Comparison of biomechanical properties between post penetrating keratoplasty and deep anterior lamellar keratoplasty in keratoconus patients using ocular response analyser

Nawaz S¹, Sofi IA², Prafulla K. Maharana³, Shaveta⁴

¹Dr Shah Nawaz, Lecturer, Postgraduate Department of Ophthalmology, Government Medical College, Srinagar, ²Dr Ishfaq Ahmad Sofi, Registrar, Postgraduate Department of Ophthalmology, Government Medical College, Srinagar, ³Dr Prafulla K. Maharana, Assistant Professor, Department Of Ophthalmology, All India Institute Of Medical Sciences Bhopal, Dr Shaveta, Senior resident, Postgraduate Department of Ophthalmology, Lady Hardinge Medical College, New Delhi.

Address for correspondence: Dr Shah Nawaz, Email: shaan3638@gmail.com

Abstract

Introduction: Corneal biomechanics have been studied over recent years. The Ocular Response Analyser (ORA) is the first simple device able to measure the biomechanical properties of the cornea. Deep anterior lamellar keratoplasty (DALK) is considered an alternative procedure to penetrating keratoplasty (PK) in advanced keratoconus patients that leaves the host corneal endothelium and Descemet’s membrane intact. This provides the advantage of an absence of potential corneal endothelial rejection. The aim of the study was to compare the biomechanics between the two keratoplasty techniques.

Method: This prospective comparative study included 150 eyes of 150 patients. Patients were divided into 3 groups; 50 eyes with no previous surgery (Group 1), 50 eyes of post PK (Group 2) and 50 eyes of post DALK (Group 3) in advanced keratoconus patients were included in the study. Corneal Hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg) and corneal compensated intraocular pressure (IOPcc) was measured using Reichert ocular response analyser at 1 year follow up.

Results: Mean age of the patients in PK group was 24.2±6.83 years and 20.95±6.49 yrs in DALK group (p value <0.126, statistically insignificant). Mean CH in control group (10.9±1.42) and DALK group (10.5±3.79) was significantly higher than PK group (9.1±2.36) (p value <0.01). Mean CRF in control group (10.6±2.56) and DALK group (10.1±3.2) was significantly higher than PK group (8.8±2.68) (p value <0.01). However in these groups no statistically significant difference was seen in IOPcc and IOPg.

Conclusions: Corneal biomechanical properties in post penetrating keratoplasty and lamellar procedures differ significantly.

Keywords: Ocular response analyser, Keratoconus, Deep anterior lamellar keratoplasty, Penetrating Keratoplasty
The aim of this study was to compare biomechanical properties of DALK and PK for keratoconus with a control group. This can give us information about the corneal biomechanics after two procedures done for advanced keratoconus.

Material and method

One hundred fifty eyes of 150 patients were included in this prospective comparative study. The subjects were divided into three groups: group 1 included 50 eyes of 50 patients with no previous ocular surgery (control group); group 2 included 50 eyes of 50 advanced keratoconus patients treated with penetrating keratoplasty; group 3 included 50 eyes of 50 keratoconus patients treated with deep anterior lamellar keratoplasty. Exclusion criteria in the control group were a history of previous corneal surgery, glaucoma, systemic autoimmune disease, diabetes mellitus or dry eye. Informed consent was obtained from all subjects after an explanation of the nature possible consequences of the study. Biomechanical parameters of the cornea, characterized by corneal hysteresis (CH) and the corneal resistance factor (CRF), were measured with the ORA. The ORA uses a rapid air impulse and an advanced electro-optical system to record two applanation pressure measurements; peak 1 is moving inward of the cornea, and the other is outward off the cornea. The cornea resists the dynamic air puff, causing delays in the inward and outward applanation events, resulting in two different pressure values. The difference between these two pressure values is CH, a new measurement of the cornea to determine its viscoelastic characteristics [9, 10]. CH measurement also provides a basis for an additional new parameter, CRF, which appears to be an indicator of the overall resistance of the cornea [10, 11]. It is a measurement of the cumulative effects of both the viscous and elastic resistance encountered by the air puff while deforming the cornea. All sutures were removed while measuring the corneal biomechanical properties with ORA. The same person performed all measurements.

