Open-Label Crossover Study of Primaquine and Dihydroartemisinin-Piperaquine Pharmacokinetics in Healthy Adult Thai Subjects

Borimas Hanboonkunupakarn, a Elizabeth A. Ashley, b,c Podjanee Jittamala, a Joel Tarning, b,c Sasithon Pukrittayakamee, a Warunee Hanpithakpong, b Palang Chotsiri, b Thanaporn Wattanakul, b Salwaluk Panapipat, b Sue J. Lee, b,c Nicholas P. J. Day, b,c Nicholas J. White b,c

Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; c Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; b Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom

Dihydroartemisinin-piperaquine is an artemisinin-based combination treatment (ACT) recommended by the WHO for uncomplicated Plasmodium falciparum malaria, and it is being used increasingly for resistant vivax malaria where combination with primaquine is required for radical cure. The WHO recently reinforced its recommendations to add a single dose of primaquine to ACTs to reduce P. falciparum transmission in low-transmission settings. The pharmacokinetics of primaquine and dihydroartemisinin-piperaquine were evaluated in 16 healthy Thai adult volunteers in a randomized crossover study. Volunteers were randomized to two groups of three sequential hospital admissions to receive 30 mg (base) primaquine, 3 tablets of dihydroartemisinin-piperaquine (120/960 mg), and the drugs together at the same doses. Blood sampling was performed over 3 days following primaquine and 36 days following dihydroartemisinin-piperaquine dosing. Pharmacokinetic assessment was done with a noncompartmental approach. The drugs were well tolerated. There were no statistically significant differences in dihydroartemisinin-piperaquine pharmacokinetics with or without primaquine. Dihydroartemisinin-piperaquine coadministration significantly increased plasma primaquine levels; geometric mean ratios (90% confidence interval [CI]) of primaquine combined versus primaquine alone for maximum concentration (Cmax), area under the concentration-time curve from 0 h to the end of the study (AUC0–last), and area under the concentration-time curve from 0 h to infinity (AUC0–∞) were 148% (117 to 187%), 129% (103 to 163%), and 128% (102 to 161%), respectively. This interaction is similar to that described recently with chloroquine and may result in an enhanced radical curative effect. (This study has been registered at ClinicalTrials.gov under registration no. NCT01525511.)

MATERIALS AND METHODS

Subjects. Sixteen healthy Thai adults (11 female, 5 male) between 18 and 60 years of age were recruited. They were nonsmokers and were judged healthy based on clinical history, physical examination, and baseline screening results in hematology, biochemistry, urinalysis, and electrocardiogram (ECG), with a corrected QT (QTc) (Fridericia) interval of <450 ms. Exclusion criteria included a history of drug allergy, alcohol or substance abuse, concomitant medication intake, G6PD deficiency as detected by Beutler’s dye test, or positive HIV, hepatitis B, or hepatitis C serology. Female subjects were of nonchildbearing potential or, if of childbearing potential, had a negative serum pregnancy test and agreed to use effective contraceptive methods during the study. The study protocol was approved by the ethics committee of the Faculty of Tropical Medicine, Mahidol University (reference number TMEC 12–004, approval number...
Dihydroartemisinin-piperaquine, and vice versa in the third admission. Participants received a single dose of 2 tablets of primaquine together with 3 tablets of testing program with satisfactory performance (http://www.wwarn.org/). The laboratory participates in the WorldWide Antimalarial Resistance Network (WWARN) quality control and assurance proficiency assessments. The laboratory is accredited by the Department of Clinical Pharmacology, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand in the first admission. The volunteers were randomized into the pharmacokinetic unit at the Hospital for Tropical Diseases the evening before the study began. Subjects were given a light standard meal (~200 kcal with 8 g fat) 30 min before each drug dose and were allowed to eat 4 h after administration of the study drug. Water and/or soft drinks without caffeine were permitted 2 h postdose. Study drugs were taken orally with a glass of water. Vital signs were checked every 4 h after dosing. Both groups received 2 tablets of primaquine phosphate (15 mg base/tablet; Government Pharmaceutical Organization, Thailand) in the first admission. In the second admission, one group (n = 8) was given a single dose of 3 tablets of dihydroartemisinin-piperaquine (Eurartesim; Sigma-Tau Industrie Farmaceutiche Riunite S.p.A.) only (40 mg dihydroartemisinin/320 mg piperaquine phosphate per tablet), and the other group (n = 8) received a single dose of 2 tablets of primaquine together with 3 tablets of dihydroartemisinin-piperaquine, and vice versa in the third admission. The washout periods between doses were >1 week after primaquine and >8 weeks after dihydroartemisinin-piperaquine–containing treatments. Electrocardiograms were recorded at 0, 1, 2, 4, 8, 12, and 24 h postdose in each admission. Methemoglobin was measured at each pharmacokinetic blood sampling time (see below) using a noninvasive monitoring machine (Masimo pulse oximeter, SpMet).

