Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans

Ylva Bonde, Olof Breuer, Dieter Lütjohann, Stefan Sjöberg, Bo Angelin, and Mats Rudling

Metabolism Unit, Department of Endocrinology, Metabolism, and Diabetes, and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute at Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden; Karo Bio AB, Novum, S-14186 Stockholm, Sweden; and Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, D-53105 Bonn, Germany

Abstract Reduced plasma LDL-cholesterol is a hallmark of hyperthyroidism and is caused by transcriptional stimulation of LDL receptors in the liver. Here, we investigated whether thyroid hormone (TH) actions involve other mechanisms that may also account for the reduction in LDL-cholesterol, including effects on proprotein convertase subtilisin/kexin type 9 (PCSK9) and bile acid synthesis. Twenty hyperthyroid patients were studied before and after clinical normalization, and the responses to hyperthyroidism were compared with those in 14 healthy individuals after 14 days of treatment with the liver-selective TH analog eprotirome. Both hyperthyroidism and eprotirome treatment reduced circulating PCSK9, lipoprotein cholesterol, apoB and ApoAI, and lipoprotein(a), while cholesterol synthesis was stable. Hyperthyroidism, but not eprotirome treatment, markedly increased bile acid synthesis and reduced fibroblast growth factor (FGF) 19 and dietary cholesterol absorption. Eprotirome treatment, but not hyperthyroidism, reduced plasma triglycerides. Neither hyperthyroidism nor eprotirome treatment altered insulin, glucose, or FGF21 levels. TH reduces circulating PCSK9, thereby likely contributing to lower plasma LDL-cholesterol in hyperthyroidism. TH also stimulates bile acid synthesis, although this response is not critical for its LDL-lowering effect.

Thyroid hormone reduces PCSK9 and stimulates bile acid synthesis in humans. J. Lipid Res. 2014. 55: 2408–2415.

Subject Keywords lipoproteins/metabolism • cholesterol 7alpha-hydroxylase • cholesterol/absorption • bile acids and salts/biosynthesis • fibroblast growth factor • fibroblast growth factor 19 • fibroblast growth factor 21 • proprotein convertase subtilisin/kexin type 9 • eprotirome • drug therapy/hyperlipidemic drugs

MATERIALS AND METHODS

Subjects and design

The first study (a) included 16 women and 4 men who had been referred to our outpatient unit due to hyperthyroidism.

Abbreviations: C4, 7a-hydroxy-4-cholesten-3-one; CA, cholic acid; CDCA, Chenodeoxycholic acid; CYP7A1, cholesterol 7a-hydroxylase; DCA, deoxycholic acid; EU, euthyroid state; FGF, fibroblast growth factor; fT3, free triiodothyronine; fT4, free thyroxine; HY, hypothyroid state; LDLR, LDL receptor; Lp(a), lipoprotein(a); PSCK9, proprotein convertase subtilisin/kexin type 9; SHBG, sex hormone binding globulin; TH, thyroid hormone; TSH, thyroid stimulating hormone.

To whom correspondence should be addressed.

*e-mail: ylva.bonde@ki.se

The online version of this article (available at http://www.jlr.org) contains supplementary data in the form of two tables.

Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
They were between 18 and 75 years old (mean ± SD, 46 ± 14 years) with serum levels of thyroid stimulating hormone (TSH) <0.2 mU/l and free triiodothyronine (fT3) >6.5 pM. Patients who were pregnant or had been diagnosed with malignancy were excluded. Diagnoses were based on serum levels of TSH and THs, presence of thyroid antibodies, and thyroid gland enlargement. Seventeen patients were diagnosed as having Grave’s disease; 16 of these were treated with tiamazol (Thacapol) and levothyroxine, and 1 received radioiodine treatment and levothyroxine. One patient was diagnosed as having toxic uninodular goiter and was treated with radioiodine. Two patients were diagnosed as having thyroiditis with transient nodular thyrotoxicosis; they became euthyroid without medical treatment. Blood samples were collected between 08:30 and 09:00 AM after overnight fast on two occasions: before start of treatment and when serum fT3 was normalized (3.0–6.5 pM). The interval between the samplings ranged between 4 and 25 weeks (mean ± SD, 14 ± 6 weeks). In the second study (b), samples were obtained from 14 healthy volunteers (7 women and 7 men) between 25 and 55 years old (mean ± SD, 41 ± 11 years), and with BMI between 22 and 29 kg/m² (mean ± SD, 26 ± 3 kg/m²). They had been included in a study evaluating a potential drug interaction between eprotirome and warfarin using a double-blind crossover design (KBT011; Eudra CT 2011-003029-92). Eprotirome is a liver-selective TH receptor agonist that has been tested in human hypercholesterolemia (10–12). Despite promising results in early trials, the development program for eprotirome was discontinued in 2012 due to a toxicology study that revealed cartilage damage in dogs after long-term exposure. Samples taken after 14 days of treatment with 100 µg/day of eprotirome (Karo Bio AB, Sweden) were compared with samples obtained prior to treatment or after a washout period of 14 days after the last dose.

