Correlação entre avaliação nutricional e estresse oxidativo em candidatos ao transplante hepático

Ana Carolina Cavalcante Viana1, Fernanda Maria Machado Maia2, Natália Sales de Carvalho3, Suelyne Rodrigues de Moraes2, Alané Nogueira Bezerra4, Priscila da Silva Mendonça1, Sâmia Lopes da Costa2, Ana Filomena Camacho Santos Daltro1

1 Hospital Universitário Walter Cantídio, Universidade Federal do Ceará, Fortaleza, CE, Brasil.
2 Universidade Estadual do Ceará, Fortaleza, CE, Brasil.
3 Universidade de Fortaleza, Fortaleza, CE, Brasil.
4 Centro Universitário Christus, Fortaleza, CE, Brasil.

DOI: 10.31744/einstein_journal/2020AO4039

RESUMO

Objetivo: Avaliar o perfil oxidativo, o estado nutricional e o consumo alimentar (valor calórico; macronutrientes; vitaminas A, E e C; e zinco), e correlacionar o estresse oxidativo com o estado nutricional em pacientes candidatos ao transplante hepático. Métodos: Trata-se de estudo transversal, analítico e descritivo com 51 pacientes candidatos ao transplante hepático. Coletaram-se dados sociodemográficos e clínicos, parâmetros antropométricos, consumo alimentar e amostra de 10mL de sangue de cada paciente. O estresse oxidativo foi analisado por método do ácido tiobarbitúrico. O consumo de macronutrientes, do valor calórico e dos micronutrientes (zinc, vitaminas A, E e C) foi analisado qualitativamente, e o zinco também foi analisado quantitativamente. Resultados: A média de idade foi de 49,17±8,17 anos. Maior percentual de desnutrição esteve de acordo com circunferência muscular do braço (56,86%), seguida de circunferência do braço (52,94%), dobra cutânea tricipital (50,98%) e índice de massa corporal (1,96%). A média do malondialdeído foi de 14,80±8,72µM/L, apresentando correlação negativa com os valores do índice de massa corporal para pacientes com cirrose hepática segundo IMC-Campillo (p=0,001; r=-0,430). Observou-se baixo consumo de energia, carboidrato, proteína, e vitaminas A e E em mais de 50% dos indivíduos. Conclusão: Este estudo mostrou associação do estado nutricional, por meio do índice de massa corporal para pacientes com cirrose hepática segundo IMC-Campillo, com o estresse oxidativo em paciente com cirrose hepática em lista de transplante de fígado.

Descritores: Avaliação nutricional; Estresse oxidativo; Antioxidantes; Ingestão de alimentos; Cirrose hepática

ABSTRACT

Objective: To evaluate the oxidative profile, nutritional status and food intake (caloric value; macronutrients; vitamins A, E and C; and zinc), and to correlate oxidative stress with nutritional status in patients who were candidates for liver transplant. Methods: This is a cross-sectional, analytical, and descriptive study with 51 candidates for liver transplant. Sociodemographic and clinical data, anthropometric parameters, food consumption, and a 10mL blood sample were collected from each patient. Oxidative stress was analyzed by the thiobarbituric acid method. The consumption of macronutrients, caloric value and micronutrients (zinc, vitamins A, E and C) were qualitatively analyzed, and zinc was also quantitatively analyzed. Results: The mean

Como citar este artigo: Viana AC, Maia FM, Carvalho NS, Morais SR, Bezerra AN, Mendonça PS, et al. Correlação entre avaliação nutricional e estresse oxidativo em candidatos ao transplante hepático. einstein (São Paulo). 2020;18:eAO4039. http://dx.doi.org/10.31744/einstein_journal/2020AO4039

Autor correspondente: Ana Carolina Cavalcante Viana Rua Visconde de Paranaguá, nº 329, apto 201 – Centro CEP: 96230-000 – Rio Grande, RS, Brasil Tel.: (85) 98612-3174 E-mail: nutricionista09@hotmail.com

Data de submissão: 25/8/2017

Data de aceite: 27/6/2019

Conflitos de interesse: não há.

