Simultaneous source and attenuation reconstruction in SPECT using ballistic and single scattering data

M Courdurier1,4, F Monard2, A Osses3 and F Romero3

1Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile
2Department of Mathematics, University of Washington, Seattle WA 98195, USA
3Departamento de Ingeniería Matemática, Universidad de Chile and Centro de Modelamiento Matemático, UMI 2071 CNRS, FCFM, Universidad de Chile, Chile

E-mail: mcourdurier@mat.puc.cl, fmonard@math.washington.edu, axosses@dim.uchile.cl and fromero@dim.uchile.cl

Received 2 April 2015, revised 5 June 2015
Accepted for publication 29 June 2015
Published 6 August 2015

Abstract
In medical single-photon emission computed tomography (SPECT) imaging, we seek to simultaneously obtain the internal radioactive sources and the attenuation map using not only ballistic measurements but also first-order scattering measurements and assuming a very specific scattering regime. The problem is modeled using the radiative transfer equation by means of an explicit non-linear operator that gives the ballistic and scattering measurements as a function of the radioactive source and attenuation distributions. First, by differentiating this non-linear operator we obtain a linearized inverse problem. Then, under regularity hypothesis for the source distribution and attenuation map and considering small attenuations, we rigorously prove that the linear operator is invertible and we compute its inverse explicitly. This allows proof of local uniqueness for the non-linear inverse problem. Finally, using the previous inversion result for the linear operator, we propose a new type of iterative algorithm for simultaneous source and attenuation recovery for SPECT based on the Neumann series and a Newton–Raphson algorithm.

Keywords: inverse problems, SPECT, identification problem, attenuated radon transform

(Some figures may appear in colour only in the online journal)
1. Introduction

1.1. Previous results

Single-photon emission computed tomography (SPECT) is a nuclear medicine tomographic imaging technique based on gamma ray emission, with applications including cancer treatment monitoring [38] and neuropsychiatric imaging studies [28]. The idea is to deliver into a patient a gamma-emitting radioisotope (typically, technetium−99m) that is designed to attach to certain types of cells or tissues, or distribute in a certain region, which in turn emits gamma rays (for reference see [15, chapter 2]). This radiation is measured outside the patient by a rotating gamma camera which can identify both the direction and the energy level of the radiation (see figure 1 left). With the information gathered, the goal is to reconstruct the source distribution (denoted by \(f \) hereafter) of the radioisotope inside the patient, hence obtaining an image of the desired specific tissue under study or the region of interest. Such emission is attenuated before being measured via a position-dependent attenuation parameter \(a \), which represents the capacity of the medium to absorb photons. Given the medical procedure, \(a \) is also to be reconstructed in order to successfully reconstruct \(f \). The common mathematical model used to describe our measurements is the radiative transfer equation (see survey [3], for example), describing the propagation of photons inside a medium, including attenuation and scattering effects.

The \textit{attenuated Radon transform} (AtRT) plays a central role in SPECT, and particularly in the extensions made in this work. The inversion formula for AtRT with known attenuation was obtained independently by Arbuzov \textit{et al} in 1998 [1] and by Novikov in 2002 [25], deriving an explicit inverse operator. There are several generalizations for this result, for general geodesics [32], for complex valued coefficients [36] or for more general weight functions [6–8]. There are also invertibility and stability results for partial measurements. In [24], injectivity is obtained by measuring in an arbitrarily small open set of angles. Stability for the direct and inverse problem can be found in [30] and inversion of data in [2].

The \textit{identification problem} stands in the literature for the simultaneous source and attenuation reconstruction of the pair \((f, a)\) from the AtRT. This problem has been studied for particular cases of attenuation maps: constant attenuation (when the AtRT reduces to the exponential Radon transform) in [18, 33] (see also [19] and the references therein), radial attenuation in [27] and piecewise constant attenuation in [11]. For particular cases of source functions, the problem has been also tackled in several papers [1, 4, 6, 22], and the general non-linear case has been studied in [34]. Nevertheless, in the general case, examples of non-uniqueness then appear: for the weighted Radon transform in [6], for the exponential Radon transform in [33], for the non-linear Radon transform in [33], for the non-linear identification problem in [34] and for the linearized one in [4].

Another approach to studying the identification problem is by the characterization of the AtRT range. In [23] we can find compatibility properties of the range and in [26] there is a full characterization of the range. Recently in [4, 34] some local uniqueness and stability results are obtained by using linearization and compatibility conditions for the range. More specifically, in [34] a general sum of two weighted Radon transforms is studied using microlocal techniques on a related \(\Psi \text{DO} \) of real principal type. Conditions implying injectivity of this sum are given and Lipschitz stability estimates follow, which then imply Hölder stability estimates for the original non-linear identification problem, via linearization and interpolation arguments. Additionally, more explicit conditions for injectivity and examples for lack of injectivity, studied analytically and numerically, can be found in [20, 34]; we revisit some of those examples in section 5.
The identification problem has also motivated several numerical studies. In many of them [17, 29, 35], the focus is to first obtain a good approximation of the attenuation map instead of treating \((a, f)\) as a pair, called attenuation correction algorithms. For other numerical aspects and reconstructions, see for instance [9, 10, 12, 13, 20, 21, 37].

1.2. Our approach: using lower energy scattering data

Our main goal is to reconstruct both the attenuation map and radioactive source distribution of an unknown object using the SPECT setting. Although this is the same objective as in the above-mentioned identification problem, we tackle a different inverse problem by using additional scattering measurements.

Indeed, we can assume that some additional information can be gathered by measuring scattered photons outside the object in study. Each time a photon scatters, it reduces its energy level (see figure 1), and gamma cameras can discriminate the energy level of photons. Therefore, we can measure separately the gamma rays exiting the patient that have not scattered (ballistic photons) and the gamma rays exiting the patient that have scattered. Particularly, we are interested in measuring photons that have only scattered once (first-order scattering photons).

Considering scattering effects leads to the introduction of a new unknown coefficient in the model; namely the scattering coefficient \(\sigma(x)\), which will describe the scattering behavior of photons inside the object in study. Two of our strongest assumptions will be to suppose that (i) the scattering of photons does not depend on the scattering angle, and that (ii) the scattering coefficient is proportional to the attenuation coefficient. Although these assumptions might not be very accurate physical simplifications, they allow us to obtain a tractable mathematical model, and recent SPECT experiments with phantoms that we have conducted suggest that these assumptions still provide a working model.

In summary, we can assume that we can gather more information using the same standard device and medical procedure used for SPECT and without the addition of new technology or other parameters, except for a change in the measurement protocol.

Figure 1. Left: classical SPECT consists of the recovery of the source \(f\) by assuming known attenuation \(a\) only using high-energy ballistic photons (solid arrows). We propose to use available lower energy photon information corresponding mainly to scattered photons (dashed arrows) to recover \(f\) and \(a\) simultaneously. Right: typical distribution of photons in SPECT showing different energy levels (ballistic: higher energy levels; scattered: lower energy levels).
There are three main objectives in this work. The first one is to derive an inverse problem that considers scattering effects in the standard mathematical model of SPECT that describes the behavior of photons in a medium; this is done by means of suitable assumptions that allow us to deal with the gathered information from the ballistic and first-order scattering photons. The second goal is to reconstruct both the attenuation and source map from the available data. To this end we study the operator that describes the external measurements by means of a linearization process. The third objective is to develop an efficient numerical algorithm that uses both the ballistic and first-order scattering photon information to reconstruct both the attenuation and source map of an unknown object.

Notice that the new information given by first-order scattering photons traveling in a certain two-dimensional plane contains information on the whole three-dimensional body, because unlike ballistic photons, scattered photons do not necessarily travel straight from the source to the gamma camera. Nevertheless, since the extension to the three-dimensional case is not too different, and in order to simplify notations, we will restrict the analysis and numerical simulations of this paper to the two-dimensional case.

The rest of the paper is organized as follows. In section 2, we introduce the main notations and definitions and we develop the mathematical model for the inverse problem. In section 3, we state the non-linear and linearized inverse problems. In section 4, we state and prove the main mathematical results of invertibility of the linearized operator (theorem 4) and local uniqueness of the non-linear inverse problem (theorem 5). Section 5 contains some numerical experiments that illustrate the feasibility of the proposed SPECT using lower energy scattered photons in the case of some previously known counter-examples for the identification problem and for other phantoms.

Natural extensions of this work are: the three-dimensional setting, the use of real data, the analysis of more general relationships between attenuation and scattering, and the exploration of alternative numerical reconstruction techniques. We intend to address these points in a forthcoming paper.

2. Model description

2.1. Notation and functional framework

Let us introduce the notation of the sets and functional spaces used in this paper. Let $S^1 = \{ \theta \in \mathbb{R}^2 : |\theta| = 1 \}$ be the set of directions in \mathbb{R}^2, and for $\theta = (\theta_1, \theta_2) \in S^1, \theta_1, \theta_2 \in \mathbb{R}$, let $\theta^\perp = (-\theta_2, \theta_1)$ be its $\pi/2$ counterclockwise rotation. Let K be a compact set in \mathbb{R}^2 of non-empty interior and let \tilde{K} be a compact set in \mathbb{R}^2 slightly larger than K. For simplicity let us consider $K = \{ x \in \mathbb{R}^2 : |x| \leq 1 \}$, $\tilde{K} = \{ x \in \mathbb{R}^2 : |x| \leq 2 \}$. For $n \in \mathbb{N}, 0 < \alpha < 1$, let $C^\alpha(\mathbb{R}^n)$ be the space of real valued α-Hölder continuous functions, for $m \in \mathbb{N} \cup \{0, \infty\}$ let $C^m(\mathbb{R}^n)$ be the space of functions with m continuous derivatives, let $L^2(\mathbb{R}^n)$ be the space of square integrable functions and let $H^s(\mathbb{R}^n)$, $s > 0$ be the classical Sobolev spaces. In these functional spaces we denote by $\| \cdot \|_{C^\infty(\mathbb{R}^n)}, \| \cdot \|_{C^\infty_0(\mathbb{R}^n)}, \| \cdot \|_{L^2(\mathbb{R}^n)}$ and $\| \cdot \|_{H^s(\mathbb{R}^n)}$ the usual norms, omitting (\mathbb{R}^n) in the subscript when the context is clear. Also let $L^\infty(\mathbb{R}^n)$ be the space of essentially bounded functions, and abusing the notation let $\| \cdot \|_{\infty}$ denote the norm in $L^\infty(\mathbb{R}^n)$ and $C^0(\mathbb{R}^n)$. For $\Omega \subset \mathbb{R}^n$ let $C^0(\Omega), C^m(\Omega), L^2(\Omega), L^\infty(\Omega)$ and $H^1(\Omega)$ be the corresponding functional subspaces consisting of functions with support contained in Ω; this may differ from the standard notation, but it is a convenient notation for this article.
For a function \(f : \mathbb{R}^n \times S^1 \to \mathbb{R} \) let
\[
||f||_{C^0(\mathbb{R}^n \times S^1)} = \sup_{\theta \in S^1} ||f(\cdot, \theta)||_{C^0(\mathbb{R}^n)} \quad \text{and}
||f||_{H^s(\mathbb{R}^n \times S^1)} = \left(\int_{S^1} ||f(\cdot, \phi)||_{H^s(\mathbb{R}^n)}^2 d\phi \right)^{1/2},
\]
and let \(C^0(\mathbb{R}^n \times S^1) \) and \(H^s(\mathbb{R}^n \times S^1) \) be the smallest Banach spaces with such norms that contain the compactly supported smooth functions (these spaces could have more succinctly been described as \(C^0(\mathbb{R}^n \times S^1) = C(S^1; C^0(\mathbb{R}^n)) \) and \(H^s(\mathbb{R}^n \times S^1) = L^2(S^1; H^s(\mathbb{R}^n)) \), but we adopt the notation commonly used in the related literature, see e.g. [24]).

2.2. Integral operators appearing in the model and the inverse problem

In the modeling and analysis that will be presented in this work there are a number of integral operators that play a crucial role. We proceed to provide a generic definition of these operators, leaving the discussion of their properties for the next subsection.

