ORIGINAL ARTICLE

Lrrc34 Is Highly Expressed in SSC and Is Necessary for SSCs Expansion In Vitro

Jinhuan Ou, Yiran Li, Zhipeng Wang, Cheng Jin, Kai Li, Yan Lu, Dingfeng Zou, Pengyu Li, Mengzhen Li, Shiying Miao, Linfang Wang, Wei Song*
Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical College, Beijing 100005, China

Key words: spermatogonial stem cells; Lrrc34; high expression; apoptosis

Objective To discover critical genes contributing to the stemness and maintenance of spermatogonial stem cells (SSCs) and provide new insights into the function of the leucine-rich repeat (LRR) family member Lrrc34 (leucine-rich repeat-containing 34) in SSCs from mice.

Methods Bioinformatic methods, including differentially expressed gene (DEG), gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, were used to uncover latent pluripotency-related genes. Reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence analyses were utilized to verify the mRNA and protein expression levels, respectively. RNA interference of Lrrc34 using siRNA was performed to detect its transient impact on SSCs.

Results Eight DEGs between ID4-EGFP+ (G) and ID4-EGFP+/TSPAN8High (TH), eight DEGs between G and ID4-EGFP+/TSPAN8Low (TL) and eleven DEGs between TH and TL were discovered, and 11 protein-protein interaction (PPI) modules were found to be significant in the PPI network of DEGs. One of the DEGs, Lrrc34, was selected as a potential pluripotency-related gene due its differential expression among ID4-EGFP+ spermatogonia subsets and its interaction with fibroblast growth factor 2.

Received November 7, 2019. Published online January 20, 2020.
*Corresponding author Tel: 86-13810749579, E-mail: songwei@ibms.pumc.edu.cn
This work was supported by grants from the National Key Research and Development Program of China (2018YFC1003500), the CAMS Innovation Fund for Medical Sciences (2017-I2M-3-009, 2016-I2M-1-001, and 2017-I2M-1-004), the National Natural Science Foundation of China (81672472 and 31970794), and the State Key Laboratory Special Fund from the Ministry of Science of China (2060204).
in the fifth module. Immunofluorescence experiments exhibited specific expression of Lrrc34 in a subpopulation of undifferentiated spermatogonia marked by LIN28A, and RT-PCR experiments confirmed the high expression of Lrrc34 in SSCs of P7 and adult mice. The transient knockdown of Lrrc34 in SSCs resulted in reduced colony sizes and significant changes in the transcriptome and apoptotic pathways.

Conclusion Lrrc34 is highly expressed in mouse SSCs and is required for SSC proliferation *in vitro* through effects on transcriptome and signaling transduction pathways.

Spermatogonial stem cells (SSCs), a subpopulation of undifferentiated spermatogonia (including A_single, A_pair and A_aligned based on morphology), are the sole stem cell pool in the germline that maintains male fertility by ensuring a balance between self-renewal and differentiation via the continuous production of sperm capable of fertilization.\[^{1,2}\] The SSC pool in the undifferentiated spermatogonia forms in 2–3-day-postpartum mice and resides in the basement membrane of the seminiferous tubule throughout the life of mice.\[^{3}\] The self-renewal of SSCs is an essential process in which their pluripotency is maintained by numerous extrinsic and intrinsic factors. For instance, the extrinsic factor glial cell line-derived neurotrophic factor (GDNF), which is mainly secreted by Sertoli cells, can bind to its receptor GFRA1/RET in SSCs and activate downstream signaling pathways to give rise to the transcription of GDNF-dependent intrinsic factors, such as ID4 and ETV5. The extrinsic factor fibroblast growth factor 2 (FGF2) is thought to enhance the function of GDNF.\[^{4}\] The complex regulatory mechanism guarantees SSC maintenance and the source of mature spermatozoa.

