FLIES AND FLOWERS II: FLORAL ATTRACTIONS AND REWARDS

Thomas S Woodcock1*, Brendon M H Larson2, Peter G Kevan3, David W Inouye4 & Klaus Lunau4

1School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1.
2Department of Environment and Resource Studies, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1.
3Department of Biology, University of Maryland, College Park, Maryland, USA, 20742.
4Institute of Sensory Ecology, Biology Department, Heinrich-Heine University, D-40225 Düsseldorf, Germany.

Abstract—This paper comprises Part II of a review of flower visitation and pollination by Diptera (myiophily or myophily). While Part I examined taxonomic diversity of anthophilous flies, here we consider the rewards and attractants used by flowers to procure visits by flies, and their importance in the lives of flies. Food rewards such as pollen and nectar are the primary reasons for flower visits, but there is also a diversity of non-nutritive rewards such as brood sites, shelter, and places of congregation. Floral attractants are the visual and chemical cues used by Diptera to locate flowers and the rewards that they offer, and we show how they act to increase the probability of floral visitation. Lastly, we discuss the various ways in which flowers manipulate the behaviour of flies, deceiving them to visit flowers that do not provide the advertised reward, and how some flies illegitimately remove floral rewards without causing pollination. Our review demonstrates that myiophily is a syndrome corresponding to elements of anatomical, behavioural and physiological adaptations of flower-visiting Diptera. The bewildering diversity of anthophilous Diptera and of the floral attractants and rewards to which they respond allows for only broad generalizations on myiophily and points to the need for more investigation. Ecological relationships between flies and flowers are critical to the survival of each group in many habitats. We require greater understanding of the significance of flies in pollination, especially in the face of recent pollinator declines.

Keywords: Diptera, fly pollination, flower visit, mutualism, ecological interaction, alternative pollinators

INTRODUCTION

Pollination by insects, including flies, is commonly a mutualistic interaction, in which both the plant and the insect benefit. The plant receives self or outcross pollen on receptive stigmas and/or exports pollen to a conspecific plant’s stigmas, and the insect gains a nutritional or other reward. The most often sought visitor rewards are nectar, which fuels flight and may contain a variety of compounds in addition to sugars, and to a lesser extent pollen, an important protein resource, but there are also various non-nutritive rewards. Flowers are able to signal their presence at both long and short distances, and to guide the movements of visitors, using a variety of attractants. Over evolutionary time, animal and flower interactions have produced plants with visual, chemical, and other traits that entice pollinators to visit conspecific flowers. Conversely, animal visitors, such as flies, have behavioural, physiological, and morphological traits that facilitate their interactions with flowers. And, as with any mutualistic interaction, there are plenty of opportunities for deception and cheating on both sides.

Despite the frequency with which Diptera are recorded as flower visitors, relatively little is known about fly pollination (myiophily or myophily) compared to other groups of pollinators such as bees, birds, and bats. We do know that numerous families of Diptera include flower visitors, with examples of the most common including Mycetophilidae, Bibionidae, and Culicidae (Nematocera); Syrphidae, Bombylidae, Conopidae, Stratiomyidae, and Nemestrinidae (lower Brachycera); and among the higher Brachycera (Cyclorrhapha), the Muscidae, Anthomyiidae, Tachinidae, Calliphoridae, and others (Kastinger & Weber 2001; Larson et al. 2001; Rotheray & Gilbert 2011). Floral visitation by small Diptera, including acalyptrates, has often been discounted as unimportant in pollination, and in many cases empirical confirmation of successful pollination is lacking (Larson et al. 2001; Willmer 2011). However, Diptera can be highly important pollinators in some systems (e.g. Szymank et al. 2008; Barraclough & Slotow 2010), and may also be important in the reproduction of certain threatened and endangered plants (e.g., Wiesenborn 2003; Murugan et al. 2006; Humeau et al. 2011). We have previously reviewed the importance of Diptera as pollinators (Larson et al. 2001), and in this paper we turn to reviewing what is known about the attractants and rewards that entice Diptera to visit flowers. We have separated floral rewards (“primary attractants” of Faegri & van der Pijl (1979)) from advertisements (“secondary attractants” of Faegri & van der Pijl (1979) or simply “attractants” of many anthecologists), and discuss them in that order. Rewards are the main attractants for flower visiting insects and include pollen and nectar, whereas advertisements are visual, chemical, or structural cues that provide information to potential pollinators about location of and access to floral rewards. The final section of the paper will discuss the numerous types and examples of cheating by both sides in the fly-flower relationship, in which flies obtain rewards without...
effecting pollination and flowers may attract visitors by advertising rewards that do not exist.

Rewards for foraging flies

The Diptera are among the most ancient pollinators of flowering plants (Gottsberger 1974; Crepet 1979; Bernhardt & Thien 1987; Kato & Inoue 1994; Labandeira 1998), primarily visiting flowers to procure highly nutritious nectar or pollen (Faegri & van der Pijl 1979; Simpson & Neff 1981; Larson et al. 2001). As the onset of diversification in Diptera predates angiosperm diversification (Grimaldi 1999), it is likely that adaptation to flower visitation evolved independently in different lines of Diptera. Pollen (or microspores) are essential to terrestrial plant reproduction and probably were an original reward and attractant for spore-vectoring and pollinating insects (Kevan et al. 1975; Kevan & Baker 1983; Willemein 1987). Nevertheless, polination droplets of sugary liquids, such as those from the sexual structures of various ancient plants, may have been consumed by insects prior to the evolution of the Angiospermae (Taylor 1981; Wetschnig & Depisch 1999; Ren et al. 2009). Diptera and Hymenoptera, with mouthparts appropriate to imbibing liquids, are known from the fossil record during this period, and may have sought those sugary liquids (Labandeira 1997; Krenn et al. 2005).

Regardless of the reproductive importance of nectar in ancient plants, production of floral nectar throughout the angiosperms is indicative of its value and it is now the foremost reward for many pollinators (Kevan & Baker 1983, 1999), including a diverse array of Diptera (Laron et al. 2001). In addition to pollen and nectar rewards, flowers attract Diptera of both sexes and so may be mating sites, or they may function as sites for predatory flies to await prey. Flowers may also give protection from predators and inclement weather, or provide brood places for larvae. The warmth generated or concentrated by some flowers may act as a secondary attractant, but may be more important for its physiological effects on anthophiles, so we consider it a reward.

Primary floral rewards - Nectar

Nectar is the most commonly sought reward by flower-visiting flies (Tab. 1). It is predominately a source of carbohydrates, most commonly containing the disaccharide sucrose and the hexose sugars glucose and fructose. Nectar can also contain other sugars, various amino acids, proteins, lipids and vitamins (Baker & Baker 1973a, b, 1983a). Nectar constituents and concentrations are often adapted to the desired group of pollinators. Nectars with a preponderance of sucrose, for example, are taken mostly by long-tongued Diptera (e.g., Goldblatt et al. 1997). The nectar used by most flies (short-tongued or lapping) is characteristically hexose-rich and of relatively high (but variable) sugar concentration (Percival 1965; Baker & Baker 1983b; Kevan & Baker 1999). The sugars in nectar may crystallize, but many generalist flies are able to re-liquefy the nectar with saliva and then imbibe it (Elрон 1966; Baker & Baker 1983a; Willmer 2011), as is also reported for Diptera feeding on honeydew (Downes & Dahlem 1987).

Both sexes of most flies use the carbohydrates in nectar for short-term energy needs (Hocking 1953; Downes 1955; Downes & Smith 1969), especially during periods of peak activity such as swarming, mating and oviposition, dispersal, and migration (Kevan 1973; Haslett 1989a, Service 1997; Branquart & Hemptinne 2000; Willmer 2011). In female mosquitoes, at least, nectar feeding and blood feeding are antagonistic and mutually exclusive, but little is known about how such insects choose which resource to pursue (Foster 1995). Vrzal et al. (2010) found that female mosquitoes can acquire appreciable quantities of amino acids from nectar, increasing longevity and possibly decreasing the need for a blood meal. Rather than consuming nectar, David et al. (2011) reported *Drosophila suzana* scavenging the floral tissues of *Ipomoea and Cistus* with spiny fore tarsi adapted to the purpose and consuming the forthcoming liquid.

It is surprising that there is little information on the importance of micro-nutrients in the physiology of Diptera; even economically important Diptera have not been rigorously studied. Numerous authors have indicated that nectars can contain amino acids (Baker & Baker 1973a, b, 1983a, b, 1986; Kevan & Baker 1983, 1999; Potter & Bertin 1988; Rathman et al. 1990; Gardener & Gillman 2002; Vrzal et al. 2010), but experimental evidence for an adaptive role of amino acids in the attraction and nutrition of pollinators is sparse. Nectar availability can increase insects' life spans (Nayar & Sauerman 1971; Grimstad & Defoliart 1974; Kevan & Baker 1983; Vrzal et al. 2010), presumably due to the presence of minor nutrients (Haslett 1989a). *Stomoxys calcitrans* (L.) (*Muscidae*) fed dilute honey lived longer than those fed sugar syrup (Jones et al. 1992). Rathman et al. (1990) found that *Sarcophaga bullata* Parker (*Sarcophagidae*) chose an amino acid-containing nectar over a sucrose-only nectar only when protein deprived and previously without access to protein or amino acid sources. This suggests a nutritional role for the amino acids in nectar, especially for reproductive females and when other protein rich foods are scarce (Vrzal et al. 2010). Foraging flies that have nectar as their primary source of protein-building amino acids feed from flowers with higher concentrations of amino acids than do those that have alternative protein sources (e.g., pollen) (Baker & Baker 1983a, 1986).

The possible benefits to Diptera of other nectar constituents, such as lipids, antioxidants and proteins, are also not well understood. Lipids are common in the nectar of flowers visited by flies, which presumably have digestive lipases or esterases to break them down (Dadd 1973; Chapman 1998; Kevan & Baker 1999). Dethier’s classic book (1976) makes little mention of lipids in the diets of flies. Lipids likely provide energy as polyunsaturated fatty acids, or have a role in hormonal biosynthesis as steroids (Downer 1978). Reports on Diptera feeding on lipid-rich floral tissues invoke special floral structures (Dafni & Werker 1982; Aronne et al. 1993). Antioxidants such as organic "reducing" acids (ascorbic acid) are often found in lipidic nectars, where they may help to delay rancidity (Baker & Baker 1983a). Nectar may also contain small quantities of vitamins and minerals (Baker & Baker 1983a) and these too may play roles in dipteran nutrition. Various salts have phagostimulative effects and may be available as a reward in
Plant Family	Plant Taxon	Reward(s)*	Fly Taxon**	Reference				
Acanthaceae	Justicia americana (L.)	- + - -	Syrphidae, Bombyliidae, Conopidae	Robertson 1928				
Aceraceae	Acer spp.	- + - -	Eristalis tenax (L.), Ortheoneura nitia Wd. (Syrphidae)	Haslett 1989b				
Alismaceae	Sagittaria latifolia (Willd.)	- + - -	various	Robertson 1928				
Amaryllidaceae	Sternbergia clusiana (Ker-Gawler) Spreng.	- - + -	various (PC)	Dafni & Werker 1982				
Anacardiaceae	Rhus glabra L.	- + - -	Anthax sinuosa Wd. (Bombyliidae)	Robertson 1928				
Apiaceae	Angelica sylvestris L.	- + - -	Episyphus balteatus (De Geer) (Syrphidae)	Haslett 1989b				
Apocynaceae	Apocynum androsaemifolium L.	+ - - -	Aedes vexans (Meigen) (Culicidae)	Sandholm & Price 1962				
Araceae	Amorphophallus spp.	- - + -	Drosophilidae, Muscidae, Calliphoridae	Punekar & Kumaran 2010				
Araliaceae	Fatsa japonica (Thunb.)	+ + - -	Chaetomyia pyrastra (L.) (Syrphidae), Chrysomya megacephala (Fabricus) (Calliphoridae)	Wang et al. 2011				
Aristolochiaceae	Aristolochia inflata Kunth	+ - - -	Megaselia sakaiae Disney (Phoridae)	Sakai 2002a,b				
Asclepiadaceae	Asclepias syriaca L.	+ - - -	Aedes dorsalis (Meigen) (Culicidae)	Sandholm & Price 1962				
Asteraceae	Achillea millefolium L.	- + - -	Anthomyia sulciventris Ztt. (Anthomyiidae)	Willis & Burkhill 1895				
Brassicaceae	Lobularia maritima (L.) Desv.	- + - -	Eupeodes corolla F. (Syrphidae)	Pérez-Bañoñ et al. 2003				
Campanulaceae	Campanula rotundifolia L.	+ + - -	Thricops cantans Meigen (Muscidae)	Pont 1993				
Caryophyllaceae	Silene dioica L. (Clairville)	- + - -	Allograpta sp. (Syrphidae) (PC)	Bischoff et al. 2013				
Chenopodiaceae	Chenopodium album L.	- + - -	Rhingia campestris Meigen (Syrphidae)	Haslett 1989b				
Cistaceae	Helianthemum nummularium (L.) Mill.	- + - -	Anthomyia radicum L. (Anthomyiidae)	Willis & Burkhill 1895				
Commelinaceae	Cuthbertia rosea Ventnat	- + - -	Poecilognathus punctipennis Walker (Bombyliidae)	Deyrup 1988				
Convolvulaceae	Convolvulus arvensis L.	- + - -	Melanostoma fasciatum (Macquart) (Syrphidae)	Hickman et al. 1995				
Cornaceae	Cornus stolonifera Michx.	+ - - -	Aedes cinnereus (Meigen) (Culicidae)	Stabbs & Chandler 1978				
Corylaceae	Corylus sp.	- + - -	Melangyna quadrimaculata Verrall (Syrphidae)	Irvin et al. 1999				
Crassulaceae	Sedum sp.	- + - -	Melanostoma novaezelandiae Macquart (Syrphidae)					
Cyperaceae	Scirpus maritimus (L.) Lye	- + - -	Melanostoma mellinum L. (Syrphidae)	Leereveld 1984				
Dilleniaceae	Hibbertia scandens (Willd.) Dryand.	- + - -	Melangyna verticillata Macquart (Syrphidae)	Armstrong 1979				
Dipsacaceae	Scabiosa succisa L.	+ + - -	Calliphora erythrocephala Mg. (Calliphoridae)	Willis & Burkhill 1895				
Droseraceae	Drosera c.f. binata	- + - -	Paragus sp. (Syrphidae)	Holloway 1976				
Ebenaceae	Diospyros virginiana L.	- + - -	Allograpta obliqua Say (Syrphidae)	Robertson 1928				
Plant Family	Plant Taxon	Reward(s)*	FN	PO	EX	MS	Fly Taxon**	Reference
--------------	-------------	------------	----	----	----	----	-------------	-----------
Elaeagnaceae	Hippophae rhamnoides L.	-	+	-	-	Melangyna lasioththalma	Symanek & Gilbert 1993	
Ericaceae	Calluna vulgaris (L.)	-	+	-	-	Erizona syrphoides (Fall.) (Syrphidae)	Haslett & Entwistle 1980	
Escalloniaceae	Quintinia sp.	-	+	-	-	Eristalis tenax (Linnaeus) (Syrphidae)	Holloway 1976	
Euphorbiaceae	Euphorbia amygdaloides L.	-	+	-	-	Empis tessellata F. (Empididae)	Hobby & Smith 1961	
Fabaceae	Lathyrus pratensis L.	-	+	-	-	Eosyrphus balteatus (De Geer) (Syrphidae)	Haslett 1989b	
Fagaceae	Fagus sylvatica L.	-	+	-	-	Melangyna quadrimaculata Verrall (Syrphidae)	Symanek & Gilbert 1993	
Gentianaceae	Sebaea sp.	-	+	-	-	Paragus sp. (Syrphidae)	Holloway 1976	
Geraniaceae	Geranium robertianum L.	+	-	-	-	Eutonchus sayi Osten Saken (Acroceridae) (PC)	Schlinger 2008	
Hydrophyllaceae	Ellisia nyctelea (L.)	-	+	-	-	Mesogramma geminate Say (Syrphidae)	Robertson 1928	
Hypericaceae	Hypericum perforatum L.	-	+	-	-	Anthomyia radicum L. (Anthomyiidae)	Willis & Burkhill 1895	
Iridaceae	Babiana spp.	+	-	-	-	Prosoeca (Nemestrinidae) (PC)	Goldblatt & Manning 2007a	
Lamiaceae	Ajuga reptans L.	+	-	-	-	Bombylus major L. (Bombylidae)	Knight 1967	
Liliaceae	Lilium superbum L.	+	-	-	-	Ades vexans (Meigen) (Culicidae)	Sandholm & Price 1962	
Linaceae	Linum lewisii Pursh.	+	-	-	-	Thanopia septentrionalis Stein (Muscidae)	Kearns & Inouye 1994	
Malvaceae	Sterculia foetida L.	+	-	-	-	Chrysomya megacephala (Fab.) (Calliphoridae) (PC)	Atleri et al. 2004	
Molluginaceae	Mollugo verticillata	+	+	-	-	Mesogramma marginata (Syrphidae)	Robertson 1928	
Myrtaceae	Eucalyptus spp.	+	+	-	-	Drosophila flaviharta Malloch (Drosophilidae) (PC)	Nicolson 1994	
Nymphaeaceae	Nymphaea odorata ssp. tuberosa (Paine) Wiersema & Hellq.	-	+	-	-	Helophilus latifrons Lw. (Syrphidae)	Robertson 1928	
Oleaceae	Ligustrum vulgare L.	-	+	-	-	Volucella pellucens L. (Syrphidae)	Haslett 1989b	
Onagraceae	Epilobium hirsutum L.	-	+	-	-	Eristalis tenax L. (Syrphidae)	Haslett 1989b	
Orchidaceae	Disa scylli H. Bolus	+	-	-	-	Prosoeca ganglbaueri Lichtwardt (Nemestrinidae) (PC)	Johnson 2006	
Plantaginaceae	Plantago sp.	-	+	-	-	Pyrophaena granditarsa Forst. (Syrphidae)	van der Goot & Grabandt 1970	
Plumbaginaceae	Plumbago auriculata (Lam.)	+	-	-	-	Philolosche aethiopica (Thunberg) (Tabanidae) (PC)	Dessoff et al. 2013	
Poaceae	Secale sp.	-	+	-	-	Platycheirus scambus Steager (Syrphidae)	Leereveld 1982	
Plant Family	Plant Taxon	Reward(s)*	Fly Taxon**	Reference				
---------------	---------------------------------	------------	-------------	-----------------				
Polemoniaceae	*Phlox paniculata* L.	+ - - -	*Aedes dorsalis* (Meigen) (Culicidae)	Sandholm & Price 1962				
Polygonaceae	*Polygonum* spp.	- + - -	*Melanostoma novaecalediae* Masquart (Syrphidae)	Irvin et al. 1999				
Portulacaceae	*Claytonia virginica* L.	+ + - -	*Bombylus major* L. (Bombiliidae)	Motten et al. 1981				
Primulaceae	*Primula vulgaris* Huds.	- + - -	*Hylemyia* sp. (Anthomyiidae)	Willis & Burkhill 1903				
Ranunculaceae	*Ranunculus repens* L.	- + - -	*Eristalis tenax* Limnaeus (Syrphidae)	Haslett 1989b				
Rhizophoraceae	*Avicennia officinalis* L.	+ + - -	*Chrysomya megacephala* Fabricius (Calliphoridae)	Alari 1990				
Rosaceae	*Rubus fruticosus* L.	- + - -	*Episyrphus balteatus* (De Geer) (Syrphidae)	Haslett 1989b				
Rubiaceae	*Galium trifidum* L.	+ - - -	*Sphaerophoria cynelida* Say (Syrphidae)	Robertson 1928				
Salicaceae	*Populus tremula* L.	- + - -	*Melangyna lasiopathalma* Zetterstedt (Syrphidae)	Sutmans & Gilbert 1993				
Santalaceae	*Oyis alba* L.	- - + +	*Flecterimyia fletcheri* (Aldrich) (Syrphidae)	Ne'eman et al. 2006				
Saxifragaceae	*Sarcandra purpurea* L.	+ + - -	*Gnoriste megarhina* Osten (Syrphidae)	Goldblatt et al. 2004				
Schisandraceae	*Schisandra henryi*	- + + -	*Melangyna lasiopathalma* Zetterstedt (Syrphidae)	Sutmans & Gilbert 1993				
Scrophulariaceae	*Hebe* sp.	- - - -	*Melangyna rosalis* (Walker) (Syrphidae)	Holoway 1976				
Solanaceae	*Solanum nigrum*	- + - -	*Melanostoma mellinum* L. (Syrphidae)	van der Goot & Grabandt 1970				
Sparganiaceae	*Sparganium erectum* L.	- + - -	*Syrphus robust* L. (Syrphidae)	Leereveld 1984				
Staphyleaceae	*Staphylea trifolia*	+ - - -	*Eristalis flavipes* Wk. (Syrphidae)	Robertson 1928				
Styliclueae	*Forstera sp.*	- + - -	*Paragus* sp. (Syrphidae)	Holoway 1976				
Tiliaceae	*Tilia* sp.	- + - -	*Xylota sylvarum* Limnaeus (Syrphidae)	Sutmans & Gilbert 1993				
Trimeniaceae	*Trimenia moorei* (Oliv.)	- + - -	*Melangyna sp.* Triglyphus fabricicoris Bigot (Syrphidae)	Bernhardt et al. 2003				
Typhaceae	*Typha latifolia* L.	+ - - -	*Platychera pelata* Meigen (Syrphidae)	Leereveld 1982				
Urticaceae	*Urtica dioica* L.	- + - -	*Xylota sylvarum* Limnaeus (Syrphidae)	Sutmans & Gilbert 1993				
Verbenaceae	*Verbena officinalis* L.	+ - - -	*Platychera pelata* Meigen (Syrphidae)	Willis & Burkhill 1895				
Violaceae	*Viola lutea* Smith	- + - -	*Anthomyia spp.* (Anthomyiidae)	Willis & Burkhill 1903				
Welwitschiaceae	*Welwitschia mirabilis* Hook	- - + +	*Calliphoridae*, *Sarcopogridae*, *Ulididae* (PC)	Wetschnig & Depisch 1999				
Winteraceae	*Pseudowintera colorata* (Raoul) Dandy	- + - -	*Smittia* (Chironomidae)	Lloyd & Wells 1992				
Variety of plants		+ + - -	*Atrichogon pollenivorus* Downes (Ceratopogonidae)	Downes 1955; De Meillon & Wirth 1989				