For a function \(f : \mathbb{R}^n \to \mathbb{R} \) we let \(Hf \) denote its classic Hilbert transform (see e.g. [14]). If \(g : \mathbb{R}^n \times S^1 \to \mathbb{R} \) then \(Hg \) denotes the Hilbert transform of \(g(\cdot, \theta) \) for each \(\theta \in S^1 \). An important integral operator in this paper is the weighted Radon transform.

Definition 1 (Weighted Radon transform). Letting \(f : \mathbb{R}^n \to \mathbb{R} \) be a function and \(w : \mathbb{R}^n \times S^1 \to \mathbb{R} \) be a weight function, the weighted Radon transform of \(f \), with the weight \(w \), is defined as
\[
I_w f(s, \theta) = \int_{\mathbb{R}} w(s\theta^\perp + t\theta, \theta)f(s\theta^\perp + t\theta)dt, \quad s \in \mathbb{R}, \quad \theta \in S^1.
\]
We will consider specific weight functions that will themselves be composed of integral operators, like the beam transform.

Definition 2 (Beam transform). The beam transform of the function \(a : \mathbb{R}^n \to \mathbb{R} \), at the point \(x \in \mathbb{R}^n \), in the direction \(\theta \in S^1 \), is defined as
\[
(Ba)(x, \theta) = \int_0^\infty a(x + t\theta)dt, \quad x \in \mathbb{R}^n, \quad \theta \in S^1.
\]
The weighted Radon transform with the exponential of the Beam transform as a weight is called the attenuated Radon transform.

Definition 3 (Attenuated Radon transform (AtRT)). Let \(a, f : \mathbb{R}^n \to \mathbb{R} \), then the AtRT of \(f \), with attenuation \(a \), is defined as
\[
R_a f(s, \theta) = \int_{\mathbb{R}} f(s\theta^\perp + t\theta)e^{-i(Ba)(s\theta^\perp + t\theta)}dt, \quad s \in \mathbb{R}, \quad \theta \in S^1.
\]
When \(a \equiv 0 \), this is called the Radon transform of \(f \) and it is denoted as \(Rf(s, \theta) \).

Remark 1. The AtRT is sometimes defined with a different parameterization. We denote such alternative definition as \(R_a^\perp f(s, \theta) \) and it satisfies \(R_a^\perp f(s, \theta) = R_a f(-s, \theta^\perp) \). This reparameterization does not change the regularity properties of the operator; in particular, results proved for \(R_a \) also apply to \(R_a^\perp \).

For the AtRT there exists the following inversion formula (see [25]).
Theorem 1 (Inverse of the AtRT). Let \(a, f : \mathbb{R}^2 \to \mathbb{R} \) be continuously differentiable with compact support, then the following complex valued formula holds pointwise
\[
f(x) = \frac{1}{4\pi} \text{Re} \text{ div } \int_{S^1} \theta e^{Ba(x, \theta)} (e^{-bH}e^{bH}R_\alpha f)(x \cdot \theta, \theta) \, d\theta,
\]
where \(h(s, \theta) = \frac{1}{2}(I + iH)R_\alpha(s, \theta) \) (here \(i = \sqrt{-1} \). \(H \) is the Hilbert transform and \(I \) is the identity operator). For \(a \) and \(f \) less regular this inversion formula holds in a weaker sense. □

Definition 4. Let \(a : \mathbb{R}^2 \to \mathbb{R} \) and \(J : \mathbb{R} \times S^1 \to \mathbb{R} \), we define \(J^{-1}(s, \theta) = J(-s, \theta^\perp) \) and
\[
R^{-1}_a J(x) = \frac{1}{4\pi} \text{Re} \text{ div } \int_{S^1} \theta e^{Ba(x, \theta)} (e^{-bH}e^{bH}J^\perp)(x \cdot \theta, \theta) \, d\theta, \quad x \in \mathbb{R}^2,
\]
where \(h(s, \theta) = \frac{1}{2}(I + iH)R_\alpha^2 a(s, \theta) \).

In our analysis we will consider a linearization of the AtRT. Such analysis will require working with a weight functional of the following form.

Definition 5. Let \(u, v : \mathbb{R}^2 \to \mathbb{R} \), we define the weight \(w[u, v] : \mathbb{R}^2 \times S^1 \to \mathbb{R} \) as
\[
w[u, v](x, \theta) = -\int_{-\infty}^{0} e^{-Ba(x + \tau \theta, \theta)} v(x + \tau \theta) \, d\tau, \quad x \in \mathbb{R}^2, \quad \theta \in S^1.
\]
The last integral operator that appears in our modeling and analysis is what we call the focused transform.

Definition 6 (Focused transform). For \(f, a : \mathbb{R}^2 \to \mathbb{R} \) we define \(M[a, f] : \mathbb{R}^2 \to \mathbb{R} \), the focused transform of the source \(f \) with attenuation \(a \), as
\[
M[a, f](x) = \int_{S^1} \int_{0}^{\infty} f(x + t\theta)e^{-\int_{0}^{(x+\theta)t}a(s) \, ds} \, dt \, d\theta, \quad x \in \mathbb{R}^2.
\]

2.3. Properties of the integral operators and elementary estimates

The previous integral operators can be defined in different functional spaces with different properties. The following result on the continuity of the weighed Radon transform (see e.g. [31]) exemplifies the functional setting in which we will consider the integral operators.

Theorem 2. If \(1/2 < \alpha \leq 1 \), \(f \in L^2(K) \) and \(w(x, \theta) \in C^\alpha(\mathbb{R}^2 \times S^1) \) then
\[
\|I_a f\|_{H^{\alpha,2} (\mathbb{R} \times \mathbb{R})} \leq C \|w\|_{C^\alpha(\mathbb{R}^2 \times S^1)} \|f\|_{L^2(\mathbb{R}^2)},
\]
where the constant \(C \) depends only on the compact set \(K \). □

In order to deal with the different nature of the functional spaces involved, the remainder of this subsection is devoted to recalling some classic results and to provide some technical lemmas that will clarify the computations performed in section 4.2. The relationship between Sobolev and Hölder spaces is given by the classic Sobolev embedding.
Theorem 3 (Sobolev embedding). Let s, n be integers, $\alpha \geq 0$, if $(s - \alpha)/n \geq 1/2$ then
\[H^s(\mathbb{R}^n) \subset C^\alpha(\mathbb{R}^n), \]

and the inclusion is continuous. Also for $s > 1/2$ we have the continuous inclusion
\[H^s(\mathbb{R}) \subset L^\infty(\mathbb{R}). \]

The products of functions that appear will fall under one of the following two lemmas. Their proofs are obtained by direct calculations.

Lemma 1. Let $\Omega \subset \mathbb{R}^d$ and $f_1, f_2 \in C^\alpha(\Omega)$, then $f_1 \cdot f_2 \in C^\alpha(\Omega)$ and
\[\|f_1 \cdot f_2\|_{C^\alpha(\Omega)} \leq 2 \|f_1\|_{C^\alpha(\Omega)} \|f_2\|_{C^\alpha(\Omega)}. \]

Lemma 2. If $f \in H^{1/2}(\mathbb{R})$ and $g \in H^s(\mathbb{R})$, $s > 1$, then $f \cdot g \in H^{1/2}(\mathbb{R})$ and
\[\|fg\|_{H^{1/2}(\mathbb{R})} \leq C \|f\|_{H^s(\mathbb{R})} \|g\|_{H^{1/2}(\mathbb{R})}. \]

Next, in lemmas 3 and 4, we recall some of the basic properties of the Radon transform and the beam transform. These properties follow from their definitions or from results like the projection slice theorem (see e.g. [24]).

Lemma 3. We have that
a) If $f(x) = 0$ for $|x| > 1$ then $Rf(s, \theta) = 0$, $\forall |x| > 1$, $\forall \theta \in S^1$. This is also true for the weighted Radon transform $I_w f (s, \theta)$.
b) If $f \in C^0(K \setminus \{0\}) \cap L^1(\mathbb{R})$, then $|Rf(s, \theta)| \leq C \|f\|_{L^1}, \forall s \in \mathbb{R}, \forall \theta \in S^1$.
c) If $f \in H^s(K \setminus \{0\})$, $s \geq 0$, then $\forall \theta \in S^1$ the function $s \mapsto Rf(s, \theta) \in H^s(\mathbb{R})$ and
\[\|Rf(\cdot, \theta)\|_{H^s(\mathbb{R})} \leq C \|f\|_{L^1(\mathbb{R})} \forall \theta \in S^1. \]

The constants C above only depend on K.

Lemma 4. Let $a \in C^0(K \setminus \{0\})$ then (recall $\tilde{K} = \{x \in \mathbb{R}^2 : |x| \leq 2\}$).

a) $\theta \cdot \partial_a Ba(x, \theta) = -a(x)$, $\forall x \in \mathbb{R}^2$, $\forall \theta \in S^1$.
b) $Ba(x, \theta) = 0$ if $x \cdot \theta > 2$.
c) $Ba(x, \theta) = Ra(x \cdot \theta^2, \theta)$ if $x \cdot \theta < -2$.
d) $|Ba(x, \theta)| \leq C \|a\|_{L^\infty}, \forall x \in \mathbb{R}^2, \forall \theta \in S^1$.
e) If $a \in C^0(\tilde{K})$ then $Ba(x, \theta) \in C^0(\mathbb{R}^2 \times S^1)$ and $\|Ba(x, \theta)\|_{C^0(\mathbb{R}^2 \times S^1)} \leq C \|a\|_{L^\infty}$.

The constants above only depend on the compact \tilde{K}.

We include also the following property for the beam transform.

Lemma 5. Let $a \in C^0(\tilde{K}) \cap H^1(\tilde{K})$, then
\[|Ba(x, \theta)| \leq C \|a\|_{H^1(\mathbb{R}^2)}, \forall x \in \mathbb{R}^2, \forall \theta \in S^1. \]
Proof. We have
\[|Ba(x, \theta)| \leq |R| \alpha(\cdot, \theta)|_{10} \leq C |R| \alpha(\cdot, \theta)|_{10}^{(R)} \leq C |\alpha||_{10}^{(R)} \leq C |\alpha||_{10}^{(R)}. \]
We used theorem 3, lemma 3 and the inequality \[|f||_{10}^{(R)} \leq |f||_{10}^{(R)} \] (e.g. [16]).

To conclude, we present some technical lemmas on Hölder regularity for functionals that will appear as or in weight functions.

Lemma 6. Let \(a \in C^{1}(\tilde{K}) \) and let \(k(x, \theta) = e^{-Ba_{1}(x, \theta^{1})}, (x, \theta) \in \mathbb{R}^{2} \times S^{1} \). Then \(k \in C^{1}(\mathbb{R}^{2} \times S^{1}) \) and
\[\|k\|_{C^{1}(\mathbb{R}^{2} \times S^{1})} \leq C_{k} \|a\|_{\alpha}(1 + \|a\|_{C^{1}(\mathbb{R})}), \]
where \(C_{k} \) is a constant depending only on the compact set \(\tilde{K} \).

Proof. Fix \(\theta \in S^{1} \). Since \(|k(x, \theta)| \leq e^{\|Ba_{1}(x, \theta^{1})\|_{10}} \) and
\[|k(x, \theta) - k(y, \theta)| = |e^{-Ba_{1}(x, \theta^{1})} - e^{-Ba_{1}(y, \theta^{1})}| \leq e^{\|Ba_{1}(x, \theta^{1})\|_{10}} \left| Ba_{1}(x, \theta^{1}) - Ba_{1}(y, \theta^{1}) \right|, \]
we conclude from lemma 4 that
\[\|k(\cdot, \theta)\|_{C^{1}(\mathbb{R})} \leq e^{\|Ba_{1}(\cdot, \theta^{1})\|_{10}} \left(1 + \|Ba_{1}(\cdot, \theta^{1})\|_{C^{1}(\mathbb{R})} \right) \leq C_{k} \|a\|_{\alpha}(1 + \|a\|_{C^{1}(\mathbb{R})}), \]
where the constant \(C_{k} \) is independent of \(\theta \) and only depends on \(\tilde{K} \).