Lrrc34 is predicted to belong to a subfamily of leucine-rich repeats (LRRs), which is called the ribonuclease inhibitor (RI)-like subfamily, and is predicted to have a protein structure that is identical to that of RI.\[^{5,6}\] The β-strands and α-helices of the RI-like subfamily provide a structural framework for protein-protein interactions with various biological functions, such as RNA protection from mammalian RIs.\[^{7,8}\] However, the function of Lrrc34 is not clearly understood. Previous studies have revealed that single nucleotide polymorphisms are closely associated with several diseases, such as hypertension and coronary heart disease as well as systemic
sclerosis-related interstitial lung disease.\cite{9, 10} Lührig S reported that Lrrc34 is highly expressed in pluripotent stem cells and germ cells in the testes but decrease after differentiation, which suggests that Lrrc34 is involved in the regulation of pluripotency.\cite{5} Nevertheless, no further studies have attempted to determine the role of Lrrc34 in SSCs. In the present study, we discovered that Lrrc34 is a differentially expressed gene (DEG) among subpopulations of undifferentiated mouse spermatogonia, identified its expression pattern in mouse SSCs and explored its function in the maintenance of SSCs in vitro.

MATERIALS AND METHODS

Materials
P7 and adult C57BL/6 male mice [SiBeiFu (Beijing) Biological Technology Company)]; type-IV collagenase (Gibco, 17104019); 0.25% (1 x) trypsin Solution (HyClone, SH30042.01); CD90.2 MicroBeads, mouse (Miltenyi Biotec, 130-049-101); RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, K1622); PowerUp™ SYBR® Green Power Master Mix (Thermo Fisher Scientific, A25742); Fluoroshield Mounting Medium with DAPI (Abcam, ab104139); anti-c-Kit (Santa Cruz, sc-19983); anti-hLIN-28A (RD Systems, AF3757); anti-LRRC34 antibody (Abcam, ab107820); Alexa Fluor® 647 AffiniPure Donkey Anti-Goat IgG (H+L) [Jackson ImmunoResearch (USA), 705-545-003]; Alexa Fluor® 594 AffiniPure Donkey Anti-Rabbit IgG (H+L) [Jackson ImmunoResearch (USA), 711-585-152]; Alexa Fluor® 488 AffiniPure Donkey Anti-Mouse IgG (H+L) [Jackson ImmunoResearch (USA), 715-545-150]; and RNAi Max (Invitrogen, 13778150) in GIBCO® Opti-MEM® (GlutaMAX™) Reduced Serum Medium (Invitrogen, 31985070).

Data downloading and DEG analysis
RNA-seq raw data (GSE83311) of spermatogonia subpopulations were downloaded from the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo).

Deseq2\cite{11} was used to analyze the expression levels of transcripts obtained from Cufflinks\cite{12} and to predict the differentially expressed transcripts between distinct
experimental conditions. Genes were considered significant if the false discovery rate (FDR) was less than 0.05.

GO and KEGG pathway enrichment analyses

Gene ontology (GO) is a bioinformatics tool that provides gene annotation and thus allows researchers to comprehend the biological processes in which genes participate.\(^{[13]}\) Kyoto Encyclopedia of Genes and Genomes (KEGG) is a database resource that links genomic information with higher-order functional information by computerizing the current knowledge on cellular processes and standardizing gene annotations.\(^{[14]}\) GO and KEGG were used to predict the biological processes in which the identified DEGs are involved. A standard hypergeometric distribution was used to measure the significant \(P\)-values with the R package named clusterProfiler.\(^{[15]}\) Multiple hypothesis testing was performed using the Benjamini and Hochberg (BH) method.

Construction of the PPI network

The human protein-protein interaction (PPI) dataset was downloaded from the STRING database.\(^{[16]}\) STRING (https://string-db.org/) is a database that stores information on functional protein interactions and covers 9.6 million proteins from 2031 species. A PPI network is defined as a graph, and the nodes and edges in this graph represent proteins and their interactions, respectively. We used Cytoscape\(^{[17]}\) to construct the PPI network of the DEGs. The modules in the PPI network were calculated through Molecular Complex Detection (MCODE).

SOM clustering

Lrrc34-knockdown and negative control expression data were compiled and calibrated to establish self-organizing maps (SOMs) using R to align different expression patterns of mRNAs into a SOM.

Isolation of testis cells and enrichment of THY1\(^+\) spermatogonia

THY1\(^+\) and THY1\(^-\) spermatogonia were isolated and enriched as described previously.\(^{[18]}\) Testicular suspensions from P7 and C57BL/6 mice were prepared using a two-step enzymatic digestion procedure with 1 mg/ml type-IV collagenase and 0.25%
trypsin. SSCs labeled with the THY1 antibody conjugated to magnetic microbeads were then selected from the suspensions by magnetic-activated cell sorting (MACS).

