Characteristics of axial Length and Binocular axial Length Difference in Chinese Children and Teenagers

Xiuyu Mao
Eye & ENT Hospital of Fudan University

Minjie Chen
Eye & ENT Hospital of Fudan University

Jinhui Dai (jinhuidai@163.com)
Eye & ENT Hospital of Fudan University

Xinghuai Sun
Eye & ENT Hospital of Fudan University

Research Article

Keywords: Axial length, Axial anisometropia, Outdoor activities, Total media exposure, Sleep

DOI: https://doi.org/10.21203/rs.3.rs-123249/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: To investigate the characteristics of axial length and binocular axial length difference in Chinese children and teenagers.

Methods: The axial length and binocular axial length difference of 4422 children were retrospectively reviewed in this school-based study, while duration of outdoor activities, total media exposure (including electronic devices usage and TV watching) and sleep were also analyzed.

Results: The average axial length of all ages were 23.20±0.02mm in the right eyes and 23.18±0.02mm in the left eyes. The binocular axial difference was 0.16±0.24mm. There was a slow rising trend in axial length (AL) within age. Mean AL in boys was 0.49mm longer than that in girls. Those who wore frame glasses were generally having shorter AL in preschool children (mean AL: 22.29±0.69mm vs 21.84±1.06mms) and longer AL in elder children (mean AL: 24.11±1.34mm, 25.06±1.07mm, 25.39±1.02mm vs 23.07±0.83mm, 23.84±0.95mm, 24.05±0.98mm). No significant difference was found between age in AL and ALD since age 15 and age 12. Parental myopic background was related to AL in all age groups, and total media exposure was related to longer AL in junior and senior high school students. Longer outdoor activities, longer sleep duration were associated with a shorter AL in primary school students. ALD was only associated with age in primary school students.

Conclusion

Axial length and binocular axial length difference varied within age, and they did not show an increase since the age of 15 and 12, respectively. Male, longer sleep and longer outdoor durations were associating with shorter axial length in younger children; female, longer total media exposure and parental myopic background were associating with a longer axial length especially in adolescents.

Background

Anisometropia, a phenomenon that could be the cause and effect of anomalous refractive development or abnormal visual stimuli, was variable throughout childhood and puberty. The incidence rate of anisometropia varied through different ages[1], and whether the magnitude of anisometropia correlated with myopia progression was yet to be discovered[2]. Anisometropia was generally adopted as a difference of cycloplegic refraction > 1.0D in both eyes. It could directly affect stereopsis, lead to aniseikonia[3] or amblyopia[4][5].

For young children and teens, axial length gradually grows longer with age, while asymmetrical binocular axial growth in two eyes could result in temporal or permanent axial-anisometropia. According to previous studies, anisometropia was mainly associated with hyperopia[6], strabismus[7], accommodative responsibility[8] or age[9][10]. Since anisometropia might have something to do with later-onset myopia, hyperopia or even amblyopia, the relation between anisometropia and myopia-related living habits were worthy of being investigated. Most studies were more engaged in analyzing refractive anisometropia, but
our research managed to analyze axial anisometropia by analyzing the differences of axial length between both eyes throughout childhood and puberty, and life habits as well as parental characteristics were also taken into consideration.

Methods

Participants and measurements

It was a cross-sectional school-based study, and 4422 children and teenagers aged 3 to 17 were enrolled from four kindergartens, two primary schools, two junior high schools and two senior high schools in Pujiang Downtown, Shanghai, China. All were the race of Han. The participants received ocular examinations including uncorrected visual acuity (UCVA), noncycloplegic autorefraction, keratometry, axial length (AL, from at least 3 consecutive examinations by IOL Master). Exclusion criteria included strabismus, cataract, glaucoma and previous ocular history of either eye. Parents or their legal guardians were required to fill in a questionnaire that recorded children's daily duration of TV-watching, electronic devices usage, outdoor activities and sleep as well as their own myopic state and education degree. The study was approved by Review Board of Fudan Eye and ENT hospital, and written informed consent was obtained from all participants. The study conducted was adhered to the tenets of the Declaration of Helsinki.

