Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model.

Florence Ader, Samir Jawhara, Saad Nseir, Eric Kipnis, Karine Faure, Fanny Vuotto, Chanez Chemani, Boualem Sendid, Daniel Poulain, Benoit Guery

To cite this version:
Florence Ader, Samir Jawhara, Saad Nseir, Eric Kipnis, Karine Faure, et al.. Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model.. Critical Care, BioMed Central, 2011, 15 (3), pp.R150. 10.1186/cc10276. inserm-00626208

HAL Id: inserm-00626208
https://www.hal.inserm.fr/inserm-00626208
Submitted on 23 Sep 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Short term *Candida albicans* colonization reduces *Pseudomonas aeruginosa*-related lung injury and bacterial burden in a murine model

Florence Ader1,2*, Samir Jawhara3†, Saad Nseir4, Eric Kipnis5, Karine Faure5, Fanny Vuotto5, Chanez Chemani5, Boualem Sendid3, Daniel Poulain3 and Benoit Guery5

Abstract

Introduction: *Pseudomonas aeruginosa* is a frequent cause of ventilator-acquired pneumonia (VAP). *Candida* tracheobronchial colonization is associated with higher rates of VAP related to *P. aeruginosa*. This study was designed to investigate whether prior short term *Candida albicans* airway colonization modulates the pathogenicity of *P. aeruginosa* in a murine model of pneumonia and to evaluate the effect of fungicidal drug caspofungin.

Methods: BALB/c mice received a single or a combined intratracheal administration of *C. albicans* (1 × 10^5 CFU/mouse) and *P. aeruginosa* (1 × 10^7 CFU/mouse) at time 0 (T0) upon *C. albicans* colonization, and Day 2. To evaluate the effect of antifungal therapy, mice received caspofungin intraperitoneally daily, either from T0 or from Day 1 post-colonization. After sacrifice at Day 4, lungs were analyzed for histological scoring, measurement of endothelial injury, and quantification of live *P. aeruginosa* and *C. albicans*. Blood samples were cultured for dissemination.

Results: A significant decrease in lung endothelial permeability, the amount of *P. aeruginosa*, and bronchiole inflammation was observed in case of prior *C. albicans* colonization. Mortality rate and bacterial dissemination were unchanged by prior *C. albicans* colonization. Caspofungin treatment from T0 (not from Day 1) increased their levels of endothelial permeability and lung *P. aeruginosa* load similarly to mice receiving *P. aeruginosa* alone.

Conclusions: *P. aeruginosa*-induced lung injury is reduced when preceded by short term *C. albicans* airway colonization. Antifungal drug caspofungin reverses that effect when used from T0 and not from Day 1.

Introduction

Ventilator-associated pneumonia (VAP) occurs in a considerable proportion of patients undergoing mechanical ventilation and is associated with substantial morbidity, a two-fold increase in mortality rate, and excess cost [1]. Tracheobronchial colonization (TBC) and duration of mechanical ventilation are the two most important risk factors for VAP [2,3]. *Pseudomonas aeruginosa* is one of the most frequent causative microorganisms of VAP [2-4]. Several studies have reported the presence of *Candida* species in the airway specimens of immunocompetent ventilated patients [5,6]. *Candida* TBC occurs in 17% to 28% of ICU patients receiving mechanical ventilation for more than 48 hours [7-9]. Although the relationship between tracheal biofilm and VAP is based on one small observational study, *P. aeruginosa* is the most common pathogen retrieved from endotracheal tube biofilm in patients with VAP [10]. *P. aeruginosa* and *C. albicans* coexist predominantly as biofilms rather than as free-floating (planktonic) cells on abiotic medical devices (catheters and prostheses) [11,12].

The question of their interplay has been addressed by several experimental and clinical studies. So far, in vitro studies suggest that the interaction between *C. albicans* and *P. aeruginosa* is likely to be antagonistic. When mixing *in vitro* cultures, *P. aeruginosa* is involved in killing *C. albicans* filaments associated with biofilm formation [13]. Additionally, quorum-sensing signaling...
molecules of *P. aeruginosa* impair *C. albicans* yeast-to-hyphae transition [14]. The relative *C. albicans* hyphal-binding affinity within biofilm is reported to be lower for *P. aeruginosa* than for *Staphylococcus aureus* [15]. In contrast, a synergistic relationship is described in vivo with a recent study showing that *C. albicans* TBC facilitates *P. aeruginosa* pneumonia occurrence in a rat model [16]. A recent clinical study suggested an interaction between *C. albicans* and *P. aeruginosa* [8]. The authors identified *Candida* spp. tracheobronchial colonization as an independent risk factor for *P. aeruginosa* pneumonia. No cause-and-effect relationship was demonstrated in that study. In addition, *Candida* spp. tracheobronchial colonization and *P. aeruginosa* pneumonia could both be a consequence of prior antibiotic treatment. Further, the median duration of mechanical ventilation in that study was 13 days. Therefore, the results could not be generalized to patients with shorter duration of mechanical ventilation. Another recent preliminary case-control study suggested that antifungal treatment might be associated with reduced risk for VAP or TBC related to *P. aeruginosa* [9], although no definite conclusion can be drawn from this observational retrospective single-center study including a small number of patients.