We also have the following weight appearing in the inversion of the AtRT.

Lemma 7. Let \(f \in H^{2}(\tilde{K}), let h(s, \theta) = \frac{1}{2}(1 + iH)R^{2}f(s, \theta) and let \(\varphi \in C^{\infty}([-2, 2]). \)
Then \(\forall \theta \in S^{1} \) we have \(s \mapsto \varphi(s)e^{h(s, \theta)} \in H^{2}(\mathbb{R}) \) and
\[\left\| \varphi(\cdot) e^{h(\cdot, \theta)} \right\|_{H^{2}(\mathbb{R})} \leq C_{h} \left(1 + \|f\|_{H^{2}(\mathbb{R})} \right)^{2} \forall \theta \in S^{1}, \]
where \(C_{h} \) depends only on \(\tilde{K} \) and the function \(\varphi \).

Proof. From lemma 3, \[|Rf(\cdot, \theta)||_{H^{2}(\mathbb{R})} \leq C \|f\|_{H^{2}(\mathbb{R})}, \forall \theta \in S^{1} \] and since the Hilbert transform is a unitary operator on \(H^{1}(\mathbb{R}), \exists > 0, \)
\[\|h(\cdot, \theta)||_{H^{2}(\mathbb{R})} \leq C \|f||_{H^{2}(\mathbb{R})}, \forall \theta \in S^{1}. \]
We also have from lemma 3,
\[|e^{h(\cdot, \theta)}||_{e^{Rf(\cdot, \theta)/2}} \leq e^{C||f||_{H^{2}(\mathbb{R})}} \forall s \in \mathbb{R}, \forall \theta \in S^{1}. \]
With the estimates above, and using the Sobolev inequality \[||g||_{10} \leq C ||g||_{H^{2}(\mathbb{R})}, \] it is a direct calculation to show that the \(L^{2} \) norm of \(\varphi(\cdot) e^{h(\cdot, \theta)} \) and its second derivative are controlled as prescribed.

□
The focused transform will play an important role in our model and in the inverse problem. The functional framework in which we will work is the following.

Lemma 8. Let \(a, f \in C^d(\hat{K}) \), then \(M[a, f] \in C^d(\mathbb{R}^2) \) and
\[
\|M[a, f]\|_{C^d} \leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{L^\infty}) \|f\|_{C^d},
\]
where \(C \) is a constant depending only on the compact set \(\hat{K} \).

Proof. Let us recall that
\[
M[a, f](x) = \int_{S^1} \int_0^\infty f(x + t\theta) e^{-\int_0^t a(s + t\theta)ds} dt d\theta.
\]
Let \(k_t(x, \theta) = e^{-\int_0^t a(s + t\theta)ds} \cdot f_\theta(x) = f(x + t\theta) \) and \(1_k(x) = 1 \) if \(x \in \hat{K} \) and 0 otherwise. Then \(\|f_\theta\|_{C^d(\mathbb{R}^2)} = \|f\|_{C^d(\mathbb{R})}, \forall t \geq 0, A \theta \in S^1 \), and as in lemma 6,
\[
\|k_t\|_{C^d(\mathbb{R}^2 \times S^1)} \leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{C^d(\mathbb{R})}), \forall t \geq 0.
\]
Hence
\[
\|M[a, f]\|_{L^\infty} \leq \sup_x \int_{S^1} \int_0^\infty |f_\theta(\cdot)k_t(\cdot, \theta)|_{L^\infty} 1_k(x + t\theta) dt d\theta
\leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{C^d(\mathbb{R})}) \|f\|_{C^d(\mathbb{R})} \sup_x \int_{S^1} \int_0^\infty 1_k(x + t\theta) dt d\theta
\leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{C^d(\mathbb{R})}) \|f\|_{C^d(\mathbb{R})}.
\]
Similarly,
\[
|M[a, f](x) - M[a, f](y)| \leq \int_{S^1} \int_0^\infty |f_\theta(x)k_t(x, \theta) - f_\theta(y)k_t(y, \theta)|
\cdot (1_k(x + t\theta) + 1_k(y + t\theta)) dt d\theta
\leq \int_{S^1} \int_0^\infty 2 \|f\|_{C^d(\mathbb{R})} \|k_t\|_{C^d(\mathbb{R}^2 \times S^1)} \|x - y\|^a
\cdot (1_k(x + t\theta) + 1_k(y + t\theta)) dt d\theta
\leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{C^d}) \|f\|_{C^d} \|x - y\|^a,
\]
where the constant \(C \) only depends on the compact set \(\hat{K} \). \(\square \)

Lemma 9. Let \(a, f \in C^d(\hat{K}) \) and let \(M = M[a, f] \in C^d(\mathbb{R}^2) \). Then \(w[a, f] \) and \(w[a, a \cdot M] \in C^d(\mathbb{R} \times S^1) \) and they satisfy
\[
\|w[a, f]\|_{C^d(\mathbb{R}^2 \times S^1)} \leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{C^d}) \|f\|_{C^d},
\]
\[
\|w[a, a \cdot M]\|_{C^d(\mathbb{R}^2 \times S^1)} \leq C e^{C\|a\|_{L^\infty}}(1 + \|a\|_{C^d})^2 \|a\|_{C^d} \|f\|_{C^d},
\]
where \(C \) is a constant depending only on the compact set \(\hat{K} \).
Proof. We recall that
\[w[a, f](x, \theta) = -\int_{-\infty}^{0} e^{-\int_{0}^{\infty} a(x+t\theta+t\theta)dt} f(x + t\theta)dt, \quad x \in \mathbb{R}^2, \quad \theta \in S^1. \]

Following the same steps as in the proof of lemma 8 we can easily obtain that
\[||w[a, f]||_{C^\infty(\mathbb{R}^2 \times S^1)} \leq Ce^{|a|\infty}(1 + ||a||_{C^\infty}) ||f||_{C^\infty}. \]

This also implies
\[||w[a, a \cdot M]||_{C^\infty(\mathbb{R}^2 \times S^1)} \leq Ce^{|a|\infty}(1 + ||a||_{C^\infty}) ||a \cdot M||_{C^\infty}, \]

which together with lemmas 1 and 8 concludes the proof. \[\square\]

2.4. Radiative transfer equation model and main simplifying hypotheses

Let \(\sigma(x, \theta, \theta') \) be a scattering kernel that gives us the distribution according to which photons at the spatial point \(x \in \mathbb{R}^2 \), coming from direction \(\theta \in S^1 \), are scattered in the direction \(\theta' \in S^1 \). The equation that we use to model the propagation of photons with attenuation \(a \), source \(f \) and scattering \(\sigma \) is, for all \(x \in \mathbb{R}^2 \) and \(\theta \in S^1 \)
\[\theta \cdot \nabla_x u(x, \theta) + a(x)u(x, \theta) + \int_{S^1} u(x, \theta')\sigma(x, \theta, \theta')d\theta' = f(x) + \int_{S^1} u(x, \theta')\sigma(x, \theta', \theta) d\theta' \]

\[\lim_{t \to +\infty} u(x - t\theta, \theta) = 0. \quad (1) \]

The first integral term corresponds to the effect of photons that are scattered away from the path defined by \((x, \theta) \). The second integral term is the opposite, and represents the gamma rays traveling in the spatial point \(x \in \mathbb{R}^2 \) coming from any direction that by a scattering process take the path defined by \((x, \theta) \). By introducing the total attenuation:

\[a_T(x, \theta) = a(x) + \int_{S^1} \sigma(x, \theta, \theta')d\theta' \quad (2) \]

then equation (1) can be rewritten as
\[\theta \cdot \nabla_x u(x, \theta) + a_T(x, \theta)u(x, \theta) = f(x) + \int_{S^1} u(x, \theta')\sigma(x, \theta', \theta) d\theta', \quad x \in \mathbb{R}^2, \quad \theta \in S^1. \quad (3) \]

Let us introduce \(u_i(x, \theta) \) as the intensity of photons that have been scattered \(i \) times, thus we can decompose the total intensity \(u \) as
\[u(x, \theta) = \sum_{i=0}^{\infty} u_i(x, \theta), \]

(for further reference of this decomposition see e.g. [3]), hence equation (3) becomes the system
\(\theta \cdot V_x u_0(x, \theta) + a_T(x, \theta) u_0(x, \theta) = f(x), \forall x \in \mathbb{R}^2, \theta \in S^1 \)
\(\theta \cdot V_x u_i(x, \theta) + a_T(x, \theta) u_i(x, \theta) = \int_{S^1} \sigma(x, \theta, \phi) u_{i-1}(x, \theta') d\theta', \quad \forall i \geq 1, x \in \mathbb{R}^2, \theta \in S^1 \)
\(\lim_{t \to +\infty} u_i(x - t\theta, \theta) = 0, \quad \forall i \geq 0, x \in \mathbb{R}^2, \theta \in S^1. \) (4)

We first assume isotropy of the scattering kernel \(\sigma(x, \theta, \phi) = \sigma(x, \theta \cdot \phi) \); i.e., the scattering process only depends on the angle at which photons are scattered, in which case the total attenuation \(a_T(x, \theta) \) becomes independent of the angle \(\theta \). Moreover, we assume we can separate variables for the scattering kernel
\[
\sigma(x, \theta, \phi) = \sigma(x) k(\theta \cdot \phi).
\]

Secondly, we assume that the function \(\sigma(x) \) is proportional to the attenuation map (i.e. \(\exists C \) such that \(C \sigma(x) = a(x) \)) and for the angular variable we assume the scattering kernel is independent of the scattering angle (i.e. \(k(\theta \cdot \phi) = 1/2\pi \quad \forall \theta \cdot \phi \in [0, 1] \)). With these assumptions we have for the total attenuation that
\[
a_T(x) = a(x) + \int_{S^1} \sigma(x) k(\theta \cdot \phi) d\theta' = \sigma(x)(C + 1).
\]

Thus redefining \(C = (2\pi(1 + C))^{-1} \) the system (4) becomes
\[
\theta \cdot V_x u_0(x, \theta) + a_T(x) u_0(x, \theta) = f(x), \quad \forall x \in \mathbb{R}^2, \theta \in S^1
\]
\[
\theta \cdot V_x u_i(x, \theta) + a_T(x) u_i(x, \theta) = C a_T(x) \int_{S^1} u_{i-1}(x, \theta') d\theta', \quad \forall i \geq 1, x \in \mathbb{R}^2, \theta \in S^1
\]
\[
\lim_{t \to +\infty} u_i(x - t\theta, \theta) = 0, \quad \forall i \geq 0, x \in \mathbb{R}^2, \theta \in S^1. \) (6)

Proposition 1. If \(f \) and \(a \) are uniformly line-integrable (i.e. \(\exists D > 0: \int_{\mathbb{R}} |f(x + t\theta)| dt \leq D, \forall x \in \mathbb{R}^2, \theta \in S^1 \)) then the system (6) has as unique solution
\[
u_0(x, \theta) = \int_{-\infty}^0 f(x + t\theta) e^{-\int_t^0 a_T(x + s\theta) ds} dt,
\]
\[
u_i(x, \theta) = C \int_{-\infty}^0 a_T(x + t\theta) \int_{S^1} u_{i-1}(x + t\theta, \theta') d\theta' e^{-\int_t^0 a_T(x + s\theta) ds} dt, \quad \forall i \geq 1.
\]

Observe that if \(f, a \in C^0(\bar{K}) \), then they are uniformly line-integrable.

Proof. The solutions \(u_i(x, \theta), i \geq 0 \) are obtained by direct integration along the characteristics (straight lines) in equation (6). The line integrability condition ensures by induction that the resulting ordinary differential equations can be solved uniquely. \(\square \)
3. Inverse problem

3.1. Measurements and the inverse problem

We assume that the attenuation \(a_T(x)\) and the source \(f(x)\) are supported in the compact set \(K\), representing the patient. For simplicity from now on we omit the subscript in \(a_T\), i.e. the total attenuation is named \(a\). For all the other quantities we keep the notation of the previous sections.

