Epigenomic drivers of immune dysfunction in aging

Christine R. Keenan1,2 | Rhys S. Allan1,2

1The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
2Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia

Correspondence
Christine R. Keenan and Rhys S. Allan, Walter and Eliza Hall Institute, Parkville, Vic., Australia.
Emails: keenan.c@wehi.edu.au (CK), rallan@wehi.edu.au (RA)

Funding information
This work is supported by the National Health and Medical Research Council (NHMRC) of Australia. CRK is supported by an NHMRC Early Career Fellowship 1125436. RSA is supported by an Australian Research Council Future Fellowship 130100541.

Abstract
Aging inevitably leads to reduced immune function, leaving the elderly more susceptible to infections, less able to respond to pathogen challenges, and less responsive to preventative vaccinations. No cell type is exempt from the ravages of age, and extensive studies have found age-related alterations in the frequencies and functions of both stem and progenitor cells, as well as effector cells of both the innate and adaptive immune systems. The intrinsic functional reduction in immune competence is also associated with low-grade chronic inflammation, termed “inflamm-aging,” which further perpetuates immune dysfunction. While many of these age-related cellular changes are well characterized, understanding the molecular changes that underpin the functional decline has proven more difficult. Changes in chromatin are increasingly appreciated as a causative mechanism of cellular and organismal aging across species. These changes include increased genomic instability through loss of heterochromatin and increased DNA damage, telomere attrition, and epigenetic alterations. In this review, we discuss the connections between chromatin, immunocompetence, and the loss of function associated with mammalian immune aging. Through understanding the molecular events which underpin the phenotypic changes observed in the aged immune system, it is hoped that the aged immune system can be restored to provide youthful immunity once more.

KEYWORDS
chromatin, epigenetics, histone modifications, immune aging, immunity, progeria

1 INTRODUCTION

Old age is associated with reduced immune function that ultimately leads to elderly individuals becoming less responsive to vaccination and more susceptible to a range of infections (Dorshkind, Montecino-Rodriguez, & Signer, 2009; Kline & Bowdish, 2016). Extensive studies have found a myriad of changes in cellular phenotypes and functions across almost all compartments of the immune system. However, elucidating why these changes occur has proven a much more difficult prospect.

Key molecular changes underpin the time-related functional decline across different systems and different organisms. These molecular changes have recently been rationalized to become the four primary “hallmarks of aging”: genomic instability, telomere attrition, epigenetic alterations, and loss of proteostasis (Lopez-Otin, Blasco, Partridge, Serrano, & Kroemer, 2013). Importantly, three of these four primary hallmarks involve changes to chromatin, highlighting the importance of chromatin state for function and health.

In this review, we discuss the evidence that particular changes to chromatin cause the loss of function seen in the aged immune system. Increased understanding of the connections between phenotypic changes and the underlying molecular events is hoped to reveal key mediators which can be therapeutically targeted to restore immunity (and “youth”) in old age.
2 | THE AGING IMMUNE SYSTEM

Changes in both the innate and adaptive arms of the immune system have been documented in aging, although the changes in the adaptive immune system are more well-defined (Figure 1). These changes have been recently reviewed elsewhere (Goronzy & Weyand, 2017; Michel, Griffin, & Vallejo, 2016; Pereira & Akbar, 2016; Pinti et al., 2016; Yanes, Gustafson, Weyand, & Goronzry, 2017). However, key changes in immune cell frequency and function will be described here for completeness. The intrinsic functional reduction in immune competence is associated with low-grade chronic inflammation, termed "inflamm-aging," recently reviewed in Frasca and Blomberg (2016), characterized by high levels of circulating cytokines and latent viral infections. This inflammatory state then further perpetuates the age-related immune dysfunction.

2.1 | Hematopoietic stem cells (HSCs)

Hematopoietic stem cells (HSCs) are responsible for the maintenance and replenishment of immune and hematopoietic cells throughout life. HSC numbers actually increase with age, both in mice and humans, but these accumulated cells show reduced reconstitution potential (Morrison, Wandycz, Akashi, Globerson, & Weissman, 1996; Ogawa, Kitagawa, & Hirokawa, 2000; Pang et al., 2011; Rossi et al., 2005). Stem cell diversity also appears to reduce with age with an exponential increase in the occurrence of clonal hematopoiesis, where one mutant HSC produces an overwhelming proportion of mature blood cells, especially after the age of 45–60 in humans (Genovese et al., 2014; Jaiswal et al., 2014; McKerrell & Vassiliou, 2015). Moreover, the output of these aging HSCs is also biased toward the myeloid lineage at the expense of lymphoid cells (such as T and B lymphocytes), again a trait conserved between mice and humans (Pang et al., 2011; Wahlestedt, Prank, & Bryder, 2015; Figure 1a).

A recent study using in vivo cell-tracing labels in mice provided evidence by which this myeloid skewing may occur (Bernitz, Kim, MacArthur, Sieburg, & Moore, 2016). Long-term HSCs, the most primitive HSC population, are shown to expand numerically with age; however, their frequency within the bone marrow decreases due to accumulation of committed myeloid progenitors (Bernitz et al., 2016). Intriguingly, this study suggests that a division counting mechanism exists within this long-term HSC compartment, whereby these largely dormant cells undergo four self-renewal divisions throughout adulthood, and retain memory of their division history, to lose regenerative potential at the fifth division (Bernitz et al., 2016).

2.2 | Adaptive immune system

2.2.1 | Lymphocyte output

The thymus, where T cells develop, begins to involute at puberty in both mice and humans due to age-related changes that affect both T-cell progenitors and the thymic microenvironment (Linton & Dorshkind, 2004; Figure 1b). Similarly, decreased hematopoietic tissue in the bone marrow of mice and humans means B-cell lymphopoiesis also decreases with age (Dorshkind et al., 2009; Ogawa et al., 2000). This reduction in primary lymphoid tissue output means that during adulthood, lymphoid cell regeneration is nearly entirely derived from homeostatic proliferation of the existing T- and B-cell pool, meaning that diversity cannot be increased. Interestingly, a higher ratio of CD4⁺:CD8⁺ T cells in humans has been shown to correlate with frailty and predisposition to disease, but not with “healthy aging” (Strindhall et al., 2007).

2.2.2 | B lymphocyte phenotype and function

The aging B-cell compartment shows a reduced frequency of naïve cells and a commensurate increase in oligoclonal memory B cells. With age, human and mouse B cells produce antibodies with lower affinity for their antigen and have reduced ability to class switch, which hamper immune responses to both vaccination and infection (Kogut, Scholz, Cancro, & Cambier, 2012). Aging also leads to defects in B-cell tolerance mechanisms which lead to an increased
production of autoreactive antibodies and an increased incidence of autoimmune diseases in elderly individuals. These so-called age-associated B cells (ABCs), found in both mice and humans and characterized by high expression of T-bet and CD11c, respond through Toll-like receptor activation in the absence of BCR stimulation, and can outcompete mature B cells as they have a survival advantage by not being reliant on B-cell-activating factor (Naradikian, Hao, & Cancro, 2016).

2.2.3 | T lymphocyte phenotype and function

The most well characterized age-related alterations in the human immune system are in the T-cell compartment, in particular CD8+ T cells, which show reduced numbers in age, commensurate with reduced naïve CD8+ T-cell priming, limiting the ability of CD8+ T-cell responses to be generated toward new infections (Briceno et al., 2016; Figure 1b). In contrast, the CD4+ T-cell compartment is stable with age, although variable between individuals (Wertheimer et al., 2014). Why the CD8+ T-cell compartment shrinks with age, compared to the relatively stable CD4+ T-cell compartment is not clear. CD8+ T cells theoretically should receive more signals from the abundantly expressed MHC class I compared to CD4+, which receive signals from the MHC class II molecules that are more restricted in expression; therefore, CD8+ T cells may homeostatically proliferate at a higher rate than CD4+ T cells which may lead to premature senescence. Human T-cell receptor (TCR) diversity shrinks with age in both CD4+ and CD8+ compartments, and inequities in clonal size may compromise immunity or even lead to autoimmunity (Qi et al., 2014). Frequencies of regulatory T cells (Tregs) in humans also alter with age, with Treg numbers increasing (Gregg et al., 2005; Simone, Zicca, & Saverino, 2008), an effect thought to contribute to immune-suppression in old age (Raynor, Lages, Shehata, Hildeman, & Chougnet, 2012).

Aged CD8+ T cells in humans lose expression of co-stimulatory receptors such as CD28 (Effros, 1997). Accordingly, highly differentiated CD27−CD28−CD45RA−CD57+ T cells accumulate in older individuals (Czesnikiewicz-Guzik et al., 2008). These terminally differentiated cells show defective T-cell receptor (TCR) signaling, decreased proliferative response, exhibit markers of senescence, release pro-inflammatory cytokines thought to contribute to the “inflamm-aging” state, and are resistant to apoptosis (reviewed in refs. Michel et al., 2016; Pereira & Akbar, 2016). Aged CD8+ T cells also show increased proportions of cells expressing markers usually found on NK cells such as CD16, CD56, CD57, Nkp30, KLRG1, CD94, NKG2 family members, and killer-cell immunoglobulin-like receptor (KIR) family members (Vallejo, Mueller, et al., 2011). These innate-like T cells generally exhibit the highly differentiated senescent phenotype and may explain why the senescent CD8+ T cells, unlike exhausted T cells, are able to maintain potent effector functions in the absence of a normal proliferative response (Akbar & Henson, 2011; Henson et al., 2014). Why aged CD8+, and CD4+ T cells to some extent, exhibit NK markers with age is an open question and could be due to chronic antigen-stimulation, or simply a cell-intrinsic feature. While innate responses from these αβ T cells in the absence of TCR engagement could contribute to autoinflammatory disease (the incidence of which increases with age), evidence suggests that individuals with a higher proportion of innate-like T cells are less likely to exhibit frailty and immune deterioration (Vallejo, Hamel, et al., 2011).

