Vector fields liftable over corank 1 stable maps

Kevin Houston and Daniel Littlestone
School of Mathematics
University of Leeds
Leeds, LS2 9JT, U.K.

Abstract
Generators for the module of vector fields liftable over corank 1 stable complex analytic maps from an \(n \)-manifold to an \(n + 1 \)-manifold are found. This is applied to the classification of the singularities occurring in generic one-parameter families of maps between these spaces.

MSC Classification: 58C25, 58K40, (53A07).
Keywords: liftable vector fields.

1 Introduction

In his influential paper [11] Arnol’d showed the importance of liftable vector fields in the study of singularities, in particular for wave fronts. Let \(K \) denote the field of real numbers or complex numbers and suppose that \(f : K^n \rightarrow K^p \) is a smooth map. A vector field \(\xi \) on \(K^p \) is liftable if there exists a vector field \(\eta \) on \(K^n \) such that \(df \circ \eta = \xi \circ f \) where \(df \) is the differential of \(f \). These vector fields form a module over the ring of functions on \(K^p \). These are useful in the classification of singularities of mappings since one can integrate them to produce diffeomorphisms that preserve the properties of the map.

Arnol’d showed that for a map \(\varphi : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^n, 0) \) given by \(\varphi(x_1, \ldots, x_{n-1}, y) = (x_1, \ldots, x_{n-1}, y^{n+1} + \sum_{i=1}^{n-1} x_i y^i) \) the module of liftable vector field is generated freely by \(n \) vector fields. For finitely \(\mathcal{A} \)-determined complex analytic map germs \(f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^p, 0) \) with \(n \geq p \), the discriminant of \(f \) is a hypersurface in \(\mathbb{C}^p \). The vector fields tangent to this hypersurface coincide with the liftable vector fields. Corollary 6.13 of [18], following Bruce [3] and Zakalyukin [30], shows that for a stable \(f \) the vector fields tangent to the discriminant are generated freely by \(p \) generators.

If the vector fields tangent to a hypersurface are freely generated, then the hypersurface is called a free divisor [26]. The theory of free divisors is particularly good and there are many examples areas in which they occur naturally, such as in discriminants [18], bifurcation theory [29][11][12][23], and hyperplane arrangements, [25].

However, in the case of maps with \(n < p \), where the discriminant of \(f \) is the image, little is known about the liftable vector fields. We can see the problem in the case of \(p = n + 1 \) where the image is a hypersurface. Even in this nice case the module of tangent vector fields is not a free module. For the cross cap, \(\varphi : (\mathbb{K}^2, 0) \rightarrow (\mathbb{K}^3, 0) \) given by \(\varphi(x, y) = (x, y^2, xy) \), the module of tangent vector fields is generated by four vector fields rather than three, which is the dimension.
of the codomain. This unfortunate state of affairs has meant that the theory of tangent vector fields for \(n < p \) has been somewhat negligible in comparison with the \(n \geq p \) case. There have been attempts to circumvent the problem. For example, Damon introduced the notion of Free* divisor, see [5].

The only general results known to the authors for liftable and tangent vector fields for \(n < p \) are in [14]. For a stable corank 1 map from \((\mathbb{C}^n, 0)\) to \((\mathbb{C}^{n+1}, 0)\) of multiplicity \(k \) the module of tangent vector fields has projective dimension 1 (and hence is not free) and the number of generators is \(3k - 2 \). In the preamble and proof of Lemma 3.5 they explain a theory which, in effect, gives an algorithm for finding these generators but it is computationally labour intensive and the authors of [14] do not use it to explicitly calculate any vector fields.

In this paper, for the normal form of minimal stable corank 1 maps from \((\mathbb{K}^n, 0)\) to \((\mathbb{K}^{n+1}, 0)\) of multiplicity \(k \), we describe \(3k - 2 \) smooth liftable vector fields and show that, over the ring of complex analytic functions, these are generators of the module of complex analytic tangent vector fields. The normal form of a stable corank 1 map from \((\mathbb{K}^n, 0)\) to \((\mathbb{K}^{n+1}, 0)\) of multiplicity \(k \) was first given by Morin in [24] and is of the form \(\varphi_k : (\mathbb{K}^{2k-2}, 0) \to (\mathbb{K}^{2k-1}, 0) \) with

\[
\varphi_k(u_1, \ldots, u_{k-2}, v_1, \ldots, v_{k-1}, y) = \left(u_1, \ldots, u_{k-2}, v_1, \ldots, v_{k-1}, y^k + \sum_{i=1}^{k-2} u_i y^i, \sum_{i=1}^{k-1} v_i y^i \right)
\]

The case of \(k = 2 \) gives the cross cap.

The second author found the generators by first using the computer package Singular (see [13]) to find the fields for low values of \(k \) (computing power restricted this to \(k < 7 \)). Then by trial and error for each vector field \(\xi \) he found a vector field in the domain \(\eta \) so that \(d\varphi_k \circ \eta = \xi \circ \varphi_k \). The results were then generalized, again with some trial and error, to the case of arbitrary \(k \). (That the fields are lowerable has been verified via computer for \(k < 7 \).) The first author then proved that these vector fields along with the Euler vector field generate the module of liftable vector fields in the case of \(\mathbb{K} = \mathbb{C} \).

There are three families of liftable vector fields, each containing \(k - 1 \) vector fields. Using Singular it was conjectured that a field \(\xi \) from any of the three families is such that \(\xi(h) = 0 \) where \(h \) is the defining equation of the image of \(\varphi_k \).

The paper is arranged as follows. Section 2 gives the basic definitions such as corank 1, stable, liftable, lowerable and so on. In Section 3 we state the main results. We give three families of vector fields and show that each member is liftable, Theorems 3.1, 3.2, and 3.3. In Corollary 3.7 we show that, over the complex field, these families and the Euler vector field generate the module of tangent vector fields. In the next section it is proved that the vector fields are liftable.

Since we claim that liftable vector fields are useful we give in Section 5 an application of the results. We begin to classify linear functions on \(\mathbb{C}^p \) preserving the image of \(\varphi_k \). This can be used to find corank 1 maps from \(\mathbb{C}^n \) to \(\mathbb{C}^{n+1} \) of \(\mathcal{A}_1 \)-codimension 1 (see Definition 5.1). These maps occur generically in one parameter families of maps and hence are of particular interest.

In the proof of Theorem 7.3 of [13], following the ideas in [6, 16], it is proved that a suitably generic linear function on the image of a trivial unfolding of a corank 1 cross cap mapping can be used to produce an \(\mathcal{A}_1 \)-codimension 1 map germ. (The converse is obviously true.) Here we reprove the result for minimal cross cap mappings (though note that the generalization to trivial unfoldings of these is not difficult) but in this case we can say precisely what is meant by ‘generic’ in ‘generic linear function’, see Corollary 5.9. Thus we begin a classification similar to the one for the cross cap of multiplicity 2 given in [28].
Remark 2.3 Mather in [19] showed that a map A-equivalence in the space of smooth maps (with the Whitney topology) such that all maps in the neighbourhood are A-stable if and only if there exists a neighbourhood

2 Definitions and standard results

The definitions and results in this section are all known, see [27] for standard definitions of singularity theory and [7] for results on liftable and tangent vector fields.

In the initial definitions in this section we shall mostly assume we are working with smooth (i.e., infinitely differentiable) maps, and will note that the theory for real analytic and complex analytic maps is similar. We shall have $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$. We recall the definition of A-equivalence.

Definition 2.1 Two smooth map germs $f_1 : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ and $f_2 : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ are A-equivalent if there exist diffeomorphisms φ and ψ for which the following diagram commutes.

\[
\begin{array}{ccc}
(\mathbb{K}^n, 0) & \xrightarrow{f_1} & (\mathbb{K}^p, 0) \\
\varphi \downarrow & & \downarrow \psi \\
(\mathbb{K}^n, 0) & \xrightarrow{f_2} & (\mathbb{K}^p, 0).
\end{array}
\]

This is also known as **Right-Left-equivalence**.

The set of smooth (or \mathbb{K}-analytic) function germs $f : (\mathbb{K}^n, 0) \to \mathbb{K}$ forms a ring, denoted by \mathcal{E}_n, using pointwise addition and multiplication. We denote the tangent bundle of the germ $(\mathbb{K}^n, 0)$ by $T(\mathbb{K}^n, 0)$ and let $\pi_n : T(\mathbb{K}^n, 0) \to (\mathbb{K}^n, 0)$ be the natural projection.

For a map $f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ we define the **vector fields along f**, denoted $\theta(f)$, to be

\[
\theta(f) = \{\text{smooth maps } h : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0) \text{ such that } \pi_p \circ h = f\}.
\]

First note that $\theta(f)$ is a module over \mathcal{E}_n and $\theta(f) \cong \mathcal{E}_n^p$, i.e., $\theta(f)$ is isomorphic to p copies of \mathcal{E}_n. Second note that for the identity map, $\text{id}_n : (\mathbb{K}^n, 0) \to (\mathbb{K}^n, 0)$, we have that $\theta(\text{id}_n)$ is isomorphic to the module of vector fields of $(\mathbb{K}^n, 0)$. We denote this latter by θ_n. As $\theta_n \cong \mathcal{E}_n^n$ we shall write a vector field on $(\mathbb{K}^n, 0)$ as an n-tuple of elements of \mathcal{E}_n.

Consider the diagram

\[
\begin{array}{ccc}
T(\mathbb{K}^n, 0) & \xrightarrow{df} & T(\mathbb{K}^p, 0) \\
\eta \uparrow & & \uparrow \xi \\
(\mathbb{K}^n, 0) & \xrightarrow{f} & (\mathbb{K}^p, 0).
\end{array}
\]

where $\eta \in \theta_n$ and $\xi \in \theta_p$ are vector fields. By the obvious compositions we can construct elements of $\theta(f)$. Therefore, consider the two maps $tf : \theta_n \to \theta(f)$, where $tf(\eta) = df \circ \eta$ and $wf : \theta_p \to \theta(f)$, where $wf(\xi) = \xi \circ f$.

Definition 2.2 A map $f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ is called stable if

\[
\theta(f) = tf(\theta_n) + wf(\theta_p).
\]

Remark 2.3 Mather in [19] showed that a map f is stable in the above sense (which he called infinitesimally stable) if and only if there exists a neighbourhood in the space of smooth maps (with the Whitney topology) such that all maps in the neighbourhood are A-equivalent to f.

