Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders

TC Theoharides1,2,3, I Tsilioni1, AB Patel1,2 and R Doyle5

Autism spectrum disorders (ASDs) affect as many as 1 in 45 children and are characterized by deficits in sociability and communication, as well as stereotypic movements. Many children also show severe anxiety. The lack of distinct pathogenesis and reliable biomarkers hampers the development of effective treatments. As a result, most children with ASD are prescribed psychopharmacologic agents that do not address the core symptoms of ASD. Autoantibodies against brain epitopes in mothers of children with ASD and many such children strongly correlate with allergic symptoms and indicate an aberrant immune response, as well as disruption of the blood–brain barrier (BBB). Recent epidemiological studies have shown a strong statistical correlation between risk for ASD and either maternal or infantile atopic diseases, such as asthma, eczema, food allergies and food intolerance, all of which involve activation of mast cells (MCs). These unique tissue immune cells are located perivascularly in all tissues, including the thalamus and hypothalamus, which regulate emotions. MC-derived inflammatory and vasoactive mediators increase BBB permeability. Expression of the inflammatory molecules interleukin (IL-1β), IL-6, 1 L-17 and tumor necrosis factor (TNF) is increased in the brain, cerebrospinal fluid and serum of some patients with ASD, while NF-kB is activated in brain samples and stimulated peripheral blood immune cells of other patients; however, these molecules are not specific. Instead the peptide neurotensin is uniquely elevated in the serum of children with ASD, as is corticotropin-releasing hormone, secreted from the hypothalamus under stress. Both peptides trigger MC to release IL-6 and TNF, which in turn, stimulate microglia proliferation and activation, leading to disruption of neuronal connectivity. MC-derived IL-6 and TGFβ induce maturation of Th17 cells and MCs also secrete IL-17, which is increased in ASD. Serum IL-6 and TNF may define an ASD subgroup that benefits most from treatment with the natural flavonoid luteolin. Atopic diseases may create a phenotype susceptible to ASD and formulations targeting focal inflammation of the brain could have great promise in the treatment of ASD.

Translational Psychiatry (2016) 6, e844; doi:10.1038/tp.2016.77; published online 28 June 2016

INTRODUCTION

Autism spectrum disorders (ASDs) are pervasive neurodevelopmental disorders characterized by deficits in communication and social interactions, as well as the presence of stereotypic behaviors.1–3 Numerous gene mutations have been identified in patients with ASD, but no direct link has so far been uncovered except for a small percentage of cases associated with Tuberous Sclerosis, Fragile X syndrome, Rett syndrome and PTEN deficiency.4,5 As a result, even though there are a number of genetically-engineered mice with phenotypes resembling autism,6 they do not adequately reflect ASD and there is an urgent need for appropriate animal ‘models’ of ASD.7 In fact, mouse ‘models’ are increasingly considered unreliable with respect to inflammatory human diseases.8 We recently reported that a small number of bull terriers develop symptoms consistent with autism and have increased serum neurotensin (NT) and corticotropin-releasing hormone (CRH), also found to be elevated in children with ASD.9

ASD may affect as many as 1 in 45 children in the USA,10 but the global prevalence is still under-recognized.11 The lack of reliable biomarkers12 and specific pathogenesis,13 as well as the existence of subgroups or comorbidities14 (Table 1), makes the development of specific treatments and conducting clinical studies difficult.15 As a result, child and adolescent outpatient mental health services in the USA have increased considerably.16 Moreover, the annual economic burden for ASD was recently estimated at $268 billion for 2015 and is projected to reach $416 billion in 2025.16

A number of perinatal allergic, genetic, environmental, immune and infectious factors may increase the risk of or contribute to the pathogenesis of ASD17–19 (Table 2). These could act through activation of a unique tissue immune cell, the mast cell (MC),20,21 MCs derive from bone marrow progenitors and mature in tissues depending on microenvironmental conditions.22 In addition to histamine, stimulated MCs secrete other vasoactive and pro-inflammatory mediators such as the preformed kinins and proteases, as well as the de novo synthesized leukotrienes, prostaglandins, chemokines (CCXIL8, CCL2), cytokines (interleukin (IL)-4, IL-6, IL-1, tumor necrosis factor (TNF)) and vascular endothelial growth factor (VEGF).23 MCs are not only considered critical for the development of allergic reactions,24 but also for immunity22 and inflammation.23

1Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA; 2Sackler School of Graduate Biomedical Sciences, Program in Cell, Molecular and Developmental Biology, Tufts University, Boston, MA, USA; 3Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; 4Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA and 5Department of Child Psychiatry, Harvard Medical School, Massachusetts General Hospital and McLean Hospital, Boston, MA, USA. Correspondence: Professor TC Theoharides, Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, 136 Harrison Avenue, Suite J304, Boston, MA 02111, USA.
E-mail: theoharis.theoharides@tufts.edu
Received 13 January 2016; revised 23 February 2016; accepted 17 March 2016

Received 13 January 2016; revised 23 February 2016; accepted 17 March 2016

E-mail: theoharis.theoharides@tufts.edu
Table 1. ASD comorbidities or subgroups

Category
ADD
ADHD
Atopic diseases
Food intolerance
Gastrointestinal symptoms
Mitochondrial dysfunction
PANDAS, pediatric autoimmune nephropsychiatric disorders associated with streptococcal infections; PTEN, phosphatase and tensin homolog.

Abbreviations: ADD, attention deficit disorder; ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; PANDAS, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections; PTEN, phosphatase and tensin homolog.

Table 2. Perinatal conditions increasing the risk of ASD

Category
Strong evidence
Allergies
Asthma
Brain autoantibodies
Brain hemorrhage
Infection
Low birth weight
Obesity
Preeclampsia
Prematurity
Psoriasis
Stress

Category
Moderate evidence
Cesarean section with general anesthesia
Environmental toxin exposure
Oxytocin, prolonged use for labor induction
Psychotropic medication use
Sexual abuse

Abbreviation: ASD, autism spectrum disorder.

In fact, many studies have reported that allergic diseases in preschoolers are strongly associated with psychological and behavioral problems.34 We had proposed that MC-derived mediators could disrupt the blood–brain barrier (BBB) and cause ‘allergy of the brain’25 or ‘focal encephalitis’,26 thus contributing to the pathogenesis of ASD.26,27 A number of recent reviews have now confirmed and expanded on these findings.28,29

MATERNAL HEALTH, PREMATURITY AND LOW BIRTH WEIGHT ARE LINKED TO INCREASED RISK OF ASD

Obesity during gestation has been strongly associated with prematurity and low birth weight.30,31 Obesity is considered as an inflammatory state32 and has been associated with activation of MCs.33,34 Moreover, MCs secrete leptin35 and its deficiency switches MC to an anti-inflammatory phenotype.36 Leptin is increased both in obesity37 and ASD.38 Premature births account for about 15% of all births in the USA and premature infants (32–36 weeks) make up most of the increased rate of prematurity.39 Such infants are at risk for neurologic injury40,41 associated with decreased attention, increased anxiety, as well as social interaction and learning difficulties.32

A retrospective study reported that children < 33 weeks gestation were associated with a twofold higher risk of ASD.42 One prospective study found that 26% very low birth weight (< 1500 g) infants (n = 91), mean age of 22 months) developed ASD.43 There was a higher risk of infantile autism among children with low birth weight especially in mothers > 35 years, foreign born and those who had psychoactive medicines during pregnancy.45 Another case-control population-based cohort study among Swedish children (n = 408, born 1974–1993), reported that the risk of ASD was associated with being small for gestational age, daily maternal smoking in early pregnancy, maternal birth outside Europe and North America, a 5-min APGAR score < 7 and congenital malformations.46

Perinatal stress has been linked to increased risk of ASD.18,47 Such stress may be linked to sexual abuse that has been associated with higher risk of ASD.48,49 ASD patients are prone to stress50 and a meta-analysis showed a strong correlation between the presence of anxiety disorders and ASD.51 In fact, anxiety was significantly correlated with repetitive behaviors in children with ASD.52 We reported that the peptides NT53 and CRH9 secreted under stress were increased in the serum of young children with ASD, as compared with normal controls.53 The highest expression of NT receptors in the human brain is in the amygdala,54 hypothalamus and area of Broca,55 which regulate emotions and language, respectively. Stress can activate MCs through CRH leading to increased BBB permeability.56 Moreover, CRH has synergistic actions with NT, stimulating secretion of VEGF and increasing vascular permeability.57 Human MCs express CRHR-1,57 activation of which by CRH leads to VEGF secretion and BBB disruption58 and NT stimulates secretion of VEGF.59 A recent review concluded that stress during gestation increases the risk for developing atopic diseases in infants.60 Moreover, stress has been associated with precipitating or worsening asthma61 and multiple sclerosis.62