Another factor thought to contribute to CD8+ T-cell dysfunction is an increase in so-called virtual memory cells, cells that spontaneously mature with age to express phenotypic memory markers without ever encountering their cognate antigen. These cells express the same markers as those from lymphopenia-induced homeostatic proliferation, suggesting they develop in response to cytokine stimulation rather than antigen (Haluszczak et al., 2009). Interestingly, recent work using chimeric mice shows that defective CD8+ T-cell function in both naïve and memory compartments is intrinsic to the aged cell, and is not conferred by the aged environment (Quinn et al., 2018). While virtual memory cells have been most clearly observed in mice that are kept in pathogen-free environments (Nikolic-Zugich, 2014), the existence of this phenomenon in humans is yet to be conclusively proven. The frequency of memory-phenotype cells in older humans is certainly higher, and there are certainly T cells specific for antigens never encountered by the host (Su, Kidd, Han, Kotzin, & Davis, 2013). However, these cells may be a result of cross-reactivity, rather than spontaneous differentiation of naïve cells. In humans, TCR sequencing studies (Qi et al., 2014) and studies of persistent infection (Pulko et al., 2016) suggest that clonal expansions generally maintain a naïve phenotype, but accumulation of these cells may still contribute to the functional defects in proliferation and effector differentiation known to occur in old naïve T cells (Cambier, 2005; Linton & Dorshkind, 2004).

2.3 | Innate immune system

2.3.1 | Monocytes, macrophages, and dendritic cells

The number of circulating blood monocytes does not change with age in healthy humans (Seidler, Zimmermann, Bartneck, Trautwein, & Tacke, 2010). However, the proportion of monocyte subsets appears to shift with an expansion of pro-inflammatory/non-classical monocytes (CD16+) and a commensurate reduction in classical monocyte (CD14+CD16-) frequency in elderly individuals (Seidler et al., 2010). Age-related decline in both macrophage and dendritic cell number and effector functions have been reported, but a clear delineation of age-related dysfunction is yet to be defined due to discrepancies in results between studies and groups (Figure 1c). For example, macrophage cytokine release and phagocytosis have both been shown to be reduced, unchanged, or even increased with age (reviewed in refs. Boule & Kovacs, 2017; Shaw, Goldstein, & Montgomery, 2013). Similarly, studies on antigen presentation by dendritic cells have shown mixed results (reviewed in refs. Shaw et al., 2013; Wong & Goldstein, 2013). Differences in species, anatomical location, and stimulation conditions between studies certainly contribute to these discrepancies; nevertheless, this heterogeneity may well reflect the
difficulty in isolating the effects of aging from other interfering comorbidities.

2.3.2 | Neutrophils

Evidence suggests that circulating neutrophil numbers remain constant with age despite neutrophils exhibiting a shorter half-life in aged individuals (Fulop et al., 1997; Tortorella et al., 2006). Furthermore, the proliferation of neutrophil precursors in the bone marrow of older people is also reduced (Chatta et al., 1993). In vitro studies have shown neutrophil chemotaxis to be reduced in aged cells. However, in vivo, the effect of age on neutrophil recruitment is more complex with it reduced in some contexts and increased in others (reviewed in refs. Boule & Kovacs, 2017). Changes in neutrophil function have also been reported in aged individuals, including alterations in cytokine production, reduction in phagocytosis capacity, decreased formation of NETs, and increased production of reactive oxygen species (reviewed in refs. Jackaman et al., 2017; Figure 1c).

2.3.3 | NK cells

The number of circulating natural killer (NK) cells is maintained or even increased in old age but NK functional capacity, such as cytotoxicity and cytokine secretion, decreases leaving older individuals vulnerable to tumors and infections (Manser & Uhrberg, 2016; Figure 1c). There is also a skewing of NK cell phenotypes with a decrease in the CD56\(^{hi}\) cytokine producing population and an expansion of the CD56\(^{low}\) cytotoxic population (Chidrawar, Khan, Chan, Nayak, & Moss, 2006). Interestingly, the aging of the human NK compartment is not recapitulated in mice where NK cells decline with age (Beli et al., 2014; Shehata, Hoebe, & Chougnet, 2015). It is not clear whether this is due to being kept in a pathogen-free environment, unlike humans, or whether other mechanisms underlie this species difference.

3 | CHROMATIN CHANGES IN THE AGING IMMUNE SYSTEM

Chromatin, a complex of DNA, RNA, and proteins, is the state in which DNA is packaged within a eukaryotic nucleus. Consisting of repeating nucleosome units (each 147 base pairs of DNA wrapped around an octamer of histone proteins), chromatin structure and epigenetic modifications have critical roles in all aspects of DNA-related processes including transcription, replication, and repair (Allis and Jenuwein 2016; provide an excellent historical tour of epigenetic knowledge).

Changes in chromatin have been directly linked to the lifespan of model organisms such as yeast, nematodes, and drosophila (Lopez-Otin et al., 2013). Much work has therefore been done to understand the age-related epigenetic changes in these model organisms as well as in accelerated aging syndromes (progeria), in order to draw connections to human organismal aging (reviewed in refs. Benayoun, Pollina, & Brunet, 2015; Sen, Shah, Nativio, & Berger, 2016). Indeed, patterns of DNA methylation have been proposed to have utility as a biomarker of aging, a so-called epigenetic clock (Horvath & Raj, 2018).

Individual cell types show distinct patterns of both epigenetic marks (DNA methylation and histone modifications) and chromatin state (3D genome organization, heterochromatic regions, lamina-associated domains; Javierre et al., 2016; Lara-Astiaso et al., 2014; Thurman et al., 2012), all of which affect gene expression and cellular function. It therefore seems likely that different cell types or tissues may be more or less prone to chromatin alterations, and may "age" at different rates. It would therefore seem inappropriate to infer that age-related changes in one cell type apply ubiquitously. However, relatively few studies have been conducted to examine molecular changes in individual immune cell lineages, perhaps due to difficulties of obtaining sufficient numbers of cells of different lineages such as tissue-resident lineages or rare cell types (although this is becoming less of an impediment as the sensitivity of technology is improved), perhaps due to the cost associated with sequencing many different cell types, or perhaps simply as it was not deemed necessary when searching for changes well-characterized in model organisms. We hereafter review the evidence that age-related changes in immune cell frequencies and function described above are linked to cell-intrinsic alterations in chromatin modifications or stability (summarized in Figure 2).

3.1 | Genomic instability in immune cell aging

Maintenance of genomic integrity is mediated by multiple pathways including DNA damage response mechanisms and chromatin remodeling complexes. Over time these pathways lose effectiveness causing age-related destabilization of the genome (Vijg & Suh, 2013).

3.1.1 | DNA damage

DNA damage both promotes cellular senescence in order to allow DNA repair mechanisms and causes activation of the innate immune system in order to clear damaged cells (Soria-Valles, Lopez-Soto, Osorio, & Lopez-Otin, 2017). The reduced capacity of the aged immune system to clear these cells therefore results in an accumulation of genomically damaged and senescent cells within all tissues of the body, including within the immune system itself. Unsurprisingly, defective DNA repair mechanisms lead to premature aging disorders (Hoeijmakers, 2009). However, there is also clear evidence that increased levels of DNA damage are observed in physiologically aged cells, even in murine and human HSCs (Rossi et al., 2007; Rube et al., 2011). There are also age-related changes in mutation rate, and many mutations that occur within progenitor cells (such as human HSCs) are also carried forward into their differentiated progeny (Welch et al., 2012). Whether individual cell lineages are more or less susceptible to age-induced DNA damage is unclear. Differential sensitivity of human leukocyte subsets to exogenous mutagens such as H\(_2\)O\(_2\) and \(\gamma\)-irradiation has been reported (Mori, Benotmane, Tirone, Hooghe-Peters, & Desaintes, 2005; Weng, Lu, Weng, &
repressive heterochromatin has been associated with age-related CpG methylation and more densely packed heterochromatin which often contains heterochromatic regions in aging somatic cells in vivo (De Cecco, Criscione, Peterson, et al., 2013), as well as senescent cells in vitro (De Cecco, Criscione, Peckham, et al., 2013). Conversely, extending the lifespan of model organisms has been achieved by genetic manipulation by increasing the levels of repressive heterochromatin and preventing the activation of transposable elements (Wood et al., 2016).

