Charge density wave formation in $R_2\text{Te}_5$ ($R=\text{Nd, Sm, and Gd}$)

K. Y. Shin, J. Laverock, Y. Q. Wu, C. L. Condron, M. F. Toney, S. B. Dugdale, M. J. Kramer, and I. R. Fisher

1Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University, Stanford, California 94305, USA
2H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
3Ames Laboratory and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA
4Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025, USA

(Received 12 December 2007; revised manuscript received 19 February 2008; published 1 April 2008)

The rare earth (R) tellurides $R_2\text{Te}_5$ have a crystal structure intermediate between that of $R\text{Te}_2$ and $R\text{Te}_3$, consisting of alternating single and double Te planes sandwiched between $R\text{Te}$ block layers. We have successfully grown single crystals of Nd$_2\text{Te}_5$, Sm$_2\text{Te}_5$, and Gd$_2\text{Te}_5$ from a self-flux and we describe here evidence for charge density wave formation in these materials. The superlattice patterns for all three compounds are relatively complex, consisting at room temperature of at least two independent wave vectors. Consideration of the electronic structure indicates that, to a large extent, these wave vectors are separately associated with sheets of the Fermi surface which are principally derived from the single and double Te layers.

DOI: 10.1103/PhysRevB.77.165101

PACS number(s): 71.45.Lr, 71.18.+y, 72.15.−v, 79.60.−i

I. INTRODUCTION

Recently, the two closely related families of compounds $R\text{Te}_2$ and $R\text{Te}_3$ (R=rare earth elements) have attracted considerable attention for their low dimensional electronic structure and associated charge density wave (CDW) formation. These materials are based on single and double Te layers, respectively, separated by $R\text{Te}$ block layers. Their electronic structure is especially simple, being determined by Te p_x and p_y orbitals in the nominally square Te planar layers. In the case of $R\text{Te}_3$, the quasi-two-dimensional electronic structure results in a sharp peak in the general susceptibility, $\chi(q)$. The material suffers a CDW distortion at this wave vector for all members of the rare earth series (R=La-Nd, Sm, Gd-Tm, and Y). With T_c values sensitively depending on R due to the lanthanide contraction, in contrast, the maximum in $\chi(q)$ for the related single layer compounds $R\text{Te}_2$ (R=La and Ce) is less well defined and the resulting superlattice modulation varies between rare earths. The CDW gap is larger in the ditelluride than the tritelluride [for instance, the maximum gap in CeTe$_2$ (Ref. 9) is 600 meV in contrast to 400 meV for CeTe$_3$ (Ref. 11) and although the CDW transition has not yet been identified in the ditelluride, transition temperatures are anticipated to be somewhat higher, too].

The title compound $R_2\text{Te}_5$ has an orthorhombic structure ($Cmcm$) as illustrated in Fig. 1. Note that for this space group setting, the long b axis is perpendicular to the Te planes, while the shorter a and c lattice parameters lie in the Te planes and are almost equal in length. The material is intermediate between the two better-known families $R\text{Te}_2$ and $R\text{Te}_3$ described above, consisting of alternating single and double Te layers separated by the same $R\text{Te}$ blocks (Fig. 1). As we will show in this paper, the electronic structure of this material is reminiscent of the single and double-layer variants, essentially comprising sheets associated with each of the Te layers separately. The existence of this compound raises the question of whether separate modulation wave vectors might exist on the single and double Te planes, and if so, how these wave vectors might interact or compete with each other.

Although crystals of $R_2\text{Te}_5$ have previously been grown from an alkali halide flux and their average structure reported, to date no superlattice modulation has been identified for this material. In this study, we describe an alternative method to grow high quality single crystals from the binary melt and use transmission electron microscopy (TEM) to probe the lattice modulation. We find that all three compounds exhibit a modulation wave vector oriented along the

FIG. 1. (Color online) (a) Schematic diagram showing the average (unmodulated) crystal structure of $R_2\text{Te}_5$. b axis is vertical in the figure. Solid gray lines indicate a unit cell. (b) High resolution TEM of Gd$_2\text{Te}_5$ along the [101] direction showing alternating single and double Te layers.
ampoules were placed in a furnace and ramped to 1050 °C. Mina crucibles and sealed in evacuated quartz tubes. The resulting flux separated from the crystals by decanting in a centrifugation of the equilibrium binary alloy phase diagrams reveals Gd and Sm, that avoid the appearance of second phases. For this reason, an initial setting of the Ar ion gun condition started at 23°, with 2 kV, 3 mA, and 10° for 20 min. Finally, with 2 kV, 3 mA, and 10° for 20 min.

For Sm$_2$Te$_5$ and Gd$_2$Te$_5$, the composition of the crystals was examined by electron microprobe analysis (EMPA). In both cases, tellurium content was determined to be 72 ± 1 at.%, which is consistent with the value anticipated for R$_2$Te$_5$ (5/7 = 71.4%).