* FN = Floral nectar; EX = Exudates, stigmatic or otherwise, MS = Micropylar secretions, PO = Pollen
** PC = pollination confirmed
the nectar of some flowers (Waller et al. 1972; Dethier 1976). However, high concentrations of salt in solution are rejected by *Eristalis tenax* (L.), possibly because they inhibit the water detection cells of the labial taste sensilla (Wacht et al. 2000).

Primary floral rewards - Pollen

Pollen is another resource consumed by some fly families (Tab. 1). Larvae of some flower-brooding flies may feed directly on pollen during their development (Gao 2011). Females of most biting Culicidae, Simulidae and Ceratopogonidae obtain protein from the bodily fluids of other animals (Downes 1955, 1958; Downes & Smith 1969), but some acquire it from pollen (Downes 1955; Downes & Smith 1969; De Meillon & Wirth 1989; Yuan et al. 2007, 2008). Young male flies may need pollen for testicular maturation and to initiate sperm production (e.g., Kevan 1970), whereas some females require pollen for both normal ovarian development (Schneider 1948; Maier 1978; Hickman et al. 1995) and yolk deposition (Haslett 1989a). Males of many Syrphidae (Haslett 1989a), Bombyliidae (Panov 2007), and some anthropophilous muscoids (Kearns 1992; Pont 1993; Larson et al. 2001; Dlusski 2002) generally consume more nectar and less pollen than do females.

Pollen contains proteins, carbohydrates and lipids, in addition to various amino acids, minerals and vitamins (Stanley & Linskens 1974; Alba et al. 1995; Bonvhei & Jordà 1997; Roulston & Cane 2000; Villanueva et al. 2001). To obtain the nutrients within the indigestible exine, some Diptera consume entire grains, whereas others puncture them and suck out the protoplasm. In the former case, the nutrients presumably diffuse out through germination pores in the exine during digestion or the exine is destroyed by osmotic shock (Haslett 1983; Kevan & Baker 1983; Roulston & Cane 2000). Some syrphids soak pollen in saliva exuded by their proboscis, then imbibe the slurry (Proctor & Yeo 1973). They may ingest so much pollen that their abdomens appear bloated and yellow, and digested pollen is observed easily in their feces. The mouthparts of many Bombyliidae are poorly suited to pollen collection directly from anthers, but a few species can harvest pollen using specialized structures on the tarsi that rake the anthers and convey material to the mouth (Neff et al. 2003).

Pollen contains numerous amino acids that may have other nutritional benefits (Kevan & Baker 1983, 1999; Roulston & Cane 2000), though proline is the most significant of them; plants usually need it in large amounts (e.g., 2% of dry weight) to support pollen tube growth (Linskens & Schrauwen 1969). The pollen in the proline of anemophilous flowers (Stanley & Linskens 1974) can be used by insects to power their flight (Gilbert 1985a; Candy et al. 1997). The importance of proline in flight nutrition was confirmed by Wacht et al. (2000) who found that it is the only amino acid of 20 they tested that can be perceived in the sub-millimolar range by the salt receptor of the labellar chemosensory hairs of *Eristalis tenax*. In the Syrphidae, adults obtain protein solely from pollen and nectar (Olkroyd 1964), with the relative intake determined by their immediate needs (Haslett 1989a) and the constraints of proboscis structure (Gilbert 1981, 1985b). In general, as the length of the proboscis increases, the apparent importance of pollen in the diet decreases as the flies concentrate on flowers with longer corolla tubes and greater nectar rewards (Gilbert 1981).

Some syrphids, such as members of the genera *Melanostoma* and *Platycheirus* in Europe, feed almost exclusively on the pollen of various anemophilous plants that offer no nectar reward (Goot & Grabandt 1970; Leereveld et al. 1976, 1991; Gilbert 1981; Leereveld 1982, 1984; Sharma et al. 1993; Szymank & Gilbert 1993). The pollen of anemophilous plants tends to be smoother and has less of a pollenkitt (sticky or oily material on the outside of pollen grains) than that of entomophilous plants (Ackerman 2000, Pacini & Hesse 2005), so syrphids may not contribute significantly to pollination. However, intraspecific variation in pollen characteristics of some plants corresponds to the environments in which the plants grow, suggesting that syrphids may sometimes be significant pollinators of anemophilous plants. For example, pollen from *Plantago lanceolata* L. (*Plantaginaceae*) growing in forested areas in Luxembourg, where wind is minimal and biotic pollen vectors are most adaptive, has a higher adhesive capacity than pollen from conspecifics in exposed coastal Netherlands (Stellman 1980, 1984).

Secondary floral rewards - Location of mates and prey

Because the females of many species of flies must visit flowers to obtain nectar and pollen, flowers could be excellent places for males to locate mates (Tab. 2). Maier (1978, 1982), Maier & Waldbauer (1979) and Waldbauer (1984) have shown that males of *Tennostoma* and *Mallota* species, *Somula decora* Macquart, and *Spidomyia hamifera* Loew (Syrphidae) patrol flowers in the morning, and oviposition sites in the afternoon, and so locate mates (Waldbauer & Ghent 1984). In some cases, they establish a patrol route territory or “trap-line”, containing ten to twenty prime flowers, which they over-fly repeatedly (Maier & Waldbauer 1979). They feed periodically at various flowers along the route and thereby may act as pollinators. According to Speight (1978), various syrphids commonly hold floral territories where they await females. Certain bombyliid flies also use flowers as mating rendezvous sites, possibly defending territories for this purpose (Evenhuis 1983, Johnson & Dafni 1998). As a final example, Nakasagi (2007) reported numerous individuals of *Notiphila maritima* Krivosheina (Ephyridae) mating and ovipositing on flowers of *Nuphar subangusternana* (Casp.). Makino and carrying pollen. The larvae were not found to feed in the flowers, but presumably in submerged sediments near the water lily roots, which they may have tapped for oxygen as described by Larson & Foote (1997) for *Notiphila* associated with the yellow water lily, *Nuphar lutea*.

Anthophilous predators are well known among the ambush bugs (Reduviidae), crab spiders (Thomisidae), other spiders (e.g., Theridiidae) (Greco & Kevan 1994; Kevan & Greco 2001), and mantids (Mantodea) (Kevan & Baker 1999), but there are few records of predatory Diptera using flowers. Kevan (1973) reports that embioid flies and dung
TABLE 2. Fly exploitation of selected flowers as mating/prey/brood sites

Plant Family	Plant Taxon*	Fly Taxon	Floral Function**	Reference
Araceae	Alocasia spp.	Colocasiomyia spp. (Drosophilidae)	BS, PC	Miyake & Yafuso 2003, 2005; Toda & Lakin 2011; Takano et al. 2012
	Alocasia macrorrhiza (L.) G. Don	Neurochaeta inversa McAlpine (Neurochaetidae)	BS, MS?	Shaw et al. 1982
	Alocasia pubera Schott. (S)	Athergona spp. (Anthomyiidae)	BS, PC	van der Pijl 1953; Simpson & Neff 1981
	Peltandra virginica Kunth	Elaphiptera formosa Loew (Chloropidae)	BS, PC	Part et al. 1995
Aristolochiaceae	Aristolochia spp. (some S)	Phoridiae, Drosophilidae	BS, PC	Disney & Sakai 2001; Sakai 2002a,b
Asteraceae	Egeron neomexicanus Gray	Oligodranes mitis Cresson (Bombyliidae)	MS, PC	Evenhuis 1983
Balanophoraceae	*Thomningia sanguinea* Vahl	Morellia sp. (Musciidae)	BS, PC	Goto et al. 2012
Balsaminaceae	Impatiens uniflora Hayata, I. tayemonii Hayata	Hirtodrosophila actina (Okada), H. yapungi Gao (Drosophilidae)	BS, MS?	Gao 2011
Campanulaceae	Centropogon solanifolius Benth.	Zygotorica neolinea (Drosophilidae)	BS	Weiss 1996
Linaceae	Linum pubescens Banks & Solander	Usia bicolor Maq. (Bombyliidae)	MS, PC	Johnson and Dafni 1998
Monimiaceae	Siparuna spp.	Cecidomyiidae	BS, PC	Feil 1992
Moraceae	Artocarpus integer (Thunb.) Merr. (S)	Contarina spp. (Cecidomyiidae), Dettropsomyia spp. (Drosophilidae)	BS, PC	Sakai et al. 2000, 2002a
Moraceae	Eucalyptus spp.	Drosophila flavohirta Malloch (Drosophilidae)	BS, PC	van der Pijl 1953, Simpson & Neff 1981
Nymphaeaceae	Nuphar subintegerrima (Casp.) Makino Various	Notophila martima Krivosheina (Ephydridae), Notophila brunipes (Ephydridae)	MS, BS	Nagasaka 2007
Orchidaceae	Pleurothallis spp.	Tricinba spp. (Chloropidae), Megasea spp. (Phoridae)	BS, PC	Borba & Semir 2001
Ranunculaceae	Trollius europaeus L. (S)	Chiastochaeta spp. (Anthomyiidae)	MS, BS, PC	Pellmyr 1989, Despres & Jaeger 1999, Ferdy et al. 2002, Despres 2003, Despres et al. 2007
Saxifragaceae	Saxifraga oppositifolia L.	Scathophaga apicalis (Curtis in Ross) (Scathophagidae)	PH, PC	Kevan 1973

*(S) indicates that the brood develops in senescent floral tissue
**BS = Brood Site, MS = Mating Site, PH = Prey-hunting site; PC = pollination confirmed

flies (Scathophagidae) in the Arctic sometimes take flower-foraging prey at flowers. It is possible that other predaceous families such as Asilidae also visit flowers to locate their prey (e.g., O’Neill & Kemp 1991), and Coenosia spp. (Musciidae) capture prey from flowers in southern Ontario (S. Marshall, personal communication). Conopid and phorid parasitoids wait near flowers to inject eggs into their hymenopteran hosts (Freeman 1966; Otterstatter et al. 2002; Willmer 2011). The pollination value of any of these mating or predation behaviours is unclear, but if predator populations are high enough they may interfere with the pollinating activities of the prey (Morse 1986; Morse & Fritz 1989).

Secondary floral rewards - Brood places

Several families of Diptera use flowers as brood places, but their effectiveness at pollen transfer during these activities is unknown (van der Velde et al. 1978; Inouye & Taylor 1979; Larson et al. 2001; Sakai 2002a). However, there are several records of brood places used
by Diptera involved in pollination (Pellmyr 1989; Feil 1992; Patt et al. 1995; Despres & Jaeger 1999; Sakai et al. 2000; Ferdy et al. 2002; Despres et al. 2002, 2007; Despres 2003; Luo et al. 2010; Gao 2011) (Tab. 2). For example, the pitcher plant, Sarracenia purpurea L., provides larval habitat in its phytotelmata, rather than flowers, to Fletteringia fletcheri (Aldrich) (Sarcophagidae), adults of which visit the flowers for nectar and pollen (Ne’eman et al. 2006). Ovipositing females may be effective pollinators, while their larvae later develop in the senescent floral tissue (van der Pijl 1953; Disney & Sakai 2001; Sakai 2002a, b; Quilichini et al. 2010).

Pollen movement may occur as individual flies visit multiple flowers during multiple mating or oviposition events, and may occur in concert with the breeding system of the plant. For instance, in the pollination of protogynous events, and may occur in concert with the breeding system of flowers for nectar and pollen (Ne’eman et al. 2006).

