A new algorithm used the Chebyshev pseudospectral method to solve the nonlinear second-order Lienard differential equations

L A Nhat1,3, K P Lovetskiy1 and D S Kulyabov1,2

1Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya str. 6, Moscow, Russia, 117198
2Joint Institute for Nuclear Research, Joliot-Curie 6, Dubna, Moscow region, Russia, 141980
3Tan Trao University, Tuyen Quang, Vietnam, 22227

e-mail: leanhnhat@mail.ru

Abstract. This article presents a numerical method to determine the approximate solutions of the Lienard equations. It is assumed that the second-order nonlinear Lienard differential equations on the range $[-1, 1]$ with the given boundary values. We have to build a new algorithm to find approximate solutions to this problem. This algorithm based on the pseudospectral method using the Chebyshev differentiation matrix (CPM). In this paper, we used the Mathematica version 10.4 to represent the algorithm, numerical results and graphics. In the numerical results, we made a comparison between the CPMs numerical results and the Mathematica’s numerical results. The biggest odds were very small. Therefore, they will be able to be applied to other nonlinear systems such as the Rayleigh equations and Emden-fowler equations.

1. Introduction

Lienard equations are applied in mathematics, mechanics, and physics. The general form of the second-order nonlinear Lienard differential equations is as follows

$$\begin{align*}
\frac{d^2}{dx^2} u(x) + f[u(x)] \frac{du}{dx} + g[u(x)] &= 0, \quad -1 \leq x \leq 1, \\
u[-1] &= \alpha, \quad u[+1] = \beta,
\end{align*}$$

(1)

here, $f \neq 0$ and $g \neq 0$ are the differentiable functions of $u(x)$; the boundary values α and β are given.

The Lienard equations are usually presented in the class autonomous equations, they have been dealt in many places [1–10]. Inside, the Lienard equations have been dealing and studied with in detail in many books [1–3], and several approaches have been studied so far dealing with the nonlinear second-order Lienard differential equations such as: the block pulse functions and their operational matrices of integration and differentiation are used to solve the Lienard equation in a large interval [4]; the residual power series method is implemented to find an approximate solution to the Lienard equation, here the author combined the fractional Taylor series and the residual functions [5]; the hybrid heuristic computing technique, stochastic in
nature, is used for obtaining an approximate numerical solution of the Lienard equation [6]; the
differential transform method based on the Taylor series expansion which constructs an analytical
solution in the form of a polynomial to solve the Lienard equation [7]; in the Tiberiu’s paper [8],
the first step, the second-order Lienard type equation is transformed into a second kind Abel
type first order differential equation. The next, with the use of an exact integrability condition
for the Abel equation, the exact general solution of the Abel equation can be obtained, thus
leading to a class of exact solutions of the Lienard equation, expressed in a parametric form; the
G'/G–expansion method determined the exact solutions of Lienard equation [9]; the variational
homotopy perturbation method determined the exact and numerical solutions for the Lienard’s
equation [10], and others.

In this paper, we study, built a new algorithm based on the pseudospectral method using
the Chebyshev differentiation matrix to solve the second-order nonlinear Lienard differential
equations.

2. Chebyshev differential matrix (CDM)

Let $h(x) - a polynomial of degree n have these polynomial values at $n + 1$ points $x_0, x_1, ..., x_n$ are
$h(x_i), i = 1, n$; therefore, at these $n + 1$ points, the values of the derivatives of $h'(x) = \frac{d}{dx}h(x)$ are
determined. Each derivative can be expressed as a fixed linear combination of the given values
of the function and the entire relation. Likewise, for the relationships for second derivatives
$h''(x) = \frac{d^2}{dx^2}h(x)$. We can thus write in the matrix form

$$
\begin{pmatrix}
h'(x_0) \\
h'(x_1) \\
\vdots \\
h'(x_n)
\end{pmatrix} = \hat{D}
\begin{pmatrix}
h(x_0) \\
h(x_1) \\
\vdots \\
h(x_n)
\end{pmatrix},
$$

where $\hat{D} = \{d_{i,j}\}, i, j = 1, n$ is the so-called differentiation matrix.

