Microbiological quality analysis of inoculants based on *Bradyrhizobium* spp. and *Azospirillum brasilense* produced “on farm” reveals high contamination with non-target microorganisms

Camila Rafaeli Bocatti1 · Eduara Ferreira2 · Renan Augusto Ribeiro3 · Ligia Maria de Oliveira Chueire3 · Jakeline Renata Março Delamuta3 · Renata Katsuko Takayama Kobayashi1 · Mariangela Hungria2 · Marco Antonio Nogueira3

Received: 17 December 2020 / Accepted: 1 November 2021 / Published online: 1 January 2022 © The Author(s) 2021

Abstract

The use of inoculants carrying diazotrophic and other plant growth–promoting bacteria plays an essential role in the Brazilian agriculture, with a growing use of microorganism-based bioproducts. However, in the last few years, some farmers have multiplied microorganisms in the farm, known as “on farm” production, including inoculants of *Bradyrhizobium* spp. for soybean (*Glycine max* L. Merrill.) and *Azospirillum brasilense* for corn (*Zea mays* L.) or co-inoculation in soybean. The objective was to assess the microbiological quality of such inoculants concerning the target microorganisms and contaminants. In the laboratory, 18 samples taken in five states were serial diluted and spread on culture media for obtaining pure and morphologically distinct colonies of bacteria, totaling 85 isolates. Molecular analysis based on partial sequencing of the 16S rRNA gene revealed 25 genera of which 44% harbor species potentially pathogenic to humans; only one of the isolates was identified as *Azospirillum brasilense*, whereas no isolate was identified as *Bradyrhizobium*. Among 34 isolates belonging to genera harboring species potentially pathogenic to humans, 12 had no resistance to antibiotics, six presented intrinsic resistance, and 18 presented non-intrinsic resistance to at least one antibiotic. One of the samples analyzed with a shotgun-based metagenomics approach to check for the microbial diversity showed several genera of microorganisms, mainly *Acetobacter* (~32% of sequences) but not the target microorganism. The samples of inoculants produced on farm were highly contaminated with non-target microorganisms, some of them carrying multiple resistances to antibiotics.

Keywords Inoculation · Biological nitrogen fixation · Plant growth–promoting bacteria · Pathogenic microorganisms · On farm fermentation

Introduction

Soybean (*Glycine max* L. Merr.) and corn (*Zea mays* L.) are the main Brazilian grain crops [1], with a production ~125 million tons in ~37 million hectares of soybean, ~102.5 million tons in ~18.5 million hectares of corn [2]. The symbiosis between soybean and elite *Bradyrhizobium* strains can supply the most part of the required N via biological nitrogen fixation (BNF) [3] and grain yield increases by 8% due to inoculation [4]. In corn, yield increase due to inoculation with *Azospirillum brasilense* has been attributed to bacterial phytohormones [5, 6]. Co-inoculation of soybean with *Bradyrhizobium* spp. and *A. brasilense* has doubled the benefits compared with single inoculation [7, 8].

Brazil has a long tradition in research with inoculants containing rhizobia and *Azospirillum*, and legislation for quality control of inoculants. According to the standards established by the Ministry of Agriculture, Livestock and Food Supply (MAPA), commercial inoculants must have the minimal concentration of 10^9 viable cells of
Bradyrhizobium and 10^8 cells of Azospirillum per gram or milliliter of inoculant, no contaminants at the 10^-5 dilution, and must carry only elite strains with recognized agronomic efficiency [9, 10].

The industrial production of inoculants is a complex process, but improvements in the last two decades have resulted in high-quality products in terms of cell concentrations, no contaminants, and very low cost, probably the cheapest inoculant in the world [11]. However, in the last five years, some farmers have tried to produce their own bioproducts, including inoculants in the farm, using simplified biofactories, known as “on farm” production. In most cases, the production system is rudimentary and varies in terms of installations, equipment, microbiological standards, and technical capacity. Very often the bioproducts are produced in fermenters, open tanks, or even water tanks, without appropriate control of contaminations, which may result in highly contaminated, non-effective products [12, 13].

The objective of this study was to assess the microbiological quality of inoculants based on Bradyrhizobium spp. and A. brasilense produced on farm in Brazil, concerning the intended microorganisms, presence, and characterization of probable contaminants.

Materials and methods

Sampling

Sampling and transportation kits containing Styrofoam box, sterile 50-mL Falcon-type conical tubes, sterile 30-mL disposable syringes, disposable gloves, Parafilm M® for sealing the tubes, and cooling packs were sent to farmers interested to know the microbiological quality of their inoculants produced on farm. The kit included a protocol for sampling, emphasizing aseptic procedures and an identification form. Immediately after sampling, two aliquots per tank or fermenter were packed with cooling packs in the Styrofoam box and sent back by express postal service or personally delivered in the Laboratory for Soil Biotechnology at Embrapa Soja. A total of 18 samples were obtained during 2019/20 cropping season, six aiming Bradyrhizobium and 12 aiming Azospirillum as target microorganisms (Table 1). These samples were obtained from five states: São Paulo (six), Bahia (two), Paraná (five), Rio Grande do Sul (three), and Mato Grosso (two). For comparative purposes, commercial inoculants containing A. brasilense strains Ab-V5 and Ab-V6 (C1, lot 1,108,718), B. diazoefficiens strain SEMIA 5080 and B. japonicum strain SEMIA 5079 (C2, lot 0,135,218),

Sample	Municipality-State	Target microorganism	pH	Electrical Conductivity (μS/cm)	Odor	Type of multiplication	Growth time
1	Presidente Bernardes-SP	Bradyrhizobium	5.7	4000	Putrid	Open tanks	2 days
2	Presidente Bernardes-SP	Azospirillum	4.0	2900	Sour	Open tanks	1 day
3	Barreiras-BA	Bradyrhizobium	4.9	2100	Sour	Open tanks	10 days
4	Marilândia do Sul-PR	Azospirillum	4.4	890	Sour	Fermenter	2 days
5	Mauá da Serra-PR	Azospirillum	5.9	800	Sour	Open tanks	4 h
6	Mauá da Serra-PR	Azospirillum	3.6	1030	Sour	Open tanks	7 days
7	Luís Eduardo Magalhães-BA	Azospirillum	7.2	2060	Fecal	Open tanks	5 days
8	Panambi-RS	Azospirillum	3.9	1620	Urine	Open tanks	1 day
9	Palotina-PR	Bradyrhizobium	5.3	6890	Sour	Open tanks	2 days
10	Palotina-PR	Azospirillum	5.0	8390	Garbage	Open tanks	2 days
11	Sorriso-MT	Azospirillum	3.9	5930	Sour	Open tanks	3 days
12	Sorriso-MT	Azospirillum	4.4	4640	Fecal	Open tanks	3 days
13	Panambi-RS	Bradyrhizobium	4.7	1870	Yeast	Fermenter	2 days
14	Panambi-RS	Azospirillum	4.8	2200	Yeast	Fermenter	1 day
15	Salto Grande-SP	Bradyrhizobium	4.0	3830	Sour	Open tanks	3 days
16	Salto Grande-SP	Azospirillum	5.5	7020	Fecal	Open tanks	1 day
17	Lutécia-SP	Bradyrhizobium	5.5	2760	Fecal	Not informed	Not informed
18	Lutécia-SP	Azospirillum	5.1	2910	Sour	Not informed	Not informed
C1	–	Azospirillum	7.1	9810	Vinegar	Industrial fermenter	–
C2	–	Bradyrhizobium spp.	7.1	1960	Yeast	Industrial fermenter	–
C3	–	B. elkanii	7.2	2200	Yeast	Industrial fermenter	–
and *Bradyrhizobium elkanii* strains SEMIA 587 and SEMIA 5019 (C3, lot 19,014,223) were included. It is worth mentioning that, although not mandatory, commercial inoculants in Brazil usually contain two bacterial strains.

