Bounding the Solutions to Some SDEs via Ergodic Theory

Jian-Sheng Xie*

School of Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China

Abstract

In this note we consider autonomous SDEs admitting smooth invariant measures. We present a method in finding (almost everywhere) good bounds for \(\sup\{\|X_t\| : t \in [0, T]\} \) for strong solutions \(X \) to such SDEs, which in many cases are optimal bounds. In some situation (especially in one-dimensional SDEs’ cases), the discarded measure-zero set can be chosen to be a measure-zero set of the underlying Brownian motion uniform for all initial points \(X_0 = x \).

1 Introduction

It’s well known that, for a given one-dimensional stationary Ornstein-Uhlenbeck (OU for short) process \(X = \{X_t : t \geq 0\} \) there exist \(\lambda, \sigma > 0, \mu \in \mathbb{R} \) and a standard Brownian Motion (BM for short) \(B(\cdot) \) such that \(X \) has the same distribution as \(\{\sigma \cdot e^{-\lambda t} \cdot B(e^{\lambda t}) + \mu : t \geq 0\} \). Therefore the law of iterated logarithm for BM (see, e.g., [7]) leads us to the conclusion \(X_t = O(\sqrt{\log t}) \) almost surely. In a previous note [8] we have proved the validity of such a bound for general OU processes \(X = \{X_t : t \geq 0\} \) via elementary arguments in Ito’s stochastical analysis theory. In this note, we will consider the following SDE with smooth coefficients

\[
\frac{dX_t}{dt} = b(X_t)dt + \sigma(X_t)dW_t
\] \hspace{1cm} (1.1)

*E-mail: jiansheng.xie@gmail.com
which admits stationary strong solutions with steady distribution denoted by \(\mu \); we will denote by \(\mathbb{P} \) the distribution of Wiener process \(W \), and \(\mathbb{P}_\mu \) the distribution of the stationary strong solution \(X \). And we are interested in the growth of \(\sup\{\|X_t\| : t \in [0, T]\} \) in terms of \(T \), where \(\| \cdot \| \) is the Euclidean norm. We will present an ergodic theoretic method in solving such problems. We recall that, the system \((1.1)\) is called strong complete \([3]\), if its solutions \(X \), with arbitrarily initial value \(X_0 = x \) is continuous in \(t \in [0, +\infty) \) for all Wiener process orbits \(W \), in a common full standard Wiener-measure set; see, for instance, \([1] [2] [3] [4]\) for results relating the property of strong completeness.

Our main result may be stated as the following.

Theorem 1 Suppose that the smooth coefficients of \((1.1)\) satisfy

\[
\lim_{\|x\| \to +\infty} \frac{\|b(x)\| + \|\sigma(x)\|}{\|x\|^m} < \infty
\]

for some \(m \in \mathbb{N} \). Assume the steady distribution \(\mu \) is such that there exists a smooth positive function \(V \) with \(\int e^{\delta V(x)} d\mu < \infty \) for all \(\delta \in (0, 1) \) and

\[
\lim_{\|x\| \to +\infty} \frac{V(x)}{\log \|x\|} = \infty, \quad \lim_{\|x\| \to +\infty} \frac{\|\nabla V(x)\| + \|\text{Hess}_V(x)\|}{\|x\|^m} < \infty.
\]

Here \(\text{Hess}_V(x) \) denotes the Hessian of \(V \); we always assume the monotonicity of \(V(x) \) in \(\|x\| \) for large \(\|x\| \). Then the solution to \((1.1)\) always satisfies

\[
\lim_{t \to \infty} \frac{V(X_t)}{\log t} \leq 1
\]

\(\mathbb{P}_\mu \) almost surely.

If furthermore both \(\mu \) and the transition probability semigroup of \((1.1)\) have smooth densities, then the statement \((1.2)\) holds true for all initial values \(X_0 = x \) and \(\mathbb{P} \)-a.e. Wiener orbits \(W \); in one-dimensional case with the assumption of the strong completeness of the system, the validity of this statement can even be strengthened to be valid for all initial values \(X_0 = x \) and all Wiener process orbits \(W \) in a \(\mathbb{P} \)-full measure set.
By choosing a suitable smooth function $V(\cdot)$, it is possible to get good bounds for the growth of $\sup\{\|X_t\| : t \in [0, T]\}$ in terms of T as the examples reveal. Such result seems to be new in literature as to our knowledge and deserves a publication somewhere.