For the Chebyshev-Gauss-Lobatto points, there are $n + 1$ points $x_k = \cos(k\pi/n)$ on the
range $[-1, 1]$ of the Chebyshev polynomial $T_n(x)$. The elements of the differential matrix are
calculated by the following formulae [11–15]

$$
d_{0,0} = -d_{n,n} = \frac{n^2}{3} + \frac{1}{6},
$$

$$
d_{i,i} = -\frac{\cos\left(\frac{\pi i}{n}\right)}{2\sin^2\left(\frac{\pi i}{2n}\right)}, \quad i = 1, 2, ..., n - 1,
$$

$$
d_{i,j} = \frac{c_i}{2c_j \sin\left(\frac{i+j}{2n}\pi\right) \sin\left(\frac{j-i}{2n}\pi\right)}, \quad i \neq j,
$$

here

$$
c_k = \begin{cases}
2, & k = 0 \text{ or } n \\
1, & \text{otherwise}
\end{cases}
$$

3. Algorithm use CDM for the nonlinear Lienard differential equations

Suppose that

$$
\frac{d}{dx}u(x) = f(x), \quad x \in [-1, 1], \quad u(-1) = \alpha, u(1) = \beta,
$$

and the collocation points $\{x_i\}$ so that $-1 = x_n < x_{n-1} < ... < x_1 < x_0 = 1$.

We know that
\[\frac{d}{dx} u_n(x_i) = \sum_{k=0}^{n} \hat{D}_{i,k} u_n(x_k). \] (5)

So equation (4) becomes
\[\sum_{k=0}^{n} \hat{D}_{i,k} u_n(x_k) = f(x_i), \quad i = 1, n - 1, \quad u_n(x_n) = \alpha, u_n(x_0) = \beta, \] (6)

Alternately, we partition the matrix \(\hat{D} \) into matrices [11]
\[e^{(1)}_0 = \begin{pmatrix} d_{1,0} \\ d_{2,0} \\ \vdots \\ d_{n-1,0} \end{pmatrix}, E^{(1)} = \begin{pmatrix} d_{1,1} & d_{1,2} & \cdots & d_{1,n-1} \\ d_{2,1} & d_{2,2} & \cdots & d_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1,n-1} \end{pmatrix}, e^{(1)}_n = \begin{pmatrix} d_{1,n-1} \\ d_{2,n-1} \\ \vdots \\ d_{n-1,n-1} \end{pmatrix} \] (7)
we can rewrite \(e^{(1)}_0 = \{d_i, 0\}, E^{(1)} = \{d_{i,j}\}, e^{(1)}_n = \{d_{i,n-1}\}; \) here, \(i, j = 1, n \) [16, 17].

Thus, (6) can then be rewritten in the form matrix
\[u_n(x_0) e^{(1)}_0 + E^{(1)} u + u_n(x_n) e^{(1)}_n = f \] (8)
where \(u \) and \(f \) denote the vector
\[u = \begin{pmatrix} u_n(x_1) \\ \vdots \\ u_n(x_{n-1}) \end{pmatrix}, f = \begin{pmatrix} f_n(x_1) \\ \vdots \\ f_n(x_{n-1}) \end{pmatrix}. \]

Similarly with matrix \(\hat{D}^2 \), we partition into matrices \(e^{(2)}_0, E^{(2)}, e^{(2)}_n \). Furthermore, we have
\[\frac{d^2}{dx^2} u(x) = \frac{d^2}{dx^2} u_n(x_i) = \sum_{k=0}^{n} \hat{D}_{i,k}^2 u_n(x_k) = u_n(x_0) e^{(2)}_0 + E^{(2)} u + u_n(x_n) e^{(2)}_n. \] (9)

Now, we consider the nonlinear second-order Lienard differential equations (1). We have rewritten this equation in the general form
\[\begin{cases} \frac{d^2}{dx^2} u(x) + f [u(x)] \frac{d}{dx} u(x) + g[u(x)] u(x) = 0, & u(x) \neq 0, \quad -1 \leq x \leq 1, \\ u[-1] = \alpha, u[+1] = \beta \end{cases} \] (10)

From (8) and (9), we can rewrite (10) in the matrix form as
\[\left[E^{(2)} + F E^{(1)} + G \right] u + \beta \left(e^{(2)}_0 + F e^{(1)}_0 \right) + \alpha \left(e^{(2)}_n + F e^{(1)}_n \right) \] (11)
where \(F \) and \(G \) denotes the square matrices order \((n - 1) \times (n - 1)\).

How to determine \(F \) and \(G \): We know that \(u \) denotes the vector. Moreover, \(F \) and \(G \) denote the square matrices. So, \(F \) and \(G \) will denote the diagonal matrices with elements \(f [u(x)] \) and \(g[u(x)]/u(x) \) with \(i = 1, n - 1 \). The following cases can happen:
- If \(F = \delta \) is constant, then \(F = \delta I \); here, \(I \) is the unit matrix of order \((n - 1)\);
But Figure 1 is the corresponding graphics, here dots are the calculated results by the algorithm

\[
F = \delta + \gamma u^n, \quad m \in \mathbb{Q}
\]

\[
F = \delta I + \gamma \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & u^n(x_{n-1})
\end{pmatrix}
\]

this is similar to G.