ATOPIC DISEASES ARE STRONGLY CORRELATED WITH INCREASED RISK OF ASD

Recent studies have shown strong associations between allergies, asthma, autoimmune diseases and psoriasis in the mother with increased risk for ASD in their children.52–64 Moreover, mothers with mastocytosis or MC activation syndrome were much more likely to have children who developed ASD.65 Allergies66 and auto-immune diseases67,68 have been increasing significantly. Early reports indicated more frequent allergies in ASD children,69,70 with food allergies being the most prevalent complaint, often in the absence of elevated serum IgE or positive skin tests.71–73 A large epidemiological study of noninstitutionalized children (n = 92,642; 0–17 years old) showed that eczema was strongly associated with ASD and attention deficit hyperactivity disorder.74 Another study of atopic subjects (n = 14 812; 3 years old) and non-atopic subjects (n = 6944) also showed a strong association between atopy and risk of both ASD and attention deficit hyperactivity disorder.75 A case control study of children and young patients with ASD (n = 5565) and controls (n = 27 825) matched to birth year (1980–2003) and sex reported that allergies, asthma and auto-immune disorders were diagnosed more frequently, with psoriasis occurring more than twice as often, in ASD patients than controls.76 An experimental study actually reported neurochemical changes and autist-like behavior in a mouse model of food allergy.77 MCs can be activated by fungi,78 such as Aspergillus fumigatus which triggers IgE-independent MC degranulation79 and fungal zymosan induces leukotriene production from human MCs.80 Moreover, MCs can be stimulated by aluminum and mercury.81,82

PERINATAL EPIGENETIC ENVIRONMENTAL TRIGGERS CONTRIBUTE TO INFLAMMATION OF THE BRAIN AND INCREASE RISK OF ASD

Environmental triggers have been increasingly invoked in ASD.17,19,83–86 Chemical intolerant mothers were three times more likely to have a child who developed ASD and these children were more prone to allergies and sensitivities, including odors.87
Exposure to mold has been linked to decreased cognitive function in children88 and volatile mycotoxins have been reported to induce neuropsychiatric symptoms.89 Both mercury90 and aluminum91,92 have been associated with symptom severity in children with ASD and both can stimulate MCs.81 Aluminum has replaced mercury as an adjuvant in vaccines, but aluminum can cause DNA damage97 and induce microglia TNF release.94 The adjuvant activity of aluminum was components augmented allergic responses101 and could act as slices.103 We reported that serum mtDNA is elevated in young symptom severity in children with ASD and both can stimulate the subgroup of ASD patients with mitochondrial dysfunction.105 Recorded in mothers of children with ASD115,116 and in about 37% of auto-antibodies directed against fetal brain proteins have been increasing evidence indicates that perinatal brain inflammation,18,107 may contribute to the pathogenesis of neuropsychiatric disorders,108,109 including ASD.26,110 It was previously reported that ASD pathogenesis involves some innate pathogens17,111-113 and autoimmune immune02,114 components. Circulating auto-antibodies directed against fetal brain proteins have been reported in mothers of children with ASD115,116 and in about 37% of ASD patients,111 implying BBB disruption which is regulated through MCs.26,118 The presence of auto-brain antibodies significantly correlated with allergic symptoms.119

A number of inflammatory molecules have been shown to be increased in the brain and cerebrospinal fluid of many ASD patients including IL-1β, IL-6, TNF, MCP-1 and CCL8 (IL-8)120-122 (Table 3). Plasma levels of IL-1β, IL-6 and IL-8 were increased in children with ASD and correlated with regression, as well as impaired communication and aberrant behavior.123

Table 3. Evidence for inflammation of the brain

Brain	Microglia activation	Microglia proliferation
IL-1β	↑	
IL-6	↑	
IL-17	↑	
TNF	↑	

Blood	Auto-brain antibodies	↑
IL-1β		
IL-6		
IL-17		
TNF		
NF-kB		

Neonatal blood	MCP-1	↑
Midgestational blood	Auto-brain antibodies	↑
IL-4, IL-5, IFN-γ	↑	

Abbreviations: IL, interleukin; TNF, tumor necrosis factor.

