Oral health, caries risk profiles, and oral microbiome of pediatric patients with leukemia submitted to chemotherapy

Yan Wang
Sichuan University West China College of Stomatology https://orcid.org/0000-0002-7136-9353

Xinyi Zeng
Sichuan University West China College of Stomatology

Xue Yang
West China Women's and Children's Hospital: Sichuan University West China Second University Hospital

Jiajia Que
Sichuan University West China College of Stomatology

Qin Du
Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital

Qiong Zhang
Sichuan University West China College of Stomatology

Jing Zou (zoujing@sou.edu.cn)
Sichuan University

Research article

Keywords: acute lymphoblastic leukemia, oral health, caries risk, oral microbiome

DOI: https://doi.org/10.21203/rs.3.rs-97387/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Chemotherapy is the primary treatment modality used for patients with acute lymphoblastic leukemia (ALL), but inevitably causes microbiota-related oral complications. This study aims to investigate the effects of chemotherapy on oral health status, caries risk, and oral microbiome in pediatric patients with ALL.

Methods: Thirty-nine children with ALL receiving chemotherapy were enrolled, and a gender-, age-, dentition stage and socioeconomic class matched healthy counterpart (HC) were recruited. Demographic information and overall health condition were obtained through questionnaire or medical records. Oral examination was performed to assess caries and salivary status, plaque index and other oral manifestations. Cariogram was used to assess the overall caries risk. Supragingival samples of thirteen ALL subjects and their counterparts were randomly selected to perform a 16S ribosomal RNA gene 454 pyrosequencing. Raw sequence data were screened, trimmed, and filtered using Seqcln and MOTHUR.

Results: The prevalence of dental caries, gingivitis, oral mucositis, xerostomia and candidiasis in ALL group was higher than that of control group ($p < 0.05$). Children with ALL demonstrated higher caries risk compared with healthy controls based upon Cariogram ($p < 0.05$). The oral microbial structure of ALL patients receiving chemotherapy is different from that of healthy controls. Oral microbiota of ALL group showed less alpha diversity and significant differences in the composition of the oral microbiome compared to healthy controls.

Conclusions: ALL patients receiving chemotherapy demonstrated compromised oral health, high caries risk, alteration of caries related factors and dysbiosis of oral microbiota. These findings may possibly be of clinical importance in developing better strategies for personalized preventive management of oral diseases for pediatric children with ALL.

Background

Leukemia is a common malignant tumor disease in children, characterized by chromosomal abnormalities and genetic alterations involved in differentiation and proliferation of lymphoid precursor cells [1]. ALL is the most common cancer in children with a peak incidence rate between 1 year and 4 years old. With the rapid progress in combination chemotherapy for childhood ALL, the cure rates for ALL are around 90% [2]. Pediatric ALL has provided a model for the survival of cancer patients by progressive improvements in the efficacy of multi-agent chemotherapy regimens [3]. Methotrexate (MTX) is an essential drug in the treatment of ALL. Administration high-dose methotrexate followed by folinic acid to “rescue” normal tissues from toxic effects is a critical component of contemporary ALL regimens [3, 4]. However, children with ALL often suffer from toxicity of chemotherapeutic drugs such as MTX. The adverse effects of chemotherapy frequently involve the oral cavity, such as destroying oral mucosal tissues, inhibiting patients’ immune function, causing dysbiosis and infection, changing patients' eating
habits and oral hygiene [5, 6]. The oral complications include oral mucositis, opportunistic infections, gingival inflammation and bleeding, as well as xerostomia [7].

The side effects of chemotherapy impair the oral health of patients with leukemia chemotherapy and increase the susceptibility to caries [8]. Patients treated with chemotherapy were found to have a low pH and buffer ability of the saliva [9]. The changes in the quantity and quality of the saliva, and dietary faults make patients' oral hygiene worse. During therapy, the severe pancytopenia and suppressed immune function in patients are thought to be further increasing the risk of dental infection [10, 11].

Caries risk refers to the possibility of individuals to develop carious lesions over a certain period of time [12]. Assessing caries risk is an essential element in the planning of preventive and therapeutic strategies [13]. The Cariogram model proposed by Petersson et al. in 1996 has higher accuracy in predicting the trend of caries development, and is an ideal multi-factor caries risk assessment model [13–15]. It graphically displays an individual's caries risk profile, simultaneously taking into account the interaction between different causative factors and parameters of caries [16]. Assessing the caries risk of ALL patients, especially children, and taking targeted preventive measures will help reduce the incidence of caries and improve the quality of life of children with leukemia.