Physical–chemical and organoleptic properties

The samples and the commercial inoculants were evaluated for pH using a pH-meter model FiveEasy Plus pH-meter FP20 (METTLER TOLEDO, Ohio, USA) and electrical conductivity in a digital conductivity-meter Tec-4MP (TECNAL, Piracicaba, Brazil). A sensorial analysis was based on the “odor wheel” described by McGinley and McGinley [14], which highlights eight categories of odors.

Isolation of morphotypes

Under aseptic conditions, serial dilutions were made in sterile 0.85% NaCl saline and 100-μL aliquots of the 10⁻⁵, 10⁻⁶, and 10⁻⁷ dilutions were spread on five different culture media: modified YMA (Yeast Mannitol Agar) for *Bradyrhizobium* [15]; RC (Rojo Congo) [16] for *Azospirillum*; LB (Luria Bertani) [17]; NA (Nutrient Agar) [18]; and Sabouraud [19]. The different culture media aimed to check the morphology of colonies. Finally, morphologically distinct isolates in each culture medium were streaked again to standardize the isolation in NA medium were cryopreserved in NA broth with 30% glycerol at −80°C in the inverted position in a growth room and were daily observed for 7 days. The morphologically distinct colonies in each culture medium were streaked again on the same culture medium to select single colonies. To avoid morphologically distinct isolates due to the growth medium, all isolates were streaked on NA to standardize the morphology of colonies. Finally, morphologically distinct isolates in NA medium were cryopreserved in NA broth with 30% glycerol at −80°C for further analysis.

Prior to cryopreservation, all isolates were observed at 400× magnification under an optical microscope (AxioLab A1, Zeiss) coupled to an AxioCam ERC 5 s digital video camera system (Zeiss) for recognition of typical yeast traits such as nucleus, vacuole, and cell dimensions. Isolates identified as yeasts were not submitted to further analysis.

Molecular identification of isolates

Total DNA of morphologically distinct isolates was extracted with the DNeasy Blood and Tissue Kit (Qiagen), according to the manufacturer’s instructions. After extraction, the integrity of DNA was verified by electrophoresis in 1% agarose gel. The 16S rRNA gene was amplified as described [20] with universal primers fD1 (5′-AGAGTT TGATCCTGGCTCAG-3′) and rD1 (5′-AAGGAGGTGATC CAGCC-3′) for phylogenetic studies of bacteria, flanking nearly the entire region of the 16S rRNA gene (~ 1,500 bp) [21]. The PCR products were purified with the PureLink™ Quick PCR Purification Kit (Invitrogen), according to the manufacturer’s instructions. Sequencing was performed in an ABI3500XL analyser (Applied Biosystems) as described [22]. Fragment sequences ranging from 484 to 1139 bp were analyzed using the software BioNumerics version 7.6 and identification was based on comparison with the NCBI GenBank database using the BLAST tool for nucleotides (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Metagenome analysis

To have a broader view of the diversity of microorganisms that might not have grown on the culture media, or occurring at low concentrations in the sample, metagenomic analysis was performed in sample 10, from Palotina, PR. We used the shotgun approach, sequencing all DNA fragments extracted from the sample, without previous amplification of any specific region, as described before [23]. The shotgun approach detects higher diversity in a sample as well microorganisms in all domains of life and, if required, can also be used for functional analysis. For the metagenomics analysis, total DNA was extracted with the DNeasy blood and tissue kit (Qiagen) and used to build the library with the Nextera XT kit, according to the manufacturer’s procedure. The library was processed on the MiSeq platform (Illumina) at Embrapa Soja, and the sequences were assembled with the A5-miseq pipeline (de novo) version 20,140,604. The sequenced fragments were uploaded to the MG-RAST v.4.0.4 (RAST—http://metagenomics.anl.gov) and submitted to automatic annotation in the server based on the NCBI BLAST and SEED databases [24].

Susceptibility to antimicrobials

After molecular identification, isolates belonging to potentially pathogenic genera were subjected to evaluation of susceptibility to antimicrobials by the Disk-Diffusion Test [25]. Cells grown for 24–48 h on NA medium were suspended in sterile saline (0.85% NaCl) until a turbidity compatible with the McFarland scale 0.5 (~ 1.5×10⁸ CFU mL⁻¹). The suspension was then inoculated on the Müller-Hinton [26] agar plate using a sterile swab. Then, paper disks impregnated with antimicrobials were added, as indicated in the annual updates of the Clinical and Laboratory Standards Institute (CLSI) [27].

The antimicrobials and their concentrations per disk were as follows: amikacin 30 μg, amoxicillin + clavulanate 20/10 μg, ampicillin 10 μg, ampicillin + sulfactam 10/10 μg, aztreonam 30 μg, cefazolin 30 μg, cefepime 30 μg,
The cell concentration in the commercial inoculant C1 (A. brasilense) presented the highest electrical conductivity. In the inoculants, pH was slightly alkaline and the one containing Bradyrhizobium spp. SEMIA 5079 and SEMIA 5080) was 6.30. The physical–chemical and organoleptic properties, type of equipment used for multiplication (open tanks or fermenters), and growth time (from inoculation up to sampling) of 18 samples are shown in Table 1. The pH ranged from 3.6 (sample 6) to 7.2 (sample 7), the latter was the only one with slightly alkaline pH, whereas the others were acidic, below pH 6.0. The electrical conductivity ranged from 800 (sample 5) to 8390 μS cm−1 (sample 10). Among the commercial inoculants, pH was slightly alkaline and the one containing A. brasilense presented the highest electrical conductivity. The cell concentration in the commercial inoculant C1 (A. brasilense Ab-V5 and Ab-V6) was 1.01×10⁹ CFU mL⁻¹; in C2 (Bradyrhizobium spp. SEMIA 5079 and SEMIA 5080) was 6.30×10⁴ CFU mL⁻¹; and in C3 (B. elkanii SEMIA 587 and SEMIA 5019) was 8.47×10⁹ CFU mL⁻¹. No contaminants were found in the commercial inoculants.

In the sensorial analysis [14], only two samples were classified as “yeast” (samples 13 and 14), whereas the others presented odors classified as “offensive,” which might be attributed to putrefaction processes. The commercial inoculants, however, presented odors classified as “vinegar” and “yeast” for Azospirillum and Bradyrhizobium, respectively (Table 1). Among 18 samples, three were declared as multiresistant to antibiotics, e.g., isolates 1.5 and 2.4, which showed high similarity with deposited sequences in the GenBank showed 44 isolates with similarity ≥99% and 28 between 99 and 97.2% with deposited sequences, and coverage between 95 and 100%. Finally, 12 isolates were identified as yeasts based on the cell morphology (size, presence of nucleus, and budding) and were not sequenced.

Among the 84 bacterial isolates, 41 had similarity with species or genera containing at least one species reported as potentially pathogenic to humans (49%): Enterococcus (10), Acinetobacter (seven), Citrobacter (six), Klebsiella (three), Stenotrophomonas (three), Enterobacter (three), Burkholderia (two), Atlantibacter (one), Bacillus (one), Escherichia (one), Kocuria (one), Paenibacillus (one), Pseudomonas (one), and Staphylococcus (one) (Table 2).

The shotgun approach of the sample no. 10 revealed a total of 2,467,209 sequences. After removal of the low-quality sequences and artificial duplicate reads, a total of 679,917,634 bp with average length of 276 bp was obtained. The rarefaction curve indicated that the number of sequences submitted was capable of detecting the existing diversity in the sample (not shown). Among the good-quality sequences, 1% contained ribosomal RNA genes, 90.68% encoded for proteins with known functions, and 8.14% proteins with unknown functions. Considering the automatic annotation in the MG-RAST v.4.0.4 server, the taxonomic classification of all shotgun sequences indicated that 99.23% belonged to the domain Bacteria, 0.2% to Eukaryota, 0.01% to Archaea, and 0.56% to Viruses (not shown). Among the 14 dominating genera identified in the sample, Acetobacter and Leuconostoc represented more than 50% of the sequences in the microbiome, whereas Azospirillum, the target microorganism in that sample, was not found (Fig. 2).

