Effelsberg-Bonn HI Survey (EBHIS)

Jürgen Kerp1, Benjamin Winkel2, Nadya Ben Bekhti1, Shahram Faridani1, Lars Flöer1, Peter Kalberla1, Daniel Lenz1, Tobias Röhser1

1Argelander-Institut für Astronomie
2Max-Planck-Institut für Radioastronomie
To make an all-sky survey of Galactic 21-cm emission with a 100m-class telescope has been a dream for many decades, now the dream is finally coming true.

anonymous referee
• 7-beam receiver system
• On-the-fly observing mode
• Fully sampled sky coverage above Dec = -5°
• EBHIS observations started in August 2008
• First full sky coverage finished in April 2013!
EBHIS concept

• Galactic and extragalactic HI survey in parallel:
 • 21,400 square degrees
 • 100 MHz bandwidth $z \leq 0.07$ (270 Mpc)
 • 14 spectrometer with 16384 spectral channels each
 • High angular resolution \rightarrow fully sampled grid 1/44 LAB

jkerp@astro.uni-bonn.de
EBHIS concept

LAB

HVC 289+33+251
Brüns & Westmeier 2004, A&A 426, L9

Beam filling is different!
EBHIS concept

LAB

HVC 142.8-46.9-107.8

EBHIS

Galactic latitude

Galactic longitude

log(N_H/cm^2)

1e19

5

4

3

2

1

1

0

-1
EBHIS: extragalactic science prospects

jkerp@astro.uni-bonn.de
EBHIS “The HI Nearby Galaxy Survey”

Walter et al. 2008, AJ 136, 2563

jkerp@astro.uni-bonn.de
Table 1: Observational details on the CHVCs. α is the right ascension, δ the declination, v_{lsr} the local-standard-of-rest velocity, spectral channel resolution Δv of Eff/WSRT/comb. data, rms of Eff/WSRT/comb. data, “tot. flux Eff/WSRT/comb. data” the integrated flux of Eff/WSRT/comb. data.

Name	RA(2000)	Dec(2000)	D	$S_{H\alpha}/M_{BH}$	$S_{H\alpha}/M_{BH}$	ext	3-σ Mass	V_{max}	W_0	inter group
NGC 1569	04:30:49	64:50:53	2.0	44.3/0.42	-/-	42	22.7	-/-	-/-	g
NGC 2366	07:28:53	69:12:51	3.4	241/8.57	267/7.28	35.6	3.3	-/-	> 135°	g
NGC 2403	07:36:51	65:38:03	3.2	-/-	-/-	39.2	98.6	100	310	g
MSIA	08:23:58	71:01:45	3.8	8.1/0.25	4.5/0.14	11	6.1	110°	27°	g
DDO53	08:34:07	66:10:54	3.6	12/4.0/38	21/8.0/67	21	6.1	-/-	-/-	g
NGC 2976	09:47:15	67:55:00	3.6	36.7/1.12	107/3.06	40.5	1.0	3.5	133	g
NGC 3031	09:55:33	69:03:55	3.6	2688/2.82	2626/80.3	111.6	15.3	-8.5	667	g
NGC 3077	10:03:19	68:44:02	3.8	> 385/3.2	393/6.134	17.4	-/-	-16	170	g
IC2574	10:28:27	68:24:59	4.0	349/6/13.20	395/5/14.33	36	17.1	> 100	--	--
NGC 4449	12:28:12	44:05:40	4.2	593/24.7	457/19.0	67	15.6	207	160	g
NGC 6946	20:34:52	60:09:14	5.9	434.9/35.7	713/2/58.6	55.2	23.4	63.7	151	g

confused with M. W.

separated f. M. W.

Kerp et al. 2013, in prep.

jkerp@astro.uni-bonn.de
EBHIS: THINGS ensemble

Table 1: Observational details on the CHVCs. α is the right ascension, δ the declination, v_{LSR} the local-standard-of-rest velocity, spectral channel resolution Δv of Eff/WSRT/comb. data, rms of Eff/WSRT/comb. data, "tot. flux Eff/WSRT/comb. data" the integrated flux of Eff/WSRT/comb. data.