Body composition

Body weight and composition were measured using a bioelectrical impedance scale (TBF-305; Umedico AB, Sweden).

THs, lipids, and glucose

Serum levels of fT3, free thyroxine (fT4), TSH, insulin, and plasma levels of total cholesterol, triglycerides, and glucose were measured using a MODULAR ANALYTICS P170/P800 (Roche/Hitachi). Serum levels of cholesterol and triglycerides within VLDL, LDL, and HDL fractions, and glycerol, were measured by fast protein LC (13). For all assays, kits from Roche Diagnostics GmbH (Mannheim, Germany) were used. In eprotirome-treated subjects, insulin levels were measured using ELISA kits (Mercodia AB, Uppsala, Sweden). Serum levels of sex hormone binding globulin (SHBG) were measured using ELISA kits (SHBG, MX52011; IBL International GmbH, Hamburg, Germany) according to the manufacturer’s instructions. Serum levels of FFAs were measured using kits from Kamiya Biomedical Co. (Seattle, WA) and a Tecan Infinite M200.

Apos

Serum levels of apoAI (KAI-002), AII (KAI-003), B (KAI-004), CII (KAI-005), and CIII (KAI-006) were determined using immunoturbidimetric assays (Kamiya Biomedical Co.). Serum levels of apoAIV were measured using ELISA kits from Millipore (EZHAP0A4-73K; Billerica, MA). All analyses were carried out in duplicate following the manufacturers’ instructions. Serum lipoprotein(a) [Lp(a)] levels were determined in duplicate samples with an immunoturbidimetric assay using kits from DiaSys Diagnostic Systems GmbH [Lp(a) 21 FS; Holzheim, Germany] and a Response 910 analyzer.

RESULTS

TH levels and body composition in hyperthyroidism

In the hyperthyroid state (HY), the increased serum levels of fT3 and fT4 showed a wide variation, averaging 21 ± 11 pM and 52 ± 24 pM, respectively (Fig. 1A). The serum level of TSH was suppressed (<0.02 mU/l) in all patients and was increased following treatment, ranging from 0.04 to 7.4 mU/l. In the euthyroid state (EU), fT3 and fT4 were normalized, with mean levels of 5.1 ± 1.6 pM and 18 ± 5.0 pM,
Circulating PCSK9 levels are reduced in hyperthyroidism

PCSK9 regulates hepatic LDLR numbers by disrupting their intracellular recycling, and high plasma PCSK9 levels are thus linked to high LDL-cholesterol and vice versa (8, 28, 29). In hyperthyroidism, serum PCSK9 levels were 22% reduced (Fig. 1E). Although there was no correlation between serum PCSK9 and TH levels, there were clear positive correlations between PCSK9 and plasma total cholesterol and LDL-cholesterol in hyperthyroidism ($r_s = 0.48$ and $r_s = 0.46$, respectively; $P < 0.05$). A similar correlation between PCSK9 and LDL-cholesterol levels was also present in the EU ($r_s = 0.52$; $P < 0.05$).

