B-meson charged current anomalies: the post-Moriond status

Debjyoti Bardhan1, and Diptimoy Ghosh2,\footnote{bardhan@post.bgu.ac.il} and 3 diptimoy.ghosh@iiserpune.ac.in

1Department of Physics, Ben-Gurion University, Beer-Sheva 8410501, Israel
2Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India

In this note, we discuss the impact of the recent Belle result on the various theoretical explanations of the R_D and R_{D^*} anomalies. The pure tensor explanation, which was strongly disfavoured by the measurements of $F_L^{D^*}$ and high-\textit{pt} $pp \rightarrow \tau\nu$ searches before Moriond, is now completely allowed because of reduction of the experimental world-average. Moreover, the pure right-chiral vector solution (involving right-chiral neutrinos) has now moved into the 2\textsigma{} allowed range of the LHC $pp \rightarrow \tau\nu$ searches. We also critically re-examine the bound on $B(B_c^+ \rightarrow \tau^-\nu_\tau)$ from LEP data and show that the bound is considerably weaker than the number 10\% often used in the recent literature.

The Belle collaboration has recently published results for R_D and R_{D^*} with a semileptonic tag [1, 2], and their result is consistent with the Standard Model (SM) expectation within 1.2\textsigma{}. Consequently, the experimental world average has moved towards the SM. However, the tension between the experimental world average and the SM expectation is still more than 3\textsigma{}, and thus, it is interesting to re-examine the status of the various New Physics (NP) explanations in view of the new world-average. In Table I below, we collect all the experimental results related to this anomaly.

\begin{tabular}{|c|c|c|}
\hline
 & SM prediction & Measurement \\
\hline
R_D & 0.300 ± 0.008 [5] & 0.407 ± 0.046 (pre-Moriond) [4] \\
 & 0.299 ± 0.011 [5] & 0.334 ± 0.031 [1, 2, 4] \\
R_{D^*} & 0.258 ± 0.005 [4, 6–8] & 0.306 ± 0.015 (pre-Moriond) [4] \\
 & & 0.297 ± 0.015 [1, 4] \\
$P_L^{D^*}$ & -0.47 ± 0.04 [6] & $-0.38_{-0.05}^{+0.05}$ [9, 10] \\
$F_L^{D^*}$ & 0.46 ± 0.04 & 0.60 ± 0.087 [11] \\
$R_{D/s}$ & 0.290 & 0.71\pm0.25 [12] \\
\hline
\end{tabular}

\textbf{TABLE I.} Observables, their SM predictions and the experimentally measured values. The pre-Moriond experimental averages for R_D and R_{D^*} are based on [9, 10, 13–19].

The most general effective Lagrangian for the decay $b \rightarrow c\tau^-\nu_\tau$ involving mass dimension-6 operators and only left-chiral neutrinos can be written as

$$L_{\text{eff}}^{b \rightarrow c\tau\nu} = -\frac{4G_FV_{cb}}{\sqrt{2}} \left(C_{V}^{LL} [\bar{c} \gamma^\mu P_L b] [\bar{\tau} \gamma_\mu P_L \nu] + C_{V}^{SL} [\bar{c} \gamma^\mu P_R b] [\bar{\tau} \gamma_\mu P_L \nu] + C_{S}^{LL} [\bar{c} \gamma^\mu P_L b] [\bar{\tau} P_L \nu] + C_{S}^{SL} [\bar{c} \gamma^{\mu\nu} P_R b] [\bar{\tau} \sigma_{\mu\nu} P_L \nu] + \text{h.c.}\right)$$

If one uses power-counting rules arising from linearly-realised SU(2) \times U(1) gauge invariance, it turns out that the Wilson Coefficient (WC) C_{V}^{LL}, with the possibility of lepton non-universality, is only generated at the mass dimension-8 level [20]. Thus, it is expected to be suppressed compared to the other WCs as long as the scale of NP is not too close to the Higgs vacuum expectation value, thus we will ignore it in this analysis.

