STABILITY OF THE BLASCHKE-SANTALÓ INEQUALITY IN THE PLANE

MOHAMMAD N. IVAKI

Abstract. We give a stability version of the Blaschke-Santaló inequality in the plane.

1. Introduction

The setting of this paper is the n-dimensional Euclidean space. A compact convex subset of \(\mathbb{R}^n \) with non-empty interior is called a convex body. The set of convex bodies in \(\mathbb{R}^n \) is denoted by \(K^n \). Write \(K^n_e \) for the set of origin-symmetric convex bodies and \(K^n_0 \) for the set of convex bodies whose interiors contain the origin.

The support function of \(K \in K^n \), \(h_K : S^{n-1} \to \mathbb{R} \), is defined by

\[
h_K(u) = \max_{x \in K} \langle x, u \rangle,
\]

where \(\langle \cdot, \cdot \rangle \) stands for the usual inner product of \(\mathbb{R}^n \). The polar body, \(K^* \), of \(K \in K^n_0 \) is defined by

\[
K^* = \{y \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } x \in K\}.
\]

For \(x \in \text{int} \ K \), let \(K^x := (K - x)^* \). The Santaló point of \(K \), denoted by \(s \), is the unique point in \(\text{int} \ K \) such that

\[
V(K^s) \leq V(K^x)
\]

for all \(x \in \text{int} \ K \). For a body \(K \in K^n_e \), the Santaló point is at the origin. The Blaschke-Santaló inequality [4, 21] states that

\[
V(K^s)V(K) \leq \omega_n^2,
\]

with equality if and only if \(K \) is an ellipsoid. Here \(\omega_n \) is the volume of \(B \), the unit ball of \(\mathbb{R}^n \). The equality condition was settled by Saint Raymond [20] in the symmetric case and Petty [19] in the general case.

A natural tool in the affine geometry of convex bodies is the Banach-Mazur distance which for two convex bodies \(K, \tilde{K} \in K^n \) is defined by

\[
d_{BM}(K, \tilde{K}) = \min\{\lambda \geq 1 : (K-x) \subseteq \Phi(\tilde{K}-y) \subseteq \lambda(K-x), \ \Phi \in \text{GL}(n), x, y \in \mathbb{R}^n\}.
\]

It is easy to see that \(d_{BM}(K, \Phi \tilde{K}) = d_{BM}(K, \tilde{K}) \) for all \(\Phi \in \text{GL}(n) \). Moreover, the Banach-Mazur distance is multiplicative. That is, for \(K_1, K_2, K_3 \in K^n_e \) the following inequality holds:

\[
d_{BM}(K_1, K_3) \leq d_{BM}(K_1, K_2)d_{BM}(K_2, K_3).
\]

The main result of the paper is stated in the following theorem.

2010 Mathematics Subject Classification. Primary 52A40, 52A10; Secondary 53A15.

Key words and phrases. the Blaschke-Santaló inequality; stability of the Blaschke-Santalo inequality.
Theorem. There exist constants γ, $\varepsilon_0 > 0$, such that the following holds: If $0 < \varepsilon < \varepsilon_0$ and K is a convex body in \mathbb{R}^2 such that $V(K^*)V(K) \geq \frac{\pi}{1 + 2\varepsilon}$, then $d_{BM}(K, B) \leq 1 + \gamma \varepsilon^2$. Furthermore, if K is an origin-symmetric body, then $d_{BM}(K, B) \leq 1 + \gamma \varepsilon^2$. In \mathbb{R}^n, $n \geq 3$, the stability of the Blaschke-Santaló inequality was first proved by K.J. Böröczky [6], and then by K. Ball and K.J. Böröczky [2] with a better order of approximation (see also [3] for the stability of functional forms of the Blaschke-Santaló inequality). In \mathbb{R}^2, a result has been obtained by K.J. Böröczky and E. Makai [7] where the order of approximation in the origin-symmetric case is $1/3$ and in the general case is $1/6$. Therefore, our main theorem provides a sharper stability result. Moreover, stability of the p-affine isoperimetric inequality also follows from the stability of the Blaschke-Santaló inequality (See [17, 22] for definitions of the p-affine surface areas, and for the statements of the p-affine isoperimetric inequalities, and see also [13, 14] for their generalizations in the context of the Orlicz-Brunn-Minkowski theory, basic properties, and affine isoperimetric inequalities they satisfy.). Stability of the p-affine isoperimetric inequality, in the Hausdorff distance, for bodies in K^2 was established by the author in [12] via the affine normal flow with the order of approximation equal to $3/10$. Therefore, the main theorem here replaces $3/10$ by $1/2$ and extends that result, if $p > 1$, to bodies with the Santaló points or centroids at the origin, and if $p = 1$, to any convex body in K^2. An application of such a stability result to some Monge-Ampère functionals is given by Ghilli and Salani [9].