Hyperthyroidism does not influence lipoprotein triglycerides but increases peripheral lipolysis

Plasma total triglycerides were unaltered in hyperthyroidism, as was the triglyceride content of specific lipoprotein fractions. Serum levels of FFAs and glycerol were 19% and 35% higher, respectively (supplementary Table I). Irrespective of thyroid state, neither plasma triglycerides, FFAs, nor glycerol correlated with free TH levels. Serum levels of the intestinally derived apoAIV (30) were 19% respectively. The influence of TH on the liver was reflected by a >2-fold increase in SHBG serum levels, which correlated strongly with free TH levels (Fig. 1B). Body weight and BMI of patients were lower in the HY due to a lower fat mass, whereas lean body mass and body water were unaltered (supplementary Table I).

Hyperthyroidism lowers lipoprotein cholesterol, apoB, and Lp(a) levels

Plasma total cholesterol was reduced by 28% in hyperthyroidism. The cholesterol content in the VLDL, LDL, and HDL fractions was 48%, 28%, and 15% lower, respectively. Also, serum apoB and apoAI levels were lower, 27% and 14%, respectively (Fig. 1C and supplementary Table I). Plasma total cholesterol, VLDL-cholesterol, and LDL-cholesterol levels correlated inversely with serum levels of fT3 (Fig. 1D) and fT4 in hyperthyroidism, while there was no correlation between HDL-cholesterol and free TH levels. In addition, apoB, but not apoAI, correlated with fT3 levels ($r_s = -0.59$; $P < 0.01$). No correlations with free TH levels were seen in the EU. Serum Lp(a) levels were 26% lower in hyperthyroidism (supplementary Table I).

Fig. 1. Hyperthyroidism reduces lipoprotein cholesterol, apoB, and PCSK9 levels. Serum levels of fT3 and fT4 (A) in 20 patients before start of treatment in the HY and after clinical normalization in the EU. Serum levels of SHBG reflecting the impact of hyperthyroidism on the liver and correlation between SHBG and fT3 levels in the HY (B). Cholesterol content of specific lipoprotein fractions in the HY (red line) and EU (black line); dotted lines represent SD. Serum levels of apoB and apoAI (C). Correlations between plasma total cholesterol, VLDL-cholesterol, and LDL-cholesterol and fT3 levels in the HY (D). Serum levels of circulating PCSK9 (E). Horizontal bars represent mean values.
higher in hyperthyroidism. Serum levels of apoCII were unaltered, while those of apoCIII and apoAII were 15% and 9% lower, respectively (supplementary Table I).

Hyperthyroidism does not influence serum FGF21, insulin, or glucose levels

FGF21 is a metabolic regulator, with positive impact on glucose and lipid homeostasis when administered to animals (9). In mice, administration of TH increases FGF21 serum levels (31). However, in humans, FGF21 serum levels were unaltered in hyperthyroidism, as were insulin and glucose levels (supplementary Table I).

Hyperthyroidism increases bile acid synthesis and lowers circulating FGF19, while cholesterol synthesis is unaltered

In mice, TH promotes bile acid synthesis by stimulating the rate-limiting enzyme, cholesterol 7α-hydroxylase (CYP7A1), via hepatic TH β-receptors (5, 32). The data on bile acid turnover and excretion in humans are limited, and so far not conclusive (33–35). In the present study, serum levels of C4, a metabolite formed in the classical bile acid synthetic pathway that closely reflects CYP7A1 activity and bile acid synthesis (14–17), were 43% higher in hyperthyroidism, showing that bile acid synthesis is stimulated by TH in humans (Fig. 2A). This increase in synthesis appeared concomitantly with a 29% reduction of serum FGF19 (Fig. 2B). FGF19 is believed to be secreted from ileal enterocytes in response to farnesoid X receptor (FXR) activation (9) and has been hypothesized to inhibit bile acid synthesis in the liver by suppressing CYP7A1. In line with this concept, there was an inverse correlation between serum levels of FGF19 and C4 in the EU (r_s = −0.46; P < 0.05). However, no such relationship was found in hyperthyroidism. Serum levels of lathosterol, a precursor of cholesterol that reflects cholesterol synthesis (21–24), were unaltered in hyperthyroidism (Fig. 2C). This indicates that, unlike what is observed in rodents (5, 36), cholesterol synthesis is not stimulated by TH in humans.