In mammalian immune cells, there is some limited evidence that similar mechanisms may mediate cell-intrinsic cellular dysfunction. De-repression of repetitive elements, normally silenced in a heterochromatic state, has been observed in aged mouse HSCs (Sun et al., 2014). Analysis of the chromatin accessibility in human immune cells using the assay for transposase-accessible chromatin with sequencing (ATAC-seq; Buenrostro, Giresi, Zaba, Chang, & Greenleaf, 2013) also revealed that advanced age is associated with increased accessibility particularly in quiescent and repressed regions, as opposed to regions critical for cell signaling which show decreased accessibility (Ucar et al., 2017). Interestingly, these findings were most marked in CD8+ T cells, a cell type with clear aging-induced dysfunction (Ucar et al., 2017). These studies support a link with loss of heterochromatin and CD8+ T-cell aging. The role of transposable elements in this context needs to be investigated in future studies.

3.1.2 Heterochromatin and transposable elements

Higher order chromatin structure can broadly be divided into two major forms, transcriptionally active euchromatin, in which nucleosomes are packed loosely allowing access by transcription factors, and more densely packed heterochromatin which often contains CpG-methylated DNA and has low transcriptional activity. Loss of repressive heterochromatin has been associated with age-related dysfunction in a variety of species from yeast to human supporting the global “loss of heterochromatin” theory of aging first proposed over 20 years ago (Tsurumi & Li, 2012; Villeponteau, 1997). This idea that over time heterochromatin domains lose their integrity leading to derepression of silenced genes and aberrant gene activation has been bolstered by recent discoveries of the mobilization of transposable elements from within compacted heterochromatic regions in aging somatic cells in vivo (De Cecco, Criscione, Peterson, et al., 2013), as well as senescent cells in vitro (De Cecco, Criscione, Peckham, et al., 2013). Conversely, extending the lifespan of model organisms has been achieved by genetic manipulation by increasing the levels of repressive heterochromatin and preventing the activation of transposable elements (Wood et al., 2016).

In the immune system, surprisingly little is known of the effects of age on nuclear architecture and chromatin organization in individual immune cell lineages. Murine HSCs show age-associated down-regulation of the LMNA gene which encodes both lamin A and its splice-variant lamin C (Chambers et al., 2007; Rossi et al., 2005), as well as altered DNA repair processes prone to increased mutation rate (Mohrin et al., 2010). Importantly, mature cells of the mouse and human immune systems are notably distinct from cells in other tissues in that few immune cell types express A-type lamins (Rober, Sauter, Weber, & Osborn, 1990), although differentiation of some dendritic cell and macrophage subsets has been shown to result in acquisition of lamin A/C (Gieseler, Xu, Schlemminger, & Peters, 1993; Prechtel, Turza, Theodoridis, Kummer, & Steinkasserer, 2006; Rober, Gieseler, Peters, Weber, & Osborn, 1990), and T lymphocytes also show transient expression of lamin A/C following activation (Gonzalez-Granado et al., 2014). Despite the lack of expression of lamin A/C in immune cells themselves, age-associated down-regulation of

![Figure 2](image-url)
lamin A/C (previously demonstrated in aged cardiomyocytes; Afilalo et al., 2007; and osteoblasts; Duque & Rivas, 2006) may still affect immune cell function, as non-hematopoietic expression of lamin A/C expression has been demonstrated to be essential for normal T- and B-cell development in chimeric mice (Hale, Frock, Mamman, Fink, & Kennedy, 2010).

Considering the low expression of type A lamins in the immune system, B-type lamins are considered to be the major lamin filaments in the immune system. There is some evidence from Drosophila that lamin B levels reduce with age (Chen, Zheng, & Zheng, 2014), and it is well established in mammalian (non-immune) cells that levels of both lamin B1 and the lamin B receptor (LBR) are reduced as cells enter senescence. The reduction in lamin B1 in these cells has been demonstrated to lead to irreversible alterations in nuclear architecture including changes in nucleosome density (De Cecco, Criscione, Peckham, et al., 2013), formation of senescence-associated heterochromatic foci (SAHF) (Sadaie et al., 2013; Shah et al., 2013), and loss of chromatin interactions in regions of heterochromatin (Chandra et al., 2015). It therefore seems highly likely that age-associated dysregulation of B-type lamins may have cause functional impairment in the immune system, but this is yet to be directly proven.

3.2 Telomere attrition in immune cell aging

Telomeres constitute protective nucleoprotein complexes at the ends of linear chromosomes, which function to ensure complete replication of the genome in cell division, and protect the ends of chromosomes from being recognized as DNA double-stranded breaks as the ends of telomeres are not blunt ended. Human telomeres terminate in hexameric tandem repeats of TTAGGG which shorten as individuals age or can be extended to render cells immortal through increased expression of the enzyme telomerase, responsible for writing telomeric DNA (Opreșko & Shay, 2017).

Mice, which have dysfunctional telomerases rendering telomeres critically short, show premature aging of HSCs (Choudhury et al., 2007). However, it is unclear whether telomeres shorten to this degree over the age of mice and humans to result in this defect in “normal” aging (Martin-Ruiz, Gussekloo, van Heemst, von Zglinicki, & Westendorp, 2005). Telomere shortening with age has been measured in many human immune cell types including B cells, T cells, granulocytes, and monocytes (Hearps et al., 2012; Rufer et al., 1999; Spyridopoulos et al., 2009). Whether this telomere attrition actually causes the age-related cellular dysfunction in each of these cell types is however far from clear. Correlations between telomere shortening in CD8+ T cell in particular and coronary heart disease (Spyridopoulos et al., 2009) suggest that telomere shortening can indeed cause pathological T-cell dysfunction. Furthermore, differences in both telomere length and rate of telomere shortening have been observed between different human leukocyte subsets such as CD4+ T cells, CD8+ T cells, and B cells (Son, Murray, Yanovski, Hodes, & Weng, 2000), as well as between T cells, B cells, and monocytes (Lin et al., 2015), but not between naive and memory cells (Son et al., 2003), providing a plausible mechanism for the heterogeneity of effects of age in the different cell types within the one individual.

3.3 Epigenetic alterations in immune cell aging

Epigenetic control is essential to the healthy development of effector cells of the immune system, as both commitment and differentiation require restriction of alternate fate genes, activation of lineage-defining transcription factors, and alterations in chromatin accessibility by the transcriptional machinery (reviewed in refs. Busslinger & Tarakhovsky, 2014; Henning, Roychoudhuri, & Restifo, 2018; Schonhein, Leutz, & Rosenbauer, 2015; Shih et al., 2014). A large number of studies have been conducted examining the epigenetic control of each of these processes in immune cell lineages, particularly in T cells. Alterations in any of these processes could feasibly cause the population shifts and functional deficits seen in the aged immune system. For example, failure of epigenetic pathways involved in T-cell lineage commitment and differentiation (Allan et al., 2012; Hu et al., 2018; Pace et al., 2018) could lead to the myeloid cell skewing seen in aging (Wahlestedt et al., 2015). In contrast, aberrant epigenetic processes involved in formation of memory (Abdelsamed, Zebley, & Youngblood, 2018; Scharer, Bally, Gandham, & Boss, 2017) could lead to the increased proportions of memory cells in aging, whether they be antigen-experienced or so-called virtual memory cells (Nikolich-Zugich, 2014; Su et al., 2013).

We here below review the direct evidence that epigenetic pathways are dysregulated in aged immune cells. Supporting this idea, many studies have shown altered transcriptional profiles in aged immune cell populations (Cao, Gollapudi, Sharman, Jia, & Gupta, 2010; Harries et al., 2011; Mirza, Pollock, Hoelzinger, Domínguez, & Lustgarten, 2011; Reynolds et al., 2015) and alterations in epigenetic regulation are the forefront causative candidate for these changes.

3.3.1 DNA methylation

Change to DNA methylation patterns is probably the best-studied epigenetic change in aging and has been used to predict the chronological age of human tissues and individuals (Hannum et al., 2013; Horvath, 2013), or perhaps more precisely the “biological age” which is influenced by clinical and environmental parameters to include a measure of health and expected longevity. Predictions have been made from heterogeneous tissues such as lung, liver, and brain tissue as well as whole blood and peripheral blood mononuclear cells, and isolated CD4+ T cells, monocytes, and B cells (Horvath, 2013). Remarkably, chronological age can be predicted from just 3 CpG dinucleotide sites in human blood (Weidner et al., 2014). Given the cellular heterogeneity in many of these samples, and the particular changes that occur in blood cell composition with aging, computational methods have been developed to account for age-related changes in cell proportions (Yuan et al., 2015), but this still does not allow epigenetic changes in specific cell types to be elucidated. Given the differential effects of aging in distinct cell lineages outlined above, this would seem to be essential in order to fully
understand the epigenetic mechanisms underlying intrinsic immune cell dysfunction (the difficulties of interpreting epigenome-wide studies in heterogeneous populations are discussed more fully in ref. Birney, Smith, & Greally, 2016).