2 Proof of the Main Theorem

First assume X_t to be a stationary strong solution to (1.1). Consider

$$Y_t := e^{\delta V(X_t)}$$

with $\delta \in (0, 1/2)$.

It is clear that for suitable choice of $\tilde{b}(\cdot)$ and $\tilde{\sigma}$

$$dY_t = Y_t [\tilde{b}(X_t) dt + \tilde{\sigma}(X_t) dW_t]$$

with

$$\lim_{\|x\| \to +\infty} \frac{|\tilde{b}(x)| + |\tilde{\sigma}(x)|}{\|x\|^{4m}} < \infty.$$

This guarantees the integrability of $\tilde{b} \cdot e^{\delta V}$ and $|\tilde{\sigma}|^2 \cdot e^{2\delta V}$ with respect to μ. Define $M_t := \int_0^t \tilde{\sigma}(X_s) dW_s$. It is easy to see that M_t is an L_2-martingale with

$$< M >_t := \int_0^t |\tilde{\sigma}(X_s)|^2 \cdot e^{2\delta V(X_s)} ds.$$ \hspace{1cm} \text{(2.1)}

By Birkhoff’s ergodic theorem

$$\lim_{t \to \infty} \frac{< M >_t}{t} = \mathbb{E}_\mu[|\tilde{\sigma}(X_0)|^2 \cdot e^{2\delta V(X_0)}] < \infty.$$

The law of iterated logarithm (abbr. LIL) for continuous martingale [7] then tells us

$$\lim_{t \to \infty} \frac{M_t}{t} = 0$$

almost surely.

It is also clear that

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t Y_s \cdot \tilde{b}(X_s) ds = \mathbb{E}_\mu[Y_0 \cdot \tilde{b}(X_0)]$$

almost surely.
Therefore \(e^{\delta V(X_t)} \leq a \cdot t + b \) for all \(t \geq 0 \) almost surely, where \(a \) is a positive constant and \(b \) is a measurable function of \(X \), independent of \(t \). Hence

\[
\lim_{t \to \infty} \frac{V(X_t)}{\log t} \leq 2 \quad (2.2)
\]

\(\mathbb{P}_\mu \) almost surely.

Now we are going to lower the bound 2 in the right hand side of (2.2) down into 1 as (1.2) says. Assume that we have already proved

\[
\lim_{t \to \infty} \frac{V(X_t)}{\log t} \leq \beta
\]

for some constant \(\beta \); therefore for any \(\varepsilon \in (0, 1) \) there is \(C \) such that

\[
e^{V(X_t)} \leq C(t^{\beta+\varepsilon} + 1), \quad \forall t \geq 0.
\]

Now fix a number \(\delta \in (1/2, 1) \) arbitrarily and define \(Y_t, M_t \) as above. Then using the above arguments once again, we find

\[
\frac{< M >_t}{t} = \frac{1}{t} \int_0^t \tilde{\sigma}(X_s)^2 e^{(2\delta+\varepsilon-1)V(X_s)} \cdot e^{(1-\varepsilon)V(X_s)} ds \\
\leq \frac{1}{t} \int_0^t e^{(1-\varepsilon)V(X_s)} ds \cdot [C(t^{\beta+2\varepsilon} + 1)]^{2\delta+2\varepsilon-1}
\]

for sufficiently large \(t \). In view of LIL for continuous martingale [7] and Birkhoff’s ergodic theorem, this implies

\[
\lim_{t \to +\infty} \frac{M_t}{t^{\frac{1}{2} + (\delta + 2\varepsilon - \frac{1}{2}) \cdot (\beta + 2\varepsilon)}} = 0.
\]

