Construction of Pd-Zn dual sites to enhance the performance for ethanol electro-oxidation reaction

Yajun Qiu1, Jian Zhang2✉, Jing Jin3, Jiaqiang Sun4, Haolin Tang5, Qingqing Chen6, Zedong Zhang1, Wenming Sun7✉, Ge Meng2, Qi Xu1, Youqi Zhu8, Aijuan Han3, Lin Gu9, Dingsheng Wang1✉ & Yadong Li1

Rational design and synthesis of superior electrocatalysts for ethanol oxidation is crucial to practical applications of direct ethanol fuel cells. Here, we report that the construction of Pd-Zn dual sites with well exposure and uniformity can significantly improve the efficiency of ethanol electro-oxidation. Through synthetic method control, Pd-Zn dual sites on intermetallic PdZn nanoparticles, Pd-Pd sites on Pd nanoparticles and individual Pd sites are respectively obtained on the same N-doped carbon coated ZnO support. Compared with Pd-Pd sites and individual Pd sites, Pd-Zn dual sites display much higher activity for ethanol electro-oxidation, exceeding that of commercial Pd/C by a factor of ~24. Further computational studies disclose that Pd-Zn dual sites promote the adsorption of ethanol and hydroxide ion to optimize the electro-oxidation pathway with dramatically reduced energy barriers, leading to the superior activity. This work provides valuable clues for developing high-performance ethanol electro-oxidation catalysts for fuel cells.

https://doi.org/10.1038/s41467-021-25600-9
Direct ethanol fuel cells (DEFCs) have attractive application prospect in the fields of power generation, fixation, and transformation for their good agreement with the urgent demand of current energy and environment. The development of highly active and low-cost electrocatalysts for the ethanol oxidation reaction (EOR) lays at the heart of DEFCs. Down-sizing of metal nanoparticles into individual metal sites is commonly regarded as an efficient approach to enhance the performance and cost-effectiveness of electrocatalysts, but may be improper for specific reactions catalyzed by multiple sites or peculiar active centers. For now, alloying of Pd with base metals (M) like Zn, Ni, Sn, Co, Cu, Ge, etc. to construct Pd-M dual sites, which are more active for EOR than pure Pd sites. The superior activity of such dual sites is generally considered to arise from base metals tuning the electronic property of Pd or synergistically taking part in the reaction. The ambiguous role of the dual sites is the major obstacle to creating promising electrocatalysts for EOR. In addition, in order to increase the exposure and uniformity of dual sites for better performance, conventional solvothermal methods are utilized to synthesize small-sized intermetallic compounds but usually cause residual surfactants covering dual sites with insufficient EOR performance. Hence, it is highly desirable to develop efficient means to establish exposed and uniform Pd-M dual sites for prominent EOR electrocatalysts, and clarify their true principle of promotion effect for the rational design of new catalysts.

Herein, we demonstrate an effective strategy to fabricate Pd–Zn dual sites for efficient EOR with Pd–Pd sites and individual Pd sites as references for investigating the mechanism of promotion effect. Volatile Zn atoms from ZnO nanorods can bound Pd atoms on N-doped carbon to form well exposed and uniform Pd–Zn dual sites. The Pd–Zn dual sites make the catalyst (PdZn/NC@ZnO) perform the much higher mass activity than the other two catalysts with Pd–Pd sites (Pd/NC@ZnO) and individual Pd sites (Pd/NC@ZnO), and even commercial Pd/C by ~24 times. Further DFT calculations manifest that Pd–Zn dual sites are beneficial to adsorbing ethanol and hydroxide ion with lower reaction energy, tuning the reaction pathway of EOR with significant reduced energy barriers in contrast to Pd–Pd and individual Pd sites, which accounts for the improved activity of PdZn/NC@ZnO.

