Abstract

Histamine (HA) is recognized by its target cells via four G-protein-coupled receptors, referred to as histamine H1-receptor (H1R), H2R, H3R, and H4R. Both H1R and H4R exert pro-inflammatory functions. However, their signal transduction pathways have never been analyzed in a directly comparable manner side by side. Moreover, the analysis of pharmacological properties of the murine orthologs, representing the main targets of pre-clinical research, is very important. Therefore, we engineered recombinant HEK293 cells expressing either mouse (m)H1R or mH4R at similar levels and analyzed HA-induced signalling in these cells. HA induced intracellular calcium mobilization via both mH1R and mH4R, with the mH1R being much more effective. Whereas cAMP accumulation was potentiated via the mH4R, it was reduced via the mH1R. The regulation of both second messengers via the H4R, but not the H1R, was sensitive to pertussis toxin (PTX). The mitogen-activated protein kinases (MAPKs) ERK 1/2 were massively activated downstream of both receptors and demonstrated a functional involvement in HA-induced EGR-1 gene expression. The p38 MAPK was moderately activated via both receptors as well, but was functionally involved in HA-induced EGR-1 gene expression only in H4R-expressing cells. Surprisingly, in this system p38 MAPK activity reduced the HA-induced gene expression. In summary, using this system which allows a direct comparison of mH1R- and mH4R-induced signalling, qualitative and quantitative differences on the levels of second messenger generation and also in terms of p38 MAPK function became evident.

Introduction

HA, a biogenic amine, is an important mediator of many physiological and pathological processes such as gastric acid secretion, neurotransmission, cell differentiation, immunomodulation, allergic reactions, peptic ulcer, and tumor progression [1]. Two groups of cells are able to produce HA. The first group comprises mast cells, basophils, histaminergic neurones and ECL-cells of the gastric wall, which are able to store HA in intracellular granules. Specific stimuli lead to degranulation of these cells and to a massive release of HA [2,3]. The second group of HA-producing cells consists of neutrophils, lymphocytes, macrophages and others. These cells secrete HA immediately following its production, which is regulated by specific stimuli via expression of the histamine-generating enzyme L-histidine decarboxylase [4,5].

Cellular effects of HA are mediated via four G-protein coupled receptors (GPCRs). H1R - H4R, which are expressed on varying cell types. H1Rs differ from each other in their preferred coupling G-protein and, thus, activate different signal transduction pathways. Accordingly, H1Rs carry out different functions in the body [6–9]. The H1R is expressed ubiquitously, including several immune cells such as B- and T-cells, monocytes, macrophages and dendritic cells [10,11]. Upon ligand binding the H1R couples to Gαi-proteins and activates phospholipase C (PLC) [12], followed by the generation of inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) of which IP3 induces an increase in intracellular Ca2+ concentrations ([Ca2+]i) [10,13–15]. Moreover, the activated H1R potentiates forskolin-induced production of the second messenger cAMP [16]. This increase is either mediated via activation of specific adenyllycylase (AC) isoforms by Ca2+-activated calmodulin [17] or via a Ca2+-independent direct activation of ACs [18]. Further downstream, H1R mediated signalling involves also MAPKs [19,20].

The H1R is mainly expressed on immune cells [21–25], thus can be detected in virtually all organs [26]. The H1R plays a role in inflammatory- and immunoreactions e.g. by inducing chemotaxis in mast cells, T-cells, eosinophils, macrophages, and dendritic cells [22–24,27,28]. Upon ligand binding the H1R activates pertussis toxin-sensitive G-proteins [29,30] activating PLC which catalyses the hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) to IP3 which causes an increase in [Ca2+]i, [23,31]. Furthermore, the activated Gαi-protein directly inhibits ACs and,
Murine Histamine H1- and H4-Receptor Signalling

Materials and Methods

Materials
If not stated otherwise, all chemicals were obtained from Sigma-Aldrich (Taufkirchen, Germany). PCR primers were purchased from Eurofins MWG Operon (Ebersberg, Germany). The MAPK inhibitors SB 203580 and PD 98059 were purchased from Tocris (Bristol, United Kingdom), and pertussis-toxin from List Biological Laboratories (Campbell, CA, USA). The H4R-selective antagonist JNJ7777120 ([1-((5-chloro-1H-indol-2-yl) carbonyl)-4-methylpiperazine) was kindly provided by Dr. Armin Buschauer (University of Regensburg, Germany).

HEK293 cells and generation of stably H4R-expressing clones
HEK293 cells (LGC Standards (ATCC), Wesel, Germany) were maintained in DMEM medium (PAA Laboratories, Pasching, Austria) supplemented with 10% [v/v] FCS (Lonza, Basel, Switzerland), penicillin [100 units/ml]/streptomycin (100 µg/ml) and 2 mM L-glutamine at 37°C in a 7% [v/v] CO2 environment. Confluent cell layers were split twice a week.