DNA methylation levels globally reduce in HSCs and mature leukocytes (and other tissues) as mice or human age (Bjornsson et al., 2008; Fuke et al., 2004; Taiwo et al., 2013). Age-associated changes in DNA methylation have been reported in a number of human immune cell types including monocytes and CD4+ and CD8+ T cells (Dozmoran, Coit, Maksimowicz-McKinnon, & Sawalha, 2017; Reynolds et al., 2014; Tserel et al., 2015; Zhao et al., 2016), and many of these changes appear to be cell type-specific (Reynolds et al., 2014; Tserel et al., 2015). While DNA methylation at a global level is reduced with age, discrete sites are hypermethylated, particularly sites that are targets of the polycomb repressor complex 2 (PRC2) (Beerman et al., 2013; Horvath et al., 2012; Taiwo et al., 2013), a complex primarily known for imparting the repressive histone mark H3K27me3, but also known to directly cause DNA methylation through the recruitment of DNA methyltransferase (DNMT) enzymes (Vire et al., 2006). Hypermethylation of key genes such as the IL-7Ra gene and other genes in the IL-7 signaling pathway has been observed in both human peripheral blood mononuclear cells (PBMCs) and sorted CD8+ T cells (Ucar et al., 2017). This repressive hypermethylation provides a molecular explanation for at least some of the CD8+ T-cell dysfunction seen in old age, as reduced expression of IL-7Ra in elderly CD8+ T cells (Kim, Hong, Dan, & Kang, 2006; Kim, Hwang, Kim, & Kang, 2007) prevents these cells from responding to the critical survival factor IL-7 (Schluns, Kieper, Jameson, & Lefrancois, 2000).

In CD4+ T cells, one study examining human CD28null T cells suggests a link between the loss of the costimulatory molecule CD28 as CD4+ T-cell age, causing alterations in DNA methylation leading to increased expression of inflammasome-related genes (Suarez-Alvarez et al., 2017). Another study analyzed publicly available data including datasets from monocytes and CD4+ T cells from older people found increased DNA methylation at two sites in the promoter of the KLF14 gene leading indirectly to suppression of FOXP3 (Johnson et al., 2017). Hypomethylation at the upstream enhancer of FoxP3 has also been linked to enhanced Treg numbers in older mice (Garg et al., 2014). These isolated reports go some way to linking aberrant DNA methylation with functional deficits in the immune system, but a comprehensive understanding is clearly lacking.

3.3.2 | Histone modifications

Post-translational modifications to the N-terminal tails of histone proteins result in altered chromatin accessibility for the transcriptional machinery, thereby resulting in altered gene expression. Some modifications, such as trimethylation of lysine 9 and lysine 27 of histone-H3 (H3K9me3 and H3K27me3), are canonical marks of repressed chromatin, whereas others, such as trimethylation of lysine 4 of histone-H3 (H3K4me3), are associated with open chromatin and active transcription.

Very few studies have been conducted to date examining age-related genome-wide changes in histone modifications in mammalian cells, let alone cells of the immune system. One study examining epigenetic changes in old and young mouse HSCs found increased H3K4me3 peaks in the promoters of genes associated with HSC identity and self-renewal, and conversely increased DNA methylation at transcription factor binding sites in differentiation-promoting genes (Sun et al., 2014). These changes correlate with changes in expression of these genes (Kowalczyk et al., 2015) and provide a plausible molecular cause for the changes in HSC phenotype and function in old age, described above. Global levels of the constitutive heterochromatin mark H3K9me3, and expression of the prototypical enzyme responsible for depositing this mark, suppressor of variegation 39 homologue 1 (SuV39H1), have also both been shown to reduce with age in a variety of cell types and tissues including mouse and human HSCs (Djeghloul et al., 2016), human stem cells (Zhang et al., 2015), and rat spleen and thymus (Sidler et al., 2013), and therefore may have a causative role in age-associated immune dysfunction. Supporting this view, SuV39H1 null mice show poor CD8+ T-cell effector responses to Listeria monocytogenes infection together with a defect in the silencing of stem-related and memory-related genes (Pace et al., 2018). A study using progeria mouse models, however, suggests that SuV39h1 exacerbates premature aging, with deletion of SuV39h1 associated with longer life (Liu et al., 2013). This inconsistency highlights the fact that organismal aging, premature aging syndromes, and age-associated immune dysfunction may all be driven by different processes, despite all being considered "aging."

Recent studies examining chromatin accessibility using ATAC-seq support the idea that the epigenetic landscape of CD8+ T cells is altered with age (Moskowitz et al., 2017; Ucar et al., 2017). One study found that naive and central memory CD8+ T cells from older humans showed a loss of chromatin accessibility at gene promoters targeted by the transcription factor NRF1 (Moskowitz et al., 2017), which regulates expression of mitochondrial respiratory chain genes, a plausible although not conclusively proven explanation of the cellular dysfunction seen in the CD8+ T-cell compartment in old age. Another study found that chromatin in human PBMCs from older individuals was more closed at promoters and enhancers associated with T-cell signaling, such as the IL-7Ra gene as previously mentioned, compared to that seen in younger individuals (Ucar et al., 2017).

There are a plethora of other chromatin-modifying proteins which impart and remove a wide variety of histone modifications but which have not been examined in the context of immune aging. A study recently published used a single cell mass cytometry approach to provide the first insight of the effect of aging on 40 of these marks in different human immune cell populations, revealing more variation in chromatin modification profiles in older individuals compared to younger individuals (Cheung et al., 2018). Tracing the chromatin landscape within the same individuals over time will provide a more powerful characterization of the effect of age as this will not be influenced by inter-individual variation. Candidate histone
modifications which are likely to have a role in the mammalian immune system can also be prioritized from studies in other organs and species. For example, regulators of H3K4me3 (Greer et al., 2010) and H3K27me3 (Maures, Greer, Hauswirth, & Brunet, 2011) have been found to control the lifespan of C. elegans and may well have a role in immune aging.

Increased levels of H4K20me3 have been found in the liver and kidneys of aged rats (Sarg, Koutzamani, Helliger, Rundquist, & Lindner, 2002). Epigenetic enzymes involved in DNA repair may also play critical roles. For example, SIRT6, an H3K9 deacetylase involved in telomere maintenance (Janzen et al., 2008), is critical for DNA repair and survival of mice past 3 weeks of life (Mostoslavsky et al., 2006). SIRT1 is similarly critical to DNA repair, and SIRT1 target genes have been shown to be dysregulated in the neocortex of the brain of aged mice (Chouliaras et al., 2010). The histone deacetylases HDAC1 and HDAC2 also have roles in DNA repair (Miller et al., 2010) and have been linked to cellular senescence and aging in mouse brain and liver, and human fibroblasts (Chouliaras et al., 2013; Willis-Martinez, Richards, Timchenko, & Medrano, 2010). Age-associated loss of histones and altered nucleosome occupancy has been seen in cultured human fibroblast cells as they are serially passaged (O’Sullivan, Kubicek, Schreiber, & Karlseder, 2010), adding a further layer of complexity to histone-based regulation. Further work is clearly needed to characterize global age-relating alterations in histone modifications in immune cell types.

Dysregulation of histone post-translational modifications does not need to occur genomewide to have marked influences on cellular function as changes in the epigenetic regulation of key genes can lead to cellular senescence and aging. For example, decreased histone acetylation at the mouse Bach2 locus have been linked to CD4+ T-cell senescence (Kuwahara et al., 2014). Perhaps the best-characterized example of this in the immune system is the epigenetic regulation of the INK4A family of cyclin-dependent kinase (CDK) inhibitors encoded by the INK4A-ARF locus, which leads to cellular senescence and aging of a variety of cell types including mouse HSCs (Janzen et al., 2006) and mouse and human fibroblasts (Bracken et al., 2007). This locus is epigenetically silenced in young cells by polycomb repressive complexes PRC1 and PRC2 which impart the silencing H3K27me3 mark (Bracken et al., 2007). As cells age, enhancer of zeste homologue 2 (EZH2), the enzymatic component of PRC2, is down-regulated (Kamminga et al., 2006; Sun et al., 2014). Additionally, H3K27me3 is demethylated by Jumonji D3 (Agger et al., 2009; Barradas et al., 2009), and the activating mark H3K4me3 is imparted by mixed-lineage leukemia 1 (MLL1) (Kotake, Zeng, & Xiong, 2009), together resulting in de-repression of the INK4 family of cyclin-dependent kinase (CDK) inhibitors leading to cellular senescence. Histone acetylation by MYST family members at this locus also regulates the senescence of HSCs and other cell types (Perez-Campo et al., 2014; Sheikh, Phipson, et al., 2015). However, the relevance of this mechanism to age-related dysfunction is unknown, with most work focusing on harnessing this pathway in the treatment of blood cancers (Baell et al., 2018; Sheikh, Lee, et al., 2015).

Complex interplay between the ARF protein encoded by the INK4A-ARF locus, the p53 tumor suppressor, and the histone demethylase Jumonji D3 may also occur as this has been reported in mouse neural stem cells (Sola et al., 2011), HEK293 cells, and glioblastoma cells (Ene et al., 2012). In these cell types, Jumonji D3 demethylates of the INK4A-ARF locus leads to expression of the ARF protein which causes nuclear accumulation of p53 and increased transcription of the p21 gene, a cyclin-dependent kinase inhibitor which induces cellular senescence (Ene et al., 2012). Whether this occurs in immune cell types is yet to be shown. Expression of p16INK4A, another protein encoded in the INK4A-ARF locus, has been proposed to have utility as a biomarker of aging when measured in human peripheral T lymphocytes (Y. Liu et al., 2009), supporting a role for this gene in differentiated immune cells, not just stem cells.

