ON THE NUCLEAR DIMENSION OF CERTAIN
UCT-KIRCHBERG ALGEBRAS

DOMINIC ENDERS

Abstract. We give a partial answer to the question for the precise value of
the nuclear dimension of UCT-Kirchberg algebras raised by W. Winter and J.
Zacharias in [WZ10]. It is shown that every Kirchberg algebra in the UCT-
class with torsion free K_1-group has nuclear dimension 1.

1. Introduction

In 2010, Winter and Zacharias introduced the notion of nuclear dimension for
C^*-algebras as a non-commutative analogue of topological covering dimension
([WZ10]). Since then it has clearly become one of the most important concepts
in the Elliott classification program, i.e. the classification of simple, nuclear
C^*-algebras by K-theoretic data. In particular, finite-dimensionality with respect
to this notion of dimension constitutes one of the fundamental regularity properties
for the C^*-algebras in question. It is part of the Toms-Winter conjecture that in
this situation finite nuclear dimension is presumably equivalent to Z-stability and
therefore a necessary assumption in order to obtain classification by the Elliott
invariant. This conjecture received a great deal of attention and the equivalence
mentioned above has been partially verified ([SWW14], [Win12]). On the other
hand, large classes of simple, nuclear C^*-algebras with finite nuclear dimension
have been successfully classified by their Elliott invariant (e.g. [Lin11], [Win12]).

However, once a C^*-algebra having finite nuclear dimension belongs to a class
which is classified by some invariant, it is a natural question to ask for the precise
value of its dimension and how it can be read off from its invariant. In this paper
we study this question for the class of UCT-Kirchberg algebras, i.e. purely infini-
tive, simple, separable, nuclear C^*-algebras satisfying the UCT which are, due
to Kirchberg and Phillips, completely classified by their K-groups. In [WZ10], Winter
and Zacharias showed that all these algebras have nuclear dimension at most 5
and asked whether the precise value of their dimension is determined by algebraic
properties of their K-groups, such as torsion ([WZ10, Problem 9.2]). Here, we
give a partial answer to their question and give the optimal dimension estimate in
the absence of K_1-torsion. More precisely, we show that the nuclear dimension of
UCT-Kirchberg algebras with torsion free K_1-groups equals 1 (Theorem 4.1).

Our methods of proof used in the computation of the nuclear dimension differ
from the arguments in the original estimate by Winter and Zacharias in two essen-
tial ways. First, we do not make use of Cuntz-Pimsner algebras, as done in [WZ10],
but employ crossed product models for UCT-Kirchberg algebras which are provided
by the work of Rørdam ([Rør95]). Second, we do not construct completely positive
approximations for the identity map on a given Kirchberg algebra A directly. In-
stead, we study a certain family of homomorphisms $\iota_n: A \to M_n(A)$ and show that

Date: May 20, 2014.
2010 Mathematics Subject Classification. 46L35.

This work was supported by the SFB 878 Groups, Geometry and Actions and the Danish
National Research Foundation through the Centre for Symmetry and Deformation (DNRF92).
the ι_n can be approximated in a decomposable manner. While the error we have
to make in the approximation of each ι_n is bounded from below, the lower bound
will be small for large n. In a second step, we show how to combine the ι_n in order
to construct a homomorphism $A \to M_k(A)$ which admits decomposable approxi-
mations of the same quality as the ι_n, but in addition induces an isomorphism on
K-theory. By Kirchberg-Phillips classification, this map can be perturbed to the
identity map on A and by that provides suitable approximations for estimating the
nuclear dimension of A.

This paper is organized as follows: First, right now, we define certain matrix
embeddings for crossed products which are the main objects of study in this paper.

Definition 1.1. Let A be a C^*-algebra, $\alpha \in \text{Aut}(A)$ an automorphism and $A \rtimes_\alpha \mathbb{Z}$
the corresponding full crossed product. For $n \in \mathbb{N}, n \geq 2$, we let

$$\iota_n: A \rtimes_\alpha \mathbb{Z} \to M_n(A \rtimes_\alpha \mathbb{Z})$$

denote the embedding given by

$$a \mapsto \begin{pmatrix}
\alpha^{-1}(a) & 0 & \cdots & 0 \\
0 & \alpha^{-2}(a) & \cdots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \alpha^{-n}(a)
\end{pmatrix} \quad \text{and} \quad U \mapsto \begin{pmatrix}
0 & \cdots & \cdots & 0 & U^n \\
1 & \ddots & \ddots & 0 & 0 \\
0 & \ddots & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & 0
\end{pmatrix}$$

for $a \in A$ resp. for the unitary $U \in M(A \rtimes_\alpha \mathbb{Z})$ implementing the action α.