Secondary floral rewards - Warmth, protection and shelter

Although some bees are known to sleep in flowers (Dafni et al. 1981; Willis & Kevan 1995), similar behaviors have been reported rarely among other flower-visiting insects (Tab. 3). In the Arctic, Hocking & Sharplin (1968) and Hocking (1968) noted Aedes spp. (Culicidae) basking at the foci of the parabolic corollas of heliotropic Dryas integrifolia and Papaver radicatum Rottb., where the temperature was often 6°C above that of the ambient air. Basking flies were observed disproportionately often on flowers aligned with the sun, so heliotropism and the sun-focussing shape of the flowers provide heat rewards that increase the probability of pollinator visitation (Kevan 1989; Stanton & Galen 1989; Kudo 1995; Krannitz 1996; Totland 1996; Luzar & Gottsberger 2001; Yuan et al. 2008). Heliotropism is recorded in numerous plant families, most notably in the Asteraceae, Papaveraceae, Ranunculaceae and Rosaceae (Kevan 1972a; Stanton & Galen 1989; Totland 1996; Luzar & Gottsberger 2001; Orueta 2002), and seems relatively common in arctic and alpine regions where heat rewards could be sought by foraging Diptera. In two species of tropical Convulvulaceae (Ipomoea pes-caprae and Merremia borneensis), Patiño et al. (2002) noted that seasonal heliotropism and floral orientation combine to regulate internal temperatures for both seed fertilization and development, and that insects preferentially visit the sunlit flowers. If the insects are reluctant to leave the heat, basking behaviour may not be conducive to cross-pollination. Extra warmth may benefit the plant by optimizing temperature for pollen germination and fertilization (Orueta 2002).

Kevan (1970) has suggested that Diptera that bask in the diheliotropic and parabolic corollas of arctic flowers such as Dryas integrifolia M. Vahl. (Rosaceae) are able, from such vantage points, to detect the shadows of potential predators. Some Diptera bask in flowers and the increased warmth may speed metabolism and ovarian maturation, and preheat flight muscles (Knutson 1974, 1979; Kevan 1975, 1989; Yafuso 1993). Tatler et al. (2000) have shown that extra warmth results in accelerated optical neuronal processing in insects (e.g., Calliphora vicina, Calliphoridae). Certain parabolic, campanulate, and funnel-shaped flowers may be used by flies for physical protection from adverse weather conditions (Drabble & Drabble 1927; Parmenter 1958; Kevan 1973, 2007). The capacity for heat production, particularly in basal angiosperm lineages and in Aracea (Lamarck 1777; Then et al. 2009), may have several functions, including acceleration of floral growth and development, improved volatilization of pollinator attracting molecules, and shelter and warmth for the entrapped pollinators (Meuse 1966; Knutson 1974, 1979; Moodie 1976; Then et al. 2000; Patiño et al. 2002; Quilichini et al. 2010; Willmer 2011). Luo et al. (2010) demonstrated that heat generated by floral tissues was not necessary for seed or fruit development in Illicium spp. (Schisandraceae), but that larvae of cecidomyiid pollinators developing in the flowers would die without the added warmth.

FLORAL ADVERTISEMENTS TO FORAGING FLIES

The visual and olfactory advertisements used by flies to locate flowers operate over different distances. Distinctive floral advertisements and guides benefit the plant because they increase the likelihood that the pollinator can learn their "search image" and thus more easily revisit other plants of the same species. This constancy greatly improves the effectiveness of visiting insects as pollen vectors (Waser 1983, 1986; Fenster et al. 2004), but has not been well studied in Diptera. Goulson & Wright (1998), for example, noted that the hover flies Episyrphus balteatus (De Geer) and Syrphus ribesii (L.) (Syringidae) can be remarkably constant to the flowers they visit, although reasons for this constancy and the floral features involved are undocumented. Other visual and chemical cues operate at closer range, guiding the flies' behaviour on the flower. The whole suite of floral advertisements probably operates to attract anthophiles through both innate and learned responses.
Plant Family	Plant Taxon	Fly Taxon	Benefit*	Reference
Araceae	*Alocasia odora* C. Koch	*Colocasio myia alocasia* (Okada),	MT	Yafuso 1993, Miyake & Yafuso
		C. xenalocasia (Okada) (Drosophilidae)		2003
Aristolochiaceae	*Aristolochia* spp.	various	MT	Disney & Sakai 2001; Sakai
Asteraceae	*Oritrophi um linnophilum* (Sch. Bip.) Cuatr.		PS	Stanton and Galen 1989
		Calendula arvensis L.		
		Usia aurata Fabr. (Bombyliidae)	SH	Orueta 2002
Campanulaceae	*Campanula rotundifolia* L.		PS	Drabble & Drabble 1927,
				Parmenter 1958
Convolvulaceae	*Convolulus* spp.	many	PS	Drabble & Drabble 1927,
				Parmenter 1958
Geraniaceae	*Pelargonium tricolor* Curt.		SH	McDonald & van der Walt 1992
Illiciaceae	*Illicium floridanum* Ellis	*Megalopodus capensis* Wiedemann	MT	Thien et al. 2009
	Illicium spp.			
Nymphaeaceae	Various	*Clinodiplosis* sp. nov. (Cecidomyiidae)	MT	Luo et al. 2010
Ranunculaceae	*Adonis ramosa* Franch.	Agromyzidae	PS	Kudo 1995
	Ranunculus adoneus Gray		PS	Smith 1975
Rosaceae	*Dryas integrifolia* M. Vahl.	*Aedes* spp. (Culicidae)	SH	Hocking & Sharplin 1965;
		Rhamphomyza spp. (Empididae)		Hocking 1968; Kevan 1975
		Carposca lis carinata (Curran) (Syrphidae)	SH	Kevan 1975
		Borellia atriceps (Zetterstedt) (Calliphoridae)	SH	Kevan 1975
Saxifragaceae	*Saxifraga oppositifolia* L.	*Smitia velutina* (Lundbeck) (Chironomidae)	PS	Kevan 1973, 2007
Scrophulariaceae	*Digitalis* spp		PS	Drabble & Drabble 1927,
				Parmenter 1958

*MT = metabolic thermogenesis, SH = solar heat, PS = physical shelter

Background on fly vision

As in other diurnal pollinators, most flower-visiting flies use floral colour as their primary cue to recognize preferred flowers (Tab. 4). Due to interactions between different visual cues in the orientation process, it is difficult to separate the elements of the suite of cues presented by flowers, and much of what is known about insect vision and the implications of floral colours for anthecology comes from studies of bees (e.g., Menzel & Shmida 1993; Kevan & Backhaus 1998; Chittka & Menzel 1992; Vorobyev & Brandt 1997; Kelber et al. 2003). Weiss (2001) has pointed out that vision and learning in various lesser understood groups of pollinators, including Diptera, is a fertile ground for research. It has been shown in behavioural experiments that *Lucilia cuprina* (Calliphoridae), *Bombylius falginous* (Bombyliidae) and *Eristalis tenax* (Syrphidae) possess colour vision (Iise 1949; Kugler 1950; Lunau & Wacht 1994; Kelber et al. 2003 for review), and thus discriminate colour shades due to their chromaticity and independent of their brightness.

The insect eye is less able to resolve shape and details of pattern than is the human eye (Land 1997, Dafni et al. 1997), but insects have remarkable abilities to perceive and resolve rapid motion. Because insects are fast flyers and lack the ability to move the eyes, their orientation is supported by effective motion resolution of more than 200 pictures per second (Ruck 1961). Thus, flies can perceive the forms of flowers even when in rapid flight (Kevan & Baker 1983; Dafni et al. 1997; O’Carroll et al. 1996). It is noteworthy that the motion-sensitive neurons in the eyes of hovering insects (e.g., Bombyliidae) are tuned to detection of lower rates of motion than are non-hovering insects (O’Carroll et al. 1996). The Diptera preference toward characteristically "open" flowers is probably not related to visual advertisements, but caused by their limited abilities to manipulate flowers.
Table 4. Floral colour preference(s) of selected flower-visiting flies. Colours are defined by reflected wavelengths, and not by the perception of the viewer.

Fly Taxon	Wavelength	Reference
Bombyliidae		
Bombylius sp.	+	Knoll 1921
Calliphoridae		
Lucilia sp.	+	Kugler (1951, 1956)
Muscidae		
Pyrella cyanicolor Zetterstedt	+	Cameron & Troilo 1982
Syrphidae		
Cheilosia albitarsus (Meigen)	+	Haslett 1989b
Eristalis pertinax (Scopoli)	++	Haslett 1989b
Eristalis tenax (L.)	++ + +	Ilse 1949; Kugler 1950; Haslett 1989b; Lunau & Wacht 1994; Lunau & Maier 1995; Lunau 1996
Rhingia campestris Meigen	+ +	Haslett 1989b
Volucella pellucens (L.)	+	Haslett 1989b

*R = red, O = orange, Y = yellow, G = Green, B = blue, P = shades of purple and violet, OB = optic black, OW = optic white, UV = ultra violet patterns

In contrast to other insects, flies have two morphologically and physiologically separated visual subsystems. The apposition subsystem consists of two receptor cell tandems, only one of which is present in each ommatidium. Providing the eye with a set of four retinula cells that differ in their spectral sensitivities enables tetrachromatic colour vision, but with less sensitivity and less acuity than the neural superposition subsystem (Hardie 1979; Pichaud et al. 1999). The neuronal superposition subsystem is monovariant and thus colourblind but highly sensitive, collecting visual input from six retinula cells of six neighbouring ommatidia (Anderson & Laughlin 2000). This system enables flies to orient visually in dim light conditions without loss of spatial information, unlike optical superposition eyes of nocturnal Lepidoptera. Together, the two subsystems allow for a parallel processing of motion perception and colour vision (Kelber et al. 2003).

Visual advertisements - Colour

Most flies have tetrachromatic colour vision with sensitivity from ultraviolet (UV) over blue and green to yellow wavelengths (Menzel & Backhaus 1991; Troje 1993; Kelber et al. 2003). According to the colour vision model of Troje (1993), flies exhibit categorical colour vision such that they discriminate colours in only four categories. These categories are determined by the superior excitation of one of the two photoreceptor cells in each tandem and can be regarded as fly-blue, UV, fly-green and fly purple (Arnold et al. 2009).

Many Diptera are observed either on yellow or white flowers, although some species prefer blue or red (Weems 1953; Sandholm & Price 1962; Kevan & Baker 1983; de Buck 1990; Campbell et al. 2010; Willmer 2011). These responses are plastic to some degree. It is also unknown whether the flower visits were determined by an underlying innate colour preference, by a limited variety of alternatively coloured flowers, or by experience of individual flies. Interestingly, the categorical colour vision model of Troje (1993) predicts that flies have a limited ability to discriminate between yellow and white flowers, if both absorb ultraviolet light. In wild radish (*Raphanus raphanistrum* L. (Brassicaceae)), the yellow flower morphs are preferentially visited by flies and have a UV-reflective target pattern that the white morph lacks (Kay 1976, 1978). Innate colour preferences of naive flies have not yet been studied systematically; the hoverflies *Eristalis tenax* and *Epsyris balteatus* exhibit preferences for yellow colours (Lunau & Maier 1995, Sutherland et al. 1999).

Some studies provide information about colour preferences in distinct species (Ssymank 2001, Laubertie et al. 2006). The notion that in regions where Diptera predominate as floral visitors, flowers are more often white and yellow than elsewhere (Inouye & Pyke 1988 for Australian alpine; Kevan 1972b, 1973 for Canadian Arctic; Kevan (unpubl. data) for Rocky Mountain alpine; Primack (1978, 1983) for New Zealand) has been questioned by Arnold et al. (2009), who found no significant change of flower colour with altitude in an alpine region of Norway.

Evidence from behavioural experiments shows that flies can be trained to colours that initially were less attractive to them. Kelber (2001) trained syrphid flies, which were initially attracted to yellow flowers, to visit flowers of other colours. After a period of training on blue flowers, the flies had no preference for yellow flowers when given a choice of blue or yellow. Haslett (1989b) studied the pollen foraging of six species of Syrphidae in the wild and at experimental
arrays of artificial flowers of different colours, and showed that these species had colour preferences ranging from white and yellow to blue and violet. The preference for yellow colours in *Eristalis tenax* is innate, wavelength-specific and varies with proximity to the flower (Lunau & Wacht 1994; Lunau & Maier 1995; Lunau 1996). Once the flies land, however, only deep yellow colours with strong absorption in the ultraviolet waveband release proboscis extension behaviour in inexperienced flies. This innate response is fine-tuned to the spectral reflection properties of pollen that reflects green and yellow wavelengths $>510 \text{ nm}$. Ultraviolet and blue wavelengths $<510 \text{ nm}$, which are typically absorbed by yellow pollen, strongly inhibit the proboscis reaction (Lunau 2000, 2007). Wacht et al. (1996) noted that both optical and chemical stimuli control pollen feeding in *Eristalis tenax* and other syrphid flies. The fixed innate search images for pollen signals constrains the evolution of flowers’ signalling devices and leads to the standardisation of floral signalling components, for example the colour signals of pollen, anthers, and pollen- and anther-mimicking floral guides (Lunau 2004, 2007).

Red flowers are normally associated with specialist pollinators, such as birds and those insects (butterflies, some beetles) that have red-sensitive vision (Keavan & Backhaus 1998; Kevan et al. 2001; Bernhardt 2000). In this context it has been shown that red bird-pollinated flowers are less attractive to potentiotionally nectar thieving bees and thus provide a private niche for their pollinators (Lunau et al. 2011). Most flies are unable to perceive red, but flowers with reddish hues are also found within the mimetic complex of sapromyophilous blooms and this may relate to the sensitivity of the eyes of some Diptera to red (Atrum & Stumpf 1953). The colours of sapromyophilous blossoms tend to be dark and mimic the substrate associated with their odours (carrion, dung, etc.), but little is known of the linkage between the visual systems of the pollinators and orientation and attraction cues from the plants involved. There are assemblages of flies that are frequent visitors to blue-violet, pink or red flowers, but these often have tubular corollas and hidden nectar, thus only flies with elongate, specialized mouthparts can forage from them (Knuth 1906-1909; Robertson 1928; de Buck 1990; Proctor et al. 1996; Goldblatt et al. 2001; Kastinger & Weber 2001; Goldblatt & Manning 2007a, b; Willmer 2011). In numerous South African flowers visited predominately by long-tongued flies, a high incidence of scentless red, pink, or blue-violet flowers, which would usually suggest pollination by birds, has been recorded (Rebelo & Siegfried 1985; Goldblatt et al. 2001; Goldblatt & Manning 2007a, b). In addition to Bombbyliidae, Nemestrinidae and Tabanidae, long-tongued Syrphidae, Conopidae, Empididae and Tachinidae are able to feed from these deep-tubed flowers, as well as from shallow, unspecialized ones. Observations by numerous investigators have shown the predilection of bombyliids for bluish flowers, which are often pollinated by bees (Knuth 1906-1909; Knoll 1921; Scott 1953; Kevan & Baker 1999; Kastinger & Weber 2001).

Despite the generalizations above, floral colour preferences vary both spatially and temporally, depending on the availability of flowers, floral rewards, competitors, and those factors in combination. Fruit flies react differently to the colours and scents of natural and artificial (trap) fruits depending on age and sex (Owens & Prokopy 1986; Duan & Prokopy 1994). Physiologically-induced changes (Brown 1993) and sexual differences in flies’ reactions to flowers may be especially important in some of the mutualistic relations. In some flowers, corolla colour changes over time, and the colour phase of the rewarding flowers is often more attractive to naive visitors than the colour of spent flowers (Kugler 1950; Cameron & Troilo 1982; Gori 1983; Casper & La Pine 1984; Cruzan et al. 1988; Zietsman 1990; Robertson & Lloyd 1993; Weiss 1991; Lunau 1996).

Visual advertisements - Size and form

There is a positive correlation between the size of flowers, inflorescences or patches of bloom, and attractiveness to insects, and small, inconspicuous flowers are often aggregated into large inflorescences to attract pollinators more effectively (Faegri & van der Pijl 1979; Kevan & Baker 1983; Dafni et al. 1997). However, this relationship has been investigated in detail for only a few fly-visited flowers. Andersson (1991) showed that ray and inflorescence size of *Achillea ptarmica* L. (Asteraceae) have additive effects on the attraction of Syrphidae (*Eristalis, Syrphus, Volucella*). Abbott & Irwin (1988) found that ligulate inflorescences were visited much more frequently by Syrphidae than were the smaller non-ligulate ones in polymorphic populations of *Senecio vulgaris* L. (Asteraceae). The visitation rate by the tachinid *Tropholyistria buttonii* (Malloch) to *Myosotis colensoi* (Kirk) Macbride (Boraginaceae) in New Zealand increased linearly with display size, but because the number of flowers visited on a plant concomitantly decreased, visitation rate to individual flowers remained more or less constant, regardless of display size (Robertson 1992; Robertson & Macnair 1995). The number of insect visits per unit time to clones of Edelweiss (*Leontopodium alpimum* Cass. (Asteraceae)) remained constant across all clone sizes, decreasing the chance of a given flower being visited in larger clones, but enhancing out-crossing (Erhardt 1993). Golding et al. (1999) noted that visits by *Eposyrphus baleatus* (Degueur) (Syrphidae) to variously manipulated flowers of *Brassica rapa* oleifera (*Brassicaceae*) were more strongly related to the number of anthers present than with the size of corolla display.

