Nambu–Poisson Dynamics with Some Applications

Nugzar Makhaldiani
Joint Institute for Nuclear Research Dubna, Moscow Region, Russia
e-mail: mnv@jinr.ru

Abstract—Short introduction in NPD with several applications to (in)finite dimensional problems of mechanics, hydrodynamics, M-theory and quanputing is given.

DOI: 10.1134/S1063779612050231

1 The Hamiltonian mechanics (HM) is in the fundamentals of mathematical description of the physical theories [1]. But HM is in a sense blind; e.g., it does not make a difference between two opposites: the ergodic Hamiltonian systems (with just one integral of motion) [2] and (super)integrable Hamiltonian systems (with maximal number of the integrals of motion).

Nabu mechanics (NM) [3, 4] is a proper generalization of the HM, which makes explicit the difference between the dynamical systems with different numbers of integrals of motion (see, e.g. [5]).

1. HAMILTONIZATION OF DYNAMICAL SYSTEMS

Let us consider a general dynamical system described by the following system of the ordinary differential equations [6]

\[\dot{x}_n = v_n(x), \quad 1 \leq n \leq N, \]

(1)

\[\dot{x}_n \] stands for the total derivative with respect to the time parameter \(t \).

When the number of the degrees of freedom is even, and

\[v_n(x) = \varepsilon_{nm} \frac{\partial H_0}{\partial x_n} , \quad 1 \leq n, \quad m \leq 2M, \]

(2)

the system (1) is a Hamiltonian one and it can be put in the form

\[\dot{x}_n = \{x_n, H_0\}_0, \]

(3)

where the Poisson bracket is defined as

\[\{A, B\}_0 = \varepsilon_{nm} \frac{\partial A}{\partial x_n} \frac{\partial B}{\partial x_m} = A \frac{\partial}{\partial x_n} \varepsilon_{nm} \frac{\partial}{\partial x_m} B, \]

(4)

and summation under repeated indices is used. Let us consider the following Lagrangian

\[L = (\dot{x}_n - v_n(x)) \psi_n \]

(5)

and the corresponding equations of motion

\[\dot{x}_n = v_n(x), \quad \dot{\psi}_n = -\frac{\partial v_n}{\partial x_n} \psi_m. \]

(6)

The system (6) extends the general system (1) by linear equation. The extended system can be put in the Hamiltonian form [7]

\[\dot{x}_n = \{x_n, H_1\}_1, \quad \dot{\psi}_n = \{\psi_n, H_1\}_1, \]

(7)

where the first level (order) Hamiltonian is

\[H_1 = v_n(x) \psi_n \]

(8)

and (the first level) bracket is defined as

\[\{A, B\}_1 = A \left(\frac{\partial}{\partial x_n} \frac{\partial}{\partial \psi_n} - \frac{\partial}{\partial \psi_m} \frac{\partial}{\partial x_n} \right) B. \]

(9)

Note that when the Grassmann gradings [8] of the conjugated variables \(x_n \) and \(\psi_n \) are different, the bracket (9) is known as Buttin bracket [9].

In the Faddeev–Jackiw formalism [10] for the Hamiltonian treatment of systems defined by first-order Lagrangians, i.e. by a Lagrangian of the form

\[L = f_n(x) \dot{x}_n - H(x), \]

(10)

the motion equations

\[f_{mn} \dot{x}_n = \frac{\partial H}{\partial x_m}, \]

(11)

for the regular structure function \(f_{mn} \), can be put in the explicit Hamiltonian (Poisson, Dirac) form

\[\dot{x}_n = f_{nm}^{-1} \frac{\partial H}{\partial x_m} = \{x_n, x_m\} \frac{\partial H}{\partial x_m} = \{x_n, H\}, \]

(12)

where the fundamental Poisson (Dirac) bracket is

\[\{x_n, x_m\} = f_{nm}^{-1}, \quad f_{mn} = \partial_m f_n - \partial_n f_m. \]

