Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death
Despina Smirlis, Michael Duszenko, Antonio Jiménez Ruiz, Effie Scoulica, Patrick Bastien, Nicolas Fasel, Ketty Soteriadou

To cite this version:
Despina Smirlis, Michael Duszenko, Antonio Jiménez Ruiz, Effie Scoulica, Patrick Bastien, et al.. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasites and Vectors, BioMed Central, 2010, 3 (1), pp.107. 10.1186/1756-3305-3-107. hal-02947428

HAL Id: hal-02947428
https://hal.archives-ouvertes.fr/hal-02947428
Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death

Despina Smirlis, Michael Duszenko, Antonio Jiménez Ruiz, Effie Scoulica, Patrick Bastien, Nicolas Fasel, Ketty Soteriadou

Abstract
Apoptosis is a normal component of the development and health of multicellular organisms. However, apoptosis is now considered a prerogative of unicellular organisms, including the trypanosomatids of the genera Trypanosoma spp. and Leishmania spp., causative agents of some of the most important neglected human diseases. Trypanosomatids show typical hallmarks of apoptosis, although they lack some of the key molecules contributing to this process in metazoans, like caspase genes, Bcl-2 family genes and the TNF-related family of receptors. Despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide. The components of the apoptotic execution machinery of these parasites are slowly coming into light, by targeting essential processes and pathways with different apoptogenic agents and inhibitors. This review will be confined to the events known to drive trypanosomatid parasites to apoptosis.

Introduction
From the mid-nineteenth century, many observations have indicated that cell death plays a considerable role during physiological processes of multicellular organisms, particularly during embryogenesis and metamorphosis [1]. The term programmed cell death (PCD) was introduced in 1964, proposing that cell death during development is not of accidental nature but follows a sequence of controlled steps leading to locally and temporally defined self-destruction [2], in contrast to necrosis, which is a form of cell-death that results from acute tissue injury and provokes an inflammatory response. It is evident that death may occur through different mechanisms leading to distinct morphologies.

Consequently, different types of PCD have been described, the most important forms being apoptosis and autophagic cell death [3]. The term apoptosis describes biochemical processes and morphological features leading to controlled cellular self-destruction such as rounding-up of the cell, condensation of the chromatin, fragmentation of the nucleus (karyorhexis), loss of the mitochondrial membrane potential (ΔΨm), plasma membrane blebbing, and others [4], whereas autophagy is the type of cell death that occurs without chromatin condensation, but often accompanied by massive autophagic vacuolization of the cytoplasm [5]. In mammalian cells the two major apoptotic pathways are the “intrinsic” pathway, involving mitochondrial membrane permeabilisation regulated by the members of the Bcl2/Bax protein family, and the transmembrane “extrinsic” pathway comprising of activation of death receptors (DRs), via the TNF superfamily of DRs [6]. Despite the fact that these two pathways are relatively distinct, their co-existence and cross-talk is also possible [7].

Although it was initially assumed that apoptosis arose with multicellularity, there is now increasing experimental evidence that similar mechanisms are operative in trypanosomatids of the genera Trypanosoma spp. (T. brucei and T. cruzi) and Leishmania spp. These parasites display complex life cycles, with multiple differentiation forms alternating between mammalian and insect hosts. Trypanosomatids are the causative agents of diseases such as Kala-azar (visceral leishmaniasis),
cutaneous and mucocutaneous leishmaniasis, Chagas disease (American trypanosomiasis) and African sleeping sickness (African trypanosomiasis), diseases affecting more than 27 million people worldwide [8].

Different types of cell death exist in these unicellular parasites, including apoptosis and autophagic cell death (reviewed in [9,10]), triggered in response to diverse stimuli. In trypanosomatids, the former is induced by different stimuli such as heat shock [11-14], reactive oxygen species (ROS) [15-23], antiparasitic drugs [10,24-65], prostaglandins [66], starvation [67-69], antimicrobial peptides [70,71], antibodies [72], serum as a source of complement [19,73], and mutations in cell-cycle regulated genes [74] (See additional file 1: Table S1). Once apoptosis is triggered, a cascade of events common to mammalian apoptosis takes place such as production of reactive oxygen species (ROS) and lipid peroxidation, increase in cytosolic Ca\(^{2+}\) levels, changes in mitochondrial membrane potential (ΔΨm), exposition of phosphatidylserine in the outer leaflet of the plasma membrane, maintenance of an intact plasma membrane until late stages of the process, release of cytochrome c, and induction of proteases and DNA cleavage (reviewed in [75,76]) (See additional file 1: Table S1).

Although these trypanosomatids show the common outcomes of apoptosis as compared with mammalian apoptosis, the absence of homologues to mammalian key regulatory or effector molecules of apoptosis (like TNF-related family of receptors, Bcl-2 family members and caspases) indicates that the pathways of apoptosis are in part distinct in these divergent eukaryotes. However, despite the lack of these molecules, trypanosomatids appear to have the basic machinery to commit suicide.

Trypanosomatids also possess a functional autophagic system (reviewed in [77-79]) that appears to be essential for differentiation and for parasite maintenance and survival [67,80,81], being activated during differentiation, starvation-induced stress [67,80-82], treatment with different drugs [10,83-85] and antimicrobial peptides [86-88]. Although autophagy may also lead to cell death, it is generally regarded as a catabolic survival mechanism.

For this reason, this review will not describe autophagic cell death in trypanosomatids but will be confined to the components of the basic machinery that these parasites possess to commit suicide, and the pathways and/or biological processes that, when deregulated, drive these protozoan parasites to die in a controlled manner. Obeying the recommendations of the nomenclature commission of cell death [3], we use the term apoptosis here for an induced cell death in trypanosomatids that shows a considerable number of apoptosis hallmarks.

Mitochondrial dysfunction in trypanosomatid apoptosis

Mitochondria have a central role in metazoan apoptotic cell death, as they are involved in the active control of apoptosis at several levels including the release of proapoptotic proteins [89]. The dysfunction of mitochondria is one of the hallmarks of apoptosis often associated with changes in ΔΨm—a key indicator of mitochondrial function that maybe either a consequence of or an early requirement for apoptosis [90,91].

In trypanosomatids too, many apoptotic agents or stresses, are associated with a dysfunction of the unique mitochondrion of these organisms indicated by the changes in ΔΨm (See additional file 1: Table S1). In this respect, the antiparasitic activity of many drugs is mediated by the loss of mitochondrial ΔΨm (See additional file 1: Table S1). Not only drug treatment but also physiological stress conditions may lead to apoptosis with changes in ΔΨm, for example: nutrient deprivati

...ation in stationary phase L. donovani promastigote cultures [92], heat stress in L. infantum promastigotes [12], high density cultures producing prostaglandin D2 in T. brucei [17,66], or prolonged endoplasmic reticulum (ER) stress in T. brucei parasites [93] (Figure 1, See additional file 1: Table S1).

The precise and coordinated function of the trypanosomatid mitochondrial respiratory chain complexes is a prerequisite for sustaining the proper mitochondrial potential (reviewed in [94]). Hence, inhibitors of respiratory complexes II [95,96] and III [96] resulted in the dissipation of ΔΨm, whereas complex I inhibition in L. donovani promastigotes, resulted in mitochondrial membrane hyperpolarisation [96]. On the contrary, increase in respiration rates and the concomitant generation of superoxide radicals by heat shock also induced apoptosis in L. infantum promastigotes and resulted in mitochondrial membrane hyperpolarisation [96]. Interestingly, this indicates that both an increase and a decrease in respiration and both hyperpolarisation and loss of ΔΨm maybe linked with apoptosis in trypanosomatids demonstrating the importance of maintenance of proper ΔΨm in these parasites [96] (Table 1). Although the precise mitochondrial contribution to apoptosis awaits further elucidation the above data reinforce the conception that mitochondrial dysfunction and apoptosis in trypanosomatids are closely associated.

Mitochondrial dysfunction and apoptosis are often initiated in mammalian cells by the mitochondrial outer membrane permeabilisation (MMP) regulated by proapoptotic Bcl-2 family members [97]. No Bcl-2 family members with significant similarity to their mammalian counterparts are encoded by the genome...
Figure 1 Representation of the major pathways leading to apoptosis in trypanosomatids. The different triggers of apoptosis result in the loss of mitochondrial membrane potential (ΔΨm), the generation of reactive oxygen species formation (ROS) and increase in cytosolic Ca^{2+} (Ca^{2+}).