In section 2.1 we show that these maps ι_n admit completely positive approxima-
tions in an order zero fashion, at least up to an error which is small for large n.
The K-theory of these maps can be computed in many cases of interest, this is
done in section 3. A combination of these results yields the dimension estimate
for Kirchberg algebras in section 4. We finish with some remarks about possible
generalizations of the technique developed in this paper.

2. Decomposable approximations for ι_n

We want to study certain maps which admit completely positive approximations
of the same type as in the original definition of nuclear dimension in [WZ10]. In our
situation, however, we won’t be able to find approximations of arbitrary small error
(which would rather lead to a notion of nuclear dimension for maps). Therefore we
need to keep track of the precision of approximation that we can get for a given
map. This will be done using the following definition.

Definition 2.1. Let $\alpha: A \to B$ be a map between C^*-algebras A and B. Given
d $\in \mathbb{N}_0$, $\epsilon > 0$ and a finite subset \mathcal{G} of A, we say that α admits a piecewise
contractive, completely positive, d-decomposable (\mathcal{G}, ϵ)-approximation if there exists
(F, ψ, φ) such that F is a finite-dimensional C^*-algebra, and such that $\psi: A \to F$
and $\varphi: F \to B$ are completely positive maps satisfying

1. $\|((\varphi \circ \psi)(a) - \alpha(a))\| < \epsilon$ for all $a \in \mathcal{G}$;
2. ψ is contractive;
3. F decomposes as $F = F^{(0)} \oplus \cdots \oplus F^{(d)}$ such that $\varphi_{F^{(i)}}$ is a c.p.c. order
zero map for each $i = 0, \ldots, d$.
In this terminology, the notion of nuclear dimension for a C^*-algebra A, as defined by Winter and Zacharias in [WZ10], can be formulated as follows:

$$\dim_{\text{nuc}}(A) \leq d \iff \text{id}_A \text{ admits piecewise contractive, c.p., } d\text{-decomposable, } (G, \epsilon)\text{-approximations for all finite } G \subset A \text{ and all } \epsilon > 0.$$

We first note that the approximations of [2,1] for $^*\text{-homomorphisms}$ are well-behaved with respect to composition, orthogonal sum and approximate unitary equivalence. We collect some of these elementary permanence results in the following lemma.

Lemma 2.2. Let $^*\text{-homomorphisms } A \xrightarrow{\alpha} B \xrightarrow{\beta_1, \beta_2} C \xrightarrow{\gamma} D$ between C^*-algebras A, B, C, D, a finite subset $G \subset B$, $\epsilon > 0$ and $d \in \mathbb{N}_0$ be given. If both β_1 and β_2 admit piecewise contractive, completely positive, d-decomposable (G, ϵ)-approximations (F_i, ψ_i, φ_i), $i \in \{1, 2\}$, then the following holds:

1. The composition $\gamma \circ \beta_1$ admits a piecewise contractive, completely positive, d-decomposable (G, ϵ)-approximation.
2. For any α-preimage G' of G, the composition $\beta_1 \circ \alpha$ admits a piecewise contractive, completely positive, d-decomposable (G', ϵ)-approximation.
3. The orthogonal sum $\begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix} : B \to M_2(C)$ admits a piecewise contractive, completely positive, d-decomposable (G, ϵ)-approximation.
4. If $\beta_1 \sim_{a.a.} \delta$ for some $\delta : B \to C$, then δ admits a piecewise contractive, completely positive, d-decomposable (G, ϵ)-approximation.

Proof. We only name suitable approximating systems and leave the details to the reader. For (1) one chooses $(F_1, \psi_1, \gamma \circ \varphi_1)$, while for (2) $(F_1, \psi_1 \circ \alpha, \varphi_1)$ works.