The study of *P. aeruginosa* and *C. albicans* interactions in the respiratory tract aims at more effectively understanding the balance between microbial ecology and bacteria-related pathogenesis. This issue has major environmental and medical consequences. The present study proposes to investigate *P. aeruginosa*-related lung injury in mice previously colonized with *C. albicans* and to evaluate the impact of caspofungin antifungal treatment.

Materials and methods

Animals

BALB/c mice (20 to 25 g) purchased from Charles River Laboratories (Domaine des Oncins, L’Arbresle, France) were housed in a pathogen-free unit of the Lille University Animal Care Facility and allowed food and water ad lib. All experiments were performed with the approval of the Lille Institutional Animal Care and Use Committee.

Growth conditions for bacterial and yeast strains

The wild type strain *Pseudomonas aeruginosa* PAO1 was grown in Luria-Bertani medium at 37°C for 16 h and was centrifuged at 3,000 × g for 10 minutes. The bacterial pellets were washed twice and diluted in an isotonic saline solution to obtain an optical density of 0.63 to 0.65 nm determined by spectrophotometry [17].

The reference strain *C. albicans* SC5314 was maintained at 4°C on Sabouraud dextrose agar (SDA) [18].

For the study, cell of broth test isolates were grown in SDA at 37°C in a shaking incubator for 18 h.

Mice infection

Mice were infected by direct intratracheal inoculation under short anaesthesia with inhaled sevoflurane (Serevent™, Abbott, Queenborough, UK) as previously described [17]. For each mouse, 50 μl of fungal or bacterial suspension containing 2 × 10⁶ or 2 × 10⁷ or 2 × 10⁸ colony-forming units (CFU)/ml of yeasts or 2 × 10⁸ CFU/ml of bacteria respectively, was instilled. Control mice received 50 μl of sterile saline solution.

Treatment with caspofungin

Caspofungin (Merck & Co. Inc., Whitehouse Station, NJ, USA) was injected intraperitoneally once daily either from T0 or from 24 h post-*C. albicans* challenge. The full recommended dose of 1 mg/kg was administered the first day of treatment and then 0.8 mg/kg was administered on Days 2, 3, and 4.

Quantitative blood culture and pulmonary bacterial and fungal loads

For bacterial blood culture, 100 μl of blood was plated on bromocresol purple (BCP) agar plates for 24 h at 37°C to allow for *P. aeruginosa* growth. In co-infected groups, BCP agar were treated with 50 μg per plate of caspofungin. For fungal blood culture, the same amount was plated on yeast peptone dextrose (YPD) agar plates containing 1% yeast extract, 1% peptone, 2% D-glucose and 500 mg/l amikacin sulphate and incubated for 48 h at 37°C to allow for *C. albicans* growth.

For quantification of lung bacterial loads, lungs were removed after exsanguination via intracardiac puncture and homogenized in 0.9 ml of sterile isotonic saline solution. Viable bacteria were counted after serial dilutions of 100 μl of lung homogenate on BCP agar plates for 24 h at 37°C to allow for *P. aeruginosa* growth. Similarly, another 100 μl of lung homogenate was plated on YPD plates for 48 h to allow for *C. albicans* growth. In co-infected groups, agar was treated with caspofungin or amikacin.

In vivo quantification of acute lung injury: alveolar-capillary barrier permeability

¹²⁵I-albumin was injected as a vascular protein tracer and its leakage across the endothelial barrier and accumulation in the extravascular spaces of the lungs was measured using a previously described permeability index [19]. More details are provided in the Additional file 1.

