CD81 Expressed on Human Thymocytes Mediates Integrin Activation and Interleukin 2-dependent Proliferation

By Scott C. Todd, Stephanie G. Lipps, Laura Crisa, Daniel R. Salomon, and Constantine D. Tsoukas

From the Department of Biology and Molecular Biology Institute, San Diego State University, San Diego, California 92182-4614; Department of Molecular and Experimental Medicine, and the Department of Immunology, The Scripps Research Institute, La Jolla, California 92037

Summary

Lymphocyte recognition of antigen by the antigen-specific T cell receptor (TCR) and coreceptor complexes rapidly alters the cell's adhesive properties facilitating high avidity cell-ligand interactions necessary for lymphocyte development and function. Here, we report the expression of CD81 (target of antiproliferative antigen [TAPA]-1) on human thymocytes and the physical association of CD81 with CD4 and CD8 T cell coreceptors. Antibody ligation of CD81 on thymocytes promotes the rapid induction of integrin-mediated cell-cell adhesion via lymphocyte function-associated molecule-1 (LFA-1). Cross-linking CD81 is also shown to be costimulatory with signaling through the TCR/CD3 complex inducing interleukin 2-dependent thymocyte proliferation. These data suggest that a CD81-mediated pathway in thymocytes is involved in the regulation of both cell adhesion and activation.

Materials and Methods

Thymic T cell selection, as well as the activation of mature T cells, is mediated by engagement of MHC-peptide antigen by the TCR and its coreceptors CD4 or CD8 (1-3). Signals resulting from TCR and CD4/CD8 engagement can also influence the activation state of integrins and integrin-ligand interactions promote cell-cell or cell-extracellular matrix adhesion, cell migration, activation, and effector functions (4, 5). Integrin-mediated adhesion to thymic epithelial and dendritic cells, and migration of these developing progenitors to cortex, medulla, and peripheral lymphoid compartments are critical features of normal T cell development (6). However, little is known about the molecular mechanisms that connect antigen receptor complex-generated signals to the functional activation of integrins expressed by thymocytes.

CD81 is a member of the recently described tetraspan family of proteins which play an important role in regulating cell adhesion, migration, and cell proliferation mediated by integrins (7-10). For example, CD9 associates with very late antigen (VLA)4 and VLA5 on B cell progenitors but not mature B cells, and it mediates heterotypic cell adhesion to bone marrow stromal fibroblasts (11). Another recently described tetraspan protein, CD63, has been shown to associate with VLA3 and VLA6 integrins (12). CD81 was originally named target of antiproliferative antigen (TAPA-1) because anti-CD81 antibodies inhibit the proliferation of many lymphoid cell lines. CD81 is expressed on B cells as part of the CD21/CD19/Leu13 complex which is the coreceptor for the B cell antigen receptor (BCR) and facilitates B cell activation at low doses of antigen-C3d (complement fragment) complexes (9, 13, 14). Ligation of CD81 on B cells activates VLA4-mediated binding to fibronectin on tonsilar sections (13). CD81 has also been reported to associate with CD4 and CD8 (coreceptors for the TCR) on T cell lines (16, 17). Although CD81 expression has been demonstrated on a variety of lymphoid cell lines, its expression and function on human thymocytes is unknown. The present report demonstrates the expression of CD81 on thymocytes and its influence on thymocyte adhesion and activation.
Lake Success, NY), streptavidin PE (Sigma Chemical Co., St. Louis, MO) or with appropriate directly conjugated isotype controls (Fig. 4 B), for assessment on a FACScan® flow cytometer (Becton Dickinson Immunocytometry Systems, San Jose, CA). Data analysis was performed with WinMDI software, available as freeware for Windows (http://facs.scripps.edu/software.html).

Thymocyte Biotinylation. 2 × 10⁶ thymocytes/ml in PBS were incubated 30 min at room temperature with 2 mg/ml sulfo-succinimidyl-6-(biotinamido) hexanate (NHS-LC-Biotin) (Pierce Chemical Co.), washed three times in PBS, and used for lysis.