These changes potentiate the release of cytochrome c and EndoG into the cytoplasm and the activation of proteases and nucleases to dismantle the parasites in an ordered fashion. Upon release from the mitochondrion EndoG translocates to the nucleus to degrade DNA. The question marks (?) represent a function that either awaits confirmation in trypanosomatids or that has been suggested for only some genera of trypanosomatids.

Smirlis et al. Parasites & Vectors 2010, 3:107
http://www.parasitesandvectors.com/content/3/1/107
of trypanosomatids, although functional homologues of these proteins may exist in trypanosomatids. To address this question, Arnoult et al. mixed human recombinant Bax- a Bcl-2 family member that induces MMP in mammalian cells via interaction with anti-apoptotic family members [98,99] - with L. major intact mitochondria [100]. Bax was able to induce pore formation in intact L. major mitochondria, followed by a rapid release of cytochrome c [100]. In addition, ectopic expression of mammalian members of the Bcl-2 family, i.e. the antiapoptotic Bcl-XL and the proapoptotic family members [98,99] - with L. major mitochondrial matrix condensationa

Proteins in essential processes associated with apoptosis	Mitochondrial changes associated with apoptosis	Effectors of apoptosis
Proteins associated with the cell-cycle	Respiration and $\Delta \Psi m$	Proteases
Prohibitin (T. brucei)	Increase, Decrease	Cathepsin-like proteases
RACK (T. brucei)		(CPA, CPB, CPC)
QM (T. brucei)		(L. major, L. mexicana)
PKR (L. donovani)		
GS3-3 (L. donovani)		
CRK3 (L. donovani)		
Proteins associated with proliferation and cell division	Mitochondrial membrane permeability	Proteasomal proteases
Centrin (L. donovani)	$\Delta \Psi m$ by lipid peroxidationb	(L. amazonensis)
EF-1 α (T. cruzi)	Bcl-2 functional homologuesa	
Proteins involved in DNA replication	MITochondrial release of pro-apoptotic proteins	Metacaspases
Topoisomerases (Leishmania spp.)	Cytochrome cc	(T. cruzi, L. donovani)
Proteins involved in nucleocytoplasmic transport	$\Delta \Psi m$, ROS and Ca2+ interplay	Nuclease
Ran (T. brucei)	Trigger \rightarrow Cytosolic Ca2+ elevation \rightarrow Ca2+ entry into mitochondrion \rightarrow Dissipation of $\Delta \Psi m$ \rightarrow ROS	EndoG
RanBP1 (T. brucei)		(Leishmania spp.)
CAS (T. brucei)		
NTF-2 (T. brucei)		
Proteins in cytoskeletal dynamics	Trigger \rightarrow ROS \rightarrow lipid peroxidation \rightarrow elevation of cytosolic Ca2+ \rightarrow TatD-like endonuclease	
Tubulinsa (L. donovani, T. brucei)	Dissipation of $\Delta \Psi m$	(L. donovani)
Proteins in other processes	Trigger \rightarrow ROS \rightarrow $\Delta \Psi m$ \rightarrow intracellular Ca2+ elevation	Flap-endonuclease-1
SIR2 deacetylase (L. infantum)		(L. donovani)

a. Apoptosis is triggered by agents interfering with tubulin polymerization
b. Awaits confirmation
c. Unknown function in trypanosomatid apoptosis

In brackets, the genus or the species involved.

 Calcium, $\Delta \Psi m$, and ROS interplay in trypanosomatid apoptosis: a mitochondrial love-hate triangle

ROS-products formed during the normal metabolism or resulting from xenobiotic exposure- and Ca2+ signals together are involved in a variety of vital cell functions and thus are necessary for cell survival. However, more recently it has become clear that cellular ROS and Ca2+ overload can cause cytotoxicity and trigger either apoptotic or necrotic cell death [102,103]. ROS species and imbalance of calcium homeostasis, also contribute to apoptosis in trypanosomatids, and this occurs via more than one pathway (Figure 1, Table 1; reviewed in [76,94]).

In the first pathway, the trigger induces cytosolic Ca2+ elevation. Ca2+ enters the mitochondrion and dissipates $\Delta \Psi m$. Preceding or following the $\Delta \Psi m$, ROS are generated by mitochondria via oxidative phosphorylation. These events finally lead to the execution of apoptosis. This pathway has been reported in T. cruzi epimastigotes when exposed to fresh human serum [19]. Upon exposure to fresh human serum, the assembly membrane attack complex resulting from complement activation, allowed the influx of Ca2+, and consequently...
excessive mitochondrial Ca\(^{2+}\) accumulation [19]. Mitochondrial Ca\(^{2+}\) overload resulted in the loss of \(\Delta\Psi_{m}\) and increased superoxide anion production [19]. This connection between mitochondrial Ca\(^{2+}\) overload and ROS generation has also been demonstrated in mammalian systems [104-106].

A second pathway has been described in which the trigger induces ROS formation, which in turn results in lipid peroxidation. Lipid peroxidation affects membrane fluidity and/or the function of calcium channels, disturbing the calcium homeostasis and thus resulting in the elevation of cytosolic Ca\(^{2+}\) and the loss of \(\Delta\Psi_{m}\). This in turn induces the execution of apoptosis. This pathway has been unraveled by treating *L. donovani* promastigotes with thienyltrifluoro-acetone (a respiratory chain complex II inhibitor) [96], camptothecin or curcumin [26,51] or with hydrogen peroxide [20]. ROS production resulted in an elevation of the cytosolic Ca\(^{2+}\) levels due to opening of non-selective and L-type voltage-gated ion channels in the plasma membrane [20,26,51]. Elevation of cytosolic calcium levels led to the uncoupling of mitochondrial oxidative phosphorylation, to the release of cytochrome c into the cytosol and directed promastigotes to follow the executionary pathway of apoptosis [15,26,51]. In *T. brucei*, ROS production has been reported to generate Ca\(^{2+}\) homeostasis imbalance. However ROS production in this parasite impaired the mitochondrial Ca\(^{2+}\) transport and disrupted the Ca\(^{2+}\) barrier between nuclear envelope and cytosol. Consequently, in response to the extracellular stimulus, the mitochondrion did not accumulate Ca\(^{2+}\) efficiently, leading to accumulation of excess Ca\(^{2+}\) within the nucleus and induction of apoptosis thereafter [22].

Another model of mitochondria-induced apoptosis predicts the rapid loss of the mitochondrial potential by ROS, whereby calcium homeostasis is disturbed after dissipation of \(\Delta\Psi_{m}\). This occurred with intracellular *L. donovani* amastigotes treated with potassium antimony tartrate. Potassium antimony tartrate generated ROS that was primarily concentrated in the macrophage parasitophorous vacuoles. ROS induced the loss of \(\Delta\Psi_{m}\), which finally led to an elevation of Ca\(^{2+}\) concentrations in both parasite and host cells [57].

In most cases, it seems that there is a correlation between ROS formation, calcium imbalance and loss of \(\Delta\Psi_{m}\) (Figure 1, Table 1). However, in other instances loss of \(\Delta\Psi_{m}\) led to apoptosis without the involvement of ROS or the change in Ca\(^{2+}\) concentration. For example, neither ROS nor Ca\(^{2+}\) ions were involved in dissipation of \(\Delta\Psi_{m}\) and apoptosis in *L. donovani* promastigotes treated with Aloe Vera extracts [28].

To protect themselves against oxidative stress, trypanosomatids possess both non-enzymatic (e.g. glutathione, trypaonothione [107], ovothiol A [108]) and enzymatic scavengers. Unlike mammalian cells, trypanosomatids do not encode for the two key antioxidant enzymes catalase and glutathione peroxidase [109]. However, hydrogen peroxide metabolism is based on the trypanothione peroxidase system working in concert with NADPH and trypanothione; and scavenging of ROS from this system is required for parasite survival and infectivity [110-112]. Superoxide ions are detoxified by superoxide dismutase [113] and ROS from the mitochondrial respiratory chain by ascorbate peroxidase [114]. *L. major* promastigotes over-expressing ascorbate peroxidase showed enhanced tolerance to apoptosis mediated by oxidative stress [114]. Pteridine reductase (PTR1) has a function in essential pteridine salvage as well as in antifolate resistance [115]. The leishmanial PTR1 has been shown to protect intracellular amastigotes against reactive oxygen and nitrogen intermediates’ toxicity, while PTR1/-/- null mutants survived less well in macrophages [115]. Furthermore the targeting of this enzyme by a glycosyl dihydrotryptamine analogue induced apoptosis in *L. donovani* promastigotes [31] and intracellular amastigotes [116]. Likewise, expression of trypanosome alternative oxidase (TAO) [117] was increased under low-temperature stress; and inhibition of TAO was associated with apoptosis in the bloodstream form [118]. Protection of TAO against cell death was associated with protection from ROS generated by drugs like antycide in TAO over-expressing transgenic *T. brucei* [23].