Immunofluorescent assay

Testes of adult C57BL/6 mice were fixed in 4% paraformaldehyde at 4°C overnight, dehydrated using graded ethanol and then embedded by paraffin. Tissue sections (5 µm thick) were produced, dewaxed and rehydrated. After antigen retrieval, the sections were blocked in 5% BSA (0.1% Triton X-100 in 5% BSA). Then the sections were incubated successively with primary antibody at 4°C overnight and secondary antibody at 37°C for 1 hours. DAPI was used to stain cell nuclei. After the sections were mounted with anti-quencher fluorescence decay, images were captured using a ZEISS 780 laser scanning confocal microscope.

Quantitative real-time PCR

Total RNA from THY1+ and THY1- spermatogonia was extracted using the TRIzol reagent and then reversed transcribed to obtain cDNA using a RevertAid First-Strand cDNA synthesis kit according to the manufacturer’s instructions. Quantitative real-time PCR was performed using PowerUpTM SYBR® Green Power Master Mix following the manufacturer’s recommended protocol. Information on the primers is: Lrrc34, 5’-TTGCTGGTAACAATCGCTTAGAC-3’ (forward) and 5’-ACACCACCTGATACATCGCTTAGG-3’ (reverse); GAPDH, 5’-AGGTCCGTGTGAAACGATTGG-3’ (forward) and 5’-TGTAGACCATGTAGTTGAGGTCA-3’ (reverse); ID4, 5’-CAGTGCAGATGAACGACTGC-3’ (forward) and 5’-GACTTTCTTGGGCGGGAT-3’ (reverse); PLZF, 5’-TATCTCGAAGCATTCCAGCGAGGA-3’ (forward) and 5’-ACTCATGGCTGAGAGACCGAAAGA-3’ (reverse); GFRA1, 5’-CACTCCTGGATTTGAGTTGATGT-3’ (forward) and 5’-AGTGTGCGGTAATTTGCTGATG-3’ (reverse).

In vitro SSC culture

SSCs were isolated from 6- to 8-day-old C57BL/6; 129S-Gt (Rosa) 26Sor/J mice (Jackson Laboratory, Bar Harbor, ME, USA), enriched using THY1 antibody-conjugated microbeads and MACS, and cultured with mitomycin C-inactivated mouse
embryonic fibroblasts (MEFs) in serum-free MEMα supplemented with other components at 37°C with 5% CO₂ as previously described.⁻¹⁹

RNA interference by siRNA
siRNAs were transfected into SSCs seeded in six-well plates in triplicate at a final concentration of 50 nmol/L using the transfection reagent RNAi Max and the diluent Opti-MEM according to the protocol provided by the reagent’s manufacturer. Three siRNA oligonucleotides with different sequences that targeted Lrrc34 were pooled to achieve the best knockdown efficiency (labeled as Lrrc34-KD). The target sequences of Lrrc34 for RNA interference were as follows: Lrrc34-1, CCGTAAATATTGCTGGTAA; Lrrc34-2, CCAACCTCGTACTGTCCAA; Lrrc34-3, GCACCGACTTATGGAGAAA. A negative control siRNA was used to exclude the potential nonspecific binding of the siRNAs (labeled as NC-ctrl). Forty-eight hours later, the SSCs were transfected again with siRNA using the same method to silence Lrrc34 to the full extent. In addition, MEFs have no influence on the knockdown of Lrrc34 in SSCs because Lrrc34 is not expressed in MEFs.⁵ Forty-eight hours later, representative bright-field images of Lrrc34-KD and NC-ctrl were captured by a DMI 4000B microscope (Leica, Germany). And then all images were reconstructed as projection images by ImageJ. Digital images were analyzed for diameters of SSC colonies by counting 5 random colonies per image.

Statistical analysis
Data were presented as mean ± SEMs and Student’s t-test was performed by GraphPad Prism software. Significant P values are indicated with asterisks as follows: *, P<0.05; ** P<0.01; *** P<0.001.