The lymphoid progenitor cells of ALL patients are affected and the side effects of chemotherapy may partially impair the immune system of the host [17–19]. The structure of microbiome is determined by host and environmental factors. If any of these factors are greatly disturbed, it will affect the composition of microbiome in the host, resulting in disease. Previous studies have shown that a great part of patients with ALL presented some lesion in oral cavity during or after chemotherapy treatment such as mucositis, candidiasis and gingivitis [20]. There is evidence indicating that oral flora is responsible for 23–50% of cases of septicemia in neutropenic cancer patients [21–23]. However, there is a scarcity in the literature investigating in the component of oral microbiological in ALL children receiving chemotherapy. The oral cavity harbors one of the most complex microbiomes in the body [24]. The high-throughput sequencing of 16S rRNA genes is characterized by deep coverage depth and multiple output data, which can detect species with low DNA content and uncultivable taxa, providing more comprehensive information on complex microbiome [25]. It has been widely applied to the exploration of oral microbial diversity [26–28] and head-neck tumor undergone radiotherapy [29–31]. This study provided a comprehensive comparison of oral microbiological components in ALL patients receiving chemotherapy and HC for each leukemia child using 16S ribosomal RNA gene 454 pyrosequencing, which helps to better manage related oral and systemic complications.

In general, this study chose ALL pediatric patients receiving chemotherapy as the research object to investigate the oral health status, caries risk and oral microbiome composition comparing the HC matched for each leukemia child. The results of this study may help guide oral hygiene practices and clinic oral operation for ALL populations and take targeted preventive measures to improve the quality of life.
Methods

Study population

This matched-case control study was approved by the Ethics Committee of State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China. The informed consent was obtained from the parents or guardians before the investigation. The leukemia children were patients at the Department of Pediatric Hematology and Oncology. Eligible participants were those diagnosed as acute lymphoblastic leukemia that had taken chemotherapy for a minimum of one year. Exclusion criteria were as following: patients older than 18 years old; systemic diseases other than acute lymphoblastic leukemia; acute oral infection such as dental abscess. For the control group, “social twins” were recruited from the Department of Pediatric Dentistry that matched age, gender and caries status. The detailed inclusion/exclusion criteria were listed in Table 1.

Table 1
Inclusion and exclusion criteria.

Inclusion criteria	Exclusion criteria
ALL group	
• diagnosed with acute lymphoblastic leukemia based on bone marrow samples	• Receiving antibiotics within 3 months before the study
• Receiving chemotherapy	• Local antimicrobial treatment within 2 weeks
• No more than eighteen years old	
• Free of other systemic diseases	
• Written informed consent	
Healthy control group	
• Age, socioeconomic status comparable with ALL patients	• Systemic or local disorders that cause oral mucosal lesions such as lichen planus
• Free of systemic diseases	• Periodontal pockets equal to or greater than 4 mm
• Written informed consent	• Acute oral infection such as dental abscess at enrollment
	• Evidence of oral candidiasis
	• Receiving antibiotics within 3 months before the study
	• Local antimicrobial treatment within 2 weeks

ALL patients with acute lymphoblastic leukemia.

Questionnaire
Questionnaires were distributed to all subjects and completed on the day of oral examination. The content of the questionnaire included the basic information of the sample, the type and frequency of diet, oral hygiene habits, fluoride application and systemic diseases. For the leukemia group, current and prior chemotherapy protocols and duration of chemotherapy were inquired and further confirmed by checking corresponding medical records.

Clinical examination

The examination was carried out by two of the authors (Que JJ and Wang Y). Before the start of the investigation, the examiner was calibrated with an experienced pediatric dentist (Zou J). A probe and mirror under optimal light conditions were available for all the dental examinations.

Caries status were recorded according to World Health Organization (WHO) criteria [32]. These included the number of tooth surfaces decayed, the number of teeth missed due to caries, and the number of surfaces restored after decay. For primary tooth, the caries parameter was registered as decayed missing filled teeth (dmft); for permanent tooth, it was recorded as Decayed Missing Filled Teeth (DMFT).

Oral hygiene status was registered according to the plaque index system developed by Silness & Loe [33]. It was assessed on the buccal, lingual, mesial and distal surfaces of the test teeth. Each surface was scored by the same examiner and the percent of each score was calculated by dividing the number of surfaces presenting certain score to total number of surfaces examined. If the tooth was missing, the adjacent tooth was checked.

Salivary Analyses

The tests were done at least 1 hour after tooth brushing, eating or drinking. Because the saliva secretion fluctuated at different time points during a day, all the testes were accomplished between 9 to 11 o’clock in the morning to make all the subjects comparable.

Salivary flow rate

A paraffin pellet was given to the subject to chew for 30 seconds, and then spit out the accumulated saliva. The subject then continues to chew the paraffin for 5 minutes with the accumulated saliva continuously collected into a measuring cup. The secretion rate was calculated by dividing the amount of salvia to the time used.

Salivary buffer capacity

A drop of the collected saliva was added to the test pad of Dentobuff® Strip (Orion Diagnostica, Espoo, Finland) for measuring buffer capacity according to the manufacturer’s instructions, expressing as low (yellow), medium (middle), high (blue).

Streptococcus mutans count
The count of *Streptococcus mutans* was estimated by using the Dentobuff® SM test. The test strip was gently turned 10 times on the back of the subject's tongue, placed in the medium, and cultured at 37 °C for 48 hours after counting the *Streptococcus mutans* and reading the results.