Determination of histological score

At Days 2 and 4, the lungs were removed and fixed overnight in 4% paraformaldehyde-acid and embedded
in paraffin for histologic analysis. Cross-sections (3 μm thick) were stained with hematoxylin and eosin stain (Sigma-Aldrich Europe, Saint-Quentin Fallavier, France) and periodic acid Schiff. Two independent blinded investigators graded the inflammation score. The degree of peribronchial and perivascular inflammation was evaluated on a subjective scale of 0 to 3, as described elsewhere [20].

Fluorescence staining of C. albicans in situ
Paraffin-embedded lung sections were stained with either the monoclonal antibody (mAb) 5B2 or the galenthus nivalis lectin [21,22] and examined by immunofluorescence microscopy (Leica Microsystems AG, Heerbrugg, Switzerland).

Experimental groups
Animals were randomly assigned to the following groups: Ca: mice infected with 1×10^5 CFU of C. albicans at T0 and sacrificed at Day 2 or 4; Pa: mice infected with 1×10^7 CFU of P. aeruginosa at Day 2 and sacrificed at Day 4; CaPa: mice infected with 1×10^5 CFU of C. albicans at T0, infected with 1×10^7 CFU of P. aeruginosa at Day 2 after infection by C. albicans, and sacrificed at Day 4; CaPaCasp0 and CaPaCasp1: mice infected with 1×10^5 CFU of C. albicans at T0, treated with caspofungin from T0 or from Day 1 to Day 4, infected with 1×10^7 CFU of P. aeruginosa at Day 2 after infection by C. albicans, and sacrificed at Day 4. The experimental design is further detailed in Table 1. The sample size was four (microbial count assay), five (mortality assay), and eight animals (permeability index assay) per group. Each experiment was performed in duplicate.

Statistical analysis
Mortality rates were compared between groups by using the log rank test with Kaplan-Meier analysis. Data were analyzed by Kruskal-Wallis one-way analysis of variance test using Dunn method to compare differences between groups (GraphPad Prism, v5.0, La Jolla, California, USA). Data are expressed as means ± standard error of the mean (SEM). P-values below 0.05 were considered significant.

Results
C. albicans tracheobronchial colonization in mice and dose-dependent pathophysiological effects
To set up the model of tracheobronchial colonization, mice were challenged with three doses of C. albicans (1 $\times 10^5$, 1×10^6, and 1×10^7 CFU per mouse). At Day 2, mortality rates were 0%, 20%, and 100% respectively, indicating a dose-dependent effect of C. albicans. At Day 2, after a dose of 1×10^5 and 1×10^6 CFU per mouse, the amount of live C. albicans in lungs was diminished by 2.5 logs for both doses (Figure 1A) and none of them induced positive fungal blood cultures (data not shown). At that time, the lung endothelial permeability was similar in the control saline solution groups and the 1×10^5 CFU group (Figure 1B). On the contrary, the efflux of the protein tracer was statistically greater for the 1×10^6 CFU group than for the control saline solution groups ($P < 0.01$). Regarding lung histopathology, an increase of inflammatory cell infiltration within bronchiole and in the surrounding lung parenchyma was observed at Day 2 in the lung of mice receiving 1×10^5 C. albicans cells on the photomicrographs in comparison to control mouse lungs followed by full recovery at Day 4. Immunostained lung sections from mice challenged with C. albicans showed the presence of C. albicans blastoconidia (absence of hyphae or pseudohyphae). Images of lung histopathology after C. albicans TBC in mice are provided in Additional file 2.

Effect of prior C. albicans tracheobronchial colonization on P. aeruginosa pneumonia
We next addressed the issue whether prior C. albicans colonization in the lungs has an impact on the P. aeruginosa pathogenicity. When recording mortality over the course of four days post-infection, prior C. albicans airway colonization did not affect survival rate in case of subsequent P. aeruginosa infection (Figure 2A), although a trend toward an increased mortality was noted in the Pa group, but did not reach a statistical significance.