Acknowledgment. I am indebted to Monika Ludwig and the referee for the very careful reading of the original submission.

2. Background material

A convex body is said to be of class C^k, for some $k \geq 2$, if its boundary hypersurface is k-times continuously differentiable, in the sense of differential geometry, and the Gauss map $\nu : \partial K \to \mathbb{S}^{n-1}$, which takes x on the boundary of K to its unique outer unit normal vector $\nu(x)$, is well-defined and a C^{k-1}-diffeomorphism.

Let K, L be two convex bodies and $0 < a < \infty$, then the Minkowski sum $K + aL$ is defined by $h_{K + aL} = h_K + ah_L$ and the mixed volume $V_1(K, L)$ ($V(K, L)$ for planar convex bodies) of K and L is defined by

$$V_1(K, L) = \frac{1}{n} \lim_{a \to 0^+} \frac{V(K + aL) - V(K)}{a}.$$

A fundamental fact is that corresponding to each convex body K, there is a unique Borel measure S_K on the unit sphere such that

$$V_1(K, L) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L dS_K$$

for any convex body L. The measure S_K is called the surface area measure of K.

A convex body K is said to have a positive continuous curvature function f_K, defined on the unit sphere, provided that for each convex body L

$$V_1(K, L) = \frac{1}{n} \int_{\mathbb{S}^{n-1}} h_L f_K d\sigma,$$
where \(\sigma \) is the spherical Lebesgue measure on \(\mathbb{S}^{n-1} \). A convex body can have at most one curvature function; see [5, p. 115]. If \(K \) is of class \(C^2 \), then \(S_K \) is absolutely continuous with respect to \(\sigma \), and the Radon-Nikodym derivative \(dS_K/d\sigma : \mathbb{S}^{n-1} \to \mathbb{R} \) is the reciprocal Gauss curvature of \(\partial K \) (viewed as a function of the outer unit normal vectors). For every \(K \in \mathcal{K}^n \), \(V(K) = V_1(K, K) \).

Of significant importance in convex geometry is the Minkowski mixed volume inequality. Minkowski’s mixed volume inequality states that for \(K, L \in \mathcal{K}^n \),

\[
V_1(K, L)^n \geq V(K)^{n-1}V(L).
\]

In the class of origin-symmetric convex bodies, equality holds if and only if \(\Lambda \)

Remark

the centroid of \(\Lambda \)

Theorem 1. [10] Let \(K, L \in \mathcal{K}^n \) and set \(D(K) = 2\max_{\mathbb{S}^1} h_K \), then

\[
\frac{V(K, L)^2}{V(K)V(L)} - 1 \geq \frac{V(K)}{4D^2(K)} \max_{u \in \mathbb{S}^1} \left| \frac{h_K(u)}{V(K)\frac{3}{2}} - \frac{h_L(u)}{V(L)\frac{3}{2}} \right|^2.
\]

The Santaló point of \(K \) is characterized by the following property

\[
\int_{\mathbb{S}^{n-1}} u \frac{h_{K-s}^{n+1}(u)}{h_K^{n+1}(u)} d\sigma(u) = 0.
\]

Thus for an arbitrary convex body \(K \), the indefinite \(\sigma \)-integral of \(h_{K-s}^{(n+1)} \) satisfies the sufficiency condition of Minkowski’s existence theorem in \(\mathbb{R}^n \) (see, for example, Schneider [22, Theorem 8.2.2]). Hence, there exists a unique convex body (up to translation) with curvature function

\[
f_{\Lambda K} = \frac{V(K)}{V(K_s)} h_{K-s}^{-(n+1)}.
\]

