Proto-Neutron Star Winds, Magnetar Birth, and Gamma-Ray Bursts

Brian D. Metzger*,†, Todd A. Thompson** and Eliot Quataert*

*Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, Berkeley, CA 94720; bmetzger@astro.berkeley.edu, eliot@astro.berkeley.edu
†Department of Physics, 366 LeConte Hall, University of California, Berkeley, CA 94720
**Department of Astrophysical Sciences, Peyton Hall-Ivy Lane, Princeton University, Princeton, NJ 08544; thomp@astro.princeton.edu

Abstract. We begin by reviewing the theory of thermal, neutrino-driven proto-neutron star (PNS) winds. Including the effects of magnetic fields and rotation, we then derive the mass and energy loss from magnetically-driven PNS winds for both relativistic and non-relativistic outflows, including important multi-dimensional considerations. With these simple analytic scalings we argue that proto-magnetars born with \(\sim \) millisecond rotation periods produce relativistic winds just a few seconds after core collapse with luminosities, timescales, mass-loading, and internal shock efficiencies favorable for producing long-duration gamma-ray bursts.

Keywords: neutron stars, stellar winds, supernovae, gamma ray bursts, magnetic fields

PACS: 97.60.Bw, 97.60.Gb; 97.10.Me

1. NEUTRINO-DRIVEN PNS WINDS

After a successful core-collapse supernova (SN), a hot proto-neutron star (PNS) cools and deleptonizes, releasing the majority of its gravitational binding energy (\(\sim 3 \times 10^{53} \) ergs) in neutrinos. With initial core temperature \(T > 10 \) MeV, a PNS is born optically-thick to neutrinos of all flavors because the relevant neutrino-matter cross sections scale as \(\sigma_{\nu m} \propto \epsilon_{\nu}^2 \propto T^2 \), where \(\epsilon_{\nu} \) is a typical neutrino energy. Indeed, because neutrinos are trapped, a PNS’s neutrino luminosity \(L_{\nu} \) remains substantial and quasi-thermal for a time after bounce \(\tau_{KH} \sim 10 - 100 \) s, as roughly verified by the 19 neutrinos detected from SN1987A 20 years ago [1],[2]. Although this Kelvin-Helmholtz (KH) cooling epoch is short compared to the time required for the shock, once successful and moving outward at \(\sim 10^4 \) km/s, to traverse the progenitor stellar mantle, \(\tau_{KH} \) is still significantly longer than the time over which the initial explosion must be successful. While the specific shock launching mechanism is presently unknown, it must occur in a time \(t < 1 \) s \(\ll \tau_{KH} \) after bounce for the PNS to avoid accreting too much matter.

Thus, even after the SN shock has cleared a cavity of relatively low density material around the PNS, \(L_{\nu} \) remains substantial. Detailed PNS cooling calculations [3] show that the electron neutrino(antineutrino) luminosity \(L_{\nu_e(\bar{\nu}_e)} \) is \(\sim 10^{52} \) erg/s at \(t \sim 1 \) s and declines as \(\propto t^{-1} \) until \(t \approx \tau_{KH} \), after which \(L_{\nu_e(\bar{\nu}_e)} \) decreases exponentially as the PNS becomes optically thin. This persistent neutrino flux \(F_{\nu_e(\bar{\nu}_e)} \) continues to heat the PNS atmosphere, primarily through electron neutrino(antineutrino)
absorption on nuclei ($\nu_e + n \rightarrow p + e^-$ and $\bar{\nu}_e + p \rightarrow n + e^+$). Because the inverse, pair capture rates dominate the cooling, which declines rapidly with temperature ($\dot{q}^+ \propto T^6$) and hence with spherical radius r, a region of significant net positive heating ($\dot{q} \equiv \dot{q}^+ - \dot{q}^- > 0$) develops above the neutrinosphere radius R_{ν}. This heating drives mass-loss from the PNS in the form of a thermally-driven wind [4]. To estimate the dependence of the resultant mass-loss rate (\dot{M}_{th}) on the PNS properties explicitly, consider that in steady state the change in gravitational potential required for a unit mass element to escape the PNS (GM/R_{ν}) must be provided by the total heating it receives accelerating outwards from the PNS surface:

$$\frac{GM}{R_{\nu}} \approx \int_{R_{\nu}}^{\infty} \frac{\dot{q}^+ dr}{v_r},$$

where M is the PNS mass, v_r is the outward wind velocity, and \dot{q} is per unit mass. Because \dot{q} is quickly dominated by heating from neutrino absorption, which scales as $\dot{q}^+ \propto F_{\nu_e} \sigma_{\nu e} \propto L_{\nu e} \epsilon_{e}^2 / 4 \pi r^2$, we see that equation (1) implies that