Cells at 60–80% confluence were transfected with pcDNA3 plasmids containing the coding sequences for either myc-tagged mH1R or Flag-tagged mH4R, or the empty vectors using Fugene HD (Roche, Mannheim, Germany) according to the manufacturer’s protocol. Cells with stable integration of vectors or plasmids were selected with G418 (empty vector, mH1R) or Zeocin (empty vector, mH4R) (both InvivoGen, San Diego, CA, USA). Clones were generated by limiting dilution technique and receptor expression was checked by flow cytometry (Miltenyi Biotec, Bergisch Gladbach, Germany) and Western blot using anti-Flag and anti-myc (Roche, Penzberg, Germany) reagents.

Detection of intracellular Ca2+ concentration
HEK293 mH3R cells were incubated at a density of 1×10⁶ cells/ml in Krebs-Hepes buffer (120 mM NaCl, 20 mM Hepes, 4.7 mM KCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 1.25 mM CaCl₂, 10 mM glucose, pH 7.4) containing 10 µM Fura-2-AM (Tocris, Bristol, United Kingdom) and 0.2% [m/v] pluronic F127 for 40 min under rotation at room temperature in the dark. Then, cells were diluted 1:10 with Krebs-Hepes buffer and incubated for an additional 20 min at the same conditions. Cells were sedimented by centrifugation and resuspended at 2×10⁶ cells/ml in fresh Krebs-Hepes buffer. Labelled cells were seeded in a black 96 well plate at 50 µl/well and incubated with increasing concentrations of mepyramine or JNJ7777120, or with Krebs-Hepes buffer for a few minutes. Fluorescence measurement was performed in a Synergy 4 reader (Biotek, Bad Friedrichshall, Germany) with high frequently alternating excitation wavelengths of 340 and 380 nm and an emission wavelength of 508 nm. After 2 min of detection of the baseline, HA at the concentration indicated was added. In antagonists studies, the HA solutions were supplemented with the respective antagonists in order to keep antagonists concentration constant. The effect of HA stimulation on [Ca²⁺]i was measured over a period of 5 min. Then, Triton X-100 at a final concentration of 0.5% [v/v] was added and the maximal signal (Fmax) was detected over a period of 2 min. Finally, EGTA was added at a final concentration of 12 mM and the minimal signal (Fmin) was detected for additional 2 min. The increase in [Ca²⁺]i was calculated from these data using the following equation:

\[
\frac{\text{Ca}^{2+} \text{ (nM)}}{K_D} = F_{\text{max}} \left(\frac{F_{\text{min}} - F}{OD_{380\text{um}} \cdot \text{EGTA}}\right) - F_{\text{min}} \left(\frac{OD_{380\text{um}} \cdot \text{Triton}}{OD_{380\text{um}} \cdot \text{Fmax}}\right)
\]

Quantification of intracellular cAMP accumulation using HPLC/MS/MS
HEK293 mH₃R cells were seeded in 6-well plates at 1×10⁶ cells/well and cultured for 24 h. Cells were stimulated for 10 min at 37°C with 100 µM forskolin and 100 µM HA in the presence or absence of mepyramine and/or JNJ7777120 at the concentrations indicated. The medium was removed and 300 µl of extraction reagent (AcN/MeOH/H₂O [2:2:1]) containing 25 ng/ml tenofenovir (internal standard) was added to the wells. The extracts were incubated at 98°C for 20 min and aggregated protein was collected by centrifugation for 10 min at 17000 g. Supernatant fluids were transferred into a new tube and evaporated at 40°C under nitrogen flow until complete dryness and residual material was solved in 150 µl H₂O. Samples were diluted 1:100 in H₂O containing 50 ng/ml tenofenovir and analyzed on an API 5500 (AB SCIEX, Framingham, MA, USA) mass spectrometer after HPLC-separation using a Zorbax Eclipse column XDB-C18 1.8 µm 50×4.6 (Agilent Technologies, Santa Clara, CA). cAMP concentrations of samples were calculated according to standards containing defined cAMP concentrations. The amount of protein in the samples was calculated according to standards containing defined cAMP concentrations. The protein pellets were dried at RT and stored in 800 µl 0.1 M NaOH at 95°C for 30–60 min. Protein concentrations were quantified using BCA-assay (Thermo Fischer Scientific, Waltham, MA, USA). cAMP concentrations were calculated in relation to the protein concentration (pmol cAMP/mg protein).

MAPK array
HEK293 mH₃R cells were seeded in 6-well plates at 1×10⁶ cells/well and cultured for 24 h. After incubation with or without 10 µM HA for 5 min, cells were analyzed using the MAPK array according to the manufacturer’s protocol (Human Phospho-MAPK-Array; R&D System, Minneapolis, MN, USA [36]).
Protein concentrations of cellular lysates were determined by Bradford protein assay (BioRad Laboratories) and 300 µg protein were subjected to each membrane. For quantitative analysis, the pixel density of every individual spot was determined and intensities of the spots without HA-stimulation were subtracted from the intensities of the corresponding spots with HA-stimulation.