Immunoprecipitation. 50 μl of thymocyte lysate at 2 × 10⁶ cell equivalents/ml was incubated with 2 μg of the indicated mAb for 2 h at 4°C and then for 2 additional h with rabbit anti-mouse adsorbed protein A-Sepharose. Antibodies used were: UPC-10 (IgG control), OKT11 (CD2), OKT3 (CD3), OKT4 (CD4), OKT8 (CD8) (American Type Culture Collection [ATCC], Rockville, MD), 5A6 (CD81; gift of Shoshana Levy, Stanford University, Stanford, CA). Immunoprecipitates were centrifuged at 14,000 g for 10 s, washed three times in lysis buffer containing 0.1% detergent, resuspended in Laemmli’s reagent without 2-ME, run on PAGE, and Western blotted as described above. Streptavidin blotting was performed using 1:10,000 dilution of horseradish peroxidase-conjugated streptavidin (Southern Biotechnology Associates, Birmingham, AL).

Aggregation Assay. Thymocytes were cultured at 2 × 10⁶ cells/well in 96-well culture plates. Inhibition studies were done by preincubation with the indicated blocking antibodies at 10 μg/ml at 4°C for 30 min. The precoated cells were then warmed to 37°C in a humidified incubator, and 200 ng/ml of anti-CD81 antibody were added. After 1.5 h of incubation the cells were photographed. Blocking antibodies were anti-VLA-4 (clone HP2/1; gift of Dr. Sanchez-Madrid, The Princess Hospital, Madrid, Spain), anti-LFA-1, and anti-intercellular adhesion molecule (ICAM)-1 (clones 25.3 and 84H10; Coulter Corp., Hialeah, FL). All cultures were done in AIM V serum-free media (GIBCO). As control, a mouse anti-rat IgG was used (clone 18.5; ATCC). All cultures were done in AIM V serum-free media.

Costimulation Assay. Culture wells containing immobilized antibody were precoated overnight with 1 μg/ml OKT3 in PBS at 4°C, rinsed, and coated with the indicated concentrations of anti-CD81 antibody for 4 h at 37°C. Soluble anti-CD81 antibody was added at the indicated concentrations in media simultaneously with the addition of cells. Anti-CD25 (anti-Taq mAb; gift of Dr. T. Waldman and Caroline Goldman, National Institutes of Health) was also added simultaneously with cells at the indicated concentrations. Cultures were performed in AIM V serum-free media. All coated wells were blocked with heat-aggregated BSA (60°C for 5 min) to cover any remaining binding sites on the plastic before addition of any soluble antibodies to the cultures.

Results

CD81 is expressed at high levels on human thymocytes as determined by Western blotting (Fig. 1 A) and flow cytometric analysis (Fig. 1 B). Western blotting of a thymocyte lysate with anti-CD81 results in a single band at the expected size of 26 kD under nonreducing conditions. Flow cytometric analysis demonstrates that CD81 is expressed on >99% of all thymocytes, indicating that it is expressed at all stages of thymocyte development.

To determine whether CD81 is associated with CD4, CD8, or other surface receptors, thymocytes were surface biotinylated, lysed in (3-[3-cholamidopropyl] dimethyl/ ammonio]-1-propane-sulfonate) (CHAPS) detergent, immunoprecipitated with antibodies against CD2, CD3, CD4, CD8, CD81, or Ig control, and then analyzed by Western blotting with anti-CD81 (Fig. 2 B). These samples were also blotted with streptavidin to visualize the biotinylated target antigen of each immunoprecipitation, as well as coprecipitating cell surface molecules (Fig. 2 A). The results indicate that CD81 is prominently associated with CD4 and CD8, weakly associated with CD3, and not detectable in association with CD2. The immunoprecipitation of CD81 and visualization of associated surface proteins reveals that CD81 may be also associated with a number of other cell surface proteins. None of these associations were seen in NP-40 lysates (Todd, S.C., S.G. Lipps, L. Crisa, D.R. Salomon, and C.D. Tsoukas, unpublished observations). Note that CD81 on thymocytes is not biotinylated under these conditions, and this is not visualized in the immunoprecipitated lysates.