The second author thanks EPSRC for financial support during this work that led to his MPhil thesis, [17].
Definition 2.4 We say a map \(f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0) \) is corank 1 if the rank of the Jacobian matrix of \(f \) at 0 is equal to \(\min(n, p) - 1 \), that is, it is one less than maximal.

These are good maps to study as these are the first type of singular maps that one encounters (after studying immersions and submersions).

Example 2.5 Let \(f : (\mathbb{K}^2, 0) \to (\mathbb{K}^3, 0) \) be given by \(f(x, y) = (x, y^2, xy) \). This is known as the cross cap or the Whitney Umbrella. This map is corank 1 as one can verify by a quick calculation. The stable condition is shown by a more complicated calculation.

This mapping was generalized by Morin in [24] Here we shall restrict ourselves to the case where \(p = n + 1 \).

Definition 2.6 For \(k \geq 2 \) the minimal cross cap mapping of multiplicity \(k \) is the map \(\varphi_k : (\mathbb{K}^{2k-2}, 0) \to (\mathbb{K}^{2k-1}, 0) \) given by

\[
\varphi_k(u_1, \ldots, u_{k-2}, v_1, \ldots, v_{k-1}, y) = \left(u_1, \ldots, u_{k-2}, v_1, \ldots, v_{k-1}, y + \sum_{i=1}^{k-2} u_i y_i + \sum_{i=1}^{k-1} v_i y_i \right)
\]

We shall label the coordinates of the target \(U_1, \ldots, U_{k-2}, V_1, \ldots, V_{k-1}, W_1 \) and \(W_2 \), respectively. The sets of coordinates will be abbreviated to \(U, V \) and \(W \) respectively.

These maps are of interest because up to a trivial unfolding and up to \(\mathcal{A} \)-equivalence they classify stable corank 1 maps. (The precise statement is in the following theorem.) A trivial unfolding of a map \(f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0) \) is a map \(F : (\mathbb{K}^{n+q}, 0) \to (\mathbb{K}^{p+q}, 0) \) given by \(F(x, z) = (f(x), z) \) where \(x \) are coordinates of \(\mathbb{K}^n \) and \(z \) are coordinates of \(\mathbb{K}^q \).

Theorem 2.7 ([24]) A germ \(f : (\mathbb{K}^n, 0) \to (\mathbb{K}^{n+1}, 0) \) is a stable corank 1 germ if and only there exists a \(k \) such that \(f \) is \(\mathcal{A} \)-equivalent to the trivial unfolding of the minimal cross cap mapping of multiplicity \(k \).

In the case of \(n = 2 \), (up to \(\mathcal{A} \)-equivalence) the cross cap is the only singular stable mono-germ \(f : (\mathbb{K}^2, 0) \to (\mathbb{K}^3, 0) \).

We now come to the main objects of study: liftable vector fields.

Definition 2.8 Let \(f \) be a smooth mapping \(f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0) \). A vector field \(\xi \) on \((\mathbb{K}^p, 0) \) is liftable over \(f \) if there is a vector field \(\eta \) on \((\mathbb{K}^n, 0) \) such that \(df \circ \eta = \xi \circ f \). That is, the following diagram commutes

\[
\begin{array}{ccc}
T(\mathbb{K}^n, 0) & \xrightarrow{df} & T(\mathbb{K}^p, 0) \\
\eta \uparrow & & \uparrow \xi \\
(\mathbb{K}^n, 0) & \xrightarrow{f} & (\mathbb{K}^p, 0).
\end{array}
\]

In these circumstances \(\eta \) is called lowerable.

Example 2.9 For the Whitney umbrella \(\varphi_2(v_1, y) = (v_1, y^2, v_1 y) \) the following are liftable vector fields:

\[
\begin{pmatrix}
W_2 \\
0 \\
V_1 W_1
\end{pmatrix}, \quad
\begin{pmatrix}
-V_1 \\
2W_1 \\
0
\end{pmatrix}, \quad
\begin{pmatrix}
0 \\
2W_2 \\
V_1^2
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
V_1 \\
2W_1 \\
2W_2
\end{pmatrix}.
\]
The corresponding lowerable vector fields are (respectively)

\[
\begin{pmatrix} v_1 y \\ 0 \end{pmatrix}, \begin{pmatrix} -v_1 \\ y \end{pmatrix}, \begin{pmatrix} 0 \\ v_1 \end{pmatrix} \text{ and } \begin{pmatrix} v_1 \\ y \end{pmatrix}.
\]

This can be shown by composing the Jacobian with each lowerable. For example, taking the second vector field in the list we have

\[
d_{\varphi_2} \circ \begin{pmatrix} -v_1 \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2y \end{pmatrix} \begin{pmatrix} -v_1 \\ y \end{pmatrix} = \begin{pmatrix} -v_1 \\ 2y^2 \end{pmatrix} = \begin{pmatrix} -V_1 \\ 2W_1 \end{pmatrix} \circ \varphi_2.
\]

The liftability of the other vector fields is just as easily verified.

In fact, it can be shown that these vector fields generate the module of liftable vector fields, see [28].

The goal of this paper is to find a set of generators for the module of vector fields liftable over \(\varphi_k \), the cross cap map of multiplicity \(k \). This is achieved for \(K = \mathbb{C} \) and for the module of polynomial liftable real vector fields.

Definition 2.10 A mapping \(f : (\mathbb{K}^n, 0) \rightarrow (\mathbb{K}^p, 0) \) is said to be quasihomogeneous (or weighted homogeneous) of type \((w_1, \ldots, w_n; d_1, \ldots, d_p)\), with \(w_i, d_j \in \mathbb{N} \cup \{0\} \) if the relation

\[
f_j(t^{w_1}x_1, \ldots, t^{w_n}x_n) = t^{d_j}f_j(x_1, \ldots, x_n)
\]

holds for each coordinate function \(f_j \) of \(f \) for all \(t \in (\mathbb{K}, 0) \). The number \(w_i \) is called the weight of the variable \(x_i \) and the number \(d_j \) is the degree of the function \(f_j \).

Let \(X_1, \ldots, X_p \) denote the coordinates on \(\mathbb{K}^p \). Then, the vector field given by

\[
\xi_e = \begin{pmatrix} d_1X_1 \\ \vdots \\ d_pX_p \end{pmatrix}
\]

is called the Euler vector field and is denoted by \(\xi_e \).

Proposition 2.11 If the map \(f \) is quasihomogeneous, then the Euler vector field \(\xi_e \) is liftable over \(f \).

Proof. Differentiating both sides of the relationship

\[
f_j(t^{w_1}x_1, \ldots, t^{w_n}x_n) = t^{d_j}f_j(x_1, \ldots, x_n)
\]

and setting \(t = 1 \) we find that

\[
\sum_{i=1}^{n} w_i x_i \frac{\partial f_j}{\partial x_i} = d_j f_j.
\]

Since \(X_j \circ f = f_j \) we deduce that

\[
J_f \begin{pmatrix} w_1x_1 \\ \vdots \\ w_nx_n \end{pmatrix} = \begin{pmatrix} d_1X_1 \\ \vdots \\ d_pX_p \end{pmatrix} \circ f,
\]

where \(J_f \) is the Jacobian of \(f \). That is, the Euler vector field is liftable. \(\square \)
Example 2.12 It is easy to show that the cross cap mapping φ_k is quasihomogeneous and that its Euler vector field is

$$\xi_e = \begin{pmatrix} (k-1)U_1 \\ (k-2)U_2 \\ \vdots \\ 2U_{k-2} \\ (k-1)V_1 \\ (k-2)V_2 \\ \vdots \\ V_{k-1} \\ kW_1 \\ kW_2 \end{pmatrix}.$$

Vector fields liftable over f are closely related to vector fields tangent to the discriminant of f. (The discriminant is the image under f of the points for which the rank of the differential is less than p and hence is equal to the image for $n < p$.)

Definition 2.13 Suppose that V is a \mathbb{K}-analytic variety defined by the ideal $I(V)$ in $(\mathbb{K}^p, 0)$. A vector field $\xi \in \theta_p$ is said to be tangent to V if

$$\xi(I(V)) \subseteq I(V).$$

The module of such vector fields is denoted $\text{Derlog}(V)$.

Example 2.14 The image of $\varphi_2 : (\mathbb{C}^2, 0) \to (\mathbb{C}^3, 0)$ is given by $W_2^2 - V_1^2W_1 = 0$. The vector fields of Example 2.9 are tangent to this image as can easily be checked.

For stable maps with $\mathbb{K} = \mathbb{C}$ the notions of liftable and tangent to the discriminant are equivalent. This equivalence was proved in [1] and [26], (see also [3]), for $n \geq p$, and in [7] for $n < p$.

This useful equivalence does not hold for real analytic maps because in this case the image of map may not be an analytic set. For example, the image of $\varphi_2 : (\mathbb{R}^2, 0) \to (\mathbb{R}^3, 0)$, does satisfy the real version of the equation $W_2^2 - V_1^2W_1 = 0$ given in the preceding example. However, this real version adds an extra ‘handle’, the V_1 axis, and hence the name ‘umbrella’. To get the image of φ_2 we need the additional inequality $V_1 \geq 0$ for example and hence the image is not analytic.

3 Main results

In this section we state the main results. We shall show that for the minimal cross cap mapping of multiplicity k, in addition to the Euler vector field, we find three families, each consisting of $k-1$ elements, of liftable vector fields. Proofs are deferred to the next section.

In the case of $\mathbb{K} = \mathbb{C}$ we shall show that these families and the Euler vector fields in fact generate $\text{Derlog}(V)$ where V is the image of φ_k. Furthermore, again over \mathbb{C}, it is conjectured that the three families generate the vector fields ξ such that $\xi(h) = 0$ where h is the defining equation of the image of φ_k.

We shall denote the members of the families by ξ^f_j where $1 \leq f \leq 3$ and
1 \leq j \leq k - 1. This can be written in component form as

\[\xi^f_j = \begin{pmatrix} A_{1,j}^f \\ \vdots \\ A_{k-2,j}^f \\ B_{1,j}^f \\ \vdots \\ B_{k-1,j}^f \\ C_{1,j}^f \\ C_{2,j}^f \end{pmatrix}. \]

That is, the entries of \(\xi^f_j \) that correspond to coordinates \(U_1, \ldots, U_{k-2} \) are labelled with \(A_1, \ldots, A_{k-2} \), the entries that correspond to coordinates \(V_1, \ldots, V_{k-1} \) are labelled with \(B_1, \ldots, B_{k-2} \), and the entries that correspond to coordinates \(W_1 \) and \(W_2 \) are labelled with \(C_1 \) and \(C_2 \) respectively.

