Genomic analysis of human lung fibroblasts exposed to vanadium pentoxide to identify candidate genes for occupational bronchitis

Jennifer L Ingram, Aurita Antao-Menezes, Elizabeth A Turpin, Duncan G Wallace, James B Mangum, Linda J Pluta, Russell S Thomas and James C Bonner*

Address: The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA

Email: Jennifer L Ingram - jennifer.ingram@duke.edu; Aurita Antao-Menezes - amenezes@ciit.org; Elizabeth A Turpin - eturpin@embrex.com; Duncan G Wallace - wallace@ciit.org; James B Mangum - james.b.mangum@gsk.com; Linda J Pluta - lpluta@ciit.org; Russell S Thomas - rthomas@ciit.org; James C Bonner* - jbonner@ciit.org

* Corresponding author

Abstract

Background: Exposure to vanadium pentoxide (V$_2$O$_5$) is a cause of occupational bronchitis. We evaluated gene expression profiles in cultured human lung fibroblasts exposed to V$_2$O$_5$ in vitro in order to identify candidate genes that could play a role in inflammation, fibrosis, and repair during the pathogenesis of V$_2$O$_5$-induced bronchitis.

Methods: Normal human lung fibroblasts were exposed to V$_2$O$_5$ in a time course experiment. Gene expression was measured at various time points over a 24 hr period using the Affymetrix Human Genome U133A 2.0 Array. Selected genes that were significantly changed in the microarray experiment were validated by RT-PCR.

Results: V$_2$O$_5$ altered more than 1,400 genes, of which ~300 were induced while >1,100 genes were suppressed. Gene ontology categories (GO) categories unique to induced genes included inflammatory response and immune response, while GO categories unique to suppressed genes included ubiquitin cycle and cell cycle. A dozen genes were validated by RT-PCR, including growth factors (HBEGF, VEGF, CTGF), chemokines (IL8, CXCL9, CXCL10), oxidative stress response genes (SOD2, PIPOX, OXR1), and DNA-binding proteins (GAS1, STAT1).

Conclusion: Our study identified a variety of genes that could play pivotal roles in inflammation, fibrosis and repair during V$_2$O$_5$-induced bronchitis. The induction of genes that mediate inflammation and immune responses, as well as suppression of genes involved in growth arrest appear to be important to the lung fibrotic reaction to V$_2$O$_5$.

Background

Occupational exposure to vanadium pentoxide (V$_2$O$_5$) has been associated with an increased incidence of chronic obstructive airway disease and a reduction in lung function [1]. V$_2$O$_5$ is the most common commercial form of vanadium and is the primary form found in industrial exposure situations [2]. Occupational exposure to V$_2$O$_5$ occurs during the cleaning of oil-fired boilers and fur-
naces, during handling of catalysts in chemical plants, and during the refining, processing, and burning of vanadium-rich fossil fuels [3].

We previously reported that V₂O₅ causes airway disease in rats that is similar to the pathology of asthma and bronchitis in humans [4]. These pathologic changes include mucus cell hyperplasia, increased airway smooth muscle mass, and peribronchiolar fibrosis. Lung fibroblasts are thought to play a major role in V₂O₅-induced airway remodeling in vivo, as these cells proliferate around airways following injury and deposit collagen which defines the airway fibrotic lesion [4,5].

Vanadium compounds exert cellular stress via inhibition of protein tyrosine phosphatases (PTPs) in cells [6] and through the generation of reactive oxygen species [7,8]. In particular, vanadium compounds have been shown to stimulate release of H₂O₂ in several pulmonary cell types, including alveolar macrophages [9], human lung epithelial cells [10], and human lung fibroblasts [11]. Vanadium-induced oxidative stress has been reported to increase the phosphorylation of MAP kinases through the epidermal growth factor receptor (EGFR) [12] and stimulate activation of multiple transcription factors including p53 [13], AP-1 [14], NF-κB [15] and STAT-1 [8]. These transcription factors play major roles in cell proliferation, apoptosis, differentiation, and the induction of pro-inflammatory mediators. These cellular responses, in turn, determine the overall pathologic outcomes (e.g., inflammation, fibrosis) that lead to the development of V₂O₅-induced bronchitis.

While much is known about signal transduction pathways that are activated by vanadium-induced oxidative stress, much less is known about genes that are regulated by these signaling pathways. In this study, we investigated V₂O₅-induced gene expression in cultured normal human lung fibroblasts using microarray analysis in order to gain a better understanding of the genes that mediate the pathogenesis of fibrosis.

Methods

Cell culture and materials

Normal adult human lung fibroblasts (ATCC 16 Lu) were purchased from American Type Culture Collection (Rockville, MD). Fibroblasts were seeded into 175 cm² plastic culture flasks and grown to confluence in 10% fetal bovine serum (FBS)/Dulbecco’s modified Eagle’s medium (DMEM), then trypsin-activated, and seeded into 150 mm dishes. Confluent monolayers were rendered quiescent for 24 hrs in serum-free defined medium (SFDM) that consisted of Ham’s F-12 medium with 0.25% BSA with an insulin/transferrin/selenium supplement. Cells were treated with 10 μg/cm² vanadium pentoxide, V₂O₅ (Aldrich Chemical, Milwaukee, WI) or SFDM and RNA was harvested from the fibroblast cultures at 1, 4, 8, 12 and 24 hrs post-treatment. We previously reported that this dose of V₂O₅ causes minimal cytotoxicity (<10% by lactate dehydrogenase assay) and yet induces H₂O₂ production, activates intracellular signaling pathways (e.g., MAP kinases), and upregulates growth factor production by human lung fibroblasts [11]. RNA from an SFDM control was harvested at each of these time points to normalize the V₂O₅ treatment at the same corresponding time point. Three replicate arrays were analyzed for SFDM and V₂O₅ treatment groups at each of the five time points tested.

