Factors Affecting the Decision to Initiate Anticoagulation After Spine Surgery: Findings From the AOSpine Anticoagulation Global Initiative

Sapan D. Gandhi, MD, KRISHN KHANNA, MD, GARRETT HARADA, MD, PHILIP LOUIE, MD, JAMES HARROP, MD, THOMAS MROZ, MD, KHALID AL-SALEH, MBBS, FRCSC, GIOVANNI BARBANTI BRODANO, MD, JENS CHAPMAN, MD, MICHAEL G. FEHLINGS, MD, PHD, SERENA S. HU, MD, YOSHIHARU KAWAGUCHI, MD, PHD, MICHAEL MAYER, MD, VENUGOPAL MENON, MBBS, MS (ORTH), MCH (ORTH), MSC (ORTH ENG), JONG-BEOM PARK, MD, PHD, SHANMUGANATHAN RAJASEKARAN, MD, PHD, MARCELO VALACCO, MD, LAUZ VIALLE, MD, PHD, JEFFREY C. WANG, MD, KARSTEN WIECHERT, MD, K. DANIEL RIEW, MD, MD, and DINO SAMARTHIS, DSC

Abstract

Study Design: Cross-sectional, international survey.

Objectives: To identify factors influencing pharmacologic anticoagulation initiation after spine surgery based on the AOSpine Anticoagulation Global Survey.

Methods: This survey was distributed to the international membership of AOSpine (n = 3805). A Likert-type scale described grade practice-specific factors on a scale from low (1) to high (5) importance, and patient-specific factors a scale from low (0) to high (3) importance. Analysis was performed to determine which factors were significant in the decision making surrounding the initiation of pharmacologic anticoagulation.

Results: A total of 316 spine surgeons from 64 countries completed the survey. In terms of practice-specific factors considered to initiate treatment, expert opinion was graded the highest (mean grade ± SD = 3.2 ± 1.3), followed by fellowship training (3.2 ± 1.3). Conversely, previous studies (2.7 ± 1.2) and unspecified guidelines were considered least important (2.6 ± 1.6). Patient body mass index (2.0 ± 1.0) and postoperative mobilization (2.3 ± 1.0) were deemed most important and graded highly overall. Those who rated estimated blood loss with greater importance in anticoagulation initiation decision making were more likely to...
administer thromboprophylaxis at later times (hazard ratio [HR] = 0.68-0.71), while those who rated drain output with greater importance were likely to administer thromboprophylaxis at earlier times (HR = 1.32-1.43).

Conclusion: Among our global cohort of spine surgeons, certain patient factors (i.e., patient mobilization and body mass index) and practice-specific factors (i.e., expert opinion and fellowship training) were considered to be most important when considering anticoagulation start times.

Keywords: timing, anticoagulation, antiplatelet, epidural hematoma, deep vein thrombosis, pulmonary embolism, initiation, pharmacologic

Introduction

Venous thromboembolism (VTE) is a preventable cause of perioperative morbidity and mortality after spine surgery, with a variable reported incidence of 0.3% to 31%. This wide range of VTE after spine surgery can be explained by the variation in indication for spine surgery, diverse patient populations, as well as lack of consistency in the method and timing of diagnosis. Given the heterogeneity of medical comorbidities, spinal pathology, and surgical techniques, a need for patient-specific anti-coagulation guidelines is mounting.

Both pharmacologic and non-pharmacologic methods of VTE prophylaxis are available after spine surgery. Early patient mobilization, sequential compression devices (SCDs), and compression stockings are common non-pharmacologic approaches to VTE prophylaxis. Pharmacologic VTE prophylaxis consists of agents that target platelet function or other various points in the coagulation cascade. Examples of such medications include aspirin, heparin, low-molecular-weight heparin (LMWH), and warfarin. These agents can provide powerful prophylaxis against one potentially devastating complication (VTE), but their use must be balanced against equally significant adverse events, including epidural hematoma, excessive blood loss, and persistent wound drainage with subsequent infection.

There are currently no widely accepted global guidelines regarding timing of initiation of perioperative VTE prophylaxis for patients undergoing spine surgery. Although some studies have made recommendations regarding timing of the start of anti-coagulation and anti-platelet medications, as well as created recommendations in patients undergoing spine surgery for spinal cord injury, these have been limited by small sample sizes that prevent extensive assessment of risk factors and heterogeneity among anti-coagulation methods. In 2009, the North American Spine Society (NASS) released clinical guidelines based on the current body of evidence related to antithrombotic therapies in spine surgery; however, thus far, these have failed to capture input from a global perspective and have yet to be adopted worldwide.

Given the growing need for consensus surrounding recommendations regarding perioperative anticoagulation management in spine surgery, we conducted a global survey of spine surgeons within the AOSpine network to gauge their knowledge, attitudes and practices on this topic. Our preliminary findings have been reported by Louie et al. With that serving as a foundation, the specific focus of this study was to identify factors that contribute to the decision making of the initiation of anticoagulation after spine surgery among a global group of spine surgeons. We hypothesized that the survey responses will show heterogeneity in anticoagulation start times, with few instances of consensus of important patient or surgical factors influencing initiation decisionmaking.

Methods

Survey Design

AOSpine Anticoagulation Global Survey methodology and overall findings are detailed in Louie et al. In brief, a survey questionnaire was developed and included surgeon demographics, rationale for anticoagulation following spine surgery, risk stratification, the use of published/unpublished guidelines to guide treatment, and the use of multidisciplinary teams. This survey was distributed to the AOSpine membership that opted to receive such requests via email (n = 3805 members out of approximately 6000 members).