$$\frac{GM}{R_{\nu}} \propto \frac{L_{\nu e} \epsilon_{e}^2}{M_{th}} \int_{R_{\nu}}^{\infty} \rho dr \approx \frac{L_{\nu e} \epsilon_{e}^2}{M_{th}} \rho_{\nu} H_{\nu},$$

where we have used $\dot{M}_{th} = 4 \pi \rho r^2 v_r$ for a spherical wind, ρ is the mass density, H is the PNS’s density scale height, ϵ_{e} crudely defines a mean electron neutrino or antineutrino energy, and a subscript “ν” denotes evaluation near R_{ν}. Neglecting rotational support and assuming that the thermal pressure P is dominated by photons and relativistic pairs (which also becomes an excellent approximation as the density plummets abruptly above the PNS surface), we have that $H_{\nu} \sim P_{\nu}/\rho_{\nu} g_{\nu} \propto T_{\nu}^6 R_{\nu}^2 / M \rho_{\nu}$, where $g_{\nu} \propto M/R_{\nu}^2$ is the PNS surface gravity and $T_{\nu} \propto (L_{\nu e} \epsilon_{e}^2 / R_{\nu}^2)^{1/6}$ is the PNS surface temperature. T_{ν} is set by the balance between heating and cooling at the PNS surface ($T_{\nu}^6 \dot{q}^- = \dot{q}^+ \propto L_{\nu e} \epsilon_{e}^2 / R_{\nu}^2$). Inserting these results into equation (2) and including the correct normalization from the relevant weak cross sections, one finds the expression for \dot{M}_{th} first obtained by ref [4]:

$$\dot{M}_{th} \approx 10^{-4} L_{52}^{5/3} \epsilon_{10}^{10/3} M_{1.4}^{-2} R_{10}^{5/3} M_{\odot} / s,$$

where $L_{52} \equiv L_{\nu e} \times 10^{52}$ erg/s, $\epsilon_{10} \equiv 10 \epsilon_{e}$ MeV, $R_{10} \equiv 10 R_{10} km$, and $M \equiv 1.4 M_{1.4} M_{\odot}$.

Endowed with an enormous gravitational binding energy and a means, through this neutrino-driven outflow, for communicating a fraction of this energy to the outgoing shock, a newly-born PNS seems capable of affecting the properties of the SN that we observe. However, a purely thermal, neutrino-driven PNS wind is only accelerated to an asymptotic speed of order the surface sound speed: $v_{th}^{\infty} \sim c_{s,\nu} \approx \sqrt{2k T_{\nu}/m_p} \approx 0.1 L_{52}^{1/12} \epsilon_{10}^{1/6} R_{10}^{1/6} c$. Thus, the efficiency η relating wind power $\dot{E}_{th} \approx \dot{M}_{th} (v_{th}^{\infty})^2 / 2$ to total neutrino luminosity ($L_{\nu} \sim 6 L_{\nu e}$) is quite low:

$$\eta \equiv \frac{\dot{E}_{th}}{L_{\nu}} \sim 10^{-5} L_{52}^{5/6} \epsilon_{10}^{11/3} R_{10}^{4/3} M_{1.4}^{-2}.$$
In particular, although neutrino energy deposited in a similar manner may be responsible for initiating the SN explosion itself at early times (i.e., the neutrino SN mechanism [5]), η drops rapidly as the PNS cools. Quasi-spherical winds of this type are therefore not expected to affect the SN’s nucleosynthesis or morphology (although the wind itself is considered a promising r-process source [4]).

2. MAGNETICALLY-DRIVEN PNS WINDS

Some PNSs may possess a more readily extractable form of energy in rotation. A PNS born with a period $P = P_{\text{ms}}$ ms is endowed with a rotational energy $E_{\text{rot}} \simeq 2 \times 10^{52} P_{\text{ms}}^{-2} R_{10}^2 M_{1.4}$ ergs, which, for $P < 4$ ms, exceeds the energy of a typical SN shock ($\sim 10^{51}$ ergs). Given a mass loss rate \dot{M} and torquing lever arm $\omega \tau$, a wind extracts angular momentum J from the PNS at a rate $\dot{J} \simeq \Omega \omega \tau \dot{M}$, where $\Omega = 2\pi/P$ is the PNS rotation rate. With the PNS’s radius R_{ν} as a lever arm and the modest thermally-driven mass-loss rate given by equation (3), the timescale for removal of the PNS’s rotational energy, $\tau_{J} \equiv J/\dot{J} \sim M R_{\nu}^2/\dot{M} \omega \tau \sim M/\dot{M}_{\text{th}}$, is much longer than τ_{KH}. However, if the PNS is rapidly rotating and possesses a dynamically-important poloidal magnetic field B_p (through either flux-freezing or generated via dynamo action [6]), then both \dot{M} and $\omega \tau$ can be substantially increased; this reduces τ_{J}, allowing efficient extraction of E_{rot}.