Table 1 Experimental design of the study

Time(s) of infection	Bacterial and yeast delivery (CFU/mouse)	Caspofungin treatment	Day(s) of sacrifice	
Ctr	Saline solution	none	Day 2, Day 4	
Ca	T0	1×10^5 C. albicans	none	Day 2, Day 4
Pa	Day 2	1×10^7 P. aeruginosa	none	Day 4
CaPa	T0, Day 2	T0: 1×10^5 C. albicans, d2: 1×10^7 P. aeruginosa	none	Day 4
CaPaCasp0	T0, Day 2	T0: 1×10^5 C. albicans, d2: 1×10^7 P. aeruginosa	T0 to Day 4	Day 4
CaPaCasp1	T0, Day 2	T0: 1×10^7 C. albicans, d2: 1×10^7 P. aeruginosa	Day 1 to 4	Day 4
Regarding lung endothelial permeability at Day 4, the efflux of the protein tracer in the CaPa-group was statistically greater than both the control- and Ca-groups (\(P < 0.01\)) but significantly lower than in the Pa-group (\(P < 0.001\)) (Figure 2B). In lung cultures at Day 4, the Pa-group (Table 2) showed a significant higher amount of live bacteria in lungs in comparison to the CaPa-group (\(P < 0.01\)) indicating that previous \(C.\) albicans on alveolar-capillary barrier permeability. Evaluation of endothelial permeability (EP) of the alveolar-capillary barrier to \(125\)I-labeled bovine serum albumin two days after the intratracheal instillation of \(1 \times 10^5\) and \(1 \times 10^6\) CFU/mouse of \(C.\) albicans. The data are means ± SE (indicated by error bars). \(n = 5\) mice per group.

Colonization did not affect lung \(C.\) albicans growth, which remained negative during the study period. An important inflammatory cell infiltration within bronchiol and in the surrounding lung parenchyma was observed in mice receiving \(P.\) aeruginosa as evidenced by the histological score of lung sections (Figure 4A). Conversely, the CaPa-group had a significantly lower score of pathological lesions than the Pa-group on the histological score of lung sections (\(P < 0.05\)) (Figure 4A). Lung immunostaining at Day 4 showed the presence of \(C.\) albicans blastoconidia exclusively (Figure 4C-Images a and b). Together, our results suggest that \(C.\) albicans colonization prior to \(P.\) aeruginosa infection decreases the \(P.\) aeruginosa bacterial load and minimizes the lung lesions.

Effect of antifungal treatment on \(C.\) albicans interference with \(P.\) aeruginosa pneumonia

Antifungal caspofungin has been used to test whether it might reverse the effect of \(C.\) albicans airway colonization on subsequent \(P.\) aeruginosa pneumonia. The treatment was initiated upon infection at T0 or after a delay at Day 1 post-colonization. The fungicidal effect of

Figure 2 Effect of previous \(C.\) albicans tracheobronchial colonization on \(P.\) aeruginosa-related lung injury. A BALB/c mice survival. Effect of \(C.\) albicans (Ca), \(P.\) aeruginosa (Pa), and \(P.\) aeruginosa after \(C.\) albicans (CaPa) on mouse survival during four days after intratracheal instillation of a dose of \(1 \times 10^5\) CFU/mouse of \(C.\) albicans at T0 and of \(1 \times 10^5\) CFU/mouse for \(P.\) aeruginosa administered at Day 2 post-colonization. \(n = 8\) mice per group. B Effect of \(C.\) albicans and \(P.\) aeruginosa on alveolar-capillary barrier permeability. Evaluation of endothelial permeability (EP) of the alveolar-capillary barrier to \(125\)I-labeled bovine serum albumin four days after the intratracheal instillation of a saline solution (Ctr) and in Ca, Pa, CaPa groups. The data are means ± SE (indicated by error bars). \(n = 8\) mice per group.
caspofungin in mouse lungs was previously assessed at Day 2 and no positive fungal cultures were collected in both the CaCasp0- and the CaCasp1-groups (data not shown). Furthermore, the lack of impact of caspofungin on endothelial permeability was also confirmed at Day 1 after a single intraperitoneal injection of 1 mg/kg of caspofungin in control saline solution-instilled mice (data not shown). Caspofungin administration from T0 reversed the effect of previous airway colonization by C. albicans on P. aeruginosa-induced lung injury (Figure 5). Thus, when the antifungal is administered early the lung injury induced by P. aeruginosa persists and the endothelial permeability showed by means of protein tracer leak is enhanced to the level of the Pa-group. In contrast, caspofungin administration from Day 1 did not reverse the C. albicans effect as an equal amount of protein efflux tracer was observed in the Ca- and CaPa-groups and was still significantly different from the Pa-group (P < 0.001).

Regarding lung bacterial counts at Day 4, the effect of caspofungin was different depending on the time of administration (Figure 3). Administration from T0 (the CaPaCasp0-group) significantly abolished the decrease of positive specimens observed in the CaPa-group (P < 0.001). Conversely, delayed administration from day 1 (CaPaCasp1-group) resulted in collecting a roughly similar amount of live P. aeruginosa in lungs than in the CaPa-group creating a significant difference with the CaPaCasp0-group (P < 0.01).

