Measurement of the Branching Fractions for Inclusive B^- and \bar{B}^0 Decays to Flavor-tagged D, D_s and Λ_c

B. Aubert, R. Barate, D. Boutigny, F. Coudere, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche, A. Palano, A. Pompili, J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu, G. Eigen, I. Ofte, B. Stugu, G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysoyan, R. G. Jacobsen, R. W. Kadel, J. Kadky, L. T. Kerth, Y. Gu, Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shelkov, W. A. Wenzel, M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson, M. Fritsch, K. Goetzen, T. Held, E. Koch, B. Lewandowski, M. Pelizaues, M. Steinke, J. T. Boyd, N. Chevalier, W. N. Cottingham, M. P. Kelly, T. E. Latham, F. F. Wilson, T. Cuhadar-Donszelmann, C. Hartley, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessen, A. Khan, P. Kyberd, L. Teodorescu, A. E. Blinov, V. E. Blinov, V. P. Drzhinin, V. B. Golubev, V. N. Ivanchenko, E. A. Kravchenko, A. P. Onuchin, S. I. Seredynakov, Yu. I. Skovpchin, E. S. Sobolov, A. N. Yushkov, D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Monsnes, W. Roethel, D. P. Stoker, C. Buchanan, B. L. Hartfiel, S. D. Folkues, J. W. Gary, B. C. Shen, K. Wang, D. del Re, H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. P. Paar, S. Rahatlou, V. Sharma, J. W. Berryhill, C. Campagnari, B. Dahmes, O. Long, A. Lu, M. A. Mazur, J. D. Richman, W. Verkerke, T. W. Beck, A. M. Eiser, C. A. Heusch, J. C. Kroeseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Wilson, J. Albert, E. Chen, G. P. Dubois-Felsmann, A. Dvoretskii, D. G. Hitlin, I. Narsky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, S. Yang, J. Sayatville, G. Mancini, B. T. Meadows, M. D. Sokoloff, T. Abe, F. Blanc, P. Bloom, S. Chen, W. T. Ford, U. Nauenberg, A. Olivas, P. Rankin, J. G. Smith, J. Zhang, L. Zhang, A. Chen, J. L. Barton, A. Soffer, W. H. Toki, R. J. Wilson, Q. L. Zeng, D. Altenburg, T. Brandt, J. Brose, M. Dickopp, E. Feltresi, A. Hauke, H. M. Lacker, R. Müller-Pfefferkorn, R. Nogowski, S. Otto, A. Petzold, J. Schubert, K. R. Schubert, K. Schwierz, B. Spaan, J. E. Sundermann, D. Bernard, G. R. Bouneau, F. Broach, P. Grenier, S. Schrenk, Ch. Thiebaux, G. Vasileiadis, M. Verderi, D. J. Bard, P. J. Clark, D. Lavin, F. Muheim, S. Playfer, Y. Xie, M. Andreotti, V. Azzolini, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negrini, P. Montemese, A. Sarti, E. Treadwell, F. Anelli, R. Baldini-Ferroli, A. Cacchietti, R. de Sangro, G. Finocchiaro, P. Patrì, F. Peruzzi, M. Piccolo, A. Zallo, A. Buoz, R. Capra, R. Contru, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi, S. Bailey, G. Brandenburg, K. S. Chaisanguanthum, M. Morii, E. Won, R. S. Dubitzky, U. Langenegger, W. Bhimji, D. A. Bowerman, P. D. Dauncey, U. Egede, J. R. Gaillard, G. W. Morton, J. A. Nash, M. B. Nikolich, P. G. Taylor, M. J. Charles, G. J. Grenier, U. Mallik, J. Cochran, H. B. Crawley, J. Lambs, W. T. Meyer, S. Pelli, E. I. Rosenberg, A. E. Rubin, J. Yi, M. Biasini, R. Covarelli, M. Pioppi, M. Davier, X. Giroux, G. Grosdidier, A. Höcker, S. Laplace, F. Le Diberder, V. Lepeltier, A. M. Lutz, T. C. Petersen, S. Plasczynski, M. H. Schune, L. Tantot, G. Wormser, C. H. Cheng, D. J. Lange, M. C. Simani, D. M. Wright, A. J. Bevan, C. A. Chavez, J. P. Coleman, I. J. Forster, J. R. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, J. R. Parry, D. J. Payne, R. J. Sloane, T. Touramanis, J. J. Back, * C. M. Cormack, P. F. Harrison, F. Di Lodovico, G. B. Mohanty, C. L. Brown, G. Cowan, R. L. Flack, H. U. Fleischer, M. G. Green, P. S. Jackson, T. R. McMahon, S. Ricciardi, F. Salvatore, M. A. Winter, D. Brown, C. L. Davis, J. Allison, N. R. Barlow, R. J. Barlow, P. A. Hart, M. C. Hodgkinson, R. G. Koffler, G. V. Koptchev, T. B. Moore, S. Sarem, H. Staengle, S. Willocq, R. Cowan, G. Sciolla, S. J. Sekula, F. Taylor, R. K. Yamamoto.
We report on the inclusive branching fractions of B^- and of $\overline{B^0}$ mesons decaying to $D^0 X$, $\overline{D^0} X$, $D^+ X$, $D^- X$, $D_s^+ X$, $A_s^+ X$, $\Xi^-_c X$, based on a sample of 88.9 million BB events recorded with the BABAR detector at the $\Upsilon(4S)$ resonance. Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. We measure the number of charmed and of anti-charmed particles per B decay and derive the total charm yield per B^- decay, $n_c = 1.313 \pm 0.037 \pm 0.069^{+0.043}_{-0.042}$, and per $\overline{B^0}$ decay, $n_c = 1.276 \pm 0.062 \pm 0.058^{+0.066}_{-0.046}$ where the first uncertainty is statistical, the second is systematic, and the third reflects the charm branching-fraction uncertainties.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

