АНАЛИЗ ИСПОЛЬЗОВАНИЯ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ В ЧЕРНОЙ МЕТАЛЛУРГИИ РОССИИ И МИРА

Волков А.И.1, к.х.н., зам. директора научного центра НЦМТ (rhenium@list.ru)
Стулов П.Е.1, младший научный сотрудник (pavel1411@rambler.ru)
Леонтьев Л.И.1,2,3,4, академик РАН, советник, д.т.н., профессор, главный научный сотрудник
Углов В.А.1, к.т.н., заместитель генерального директора

1 Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина (Россия, 105005, Москва, ул. Радио, 23/9, стр. 2)
2 Институт металлургии УрО РАН (620016, Россия, Екатеринбург, ул. Амундсена, 101)
3 Национальный исследовательский технологический университет «МИСиС» (119049, Россия, Москва, Ленинский проспект, 4)
4 Президиум РАН (119991, Россия, Москва, Ленинский проспект, 32а)

Аннотация. Проведен анализ современного состояния производства редкоземельных металлов (РЗМ) в России и в мире. Приведены сведения о выпуске РЗМ в разных странах мира и о новых зарубежных проектах по добыче и переработке РЗМ. Представлен баланс производства, экспорта и импорта сырья и продукции с РЗМ, в том числе по скандию и иттрию, в России. Рассчитаны объемы потребления РЗМ в России с учетом импортируемой продукции с РЗМ. Эти данные сравниваются с аналогичными данными других стран, в том числе с бывшим СССР. Больше всего внимания уделено применению РЗМ в металлургии. Приведены данные о влиянии РЗМ на свойства чугуна и стали. Данные о применяемых формах РЗМ для их использования в черной металлургии России. Показана структура потребления РЗМ по отраслям черной и цветной металлургии. На примере двух предприятий (одно из них специализируется на массовом производстве, а второе – на специальных стählen) изучена структура потребления РЗМ для легирования стали по типам и сферам ее применения. Рассмотрены особенности развития потребления РЗМ в черной металлургии России, рассчитаны объемы потребления, приведены данные об импорте сырьевых материалов с РЗМ для металлургии, даны сведения о производителях ферросплавов с РЗМ в России. Проанализирован спектр продукции черной металлургии с РЗМ. Проведено сравнение потребления РЗМ в металлургии России и зарубежных стран. Рассмотрены причины недостаточного потребления РЗМ в черной металлургии России, дана оценка по изменению объемов производства отдельных типов стали и чугуна, выработаны рекомендации по росту потребления РЗМ в металлургии.

Ключевые слова: редкоземельные металлы, РЗМ, ферросплавы, лигатуры, модификаторы, чугун, сталь, анализ рынка, баланс производства и потребления, черная металлургия.

DOI: 10.17073/0368-0797-2020-6-405-418
Производство и потребление РЗМ в России

В России добычу руд с РЗМ осуществляют в Мурманской области. Едва ли не единственным значимым источником РЗМ до сих пор является Ловозерское месторождение (1,12 % РЗМ в руде). На одноимённом ГОКе производят лопаритовый концентрат, перерабатываемый по хлорной технологии на Соликамском магниевом заводе (СМЗ) с получением коллективного концентратов карбонатов РЗМ. При производственной мощности 3600 т в год РЗМ в пересчете на оксиды в 2018 г. объем производства составил 2595,7 т РЗМ, из них 2549,8 т отправлено на экспорт [4]. Остальное количество коллективного концентратов СМЗ было переработано подмосковной компанией ООО «Лаборатория инновационных технологий» (ГК «Скайгрида») на автоматизированном каскаде центробежных экстракторов собственной конструкции [15, 16]. Опытно-промышленное производство мощностью 140 т в год было запущено в 2018 г. в Королеве. Компания производит оксиды и карбонат церия, оксиды неодима, раствор лантана, карбонат среднетяжелых РЗМ, металлические неодим и самарий. Компания планирует реализовать проект по выделению РЗМ из фосфогипса (до 50 тыс. т на начальном этапе и далее до 300 тыс. т в год по сырьё), а также создать раздельительное производство в г. Пересвет с объемом переработки до 2000 т сырья в год с получением, например, оксидов легких РЗМ, оксидов иттрия, оксидов среднетяжелых РЗМ — самария, гадолиния, европы и диспрозия. Небольшое количество (до 70 т) коллективного концентратов СМЗ периодически перерабатывается на Чепецком механическом заводе с получением концентратов оксидов РЗМ.
и полирующих порошков. Там же на опытно-промышленной установке отрабатывается азотониписная технология переработки локарнового концентратра.

Месторождения апатит-нефелиновых руд (0,24 – 0,42 % РЗМ) разрабатываются с получением апатитовых концентратов и десе – фосфорных удобрений. Редкоземельные металлы при этом почти не извлекаются. Они в значительной степени остаются в фосфогипсе – крупнотоннажным отходе производства, а также частично концентрируются в получаемой фосфорной кислоте и удобрениях. Таким образом, ежегодно с не перерабатываемым сырьем в России теряется количество РЗМ, сопоставимое с половиной мировой добычи (122 тыс. т). Лишь в 2016 г. ПАО «Акрон» запустило производство мощностью до 200 т в год по разделению РЗМ из апатитового концентратна месторождения «Оленьи ручей» [17]. Среди выпускаемой продукции – оксиды лантана, церия, дидима (так называются смесь неодима и празеодима) и неодима, карбонаты лантана, церия и дидима, концентраты карбонатов РЗМ, легких РЗМ, среднетяжелых РЗМ, азотониписный раствор РЗМ. Созданная в ОАО «Фосагро-Череповец» установка по извлечению из экстракционной фосфорной кислоты и групповому разделению РЗМ мощностью 12 т в год в настоящее время законсервирована [2]. В 2016 г. ОАО «Уралхим» запустило пилотную установку по извлечению РЗМ из фосфогипса.

