Diagnostic approaches and contribution of next-generation sequencing technologies in genomic investigation of *Vibrio parahaemolyticus* that caused acute hepatopancreatic necrosis disease (AHPND)

Lean Huat Yu 1 · Cindy Shuan Ju Teh2 · Kien Pong Yap1 · Kwai Lin Thong3

Received: 1 June 2020 / Accepted: 23 September 2020 / Published online: 26 September 2020
© Springer Nature Switzerland AG 2020

Abstract
A unique strain of *Vibrio parahaemolyticus* (designated as VP_AHPND) causes acute hepatopancreatic necrosis disease (AHPND), a deadly bacterial disease associated with mass mortality in cultured shrimps since 2009. AHPND is responsible for severe economic losses worldwide, causing multimillion-dollar loss annually. Because of the rapid and high mortality rates in shrimps, substantial research has been carried out to develop rapid detection techniques. Also, recent technological advances such as the next-generation sequencing (NGS) have made it possible to elucidate relevant information about a pathogen in a single assay. This review summarizes the current research pertaining to VP_AHPND, focusing on diagnosis and contribution of NGS technologies in the genomic studies of AHPND.

Keywords Acute hepatopancreatic necrosis disease · *Vibrio parahaemolyticus* · Diagnostics · Next-generation sequencing

Introduction

Shrimp aquaculture is the fastest-growing production sector in the fishery industry, and it plays a big role in worldwide economy, market demands and employment (FAO 2016). The
increases in market demands has led the shrimp aquaculture to develop into an important export-oriented food industry especially in Southeast Asia, generating billions of US dollars in export income annually (FAO 2016; GOAL 2018). As the shrimp industry expands, more issues and challenges are faced by farmers due to intensification of shrimp farming. Among these issues and challenges, shrimp diseases remain the most critical challenge as a limiting factor for the expansion of shrimp production (GOAL 2018). The shrimp industry is challenged with a plethora of pathogens such as infection with infectious hypodermal and haematopoietic necrosis (IHHN), infectious myonecrosis (IMN), white tail disease (WTD), taura syndrome (TS), yellow head disease (YHD) and white spot disease (WSD), and it had caused a loss of approximately US$ 15 billion in revenue over the past 15 years. In addition, lately a bacterial disease known as the acute hepatopancreatic necrosis disease (AHPND), caused by *Vibrio parahaemolyticus*, had superseded other diseases, causing high and rapid mortalities in all types of cultured shrimps and economical loss incurred more US$ 1 billion, annually (Flegel and Timothy 2012; Tran et al. 2013).

AHPND, formerly known as EMS or AHPNS, is a shrimp disease that causes massive early mortality in shrimp ponds, reaching up to 100% within a few days after the infection (Lightner et al. 2012a, b; NACA 2012). The disease affects multiple shrimp species, especially the Asian tiger shrimp (*Penaeus monodon*) and white leg shrimp (*Litopenaeus vannamei*) via oral routes and cohabitation (Flegel and Timothy 2012; Leaño and Mohan 2012; Lightner et al. 2012a, b). AHPND usually starts to develop approximately 8 days after the ponds are stocked, and severe mortalities could occur as early as the postlarvae stage on 12 to 40 days of culture. Clinical symptoms include pale atrophied hepatopancreas, soft shells, black spots or streaks that are visible in the hepatopancreas of the infected shrimps (NACA 2014). This disease was reported to have emerged in China (2009), followed by Vietnam (2010), Malaysia (2011), Thailand (2012), Mexico (2014), Philippines (2015) and lastly in the Latin America (2016) (Dabu et al. 2017; Flegel and Timothy 2012; Gomez-Gil et al. 2014a; Leobert et al. 2015; Lightner et al. 2012a, b; Nunan et al. 2014; Restrepo et al. 2016; Tran et al. 2013) (Fig. 1).
The etiologic agent of the disease was identified as a unique bacterial strain of *V. parahaemolyticus* (NACA 2012). *V. parahaemolyticus* strain that causes AHPND in shrimps (designated as VP_{AHPND}) differs genetically from other *V. parahaemolyticus* strains as it carries an extrachromosomal plasmid (pVA) encoded homologues of the *Photobacterium* insect-related (Pir) PirA and PirB binary toxins, namely, as pir_A and pir_B, that are responsible for AHPND (Lee et al. 2015; Tran et al. 2013). However, AHPND-causing bacteria are not only limited to *V. parahaemolyticus* strains but are also associated with other species of *Vibrio* such as *V. harveyi*, *V. owensii* and *V. campbellii* (Dong et al. 2017; Kondo et al. 2015; Liu et al. 2015; Tran et al. 2013). These findings suggested the possibility of horizontal gene transfer events within the *Vibrio* genus, thus explaining the diversity of *Vibrio* spp. in causing AHPND (Castillo et al. 2018). This shows that the causative agent of AHPND is not restricted in a single species but can be found in multiple species of *Vibrio*, beyond the clade boundaries through the acquisition of the pathogenic plasmid (Restrepo et al. 2018). In this review, general information of AHPND and the causative agent, VP_{AHPND}, are discussed with an emphasis on the diagnosis and contribution of NGS technologies in the genomic studies of VP_{AHPND}.