4 | Determining Molecular Causality in Immune Dysfunction

As summarized above, there is no doubt that aging is both associated with alterations in immune cell frequency and function, as well as a suite of chromatin changes in immune and non-immune cell types: **proliferation rate?** **environmental exposures?** **cellular stability?** **differential factors?** **differential enzymatic requirements?** **transcriptional requirements?** **requirement for recombination?** **depletion of epigenetic substrates?** **cellular/nuclear structure?** **chromatin alterations?**

Figure 3 Differential susceptibility of cell types to age-related dysfunction may be due to intrinsic or extrinsic factors. Chromatin alterations may drive cellular dysfunction, or cellular dysfunction may result in chromatin alterations. Regardless, understanding connections between chromatin state and cellular dysfunction may enable manipulation of chromatin-modifying pathways to restore a youthful cellular phenotype and protective immunity.
types. Determining causality between these two phenomena is somewhat more difficult. Chromatin alterations observed with age may drive the cellular dysfunction, or alternatively, cellular dysfunction may cause chromatin alterations, or perhaps both (see Figure 3). Different cell types are clearly differentially susceptible to age-related changes which may reflect intrinsic differences in chromatin requirements, such as the initiation or maintenance of transcriptional programs, or requirements for epigenetic enzymes to alter chromatin state in processes such as differentiation. Some cell types have different requirements for 3-dimensional genome organization such that required to perform V(D)J recombination in the adaptive but not the innate immune system (Rivera-Munoz et al., 2007; Shih & Krangel, 2013). Alternatively, differences in cellular environment such as exposure to DNA damage-inducing stimuli could influence the chromatin environment (Chen, Hales, & Ozanne, 2007). Similarly, cell types with high rates of turnover or less protective nuclear lamina may result in accumulation of mutations and disruption in chromatin organization (Cricione, Teo, & Neretti, 2016).

Regardless of whether chromatin alterations or cellular phenotype or environment are considered the “cause” of the differential effects of aging, if the phenotype can be rescued through modulating chromatin-modifying enzymes then the chromatin alteration can surely be viewed as the molecular driver of age-related immune dysfunction. This is clearly the case when telomerase activity is restored (Bodnar et al., 1998), and there is some evidence that ectopic Ezh2 expression can partially prevent cellular senescence (Ito, Teo, Evans, Neretti, & Sedivy, 2018), albeit not yet shown in immune cell types. More work needs to be done in this space to truly confirm a causal role for each of the chromatin alterations discussed above, with the rescue of immunity the ultimate goal in this context, rather than increased lifespan per se.

5 | CONCLUDING REMARKS

The quest for a central unified theory of aging has revealed several molecular hallmarks common across cell type and species. We can infer a lot from studies in model organisms; however, direct evidence demonstrating the molecular basis of cell type-specific dysfunction within the human immune system remains scarce. Part of the reason for this may be the technical limitations of performing genomewide epigenomic analysis on limited starting material, such as that required for human samples and smaller cellular populations from mice and other non-human mammals. Rapid technological development including the advent and more widespread use of single cell RNA-seq and ATAC-seq methodologies, and advances in ChIP-seq-based assays, mean molecular analyses of small cell numbers is now more achievable than ever. Applying these technological advances to the phenotypic changes observed in the aged immune system will rapidly advance this field and hopefully reveal key molecular events which underpin the loss of immune function in old age. Through this approach and the burgeoning field of epigenetic drug discovery (Tough, Tak, Tarakhovsky, & Prinjha, 2016), it is hoped that youthful immunity can be restored in old age.

CONFLICT OF INTEREST

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

Both authors have made substantial, direct, and intellectual contribution to the work and approved it for publication.

ORCID

Christine R. Keenan https://orcid.org/0000-0002-6057-1855
Rhys S. Allan https://orcid.org/0000-0003-0906-2980

REFERENCES

Abdelsamed, H. A., Zeblay, C. C., & Youngblood, B. (2018). Epigenetic maintenance of acquired gene expression programs during memory CD8 T cell homeostasis. Frontiers in Immunology, 9, 6. https://doi.org/10.3389/fimmu.2018.00006
Affilalo, J., Sebag, I. A., Chalifour, L. E., Rivas, D., Akter, R., Sharma, K., & Duque, G. (2007). Age-related changes in lamin A/C expression in cardiomyocytes. American Journal of Physiology. Heart and Circulatory Physiology, 293(3), H1451–H1456. https://doi.org/10.1152/ajpheart.01194.2006
Agger, K., Cloos, P. A. C., Rudkjær, L., Williams, K., Andersen, G., Christensen, J., & Helin, K. (2009). The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene- and stress-induced senescence. Genes & Development, 23(10), 1171–1176. https://doi.org/10.1101/gad.510809
Akbar, A. N., & Henson, S. M. (2011). Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nature Reviews Immunology, 11(4), 289–295. https://doi.org/10.1038/ nri2959
Allan, R. S., Zueva, E., Cammas, F., Schreiber, H. A., Masson, V., Belz, G. T., … Amigorena, S. (2012). An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature, 487(7406), 249–253. https://doi.org/10.1038/nature11173
Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nature Reviews Genetics, 17(8), 487–500. https://doi.org/10.1038/nrg.2016.59
Baell, J. B., Leaver, D. J., Hermans, S. J., Kelly, G. L., Brennan, M. S., Downer, N. L., … Thomas, T. (2018). Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature, 560(7717), 253–257. https://doi.org/10.1038/s41586-018-0387-5
Barradas, M., Andertson, E., Acosta, J. C., Li, S., Banito, A., Rodriguez-Niedenfuhr, M., … Gil, J. (2009). Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes & Development, 23(10), 1177–1182. https://doi.org/10.1101/gad.511109
Beerman, I., Bock, C., Garrison, B. S., Smith, Z. D., Gu, H., Meissner, A., & Rossi, D. J. (2013). Proliferation-dependent alterations of the DNA methyltransferase landscape underlie hematopoietic stem cell aging. Cell Stem Cell, 12(4), 413–425. https://doi.org/10.1016/j.stem.2013.01.017
Beli, E., Duriandick, D. M., Clithorne, J. F., Lee, T., Kim, S., & Gardner, E. M. (2014). Natural killer cell development and maturation in aged mice. Mechanisms of Ageing and Development, 135, 33–40. https://doi.org/10.1016/j.mad.2013.11.007
Benayoun, B. A., Pollina, E. A., & Brunet, A. (2015). Epigenetic regulation of ageing: Linking environmental inputs to genomic stability. Nature Reviews Molecular Cell Biology, 16(10), 593–610. https://doi.org/10.1038/nrm4048

Bennett, J. M., Kim, H. S., MacArthur, B., Sieburg, H., & Moore, K. (2016). Hematopoietic stem cell counts and remember self-renewal divisions. Cell, 167(5), 1296–1309. e1210. https://doi.org/10.1016/j.cell.2016.10.022

Birney, E., Smith, G. D., & Greally, J. M. (2016). Epigenome-wide association studies and the interpretation of disease -omics. PLoS Genetics, 12(6), e1006105. https://doi.org/10.1371/journal.pgen.1006105

Bjornsson, H. T., Sigurdsson, M. I., Fallin, M. D., Irizarry, R. A., Aspelund, T., Cui, H., ..., Feinberg, A. P. (2008). Intra-individual change over time in DNA methylation with familial clustering. JAMA, 299(24), 2877–2883. https://doi.org/10.1001/jama.299.24.2877

Bodnar, A. G., Ouellette, M., Frolikis, M., Holt, S. E., Chiu, C. P., Morin, G. B., ... Wright, W. E. (1998). Extension of life-span by induc- tion of telomerase into normal human cells. Science, 279(5349), 349–352.

Boule, L. A., & Kovacs, E. J. (2017). Alcohol, aging, and innate immunity. Journal of Leukocyte Biology, 102(1), 41–55. https://doi.org/10.1189/jlb.4RU1016-450R

Bracken, A. P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beeckman, C., ..., Helin, K. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes & Development, 21(5), 525–530. https://doi.org/10.1101/gad.415507

Briceno, O., Lissina, A., Wanke, K., Afonso, G., von Braun, A., Ragon, K., ... Appay, V. (2016). Reduced naive CD8(+) T-cell priming efficacy in elderly adults. Aging Cell, 15(1), 14–21. https://doi.org/10.1111/acel.12384

Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B., & Hutchison, C. J. (2017). Age-related in vivo reduction of CD8(+) T-cell priming efficacy in elderly adults. Aging Cell, 15(1), 14–21. https://doi.org/10.1111/acel.12384

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. (2017). Transposable elements become active and transpose without accelerating cancer formation. Nature Genetics, 49(10), 1594–1604. https://doi.org/10.1038/ng.3922

Cheung, P., Vallania, F., Warsinske, H. C., Donato, M., Schaffert, S., Chang, S. E., ... Kuo, A. J. (2018). Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell, 173(6), 1385–1397 e1314. https://doi.org/10.1016/j.cell.2018.03.079

Choudhary, S. M., Khan, N., Khan, Y. L., Nayak, L., & Moss, P. A. (2006). Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing, 3, 10. https://doi.org/10.1186/1742-4933-3-10

Choudhury, A. R., Ju, Z., Djojosubroto, M. W., Schienke, A., Lechel, A., Schaetzlein, S., ... Rudolph, K. L. (2007). Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomerases without accelerating cancer formation. Nature Genetics, 39(1), 99–105. https://doi.org/10.1038/ng1937

Choulilavras, L., van den Hove, D. L., Kenis, G., Draenert, M., Hof, P. R., van Os, J., ... Rutten, B. P. (2013). Histone deacetylase 2 in the mouse hippocampus: Attenuation of age-related increase by calorie restriction. Current Alzheimer Research, 10(8), 868–876.