Copyright 2019

Esta obra está licenciada sob uma Licença Creative Commons Atribuição 4.0 Internacional.
INTRODUÇÃO

O fígado é um órgão responsável por importantes funções no organismo, como gliconeogênese, metabolismo do lipídio e proteínas, formação da bile e síntese de proteínas do plasma. O acometimento desse órgão pode levar a sérios distúrbios metabólicos, elevando o risco de morbidade e mortalidade no indivíduo.(6)

Em alguns casos, quando não há mais outras possibilidades terapêuticas para doença hepática, a forma de tratamento pode ser o transplante hepático.(2)

No ano de 2017, foram realizados 2.109 transplantes de fígado no Brasil, e 201 deles foram no Ceará, estado que se encontra em quarto lugar entre os que mais transplantaram.(3)

A alimentação é um dos pilares para o tratamento da doença hepática descompensada e para quem aguarda o transplante. A hepatopatia manifesta-se com grande repercussão no estado nutricional, devido ao hipercatabolismo e ao hipermetabolismo. Assim, o consumo de agentes antioxidantes se faz importante para o tratamento e a estabilidade da doença. Micronutrientes, como vitaminas A, E e C, podem influenciar na inibição da peroxidação lipídica, produzindo aldeídos reagentes, como o malondialdeído (MDA). A análise do MDA é muito estudada, para obter o perfil oxidativo de indivíduos em diversas situações de saúde.(5)

Alimentos ricos em antioxidantes diminuem a inflamação hepática e sistêmica. Assim, o consumo de agentes antioxidantes se faz importante para o tratamento e a estabilidade da doença. Micronutrientes, como vitaminas A, E e C, podem influenciar na inibição da peroxidação lipídica causada pelos radicais livres e promover a proteção das membranas celulares.(9)

O número de pacientes em fila de transplante hepático é elevado e crescente. O Centro de Transplante Hepático do Ceará, o qual é referência nessa modalidade, favorece pesquisas que visam ao melhor atendimento desse público. É necessário conhecer os fatores nutricionais relacionados ao curso da hepatopatia, a fim de promover assistência eficiente àqueles que aguardam o transplante.

OBJETIVO

Avaliar perfil oxidativo, estado nutricional e consumo alimentar, e correlacionar o estresse oxidativo com parâmetro nutricional em candidatos ao transplante hepático.

MÉTODOS

Trata-se de estudo transversal, analítico e descritivo, com pacientes portadores de cirrose candidatos ao transplante hepático no período de março de 2015 a novembro de 2016. O local de coleta foi o Ambulatório de Nutrição no Centro de Transplante de Fígado do Ceará do Hospital Universitário Walter Cantidio (HUWC) da Universidade Federal do Ceará (UFC). O estudo foi
Correlação entre avaliação nutricional e estresse oxidativo em candidatos ao transplante hepático

A amostra foi constituída por conveniência por 51 pacientes hepatopatas candidatos ao transplante hepático e em atendimento no período de estudo no referido ambulatório. Incluiam-se na pesquisa pacientes listados para transplante hepático com idade de 19 a 59 anos. Foram excluídos aqueles em nutrição por sonda enteral, acamados e com amputação.

Após o participante ler e assinar o Termo de Consentimento Livre e Esclarecido, foram coletadas, do prontuário, informações sociodemográficas (sexo, idade e escolaridade), clínicas (doença de base, Model for End-Stage Liver Disease – MELD –, (1) escore Child-Pugh,(10) presença de diabetes mellitus – DM – e/ou hipertensão arterial sistêmica – HAS).

Em seguida, realizou-se avaliação antropométrica diretamente com cada paciente, composta pelas aferições de peso atual, peso seco, altura, índice de massa corporal (IMC), circunferência do braço (CB), dobra cutânea tricipital (DCT) e circunferência muscular do braço (CMB). Esse último foi obtido por intermédio do seguinte cálculo: CMB (cm) = CB (cm) – π × [DCT (mm)/10].(11)

O peso seco foi obtido do desconto de edema e ascite proposto por James.(12) Para aferição do peso e da altura, utilizou-se balança com estadiômetro (Filizola®, Brasil). A CB foi obtida com o auxílio de fita antropométrica flexível, não extensível (Sanny®, Brasil) e, para a DCT, utilizou-se adipômetro da marca Lange®. A classificação do diagnóstico nutricional foi baseado na classificação de Campillo et al.,(13) e em Blackburn et al., para classificação da CB, DCT e CMB.(11)

Os dados de CB, CMB e DCT foram classificados em quatro categorias (desnutrição, eutrofia, sobrepeso e obesidade), ao passo que o IMC-Campillo(13) foi classificado em apenas duas categorias (desnutrição e eutrofia), como proposto pelo autor.