Hyperthyroidism decreases intestinal absorption of cholesterol

Animal data indicate that TH reduces intestinal absorption of dietary cholesterol (7), which should contribute to lower plasma cholesterol. Because plant sterols and cholesterol share common pathways for uptake into and excretion from enterocytes, serum levels of plant sterols can be used to estimate absorption of dietary cholesterol (23). In hyperthyroidism, serum levels of plant sterols campesterol and sitosterol were lowered by 25% and 18%, respectively, indicating that absorption of dietary cholesterol is reduced by TH also in humans (Fig. 2D, E). However, because the uptake of plant sterols from the intestine competes with the uptake of cholesterol of dietary and biliary origin, their reduced levels may also reflect an increased biliary secretion of cholesterol.

Hyperthyroidism influences serum bile acid composition and conjugation

Total level of bile acids in serum was unchanged in hyperthyroidism. The proportion of CA was unaltered, while the proportions of CDCA and DCA were 26% higher and 42% lower, respectively (supplementary Table I). The relative amount of conjugated bile acids was 25% higher and correlated positively with fT3 levels (r = 0.88; P < 0.001). The increased conjugation was the result of a greater amount of taurine conjugated bile acids (+73%); this change also correlated closely with fT3 (r = 0.80; P < 0.001). Accordingly, the ratio of glycine to taurine conjugated bile acids was 35% lower in hyperthyroidism; again this was strongly correlated with fT3 (r = −0.70; P < 0.01).

Liver-selective stimulation of TH receptors by eprotirome reduces lipoprotein cholesterol, Lp(a), and PCSK9 levels

Serum SHBG levels were increased (+80%) by eprotirome treatment, indicating a marked stimulation of hepatic TH receptors (Fig. 3A). In similarity to hyperthyroidism, plasma total cholesterol was 21% lower in response to treatment, and VLDL-, LDL-, and HDL-cholesterol were reduced by 20%, 29%, and 10%, respectively (Fig. 3B and supplementary Table II). Eprotirome reduced apoB and apoAI levels by 21% and 13%, respectively (Fig. 3C, D). Also consistent with the findings in hyperthyroidism, eprotirome treatment was associated with markedly reduced (−25%) levels of Lp(a) (supplementary Table II) as well as PCSK9 (−17%) (Fig. 3E).

Eprotirome reduces lipoprotein triglycerides but does not increase peripheral lipolysis

In contrast to hyperthyroidism, eprotirome treatment lowered plasma total triglycerides. VLDL-, LDL-, and HDL-triglyceride levels were reduced by 35%, 38%, and 46%, respectively. Also in contrast to hyperthyroidism, serum levels of FFAs, glycerol, and apoAII were unaltered in eprotirome-treated subjects (supplementary Table II). ApoAIV levels were also unaltered, in opposition to the decrease in hyperthyroidism and in agreement with the

Fig. 2. Hyperthyroidism stimulates bile acid synthesis and reduces FGF19 and intestinal absorption of dietary cholesterol. Serum levels of C4 (A), FGF19 (B), lathosterol (C), and plant sterols sitosterol and campesterol (D, E) in 20 hyperthyroid patients before start of treatment in HY and after clinical normalization in EU. Horizontal bars represent mean values.
metabolism in humans were performed. By comparing the
HY and EU in the same individual, the influence of inter-
individual genetic variation was reduced, and the wide
range in TH levels in hyperthyroid patients provided a
possibility to relate metabolic responses to hormone lev-
els. By comparing the responses to hyperthyroidism with
those induced in healthy subjects by treatment with the

liver-selective TH analog eprotirome, the importance of

liver-specific effects of TH in humans was also explored.

First, we could confirm that TH lowers plasma choles-
terol in all lipoprotein fractions, and that this depends
mainly on TH actions in the liver. The degree of LDL-cho-
lesterol lowering was proportional to free TH levels, and
related to the degree of PCSK9 reduction. From previous
human studies on lipoprotein kinetics, it is clear that

plasma LDL-cholesterol is lowered by TH mainly through
stimulation of LDL clearance (39), presumably due to an
increased number of hepatic LDLRs. The reductions in
LDL-cholesterol and PCSK9 levels were of similar magni-
tude in both hyperthyroid and eprotirome-treated indi-
viduals, indicating that this is a liver-specifc action of TH.