The test of susceptibility to antimicrobials was carried out according to [73–75] only with 36 isolates considered of clinical relevance. Considering the CLSI protocol, 12 isolates presented no resistance to at least one antibiotic; six presented intrinsic resistance to at least one antibiotic; and 18 isolates presented single or multiple resistance (Table 3). Noteworthy, some isolates showed multiresistance to antibiotics, e.g., isolates 1.5 and 2.4, which showed high 16S rRNA gene homology with Enterococcus faecalis, and showed resistance to all and to five tested antibiotics, respectively.
Discussion

Among 84 isolates, 25 genera were identified, 44% of which are known to harbor potential human pathogens, whereas only one isolate (5.2) showed 16S rRNA gene homology with the target microorganism *A. brasilense*. That was a case in which the sample was taken only 4 h after the tank had been inoculated with a commercial inoculant. Thus, the isolate probably originated from the commercial inoculant used as inoculum, not from the multiplication, since the short time between the addition of inoculum and the sampling may still have allowed the microorganism to survive. No other sample provided colonies identified as *Azospirillum*, showing that the target microorganism is eliminated or suppressed as the growth media become dominated by contaminating microorganisms. In addition, among the six samples aiming to multiply *Bradyrhizobium*, no isolate corresponded to the target bacteria.

Multiplication of microorganisms must assure several minimal microbiological procedures to guarantee that the target microorganism prevails in the culture medium. In the case of *Azospirillum* and mainly *Bradyrhizobium*, a slow-growing bacterium [15], several other microbial contaminants dominate the culture medium as they have shorter
Table 2 Similarity based on partial sequencing of the 16S rRNA gene of bacterial isolates obtained from samples of inoculants produced on farm, and commercial inoculants, in the 2019/20 growth season aiming the multiplication of *Bradyrhizobium* spp. and *Azospirillum brasilense*, and their potential as human pathogens

Sample	DNA fragment (bp)*	Likely species/genus	Cover, %*	Identity, %*	GenBank access number	Potentially human pathogen	Reference
1.1 *** 1139	*Citrobacter braakii*	99	99.56	LR134214.1	Yes	Hirai et al. [28]	
1.2 1139	*Enterobacter bugandensis*	99	99.68	CP039453.1	Yes	Pati et al. [29]	
1.3 1134	*Acinetobacter baumanii*	100	100	CP044356.1	Yes	McConnell et al. [30]	
1.4 1134	*Rummeliibacillus pyccus*	100	100	JF833091.2	No	Her; Kim [31]	
1.5 1058	*Enterococcus faecalis*	98	100	CP041738.1	Yes	Poulsen et al. [32]	
2.1 1134	*Bacillus megaterium*	99	98.82	CP032527.2	No	Faccin et al. [33]	
2.2 1139	*Citrobacter sp.*	99	98.91	MN521452.1	Depends on the species	Brenner et al. [34]; Hasan; Sultana; Hossain [35]	
2.3 1127	*Escherichia coli*	99	99.82	CP044314.1	Yes	Forson et al. [36]	
2.4 1009	*Enterococcus faecalis*	100	100	MN420846.1	Yes	Poulsen et al. [32]	
2.5 1110	*Lactococcus lactis*	99	99.73	AJ132470.1	Depends on the species	Camargo et al. [42]	
2.6 1134	*Kurthia gibsonii*	95	100	KJ872770.1	No	Dworkin et al. [38]	
3.1 1097	*Acetobacter syzygii*	99	99.72	NR_113850.1	No	Aghazadeh; Pouralibaba; Yari Khosroushahi [39]	
3.2 1127	*Lactobacillus farraginis*	98	100	NR_041467.1	No	Endo; Okada [40]	
3.3 1134	*Lactobacillus lactis*	100	99.86	AM944595.1	No	Guerra [37]	
3.4 1132	*Acinetobacter nosocomialis*	99	100	CP042994.1	Yes	Knight et al. [43]	
3.5 1058	*Raoultella sp.*	99	100	MK999972.1	Yes	Kus; Burrows [46]	
3.6 1110	*Stenotrophomonas maltophilia*	100	97.02	L C438378.1	No	Delgado et al. [56]	
3.7 1107	*Enterococcus sp.*	100	97.02	CP045918.1	Yes	Poulsen et al. [32]	
3.8 1083	*Burkholderia contaminans*	99	99.25	MW195002.1	Yes	Power et al. [57]	
3.9 1104	*Stenotrophomonas maltophilia*	99	97.02	LC438378.1	No	Delgado et al. [56]	
4.1 1134	*Lactobacillus sp.*	100	99.37	CP028899.1	Yes	Kasper et al. [48]	
4.2 1132	*Lactococcus lactis*	100	99.86	AM944595.1	No	Guerra [37]	
4.3 – Yeast**	–	–	–			Depends on the species	Moyad [44]; Hafed et al. [45]
4.4 812	*Enterobacter sp.*	100	99.88	MK999972.1	Yes	Kus; Burrows [46]	
4.5 – Yeast**	–	–	–			Depends on the species	Moyad [44]; Hafed et al. [45]
4.6 1132	*Klebsiella pneumoniae*	99	99.91	CP030931.1	No	Selvakumar et al. [51]	
5.1 1130	*Streptococcus agalactiae*	99	99.91	LR134214.1	Yes	Hirai et al. [28]	
5.2 1134	*Acinetobacter baumanii*	100	100	CP044356.1	Yes	McConnell et al. [30]	
5.3 1134	*Rummeliibacillus pyccus*	100	100	JF833091.2	No	Her; Kim [31]	
5.4 1058	*Enterococcus faecalis*	98	100	CP041738.1	Yes	Poulsen et al. [32]	
6.1 1139	*Citrobacter sp.*	99	98.91	MN521452.1	Depends on the species	Brenner et al. [34]; Hasan; Sultana; Hossain [35]	
6.2 1132	*Lactococcus lactis*	100	99.37	AM944595.1	No	Guerra [37]	
6.3 1107	*Enterococcus sp.*	100	97.02	LC438378.1	No	Delgado et al. [56]	
7.1 1134	*Streptococcus agalactiae*	99	99.91	CP030931.1	No	Guerra [37]	
7.2 1089	*Staphylococcus aureus*	99	99.37	AM944595.1	No	Guerra [37]	
7.3 1083	*Burkholderia contaminans*	99	99.25	MW195002.1	Yes	Power et al. [57]	
7.4 1084	*Streptococcus pyogenes*	99	99.91	CP042941.1	Yes	Ioannou [55]	
7.5 1104	*Streptococcus agalactiae*	99	99.37	AM944595.1	No	Guerra [37]	
8.1 1104	*Enterococcus sp.*	100	97.02	LC438378.1	No	Delgado et al. [56]	
8.2 – Yeast**	–	–	–			Depends on the species	Moyad [44]; Hafed et al. [45]
8.3 1039	*Lactobacillus johnsonii*	100	97.02	CP016603.1	No	Dai et al. [53]	
8.4 1083	*Burkholderia contaminans*	99	99.25	MW195002.1	Yes	Power et al. [57]	
8.5 1104	*Enterococcus faecalis*	100	99.08	CP045918.1	Yes	Poulsen et al. [32]	
9.1 – Yeast**	–	–	–			Depends on the species	Moyad [44]; Hafed et al. [45]
9.2 1058	*Acinetobacter sp.*	99	99.34	LN609302.1	No	Kommanee et al. [58]	
9.3 1107	*Enterococcus sp.*	100	98.65	AJ626904.1	Depends on the species	Camargo et al. [42]	
Sample	DNA fragment (bp)*	Likely species/genus	Cover, %*	Identity, %*	GenBank access number	Potentially human pathogen	Reference
--------	------------------	----------------------	-----------	--------------	----------------------	---------------------------	-----------
9.4	1129	Lactococcus lactis	100	99.67	AM944595.1	No	Guerra [37]
9.5	1138	Bacillus subtilis	99	99.59	MN415973.1	No	Van Dijl; Hecker [52]
9.6	1074	Kocuria sp.	99	98.32	AM179882.1	Depends on the species	Kandi et al. [59]
9.7	1062	Terrabacillus goriensis	99	99.10	DQ519571.1	No	Krishnamurthi; Chakrabarti [60]
9.8	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
9.9	1119	Lactobacillus sp.	100	98.21	NR_028658.1	No	Delgado et al. [56]
10.1	1133	Enterococcus faecalis	99	99.76	CP045918.1	Yes	Poulsen et al. [32]
10.2	1045	Acetobacter sp.	98	99.33	LN609302.1	No	Bommareddy et al. [58]
10.3	1076	Lactobacillus sp.	99	99.81	NR_028658.1	No	Delgado et al. [56]
10.4	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
11.1	706	Bacillus sp.	100	98.45	GQ181150.1	Depends on the species	Tuazon et al. [61] Amin; Amin; Ahmady [62]
11.2	637	Paenibacillus sp.	100	98.90	MW555628.1	Depends on the species	Sáez-Nieto et al. [63]
11.3	919	Enterococcus hirae	100	99.59	MN420858.1	Rarely	Bourafa et al. [64]
11.4	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
11.5	1064	Rummeliibacillus sp.	99	98.85	MT512031.1	No	Her; Kim [31]
12.1	582	Acinetobacter sp.	100	98.31	MK210236.1	Depends on the species	Chagas [49]
12.2	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
12.3	1018	Burkholderia vietnamiensis	100	99.21	MH547402.1	Yes	Ieranò et al. [65]
13.1	1081	Lactococcus lactis	100	97.72	AM944595.1	No	Guerra [37]
13.2	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
13.3	1072	Gluconobacter japonicus	100	99.12	AB253433.1	No	Callete-Rodríguez et al. [66]
13.4	975	Acetobacter sp.	100	98.87	MW261886.1	No	Kandi et al. [59]
14.1	1094	Enterococcus faecalis	99	99.45	CP041738.1	No	Poulsen et al. [31]
14.2	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
14.3	1050	Weiella paramesenteroides	100	99.60	AY342326.1	No	Libonatti et al. [67]
15.1	1021	Lactobacillus rhamnosus	100	98.53	CP044228.1	No	Jung et al. [41]
15.2	1046	Staphylococcus epidermidis	100	99.18	EF522128.1	Yes	Nguyen; Park; Otto [68]
16.1	1097	Citrobacter sp.	99	98.63	KY630556.1	Depends on the species	Brenner et al. [34] Hasan; Sultana; Hossain [35]
16.2	1062	Klebsiella pneumoniae	98	99.18	AB614122.1	Yes	Bosszczewski et al. [54]
16.3	1052	Enterobacter sp.	100	98.86	MW412560.1	Yes	Kus; Burrows [46]
16.4	1015	Pseudomonas aeruginosa	100	99.81	LR509473.1	Yes	Morello et al. [69]
16.5	1073	Acinetobacter baumannii	100	98.21	CP044356.1	Yes	McConnell et al. [30]
17.1	1033	Citrobacter sp.	99	99.13	MT229332.1	Depends on the species	Brenner et al. [34] Hasan; Sultana; Hossain [35]
17.2	1128	Enterococcus sp.	100	97.87	MZ229962.1	Depends on the species	Camargo et al. [42]
17.3	1047	Acinetobacter baumannii	100	99.24	CP042931.1	Yes	McConnell et al. [30]
17.4	1082	Klebsiella pneumoniae	100	99.08	CP034420.1	Yes	Bosszczewski et al. [54]
17.5	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
18.1	1119	Acinetobacter baumannii	100	98.75	CP045541.1	Yes	McConnell et al. [30]
18.2	1081	Enterococcus faecalis	100	99.35	CP045918.1	Yes	Poulsen et al. [32]
18.3	484	Sienotrophomonas maltophilia	100	99.17	CP040440.1	Yes	Almeida et al. [70]