Introducing ‘dummy’ variables in \(U \) and \(V \) allows a very succinct description of the liftable vector fields. We shall define \(U_{k-1} = V_k = 0 \), \(U_k = 1 \) and \(U_r = V_r = 0 \) for \(r \leq 0 \) and for \(r > k \).

Theorem 3.1 ([17]) For \(1 \leq j \leq k - 1 \) the vector field given by the following components is liftable over \(\varphi_k \):

\[
A_{i,j}^1 = (k - i)(k - j)U_iU_j, \quad 1 \leq i \leq k - 2, \\
B_{i,j}^1 = k \sum_{r=1}^{i-1} U_{i+j-r}V_r - k \sum_{r=1}^{i} U_rV_{i+j-r} - (i - 1)(k - j)U_jV_i \\
+C_{1,j} = k(k - j)U_jW_1, \\
C_{2,j} = -kV_jW_1 + (k - j)U_jW_2.
\]

Theorem 3.2 ([17]) For \(1 \leq j \leq k - 1 \) the vector field given by the following components is liftable over \(\varphi_k \):

\[
A_{i,j}^2 = -k(k + i - j + 1)U_{k+i-j+1}W_1 + k \sum_{r=1}^{i} (k + i - j - 2r + 1)U_rU_{k+i-j-r+1} \\
-j(i + 1)U_{i+1}U_{k-j}, \quad 1 \leq i \leq k - 2, \\
B_{i,j}^2 = -k(k + i - j + 1)V_{k+i-j+1}W_1 + k \sum_{r=1}^{i} (k + i - j - r + 1)U_rV_{k+i-j-r+1} \\
-k \sum_{r=1}^{i} rU_{k+i-j-r+1}V_r - j(i + 1)U_{k-j}V_{i+1}, \quad 1 \leq i \leq k - 1, \\
C_{1,j}^2 = k(k - j + 1)U_{k-j+1}W_1 + jU_1U_{k-j}, \\
C_{2,j}^2 = k(k - j + 1)V_{k-j+1}W_1 + jV_1U_{k-j}.
\]
components is liftable over φ_k:

$$A_{i,j}^3 = -k(k + j + 1)U_{k+i-j+1}W_2 + k \sum_{r=1}^{i}(k + j - r + 1)U_{k+i-j-r+1}V_r$$

$$-k \sum_{r=1}^{i} rU_r V_{k+i-j-r+1} - k(i + 1)U_{i+1}V_{k-j}, \quad 1 \leq i \leq k - 2,$$

$$B_{i,j}^3 = -k(k + j + 1)V_{k+i-j+1}W_2 + k \sum_{r=1}^{i}(k + j - 2r + 1)V_r V_{k+i-j-r+1}$$

$$-k(i + 1)V_{i+1}V_{k-j}, \quad 1 \leq i \leq k - 1,$$

$$C_{1,j}^3 = k(k - j + 1)U_{k-j+1}W_2 + kU_1V_{k-j}$$

$$C_{2,j}^3 = k(k - j + 1)V_{k-j+1}W_2 + kV_1V_{k-j}.$$

In theory we can divide the vector fields in the last family by k and still have a nice description, we do not do so to emphasize the similarity of this third family with the second family.

Example 3.4 For $k = 2$ the first three liftable vector fields in Example 2.9 are ξ_1^1, ξ_1^2, and ξ_1^3 respectively, and the final one is ξ_e.

It is instructive to evaluate the vector fields for $k = 3$ (as well as useful to have them listed somewhere for the purpose of calculating examples).

We find that

$$\xi_1^1 = \begin{pmatrix} 4U_1^2 \\ -3U_1V_1 + 3V_2W_1 - 3U_2W_2 \\ 3U_2V_1 - 3(U_1V_2 + U_2V_1) - 2U_1V_2 + 3V_3W_1 - 3U_3W_2 \\ 6U_1W_1 \\ -3V_1W_1 + 2U_1W_2 \end{pmatrix}.$$

However, we have $U_2 = V_3 = 0$ and $U_3 = 1$ and so one monomial simplifies and some monomials disappear. Therefore, we deduce the following for ξ_1^1 and, in a similar way, the descriptions of the other fields:

$$\xi_1^3 = \begin{pmatrix} 0 \\ -3U_1V_2 - 3V_2W_1 \\ -9W_1 \\ 2U_1V_2 \\ 6V_3W_1 + 2U_1V_1 \end{pmatrix}, \quad \xi_2^3 = \begin{pmatrix} 0 \\ -3V_1 \\ 2U_1^2 \\ 6V_3W_1 + 2U_1V_1 \end{pmatrix},$$

$$\xi_1^2 = \begin{pmatrix} 6U_1 \\ -3V_1 \\ -6V_2 \\ 9V_1 \\ 0 \end{pmatrix}, \quad \xi_2^2 = \begin{pmatrix} 0 \\ -3V_1 \\ 2U_1^2 \\ 6V_3W_1 + 2U_1V_1 \end{pmatrix},$$

$$\xi_1^3 = \begin{pmatrix} 9V_1 \\ -6V_2^2 \\ 0 \\ 9W_2 + 3U_1V_1 \\ 3V_1V_2 \end{pmatrix}, \quad \xi_2^3 = \begin{pmatrix} -9W_1 \\ 2U_1V_2 \\ 6V_2^2 - 3U_1V_2 \\ 6V_2^2 + 3V_1^2 \end{pmatrix},$$

$$\xi_e = \begin{pmatrix} 2U_1 \\ 2V_1 \\ V_2 \\ 3W_1 \\ 3W_2 \end{pmatrix}.$$
Now we shall investigate the extent to which the liftable vector fields in these three theorems generate the module of liftable vector fields.

Theorem 3.5 Let \(\varphi : (\mathbb{K}^{2k-2},0) \rightarrow (\mathbb{K}^{2k-1},0) \) be given by the normal form for a corank 1 minimal stable map of multiplicity \(k \). Let \(\xi \) be a liftable vector field such that its components are polynomials.

Then, there exist polynomials \(g_e \) and \(g_{i,j} \) in \(\mathcal{E}_{2k-1} \) such that

\[
\xi = g_e \xi_e + \sum_{i=1}^{3} \sum_{j=1}^{k-1} g_{i,j} \xi_{ij}.
\]

Proof. Denote by \(e_i \) by the vector \((0,0,\ldots,0,1,0,\ldots,0)^T \in \mathbb{K}^{2k-1} \) which has zeroes in every position except at position \(l \), where it has a 1.

We apply a negative lexicographical ordering (see [13] page 14) to the variables in the codomain of \(\varphi_k \), i.e., \((U_1,\ldots,U_{2k-2},V_1,\ldots,V_{2k-1},W_1,W_2) \). Then the leading terms, denoted \(\text{LT} \), of the vector fields are as follows:

\[
\begin{align*}
\text{LT}(\xi_e) &= W_2e_{2k-1}, \\
\text{LT}(\xi_{ij}^1) &= -kW_2e_{2k-j-2}, \text{ for } 1 \leq j \leq k-2, \\
\text{LT}(\xi_{ij}^2) &= \begin{cases}
 k^2W_1e_{2k-2}, & \text{for } j = 1, \\
 -k^2W_1e_{j-1}, & \text{for } 2 \leq j \leq k-2,
\end{cases} \\
\text{LT}(\xi_{ij}^3) &= \begin{cases}
 k^2W_2e_{2k-2}, & \text{for } j = 1, \\
 -k^2W_2e_{j-1}, & \text{for } 2 \leq j \leq k-1,
\end{cases}
\end{align*}
\]

(The terms in the vector fields may look quadratic but recall that \(U_k = 1 \).)

Applying the Division Algorithm for modules, see [5] page 202, we can write \(\xi \) as

\[
\xi = g_e \xi_e + \sum_{i,j} g_{i,j} \xi_{ij} + r
\]

where \(g_e \) and \(g_{i,j} \) are polynomials and where \(r = 0 \) or \(r \) is a \(\mathbb{K} \)-linear combination of monomials, none of which is divisible by any of the leading terms of the vector fields.

In particular, using the leading terms for the second and third families of liftable vector fields the \(A_i \) and \(C_1 \) terms of \(r \) do not contain any monomials divisible by \(W_1 \) or \(W_2 \). Now, \(r \) is obviously liftable as \(\xi \) and \(g_e \xi_e + \sum_{i,j} g_{i,j} \xi_{ij} \) are, so there exist polynomial functions \(a_i \) in \(\mathcal{E}_{2k-3} \) and \(c \) in \(\mathcal{E}_{2k-2} \) such that

\[
\sum_{i=1}^{k-2} a_i(\underline{u},\underline{v})y^i + c(\underline{u},\underline{v},y)\frac{\partial W_1}{\partial y} = C_1(\underline{u},\underline{v}).
\]

If \(c \neq 0 \), then the degree in \(y \) of \(c\frac{\partial W_1}{\partial y} \) is greater than \(k-2 \). Hence as each \(a_i \) contains no \(y \)'s (as \(A_i \) contains no \(W_1 \) or \(W_2 \)) we cannot find a solution to this equation.

If \(c = 0 \), then any non-zero \(a_i \) leads to power of \(y \) in the left-hand side of the equation, yet there are obviously none in the right-hand side. Therefore \(a_i = c = 0 \) for all \(1 \leq i \leq k-2 \). Hence \(A_i = 0 \) and \(C_1 = 0 \). This just leaves us with the \(B_i \), for \(1 \leq i \leq k-1 \), and \(C_2 \) to determine.

Because of the form of the leading terms in family one and of the Euler vector field we know that the \(B_i \) terms and the \(C_2 \) term of \(r \) are not functions of \(W_2 \) (so we can write \(C_2(\underline{u},\underline{v},W_1,\underline{W}_2) \) as \(C_2(\underline{u},\underline{v},W_1) \)). Since \(r \) is liftable and \(c = 0 \), there exist polynomial functions \(b_i \in \mathcal{E}_{2k-3} \) so that

\[
\sum_{i=1}^{k-2} b_i(\underline{u},\underline{v})y^i = C_2 \left(\frac{\underline{u},\underline{v},y^k + \sum_{i=1}^{k-2} u_i y^i}{\partial y} \right).
\]
If the degree of \(W_1 \) in \(C_2 \) is \(s \), then the right-hand side of the equation is a polynomial in \(y \) of degree \(sk \).

If \(s = 0 \), then we see by comparing constant terms in the above equation that we must have \(b_i = 0 \) and \(C_2 = 0 \).

