Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

Dipesh Dhakal¹, Anaya Raj Pokhrel¹, Biplav Shrestha¹ and Jae Kyung Sohng¹,²*

¹ Department of Life Science and Biochemical Engineering, Sun Moon University, Asan-si, South Korea, ² Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University Asan-si, South Korea

Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.

Keywords: marine rare actinobacteria, bacterial characterization, bioactive compounds, metagenomics, host engineering

INTRODUCTION

Actinobacteria are Gram-positive bacteria with high GC contents in DNA. They have characteristics presence of intracellular proteasomes, and spores if present are exospores (Cavalier-Smith, 2002). The order Actinomycetales under phylum Actinobacteria includes major producer strains of diverse bioactive compounds. Actinomycetales includes 11 suborders viz. Actinomycineae, Actinopolysporineae, Catenulisporineae, Corynebacterineae, Glycomycineae, Jiangelineae, Micromonosporineae, Propionibacterineae, Pseudonocardineae, Streptomycineae, and Streptosporangineae (http://www.bacterio.net/-classifphyla.html). The genus Streptomyces under sub-order Streptomycineae have been characterized as most important producer of bioactive microbial metabolites (Berdy, 2005). Recently, previously underexplored genera are reported as important resources of diverse bioactive metabolites (Tiwari and Gupta, 2013). These so called rare-actinobacteria are commonly categorized as strains other than Streptomyces (Berdy, 2005) or actinobacteria strains with less frequency of isolation under normal parameters (Lazzarini et al., 2001; Baltz, 2006).
The un-explored and under-explored habitats including marine ecosystems are believed to be rich sources of such rare actinobacteria, with tremendous potential to produce interestingly new compounds (Hong et al., 2009). These marine actinobacteria with potential of producing bioactive compounds have attracted major attention to search for unique compounds with pharmaceutical and biotechnological applications (Bull and Stach, 2007; Subramani and Aalbersberg, 2013; Azman et al., 2015). Recently, there are reports on the discovery of rare actinobacteria from wide range of terrestrial and aquatic locations, including deep seas (Goodfellow et al., 2012). Reports on the analysis of geographical origins of the marine rare actinobacteria, with special focus on the isolation of specific compounds, and precise bioactivities are predominant indications of increasing global interest on the natural compounds from marine rare actinobacteria (Blunt et al., 2007).

ISOLATION AND CHARACTERIZATION OF MARINE RARE ACTINOBACTERIA

Generally, for uncovering the marine rare actinobacteria, isolation efforts have been focused on rare locations as deep-sea sediments to obtain new marine diversities (Fenicand and Jensen, 2006). The specialized sampling techniques using sophisticated equipment (Fenicand and Jensen, 2006), remotely operated vehicles (Pathom-Aree et al., 2006) and even human (Bredholdt et al., 2007), have provided easy access to unprecedented microbial diversity. However, marine rare actinobacteria are usually difficult to culture compared to their terrestrial counterparts mostly due to their special growth requirements (Zotchev, 2012) or unknown culture conditions. It has been observed that hardly <2% of bacterial cells can form colonies by conventional plate cultivation. A large number of them belong to "viable but not culturable" (VBNC) strains (Bernard et al., 2000). Recently, strategies such as mimicking the natural environment in terms of pH, oxygen gradient, nutrient compositions, etc is employed. With these improvements, some previously VBNC species can now be grown with more efficiency (Kaeberelein et al., 2002; Zengler et al., 2002; Vartoukian et al., 2010; Stewart, 2012).

Moreover, the laborious microscopic techniques are being replaced with techniques utilizing recent advances in genomics, proteomics, and bioinformatics for identification and characterization of microbial diversity in robust manner (Rastogi and Sani, 2011). The genomic analysis by genetic fingerprinting (Nübel et al., 1999), DNA-DNA hybridization techniques (Pinhasi et al., 1997), and the construction of metagenomic library and sequencing (Kisand et al., 2012) have been employed for identifying and characterizing the diversity within marine samples. The development of next generation sequencing (NGS) (Webster et al., 2010) and nanopore sequencing (Deamer et al., 2016) has made the process robust and less time consuming. The analysis of RNA expression and regulation using metatranscriptomics (Ogura et al., 2011) or determination of protein profile by metaproteomics (Slattery et al., 2012) can be directly linked to available genome in the database. The coupled metagenomics and metatranscriptomic analysis was successfully used for determining the microbial communities in deep sea water of the North Pacific Ocean (Wu J. et al., 2013). Thus, the combination of both culture dependent (grow and isolate) and culture independent (analysis of nucleic acids and proteins) approaches have revolutionized the characterization and isolation of diverse marine organisms including rare actinobacteria (Hirayama et al., 2007; Zeng et al., 2012).

DISCOVERY OF BIOACTIVE COMPOUNDS FROM MARINE RARE ACTINOBACTERIA

Actinobacteria including Streptomyces contribute for approximately half of the characterized bioactive compounds up to date (Berdy, 2005). However, the chances of discovery of novel bioactive molecules from Streptomyces has significantly declined (Fenical et al., 1999), presumably due to easy chances of genetic exchange between species during evolution (Freel et al., 2011). Therefore, special attention is given to isolation, screening, and culturing of rare actinobacteria from rare environmental locations as marine sources. The list below summarizes some of the representative compounds isolated from diverse marine rare actinobacteria during last 10 years (Table 1A).

REINVIGORATING NATURAL PRODUCT DISCOVERY FROM MARINE RARE ACTINOBACTERIA

Though isolation and cultivation of marine rare actinobacteria is difficult, the development of novel and facile bacterial cultivation platforms such as hollow-fiber membrane chamber (HFMC) and iChip for in situ cultivation of previously unculturable microbial species have expanded the scope of natural product discovery (Aoi et al., 2009; Nichols et al., 2010). By utilizing rationally designed iChip platform, Ling et al. (2015) has successfully isolated previously uncultivable soil bacteria Eleftheria terrae and characterized its bioactive molecule (Ling et al., 2015).

It is assumed that strain divergence (phylogenetic or ecological) can have great impact on metabolism and biosynthetic pathway and result in novel chemistry and bioactivities, so research is focused on previously unexplored strains (Monciardini et al., 2014). However, it is unrealistic to assume that every unexplored strain can provide bioactive compounds (Donadio et al., 2010). Hence, systematic approaches need to be employed for utilizing the true potential of natural products from marine rare actinobacteria. Some of the key foundations can be categorized as:

1. Identification of target strains/molecules,
2. Systematic enrichment of production,
3. Explicit modification for functional/structural diversity.

1. Identification of target strains/molecules

The accessible diversity of useful microbial molecules have almost been exhausted by traditional approaches, hence
TABLE 1 | Overview of achievements in study of bioactive molecules derived from marine rare actinobacteria.