Non-metabolic enzymes have also been shown to protect parasites against oxidative stress. The surface lipophosphoglycan (LPG) of *Leishmania* [119] was suggested to scavenge oxygen radicals and LPG-deficient mutants were indeed more sensitive to ROS [120]. Moreover the cellular chaperone HSP70 has also been proposed to have a protective role against ROS. HSP70 appeared to be upregulated in *Leishmania* parasites undergoing heat shock, or in parasites treated with a sublethal dose of menadione, generating superoxide and hydrogen peroxide respectively [121] or with a nitric oxide donor [122]. Transfection of promastigotes with HSP70 caused a heat-inducible increase in resistance to peroxide [121]. The authors suggest that HSP70 upregulation is a mechanism for resisting toxic oxidants [121].

Downstream of mitochondrial changes: the execution of apoptosis

The events that follow the disruption of \(\Delta\Psi_{m}\) result in protease and nuclease activation, responsible for dismantling the respective cells. The main executors of apoptosis in mammalian cells are a group of cysteine proteases, the caspases [123]. However, in the past few years, accumulating evidence in the literature supports the existence of pathways of caspase-independent...
apoptosis with central players proteases being cathepsins, calpains, granzymes A and B and the proteases of the proteasome [124]. Trypanosomatids do not have caspase genes, and therefore they undergo a caspase-independent apoptosis.

An example of a non-caspase executor of apoptosis involves the proteasomal proteases in *L. amazonensis* amastigotes (Table 1) treated with *NO donors* [125]. Other putative executors of apoptosis are metacaspases (MCAs) (Table 1), i.e. cysteine proteases with similar folds as caspases [126]. The genome of *T. brucei* possesses five metacaspases (TbMCA1-5) [127], whereas two genes are present in *T. cruzi* (TcMCA3, TcMCA5) [128], two in *L. donovani* (LdMC1 and LdMC2) [129] and one in *L. major* (LmMCA) [130,131]. These proteases have arginine/lysine proteolytic activity, and are unable to cleave caspase-specific substrates [129,131,132]. Heterologous expression of TbMCA4 in yeast caused loss of respiration competence and clonal cell death [127], whereas the *L. major* metacaspase could replace the endogenous yeast metacaspase YCA1 in apoptosis [131]. The role of metacaspases as executors of apoptosis in trypanosomatids still remains controversial. For example, it has been suggested that the two *T. cruzi* MCAs might be involved in human serum-induced apoptosis [128], and that over-expression of *L. donovani* MCAs renders the parasites more sensitive to hydrogen-peroxide [129]. While TbMCAs (2, 3 and 5) and the *L. major* metacaspase could play a functional role in key steps of the cell-cycle and division [130,133], their function in trypanosomatid apoptosis awaits confirmation.

Although caspases are not present in the trypanosomatid genomes, many investigators have reported the presence of caspase-like activity assessed by the cleavage of caspase-specific substrates and the inhibitory effect of caspase-specific inhibitory peptides [15,26,44,46,49-51,68,92,114,135]. This activity was described in *Leishmania* parasites treated with different drugs [92], hydrogen peroxide [15], inhibitors of protein kinase C [49,100], and in *T. cruzi* epimastigotes treated with human serum [135], as well as stationary phase or nutrient deprived parasites [68]. Therefore it is evident that proteases with little homology, but with overlapping activity to metazoan caspases, may be involved in the execution of apoptosis in trypanosomatids. Indeed, Zangger *et al.* showed that cleavage of the caspase-specific substrate, a DEVD peptide in a 10 day axenic culture, was inhibited by E-64, an inhibitor of cathepsin-like cysteine proteases [69] that does not inhibit caspases [126]. Moreover the DEVDase activity was not present in a double mutant of the cathepsin L-like cysteine CPA/CPB proteases [136], indicating that this activity is likely due to one of the two cysteine proteases [69]. In addition, the intracellular binding of the cell permeate pancaspase inhibitor Z-VAD-FMK, upon heat shock induced apoptosis, was attributed to the binding to the cathepsin B-like cysteine proteinase c (CPC) [137]. CPC was not only shown to bind z-VAD but also its knockout appeared to make parasites survive better when exposed hydrogen peroxide [137], therefore providing strong evidence that at least part of the execution of apoptosis in *Leishmania spp.* may function via the involvement of CPC [137]. Finally cruzipain, the major cysteine protease of *T. cruzi*, was able to act on caspase substrates at low rates [138]. Overall these data suggest that the caspase substrate activity in trypanosomatids may be stimulated by the lysosomal cathepsin-like proteases (Table 1).

Using protease inhibitors, several investigators have demonstrated that proteases stimulate nucleases to degrade DNA. This was shown with the cysteine protease inhibitor E-64 in staurosporine treated *L. donovani* promastigotes [100] and with caspase inhibitors in *Leishmania* and *Trypanosoma* upon different triggers of cell death [15,44,46,51,135]. However, there are many examples of apoptosis, where DNA fragmentation was shown to be insensitive to caspase inhibitors or to caspase-like activity [22,28,32,47,54,66,69,139,140], suggesting that DNA degradation may be under the control of multiple proteases.

Although DNA fragmentation is commonly observed in trypanosomatids undergoing apoptosis, effectors of this pathway have only recently been described (Table 1). From the genome data it is known that trypanosomatids do not contain homologues of caspase-activated DNAase (CAD), one of the best characterised nucleases in mammalian apoptosis. In addition to CAD, mammalian cells possess a mitochondrial endonuclease G (EndoG) (Table 1) that translocates to the nucleus during caspase-independent apoptosis [141,142]. EndoG is encoded in the trypanosomatid genome [140,143,144], as a mitochondrial enzyme [140,144] that upon oxidative [114,143] and/or drug induced apoptosis [32,140,144], translocates to the nucleus (Figure 1; [143,144]). This enzyme, in the nucleus, forms separate complexes with Flap endonuclease-1 and TatD-like nuclease to generate the degradosome in *L. donovani* promastigotes [140]. Over-expression of this endonuclease strongly promoted apoptotic cell death under oxidant or differentiation-induced stress in *Leishmania*, while conversely down-regulation of EndoG conferred resistance to oxidative induced cell death in *T. brucei* [143], indicating that it is an essential effector of apoptosis in trypanosomatids.

During activation of apoptosis, ions and pH may play an important role in the execution process, affecting
both nuclease and protease activity. This was demonstrated in camptothecin-treated *L. donovani* promastigotes, where treatment of the drug was followed by a significant decrease in intracellular pH and the impairment of the Na\(^+\)-K\(^+\) ATPase pump by oxidative stress [51]. The reduction of the K\(^+\) concentration and the pH change propagated the protease activity (DEVDase) of untreated cytosolic *L. donovani* extracts [51]. Moreover, a nuclease present within the nuclei of untreated extracts of *L. donovani* that became activated in the presence of Mg\(^{2+}\) and/or Ca\(^{2+}\) ions was strongly repressed at physiological concentrations of K\(^+\) [51]. The authors suggested that K\(^+\) efflux from the cells during apoptosis is an important regulator of the nuclease activity [51]. Different ion requirements were observed for the nuclease activity from stationary phase *L. major* parasites that was inhibited by Zn\(^{2+}\) ions, and was not dependent on Ca\(^{2+}\) or Mg\(^{2+}\) ions, although the addition of Mg\(^{2+}\) ions improved this activity [69]. These differences in ion concentrations suggest that more than one nuclease is present in *Leishmania spp.* that is induced by different apoptosis triggers. In addition the *L. infantum* EndoG required Mg\(^{2+}\), Mn\(^{2+}\) or Co\(^{2+}\) ions for optimal activity, whereas moderate K\(^+\) concentrations (150 mM) or higher Na\(^+\) concentrations (300 mM) inhibited the enzyme [144]. Therefore, imbalances of intracellular ion concentrations and pH values during apoptosis in trypanosomatids may trigger the caspase-independent activation of proteases and nucleases to execute cell death.

