ON THE NUMBER OF TOPOLOGIES ON A FINITE SET

M. YASİR KIZMAZ

Abstract. We denote the number of distinct topologies which can be defined on the set X with n elements by $T(n)$. Similarly, $T_0(n)$ denotes the number of distinct T_0 topologies on the set X. In the present paper, we prove that for any prime p, $T(p^k) \equiv k + 1 \mod p$, and that for each non-negative integer n there exists a unique k such that $T(p+n) \equiv k$. We calculate k for $n = 1, 2, 3, 4$. We give an elementary proof for a result of Z.I. Borevich to the effect that $T_0(p+n) \equiv T_0(n+1) \mod p$.

1. INTRODUCTION

Given a finite set X with n elements, let $\mathcal{T}(X)$ and $\mathcal{T}_0(X)$ be the family of all topologies on X and the family of all T_0 topologies on X, respectively. We denote the cardinality of $\mathcal{T}(X)$ by $T(n)$ and the cardinality of $\mathcal{T}_0(X)$ by $T_0(n)$. There is no simple formula giving $T(n)$ and $T_0(n)$.

Calculation of these sequences by hand becomes very hard for $n \geq 4$. The online encyclopedia of N. J. A. Sloane [1] gives the values of $T(n)$ and $T_0(n)$ for $n \leq 18$. For a more detailed discussion of results in literature we refer to the article by Borevich [2].

In the present paper, we prove that for any prime p, $T(p^k) \equiv k + 1 \mod p$, and that for each non-negative integer n there exists a unique k such that $T(p+n) \equiv k$. We calculate k for $n = 0, 1, 2, 3, 4$. We give an elementary proof for a result of Borevich [2] to the effect that $T_0(p+n) \equiv T_0(n+1) \mod p$.

2010 Mathematics Subject Classification. Primary 11B50, Secondary 11B05.

Key words and phrases. topology, finite sets, T_0 topology.
2. **Main Results**

Let G be a group acting on the finite set X. Then the action of G on X can be extended to the action of G on $\mathcal{F}(X)$ by setting $g\tau = \{gU|\text{for } U \in \tau\}$ where $\tau \in \mathcal{F}(X)$ and $gU = \{gu|u \in U\}$. Now, set $Fix(\mathcal{F}(X)) = \{\tau \in \mathcal{F}(X) | g\tau = \tau \text{ for all } g \in G\}$. Notice that if G is a p-group for a prime p, $|\mathcal{F}(X)| \equiv |Fix(\mathcal{F}(X))| \mod p$ as every non-fixed element of $\mathcal{F}(X)$ has orbit with cardinality a positive power of p. For a given topology $\tau \in \mathcal{F}(X)$ and $x \in X$, we denote the intersection of all open sets of τ including x by O_x. Note that $O_x \in \tau$ as we are in the finite case.

Definition 2.1. A base \mathcal{B} of a topology τ is called a minimal base if any base of the topology contains \mathcal{B}.

Proposition 2.2. Let $\tau \in \mathcal{F}(X)$ and M_τ be the set of all distinct O_x for $x \in X$. A base \mathcal{B} of τ is a minimal base if and only if $\mathcal{B} = M_\tau$.

By the proposition, we extend the definition: a base \mathcal{B} on X is minimal if $\mathcal{B} = M_\tau$ where τ is the topology generated by \mathcal{B}.

Lemma 2.3. $\tau \in Fix(\mathcal{F}(X))$ if and only if M_τ is G-invariant.

Proof. Let $\tau \in Fix(\mathcal{F}(X))$ and $O_x \in M_\tau$. We need to show that $gO_x \in M_\tau$. Let $gx = y$ for $g \in G$. As $g\tau = \tau$, $gO_x \in \tau$. Thus, gO_x is an open set containing the element $gx = y$. Hence, $O_y \subseteq gO_x$. Since $g^{-1}y = x$, we can show that $O_x \subseteq g^{-1}O_y$ which force $gO_x = O_y$. So, M_τ is G-invariant. If M_τ is G-invariant then clearly the topology τ generated by this base is G-invariant. Hence, $\tau \in Fix(\mathcal{F}(X))$. This proof also shows that G acts on M_τ if $\tau \in Fix(\mathcal{F}(X))$. \(\square\)