Moreover, \(\Lambda \Phi K = \Phi \Lambda K \) (up to translation) for \(\Phi \in GL(n) \), by [16, Lemma 7.12]. Finally, we remark that by the Minkowski inequality for all \(L \in \mathcal{K}^2 \) there holds \(V^2(L) = V(\Lambda L, L)^2 \geq V(L)V(\Lambda L) \). Therefore \(V(L) \geq V(\Lambda L) \) for all \(L \in \mathcal{K}^2 \), with equality if and only if \(\Lambda L \) is a translate of \(L \). In this paper we always assume that the centroid of \(\Lambda K \) is the origin of the plane.

Remark 2. If \(K \in \mathcal{K}^n \) is of class \(C^\infty \), then \(h_K \in C^\infty \). In fact, by definition of the class \(C^\infty \), the Gauss map \(\nu \) is a diffeomorphism of class \(C^\infty \) and so \(h_K(\cdot) = \langle \nu^{-1}(\cdot), \cdot \rangle \) is of class \(C^\infty \). In this case, since \(\Lambda K \) is a solution to the Minkowski problem (2.2) with positive \(C^\infty \) prescribed data \(\frac{V(K)}{V(K_s)} h_{K-s}^{-(n+1)} \), \(\Lambda K \) is of class \(C^\infty \); see Cheng and Yau [8, Theorem 1].

Theorem 3. [11] Suppose that \(K \in \mathcal{K}^n \) is of class \(C^\infty \). If \(m \leq h_K \langle \cdot, \cdot \rangle^{1/3} \leq M \) for some positive numbers \(m \) and \(M \), then there exist two ellipses \(E_{in} \) and \(E_{out} \) such that \(E_{in} \subseteq K \subseteq E_{out} \) and

\[
\left(\frac{V(E_{in})}{\pi} \right)^{2/3} = m, \quad \left(\frac{V(E_{out})}{\pi} \right)^{2/3} = M.
\]

Corollary 4. Suppose that \(K \in \mathcal{K}^n \) is of class \(C^\infty \). If \(m \leq h_K \langle \cdot, \cdot \rangle^{1/3} \leq M \) for some positive numbers \(m \) and \(M \) and \(V(K) = \pi \), then \(m \leq 1 \leq M \). Moreover, without
any assumption on the area of K, we have

$$d_{BM}(K, B) \leq \left(\frac{M}{m} \right)^{\frac{2}{n}}.$$

Proof. Let E_{in} and E_{out} be the ellipses from Theorem 3. Since $V(E_{out}) \geq \pi$ and $V(E_{in}) \leq \pi$, the first claim follows (For another proof by Andrews, see [1, Lemma 10] in which he does not assume that K is origin-symmetric.). To prove the bound on the Banach-Mazur distance, we may first apply a special linear transformation $\Phi \in SL(2)$ such that ΦE_{out} is a disk. Then it is easy to see that

$$\Phi E_{out} \subseteq \frac{V(E_{out})}{V(E_{in})} \Phi E_{in},$$

and

$$d_{BM}(K, B) \leq \frac{V(E_{out})}{V(E_{in})}.$$

\[\square \]

Let K be a convex body with Santaló point at the origin. In [15], by using the affine isoperimetric inequality, Lutwak proved

$$V(K)V(K^*) \leq \omega^2_n \left(\frac{V(\Lambda K)}{V(K)} \right)^{n-1}. \tag{2.3}$$

We will use this inequality for $n = 2$ in the proof of the main theorem.