Cariogram

Data were collected according to the Cariogram operation manual and entered into the Cariogram model for scoring as previously described [14]. The items include caries experience, related diseases, diet contents, diet frequency, plaque amount, *Streptococcus mutans*, fluoride programme, saliva secretion and saliva buffer capacity. Among which, related diseases refer to general disease or conditions associated with dental caries such as Sjögren's syndrome, continuous use of drugs that affect saliva secretion function, head-neck tumor chemotherapy. According to its built-in formula, the program presents a pie diagram which is composed of 5 parts of different colors:

- The dark blue sector 'Diet' is based on a combination of diet contents and diet frequency.
- The red sector 'Bacteria' is based on a combination of amount of plaque and *Streptococcus mutans*.
- The light blue sector 'susceptibility' is based on a combination of fluoride programme, saliva secretion and saliva buffer capacity.
- The yellow sector 'Circumstances' is based on a combination of caries experience and related diseases.
- The green sector shows an estimation of the “Chance of avoiding caries”

According to the “Chance of avoiding caries” (the proportion of green sector area) in the results, the subjects can be divided into high-risk group (< 40%), medium-risk group (40% ~ 60%), and low-risk group (> 60%).

Oral microbiome sample collection

Supragingival samples of thirteen ALL subjects and their counterparts were randomly selected. Microbial samples were collected at the same time of day, approximately two hours after breakfast, using the method mentioned in the Manual of Procedures for Human Microbiome Project with minor modifications. Briefly, the sampling sites, the teeth in upper right and lower left quadrants or upper left and lower right quadrants, were isolated with cotton rolls and dried before sampling. A sterile Gracey curette was used to collect a pooled supragingival plaque sample from the mesial surfaces of each of these teeth in turn. The collected plaque samples were released from the curette by agitation in 700 ml of TE buffer (10 mM Tris-Cl [pH 7.5] and 1 mM EDTA). The microbial samples were immediately transported on ice to the laboratory and stored at 280uC until further DNA extraction and pyrosequencing analysis.

DNA extraction and pyrosequencing

Bacterial DNA was extracted using QIAamp DNA Micro Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions with minor modification. Briefly, 30 ml lysozyme solution (50 mg/ml) was added to the mixture to increase the yield of bacterial DNA from Gram-positive bacteria. The amount of
DNA extracted per sample was determined using Quant-iT PicoGreen dsDNA Assay Kit. The 16S rRNA hypervariable V1–V3 region was amplified using FastStart High Fidelity PCR System, dNTP Pack (Roche Applied Science) according to previous descriptions [34]. Obtained sequences from the pyrosequencer were also analyzed according to the previous study [34]. To optimize raw sequences, the Seqcln and MOTHUR (version 1.30.1) were applied to screen, trim, and filter the data. Qualified sequences were submitted to the SILVA database (SILVA 111) for taxonomic alignment. Community richness (ACE, Chao1) and diversity indices (Shannon index, Simpson index) were determined by the MOTHUR program at 97% similarity level. Metastats was used to compare the relative abundance of each taxon at different taxonomic levels between ALL patients and healthy children [35].

Statistical Analyses

Data were entered into SPSS 24.0 (SPSS Inc., Chicago, IL, USA). For the quantitative data and the non-normal distribution of quantitative data, paired rank sum test and Fisher's exact test were used to compare the caries risk factors of the ALL group and the control group. The statistical significance of oral microbiome was determined by nonparametric Mann-Whitney U test for independent samples. The p value threshold was set at 0.05 and the q value threshold at 0.5.

Results

Characteristics of study population

We enrolled 39 acute lymphoblastic leukemia patients and 39 healthy counterparts. There were 23 males and 16 females in the ALL group, with an average age of 6.9 ± 3.92 years. The age, gender, socioeconomic class and dentition stage of the control group matched the ALL group. The characteristics of the investigated subjects were showed in Table 2.
Table 2
Sociodemographic characteristics of the investigated subjects.

Variables	Characteristics	HC (n = 39)	ALL (n = 39)	P value
Age (years)	Mean ± SD	7.00 ± 3.02	6.95 ± 3.92	0.950#
Dentition stage				
Primary		17	18	0.858*
Mixed		16	15	
Permanent		6	6	
Gender				
Male		23	23	1.000*
Female		16	16	
Socioeconomic class				
More than 2000¥ per month		10	8	0.646*
1000-2000¥ per month		18	19	
less than 1000¥ per month		11	12	

ALL patients with acute lymphoblastic leukemia, HC healthy controls.

Unpaired t test was used.

*Independent sample nonparametric Mann-Whitney U test was used.