A classificação do IMC conforme Campillo et al.,(13) validado para pacientes cirróticos, realizou-se com os seguintes valores de referência: IMC abaixo de 22kg/m² classificou paciente sem ascite como desnutrido; abaixo de 23kg/m² classificou desnutrição em pacientes com ascite de grau leve a moderado; e abaixo de 25kg/m² classificou como desnutrido pacientes com ascite severa; acima desses valores, a classificação era não desnutrido ou eutrofico.(13)

As concentrações séricas de marcadores do estresse oxidativo foram analisadas por meio da coleta de 10mL de sangue em tubos sem anticoagulante, por punção venosa periférica, de todos os sujeitos participantes. Essa análise foi realizada utilizando o soro do sangue do indivíduo, pelo método descrito por Buege et al., com modificações. Esse método consiste na reação do MDA com o ácido tiobarbitúrico, em relação ao qual seu produto é detectado pela leitura espectrofotométrica.(14)

O ponto de corte empregado para MDA foi de 1,1μM/L em indivíduos saudáveis, considerando valores ≥1,1μM/L como de elevado estresse oxidativo, e ≤1,1μM/L como baixo estresse oxidativo valores.(15)

Para avaliação do consumo alimentar, utilizou-se o recordatório alimentar de 24 horas como ferramenta de coleta, o qual foi aplicado em 2 dias alternados da semana. A primeira coleta foi presencial e, a outra, por telefone. A conversão das medidas caseiras em gramatura referente aos recordatórios alimentares foi realizada conforme Pinheiro et al.(16)

O cálculo do valor nutritivo e das calorias dos alimentos consumidos e registrados no R24h foi alcançado pelo software Dietwin Plus®

O consumo de zinco foi obtido quantitativamente pela média simples dos valores e analisado estatisticamente com Estimated Average Requirement (EAR).(17) O consumo das vitaminas A, E e C, assim como de carboidrato, lipídio e proteína, foi analisado de forma qualitativa. A análise da média do consumo alimentar das vitaminas se deu por comparação direta com a EAR, Recommended Dietary Allowance (RDA) e Tolerable Upper Intake Level. A classificação foi a seguinte: menor do que a RDA, considerou-se abaixo da recomendação; adequado, quando o paciente apresentou ingestão acima da RDA; e acima da recomendação quando o paciente apresentou ingestão acima da Tolerable Upper Intake Level.(18)

O carboidrato e o lipídio foram avaliados pela comparação direta do percentual da média de sua ingestão com o percentual recomendado para pré-transplante hepático,(1) o qual preconiza 70 a 80% do valor energético total para carboidrato e 20 a 30% para lipídio para pré-transplante hepático.

A média do consumo de proteína e a média da ingestão energética total foram avaliadas por comparação direta com a recomendação de ingestão adequada para pré-transplante hepático,(1) o qual preconiza 1,2 a 1,5g/kg/dia para proteína, e de 35 a 40Kcal/kg/dia para consumo calórico,(4) tendo em vista o peso ideal com o IMC médio de 21 kg/m² para mulheres e 22kg/m² para homens.(19)

O consumo de carboidrato, proteína e lipídio foi classificado como insuficiente quando a média de ingestão foi menor que os valores preconizados; adequado quando a média da ingestão apresentou-se dentro das recomendações; e excessivo quando o consumo foi maior do que o recomendado.
A análise estatística foi obtida por desvio padrão (DP), média aritmética simples e correlação para dados não paramétricos por meio do teste de Spearman, realizado utilizando o software (SPSS), versão 22. O valor de p<0,05 foi definido como estatisticamente significante.

I RESULTADOS

A amostra foi composta por 51 indivíduos candidatos ao transplante hepático, com média de idade de 49,17±8,17 anos. A caracterização da população estudada encontra-se na tabela 1.

O diagnóstico mais encontrado na população desta pesquisa foi cirrose por hepatites virais e por ingestão de álcool, conforme tabela 2.