Table 2 (continued)
generation times, i.e., higher growth rates than the target bacteria. In many cases, the carbon source in the culture medium used for on-farm production is not appropriate. For example, the use of sucrose provided as molasses for growth of *Bradyrhizobium* is not appropriate, as the preferred carbon sources are glycerol or mannitol [15]. Besides competition with contaminating microorganisms, the physical–chemical characteristics in the culture medium are also inappropriate for growth of the target microorganisms. For example, the adequate range of pH for *Bradyrhizobium* and *Azospirillum* is between 6.8 and 7.0 [15, 16, 76]; however, 94.4% of the samples had pH ranging from 3.6 to 5.9. The low pH can also favor the growth of contaminating microorganisms adapted to low pH and thus contributing to suppress the target microorganisms.

The lack of standardization in the incubation time is another problem in the samples taken from on-farm production in this study. The average growth time of the recommended *Bradyrhizobium* strains to reach the ideal concentration (at least 1 × 10^9 cells mL\(^{-1}\)) in the inoculant is approximately 7 days [76–79]. In contrast, many contaminants have much shorter generation times, and dominate the culture medium.

Table 2 (continued)

Sample	DNA fragment (bp)*	Likely species/genus	Cover, %*	Identity, %*	GenBank access number	Potentially human pathogen	Reference
18.4	995	*Citrobacter* sp.	100	99.90	MT229332.1	Depends on the species	Brenner et al. [34] Hasan; Sultana; Hossain [35]
18.5	–	Yeast **	–	–	–	Depends on the species	Moyad [44] Hafed et al. [45]
18.6	1033	*Comamonas* sp.	100	99.52	MT765012.1	No	Ghanbarinia; Kheirbadi; Mollania [72]
C1		*Azospirillum brasilense*	100	100	SAMN08346097	No	Hungria et al. [71]
C1		*A. brasilense*	100	100	SAMN08354664	No	Hungria et al. [71]
C2		*Bradyrhizobium japonicum*	100	100	AF234888	No	Menna et al. [20]
C2		*B. diazoefficiens*	100	100	AF234889	No	Menna et al. [20]
C3		*B. elkanii*	100	100	AF234890	No	Menna et al. [20]
C3		*B. elkanii*	100	100	AF237422	No	Menna et al. [20]

*DNA fragment (bp) sequenced; Coverage: percentage of the sequence of interest aligned with a sequence deposited at GenBank; identity: maximum identity obtained with the highest alignment scores

**The isolates identified as “yeast” under microscope observation were not subjected to molecular identification

***The isolates were numbered using the sample numbering as received in the laboratory followed by the number of the isolated colony. For example, isolate 1.5 is the 5th isolate of the sample 1

Commercial inoculants: C1, *Azospirillum brasilense* (strains Ab-V5 and Ab-V6); C2, *Bradyrhizobium japonicum* (SEMIA5079) and *B. diazoefficiens* (SEMIA5080); C3, *B. elkanii* (SEMIA587 and SEMIA5019), respectively

Fig. 2 Occurrence of prevailing genera based on metagenome analysis performed with the sample no. 10 produced on farm in Palotina, Paraná, Brazil. *Azospirillum*, the target microorganism, was not detected in the sample.
Table 3 Antimicrobial resistance test applied to isolates with pathogenic potential to humans obtained from samples of inoculants produced on farm aiming the multiplication of *Bradyrhizobium* spp. and *Azospirillum brasilense* in the 2019/20 growth season