Pharmacokinetic sampling. For the pharmacokinetic assessment of all drugs, blood samples (2 ml) were collected into fluoride-oxalate tubes at 0 (predose), 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, and 24 h and on day 3 (48 h to 54 h). An indwelling catheter was used for the multiple serial blood collections from 0 to 12 h postdose. Additional blood samples were taken for piperaquine measurements on days 4, 7, 11, 15, 22, and 36. After collection, blood samples were centrifuged for 7 min at 2,000 × g at 4°C, and plasma was stored at −70°C or lower. All samples were transferred to the Department of Clinical Pharmacology,Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand, for plasma drug measurements. The laboratory participates in the WorldWide Antimalarial Resistance Network (WWARN) quality control and assurance proficiency testing program with satisfactory performance (http://www.wwarn.org/toolkit/qaqc).

Drug analysis. Dihydroartemisinin and piperaquine plasma concentrations were quantified using high-performance liquid chromatography linked with tandem mass spectrometry according to previously published methods (11, 12). The limit of quantification was 2.0 ng/ml for dihydroartemisinin and 1.50 ng/ml for piperaquine, respectively. Primaquine and carboxyprimaquine plasma concentrations were quantified using solid-phase extraction and high-performance liquid chromatography with mass spectrometry detection (reference 13 and; unpublished data). The limits of quantification were 1.14 ng/ml and 4.88 ng/ml for primaquine and carboxyprimaquine, respectively. Three replicates of quality control samples at low, middle, and high concentrations were analyzed within each batch of clinical samples to ensure precision and accuracy during drug measurements. The total precision (i.e., relative standard deviation [SD]) for all drug measurements was <9.0% during drug quantification.

Pharmacokinetic analysis. Individual subject concentration-time data were evaluated using a noncompartmental analysis approach as implemented in WinNonlin version 6.3 (Pharsight Corporation, USA). The terminal elimination rate constant (λ2) was estimated by log-linear best-fit regression of the observed plasma concentrations in the terminal elimination phase, without data point removal. Visual inspection of all concentration-time profiles were performed to ensure an adequate fit to the observed data. Total exposure up to the last measured concentration (AUC0–last) was calculated using the linear trapezoidal method for ascending concentrations and the logarithmic trapezoidal method for descending concentrations. Exposure was extrapolated from the last observed concentration to infinity by Clast/λ2 for each subject to compute total drug exposure (AUC0–∞). The terminal elimination half-life (t1/2) was estimated by ln 2/λ2. The maximum plasma drug concentration (Cmax) and time to maximum concentration (Tmax) were taken directly from the observed data. The total apparent volume of distribution (V/F) and oral clearance (CL/F) were computed individually according to the equations V/F = dose/(λ2 × AUC) and CL/F = dose/AUC, respectively.

Pharmacokinetic parameter estimates were compared between a single dose of each study drug administered alone and in combination using the Wilcoxon signed-rank test in STATA v.11. An analysis of variance (ANOVA) was carried out on the log-transformed pharmacokinetic exposure parameters Cmax, AUC0–last, and AUC0–∞ to assess the bioequivalence of the drug administered alone versus that in combination. The effects of coadministration, the sequence of administrations, and subjects were examined in an adjusted model. The point estimate of the geometric mean ratio and the residual variability from the ANOVA were used to calculate the 90% confidence intervals (CIs) around the mean. The U.S. FDA criteria for assuming no interaction when the drugs are coadministered were met if the confidence intervals (90% CI) for the geometric mean ratios were retained within 80% to 125% (14).