As predicted from previous data (29, 40), the change in
PCSK9 levels in response to TH is compatible with a sub-
stantial reduction of LDL-cholesterol. Thus, in addition to
transcriptional stimulation of the LDLR gene, the reduced
PCSK9 level should contribute substantially to increase the
number of hepatic LDLRs in hyperthyroidism. The fi-

nding that lathosterol levels were unaltered may indicate that
TH partly infl uences PCSK9 through non-sterol-regulatory
element binding protein (SREBP) 2-mediated effects (41).

Although the previously discussed results strongly suggest
that the liver is a key organ for the changes in plasma chole-
sterol induced by TH, the possibility of concomitant extra-
hepatic effects cannot be entirely excluded.

Second, we could establish that TH markedly reduced
levels of the atherogenic Lp(a), and that this was also de-
pendent on its hepatic action. How Lp(a) serum levels are
regulated in humans is unclear (42), but it is generally acknowledged that hepatic synthesis is important. Inhibition of PCSK9 also lowers Lp(a) (43), indicating that the TH-induced reduction of circulating PCSK9 may be involved in the lowering of Lp(a).

Third, bile acid synthesis, evaluated from measurements of the well-established marker C4 (14), was induced in hyperthyroidism. This occurred without increased cholesterol synthesis, indicating that a net amount of cholesterol is drained from the body. In animal models, TH increases the expression of CYP7A1 (32, 44), and it has been suggested as one of the major mechanisms for lowering plasma cholesterol (32, 45). Due to the complexity of many of the techniques used to assess bile acid turnover in vivo, the extent of human data has been rather limited, and so far inconclusive (33–35, 46). In rodents, TH inhibits the rate-limiting enzyme in CA production, sterol 12a-hydroxylase (CYP8B1), resulting in increased CDCA synthesis (47). The fact that such a change in the relative contribution of CDCA to the circulating bile acid pool was observed in hyperthyroid and in eprotirome-treated subjects indicates that TH also suppresses CYP8B1 in human liver. The increased conjugation of circulating bile acids with taurine is also in agreement with previous work (48), and it will be of interest to analyze if any of the effects of TH can be related to the change in conjugation pattern.

Fig. 5. Summary of the effects of hyperthyroidism and eprotirome on serum markers and metabolites in lipid metabolism. 7α-OH-cholesterol, 7α-hydroxycholesterol; BAs, bile acids; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; CM, chylomicron; CMR, chylomicron remnant; HMG-CoAR, HMG-CoA reductase; HSL, hormone sensitive lipase; SRBI, scavenger receptor class B type I.
Fourth, serum FGF19 levels were clearly reduced in hyperthyroidism. FGF19 is presumably secreted from the ileum in response to activation of FXR by bile acids (49) and contributes to negative feedback regulation of bile acid synthesis by inhibition of hepatic CYP7A1 (9). The effects of eprotirome on bile acid synthesis and FGF19 were not statistically significant and could indicate that TH has a direct effect on the small intestine, either on bile acid reabsorption or on FGF19 secretion. This interpretation calls for some caution, however, because a higher dose of eprotirome (200 μg/day) has been shown to induce bile acid synthesis in humans (10).

Fifth, there was a clear difference between the effect of hyperthyroidism and of liver-selective TH receptor activation on plasma triglyceride levels. Whereas eprotirome reduced triglycerides in all lipoproteins, there were no such changes in hyperthyroidism. There was evidence of stimulated peripheral lipolysis, with elevated levels of FFA and glycerol, in hyperthyroidism, but not in eprotirome-treated subjects. Levels of apoB and apoCIII, mainly produced in the liver, showed similar changes in the two TH exposure models, whereas apoAI and apoAIV that are predominantly from the small intestine were increased in hyperthyroidism but not eprotirome-treated subjects. One explanation may be that the hepatic effects of TH that probably include suppression of the master regulator of lipid synthesis, SREBP1c (45), are counterbalanced by an increased influx of FFAs from peripheral tissues exposed to TH in hyperthyroidism.