Analysis of cytokines in neonatal blood showed that IL-1β and IL-4 linked to severe ASD.124 In a previous study by some of the same authors, these cytokines were not detected apparently due to the sensitivity of the assay used.125 Increased maternal serum concentrations of IFN-γ, IL-4 and IL-5 during midgestation were significantly associated with a 50% increased risk of ASD.126

MC-derived TNF can promote Th17-dependent neutrophil recruitment.127 Moreover, MC-derived IL-6 and TGFβ promote the development of Th17 cells.128 In fact, MCs can also secrete IL-17129 and IL-17 was reported to be increased in the serum of children with ASD.130 There was an increased IL-17 production from peripheral blood immune cells following mitogen stimulation, and IL-17 was further increased in ASD children with comorbid asthma.131 A recent paper reported that selective elimination of Th17 cells in the maternal immune activation (MIA) mouse model prevented the development of autism-like behavior in the offspring.132

The MIA model was also associated with increased serum IL-6,133 and the autism-like behavior was absent in IL-6 -/- mice.134 We had reported that acute stress significantly increases serum IL-6 in mice that was entirely dependent on MCs, as it was absent in MC-deficient W/Wv mice.135 In fact, human MCs can undergo selective release of IL-6 without degranulation.136 Mastocytosis patients have increased serum IL-6 that correlates with disease activity137-139 and children with mastocytosis had a 10-fold higher risk of developing ASD than the general population,86 implying activation of MCs.137

MCP-1 in amniotic fluid was strongly correlated with increased risk for infantile autism140 and MCP-1 was also elevated in archived neonatal blood specimens.125 MCP-1 is chemotactic for MCs,23 which can secrete both pre-formed and newly synthesized TNF.141 TGF-beta has been reported to be low in the brains of children with ASD,142 a finding that may contribute to the inflammatory state since TGF-beta inhibits MCs.143,144

Peripheral blood mononuclear cells from patients with ASD (n = 23) produced twice as much TNF as those from controls (n = 13) when stimulated even by gliadin, cow’s milk protein or soy.145 NF-κB DNA-binding activity, involved in TNF production, was twice as much in peripheral blood from patients with ASD (n = 67) than controls (n = 29).146 Neurons, astrocytes and microglia from patients with ASD had higher expression of NF-κB p65 as compared with matched controls.145 Moreover, signaling through NF-κB was prominent in interacting gene networks constructed from brains of ASD patients.148

MCs have recently been considered important in neuroinflammation.149

MC-MICROGLIA INTERACTIONS IN THE PATHOGENESIS OF ASD

Microglia, the innate brain immune cells,150 are important during healthy brain development because they may ‘prune’ neural circuits.151,152 However, abnormal microglia activation and proliferation could lead to focal inflammation and ‘choking’ of normal synaptic traffic as has been reported in brains of patients with ASD.39,153-155 A recent study of the transcriptomes from 104 human brain cortical tissue samples from patients with ASD identified gene clusters associated with increased microglia activation (M2) and decreased neuronal activity.156 As a result, microglia are now considered an important component of the pathogenesis of ASD.157,158

Human microglia express functional CRHR1159 and NTR3 (sortilin), activation of which leads to microglia proliferation.160 NTR3 has been implicated in neuronal viability and function161 and increased soluble sortilin has been associated with depression, corresponding to elevated levels of BDNF and VEGF.162 NT can be neurotoxic by facilitating N-Methyl-D-aspartate-induced excitation of cortical neurons.163 We recently reported that NT
stimulates activation and proliferation of human microglia. We believe this is the first time that a neuropeptide elevated in ASD is shown to stimulate human microglia that are now believed to play a major role in the pathogenesis of ASD. NT can therefore stimulate both microglia and MCs (Figure 1). Signaling through the mammalian target of rapamycin (mTOR) has been implicated in ASD and mutations of the mTOR upstream regulatory molecule phosphatase and tensin homolog (PTEN) and tuberous sclerosis complex 1 and 2 (TSC 1/2) have been associated with higher risk of ASD. We recently showed that activation of NTR3 induced activation of human cultured microglia, which was regulated by mTOR. PTEN and mTOR are also involved in MC activation and proliferation. MC-derived histamine and tryptase can stimulate microglia, findings that have led to the proposal that MC-microglia interactions are important in neuroinflammation. Stimulation of brain MC in mice was recently shown to induce microglia activation and brain inflammation, inhibited by a MC stabilizer. It is, therefore, important to address neuroinflammation as a possible treatment option for ASD.