A. Examples of bioactive compounds isolated from various marine rare actinobacteria

Compound name	Isolation source	Bacterial source	Biological activities	References
INDEPENDENT ISOLATES				
Pseudonocardians	Deep-sea sediment of South China Sea	Pseudonocardia sp. SCSIO 01299	Antibacterial and cytotoxic	Li et al., 2011
Caerulomycins	Marine sediments from the seashore of Weihai, China	Actinoalloteichus cyanogriseus WHI-2216-6	Cytotoxic, antibacterial	Fu et al., 2011
Marinacarbolines,	Marine sediment sample from South China Sea	Marinactinospora thermotolerans SCSIO 00652	Antimalarial	Huang et al., 2011
Salinosporamides	Deep sea-water of Bahamas Islands, Bahamas	Salinispora tropica (strain CNB-392)	Cytotoxic	Feling et al., 2003; Williams et al., 2005
COMMERCIALLY NAMED				
Abyssopticins	Sediment sample from the Sea of Japan, Japan	Verrucosispora sp. AB-18-032	Antibacterial	Bister et al., 2004; Riedlinger et al., 2004
Marinomycins	Sediment sample offshore of La Jolla, USA	Marinispora strain CNQ-140	Cytotoxic	Kwon et al., 2006
Levantilides	Deep-sea sediment Eastern Mediterranean Sea	Micromonospora M71-A77	Cytotoxic	Gärtner et al., 2011
Salinoquinones	Deep sea-water of Bahamas Islands, Bahamas	Salinispora arenicola CNS-325.	Cytotoxic	Murphy et al., 2010
Neomaclafungin	Marine sediment from Usa bay, Kochi Prefecture, Japan.	Actinoalloteichus sp. CNP-001	Cytotoxic, Antifungal	Sato et al., 2012
Marthiapeptide A	Deep-sea sediment of the South China Sea	Marinactinospora thermotolerans SCSIO 00652	Antibacterial, Cytotoxic	Zhou et al., 2012
Lucentamycins	Sediment sample from Bahamas island, Bahamas	Nocardiopsis lucentensis (strain CNR-712)	Cytotoxic	Cho et al., 2007
Juvenimicin C	Sediment collected off the coast of Palau, USA	Micromonospora sp (CNJ-878)	Cancer chemo preventive	Carlson et al., 2013
Levantilide C	Shallow coastal waters near the island of Chile, Chile.	Micromonospora strain FIM07-0019	Antiproliferative	Fei et al., 2013
Nocapyrones	Sediment sample, Ulleung Basin, Eastern sea, Korea	Nocardiopsis sp.	Reduced the pro-inflammatory factor	Kim et al., 2013
Nocardiamides	Sediment sample from La Jolla Canyon, San Diego, California, USA.	Nocardiopsis sp. CNX037	Low antibacterial activity	Wu Z. C. et al., 2013
Cyanogramides	Marine sediments from the seashore of Weihai, China	Actinoalloteichus cyanogriseus WHI-2216-6	Multidrug-resistance (MDR) reversing activity	Fu et al., 2014
Taromycin	Marine sediment sample from La Jolla Submarine Canyon, San Diego, California, USA.	Saccharomonospora sp. CNQ-490	Antibacterial	Yamanaka et al., 2014
Lodopyridone	Marine sediment sample from La Jolla Submarine Canyon, San Diego, California, USA.	Saccharomonospora CNQ490	Modest cytotoxic activity	Maloney et al., 2009
Lynamins	Marine sediment off the coast of San Diego, California, USA.	Marinispora NPS12745	Antibacterial	McArthur et al., 2008
Saccharothrixones	Sediment sample from Heishijiao Bay, Dalian, China	Saccharothrix sp. 10–10	Cytotoxic	Gan et al., 2015
Saliniketals	Sediment sample from Island of Guam, USA	Salinispora arenicola CNR-005	Prevention of carcinogenesis	Williams et al., 2007a
Arenicoldes	Sediment sample from Island of Guam, USA	Salinispora arenicola CNR-005	Moderate cytotoxicity	Williams et al., 2007b
Lagurnycin B, Dehydrorabelomycin,	Sediment sample from Cát Bà Peninsula, East Sea Vietnam	Micromonospora sp.	Cytotoxic	Mulloyney et al., 2015
Phenanthroviridone,				
Dermacozines, Phenazine derivatives	Sediment sample from Mariana Trench	Dermacoccus abyssi sp. nov., strains MT1.1 and MT1.2	Cytotoxic and anti-oxidant	Abdel-Mageed et al., 2010

(Continued)
TABLE 1 | Continued

Compound Name	Isolation Source	Bacterial Source	Biological Activities	References
Fijiolides	Sediment sample from the Beqa Lagoon, Fiji	Nocardiosis CNS-653	Inhibitor of TNF-α-induced NFκB activation	Nam et al., 2010
Fluostatin	Sediment sample from South China Sea	Micromonospora rosaria SCSIO N160	Antimicrobial	Zhang et al., 2012
Retimycin	Deep sea-water of Bahamas Islands, Bahamas	S. arenicola strain CNT-005.	Cytotoxic	Duncan et al., 2015
Sioxanthin	Deep sea-water of Bahamas Islands, Bahamas	Salinispora tropica CNB-440	Siderophore	Richter et al., 2015
Lobosamides	Sediment sample from Point Lobos, Monterey Bay, California, USA.	Micromonospora sp. RL09-050-HVF-A	Antimicrobial and cytotoxic	Schulze et al., 2015a
Salinipostins	Sediment sample from Keawaikakeha Bay, Hawaii, USA	Salinispora sp. RL08-036-SPS-B	Antimicrobial and cytotoxic	Schulze et al., 2015b
Isomethoxyneihumicin	Sediment sample at Chichijima, Ogasawara, Japan	Nocardiosis alba KM6-1	Cytotoxic	Fukuda et al., 2016
Nocarimidazoles	Sediment sample off the coast of southern California, USA	Nocardiosis sp. CNQ115	Weak antibacterial	Leutou et al., 2015
Cyclomarine	Marine sediment from a Palau, Republic of Palau	S. arenicola CNS-245	Anti-inflammatory	Schultz et al., 2008