Moller (2000) indicated that floral symmetry is perceived by pollinators, and that symmetrical (radial or bilateral) flowers are preferentially visited and pollinated over flowers that deviate from symmetry. He suggests that deviations represent developmental instability and reflect reduced Darwinian fitness, and thus may be correlated with minor floral rewards. Nevertheless, asymmetries in flowers are more common than are generally recognized (Dafni & Kevan 1996) and can result from physical corolla damage or natural variation even in populations of plants bearing flowers that are described as symmetrical. However, the nature of the optical boundary between a flower and its background (i.e., edge effect) may also be important in attracting foraging flies. Consideration of edge effects also apply to flowers with broken outlines and appendages that may further stimulate the eyes of foraging flies (Faegri & van...
der Pijl 1979), but the data are equivocal. Kugler (1950) detected no innate preference of *Eristalis* for star-shaped over circular models of flowers of the same size, although they were able to discriminate between them. Others have found preference for flowers with dissected outlines over those with simple outlines (e.g., Kugler 1956; Johnson & Dafni 1998). Despite the findings noted above, the generally held view that flowers with broken outline lengths are more visible to foraging anthophiles requires further critical examination and empirical testing.

Visual advertisements - Guides, staminodes and motion

Many flowers have visual guides that direct the foragers to hidden rewards, and ensure contact with the stigma, stamens or both (Sprengel 1793; Dafni & Giurfa 1999; Lunau 2006) (Tab. 5). These guides also affect the foraging efficiency of the visitor and have a positive effect on pollinator attraction and successful interaction with the flowers (Kevan & Baker 1983; Dafni et al. 1997; Hansen et al. 2012). Johnson & Dafni (1998), for example, showed that landing and orientation of *Usia bicolor* Macquart (Bombyliidae) to the centres of models were encouraged by converging lines. Dinkel & Lunau (2001) used circular dummy flowers to show that inexperienced *Eristalis tenax* were quicker to find a potential food source in the centre if black line markings were present than if not. In contrast to the yellow, UV-absorbing central dot used as a potential food source, the black line markings were never touched with the proboscis. A row of yellow dots instead of black lines increased the handling time of *Eristalis tenax* flies, because the yellow dots are probed with the proboscis. On natural flowers the probing of a number of floral guides may intensify the movements of the flies and thus increase the chance of touching anthers and stigma. Vertically-oriented staminodia are often important structures that act as landing platforms, and may act as a physical guide to nectaries at the base of the flower (Brew 1987; Pellmyr 1992) or themselves exude nectar (Anderson & Hill 2002), and their reflectance patterns may play a role in attraction of Diptera (Kugler 1951; Percival 1965; Young et al. 1987a). Sparkling or glistening surfaces may attract some flies (Kugler 1951; Percival 1965; Patt et al. 1989; Bänziger 1996). Nectar guides often offer contrast in the UV (Kugler 1963; Lunau 2000; Kevan et al. 2001), to which insects are sensitive (Bishop 1974; Kevan & Backhaus 1998).

Some flowers take advantage of the aggregation instinct of insects (Elvers 1980; Morse 1981) and trick foragers into believing that there are already insects feeding at the flower. Dark spots or florets may give the illusion of small, crawling insects being present and attract certain floral visitors (Dodson 1962; Weismann 1962; Faegri & van der Pijl 1979; Eisikowitch 1980; McDonald & van der Walt 1992; Westmoreland & Muntan 1996; Johnson & Midgley 1997; Johnson & Dafni 1998; Lamborn & Ollerton 2000). However, the dark central florets of the wild carrot *Daucus carota* L. have been shown to repel egg-laying females of the

| Table 5. Fly attraction to two dimensional (pigment pattern) and three-dimensional guides in selected flowers. |
Plant Taxon	ES	PP V	PU V	St	VA	Fly Taxon	Reference
Araceae						Mycetophilidae Sciaridae	Vogel & Martens 2000
Asclepiadaceae						Megapalpus nitidus Macq.,	Johnson & Midgley 1997;
Asteraceae						M. capensis Wiedemann	Ellis & Johnson 2010;
Brassicaceae						(Bombyliidae)	Duncan & Ellis 2011
Geraniaceae						Prosocia sp.	Hansen et al. 2012
Iridaceae						(Nemestrinidae)	
Linaceae						Johnson & Dafni 1998	
Malvaceae						Young 1984; Young et al. 1987b	
Orchidaceae						Young 1984; Young et al. 1987b	

* ES = epidermal sculptures on petals/sepal (includes cilia, hairs and raised cells) PPV = pigmentation pattern visible to human eyes, PUV = Ultraviolet pigmentation pattern, St = staminodes, VA = vibrating appendage
gall midge *Kiefferia pericarpicola* by mimicking galls, and thus play a role for reducing infestation (Polte & Reinhold 2013). Physical vibration of flowers or flower parts as they move in the wind may also serve as an attractant, and some flowers accentuate their movement with motile appendages (Tab. 5) and may attract flower-visiting Diptera (Percival 1965; van der Pijl & Dodson 1966; Kevan 1970; Kevan & Baker 1983; Young 1984; Young et al. 1987a).

Chemical advertisements

Flies perceive chemical stimuli in a way that is unique among insects. In contrast to bees and other insects, many flies have no flagelliform antennae with which to touch floral surfaces. Flies have taste sensilla on the labellum, the tarsi of the forelegs and the ovipositor. Fly taste sensilla have four receptor cells: a water receptor, a salt receptor, a sugar receptor and an anion receptor. Taste sensilla have an additional mechanoreceptor providing those flies with the combined gustatory and tactile information of potential food touched with the tarsi or with the extended proboscis (Hansen 1978; Hanson 1987). Using an electrophysiological tip-recording technique for single labellar chemosensory hairs of *Eristalis tenax*, Wacht et al. (2000) showed that pollen extract and the amino acid proline stimulate the salt receptor, but in contrast to salt stimuli, do not inhibit the water receptor at the same time. Thus, the across-fibres pattern of excitation of taste receptors is responsible for the perception of phagostimulants in pollen.

Odours are often liberated from flowers, either to attract pollinators from a distance or to direct them to certain portions of the flower (Dobson 1994; Dobson & Bergström 2000; Knudsen et al. 2006; Willmer 2011). However, Diptera are usually attracted to flowers by a combination of visual and olfactory stimuli (e.g., Beaman et al. 1988). Generally it is thought that long-range attraction is visual (but see Ciurfa et al. 1996; Kevan & Backhaus 1998) and that odour acts nearer the flower (Kugler 1951, 1970), at least in diurnally active flowers. However, Lieberman (1925) showed that numerous species of muscoid flies approached covered plants of *Cicuta* (Apiaceae) only when they passed downwind of them. Others have observed the attraction of nocturnal mosquitoes to flowers or floral extracts, and their downwind approach in the absence of visual stimuli suggests airborne attractants (Brantjes & Leemans 1976; Jeppson & Healy 1988; Healy & Jeppson 1988).

Although difficult to see in the field, zig-zag flights from flower to flower are indicative of olfactory orientation, whereas direct flights, regardless of wind direction, signify visual orientation. At close range, odour can act similarly to visual nectar guides, by directing the visitor to the resources, and position them appropriately to contact sexual structures and effect pollination (Brantjes 1981; Young 1984, 1985; Young et al. 1984, 1987a, b; Patt et al. 1989). Strength of attractiveness of the odour is apparently proportional to hunger (i.e. time since previous feeding; Jhumur et al. 2006).

Flower-visiting Diptera can be attracted by odours that are either pleasant or unpleasant to human beings (Tab. 6), but the latter are often accented in the literature in connection with deceitful attraction and the syndrome of sapromyiophilia. There is a preference among many Diptera for “unpleasant” odours (Galen & Kevan 1980; Galen 1983, 1985; Galen & Newport 1988; Bänziger 1996; Pombal & Morellato 2000; Goldblatt et al. 2009). Nonetheless, numerous fly-visited flowers have a sweet, musty, or yeasty scent that is devoid of amine components (e.g., indole and scatole) associated with unpleasant smells (Erhardt 1993; Meve & Liede 1994; Johnson & Steiner 1995; Patt et al. 1995; Pombal & Morellato 2000; Goodrich et al. 2006; Hannson et al. 2010). Roy & Raguso (1997) did not find a strong attraction of some flies to indole, further indicating that flies respond differently to floral odours.

Certain Diptera do not find mates at flowers, but obtain rewards from flowers in the form of chemical precursors to sexual attractants. The gathering of floral scents is known among the Euglossineae (Apoidea), in which it is used by the males to attract mates (Eltz et al. 1999). In the Diptera, possibly the best studied is the collection of the scent components methyl eugenol, zingerone, and related phenylpropanoids, for use in pheromone synthesis by some male *Bactrocera* (Tephritidae) (Nishida et al. 1997, 2004; Shelly 2001; Tan et al. 2002, 2006, 2011; Tan & Nishida 2007, 2012). Some *Bactrocera* also collect raspberry ketone, another phenylpropanoid, as a defensive compound against predators (Tan & Nishida 2005).

Tactile advertisements and guides

Although texture has been invoked as a sensory cue by which pollinators can orient on flowers, and distinguish between flowers of different species (Kevan & Lane 1985), the sense of touch in Diptera is hardly studied. The fly *Exorista japonica* Townsend (Diptera: Tachinidae) may use, through tarsal examination, the texture and curvature of substrates in oviposition behaviour (Tanaka et al. 1999). Vogel & Martens (2000) noted that tactile cues characteristic of fungi may be important in attracting Mycetophilidae and Scaridae to spathes of *Arisaema* spp. (Araceae), and Kevan (1970) observed mosquitoes using grooves in the corollae of *Pedicularis* (Scrophulariaceae) flowers to guide their mouthparts to the nectar. Pollen texture and exine ornamentation may play a role in feeding by anthophiles, as in *Eristalis tenax* (Wacht et al. 2000).

FLORAL ATTRACTION OF FLIES BY DECEIT

The classification of deceptive attraction for purposes of pollination used below generally follows that presented in the review by Dafni (1984). Many mutualisms are open to “cheating” by one partner or the other, and plant-pollinator interactions are no exception (Dafni 1984; Addicott 1998; Schiestl et al. 1999; Paxton and Tengö 2001; Willmer 2011). In many instances flowers mimic the cues used by flies to locate other flowers or substrates that they normally visit for sustenance or oviposition, activating the innate or learned searching behaviour of prospective visitors to search for a nonexistent reward. Pollen or nectar rewards may be available to the visitor, but the advertised reward is not.
Table 6. Olfactory attractants in selected fly-pollinated flowers.

Plant Family	Plant Taxon	Dominant Components*	Odour Description**	Fly Taxon	Reference
Annonaceae	*Monodora tenuifolia* Benth.	U	F	Various	Gottsberger et al. 2011
	Uvariospis congolana (De Wild.) R.E. Fr.	U	F	Various	Gottsberger et al. 2011
Apocynaceae	*Huernia hystrix* N.E.Br.	B, Ph	F	Calliphoridae, Sarcophagidae, Muscidae	Johnson & Jurgen 2010
	Orbea variegata Haw.	AD, Su	F	Calliphoridae, Sarcophagidae, Muscidae	Johnson & Jurgen 2010
	Orbea verrucosa (Masson.) L.C.Leach	M	F	Calliphoridae, Sarcophagidae, Muscidae	Johnson & Jurgen 2010
	Stapelia gigantea N.E.Br.	M, Su	F	Calliphoridae, Sarcophagidae, Muscidae	Johnson & Jurgen 2010
	Stapelia leendertziae N.E.Br.	Su	F	Calliphoridae, Sarcophagidae, Muscidae	Johnson & Jurgen 2010
Araceae	*Alocasia* spp.	B, T	N	*Colocasiomyia* spp.	Miyake & Yafuso 2005
	Arum italicum Mill.	AL, AP	F	Psychodidae, Sciartiidae, Chironomidae	Diaz & Kite 2002; Albre et al. 2003
	Arum maculatum L.	AD, AL, AP	F	*Psychoda phalaenoides* L. (Psychodidae), *Smittia pratorum* Goetghbuer (Chironomidae)	Diaz & Kite 2002; Albre et al. 2003
	Arum cyrenaicum Hruby, *Arum concinnum* Schott	AL, AP	F	Various	Urru et al. 2010
	Colocasia esculenta (L.) Schott	Ph	N	*Bactrocera dorsalis* (Hendel) (Tephritidae)	Tan & Nishida 2012
	Spathiphyllum cannasifolium (Dryand. ex Sims) Schott	Ph	N	*Bactrocera spp.* (Tephritidae)	Tan & Nishida 2012
	Symlocarpus foetidus (L.) Nutt.	P, F	Various	Kevan 1983b	
Aristolochiaceae	*Aristolochia cymbifera* Mart. & Zucc.	F	Calliphoridae, Sarcophagidae, Muscidae	Johnson & Jurgen 2010	
	Aristolochia gigantea Mart. & Zucc.	AL, P	Megaselia spp., others (Phoridae)	Hipolito et al. 2012	
	Aristolochia grandiflora Vahl	F	Calliphoridae, others	Burgess et al. 2004	
	Aristolochia littoralis Parodi	F	Phoridae	Hall & Brown 1993	
Asteraceae	*Achillea millefolium* L.	M	Culicidae	Healy & Jepson 1988; Jepson & Healy 1988; Healy & Jepson 1988; Jepson & Healy 1988; Primante & Dotterl 2009	
	Leucanthemum vulgare Lam.	M	Culicidae	Healy & Jepson 1988; Jepson & Healy 1988; Healy & Jepson 1988; Jepson & Healy 1988; Primante & Dotterl 2009	
	Cirsium arvense (L.) Scop	B, M	Episyrphus balteatus De Geer (Syrphidae)	Endress 2001; Thien et al. 2009	
Austrobaileyaceae	*Austrobaileyia scandens* C.T. White	F	Drosophilidae	Endress 2001; Thien et al. 2009	
Caryophyllaceae	*Silene oette* (L.) Scop	B, M	Culicidae	Brantjes & Leemans 1976, Jhumur et al. 2006, 2008	
Euphorbiaceae	*Antidesma montanum* Blume	P	Chrysomya sp. (Calliphoridae), *Drino* sp. (Tachinidae), Spilogona sp., Mitroplata sp. (Muscidae)	Li & Zhang 2007	
Fabaceae	*Acacia cyclops* A. Cunn. ex G. Don	AP, T	Dasineura dielsi Rubsaamen (Cecidomyiidae)	Kotze et al. 2010	
TABLE 6 continued

Plant Family	Plant Taxon	Dominant Components*	Odour Description**	Fly Taxon	Reference
Hyacinthaceae	Eucomis humilis Baker, Eucomis bicolor Baker	Su	F	Calliphora, Lucilia (Calliphoridae), Scathophaga (Sarcophagidae), Muscidae, Tachinidae	Shuttleworth & Johnson 2010
Iridaceae	Ferraria spp.	AL, Ph	P, F	Bactrocera dorsalis (Hendel) (Tephritidae)	Goldblatt et al. 2009, Johnson & Jurgens 2010
Liliaceae	Scorliopus bigelovii Torr.	U	F	Mycetophilidae	Mesler et al. 1980
Loganiaceae	Fagraea berteriana A. Gray	Ph, AL		Bactrocera spp. (Tephritidae)	Tan et al. 2002, 2006, 2011; Nishida et al. 2004; Tan & Nishida 2005, 2007, 2012
Orchidaceae	Bulbophyllum spp.	Ph, AL	P	Bactrocera spp. (Tephritidae)	Tan & Nishida 2012
	Epipactis palustris (L.) Crantz.			Syrpta pipiens L. (Syrphidae)	Brantjes 1981
	Listera cordata (L.) R. Br.	F		Mycetophilidae	Ackerman & Mesler 1979
	Paphiopedilum villosum Lindley	F		Syrphidae	Bänziger 1996
	Phalenopsis bellina (Rchb.f.) Christenson	Ph	N	Bactrocera spp. (Tephritidae)	Tan & Nishida 2012
	Phalenopsis violacea H. Witte	Ph	N	Bactrocera spp. (Tephritidae)	Tan & Nishida 2012
	Platanthera stricta Lindley			Empididae	Patt et al. 1989
	Satyrium pumilum Thumb.	Su, B	F	Sarcophagidae	van der Niet et al. 2011
	Schizochilus angustifolius Rolfe.	B		Orthellia sp. (Muscidae)	van der Niet et al. 2010
	Schizochilus bulbinella Rchb.f.	B		Tephritidae, Chloropidae, Allotrichoma pluvialis Giordani Soaka (Ephydridae)	van der Niet et al. 2010
	Schizochilus zeyheri Sond.	B		Linnaemia sp. (Tachinidae), Orthellia sp. (Muscidae)	van der Niet et al. 2010
Polemoniaceae	Polemonium viscosum Nutt.				
Rafflesia	Rafflesia kerrii spp.	AD	F	Calliphoridae	Beaman et al. 1988; Bänziger 1991; Meve & Liede 1994
Ranunculaceae	Trollius europaeus L.	ST, others		Chiaatychaetia spp. (Anthemiyidae)	Ibanez et al. 2010
Rutaceae	Metrodorea nigra A. St.-Hil.	F		Pseudoptiloleps nigripoda (Muscidae) Fannia sp. (Fanniidae)	Pombal & Morelatto 2000
	Metrodorea stipularis Mart.	P		Phaenicia exima (Calliphoridae); Pseudosmia spp., Orodea obesa (Syrphidae)	Pombal & Morelatto 2000
Schisandraceae	Kaduna longipesunculata Finet & Gagnepain	AP	N	Megasoma sp. (Cecidomyiidae)	Yuan et al. 2008; Thien et al. 2009

* AD = amine derivatives, AL = Alcohols, AP = aliphatics, B = benzenoids, M = monoterpenoids, Ph = phenylpropanoids, ST = sesquiterpenoids, Su = sulfur compounds, T = terpenes, U = unidentified.
** P = pleasant-agreeable, F = foul, N = neutral
Foul-smelling flowers

Flowers that emit odours of carrion and dung deceptively attract a particular guild of Diptera and Coleoptera that seek decaying organic matter for food and oviposition (Bernhardt 1991). Mimosas, for example, *Rafflesia* spp. (Rafflesiaceae) are usually considered deceptive (Beman et al. 1988), but *Rafflesia kerrii* Meijer apparently delivers substantial rewards to its calliphorid pollinators (Bänziger 1991; see also Meve & Liede 1994). The flowers attract pollinators by their form and "cadaveric stench of rotting snakes", so acting as a sensory trap upon flies searching for food or a brood site when neither of these are present. In addition, a fruity scent arising from the center of the flower (not previously reported because it was hidden by the stench) may deter the flies from laying doomed eggs. The anthers of male flowers exude a nutritious pollen mush that is likely consumed by the flies, and flowers of both sexes secrete a potentially rewarding slime. Some mimetic trap flowers do provide an apparent reward for visitors, but it may not be used, such as nectar in *Arum maculatum* L. (Lack & Diaz 1991). In trap flowers such as aroids, stigmatic exudates and nectaries may function to increase the lifespan of the visitor by maintaining the relative humidity of the chamber (Daumann 1971; Wolda & Sabrosky 1986).