3. **Proof of the main theorem**

We shall begin by proving the claim for bodies in K^2_2 that are of class C^∞. By John’s ellipsoid theorem, we may assume without losing any generality, after applying a $GL(2)$ transformation, that

$$1 \leq h_K \leq \sqrt{2}. \tag{3.1}$$

In view of inequality (2.3), inequality $V(K)V(K^*) \geq n^2 \pi^{-\frac{n}{2}}$ gives

$$1 \geq \frac{V(\Lambda K)}{V(K)} \geq \frac{1}{1 + \varepsilon}. \tag{3.2}$$

We will rewrite (3.2) as the following equivalent expression

$$\frac{V(K, \Lambda K)}{V(\Lambda K)V(K)} - 1 \leq \varepsilon.$$

Therefore, by Groemer’s stability theorem, (2.1), we obtain

$$\frac{V(K)}{4D^2(K)} \max_{u \in S^1} \left| \frac{h_K(u)}{V(K)^{\frac{1}{2}}} - \frac{h_{\Lambda K}(u)}{V(\Lambda K)^{\frac{1}{2}}} \right|^2 \leq \varepsilon.$$

Thus for every $u \in S^1$ there holds

$$\frac{h_K^2(u)}{V(K)} \left| \frac{V(\Lambda K)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}} - \frac{h_{\Lambda K}(u)}{h_K(u)} \right|^2 \leq \frac{h_K^2(u)}{V(\Lambda K)^{\frac{1}{2}}} \left| \frac{V(\Lambda K)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}} - \frac{h_{\Lambda K}(u)}{h_K(u)} \right|^2 \leq \frac{32}{\pi^2} \varepsilon. \tag{3.3}$$
Using (3.1) we can estimate the left-hand side of (3.3) to obtain

\[(3.4) \qquad \max_{u \in S^1} \left| \frac{V(\Lambda K)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}} - \frac{h_{\Lambda K}(u)}{h_K(u)} \right|^2 \leq 64\varepsilon.\]

Recall from (2.2) that

\[h_K = \left(\frac{V(K)}{V(K^*)} \right)^{\frac{1}{2}} \frac{1}{f_{\Lambda K}^K}.
\]

Plugging this into (3.4) gives

\[\left(\frac{V(K^*)}{V(K)} \right)^{\frac{1}{2}} \max_{u \in S^1} \left| \frac{V(\Lambda K)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}} \left(\frac{V(K)}{V(K^*)} \right)^{\frac{1}{2}} - \frac{h_{\Lambda K}f_{\Lambda K}^K(u)}{h_K(u)} \right|^2 \leq 64\varepsilon.
\]

On the other hand, as (3.1) also implies \(\frac{1}{\sqrt{2}} \leq h_{K^*} \leq 1\), we deduce that

\[\max_{u \in S^1} \left| \frac{V(\Lambda K)^{\frac{1}{2}}}{V(K)^{\frac{1}{2}}} \left(\frac{V(K)}{V(K^*)} \right)^{\frac{1}{2}} - \frac{h_{\Lambda K}f_{\Lambda K}^K(u)}{h_K(u)} \right|^2 \leq (64)^{\frac{1}{2}} \varepsilon.
\]

In particular, this last inequality leads us to

\[(3.5) \qquad \max_{u \in S^1} (h_{\Lambda K}f_{\Lambda K}^K(u)) - \min_{u \in S^1} (h_{\Lambda K}f_{\Lambda K}^K(u)) \leq 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}}.
\]

By multiplying \(\Lambda K\) with \(\sqrt{\frac{\pi}{V(\Lambda K)}}\) we have \(V\left(\sqrt{\frac{\pi}{V(\Lambda K)}} \Lambda K\right) = \pi\). So by Remark 2, Corollary 4, and (3.5) we get

\[2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} \left(\frac{\pi}{V(\Lambda K)} \right)^{\frac{2}{3}} + 1 \geq \left(\frac{\pi}{V(\Lambda K)} \right)^{\frac{2}{3}} \max_{S^1} (h_{\Lambda K}f_{\Lambda K}^K),
\]

and

\[1 - 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} \left(\frac{\pi}{V(\Lambda K)} \right)^{\frac{2}{3}} \leq \left(\frac{\pi}{V(\Lambda K)} \right)^{\frac{2}{3}} \min_{S^1} (h_{\Lambda K}f_{\Lambda K}^K).
\]

Furthermore, notice that by (3.1) and (3.2) the following inequality holds:

\[1 - 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} \left(\frac{\pi}{V(\Lambda K)} \right)^{\frac{2}{3}} \geq 1 - 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} (1 + \varepsilon)^{\frac{1}{2}}.
\]