III. TRANSMISSION ELECTRON MICROSCOPY

Cross-sectional TEM samples were prepared by using a "sandwich method:" a small platelike Gd$_2$Te$_5$ single crystal (~2 × 2 × 0.1 mm3) was placed in between a small stack of spacers cleaved from a single crystal silicon wafer that snugly fit inside a 3 mm diameter quartz tube. The open spaces were filled in using Epoxy (EPO-TEK 353ND) to hold the stack together. A disk with a thickness about 0.5 mm was cut from the quartz tube by using a diamond saw. The Gd$_2$Te$_5$ single crystal was oriented such that the b axis lies in the plane of the disk and the [101] direction was close to the disk normal. The disk then was ground and polished to about 30–50 μm thickness. A VCR dimpler was used to further thin the disk center area to less than 30 μm. The final thinning of the TEM sample was performed at room temperature by using a Fischione model 1010 ion miller. The milling with an initial setting of the Ar ion gun condition started at 23°, 5 kV, and 5 mA, at room temperature until perforation, then followed with 3 kV, 3 mA, and 15° for 15 min, and, finally, with 2 kV, 3 mA, and 10° for 20 min.

A Tecnai G2 F20 STEM (point-to-point resolution: 0.25 nm) operated at 200 kV was employed to do the microstructure investigation. High resolution TEM (HRTEM) simulation was done using the National Center Electron Microscopy simulation program, which employs the multislice approximation.

Large crystalline regions were separated by residual flux inclusions that appear continuous along the micaceous planes. Nonetheless, the HRTEM image of the Gd$_2$Te$_5$ single crystal shows a highly perfect crystal structure over a large area (~400 nm2, Fig. 2). Image matching to the simulations of the [101] image (Fig. 1) suggests that the isolated bright spots are columns of Te atoms, which make up the single and double layers of Te planes along the c-axis direction. The elongated bright dumbbell features are the Gd-Te pairs in the Gd-Te block layers.

Electron beam diffraction was also measured at room temperature by using a Philips CM20 FEG-TEM operating at 200 kV in vacuum in order to determine the ac-plane modulation structure in k space. Samples were carefully cleaved to generate thin crystal pieces with thickness less than 30 μm, which were mounted on a copper grid. The optimal thickness for the measurement was achieved by making a small hole in the middle of the crystals by ion milling in vacuum for a few hours. Electron beams at 200 kV were aligned normal to the ac plane in [010] zone axis and selected area diffraction patterns (SADPs) from the flat thin edge of the crystal hole were observed at room temperature in vacuum.

All three compounds studied exhibit a complex set of superlattice peaks in the ac plane (Fig. 3). As previously ob-

TABLE I. Crystal growth parameters.

Crystal	Melt composition (at. % Te)	Temperature profile (°C)
Nd$_2$Te$_5$	92.50	1050–880
Sm$_2$Te$_5$	90.00	1000–920
Gd$_2$Te$_5$	92.00	1050–900
served in other families of rare earth tellurides, the satellite
peaks in the quadrant defined by the Bragg peaks for \(h+l\)
\(=\text{even}\) translate equivalently to reciprocal lattice wave
vectors \(\mathbf{G}=(h,k,l)\), \(h+l=\text{even}\).\(^{4,5,9,10,14}\) The relative satellite
peak positions in the first quadrant are listed in Table II in
units of the reciprocal lattice parameters.

The SADPs for \(\text{Nd}_2\text{Te}_5\), \(\text{Sm}_2\text{Te}_5\), and \(\text{Gd}_2\text{Te}_5\) are all different but, nevertheless, have some common features. In
particular, all three compounds exhibit an “on-axis” superlattice
reflection \(\bar{q}_0\) oriented along either the \(a^*\) or the \(c^*\) direction.
Within the resolution of TEM, we cannot distinguish \(a\) and \(c\)
lattice parameters. However, a high resolution x-ray diffraction
on \(\text{Gd}_2\text{Te}_5\) indicates that \(\bar{q}_0\) is, in fact, oriented along the
\(c^*\) direction.\(^{15}\) For simplicity, we have also listed this lattice
modulation as being along \(c^*\) for \(\text{Nd}_2\text{Te}_5\) and \(\text{Sm}_2\text{Te}_5\) in
Table II, although this remains to be confirmed. This on-axis
modulation wave vector is incommensurate for \(\text{Nd}_2\text{Te}_5\) and
\(\text{Gd}_2\text{Te}_5\) with \(\bar{q}_0=0.688c^*\) and \(0.687c^*\) for the two com-
pounds, respectively [Figs. 3(a) and 3(c)]. In contrast, the
on-axis wave vector for \(\text{Sm}_2\text{Te}_5\) is commensurate within the
resolution of the measurement, with \(\bar{q}_0=0.667c^*=(2/3)c^*\)
[Fig. 3(b)].

In addition to the on-axis CDW, each of the compounds
has a distinct and unique off-axis CDW structure.