Oral health status

The prevalence rate of different oral diseases in acute lymphoblastic leukemia and healthy subjects was presented in Table 3. The prevalence of dental caries, gingivitis, oral mucositis, xerostomia and candidiasis in ALL group was significantly higher than that of control group. Among which, the number of case of oral mucositis and candidiasis in the healthy group was 0, while that in the ALL group was 6 and 1, respectively, accounting for 15.4% and 2.6%. The incidence of dental caries and gingivitis in the ALL group was very high, accounting for 69.2% and 38.5%, respectively. In terms of xerostomia, the prevalence of the ALL group was 25.6%, also higher than 2.1% in the healthy group.
Table 3
Prevalence of oral diseases

Variables	HC (n = 39)	ALL (n = 39)		
	n	%	n	%
Dental caries	19	48.7	27	69.2
Gingivitis	3	7.7	15	38.5
Oral mucositis	0	0	6	15.4
Xerostomia	1	2.1	10	25.6
Candidiasis	0	0	1	2.6

ALL patients with acute lymphoblastic leukemia, HC healthy controls.

a Stimulated saliva secretion rate < 0.5 ml/min

Caries risk

Caries related factors

We compared the following caries related factors: caries experience, related diseases, diet content, diet frequency, plaque amount, *Streptococcus mutans*, fluoride programme, saliva secretion and saliva buffering capacity (Table 4). Compared with healthy counterparts, we found significantly a higher sugar consumption of diet intake as well as a higher frequency in ALL group ($p = 0.002$). The average plaque index was 1.47 ± 0.70 in ALL group, more than that of healthy group with 1.13 ± 0.33 ($p = 0.008$). And the average stimulated salivary secretion rate was 0.78 ± 0.41 in ALL group, less than 1.01 ± 0.40 in healthy group ($p = 0.017$). Children with ALL received less fluoride program than healthy controls ($p = 0.006$). No statistic difference was found concerning salivary buffer capacity and counts of *Streptococcus mutans* in whole saliva ($p > 0.05$).
Table 4
Caries-related factors in children with acute lymphoblastic leukemia and healthy controls.

Variables	Cut-off value	**HC** (n = 39)	**ALL** (n = 39)	**P value**
Diet content	Very low sugar consumption	18	6	0.002*
	Low sugar consumption	10	10	
	Moderate sugar consumption	8	17	
	High sugar consumption	3	6	
Diet frequency	< 3/ day	3	1	0.003*
	3 ~ 5/day	32	23	
	> 5/day	4	15	
Plaque index	Mean ± SD	1.13 ± 0.33	1.47 ± 0.70	0.008#
Streptococcus mutants	< 10⁴ CFU/ml	16	22	0.146*
	10⁴~10⁵ CFU/ml	17	14	
	10⁵~10⁶ CFU/ml	3	1	
	> 10⁶ CFU/ml	3	2	
Fluoride programme	0	7	1	0.006*
	1	10	4	
	2	14	20	
	3	8	14	
Stimulated saliva secretion rate	ml/min, mean ± SD	0.78 ± 0.41	1.01 ± 0.40	0.017#
Salivary buffer capacity	Low	0	0	0.190*
	Medium	7	12	
	High	32	27	

ALL patients with acute lymphoblastic leukemia, **HC** healthy controls.

*Unpaired t test was used.

*Independent sample nonparametric Mann-Whitney U test was used.

Cariogram-Evaluation of the caries risk
The distribution of Cariogram risk categories in ALL and healthy subjects was showed in Fig. 1a. The adolescents were divided into 5 risk subgroups according to the: (1) 0–20% (high caries risk), (2) 21–40%, (3) 41–60%, (4) 61–80% and (5) 81–100% (low caries risk). The median of the 'chance of avoiding caries' was 41.76% in the ALL group and 64.54% in the control group. A significant difference was found between the ALL and control groups in the low-risk subgroup; only one of the individuals belonged to the ALL group and 12 to the control group. The ratio of the two in the high-risk subgroup also varied greatly. The individual Cariogram sectors contributing to the higher risk profiles for the leukemia adolescents were 'susceptibility' (Streptococcus mutants, fluoride and saliva buffer capacity) and 'diet' ($p < 0.01$). Example of a Cariogram was showed in Fig. 1b.

Oral microbiome

In this study, 13 ALL subjects and their counterparts were randomly selected, from which qualified sequence reads were obtained and used for analysis. The sequencing data were analyzed with MOTHUR for alpha diversity analysis, including the ACE, Chao1, Shannon, Simpson (Fig. 2a-2d). Alpha diversity analysis, including Chao, ACE, Shannon, Simpson, revealed a statistically significant lower estimate of richness for ALL patients receiving chemotherapy compared with healthy children ($p < 0.01$). The higher alpha diversity of the control group may be related to the uniform distribution of different species of healthy controls.

To compare the oral microbial structure of ALL patient and healthy controls, principal coordinate analysis (PCoA) based on the weighted UniFrac metric was performed. A segregation trend for ALL patients and healthy subjects was observed, especially by principal coordinate Pco1(Fig. 2e), indicating that the oral microbial structure of ALL patients receiving chemotherapy is distinct from that of healthy controls.