The dominant process for the decay of a b quark is $b \to cW^*- [1]$, resulting in a (flavor) correlated c quark and a virtual W. In the decay of the W, the production of a τd or a τs pair are both Cabibbo-allowed and should be equal, the latter being only suppressed by a phase-space factor. The first process dominates hadronic b decays, while the second can be easily distinguished as it will produce a (flavor) anti-correlated τ quark. Experimentally, correlated and anti-correlated charm production can be investigated through the measurement of the inclusive B-decay rates to flavor-tagged charmed mesons or baryons. Current measurements [2–4] of these rates have statistically limited precision and do not distinguish among the different B parent states.

Most of the charged and neutral D mesons produced in \overline{B} decays come from correlated production $\overline{B} \to DX$. However, a significant number of $\overline{B} \to D\overline{X}$ decays are expected through $b \to cs$ transitions, such as $\overline{B} \to D^{(*)}\overline{D}^{(*)} K^{(*)}(n\pi)$. Although the branching fractions of the 3-body decays $\overline{B} \to D^{(*)}\overline{D}^{(*)} K^{(*)}$ have been measured [5, 6], it is not clear whether they saturate $\overline{B} \to D\overline{X}$ transitions. It is therefore important to improve the precision on the branching fraction $B(\overline{B} \to D\overline{X})$.

By contrast, the anti-correlated D^+ production $\overline{B} \to D^+_s D(n\pi)$ is expected to dominate \overline{B} decays to D_s mesons, since correlated production needs an extra $s\overline{s}$ pair created from the vacuum to give $\overline{B} \to D^+_s K^-(n\pi)$. There is no prior published measurement of $B(\overline{B} \to D^+_s X)$.

All strangeless charmed baryons decay to Λ_c. Correlated Λ_c are produced in decays like $B^- \to \Lambda^+_c \pi^-(\pi)$, while anti-correlated $\overline{\Lambda}_c$ should originate from $B^- \to \Xi^-_c \overline{\Lambda}_c^-(\pi)$. Another possibility is $B^- \to \Lambda^+_c \Xi^-_c K^-$, the baryonic analogue of the $D\overline{D}K$ decay. The rates for Ξ_c^- production in B decays [7] are unknown, because there is no absolute measurement of Ξ_c^- decay branching fractions.