By neglecting the small difference in \(a\) and \(c\) lattice pa-
ramura, which is below the resolution of this measurement,
the off-axis CDW in \(\text{Nd}_2\text{Te}_5\) seems to have a fourfold rota-
tional symmetry and the lattice modulation can simply be
characterized by a single wave vector \(\bar{q}_1\). The second equiva-
 lent wave vector \(\bar{q}_2\) is generated by reflection symmetry
about the \(a^*\) and \(c^*\) axes. A similar symmetry mapping has
been reported for the off-axis superlattice peak \(\bar{q}=0.6a^*\)+0.2\(c^*\) in \(\text{LaTe}_2\).\(^9\)

The off-axis CDW in \(\text{Sm}_2\text{Te}_5\) is unique among the three
compounds studied in that \(\bar{q}_0\) and \(\bar{q}_1\) generate the off-axis
higher harmonics \(2\bar{q}_1+\bar{q}_0\) and \(2\bar{q}_1+\bar{q}_0\), which are incommen-
surate in the \(a\) direction and commensurate in the \(c\) direc-
tion. All the other peaks can be expressed in terms of linear
combinations of \(\bar{q}_0\) and \(\bar{q}_1\) as indicated in Fig. 3(b), which
means that the other remaining peaks are higher harmonics
of these two \(q\) vectors. Correspondingly, \(\bar{q}_0=(2/3)c^*\)
\(=0.667c^*\) and \(\bar{q}_1=0.521a^*\) are stronger in intensity than the
higher harmonics \(2\bar{q}_1+\bar{q}_0\) and \(2\bar{q}_1+\bar{q}_0\). A similar higher har-
monic CDW structure formed by a linear combination of two
distinct incommensurate \(q\) vectors was also recently found in
\(\text{ErTe}_3\) by high resolution x-ray diffraction measurements.\(^7\)

In contrast to \(\text{Nd}_2\text{Te}_5\) and \(\text{Sm}_2\text{Te}_5\), the off-axis CDW in
\(\text{Gd}_2\text{Te}_5\) is fully commensurate in both \(a^*\) and \(c^*\). High res-
TABLE II. CDW wave vectors $\mathbf{q} = \alpha \mathbf{a}^* + \beta \mathbf{c}^*$ referenced to the reciprocal lattice vectors of the unmodulated structure.

Crystal	Q	α	β
Nd$_2$Te$_5$	q_0 (on-axis)	0.000 \pm 0.003	0.688 \pm 0.002
	q_1 (off-axis)	0.366 \pm 0.003	0.269 \pm 0.003
	q_2 (off-axis)	0.269 \pm 0.003	0.366 \pm 0.003
Sm$_2$Te$_5$	q_0 (on-axis)	0.000 \pm 0.004	0.667 \pm 0.004
	q_1 (off-axis)	0.521 \pm 0.004	0.000 \pm 0.003
Gd$_2$Te$_5$	q_0 (on-axis)	0.0000 \pm 0.003	0.6871 \pm 0.002
	q_1 (off-axis)	0.417 \pm 0.003	0.083 \pm 0.003
	q_2 (off-axis)	0.083 \pm 0.003	0.417 \pm 0.003

 Resolution x-ray diffraction measurements at the Stanford Synchrotron Radiation Laboratory15 (SSRL) confirm that all peaks can be indexed by linear combinations of the two wave vectors $\mathbf{q}_1 = (5/12)a^* + (1/12)c^*$ and $\mathbf{q}_2 = (1/12)a^* + (5/12)c^*$, although it is not immediately clear that these are really the two fundamental wave vectors since other linear combinations are also possible in such a fully commensurate satellite peak structure.

IV. ELECTRONIC STRUCTURE

The electronic band structure for R$_2$Te$_5$ was calculated by using the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation, including combined-correction terms as described in Refs. 1 and 16, and the results are shown in Fig. 4 specifically for $R=$Lu [chosen to avoid the complications associated with the description of (band) f electrons within the local density approximation]. The slight difference in lattice parameters originating from the structural orthorhombicity was ignored in the calculation and the value of $a=c=4.36$ Å ($b/a=10.06$) from Ref. 4 for Sm$_2$Te$_5$ was used, which is very close to $a=4.34$ Å for SmTe$_3$1. Since the Fermi surface (FS) is comprised of Te 5p states originating from the Te atoms in the square planar layers, the general topology of the FS is relatively insensitive to the particular choice of rare earth atom and, indeed, to changes in the lattice parameter of $\sim 5\%$, allowing us to interpret these results as prototypical for all of the other rare earth compounds. All calculations used a basis of s, p, d, and f states, and self-consistency was achieved at 1280 k points in the irreducible (1/8)th wedge of the Brillouin zone (BZ) (corresponding to a mesh of 30 \times 8 \times 30 in the full BZ).