As measurements we assume that we are able to record \(u_0(x, \phi)\), the ballistic photons, and \(u_1(x, \phi)\), the first-order scattering photons, as they exit the patient; i.e. we assume the knowledge of \(u_0\) and \(u_1\) at all points outside the support of \(a\) and \(f\). In summary, the inverse problem that we will study is the reconstruction of the source and attenuation maps \(f(x)\) and \(a(x)\) from the measurement of the ballistic and first-order scattering photons exiting the domain \(K\).

Under the hypotheses leading to proposition 1, given a source map \(f(x)\) and an attenuation coefficient \(a(x)\), the intensity of ballistic photons \(u_0(x, \theta)\) and the intensity of first-order scattering photons \(u_1(x, \theta)\) at any point \((x, \theta) \in \mathbb{R}^2 \times S^1\) is given by

\[
u_0(x, \theta) = \int_{-\infty}^{0} f(x + t\theta) e^{-\int_{0}^{t} a(x + s\theta) ds} dt, \quad x \in \mathbb{R}^2, \theta \in S^1,
\]

\[
u_1(x, \theta) = C \int_{-\infty}^{0} a(x + t\theta) M[a, f](x + t\theta) e^{-\int_{0}^{t} a(x + s\theta) ds} dt, \quad x \in \mathbb{R}^2, \theta \in S^1,
\]

where \(M[a, f](x) = \int_{0}^{\infty} u_0(x, \theta') d\theta\). Therefore, the ballistic and first-order scattering photons exiting the domain \(K\) correspond to \(A_0, A_1\), respectively, where we define

\[
A_i(x, \theta) := \lim_{\tau \to +\infty} u_i(x + \tau\theta, \theta), \quad (x, \theta) \in \mathbb{R}^2 \times S^1, \quad i = 0, 1.
\]

The inverse problem can be rephrased as the reconstruction of \(f\) and \(a\) on \(K\) from knowledge of the Albedo operator

\[
A_i[f] = \{ \{ A_0(x, \theta), A_1(x, \theta) \} \}, \quad (x, \theta) \in \mathbb{R}^2 \times S^1.
\]

Let us write the operator \(A\) more explicitly. We have

\[
A_0(x, \theta) = \int_{-\infty}^{0} f(x + t\theta) e^{-\int_{0}^{t} a(x + s\theta) ds} dt, \quad (x, \theta) \in \mathbb{R}^2 \times S^1,
\]

\[
A_1(x, \theta) = C \int_{-\infty}^{0} a(x + t\theta) M[a, f](x + t\theta) e^{-\int_{0}^{t} a(x + s\theta) ds} dt, \quad (x, \theta) \in \mathbb{R}^2 \times S^1,
\]

\[
M[a, f](x) = \int_{S^1} \int_{-\infty}^{0} f(x + t\theta) e^{-\int_{0}^{t} a(x + s\theta) ds} dt d\theta, \quad (x, \theta) \in \mathbb{R}^2 \times S^1,
\]

and we observe that \(A_0\) and \(A_1\) are constant along the directed line defined by \((x, \theta)\); i.e. \(A_i(x, \theta) = A_i(x + \tau\theta, \theta), \forall \tau \in \mathbb{R}, i = 0, 1\). Abusing the notation we write \(\forall s \in \mathbb{R}, \theta \in S^1\).
Hence we can write the Albedo operator A as

$$A[a, f] = \left(R_a[f], CR_a[aM[a, f]] \right),$$

and the inverse problem we will study is the inversion of the operator

$$[a, f] \mapsto \left(R_a[f], CR_a[aM[a, f]] \right).$$

3.2. Formal differential of the Albedo operator and the linearized inverse problem

To study the invertibility of the Albedo operator A near a known source and attenuation pair (\tilde{a}, \tilde{f}), supported in K, we formally compute $D A[\tilde{a}, \tilde{f}](\delta a, \delta f)$ the differential of the Albedo operator at (\tilde{a}, \tilde{f}).

Since $A[a, f] = \left(R_a[f], CR_a[aM[a, f]] \right)$ the computation of $D A$ reduces to the differentiation of the AtRT, which is done in [34], and the differentiation of $M[a, f]$.

Proposition 2. The formal differential of the Albedo operator at (\tilde{f}, \tilde{a}) is

$$D A[\tilde{a}, \tilde{f}](\delta a, \delta f)$$

$$= \left(I_n[\tilde{a}, \tilde{f}] \delta a + R_\tilde{a} \delta f \right)$$

$$+ \left(I_n[\tilde{a}, \tilde{f}] \delta a + R_\tilde{a} \left(\delta a \cdot \tilde{M} \right) + R_\tilde{a} \left(\delta a \cdot \tilde{M} \delta a \right) + R_\tilde{a} \left(\delta a \cdot M[\tilde{a}, \delta f] \right) \right).$$

where

$$w[u, v](x, \theta) = -\int_{-\infty}^{0} e^{-2Bu(x+\tau \theta, \theta)} v(x + \tau \theta) d\tau, \quad x \in \mathbb{R}^2, \quad \theta \in S^1,$$

$$\tilde{M} = M[\tilde{a}, \tilde{f}]$$

and

$$\partial_\alpha \tilde{M} \delta a(x) = -\int_{S^1} \int_{0}^{\infty} \tilde{f}(x + \tau \theta) e^{-2B(x+\tau \theta, \theta)} \int_{0}^{\infty} \delta a(x + s \theta) ds d\tau d\theta.$$

Proof. In [34] it is shown that the formal differential of $(a, f) \mapsto R_a[f]$ is $I_n[\alpha, f] \delta a + R_\alpha \delta f$, which readily implies this result. The computation of $\partial_\alpha \tilde{M} \delta a(x)$ is straightforward.

To study of the operator $D A[\tilde{a}, \tilde{f}](\delta a, \delta f)$ we consider some preconditioning. Let us recall that the reference pair (\tilde{a}, \tilde{f}) and the perturbation $(\delta a, \delta f)$ are all supported in $K = \{ x \in \mathbb{R}^2 : |x| \leq 1 \}$, and also recall that $I_n f(s, \theta) = R_n f(s, \theta) = 0, \forall |s| > 1$ if f is
supported in \(K \). We will fix \(\varphi \in C^\infty([-2, 2]) \) such that \(\varphi(s) = 1 \) if \(|s| \leq 1 \) (and \(\varphi(s) = 0 \) if \(|s| \geq 2 \)), and let us define \(\chi \in C^\infty(\overline{K}) \) as \(\chi(x) = \varphi(|x|) \). The preconditioning of the operator \(DA[\tilde{a}, \tilde{f}]^{(\delta a, \delta f)} \) consists of the following three steps:

a) Multiplication component-wise by \(\varphi(\cdot) \).

b) Left composition component-wise with \(R_a^{-1} \).

c) Multiplication component-wise by \(\chi(\cdot) \).

As we will see later in proposition 9, these three steps continuously map \(H^{1/2}(\mathbb{R} \times S^2) \) into \(L^2(\mathbb{R}^2) \), depending only on \(\tilde{a} \). The resulting preconditioned \(DA[\tilde{a}, \tilde{f}]^{(\delta a, \delta f)} \) takes the following form as a linear operator \((L + Q) \), that we will consider acting on functions supported in \(\overline{K} \).

Definition 7. Component-wise we multiply \(DA[\tilde{a}, \tilde{f}]^{(\delta a, \delta f)} \) by \(\varphi \), we left-compose with \(R_a^{-1} \) and then multiply by \(\chi \) to obtain the operator \((L + Q) \) defined as

\[
L[\tilde{a}, \tilde{f}]^{(\delta a, \delta f)} = \left\{ \chi R_a^{-1}\varphi w[\tilde{a}, \tilde{f}]^{(\delta a)} + \delta f \delta a \cdot \tilde{M} \right\},
\]

\[
Q[\tilde{a}, \tilde{f}]^{(\delta a, \delta f)} = \left\{ \chi R_a^{-1}\varphi w[\tilde{a}, \tilde{f}]^{(\delta a)} + (\tilde{a} \cdot \partial_a \tilde{M} \delta a) + (\tilde{a} \cdot M[\tilde{a}, \tilde{f}]) \right\}.
\]

This operator, originally defined on functions \((\delta a, \delta f) \in L^2(K) \times L^2(K) \), will be extended to be acting on functions \((\delta a, \delta f) \in L^2(\overline{K}) \times L^2(\overline{K}) \).

The operator \((\delta a, \delta f) \mapsto (L + Q)(\delta a, \delta f) \) is a preconditioned differential of the Albedo operator \(A \), therefore it represents the linearization of the originally non-linear inverse problem when \((\delta a, \delta f) \) are supported in \(K \). In section 4 we prove the invertibility of the operator \((L + Q) \) in the adequate spaces, providing an explicit inverse and therefore solving the linearized inverse problem.

3.3. Fréchet differentiability of the modified Albedo operator

The term \(L_{w[\tilde{a}, \tilde{f}]}(\delta a) \) in the differential \(DA[\tilde{a}, \tilde{f}]^{(\delta a, \delta f)} \) from the previous subsection quickly exemplifies why the calculated differential is only formal and not a Fréchet differential: in order to have the required regularity \(L_{w[\tilde{a}, \tilde{f}]}(\delta a) \in H^{1/2}(\mathbb{R} \times S^2) \) we need \(w[\tilde{a}, \tilde{f}] \in C^\omega(\mathbb{R}^2 \times S^2) \), for \(\alpha > 1/2 \), which is not going to be the case for \(\tilde{a}, \tilde{f} \in L^2(\mathbb{R}^2) \). This obstacle can be overcome by considering a modified Albedo operator for the measurements, one arising from a model in which the attenuation and the source act in a more regularized way.

Let \(\epsilon > 0 \) and \(K_\epsilon = \{ x \in \mathbb{R}^2 : |x| \leq 1 - \epsilon \} \). Let \(F_e : L^2(K_\epsilon) \to H^2(K) \) be an injective continuous linear operator from \(L^2(K_\epsilon) \) into \(H^2(K) \) that satisfies \(F_e g \geq 0 \) in \(K \) if \(g \geq 0 \) in \(K_\epsilon \). For any \(g \in L^2(K_\epsilon) \) write \(g_\epsilon = F_e g \in H^2(K) \) and assume that the transport of photons for a source and attenuation map \(f, a \in L^2(K_\epsilon) \) is instead described by the following modified radiative transfer equation:

\[
\phi \cdot \nabla u(x, \phi) + a_e(x)u(x, \phi) = Ca_e(x) \int_{S^2} u(x, \phi')d\phi' + f_e(x), \quad x \in \mathbb{R}^2, \ \phi \in S^2.
\]

(10)

In this case, the measurements are represented by the following modified Albedo operator.
Definition 8. We define the modified Albedo operator A_e as

$$A_e[a, f] := A\left[a, f_e \right] = \left(R_{a_e}[f_e], CR_{a_e}[a, M[a, f_e]] \right). \quad (11)$$

On one hand, this modified Albedo operator adds even more assumptions in the model of the measurements. On the other hand, it has a better behaved functional structure, which can translate into a more robust implementation in applications. The functional structure of A_e is the following.

Proposition 3. The operator $A_e[a, f]$ is a well-defined operator in the spaces

$$A_e : L^2(K_e) \times L^2(K_e) \to H^{1/2}(R \times S^1) \times H^{1/2}(R \times S^1)$$

and is Fréchet-differentiable at every point $(a, f) \in L^2(K_e) \times L^2(K_e)$, with differential

$$DA_e[a, f](\delta a, \delta f) = DA\left[a, f_e \right](\delta a)_e, (\delta f)_e) \quad (12)$$

where $DA\cdot, \cdot$ is the formal differential from proposition 2.

Proof. Since $a, f \in L^2(K_e)$ then from Sobolev embedding $a, f_e \in H^2(K) \subseteq C^{\alpha}(K)$ for $\alpha > 1/2$. Using theorem 2 and the lemmas in section 2 it follows that $R_{a_e}[f_e]$ and $R_{a_e}[a, M[a, f_e]]$ are in $H^{1/2}(R \times S^1)$.