The specific focus section assessed respondent demographics and perioperative factors that affect the timing of anticoagulation prophylaxis based on medical comorbidities and previous episodes of thrombosis and/or embolus. Survey respondents were queried to grade the influence of various practice-specific (fellowship training, expert opinion, previous studies, unspecified guidelines) and perioperative specific considerations (length of procedure, number of operative levels, estimated blood loss [EBL], drain output, patient mobilization, body mass index [BMI]) when making decisions regarding anticoagulation initiation. Practitioners were asked to utilize a Likert-type scale to grade practice-specific factors on a scale from low (1) to high (5) importance, and patient-specific factors a scale from low (0) to high (3) importance.

Respondents were then asked to report their postoperative day of anticoagulation initiation in a series of hypothetical patient scenarios. Twenty-five possible scenarios were assessed and included patients who were either anticoagulation naive or currently being medicated with aspirin, warfarin, or another pharmacologic agent with or without a history of deep venous thrombosis (DVT), pulmonary embolism (PE), atrial fibrillation, coronary artery disease (CAD), placement of a cardiac valve, or placement of a cardiac stent. For scenarios where patients were taking pharmacologic anticoagulation,
possible responses ranged from postoperative day 0 to beyond postoperative day 5. For patients not previously taking anticoagulant medication, possible responses ranged from postoperative day 0 to beyond postoperative day 7.

Statistical Analyses

All statistical analyses were performed with Stata version 13.1 (StataCorp LLC). Interpretation and categorization of all free-response survey answers were made by one independent reviewer to group similar categories for analyses. Calculation of percentages and means was made for count data and rank-order questions, respectively. Hypothetical patient scenarios were further stratified to evaluate timing of thromboprophylaxis for history of specific conditions and individual medications, with survey responses right censored to the final postoperative day response. Kaplan-Meier and log-rank test analysis was used to assess individual variables for importance in influencing timing to postoperative anticoagulation. All variables were then fitted to a series of Cox proportional hazards models to further evaluate the hazard ratio (HR) and associated P values and 95% confidence intervals (CIs) for each factor considered. Higher HRs corresponded to earlier initiation of anticoagulation. Model covariates included age, specialty, fellowship, years since completion of fellowship training, geographic region, practice type (academic, private, combined), annual practice case volume, and all queried practice-specific (fellowship training, expert opinion, previous studies, unspecified guidelines, other specialty involvement) and perioperative-specific considerations (procedure length, number of operative levels, EBL, drain output, patient mobilization, and patient BMI). Proportional hazards assumptions were met and validated using Schoenfeld residuals. The threshold for statistical significance for all tests was established at P < .05.

Results

We have previously reported the initial findings from The AOSpine Anticoagulation Global Survey regarding the demographics of the respondents. Briefly, 316 spine surgeons from 64 countries completed the survey (Table 1). When stratified by continent, Europe had the largest survey representation (31.7%), South America/Latin America (19.9%), and Asia (18.4%). Respondents were between the ages of 35 and 44 (42.1%) or 45 to 54 (27.2%) years, and were typically fellowship-trained (74.7%), and orthopedic surgeons (65.5%). Most were within 5 years (26.4%) or 5 to 10 years (23.1%) of completing their training, and practiced at academic (39.6%) or combined private/academic institutions (46.2%). The vast majority of respondents performed an estimated 101 to 200 cases per year (35.4%).

Demographic	Overall Total
Total	316
Age (years)	
25-34	43
35-44	133
45-54	86
55-64	44
≥65	10
Specialty	
Orthopedics	207
Neurosurgery	102
Trauma	7
Fellowship trained	
No	80
Yes	236
Years posttraining (<5)	81
5-10	71
10-15	57
15-20	46
>20	52
Continent	
North America	43
Europe	100
Asia	58
South America/Latin America	63
Middle East	32
Africa	12
Australia	8
Practice type	
Academic	125
Private	45
Both	146
Volume (cases/year)	
<100	79
100-200	112
200-300	61
300-400	34
400-500	12
>500	18

Guidelines were considered least important (mean grade: 2.6; SD ± 1.6). For patient-specific factors, most variables considered were graded with similar importance. Drain output (mean grade: 1.2; SD ± 1.0) and number of operative levels (mean grade: 1.2; SD ± 1.0) were considered least important, followed by EBL (mean grade: 1.2; SD ± 1.0) and procedure length (mean grade: 1.3; SD ± 1.1). Patient BMI (mean grade: 2.0; SD ± 1.0) and postoperative mobilization (mean grade: 2.3; SD ± 1.0) were deemed most important and graded highly overall. These results are further illustrated in Table 2.

When accounting for multiple factors using a Cox proportional hazards model approach, EBL and drain output were the only factors significantly associated with the provided scenarios that included both patient history (e.g. DVT, PE, CAD, etc) as well as previous anticoagulant use (e.g. warfarin,
Table 2. Factors Ranked by Importance for Anticoagulation Initiation.

Factor	Overall Total
General factors (out of 5, 5 = high importance)	
Fellowship training	3.2 ± 1.3
Expert opinion	3.2 ± 1.3
Studies	2.7 ± 1.2
Guidelines	2.6 ± 1.6
Patient-specific factors for initiation (out of 3, 3 = high importance)	2.0 ± 1.0
Length of procedure	1.3 ± 1.1
Number of operative levels	1.2 ± 1.0
Estimated blood loss	1.2 ± 1.0
Drain output	1.2 ± 1.0
Patient mobilization	2.3 ± 1.0
Body mass index	2.0 ± 1.0

*aMean ranking of importance for general factors was ordered from 1 to 5: 1 = low importance, 5 = high importance.
*bMean ranking of importance for specific factors was ordered from 0 to 3: 0 = low importance, 3 = high importance.