Discussion

The present study was designed to determine the contribution of C. albicans airway colonization to P. aeruginosa pathogenicity in immunocompetent mice. Our results indicate that prior short-term C. albicans airway colonization reduced P. aeruginosa-induced lung injury and the amount of live P. aeruginosa in lungs. This effect is reversed by fungicidal drug caspofungin when initiated concomitantly to C. albicans infection.

The prerequisite to the study was the set-up of tracheobronchial colonization by C. albicans according to the definition of colonization, which is the presence of a pathogen that does not cause damages on the lung parenchyma. The dose of 1×10^5 CFU of C. albicans per mouse matched with this criterion as no invasive disease occurred. After P. aeruginosa infection, a trend toward a higher survival rate in the C. albicans-colonized mice was observed. This result is consistent with data comparing groups of mice instilled simultaneously with P. aeruginosa and C. albicans or with P. aeruginosa alone showing a significant difference of survival in favor of the C. albicans-colonized group at Day 7 [23]. Then, it was found that previous C. albicans airway colonization was associated with an increase in lung P. aeruginosa clearance compared to the non-colonized-group. These data differ from the previous study, which did not detect a significant decrease in quantitative bacterial burden in the group receiving simultaneous administration of C. albicans along with P. aeruginosa [23]. However, a major difference is that bacterial loads were recorded early after the co-infection between 3 and 20 h. Another study, which addressed the issue of prevalence of P. aeruginosa pneumonia in rats colonized by C. albicans, evaluated the quantitative bacterial cultures of P. aeruginosa in rat lungs at 48 h post-infection [16]. Subsequent to C. albicans colonization obtained by intratracheal instillation (2×10^6 CFU per rat three days in a row), a low dose of P. aeruginosa (1×10^4 CFU per rat) was delivered at Day 2 post-colonization. The bacterial burden was significantly higher at 48 h in rats instilled with C. albicans before P. aeruginosa compared to rats
instilled with saline solution or ethanol-killed *C. albicans* before *P. aeruginosa*. Contrary, in our experimental model, *P. aeruginosa* dissemination in the bloodstream showed a trend toward a decrease in the case of prior *C. albicans* colonization. Although bacterial dissemination is multifactorial depending on the magnitude of alveolar-capillary barrier injury [24] as well as the strain virulence and the size of the inoculum [25], the decrease was most likely due to the decrease of alveolar-capillary barrier injury since the *P. aeruginosa* strain used and the size of the inoculum administrated were identical in both groups. Regarding histopathologic results, the inflammation score decreased in the case of previous *C. albicans* airway colonization in comparison to *P. aeruginosa* infection alone suggesting that primary immune activation could reduce *P. aeruginosa* pathogenicity. This observation was consistent with a decrease in *P. aeruginosa* lung loads and a decrease in the lung permeability index in the CaPa group in comparison to the Pa group. These results differ from a study previously mentioned which concluded that previous *C. albicans* colonization lowered the threshold of *P. aeruginosa* load necessary to induce parenchymal injury since in rats given *C. albicans*, histologic aspect of *P. aeruginosa* pneumonia was significantly more frequent than in controls or ethanol-killed *C. albicans* rats [16]. Overall, the results may differ between mice and rats, and between different strains of *P. aeruginosa* owing to differential susceptibility to pneumonia.

In the second part of this study, the influence of fungicidal caspofungin was tested. The use of caspofungin aimed at detecting a difference between colonization with live or killed *C. albicans*. For that purpose, two target times for treatment initiation were chosen, from T0 or from Day 1. Regarding the alveolar-capillary barrier injury, the use of caspofungin resulted in distinct effects:

![Figure 4](http://ccforum.com/content/15/3/R150)