For magnetized winds $\omega \tau$ is the Alfvén radius ωA, defined as the cylindrical radius where $\rho v_r^2/2$ first exceeds $B^2/8\pi$ [7]. The magnetosphere of a PNS is most likely dominated by its dipole component, with a total (positive-definite) surface magnetic flux given by $\Phi_B = 2\pi B_{\nu} R_{\nu}^2$, where B_{ν} is the polar surface field. To estimate ωA for magnetized PNS outflows recognize that mass and angular momentum are primarily extracted from a PNS along open magnetic flux. For an axisymmetric dipole rotator this represents only a fraction $\approx 2(\pi \theta_{\text{LCFL}}^2)/4\pi \simeq R_{\nu}/2\omega Y$ of Φ_B, where $\theta_{\text{LCFL}} \approx \sqrt{R_{\nu}/\omega Y}$ is the latitude (measured from the pole) at the PNS surface of the last closed field line (LCFL), ωY is the radius where the LCFL intersects the equator (the “Y point”), and we have assumed that $\omega Y \gg R_{\nu}$ ($\theta_{\text{LCFL}} \ll 1$). Plasma necessarily threads a PNS’s closed magnetosphere and cannot be forced to corotate superluminally; thus ωY cannot exceed the light cylinder radius $\omega L \equiv c/\Omega = 48 P_{\text{ms}}$ km, making it useful to write the PNS magnetosphere’s total open magnetic flux as $\Phi_{B,\text{open}} \approx \pi B_{\nu} R_{\nu}^2 (R_{\nu}/\omega Y)(\omega Y/\omega L)^{-1}$. Now, the overall latitudinal structure of a PNS magnetosphere (i.e., the allocation of open and closed magnetic flux, and the value of $\omega Y/\omega L$) is primarily dominated by the dipolar closed zone. However, recent numerical simulations [8] show that where the field is open it behaves as a “split monopole”. In this case the poloidal field scales as $B_p \sim \Phi_{B,\text{open}}/r^2 \approx 0.2 B_{\nu} P_{\text{ms}}^{-1} R_{10} (\omega Y/\omega L)^{-1} (R_{\nu}/r)^2$, rather than the dipole scaling $\propto (R_{\nu}/r)^3$. The constant of proportionality is chosen to assure that $B_p(R_{\nu}) \rightarrow B_{\nu}$ in the limit of vanishing closed zone ($\omega L, \omega Y \rightarrow R_{\nu}$) and is in agreement with numerical results (see eq. [28] of ref [8]).
2.1. Non-Relativistic Winds and Asymmetric Supernovae

Non-relativistic (NR) magnetically-driven winds reach an equipartition between kinetic and magnetic energy outside ω_A such that the kinetic energy flux at ω_A ($\dot{M}v_r(\omega_A)^2/2$) carries a sizeable fraction of the rotational energy loss extracted by the wind's surface torque $\dot{E}_{\text{rot}} = \dot{J} = \dot{M}\Omega^2\omega_A^2$: thus, we have that $v_r(\omega_A) \sim \Omega/\omega_A$. Combining this with the modified monopole scaling for B_ν motivated above and mass conservation $\dot{M}_{\Omega} \equiv \rho v_r^2$ (\dot{M}_{Ω} is the mass flux per solid angle) we find that:

$$\omega_A/R_\nu \simeq B_{15}^{4/3} P_{\text{ms}}^{-2/3} \dot{M}_{\Omega,-4} L_{10}^{4/3} (\omega_Y/\omega_L)^{-1},$$

where $\dot{M}_{\Omega} \equiv \dot{M}_{\Omega,-4} \times 10^{-4} M_{\odot}/s^{-1}$, $B_\nu \equiv B_{15} \times 10^{15}$ G, and we have concentrated on the open magnetic flux that emerges nearest the closed zone (polar latitude $\phi \approx \Omega\sin\nu$ on the open magnetic flux that emerges nearest the closed zone (polar latitude $\phi \approx \Omega\sin\nu$).