Microarray hybridizations and data analysis

Human lung fibroblast RNA was isolated using RNeasy columns (Qiagen, Valencia, CA). RNA quality was verified by spectrophotometry and gel electrophoresis using the Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Probe preparation and hybridization to the microarray was performed in the CIIT Gene Expression Core Facility using standard Affymetrix procedures. Double-stranded cDNA was synthesized from RNA using an oligo-dT24-T7. Biotinylated cRNA was synthesized from an aliquot of the cDNA template using the T7 RNA Transcript Labeling Kit (ENZO Diagnostics, Farmingdale NY). The labeled cRNA was then fragmented, hybridized to Affymetrix Human Genome U133A 2.0 arrays (Affymetrix, Santa Clara, CA), and stained using phycoerythrin-conjugated streptavidin (Molecular Probes, Eugene, OR). Gene expression results have been deposited in the National Center for Biotechnology Information (NCBI) Expression Omnibus database [16](Accession Number GSE5339).

Statistical analysis and data processing

The microarray data were preprocessed using RMA with a log base 2 (log2) transformation [17]. Statistical analysis of the data was performed in R using the affylinGUI package [18,19]. To identify genes with significant changes in expression following V₂O₅ exposure, all treatment groups were analyzed using a linear model with contrasts between untreated fibroblasts and V₂O₅-exposed fibroblasts at each time point. Genes from all of the five gene lists were combined for the final analysis. Probability values were adjusted for multiple comparisons using a false discovery rate of 5% (FDR ≤ 0.05) [20]. Genes identified as statistically significant were subject to an additional filter by selecting only those genes that exhibited a ≥ 2-fold change from the untreated fibroblasts. Analysis of gene ontology (GO) categories was performed using NIH DAVID [21]. Statistical significance of the GO results was assessed using a hypergeometric test [21]. GO category hierarchy was obtained using AmiGO [22] and used to discard general categories from the DAVID analysis within...
the first three levels. Data for genes changed more than 2-fold were clustered using Cluster 3.0 [22] and visualized using the Maptree Software program [24].

Real Time quantitative RT-PCR

Total RNA from human lung fibroblasts was isolated using the Qiagen RNeasy Miniprep kit (Valencia, CA). One or two micrograms of total RNA was reverse transcribed at 48°C for 30 minutes using Multiscribe Reverse Transcriptase (Applied Biosystems, Foster City, CA) in 1 × RT buffer, 5.5 mM MgCl₂, 0.5 µM of each dNTP, 2.5 µM of random hexamers, and 0.4 U/µL RNase inhibitor in a volume of 100 µl. One hundred nanograms of the RT product was amplified using Taqman Gene Expression Assays on the Applied Biosystems 7700 Prism® Sequence Detection System (Applied Biosystems, Foster City, CA). The PCR conditions and data analysis were performed according to the manufacturer’s protocol described in User bulletin no.2, Applied Biosystems Prism 7700 Sequence Detection System. All samples were run in triplicate. Gene expression was measured by the quantitation of cDNA converted from mRNA corresponding to VEGF, CTGF, HBEGF, IL8, CXCL9, CXCL10, PIPOX, OXR1, SOD2, STAT1, GAS1, and EGR1 relative to the untreated control groups and normalized to 18S. 18S expression was not significantly changed in the microarray experiment and therefore served as an appropriate housekeeping gene. Relative quantitation values \(2^{-\Delta\Delta CT}\) were expressed as fold-change.

Results

Exposure of human lung fibroblasts to V₂O₅ resulted in significantly altered expression of over 1400 genes on the Affymetrix Human Genome U133A 2.0 Array. The majority of significantly changed genes were suppressed by V₂O₅ exposure over the 24 hr time course. Four major temporal patterns of gene expression were identified by hierarchical clustering analysis; progressively induced genes (Fig. 1A and 1B), genes that were induced in a biphasic manner (Fig. 1C), progressively suppressed genes (Fig. 1D) and early induced, late suppressed genes (Fig. 1E). Examples of genes from each of these temporal categories are shown in Fig. 2. The cellular localization and functions of selected genes from each of these categories is shown in Table 1.

An analysis of the biological processes (gene ontology categories) affected by V2O5 exposure in human lung fibroblasts was performed using the NIH DAVID program [21]. This analysis revealed that certain GO categories were unique to V2O5-induced genes, including chemotaxis, inflammatory response, immune response, and cell-cell signaling (Table 2). GO categories that were unique to suppressed genes included ubiquitin cycle, cell cycle, DNA repair, nuclear transport, and programmed cell death. A few categories such as RNA processing were common to induced and suppressed genes.