Theorem 2.4. $T(p^k) \equiv k+1 \pmod{p}$ where k is a non-negative integer and p is a prime number.
Proof. Without loss of generality, let X be the cyclic group of order p^k, that is, $X = C_{p^k}$. Clearly X acts on X by left multiplication. By extending this action, X acts on $\mathfrak{T}(X)$. Notice that $|\mathfrak{T}(X)| \equiv |\text{Fix}(\mathfrak{T}(X))| \mod p$ as X is a p-group. It is left to show that $\text{Fix}(\mathfrak{T}(X))$ has $k + 1$ elements. Let $\tau \in \text{Fix}(\mathfrak{T}(X))$ and let $O_x, O_y \in M_\tau$ for $x, y \in X$. Then $(yx^{-1})O_x$ is an open set including y. Hence, $O_y \subseteq (yx^{-1})O_x$ which means $|O_y| \leq |O_x|$. The other inclusion can be done similarly so $|O_x| = |O_y|$ for all $x, y \in X$. Now, if $m \in O_x \cap O_y$, then $O_m \subseteq O_x \cap O_y$. As their orders are equal, we must have $O_x = O_y$ or $O_x \cap O_y = \emptyset$. Thus, X is a disjoint union of elements of M_τ. X also acts on M_τ by Lemma 2.3. and this action is transitive. Let e be the identity element of X and $\text{Stab}(O_e)$ be the stabilizer of O_e in X. We have $\text{Stab}(O_e), O_e = O_e$. Since $e \in O_e$, $\text{Stab}(O_e) \subseteq O_e$. As $|X : \text{Stab}(O_e)| = |M_\tau| = \frac{|X|}{|O_e|}$, we have $|\text{Stab}(O_e)| = |O_e|$ which implies that $\text{Stab}(O_e) = O_e$. Hence, the set M_τ is the set of left cosets of a subgroup of X. Since the chosen topology τ from $\text{Fix}(\mathfrak{T}(X))$ uniquely determines M_τ and M_τ uniquely determines a subgroup O_e of X, we have an injection from $\text{Fix}(\mathfrak{T}(X))$ to the set of all subgroups of X. Conversely, for a subgroup H of X, the set of left cosets of H form a minimal base for a topology. The topology τ generated by this base is an element of $\text{Fix}(\mathfrak{T}(X))$ by Lemma 2.3. Hence, the cardinality of $\text{Fix}(\mathfrak{T}(X))$ is equal to the number of the subgroups of X, which is $k + 1$.

By applying same method in the above proof, we can also show that $T_0(p^k) \equiv 1 \mod p$. Actually, Z. I. Borevich proved more general result about $T_0(n)$. Now, we will establish elementary proof for the theorem of Z. I. Borevich.
Theorem 2.5 (Z. I. Borevich). For a given nonnegative integer n and prime p, $T_0(n + p) \equiv T_0(n + 1) \mod p$.

Let $C = C_p$ be the cyclic group of order p and N be a set with n elements. Without loss of generality, let X be a disjoint union of C and N so that the cardinality of X is $p + n$. We define the action of C on X in a following way: for $c \in C$ and for $x \in X$, $c \ast x = cx$ if $x \in C$ and $c \ast x = x$ if $x \in N$. Then the action of C on X can be extended to the action of C on $\mathcal{T}_\sigma(X)$. As $|\mathcal{T}_\sigma(X)| \equiv |\text{Fix}(\mathcal{T}_\sigma(X))| \mod p$, it is left to show that $|\text{Fix}(\mathcal{T}_\sigma(X))| = T_0(n + 1)$. Let $\tau \in \text{Fix}(\mathcal{T}_\sigma(X))$ and let $x, y \in C$ with $x \neq y$. We know that $yx^{-1}O_x = O_y$. Then we can observe that $O_x \cap N = O_y \cap N$ as N is fixed by C. Similarly, $O_x \cap C$ and $O_y \cap C$ are disjoint or equal. But we can not have $O_x = O_y$ as it is a T_0 topology. Hence $O_x \cap C \neq O_y \cap C$. Then we must have $O_x \cap C = \{x\}$ for all $x \in X$. For $a \in N$, $x(C \cap O_a) = C \cap O_a$ which force that $C \cap O_a$ is C or \emptyset. Set $\tilde{X} = X/ \sim$ where $x \sim y$ if $x, y \in C$. Notice that the minimal base M_τ of X induce a minimal base on \tilde{X} by setting $\bar{O}_x = \bar{O}_x$. It is easy to see that this map is one to one on the minimal bases of $\tau \in \text{Fix}(\mathcal{T}_\sigma)$. Hence, $|\text{Fix}(\mathcal{T}_\sigma(X))| \leq T_0(n + 1)$. Conversely, Let $\bar{\tau} \in \mathcal{T}_\sigma(\tilde{X})$, then set $O_x = \{x\} \cup (O_x \setminus \{\bar{x}\})$. Note that for $a \in N$, $\bar{a} = a$. It is easy to see that induced minimal base is C-invariant. Then the induced topology $\tau \in \text{Fix}(\mathcal{T}_\sigma(X))$. Having other inclusion concludes the proof.

Corollary 2.6. $T_0(p^k) \equiv 1 \mod p$ where k is a non-negative integer and p is a prime number.

The proof of next theorem is similar with the proof of Theorem 2.5. For clarity, we repeat some arguments.