Statistical analysis

Statistical analyses were performed with SPSS 22.0. Continuous data were presented as mean ± SD, and discrete data were presented as number (%). The assumption of normal distribution of data was tested by the Shapiro-Wilk test. Differences in continuous parameters were examined with one-way ANOVA and in discrete parameters were Chi-square tests. LSD post-hoc tests were used for subgroups tests. The associations between axial length, binocular axial length difference and other parameters were performed with stepwise multivariate analysis. All P values were two sided and $P<0.05$ was considered to possess statistically significance.

Results

General characteristics

A total of 4422 children and teenagers were enrolled in this study, and their general characteristics were listed in Table 1. Binocular axial length difference was described as ALD. Boys had an average 0.49 mm longer AL than girls, but no significant difference was found in ALD between gender. A high correlation was found between right eyes and left eyes in all the students ($r = 0.977$, $P<0.001$).
Characteristics	N (%)	Mean ± SD or median (range)
Gender		
Boy	2233(50.5%)	
Girl	2189(49.5%)	
Age (years)	8.04 ± 4.25	
Grade		
Preschool	2051(46.4%)	
Primary school	1080(24.4%)	
Junior high school	792(17.9%)	
Senior high school	499(11.3%)	
UCVA (right eyes, logMAR)	0.10(0-0.22)	
UCVA (left eyes, logMAR)	0.10(0-0.22)	
AL (right eyes)	23.20 ± 1.38	
AL (left eyes)	23.18 ± 1.36	
Average AL (mm)	23.19 ± 1.37	
ALD (mm)	0.16 ± 0.24	
CR (mm)	7.81 ± 0.26	
AL/CR	2.97 ± 0.16	
Paternal age (years)	28.48 ± 0.06	
Maternal age (years)	26.33 ± 0.06	
Education degree of father		
Junior high school and below	844(19.1%)	
Senior high school	1505(34.0%)	
College	1088(24.6%)	
University and above	974(22.0%)	
Education degree of mother		
Junior high school and below	1099(24.9%)	
Senior high school	1342(30.3%)	
Characteristics	N (%)	Mean ± SD or median (range)
--	-------	----------------------------
College	1138(25.7%)	
University and above	827(18.7%)	
Weekly outdoor activity (hours)		
< 7 h	426(9.6%)	
7 h-14 h	2382(53.9%)	
15 h-21 h	1291(29.2%)	
22 h-28 h	323(7.3%)	
Weekly electronic devices period (hours)		
< 10 h	281(6.4%)	
10 h-14 h	3736(84.5%)	
>14 h	405(9.2%)	
Weekly sleep duration (hours)		61.88 ± 7.31

Relationship between AL, ALD and age

There was a slow but steady increase in AL in children from age 3 to age 14, and after age 15, no statistically significant differences were found. Remarkable ascending trend were found in the students aged 6 to 7 and 11 to 12, in which an average of 0.39mm and 0.41mm were found (Figure 1A). The average AL in each group was 22.28± 0.70mmin preschoolers, 23.21± 0.98mm in primary school students, 24.35±1.17mm in junior high school students and 25.02± 1.18mm in senior high school students (P<0.001, Figure 1B). ALD also varied with ages, but ever since the age of 12, it showed no significant difference in either two consecutive years (Figure 1C). ALD was significantly different in the four groups (Figure 1D). High relevance was found in AL in both eyes (r=0.977, P<0.001), in which OD AL was 0.022mm longer than OS AL(P<0.001).

UCVA and LCVA difference in both eyes

OD UCVA was 0.004 worse than OS UCVA(P = 0.027) generally, while no significant difference was found in LCVA in both eyes. UCVA in preschoolers and primary school students were superior than that in junior and senior high school students; and the differences of UCVA between both eyes were higher than elder students. LCVA in primary and junior high school students were superior than that in senior high school students.
students and inferior than that in preschoolers. The differences of LCVA in junior and senior high school students were significantly higher than preschoolers and primary school students. The comparison of UCVA and LCVA between both eye could be obtained from Table 2.