RNA extraction and real time PCR
HEK293 mH1R cells were seeded in 6-well plates at 1 x 10⁶ cells/well and cultured for 24 h. After pre-incubation with or without MAPK inhibitors followed by stimulation with or without 10 µM HA (as indicated) for 4 h, the medium was removed and the cells were washed twice with PBS. Total RNA was extracted using the Nucleospin RNA II kit (Machery-Nagel, Düren, Germany) according to the manufacturer’s protocol. Two µg RNA were reverse transcribed into cDNA using oligo dT primers (Fermentas, Rockford, IL, USA) and RevertAid Reverse Transcriptase (Fermentas). Real time PCR was performed by the TaqMan method. Buffers and TaqMan probes were purchased from Applied Biosystems (Darmstadt, Germany) and the assay was performed according to the manufacturer’s protocol. For standardisation the house-keeping genes β-actin and GUS-β were amplified and gene expression was quantified using the ΔΔCt method [37].

Statistical analysis
If not stated otherwise, statistical analyses were performed by calculating means ± SD of at least three independent determinations. Analysis of significance was performed using Student’s t-test or one-way ANOVA with Bonferroni post-test for linear parameters (GraphPad Prism 5). p-Values of ≤0.05 (*), ≤0.01 (**) and ≤0.005 (***) were considered significant.

Results
Histamine increases intracellular Ca²⁺ concentrations via mH₁R and H₄R with different potencies and efficacies
Clones of HEK293 cells stably expressing epitop-tagged fusion proteins of either mH₁R or mH₄R were generated. A myc-tag was added N-terminally at the mH₁R, and the mH₄R was flanked by a Flag-tag. The presence of the receptor proteins encoded by the exogenous genes was analyzed by Western blot (Figure 1A) and flow cytometry (Figure 1B). The appearance of several species with differing apparent molecular weights (Figure 1A) is due to differing glycosylation of the receptor proteins [38,39]. For functional analyses, individual clones of both cell lines demonstrating comparable quantities of receptor expression were chosen. This quantification relayed on flow cytometry since radioligand-binding analyses, individual clones of both cell lines demonstrating comparable quantities of receptor expression were chosen. This quantification relayed on flow cytometry since radioligand-binding analysis is not feasible for the mH₄R due to the lack of a suitable radio-labelled ligand [8]. The chosen clones are referred to as HEK293 mH₁R and HEK293 mH₄R.

In HEK293 mH₁R and HEK293 mH₄R cells HA increased [Ca²⁺], concentration-dependently (Figure 2A,B). While in HEK293 mH₁R a maximal Δ[Ca²⁺], of about 400 nM (Figure 2A) was reached, the maximum Δ[Ca²⁺], of HEK293 mH₄R cells was only 200 nM (Figure 2B). Moreover, HEK 293 mH₁R cells displayed a substantially higher potency for HA than HEK293 mH₄R cells, as reflected by a pEC₅₀ of 8.2 and of 6.9, respectively. In contrast, in empty vector-transfected HEK293 cells HA did not increase [Ca²⁺], (Figure 2C).
The selective antagonists mepyramine (H₁R) and JNJ7777120 (H₄R) were used to document the receptor specificity of HA-induced increased [Ca²⁺]. In HEK293 mH₁R cells the elevated [Ca²⁺], was reduced concentration-dependently by mepyramine with a pIC₅₀ of 7.4 and a pKB of 8.6, while JNJ7777120 was without effect (Figure 2D). JNJ7777120, but not mepyramine, inhibited the HA-induced increase in [Ca²⁺], in HEK293 mH₄R cells displaying a pEC₅₀ of 6.9 and a pKB of 8.8 (Figure 2E). Thus, the HA-induced increase of [Ca²⁺], in the transfected HEK 293 cells is mediated indeed by the respective recombinant receptors and not by an unspecific activity of HA.

Intracellular cAMP concentrations are enhanced via mH₁R and decreased via mH₄R

cAMP is generated by AC, which can be activated directly by forskolin [9,40]. In comparison to untreated controls, stimulation with forskolin elevated the cAMP-concentration in HEK 293 mH₁R cells, HEK 293 mH₄R cells, and empty vector-transfected cells, which were defined as 100 % for relative quantification (Figure 3A,B). Additional stimulation with 100 µM HA enhanced cAMP accumulation in HEK293 mH₁R cells to about 3500 %. This enhancement was reduced by mepyramine in a concentration dependent manner (Figure 3A). In HEK293 mH₁R cells, HA reduced the forskolin-induced cAMP-concentration to basal levels. This effect was concentration-dependently diminished by JNJ7777120 (Figure 3B). The antagonists mepyramine and JNJ7777120 both at concentrations up to 10 µM were selective for their respective receptors since the HA effects were neither affected by mepyramine in HEK293 mH₄R cells nor by JNJ7777120 in HEK293 mH₁R cells (data not shown).