ISOLATES IN SYMBIOTIC ASSOCIATION

Compound Name	Symbiont	Particulars	Biological activity	References
JBIR-65	Symbiont to an unidentified marine sponge from Ishigaki Island, Okinawa Prefecture, Japan	Actinomadura sp. SpB081003SC-15	Anti-oxidant	Takagi et al., 2010
Nocapyrones	Symbiont to Halichondria panacea from Baltic Sea, Germany	Nocardiosis sp. HB383	Weak cytotoxic	Schneemann et al., 2010
Arenjimycin	Symbiont to ascidian Ecteinascidia turbinate from Sweetings Cay, Grand Bahama Island, USA	Salinispora arenicola	Antimicrobial and cytotoxic	Asolkar et al., 2010
Bendigoles	Symbiont to Suberites japonicas from an unspecified source	Actinomadura sp. SBMs009	Antimicrobial and cytotoxic	Simmons et al., 2011
Thiocoraine	Symbiont to Chondrilla caribensis from Florida Keys, USA	Verrucosispora sp.	Cytotoxic	Wych et al., 2011
Peptidolipins	Symbiont to ascidian Trididemnum orbiculatum from Florida Keys, USA	Nocardia sp.	Antibacterial	Wych et al., 2012
Anthracyclinones	Symbiont to tunicate Eudistoma vannamei from Taiba Beach, Ceará, Brazil	Micromonospora sp.	Cytotoxic	Sousa et al., 2012
Halomadurone	Symbiont to ascidian Ecteinascidia turbinate, from Florida Keys, USA	Actinomadura sp.	Active against neurodegenerative diseases	Wych et al., 2013
Solvaric acids	Symbiont to ascidian Trididemnum orbiculatum from Florida Keys, USA	Solvaraspora sp.	Antibacterial	Ellis et al., 2014
Forazoline A	Symbiont to ascidian Ecteinascidia turbinate from Florida Keys	Actinomadura sp. WMMB-499	Antifungal	Wych et al., 2014
Rifamycins	Symbiont to sponge, Pseudoceratina clavata. From Great Barrier Reef, Australia	Salinispora sp. strain M403	Antibacterial	Kim et al., 2006
Saccharothrixminicines	Symbiont to marine mollusk Anadara broughtoni from Sea of Japan	Saccharothrix espanaensis An 113	Antibacterial, Antifungal	Kalinovskaya et al., 2010

B. Approaches used for production and structural/functional diversification of bioactive compounds derived from marine rare actinobacteria

Compound name	Genus	Particulars	Biological activity	References
Retimycin	Salinospora	MS/MS spectrum pattern based genome mining	Cytotoxic, Antibacterial	Duncan et al., 2015
Thiolactomycin	Salinospora	Antibiotic resistance gene based genome mining, heterologous expression	Bacterial fatty acid synthase inhibitor	Tang et al., 2015
TABLE 1 | Continued

Compound name	Genus	Particulars	Biological activity	References
Lomaiviticin	Salinospora	Bioactivity guided genome mining	Cytotoxic	Kersten et al., 2013
Salinosporamide K	Salinospora	Genome mining, metabolomics and transcriptomics	Cytotoxic	Eustáquio et al., 2011
Taromycin	Saccharomonospora	BCG Genome mining, heterologous expression	Antibacterial	Yamanaka et al., 2014
Enterocin	Salinispora	BCG Genome mining, heterologous expression	Antibacterial	Bonet et al., 2014
Fluostatins	Micromonospora	Heterologous expression	Antibacterial	Yang et al., 2015
Thiocoraine	Micromonospora	Heterologous expression	Cytotoxic	Lombó et al., 2006
Bromosalinosporamide	Salinospora	Precursor directed biosynthesis	Cytotoxic	Lam et al., 2007
Salinosporamide A	Salinospora	Precursor pathway modulation	Cytotoxic	Lechner et al., 2011
Salinosporamide X1, X2	Salinospora	Combinatorial biosynthesis	Cytotoxic	McGlinchey et al., 2008
Salinosporamide X3	Salinospora	Mutasynthesis	Cytotoxic	Nett et al., 2009
Salinosporamide X4	Salinospora			
Salinosporamide X5	Salinospora			
Salinosporamide X6	Salinospora			
Salinosporamide X7	Salinospora			
Fluorosalinosporamide	Salinospora	Mutasynthesis	Cytotoxic	Eustáquio and Moore, 2008
Salinosporamides analogs	Salinospora	Chemobiosynthesis	Cytotoxic	Liu et al., 2009
Salinosporamide A	Salinospora	Total chemical synthesis	Cytotoxic	Reddy et al., 2004; Endo and
				Daneshftsky, 2005; Kaya et al.,
				2011; Logan et al., 2014
Homosalinosporamide	Salinospora	Total chemical synthesis	Cytotoxic	Nguyen et al., 2010
Salinosporamides analogs	Salinospora	Chemobiosynthesis	Cytotoxic	Liu et al., 2009
Salinosporamide E	Salinospora	Semi-synthesis	Cytotoxic	Macherla et al., 2005
Bromosalinosporamide				
Iodosalinosporamide, Azidosalinosporamide, Hydroxysalinosporamide	Salinospora	Semi-synthesis	Cytotoxic	
Methylsalinosporamide				
Tosylsalinosporamide				
Dansylsalinosporamide				
Hydroxysalinosporamide				
Fluosalinosporamide				

it is speculated that unstudied marine rare actinobacteria can provide reservoir of new microbial molecules (Schorn et al., 2016). Recently, direct connection of genomic information to biomolecule can be attained in culture independent approach as introducing environment (eDNA) into a suitable expression host (metagenomic libraries) (Handelsman, 2004). But, compound rediscovery due to similar strain replications is a major limitation of this approach. To maximize the capacity to mine metagenomes for attaining biomolecules with novel activities, there is requisite for parallel developments in techniques for bioactivity screening, isolation and separation methods, and analytical chemistry (Trindade et al., 2015). Robust techniques for analytical characterization of compounds (Figure 1A) based on UV absorbance, high pressure liquid chromatography (HPLC), mass spectrometry, and nuclear magnetic resonance (NMR) analysis can be used to scrutinize the discovery of new compounds (Liu et al., 2012). The techniques utilizing coupling of biochemical analytical methods with genome information such as, in glycogenomics (Kersten et al., 2013), peptidogenomics (Medema et al., 2014), and metabolomics (Maansson et al., 2016) are recent advances facilitating easy access to diverse biomolecules. The results of such analytical analysis can be subsequently compared against databases repositories, such as MarinLit, ChemSpider, Pubchem, etc., to avoid already known compounds (Forner et al., 2013). Hence, robust analytical facilities and comparison with reference databases can assist on characterization of diverse chemical structures.

The prime focus in drug discovery is identification of new bioactive chemical or discovery of previously unreported biological activity with known chemical structure. High throughput screening (HTS) can provide easy means for evaluating desired bioactivities against an array natural
FIGURE 1 | Different approaches for enhancing natural product discovery from marine rare actinobacteria.

products (Monciardini et al., 2014). The robust screening strategies ranging from the classic whole cell assays to more sophisticated antisense based assay have been reviewed elsewhere (Silver and Bostian, 1990; Singh et al., 2011; Farha and Brown, 2016). Recently, the integrative approach of metabolite profiling, bioactivity studies and taxonomic studies have been utilized for characterizing different marine actinobacteria and biological properties of metabolites produced by them (Betancur et al., 2017). Such integrative approaches can be fascinating tool for directly assessing bioactivities at preliminary stages of study.