As previously found for RTe$_3$ and RTe$_5$1, the electronic structure for R$_2$Te$_5$ is two dimensional and has a minimal dispersion perpendicular to the Te planes [Figs. 4(b) and 4(c)]. Six bands formed by 5p orbitals from Te square planes were observed to cross the Fermi level [blue solid lines in Fig. 4(a)] and the corresponding FS at $k_z=0$ is depicted in Fig. 5.

In the tritetilluride compounds, the inequivalence of the two Te atoms in the double square planar layer breaks the degeneracy of these bands, and the resulting bilayer splitting has been observed directly in angle-resolved photoelectron spectroscopy studies17,11. For R$_2$Te$_5$, in addition to this double Te sheet, there is an additional single Te layer and the

![FIG. 4.](image-url) (Color online) (a) Band structure of R$_2$Te$_5$ calculated by LMTO for $R=$Lu. The blue solid lines arise from Te 5p states in the square planar layers. [(b) and (c)] The resulting Fermi surfaces, illustrating the trilayer splitting that arises due to coupling between the three Te planes. Red and yellow sheets in (b) and blue and purple sheets in (c) indicate the weaker bilayer splitting originating from a Te double layer, while orange and green sheets in (b) and (c) are due to a Te single layer and the splitting is significant. The Γ point at the center of the zone and other high symmetry points have been labeled.

![FIG. 5.](image-url) (Color online) Fermi surface at $k_z=0$. Red and green lines approximately indicate sections of FS formed by 5p orbitals from the single and double Te layers, respectively. Arrows indicate the on-axis lattice modulation wave vector expressed in the reduced BZ, $\mathbf{q} = c^* - (1/3)c^*$ observed in SADP for Nd$_2$Te$_5$, Sm$_2$Te$_5$, and Gd$_2$Te$_5$.

band structure reflects this via a triple splitting of its Te states. The splitting between states originating from the double layer is weak and of a similar magnitude to the bilayer splitting in the telluride compounds, whereas the splitting between either of these double-layer states and the state due to the single layer is more significant.\(^1\)

In addition, a small circular electron pocket due to the hybridization with a Lu \(d\) state above \(E_F\) (indicated by red arrows in Fig. 4(a)) was observed around the \(\Gamma\) point. Details of this hybridization are sensitive to the rare earth involved in the calculation, unlike the other Te \(5p\) bands, and, hence, we might expect that the presence and exact volume of this pocket vary, as we progress through the lanthanide series. This, in turn, may vary the precise location of \(E_F\) within the Te \(5p\) bands, although small fluctuations of the electron pocket volume do not seem to significantly impact interactions between \(5p\) electrons in the Te square planes. In addition, the topology of this small circular section does not contribute any appreciable peak structure to the susceptibility, leading us to put less emphasis on it in the subsequent analysis of \(\chi(q)\).

Even with the same \(a\) and \(c\) lattice parameters used in the calculation, the orthorhombicity due to the relative orientation of \(R\)-Te slabs in different layers is reflected in the electronic structure and produced unequal electron pockets centered at \(X\) and \(Z\) (Fig. 5). The directional difference in the electronic structure, in turn, suggests that the band splitting at the Fermi level partially depends on the relative geometry and interactions between Te atoms in square planes and rare earth atoms in the \(R\)-Te slabs, even though the interplanar interaction is believed to be small.

Nevertheless, the overall topology of the FS is surprisingly similar to the individual sections of mono- and bilayer FS structures of \(R\text{Te}_2\) and \(R\text{Te}_3\) [Figs. 3(a) and 3(b) in Ref. 1] and, thus, can be approximated by superposing the corresponding Fermi surfaces of those two materials with only minor changes to account for differences in band filling. A close investigation of the character of the wave function at each point supports this view and revealed that the origin of the individual FS sections can mostly be attributed to \(5p\) atomic orbitals in either the ditelluride-like single Te planar layer or the telluride-like double Te planar layers, respectively (red and green lines in Fig. 5), if the strong orbital hybridization or orbital mixing is ignored near the band crossings at the Fermi level. This is somewhat as expected, considering that the orthorhombic structure of \(R_2\text{Te}_3\) is intermediate of \(R\text{Te}_2\) and \(R\text{Te}_3\), with very close \(ac\) parameters and alternating single and double Te layers along the [010] direction.