This analysis uses $\Upsilon(4S) \to BB$ events in which either a B^+ or a B^0 meson (hereafter denoted B_{rec}) decays into a hadronic final state and is fully reconstructed. We then reconstruct D, D_s, and Λ_c from the recoiling B^- ($\overline{B^0}$) meson and compare the flavor of the charm hadron with that of the B_{rec}, thus allowing separate measurements of the $B^- (\overline{B^0}) \to D^0 X$, $D^+ X$, $D_s^+ X$, $A_s^+ X$ and $B^- (\overline{B^0}) \to D^0 X$, $D^- X$, $D_s^- X$, $\Xi^-_c X$ branching fractions. We extract $B(B^- \to \Lambda^+_c \Xi^-_c K^-)$ from the missing-mass spectra of the $\Lambda^+_c K^-$ or $\Xi^-_c K^-$ systems recoiling against the B_{rec}. We can then evaluate indirectly $B(B^- \to \Xi^-_c X) = B(B^- \to \Xi^-_c X) - B(B^- \to \Lambda^+_c \Xi^-_c K^-)$ and compute the average number of charm (anti-charm) particles per B^- decay, N_c^- (N_c^+):

$$N_c^- = \sum \overline{N}_X B(B^- \to X_e),$$

$$N_c^+ = \sum N_X B(B^- \to \overline{X}_e),$$

where the sum is performed over $X_e = D^+, D^0, D_s^+, \Lambda_s^+, \Xi_c^-, (\pi\pi)$ or $X_e = D^-, D^0, D_s^-, \overline{\Lambda}_c^-, (\pi\pi)$ and $(\pi\pi)$ refers to all charmonium states collectively. We neglect Ξ_c^- production, as it requires both a τs and an $s\overline{s}$ pair in the decay to give $\Xi_c^\mp \Lambda_c$. We can sum N_c^- and N_c^+ to obtain the average number of charm plus anti-charm quarks per B^- decay, $n_c = N_c^- + N_c^+$ (and similarly for B^0 decays). In addition to the theoretical interest [8–10], the fact that anti-correlated charmed particles are a background for many studies also motivates a more precise measurement of their production rates in B decays.

The measurements presented here are based on a sample of 88.9 million BB pairs (81.9 fb$^{-1}$) recorded at the $\Upsilon(4S)$ resonance with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. The BABAR detector is described in detail elsewhere [11]. Charged-particle trajectories are measured by a 5-layer double-sided silicon vertex tracker and a 40-layer drift chamber, both operating in a 1.5-T solenoidal magnetic field. Charged-particle identification is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector. Photons are detected by a CsI(Tl) electromagnetic calorimeter. We use Monte Carlo simulations of the BABAR detector based on GEANT4 [12] to optimize selection criteria and determine selection efficiencies.

We reconstruct B^+ and B^0 decays (B_{rec}) in the modes $B^+ \to D^{(*)0}\pi^+, D^{(*)0}\rho^+, D^{(*)0}a_1^\pm$ and $B^0 \to D^{(*)}\pi^+, D^{(*)}\rho^+, D^{(*)}a_1^\pm$. B^0 candidates are reconstructed in the $K^+\pi^-$, $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$ and $K^0_s\pi^+\pi^-(K_S^0 \to \pi^+\pi^-)$ decay channels, while D^- are reconstructed in the $K^+\pi^-\pi^-$ and $K^0_s\pi^-$ modes. D^* candidates are reconstructed in the $D^{*-} \to D^0\pi^-$ and $D^{(*)0} \to D^{(*)0}\pi^-$, $D^{(*)0}\gamma$ decay modes. The first kinematic variable used to
identify fully reconstructed B decays is the beam-energy substituted mass, $m_{ES} = \sqrt{(s/2 + p_{B} \cdot p_{B})^2/E_{s}^2 - p_{B}^2}$, where p_{B} is the B_{reco} momentum and (E_{s}, p_{s}) is the four-momentum of the initial e^+e^- system, both measured in the laboratory frame. The invariant mass of the initial e^+e^- system is \sqrt{s}. The second variable is $\Delta E = E_{B}^0 - \sqrt{s}/2$, where E_{B}^0 is the B_{reco} candidate energy in the center-of-mass frame. We require $|\Delta E| < n \sigma_{\Delta E}$ with $n = 2$ or 3, depending on the decay mode, and using the measured resolution $\sigma_{\Delta E}$ for each decay mode.