A classificação do estado nutricional, conforme tabela 3, foi verificada utilizando IMC, CB, DCT e CMB como parâmetros antropométricos, os quais apresentaram média de 25,90±5,14kg/m², 28,59±5,50cm, 16,61±8,50mm e 25,37±3,69cm, respectivamente. Para CB, DCT e CMB, os dados foram classificados em desnutrição, eutrofia, obesidade; para IMC-Campillo, foram classificados em desnutrição e eutrofia.

A avaliação qualitativa do consumo energético, de carboidrato, proteína, lipídio, e vitaminas A, E, C, assim como a análise quantitativa e qualitativa de zinco, estão expostas na tabela 4. Destaca-se o consumo de proteína, em que 56,86% da população apresentou consumo abaixo da recomendação.

A média de MDA foi de 14,80±8,72 μM/L e todos os pacientes apresentaram valores superiores aos de referência para caracterização de estresse oxidativo. A correlação do MDA com IMC-Campillo mostrou-se significativa (p=0,001; r=-0,430), conforme figura 1.

Tabela 1. Variáveis sociodemográficas e clínicas de pacientes pré-transplante hepático

Variáveis	População n (%)	Média±DP
Idade, anos	49,17±8,17	
Sexo masculino	31 (60,78)	
Escolaridade		
Nenhuma	2 (3,92)	
Ensino Fundamental ou Médio	41(80,39)	
Ensino Superior	8 (15,69)	
MELD	18,72±4,02	
Child-Pugh*		
A	8 (15,69)	
B	29 (56,86)	
C	11 (21,57)	
Comorbidades (DM e/ou HAS)	20 (39,22)	

* Tais (0%) indivíduos não apresentavam Child-Pugh-estabelecido.

Tabela 2. Diagnósticos de pacientes pré-transplante hepático

Diagnóstico	Indivíduos com respectivo diagnóstico
Cirrose alcoólica	17 (33,33)
Cirrose por hepatites virais	16 (31,37)
Cirrose criptógênica	8 (15,69)
Cirrose colestática e/ou hepatite autoimune	3 (5,88)
Síndrome de Budd-Chiari	3 (5,88)
Cirrose e tumor neuroendócrino	1 (1,96)
Estano hepático não alcoólica	1 (1,96)
Niemann-Pick	1 (1,96)
Retransplante por rejeição e cirrose	1 (1,96)

Tabela 3. Classificação do estado nutricional de pacientes pré-transplante hepático

Classificação do estado nutricional	IMC-Campillo	CB	DCT	CMB
Desnutrição	16 (31,37)	27 (52,94)	26 (50,98)	29 (56,86)
Eutrofia	36 (69,63)	17 (33,33)	5 (9,80)	22 (43,14)
Sobre peso	3 (5,88)	1 (1,96)	0 (0,00)	
Obesidade	4 (7,84)	19 (37,25)	0 (0,00)	

Tabela 4. Análise da adequação do consumo calórico; carboidrato; proteína; lipídio; vitaminas A, E e C; e zinco de pacientes pré-transplante hepático, conforme recomendação

Caloria e nutrientes	Consumo	Abaixo	Adequado	Acima
CE, kg/PI	31,00±11,41	34 (66,67)	8 (15,69)	9 (17,65)
Proteína, (g)/kg/PI	1,23±0,50	29 (56,86)	14 (27,45)	8 (15,69)
Carboidrato, %	60,49±7,78	45 (88,24)	5 (9,80)	1 (1,96)
Lipídio, %	24,47±6,34	12 (23,53)	30 (58,82)	9 (17,65)
Vitamina A, mcg	1.010,64±2,042,66	39 (76,47)	8 (15,69)	4 (7,84)
Vitamina E, mg	5,21±3,43	51 (100,00)	0 (0,00)	0 (0,00)
Vitamina C, mg	409,66±672,24	11 (21,57)	35 (68,63)	5 (9,80)
Zinco, mg	7,20±3,93	41 (80,39)	10 (19,61)	0 (0,00)

Figura 1. Correlação (teste de Spearman) do malondialdeído e índice de massa corporal dos pacientes pré-transplante hepático
DISCUSSÃO

A população estudada apresentou cirrose por álcool (33,33%) como diagnóstico de maior prevalência, seguido por hepatites virais (31,37%), diferindo da pesquisa de Daltro et al., na qual a cirrose alcoólica (24,32%) foi a segunda causa de maior prevalência.