Sixth, neither hyperthyroidism nor eprotirome treatment had an effect on the circulating FGF21. This finding contrasts what has been reported for mice, where TH induces hepatic FGF21 gene expression and serum levels dose dependently (31). The role of FGF21 in metabolic regulation is still unclear, and there are also species differences regarding FGF21 in metabolic regulation (9). Because circulating FGF21 has been proposed to be regulated by FFA levels in humans (50), it is interesting to note the lack of effect on FGF21 in the hyperthyroid patients, despite their increased serum FFA levels.

Finally, HDL-cholesterol and apoAI levels were reduced in hyperthyroidism and by eprotirome treatment. In epidemiological studies, low HDL-cholesterol and apoAI are associated with an enhanced risk of coronary heart disease (51). However, animal studies show that HDL-mediated efflux of cholesterol from peripheral cells to the liver and its subsequent elimination may be stimulated by TH or thyromimetics (45, 52, 53). Thus, a decreased level of HDL-cholesterol may actually reflect a stimulated turnover of peripherally derived cholesterol, indicating the presence of an “antiatherogenic,” rather than an “atherogenic,” state.

In conclusion, TH exerts several important effects on cholesterol and lipoprotein metabolism in humans, as outlined in Fig. 5. Hepatic actions of TH are responsible for most of the positive effects including lowering of PCSK9 and LDL-cholesterol levels, as well as reduction of apoB and Lp(a). Bile acid synthesis is stimulated in hyperthyroidism, but this does not appear critical for lowering LDL-cholesterol. Intestinal actions of TH for its pronounced effects on bile acid synthesis and cholesterol absorption seem more important than previously recognized. Selective activation of TH receptors in the liver lowers plasma triglycerides, whereas a concomitant stimulation of peripheral lipolysis during hyperthyroidism counters this action.

The authors thank Anja Kerkvliet, Ingela Arvidsson, Lena Persson, and Anita Lövgren Sandblom for expert technical assistance.

REFERENCES

1. Yen, P. M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81: 1097–1142.
2. Zhang, J., and M. A. Lazar. 2000. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 62: 439–466.
3. Song, Y. X., Y. H. Yao, and H. Ying. 2011. Thyroid hormone action in metabolic regulation. Protein Cell. 2: 358–368.
4. Roberts, C. G., and P. W. Ladenson. 2004. Hypothyroidism. Lancet. 363: 793–803.
5. Ness, G. C., L. C. Pendleton, Y. C. Li, and J. Y. Chiang. 1990. Effect of thyroid hormone on hepatic cholesterol 7 alpha hydroxylase, LDL receptor, HMG-CoA reductase, farnesyl pyrophosphate synthetase and apolipoprotein A-I mRNA levels in hypophysectomized rats. Biochem. Biophys. Res. Commun. 172: 1150–1156.
6. Bonde, Y., T. Plosch, F. Kuipers, B. Angelin, and M. Rudling. 2012. Stimulation of murine biliary cholesterol secretion by thyroid hormone is dependent on a functional ABCG5/G8 complex. Hepatology, 56: 1828–1837.
7. Gallman, C., Y. Bonde, M. Matsucon, B. Angelin, and M. Rudling. 2008. Dramatically increased intestinal absorption of cholesterol following hypophysectomy is normalized by thyroid hormone. Gastroenterology, 135: 1127–1136.
8. Lambert, G., B. Sjouke, B. Choque, J. J. Kastelein, and G. K. Hovingh. 2012. The PCSK9 decade. J. Lipid Res. 53: 2515–2524.
9. Angelin, B., T. E. Larsson, and M. Rudling. 2012. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 16: 695–705.
10. Berkenstam, A., J. Kristensen, K. M. Kristensen, B. Carlsson, J. Malm, S. Rehnmark, N. Garg, C. M. Andersson, M. Rudling, F. Sjöberg, et al. 2008. The thyroid hormone mimetic compound K22115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc. Natl. Acad. Sci. USA. 105: 663–667.
11. Ladenson, P. W., J. D. Kristensen, E. C. Riddick, A. G. Olsson, B. Carlsson, I. Klein, J. D. Baxter, and B. Angelin. 2010. Use of the thyroid hormone analogue eprotirome in statin-treated dyslipidemia. N. Engl. J. Med. 362: 906–916.
12. Angelin, B., J. D. Kristensen, M. Eriksson, B. Carlsson, I. Klein, A. G. Olsson, E. Chester Riddick, and P. W. Ladenson. 2014. Reductions in serum levels of LDL cholesterol, apolipoprotein B, triglycerides and lipoprotein(a) in hypercholesterolaemic patients treated with the liver-selective thyroid hormone receptor agonist eprotirome. J. Intern. Med. Epub ahead of print. April 22, 2014; doi: 10.1111/j.1365-2967.2014.12261.
13. Parini, P., I. Johansson, A. Böijjersen, B. Angelin, and M. Rudling. 2006. Lipoprotein profiles in plasma and interstitial fluid analyzed with an automated gel-filtration system. Eur. J. Clin. Invest. 36: 98–104.
14. Gallman, C., I. Arvidsson, B. Angelin, and M. Rudling. 2003. Monitoring hepatic cholesterol 7alpha-hydroxylase activity by assay of the stable bile acid intermediate 7alpha-hydroxy-4-cholesten-3-one in peripheral blood. J. Lipid Res. 44: 859–866.
15. Axelson, M., I. Bjorkhem, E. Rehner, and K. Einarsen. 1991. The plasma level of 7 alpha-hydroxy-4-cholesten-3-one reflects the activity of hepatic cholesterol 7 alpha-hydroxylase in man. FEBS Lett. 284: 216–218.
16. Axelson, M., A. Aly, and J. Sjovall. 1988. Levels of 7 alpha-hydroxy-4-cholesten-3-one in plasma reflect rates of bile acid synthesis in man. FEBS Lett. 239: 324–328.
17. Sauter, G. F., B. Angelin, and B. Gaub. 1996. Serum concentrations of 7alpha-hydroxy-4-cholesterol-3-one reflect bile acid synthesis in humans. *Hepatology*. **24**:123–128.