Results
Synthesis and characterization of the catalysts. The fabrication of PdZn/NC@ZnO is realized by a polydopamine (PDA) confined Zn vapor-assisted strategy (Fig. 1a). First, ZnO nanorods are pre-synthesized as the support via the reported method (Fig. 1b). Then, the support is coated with a regular layer of PDA (~10–20 nm) as is observed by transmission electron microscopy (TEM) (Fig. 1c and Supplementary Fig. 1). Next, Pd(OH)₂ is loaded on the PDA layer through slowly precipitating Pd precursors with alkali, which is confirmed by X-ray diffraction (XRD) and TEM detections showing no obvious nanoparticles (NPs) (Supplementary Fig. 2). Under high-temperature reduction with H₂, the PDA layer transforms into N-doped carbon (NC) to restrict the migration of Pd atoms, and the Zn vapor is generated from ZnO for bounding Pd atoms to form Pd–Zn dual sites, finally leading to intermetallic PdZn NPs as evidenced by the scanning transmission electron microscopy (STEM) (Fig. 1d). The statistical distribution reveals the average particle size of such PdZn NPs being as small as 4.75 ± 0.77 nm (the inset in Fig. 1d and Supplementary Fig. 3). The size of PdZn NPs being small can also be reflected by the XRD detection which shows no PdZn signals except for neat ZnO peaks (Supplementary Fig. 4). After the ZnO being etched away, there are still PdZn NPs on the NC carrier in Supplementary Fig. 5a, and only graphitic carbon peaks are observed in the XRD patterns because of the PdZn NPs being too small (Supplementary Fig. 5c). When the loading of Pd precursor is increased five times, it can be seen that PdZn NPs become larger and exhibit featured intermetallic PdZn signals in the XRD patterns (Supplementary Fig. 5b, c), which suggests the nature of the PdZn NPs in PdZn/NC@ZnO being PdZn intermetallic compounds.

In order to confirm the composition of PdZn NPs, energy-dispersive X-ray spectroscopy (EDS) line scanning measurement is first carried out (Fig. 1e). The profile displays that X-ray counts of Pd and Zn fluctuate in a similar manner, indicating the simultaneous presence of Pd and Zn atoms in the nanoparticle. Further atomic-resolution EDS elemental mapping analysis manifests that Pd and Zn homogeneously dispersed over the entire nanoparticle (Fig. 1f and Supplementary Fig. 6). The typical aberration-corrected high-angle annular dark-field scanning transmission electron microscope (AC HAADF-STEM) image of one nanoparticle exhibits clear bright dots, within which the heavier Pd atoms (bright) can be distinguished from Zn atoms (darker) (Fig. 1g). More importantly, the ordering of these bright dots accords with the atomic arrangement of (002) plane in the intermetallic PdZn (P4/mmm) crystal structure, and the lattice spacing of 2.1 and 2.9 Å also agree with inter-plane distances of (200) and (110) planes (Fig. 1g and Supplementary Fig. 7). Besides, the intermetallic PdZn (111) planes can be also observed on the nanoparticle by high-resolution transmission electron microscopy (HR-TEM) (Supplementary Fig. 8). These results testify the intermetallic nature of PdZn NPs with uniform Pd–Zn dual sites in PdZn/NC@ZnO. In contrast, when treated at low temperature (400 °C) to avoid the Zn vapor, only smaller Pd NPs (2.75 ± 0.66 nm) with Pd–Pd sites are formed in the catalyst (Pd/NC@ZnO) as deduced from STEM, TEM, and EDS line scanning tests (Fig. 1h, Supplementary Figs. 9–12). Moreover, individual Pd sites can be even obtained on the same support (Pd/NC@ZnO) through the milder synthetic condition (200 °C), as determined by the solely bright dots assigned to isolated Pd atoms showed in the AC HAADF-STEM image (Fig. 1i and Supplementary Figs. 13–15). The smaller Pd NPs and individual Pd sites testify the PDA layer confining the aggregation of Pd atoms. The loading amount of Pd is 0.30, 0.40, and 0.35 wt% for PdZn/NC@ZnO, Pd₁/NC@ZnO, and Pd₁/NC@ZnO as affirmed by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements.

The different dispersion of Pd in three samples can be also verified by X-ray absorption spectroscopy techniques (XAS) (Fig. 2a). Fourier transformed extended X-ray absorption fine structure (FT-EXAFS) spectra at Pd K-edge show that the first nearest-coordination peak of Pd in PdZn/NC@ZnO locates at the smaller R value of 2.2 Å in comparison with that in Pd foil at 2.5 Å from the Pd–Pd contribution (for corresponding EXAFS in k-space, see Supplementary Fig. 16). The fitting analysis elucidates that this first shell peak is contributed from Pd–Zn (~2.6 Å) and longer Pd–Pd (~2.8 Å) bonds, coinciding with the atomic structure of intermetallic PdZn compound (Supplementary Fig. 17 and Supplementary Table 1). While for Pd₁/NC@ZnO and Pd₁/NC@ZnO, there is the only one peak from shorter Pd–Pd bond (2.5 Å) and Pd–N(C) bond (1.7 Å) in their FT-EXAFS curves (Supplementary Fig. 17 and Supplementary Table 1). These results further demonstrate Pd species existing as Pd–Zn dual sites, Pd–Pd, and individual Pd sites in three catalysts.