RESULTS
Identification of DEGs among P6 ID4-EGFP⁺ spermatogonia
In a previous study, Mutoji et al. isolated ID4-EGFP⁺ spermatogonia (G) and subdivided them into ID4-EGFP⁺/TSPAN8High (TH) and ID4-EGFP⁺/TSPAN8Low (TL) populations. Three replicate samples of each population (Figure 1A) were used for independent RNA-seq analyses to demonstrate that TSPAN8 can distinguish SSC subtypes.¹²⁰ Thus, we conducted pairwise comparisons of the gene expression counts obtained for the sorted populations (G, TH and TL). We found eight DEGs between the G and TH populations, eight DEGs between the G and TL populations and 11
DEGs between the TH and TL populations. Genes with logfold change (FC) > 1 were considered upregulated candidates, whereas genes with logFC < -1 were considered downregulated candidates (Figures 1B-1D, Supplemental Tables 1-3). Although a small number of DEGs showed considerable similarity among the sorted cell populations referred to in a previous study,[20] a slight distinction was found among these cell populations.

Figure 1. Differentially expressed genes (DEGs) among P6 ID4-EGFP+ spermatogonia \([P < 0.05 \text{ and logFC } > 1 \text{ or } < -1]\).

A. RNA-seq data sources, B. DEGs between G and TH, C. DEGs between G and TL, D. DEGs between TH and TL.

PPI network of DEGs among P6 ID4-EGFP+ spermatogonia and module analysis

To determine the roles of the above-mentioned DEGs, we constructed the PPI network of the DEGs based on GO and KEGG enrichment analyses and human PPI information from the STRING database, and those DEGs with a higher degree of connectivity were considered candidate genes (Figure 2A). To identify important modules in the PPI network, we used the MCODE plug-in, and the 11 top modules were selected based on the following criterion: number of nodes > 3 (Figure 2B). These modules were mainly associated with the processes of gene transcription, mRNA translation, and protein processing and degradation, which could regulate cell
growth, survival, proliferation and movement. For example, PPARA, CARM1, NCOR1 and CREB1 in the second module are all related to transcription regulation,[21-27] and TRIM69, FBXO22, SMURF2 and FBXL19 in the third module are relevant to the ubiquitination process via the E3 ubiquitin ligase, which includes substrate recognition.[28-31] Among these identified modules, the fifth module includes FGF2, FGF23, PIK3CB and LRRC34 and serves as the focus of this study due to the significant roles of FGF2 in SSC self-renewal and of the PI3K-AKT signaling pathway in SSC proliferation and division. Because FGF2, which is secreted mainly by Sertoli cells, is the secondary critical soluble factor for the self-renewal and expansion of SSCs \textit{in vivo} and \textit{in vitro}[2] and because the PI3K-AKT signaling pathway, which is activated by GDNF or Kit/SCF-R, controls the proliferation and division of SSCs,[32-34] the interaction of the pluripotency-related gene Lrrc34 with FGF2 and PI3K might suggest that LRRC34 is correlated with the self-renewal of SSCs and with the maintenance of their pluripotency.

\textbf{Figure 2.} Protein-protein interaction network construction and module analysis. A. Protein-protein interaction network of all above-mentioned DEGs, B. prominent interaction modules in the protein-protein interaction network.

\textbf{LRRC34 is highly expressed in SSCs from P7 and adult C57BL/6 male mice}
To better understand the role of the pluripotency-related gene Lrrc34 in DEGs between ID4-EGFP$^+$ spermatogonia subsets and in the module containing FGF2-interacting proteins, we detected its expression in SSCs from P7 and adult mice. As
shown in the figures, an immunofluorescent assay revealed that LRRC34 was colocalized with the undifferentiated spermatogonia marker LIN28A in the P7 mouse testes (Figure 3A), but was only partially connected with LIN28A at the basement membrane of the seminiferous tubule in adult male mice (Figure 3B), which indicated that Lrrc34 was constantly highly expressed in SSCs. Subsequently, SSCs were enriched from P7 and adult male mice by MACS using an anti-THY1 antibody and were used to detect the expression of Lrrc34. RT-PCR results confirmed that LRRC34 was mainly detected in THY1⁺-enriched SSCs from P7 and adult mice at levels similar to those found for ID4, PLZF, and GFRA1 (SSC markers) (Figures 3C and 3D). Thus, the results indicate that LRRC34 is highly expressed in SSCs from P7 and adult male mice.