Sample Likely species/genus	Resistant to	Susceptible to
1.1 *Citrobacter* sp.	FOX, AMC, AMP*	GEN, AMI, CPM, CFZ, CTR, CIP, SXT, IMI, AZT, CAZ, CHL, TET
1.2 *Enterobacter* sp.	AMP, FOX, AMC	CFZ, GEN, AMI, CPM, CFZ, CTR, CIP, SXT, IMI, AZT, CAZ, CHL, TET
1.3 *Acinetobacter baumannii*	CTX, SXT	PTZ, CIP, CAZ, IMI, LEV, CPM, GEN, SAM, MRP, AMI
1.5 *Enterococcus faecalis*	GEN, LNZ, AMP, STR, VAN, PEN	
2.2 *Citrobacter* sp.	IMI, AZT, AMP*, CFZ*, AMC**	GEN, AMI, CPM, FOX, CTR, CIP, SXT, CAZ, CHL, TET
2.3 *Escherichia coli*	–	ERT, MRP, CIP, FOX, IMI, SXT, CTX, AMP, GEN, TET, AMC
2.4 *Enterococcus faecalis*	LNZ, AMP, STR, VAN, PEN	GEN
3.4 *Enterococcus* sp.	LNZ, PEN	AMP, GEN, STR, VAN
4.2 *Acinetobacter nosocomialis*	CTR**	SAM, CAZ, CIP, LEV, IMI, MRP, GEN, AMI, PTZ, CPM, SXT
4.4 *Enterobacter* sp.	AMI, AMC, CHL, SXT, AMP*, CFZ* FOX*, GEN**, CPM**	AZT, CAZ, CIP, IMI, TET
4.7 *Stenotrophomonas maltophilia*	–	LEV, SXT
7.1 *Citrobacter* sp.	AMI, AZT, GEN, IMI, AMP*, CFZ*, CTR**	AMC, CPM, FOX, CIP, SXT, CAZ, CHL, TET
7.3 *Klebsiella pneumoniae*	AMP*	CFZ, GEN, AMI, AMC, CPM, FOX, CTR, CIP, SXT, IMI, AZT, CAZ, CHL, TET
7.4 *Stenotrophomonas* sp.	–	LEV, SXT
7.5 *Atlantibacter hermannii*	AMP	CFZ, GEN, AMI, AMC, CPM, FOX, CTR, CIP, SXT, IMI, AZT, CAZ, CHL, TET
8.4 *Enterococcus faecalis*	–	AMP, LNZ, PEN, STR, VAN
10.1 *Enterococcus faecalis*	STR	AMP, LNZ, PEN, VAN
11.3 *Enterococcus hirae*	–	AMP, LNZ, PEN, STR, VAN
12.1 *Acinetobacter* sp.	–	CAZ, SXT, CIP, IMI, LEV, MR, PTZ, CTR, AMI, SUL, CPM, GEN
14.1 *Enterococcus faecalis*	–	AMP, LNZ, PEN, STR, VAN
15.2 *Staphylococcus epidermidis*	ERY	GEN, CLI, CIP, OXA, TET, CHL, LNZ, PEN
16.1 *Citrobacter* sp.	CFZ*, AMC*	SXT, AMI, CHL, TET, IMI, AMP, CIP, CAZ, CFZ, GEN, CTR, AZT, CPM, AMC
16.2 *Klebsiella pneumoniae*	AMP*	AMC, SXT, AMI, CHL, TET, IMI, CFZ, CIP, CAZ, CFZ, GEN, CTR, AZT, CPM, AMC
16.3 *Enterobacter* sp.	AMC*, AMP*, CFZ*	SXT, CHL, TET, IMI, CFZ, CIP, CAZ, GEN, CTR, AZT, CPM
16.4 *Pseudomonas aeruginosa*	–	GEN, CFZ, LEV, MRP, IMI, CPM, CIP, AZT, PTZ
16.5 *Acinetobacter baumannii*	CTR	CAZ, SXT, CIP, IMI, LEV, MRP, PTZ, AMI, SUL, CPM, GEN
17.1 *Citrobacter* sp.	AMP*, CFZ*, AMC*	AME, SXT, AMI, CHL, TET, IMI, CIP, CAZ, CFZ, GEN, CTR, AZT, CPM
17.2 *Enterococcus* sp.	–	GEN, LNZ, AMP, STR, VAN, PEN
in less than 24 h. Contaminating microorganisms compete for resources in the growth medium that becomes nutritionally poor and can also release inhibiting byproducts [81]. Therefore, it is reasonable to conclude that the high multiplication rates of the contaminating microorganisms, in addition to the low growth rates of the target microorganisms, result in the rapid depletion of the culture medium and enrichment with metabolites that inhibit the development of slow-growing microorganisms, like Bradyrhizobium and Azospirillum.

Multiplication of microorganisms without strict quality control can be risky to humans, animals, crops, and environment. Many contaminants are potentially pathogenic to humans and may cause various diseases, posing risks to the health of individuals who handle these products, or even final consumers if applied to products consumed in natura. Although potentially pathogenic microorganisms are found in the environment, they usually do not cause risk due to the low potential of inoculum in the environment. However, the multiplication of this microbial population in contaminated culture media could also magnify risks of infections or contaminations. For example, microorganisms from genera like Enterococcus, for which similar sequences were found in 61.1% of the samples, are frequently related to bacteremia, septicemia, urinary tract infections, abscesses, meningitis, and endocarditis [32, 82–84]. Some isolates also presented high genetic similarity with Citrobacter freundii [85], Enterobacter cloacae [86, 87], and Paenibacillus polymyxa [88], which are also potentially pathogenic to plants [86–88].

The possibility to carry genes of resistance to antimicrobials is a further concern in magnifying the population of potentially pathogenic contaminants in the on farm production. The spread of such genes in the environment may restrict the resources to fight infections. Some opportunist pathogens like Stenotrophomonas maltophilia are intrinsically resistant to several antimicrobials and collaborate to spread genes of resistance in the environment [70]. In this study, 12 isolates presented non-intrinsic resistance to antimicrobials, and 10 isolates presented resistance to two or more antimicrobials (1.1, 1.2, 1.3, 1.5, 2.2, 2.4, 3.4, 4.4, 7.1, and 18.4), what is an additional concerning issue.

Isolates identified microscopically as yeasts were not sequenced for genetic comparisons with sequences deposited in ribosomal databanks. However, some genera of yeasts can also cause injuries to humans and animals. Although yeasts are used in the manufacture of breads and beer, without any risk to humans and animals, like Saccharomyces cerevisiae, the genus Candida is the main pathogenic yeast and comprises approximately 200 species [89].

The approach based on metagenome for sample no. 10 showed that only contaminating microorganisms prevailed in the on farm sample. Although four morphologically distinct

Sample	Likely species/genus	Resistant to	Susceptible to
17.3	Acinetobacter baumannii	CAZ, SXT	AMC, SXT, AMI, CIP, CTR, CPM, GEN
17.4	Acinetobacter baumannii	AMP	AMC, CTR, AZT, AMI, CTR, CPM, GEN
18.1	Enterococcus faecalis	AMI*	CTR, AMP, AMC, CIP, CTZ, AZT, AMI
18.2	Enterococcus faecalis	AMI, CTR	AMC, CTR, CPM, GEN, IMI
18.3	Staphylococcus aureus	SXT	AMC, SXT, CIP, CTR, CPM, GEN
18.4	Gram-positive sp.	SXT	AMC, SXT, CIP, CTR, CPM, GEN

* Intrinsic resistance (natural of the microorganism)

Intermediate resistance (natural of the microorganism)
AMI, CTR, AMP, AMC, CTZ, AZT, AMI, GEN, IMI

* Intrinsically resistant (natural of the microorganism)
colonies were isolated from that sample based on the culture medium approach, the metagenome approach revealed more than 10 genera, including the ones isolated based on the cultivation method. This indicates that the amount of contaminating microorganisms in the on-farm multiplications can be far higher than revealed by the culture-based method. In addition, even using a more sensitive method, the target microorganism was not found in that sample.

Studies on inoculants produced on farm and their impacts on production systems and potential risks to public health are scarce. However, our findings corroborate previous studies on bioinsecticides produced on farm, which revealed low concentration or absence of the target microorganisms Bacillus thuringiensis [12], and absence of Chromobacterium subsutgae and Saccharopolyspora spinosa [13]. However, there was high prevalence of contaminants in the samples, some of them potentially pathogenic to humans [12, 13].