Apoptosis is associated with deregulation of essential biological processes and protein functions in trypanosomatids

The induction of apoptosis in mammalian cells is often associated with alterations of essential biological processes. For example the tight coupling of proliferation and cell-cycle control with apoptosis, provides a means by which an organism can regulate cell expansion and is imperative for cellular homeostasis. Hence the deregulation of the cell-cycle may result in apoptosis in mammalian cells (reviewed in [145,146]). The relationship between cell-cycle control and apoptosis is now becoming evident in trypanosomatids (Table 1). A hint to such a relationship came from experiments, where *T. brucei* parasites were treated with the lectin concanavalin A (ConA). ConA used the major cell-surface glycoprotein as a ligand, and induced both cell-cycle defects [147] and apoptosis [148]. In addition, in apoptotic parasites treated with ConA, there was a differential expression of genes whose homologues are known to be involved in cell-cycle control in mammalian cells, like prohibitin, the trypanosome receptor for activated protein C (RACK) [149,150] and the homologue of the QM protein (a regulator of the c-jun protooncoprotein) [149,151].

Kinases also provide an important link between cell-cycle coordination and apoptosis. This was demonstrated by the inhibition of glycogen synthase-3 short isoform (*LdGSK-3*) and CRK3 (the CDK1 homologue in *Leishmania spp.*) [65]. The indirubins, 6-Br-indirubin-3’-oxime and 6-Br-5-methylindirubin-3’oxime, that show selectivity against CRK3 and LdGSK-3 respectively, induced apoptosis in *L. donovani* promastigotes [65]. In mammalian cells, CDK1 was shown to be an essential component of certain forms of apoptosis (reviewed in [146]) and provided the functional link between mitotic arrest and apoptosis [152]. In addition, mammalian GSK-3 had a pro-apoptotic action for the intrinsic signalling pathway by the facilitation of signals that cause disruption of mitochondria [153]. Therefore the above observations suggest that the events downstream of GSK-3 and CDK1 and their respective homologues, might be different in mammalian cells and in trypanosomatids. On the contrary staurosporine (prototypical ATP-competitive kinase inhibitor) and withaferin A (potent protein kinase C inhibitor), known apoptogenic agents for mammalian cells [154-156], also induce apoptosis in *L. donovani* parasites [49,100] implying that inhibition of homologous kinases may induce the execution of apoptosis in both trypanosomatids and mammals.

Evidence exists, that proteins associated with proliferation and cell division may be linked to apoptosis in trypanosomatids, as in higher eukaryotes (Table 1). The knocking down of centrin in *L. donovani* amastigotes, encoding a cytoskeletal calcium binding protein that regulates cytokinesis in trypanosomatids [74,157], induces apoptotic death [74]. In addition, elongation factor 1 a (EF-1\(\alpha\)) a protein involved in eukaryotic protein biosynthesis and proliferation [158,159], translocates from the cytoplasm to the nucleus, in apoptotic *T. cruzi* epimastigotes [160]. The authors suggest that the nuclear translocation may confer a distinct function to this protein and that *TcEF-1\(\alpha\) could participate in the regulation of expression of genes involved in the control of cell death in *T. cruzi* [160]. Nevertheless, for assessing an active role of *TcEF-1\(\alpha\) in apoptosis, as occurs with the mammalian homologue [161,162] further investigations are required.

Among the genes that have been implicated in the protection against apoptosis are the Silence Information Regulator 2 (Sir2) genes [163]. Homologues of the proteins are classified as NAD dependent deacetylases [164]. Sir2 proteins are hypothesized to play a key role in an organism’s response to stresses (such as heat or starvation) and to be responsible for the life-extending effects of calorie restriction mediated by decreased cAMP and thus lowered protein kinase A signalling [164]. *L. infantum* amastigotes over-expressing the Sir2
homologue, showed a striking increase in the survival rate due to an inherent resistance to apoptosis [165]. Furthermore, sirtinol, a commercially available inhibitor of SIR2 deacetylases, significantly inhibited the in vitro proliferation of L. infantum axenic amastigotes in a dose-dependent manner and induced apoptosis [166]. Promastigotes that over-expressed the gene also showed an increase in viability under starvation conditions [165]. Taking into account the above observations, it is tempting to speculate that Leishmania SIR2 can participate among other factors in the control of cell death (Table 1), and can interact with cellular factors necessary for the cell death machinery [167].

Other genes essential for parasite viability whose inhibition leads to apoptosis in trypanosomatids are topoisomerases (Table 1). Topoisomerases are enzymes that use DNA strand scission, manipulation and rejoining activities to deal with DNA torsional stress, which makes them potential targets for treating parasitic diseases. As topoisomerases are involved in replication, transcription, chromosomal condensation and segregation, inhibitors of these enzymes are expected to interfere with these functions and to have a drastic inhibitory effect on the growth of trypanosomatid parasites [168-172]. The topoisomerase inhibitors berberine [47], camptothecin [51,52], dihydrobetulinic acid [173], baicalin [140], Hoechst 33342 [174], novobiocin [56], pentamidine, doxorubicin [55] luteolin, and dioxyspyrin [38] induce apoptosis, thus providing support that there is a direct correlation between topoisomerase inhibition and apoptosis. The best studied example of apoptosis described in the previous sections has been obtained with camptothecin [51,52], a well characterised topoisomerase IB inhibitor (reviewed in [175]).

The trypanosomatid microtubule cytoskeleton has also been shown to be associated with apoptosis when deregulated. In this respect, agents that interfere with microtubule dynamics (Table 1) including taxol [176] and certain alkaloids [45] induce apoptosis in trypanosomatids. In mammalian cells, the link between microtubules, microtubule interfering agents and apoptosis is mainly associated with modifications of biological processes (M phase arrest) and signalling pathways (mitotic spindle assembly checkpoint activation, Bcl-2 phosphorylation, c-Jun NH2-terminal kinase activation) which ultimately lead to the accumulation of signals required for the engagement to cell death (reviewed in [177]). As trypanosomatids lack many of the signalling and effector molecules that regulate apoptosis and key cell-cycle checkpoints (reviewed in [178]), the pathways leading to apoptosis-like death upon exposure to microtubule interfering agents are most likely to be different. A possible mechanism for the action of these drugs may be associated with disruption of microtubule networks within the mitochondrion [177] or via the direct opening of the permeability transition pore [179].

Apart from deregulation of the cytoskeleton, apoptosis is induced by the inhibition of active nuclear transport [180] (Table 1). Ran-GTPase, a small GTPase that was first discovered to be essential in nucleocytoplasmic transport, is now known to regulate a variety of processes such as mitotic spindle assembly, nuclear envelope assembly, cell-cycle progression and the mitotic checkpoint in mammalian cells [181-184]. In T. brucei, RNAi-mediated gene silencing of Ran and of several of its partners RanBP1, CAS, and NTF2 -the latter having a function solely in nucleocytoplasmic transport-induced apoptosis [180], therefore indicating that impairment of this transport is an intrinsic signal for triggering apoptosis in trypanosomatids [180]. This was later confirmed in mammalian cells by Wong et al. who found that active disruption of nuclear trafficking was an important part for promoting apoptosis before the wholesale breakdown of the nuclear envelope and mixing of the cytosolic and nuclear compartments [185].

The Spliced Leader RNA silencing pathway: a novel player in endoplasmic reticulum stress induced apoptosis

Accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) results in changes of Ca2+ homeostasis, inhibition of glycosylation, oxidative stress and exposure to reducing agents [186]. This induces a coordinated adaptive program called the unfolded protein response (UPR). The UPR alleviates stress by upregulating protein folding and ER associated protein degradation (ERAD) and by inhibiting protein synthesis [186]. However, when protein mis-folding is persistent or excessive, ER stress triggers cell death, typically apoptosis [187]. Several mechanisms have been proposed for linking the distressed ER to cell death in Metazoa including direct activation of proteases, kinases, transcription factors, and Bcl-2 family modulators [186,187].

Trypanosomes lack factors that induce UPR, however upon ER stress, transcriptome changes occur in the procyclic form of T. brucei, primarily via differential mRNA stabilisation, that are similar to those induced by conventional UPR in metazoans and yeast [93]. The ER stress response triggered by the presence of the reducing agent dithiothreitol (DTT), induced the shutting off of Spliced Leader (SL) RNA transcription by perturbing the binding of the transcription factor tSNAP42 to the SL RNA promoter (Figure 2; [188]), leading to Spliced Leader RNA silencing (SLS). The SLS pathway was also induced by other stresses such as those derived from differences in pH or silencing of relevant proteins such as the signal-recognition particle receptor [188], SEC63...
(a protein participating in protein translocation across the ER membrane) or SEC61 (the translocation channel) [93]. The SLS triggered a form of cell death in the parasite, reminiscent of apoptosis (Figure 2), having outcomes like, exposition of phosphatidylserine in the outer leaflet of the plasma membrane, cytoplasmic [Ca2+] elevation, reduction in ΔΨ\textsubscript{m} and ROS formation, as well as ATG8-YFP puncta, indicating the induction of autophagy [93]. The authors proposed that the SLS serves as a unique death pathway, replacing caspase-mediated apoptosis observed in higher eukaryotes [93]. This mechanism of cell death has only been demonstrated in T. brucei, but homologues of the transcription factors that regulate SL transcription are also present in the other trypanosomatids [189] thus making it a possible trypanosomatid-specific apoptosis pathway.

