Peccularities of formation of microstructure in composites based on chemically synthesized zirconium nanopowders obtained by the method of decomposition from fluoride salts were considered. Hydrofluoric acid, concentrated nitric acid, aqueous ammonia solution, metallic zirconium, and polyvinyl alcohol were used. It was established that the reduction of porosity in nanopowders in the sintering process is the main problem in the formation of high-density materials.

Analysis of various initial nanopowders, their morphology, and features of sintering by the method of hot pressing with direct transmission of electric current was made. Peccularities of obtaining the composites based on them with the addition of Al2O3 nanopowders applying the electric sintering method were considered. It was shown that the increase in the content of alumina nano additives leads to an increase in strength and crack resistance of the samples due to simultaneous inhibition of abnormal grain growth and formation of a finer structure with a high content of tetragonal phase.

The influence of sintering modes on the formation of the microstructure of zirconium nanopowders has been studied for different contents of alumina additives. Electric current promotes the surface activity of nanopowders and its variable value promotes partial fragmentation of agglomerated grains thus affecting the composite structure.

Physical-mechanical properties of the obtained samples, optimal compositions of mixtures, and possibilities of improving some parameters were determined. It was found that nanopowders of zirconium dioxide obtained by the method of decomposition from fluoride salts are quite suitable for the production of composite materials with high physical and mechanical properties. They can compete with imported analogs and enable obtaining of crack resistance of 7.8 MPa m1/2 and strength of 820 MPa.

Keywords: zirconium dioxide, composite materials, consolidation, microstructure, alumina, sintering, crack resistance.

References

1. Gevorkyan, E. S., Vovk, R. V., Sofronov, D. S., Nerubatskyi, V. P., Morozova, O. M. (2021). The composite material based on synthesized zirconium oxide nanopowder for structural appliance. 17th Edition of Advanced Nano Materials. Avestro, 267. Available at: https://repo.knu.edu.ua/handle/123456789/29324

2. Von Steyern, P. V., Carbon, P., Nilner, K. (2005). All-ceramic fixed partial dentures designed according to the DC-Zircon® technique. A 2-year clinical study. Journal of Oral Rehabilitation, 32 (3), 180–187. doi: https://doi.org/10.1111/j.1365-2842.2004.01437.x

3. Chevalier, J., Gremillard, L., Deville, S. (2007). Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annual Review of Materials Research, 37 (1), 1–32. doi: https://doi.org/10.1146/annurev.matsci.37.052906.084250

4. Schmitt, J., Goellner, M., Wichmann, M., Reich, S. (2012). Zirconia posterior fixed partial dentures: 5-year clinical results of a prospective clinical trial. The International journal of prosthetics, 25 (6), 585–589. Available at: https://www.researchgate.net/publication/232706570_Zirconia_Posterior_Fixed_Partial_Dentures_5-Year_Clinical_Results_of_a_Prospective_Clinical_Trial

5. Roe, P., Kan, J. Y. K., Rangcharassaeng, K., Won, J. B. (2011). Retrieval of a Fractured Zirconia Implant Abutment Using a Modified Crown and Bridge Remover: A Clinical Report. Journal of Prosthetics. 20 (4), 315–318. doi: https://doi.org/10.1111/j.1532-849x.2011.00906.x

6. Gevorkyan, E. S., Nerubackiy, V. P., Mel’nik, O. M. (2010). Goryats’ nanoporyshki na osnovi ZrO2-5 % Y2O3. Zbirnyk naukovykh prats UKrainskoi derzhavnoi akademiyi zaliznychnoho transportu, 196, 106–110.

7. Hannink, R. H. J., Kelly, P. M., Muddle, B. C. (2004). Transformation Toughening in Zirconia-Containing Ceramics. Journal of the American Ceramic Society, 83 (3), 461–487. doi: https://doi.org/10.1111/j.1551-2916.2001.tb01221.x

8. Morozova, O. M., Timofeeva, L. A., Chyshkala, V. A., Gevorkyan, E. S., Nerubatskyi, V. P., Rutskyi, M. (2021). Improvement of metrological support of a new material composition based on zirconium dioxide. Abstracts of the 2nd International Scientific and Technical Conference «Intelligent Transport Technologies», Kharkiv: USURT, 154–155. Available at: http://repo.knu.edu.ua/handle/123456789/28604

9. Chyshkala, V. O., Lytovenchenko, S. V., Gevorkyan, E. S., Nerubatskyi, V. P., Morozova, O. M. (2021). Mastering the processes of synthesis of oxide compounds with the use of a powerful source of fast heating of the initial ingredients. Zbirnyk naukovykh prats Ukrainskoho derzhavnoho universytetu zaliznychnoho transportu, 196, 118–128. Available at: https://kart.edu.ua/wp-content/uploads/2021/04/tht_zbirn_196.pdf

10. Marek, I. O., Rulkan, O. K., Redko, V. P., Danylko, M. I., Duhovik, O. V. (2017). Nanokrystalichni poroshky na osnovi ZrO2 dlia vyhotovlennia komponentiv stiklykh do protsesu starannya. Nanosistemi, Nanomateriali, Nanotehnologi, 15 (1), 91–98. Available at: https://www.imp.kiev.ua/nanosy/media/pdf/2017/1/nano_vol15_i1_p091p098_2017.pdf

11. Sokolov, I. E., Fomichev, V. V., Zakalyukin, R. M., Kopylova, E. V., Kunskov, A. S., Mozhchil, R. N., Ionov, A. M. (2021). Synthesis of nanosized zirconium dioxide, cobalt oxide and related phases in supercritical CO2 fluid. Izvestiya Vysshikh Uchebnih Zavedenii Khimii Khimicheskaya Tekhnologiya, 64 (5), 35–43. doi: https://doi.org/10.1090/0360-6006/ivkt/20216405.6060

12. McLaren, E. A., Maharishi, A., White, S. N. (2021). Influence of yttria content and surface treatment on the strength of translucent zirconia materials. The Journal of Prosthodontic Dentistry. doi: https://doi.org/10.1111/j.1365-2842.2004.01437.x

13. Markandian, K., Chin, J., K., Tan, M. T. T. (2014). Study on Mechanical Properties of Zirconia-Alumina Based Ceramics. Applied
processing and pulse electric current sintering. Materials Letters, 38 (1), 18–21. doi: https://doi.org/10.1016/S0167-577X(98)00125-6

44. Fomin, O., Lovska, A. (2020). Establishing patterns in determining the dynamics and strength of a covered freight car, which exhausted its resource. Eastern-European Journal of Enterprise Technologies, 6 (7 (108)), 21–29. doi: https://doi.org/10.15587/1729-4061.2020.217162

45. Grabs, J., Steins, I., Rasmme, D., Kruamina, A., Berzins, M. (2006). Preparation and characterization of ZrO2-Al2O3 particulate nano-composites produced by plasma technique. Proceedings of the Estonian academy of sciences, engineering, 12 (4), 349–357. Available at: https://www.kirj.ee/public/va_te/eng-2006-4-3.pdf

46. Gevorkyan, E. S., Nerubatskyi, V. P., Chyshkala, V. O., Morozova, O. M. (2021). Cutting composite material based on nanopowders of aluminum oxide and tungsten monocarbide. Modern engineering and innovative technologies, 15, 6–14. Available at: http://repo.knmu.edu.ua/bitstream/123456789/28472/1/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F%202002.2021%20%D0%93%D0%B5%D1%80%D0%BC%D0%B0%D0%BD%D0%85%D1%8F.pdf

47. Samsonov, G. V. (Eds.) (1969). Fiziko-himicheskie svoistva okislov. Moscow: Metallurgiya, 455.

48. Buyakova, S. P., Horischenko, Yu. A., Kul’kov, S. N. (2004). Struktura, fazyovy sostav i morfologicheskoe stroenie plazmohimicheskih poroshkov ZrO2(MgO). Ogneupory i tehnicheskaya keramika, 6, 25–30.

49. Davar, F., Hassankhani, A., Loghman-Estarki, M. R. (2013). Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol–gel method. Ceramics International, 39 (3), 2933–2941. doi: https://doi.org/10.1016/j.ceramint.2012.09.067

50. Grenniard, L., Chevalier, J., Epieric, T. Deville, S., Fantozzi, G. (2004). Modeling the aging kinetics of zirconia ceramics. Journal of the European Ceramic Society, 24 (13), 3483–3489. doi: https://doi.org/10.1016/j.jeurceramsoc.2003.11.025

51. Nikitin, D. S., Zhukov, V. A., Perkov, V. V. (2004). Poluchenie i struktura poristy keramiki iz nanokristallicheskogo dioksida cirkoniya. Moscow: Metallurgiya, 455.

Abstract and References. Materials science

Currently, the availability of polypropylene, elastomer and sugar palm fiber (Arenga pinnata) is very abundant, which has a good impact on the potential for the development of new composite materials that have good properties and characteristics. Composites are generally a new material composed of two or more different materials with the aim of producing a new material that has better properties than the constituent material. In this study, polypropylene (PP) plastic and elastomer were used as a composite matrix reinforced with sugar palm fiber (Arenga pinnata). The purpose of this study was to determine the value of tensile strength, impact strength, and bending strength of composites with a weight fraction of 20% (80:20), 30% (70:30), and 40% (60:40). Based on the results of the research on hybrid polypolypropylene and fiber-reinforced elastomers, composites with a weight fraction of 20% (80:20) got the lowest tensile strength value of 1.153 MPa, while composites with a weight fraction of 40% (60:40) obtained the highest tensile strength value of 2.613 MPa. Composites with a weight fraction of 20% (80:20) got the lowest tensile strain value of 0.0049 and the highest tensile strain value of 0.0067 was found in composites with a weight fraction of 40% (60:40). For the impact strength, the 40% (40:60) weight fraction composite got the lowest value of 45248.234 kJ/mm², while the 20% (80:20) weight fraction composite got the highest impact strength of 17649.97 kJ/mm². For the bending strength results, the composite with a weight fraction of 20% (80:20) obtained the lowest bending strength of 1.7778 MPa, while the composite with a weight fraction of 30% (70:30) obtained the highest bending strength of 4.8867 MPa. The highest bending strain was found in the composite with a weight fraction of 20% (80:20), which was 0.0207.

Keywords: hybrid composite, sugar palm fiber (Arenga pinnata), polypropylene, elastomer, mechanical properties.

Reference

1. Bartos, A., Kocs, J., Angonjo, J., Moćno, J., Pukánszky, B. (2021). Effect of fiber attrition, particle characteristics and interfacial adhesion on the properties of PP/sugarcane bagasse fiber composites. Polymer Testing, 98, 107189. doi: https://doi.org/10.1016/j.polymertesting.2021.107189

2. Zhao, J., Qiao, Y., Wang, G., Wang, C., Park, C. B. (2020). Lightweight and tough PP/tale composite foam with bimodal nanoporous structure achieved by microcellular injection molding. Materials & Design, 195, 109051. doi: https://doi.org/10.1016/j.matdes.2020.109051

3. Amir, N., Abdin, K. A. Z., Shiri, F. B. M. (2017). Effects of Fibre Configuration on Mechanical Properties of Banana Fibre/PP/MAPP Natural Fibre Reinforced Polymer Composite. Procedia Engineering, 184, 573–580. doi: https://doi.org/10.1016/j.proeng.2017.04.140

4. Niloy Rahaman, M., Sahadat Hossain, M., Razak, M., Uddin, M. B., Chowdhury, A. M. S., Khan, R. A. (2019). Effect of dye and temperature on the physico-mechanical properties of jute/PP and jute/LLDPE based composites. Heliyon, 5 (6), e01753. doi: https://doi.org/10.1016/j.heliyon.2019.e01753

5. Szébényi, G., Blöll, Y., Hegedüs, G., Tábi, T., Czigány, T., Schledewski, R. (2020). Fatigue monitoring of flax fibre reinforced epoxy composites using integrated fibre-optical FBG sensors. Composites Science and Technology, 199, 108317. doi: https://doi.org/10.1016/j.compscitech.2020.108317

6. Yarali, E., Ali Farajzadeh, M., Noroozi, R., Dabbagh, A., Khoshgoftar, M. J., Mirzaali, M. J. (2020). Magnetothermoelectric elastomer composites: Modeling and dynamic finite element analysis. Composite Structures, 254, 112881. doi: https://doi.org/10.1016/j.compstruct.2020.112881

7. Krishnaiah, P., Ratnam, C. T., Manickam, S. (2017). Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HUU) treatments. Ultra- sonics Sonochemistry, 34, 729–742. doi: https://doi.org/10.1016/j.ultsonch.2016.07.008
8. He, Y., Zhou, Y., Wu, H., Bai, Z., Chen, C., Chen, X. et. al. (2020). Functionalized soybean/tung oils for combined plasticization of jute fiber-reinforced polypropylene. Materials Chemistry and Physics, 325, 127324. doi: https://doi.org/10.1016/j.matchemphys.2020.127324

9. Karaman, C., Yaya, A., Bensah, Y. D. (2021). The effect of natural fibre reinforcement on polyurethane composite foams – A review. Scientific African, 11, e00722. doi: https://doi.org/10.1016/j.sciarl.2021.e00722

10. Dawit, J. B., Lemu, H. G., Regassa, Y., Akessa, A. D. (2021). Investigation of the mechanical properties of Acacia tortilis fiber reinforced natural composite. Materials Today: Proceedings, 38, 2953–2958. doi: https://doi.org/10.1016/j.matpr.2021.09.308

11. Chegdani, F., El Mansori, M., Taki, M., Hamade, R. (2021). On the role of capillary and viscous forces on wear and frictional performances of natural fiber composites under lubricated polishing. Wear, 477, 203858. doi: https://doi.org/10.1016/j.wear.2020.203858

12. Bambach, M. R. (2020). Durability of natural fibre epoxy composite structural column. High cycle compression fatigue and moisture ingress. Composites Part C: Open Access, 2, 100013. doi: https://doi.org/10.1016/j.compositesc.2020.100013

13. Rajesh, M., Jayakrishna, K., Sultan, M. T. H., Manikandan, M., Mugashekiannan, V., Shah, A. U. M., Safri, S. N. A. (2020). The hydroscopic effect on dynamic and thermal properties of woven jute, banana, and intra-ply hybrid natural fiber composites. Journal of Materials Research and Technology, 9 (3), 16305–16315. doi: https://doi.org/10.1016/j.jmrt.2020.07.033

14. Ramakrishnan, K. R., Sarlin, E., Kanerva, M., Hokka, M. (2021). Experimental study of adhesively bonded natural fibre composite – steel hybrid laminates. Composites Part C: Open Access, 5, 100157. doi: https://doi.org/10.1016/j.compositesc.2021.100157

15. Radzi, A. M., Sapuan, S. M., Jawaid, M., Mansor, M. R. (2019). Water absorption, thickness swelling and thermal properties of roselle/sugar palm fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8 (5), 3988–3994. doi: https://doi.org/10.1016/j.jmrt.2019.07.007

16. Mohd Izwan, S., Sapuan, S. M., Zuhri, M. Y. M., Mohamed, A. R. (2020). Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties. Journal of Materials Research and Technology, 9 (3), 5805–5814. doi: https://doi.org/10.1016/j.jmrt.2020.03.105

17. Ataşg, A., Jawaid, M., Sapuan, S. M., Ishak, M. R., Ansari, M. N. M., Ilyas, R. A. (2019). Physical and thermal properties of treated sugar palm/glass fibre reinforced thermoplastic polyurethane hybrid composites. Journal of Materials Research and Technology, 8 (5), 3726–3732. doi: https://doi.org/10.1016/j.jmrt.2019.06.032

18. Safri, S. N. A., Sultan, M. T. H., Shah, A. U. M. (2020). Characterization of benzoyl treated sugar palm/glass fibre hybrid composites. Journal of Materials Research and Technology, 9 (5), 11563–11573. doi: https://doi.org/10.1016/j.jmrt.2020.08.057

19. Santhiarsa, N., Pratikto, Sonief, A. A., Marsyahyo, E. (2014). The Effect of Alkali Treatment on Metal Content In Sugar Palm Fiber. Australian Journal of Basic and Applied Sciences, 8 (10), 614–619. Available at: https://123dok.com/document/q7wg28dz-effect-alkali-treatment-metal-content-sugar-palm-fiber.html

20. Mohammed, A. A., Bachtijari, D., Rejab, M. R. M., Siregar, J. P. (2018). Effect of microwave treatment on tensile properties of sugar palm fibre reinforced thermoplastic polyurethane composites. Defence Technology, 14 (4), 287–290. doi: https://doi.org/10.1016/j.jdt.2018.05.008

21. Sapuan, S. M., Bachtijari, D. (2012). Mechanical Properties of Sugar Palm Fibre Reinforced High Impact Polystyrene Composites. Procedia Chemistry, 4, 101–106. doi: https://doi.org/10.1016/j.proche.2012.06.015

22. Asim, M., Jawaid, M., Khan, A., Asiri, A. M., Malik, M. A. (2020). Effects of Date Palm fibres loading on mechanical, and thermal properties of Date Palm reinforced phenolic composites. Journal of Materials Research and Technology, 9 (3), 3614–3621. doi: https://doi.org/10.1016/j.jmrt.2020.01.099

23. Ramlee, N. A., Jawaid, M., Zainuddin, E. S., Yamani, S. A. K. (2019). Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. Journal of Materials Research and Technology, 8 (4), 3466–3474. doi: https://doi.org/10.1016/j.jmrt.2019.06.016

24. Das, S. C., Paul, D., Grammatikos, S. A., Siddiquee, M. A. B., Papatzani, S., Koralli, P. et. al. (2021). Effect of stacking sequence on the performance of hybrid natural/synthetic fiber reinforced polymer composite laminates. Composite Structures, 276, 114525. doi: https://doi.org/10.1016/j.compstruct.2021.114525

25. Ali, M. F., Hossain, M. S., Ahmed, S., Sarwaruddin Chowdhury, A. M. (2021). Fabrication and characterization of eco-friendly composite materials from natural animal fibers. Heliyon, 7 (5), e06954. doi: https://doi.org/10.1016/j.heliyon.2021.e06954

26. Rajak, D. K., Wagh, P. H., Moustabchir, H., Pruncu, C. I. (2021). Improving the tensile and flexural properties of reinforced epoxy composites by using cobalt filled and carbon/glass fiber. Forces in Mechanics, 4, 160029. doi: https://doi.org/10.1016/j.forme.2021.160029

27. Candido, V. S., Silva, A. C. R. da, Simomassi, N. T., Luz, F. S. da, Monteiro, S. N. (2017). Toughness of polyester matrix composites reinforced with sugarcane bagasse fibers evaluated by Charpy impact tests. Journal of Materials Research and Technology, 6 (4), 334–338. doi: https://doi.org/10.1016/j.jmrt.2017.06.001

28. Shammugan, V., Rajendran, D. J. J., Babu, K., Rajendran, S., Veera-simman, A., Marimuthu, U. et. al. (2021). The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing. Polymer Testing, 93, 106925. doi: https://doi.org/10.1016/j.polymertesting.2020.106925

DOI: 10.5587/1729-4061.2021.243149

DEVELOPMENT AND VERIFICATION OF MECHANICAL CHARACTERISTICS OF A COMPOSITE MATERIAL MADE OF A THERMOPLASTIC MATRIX AND SHORT GLASS FIBERS (p. 30–38)

Madina Isametova
Satbayev University, Almaty, Republic of Kazakhstan
ORCID: http://orcid.org/0000-0003-4830-271X

Gazel Abilezova
Satbayev University, Almaty, Republic of Kazakhstan
ORCID: http://orcid.org/0000-0002-1517-0577

Nikolay Dishovsky
University of Chemical Technology and Metallurgy, Sofia, Republic of Bulgaria
ORCID: http://orcid.org/0000-0001-6581-8530

Petar Velev
University of Chemical Technology and Metallurgy, Sofia, Republic of Bulgaria
ORCID: http://orcid.org/0000-0001-8999-9153

The paper presents the results of computer modeling and prediction of the mechanical properties of composite materials with a polycarbonate matrix filled with short glass inclusions. At the micro-level, the influence of the volume of inclusions on the mechanical properties of the designed composite based on polycarbonate matrix is studied in the DIGIMAT (France) program. It was found that with a ratio of the sizes of inclusions in the range of 468–60, the par-
Abstract and References. Materials science

ticles have a needle shape, and the material with such inclusions has a higher stress limit and elastic modulus than with a shape coefficient less than 50. The components of the fiber orientation tensor were also determined, at which the values of computer modeling are in good agreement with experimental data. The influence of the size of the finite element grid on the characteristics of the composite at the macro level was studied, and recommendations were given for choosing the size of the face of the finite element. The adequacy of computer models was confirmed by the results of field tests. The paper presents the results of testing flat samples made by injection molding technology. Mechanical tests were carried out for three variants of samples made of composite material based on a polycarbonate matrix with 10%, 20% and 30% inclusions. The discrepancy between the experimental and computer results for samples with 10%, 20% content of short chopped fibers is explained by the influence of technological factors on the properties of the material at the macro-level.

The conducted research allowed us to develop a computer modeling technique used at the stage of development of polymer composites based on thermoplastic matrices with short glass inclusions.

Keywords: composite material, polycarbonate, short glass fibers, DIGIMAT, elastic modulus.

References
1. Volkov, A. V., Parygin, A. G., Vikhiliansev, A. A. (2018). Analiz perspektivnykh napravlenni sverhsohestvenstva nanosykh agregatov netekehimicheskikh i neftepererabatyvayushihkh proizvodstv: KHi- micheskaya tekhnika, 10. Available at: http://chemtech.ru/analiz/perspektivnykh-napravlenni-sverhsohestvenstva-nanosykh-agregatov-netekehimicheskikh-i-neftepererabatyvayushihkh-proizvodstv1
2. Cardenas, D., Escarpita, A. A., Elizalde, H., Aguirre, J. J., Ahueti, H., Marzoeca, P., Probst, O. (2011). Numerical validation of a finite element thin-walled beam model of a composite wind turbine blade. Wind Energy 15 (2), 203–223. doi: http://doi.org/10.1002/we.462
3. Rabczko kolesa nasosov iz polimernykh kompozitsii (2016). Stroitelnyi resurs. Available at: http://spb-sovtrans.ru/polimernye-kompozitsiyi/963-rabczko-kolesa-nasosov-iz-polimernykh-kompozitsiy.html
4. Ponomareva, N. R. (2010). Strukturo-mekhanicheskie osobennosti deformatsionnogo poverneni kompozitsionnych materialov na osnove poliolefirov i mineralnykh chastits. Moscow, 153. Available at: https://freereferats.ru/product_info.php/products_id=667
5. Dong, X., Sui, G., Yun, Z., Wang, M., Guo, A., Zhang, J., Liu, J. (2016). Effect of temperature on the mechanical behavior of multilute fibers ceramics with a 3D skeletal structure prepared by mold-mold material. Materials & Design, 90, 942–948. doi: http://doi.org/10.1016/j.matdes.2015.11.043
6. Estellby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241 (1226), 376–396. doi: http://doi.org/10.1098/rspa.1957.0133
7. Jagath Narayanaya, K., Burela, R. G. (2019). Multi-scale modeling and simulation of natural fiber reinforced composites (Bio-composites). Journal of Physics: Conference Series, 1240, 012103. doi: http://doi.org/10.1088/1742-6596/1240/1/012103
8. Jiang, C., Chen, F. L., Yan, P., Song, F. (2010). A four-phase confocal elliptical cylinder model for predicting the effective thermal conductivity of coated fibre composites. Philosophical Magazine, 90 (26), 3601–3615. doi: http://doi.org/10.1080/14786435.2010.492767
9. Liu, Q., Lu, Z., Hu, Z., Li, J. (2013). Finite element analysis on tensile behaviour of 3D random fibrous materials: Model description and meso-level approach. Materials Science and Engineering: A, 587, 36–45. doi: http://doi.org/10.1016/j.msea.2013.07.087
10. Multinutalapati, N. R., Bennini, E. (2011). Advances in gas turbine technology. Gas Turbines. doi: http://doi.org/10.5772/664
11. Povetkin, V. V., Isetetova, M. E., Isaye, I. N. Bakavea, A. Z. (2018). Dynamic modeling of ball mill drive with regard to damping properties of its elements. Mining Informational and Analytical Bulletin, 5, 184–192. doi: http://doi.org/10.25018/0236-1453-2018-5-0-184-192
12. Tserpes, K., Tzatzadakis, V. (2019). Computation of mechanical, thermal and electrical properties of CNT/polymer multifunctional nanocomposites using numerical and analytical models. MATEC Web of Conferences, 304, 01013. doi: http://doi.org/10.1051/ matecon/201930401013
13. Lara-González, L. A., Guillermo-Rodríguez, W., Pineda-Triana, Y., Peña-Rodríguez, G., Salazar, H. F. (2020). Optimization of the tensile Properties of Polymeric Matrix Composites Reinforced with Magnete Particles by Experimental Design. Tecnologicas, 23 (48), 83–98. doi: http://doi.org/10.22430/22563337.1499
14. Singh, U. P., Biswas, B. K., Ray, B. C. (2009). Mechanical behaviour of 3D random fibrous materials: Model description and simulation of natural fiber reinforced composites (Bio-composites). Journal of Physics: Conference Series, 1240, 012103. doi: http://doi.org/10.1080/14786435.2010.492767
15. Lurie, S. A., Rabunskiyy, L. N., Solyava, Y. O., Buznik, V. M., Lizunova, D. V. (2016). Methodology of numerical modelling of mechanical properties of porous heat-shielding material based on ceramic fibers. PNRP, Mechanics Bulletin, 4, 263–274. doi: http://doi.org/10.15593/pern.mech/2016.4.15
16. Desai et al., A. V., Ponnammare, N. R., Gomcharuk, G. P., Obolokov, E. S., Budnytskiy, I. M., Sergenko, O. A. (2009). Vliyanie razmera chastits na mekhanicheskie svoistva kompozitov: na osnove odnorod-noformyurshchogosia polimera. Uspeuki v khimii i khimicheskoi tekhnologii, XXIII (5 (98)), 32–35. Available at: http://cyberleninka.ru/article/n/vliyanie-razmera-chastits-na-mekhanicheskie-svoistva-kompozitov-na-osnove-odnorod-noformyurshchego-polimera
17. Skvortsov, Iu. V., Glushkov, S. V., Khromov, A. I. (2012). Modelirovanie kompozitnykh elementov konstruktur-kai i analiz ikh razrusheni v SAE-sistemakh MSC.Patran-Nastran i ANSYS. Samara.
18. Ozawa, Y., Watanabe, M., Kikuchi, T., Ishiwatari, H. (2010). Mechanical and thermal properties of composite material system reinforced with micro glass ballons. IOP Conference Series: Materials Science and Engineering, 10, 012094. doi: http://doi.org/10.1088/1757-899x/10/1/012094
19. Matveeva, U. A., Van Khattum, F. (2011). Razrabotka i analiz struktturnykh modelli kompozitnykh materialov na osnovno ugleryodnykh nanotrubok.
20. Nazarov, S. A. (2009). Triorema Estelbi i zadacha ob optimal'nom zapalte. Algebra analiz, 21 (5), 155–195. Available at: http://www.mathnet.ru/links/b4ab83583efec8059ed7924e3cec2ada/aa1157.pdf
21. Rubinose-steklovolonko. Available at: https://glass-tex.ru/index.php/49-carussel/2015---10---23---08---17---23/151---rublenose-steklovolonko
22. Mashkov, Iu. K. (2010). Mekhanicheskie i tribotekhnikheskie svoistva polimernykh kompozitsionnych materialov na osnove PTFE, optimizatsia ikh sostava i tekhnologii. Vestnik SibADi, 4 (18), 17–21.

DOI: 10.15587/1729-4061.2021.242853
A STUDY OF PHYSICO-CHEMICAL CHARACTERISTICS OF ELECTROCHROMIC Ni(OH)2-PVA FILMS ON FTO GLASS WITH DIFFERENT DEPOSITION DURATION (p. 39–46)

Valerii Kotok
Ukrainian State University of Chemical Technology, Dnipr, Ukraine
Vyatka State University, Kirov, Russian Federation
ORCID: https://orcid.org/0000-0001-8879-7189
Vadym Kovalenko
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
Vytoka State University, Kirov, Russian Federation
ORCID: https://orcid.org/0000-0002-8012-6732

Rovil Nafeev
State University of Telecommunications, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-2721-9718

Volodymyr Verbitskyy
National Pedagogical Dragomanov University, Kyiv, Ukraine
National Ecological and Naturalistic Center for Student Youth, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0001-7045-8290

Olena Melnyk
Sunny National Agrarian University, Suny, Ukraine
ORCID: https://orcid.org/0000-0001-5763-0451

Iryna Plaksienko
Poltava State Agrarian University, Poltava, Ukraine
ORCID: https://orcid.org/0000-0002-1002-4984

Dmitry Sukhomlyn
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-5714-3454

Sergey Filonenko
Poltava State Agrarian University, Poltava, Ukraine
ORCID: https://orcid.org/0000-0001-8560-8852

Anatoli Kocherga
Poltava State Agrarian University, Poltava, Ukraine
ORCID: https://orcid.org/0000-0002-2076-4230

Natalia Makarenko
Ukrainian State University of Chemical Technology, Dnipro, Ukraine
ORCID: https://orcid.org/0000-0002-0676-1148

The use of electrochromic elements in “smart” windows leads to significant savings in electricity required for cooling premises. However, the high cost of these devices does not allow the technology to be widely used. Since the cost is determined by costly vacuum deposition methods, the development of other cheaper methods of deposition of electrochromic element layers is urgent.

Aspects of alternative to vacuum formation methods – cathode template electrochemical deposition of composite electrochromic Ni(OH)\(_2\)-PVA films were investigated.

The study is devoted to determining the effect of the duration of deposition of the electrochromic layer on their physicochemical characteristics, in particular, on the optical and electrochemical properties. The deposition was carried out on fluorine-doped tin oxide glasses (FTO glasses). The time of deposition was chosen equal to 5, 10, 20, 40, 60, and 80 minutes.

As a result of the experiments, it was shown that the optimal duration of deposition under the selected conditions of the electrochromic layer formation was the interval from 5 to 20 minutes, inclusive. The deposition time of 40 minutes did not improve the optical characteristics of the film. At the same time, with the deposition duration of 60 and 80 minutes, the electrochemical and optical parameters sharply decreased, the coloration depth and irreversibility during bleaching, as well as the specific capacitances of the processes decreased.

In the course of data processing, the film thickness was calculated depending on the duration of deposition in several ways. Comparison of the graphs obtained made it possible to determine the approximate amount of polyvinyl alcohol in the electrochromic composite coating, as well as to estimate the current efficiency of the electrodeposition and oxidation-reduction process of the electrochromic material. In this case, the volume of polyvinyl alcohol in the composite was approximately equal to the volume of nickel hydroxide, and the efficiency of Ni(OH)\(_2\) deposition and coloration-bleaching processes was approximately 100%.

Keywords: electrochromism, electrodeposition, nickel hydroxide, polyvinyl alcohol, deposition duration, coating thickness, adhesion.

References

1. Deb, S. K. (1987). Some Perspectives On Electrochromic Device Research. Materials and Optics for Solar Energy Conversion and AdvancedLightning Technology. doi:https://doi.org/10.1117/12.936663

2. Green, M., Richman, D. (1974). A solid state electrochromic cell – the RbAg\(_{4/3}\)O\(_3\) system. Thin Solid Films, 24 (2), S45–S46. doi: https://doi.org/10.1016/0040-6090(74)90189-8

3. About SageGlass. Available at: https://www.sageglass.com/en/company

4. Electronically Dimming Glass From Boeing’s Dreamliner Is Headed For Your Next Car. Available at: https://www.motortrend.com/news/electrochromic-glass-gentex-boeing-dreamliner-future-tech/

5. Hardiman, J. (2021). Why The Boeing 787 Has Dimmable Windows. Simple Flying. Available at: https://simpleflying.com/boeing-787-dimmable-windows-why/

6. Smart Windows: Energy Efficiency with a View. Available at: https://www.nrel.gov/news/features/2010/1555.html

7. Smart windows electrochromic windows for building optimization. Available at: https://www.sageglass.com/sites/default/files/masadartecnology_journal_issue_5_september_2018_smart_windows.pdf

8. Shechegolokk, A. V., Jiang, S.-H., Shechegolokk, A. V., Rodionov, Y. V., Sukhova, A. O., Lipkin, M. S. (2021). A Brief Overview of Electrochromic Materials and Related Devices: A Nanostructured Materials Perspective. Nanomaterials, 11 (9), 2376. doi: https://doi.org/10.3390/nano11092376

9. Cheng, W., Moreno-Gonzalez, M., Hu, K., Krzyszowski, C., Dvorak, D. J., Weekes, D. M. et. al. (2018). Solution-Deposited Solid-State Electrochromic Windows. iScience, 10, 80–86. doi: https://doi.org/10.1016/j.isci.2017.09.014

10. Kotok, V. A., Kovalenko, V. L., Kovalenko, P. V., Solovov, V. A., Deabate, S., Mehdi, A. et. al. (2017). Advanced electrochromic Ni(OH)\(_2\)/PVA films formed by electrochemical template synthesis. ARPN Journal of Engineering and Applied Sciences, 12 (13), 3962–3977. Available at: http://www.arpnjournals.org/jeas/research_papers/02_2017/jeas_0717_6156.pdf

11. Kotok, V., Kovalenko, V. (2017). The electrochromic cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature. Eastern-European Journal of Enterprise Technologies, 2 (11 (86)), 28–34. doi: https://doi.org/10.15587/1729-4061.2017.97371

12. Wruck, D. A., Dixon, M. A., Rubin, M., Bogy, S. N. (1991). As-sputtered electrochromic films of nickel oxide. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 9 (4), 2170–2173. doi: https://doi.org/10.1116/1.577245

13. Velevska, J., Ristova, M. (2002). Electrochromic properties of NiO\(_x\) prepared by low vacuum evaporation. Solar Energy Materials and Solar Cells, 73 (2), 131–139. doi: https://doi.org/10.1016/s0927-0256(01)00011-0

14. Kotok, V., Kovalenko, V. (2017). Electrochromism of Ni(OH)\(_2\) films obtained by cathode template method with addition of Al, Zn, Co ions. Eastern-European Journal of Enterprise Technologies, 3 (12 (87)), 38–43. doi: https://doi.org/10.15587/1729-4061.2017.103010

15. Kotok, V., Kovalenko, V. (2021). A study of the possibility of conducting selective laser processing of thin composite electrochromic
N\text{a}(\text{OH})_2$-PVA films. Eastern-European Journal of Enterprise Technologies, 1 (12 (109)), 6–15. doi: https://doi.org/10.15587/1729-4061.2021.225355
16. Zhou, J., Luo, G., Wei, Y., Zheng, J., Xu, C. (2015). Enhanced electrochromic performances and cycle stability of NiO-based thin films via Li-Ti co-doping prepared by sol–gel method. Electrochimica Acta, 186, 182–191. doi: https://doi.org/10.1016/j.electacta.2015.10.154
17. Yu, J.-H., Nam, S.-H., Gil, Y. E., Boo, J.-H. (2020). The effect of ammonia concentration on the microstructure and electrochemical properties of NiO nanoflakes array prepared by chemical bath deposition. Applied Surface Science, 532, 147441. doi: https://doi.org/10.1016/j.apsusc.2020.147441
18. Sonavane, A. C., Inamdar, A. I., Shinde, P. S., Deshmukh, H. P., Patent, R. S., Patent, P. S. (2010). Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds, 489 (2), 667–673. doi: https://doi.org/10.1016/j.jallcom.2009.09.146
19. Kamal, H., Elmaghraby, E. K., Ali, S. A., Abdel-Hady, K. (2005). The electrochromic behavior of nickel oxide films sprayed at different preparative conditions. Thin Solid Films, 483 (1-2), 330–339. doi: https://doi.org/10.1016/j.tsf.2004.12.022
20. Carpenter, M. K., Conell, R. S., Corrigan, D. A. (1987). The electrochemical properties of hydrous nickel oxide. Solar Energy Materials, 16 (4), 333–346. doi: https://doi.org/10.1016/0165-1633(87)90082-7
21. Dalavi, D. S., Suryawanshi, M. J., Patil, D. S., Mali, S. S., Moholkar, A. V., Kalagi, S. S. et. al. (2011). Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness. Applied Surface Science, 257 (7), 2647–2656. doi: https://doi.org/10.1016/j.apsusc.2010.10.037
22. Sahu, D. R., Wu, T.-J., Wang, S.-C., Huang, J.-L. (2017). Electrochromic behavior of NiO thin film prepared by e-beam evaporation. Journal of Science: Advanced Materials and Devices, 2 (2), 225–232. doi: https://doi.org/10.1016/j.jsamd.2017.05.001
23. Kotok, V. A., Kovalenko, V. L., Solovov, V. A., Kovalenko, P. V., Ananchenko, B. A. (2018). Effect of deposition time on properties of electrochromic nickel hydroxide films prepared by cathodic template synthesis. ARPN Journal of Engineering and Applied Sciences, 13 (9), 3076–3086.
24. Kotok, V. A., Malyshev, V. V., Solovov, V. A., Kovalenko, V. L. (2017). Soft Electrochemical Etching of FTO-Coated Glass for Use in N\text{a}(\text{OH})_2$-Based Electrochromic Devices. ECS Journal of Solid State Science and Technology, 6 (12), P772–P777. doi: https://doi.org/10.1149/2.0071712jss
25. Ban, S., Hasegawa, J. (2002). Morphological regulation and crystal growth of hydrothermal-electrodepositedapatite. Biomaterials, 23 (14), 2965–2972. doi: https://doi.org/10.1016/s0142-9612(02)00254-x
26. Zhitomirsky, I., Petric, A. (2000). Electrochemical deposition of yttrium oxide. Journal of Materials Chemistry, 10 (5), 1215–1218. doi: https://doi.org/10.1039/b00311p
27. Hall, D. S., Lockwood, D. J., Bock, C., MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2174), 20140792. doi: https://doi.org/10.1098/rspa.2014.0792
28. Jayashree, R. S., Kamath, P. V. (1999). Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. Journal of Applied Electrochemistry, 29 (4), 449–454. doi: https://doi.org/10.1023/a:1003493711239
29. Visscher, W. (1983). Ellipsometry of nickel-oxides and -hydroxides in alkaline electrolyte. Journal de Physique Colloques, 44 (C10), C10-213–C10-216. doi: https://doi.org/10.1051/jphyscol:19831044
30. Kovalenko, V., Kotok, V. (2017). Definition of effectiveness of β-Ni(\text{OH})_2$ application in the alkaline secondary cells and hybrid supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (89)), 17–22. doi: https://doi.org/10.15587/1729-4061.2017.110390
31. Kovalenko, V., Kotok, V. (2018). Influence of ultrasound and template on the properties of nickel hydroxide as an active substance of supercapacitors. Eastern-European Journal of Enterprise Technologies, 3 (12 (93)), 32–39. doi: https://doi.org/10.15587/1729-4061.2018.133548
32. Kovalenko, V. L., Kotok, V. A., Sykehin, A. A., Mudriy, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry, 21 (3), 683–691. doi: https://doi.org/10.1007/s10008-016-3405-2

DOI: 10.15587/1729-4061.2021.234179

IDENTIFICATION OF WHITE JEWELRY ALLOY BASED ON SILVER AND PLATINUM FOR TESTING PURPOSES (p. 47–59)

Tatyana Artyuhi
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-3541-6690

Inna Hryborenko
National Aviation University, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0002-6175-9067

Alla Ternova
Vinnitsia Institute of Trade and Economics of Kyiv National University of Trade and Economics, Vinnitsya, Ukraine
ORCID: https://orcid.org/0000-0002-7447-137X

Svetlana Yahlenik
Lutsk National Technical University, Lutsk, Ukraine
ORCID: https://orcid.org/0000-0002-7428-0848

Oleksei Verenikin
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
ORCID: https://orcid.org/0000-0003-0312-6648

Mihai Cernavca
Academy of Economic Studies of Moldova, Chisinau, Moldova
ORCID: https://orcid.org/0000-0002-3284-6399

The procedure for the identification of white jewelry alloys based on precious metals is a significant and complex task, often requiring precise analysis techniques. In the presented study, the authors have developed a method for the identification of white jewelry alloys based on silver and platinum. The method involves the analysis of various physical characteristics such as weight, purity, and metal composition, as well as the evaluation of specific color changes that can indicate the presence of certain metals. The procedure is designed to identify the alloy composition of white jewelry alloys and to determine the qualitative and quantitative content of silver and platinum in these alloys.

In this study, the authors have employed several analytical techniques, including spectroscopy and microscopy, to identify the alloy composition of the white jewelry alloys. The results show that the method is effective in identifying the specific alloys and determining their metal content. The authors emphasize the importance of accurate identification, as the correct classification of white jewelry alloys is crucial for determining their value and authenticity.

The method described in the paper provides a reliable and efficient way to identify white jewelry alloys based on silver and platinum. This is significant for both the jewelry industry and collectors, as it allows for accurate identification and valuation of these valuable materials. The procedure outlined in the paper can be adapted to various settings, from small-scale workshops to large-scale jewelry manufacturers, making it a versatile tool for the industry.

In conclusion, the study contributes to the field of white jewelry analysis by offering a practical and effective method for identifying the composition of these alloys. This method not only enhances the accuracy of identification but also provides a basis for more efficient and reliable customer service. The authors encourage further research into the development of similar techniques for other types of precious metal jewelry, thereby expanding the utility of the method.
of 5 %. The presence in silver alloys of such impurities as zinc, cadmium, nickel, gold, palladium and others increases the error in determining the fineness of silver and forms a different color and shade.

It has been proven that testing of silver alloys on an assay stone with silver nitrate is effective only for the CuPm system. The presence of zinc in 925 sterling silver alloys visually increases the color intensity of the sediment, which indicates a higher overestimated fineness.

It has been found that the identification of the content of precious alloys based on platinum for the presence of ligature components is carried out with a potassium iodide reagent at \(r = 120 \degree C \) by the color and shade of the sediment.

The procedure for using potassium iodide during testing of precious platinum-based alloys has been optimized.

Keywords: assay control, precious metals based on silver and platinum, assay stone.

References

1. Kunter, R., Mrditsa, S. (2016). Gold: Alloying, Properties, and Applications. Reference Module in Materials Science and Materials Engineering. doi: https://doi.org/10.1016/B978-0-12-803381-8.02581-9
2. Reit, A., Mrditsa, S. (2016). Silver: Alloying, Properties, and Applications. Reference Module in Materials Science and Materials Engineering. doi: https://doi.org/10.1016/B978-0-12-803381-8.02583-2
3. Mecking, O. (2020). The colours of archaeological copper alloys in binary and ternary copper alloys with varying amounts of Pb, Sn and Zn. Journal of Archaeological Science, 121, 105199. doi: https://doi.org/10.1016/j.jas.2020.105199
4. Shahin, Y. V., Vedyagin, A. A., Pylyusin, P. E., Kirilovich, A. K., Krenzin, R. M., Stoyanovskii, V. O., Koroney, S. V. (2018). The peculiarities of Au–Pt alloy nanoparticles formation during the decomposition of double complex salts. Journal of Alloys and Compounds, 740, 935–940. doi: https://doi.org/10.1016/j.jallcom.2017.12.127
5. Wu, Y.-H., Hung, F.-Y., Lui, T.-S., Chen, K.-J. (2019). Study of wire bonding reliability of Ag-Pd-Au alloy wire with flash-gold after chlorination and sulfidation. Microelectronics Reliability, 99, 186–196. doi: https://doi.org/10.1016/j.microrel.2019.05.014
6. Pracejus, B. (2014). Alloys and Alloy-like Compounds. With Copper, Silver, Gold, and Nickel. The Ore Minerals Under the Microscope, 152–189. doi: https://doi.org/10.1016/j.ijher.2014.12.003
7. E. A. Morales, S. (1989). Determination of commercial karats on gold alloys for jewellery by x-ray fluorescence analysis. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 33 (3), 269. doi: https://doi.org/10.1016/1076-060X(89)90172-0
8. Foster, R. L., Lott, P. F. (1980). Surface analysis of thick gold films by X-ray fluorescence using the base metal as an internal reference. Microchemical Journal, 25 (2), 176–178. doi: https://doi.org/10.1016/0026-265xs(80)90125-3
9. Trojek, T., Hložek, M. (2012). X-ray fluorescence analysis of archaeological finds and art objects: Recognizing gold and gilding. Applied Radiation and Isotopes, 70 (7), 1420–1423. doi: https://doi.org/10.1016/j.apradiso.2012.03.033
10. Cesareo, R., Iwanczyk, J., Bustamante, A., Anjos, M. D., de Assis, J. T., Azreedo, S., Lopes, R. (2020). Transmission of X and \(r \)-rays to differentiate tumbaga from gold and gilded copper. Microchemical Journal, 155, 104720. doi: https://doi.org/10.1016/j.microc.2020.104720
11. Cengiz, E., Tirasoğlu, E., Ayikçu, V., Apaydın, G. (2010). The investigations on K and L X-ray fluorescence parameters of gold compounds. Radiation Physics and Chemistry, 79 (6), 809–815. doi: https://doi.org/10.1016/j.radphyschem.2010.03.003
12. Boleswski, A., Matosz, M., Pohorecki, W., del Hoyo-Meléndez, J. M. (2020). Comparison of neutron activation analysis (NAA) and energy dispersive X-ray fluorescence (XRF) spectrometry for the non-destructive analysis of coins minted under the early Past dynasty. Radiation Physics and Chemistry, 171, 108699. doi: https://doi.org/10.1016/j.radphyschem.2020.108699
13. Bahadir, Z., Torrent, L., Hidalgo, M., Marguí, E. (2018). Simultaneous determination of silver and gold nanoparticles by cloud point extraction and total reflection X-ray fluorescence analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 149, 22–29. doi: https://doi.org/10.1016/j.sab.2018.07.016
14. Pessanha, S., Le Gac, A., Madeira, T. I., Guerra, M., Carvalho, M. L. (2013). Elemental analysis by portable Ag and Rh X-ray sources of a Namban type folding screen. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 309, 254–259. doi: https://doi.org/10.1016/j.nimb.2013.01.078
15. Artyukh, T., Kupalova, G., Bazylevych, V., Hryhorenko, I., Teranova, A. (2019). Improving a procedure for determining the assay of gold in a precious alloy of different composition using a touchstone. Eastern-European Journal of Enterprise Technologies, 2 (12 (93)), 6–19. doi: https://doi.org/10.15587/1729-4061.2019.165408
16. Artyukh, T., Hryhorenko, I., Ternova, A., Yahiukh, S., Cernavca, M. (2018). Influence of the alloy composition on determining the millesimal fineness of gold by X-ray fluorescent and assay analysis. Eastern-European Journal of Enterprise Technologies, 5 (12 (93)), 6–18. doi: https://doi.org/10.15587/1729-4061.2018.142730

DOI: 10.15587/1729-4061.2021.243236

DEVELOPMENT OF Fe-11Al-xMN ALLOY STEEL ON CRYOGENIC TEMPERATURES (p. 60–68)

Ratna Kartikasari
Institut Teknologi Nasional Yogyakarta, Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta, Indonesia
ORCID: https://orcid.org/0000-0001-8859-3258

Adi Subardi
Institut Teknologi Nasional Yogyakarta, Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta, Indonesia
ORCID: https://orcid.org/0000-0003-0867-3624

Andy Erwin Wijaya
Institut Teknologi Nasional Yogyakarta, Caturtunggal, Depok, Sleman, Daerah Istimewa Yogyakarta, Indonesia
ORCID: https://orcid.org/0000-0002-3613-3935

This research is focused on increasing the reliability of Fe-11Al-Mn by combining the properties of Mn and the superiorility of Fe-Al-C under cryogenic temperature. Three Fe-11Al-Mn alloys with compositions of 15 wt % Mn (F15), 20 wt % Mn (F20), and 25 wt % Mn (F25) were investigated. The cryogenic process uses liquid nitrogen in a temperature range of 0–196 °C. Hardness testing using the Vickers method and SEM was used to analyze the microstructure. X-ray diffraction (XRD) testing was conducted to ensure the Fe-11Al-Mn alloy phase and corrosion testing was carried out using the three-electrode cell polarization method. With the addition of Mn, the Vickers hardness of the Fe-11Al-Mn alloy decreased from 331.50 VHN at 15 wt % to 297.91 VHN at 25 wt %. The value of tensile strength and fracture elongation values were 742.21 MPa, 35.3 % EI; 789.03 MPa, 36.1 % EI; and 894.42 MPa, 50.2 % EI, for F15, F20, and F25, respectively. An important factor for improving the performance of cryogenic materials is the impact mechanism. The resulting impact toughness increased by 2.85 J/mm² to 3.30 J/mm² for F15 and F25, respectively. The addition of the element Mn increases
the corrosion resistance of the Fe-11Al-Mn alloy. The lowest corrosion rate occurs at 25 % wt Mn to 0.016 mm/year. Based on the results, the F25 alloy has the highest mechanical and corrosion resistance of the three types of alloys equivalent to SS 304 stainless steel. The microstructure of Fe-11Al-Mn alloy was similar between before and after cryogenic temperature treatment, this condition showed that the microstructure did not change during the process. From the overall results, the Fa-11Al-Mn alloy is a promising candidate for material applications working at cryogenic temperatures by optimizing the Mn content.

Keywords: Fe-11Al-Mn, Microstructure, Mechanical characteristics, Impact, Corrosion resistance, Cryogenic temperature.

References

1. Qin, Y., Yang, H., Tong, L., Wang, L. (2021). Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals, 11 (7), 1101. doi: https://doi.org/10.3390/met11071101
2. Gao, L., Yang, L., Qian, S., Tang, Z., Qin, F., Wei, Q. et al. (2016). Cryosurgery would be An Effective Option for Clinically Localized Prostate Cancer: A Meta-analysis and Systematic Review. Scientific Reports, 6 (1). doi: https://doi.org/10.1038/srep27490
3. Tjong, S. C. (1986). Stress corrosion cracking behaviour of the duplex Fe-16Al-29Mn-0.4C alloy in 20% NaCl solution at 100°C. Journal of Materials Science, 21 (4), 1166–1170. doi: https://doi.org/10.1007/bf00553248
4. Kartikasari, R., Subhardt, A., Wijaya, A. E. (2021). Development of Fe-5Al-1C alloys for grinding ball. Eastern-European Journal of Enterprise Technologies, 11 (12 (109)), 29–35. doi: https://doi.org/10.15387/1729-4601.2021.225421
5. Shackleford, J. K. (1992). Introduction to Material Science for Engineers. New York: McMillan Publishing Company.
6. Zimmer, J. M., Bailey, W. D. (2006). Pat. No. US4865662A. Aluminium-manganese-iron stainless steel alloy. No. 164,655. declared: 03.03.1988; published: 12.09.1989. Available at: https://patentimages.storage.googleapis.com/7b/f1/c8/d968e628ccaeeb/US4865662.pdf
7. Frommeyer, G., Drewes, E. J., Engl, B. (2000). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Revue de Metallurgie, 97 (10), 1245–1253. doi: https://doi.org/10.1051/met:20001110
8. Baligidad, R. G., Prasad, V. V. S., Rao, A. S. (2007). Effect of Ti, W, Mn, Mo and Si on microstructure and mechanical properties of high carbon Fe–10–5 wt-%Al alloy. Materials Science and Technology, 23 (5), 613–619. doi: https://doi.org/10.1179/143722487x158631
9. Heo, Y.-U., Song, Y.-Y., Park, S.-J., Bhadesia, H. K. D. H., Suh, D.-W. (2012). Influence of Silicon in Low Density Fe-C-Mn-Al Steel. Metallurgical and Materials Transactions A, 43 (6), 1731–1735. doi: https://doi.org/10.1007/s11661-011-1149-x
10. Kim, H., Suh, D.-W., Kim, N. J. (2015). Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Science and Technology of Advanced Materials, 16 (1), 014205. doi: https://doi.org/10.1088/1468-6996/14/1/014205
11. Charles, J., Berghézan, A. (1981). Nickel-free austenitic steels for cryogenic applications: The Fe-23% Mn-3% Al-0.2% C alloys. Cryogenics, 21 (5), 278–280. doi: https://doi.org/10.1016/0011-2275(81)90003-5
12. Charles, J., Berghézan, A., Lutts, A. (1984). High manganese–aluminium austenitic steels for cryogenic applications, some mechanical and physical properties. Le Journal de Physique Colloques, 45 (C1), C1-619–C1-623. doi: https://doi.org/10.1051/jphyscol:19841126
13. Kim, Y. G., Park, Y. S., Han, J. K. (1985). Low temperature mechanical behavior of microalloyed and controlled-rolled Fe-Mn-Al-C-X alloys. Metallurgical Transactions A, 16 (9), 1689–1693. doi: https://doi.org/10.1007/bf02663026
14. Sohn, S. S., Hong, S., Lee, J., Suh, B.-C., Kim, S.-K., Lee, B.-J. et. al. (2015). Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Materialia, 100, 39–52. doi: https://doi.org/10.1016/j.actamat.2015.08.027
15. Yan, N., Di, H., Misra, R. D. K., Huang, H., Li, Y. (2019). Enhancing austenite stability in a new medium-Mn steel by combining deep cryogenic treatment and intercritical annealing: An experimental and theoretical study. Materials Science and Engineering: A, 753, 11–21. doi: https://doi.org/10.1016/j.msea.2019.01.026
16. Zhirafar, S., Rezaeian, A., Pugh, M. (2007). Effect of cryogenic treatment on the mechanical properties of 4340 steel. Journal of Materials Processing Technology, 186 (1-3), 298–303. doi: https://doi.org/10.1016/j.jmatprot.2006.12.046
17. Kim, H., Ha, Y., Kwon, K. H., Kang, M., Kim, N. J., Lee, S. (2015). Interpretation of cryogenic-temperature Charpy impact toughness by microstructural evolution of dynamically compressed specimens in austenitic 0.4C–(22–28)Mn steels. Acta Materialia, 87, 332–343. doi: https://doi.org/10.1016/j.actamat.2014.11.027
18. Czarkowski, P., Krawczyńska, A. T., Brynk, T., Nowacki, M., Lewandowska, M., Kurzydłowski, K. J. (2014). Cryogenic strength and microstructure of a hydrostatically extruded austenitic steel I:429 (AISI 316LN). Cryogenics, 64, 1–4. doi: https://doi.org/10.1016/j.cryogenics.2014.07.014
19. Koyama, M., Lee, T., Lee, C. S., Tsuzaki, K. (2013). Grain refinement effect on cryogenic tensile ductility in a Fe–Mn–C twinning-induced plasticity steel. Materials & Design, 49, 234–241. doi: https://doi.org/10.1016/j.matdes.2013.01.061
20. Ren, J., Chen, Q., Chen, J., Liu, Z. (2020). Enhancing strength and cryogenic toughness of high manganese TWIP plate by double strengthened structure design. Materials Science and Engineering: A, 786, 139397. doi: https://doi.org/10.1016/j.msea.2020.139397
21. Koga, N., Nameki, T., Umezawa, O., Tschan, V., Weiss, K.-P. (2011). Tensile properties and deformation behavior of ferrite and austenite duplex stainless steel at cryogenic temperatures. Materials Science and Engineering: A, 801, 140442. doi: https://doi.org/10.1016/j.msea.2020.140442
22. Nadig, D. S., Bhat, M. R., Pavan, V. K., Mahishi, C. (2017). Effects of Cryogenic Treatment on the Strength Properties of Heat Resistant Stainless Steel (07X16H6). IOP Conference Series: Materials Science and Engineering, 229, 012014. doi: https://doi.org/10.1088/1757-899x/229/1/012014
23. Kim, J.-S., Joo, J. B., Jung, J. E., Um, K.-K., Chang, Y. W. (2014). Effect of deformation induced transformation of ε-martensite on ductility enhancement in a Fe-12 Mn steel at cryogenic temperatures. Metals and Materials International, 20 (1), 41–47. doi: https://doi.org/10.1007/s12540-014-1010-4
24. Baligidad, R. G., Prasad, K. S. (2007). Effect of Al and C on structure and mechanical properties of Fe–Al–C alloys. Materials Science and Technology, 23 (1), 38–44. doi: https://doi.org/10.1179/143722487x158389
25. Honeycombe, R. W. K., Bhadesia, H. K. D. (1995). Steels microstructure and properties. London: Edward Arnold. Available at: https://www.worldcat.org/title/steels-microstructure-and-properties/oclc/33045504
26. Zuoan, L., Brechet, Y. (2009). Microstructure Evolution in Fe-Al-Mn-C lightweight alloys. Laboratory of Science and Engineering of Materials and Processes (SIMAP). Grenoble Institute of Technology (INGP).
27. Rigaud, V., Daloiz, D., Drillet, J., Perlaide, A., Mangu, P., Lesoult, G. (2007). Phases Equilibrium Study in Quaternary Iron-rich Fe-Al-Mn-
This paper considers a possibility to obtain high-quality butt junctions of bimetallic sheets from steel clad with a layer of titanium, with the use of barrier layers. The task that was tackled related to preventing the formation of Ti-Fe intermetallic phases (IMPs) between the steel and titanium layer. The barrier layers (height ~0.5 mm) of vanadium and copper alloys were surfaced by arc techniques while minimizing the level of thermal influence on the base metal. To this end, plasma surfacing with a current-driving wire and pulsed MAG surfacing were used. The obtained samples were examined by methods of metallography, X-ray spectral microanalysis, durometric analysis. It has been established that when a layer of vanadium is plated on the surface of titanium, a defect-free structure of variable composition (33.87–65.67) wt % Ti with (33.93–45.54) wt % V is formed without IMPs. The subsequent surfacing of steel on a layer of vanadium leads to the formation of eutectics (hardness up to 5,523 MPa) in the fusion zone, as well as to the evolution of cracks. To prevent the formation of IMPs, a layer of bronze CuBe2 was deposited on the surface of vanadium. The formed layer contributed to the formation of a grid of hot cracks. In the titanium-vanadium-copper transition zones (0.1–0.2 mm wide), a fragile phase was observed. To eliminate this drawback, the bronze CuBe2 was replaced with bronze CuSi3Mn1; a defect-free junction was obtained. When using a barrier layer with CuSi3Mn1, a defect-free junction was obtained (10–30 % Ti; 18–50 % Fe; 5–25 % Cu). The study reported here makes it possible to recommend CuSi3Mn1 as a barrier layer for welding bimetallic sheets “steel–titanium”. One of the applications of the research results could be welding of longitudinally welded pipes of main oil and gas pipelines formed from bimetallic sheets of steel clad with titanium.

Keywords: steel–titanium bimetal, barrier layer, structure, intermetallic phases, interface boundary.

References

1. Torkaman, M., Danesh-Mahes, H., Mohskiar, M. M., Hosseini, M. (2019). Microstructure, mechanical properties and formability of CP-Ti/low carbon steel bimetal sheet fabricated by explosive welding. Materials Research Express, 6 (7). 076542. doi: https://doi.org/10.1088/2053-1591/ab15b8

2. Xie, M.-X., Shang, X.-T., Zhang, L.-J., Bai, Q.-L., Xu, T.-T. (2018). Interface Characteristic of Explosive-Welded and Hot-Rolled TA1/X65 Bimetallic Plate. Metals, 8 (3). 159. doi: https://doi.org/10.3390/met8030159

3. De, C. P. (1993). Use of Titanium and its Alloys in Sea-Water Service. High Temperature Materials and Processes, 11 (1-4). 61–96. doi: https://doi.org/10.1515/htmp.1993.11.1-4.61

4. Pasang, T., Pratama, S., Krakum, M., Misiolek, W., Aziziderouei, M., Mizutani, M., Kamiya, O. (2018). Characterisation of Intermetallic Phases in Fusion Welded Commercially Pure Titanium and Stainless Steel 304. Metals, 8 (11). 863. doi: https://doi.org/10.3390/met8110863

5. Greveich, S. M.; Zamkov, V. N. (Ed.) (1990). Spravochnik po svarke metallov. Kyiv: Naukova dumka, 512.

6. Li, W. (2017). Ti-Fe intermetallics analysis and control in joining titanium alloy and stainless steel by laser metal deposition. Missouri University of Science and Technology, 24. Available at: https://scholarsmine.mst.edu/masters_theses/7836/

7. Krivitsun, I. V., Khaskin, V. Y., Kozhik, V. N., Ziyi, L. (2015). Industrial application of hybrid laser-arc welding (Review). The Paton Welding Journal, 7, 41–46. doi: https://doi.org/10.15407/tpw2015.07.07

8. Lysynshyn, A. V. (2019). Application of ultraline nickel powder for diffusion joining of titanium to stainless steel. The Paton Welding Journal, 4, 19–22. doi: https://doi.org/10.15407/tpw2019.04.04

9. Bryzgalin, A. G., Pekar, E. D., Shlenko, P. S., Shirkov, G. D., Badaev, Y. A., Sabirov, B. M. (2017). Application of explosion welding for manufacture of trermal intermetallic transition pieces of cryomodules of
Abstract and References. Materials science

linear collider. The Paton Welding Journal, 12, 23–28. doi: https://doi.org/10.15407/tpwj2017.12.04
10. Turyk, E., Rybtsev, I. A. (2015). Experience in application of the european standards for qualification of surface machining procedures. The Paton Welding Journal, 6, 5–9. doi: https://doi.org/10.15407/tpwj2015.06.01
11. Babu, N. K., Talari, M. K., Zheng, S., Dayou, P., Jerome, S., Muthupandi, V. (2014). Arc Welding. Handbook of Manufacturing Engineering and Technology, 593–615. doi: https://doi.org/10.1007/978-1-4471-4670-4_53
12. Gladkii, P. V., Perepletchikov, E. F., Ryabtsev, I. A. (2007). Plasma surface welding. International Journal of Surface Engineering, 21 (9), 685–693. doi: https://doi.org/10.1080/09507110701631141
13. Choe, W., Jeong, C., Park, J. (2020). Application of Plasma Arc Welding for Anti-Corrosive Material with High Molybdenum Content. Journal of Welding and Joining, 38 (3), 248–253. doi: https://doi.org/10.5781/jwj.2020.38.3.3
14. Matsui, H., Suzuki, H. (1998). Reduction of spatter in high-speed pulsed MAG welding. Welding International, 12 (3), 180–185. doi: https://doi.org/10.1080/09507119809448471
15. V (Vanadium) Binary Alloy Phase Diagrams (2016). Alloy Phase Diagrams, 620–620. doi: https://doi.org/10.31399/asm.hb.v03.a0006216
16. Korzhik, Y., Khaskin, V., Voitenko, O., Sydorets, V., Dolianovskaya, O. (2017). Welding Technology in Additive Manufacturing Processes of 3D Objects. Materials Science Forum, 906, 121–130. doi: https://doi.org/10.4028/www.scientific.net/MSF.906.121
17. Zhang, Q. L., Fan, C. L., Lin, S. B., Yang, C. L. (2014). Novel soft variable polarity plasma arc and its influence on keyhole in horizontal welding of aluminium alloys. Science and Technology of Welding and Joining, 19 (6), 493–499. doi: https://doi.org/10.1177/1362171814553021

DOI: 10.15587/1729-4061.2021.243374 REGULARITIES IN THE FORMATION OF WEAR-RESISTANT COATINGS ON STEEL SAMPLES WHEN MACHINING THEM WITH ELECTRICAL DISCHARGE (p. 83–90)

Dmytro Marchenko
Mykolaiv National Agrarian University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0002-0808-2923

Viacheslav Kurepin
Mykolaiv National Agrarian University, Mykolaiv, Ukraine
ORCID: https://orcid.org/0000-0003-4383-6177

This paper considers the technology of electrical discharge machining of steel friction pairs and reports the results of experimental studies. Analysis of the experimental studies has shown that increasing the “anode-cathode” voltage leads to a sharp decrease in the micro-hardness of the surface layer. The study has also made it possible to determine the characteristic dimensions of the structural elements, the height parameters of surface roughness. The elemental composition of the resulting surface of a steel 15KHGN2TA sample differs from the composition of coatings and the surface layers of samples modified by electrical discharge machining involving various electrodes. Under the “anode-cathode” system operation mode, a thin layer of coating with a stable modified structure forms on the surface of the cathode due to dissipative processes. It is shown that the height of surface irregularities on sections after friction is higher than on the surface sections outside the friction flow, which is associated with the formation of a friction transfer film on the samples’ surface. It was established that the interaction of friction of steel samples treated by electrical discharge machining forms a thin film on the surface of friction of steel samples, which leads to a change in the relief of surfaces with an increase in the height of the micro-protrusions, as well as the structure of the transfer film in the direction of sliding. The effect of machining steel surfaces by electrical discharge on the wear resistance of metal-polymer tribosystem was established. The implementation of the devised technology could provide a significant increase in the wear resistance of metal-polymer tribojunctions.

Keywords: alloying electrode, wear resistance of metal polymers, tribobuinetion, electrical discharge machining, steel modification.

References
1. Alimbaeva, B. Sh., Marchenko, D. D. (2009). Poverhnostnoe upravlenie staliy’nych detal’yakh s pomoshch’yu tekhnologii elektroiskrovogo legirovaniya. Povyshenie nadezhnosti i prochnosti detal’i pri remonte s vnedreniem perspektivnykh metodov uprochneniya: materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii, 8 (69), 154–178.
2. Bayati, M. R., Molari, R., Jahanghori, K. (2011). Surface alloying of carbon steels from electrolytic plasma. Metal Science and Heat Treatment, 53 (1), 91–94. doi: https://doi.org/10.1007/s11041-011-9347-3
3. Bunshah, F. (2001). Handbook of Hard Coatings: Deposition Technologies, Properties and Applications. William Andrew, 560.
4. Kanayev, A. T. (2008). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 230 (1–2), 213–219. doi: https://doi.org/10.1016/j.wear.2010.10.035
5. Meletis, E. I., Nie, X., Wang, F. L., Jiang, J. C. (2002). Electrolytic plasma processing for cleaning and metal-coating of steel surfaces. Surface and Coatings Technology, 150 (2–3), 246–256. doi: https://doi.org/10.1016/s0257-8972(01)01521-3
6. Newbery, A. P., Grant, P. S. (2009). Arc Sprayed Steel: Microstructure and Fatigue Behavior in Severe Substrate Features. Journal of Thermal Spray Technology, 18 (2), 256–271. doi: https://doi.org/10.1007/s11666-009-9360-y
7. Mazhyn, S., Laila, Z., Michael, S. (2012). Electrolytic-plasma cementation influence of regimes on phase structure and steel 30CrMnSiV hardening. 2012 7th International Forum on Strategic Technology (IFOST). doi: https://doi.org/10.1109/ifost.2012.6357723
8. Ulamitsky, V., Shetser, A., Zlobin, S., Smurov, I. (2011). Computer-Controlled Detonation Spraying: From Process Fundamentals Towards Advanced Applications. Journal of Thermal Spray Technology, 20 (4), 791–801. doi: https://doi.org/10.1007/s11666-011-9649-6
9. Witke, T., Schuelke, T., Schultrich, B., Sienroth, P., Vetter, J. (2000). Comparison of filtered high-current pulsed arc deposition (p-HCA) with conventional vacum arc methods. Surface and Coatings Technology, 126 (1), 81–88. doi: https://doi.org/10.1016/s0257-8972(00)00544-2
10. Verokhin, A. L., Nie, X., Leyland, A., Matthews, A., Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122 (2–3), 73–93. doi: https://doi.org/10.1016/s0257-8972(99)00144-7
11. Lewis, S. R., Lewis, R., Olofsson, U. (2011). An alternative method for the assessment of railroad track fracture. Wear, 271 (1-2), 62–70. doi: https://doi.org/10.1016/j.wear.2010.10.035
12. Lewis, S. R., Lewis, R., Richards, P., Buckley-Johnstone, L. E. (2014). Investigation of the isolation and frictional properties of hydrophobic products on the rail head, when used to combat low adhesion. Wear, 314 (1-2), 213–219. doi: https://doi.org/10.1016/j.wear.2013.11.024
13. Blunsh, B. (2013). Introduction to Tribology. John Wiley & Sons. doi: https://doi.org/10.1002/9781118053239
14. Zaspa, Y., Dykha, A., Marchenko, D., Matiukh, S., Kukurudzyak, Y. (2020). Exchange interaction and models of contact generation of disturbances in tribosystems. Eastern-European Journal of Enterprise Technologies, 4 (5 (106)), 25–34. doi: https://doi.org/10.15587/1729-4061.2020.209927
15. Dykha, A., Marchenko, D., Artyukh, V., Zubiekchina-Khiaiat, O., Kurepin, V. (2018). Study and development of the technology for hardening rope blocks by reeling. Eastern-European Journal of Enterprise Technologies, 2 (1 (92)), 22–32. doi: https://doi.org/10.15587/1729-4061.2018.126196
16. Butakov, B. I., Marchenko, D. D. (2013). Promoting contact strength of steel by rolling. Journal of Friction and Wear, 34 (4), 308–316. doi: https://doi.org/10.3103/s106836661304003x
17. Marchenko, D. D., Dykha, A. V., Artyukh, V. A., Matvyeeva, K. S. (2020). Studying the Tribological Properties of Parts Hardened by Rollers during Stabilization of the Operating Rolling Force. Journal of Friction and Wear, 41 (1), 58–64. doi: https://doi.org/10.3103/s1068366620010122
18. Raskin, L. G., Seraya, O. V. (2008). Nechetkaya matematika. Kharkiv: Parus, 352.
19. Hartman, K., Letskiy, E., Shefer, V. et al. (1977). Planirovanie eksperimenta v ishledovaniie tekhnologicheskih protsessov. Moscow: Mir, 552.
20. Mezrin, A. M. (2009). Determining local wear equation based on friction and wear testing using a pin-on-disk scheme. Journal of Friction and Wear, 30 (4), 242–245. doi: https://doi.org/10.3103/s1068366609040035
21. Togawa, K., Arai, S., Uwatoko, M. (2012). Influence of Traction Sheave P.C.D. Difference on Sheave and Rope. The Proceedings of the Elevator, Escalator and Amusement Rides Conference, 2011, 31–34. doi: https://doi.org/10.1299/jsmeearc.2011.31
22. Dykha, A., Marchenko, D. (2018). Prediction the wear of sliding bearings. International Journal of Engineering & Technology, 7 (2 (23)), 4. doi: https://doi.org/10.14419/ijet.v7i2.23.11872
23. Ryu, J. B., Chae, Y. H., Kim, S. S. (2005). A Fundamental Study of the Tribological Characteristics of Sheave Steel against a Wire Rope. Key Engineering Materials, 297-300, 1382–1387. doi: https://doi.org/10.4028/www.scientific.net/kem.297-300.1382
24. Erdonmez, C., Imrak, C. (2009). Modeling and numerical analysis of the wire strand. Journal of Naval Science and Engineering, 5 (1), 30–38. Available at: https://dergipark.org.tr/tr/download/article-file/105285
Анотацiї. Materials science

DOI: 10.15587/1729-4061.2021.242503
ВИЯВЛЕННЯ ОСОБЛИВОСТЕЙ ФОРМУВАННЯ СТРУКТУРИ КОМПОЗИТІВ НА ОСНОВІ СИНТЕЗОВАНИХ НАНОПОРОШКІВ ДЮКСИДУ ЦИРКОНІЮ (с. 6–19)
Е. С. Геворкян, В. П. Нерубацький, В. О. Чишкала, О. М. Морозова

Розглянуто особливості формування мікроструктури композитів на основі синтезованих хімічним способом методом розкладу з фторидних солей нанопорошків діоксиду цирконію. При цьому було використано фтороводневу кислоту, концентровану азотну кислоту, водний розчин аміаку, металевий цирконій, полівініловий спирт. Встановлено, що зменшення пористості нанопорошків в процесі спікання є головним завданням на шляху формування високощільних матеріалів.

Проведено аналіз різних вихідних нанопорошків, їх морфології та особливостей спікання методом гарячого пресування з прямим пропусканням електричного струму. Розглянуто особливості отримання композитів на їх основі з добавками нанопорошків Аl₂O₃ при використанні методу електроспікання. Показано, що збільшення вмісту нанодобавок оксиду алюмінію призводить до підвищення міцності і тріщиності зразків за рахунок одночасного стискання аномально росту зерен та формування більш дрібної структури з високим вмістом тетрагональної фази.

Досліджено вплив режимів спікання на формування мікроструктури нанопорошків діоксиду цирконію з різним вмістом добавок олії алюмінію. Електричний струм сприяє поверхневій активності нанопорошків, а його змінне значення – частковому дробленню агломерованих зерен, таким чином впливаючи на структуроутворення композитів.

Визначено фізико-механічні властивості отриманих зразків, оптимальні склади сумішей та можливості поліпшення деяких параметрів. Встановлено, що для отримання композиційних матеріалів з високими фізико-механічними властивостями нанопорошки дюксиду цирконію, отримани методом розкладання з фторидних солей, ацетоном підходять. Вони конкурентоспроможні з імпортними аналогами та дозволяють отримати тріщиностість 7,8 МПа·m⁰/₂ та міцність 820 МПа.

Ключові слова: діоксид цирконію, композиційні матеріали, консолідація, мікроструктура, оксид алюмінію, спікання, тріщиностість.

DOI: 10.15587/1729-4061.2021.238507
АНАЛІЗ МЕХАНІЧНОЇ МІЦНОСТІ ВОЛОКНА ЦУКРОВОЇ ПАЛЬМИ РІЗНОЇ МАСОВОЇ ЧАСТКИ В ЯКОСТІ АРМУЮЧОГО МАТЕРІАЛУ ПОЛІПРОПІЛЕН-ЕЛАСТОМЕРНОЇ МАТРИЦІ ГІБРИДНОГО КОМПОЗИТУ (с. 20–29)
I Gusti Ngurah Nitya Santhiarsa, I Gusti Ayu Agung Praharsini, I Gusti Agung Alit Suryawati, Pratikto

В даний час доступність поліпропілену, еластомеру і волокна цукрової Пальми (Arenga pinnata) дуже велика, що підвищує потенціал розробки нових композиційних матеріалів, що володіють хорошими властивостями і характеристиками. Композити, як правило, являють собою новий матеріал, що складається з двох або більше різних матеріалів з метою отримання нового матеріалу, що володіє кращими властивостями, ніж складові матеріали. У цьому дослідженні пластик поліпропілен (ПП) і еластомер використовували в якості матриці композиту, армованої волокном цукрової пальми (Arenga pinnata). Метою даного дослідження було визначити значення міцності на розрив, ударну в’язкість і міцність на вигин композитів з масовою часткою 20% (80:20), 30% (70:30) і 40% (60:40). За результатами досліджень гібридних композитів з поліпропілену і армованих волокнами еластомерів, найменше значення міцності на розрив 1,153 МПа отримали композити з масовою часткою 20% (80:20), в той час як найбільше значення 2,613 МПа отримали композити з масовою часткою 40% (60:40). Найменше значення деформації при розтяганні 0,0049 отримали композити з масовою часткою 20% (80:20), найбільше значення 0,0067 було виявлено в композитах з масовою часткою 40% (60:40). За результатами досліджень найменше значення 1,7778 МПа отримали композити з масовою часткою 20% (80:20), в той час як найбільше значення 4,8867 МПа отримали композити з масовою часткою 40% (60:40). Найменша ударна в’язкість склала 17649,97 кДж/мм², найбільша – 4528.234 кДж/мм².

Ключові слова: гібридний композит, волокно цукрової Пальми (Arenga pinnata), поліпропілен, еластомер, механічні властивості.

DOI: 10.15587/1729-4061.2021.243149
РОЗРОБКА І ВЕРИФІКАЦІЯ МЕХАНІЧНИХ ХАРАКТЕРИСТИК КОМПОЗИЦІЙНОГО МАТЕРІАЛУ, ВИГОТОВЛЕНОГО З ТЕРМОПЛАСТИЧНОЇ МАТРИЦІ І КОРОТКОГО СКЛОВОЛОКНА (с. 30–38)
Madina Isametova, Gazel Abilezova, Nikolay Dishovsky, Petar Velev

У роботі представлені результати комп’ютерного моделювання та прогнозування механічних властивостей композиційних матеріалів з поликарбонатною матрицею, заповнено короткими склівними включеннями. На мікрорівні в програми
DIGIMAT (Франція) вивчено вплив обсягу включення на механічні властивості створюваного композиту на основі полікарбонатної матриці. Було встановлено, що при співвідношенні розмірів включення в діапазоні 468÷60 частинки мають гольчасту форму, матеріал з такими включеннями має більшу висоту між міцності і модуль пружності, ніж при коефіцієнті форми меншо 50. Також були визначені компоненти тензору орієнтації волокон, за яких значення комп’ютерного моделювання добре узгоджуються з даними експериментів. Вивчені вплив розміру сітки кінцевих елементів на характеристики композиту на макрорівні, надано рекомендації щодо вибору розміру зовні шару кінцевого елемента. Відповідність комп’ютерних моделей було підтверджено результатами натурних випробувань. У роботі представлені результати випробувань плоских зразків, виготовлених за технологією литья під тиском. Механічні випробування проводилися на трьох варіантах зразків, виготовлених з композіційного матеріалу на основі полікарбонатної матриці з включеннями 10 %, 20 % і 30 %. Розбіжність між експериментальними і комп’ютерними результатами для зразків з вмістом коротких рубаних відрізків волокон 10 %, 20 % пояснюється впливом технологічних факторів на властивості матеріалу на макрорівні.

Проведені дослідження дозволили розробити методику комп’ютерного моделювання, що застосовується на етапі створення полімерних композитів на основі термопластичних матриць з короткими скляними включеннями.

Ключові слова: композиційний матеріал, полікарбонат, коротке скловолокно, DIGIMAT, модуль пружності.

DOI: 10.15587/1729-4061.2021.242853

ДОСЛІДЖЕННЯ ФІЗІКО-ХІМІЧНИХ ХАРАКТЕРИСТИК ЕЛЕКТРОХРОМНИХ ПІЛЮК Ni(OH)2-ПВС НА FTO КІПЛІ ПРИ РІЗНИЙ ТРИВАЛОСТІ ОСАДЖЕННЯ (с. 39‒46)

В. А. Коток, В. Л. Коваленко, Р. К. Нафєєв, В. В. Вербицький, О. С. Мельник, І. Л. Плаксієнко, А. А. Кочерга, Н. П. Макарченко

Використання electroхромних елементів в «розумних» вікнах веде до значної економії електроенергії необхідної для охолодження приміщень. Проте, висока вартість цих пристроїв не дозволяє широко використовувати технологію. Оскільки вартість визначається витратами вакуумними методами нанесення, розробка інших більш дешевих методів нанесення ковзань електрохромного елементу актуальна.

Було досліджено аспекти альтернативного вакуумним методами формування – катодного темплатного електроосадження на електрохромному шару на їх фізико-хімічні характеристики зокрема на оптичні і електрохімічні властивості. Осадження проводили на схему з нанесеним оксидом олова доповненим щелочевим розчином. Тривалість осадження була обрана рівною 5, 10, 20, 40, 60 і 80 хвилин.

В результаті проведення експериментів було показано, що оптимальною тривалістю осадження при вибраних умовах формування electroхромного шару є інтервал від 5 до 20 хвилин включно. Тривалість осадження в 40 хвилин не давала вигріву в оптичних характеристиках, а тривалість від 60 і 80 хвилин відрізнялася більш високою електрохімічною та оптичною ефективністю, яка змінювалася залежно від тривалості осадження.

Ключові слова: electroхроомізм, електроосадження, гідроксид нікелю, полівініловий спирт, тривалість осадження, товщина плівки.

DOI: 10.15587/1729-4061.2021.243179

РОЗРОБКА ПРОЦЕДУРІ ІДЕНТИФІКАЦІЇ ІЮВЕЛІРНИХ СПЛАВІВ БІЛОГО КОЛЬОРУ НА ОСНОВІ СРІБЛА ТА ПЛАТИНИ ЩЕДРІЙ КОРОБКОВІ З РОЗУМІНІ СПІЛЬНОСТІ ІЩЕДРЯ КОРОБКОВІ ПОДАРУНКИ (с. 47‒59)

Т. М. Артюх, І. В. Григоренко, А. С. Тернова, С. В. Ягелюк, О. М. Верінікін, М. І. Чернавка

Розглянуто процедуру ідентифікації білих ювелірних сплавів на основі дорогоцінних металів, визначення срібла, платини та металів платинової групи із різним вмістом легувачів компонентів шляхом випробування на пробірному камені та методом рентгенфлуоренцентного аналізу. Існує вміст компоненту відповідно до проби срібла та платини в ювелірних сплавах більше кольору різного компонентного складу вимогам нормативної документації та процедурі їх ідентифікації.

Встановлено, що величина проби срібла у дорогоцінних сплавах системи СрМ, СрЦМ, визначена за допомогою реактиву «Біхромат калію» на пробірному камені, залежить від прояву контрастності якісної реакції від стандартного зразка (пробірного кольора). Присутність у срібних сплавах таких домішок, як цинк, кадмій, нікель, золото, платини та інші, збільшує похибку визначення проби срібла та утворює інший колір відтінок.
Доведено, що випробування срібних сплавів на пробірному камені азоткислим сріблом ефективне лише для систем СрМ. Наявність цинку в срібних сплавах 925 проби візуально збільшує інтенсивність кольору осаду, що свідчить про більш високу завищену пробу.

Встановлено, що ідентифікація вмісту дорогоцінних сплавів на основі платини на наявність лігатурних компонентів здіїснюється реактивом «Йодистий калій» при

Розглянуто технологію електроерозійної обробки сталевих пар тертя та представлено результати експериментальних досліджень. Аналіз експериментальних досліджень показав, що збільшення напруги «анод-катод» призводить до різкого зниження електроерозійної обробки сталевих пар тертя.

Ключові слова: біметал сталь-титан, бар’єрний прошарок, структура, інтерметалідні фази, границя розділу.

ДОИ: 10.15587/1729-4061.2021.243374

**ЗАКОНОМІРНОСТІ ФОРМУВАННЯ ЗНОСОСТІЙКИХ ПОКРИТТІВ СТАЛЕВИХ ЗРАЗКІВ ЗА ДОПОМОГОЮ ІХ ЕЛЕКТРОЕРОЗІЙНОЇ ОБРОБКИ (c. 83–90)

Д. Д. Марченко, В. М. Курепін

Розглянута технологія електроерозійної обробки сталевих пар тертя та представлено результати експериментальних досліджень. Аналіз експериментальних досліджень показав, що збільшення напруги «анод-катод» призводить до різкого зниження електроерозійної обробки сталевих пар тертя.
ження мікротвердості поверхневого шару. Дослідження також дозволило визначити характерні розміри елементів конструкції, параметри висоти шорсткості поверхні. Елементний склад вихідної поверхні зразка зі сталі 15ХГН2ТА відрізняється від складу покриттів та поверхневих шарів зразків, модифікованих електроерозійною обробкою різними електродами. У режимі роботи системи «анод-катод» на поверхні катода внаслідок дисипативних процесів утворюється тонкий шар покриття стійкої модифікованої структури. Показано, що висота поверхневих нерівностей на ділянках після тертя вища, ніж на ділянках поверхні поза їх тертя, що пов’язано з утворенням на поверхні зразків плівки перенесення тертя. Встановлено, що взаємодія тертя зразків сталі, оброблених електроерозійним методом, утворює тонку плівку на поверхні тертя зразків сталі, що призводить до зміни рельєфу поверхні збільшенням висоти мікровиступів та структурування переносної плівки в напрямку ковзання. Встановлено вплив електроерозійної обробки сталевих поверхонь на зносостійкість металополімерної трибосистеми. Впровадження розробленої технології забезпечить істотне підвищення зносостійкості металополімерних трибоспріжижень.

Ключові слова: легуючий електрод, зносостійкість металополімерів, трибоспряження, електроерозійна обработка, модифікація сталі.