Vibrio parahaemolyticus: isolation and preservation

Vibrio parahaemolyticus is a Gram-negative, rod-shaped bacterium, belonging to the family *Vibrionaceae*, ubiquitous in marine, estuarine ecosystem as well as aquaculture farms (CDC 2018). It is polarly flagellated, halophilic and facultative anaerobic. This bacterium grows rapidly in high levels of bile salts and alkaline conditions. Therefore, media such as alkaline peptone water (APW), tryptic soy broth (TSB+) or Tryptic soy agar added with 1.5–2.5% of sodium chloride (NaCl), thiosulfate citrate bile sucrose agar (TCBS) and CHROMagar *Vibrio* are suitable to culture this bacterium (Nunan et al. 2014; Sirikharin et al. 2014; Soto-Rodriguez et al. 2015; Tran et al. 2013). *V. parahaemolyticus* grows ideally at temperatures between 28 and 35 °C; thus, inoculated broth or agar plates can be incubated at the temperature within this range for 18–24 h (Nunan et al. 2014; Soto-Rodriguez et al. 2015; Tran et al. 2013). To prepare the stock culture of *V. parahaemolyticus*, the culture must be preserved in TSB + (1–2% NaCl) with 50% glycerol and stored at −80 °C. As *V. parahaemolyticus* is sensitive to freezing (4 to −24 °C), preservation or storage of this bacterium under this range of temperature will lead to reduction in cell density for short-term storage (Han et al. 2015a; Nunan et al. 2014).

Diagnostic methods for the detection of VP_{AHPND}

Diagnosis of AHPND is a crucial aspect of proper control measure to minimize economic losses caused by VP_{AHPND}. However, in order to have accurate and reliable detection, several procedures are recommended prior to the detection of VP_{AHPND} from shrimp samples.

i. A minimum of 10 shrimp specimens or more must be sampled from ponds that are suspected with AHPND infection to ensure that at least one specimen infected with this disease is detected.
ii. Live shrimp, moribund shrimp and shrimp with gross clinical signs are preferred samples/specimens for examination.

iii. The shrimp digestive system (hepatopancreas, stomach, midgut and hindgut) is the most suitable parts for the diagnosis of AHPND, and it must be excised under aseptic conditions.

iv. Live shrimp or fresh shrimp specimens are preferred for examination as the causative agent; VP_{AHPND} strain is sensitive to cold temperature (4 to −24 °C). Otherwise, the shrimp specimens can be kept in 100% ethanol or frozen at −80 °C.

v. Liquid medium should be used instead of solid medium to prepare and culture the VP_{AHPND} inoculum to induce the pathological signs of AHPND properly.

Before the introduction of PCR methods to detect VP_{AHPND}, the diagnosis of AHPND was confirmed through conventional culture-dependent and identification techniques. However, rapid, specific and reliable detection of infectious AHPND is important in preventing large disease outbreaks. In relation to AHPND detection, both culture-dependent and culture-independent methods are discussed below.

Culture-dependent techniques

Traditional diagnostic methods include interpretation of clinical and histological signs, culturing of pathogen in or on a selective medium and analysis of the morphological or biochemical characteristics of the presumptive pathogen. Different selective media such as TCBS or CHROMagar *Vibrio* have been developed for the detection of *V. parahaemolyticus* (Soto-Rodriguez et al. 2015). However, these media are not conclusive as other *Vibrio* spp. are also able to grow on these media (Bolinches et al. 1988). Biochemical properties of *V. parahaemolyticus*, such as nitrate reduction activity, oxidase and catalase activity and indole production, are used to confirm its identity (Buller 2004). However, identification based on metabolic fingerprinting is not always conclusive, requiring additional confirmation assays (Buller 2004). Furthermore, VP_{AHPND} strains are phenotypically like the common *V. parahaemolyticus* strains in the environment, so it is difficult to distinguish VP_{AHPND} from other *V. parahaemolyticus* strains that do not cause AHPND.

As a primary diagnostic approach, clinical signs of AHPND are used to examine infected shrimps. These early diagnostic clinical signs must be based on the OIE technical fact sheet and NACA disease card (NACA 2014; OIE 2013a). AHPND-infected shrimp generally show clinical symptoms which include pale atrophied hepatopancreas, soft shells, empty gut in early infection and black spots or streaks are visible in the hepatopancreas of the infected shrimp during the terminal phase (NACA 2014). These clinical signs are essential during the collection of shrimp samples for examination and can be further confirmed by histopathological observation and PCR.

Histopathological examination is an important classical method of detection and demonstration of transmission of pathogen to new hosts. To examine the samples, light microscope examination, transmission electron microscopy (TEM) and scanned electron microscopy (SEM) can be used for histological observation of the AHPND-infected shrimps (Bell and Lightner 1988; Lightner 1996). Generally, the AHPND-infected shrimp show sloughing of hepatopancreatic tubule epithelial cells and atrophy at the early stages. This is due to the medial to distal dysfunction of the R cells (resorptive), B cells (blistier-like), F cells (fibrillar) and finally the E cells (embryonic). Subsequently, necrosis of hepatopancreas tubule epithelial
cells and massive haemolytic infiltration are observed at later stages (NACA 2014; OIE 2013b). At this stage, the HP are generally sloughed and provide as a substrate for secondary bacterial infection that causes complete destruction of the HP.

The methods discussed above permit pathogen detection but are time-consuming and labour-intensive and have limited accuracy and reliability. These conventional techniques are limiting and inadequate to manage large number of samples. These drawbacks have promoted the development of alternative, rapid and culture-independent detection and identification techniques. Nevertheless, these culture-dependent methods are still recommended to complement the culture-independent techniques.