The electronic structure of three catalysts is next investigated through Pd K-edge X-ray absorption near edge structure (XANES) spectroscopy. The adsorption edge energy (Eₐ) of PdZn/NC@ZnO is higher than that of Pd foil and Pd₁/NC@ZnO...
Fig. 1 Synthetic scheme and characterizations of synthesized catalysts. a Synthetic strategy of PdZn/NC@ZnO. b TEM image of ZnO nanorods. Scale bar, 50 nm. c TEM image of ZnO@PDA. Scale bar, 100 nm. d STEM image of PdZn/NC@ZnO, the inset is the size distribution histogram of PdZn nanoparticles in PdZn/NC@ZnO. Scale bar, 50 nm. e EDS line scanning profile across one PdZn nanoparticle in PdZn/NC@ZnO. The signals were collected from the Pd L edge and the Zn K-edge. Scale bar, 10 nm. f AC HAADF-STEM image of one PdZn nanoparticle in PdZn/NC@ZnO. Scale bar, 2 nm. g AC HAADF-STEM elemental mappings of one PdZn nanoparticle in PdZn/NC@ZnO. Scale bar, 2 nm. h STEM image of Pd1/NC@ZnO. Scale bar, 20 nm. i AC HAADF-STEM image of Pd1/NC@ZnO. Scale bar, 5 nm.
but much lower than that of Pd$_1$/NC@ZnO (Fig. 2b), indicating that the electron density of Pd decreases slightly for PdZn/NC@ZnO but significantly for Pd$_1$/NC@ZnO with respect to Pd$_{10}$/NC@ZnO. This conclusion can be also drawn from X-ray photoelectron spectroscopy (XPS) and CO diffuse reflection infrared Fourier transform spectroscopy (CO-DRIFTS) studies. It can be evidenced from XPS spectra that Pd 3d signal of PdZn/NC@ZnO locates quite right between that of Pd$_1$/NC@ZnO and Pd$_{10}$/NC@ZnO, revealing the moderate electron density of Pd in PdZn/NC@ZnO (Fig. 2c). Moreover, CO-DRIFTS experiments disclose that CO stretching frequency has a blue shift from 2077 cm$^{-1}$ for Pd$_{10}$/NC@ZnO to 2083 and 2098 cm$^{-1}$ for PdZn/NC@ZnO and Pd$_1$/NC@ZnO (Fig. 2d). This can be attributed to the linear combination of CO on Pd species with distinct electron deficiency in Pd–Zn dual sites and individual Pd sites in comparison with Pd–Pd sites. The varying decrease in electron density of Pd discloses the slight electron transfer from Pd to Zn atoms in Pd–Zn dual sites and the strong electron transfer from Pd to the carrier in individual Pd sites$^{56-59}$.

Performance evaluation for EOR. The performance for EOR is then evaluated on three catalysts with commercial Pd/C as the reference. In 1.0 M KOH and 1.0 M ethanol solution, cyclic voltammograms (CVs) reveal that PdZn/NC@ZnO exhibits the much higher current density than Pd$_1$/NC@ZnO, Pd$_{10}$/NC@ZnO, and Pd/C (Fig. 3a and Supplementary Fig. 18). Unlike the negligible mass activity of Pd$_1$/NC@ZnO and Pd$_{10}$/NC@ZnO, the mass activity of PdZn/NC@ZnO comes to a high level as 18.14 A mg$^{-1}$ Pd$^{-1}$, which is 24-fold to that of Pd/C (0.76 A mg$^{-1}$ Pd$^{-1}$) and exceeds the performance of most Pd-based catalysts in the literature (Fig. 3b and Supplementary Table 2). It is noteworthy that the catalytic efficiency for EOR can even reach up to 77.51 A mg$^{-1}$ Pd on the surface of PdZn NPs in PdZn/NC@ZnO (Supplementary Fig. 19). The specific activity of PdZn/NC@ZnO is 54.60 mA cm$^{-2}$, also surpassing that of Pd/C (1.48 mA cm$^{-2}$) by ~37 times (Fig. 3b). Electrochemical surface area (ECSA) for PdZn/NC@ZnO is determined to be 33.23 m2 g$^{-1}$ Pd, smaller than that for Pd$_{10}$/NC@ZnO (36.76 m2 g$^{-1}$ Pd), Pd$_1$/NC@ZnO (76.77 m2 g$^{-1}$ Pd), and Pd/C (51.02 m2 g$^{-1}$ Pd) (Fig. 3c and Supplementary Fig. 20). This implies the great intrinsic activity of active Pd–Zn sites in PdZn/NC@ZnO for EOR. Besides, the catalytic stability of PdZn/NC@ZnO is probed via chronoamperometry (CA) tests. It presents that PdZn/NC@ZnO remains larger current density all the time during the test than Pd/C which decays rapidly (Fig. 3d), representing a superior long-term activity for EOR. Moreover, CV curves of potential cycling displays negligible loss in peak current density of PdZn/NC@ZnO before and after 2000 potential cycles (Supplementary Fig. 21). Barely no residual Pd and Zn are detected in the reaction mixture, and the content of Pd in PdZn/NC@ZnO keeps the same as 0.3 wt % after the stability test (Supplementary Table 3). Corresponding characterizations of PdZn/NC@ZnO after potential cycles show no observable changes in the morphology and composition (Supplementary Figs. 22–24). These results prove the desired stability of PdZn/NC@ZnO for EOR. Obviously, the delightful activity and durability of PdZn/NC@ZnO clarifies that Pd–Zn dual sites are significantly superior to Pd–Pd and individual Pd sites for EOR.