Ciru, S. W., Teo, Y. V., & Neretti, N. (2016). The chromatin landscape of cellular senescence. Trends in Genetics, 32(11), 751–761. https://doi.org/10.1016/j.tig.2016.09.005

Czesciniewicz-Guzik, M., Lee, W. W., Cui, D., Hiruma, Y., Lamar, D. L., Yang, Z. Z., ... Goronyz, J. J. (2008). T cell subset-specific susceptibility to aging. Clinical Immunology, 127(1), 107–118. https://doi.org/10.1016/j.clinim.2007.12.002

De Cecco, M., Cirrione, S. W., Peckham, E. J., Hillenmeyer, S., Hamm, E. A., Manivannan, J., ... Sedivy, J. M. (2013). Genomes of replicationsenescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell, 12(2), 247–256. https://doi.org/10.1111/acel.12047

De Cecco, M., Cirrione, S. W., Peterson, A. L., Neretti, N., Sedivy, J. M., & Kreiling, J. A. (2013). Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY), 5(12), 867–883. https://doi.org/10.18632/aging.100621

Djeqhoul, D., Kuranda, K., Kuzniak, I., Barbieri, D., Naguibneva, I., Choisy, C., ... Goodhardt, M. (2016). Age-associated decrease of the histone methyltransferase SUV39H1 in HSC perturbs heterochromatin and B lymphoid differentiation. Stem Cell Reports, 6(6), 970–984. https://doi.org/10.1016/j.stemcr.2016.05.007

Dorschkind, K., Montecino-Rodriguez, E., & Signer, S. A. (2009). The age-ing immune system: Is it ever too old to become young again? Nature Reviews Immunology, 9(1), 57–62. https://doi.org/10.1038/nri2471

Dozmorov, M. G., Coit, P., Maksimowicz-McKinnon, K., & Sawalha, A. H. (2017). Age-associated DNA methylation changes in naive CD4(+) T cells suggest an evolving autoimmune epigenotype in aging T cells. Epigenomics, 9(4), 429–445. https://doi.org/10.2217/epi-2016-0143

Duque, G., & Rivas, D. (2006). Age-related changes in lami A/C expression in the osteoarticular system: Laminopathies as a potential new aging mechanism. Mechanisms of Ageing and Development, 127(4), 378–383. https://doi.org/10.1016/j.mad.2005.12.007

Effros, R. B. (1997). Loss of CD28 expression on T lymphocytes: A marker of replicative senescence. Developmental and Comparative Immunology, 21(6), 471–478. https://doi.org/10.1016/S0145-305X(97)00027-X

Ene, C. I., Edwards, L., Riddick, G., Baysan, M., Woolard, K., Kotliarova, S., ... Fine, H. A. (2012). Histone demethylase Jumonji D3 (JMJ3) as a tumor suppressor by regulating p53 protein nuclear stabilization. PLoS One, 7(12), e51407. https://doi.org/10.1371/journal.pone.0051407

Frascia, D., & Blomberg, B. B. (2016). Inflamming decreases adaptive and innate immune responses in mice and humans. Biogerontology, 17(1), 7–19. https://doi.org/10.1007/s10522-015-9578-8
Fuke, C., Shimabukuro, M., Petronis, A., Sugimoto, J., Oda, T., Miura, K., … Jinno, Y. (2004). Age related changes in 5-methylcytosine content in human peripheral leukocytes and placenta: An HPLC-based study. *Annals of Human Genetics*, 68(Pt 3), 196–204. https://doi.org/10.1046/j.1529-8817.2004.00081.x

Fulop, T. J., Fouquet, C., Allaire, P., Perrin, N., Lacombe, G., Stankova, J., … Dupuis, G. (1997). Changes in apoptosis of human polymorphonuclear leukocytes with aging. *Mechanisms of Ageing and Development*, 96(1–3), 15–34. https://doi.org/10.1016/S0047-6374(96)01881-7

Garg, S. K., Delaney, C., Toubai, T., Ghosh, A., Reddy, P., Banerjee, R., & Yung, R. (2014). Aging is associated with increased regulatory T-cell function. *Aging Cell*, 13(3), 441–448. https://doi.org/10.1111/acel.12191

Genovese, G., Kahler, A. K., Handsaker, R. E., Lindberg, J., Horvath, S. K., Delaney, C., Toubai, T., Ghosh, A., Reddy, P., Banerjee, R., & Weyand, C. M. (2017). Successful and maladaptive T cell aging. *Aging Cell*, 16(10). https://doi.org/10.1111/acel.13102

Greer, E. L., Maures, T. J., Hauswirth, A. G., Green, E. M., Leeman, D. S., Yung, R. (2014). Aging is associated with increased regulatory T cell differentiation. *Aging Cell*, 13(4), 678–684. https://doi.org/10.1111/acel.12164

Gregg, R., Smith, C. M., Clark, F. J., Dunnion, D., Khan, N., Chakraverty, R., … McCarroll, S. A. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. *Nature*, 517(7536), 406–410. https://doi.org/10.1038/nature13969

Gonzalez-Granado, J. M., Silvestre-Roig, C., Rocha-Perugini, V., Trigueros-Motos, L., Cibrian, D., Marlino, G., … Andrés, V. (2014). Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. *Science Signalling*, 7(322), ra37. https://doi.org/10.1126/scisignal.2004872

Horvath, S., Bystryk, L. V., de Boer, A., Houwer, S., Douma, J., Weersing, E., … de Haan, G. (2006). The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. *Blood*, 107(5), 2170–2179. https://doi.org/10.1182/blood-2005-09-3585

Jiang, H., Hong, M. S., Dan, J. M., & Kang, I. (2006). Altered IL-17 expression is associated with increased regulatory T cell numbers in human peripheral blood. *Blood*, 108(12), 3834–3841. https://doi.org/10.1182/blood-2005-09-3585

Kline, K. A., & Bowdish, D. M. (2016). Infection in an aging population. *Current Opinion in Microbiology*, 29, 63–67. https://doi.org/10.1016/j.mib.2015.11.003

Henning, A. N., Roychoudhuri, R., & Restifo, N. P. (2018). Epigenetic control of CD8(+) T cell differentiation. *Nature Reviews Immunology*, 18(5), 340–355. https://doi.org/10.1038/nri.2017.146

Henson, S. M., Lanna, A., Riddell, N. E., Franzese, O., Macaulay, R., Griffiths, S. J., … Akbar, A. N. (2014). p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8(+) T cells. *Journal of Clinical Investigation*, 124(9), 4004–4016. https://doi.org/10.1172/JCI75051

Hoeijmakers, J. H. (2009). DNA damage, aging, and cancer. *New England Journal of Medicine*, 361(15), 1475–1485. https://doi.org/10.1056/NEJMra0804615

Horvath, S. (2013). DNA methylation age of human tissues and cell types. *Genome Biology*, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115

Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of aging. *Nature Reviews Genetics*, 19(6), 371–384. https://doi.org/10.1038/s41576-018-0004-3

Horvath, S., Zhang, Y., Langfelder, P., Kahn, R. S., Boks, M. P., van Eijk, K., … Ophoff, R. A. (2012). Aging effects on DNA methylation modules in human brain and blood tissue. *Genome Biology*, 13(10), R97. https://doi.org/10.1186/gb-2012-13-10-r97

Hunold, P., Cui, K., Fang, D., Hirose, S., Wang, X., Wangsa, D., … Zhao, K. (2018). Transformation of accessible chromatin and 3D nucleosome organization underlies lineage commitment of early T cells. *Immunity*, 48(2), 227–242. e228. https://doi.org/10.1016/j.immuni.2018.01.013

Ito, T., Teo, Y. V., Evans, S. A., Neretti, N., & Sedivy, J. M. (2018). Regulation of cellular senescence by polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. *Cell Reports*, 22(13), 3480–3492. https://doi.org/10.1016/j.celrep.2018.03.002

Jackman, C., Tomay, F., Duong, L., Abdol Razak, N. B., Pixley, F. J., Metharom, P., & Nelson, D. J. (2017). Aging and cancer: The role of macrophages and neutrophils. *Aging Research Reviews*, 36, 105–116. https://doi.org/10.1016/j.arrv.2017.03.008

Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., … Ebert, B. L. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. *New England Journal of Medicine*, 371(26), 2488–2498. https://doi.org/10.1056/NEJMoa1408617

Janz, V., Forkert, R., Fleming, H. E., Saito, Y., Waring, M. T., Dombkowski, D. M., … Scadden, D. T. (2006). Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. *Nature*, 443(7110), 421–426. https://doi.org/10.1038/nature05159

Javierre, B. M., Burren, O. S., Wilder, S. P., Kreuzhuber, R., Hill, S. M., Sewitz, S., … Fraser, P. (2016). Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. *Cell*, 167(5), 1369–1384 e1319. https://doi.org/10.1016/j.cell.2016.09.037

Johnson, N. D., Wiener, H. W., Smith, A. K., Nishitani, S., Absher, D. M., Arnett, D. K., … Conneely, K. N. (2017). Non-linear patterns in age-related DNA methylation may reflect CD4(+) T cell differentiation. *Epigenetics*, 12(6), 492–503. https://doi.org/10.1080/15592294.2017.1314419

Kamminga, L. M., Bystryk, L. V., de Boer, A., Houwer, S., Douma, J., Weersing, E., … de Haan, G. (2006). The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. *Blood*, 107(5), 2170–2179. https://doi.org/10.1182/blood-2005-09-3585