In HEK293 mH₁R cells, HA induced increased [Ca²⁺], which was absent upon pre-incubation with PTX (Figure 4D). Thus, intracellular Ca²⁺ mobilization and cAMP generation is affected by HA and forskolin [41,42]. In comparison to untreated controls, stimulation with forskolin elevated [cAMP] to about 3500 %, and the forskolin-induced cAMP concentrations were evaluated after stimulation with HA.

PTX did not affect the HA-induced increase in [Ca²⁺], (~280 nM) in HEK293 mH₁R cells (Figure 4A). In contrast, stimulation of untreated HEK293 mH₁R cells with HA enhanced [Ca²⁺], to about 100 nM, while such increase was absent in PTX pre-treated HEK293 mH₁R cells (Figure 4B). The remaining Δ[Ca²⁺], of about 10 nM was consistent with the concentration in unstimulated cells. PTX treatment did not generally inhibit the ability of HEK293 mH₁R cells to mobilize Ca²⁺ ions, since stimulation with ATP increased [Ca²⁺], independently of pre-incubation with PTX (Figure 4B).

In HEK293 mH₁R and HEK293 mH₄R cells forskolin induced a cAMP increase independently of PTX treatment (Figure 4C,D). In HEK293 mH₁R cells HA enhanced forskolin-induced cAMP concentrations up to 400 % in the absence as well as in the presence of PTX treatment (Figure 4C). HEK293 mH₄R cells showed an 80 % reduction of forskolin-induced cAMP concentrations after stimulation with HA which was absent upon pre-incubation with PTX (Figure 4D). Thus, intracellular Ca²⁺ mobilization and cAMP generation is affected by HA via both mH₁R and mH₄R, but with differing quantities (Ca²⁺) and qualities (cAMP). Moreover, only the mH₁R, but not the mH₄R acts in a PTX-sensitive manner.
HA-induced phosphorylation of MAPKs differs between mH1R- and mH4R-expressing HEK293 cells

In order to analyse signalling events that occur more distally than the enhancement of intracellular Ca\(^{2+}\) and cAMP, the phosphorylation of several MAPKs in lysates of 5 min HA-stimulated HEK293 mH1R and HEK293 mH4R cells was assessed.

In HEK293 mH1R as well as in HEK293 mH4R cells a similar strong HA-induced phosphorylation of ERK 1 and ERK 2 was detected. p38\(\alpha\) and CREB were only moderately phosphorylated via activation of mH1R and mH4R, the H1R demonstrating a

Figure 1. Successful generation of HEK293 cells stably expressing mH1R and mH4R. HEK293 cells were transfected with plasmids encoding the myc-tagged mH1R, the Flag-tagged mH4R, or the empty vectors (e.v.) as indicated and clones thereof were generated by limiting dilution technique. Stable expression of the transgenes was analyzed by Western blot (A) and flow cytometry (B) using myc- and Flag-specific reagents as indicated. Presented are data from a single clone of each cell line, which has been chosen for further analyses. Arrows in (A) indicate the recombinantly expressed proteins. doi:10.1371/journal.pone.0107481.g001

Figure 2. Mobilization of [Ca\(^{2+}\)]\(i\) by histamine is mediated by H1R and H4R. HEK293 mH1R cells (A+D), HEK293 mH4R cells (B+E), and empty vector-transfected HEK293 cells (C) were labelled with Fura 2-AM and stimulated with different concentrations of histamine (HA) (A–C) or with a constant HA concentration in combination with DMSO or varying concentrations of mepyramine (MEP) or JNJ7777120 (JNJ) (D+E). Changes in [Ca\(^{2+}\)]\(i\) were determined by fluorescence measurements at an emission wavelength of 508 nm and excitation wavelengths of 340 nm and 380 nm. Data shown are means ± SD (n = 2–3, each consisting of 2 replicates). doi:10.1371/journal.pone.0107481.g002
stronger activity-inducing potential on p38 and CREB phosphorylation as compared to the H4R (Figure 5). Thus, signalling emerging at the mH1R and the mH4R differs basically at the activation of p38 MAPK and the transcription factor CREB.

HA induced EGR-1 gene expression in mH1R- and mH4R-transfected cells

As an example for MAPK-regulated genes, the expression of the EGR-1 gene was quantified in HEK293 mH1R and HEK293 mH4R cells after 4 h stimulation with HA. Specific kinases involved were analysed by use of inhibitors selective for the MAPKs p38 and ERK, and for CREB.