Culture-independent techniques

Before the introduction of PCR methods for AHPND-causing bacterial strains detection, the diagnosis of AHPND was confirmed through the gross clinical signs and histopathology of shrimp bodies (NACA 2014). However, specific and rapid detection methods are needed for the early detection of AHPND-causing bacterial strains (Santos et al. 2020). These nucleic acid-based techniques have the advantage of being both highly specific and sensitive. Up to date, several PCR-based methods have been developed for the detection of VP_{AHPND}. The first PCR-based method utilized two sets of primers (AP1 and AP2) (Flegel and Lo 2014). These primers served as an interim detection tool for AHPND as it only targets the plasmid sequences and not the toxin genes that are responsible for AHPND (Flegel and Lo 2014). Next, another improved PCR primer (TUMSAT-Vp3) which is also based on plasmid sequences was developed (Tinwongger et al. 2014). Later, Flegel and Lo introduced another set of new and improved AP3 primer based on the gene sequence of a putative protein that was present only in AHPND-causing strains (Flegel and Lo 2014). The utility of the AP3 primer has been shown to give higher sensitivity and specificity compared with the previous AP1 and AP2 primers (Sirikharin et al. 2014). In addition, an enhanced nested two-step PCR method (AP4) was developed as an alternative to AP3-PCR (Sritunyalucksana et al. 2015). This approach was able to detect low levels of AHPND-causing bacteria, and the sensitivity was 100 times higher than AP3-PCR method (Sritunyalucksana et al. 2015). Commercial diagnostic test kits such as the IQ Plus TM AHPND/EMS KIT (POCKIT) (Zorriehzahra and Banaederakhshan 2015) and AHPND/EMS Toxin 1 Detection and Prevention System PCR kit are available for the detection of AHPND (Leobert et al. 2015). In addition, real-time PCR method such as the VP_{AHPND}-specific TaqMan real-time PCR (Han et al. 2015b), isothermal loop-mediated amplification (LAMP) method (Arunrut et al. 2016), duplex PCR and multiplex PCR methods were introduced and have high sensitivity in the detection of VP_{AHPND}.

Several studies have shown that VP_{AHPND} mutants with pir^{Ap} and pir^{Bp} genes knock out could still induce AHPND in shrimps (Phiwsaiya et al. 2017; Restrepo et al. 2016). This has raised concern as PCR methods based on AP1, AP2 and TUMSAT-Vp3 for the VP_{AHPND} detection only target the plasmid sequences, and this could lead to false positive results. Thus, the AP3-PCR and duplex PCR methods that there were designed to detect both the pir^{Ap} and pir^{Bp} genes, respectively, are recommended for specific detection of VP_{AHPND} (Devadas et al. 2019).

Besides PCR methods, several new detection approaches such as monoclonal antibodies assays and biosensor are introduced to detect VP_{AHPND}. Antibody-based assays present a simple, rapid and low-cost detection system with high sensitivity and specificity for detection of diseases. A monoclonal antibody (MAb) specific to ToxA and ToxB that are present in
VPAHPND has been developed (Wangman et al. 2017). This MAb can be used in the dot-ELISA approach for complex samples for the detection of VPAHPND. Biosensing technology has also been applied in the detection of VPAHPND (Rizan et al. 2018). A biosensor is an analytical device which converts a biological response into an electrical signal. It acts to detect a biological analyte such as nucleic acids, antibodies, enzymes, proteins or whole cells and transmits the signals to a transducer which then convert the biological signal into an electrical signal (Karunakaran et al. 2015). Research in the development of biosensors is becoming more extensive because it provides accurate, simple, fast, cost-effective, sensitive and specific detection of diseases. So far, there is one study which demonstrated the use of a biosensor for the identification and detection of VPAHPND strains (Rizan et al. 2018). Generally, this approach involved DNA extraction from VPAHPND strains, and the extracted DNA is then used to create a DNA-metal (semiconductor-metal) device. The identification of the bacteria is determined by studying the effect of electric current conductivity across the biosensor (Rizan et al. 2018). Thus, the advances in biotechnology, nanotechnology, and information technology are crucial in the development of rapid diagnostic technologies to prevent the spread of AHPND.

Contribution of next-generation sequencing technologies in the genomic studies of VPAHPND

Infectious shrimp disease is one of the critical issues faced in the management of shrimp aquaculture. Traditionally, studies on pathogens detection depend on conventional microbiological tests that are laborious and time-consuming (Fournier et al. 2014). In the early 2000s, the emergence of next-generation sequencing (NGS) technologies has revolutionized the field of OMICS, permitting new directions to address pertinent research areas that could not be considered previously. The NGS technologies (Illumina/Solexa, ABI/SOLiD, 454/Roche and Helicos) have provided unprecedented opportunity for high-throughput functional genomic research (Moorthie et al. 2011). These technologies have been made available on an increasing range of platforms designed to suit different applications and capacity requirements from large Genome Centres and clinical laboratories (Moorthie et al. 2011). With the large data collection of bacterial genomes, NGS allows one to consider all the relevant information such as species identification, strain typing, virulence determination, molecular epidemiology, mechanism of pathogenesis and antibiotics resistance about a pathogen in one single test (Fournier et al. 2014). In spite of the promising outcomes obtained using this technology, NGS was under-utilized in the study of shrimp diseases at the beginning as it requires high costs (Nkili-Meyong et al. 2016). Fortunately, the cost of sequencing has decreased significantly, and studies on shrimp diseases that involved NGS have increased significantly over the past few years. Since the emergence of AHPND, numerous studies have applied NGS to sequence the causative agent to obtain detailed information that are relevant for the mitigation of this disease. Here, we summarize the contribution of NGS towards the studies of VPAHPND (Table 1). Further details on the progress of studies in VPAHPND using NGS are described.