\section*{V. DISCUSSION}

\subsection*{A. Electron-phonon coupling, Lindhard susceptibility, and charge density wave formation}

CDW formation is described by the second quantized Fröhlich Hamiltonian,

\begin{equation}
H = \sum_{n,k} \epsilon_{n,k} a_{n,k}^\dagger a_{n,k} + \sum_{m,k} \hbar \omega_{m,k} b_{m,k}^\dagger b_{m,k} + \sum_{n,m,k,q} g_{n,m,q} a_{n,k}^\dagger a_{n,k} (b_{m,k+q}^\dagger + b_{m,k}),
\end{equation}

where \(a_{n,k}^\dagger\) and \(b_{m,k}^\dagger\) are the electron creation operator in the \(n\)th band and phonon creation operator in the \(m\)th mode, respectively. The electron-phonon interaction is tuned by the coupling \(g_{n,m,q}\) between the \(n\)th electron band and the \(m\)th phonon mode, and the effect on the lattice distortions can be shown by obtaining the renormalized phonon mode and the dispersion relation from Eq. (2) as follows:

\begin{equation}
\hat{H}^2 \tilde{Q}_{m,q} = - [[\tilde{Q}_{m,q} H], H],
\end{equation}

\begin{align}
\tilde{Q}_{m,q} &= - \omega_{m,q}^2 \mathcal{Q}_{m,q} - \sum_n g_{n,m,q} \left(\frac{2 \omega_{m,q}}{\hbar} \right)^{1/2} \rho_{n,q}, \\
\rho_{n,q} &= - \chi_n(q) \sum_{m'} g_{n,m',q} \left(\frac{2 \omega_{m',q}}{\hbar} \right)^{1/2} \mathcal{Q}_{m',q}, \\
\tilde{Q}_{m,q} &= - \omega_{m,q}^2 \mathcal{Q}_{m,q} + \sum_{n,n'} \frac{2g_{n,m,q}g_{n,m',q}(\omega_{m,q}\omega_{m',q})^{1/2}}{\hbar} \chi_n(q) \mathcal{Q}_{m',q},
\end{align}

where \(\omega_{n,q}\) and \(\mathcal{Q}_{m,q}\) refer to the oscillation energy frequency and the Fourier component of the noninteracting normal coordinate of the \(m\)th phonon mode, respectively, and \(\rho_{n,q}\) indicates electron density in the \(n\)th electron energy band.

The resultant phonon mode softening strongly depends on the strength of \(g_{n,m,q}\) and \(\chi_n(q)\). While the coupling strength \(g_{n,m,q}\) singles out the electron bands and phonon modes relevant to lattice distortions, the distortion wave vectors are selected by the peak structure in \(\chi_n(q)\), which is mainly decided by FS nesting as follows:

\begin{equation}
\chi_n(q) = \sum_{n' \neq n} \chi_{nn'}(q) + \sum_{n' \neq n} \chi_{nm}(q),
\end{equation}

\begin{equation}
\chi_{nn'}(q) = - \frac{1}{(2\pi)^2} \int_{BZ} d\mathbf{k} f_{n,\mathbf{k}}(\mathbf{k} + \mathbf{q}) - f_{n',\mathbf{k}},
\end{equation}

where \(f_{n,\mathbf{k}}\) and \(\epsilon_{n,\mathbf{k}}\) refer to the Fermi–Dirac function and the energy of the electron in \(n\)th band.

Although it has never been easy to obtain the exact \(m, n, q\) dependence of the coupling strength \(g\) theoretically or experimentally, \(\chi_n(q)\) is relatively accessible from band structure calculations and, indeed, several authors have argued the origin of CDW formation in both \(R\text{Te}_2\) and \(R\text{Te}_3\) in terms of simple FS nesting conditions using tight binding band calculations.\(^1\)\(^4\)\(^5\)\(^9\)-\(^11\)\(^14\) This model was successful in identifying the sections of the FS that drives the CDW modulation in these compounds, and the details of the nesting was found to be mainly dependent on the topology of the FS at the Fermi level rather than of the whole band structure.
We have used the same approach for $R_1\text{Te}_5$, calculating
the Lindhard susceptibility $\chi(\vec{q})$ of the LMTO band structure
illustrated in Fig. 4 in order to examine the origin of the on-
and off-axis CDW superlattices observed for this family of
compounds. For computational simplicity, the two-
dimensional band structure at $k_z=0$ was considered for the
summation in the first Brillouin zone [Eq. (3)].

However, if we assume an isotropic coupling strength
$g_{n,m,q}^*=g$ and, consequently, calculate $\chi(\vec{q})$ by summing over
all bands including inter single-double layer contributions,
this quantity is found to be relatively uninformative. Broad
maxima are found centered around $0.5a^*$ and $0.5c^*$ [Fig.
6(a)] but, otherwise, there is not a well-developed peak struc-
ture that would lead one to anticipate one particular wave
vector to be favored over another.