O diagnóstico nutricional no portador de doença hepática pode ser falho devido à presença de retenção de fluidos, o que reduz a sensibilidade do dado antropométrico. O IMC está passível à superestimação de fluidos, o que reduz a sensibilidade do dado antropométrico. O IMC está passível à superestimação de fluidos, o que reduz a sensibilidade do dado antropométrico. O IMC está passível à superestimação de fluidos, o que reduz a sensibilidade do dado antropométrico.

Usando os valores recomendados por Campillo et al., o IMC apresentou 31,37% de desnutrição, o que concorda com o elevado número de desnutrição apontado por outros parâmetros antropométricos do presente estudo.

Em outra pesquisa, foi identificado maior percentual de desnutridos, de acordo com a DCT (49,0%) e a CMB (28,6%), equivalente ao encontrado na presente pesquisa, a qual apresentou maior número de pacientes desnutridos, de acordo com a CMB (56,86%) e DCT (50,98%). Alguns autores defendem que os dados antropométricos que utilizam membros superiores, como DCT e CMB, são bons indicadores para evidenciar desnutrição proteico-energética, por não sofrerem interferência da retenção hídrica. (7)

A má nutrição aumenta o risco de complicações como encefalopatia hepática, baixa imunidade, elevação da morbidade e da mortalidade, e maior tempo de internação. (21)

Mais da metade da população estudada apresentou-se com consumo insuficiente de energia, assim como de proteínas e carboidratos, corroborando com o encontrado no estudo de Ferreira et al., entretanto esses autores não relataram a ingestão de micronutrientes. (22)

Ingestão adequada de proteína tem efeito importante no ganho de massa magra, na síntese de proteínas plasmáticas e no equilíbrio da homeostase da glutationa, o que eleva a eficiência do sistema antioxidante. (23)

O desequilíbrio oxidativo responsável pela lesão do tecido hepático em doenças que acometem o fígado pode ser atenuado com ingestão suficiente de micronutrientes antioxidantes. (24) Um antioxidante bastante estudado é a vitamina E, que estabiliza elétrons desemparelhados, previne a peroxidação lipídica, reduz o fator de necrose tumoral na hepatite alcoólica, e previne a ativação das células estreladas, as quais são responsáveis pela fibrogênese hepática. (25) No presente estudo, todos os indivíduos apresentaram consumo insuficiente desse nutriente. O mesmo foi encontrado em outro trabalho, no qual 68,6% da população com estatose hepática não alcoólica também obteve consumo abaixo do recomendado. (26)

Em relação ao ácido ascórbico, 68,63% dos indivíduos apresentaram consumo adequado neste estudo, o que não difere da pesquisa já citada de pacientes com doença hepática gordurosa não alcoólica, na qual 72,8% apresentaram ingestão adequada. (20) Essa vitamina tem a capacidade de neutralizar diretamente as espécies reativas de oxigênio no meio aquoso da célula, o que torna seu consumo recomendável. (27)

O consumo de zinco apresentou-se adequado em 64,71% da população avaliada no presente estudo. Esse resultado corroborou o de outra pesquisa, segundo a qual 64% dos pacientes cirróticos apresentaram ingestão adequada desse nutriente. (28)

Tratando-se da pró-vitamina A, o betacaroteno funciona como carregador de oxigênio singlet e de radicais peroxil, atuando como antioxidante. (29) O consumo da vitamina A apresentou-se insuficiente em 76,47% dessa população estudada, enquanto, em geral, menos da metade dos indivíduos (42,4%) o consume abaixo das necessidades. (20)

Outro achado neste estudo foi a associação entre o valor de IMC e o estresse oxidativo, de forma que o estresse se apresenta mais elevado no paciente com menor IMC. Isso pode ocorrer devido ao estado clínico e nutricional do indivíduo e, consequentemente, à redução de agentes antioxidantes no organismo e na doença hepática avançada.