Conclusions

Trypanosomatids appear to possess an endogenous basic machinery that drives the cells to die in a regulated manner. These unicellular organisms encode homologues of metazoan proteins that control the cell-cycle and cell differentiation, including proto-oncogenes, cyclin and cyclin-dependent kinases, that when deregulated result in mitotic catastrophes and apoptosis [190]. However, trypanosomatids lack the classical metazoan effectors of apoptosis (the typical death receptors, caspases, Bcl-2 family members and p53). Although the nature of the pathways that result in the execution of apoptosis may not exactly recapitulate that of mammalian systems, they represent a simple and valuable model which will assist in the future understanding of the complex connections between apoptotic and non-apoptotic mammalian cell death pathways.

In addition to a better understanding of the evolution of the molecular mechanisms of apoptosis, the physiological relevance of this process in these unicellular organisms has attracted much attention. A possible role of apoptosis in the biology of trypanosomatids would be to control parasite numbers in response to limited resources, or within the host for the perpetuation of the infection [191]. It could also be a useful mechanism to avoid an inflammatory response leading to killing of the entire parasite population [69,92]. Apoptosis of Leishmania spp. allows the silencing in human PMNs enabling the intracellular survival of non-apoptotic parasites [192]. In addition, the regulation of apoptosis could allow a stringent coupling of appropriate cell differentiation with cell survival [193]. Furthermore, another possible role of apoptosis in
these parasites would be the maintenance of clonality and assurance of propagation only of the cells fit to transmit the disease [194].

Finally our ability to unravel the pathways important for apoptosis in these protozoa and to predict the consequences of altering specific components of the larger network will provide us with tools to develop novel treatments for combating the devastating diseases caused by these parasites.

Additional material

List of abbreviations

ATG: Autophagy; Bad: Bcl-X/Bcl2 associated death promoter homolog; Bax: Bcl-2-2-associated x protein; Bcl-2: B-cell lymphoma 2; Bcl-XXL: BclXL protein; long form of Bcl-x; Bid: BH3 interacting domain against; CAS: CAS; cellular apoptosis susceptibility; CPA: cysteine peptidase A; CPB: cysteine peptidase B; CPC: cysteine peptidase C, CRK3: Cdc2p related protein kinase 3, DR: death receptor, EF-1α: elongation factor 1 alpha, EndoG: endonuclease G, Hrk: activator of apoptosis harakiri, HSP: heat shock protein; ROS: reactive oxygen species; MMP: permeabilisation of mitochondrial membranes; NGF-IR: Nerve growth factor receptor, *NO*: nitric oxide, NT2-nuclear factor 2; PWN: human polymorphonuclear leukocytes; RACK: receptor for activated C-kinase; Ran: Ras-related Nuclear protein, RanBP1: Ran binding protein 1; RNAi: RNA interference; TNF: Tumour Necrosis Factor; UPR: unfolded protein response; YFP: yellow fluorescent protein; Z-VAD-FMK: Z-VAD-FMK

carbobenzoxyvalyl-alanyl-aspartyl-[OMethyl]-fluoromethylketone; ΔΨm: mitochondrial membrane potential.

Acknowledgements

The authors are members of COST (European Cooperation in the field of Scientific and Technical Research) action BM0802 “Life and death of protozoan parasites” and appreciate support from this action. DS and KS acknowledge financial support from Hellenic Pasteur Institute. AJ acknowledges financial support from the Ministerio de Educación y Ciencia, Spain (grant SAF 2006-12713-C02-02). NF acknowledges financial support from FNRFS (grants N° 3100AO-116656/1) the Novartis Foundation, the Dr Rub and the Swiss Secretariat for Education and Research in the framework of the COST Action BM0802.

Authors details

1Laboratory of Molecular Parasitology, Department of Microbiology, Hellenic Pasteur Institute, 127 Bas. Sofias Ave., 11521 Athens, Greece. 2Interfaculty Institute for Biochemistry (IFIB), University of Tübingen, Tübingen, Germany. 3Departamento de Biología Molecular, Campus Universitario, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain. 4Department of Clinical Bacteriology, Parasitology, Zoonoses and Geographical Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece. 5Université Montpellier 1, UFR Médecine, Laboratoire de Parasitologie-Mycologie, 163 rue Auguste Broussais, F-34090 Montpellier, France. 6Department of Biochemistry, 155 Chemin des Boveresses, University of Lausanne, Epalinges CH-1066, Switzerland.

Authors’ contributions

DS participated in the conception, design, acquisition and interpretation of data and coordination as well as to draft the manuscript. KS participated in the design, conception, acquisition and interpretation of data, and helped to draft the manuscript. MD, AJR, ES, PB NF have participated in the acquisition and interpretation of data, and have participated in drafting and revising the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 1 July 2010 **Accepted:** 17 November 2010 **Published:** 17 November 2010

References

1. Lockchin RA, Facey CO, Zakeri Z. Cell death in the heart. Cardiol Clin 2001, 19:1-11.

2. Lockchin RA, Williams CM: Programmed Cell Death-1: Cytology of Degeneration in the Interssegmental Muscles of the Pernyi Silkmoth. J Insect Physiol 1965, 11:123-133.

3. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Biaglonslonny MV, El-Deiry WS, Goldstein P, Green DR, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009, 16:3-11.

4. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26:239-257.

5. Levine B, Klionsky DJ: Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004, 6:463-477.

6. Movassaghi M, Foo RS: Simplified apoptotic cascades. Heart Fail Rev 2008, 13:111-119.

7. Zhao Y, Li R, Xia W, Neuilll J, Lu Y, Zhang H, Xiao Z, Zhang X, Sun C, Wu W: Bid integrates intrinsic and extrinsic signaling in apoptosis induced by alpha-tocopherol succinate in human gastric carcinoma cells. Cancer Lett 2010, 288:42-49.

8. Stuart K, Bruhn C, Croft S, Fairlamb A, Gurtler R, McKerrow J, Reed S, Tarleton R: Kinetoplasts: related protozoan pathogens, different diseases. J Clin Invest 2008, 118:1301-1310.

9. Chruhasch I, Roeder T, Rennenberg A, Heusler VT: Protozoan parasites: programmed cell death as a mechanism of parasitism. Trends Parasitol 2007, 23:376-383.

10. Menna-Barreto RF, Salomao K, Dantas AP, Santa-Rita RM, Soares MJ, Barbosa HS, de Castro SL: Different cell death pathways induced by drugs in Trypanosoma cruzi: an ultrastructural study. Micron 2009, 40:157-168.

11. Alzate IF, Alvarez-Barrientos A, Gonzalez VM, Jimenez-Ruiz A: Heat-induced programmed cell death in Leishmania infantum is reverted by Bcl-X(L) expression. Apoptosis 2006, 11:161-171.

12. Alzate IF, Arias AA, Moreno-Mateos D, Alvarez-Barrientos A, Jimenez-Ruiz A: Mitochondrial superoxide mediates heat-induced apoptotic-like death in Leishmania infantum. Mol Biochem Parasitol 2006, 152:192-202.

13. Moreira ME, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA: Chronic heat-shock treatment driven differentiation of the unicellular organism Leishmania (Leishmania) amazonensis: Development by self-digestion: molecular pathways. Mol Biochem Parasitol 2007, 152:239-257.

14. Figarella K, Uzcategui NL, Beck A, Schoenfeld C, Kubata BK, Lang F, Duszenko M: Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ 2006, 13:1802-1814.

15. Holzmueller P, Hide M, Sereno D, Lemerec I: Leishmania infantum amastigotes resistant to nitric oxide cytotoxicity: Impact on in vitro parasite developmental cycle and metabolic enzyme activities. Infect Genet Evol 2006, 6:187-197.

16. Deolindo P, Teixeira-Ferreira AS, Del Portillo HA, Milder RV, Balanco JM, Barcinski MA: Heat shock induction of apoptosis in promastigotes of the unicellular organism Leishmania (Leishmania) amazonensis. J Cell Physiol 1996, 167:305-313.