The negative effect of low-quality bioproducts produced on farm goes beyond the risk to Brazilian quality of agricultural products, crops, and environment, because the benefits to the crops cannot be reached with its use. The lack of effect for not containing the target microorganism might put in doubt consolidated technologies that are important to the sustainability of cropping systems like the BNF in soybean by inoculation with Bradyrhizobium [3, 4], and more recently inoculation of grasses and co-inoculation of soybean with Azospirillum [7, 8, 11].

In conclusion, the samples of inoculants produced on farm assessed in this study were highly contaminated with several non-target microorganisms, whereas the target microorganisms Azospirillum and Bradyrhizobium were not detected in the great majority of the samples. In addition, the occurrence of contaminants presenting high genetic similarity with potentially pathogenic microorganisms, some of them carrying non-intrinsic resistance or multi-resistance to antimicrobials, may indicate risk to human health.

Acknowledgements The authors acknowledge the support by the INCT Plant Growth-Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq 465133/2014-2, Fundação Aacuária-STI 043/2019, CAPES) and CNPq 433656/2018-2 (MCTIC/CNPq 28/2018). M.A. Nogueira and M. Hungria are CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) research fellows. This paper was approved for publication by the Editorial Board of Embrapa Soja as manuscript number 219/2020.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cattelan AJ, Dall’Agnol A. (2018) The rapid soybean growth in Brazil. OCL 25:D102. doi:10.1051/ocl/2017058
2. National Supply Company – CONAB (2020) Monitoring of the Brazilian grain harvest 2019/2020. Twelfth survey, 12. https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos
3. Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939. https://doi.org/10.4141/P05-098
4. Hungria M, Mendes IC (2015) Nitrogen fixation with soybean: the perfect symbiosis? In: de Bruijn FJ (ed) Biological Nitrogen Fixation. John Wiley & Sons Inc, New Jersey, pp 1005–1019
5. Fukami J, Ollero FJ, Megias M, Hungria M (2017) Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth. AMB Express 7:153. https://doi.org/10.1186/s13568-017-0453-7
6. Masciarelli O, Urbani L, Reinoso H, Luna V (2013) Alternative mechanism for the evaluation of indole-3-acetic acid (IAA) production by Azospirillum brasilense strains and its effects on the germination and growth of maize seedlings. J Microbiol 51:590–597. https://doi.org/10.1007/s12725-013-3136-3
7. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and Azospirilla: strategies to improve sustainability. Biol Fert Soils 49:791–801. https://doi.org/10.1007/s00374-012-0771-5
8. Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817. https://doi.org/10.4236/ajps.2015.66087
9. Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2011) Instrução Normativa nº. 13, de 24 de março de 2011. Available at: <http://www.agricultura.gov.br/assuntos/insuimos-agropecuarios/insuimos-agricolas/fertilizantes/legislacao/in-sda-13-de-24-03-2011-inoculantes.pdf>. 2011. Access on August 16, 2017.
10. Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2010) Instrução Normativa nº. 30, de 12 de novembro de 2010. Available at: <http://www.agricultura.gov.br/assuntos/insuimos-agropecuarios/insuimos-agricolas/fertilizantes/legislacao/in-30-2010-dou-17-11-10-metodo-inoculantes.pdf>. 2010. Access on August 16, 2017.
11. Santos MS, Nogueira MA, Hungria M (2019) Microbial inoculants: reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Expr 9:205. https://doi.org/10.1186/s13568-019-0932-0
12. Lana UGP, Tavares ANG, Aguiar FM, Gomes EA, Valicente FH (2019) Avaliação da qualidade de biopesticidas à base de Bacillus thuringiensis produzidos em sistema “on farm”. Boletim
13. Santos AFJ, Dinnas SSE, Feitoza AFA (2020) Microbiological quality of bioproducts multiplied on farm in the São Francisco valley: preliminary data. Enc Biotr 17:429–443. https://doi.org/10.18677/EnciBio_2020D33

14. McGinley C, McGinley M (2002) Odor testing biosolids for decision making. Water Environment Federation Specialty Conference, Austin, pp. 3–6.

15. Hungria M, O’Hara G, Zilli J, Araujo RS, Deaker, R, Howie- son J (2016) Isolation and growth of rhizobia. In: Howieson JG, Dillworth MJ (eds.). Working with Rhizobia. Canberra: Australian Centre for International Agriculture Research (ACIAR), pp. 39–60.

16. Cassán F, Penna C, Creus C, Radovancich D, Monteleone E, Salamone IG, Salvo LD, Mentel I, Garcia J, Pasarello MCM, Lett L, Puente M, Correa O, Punschke Valerio K, Massa R, Rossi A, Diaz M, Catafesta M, Righes S, Carletti S, Cáceres ER (2010) Protocolo para el control de calidad de inoculantes que contienen Azospirillum sp. Documento de Procedimientos de la REDCAI número 2. Asociación Argentina de Microbiología, Buenos Aires, 13 p. CD-ROM. ISBN: 978–987–98475–9–6.

17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning - A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York, p 1626

18. Association APH, - APHA, (2017) Standard methods of water analysis, 23rd edn. American Public Health Association, New York.

19. Sabouraud R (1892). Contribution à l’Etude de la Trichophytie humaine. Etude clinique, microscopique et bactériologique sur la pluralité des trichophytons de l’homme. Ann Dermatol Syphil., 3rd ed, pp. 1061–1087.

20. Menna P, Hungria M, Barcellos FG, Bangev EV, Hess PN, Martínez-Romero E (2006) Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Syst Appl Microbiol 29:315–332. https://doi.org/10.1016/j.syapm.2005.12.002

21. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703

22. Delamuta JRM, Ribeiro RA, Menna P, Hungria M (2017) Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiobars pachyrhizici and sojae. Syst Appl Microbiol 40:254–265. https://doi.org/10.1016/j.syapm.2017.04.005

23. Souza RC, Mendes IC, Reis-Junior FB, Carvalho FM, Vasconcelos ATR, Vicente VA (2016) Hungria M (2016) Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian Cerrado? BMC Microbiol 16:42. https://doi.org/10.1186/s12866-016-0657-z

24. Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Pascian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. https://doi.org/10.1186/1471-2105-9-386

25. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36:493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

26. Mueller JH, Hinton J (1941) A protein-free medium for primary isolation of the Gonococcus and Meningococcus. Exp Biol Med 48:330–333. https://doi.org/10.3181/00379727-48-13311

27. Clinical and Laboratory Standards Institute – CLSI (2018) Performance standards for antimicrobial susceptibility testing. 28th ed. CLSI supplement M100, Clinical and Laboratory Standards Institute, Wayne, PA, 257p. ISBN: 1–56238–839–8

28. Hirai J, Uechi K, Hagihara M, Sakashita D, Kinjo T, Haranaga S, Fujita J (2016) Bacteremia due to Citrobacter braakii: a case report and literature review. J Infect Chemother 12:819–821. https://doi.org/10.1016/j.jiac.2016.07.003

29. Pati NB, Doijad SP, Schultzke T, Mannala GK, Yao Y, Jaiswal S, Ryan D, Suar M, Gwozdzinski K, Bunk B, Mrahei MA, Marahiel MA, Hegemann JD, Spörer C, Goessmann A, Falgenhauer L, Hain T, Imizrailoglou C, Mshana SE, Overmann O, Chakraborty T (2018) Enterobacter bugandensis: a novel enterobacterial species associated with severe clinical infection. Sci Rep 8:5392. https://doi.org/10.1038/s41598-018-23069-z

30. McConnell MJ, Actis L, Pachón J (2013) Acinetobacter baumanii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 37:130–155. https://doi.org/10.1111/j.1574-6976.2012.00344.x

31. Her K, Kim J (2013) Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of South Korea. J Microbiol 51:268–272. https://doi.org/10.1007/s12275-013-3126-5