For (3) consider $(F_1 \oplus F_2, \varphi_1 \oplus \psi_2, \begin{pmatrix} \varphi_1 & 0 \\ 0 & \varphi_2 \end{pmatrix})$ with respect to the decomposition $(F_1 \oplus F_2)^{(i)} = F_1^{(i)} \oplus F_2^{(i)}$. Given $\delta = \lim_{n \to \infty} \text{Ad}(U_n) \circ \beta_1$ in (4), one checks that the triple $(F, \psi_1, \text{Ad}(U_n) \circ \varphi_1)$ works for n sufficiently large. \hfill \square

Next, we apply a ‘cut and paste’-technique similar to the one used in [WZ10] section 7] to the maps $\iota_n : A \rtimes_{\alpha, \epsilon} \mathbb{Z} \to M_n(A \rtimes_{\alpha, \epsilon} \mathbb{Z})$ of Definition 1.1. This essentially reduces a decomposable approximation of ι_n to a decomposable approximation of the coefficient algebra A.

Lemma 2.3. Let a nuclear C^*-algebra A, an automorphism $\alpha \in \text{Aut}(A)$, a finite subset $G \subset A \rtimes_{\alpha, \epsilon} \mathbb{Z}$ and $\epsilon > 0$ be given. Then the following holds for the maps ι_n as defined in [7] For all sufficiently large n there exists a c.c.p. map $\psi_n : A \rtimes_{\alpha, \epsilon} \mathbb{Z} \to M_n(A)$ and two $^*\text{-homomorphisms } \Lambda_0^n, \Lambda_1^n : M_n(A) \to M_n(A \rtimes_{\alpha, \epsilon} \mathbb{Z})$ such that the diagram

\[
\begin{array}{ccc}
A \rtimes_{\alpha, \epsilon} \mathbb{Z} & \xrightarrow{\iota_n} & M_n(A \rtimes_{\alpha, \epsilon} \mathbb{Z}) \\
\downarrow{\psi_n} & & \downarrow{\Lambda_0^n + \Lambda_1^n} \\
M_n(A) & & \end{array}
\]

commutes up to ϵ on G, i.e. $\|\iota_n(x) - ((\Lambda_0^n + \Lambda_1^n) \circ \psi_n)(x)\| < \epsilon$ holds for all $x \in G$.

Proof. Assume $A \subseteq \mathcal{B}(H)$ for some Hilbert space H. By nuclearity of A we have $A \rtimes_{\alpha, \epsilon} \mathbb{Z} = A \rtimes_{\alpha, r} \mathbb{Z}$ ([BO05, Theorem 4.2.4]) and may therefore identify the crossed product with the C^*-subalgebra of $\mathcal{B}(l^2(\mathbb{Z}) \otimes H)$ generated by the operators

\[
\begin{align*}
\alpha(\delta_i \otimes \xi) &= \delta_i \otimes (\alpha^{-t}(a))(\xi), \quad a \in A \\
U(\delta_i \otimes \xi) &= \delta_{i+1} \otimes \xi
\end{align*}
\]
respectively by the ideal therein generated by A in the non-unital case.

Denote by P_n the projection onto the subspace $\ell^2(\{1,\ldots,n\}) \otimes H$. Compression by P_n gives a c.p.c. map from $A \rtimes_\alpha \mathbb{Z}$ to $M_n(A)$. We need to put suitable weights on the entries of the elements of $\{P_n x P_n\}_{x \in G}$. As in $[WZ10]$, this will be done by Schur multiplication (i.e. entrywise multiplication) with a suitable positive contraction $\kappa_n \in M_n(\mathbb{C})$. We choose

$$\kappa_n = \frac{1}{m+1} \begin{pmatrix}
1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 2 & \cdots & 2 & 2 & 2 & \cdots & 2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 2 & \cdots & m-1 & m-1 & m-1 & \cdots & 2 & 1 \\
1 & 2 & \cdots & m-1 & m & m & \cdots & 2 & 1 \\
1 & 2 & \cdots & m-1 & m & m & \cdots & 2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 2 & \cdots & 2 & 2 & 2 & \cdots & 2 & 1 \\
1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & 1
\end{pmatrix}$$

if $n = 2m$ is even, respectively

$$\kappa_n = \frac{1}{m+1} \begin{pmatrix}
1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & 1 \\
1 & 2 & \cdots & 2 & 2 & 2 & \cdots & 2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 2 & \cdots & m & m & m & \cdots & 2 & 1 \\
1 & 2 & \cdots & m & m & m & \cdots & 2 & 1 \\
1 & 2 & \cdots & m & m & m & \cdots & 2 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 2 & \cdots & 2 & 2 & 2 & \cdots & 2 & 1 \\
1 & 1 & \cdots & 1 & 1 & 1 & \cdots & 1 & 1
\end{pmatrix}$$

if $n = 2m + 1$ is odd. It is not hard to see that the map on $M_n(A)$ given by $y \mapsto \kappa_n * y$, where $*$ denotes Schur multiplication, is then in fact completely positive and contractive. Therefore, ψ_n defined as

$$\psi_n : A \rtimes_\alpha \mathbb{Z} \to M_n(A), \quad x \mapsto \kappa_n * (P_n x P_n)$$

is also a c.p.c. map.