While analysis of GO biological processes was useful in assessing the overall numbers of significantly changed genes in various functional categories, we selectively grouped genes that have been shown to play important roles in various aspects of tissue injury, repair, and remodeling. These categories included A) cytokines and chemokines, B) growth factors, C) STAT signaling, D) cell cycle regulation, E) oxidative stress, and F) TGF-β signaling (Fig. 3). The functions and cellular localization of representative genes from each of these categories is shown in Table 3. A number of cytokines and chemokines were induced over the time course, including IL8, IL-6, CCL8, CXCL9, and CXCL10, while IL15 was suppressed in a time-dependent manner (Fig. 3A). VEGF, HGF, and HBEGF were progressively induced, while FGF2 and FGF9 were suppressed (Fig. 3B). CTGF was induced early (4 hrs) and suppressed late. Members of the STAT signaling pathway were differentially regulated (Fig. 3C). IRF-1 was induced in a biphasic manner. SOCS3 was progressively induced over the time course, while SOCS1 and IFNGR were progressively suppressed. Genes encoding cell cycle regulation were mainly suppressed, including CDKN1B and CDKN1C, which function to inhibit cell cycle progression (Fig. 3D). Oxidative stress genes were differentially regulated. In particular, SOD2 and PIPOX, which function in peroxide generation, were progressively induced (Fig. 3E). OXR1 and OXSR1, which are protective against oxidative stress, were suppressed. Genes involved in TGF-β signaling and collagen deposition were suppressed, including TGFß2, SMAD1, SMURF1, COL1A1, COL1A2, and COL3A1 (Fig. 3F).

Taqman quantitative real time RT-PCR was used to validate a dozen selected genes that were induced or suppressed by V₂O₅ exposure. We chose to validate 3 genes from each of the following categories (growth factors, chemokines, transcription factors, oxidative stress) that appear to have important roles in inflammation, repair, or fibrosis. The results obtained with Taqman quantitative RT-PCR closely mirrored the patterns of temporal induction or suppression observed in the microarray experiment (Fig. 4).

Discussion

Occupational exposure to vanadium oxides has been associated with an increased incidence of obstructive airway disease and a reduction in lung function [1]. In the present study, we investigated the temporal expression of genes in normal human lung fibroblasts exposed V₂O₅,
We previously reported that 10 µg/cm² V₂O₅, the same dose used in our microarray experiment, causes minimal cytotoxicity (<10%) to fibroblasts or epithelial cells over a 24 hr time period [10,11]. This concentration of V₂O₅ also causes several well-defined phenotypic changes in lung fibroblasts including a marked increase in H₂O₂ by fibroblasts [11], phosphorylation of the signal transducer and activator of transcription (STAT-1) [8], and increased expression of heparin-binding EGF-like growth factor, HBEGF [11]. Our current study identified genes regulated by V₂O₅ that could play potentially important roles in oxidative stress, inflammation, growth, and apoptosis during V₂O₅-induced lung injury, remodeling and repair. Moreover, our investigation suggests that fibroblasts play an important role in orchestrating the responses of other pulmonary cell types, including neutrophils, airway epithelial cells, lymphocytes, and endothelial cells. The postulated roles of selected genes that were validated by RT-PCR in mediating V₂O₅-induced inflammation, repair, and fibrosis are illustrated in Fig. 5.

A variety of genes encoding cytokines and chemokines were induced or suppressed by V₂O₅. For example, V₂O₅ induced IL8 and IL6, which play important roles in acute inflammation. We validated the strong induction of IL8 mRNA by RT-PCR. Vanadium rich oil fly ash has been
reported to increase IL8 and IL6 mRNA and protein expression in normal human airway epithelial cells [25,26]. Moreover, workers exposed to vanadium-rich fuel oil ash have increased IL8 protein in nasal fluid [27]. Chemokines induced by V2O5 could play important roles in the immune response. Notably, V2O5 induced CXCL9 (Mig) and CXCL10 (inducible protein-10), both of which were validated by RT-PCR. CXCL9 and CXCL10 are STAT1-dependent chemokines that function in the recruitment of lymphocytes [28]. We previously showed that V2O5 activates STAT1 in lung fibroblasts [8] and mice deficient in STAT1 are susceptible to pulmonary fibrosis [29]. Moreover, we have observed intratracheal V2O5 exposure in rats causes lymphocytic accumulation surrounding airways and small blood vessels, as well causing proliferation of lymphocytes within the bronchus-associ-
After V2O5 treatment remain unclear. We have reported differences in the expression of exposed by intratracheal instillation [30]. The temporal due to the delayed induction of a transcriptional regulator localization and functions (See Fig. 2).

The temporal induction of a transcriptional regulator in fibroblasts and then suppressed. We have also reported that the early induction of HBEGF is due to peroxide dependent activation of MAP kinases [11]. We have also observed that V2O5-induced CTGF expression requires MAP kinases (Ingram and Bonner, unpublished observation). The late induction of HBEGF and VEGF could be due to the delayed induction of a transcriptional regulator gene that is increased in response to V2O5-induced oxidative stress. One such transcriptional regulator that serves as a master switch for growth factor induction is the early growth response (EGR1) gene. EGR1 was significantly induced at 4 and 24 hr following V2O5 treatment in both microarray and RTPCR experiments. EGR1 is induced by a variety of factors including cellular stress and functions as a transcriptional regulator to increase the expression of growth factor genes such as VEGF [33].

Table 1: Temporal expression categories of selected genes significantly induced or suppressed by V2O5 exposure and their cellular localization and functions (See Fig. 2).

Accession#	Gene Symbol	Gene Name	Localization	Function
Hs.25590	STC1	Stanniocalcin	Secreted	Cellular Metabolism
Hs.448611	PBEF1	Pre-B Cell Colony Enhancing Factor 1	Secreted	Inflammation
Hs.78913	CXC3R1	Chemokine (C-X3-C motif) Receptor 1	Membrane	Inflammation
Hs.515258	GDF15	Growth and Differentiation Factor-15	Secreted	Growth Inhibition
Hs.471221	KLF7	Kruppel-like factor 7	Nuclear	Transcriptional Regulation
Hs.525704	JUN	V-jun sarcoma virus 17 oncogene	Nuclear	Transcriptional Regulation

Progressively Induced Genes

Accession#	Gene Symbol	Gene Name	Localization	Function
Hs.65029	GAS1	Growth Arrest Specific Gene 1	Nuclear	Growth Arrest and Apoptosis
Hs.519162	BTG2	B-Cell Translocation Gene 2	Nuclear	Growth Arrest
Hs.255935	BTG1	B-Cell Translocation Gene 1	Nuclear	Growth Arrest
Hs.8375	TRAF4	TNF Receptor-Associated Factor	Membrane	Inflammation/Immunity
Hs.109225	VCAM1	Vascular Cell Adhesion Molecule 1	Membrane	Cell Adhesion
Hs.519090	MARCKS	Myristoylated Alamine-rich C Kinase Substrate	Cytoplasmic	Cell Signaling

Progressively Suppressed Gene

Accession#	Gene Symbol	Gene Name	Localization	Function
Hs.298654	DUSP6	MAP kinase phosphatase 3	Cytoplasmic	Cell Signaling
Hs.532411	LYST	Lysosomal Trafficking Regulator Gene	Cytoplasmic	Cell Signaling
Hs.514746	GATA6	GATA6 Transcription Factor	Nuclear	Transcriptional Regulation
Hs.37982	NEDD9	Neural expressed Develop. down-regulated 9	Membrane	Cell Adhesion
Hs.502328	CD44	CD44 molecule (Indian blood group)	Membrane	Cell Signaling
Hs.59332	SPRED2	Sprouty-Related EVH Domain-2	Cytoplasmic	Cell Signaling

Early Induced I/Late Suppressed Genes

Accession#	Gene Symbol	Gene Name	Localization	Function
Hs.326035	EGR1	Early Growth Response-1 Gene	Cytoplasmic/Nuclear	Transcriptional Regulation
Hs.534313	EGR3	Early Growth Response-3 Gene	Cytoplasmic/Nuclear	Transcriptional Regulation
Hs.73853	BMP2	Bone Morphogenic Protein-I	Secreted	Cell Differentiation
Hs.591241	CCNT2	Cyclin T2	Nuclear	Cell Cycle Regulation
Hs.62661	GBP1	guanylate-binding protein 1, IFN-inducible	Cytoplasmic	Antiviral Activity
Hs.419240	SLCA2A3	Solute Carrier Family 2 (GLUT3)	Membrane	Metabolism

Biphasic Induced Genes

Accession#	Gene Symbol	Gene Name	Localization	Function
Hs.25590	STC1	Stanniocalcin	Secreted	Cellular Metabolism
Hs.448611	PBEF1	Pre-B Cell Colony Enhancing Factor 1	Secreted	Inflammation
Hs.78913	CXC3R1	Chemokine (C-X3-C motif) Receptor 1	Membrane	Inflammation
Hs.515258	GDF15	Growth and Differentiation Factor-15	Secreted	Growth Inhibition
Hs.471221	KLF7	Kruppel-like factor 7	Nuclear	Transcriptional Regulation
Hs.525704	JUN	V-jun sarcoma virus 17 oncogene	Nuclear	Transcriptional Regulation

aGene annotations are from NCBI http://www.ncbi.nlm.nih.gov.
pressing genes encoding anti-mitogenic factors (GAS1, BTG2, CDKN1B, and CDKN1C). In particular, our RT-PCR results validated GAS1 suppression in V2O5-exposed fibroblasts. While the increased expression of growth factors (i.e., VEGF, HBEGF, CTGF) by fibroblasts exposed to V2O5 is likely important in promoting fibroblast growth and survival, the reduced expression of GAS1 by V2O5 could be equally important in promoting fibroblast replication and survival. Moreover, V2O5 progressively suppressed GAS1 over the entire time course of the experiment, indicating sustained loss of growth arrest control when growth factors such as VEGF, HBEGF, and CTGF were maximally induced.

We found that V2O5 induced or suppressed a number of genes that are involved in oxidative stress. Vanadium compounds have been reported to activate several transcription factors and induce the release of inflammatory mediators through the generation of H2O2 [13,14,8]. Also, we previously reported that human lung fibroblasts exposed to V2O5 release micromolar amounts of H2O2 in vitro 12 to 18 hrs after V2O5 exposure [11]. Two genes encoding peroxide-generating enzymes, SOD2 and PIPOX, were validated by RT-PCR. SOD2 was progressively increased over the 24 hr time course of V2O5 exposure. SOD2 serves as a major protective anti-oxidant defense enzyme that converts superoxide anion to H2O2.

Table 2: Functional analysis of genes induced or suppressed by V2O5 in human lung fibroblasts.