The performance of PdZn/NC@ZnO for EOR is further evaluated in an actual alkaline membrane fuel cell. The polarization and power density curves in single DEFC with different electrocatalysts as anodes are shown in Supplementary Fig. 25. The open-circuit voltage of the fuel cell containing PdZn/NC@ZnO and Pd/C electrocatalysts is 0.846 and 0.843 V, respectively. The DEFC performances of PdZn/NC@ZnO (72.30 mW cm$^{-2}$) are better than that of Pd/C (64.75 mW cm$^{-2}$). Notably, when normalizing the power density values of the DEFC with respect to the Pd loading, the electrical performance of PdZn/NC@ZnO electrode material
saturated 1.0 M KOH and 1.0 M C₂H₅OH at room temperature at scan rate of 50 mV s⁻¹, analyzed by on-line GC, ion chromatography (IC), and ¹H NMR (Supplementary Fig. 26). It is found out that acetate is only detected product in the EOR reaction over PdZn/NC@ZnO, and no CO₂ is formed. This demonstrates that the EOR proceeds the common reactive-intermediate pathway that ethanol is initially oxidized to acetaldehyde and subsequently to acetic acid in alkaline solution.

Disclosing the superiority of Pd–Zn dual sites. To better understand the superiority of Pd–Zn dual sites, we first probe into the reaction pathway of EOR over PdZn/NC@ZnO. The products in gas and liquid phase of the EOR reaction system are, respectively, analyzed by on-line GC, ion chromatography (IC), and ¹H NMR (Supplementary Fig. 26). It is found out that acetate is only detected product in the EOR reaction over PdZn/NC@ZnO, and no CO₂ is formed. This demonstrates that the EOR proceeds the common reactive-intermediate pathway that ethanol is initially oxidized to acetaldehyde and subsequently to acetic acid or acetate in alkaline solution.

Density functional theory (DFT) calculations are further applied to analyze the EOR procedure on three different Pd-based active sites. For the surface of intermetallic PdZn model, we compare the surface energies of (001), (100) as well as (110) surfaces, which correspond to the (002), (200), and (110) surfaces observed on PdZn/NC@ZnO by AC HAADF-STEM images (Fig. 1g). The tendency of surface energy is (110) < (100) < (001) (Supplementary Table 4). Hence, the most stable (110) surface is selected as the reaction surface (Supplementary Fig. 27). Our theoretical studies suggested that for individual Pd sites the EOR process would be interrupted due to the exclusive hydrogen bond when CH₃CH₂OH is formed. (Supplementary Figs. 28 and 29). As for Pd–Pd sites on Pd NPs, the ethanol adsorbs on Pd atoms and are prior to eliminate its methylene C–H bond during the EOR process, which agrees with previous studies (Fig. 4a and Supplementary Fig. 30). On the contrary, for Pd–Zn dual sites on PdZn NPs, present Zn atoms facilitate the adsorption of ethanol on them rather than on Pd atoms, and let the dehydrogenation of ethanol much easier to break O–H bond initially instead of methylene C–H bond, adjusting the EOR procedure to a variant pathway (Fig. 4b and Supplementary Fig. 31). Free energy profiles of these two different pathways are described in Fig. 4c, d and Supplementary Fig. 32. It can be observed that the reaction procedure of initial dehydrogenation of ethanol (State 2) over Pd–Zn dual sites is easier than that over Pd–Pd sites (−37.88 vs −35.38 kcal mol⁻¹). After the 1st dehydrogenation step (State 2), CH₃CHOH and CH₃CHOH are favorable on Pd (111) and PdZn (110) surface, respectively. The formed CH₃CHO could eliminate the possibility of parallel reactions to either CH₂CHO or CH₂COH in the 2nd dehydrogenation step (State3), which coexisted for the 2nd dehydrogenation step of CH₃CHOH on Pd (111) surface. Meanwhile, the desorption processes of acetic acid on the Pd–Zn dual sites are much easier than that on Pd–Pd sites (1.27 vs 7.72 kcal mol⁻¹). Therefore, Pd–Zn dual sites can enhance the interaction with ethanol and OH substrates and thus alter the EOR process into an energetically more favorable pathway, which contributes to the preeminent activity of PdZn/NC@ZnO in contrast to Pd/NC@ZnO, Pd₀/NC@ZnO, and commercial Pd/C.

