.5737

247. Sasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. *Hum Reprod* (2004) 10:347–53. doi: 10.1093/molehr/gah044

248. Sanz I. Regulatory B cells: origin, phenotype, and function. *Semin Immunopathol* (2013) 35:1–10. doi: 10.1007/s00294-013-0430-x

249. Tilburgs T, Roelen DL, van der Mast BJ, van Schip JP, Kleijburg C, de Groot-Swings GM, et al. Differential distribution of CD4+CD25(bright) and CD8+CD28− T-cells in decidua and maternal blood during human pregnancy. *Placenta* (2006) 27(Suppl A):S47–53. doi: 10.1016/j.placenta.2005.11.008

250. Polanczyk MJ, Carson BD, Subramanian S, Affentoulis M, Vandenbark AA, Kastelein RJ, et al. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. *J Immunol* (2004) 173:2227–30. doi: 10.4049/jimmunol.173.4.2227

251. Tenen DG, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. Longitudinal profiling of human blood transcriptome in healthy and preeclampsia patients. *J Rheumatol* (2019) 46:1154–69. doi: 10.1182/jrheum.1809185

252. Ng HH, Loo S, Li W, Fam S, Ong KH, Yuen JC, et al. Characterization of a rare IL-10-competent B-cell subset in humans that down-regulate in human-donated decidua. *Clin Immunol* (2009) 133:402–10. doi: 10.1016/j.clim.2009.08.009

253. Sanz I. Rationale for B cell targeting in SLE. *Semin Immunopathol* (2014) 36:365–76. doi: 10.1007/s00281-014-0430-x

254. Blair PA, Noreña LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. Phenotypic characterization of a rare IL-10-competent B-cell subset in humans that down-regulate in human-donated decidua. *Clin Immunol* (2009) 133:402–10. doi: 10.1016/j.clim.2009.08.009

255. Sanz I. Rationale for B cell targeting in SLE. *Semin Immunopathol* (2014) 36:365–76. doi: 10.1007/s00281-014-0430-x

256. Qiu K, He Q, Chen X, Liu H, Deng S, Lu W. Pregnancy-Related Immune Changes and Demyelinating Diseases of the Central Nervous System. *Front Neurol* (2019) 10:1070. doi: 10.3389/fneur.2019.01070

257. Jethwa H, Lam S, Smith C, Giles I. Does Rheumatoid Arthritis Really Improve During Pregnancy? A Systematic Review and Metaanalysis. *J Rheumatol* (2019) 46:245–50. doi: 10.3899/jrheum.180226
Predictors and dynamics of postpartum relapses in women with multiple sclerosis. *Mult Scler* (2014) 20:739–46. doi: 10.1177/1352458513507816

268. *Centers for Disease Control and Prevention. Pregnancy Mortality Surveillance System*. Available at: https://www.cdc.gov/reproductivehealth/maternal-mortality/pregnancy-mortality-surveillance-system.htm (Accessed on 12 May 2020).

269. Christophersen A, Lund EG, Snir O, Sola E, Kanduri C, Dahal-Koirala S, et al. Distinct phenotype of CD4(+) T cells driving celiac disease identified in multiple autoimmune conditions. *Nat Med* (2019) 25:734–7. doi: 10.1038/s41591-019-0403-9

270. Apps R, Kotliarov Y, Cheung F, Han KL, Chen J, Biancotto A, et al. Multimodal immune phenotyping of maternal peripheral blood in normal human pregnancy. *JCI Insight* (2020) 5. doi: 10.1172/jci.insight.134838

271. Sbihi H, Jones MJ, MacIsaac JL, Brauer M, Allen RW, Sears MR, et al. Prenatal exposure to traffic-related air pollution, the gestational epigenetic clock, and risk of early-life allergic sensitization. *J Allergy Clin Immunol* (2019) 144:1729–31.e5. doi: 10.1016/j.jaci.2019.07.047

Conflict of Interest: BA is supported by the Canadian Health and Research Institute Vanier Canada Graduate scholarship. CM was supported by a Graduate Studentship from the BC Children’s Hospital Research Institute. MS is supported via salary awards from the BC Children’s Hospital Foundation, the Canadian Child Health Clinician Scientist Program and the Michael Smith Foundation for Health Research. MS has been an investigator on projects funded by GlaxoSmithKline, Merck, Pfizer, Sanoﬁ-Pasteur, Seqirus, Symvivo and VBI Vaccines. All funds have been paid to his institute, and he has not received any personal payments. PL is supported by the BC Children’s Hospital Investigator Grant Award Program.

Copyright © 2020 Abu-Raya, Michalski, Sadarangani and Lavoie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.