Foul-smelling flowers

...
Plant Family	Plant Taxon	Mode of Deceit*	Fly Taxon	Reference
Apiaceae	Daucus carota L.	AM	Muscidae	Eisikowitch 1980; Westmoreland & Muntan 1996
Apocynaceae	Cerapegia dolichophylla Schltr.	FM	Desmonetopora sordida (Fällen) (Milichiidae)	Heiduk et al. 2010
Araceae	Arum exomphaloides	FM	Ceratopogonidae	Knoll 1926
	Arum italicum Mill.	BSM	Psychodidae, Sciaridae, Chironomidae	Diaz & Kite 2002; Albre et al. 2003; Chartier et al. 2011
	Arum maculatum L.	BSM	Psychoda phalaenoides (Psychodidae), Smittia pratorum (Chironomidae)	Proctor & Yeo 1973; Lack & Diaz 1991; Diaz & Kite 2002; Albre et al. 2003; Chartier et al. 2011
	Arum palaestinum Bois.	BSM, FM	Drosophila spp., Zapreionus spp. (Drosophilidae)	Stoekl et al. 2010
	Arum pictum L.	BSM	Sphaeroceridae	Quilichini et al. 2010
	Arisaema spp.	BSM	Psychodidae, Sciaridae, others	Vogel & Martens 2000
	Arisaema triphyllum (L.)	BSM	Psychodidae, Sciaridae, others	Barriault et al. 2010
	Arisarum spp.	BSM	Psychodidae, Sciaridae, others	Barriault et al. 2010
	Helicodiceros muscivorus (Schott ex. K. Koch)	BSM	Calliphora spp., Lucilia spp. (Calliphoridae), Fannia sp. (Fannidae)	Stensmyr et al. 2002; Seymour et al. 2003
Aristolochiaceae	Aristolochia baenzigeri	BSM?	Phoridae	Disney & Bänziger 2009
	Aristolochia grandiflora	BSM	Calliphoridae, others	Burgess et al. 2004
	Aristolochia littoralis Parodi	BSM, DF?	Phoridae	Hall & Brown 1993
	Aristolochia pilosa H. B. & K.	BSM	Chloropidae, Milichiidae	Wolda & Sabrosky 1986
	Aristolochia watsonii (Wooton & Standley) Asarum hartwegii S. Wats.	FM	Ceratopogonidae	Crosswhite & Crosswhite 1984
	Heterotropa spp.	BSM	Calliphora spp., Lucilia spp. (Calliphoridae), Fannia sp. (Fannidae)	Stensmyr et al. 2002; Seymour et al. 2003
Asteraceae	Gorteria diffusa Thunb.	DF	Megapalpus nitidus Macq., M. capensis Wiedemann (Bombyliidae)	Johnson & Midgley 1997; Ellis & Johnson 2010
	Dimorphotheca phvidis (L.) Moench	DF?	Megapalpus spp., Usia bicolor Macq. (Bombyliidae)	Johnson & Midgley 1997
Geraniaceae	Pelargonium tricolor Curt.	NM, DF?	Megapalpus spp., Usia bicolor Macq. (Bombyliidae)	McDonald & van der Walt 1992; Johnson & Midgley 1997
Gnetaceae	Gnetum cuspidatum Blume	BSM	Homoneura (Lauxaniidae), Anopheles (Culicidae), others	Kato et al. 1995
Linaceae	Linum pubescens Banks & Solander	DF?	Usia bicolor Macq.	Johnson & Midgley 1997
Orchidaceae	Bulbophyllum variatum Thouars	FM	Prosoeca spp. (Nemestrinidae), Philodice andrenoides Usher (Tabanidae)	Johnson et al. 2003
	Brownleea galpinii (Bolus) H.P. Linder			
	Bulbophyllum variatum Thouars	FM	Prosoeca spp. (Nemestrinidae), Philodice andrenoides Usher (Tabanidae)	Humeau et al. 2011
Table 7 continued

Plant Family	Plant Taxon	Mode of Deceit*	Fly Taxon	Reference
Corybas spp.	BSM	Dressler 1981		
Cypripedium debile	BSM	Dressler 1981		
Reichb. Cypripedium fargesii	FM	Agathomyia sp. (Platyzeidae)	Ren et al. 2011	
Franch. Cypripedium reginae	PM	Syrphus torvus Osten-Sacken (Syrphidae)	Vogt 1990	
Walter Disa cephalotes Rchb.f.	FM	Prosoeca spp. (Nemestrinidae), Philolice androenoides Usher (Tabanidae)	Johnson et al. 2003	
Disa draco (L.f.) Sw.	FM	Moegistorhynechos longirostris Wiedmann (Nemestrinidae)	Johnson & Steiner 1997	
Disa harveryana Lindl.	FM	Philolice rostrata Linnaeus (Tabanidae)	Johnson & Steiner 1997	
Disa karooica Johnson & Linder	FM	Philolice gulosa Wiedmann (Tabanidae)	Combs & Pauw 2009	
Disa nervosa Lindl.	FM	Philolice aethiopica (Thunberg) (Tabanidae)	Johnson & Morita 2006	
Disa nivea H.P. Linder	FM	Prosoeca ganglbaueri (Lichtwardt) (Nemestrinidae)	Anderson et al. 2005	
Disa pulchra Sond.	FM	Philolice aethiopica (Thunberg) (Tabanidae)	Johnson 2000; Jersakova & Johnson 2006	
Dracula spp.	BSM	Zyglothrix, Flatoedrosphila (Drosophilidae)	Dressler 1981; Endara et al. 2010	
Epipactis consimils Don.	BSM	Sphaerophoria rupelent Wiedmann, S. scripta L. (Syrphidae)	Ivri & Dafni 1977	
Epipactis veratrifolia Don.	BSM	Ischiodon aegyptus Wiedmann, Eupeodes corollae (F.), Episyrphus balteatus De Geer (Syrphidae)	Stockl et al. 2011	
Goevenia utriculata (Sw.) Lindl. Dressler	FM	Salpingogaster spp. (Syrphidae)	Pansarin 2008	
Lepanthes spp.	DF	Bradysia sp. (Sciaridae)	Blanco & Barboza 2005	
Masdevallia spp.	BSM			Dressler 1981
Phyllostachys villosa (Lindl.) Stein	NM	Various	Bänziger 1996	
Phragmipedium pearcei (Rchb.f.) Rauh & Senghas	BSM	Ocyptamus antiphates (Walker) (Syrphidae)	Pemberton 2011	
Parnassia palustris L.	NM	Sarcophagidae	van der Niet et al. 2011	
Thelymitra antennifera Hook.	PM	Syrphidae	Dafni & Calder 1987	
Rafflesia kerrii spp.	BSM	Calliphoridae	Bänziger 1991; Meve & Liede 1994	
Rosaceae Rubus chamaemorus L.	CD	Syrphidae	Agren et al. 1986; Bierzychudek 1987	
Santalaceae Ossia alba L.	CD	Muscidae, Mycetophilidae	Aromme et al. 1993	
Saxifragaceae Parnassia palustris L.	NM	Calliphoridae, Syrphidae	Kugler 1956	

* AM = insect aggregation mimic, BSM = brood site mimic, CD = cryptically dioecious, DF = dummy female (pseudocopulatory mimic), FM = food mimic (incl. mimics of rewarding flowers), HM = oviposition host mimic, NM = nectar/nectary mimic, PM = pollen mimic.
that the flies oviposit, and in the process pick up pollen blossom in bolete-mimics, and the deception is so complete. Fungoid lamellae and pores are found on parts of the guidance of the exploring flies once they alight on the flower.

Pseudonectar and pseudopollen

Pseudonectaries (organs resembling nectaries but not producing nectar) take the form of glistening, shiny, or refractile structures or areas on the blossom, and may distract pollinators from true nectaries, if they exist (Faegri & van der Pijl 1979; Chase & Peacor 1987; McDonald & van der Walt 1992; Vogel 1993; Bänziger 1996; Pemberton 2010). The exact role of the pseudonectaries in reproduction is unclear in many cases (Tab. 7). Glistening structures, such as the "mesmerizing wart" of Paphiopedilum villosum (Lindl.) Stein (Orchidaceae) may lure visitors into a trap where they contact the pollen (Bänziger 1996), or possibly distract less desirable visitors from rewards intended for pollinators, as in Parnassia palustris L. (Saxifragaceae) (Kugler 1956). Many flowering plants have a corolla bearing yellow, UV-absorbing spots that imitate the colour of pollen and anthers (Lunau 2000; Parsons 2008). Visitors attempting to collect pollen from these spots may be maneuvered into contact with the real pollen, and thus serve as a form of floral guide although no reward is given (Dafni & Calder 1987; Vogt 1990). The petals of some Saxifraga flowers (Saxifragaceae) display a particular type of floral guide consisting of an array of small spots on the petals that are apically red and basally yellow and combined with red or white pollen and anthers. Using artificial flowers that simulated this colour pattern, naïve Eristalis tenax L. (Syrphidae) were selectively directed by the transition of colour from red over orange to yellow and moved towards the yellow coloured dots more often than towards the red coloured dots (Lunau et al. 2005). In actual flowers, attraction to the yellow spots acts to bring the pollen-foraging fly into contact with the actual pollen, which has less visibility or contrast, without it being eaten. Some plants have floral staminodes that produce pseudopollen (Tab. 7). The material may be used to provision brood by bees (Apoidea), but actual feeding by Diptera on pseudopollen has not been reported.

Mimicry of rewarding flowers by non-rewarding flowers

In "mistake pollination" male and female unisexual flowers differ in the reward that they offer, and potential pollinators would be less likely to visit the poorer-rewarding flowers if they were distinguishable, adversely affecting cross-pollination (Baker 1976). The most common example is the lack of pollen in female flowers, which then mimic the appearance of male flowers (e.g., have sexually functionless anthers), and attract visitors seeking the missing reward (Agrén et al. 1986; Bierzychudek 1987; Aromme et al. 1993; Charlesworth 1993; Yuan et al. 2007, 2008). Eristalis tenax and other Syrphidae visit the rewarding flowers of male plants of "cryptically dioecious" Rosa setigera Michx. (Rosaceae) in southern Ontario, Canada, early in the morning, but seem to be displaced to the female plants by bees later in the day. The malformed and invisible "pollen"
from the female plants probably provides some nutrition. This strategy provides systematic pollen transfer from males to females over the course of the day, but the relative importance of the native anthophiles to the flowers of this plant for pollination could not be assessed given the preponderance of European honey bees (Kevan et al. 1990).

There are also examples of heterospecific non-rewarding flowers that are pollinated via their mimicry of rewarding flowers (Tab. 7). At a community level, nectarless plants may ensure visitation if their flowers are similar to those of rewarding species, in a form of Batesian mimicry. There are numerous examples, particularly among the tubular flowers visited by long-tongued Nematriudae, Bombyliidae, and Tabanidae in southern Africa, of plant species that offer no nectar reward (e.g., Schiestl 2005; Pemberton 2010; see Tab. 7). These plants often co-occur with a suite of plants that have similar, but nectariferous flowers, and it has been proposed that floral mimicry alone ensures visitation to the nectarless species. This system encourages out-crossing in the mimic and acts as an evolutionary selective force in maintaining populations of both model and mimic.

Sexual deception

Some flowers mimic the appearance of female insects or emit scents that mimic sex pheromones to attract mates, sometimes at concentrations much greater than the female insects themselves (Schiestl 2005) (Tab. 7). The best known example is pseudocopulation by male bees and wasps with insects themselves (Schiestl 2005). Pseudocopulation is less widely documented in the Diptera, but is a possible mechanism in Microdon hoverfly pollination of some Ophrys orchids (Paulus 2005), and confirmed in sciarid pollination of several Lepanthes species (Blanco & Barbosa 2005; Pemberton 2010). There is also evidence that spots in certain Asteraceae, Geraniaceae, and Linaceae are reflective mimics of female bombyliids that may be attractive to males seeking mates (Johnson & Midgley 1997; Ellis & Johnson 2010).

Floral larcenists

Some insects are ill-adapted for the pollination of flowers they visit (Faegri & van der Pijl 1979; Inouye 1980), and may become nectar (or pollen) robbers or thieves (see Inouye 1980 for the terminology of floral larceny). Robbers bite holes at the bases of corollas in order to reach hidden rewards. Because they do not interact with the reproductive structures of the flower in obtaining the reward, they do not cross-pollinate the flower. Although it is unlikely that many Diptera are nectar robbers due to lack of suitable mouthparts, many small Diptera are probably secondary robbers that utilize the holes created by primary robbers. For example, Kevan (unpubl.) often noted mosquitoes feeding through holes made by bumble bees (Bombus spp.) in the bases of the tubular flower of Mertensia ciliata (Torr.) G. Don (Boraginaceae) in the subalpine zone of Colorado. Other nectar (or pollen) thieves may enter flowers to obtain nectar without damaging the flower, but also without contacting anthers or stigmas.

Any fly species that commonly visits a plant for its rewards, but seldom pollinates it, is a thief. For example, flies were the most common visitors of *Listera ovata* (L.) R. Br. (Orchidaceae) in Sweden, but they were considered unimportant as pollinators (Nilsson 1981). Poole (1993) lists some Musci that commonly visit flowers for nectar, but avoid contact with the anthers. *Delia flavitrons* Zetterstedt abuses the system even further: These flies feed, mate and lay their eggs on flowers of *Silene vulgaris* (Moench) Garcke (Caryophyllaceae), but do not pollinate them (Pettersson 1992). Given the small size of many Nematanocera and Acalyptatatrace, it is likely that they are often nectar and pollen thieves, but the importance of this behaviour to either the thieves or the flowers has been little-studied. Zhang et al. (2013) found that flies of the genus *Scatops* (Scatopsidae) were nectar thieves of *Corydalis ambigua* (Papaveraceae) flowers, and that their presence deterred the pollinating bumble bees (Apidae: *Bombus* sp.).

CONCLUSIONS

The taxonomic, ecological and behavioural diversity of Diptera as anthophiles is probably greater than for any other insect order, including Hymenoptera. Myiophily is a major component of pollination, and the floral features reflect fly biology. Nectar is the most sought reward by flies, many of whom depend on the energy it provides for flight, and often has other nutritional benefits such as amino acid content. Pollenphagy is widespread in Diptera, but not as universal as in Apoidea, which primarily collect pollen for larval provisioning. Pollen is highly variable in its chemical and nutritional characteristics, and even pollen form sometimes reflects the importance of pollination by Diptera. Flies also seek mates, prey, protection, and brood sites in flowers. They find and forage at flowers by visual and olfactory cues that present a complex array of attractants of differing relative importance depending on the types of flies, their sexes, their immediate nutritional needs, and innate and learned behaviours. Sensory capabilities of flies are outstanding among insects and are highly varied from colour vision to shape, size, and motion perception and contact chemoreception to olfactory discrimination.