If \(s \geq 1 \), then the left-hand side of the equation must have a \(y^{sk} \) term (with a function of \(y \) and \(v \) as coefficient). However, it is obvious that no such term exists since if \(B_1 \) has a polynomial in \(W_1 \) of degree \(m \), then the polynomial in \(y \) resulting from composition with \(\varphi_k \) has a term of degree \(mk + i \) where \(1 \leq i \leq k - 1 \). So we require \(mk + i = sk \), i.e., \(i = k(m - s) \). Therefore, \(B_i = C_2 = 0 \) for \(1 \leq i \leq k - 1 \).

This means that \(r = 0 \) and we can say that \(\xi \) is generated by a linear combination of our liftable vector fields. \(\square \)

Let us now introduce some notation. We shall denote a module generated by elements \(z_1, \ldots, z_n \) as \(\langle z_1, \ldots, z_n \rangle \) or \(\langle z_i \rangle_{i=1}^n \).

Definition 3.6 Suppose that \(V \) is a \(\mathbb{K} \)-analytic variety defined by the ideal \(I(V) = \langle f_1, \ldots, f_q \rangle \) in \((\mathbb{K}^p, 0) \). We define

\[
\text{Derlog}_0(V) = \{ \xi \in \theta_p : \xi(f_j) = 0, \ j = 1, \ldots q \}.
\]

Damon and Mond show in [10] that for a quasihomogeneous hypersurface we have

\[
\text{Derlog}(V) \cong \langle \xi_e \rangle \oplus \text{Derlog}_0(V),
\]

where \(\langle \xi_e \rangle \) is the module in \(\theta_p \) generated by \(\xi_e \). (They show this in the complex analytic case but the same proof holds for real analytic mappings.)

Corollary 3.7 Let \(\varphi_k : (\mathbb{C}^{2k-2}, 0) \to (\mathbb{C}^{2k-1}, 0) \) be given by the normal form for a corank 1 minimal stable map of multiplicity \(k \) and \(V \) be its image. Then,

\[
\text{Derlog}(V) = \langle \xi_e, \xi_1^1, \xi_2^2, \xi_3^3 \rangle_{j=1}^{k-1}.
\]

That is, the module of vector fields liftable over \(\varphi_k \) is generated by the vector fields \(\xi_1^1, \xi_2^2, \xi_3^3 \) for \(1 \leq j \leq k - 1 \), together with the Euler vector field \(\xi_e \).

Proof. The image of \(\varphi_k \) is a hypersurface which we denote by \(V \) and by \(h_V \) its defining function. One can explicitly calculate this defining function using the algorithm in Section 2.2 of [22]. However, we shall use only that the algorithm gives \(h_V \) as the determinant of a \(k \times k \) matrix which is the sum of a \(k \times k \) matrix with entries in the variables \(U, \mathbf{V} \) and \(W_1 \) plus the matrix \(-W_2I_k\) where \(I_k \) is the identity matrix of size \(k \).

Since \(\xi_e \) is liftable by Proposition 2.11 and complex liftable vector fields are tangent to the image, \(\xi_e(h_V) \) is in the ideal generated by \(h_V \). By considering the coefficient of \(W_2^k \) we can see that \(\xi_e(h_V) = h^2 h_V \). Hence it is possible to decompose \(\text{Derlog}(V) \) into \(\langle \xi_e \rangle \oplus \text{Derlog}_0(V) \) just as Damon and Mond do for quasihomogeneous hypersurfaces.

From the algorithm on pages 613 to 614 in [14] we know that \(\text{Derlog}_0(V) \) can be generated by polynomials. By Theorem 3.5 any polynomial can be given in terms of \(\xi_e, \xi_1^1, \xi_2^2, \xi_3^3 \) for \(1 \leq j \leq k - 1 \) and hence \(\text{Derlog}_0(V) \) is generated by these liftables. Using the decomposition of \(\text{Derlog}(V) \) above we deduce the statement in the corollary. \(\square \)

Conjecture 3.8 It is natural to conjecture the following:

(i) For \(V \) in the preceding corollary the vector fields \(\xi_1^1, \xi_2^2, \xi_3^3 \) for \(1 \leq j \leq k - 1 \) generate \(\text{Derlog}_0(V) \).
(ii). These liftable vector fields form a Gröber basis.

The first statement is true for $k = 2$, see [7] or [28]. The second author has verified the statement via the computer algebra package Singular for $k \leq 6$.

Now let us turn to the case of real mappings.

Corollary 3.9 Let $\varphi_k : (\mathbb{R}^{2k-2}, 0) \to (\mathbb{R}^{2k-1}, 0)$ be given by the normal form for a corank 1 minimal stable map of multiplicity k and V be its image.

Then, the module of polynomial vector fields liftable over φ_k is generated by the vector fields $\xi^1_j, \xi^2_j, \xi^3_j$ for $1 \leq j \leq k - 1$, together with the Euler vector field ξ_e.

Proof. This follows immediately from Theorem 3.5 □

For more general analytic real vector fields one can conjecture the following.

Conjecture 3.10 The vector fields $\xi^1_j, \xi^2_j, \xi^3_j$ for $1 \leq j \leq k - 1$ generate $\text{Derlog}_0(V)$ where V is the real part of the image of the complexification of φ_k.

4 Proofs of liftability

The proofs in this section first appeared in [17]. Proving that a vector field ξ is liftable involves writing down a lowerable vector field, i.e., an η such that the equation $d\varphi_k \circ \eta = \xi \circ \varphi_k$ holds. The liftable vector fields were originally found by calculating them for low values of k via Singular, making a guess for the general form and subsequently making an educated case about what the lowerable vector field should be.

The lowerable will be of the form

$$
\eta^f_j = \begin{pmatrix}
a^f_{1,j} \\
... \\
a^f_{k-2,j} \\
b^f_{1,j} \\
... \\
b^f_{k-1,j} \\
c^f_j
\end{pmatrix}
$$

where the a^f_i, b^f_i and c^f are functions of the variables y and u_j, for $1 \leq j \leq k - 2$, and v_j, for $1 \leq j \leq k - 2$.

The liftable vector field is of the form

$$
\xi^f_j = \begin{pmatrix}
A^f_{1,j} \\
... \\
A^f_{k-2,j} \\
B^f_{1,j} \\
... \\
B^f_{k-1,j} \\
C^f_1 \\
C^f_2
\end{pmatrix}
$$

where the A^f_i, B^f_i and C^f_i are functions of the variables W_1, W_2, U_j, for $1 \leq j \leq k - 2$, V_j, for $1 \leq j \leq k - 2$. Generally, we shall drop the reference to f where this is suitable.
For the cross cap mapping

\[\varphi_k(u_1, \ldots, u_{k-2}, v_1, \ldots, v_{k-1}, y) = (u_1, \ldots, u_{k-2}, v_1, \ldots, v_{k-1}, y^k + \sum_{i=1}^{k-2} u_i y^i + \sum_{i=1}^{k-1} v_i y^i) \]

we have the Jacobian matrix

\[
J_{\varphi_k} = \begin{pmatrix}
1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\
0 & 1 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \cdots & \cdots & \cdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \cdots & \ddots & \cdots & \cdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \cdots & \cdots & \ddots & \cdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \cdots & \cdots & \cdots & \ddots & \cdots & \vdots & \vdots \\
0 & 0 & \cdots & \cdots & \cdots & \cdots & 1 & 0 & 0 \\
y & y^2 & \cdots & y^{k-2} & 0 & 0 & \cdots & 0 & \frac{\partial W_1}{\partial y} \\
0 & 0 & \cdots & 0 & y & y^2 & \cdots & y^{k-1} & \frac{\partial W_2}{\partial y}
\end{pmatrix}
\]

From this we can see our equation for liftable vector fields, \(d\varphi_k \circ \eta = \xi \circ \varphi_k \), gives that \(a_i = A_i \) for all \(1 \leq i \leq k-2 \) and \(b_i = B_i \) for all \(1 \leq i \leq k-1 \) in the sense that \(W_1 \) and \(W_2 \) are functions of \(y \) and the other coordinates of the codomain. In all our families this is obviously the case.

The same equation shows that we need to solve two equations to find a liftable and an associated lowerable:

\[
C_1 = \sum_{i=1}^{k-2} a_i y^i + c \frac{\partial W_1}{\partial y}, \\
C_2 = \sum_{i=1}^{k-1} b_i y^i + c \frac{\partial W_2}{\partial y}.
\]

It is these two equations that we need to verify for each element in each of the three families.

Proof (of Theorem 3.1). Instead of proving that \(\xi_j^1 \) is liftable for each \(1 \leq j \leq k-1 \) we shall subtract \((k-j)U_j \xi_e \) from \(\xi_j^1 \) to produce a new vector field with simpler entries and show that the new field is liftable.

For all \(1 \leq j \leq k-1 \) we have

\[
\tilde{\xi}_j = \xi_j^1 - (k-j)U_j \xi_e = \begin{pmatrix}
\tilde{A}_{1,j}^f \\
\vdots \\
\tilde{A}_{k-2,j}^f \\
\tilde{B}_{1,j}^f \\
\vdots \\
\tilde{B}_{k-1,j}^f \\
\tilde{C}_{1,j}^f \\
\tilde{C}_{2,j}^f
\end{pmatrix}
\]
where

\[\begin{align*}
\bar{A}_{i,j}^1 &= 0, \quad \text{with } 1 \leq i \leq k - 2, \\
\bar{B}_{i,j}^1 &= k \sum_{r=1}^{i-1} U_{i+j-r} V_r - k \sum_{r=1}^{i} U_r V_{i+j-r} - (k-1)(k-j) U_j V_i \\
& \quad + k V_{i+j} W_1 - k U_{i+j} W_2, \quad \text{with } 1 \leq i \leq k - 1, \\
\bar{C}_{1,j}^1 &= 0 \\
\bar{C}_{2,j}^1 &= -k V_j W_1 - (k-1)(k-j) U_j W_2.
\end{align*} \]

It may seem unusual to give the vector field in Theorem 3.1 without this much simpler one. We state the more complicated version because of Conjecture 3.8(i): the three families generate Derlog$_0(V)$ in the complex analytic case. It is easy to check in low k examples that these new vector fields are not in Derlog$_0(V)$.