The next focus in drug discovery is understanding the biogenesis of bioactive molecule in producer strains. The rapid development of genome sequencing methods have revolutionized such studies by unveiling information about the whole genome architecture (Figure 1B). The challenge now is mining the data and connect the predicted biosynthetic gene clusters (BGC) to bioactive molecules. A plethora of in silico tools are available for determining the nature of gene clusters (Weber and Kim, 2016). The classic genome mining approach (focusing on unique biosynthetic enzyme) has transitioned to the concept of comparative genome mining (complete BGC to next BGC comparison) and culture independent-metagenome mining (Ziemert et al., 2016). Due to its efficacy in studying BGCs, the genome mining concept has been expanded to different marine rare actinobacteria for getting insight on biosynthesis mechanisms of different secondary metabolites. The analysis of genome sequence of Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 isolated from Mediterranean sponges revealed presence of numerous gene clusters of different secondary metabolites (Horn et al., 2015). The 5.2 Mb genome of marine rare actinobacteria, Salinispora tropica CNB-440 (Udwary et al.,
Systematic enrichment of production

Generally, genome information is the starting point for pathway discovery. Various “omics” based tools have been employed for engineering pathways for secondary metabolite production in various actinobacteria (Chaudhary et al., 2013; Hwang et al., 2014). But the lack of full understanding of physiological transition stage for secondary metabolite production is a major consideration during manipulation of cellular processes using metabolic engineering (Licona-Cassani et al., 2015). Engineering primary metabolism for enhancing the pools of building blocks without compromising the growth is a major constraint in most metabolic engineering approaches (Olano et al., 2008). System biology protocols have been successfully used to study physiological parameters, leading to the discovery of the activation of NPs biosynthesis and manipulation of pathways (Licona-Cassani et al., 2015). Genome scale metabolic models are valuable for predicting organisms’ phenotypes from genotypes basically by providing simulated mathematical prediction of cellular behavior under different genetic and physiological conditions (Henry et al., 2010; Ates et al., 2011). Community system biology approaches provide understanding about the complex relationship of individual members in a community and the modes of interactions they are engaged (Zengler and Palsson, 2012). The systematic application of systems biological approaches as metabolic network analysis coupled with pathway engineering or genetic engineering (Figure 2A) from a single strain to the larger community level can provide breakthrough in rational metabolic engineering approaches.

Synthetic biology is particularly focused on precise design and construction of new biological systems (metabolic pathways or genetic circuits) that are not prevalent in nature (Andrianantoandro et al., 2006). Previously, efforts in synthetic biology have been largely focused on creating and perfecting genetic devices. But the current focus is directed to customizable larger scale system engineering by assembling devices or modular organizations (Purnick and Weiss, 2009). Most often, biologically valuable natural products are produced in lower titer or are cryptic under normal laboratory conditions, whereas many rare actinobacteria are not amenable to genetic manipulation. Hence, in such cases transferring natural products biosynthesis into well-developed heterologous host is a logical approach for producing parent NPs or generating novel analogs through biosynthetic engineering (Wenzel and Müller, 2005). Direct cloning and refactoring of previously silent lipopeptide gene cluster of *Saccharomonospora* sp. CNQ490 have been achieved by heterologous expression in *Streptomyces coelicolor* to yield taromycin A by Transformation Assisted Recombination (TAR)-based genetic platform (Yamanaka et al., 2014). Besides, tuning of metabolic pathway by altering promoters (Siegl et al., 2013; Wang et al., 2013), terminators (Pulido and Jimenez, 1987), and RBS (Bai et al., 2015) and/or host manipulation by genome engineering (Siegl and Luzhetskyy, 2012; Tong et al., 2015) are providing new avenues for systemic level metabolic engineering of actinobacteria. Promoter exchange (Horbal et al., 2012) and the use of exogenous principal sigma factor (σHrDB) (Wang et al., 2014) have been utilized for increasing teicoplanin in an industrial strain of *Actinoplanes teichomyceticus*. Approach for constructing genetic circuit or holistic host engineering (Figure 2B) can be an effective approach for designing and synthesizing unnatural but effective molecules from marine rare actinobacteria.

3. Explicit modification for functional/structural diversity

Fundamentally, engineering or modulating the precursor pathways can lead to enhancement or diversification of natural products (Dhakal et al., 2016). Combinatorial biosynthesis exploits the shuffling of anabolic pathways by precursor directed biosynthesis, enzyme level modulations, and pathway level recombination, leading to novel natural products (Sun et al., 2015; Winn et al., 2016). The precursor-directed in-situ synthesis (PDSS) has been successfully employed for generating new congeners of saccharothriolides from *Saccharothrix* sp. A1506 (Lu et al., 2016). Such type of precursor modulations can be manifested chemically or biologically to generate structural diversity in compounds from marine rare actinobacteria. Mutasynthesis is another variant of modulation of anabolic pathway by generating mutant strain deficient in key aspects of biosynthetic pathway and substituting natural precursor with analog of precursor to produce new natural products (Kennedy, 2008). Mutasynthesis couples the power of chemical synthesis with molecular biology to create diverse derivatives of medicinally valuable natural products (Weissman, 2007). One such example is the production of fluorinated analog fluorosalinosporamide. It has better proteasome inhibition and cytotoxic activity than naturally produced salinosporamides isolated from various *Salinispora* species (Feling et al., 2003). The halogenase gene *salL* in *Salinispora tropica* has been inactivated and
5′-fluoro-5′-deoxyadenosine, a fluorinated analog of its natural precursor 5′-chloro-5′-deoxyadenosine, has been used to generate fluorosalinosporamide by chemistry mediated mutasynthesis (Eustáquio and Moore, 2008). In another approach, salL was replaced by fluorinase gene flA from Streptomyces catteleya. The mutant strain salL′flA+ produced fluorosalinosporamide in the presence of inorganic fluoride (Eustáquio et al., 2010). Moreover, combinatorial biosynthetic approach by feeding L-3-cyclohex-2′-enylalanine (CHA) residue in SalX disruption mutant of S. tropica enabled the generation of other unnatural salinosporamide derivatives such as salinosporamide X1 and salinosporamide X2, with lower activity (McGlinchey et al., 2008). But in another approach utilizing mutasynthetic approach with fine-tuned feeding of readily available amino acid precursors to SalX disruption mutant of S. tropica led to generation of many salinosporamide derivatives. Among them salinosporamide X7 exhibited equal to slightly improved cytotoxic potential than the natural counterpart (Nett et al., 2009). Hence, such approaches of precursor engineering, mutasynthesis, and combinatorial biosynthesis (Figure 3A, Table 1B) can be rationally utilized to diversify structure and perform structure-activity relationship studies of versatile molecules from various marine rare actinobacteria.