If one also assumes the existence of light right-chiral neutrino(s), as was first done in [21] to solve the R_{D} anomaly, five additional operators can be constructed by the replacement $P_L \rightarrow P_R$ in the leptonic currents of Eq. 1. In particular, a pure-right chiral vector current namely,

$$L_{\text{eff}}^{b \rightarrow c\tau\nu} \supset -\frac{4G_FV_{cb}}{\sqrt{2}} C_{V}^{RR} [\bar{c} \gamma^\mu P_R b][\bar{\tau} \gamma_\mu P_R \nu] + \text{h.c.}$$

was considered by several authors [22–24], and we will include it in our analysis.

As the experimental situation for R_D and R_{D^*} is far from clear, we do not try to perform a fit to the WCs; for an early global fit, see [25]. Instead, we show how R_D and R_{D^*} vary with respect to the WCs, and overlay the current 1\textsigma{} experimental world-average and the corresponding currently allowed values of the WCs.

In Fig. 1, we show this for two WCs C_{V}^{LL} and C_{V}^{RR} assuming them to be real. It can be seen from the left panel that $C_{V}^{LL} = C_{V}^{LL}_{(SM)} = 1$ is now at the edge of the 1\textsigma{} allowed region for R_D. This is due to the fact the the
new experimental world-average for R_D is now consistent with the SM expectation at $\sim 1\sigma$ level. So the anomaly is mostly driven by $R_{D\ast}$. In order to be consistent with both R_D and $R_{D\ast}$ simultaneously at the 1σ level, C_{V}^{LL} has to be in the range $C_{V}^{LL} : [1.045, 1.107]$. So there has not been a qualitative change in the situation after the new Belle measurement. Similarly, the allowed range for C_{V}^{RR} now is $|C_{V}^{RR}| : [0.305, 0.480]$. The lower edge of this range, $|C_{V}^{RR}| = 0.305$, is now consistent with the 2σ upper bound $|C_{V}^{RR}| = 0.32$ from the LHC $pp \to \tau \bar{\tau}$ searches [26] (bound from LHC $pp \to \tau \bar{\tau} + X$ searches was also studied in [27, 28]). Note that, both the WCs C_{L}^{LL} and C_{V}^{RR} can be generated by a single $U(3, 1, 1/3)$ Leptoquark mediator [24, 29–32].

Variations of R_D and $R_{D\ast}$ with respect to C_{L}^{LL} and $C_{S}^{LL} = -8C_{L}^{LL}$ are shown in Fig. 2. It can be seen from the left panel of Fig. 2 that a simultaneous solution of R_D and $R_{D\ast}$ is possible for C_{L}^{LL} in the range $C_{L}^{LL} : [-0.021, -0.013]$. We remind the readers that the corresponding value of C_{L}^{LL} before the recent Belle result was $C_{L}^{LL} \sim 0.35$ [20, 33] which was strongly disfavoured both by the LHC $pp \to \tau \bar{\tau}$ searches [26, 34, 35] as well as the measurement of F_{P}^{ν} [36]. The new allowed range for C_{L}^{LL}, on the other hand, is completely safe. Thus, this has been a qualitative change after the new Belle measurement. The specific relation $C_{S}^{LL} \approx -8C_{L}^{LL}$ (at the m_b scale) shown on the right panel is interesting because it is generated by a single $S(3, 1, 1/3)$ Leptoquark mediator [37]. The allowed range of the WC in this case is $[0.113, 0.170]$ which, as can be seen from Fig. 3, produces $B(B_{c}^{-} \to \tau^{-}\bar{\nu}_{\tau})$ less than its SM value, and thus is completely safe.

1 Note, however, that for $|C_{V}^{RR}| = 0.305$, the value of $R_{D\ast}$ is at the lower edge of the experimental 1σ allowed region. Moreover, the sensitivity of the current high-p_T measurements is not enough to constrain the left-handed scenario $C_{L}^{LL} \approx 1.05$. Thus, the right-handed scenario is statistically worse than the C_{L}^{LL} solution.

FIG. 2. Variations of R_D and $R_{D\ast}$ against $\text{Re}[C_{L}^{LL}]$ and $\text{Re}[C_{S}^{LL}] = -8\text{Re}[C_{L}^{LL}]$.