17. Raina P, Kaur S: Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani. Mol Cell Biochem 2006, 289:83-90.

18. Das M, Mukherjee SB, Shaha C: Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 2001, 114:2461-2469.

19. Deolindo P, Teixeira-Ferreira AS, Damatta RA, Alves EW: F-Amino acid oxidase activity present in fractions of Bothrops jararaca venom is responsible for the induction of programmed cell death in Trypanosoma cruzi. Toxicon 2010, 56:944-955.

20. Figarella K, Uzcategui NL, Beck A, Schoenfeld C, Kubata BK, Lang F, Duszenko M: Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. Cell Death Differ 2006, 13:1802-1814.
by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J Biol Chem 2002, 277:24717-24727.

21. Picareza L, Irigar F, Alvarez MN, Peluffo G, Taylor MC, Kelly JM, Wilkinson SR, Radd R: Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression. Biochem J 2007, 403:323-334.

22. Ridgley EL, Xiong ZH, Ruben L: Reactive oxygen species activate a Ca2++-dependent cell death pathway in the unicellular organism Trypanosoma brucei. Biochem J 1999, 340(PT 1):133-40.

23. Tsuda A, Wtola WH, Konnai S, Oshaki H, Onuma M: The effect of TAO expression on PCD-like phenomenon development and drug resistance in Trypanosoma brucei. Parasitol Int 2006, 55:135-142.

24. Alazte JF, Arias A, Mullinieno F, Rico E, de la Iglesia-Vicente J, Jimenez-Ruiz A: Edelfosine induces an apoptotic process in Leishmania infantum that is regulated by the ectopic expression of Bcl-XL and Hrk. Antimicrob Agents Chemother 2008, 52:3779-3782.

25. Benitez J, Guggeri L, Tomaz I, Pessoa JC, Moreno V, Lorenzo J, Aviles FX, Garat B, Gambino D: A novel vanadyl complex with a polyglypyridyl DNA intercalator as ligand: a potential anti-protozoa and anti-tumor agent. J Inorg Biochem 2009, 103:1386-1394.

26. Das R, Roy A, Dutta N, Majumder HK: Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis 2008, 13:867-882.

27. De Souza EM, Menza-Barreto R, Araujo-Jorge TC, Kumar A, Hu Q, Boykin DW, Soeroñ MN: Antiparasitic activity of aromatic diamidines is related to apoptosis-like death in Trypanosoma cruzi. Parasitol Research 2006, 103:73-79.

28. Dutta A, Bandyopadhyay S, Mandal C, Chatterjee M: Aloe vera leaf exudate induces a caspase-independent cell death in Leishmania donovani promastigotes. J Med Microbiol 2007, 56:629-636.

29. Dutta A, Ghoshal A, Mandal D, Mandal NB, Banerjee S, Sahu NP, Mandal C, Racemoside A, an anti-leishmanial, water-soluble, natural steroidal saponin, induces programmed cell death in Leishmania donovani. J Med Microbiol 2007, 56:1116-1204.

30. Jayanarayan KG, Dey CS: Altered expression, polymerisation and cellular distribution of alpha-/beta-tubulins and apoptosis-like cell death in arsenite resistant Leishmania donovani promastigotes. Int J Parasitol 2004, 34:915-925.

31. Kaur J, Singh BK, Tripathi RP, Singh P, Singh N: Leishmania donovani: a glycosyl dihydroxypridine analogue induces apoptosis like cell death via targeting pteridine reductase 1 in promastigotes. Biochem Biophys Res Commun 2010, 403:2038-2040.

32. Kaur J, Singh BK, Sood V, Singh P, Singh N: Leishmania donovani: Apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2009, 44:852-859.

33. Kaur J, Singh BK, Sood V, Singh P, Singh N: Leishmania donovani: Apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 2009, 53:915-925.

34. Kaur J, Singh BK, Tripathi RP, Singh P, Singh N: Leishmania donovani: a glycosyl dihydroxypridine analogue induces apoptosis like cell death via targeting pteridine reductase 1 in promastigotes. Exp Parasitol 2009, 123:258-264.

35. Kumar P, Lodge R, Trudel N, Ouellet M, Ouellette M, Tremblay MJ: Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis 2010, 4:e642.

36. Li Q, Zhou Y, Yao C, Ma X, Wang L, Xu W, Wang Z, Qiao Z: Apoptosis caused by Hsp90 inhibitor geldanamycin in Leishmania donovani during promastigote-to-amastigote transformation stage. Parasitol Res 2009, 103:1529-1547.

37. Mamede-Matsuda M, Rambert J, Malvy D, Lejoly-Boisseau H, Daulouede S, Garat B, Gambino D: A novel vanadyl complex with a polypyridyl DNA intercalator as ligand: a potential anti-protozoa and anti-tumor agent. J Inorg Biochem 2009, 103:1386-1394.

38. Majumder HK: Antimicrobial activities of proteasome inhibitors. Antimicrob Agents Chemother 2002, 46:2038-2040.

39. Roy A, Ganguly A, Bose-Dasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK: Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of FO(F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 2008, 74:1292-1307.

40. Saha P, Sen R, Hrisharan C, Kumar D, Das P, Chatterjee M: Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic Res 2009, 1-10.

41. Sarkar A, Sen R, Saha P, Ganguly S, Mandal G, Chatterjee M: An ethanolic extract of leaves of Piper betla (Patta) Linn mediates its antileishmanial activity via apoptosis. Parasitol Res 2008, 102:1249-1255.

42. Sen N, Banerjee B, Das BB, Ganguly A, Sen T, Pramanik S, Mukhopadhyay S, Majumder HK: Apoptosis is induced in leishmanial cells by a novel protein kinase inhibitor withaferin A and is facilitated by apoptotic topoisomerase I-DNA complex. Cell Death Differ 2007, 14:358-367.

43. Sen N, Das BB, Ganguly A, Banerjee B, Sen T, Majumder HK: Leishmania donovani intracellular ATRP level regulates apoptosis-like death in luteolin induced dyskinetoplastid cells. Exp Parasitol 2005, 114:204-214.

44. Sen N, Das BB, Ganguly A, Mukherjee T, Bandyopadhyay S, Majumder HK, Camptothecin-induced imbalance in intracellular cation homeostasis regulates programmed cell death in unicellular hemoflagellate Leishmania donovani. J Biol Chem 2004, 279:52366-52375.

45. Sen N, Das BB, Ganguly A, Mukherjee T, Tripathi G, Bandyopadhyay S, Rakshit S, Sen T, Majumder HK, Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death Differ 2004, 11:924-936.

46. Sen N, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, Chatterjee M: Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol 2007, 56:1213-1218.

47. Serone D, Holzmuller P, Mangot I, Curry G, Ouassi A, Lemesle J: Antimonial-mediated DNA fragmentation in Leishmania infantum amastigotes. Antimicrob Agents Chemother 2001, 45:2064-2069.

48. Singh G, Dey CS: Induction of apoptosis-like cell death by pentamidine and doxorubicin through differential inhibition of topoisomerase II in arsenite-resistant L. donovani. Antimicrob Agents Chemother 2007, 51:1172-1178.

49. Singh G, Jaisanker KG, Dey CS: Novobiocin induces apoptosis-like cell death in topoisomerase II over-expressing arsenite resistant Leishmania donovani. Mol Biochem Parasitol 2005, 141:57-69.

50. Sudhandiran G, Shaha C, Majumder HK: Antimicrobial-induced increase in intracellular Ca2++ through non-selective cation channels in the host and the parasite is
responsible for apoptosis of intracellular Leishmania donovani amastigotes. J Biol Chem 2003, 278:25120-25132.

58. Tavares J, Ouassii A, Kong Thoo Lin P, Louroire I, Kaur S, Roy N, Cordeiro-da-Silva A. Bisnaphthalimidoaryl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem 2010, 5:140-147.

59. Tavares J, Ouassii A, Lin PK, Tomas A, Cordeiro-da-Silva A. Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. Int J Parasitol 2005, 35:637-646.

60. Urbina JA: Mechanisms of action of lysophospholipid analogues against trypanosomatid parasites. Trans R Soc Trop Med Hyg 2006, 100(Suppl 1): S9-16.

61. Uzcategui NL, Carmona-Gutierrez D, Denninger V, Schoenfeld C, Lang F, Figarella K, Duszenko M: Apoptotic effects of a derivate of dihydroxyacetone on Trypanosoma brucei bloodstream forms: cell cycle progression, subcellular alterations, and cell death. Antimicrob Agents Chemother 2007, 51:3960-3968.

62. Uzcategui NL, Denninger V, Merkel P, Schoenfeld C, Figarella K, Duszenko M: Dihydroxyacetone induced autophagy in a trypanosome. Autophagy 2007, 3:626-629.

