Spin fluctuations of the uranium 5f-electrons in UN according to 14N-NMR data

Vasily V Ogloblichev1, Stanislav V Verkhovskii1, Aleksey M Potapov2, Aleksandr Yu Germov1, Almaz F Sadykov1

1M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620108 Russia

2The Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137 Russia

E-mail: ogloblichev@imp.uran.ru

Abstract. The results of the study of the paramagnetic region of uranium mononitride by the method of nuclear magnetic resonance (NMR) of 14N nuclei are presented. The 14N NMR spectra, the Knight shifts K, the spin-lattice relaxation times T_1 have been obtained within the temperature range $T = 60 – 375$ K and at magnetic fields 92.8 kOe and 117.5 kOe. The temperature dependence of the Knight shift of the 14N line is proportional to the spin susceptibility χ of 5f-electrons of uranium. The ratio of the experimentally determined value TT_1K^2 to the theoretically calculated value of the Korringa contribution is 21.5 (at $T = 295$ K), which is significantly more than for common metals. This suggests that nuclear relaxation is based on the same mechanism as the Knight shift, namely, the indirect connection between the 14N nuclei and the localized magnetic moments of uranium through conduction electrons. The experimental results on the T-dependence of the spin-lattice relaxation rate of 14N also do not contradict the assumption that uranium mononitride is a concentrated Kondo system.

1. Introduction

Properties of actinide compounds significantly depend on the degree of localization of 5f-electrons, which is usually characterized by the Hill’s criterion proposed in 1970 [1]. The latter is determined by the ratio between the average radius of the 5f-shell of the actinide atom to half the distance between the nearest actinides. The distance $D = 3.46$ Å [2, 3] between U-U in uranium mononitride (UN) is close to the critical value $D_c = 3.5$ Å of uranium compounds. Uranium mononitride is a representative of actinide compounds with metallic conductivity, in which 5f-electrons demonstrate local and band magnetism. For half a century, experimental and theoretical studies of actinide materials have focused on such behavior of 5f-electrons [4, 5, 6].

This study presents the features of the charge and spin state of uranium magnetic ions at the paramagnetic phase of uranium mononitride by nuclear magnetic resonance (NMR) spectroscopy using the 14N nuclei.

2. Samples and experimental procedure

The 14N NMR spectra, spin-lattice relaxation times T_1 have been obtained in the temperature range $T = 60 – 375$ K. Registration of NMR spectra were performed using an AVANCE III 500
Figure 1. 14N NMR spectra in the UN measured at a temperature $T = 295$ K at the external magnetic field 117.5 kOe. The inset shows the crystal structure of UN (NaCl-type).

and SXP 4-100 (Bruker) pulse NMR spectrometers equipped with superconducting magnets $H = 117.5$ kOe and 92.8 kOe, respectively.

The UN powder sample under study was a cylinder of 6 mm in diameter and a weight of 1.8 g. X-ray analysis of this sample has shown that UN has a cubic NaCl (space group $Fm\bar{3}m$ (225), inset in Figure 1) lattice with the unit cell parameter $a = 4.8981(8)$ Å (at $T = 295$ K). The obtained results are in agreement with the data from previous study [3].

The 14N NMR spectra were recorded using the spin-echo technique ($p - t_{del} - 2p - t_{del} -$ echo), the p-pulse duration was $p = 7$ µs, the delay between pulses was $t_{del} = 100$ µs. The spin-lattice relaxation time T_1 was measured by the method of inversion and subsequent recovery of nuclear magnetization. We used pulse sequence $2p - t_{inv} - p - t_{del} - 2p - t_{del} -$ echo with a constant delay of $t_{del} = 100$ µs and the time interval $t_{inv} = 0.01 - 2$ s. The recovery of nuclear magnetization was fitted by exponential dependence $M(t_{inv}) = M_0 - 2 \cdot M_0 \cdot \exp(-t_{inv}/T_1)$ [2, 7, 8]. M_0 is the equilibrium nuclear magnetization of the spin system.

Magnetization measurements were performed using SQUID-magnitometer MPMS (Quantum Design) in constant magnetic field up to 50 kOe at the temperature range from 2 K to 320 K.

Magnetization, NMR and X-ray diffraction data have been obtained from the same sample.