Variables demonstrated an inverse relationship with respect to anti-coagulation timing. Those who rated EBL with greater importance were likely to administer thromboprophylaxis at later times, and those who rated drain output with greater importance were likely to administer thromboprophylaxis at earlier times. This was particularly true in scenarios with patients with a history of DVT on warfarin (EBL: HR = 0.68, 95% CI = 0.49-0.93, P = .015; drain output: HR = 1.40, 95% CI = 1.05-1.87, P = .021), PE on ASA (EBL: HR = 0.69, 95% CI = 0.48-0.97, P = .035; drain output: HR = 1.43, 95% CI = 1.03-1.98, P = .033), or CAD on ASA (EBL: HR = 0.70, 95% CI = 0.50-0.96, P = .029; drain output: HR = 1.36, 95% CI = 1.02-1.81, P = .034), or another unspecified agent (EBL: HR = 0.71, 95% CI = 0.52-0.98, P = .035; drain output: HR = 1.32, 95% CI = 1.00-1.73, P = .049).

These factors were also analyzed separately based on patient history (Table 4) or previous anticoagulant used (Table 5). In the setting of a history of DVT, EBL importance (HR = 0.71, 95% CI = 0.50-1.00, P < .050) was associated with shorter time to anticoagulation, while patient mobilization importance (HR = 1.40, 95% CI = 1.04-1.88, P = .029) was associated with longer time to anticoagulation. EBL was the only factor associated with an individual pharmacologic agent (previous warfarin use, HR = 0.71, 95% CI = 0.50-0.99, P = .046). Factors were also analyzed for scenarios where the patient was not previously on anticoagulation. In this analysis, no factors were significantly associated with the timing of anticoagulation (Table 6).

Discussion

Perioperative thromboprophylaxis usage and timing in spine surgery remains a controversial topic given the lack of consensus on optimal strategies. This area of perioperative management remains challenging for surgeons given the heterogeneity in patient populations as well as various indications for spine surgery. All strategies, unfortunately, weigh the risk of clinically significant VTE versus early postoperative. With no widespread acceptance, the timing of anticoagulation initiation in the perioperative period of spine surgery can remain challenging. To this end, we conducted the largest survey of spine experts worldwide, and have identified several factors in the decision making on the timing of initiation of perioperative anticoagulation. The following were noted to be relative among these spine experts: (1) patient mobilization and BMI are important “patient-specific” factors when deciding initiation of anticoagulation (without consideration of specific patient presentations); (2) expert opinion and fellowship training were the most substantial “practice-specific” factors, with formal guidelines and studies considered less important; (3) when accounting for multiple factors, opinions regarding the importance of EBL and drain output were associated with anticoagulation initiation timing in numerous patient scenarios involving both significant patient history (eg, DVT, PE, CAD, etc) as well as previous anticoagulant use (eg, warfarin, ASA, or other agent); and (4) opinions regarding the importance of EBL and patient mobilization were associated with anticoagulation timing in patients with a history of DVT.

The spine survey participants consensus was that their decisions concerning anticoagulation therapy were more heavily on expert opinion and fellowship training, rather than formal guidelines or literature, in directing them regarding timing of perioperative anti-coagulation. This highlights the lack of consensus on timing of anticoagulant initiation in spine surgery. Several survey studies have attempted to elucidate patterns regarding anticoagulant use in spine surgery, although these have been limited by geographic area, poor attention to timing regarding anticoagulation, and lack of discernable patterns driving decision making.18,19 In 2009, NASS released clinical guidelines regarding antithrombotic therapies in spine surgery.12 Although these guidelines address the question of timing of anticoagulation in the perioperative period by cautioning surgeons to balance the risk of thromboembolic events with the risk of epidural bleeding and wound complications, they do not address the factors that should be considered, nor do they provide firm direction for decision making. Additionally, the lack of a global perspective in the NASS guidelines weaken their generalizability. In the preliminary findings from our survey data, Louie and colleagues22 reported that only 14% of respondents described following hospital, national, or other unspecified guidelines when deciding on the use of anticoagulation. Despite this notion by our survey respondents, the AOSpine group has released thromboprophylaxis guidelines for patients suffering from spinal cord injury, which is the highest risk group for VTE in patients undergoing spine surgery.20,21 All in all, the existing literature, as well as our survey data recognizes the lack of reliable data, as well as a failure to widely disseminate existing guidelines.

When not involving patient scenarios specifically, our survey of surgeons found that patient mobilization and BMI are
Table 3. Cox Proportional Hazards Model for Perioperative Bridge Timing by Hypothetical Presentation Irrespective of Operative Location.a