Our synthesis illustrates the complexity of myiophily in terms of rewards and attractants, but elucidates some general and unifying principles. Overall, it is difficult to separate attractants and rewards, and even more difficult to tease apart the relative importance of the different sensory modalities of floral attraction to Diptera, or even for particular taxa within the order. Moreover, the complexity of myiophily, from neurophysiology to community ecology, begs for imaginative and synthetic research. There is need for metabolic and physiological studies on pollen and nectar consumption and neurophysiological studies on the perception of floral colour and odour stimuli for a better understanding of fly visitation and activity in pollination. It becomes evident that myiophily is not a clear-cut phenomenon but rather multifaceted, integrating over groups of Diptera with different physiological capabilities and different motivations to visit flowers. Especially, competition with bees has not been adequately studied, though many
Andersson S (1991) Floral display and pollination success in bee and fly pollinators (e.g., Kearns & Inouye 1994). The trade-offs for flowering plants that either specialise in fly pollination or compromise by attracting and nourishing bees as well as flies and use both as pollen vectors, are not well understood, even though “generalist” pollination by diverse arrays of pollinators has excited recent scientific interest (Waser et al. 1996; Herrera 1996; Ollerton 1996; Johnson & Steiner 2000).

ACKNOWLEDGEMENTS

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for support through research grants to PGK, and NSF grants IBN-98-14509, DEB-0238331, and DEB 0922080 to DWI, and through the Canadian Pollination Initiative (NSERC-CANPOLIN). This is CANPOLIN publication #75.

REFERENCES

Abbott RJ, Irwin JA (1988) Pollinator movements and the polymorphism for outcrossing rate at the ray floret locus in groundsel, Senecio vulgaris L. Heredity 60: 295-298.

Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Systematics and Evolution 222: 167-185.

Addicott JF (1998) Regulation of mutualism between yuccas and bee and fly pollinators (e.g., Kearns & Inouye 1994). The trade-offs for flowering plants that either specialise in fly pollination or compromise by attracting and nourishing bees are not well understood, even though “generalist” pollination by diverse arrays of pollinators has excited recent scientific interest (Waser et al. 1996; Herrera 1996; Ollerton 1996; Johnson & Steiner 2000).

Armstrong JA (1979) Biotic pollination mechanisms in the Australian flora - a review. New Zealand Journal of Botany 17:467-508.

Arnold SEJ, Savolainen V, Chitika L (2009) Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions 3:27-43.

Aronne G, Wilcock CC, Pizzolongo P (1993) Pollination biology and sexual differentiation of Oryris alba (Santalaceae) in the Mediterranean region. Plant Systematics and Evolution 188: 1-16.

Armoyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. 1. Pollination mechanisms and altitudinal variation. American Journal of Botany 69: 82-97.

Athuri JB, Ramana SPV R, Subba C (2004) Sexual system and pollination of Sterculia foetida Linn. Beiträge zur Biologie der Pflanzen 73:223-242.

Autrum H, Stumpf H (1953) Elektrophysiologische Untersuchungen über das Farbensehen von Calliphora. Zeitschrift für Vergleichende Physiologie 35:71-104.

Baker HG (1976) “Mistake” pollination as a reproductive system with special reference to the Caricaceae. In: Burley J, Styles BT (eds) Tropical trees: Variation, breeding and conservation. Academic Press, London, pp 161-69.

Baker HG, Baker I (1973a) Amino acids in nectar and their evolutionary significance. Nature 241:543-545.

Baker HG, Baker I (1973b) Some anthropological aspects of the evolution of nectar-producing flowers, particularly amino acid production in nectar. In: Heywood, VH (ed) Taxonomy and ecology, Academic Press, New York, pp 243-264.

Baker HG, Baker I (1983a) A brief historical review of the chemistry of floral nectar. In: Bentley B, Elias T (eds) The biology of nectaries. Columbia University Press, New York, pp 126-152.

Baker HG, Baker I (1983b) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York, pp. 117-41.

Baker HG, Baker I (1986) The occurrence and significance of amino acids in floral nectar. Plant Systematics and Evolution 151:175-186.

Bänziger H (1991) Stench and fragrance: unique pollination lure of a deceptive orchid. American Journal of Botany 66: 820-824.

Beaman RS, Decker PJ, Beaman JH (1988) Pollination of Rafflesia. Journal of South African Botany 42: 85-95.

Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Systematics and Evolution 222:293-320

Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Systematics and Evolution 156:159-176.

Bernhardt P, Sage T, Weston P, Azuma H, Lam M, Thien LB, Bruhl J (2003) The pollination of Trimenia moorei (Trimeniaceae): Floral volatiles, insect/wind pollen vectors and...
Borba EL, Semir J (2001) Pollinator specificity and convergence in Bishop LG (1974) An ultraviolet photoreceptor in a dipteran
Bischoff M, Campbell DR, Lord JM, Robertson AW (2013) The
Branquart E, Hemptinne JL (2000) Selectivity in the exploitation
Borkent CJ, Schlinger EI (2008) Flower-visiting and mating
Bierzychudek P (1987) Pollinators increase the cost of sex by
Brody AK (1992) Oviposition choices by a pre-dispersal seed
Brew AH (1987) The effect of colours and specific features of floral parts on the pollination of cocoa by ceratopogonid midges in Ghana. In: Proceedings of the 10th International Cocoa Research Conference. Santo Domingo, Dominican Republic. Cocoa Producers Alliance, Lagos, Nigeria. pp 307-310.
Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annual Review of Entomology 46:471-510.
Brodry AK (1992) Oviposition choices by a pre-dispersal seed predator (Hylemya sp.). II A positive association between female choice and fruit set. Oecologia 19:63-67.
Brodry AK, Monita SI (2000) A positive association between oviposition and fruit set: female choice or manipulation? Oecologia 124:418-425.
Browne LB (1993) Physiologically induced changes in resource-oriented behavior. Annual Review of Entomology 38:1-25.
de Buck N (1990) Bloembezoek en bestuivingsecoloog van zweefvliegen (Diptera, Syrphidae) in het bijzonder voor België. Studiedocumenten van het K.B.I.N. 167 pp.
Burgess KS, Singfield J, Melendez V, Kevan PG (2004) Pollination biology of Aristolochia grandiflora (Aristolochiaceae) in Veracruz, Mexico. Annals of the Missouri Botanical Garden 91:346-356.
Cameron RG, Troilo D (1982) Fly-mediated spore dispersal in Spodanthemum punctatum (Musci). Michigan Botanist 21:59-65.
Campbell DR, Bischoff, Lord JM, Robertson AW (2010) Flower color influences insect visitation in alpine New Zealand. Ecology 91:2638-2649.
Candy, DJ, Becker A, Wegener G (1997) Coordination and integration of metabolism in insect flight. Comparative Biochemistry and Physiology B 117:497-512.
Casper BB, La Pine TR (1984) Changes in corolla color and other floral characteristics in Cryptantha humilis (Boraginaceae): cues to discourage pollinators? Evolution 38:128-141.
Charlesworth D (1993) Why are unisexual flowers associated with wind pollination and unspecialized pollinators? American Naturalist 141:481-490.
Chapman RF (1998) The Insects: Structure and Function (4th edition). Cambridge University Press, Cambridge, UK.
Clartier M, Pelozuelo L, Giberneau M (2011) Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Annales de la Société Entomologique de France 47:71-77.
Chase MW, Peacock DR (1987) Crystals of calcium oxalate on the perianth of Stevia Sw. Lindleyana 2:91-94.
Chittka L, Menzel R (1992) The evolutionary adaptation of flower colours and insect pollinators’ colour vision. Journal of Comparative Physiology A 171:171-181.
Cloutreau M, Giberman M, Barabe D (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Botanical Journal of the Linnean Society 156:29-42.
Combs JK, Pauw A (2009) Preliminary evidence that the long-proboscid fly, Philolophus gulosa, pollinates Dipsa karooica and its proposed Batesian model Pelargonium stipulaceum. South African Journal of Botany 75:757-761.
Cooley JR (1995) Floral heat rewards and direct benefits to insect pollinators. Annals of the Entomological Society of America 88:576-579.
Corbet, PS (1972) The microclimate of Arctic plants and animals, on land and in fresh water. Acta Arctica 18:1-43.
Crepet WL (1979) Insect pollination: a palaeontological perspective. BioScience 29:102-108.
Crosewhite FS, Crosswhite CD (1984) The southwestern pipevine (Aristolochia watsonii) in relation to snakeroot oil, swallowtail butterflies, and ceratopogonid flies. Desert Plants 6:203-207.
Cruzan MB, Neal PR, Willson MF (1988) Floral display in Phyta incisa consequences for male and female reproductive success. Evolution 42:505-515.
Dadd RH (1973) Insect nutrition: current developments and metabolic implications. Annual Review of Entomology 18:381-420.
Dafni A (1984) Mimicry and deception in pollination. Annual Review of Ecology and Systematics 15:259-278.
Dafni A, Calder DM (1987) Pollination by deceit and floral mimmes in Thelymitra antennifera (Orchidaceae). Plant Systematics and Evolution 158:11-22.
Dafni A, Giurfa M (1999) The functional ecology of floral guides in relation to insects behaviour and vision. Int. J. Insect Sci. vol. 10 (ed) Evolutionary theory and processes: Papers in honour of Eviatar Nevo. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 1-22.
Dafni A, Kevan P (1996) Floral symmetry and nectar guides: ontogenetic constraints from floral development, colour pattern rules and functional significance. Botanical Journal of the Linnean Society 120:371-377.
Dafni A, Werker E (1982) Pollination ecology of Sternbergia clusiana (Ker-Gawler) Spreng. (Amaryllidaceae). New Phytologist 91:571-577.
Dafni A, Ivri Y, Brantjes NBM (1981) Pollination of Serapias roemeriana Briq. (Orchidaceae) by imitation of holes for sleeping solitary male bees (Hymenoptera). Acta Botanica Neerlandica 30:69-73.
Foster WA (1995) Mosquito nectar feeding and reproductive energetics. Annual Review of Entomology 40:443-474.

Free JB (1993) Insect pollination of crops (2nd edition). Academic Press, London UK.

Freeman BA (1966) Notes on conopid flies including insect host, plant and phoretic relationships (Diptera: Conopidae). Journal of the Kansas Entomological Society 39:123-131.

Freitas L, Sazima M (2003) Daily blooming pattern and pollination by syrphids in Strychninum vacciniiflorum (Iridaceae) in southeastern Brazil. Journal of the Torrey Botanical Society 130:55-61.

Galen C (1983) The ecology of floral scent variation in Polemonium viscosum. Ph. D. Dissertation., University of Texas, Austin.

Galen C (1983) The ecology of floral scent variation in Polemonium viscosum. Natt. (Polemoniaceae). Ecological Entomology 6:245-262.

Galer C, Newport ME (1988) Pollination quality, see d set, and recognition sites in Tolmiea menziesii (Saxifragaceae). Plant Systematics and Evolution 244:55-67.

Geldblatt P, Manning JC, Bernhardt P (2005) Observations on the floral biology of Melaspheara (Iridaceae: Crocoideae) is this monotypic genus pollinated by march flies (Diptera: Bibionidae)? Annals of the Missouri Botanical Garden 92:268-274.

Geldblatt P, Bernhardt P, Manning JC (2009) Adaptive radiation of the putrid plant: flower and its unusual pollinators. Plant Systematics and Evolution 278:53-65.

Golding, YC, Sullivan MS, Sutherland JP (1999) Visits to manipulated flowers by Episyrphus balteatus (Diptera: Syrphidae): partitioning of the signals and petals and anthers. Journal of Insect Behavior 12:39-46.

Goodrich KR, Zhra ML, Ley CA, Raguso RA (2006) When flowers smell fermented: the chemistry and ontology of yeasty floral scent in pawpaw (Asimina triloba. Annonaceae). International Journal of Plant Sciences 167:33-46.

Goot VS van der, Grabandt RAJ (1970) Some species of the genera Melanostema, Plantichorus and Pyrophaena (Diptera: Syrphidae) and their relation to flowers. Entomologische Berichte 30:135-143.

Goto DF (1983) Post-pollination phenomena and adaptive floral changes. In: Jones CE, Little RL (eds) Handbook of experimental pollination biology. Van Nostrand Reinhold, New York NY, pp 31-49.

Goto R, Yamakoshi G, Matsuzawa T (2012) A novel brood-site pollination mutualism: the root holoparasite Thunbergia sanguinea (Balanophoraceae) and an inflorence-feeding fly in the tropical rainforests of West Africa. Plant Species Biology 27:164-169.

Gottsberger G (1974) The structure and function of the primitive angiosperm flower—a discussion. Acta Botanica Neerlandica 23:461-471.

Gottsberger G, Meinke S, Porembski S (2011) First records of flower biology and pollination in African Annonaceae: Isolona, Piptostigma, Uvariodendron, Monodora and Uvariapus. Flora 206:498-510.

Goulson D, Woiwod IP (1998) Flower constancy in the hoverflies Episyrphus balteatus (Deger) and Syrphus ribesi (L.). Behavioral Ecology 9:213-219.

Greco C, Kevan PG (1994) Contrasting patch choosing by anthropophilous ambush predators: vegetation and floral cues for decisions by a crab spider (Misumena vatia) and males and females of an ambush bug (Phymata americana). Canadian Journal of Zoology 72:1583-1588.

Grimaldi D (1999) The co-radiations of pollinating insects and angiosperms in the cretaceous. Annals of the Missouri Botanical Garden 86:373-406.

Grimstad PR, DeFoliart GR (1974) Nectar sources of Wisconsin mosquitoes. Journal of Medical Entomology 11:331-341.

Hall DW, Brown BV (1993) Pollination of Aristolochia littoralis (Aristolochiaceae: Aristolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Annals of the Entomological Society of America 86:609-613.

Hansen K (1987) Insect chemoreception. In: Hazelbauer GL (ed) Taxis and behavior. J. Wiley, New York NY, pp 233-292.

Hansen DM, Van der Niet T, Johnson SD (2012) Floral signposts: testing the significance of visual ‘nectar guides’ for pollinator behaviour and plant fitness. Proceedings of the Royal Society B 279:634-639.

Hanson FE (1987) Chemoreception in the fly. In: Chapman RF, Bernays EA, Stoffolano JG (eds) Perspectives in Chemoreception
and Behaviour, Springer Verlag, Berlin, Heidelberg, New York, pp.99-122.

Hansson BS, Knaden M, Sachse S, Stensmyr MC, Wicher D (2010) Towards plant-odor-related olfactory neuroethology in *Drosophila*. Chemoeconomics 20:51-61.

Hardie RC (1979) Electrophysiological analysis of fly retina. I: Comparative properties of R 1-6 and R7 and 8. Journal of Comparative Physiology 129:19-33.

Haslett JR (1983) A photographic account of pollen digestion by adult hover flies. Physiological Entomology 8:67-171.

Haslett JR (1989a) Adult feeding by holometabolous insects: pollen and nectar as complementary nutrient sources for *Rhingia campestris* (Diptera: Syrphidae). Oecologia 81:361-363.

Haslett JR (1989b) Interpreting patterns of resource utilization; randomness and selectivity in pollen feeding by adult hover flies. Oecologia 78:433-442.

Haslett JR, Entwistle PF (1980) Further notes on *Eriozona syrphoides* (Fall.) (Diptera, Syrphidae) in Hafren Forest, mid-Wales. Entomologist's Monthly Magazine 116:36.

Healy TP, Jepson PC (1998) The location of floral nectar sources by mosquitoes: the long-range responses of *Anopheles arabiensis* Patton (Diptera: Culicidae) to *Achillea millefolium* flowers and isolated floral odour. Bulletin of Entomological Research 78:651-657.

Heiduk A, Brake I, Tolasch T, Frank J, Jurgens A, Meve U, Dotterl S (2010) Scent chemistry and pollinator attraction in the deceptive trap flowers of *Ceratopogon doliolophylla*. South African Journal of Botany 76:762-769.

Herrera CM (1996) Floral traits and plant adaptation to insect pollinators: a devil's advocate approach. In: Lloyd DG, Barrett SCH (eds) Floral biology: Studies on floral evolution in animal-pollinated plants. Chapman & Hall, New York NY, pp. 65-87.

Hickman JM, Loevei GL, Wratten SD (1995) Pollen feeding by adults of the hoverfly *Melanostoma fasciatum* (Diptera: Syrphidae). New Zealand Journal of Zoology 22:387-392.

Hipolito J, Viana BF, Sellbach-Schnabel A, Galetto L, Kevan PG (2012) Pollination biology and genetic variability of a giant perfumed flower (*Aristolochia gigantea* Mart. & Zucc.-Aristolochiaceae) visited mainly by small Diptera. Botany 90:815-829.

Hobby BM, Smith KGV (1961) The bionomics of *Eunymia tessellata* F. (Diptera: Empididae). Entomologist's Monthly Magazine 97:2-10.

Hocking B (1953) The intrinsic range and flight speed of insects. Transactions of the Royal Entomological Society of London 104:223-345.