18. Gälman, C., B. Angelin, and M. Rudling. 2005. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. *Gastroenterology*. **129**:1445–1453.

19. Björkham, I., E. Reihner, B. Angelin, S. Ewerth, J. E. Akerlund, and K. Einarsson. 2009. On the possible use of the serum level of 7 alpha-hydroxycholesterol as a marker for increased activity of the cholesterol 7 alpha-hydroxylase in humans. *J. Lipid Res.* **28**:889–894.

20. Knabe, C., T. Sudhop, K. von Bergmann, and D. Lutjohann. 2007. Degradation of 24S-hydroxycholesterol in men is not regulated by CYP7A1. *Int. J. Clin. Pharmacol. Ther.* **45**:757–762.

21. Lund, E., L. Sisfontes, E. Reihner, and I. Björkham. 1989. Determination of serum levels of unesterified lathosterol by isotope dilution-mass spectrometry. *Scand. J. Clin. Lab. Invest.* **49**:163–169.

22. Kempen, H. J., J. F. Glatz, J. A. Gevers Leuven, H. A. van der Voort, C. Knabe, T. Sudhop, K. von Bergmann, and D. Lutjohann. 2007. Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. *Int. J. Clin. Pharmacol. Ther.* **35**:14078–14082.

23. Sauter, G., B. Gaub, and K. Einarsson. 1987. Correlation between serum levels of some cholesterol precursors and activity of HMG-CoA reductase in human liver. *J. Lipid Res.* **28**:1137–1143.

24. Lütjohann, D., M. Strolic, T. Bertsch, S. Kühl, B. Lindenthal, K. Thelen, U. Andersson, I. Björkham, K. von Bergmann, and K. Fasbender. 2004. High doses of simvastatin, pravastatin, and cholesterol reduce brain cholesterol synthesis in guinea pigs. *Steroids*. **69**:431–438.

25. Thelen, K. M., K. M. Renitsch, U. Gutteck, M. Heverin, M. Olin, U. Andersson, A. von Eckardstein, I. Björkham, and D. Lutjohann. 2006. Brain cholesterol synthesis in mice is affected by high dose of simvastatin but not of pravastatin. *J. Pharmacol. Exp. Ther.* **316**:1146–1152.