EGR-1 expression was enhanced 200-fold in HEK293 mH1R cells by stimulation with HA. This HA-induced EGR-1 expression was unaffected by the p38 inhibitor SB 203580 [43] and the CREB inhibitor KG-501 [44]. In contrast, the MEK inhibitor PD 98059, used to assess the involvement of the ERK pathway [43], caused a significant reduction nearly to the level of unstimulated cells (Figure 6A). In HEK293 mH4R cells, EGR-1 expression was roughly doubled by stimulation with HA. This statistically not significant effect was unaffected by KG-501 but reduced to the basal level using PD 98059. Interestingly, a significant 4-fold increase of EGR-1 expression was observed upon incubation of HEK293 mH4R with HA plus SB 203585 (Figure 6B). The treatment of both HEK293 cell lines with the MAPK inhibitors without HA stimulation did not affect EGR-1 expression, with the exception of HEK293 H4R cells incubated with SB 203585, which slightly enhanced EGR-1 expression (data not shown). Thus, HA-induced expression of EGR-1 mediated via mH3R and mH4R involves mainly ERK signalling. In addition, the p38 MAPK pathway seems to reduce mH3R-mediated induction of EGR-1 expression.
Figure 4. Pertussis toxin selectively blocks signaling of the mH4R. HEK293 mH1R cells (A+C) and HEK293 mH4R cells (B+D) were incubated in the presence or absence of 50 ng/ml pertussis toxin (PTX) for 18 h. Changes in [Ca2+]i were determined as described in Figure 2 after stimulation with 100 μM histamine (HA) or 10 μM ATP as indicated on the x-axis (A+B). Intracellular cAMP concentrations were analyzed as described in Figure 3 after stimulation for 10 min with 100 μM forskolin (Forsk) and histamine (HA) (C+D). Forskolin-induced cAMP concentrations were 2385 ± 160 pmol/mg protein in HEK293 H1R and 2164 ± 436 pmol/mg protein in HEK 293 H4R cells, respectively. Data shown are means ± SD (n = 2, each consisting of 2–3 replicates; *: p<0.05; **: p<0.01; ***: p<0.005; ns: not significant).

doi:10.1371/journal.pone.0107481.g004

Figure 5. Histamine induces phosphorylation of MAP-kinases via H1R and H4R. HEK293 empty vector cells, HEK293 mH1R cells, and HEK293 mH4R cells were incubated with or without 10 μM HA for 5 min and lysed afterwards. Phosphorylation of different serine/threonine kinases in these lysates were detected by MAPK array. Phosphorylation intensity was quantified by analysis of the pixel density of every single spot (A). Shown are the differences of the densities of corresponding spots obtained using lysates of cells with and without HA stimulation. Data shown are means ± SD (n = 2, each measured in 2 replicates; *: p<0.05; **: p<0.01; ***: p<0.005). In B, exemplarily the spots of ERK1 and ERK2 after histamine induction in the cells as indicated on the left, and quantification control spots (ctr.) are demonstrated.

doi:10.1371/journal.pone.0107481.g005
In HEK293 cells stably expressing exogenous HxRs, stimulation because they do not endogenously express functionally

An advantage of HEK293 cells is their unresponsiveness to HA

effectors may have a large impact on the signals measured [45].

stoichiometry between receptors, G-proteins, and downstream

backgrounds are crucial for a direct comparison because the

been studied in parallel in a well-controlled expression system

HA-induced signalling was analysed with respect to [Ca 2

inhibitor (Ø) or with 50

203580 (SB) for 30 min, or 25

M KG-501 (KG) for 20 min and then

incubated with or without histamine for 4 h. Total RNA was extracted

from the cells and reverse transcribed into cDNA. Expression of EGR-1

was determined by real time PCR using TagMan probes. Data shown are

from the cells and reverse transcribed into cDNA. Expression of EGR-1

rable levels, we can also hypothesize that activation of Ca 2

increased [Ca2

[13,18,50]. Stimulation of the human and the murine H 4R

increased [Ca2

to increase [Ca2

hypothesis that activation of Ca2

via mH1R and mH4R

Proximal signalling of mH1R and mH4R was analyzed by measurements of [Ca2

The human H1R has been demonstrated to mediate the HA signal

to increase [Ca2

signalling via Gq-proteins is more efficient than via Gi-proteins.

Many HxR agonists and antagonists are used in different disease

models in the mouse. Therefore, it is important to compare pharmacological parameters like affinity and effectivity in both

systems, human and mouse, to estimate if effects that are observed in mouse models can be translated to humans. The mouse and human histamine receptor orthologs have a rather low homology (i.e. 67 % for H1R [46], and JNJ7777120, which is a partial inverse agonist at the recombinant human H1R expressed in an

insect cell system, shows partial agonistic effects at the insect cell-

expressed recombinant mH1R [47,48]. However, so far no further
evidence of an agonistic function of JNJ7777120 in other

experimental cellular systems has been observed, specifically in
eosinophils, the so far only human cell type with confirmed
functional expression of the H1R [49]. The concept of functional
selectivity, according to which the potency and efficacy of a given
ligand depends on the specific signalling pathway studied, may
provide a mechanistic explanations for our data [8,9].

Regulation of intracellular Ca2+ and cAMP concentrations

via mH1R and mH4R

Thus, the mH1R may induce a more robust cellular response than

the mH4R which may act in a more subtle way. In support of this

concept, the hH1R induces only a small pro-inflammatory
response in human eosinophils [52].