Figure 3. Expression pattern of LRRC34 in SSCs.
A and B. Protein localization of LRRC34 in the P7 (A) and adult (B) mouse testes. The red arrows indicate cells coexpressing LIN28A and LRRC34, whereas the yellow arrows indicate cells expressing LIN28A only.
C and D. Relative mRNA expression levels in THY1-isolated spermatogonia from P7 (ID4: 1.005±0.0692 vs. 4.912±0.3223, P=0.0003, t=11.85; GFRA1: 1.005±0.0727 vs. 18.42±2.712, P=0.0030, t=6.419; PLZF: 1.006±0.0788 vs. 21.54±4.002, P=0.0068,
The knockdown of Lrrc34 led to variations in the transcriptome signaling pathway in SSC colonies in vitro

To elucidate the functions of Lrrc34, we explored the variations in coding genes and their associated signaling pathways induced by the transient knockdown of Lrrc34 in in vitro SSC cultures through RNA-seq analyses. First, the treatment of SSCs with siRNA interference for 4 days resulted in a reduction in the SSC colony size (Figures 4A, 4B), and an RT-PCR analysis confirmed the knockdown of Lrrc34 (Figure 4C). The Lrrc34-KD and NC-ctrl expression data were then compiled and calibrated to establish SOMs. The changes in mRNAs after the knockdown of Lrrc34 were assessed by aligning the mRNAs onto an SOM (Figure 4D). According to the hexagonal units of NC-ctrl and Lrrc34-KD, clearly different expression patterns were obtained, which indicated the clustering of two different subsets of mRNAs regulated by NC-ctrl or Lrrc34-KD.

To further explore DEGs between the Lrrc34-KD and NC-ctrl groups, we compared the mRNA levels between the two groups using Ballgown. A total of 1120 mRNAs were differentially expressed in our study, and these included 305 upregulated and 815 downregulated genes in the Lrrc34-KD group compared with the NC-ctrl group (adjusted $P<0.05$, log FC >1 or <-1) (Figure 4E, Supplemental Table 4). We then conducted GO and KEGG pathway analyses of these downregulated and upregulated mRNAs to determine the changes in the signaling pathways enriched with these genes. Glycosaminoglycan biosynthesis-heparan sulfate/heparin, carbon metabolism and other signaling pathways were enriched with the upregulated DEGs. The most significantly enriched pathway with the downregulated genes was the apoptotic
signaling pathway, followed by I-kappaB kinase/NF-kappaB signaling and the MAPK cascade, which are closely associated with cell apoptosis and proliferation (Figures 4F and 4G). Therefore, the significantly altered apoptosis-related pathways might account for the observed decrease in the SSC colony size. These results imply that the loss of Lrrc34 leads to a decreased ability to colonize, likely through cell apoptosis, and support our contention that Lrrc34 plays an important role in SSC expansion.

Figure 4. RNA-seq data analyses of the transcriptome characteristics after Lrrc34 knockdown. A. The colony size of lrrc34-KD SSCs cultured in vitro was decreased compared with that of the negative control NC-ctrl SSCs. (bar = 14.9 μm)

B. The average diameter was quantified using ImageJ (61.09±4.242 vs. 34.70±3.624 μm, P=0.0015, t=4.731, n = 5 biological replicates). The data are presented as the means ± SEMs.

C. Lrrc34 was knocked down according to the relative mRNA level (1.002±0.0402 vs. 0.4768±0.0512, P=0.0013, t=8.064; 1.003±0.0505 vs. 0.5206±0.0166, P=0.0008, t=9.067, n = 3 biological replicates).
D. The overall transcriptome divergency between the lrrc34-KD and NC-ctrl SSCs was profiled by an SOM.

E. The DEGs between lrrc34-KD and NC-ctrl SSCs are presented in a heat map \([P<0.05, \log FC > 1 \text{ or } < -1]\).

F and G. The signaling pathways enriched with upregulated (E) or downregulated (F) DEGs between lrrc34-KD and NC-ctrl SSCs are presented using a Bubble diagram.

