I was disappointed to read about a device that was not successful in producing reliable vas occlusion in Amory et al.'s report in this issue of the journal [1]. For those who are unfamiliar with vasectomy terminology, it is important to understand that a vasectomy procedure has three major aspects: (1) anesthesia; (2) accessing or approaching the vas (that is, the method used to isolate a loop of the vas); and (3) occluding the vas.

With respect to anesthesia, some practitioners are proponents of a no-needle approach using a jet-injector-type device, whereas others suggest that using a small, 30-gauge needle is just as effective at minimizing pain [2–4]. However, it should be noted that many men who are afraid of having a needle stuck in their scrotum might come to a clinic that advertises the ‘no-needle’ technique, but might be more skeptical of a clinic that advertises a ‘small needle’ or ‘painless’ vasectomy technique. As noted by Prof RCM Kaza, President of the NSV Surgeons of India, vasectomy is both a surgical and a psychological procedure.

With respect to approaching the vas, the no-scalpel vasectomy (NSV) technique, developed by Dr S. Li in China is probably the best method for accessing or approaching the vas [5, 6]. The disadvantage of the NSV technique for the surgeon is that it requires more hands-on training and practice than some incisional techniques.

With respect to occluding the vas, this is a major current research question in the vasectomy field. Is it possible to develop a simple, standardized, reliable method of vas occlusion that will minimize recanalization? Amory’s report [1] documents one attempt to solve this problem. Existing evidence suggests that thermal cautery of the vas lumen—combined with fascial interposition—is perhaps the most reliable method for vas occlusion [7, 8]. However, almost every surgeon has his or her own technique of fascial interposition, and there is great variability among the vas occlusion techniques currently in use [9].

Some surgeons or clinics have their own unique and highly effective methods, such as the electrosurgical technique used by the Marie Stopes Clinic [10]. However, their effectiveness is not always reproducible when used with even slight modifications [11]. In addition, there is a concern with electrosurgical equipment that errors can occur: either vasectomy failures from too little energy [12] or injuries from too much energy [13].

On-going research to develop better methods of vas occlusion includes work by biomedical engineers on the use of high-intensity focused ultrasound [14] and infrared lasers [15, 16].

Consider this commentary as a call for competition! Men and their surgeons need a more reliable, easy-to-apply method of vas occlusion. Ideally, such a method (1) should be compatible with the NSV approach to the vas; (2) should not involve destruction of a long segment of the vas, so that it could be easily reversed; (3) should be as safe or safer than existing methods of vas occlusion; and (4) should not require expensive equipment.

Potential conflict of interest

The author discloses a potential conflict of interest in holding a US patent pending on a novel vas-cap device for vas occlusion.
References

1. Amory JK, Jessen JW, Muller C, Berger RE. Vasectomy by epithelial curettage without suture or cautery: a pilot study in humans. Asian J Androl 2010; 12: 315–21.
2. Weiss RS, Li PS. No-needle jet anesthetic technique for no-scalpel vasectomy. J Urol 2005; 173: 1677–80.
3. Monoski MA, Li PS, Baum N, Goldstein M. No-scalpel, no-needle vasectomy. Urology 2006; 68: 9–14.
4. Aggarwal H, Chiou RK, Siref LE, Sloan SE. Comparative analysis of pain during anesthesia and no-scalpel vasectomy procedure among three different local anesthetic techniques. Urology 2009; 74: 77–81.
5. Li SQ, Goldstein M, Zhu J, Huber D. The no-scalpel vasectomy. J Urol 1991; 145: 341–4.
6. Sokal D, McMullen S, Gates D, Dominik R. A comparative study of the no-scalpel and standard incision approaches to vasectomy in 5 countries. The Male Sterilization Investigator Team. J Urol 1999; 162: 1621–5.
7. Aradhya KW, Best K, Sokal DC. Recent developments in vasectomy. BMJ 2005; 330: 296–9.
8. Sokal DC, Labrecque M. Effectiveness of vasectomy techniques. Urol Clin North Am 2009; 36: 317–29.
9. Barone MA, Hutchinson PL, Johnson CH, Hsia J, Wheeler J. Vasectomy in the United States, 2002. J Urol 2006; 176: 232–6; discussion 236.
10. Black T, Francombe C. Comparison of Marie Stopes scalpel and electrocautery no-scalpel vasectomy techniques. J Fam Plann Reprod Health Care 2003; 29: 32–4.
11. Labrecque M, Caron L. Effectiveness of intraluminal thermal cautery alone without cutting the vas: preliminary results. Proceedings of the International Conference on Men as Partners in Sexual and Reproductive Health; 28 November–1 December 2004; National Institute for Research in Reproductive Health; Mumbai, India, 2005. pp.111–115. Also available at: http://www.vasectomie.net/Cautery_%20not_cut.pdf (accessed 7 February 2010).
12. Rhodes DB, Mumford SD, Free MJ. Vasectomy: efficacy of placing the cut vas in different fascial planes. Fertil Steril 1980; 33: 433–8.
13. Wu MP, Ou CS, Chen SL, Yen EY, Rowbotham R. Complications and recommended practices for electrosurgery in laparoscopy. Am J Surg 2000; 179: 67–73.
14. Roberts WW, Chan DY, Fried NM, Wright EJ, Nicol T, et al. High intensity focused ultrasound ablation of the vas deferens in a canine model. J Urol 2002; 167: 2613–7.
15. Cilip CM, Jarow JP, Fried NM. Noninvasive laser vasectomy: preliminary ex vivo tissue studies. Lasers Surg Med 2009; 41: 203–7.
16. Cilip CM, Ross AE, Jarow JP, Fried NM. Use of an optical clearing agent during noninvasive laser coagulation of the canine vas deferens, ex vivo and in vivo. Proc SPIE Lasers Urol (in press).