Figure 4 Lung histopathology after sequential infection with *C. albicans* and *P. aeruginosa* in mice. A. Histological score of lung sections from BALB/c mice on Day 4. Peribronchiol and perivascular lung inflammation in mice was measured by two independent blinded examiners. Data are expressed as mean ±SE for each group. *P* < 0.05 for CaPa vs Pa mice. B. Immunofluorescence and periodic acid Schiff staining for *C. albicans* localization in lungs of BALB/c mice on Day 4. (a) Representative section of lung from mice challenged with both *C. albicans* and *P. aeruginosa* stained with fluorescent galanthus nivalis lectin (GNL) specific for terminal α-D-mannosyl, preferentially α-1,3 residues of *C. albicans*. The scale bars represent 10 μm. (b) Lung section from mouse receiving *C. albicans* and *P. aeruginosa* stained with PAS (periodic acid Schiff). The scale bars represent 5 μm.
airway colonization in comparison to *P. aeruginosa* infection alone, and by the fact that T0 caspofungin treatment resulted in a higher rate of bacterial growth. Finally, *C. albicans* produces farnesol, a cell-to-cell signaling molecule that could act as a quorum-sensing antagonist of *P. aeruginosa* [14,29]. The addition of farnesol to cultures of *P. aeruginosa* leads to decreased production of the *Pseudomonas* quinolone signal (PQS) and the PQS-controlled downstream virulence factor, pyocyanin [30]. Furthermore, it has been shown that the *C. albicans* farnesol has also the ability to inhibit swarming motility in *P. aeruginosa* cystic fibrosis clinical isolates [31]. All together, the reduction in PQS-pyocyanin production and swarming mobility may also have implications for the interaction between *P. aeruginosa* and the host.

The present study has several limitations that prevent extrapolating the results to the chronically colonized and/or critically ill patients at risk for VAP. First, the short term *C. albicans* colonization in the model does not correctly reflect the situation of these patients. Indeed, the amount of *C. albicans* in lungs cannot be substantially sustained over time in immunocompetent BALB/c mice, as already described elsewhere [32]. Consequently, *P. aeruginosa* pneumonia had to be generated only 48 hours after the prior fungal colonization. The addition of a control experimental group testing the impact of killed *C. albicans* would have been of interest to assess the need of live *C. albicans* to produce the effects described. Concern can also be raised regarding some in vitro data indicating a decrease of *P. aeruginosa* growth following exposure to halogenated anesthetics [33], although it occurred after several hours of exposure and has not been investigated in vivo. The short duration of mutual contact and interaction of *C. albicans* and *P. aeruginosa* in the airways (48 h) represents another potential bias of the present study. Furthermore, a dose/effect study testing various doses of *P. aeruginosa* to generate pneumonia could better document the in vivo dynamics of bacterial-fungal interactions. Performing microbial CFU counts in spleen and liver could better assess microbial dissemination. Finally, this relationship is studied in normal lungs and in the absence of any airway prosthetic device, which largely promotes microbial community networking [12].

Conclusions

The present results demonstrate that *P. aeruginosa*-related lung injury is reduced when preceded by short term *C. albicans* airway colonization. Regarding the use of the antifungal drug caspofungin, reduced *P. aeruginosa*-related lung injury is reversed when the treatment is initiated at T0, and maintained when the
treatment is started one day after the onset of \textit{C. albicans} colonization. The study illustrates the complex relationships between fungi and bacteria consistently with a number of other works in which cross-kingdom interactions result in very different effects (from synergy to antagonism). Additionally, the impact of antifungal agents on the fungal-bacterial ecosystem is poorly understood. Further \textit{in vitro} and \textit{in vivo} studies are required using cell wall \textit{C. albicans} extracts such as glucans or mannans during \textit{P. aeruginosa} infection in order to better understand the molecular mechanisms involved.

Key messages
- In this study, murine \textit{P. aeruginosa}-induced lung injury measured at 48 h post-infection is reduced when preceded by short term \textit{C. albicans} airway colonization.
- Additionally, short-term \textit{C. albicans} colonization results in a reduction of the amount of \textit{P. aeruginosa} in murine lungs at 48 h post-infection.
- Using the fungicidal drug caspofungin upon \textit{C. albicans} colonization reverses these effects.

Additional material

Additional file 1: \textit{In vivo} quantification of acute lung injury: alveolar-capillary barrier permeability. Method of measurement of alveolar-capillary barrier permeability.

Additional file 2: Lung histopathology after \textit{C. albicans} tracheobronchial colonization in mice. Supplemental figures of lung histopathology at Day 2 post-infection with \textit{C. albicans}.

Abbreviations
ALS: agglutinin-like sequence; BCP: bromocresol purple; Ca: Candida albicans; CaPaCasp: \textit{Candida albicans}, \textit{Pseudomonas aeruginosa}, Caspofungin; CFU: colony-forming units; GPI: glycosyl-phosphatidyl-inositol; Pa: \textit{Pseudomonas aeruginosa}; YPD: yeast peptone dextrose.

Acknowledgements
The authors are grateful to Ana-Maria Dragoi who kindly provided useful comments.