Table 2
UCVA and lens-corrected VA(LCVA) in both eyes

	preschool	primary school	junior high school	senior high school
UCVA				
OD	0.078(0.073 to 0.084)	0.074(0.058 to 0.090)	0.255(0.228 to 0.281)	0.421(0.395 to 0.455)
OS	0.080(0.075 to 0.085)	0.071(0.056 to 0.086)	0.241(0.215 to 0.257)	0.403(0.377 to 0.437)
Aniso-UCVA	P< 0.001			
LCVA				
OD	0.076(0.071 to 0.081)	0.015(0.005 to 0.026)	0.012(-0.004 to 0.027)	-0.022(-0.036 to -0.007)
OS	0.078(0.073 to 0.083)	0.017(0.007 to 0.027)	0.006(-0.010 to 0.021)	-0.031(-0.044 to -0.018)
Aniso-LCVA	P< 0.001			

Relating factors in AL and ALD

A multivariate linear regression was conducted in all ages and four different age groups(Table 3). Female had a relatively shorter AL than that in male. “One of the parents was myopic”, “both parents were myopic” were associating with a longer AL in all the age groups compared with “none of the parents were myopic”. Weekly total media exposure of “10-14h” and “>14h” were associating with a longer AL compared with total media exposure of “<10h” in junior and senior high school students. Maternal educational degree of “University and above” were associating with a longer AL in junior high school students compared with those educational degree of “junior high school or below”. Weekly outdoor activities of “7-14h” and “14-21h” were associating with a shorter AL compared with “<7h” in primary school students.
Table 3
Associating factors in AL in the four groups (coefficients and 95% CI)

	preschool	primary school	junior high school	senior high school
Gender	-0.519(-0.575 to -0.463) ‡	-0.571(-0.676 to -0.466) ‡	-0.685(-0.817 to -0.553) ‡	-0.623(-0.798 to -0.448) ‡
Parental myopia (ref: none was myopic)	0.071(0.004 to 0.137) *	0.045(-0.082 to 0.172)	0.183(0.031 to 0.335) *	0.062(-0.134 to 0.257)
One of the parents was myopic	0.068(-0.010 to 0.146)	0.221(0.059 to 0.383) †	0.266(0.034 to 0.498) *	0.348(0.077 to 0.619) *
Both parents were myopic	/	0.221(0.059 to 0.383) †	/	/
Outdoor activities (ref: less than 7 hrs/week)	0.273(-0.525 to -0.021) *	/	/	/
7–14 h	/	/	/	/
14–21 h	/	/	/	/
>21 h	/	/	/	/
Total electric time (ref: less than 10 hrs/week)	0.513(0.211 to 0.814) ‡	0.652(0.122 to 1.182) *	0.544(-0.052 to 1.139)	
10–14 h	/	/	/	/
>14 h	/	/	/	/
Maternal educational level (ref: junior high school and below)	0.047(-0.193 to 0.288)	0.169(-0.087 to 0.425)	/	/
Senior high school	/	/	/	/
College	/	/	/	/

Statistical significance: *P<0.05, †P<0.01, ‡P<0.001.

Enter mode, which involved gender, average sleep duration(hours per week), average outdoor duration(four groups, ref: less than 7 hours per week), average electronic and TV duration(three groups, ref: less than 7 hours per week), parental myopic state(three groups, ref: none of them were myopes), education degree of father or mother(four groups, ref: lower than junior high school)
Discussion

Axial length is one of the most valuable parameters extending with emmetropization. The annual ocular axial elongation of children in lower grade (age 6 to 9) was between 0.21 mm [11] and 0.70 mm [12]. In children aged 6 to 12, the annual axial elongation was 0.36 mm [13]. Apart from genetic factors, activities such as outdoor durations, indoor studying and near work [14] had been shown to affect refractive state as well.

Light was essential for ocular growth, and its coorelations with outdoor activites, sleep duration and myopia were widely investigated. Lieberman et al [15] first hypothesized that natural outdoor illumination and artificial indoor lighting might suppress melatonin secretion, interfering with sleep. Abbott et al[16] also found that prolonged outdoor duration for young adults would raise the secretion of melatonin in the morning, associating with sleep disturbance and daytime fatigue. The interact between sleep and myopia could also found its molecular mechanism in regulating circadian rhythms. High intensity of light exposure might inhibit myopia by stimulating the ipRGCs (intrinsically photosensitive retinal ganglion cells) which have synoptic connections with dopaminergic amacrine cells[17]. Dopamine then modulates melanopsin mRNA as to modify retinal circadian rhythms[18]. Besides, prolonged indoor light exposure did not exhibit any effect on myopia progression [19]. Kearney et al[20] found that in myopic young adults, the concentration of melatonin was higher than that in non-myopes. Ayaki et al[21] discovered that children with high myopia were more inclined to have sleep problems. Liu et al[22] further claimed that it was the late bedtime that took precedence over sleep duration as a predictive factor toward myopia progression. It could be concluded that melatonin is more abundant in myopes, but its effects on sleep...
might vary during different age periods. Insufficiency or excess of light exposure meant elaborate modifications of ocular growth based on several mechanisms.