To assess whether CD81 is capable of influencing the adhesive properties of thymocytes, these cells were incubated with anti-CD81 Ab. Ligation of thymocyte CD81 with as little as 250 ng/ml Ab, without secondary Ab cross-linking, rapidly induces (within 1 h of treatment) cell-cell adhesion resulting in cell aggregation (Fig. 3, row A). The rapid aggregation kinetics suggest that adhesion is mediated by the activation of preexisting receptors rather than the result of new protein synthesis. Culture of thymocytes with up to 1,000 ng/ml anti-CD2, -CD3, -CD4, or -CD8, has little effect (Fig. 3, row B). This result indicates that aggregation is not simply a consequence of cross-linking highly expressed surface proteins thereby creating a bridge between adjacent cells.
CD81-induced aggregation does not occur in the absence of either Ca\(^{2+}\) or Mg\(^{2+}\) or when cells were maintained at 4°C (Todd et al., unpublished observations). Such divalent cation and temperature dependence is characteristic of integrin-mediated adhesion. Integrins expressed on thymocytes include the beta-2 family member lymphocyte function-associated molecule-1 (LFA)-1, CD11a/CD18) which interacts with the ICAMs of the Ig supergene family, and the beta-1 family member VLA-4 (CD49d/CD29) which serves as a receptor for fibronectin and vascular cell adhesion molecule-1 (VCAM)-1 (18). To assess whether these integrins are mediating the CD81-induced adhesion, thymocytes were pretreated at 4°C with blocking concentrations of specific integrin Abs and then stimulated with anti-CD81 as described above. The results indicate that Ab blocking of LFA-1 and ICAM-1 prevents aggregation whereas anti-VLA-4 does not (Fig. 3, row C). Treatment with anti-LFA-1 alone strongly inhibits aggregation while anti-ICAM-1 alone has little effect (Todd, S.C. et al., unpublished observations). This may indicate that LFA-1 is interacting with ICAM-2 or ICAM-3, as well as with ICAM-1.

It is well documented that the conversion of LFA-1 from the low to high affinity state results from cell activation and is associated with protein kinase C (PKC)-mediated phosphorylation of the cytoplasmic domains of LFA-1 and adjacent cytoskeletal elements (19–21). Therefore, we performed a series of experiments to determine if PKC activation also mediates CD81-induced thymocyte aggregation. First, the addition of phorbol ester, PMA (10 ng/ml) induces thymocyte aggregation within 1 h which is specifically blocked by anti-LFA-1 but not anti-VLA-4 antibodies (Todd, S.C. et al., unpublished observations). This result is consistent with a previous report indicating that LFA-1-mediated adhesion to thymic epithelial cell lines was induced by PMA (22). Both anti-CD81 and PMA-induced aggregation are inhibited by the PKC inhibitors calphostin C and H7 at approximate EC\(_{50}\)s of 250 nM and 20 \(\mu\)M, respectively. In contrast, aggregation is not inhibited by the tyrosine kinase inhibitor tyrphostin. These findings implicate PKC as a mediator of the CD81 signals that lead to LFA-1 activation.

The functionality of CD81 on thymocytes was further investigated by assessing its capacity to influence cell proliferation. In view of the antiproliferative effects of anti-CD81 on lymphoid cell lines, we assessed its effect on spontaneously proliferating thymocytes. Freshly isolated thymocytes contain a population of precursor (CD3\(^{lo}\)) cells that are undergoing spontaneous cell division (23). This proliferation can be measured when cells are plated at 5 \(\times\) 10\(^5\)/well and pulsed overnight with \(^{3}\text{H}\)thymidine. In a representative experiment, control IgG treatment yielded 30,813 ± 7,757 cpm (mean ± SD of quadruplicates) while cultures treated with anti-CD81 yielded 33,130 ± 8,385 cpm (mean ± SD of quadruplicates) after 24 h in culture. Similarly, anti-CD81 did not effect naturally occurring proliferation when measured at 48 h. Thus, proliferation of the naturally cycling population of thymocyte precursors does not appear to be inhibited by CD81 binding.