For this particular family, lowerable vector fields are given by

\[\eta_j^1 = \begin{pmatrix}
\alpha_{1,j}^1 \\
\vdots \\
\alpha_{k-2,j}^1 \\
\beta_{1,j}^1 \\
\vdots \\
\beta_{k-1,j}^1 \\
\gamma_j^1
\end{pmatrix} \]

where

\[\begin{align*}
\alpha_{i,j}^1 &= 0, \quad \text{with } 1 \leq i \leq k - 2, \\
\beta_{i,j}^1 &= k \sum_{r=1}^{i-1} u_{i+j-r} v_r - k \sum_{r=1}^{i} u_r v_{i+j-r} - (k-1)(k-j) u_j v_i + k v_{i+j} W_1 - k u_{i+j} W_2 \\
& \quad \text{with } 1 \leq i \leq k - 1, \\
\gamma_j^1 &= 0.
\end{align*} \]

With our η_j^1 defined in this way, we will show that composing the Jacobian of our map φ_k with η_j^1 gives ξ_j^1 composed with φ_k, therefore proving that ξ_j^1 are liftable vector fields and that η_j^1 are their corresponding lowerable vector fields. Now, in order to make our calculations easier we shall redefine our W_1 and W_2. We will have

\[\begin{align*}
W_1 &= \sum_{i=1}^{k} u_{i} y^i \quad \text{and} \quad W_2 = \sum_{i=1}^{k} v_{i} y^i.
\end{align*} \]

Indeed, this will assist us by adding some symmetry to the calculations, but in order for these definitions to make sense we must introduce extra ‘dummy’ variables, namely $u_k = 1$ and $u_{k-1} = v_k = 0$. We will have $u_r = v_r = 0$ for all $r \leq 0$ and for all $r > k$.

It is quite clear, due to the 1’s in the Jacobian that $\alpha_{i,j}^1 = A_{i,j}^1 \circ \varphi_k$ and $\beta_{i,j}^1 = B_{i,j}^1 \circ \varphi_k$. This leaves us to show that our expressions for $C_{1,j}^1$ and $C_{2,j}^1$ are as stated. So, firstly, let us calculate $C_{1,j}^1$. This is easy as $\alpha_{i,j} = 0$ for all i and j, and $c = 0$, so $C_1 = 0$.

Now let us consider $C_{2,j}^1$. We want to show that

\[C_{2,j}^1 = -k V_j W_1 + (k-j) U_j W_2. \]
To prove this we will start once again by composing the Jacobian with the appropriate terms in the lowerables. We have

\[\sum_{i=1}^{k-1} b_{1,j}^i y^i + c \frac{\partial W_1}{\partial y} \]

\[= \sum_{i=1}^{k-1} b_{1,j}^i y^i \]

\[= \sum_{i=1}^{k-1} \left(k \sum_{r=1}^{i-1} u_{i+r-r} v_r - k \sum_{r=1}^{i} u_r v_{i+r-r} - (k-1)(k-j)u_j v_i \right. \]

\[+ k v_{i+j} W_1 - k u_{i+j} W_2 \bigg) y^i \]

\[= k \sum_{i=1}^{k-1} \sum_{r=1}^{i-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i - k v_j \sum_{i=1}^{k-1} u_i y^i + k W_1 \sum_{i=1}^{k-1} v_i y^i \]

\[- k W_2 \sum_{i=1}^{k-1} u_{i+j} y^i - (k-j)(k-1)u_j \sum_{i=1}^{k-1} v_i y^i. \]

The final term is equal to \(-(k-j)(k-1)u_j W_2\) and is part of the claimed \(C_{2,j}^1\). The second term is almost equal to \(-kv_j W_1\), which is equal to the other term in \(C_{2,j}^1\), all we are missing is \(-kv_j y^k\). Hence we are done if we can show the following holds:

\[k \sum_{i=1}^{k-1} \sum_{r=1}^{i-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i + k v_j y^k + k W_1 \sum_{i=1}^{k-1} v_i y^i - k W_2 \sum_{i=1}^{k-1} u_{i+j} y^i = 0. \]

Let us rearrange the left-hand side and drop the factor \(k\) which is now irrelevant. We have

\[\sum_{i=1}^{k-1} \sum_{r=1}^{i-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i + W_1 \sum_{i=1}^{k-1} v_i y^i - W_2 \sum_{i=1}^{k-1} u_{i+j} y^i + v_j y^k \]

\[= \sum_{i=1}^{k-1} \sum_{r=1}^{i-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i + \sum_{i=1}^{k-1} \sum_{r=1}^{k-1} (u_{i+j} v_r - u_r v_{i+j-r}) y^{i+r} + v_j y^k \]

\[= \sum_{i=1}^{k-1} \sum_{r=1}^{i-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i + \sum_{i=1}^{k-1} \sum_{r=1}^{k-1} (u_{r+j} v_i - u_r v_{r+j}) y^{i+r} + v_j y^k \]

\[= \sum_{i=1}^{k-1} \sum_{r=1}^{k-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i - \sum_{i=1}^{k-1} \sum_{r=1}^{k-1} (u_{r+j} v_i - u_i v_{r+j}) y^{i+r} + v_j y^k. \]

To show that

\[\sum_{i=1}^{k-1} \sum_{r=1}^{i-1} (u_{i+r-r} v_r - u_r v_{i+r-r}) y^i - \sum_{i=1}^{k-1} \sum_{r=1}^{k-1} (u_{r+j} v_i - u_i v_{r+j}) y^{i+r} + v_j y^k = 0 \quad (1) \]

we consider coefficients of \(y^p\) for different \(p\).

First suppose that \(1 \leq p \leq k-1\). Obviously only the double summations will yield coefficients of \(y^p\) and the first of these gives

\[\sum_{r=1}^{p-1} (u_{p+j-r} v_r - u_r v_{p+j-r}). \]
The second summation provides a y^p term only if $i \leq p - i$. If we let $r = p - i$, then the summation yields the term

$$- \sum_{i=1}^{p-1} (u_{p-i+j}v_i - u_iv_{p-i+j})$$

and obviously cancels with the previous summation.

Next, let us consider the partial case where $p = k$. Here, the first double summation in Equation 1 yields no coefficient, as $i \leq k - 1$. The second, however, does yield coefficients, as does the term u_jy^k. We have

$$- \sum_{r=1}^{k-1} (u_{k-j-r}v_r - u_r v_{k+j-r}) + v_j$$

since for $r < j$, the subscripts of u and v are greater than k,

$$= - \sum_{r=j+1}^{k-1} (u_{k-j-r}v_r - u_r v_{k+j-r}), \text{ since } u_k = 1 \text{ and } v_k = 0,$$

$$= - \sum_{r=1}^{k-1} u_{k+j-r}v_r + \sum_{r=j+1}^{k-1} u_r v_{k+j-r}$$

$$= - \sum_{r=j+1}^{k-1} u_{k+j-r}v_r + \sum_{s=j+1}^{k-1} u_{k+j-s}v_s$$

letting $r = k + j - s$ in the second summation

$$= 0.$$

Finally we look at the case where $p > k$. Neither the first double summation in Equation 1 nor the last term yield any part of the required coefficient.

In the second double summation the greatest that i can be is k, meaning the smallest r can be is $p - k$. On the other hand, the greatest r can be is $k - 1$, meaning that the smallest i can be is $p - k + 1$. After substituting these limits into the double summation in Equation 1 we actually find that r can only be as large as $k - j$, since, if r were any bigger, then the subscripts of u and v would be greater than k, and would yield zeros. This then limits i to be no smaller than $j + p - k$. For these reasons, we find that the coefficient of y^p is given by the summation

$$- \sum_{r=p-k}^{k-j} (u_{j+r}v_{p-r} - u_{p-r}v_{j+r})$$

$$= - \sum_{r=p-k}^{k-j} u_{r}v_{p+j-r} + \sum_{r=p-k}^{k-j} u_{p+j-r}v_{r}$$

$$= - \sum_{r=p-k}^{k-j} u_{r}v_{p+j-r} + \sum_{s=p-k}^{k-j} u_{s}v_{p+j-s},$$

letting $s = p + j - r$ in the second summation, and changing the limits

$$= 0$$

as wanted.

Hence all coefficients of powers of y in Equation 1 are zero. This then completes the proof that the vector field ξ_j^1 is liftable for all $1 \leq j \leq k - 1$. Since ξ_j^1 is a
sum of this and a multiple of the Euler vector field, which is liftable, it is liftable as claimed.

□

Proof (of Theorems 3.2 and 3.3). We treat the second and third families together. One can certainly see that they are similar.

In both families we need to solve the two equations. These equations are similar and so we introduce new variables and solve a single equation which can then be used to give solutions of both equations.

To this end, let

$$X = \sum_{i=1}^{k} x_i y_i$$ and $$Z = \sum_{i=1}^{k} z_i y_i$$

with $$x_r = z_r = 0$$ for $$r \leq 0$$ and for $$r > k$$.

The concept here is that we can let the $$x$$ variables be $$u$$ variables or $$v$$ variables and similarly for $$z$$ variables. Thus by such a choice we can have $$Z = W_1$$ or $$W_2$$.

Also, solutions to the equation

$$C = \sum_{i=1}^{l} \alpha_i y_i + c \frac{\partial Z}{\partial y}$$ (2)

where $$C$$ is a function of $$x$$, $$z$$, $$X$$ and $$Z$$, will provide us with solutions to the two equations.

Thus if we can prove that for each $$j$$ the following is a solution of the equation we get solutions to the two equations:

$$\alpha_{i,j} = -k(k + i - j + 1)z_{k+i-j+1}X + \sum_{r=1}^{i+1} k \sum_{r=1}^{i} x_{k+i-j-r+1} z_r + (k - j)(i + 1)x_k x_{k-j} z_{i+1}$$

and

$$c_j = k \sum_{r=1}^{j} x_{k-j+r} y^r + x_{k-j} (k - (k - j)x_k)$$

$$C = k(k - j + 1)z_{k-j+1}X + jx_{k-j} z_1 + (k - j)(1 - x_k)x_{k-j} z_1$$

For the first equation we need $$Z = W_1$$ while for the second equation we need $$Z = W_2$$. To get the second family (and satisfy these equations) we take $$X = W_1$$ while the third family requires $$X = W_2$$.

Hence, to summarise, for $$C_{1,j}$$ we take $$x = u$$ and $$z = u$$, and for $$C_{2,j}$$ we have $$x = v$$, $$z = u$$. Meanwhile, for $$C_{3,j}$$ we have $$x = u$$ and $$z = v$$, whilst for $$C_{3,j}$$ we take $$x = v$$ and $$z = v$$. Simplification will then construct the vector fields specified in the theorem.