Whole genome sequencing (WGS) and targeted amplicon sequencing are the two common approaches that are used in NGS studies of bacterial pathogens (Lefterova et al. 2015). WGS is the analysis of the entire genomic DNA sequence of a bacterium and relies on non-targeted library preparation (Lefterova et al. 2015). The use of WGS is to determine the genomic content and functional potential of organisms. On the other hand, targeted amplicon
Table 1 NGS studies conducted with AHPND-causing *Vibrio* spp. strains

Strain	Accession no.	Findings	Reference
TUMSAT_DE1_S1	BAVF010000000	Identified unique sequences of a conjugative plasmid that were conserved in *VPAHPND* strains	Kondo et al. (2014)
TUMSAT_DE2_S2	BAVG010000000		Gomez-Gil et al. (2014a, 2014b)
TUMSAT_D06_S3	BAVH010000000		Gomez-Jimenez et al. (2014)
M0605	JALL00000000		Yang et al. (2014)
FIM-S1708+	JPLV00000000		
NCKU_TV_3HP	JPKS000000000	Identified one large extrachromosomal plasmid (~69 kbp) carrying two toxin genes that homologue to the insecticidal *Photorhabdus* insect-related binary toxin (PirAB)	Han et al. (2015a, 2015b); Lee et al. (2015)
NCKU_TV_5HP	JPKT000000000		
NCKU_TV_CHN	JPKU000000000		
13–028/A3 and NCKU_TV_3HP	JOKE00000000	Completed sequence of the plasmids (pVPA3-1/pVA1) that present only in *VPAHPND* strains	
		Suggested Pir toxin–like genes (pirABvp) could be the causative factor for AHPND	
Ba94C2	PRJNA335761	The plasmid might be self-transmissible	Restrepo et al. (2016)
KC13.17.5 (*V. harveyi*)	BBXN010000000	SWAT-3 type transposase was found flanked with pirABvp toxin	Kondo et al. (2015)
SH-14 (*V. owensii*)	LCKM000000000	*Vibrio* species (non-*V. parahaemolyticus*) that cause AHPND in shrimp	Liu et al. (2015)
Ve 3S01 (*V. campbellii*)	CP020076-CPO20081		Dong et al. (2017)
LA16-V1(*V. campbellii*)	CP021145-CPO21150		Ahn et al. (2017)
BA55 (*V. punensis*)	PRJNA412371		Restrepo et al. (2018)
1335	MYFF000000000	The *VPAHPND* strains harbour an antibacterial type VI secretion system (T6SS)	Fu et al. (2017); Li et al.(2017)
12297B	MYFG000000000		
1930	SRX309385	The *VPAHPND* strains were genomically diverse	Fu et al. (2017)
450	SRX309385		Foo et al. (2017)
MVP1	MQMQ010000000	Identical sequences of seven housekeeping genes with MVP2 and MVP6, classifying as the same sequence type	
MVP2	MSBY010000000		
MVP6	MSCA010000000		
KS17.S5-1	PJJY000000000	The Malaysian *VPAHPND* strains harbour multiple antibiotic resistance genes	Devadas et al. (2018a, 2018b)
ST17.P5-S1			
M1-1	PDDQ000000000	A Vietnamese *VPAHPND* strain causes a mild form of AHPND	Kumar et al. (2018)
XN87	KU145395-KU145400		Phiwaiya et al. (2017)
3HP	WIAZ000000000	Comparative genomics of *VPAHPND* strains from Thailand, Malaysia and Vietnam have revealed several genes such as F-plus assembly, TA system, cholera toxin and vibrio core oligo-saccharides biosynthesis that could contribute to the variation in the virulence of *VPAHPND* strains	Yu et al. (2020)
SEB2	WHOI000000000		
SEA5	VTWX000000000		
SAB6	VTWY000000000		
SDA4	WIBC000000000		
sequencing is to selectively sequence the genomic regions of interest by using target-specific primers in PCR-mediated amplification, and this approach is frequently performed to examine well-characterized genomic regions such as known virulence genes (Lefterova et al. 2015). Usually, multiple sequenced bacterial genomes are compared to elucidate the pathogenesis of bacteria. Through the application of NGS, one of the initial discoveries was from the comparative genomics of three draft genomes of \(V. \text{parahaemolyticus} \) strains originated from Thailand (TUMSAT DE1 S1, TUMSAT DE2 S2 and TUMSAT D06 S3) with the non-\(V. \text{parahaemolyticus} \) strains, in which unique sequences that encode for type IV pilus and conjugal transfer proteins were identified only in the genomes of \(V. \text{parahaemolyticus} \) strains (Kondo et al. 2014). The findings were in concordance with the analysis of the genomes of the \(V. \text{parahaemolyticus} \) strains from Mexico (Gomez-Jimenez et al. 2014; Gomez-Gil et al. 2014b). Another study on the comparison of two draft genome sequences from Thailand (NCKU TV 3HP and NCKU TV 5HP) as well as one draft genome sequence from China (NCKU TV CHN) found one large extrachromosomal plasmid (~ 69 kbp), pVA carrying two toxin genes which are homologue to the insecticidal \emph{Photorhabdus} insect-related binary toxin PirAB present in all \(V. \text{parahaemolyticus} \) strains but not in the non-\(V. \text{parahaemolyticus} \) strain (Yang et al. 2014). The recognition of the pVA plasmid in the genome of \(V. \text{parahaemolyticus} \) strains suggested that the plasmid is responsible for AHPND in shrimp.

Following the identification of the pVA plasmid via WGS, two subsequent studies increased the sequencing depth of the plasmid sequence by using targeted amplicon sequencing to fill in the gaps. The complete sequences of the plasmid, namely, pVPA3–1 and pVA1, have been described in two studies for the Vietnamese strain 13-028/A3 and Thai strain 3HP (Lee et al. 2015; Han et al. 2015a). Both of these plasmid sequences have a similar genome feature such as genome sizes (69–70 kbp), \(G + C \) contents (~ 45.9%) and similar number of predicted open reading frames (ORFs: 90–92) (Han et al. 2015a; Lee et al. 2015). The open reading frames consist of mobilization protein, replication enzymes, transposases, virulence-associated proteins and proteins similar to \emph{Photorhabdus} insect-related (Pir) toxins. Both studies suggested that these Pir toxin–like proteins could be the determinant for AHPND. Based on previous findings, various primer sequences were developed for PCR typing of \(V. \text{parahaemolyticus} \) strains by targeting the plasmid sequences or the toxin genes that are responsible for AHPND in shrimp (Flegel and Lo 2014; Tinwongger et al. 2014; Sritunyalucksana et al. 2015). Hence, NGS has helped researchers to gain greater insights in discovering novel biomarkers for \(V. \text{parahaemolyticus} \) in AHPND.