Author details
1. Department of Infectious Diseases, Croix-Rousse Hospital, 104 Grande-Rue de la Croix-Rousse, Lyon, F-69004, France. 2. Inserm U851 Finovi Centre d’Infectiologie, Claude Bernard Lyon 1 University, 521 avenue Jean Jaurès, Lyon, F-69007, France. 3. Inserm U799 Physiopathologie des Candidoses IFR 114, Lille II University School of Medicine and Lille University Hospital, 1 place de Verdun, 59037 Lille cedex, France. 4. Intensive Care Unit, Calmette Hospital, Lille University Hospital, boulevard du Pr Leclercq, 59037 Lille cedex, France. 5. EA 2689 IFR 114, Lille II University School of Medicine and Lille University Hospital, 1 place de Verdun, 59037 Lille cedex, France.

Authors’ contributions
FA participated in the design of the study, carried out the \textit{in vivo} experiments, performed the statistical analysis and drafted the manuscript. SJ carried out the histological and immunofluorescence assays and helped to draft the manuscript. SN, BS, KF, FV, CC, DP and BG participated in the design and coordination of the study and helped to draft the final manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 January 2011 Revised: 21 April 2011 Accepted: 20 June 2011 Published: 20 June 2011

References
1. Safdar N, Dezfulian C, Collard HR, Saint S: Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. \textit{Crit Care Med} 2005, 33:2184-2193.
2. Markowicz P, Wolff M, Ojedjari K, Cohen Y, Chastre J, Delclaux C, Merrer J, Herman B, Veber B, Fontaine A, Dreyfuss D: Multicenter prospective study of ventilator-associated pneumonia during acute respiratory distress syndrome. Incidence, prognosis, and risk factors. ARDS Study Group. \textit{Am J Respir Crit Care Med} 2000, 161:1942-1948.
3. Chastre J, Fagon JY: Ventilator-associated pneumonia. \textit{Am J Respir Crit Care Med} 2002, 165:867-903.
4. Kellerm HH, Morrow LE, Niederman MS, Leeper KV, Benz-Scott L, Rodino FJ: Clinical characteristics and treatment patterns among patients with ventilator-associated pneumonia. \textit{Chest} 2006, 129:1210-1218.
5. El-Ebiary M, Torres A, Fabregas N, de la Bellacasa JP, González J, Ramírez J, del Baldo D, Hernández C, Jiménez de Anta MT: Significance of the isolation of \textit{Candida} species from respiratory samples in critically ill, non-neutropenic patients: an immediate post-mortem histologic study. \textit{Am J Respir Crit Care Med} 1997, 156:583-590.
6. Wood GC, Mueller EW, Croce MA, Boucher BA, Fabian TC: \textit{Candida sp.} isolated from bronchoalveolar lavage: clinical significance in critically ill trauma patients. \textit{Intensive Care Med} 2006, 32:599-603.
7. Delisle MS, Williamson DR, Perreault MM, Albert M, Jiang X, Heyland DK: The clinical significance of \textit{Candida} colonization of respiratory tract secretions in critically ill patients. \textit{J Crit Care} 2008, 23:11-17.
8. Azoulay E, Timsit JF, Tafflet M, de Lassence A, Darmon M, Zahar JR, Adrie C, Garrouste-Orgeas M, Cohen Y, Mouvillier B, Schlemmer B, Outcomerea Study Group: \textit{Candida} colonization of the respiratory tract and subsequent \textit{Pseudomonas aeruginosa} ventilator-associated pneumonia. \textit{Chest} 2006, 129:110-117.
9. Neef S, Jezofewicz E, Cavestri B, Sendel B, Di Pompeo C, Dewavrin F, Favory R, Roussel-Delvallez M, Durocher A: Impact of antifungal treatment on \textit{Candida-Pseudomonas} interaction: a preliminary retrospective case-control study. \textit{Intensive Care Med} 2007, 33:137-142.
10. Adair CG, Gorman SP, Fenton BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR: Implications of endotracheal tube biofilm for ventilator-associated pneumonia. \textit{Intensive Care Med} 1999, 25:1072-1076.
11. El-Azzi MA, Starks SE, Khadrond N: Interactions of \textit{Candida albicans} with other \textit{Candida} spp. and bacteria in the biofilms. \textit{J Appl Microbiol} 2004, 96:1067-1073.
12. Douglas LJ: \textit{Candida} biofilms and their role in infection. \textit{Trends Microbiol} 2003, 11:30-36.
13. Hogan DA, Kolter R: \textit{Pseudomonas-Candida} interactions: an ecological role for virulence factors. \textit{Science} 2002, 296:2229-2232.
14. Hogan DA, Vik A, Kolter R: \textit{A Pseudomonas aeruginosa quorum-sensing molecule influences \textit{Candida albicans} morphology}. \textit{Mol Microbiol} 2004, 54:1212-1223.
15. Peters BW, Jabra-Rizk MA, Schepfer MA, Leid JG, Costerton JW, Shir rif TE: Microbial interactions and differential protein expression in \textit{Staphylococcus aureus-Candida albicans} dual-species biofilms. \textit{FEMS Immunol Med Microbiol} 2010, 59:493-503.
16. Roux D, Gauthry S, Dreyfuss D, Bréna J, de Prost N, Denamur E, Saumon G, Girard JD: \textit{Candida albicans} impairs macrophage function and facilitates \textit{Pseudomonas aeruginosa} pneumonia in rat. \textit{Crit Care Med} 2009, 37:1062-1067.
17. Cheman C, Imbery A, de Bentzmann S, Pierre M, Wimmerová M, Guery BP, Faure K: Role of LecA and LecB lectins in \textit{Pseudomonas aeruginosa}-induced lung injury and effect of carbohydrate ligands. \textit{Infect Immun} 2009, 77:2065-2075.
18. Gillum AM, Tsay EY, Kirsch DR: Isolation of the \textit{Candida albicans} gene for orotidine-5’-phosphate decarboxylase by complementation of \textit{S.}}
cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 1984, 198:179-182.