De acordo com a literatura, concentrações de glutatonia, principal antioxidante celular, são reduzidos significativamente em resposta à desnutrição proteica, ao estresse oxidativo, a hepatopatias e a outras condições. Dessa forma, a redução da glutatonia contribui para desequilíbrio oxidativo e o avanço da doença hepática, devido à lesão hepatocelular promovida pelos radicais livres. (30)

Este estudo teve número consideravelmente elevado de participantes em comparação com os outros estudos aqui citados, entretanto esses autores não relataram a ingestão de micronutrientes. (7,20,28) O consumo de zinco apresentou-se insuficiente em 76,47% dessa população estudada, enquanto, em geral, menos da metade dos indivíduos (42,4%) o consume abaixo das necessidades. (20)

Dessa forma, os resultados aqui apontados contribuíram para o conhecimento de aspectos nutricionais e do perfil oxidativo de pacientes hepatopatias que aguardam o transplante de fígado.

Algumas limitações podem ser apontadas, como o fato de o estudo ter sido transversal, pois não foi possível acompanhar o paciente na evolução da doença, assim como seus hábitos alimentares e estado nutricional. O presente estudo analisou o consumo alimentar por re-
cordatório de 24 horas, cujo método requer do avaliado a lembrança da quantidade e do alimento consumido no dia anterior, fato que pode acarretar supressão de informações ou subestimação da quantidade consumida.

Para se obterem dados mais plausíveis quanto à influência do estado nutricional no estresse oxidativo, sugerem-se estudos longitudinais e com outros métodos de mensuração do estresse.

CONCLUSÃO
Este estudo mostrou associação do estado nutricional, por meio do índice de massa corporal para pacientes com cirrose hepática segundo IMC-Campillo, com o estresse oxidativo em paciente com cirrose hepática em lista de transplante de fígado. O consumo alimentar adequado para a manutenção ou a repleção do estado nutricional influência no estresse oxidativo, que, por sua vez, pode influenciar no estresse oxidativo.

A ingestão alimentar de nutrientes dentro do recomendado é sugerida na literatura e se associa com ganho de massa magra e gordura do paciente, e com a melhora do estado nutricional do indivíduo, que, por sua vez, pode estar relacionado ao seu perfil oxidativo.

INFORMAÇÃO DOS AUTORES
Viana AC: http://orcid.org/0000-0002-9424-3649
Maia FM: http://orcid.org/0000-0002-4777-6624
Carvalho NS: http://orcid.org/0000-0003-1069-8644
Moraes SR: http://orcid.org/0000-0001-9827-8219
Bezerra AN: http://orcid.org/0000-0003-0586-1881
Mendonça PS: http://orcid.org/0000-0001-6474-9019
Costa SL: http://orcid.org/0000-0002-0772-2159
Daltro AF: http://orcid.org/0000-0003-2196-9198