	HR	95% CI	P									
Respondent demographics												
Age	1.03	0.47-2.31	0.94	0.99	0.46-2.15	0.99	1.12	0.57-2.19	0.94	1.07	0.52-2.21	0.95
Specialty	0.92	0.46-1.80	0.95	0.85	0.39-1.86	0.86	0.90	0.50-1.61	0.88	0.85	0.43-1.69	0.86
Fellowship trained	0.70	0.32-1.53	0.94	0.85	0.40-1.85	0.86	0.89	0.47-1.67	0.86	0.85	0.43-1.69	0.86
Years posttraining	1.05	0.59-1.84	0.88	0.90	0.44-1.83	0.86	0.94	0.52-1.71	0.86	0.90	0.44-1.83	0.86
Continent	0.94	0.49-1.80	0.87	0.91	0.44-1.86	0.86	0.88	0.47-1.67	0.86	0.85	0.43-1.69	0.86
Practice type	0.95	0.46-2.00	0.95	0.85	0.39-1.86	0.86	0.89	0.47-1.67	0.86	0.85	0.43-1.69	0.86
General factors considered												
Fellowship training	1.08	1.02-1.17	0.92	1.06	0.91-1.24	0.94	1.11	0.96-1.27	0.94	1.11	0.96-1.27	0.94
Expert opinion	0.94	0.88-1.02	0.92	0.85	0.79-0.91	0.86	0.90	0.83-0.99	0.86	0.90	0.83-0.99	0.86
Guidelines	0.85	0.75-0.97	0.95	0.85	0.75-0.97	0.95	0.85	0.75-0.97	0.95	0.85	0.75-0.97	0.95
Patient-specific factors for initiation												
Length of procedure	0.92	0.70-1.26	0.95	0.79	0.60-1.03	0.94	0.90	0.71-1.15	0.94	0.90	0.71-1.15	0.94
Number of operative levels	1.14	1.02-1.29	0.94	0.88	0.80-0.98	0.94	0.88	0.80-0.98	0.94	0.88	0.80-0.98	0.94
Estimated blood loss	0.70	0.61-0.92	0.95	0.70	0.60-0.83	0.94	0.70	0.60-0.83	0.94	0.70	0.60-0.83	0.94
Drain output	0.11	0.03-0.35	0.00	0.09	0.03-0.27	0.00	0.09	0.03-0.27	0.00	0.09	0.03-0.27	0.00
Estimated blood loss	0.76	0.52-1.11	0.94	0.70	0.56-0.88	0.94	0.70	0.56-0.88	0.94	0.70	0.56-0.88	0.94
Drain output	0.12	0.03-0.46	0.00	0.09	0.03-0.27	0.00	0.09	0.03-0.27	0.00	0.09	0.03-0.27	0.00
Patient mobilization	1.09	1.02-1.17	0.92	1.06	0.99-1.13	0.94	1.06	0.99-1.13	0.94	1.06	0.99-1.13	0.94
Body mass index	0.87	0.64-1.18	0.95	0.77	0.58-1.02	0.94	0.77	0.58-1.02	0.94	0.77	0.58-1.02	0.94

(continued)
Table 3. (Continued)

Cardiac valve (on ASA)	Cardiac valve (on warfarin)	Cardiac valve (on clopidogrel)	Cardiac valve (on other agent)	Cardiac stent (on ASA)	Cardiac stent (on warfarin)
Respondent demographics					
Age	1.16 (0.74, 1.83)	1.00 (0.64, 1.56)	1.17 (0.75, 1.81)	1.13 (0.73, 1.74)	1.02 (0.67, 1.56)
Specialty	0.77 (0.49, 1.20)	0.77 (0.51, 1.18)	0.68 (0.43, 1.05)	0.90 (0.59, 1.37)	0.82 (0.53, 1.26)
Fellowship trained	0.95 (0.56, 1.62)	0.72 (0.44, 1.17)	0.78 (0.47, 1.30)	0.85 (0.51, 1.42)	0.73 (0.45, 1.20)
Years Posttraining	0.90 (0.65, 1.24)	0.92 (0.67, 1.35)	0.86 (0.63, 1.16)	0.89 (0.65, 1.32)	0.92 (0.69, 1.24)
Continent	0.84 (0.69, 1.06)	0.90 (0.75, 1.10)	0.82 (0.68, 1.00)	0.84 (0.69, 1.03)	0.92 (0.76, 1.11)
Practice type	0.91 (0.71, 1.18)	0.89 (0.70, 1.13)	0.89 (0.70, 1.14)	1.01 (0.78, 1.29)	0.90 (0.71, 1.14)
Volume	1.03 (0.84, 1.25)	1.09 (0.81, 1.40)	1.10 (0.91, 1.32)	1.05 (0.87, 1.26)	1.01 (0.83, 1.23)
General factors considered					
Fellowship training	1.21 (0.92, 1.60)	1.12 (0.86, 1.45)	1.15 (0.89, 1.49)	1.18 (0.90, 1.53)	1.08 (0.84, 1.38)
Expert opinion	0.96 (0.75, 1.23)	0.95 (0.75, 1.20)	0.96 (0.76, 1.22)	0.99 (0.78, 1.25)	0.95 (0.75, 1.19)
Studies	1.08 (0.84, 1.39)	1.13 (0.88, 1.45)	1.02 (0.80, 1.30)	1.02 (0.81, 1.30)	1.03 (0.81, 1.32)
Guidelines	1.05 (0.87, 1.29)	0.99 (0.82, 1.19)	1.05 (0.86, 1.27)	1.06 (0.87, 1.29)	0.99 (0.83, 1.19)
Patient-specific factors for initiation					
Length of procedure	1.16 (0.75, 1.78)	1.16 (0.78, 1.73)	1.14 (0.74, 1.74)	1.07 (0.70, 1.63)	1.16 (0.77, 1.74)
Number of operative levels	1.02 (0.66, 1.56)	0.87 (0.58, 1.28)	0.96 (0.63, 1.48)	1.02 (0.67, 1.54)	0.89 (0.59, 1.33)
Estimated blood loss	0.76 (0.54, 1.07)	0.82 (0.59, 1.14)	0.77 (0.56, 1.07)	0.78 (0.56, 1.08)	0.77 (0.56, 1.06)
Drain output	1.33 (0.99, 1.80)	1.18 (0.86, 1.60)	1.21 (0.91, 1.62)	1.29 (0.97, 1.72)	1.28 (0.96, 1.72)
Patient mobilization	1.03 (0.75, 1.40)	1.24 (0.91, 1.70)	1.05 (0.79, 1.41)	1.08 (0.79, 1.48)	0.92 (0.74, 1.15)
Body mass index	0.95 (0.70, 1.30)	0.84 (0.61, 1.15)	0.97 (0.72, 1.31)	0.96 (0.70, 1.30)	0.79 (0.58, 1.10)