We shall now start to substitute our expressions into Equation (2) and evaluate accordingly. We want to prove

$$\sum_{i=1}^{l} (-k(k + i - j + 1)z_{k+i-j+1}X + g_i) y_i$$

$$+ \left(k \sum_{r=1}^{j} x_{k-j+r} y^r + j x_{k-j} + (k - j)(1 - x_k)x_{k-j} \right) \frac{\partial Z}{\partial y}$$

$$= k(k - j + 1)z_{k-j+1}X + jx_{k-j} z_1 + (k - j)(1 - x_k)x_{k-j}$$
where
\[
g_i = k \sum_{r=1}^{i} (k + i - j - r + 1)x_r z_{k+i-j-r+1} - k \sum_{r=1}^{i} r x_{k+i-j-r+1} z_r
- k(i+1)x_{k-j} z_{i+1} + (k-j)(i+1) x_k x_{k-j} z_{i+1}.
\]

Thus, we have
\[
-k \sum_{i=1}^{j} (k + i - j + 1) x_{k+i-j+1} X y^i + \sum_{i=1}^{j} g_i y^i + k \sum_{r=1}^{j} x_{k-j+r} \frac{\partial Z}{\partial y}
+ j x_{k-j} \frac{\partial Z}{\partial y} + (k-j)(1-x_k) x_{k-j} \frac{\partial Z}{\partial y}
= k(k-j+1) x_{k-j+1} X + j x_{k-j} z_1 + (k-j)(1-x_k) x_{k-j}.
\]

Now, let us simplify one of the terms on the left hand side of this equation. We have
\[
k \sum_{r=1}^{j} x_{k-j+r} y^r \frac{\partial Z}{\partial y} = k \sum_{r=2}^{k} x_{k-j+r} y^r \sum_{i=1}^{j} i z_i y^{i-1}
= k \sum_{r=2}^{k} x_{k-j+r} y^{r+1} \sum_{i=1}^{j} i z_i y^{i-1} + k x_{k-j+1} \sum_{i=1}^{k} i z_i y^i
= k \sum_{i=1}^{k} \sum_{r=1}^{k} r x_{k+i-j+1} y^{i+r} + k x_{k-j+1} \sum_{i=1}^{k} i z_i y^i.
\]

Using this, and substituting in our summations for \(X\) and \(Z\) then leaves us to show
\[
-k \sum_{i=1}^{l} \sum_{r=1}^{k} (k + i - j + 1) x_r z_{k+i-j+1} y^{i+r} + k \sum_{i=1}^{k} \sum_{r=1}^{k} r x_{k+i-j+1} z_r y^{i+r}
+ k x_{k-j+1} \sum_{i=1}^{k} i z_i y^i + \sum_{i=1}^{l} g_i y^i + j x_{k-j} \sum_{i=1}^{k} i z_i y^{i-1}
+ (k-j)(1-x_k) x_{k-j} \sum_{i=1}^{k} i z_i y^{i-1}
= k(k-j+1) x_{k-j+1} \sum_{i=1}^{k} x_i y^i + j x_{k-j} z_1 + (k-j)(1-x_k) x_{k-j}.
\]

To show this equation holds, we shall consider different cases. Firstly, we shall consider powers of \(y\) strictly bigger than \(k\). On the right hand side of Equation 3, it is clear that the highest power of \(y\) is \(k\), so we need to show that all coefficients of powers of \(y\) bigger than \(k\) on the left hand side of this equation simplify to equal zero. To do this, we shall compare coefficients of \(y^{k+q}\), where \(q \in \mathbb{N}\). The only terms on the left hand side of Equation 3 that yield powers of \(y\) bigger than \(k\) are
\[
-k \sum_{i=1}^{l} \sum_{r=1}^{k} (k + i - j + 1) x_r z_{k+i-j+1} y^{i+r} + k \sum_{i=1}^{k} \sum_{r=1}^{k} r x_{k+i-j+1} z_r y^{i+r}.
\]
The highest value i can take is l, in which case $r = k+q-l$, since the power $i+r$ must equal $k+q$. If we then substitute $i = l$ and $r = k+q-l$ into the two double summations, we get

$$-k(k-j+l+1)x_{k+q-l}z_{k-j+l+1} + k(k+q-l)x_{k-j+l+1}z_{k+q-l}.$$

The second highest value that i can take is $l-1$, in which case $r = k+q-l+1$. Substituting these values in gives

$$-k(k-j+l)x_{k+q-l+1}z_{k-j+l} + k(k+q-l+1)x_{k-j+l}z_{k+q-l+1}.$$

We can continue reducing i and adjusting r accordingly, so long as $i+r = k+q$. This will continue yielding terms, but we must stop when r reaches k as this is the upper limit of r in each double summation. In that case, i clearly takes the value q, and substituting $i = q$ and $r = k$ into the double summations will produce our final term, namely

$$-k(k-j+q+1)x_kz_{k-j+q+1} + k^2x_kz_{k-j+q+1}z_k.$$

If we then take the sum of all these terms, we have

$$-k \sum_{r=k-l+q}^{k} (2k-j-r+q+1)x_rz_{2k-j-r+q+1} + k \sum_{r=k-l+q}^{k} rz_{2k-j-r+q+1}z_r.$$

Now, if we let $t = 2k-j-r+q+1$ in the second summation and adjust the limits accordingly we have

$$-k \sum_{r=k-l+q}^{k} (2k-j-r+q+1)x_rz_{2k-j-r+q+1} + k \sum_{t=k-j+q+1}^{k-j+l+1} (2k-j-t+q+1)x_tz_{2k-j-t+q+1}.$$

Note that if $r < k-j+q+1$ then $2k-j-r+q+1 > 2k-j-k-j-q-1+q+1 = k$, hence the lower limit of r in the first summation must be $k-j+q+1$, since if r were any lower, then the subscript of z would be bigger than k, and these terms would disappear due to the dummy variables. Similarly, the upper limit of r in the second summation must be k, else the subscript of x would be bigger than k. Thus, we are left with

$$-k \sum_{r=k-j+q+1}^{k} (2k-j-r+q+1)x_rz_{2k-j-r+q+1} + k \sum_{t=k-j+q+1}^{k-j+l+1} (2k-j-t+q+1)x_tz_{2k-j-t+q+1} = 0$$

as wanted. Hence all coefficients of powers of y bigger than k simplify to equal zero.

We will now consider the powers of y equal to or less than k. We must show that coefficients of a general power of y, say y^p, with $1 \leq p \leq k$ are equal on both sides of Equation 3. On the right hand side, the only coefficient of y^p is

$$k(k-j+1)x_pz_{k-j+1}.$$

So we want to show that all coefficients of y^p on the left hand side of Equation 3 simplify to give this expression. Comparing coefficients of y^p in the double summations
we have

\[-k \sum_{r=1}^{p-1} (k-j+p-r+1)x_raz_{k-j+p-r+1} + \sum_{r=1}^{p-1} r x_{k-j+p-r+1} z_r + kpx_{k-j+1} z_p
\]

\[+ g_p + j(p+1)x_{k-j}z_{p+1} + (k-j)(p+1)(1-x_k)_{k-j}z_{p+1}\]

\[= -k \sum_{r=1}^{p-1} (k-j+p-r+1)x_raz_{k-j+p-r+1} + \sum_{r=1}^{p-1} r x_{k-j+p-r+1} z_r + kpx_{k-j+1} z_p
\]

\[+ k(\sum_{r=1}^{p} (k-j+p-r+1)x_raz_{k-j+p-r+1} - \sum_{r=1}^{p-1} r x_{k-j+p-r+1} z_r
\]

\[+ k(p+1)x_{k-j}z_{p+1} + (k-j)(p+1)x_{k-j}z_{p+1} + j(p+1)_{x_k-j}z_{p+1}
\]

\[+ (j-p+1)(1-x_k)_{x_k-j}z_{p+1}\]

\[= kpx_{k-j+1} z_p + k(k-j+1)x_raz_{k-j+1} - kpx_{k-j+1} z_p - k(p+1)x_{k-j}z_{p+1}
\]

\[+ (k-j)(p+1)x_{k-j}z_{p+1} + (p+1)x_{k-j}z_{p+1}
\]

\[+ (k-j)(p+1)(1-x_k)_{x_k-j}z_{p+1}\]

\[= kpx_{k-j+1} z_p + k(k-j+1)x_raz_{k-j+1} - kpx_{k-j+1} z_p
\]

as wanted. Hence all coefficients of positive powers of \(y\) equal to or less than \(k\) simplify to give the same expression on both sides of Equation 3.

The last thing that we need to mention to complete the proof that Equation 3 holds is that the constant terms clearly equate. \(\square\)

5 An application to classification of maps

In this final section we shall apply the vector fields liftable over the cross cap of multiplicity \(k\) to the investigation of mappings that occur generically in one-parameter families of mappings, in particular, maps of \(A_e\)-codimension 1:

Definition 5.1 Suppose that \(f : (\mathbb{K}^n, 0) \rightarrow (\mathbb{K}^p, 0)\) is a smooth mapping. The \(A_e\)-codimension of \(f\), denoted \(A_e - \operatorname{cod}(f)\), is defined to be

\[A_e - \operatorname{cod}(f) = \dim_{\mathbb{K}} (\frac{\theta(f)}{f(\theta_n) + w_f(\theta_p)}).
\]

We can see that, by definition, \(f\) is stable if and only if the \(A_e\)-codimension of \(f\) is 0. A natural task is to find maps with \(A_e\)-codimension 1. We can do this by relating \(A_e\)-codimension of \(f\) to the codimension of a different map.

Definition 5.2 (29) and cf. (4) Suppose that \(F : (\mathbb{K}^n', 0) \rightarrow (\mathbb{K}^p', 0)\) is a stable map and \(h : (\mathbb{K}^p', 0) \rightarrow (\mathbb{K}^q', 0)\) is an analytic map. Let \(V\) be the \(\mathbb{K}\)-part of the discriminant of the complexification of \(F\).
The vK_e-codimension of h, denoted $vK_e - \text{cod}(h)$, is defined to be

$$vK_e - \text{cod}(h) = \dim_k \theta(h) / \langle \xi(h) : \xi \in \text{Derlog}(V) \rangle$$

where $h = (h_1, h_2, \ldots, h_q)$ and, as before, $e_j = (0, 0, \ldots, 0, 1, 0, \ldots, 0)^T \in \mathbb{K}^q$ which has zeroes except at position j, where it has a 1.