For the Fréchet differentiability it is enough to show that the remainder term in the first-order approximation is quadratic. For both components of the Albedo operator A_e we have to study the expansion of the following generic term

$$R[g + \delta g] = R[g] + R[\delta g] + I_{[b, a]}[\delta b] + W_1[g] + W_2[\delta g] \quad (13)$$

where $W_1 = I_{[b, a]}[\delta g]$ and $W_2 = I_{[a, b]}[\delta g]$ with weights

$$w_1[b, \delta b] = e^{bb} \left(e^{-bb} - 1 + \delta bb \right),$$

$$w_2[b, \delta b] = e^{-bb} \left(e^{-bb} - 1 \right).$$

For the first component of the Albedo operator we have to take $(b, \delta b, g, \delta g) = (a, a, f_e, (\delta f)_e)$. From theorem 2, the lemmas in section 2 and the definition of F_e, we have

$$\| W_1[f_e] \|_{H^{1/2}(R \times S^1)} \leq C \| w_1 \|_{C^{\alpha}(R \times S^1)} \| f_e \|_{L^2(K)}$$

$$\leq C e^{|\alpha|}_{e, a} \| 1 + \| a_e \|_{C^{\alpha}(K)} \| B(\delta a)_e \|_{C^{\alpha}(R \times S^1)} \times \| f_e \|_{L^2(K)}$$

$$\leq C e^{2|\alpha|}_{e, a} \| 1 + \| a_e \|_{H^2(K)} \| (\delta a)_e \|_{L^2(K)} \| f_e \|_{L^2(K)}$$

$$\leq C e^{2|\alpha|}_{e, a} \| 1 + \| a \|_{H^2(K)} \| (\delta a)_e \|_{L^2(K)} \| f \|_{L^2(K)}$$

$$\leq C \| \delta a \|_{L^2(K)}^2$$
where the constant C depends on K, $\|a\|_{L^2(K)}$ and $\|f\|_{L^2(K)}$. Similarly

$$
\| W_2[(\delta f)_c] \|_{H^{1/2}(\mathbb{R} \times S^1)} \leq C \| \delta a \|_{L^2(K)} \| \delta f \|_{L^2(K)}.
$$

In other words, for the first component of the Albedo operators, the remainder terms in the first-order approximation are quadratic and therefore it is Fréchet-differentiable.

For the second component of the Albedo operator let $M_c = M[a_c, f_c]$ and notice that

$$(a + \delta a)_c M[(a + \delta a)_c, (f + \delta f)_c] = h_c + (\delta h)_c,$$

where h_c and $(\delta h)_c$ are given by

$$
\begin{align*}
(h_c)_c &= a_c M_c + a_c \partial_a M[a_c, f_c](\delta a)_c + a_c M[a_c, (\delta f)_c] + (\delta a)_c M_c, \\
(\delta h)_c &= a_c \left(M[(a + \delta a)_c, f_c] - M_c - \partial_a M[a_c, f_c](\delta a)_c \right) \\
&+ a_c \left(M[(a + \delta a)_c, (\delta f)_c] - M[a_c, (\delta f)_c] \right) \\
&+ (\delta a)_c M[(a + \delta a)_c, (\delta f)_c] \\
&+ (\delta a)_c M[(a + \delta a)_c, (\delta f)_c]
\end{align*}
$$

and we expect each term in $(\delta h)_c$ to be quadratic.

In the generic equation (13) we have to take $(b, \delta b, g, \delta g) = (a_c, (\delta a)_c, h_c, (\delta h)_c)$ and now we have to control the remainder

$$
W = R_{a_c}[(\delta h)_c] + I_{w[a_c, h_c, a_c, M_c]}[(\delta a)_c] + W_1[h_c] + W_2[(\delta h)_c].
$$

But since

$$
\begin{align*}
\| h_c \|_{L^2(K)} &\leq C, \\
\| h_c - a_c M_c \|_{L^2(K)} &\leq C \left(\| \delta a \|_{L^2(K)} + \| \delta f \|_{L^2(K)} \right), \\
\| (\delta h)_c \|_{L^2(K)} &\leq C \left(\| \delta a \|_{L^2(K)}^2 + \| \delta a \|_{L^2(K)} \| \delta f \|_{L^2(K)} \right),
\end{align*}
$$

the same argument as before will show that the $H^{1/2}(\mathbb{R} \times S^1)$ norm of the remainder term W satisfies a quadratic estimate, and therefore the second component of the Albedo operator is also Fréchet-differentiable. \square

4. Main results and proofs

In this section we present the main results and proofs about the linearized inverse problem, establishing the appropriate framework for the problem and concluding with the invertibility of the operator $(L + Q)$ under some assumptions. The main idea is straightforward: to prove the invertibility of the linear operator $(L + Q)$ we will show that L is invertible and that Q is a relatively small perturbation. In section 4.1, we present the main results that build up towards the invertibility of $(L + Q)$ and in section 4.2 we present the proof of the main results and the intermediate technical steps.

4.1. Main theorems

We first describe the functional framework in which we study the operator $(L + Q)$.
Proposition 4. If $\tilde{a} \in H^2(\tilde{K})$ and $\tilde{f} \in C^\alpha(\tilde{K})$, $\alpha > 1/2$, then the operators L and Q from definition 7 are well defined in the following spaces

$$L[\tilde{a}, \tilde{f}], \quad Q[\tilde{a}, \tilde{f}] : L^2(\tilde{K}) \times L^2(\tilde{K}) \to L^2(\tilde{K}) \times L^2(\tilde{K}).$$

The second step is the invertibility of the operator L, which is the dominating component of the operator $(L + Q)$.

Proposition 5. Let $\tilde{a} \in H^2(\tilde{K}), \tilde{f} \in C^\alpha(\tilde{K}), \alpha > 1/2$. Let $M(x) = M[\tilde{a}, \tilde{f}](x)$ and assume that $|1/M|$ is bounded in \tilde{K}. Then the operator $L[\tilde{a}, \tilde{f}]$ is left-invertible, with left-inverse

$$L^{-1}[\tilde{a}, \tilde{f}]: L^2(\tilde{K}) \times L^2(\tilde{K}) \to L^2(\tilde{K}) \times L^2(\tilde{K}),$$

and

$$\left\| L^{-1}[\tilde{a}, \tilde{f}] \right\| \leq 2 + C \left(\tilde{K}, \left\| \tilde{a} \right\|_{H^2}, \left\| \tilde{f} \right\|_{C^\alpha} \right) \left\| 1/M \right\|_{L^\infty(\tilde{K})} \left(1 + \left\| \tilde{f} \right\|_{C^\alpha} \right).$$

where $C(\tilde{K}, ||\tilde{a}||_{H^2})$ is non-decreasing in the norm of \tilde{a}.

The condition $|1/M|$ bounded in \tilde{K} is guaranteed to be fulfilled in the following case.

Proposition 6. If $\tilde{a} \in L^\infty(\tilde{K}), \tilde{f} \in C^\alpha(\tilde{K}), \alpha > 0$ and $f \neq 0$, then $1/M \in L^\infty(\tilde{K})$ and

$$\tilde{M}(x) \geq Ce^{-C||\tilde{a}||_{L^\infty(\tilde{K})}} \left(\frac{||\tilde{f}||_{L^\infty(\tilde{K})}}{||\tilde{f}||_{C^\alpha}} \right)^{2\alpha}, \quad \forall x \in \tilde{K},$$

where C is a constant that only depends on $\text{diam}(\tilde{K})$.

The next step is to show that the operator Q, i.e. the remainder part of the operator $(L + Q)$, is relatively small for \tilde{a} small. Observe that this is immediate in the critical case $\tilde{a} = 0$ since then $Q \equiv 0$.

Proposition 7. Let $\tilde{a} \in H^2(\tilde{K}), \tilde{f} \in C^\alpha(\tilde{K})$ with $\alpha > 1/2$ and $||\tilde{a}||_{H^1(\tilde{K})} < D$, then

$$\left\| Q[\tilde{a}, \tilde{f}] \right\|_{L^2(\tilde{K}), L^2(\tilde{K})} \leq C \left(\tilde{K}, D \right) \left(1 + \left\| \tilde{f} \right\|_{C^\alpha(\tilde{K})} \right) \left\| \tilde{a} \right\|_{H^1(\tilde{K})}.$$

Hence, for \tilde{a} small, the operator $(L + Q)$ is a small perturbation of an invertible operator, therefore invertible.

Theorem 4. Let $\tilde{a} \in H^2(\tilde{K}), \tilde{f} \in C^\alpha(\tilde{K})$ with $\alpha > 1/2$, $\tilde{f} \geq 0$ and $\tilde{f} \neq 0$. Then L^{-1} and Q are well-defined linear operators in the Banach spaces

$$Q[\tilde{a}, \tilde{f}], \quad L^{-1}[\tilde{a}, \tilde{f}]: L^2(\tilde{K}) \times L^2(\tilde{K}) \to L^2(\tilde{K}) \times L^2(\tilde{K}).$$
and there exists $D > 0$ such that the operator $(L + Q)[\hat{a}, \tilde{f}]$ defined on $L^2(\hat{K}) \times L^2(\hat{K})$ is left-invertible for all $\hat{a} \in H^2(\hat{K})$ satisfying $\|\hat{a}\|_{L^2(\hat{K})} < D$. The left inverse is given by

$$(L + Q)^{-1}[\hat{a}, \tilde{f}] = \sum_{k = 0}^{\infty} \left(- (L^{-1}Q)[\hat{a}, \tilde{f}] \right)^k \circ L^{-1}[\hat{a}, \tilde{f}]$$

and

$$\| (L + Q)^{-1}[\hat{a}, \tilde{f}] \| \leq 2 \| L^{-1} \|.$$

The constant D depends only on the compact \hat{K} and the norms $\|f\|_{\infty}, \|f\|_{C^\alpha}$. \hfill \qed

For the non-linear inverse problem with the modified Albedo operator we can provide a local identification result for some specific perturbations. Using the notation of subsection 3.3, let $X \subset L^2(K_e)$ be a set of functions such that if $g \in X$ then $\|g\|_{L^2(K_e)} \geq C \|g\|_{L^2(\hat{K}_e)}$ for a constant $C > 0$ independent of $g \in X$. The set X can be considered closed under scalarization.

Theorem 5. Let $a, a_1, f, f_1 \in L^2(K_e)$ with $f \geq 0$ and $f \neq 0$. Assume that $\delta a = a_1 - a \in X$ and $\delta f = f_1 - f \in X$. Then there exist constants $D, \kappa > 0$ depending only on the compact set K_e the operator F_e, the set X and the norms $\|f_e\|_{\infty}, \|f_e\|_{C^\alpha}$ such that if $\|\delta a\|_{L^2(K_e)} \leq D$, $\|\delta f\|_{L^2(K_e)} \leq \kappa$, $\|\delta f\|_{L^2(K_e)} \leq \kappa$ and (a, f) produce the same modified measurements as (a_1, f_1), i.e. if $A_e[a, f] = A_e[a_1, f_1]$, then $a = a_1$ and $f = f_1$. \hfill \qed

Remark 2. The requirements on the operator F_e and the space X arise from technical considerations and it is not easy to characterize all the pairs (F_e, X) satisfying the right conditions. Nonetheless, we can provide a simple example that satisfies all the conditions and that is of interest in applications.

For the operator F_e, let $\epsilon > 0$ be sufficiently small and let $h_\epsilon \in C^\infty(\mathbb{R}^2)$ satisfy $h_\epsilon \geq 0$, $h_\epsilon \neq 0$ and $h_\epsilon(x) = 0$ if $|x| > \epsilon$. Define $F_e(g) = h_\epsilon * g$, the convolution between h_ϵ and g, for $g \in L^2(K_e)$.

For the set $X \subset L^2(K_e)$, we say that a partition P of K_e is in the family \mathbf{P} if each $P \in \mathbf{P}$ is measurable and contains a ball of radius 2ϵ. For a set A let $\chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ otherwise. Define

$$X = \left\{ g \in L^2(K_e); g(x) = \sum_{P \in \mathbf{P}} c_P \chi_P(x), c_P \in \mathbb{R}, P \in \mathbf{P} \right\}.$$

This pair (F_e, X) satisfy all the conditions required in the definition of the modified Albedo operator (definition 8) and in theorem 5 above.