Cardiac stent (on clopidogrel)	Cardiac stent (on other agent)
HR 95% CI P	HR 95% CI P
1.12 (0.74, 1.71) 0.96	1.00 (0.69, 1.54) 0.887
0.84 (0.56, 1.25) 0.383	0.80 (0.52, 1.22) 0.300
0.68 (0.42, 1.10) 0.113	0.65 (0.40, 1.07) 0.090
0.93 (0.69, 1.24) 0.604	0.84 (0.63, 1.13) 0.259
0.90 (0.74, 1.09) 0.271	0.83 (0.68, 1.01) 0.057
0.91 (0.72, 1.14) 0.407	0.94 (0.75, 1.19) 0.632
1.08 (0.90, 1.29) 0.426	1.04 (0.86, 1.25) 0.709
1.13 (0.88, 1.45) 0.340	1.12 (0.87, 1.44) 0.378
1.03 (0.82, 1.30) 0.784	1.00 (0.79, 1.26) 0.988
1.09 (0.86, 1.38) 0.493	0.93 (0.74, 1.17) 0.544
1.05 (0.87, 1.26) 0.614	1.07 (0.89, 1.30) 0.462
1.13 (0.76, 1.68) 0.542	1.13 (0.76, 1.71) 0.578
0.86 (0.58, 1.28) 0.455	0.94 (0.62, 1.42) 0.754
0.87 (0.64, 1.18) 0.365	0.79 (0.58, 1.08) 0.135
1.10 (0.84, 1.45) 0.485	1.25 (0.95, 1.64) 0.108
1.18 (0.88, 1.59) 0.266	1.09 (0.81, 1.47) 0.382
0.91 (0.69, 1.22) 0.527	0.94 (0.70, 1.27) 0.682

Abbreviations: ASA, acetylsalicylic acid; DVT, deep venous thrombosis; PE, pulmonary embolism; CAD, coronary artery disease; A-Fib, atrial fibrillation; HR, hazard ratio.

Calculation of P values was performed using log rank test analysis to determine univariate association of tested variables with timing to bridging anticoagulation for each given scenario. Boldfaced values indicate statistical significance at P < .05.
Table 4. Cox Proportional Hazards Model for Perioperative Bridge Timing by Hypothetical Presentation Irrespective of Operative Location (Patient Previously on Pharmacologic Agent).b

	Hx of DVT	Hx of PE	Hx of CAD	Hx of A-Fib	Hx of cardiac valve	Hx of cardiac stent
	HR 95% CI	P	HR 95% CI	P	HR 95% CI	P
Respondent demographics						
Age	0.95	0.62-1.47	.821	1.17	0.73-1.86	.514
Specialty	0.98	0.61-1.56	.925	0.72	0.43-1.20	.212
Fellowship trained	0.89	0.54-1.48	.660	0.82	0.49-1.38	.457
Years posttraining	1.03	0.76-1.38	.865	0.89	0.65-1.22	.470
Continent	0.95	0.79-1.13	.550	0.92	0.75-1.12	.414
Practice type	0.92	0.72-1.17	.484	0.96	0.75-1.23	.754
Volume	1.10	0.93-1.31	.277	1.10	0.92-1.32	.308
General factors considered						
Fellowship training	0.82	0.64-1.05	.112	0.90	0.70-1.16	.412
Expert opinion	0.91	0.73-1.15	.426	0.85	0.67-1.08	.180
Studies	1.04	0.81-1.32	.760	1.15	0.89-1.50	.292
Guidelines	0.91	0.76-1.08	.280	0.86	0.71-1.03	.107
Patient-specific factors for initiation						
Length of procedure	0.75	0.51-1.11	.150	0.89	0.59-1.35	.577
Number of operative levels	1.23	0.83-1.84	.306	1.10	0.71-1.70	.680
Estimated blood loss	0.71	0.50-1.00	.050	0.86	0.59-1.25	.417
Drain output	1.26	0.94-1.69	.125	1.04	0.87-1.10	.809
Patient mobilization	1.40	1.04-1.88	.029	1.27	0.92-1.75	.142
Body mass index	0.82	0.60-1.12	.219	0.81	0.58-1.13	.209

Abbreviations: HX, history; DVT, deep venous thrombosis; PE, pulmonary embolism; CAD, coronary artery disease; A-Fib, atrial fibrillation; HR, hazard ratio.

b Boldfaced values indicate statistical significance at $P < .05$.
the most important patient-specific factors when considering anticoagulation initiation. These opinions may be reflective of the notion that patients who have high BMI or who may be slow to mobilize in the perioperative period may be at higher risk for VTE and may require earlier initiation of anticoagulation. Identification of these risk factors for VTE in the perioperative period has been shown in previously reported literature. Goz and associates3 created a VTE risk index based on a review of 109,609 patients from the National Surgical Quality Improvement Program (NSQIP) who underwent elective spine surgery and included the presence of obesity as a significant factor in predicting VTE. Pannucci et al24 reviewed a Michigan statewide surgical quality collaborative to identify predictors of 90-day VTE in postsurgical patients and found that among several other patient factors, BMI greater than 40 kg/m2 was associated with higher risk of VTE. McLynn and colleagues25 confirmed these findings in their review of 109,609 patients from the National Surgical Quality Improvement Program (NSQIP) who underwent elective spine surgery, finding that increased BMI was a risk factor for VTE. Additionally, in a cohort of 1975 patients, Takahashi et al26 reported a significantly lower symptomatic PE rate in patients who had early mobilization after spine surgery, compared to those patients who did not. To this end, the opinions expressed by the surgeons in our survey study are consistent with the current literature. Alternatively, some authors have linked VTE to length of procedure, number of levels, and intraoperative blood loss, although the respondents of our survey seemed to give less importance to these specific factors.25,27