Next, the Pir toxin–like proteins were found to be encoded by \emph{pir}A-like (336 bp) and \emph{pir}B-like (1317 bp) genes and were flanked with inverted repeats of transposase, suggesting that this virulent plasmid is acquired through horizontal gene transfer and may be self-transmissible (Han et al. 2015a, b; Kumar et al. 2018; Lee et al. 2015; Restrepo et al. 2016). The self-transmissible characteristic of the plasmid pVA has led researchers to speculate that the plasmid pVA could transfer the toxin genes not only among \emph{V. parahaemolyticus} strains but also to other members of the \emph{Vibrio} species. Indeed, pVA plasmid that harbours \emph{pir}VP toxin genes has high similarity to other pVA plasmid present in other \emph{Vibrio} species including \emph{V. harveyi}, \emph{V. owensii}, \emph{V. campbellii}, \emph{V. sinaloensis} and \emph{V. punensis} (Thong et al. 2014). The existence of this self-transmissible plasmid harbouring toxin genes could possibly increase the complexity of the causative agents of AHPND, thereby providing a caveat for future research in considering other \emph{Vibrio} species.

Although the \emph{pir}VP toxin genes are the primary causes of AHPND, there might be other virulence components or antibiotic resistant genes that play important roles during shrimp infection. Previous studies reported that the \(V. \text{parahaemolyticus} \) strains possess a T6SS protein secretion
apparatus that is known to play a role in inter-bacterial competition (Yang et al. 2018; Yu et al. 2020). The T6SS possesses antibacterial activities mediated by delivery of toxic effectors into neighbouring cells and therefore the acquisition T6SS might confer a fitness advantage to VP_AHPND strains over other competing bacteria and facilitates shrimp infection (Yang et al. 2018). In addition, multiple antibiotic resistance genes encoding resistance to tetracycline, sulfanomide, bleomycin, chloramphenicol and vancomycin were reported from the draft genomes of Malaysian VP_AHPND strains (Devadas et al. 2018a, b; Foo et al. 2017). The NGS technologies have provided us relevant information on virulence factors and the antibiotic resistance genes of the VP_AHPND strains, and these could reveal a potential target for disease control. Besides, the application of NGS can be implemented to improve our knowledge about the genetic diversity of VP_AHPND strains. By using the single-nucleotide polymorphism (SNP) based on WGS data, the genetic diversity of bacteria could be accurately presented especially if established typing schemes are not available. Moreover, SNP has higher resolution than other existing sequence-based typing schemes (Schürch et al. 2018; Yu et al. 2020). In the study of the genetic diversity of VP_AHPND strains in Asia and Mexico using the SNP-based method, the VP_AHPND strains are genetically distinct in different localities, and there are no epidemiological links between the Asian and Mexico outbreaks (Fu et al. 2017). The findings were further supported by another study that involved 28 global VP_AHPND strains from different countries (Yu et al. 2020). An understanding of the genetic diversity of VP_AHPND strains could hasten the intervention strategies, providing information such as the global spread of pathogens and rational development of diagnostics and therapeutics and vaccines to mitigate the risk of AHPND since such data are currently lacking.

In addition, NGS technologies can be used to identify the genetic variability of bacterial strains through comparison of genomic sequences from different sources. Since different rates of mortality were observed in AHPND-infected shrimps, researchers have suggested that the genetic difference among the VP_AHPND strains could be one of the reasons that contributed to this phenomenon (Kumar et al. 2018). In a challenged study, Kumar et al. showed that a Vietnamese VP_AHPND strain, M1-1, had a lower mortality rate than the Thai VP_AHPND strains 3HP and 5HP (Kumar et al. 2018). Sequence analysis of M1-1 showed that this particular strain M1-1 also harboured the pVA1 plasmid and expressed Pir toxin just like the 3HP and 5HP strains. Comparative genomic studies revealed that while these strains shared most of the genes, several additional genes were identified in the genome of M1-1 alone, which suggested there was a lot of genetic variation between these strains of different virulence status (Kumar et al. 2018). The additional genes that were present only in M1-1 may provide important clues to the pathogenicity of M1-1 which was less virulent than 3HP and 5HP strains. Phiwsaiya et al. isolated a natural V. parahaemolyticus mutant strain (XN87) that produced no Pir_vp toxin but caused mortality in shrimp without AHPND lesions (Phiwsaiya et al. 2017). Sequence analysis of this XN87 strain showed the presence of pVA plasmid and the pirAB_vp toxin genes; however, the PirA_vp gene was interrupted by out-of-frame insertion of a transposon gene fragment, suggesting that the VP_AHPND strains carrying mutant pVA plasmid can also cause mortality in shrimps without showing the AHPND lesions (Phiwsaiya et al. 2017).

In addition, comparative genomics analysis of VP_AHPND strains with varying degree of virulence from Thailand, Vietnam and Malaysia revealed a cluster of F-pilus assembly genes which are only present in the most virulent Thai VP_AHPND strain 3HP. Among the Malaysian VP_AHPND strains (SEB2, SEA5 and SAB6), no remarkable genetic differences were observed although these strains exhibited different levels of virulence. Also, several gene clusters such as TA system, cholera toxin and Vibrio core oligosaccharides biosynthesis were present in the
Thai and Malaysian strains but absent in the genome of Vietnamese \(\text{VP}_{\text{AHPND}} \) strain SDA4 which has the lowest virulence among the studied strains. This suggests that the identified genes might contribute to the variation in virulence among the \(\text{VP}_{\text{AHPND}} \) strain (Yu et al. 2020). Genetic variation is one of the problems that is often faced in the development of vaccine, and NGS could provide new critical insights into vaccine development strategies. In short, the integration of NGS into studies of shrimp diseases is exceptionally important and plays a vital role for the development of effective approach and solution to mitigate the disease.