Comparisons of oral microbiota between ALL patients and healthy subjects at each of taxonomical levels of phylum, class, order, family and genus were performed based on Metastats analysis. Statistical differences in the relative abundance of phylum, class, order, family and genus are shown in Fig. 3a-3e. A total of 12 phyla were identified in oral microbiota of ALL patients and healthy children in our dataset, which were dominated by six major phyla, including *Firmicutes*, *Proteobacteria*, *Fusobacteria*, *Actinobacteria*, *Bacteroidetes* and *Candidate division TM7*. Particularly, notable differences in abundance between ALL patients and healthy subjects were found for the two phyla, i.e. *Firmicutes* ($p = 0.002$) and *Candidate division TM7* ($p = 0.006$). At a further taxonomic level, there were 6 classes, 5 orders, 9 families and 13 genera were identified to have statistically difference in the oral cavity of ALL patients and healthy subjects.

Discussion

This study comprehensively compared the effects of chemotherapy on oral health status, caries risk, and oral microbial composition of ALL and healthy counterparts. To assess the oral health of ALL children, the current study evaluated their degree of caries, and the prevalence rate of different oral diseases. And
the caries risk was estimated with Cariogram by measuring nine factors of relevance to caries. Moreover, the high-throughput sequencing of 16S rRNA genes was applied to further explore and analyze the oral microbiome of two groups. ALL patients receiving chemotherapy showed high prevalence rate of oral complications and caries risk, compromised oral health and dysbiosis of oral microbiota. While there have been several studies investigating oral health status or microbiota in leukemia patients with chemotherapy, few have conducted a comprehensive analysis of all three [19, 36]. These findings may help to better implement a preventive oral health regimen and minimize the risk of associated oral complications, thereby improving the quality of life of patients with ALL.

Children affected by leukemia receive various forms of treatments including chemotherapeutic agents and stem cell transplants. Methotrexate as a chemotherapeutic drug can produce direct toxicity and affect the oral mucosa through the systemic circulation. Thus, chemotherapy could affect the oral health status of ALL patients, manifested by higher prevalence of five common oral manifestations than healthy counterparts. In our study, the oral disease with the highest prevalence rate from children with ALL was dental caries, accounting for 69.2%. This may be due to the toxic effects of the Methotrexate and its adverse effects on oral hygiene. In the study by Torres et al., gingivitis is a common oral manifestation of chemotherapeutic drugs, affecting 91.84% of the samples [37]. Similar results were obtained in this study, which may be related to poor oral hygiene caused by using chemotherapeutic drugs. Candidiasis, a fungal opportunistic infection, is also common among children with ALL in previous studies [37–39]. The presence of candidiasis could have been caused by the patients’ low immunity, associated with exposure to the virus. The most frequent oral complications were mucositis, candidiasis, periodontitis and gingivitis according to a systematic review and high-dose chemotherapy drugs can also lead to xerostomia [20, 40].

In addition, further research on the caries of ALL patients found that the application of high-dose methotrexate (HDMTX) affected caries related factors, manifested by changes in content and frequency of diets, increased dental plaque, reduced salivary flow rate compared with health counterparts, which also promoted the occurrence of the above-mentioned oral diseases. Chemotherapy will cause a decrease in saliva volume and saliva flow rate in patients with ALL, and manifest as xerostomia in severe cases [41]. Hong et al. considered that leukemia patients tend to consume more high-energy foods and drink sugar-rich beverages to relieve oral dryness [11]. Due to the nausea and vomiting caused by chemotherapy drugs, children with ALL have small food intake, so the number of meals has increased significantly. The high sugar consumption and increased frequency of eating is not conducive to the oral hygiene of patients, promoting the development of caries and increasing the risk of caries in children with ALL. It can be observed that application of chemotherapy seriously damages the oral health status of children with ALL in comparison with counterparts.

As a multi-factorial infectious disease, caries should be evaluated from multiple factors so that the prediction has accuracy and validity. The Cariogram, an interactive computer-based caries risk assessment programme, has developed rapidly in the past years, with many related studies and high evaluations. It has been used to evaluate the caries risk of various populations, including normal
populations of different ages [12, 42], patients undergoing oral treatment [43, 44] and patients with systemic diseases [45]. Andreas et al. compared the validity of three caries risk assessment tools and concluded that Cariogram displayed a higher validity in predicting caries increment [46]. In this study, children with ALL revealed lower percent chance of avoiding caries, of which 30.77% children were assessed as extremely high risk of dental caries (0–20% chance of avoiding caries). Therefore, it is necessary to evaluate the caries risk of ALL children during the chemotherapy period and take oral health measures for high-risk children, which can help reduce the incidence of caries in ALL children and improve their quality of life.

In the present study, we sampled supragingival plaque in children with ALL and their healthy counterparts, and analyzed its microbial composition via 16S-based 454 pyrosequencing. ALL children receiving chemotherapy had lower richness and less diversity of oral microbiota compared with healthy counterparts, which pointed to dysbiosis of oral microbiota in ALL patients. Moreover, we reported altered structure and composition of oral microbiota in ALL patients. As we all know, the health of the host is closely related to the microbiome, and the host immune system plays an important role in maintaining the balance of the microbiome. A study on the patients with acute myeloid leukemia (AML) undergoing induction chemotherapy indicated a high degree of intra-patient temporal instability of oral microbial diversity and that increased variability was correlated with adverse clinical outcomes [47]. And a study by Bo-Young Hong et al. demonstrated that chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis [48]. ALL patients may suffer from impaired host immunity due to disorders of lymphoid progenitor cells (the main part of the body’s immune system), and the side effects of methotrexate exacerbate this process, leading to disruptions of oral microbiota [34]. Moreover, the application of chemotherapy seriously damaged the oral health status of children with ALL, which also promoted the dysbiosis of oral microbiota.