In several patient scenarios, opinions regarding the importance of EBL and drain output were associated with the timing of anti-coagulation initiation in the perioperative periods. Increased intraoperative blood loss may alert the surgeon to an underlying or iatrogenic coagulopathy that may be exacerbated by the use of anticoagulants and/or antiplatelet medications. Awad et al28 reviewed the records of 14,932 patients undergoing spine surgery and found that one of the risk factors for the development of postoperative spinal epidural hematoma included a high EBL (blood loss >1 L). Given this association with the development of postoperative spinal hematoma, our results show a prudent decision by spine experts to consider EBL of importance when determining when to begin anticoagulation. Similar to perioperative anti-coagulation management in spine surgery, closed suction drains represent another area of management where obvious consensus remains unestablished. Several authors have found no difference in symptomatic postoperative hematoma or wound complications after lumbar decompression and/or fusions with or without the use of closed suction drains.28-32 In fact, Chimenti and Molinari33 reported that all four patients suffering from catastrophic epidural hematoma (ie, neurologic deficit to American Spinal Injury Association grade B or worse) in their series of 1750 patients had subfascial drains which failed to prevent this complication. Other authors have disputed that drains do not play an important role in preventing postoperative hematoma. Aono et al34 reported the factors associated with the development of

| Table 5. Cox Proportional Hazards Model for Perioperative Bridge Timing by Pharmacologic Agent Irrespective of Operative Location (Patient Previously on Pharmacologic Agent). |
|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| HR 95% CI HR 95% CI HR 95% CI HR 95% CI |
ASA	Warfarin	Clopidogrel	Other	Any anticoagulant	
Age	0.90 (0.57-1.41)	0.97 (0.62-1.50)	0.95 (0.61-1.48)	1.01 (0.64-1.62)	1.46 (0.43-4.93)
Specialty	1.33 (0.85-2.09)	0.87 (0.55-1.35)	0.81 (0.54-1.22)	0.98 (0.62-1.55)	1.70 (0.56-5.14)
Fellowship trained	1.39 (0.82-2.35)	0.92 (0.57-1.49)	0.81 (0.51-1.29)	0.72 (0.43-1.20)	0.86 (0.26-2.86)
Years posttraining	1.13 (0.83-1.55)	0.98 (0.73-1.42)	1.03 (0.76-1.39)	0.92 (0.67-1.26)	0.88 (0.35-2.25)
Continent	1.04 (0.86-1.25)	0.92 (0.77-1.11)	0.97 (0.81-1.16)	0.95 (0.79-1.15)	1.06 (0.70-1.61)
Practice type	0.89 (0.69-1.16)	0.94 (0.74-1.19)	0.88 (0.70-1.12)	0.89 (0.70-1.14)	0.81 (0.46-1.45)
Volume	1.12 (0.93-1.34)	1.04 (0.87-1.24)	1.05 (0.89-1.24)	0.99 (0.94-1.23)	0.88 (0.60-1.31)

| General factors considered |
Fellowship training	0.94 (0.73-1.22)	0.98 (0.76-1.25)	1.09 (0.91-1.50)	1.05 (0.81-1.36)	1.06 (0.80-1.41)
Expert opinion	0.96 (0.75-1.22)	0.85 (0.67-1.08)	0.99 (0.85-1.38)	0.95 (0.74-1.21)	2.16 (1.00-4.65)
Studies	1.14 (0.88-1.48)	1.05 (0.82-1.36)	1.17 (0.79-1.24)	1.10 (0.84-1.44)	0.88 (0.84-2.42)
Guidelines	0.94 (0.78-1.14)	0.95 (0.79-1.14)	1.02 (0.91-1.50)	0.98 (0.81-1.18)	1.12 (0.92-2.50)

| Patient-specific factors for initiation |
Length of procedure	0.74 (0.49-1.11)	0.84 (0.58-1.22)	0.85 (0.59-1.23)	0.91 (0.62-1.34)	0.69 (0.34-1.12)
Number of operative levels	1.39 (0.93-2.08)	1.16 (0.78-1.70)	1.18 (0.81-1.72)	1.16 (0.79-1.72)	1.60 (0.64-4.00)
Estimated blood loss	0.75 (0.54-1.06)	0.12 (0.07-0.17)	0.82 (0.60-1.12)	0.81 (0.58-1.14)	2.37 (1.07-5.36)
Drain output	1.22 (0.91-1.64)	1.25 (0.93-1.67)	1.16 (0.84-1.46)	1.27 (0.93-1.74)	0.82 (0.32-2.08)
Patient mobilization	1.26 (0.93-1.73)	1.34 (0.98-1.82)	1.32 (0.98-1.77)	1.11 (0.82-1.50)	0.42 (0.10-1.70)
Body mass index	0.88 (0.64-1.21)	0.82 (0.60-1.13)	0.85 (0.63-1.15)	0.80 (0.62-1.16)	0.56 (0.26-0.94)

Abbreviations: ASA, acetylsalicylic acid; HR, hazard ratio.
*Boldfaced values indicate statistical significance at $P < .05$.
postoperative spinal epidural hematoma after surgery in their series of 6356 patients, finding that over half of the hematomas became symptomatic after closed suction drains were removed. They suggested that removal of such drains was the key trigger for a number of cases to allow the accumulation of hematoma to become symptomatic after closed suction drains were removed. Studies among spine experts, this finding likely reflects the desire to allow a detailed explanation as to the reasoning behind the association between anticoagulation timing and drain output allowing for future explorations may be applicable to a wider population.

There are a number of limitations to our study. First, this is a survey study and limitations inherent to a study that does not include empiric data exists. Additionally, questions were not formatted in a way to allow the creation of specific guidelines. Rather, this data will be utilized to create focal points that may be useful in future follow-up survey studies, prospective, randomized studies or Delphi-esque consensus statements. A validated response rate does not necessarily mean the study results have generalizability, and provides promise that studies utilizing our data distribution was limited to current spine surgeon members of the AOSpine network that opted-in to receive email notifications, and as such, there is still questionable generalizability, and provides promise that studies utilizing our data to follow-up explorations may be applicable to a wider population.