63. Verma NK, Dey CS. Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 2004, 48:3010-3015.

64. Verma NK, Dey CS. Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol 2007, 116:1-13.

65. Ting E, Smirniotis D, Myrianthopoulos V, Maglitsis P, Grant KM, Meijer L, Mikros E, Sklautsounis AL, Soteriadou K: Induction of autophagy in Trypanosoma brucei bloodstream forms. Cell Death Differ 2013, 20:73-83.

66. Figarella K, Rawer M, Uzcategui NL, Kubata BK, Lauber K, Madeo F, Wesselslo S, Duszenko M, Prostaglandin D2 induces programmed cell death in Trypanosoma brucei bloodstream form. Cell Death Differ 2005, 12:335-346.

67. Alvarez VE, Kosec G, Sant Anna C, Turk V, Cazzulo JJ, Turk B. Apoptrophy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. J Biol Chem 2008, 283:3454-3464.

68. Jimenez V, Paredes R, Sosa MA, Galanti N. Natural programmed cell death in T. cruzi epimastigotes maintained in axenic cultures. J Cell Biochem 2008, 105:688-698.

69. Zhang R, Mottlam JC, Fasel N. Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 2002, 9:1126-1139.

70. Kulkarni MM, McMasters WR, Kamiyoz M, McGwire BS. Antimicrobial peptide-induced apoptotic death of leishmania results from calcium-de pendent, caspase-independent mitochondrial dysfunction. J Biol Chem 2009, 284:11546-11554.

71. Luque-Ortega JR, Cruzz LJ, Albericio F, Rivas L: Mitochondrial dysfunction. Trends Parasitol 2003, 10:376-381.

72. Soares MJ, De Castro SL: Sorting and autophagy are essential for differentiation and virulence of Leishmania major. J Biol Chem 2006, 281:11384-11394.

73. Ameisen JC, Idziorek T, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A, Bicker S, Vergeron A, Denninger V, Groll M, Ignaszewski A, Marchant P, Mehta A, Shaha C: Apoptosis in a unicellular eukaryote (Trypanosoma cruzi): Implications for the evolutionary origin and role of programmed cell death. J Cell Biol 2005, 169:1179-1181.

74. Luque-Ortega JR, Cruzz LJ, Albericio F, Rivas L: Mitochondrial dysfunction and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from beta-lapachone. Parasitol Res 2007, 101:895-905.

75. Merkel P, Beck A, Muhammad K, All SA, Schonfeld C, Voelter W, Duszenko M. Spermine isolated and identified as the major trypanocidal compound from the snake venom of Eristochis macmahoni causes autophagy in Trypanosoma brucei. Toxicon 2007, 50:457-469.

76. Ameisen JC, Idiziorek T, Billaut-Mulot O, Loyens M, Tissier JP, Potentier A: Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003, 10:709-717.

77. Ly JD, Grubb DR, Lawen A: The mitochondrial membrane potential (delta psi(m)) in apoptosis: an update. Apoptosis 2004, 9:115-128.

78. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL: Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002, 9:53-64.

79. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S: Apoptosis of intracellular Leishmania donovani by antimicrobial peptides. J Biol Chem 2006, 281:4788-4794.

80. Kebbe JA, Gilmore AP: Apoptosis commitment—translating survival signals into decisions on mitochondria. Cell Res 2007, 17:976-984.

81. Gottlieb E, Armour SM, Harris MH, Thompson CB: Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003, 10:709-717.

82. Delgado M, Anderson P, Garcia-Salcedo JA, Caro M, Gonzalez-Rey E: Neuropeptides kill African trypanosomes by targeting intracellular compartments and inducing autophagic-like cell death. Cell Death Differ 2009, 16:406-416.

83. McGwire BS, Kulkarni MM. Interactions of antimicrobial peptides with Leishmania and trypanosomes and their functional role in host parasitism. Exp Parasitol 2010, 126:397-405.

84. Kebbe JA, Gilmore AP: Apoptosis commitment—translating survival signals into decisions on mitochondria. Cell Res 2007, 17:976-984.

85. Gottlieb E, Armour SM, Harris MH, Thompson CB: Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003, 10:709-717.

86. Ly JD, Grubb DR, Lawen A: The mitochondrial membrane potential (delta psi(m)) in apoptosis: an update. Apoptosis 2004, 9:115-128.

87. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL: Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002, 9:53-64.

88. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S: Apoptosis of intracellular Leishmania donovani by antimicrobial peptides. J Biol Chem 2006, 281:4788-4794.

89. Keeble JA, Gilmore AP: Apoptosis commitment—translating survival signals into decisions on mitochondria. Cell Res 2007, 17:976-984.

90. Gottlieb E, Armour SM, Harris MH, Thompson CB: Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003, 10:709-717.

91. Ly JD, Grubb DR, Lawen A: The mitochondrial membrane potential (delta psi(m)) in apoptosis: an update. Apoptosis 2004, 9:115-128.

92. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL: Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 2002, 9:53-64.

93. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S: Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog 2010, 6: e1000731.

94. Shaha C. Apoptosis in Leishmania species & its relevance to disease pathogenesis. Indian J Med Res 2006, 123:233-244.

95. Luque-Ortega JR, Reuther P, Rivas L, Dardenne C: New benzophenone-derived bispophosphonate salts as leishmanicidal leads targeting mitochondria through inhibition of respiratory complex II. J Med Chem 2010, 53:1788-1796.

96. Mehta A, Shaha C. Apoptotic death in Leishmania donovani promastigotes in response to respiratory chain inhibition: complex II inhibition results in increased pentamidine cytotoxicity. J Biol Chem 2004, 279:11798-11813.

97. Gross A, McDonnell JM, Koromayer SJ: BCL-2 family members and the mitochondria in apoptosis. Genev. Dev. 1999, 13:1009-1013.

98. Hsu YT, Wolter KG, Youle RJ: Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci USA 1997, 94:3668-3672.

99. Hsu YT, Youle RJ: Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 1997, 272:13829-13834.

100. Armant D, Akard K, Grodet A, Petit PX, Estaque J, Ameisen JC. Apoptosis commitment—translating survival signals into decisions on mitochondria. Cell Death Differ 2002, 9:53-64.
fission of the single mitochondrion in Trypanosoma brucei. EMBO Rep 2004, 5:268-273.

102. Circu ML, Moyer MP, Harrison L, Avw TY: Contribution of glutathione status to oxidant-induced mitochondrial DNA damage in colonic epithelial cells. Free Radic Biol Med 2000, 29:1190-1198.

103. Omerus S, Zhivotovskiy B, Nicotera P: Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 2003, 4:552-565.

104. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 2004, 287:C171-83.

105. Camellia-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Carnello PJ: Mitochondrial reactive oxygen species and Ca2+ signaling. Am J Physiol Cell Physiol 2006, 291:C1082-1088.

106. Vercei AE, Kowaltowski AJ, Oliveira HC, Castilho RF: Mitochondrial Ca2+ transport, permeability transition and oxidative stress in cell death: implications in cardiotoxicity, neurodegeneration and dyslipidemias. Front Biosci 2006, 11:2554-2564.

107. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A: Trypanothione: a novel bisglutathionylisoperoxidase cofactor for glutathione reductase in trypanosomatids. Science 1985, 227:1485-1487.

108. Spies HS, Steenkamp DJ: ThiolS of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem 1994, 224:293-210.

109. Penketh PG, Kennedy WP, Patton CL, Sartorelli AC: Trypanosomatid hydroperoxide [corrected] metabolism. FEBS Lett 1987, 212:427-431.

110. Ingoin F, Cibili L, Cornini MA, Wilkinson SR, Flohe L, Rad R: Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic Biol Med 2008, 45:733-742.

111. Krauth-Siegel LR, Cornini MA, Schlecker T: The trypanothionem system. Subcell Biochem 2007, 44:231-251.

112. Krieger S, Schwarz W, Anjanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C: Trypanosomelacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 2000, 35:542-552.

113. Piewey KA, Barr SD, Gedamu L: Iron superoxide dismutases targeted to the glycosomes of Leishmania chagasi are important for survival. Immun 2003, 8:1599-1608.

114. Constantino C, Papas KA, Constantino AC: Caspase-independent pathways of programmed cell death: the unraveling of new targets of cancer therapy? Curr Cancer Drug Targets 2009, 9:717-728.

115. Holzmuller P, Serena D, Cavaleyra M, Mangot I, Daulouede S, Vincendeau P, Lemesle JR: Nitric oxide-mediated protease-dependent oligonucleosomal DNA fragmentation in Leishmania amazonensis amastigotes. Infect Immun 2002, 70:3727-3733.