Excessive “screen time” was significantly correlated with sleep deprivation in preschooler[23], school-aged children[24], adolescents [25] or young adults [26]. There were many studies ascribing myopia development to electronic devices usage or TV watching [27][28]. Using electronic devices or watching TV meant potent risk of eye overuse in near-distance, increasing accommodative spasm, or even lead to acute acquired comitant esotropia[29] in rare cases. We found that average axial length only correlated with TV duration and electronic devices usage in junior and senior high school students, and an average of 1 to 3 hours of outdoor duration per day was associated with a shorter axial length in primary school students. Guo et al[30] found that shorter time spent on outdoor activities and more time studying indoors were significantly correlated with a longer axial length in higher grade children (grade 4) instead of in lower grade children (grade 1). It could be inferred that ocular growth could be accelerated more prominently in elder children, and the outdoor durations might not be as effective a protective factor toward ocular length as other therapies such as orthokeratology[31][32] or atropine[33]. Apart from social factors, maternal educational degree and parental myopic background that implied genetic factors were also of importance for myopia or axial length prediction[34][35][36].

We noticed that only age was associated with ALD in primary school students, and other social as well as life habits were irrelevant in all the students. The harmfulness of anisometropia was well described in previous studies as for anisometropia and refractive error were the main amblyogenic factors toward children older than 3-year-old in China[37]. Kulp et al[38] found that in children aged 3 to 5, higher level of hyperopia was the risk factor for amblyopia and strabismus, which was also the case for studies conducted by Pascual et al[39]. The difference[40] in axial length between emmetropic eyes, myopic or hyperopic eyes were 0.80 mm and 0.44 mm, respectively. According to Patel et al[5], there was an average ALD of 1.57 mm(average 0.32 to 3.16 mm) in in children aged 7 to 8 who had anisometropic amblyopia(defined as the difference of spherical equivalent refraction > 3D). Hansen et al[41] also found that in amblyopic eyes(the difference of spherical equivalent refraction > 2D or axial length difference ≥ 1 mm), the mean axial length was 0.6 to 1 mm shorter than their counterparts. Limited by the cross-sectional nature of this study, we could not provide a precise conclusion on whether children with shorter or longer AL were more likely to have axial anisometropia, but the risk factors of anisometropia in different age groups should be underlined.

To date, researches that focused on axial anisometropia were listed in Table 4.
Table 4
Reports on refractive/axial anisometropia during childhood and adolescence

No.	Author, year	Age	Number	Highlights
1	Abrahamsson et al[42],1990	1 year until 4 years	310	Anisometropia was probably in a decline from infancy or was variable during emmetropization.
2	Tong et al[9],2006	7–9 years	1979	Anisometropia was correlated with bilateral axial length difference and was more prominent in myopic anisometropia
3	Chia et al[43],2009	9 years	543	No significant difference in spherical equivalent refraction and axial length between dominant eyes and nondominant eyes
4	Deng et al[44],2012	6-month 5 years, 12–15 years	1827	1. The prevalence of anisometropia increases in children aged 12 to 15 2. Anisometropia was more prominent in myopes and hyperopes.
5	Donoghue[6],2013	6–7 years 12–13 years	1050	1. Anisometropia was more common in children aged 12 to 13 with hyperopia ≥ +2DS 2. Anisometric eyes had greater axial length asymmetry than non-anisometric eyes
6	Deng et al[45],2014	9.29 ± 1.30 (at baseline)	358(at baseline)	1. In children who had more axial elongation over 13 years of observation, axial differences between both eyes (aniso-AL) were also more prominent. 2. The amount of anisometropia at commencement did not affect myopia progression.
7	Hu[10],2016	10.0 ± 3.3 years (4–18 years)	6025	1. Refractive anisometropia was associated with longer axial length and larger interocular difference in axial length 2. Myopic anisometropia was correlated with paternal education and more time indoors while hyperopic anisometropia did not correlate with eye care habits.
8	Palamar et al[46],2016	11.09 ± 5.27 (4 to 33 months)	42	Axial length and mean keratometry were the leading causes of hyperopic anisometropia and rendered a total of 2.82D/mm and 2.14 D/D of refractive difference.
No.	Author, year	Age	Number	Highlights
-----	----------------------	----------------------	--------	---
9	Hansen et al[41],2019	11.7 ± 0.4 years	1335	Six children that were axial anisometropia (intraocular difference in axial lengths ≥ 1 mm) were all amblyopic.
		(10.5–12.8 years)		
10	Bach et al[47],2019	30.62 ± 18.04 months	165	1. Mean AL: 21.37 ± 1.03 mm
		(3 months to 7 years)		2. The steepest increase of AL was present in 10 months of age
				3. No statistical difference was found in axial length between both eyes.