Activation of MAPK signalling pathways via mH1R and
mH4R

Naor et al. [53] reported that different G-proteins can interact
in distinct manners with MAPK signalling pathways and,
therefore, activate different MAPK cascades. For some GPCRs
including the H1R- and the H4R it has been shown that, in
addition to G-protein activation, they activate MAPK signalling pathways independently of G-proteins by direct coupling to β-
arrestins [54–56]. However, while G-protein dependent phosphor-
ylation appears fast, within minutes after stimulation, β-
arrestin-mediated MAPK activation is much slower [57]. Since we
analyzed MAPK phosphorylation after 5 min of stimulation, it is
very unlikely that β-arrestin signalling is responsible for our
observations, thus the effects on MAPK phosphorylation described
in this study are rather G-protein mediated. A formal experimen-
tal proof, however, is still to be provided.

Discussion

In the present study we analyzed the signalling pathways of
mH1R and mH4R. A model of stably transfected HEK293 cells
expressing either mH1R or mH4R at comparable levels as assessed
by FACS analysis was generated and validated. To the best of our
knowledge, signal transduction of the mH1R and mH4R has never
been studied in parallel in a well-controlled expression system
before. However, similar expression levels and identical cellular
backgrounds are crucial for a direct comparison because the
stoichiometry between receptors, G-proteins, and downstream
effectors may have a large impact on the signals measured [45]. An advantage of HEK293 cells is their unresponsiveness to HA stimulation because they do not endogenously express functionally
active HxRs. In HEK293 cells stably expressing exogenous HxRs,
HA-induced signalling was analysed with respect to [Ca2

in this study are rather G-protein mediated. A formal experimen-
tal proof, however, is still to be provided.
We found the MAPKs ERK 1/2, and p38, and the transcription factor CREB to be activated in response to HA in both mH1R- and mH4R-expressing HEK293 cells. The H1R has already been described to activate ERK 1/2 and p38 most probably via PLC, [Ca^{2+}]i, protein kinase C and Ras [58]. CREB, the ‘cAMP responsive element binding protein’, is activated by enhanced intracellular cAMP concentration followed by PKA activation [59,60]. Since in mH4R-transfected HEK293 cells HA induced a strong increase in cAMP, CREB phosphorylation can be regarded a direct consequence of this. In HEK293 mH1R cells in contrast, histamine stimulation does not enhance cAMP accumulation, but nevertheless, albeit at a very weak level, it activates CREB. This weak cAMP-independent CREB activation may be induced by e.g. pathways emerging from enhanced [Ca^{2+}]i, mobilization [61,62].

Phosphorylation of ERK 1/2 has also been detected already in human H1R-transfected HEK293 cells [30] and in murine bone marrow-derived mast cells [34]. However, activation of p38 via the H1R has not been described before and is, thus, a novel finding of this study. In mH1R-transfected cells, HA does not induce, but rather reduces cAMP generation. Thus, to detect the phosphorylation of CREB was unexpected as well. However, CREB has been found to be activated also by other signalling molecules, such as MAPKAPK-2, a substrate of p38 [58,63,64], MSK-1, a substrate of p38 and ERK 1/2 [65], and CaM kinases, which are activated by increased [Ca^{2+}]i [62]. Since we found an activation of p38 and ERK 1/2 and enhanced [Ca^{2+}]i in mH1R-transfected cells upon HA-stimulation, in our system CREB is phosphorylated probably via one of these alternative pathways.

MAPK-mediated gene expression induced by mH1R and mH4R

The activation of MAPK-signalling pathways finally results in regulation of gene expression. The transcription factor EGR-1 plays a decisive role in inflammatory reactions by the induction of the expression of e.g. IL-6, IL-8, CCL-2, TNF-α and MCP-1 [66–68]. In mH1R-transfected HEK293 cells, HA induces a strong increase in EGR-1 expression, which is dependent on ERK signalling. This result fits to the data of Guha et al. [69,70] and Whitmarsh et al. [69,70] and confirms the evidence of Thiel et al. [71] who demonstrated that activation of the ERK signalling pathway is mainly involved in EGR-1 expression. In contrast, Rolli et al. [72] described a p38 MAPK-dependent induction of EGR-1 expression which was not detected in our HEK293 H1R cells.

In mH4R-transfected cells, histamine induces only a moderate increase in EGR-1 expression which is also dependent on ERK signalling. So far it is not clear why stimulation with histamine leads to a much lower EGR-1 expression in mH4R-transfected cells compared to mH1R-transfected cells although in both cell lines ERK is similarly phosphorylated upon HA stimulation. Surprisingly, in mH1R-transfected cells, p38 MAPK activity inhibited EGR-1 expression. This was unexpected, since it was not detected in HEK293 H1R cells, although in these cells HA induces p38 phosphorylation as well, even stronger as compared to HEK293 mH1R cells. In HEK293 mH1R cells the p38 MAPK-mediated inhibition of EGR-1 expression may be abolished by the high concentration of cAMP, which is not found in HEK293 mH1R cells. Moreover, our finding is also in contrast to the observation by Rolli et al. [72], who demonstrated the induction of EGR-1 expression by p30 MAPK, however using a different stimulus. Consequently, it can be speculated that upon HA-stimulation a mH4R-specific pathway is triggered which, via the activity of p38 MAPK, inhibits EGR-1 expression. Thus, in HEK293 mH4R cells, which lack this pathway, the p38 MAPK activity lacks a cognate target to reduce ERK1/2 MAPK-induced EGR-1 expression. However, the nature of this mH4R-specific pathway has still to be elucidated.