(13)
The system (6) is an important example of first order regular Hamiltonian systems. Indeed, in the new variables,
\begin{equation}
\begin{aligned}
y_n^1 = x_n, \quad y_n^2 = \psi_n,
\end{aligned}
\end{equation}
the Lagrangian (5) takes the following first order form
\begin{align}
L &= (x_n - \nu_n(x))\psi_n \Rightarrow \frac{1}{2} (x_n \psi_n - \psi_n x_n) - \nu_n(x)\psi_n \\
&= \frac{1}{2} y_n^a y_n^b - H(y) = f_n^a(y) y_n^a - H(y), \quad f_n^a = \frac{1}{2} \epsilon^{ab} \delta_{nm},
\end{align}
\begin{equation}
H = \nu_n(y) y_n^a = \frac{\partial f_n^a}{\partial y_n^a} - \frac{\partial f_n^a}{\partial y_m^a},
\end{equation}
and the corresponding motion equations and the fundamental Poisson bracket are
\begin{align}
y_n^a = \epsilon_{ab} \delta_{nm} \frac{\partial H}{\partial y_m^b} = \{y_n^a, H\}, \quad \{y_n^a, y_m^b\} = \epsilon_{ab} \delta_{nm}.
\end{align}

The canonical quantization of this system corresponds
\begin{align}
[\hat{y}_n^a, \hat{y}_m^b] = i\hbar \epsilon_{ab} \delta_{nm}, \quad \hat{y}_n^1 = y_n^1, \quad \hat{y}_n^2 = -i\hbar \frac{\partial}{\partial y_n^a}.
\end{align}

In this quant theory, classical part, motion equations \(y_n^1\) for remain classical.

1.1. Modified Bochner–Killing–Yano (MBKY) Structures

Now we return to our extended system (6) and formulate conditions for the integrals of motion \(H(x, \psi)\)
\begin{equation}
H = H_0(x) + H_1 + \ldots + H_N,
\end{equation}
where
\begin{align}
H_n = A_{k_1 \ldots k_n}(x) \psi_{k_1} \ldots \psi_{k_n}, \quad 1 \leq n \leq N, \quad (19)
\end{align}
we are assuming Grassmann valued \(\psi\) and the tensor \(A_{k_1 \ldots k_n}\) is skew-symmetric. For integrals (18) we have
\begin{align}
\hat{H} = \sum_{n=0}^{N} H_n, \quad \{H_n, H_1\} = \sum_{n=0}^{N} H_n = 0. \quad (20)
\end{align}
Now we see, that each term in the sum (18) must be conserved separately. In particular for Hamiltonian systems (2), zeroth \(H_0\) and first level \(H_1(8)\), Hamiltonians are integrals of motion. For \(n = 0\)
\begin{equation}
\hat{H}_0 = H_{0k} \psi_k = 0,
\end{equation}
for \(1 \leq n \leq N\) we have
\begin{align}
\hat{H}_n = \hat{A}_{k_1 \ldots k_n}(x) \psi_{k_1} \ldots \psi_{k_n} + A_{k_1 \ldots k_n} \psi_{k_1} \ldots \psi_{k_n} + \ldots \\
+ A_{k_1 \ldots k_n} \psi_{k_1} \ldots \psi_{k_n} = (A_{k_1 \ldots k_n} \psi_{k_1} \ldots \psi_{k_n})\psi_k \ldots \psi_k \\
- A_{k_1 \ldots k_n} \psi_{k_1} \ldots \psi_{k_n} + \ldots - A_{k_1 \ldots k_n} \psi_{k_1} \ldots \psi_{k_n} = 0, \quad (22)
\end{align}
and there is one-to-one correspondence between the existence of the integrals (19) and the existence of the nontrivial solutions of the following equations
\begin{align}
\frac{D}{Dt} A_{k_1 \ldots k_n} = A_{k_1 \ldots k_n} v_k - A_{k_1 \ldots k_n} v_k, \quad (23)
\end{align}
For \(n = 1\) the system (23) gives
\begin{align}
A_{k_1} v_k - A_{k_1} v_k = 0 \quad (24)
\end{align}
and this equation has at least one solution, \(A_k = v_k\). If we have two (or more) independent first order integrals
\begin{align}
H_1^{(1)} = A_k \psi_k; \quad H_1^{(2)} = A_k^2 \psi_k; \ldots, \quad (25)
\end{align}
we can construct corresponding (reducible) second (or higher) order MBKY tensor(s)
\begin{align}
H_2 = H_1^{(1)} H_1^{(2)} = A_k^3 \psi_k \psi_k, \quad (26)
\end{align}
where under the bracket operation, \(\{B_{k_1 \ldots k_n}\} = \{B\}\) we understand complete anti-symmetrization. The system (23) defines a generalization of the Bochner–Killing–Yano structures of the geodesic motion of the point particle, for the case of the general (1) (and extended (6)) dynamical systems. Having \(A_{k_1}, 2 \leq M \leq N\) independent structures we can construct second order Killing tensors and Nambu–Poison dynamics. In the superintegrable case, we have maximal number of the motion integrals, \(N - 1\).