19. Jay C, Garat C, Meignan M, Pittet JF, Zelter M, Matthay MA: Alveolar liquid and protein clearance in anesthetized ventilated rats. J Appl Physiol 1994, 76:2636-2642.

20. Kwak YG, Song CH, Yi HK, Hwang GH, Kim PS, Lee KS, Lee YC: Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J Clin Invest 2003, 111:1083-1092.

21. Fortier B, Hopwood V, Poulain D: Electric and chemical fusions for the production of monoclonal antibodies reacting with the in-vivo growth phase of Candida albicans. J Med Microbiol 1988, 27:239-245.

22. Jawhara S, Thuru X, Standaert-Vitse A, Jouault T, Mordon S, Sendid B, Desreumaux P, Poulain D: Colonization of mice by Candida albicans is promoted by chemically induced colitis and augments inflammatory responses through galectin-3. J Infect Dis 2008, 197:972-980.

23. Fujita K, Tateda K, Kimura S, Saga T, Ishi Y, Yamagushi K: A novel aspect of interspecies communication in Candida and Pseudomonas: co-existence of Candida modulates dissemination and lethality in P. aeruginosa pulmonary infection. Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) 2008, 187B70.

24. Kurahashi K, Kajikawa O, Sawa T, Ohara M, Gropper MA, Frank DW, Martin TR, Wiener-Kronish JP: Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 1999, 104:743-750.

25. Kurahashi K, Kajikawa O, Sawa T, Ohara M, Gropper MA, Frank DW, Martin TR, Wiener-Kronish JP: In vitro cellular toxicity predicts Pseudomonas aeruginosa virulence in lung infections. Infect Immun 1998, 66:3242-3249.

26. Imberty A, Wimmerova M, Mitchell EP, Gilboa-Garber N: Structure of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Infect Immun 2004, 72:952-958.

27. Sundstrom P: Adhesion in Candida spp. Cell Microbiol 2002, 4:461-469.

28. Filler SG: Candida-host cell receptor-ligand interactions. Curr Op Microbiol 2006, 9:333-339.

29. Hogan DA: Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryotic Cell 2006, 5:613-619.

30. Cugini C, Hogan DA: Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 2007, 65:896-906.

31. McAlester G, O’Gara F, Morrissey JP: Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol 2008, 57:563-569.

32. Londono P, Gao XM, Bowe F, McPhoot WL, Booth G, Dougan G: Evaluation of the intranasal challenge route in mice as a mucosal model for Candida albicans infection. Microbiology 1998, 144:2291-2298.

33. Molliex S, Montravers P, Dureuil B, Desmonts JM: Halogenated anesthetics inhibit Pseudomonas aeruginosa growth in culture conditions reproducing the alveolar environment. Anesth Analg 1998, 86:1075-1078.

doi:10.1186/cc10276
Cite this article as: Ader et al.: Short term Candida albicans colonization reduces Pseudomonas aeruginosa-related lung injury and bacterial burden in a murine model. Critical Care 2011 15:R150.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit