Anomalous scaling due to correlations: limit theorems and self-similar processes

Attilio L Stella and Fulvio Baldovin
Dipartimento di Fisica, Sezione INFN and CNISM, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
E-mail: stella@pd.infn.it and baldovin@pd.infn.it

Received 9 October 2009
Accepted 16 January 2010
Published 18 February 2010

Abstract. We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, explain their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance.

Keywords: rigorous results in statistical mechanics, renormalization group, stochastic processes (theory), diffusion

ArXiv ePrint: 0909.0906
1. Introduction

Among the major achievements of the theory of probability are the limit theorems [1,2], which provide the basis for explaining statistical regularities observed in large classes of natural, economical and social mass-scale phenomena. These theorems describe the mechanisms leading to universal forms of scaling for the probability density functions (PDFs) of sums of many independent random variables. The scaling can be normal or anomalous, depending on whether the PDFs of the individual variables possess a finite second moment or not. However, independence is not guaranteed in general, and a large number of collective phenomena in Nature exhibit anomalous scaling [3]–[15] as a consequence of correlations. In such cases, if the PDF of the sum of the elementary variables and its argument are simultaneously rescaled by a power D of the number of summands, it asymptotically converges to a scaling function g which is not necessarily Gaussian or Lévy, and the scaling exponent D is in general not equal to $1/2$. Thus, establishing limit theorems able to justify the existence and the universality of the anomalous scaling forms occurring in the case of strongly correlated variables, remains an open challenge.

The renormalization group approach to critical phenomena in statistical physics [3] has led to developments in probability theory which point towards a solution of this problem. Indeed, the fixed-point condition for block-spin transformations can be regarded [10]–[12] as a substitute for the stability condition at the heart of the limit theorems for the independent case [1,2]. For instance, in the context of hierarchical equilibrium spin models the fixed points of these block-spin transformations are expected to attract whole domains of strongly correlated critical systems displaying asymptotically the same universal form of anomalous scaling [10]–[12]. However, unlike in the case of the limit theorems for independent variables, classes of admissible universal scaling forms and their universality domains are not easily identified.
Since the standard limit theorems hold as a consequence of the factorized structure of the joint PDFs of independent variables, an attempt has been recently made by the present authors [16] to establish theorems on the basis of a generalization of the multiplication operation, leading to dependent joint probability densities. However, due to mathematical difficulties, the problem of constructing consistent joint PDFs for correlated variables whose sum asymptotically satisfies scaling was not addressed [16].

Correlated random variables in exchangeable sequences are often considered in probability theory [17]. The joint PDFs of an arbitrary number of variables in an exchangeable sequence have the property of being invariant under permutations of their arguments. Exchangeability was introduced by de Finetti [18], and is of paramount importance in the Bayesian approach to probability and statistics [17]. It is already known that, thanks to the simplifying feature of exchangeability, central limit theorems can be established [19]. The scalings foreseen from these theorems for the PDF of the sum of the random variables involve scaling functions which are convex combinations (mixtures) of Gaussians. For D, only two values could be considered. If the variables are linearly uncorrelated, i.e., correlations are nonzero only for nonlinear functions of the variables, the scaling exponent is the ordinary $D = 1/2$ [19]. Alternatively, if the variables are correlated also at the linear level, limit theorems have been proved for $D = 1$ [20].

Inspired by ideas from the modern theory of critical phenomena, in the present article we establish limit theorems for sums of N dependent random variables whose joint PDFs, upon increasing N, do not define sequences of random variables, in general. With those defining exchangeable variable sequences, our joint PDFs only share the property of being invariant under permutations of their arguments. To illustrate how PDFs with such properties can arise in physics, we discuss the example of a permutationally invariant description of a magnetic system. The novel theorems apply to anomalous scalings with general exponent D. They also enable the explicit construction of universality domains, i.e., of whole classes of sequences of joint PDFs sharing asymptotically the same scaling form for the sum of the variables.

The limit theorems proved here have implications also outside the context of variables with permutationally invariant joint PDFs. Indeed, they were inspired by a recent proposal for the description of the time evolutions of financial indexes as stochastic processes [21,22]. When dealing with such processes, one often considers time series in which each term represents the increment of an additive collective variable in an elementary time interval. Examples are the displacement in diffusion, and the logarithmic return of a financial asset. In these cases, causality imposes that the successive increments must constitute a sequence of random variables, in which the statistical properties of each variable are independent of the successive ones. When the increments are correlated and the processes have the property of self-similarity, i.e., when the collective variable distribution obeys scaling not just asymptotically, but also for any finite number of summands, there are some requirements whose satisfaction has to be imposed on the joint PDFs of the successive increments. A heuristic way of satisfying these requirements was recently proposed as a basis for a stochastic model of the dynamics of financial indexes [21,22]. As we show in this work, the heuristic proposal in [21,22] is fully justified on the basis of the novel notion of stability implied by our theorems.

In general the increments of our stochastic processes are nonstationary and the scaling has a time-inhomogeneous nature [23]. When they become stationary, they also constitute
sequences of exchangeable random variables. In such cases it is not possible to reproduce the statistics of these variables by means of empirical time averages along infinitely long, single realizations of the processes. This is due to a mechanism of ergodicity breaking implied by de Finetti’s representation theorem [17, 18]. A way out of this difficulty is found when considering self-similarity as a property of the process valid within a limited, although possibly large, range of time scales. This attitude is fully legitimate in many applications [24]. We show here, by means of a dynamical simulation strategy of wide use in finance [25], how ergodicity can be restored in the process, by requiring scale invariance to hold only up to a finite upper cutoff in time.

This paper is organized as follows. In the next three sections, we introduce the formalism and present our main results about the limit theorems. We state these theorems and give full details of their derivations in the appendix. After stressing the applicability of our approach to the forms of anomalous scaling emerging, e.g., in the context of critical phenomena, in sections 5 and 6 we discuss implications of our results for the theory of stochastic processes. In particular, we present a class of non-Markovian self-similar processes possessing the requisites recently postulated [21, 22] for the case of finance and allowing explicit analytical calculations and efficient simulation strategies. Section 7 is devoted to conclusions.

2. Anomalous scaling

Let us consider, for any given \(N = 1, 2, 3, \ldots \), a set of random variables, \(X_i \), with \(i = 1, 2, \ldots, N \), taking values \(x_i \) on the real axis. We call \(p_N(x_1, \ldots, x_N) \) the joint PDF of the \(N \)th set of variables and, to start with, assume that for any \(N \) this function is invariant under arbitrary permutations of its arguments. It should be stressed that, e.g., the random variable \(X_1 \) belonging to a set with \(N \) variables and the \(X_1 \) belonging to another set with \(N' \neq N \) variables are not identical, in general. Thus, in principle we should denote the variables in the \(N \)th set by \(X_i^{(N)} \), \(i = 1, 2, \ldots, N \), and their values by \(x_i^{(N)} \). However, in order to keep formulae simple, we will not adopt this notation. Ultimately the identity of each variable \(X_i \) will be specified by the joint PDF used in order to evaluate its statistical properties. In this way, our formulae will conform to the standards of the statistical mechanics literature [10, 11, 15]. To further simplify the formalism we can require, without loss of generality, that for any \(N \) all the variables have zero average, \(\langle X_i \rangle_{p_N} = 0 \forall i \), where \(\langle \cdot \rangle_{p_N} \equiv \int dx_1 \cdots dx_N (\cdot) p_N(x_1, \ldots, x_N) \). For the sum \(Y_N \equiv X_1 + \cdots + X_N \), whose PDF is

\[
p_{Y_N}(y) = \int dx_1 \cdots dx_N \delta(y - x_1 - \cdots - x_N) p_N(x_1, \ldots, x_N),
\]

this also implies \(\langle Y_N \rangle_{p_{Y_N}} = 0 \). We are interested in cases in which the sequence \(p_N(x_1, \ldots, x_N), N = 1, 2, \ldots \), is such that \(p_{Y_N} \) satisfies anomalous scaling for \(N \to \infty \), i.e.

\[
N^D p_{Y_N}(N^D y) \to g(y),
\]

where \(g \) is a scaling function, and \(D \) is a scaling dimension. We want to identify whole domains of \(p_{Y_N} \) such that \(p_{Y_N} \) satisfies equation (2) with a given \(g \) and a given \(D \). Besides the kind of convergence, the class of admissible \(g \)s and the range of \(D \)s need to be specified.
As we discuss below, examples of p_Ns such that equation (2) holds are easily found in statistical physics.

We first clarify why the exponent values $D = 1/2$ and 1 naturally arise for sequences of exchangeable variables. Let us suppose that $\langle Y^2_N \rangle_{p_N}$ is finite for any N. Since permutational invariance implies $\langle X_i \rangle_{p_N} = \langle X_1 \rangle_{p_N} \forall i$, and $\langle X_i X_j \rangle_{p_N} = \langle X_1 X_2 \rangle_{p_N} \forall i \neq j$, one has

$$\langle Y^2_N \rangle_{p_N} = N\langle X^2_1 \rangle_{p_N} + N(N-1)\langle X_1 X_2 \rangle_{p_N}. \quad (3)$$

On the other hand, if, as appropriate for sequences of random variables, the sequence of joint PDFs p_N is constructed consistently with the condition

$$p_{N-1}(x_1, \ldots, x_{N-1}) = \int dx_N p_N(x_1, \ldots, x_N), \quad (4)$$

where $N \geq 2$, it is clear that $\langle X_1 \rangle_{p_N}$ and $\langle X_1 X_2 \rangle_{p_N}$ do not depend on N. Since according to the scaling condition in equation (2) $\langle Y^2_N \rangle_{p_N} \sim N^{2D}$, equation (3) implies that either $D = 1/2$ and $\langle X_1 X_2 \rangle_{p_N} = 0$, or $D = 1$ and $\langle X_1 X_2 \rangle_{p_N} > 0$. In the former case, further restrictions on the averages of products of Xs apply if higher moments of Y_N are assumed to exist. We should stress that if equation (4) is satisfied by the sequence of permutation invariant joint PDFs, then these PDFs in turn define a sequence of exchangeable variables. Indeed, equation (4) guarantees that a given variable, say X_1, is strictly the same random variable, independent of the set of N variables within which it is considered.

As discussed in section 4, there are cases, for example in statistical mechanics, where one considers a system in equilibrium at a given temperature, so that p_N represents the canonical joint PDF of N variables describing the degrees of freedom of the system. Since p_N is expressed as a ratio between the Gibbsian weight and the partition sum, upon integrating p_N over one of the N variables, as a rule we do not obtain the joint PDF of a system in equilibrium at the same temperature and with just $N - 1$ variables. Indeed, tracing over one of the variables leads to effective interactions which are not present in the Hamiltonian for $N - 1$ variables. The modern theory of critical phenomena shows that the renormalization effects determining this difference lead to anomalous scaling at the critical point [3]. This circumstance, which is expected to occur in many cooperative phenomena, will allow us to derive limit theorems for sums of exchangeable variables with general values of D.

On the other hand, in problems where N represents the number of increments over successive time intervals of a stochastic process and p_{N-1} and p_N are respectively the joint PDFs of the first $N - 1$ and N increments, causality imposes the need to consider sequences of p_Ns satisfying equation (4). Below we will also show how the stability conditions implied by our limit theorems allow us to define sequences of random variables whose joint PDFs satisfy equation (4) and whose aggregated increment Y_N satisfies anomalous scaling exactly for any N.

3. Illustration of the main results

We report our main statements and their mathematical proofs in the appendix. Here we rather choose to illustrate the meaning and some implications of our results. Let us first

doi:10.1088/1742-5468/2010/02/P02018
consider \(p_N \) of the form
\[
p_N(x_1, x_2, \ldots, x_N) = \int_{-\infty}^{+\infty} d\mu \, \lambda(\mu) \prod_{i=1}^{N} l \left(x_i - \frac{\mu}{N^{1-D}} \right),
\]
where \(\lambda \) and \(l \) are single-variable PDFs. With no loss of generality we require \(\langle \mu \rangle_\lambda = 0 \), whereas we assume \(\langle X \rangle_l = 0 \) and \(\langle X^2 \rangle_l = 1 \). The higher integer moments of \(l \) are left arbitrary. Clearly, the \(p_N \) in equation (5) is a positive density normalized to 1, and invariant under permutations of its arguments. The \(X_i \)s are dependent, since \(p_N \) does not simply factorize into a product of single-variable PDFs. The choice of considering \(p_N \)s which are convex combinations of products of single-variable PDFs is motivated by the fact that in this way it is possible to demonstrate the existence of asymptotic scalings with very general scaling functions. Indeed, in the appendix we show that with the joint PDF in equation (5), \(p_N \) satisfies equation (2) with a scaling exponent \(D \geq 1/2 \). The scaling function \(g \) is determined by \(\lambda \). For \(D = 1/2 \), \(g \) is given by
\[
g(x) = \int_{-\infty}^{+\infty} d\mu \, \lambda(\mu) \frac{\exp \left[-(x - \mu)^2 / 2 \right]}{\sqrt{2\pi}},
\]
whereas \(g \) coincides with \(\lambda \) itself if \(D > 1/2 \). In both cases, upon varying \(\lambda \) the scaling function \(g \) assumes general shapes. For instance, it may have several local and global maxima and power law decays to zero at large positive \(x \), and/or \(-x \), as required in many applications.

As anticipated above, when the variables \(X_i \) are dependent and do not constitute a sequence, it is legitimate to introduce in the definition of \(p_N \) the dependence on \(N \) arising from the fact that \(\mu \) enters divided by \(N^{1-D} \). In particular, precisely this dependence implies that the joint PDF of a system with \(N - 1 \) variables, \(p_{N-1} \), rather than satisfying equation (4), is linked to \(p_N \) by the relation
\[
p_{N-1}(x_1, \ldots, x_{N-1}) = \left(\frac{N-1}{N} \right)^{(N-1)(1-D)} \times \int dx_N \, p_N \left(\frac{N-1}{N} x_1, \ldots, \frac{N-1}{N} x_{N-1}, x_N \right).
\]

Consistently with the fact that the \(X_i \)s are not constituting a sequence of random variables, the marginal PDF of each individual \(X_i \),
\[
p_{X_i,N}(x_i) \equiv \int dx_1 \cdots dx_{i-1} \, dx_{i+1} \cdots dx_N \, p_N(x_1, \ldots, x_N),
\]
depends clearly on \(N \) (\(N \geq i \)). So, if the second moment of \(\mu \) is finite, one realizes that \(p_{X_i,N} \) has a finite width for \(N \to \infty \) when \(1/2 \leq D \leq 1 \). If \(D > 1 \), this width diverges in the large \(N \) limit. Such a divergence makes full sense in a correlated context. Indeed, in relation to the anomalous character of the scaling, the marginal single-variable PDFs play here a role analogous to that of single-variable PDFs in the independent case. For example, with independent variables one allows the single-variable PDFs to be of infinite width for any \(N \), in order to have an anomalous, Lévy scaling limit [1,2] of \(p_{Y_N} \). Here, with correlated variables, the dependence on \(N \) entering in \(p_{X_i,N} \) and the consequent
divergence of width for $N \to \infty$ and $D > 1$ play a qualitatively similar role in producing anomalous scaling.

It is natural to ask what the correlations of the variables X_i are according to the joint PDFs defined in equation (5). If $\langle \mu^2 \rangle_\lambda$ exists, an easy calculation gives for example

$$\langle X_iX_j \rangle_{p_N} = \frac{\langle \mu^2 \rangle_\lambda}{N^{2-2D}}$$

for $i \neq j$. In particular, the variables with permutation invariant joint PDFs as in equation (5) are linearly correlated for finite N. When $1/2 \leq D < 1$ their linear correlators approach zero asymptotically.

Next, we consider more general scaling functions which can be expressed as convex combinations of Gaussians with varying centers μ and widths σ. The form is

$$g(x) = \int_0^{+\infty} d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \frac{\exp\left[-(x - \mu)^2/2\sigma^2\right]}{\sqrt{2\pi\sigma^2}},$$

where $\sigma \in (0, \infty)$, and ψ is a PDF. The scaling exponent can be now any $D > 0$. Again, for the sake of simplicity we require $\langle \mu \rangle_\psi = 0$, while ψ must be strictly equal to zero in a whole neighborhood of $\sigma = 0$, for any μ. In the appendix we prove that with the p_Ns constructed as follows:

$$p_N(x_1, \ldots, x_N) = \int_0^{\infty} d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \prod_{i=1}^N \frac{\Gamma(x_i/\sigma N^{D-1/2} - \mu/\sigma N^{1/2})}{\sigma N^{D-1/2}},$$

with $\langle X \rangle_t = 0$ and $\langle X^2 \rangle_t = 1$ as before, p_N satisfies the asymptotic scaling (2) with g given by equation (10) and the chosen $D > 0$. One easily verifies that if $\psi(\sigma, \mu) = \rho(\sigma) \delta(\mu)$ the X variables are linearly uncorrelated for any N. In this case, with $D = 1/2$ the scaling limit of our theorem recovers known results valid for sums of random variables in exchangeable sequences [19].

It should also be noticed that if we put $\Psi(\sigma, \mu) = \delta(\sigma - 1)\lambda(\mu)$ and $D = 1/2$, one recovers the case discussed at the beginning of this section.

4. Permutation invariant joint PDFs and critical phenomena

All the cases discussed in the previous sections concern correlated variables whose joint PDFs for any N are permutationally invariant. At first sight, such a feature may appear too restrictive a condition to be satisfied by realistic models, and applications may often require one to release it. However, in the study of anomalous scaling, variables of this kind may still play an important role. To illustrate this point, we consider the example of an Ising-like spin model, of the type often studied in the renormalization group approach to critical phenomena [3]. Let us consider a system of N spins S_i, $i = 1, \ldots, N$, where the index i labels the sites of a finite box of a square or cubic lattice. The spins are supposed to take values s_i on the real axis. Equilibrium statistical mechanics allows us in principle to construct the joint PDF of the N spin variables once given the spin Hamiltonian $H\{s\}$ and the temperature T. Since the spin variables are associated with the lattice sites, their joint PDF is not invariant under permutations. Indeed, for any configuration $\{s_1, s_2, \ldots, s_N\}$, one has in general $H(s_{\pi(1)}, \ldots, s_{\pi(N)}) \neq H(s_1, \ldots, s_N)$, if
\[\pi \] is a permutation of the \(N \) labels. This inequality holds because \(H \) is a sum of local interactions. Thus, also the canonical joint PDF

\[p'_{N}(s_1, \ldots, s_N) \equiv \frac{\exp[-H(s_1, \ldots, s_N)/k_B T]}{\int \prod_{i=1}^{N} ds'_i \exp[-H(\{s'_i\})/k_B T]} \tag{12} \]

where \(k_B \) is the Boltzmann constant, is not invariant under permutations of its arguments. On the other hand, when, e.g., discussing the critical behavior of the model, a key collective random quantity to be considered is the sum of all the spins \(\sum_{i=1}^{N} s_i \) \([3], [10]–[12], \) which, in contrast, is invariant under any permutation of the spin labels, and is expected to have a PDF satisfying anomalous scaling in the thermodynamic limit \([10, 11, 15, 26]\). This suggests defining what we call here a ‘permutation invariant representation’ of the statistics of the model. Consider, for instance, the following definition of the joint PDF of new exchangeable variables \(X_i \):

\[p_{N}(x_1, x_2, \ldots, x_N) \equiv \frac{1}{N!} \sum_{\pi} \int \prod_{i=1}^{N} ds_i \left(\prod_{i=1}^{N} p'_{N}(s_1, s_2, \ldots, s_N) \prod_{j=1}^{N} \delta(x_j - s_{\pi(j)}) \right), \tag{13} \]

where the sum is extended to all the \(N! \) permutations \(\pi \) of the set \(\{1, 2, \ldots, N\} \). The \(p_N \)s defined by the projection operation in equation (13) are indeed invariant under permutations, while the sum \(Y_N = \sum_i X_i \) has a PDF identical to that of the total magnetization \(\sum_i s_i \) of the original system. On the basis of the same projection, one can also define an effective Boltzmann factor for the variables \(X_i \) in such a way that the partition function, and thus the free energy of the original problem, are preserved, too. Even if the computation of the effective Hamiltonian in terms of the \(X_i \)s is non-trivial, the above equations show that the asymptotic scaling of the PDF of \(\sum_i s_i \) for a critical Ising-like model and that of \(\sum_i X_i \) for its permutation invariant representation coincide. It is also easy to see that one may construct different such representations of a given statistical model, all sharing the same free energy and the same PDF for \(Y_N \).

For a critical Ising system one expects an anomalous scaling for the PDF of \(\sum_{i=1}^{N} s_i \) with scaling dimensions \(D = 15/16 \) and \(D \approx 0.825 \) for square and cubic lattices, respectively \([3]\). Taking into account that finite size scaling for the critical Ising model implies \(\langle (\sum_i s_i)^2 \rangle_{p_N} \sim N^{2D} \), one also concludes that for the permutation invariant representation defined by equation (13) one must have \(\langle X_i X_j \rangle_{p_N} \sim N^{2D-2} \) for \(N \to \infty \) and \(i \neq j \). As a matter of fact, the limit theorem in equation (5) implies a scaling function for the PDF of \(Y_N \) and linear correlations for the \(X_i \)s (equation (9)) which are compatible with the asymptotic forms \([10]\) expected for the permutation invariant representation of the Ising model constructed here.

The above discussion clarifies that correlated variables with permutation invariant PDFs can be relevant in the statistical approach to anomalous scaling. This relevance stems from the fact that for these variables the constructive limit theorems presented here are valid. At the same time, additive collective variables like the total magnetization of a critical Ising model are considered in many studies of complex systems, and also outside equilibrium statistical mechanics \([14]\).
5. Non-Markovian, self-similar stochastic processes

In many phenomena, anomalous scaling is a statistical symmetry obeyed to a good approximation for more or less broad ranges of finite Ns. The validity of limit theorems of the kind proved in the previous sections opens the possibility of defining joint PDFs consistent with an exact anomalous scaling of p_{YN} for any finite N, i.e. such that $p_{YN} = N^{D}g(N^{D}y)$.

To illustrate how self-similarity for arbitrary finite N arises, let us consider the case of the central limit theorem for sums of independent random variables whose PDF has finite second moment. The asymptotic scaling is normal and turns out to be an attractor by virtue of the stability property of the Gaussian PDF. In particular, this stability implies that if we consider a finite number of independent increments, X_1, X_2, \ldots, X_N, each one weighted by the same Gaussian PDF, the total increment $X_1 + X_2 + \cdots + X_N$ has also precisely a Gaussian PDF, having a width $N^{1/2}$ times the width of the individual increments. Thus, this PDF strictly satisfies normal scaling for any N.

In an analogous way, the results obtained in the previous sections for sums of correlated variables allow us to construct joint PDFs of the X variables consistent with an exact anomalous scaling of p_{YN}, for any finite N. The generalized stability conditions implied by our limit theorems make this possible. For concreteness, let us consider the case of the scaling function in equation (10). The construction of equation (11) implies that if we define

$$p_N(x_1, x_2, \ldots, x_N) = \int_{0}^{+\infty} d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \prod_{i=1}^{N} \exp\left[-\frac{(x_i/\sigma^{N^{D}-1/2} - \mu/\sigma^{N^{1/2}})^2}{2\pi\sigma^{2N^{2D-1}}}\right],$$

(14)

this joint PDF is consistent with an exact anomalous scaling of p_{YN} with scaling function g given by equation (10) and exponent $D > 0$, for any finite N. Since at the empirical level p_{YN} is often the most accessible PDF of the system [21, 22], such joint PDFs constructed in terms of g may be regarded as a model for the dependences determining the anomalous scaling in the range of values of N relevant for the phenomenon under study.

In the following, let us deal with processes developing in (discrete) time and think of X_i as an increment relative to the time interval $[(i-1)\Delta t, i\Delta t]$, while the elapsed time of the process is $t = N\Delta t$ and Δt is the elementary time step of the process. Clearly, if p_{N} is the joint PDF of the first N increments of the same process developing in time, causality imposes the validity of equation (4) for any $N > 1$. The conditional PDF

$$p_{N}^{c}(x_N|x_1, x_2, \ldots, x_{N-1}) \equiv \frac{p_N(x_1, x_2, \ldots, x_N)}{p_{N-1}(x_1, x_2, \ldots, x_{N-1})}$$

(15)

($N \geq 2$) expresses the PDF of the Nth increment of the process, conditioned to the history of the previous $N - 1$ ones. Like the joint PDFs, the conditional PDFs together with p_1 embody the full information on the process. For a causal process with non-Markovian character, a property that we should be ready to give up for the X's, is the invariance under permutations of their joint PDFs.

Referring again to an anomalous scaling with g as in equation (10) and $D > 0$, it is not difficult to work out how to modify equation (14) in order to obtain a discrete-time stochastic process possessing self-similarity for finite N. To this end, let us introduce the
If we then define equation (16) amounts to a convex combination of uncorrelated Gaussian increments with H. Hence, the problem of ergodicity is clearly posed. The form of the joint PDFs in $\psi(\sigma, \mu)$ are all equal, the increments constitute an exchangeable sequence and are stationary.

Equation (17) holds because the coefficients a_i and b_i satisfy $\sum_{j=1}^{N} a_j^2 = N^{2D}$ and $\sum_{j=1}^{N} b_j = N^D$, respectively. The condition in equation (4) is also respected. One recognizes immediately that for general $\psi(\sigma, \mu)$ the $p_{i N}$s in equation (16) are not permutation invariant any longer for any $D > 0$. The lack of such invariance is also evident in the fact that $p_{x_i} \equiv p_{x_i,N} \forall N \geq 1$ now varies with i, reflecting a nonstationarity of the increments.

When

$$\psi(\sigma, \mu) = \rho(\sigma) \delta(\mu) \quad (18)$$

with $\rho(\sigma) \neq \delta(\sigma_0)$, Y_N amounts to a stochastic process of the form postulated recently for the description of financial index evolution [21, 22]. In such a case, the increments are linearly uncorrelated and, up to an i dependent rescaling, their marginal PDFs coincide with g. The characteristic function of the scaling function g can be expressed as $\tilde{g}(k) = \int_0^{\infty} d\sigma \rho(\sigma) \exp(-\sigma k^2/2)$, and has the remarkable property that it is converted into a proper N-dimensional joint characteristic function if k is replaced by $\sqrt{k_1^2 + k_2^2 + \cdots + k_N^2}$, for any N. Precisely this requirement has been identified in [21, 22] as a natural one for the joint characteristic function of the successive returns of an index. A theorem due to Schoenberg [17, 27] states that the $\tilde{g}(k)$s having the above form exhaust the class of characteristic functions with such a property. In particular, the class of scaling functions from which one can construct joint PDFs is specified. This class includes the form used in [21] and also the Student distribution recently considered1 in [28].

6. Restoring ergodicity

The ergodic properties of the dynamics of stochastic processes like those obtained using equations (16) and (18) need to be analyzed in some detail. For concreteness, let us take ψ as in equation (18), with an arbitrary ρ and $D = 1/2$. In this particular case, since the a_is are all equal, the increments constitute an exchangeable sequence and are stationary. Hence, the problem of ergodicity is clearly posed. The form of the joint PDFs in equation (16) amounts to a convex combination of uncorrelated Gaussian increments with different σs. Any simulation of a single, infinitely long history $(x_1, x_2, \ldots, x_N, \ldots)$ made on the basis of the sequence $p_1(x_1) = g(x_1), p_2(x_2|x_1), \ldots, p_N(x_N|x_{N-1}, \ldots, x_1), \ldots$ would not be apt to manifest the ensemble correlations implied by p_N in equation (16). Indeed, after an initial transient, the extraction of the successive increments would essentially

1 The authors of [28] reach a similar conclusion in the most recent update (v3) of their paper.
be ruled by a Gaussian conditional PDF with an approximately constant \(\sigma = \bar{\sigma} \), chosen among all those allowed by \(\rho \). A different simulation would pick up a different \(\bar{\sigma} \) in the initial transient stage and then proceed with independent increments extracted according to this \(\bar{\sigma} \) (see the appendix). The correlations implied by equation (16) are reproduced only by putting together the results of an ensemble of a large number of different such simulations. A sampling procedure performed through a sliding-window approach along a single infinite history would not detect any correlations among the increments. This amounts to a breaking of ergodicity: the single infinitely long realization of the process just isolates one of its possible uncorrelated ergodic components, a well known consequence of de Finetti’s representation theorem for exchangeable variable sequences [17]. This lack of ergodicity appears at first sight to represent a serious limitation of the stochastic process, if like in finance a legitimate ambition is to simulate single long histories with the same correlation and scaling properties as the empirical one.

It is possible to recover the anomalous scaling and the correlations implied by our construction of the joint PDFs using a suitably defined dynamics. Let us go back to the motivations mentioned above for considering self-similar processes: the approximate satisfaction of anomalous scaling for PDFs like that of the aggregated increment in a time interval of duration \(\tau \) is often valid for a limited range, \(\tau \leq M \Delta t \). Under these conditions, an adequate goal for the simulation is that of reproducing, by time averages along a single dynamical trajectory, the scaling and correlation properties implied by equation (16) just over the time range \(M \Delta t \). One way of obtaining these properties, namely ergodicity and self-similarity up to the time scale \(M \Delta t \), is by implementing an autoregressive dynamics [25] with memory span equal to \(M \Delta t \). Imagine that we have extracted, consistently with the conditional PDFs \(p_i^T \), \(i = 1, 2, \ldots, M \), the first \(M \) increments of the additive variable \(Y_M \). Instead of using the conditional PDF \(p_{M+1}^T(x_{M+1} | x_M, x_{M-1}, \ldots, x_1) \) to extract the \(M + 1 \)th increment, we use \(p_{M}^T(x_{M+1} | x_M, x_{M-1}, \ldots, x_2) \). Similarly, for any time \(t > M \Delta t \) we use this autoregressive scheme in which only the preceding \(M - 1 \) increments have an effect on the further evolution. In this way one circumvents the problem of broken ergodicity, because for finite \(M \) the conditioning input is constantly updated and modified to an extent which is sufficient for a simulation long enough to span all the \(\sigma \)s allowed by the ensemble in equation (16). With such a strategy the empirical PDF of the sum of the increments over an interval \(\tau \), sampled from all intervals of duration \(\tau \) throughout a single long history of the process, satisfies to a very good approximation the anomalous scaling for \(\tau \leq M \Delta t \) (see the appendix).

7. Concluding remarks and perspectives

In this paper we have shown that the choice of variables with joint PDFs invariant under permutations is particularly favorable for discussing the problem of the asymptotic emergence and universality of anomalous scaling due to correlations. Ideas of the modern theory of critical phenomena and complex systems are at the heart of the advances that we could present here. Our limit theorems do indeed cover forms of anomalous scaling which, to the best of our knowledge, have so far not been treated in the probabilistic literature with the present generality. At the same time, classical examples taken from the theory of critical phenomena gave us a way to illustrate the role that variables with permutation invariant joint PDFs can play in more general problems with anomalous scaling.
Anomalous scaling due to correlations: limit theorems and self-similar processes

As remarked above, the idea of basing limit theorems for correlated variables on some suitable generalization of the standard multiplication has some appeal [16]. The rules by which we compose the l PDFs to obtain \(p_N \) in equations (5) or (11) retain in fact the commutative and associative properties. In this respect, our approach to anomalous scaling is quite different from the renormalization group one, and remains closer in spirit to the limit theorems for independent variables. This closeness is also manifest in the relative simplicity of our proofs, which directly rely on the corresponding ones for the independent case. Thus, the mathematics at the heart of the standard central limit theorem plays a fundamental role also outside the context of independent variables. Another difference of our approach compared to the renormalization group one is that we do not need to make use of the hierarchical modeling to have analytical control of statistical coarse-graining operations. Here we replace the hierarchical paradigm by the assumption of invariance under permutations. This replacement still allows us to address realistic scalings as illustrated in section 4.

We have expressed our limit PDFs for the (rescaled) sums of correlated random variables as convex combinations of Gaussians with varying widths and/or centers. Scaling functions belonging to this class have been considered very often in phenomenological descriptions of anomalous scaling [29], but their possible implications as far as correlations are concerned were not stressed enough, in our opinion. The wide classes of scaling functions and the continuous ranges of scaling exponents identified through our theorems definitely do not support the idea that in the context of strongly correlated variables relevant scaling forms could be organized into a restricted set of universality classes. In particular, there does not appear to exist one or a few particular scaling functions playing a universal role similar to that of the Gaussian in the independent case.

The generalization of the notion of stability implied by our theorems naturally leads to the introduction of self-similar stochastic processes with correlated increments. These include in particular the process proposed in [21] as a model of index evolution in finance. Besides giving this proposal a rigorous basis, the results presented here, especially those concerning the restoration of ergodicity, substantially enhance the analytical and numerical tractability of such a process.

Acknowledgments

We acknowledge Giovanni Jona-Lasinio for useful discussions and comments on the manuscript. This work was supported by ‘Fondazione Cassa di Risparmio di Padova e Rovigo’ within the 2008–2009 ‘Progetti di Eccellenza’ program.

Appendix

In the first part of this appendix, we prove three different statements which in particular imply that \(p_{Y_N} \), the PDF of \(Y_N \equiv \sum_{i=1}^{N} X_i \), satisfies the scaling

\[
N^D p_{Y_N}(N^D y) \rightarrow g(y),
\]

for \(N \rightarrow \infty \) (refer to the main text for details).

\[\text{doi:10.1088/1742-5468/2010/02/P02018}\]
Anomalous scaling due to correlations: limit theorems and self-similar processes

Limit theorems for g_N given by Gaussian mixtures with different centers and $D = 1/2$

Given the sequence of joint PDFs

$$p_N(x_1, x_2, \ldots, x_N) = \int_{-\infty}^{+\infty} d\mu \lambda(\mu) \prod_{i=1}^{N} l \left(x_i - \frac{\mu}{N^{1-D}} \right), \quad N = 1, 2, \ldots$$ \hspace{1cm} (A.2)

for the random variables $\{X_i\}_{i=1,2,\ldots,N}$, where $D = 1/2$, λ and l are single-variable PDFs with $\langle \mu \rangle_\lambda = 0$ and $\langle X \rangle_l = 0$, $\langle X^2 \rangle_l = 1$, then as $N \to \infty$ the probability

$$\text{Prob} \left\{ \sum_{i=1}^{N} \frac{X_i}{N^{D}} < z \right\} \to \int_{-\infty}^{z} dw \ g(w)$$ \hspace{1cm} (A.3)

uniformly, with

$$g(w) = \int_{-\infty}^{+\infty} d\mu \lambda(\mu) \frac{\exp \left[- (w - \mu)^2 / 2 \right]}{\sqrt{2\pi}}.$$ \hspace{1cm} (A.4)

Let us consider the positive quantity

$$\text{Prob} \left\{ \sum_{i=1}^{N} \frac{X_i}{N^{1/2}} < z \right\} = \int_{-\infty}^{z} dw \int \prod_{i=1}^{N} dx_i \ l \left(x_i - \frac{\mu}{N^{1/2}} \right) \delta \left(w - \sum_{i=1}^{N} \frac{x_i}{N^{1/2}} \right),$$ \hspace{1cm} (A.5)

which, once multiplied by λ and integrated with respect to μ, yields the probability that $\sum_i X_i/N^{1/2} \leq z$. The following identity holds:

$$\text{Prob} \left\{ \sum_{i=1}^{N} \frac{X_i}{N^{1/2}} < z \right\} = \text{Prob} \left\{ \sum_{i=1}^{N} \frac{X_i}{N^{1/2}} < z - \mu \right\}.$$ \hspace{1cm} (A.6)

The central limit theorem for independent variables guarantees [1, 2] that the right-hand side of equation (A.6) converges uniformly to

$$\int_{-\infty}^{z} dw \ \frac{\exp \left[- (w - \mu)^2 / 2 \right]}{\sqrt{2\pi}}.$$ \hspace{1cm} (A.7)

Since the uniform convergence holds for z and μ separately, we can interchange the integration in μ with the limit for $N \to \infty$ and get

$$\int_{-\infty}^{+\infty} d\mu \lambda(\mu) \text{Prob} \left\{ \sum_{i=1}^{N} \frac{X_i}{N^{1/2}} < z \right\} \to \int_{-\infty}^{z} dw \int_{-\infty}^{+\infty} d\mu \lambda(\mu) \frac{\exp \left[- (w - \mu)^2 / 2 \right]}{\sqrt{2\pi}},$$ \hspace{1cm} (A.8)

still uniformly in z. This proves the asymptotic scaling (A.1) of p_Y_N, with $D = 1/2$ and g as in equation (A.2).

doi:10.1088/1742-5468/2010/02/P02018
Limit theorems for \(g \) as given by Gaussian mixtures with different centers and \(D > 1/2 \)

Here, we establish a similar result with \(D > 1/2 \). Let us look back at equation (A.2), where we have a convex combination of Gaussians with finite second moment equal to 1. Suppose that we perform a limit in which this second moment is sent to zero: in this limit the Gaussian would approach a Dirac delta function. Hence, we would have

\[
g(x) = \lambda(x).
\]

(A.9)

In order to construct \(p_N \) such that \(p_{N'} \) satisfies asymptotic scaling with \(g = \lambda \) and with \(D > 1/2 \), it is convenient to consider the characteristic functions of \(p_N \) and of \(g \), respectively:

\[
\tilde{p}_N(k_1, \ldots, k_N) = \int \prod_{i=1}^{N} dx_i \exp(-i k_i x_i) p_N(x_1, \ldots, x_N), \quad (A.10)
\]

\[
\tilde{g}(k) = \int dw \exp(-i k w) g(w). \quad (A.11)
\]

We can prove the following statement.

Given the sequence of joint PDFs

\[
p_N(x_1, x_2, \ldots, x_N) = \int_{-\infty}^{+\infty} d\mu \lambda(\mu) \prod_{i=1}^{N} l \left(x_i - \frac{\mu}{N^{1-D}} \right), \quad N = 1, 2, \ldots \quad (A.12)
\]

for the random variables \(\{X_i\}_{i=1,2,\ldots,N} \), where \(D > 1/2 \), \(\lambda \) and \(l \) are single-variable PDFs with \(\langle \mu \rangle_\lambda = 0 \) and \(\langle X \rangle_l = 0, \langle X^2 \rangle_l = 1 \), then as \(N \to \infty \) we have

\[
\tilde{p}_N \left(\frac{k}{N^D}, \frac{k}{N^D}, \ldots, \frac{k}{N^D} \right) \to \tilde{g}(k), \quad (A.13)
\]

with

\[
g(w) = \lambda(w). \quad (A.14)
\]

The convergence is uniform in \(k \) if \(|\tilde{\lambda}(k)| \) decays at large \(|k| \) as \(1/|k|^2 \) or faster, uniform in \(k \) in any bounded subset of \(\mathbb{R} \) otherwise.

Indeed, the characteristic function of such a \(p_N \) is

\[
\tilde{p}_N(k_1, \ldots, k_N) = \int_{-\infty}^{+\infty} d\mu \lambda(\mu) \exp \left[-i (k_1 + \cdots + k_N) \frac{\mu}{N^{1-D}} \right] \prod_{i=1}^{N} \tilde{l}(k_i), \quad (A.15)
\]

where \(\tilde{l} \) is the characteristic function of \(l \). We can write

\[
\tilde{p}_N \left(\frac{k}{N^D}, \frac{k}{N^D}, \ldots, \frac{k}{N^D} \right) = \int_{-\infty}^{+\infty} d\mu \lambda(\mu) \exp \left(-i k \frac{\mu}{N^D} \right) \tilde{l}(k/N^D)^N. \quad (A.16)
\]

If we assume \(D > 1/2 \), \(\tilde{l}(k/N^D)^N \) approaches 1 for \(N \to \infty \) uniformly in \(k \) in any bounded subset of \(\mathbb{R} \). This implies that as \(N \to \infty \),

\[
\tilde{p}_N \left(\frac{k}{N^D}, \frac{k}{N^D}, \ldots, \frac{k}{N^D} \right) \to \tilde{\lambda}(k), \quad (A.17)
\]

which proves the theorem. The convergence in equation (A.17) is uniform in \(k \) if \(|\tilde{\lambda}(k)| \) decays at large \(|k| \) as \(1/|k|^2 \) or faster, uniform in \(k \) in any bounded subset of \(\mathbb{R} \) otherwise.

doi:10.1088/1742-5468/2010/02/P02018
Limit theorems for g_s given by Gaussian mixtures with different centers and widths, and $D > 0$

Given the sequence of joint PDFs

$$p_N(x_1, \ldots, x_N) = \int_0^\infty d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \prod_{i=1}^N \frac{l(x_i/\sigma N^{D-1/2} - \mu/\sigma^{1/2})}{\sigma N^{D-1/2}}, \quad (A.18)$$

for the random variables $\{X_i\}_{i=1,2,\ldots,N}$, where $D > 0$, ψ is a joint PDF identically equal to zero in a whole neighborhood of $\sigma = 0$ and such that $\langle \mu \rangle = 0$, and l is a single-variable PDF with $\langle X \rangle = 0$, $\langle X^2 \rangle = 1$, then as $N \to \infty$ the probability

$$\text{Prob}\left\{\sum_{i=1}^N \frac{X_i}{N^D} < z\right\} \to \int_{-\infty}^z dw \, g(w) \quad (A.19)$$

uniformly, with

$$g(w) = \int_0^\infty d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \frac{\exp\left[-\frac{(w - \mu)^2}{2\sigma^2}\right]}{\sqrt{2\pi\sigma^2}}. \quad (A.20)$$

For any σ and μ we define the quantity

$$\text{Prob}\left\{\sum_{i=1}^N \frac{X_i}{N^D} < z\right\} = \int_{-\infty}^z dw \int_{-\infty}^{+\infty} dx_1 \cdots dx_N \delta\left(w - \frac{x_1 + \cdots + x_N}{N^D}\right) \times \prod_{i=1}^N \frac{l(x_i/\sigma N^{D-1/2} - \mu/\sigma^{1/2})}{\sigma N^{D-1/2}} \equiv f(z, N, D, \mu, \sigma). \quad (A.21)$$

One easily verifies the following property:

$$f(z, N, D, \mu, \sigma) = f\left(z - \frac{\mu}{\sigma}, N, 1/2, 0, 1\right). \quad (A.22)$$

Under the present assumptions, the central limit theorem for independent variables [1, 2] guarantees that the quantity on the right-hand side of equation (A.22) converges uniformly to the limit

$$\int_{-\infty}^z dw \frac{\exp\left[-\frac{(w - \mu)^2}{2\sigma^2}\right]}{\sqrt{2\pi\sigma^2}}. \quad (A.23)$$

In view of the conditions on ψ, this uniformity holds for σ, μ and z, separately. We thus conclude that

$$\int_0^\infty d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \text{Prob}\left\{\sum_{i=1}^N \frac{X_i}{N^{1/2}} < z\right\}_{\sigma,\mu} \to \int_{-\infty}^z dw \int_0^\infty d\sigma \int_{-\infty}^{+\infty} d\mu \psi(\sigma, \mu) \frac{\exp\left[-\frac{(w - \mu)^2}{2\sigma^2}\right]}{\sqrt{2\pi\sigma^2}}, \quad (A.24)$$

uniformly in z. The uniformity follows from the hypothesis that ψ is zero in a whole neighborhood of $\sigma = 0$.

If $\psi(\sigma, \mu) = \rho(\sigma) \delta(\mu)$, i.e. with g given by a mixture of Gaussians of different widths and all centered at the origin, the X variables are linearly uncorrelated for any N.

doi:10.1088/1742-5468/2010/02/P02018
Simulating a self-similar process with strongly correlated increments

Here we discuss the issue of how to simulate the stochastic processes described in the main text. Let X_i be the increment relative to the time interval $[(i-1)\Delta t, i\Delta t]$ of the discrete-time process $Y_N \equiv \sum_{i=1}^N X_i$, where Δt is an elementary time step and $t \equiv N \Delta t$ the elapsed time. For the sake of definiteness, we assume ψ to be of the form

$$\psi(\sigma, \mu) = \delta(\mu) \rho(\sigma),$$

with

$$\rho(\sigma) = A \frac{6\sigma^2}{\pi (b^6 + \sigma^6)}$$

for $\sigma \in (\sigma_{\text{min}}, \sigma_{\text{max}})$ ($0 < \sigma_{\text{min}} < \sigma_{\text{max}}$) and $\rho(\sigma) = 0$ elsewhere. The parameter A is just a normalization constant fixed such that $\int_{\sigma_{\text{min}}}^{\sigma_{\text{max}}} \rho(\sigma) = 1$, whereas b determines $\langle \sigma^2 \rangle$. With such a choice, the scaling function

$$g(x) = \int_{\sigma_{\text{min}}}^{\sigma_{\text{max}}} \frac{6\sigma^2}{\pi (b^6 + \sigma^6)} \exp \left[-\frac{x^2}{2\sigma^2} \right] \frac{\sigma^6}{\sqrt{2\pi \sigma^2}},$$

is even. With a sufficiently large σ_{max}, we can mimic a fat-tail power law decay for g of the kind $g(x) \sim 1/|x|^\alpha$ at large arguments. We first address the situation in which the problem of breaking of ergodicity is well posed, i.e., when the increments X_is of the process are stationary, so that it makes sense to compare their ensemble and time averages. Later, we will comment about the more general case. We thus fix $D = 1/2$. With the choice (A.25) for ψ, this also implies that the X_is are exchangeable. Indeed, according to equation (16) of the main text, the joint PDF for the increments of the process becomes

$$p_N(x_1, \ldots, x_N) = \int_{\sigma_{\text{min}}}^{\sigma_{\text{max}}} \frac{6\sigma^2}{\pi (b^6 + \sigma^6)} \frac{e^{-\frac{(x_1^2 + \cdots + x_N^2)}{2\sigma^2}}}{(2\pi \sigma^2)^{N/2}},$$

and a straightforward calculation yields

$$C_{\alpha \beta}(i, j) = \frac{\langle |X_i|^\alpha |X_j|^\beta \rangle_{PN} - \langle |X_i|^\alpha \rangle_{p_1} \langle |X_j|^\beta \rangle_{p_1}}{\langle |X_i|^{\alpha+\beta} \rangle_{p_1} - \langle |X_i|^\alpha \rangle_{p_1} \langle |X_i|^\beta \rangle_{p_1}}$$

$$= \frac{B_\alpha B_\beta \langle (\sigma^{\alpha+\beta}) \rho - \langle \sigma^\alpha \rangle \rho \langle \sigma^\beta \rangle \rho \rangle_{\rho}}{B_{\alpha+\beta} \langle \sigma^{\alpha+\beta} \rangle \rho - B_\alpha B_\beta \langle \sigma^\alpha \rangle \rho \langle \sigma^\beta \rangle \rho \rangle_{\rho}}$$

for $i, j = 1, 2, \ldots, N$, with

$$B_\alpha = \int_{-\infty}^{+\infty} dx |x|^\alpha \frac{e^{-x^2/2}}{\sqrt{2\pi}}.$$

Notice that when $\sigma_{\text{max}} \to \infty$, $\langle \sigma^{\alpha+\beta} \rangle_{\rho}$ is finite only for $\alpha + \beta < 3$. The strong correlations among the increments are reflected by the fact that $C_{\alpha \beta}(i, j)$ is different from zero. On the other hand, $\langle X_i X_j \rangle_{PN} = 0 \forall j \ne i$, and the process is uncorrelated at the linear level. Hence,

$$C_{\text{lin}}(i, j) = \frac{\langle X_i X_j \rangle_{PN} - \langle X_i \rangle_{p_1} \langle X_j \rangle_{p_1}}{\langle X_i^2 \rangle_{p_1} - \langle X_i \rangle_{p_1} \langle X_i \rangle_{p_1}}$$

is equal to 1 for $j = i$, and zero otherwise.

doi:10.1088/1742-5468/2010/02/P02018
Figure A.1. Ergodicity breaking for a progressive simulation. Correlations calculated from an ensemble of 10^5 realizations (a) and from a single realization of 10^5 steps (b). Here and in the following we use $\rho(\sigma)$ as in equation (A.26), with $\sigma_{\text{min}} = 0.01$, $\sigma_{\text{max}} = 10$, and $b = 1/\sqrt{2}$.

A natural strategy of simulation of the process is based on extracting the random increments $x_1, x_2, \ldots, x_N, \ldots$ according to the sequence of conditional PDFs

$$p_1(x_1) = g(x_1), p_2^\alpha(x_2|x_1), \ldots, p_i^\alpha(x_i|x_{i-1}, \ldots, x_1), \ldots,$$ \hfill (A.33)

respectively. To distinguish from what follows, we call this simulation scheme ‘progressive’. An ensemble of a large number of independent simulations of this kind reproduces well all the theoretical features of the process. For instance, in figure A.1(a) we find that $C_{1,1}(1,j)$ and $C_{\text{lin}}(1,j)$ obtained from an ensemble of 10^5 simulations oscillate around the correct theoretical values. In contrast, if we consider a single simulation of N steps ($N \gg 1$) generated according to equation (A.33), and the associated ‘sliding window’ correlators

$$\bar{C}_{\alpha\beta}(k) \equiv \frac{1/(N-k)}{(1/N)} \sum_{i=1}^{N-k} |x_i|^{\alpha\beta} - ((1/N) \sum_{i=1}^{N} |x_i|^{\alpha})((1/N) \sum_{i=1}^{N} |x_i|^{\beta}),$$ \hfill (A.34)

$$\bar{C}_{\text{lin}}(k) \equiv \frac{1/(N-k)}{(1/N)} \sum_{i=1}^{N-k} x_i x_{i+k} - ((1/N) \sum_{i=1}^{N} x_i)((1/N) \sum_{i=1}^{N} x_{i+k}),$$ \hfill (A.35)

we find that both $\bar{C}_{1,1}(k)$ and $\bar{C}_{\text{lin}}(k)$ are zero for $k > 0$ (see figure A.1(b)). This means that time averages disagree with ensemble averages, i.e., the dynamics is not ergodic.

We gain an insight into this ergodicity breaking by noticing that the conditional PDF for the next increment at each time step i can be expressed in the following way:

$$p_i^\alpha(x_i|x_{i-1}, \ldots, x_1) = \int_{\sigma_{\text{min}}}^{\sigma_{\text{max}}} \dd \sigma \, \rho^\alpha_1(\sigma|x_{i-1}, \ldots, x_1) \frac{e^{-x_i^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}.$$ \hfill (A.36)

doi:10.1088/1742-5468/2010/02/P02018
Anomalous scaling due to correlations: limit theorems and self-similar processes

Figure A.2. (a) Histogram of the frequency of ergodic components σ in ρ^c_i: only for the autoregressive simulation does the histogram reproduce $\rho(\sigma)$ well in equation (A.26). (b) The rescaling of the histogram of the increments over an interval of duration $\tau = k \Delta t$ for a single autoregressive simulation of 10^5 time steps with $M = 100$ reproduces $g(z)$ for $k \leq M$.

where the conditional PDF for the value σ, ρ^c_i, is in fact a function f_i depending only on $\sum_{j=1}^{i-1} x_j^2$:

$$\rho^c_i(\sigma|x_{i-1}, \ldots, x_1) = \frac{\rho(\sigma) \prod_{j=1}^{i-1} e^{-x_j^2/2\sigma^2}/\sigma^M}{\int_0^{+\infty} d\sigma' (\rho(\sigma') \prod_{j=1}^{i-1} e^{-x_j^2/2\sigma'^2}/\sigma'^M)} \equiv f_i \left(\sigma, \sum_{j=1}^{i-1} x_j^2 \right). \tag{A.37}$$

As i increases, very quickly f_i becomes sharply peaked around a specific value $\bar{\sigma}$, which depends on the sum of the squares of the past increments, $\sum_{j=1}^{i-1} x_j^2$. For a given $i \gg 1$, the dynamics is such that the typical growth of $\sum_{j=1}^{i} x_j^2$ with respect to $\sum_{j=1}^{i-1} x_j^2$ compensates for the functional change of f_{i+1} with respect to f_i, and the new conditional PDF, ρ^c_{i+1}, remains peaked around the same value $\bar{\sigma}$. In this way, a single ergodic component labeled with $\bar{\sigma}$ is chosen during the initial stages of the simulation, when ρ^c_i still resembles ρ.

The subsequent dynamical evolution is then very similar to a process with independent increments at the initially selected $\bar{\sigma}$. This is why throughout a single history of the process the sliding window analysis performed in figure A.1(b) reveals a vanishing $\bar{C}_{1,1}(k)$ for $k > 0$.

In practice, a progressive simulation scheme can be realized by first extracting a σ according to the PDF in equation (A.37), and then an x_i from a Gaussian PDF with width σ. With a different, autoregressive, simulation strategy, scaling and ergodic properties can be restored together to a good approximation up to a finite time scale M. This is obtained by considering a conditional PDF $p^c_{i,x}$ which depends, still through equation (A.36), on

doi:10.1088/1742-5468/2010/02/P02018
Anomalous scaling due to correlations: limit theorems and self-similar processes

Figure A.3. An autoregressive simulation restores ergodicity up to the time scale \(\tau = M \Delta t \). Ensemble (a) and time (b) correlations are calculated as in figure A.1.

the previous \(M - 1 \) increments only, for all \(i \geq M \):

\[
p_{i,\text{at}}^{c}(x_{i}|x_{i-1}, \ldots, x_{i-M+1}) \equiv p_{M}^{c}(x_{i}|x_{i-1}, \ldots, x_{i-M+1}). \tag{A.38}
\]

After the initial transient of \(M \) time steps, which is realized according to the progressive scheme in equations (A.33), using \(p_{i,\text{at}}^{c} \) at each step \(i \geq M \) we ‘forget’ the increment \(x_{i-M} \) and we thus fix at \(M \) the dimension of the conditional PDF for extracting the next increment of the process. This enables the conditional PDF \(\rho_{M}^{c} \) to wander among all the ergodic components labeled with the different \(\sigma \)s, as is shown in figure A.2(a), where we recorded the histogram of the \(\sigma \)s in equations (A.36) and (A.38) spanned by both a progressive and an autoregressive \((M = 100) \) simulation of \(10^5 \) time steps. While in the progressive case the histogram is strongly peaked around a single \(\bar{\sigma} \), in the autoregressive one it reproduces well the \(\rho(\sigma) \) assumed in equation (A.26). We define the increment over an interval of duration \(\tau = k \Delta t \) at time \(t = i \Delta t \) as \(Z_{ik} \equiv Y_{i+k} - Y_{i} \) \((i = 1, 2, \ldots, N - k, k > 0) \), and then we sample the PDF \(p_{Z_{ik}}(z) \equiv (1/N - k) \sum_{i=1}^{N-k} p_{Z_{ik}}(z) \) throughout a single autoregressive history of \(N \) steps. For an ergodic dynamics it is expected that the scaling properties of \(p_{Z_{ik}} \) will reproduce those of \(p_{Y_{i}} \). Figure A.2(b) shows that the desired scaling properties for \(p_{Z_{ik}} \),

\[
k^{D} p_{Z_{ik}}(k^{D}z) = g(z), \tag{A.39}
\]

are indeed well satisfied for \(D = 1/2 \) and \(k \leq M \). The fidelity and the ergodicity of the autoregressive simulation are furthermore supported by an inspection of \(C_{\alpha\beta}^{\text{lin}}(i,j) \) and \(\bar{C}_{\alpha\beta}(k) \), which reveals that both the ensemble and the time correlations approximatively coincide with the theoretical values as long as \(j - i \) and \(k \), respectively, are smaller than \(M \) (figures A.3(a) and (b)). For larger time separations, correlations decay slowly to zero,
Anomalous scaling due to correlations: limit theorems and self-similar processes

producing a smooth crossover to a process with independent increments on scales much larger than M.

For simulations with $D \neq 1/2$, on considering the rescaled variables $X'_i \equiv X_i/a_i$, with $a_i \equiv [(i - 1)^2 D - (i - 1)^2 D]^{1/2}$ (see the main text), the above discussion still applies. As a consequence, the mechanism of the selection of a specific value $\sigma = \tilde{\sigma}$ in ρ_i^z for a single progressive simulation and that of the dynamical sampling of the various σs for a single autoregressive one also remain valid when $D \neq 1/2$. These features are of crucial importance for the applicability of such processes in finance [23].

References

[1] Gnedenko B V and Kolmogorov A N, 1954 Limit Distributions for Sums of Independent Random Variables (Reading, MA: Addison-Wesley)
[2] Feller W, 1968 and 1971 An Introduction to Probability Theory and its Applications vol 1 and 2 (New York, NY: Wiley)
[3] Kadanoff L P, 2005 Statistical Physics, Statics, Dynamics and Renormalization (Singapore: World Scientific)
[4] Kadanoff L P, Turbulent heat flow: structures and scaling, 2001 Phys. Today 54 34 (August)
[5] Sethna J P, Dahmen K A and Myers C R, Crackling noise, 2001 Nature 410 242
[6] Bouchaud J P and Georges A, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, 1999 Phys. Rep. 195 127
[7] Lu E T, Hamilton R J, McTiernan J M and Bromond K R, Solar flares and avalanches in driven dissipative systems, 1993 Astrophys. J. 412 841
[8] Scholz C H, 2002 The Mechanics of Earthquakes and Faulting (New York: Cambridge University Press)
[9] Kiyono K, Struzik Z R, Aoyagi N, Togo F and Yamamoto Y, Phase transition in a healthy human heart rate, 2005 Phys. Rev. Lett. 95 058101
[10] Jona-Lasinio G, Renormalization group and probability theory, 2001 Phys. Rep. 352 439 and references therein
[11] Jona-Lasinio G, 2003 The Kolmogorov Legacy in Physics (Lecture Notes in Physics vol 636) ed R Livi and A Vulpiani (Berlin: Springer) pp 213–27
[12] Castiglione C, Falcioni M, Lesne A and Vulpiani A, 2008 Chaos and Coarse Graining in Statistical Mechanics (Cambridge: Cambridge University Press)
[13] Eisler Z, Bartos I and Kertesz J, Central limit theorems for correlated variables: some critical remarks, 2008 Int. J. Mod. Phys. B 22 3311
[14] Hilhorst H J, Central limit theorems for correlated variables: some critical remarks, 2009 Braz. J. Phys. 39 317
[15] Baldwin F and Stella A L, Central limit theorem for anomalous scaling due to correlations, 2007 Phys. Rev. E 75 020101(R)
[16] Aldous D J, Exchangeability and related topics, 1985 Lecture Notes in Mathematics vol 1117 (Berlin: Springer) pp 1–198
[17] de Finetti B, La prevision: ses lois logiques, ses sources subjectives., 1937 Ann. Inst. Henri Poincaré 7 1
[18] Jiang X and Hahn M G, Central limit theorems for exchangeable random variables when limits are scale mixtures of normals, 2003 J. Theor. Prob. 16 543 and references therein
[19] Klass M and Teicher H, The central limit theorem for exchangeable random variables without moments, 1987 Ann. Prob. 15 138
[20] Baldwin F and Stella A L, Scaling and efficiency determine the irreversible evolution of a market, 2007 Proc. Nat. Acad. Sci. 104 19741
[21] Stella A L and Baklov F, Role of scaling in the statistical modelling of finance, 2008 Pramana—J. Phys. 71 341
[22] Baldwin F and Stella A L, Modeling non-Markovian, nonstationary scaling dynamics, 2009 arXiv:0909.3244
[23] Goldenfeld N and Kadanoff L P, Simple lessons from complexity, 1999 Science 284 87
[24] Engle R, Estimates of the variances of US inflation based upon the ARCH model, 1983 J. Money, Credit Bank. 15 286
[25] Binder K, Finite size scaling analysis of Ising model block distribution functions, 1981 Z. Phys. B 43 119

doi:10.1088/1742-5468/2010/02/P02018
Anomalous scaling due to correlations: limit theorems and self-similar processes

[27] Schoenberg I J, Metric spaces and completely monotone functions, 1938 Ann. Math. 39 811
[28] Challet D and Peirano P P, 2008 The ups and downs of the renormalization group applied to financial time series arXiv:0807.4163v2
[29] See, e.g., Gheorghiu S and Coppens M-O, Heterogeneity explains features of ‘anomalous’ thermodynamics and statistics, 2004 Proc. Nat. Acad. Sci. 101 15852