DISCUSSION

Kazadi Mutoji *et al.* discovered a new cell surface marker, TSPAN8, for SSC enrichment by subdividing ID4-EGFP\(^+\) spermatogonia from P6 mice. This finding showed a reliable approach for the enrichment of SSCs because ID4-EGFP\(^+\)/TSPAN8\(^{\text{High}}\) spermatogonia formed 233 colonies/10\(^5\) transplanted cells (stem cell concentration of 1:21) and exhibited a nearly 2-fold higher colonization capacity at 2 months after transplantation compared with the that of the ID4-EGFP\(^+\)/TSPAN8\(^{\text{Low}}\) subset. However, the ID4 population generated 516.6±98.1 colonies/10\(^5\) transplanted cells in a previous study,\(^{[35]}\) which indicated that changes in the stem cell concentration do not exhibit a simple additive relationship. Hence, we reused the RNA-seq data from ID4-EGFP\(^+\), ID4-EGFP\(^+\)/TSPAN8\(^{\text{High}}\) and ID4-EGFP\(^+\)/TSPAN8\(^{\text{Low}}\) spermatogonia in a further analysis aiming to explore which factors affect the purity of SSCs obtained by marker selection.

Among a few DEGs, Lrrc34, which was differentially expressed between the G and TL populations, was found to be important due to its regulatory role in pluripotency and loss of expression in the W/W\(^V\) mouse testes, which is a germ cell-deficient testis model.\(^{[5]}\) Furthermore, Lrrc34 was enriched in the significant module, and FGF2 was required for SSC expansion *in vitro* and *in vivo*. Thus, we concluded that Lrrc34 has an impact on the stem cell activity of SSCs. The Lrrc34 expression pattern highlighted this hypothesis. The protein expression of Lrrc34, particularly in undifferentiated spermatogonia, declined with age but was continuously distributed in the membrane basement where SSCs are located.\(^{[36]}\) In addition, our results demonstrated that Lrrc34 is partially overlaps with LIN28A that is specifically expressed in undifferentiated spermatogonia\(^{[37]}\) including SSCs. These findings indicate that Lrrc34 likely exhibits specific expression in SSCs. Therefore, we isolated SSCs using a THY1\(^+\) antibody and detected the Lrr34 mRNA levels in SSCs. As expected, Lrrc34 mRNA is highly...
expressed in SSCs labelled with ID4,[38] PLZF[39] and GFRA1[40] in both P7 and adult mice. Due to its specific expression in SSCs, Lrrc34 might be a candidate marker of SSCs similar to other markers that can be used to distinguish SSCs from other undifferentiated spermatogonia, such as markers for specific types of undifferentiated A-spermatogonia (GFRA1, LIN28, NANOS2 and NGN3) and all undifferentiated A-spermatogonium markers (PLZF, SALL4 and CDH1).[41]

The knockdown of Lrrc34 in this study supported our hypothesis that Lrrc34 plays a specific role in SSC proliferation. A decrease in colony size was clearly observed after the transient knockdown of Lrrc34 in SSCs, and this phenotype showed that normal Lrrc34 function is vital for SSC expansion. Further analysis revealed that Lrrc34 knockdown led to marked changes in the transcriptome, and notably enrichment of several apoptosis-related signaling pathways[42-45] instead of differentiation-related signaling pathways was observed, which suggested that the function of Lrrc34 is to support SSC expansion. It is well recognized that male fertility depends on the balance between the self-renewal and differentiation of SSCs; however, a precondition for maintenance of the SSC pool is cell survival.[46] Therefore, Lrrc34 is worth studying, and future research should elucidate the mechanism underlying the induction of SSC apoptosis due to the loss of Lrrc34.

In conclusion, our bioinformatic analysis identified Lrrc34 as a candidate gene that shows differential expression among ID4-EGFP+ spermatogonia subsets. Based on the important role of FGF2 in SSC self-renewal and the expression of Lrrc34 in pluripotent stem cells, we speculated that Lrrc34 might act as a regulator of SSC expansion or maintenance. Verification experiments confirmed that Lrrc34 is particularly highly expressed in SSCs and is required for SSC expansion, which might contribute to the above-mentioned differences in the regenerative capacities of SSCs. The exact function and mechanism of Lrrc34 in SSCs need to be further investigated.

The Supporting Information is available free of charge on the CMSJ website at doi: 10.24920/003680.

Table S1. Differentially expressed genes between G and TH.
Table S2. Differentially expressed genes between G and TL.

Table S3. Differentially expressed genes between TH and TL.

Table S4. Differentially expressed genes between Lrrc34-KD and NC-ctrl.

Conflict of interest statement

The authors have no conflict of interest to disclose.