4.2. Proofs

This section is devoted to proving the previous results and is organized as follows. We start by proving proposition 6, which is a direct computation. The next two steps consist of obtaining estimates for the operators I_w and $\gamma R_{a_1}^{-1} \varphi I_w$. We conclude with the analysis of the operators L and Q.

Proof of proposition 6. Since $\tilde{f} \in C^\alpha(\hat{K})$ and $f \geq 0, f \neq 0$, there exists $x \in \hat{K}$ such that $\tilde{f}(x) = \|\tilde{f}\|_{\infty} > 0$. Let...
\[A = \left\{ x \in \tilde{K}, \tilde{f}(x) \geq \frac{\|\tilde{f}\|_{\infty}}{2} \right\}. \]

We have
\[
|\hat{f}(\tau) - \hat{f}(y)| \leq \|\hat{f}\|_{C^\alpha} |\tau - y|^{\alpha} \quad \forall \ y \in A'
\]
\[
\Rightarrow \frac{\|\tilde{f}\|_{\infty}}{2} \leq \|\tilde{f}\|_{C^\alpha} |\tau - y|^{\alpha} \quad \forall \ y \in A'
\]
\[
\Rightarrow \text{dist}(\tau, A') \geq \left(\frac{\|\tilde{f}\|_{\infty}}{2\|\tilde{f}\|_{C^\alpha}} \right)^{1/\alpha} = R.
\]

Hence \(B(\tau, R) \subset A \subset \tilde{K} \) and \(\tilde{f}(x) \geq \frac{\|\tilde{f}\|_{\infty}}{2}, \forall \ x \in B(\tau, R) \). For \(x \in \tilde{K} \)
\[
M[\tilde{a}, \tilde{f}](x) = \int_{S^1} \int_{0}^{\infty} f(x + i\theta) e^{-\int_{0}^{a(x + i\theta)} ds} \, dtd\theta
\]
\[
\geq e^{-\text{diam}^2(\tilde{K})} \|\tilde{f}\|_{\infty} \int_{S^1} \int_{0}^{\infty} f(x + i\theta) \, dtd\theta
\]
\[
\geq e^{-\text{diam}^2(\tilde{K})} \|\tilde{f}\|_{\infty} \left(\frac{\|\tilde{f}\|_{\infty}}{\|\tilde{f}\|_{C^\alpha}} \right) \int_0^{\pi R^2} \frac{\pi R^2}{\text{diam}(\tilde{K})}. \]

This concludes that
\[
M[\tilde{a}, \tilde{f}](x) \geq \frac{\pi}{2^{1+2/\alpha}\text{diam}(\tilde{K})} e^{-\text{diam}^2(\tilde{K})} \|\tilde{f}\|_{\infty} \left(\frac{\|\tilde{f}\|_{\infty}}{\|\tilde{f}\|_{C^\alpha}} \right)^{2/\alpha} \quad \forall \ x \in \tilde{K}.
\]

We proceed with some intermediate results needed for the estimates of \(I_{w,[\tilde{a},\tilde{f}]} \) and \(I_{w,[\tilde{a},\tilde{f},\delta\tilde{a}]} \).

Proposition 8. Let \(\tilde{a}, \tilde{f} \in C^\alpha(\tilde{K}) \) with \(\alpha > 1/2 \), then
\[
I_{w,[\tilde{a},\tilde{f}]} \in L^2(\tilde{K}) : L^2(\tilde{K}) \to H^{1/2}(\mathbb{R} \times S^1),
\]
and for \(\delta\tilde{a} \in L^2(\tilde{K}) \),
\[
\left\| I_{w,[\tilde{a},\tilde{f}]]}[\delta\tilde{a}] \right\|_{H^{1/2}(\mathbb{R} \times S^1)} \leq C e^C \|\delta\tilde{a}\|_{C^\alpha} \left(1 + \left\| \tilde{a} \right\|_{C^\alpha} \right) \left\| \tilde{f} \right\|_{C^\alpha} \|\delta\tilde{a}\|_{L^2},
\]
\[
\left\| I_{w,[\tilde{a},\delta\tilde{a}]}[\tilde{f}] \right\|_{H^{1/2}(\mathbb{R} \times S^1)} \leq C e^C \|\delta\tilde{a}\|_{C^\alpha} \left(1 + \left\| \tilde{a} \right\|_{C^\alpha} \right)^2 \left\| \tilde{f} \right\|_{C^\alpha} \|\delta\tilde{a}\|_{L^2}.
\]

Proof. It follows directly from theorem 2 and lemma 9.
Proposition 9. Let \(\hat{a} \in H^2(\hat{K}) \) and \(J \in H^{1/2}(\mathbb{R} \times S^1) \), then
\[
\left\| \mathcal{R}_{\hat{a}}^{-1}[\varphi J] \right\|_{L^2(\mathbb{R}^2)} \leq C e^{C\|a\|_1} \left(1 + \|\hat{a}\|_{H^2(\mathbb{R}^2)} \right)^\frac{5}{2} \|J\|_{H^{1/2}(\mathbb{R} \times S^1)}.
\]

Proof. Define \(\check{J}(s, \theta) = \varphi(s)J(-s, \theta^2) \). Let \(g \in C^\infty(\mathbb{R}^2) \) with compact support and define \(\check{g} = zg \). Using the expression for \(R_{\hat{a}}^{-1} \) in definition 4 we write
\[
\begin{align*}
\left\langle \mathcal{R}_{\hat{a}}^{-1}[\varphi J], g \right\rangle_{L^2(\mathbb{R}^2)} &= \frac{1}{4\pi} \text{Re} \left\langle \operatorname{div} \int_{S^1} \theta e^{i(\theta)\hat{a}}(\varepsilon; \theta^2) \left(e^{-\varepsilon J} \right) (x \cdot \theta, \theta) d\theta, \check{g}(x) \right\rangle_{L^2(\mathbb{R}^2)}, \\
&= \frac{1}{4\pi} \text{Re} \left\langle \int_{S^1} \theta e^{i(\theta)\hat{a}}(\varepsilon; \theta^2) \left(e^{-\varepsilon J} \right) (x \cdot \theta, \theta), \right. \partial \check{g}(x) \left. \right\rangle_{L^2(\mathbb{R}^2)}.
\end{align*}
\]

Since \(\chi(x) = 0 \) for \(|x| \geq 2 \) (hence \(\check{g}(x) = 0 \) for \(|x| \geq 2 \)) and \(\varphi(x \cdot \theta) = 1, \forall \theta \in S^1 \) if \(|x| \leq 2 \), then
\[
\begin{align*}
\left\langle \mathcal{R}_{\hat{a}}^{-1}[\check{J}], g \right\rangle_{L^2(\mathbb{R}^2)} &= \frac{1}{4\pi} \text{Re} \left\langle \int_{S^1} \varphi(x \cdot \theta/2) e^{i(\theta^2)\hat{a}}(\varepsilon; \theta^2) \left(e^{-\varepsilon J} \right) (x \cdot \theta, \theta) d\theta, \check{g}(x) \right\rangle_{L^2(\mathbb{R}^2)}.
\end{align*}
\]

Defining \(F(s, \theta) = \varphi(s/2)e^{-\varepsilon J}(s, \theta) \) we get
\[
\begin{align*}
\left\langle \mathcal{R}_{\hat{a}}^{-1}[\check{J}], g \right\rangle_{L^2(\mathbb{R}^2)} &= \frac{1}{4\pi} \text{Re} \left\langle \int_{S^1} \theta e^{i(\theta)\hat{a}} F(x \cdot \theta, \theta) d\theta, \check{g}(x) \right\rangle_{L^2(\mathbb{R}^2)}, \\
&= \frac{1}{4\pi} \text{Re} \left\langle \int_{S^1} \theta e^{i(\theta)\hat{a}}(\varepsilon; \theta^2) \left(e^{-\varepsilon J} \right) (x \cdot \theta, \theta), \right. \partial \check{g}(x) \left. \right\rangle_{L^2(\mathbb{R}^2)}.
\end{align*}
\]

concluding that
\[
\left\| \mathcal{R}_{\hat{a}}^{-1}[\check{J}], g \right\|_{L^2(\mathbb{R}^2)} \leq C \left\| \partial \int_{x \theta = x} \check{g}(x) e^{i(\theta)\hat{a}}(\varepsilon; \theta^2) d\theta(x) \right\|_{L^2(\mathbb{R} \times S^1)}.
\]

Let us bound the terms in (16) and (17). For (16), let \(k(x, \theta^2) = e^{i(\theta)\hat{a}}(\varepsilon; \theta^2) \), hence
\[
A_1 = \left\| \partial \int_{x \theta = x} \check{g}(x) e^{i(\theta)\hat{a}}(\varepsilon; \theta^2) d\theta(x) \right\|_{L^2(\mathbb{R} \times S^1)}.
\]

Inverse Problems 31 (2015) 095002 M Courdurier et al
Using theorem 2 and lemma 6 this implies
\[A_1 \leq C e^C \|a\|_{L^\infty} \left(1 + \|\hat{a}\|_{H^2(R^d)} \right) \|\hat{g}\|_{L^2(R^d)} \|F\|_{H^{1/2}(R \times S^1)}. \]

To bound (17) we observe that from lemma 5,
\[|\theta \cdot \nabla \exp(i \theta \cdot \psi)| = |\exp(i \theta \cdot \psi) B[\theta \cdot \nabla a](x, \theta)| \leq C e^C \|a\|_{L^\infty} \|\nabla a\|_{H^0(R^d)} \]
\[\leq C e^C \|a\|_{L^\infty} \|\hat{a}\|_{H^2(R^d)}, \quad \forall \ x \in \mathbb{R}^2, \ \theta \in S^1, \]

hence
\[A_2 = \left\{ \int_{x \theta = s} g(x) \theta \cdot \nabla \exp(i \theta \cdot \psi) d\mu(x), (s, \theta) \right\}_{L^2(R \times S^1)} \leq C e^C \|a\|_{L^\infty} \|\hat{a}\|_{H^2(R^d)} \|\hat{g}\|_{L^2(R^d)} \|F\|_{H^{1/2}(R \times S^1)}. \]

In summary, we have obtained the following bound for all \(g \in C^\infty(R^2) \) with compact support,
\[\left\langle \chi_{R_{\alpha}^{-1}J} \hat{g}, \hat{g} \right\rangle_{L^2(R^d)} \leq C e^C \|a\|_{L^\infty} \left(1 + \|\hat{a}\|_{H^2} \right) \|F\|_{H^{1/2}(R \times S^1)} \|\hat{g}\|_{L^2}, \]
where \(F(s, \theta) = \varphi(s/2) e^{-h(s, \theta)} H^2 e^h(s, \theta) \varphi(s) J(-s, \theta^\perp). \) We complete the proof with the following estimate that uses lemmas 1 and 7,
\[\|F(s, \theta)\|_{H^{1/2}(R \times S^1)}^2 = \int_{S^1} \left\| \varphi(\cdot / 2) e^{-h(\cdot, \theta)} H^2 e^h(\cdot, \theta) \varphi(\cdot) J(-\cdot, \theta^\perp) \right\|_{H^{1/2}(R)}^2 d\theta \]
\[\leq \int_{S^1} \left\| \varphi(\cdot / 2) e^{-h(\cdot, \theta)} \right\|_{H^2(R)}^2 \left\| H^2 e^h(\cdot, \theta) \varphi(\cdot) J(-\cdot, \theta^\perp) \right\|_{H^{1/2}(R)}^2 d\theta \]
\[\leq C e^C \|a\|_{L^\infty} \left(1 + \|\hat{a}\|_{H^2(R^d)} \right)^4 \int_{S^1} \left\| e^h(\cdot, \theta) \varphi(s) J(-\cdot, \theta^\perp) \right\|_{H^{1/2}(R)}^2 d\theta \]
\[\leq C e^C \|a\|_{L^\infty} \left(1 + \|\hat{a}\|_{H^2(R^d)} \right)^8 \int_{S^1} \left\| J(-\cdot, \theta^\perp) \right\|_{H^{1/2}(R)}^2 d\theta \]
\[= C e^C \|a\|_{L^\infty} \left(1 + \|\hat{a}\|_{H^2(R^d)} \right)^8 \|J\|_{H^{1/2}(R \times S^1)}^2. \]

\[\Box \]

Proposition 10. Let \(\hat{a} \in H^2(\hat{K}) \) with \(\|\hat{a}\|_{L^\infty(R^3)} < D \) and \(\hat{f} \in C^\alpha(\hat{K}) \) with \(\alpha > 1/2 \), then
\[\left\| \chi_{R_{\alpha}^{-1}J} \hat{f} u_{\hat{a}J} \right\|_{L^2(\hat{K}, L^2(\hat{K}))} \leq C \left(\hat{K}, D \right) \|\hat{f}\|_{C^\alpha(R^3)} \]
\[\left\| \chi_{R_{\alpha}^{-1}J} \hat{f} u_{\hat{a}, \hat{a}J} \right\|_{L^2(\hat{K}, L^2(\hat{K}))} \leq C \left(\hat{K}, D \right) \|\hat{a}\|_{H^2(R^3)} \|\hat{f}\|_{C^\alpha(R^3)} \]

with \(C(\hat{K}, D) \) a constant only depending on \(\hat{K} \) and \(D \) and which can be taken as non-decreasing in \(D \).
Proof. This is obtained directly from the estimates in propositions 8 and 9.

