Enhanced MAC Parameters to Support Hybrid Dynamic Prioritization in MANETs

Abstract

Quality of Service (QoS) for MANETs becomes a necessity because of its applications in decisive situations such as battle fields, flood and earth quake. Users belonging to diverse hierarchical category demanding various levels of QoS use MANETs. Sometimes, even a low category user may need to send an urgent message in time critical applications. Hence providing prioritization based on user category and urgency of the message the user is sending becomes necessary. In this paper we propose Enhanced MAC parameters to support Hybrid Dynamic priority in MANETs(H-MAC). It combines both prioritizations based on user categorization and dynamic exigency. Order Statistics is used to implement dynamic priority. We propose dynamic TXOP, Proportional AIFS and Proportional dynamic Backoff timers based on weights and collision, to avoid packet dropping and starvation of lower priorities. The model is simulated in ns2. We compare our results with IEEE 802.11e and show that, 16% more throughput is achieved by H-MAC during extensive collision. We also observe that starvation and packet drops are reduced with proportionate bandwidth sharing compared to the existing model.

References

- Rajabushanam C. and Kathirvel A., (2011), "Survey of Wireless MANET
Enhanced MAC Parameters to Support Hybrid Dynamic Prioritization in MANETs

Application in Battlefield Operations", (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 2, No. 1.

- www.ncs.gov
- IEEE Std 802. 11-2007, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
- IEEE Standard for Information Technology – Telecommunications and Information exchange between system local and metropolitan area networks – specific requirements – Part II wireless LAN medium access control(MAC) and Physical Layer(PHY) specifications, IEEE, 2007.
- Tariq A. S. M. and Perveen K., (2010), "Analysis of Internal Collision and Dropping Packets Characteristics of EDCA IEEE 802. 11e Using NS-2. 34 Simulator", Proceedings of the World Congress on Engineering and Computer Science, Vol. 1, San Francisco, USA
- Adlen Ksentini, Abdelhak Guéroui, Mohamed Naimi, (2005), "Adaptive transmission opportunity with admission control for IEEE 802. 11e networks", Proceedings of the 8th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems, Montréal, Quebec, Canada
- Ben Liang and Min Dong, (2007), "Packet prioritization in multihop latency aware scheduling for delay constrained communication", IEEE Journal on Selected Areas in Communications, Vol. 25, Issue: 4, pp. 819 – 830.
- Ku J. M., Kim S. K., Kim S. H., Simon Shin, Kim J. H and Kang C. G., (2006), "Adaptive delay threshold-based priority queuing scheme for packet scheduling in mobile broadband wireless access systems", IEEE Conference on Wireless Communications and Networking.
- Romdhani L., Ni Q. and Turletti T., (2003), "Adaptive EDCF: enhanced service differentiation for IEEE 802. 11 wireless ad hoc networks", Proceedings of the IEEE Wireless Communications and Networking (WCNC 2003), New Orleans, Louisiana, USA.
- Gannoune L., (2006), "A Comparative Study of Dynamic Adaptation Algorithms for Enhanced Service Differentiation in IEEE 802. 11 Wireless Ad Hoc Networks", IEEE Advanced International Conference on Telecommunications and International conference on Internet and Web Applications and Services (AICT-ICIW’06).
- Hannah Monisha J. and Rhymend Uthariaraj V., (2012), "A Dynamic Scheduling Model for MANETs using Order Statistics", IEEE International Conference on Recent trends in Information Technology.
- Hannah Monisha J. and Rhymend Uthariaraj V., (2012) "User Profile based Proportional Share Scheduling and MAC protocol for MANETs.
- Kishore S. Trivedi, (2001), "Probability & Statistics with reliability, queuing, and Computer Science Applications", Prentice-Hall of India, Thirteenth Printing.
- Robert V. Hogg, Elliot A. Tanis and Jagan Mohan Rao, (2006), "Probability and Statistical Inference, 7th edition", Pearson Education, Inc.
- Yousry H. Abdelkader and Maram Al-Wohaibi, (2011), "Computing the Performance Measures in Queueing Models via the Method of Order Statistics", Journal of Applied Mathematics, vol. 2011, Article ID 790253, 12 pages. doi:10. 1155/2011/790253

Index Terms
Keywords
Hybrid Priority Dynamic Mac Parameters Order Statistics Proportional-share Scheduling