There are a number of limitations to our study. First, this is a survey study and limitations inherent to a study that does not include empiric data exists. Additionally, questions were not formatted in a way to allow the creation of specific guidelines. Rather, this data will be utilized to create focal points that may be useful in future follow-up survey studies, prospective, randomized studies or Delphi-esque consensus statements. In addition, survey distribution was limited to current spine surgeon members of the AOSpine network that opted-in to receive email notifications, and as such, there is still questionable generalizability, and provides promise that studies utilizing our data to follow-up explorations may be applicable to a wider population.

| Table 6. Cox Proportional Hazards Model for Perioperative Anticoagulation Irrespective of Operative Location (Patient Not Previously on Pharmacologic Agent). |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| HR (95% CI) |
| Patient-specific factors for initiation |
Length of procedure	0.74 (0.38-1.43)	0.37 (0.26-0.52)	0.47 (0.36-0.64)	0.38 (0.23-0.62)
Number of operative levels	1.56 (0.63-3.87)	0.35 (0.12-0.99)	0.68 (0.35-1.33)	0.47 (0.25-0.90)
Estimated blood loss	1.04 (0.32-3.41)	0.94 (0.48-1.87)	0.89 (0.43-1.86)	0.74 (0.38-1.48)
Drain output	0.82 (0.32-2.07)	0.73 (0.37-1.44)	0.90 (0.49-1.71)	0.82 (0.41-1.64)
Patient mobilization	1.20 (0.55-2.64)	0.65 (0.31-1.40)	0.79 (0.41-1.50)	0.77 (0.41-1.46)
Body mass index	1.52 (0.63-3.70)	1.28 (0.63-2.59)	0.90 (0.52-1.57)	1.35 (0.60-3.03)

HX, history; DVT, deep venous thrombosis; CAD, coronary artery disease; A-Fib, atrial fibrillation; HR, hazard ratio.

*Boldfaced values indicate statistical significance at *P* < .05.*
as AOSpine. Although these limitations exist, our work remains the largest, international survey to date focused on perioperative anticoagulation practices during spine surgery.

Conclusions

This AOSpine Anticoagulation Global Survey is the largest to date focusing on perioperative anticoagulation attitudes, practices, and beliefs among spine surgeons worldwide for VTE prophylaxis. The survey noted certain patient factors (ie, patient mobilization and BMI), certain practice-specific factors (ie, expert opinion and fellowship training), and certain surgical factors (ie, EBL and drain output) when faced with specific patient scenarios to be associated with decision making regarding anticoagulation timing in the perioperative period. Although certain areas of interest were identified in this survey study, we encountered significant heterogeneity in practices regarding decision making in timing of anticoagulation. Future studies will utilize these findings to develop more robust prospective studies to examine optimal anticoagulation timing in the perioperative period and create consensus guidelines that may more uniformly lead practice.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Philip Louie, MD https://orcid.org/0000-0002-4787-1538
Michael G. Fehlings, MD, PhD https://orcid.org/0000-0002-5722-6364
Venugopal Menon, MBBS, MS (Orth), MCh (Orth), MSc (Orth Eng) https://orcid.org/0000-0003-0108-6451
Shanmuganathan Rajasekaran, MD, PhD https://orcid.org/0000-0001-6043-006X
Dino Samartzis, DSc https://orcid.org/0000-0002-7473-1311

References

1. Cox JB, Weaver KJ, Neal DW, Jacob RP, Hoh DJ. Decreased incidence of venous thromboembolism after spine surgery with early multimodal prophylaxis: clinical article. J Neurosurg Spine. 2014;21:677-684.

2. Lee HM, Suk KS, Moon SH, Kim DJ, Wang JM, Kim NH. Deep vein thrombosis after major spinal surgery: incidence in an East Asian population. Spine (Phila Pa 1976). 2000;25:1827-1830.

3. Goy V, McCarthy I, Weinreb JH, et al. Venous thromboembolic events after spinal fusion: which patients are at high risk? J Bone Joint Surg Am. 2014;96:936-942.

4. Kepler CK, McKenzie J, Kreitz T, Vaccaro A. Venous thromboembolism prophylaxis in spine surgery. J Am Acad Orthop Surg. 2018;26:489-500.

5. Oda T, Fuji T, Kato Y, Fujita S, Kanemitsu N. Deep venous thrombosis after posterior spinal surgery. Spine (Phila Pa 1976). 2000;25:2962-2967.

6. Akeda K, Matsuaga H, Imanishi T, et al. Prevalence and countermeasures for venous thromboembolic diseases associated with spinal surgery: a follow-up study of an institutional protocol in 209 patients. Spine (Phila Pa 1976). 2014;39:791-797.

7. Sansone JM, del Rio AM, Anderson PA. The prevalence of and specific risk factors for venous thromboembolic disease following elective spine surgery. J Bone Joint Surg Am. 2010;92:304-313.

8. Epstein NE. Efficacy of pneumatic compression stockting prophylaxis in the prevention of deep venous thrombosis and pulmonary embolism following 139 lumbar laminectomies with instrumented fusions. J Spinal Disord Tech. 2006;19:28-31.

9. Epstein NE. Intermittent pneumatic compression stocktng prophylaxis against deep venous thrombosis in anterior cervical spinal surgery: a prospective efficacy study in 200 patients and literature review. Spine (Phila Pa 1976). 2005;30:2538-2543.