GO ID	GO Category	Genes	%	P value
	Induced Genes			
0009605	response to external stimulus	32	8.47	1.43E-05
0009393	chemotaxis	13	3.44	6.96E-05
0009611	response to wounding	25	6.61	1.81E-04
0042221	response to chemical stimulus	23	6.08	2.51E-04
0006950	response to stress	44	11.64	0.003553
0006928	cell motility	15	3.97	0.005005
0006396	RNA processing	19	5.03	0.005027
0008380	RNA splicing	11	2.91	0.007903
0006954	inflammatory response	13	3.44	0.011869
0008284	positive regulation of cell proliferation	10	2.65	0.013783
0006955	immune response	33	8.73	0.018616
0007267	cell-cell signaling	23	6.08	0.042107
	Suppressed Genes			
0045449	regulation of transcription	298	19.34	3.61E-25
0006512	ubiquitin cycle	81	5.26	1.16E-10
0006391	RNA processing	72	4.67	6.25E-10
0007049	cell cycle	113	7.33	4.42E-08
0006974	response to DNA damage stimulus	52	3.37	1.13E-07
0006295	DNA metabolism	94	6.10	2.23E-06
0006281	DNA repair	43	2.79	1.23E-05
0008380	RNA splicing	33	2.14	2.56E-05
0007243	protein kinase cascade	50	3.24	3.39E-05
0051301	cell division	31	2.01	2.71E-04
0051169	nuclear transport	23	1.49	6.27E-04
0016310	phosphorylation	88	5.71	8.76E-04
0019538	protein metabolism	311	20.18	0.001149
0030518	steroid hormone receptor signaling pathway	13	0.84	0.001328
0050658	RNA transport	12	0.78	0.002917
0012501	programmed cell death	76	4.93	0.003907
0001558	regulation of cell growth	22	1.43	0.004779
0016568	chromatin modification	22	1.43	0.005351
0007259	JAK-STAT cascade	9	0.58	0.008321
0007050	cell cycle arrest	14	0.91	0.013090
0016055	Wnt receptor signaling pathway	18	1.17	0.020398
0015031	protein transport	65	4.22	0.034144
0008286	insulin receptor signaling pathway	6	0.39	0.039295
0007249	I-kappaB kinase/NF-kappaB cascade	18	1.17	0.042224

* GO analysis performed using NIH DAVID http://david.abcc.ncifcrf.gov.
* Gene ontology ID numbers obtained from AmiGO http://www.genedb.org/amigo/perl/go.cgi.
* % of total induced or suppressed genes.
Table 3: Cellular localization and functions of genes regulated by V$_2$O$_5$ grouped by functional categories (See Fig. 3).

Accession#	Gene Symbol	Gene Name	Localization	Function
Cytokines and Chemokines				
Hs.512234	IL6	Interleukin-6 (interferon beta2)	Secreted	Inflammation
Hs.624	IL8	Interleukin-8	Secreted	Neutrophil Chemotaxis
Hs.168132	IL15	Interleukin-15	Secreted	T Lymphocyte Proliferation
Hs.271387	CCL8	CC Chemokine Ligand 8	Secreted	Neutrophil Chemotaxis
Hs.77367	CXCL9	Chemokine (C-X-C motif) Ligand 9 (Mig)	Secreted	Inflammation
Hs.632586	CXCL10	Chemokine (C-X-C motif) Ligand 10 (IP-10)	Secreted	Inflammation
Growth Factors				
Hs.73793	VEGF	Vascular Endothelial Cell Growth Factor	Secreted	Endothelial Cell Growth
Hs.396530	HGF	Hepatocyte Growth Factor	Secreted	Epithelial Cell Growth
Hs.799	HBEGF	Heparin-Binding EGF-like Growth Factor	Membrane/Secreted	Fibroblast Growth
Hs.591346	CTGF	Connective Tissue Growth Factor	Secreted	Collagen Synthesis
Hs.111	FGF9	Fibroblast Growth Factor-9	Membrane/Secreted	Fibroblast Growth
Hs.284244	FGF2	Fibroblast Growth Factor-2	Membrane/Secreted	Fibroblast Growth
STAT Signaling				
Hs.591081	JAK2	Janus Activated Kinase-2	Membrane	STAT Phosphorylation
Hs.436061	IRF1	Interferon-Regulatory Factor-1	Cytoplasmic/Nuclear	Transcriptional Regulation
Hs.527973	SOCS3	Suppressor of Cytokine Signaling-3	Cytoplasmic	Cell Signaling
Hs.50640	SOCS1	Suppressor of Cytokine Signaling-1	Cytoplasmic	Cell Signaling
Hs.470943	STAT1	Signal Transducer Activator of Transcription	Cytoplasmic	Growth Arrest and Apoptosis
Hs.520414	IFNGR1	Interferon Gamma Receptor-1	Membrane	Cell Signaling
Cell Cycle Regulation				
Hs.238990	CDKNI B	Cyclin-Dependent Kinase Inhibitor-1B (Kip1)	Nuclear	Cell Cycle Arrest
Hs.106070	CDKN1C	Cyclin-Dependent Kinase Inhibitor-1C (Kip2)	Nuclear	Cell Cycle Arrest
Hs.525324	CDKN2C	Cyclin-Dependent Kinase Inhibitor-2C	Nuclear	Cell Cycle Arrest
Hs.557646	CDK9	Cyclin-Dependent Kinase-9	Nuclear	Transcriptional Regulation
Hs.184298	CDK7	Cyclin-Dependent Kinase-7	Nuclear	Transcriptional Regulation
Hs.13291	CCNG2	Cyclin G2	Nuclear	Cell Cycle Arrest
Oxidative Stress				
Hs.475970	OXR1	Oxidative Stress Response 1	Cytoplasmic	Intracellular Kinase
Hs.487046	SOD2	Superoxide Dismutase 2 (SOD2)	Cytoplasmic	Peroxide Generation
Hs.148778	OXR1	Oxidative Resistance 1	Cytoplasmic	Anti-Oxidant
Hs.462585	PIPOX	Pimelic Acid Oxidase	Cytoplasmic	Peroxide Generation
Hs.465870	KEAP1	Kelch-like ECH-associated protein 1	Cytoplasmic	Redox Homeostasis
Hs.406515	NQO1	NAD(P)H:quinone oxidoreductase 1	Cytoplasmic	Redox Homeostasis
TGF-beta Signaling and Collagen				
Hs.133379	TGF2	Transforming Growth Factor beta-2	Secreted	Matrix Synthesis, Immunity
Hs.519005	SMAD1	mothers against DPP homolog 1	Cytoplasmic	Cell Signaling
Hs.189329	SMURF1	Smad Ubiquitin Regulatory Factor-1	Cytoplasmic	Cell Signaling
Hs.489142	COL1A2	Collagen 1A2	Secreted	Structural Protein
Hs.172928	COL1A1	Collagen 1A1	Secreted	Structural Protein
Hs.443625	COL3A1	Collagen 3A1	Secreted	Structural Protein

Gene annotations are from NCBI http://www.ncbi.nlm.nih.gov.
Gene expression profiles of selected genes for six functional categories. Fold changes in gene expression over the time course of the experiment are shown on a log₂ scale. A) Cytokines and Chemokines, B) Growth Factors, C) STAT Signaling, D) Cell Cycle Regulation, E) Oxidative Stress, and F) TGF-β Signaling. The cellular localization and function of each of these genes are shown in Table 3.
Validation of selected genes by Taqman quantitative RT-PCR. RNA was isolated from human lung fibroblasts treated with 10 µg/cm² V2O5 at the indicated time points and RT-PCR performed as described in Methods. Three genes from four categories were validated: growth factors (top row: VEGF, HBEGF, CTGF), chemokines (second row: IL8, CXCL9, CXCL10), transcription factors (third row: Egr1, STAT1, GAS1), and oxidative stress genes (bottom row: PIPOX, OXR1, SOD2). The data for each gene was normalized against 18S housekeeping gene and expressed as the mean ratio. Data are representative of at least two replicate experiments and expressed as the mean ± sem of triplicate dishes of cells. The temporal pattern of each V2O5-altered gene validated by RT-PCR is compared with the result obtained from the microarray experiment (open diamonds).
[39]. V₂O₅ undergoes redox chemistry to generate superoxide anion, so it is possible that SOD2 plays a role in reducing V₂O₅-induced lung injury. L-pipeolate oxidase (PIPOX), a peroxisomal oxidase, was also progressively induced by V₂O₅. PIPOX utilizes molecular oxygen as a substrate with H₂O₂ as a product [40]. While V₂O₅ induces genes that generate peroxide (SOD2, PIPOX), we also validated suppression of the oxidative resistance gene (OXR1). Volkert and colleagues discovered the human OXR1 gene using a functional genomics approach in a search for genes that function in protection against oxidative damage [41]. While OXR1 is protective against oxidative stress, the precise function of this gene is not well understood. Because OXR1 is protective against oxidative injury, suppression of this gene could contribute to V₂O₅-induced oxidative stress. Also, the temporal suppression of OXR1 occurs as PIPOX (a pro-oxidative stress gene) is temporally induced.

V₂O₅ causes airway fibrosis in rats in vivo, and it is well known that increased collagen production defines the fibrotic lesion [4]. TGF-β is an essential mediator of collagen production by fibroblasts. Our results showed that TGFB2, along with its associated signaling intermediates SMAD1 and SMURF1, were all progressively suppressed by V₂O₅. Moreover, several major collagen genes (COL1A2, COL1A1, COL3A1) were suppressed as well. These data indicate that V₂O₅ does not directly stimulate fibroblasts to deposit collagen. Instead, it is likely that TGF-β or other factors signals produced by neighboring pulmonary cell types to increase collagen production. TGF-β mRNA is increased in the lungs of rats treated with V₂O₅. Therefore, during V₂O₅-induced fibrogenesis fibroblasts do not appear to be effectors of their own collagen deposition, but likely require other cell types (e.g., macrophages) as a source of TGF-β.

While we used lung fibroblasts in our study, it is highly relevant to consider the effect of V₂O₅ exposure on gene expression by other lung cell types, including epithelial cells. Li and colleagues used microarray analysis to investigate gene expression changes in human bronchial epithelial cells exposed to vanadium or zinc and identified a small set of genes that could be used as biomarkers for discriminating vanadium from zinc [42]. They also reported that IL8 and PTGS2 (COX-2) were induced several-fold by vanadium but not by zinc. IL8 and PTGS2 were also strongly induced in human lung fibroblasts by vanadium.
in our study. In fact, we previously reported that COX-2 null mice are susceptible to V$_2$O$_5$-induced lung fibrosis, which emphasized an important protective role for the PTGS2 gene during fibrogenesis [43].