To find the solution \(u_n(x_i)\), we give the following algorithm [18]:

Algorithm

\begin{align*}
\text{Set: } & u^{(old)} := J^T; \quad \varepsilon := 1; \quad \varsigma := 10^{-8}; \\
\text{While } & \varepsilon > \varsigma \text{ do} \\
& F := F(u^{(old)}); \quad G := G(u^{(old)}); \quad M := E(2) + F.E(1) + G; \\
& u^{(new)} := M^{-1} \left[-\beta \left(e_0^{(2)} + F e_0^{(1)} \right) - \alpha \left(e_n^{(2)} + F e_0^{(1)} \right) \right]; \\
& \varepsilon := \min \left\{ \left| u_1^{(new)} - u_1^{(old)} \right|, \left| u_2^{(new)} - u_2^{(old)} \right|, \cdots, \left| u_n^{(new)} - u_n^{(old)} \right| \right\}; \\
& u^{(old)} := u^{(new)}; \quad \text{End while;}
\end{align*}

\text{Return } u^{(new)};

here, \(J\) is a unit vector.

Remarks: to increase the accuracy of \(u_n(x_i)\), we can change the error \(\varsigma\) of the program; the matrices \(F(u^{(old)})\) and \(G(u^{(old)})\) are recalculated after each loop.

4. Applications

In this section, we use the programming language Mathematica 10.4 to represent the algorithm used in CDM. Furthermore, we have used the function NDSolve to compute numerical results at the column NDSolve in each the example for comparison [19].

Example 1. Consider the nonlinear Lienard equation:

\[
\begin{aligned}
& u''(x) + au(x)u'(x) + (bu^2(x) + c)u(x) = 0, \quad x \in [-1, 1], \\
& u[-1] = \alpha, u[1] = \beta,
\end{aligned}
\]

\(\text{here } a, b, c \in \mathbb{R} \) (problem 2.2.3-2 p. 324 in [2]).

From section 3, we can thus rewrite the equation (12) in the matrix form as the formula (11), but \(F\) and \(G\) denote the diagonal matrices with elements \(
\{au_i\} \text{ and } \{bu_i^2 + c\}, \quad i = 1, n-1.\)

With \(n = 64, \varsigma = 10^{-8}\), Tab.1. shows several numerical results in the two cases:

- The first case \(a = 2, \quad b = -5, \quad c = -3\) and the boundary values \(\alpha = 0.1, \quad \beta = 0.3\);
- The first case \(a = 2, \quad b = 1, \quad c = 4\) and the boundary values \(\alpha = 0.2\);

and Figure 1 is the corresponding graphics, here dots are the calculated results by the algorithm and the solid lines are graphics computed by the Mathematica 10.4.

Example 2. Consider the nonlinear Lienard equation:

\[
\begin{aligned}
& u''(x) + [au(x) + 3b]u'(x) + [2b^2 + abu(x) - cu^2(x)]u(x) = 0, \quad x \in [-1, 1], \\
& u[-1] = \alpha, u[1] = \beta,
\end{aligned}
\]

\(\text{here } a, b, c \in \mathbb{R} \) (problem 2.2.3-3 p. 324 in [2]).

From section 3, we can thus rewrite the equation (13) in the matrix form as the formula (11), but \(F\) and \(G\) denote the diagonal matrices with elements \(
\{au_i + 3b\} \text{ and } \{2b^2 + abu_i - cu_i^2\}, \quad i = 1, n-1.\)

With \(n = 80, \varsigma = 10^{-8}\), Tab.2. displays several numerical results in the two cases:
Table 1. Numerical results of example 1 in the first case and the second case.

	First case	NDSolve	Second case	NDSolve
1	0.99879546	0.29943006	0.19882732	0.19882724
5	0.97003125	0.28613857	0.17032855	0.17032788
10	0.88192126	0.24901082	0.07836687	0.07836686
15	0.74095113	0.19953275	-0.07461391	-0.07461381
20	0.55557023	0.14976440	-0.25941161	-0.25941139
25	0.33688985	0.10849297	-0.41065117	-0.41065091
30	0.09801714	0.07975743	-0.46426124	-0.46426105
35	-0.14673047	0.06390680	-0.40670783	-0.40670775
40	-0.38268343	0.05943794	-0.27442251	-0.27442250
45	-0.59569930	0.06409530	-0.11792937	-0.11792938
50	-0.77301045	0.07486935	0.02329408	0.02329406
55	-0.90398929	0.08759392	0.12708425	0.12708423
60	-0.98078528	0.09728577	0.18572562	0.18572561
63	-0.99879546	0.09982627	0.19911056	0.19911056

Figure 1. Graphics of example 1, here dots are the result of the algorithm and the solid lines are graphics computed of the Mathematica 10.4.