A deeper insight can be gained when more general cou-
pling strengths g’s, varying for individual phonon modes
and Te layers, are introduced. Motivated by the identifica-
tion of distinct sections of the FS associated with the single
and double Te square planes (Fig. 5), we accordingly divide the
six $5p$ bands crossing the Fermi level E_F into two relevant
subgroups that form ditelluride-like FS sections from single
Te layers and tritelluride-like FS sections from double Te
layers. The contributions to the Lindhard susceptibility from
each subgroup, $\chi_S(\vec{q})$ and $\chi_D(\vec{q})$, can be calculated as shown
in Eq. (4), where S,S' and D,D' refer to single and double
layers, respectively:

$$\chi_{\text{double}}(\vec{q}) = \chi_D(\vec{q}) + \sum_S \chi_{DS}(\vec{q}),$$

$$\chi_{\text{single}}(\vec{q}) = \chi_S(\vec{q}) + \sum_D \chi_{SD}(\vec{q}),$$

$$\chi_D(\vec{q}) = \sum_{DD'} \chi_{DD'}(\vec{q}),$$

$$\chi_S(\vec{q}) = \sum_{SS'} \chi_{SS'}(\vec{q}).$$

(4)

Results of these calculations are shown in Figs. 6(b) and
6(c). An inspection of these figures indicates that $\chi_S(\vec{q})$
and $\chi_D(\vec{q})$ have a more finely peaked structure than the total $\chi(\vec{q})$
[Fig. 6(a)].

By using this division, and following Eq. (2), the resulting
renormalized phonon mode dispersion is given by

$$\omega^2_{\text{ren,m}}(q) = \omega^2_{m,q} - \frac{2g_{SD,m,q}^2\omega_{m,q}}{M\hbar} \chi_{SD}(\vec{q}),$$

$$- \frac{2g_{SD,m,q}^2\omega_{m,q}}{M\hbar} \chi_S(\vec{q}) - \frac{2g_{DS,m,q}^2\omega_{m,q}}{M\hbar} \sum_{DS} \chi_{DS}(\vec{q}).$$

(5)

This dispersion relation [Eq. (5)] explicitly shows how the
phonon mode softening depends on the average coupling
strengths g_S, g_D, and g_{SD}, and the Lindhard susceptibility
contributions $\chi_S(\vec{q})$, $\chi_D(\vec{q})$, and $\chi_{SD}(\vec{q})$, from the single,
double, and inter single-double layer contributions, respec-
tively. This division makes it possible, at least in principle, to
identify the relative coupling strength as well as the most
relevant electron bands from the observed lattice distortions.
In the following two sections, we address the origin of the
on- and off-axis lattice modulations with reference to these
contributions.
B. Origin of the on-axis lattice modulation

All three compounds exhibit an on-axis lattice modulation with a wave vector oriented along either the a^\ast or the c^\ast axis. As noted in Sec. III, TEM cannot distinguish these two lattice parameters, but high resolution x-ray diffraction experiments for Gd$_2$Te$_5$ have determined that q_0 is in fact, oriented along the c^\ast direction for this compound. The orientation of the on-axis wave vector for Nd$_2$Te$_5$ and Sm$_2$Te$_5$ remains to be determined, but for simplicity we have referred to these as also lying along the c^\ast direction. The magnitude of the on-axis wavevectors for the three compounds are very similarly well-defined peak in the susceptibility. In that case, on-axis superlattice modulation, also corresponding to a combination in the off-axis wave vectors for the three compounds studied in that the mixed harmonics of the CDW modulations $q_0 \pm \tilde{q}_1$ and $q_0 \pm q_2$ are evident in SADP patterns. A close inspection of the inset of Fig. 6(b) reveals that these wave vectors, which have a different incommensurate or commensurate structure in the a and c directions, are, in fact, closely associated with noticeable significant peak structures in $\chi_D(q)$. The same figure also shows that $q_0 - 2\tilde{q}_1 + 2\tilde{G}_{(100)}$, equivalent to $q_0 - 2\tilde{q}_1$, is actually very near to another global maximum in $\chi_D(q)$ adjacent to (101). This maximum is equivalent to that which is close to q_0 by a simple reciprocal lattice translation, suggestive of a resonance in the interaction due to the crystal symmetry:

$$\frac{2\varepsilon^2}{M} \chi_D(q_0 - 2\tilde{q}_1) = \frac{2\varepsilon^2}{M} \chi_D(q_0 - 2\tilde{q}_1 + 2\tilde{G}_{(100)}) = \chi_D(q_0).$$

These observations suggest a significant coupling between the two wave vectors q_0 and \tilde{q}_1 in Sm$_2$Te$_5$. Even though the off-axis modulation is principally driven by the single Te planes [i.e., \tilde{q}_1 is very close to the global maximum in $\chi_S(q)$], nevertheless, it is not insensitive to the double layers. In contrast, the on- and off-axis CDW modulations in Nd$_2$Te$_5$ and Gd$_2$Te$_5$ seem to be independent of or minimally coupled to each other, without any commensurate or incommensurate mixing.