Surgical technique

PK technique: Penetrating keratoplasty was performed with a standard technique using a Barron suction trephine for the host cornea and a Barron punch for the donor cornea. The chamber was filled with high-density viscoelastic material before trephination. The range of trephination size in the host cornea was 7.25–8 mm with a donor graft 0.25–0.50 mm larger. The oversized donor button was then sutured into the host bed, using 16 interrupted 10-0 nylon sutures (Alcon Laboratories) with buried knots in all eyes [13, 14]. All operated eyes of both groups received subconjunctival injection of dexamethasone and gentamycin at the end of the procedure.

All eye patches were removed on the first day. All eyes of both groups were treated with topical antibiotic drops (Vigamox, moxifloxacinHCl ophthalmic solution, 0.5%; Alcon Inc., Dallas, TX, USA) q.i.d. A topical steroid such as prednisolone acetate eye drops 1% (PredForte 1%; Allergan, Inc., Irvine, CA, USA) was applied 4–6 times a day and subsequently tapered over 6–8 weeks.

DALK Technique: Deep anterior lamellar keratoplasty was performed under regional anesthesia, using diamond knife assisted DALK technique described by Vajpayee et al [12].

Host Preparation: The surgeries were performed under peribulbar or general anesthesia. A circular mark (7.5 to 8.5 mm in diameter) was made with a disposable trephine blade (Madhu Instruments) whose edges had been stained with gentian violet. Intraoperative ultrasonic pachymetry (Micropach, model 200PC, Sonomed) was performed on this corneal mark between the 11 o'clock and 1 o'clock positions. A diamond knife was used at the depth of 30 mm less than the intraoperative pachymetry reading was used to make a 2.0 mm incision at the 11 to 12 o'clock position. Medium, curved, fine blade scissors (Cindy Scissors, Bausch & Lomb) were then used to extend the incision on either side circumferentially for 360. An open centripetal lamellar dissection was performed using lamellar dissectors. The central stromal disk was then excised, leaving a thin stromal bed.

Donor Preparation: The donor corneal sclera button was placed endothelial side up on a wet polytetrafluoroethylene (Teflon) block. The donor button was punched from the endothelial side and was oversized by 0.25 mm. Descemet membrane of the donor lenticule was stripped after staining with 0.1 mL of trypan blue 0.06% (Visiblue, Shah & Shah). The donor lenticule was placed on the hostbed and sutured using 10-0 monofilament nylon. Postoperatively, all patients received prednisolone acetate 1% eye drops 4 times a day (Pred Forte 1%; Allergan, Inc., Irvine, CA, USA), moxifloxacin hydrochloride 0.5% eye drops 3 times a day (Vigamox, moxifloxacin HCl ophthalmic solution, 0.5%; Alcon Inc., Dallas, TX, USA), and...
preservative-free artificial tears 4 times a day. The antibiotic eyedrops were continued for 2 months, and the topical corticosteroid eyedrops were tapered over 4 months.

Ocular response analyser: The Reichert ORA [9-11] was used to measure corneal biomechanical parameters for all eyes after suture removal at 1 year after of surgery. The patient was seated comfortably on a chair and asked to fixate on the red blinking light in the device before the device was activated. Then on contact probe of the device released a rapid air puff onto the centreof the cornea and sent a signal to the ORA through an optical sensor which measured the deformation of the cornea caused by the air jet. The ORA software utilized the CH to generate two additional parameters: IOPcc and the CRF. Goldmann correlated intraocular pressure (IOPg) was also provided by the machine. The ORA displayed the biomechanical parameters on the computer monitor attached to the ORA. The average of three good-quality readings for each eye was taken, and those with bad signals or extreme readings were discarded. No cycloplegic eye drops or topical anaesthetic was administered before the ORA measurements.

Statistical analysis: Statistical analysis was performed using the Student’s t-test, and p-value of <0.05 was considered statistically significant. Data were expressed as mean, range and standard deviation (SD). Besides descriptive statistics (Mean ± standard deviation, frequency, ratio), the one way ANOVA test was used for comparisons.

Results

Mean patient age (years) was 28.95 ± 5.8 in the DALK group, 29.2 ± 6.83 in the PK group and 28.36 ± 5.8 in the control group (Table 1). No statistically significant difference in mean age was found among the three groups. There was also no statistically significant difference between male and female ratio in the three groups. There was no significant difference between the DALK and PK groups in terms of recipient (p = value 0.31) and donor (p = value 0.45) trephine sizes (Table 1). Sutures were removed earlier in the DALK group having all sutures removed before 6 months, compared to none of the PK group till 1 year. All patients achieved their best visual acuity with spectacles. All the parameters were taken at 12 months follow up with sutures out. Significant differences were found between the groups with regard to mean CH and mean CRF (Table 2).