The ability of CD81 to provide costimulation in concert...
with CD3 cross-linking was measured as [H]thymidine incorporation after 4 d in culture. Microtiter plate wells were coated with anti-CD3 (1 μg/ml) and increasing concentrations of anti-CD81 (Fig. 4 A). Alternatively, cells were cultured with immobilized anti-CD3 and soluble anti-CD81 (free Ab added to cultures after blocking the plastic surfaces to prevent fixation). The results illustrate that cross-linking of CD3 and CD81 (both Abs fixed to the culture well) promotes a powerful proliferative response in thymocytes. In contrast, immobilized anti-CD3 and soluble anti-CD81, immobilized anti-CD3 alone, or immobilized anti-CD81 alone, have little effect. Moreover, the physical proximity of CD81 and CD3 at the same cell surface is required for stimulation. This was demonstrated by the lack of proliferation when anti-CD81-coated thymocytes were plated onto immobilized anti-CD3 and subsequently the CD81 was cross-linked by addition of rabbit anti-mouse Ab (Todd, S.C. et al., unpublished observations).

Flow cytometric analysis of anti-CD3/anti-CD81-stimulated thymocytes on day 3 of culture demonstrated that 76% are CD8⁺CD4⁻. That proliferation is attributed to mature thymocytes was expected, since these cells bear a functionally competent TCR/CD3 complex. We have demonstrated that this is the thymocyte population proliferating to the combination of CD3 cross-linking and fibronectin or laminin costimulation (24, 25).

Thymocytes cultured under the same conditions as those in Fig. 4 A (media, anti-CD3 alone, or anti-CD3 and anti-CD81), were phenotypically characterized for the expression of the activation markers CD69 and CD25 (IL-2R). Anti-CD3 alone induces an increased expression of both these activation markers as early as 17 h of culture and expression of CD69 is further enhanced by coculture with anti-CD81 (Fig. 4 B). By day 3, the expression of both CD25 and CD69 is substantially higher on the CD81 costimulated thymocytes which is consistent with the observed proliferation in these cultures (not shown). Three-color flow cytometric analysis after 17 h of culture demonstrated that in both anti-CD3 alone and anti-CD3/anti-CD81-treated cultures the activated, CD69⁺ cells are predominantly CD4⁻CD8⁺. The specific activation of cells in transition to the mature CD8⁺CD4⁻ stage is consistent with the expansion of the CD4⁺CD8⁻ population observed on day 3 in the presence of CD81 cross-linking (not shown).

Despite the fact that thymocytes activated with either anti-CD3 or anti-CD3/anti-CD81 express equal levels of IL-2R at 17 h, only those cultures costimulated with anti-CD81 demonstrate proliferation (Fig. 4 A). This suggested that CD81-mediated costimulation may be mediated by an IL-2-dependent pathway. IL-2-dependent proliferation would be consistent with the increased IL-2R expression observed in the anti-CD3/anti-CD81 activated cells by day 3. To test this hypothesis, cells were stimulated with anti-CD3 and anti-CD81 in the presence of increasing amounts of a blocking anti-IL-2R Ab. As shown in Fig. 4, anti-CD3/anti-CD81-stimulated proliferation is inhibited by 73% with 500 ng/ml of anti-IL-2R antibody. Thymocyte proliferation is unaffected by control Abs at concentrations up to 20 μg/ml.

Discussion

Lymphocyte recognition of antigen rapidly alters their adhesive state. Increased adhesion can support higher avidity interactions with APCs that may in turn facilitate the engagement and signaling by other counterreceptor pairs. Similarly, T cell development and selection requires TCR-CD4 or -CD8 recognition of MHC-peptide on thymic epithelial or dendritic cells, and possibly other molecules, including LFA-1. That integrin-mediated adhesion is im-
important for thymocyte development is supported by evidence that Ab blockade of LFA-1/ICAM-1 interactions in mouse fetal thymic organ culture inhibits differentiation of CD4+CD8- cells to CD4+CD8+ cells (26).