The advent of combinatorial synthetic chemistry has created huge excitement in the pharmaceutical industry by generating libraries of millions of compounds which could be screened by HTS (Butler, 2004). The total synthesis of complex natural products offers greater potential for direct access to bioactive molecule from marine sources. However, large scale production of complex natural product remains elusive due to low yields and high cost (Yeung and Paterson, 2005). Recent achievement as total synthesis of natural products in absence of protecting groups can lead to development of superior molecules with greater flexibility (Young and Baran, 2009). The generation of microbial chemicals by total enzymatic synthesis has been used as alternative to total chemical synthesis (Cheng et al., 2007). There have been ample of examples illustrating improvement in physical and biological properties of natural products (including many marine natural products) by chemical modifications, semisynthesis, mutasynthesis, and chembiosynthesis (Hamann, 2003; Kennedy, 2008) mediated by biological and chemical techniques. Bioinspired total synthesis of salinosporamides and structurally related derivatives have provided access to novel functionalities of tremendously effective molecule (Nguyen et al., 2010; Chen et al., 2012). Suitable integration of synthetic chemistry (Figure 3B, Table 1B) with biological production system can be utilized for generating structurally and functionally diverse analogs/derivatives of target molecule. One of the successful example illustrating application of synthetic chemistry in marine natural products is rationalized for structural/functional diversification of salinosporamides (Baran et al., 2007; Potts and Lam, 2010). The synergy between genome sequencing, mass spectroscopy based analysis and bio-inspired synthesis have been utilized for studying biosynthetic mechanism and structural diversification of nocardioazine B from Nocardiopsis sp. CMB-M0232 (Alqahtani et al., 2015). Hence, it is no doubt that rational integration of biological processes and chemical techniques (Dhakal and Sohng, 2015, 2017) can provide new foundations for drug discoveries from marine rare actinobacteria.

FUTURE OUTLOOK

As evident from examples above, the innovative methods for procurement of bioactive molecules from potent strains, efficient production and/or modifications by biological and chemical methods can assist in harnessing the full potential of biomolecules derived from marine rare actinobacteria. Further, tuning of structural and functional properties based on structure activity relationship studies can lead to development of superior analogs. But the prime focus should be on application of cutting edge translational research, such as transferring the achievements of discovery or synthesis of such biomolecule to the industrial bench-tops and clinics. The successful collaboration between biologists/chemists in academics and/or pharmaceutical companies can open new avenues for development of highly effective drugs. Salinosporamide A (Marizomib) has been a significant representation of compound derived from marine rare actinobacteria leading to phase trials. It is no doubt that exploration of new candidate strains with sophisticated techniques will certainly unravel tremendous opportunities to identify novel natural products and improve their applicability by structural/functional diversifications.

AUTHOR CONTRIBUTIONS

DD, ARP, BS, and JS made substantial, direct, and intellectual contribution to the work, and approved it for publication with full consent.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2017R1A2A2A05000939).

REFERENCES

Abdel-Mageed, W. M., Milne, B. F., Wagner, M., Schumacher, M., Sandor, P., Pathom-aree, W., et al. (2010). Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 8, 2352–2362. doi: 10.1039/c001445a

Alqahtani, N., Porwal, S. K., James, E. D., Bis, D. M., Karty, J. A., Lane, A. L., et al. (2015). Synergism between genome sequencing, tandem mass spectrometry
and bio-inspired synthesis reveals insights into nocardiozine A biogenesis. Org. Biomol. Chem. 13, 7177–7192. doi: 10.1039/C5OB00537
Andrianantoandro, E., Basu, S., Karig, D. K., and Weiss, R. (2006). Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2, 2206. doi: 10.1038/msb4100073
Aoi, Y., Kinoshita, T., Hayata, T., Ohta, H., Obokata, H., and Tsuneda, S. (2009). Hollow-fiber membrane chamber as a device for in situ environmental cultivation. Appl. Environ. Microbiol. 75, 3826–3833. doi: 10.1128/AEM.02542-08
Asolkar, R. N., Kirkland, T. N., Jensen, P. R., and Fenical, W. (2010). Arenimycin, a rare actinomycete antibiotic from the marine actinomycete Micromonospora. J. Nat. Prod. 73, 2141–2153. doi: 10.1021/np100106y
Carlson, S., Marler, N., Sam, J. S., Santarsiero, B. D., Pezzuto, J. M., and Murphy, B. T. (2013). Potential chemopreventive activity of a new macrolide antibiotic from a marine-derived Micromonospora sp. Mar. Drugs 11, 1152–1161. doi: 10.3390/md11041152
Cavalier-Smith, T. (2002). The neomuran origin of archaeabacteria, the neobacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52, 7–76. doi: 10.1099/00207713-52-1-7
Chaudhary, A. K., Dhakal, D., and Sohng, J. K. (2013). An insight into the “-omics” based engineering of streptomyces for secondary metabolite overproduction. Biomed. Res. Int. 2013:968518. doi: 10.1155/2013/968518
Chen, Z. H., Wang, B. L., Kale, A. J., Moore, B. S., Wang, R. W., and Qinf, F. L. (2012). Coupling of sterically hindered aldehyde with fluorinated synthons: stereoselective synthesis of fluorinated analogues of salinosporamide A. J. Fluor. Chem. 136, 12–19. doi: 10.1016/j.jfluchem.2012.01.003
Cheng, Q., Xiang, L., Izumikawa, M., Meluzi, D., and Moore, B. S. (2007). Enzymatic total synthesis of enterocin polypeptides. Nat. Chem. Biol. 3, 557–558. doi: 10.1038/nchembio.2007.22
Cho, J. Y., Williams, P. G., Kwon, H. C., Jensen, P. R., and Fenical, W. (2007). Lucentaycin, a D-cytotoxic peptide from the marine-derived actinomycete Nocardiopsis lucentayensis. J. Nat. Prod. 70, 321–328. doi: 10.1021/np070101b
Deamer, D., Akesson, M., and Branton, D. (2016). Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524. doi: 10.1038/nbt.3423
Dhakal, D., and Sohng, J. K. (2015). Commentary: toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front. Microbiol. 6:2727. doi: 10.3389/fmicb.2015.00272
Dhakal, D., and Sohng, J. K. (2017). Coalition of biology and chemistry for ameliorating antimicrobial drug discovery. Front. Microbiol. 8:734. doi: 10.3389/fmicb.2017.00734
Dhakal, D., Chaudhary, A. K., Yi, J. S., Pokhrel, A. R., Shrestha, B., Parajuli, P., et al. (2016). Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Appl. Microbiol. Biotechnol. 100, 9917–9931. doi: 10.1007/s00253-016-7705-3
Donadio, S., Maffioli, S., Moncaldi, P., and Danishefsky, S. J. (2010). Antibiotic discovery in the twenty-first century: current trends and future perspectives. J. Antibiot. 63, 430–430. doi: 10.1038/ja.2010.62
Duncan, K. R., Crüsemann, M., Lechner, A., Sarkar, A., Li, J., Ziemert, N., et al. (2015). Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. Chem. Biol. 22, 460–471. doi: 10.1016/j.chembiol.2015.03.010
Ellis, G. A., Wyche, T. P., Fry, C. G., Braun, D. R., and Bugini, T. S. (2014). Solwarc acids A and B, antibacterial aromatic acids from a marine Solwara sp. Mar. Drugs 12, 1013–1022. doi: 10.3390/md12021013
Endo, A., and Danishefsky, S. J. (2005). Total synthesis of salinosporamide A: A J. Am. Chem. Soc. 127, 8298–8299. doi: 10.1021/ja0522783
Eustáquio, A. S., and Moore, B. S. (2008). Mutaynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew. Chem. Int. Ed. Engl. 47, 3936–3938. doi: 10.1002/anie.200801717
Eustáquio, A. S., Nam, S. I., Penn, K., Lechner, A., Wilson, M. C., and Fenical, W., et al. (2011). The discovery of salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. Chembiochem 12, 61–64. doi: 10.1002/cbic.201000564
Eustáquio, A. S., O’Hagan, D., and Moore, B. S. (2010). Engineering fluorometabolite production: fluorinase expression in a marine-derived Micromonospora strain. Nat. Prod. Rep. 73, 378–382. doi: 10.1039/CNP00127G
Fei, P., Chuan-xi, W., Yang, X., Hong-lei, J., Lu-jie, C., Uribe, P., et al. (2013). A highly potent cyanobacterial antibiotic with a novel chemical structure. Angew. Chem. Int. Ed. Engl. 52, 3557–3559. doi: 10.1002/anie.201309915
Fenical, W., and Jensen, P. R. (2003). Salinosporamide A: a highly cytoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew. Chem. Int. Ed. Engl. 42, 355–357. doi: 10.1002/anie.200309915
Farha, M. A., and Brown, E. D. (2016). Strategies for target identification of antimicrobial natural products. Nat. Prod. Rep. 33, 668–680. doi: 10.1039/C5NP00127G
Fei, P., Chuan-xi, W., Yang, X., Kong, I., Lu-jie, C., Uribe, P., et al. (2013). A new 20-membered macrolide produced by a marine-derived Micromonospora strain. Nat. Prod. Res. 27, 1366–1371. doi: 10.1080/14776491.2012.740038
Feling, R. H., Buchanan, G. O., Mincer, T. J., Kaufman, C. A., Jensen, P. R., and Fenical, W. (2003). Salinosporamide A: a highly cytoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew. Chem. Int. Ed. Engl. 42, 355–357. doi: 10.1002/anie.200309915
Fenical, W., and Jensen, P. R. (2006). Developing a new resource for drug discovery: marine actinomycete bacteria. Nat. Chem. Biol. 2, 666–673. doi: 10.1038/nchembio841
Fenical, W., Baden, D., Burg, M., de-Goyet, C. V., Grimes, J. D., Katz, M., et al. (1999). "Marine derived pharmaceuticals and related bioactive compounds," in From Monsoons to Microbes: Understanding the Ocean’s Role in Human Health, ed W. Fenical (Washington, DC: National Academies Press), 71–86.