In conclusion, we have shown that HEK293 cells stably expressing comparable quantities of murine histamine receptors represent a valuable model to analyse and directly and reliably compare mH1R and mH4R mediated signal transduction. To our best knowledge, this is the first published side by side approach analyzing signalling of the pro-inflammatory mH1R and mH4R using an identical cellular background and comparable expression levels. Using this system, we provide evidence that both the mH1R and the mH4R mediate the HA-induced [Ca^{2+}]i mobilization, the H1R being more potent and more efficient. Since both receptors are expressed at comparable quantities, this is either an intrinsic property of the H1R, probably indicating that HA-induced coupling of Gq proteins is more effective as compared to that of Gβγ-proteins, or an intrinsic property of HEK293 cells, probably indicating that in these cells Gβγ proteins are predominant in comparison to Gα proteins. In contrast to the mH1R, the mH4R indeed, as anticipated from the human ortholog, diminishes AC activity, leading to a reduction of cAMP production. Moreover, we demonstrate that the signalling pathways of these receptors are basically homologous, but specific differences, such as at the functional activity of p38 MAPK, which we have newly defined to be involved in mH1R signalling, were detected. It will be important to study signal transduction of lH1R and lH4R according to the same principles as shown here. Comparing signal transduction between human and murine receptor orthologs is essential for proper interpretation of studies in mouse disease models and their translation to human pathology.

Acknowledgments

We thank Renate Schostmann for excellent technical help and the research core unit ‘Mass spectrometry Metabolomics’ of the Hannover Medical School for cAMP- quantification.

Author Contributions

Conceived and designed the experiments: SB RS DN. Performed the experiments: SB MV RH. Analyzed the data: SB MV RS DN. Wrote the paper: SB RS DN.

References

1. Thurnoud R, Gelldal E, Dunford P (2000) The role of histamine H1 and H4 receptors in allergic inflammation: the search for new rhistamines. Nat Rev Drug Discov 7: 31–33.
2. Barnes PJ (2001) Histamine and serotonin. Pulm Pharmacol Ther 14: 329–339.
3. Mainz I, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85: 1185–1196.
4. Schneider E, Lemoine FM, Bertron-Goutor J, Machauvine F, Arnold AD, et al. (1999) IL-3-induced coexpression of histidine decarboxylase, IL-4 and IL-6 mRNA by murine basophil precursors. Exp Hematol 27: 1010–1018.
5. Dy M, Arnold AD, Lemoine FM, Machauvine F, Ziltener H, et al. (1996) Hematopoietic progenitors and interleukin-5-dependent cell lines synthesize histamine in response to calcium ionophore. Blood 87: 3161–3169.
6. Jutel M, Watanabe T, Klunker S, Akdis M, Thomet O, et al. (2001) Histamine regulates T-cell and antibody responses by differential expression of H1 and H4 receptors. Nature 413: 420–425.
7. Lim HD, Smit RA, Leurs R, De Esch IJ (2006) The emerging role of the histamine H4 receptor in anti-inflammatory therapy. Curr Top Med Chem 6: 1365–1373.
8. Strasser A, Wittmann HJ, Buschauer A, Schneider EH, Seifert R (2013) Species-dependent activities of G-protein-coupled receptor ligands: lessons from histamine receptor orthologs. Trends Pharmacol Sci 34: 13–32.

9. Seifert R, Strasser A, Schneider EH, Neumann D, Dove S, et al. (2013) Molecular and functional analysis of human histamine receptor subtypes. Trends in Pharmacological Sciences 34: 33–58.

10. Bachert C (2002) The role of histamine in allergic disease: re-appraisal of its inflammatory potential. Allergy 57: 287–296.

11. Minami T, Kuroudi T, Ozawa A, Shinmauchi H, Endo V, et al. (2007) Histamine amplifies immune response of gingival fibroblasts. J Dent Res 86: 1083–1088.

12. Li H, Choe NH, Wrigth DT, Adler KB (1995) Histamine provokes turnover of intracellular phospholipids in guinea pig and human airway epithelial cells via an H2 receptor/G protein-dependent mechanism. Am J Resp Cell Mol Biol 12: 416–424.

13. Ebenshade TA, Kispal GH, Krueger KM, Miller TR, Winge DD, et al. (2003) Differential activation of dual signaling responses by human H2 and H4 histamine receptors. J Recept Signal Transduct Res 23: 17–31.