Conclusion

Since the emergence of AHPND in 2009, the shrimp aquaculture industry has faced massive economic losses, especially in Southeast Asian countries. Many research progress and efforts taken to mitigate AHPND were observed in the last 10 years. Following the identification of the causative agent, \(\text{VP}_{\text{AHPND}} \) and its unique histopathological manifestation in 2013, research on AHPND has progressed rapidly, especially on the development of diagnostic methods as well as the implementation of control and preventive measures. Genomic studies contributed largely to a deeper understanding of the genomes of \(\text{VP}_{\text{AHPND}} \) strains, providing significant genetic information which allows the design of targeted disease interventions, particularly, in the development of PCR-based methodologies for pathogen study as well as detection of AHPND-causing bacteria in shrimps. We have highlighted the importance of genomics towards the study of aquatic diseases, emphasizing the purpose to integrate genomics in aquaculture for future research. Clearly, rapid diagnostic technologies are crucial to prevent the spread of AHPND. PCR seems as one of the promising detection methods for rapid and sensitive detection of AHPND-causing bacteria, and so far, PCR method using the AP3 and duplex primers is the most recommended approach for the detection of \(\text{VP}_{\text{AHPND}} \). Advances in biotechnology, nanotechnology and information technology allowed the evolution of rapid diagnostic technologies. There is a delay in developing an effective solution for controlling AHPND mainly due to the lack of understanding on the interactions between microbes and their effects on shrimps. National programmes should be routinely held to exchange information between farmers, researchers and responsible parties. This could serve as a preventive measure to prepare for similar future emergency.

Acknowledgement We would like to thank the University of Malaya for providing the facilities required.

Authors’ contributions Lean Huat Yu: Literature review search, data analysis and writing-original draft
Cindy Shuan Ju Teh: Review and project administration
Kien Pong Yap: Review
Kwai Lin Thong: Idea, supervision and funding acquisition

Funding This research was supported by the University of Malaya, UM GRANT - Frontier Research Grant (Ref.UM.0000149/HGA.GV, Project No. FG029-17AFR).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical statement This article does not contain any studies with animals performed by any of the authors.
References

Arunrut N, Kampeera J, Sirithammajak S, Sanguanrut P, Proespraiwong P, Suebsing R, Kiatpathomchai W (2016) Sensitive visual detection of AHPND bacteria using loop-mediated isothermal amplification combined with DNA-functionalized gold nanoparticles as probes. PLoS One 11(3):e0151769. https://doi.org/10.1371/journal.pone.0151769

Bell TA, Lightner DV (1988) A handbook of normal penaeid shrimp histology. World Aquaculture Society, Baton Rouge

Bolinches J, Romalde JL, Toranzo AE (1988) Evaluation of selective media for isolation and enumeration of vibrios from estuarine waters. Microbiol Method 8(3):151–160

Buller NB (2004) Bacteria from fish and other aquatic animals: a practical identification manual. Cabi, Oxfordshire

Castillo D, Pérez-Reytor D, Plaza N, Ramírez-Araya S, Blondel CJ, Corsini G et al (2018) Exploring the genomic traits of non-toxigenic Vibrio parahaemolyticus strains isolated in southern Chile. Front Microbiol 9:161

CDC (2018) Vibrio species causing vibriosis. Retrieved from https://www.cdc.gov/vibrio/index.html. Accessed 23 Jul 2019

Dabu IM, Lim JJ, Arabit PMT, Orense SJAB, Tabardillo JA Jr, Corre VL Jr, Maningas MBB (2017) The first record of acute hepatopancreatic necrosis disease in the Philippines. Aquac Res 48(3):792–799. https://doi.org/10.1111/are.12923

Devadas S, Bhassu S, Soo TCC, Iqbal SNM, Shariff M (2018a) Draft genome sequence of a Vibrio parahaemolyticus strain, ks17. s5-1, with multiple antibiotic resistance genes, which causes acute hepatopancreatic necrosis disease in Penaeus monodon in the west coast of Peninsular Malaysia. Microbiol Resour Announc 7(2):e00829–e00818

Devadas S, Bhassu S, Soo TCC, Yusoff FM, Shariff M (2018b) Draft genome sequence of the shrimp pathogen Vibrio parahaemolyticus st17. p5-s1, isolated in Peninsular Malaysia. Microbiol Resour Announc 7(11): e01053–e01018

Devadas S, Banerjee S, Yusoff F, Bhassu S, Shariff MJA (2019) Experimental methodologies and diagnostic procedures for acute hepatopancreatic necrosis disease (AHPND). Aquaculture 499:389–400. https://doi.org/10.1111/are.12923

Dong X, Wang H, Zou P, Chen J, Liu Z, Wang X, Huang J (2017) Complete genome sequence of Vibrio campbellii strain 20130629003S01 isolated from shrimp with acute hepatopancreatic necrosis disease. Gut Pathogens 9(1):31. https://doi.org/10.1186/s13099-017-0180-2

FAO (2016) The state of world fisheries and aquaculture. Retrieved from http://www.fao.org/3/a-i5555e.pdf. Accessed 18 Jun 2019

Flegel, Timothy (2012) Historic emergence, impact and current status of shrimp pathogens in Asia. J Invertebr Pathol 110(2):166–173

Foo SM, Eng WWH, Lee YP, Gui K, Gan HM (2017) New sequence types of Vibrio parahaemolyticus isolated from outbreaks of acute hepatopancreatic necrosis disease in Asia by the use of whole genome sequencing. Front Microbiol 8:2354