Theorem 2.7. For a given nonnegative integer n, there exists a uniqe integer k such that $T(p + n) \equiv k \mod p$ for all primes p.
Proof. If the given integer \(n = 0 \), \(T(p) \equiv 2 \mod p \) by Theorem 1. Hence we can assume that \(n > 0 \). Let \(C = C_p \) be the cyclic group of order \(p \) and \(N \) be a set with \(n \) elements. We set \(X \) and define the action of \(C \) on \(X \) as in the proof the previous theorem. Then the action of \(C \) on \(X \) can be extended to the action of \(C \) on \(\mathcal{T}(X) \). As \(|\mathcal{T}(X)| \equiv |\text{Fix} (\mathcal{T}(X))| \mod p\), it is left to show that \(|\text{Fix} (\mathcal{T}(X))|\) does not depend on the choice of prime \(p \). By the Lemma 2.3 and Lemma 2.4, \(|\text{Fix} (\mathcal{T}(X))|\) is equal to the number of \(C \)-invariant minimal basis on \(X \). Let \(x, y \in C \). Notice that \(O_x \) completely determine \(O_y \) as \((yx^{-1})O_x = O_y \). Then \(|O_x \cap C| = |O_y \cap C|\) as \(yx^{-1}(O_x \cap C) = O_y \cap C \). Now, it is easy to see that \(O_x \cap C \) and \(O_y \cap C \) is either disjoint or equal. As cardinality of \(C \) is prime, \(O_x \cap C \) is equal to \(\{x\} \) or \(C \). If \(a \in N \) then we must have \(gO_a = O_a \) for all \(g \in C \) as \(ga = a \). Hence, \(O_a \cap C = \emptyset \) or \(O_a \cap C = C \). Thus, number of the elements of the \(C \) has no contribution to the the number of the possible minimal bases. Now we know that such \(k \) exist. If \(k' \) is also such integer than \(k \equiv k' \mod p \) for all prime \(p \). Hence \(k - k' \) is divisible by all primes which force \(k - k' = 0 \).

By the previous therem we see that \(k \) is uniquely determined by \(n \). Hence we can use \(k(n) \) to denote \(k \) for a given \(n \). The proof the theorem also gives algorithm to calculate \(k(n) \) for a given \(n \) but when \(n \) is larger, calculation of congruence becomes difficult. Here, we calculate for \(n = 1 \).

Corollary 2.8. \(T(p + 1) \equiv 7 \mod p \) for all primes \(p \).

Proof. We follow the proof the Theorem 2.6. We need to show that it has exactly seven \(C \)-invariant minimal bases. Let \(x \in C \) then \(O_x \cap C = C \) or \(O_x \cap C = \{x\} \).
Case 1: Let \(O_x \cap C = C \) then \(O_x = C \) or \(O_x = C \cup \{a\} \). For both cases \(O_a = \{a\} \) or \(O_a = C \cup \{a\} \). We count 4 different possibilities.

Case 2: Let \(O_x \cap C = \{x\} \) then \(O_x = \{x\} \) or \(O_x = \{x,a\} \) where \(a \) is the unique element of \(N \). If \(O_x = x \) then \(O_a = \{a\} \) or \(O_a = C \cap N \). If \(O_x = \{x,a\} \) then \(O_a \subseteq O_x \) which force \(O_a = \{a\} \). We count three possible sub-cases. All together we have 7 possible cases.

We develop new method to calculate \(k(n) \) for larger \(n \). But the method requires to know some values of \(T(s) \) for some \(s \).

Theorem 2.9. The sequence \(k(n) \) satisfies the following inequality:
\[T(n+1) < k(n) < 2T(n+1). \]

Proof. We again the follow the proof of the Theorem 2.6. To count \(k(n) \), we have two main case,

Case 1: Let \(O_x \cap C = C \) for \(x \in C \). Then \(O_y \cap C = C \) for all \(y \in C \) and \(O_x = O_y \) for all \(x,y \in C \). If \(a \in N \) then \(O_a \cap C \) equals to \(C \) or \(\emptyset \). Hence we can see whole \(C \) as a one element. Then we have \(T(n+1) \) possible case.

Case 2: Let \(O_x \cap C = \{x\} \) for \(x \in C \). Again we have \(O_x = O_y \) for all \(x,y \in C \). Hence we have at most \(T(n+1) \) possible case. But we can not have exactly \(T(n+1) \) possible cases. To see this set \(O_x = \{x,a\} \) for \(a \in N \). Then \(O_a \) can not be \(\{x,a\} \). Then the result follows.

\(\square \)

Theorem 2.10. The sequence \(k(n) := 7, 51, 634, 12623 \) for \(n = 1, 2, 3, 4 \) respectively.

We only show the calculation of \(k(2) \). The others calculation are similar. By previous theorem \(T(3) < k(2) < 2 \times T(3) \) so \(29 < k(2) < 58 \).

Since

\[T(4) \equiv k(2) \mod 2 \]
\[T(5) \equiv k(2) \mod 3 \]
By solving the above congruence relation, we get $k(2) \equiv 21 \mod 30$.

By the inequality we have $k(2) = 51$.

For $n = 3, 4$, we have same procedure. For $n \geq 5$, we do not have unique solution satisfying the inequality.

Closed form of $k(n)$ seems to be another open problem. Hence, calculation of $k(n)$ for specific n or some better lower and upper bounds can be seen as new problem arising from this article.

References

[1] N. J. A. Sloane, *Online Encyclopedia of Integer Sequences* (Concerned with sequences A000798, A001035)

[2] Z.I. Borevich, *Periodicity Of Residues of The number Of Finite Labeled Topologies*, Journal of Soviet Mathematics, 24, No. 4, 391-395 (1984)