26. Lütjohann, D., C. Hahn, W. Prange, T. Sudhop, M. Axelson, T. Sauerbruch, K. von Bergmann, and C. Reichel. 2004. Influence of rifampin on serum markers of cholesterol and bile acid synthesis in men. *Int. J. Clin. Pharmacol. Ther.* **42**:307–313.

27. Tavoni, H., D. Fan, J. L. Blakemore, P. G. Yancey, L. Ding, M. F. Wasserman, and S. Fazio. 2013. Selective thyroid receptor modulator GQ-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. *Proc. Natl. Acad. Sci. USA*. **109**:10297–10302.

28. Desai, N. R., P. Kohli, R. P. Giugliano, M. L. O’Donoghue, R. Somaratne, J. Zhou, E. B. Hoffman, F. Huang, W. J. Rogers, S. M. Wasserman et al. 2013. AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. *Circulation*. **128**:962–969.

29. Kronenberg, F., and G. Utermann. 2013. Lipoprotein(a): resurrected by genetics? *J. Lipid Res.* **54**:6–9.

30. Desai, N. R., P. Kohli, R. P. Giugliano, M. L. O’Donoghue, R. Somaratne, J. Zhou, E. B. Hoffman, F. Huang, W. J. Rogers, S. M. Wasserman et al. 2013. AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy: an analysis from the LDL-C Assessment with Proprotein Convertase Subtilisin Kexin Type 9 Monoclonal Antibody Inhibition Combined with Statin Therapy (LAPLACE-Thrombolysis in Myocardial Infarction (TIMI) 57 trial. *Circulation*. **128**:962–969.

31. Ness, G. C., L. C. Pendelton, and Z. Zhao. 1994. Thyroid hormone rapidly increases cholesterol 7 alpha-hydroxylase mRNA levels in hypophysectomized rats. *Biochim. Biophys. Acta.* **1214**:229–235.

32. Johansson, L., M. Rudling, T. S. Scanlan, T. Lundåsen, P. Webb, J. Baxter, B. Angelin, and P. Parini. 2005. Selective thyroid receptor modulator by GC-1 reduces serum lipids and stimulates steps of reverse cholesterol transport in euthyroid mice. *Proc. Natl. Acad. Sci. USA*. **102**:10297–10302.

33. Sauter, G., M. Weiss, and R. Hoermann. 1997. Cholesterol 7 alpha-hydroxylase activity in hyperthyroidism and hyperlipidemia in humans. *Horm. Metab. Res.* **29**:176–179.

34. Russell, D. W. 2009. Fifty years of advances in bile acid synthesis and metabolism. *J. Lipid Res.* **50**:S120–S125.

35. Hellstrom, K., and J. Sjövall. 1961. Conjugation of bile acids in patients with hypercholesterolemia (bile acids and steroids, 105). *J. Atheroscler. Res.* **1**:205–210.

36. Lundåsen, T., C. Gälman, B. Angelin, and M. Rudling. 2006. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. *J. Intern. Med.* **260**:530–536.

37. Yu, H., F. Xia, K. S. Lai, Y. Wang, Y. Bao, J. Zhang, Y. Gu, P. Zhou, J. Lu, W. Jia, et al. 2011. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. *Clin. Chem.* **57**:691–700.

38. Catapano, A. L., Z. Reiner, G. De Backer, I. Graham, M. R. Taskinen, O. Wiklund, S. Agewall, E. Alegria, M. Chapman, P. Durrington, et al. 2011. ESC/EAS guidelines for the management of dyslipidemias: the task force for the management of dyslipidemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). *Atherosclerosis*. **217**:3–46.

39. Tancevski, I., E. Demetz, and P. Eller. 2011. Sobetirome: a selective thrymimetic for the treatment of dyslipidemia. *Recent Pat Cardiov. Drug Discov.* **6**:16–19.

40. Tancevski, I., A. Winkinger, E. Demetz, J. Hoefer, P. Eller, E. Huber, U. Sezal, K. Dwieseke, K. Auer, W. Schgoer, et al. 2009. The thryomimetic t-0681 protects from atherosclerosis. *J. Lipid Res.* **50**:938–944.

Thyroid hormone and human lipid metabolism