Safety analysis. Safety was analyzed based on adverse events (AEs), physical examination, vital signs, clinical laboratory parameters, 12-lead electrocardiogram (ECG) findings, and methemoglobin levels. A >30-ms change from baseline in QTc interval (using Fridericia’s correction) was specified prospectively as clinically significant, and any subject with this change at any time point was noted.

The safety and tolerability of primaquine and dihydroartemisinin-piperaquine were assessed by using the Wilcoxon matched-pair signed-rank test for continuous variables or McNemar’s exact test for categorical variables when drugs were given alone or in combination. The frequencies (%) of adverse events and serious adverse events, with particular attention to those of potential clinical concern, were presented by treatment group and reported by visit so that any effect of the addition of primaquine and...
reexposure to piperquine could be assessed. All liver function test (LFT) parameters were also compared within each visit by treatment (to assess the addition of primaquine) using the Mann-Whitney U test and within groups (to assess reexposure to dihydroartemisinin-piperquine) using the Wilcoxon matched-pair signed-rank test. Subjects were analyzed as groups (to assess reexposure to dihydroartemisinin-piperquine alone [Kendall’s tau = 0.0017]) and their changes from before dosing at each time point up to 24 h are shown in Table 2. There was a small (median, 2%) but significant shortening of the QTc (Fridericia) interval following dihydroartemisinin-piperquine treatment with (8 ms) or without (7 ms) primaquine concomitantly administered, which was maximal at 4 h after dosing compared to primaquine alone (P = 0.0009 and P = 0.0027, respectively). This correlated with the primaquine Cmax (correlation coefficient for maximum QTc prolongation following dihydroartemisinin-piperquine administration [Kendall’s tau] = 0.48, P = 0.01; in combination with primaquine, P = 0.0649). The addition of primaquine to dihydroartemisinin-piperquine did not affect the magnitude of QTc prolongation (P = 0.5695) (Table 3). Two female subjects (38 and 31 years old) had a QTc interval marginally above 450 ms (450.3 and 450.51 ms, respectively) at 4 h after dihydroartemisinin-piperquine administration. QTc interval prolongations from a predose baseline of >30 ms (32 and 33 ms, respectively) were observed in 2 subjects 4 h after dihydroartemisinin-piperquine administration. All subjects had methemoglobin levels of <3% at all times during the study. Three severe adverse events (SAEs) were reported by 3 subjects. All were deemed unrelated to the study drug or study procedure. One subject had a rickettsial infection, 1 subject had unstable angina with dizziness with nonspecific ECG changes, and the third subject had acute bronchitis. All of the SAEs required hospitalization, and all resolved subsequently. Six other minor AEs were reported by 5 subjects and were considered unrelated to the study drug. All AEs resolved subsequently.

Pharmacokinetic analysis. There were no statistically significant differences in dihydroartemisin and piperquine pharmacokinetics when administered with or without primaquine (Fig 1; Table 4). The geometric mean ratios and 90% CIs of dihydroartemisin and piperaquine administered with and without primaquine for the logarithmically transformed AUC0–last and AUC0–∞ values were within the limits accepted for bioequivalence (Table 5; Fig. 2). However, the variability in Cmax values was too great to assume bioequivalence.

There were significant changes in the pharmacokinetics of primaquine and its major metabolite carboxypiperaquine when administered with dihydroartemisinin-piperquine (Fig 1; Table 6). Combined administration with dihydroartemisinin-piperquine resulted in significantly lower primaquine CL/F (P = 0.0229) and V/F (P = 0.0013) values than administration alone, leading to significantly higher Cmax (P = 0.0019) and AUC0–last (P = 0.0200) values. This also resulted in a shorter primaquine t1/2 (P = 0.0005) than with administration alone. Geometric mean ratios (90% CI) of primaquine administered with and without dihydroartemisinin-piperquine for Cmax, AUC0–last, and AUC0–∞ were 148%

TABLE 2 QTc intervals (Fridericia’s correction) at predose of each regimen and changes from before dosing to 24 h afterward

