Abstract

Introduction: Urinary tract infection is a public health problem worldwide. *Escherichia coli*, *E. coli* and *Klebsiella* spp. are among the main etiologic for UTI in the Gaza Strip. The growing variations in resistance patterns among uropathogens to antimicrobials is multifactorial and varies globally. It greatly reduces/limits or complicates treatment options.

Aims: To determine the pattern of antimicrobial resistance and multidrug resistance among uropathogens at governmental hospitals.

Methods: We analyzed the data of 11,890 urine samples processed in governmental hospitals in the Gaza Strip, Palestine during 2019. The percentage of resistance was calculated for uropathogens, and then multidrug resistance was calculated according to Centers for Disease Control and Prevention “CDC” definition.

Results: Of 11,890 urine samples, 2910 (24.5%) showed significant growth. *Escherichia coli* was most frequently isolated (1743; 59.9%), followed by *Klebsiella* spp. (725; 24.9%), *Pseudomonas* spp. (123; 4.2%), *Streptococcus* spp. (98; 3.4%), *Staphylococcus aureus* (41; 1.4%). Microorganisms’ resistance was high against ampicillin (92.4%) and amoxicillin (91.1%), trimethoprim/sulfamethoxazole (68.2%), cefalexin (64.9%), doxycycline (61.9%), nalidixic acid (53.6%), cefuroxime (53.0%), ceftriaxone (48.9%), ceftazidime (43.1%), ciprofloxacin (36.9%), gentamicin (25.8%), amikacin (3.2%). The resistance of microorganisms in males is higher than females. Multidrug resistance was detected in 37% of *E. coli* and 53% in *Klebsiella* spp.

Conclusion: Resistance is high and variable among uropathogens isolated from patients in the Gaza strip. Both age and gender are risk factors in both infection and resistance pattern. The multidrug resistance percentage is growing remarkably in the Gaza Strip.
Introduction
Urinary tract infection (UTI) is a public health problem, in both community and hospitals. It is more prevalent in women than men [1]. According to the American college of obstetricians and gynecologists, about 50-60% of the women suffer from an episode of UTI at least once during their lifetime [2]. Unmanaged UTI may results in a wide range of serious complications starting from kidney damage, renal scarring and my ends with renal failure. In men, UTI become increasingly frequent with age and functional disability, but bacteriuria in elderly men tends to be intermittent, episodic, and more complex to be diagnosed [3].

Gram-negative bacteria are the most common causative agents of UTI, including *E. coli*, *Klebsiella* spp., and *Proteus* spp. While Gram-positive bacteria constitutes the minority of UTI infectious pathogens like *Staphylococcus saprophyticus*, *Enterococci* spp., and *Streptococcus* spp. [4, 5]. Antimicrobial resistance is becoming a major concern not only in nosocomial complicated UTI, but also in uncomplicated community-acquired UTI [6]. Concurrent resistance to antimicrobials of different structural classes has arisen in several of bacterial species and may complicate the therapeutic management of infections, including those of the urinary tract [7]. Multiple drug resistance (MDR) rate for 3 and more drugs is arising in *E. coli* isolates and often complicate therapeutic management of urinary tract infection (UTI) by this organism [7]. The extent of the problem in low-and middle-income countries is unknown because of the scarcity of data, but high levels of resistance are increasingly being reported worldwide [8].

In Palestine, antimicrobials are poorly regulated and available on the private market and can be accessed with or without a prescription [9]. Gaza Strip is one of the high-density populated area, in which governmental hospitals is the back bone of UTI infections treatment. In this study, the common uropathogens were determined and the pattern of resistance of *E. coli* and *Klebsiella* spp. were detected and the MDR rates were determined.

Methods and materials
Study design and settings
This is a retrospective study in design that was conducted in four governmental hospitals (European, Al Shifa, Nassr, and Al Durra Hospitals) in Gaza Strip, Palestine over a period one year (1/1/2019 to 31/12/2019).

Data collection
The study data were collected from urine culture records of samples that were sent to the Microbiology laboratory during the study period. All samples diagnosed with UTI infection by physicians in hospital were included. An approval from the Helsinki Ethical Committee was obtained before the study and a permission from the Ministry of Health was granted to use the data.

The records of 11,890 urine samples results were studied. According to the microbiology lab Standard Operation Procedure, midstream urine samples were collected in sterile containers and cultured on blood agar and MacConkey media with a standard calibrated loop and were incubated at 37°C overnight. A growth of $\geq 10^5$ colony-forming units/mL was considered as significant bacteriuria. The identification of isolates was done through Gram-staining and conventional biochemical methods. Antimicrobial susceptibility was done by Kirby–Bauer disc diffusion method on Mueller–Hinton agar and the interpretations were carried out according to the Clinical and Laboratory Standards Institute guidelines [10]. Antibiotic disks used in the susceptibility testing varied according to their availability. Data were obtained in the form of Microsoft excel file containing all the recorded cases UTI cultures results contains susceptibility, resistance to the used antimicrobials, name of the uropathogen, age, gender, date of test, area of living, name of hospital, and diagnosis at the
four governmental hospitals, the data cleaned, coded and exported to SPSS to be analyzed.

Data analysis
Data analysis was done, using SPSS 22 (2019). Cross tabulation was made; to detect any correlations, and/or differences among the investigated variables, using chi square, and independent T test. P-value equal or less than 0.05 was considered statistically significant, with confidence interval (CI) of 95%. Tables, histograms, and charts were used to present the data. Indicators which used in the study designed to reflect antimicrobial susceptibility situation in governmental hospitals.

Results

Distribution frequency of uropathogens
Only 2,910 (24.5%) exhibited significant growth and were considered as positive for UTI. Among the uropathogens isolated during the data collection period, *E. coli* constituted the majority with 59.9%, followed by *Klebsiella* spp. (24.9%), *Pseudomonas* spp. (4.2%), and *Proteus* spp. (2.4%). Gram-negative bacteria constituted 91% of the isolates, while Gram-positive (*S. aureus, Enterococcus* spp., and *Streptococcus* spp.) represented in less than 5.5%. In addition, less than 3% of the isolates were classified as “others” as shown in Table 1.

Prevalence of UTI according to patients’ gender
Females represented 71.4% of all positive urine cultures with an odds ratio of 1.863 (Table 2).

The antibiogram of uropathogens recovered from patient samples
Table 1 demonstrates that *E. coli* and *Klebsiella* spp. constitutes about 85% of the total isolates, which means that they are the main etiologic agents of UTI, therefore, the study will focus on these isolates as the main findings. A prominent finding is the high resistance exhibited by uropathogens to penicillin group. The resistance to penicillin derivatives like ampicillin was 91% and amoxicillin was 90%, for *E. coli*, and the resistance is 95% for *Klebsiella* spp. to the same antimicrobials Table 3. As shown in Table 3 *E. coli* is highly resistant to the cephalosporin group. Its resistance ranges from 41% to 60% against all of the cephalosporins. *E. coli* has the highest resistance against cephalexin (60%) and the lowest resistance against ceftazidime (41%). *Klebsiella* spp. has resistance (73%) and (49%) against the same antimicrobials, respectively. Also, Table 3 shows that the antibiotic resistance patterns of *E. coli* to the listed tested antibiotics.

Table 1. The distribution frequency of uropathogens isolates at the four governmental hospitals.

Organism isolated	n=2,910	Total
	Frequency %	N %
Gram negative		
Escherichia coli	1,743	59.9
Klebsiella spp.	725	24.9
Proteus spp.	69	2.4
Enterobacter spp.	12	0.4
Pseudomonas spp.	123	4.2
Gram positive		
Staphylococcus aureus	41	1.4
Enterococcus spp.	13	0.4
Streptococcus spp.	98	3.4
Others		
Candida spp.	70	2.4
Others	16	0.5
Total	2,910	100

Table 2. Frequency of gender distribution of UTI cases from the four governmental hospitals in the Gaza Strip Palestine.

Variable	Gender distribution	
	Frequency	%
Female	2078	71
Male	832	29
Total	2910	100

© Under License of Creative Commons Attribution 3.0 License
Antimicrobial	Disk charge	E. coli	Klebsiella spp.	Proteus spp.	Enterobacter spp.	Pseudomonas spp.	S. aureus	Enterococci	Streptococcus spp.
Penicillin G	6	-	-	-	-	-	3	75	4
Amoxicillin	10	553	91	245	95	27	5	100	3
Amoxicillin	20	154	90	70	95	13	1	100	4
Cloxacillin	5	-	-	-	-	-	-	-	-
Piperacillin	100	148	74	90	79	2	5	50	1
Cephalixin	30	540	60	279	73	21	68	2	2
Cefuroxime	30	682	49	350	62	20	37	3	3
Cefotaxime	30	474	44	267	60	10	24	-	-
Ceftazidime	30	494	41	243	49	18	45	1	2
Ceftiraxime	30	681	46	364	59	16	29	2	2
Cefazolin	30	344	53	154	61	10	34	4	5
Doxycycline	30	304	59	151	66	16	80	0	0
Amikacin	30	15	2	14	4	1	3	-	-
Gentamicin	30	321	23	172	29	20	38	4	4
Co-Trimoxazole	1.25/23.75	959	66	420	69	47	80	8	8
Nalidixic acid	30	852	53	330	50	37	63	3	3
Ciprofloxacin	5	450	35	198	38	16	34	4	4
Rifampicin	5	-	-	1	50	-	-	-	-
Vancomycin	30	-	-	-	-	-	-	-	-
Co-amoxiclav	20/10	45	73	17	68	5	63	-	-
Meropenem	10	24	6	16	8	3	14	1	2
Nitrofurantoin	300	20	15	24	44	2	50	0	0
Piperacillin	100/10	9	11	0	0	0	0	0	0
Total R %	7082	45	3422	53	284	46	42	40	600

* : This antimicrobial did not used for this microorganism 00 This microorganism is 0% resistant to antimicrobial
Table 4. Antimicrobial resistance of uropathogens according gender at four governmental hospitals in the Gaza Strip- Palestine during 2019.

Isolate	E. coli	Klebsiella spp.	Pseudomonas spp.	Proteus spp.	P. value																
	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female	Male			
Antimicrobials	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	
Ampicillin	428	90	125	94	150	94	95	97	12	100	18	100	19	86	8	100	0.164				
Amoxicillin	121	90	33	89	43	93	27	96	2	67	5	100	10	83	3	100	0.087				
Piperacillin	107	70	41	85	57	73	33	92	10	77	9	82	1	33	1	100	0.052				
Cephalexin	388	57	152	69	177	71	102	78	19	90	23	92	10	53	11	92	0.188				
Cefuroxime	483	45	199	62	219	59	131	66	28	76	35	85	10	29	10	53	0.282				
Cefotaxime	333	41	141	53	165	58	102	63	14	41	15	45	6	22	4	27	0.562				
Ceftazidime	330	37	164	52	158	48	85	53	17	35	19	40	12	43	6	50	0.105				
Ceftriaxone	473	42	208	56	233	56	131	65	18	38	31	60	10	28	6	30	0.272				
Cefazolin	248	50	96	64	97	58	57	68	14	78	18	90	6	27	4	57	0.242				
Amikacin	7	1	8	4	6	3	8	6	2	8	3	8	1	4	0	0	0.832				
Gentamicin	225	20	96	30	113	29	59	30	11	23	12	25	13	38	7	37	0.545				
Doxycycline	206	57	98	63	113	65	38	69	19	83	22	88	12	75	4	100	0.367				
Co-Trimoxazole	731	66	228	66	291	69	129	71	36	86	42	95	29	73	18	95	0.389				
Nalidic acid	608	50	244	62	226	51	104	48	43	84	44	83	24	60	13	68	0.722				
Ciprofloxacin	292	30	158	48	136	38	62	38	21	40	15	31	9	30	7	41	0.299				
Co-amoxiclav	35	71	10	77	15	65	2	100	2	67	1	100	3	50	2	100	0.006				
Meropenem	15	6	9	8	12	9	4	7	5	17	6	23	3	20	0	0	0.572				
Nitrofurantoin	15	15	5	14	13	34	11	69	1	33	7	88	2	50	0	0	0.678				
Piperacillin + tazobactam	8	7	5	14	6	10	3	13	0	0	0	0	0	0	0	0	0.610				
Total	5053	43	2020	53	2230	51	1183	57	274	54	325	60	180	44	104	59	0.024				
Antimicrobial resistance pattern of uropathogen according to patient’s gender

As shown in Table 4, among males, the resistance of *E. Coli* to antimicrobials was 10-15% higher than among females to the following antibiotics (piperacillin, cephalexin, cefotaxime cefuroxime, cefotaxime, ceftazidime, ceftaxone cefazoline ciprofloxacin gentamicin, and nalidixic acid). The total resistance of *E. coli* to all antimicrobials in females was 43%, while in males it was 53%. According to *Klebsiella* spp., among males, its resistance to the following antimicrobials (cephalexin, cefotaxime cefuroxime, cefotaxime, ceftazidime, ceftaxone cefazoline, amikacin, doxycycline, ciprofloxacin gentamicin, cotrimoxazole, and nalidixic acid) was 3-9% higher than in females. The total antimicrobial resistance of *Klebsiella* among female isolates is 51% while in males 57%. Despite higher prevalence of UTI in the female than in males Table 2, the resistance percentage against antimicrobial is higher in male than in the female. By conducting independent T-test for all antimicrobials, P. values is statistically significant only for co-amoxiclav (P. value= 0.006) and marginally significant for piperacillin (P. value= 0.052) and the total antimicrobial resistance was statistically significant (P. value= 0.024) as shown in Table 4.

Antimicrobial resistance pattern of uropathogens according to patient’s age

As shown in Table 5, there was fluctuation in the resistance of the microorganisms against anti-
Antimicrobials in different age groups. ANOVA test was used to determine the significance of this variation. The result of ANOVA revealed that the fluctuation among age categories is statistically significant for number of antimicrobials (ampicillin, piperacillin, cefotaxime, cefazolin, amikacin, gentamicin, nalidixic acid, ciprofloxacin, and piperacillin + tazobactam) at P. value of < 0.05). Two antimicrobials (cephalexin and ceftriaxone) at P. value of < 0.05, while other antimicrobials were not statistically significant (e.g., cefuroxime, amoxicillin, ceftazidime, doxycycline, co-trimoxazole, co-amoxiclav, and nitrofurantoin). When Scheffe test was performed to test resistance variations among these age groups, it was found that there is a prominent correlation between age group 0-28 days and adult group with (P. value of less than 0.05(for cefuroxime, ampicillin, amoxicillin, piperacillin, cephalexin, cefazolin, gentamicin, co-trimoxazole, nalidixic acid, and ciprofloxacin) Table 5.

Antimicrobial resistance pattern of uropathogen according to both gender and age

E. coli isolates were grouped according to age and gender, the difference is high between males and females in the age category of (0-28 days). Within the age category (29 days to 1 year), the resistance in females is higher than in males for most of the antimicrobials. However, in the age categories (1 year to 12 years) and adults, the resistance is higher in males to most of the antimicrobials than in females. As shown in Figure 1, E. coli resistance to antimicrobials among male isolates was higher than females isolate in most of the age categories. In the age category (0-28 days), E. coli isolates were resistant to amoxicillin is closed 100% in both genders. There is a difference in resistance of the E. coli against these antimicrobials (cephalexin, ceftazidime, ceftriaxone, and cefuroxime) in this age category about 30-40% between genders, however, both co-trimoxazole, and nalidixic acid show resistance in females, is higher than males in this age category. Among the age category (29 days to 1 year), E. coli in males is more resistant than in female against amoxicillin, cephalexin, and cefotaxime, while the resistance in female is higher than males against ceftazidime, gentamicin cephazolin, co-trimoxazole, nalidixic acid, and piperacillin Figure 2. In the age category (1 year to 12 years), E. coli resistance in males is higher than in females against piperacillin, cephalexin, cefuroxime, ceftaxime, ceftazidime, cefazoline, nalidixic acid, and ciprofloxacin. The resistance of E. coli in female isolates higher than male against amoxicillin and co-trimoxazole. The resistance of E. coli to gentamicin is almost the same Figure 3.
In the age category, (adults) the resistance of *E. coli* in male is higher than in female against the all of the antimicrobials (amoxicillin, piperacillin, cephalexin, cefuroxime, ceftazidime, ceftriaxone, cefazolin, gentamicin, co-trimoxazole, nalidixic acid, ciprofloxacin) **Figure 4**.

Multiple drug resistance in uropathogens

Regarding to multidrug resistance definition [11], which is not yet agreed upon by the medical community. Many definitions are currently being used to characterize patterns. The most practical definition used for Gram-positive and Gram-negative bacteria is ‘resistant to a single antibiotic in three or more antimicrobial classes’ [12], these antibiotic groups have been chosen according to lists suggested by professionals for isolates have no intrinsic factors for resistance to these antibiotics, and according to the standard operating procedures SOPs that is followed by the laboratory technicians at the governmental hospital in the Gaza Strip/Palestine, these antibiotics are ampicillin, cefuroxime, co-trimoxazole, ciprofloxacin, gentamicin, the isolates of *E. coli* and *Klebsiella* spp. as shown in **Table 6**, the observation is the resistance for a single antibiotic (ampicillin) from the penicillin group of *E. coli* is (91%) and for *Klebsiella* spp. is (91%) and by adding another antibiotic (cefuroxime) from cephalosporin group the
resistance percentage for isolates for penicillin and cefuroxime for the same isolates is (45%) for E. coli and (58%) for Klebsiella spp., after adding the third antibiotic (Co-Trimethoprim) from aminoglycoside group the resistance for the same isolates for these antibiotic groups is (37%) for E. coli and (53%) for Klebsiella spp., after addition of the fourth antibiotic group fluoroquinolone (ciprofloxacin) and according to the definition, the multidrug resistance is (18%) for E. coli and (31%) for Klebsiella spp., after addition of the fifth antibiotic group (Gentamicin) multidrug resistance is (11%) for E. coli and (22%) for Klebsiella spp., from these findings multidrug resistance was detected in uropathogens, (37%) for E. coli and (53%) for Klebsiella spp. the same isolates by three different antibiotics in different groups. This is alarming and should be considered by any antibiotic stewardship programs. (Table 6)

Table 6. Multidrug resistance percentage for uropathogens the same isolates for different antibiotic groups at governmental hospitals in Gaza Strip Palestine during 2019.

No	Antibiotic	Escherichia coli	Klebsiella spp.		
		N	%	N	%
1	Ampicillin	553	91	245	95
2	Ampicillin + Cefuroxime	242	45	131	58
3	Ampicillin + Cefuroxime + Co-Trimoxazole	162	37	90	53
4	Ampicillin + Cefuroxime + Co-Trimoxazole + Ciprofloxacin	55	18	33	31
5	Ampicillin + Cefuroxime + Co-Trimoxazole + Ciprofloxacin + Gentamicin	29	11	21	22

Discussion

This study aimed to determine the resistance pattern of uropathogens to antimicrobials and to explore the MDR at the governmental hospitals in the Gaza Strip/Palestine. Uropathogens were isolated from 24.5% of the requested urine cultures. E. coli constituted the majority of isolates with 59.9%, followed by Klebsiella spp. (24.9%) and all Gram-negative constituted 91% of the isolates. Females represented by 71.4% of all positive urine cultures. E. coli resistance rate to penicillin derivatives like ampicillin was 91% and amoxicillin 90%, while resistance rate of Klebsiella spp. was 95% for the same antimicrobials. E. coli is highly resistant to the cephalosporin group. Its resistance is between 41% and 60% against all of the cephalosporines, Klebsiella spp. has resistance (73%) and (49%) against the same antimicrobials, respectively. Both of E. coli
and *Klebsiella* have the minimal resistance against amikacin, which are (2%) and (4%), respectively. The resistance percentage against the tested antimicrobials is higher in male than in the female. Regarding to our study, MDR in Gaza governmental hospitals is (37%) for *E. coli* and (53%) for *Klebsiella* spp., respectively.

We demonstrated very high prevalence of Gram-negative isolates and this in agreement with a study in Lahore, Pakistan conducted between December 2018 and June 2019, which reported that prevalence of 92%Gram negative [13]. Another study in Ethiopia revealed that Gram-negative bacteria caused 90% of UTI cases while gram-positive bacteria cause only 10% of the cases [14]. In North Ethiopia, *E. coli* prevalence in UTI was 60.29% and *Klebsiella* spp. prevalence was 5.88% in a study conducted from 2002 to 2011 [15]. Another study reported 79% *E. coli* prevalence in UTI in Luxembourg [16] which higher than our findings.

In Sarajevo, *E. coli* had the highest antimicrobial resistance to trimethoprim/sulfamethoxazole (38.61%), followed by amoxicillin/clavulanic acid (19.62%), ciprofloxacin (9.49%), genta-micin (8.86%), cephalexin (8.23%), nitrofurantoin (8.23%), cefuroxime (7.52%), ceftazidime (6.33%), cefuroxime (89.87%), amikacin (4.43%) [17]. These findings are lower than our findings. A study from Iraq in 2016 demonstrated resistance pattern for *E. coli* similar to this study. The resistance was 100% for penicillin and 52% for cephalosporin [18]. In Saudi Arabia, the resistance of *Klebsiella* spp. was 91% against ampicillin, 57% against cefotaxime, and 46% against ceftazidime [19]. Another study from India revealed that *E. coli* resistance against amikacin was (16-38%), followed by cefotaxime (38-40%), gentamicin (42-68%), ciprofloxacin (54-73%), and co-trimoxazole (74-90%) during the period between 2000 and 2004 [20].

A study in Saudi Arabia found that the resistance of *E. coli* against meropenem was 7%, amikacin (9%) and gentamicin (18%) [19]. In south Iran, a study conducted in 2019 found that the resistance of *E. coli* against nalidixic acid was 71.9% [21]. In Rajasthan, a 2012 study recorded an overall resistance of *E. coli* against nalidixic acid, norfloxacin, and ciprofloxacin as (94%), (77%), and 74.75%, respectively [22].

A retrospective study investigated 16,883 urine culture samples conducted in Palestine between 2001 and 2013, demonstrated that Gram-negative uropathogens showed good susceptibility towards ciprofloxacin, ofloxacin, norfloxacin, cefuroxime, nitrofurantoin, sulphathiazole/trimethoprim, nalidixic acid, and amoxicillin/clavulanic acid, (76.1%, 71.8%, 72.9%, 64%, 67.5%, 48.7%, 57.6%, 42.1%, respectively) [23].

In Turkey, a retrospective study, evaluated causative agents and antimicrobial resistance in urine isolates from the positive community period between 2014 and 2016, it revealed that the resistance of *E. coli* during these years against co-trimoxazole was (29.8%) [24]. In addition, higher resistance rates against ampicillin Bangladesh 2020 found (100%) [25].

These variations among various studies from different countries may be due to different geographical settings, variations in use or misuse of antimicrobials, different treatment protocols, and study sample size among many other causes. Resistance varies over time and many of the above listed studies were conducted in different settings and times.

According to 2020 CDC update, a microorganism protects itself from antibiotic in various ways. *K. pneumoniae* produce enzymes called carbapenems, which break down carbapenem drugs and most other beta-lactam drugs. *E. coli* bacteria with the *mcr-1* gene can add a compound to the outside of the cell wall so that the drug colistin cannot latch onto it [26].

Several risk factors are associated with UTIs, including gender. The shorter distance to the bladder in women makes it easier for bacterial colonizers to reach it [27]. Male patients, have a lower risk of contracting uncomplicated UTIs but are more prone
to contracting complicated or MDR infections [28]. Our data reflect the severe nature of UTI in men, in which infections are caused by MDR microorganisms

A study conducted in Pakistan in 2008 gave similar results, it reported variations among age groups with regard to resistance and it appeared that in the case of males, *E. coli* isolates were susceptible to nitrofurantoin in age groups 0+, 50+, and 70+, while in age groups 20+, 30+ and 60+ hundred percent resistance was recorded. *E. coli*. In females, showed no resistance to nitrofurantoin in age groups 10+, 50+, and 70+, while it showed 33% resistance in age groups 0+, 20+, and 30+. *E. coli* isolates from age groups 50+ and 70+ both in males and females were found to be 100% susceptible to the nitrofurantoin [29].

One study concluded that antibiotics that target DNA synthesis result in a progressively higher number of resistant isolates among the older population. The results emphasize the importance of patient age on antibiotic selection as a preventive measure to reduce the rate of resistant infections in each susceptible population. This pattern suggests that physicians should take into consideration patient age as another factor in determining the best antibiotic regimen with the aim of curtailing the emergence of newer resistant phenotypes in the future [30].

A study in southwest Washington in 2013 showed statistically significant differences between males and females in the age-specific susceptibilities of *E. coli* to ampicillin, co-amoxiclav, ciprofloxacin, and nitrofurantoin. Urinary *E. coli* isolates from male patients tend to exhibit increased antimicrobial resistance than isolates from female patients. Despite the statistical significance of time trends and differences in age-specific susceptibilities, the magnitude of these differences was generally less than 5% and thus may not represent clinically meaningful differences. The exception was susceptibility to amoxicillin-clavulanate, where susceptibility was roughly 10% lower in males aging 18 to 64 years than females in the same age group [31]. A 10 year study of community UTI in Portuguese patients also identified differences in antimicrobial susceptibility according to patient gender. The authors reported that urinary isolates of *E. coli* were significantly more resistant to fluoroquinolones, penicillin’s, nitrofurantoin, and first and second-generation cephalosporins among men compared to women [32]. Another study focused on pediatric patients, also identified significantly higher resistance to co-trimoxazole and ciprofloxacin in male versus female patients [33].

The NAUTICA (the North American Urinary Tract Infection Collaborative Alliance) surveillance study of outpatient UTIs, reported greater antimicrobial resistance to ciprofloxacin, levofloxacin, and co-trimoxazole among all urinary isolates from U.S. and Canadian male patients [34]. In the CANWARD (Canadian Ward) Surveillance Study, antimicrobial susceptibility among all *E. coli* isolates (not limited to urine isolates) collected from Canadian tertiary medical centers were compared and resistance was also observed to be significantly higher to ciprofloxacin, levofloxacin, and co-trimoxazole in isolates collected from male patients versus female patients [35].

Most studies of urinary tract infections (UTIs) focus on female patients because of the higher incidence in women than in men. For this reason, most UTI guidelines are based on studies performed on women, despite the obvious genito-urinary differences [36]. In men, UTIs become increasingly frequent with age and functional disability, but bacteriuria in elderly men tends to be intermittent, episodic, and more complex to diagnose. It is generally recognized that treatment recommendations for women are not usually appropriate for men. However, guidelines or recommendations for the management of men are mostly based on studies in women, children and institutionalized elderly people of both sexes [3].
A study conducted in Arabia Saudi in 2018 showed a slightly high level of multidrug resistance among the tested isolates if compared with our results with (67%) of all E. coli isolates showing the MDR phenotype. Of these isolates, (26.86%) isolates were resistant to 3 antibiotic groups (25.37%) were resistant to 4 antibiotic groups, and (14.92%) were resistant to 5 antibiotic groups [37]. A study conducted in Jordan, revealed that there is high percentage of uropathogenic E. coli isolates from outpatients and hospitalized Jordanian patients in Amman area, is multidrug resistant to at least 3 antibiotics [38].

Conclusion
The main etiologic agents for UTI sare E coli and klebsiella spp. Penicillin is no longer be suitable treatment for UTI. Both age and gender are risk factors in both infection and resistance pattern. Antimicrobial stewardship program should be established under the MoH supervision, physicians should minimize the empirical use of antimicrobials in non-life-threatening infection and rely more on culture and sensitivity for specific treatment. This type of study should be performed regularly to monitor the resistance of microorganisms to antimicrobials, not only for UTI but also for all types of infections for humans and animals as well to find the proper way to minimize multidrug resistance.

References
1. Tajbakhsh E, Tajbakhsh S, Khamseipour F. Isolation and molecular detection of Gram negative bacteria causing urinary tract infection in patients referred to Shahrekord hospitals, Iran. ICRMJ2015; 17(5).
2. American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 91: Treatment of urinary tract infections in nonpregnant women. OB/GYN 2008; 111(3):785-94.
3. Hummers-Pradier E, Ohse AM, Koch M, Heizmann WR, Kochen MM. Urinary tract infection in men. Int J Clin Pharmacol Ther 2004; 42(7):360-6.
4. Momoh AR, Orhue PO, Idonije OB, Oaikhena AG, Nwoke EO, Momoh AA. The antibiogram types of Escherichia coli isolated from suspected urinary tract infection samples. J Microbiol Biotech Res 2011; 1(3):57-65.
5. Mohammed MA, Alnour TM, Shakurfo OM, Aburass MM. Prevalence and antimicrobial resistance pattern of bacterial strains isolated from patients with urinary tract infection in Messalata Central Hospital, Libya. Asian Pac J Trop 2016; 9(8):771-6.
6. Fasugba O, Gardner A, Mitchell BG, Mnatzaganian G. Ciprofloxacin resistance in community-and hospital-acquired Escherichia coli urinary tract infections: a systematic review and meta-analysis of observational studies. BMC Infect Dis2015; 15(1):1-6.
7. Pallett A, Hand K. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. JAntimicrob Chemother2010; 65(suppl_3):iii25-33.
8. World Health Organization. Antimicrobial resistance global report on surveillance: 2014 summary. WHO2014.
9. Kanapathipillai R, Malou N, Baldwin K, Marty P, Rodaix C, Mills C, Herard P, Saim M. Antibiotic resistance in Palestine: an emerging part of a larger crisis. Bmj2018; 363.
10. CLSI, Performance Standards for Antimicrobial Susceptibility Testing, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA, USA 2018.
11. Shenoy KA, Jyothi RK, Ravikumar R. Phenotypic identification & molecular detection of blamdin-1 gene in multidrug resistant Gram-negative bacilli in a tertiary care centre. Indian J Med Res 2014; 139:625–31.
12. Majigorakos AP, Srinivasan A, Carey RT, Carmeli Y, Falagas MT, Giske CT, Harbarth S, Hindler JT, Kahlmeter G, Olsson-Liljequist B, Paterson DT. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. CMI 2012; 18(3):268-81.
13. Asmat U, Mumtaz MZ, Malik A. Rising prevalence of multidrug-resistant uropathogenic bacteria from urinary tract infections in pregnant women. J Taibah Univ Medical Sci 2020.
14. Seifu WD, Gebissa AD. Prevalence and antibiotic susceptibility of Uropathogens from cases of urinary tract infections (UTI) in Shashemene referral hospital, Ethiopia. BMC Infect Dis2018; 18(1):1-9.
15. Abejew AA, Denbowa AA, Mekonnen AG. Prevalence and antibiotic resistance pattern of urinary tract bacterial infections in Dessie area, North-East Ethiopia. BMC Res Notes. 2014; 7(1):1-7.
16. Saperston KN, Shapiro DJ, Hersh AL, Copp HL. A comparison of inpatient versus outpatient resistance patterns of pediatric urinary tract infection. J Urol2014; 191(5):1608-13.
17. Abduzaimovic A, Aljicevic M, Rebic V, Vranic SM, Abduzaimovic K, Sestic S. Antibiotic resistance in urinary isolates of Escherichia coli. Materia Socio-Medica 2016; 28(6):416.
18. Polse R, Yousif S, Assafi M. Prevalence and antimicrobial susceptibility patterns of uropathogenic \textit{E. coli} among people in Zakho, Iraq. \textit{Int J Res Med Sci} 2016; 4(4):1219-23.

19. Taher I, Almaeen A, Aljourfi H, Bohassan E, Helmy A, El-Masry E, Saleh B, Aljaber N. Surveillance of antibiotic resistance among uropathogens in Aljouf region northern Saudi Arabia. \textit{IJM} 2019; 11(6):468.

20. Gupta N, Kundra S, Sharma A, Gautam V, Arora DR. Antimicrobial susceptibility of uropathogens in India. \textit{J Infect Dis Antimicrob Agents}. 2007; 24(1):13-8.

21. Malekzadegan Y, Rastegar E, Moradi M, Heidari H, Ebrahim-Sarai HE.S. Prevalence of quinolone-resistant uropathogenic \textit{Escherichia coli} in a tertiary care hospital in south Iran. \textit{Infect Drug Resist} 2019; 12:1683.

22. Sood S, Gupta R. Antibiotic resistance pattern of community acquired uropathogens at a tertiary care hospital in Jaipur, Rajasthan. \textit{IJCM: official publication of IAPSM} 2012; 37(1):39.

23. Zaid AM. Distribution of bacterial uropathogens and their susceptibility patterns over twelve years (2001-2013) in Palestine. \textit{IAJAA} 2014; 3(4).

24. Gunduz S, Altun HU. Antibiotic resistance patterns of urinary tract pathogens in Turkish children. \textit{Glob Health Res Policy} 2018; 3(1):1-5.

25. Levy S, Islam M, Sobur M, Talukder M, Rahman M, Khan MF. Molecular detection of avian pathogenic \textit{Escherichia coli} (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. \textit{Micro} 2020; 8(7):1021.

26. CDC, How Antibiotic Resistance Happens Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases 2020. Access date 30/1/2021

27. Foxman B. The epidemiology of urinary tract infection. \textit{Nat Rev Urol} 2010; 7(12):653-60.

28. Schaeffer AJ, Nicolle LE. Urinary tract infections in older men. \textit{NEJM} 2016; 374(6):562-71.

29. Bashir MF, Qazi JI, Ahmad N, Riaz S. Diversity of urinary tract pathogens and drug resistant isolates of \textit{Escherichia coli} in different age and gender groups of Pakistanis. \textit{Trop J Pharm Res} 2008; 7(3):1025-31.

30. Garcia A, Delorme T, Nasr P. Patient age as a factor of antibiotic resistance in methicillin-resistant \textit{Staphylococcus aureus}. \textit{J Med Microbiol} 2017; 66(12):1782-9.

31. McGregor JC, Elman MR, Bearden DT, Smith DH. Sex-and age-specific trends in antibiotic resistance patterns of \textit{Escherichia coli} urinary isolates from outpatients. \textit{BMC Fam Pract} 2013; 14(1):1-5.

32. Linhares I, Raposo T, Rodrigues A, Almeida A. Frequency and antimicrobial resistance patterns of bacteria implicated in community urinary tract infections: a ten-year surveillance study (2000–2009). \textit{BMC Infect Dis} 2013; 13(1):1-4.

33. Edlin RS, Shapiro DJ, Hersh AL, Copp HL. Antibiotic resistance patterns of outpatient pediatric urinary tract infections. \textit{J Urol} 2013; 190(1):222-7.

34. Zhanel GG, Hisanaga TL, Laing NM, DeCorby MR, Nichol KA, Palatnick LP, Johnson J, Noreddin A, Harding GK, Nicolle LE, Hoban DJ. Antibiotic resistance in outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA). \textit{Int J Antimicrob Agents} 2005; 26(5):380-8.