In the present investigation we demonstrate that a CD81-derived signal can regulate thymocyte cell-cell adhesiveness through activation of the integrin, LFA-1. In vivo, CD81 may be activated directly by an unknown ligand or indirectly as a result of associated receptor engagement. The latter model allows for the possibility that during antigen recognition CD4 or CD8 (or CD21 on B cells) are engaged causing activation of associated CD81 molecules which in turn regulate adhesion. The participation of CD81 in the antigen receptor complexes of both T and B lymphocytes suggests a common fundamental role for CD81 in lymphocyte activation.

A recent report has suggested that CD81 is expressed on murine thymic epithelium. In that model CD81 serves as a ligand for an unidentified receptor on early thymocytes which promotes the differentiation of CD4+CD8- cells into CD4+CD8+ cells (27). The same report also states that fetal mouse thymocytes do not express CD81 (27). In contrast, we demonstrate that CD81 is highly expressed on human thymocytes at all stages of maturation (Fig. 1). Reconciliation of these data may involve ontogenic differences between fetal mouse and pediatric human thymus or appreciation of important molecular differences between the two species in CD81 structure or expression.

The present report is the first demonstration that CD81 is expressed on human thymocytes and that the colocalization and cross-linking of CD81 with CD3 on T cells promotes DNA synthesis. This event does not occur upon independent engagement of CD81 or CD3. That proliferation is IL-2 mediated suggests that CD81 can provide a co-stimulation similar to that described for CD28. The data presented here also demonstrate a novel functional relationship between a tetraspan family member, CD81, and the activation of the integrin LFA-1–mediating homotypic cell aggregation. In the context of thymocyte development, the regulation of adhesiveness will determine the location of a cell, the nature of interactions with neighboring thymocytes or stromal cells, and its migration within the cortex or medulla. It will also influence the avidity of the thymocyte for APCs involved in positive or negative selection. Together, these findings support a role for CD81 in the regulation of thymocyte adhesion and activation during T cell development.

References

1. Kisielow, P., and H. von Boehmer. 1995. Development and selection of T cells: facts and puzzles. Adv. Immunol. 58:87–209.
2. Robey, E., and B.J. Fowlkes. 1994. Selective events in T cell development. Annu. Rev. Immunol. 12:675–705.
3. Spits, H. 1994. Early stages in human and mouse T-cell development. Curr. Opin. Immunol. 6:212–221.
4. Dustin, M.L., and T.A. Springer. 1991. Role of lymphocyte adhesion receptors in transient interactions and cell locomotion. Annu. Rev. Immunol. 9:27–66.
5. Pardi, R., L. Inverardi, and J.R. Bender. 1992. Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travelers. Immunol. Today. 13:224–230.
6. Crisa, L., V. Cirulli, M.H. Ellisman, J.K. Ishii, M.J. Elices, and D.R. Salomon. 1996. Cell adhesion and migration are regulated at distinct stages of thymic T cell development: The roles of fibronectin, VLA4, and VLA5. J. Exp. Med. 184:215–228.
7. Takahashi, S., C. Doss, S. Levy, and R. Levy. 1990. TAPA-1, the target of an antiproliferative antibody, is associated on the cell surface with the Leu-13 antigen. J. Immunol. 145:2207–2213.
8. Wright, M.D., and M.G. Tomlinson. 1994. The ins and outs of the transmembrane 4 superfamily. Immunol. Today. 15:588–593.
9. Fearon, D.T., and R.H. Carter. 1995. The CD19/CR2/ TAPA-1 complex of B lymphocytes. Annu. Rev. Immunol. 13:127–149.
10. Oren, R., S. Takahashi, C. Doss, R. Levy, and S. Levy. 1990. TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol. Cell. Biol. 10:4007–4015.