The structures defined by the system (23) we call the Modified Bochner–Killing–Yano structures or MBKY structures for short, [11].

1.2. Point Vortex Dynamics (PVD)

PVD can be defined (see e.g. [12, 13]) as the following first order system
\begin{align}
\dot{z}_n = i \sum_{m \neq n} \gamma_{mn} z_n^* - z_m^*, \quad z_n = x_n + iy_n, \quad 1 \leq n \leq N. \quad (27)
\end{align}
The corresponding first order Lagrangian, Hamiltonian, momenta, Poisson brackets and commutators are respectively
\begin{align}
L = \sum_{n=0}^{N} \gamma_{n} (x_n z_n^* - z_n x_n) - \sum_{n,m} \gamma_{nm} \ln |z_n - z_m|,
\end{align}
\begin{align}
H = \sum_{n,m} \gamma_{nm} \ln |z_n - z_m| = \sum_{n,m} \gamma_{nm} \ln |z_n - z_m| + \ln (p_n - p_m), \quad (28)
\end{align}
\begin{align}
p_n = \frac{\partial L}{\partial \dot{z}_n} = \frac{-i}{2} \gamma_{n} z_n^*, \quad p_n = \frac{\partial L}{\partial \dot{z}_n} = \frac{-i}{2} \gamma_{n} z_n^*,
\end{align}
\[\{p_n, z_m\} = \delta_{nm}, \quad \{p_n^a, z_m^a\} = \delta_{nm}, \quad \{x_n, y_m\} = \delta_{nm}, \]
\[[p_n, z_m] = -i\hbar \delta_{nm} \Rightarrow [x_n, y_m] = -i \frac{\hbar}{\gamma_n} \delta_{nm}. \]

So, the quantum vortex dynamics is realized in a non-commutative space. It is natural to assume that vortex parameters are quantized as
\[\gamma_n = \frac{\hbar}{a^n}, \quad n = \pm 1, \pm 2, \ldots \]
and \(a \) is a characteristic (fundamental) length.

2. NAMBU DYNAMICS

In the canonical formulation, the equations of motion of a physical system are defined via a Poisson bracket and a Hamiltonian, [6]. In Nambu’s formulation, the Poisson bracket is replaced by the Nambu–Poisson bracket and a Hamiltonian, [6]. In Nambu’s formula-

motion of a physical system are defined via a Poisson bracket and can be presented in the Nambu–Poisson form, [14].

\[i\dot{V}_i = \Delta V - \frac{V^2}{2}, \]
\[i\dot{\psi}_i = -\Delta \psi + V \psi. \]

An interesting solution to the equation for the potential (33) is
\[V = \frac{4(4 - d)}{r^2}, \]
where \(d \) is the dimension of the space. In the case of \(d = 1 \), we get the potential of conformal quantum mechanics.