- The first case \(a = 0.2, b = 0.1, c = 0.5 \) and the boundary values \(\alpha = \beta = -1 \);
- The first case \(a = 0.5, b = 0.2, c = 0.3 \) and the boundary values \(\alpha = -0.1, \beta = 0.2 \);

and Figure 2 is the corresponding graphics, here dots are the calculated results by the algorithm and the solid lines are graphics computed by the Mathematica 10.4.

Example 3. Consider the nonlinear Lienard equation:

\[
\begin{align*}
\dot{u}(x) + a \sin(\lambda u(x))\dot{u}(x) + b \sin(\lambda u(x)) &= 0, \quad x \in [-1, 1],
\end{align*}
\]

\[
\begin{align*}
u[-1] &= \alpha, \quad u[1] = \beta,
\end{align*}
\]

where \(a, b, \lambda \in \mathbb{R} \) (problem 2.2.3-19 p. 326 in [2]).

From section 3, we can thus rewrite the equation (14) in the matrix form as the formula (11), but \(F \) and \(G \) denote the diagonal matrices with elements \(\{a\sin(\lambda u_i)\} \) and \(\{b\sin(\lambda u_i)/u_i\} \), \(i = 1, n-1 \). With \(n = 100, \varsigma = 10^{-8} \), Tab.3. shows several numerical results in the two cases:
Table 2. Numerical results of example 2 in the first case and the second case.

i	x_i	$u_n(x_i)$	NDSolve $u_n(x_i)$	NDSolve $u_n(x_i)$
1	0.99922904	-0.99971806	-0.99971808	0.19979988
5	0.98078528	-0.99306774	-0.99306778	0.19504123
10	0.92387953	-0.97366093	-0.97366104	0.18070249
15	0.83146961	-0.94552646	-0.94552666	0.15847740
20	0.70710678	-0.91372105	-0.91372139	0.13050468
25	0.55557023	-0.88342877	-0.88342924	0.09917569
30	0.38268343	-0.85905388	-0.85905448	0.06677511
35	0.19509032	-0.84373476	-0.84373545	0.03522807
40	0	-0.83920250	-0.83920322	0.00597392
45	-0.19509032	-0.84582528	-0.84582596	-0.02004993
50	-0.38268343	-0.86270156	-0.86270215	-0.04234803
55	-0.55557023	-0.88773432	-0.88773479	-0.06076638
60	-0.70710678	-0.91770271	-0.91770303	-0.07538008
65	-0.83146961	-0.94843058	-0.94843077	-0.08638897
70	-0.92387953	-0.97519840	-0.97519850	-0.09403151
75	-0.98078528	-0.99349314	-0.99349316	-0.09852053
79	-0.99922904	-0.99973563	-0.99973564	-0.09994099

Figure 2. Graphics of example 2, here dots are the result of the algorithm and the solid lines are graphics computed of the Mathematica 10.4.

- The first case $a = 0.9$, $b = 0.2$, $\lambda = \pi$ and the boundary values $\alpha = \beta = 0.5$;
- The first case $a = 0.3$, $b = 0.6$, $\lambda = \pi/2$ and the boundary values $\alpha = 0.5$, $\beta = 0.1$;

and Figure 3 is the corresponding graphics, here dots are the calculated results by the algorithm and the solid lines are graphics computed by the Mathematica 10.4.

Alternately, from the programs, we also have other results: number of loops to find the solution $u_n(x_i)$ of the algorithm; the biggest odds between two columns $u_n(x_i)$ and **NDSolve**. All these results are shown in Table 4.
Table 3. Numerical results of example 3 in the first case and the second case.