Limitations

There were several limitations in our study. First, the lack of cycloplegic refraction data prohibited us from comparing our findings with other myopic or anisometric epidemiological researches. However, we demonstrated a whole axial length distribution and bilateral axial length difference in students aged from 3 to 17, and also investigated the influencing factors in bilateral ocular development. Second, completing of axial length data in children younger than age three could further illustrate the average axial length progression. Third, longitudinal follow-up could provide more explicit cause-and-effect relationship of a certain kind of activity on monocular and binocular growth. Hence, a long-term follow-up visit was required.

Conclusion

In summary, axial length increased within age, and bilateral axial length difference was only significantly associated with age in primary school students. An average of 1 to 3 hours of outdoor durations per day and a longer sleep duration were associating with shorter axial length in primary school students, while longer total media exposure and parental myopic state were associating with a longer axial length in all children, especially for those in junior or senior high school.

Abbreviations

AL: Axial length; ALD: Axial length difference in both eyes; UCVA: Uncorrected visual acuity; LCVA: Lens-corrected visual acuity

Declarations

Not applicable.
Funding

Not applicable.

Availability of data and materials

The data and the analysis of the current study could be acquired from the corresponding authors if needed.

Authors contributions

XYM and MJC wrote the main manuscript text and prepared figure in the research; XYM and MJC made the statistical analysis; MXY, MJC and JHD made the interpretation of the data; JHD and XHS supervised and gave the critical revision of the manuscript. All authors reviewed and approved the manuscript.

Ethics approval and consent to participate

The study was approved by the Review Board of Fudan Eye and ENT hospital, adhering to the tenets of the Declaration of Helsinki. The purpose and the methods of the study were fully explained to parents or legal guardians, and informed consent was obtained from a parent and/or legal guardian as subjects under age 18.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Financial Disclosure

The authors had no commercial interest in any materials discussed in this article.

References

1. Huynh SC, Wang XY, Ip J, Robaei D, Kifley A, Rose KA, et al. Prevalence and associations of anisometropia and aniso-astigmatism in a population based sample of 6 year old children. Br J
2. Deng L, Gwiazda J, RE M, Scheiman M, Weissberg E, KD F, et al. Limited change in anisometropia and aniso-axial length over 13 years in myopic children enrolled in the Correction of Myopia Evaluation Trial. Invest Ophthmol Vis Sci. 2014;55:2097–105.

3. I.Ryan V. Predicting aniseikonia in anisometropia. Am J OPTOM&PHYSIOL Opt. 1975;52:95–105.

4. Lee CE, Lee YC, Lee SY. Factors influencing the prevalence of amblyopia in children with anisometropia. Korean J Ophthalmol. 2010;24:225–9.

5. Patel VS, Simon JW, Schultze RL. Anisometropic amblyopia: axial length versus corneal curvature in children with severe refractive imbalance. J aapos. 2010;14:396–8.

6. O’Donoghue L, JF M, NS L, AR R, CG O, KJ S. Profile of anisometropia and aniso-astigmatism in children: prevalence and association with age, ocular biometric measures, and refractive status. Invest Ophthalmol Vis Sci. 2013;54:602–8.