Dosing time	QTc change (ms) for treatment with a	P value b for:	Combination			
	Primaquine alone	DHA-PQP alone	Primaquine versus DHA-PQP	Primaquine versus combination	DHA-PQP versus combination	
Predose	417.9 (17.9)	420.4 (13.7)	0.264	0.265	0.063	
1 h	−7.91 (−20.8 to −2.00)	−1.66 (−10.0 to 0.41)	−3.55 (−9.56 to 1.24)	0.088	0.017	0.959
2 h	−10.4 (−20.7 to −0.59)	−1.58 (−11.5 to 4.40)	0.06 (−7.22 to 5.54)	0.163	0.007	0.326
4 h	−3.37 (−7.98 to 4.97)	7.08 (2.16 to 22.1)	8.28 (2.76 to 14.6)	0.002	0.004	0.918
8 h	−14.2 (−19.9 to −7.84)	−0.001 (−10.8 to 3.36)	3.79 (−8.74 to 9.00)	0.023	0.020	0.408
12 h	−8.85 (−17.6 to −2.45)	−0.52 (−10.3 to 6.76)	−0.31 (−8.20 to 5.26)	0.034	0.070	0.717
24 h	−8.09 (−13.3 to −2.85)	2.99 (−9.93 to 9.95)	−0.95 (−2.42 to 12.0)	0.030	0.004	0.234

a n = 16 per treatment group. Values are shown as median (interquartile range) or mean (SD). DHA-PQP, dihydroartemisinin-piperquine; combination, primaquine plus dihydroartemisinin-piperquine.

b Compared using paired t test for predose and Wilcoxon matched-paired signed-rank test for all others.

TABLE 3 The maximum electrocardiograph QTc (Fridericia’s correction) readings within 24 h after drug administration, time of onset and changes from baseline

QTc reading	Treatment	P value				
Time to onset (h)	Primaquine alone	DHA-PQP alone	Combination	Primaquine versus DHA-PQP	Primaquine versus combination	DHA-PQP versus combination
4 (1–24)	4 (2–24)	4 (2–24)	0.0387	0.1474	0.7266	
0.53 (−3.85 to 2.07)	2.10 (−1.85 to 8.13)	2.73 (−0.22 to 8.30)	0.0027	0.0009	0.5695	

a Values are shown as median (range). n = 16 per treatment group. DHA-PQP, dihydroartemisinin-piperquine; combination, primaquine plus dihydroartemisinin-piperquine.
Similarly, when primaquine was administered in combination with dihydroartemisinin-piperaquine, there were also significantly higher carboxyprimaquine exposures (C_{max}, $P = 0.0032$; $\text{AUC}_{0-\text{last}}$, $P = 0.0262$) and lower V/F ($P = 0.0019$) and shorter $t_{1/2}$ ($P = 0.0084$) values than with administration alone. The geometric mean ratios (90% CI) of carboxyprimaquine administered with and without dihydroartemisinin-piperaquine for C_{max}, $\text{AUC}_{0-\text{last}}$, and $\text{AUC}_{0-\infty}$ were 133% (106 to 168%), 126% (99.3 to 160%), and 119% (92.8 to 153%), respectively (Fig. 2). This follows the pattern of alteration in primaquine pharmacokinetics, confirming a significant drug-drug interaction between primaquine and dihydroartemisinin-piperaquine.

DISCUSSION

The values of the pharmacokinetic parameters estimated for dihydroartemisinin and piperaquine in this study are mostly comparable to those of a previous study by Chinh and coworkers (10) (geometric means of dihydroartemisinin: T_{max}, 1.5 h; $t_{1/2}$, 1.01 h; CL/F, 2.21 liters/h; V/F, 5.53 liters/kg; C_{max}, 364 ng/ml; $\text{AUC}_{0-\text{last}}$, 812 ng · h/ml; $\text{AUC}_{0-\infty}$, 817 ng · h/ml). Table 4 shows the pharmacokinetic parameters of dihydroartemisinin and piperaquine administered alone and in combination with primaquine.