Hocking B (1968) Insect-flower associations in the High Arctic with special reference to nectar. Oikos 19:359-88.

Hocking B, Sharpin CD (1965) Flower basking by Arctic insects. Nature 206:15.

Holloway BA (1976) Pollen-feeding in hover-flies (Diptera: Syrphidae). New Zealand Journal of Zoology 3:339-350.

Humeau L, Micheneau C, Jacquemyn H, Stensmyr MC, Wicher D (2010) Towards plant-odor-related olfactory neuroethology in *Drosophila*. Chemoeconomics 20:51-61.

Humeau L, Micheneau C, Jacquemyn H, Gauvin-Bialecki A, Fournel J, Pailler T (2011) Sapromyiophily in the native orchid, *Bulbophyllum variegatum* on Reunion (Mucuna Archipelago, Indian Ocean). Journal of Tropical Ecology 27:591-599.

Ibanez S, Dotterl S, Anstett MC, Baudino S, Caissard JC, Gallet C, Despres L (2010) The role of volatile organic compounds, morphology and pigments of globeflowers in the attraction of their specific pollinating flies. New Phytologist 188:451-463.

Ike D (1949) Colour discrimination in the droneyfly, *Eristalis tenax*. Nature 163:255-256.

Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251-1253.

Inouye DW, Pyke GH (1988) Pollination biology in the Snowy Mountains of Australia: comparisons with montane Colorado, USA. Australian Journal of Ecology 13:191-210.

Inouye DW, Taylor OR (1979) A temperate region plant-ant-seed predation system: consequences of extratropical nectar secretion by *Helianthea quinquenervis*. Ecology 60:1-7.

Irvin NA, Wratten SD, Frampton CM, Bowie MH, Evans AM, Moar NT (1999) The phenology and pollen feeding of three hover fly (Diptera: Syrphidae) species in Canterbury, New Zealand. New Zealand Journal of Zoology 26:105-115.

Irri Y, Dafni A (1977) The pollination ecology of *Epipactis consimilis* Don (Orchidaceae) in Israel. New Phytologist 79:173-177.

Jepson PC, Healy TP (1988) The location of floral nectar sources by mosquitoes: an advanced bioassay for volatile plant odours and initial studies with *Aedes aegypti* (L.) (Diptera: Culicidae). Bulletin of Entomological Research 78:631-650.

Jersakova J, Johnson SD (2006) Lack of floral nectar reduces self-pollination in a fly-pollinated orchid. Oecologia 147:60-68.

Jhumur US, Dotterl S, Jurgens A (2006) Naive and conditioned responses of *Culex pipiens pipiens* biotype molestus (Diptera: Culicidae) to flower odors. Journal of Medical Entomology 43:1164-1170.

Jhumur US, Dotterl S, Jurgens A (2008) Floral odors of *Silene oitica*: Their variability and attractiveness to mosquitoes. Journal of Chemical Ecology 34:14-25.

Johnson SD (2000) Batesian mimicry in the non-rewarding orchid *Disa pulechra*, and its consequences for pollinator behaviour. Biological Journal of the Linnean Society 71:119-132.

Johnson SD (2006) Pollination by long-proboscid flies in the endangered African orchid *Disa scallyi*. South African Journal of Botany 72:24-27.

Johnson, SD, Dafni A (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Functional Ecology 12:289-297.

Johnson SD, Jurgens A (2010) Convergent evolution of carrion and facial scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. South African Journal of Botany 76:796-807.

Johnson SD, Midgley JJ (1997) Fly pollination of *Gorteria diffusa* (Asteraceae), and a possible mimetic function for dark spots on the capitulum. American Journal of Botany 84:429-436.

Johnson SD, Morita S (2006) Lying to Pinocchio: floral deception in an orchid pollinated by long-proboscid flies. Botanical Journal of the Linnean Society 152:271-278.

Johnson SD, Steiner KE (1995) Long-proboscid fly pollination of two orchids in the Cape Drakensberg mountains, South Africa. Plant Systematics and Evolution 195:169-175.

Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the *Disa draco* complex (Orchidaceae). Evolution 51:45-53.

Johnson SD, Steiner K (2000) Generalization versus specialization in plant pollination systems. Trends in Ecology and Evolution 15:140-143.

Johnson SD, Alexandersson R, Linder HP (2003) Experimental and phylogenetic evidence for floral mimicry in a guild of fly-pollinated plants. Biological Journal of the Linnean Society 80:289-304.

Jones, CJ, Milne DE, Patterson RS, Schreiber ET, Milko JA (1992) Nectar feeding by *Stomoxys calcitrans* (Diptera: Muscidae);
effects of reproduction and survival. Environmental Entomology 21:141-147.
Kastinger C, Weber A (2001) Bee-flies (Bombyliidae spp., Bombyliidae, Diptera) and the pollination of flowers. Flora 196:3-25.
Kato M, Inoue T (1995) Pollination biology of Genetum (Genetaceae) in a lowland mixed dipterocarp forest in Sarawak. American Journal of Botany 82:862-868.
Kato M, Inoue T (1994) Origin of insect pollination. Nature 368:195.
Kay QON (1978) The role of preferential and assortative pollination in the maintenance of flower colour polymorphisms. In: Richards AJ (ed) The pollination of flowers by insects. Symposium of the Linnean Society of London No. 6. Academic Press, New York NY, pp 175-190.
Kearns CA (1992) Anthophilous fly distribution across an elevation gradient. American Midland Naturalist 127:172-182.
Kearns CA, Inouye DW (1994) Fly pollination of Linum lewisii (Linaceae). American Journal of Botany 81:1091-1095.
Kelber A (2001) Receptor based models for spontaneous colour choices in flies and butterflies. Entomologia Experimentalis et Applicata 99:231-244.
Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision-behavioural tests and physiological concepts. Biological Reviews 78:81-118.
Kevan PG (1970) High arctic insect-flower relations: the interaction of arthropods and flowers at Lake Hazen, Ellesmere Island, Northwest Territories, Canada. Ph. D. Dissertation, Department of Entomology, University of Alberta, Edmonton, Alberta, Canada.
Kevan PG (1972a) Heliotropism in some Arctic flowers. Canadian Field-Naturalist 86:41-44.
Kevan PG (1972b) Insect pollination of High Arctic flowers. Journal of Ecology 60:831-867.
Kevan PG (1973) Flowers, insects and pollination ecology in the Canadian high arctic. Polar Record 16:667-674.
Kevan PG (1975) Sun-tracking solar furnaces in high arctic flowers: significance for pollination and insects. Science 189:723-726.
Kevan PG (1989) Thermoregulation in arctic insects and flowers: adaptation and co-adaptation in behaviour, anatomy, and physiology. In: Mercer JB (ed) Thermal physiology: Proceedings of the international symposium on thermal physiology. Tromsø, Norway, 16-21 July, 1989, Excerpta Medica, New York NY, pp 747-753.
Kevan PG (2007) Daheliotaxis and ombrophobia in an anthropophilous high arctic midge, Smittia velutina (Lundbeck, 1898) (Chironomidae), Chironomus 20:29-31.
Kevan PG, Backhaus WGR. (1998) Color vision: ecology and evolution in making the best of the photic environment. In: Backhaus WGR, Kleigl R, Werner JS (eds) Color vision: Perspectives from different disciplines. W. de Gruyter, New York NY, pp 163-183.
Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annual Review of Entomology 28:407-453.
Kevan PG, Baker HG (1999) Insects on flowers: pollination and floral visitations. In: Huffaker CB Gutierrez A (eds) Ecological entomology, J. Wiley & Sons, New York NY, pp 553-584.
Kevan PG, Greco CF (2001) Contrasting patch choice between immature ambush predators, a spider (Moumena rata) and an insect (Phymata americana). Ecological Entomology 26:148-153.
Kevan PG, Lane MA (1985) Flower petal microtextures is a tactile cue for bees. Proceedings of the National Academy of Sciences U SA 82:4750-4752.
Kevan PG, Chaloner WG, Savile DBO (1975) Interrelationships of early terrestrial arthropods and plants. Paleontology 18 (Part 2):391-417.
Kevan PG, Eisikowitch D, Ambrose JD, Kemp JR (1990) Cryptic dioecy and insect pollination in Rosa setigera Michx. (Rosaceae), a rare plant of Carolinian Canada. Biological Journal of the Linnean Society 40:229-243.
Kevan PG, Chitraka L, Dyer AG (2001) Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology 204:2581-2587.
Knight GH (1967) Observations on the behaviour of Bombylius major L. and B. discolor Mlk. (Dipt., Bombyliidae) in the midlands. Entomologist’s Monthly Magazine 103:177-181.
Knoll F (1921) Bombylius fuliginosus und die Farbe der Blumen (Insekten und Blumen I). Abhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 12:117-119.
Knoll F (1926) Die Atran-Blütenstände und ihre Besucher. Abhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 12:379-481.
Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. The Botanical Review 72:1-120.
Knuth P. (1906-1909) Handbook of flower pollination. 3 Vol. (Transl. by J. R. Ainsworth Davis). Oxford University Press, Oxford UK.
Knutsom RM (1974) Heat production and temperature regulation in eastern Skunk Cabbage. Science 186:746-747.
Knutsom RM (1979) Plants in heat, Natural History 88:42-47.
Koponen A (1990) Entomophily in the Splachnaceae. Botanical Journal of the Linnean Society 104:115-127.
Kotze MJ, Jurgena A, Johnson SD, Hoffmann JH (2010) Volatiles associated with different flower stages and leaves of Actaea cyclops and their potential role as host attractants for Dasineura dicels (Diptera, Cecidomyiidae). South African Journal of Botany 76:701-709.
Kramnitz PG (1996) Reproductive biology of Dryas integrifolia in the high arctic semi-desert. Canadian Journal of Botany 74:1451-1460.
Kreun HW, Plant JD, Szucsich NU (2005) Mouthparts of flower-visiting insects. Arthropod Structure and Development 34:1-40.
Kudo G (1995) Ecological significance of flower heliotropism in the spring ephemeral Adonis ramosa (Ranunculaceae). Ohkos 72:14-20.
Kugler H (1950) Der Blütenbesuch der Schlammfliege (Eristalomyza tenax). Zeitschrift für Vergleichende Physiologie 32:328-347.
Kugler H (1951) Blütenökologische Untersuchungen mit Goldfliegen (Lucillien). Berichte der Deutschen Botanischen Gesellschaft 64:327-341.
Kugler H (1956) Über die optische Wirkung von Fliegenblumen auf Fliegen. Berichte der Deutschen Botanischen Gesellschaft 69:387-398.
Kugler H (1963) UV-Musterungen auf Blüten und ihre Zustandekommen. Planta 59:296-329.
Kugler H (1970) Blütenökologie. G. Fischer Verlag, Stuttgart, Germany.
Miyake T, Yafuso M (2003) Floral scents affect reproductive success in fly-pollinated *Alocasia odora* (Araceae). American Journal of Botany 90:370-376.

Miyake T, Yafuso M (2005) Pollination of *Alocasia cincta* (Araceae) by two *Colocasia*flies known to be specific pollinators for *Alocasia odora*. Plant Species Biology 20:201-208.

Moller AP (2000) Developmental stability and pollination. Oecologia 123:149-157.

Moodie GEE (1976) Heat production and pollination in Araceae. Canadian Journal of Botany 54:545-546.

Moring J (1978) Spectral sensitivity of monopolar neurons in the eye of *Calliphora*. Journal of Comparative Physiology A 123:335-338.

Morse DH (1981) Interactions among syrphid flies and bumblebees on flowers. Ecology 62:81-88.

Morse DH (1986) Predatory risk to insects foraging at flowers. Oikos 46:223-228.

Morse DH, Fritz RS (1989) Milkweed pollinia and predation risk to flower-visiting insects by the crab spider *Misumenusa vatia*. American Midland Naturalist 121:188-193.

Motten AF, Campbell DR, Alexander DE, Miller HL (1981) Analysis of adaptations for tarsal pollen collection in the beetle *Pachylampus flavohirta*. American Journal of Botany 68:1278-1287.

Müller H (1881) Die Alpenblumen: ihre Befruchtung durch Insekten und ihre Anpassungen an dieselben. W. Englemann, Leipzig, Germany.

Munsan G, Shivanna KR, Rao RR (2006) Pollination biology of *Aristolochia tagala*, a rare species of medicinal importance. Current Science 91:795-798.

Nagasaki O (2007) Pollination of the yellow water lily *Nuphar lutea* by the bulbul *Pycnonotus sinensis*. Zool. J. Linn. Soc. 154:298-302.

Nayar JK, Sauerman DM (1971) The effects of diet on life-span, fecundity and flight potential of *Aedes taeniorhynchus* adults. Journal of Medical Entomology 8:506-513.

Ne’eman G, Ne’eman R, Ellison AM (2006) Limits to the cost of mutualism: interactions between *Bombylius major* and some other *Bombyliidae* (Diptera). Entomological Review 87:1-2.

Nix J, Sauerman DM (1971) The effects of diet on life-span, fecundity and flight potential of *Aedes taeniorhynchus* adults. Journal of Medical Entomology 8:506-513.

Ne’eman G, Ne’eman R, Ellison AM (2006) Limits to reproductive success of *Sarracenia purpurea* (Sarraceniaceae). American Journal of Botany 93:1660-1666.

Neff JL, Simpson BB, Evenhuis NL, Dieringer G (2003) Character analysis of adaptations for tarsal pollen collection in the Bombyliidae (Insecta: Diptera): the benefits of putting your foot in your mouth. Zootaxa 157:1-14.

Nicolson SW (1994a) Pollen feeding in the eucalypt nectar fly, *Drosophila flavohirta*. Physiological Entomology 19:58-60.

Nicolson SW (1994b) *Eucalyptus* nectar: production, availability, composition and osmotic consequences for the larva of the eucalypt nectar fly, *Drosophila flavohirta*. South African Journal of Science 90:75-79.

van der Niet T, Jurgens A, Johnson S (2010) Pollinators, floral morphology and scent chemistry in the southern African orchid genus *Schizochilus*. South African Journal of Botany 76:726-738.

van der Niet T, Hansen DM, Johnson S (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Annals of Botany 107:981-992.

Nilsson LA (1981) The pollination ecology of *Listera ovata* (Orchidaceae). Nordic Journal of Botany 1:461-480.

Nishida R, Shelly TE, Kaneshiro KY (1997) Acquisition of female-attracting fragrance by males of oriental fruit fly from a Hawaiian lei flower, *Fragaria berteriana*. Journal of Chemical Ecology 23:2275-2286.

Nishida R, Tan KH, Wee SL, Hee AKW, Toong YC (2004) Phenylpropanoids in the fragrance of the fruit fly orchid, *Bulbophyllum cheiri*, and their relationship to the pollinator, *Bactrocera papaya*. Biochemical Systematics and Ecology 32:245-252.

O’Carroll, DC, Bidwell NJ, Laughlin SB, Warrant EJ (1996) Insect motion detectors matched to visual ecology. Nature 382:63-66.

Ollerton J (1996) Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. Journal of Ecology 84:767-769.

Orueta D (2002) Thermal relationships between *Calendula arvensis* inflorescences and *Usia aurata* bumblefly flies. Ecology 83:3073-3085.

Oldroyd H (1964) The natural history of flies. Weidenfeld and Nicolson, London, UK.

O’Neill KM, Kemp WP (1991) Foraging of *Steneotopen inquinitus* (Loew) (Diptera: Asilidae) on Montana rangeland sites. Pan-Pacific Entomologist 67:177-180.

Osterstatter MC, Whidden TL, Owen RE (2002) Contrasting frequencies of parasitism and host mortality among phorid and conopid parasitoids of bumble-bees. Ecological Entomology 27:229-237.

Owens ED, Prokopy RJ (1986) Relationship between reflectance spectra of host plant surfaces and visual detection of host fruit by *Rhamphomyia pomonella* flies. Physiological Entomology 11:297-308.

Panov AA (2007) Sex-related diet specificity in *Bombylius major* and some other *Bombyliidae* (Diptera). Entomological Review 87:812-821.

Paci E, Hesse M (2005) Pollenkitt - its composition, forms and functions. Flora 200:399-415.

Pansarin ER (2008) Reproductive biology and pollination of *Govenia utriculata*. A syrphid fly orchid pollinated through a pollen-deceptive mechanism. Plant Species Biology 23:90-96.

Parmenter L (1958) Flies (Diptera) and their relations with plants. London Naturalist 37:115-125.

Patuñio S, Aalto T, Edwards AA, Grace J (2002) *Rafflesia* an endothermic flower? New Phytologist 154:429-437.

Patt JM, French JC, Schal C, Lech J, Hartman TG (1995) The pollination biology of *tuckahoe*, *Peltandra virginica* (Araceae). American Journal of Botany 82:1230-1240.

Patt JM, Merchant MW, Williams DRE, Meuse BJ (1989) Pollination biology of *Platanthera stricta* (Orchidaceae) in Olympic National Park, Washington. American Journal of Botany 76:1097-1106.

Paulus HF (2005) Zur Bestäubungsbiologie der Orchideen. In: Arbeitskreis Heimische Orchideen, Die Orchideen Deutschlands pp 98-140, Ulstadt-Kirchhazel, Germany.