REFERENCES

1. Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol 2013; 29:163-87. doi: 10.1146/annurev-cellbio-101512-122353.

2. Kubota H, Brinster RL. Spermatogonial stem cells. Biol Reprod 2018; 99(1):52-74. doi: 10.1093/biolre/ioy077.

3. Ibtisham F, Wu J, Xiao M, et al. Progress and future prospect of in vitro spermatogenesis. Oncotarget 2017; 8(39):66709-27. doi: 10.18632/oncotarget.19640.

4. Mei XX, Wang J, Wu J. Extrinsic and intrinsic factors controlling spermatogonial stem cell self-renewal and differentiation. Asian J Androl 2015; 17(3):347-54. doi: 10.4103/1008-682X.148080.

5. Lührig S, Siamishi I, Tesmer-Wolf M, et al. Lrrc34, a novel nucleolar protein, interacts with npm1 and ncl and has an impact on pluripotent stem cells. Stem Cells Dev 2014; 23(23):2862-74. doi: 10.1089/scd.2013.0470.

6. Kobe B, Kajava AV. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 2001; 11(6):725-32. doi: 10.1016/s0959-440x(01)00266-4.

7. Dickson KA, Haigis MC, Raines RT. Ribonuclease inhibitor: structure and function. Prog Nucleic Acid Res Mol Biol 2005; 80:349-74. doi: 10.1016/S0079-6603(05)80009-1.

8. Corbett AH, Koepp DM, Schlenstedt G, et al. Rna1p, a Ran/TC4 GTPase activating protein, is required for nuclear import. J Cell Biol 1995; 130(5):1017-26. doi: 10.1083/jcb.130.5.1017.

9. Paik JK, Kang R, Cho Y, et al. Association between genetic variations affecting mean telomere length and the prevalence of hypertension and coronary heart disease
in Koreans. Clin Nutr Res 2016; 5(4):249-60. doi:10.7762/cnr.2016.5.4.249.
10. Wu M, Assassi S, Salazar GA, et al. Genetic susceptibility loci of idiopathic interstitial pneumonia do not represent risk for systemic sclerosis: a case control study in Caucasian patients. Arthritis Res Ther 2016; 18:20. doi: 10.1186/s13075-016-0923-3.
11. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15(12):550. doi: 10.1186/s13059-014-0550-8.
12. Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks Nat Protoc 2012; 7(3):562-78. doi: 10.1038/nprot.2012.016.
13. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res 2015; 43(Database issue):D1049-56. doi: 10.1093/nar/gku1179.
14. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1):27-30. doi: 10.1093/nar/28.1.27.
15. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5):284-7. doi: 10.1089/omi.2011.0118.
16. von Mering C, Huynen M, Jaeggi D, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003; 31(1):258-61. doi: 10.1093/nar/gkg034.
17. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11):2498-504. doi: 10.1101/gr.1239303.
18. Baazm M, Abolhassani F, Abbasi M, et al. An improved protocol for isolation and culturing of mouse spermatogonial stem cells. Cell Reprogram 2013; 15(4):329-36. doi: 10.1089/cell.2013.0008.
19. Li L, Wang M, Wang M, et al. A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells. Cell Death Dis 2016; 7:e2140. doi: 10.1038/cddis.2016.24.
20. Mutoji K, Singh A, Nguyen T, et al. TSPAN8 expression distinguishes spermatogonial stem cells in the prepubertal mouse testis. Biol Reprod 2016; 95(6):117. doi: 10.1095/biolreprod.116.144220.
21. Fu J, Gaetani S, Oveisi F, et al. Oleylethanolamide regulates feeding and body
weight through activation of the nuclear receptor PPAR-alpha. Nature 2003; 425(6953):90-3. doi: 10.1038/nature01921.

22. Chakravarthy MV, Lodhi IJ, Yin L, et al. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell 2009; 138(3):476-88. doi: 10.1016/j.cell.2009.05.036.

23. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, et al. The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 2010; 24(4):345-57. doi: 10.1101/gad.564110.

24. Alenghat T, Meyers K, Mullican SE, et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature 2008; 456(7224):997-1000. doi: 10.1038/nature07541.

25. Aninye IO, Matsumoto S, Sidhaye AR, et al. Circadian regulation of Tshb gene expression by Rev-Erbalpha (NR1D1) and nuclear corepressor 1 (NCOR1). J Biol Chem 2014; 289(24):17070-7. doi: 10.1074/jbc.M114.569723.