Discussion

In conclusion, we report that creating Pd–Zn dual sites with well exposure and homogeneity can boost the EOR to a large extent. Comparing with Pd₀/NC@ZnO with Pd–Pd sites and Pd₁/NC@ZnO with individual Pd sites, the PdZn/NC@ZnO with Pd–Zn dual sites displays the striking activity and good durability for EOR, even preceding commercial Pd/C significantly. DFT calculations manifest that Pd–Zn dual sites benefit the adsorption of ethanol and OH with respect to Pd–Pd sites and individual Pd sites, tuning the reaction pathway of EOR to proceed more smoothly with much lower energy barriers. Our study offers the clear comprehension for the role of alloyed dual sites on EOR, and may open up new opportunities to develop efficient electrocatalysts for DEFCs.
Methods

Synthesis of ZnO@PDA. ZnO nanorods were synthesized by a reported method. Totally, 100.0 mg ZnO nanorods were dispersed in 20.0 mL Tris buffer solution (100.0 mM, pH = 8.5) by ultrasonication. Then dopamine hydrochloride solution (100.0 mg in 1.0 mL deionized water) was added to the ZnO suspension while stirring. The suspension was allowed to stir for 12 h at room temperature. The resulting products were washed by deionized water and ethanol three times and collected by centrifugation. After dried at 80 °C in an oven, the desired ZnO@PDA was obtained.

Synthesis of Pd(OH)2/ZnO@PDA. A total of 22.5 mg of urea was added in 100 mL of deionized water. Then, 200.0 mg of ZnO@PDA was added into the solution and ultrasonicated for 30 min. Totally, 1.0 mL of 2.8 mg mL−1 Na2PdCl4 aqueous solution was added and stirred for 3 h at room temperature. The mixture was then heated up to 90 °C for 12 h. The products were centrifuged and washed with deionized water three times. After drying in an oven at 80 °C overnight, Pd(OH)2/ZnO@PDA was obtained.

Synthesis of PdZn/NC@ZnO. The obtained Pd(OH)2/ZnO@PDA was treated at 800 °C in a home-made porcelain boat with a cap under H2 (5% in Ar) atmosphere for 1 h in a tube furnace at a ramp rate of 5 °C min−1 to provide PdZn/NC@ZnO.

Performance comparison of different catalysts. Electrochemical measurements were carried out with a three-electrode system on an electrochemical workstation (CHI 660, Shanghai Chenhua, China). Our experiments were performed with a saturated Ag/AgCl electrode (Ag/AgCl) as the reference electrode. It was calibrated to E (RHE, reversible hydrogen electrode) from E(Ag/AgCl) by following the formula

\[E(RHE) = E(\text{Ag/AgCl}) + 0.197 + 0.05916pH \]

10.0 mg catalysts were dispersed in 950.0 µL isopropanol, 950.0 µL deionized water, and 100.0 µL of 0.5 wt% NaCl solution and then followed by an intense ultrasonication of 2 h to get a homogeneous 5.0 mg mL−1 catalyst ink. After that, 20.0 µL inks (equal to 10.0 µg of catalyst) were deposited onto a 5.0 mm diameter glassy carbon rotating disk electrode (RDE, Pine Research Instrumentation) and dried to form a uniform thin film that was further used as a working electrode. Therefore, the actual Pd loadings of PdZn/NC@ZnO, Pd1/NC@ZnO, Pd2/NC@ZnO, and commercial Pd/C are 0.03086, 0.03458, 0.03983, and 0.50000 µg, respectively. A carbon rod was used as the counter electrode, and a saturated Ag/AgCl electrode was used as the reference electrode. All of the CV measurements were obtained at room temperature. The electrolyte solutions were purged with high-purity nitrogen for at least 30 min before use. The working electrode was initially cycled between −0.85 and 0.35 V at 50.0 mV s−1 in 1.0 M KOH for several cycles to remove the residual ligands on catalyst surface. Afterward, for the EOR measurement, the working electrodes were subject to CV scans between −0.85 and 0.65 V at 50 mV s−1 in 1.0 M KOH and 1.0 M ethanol. The chronoamperometry measurements were conducted at −0.30 V in the solution of 1.0 M KOH and 1.0 M ethanol.