The variational formulation of the extended quantum theory, is given by the following Lagrangian
\[L = \left(iV_i - \Delta V + \frac{1}{2}V^2 \right) \psi_i. \]

The momentum variables are
\[P_v = \frac{\partial L}{\partial \psi_i}, \quad P_{\psi} = 0. \]

As Hamiltonians of the Nambu-theoretic formulation, we take the following integrals of motion
\[H_1 = \int d^d x \left(\Delta V - \frac{1}{2}V^2 \right) \psi_i, \]
\[H_2 = \int d^d x (P_v - i\psi_i), \]
\[H_3 = \int d^d x P_{\psi_i}. \]

We invent unifying vector notation, \(\phi = (\phi_1, \phi_2, \phi_3, \phi_4) = (\psi, P_{\psi}, V, P_v) \). Then it may be verified that the equations of the extended quantum theory can be put in the following Nambu-theoretic form
\[\phi_i(x) = \{\phi(x), H_1, H_2, H_3\}, \]
where the bracket is defined as
\[\{A_1, A_2, A_3, A_4\} = i\epsilon_{ijkl} \int \Delta A_i \delta A_j \delta A_k \delta A_l dy \]
\[= i \int \frac{\delta A_1}{\delta \phi_i(y)} \frac{\delta A_2}{\delta \phi_j(y)} \frac{\delta A_3}{\delta \phi_k(y)} \frac{\delta A_4}{\delta \phi_l(y)} dy \]
\[= i \det \left(\frac{\delta A_i}{\delta \phi_j} \right). \]

2.3. M Theory

The basic building blocks of the M theory are membranes and M5—branes. Membranes are fundamental objects carrying electric charges with respect to the 3-form C-field, and M5-branes are magnetic solitons. The Nambu-Poisson 3-algebras appear as gauge symmetries of superconformal Chern–Simons nonabelian theories in 2 + 1 dimensions with the maximum allowed number of \(N = 8 \) linear supersymmetries.

The Bagger and Lambert [16] and, Gustavsson [17] (BLG) model is based on a 3-algebra,
\[[T^a, T^b, T^c] = f^{abc}_d T^d, \]
where \(T^a \) are generators and \(f_{abcd} \) is a fully anti-symmetric tensor. Given this algebra, a maximally super-symmetric Chern–Simons Lagrangian is:

\[
L = L_{\text{CS}} + L_{\text{matter}},
\]

\[
L_{\text{CS}} = \frac{1}{2} \varepsilon^{\mu \nu \lambda} \left(f_{abcd} A_{\mu}^{ab} \partial_{\nu} A_{\lambda}^{cd} + \frac{2}{3} f_{edg} f_{\mu}^{g} A_{\nu}^{ab} A_{\lambda}^{cd} A_{\rho}^{ef} \right),
\]

\[
L_{\text{matter}} = \frac{1}{2} B_{\mu}^{ab} B_{\nu}^{ab} - B_{\mu}^{ab} D_{\nu}^{a} X_{a}^{I} + \frac{i}{2} \psi^{a} \Gamma^{\nu} D_{\nu} \psi_{a} + \frac{i}{4} \bar{\psi}^{a} \psi^{a},
\]

where \(A_{\mu}^{ab} \) is a gauge boson, \(\psi^{a} \) and \(X_{a}^{I} \) are field elements. If \(a = 1, 2, 3, 4 \), then we can obtain an \(SO(4) \) gauge symmetry by choosing \(f_{abcd} = f_{\varepsilon_{abcd}}, f^{a} \) being a constant. It turns out to be the only case that gives a gauge theory with manifest unitarity and \(N = 8 \) super-symmetry.

The action has the first order form so we can use the formalism of the first section. The motion equations for the gauge fields

\[
f_{nm}^{mm} A_{nt}^{cd}(t, x) = \frac{\delta H}{\delta A_{nt}^{cd}(t, x)}, \quad f_{nm}^{nm} = \varepsilon_{nm} f_{abcd}
\]

(43)

can be written in the canonical form

\[
A_{nt}^{ab} = \int_{nm} f_{nm}^{abcd} \frac{\delta H}{\delta A_{nt}^{cd}} = (A_{nt}^{ab}, A_{m}^{cd}) \frac{\delta H}{\delta A_{m}^{cd}} = (A_{nt}^{ab}, H),
\]

\[
\{A_{nt}^{ab}(t, x), A_{m}^{cd}(t, y)\} = \varepsilon_{nm} f_{abcd} \delta^{(2)}(x - y).
\]

(44)

3. DISCRETE DYNAMICAL SYSTEMS

Computers are physical devices and their behavior is determined by physical laws. The Quantum Computation [18, 19], Quantum Computing, Quanputing [20], is a new interdisciplinary field of research, which benefits from the contributions of physicists, computer scientists, mathematicians, chemists and engineers.