In the m_{ES} spectra (Fig. 1), we define a signal region with $5.274 < m_{ES} < 5.290$ GeV/c^2 and a background control region with $5.220 < m_{ES} < 5.260$ GeV/c^2. For each of the B-decay modes, the combinatorial background in the signal region is derived from a fit to the m_{ES} distribution that uses an empirical phase-space threshold function [13] for the background, together with a signal function [14] peaked at the B meson mass. The numbers of reconstructed B^+ and B^0 candidates, $N_{B^+} = 85840 \pm 1910$ (syst.) and $N_{B^0} = 48322 \pm 590$ (syst.), are then obtained by subtracting this background from the total number of events found in the signal region. These measured B meson yields provide the normalization of all branching fraction measurements reported below. The systematic uncertainties quoted above are computed by varying the boundaries of the signal and background regions, and by comparing the shapes of the threshold function [13] in the data and in the simulation.

The contamination of B^0 events in the B^+ signal induces a background which peaks near the B mass. From the Monte Carlo simulation, the fraction of B^0 events in the reconstructed B^+ signal sample is found to be $c_0 = 0.034$, and the fraction of B^+ events in the reconstructed B^0 signal sample to be $c_1 = 0.019$. A 100% systematic uncertainty is conservatively assigned to these numbers but they will have a small effect on the final results.

We now turn to the analysis of inclusive D, D_\ast and A_c production in the decays of the B's that recoil against the reconstructed B. Charmed particles X_c (correlated production) are distinguished from anti-charmed particles \overline{X}_c (anti-correlated production). They are reconstructed from charged tracks that do not belong to the B_{reco}. The decay modes considered are listed in Table I.

For charged B decays, Fig. 2 shows the D, D_\ast, and A_c mass spectra of correlated and anti-correlated candidates recoiling against B's reconstructed in the m_{ES} signal region, for some selected decay modes. These spectra are fitted with the sum of a Gaussian signal and a linear background (including a satellite peak for some channels [15]). The shaded areas correspond to well reconstructed D, D_\ast or A_c from the combinatorial B_{reco} background. They are obtained from data in the m_{ES} background control region, normalized to the number of combinatorial background events expected under the B_{reco} peak. The background-subtracted reconstructed signal yields are listed in Table I. The reconstruction efficiencies for each charmed (anti-charmed) final state $X_c \rightarrow f (\overline{X}_c \rightarrow \overline{f})$ are computed from the simulation as a function of the charmed-particle momentum in the B^- center-of-mass frame, and are applied event-by-event to obtain the efficiency-corrected charm signal yields $N(X_c \rightarrow f) (N(\overline{X}_c \rightarrow \overline{f}))$. The final branching fractions are computed from these yields, the number of B_{reco}, and the intermediate branching fractions $B(X_c \rightarrow f)$ taken from [16]. They are given by

$$B(B^- \rightarrow X_cX) = \frac{N(X_c \rightarrow f)}{N_{B^+} \times B(X_c \rightarrow f)} - c_0 B_0. \quad (3)$$

Here the raw branching fraction for $B^- \rightarrow X_cX$ is modified by a small corrective term, $c_0 B_0$, that accounts for the B^0 contamination in the reconstructed B^+ sample. The factor B_0 depends on the measured $B^0 \rightarrow X_cX$ and $B^0 \rightarrow X_cX$ branching fractions, and on the $B^0 - \overline{B^0}$ mixing parameter λ_d [16]. It ranges from less than 3% for A_c to as much as 50% for correlated D^0 and D^\ast. Doubly Cabibbo-suppressed D^0 decays are also taken into account. The branching fractions and their errors are
TABLE I: Charmed-particle signal yields and B branching fractions per decay mode. The first uncertainty is statistical, the second is systematic (but does not include the charm branching fraction uncertainties).