From equation (5) we see that winds from rapidly rotating PNSs with surface magnetic fields typical of Galactic "magnetars" ($B_\nu \sim 10^{14} \text{ - } 10^{15}$ G) possess enhanced lever arms for extracting rotational energy [9]. Furthermore, their total outflow power $\dot{E}_{\text{mag}}^{\text{NR}} \approx \dot{E}_{\text{rot}} \simeq 2\pi\theta_{\text{LCFL}}^2 \dot{M}_{\Omega} \omega_A^2 \approx 10^{49} B_{15}^{4/3} P_{\text{ms}}^{-1/3} \dot{M}_{\Omega,-4} L_{10}^{17/3} (\omega_Y/\omega_L)^{-3}$ ergs/s dominates thermal acceleration ($\dot{E}_{\text{mag}}^{\text{NR}} > \dot{E}_{\text{th}}$) for $B_{15} > 0.4 P_{\text{ms}}^{13/4} L_{52}^{23/24} \epsilon_{10}^{23/12} R_{10}^{-11/3} M_{1.41}^{1/3} (\omega_Y/\omega_L)^{9/4}$. This condition becomes easier to satisfy as the PNS cools, allowing magnetized winds to dominate later stages of the KH epoch for PNSs with even relatively modest B_ν and Ω. NR magnetically-driven winds, in addition to being more powerful than spherical, thermally-driven outflows, are efficiently hoop-stress collimated along the PNS rotation axis [8]. The power they deposit along the poles may produce asymmetry in SN ejecta distinct from the shock-launching process itself.

Strong magnetic fields and rapid rotation can also increase the outflow's power through enhanced mass-loss because $\dot{E}_{\text{mag}}^{\text{NR}} \propto \dot{M}_{\Omega} L_{10}^4$. When the PNS's hydrostatic atmosphere is forced to co-rotate to the outflow's sonic radius $\omega_s = (GM\sin(\theta_{\text{LCFL}})/\Omega^2)^{1/3}$ then \dot{M}_{Ω} is enhanced by a factor $\phi_{\text{cf}} \sim \exp[(v_{\phi,\nu}/c_{s,\nu})^2]$ over $\dot{M}_{\text{th}}/4\pi$ due to centrifugal ("cf") slinging [9], where $v_{\phi,\nu} \approx R_\nu \omega_s \sin[\theta_{\text{LCFL}}]$ and $R_\nu \Omega / \sqrt{\omega_Y}$ is the PNS rotation speed at the base of the open flux. Using our estimate for $c_{s,\nu}$ from §1, we see that enhanced mass loss becomes important for $P_{\text{ms}} < P_{\text{cf,ms}} \equiv L_{52}^{-1/18} \epsilon_{10}^{-1/9} P_{10}^{10/9} (\omega_Y/\omega_L)^{-1/3}$ (i.e., only for PNSs with considerable rotational energy $E_{\text{rot}} > 10^{52}$ ergs).

Fully enhanced mass loss ($\dot{M}_{\Omega} = \dot{M}_{\text{th}} \phi_{\text{cf}} / 4\pi$) requires $\omega_A > \omega_s$, which in turn requires that $B_{15} > B_{\text{cf,15}} \equiv P_{\text{ms}}^{7/4} R_{10}^{-13/4} \dot{M}_{\Omega,-4}^{1/2} (\omega_Y/\omega_L)^{5/4} \approx 0.3 P_{\text{ms}}^{7/4} L_{52}^{5/6} \epsilon_{10}^{5/6} M_{1.4}^{-1/2} R_{10}^{29/12} \exp[0.5 (P/P_{\text{cf}})^{-3} (\omega_Y/\omega_L)^{5/4}$, where we have taken \dot{M}_{th} from §1. For cases with $B_{15} < B_{\text{cf}}$ but $P < P_{\text{cf}}$, \dot{M}_{Ω} lies somewhere between $\dot{M}_{\text{th}}/4\pi$ and $\phi_{\text{cf}} \dot{M}_{\text{th}}/4\pi$ (see [10] for numerical results). Millisecond proto-magnetars generally attain ϕ_{cf}, except perhaps at early times when the PNS is quite hot.
2.2. Relativistic Winds and Gamma-Ray Bursts