Characterizations. XRD patterns were recorded with a Rigaku D/max 2500PC X-ray powder diffractometer with monochromated Cu Ka radiation (λ = 1.5418 Å). TEM images were recorded by Hitachi-7700 working at 100.0 kV. HR-TEM, STEM, line scan analysis, and the corresponding EDX mapping were recorded by a JEOL JEM-2100F high-resolution TEM operating at 200 kV. AC HAADF-STEM images are taken on a JEOL JEMARM200F STEM/TEM with a spherical aberration corrector working at 300 kV. The lattice spacing is analyzed by Digital Micrograph software, with a calculation process explained as follows. The pixel intensities along each line parallel to the analyzed lattice fringes (several atoms length is usually included for high accuracy) are first added together, and then plotted vs. the distances along the perpendicular direction. The XPS spectrum was measured ex situ by a PHI Quantera SXM system under 3.1 × 10−8 Pa using Al Kα radiation at room temperature. The binding energies were calibrated by referring C 1s peak to 284.8 eV. The metal content was determined by ICP-OES on Thermo Fisher IRIS Intrepid II. CO-DRIFTS characterizations are carried out on a Bruker Tensor II in situ infrared spectrometer with MCT detector using a home-made cell. The samples are pretreated with Ar at 25 °C for 1 h (20 mL min−1), the background spectrum was collected. Then, CO gas was introduced into the sample holder for 25 °C 1 h (20 mL min−1) and spectra were collected every 5 min. The sample was flushing with Ar and spectra were collected every 5 min. XAS measurements were taken at BL14W1 station in Shanghai Synchrotron Radiation Facility (SSRF, operated at 3.5 GeV with a maximum current of 250 mA, Pd K-edge under fluorescence excitation mode). The XAS data of PdZn/NC@ZnO, Pd1/NC@ZnO, and Pd2/NC@ZnO samples were collected at room temperature in fluorescence excitation mode using a Lytle detector and Ru filter. Pd film and PdO were used as references and measured in a transmission mode using ionization chamber. The acquired XAS data were processed according to the standard procedures using the ATHENA module implemented in the IFEFFIT software packages. The XANES spectra were gained by subtracting the post-edge background from the overall absorption and then normalizing with respect to the edge-jump step. Subsequently, the χ(k) data were Fourier transformed to real (R) space using a hanning windows (dk = 1.0 Å−1) to separate the EXAFS contributions from different coordination shells. Least-squares curve parameter fitting was carried out using the ARTEMIS module of IFEFFIT software packages to obtain the quantitative structural parameters around central atoms. Gas chromatography (GC, Shimadzu, Tracera (GC-2010 Plus A, Barrier Discharge Ionization Detector (BID)-2010 Plus))
electro-oxidation reaction. Pd-N4 (pyridine-N4) embedded in the following steps:

\[\text{Nernst equation} \]

\[\text{potential at pH} = \] electrode (NHE) according to the Nernst equation.

Data availability

The considered EOR occurring in an alkaline electrolyte (pH = 14) are shown in the following steps:

\[\text{CH}_3\text{CH}_2\text{OH} + \text{OH}^- \rightarrow \text{CH}_3\text{CHOH} + \text{H}^+ + \text{e}^- \]

\[\text{CH}_3\text{CHOH} + \text{OH}^- \rightarrow \text{CH}_3\text{CHO} + \text{H}_2\text{O} + \text{e}^- \]

\[\text{CH}_3\text{CHO} + \text{OH}^- \rightarrow \text{CH}_3\text{CHOH} + \text{H}_2\text{O} + \text{e}^- \]

\[\text{CH}_3\text{COOH} + \text{OH}^- \rightarrow \text{CH}_3\text{COOH} + \text{H}_2\text{O} + \text{e}^- \]

References

1. Wang, H. & Liu, Z. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 130, 10996–11004 (2008).

2. Zhu, Z. et al. High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew. Chem. Int. Ed. 49, 411–414 (2010).

3. Zhou, M., Li, C. & Fang, J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem. Rev. 121, 736–795 (2021).

4. Zhou, Z. et al. Engineering three-dimensional nitrogen-doped carbon black embedding nitrogen-doped graphene anchoring ultrafine surface-clean Pd nanoparticles as efficient ethanol oxidation electrocatalyst. Appl. Catal. B, 119, 11465, 11464 (2021).

5. Li, S. et al. Flexible solid-state direct ethanol fuel cell catalyzed by nanoporous high-entropy Al-Pd-Ni-Cu-Mo anode and spinel (AlMnCo)Ox cathode. Adv. Funct. Mater. 30, 2007129 (2020).

6. Basumathy, P., Konwar, D. & Yoon, Y. Conductivity-tailored PtNi/MoS2 3D nanoflower catalyst via Sn doping as a hybrid anode for a variety of hydrocarbon fuels in proton exchange membrane fuel cells. Appl. Catal. B, 267, 118724 (2020).