Kim, H. R., Hong, M. S., Dan, J. M., & Kang, I. (2006). Altered IL-7 expression in human T cells variably influence IL-7 therapy on CD8(+) T-cell immune responses. *Blood*, 107(7), 2855–2862. https://doi.org/10.1182/blood-2005-09-3560

Kim, H. R., Hwang, K. A., Kim, K. C., & Kang, I. (2007). Down-regulation of IL-7 expression in human T cells via DNA methylation. *The Journal of Immunology*, 178(9), 5473–5479.
Kogut, I., Scholz, J. L., Cancro, M. P., & Cambier, J. C. (2012). B cell maintenance and function in aging. Seminars in Immunology, 24(5), 342–349. https://doi.org/10.1016/j.smim.2012.04.004

Kotake, Y., Zeng, Y., & Xiong, Y. (2009). DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. Cancer Research, 69(5), 1809–1814. https://doi.org/10.1158/0008-5472.CAN-08-2739

Kowalczyk, M. S., Hirota, I., Canis, M., Haas, B. J., ... Regev, A. (2015). Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Research, 25(12), 1860–1872. https://doi.org/10.1101/gr.192237.115

Kuwahara, M., Suzuki, J., Tofukuji, S., Yamada, T., Kanoh, M., Matsumoto, A., ... Reggiori, F. (2014). The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nature Communications, 5, 3555. https://doi.org/10.1038/ncomms4555

Lara-Astiaso, D., Weiner, A., Lorenzo-Vivas, E., Zaretsky, I., Jaitin, D. A., David, E., ... Amit, I. (2014). Immunogenetics. Chromatin state dynamics during blood formation. Science, 345(6199), 943–949. https://doi.org/10.1126/science.1256271

Lin, Y., Damjanovic, A., Metter, E. J., Nguyen, H., Truong, T., Najarro, K., ... Dzierzak, E. (2011). Comparative kinetic analyses of gene profiles of naive CD4+ and CD8+ T cells from young and old animals reveal novel age-related alterations. Aging Cell, 10(5), 853–867. https://doi.org/10.1111/j.1474-9726.2011.00730.x

Mohrin, M., Bourke, E., Alexander, D., Warr, M. R., Barry-Holson, K., Le Beau, M. M., ... Passegue, E. (2010). Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell, 7(2), 174–185. https://doi.org/10.1016/j.stem.2010.06.014

Mori, M., Benotmane, A. M., Tiron, I., Hooghe-Peters, E. L., & Desai, C. (2005). Transcriptional response to ionizing radiation in lymphocyte subsets. Cellular and Molecular Life Sciences, 62(13), 1499–1501. https://doi.org/10.1007/s00018-005-5886-3

Morrison, S. J., Wardyck, A. M., Akashi, K., Globerman, A., & Weissman, I. L. (1996). The aging of hematopoietic stem cells. Nature Medicine, 2(9), 1011–1016. https://doi.org/10.1038/nm996-1011

Moskowitz, D. M., Zhang, D. W., Hu, B., LeSaux, S., Yanes, R. E. Y., ... Goronzy, J. J. (2017). Epigenomes of human CD8 T cell differentiation and aging. Science Immunology, 2(8), eaao192. https://doi.org/10.1126/sciimmunol.aao192

Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., ... Alt, F. W. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2), 315–329. https://doi.org/10.1016/j.cell.2005.11.044

Naradikian, M. S., Hao, Y., & Cancro, M. P. (2016). Age-associated B cells: Key mediators of both protective and autoaggressive humoral responses. Immunological Reviews, 269(1), 118–129. https://doi.org/10.1111/imr.12380

Nikolich-Zugich, J. (2014). Aging of the T cell compartment in mice and humans: From no naive expectations to foggy memories. The Journal of Immunology, 193(6), 2622–2629. https://doi.org/10.4049/jimmunol.1401174

Ogawa, T., Kitagawa, M., & Hirokawa, K. (2000). Age-related changes of human bone marrow: A histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mechanisms of Ageing and Development, 117(1–3), 57–68. https://doi.org/10.1016/S0047-6374(00)00137-8

Oprea, P. L., & Shay, J. W. (2017). Telomere-associated aging disorders. Ageing Research Reviews, 33, 52–66. https://doi.org/10.1016/j.arr.2016.05.009

O’Sullivan, R. J., Kubicek, S., Schreiber, S. L., & Karlseder, J. (2010). Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nature Structural & Molecular Biology, 17 (10), 1218–1225. https://doi.org/10.1038/nsmb.1897

Pace, L., Goudot, C., Zueva, E., Gueguen, P., Burgdorf, N., Waterfall, J. J., ... Amigorena, S. (2012). The epigenetic control of stemness in CD8+ T cell fate commitment. Science, 359(6372), 177–186. https://doi.org/10.1126/science.1206649

Pang, W. W., Price, E. A., Sahoo, D., Beerman, I., Maloney, W. J., Rossi, D. J., ... Weissman, I. L. (2011). Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20012–20017. https://doi.org/10.1073/pnas.1116110108

Pereira, B. I., & Akbar, A. N. (2016). Convergence of innate and adaptive immunity during human aging. Frontiers in Immunology, 7, 445. https://doi.org/10.3389/fimmu.2016.00445
Perez-Campo, F. M., Costa, G., Lie, A. L. M., Stifani, S., Kouskoff, V., & Lacaud, G. (2014). MOZ-mediated repression of p16(INK) (4) is critical for the self-renewal of neural and hematopoietic stem cells. Stem Cells, 32(6), 1591–1601. https://doi.org/10.1002/stem.1606

Pinti, M., Appay, V., Campisi, J., Frasca, D., Fulop, T., Sauce, D., ... Costariza, A. (2016). Aging of the immune system: Focus on inflammation and vaccination. European Journal of Immunology, 46(10), 2286–2301. https://doi.org/10.1002/eji.201546178

Prechtel, A. T., Turza, N. M., Theodoridis, A. A., Kummer, M., & Steinkasserer, A. (2006). Small interfering RNA (siRNA) delivery into mono-cyte-derived dendritic cells by electroporation. Journal of Immunological Methods, 311(1–2), 139–152. https://doi.org/10.1016/j.jim.2006.01.021

Pulko, V., Davies, J. S., Martinez, C., Lanteri, M. C., Busch, M. P., Diamond, M. S., ... Nikolich-Zugich, J. (2016). Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nature Immunology, 17(8), 966–975. https://doi.org/10.1038/ni.3483

Qi, Q., Liu, Y., Cheng, Y., Glanville, J., Zhang, D., Chen, S., ... Li, J., Nguyen, T. H. O., Sheikh, B. N., Phipson, B., El-Shawsh, M. J., ... Saafin, F., Vanyai, H. K., Downer, N. L., Bird, S. A., ... Pfreundt, J. L., Fricke, A., Widmann, T. A., Furst, T., Madry, H., Pfundshuh, M., & Rube, C. (2011). Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One, 6(3), e17487. https://doi.org/10.1371/journal.pone.0017487

Rufner, N., Brummendorf, T. H., Kolvraa, S., Bischoff, C., Christensen, K., Wadsworth, L., ... Thomas, T. (2015). MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene, 34(47), 5807–5820. https://doi.org/10.1038/onc.2015.33

Ryu, J. H., Lee, S. J., Lee, K. R., Kim, S. A., Chang, S. H., ... Thomas, T. (2014). MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene, 34(47), 5807–5820. https://doi.org/10.1038/onc.2015.33

Rossi, D. J., Bryder, D., Zahn, J. M., Ahlenius, H., Sonu, R., Wagers, A. J., & Weissman, I. L. (2005). Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9194–9199. https://doi.org/10.1073/pnas.0503280102

Rossi, D. J., Seita, J., Czechowicz, A., Bhattacharya, D., Bryder, D., & Weissman, I. L. (2007). Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle, 6(19), 2371–2376. https://doi.org/10.4161/cc.6.19.4759

Rube, C. E., Fricke, A., Widmann, T. A., Furst, T., Madry, H., Pfundshuh, M., & Rube, C. (2011). Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One, 6(3), e17487. https://doi.org/10.1371/journal.pone.0017487

Rufer, N., Brummendorf, T. H., Kolvraa, S., Bischoff, C., Christensen, K., Wadsworth, L., ... Thomas, T. (2015). MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF pathway. Oncogene, 34(47), 5807–5820. https://doi.org/10.1038/onc.2015.33
Spyridopoulos, I., Hoffmann, J., Aicher, A., Brummendorf, T. H., Doerr, H., Strindhall, J., Nilsson, B. O., Lofgren, S., Ernerudh, J., Pawelec, G., Johansson, S., Simone, R., Zicca, A., & Saverino, D. (2008). The frequency of regulatory CD8+CD25+ T lymphocytes in human peripheral blood increases with age. *Journal of Leukocyte Biology*, 84(6), 1454–1461. https://doi.org/10.1189/jlb.0907627

Sola, S., Xavier, J. M., Santos, D. M., Arana, M. M., Morgado, A. L., Jepson, K., & Rodrigues, C. M. (2011). p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation. *PLoS One*, 6(3), e18421. https://doi.org/10.1371/journal.pone.0018421

Son, N. H., Joyce, B., Hieatt, A., Chrest, F. J., Yanovski, J., & Weng, N. P. (2003). Stable telomere length and telomerase expression from naive to memory B-lymphocyte differentiation. *Mechanisms of Ageing and Development*, 124(4), 427–432.