116. Mottram JC, Helms MJ, Coombs GH, Sajid M, Clan CD: cysteine peptidases of parasitic protozoa. Trends Parasitol 2003, 19:182-187.

117. Sallies A, Kubata BK, Duszmenko M: A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett 2002, 517:144-150.

118. Korcz G, Alvarez VE, Aguero F, Sanchez D, Dolinar M, Turk B, Turk V, Cazulo UJ: Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol 2006, 145:18-28.

119. Lee N, Gannavaram S, Selvapandian A, Debrabant A: Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. Eur J Biol Cell 2007, 6:1745-1757.

120. Ambert A, Fasel N, Coombs GH, Mottram JC: An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 2008, 15:113-122.

121. Gonzalez IJ, Desponds C, Schaff C, Mottram JC, Fasel N: Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. Int J Parasitol 2007, 37:161-172.

122. Moss CK, Westrop GD, Juliano L, Coombs GH, Mottram JC: Metacaspase 2 of Trypanosoma brucei is a calcium-dependent cysteine peptidase active without processing. FEBS Lett 2007, 581:5635-5639.

123. Helms MJ, Ambert A, Appleton P, Tetley L, Coombs GH, Mottram JC: Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 2006, 119:1105-1117.

124. Deolindo P, Teixeira-Ferreira AS, Melo EJ, Amholdt AC, Souza W, Alves EW, DaMatta RA: Programmed cell death in Trypanosoma cruzi induced by Bothrops jararaca venom. Mem Inst Oswaldo Cruz 2005, 100:33-38.

125. Piacenza L, Peluffo G, Radi R: L-ariginine-dependent suppression of apoptosis in Trypanosoma cruzi: contribution of the nitric oxide and polyamine pathways. Proc Natl Acad Sci USA 2001, 98:7301-7306.

126. Mottram JC, Souza AE, Hutchison JE, Frame MI, Coombs GH: Evidence from disruption of the Lmpg gene array of Leishmania mexicana that cysteine proteinases are virulence factors. Proc Natl Acad Sci USA 1996, 93:6008-6013.

127. El-Fadili AK, Zangger H, Desponds C, IJ G, Zalila H, Schaff C, Ives A, Mottram JC, Coombs GH: Expression of alternative metacaspases associated with RAB11-positive endosomes. J Biol Chem 2003, 278:25540-25544.

128. Kosec G, Alvarez VE, Aguero F, Sanchez D, Dolinar M, Turk B, Turk V, Cazulo UJ: Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol 2006, 145:18-28.

129. Constantinou C, Papas KA, Constantinou AI: Thiols of intracellular pathogens. Identification of ovothiol A in Leishmania donovani and structural analysis of a novel thiol from Mycobacterium bovis. Eur J Biochem 1994, 224:293-210.

130. Ambert A, Fasel N, Coombs GH, Mottram JC: An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 2008, 15:113-122.

131. Gonzalez IJ, Desponds C, Schaff C, Mottram JC, Fasel N: Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. Int J Parasitol 2007, 37:161-172.

132. Moos CK, Westrop GD, Juliano L, Coombs GH, Mottram JC: Metacaspase 2 of Trypanosoma brucei is a calcium-dependent cysteine peptidase active without processing. FEBS Lett 2007, 581:5635-5639.

133. Helms MJ, Ambert A, Appleton P, Tetley L, Coombs GH, Mottram JC: Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 2006, 119:1105-1117.
Leishmania parasites by preventing programmed cell death. Gene 2002, 296:139-150.

166. Vignes B, Vanhille L, Ouaisi A, Sereno D: Stage-specific antileishmanial activity of an inhibitor of Sir2 histone deacetylase. Acta Trop 2005, 94:107-115.

167. Ouaisi A: Apoptosis-like death in trypanosomatids: search for putative pathways and genes involved. Kinetoplastid Biol Dis 2003, 2:5.

168. Balana-Fouce R, Redondo CM, Perez-Pereyra Y, Diaz-Gonzalez R, Reguera RM: Targeting atypical trypanosomatid DNA topoisomerase I. Drug Discov Today 2006, 11:733-740.

169. Das BB, Sen N, Dasgupta SB, Ganguly A, Das R, Majumder HK: Topoisomerase research of kinetoplastid parasite Leishmania, with special reference to development of therapeutics. Indian J Med Res 2006, 123:221-232.

170. De Sousa JM, Lareau SM, Pearson RD, Carvalho EM, Mann BJ, Jeronimo SM: Characterization of Leishmania chagasi DNA topoisomerase II: a potent chemotherapeutic target. Scand J Infect Dis 2003, 35:826-829.

171. Deterding A, Dungey FA, Thompson KA, Steverding D: Anti-trypansomal activities of DNA topoisomerase inhibitors. Acta Trop 2005, 93:311-316.

172. Doughty S, Roy JF, Ahmadabadi JC, Roy G: ATP-dependent DNA topoisomerase II as potential drug target in trypanosomes. Biol Cell 1988, 64:145-156.

173. Chowdhury AR, Mandal S, Goswami A, Ghosh M, Mandal L, Chakraborty D, Ganguly A, Tripathi G, Mukhopadhyay S, Bandyopadhyay S, Majumder HK: Dihydroretinol AIC4 induces apoptosis in Leishmania donovani by targeting DNA topoisomerase I and II: implications in anti-leishmanial therapy. Mol Med 2003, 9:26-36.

174. Manquis JF, Odetto M, Olivier M: Consequence of Hoescht 33342-mediated Leishmania DNA topoisomerase I inhibition on parasite replication. Parasitology 2003, 126:21-30.

175. Das BB, Sengupta T, Ganguly A, Majumder HK: Topoisomerases of kinetoplastid parasites: why so fascinating? Mol Microbiol 2006, 62:917-927.

176. Jayamanage KG, Dey CS: Altered tubulin dynamics, localization and post-translational modifications in sodium arsenite resistant Leishmania donovani in response to paclitaxel, trifluralin and a combination of both and induction of apoptosis-like cell death. Parasitology 2005, 131:215-230.

177. Mollinedo F, Gajate C: Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003, 8:413-450.

178. Hammaron TC, Mottram JC, Doering C: The cell cycle of parasitic protozoa: potential for chemotherapeutic exploitation. Prog Cell Cycle Res 2003, 9:91-101.

179. Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, Taylor CW, Thorn P: Paclitaxel affects cytolsis calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 2002, 277:6504-6510.

180. Casanova M, Portales P, Blau neur C, Crobu L, Batran P, Pages M: Inhibition of active nuclear transport is an intrinsic trigger of programmed cell death. Cell Death Differ 2005, 12:1910-1920.

181. Arnaoutov A, Dasso M: The Ran GTPase regulates kinetochore function. Dev Cell 2003, 5:99-111.

182. Askjaer P, Galy V, Hannak E, Mattaj IW: Stage-specific antileishmanial activity of the endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 2007, 18:36-45.

183. Clarke PR, Zhang C: Mitochondrial recruitment of the endoplasmic reticulum and the unfolded protein response. Methods Mol Biol 2009, 559:191-204.

184. Luttingy S, Shieher L, Vagima Y, Goldshmidt H, Das A, Bellofatto V, Michaeli S: Spliced-leader RNA silencing: a novel stress-induced mechanism in Trypanosoma brucei. EMBO Rep 2007, 8:408-413.
189. Das A, Zhang Q, Palenchar JB, Chatterjee B, Cross GA, Bellofatto V: Trypanosomal TBP functions with the multisubunit transcription factor tSNAP to direct spliced-leader RNA gene expression. *Mol Cell Biol* 2005, 25:7314-7322.

190. Amelisen JC: The origin of programmed cell death. *Science* 1996, 272:1278-1279.

191. Debrabant A, Nakhasi H: Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest? *Kinetoplastid Biol Dis* 2003, 2:7.

192. Van Zandbergen G, Bollinger A, Wenzel A, Kamhawi S, Voll R, Klinger M, Muller A, Holischer C, Hermann M, Sacks D, et al: Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum. *Proc Natl Acad Sci USA* 2006, 103:13837-13842.

193. Nguewa PA, Fuertes MA, Valladares B, Alonso C, Perez JM: Programmed cell death in trypanosomatids: a way to maximize their biological fitness? *Trends Parasitol* 2004, 20:375-380.

194. Debrabant A, Lee N, Bertholet S, Duncan R, Nakhasi HL: Programmed cell death in trypanosomatids and other unicellular organisms. *Int J Parasitol* 2003, 33:257-267.

doi:10.1186/1756-3305-3-107

Cite this article as: Smirlis et al.: Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. *Parasites & Vectors* 2010 3:107.