We studied the differential relative abundance of bacterial taxonomy profiles of children with ALL and healthy counterparts. The results showed notable differences from the phylum down to the genus level in abundance between two groups. The *Firmicutes* phylum, *Bacilli* class, *Lactobacillales* order, *Camobacteriaceae* and *Aerococcaceae* families, *Abiotrophia* genus are much more abundant in the supragingival plaque of ALL patients than healthy counterparts. At the genus level, the leukemia-depleted genera included *Fusobacteria, Comamonas, Actinobacteria, Rothia* and so on, while only *Abiotrophia* were significant leukemia-enriched genera. Bo-Young Hong also studied the association of chemotherapy-induced oral mucositis and oral microbiome, founding the bacteriome depletion of common health-associated commensals from the genera *Streptococcus, Actinomyces, Gemella, Granulicatella*, and *Veillonella* and enrichment of Gram-negative bacteria such as *Fusobacterium nucleatum* and *Prevotella oris* [48]. Although the exact mechanism of the interaction between infectious diseases and microbiota has not been clarified, the study of oral microbiota in ALL patients can provide the opportunity for identifying potential infectious diseases. Hence, preventing the dysbiosis of oral microbiota might be a promising measure for decreasing the risk of associated infectious complications in children with ALL. And further precise experimental techniques and cohort studies are needed to elucidate the exact relationship between the two.
Conclusions

ALL patients receiving chemotherapy demonstrated compromised oral health, high caries risk, alteration of caries related factors and dysbiosis of oral microbiota compared with healthy counterparts. These findings may possibly be of clinical importance in developing better strategies for personalized preventive management of oral diseases for pediatric children with ALL, thereby improving their quality of life.

Abbreviations

ALL: Acute lymphoblastic leukemia; HC: Healthy counterpart; MTX: Methotrexate; WHO: World Health Organization; dmft: decayed missing filled teeth; DMFT: Decayed Missing Filled Teeth; PCoA: Principal coordinate analysis; AML: Acute myeloid leukemia; CFU: Colony-forming units; SPSS: Statistical package for social science; SD: standard deviation

Declarations

Ethics approval and consent to participate

This study was approved by the Ethics Committee of State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China. Before beginning work, we orally explained our study objectives and procedures to all participants, and obtained informed consent from the parents or guardians.

Consent for publication

All authors of this study have obtained consent for publication.

Availability of data and materials

All data generated and analyzed in this study are included within the article or available from the corresponding author at reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by the National Natural Science Foundation of China (81600864 to YW) and International Science and Technology Innovation Cooperation Program of Science and Technology Department of Sichuan Province (2019YFH0025 to JZ).

None of the funders played a role in the design of the study, data collection, analyses, and interpretation of the results or writing of the manuscript.
Authors' contributions

JZ and YW conceived the ideas; YW and JJQ recruited the subjects, collected the data and analyzed the samples; XY, JJQ, QD and QZ assisted with designing the questionnaire and recruiting the subjects; YW and XYZ analyzed the data and drafted the manuscript. All authors approved the submission.

Acknowledgements

Not applicable.

References

1. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395(10230):1146–62.
2. Greaves M. A causal mechanism for childhood acute lymphoblastic leukaemia. Nature reviews Cancer. 2018;18(8):471–84.
3. Hunger SP, Mullighan CG. Acute Lymphoblastic Leukemia in Children. N Engl J Med. 2015;373(16):1541–52.
4. Bhojwani D, Sabin ND, Pei D, Yang JJ, Khan RB, Panetta JC, Krull KR, Inaba H, Rubnitz JE, Metzger ML, et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol. 2014;32(9):949–59.
5. de Oliveira Lula EC, de Oliveira Lula CE, Alves CM, Lopes FF, Pereira AL. Chemotherapy-induced oral complications in leukemic patients. Int J Pediatr Otorhinolaryngol. 2007;71(11):1681–5.
6. Oosterom N, Griffioen PH, den Hoed MAH, Pieters R, de Jonge R, Tissing WJE, van den Heuvel-Eibrink MM, Heil SG. Global methylation in relation to methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. PLoS One. 2018;13(7):e0199574.
7. Valéra MC, Noirrit-Esclassan E, Pasquet M, Vaysse F. Oral complications and dental care in children with acute lymphoblastic leukaemia. J Oral Pathol Med. 2015;44(7):483–9.
8. Meurman JH, Grönoos L. Oral and dental health care of oral cancer patients: hyposalivation, caries and infections. Oral Oncol. 2010;46(6):464–7.
9. Ołczak-Kowalczyk D, Krasuska-Sławińska E, Brożyna A, Turska-Szybka A, Dembowska-Bagińska B. Dental Caries in Children and Adolescents During and After Antineoplastic Chemotherapy. J Clin Pediatr Dent. 2018;42(3):225–30.
10. Hong CHL, Hu S, Haverman T, Stokman M, Napeñas JJ, Braber JB, Gerber E, Geuke M, Vardas E, Waltimo T, et al. A systematic review of dental disease management in cancer patients. Support Care Cancer. 2018;26(1):155–74.
11. Hong CH, Napeñas JJ, Hodgson BD, Stokman MA, Mathers-Stauffer V, Elting LS, Spijkervet FK, Brennan MT. A systematic review of dental disease in patients undergoing cancer therapy. Support Care Cancer. 2010;18(8):1007–21.
12. Birpou E, Agouropoulos A, Twetman S, Kavvadia K. Validation of different Cariogram settings and factor combinations in preschool children from areas with high caries risk. Int J Paediatr Dent. 2019;29(4):448–55.