Conclusion

A variety of genes were induced or suppressed in normal human lung fibroblasts by vanadium pentoxide (V$_2$O$_5$) that appear to have important functions in inflammation, fibrosis and repair. Our data suggest that both the induction of genes that mediate cell proliferation and chemotaxis (VEGF, CTGF, HBEGF), as well as suppression of genes involved in growth arrest and apoptosis (GAS1), is important to the lung fibrotic reaction to V$_2$O$_5$. The induction of interferon-inducible, STAT1-dependent chemokines (CXCL9 and CXCL10) could contribute to both suppression of fibroblast proliferation and lymphocyte accumulation. The strong induction of IL8 likely contributes to neutrophilic inflammation. An increase in peroxide-generating enzymes (PIPOX, SOD2) is consistent with H$_2$O$_2$ production by V$_2$O$_5$, while the reduced expression of protective oxidative response genes (e.g., OXR1) could further contribute to oxidative damage. Overall, our study reveals a wide variety of candidate genes that could mediate V$_2$O$_5$-induced airway remodeling after occupational and environmental exposures.

Abbreviations

V$_2$O$_5$, vanadium pentoxide; STAT-1, signal transducer and activator of transcription; GAS1, growth arrest specific gene; VEGF, vascular endothelial cell growth factor; CTGF, connective tissue growth factor; CXCL10, Chemokine (C-X-C motif) ligand 10; HB-EGF, heparin-binding epidermal growth factor-like growth factor; PTGS-2, prostaglandin synthase 2; OXR1, oxidative resistance gene; SOD2, superoxide dismutase-2; PIPOX, L-pipocelolate oxidase.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

JLI and ICB designed the experiments, performed the data analysis, and drafted the manuscript. JLI, AAM, EAT, JBM, and DGW performed cell culture, RNA isolation, and validated changes in selected genes by Taqman quantitative real-time RT-PCR. JLP performed with microarray hybridizations. RST performed statistical analysis on the microarray data. All authors read and approved the final manuscript.

Acknowledgements

The authors thank Dr. Longlong Yang for assistance with microarray data analysis. We are grateful to Dr. David Dorman, Dr. Kamin Johnson, and Dr. Wenhong Cao for helpful editorial suggestions during the preparation of this manuscript. This work was supported by the American Chemistry Council Long Range Research Initiative provided to the Hamner Institutes for Health Sciences (formerly CIIT Centers for Health Research).

References

1. Woodin MA, Liu Y, Neuberg D, Hauser R, Smith TJ, Christiani DC: Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am J Indus Med 2000, 37:353-363.

2. Dill JA, Lee KM, Mellingler KH, Bates DJ, Burka LT, Roycroft HJ: Lung deposition and clearance of inhaled vanadium pentoxide in chronically exposed F344 rats and B6C3F1 mice. Toxicol Sci 2004, 77:6-18.

3. Cenz C, (Ed): Occupational Medicine. 3rd edition. Mosby, St. Louis, MO: 1994:584-594.

4. Bonner JC, Rice AB, Moorman CR, Morgan DL: Airway fibrosis in rats induced by vanadium pentoxide. Am J Physiol 2000, 278:L209-L216.

5. Bonner JC, Rice AB, Lindroos PM, Moorman CR, Morgan DL: Induction of PDGF receptor-α in rat myofibroblasts during pulmonary fibrogenesis in vivo. Am J Physiol 1998, 18:l72-L80.

6. Samet JM, Stonehewner J, Reed W, Devlin RB, Dailey LA, Kennedy TP, Bromberg PA, Ohio AJ: Disruption of protein tyrosine phosphate homeostasis in bronchial epithelial cells exposed to oil fly ash. Am J Physiol 1997, 272:L426-432.

7. Zhang Z, Huang C, Li J, Leonard SS, Lancellotti R, Butterworth L, Shi X: Vanadate induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 2001, 392:11-20.

8. Wang Y-Z, Ingram JL, Waters DM, Rice AB, Santos JH, Van Houten B, Bonner JC: Vanadium-induced STAT-1 activation in lung myofibroblasts requires H$_2$O$_2$ and p38 MAP kinase. Free Rad Biol Med 2003, 35:B45-55.

9. Grabowski GM, Paulauskis JD, Godleski JJ: Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol Appl Pharmacol 1999, 156:170-178.

10. Zhang L, Rice AB, Adler K, Sannes P, Martin L, Gladwell W, Koo J-S, Gray TE, Bonner JC: Vanadium stimulates human bronchial epithelial cells to produce heparin-binding epidermal growth factor-like growth factor: a mitogen for lung fibroblasts. Am J Respir Cell Mol Biol 2001, 24:123-131.

11. Ingram JL, Rice AB, Santos J, Van Houten B, Bonner JC: Vanadium-induced HBEGF expression in human lung fibroblasts is oxygen dependent and requires MAP kinases. Am J Physiol 2003, 284:L747-L782.

12. Wang Y-Z, Bonner JC: Mechanism of extracellular signal-regulated kinase (ERK)-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts. Am J Respir Cell Mol Biol 2000, 22:590-596.

13. Huang C, Zhang Z, Ding M, Li J, Ye J, Leonard SS, Shen H-M, Butterworth L, Costa M, Rojanasaku Y, Castranova V, Vallyathan V, Shi X: Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 2000, 275:3215-3222.

14. Ding M, Li J, Leonard SS, Ye J-P, Shi X, Colburn NH, Castranova V, Vallyathan V: Vanadate-induced activation of activator protein-1: role of reactive oxygen species. Carcinogenesis 1999, 20:663-668.

15. Chen F, Demers LM, Vallyathan V, Ding M, Lu Y, Castranova V, Shi X: Vanadate induction of NF-kappaB involves IkappaB kinase beta and SAPK/ERK kinase 1 in macrophages. J Biol Chem 1999, 274:20307-20312.