До недавних пор основным производителем соединений и лигатур со скандием был Гидрометаллургический завод (ООО «Интермикс Мет», г. Лермонтов). Он в 2013 г. организовал опытную установку для получения скандиевого концентратна на предприятии АО «Далур» (Уральский холдинг «Атомметаллохим»). Для этого был реализован проект попутного извлечения скандия из продуктовых растворов уранодобывающе- го предприятия [18]. Тот же Гидрометаллургический завод на ПАО «ВСМПО-АВИСМА» в 2015 г. создала производственную установку извлечения скандия из отходов производства тетрахлорида титана. На самом ООО «Интермикс Мет» из полученных концентратов производили Sc₂O₃, ScF₃, ScCl₃, Al – Sc-лигатур и металлический скандий. В конце 2017 г. завод был остановлен, через год снова запущен. В настоящее время завод сменил собственников, проходит реорганизацию, перспективы производства скандия на нем не определены. Проект на АО «Далур» развивается отдельно. С 2017 г. на опытно-промышленной установке начато производство оксида скандия. В 2016 г. на Уральском алюминиевом заводе запущен опытный участок и получена опытная партия 99 % Sc₂O₃ из красных шламов. Из-за проблем с реализацией продукции в 2018 г. проект был заморожен. Планы реализации проекта китайской компании Shengwu Technology Group Corp. переработки красных шламов с извлечением Sc₂O₃ на Богословском алюминиевом заводе, а также проекта переработки отходов производства диоксида титана «Крымского тита-на» с получением скандия [19] не были реализованы. Объем импортных поставок Sc₂O₃ и Y₂O₃ составляет около 15 т.

При запасах РЗМ около 20 % мировых Россия добывает и перерабатывает всего около 1 % [20]. Зарубежные источники оценивают долю запасов России ниже: 10 % [5] и 13,6 % [21]. На рис. 1 представлен баланс производства и потребления РЗМ в России в 2018 г., при его составлении обобщены вышеперечисленные данные. Основная часть производимых в России РЗМ представлена коллективным концентратом карбонатов РЗМ. Всего 5,6 % производимых РЗМ разделяют с получением соединений индивидуальных «легких» РЗМ, при этом соединения «тяжелых» РЗМ не произво- дят, т. е. недавно созданные мощности по разделению РЗМ (около 350 т в год) загружены лишь наполовину. До 95 % производимых в России РЗМ отправляют за рубеж, где проводят разделение. В результате импорта Россия ежегодно получает около 1000 т оксидов РЗМ (разделенных и частично разделенных) и около 100 т РЗМ в год в виде металлов и сплавов. Можно констатировать, что в России слабо развито производство продукции с РЗМ глубокой степени переработки, экспортируется полуфабрикат, а импортируется переработанная продукция, в том числе разделенные РЗМ. По расчетам авторов, ежегодно для получения компонентов электронники, каталитизаторов нефтепереработки, постоянных магнитов, стекла, оптических компонентов, полировальных порошков, окнеупорной керамики, лигатур и модификаторов Россия потребляет 1230 т РЗМ в год. В составе аналогичной импортной продукции ежегодно поставляется еще около 2000 т РЗМ.

Сравним эти цифры с мировыми лидерами отрасли РЗМ. В 1990 г. СССР производил 8500 т РЗМ в продукции при экспорте 14 % [22], из них 20 – 25 % индивидуальных РЗМ, а потребление внутренние страны не превышало 6000 т [23]. В 1990 г. США добывали 22 713 т, импортировали 4990 т смеси РЗМ, 151 т окси- дов РЗМ, 1363 т металлических РЗМ, 199 т Сc и Y, 93 т феррощерция, экспортировали 1730 т соединений церия, 241 т Сc и Y, 18 т феррощерция, видимое потребление 30 000 т [24], а всего в мире тогда произвели 53 000 т РЗМ [25]. В 2008 г. США потребляли 20 663 т РЗМ, Япония 34 330 т, страны ЕС 23 013 т [26]. В 2009 г. потребление РЗМ в Китае составило 70 тыс. т [27]. В США в 2019 г. потребили 13 000 т РЗМ [5], 600 т окси иттрия [13]. Япония потребила 20 175 т РЗМ в 2016 г., а Китай – около 60 % всего мирового производ-ства [28]. Как видно, снижение потребления РЗМ характерно не только для России. Это свидетельствует о том, что Китай развивает не только добычу и производство РЗМ, но и производство товаров потребления с РЗМ. Например, доля китайских заводов, в том числе зарубежных, в производстве неодимовых магнитов достигает 80 % [7].
Таким образом, проблема РЗМ заключается не в отсутствии сырья или технологий его переработки, а в организации сбыта отечественной продукции с РЗМ на отечественном рынке (импортозамещение), в недостаточном объеме мощностей по разделению РЗМ, низком уровне потребления РЗМ, отсутствии или слабом развитии производств, выпускающих потребительскую продукцию с РЗМ.