TREATMENT APPROACHES
Most children with ASD are often prescribed psychotropic medications, primarily risperidone and aripiprazole to reduce disruptive and aggressive behaviors, but these drugs have no effect on the core symptoms of ASD. In fact, recent studies have questioned the benefit of psychotropic agents and have highlighted frequent adverse effects such as weight gain, sedation, tremor, movement disorders and drooling. As a result, there is increased polypharmacy and risk of unwanted drug interactions.

There should be concerted efforts toward developing effective treatments for ASD, such as the European Autism Interventions-A MultiCentre Study for Developing New Medications (EU-AIMS) Initiative. Immunomodulatory treatments have been considered for ASD, but few studies have been published. Some reports have hypothesized that the increase in ASD is linked to the increased use of the antipyretic acetaminophen. On the contrary, some families report that high fever reduces symptoms temporarily.

Immune Ig Intravenous (i.v.) immunoglobulin treatment (commonly known as immune Ig) has been used in ASD. In one study, i.v. Ig (200 to 400 mg kg⁻¹, every 6 weeks × 2) was administered to children with ASD (n = 10) with one child showing significant and four children showing mild improvement. Three pilot open clinical trials showed some benefit.

The usefulness of this approach may be even more apparent in children with ASD whose plasma levels of IgG and IgM were reported to be low in spite of apparently normal numbers of B cells.

Macrophage activating factor (GcMAF)
This molecule, an endogenous glycosylated vitamin D-binding protein, which promotes macrophage cell activation, down-regulated the over-activation of blood monocyte-derived macrophages observed in autistic children (n = 22, 3–11 years old) compared with age-matched healthy developing controls (n = 20).

Antioxidant compounds
A recent double-blind, placebo-controlled, study using the broccoli-derived anti-oxidant sulforaphane in adult patients with ASD (n = 40, 13–27 years old, selected for their history of reduced symptoms during febrile episodes) for 18 weeks showed...
significant improvement (34%) in social interaction and communication using the Aberrant Behavior Checklist (ABC) scale,191 however, the apparent significance was due to the uncharacteristically low placebo effect (\(< 3.3\%\)). Placebo effects have been reported as high as 40–60% in studies of neuropsychiatric diseases.192

Another antioxidant, N-acetylcysteine (NAC), has also been tested. In one randomized, placebo-controlled, trial ($n = 13$) increasing doses of NAC (900 mg per day \times 4 weeks, then 900 mg twice daily \times 4 weeks and finally 900 mg three times daily \times 4 weeks) found no difference on the total ABC, but significant improvement on the irritability subscale.193 In another also randomized, double-blind, placebo-controlled, study ($n = 40$), NAC added to a stable dose of risperidone, again had no effect on total ABC, but decreased the irritability subscale.194,195 NAC treatment appears to be safe and well-tolerated.194,195 Similar results were obtained in a more recent randomized, double-blind, placebo-controlled clinical trial of children with ASD ($n = 40$) who were given NAC (600–900 mg per day) and risperidone titrated (between 1 and 2 mg per day); by week 10, the NAC group showed significantly less irritability using the ABC-C irritability subscale ($P = 0.02$).196