14. Hill SJ, Ganellin CR, Timmerman H, Schwartz JG, Shankley NP, et al. (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49: 253–278.

15. Haasuna EE, Leurs R, Timmerman H (1999) Histamine receptors: subclasses and specific ligands. Pharmacol Ther 47: 73–104.

16. Leurs R, Traifft E, Arrang JM, Tardivel-Lacombe J, Ruat M, et al. (1994) GPCR pig histamine H1 receptor. II. Stable expression in Chinese hamster ovary cells reveals the interaction with three major signal transduction pathways. J Neurochem 62: 519–527.

17. Defer N, Best-Belpomme M, Hanoune J (2000) Tissue specificity and pharmacological relevance of various isoforms of adenyl cyclase. Annu J Physiol 229: F400–416.

18. Maruko T, Nakahara T, Sakamoto K, Saito M, Sugimoto N, et al. (2005) Involvement of the J7 subunits of G proteins in the cAMP response induced by stimulation of the histaminergic H4 receptor. Nakan Schmiedebergs Arch Pharmacol 372: 153–159.

19. Ales K, Wraber B, Lipnik-Stanječ M (2008) The synergistic effect of histamine and IL-6 on NGF secretion from cultured astrocytes is evoked by histamine stimulation of IL-6 secretion via H4-receptor/PKC-MAPK signalling pathway. Nukleins Res 57 Suppl 1: S33–S34.

20. Cammarota M, Belvalia LR, Rostas JA, Dunkley PR (2003) Histamine activates tyrosine hydroxylase in bovine adrenal chromaffin cells through a pathway that involves ERK1/2 but not p38. J Neurochem 85: 217–222.

21. Dunford P, O'Donnell N, Riley J, Williams K, Karlsson L, et al. (2006) The histamine H4 receptor mediates allergic airway inflammation by regulating the expression of CI47 T cells. J Immunol 176: 7602–7607.

22. Gnutzmann R, Desai IJ, Mommerst B, Koster B, Stark H, et al. (2003) Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocye-derived dendritic cells. J Immunol 174: 5224–5232.

23. Hofstra CL, Desai IJ, Thurmond RL, Fung-Leung WP (2003) Histamine H4 receptor mediates chemotaxis and calcium mobilization of mast cells. J Pharmacol Exp Ther 305: 1212–1219.

24. Leng P, Ngo K, Nguyen S, Thurmond RL, Edworth JP, et al. (2004) Histamine H4 receptor stimulates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br J Pharmacol 142: 161–171.

25. Zhang M, Venable JD, Thurmond RL (2006) The histamine H4 receptor in autoimmune disease. Expert Opin Investig Drugs 15: 1445–1452.

26. Sakamura T, Hida H, Hidaka Y, Ohtani T (2000) Molecular cloning and characterization of a new human histamine receptor, HH1R, Biochem Biophys Res Commun 279: 615–620.

27. Morgan R, McAllister B, Cross L, Green D, Kornfeld H, et al. (2007) Histamine H4 receptor/G protein-dependent mechanism. Am J Resp Cell Mol Biol 30: 434–443.

28. Zhu Y, Michalovich D, Wu H, Tan KB, Dytdo GM, et al. (2001) Cloning, expression, and pharmacological characterization of a novel human histamine receptor sub-type. Mol Pharmacol 59: 434–443.
63. Dumitru CA, Fechner MK, Hoffmann TK, Lang S, Brandau S (2012) A novel p38-MAPK signaling axis modulates neutrophil biology in head and neck cancer. J Leukoc Biol 91: 591–598.
64. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, et al. (1996) FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 15: 4629–4642.
65. Deak M, Clifton AD, Lucoq LM, Alessi DR (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17: 4426–4441.
66. Hoffmann E, Ashouri J, Wolter S, Doerr F, Dittrich-Breiholz O, et al. (2008) Transcriptional regulation of EGR-1 by the interleukin-1β-MKK7-c-Jun pathway. J Biol Chem 283: 12120–12128.
67. Pawlinski R, Pedersen B, Kelehrer B, Aird WC, Frank RD, et al. (2003) Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 101: 3940–3947.
68. Yao J, Mackman N, Edgington TS, Fan ST (1997) Lipopolysaccharide induction of the tumor necrosis factor-alpha promoter in human monocytic cells. Regulation by Egr-1, c-Jun, and NF-kappaB transcription factors. J Biol Chem 272: 17795–17801.
69. Whitmarsh AJ, Shore P, Sharrack A, Davis RJ (1995) Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 405–407.
70. Guha M, O’Connell MA, Pawlinski R, Hollis A, McGovern P, et al. (2001) Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human mononuclear cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98: 1429–1439.
71. Thiel G, Cibelli G (2002) Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193: 287–292.
72. Rolli M, Kolyarow A, Sakamoto KM, Gaestel M, Neininger A (1999) Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2-independent manner. J Biol Chem 274: 19559–19564.