7. Bambagioni, V. et al. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel zinc materials. ChemSusChem 2, 99–112 (2019).

8. Marchionni, A. et al. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni/Zn)/C anodes in direct alcohol fuel cells. OiemSuesChem 6, 518–528 (2013).

9. Bianchi, C. et al. Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem. Commun. 11, 1077–1080 (2009).

10. An, L. & Zhao, T. An alkaline direct ethanol fuel cell with a cation exchange membrane. Energy Environ. Sci. 4, 2213–2217 (2011).

11. Monyonocho, E., Woo, T. & Baranov, A. Ethanol electrooxidation reaction in alkaline media for direct ethanol fuel cells. Electrochem. 13, 1–57 (2018).

12. Wang, Z. et al. Ultradisperse PtNiM (M = Rh, Os, and Ir) nanowires as efficient fuel oxidation electrocatalytic materials. Adv. Mater. 31, e1805833 (2019).

13. Fan, X. et al. Promoting the electrocatalytic performance of noble metal agglomerates by ligand-directed modification. Angew. Chem. Int. Ed. 59, 7506–7511 (2020).

14. Gu, D. et al. Freeze-thaw-promoted fabrication of clean and hierarchically structured noble-metal aerogels for electrocatalysis and photoelectrocatalysis. Angew. Chem. Int. Ed. 59, 8293–8300 (2020).

15. Gu, D. et al. Unveiling reductive chemistry in fabricating noble metal agglomerates for superior oxygen evolution and ethanol oxidation. Nat. Commun. 11, 1590–1600 (2020).

16. Li, M. et al. Single-atom catalysis of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2, 495–503 (2019).

17. Li, J. et al. Ternary CoPtAu nanoparticles as a general catalyst for highly efficient electro-oxidation of liquid fuels. Angew. Chem. Int. Ed. 58, 11527–11533 (2019).

18. Dutta, A., Adhikary, R., Broenkamp, P. & Datta, J. Catalytic chiral support by Ni/NiO(NiOH)2 in low level of Pd/Pt boosting the performance of alkaline DEFC. Appl. Catal. B, 257, 117847 (2019).

19. Liang, Z. et al. Direct 12-electron oxidation of ethanol on a ternary Au(core)-Pt(shell) electrocatalyst. J. Am. Chem. Soc. 141, 9629–9636 (2019).

20. Xiong, Y. et al. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 13, 1–6 (2020).

21. Zeng, L. & Xue, C. Single metal atom decorated photocatalysts: progress and challenges. Nano Res. 13, 1–11 (2020).

22. Wu, W. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc-air battery. Nano Res. 14, 998–1003 (2021).

23. Chen, Y. et al. Atomic level modulation of electronic density at cobalt single-atom sites derived from metal–organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60, 3212–3221 (2021).
Han, A. et al. Isolating contiguous Pt atoms and forming Pt-Zn intermetallics for acetylene semi-hydrogenation. Angew. Chem. Int. Ed. 132, 11744–11749 (2020).

Yun, Q. et al. Synthesis of PtM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for palladium oxidation. ACS Nano. 13, 14329–14336 (2019).

Yin, P. et al. Synthesis of palladium-based crystalline amorphous core-shell nanofilms for highly efficient ethanol oxidation. Adv. Mater. 32, e2000482 (2020).

Yu, X. et al. Phosphorous incorporation in Pd,Sn alloys for electrocatalytic alcohol oxidation. Nano Energy 77, 105116 (2020).

Tiwari, J. et al. Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium–cobalt phosphide nanoparticles. Nano Energy 78, 105116 (2021).

Jiang, K. et al. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 55, 9030–9035 (2016).

Sarkar, S. et al. Ordered Pd-Ge intermetallic nanoparticles as highly efficient and robust catalyst for ethanol oxidation. Chem. Mater. 27, 7459–7467 (2015).

Sneed, B. et al. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis. J. Am. Chem. Soc. 135, 14691–14700 (2013).

Yu, X. et al. Stability of Pd,Pb nanocubes during electrocatalytic alcohol oxidation. Chem. Mater. 32, 2044–2052 (2020).

Luo, L. et al. Composition-graded Cu nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nano Energy 3438 (2018).

Lopez, A. et al. Facile removal of stabilizer-ligands from supported gold ensembles at a fuel-cell cathode. J. Phys. Chem. B. 112, 987–997 (2004).

John, P., Perdew, K. & Matthias, E. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 4 (1996).

Grimme, S. Semiempirical GGA-type density functional with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

Mcnellis, E., Meyer, J. & Reuter, K. Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions. Phys. Rev. B. 80, 10 (2009).

Monkhorst, H. & Pack, J. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).

Jain, A. et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 11 (2013).