![FIG 1 Mean venous plasma concentration-time curves of primaquine (A), carboxyprimaquine (B), dihydroartemisinin (C), and piperaquine (D) in healthy volunteers. Error bars indicate SDs.](http://aac.asm.org/)

TABLE 4 Pharmacokinetic parameters of dihydroartemisinin and piperaquine administered alone and in combination with primaquine

Parameter	Dihydroartemisinin	Piperaquine				
	Alone	Combination	P value	Alone	Combination	P value
Total dose (mg/kg)	1.87 (1.68–2.22)	1.87 (1.68–2.22)	NA	8.65 (7.76–10.3)	8.65 (7.76–10.3)	NA
C_{max} (ng/ml)	364 (184–792)	348 (194–961)	0.3011	491 (129–1,270)	397 (127–1,200)	1.0000
T_{max} (h)	1.50 (1.00–2.00)	1.50 (0.50–3.00)	1.0000	4.00 (3.00–4.00)	4.00 (3.00–6.00)	0.7419
CL/F (liters/h/kg)	2.21 (0.96–5.01)	2.23 (0.87–5.52)	0.6051	0.450 (0.17–0.73)	0.441 (0.275–0.554)	0.1477
V/F (liters/kg)	5.53 (2.67–11.3)	5.89 (2.70–11.0)	0.1788	225 (120–593)	265 (139–339)	1.0000
$t_{1/2}$ (h)	1.97 (1.13–2.67)	1.81 (1.13–2.84)	0.1788	390 (224–669)	449 (206–610)	0.6417
$\text{AUC}_{0-\text{last}}$ (ng · h/ml)	812 (394–2,010)	890 (338–2,210)	1.0000	17,400 (8,120–36,800)	15,400 (12,200–31,200)	0.7960
$\text{AUC}_{0-\infty}$ (ng · h/ml)	817 (398–2,030)	899 (361–2,250)	0.9176	20,400 (11,400–57,300)	19,800 (15,400–35,900)	0.6417
Ext. AUC (%)	1.45 (0.253–4.19)	1.12 (0.338–2.81)	0.0703	17.9 (6.72–35.7)	20.8 (4.95–35.2)	0.6051

*a C$_{\text{max}}$ maximum observed plasma concentration after oral administration; T_{max} observed time to reach C_{max}; CL, elimination clearance; V, apparent volume of distribution; $t_{1/2}$, terminal elimination half-life; $\text{AUC}_{0-\text{last}}$, total exposure up to the last measured concentration; $\text{AUC}_{0-\infty}$, predicted area under the plasma concentration-time curve after the last dose from zero time to infinity; Ext. AUC, percentage of $\text{AUC}_{0-\infty}$ extrapolated from the last observation to infinity.

*b Data are presented as median (range). $n = 16$ per treatment group. NA, not available.
The present study showed lower clearance and volume of distribution of dihydroartemisinin and consequently higher AUC and C_{max} values (geometric means: AUC $0–\text{last}$, 817 versus 370 ng · h/ml; C_{max}, 364 versus 159 ng/ml). The present study also showed a higher C_{max} but a similar AUC of piperaquine (C_{max}, 491 versus 204 ng/ml; AUC $0–\text{last}$, 20,400 versus 19,929 ng · h/ml). These differences observed between studies may reflect differences in the volunteers’ age, diet, or gender and/or the play of chance given the large interindividual variability and small sample sizes. Piperaquine absorption may be enhanced when administered with a high-fat meal (15,16), although small amounts of fat have little effect on piperaquine bioavailability (17,18). In this study, no drug-drug interactions were observed in dihydroartemisinin and piperaquine pharmacokinetics as a result of primaquine coadministration. The AUCs of dihydroartemisinin and piperaquine were all within the 90% CI of the geometric means ratio of 80 to 125%.

When administered alone, primaquine pharmacokinetic results were comparable to those of the previous studies. Elmes et al. (19) reported mean (SD) plasma primaquine values in healthy Australian men and women, respectively, as follows: C_{max} of 93 (26) and 115 (38) ng/ml, AUC $0–\text{last}$ of 1,105 (475) and 1,240 (444) ng · h/ml, and CL/F of 0.34 (0.12) and 0.39 (0.14) liters/h/kg. Binh et al. (20) reported a median plasma primaquine C_{max} of 122 ng/ml, T_{max} of 2.0 h, and $t_{1/2}$ of 6.1 h in healthy Vietnamese volunteers. Coadministration of primaquine with dihydroartemisinin-piperaquine resulted in significantly higher exposure, higher C_{max}, lower V/F, and shorter $t_{1/2}$ of both primaquine and carboxyprimaquine.