32. Poulsen LL, Bisgaard M, Son NT, Trung NV, An HM, Dalsgaard A (2012) Enterococcus faecalis clones in poultry and in humans with urinary tract infections. Vietnam Emerg Infect Dis 18:1096–1100. https://doi.org/10.3201/eid1807.111754

33. Faccin D, Rech R, Secchi AR, Cardozo NSM, Ayyub MAZ (2013) Influence of oxygen transfer rate on the accumulation of poly (3-hydroxybutyrate) by Bacillus megaterium. Process Biochem 48:420–425. https://doi.org/10.1016/j.probio.2013.02.004

34. Brenner DJ, O’hara CM, Grimond PT, Janda JM, Fulsen E, Aldova A, Egeron E, Schindler J, Abbott SL, Steigerwalt AG (1999) Biochemical identification of Citrobacter species defined by DNA hybridization and description of Citrobacter gillenii sp. nov. (formerly Citrobacter genomospecies 10) and Citrobacter murliniae sp. nov. (formerly Citrobacter genomospecies 11). J Clin Microbiol 37:2619–2624. https://doi.org/10.1128/JCM.37.8.2619-2624.1999

35. Hasan S, Sultana M, Hossain MA (2019) Complete genome arrangement revealed the emergence of a poultry origin superbug Citrobacter portuangelensis strain NR-12. J Glob Antimicrob Resist 18:126–129. https://doi.org/10.1016/j.jgar.2019.09.031

36. Forson AO, Tsiaki WR, Nana-Adjie D, Quarachie MN, Obeng-Nkrumah N (2018) Escherichia coli bacteriuria in pregnant women in Ghana: antibiotic resistance patterns and virulence factors. BMC Res Notes 11:901. https://doi.org/10.1186/s13104-018-3989-y

37. Guerra PV (2018) Evaluation of the immunomodulatory potential of Hsp65-producing Lactococcus lactis in Cutaneous Leishmaniasis caused by Leishmania braziliensis. 101 f. Thesis (PhD in Pathology) - Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Federal University of Bahia.

38. Dworin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (2006) The Prokaryotes: Bacteria: Firmicutes, Cyanobacteria. Springer, New York.

39. Aghazadeh Z, Porsalibaba F, Yari Khosroushahi A (2017) The prophylactic effect of Acinetobacter baumannii probiotic species against squamous cell carcinoma. J Dent Res Dent Clin Dent Prospects 11:208–214. https://doi.org/10.15171/jddp.2017.037

40. Endo A, Okada S (2007) Lactobacillus farraginis sp. nov. and Lactobacillus paraflarraginis sp. nov., heterofermentative lactobacilli isolated from a compost of distilled shochu residue. Int J Syst Evol Microbiol 57:708–712. https://doi.org/10.1099/ijs.0.64618-0

41. Jung YO, Jeong H, Cho Y, Lee EO, Jang HW, Kim J, Nam KT, Lim KM (2019) Lysates of a probiotic, Lactobacillus rhamnosus, can improve skin barrier function in a reconstructed human
epidermis model. Int J Mol Sci 20:4289. https://doi.org/10.3390/ijms20174289

42. Camargo CH, Bruder-Nascimento A, In Lee SH, Fernandes Júnior A, Kaneno R, Rall VLM (2014) Prevalence and phenotypic characterization of Enterococcus spp. isolated from food in Brazil. Braz J Microbiol 45:111–115. https://doi.org/10.1590/S1517-83822014000100016

43. Knight DB, Rudin SD, Bonomo RA, Rather PN (2018) Acinetobacter nosocomialis: defining the role of efflux pumps in resistance to antimicrobial therapy, surface motility, and biofilm formation. Front Microbiol 9:1902. https://doi.org/10.3389/fmicb.2018.01902

44. Moyad MA (2018) Brewer’s baker’s yeast (Saccharomyces cervisiae) and preventive medicine: Part II. Urol Nurs 28:73–75 (PMID: 18335702)

45. Hafez L, Farag H, El-Rouby D, Shaker O, Shabaan H-A (2019) Candida albicans alcohol dehydrogenase 1 gene in oral dysplasia and oral squamous cell carcinoma. Pol J Pathol 70:210–216. https://doi.org/10.5114/pjp.2019.90398

46. Kus JV, Burrows LL (2016) Infections due to Citrobacter and Enterobacter. In: Enna SJ, Bylund DB (eds) xPharm: The Comprehensive Pharmacology Reference. Elsevier. https://doi.org/10.1016/B978-008055232-3.60868-2

47. Ramírez-Quintero JD, Chavarriaga-Restrepo A (2017) Bacteriemia por Raoultella planticola de origen gastrointestinal. Iatreia 30:67–71. https://doi.org/10.17533/udea.iatreia.v30n1.a06

48. Kasper DL, Fauci AS, Hauser SL, Longo DL, Jameson J, Loscalzo J (2017) Manual de Medicina de Harrison. AMGH, Porto Alegre. ISBN: 978–85–8055–582–0

49. Chagas TPG (2015) Characterization of Acinetobacter spp. multiresistant producers of carbapenemases, types OXA and NDM, isolated from different regions of Brazil. Thesis (PhD in Sciences) Oswaldo Cruz Institute, Rio de Janeiro.

50. Santini JMK, Buzetti S, Teixeira Filho MCM, Galindo FS, Coagulina DN, Boleta EHM (2018) Doses and forms of Azospirillum brasilense inoculation on maize crop. Rev Bras Eng Agric Ambient 22:373–377. https://doi.org/10.1590/1807-1929/agriambi.v22n6p373-377

51. Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Gupta HS (2010) Growth promotion of wheat seedlings by Exiguobacterium acetylicum IP (MTCC 8707) a cold tolerant bacterial strain from the Uttarakhand Himalayas. Indian J Microbiol 50:50–56. https://doi.org/10.1016/j.ijm.2008.09.004

52. Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microbiol Cell Fact 12:3. https://doi.org/10.1186/1475-2859-12-3

53. Dai W, Zhu Y, Wang X, Sakenova N, Yang Z, Wang H, Li G, He J, Huang D, Cai Y, Guo W, Wang Q, Feng T, Fan Q, Zheng T, Han A (2016) Draft genome sequence of the bacterium Comamonas aquaticus CIG. Genome Announc 4:6. https://doi.org/10.1128/genomeA.01186-16

54. Bosczcowski I, Salomão MC, Moura ML, Freire MP, Guimarães T, Cury AP, Rossi F, Rizek CF, Martins RCR, Costa SF (2019) Multidrug-resistant Klebsiella pneumoniae: genetic diversity, mechanisms of resistance to polymyxins and clinical outcomes in a tertiary teaching hospital in Brazil. Rev Inst Med Trop 61:29. https://doi.org/10.1590/S1678-9946201961029

55. Ioannou P (2019) Escherichia hermannii infections in humans: a systematic review. Trop Med Infect Dis 4:17. https://doi.org/10.3390/tropicalmed4010017

56. Delgado S, Leite AMO, Ruas-Madiedo P, Mayo B (2015) Probiotic and technological properties of Lactobacillus spp. strains from the human stomach in the search for potential candidates against gastric microbial dysbiosis. Front Microbiol 5: 766. https://doi.org/10.3389/fmicb.2014.00766

57. Power RF, Linnane B, Martin R, Power N, Harnett P, Casserly B, O’Connell NH, Dunne CP (2016) The first reported case of Burkholderia contaminans in patients with cystic fibrosis in Ireland: from the Sargasso Sea to Irish Children. BMC Pulm Med 16:57. https://doi.org/10.1186/s12900-016-0219-z

58. Kommanee J, Tanasupawat S, Yuwaphong P, Thongchul N, Moomangmee D, Yamada Y (2012) Identification of Acetobacter strains isolated in Thailand based on the phenotypic, chemotaxonomic, and molecular characterization. Sci Asia 38:44–53. https://doi.org/10.2306/scienceasia1513-1874.2012.38.044

59. Kandi V, Falange P, Vaish R, Bhatti AB, Kale V, Kandi MR, Bhoomagari MR (2016) Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 8:e731. https://doi.org/10.7759/cureus.731