Another single mediator solution that has been discussed in the literature is the so-called $R_{S}(3, 2, 7/6)$ Leptoquark [38, 39]. which, contrary to the $S(3, 1, 1/3)$ Leptoquark mediator, generates $C_{S}^{LL} \approx +8C_{L}^{LL}$ (see the sign difference) at the m_b scale2. In the left panel of Fig. 4, we show this case assuming real values of the WCs. It can be seen that, the combination $\text{Re}[C_{S}^{LL}] = +8\text{Re}[C_{L}^{LL}]$ at most can produce R_D and $R_{D\ast}$ at the lower edge of their 1σ experimental world-average if a simultaneous solution is desired (for $\text{Re}[C_{L}^{LL}] = +8\text{Re}[C_{L}^{LL}] \approx -0.12$). A much better description of the data is possible if imaginary WCs are assumed as shown in the right panel of Fig. 4. The case of imaginary WCs in this context was first discussed in [40], and later also in [39, 41–44]. In this case,

2 Note that, the relation $C_{S}^{LL} = \pm 8C_{L}^{LL}$ are approximately true only at the m_b scale. It is obtained by QCD renormalization group flow from the leptoquark matching scale (\approx few TeV) where the actual relations are $C_{S}^{LL} = \pm 4C_{L}^{LL}$.

FIG. 3. Variation of $B(B_{c}^{-} \to \tau^{-}\bar{\nu}_{\tau})$ with respect to $\text{Re}[C_{S}^{LL}]$ and $\text{Im}[C_{S}^{LL}]$.

FIG. 4. Variations of R_D and $R_{D\ast}$ against $\text{Re}[C_{S}^{LL}] = +8\text{Re}[C_{L}^{LL}]$ and $\text{Im}[C_{S}^{LL}] = +8\text{Im}[C_{L}^{LL}]$. One needs $\text{Im}[C_{S}^{LL}] = +8\text{Im}[C_{L}^{LL}]$ in the range $[0.480, 0.820]$ which gives $B(B_{c}^{-} \to \tau^{-}\bar{\nu}_{\tau}) > 10\%$, see Fig. 3. However, the authors of Ref. [45] claimed an upper bound of 10% on this branching ratio, arising from the LEP data taken on the Z peak. Thus, the $\text{Im}[C_{S}^{LL}] = +8\text{Im}[C_{L}^{LL}]$ solution seems to be in slight tension if the 10% upper
bound is taken at face value. While some authors [41] expressed concerns about the validity of this bound, not much effort was made to estimate as to how much this bound can be relaxed. We will discuss this in detail in the next section.

As the operator C_{S}^{RL} alone cannot explain R_{D} and R_{D} simultaneously, we do not discuss it anymore.

Before concluding this section, we would like to make a couple of comments on the impact of P_{D} and P_{S} on the various scenarios. In all the scenarios explaining the R_{D} and R_{D} anomalies, the variation of P_{D} is less than $\sim 2.5\%$ from the SM prediction. Unfortunately, this is also true about P_{D}^{LL}, the only exception being the $\mathrm{Im}[C_{S}^{RL}] = 8\mathrm{Im}[C_{S}^{LL}]$ solution in which case the variation can be $5-10\%$ below the SM. Thus, distinguishing the various explanations by either P_{D}^{LL} or P_{D}^{LL} looks difficult at the moment.

LEP bound on $\mathcal{B}(B_{c}^{-} \rightarrow \tau^{-}\bar{\nu}_{\tau})$:

As mentioned in the previous section, the authors of [45] used the LEP data [46] collected at the Z peak to put an upper bound on the branching fraction of $B_{c}^{-} \rightarrow \tau^{-}\bar{\nu}_{\tau}$. As this constraint has potentially interesting consequences for the R_{D} and R_{D} anomalies, in this section we will revisit it in detail.