This pharmacokinetic interaction is similar in direction to that recently observed with other antimalarials. Coadministration of primaquine with chloroquine and with pyronaridine-artesunate demonstrated similar changes in primaquine pharmacokinetics (13; unpublished observations). In studies conducted >60 years ago, mecaprine (quinacrine [Atabrine]), an acridine with structural similarities to chloroquine, markedly elevated levels of pamaquine (plasmoquine, an 8-aminoquinoline predecessor of primaquine) (21,22). Thus, several structurally related antimalarials, all with extensive tissue distribution and very slow elimination, elevate plasma concentrations of the 8-aminoquinoline drugs. Tissue displacement is therefore one potential mechanism to explain the interaction, and the likely interacting drug is therefore piperaquine rather than dihydroartemisinin. Whether this involves competition for transporters, such as that demonstrated in a study on the effect of rifampin, an organic anion-transporting polypeptide (OATP) inhibitor, on digoxin metabolism in rats

TABLE 5 Bioequivalence analysis of dihydroartemisinin, piperaquine, primaquine and carboxyprimaquine after administration of dihydroartemisinin-piperaquine and primaquine alone and in combination

| Parameter
table_cell	Dihydroartemisinin	Piperaquine	Primaquine	Carboxyprimaquine
C_{max} (ng/ml)	111 (92.1–134)	98.1 (74.6–129)	148 (117–187)	133 (106–168)
AUC $0–\text{last}$ (ng · h/ml)	100 (86.7–116)	105 (90.3–121)	129 (103–163)	126 (99.3–160)
AUC $0–\text{last}$ (ng · h/ml)	99.9 (86.5–115)	105 (91.4–121)	128 (102–161)	119 (92.8–153)

C_{max}, maximum observed plasma concentration; AUC $0–\text{last}$, total exposure up to the last measured concentration; AUC $0–\text{last}$, predicted area under the plasma concentration time curve after the last dose from zero time to infinity.

FIG 2 Forest plots of the geometric mean ratios (90% CI) of the drug administered with and without interacting drug for the logarithmically transformed C_{max}, AUC $0–\text{last}$ and AUC $0–\text{last}$. Vertical dashed lines represent the U.S. FDA criteria of 80 to 125% for assuming bioequivalence.
could explain the discrepancy between CL/F and V/F. This scenario is based on the assumption that primaquine is passively absorbed from the gut but actively transported into hepatocytes. An increase in the bioavailability of primaquine seems less likely given that volunteer studies suggest near-100% oral bioavailability for primaquine (24). Primaquine metabolism involves monoamine oxidase A (25) and cytochrome P450 (CYP) isozymes, especially 2C19 (25), 2D6, and 3A4 (25, 26). Piperquine inhibits CYP3A4 (27, 28) and CYP2C19 (27), and metabolic inhibition cannot be excluded as a contributor to reduced primaquine clearance. As the active metabolites of primaquine are produced via CYP2D6, a different route to the monoamine oxidase pathway which produces carboxyprimaquine, the relevance of these findings to primaquine’s pharmacodynamic effects remains to be determined. However, by inference, the efficacy synergy for radical clearance (30).

In conclusion, coadministration of dihydroartemisinin-piperaquine and primaquine was well tolerated in healthy adult subjects. This combination did not result in any significant pharmacokinetic alterations of dihydroartemisinin and piperquine but increased plasma concentrations of primaquine. Further study is required to determine how this affects primaquine pharmacodynamics, but there seems to be no reason to not recommend this combination.

ACKNOWLEDGMENTS

We are grateful to the volunteers and the nurses of the bioequivalence ward, Hospital for Tropical Diseases, Bangkok.

This study was partially funded by Medicines for Malaria Venture (MMV) (http://www.mmv.org/) and the Wellcome Trust (grant 089179) and was part of the Wellcome Trust Mahidol University-Oxford Tropical Medicine Research Programme.

Dihydroartemisinin-piperaquine (Eurartesim) was kindly donated by Sigma-Tau Industrie Farmaceutiche Riunite S.p.A.

MMV reviewed and commented on the study protocol but had no part in its implementation, the analysis or interpretation of the study, or the decision to publish the results.

REFERENCES

1. World Health Organization. 2012. Updated WHO policy recommendation (October 2012): single dose primaquine as a gametocytocide in Plasmodium falciparum malaria. World Health Organization, Geneva, Switzerland.

2. World Health Organization. 2010. Guidelines for the treatment of malaria, 2nd ed. World Health Organization, Geneva, Switzerland.