Без решения этих вопросов, учитывая монополизацию мирового рынка китайской продукцией, не имеет смысла наращивание мощностей по добыче РЗМ из руд (Томторское [29], Зашихинское, Катугинское, Ловозерское месторождения и др.). Все эти проекты в настоящее время актуальны только с точки зрения обеспечения ниобием отечественной черной металлургии [14]. В нынешнем состоянии производства в России максимальное потребление РЗМ внутри страны может достигать 3200 т в год при условии импортозамещения соответствующих товаров с РЗМ. В то же время, это все равно в несколько раз меньше потребления РЗМ, которое было в нашей стране 30 лет назад.

ПРИМЕНЕНИЕ РЗМ В МЕТАЛЛУРГИИ

Одной из значимых сфер применения РЗМ является металлургия. По данным [30] металлургия в общемировом потреблении РЗМ в 2016 г. занимала 19 % и находилась на втором месте после постоянных магнитов (22,5 %). Другие источники в разные годы оценивают долю металлургии в мировом потреблении РЗМ от 7 – 10 [6, 9, 21, 31] до 16 – 20 % [25, 32 – 34]. Возможно, что такое различие связано с учетом производства аккумуляторов и накопителей водорода в разделе со сплавами РЗМ. В США доля металлургии в конечном потреблении РЗМ меняется: в 2016 г. – 15 % [13], в 2019 г. – 5 % [5]. В Европейском Союзе в 2010 г. металлургия потребила 12 % РЗМ [6, 35]. По расчетам авторов, в России металлургия потребляет всего 120 т РЗМ, т. е. 10 % общего объема. Распределение РЗМ по направлениям металлургии России в 2018 – 2019 гг. показано на рис. 2. Подавляющее количество РЗМ (86 %) находит применение в черной металлургии. Добавки РЗМ используют в производстве чугуна для повышения его качества (модификации структуры, очистки от вредных примесей). Добавки 0,02 % церия позволяют получать высокопрочный чугун, близкий по своим свойствам к мягкому низкоуглеродистой стали. Сталь 0,1 % Y имеет повышенную в четыре раза износостойкость по сравнению с серым чугуном. Доля чугуна в потреблении РЗМ в металлургии составляет около 50 %. Еще 36 % идет на производство стали в качестве добавки для ее раскисления, легирования и десульфурации.

Остальное количество РЗМ потребляется в производстве цветных металлов. Для получения магниевых сплавов используют неодим и иттрий. Такие сплавы...
обладают высокой жаропрочностью, имеют усиленное сопротивление ползучести, более высокую коррозионную стойкость, хорошие технологические и литейные свойства по сравнению с обычными. Их применяют в авиации и космонавтике. Сплавы алюминия с 0,2 % скандия обладают хорошей свариваемостью, высокими механическими характеристиками. Поэтому их применяют в узлах конструкций космического и авиационного назначения. Небольшое количество РЗМ применяют в производстве жаропрочных сплавов на никелевой основе, выдерживающих воздействие агрессивных сред и высокой температуры. Кроме этого, РЗМ применяют для легирования титановых сплавов, алюминиевых сплавов электротехнической отрасли, сплавов на основе железа, стали для трубной заготовки, на втором месте – рельсы.

Похожая иерархия потребления в металлургии Европы и мира описана в работе [9]: чугун, высоко прочная низколегированная сталь (для автомобильной промышленности), нержавеющая высоколегированная сталь, специальные никелевые сплавы, сплавы алюминия. Структура потребления по элементам в металлургии в мире выглядит следующим образом: 52 % Ce; 26 % La; 17 % Nd; 4 % Pr [25], в России – церий и лантан составляют около 90 %.

Применение РЗМ для производства чугуна и стали

Редкоземельные металлы при высокой плотности (6,76 г/см³ для церия) и температуре кипения (3200 °C) для чугуна) имеют относительно низкую температуру плавления (804 °C для церия), а также неограниченную растворимость в расплаве железа и сравнительно низкое давление паров. Это позволяет им длительное время сохраняться в расплаве. При введении в чугун и сталь РЗМ взаимодействуют с растворенными в них газообразующими элементами (H, N, C, O, S), As, P и цветными металлами (Pb, Sb, Bi, Sn). Редкоземельные металлы оказывают влияние на поверхностное натяжение жидкого металла, способствуя уменьшению адсорбции вредных примесей при кристаллизации стали, повышая чистоту границ зерен и пластичность металла. Однако низкая растворимость РЗМ в твердом железе при большой концентрации может привести к их выделению по границам зерен в виде эвтектики с температурой плавления ниже температуры прокатки. Редкоземельные металлы обладают модифицирующим действием, способствуя измельчению кристаллов металла, влияют на структуру, морфологию и распределение включений и примесей в стали. В работе [36] подробно рассмотрено влияние РЗМ на свойства различных типов стали.

Чаще всего РЗМ применяют в литейном производстве машиностроительных, механоремонтных, трубопрокатных, металличургических и цехах автомобильного и железнодорожного транспорта для обработки чугуна и стали. Модифицирование чугуна РЗМ (3 – 5 кг/т) позволяет получить в его структуре шаровидную форму графита, улучшая его служебные свойства. Модифицирование церием способствует повышению прочности, твердости и износостойкости за счет измельчения карбидов. Добавление лантана, содержащих Y, La, Ce в количестве 0,3 – 0,5 %, приводит к перерождению структуры чугуна с преобладанием изолированных мелких карбидных включений. Повышается износостойкость, улучшается обрабатываемость режущим инструментом.

Для стали оптимальное содержание РЗМ составляет 0,02 – 0,05 %, а количество присаживаемых РЗМ – от 0,5 до 3,0 кг/т. В результате микролегирования достигается улучшение технологических и служебных свойств стали (горячая пластичность, свариваемость, жаропрочность, адгезия к шлаку, форма неметаллических включений, структурная неоднородность, механические свойства). Для анализа структуры потребления по видам стали использовали данные, полученные ЦНИИ Чермет им. И.П. Бардина от двух российских предприятий черной металлургии за 2017 – 2019 гг. Первое предприятие (рис. 3) специализируется на массовом производстве стали. Объем производства стали на нем превышает 10 млн т в год, из них только 31 тыс. т до баковой РЗМ. Наиболее массовой сталей с РЗМ является сталь для трубной заготовки, на втором месте – рельсовая сталь.

Второе предприятие (рис. 4) специализируется на производстве штампованной продукции. Объем производства стали на нем составляет 0,2 млн т

![Рис. 2. Структура потребления РЗМ в металлургии России, % (по массе): 1 – чугун (50,0); 2 – сталь (36,0); 3 – сплавы магния (4,7); 4 – сплавы Al–Sc (2,7); 5 – сплавы никеля (0,6); 6 – сплавы для магнитов (2,8); 7 – прочие сплавы (3,3)](image)
в год, из них только в 2 тыс. т стали добавляют РЗМ. Таким образом, доля стали, производимая с добавкой РЗМ, не превышает 1 % общего производства. Среди специальных сталей по потреблению для них РЗМ выделяются высокопрочные конструкционные (0,005 – 0,050 % Ce, 0,015 – 0,030 % Y, 0,05 % La), коррозионностойкие, нержавеющие (0,01 – 0,08 % Сe, 0,05 % Y), стали для изготовления коррозионностойкой трубной заготовки (0,03 % Сe), а также жаропрочные стали (0,01 – 0,20 % Сe).

Отдельно следует остановиться на скандине. Введение микродобавок скандиния снижает содержание N, C, O, P, S в сталях 01Х18Т и 05Х18Н10Т, положительно влияет на структуру и свойства. Скандий, являясь поверхностино-активным элементом по отношению к Fe–Cr–Ni расплавам, оказывает на них комплексное воздействие – рафинирующее, модифицирующее и легирующее [37]. Добавки скандиния способствуют замедлению роста зерна в сталях при нагреве, повышают их высокотемпературную пластичность и коррозионную стойкость, а также стойкость сталей ферритного класса против «475-градусной» хрупкости. В настоящее время в России промышленные сплавы на основе железа с добавками скандиния не производятся. Применение в качестве легирующей добавки скандиний металллического или запрессованной смеси чистых металлов затруднено из-за его высокой стоимости. В связи с этим в ЦНИИЧермет им. И.П. Бардина прорабатывается вопрос получения скандинийсодержащих легирующих термостойких сталей для производства трубной заготовки на основе железа и никеля с достаточно низкой температурой плавления и растворения в жидкой стали.

Используемые в черной металлургии формы РЗМ

До сих пор распространенной формой добавок РЗМ в чугун и сталь остаются сплавы, полученные путем электролиза (мишметалл, ферроцерий, ферроцерий с магнием ФЦМ-5). Мишметалл представляет собой сплав легких РЗМ в их природном соотношении, иногда для его производства применяют смесь оксидов лантана и церия после отделения от них неодима и более тяжелых РЗМ. Такие сплавы, как правило, дороже ферросплавов, характеризуются низким и нестабильным усвоением РЗМ, пирофорные, требуют герметичной тары при хранении, специальных приемов при измельчении, а также специальных методов и устройств для ввода в жидкий металл. Их применение оправдано в силу исторически сложившихся обстоятельств (это первые и наиболее доступные сплавы с РЗМ), а также для ряда специальных сталей и сплавов, где строго регламентировано количество примесей, в том числе железа, например, для жаропрочных сплавов на никелевой основе.

Чистые РЗМ в виде металлов (иттрий, лантан, церий, неодим) применяют в производстве специальных сталей и цветных металлов. В них регламентировано...
содержание отдельных РЗМ. Различия в действии индивидуальных РЗМ на свойства чугуна и стали – до конца не изученный вопрос. Редкоземельные металлы отличаются по физическим свойствам – плотности, температуре плавления и кипения (скандий, итрий, РЗМ церевской и итриевой группы), атомным радиусом. Металлический итрий и итриевье литографы применяют в производстве чугуна и стали для изготовления деталей, работающих в условиях больших напряжений, низких температурах и абразивного износа. Показано более эффективное действие итрия по сравнению с церием для получения чугуна с шаровидным графитом. Итрий и скандий могут применяться в сплавах на основе железа для ядерных реакторов. В них итрий связывает бор и сосредоточен в объеме зерен, в результате чего образующийся из бора гелий не ослабляет границ зерен, предотвращая охрупчивание. Иттрий используем в сплавах нагревательных элементов, в суперпроводниках, для производства износостойких и коррозионностойких режущих инструментов.

Ферросплавы на кремниевой основе типа ФС30РЗМ30 выпускают Ключевский завод ферросплавов (около 130 т в год в пересчете на РЗМ в 1970-е годы). Сегодня их производство и потребление в России значительно сократилось (не более 10 % всех форм РЗМ в металлургии). Кроме Ключевского завода ферросплавов, такие сплавы в России выплавляют ФГУП «ЦНИИЧермет» им. И.П. Бардина, ООО «Специферросплав», ОАО «НИИМ». Раньше применение сплавов с РЗМ ограничивалось несовершенством и сложностью метода их введения в расплав, что приводило к нестабильности свойств металлопродукции. Сегодня метод модифицирования сплава при разливке в ковш получил широкое распространение в практике металлургических предприятий благодаря развитию устройств для ввода модификаторов мелких фракций, при этом значительно снизился их расход.

При внепечной обработке стали раскисление, рафинирование, модифицирование совмещаются с микролегированием и осуществляются в разливочном ковше. Добавляют РЗМ при разливке в ковш в виде различных модификаторов: гранул, проволоки, порошка. Для введения в расплав РЗМ применяют следующие методы: прямое введение в расплав, что приводило к нестабильности свойств металлопродукции; гранулирование с последующим вводом в расплав, что сократило расход металла.

В работе [38] для изменения структуры низкоуглеродистой стали описано применение прозрацемита. По данным ЦНИИЧермет им. И.П. Бардина, присадка литографа на кремниевой основе с содержанием 5 – 15 % Ca, 10 – 30 % РЗМ, V, Mo, B, Nb, N, кроме литейной стали, способствует измельчению зерен, повышает прочностные и пластические свойства стали, значения ударной вязкости, хладостойкость. В работе [39] приведены данные о свойствах индивидуальных РЗМ при их добавлении в различные сплавы.

Металлургические технологии
АО «Росредмет», ООО «Комплексные модификаторы». Базовая марка БКЛ (АКЦе) имеет в составе 20 % РЗМ, 57 % никеля, 20 % алюминия и 3 % кальция. Помимо базовой марки БКЛ, выпускаются лигатуры, модифицированные ванадием (АКЦеВ), титаном (АКЦеТ), ниобием (АКЦеНи), титаном и ниобием (АКЦеТБ). Предлагаемые БКЛ на железной основе – АКЦеЖ и КЦеЖ. Беспокоящие комплексные лигатуры, одновременно с глубоким раскислением, рафинированием и модифицированием структуры, обеспечивают микроотделение, что приводит к повышению в 2 – 3 раза механических и эксплуатационных характеристик, особенно пластичности, ударной вязкости, хладостойкости, усталостной прочности [44]. В некоторых случаях ограничения по содержанию алюминия настолько жесткие, что применение таких БКЛ неприемлемо. По этой же причине иногда ограничивают применение ферросплавов типа ФС30РЗМ30, кальция металлического, полученных с использованием алюминия в качестве восстановителя.

Как правило, производители БКЛ указывают на ограниченность применения и худшие характеристики ферросплавов типа ФС30РЗМ30 и комплексных модификаторов с кремнием из-за высокого содержания в них кремния [42, 44]. Однако сегодня наиболее распространены комплексные модификаторы с РЗМ на основе ферросилиция с щелочноземельными металлами, а также на основе силикокальция или кремния с РЗМ (силикаты РЗМ). Комплексные модификаторы типа Fe–Si–Mg–РЗМ можно получать либо в индукционных печах путем сплавления магния с ферросилицием и другими компонентами, либо непосредственно в ферросплавных цехах путем растворения вращающихся чушек магния в жидком первичном ферросилиции. В России их получают в индукционных печах. Недостаток технологии получения модификаторов сплавлением магния с ферросилициями является повторное плавление кремния и ферросилиция. Для получения высокопрочных чугунов с шаровидным и, особенно, ветвистым графитом важную роль в составе модификатора играют РЗМ. Для обработки чугуна в разливочном ковше применяют модификаторы серии Сферомаг и Сферомакс следующего химического состава: 4,7 – 7,5 % Mg; 0,3 – 5,0 % Ca; 0,5 – 3,2 % РЗМ; 1,8 – 3,0 % Ba; 45 – 55 % Si; <1,5 % Al; остальное – Fe. Применение аналогичных модификаторов на основе сплавов с барием и стронцием ограничено в России, в то время как в США такие сплавы производят в больших масштабах угледиоксидным методом в рудовосстановительных печах [47]. Для обработки стали применяют модификаторы серии Insteel, содержащие 7 – 12 % РЗМ, представляющие собой сплавы, например, SiCaBaРЗМ, SiCaBaРЗМА1 [45]. Они позволяют повысить коррозионную стойкость стали для трубной заготовки, эффективно очищая расплав от неметаллических включений, снизить количество растворенных газов, улучшить технологические свойства изделий, снизить температуру разливки за счет повышения ее жидкотекучести, что позволяет ослабить развитие горячих термических трещин [45, 48, 49]. Лигатуры и модификаторы в России производят ООО «НПП Технология», ОАО «НИИМ», ООО «Комплексные модификаторы». С производством латуней и РЗМ для черной металлургии также связаны (были связаны) ООО «НКМ Норд», ООО «НПО БКЛ», АО «Сибирский химический комбинат».

По данным [9] в мире в металлургии в основном применяют РЗМ в виде мишметалла и силицидов РЗМ типа ФС30РЗМ30. Однако в литейном производстве Европы и Северной Америки все больше потребляются ферросилиции с магнием (FeSiMg), содержащих меньше количество РЗМ. Редкоземельные металлы стараются заменять щелочноземельными металлами. Указанные следующие формы РЗМ, используемые в металлургии: чугун и сталь (миксметалл, силициды РЗМ, церия), высокопрочная низколегированная сталь (миксметалл и церий), нержавеющая высоколегированныя сталь (Ce, Y), специальные микроотделенные стали и суперсплавы (La, Gd, Y, Ce, Nd, Pr), магниевые сплавы (Y, Nd, Gd, Pr), сплавы алюминия (Y, Ce, La).

АНАЛИЗ СОВРЕМЕННОГО СОСТОЯНИЯ ПОТРЕБЛЕНИЯ РЗМ В ЧЕРНОЙ МЕТАЛЛУРГИИ

Структура потребления РЗМ по формам, по оценкам авторов, выглядит следующим образом: 80 – 90 % в виде комплексных модификаторов; 10 – 20 % в виде мишметалла, чистых РЗМ, ферросплавов типа ФС30РЗМ30. Практически все исходные материалы с РЗМ для металлургии ввозят из-за рубежа (табл. 1). Основную часть мишметалла, ферросплава с РЗМ, лантана и церия (около 90 т) потребляют для получения комплексных модификаторов, остальное используют напрямую для легирования чугуна, стали и сплавов цветных металлов.

Поскольку в основном находят применение комплексные модификаторы на кремниевой основе, то вопрос замены мишметалла для их изготовления на сплавы типа ФС30РЗМ30 не принципиален с точки зрения металлургии. Проблема заключается в стоимости материала с РЗМ, часто ферросплавы с РЗМ отечественного производства стоят также, а то и дороже импортного мишметалла. Аналогично и стоимость отечественных концентратов и оксидов РЗМ оказывается не ниже стоимости импортных сплавов и металлов с РЗМ. Из-за дешевизны и более широкой доступности, отечественная металлургия ориентирована на импортный мишметалл, чистые РЗМ и приготовленные из них модификаторы. Отечественный рынок РЗМ небольшой, характеризуется множеством пользователей с небольшими объемами потребления разнообразной продукции, производителей мало, они не мотивированы к конкуренции и снижению стоимости своей продукции. Поэтому вопрос расширения отечественного рынка сырьевых
В материалах с РЗМ для металлургии остается нерешенной актуальной задачей. Очевидно, что и организация многотоннажного производства лигатур с РЗМ электропечным способом должна привести к снижению их стоимости по сравнению с получением модификаторов из мишметалла и чистых РЗМ.

Потребление РЗМ в металлургии России существенно возросло за последние годы. В 1991 г. оно составляло 790 т, в 1998 г. – 13 т [23]. В 2011 г. импортировано всего 15 т РЗМ (10 т ферроцерия и 5 т лантана), вместе с тем часть металлов вырабатывалась на территории России из импортных фторидов РЗМ (20 т) [50]. По данным Минпромторга России, за 2018 г. потребление РЗМ в металлургии составляло 110 т [51]. По расчетам авторов, в 2019 г. объем потребления РЗМ в металлургии составлял уже около 120 т, из них чуть более 100 т – в черной металлургии. Несмотря на значительный рост потребления РЗМ в металлургии России, объем внутреннего рынка остается небольшим, он не достиг показателей 1991 г. В России существенно возрос и общий объем потребления РЗМ, т в год: 1991 г. – 3000; 1998 г. – 480 [23]; 2000 г. – 300 [50]; 2005 г. – 400 [27]; 2010 г. – 600 [50]; 2018 г. – 1200 [51]; 2019 г. – 1230. Однако это существенно меньше заявленных 2 – 3 тыс. т даже по «инерционному сценарию» развития промышленности РЗМ в соответствии с государственной программой «Развитие промышленности и повышение ее конкурентоспособности на период до 2020 года» [8]. Авторы той же работы [8] прогнозировали потребление РЗМ в госкорпорации «Ростехнологии» на уровне 4 тыс. т в 2020 г., а на втором месте по потреблению должны были стать предприятия оборонно-промышленного комплекса. Наступил 2020 г. госкорпорация «Ростехнологии» больше не участвует в Томторском проекте [52], а потребление РЗМ предприятиями ОПК, связанное в первую очередь с металлургией, незначительное.

Потребление РЗМ в мировой металлургии также растет. В 2008 г. для металлургии использовали 11 503 т РЗМ в пересчете на оксиды в виде ферросплавов, лигатуру, мишметалла и чистых металлов в составе 2990 т La₂O₃, 5980 т CeO₂, 1900 т Nd₂O₃, 633 т Pr₆O₁₁ [53]. По данным [30] в 2016 г. потребление РЗМ в металлургии составило 30 тыс. т в пересчете на оксиды, из них: Китай – 23 тыс. т, Япония и страны Юго-Восточной Азии – 3 тыс. т, США – 2 тыс. т, остальные страны – 2 тыс. т. В странах Европейского Союза в 2010 г. в металлургии использовано 1000 т РЗМ [6]. В США в металлургии в 2019 г. потреблялось около 650 т, а судя по экспорту, производится еще больше чистых РЗМ и их сплавов (импорт сплавов РЗМ в 2019 г. составил 310 т, а чистых металлов РЗМ – 590 т, объем экспорта составил 1400 и 100 т соответственно) [5]. Для сравнения потребления РЗМ в металлургии разных стран авторы учитывали объем производства стали и объем потребления РЗМ во всей металлургии (табл. 2). Такое сравнение довольно условное и не учитывает распределение РЗМ для производства разных сплавов, в том числе для аккумуляторов. Однако, на взгляд авторов, оно характеризует уровень производства таких

Таблица 1

Материал	Масса, т	Область применения
Мишметалл, ферроцерий, Ce – металл	80 – 85	Сталь, чугун, производство модификаторов
Ферросплавы типа ФС30PЗМ30	До 10	Сталь, чугун, производство модификаторов
Y – металл	0,2	Сталь, магниевые сплавы
La – металл	15,0	Сталь, производство модификаторов
Nd – металл	5	Магниевые сплавы
Ni – Ce – лигатура		Сталь, никелевые сплавы
Окислы РЗМ		Производство лигатур и модификаторов

Таблица 2

Страна	Расход РЗМ на 1 т стали, г	Год
Мир в целом	18,43	2016
Китай	9,43	2008
США	25,45	2016
Япония и страны Юго-Восточной Азии	24,49	2016
Европейский Союз	5,79	2010
Россия	1,71	2019
Россия (РСФСР)	8,78	1991
марок чугуна и стали, к изготовлению которых предъявляют более жесткие требования по сравнению с массовой продукцией. Это продукция с высокой добавленной стоимостью в металлургии. По потреблению РЗМ в металлургии в России наблюдается резкое отставание не только от мировых лидеров (в 14 – 17 раз), но и от общемирового уровня (в 11 раз). Отставание России от мировых лидеров будет еще более фатальным, если учесть, что суровые климатические условия, высокая интенсивность эксплуатации металлических изделий, сравнительно низкий металлофонд, сложность условий добычи и географического положения месторождений полезных ископаемых, длительный срок службы введенного в ход металл должен приводить к еще более высокой потребности в качественной стали.

Удельное потребление РЗМ в металлургии в России снизилось в 5 раз по сравнению с 1991 г. Это объясняется снижением объемов производства и большой долей импорта металлургической продукции с РЗМ. По данным авторов, доля импорта в потреблении коррозионностойких, нержавеющих сталей составляет 77,3 %, инструментальных бысторежущих сталей – почти 100 %, машиностроительных сталей (мартенситно-стареющие, подшипниковые, пружинные, высокопрочные, рельсовые) – до 70 % по отдельным видам. Среди товаров потребления с РЗМ – режущий инструмент, посуда и изделия из нержавеющей стали также во многом импортные. Поэтому при решении вопроса импортозамещения и роста производства специальных сталей и сплавов, а также товаров потребления на их основе следует ожидать роста потребления РЗМ.

В потреблении РЗМ для производства высокопрочного чугуна также имеется резерв роста. Например, Россия по потреблению труб из высокопрочного чугуна отстает от Китая и стран Европы [54]. Единый завод в России по производству таких труб – Липецкий металлургический завод «Свободный союз» потребляет всего 27 тыс. т чугуна. В технологически развитых странах уменьшается доля отливок из стали и серого чугуна, а производство отливок из чугуна с шаровидной формой графита ежегодно растет на 2 – 3 %. Они используются не только для производства труб, но и для деталей металлургического оборудования, станкостроения, в тяжелом, транспортном, сельскохозяйственном машиностроении [55]. По данным работы [56], в России в период с 2006 по 2012 гг. выпуск отливок из высокопрочного чугуна с шаровидной формой графита вырос на 12 % (до 900 тыс. т), а производство литья в целом сократилось в 4,5 раза с советских времен, сократилось число литейных производств с 3500 до 1250 предприятий, ликвидировано 10 НИИ литейного производства.

Выводы

Для решения проблем отрасли РЗМ в России необходим организационно-экономический механизм, позволяющий реализовывать продукцию отечественной редкоземельной отрасли на внутреннем рынке вместо импортной. После этого необходимо будет нарастить мощности по разделению РЗМ. Ввод новых мощностей по добыче РЗМ не имеет смысла без создания новых отраслей промышленности, ориентированных на их потребление, в том числе в металлургии.

Мировая добыча РЗМ составляет 210 тыс. т в пе- речете на оксиды. Развиваются некитайские проекты добычи и переработки РЗМ. Благодаря организации масштабного производства товаров потребления с РЗМ Китай остается мировым лидером в отрасли: в добыче и переработке РЗМ, в производстве товаров потребления с РЗМ. Разные источники оценивают долю металлургии в мировом потреблении РЗМ от 10 до 20 %.

Объем потребления РЗМ в России составляет 1230 т, из них 120 т потребляется металлургией. По направлениям металлургии – 86 % потребления РЗМ приходится на черную металлургию, из них 50 % идет на чугун и 36 % на сталь. Чаще всего РЗМ применяют в производстве высокопрочного чугуна с шаровидной формой графита. Наиболее массовой сталью с РЗМ является сталь для трубной заготовки, на втором месте – рельсовая сталь. Доля стали с РЗМ не превышает 1 % суммарного объема ее производства.

В черной металлургии РЗМ используют в виде их сплавов (миметалл, ферроцерий), чистых металлов (латан, цериев, иттрий), силицидов в составе ферросплавов на основе ферросилиция, комплексных модификаторов на основе кремния и без него.

Практически все исходные материалы с РЗМ для металлургии России импортируются (миметалл, ферросплавы и чистые металлы). Вопрос импортозамещения на отечественном рынке сырьевых материалов с РЗМ для металлургии остается нерешенной актуальной задачей. Организация многотоннажного производства литограф с РЗМ электропечным способом должна привести к снижению их стоимости по сравнению с получением модификаторов из миметалла и чистых РЗМ. Проблема заключается в высокой стоимости продукции с РЗМ отечественных предприятий.

Несмотря на существенный рост потребления РЗМ в металлургии, объем внутреннего рынка остается небольшим. По потреблению РЗМ в металлургии в России наблюдается резкое отставание не только от мировых лидеров, но и от общемирового уровня. При решении вопроса импортозамещения и роста потребления высокопрочного чугуна, специальных сталей и сплавов, а также товаров потребления на их основе следует ожидать роста потребления РЗМ. По масштабам применения РЗМ отечественная металлургия не соответствует современным требованиям. При выводе отечественной металлургии на мировой уровень развития потребность в РЗМ может возрасти в 5 – 10 раз.
ANALYSIS OF THE USE OF RARE EARTH METALS IN FERROUS METALLURGY OF RUSSIA AND WORLD

A.I. Volkov¹, P.E. Stulov², L.I. Leont'ev¹, 2, 3, 4, V.A. Uglov¹

¹I.P. Bardin Central Research Institute for Ferrous Metallurgy, Moscow, Russia
²Institute of Metallurgy of the UB RAS, Ekaterinburg, Russia
³National University of Science and Technology “MISIS” (MISIS), Moscow, Russia
⁴Scientific Council on Metallurgy and Metal Science of Russian Academy of Sciences (Department of Chemistry and Material Sciences), Moscow, Russia

Abstract. The analysis of the current state of production of rare earth metals (REM) in Russia and in the world was made. Information about REM production in different countries of the world and about new foreign projects for REM production and processing is provided. The article presents the balance of production, export and import of raw materials and products with REM, including scandium and yttrium, in Russia. The maximum volume of REM consumption in Russia was calculated taking into account imported products with REM. This data was compared with other countries, including the former USSR. Much attention is paid to the use of REM in metallurgy. Data on the influence of REM on the properties of cast iron and steel are presented. Information is given about the forms of REM used for their use in the Russian ferrous metallurgy. We have studied the structure of REM consumption in ferrous and non-ferrous metallurgy. On the example of two enterprises (one of them specializes in mass production, and the second – on production of special steels), the structure of REM consumption for steel alloying was studied by type and scope of its application. The development peculiarities of REM consumption in Russian ferrous metallurgy were investigated. The volume of consumption was calculated; data on imports of raw materials with REM for metallurgy and the producers of ferroalloys with REM in Russia is given. We have analyzed the spectrum of steel products with REM. A comparison of the consumption of REM in the metallurgy of Russia and foreign countries is presented. The reasons for insufficient consumption of REM in the Russian metallurgy are considered, an assessment is given on the change in production volumes of certain types of steel and cast iron, and recommendations are made on the growth of REM consumption in metallurgy.

Keywords: rare earth metals (REM), ferroalloys, ligatures, modifiers, cast iron, steel, market analysis, balance of production and consumption, ferrous metallurgy.

REFERENCE

1. ITS 24-2017. Proizvodstvo redkikh i redkozemel’nykh metallov [Production of rare and rare earth metals]. Moscow: Byuro NDT, 2017, 202 p. (In Russ.).

2. Polyakov E.G., Nечаев А.В., Смирнов А.В. Metallurgy redkozemel’nykh metallov [Metallurgy of rare earth metals]. Moscow: Metallurgizdat, 2018, 732 p. (In Russ.).

3. Yushina T.I., Petrov I.M., Grishaev S.I., Chernyi S.A. An overview of REM market and technologies for processing rare earth raw materials. Gornyi informatsionno-analiticheskiy byulleten’°. 2015, no. S1, pp. 577–607. (In Russ.).

4. Godovoi otchet otkrytogo aktsionernogo obshchestva “Solikamskii magnesium zavod” za 2018 god [Annual report of OJSC “Solikamsk Magnesium Plant” for 2018]. Solikamsk: 2019, 91 p. (In Russ.).

5. Mineral commodity summaries 2020. Ser.: Mineral Commodity Summaries. Reston, VA: U.S. Geological Survey, 2020, 200 p.

6. ERECON (2015) Strengthening the European Rare Earths Supply Chain: Challenges and Policy Options. Kooroshky J., Ties G., Tukker A., Walton A. eds. Available at URL: https://www.mawi.tumarmstadt.de/media/fm/homepage/news_seite/ERECON_Region_v05.pdf

7. Gholz E. Rare Earth Elements and National Security. New York: Council on Foreign Relations® Inc. 2014, 20 p.

8. Arkhipova N.A., Levchenko E.V., Volkova N.M., Usova T.Yu. Model of development of the REM industry and market in Russia. Razvedka i okhrana nedr. 2014, no. 9, pp. 13–18. (In Russ.).

9. Development of a Sustainable Exploitation Scheme for Europe’s Rare Earth Ore Deposits. European REE market survey – Task 1.1.2. Machacke E., Kalvig P. eds. GEUS and D’Appolonia, 2017, 163 p.

10. Golev A., Scott M., Erskine P.D., Ali S.H., Ballantyne G.R. Rare earths supply chains: Current status, constraints and opportunities. Resources Policy. 2014, vol. 41, pp. 52–59.

11. Binnemans K., Jones P.T. Rare earths and the balance problem. Journal of Sustainable Metallurgy. 2015, vol. 1, no. 1, pp. 29–38.

12. Non-Chinese rare earths. Metallurgicheskiy byulleten’°. 2018, no. 10-11, pp. 56–61. (In Russ.).

13. Gambogi J. Rare earths. In: 2016 Minerals Yearbook. U.S. Geological Survey. 2019, pp. 60–60.16.
Information about the authors:

A.I. Volkov, Cand. Sci. (Chem.), Deputy Director of the Centre of New Metallurgical Technologies (rhenium@list.ru)
P.E. Stulov, Junior Researcher (pavel1411@rambler.ru)
L.I. Leont’ev, Dr. Sci. (Eng.), Professor, Academician, Adviser of the Russian Academy of Sciences, Chief Researcher
V.A. Uglov, Cand. Sci. (Eng.), Deputy General Director

Received January 19, 2020
Revised May 20, 2020
Accepted June 2, 2020