Proposition 11. Let $a, f \in H^2(\bar{K})$ with $\alpha > 1/2$ and $\|\tilde{a}\|_{H^2(\mathbb{R}^2)} < D$, then

$$Q[a, f] : L^2(\bar{K}) \times L^2(\bar{K}) \to L^2(\bar{K}) \times L^2(\bar{K}).$$

and

$$\left\|Q[a, f]\right\|_{L^2(\bar{K})} \leq C(\bar{K}, D) \left(1 + \|\tilde{f}\|_{C^2}\right) \|\tilde{a}\|_{H^2}.$$

Proof. Let $\delta a, \delta f \in L^2(\bar{K})$, we bound the three terms defining the second component of $Q[\tilde{a}, \tilde{f}] (\delta a, \delta f)$. The first term is bounded directly from proposition 10,

$$\left\|\mathcal{L}(\bar{K}) \mathcal{Q}[\tilde{a}, \tilde{f}] (\delta a)\right\|_{L^2(\mathbb{R}^2)} \leq C(\bar{K}, D) \|\tilde{a}\|_{H^2(\mathbb{R}^2)} \|\tilde{f}\|_{C^2(\mathbb{R}^2)} \|\delta a\|_{L^2(\mathbb{R}^2)}.$$

The second term $(\tilde{a} \cdot \partial_{\nu} M \delta a)$ satisfies

$$\left\|\tilde{a} \cdot \partial_{\nu} M \delta a(x)\right\|_{L^2(\mathbb{R}^2)} \leq e^{\|\tilde{a}\|_{C^2}} \|\tilde{a}\|_{1_{\mathbb{K}}(x)} \int_{\bar{K}} \int_{\mathbb{R}^2} |\tilde{f}(x + s\theta)\|_{C^1(\mathbb{R}^2)} \|\delta a(x + s\theta)\|_{L^2(\mathbb{R}^2)} d\theta.$$

Since $1_{\mathbb{K}}(x) 1_{\mathbb{K}}(x + s\theta) = 0$ for $|s| > \text{diam}(\bar{K})$, $x \in \mathbb{R}^2$, computing the L^2 norm in x gives

$$\left\|\tilde{a} \cdot \partial_{\nu} M \delta a\right\|_{L^2(\mathbb{R}^2)} \leq C(\bar{K}, D) \left\|\tilde{a}\right\|_{C^2(\mathbb{R}^2)} \|\tilde{f}\|_{C^1(\mathbb{R}^2)} \|\delta a\|_{L^2(\mathbb{R}^2)}.$$

We can bound the third term $(\tilde{a} \cdot \tilde{M}[\tilde{a}, \cdot])$ similarly since

$$\left\|\tilde{a} \cdot \tilde{M}[\tilde{a}, \delta f](x)\right\|_{L^2(\mathbb{R}^2)} \leq e^{\|\tilde{a}\|_{C^2}} \|\tilde{a}\|_{1_{\mathbb{K}}(x)} \int_{\bar{K}} \int_{\mathbb{R}^2} |\delta f(x + s\theta)\|_{C^1(\mathbb{R}^2)} \|\delta a(x + s\theta)\|_{L^2(\mathbb{R}^2)} d\theta,$$

hence

$$\left\|\tilde{a} \cdot \tilde{M}[\tilde{a}, \delta f]\right\|_{L^2(\mathbb{R}^2)} \leq C(\bar{K}, D) \left\|\tilde{a}\right\|_{C^2(\mathbb{R}^2)} \|\delta f\|_{L^2(\mathbb{R}^2)}.$$

These three estimates readily imply the result.

We have all the estimates needed to prove the main results stated in the previous subsection.
Proof of proposition 4. The fact that $Q[\tilde{a}, \tilde{f}]: L^2(\tilde{K}) \times L^2(\tilde{K}) \rightarrow L^2(\tilde{K}) \times L^2(\tilde{K})$ is established in proposition 11. The fact that $L[\tilde{a}, \tilde{f}]: L^2(\tilde{K}) \times L^2(\tilde{K}) \rightarrow L^2(\tilde{K}) \times L^2(\tilde{K})$ is a direct consequence of proposition 10 and the fact that $\tilde{M} = M [\tilde{a}, \tilde{f}] \in L^\infty(\tilde{K})$ is from lemma 8.

Proof of proposition 7. This is established in proposition 11.

Proof of proposition 5. Given $g, h \in L^2(\tilde{K})$, by the definition of L^{-1},

$$\left\| L^{-1}[\tilde{a}, \tilde{f}](g/h) \right\|_{L^2}^2 \leq \left\| h/\tilde{M} \right\|_{L^2}^2 + 2 \left\| g \right\|_{L^2}^2 + 2 \left\| \chi_{\tilde{K}}^{-1} \varphi [\tilde{a}, \tilde{f}][h/\tilde{M}] \right\|_{L^2}^2.$$

By proposition 10, for $D = \|\tilde{a}\|_H^2$,

$$\left\| \chi_{\tilde{K}}^{-1} \varphi [\tilde{a}, \tilde{f}][h/\tilde{M}] \right\|_{L^2} \leq C(\tilde{K}, D) \left\| \tilde{f} \right\|_C \left\| h/\tilde{M} \right\|_{L^2},$$

hence

$$\left\| L^{-1}[\tilde{a}, \tilde{f}](g/h) \right\|_{L^2}^2 \leq 2 \left\| g \right\|_{L^2}^2 + C(\tilde{K}, D) \left(1 + \left\| \tilde{f} \right\|_C \right)^2 \left\| 1/\tilde{M} \right\|_{L^\infty(\tilde{K})}^2 \left\| h \right\|_{L^2}^2,$$

proving the proposition.

Proof of theorem 4. From propositions 5, 6 and 7,

$$\left\| L^{-1}Q \right\| \leq \left\| L^{-1} \right\| \cdot \left\| Q \right\|$$

$$\leq \left(2 + C(\tilde{K}, D) \left(1 + \left\| \tilde{f} \right\|_C \right) \right) \left(\left\| \tilde{f} \right\|_C^{2/\alpha} \right) \left(\left\| \tilde{f} \right\|_C^{1+2/\alpha} \right)$$

$$\times \left(C(\tilde{K}, D) \left(1 + \left\| \tilde{f} \right\|_C \right) \left\| \tilde{a} \right\|_H^2 \right)$$

$$\leq D \left(C(\tilde{K}, D) \left(1 + \left\| \tilde{f} \right\|_C \right) \right)^2 \left(1 + \left\| \tilde{f} \right\|_C^{2/\alpha} \right) \left(\left\| \tilde{f} \right\|_C^{1+2/\alpha} \right)$$

$$\leq \frac{1}{2}$$

for D sufficiently small, since $C(\tilde{K}, D) \geq 0$ is non-decreasing in D. Hence $(I + L^{-1}Q)$ is invertible and its inverse can be written as a Neumann series. Therefore $(L + Q)$ is left-invertible and its left inverse can be written as
\[(L + Q)^{-1} = (I + L^{-1}Q)^{-1}L^{-1} = \sum_{k=0}^{\infty} (-L^{-1}Q)^k L^{-1}.\]

From the estimate for \[||L^{-1}Q||\] we also get \[||(L + Q)^{-1}|| \leq 2 ||L^{-1}||.\]

Proof of theorem 5. Assume that \((a, f), (a_1, f_1) \in L^2(K_x) \times L^2(K_x)\) satisfy the hypothesis of the theorem. In particular assume that \(A_x(a, f) = A_x(a_1, f_1)\). Writing \(\delta a = a_1 - a\) and \(\delta f = f_1 - f\), from proposition 3 we have

\[A_x(a + \delta a, f + \delta f) = A_x(a, f) + DA\left(a_1, f_1 \right)(\delta a)_x, (\delta f)_x) - R\]

where \(R\) satisfies

\[||R||_{H^2(R \times S^1)} \leq C \left(||\delta a||_{L^2(K_x)} + ||\delta f||_{L^2(K_x)}\right)^2.\]

Since the value of the Albedo operator at \((a, f)\) and \((a_1, f_1)\) agree, we have

\[DA\left(a_1, f_1 \right)(\delta a)_x, (\delta f)_x) = R.\]

In the relationship above we apply the preconditioning steps before definition 7: component-wise multiply by \(\varphi(s)\), compute the inverse of the attenuated Radon transform with attenuation \(a\), then multiply by \(\chi(x)\). We obtain

\[(L + Q)\left(a_1, f_1 \right)(\delta a)_x, (\delta f)_x) = \chi R^{-1}_a[\varphi R],\]

hence

\[(\delta a)_x, (\delta f)_x) = (L + Q)^{-1}\left(a_1, f_1 \right)(\chi R^{-1}_a[\varphi R]).\]

The hypotheses for theorem 4 and proposition 9 are satisfied, therefore

\[||((\delta a)_x, (\delta f)_x)||_{L^2(K_x)} \leq C \left(||\delta a||_{L^2(K_x)} + ||\delta f||_{L^2(K_x)}\right)^2.\]

Since \(\delta a, \delta f \in X\) and \(||\delta a||_{L^2(K_x)} \leq \kappa, ||\delta f||_{L^2(K_x)} \leq \kappa\) then

\[||\delta a||_{L^2(K_x)} + ||\delta f||_{L^2(K_x)} \leq C\kappa \left(||\delta a||_{L^2(K_x)} + ||\delta f||_{L^2(K_x)}\right).\]

For small enough \(\kappa\) this implies \(\delta a = 0\) and \(\delta f = 0.\)

5. Numerical experiments

We now present a MatLab implementation of the Newton–Raphson algorithm based on the linearized inverse problem.

The computational domain is the unit square \([-1, 1]^2\] discretized into an equispaced cartesian grid of size \(N \times N\) with \(N = 256\). The quantities of interest \((a, f)\) are supported inside the unit disc \(D = \{x^2 + y^2 < 1\}\). The computation of the forward measurement operator consists of computing the ballistic and single scattering parts (resp. \(A_0[a, f]\) and \(A_1[a, f]\) as defined in (7), call these measurements \(A\), outgoing traces of the solutions \(u_0, u_1\) of system (4). Such a method is referred to as the *iterated source* method (see e.g. [5]) for solving (3), in the exact same way that in system (4), the term \(u_{i-1}\) yields a source term for a transport
equation satisfied by \(u \). Computing such quantities is based on discretizing \(S^1 \) in \(N = 256 \) directions uniformly and, for each \(\theta \) in this discretization, integrating first-order ordinary differential equations along lines of fixed direction \(\theta \). The latter task is done by computing rotated versions of the map one desires to integrate (e.g. \(a \) or \(f \)) so that the direction of integration coincides with one of the cartesian axes of the image, and the integration along each row is done via cumulated sums, see [5] for details. In the present case, computing the values of a rotated image is achieved via bilinear interpolations.