Example 5.3 Let $F : (\mathbb{K}^3, 0) \to (\mathbb{K}^4, 0)$ be the trivial extension of the Whitney umbrella given by $F(x, v_1, y) = (x, v_1, y^2, v_1 y)$. The K-part of the image of the complexification of F, denoted V, is defined in $(\mathbb{K}^4, 0)$, with coordinates (X, V_1, W_1, W_2), by $W_2^2 - V_1 W_1 = 0$. It is easy to calculate that $\text{Derlog}(V)$ is generated by the vector fields from Example 2.9 and the trivial vector field $\partial / \partial X$. (In the case of complex analytic maps we have proved this in Corollary 3.7 but it can be proved for real analytic maps, see [22].)

Let $h(X, V_1, W_1, W_2) = V_1 - p(X, W_1)$. Then we have

$$vK_e - \text{cod}(h) = \dim_k \left(E_4 \right) / \langle W_2, -V_1 + 2W_1 \partial_{v_1}, -2W_2 \partial_{v_1}, V_1 + 2W_1 \partial_{v_1} \partial_{\partial \partial X}, V_1 - p \rangle$$

$$= \dim_k \left(E_4 \right) / \langle W_2, V_1, W_1 \partial_{v_1}, \partial_{\partial \partial X}, V_1 - p \rangle$$

$$= \dim_k \left(E_2 \right) / \langle W_1 \partial_{v_1}, \partial_{\partial \partial X}, p \rangle$$

In Exercise 1.1 of [7] there is a similar calculation for the related notion of K_V-codimension. Note that the above calculation is considerably simpler since the denominator is an ideal rather than a module.

The two codimensions, vK-codimension and A_e-codimension are intimately connected.

Definition 5.4 Let $F : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ be a smooth map and $g : (\mathbb{K}^r, 0) \to (\mathbb{K}^p, 0)$ be a smooth map such that $\text{Trans}(F) = \text{Trans}(g)$. The pullback of F by g, denoted $g^*(F)$, is the natural map from

$$(\mathbb{K}^r - (p-n), 0) \cong \left\{ (x, y) \in (\mathbb{K}^n, 0) \times (\mathbb{K}^r, 0) : F(x) = g(y) \right\}$$

to $(\mathbb{K}^r, 0)$ given by projection on the second factor.

If $f : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ has finite A_e-codimension, then f can be induced as a pull-pack from a stable map F by an immersion g, see [27].

The connection between A_e-codimension and vK_e-codimension was given in [7], Theorem 1, (see also [21]) and [9], Lemma 6.2:

Theorem 5.5 ([7, 21, 9]) Suppose that $F : (\mathbb{K}^n, 0) \to (\mathbb{K}^p, 0)$ is a \mathbb{K}-analytic stable map and $g : (\mathbb{K}^r, 0) \to (\mathbb{K}^p, 0)$ is an immersion transverse to F. Then,

$$A_e - \text{cod}(g^*(F)) = vK_e - \text{cod}(h)$$

where h is a submersion $h : (\mathbb{K}^p, 0) \to (\mathbb{K}^{p-r}, 0)$ such that $h^{-1}(0)$ is the image of g and V is the K-part of the complexification of the discriminant of F.

The importance of this theorem is that vK_e-codimension is easier to calculate than A_e-codimension. The denominator in the definition of the latter is not a module whereas it is for the former. This makes calculation easier.
Example 5.6 Consider Example 5.3. If we let \(g : (\mathbb{R}^3, 0) \to (\mathbb{R}^4, 0) \) be given by \(g(X, W_1, W_2) = (X, p(X, W_1), W_1, W_2) \), then the image of \(g \) is equal to \(h^{-1}(0) \) and, one calculates, \(g \) is transverse to \(F \). The pull-back of \(F \) by \(g \) is a map of the form \(f(x, y) = (x, y^2, yp(x, y^2)) \).

Using the example and the previous theorem we calculate that

\[
\mathcal{A}_c - \text{cod}(f) = \dim_{\mathbb{R}} \frac{\mathcal{E}_2}{\langle \frac{\partial y}{\partial y}, \frac{\partial y}{\partial x}, p \rangle}
\]

which is the formula found in [20]. However, it can be seen that the work in calculating the \(\mathcal{A}_c \)-codimension of the map \(f \) is greatly reduced with this method.

Let us now look at linear maps \(h : (\mathbb{R}^{2k-1}, 0) \to (\mathbb{R}, 0) \) on the image \(V \) of the minimal cross cap mapping of multiplicity \(k \) and find those with \(\nu K_c \)-codimension equal to 1. This allows us to find \(\mathcal{A}_c \)-codimension 1 maps because we can parametrize the zero-set of \(h \) by a map \(g \) and then the pull-back of the cross cap by \(g \) will have \(\mathcal{A}_c \)-codimension 1.

As usual let \((U, V, W) = (U_1, \ldots, U_{k-2}, V_1, \ldots, V_{k-1}, W_1, W_2) \) denote the coordinates on the codomain of the minimal cross cap of multiplicity \(k \). Now consider a general linear function \(h \) on \(\mathbb{R}^{2k-1} \):

\[
h(U, V, W) = \sum_{i=1}^{k-2} \alpha_i U_i + \sum_{i=1}^{k-1} \beta_i V_i + \gamma_1 W_1 + \gamma_2 W_2,
\]

where the coefficients \(\alpha, \beta \) and \(\gamma \) are elements of \(\mathbb{K} \).

For \(\nu K_c \)-codimension 1 functions the denominator in the definition of \(\nu K \)-codimension is equal to the maximal ideal, denoted \(m \), in \(\theta(h) = \mathcal{E}_{2k-1} \). In the following we work modulo \(m^2 \) as later we shall simplify calculations by using Nakayama’s Lemma.

A different version of the following was first proved in Section 4.4 of [17].

Theorem 5.7 Let \(h : (\mathbb{R}^{2k-1}, 0) \to (\mathbb{R}, 0) \) be the linear map above and \(\xi_j \), where \(1 \leq i \leq 3 \) and \(1 \leq j \leq k-1 \), denote the vector fields liftable over \(\varphi_k \) in Theorems 3.1 and 3.2.

Then,

\[
\xi_j^1(h) = k \left(-\beta_{k-j} W_2 + \sum_{i=k-j+1}^{k-1} \beta_i V_{i+j-k} \right) \bmod m^2,
\]

\[
\xi_j^2(h) = \sum_{i=j-1}^{k-2} \alpha_i (k - i + j - 1) U_{i+j-1} - k \sum_{i=j-1}^{k-1} (i - j + 1) \beta_i V_{i+j-1} - k(k - j + 1) \gamma_1 U_{k-j+1} W_1 - k^2 \alpha_{j-1} W_1 \bmod m^2,
\]

\[
\xi_j^3(h) = k(k - j + 1) \gamma_1 U_{k+j-1} W_2 - k^2 \alpha_{j-1} W_2 + k^2 \sum_{i=j}^{k-2} \alpha_i V_{i+j-1} \bmod m^2,
\]

for all \(1 \leq j \leq k - 1 \).

Proof. For all three families we can ignore any quadratic terms in the description of the vector field. Note that this means we only have to look at terms that include \(U_k \).

For \(\xi_j^1 \) we have that \(A_{i,j}, C_{1,j}^1 \) and \(C_{2,j}^1 \) are all in \(m^2 \) and hence

\[
A_{i,j}^1 = C_{1,j}^1 = C_{2,j}^1 = 0 \bmod m^2.
\]

21
For $B_{1,j}^1$ the second summation and the second and third to last terms are in m^2 and so
\[B_{1,j}^1 = k \sum_{r=1}^{i-1} U_{i+j-r} V_r - k U_{i+j} W_2 \mod m^2. \]

Therefore we have
\[\xi_j^1(h) = \sum_{i=1}^{k-1} \beta_i \left(k \sum_{r=1}^{i-1} U_{i+j-r} V_r - k U_{i+j} W_2 \right) \mod m^2. \]

Now, $U_{i+j-r} = 1$ if $i + j - r = k$, i.e., $r = i + j - k$, and similarly $U_{i+j} = 1$ if $i = k - j$. Thus
\[\xi_j^1(h) = k \sum_{i=1}^{k-1} \beta_i V_{i+j-k} - k \beta_{k-j} W_2 \mod m^2. \]

Now, if $i \leq k - j$, then $V_{i+j-k} = 0$ and so we can replace the lower limit in the summation by $k - j + 1$.

For the second family, ξ_j^2, we note that
\[
A_{i,j}^2 = -k(k + i - j + 1)U_{k+i-j+1} W_1 + k \sum_{r=1}^{i} (k + 1 - j - 2r + 1) U_r U_{k+i-j-r+1} \mod m^2, \\
B_{i,j}^2 = -k \sum_{r=1}^{i} rU_{k+i-j-r+1} V_r \mod m^2, \\
C_{i,j}^2 = k(k - j + 1)U_{k-j+1} W_1 \mod m^2, \\
C_{2,j}^2 = 0 \mod m^2.
\]

Similar reasoning as for $\xi_j^1(h)$ involving $U_k = 1$ gives the required form of $\xi_j^2(h)$. (This time we use $i \leq j - 1$ to get that $U_{i-j+1} = V_{i-j+1} = 0$ and hence can alter the lower limit for the summations.)

For ξ_j^3 we have
\[
A_{i,j}^3 = -(k + i - j + 1)U_{k+i-j+1} W_2 + k^2 V_{i-j+1} \mod m^2, \\
B_{i,j}^3 = 0 \mod m^2, \\
C_{1,j}^3 = k(k - j + 1)U_{k-j+1} W_2 \mod m^2, \\
C_{2,j}^3 = 0 \mod m^2.
\]

From this we can deduce the stated form of $\xi_j^3(h)$. \qed

The following is Theorem 4.4.7 of [17].

Theorem 5.8 For $k > 2$ suppose that α_{k-2} and β_{k-1} are non-zero. Then,
\[\langle \xi_j^1(h), \xi_j^2(h), \xi_j^3(h), h \rangle_{j=1}^{k-1} = m. \]

Proof. Let I be an ideal in \mathcal{E}_{2k-1}. By Nakayma’s Lemma we have that $I = m$ if and only if $I + m^2 = m$, (see [27] Lemma 2, page 929). We shall have $I = \langle \xi_j^1(h), \xi_j^2(h), \xi_j^3(h), h \rangle_{j=1}^{k-1}$.