Corneal hysteresis: The mean postoperative CH in the DALK group was 10.5 ± 3.79 mmHg (sutures out) and control group, mean CH was 10.9 ± 1.42. There were no statistically significant difference in mean CH between the DALK group and the matched controls 12 months postoperatively (p = value 0.31).

In the PK group, the mean postoperative CH was 9.1 ± 2.36 that was significantly lower than the DALK (p = value 0.01) and control groups (p = value 0.001) at 12 months postoperatively.

Corneal resistance factor: Mean postoperative CRF in the DALK group was 10.1 ± 3.2 mmH at 12 months and the control group it was 10.6 ± 2.56. No statistically significant difference was found between the mean CRF in the DALK and control group 12 months postoperatively (p = value 0.48). In the PK group, the mean postoperative CRF was 8.87 ± 2.68 mmHg at 12 months which was significantly lower than both DALK (p = value 0.001) and control group (p = value 0.001).

CCT, IOPg and IOPcc: The mean postoperative CCT in the DALK group was 565µm ± 10.1 and 551µm ± 13.2µm in the PK group at 12 months postoperatively. In the control group, the mean CCT was 547 ± 15.43 µm. No statistically significant difference in CCT was seen in the three groups. The mean IOPg in the DALK group was 12.9 ± 1.8 and 13.41 ± 1.8 in the PK group at 12 months postoperatively. The mean IOPg in the control group was 13.1 ± 1.4 mmHg. No statistically significant difference in IOPg was seen in three groups. In the DALK group, the mean IOPcc was 13.50 ± 2.1 and 13.8 ± 3.2 in the PK group at 12 months postoperatively. In the control group, the mean IOPcc was 13.9 ± 1.6 mmHg. No statistically significant difference was seen in the three groups.
Table 1: Patient demographic data and operative data

	Control Group	PK group	DALK group	DALK vs PK group	DALK vs Control group	PK vs Control group
Age (years)	28.36±5.8	29.2±6.83	28.95±6.49	0.89	0.69	0.61
Male	31	28	30			
Female	19	22	20			
Host diameter in mm	7.51±0.75	7.9±0.21	7.9±0.21	0.31		
Donor diameter in mm	7.32±0.26	8.1±0.29	8.1±0.29	0.45		

PK- Penetrating keratoplasty, DALK- Deep Anterior Lamellar Keratoplasty

p value < 0.05 significant

Table 2: Corneal parameters of the three groups.

	Control Group	PK group	DALK group	DALK vs PK group	DALK vs Control group	PK vs Control group
CH	10.9±1.42	9.1±2.36	10.5±3.79	0.01	0.31	0.001
CRF	10.6±2.56	8.87±2.68	10.1±3.2	0.001	0.48	0.001
CCT µm	531±14.1	551±13.2	565±10.1	0.85	0.74	0.69
Keratometry	-43.58±1.4	46.1±4.1	45.8±3.1	0.12	0.18	0.03
Spherical equivalent	-1.5±1.1	-2.5±1.9	-2.32±2.1	0.21	0.03	0.02
IOPg	13.1±1.4	13.41±1.8	12.9±1.8	0.45	0.68	0.74
IOPcc	13.9±1.6	13.28±3.2	13.5±2.1	0.69	0.72	0.81
Keratometry (km) and spherical equivalent (SE): Km and SE values in control group were significantly lower than in DALK and PK group. However, Km and SE values were slightly higher in PK group but was statistically insignificant.

Discussion

Penetrating keratoplasty has been successfully used in treating advanced keratoconus [13,14]. However, in the last few years DALK has been regarded as an alternative in which there is no descemét’s involvement[15-17].

DALK has several advantages over penetrating keratoplasty. These are:
1. Less endothelial cell loss.
2. Sutures can be removed earlier.
3. Surgery is extraocular.
4. Rejection of the endothelium was not seen.
5. Steroid treatment can be stopped earlier [16,18].

Our study comparing DALK and PK using ORA showed DALK is superior to PK in attaining biomechanical characteristics more towards normal eyes. Measurements from ORA were taken in normal, postoperative penetrating keratoplasty (PK) and deep anterior lamellar keratoplasty (DALK) done for advanced keratoconus.