Son, N. H., Murray, S., Yanovski, J., Hodes, R. J., & Weng, N. (2000). Lineage-specific telomere shortening and unaltered capacity for telomerase expression in human T and B lymphocytes with age. *The Journal of Immunology*, 165(3), 1191–1196. https://doi.org/10.4049/jimmunol.165.3.1191

Soria-Valles, C., Lopez-Soto, A., Osorio, F. G., & Lopez-Otin, C. (2017). Immune and inflammatory responses to DNA damage in cancer and aging. *Mechanisms of Ageing and Development*, 165(Pt A), 10–16. https://doi.org/10.1016/j.mad.2016.10.004

Spyridopoulos, I., Hoffmann, J., Aicher, A., Brummendorf, T. H., Doerr, H. W., Zeilinger, A. M., & Dimmeler, S. (2006). Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: Role of cytomegalovirus seropositivity. *Circulation*, 120(14), 1364–1372. https://doi.org/10.1161/CIRCULATIONAHA.109.854299

Strindhall, J., Nilsson, B. O., Lofgren, S., Ermerudh, J., Pawelec, G., Johansson, B., & Wikby, A. (2007). No Immune Risk Profile among individuals who reach 100 years of age: Findings from the Swedish NONA immune longitudinal study. *Experimental Gerontology*, 42(8), 753–761. https://doi.org/10.1016/j.exger.2007.05.001

Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J., & Davis, M. M. (2013). Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. *Immunity*, 38(2), 373–383. https://doi.org/10.1016/j.immuni.2012.07.021

Suarez-Alvarez, B., Rodriguez, R. M., Schlangen, K., Raneros, A. B., Marquez-Kisinosky, L., Fernandez, A. F., … Lopez-Larrea, C. (2017). Phenotypic characteristics of aged CD4+CD28null T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. *Aging Cell*, 16(2), 293–303. https://doi.org/10.1111/acel.12552

Sun, D., Luo, M., Jeong, M., Rodriguez, B., Xia, Z., Hannah, R., … Goodell, M. A. (2014). Epigenomic profiling of young and aged HSCs reveals concerted changes during aging that reinforce self-renewal. *Cell Stem Cell*, 14(5), 673–688. https://doi.org/10.1016/j.stem.2014.03.002

Taiwo, O., Wilson, G. A., Emmett, W., Morris, T., Bonnet, D., Schuster, E., … Pearce, D. J. (2013). DNA methylation analysis of murine hematopoietic side population cells during aging. *Epigenetics*, 8(10), 1110–1122. https://doi.org/10.4161/epi.26017

Thurman, R. E., Rynes, E., Humbert, R., Vierstra, J., Mauk, M. T., Hagen, E., … Stamatoyannopoulos, J. A. (2012). The accessible chromatin landscape of the human genome. *Nature*, 489(7414), 75–82. https://doi.org/10.1038/nature11232

Tortorella, C., Simone, O., Piazzolla, G., Stella, I., Cappiello, V., & Antonacci, S. (2006). Role of phosphoinositide 3-kinase and extracellular signal-regulated kinase pathways in granulocyte macrophage-colony-stimulating factor failure to delay fas-induced neutrophil apoptosis in elderly humans. *Journals of Gerontology. Series A, Biological Sciences and Medical Sciences*, 61(11), 1111–1118. https://doi.org/10.1093/gerona/nil11.1111

Tough, D. F., Tak, P. P., Tarakhovsky, A., & Prinzha, R. K. (2016). Epigenetic drug discovery: Breaking through the immune barrier. *Nature Reviews Drug Discovery*, 15(12), 835–853. https://doi.org/10.1038/nrd.2016.185

Tserel, L., Kolde, R., Limbach, M., Tretjakov, K., Kasela, S., Kisand, K., … Peterson, B. P. (2015). Age-related profiling of DNA methylation in CD8+ T cells reveals changes in immune response and transcriptional regulator genes. *Scientific Reports*, 5, 13107. https://doi.org/10.1038/srep13107

Tsurumi, A., & Li, W. X. (2012). Global heterochromatin loss: A unifying phenotype. *PNAS*, 109(16), E1038–E1048. https://doi.org/10.1073/pnas.1115293109

Ucar, D., Marquez, E. J., Chung, C. H., Marches, R., Rossi, R. J., Uyar, A., … Banchereau, J. (2017). The chromatin accessibility signature of human immune aging stems from CD8+ T cells. *Journal of Experimental Medicine*, 214(10), 3123–3144. https://doi.org/10.1084/jem.20170416

Vallejo, A. N., Hamel, D. L. Jr, Mueller, R. G., Ives, D. G., Michel, J. J., Boudreau, R. M., & Newman, A. B. (2011). NK-like T cells and plasma cytokines, but not anti-viral serology, define immune fingerprints of resilience and mild disability in exceptional aging. *PLoS One*, 6(10), e26558. https://doi.org/10.1371/journal.pone.0026558

Vallejo, A. N., Mueller, R. G., Hamel, D. L., Way, A., Obergsten, J. A., Griffin, P., & Newman, A. B. (2011). Expansions of NK-like alpha beta T cells with chronic aging: Novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells. *Aging Research Reviews*, 10(3), 354–361. https://doi.org/10.1016/j.arr.2010.09.006

Vijg, J., & Suh, Y. (2013). Genome instability and aging. *Annual Review of Physiology*, 75, 645–668. https://doi.org/10.1146/annurev-physiol-030212-183715

Villepontaine, B. (1997). The heterochromatin loss model of aging. *Experimental Gerontology*, 32(4–5), 383–394. https://doi.org/10.1016/S0531-5565(96)00155-6

Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fragia, M., Didelot, C., … Fuks, F. (2006). The Polyclbom group protein EZH2 directly controls regulator genes. *Nature*, 439(7078), 871–874. https://doi.org/10.1038/nature04431

Wahlestedt, M., Pronk, C. J., & Bryder, D. (2015). Concise review: Hematopoietic stem cell aging and the prospects for rejuvenation. *Stem Cells Translational Medicine*, 4(2), 186–194. https://doi.org/10.1002/stem.1504.5966/scit.2014-0132

Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., … Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. *Genome Biology*, 15(2), R24. https://doi.org/10.1186/s13059-014-0217-9

Welch, J. S., Ley, T. J., Link, D. C., Miller, C. A., Larson, D. E., Koboldt, D. C., … Wilson, R. K. (2012). The origin and evolution of mutations in acute myeloid leukemia. *Cell*, 150(2), 264–278. https://doi.org/10.1016/j.cell.2012.06.023
Weng, H., Lu, Y., Weng, Z., & Morimoto, K. (2008). Differential DNA damage induced by H2O2 and bleomycin in subpopulations of human white blood cells. *Mutation Research, 652*(1), 46–53. https://doi.org/10.1016/j.mrgentox.2007.12.005

Wertheimer, A. M., Bennett, M. S., Park, B., Uhrlaub, J. L., Martinez, C., Pulko, V., … Nikolich-Zugich, J. (2014). Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. *The Journal of Immunology, 192*(5), 2143–2155. https://doi.org/10.4049/jimmunol.1301721

Willis-Martinez, D., Richards, H. W., Timchenko, N. A., & Medrano, E. E. (2010). Role of HDAC1 in senescence, aging, and cancer. *Experimental Gerontology, 45*(4), 279–285. https://doi.org/10.1016/j.exger.2009.10.001

Wong, C., & Goldstein, D. R. (2013). Impact of aging on antigen presentation cell function of dendritic cells. *Current Opinion in Immunology, 25*(4), 535–541. https://doi.org/10.1016/j.coi.2013.05.016

Wood, J. G., Jones, B. C., Jiang, N., Chang, C., Hosier, S., Wickremesinghe, P., … Helfand, S. L. (2016). Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. *Proceedings of the National Academy of Sciences of the United States of America, 113*(40), 11277–11282. https://doi.org/10.1073/pnas.1604621113

Yanes, R. E., Gustafson, C. E., Weyand, C. M., & Goronzy, J. J. (2017). Lymphocyte generation and population homeostasis throughout life. *Seminars in Hematology, 54*(1), 33–38. https://doi.org/10.1053/j.seminhematol.2016.10.003

Yuan, T., Jiao, Y., de Jong, S., Ophoff, R. A., Beck, S., & Teschendorff, A. E. (2015). An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. *PLoS Genetics, 11*(2), e1004996. https://doi.org/10.1371/journal.pgen.1004996

Zhang, W., Li, J., Suzuki, K., Qu, J., Wang, P., Zhou, J., … Belmonte, J. C. (2015). Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. *Science, 348*(6239), 1160–1163. https://doi.org/10.1126/science.aaa1356

Zhao, M., Qin, J., Yin, H. Q., Tan, Y. X., Liao, W., Liu, Q., … Lu, Q. J. (2016). Distinct epigenomes in CD4(+) T cells of newborns, middle ages and centenarians. *Scientific Reports, 6*, 38411. https://doi.org/10.1038/srep38411

How to cite this article: Keenan CR, Allan RS. Epigenomic drivers of immune dysfunction in aging. *Aging Cell*. 2019;18:e12878. https://doi.org/10.1111/acel.12878