Consider the elements of I generated by $\xi_j^1(h)$. By Theorem 5.7 we can see that (modulo m^2) these elements are $\sum_{i=1}^{i-1} \beta_{k-j+i} V_i - \beta_{k-j} W_2$. They can be better
understood if we write them as the product of two matrices:

$$
\begin{pmatrix}
0 & \cdots & 0 & -\beta_{k-1} \\
\beta_{k-1} & 0 & \cdots & 0 & -\beta_{k-2} \\
\beta_{k-2} & \beta_{k-1} & 0 & \cdots & 0 & -\beta_{k-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\beta_3 & \beta_4 & \beta_5 & \cdots & 0 & -\beta_2 \\
\beta_2 & \beta_3 & \beta_4 & \beta_5 & \cdots & -\beta_1 \\
\end{pmatrix}
\begin{pmatrix}
V_1 \\
V_2 \\
V_3 \\
\vdots \\
V_{k-2} \\
W_2
\end{pmatrix}
$$

Written in this form it is easy to see that if β_{k-1} is non-zero, then

$$
\langle \xi_j^1(h) \rangle_{j=1}^{k-1} + m^2 = \langle W_2, V_1, V_2, \ldots, V_{k-2} \rangle + m^2.
$$

Note that we have not yet concluded that V_{k-1} is in our ideal.

Consider the elements $\xi_j^3(h)$, $1 \leq j \leq k - 1$. We can see from Theorem 6.7 (again modulo m^2) that these are dependent on $W_2, V_1, V_2, \ldots, V_{k-2}$. The variable V_{k-1} does not actually occur with non-zero coefficient. Thus

$$
\langle \xi_j^1(h), \xi_j^3(h) \rangle_{j=1}^{k-1} + m^2 = \langle \xi_j^1(h) \rangle_{j=1}^{k-1} + m^2.
$$

(Therefore, in some sense, the third family is superfluous to our calculations.)

Turning to the second family, modulo $\langle \xi_j^1(h) \rangle_{j=1}^{k-1} + m^2$ we can write $\xi_j^2(h)$ for $2 \leq j \leq k - 1$ (in particular $k > 2$) as the product of two matrices:

$$
\begin{pmatrix}
0 & \cdots & 0 & -k\alpha_{k-2} \\
(k-1)\alpha_{k-2} & 0 & \cdots & 0 & -k\alpha_{k-3} \\
(k-1)\alpha_{k-3} & (k-2)\alpha_{k-2} & 0 & \cdots & 0 & -k\alpha_{k-4} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(k-1)\alpha_3 & (k-2)\alpha_4 & (k-3)\alpha_5 & \cdots & 0 & -k\alpha_2 \\
(k-1)\alpha_2 & (k-2)\alpha_3 & (k-3)\alpha_4 & \cdots & 3\alpha_{k-2} & -k\alpha_1 \\
\end{pmatrix}
\begin{pmatrix}
U_{k-3} \\
U_{k-4} \\
\vdots \\
U_2 \\
U_1 \\
W_2
\end{pmatrix}
$$

Since $\xi_{k-1}^2(h) = -k^2\alpha_{k-2}W_1 - k\beta_{k-1}V_1 \mod m^2$ we deduce that W_1 is in our ideal. With the elements written in the form of a matrix we can see easily that if α_{k-2} is non-zero, then U_1, \ldots, U_{k-3} are in the ideal $I + m^2$.

Using

$$
\xi_j^2(h) = 2k\alpha_{k-1}U_{k-2} - k(k-1)\beta_{k-1}V_{k-1} \mod \langle U_1, \ldots, U_{k-3}, V_1, \ldots, V_{k-2}, W_1, W_2 \rangle
$$

and

$$
\alpha = \alpha_{k-2}U_{k-2} + \beta_{k-1}V_{k-1} \mod \langle U_1, \ldots, U_{k-3}, V_1, \ldots, V_{k-2}, W_1, W_2 \rangle
$$

it is easy to deduce that U_{k-2} and V_{k-1} are also in our ideal. Thus

$$
\langle \xi_j^1(h), \xi_j^2(h), \xi_j^3(h), h \rangle_{j=1}^{k-1} + m^2 = m
$$

as required.

The following is Theorem 4.5.1 of [17].

Corollary 5.9 Let $\varphi_k : \mathbb{C}^{2k-1}, 0 \to \mathbb{C}^{2k-1}, 0$ be the complex minimal cross cap of multiplicity $k > 2$ and let h be the general linear map above. Suppose that α_{k-2} and β_{k-1} are non-zero and that g is an immersion parametrizing $h^{-1}(0)$. Then,

$$
\mathcal{A}_c - \text{cod}(g^*(\varphi_k)) = 1.
$$
Proof. It is easy to calculate that g is transverse to φ. By Theorem 5.5 we know that

$$A_e \text{-cod} \left(g^*(\varphi_k) \right) = \nu \mathcal{K}_e - \text{cod}(h) = \dim_{\mathbb{R}} \langle \xi^1_j(h), \xi^2_j(h), \xi^3_j(h), \xi_e(h), h \rangle_{j=1}^{k-1}.$$

Since $\xi_e(h) \in \mathfrak{m}$ we can see from Theorem 5.8 that

$$\langle \xi^1_j(h), \xi^2_j(h), \xi^3_j(h), \xi_e(h), h \rangle_{j=1}^{k-1} = \mathfrak{m},$$

from which the result follows. \qed

Remarks 5.10 (i). In the proof of Theorem 7.3 of [15], following the ideas in [6, 16], it is proved that any sufficiently generic linear function on the minimal cross cap induces an A_e-codimension 1 map-germ. Here, the result is improved: we have precise conditions for genericity.

(ii). Note that in the proof of the corollary the Euler vector field, in some sense, plays no part in the fact that the pull-back map is A_e-codimension 1. Note that the third family plays no part either. This will be explored in a subsequent paper.

References

[1] V. I. Arnol’d, Wave front evolution and equivariant Morse lemma, *Commun. Pure Appl. Math.* 29(6) 1976, 557-582.

[2] T. J. Bridges and J.E. Furter, Singularity theory and equivariant symplectic maps, Lecture Notes in Math., 1558, Springer, Berlin, 1993.

[3] J.W. Bruce, Functions on discriminants, *J. London Math. Soc.* (2), 30 (1984), 551-567.

[4] J.W. Bruce and R.M. Roberts, Critical points of functions on analytic varieties, Topology 27, no.1 (1988), 57-90.

[5] D. Cox, J. Little, D. O’Shea, *Using algebraic geometry*, Graduate Texts in Mathematics, 185, Springer-Verlag, New York, 1998.

[6] J. Damon, On the legacy of free divisors: discriminants and Morse-type singularities, *Amer. J. Math.* 120 (1998), no. 3, 453-492.

[7] J. Damon, A-equivalence and the equivalence of sections of images and discriminants, in: *Singularity Theory and its Applications*, SLNM 1462, D. Mond, J. Montaldi (Eds.), Springer Verlag Berlin, 1991, pp. 93-121.

[8] J. Damon, On the Legacy of Free Divisors II : Free* Divisors and Complete Intersections, Moscow Math. Jour. 3, Special Issue in honor of V. I. Arnol’d (2003) 361-395

[9] J. Damon, On the legacy of free divisors III, Functions and divisors on complete intersections, *Q. J. Math.* 57 (2006), no. 1, 49-79.

[10] J. Damon and D. Mond, A-codimension and vanishing topology of discriminants, *Invent. Math.*, 106 (1991), 217-242.

[11] J.E. Furter, A.M. Sitta, I. Stewart, Algebraic path formulation for equivariant bifurcation problems, *Math. Proc. Cambridge Philos. Soc.* 124 (1998), no. 2, 275-304.
[12] M. Golubitsky, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory Vol 1, Springer Verlag, (1985).

[13] G.-M. Greuel, G. Pfister, *A Singular Introduction to Commutative Algebra*, Springer-Verlag, Berlin, (2002).

[14] M. P. Holland, D. Mond, Stable mappings and logarithmic relative symplectic forms, *Math. Z.* 231(4) (1999), 605-623.

[15] K. Houston, On the topology of augmentations and concatenations of singularities, *Manuscripta Mathematica*, 117, 2005, no. 4, 383-405.

[16] K. Houston, Singularities in generic one-parameter complex analytic families of maps, in *Real and Complex Singularities*, eds. M.J. Saia and J. Seade, Contemporary Mathematics Vol 459, AMS, (2008), 34-49.

[17] D. Littlestone, Tangent Vector Fields on the Generalized Cross Cap, MPhil Thesis, University of Leeds (2008).

[18] E. J. N. Looijenga, *Isolated singular points on complete intersections*, London Math. Soc. Lecture Note series 77 (1984).

[19] J. N. Mather, Stability of C^∞ mappings V, Transversality, *Advances in Math.* 4 (1970) 301–336.

[20] D. Mond, On the classification of germs of maps from \mathbb{R}^2 to \mathbb{R}^3, *Proc. London Math. Soc.*, (3) 50 (1985), 333-369.

[21] D. Mond and J. Montaldi, Deformations of maps on complete intersections, Damon’s K_Y-equivalence and bifurcations, in *Singularities*, ed. J.-P. Brasselet, London Mathematical Society Lecture Notes Series 201 (Cambridge University Press, 1994), 263-284.

[22] D. Mond, R. Pellikaan, Fitting ideals and multiple points of analytic mappings, in *Algebraic geometry and complex analysis (Pátzcuaro, 1987)*, Lecture Notes in Math., 1414, Springer, Berlin, 1989, pp. 107-161.

[23] J. Montaldi, The path formulation of bifurcation theory. Dynamics, bifurcation and symmetry (Cargèse, 1993), 259–278, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 437, Kluwer Acad. Publ., Dordrecht, 1994.

[24] B. Morin, Formes canoniques des singularités d’une application différentiable, *C. R. Acad. Sci. Paris*, 260 (1965), 5662-5665 and 6503-6506.

[25] P Orlik, H Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften 300, Springer-Verlag, Berlin, 1992.

[26] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, *J. Fac. Sci. Univ. Tokyo Sect. IA Math.* 27 (1980), no. 2, 265–291.

[27] C. T. C. Wall, Classification and stability of singularities of smooth maps, *Singularity theory (Trieste, 1991)*, ed. D. T. Lè, K. Saito and B. Teissier, 920–952, World Sci. Publ., River Edge, NJ, 1995.

[28] J. West, The differential geometry of the cross cap, PhD Thesis, University of Liverpool (1995).

[29] R. Wik Atique, On the classification of multi-germs of maps from \mathbb{C}^2 to \mathbb{C}^3 under A-equivalence, in *Real and complex singularities (São Carlos, 1998)*, 119-133, Chapman and Hall/CRC, Boca Raton, FL, 2000.
[30] V. M. Zakaluykin, Reconstructions of wave fronts depending on one parameter, Functional Analysis and its Appl., 10, (1976), 139-140.