Name	(RA(2000))	Dec(2000)	D	S_{HI}/M_{\odot}	S_{HI}/M_{\odot}	ext	M_3 Mass	v_{esc}	W_{50}	inter
	(h:m:s)	(°:′:″)	[Mpc]	[Jy km s$^{-1}$/10$^{10} M_{\odot}$]	[Jy km s$^{-1}$/10$^{10} M_{\odot}$]	[arcmin]	[10$^{10} M_{\odot}$]	[km s$^{-1}$]	[km s$^{-1}$]	group
EBHIS 713.2/58.6	713.2/58.6	55.2	23.4	63.7	151	g				
EBHIS 267/7.28	267/7.28	42.6	22.7	--	--	> 135°				
EBHIS 114/27.67	114/27.67	38.6	3.3	--	--	100	310	g		
EBHIS 45/0.14	45/0.14	11	6.1	110'	27°	g				
EBHIS 218/0.67	218/0.67	21	6.1	--	--	--				
EBHIS 107/3.06	107/3.06	40.5	1.0	3.5	133	g				
EBHIS 263/80.3	263/80.3	111.6	15.3	8.5	667	g				
EBHIS 393/6/13.4	393/6/13.4	17.4	--	--	170	g				
EBHIS 395.5/14.93	395.5/14.93	36	17.1	> 100	--	g				
EBHIS 457/19.0	457/19.0	67.2	15.6	207	160	g				
EBHIS 713.2/58.6	713.2/58.6	55.2	23.4	63.7	151	g				
EBHIS 457/19.0	457/19.0	67.2	15.6	207	160	g				

Kerp et al. 2013, in prep.

jkerp@astro.uni-bonn.de
EBHIS vs. THINGS: flux comparison I

THINGS/EBHIS Spectra [Jy km/s]

jkerp@astro.uni-bonn.de
THINGS: NGC 3031 (M81)

Walter et al. 2008, AJ 136, 2563

jkerp@astro.uni-bonn.de
ETHINGS: NGC 3031 (M81)

Kerp et al. 2013, in prep.

jkerp@astro.uni-bonn.de
ETHINGS: NGC 3031 (M81)

Background: EBHIS
Inset: THINGS
ETHINGS: NGC 3031 (M81)

Background: EBHIS
Inset: THINGS

Poster: Shahram Faridani
EBHIS vs. HyperLeda: flux comparison II
EBHIS: Milky Way science prospects
The northern polar cap (LAB)

l=90° b=30° l=270°
The northern polar cap (EBHIS)
The northern polar cap (EBHIS)

jkerp@astro.uni-bonn.de
The northern polar cap (EBHIS)

jkerp@astro.uni-bonn.de
EBHIS-Planck correlation

-80.4137 km/s

jkerp@astro.uni-bonn.de
EBHIS-Planck correlation (H_2 formation)
EBHIS-Planck correlation (H$_2$ formation)

\[I_\nu = a + b \cdot N_H = a + b \cdot (N_{H_1} + 2N_{H_2}) \]

Ph. D. Tobias Röhser

jkerp@astro.uni-bonn.de
EBHIS-Planck correlation (H_2 formation)

Ph. D. Tobias Röhser

Poster: Tobias Röhser
The northern polar cap (EBHIS)
IVC 135+53 (velocity bridge)

Lenz et al., in prep.

jkerp@astro.uni-bonn.de
IVC 135+53 (HVC deceleration)

Lenz et al., in prep.
IVC 135+53 (dust-to-gas ratio)

-0.43±0.12 dex (Feige 48) Hernandez et al. 2013, submitted

Lenz et al., in prep.
IVC 135+53 (EBHIS-Planck \rightarrow H$_2$ map)

$\alpha = 0.28 \pm 0.03$

$\beta = 0.24 \pm 0.03$

Lenz et al., in prep.

jkerp@astro.uni-bonn.de
IVC 135+53 (EBHIS-Planck → H₂ map)

Lenz et al., in prep.

jkerp@astro.uni-bonn.de
H$_2$ rain? (HVC triggered IVC H$_2$ formation?)

1. Towards the northern polar cap we observe about 1·106 M$_{\odot}$ @ 500 pc altitude
2. Say 10% of the mass H$_2$
3. Northern polar cap 1sr
4. Yielding 1·106 M$_{\odot}$ of H$_2$ full sky
5. Free fall time t ~ 106

1 M$_{\odot}$/year (low metallicity)

Extent 5 pc distance about 500 pc
→ 35’ @ 500 pc
→ 21” @ 50 kpc (LMC/SMC)
→ 0.3” @ 3.5 Mpc (Ursa Major)

“Dark Gas” Wolfire, Hollenbach & McKee 2010, ApJ 716, 1191

jkerp@astro.uni-bonn.de
EBHIS products

Ph. D. Lars Flöer

jkerp@astro.uni-bonn.de
The future: second coverage > 30°
Thank you!

DFG
KE757/7-1 to 7-3

jkerp@astro.uni-bonn.de