On the other hand, we still have \(\tilde{b} \cdot e^{\delta V} \in L_1(\mu) \). Therefore we have

\[
\lim_{t \to +\infty} \frac{e^{\delta V(X_t)}}{t^\gamma} = 0
\]

for \(\gamma := \max\{1 + \varepsilon, \frac{1}{2} + (\delta + 2\varepsilon - \frac{1}{2}) \cdot (\beta + 2\varepsilon)\} \). This proves

\[
\lim_{t \to +\infty} \frac{V(X_t)}{\log t} \leq \frac{\gamma}{\delta},
\]
Letting $\delta \to 1$ and then $\varepsilon \to 0$, we obtain

$$\lim_{t \to +\infty} \frac{V(X_t)}{\log t} \leq \beta' := \max\{1, \frac{1 + \beta}{2}\} = \frac{1 + \beta}{2}$$

with initial $\beta = 2$. This machinery leads us finally to (1.2).

Qian and Zhang’s argument [6, page 1637] tells us that, when μ and the transition probability semigroup of X have densities, (1.2) holds true for all $X_0 = x$ and all Wiener orbits $W \in \Lambda_x$ with $P(\Lambda_x) = 1$. In one dimensional case, we can say more. Let

$$\Lambda := \bigcap_{r \in \mathbb{Q}} \Lambda_r,$$

so $P(\Lambda) = 1$. For any two solutions X^x, X^y to (1.1) with initial values $X_0^x = x, X_0^y = y, x \neq y \in \mathbb{R}$, write $Z_t := X^x_t - X^y_t$. It is easy to see that

$$dZ_t = Z_t \cdot \left[\bar{b}(X^x_t, X^y_t)dt + \bar{\sigma}(X^x_t, X^y_t)dW_t\right]$$

for some smooth functions $\bar{b}(x, y), \bar{\sigma}(x, y)$. Then one clearly has

$$Z_t = Z_0 \cdot \exp\left(\int_0^t \left[\bar{b}(X^x_s, X^y_s) - \frac{1}{2}\bar{\sigma}(X^x_s, X^y_s)^2\right]ds + \int_0^t \bar{\sigma}(X^x_s, X^y_s)dW_s\right),$$

which implies that

$$X^x_t \leq X^y_t \text{ for all } t \geq 0 \text{ if } x < y. \quad (2.3)$$

If φ is a continuous monotonic function in $L_1(\mu)$, then it is easy to see that Birkhoff’s ergodic theorem holds

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \varphi(X_s)ds = \int \varphi(x)d\mu$$

for all $x \in \mathbb{R}$ and all $W \in \Lambda$. The same argument applies to the limit

$$\lim_{t \to \infty} \frac{V(X_t)}{\log t} \leq 1$$

yielding its validity for all $x \in \mathbb{R}$ and all $W \in \Lambda$, if $V(x)$ is increasing in $|x|$ for large $|x|$.
3 Examples and Discussions

The first example is the standard OU process \(\{X_t := e^{-t}B(e^{2t}) : t \geq 0\}\), where \(B(\cdot)\) is a standard BM. By LIL for BM, we have

\[
\lim_{t \to \infty} \frac{X_t}{\sqrt{2 \log t}} = -1, \quad \lim_{t \to \infty} \frac{X_t}{\sqrt{2 \log t}} = 1.
\]

While our argument in this note yields

\[
\lim_{t \to \infty} \frac{|X_t|}{\sqrt{2 \log t}} \leq 1.
\]

Hence this example indicates that our method can give optimal bounds in some cases (hopefully always so).

The second example is the following one dimensional SDE:

\[
dX_t = -U'(X_t)dt + \sqrt{2\varepsilon}dW_t
\]

with

\[
\int e^{-U(x)/\varepsilon}dx < \infty.
\]

Here \(U(x)\) is a polynomial with leading term being \(cx^{2p}\) for some \(c > 0, p \geq 1\). Then our argument gives

\[
\lim_{t \to \infty} \frac{|X_t|}{(\log t)^{1/2p}} \leq \left(\frac{\varepsilon}{c}\right)^{1/2p}
\]

for all \(X_0 = x\) and all BM orbits \(W \in \Lambda\) with \(P(\Lambda) = 1\), since the strong completeness of the model is guaranteed by \([4]\).