16. Expression Omnibus Database [http://www.ncbi.nlm.nih.gov/geo]

17. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summary of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31:e15.

18. Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 2004, 3:Article 3.

19. Smyth GK: Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor Edited by: Gentleman R, Carey V, Dudoit S, Irizarry RA, Huber W, New York, Springer: 2005.

20. Reiner A, Yekutieli D, Benjamini Y: Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19:368-375.
21. Dennis D Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lampicki RA. **DAVID**: Database for Annotation, Visualization, and Integrated Discovery. * Genome Biology 2003, 4:p3 [http://david.abcc.ncifcrf.gov].

22. AmiGO Database [http://www.genedb.org/amigo/perl/ligo.cgi].

23. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. * Proc Natl Acad Sci USA 1998, 95:13466-13468.

24. The Mapletree Software Program [http://sourceforge.net/projects/mapletree/].

25. Carter JD, Ghio AJ, Samet JM, Devlin RB: Cytokine production by human airway epithelial cells after exposure to an air pollution particle is metal-dependent. *Toxicol Appl Pharmacol* 1997, 146:180-188.

26. Jaspers I, Samet JM, Reed W: Arsenite exposure of cultured airway epithelial cells activates kappaB-dependent interleukin-8 gene expression in the absence of nuclear factor-kappaB survival translocation. *J Biol Chem* 1999, 274:31025-31033.

27. Woodin MA, Hauser R, Liu Y, Smith TJ, Siegel PD, Lewis DM, Tollerud DJ, Christiansen DC: Molecular markers of acute upper airway inflammation in workers exposed to fuel-oil ash. *Am J Respir Crit Care Med* 1998, 158:182-187.

28. Fulkerson PC, Zimmermann N, Hassman LM, Finkelman FD, Rothenberg ME: Pulmonary chemokine expression is coordinately regulated by STAT1, STAT6, and IFN-gamma. *J Immunol* 2004, 173:7576-7574.

29. Walters DM, Antao-Menezes A, Ingram JL, Rice AB, Nyska A, Tani Y, Kleeberger SR, Bonner JC: Susceptibility of signal transducer and activator of transcription-1-deficient mice to pulmonary fibrogenesis. *Am J Pathol* 2005, 167:1221-1229.

30. Mangum JB, Turpin EA, Antao-Menezes A, Cesta MF, Bermudez E, Bonner JC: Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. *Particle & Fibre Toxicol* 2006, 3:13.

31. Li J, Tong Q, Shi X, Costa M, Huang C: ERKs activation and calcium signaling are both required for VEGF induction by vanadium in mouse epithelial C41 cells. *Mol Cell Biochem* 2005, 279:25-33.

32. Byrne AM, Bouchier-Hayes DJ, Harmey JH: Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). *J Cell Mol Med* 2005, 9:777-779.

33. Liu L, Tsai JC, Aird WC: Egr-1 gene is induced by the systemic administration of the vascular endothelial growth factor receptor and the epidermal growth factor receptor. *Blood* 2000, 96:1772-81.

34. Ura K, Hirata K, Ishida T, Takeuchi S, Hirase T, Rikitake Y, Kojima Y, Inoue N, Kawashima S, Yokoyama M: An anti-proliferative gene, BTG1 regulates angiogenesis in vitro. *Biochem Biophys Res Comm* 2004, 316:628-635.

35. Boiko AD, Porteous S, Razorenova OV, Kriukovysenko VI, Williams BR, Gudkov AV: A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. *Genes Dev* 2006, 20:236-252.

36. Evdokimov A, Cowled PA: Growth-regulatory activity of the growth arrest-specific gene, GAS1, in NIH3T3 fibroblasts. *Exp Cell Res* 1998, 240:359-367.

37. Ma H, Jin G, Hu Z, Zhai X, Chen W, Wang S, Wang X, Qin J, Gao J, Liu J, Wang X, Wei Q, Shen H: Variant genotypes of CDKN1A and CDKN1B are associated with an increased risk of breast cancer in Chinese women. *Int J Cancer* 2006, [June 27 Epub ahead of print].

38. Sato N, Matsubayashi H, Abe T, Fukushima N, Goggins M: Epigenetic downregulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling. *Clin Cancer Res* 2005, 11:4681-4688.

39. Valko M, Morris H, Cronin MT: Metals, toxicity, and oxidative stress. *Curr Med Chem* 2005, 12:161-1208.

40. IJlst L, de Kromme I, Oosthein W, Wanders RJ: Molecular cloning and expression of human L-ipepecolate oxidase. *Biochem Biophys Res Comm* 2000, 21:1101-1105.

41. Volkert MR, Elliott NA, Houssman DE: Functional genomics reveals a family of eukaryotic oxidation protection genes. *Proc Natl Acad Sci USA* 2000, 97:14530-14535.

42. Li Z, Stonehuerner J, Devlin RB, Huang YT: Discrimination of vanadium from zinc using gene profiling in human bronchial epithelial cells. *Environ Health Perspect* 2005, 113:1747-1754.

43. Bonner JC, Rice AB, Ingram JL, Moomaw CR, Nyska A, Bradbury A, Sessoms AR, Chulada PC, Morgan DL, Zeldin DC, Langenbach R: Susceptibility of cyclooxygenase-2-deficient mice to pulmonary fibrogenesis. *Am J Pathol* 2002, 161:459-470.