X_c decay mode	$B^{-} \to X_c X$ yield	$B^{-} \to \overline{X}_c X$ yield	$B^{-} \to \overline{X}_c X$ yield	$B^{-} \to \overline{X}_c X$ yield
$D^0 \to K^- \pi^+$	1273 ± 42	$79.2\pm 2.6\pm 3.9$	160 ± 16	$9.3\pm 1.0\pm 0.5$
$\to K^- \pi^+ \pi^0$	998 ± 65	$80.6\pm 5.3\pm 7.5$	173 ± 30	$13.4\pm 2.4\pm 1.3$
$D^+ \to K^- \pi^+ \pi^+$	262 ± 29	$9.8\pm 1.2\pm 1.2$	98 ± 20	$3.8\pm 0.9\pm 0.4$
$D^+_s \to \phi \pi^+$	11 ± 5	$2.2\pm 1.1\pm 0.3$	82 ± 11	$16.5\pm 2.3\pm 1.7$
$\to \overline{K}^0 S^0 K^+$	0 ± 3	$0.0\pm 0.1\pm 0.2$	55 ± 11	$18.0\pm 3.5\pm 1.7$
$\to K^0 S^0 K^+$	0 ± 3	$0.0\pm 0.9\pm 0.2$	31 ± 9	$9.2\pm 2.7\pm 0.8$
$A_c^+ \to pK^- \pi^+$	41 ± 9	$3.5\pm 0.8\pm 0.3$	33 ± 9	$2.9\pm 0.9\pm 0.3$

The corresponding yields are listed in Table I. We then compute for each decay channel $X_c \to f$ the efficiency-corrected signal yields $N(X_c \to f)$ ($N(\overline{X}_c \to \overline{f})$) and define the raw branching fractions B_c and \overline{B}_c as

$$B_c = N(X_c \to f) / [N_{B^-} \times B(X_c \to f)], \quad \overline{B}_c = N(\overline{X}_c \to \overline{f}) / [N_{\overline{B}^-} \times B(X_c \to f)].$$

After correcting these numbers for $B^0 \overline{B}^0$ mixing, we obtain the final branching fraction for $B^0 \to X_c X$:

$$B(B^0 \to X_c X) = \frac{B_c - \chi_d (B_c + \overline{B}_c) - c_+ B_+}{1 - 2\chi_d},$$

where $\chi_d = 0.181 \pm 0.004$ is the $B^0 - \overline{B}^0$ mixing parameter [16]. The correcting factor B_+ accounts for B^+ contamination in the B^0 sample and depends on $B(B^- \to X_c X)$ and $B(B^+ \to X_c X)$. The results are given in Table I. Combining the different D^0 or D_s modes, we obtain the final branching fractions listed in Table III.

To extract N_c from these numbers, we need to evaluate the contribution of $B^{-} \to A_c^+ \overline{L}_c K^-$. Combining the four-momenta of the recoiling B^-, of a K^- and of the reconstructed A_c^+ or \overline{L}_c candidate, we compute the missing mass: the absence of signal at the A_c mass excludes a significant contribution of this process. We therefore take $B(B^{-} \to \Xi_c X) = B(B^{-} \to \overline{L}_c X)$ in the computation of N_c. Using Eqs. 1 and 2 and taking $B(B^{-} \to (\pi\pi)X) = (2.3 \pm 0.3\%)$ [17] [18], one obtains:

$$N_c^- = 0.983 \pm 0.030 \pm 0.046^{+0.028}_{-0.023},$$

$$N_c^0 = 0.330 \pm 0.022 \pm 0.020^{+0.051}_{-0.031},$$

$$n_c^- = 1.313 \pm 0.037 \pm 0.062^{+0.063}_{-0.042}.$$

The reconstruction of D, D_s and A_c from B^0 decays is performed in the same way as that in the B^- analysis.

X_c decay mode	$B^{-} \to X_c X$ correlated	$B^{-} \to \overline{X}_c X$ correlated
$D^0 \to K^- \pi^+$	$79.3 \pm 2.5 \pm 4.0^{+1.9}_{-1.9}$	$9.8 \pm 0.9 \pm 0.5^{+0.3}_{-0.3}$
$D^+ \to K^- \pi^+ \pi^+$	$9.8 \pm 1.2 \pm 1.2^{+0.8}_{-0.7}$	$3.8 \pm 0.9 \pm 0.4^{+0.3}_{-0.3}$
$D^+_s \to \phi \pi^+$	$0.5 \pm 0.6 \pm 0.2^{+0.2}_{-0.1}$	$14.3 \pm 1.6 \pm 1.5^{+0.9}_{-0.9}$
< 2.2 at 90% CL		
$A_c^+ \to pK^- \pi^+$	$3.5 \pm 0.8 \pm 0.3^{+0.3}_{-0.8}$	$2.9 \pm 0.8 \pm 0.3^{+0.1}_{-0.6}$

To compute N_c, we neglect $B^0 \to A_c^+ \overline{L}_c K^0$ production and assume that $B(B^0 \to \Xi_c X) = B(B^0 \to \overline{L}_c X)$. Substituting B^0 for B^- in Eqs. 1 and 2 and taking
in Table IV. We obtain an upper limit on the correlated \(D_s^+ \) fraction in \(B^- \) decays: \(B(B^- \rightarrow D_s^+ X)/B(B^- \rightarrow D_s^+ X) < 0.126 \) at 90% CL.