We would like to give some discussions. As is well known, Birkhoff’s ergodic theorem is an extension of Kolmogrov’s strong law of large numbers (abbr. SLLN); It also holds for stationary processes with continuous-time parameter under suitable \(L_1\)-integrability condition. In probability theory, when the \(L_1\)-integrability condition is replaced by \(L_p\)-integrability condition (with \(p \in (0, 2)\)), Marcinkiewicz-Zygmund’s SLLN would take place.
of Kolmogrov’s SLLN for i.i.d. random variables sequence. It is easy to see that the following result holds, which is a generalization of one part of Marcinkiewicz-Zygmund’s SLLN.

Theorem 2 Let \(\{X_n : n \geq 0\} \) be an stationary process with \(\mathbb{E}|X_0|^p < \infty \) for some \(p \in (0, 1) \). Then

\[
\lim_{n \to +\infty} \frac{1}{n^{1/p}} \sum_{k=0}^{n-1} X_k = 0 \quad \text{almost surely.}
\]

The counterpart of \(p \in (1, 2) \) as the above theorem to Marcinkiewicz-Zygmund’s SLLN seems still unknown. Also, it is interesting to ask the validity of the continuous-time counterpart of the above theorem. It seems to us that, a proper statement might be as the following: Let \(\{X_t : t \geq 0\} \) be an stationary process with \(\mathbb{E}|X_0|^p < \infty \) for some \(p \in (0, 1) \). Assume the continuity of \(X_t \) in \(t \). Then for all \(\varepsilon > 0 \)

\[
\lim_{T \to +\infty} \frac{1}{T^{1/p+\varepsilon}} \int_0^T X_s ds = 0 \quad \text{almost surely.}
\]

It is the deficiency of such a result that forces us to find the machinery mentioned in the second paragraph of Sect. 2.

Acknowledgements The author thanks Prof. Jiangang Ying for helpful discussions. He is also grateful to Prof. Xi Chen for telling him some literatures on the strong completeness of SDEs. This work is partially supported by NSFC (No. 10701026 and No. 11271077) and the Laboratory of Mathematics for Nonlinear Science, Fudan University.

References

[1] Blagoveščenskii, Ju. N.; Frei’dlin, M. I.: Some properties of diffusion processes depending on a parameter. (Russian) Dokl. Akad. Nauk SSSR 138 (1961), pp. 508C-511.

[2] Elworthy, K. D.: Stochastic flows and the C0-diffusion property. Stochastics 6 (1981/82), no. 3-4, pp. 233C-238.
[3] Elworthy, K. D.: *Stochastic differential equation on manifolds*. London Mathematical Society Lecture Note Series, 70. Cambridge University Press, Cambridge-New York, 1982. xiii+326 pp.

[4] Fang, Shizan; Imkeller, Peter; Zhang, Tusheng: *Global flows for stochastic differential equations without global Lipschitz conditions*. Ann. Probab. 35 (2007), no. 1, pp. 180-C205.

[5] Kunita, Hiroshi: *Stochastic flows and stochastic differential equations*. Cambridge Studies in Advanced Mathematics, 24. Cambridge University Press, Cambridge, 1990. xiv+346 pp. ISBN: 0-521-35050-6

[6] Qian, M.; Zhang, Fu-Xi: *Non-equilibrium of a general stochastic system of coupled oscillators: entropy production rate and rotation numbers*, Ergod. Theory & Dynam. Sys. 25, no. 5 (2005), pp. 1633–1641.

[7] Revuz, Daniel; Yor, Marc: *Continuous martingales and Brownian motion*. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7

[8] Xie, Jian-Sheng: *Bounding Ornstein-Uhlenbeck Processes and Alikes*, preprint.

[9] Zhang, Xicheng, *Stochastic Homeomorphism Flows of SDEs with Singular Drifts and Sobolev Diffusion Coefficients*. arXiv:1010.3403.