60. Krishnamurthi S, Chakrabarti TProposal for transfer of Pelagibacillus goriensis Kim, et al (2008) 2007 to the genus Terribacillus as Terribacillus goriensis comb. nov. Int J Syst Evol Microbiol 58:2287–2291. https://doi.org/10.1099/ijs.0.65579-0

61. Tuazon CU, Murray HW, Levy C, Solny MN, Curtin JA, Sheagren BN (1979) Serious infections from Bacillus sp. JAMA 241:1137–1140. https://doi.org/10.1001/jama.1979.03290370041026

62. Amin M, Rakhizi Z, Ahmady AZ (2015) Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna J Clin Microb Infect 2: 2323. https://doi.org/10.17795/ajcmi-23233

63. Sáez-Nieto JA, Medina-Pascual MJ, Carrasco G, Garrido N, Fernández-Torres MA, Villalón P, Valdezate S (2017) Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect 19:19–27. https://doi.org/10.1016/j.micinf.2017.05.006

64. Boura M, Loucif L, Boutenfouchet N, Rolain JM (2015) Enterococcus hirae, an unusual pathogen in humans causing urinary tract infection in a patient with benign prostatic hyperplasia: first case report in Algeria. New Microbes New Infect 8:7–9. https://doi.org/10.1016/j.micinf.2015.08.003

65. Ieranó T, Silipo A, Sturiale L, Garozzo D, Bryant C, Lanzetta R, Parrilli M, Aldridge C, Gould FK, Corris PA, Khan CMA, De Soyz a M, Molinaro A (2009) First structural characterization of Burkholderia vietnamiensis lipooligosaccharide from cystic fibrosis–associated lung transplantation strains. Glycobiology 19:1214–1223. https://doi.org/10.1093/glycob/cwp112

66. Cañete-Rodríguez AM, Santos-Dueñas IM, Torija-Martínez MJ, Mac A, Jiménez-Hornero JE, García-García I (2016) An approach for estimating the maximum specific growth rate of Gluconobacter japonicus in strawberry puree without cell concentration data. Biochem Eng J 105:314–320. https://doi.org/10.1016/j.bej.2015.10.005

67. Libonatti C, Agüeria D, García C, Basualdo M (2018) Encapsulation and its application in the use of fish waste. Rev Argent Microbiol 51:81–83. https://doi.org/10.1016/j ram.2018.03.001

68. Nyugen TH, Park MD, Otto M (2017) Host response to Staphylococcus epidermidis colonization and infections. Front Cell Infect Microbiol 7:90. https://doi.org/10.3389/fcimb.2017.00090

69. Morell E, Pérez-Bereto T, Boisseau C, Baraneck T, Guillou A, Bréa D, Lanotte P, Carpena X, Pietrancosta N, Hervé V, Ramphal R, Cenac N, Si-Tahar M (2019) Pseudomonas aeruginosa lipoxgenase LosA contributes to lung injury by altering the host immune lipid signaling. Front Microbiol 10:1826. https://doi.org/10.3389/fmicb.2019.01826

70. Almeida MTG, Bertelli ECP, Rossit ARB, Bertollo EMG, Martin M (2005) Infecções hospitalares por Stenotrophomonas maltophilia: aspectos clínico-epidemiológicos, microbiológicos e de resistência antimicrobiana. Arq Ciênc Saúde 12:141–145

71. Hungria M, Ribeiro RA, Nogueira MA (2018) Draft genome sequences of Azospirillum brasilense strains Av-V5 and Av-V6, commercially used in inoculants for grasses and legumes in
Braz. J Microbiol 7:273–280

72. Ghanbarinia F, Kheirbadi M, Mollahajd N (2015) Comamonas sp. halotolerant bacterium from industrial zone of Jovein of Sabzevar introduced as good candidate to remove industrial pollution. Iran J Microbiol 7:273–280

73. Moeller RC, Graybill JR, McGowan JE, Corey L (2007) Antimicrobial resistance prevention initiative—an update: Proceedings of an expert panel on resistance. Am J Infect Control 35(1):17. https://doi.org/10.1016/j.amjmed.2007.04.001

74. Rice LB (2008) Editorial commentary. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J Infect Dis 197:1079–1081. https://doi.org/10.1086/533452

75. Rice LB (2010) Progress and challenges in implementing the research on ESKAPE Pathogens. Infect Control Hosp Epidemiol 31:7–64. https://doi.org/10.1086/655995

76. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Oxford: Blackwell Scientific, 164p. (International Biological Programme Handbook, 15).

77. Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium sp. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139. https://doi.org/10.1099/00207713-32-1-136

78. Kuykendall LD, Saxena B, Devine TE, Udell SE (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505. https://doi.org/10.1139/m92-082

79. Delamутa IRM, Ribeiro RA, Ormenô-Orrillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diaeferocinctis sp. nov. Int J Syst Evol Microbiol 63:3342–3351. https://doi.org/10.1099/ijs.0.049130-0

80. Döbereiner J (1991) The genera Azospirillum and Herbaspirillum. In: Ballows A, Trüper HG, Dworkin M, Harder W, Shleifer K. (eds) The Prokaryotes, Springer-Verlag, New York, pp. 2236–2253. https://doi.org/10.1007/978-1-4757-2191-1

81. Hibbing ME, Faqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25. https://doi.org/10.1038/nrmicro2259

82. Cauwerts K, Decostere A, De Graef EM, Haesebrock F, Pasmans F (2007) High prevalence of tetracycline resistance in Enterococcus isolates from broilers carrying the erm (B) gene. Avian Pathol 36:395–399. https://doi.org/10.1080/03079450701589167

83. Kense MJ, Landman WJM (2011) Enterococcus cecorum infections in broiler breeders and their offspring: molecular epidemiology. Avian Pathol 40:603–612. https://doi.org/10.1080/03079457.2011.619165

84. Zou LK, Wang HN, Zeng B, Li JN, Li XT, Zhang AY, Zhou YS, Yang X, Xu CW, Xia QQ (2011) Erythromycin resistance and virulence genes in Enterococcus faecalis from swine in China. New Microbiol, 34: 73–80. https://pubmed.ncbi.nlm.nih.gov/21344149

85. Allahverdi T, Rahimian H, Ravanlou A (2016) First report of bacterial canker in mulberry caused by Citrobacter freundi in Iran. Plant Dis 100:1774. https://doi.org/10.1094/PDIS-01-16-0020-PDN

86. García-Gonzales T, Sánchez-Hidalgo HK, Silva-Rojas HV, Morales-Nieto C, Vancheva T, Koebnik R, Ávila-Quezada GD (2018) Enterobacter cloacae, an emerging plant-pathogenic bacterium affecting chili pepper seedlings. Plant Pathol J 34:1–10. https://doi.org/10.5423/PPJ.OA.06.2017.0128

87. Schroeder BK, Du Toit LJ, Schwartz HF (2009) First report of Enterobacter cloacae causing onion bulb rot in the Columbia basin of Washington State. Plant Dis 93:323. https://doi.org/10.1094/PDIS-93-3-0323A

88. Zhang RY, Zhao SX, Tan ZQ, Zhu CH (2017) First report of bacterial stem rot disease caused by Paeubacillus polymyxna on Hylcocereus undulatus in China. Plant Dis 101:1031–1031. https://doi.org/10.1094/PDIS-11-16-1577-PDN

89. Almirante B, Rodriguez D, Park BJ, Cuenca-Estrella M, Planes AM, Almela M, Mensa J, Sanchez F, Ayats J, Gimenez M, Saballs F, Fridkin SK, Morgan J, Rodriguez-Tudela JL, Warnock DW, Pahissa A (2005) Epidemiology and predictors of mortality in cases of Candida bloodstream infection: results from population-based surveillance, Barcelona, Spain, from 2002 to 2003. J Clin Microbiol 43:1829–1835. https://doi.org/10.1128/JCM.43.4.1829-1835.2005

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.