Subsequently, the iterative inversion is done by implementing the modified Newton–Raphson scheme

\[
\begin{align*}
(a^0, f^0) &= (0, 1), \\
(a^{n+1}, f^{n+1}) &= (a^n, f^n) - L^{-1} \left(\sum_{k=0}^{\infty} (-1)^k \left[F_k(a^n, f^n) \right] \right) \mathcal{R}_{a_{\epsilon}}^{-1} \mathcal{A}_k(a^n, f^n) - \mathcal{A},
\end{align*}
\]

(18)

where the operators \(L, Q \) come from definition 7 and the modified Albedo operators \(\mathcal{A}_k \) come from definition 8.

Remark 3. This algorithm is a modified Newton–Raphson algorithm in the sense that we use the inverse of \(D\mathcal{A} [F_k(a^n, f^n)] \) instead of the inverse of \(D\mathcal{A}_k [F_k(a^n, f^n)] \) on the right-hand side of equation (18). The operator \(F_k \) is introduced in section 3 for theoretical purposes and it can be chosen to be an approximation of identity (mollifier). Numerically, doing so adds robustness to the scheme and does not affect the convergence of the algorithm to the correct target functions.
In all experiments below, eight iterations of the scheme (18) are enough to ensure convergence, and the Neumann series \(\sum_{k=0}^{\infty} (-QL^{-1})^k \) is approximated by its first four terms. The implementation of \(L^{-1} \) and \(Q \) is straightforward via rotations, cumulated sums and pointwise multiplications/division on the cartesian grid.

Axes on figures. In figures 2 through 6, functions of \((x, y)\) are represented on the unit square \([-1,1]^2\). For \(i = 0, 1\), the measurement data \(A_i[a,f] \) (e.g. on figure 2, bottom row) are represented by their values for \(A_i(s\theta^\perp, \theta) \) for \(\theta \in [0, 2\pi] \) on the horizontal axis and \(s \in [-1, 1] \) on the vertical axis.

In the sections below, we present two series of experiments. Section 5.1 aims to show that considering the data \(A_1(a,f) \) in addition to \(A_0(a,f) \) tremendously improves the conditioning of an inverse problem referred to as the identification problem. Secondly, while 5.1 treats the reconstruction of smooth pairs \((a,f)\), section 5.2 illustrates the performance of our algorithm in the case of discontinuous unknown coefficients from measurements with different levels of noise. With the gridsize values given in the examples, computations terminate within a few minutes on a standard laptop computer.

5.1. Non-unique pairs and trapping geometries

The problem of reconstructing the pair \((a,f)\) from only the measurements \(A_0(a,f) \) is known as the identification problem. Recent theoretical work on the linearized identification problem [34] and corresponding numerical experiments in [20] show that this problem is badly conditioned in at least two ways:

- **Lack of injectivity.** If \(a\) and \(f\) are both radial (and smooth enough), there exists a radial function \(f_0\) such that \(A_0(a,f) = A_0(0,f_0)\). This lack of injectivity prevents some experiments done in [20] from converging to the right unknowns.
- **Instability.** On the linearized problem (say, reconstruct \((\delta a, \delta f)\) from \(\delta A_0\) around a background \((\bar{a}, \bar{f})\)), microlocal stability is lost when a certain Hamiltonian flow related to the background \((\bar{a}, \bar{f})\) has trapped integral curves inside the domain of interest (referred to as a trapping geometry). In this case, experiments done in [20] show the presence of artifacts in reconstructions.

The numerical experiments of this section aim to show that accessing the additional measurement \(A_1(a,f) \) helps at successfully reconstructing both unknowns \((a,f)\) in both scenarios described above. Figure 2 displays a pair \((a,f)\) corresponding to each scenario, as well as the corresponding forward data.

Pointwise errors on reconstructions are shown in figure 3, where in both scenarios, the reconstruction is excellent. The cut plots in the second row of figure 3 illustrate the speed of convergence of the method as well as the cross-talk between the reconstructed quantities during the iterations.

5.2. Reconstruction of non-smooth coefficients and robustness to noise

We now consider the case of discontinuous unknown coefficients. We run three simulations using the same discontinuous unknowns (shown in figure 4), one using noiseless data and the other two polluted with instrumental noise at different levels.

Noise model. We add to our measurement a noise of two natures:
(i) The first kind, modeling instrumental noise, is characterized by an amplitude A so that each data pixel value p is replaced by a draw $A \cdot \text{Pois}(p)$.

(ii) After this is done, a background noise is added, characterized by a bias value $B = \frac{\text{#added background photons}}{\text{#photons measured}}$.

After deciding a value for a quantum q of energy representing one photon, for each additional photon, we add q to a pixel chosen at random with uniform probability among all data pixels.

The experiments with ‘low noise’ and ‘high noise’ below are carried out with the respective values $(A, B) = (0.2, 0.5)$ and $(A, B) = (0.4, 5)$. The forward data (A_0, A_0) are displayed in figure 5, and the errors after convergence in all three cases (noiseless, low noise, high noise) are displayed in figure 6. The relative mean square (RMS) errors after eight iterations are summarized in table 1.

Comments.
(i) Regarding the choice of initial guess, \(f \) should be chosen at first to be a non-vanishing function, so as to prevent the vanishing of the focused transform \(M[f, a] \) which appears in denominators of subsequent operations. As seen above, the choice \(f \equiv 1 \) leads to satisfactory convergence.
(ii) As may be seen in Figure 6, although strong additive noise impacts the reconstructions badly, one may notice on the cut plots that the oscillations on reconstructions average about each constant value, leading us to believe that a penalization term (e.g. total variation norm) favoring piecewise constant functions would re-establish good convergence. Additionally, noise in data may make the algorithm give negative values to both a and f, although both quantities are physically non-negative. This may be avoided by introducing at each iteration a projection step onto non-negative functions (i.e. of the form $a(x) = \max(a(x), 0)$), at the cost of losing the first property of averaging around the correct constant values. Finding an algorithm taking additive noise into account while respecting physics-based criteria appropriately will be the object of future work.

Acknowledgments

M C was partially funded by Conicyt-Chile grant Fondecyt #1141189. F M was partially funded by NSF grant no. 1265958. A O and F R were partially funded by Conicyt-Chile grants Fondecyt #1110290 and #1151512, and Conicyt ACT1106.

References

[1] Arbuzov È V, Bukhgejm A L and Kazantsev S G 1998 Two-dimensional tomography problems and the theory of A-analytic functions Siberian Adv. Math. 8 1–20
[2] Bal G 2004 On the attenuated Radon transform with full and partial measurements Inverse Problems 20 399
[3] Bal G 2009 Inverse transport theory and applications Inverse Problems 25 053001
[4] Bal G and Jollivet A 2011 Combined source and attenuation reconstructions in spect Tomography and Inverse Transport Theory, Contemp. Math. 559 13–28
[5] Bal G and Monard F 2010 An accurate solver for forward and inverse transport J. Comp. Phys. 229 4952–79
[6] Boman J 1993 An example of nonuniqueness for a generalized Radon transform J. Anal. Math. 61 395–401
[7] Boman J 2011 Local non-injectivity for weighted Radon transforms (Tomography and Inverse Transport Theory, Contemp. Math. vol 559) (Providence, RI: American Mathematical Society) pp 39–47
[8] Boman J and Strömberg J-O 2004 Novikov’s inversion formula for the attenuated Radon transform a new approach J. Geometric Analysis 14 185–98
[9] Bronnikov A V 1999 Numerical solution of the identification problem for the attenuated Radon transform Inverse Problems 15 1315
[10] Bronnikov A V 2000 Reconstruction of attenuation map using discrete consistency conditions IEEE Trans. Med. Imaging 19 451–62
[11] Bukhgejm A L 2011 Inverse gravimetry approach to attenuated tomography (Tomography and Inverse Transport Theory, Contemp. Math. vol 559) (Providence, RI: American Mathematical Society) pp 49–63
[12] Censor Y, Gustafson D E, Lent A and Tuy H 1979 A new approach to the emission computerized tomography problem: simultaneous calculation of attenuation and activity coefficients IEEE Trans. Nucl. Sci. 26 2775–9
[13] Dicken V 1999 A new approach towards simultaneous activity and attenuation reconstruction in emission tomography Inverse Problems 15 931
[14] Duoandikoetxea J 2000 Fourier Analysis Graduate Studies in Mathematics (Providence RI: American Mathematical Society)
[15] Fanti S, Farsad M and Mani L 2011 Atlas of SPECT-CT (Berlin: Springer)
[16] Gilberg D and Trudinger N S 2001 Elliptic Partial Differential Equations of Second Order vol 224 (Berlin: Springer)
[17] Gourion D and Noll D 2002 The inverse problem of emission tomography Inverse Problems 18 1435
[18] Hertle A 1988 The identification problem for the constantly attenuated Radon transform Mathematische Zeitschrift 197 13–19
[19] Kuchment P and Quinto E T 2003 Some problems of integral geometry arising in tomography The Universality of the Radon Transform (London: Oxford Univ. Press)
[20] Luo S, Qian J and Stefanov P 2014 Adjoint state method for the identification problem in spect: Recovery of both the source and the attenuated x-ray data SIAM J. Imaging Sciences 7 696–715
[21] Manglos S H and Young T M 1993 Determination of the attenuation map from SPECT projection data alone J. Nuclear Medicine 34 193–193
[22] Natterer F 1981 The identification problem in emission computed tomography Mathematical Aspects of Computerized Tomography (Oberwolfach, 1980), Lecture Notes in Med. Inform. vol 8 (Berlin: Springer) pp 45–56
[23] Natterer F 1983 Computerized tomography with unknown sources SIAM J. Appl. Math. 43 1201–12
[24] Natterer F 1986 The Mathematics of Computerized Tomography Society for Industrial and Applied Mathematics (PA, USA: Philadelphia)
[25] Novikov R April 2002 An inversion formula for the attenuated x-ray transformation Arkiv för Matematik 40 145–67
[26] Novikov R 2002 On the range characterization for the two-dimensional attenuated x-ray transformation Inverse Problems 18 677
[27] Puro A and Garin A 2013 Cormack-type inversion of attenuated Radon transform Inverse Problems 29 065004
[28] Quintana J C 2002 Neuropsiquiatría: PET y SPECT Revista Chilena De Radiología 8 63–69
[29] Ramlau R and Clackdoyle R 1998 Accurate attenuation correction in SPECT imaging using optimization of bilinear functions and assuming an unknown spatially-varying attenuation distribution Nuclear Science Symposium, 1998. Conference Record. 1998 IEEE, vol 3 1684–8 IEEE, 1998
[30] Rullgård H 2004 An explicit inversion formula for the exponential Radon transform using data from 180 Arkiv för Matematik 42 353–62
[31] Rullgård H 2004 Stability of the inverse problem for the attenuated radon transform with 1800 data Inverse Problems 20 781
[32] Salo M and Uhlmann G 2011 The attenuated ray transform on simple surfaces J. Diff. Geom. 88 161–87
[33] Solomon D C 1995 The identification problem for the exponential Radon transform Math. Methods Appl. Sci. 18 687–95
[34] Stefanov P 2014 The identification problem for the attenuated x-ray transform Amer. J. Math. 136 1215–47
[35] Welch A, Clack R, Natterer F and Gullberg G T 1997 Toward accurate attenuation correction in SPECT without transmission measurements IEEE Trans. Med. Imaging 16 532–41
[36] You J 2007 The attenuated Radon transform with complex coefficients Inverse Problems 23 1963
[37] Zaidi H and Hasegawa B 2003 Determination of the attenuation map in emission tomography J. Nucl. Med. 44 291–315
[38] Zohar K, Israel O and Krausz y 2003 Spect/ct in tumor imaging: technical aspects and clinical applications Semin. Nucl. Med. 33 205–18