13. Cagetti MG, Bontà G, Cocco F, Lingstrom P, Strohmenger L, Campus G. Are standardized caries risk assessment models effective in assessing actual caries status and future caries increment? A systematic review. BMC Oral Health. 2018;18(1):123.

14. Bratthall D, Hänsel Petersson G. Cariogram—a multifactorial risk assessment model for a multifactorial disease. Commun Dent Oral Epidemiol. 2005;33(4):256–64.

15. Hayes M, Da Mata C, McKenna G, Burke FM, Allen PF. Evaluation of the Cariogram for root caries prediction. J Dent. 2017;62:25–30.

16. Zukanić A, Kobaslija S, Ganibegović M. Caries risk assessment in Bosnian children using Cariogram computer model. Int Dent J. 2007;57(3):177–83.

17. Zhang XL, Komada Y, Chipeta J, Li QS, Inaba H, Azuma E, Yamamoto H, Sakurai M. Intracellular cytokine profile of T cells from children with acute lymphoblastic leukemia. Cancer immunology immunotherapy: CII. 2000;49(3):165–72.

18. Juárez-López MLA, Solano-Silva MN, Fragoso-Ríos R, Murrieta-Pruneda F. [Oral diseases in children with acute lymphoblastic leukemia with chemotherapy treatment]. Revista medica del Instituto Mexicano del Seguro Social. 2018;56(2):132–5.

19. Parra JJ, Alvarado MC, Monsalve P, Costa ALF, Montesinos GA, Parra PA. Oral health in children with acute lymphoblastic leukaemia: before and after chemotherapy treatment. Eur Arch Paediatr Dent. 2020;21(1):129–36.

20. Morais EF, Lira JA, Macedo RA, Santos KS, Elias CT, Morais Mde L. Oral manifestations resulting from chemotherapy in children with acute lymphoblastic leukemia. Brazilian journal of otorhinolaryngology. 2014;80(1):78–85.

21. Khan SA, Wingard JR. Infection and mucosal injury in cancer treatment. J Natl Cancer Inst Monogr. 2001;29:31–6.

22. Wingard JR. Oral complications of cancer therapies. Infectious and noninfectious systemic consequences. NCI Monogr 1990(9):21–26.

23. Schimpff SC, Gaya H, Klastersky J, Tattersall MH, Zinner SH. Three antibiotic regimens in the treatment of infection in febrile granulocytopenic patients with cancer. The EORTC international antimicrobial therapy project group. J Infect Dis. 1978;137(1):14–29.

24. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17.

25. Xi R, Wang R, Wang Y, Xiang Z, Su Z, Cao Z, Xu X, Zheng X, Li J. Comparative analysis of the oral microbiota between iron-deficiency anaemia (IDA) patients and healthy individuals by high-throughput sequencing. BMC Oral Health. 2019;19(1):255.

26. Li K, Bihan M, Methé BA. Analyses of the stability and core taxonomic memberships of the human microbiome. PLoS One. 2013;8(5):e63139.
27. Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang C. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microbial ecology. 2010;60(3):677–90.

28. Yang F, Zeng X, Ning K, Liu KL, Lo CC, Wang W, Chen J, Wang D, Huang R, Chang X, et al. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J. 2012;6(1):1–10.

29. Hu YJ, Shao ZY, Wang Q, Jiang YT, Ma R, Tang ZS, Liu Z, Liang JP, Huang ZW. Exploring the dynamic core microbiome of plaque microbiota during head-and-neck radiotherapy using pyrosequencing. PLoS One. 2013;8(2):e56343.

30. Gao L, Hu Y, Wang Y, Jiang W, He Z, Zhu C, Ma R, Huang Z. Exploring the variation of oral microbiota in supragingival plaque during and after head-and-neck radiotherapy using pyrosequencing. Arch Oral Biol. 2015;60(9):1222–30.

31. Hu YJ, Wang Q, Jiang YT, Ma R, Xia WW, Tang ZS, Liu Z, Liang JP, Huang ZW. Characterization of oral bacterial diversity of irradiated patients by high-throughput sequencing. Int J Oral Sci. 2013;5(1):21–5.