Forner, D., Berrut, F., Correa, H., Duncan, K., and Kerr, R. G. (2013). Chemical dereplication of marine actinomycetes by liquid chromatography–high resolution mass spectrometry profiling and statistical analysis. Anal. Chim. Acta 805, 70–79. doi: 10.1016/j.aca.2013.10.029

Freel, K. C., Nam, S. J., Fenical, W., and Jensen, P. R. (2011). Evolution of secondary metabolite gene evolution in three closely related marine actinomycete species. Appl. Environ. Microbiol. 20, 7261–7270. doi: 10.1128/AEM.05943-11

Fu, P., Kong, F., Li, X., Wang, Y., and Zhu, W. (2014). Cyanogramide with a new spiro [indolizino-pyrroloimidazol] skeleton from Actinoalloteichus cyanogriseus. Org. Lett. 16, 3708–3711. doi: 10.1021/o505123d

Fu, P., Wang, S., Hong, K., Li, X., Liu, P., Wang, Y., et al. (2011). Cytotoxic bipyridines from the marine-derived actinomycete Actinoalloteichus cyanogriseus WHI-2126-6. J. Nat. Prod. 74, 1751–1756. doi: 10.1021/npi20058h

Fukuda, T., Takahashi, M., Nagai, K., Harunari, E., Imada, C., and Tomoda, H. (2016). Isomethoxynelumicin, a new cytotoxic agent produced by marine Nocardiopsis alba KM6-1. J. Antibiot. 70, 590–594. doi: 10.1038/ja.2016.152

Gan, M., Liu, B., Tan, Y., Wang, Q., Zhou, H., He, H., et al. (2015). Actinoalloteichus sp. WHC164 isolated from the deep sea environment. World J. Microbiol. Biotechnol. 31, 455–462. doi: 10.1007/s11274-012-1013-6

Gärtnert, A., Ohlendorf, B., Schulz, D., Zieche, N., Wiese, J., and Imhoff, J. F. (2011). Levantidilates, A, B, and 20-membered macrolides from a Micromonaspora strain isolated from the mediterranean deep sea sediment. Mar. Drugs 9, 98–108. doi: 10.3390/md9010098

Goodfellow, M., Stach, J. E., Brown, R., Bonda, A. N. V., Jones, A. L., Moxon, J., et al. (2012). Verrucosimaris marts sp. nov., a novel deep-sea actinomycete isolated from a marine sediment which produces abyssovincins. Antonie Van Leeuwenhoek 101, 185–193. doi: 10.1007/s10482-011-9651-5

Hamann, M. T. (2003). Enhancing marine natural product structural diversity and bioactivity through semisynthesis and biocatalysis. Curr. Pharm. Des. 9, 879–889. doi: 10.2174/1381612033455297

Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685. doi: 10.1128/MMBR.68.4.669-685.2004

Henry, C. S., DeJongh, M., Best, A. A., Frybarger, P. M., Linsay, B., and Stevens, R. (2011). Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl. Environ. Microbiol. 72, 2118–2125. doi: 10.1128/AEM.72.3.2118-2125.2006

Kim, S., Yang, S., Shin, S., Bae, J., Lee, J., Park, J., et al. (2012). Isomethoxynelumicin A, a new cytotoxic agent produced by marine Actinomycetes WH1-2216-6. Nat. Prod. Commun. 7, 98–108. doi: 10.3390/md9010098

Kim, M. C., Kwon, O. W., Park, J. S., Kim, S. Y., and Kwon, H. C. (2013). Nocapyrones H–J, 3, 6-disubstituted α-pyrones from the marine actinomycete Nocardiopsis sp. KMF-001. Chem. Biol. Pharm. Bull. 61, 511–515. doi: 10.1248/cpb.c12-00956

Kim, T. K., Hewavitharana, A. K., Shaw, P. N., and Fuerst, J. A. (2006). Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl. Environ. Microbiol. 72, 2118–2125. doi: 10.1128/AEM.72.3.2118-2125.2006

Kisand, V., Valente, A., Lahm, A., Tanet, G., and Lettieri, T. (2012). Phylogenetic and functional metagenomic profiling for assessing microbial biodiversity in environmental monitoring. PLoS ONE 7:e43630. doi: 10.1371/journal.pone.0043630

Kwon, H. C., Kauffman, C. A., Jensen, P. R., and Fenical, W. (2006). Marimycinins, A–D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinisorpa.” J. Am. Chem. Soc. 128, 1622–1632. doi: 10.1021/ja058948b

Kwon, H. C., Kauffman, C. A., Jensen, P. R., and Fenical, W. (2006). Marimycinins, A–D, antitumor-antibiotics of a new structure class from a marine actinomycete of the recently discovered genus “Marinisorpa.” J. Am. Chem. Soc. 128, 1622–1632. doi: 10.1021/ja058948b