Now let $j : M_n(A) \to M_n(A \rtimes_\alpha \mathbb{Z})$ be the canonical embedding. Using the unitary element

$$V := \begin{pmatrix}
0 & \cdots & \cdots & 0 & U^{n-1} \\
U^{-1} & \ddots & \vdots & \vdots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & U^{-1} & 0
\end{pmatrix} \in M_n(M(A \rtimes_\alpha \mathbb{Z})),$$

we consider the *-homomorphisms $\Lambda^0_n, \Lambda^1_n : M_n(A) \to M_n(A \rtimes_\alpha \mathbb{Z})$ given by $\Lambda^0_n = j$ and $\Lambda^1_n = \text{Ad} \left(V^m \right) \circ j$.

We may assume that the elements of G are of the form $x = a_x U^{k_x}$ for suitable contractions $a_x \in A$ and $k_x \in \mathbb{Z}$, let $K := \max_{x \in G} |k_x|$. We claim that, for $n > \frac{K}{2}$, the maps Λ^0_n, Λ^1_n and ψ_n defined above provide an approximation of ι_n as claimed.
For convenience we only consider the case of even n, the calculations for the odd case are essentially identical. Given $x = a U^k \in \mathcal{G}$ with $k \geq 0$, one checks that $t_n(x) - ((A_n^0 + A_n^1) \circ \psi_n) (x)$ equals

$$
\frac{1}{\left(\frac{n}{2} + 1\right)} \begin{pmatrix}
0 & 0 & \cdots & 0 & k \cdot I_k - \mu_k \\
0 & k \cdot I_k - \mu_k & 0 & 0 & 0 \\
0 & 0 & k \cdot I(\frac{n}{2} - k) & 0 & 0 \\
\end{pmatrix} \ast t_n(x)
$$

where

$$
\mu_k = \begin{pmatrix}
0 & 0 & \cdots & \cdots & 0 \\
0 & 1 & 0 & & \\
\vdots & 0 & 2 & \ddots & \\
& \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & 0 \\
\end{pmatrix}
\in M_k(\mathbb{C}),
$$

I_d is the $d \times d$ unit matrix and \ast denotes again Schur multiplication. Due to the special off-diagonal form of these elements, an entrywise norm estimate immediately shows

$$
\| t_n(x) - ((A_n^0 + A_n^1) \circ \psi_n) (x) \| \leq \frac{k}{\left(\frac{n}{2} + 1\right)} \| x \| \leq \frac{K}{n} < \epsilon.
$$

Next, we show that the maps t_n of 1.1 admit decomposable approximations in the sense of Definition 2.1, provided that the coefficient algebra has finite nuclear dimension.

Proposition 2.4. Given a C^*-algebra A with $\dim_{nuc}(A) = d < \infty$, a finite subset $\mathcal{G} \subset A$ and $\epsilon > 0$, the maps $t_n : A \rtimes_{\alpha} \mathbb{Z} \to M_n(A \rtimes_{\alpha} \mathbb{Z})$ defined in 1.1 admit a piecewise contractive, completely positive, $(2d+1)$-decomposable (\mathcal{G}, ϵ)-approximation for all sufficiently large n.

Proof. Choose n large enough such that there exist maps ψ_n and A_n^0, A_n^1 as in Lemma 2.3, satisfying $\| t_n(x) - ((A_n^0 + A_n^1) \circ \psi_n) (x) \| < \frac{\epsilon}{4}$ for all $x \in \mathcal{G}$. Since $\dim_{nuc}(M_n(A)) = \dim_{nuc}(A) = d$ by [WZ18, Corollary 2.8], there exists a piecewise contractive, completely positive, d-decomposable $(\psi_n(\mathcal{G}), \frac{\epsilon}{d})$-approximation of $id_{M_n(A)}$, i.e. a finite-dimensional C^*-algebra $F = F^{(0)} \oplus \cdots F^{(d)}$, a c.p.c. map $\psi' : M_n(A) \to F$ and c.p.c. order zero maps $\varphi^{(i)} : F^{(i)} \to M_n(A), i = 0, \ldots, d$, such that