Take \(\varepsilon\) small enough such that

\[1 - 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} (1 + \varepsilon)^{\frac{1}{2}} > 0.
\]

So far we have proved: If \(\varepsilon\) is small enough, then

\[\max_{S^1} (h_{\Lambda K}f_{\Lambda K}^K) \leq \left(1 + 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} (1 + \varepsilon)^{\frac{1}{2}} \right) \left(\frac{\pi}{V(\Lambda K)} \right)^{-\frac{2}{3}},
\]

and

\[\min_{S^1} (h_{\Lambda K}f_{\Lambda K}^K) \geq \left(1 - 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} (1 + \varepsilon)^{\frac{1}{2}} \right) \left(\frac{\pi}{V(\Lambda K)} \right)^{-\frac{2}{3}} > 0.
\]

With the aid of these last inequalities and Corollary 4 we deduce that

\[(3.6) \qquad d_{BM}(\Lambda K, B) \leq \left(\frac{1 + 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} (1 + \varepsilon)^{\frac{1}{2}}}{1 - 2^{\frac{24}{2}} \varepsilon^{\frac{1}{2}} (1 + \varepsilon)^{\frac{1}{2}}} \right)^{\frac{3}{2}}.
\]
We return to inequality (3.4) and combine it with (3.2) to get

\[-8\varepsilon^+ + \frac{1}{(1 + \varepsilon)^{1/2}} \leq -8\varepsilon^+ + \frac{V(\Lambda K)^{1/2}}{h_K} \leq 8\varepsilon^+ + \frac{V(\Lambda K)^{1/2}}{V(K)^{1/2}} \leq 1 + 8\varepsilon^+.

Furthermore, take \(\varepsilon\) small enough such that \(-8\varepsilon^+ + \frac{1}{(1 + \varepsilon)^{1/2}} > 0\). Consequently

(3.7) \quad d_{BM}(K, \Lambda K) \leq \frac{1 + 8\varepsilon^+}{-8\varepsilon^+ + \frac{1}{(1 + \varepsilon)^{1/2}}}.

Taking into account (3.6), (3.7), and the multiplicativity of the Banach-Mazur distance results in the desired estimate:

\[d_{BM}(K, B) \leq \left(\frac{1 + 2\pi^2\varepsilon^+ (1 + \varepsilon)^{2/3}}{1 - 2\pi^2\varepsilon^+ (1 + \varepsilon)^{2/3}}\right)^{3/2} \left(\frac{1 + 8\varepsilon^+}{-8\varepsilon^+ + \frac{1}{(1 + \varepsilon)^{1/2}}}\right) \leq 1 + \gamma \varepsilon^+,
\]

for some universal \(\gamma > 0\), provided that \(\varepsilon\) is small enough.

It follows from [22, Section 3.4] that the class of \(C_+\) origin-symmetric convex bodies is dense in \(K^n\). Therefore, an approximation argument will prove that the claim of the main theorem, in fact, holds for any origin-symmetric convex body. To get the more general result, for bodies in \(K^2\), we will first need to recall Theorem 1.4 of Böröczky from [6] and a theorem of Meyer and Pajor from [18]:

Theorem (Böröczky, [6]). For any convex body \(K\) in \(\mathbb{R}^n\) with \(d_{BM}(K, B) \geq 1 + \varepsilon\) for \(\varepsilon > 0\), there exists an origin-symmetric convex body \(C\) and a constant \(\gamma' > 0\) depending on \(n\) such that \(d_{BM}(C, B) \geq 1 + \gamma' \varepsilon^+\) and \(C\) results from \(K\) as a limit of subsequent Steiner symmetrizations and affine transformations.

Theorem (Meyer, Pajor, [18]). Let \(K\) be a convex body in \(\mathbb{R}^n\), \(H\) be a hyperplane, and let \(K_H\) be the Steiner symmetral of \(K\) with respect to \(H\). If \(s\) and \(s'\) denote the Santaló points of \(K\) and \(K_H\), respectively, then \(s' \in H\), and \(V(K^s) \leq V((K_H)^s')\).