3. White NJ, Quigg R, Qi G, Luzzatto L. 2012. Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common. Malar. J. 11:418. http://dx.doi.org/10.1186/1475-2875-11-418.

4. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN. 2010. Artemisinin combination therapy for vivax malaria? Lancet Infect. Dis. 10: 405–416. http://dx.doi.org/10.1016/S1473-3099(10)70079-7.

5. Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, Ringwald P. 2013. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob. Agents Chemother. 57:818–826. http://dx.doi.org/10.1128/AAC.00686-12.

6. World Health Organization. December 2012. Country antimalarial drug policies by region. World Health Organization, Geneva, Switzerland. http://www.who.int/malaria/am_drug_policies_by_region_searo/en/.
7. World Health Organization. December 2012. Country antimalarial drug policies: by region. World Health Organization, Geneva, Switzerland. http://www.who.int/malaria/am_drug_policies_by_region_wpro/en/.
8. Edwards G, McGrath CS, Ward SA, Supanarond W, Pukrittayakamee S, Davis TM, White NJ. 1993. Interactions among primaquine, malaria infection and other antimalarials in Thai subjects. Br. J. Clin. Pharmacol. 35:193–198. http://dx.doi.org/10.1111/j.1365-2125.1993.tb05685.x.
9. Navaratnam V, Ramanathan S, Wahab MS, Siew Hua G, Mansor SM, Kiechel JR, Vaillant M, Taylor, Olliaro P. 2009. Tolerability and pharmacokinetics of nonfixed and fixed combinations of artesunate and amodiaquine in Malaysian healthy normal volunteers. Eur. J. Clin. Pharmacol. 65:809–821. http://dx.doi.org/10.1007/s00228-009-0656-1.
10. Chinh NT, Quang NN, Thanh NX, Dai B, Geue JP, Addison RS, Travers T, Edstein MD. 2009. Pharmacokinetics and bioequivalence evaluation of two fixed-dose tablet formulations of dihydroartemisinin and piperazine in Vietnamese subjects. Antimicrob. Agents Chemother. 53:828–831. http://dx.doi.org/10.1128/AAC.00927-08.
11. Hanphithakpong W, Kamanikom B, Dondorp AM, Singhavison P, White NJ, Day NP, Lindegardh N. 2008. A liquid chromatographic-tandem mass spectrometric method for determination of artesunate and its metabolite dihydroartemisinin in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 876:61–68. http://dx.doi.org/10.1016/j.jchromb.2008.10.018.
12. Lindegardh N, Annerberg A, White NJ, Day NP. 2008. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperazine in plasma stable isotope labeled internal standard does not always compensate for matrix effects, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 862:227–236. http://dx.doi.org/10.1016/j.jchromb.2007.12.011.
13. Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthanawha, L P, Lwin KM, Chinh NT, Thanh NX, Dai B, Geue JP, Addison RS, Travers T, Edstein MD. 2009. Pharmacokinetics of dihydroartemisinin and piperazine in patients with uncomplicated falciparum malaria in Vietnam. Antimicrob. Agents Chemother. 53:828–831. http://dx.doi.org/10.1128/AAC.00927-08.
14. US Food and Drug Administration. 2003. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products. U.S. Food and Drug Administration, Rockville, MD.
15. Sim IK, Davis TM, Ilett KF. 2005. Effects of a high-fat meal on the relative oral bioavailability of piperazine. Antimicrob. Agents Chemother. 49:2407–2411. http://dx.doi.org/10.1128/AAC.02794-13.
16. Nguyen TC, Nguyen NJ, Nguyen XT, Bui D, Travers T, Edstein MD. 2008. Pharmacokinetics of the antimalarial drug piperazine in healthy Vietnamese subjects. Am. J. Trop. Med. Hyg. 79:620–623.