Anti-inflammatory compounds

An open-label study investigated a formulation containing the natural flavonoids luteolin and quercetin ((100 mg each per softgel capsule in olive kernel oil to increase oral absorption) 1 capsule per 10 kg weight per day for 6 months) in children with ASD (4–10 years old, $n = 50$) and reported significant ($P < 0.005$) improvement in attention and behavior (34% in total ABC and 8.43 months in age-equivalent scores in the VABS communication domain).197 A subgroup of children in that study improved even more (65%) and were the ones with highest serum TNF and IL-6 at the beginning of the study, the levels of which dropped below basal levels at the end of treatment.122 These results indicate that objective inflammation markers may identify a subgroup of children with ASD, who are most amenable to treatment with luteolin or quercetin. A case series using the same formulation in children with ASD and atopic diseases (n = 17, 4–12 years old) reported 65% improvement in attention and communication.198 Luteolin also improved ‘brain fog’, characterized by reduced attention span, memory and learning199 in adults. Luteolin (5, 7, 3′, 4′-tetrahydroxyflavone) is naturally found in green plants, herbs and seeds200 and is structurally related to 7, 8-dihydroxyflavone, which was shown to have brain-derived neurotrophic factor (BDNF) activity201 (Table 3). Low BDNF was associated with autistic-like-behavior in mice202 and 7, 8-dihydroxyflavone reduced symptoms in a mouse model of Rett syndrome,203 which is strongly associated with ASD.204

Luteolin and its structurally related flavon quercetin (5, 7, 11, 3′, 4′-pentahydroxyflavonol) inhibit histamine, IL-6, IL-8, TNF and tryptase release from human MCs.205,206 We recently showed that tetramethoxyluteolin is a more potent inhibitor of human MCs than luteolin.202 Luteolin also inhibits microglial activation and proliferation,208 especially IL-6 release,200 and is neuroprotective.210 Luteolin also prevented autism-like behavior in a mouse ‘model of autism’.211 Flavonoids are generally considered safe212,213 and now being increasingly discussed for the treatment of neurodegenerative disorders.214

CONCLUSIONS

Substantial evidence indicates that the presence of atopic diseases increases the risk of ASD and that inflammation of the brain may be involved in the pathogenesis of ASD. Addressing allergic symptoms, as well as reducing BBB permeability and inflammation of the brain, could provide significant benefit in ASD. Luteolin analogs with better bioavailability and BDNF activity should be investigated further. Intranasal administration to penetrate the brain through the cribiform plexus could deliver anti-inflammatory molecules directly to the brain. Such formulations could further be prepared in liposomes to contain molecules that target them to microglia.

CONFLICT OF INTEREST

TCT has been awarded US Patents No 8268365; 9050275 and 9176146 covering treatment of brain inflammation and of ASD. He has developed the luteolin-containing dietary supplements BrainGain, NeuroProtek and NeuroProtek-low phenol. The remaining authors declare no conflicts of interest.

ACKNOWLEDGMENTS

Aspects of our work discussed were funded in part by the Autism Research Institute, the National Autism Association, Safe Minds, the Nancy Lurie Marks Foundation and The Jane Botsford Johnson Foundation.