10. Strom RG, Frempong-Boadu AK. Low-molecular-weight heparin prophylaxis 24 to 36 hours after degenerative spine surgery: risk of hemorrhage and venous thromboembolism. Spine (Phila Pa 1976). 2013;38:E1498-E1502.

11. Schizas C, Neumayer F, Kosmopoulos V. Incidence and management of pulmonary embolism following spinal surgery occurring while under chemical thromboprophylaxis. Eur Spine J. 2008;17:970-974.

12. Bono CM, Watters WC. 3rd, Heggeness MH, et al. An evidence-based clinical guideline for the use of antithrombotic therapies in spine surgery. Spine J. 2009;9:1046-1051.

13. Rokito SE, Schwartz MC, Neuwirth MG. Deep vein thrombosis after major reconstructive spinal surgery. Spine (Phila Pa 1976). 1996;21:853-859.

14. Kou J, Fischgrund J, Biddinger A, Herkowitz H. Risk factors for spinal epidural hematoma after spinal surgery. Spine (Phila Pa 1976). 2002;27:1670-1673.

15. Glotzbacher MP, Bono CM, Wood KB, Harris MB. Postoperative spinal epidural hematoma: a systematic review. Spine (Phila Pa 1976). 2010;35:E413-E420.

16. Schroeder GD, Hilibrand AS, Arnold PM, et al. Epidural hematoma following cervical spine surgery. Global Spine J. 2017;7(1 suppl):120S-126S.

17. Ploumis A, Ponnappan RK, Sarbello J, et al. Thromboprophylaxis in traumatic and elective spinal surgery: analysis of questionnaire response and current practice of spine trauma surgeons. Spine (Phila Pa 1976). 2010;35:323-329.

18. Paschera D, Oberle J, Grubhofer F, Schmid SL. Perioperative use of anticoagulant and platelet-inhibiting medications for elective spine surgery: results of a nationwide survey. J Neurol Surg A Cent Eur Neurosurg. 2018;79:398-407. doi:10.1055/s-0037-1615295.

19. Bryson DI, Uzoigwe CE, Braybrooke J. Thromboprophylaxis in spinal surgery: a survey. J Orthop Surg Res. 2012;7:14.

20. Arnold PM, Harrop JS, Merli G, et al. Efficacy, safety, and timing of anticoagulant thromboprophylaxis for the prevention of venous thromboembolism in patients with acute spinal cord injury: a systematic review. Global Spine J. 2017;7(3 suppl):138S-150S.
21. Fehlings MG, Tetreault LA, Aarabi B, et al. A Clinical practice guideline for the management of patients with acute spinal cord injury: recommendations on the type and timing of anticoagulant thromboprophylaxis. Global Spine J. 2017;7(3 suppl):212S-220S.

22. Louie PK, Harada G, Harrop JS, et al. Perioperative anticoagulation management in spine surgery: initial findings from the AOSSpine Anticoagulation Global Survey. Global Spine J. 2020;10(5):219256821989759. doi:10.1177/2192568219897598

23. Clason D, Dormody T. Analyzing data measured by individual Likert-type items. J Agric Educ. 1994;35:31-35. https://pdfs.semanticscholar.org/e2ad/36059a7894c89e5a566811eb82a9d2a.pdf

24. Pannucci CJ, Laird S, Dimick JB, Campbell DA, Henke PK. A validated risk model to predict 90-day VTE events in postsurgical patients. Chest. 2014;145:567-573.

25. McLynn RP, Diaz-Collado PJ, Ottesen TD, et al. Risk factors and pharmacologic prophylaxis for venous thromboembolism in elective spine surgery. Spine J. 2018;18:970-978.

26. Takahashi H, Yokoyama Y, Iida Y, et al. Incidence of venous thromboembolism after spine surgery. J Orthop Sci. 2012;17:114-117.

27. Schairer WW, Pedtke AC, Hu SS. Venous thromboembolism after spine surgery. Spine (Phila Pa 1976). 2014;39:911-918.

28. Awad JN, Kebaish KM, Donigan J, Cohen DB, Kostuik JP. Analysis of the risk factors for the development of post-operative spinal epidural haematoma. J Bone Jt Surg B. 2005;87:1248-1252.

29. Payne DH, Fischgrund JS, Herkowitz HN, Barry RL, Kurz LT, Montgomery DM. Efficacy of closed wound suction drainage after single-level lumbar laminectomy. J Spinal Disord. 1996;9:401-403.

30. Kanayama M, Oha F, Togawa D, Shigenobu K, Hashimoto T. Is closed-suction drainage necessary for single-level lumbar decompression? Review of 560 cases. Clin Orthop Relat Res. 2010;468:2690-2694.

31. Scuderi GJ, Brusovanik GV, Fitzhenry LN, Vaccaro AR. Is wound drainage necessary after lumbar spinal fusion surgery? Med Sci Monit. 2005;11:CR64-CR66.

32. Brown MD, Brookfield KFW. A randomized study of closed wound suction drainage for extensive lumbar spine surgery. Spine (Phila Pa 1976). 2004;29:1066-1068.

33. Chimenti P, Molinari R. Post-operative spinal epidural hematoma causing American Spinal Injury Association B spinal cord injury in patients with suction wound drains. J Spinal Cord Med. 2013;36:213-219.

34. Aono H, Ohwada T, Hosono N, et al. Incidence of postoperative symptomatic epidural hematoma in spinal decompression surgery: clinical article. J Neurosurg Spine. 2011;15:202-205.

35. Kao FC, Tsai TT, Chen LH, et al. Symptomatic epidural hematoma after lumbar decompression surgery. Eur Spine J. 2015;24:348-357.

36. Curtin R, Presser S, Singer E. The effects of response rate changes on the index of consumer sentiment. Public Opin Q. 2000;64:413-428.