3. Experimental results and discussion

The 14N NMR spectrum of uranium mononitride is shown in Figure 1. The spectrum is satisfactorily described by symmetric gaussian line at $T = 295$ K. The nucleus of the isotope 14N has spin $I = 1$ and quadrupole moment $eQ = 0.0193 \times 10^{-24}$ cm2 [9], however spectral splitting into two lines (due to transitions $m_I = +1 \leftrightarrow 0$ and $m_I = 0 \leftrightarrow -1$ does not occur due to the
The temperature dependence of the shift of the ^{14}N NMR line K in UN is shown. On the inset inverse K^{-1} dependence on the temperature is presented. The solid line is the result of the data approximation (see text).

The cubic structure of UN [7, 10].

The temperature dependence of the ^{14}N NMR line shift $K(T)$ is satisfactorily described by the dependence $K(T) = K_0 + C/(T - \theta_{\text{nmr}})$ (Figure 2). The temperature-independent contribution $K_0 = 0.050 (15)$ % is close to the Knight shift value of nitrogen in the metallic non-magnetic thorium mononitride $K(\text{ThN}) = 0.107(30)$ %. Absolute value of the characteristic temperature $\theta_{\text{nmr}} = -156(12)$ K within the error coincides with the Weiss constant determined from the temperature dependence of magnetic susceptibility $\chi(T)$.

The behavior of $\chi(T)$ is also satisfactorily described by the Curie-Weiss law, $\chi(T) = \chi_0 + C/(T - \theta)$, with the Weiss constant $\theta = -170(10)$ K, the Curie constant $C = 0.73(2)$ emu-K/mol and the temperature independent term $\chi_0 = 3.0 \times 10^{-4}$ emu/mol in the paramagnetic state. Effective electron magnetic moment of uranium is determined as $\mu_{\text{eff}} = 2.4(1)$ μ_B in the paramagnetic state.

The proportionality $K(T) \propto \chi(T)$ shows that the temperature-dependent contribution to the NMR line shift of nitrogen is due to the magnetism of 5f-electrons of uranium in the paramagnetic state of UN. The linear approximation of the $K(\chi)$ diagram leads to an estimate of the hyperfine constant value $H_{hf} = 2.6(2)$ kOe/μ_B, which has the physical meaning of the effective hyperfine field created at the nitrogen nucleus by 5f-shells of the neighboring uranium atoms.

Spin-lattice relaxation data T_1^{-1} of ^{14}N nuclei provide information about the low-frequency spin dynamics of f-electrons. When the temperature decreases from 375 K to 77 K the T_1^{-1} value increases slightly (by 17%).

For non-transition nitrogen atoms surrounded by magnetic actinide atoms the spin-lattice relaxation rate of nuclear spins should be determined by two contributions [8]:
\[(T_1)^{-1} = (T_1)^{-1}_K + (T_1)^{-1}_f. \]

(1)

The contribution \((T_1)^{-1}_K\) corresponding to Fermi contact interaction of conduction electrons and nuclear spins is determined by the well-known Korringa law \[12\]. In the free electron gas model it has the following form:

\[TT_1 K^2 = \frac{\hbar \gamma_e^2}{4\pi k_B \gamma_n^2},\]

(2)

where \(K\) is the spin contribution to the NMR line shift, \(k_B\) is the Boltzman constant, \(\hbar = h/2\pi\) is Plank constant, \(\gamma_n\) and \(\gamma_e\) are the nuclear and electron gyromagnetic ratios, respectively. In our case, this value should be the following

\[(TT_1 K^2)_{\text{Korringa}} = 5.041 \times 10^{-5} \text{s-K},\]

(3)

Experimentally obtained value \(TT_1 K^2\) at \(T = 295\) K is equal to

\[(TT_1 K^2)_{\text{Experiment}} = 10.82 \times 10^{-4} \text{s-K},\]

(4)

in this case:

\[(TT_1 K^2)_{\text{Experiment}}/(TT_1 K^2)_{\text{Korringa}} = 21.5.\]

(5)

The ratio (5) of the experimentally determined value \(TT_1 K^2\) to the theoretically calculated value of the Korringa contribution is higher than for the most of metals (usually 0.1 – 10) including non-magnetic ThP \((1.95 \pm 0.25)\) \[13\].

Moreover, the value \((^{14}T_1 T)^{-1}\) at \(T = 77\) K in UN is more than an order of magnitude greater than in ThN \[14\]. In ThN, the increase in the spin-lattice relaxation rate of nitrogen proportional to the temperature is due to the Korringa mechanism, i.e., the Fermi contact interaction with conduction electrons. Thus, the spin-lattice relaxation rate of \(^{14}\text{N}\) in the UN paramagnetic phase is determined by the contribution \((T_1)^{-1}_f\), which is due to the time-dependent isotropic part of the indirect hyperfine interaction of the \(^{14}\text{N}\) nucleus with \(5f\)-electrons of the actinide.

The contribution \((T_1)^{-1}_f\) can be written as \[2, 8\]

\[(T_1)^{-1}_f = \frac{2\mu_B}{\gamma_n^2 k_B H_{hf}}.\]

(6)

Energy of spin fluctuations, \(\Gamma_{NMR}\), determines the relaxation rate of \(5f\)-electron spin of uranium.

A joint analysis of the results obtained has revealed the temperature dependence of the characteristic energy of spin fluctuations of the uranium \(5f\)-electrons: \(\Gamma_{NMR}(T) \propto T^{0.54(4)}\) (Figure 3). This behavior of \(\Gamma_{NMR}(T)\) is close to the temperature dependence of \(\Gamma_{NMR}(T) \propto T^{0.5}\) which is intrinsic to concentrated Kondo systems above the coherent state formation temperature \[8, 15\]. We believe that a large value \(\Gamma_{NMR} = 170(15)\) K at \(T = 295\) K is determined by the energy scale of the fluctuating valence state of the magnetic uranium ion in UN. Its ground state is a quantum superposition of several electron configurations of the \(5f\)-shell from \(f^3\) to, possibly, non-magnetic configuration \(f^0\). In this case, magnetic and charge fluctuations coexist in the antiferromagnetic state \[2\].

The authors will continue NMR studies at higher temperatures \(T > 375\) K in order to specify the dependence of the energy of spin fluctuations at a wider temperature range.
Figure 3. The temperature dependence of $(T_1)/TK$ for UN. The dashed and solid lines represent the results of approximation of the experimental data by a power function.

Acknowledgements

This work was supported by the Russian Science Foundation (project no. 18-72-10022). Magnetization measurements were carried out on the basis of ≪Test center of nanotechnology and advanced materials≫ of the M.N. Miheev Institute of Metal Physics of Ural Branch of the Russian academy of Sciences.

References

[1] Hill H H 1970 in: *Plutonium and Other Actinides* ed. by Miner W N (AIME, New York) p 2
[2] Ogloblichev V V, Potapov A M, Verkhovskii S V, Mirmelstein A V 2018 *JETP Letters* 108 616
[3] Staun Olsen J, Gerward L, Benedict U 1985 *J. Appl. Cryst.* 18 37
[4] Troč R 2006 *Pnictides and chalcogenides III (Actinide monopnictides)* edited by Wijn H P J, Landolt-Börnstein, New Series, Group III, Vol. 27 (Springer-Verlag, Berlin)
[5] Solontsov A Z, Silin V P 2004 *The Physics of Metals and Metallography* 97 35
[6] Samsel-Czekała M, Talik E, Du Plessis P de V, Troč R, Misiorek H, Sulkowski C 2007 *Physical Review B* 76 144426
[7] Chizhik V I, Chernyshev Y S, Donets A V, Frolov V, Komolkin A, Shelyapina M G 2014 *Magnetic Resonance and Its Applications* (Springer, Berlin)
[8] Piskunov Yu, Mikhailov K, Gerashenko A, Pogudin A, Ogloblichev V, Verkhovskii S, Tankeyev A, Arkhipov V, Zouev Yu, Lekomtsev S 2005 *Physical Review B* 71 174410
[9] O’Dell L A 2011 *Progress in Nuclear Magnetic Resonance Spectroscopy* 59 295
[10] Abragam A 1961 *The Principles of Nuclear Magnetism* (Oxford: Clarendon Press)
[11] Kuznietz M 1968 *J. Chem. Phys.* 49 3731
[12] Korringa J 1950 *Physica* 16 601
[13] Kuznietz M, Matzkanin G A 1969 *Physical Review* 178(2) 580
[14] Boutard J L, de Novion C H, Alloul H 1980 *Journal de Physique* 41 845
[15] Cox D L, Bickers N E, Wilkins J W 1985 *J. Appl. Phys.* 57 3166