GOAL (2018) Shrimp production review. Retrieved from https://www.aquaculturealliance.org/. Accessed 24 Jun 2019

Gomez-Gil B, Soto-Rodriguez S, Lozano R, Betancourt-Lozano M (2014a) Draft genome sequence of Vibrio parahaemolyticus strain M0605, which causes severe mortalities of shrimps in Mexico. Genome Announc 2(1). https://doi.org/10.1128/genomeA.00055-14

Gomez-Gil B, Soto-Rodriguez S, Lozano R, Betancourt-Lozano (2014b) Draft genome sequence of Vibrio parahaemolyticus strain M0605, which causes severe mortalities of shrimps in Mexico. Genome Announc 2(2):e00055-e00014. https://doi.org/10.1128/genomeA.00055-14

Gomez-Jimenez S, Noriega-Orozco L, Sotelo-Mundo RR, Cantu-Robles VA, Cobian-Guemes AG, Cota-Verdugo RG et al (2014) High-quality draft genomes of two Vibrio parahaemolyticus strains aid in understanding acute hepatopancreatic necrosis disease of cultured shrimps in Mexico. Genome Announc 2(4):e00800–e00814
Han, Tang KF, Tran LH, Lighter DV (2015a) Photorhabdus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. Dis Aquat Org 113(1):33–40
Han JE, Tang KF, Pantoja CR, White BL, Lightner DV (2015b) qPCR assay for detecting and quantifying a virulence plasmid in acute hepatopancreatic necrosis disease (AHPND) due to pathogenic Vibrio parahaemolyticus. Aquaculture 442:12–15
Karunakaran C, Rajkumar R, Bhargava K (2015) Introduction to biosensors. biosensors and bioelectronics. Elsevier, Chennai, pp 1–68
Kondo H, Tinwongger S, Proespraiwong P, Mavichak R, Unajak S, Nozaki R, Hirono I (2014) Draft genome sequences of six strains of Vibrio parahaemolyticus isolated from early mortality syndrome/acute hepatopancreatic necrosis disease shrimp in Thailand. Genome Announc 2(2):e00221–e00214. https://doi.org/10.1128/genomeA.00221-14
Kondo H, Van PT, Dang LT, Hirono I (2015) Draft genome sequence of non-Vibrio parahaemolyticus acute hepatopancreatic necrosis disease strain KC13. 17.5, isolated from diseased shrimp in Vietnam. Genome Announce 3(5):e00978–e00915
Kumar R, Chang CC, Ng TH, Ding JY, Tseng TC, Lo CF, Wang HC (2018) Draft genome sequence of Vibrio parahaemolyticus strain M1-1, which causes acute hepatopancreatic necrosis disease in shrimp in Vietnam. Genome Announce 6(3):e01468–e01417
Leaño EM, Mohan C (2012) Early mortality syndrome threatens Asia’s shrimp farms. Global Aquac Advocate 2012(7/8):38–39
Lee CT, Chen IT, Yang YT, Ko TP, Huang YT, Huang JY et al (2015) The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc Natl Acad Sci 112(34):10798–10803
Letterova MI, Suarez CJ, Banaei N, Pinsky BA (2015) Next-generation sequencing for infectious disease diagnosis and management: a report of the Association for Molecular Pathology. J Mol Diagn 17(6):623–634. https://doi.org/10.1016/j.jmoldx.2015.07.004
Leobert D, Cabillon NAR, Catedral DD, Amar EC, Usero RC, Monotilla WD et al (2015) Acute hepatopancreatic necrosis disease (AHPND) outbreaks in Penaeus vannamei and P. monodon cultured in the Philippines. Dis Aquat Org 116(3):251–254
Lightner DV (1996) A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp. World Aquaculture Society, Baton Rouge
Lightner, Redman R, Pantoja C, Noble B, Tran L (2012a) Early mortality syndrome affects shrimp in Asia. Global Aquac Advocat 15(1):40
Lightner DV, Redman R, Pantoja C, Noble B, Tran L (2012b) Early mortality syndrome affects shrimp in Asia. Global Aquac Advocat 15(1):40
Liu L, Xiao J, Xia X, Pan Y, Yan S, Wang Y (2015) Draft genome sequence of Vibrio owensii strain SH-14, which causes shrimp acute hepatopancreatic necrosis disease. Genome Announe 3(6):e01395–e01315. https://doi.org/10.1128/genomeA.01395-15
Moothie S, Mattocks CJ, Wright CF (2011) Review of massively parallel DNA sequencing technologies. HUGO J 5(1–4):1–12. https://doi.org/10.1007/s11568-011-9156-3
NACA. (2012) Report of the asia pacific emergency regional consultation on the emerging shrimp disease: early mortality syndrome (EMS)/acute hepatopancreatic necrosis syndrome (AHPNS). Network of Aquaculture Centres in Asia-Pacific, Bangkok
NACA. (2014). Acute hepatopancreatic necrosis disease card (updated June 2014). https://www.enaca.org/publications/health/disease-cards/ahpndisease-card-2014.pdf. Accessed 26 Jun 2019.
Nkili-Meyong AA, Bigarré L, Labouba I, Vallaëys T, Avarre JC, Berthet N (2016) Contribution of next-generation sequencing to aquatic and fish virology. Intervirol 59(5–6):285–300. https://doi.org/10.1159/000477808
Nunan, L., Lightner, D., Pantoja, C., & Gomez-Jimenez, S. (2014). Detection of acute Hepatopancreatic necrosis disease (AHPND) in Mexico. Dis Aquat Org, 111(1), 81–86
OIE (2013a) Acute hepatopancreatic necrosis disease etiology epidemiology diagnosis prevention and control, OIE technical disease cards. https://www.oie.int/doc/ged/D14023.PDF. Accessed 15 Jul 2019
OIE. (2013b). Acute hepatopancreatic necrosis disease etiology epidemiology diagnosis prevention and control, OIE technical disease cards. https://www.oie.int/fileadmin/Home/eng/Health_standards/aahm/current/chapitre_ahpnd.pdf. Accessed 15 Jul 2019
Phisaisaiy K, Charoeansapsri W, Taengphu S, Dong HT, Sangsuriya P, Nguyen GT et al (2017) A natural Vibrio parahaemolyticus PirvA-B+ mutant kills shrimp but produces no PirvA toxins or AHPND lesions. Appl Environ Microbiol:00680–00617
Restrepo L, Bayot B, Betancourt I, Pinzón A (2016) Draft genome sequence of pathogenic bacteria *Vibrio parahaemolyticus* strain Ba94C2, associated with acute hepatopancreatic necrosis disease isolate from South America. Genomics Data 9:143–144. https://doi.org/10.1016/j.gdata.2016.08.008