In contrast to Sm$_2$Te$_5$, the off-axis CDW in Gd$_2$Te$_5$ is fully commensurate. Although the modulation wave vectors \tilde{q}_1 and \tilde{q}_2 for Gd$_2$Te$_5$ are different from that observed in Sm$_2$Te$_5$, both lie close to the global maxima in $\chi_S(q)$, suggesting that the single Te planes play the dominant role in driving the off-axis CDW for this compound, too. It is worth noting, however, that the peak structure in $\chi_S(q)$ [Fig. 6(c)] is far less well developed than that in $\chi_D(q)$ [Fig. 6(b)]. Rather than a single global maximum with little in the way of additional features, $\chi_S(q)$ exhibits a broad range of maxima along sharp “ridges” [dark red regions in Fig. 6(c)] connecting four relatively sharp local peaks centered close to $\tilde{q} = (0 0 0.5)$, $(0.5 0 0)$, $(-0.5 0 0)$, and $(0 0 -0.5)$. The resulting figure is reminiscent of similar calculations for the simpler single-layer compound RTe$_2$, which also lack a well-defined single peak and for which the superlattice modulation vectors also vary across the rare earth series. 10 We will return to the variation in the off-axis wave vectors later.

The two commensurate CDW vectors, \tilde{q}_1 and \tilde{q}_2, in Gd$_2$Te$_5$ span the entire commensurate CDW superlattice
peaks in \(\vec{k} \) space. Such an extensive commensurate modulation structure may not allow a simple explanation in terms of perturbative higher harmonics. However, it is interesting to note that 2\(\vec{q}_1 \), a second harmonic of \(\vec{q}_1 \), lies exactly on top of an additional weak local maximum in \(\chi_\delta(\vec{q}) \), which may give some hint as to the origin of this extensive commensurate structure [inset to Fig. 6(c)]—the strength of this feature sensitively depends on the details of the calculation, but appears to be robust. Specifically, rather than just a simple perturbation of \(\vec{q}_1 \), 2\(\vec{q}_1 \) itself also seems to be directly coupled to the relevant electronic structure through the local maximum peak at \(\chi_\delta(2\vec{q}_1) \). This effect coherently enhances the CDW instabilities at \(\vec{q}=2\vec{q}_1 \) and seems to help the commensuration mechanism of the off-axis CDW to extend to higher \(n \) harmonics or integral multiple of \(\vec{q}_1 \), while it is, in contrast, weakly or minimally coupled to the on-axis CDW leaving that incommensurate. This behavior is in distinct contrast to that of the other two compounds studied, neither of which exhibits higher harmonics of the off-axis modulation vectors. By way of comparison with Sm\(_2\)Te\(_5\), it is also worth noting that the off-axis CDW peaks in Gd\(_2\)Te\(_5\) lie in a high but flat region, without any sharp peak features, when mapped onto \(\chi_\delta(\vec{q}) \) of the ditelluride-like double Te layers. As such, and in contrast to the case of Sm\(_2\)Te\(_5\), the off-axis CDW wave vectors observed in Gd\(_2\)Te\(_5\) appear to get enhanced mainly within the Te single layer by this subtle interaction and develop an extensive commensurate CDW structure.

Although the off-axis lattice modulation is different for Sm\(_2\)Te\(_5\) and Gd\(_2\)Te\(_5\), and although they each exhibit different resonant mechanisms that enhance the off-axis CDW based on interaction with the double or single Te planes, respectively, the off-axis CDW for both compounds appears to be principally driven by the single Te planes. In sharp contrast, Nd\(_2\)Te\(_5\) appears to defy this simple model. Specifically, the off-axis modulation wave vectors for this compound do not lie close to the global maximum in \(\chi_\delta(\vec{q}) \) [triangular points in Fig. 6(c)]. Instead, they are found near local maxima, which have values about 20% less than the global maximum in both \(\chi_\delta(\vec{q}) \) and \(\chi_\delta(\vec{q}_1) \), although these features are very weak. Taken at face value, it appears that both single and double planes contribute toward the off-axis CDW in Nd\(_2\)Te\(_5\), although it is impossible from this analysis to determine whether one or the other plays a dominant role.

One of the principle defining features of the off-axis lattice modulation is the huge variation between the three compounds studied, especially given the minimal differences observed in the on-axis wave vector. Given that the electronic structure is essentially identical for all three compounds, this large variation suggests that differences in the phonon mode characteristics play an important role. The atomic masses of Nd, Sm, and Gd differ by up to 10\%, affecting the lattice instability through Eq. (5). Presumably, the very well-defined peak feature in \(\chi_\delta(\vec{q}) \) [Fig. 6(b)] ensures that the on-axis wave vector remains tied to the wave vector at which this quantity peaks, even as the phonon modes and electron-phonon coupling change. However, the more poorly defined maximum in \(\chi_\delta(\vec{q}) \) [Fig. 6(c)] is apparently not strong enough to completely dominate the electron-phonon coupling to the extent that a variation in the phonon characteristics is able to affect the lattice modulation. This behavior is consistent with that of the single and double layer compounds RT\(_2\)Te\(_5\) and RT\(_3\)Te\(_5\)—the former having a poorly defined peak in \(\chi(\vec{q}) \) and a lattice modulation very sensitive to changes in rare earth,\(^9\) the latter having a very well-defined peak in \(\chi(\vec{q}) \) [Ref. 3] and a lattice modulation that hardly changes across the entire rare earth series.\(^4\)–\(^8\)