26. Gau D, Lemberger T, von Gall C, et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 2002; 34(2):245-53. doi: 10.1016/s0896-6273(02)00656-6.

27. Ma X, Zhang H, Yuan L, et al. CREBL2, interacting with CREB, induces adipogenesis in 3T3-L1 adipocytes. Biochem J 2011; 439(1):27-38. doi: 10.1042/BJ20101475.

28. Shyu HW, Hsu SH, Hsieh-Li HM, et al. Forced expression of RNF36 induces cell apoptosis. Exp Cell Res 2003; 287(2):301-13. doi: 10.1016/s0014-4827(03)00110-1.

29. Spaich S, Will RD, Just S, et al. F-box and leucine-rich repeat protein 22 is a cardiac-enriched F-box protein that regulates sarcomeric protein turnover and is essential for maintenance of contractile function in vivo. Circ Res 2012; 111(12):1504-16. doi: 10.1161/CIRCRESAHA.112.271007.

30. Chandhoke AS, Karve K, Dadakhijaev S, et al. The ubiquitin ligase Smurf2 suppresses TGFbeta-induced epithelial-mesenchymal transition in a sumoylation-regulated manner. Cell Death Differ 2016; 23(5):876-88. doi: 10.1038/cdd.2015.152.

31. Cai Y, Huang G, Ma L, et al. Smurf2, an E3 ubiquitin ligase, interacts with PDE4B and attenuates liver fibrosis through miR-132 mediated CTGF inhibition. Biochim Biophys Acta Mol Cell Res 2018; 1865(2):297-308. doi: 10.1016/j.bbamar.2017.10.011.
32. Lee J, Kanatsu-Shinohara M, Inoue K, et al. Akt mediates self-renewal division of mouse spermatogonial stem cells. Development 2007; 134(10):1853-9. doi: 10.1242/dev.003004.

33. Feng LX, Ravindranath N, Dym M. Stem cell factor/c-kit up-regulates cyclin D3 and promotes cell cycle progression via the phosphoinositide 3-kinase/p70 S6 kinase pathway in spermatogonia. J Biol Chem 2000; 275(33):25572-6. doi: 10.1074/jbc.M002218200.

34. Blume-Jensen P, Jiang G, Hyman R, et al. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet 2000; 24(2):157-62. doi: 10.1038/72814.

35. Chan F, Oatley MJ, Kaucher AV, et al. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 2014; 28(12):1351-62. doi: 10.1101/gad.240465.114.

36. Mäkelä JA, Koskenniemi JJ, Virtanen HE, et al. Testis development. Endocr Rev 2019; 40(4):857-905. doi: 10.1210/er.2018-00140.

37. Zheng K, Wu X, Kaestner KH, et al. The pluripotency factor LIN28 marks undifferentiated spermatogonia in mouse. BMC Dev Biol 2009; 9:38. doi: 10.1186/1471-213X-9-38.

38. Helsel AR, Yang QE, Oatley MJ, et al. ID4 levels dictate the stem cell state in mouse spermatogonia. Development 2017; 144(4):624-34. doi: 10.1242/dev.146928.

39. Buaas FW, Kirsh AL, Sharma M, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 2004; 36(6):647-52. doi: 10.1038/ng1366.

40. He Z, Jiang J, Hofmann MC, et al. Gfra1 silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod 2007; 77(4):723-33. doi: 10.1095/biolreprod.107.062513.

41. Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction 2015; 149(4):R159-67. doi: 10.1530/REP-14-048.

42. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5(10):749-59. doi: 10.1038/nri1703.

43. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 2006; 124(4):823-35. doi: 10.1016/j.cell.2006.02.016.
44. Pearson G, Robinson F, Beers Gibson T, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22(2):153-83. doi: 10.1210/edrv.22.2.0428.

45. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 2001; 11(9):372-7. doi: 10.1016/s0962-8924(01)02064-5.

46. Wu X, Oatley JM, Oatley MJ, et al. The POU domain transcription factor POU3F1 is an important intrinsic regulator of GDNF-induced survival and self-renewal of mouse spermatogonial stem cells. Biol Reprod 2010; 82(6):1103-11. doi: 10.1095/biolreprod.109.083097.