Paxton RJ, Tengö J (2001) Doubly duped males: the sweet and sour of the orchid’s bouquet. Trends in Ecology and Evolution 16:167-169.

Pellmyr O (1989) The cost of mutualism: interactions between *Trollius europaeus* and its pollinating parasitoids. Oecologia 78:53-59.

Pellmyr O (1992) The phylogeny of a mutualism: evolution and coadaptation between *Trollius* and its seed-parasitic pollinators. Biological Journal of the Linnean Society 47:337-365.

Pemberton RW (2010) Biotic resource needs of specialist orchid pollinators. Botanical Review 76:275-292.
Pemberton RW (2011) Flower fly (Syrphidae) pollination and mechanical self-pollination (autogamy) in *Phytogymnium* species (Cypripediidae). Orchids 80:364-367.

Pericall M (1965) Floral biology. Pergamon Press, Oxford UK.

Pérez-Baños C, Juan A, Petanidou T, Marzos-García MA, Crespo MB (2003) The reproductive ecology of *Medicago cistina* (Font Quer) Greuter (Leguminosae): a bee-pollinated plant in Mediterranean islands where bees are absent. Plant Systematics and Evolution 241:29-46.

Peter CI, Johnson SD (2008) Mimics and magnets: the importance of color and ecological facilitation in floral deception. Ecology 89:1583-1595.

Pottersson MW (1992) Taking a chance on moth: oviposition by *Delia fusciventris* (Diptera: Anthomyiidae) on the flowers of bladder campion, *Silene vulgaris* (Caryophyllaceae). Ecological Entomology 17:57-62.

Pichaud F, Briscoe A, Desplan C (1999) Evolution of color vision. Current Opinion in Neurobiology 9:622-627.

van der Pijl L (1953) On the flower biology of some plants from Primack RB (1983) Insect pollination in the New Zealand Primante C, Dotterl S (2010) A syrphid fly uses olfactory cues to find a non-yellow flower. Journal of Chemical Ecology 36:1207-1210.

van der Pijl L, Dodson CH (1966) Orchid flowers: Their pollination and evolution. University of Miami Press, Coral Gables, FL.

Polte S, Reinhold K (2013) The function of the wild carrot's dark central floret: attract, guide or deter? Plant Species Biology 28:81-86.

Pombal ECP, Morellato PC (2000) Differentiation of floral color and odor in two fly pollinated species of *Metroxorus* (Rutaceae) from Brazil. Plant Systematics and Evolution 221:141-156.

Pont AC (1993) Observations on anthropophilous Muscidae and other Diptera (Insecta) in Abisko National Park, Sweden. Journal of Natural History 27:631-643.

Potter CF, Bertin RI (1988) Amino acids in artificial nectar: feeding preferences of the flesh fly *Sarcophaga bullata*. American Midland Naturalist 120:156-162.

Primack RB (1978) Variability in New Zealand montane and alpine pollinator assemblages. New Zealand Journal of Ecology 1:66-73.

Primack, RB (1983) Insect pollination in the New Zealand mountain flora. New Zealand Journal of Botany 21:317-333.

Primante C, Dotterl S (2010) A syrphid fly uses olfactory cues to find a non-yellow flower. Journal of Chemical Ecology 36:1207-1210.

Proctor M, Yeo P (1973) The pollination of flowers. Collins, London UK.

Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber Press, Portland, OR.

Punekar SA, Kumaran KPN (2010) Pollen morphology and pollination ecology of *Amorpha* species from North Western Ghats and Konkan region of India. Flora 205:326-336.

Quilichini A, Macquart D, Barabe D, Albre J, Gibernau M, (2010) Reproduction of the West Mediterranean endemic *Arum pictum* (Araceae) on Corsica. Plant Systematics and Evolution 287:179-187.

Rathman ES, Lanza J, Wilson J (1990) Feeding preferences of flesh flies (*Sarcophaga bullata*) for sugar-only vs. sugar-amino acid nectars. American Midland Naturalist 124:379-389.

Rebelo AG, Stegfin WR (1985) Colour and size of flowers in relation to pollination of *Erica* species. Oecologia 65:584-590.

Ren D, Labandeira CC, Santiago-Blay JA, Rasnitsyn A, Shih CK, Bashkuev A, Logan MAV, Hotton CL, Dilcher D (2009) A probable pollination mode before angiosperms: Eurasian long-proboscid scorpionflies. Science 326:840-847.

Ren ZX, Li DZ, Bernhardt P, Wang H (2011) Flowers of *Cypripedium fargesii* (Orchidaceae) fool flat-footed flies (*Platyzeidaceae*) by faking fungus-infected foliage. Proceedings of the National Academy of Sciences USA 108:7478-7480.

Robertson C (1928) Flowers and Insects. XXV. Ecology 9:505-526.

Robertson AW (1992) The relationship between floral display size, pollen carryover and geitonogamy in *Myosotis colensoi* (Kirk). Macbide (Boraginaceae), Biological Journal of the Linnean Society 46:333-349.

Robertson AW, Lloyd DG (1993) Rates of pollen deposition and removal in *Myosotis colensoi*. Functional Ecology 7:549-559.

Robertson AW, Macnair MR (1995) The effects of floral display size on pollinator service to individual flowers of *Myosotis and Matulius*. Oikos 72:106-114.

Rotheray GE, Gilbert F (2011) The Natural History of Hoverflies. Forest Text, Ceredigion, UK.

Roulston TH, Cane JH (2000) Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution 222:187-209.

Roy BA, Raguso RA (1997) Olfactory versus visual cues in a floral mimicry system. Oecologia 109:414-426.

Ruck P (1961) Photoreceptor cell response and flicker fusion frequency in the compound eye of the fly, *Lucilia sericata* (Meigen). Biological Bulletin 120:373-383.

Sakai S (2002a) A review of brood-site pollination mutualism: plans providing breeding sites for their pollinators. Journal of Plant Research 115:161-168.

Sakai S (2002b) *Aristolochia spp.* (Aristolochiaceae) pollinated by flies breeding in decomposing flowers in Panama. American Journal of Botany 89:527-534.

Sakai S, Kato M, Nagamasu H (2000) *Artocarpus* (Moraceae)-gall midge pollination mutualism mediated by a male-flower parasitic fungus. American Journal of Botany 87:440-445.

Sandholm HA, Price RD (1962) Field observations on the nectar feeding habits of some Minnesota mosquitoes. Mosquito News 22:346-349.

Schiestl FP (2005) On the success of a swindle: pollination by deceit in orchids. Naturwissenschaften 92:255-264.

Schiestl FP, Ayasse M, Paulus HF (1999) Orchid pollination by sexual swindle. Nature 399:421-422.

Schneider F (1948) Beitrag zur Kenntnis der Generationsverhältnisse und Diapause räuberischer Schwebfliegen (Syrphidae: Diptera). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 21:249-288.

Scott H (1953) Discrimination of colours by *Bombus* (Dipt., Bombilidae). Entomologists’ Monthly Magazine 89:259-260.

Service MW (1997) Mosquito (Diptera: Culicidae) dispersal – the long and the short of it. Journal of Medical Entomology 34:579-588.

Seymour RS, Gibernau M, Ito K (2003) Thermogenesis and respiration of inflorescences of the dead horse arum *Helicodiceros muscivorus*, a pseudo-thermoregulatory aroid associated with fly pollination. Functional Ecology 17:886-894.

Sharma N, Koul P, Koul AK (1993) Pollination biology of some species of genus *Plantago*. Botanical Journal of the Linnean Society 111:129-138.
eastern Australia and potential for biological control on *
Eucalyptus grandis* in South Africa. Journal of the Australian
Entomological Society 30:257-262.

Troje N (1993) Spectral categories in the learning behaviour of
blowflies. Zeitschrift für Naturforschung 48C: 96-104.

Uemura S, Ohkawara K, Kudo G, Wada N, Higashi S (1993)
Heat-production and cross-pollination of the Asian skunk
cabbage *Symlocos capitata* (Araceae). American Journal of
Botany 80:635-640.

Urru I, Stoeckl J, Lintz J, Knuegel T, Steinsmyr MC, Hansson BS
(2010) Pollination strategies in Cretan *Arum* lilies. Biological
Journal of the Linnean Society 101:991-1001.

van der Velde G, Brock TCM, Heine M, Peeters PM (1978)
Flowers of Dutch Nymphaeaceae as a habitat for insects. Acta
Botanica Neerlandica 27:429-438.

Villanueva MTO, Marquina AD, Serrano RB, Abellan GB (2001)
Mineral content of commercial pollen. International Journal of
Food Sciences and Nutrition 52:243-249.

Vogel S (1973) Fungus gnats and fungus mimics. In: Brantjes NBM, Linskens HF (eds) Pollination and dispersal.
University of Nijmegen, Netherlands, pp 13-18.

Vogel S (1978) Pilzmückenblumen als Pilzmimeten. *[Fungus-gnat
flowers mimicking fungi]*. Flora 167:329-398.

Vogel S (1993) Befruchtung mit Pilzen: Die Täuschblume.
Zeitschrift für Naturforschung 48C: 96-104.

Wacht S, Lunau K, Hansen K (2000) Chemosensory cont
rol of pollination behavior or its absence at blossoms by
Temnostoma spp. (Diptera: Syrphidae) in
nematic and *pruinosa* species (*Daucus carota* L.). American Midland Naturalist 135:769-773.

Waldbauer GP, Ghent AW (1984) Flower associations and mating
behavior at blossoms. *Botanical Journal of the Linnean Society* 101:991-1001.

Waldbauer GP, Ghent AW (1984) Flower associations and mating
behavior or its absence at blossoms by *Spilonotus* spp. (Diptera: Syrphidae). *Great Lakes Entomologist* 17:13-16.

Waller, GD, Carpenter EW, Ziehl OA (1972) Potassium in onion
nectars and its probable effect on attractiveness of onion flowers
Allium cepa. *The American Entomologist* 18:193-203.

Waldbauer GP (1984) Mating behavior at blossoms and the flower
associations of mimetic *Tentomostoma* spp. (Diptera: Syrphidae) in
northern Michigan. *Proceedings of the Entomological Society of
Washington* 86:295-304.

Waldbauer GP, Ghent AW (1984) Flower associations and mating
behavior at blossoms by *Spilonotus* spp. (Diptera: Syrphidae). *Great Lakes Entomologist* 17:13-16.

Waller, GD, Carpenter EW, Ziehl OA (1972) Potassium in onion
nectars and its probable effect on attractiveness of onion flowers
Allium cepa.* American Entomologist 18:193-203.

Waldbauer GP (1984) Mating behavior at blossoms and the flower
associations of mimetic *Tentomostoma* spp. (Diptera: Syrphidae) in
northern Michigan. *Proceedings of the Entomological Society of
Washington* 86:295-304.

Waldbauer GP, Ghent AW (1984) Flower associations and mating
behavior or its absence at blossoms by *Spilonotus* spp. (Diptera: Syrphidae). *Great Lakes Entomologist* 17:13-16.

Waller, GD, Carpenter EW, Ziehl OA (1972) Potassium in onion
nectars and its probable effect on attractiveness of onion flowers
Allium cepa. *The American Entomologist* 18:193-203.

Wang J, Ma YX, Cui DL, Wang RX, Lu YY, Qin J (2011) An
observation on pollinating insects and their flower-visiting
behavior on *Fatsia japonica*. Chinese Journal of Applied
Entomology 48:764-768.

Waser NM (1983) The adaptive nature of floral traits: ideas and
evidence. In: Real L (ed) *Pollination biology*. Academic Press,
Orlando FL, pp 242-285.

Waser NM (1986) Flower constancy: definition, cause and
measurement. *American Naturalist* 127:593-603.

Waser NM, Chittka L, Price MV, Williams NM, Ollerton J
(1996) Generalization in pollination systems, and why it matters.
Ecology 77:1043-1060.

Weems HV (1953) Notes on collecting Syrphid flies (*Diptera: Syrphidae*). *Florida Entomologist* 36:91-98.

Weiss MR (1962) Geruchsorientierung der Stubenfliege, *Musca
domestica*. Zeitschrift für angewandte Entomologie 50:74-81.

Weiss MR (1991) Floral colour changes as cues for pollinators.
Nature 354:227-229.

Weiss MR (1996) Pollen-feeding fly alters floral phytomorphic gender in *Centropogon solanifolius* (Campanulaceae). *Biotropica* 28: 770-773.

Weiss MR (2001) Vision and learning in some neglected
pollinators: beetles, flies, moths, and butterflies. In: Chittka L, Thomson JD (eds) *Cognitive ecology of pollination: Animal
behavior and floral evolution*. Cambridge University Press, New
York NY, pp 171-190.

Wenk P, Schärer G (1963) Wirtsorientierung und Kopulation bei
blutsaugenden Simuliden (*Diptera*). *Zeitschrift für
Tropenmedizin und Parasitologie* 14:177-191.

Westerdolm D, Muntan C (1996) The influence of dark central
florets on insect attraction and fruit production in Queen Anne’s
Lace (*Daucus carota* L.). *American Midland Naturalist* 135:122-129.

Wettschnig W, Depisch B (1999) Pollination biology of *Welwitschia mirabilis* Hook, F. (*Welwischiae, Gnetopsida*). *Phyton* 39:167-183.

Wiesenborn WD (2003) Insects on *Pholisoma sonorae* (Lemnoaceae) flowers and their conspecific pollen loads. *Madrono* 50:110-114.

Willemstein SC (1987) An evolutionary basis for pollination
biology. *Leiden Botanical Series* 10: 1-425. EJBrill, Leiden
University Press, Leiden, The Netherlands.

Willis JC, Burkhill IH (1895) Flowers and insects in Great Britain. I.
Annals of Botany 9:227-273.

Willis JC, Burkhill IH (1902) Flowers and insects in Great Britain.
III. *Annals of Botany* 15:539-570.

Willis DS, Kevan PG (1995) Foraging dynamics of *Pepo*
pruinosus (*Hymenoptera: Anthophoridae*) on pumpkin (*Cucurbita pepo*) in southern Ontario. *Canadian Entomologist* 127:167-175.

Willmer P (2011) Pollination and floral ecology. *Princeton
University Press*, Princeton NJ.

Wolda H, Sabrosky CW (1986) Insect visitors to two forms of
Aristolochia pulosa in Las Cumbres, Panama. *Biotropica* 18:295-299.

Yafuso M (1993) Thermogenesis of *Alocasia odora* (Araceae) and the role of *Colocasia esculenta* flies (*Diptera: Drosophilidae*) as cross-
pollinators. *Environmental Entomology* 22:601-606.

Young AM (1984) Mechanism of pollination by *Phoridae* (*Diptera*) in some *Herrania* species (*Stereidae*) in Costa Rica.
Proceedings of the Entomological Society of Washington 86:503-518.

Young AM (1985) Studies of Cecidomyiidae midges (*Diptera: Cecidomyiidae*) as cocoa pollinators (*Theobroma cacao*) in
Central America. *Proceedings of the Entomological Society of
Washington* 87:49-79.

Young AM, Erickson EH, Strand MA, Erickson BJ (1987a) Pollination biology of *Theobroma* and *Herrania* (Stereidae) - I. *Floral biology, Insect Science Applications* 8:151-164.
Young AM, Erickson BJ, Erickson EH (1987b) Steam-distilled floral oils of *Theobroma* species (Sterculiaceae) as attractants to flying insects during dry and wet seasons in a Costa Rican cocoa plantation. In: Proceedings of the 10th International Cocoa Research Conference, Santo Domingo, Dominican Republic, Cocoa Producers Alliance, Lagos, Nigeria, pp 303-306.

Young AM, Schaller M., Strand M (1984) Floral nectaries and trichomes in relation to pollination in some species of *Theobroma* and *Herrania* (Sterculiaceae). American Journal of Botany 71:466-480.

Yuan LC, Luo YB, Thien LB, Fan JH, Xu HL, Chen ZD (2007) Pollination of *Schisandra henryi* (Schisandraceae) by female, pollen-eating *Megommata* species (Cecidomyiidae, Diptera) in south-central China. Annals of Botany 99:451-460.

Yuan LC, Luo YB, Thien LB, Fan JH, Xu HL, Yukawa J, Chen ZD (2008) Pollination of *Kadsura longipedunculata* (Schisandraceae), a monoecious basal angiosperm, by female, pollen-eating *Megommata* sp (Cecidomyiidae: Diptera) in China. Biological Journal of the Linnean Society 93:523-536.

Zhang YW, Zhao JM, Inouye DW (2013) Nectar thieves influence reproductive fitness by altering behavior of nectar robbers and legitimate pollinators in *Corydalis ambigua* (Fumariaceae). Journal of Ecology, in press.

Zietsman PC (1990) Pollination of *Ziziphus mucronata* subsp. *mucronata* (Rhamnaceae). Journal of South African Botany 56:350-355.

Zimmerman M, Brody AK (1998) Choices and consequences of oviposition by *Hylemya* (*Delia*) sp. (Diptera: Anthomyiidae). Journal of Insect Behavior 11:371-381.