The ORA, developed by Reichert Ophthalmic Instruments, was used in this study to evaluate the biomechanical properties of the cornea. Corneal hysteresis represents the viscous damping nature of the cornea; CRF represents the overall resistance of the cornea[19]. Currently ORA is the only method used to measure corneal elasticity[20-23]. Most of the studies have been done on measuring the corneal elasticity in keratoconic eyes and it was found that CH and CRF were lower in keratoconic eyes than in healthy eyes[24,25]. Other conditions were ORA was used in different studies were Fuchs dystrophy, high myopia, glaucoma [19], post LASIK eyes [25,26] and post-PTK eyes[27] and it was found that CH was significantly lower in these conditions. Studies have shown that corneal hysteresis is a new indicator for screening patients for refractive surgeries, as it may help to diagnose form keratoconus, which is an important cause of post LASIK ectasia [28]. Studies were also done to observe the change in corneal hysteresis in keratoconus after treating them with UVA corneal collagen crosslinking. UVA corneal collagen crosslinking (CXL) is a safe method forstabilizing the progression of keratoconus [29,30]. Vinciguerra et al., reported that there was no statistically significant difference between CH and CRF values before and after 1 year of post-crosslinking. Mean CH and CRF values were 9.13 ± 1.71 and 9.05 ± 1.76 mmHg in the preoperative group and 9.27 ± 1.25 and 9.01 ± 1.12 mmHg in the 1 year postoperative. They concluded that the change in biomechanical factors of the cornea may be less than what can be measured by the sensitivity of the ORA, or it might indicate that CXL changed corneal biomechanics that cannot be detected by the viscoelastic parameters, CH and CRF [31].

Another similar study by Gkikia et al., evaluated the corneal resistance factor after corneal crosslinking for keratoconus. The ORA parameters also in this study showed no significant difference on keratoconus after crosslinking, however significant correlation was found between ORA parameters and Best Corrected Visual Acuity, Central Corneal Thickness, Keratometry, Astigmatism and Residual Astigmatism [32].

Jafarinasab et al., compared 45 eyes of 36 patients who had PK surgery with 23 eyes of 21 patients who had DALK surgery. They found that graft biomechanical properties are similar to those after PK. CH and CRF were measured at 10.09 ± 2.5 and 10.13 ± 2.2 mmHg in the PK group and 9.64 ± 2.1 and 9.36 ± 2.1 mmHg in the DALK group, respectively[33]. In conclusion, they said that biomechanical properties after DALK and PK are similar and provide similar rigidity properties. However, in our study we found that CH and CRF were lower in the PK group, which differs from this study. Jafarinasab et al., however did not mention about the severity of keratoconus, while our study included patients of only advanced keratoconus in both DALK and PK group.

Hosny et al., compared three groups: normal subjects, patients who underwent penetrating keratoplasty surgery and patients who underwent DALK surgery. ORA was performed 2 months after the surgery for all patients. It was found that the mean CH and CRF values were 10.86 ± 1.36 and 11.16 ± 1.5 mmHg in the control group, 9.57 ± 0.33 and 9.59 ± 1.5 mmHg in the PK group, and 10.87 ± 1.39 and 11.25 ± 1.46 mmHg in DALK group, respectively[34]. No statistically
significant differences between the mean CH and CRF in the DALK and control groups were found. However, the mean CH and CRF in the PK group were significantly lower than in the other two groups, similar to our study. However in this study ORA was performed after 2 months only.

Abdelkader reported both mean CH and mean CRF were significantly lower in PK group (sutures on; 10.1 ± 1.11 and 9.6 ± 1.08 mmHg) than in DALK (sutures out; 12.25 ± 1.13 and 12.09 ± 1.05 mmHg) and control groups (12.98 ± 1.19) and (12.59 ± 0.94 mmHg) at 6 months, respectively (p < 0.0001). After 1 year, there was no statistically significant difference in mean CH and CRF between DALK (12.68 ± 1.11 and 12.18 ± 1.11 mmHg) and PK groups (still sutures on; 12.36 ± 1.32 mmHg, p = 0.39 and 11.83 ± 1.26 mmHg, p = 0.33, respectively) [35] but in our study both CH and CRF were lower in PK group.

In this study by Abdelkader ORA parameters in PK group were taken with suture on, which may be the cause of conflicting results. However, the mean CRF was significantly lower in the PK than the control group (p = 0.03). No statistically significant difference in mean CH or mean CRF was found between DALK and control groups at any time-point, which was similar to our study.