Received for publication 19 August 1996 and in revised form 6 September 1996.
11. Masellis-Smith, A., and A.R.E. Shaw. 1994. CD9-regulated adhesion: anti-CD9 monoclonal antibody reduces pre-B cell adhesion to bone marrow fibroblasts through de novo recognition of fibronectin. J. Immunol. 152:2768-2777.

12. Berndtchevski, F., G. Bazzoni, and M.E. Hemler. 1995. Specific association of CD63 with the VLA-3 and VLA-6 integrins. J. Biol. Chem. 270:17784-17790.

13. Dempsey, P.W., M.E. Allison, S. Akkaraju, C.G. Goodnow, and D.T. Fearon. 1996. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science (Wash. DC). 271:348-350.

14. Tedder, T.F., L.-J. Zhou, and P. Engel. 1994. The CD19/CD21 signal transduction complex of B lymphocytes. Immunol. Today. 15:437-442.

15. Belir, S., and F. Schriever. 1995. Engaging CD19 or target of an anti-proliferative antibody on human B lymphocytes induces binding of B cells to the interfollicular stroma of human tonsils via integrin α4β1 and fibronectin. J. Exp. Med. 182:1191–1199.

16. Imai, T., M. Kakizaki, M. Nishimura, and O. Yoshie. 1995. Molecular analyses of the association of CD4 with two members of the transmembrane 4 superfamily, CD81 and CD82. J. Immunol. 155:1229-1239.

17. Imai, T., and O. Yoshie. 1993. C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J. Immunol. 151:6470-6481.

18. Mojck, C.F., D.R. Salomon, A.C. Chang, and E.M. Shevach. 1995. Differential expression of integrins on human thymocyte subpopulations. Blood. 86:4206-4217.

19. Lue, M., Y. van Kooyk, and C.G. Figdor. 1995. Ins and outs of LFA-1. Immunol. Today. 16:479-485.

20. Peter, K., and T.F. O'Toole. 1995. Modulation of cell adhesion by changes in αLβ2 (LFA-1, CD11a/CD18) cytoplasmic domain/cytoskeleton interaction. J. Exp. Med. 181:315-326.

21. Habbs, M.L., H. Xu, S.A. Stacker, and T.A. Springer. 1991. Regulation of adhesion to ICAM-1 by the cytoplasmic domain of LFA-1 integrin beta subunit. Science (Wash. DC). 251:1611–1613.

22. Singer, K.H., S.M. Denning, L.P. Whichard, and B.F. Haynes. 1990. Thymocyte LFA-1 and thymic epithelial cell ICAM-1 molecules mediate binding of activated human thymocytes to thymic epithelial cells. J. Immunol. 144:2931-2939.

23. Alvarez-Vallina, L., A. Gonzalez, F. Gambon, M. Kreisler, and F. Diaz-Espada. 1993. Differentiation of the proliferative stages in the human thymus indicates that cell expansion occurs before the expression of CD3 (T cell receptor). J. Immunol. 150:8-16.

24. Chang, A.C., D.R. Salomon, S. Wadsworth, M.J. Hong, C.F. Mojck, S. Otto, E.M. Shevach, and J.E. Coligan. 1995. Alpha 3 beta 1 and alpha 6 beta 1 integrins mediate laminin/matrix binding and function as costimulatory molecules for human thymocyte proliferation. J. Immunol. 154:500-510.

25. Salomon, D.R., C.F. Mojck, A.C. Chang, S. Wadsworth, D.H. Adams, J.E. Coligan, and E.M. Shevach. 1994. Constitutive activation of integrin alpha-4/beta-1 defines a unique stage of human thymocyte development. J. Exp. Med. 179:1573-1584.

26. Fine, J.S., and A.M. Krumsbeek. 1991. The role of LFA-1/ICAM-1 interactions during murine T lymphocyte development. J. Immunol. 147:2852-2859.

27. Boismenu, R., M. Rhein, W.H. Fischer, and W.L. Havran. 1996. A role for CD81 in early T cell development. Science (Wash. DC). 271:198-209.