REFERENCES

1. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet 2016; 383: 896–910.
2. Volkmar FR, McPartland JC. From Kanner to DSM-5: autism as an evolving diagnostic concept. Annu Rev Clin Psychol 2014; 10: 193–212.
3. Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res 2009; 65: 591–598.
4. Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 2015; 11: 1109–1120.
5. Willey AJ, State MW. Autism spectrum disorders: from genes to neurobiology. Curr Opin Neuropsych 2015; 30: 92–99.
6. Kzdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. Genes Brain Behav 2015; 15: 7–26.
7. Ruhela RK, Prakash A, Medhi B. An urgent need for experimental animal model of autism in drug development. Ann Neurosci 2015; 22: 44–49.
8. Seok J, Warren HS, Cuenca AG, Mindrinos MN, Baker HN, Xu W et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 2013; 110: 3507–3512.
9. Tiisino I, Dodman N, Petza AT, Taliao A, Francis K, Moon-Fanelli AA et al. Elevated serum neurotensin and CRH levels in children with autistic spectrum disorders and tail-chasing bull terriers with a phenotype similar to autism. Transl Psychiatry 2014; 4: e466.
10. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators/Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014; 63: 1–21.
11. Ellebahr M, Divan G, Koh YJ, Kim YS, Kauchali S, Marcin C et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res 2012; 5: 160–179.
12. Ruggeri B, Sarkans U, Schumann G, Persico AM. Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl) 2014; 231: 1201–1216.
13. Theoharides TC, Doyle R, Francis K, Conti P, Kalogeromitros D. Novel therapeutic targets for autism. Trends Pharmacol Sci 2008; 29: 375–382.
14. Bauman ML. Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics 2010; 7: 320–327.
15. Olsson M, Druss BG, Marcus SC. Trends in mental health care among children and adolescents. N Engl J Med 2015; 372: 2029–2038.
16. Leigh JP, Du J. Brief report: forecasting the economic burden of autism in 2015 and 2025 in the United States. J Autism Dev Disord 2015; 12: 4135–4139.
17. Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 2012; 17: 389–401.
18. Angelidou A, Asadi S, Aylsandratos KD, Karagkouni A, Kourembanas S, Theoharides TC. Perinatal stress, brain inflammation and risk of autism-Review and proposal. BMC Pediatr 2012; 12: 89.
19. Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 2010; 23: 103–110.
20. Theoharides TC, Valent P, Akin C. Mast cells, mastocytosis, and related disorders. N Engl J Med 2015; 373: 163–172.
21. Grimbaldeston MA. Mast cell-Mrgpr82: sensing secretagogues or a means to overreact? Immunol Cell Biol 2015; 93: 221–223.
100 Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC. Stimulated human
et al.
103 Lauritzen KH, Moldestad O, Eide L, Carlsen H, Nesse G, Storm JF
1843
Eur J Neurosci
2008; 470.
105 Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders:
79 Urb M, Poultot FL, Gravelat FN, Olivier M, Sheppard DC. Aspergillus fumigatus
102 Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising
106 McKee AS, Munks MW, MacLeod MK, Fleenor CJ, van RN, Kappler JW
83 Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders
91 Geier DA, Kern JK, King PG, Sykes LK, Geier MR. Hair toxic metal concentrations
104 Rossignol DA, Genuis SJ, Frye RE. Environmental toxins and autism spectrum
disorders: a systematic review. Transl Psychiatry 2014; 4: e360.
109 Chavarria A, Alcocer-Varela J. Is damage in central nervous system due to
110 Le Belle JE, Sperry J, Ngo A, Ghochani Y, Laks DR, Lopez-Aranda M et al. Maternal
111 Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the
112 Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in
autism spectrum disorder. Nat Rev Neurosci 2015; 16: 469–486.
113 Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders:
a systematic review and meta-analysis. Mol Psychiatry 2012; 17: 290–314.
101 Gali SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature
2008; 454: 445–454.
107 Hagberg H, Gressens P, Mallard C. Inflammation during fetal and neonatal life:
implications for neurologic and neuropsychiatric disease in children and adults.
Ann Neurol 2012; 71: 144–457.
108 Jones KA, Thomsen C. The role of the innate immune system in psychiatric
disorders. Mol Cell Neurosci 2013; 53: 52–62.
109 Gali SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature
2008; 454: 445–454.
110 Le Belle JE, Sperry J, Ngo A, Ghochani Y, Laks DR, Lopez-Aranda M et al. Maternal
111 Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the
112 Estes ML, McAllister AK. Immune mediators in the brain and peripheral tissues in
autism spectrum disorder. Nat Rev Neurosci 2015; 16: 469–486.
113 Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders:
79 Urb M, Poultot FL, Gravelat FN, Olivier M, Sheppard DC. Aspergillus fumigatus
102 Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising
105 Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders:
79 Urb M, Poultot FL, Gravelat FN, Olivier M, Sheppard DC. Aspergillus fumigatus
102 Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising
105 Rossignol DA, Frye RE. Mitochondrial dysfunction in autism spectrum disorders:
79 Urb M, Poultot FL, Gravelat FN, Olivier M, Sheppard DC. Aspergillus fumigatus
102 Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising
9. Takano T. Role of microglia in autism: recent advances. Dev Neurosci 2015; 37: 195–202.

10. Koyama R, Ikegaya Y. Microglia in the pathogenesis of autism spectrum disorders. Neurosci Res 2015; 100: 1–5.

11. Wang W, Ji P, Riopelle RJ, Dow KE. Functional expression of corticotropin-releasing hormone (CRH) receptor 1 in cultured rat microglia. J Neurochem 2002; 80: 287–294.

12. Martin S, Vincent JP, Mazella J. Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci 2003; 23: 1198–1205.

13. Nykjaer A, Willnow TE. Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 2012; 35: 261–270.

14. Buttenschon HN, Demontis D, Kaas M, Elmfors B, Molgaard S, Gustafsen C et al. Increased serum levels of sortilin are associated with depression and correlated with BDNF and VEGF. Transl Psychiatry 2015; 5: e677.