Acar et al., The CH and CRF values in PK group were significantly lower than in Control group and DALK group (p = 0.001). The CH and CRF values were similar in group 1 and group 3. There was no statistically significant difference between Control group and DALK group [36], which was similar to our study.

Conclusion

DALK procedure provides better corneal rigidity as compared to PK in keratoconus patients.

Funding: Nil
Conflict of interest: None.
Permission of IRB: Yes

References

1. Rabinowitz YS. Keratoconus (Review). Surv Ophthalmol. 1998 Jan-Feb;42(4): 297-319.

2. Chihara E, Takahashi H, Okazaki K, Park M, Tanito M. The pre-operative intraocular pressure level predicts the amount of underestimated intraocular pressure after LASIK for myopia. Br J Ophthalmol. 2005 Feb;89(2):160-4. doi:10.1136/bjo.2004.048074.

3. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel IF, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007 Aug; 33(8): 1371-5. doi:10.1016/j.jcrs.2007.04.021.

4. Davison PF, Glabavy EJ. Connective tissue remodelling in corneal and scleral wounds. Invest Ophthalmol Vis Sci. 1986 Oct;27(10):1478-84.

5. Gasset AR, Dohlman CH. The tensile strength of corneal wounds. Arch Ophthalmol. 1968 May;79(5):595-602.

6. Simonsen AH, Andreassen TT, Bendix K. The healing strength of corneal wounds in the human eye. Exp Eye Res. 1982 Sep;35(3):287-92.

7. Smelser GK, Polack FM, Ozanics V. Persistence of donor collagen in corneal transplants. Exp Eye Res. 1965 Dec;4(4):349-54.

8. Reinhart WJ, Musch DC, Jacobs DS, Lee WB, Kaufman SC, Schtein RM. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty: a report by the American Academy of Ophthalmology. Ophthalmology. 2011 Jan;118(1):209-18. doi: 10.1016/j.ophtha.2010.11.002.

9. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005 Jan; 31(1): 156-62. doi:10.1016/j.jcrs.2004.10.044.

10. Feizi S, Einollahi B, Yazdani S, Hashemloo A. Graft biomechanical properties after penetrating keratoplasty in keratoconus. Cornea. 2012 Aug;31(8):855-8. doi:10.1097/ICO.0b013e31823f8ce4.

11. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007 Jul; 48(7):3026-31. doi:10.1167/iovs.04-0694.

12. Vajpayee R, Maharana P, Sharma N. Diamond knife-assisted deep anterior lamellar keratoplasty to
manage keratoconus. Journal of Cataract and refractive Surgeries.2014Feb;40(2):276-82. doi: 10.1016/j.jcrs.2013.07.047

13. Troutman RC, Lawless MA. Penetrating keratoplasty for keratoconus. Cornea. 1987;6(4):298-305.

14. Lim L, Pseudovs K, Coster DJ. Penetrating keratoplasty for keratoconus: visual outcome and success. Ophthalmology.2000Jun;107(6):1125-31.doi:10.1016/S0161-6420(00)00112-3.

15. Melles GR, Lander F, Rietvelt FJ, Remeijer L, Beekhuis WH, Binder PS. A new surgical technique for deep stromal, anteriorlamellarkeratoplasty. Br J Ophthalmol. 1999Mar;83(3):327-33.

16. Reinhart WJ, Musch DC, Jacobs DS, Lee WB, Kaufman SC, Schtein RM. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by American Academy of Ophthalmology. Ophthalmology. 2011Jan;118(1):209-18. doi: 10.1016/j.ophtha.2010.11.002.

17. Javadi MA, Feizi S, Yazdani S, Mirbabaee F, Deep anteriorlamellar keratoplasty versus penetrating keratoplasty for keratoconus. A clinical trial. Cornea. 2010Apr;29(4):365-71. doi: 10.1097/ICO.0b013e3181b81b71.

18. Al-Torbak AA, Al-Motowa S, Al-Assiri A, Al-Kharashi S, Al-Shahwan S, Al-Mezaine H, et al. Deep anteriorlamellarkeratoplasty for keratoconus. A clinical trial. Cornea. 2006May;25(4):408-12.doi: 10.1097/01.ico.0000220777.70981.46.

19. Shin JY, Choi SJ, Oh JY, Kim MK, Lee JH, Woo WR. Evaluation of corneal biomechanical properties following penetrating keratoplasty using the ocular response analyzer. Korean J Ophthalmol.2010Jun;24(3):139-42. doi: 10.3341/kjo.2010.24.3.139.