7. Smith EL, Hung LF, Arumugam B, Wensveen JM, Chino YM, Harwerth RS. Observations on the relationship between anisometropia, amblyopia and strabismus. Vision Res. 2017;134:26–42.

8. Lin Z, Vasudevan B, Liang YB, Zhang YC, Zhao SQ, Yang XD, et al. Nearwork-induced transient myopia (NITM) in anisometropia. Ophthalmic Physiol Opt. 2013;33:311–7.

9. Tong L, YH C, Gazzard G, Tan D, SM S. Longitudinal study of anisometropia in Singaporean school children. Invest Ophthmol Vis Sci. 2006;47:3247–52.

10. Hu YY, Wu JF, Lu TL, Wu H, Sun W, Guo DD, et al. Prevalence and associations of anisometropia in children. Investig Ophthalmol Vis Sci. 2016;57:979–88.

11. Tideman JWL, Polling JR, Jaddoe VWV, Vingerling JR, Klaver CCW. Environmental Risk Factors Can Reduce Axial Length Elongation and Myopia Incidence in 6- to 9-Year-Old Children. Ophthalmology. 2018;1–10.

12. Ma Y, Zou H, Lin S, Xu X, Zhao R, Lu L, et al. Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin Exp Ophthalmol. 2018;46:861–72.

13. Sankaridurg P, Donovan L, Varnas S, Ho A, Chen X, Martinez A, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci. 2010;87:631–41.

14. Hepsen IF, Evereklioglu C, Bayramlar H. The effect of reading and near-work on the development of myopia in emmetropic boys: a prospective, controlled, three-year follow-up study. Vision Res. 2001;41:2511–20.

15. Lieberman HR, Garfield G, Waldhauser F, Lynch HJ, Wurtman RJ. Possible behavioral consequences of light-induced changes in melatonin availability. Ann N Y Acad Sci. 1985;453:242–52.

16. Abbott KS, Queener HM, Ostrin LA. The ipRGC-Driven Pupil Response with Light Exposure, Refractive Error, and Sleep. Optom Vis Sci. 2018;95:323–31.

17. Ostrin LA. The ipRGC-driven pupil response with light exposure and refractive error in children. Ophthalmic Physiol Opt. 2018;38:503–15.
18. Sakamoto K, Liu C, Kasamatsu M, Pozdeyev N V., Iuvone PM, Tosini G. Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci. 2005;22:3129–36.

19. Zhou X, An J, Wu X, Lu R, Huang Q, Xie R, et al. Relative axial myopia induced by prolonged light exposure in C57BL/6 mice. Photochem Photobiol. 2010;86:131–7.

20. Kearney S, O’Donoghue L, Pourshahidi LK, Cobice D, Saunders KJ. Myopes have significantly higher serum melatonin concentrations than non-myopes. Ophthalmic Physiol Opt. 2017;37:557–67.

21. Ayaki M, Torii H, Tsubota K, Negishi K. Decreased sleep quality in high myopia children. Sci Rep. 2016;6.

22. Liu XN, Naduvilath TJ, Wang J, Xiong S, He X, Xu X, et al. Sleeping late is a risk factor for myopia development amongst school-aged children in China. Sci Rep. 2020;10:1–11.

23. Tso W, Rao N, Jiang F, Li AM, Lee SL, Ho FK, et al. Sleep Duration and School Readiness of Chinese Preschool Children. J Pediatr. 2016;169:266–71.

24. Jiang X, Hardy LL, Baur LA, Ding D, Wang L, Shi H. Sleep duration, schedule and quality among urban Chinese children and adolescents: associations with routine after-school activities. PLoS One. 2015;10:e0115326.

25. Mak YW, Wu CS, Hui DW, Lam SP, Tse HY, Yu WY, et al. Association between screen viewing duration and sleep duration, sleep quality, and excessive daytime sleepiness among adolescents in Hong Kong. Int J Env Res Public Heal. 2014;11:11201–19.

26. Wu X, Tao S, Zhang Y, Zhang S, Tao F. Low physical activity and high screen time can increase the risks of mental health problems and poor sleep quality among Chinese college students. PLoS One. 2015;10:e0119607.

27. You QS, Wu LJ, Duan JL, Luo YX, Liu LJ, Li X, et al. Factors Associated with Myopia in School Children in China: The Beijing Childhood Eye Study. PLoS One. 2012;7:1–10.