Lechner, A., Eustáquio, A., Guider, T. A., Hafer, M., and Moore, B. S. (2011). Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. Chem. Biol. 18, 1527–1536. doi: 10.1016/j.chembiol.2011.10.014

Leutou, A. S., Yang, I., Kang, H., See, E. K., Nam, S. J., and Fenical, W. (2015). Nocarimidazoles, A, and B from a marine-derived actinomycete of the genus Nocardiopsis. J. Nat. Prod. 78, 2846–2849. doi: 10.1021/acs.jnatprod.5b00746

Li, S., Tian, X., Niu, S., Zhang, W., Chen, Y., Zhang, H., et al. (2011). Pseudocaridians C–A, new diazanorhquinone derivatives from a deep sea actinomycete Pseudonocardia sp. SC51029. Mar Drugs 9, 1428–1439. doi: 10.3390/md9081428

Licona-Cassani, C., Cruz-Morales, P., Manteca, A., Barona-Gomez, F., Nielsen, L. K., and Marcellin, E. (2015). Systems biology approaches to understand natural products biosynthesis. Front. Bioeng. Biotechnol. 3:199. doi: 10.3389/fbioe.2015.00199

Ling, L. L., Schneider, T., Peoples, A. J., Spoering, A. L., Engels, I., Conlon, B. P., et al. (2015). A new antibiotic kills pathogens without detectable resistance. Nature 517, 445–459. doi: 10.1038/nature14098

Liu, X., Bolla, K., Ashforth, E. J., Zhao, Y., Gao, H., Huang, P., et al. (2012). Systematics-guided bioprospecting for bioactive microbial natural products. Antonie Van Leeuwenhoek 101, 55–66. doi: 10.1007/s10482-011-9671-1

Liu, Y., Hazzard, C., Eustáquio, A. S., Reynolds, K. A., and Moore, B. S. (2009). Bio conversion of salinosporamides from α, β-unsaturated fatty acids: implications for extending polyketide synthase diversity. J. Am. Chem. Soc. 131, 10376–10377. doi: 10.1021/ja9042824

Logan, A. W., Sprague, J. S., Foster, R. W., Marx, L. B., Garzya, V., Hallside, M. S., et al. (2014). Diastero-selective synthesis of fused lactone-pyrrolidinones;
application to a formal synthesis of (−)-Salinosporamide A. Org. Lett. 16, 4078–4081. doi: 10.1021/ol601621m
Lombó, F., Velasco, A., Castro, A., De la Calle, F., and Braña, A. F., Sánchez-Puelles, J. M., et al. (2006). Deciphering the biosynthetic pathway of the antidepressant thioracoline from a marine actinomycete and its expression in two Streptomyces species. ChemBioChem 7, 366–376. doi: 10.1002/cbic.200500325
Lu, S., Nishimura, S., Ito, M., Kato, T., and Kakeya, H. (2016). Precursor-directed in situ synthesis of Saccharothriolides, G., and H by the Actinomycete Saccharothrix sp. A1506. J. Antibiot. 70, 718–720. doi: 10.1038/ja.2016.153
Maansson, M., Vyne, N. G., Kliggaard, A., Nybo, J. L., Melchiorsen, J., Nguyen, D. D., et al. (2016). An integrated metabolomic and genomic mining workflow to uncover the biosynthetic potential of bacteria. Msysystems 1, e00028-e00015. doi: 10.1128/mSystems.00028-15
Macherla, V. R., Mitchell, S. S., Manam, R. R., Reed, K. A., Chao, T. H., Nicholson, B., et al. (2005). Structure activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem. 48, 3684–3687. doi: 10.1021/jm048995+ Maloney, K. N., McMillan, J. B., Kauffman, C. A., Jensen, P. R., DiPasquale, A. G., Rheingold, A. L., et al. (2009). LODoporydine, a structurally unprecedented alkaloid from a marine actinomycete. Org. Lett. 11, 5422–5424. doi: 10.1021/ol901997k
Manam, R. R., McArthur, K. A., Chao, T. H., Weiss, J., Ali, J. A., Palombella, V. J., et al. (2008). Leaving groups prolong the duration of 20S proteasome inhibition and enhance the potency of salinosporamides. J. Med. Chem. 51, 6711–6724. doi: 10.1021/jm8007183
McArthur, K. A., Mitchell, S. S., Tsugon, G., Rheingold, A., White, D. J., Grodberg, J., et al. (2008). Lymamicins A–E, chlorinated bisindole pyrrole antibiotics from a novel marine Actinomycete. J. Nat. Prod. 71, 1732–1737. doi: 10.1021/np800286d
McGlinchey, R. P., Nett, Eustáquio, A. S., Asolkar, R. N., Fenical, W., and Moore, B. S. (2008). Engineered biosynthesis of antiproteasal and other unnatural salinosporamide protease inhibitors. J. Am. Chem. Soc. 130:7822. doi: 10.1021/ja8029398 Medema, M., Paalvast, Y., Nguyen, D., Melnik, A., Dorrestein, P., Takano, E., et al. (2014). Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLoS Comput. Biol. 10:e1003822. doi: 10.1371/journal.pcbi.1003822
Monciardini, P., Iorio, M., Maftoli, S., Sosio, M., and Donadio, S. (2014). Discovering new bioactive molecules from microbial sources. Microbiol. Biotechnol. 7, 209–220. doi: 10.1111/1751-7915.12123
Mullowney, M. W., OhAinmhirne, E., Tanouye, U., Burdette, J. E., Pham, V. C., and Murphy, B. T. (2015). A pimarane diterpene and cytotoxic angucyclines from a marine-derived Micromonospora sp. in Vietnams East Sea. Mar. Drugs. 13, 5815–5827. doi: 10.3390/md13100515
Murphy, B. T., Xanthere, T., Kaufman, C. A., Woolery, M., Jensen, P. R., and Fenical, W. (2010). Saliniquinones A–F, new members of the highly cytotoxic anthraquinone-γ-pyrones from the marine actinomycete Salinispora arenicola. Aust. J. Chem. 63, 929–934. doi: 10.1071/CH01006
Nam, S. J., Gaudêncio, S. P., Kauffman, C. A., Jensen, P. R., Kondratyuk, T. P., Marler, L. E., et al. (2014). Fijiolides, A, B, inhibitors of TNF-α-induced NFκB activation, from a marine-derived sediment bacterial of the genus Nocardiopsis. J. Nat. Prod. 73, 1080–1086. doi: 10.1021/np500687n
Nett, M., Gulder, T. A., Kale, A. J., Hughes, C. C., and Moore, B. S. (2009). Function-oriented biosynthesis of β-lactone protease inhibitors in Salinispora tropicalis. J. Med. Chem. 52:6163. doi: 10.1021/jm901098n
Nguyen, H., Ma, G., Gladysheva, T., Fremgen, T., andromo, D. (2010). Bioinspired total synthesis and human proteases inhibitory activity of (−)-salinosporamide A, (−)-homosalinosporamide A, and derivatives obtained via organonucleophile promoted bis-cyclizations. J. Org. Chem. 76, 2–12. doi: 10.1021/jo101638r
Nichols, D., Cahoon, N., Trakhtenberg, E. M., Pham, L., Mehta, A., Belanger, A., et al. (2010). Use of ichip for high-throughput in situ cultivation of "uncultivable" microbial species. Appl. Environ. Microbiol. 76, 2445–2450. doi: 10.1128/AEM.01754-09
Nübel, U., Garcia-Pichel, F., Kühhl, M., and Muyzer, G. (1999). Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats. Appl. Environ. Microbiol. 65, 422–430.
Silver, L., and Bostian, K. (1990). Screening of natural products for antimicrobial agents. *Eur. J. Clin. Microbiol. Infect. Dis.* 9, 455–461. doi: 10.1007/BF01964283