A contemporary digital computer and its logical elements can be considered as a spatial type of discrete dynamical systems [21]

\[
S_n(k + 1) = \Phi_n(S(k)),
\]

(45)

where

\[
S_n(k), \quad 1 \leq n \leq N(k),
\]

(46)

is the state vector of the system at the discrete time step \(k \). Vector \(S \) may describe the state and the \(\Phi \) transition rule of some Cellular Automata [22]. The systems of the type (45) appears in applied mathematics as an explicit finite difference scheme approximation of the equations of the physics [23].

Definition: We assume that the system (45) is time-reversible if we can define the reverse dynamical system

\[
S_n(k) = \Phi_n^{-1}(S(k + 1)).
\]

(47)

In this case the following matrix

\[
M_{nn} = \frac{\partial \Phi_n(S(k))}{\partial S_n(k)}
\]

(48)

is regular, i.e. has an inverse. If the matrix is not regular, this is the case, for example, when \(N(k + 1) \neq N(k) \), we have an irreversible dynamical system (usual digital computers and/or corresponding irreversible gates).

Let us consider an extension of the dynamical system (45) given by the following action function

\[
A = \sum_{kn} l_n(k)(S_n(k + 1) - \Phi_n(S(k))),
\]

(49)

and corresponding motion equations

\[
S_n(k + 1) = \Phi_n(S(k)) = \frac{\partial H}{\partial l_n(k)},
\]

(50)

\[
l_n(k) = l_m(k) \frac{\partial \Phi_m(S(k))}{\partial S_m(k)} = l_m(k) M_{nn}(S(k)) = \frac{\partial H}{\partial S_n(k)},
\]

(51)

where

\[
H = \sum_{kn} l_n(k) \Phi_n(S(k)),
\]

is a discrete Hamiltonian. In the regular case, we put the system (50) in explicit form

\[
S_n(k + 1) = \Phi_n(S(k)),
\]

(52)

\[
l_n(k + 1) = l_m(k) M_{nn}^{-1}(S(k + 1)).
\]

From this system it is obvious that, when the initial value \(l_n(k_0) \) is given, the evolution of the vector \(l(k) \) is defined by the evolution of the state vector \(S(k) \). The equation of motion for \(l_n(k) \)—Elenka is linear and has the important property that a linear superpositions of the solutions are also solutions.

Statement: Any time-reversible dynamical system (e.g. a time-reversible computer) can be extended by corresponding linear dynamical system (quantum—like processor) which is controlled by the dynamical system and has a huge computational power, [20, 21, 24, 25].

3.1 (de)Coherence Criterion

For motion equations (50) in the continual approximation, we have

\[
S_n(k + 1) = x_n(t_k + \tau) = x_n(t_k) + \dot{x}_n(t_k) \tau + O(\tau^2),
\]

\[
\dot{x}_n(t_k) = v_n(x(t_k)) + O(\tau), \quad t_k = k \tau,
\]

\[
v_n(x(t_k)) = (\Phi_n(x(t_k)) - x_n(t_k))/\tau,
\]

(53)

\[
M_{mn}(x(t_k)) = \delta_{mn} + \tau \frac{\partial v_n(x(t_k))}{\partial x_n(t_k)}.
\]
(de) **Coherence criterion:** the system is reversible, the linear (quantum, coherent, soul) subsystem exists, when the matrix M is regular,

$$\det M = 1 + \varepsilon \sum \frac{\partial V_n}{\partial x_n} + O(\varepsilon^2) \neq 0.$$ \hspace{1cm} (54)

For the Nambu–Poisson dynamical systems (see e.g. [5])

$$V_n(x) = e_{nm_1...m_p} \frac{\partial H_1}{\partial x_{m_1}} \frac{\partial H_2}{\partial x_{m_1}} ... \frac{\partial H_p}{\partial x_{m_p}}, \quad p = 1, 2, 3, ..., N - 1,$$

$$\sum_n \frac{\partial V_n}{\partial x_n} = \text{div} V = 0.$$ \hspace{1cm} (55)