VI. CONCLUSION

In summary, we have presented an alternative method to prepare large, high-quality single crystals of \(R_2\)Te\(_5\) (\(R=\)Nd, Sm, and Gd) via a binary self-flux method and we have presented evidence for charge density wave formation in this material. All three compounds exhibit an on-axis modulation with \(q_0=0.68c^\ast \), in combination with an off-axis superlattice that varies significantly between the three compounds studied. Based on a consideration of contributions to the Lindhard susceptibility from the single and double Te planes of the layered structure, it appears that the on-axis CDW is driven by the double Te planes, whereas the off-axis CDW is principally driven by the single Te planes. Resonant effects associated with coupling of higher harmonics of these modulation wave vectors to local features in the susceptibility of the double and single Te planes appear to be relevant for Sm\(_2\)Te\(_5\) and Gd\(_2\)Te\(_5\), respectively, stabilizing in the first case mixed commensurate or incommensurate off-axis harmonics, and in the second case an extensive commensurate structure associated with just the single Te layers, decoupled from the on-axis modulation.

Note added in proof. Simultaneous with this study, and submitted shortly after our manuscript, Malliakas and coworkers have observed the CDW superlattice in Sm\(_2\)Te\(_5\) via x-ray diffraction.\(^{20}\)

ACKNOWLEDGMENTS

We gratefully thank Robert E. Jones and A. Marshall for technical assistance with EMPA and TEM measurements and analysis. This work is supported by the DOE, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. Efforts at the Ames Laboratory were supported by the DOE under Contract No. DE-AC02-07CH11358. I.R.F. is also supported by the Terman Foundation. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory (SSRL), a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.
CHARGE DENSITY WAVE FORMATION IN R_2Te_5 ...

Physical Review B 77, 165101 (2008)

1. J. Laverock, S. B. Dugdale, Z. Major, M. A. Alam, N. Ru, I. R. Fisher, G. Santi, and E. Bruno, Phys. Rev. B 71, 085114 (2005).
2. H. Yao, J. A. Robertson, E.-A. Kim, and S. A. Kivelson, Phys. Rev. B 74, 245126 (2006).
3. I. Mazin and M. Johannes, arXiv:0708.1744 (unpublished).
4. E. DiMasi, B. Foran, M. C. Aronson, and S. Lee, Chem. Mater. 6, 1867 (1994).
5. E. DiMasi, M. C. Aronson, J. F. Mansfield, B. Foran, and S. Lee, Phys. Rev. B 52, 14516 (1995).
6. C. Malliakas, S. Billinge, H. Kim, and M. Kanatzidis, J. Am. Chem. Soc. 127, 6510 (2005).
7. N. Ru, C. L. Condron, G. Y. Margulis, K. Y. Shin, J. Laverock, S. B. Dugdale, M. F. Toney, and I. R. Fisher, Phys. Rev. B 77, 035114 (2008).
8. C. Malliakas and M. Kanatzidis, J. Am. Chem. Soc. 128, 12612 (2006).
9. K. Y. Shin, V. Brouet, N. Ru, Z. X. Chen, and I. R. Fisher, Phys. Rev. B 72, 085132 (2005).
10. E. DiMasi, B. Foran, M. C. Aronson, and S. Lee, Phys. Rev. B 54, 13587 (1996).
11. V. Brouet, W. L. Yang, X. J. Zhou, Z. Hussain, N. Ru, K. Y. Shin, I. R. Fisher, and Z. X. Shen, Phys. Rev. Lett. 93, 126405 (2004).
12. International Center for Diffraction Data. PDF No. 04-004-1155 (unpublished).
13. Binary Alloy Phase Diagrams, edited by T. B. Massalski, (ASM International, Metals Park, OH, 1996).
14. E. DiMasi, M. C. Aronson, B. Foran, and S. Lee, Physica B 206 & 207, 386 (1995).
15. K. Y. Shin, N. Ru, C. L. Condron, M. F. Toney, and I. R. Fisher (unpublished).
16. B. Barbiellini, S. B. Dugdale, and T. Jarlbog, Comput. Mater. Sci. 28, 287 (2003).
17. G.-H. Gweon, J. D. Denlinger, J. A. Clack, J. W. Allen, C. G. Olson, E. D. DiMasi, M. C. Aronson, B. Foran, and S. Lee, Phys. Rev. Lett. 81, 886 (1998).
18. Density Waves in Solids, edited by G. Grüner (Perseus, Cambridge, MA, 1994).
19. A. Fang, N. Ru, I. R. Fisher, and A. Kapitulnik, Phys. Rev. Lett. 99, 046401 (2007).
20. C. D. Malliakas, M. Iavarone, J. Fedor, and M. G. Kanatzidis, J. Am. Chem. Soc. 130, 3310 (2008).