Norskov, J., Logadottir, A. & Lindqvist, L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 7 (2004).

Wei, L. et al. Concave cubic Pt–Sn alloy nanocrystals with high-index facets and enhanced electrocatalytic ethanol oxidation. J. Catal. 2, 7204–7210 (2019).

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0702003), the National Natural Science Foundation of China (21803833, 21871159, and 52002249), Science and Technology Key Project of Guangdong Province of China (2020B010188002), the Guangdong Basic and Applied Basic Research Foundation (2019A1515010025), the National Postdoctoral Program for Innovative Talents (BX20190167), the Shuimu Tsinghua Scholar Program, the China Postdoctoral Science Foundation (2020M670283). We thank the BL14W1 station of Shanghai Synchrotron Radiation Facility (SSRF) for XAFS measurements.

Author contributions

Y.Q. performed the experiments, collected and analyzed the data, and wrote the paper. W.S. conducted the density functional theory calculation and analysis. Z.Z. helped with XANES and EXAFS spectroscopy analysis. J.J., J.S., Q.C., G.M., Q.X., Y.Z., H.T. and A.H. helped with data analysis and discussions. J.Z., D.W. and Y.L. conceived the experiments, planned synthesis, characterization. J.J., J.S., Q.C., G.M., Q.X., Y.Z., H.T. and A.H. helped with data analysis and discussions. J.Z., D.W. and Y.L. conceived the experiments, planned synthesis, characterization. W.S. conducted the density functional theory calculation and analysis. Z.Z. helped with data analysis and discussions. J.Z., D.W. and Y.L. conceived the experiments, planned synthesis, characterization. W.S. conducted the density functional theory calculation and analysis. Z.Z. helped with data analysis and discussions. J.Z., D.W. and Y.L. conceived the experiments, planned synthesis, characterization.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-25600-9.

Correspondence and requests for materials should be addressed to J.Z., W.S. or D.W.

Peer review information Nature Communications thanks Francesco Vizza and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

30. Yang, J., Li, W., Wang, D. & Li, Y. Single-atom materials: small structures determine macroproperties. Small Struct. 2, 2000051 (2021).

31. Chen, L. et al. Adsorption site regulation to guide atomic design of Ni catalysts for acetylene semi-hydrogenation. Angew. Chem. Int. Ed. 132, 11744–11749 (2020).

32. Yun, Q. et al. Synthesis of PtM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for palladium oxidation. ACS Nano. 13, 14329–14336 (2019).

33. Yin, P. et al. Synthesis of palladium-based crystalline amorphous core-shell nanofilms for highly efficient ethanol oxidation. Adv. Mater. 32, e2000482 (2020).

34. Yu, X. et al. Phosphorous incorporation in Pd,Sn alloys for electrocatalytic alcohol oxidation. Nano Energy 77, 105116 (2020).

35. Tiwari, J. et al. Remarkably enhanced catalytic activity by the synergistic effect of palladium single atoms and palladium–cobalt phosphide nanoparticles. Nano Energy 78, 105116 (2021).

36. Jiang, K. et al. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem. Int. Ed. 55, 9030–9035 (2016).

37. Sarkar, S. et al. Ordered Pd-Ge intermetallic nanoparticles as highly efficient and robust catalyst for ethanol oxidation. Chem. Mater. 27, 7459–7467 (2015).

38. Sneed, B. et al. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: an archetype for studying lattice strain and composition effects in electrocatalysis. J. Am. Chem. Soc. 135, 14691–14700 (2013).

39. Yu, X. et al. Stability of Pd,Pb nanocubes during electrocatalytic alcohol oxidation. Chem. Mater. 32, 2044–2052 (2020).

40. Luo, L. et al. Composition-graded Cu nanoparticles to regulate selectivity in 4-nitrophenylacetylene hydrogenation. Nano Energy 3438 (2018).

41. Lopez, A. et al. Facile removal of stabilizer-ligands from supported gold ensembles at a fuel-cell cathode. J. Phys. Chem. B. 112, 987–997 (2004).

42. John, P., Perdew, K. & Matthias, E. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 4 (1996).

43. Grimme, S. Semiempirical GGA-type density functional with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

44. Mcnellis, E., Meyer, J. & Reuter, K. Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions. Phys. Rev. B. 80, 10 (2009).

45. Monkhorst, H. & Pack, J. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).

46. Jain, A. et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 11 (2013).

47. Norskov, J., Logadottir, A. & Lindqvist, L. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108, 7 (2004).

48. Wei, L. et al. Concave cubic Pt–Sn alloy nanocrystals with high-index facets and enhanced electrocatalytic ethanol oxidation. J. Catal. 2, 7204–7210 (2019).