$$
\left\| \left(\sum_{i=0}^{d} \varphi^{(i)} \circ \psi' \right) (\psi_n(x)) - \psi_n(x) \right\| < \frac{\epsilon}{3}
$$

holds for all $x \in \mathcal{G}$. Putting these two approximations together, i.e. setting $G := F \oplus F$ with decomposition $G = \bigoplus_{j=0,1} \bigoplus_{i=0}^{d} G^{(i,j)}$, where $G^{(i,j)} := F^{(i)}$, and considering

$$
A \rtimes_{\alpha} \mathbb{Z} \xrightarrow{t_n} M_n(A \rtimes_{\alpha} \mathbb{Z}),
$$

$$
G \oplus G = \bigoplus_{j=0,1} \bigoplus_{i=0}^{d} (A_n^0 \circ \varphi^{(i)}),
$$

$$
\sum_{j=0}^{d} \sum_{i=0}^{d} (A_n^0 \circ \varphi^{(i)})
$$

$$
\sum_{j=0}^{d} \sum_{i=0}^{d} (A_n^0 \circ \varphi^{(i)})
$$

$$
\sum_{j=0}^{d} \sum_{i=0}^{d} (A_n^0 \circ \varphi^{(i)})
$$
one finds each $\Lambda^t_n \circ \varphi^{(i)}$ to be an order zero map and further
\[
\left\| \sum_{j=0}^d \sum_{i=0}^d (\Lambda^t_n \circ \varphi^{(i)})(\psi) - \iota_n(x) \right\| \\
\leq \left\| \sum_{j=0}^d \Lambda^t_n(\psi_n(x)) - \iota_n(x) \right\| + 2 \left\| \sum_{j=0}^d \varphi^{(i)}(\psi) \right\| (\psi_n(x) - \psi(x)) \\
< \epsilon
\]
for all $x \in \mathcal{G}$. In other words, $\left(G, (\psi^t \circ \psi_n)^{\mathbb{N}^2}; \sum_{i,j} (\Lambda^t_n \circ \varphi^{(i)}) \right)$ provides a piecewise-contractive, completely positive, $(2d + 1)$-decomposable (\mathcal{G}, ϵ)-approximation for ι_n. \hfill \Box

3. The K-theory of ι_n

In this section we compute the map on K-theory induced by $\iota_n : A \rtimes_{\alpha} \mathbb{Z} \to M_n(A \rtimes_{\alpha} \mathbb{Z})$ from [11]. Using a rotation argument we first express $K_*(\iota_n)$ in terms of $K_*(\alpha)$. Under suitable assumptions, this allows us to read off $K_*(\iota_n)$ from the Pimsner-Voiculescu sequence associated to (A, α).

Lemma 3.1. The homomorphism $\iota_n : A \rtimes_{\alpha} \mathbb{Z} \to M_n(A \rtimes_{\alpha} \mathbb{Z})$ defined in [11] is homotopic to the diagonal embedding $j_n : A \rtimes_{\alpha} \mathbb{Z} \to M_n(A \rtimes_{\alpha} \mathbb{Z})$ given by
\[
a \mapsto \begin{pmatrix} \alpha^{-1}(a) & 0 & \cdots & 0 \\
0 & \alpha^{-2}(a) & \cdots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \alpha^{-n}(a) \end{pmatrix}
\] and $U \mapsto \begin{pmatrix} U & & \\
& U & \\
& & \ddots \\
& & & U \end{pmatrix}$
\[
\text{for } a \in A \text{ resp. for the unitary } U \in M(A \rtimes_{\alpha} \mathbb{Z}) \text{ implementing the action } \alpha.
\]