20. Edmund C. Assessment of an elastic model in the pathogenesis of keratoconus. Acta Ophthalmol. 1987Oct;65(5):545-50.

21. Foster CS, Yamamato GK. Ocular rigidity in keratoconus. Am J Ophthalmol. 1978Dec;86(6):802-6.

22. Edmund C. Corneal rigidity and ocular rigidity in normal and keratoconic eyes. Acta Ophthalmol. 1988 Apr;66(2):134-40.

23. Hartstein J, Becker B. Research into the pathogenesis of keratoconus: A new syndrome low ocular rigidity, contact lenses and keratoconus. Arch Ophthalmol. 1970 Dec;84(6):728-9.

24. Yenerel NM, Kucumen RB, Gorgun E. Changes in corneal biomechanics in patients with keratoconus after penetrating keratoplasty. Cornea. 2010 Nov;29(11):1247-51. doi: 10.1097/ICO.0b013e3181ca6383.

25. Qazi MA, Sanderson JP, Mahmoud AM, Yoon EY, Robets CJ, Pepose JS. Postoperative changes in intraocular pressure and corneal biomechanical metrics-Laser in situ keratomileusis versus laser assisted subepithelial keratectomy. J Cataract Refract Surg.2009Oct;35(10):1774-88. doi: 10.1016/j.jcrs.2009.05.041.

26. Kamiya K, Shimizu K, Ohmoto F. The changes in corneal biomechanicalparameters after phototherapeutic keratectomy in eyes with granular corneal dystrophy. Eye. 2009Sep;23(9):1790-5. doi: 10.1038/eye.2008.373.

27. Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR. A randomized controlled trial of corneal collagen-cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008Sep;24(7):S720-5.

28. Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003Feb;110(2):267-75.doi:10.1016/S0161-6420(02)01727-X.

29. Wittig-Silva C, Whiting M, Lamoureux E, Lindsay RG, Sullivan LJ, Snibson GR. A randomized controlled trial of corneal collagen-cross-linking in progressive keratoconus: preliminary results. J Refract Surg. 2008Sep;24(7):S720-5.

30. Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet—a light in keratoconus: long-term results. J Cataract Refract Surg. 2008May;34(5):796-801.doi: 10.1016/j.jcrs.2007.12.039.

31. Vinciguerra P, Albe E, Mahmoud MM, Trazza S, Hafezi F, Roberts CJ. Intra and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal crosslinking. J Refract Surg.
2010Sep;26(9):669-76. doi: 10.3928/1081597X-20100331-01.

32. Gkika M, Labiris G, Glarmoukakis A, Koutsogiannia A, Kozobolis V. Evaluation of corneal hysteresis and corneal resistance factor after corneal cross-linking for keratoconus. Graefes Arch Clin Exp Ophthalmol. 2012 Apr;250(4):565-73. doi: 10.1007/s00417-011-1897-0.

33. Jafarinasab MR, Sepehr F, Javadi MA, Hashemloo A. Graft biomechanical properties after penetrating keratoplasty versus deep anterior lamellar keratoplasty. Curr Eye Res. 2011 May;36(5):417-21. doi: 10.3109/02713683.2011.556303.

34. Hosny M, Hassaballa MAM, Shalaby A. Changes in corneal biomechanics following different keratoplasty techniques. Clin Ophthalmol. 2011 Jun;5:767-70. doi: 10.2147/OPTH.S1297.

35. Abdelkader A. Influence of different keratoplasty techniques on the biomechanical properties of the cornea. Acta Ophthalmol. 2013 Nov;91(7):e567-72. doi: 10.1111/aos.12136.

36. Acar B T, Akdemir M Acar S Corneal biomechanical properties in eyes with no previous surgery, with previous penetrating keratoplasty and with deep anterior lamellar keratoplasty. Jpn J Ophthalmol 2013 Jan;57(1):85-9. doi: 10.1007/s10384-012-0197-5.

How to cite this article?

Nawaz S, Sofi IA, Prafulla K. Maharana, Shaveta. Comparison of biomechanical properties between post penetrating keratoplasty and deep anterior lamellar keratoplasty in keratoconus patients using ocular response analyser. Int J Med Res Rev 2015;3(9):939-946. doi: 10.17511/ijmrr.2015.i9.175.