32. World Health Organization: Oral health surveys: basic methods- 5th edition. Geneva: World Health Organization; 2013. https://www.who.int/oral_health/publications/9789241548649/en/.

33. Silness J, Loe H. PERIODONTAL DISEASE IN PREGNANCY. II. CORRELATION BETWEEN ORAL HYGIENE AND PERIODONTAL CONDITION. Acta Odontol Scand. 1964;22:121–35.

34. Wang Y, Xue J, Zhou X, You M, Du Q, Yang X, He J, Zou J, Cheng L, Li M, et al. Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations. PLoS One. 2014;9(7):e102116.

35. White JR, Nagarajan N, Pop M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol. 2009;5(4):e1000352.

36. Mazaheri R, Jabbarifar E, Ghasemi E, Akkafzadeh E, Poursaeid E. Oral health status, salivary pH status, and Streptococcus mutans counts in dental plaques and saliva of children with acute lymphoblastic leukemia. Dent Res J (Isfahan). 2017;14(3):188–94.

37. Ponce-Torres E, Ruiz-Rodríguez Mdel S, Alejo-González F, Hernández-Sierra JF, Pozos-Guillén Ade J. Oral manifestations in pediatric patients receiving chemotherapy for acute lymphoblastic leukemia. J Clin Pediatr Dent. 2010;34(3):275–9.

38. Subramaniam P, Babu KL, Nagarathna J. Oral manifestations in acute lymphoblastic leukemic children under chemotherapy. J Clin Pediatr Dent. 2008;32(4):319–24.

39. Anirudhan D, Bakhshi S, Xess I, Broor S, Arya LS. Etiology and outcome of oral mucosal lesions in children on chemotherapy for acute lymphoblastic leukemia. Indian pediatrics. 2008;45(1):47–51.

40. Hegde AM, Joshi S, Rai K, Shetty S. Evaluation of oral hygiene status, salivary characteristics and dental caries experience in acute lymphoblastic leukemic (ALL) children. J Clin Pediatr Dent. 2011;35(3):319–23.

41. Dholam KP, Gurav S, Dugad J, Banavli S. Correlation of oral health of children with acute leukemia during the induction phase. Indian journal of medical paediatric oncology: official journal of Indian
42. Dou L, Luo J, Fu X, Tang Y, Gao J, Yang D. The validity of caries risk assessment in young adults with past caries experience using a screening Cariogram model without saliva tests. Int Dent J. 2018;68(4):221–6.

43. Al Mulla AH, Kharsa SA, Kjellberg H, Birkhed D. Caries risk profiles in orthodontic patients at follow-up using Cariogram. Angle Orthod. 2009;79(2):323–30.

44. Almosa NA, Al-Mulla AH, Birkhed D: Caries risk profile using the Cariogram in governmental and private orthodontic patients at debonding. Angle Orthod 2012, 82(2):267–274.

45. Fadel HT, Al-Kindy KA, Mosalli M, Heijl L, Birkhed D. Caries risk and periodontitis in patients with coronary artery disease. J Periodontol. 2011;82(9):1295–303.

46. Agouropoulos A, Birpou E, Twetman S, Kavvadia K. Validation of Three Caries Risk Assessment Tools for Preschool Children From Areas with High Caries Prevalence. Pediatr Dent. 2019;41(5):391–9.

47. Galloway-Peña JR, Smith DP, Sahasrabhojane P, Wadsworth WD, Fellman BM, Ajami NJ, Shpall EJ, Daver N, Guindani M, Petrosino JF, et al. Characterization of oral and gut microbiome temporal variability in hospitalized cancer patients. Genome medicine. 2017;9(1):21.

48. Hong BY, Sobue T, Choquette L, Dupuy AK, Thompson A, Burleson JA, Salner AL, Schauer PK, Joshi P, Fox E, et al. Chemotherapy-induced oral mucositis is associated with detrimental bacterial dysbiosis. Microbiome. 2019;7(1):66.

Figures

![Figure 1](image-url)
Distribution of Cariogram risk categories in acute lymphoblastic leukemia and healthy subjects. (a) Risk grouping were based on percent chance of avoiding caries. (b) Example of a Cariogram indicating high caries risk with the ‘chance of avoiding caries (new cavities)’ estimated to 18%. ALL: patients with acute lymphoblastic leukemia; HC: healthy controls.

Figure 2

Alpha diversity and Weighted Unifrac PCoA analysis of acute lymphoblastic leukemia and healthy subjects. (a) ACE. (b) Chao1. (c) Shannon index. (d) Simpson index. **, p<0.01. (e) Weighted Unifrac PCoA analysis. ALL: patients with acute lymphoblastic leukemia; HC: healthy controls.
Figure 3

Differential relative abundance of bacterial taxonomy profiles of acute lymphoblastic leukemia and healthy subjects based on Metastats analysis. (a) Phylum level, (b) Class level, (c) Order level, (d) Family level, (e) Genus level. *, p<0.05, **, p<0.01, ***, p<0.001