15. Ghazianizedeh A. Targeting neurotensin as a potential novel approach for the treatment of autism. J Neuroinflammation 2010; 7: 58.

16. Patel AB, Tsilomai I, Theoharides TC. Neurotensin and corticotropin-releasing hormone synergistically activate human microglia through mammalian target of rapamycin complex 1 (mTORC1). poster # A300. American Societies for Experimental Biology; Bethesda, MD, 2015.

17. Lee DY. Roles of mTOR signaling in brain development. Exp Neurobiol 2015; 24: 177–185.

18. Lu JW, Cheng TL, Qiu ZL, Zhou WH. Role of the PTEN signaling pathway in autism spectrum disorder. Neurosci Bull 2013; 29: 773–778.

19. Tee AR, Sampson JR, Pal DK, Bateman JM. The role of mTOR signaling in neurogenesis: insights from tuberous sclerosis complex. Semin Cell Dev Biol 2016; 52: 12–20.

20. Kim MS, Kuehn HS, Metcalfe DD, Gilfillan AM. Activation and function of the mTORC1 pathway in mast cells. J Immunol 2008; 180: 4586–4595.

21. Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S et al. Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol 2014; 49: 1487–1500.

22. Zhang S, Zeng X, Yang H, Hu G, He S. Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem 2012; 29: 931–940.

23. Skaper SD, Facci L, Giusti P. Neuroinflammation, microglia and mast cells in the pathophysiology of neurocognitive disorders: a review. CNS Neurol Drug Disord Targets 2014; 10: 1645–1666.

24. Dong H, Zhang X, Wang Y, Zhou X, Qian Y, Zhang S. Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol 2016 (in press).

25. Wong AY, Hsia Y, Chan EW, Murphy DG, Simonoff E, Buitelaar JK et al. The variation of psychopharmacological prescription rates for people with autism spectrum disorder (ASD) in 30 Countries. Autism Res 2014; 7: 543–554.

26. Spencer D, Marshall J, Post B, Kulaikoudi M, Newshaffer C, Dennen T et al. Psychotropic medication use and polypharmacy in children with autism spectrum disorders. Pediatrics 2013; 132: 833–840.

27. Schubart JR, Camacho F, Leslie D. Psychotropic medication trends among children and adolescents with autism spectrum disorder in the Medicaid program. Autism 2014; 18: 631–637.

28. Young NJ, Findling RL. An update on pharmacotherapy for autism spectrum disorder in children and adolescents. Curr Opin Psychiatry 2015; 28: 91–101.

29. Lake JK, Weiss JA, Dergal J, Lunsyky Y, Child, parent, and service predictors of psychotropic polypharmacy among adolescents and young adults with an autism spectrum disorder. J Child Adolesc Psychopharmacol 2014; 24: 486–493.

30. Theoharides TC, Asadi S. Unwanted interactions among psychotropic drugs and other treatments for autism spectrum disorders. J Clin Psychopharmacol 2012; 32: 437–440.

31. Ecker C, Spooner W, Murphy D. Developing new pharmacotherapies for autism. J Intern Med 2013; 274: 308–320.

32. Cheez MG, Guido-Estrada N. Immune therapy in autism: historical experience and future directions with immunomodulatory therapy. Neurotherapeutics 2010; 7: 293–301.

33. Liew Z, Ritb B, Vijk J, Olsen J. Maternal use of acetaminophen during pregnancy and risk of autism spectrum disorders in childhood: a Danish national birth cohort study. Autism Res 2015 (in press).

34. Curran LK, Newshaffer CJ, Lee LC, Crawford SO, Johnston MV, Zimmerman AW. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 2007; 120: e1386–e1392.

35. Gupta S, Sansa D, Agrawal S. Adaptive and innate immune responses in autism: rationale for therapeutic use of intravenous immunoglobulin. J Clin Immunol 2010; 30(Suppl 1): S90–S96.

36. Wong PH, White KM. Impact of immunoglobulin therapy in pediatric autism: a review of immune mechanisms. Clin Rev Allergy Immunol 2015 (in press).