28. Lin H, Long E, Ding X, Diao H, Chen Z, Liu R, et al. Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records: A retrospective, multicentre machine learning study. PLoS Med. 2018;15:1–17.

29. Lee HS, Park SW, Heo H. Acute acquired comitant esotropia related to excessive Smartphone use. BMC Ophthalmol. 2016;16.

30. Guo Y, Liu LJ, Xu L, Lv YY, Tang P, Feng Y, et al. Outdoor Activity and Myopia among Primary Students in Rural and Urban. Am Acad Ophthalmol. 2012;277–83.

31. Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci. 2013;54:6510–7.

32. He M, Du Y, Liu Q, Ren C, Liu J, Wang Q, et al. Effects of orthokeratology on the progression of low to moderate myopia in Chinese children. BMC Ophthalmol. 2016;16:126.

33. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the Treatment of Childhood Myopia. Ophthalmology. 2006;113:2285–91.
34. Lee CW, Fang SY, Tsai DC, Huang N, Hsu CC, Chen SY, et al. Prevalence and association of refractive anisometropia with near work habits among young schoolchildren: The evidence from a population-based study. PLoS One. 2017;12:1–15.

35. Tideman JWL, Polling JR, Hofman A, Jaddoe VWV, Mackenbach JP, Klaver CCW. Environmental factors explain socioeconomic prevalence differences in myopia in 6-year-old children. Br J Ophthalmol. 2018;102:243–7.

36. Hsu C-C, Huang N, Lin P-Y, Fang S-Y, Tsai D-C, Chen S-Y, et al. Risk factors for myopia progression in second-grade primary school children in Taipei: a population-based cohort study. Br J Ophthalmol. 2017;101:1611–7.

37. Li YP, Zhou MW, Forster SH, Chen SY, Qi X, Zhang HM, et al. Prevalence of amblyopia among preschool children in central south China. Int J Ophthalmol. 2019;12:820–5.

38. Kulp MT, Ying GS, Huang J, Maguire M, Quinn G, Ciner EB, et al. Associations between hyperopia and other vision and refractive error characteristics. Optom Vis Sci. 2014;91:383–9.

39. Pascual M, Huang J, Maguire MG, Kulp MT, Quinn GE, Ciner E, et al. Risk factors for amblyopia in the vision in preschoolers study. Ophthalmology. 2014;121:622-9.e1.

40. He X, Zou H, Lu L, Zhao R, Zhao H, Li Q, et al. Axial length/corneal radius ratio: association with refractive state and role on myopia detection combined with visual acuity in Chinese schoolchildren. PLoS One. 2015;10:e0111766.

41. Hansen MH, Munch IC, Li XQ, Skovgaard AM, Olsen EM, Larsen M, et al. Visual acuity and amblyopia prevalence in 11- to 12-year-old Danish children from the Copenhagen Child Cohort 2000. Acta Ophthalmol. 2019;97:29–35.

42. Abrahamsson M, Fabian G, Sjöstrand J. A longitudinal study of a population based sample of astigmatic children: II. The changeability of anisometropia. Acta Ophthalmol. 1990;68:435–40.

43. Chia A, Jaurigue A, Gazzard G, Wang Y, Tan D, RA S, et al. Ocular dominance, laterality, and refraction in Singaporean children. Invest Ophthalmol Vis Sci. 2007;48:3533–6.

44. Deng L, Gwiazda JE. Anisometropia in children from infancy to 15 years. Investig Ophthalmol Vis Sci. 2012;53:3782–7.

45. Deng L, Gwiazda J, Manny RE, Scheiman M, Weissberg E, Fern KD, et al. Limited change in anisometropia and aniso-axial length over 13 years in myopic children enrolled in the correction of myopia evaluation trial. Investig Ophthalmol Vis Sci. 2014;55:2097–105.

46. Palamar M, Degirmenci C, Biler ED, Egrilmez S, Uretmen O, Yagci A. Evaluation of the anatomic and refractive differences in hyperopic anisometropia. Int Ophthalmol. 2016;36:881–6.

47. Bach A, Villegas VM, Gold AS, Shi W, Murray TG. Axial length development in children. Int J Ophthalmol. 2019;12:815–9.