17. Annerberg A, Lwin KM, Lindegardh N, Khruatsawadchai S, Ashley E, Day NP, Singhavison P, Tarning J, White NJ, Nosten F. 2011. A small amount of food does not affect piperazine exposure in patients with malaria. Antimicrob. Agents Chemother. 55:3971–3976. http://dx.doi.org/10.1128/AAC.02288-11.
18. Tarning J, Lindegardh N, Lwin KM, Annerberg A, Kiricharoen L, Ashley E, White NJ, Nosten F, Day NP. 2011. Lack of sex effect on the pharmacokinetics of primaquine. Am. J. Trop. Med. Hyg. 75:951–952.
19. Travers T, Edstein MD. 2009. Sex affects the steady-state pharmacokinetics of primaquine but not doxycycline in healthy subjects. Am. J. Trop. Med. Hyg. 81:747–753. http://dx.doi.org/10.4269/ajtmh.2009.09-0214.
20. Chen G, Geiling EM. 1947. The acute joint toxicity of atabrine, quinine, hydroxyethylpiperazine, pamaquine and pentaquine. J. Pharmacol. Exp. Ther. 91:133–139.
21. Berliner RW, Earle DP, Taggart JV, Welch WJ, Zuberb CG, Knowlton P, Archer JIA, Shannon JA. 1948. Studies on the chemotherapy of the human malarias. VII. The antimalarial activity of pamaquine. J. Clin. Invest. 27:108–113.
22. Grover A, Benet LZ. 2009. Effects of drug transporters on volume of distribution. AAPS J. 11:250–261. http://dx.doi.org/10.1208/s12248-009-9100-7.
23. Mihalý GW, Ward SA, Edwards G, Nicholl DD, Orme ML, Breckenridge BM. 1985. Pharmacokinetics of primaquine in man. Studies of the absolute bioavailability and effects of dose size. Br. J. Clin. Pharmacol. 19:745–750.
24. Pybus BS, Sousa JC, Jin X, Ferguson JA, Christian RE, Barnhart R, Vuong C, Sciotti RJ, Rechard GA, Kozar MP, Walker LA, Ohrt C, Melendez Y. 2012. CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine. Malar. J. 11:259. http://dx.doi.org/10.1186/1475-2875-11-259.
25. Ganesan S, Tekwani BL, Sahu R, Tripathi LM, Walker LA. 2009. Cytochrome P450-dependent toxic effects of primaquine on human erythrocytes. Toxicol. Appl. Pharmacol. 241:14–22. http://dx.doi.org/10.1016/j.taap.2009.07.012.
26. European Medicines Agency. 2012. Eurartesim: EPAR–product information. European Medicines Agency, London, United Kingdom. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/001199/WC500118113.pdf.
27. Tarning J, Riikinen MJ, McGreedy R, Phyo AP, Hanphithakpong W, Day NP, White NJ, Nosten F, Lindegardh N. 2012. Population pharmacokinetics of dihydroartemisinin and piperazine in pregnant and nonpregnant women with uncomplicated malaria. Antimicrob. Agents Chemother. 56:1997–2007. http://dx.doi.org/10.1128/AAC.05756-11.
28. Ilett KF, Ethell BT, Maggs JL, Davis TM, Burt BT, Burchell B, Binh T. 2002. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab. Dispos. 30:1005–1012. http://dx.doi.org/10.1121/dmd.30.9.1005.
29. Nguyen DV, Nguyen QP, Nguyen ND, Le TT, Nguyen TD, Dinh DN, Nguyen TX, Bui D, Chavich M, Edstein MD. 2009. Pharmacokinetics and ex vivo pharmacodynamic antimalarial activity of dihydroartemisinin-piperazine in patients with uncomplicated falciparum malaria in Vietnam. Antimicrob. Agents Chemother. 53:3534–3537. http://dx.doi.org/10.1128/AAC.01717-08.
30. Baird JK, Fryauff DJ, Hoffman SL. 2003. Primaquine for prevention of malaria in travelers. Clin. Infect. Dis. 37:1659–1667. http://dx.doi.org/10.1086/379714.
31. Karunajeewa H, Lim C, Hung TY, Ilett KF, Denis MB, Sochat D, Davis TM. 2004. Safety evaluation of fixed combination piperazine plus dihydroartemisinin (Artexin) in Cambodian children and adults with malaria. Br. J. Clin. Pharmacol. 57:93–99. http://dx.doi.org/10.1111/j.1365-2125.2003.01962.x.
32. Myttion OT, Ashley EA, Peto L, Price RN, La Y, Hae R, Singhavison P, White NJ, Nosten F. 2007. Electrocardiographic safety evaluation of dihydroartemisinin-piperazine in the treatment of uncomplicated falciparum malaria. Am. J. Trop. Med. Hyg. 77:447–450.