TABLE IV: Fraction \(w \) of anti-correlated charm.

Mode	\(B^- \) decays	\(\bar{B}^0 \) decays
\(\bar{D}^0 X \)	0.110 ± 0.010 ± 0.003	0.110 ± 0.031 ± 0.008
\(D^- X \)	0.278 ± 0.052 ± 0.009	0.055 ± 0.040 ± 0.006
\(D_s^- X \)	0.966 ± 0.039 ± 0.012	0.733 ± 0.092 ± 0.010
\(\bar{\Lambda}_c^- X \)	0.452 ± 0.090 ± 0.003	0.286 ± 0.142 ± 0.007

In conclusion, we have measured for the first time the branching fractions for inclusive decays of \(B \) mesons to flavor-tagged \(D, D_s \) and \(\Lambda_c \), separately for \(B^- \) and \(\bar{B}^0 \).

We observe significant production of anti-correlated \(D^0 \) and \(D^+ \) mesons in \(B \) decays (Table IV), with the branching fractions detailed in Tables II and III. The correlated \(D_s^- \) production in \(B^- \) decays is measured to be small.

As expected, the sum of all correlated charm branching fractions, \(N_c \), is compatible with 1, for charged as well as for neutral \(B \)'s. The numbers of charged particles per \(B^- \) decay (\(n_c^- = 1.313 ± 0.037 ± 0.062 \pm 0.042 \) and per \(\bar{B}^0 \) decay (\(n_c^0 = 1.276 ± 0.062 ± 0.058 ± 0.046 \)) are consistent with previous measurements \([2, 17, 19]\) and with theoretical expectations \([8–10]\).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NRF (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Now at Department of Physics, University of Warwick, Coventry, United Kingdom
† Also with Università della Basilicata, Potenza, Italy
‡ Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
§ Deceased

[1] Throughout this paper, the named reaction refers also to its complex conjugate.
[2] CLEO collaboration, T.E. Coan et al., Phys. Rev. Lett. **80**, 1150 (1998).
[3] DELPHI collaboration, J. Abdallah et al., Phys. Lett. B **561**, 26 (2003).
[4] CLEO collaboration, R. Ammar et al., Phys. Rev. D **55**, 13 (1997).
[5] ALEPH collaboration, R. Barate et al., Eur. Phys. Jour. C 4, 387 (1998).
[6] Babar Collaboration, B. Aubert et al., Phys. Rev. D 68, 092001 (2003).
[7] CLEO collaboration, B. Barish et al., Phys. Rev. Lett. 79, 3599 (1997).
[8] E. Bagan et al., Phys. Lett. B 351, 546 (1995).
[9] G. Buchalla et al., Phys. Lett. B 364, 188 (1995).
[10] M. Neubert, 17th Int. Symposium on Lepton-Photon Interactions, 10-15 Aug 95, Beijing, China, p. 298 (World Scientific).
[11] Babar Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).
[12] GEANT4 Collaboration, S. Agostinelli et al. Nucl. Instrum. Methods Phys Res. Sect. A 506, 250 (2003).
[13] ARGUS collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[14] CRYSTAL BALL collaboration, T. Skwarnicki, DESY F31-86-02.
[15] Satellite contributions include a reflection from $D^0 \to K^- K^+$ in the $D^0 \to K^- \pi^+$ mass spectrum and a signal at the D^+ mass (from $D^+ \to \phi \pi^+$ decays) in the $D^+_s \to \phi \pi^+$ mass spectrum.
[16] S. Eidelman et al. (Particle Data Group Collaboration), Phys. Lett. B 592, 1 (2004).
[17] ALEPH, CDF, DELPHI, L3, OPAL, SLD combined results, hep-ex/0112028.
[18] M. Beneke et al., Phys. Rev. D 59, 054003 (1999).
[19] CLEO collaboration, L. Gibbons et al., Phys. Rev. D 56, 3783 (1997).