	The first case	The second case			
i	x_i	$u_n(x_i)$	NDSolve	$u_n(x_i)$	NDSolve
1	0.99950656	0.50006953	0.50006954	0.10022698	0.10022698
5	0.98768834	0.50172932	0.50172951	0.10565786	0.10565785
10	0.95105652	0.50680870	0.50680863	0.12242123	0.12242122
15	0.89100652	0.51491144	0.51491128	0.14963676	0.14963673
20	0.80901699	0.52550202	0.52550172	0.18615131	0.18615127
25	0.70710678	0.53784935	0.53784887	0.23025423	0.23025416
30	0.5877525	0.55105204	0.55105135	0.27966240	0.27966231
35	0.45399050	0.56407834	0.56407741	0.33159060	0.33159048
40	0.30901699	0.57582422	0.57582305	0.38293136	0.38293122
45	0.1563447	0.58519121	0.58518982	0.43053930	0.43053915
50	0	0.59118240	0.59118084	0.47158118	0.47158102
55	-0.1563447	0.59301190	0.59301026	0.50388839	0.50388824
60	-0.30901699	0.59022036	0.59021874	0.52624121	0.52624107
65	-0.45399050	0.58278554	0.58278405	0.53852521	0.53852509
70	-0.5877525	0.57121108	0.57120981	0.54172602	0.54172592
75	-0.70710678	0.55656685	0.55656586	0.53775978	0.53775969
80	-0.80901699	0.54044682	0.54044613	0.52916891	0.52916886
85	-0.89100652	0.52481517	0.52481475	0.51873865	0.51873863
90	-0.95105652	0.5173861	0.5173841	0.50910206	0.50910204
95	-0.98768834	0.50304693	0.50304689	0.50239491	0.50239490
99	-0.99950656	0.50012335	0.50012335	0.50009735	0.50009734

Figure 3. Graphics of example 3, here dots are the result of the algorithm and the solid lines are graphics computed of the Mathematica 10.4.

5. Conclusions
In this work, we have investigated a new algorithm to solve nonlinear Lienard equations based on the pseudospectral method using the Chebyshev differentiation matrix. From tables 1-3, we see that the numerical results of two columns $u_n(x_i)$ and NDSolve are equivalent, the biggest odds between two columns $u_n(x_i)$ and NDSolve in all three examples is 1.64654×10^{-6}; Repeatability to find the solution $u_n(x_i)$ is low (see table 4). So, this new algorithm is reliable to solve the nonlinear Lienard equations class.
Table 4. Several other results.

Example	Loop	The biggest odds
The first case of example 1	5	3.84138×10^{-8}
The second case of example 1	16	2.61979×10^{-7}
The first case of example 2	9	7.12725×10^{-7}
The second case of example 2	6	1.55962×10^{-8}
The first case of example 3	8	1.64654×10^{-6}
The second case of example 3	8	1.61575×10^{-7}

6. References

[1] Sachdev P L 1991 *Nonlinear Ordinary Differential Equations and their Applications* (New York: Marcel Dekker)
[2] Andrei D P and Valentin F Z 2003 *Handbook of Exact Solutions for Ordinary Differential Equations* (Washington: Chapman and Hall)
[3] Jordan D W and Smith P 2007 *Nonlinear Ordinary Differential Equations: An introduction for Scientists and Engineers* (New York: Oxford University Press)
[4] Heydari M H, Hooshmandasl M R and Maalek Ghaini F M 2013 *J. Math. Ext.* 7 17
[5] Muhammed I S 2018 *Mathematics* 6 1
[6] Suheel A M, Ijaz M Q, Muhammad A and Ihsanul H 2013 *World Appl. Sci. J.* 28 636
[7] Mashallah M, Saber R B and Maryam G 2012 *World J. Model. Simul.* 8 142
[8] Tiberiu H, Francisco S N L and Mak M K 2014 *J. Eng. Math.* 89 193
[9] Salehpour E, Jafari H and Kadkhoda N 2012 *Indian J. Sci. Technol.* 5 2454
[10] Matinfar M, Mahdavi M and Raiesy Z 2011 *J. Inf. Comput. Sci.* 6 73
[11] Mason J C and Handscomb D C 2003 *Chebyshev Polynomials* (Washington: CRC Press)
[12] Trefethen L N 2000 *Spectral Methods in Matlab* (Oxford: SIAM)
[13] Don W S and Solomonoff A 1991 *SISC* 16 1253
[14] Tinuade O, Abdolmajid M and Ousmane S 2012 *Commun. Nonlinear Sci. Numer. Simulat.* 17 3499
[15] Arne D J 2009 *Lecture Notes on Spectra and Pseudospectra of Matrices and Operators* (Aalborg: Aalborg University)
[16] Nhat L A 2018 *J. Nonlinear Sci. Appl.* 11 1331
[17] Nhat L A 2019 *Zh. Sib. Fed. Univ. Mat. Fiz.* 12 79
[18] Nhat L A 2019 *The Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science* 29 61
[19] Martha L and Abell J P 2004 *Braselton Differential Equations with Mathematica* (California: Elsevier)

Acknowledgments

The publication was prepared with the support of the RUDN University Program 5-100.