Restrepo L, Bayot B, Arciniegas S, Bajaña L, Betancourt I, Panchana F, Muñoz AR (2018) PirVP genes causing AHPND identified in a new *Vibrio* species (*Vibrio punensis*) within the commensal *Orientalis* clade. Sci Rep 8(1):13080

Rizan N, Yew CY, Niknam MR, Krishnasamy J, Bhassu S, Hong GZ, Devadas S, Din MS, Tajuddin HA, Othman RY, Phang SM, Iwamoto M, Periasamy V (2018) Electronic properties of synthetic shrimp pathogens-derived DNA Schottky diodes. Sci Rep 8(1):896. https://doi.org/10.1038/s41598-017-18825-6

Santos HM, Tsai C-Y, Maquiling KRA, Tayo LL, Mariatulqabtiah AR, Lee C-W, Chuang KP (2020) Diagnosis and potential treatments for acute hepatopancreatic necrosis disease (AHPND): a review. Aquac Int 28(1):169–185

Schürch AC, Arredondo-Alonso S, Willems RJL, Goering RV (2018) Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect 24(4):350–354. https://doi.org/10.1016/j.cmi.2017.12.016

Sirikhariharin R, Tengchayaphum S, Sritunyalucksana K, Thitamadee S, Flegel TW, Mavichak R, Roepsraiwong P (2014) A new and improved PCR method for detection of AHPND bacteria. Network of Aquaculture Centres in Asia-Pacific (NACA) 7(9)

Soto-Rodriguez SA, Gomez-Gil B, Lozano-Olvera R, Betancourt-Lozano M, Morales-Covarrubias MS (2015) Field and experimental evidence of *Vibrio parahaemolyticus* as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in Northwestern Mexico. J Appl Environ Microbiol 81(5):1689–1699

Sritunyalucksana K, Danagtip S, Sanguanrut P, Sirikhariharin R, Tengchayaphum R, Thitamadee S, Mavichak R, Roepsraiwong P, Flegel TW (2015) A two-tube, nested PCR detection method for AHPND bacteria. Network of Aquaculture Centres in Asia-Pacific, Bangkok

Thong KL, Ung EH, Thong KL, Ye SM, Wee WY, Yap KP (2014) An AP1, 2 and 3 PCR positive non-*Vibrio parahaemolyticus* bacteria with AHPND histopathology. Paper presented at the 9th symposium on diseases in Asian aquaculture (DAAA9), Ho Chi Minh City

Tinwongger S, Roepsraiwong P, Thawonsuwan J, Srivianayos P, Kongkumnnerd J, Chaweepack T et al (2014) Development of PCR diagnosis for shrimp acute hepatopancreatic necrosis disease (AHPND) strain of *Vibrio parahaemolyticus*. Fish Path 49(4):159–164

Tran L, Nunan L, Redman RM, Mohney LL, Pantjoa CR, Fitzsimmons K, Lightner DV (2013) Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Dis Aquat Org 105(1):45–55

Wangman P, Chaivisuthangkura P, Sritunyalucksana K, Tengchayaphum S, Senapin S, Pengsuk C, Sithigornkul P, Longyang S (2017) Development of monoclonal antibodies specific to ToxA and ToxB of *Vibrio parahaemolyticus* that cause acute hepatopancreatic necrosis disease (AHPND). Aquaculture 474:75–81. https://doi.org/10.1016/j.aquaculture.2017.03.039

Yang, Chen IT, Lee CT, Chen CY, Lin SS, Hor LI et al (2014) Draft genome sequences of four strains of *Vibrio parahaemolyticus*, three of which cause early mortality syndrome/acute hepatopancreatic necrosis disease in shrimp in China and Thailand. Genome Announc 2(5):e00816–e00814. https://doi.org/10.1128/genomeA.00816-14

Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KLJ, Genetics, (2020) Comparative genomic provides insight into the virulence and genetic diversity of *Vibrio parahaemolyticus* associated with shrimp acute hepatopancreatic necrosis disease. Infect Genet Evol 83:104347

Zorriehzahra M, Banaaderakhshan R (2015) Early mortality syndrome (EMS) as new emerging threat in shrimp industry. Adv Anim Vet Sci 3(2S):64–72

Ahn YS, Piamsomboon P, Tang KF, Han JE, Kim JH (2017) Complete genome sequence of acute hepatopancreatic necrosis diseasecausing *Vibrio campbellii* LA16-V1, isolated from *Penaeus vannamei* cultured in a Latin American country. Genome Announce 5(37):e01011–17

Li P, Kinch LN, Ray A, Dalia AB, Cong Q, Nunan LM, Camilli A, Grishin NV, Salomon D, Orth K (2017) Acute hepatopancreatic necrosis disease-causing *Vibrio parahaemolyticus* strains maintain an antibacterial type VI secretion system with versatile effector repertoires. Appl Environ Microbiol 83(13):e00737–17

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.