REFERÊNCIAS
1. Jesus RF, Pereira CA, Muniz JQ, Waitsberg DL. Doença hepática. In: Cuppari L. Doença hepática. 5. ed. Rio de Janeiro: Atheneu; 2005. p. 19-44.
2. Almeida PC, Portuguese EA, Lemos KS, Pereira CA, Muniz JQ, Waitsberg DL. Nutrição clínica no adulto. 3a ed. São Paulo: Manole; 2014. p. 413-54. [Guias de medicina ambulatorial e hospitalar da EPM-UNIFESP – Nutrição].
3. Correia MITD. Desnutrição e morbidade e mortalidade. J Gastroenterol Hepatol. 2015;30(10):1507-13.
4. Matiello CE, et al. Liver transplantation: history, outcomes and perspectives. Rev Assoc Med Bras. 2009;55 (4):389-93.
5. Daltro AF, Almeida PC, Maia CS, Cunha LS, Garcia JH, Matos WD. Paciente cirrótico: estudo do zinco como marcador de estresse oxidativo. In: Souza EK, Mendes FN, Avila MM, organizadores. Ciência da nutrição e campos multidisciplinares de saberes. Fortaleza: UFCE; 2015. pp. 19-44.
6. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646-9.
7. Blackbum GL, Harvey KB. Nutritional assessment as a routine in clinical medicine. Postgrad Med. 1982;71(5):46-63.
8. Marchioni DM, Slater B, Fisberg RM. Aplicação das Dietary Reference Intakes na avaliação de consumo alimentar em medidas caseiras. 5a ed. São Paulo: Atheneu; 2005.
9. Ferreira LG, Anastácio LR, Lima AS, Ferreira PB. Malnutrição na cirrose hepática: estudo do zinco como marcador de estresse oxidativo. In: Souza EK, Mendes FN, Avila MM, organizadores. Ciência da nutrição e campos multidisciplinares de saberes. Fortaleza: UFCE; 2015. pp. 19-44.
10. Marchioni DM, Slater B, Fisberg RM. Aplicação das Dietary Reference Intakes na avaliação de consumo alimentar em medidas caseiras. 5a ed. São Paulo: Atheneu; 2005.
11. Carvalho NS, Maia FM, Bezerra AN, Mendonça PS, Costa SL, Daltro AF. Nutrição em paciente cirrótico. HU Rev. 2013;39(3):45-54.
12. Piñeiro AV, Lacerda EM, Benzczy EH, Gomes MC, Costa VM. Tabela para avaliação de consumo alimentar em medidas caseiras. 5a ed. São Paulo: Atheneu; 2005.
13. Marchioni DM, Slater B, Fisberg RM. Aplicação das Dietary Reference Intakes na avaliação de consumo alimentar em medidas caseiras. 5a ed. São Paulo: Atheneu; 2005.
14. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646-9.
15. Blackbum GL, Harvey KB. Nutritional assessment as a routine in clinical medicine. Postgrad Med. 1982;71(5):46-63.
16. Marchioni DM, Slater B, Fisberg RM. Aplicação das Dietary Reference Intakes na avaliação de consumo alimentar em medidas caseiras. 5a ed. São Paulo: Atheneu; 2005.
17. Marchioni DM, Slater B, Fisberg RM. Aplicação das Dietary Reference Intakes na avaliação de consumo alimentar em medidas caseiras. 5a ed. São Paulo: Atheneu; 2005.
18. Padovani RM, Amaya-Farfan J, Colugnati FA, Domene SM. Dietary reference intakes: aplicabilidade das tabelas em estudos nutricionais. Rev Nutr. 2006;19(6):741-60.
19. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253.
20. Daltro AF, Almeida PC, Maia CS, Cunha LS, Garcia JH, Matos WD. Paciente cirrótico: estudo do zinco como marcador de estresse oxidativo. In: Souza EK, Mendes FN, Avila MM, organizadores. Ciência da nutrição e campos multidisciplinares de saberes. Fortaleza: UFCE; 2015. pp. 19-44.
21. Maharshi S, Sharma BC, Srivastava S. Malnutrition in cirrhosis increases mortality and morbidity. J Gastroenterol Hepatol. 2015;30(10):1507-13.
22. Ferreira LG, Anastácio LR, Lima AS, Correia MITD. Desnutrição e inadequação alimentar de pacientes aguardando transplante hepático. Rev Assoc Med Bras. 2009;55 (4):389-93.
23. McCarty MF, DiNicolantonio JJ. An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age (Dordr). 2015;37(5):96. Review.
24. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015;16(11):26087-124. Review.
25. Polimeni L, Del Ben M, Baratta F, Peri L, Albanese F, Pastori D, et al. Oxidative stress: new insights on the association of non-alcoholic fatty liver disease and atherosclerosis. World J Hepatol. 2015;7(10):1325-36.
26. Crispim FG, Elias MC, Parisé ER. Consumo alimentar dos portadores de Doença Hepática Gordurosa Não Alcóolica: composição entre a presença e a ausência de Estatoeptatite Não Alcóolica e Síndrome Metabólica. Rev Nutr. 2016;29(4):495-505.
27. Jayaprakasha GK, Patil BS. In vitro evaluation of the antioxidant activities in full fruits extracts from citron and blood orange. Food Chem. 2007;101(1):410-8. Review.
28. Nunes FF, Bassani L, Fernandes SA, Deutrich ME, Pivatto BC, Marroni CA. Food consumption of cirrhotic patients, comparison with the nutritional status and disease staging. Arq Gastroenterol. 2016;53(4):250-6. Review.
29. Schneider CD, Oliveira AR. Radicais livres de oxigênio e exercício: mecanismos de formação e adaptação ao treinamento físico. Rev Bras Med Esporte. 2004;10(4):308-13.
30. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489-92. Review.