Simmons, L., Kaufmann, K., García, R., Schwär, G., Huch, V., and Müller, R. (2011). Bendigoles D-F: bioactive sterols from the marine sponge-derived Actinomadura sp. *SMBio099.* *Bioorg. Med. Chem.* 19, 6570–6575. doi: 10.1016/j.bmc.2011.04.044

Singh, S. B., Young, K., and Miesel, L. (2011). Screening strategies for discovery of antibacterial natural products. *Expert Rev. Anti Infect. Ther.* 9, 589–613. doi: 10.1586/eri.11.81

Slattery, M., Ankisetti, S., Corrales, J., Marsh-Hunkin, K. E., Gochfeld, D. J., Willett, K. L., et al. (2012). Marine proteomics: a critical assessment of an emerging technology. *J. Nat. Prod.* 75, 1833–1877. doi: 10.1021/np300366a

Souza, T. S. D., Jimenez, P. C., Ferreira, E. G., Silveira, E. R., Braz-Filho, R., Pessoa, O. D., et al. (2012). Anthracynolones from *Micromonospora* sp. *J. Nat. Prod.* 75, 489–493. doi: 10.1021/np200795p

Stewart, E. J. (2012). Growing unculturable bacteria. *J. Bacteriol.* 194, 4151–4160. doi: 10.1128/JB.00345-12

Subramani, R., and Aalbersberg, W. (2013). Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. *Appl. Microbiol. Biotechnol.* 97, 9291–9321. doi: 10.1007/s00253-013-5229-7

Sun, H., Liu, Z., Zhao, H., and Ang, E. L. (2015). Recent advances in combinatorial biosynthesis for drug discovery. *Drug Des. Devel. Ther.* 9, 823–833. doi: 10.2147/DDDT.S63023

Takagi, M., Motohashi, K., Khan, S. T., Hashimoto, J., and Shin-ya, K. (2010). *JIR-B65*, a new diterpene, isolated from a sponge-derived *Actinomadura* sp. *Sp0810305C-15. J. Antibiot.* 63, 401–403. doi: 10.1038/ja.2010.61

Tang, X., Li, J., Millán-Aguinaaga, N., Zhang, J. J., O'Neill, E. C., Ugadle, J. A., et al. (2015). Identification of thiotetronic acid antibiotic biosynthetic pathways by target-directed genome mining. *ACS Chem. Biol.* 10, 2841–2849. doi: 10.1021/acschembio.5b00658

Tiwari, K., and Gupta, R. K. (2013). Diversity and isolation of rare actinomycetes: an overview. *Crit. Rev. Biotechnol.* 39, 256–294. doi: 10.3109/1040841X.2012.709819

Tong, Y., Charusant, P., Zhang, L., Weber, T., and Lee, S. Y. (2015). CRISPR-Cas9 based engineering of actinomycetal genomes. *ACS Synth. Biol.* 4, 1029–1039. doi: 10.1021/acsasb.5b00038

Trindade, M., van Zyl, L. J., Navarro-Fernández, J., and Abd Elrazak, A. (2015). Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. *Front. Microbiol.* 6:890. doi: 10.3389/fmicb.2015.00890

Udwaray, D. W., Zeigler, L., Asolkar, R. N., Singan, V., Lapidus, A., Fenical, W., et al. (2007). Genome sequencing reveals complex secondary metabolome in the marine actinomycete *Salinispora tropica.* *Proc. Natl. Acad. Sci. U.S.A.* 104, 10376–10381. doi: 10.1073/pnas.0700621104

Varoutskian, S. R., Palmer, R. M., and Wade, W. G. (2010). Strategies for culture of ‘unculturable’ bacteria. *FEBS Microbiol. Lett.* 10, 1–7. doi: 10.1111/j.1574-6968.2010.02000.x

Wang, H., Yang, C., Huang, C., Zhang, W., Zhu, Y., and Zhang, C. (2015). Heterologous expression of fluostatin gene cluster leads to a bioactive heterodimer. *Org. Lett.* 17, 5324–5327. doi: 10.1021/acs.orglett.5b02683

Yeung, K. S., and Paterson, I. A. (2005). Advances in the total synthesis of biologically important marine macrolides. *Chem. Rev.* 105, 4327–4313. doi: 10.1021/cr040614c

Young, I. S., and Baran, P. S. (2009). Protecting-group-free synthesis as an opportunity for invention. *Nat. Chem.* 1, 193–205. doi: 10.1038/nchem.216

Zengler, K., and Palsson, B. O. (2012). A road map for the development of community systems (CoSy) biology. *Nat. Rev. Microbiol.* 10, 366–372. doi: 10.1038/nrmicro2763

Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E. J., Short, J. M., et al. (2002). Cultivating the uncultured. *Proc. Natl. Acad. Sci. U.S.A.* 99, 15681–15686. doi: 10.1073/pnas.252630999

Zhang, W., Liu, Z., Li, S., Lu, Y., Chen, Y., Zhang, H., et al. (2012). Fluostatins I–K from the South China Sea-derived *Micromonospora rosaria* SC(S)6002. *J. Nat. Prod.* 75, 1937–1943. doi: 10.1021/np300505y

Zhou, X., Huang, H., Chen, Y., Tan, J., Song, Y., Zou, J., et al. (2012). Marthiapideptide, A, an anti-infective and cytotoxic polyhaloazete cyclopeptide from a 60 L scale fermentation of the deep-sea-derived *Marinactinospora thomastonii* SC(S)6052. *J. Nat. Prod.* 75, 2251–2255. doi: 10.1021/np300554f
Ziemert, N., Alanjary, M., and Weber, T. (2016). The evolution of genome mining in microbes—a review. Nat. Prod. Rep. 33, 988–1005. doi: 10.1039/c6np00025h

Ziemert, N., Lechner, A., Wietz, M., Millán-Aguiñaga, N., Chavarria, K. L., and Jensen, P. R. (2014). Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. U.S.A. 111, E1130–E1139. doi: 10.1073/pnas.1324161111

Zotchev, S. B. (2012). Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol. 158, 68–175. doi: 10.1016/j.jbiotec.2011.06.002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Dhakal, Pokhrel, Shrestha and Sohng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.