Now we give the proof in the general case by contraposition. Let \(K\) be a convex body such that

\[d_{BM}(K, B) > 1 + \left(\frac{\gamma}{\gamma'}\right)^{1/2} \varepsilon^+\,
\]

where \(\gamma'\) is the constant in Böröczky’s theorem. So by the last two theorems, there exists an origin-symmetric convex body \(C\), such that \(V(C)V(C^s) \geq V(K)V(K^s)\) and \(d_{BM}(C, B) > 1 + \gamma \varepsilon^+\). Moreover, \(d_{BM}(C, B) > 1 + \gamma \varepsilon^+\) implies that

\[V(C)V(C^s) < \frac{\pi^2}{1 + \varepsilon}.
\]

Therefore

\[V(K)V(K^s) \leq \frac{\pi^2}{1 + \varepsilon}.
\]

The argument is complete.
References

1. B. Andrews, The affine curve-lengthening flow. J. Reine Angew. Math. 506, 43-83 (1999)
2. K. Ball, K.J. Böröczky, Stability of some versions of the Prékopa-Leindler inequality. Monatsh. Math. 163, 1–14 (2011)
3. F. Barthe, K.J. Böröczky, M. Fradelizi, Stability of the functional forms of the Blaschke-Santaló inequality. Monatsh. Math. 173, 135–159 (2014)
4. W. Blaschke, Über affine Geometrie I: Isoperimetrische Eigenschaften von Ellipse und Ellipsoid. Ber. Verh. Sächs. Akad. Leipzig, Math.-Phys. Kl. 68, 217–39 (1916)
5. T. Bonnesen, W. Fenchel, Theorie der konvexen Körper. Springer-Verlag, Berlin, (1934)
6. K.J. Böröczky, Stability of Blaschke-Santaló inequality and the affine isoperimetric inequality. Adv. in Math. 225, 1914–1928 (2010)
7. K.J. Böröczky, E. Makai, Jr. On the volume product of planar polar convex bodies-upper estimates: the polygonal case and stability, in preparation.
8. S.Y. Cheng, S.T. Yau, On the Regularity of the Solution of the n-dimensional Minkowski Problem. Comm. Pure Appl. Math. 29, 495–516 (1976)
9. D. Ghilli, P. Salani, Stability of isoperimetric type inequalities for some Monge-Ampère functionals. Ann. Mat. Pura Appl. 193(3), 643–661 (2014)
10. H. Groemer, Stability Properties of Geometric Inequalities. Amer. Math. Monthly 97(5) 382–394 (1990)
11. M.N. Ivaki, Centro-affine curvature flows on centrally symmetric convex curves. Trans. Amer. Math. Soc., to appear, arXiv:1205.6456v2.
12. M.N. Ivaki, On the stability of the p-affine isoperimetric inequality. J. Geom. Anal. DOI: 10.1007/s12220-013-9401-1
13. M. Ludwig, M. Reitzner, A classification of SL(n) invariant valuations. Ann. of Math. 172, 1219–1267 (2010)
14. M. Ludwig, General affine surface areas. Adv. in Math. 353, 1767–1779 (2010)
15. E. Lutwak, On some affine isoperimetric inequalities. J. Differential Geom. 23, 1–13 (1986)
16. E. Lutwak, Centroid bodies and dual mixed volumes. Proc. London. Math. Soc. 60, 365–391 (1990)
17. E. Lutwak, The Brunn-Minkowski-Firey theory. II: Affine and geominimal surface areas. Adv. in Math. 118 244–294 (1996)
18. M. Meyer, A. Pajor, On the Blaschke-Santaló inequality. Arch. Math. (Basel) 55 82–93 (1990)
19. C.M. Petty, Affine isoperimetric problems. Ann. N.Y. Acad. Sci. 440, 113–127 (1985)
20. J. Saint-Raymond, Sur le volume des corps convexes symétriques. Séminaire Choquet-Initiation à l’Analyse 1980-81 Exp. No. 11, pp. 1–25. Université Pierre et Marie Curie, Paris, (1981)
21. L.A. Santaló, An affine invariant for convex bodies of n-dimensional space. Portugalia Math. 8, 155–161 (1949)
22. R. Schneider, Convex bodies: The Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, (2014)

Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstr. 8–10, 1040 Wien, Austria
E-mail address: mohammad.ivaki@tuwien.ac.at