REFERENCES

1. L. D. Faddeev and L. A. Takhtajan, *Hamiltonian Methods in the Theory of Solitons* (Springer, Berlin 1990).
2. Ya. G. Sinai, *Topics in Ergodic Theory* (Princeton Univ. Press, Princeton, 1993).
3. Y. Nambu, Phys. Rev. D: Part. Fields 7, 2405 (1973).
4. E. T. Whittaker, *A Treatise on the Analytical Dynamics* (Cambridge, 1927).
5. N. Makhaldiani, ”Nambu-Poisson Dynamics of Superintegrable Systems,” At. Nucl. 70, 564 (2007).
6. V. I. Arnold, *Mathematical Methods of Classical Mechanics* (Springer, New York, 1978).
7. N. Makhaldiani and O. Voskresenskaya, ”On the Correspondence between the Dynamics with Odd and Even Brackets and Generalized Nambu's Mechanics,” Joint Inst. Nucl. Res. Commun. E2-97-418 (Dubna, 1997).
8. F. A. Berezin, *Introduction to Superaanalysis* (Reidel, Dordrecht, 1987).
9. C. Buttin, C.R. Acad. Sci. Paris 269, 87 (1969).
10. L. D. Faddeev and R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988).
11. N. Makhaldiani, ”The Algebras of the Integrals of Motion and Modified Bochner-Killing-Yano Structures of the Point Particle Dynamics,” Joint Inst. Nucl. Res. Commun. E2-99-337 (Dubna, 1999).
12. H. Aref, Ann. Rev. Fluid Mech. 15, 345 (1983).
13. A. V. Meleshko and N. N. Konstantinov, *Dynamics of Vortex Systems* (Nauk. Dumka, Kiev, 1993).
14. N. Makhaldiani, ”The System of Three Vortexes of Two-Dimensional Ideal Hydrodynamics as a New Example of the (Integrable) Nambu-Poisson Mechanics,” Joint Inst. Nucl. Res. Commun. E2-97-407 (Dubna, 1997). arXiv:solv-int/9804002
15. N. Makhaldiani, ”New Hamiltonization of the Schrödinger Equation by Corresponding Nonlinear Equation for the Potential,” Joint Inst. Nucl. Res. Commun. E2-2000-179 (Dubna, 2000).
16. J. Bagger and N. Lambert, ”Modeling Multiple M2's,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 75, 045020 (2007). arXiv:hep-th/0611108
17. A. Gustavsson, ”Algebraic Structures on Parallel M2-Branes,” Nucl. Phys. B 811, 66 (2009). arXiv:0709.1260 [hep-th]
18. G. Benenti, G. Casati, and G. Strini, *Principles of Quantum Computation and Information*, Vol. 1: Basic Concepts (World Scientific, Singapore, 2004); G. Benenti, G. Casati, and G. Strini, *Principles of Quantum Computation and Information*, Vol. 2: Basic Tools and Special Topics (World Scientific, Singapore, 2007).
19. M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information* (Cambridge Univ. Press, Cambridge, 2000).
20. N. Makhaldiani, ”Theory of Quanputers,” J. Math. Sci. (New York) 153, 159 (2008).
21. N. Makhaldiani, ”How to Solve the Classical Problems on Quantum Computers,” Joint Inst. Nucl. Res. Commun. E2-2001-137 (Dubna, 2001).
22. T. Toffoli and N. Margolus, *Cellular Automata* (MIT, Machines, 1987).
23. A. Samarskii and A. Gulin, *Numerical Methods* (Nauka, Moscow, 1989).
24. N. Makhaldiani, ”Classical and Quantum Problems for Quanputers” (2002). arXiv:quant-ph/0201084.
25. N. Makhaldiani, ”Regular Method of Construction of the Reversible Dynamical Systems and Their Linear Extensions - Quanputers,” At. Nucl. 74, 1040 (2011).