Proof. Let $(V_t)_{t \in [0,1]}$ be a path of unitaries in $M_n(\mathbb{C})$ connecting the shift-unitary $V_0 = \sum_{i=1}^{n-1} e_i e_{i+1} + e_{n,1}$ to identity matrix $V_1 = 1_n$ and consider the path $(\kappa_t)_{t \in [0,1]}$ of homomorphisms $\kappa_t : A \rtimes_{\alpha} \mathbb{Z} \to M_n(A \rtimes_{\alpha} \mathbb{Z})$ given by
\[
a \mapsto \begin{pmatrix} \alpha^{-1}(a) & 0 & \cdots & 0 \\
0 & \alpha^{-2}(a) & \cdots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \alpha^{-n}(a) \end{pmatrix}
\] and $U \mapsto V_t \ast \begin{pmatrix} U & U^2 & \cdots & U^n \\
1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
U^{n+2} & \cdots & \cdots & 1 \\
U^{-n} & \cdots & \cdots & 1 \\
\end{pmatrix}$
where \ast denotes Schur multiplication. It is straightforward to check that $\kappa_t(U)$ is a continuous unitary path in $M_n(M(A \rtimes_{\alpha} \mathbb{Z}))$, hence we only have to make sure that each κ_t is well-defined, i.e. compatible with the action α:
\[
(\kappa_t(U)\kappa_t(a)\kappa_t(U^*)^*)_{ij} = \sum_{k=1}^n \kappa_t(U)_{ik}^* \alpha^{-k}(a) \kappa_t(U^*)_{kj} = \sum_{k=1}^n (V_t)_{ik} (V_t^*)_{kj} U^{(k-1)+1} \alpha^{-k}(a) U^{-(k-j+1)}
\]
\[
= \sum_{k=1}^n (V_t)_{ik} (V_t^*)_{kj} U^{i+j-1} a U^{j-1}
\]
\[
= \delta_{ij} \cdot U^{i+j-1} a U^{j-1}
\]
\[
= \delta_{ij} \cdot \alpha^{-i+j+1}(a)
\]
\[
= (\kappa_t(\alpha(a)))_{ij}
\]
This shows that κ_t provides a homotopy between $\kappa_0 = \iota_n$ and $\kappa_1 = j_n$. \hfill \Box
Proposition 3.2. Given \(n \in \mathbb{N} \), let \(\iota_n : A \rtimes_{\alpha} \mathbb{Z} \to M_n(A \rtimes_{\alpha} \mathbb{Z}) \) be the homomorphism defined in \([1.4]\). If both boundary maps in the Pimsner-Voiculescu sequence associated to \((A, \alpha) \) vanish, we find \(K_* (\iota_n) = n \cdot \text{id}_{K_* (A \rtimes_{\alpha} \mathbb{Z})} \). The same conclusion holds if instead either \(K_0 (A) = 0 \) or \(K_1 (A) = 0 \).

Proof. We know by Lemma \([3.1]\) that \((\iota_n)_* = \sum_{i=1}^n (\tilde{\alpha}_i)_* \), where \(\tilde{\beta} \) denotes the canonical extension of an automorphism \(\beta \in \text{Aut}(A) \) satisfying \(\alpha \circ \beta = \beta \circ \alpha \) to an automorphism of \(A \rtimes_{\alpha} \mathbb{Z} \) via \(\tilde{\beta}(U) = U \). Using \((\tilde{\alpha}_i)_* = (\tilde{\alpha}_i')^* \), it suffices to show that \(\tilde{\alpha} \) induces the identity map on \(K \)-theory. By the Pimsner-Voiculescu sequence \([Bl89\text{ Theorem 10.2.1}]\) and the naturality thereof, we have the following commutative diagram with exact rows

\[
\begin{array}{cccccccc}
K_* (A) & \xrightarrow{1-\alpha_*} & K_* (A) & \xrightarrow{i_*} & K_* (A \rtimes_{\alpha} \mathbb{Z}) & \xrightarrow{\tilde{\alpha}_*} & K_* (A) & \xrightarrow{1-\alpha_{i_1}} & K_* (A) \\
\downarrow{\alpha_*} & & \downarrow{\alpha_*} & & \downarrow{\tilde{\alpha}_*} & & \downarrow{\alpha_{i_1}} & & \downarrow{\alpha_{i_1}} \\
K_* (A) & \xrightarrow{1-\alpha_*} & K_* (A) & \xrightarrow{i_*} & K_* (A \rtimes_{\alpha} \mathbb{Z}) & \xrightarrow{\tilde{\alpha}_*} & K_* (A) & \xrightarrow{1-\alpha_{i_1}} & K_* (A)
\end{array}
\]

where \(i \) denotes the canonical inclusion of \(A \) into the crossed product.

In the first case, i.e. \(\partial_* = 0 \), we have an isomorphism \(K_* (A)/(1-\alpha_*) K_* (A) \cong K_* (A \rtimes_{\alpha} \mathbb{Z}) \) induced by \(i_* \). Hence \(\tilde{\alpha}_* \circ i_* = i_* \circ \alpha_* = i_* \) and the claim follows by surjectivity of \(i_* \).

The second case is treated similarly. If \(K_0 (A) = 0 \), then \(K_{i_1} (A \rtimes_{\alpha} \mathbb{Z}) \cong K_{i_1} (A)/(1-\alpha_{i_1}) K_{i_1} (A) \) and \(\tilde{\alpha}_{i_1} = \text{id} \) follows as in the first case. On the other hand, the boundary map \(\partial_{i_1} \) identifies \(K_* (A \rtimes_{\alpha} \mathbb{Z}) \) with \(\ker (1-\alpha_{i_1}) \subseteq K_{i_1} (A) \). Hence \(\partial_{i_1} \circ \tilde{\alpha}_i = \alpha_{i_1} \circ \partial_i = \partial_i \), which shows that also \(\tilde{\alpha}_i = \text{id} \).

\[\square\]

4. Nuclear dimension of Kirchberg algebras

Combining the results of section 2 and 3 with the \(K \)-theoretical classification results by Kirchberg and Phillips, we obtain our main result, the computation of the nuclear dimension for UCT-Kirchberg algebras in the absence of torsion in \(K_1 \).

Theorem 4.1. Let \(B \) be a Kirchberg algebra in the UCT-class. If \(K_1 (B) \) is torsion free, then \(\dim_{\text{nuc}} (B) = 1 \).

Proof. Since \(\dim_{\text{nuc}} (B) = \dim_{\text{nuc}} (B \otimes K) \) by \([WZ10\text{ Corollary 2.8}]\), we may assume that \(B \) is stable. In this case, \(B \) can be realized as a crossed product \(B = A \rtimes_{\alpha} \mathbb{Z} \) with \(A \) an AF-algebra by \([Ror02\text{ Corollary 8.4.11}]\). This implies that, given any finite subset \(\mathcal{G} \) of \(G = A \rtimes_{\alpha} \mathbb{Z} \) and \(\varepsilon > 0 \), we can use Proposition \([2.4]\) to find a natural \(\psi \)-approximation \((F_i, \psi_i, \varphi_i) \), \(i \in \{ n, n+1 \} \). Using the existence part of Kirchberg-Phillips classification \([Ror02\text{ Theorem 8.4.1}]\), we can choose an automorphism \(\omega \) on \(M_n (B) \) which induces \(\omega_* = -\text{id} \) on \(K \)-theory. Now consider the embedding \(\iota \) given by

\[\iota = \begin{pmatrix} t_{n+1} & 0 \\ 0 & \omega \circ t_n \end{pmatrix} : B \to M_{2n+1} (B)\]

By Lemma \([2.2]\) \(\iota \) also admits a piecewise contractive, completely positive, 1-decomposable \((\gamma, \varepsilon)\)-approximation. By Proposition \([3.2]\) and the choice of \(\omega \) we further have

\[K_* (\iota) = K_* (t_{n+1}) + K_* (\omega \circ t_n) = (n+1) \cdot \text{id} - n \cdot \text{id} = \text{id} \]

Since \(B \) satisfies the UCT, this shows that the class of \(\iota \) is invertible in \(KK (B, M_{2n+1} (B)) \) and its inverse is, using \([Ror02\text{ Theorem 8.4.1}]\) again, induced by a \(* \)-isomorphism \(\varphi : M_{2n+1} (B) \to B \). The uniqueness part of Kirchberg-Phillips classification \([Ror02\text{ Theorem 8.4.1}]\) implies that \(\varphi \circ \iota \) is approximately
unitarily equivalent to id_B. Hence, by Lemma 2.2, id_B also admits a piecewise contractive, completely positive, 1-decomposable (\mathcal{G}, ϵ)-approximation.

Since \mathcal{G} and ϵ were arbitrary, this shows $\dim_{\text{nuc}}(B) \leq 1$. Because B is not an AF-algebra, the nuclear dimension of B must in fact be equal to 1. \hfill \Box

For the general case, i.e. for Kirchberg algebras without any K-theory constraints, we immediately get the following. Note that the same estimate has by now also be obtained in [MST13 Theorem 7.1] and [BEMSW14 Corollary 3.4] by methods completely different from the one developed here. These results are more general though, they do not require the UCT.

Corollary 4.2. A Kirchberg algebra in the UCT-class has nuclear dimension at most 3.

Proof. This is proven exactly as in [WZ10 Theorem 7.5] except for using the improved estimate $\dim_{\text{nuc}}(O_\infty) = 1$ which is given by Theorem 4.1. \hfill \Box

The strategy of this paper can be used to obtain dimension estimates in more general situations (cf. Remark 4.3 below). In fact, there are only two ingredients needed: First, one needs sufficient classification results, i.e. both existence and uniqueness results for homomorphisms between C^*-algebras in the class under consideration. Second, one requires the existence of a family of homomorphisms which admit good approximations in a decomposable manner. These homomorphisms should further induce maps on the level of invariants which can be used to build up an invertible element. In that case, one can proceed as in Theorem 4.1 to obtain dimension estimates. However, the proof of 4.1 seems to be limited to infinite C^*-algebras. This is because we require an automorphism ω which gives a sign on K-theory, i.e. which satisfies $\omega^* = -\text{id}$. However, the map $-\text{id}$ will not be an automorphism as soon as the invariant involves some non-trivial order structure on the K-groups. Therefore one cannot find such ω in this case.

Remark 4.3. After having received a preprint of this paper, Ruiz, Sims and Tomforde estimated the nuclear dimension of certain graph C^*-algebras in [RST13], following the strategy outlined above. Their result includes some, but not all Kirchberg algebras covered by Theorem 4.1. Moreover, using classification results involving filtered-K-theory they also obtain estimates in the non-simple case.

Remark 4.4. In the presence of torsion in K_1, one can still represent stable UCT-Kirchberg algebras B as crossed products $A \rtimes_\alpha Z$. We can no longer choose A to be an AF-algebra, but one can settle for A to be an AT-algebra instead. Furthermore, the crossed product can be constructed in such a way that the boundary maps in the associated Pimsner-Voiculescu sequence vanish (Theorem 3.6 of [Ror95] and its proof) and therefore Proposition 4.1 applies. Following the lines of 4.1 and using nuclear one-dimensionality of AT-algebras, this gives an alternative proof for the general estimate $\dim_{\text{nuc}}(B) \leq 3$. However, in this case it looks like the maps ι_n from 4.1 even admit 2-decomposable approximations when constructed more carefully. This would give an improved dimension estimate in the torsion case.

References

[BEMSW14] S. Barlak, D. Enders, H. Matui, G. Szabó and W. Winter. The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras, arXiv preprint math.OA/1312.6289v2, 2014.

[Bla98] B. Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, second edition, 1998.

[BO08] N. P. Brown and N. Ozawa. C^*-algebras and finite-dimensional approximations, volume 88 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2008.
ON THE NUCLEAR DIMENSION OF CERTAIN UCT-KIRCHBERG ALGEBRAS

[Lin11] H. Lin. Asymptotic unitary equivalence and classification of simple amenable C^*-algebras, Invent. Math., 183(2):385-450, 2011.

[MS13] H. Matui and Y. Sato. Decomposition rank of UHF-absorbing C^*-algebras, arXiv preprint math.OA/1303.4371v2 to appear in Duke Math. J., 2013.

[Rør95] M. Rørdam. Classification of certain infinite simple C^*-algebras, J. Funct. Anal. 131, 415-458, 1995.

[Rør02] M. Rørdam. Classification of nuclear simple C^*-algebras, Encyclopaedia Math. Sci., vol. 126, Springer-Verlag, Berlin 2002, pages 1-145.

[RST13] E. Ruiz, A. Sims and M. Tomforde. The nuclear dimension of graph C^*-algebras, arXiv preprint math.OA/312.0507, 2013.

[SWW14] Y. Sato, S. White and W. Winter. Nuclear dimension and \mathbb{Z}-stability, arXiv preprint math.OA/1403.0747, 2014.

[Win12] W. Winter. Nuclear dimension and \mathbb{Z}-stability of pure C^*-algebras, Invent. Math., 187(2):259-342, 2012.

[WZ10] W. Winter and J. Zacharias. The nuclear dimension of C^*-algebras, Adv. Math. 224:461-498, 2010.

Dominic Enders
Department of Mathematical Sciences, University of Copenhagen
Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
E-mail address: d.enders@math.ku.dk