As the PNS cools, eventually $\omega_A \rightarrow \omega_L$ and the PNS outflow becomes relativistic (REL). This transition occurs after τ_{KH} for most PNSs (they become pulsars), but rapidly rotating proto-magnetar winds become relativistic during the KH epoch itself. Similar to normal pulsars, PNSs of this type lose energy at the force-free, “vacuum dipole” rate: $\dot{E}_{\text{REL}} \approx 6 \times 10^{49} B_{15}^2 P_{\text{ms}}^{-4} R_{10}^{-4} (\omega_Y/\omega_L)^{-2} \text{ergs/s}$ (again modulo corrections for excess open magnetic flux $\dot{E}_{\text{REL}} \propto \Phi_{\text{open}}^2 \propto (\omega_Y/\omega_L)^{-2}$ [8]), which gives a familiar spin-down timescale $\tau_J = \dot{E}_{\text{rot}} / \dot{E}_{\text{REL}} \approx 300 B_{15}^{-2} 15^{P_{\text{ms}}^{-4} R_{10}^{-4} (\omega_Y/\omega_L)^{-2}}$ s. On the other hand, the mass loading on a PNS’s open magnetic flux is set by neutrino heating, a process totally different from the way that matter is extracted from a normal pulsar’s surface. In fact, a proto-magnetar outflow’s energy-to-mass ratio σ is given by

$$\sigma \approx \frac{\dot{E}_{\text{mag}}^{\text{REL}}}{2\pi \theta_{\text{LCFL}}^2 M_{\text{rhe}}} \approx 3 B_{15}^2 P_{\text{ms}}^{-3} L_{52}^{-5/3} \epsilon_{10}^{-10/3} P_{10}^{10/3} M_{1.4}^2 \exp \left[- \left(\frac{P}{P_{\text{cf}}} \right)^{-3} \right] \left(\frac{\omega_Y}{\omega_L} \right)^{-1} \quad (6)$$

From equation (6) we see that because a PNS’s mass-loss rate drops so precipitously as it cools, $\sigma \propto L_{\nu_{e}}^{-5/3} \epsilon_{\nu_{e}}^{-10/3}$ rises rapidly with time, easily reaching $\sim 10 - 1000$ during the KH epoch for typical magnetar parameters [9],[10]. Detailed evolution calculations indicate that E_{rot} is extracted roughly uniformly in $\log(\sigma)$ [10].

To conclude with a concrete example, consider a proto-magnetar with $B_{\nu} = 10^{16}$ G and $P_{\text{ms}} = 3$ at $t = 10$ seconds after core collapse. From the cooling calculations of ref [3] we have $L_{52}(10 \text{ s}) \approx 0.1$ and $\epsilon_{10}(10 \text{ s}) \approx 1$ (see Figs. [14] and [18]) and so, under the conservative estimate that $\omega_Y = \omega_L$, equation (6) gives $\sigma \approx 500$. Because σ represents the potential Lorentz factor of the outflow (assuming efficient conversion of magnetic to kinetic energy), we observe that millisecond proto-magnetar birth provides the right mass-loading to explain gamma-ray bursts (GRBs). Further, the power at $t = 10$ s is still $\dot{E}_{\text{mag}}^{\text{REL}} \approx 10^{50}$ erg/s with a spin-down time $\tau_3 \approx 30$ s, both reasonable values to explain typical luminosities and durations, respectively, of long-duration GRBs. Lastly, because σ rises so rapidly with time as the PNS cools, in the context of GRB internal shock models a cooling proto-magnetar outflow’s kinetic-to-γ-ray efficiency can be quite high; our calculations indicate that values of $10 - 50\%$ are plausible. We conclude that magnetar birth accompanied by rapid rotation (but requiring less angular momentum than collapsar models) represents a viable long-duration GRB central engine.

REFERENCES

1. Bionta, R. M., Blewitt, G., Bratton, C. B., Caspere, D., & Ciocio, A. 1987, Physical Review Letters, 58, 1494
2. Hirata, K. S., et al. 1988, Phys. Rev. D, 38, 448
3. Pons, J. A., Reddy, S., Prakash, M., Lattimer, J. M., & Miralles, J. A. 1999, ApJ, 513, 780
4. Qian, Y.-Z., & Woosley, S. E. 1996, ApJ, 471, 331
5. Bethe, H. A., & Wilson, J. R. 1985, ApJ, 295, 14
6. Thompson, C., & Duncan, R. C. 1993, ApJ, 408, 194
7. Weber, E. J., & Davis, L. J. 1967, ApJ, 148, 217
8. Bucciantini, N., Thompson, T. A., Arons, J., Quataert, E., & Del Zanna, L. 2006, MNRAS, 368, 1717
9. Thompson, T. A., Chang, P., & Quataert, E. 2004, ApJ, 611, 380
10. Metzger, B. D., Thompson, T.A., & Quataert, E. 2007, ApJ in press