In Ref. [46], the L3 collaboration obtained an upper bound on the number of $B^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}$ events, $\mathcal{N}(B^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) < 3.8$. Based on this, they provided an upper bound

$$\mathcal{B}(B^{-}\rightarrow \tau\bar{\nu}_{\tau}) < 5.7 \times 10^{-4} \text{ at 90\% C.L.} \quad (3)$$

As $\mathcal{N}(B^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) \propto f_{b\rightarrow B^{-}} \times \mathcal{B}(B^{-}\rightarrow \tau\bar{\nu}_{\tau})$ where, $f_{b\rightarrow B^{-}}$ is the inclusive probability that a b quark hadronizes into a B_{c}^{-} or a B_{c}^{-} meson, and Ref. [46] uses a value $f_{b\rightarrow B^{-}} = 0.382 \pm 0.025$, the bound in Eq. 3 can be translated into the following bound

$$f_{b\rightarrow B^{-}} \times \mathcal{B}(B^{-}\rightarrow \tau\bar{\nu}_{\tau}) < 2.035 \times 10^{-4} \quad (4)$$

Separating the total number of events into those coming from B_{u}^{-} and B_{c}^{-} decays, we get

$$f_{b\rightarrow B_{u}^{-}} \mathcal{B}(B_{u}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) + f_{b\rightarrow B_{c}^{-}} \mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) < 2.035 \times 10^{-4} \quad (5)$$

This gives,

$$\mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) < \left(\frac{2.035 \times 10^{-4}}{f_{b\rightarrow B_{c}^{-}} \mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) - 1}\right) \times \frac{f_{b\rightarrow B_{c}^{-}}}{f_{b\rightarrow B_{u}^{-}}} \mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) \quad (6)$$

The quantities $\mathcal{B}(B_{u}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau})$ and $f_{b\rightarrow B_{c}^{-}}$ are known experimentally:

$$\mathcal{B}(B_{u}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) = (1.06 \pm 0.20) \times 10^{-4} \quad [4, 47] \quad (7)$$

$$f_{b\rightarrow B_{c}^{-}} = 0.412 \pm 0.008 \quad [4, 47] \quad \text{(LEP)} \quad (8)$$

$$f_{b\rightarrow B_{c}^{-}} = 0.340 \pm 0.021 \quad [4, 47] \quad \text{(Tevatron)} \quad (9)$$

Note that, the hadronization fractions in Z decays do not necessarily need to be identical to those in $p\bar{p}$ collisions because of the different momentum distributions of the b-quark in these processes; in $p\bar{p}$ collisions, the b quarks have momenta close to m_{b}, rather than $\sim m_{Z}/2$ in Z decays. In fact, CDF and LHCb collaborations have reported evidence for a strong p_{T} dependence of the A_{LL} fraction [48–51]. The LHCb and the ATLAS collaborations have also studied the p_{T} dependence of $B_{c}^{-}\rightarrow B_{c}^{+}$, but the results are not conclusive yet.

Therefore, we use the measurement of $f_{b\rightarrow B_{c}^{-}}$ from LEP only and plot the upper bound on $\mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau})$ as a function of $f_{b\rightarrow B_{c}^{-}}/f_{b\rightarrow B_{c}^{-}}$ in Fig. 8. The upper bound $\mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau}) = 10\%$ corresponds to $f_{b\rightarrow B_{c}^{-}}/f_{b\rightarrow B_{c}^{-}}$ $\sim 4 \times 10^{-3}$.

![FIG. 5. $\mathcal{B}(B_{c}^{-}\rightarrow \tau^{-}\bar{\nu}_{\tau})$ as a function of $f_{b\rightarrow B_{c}^{-}}/f_{b\rightarrow B_{c}^{-}}$. The width of the plot corresponds to the uncertainties in Eq. (7) and (8).](image)
Using
\[R_{\pi^+ / \mu^+} = 0.0469 \pm 0.0054 \] \[(14) \]
\[R_{\pi^+ / K^+}^{\text{LHCb}} = (0.683 \pm 0.02) \times 10^{-2} \] \[(15) \]
\[R_{\pi^+ / K^+}^{\text{CMS}} = (0.48 \pm 0.08) \times 10^{-2} \] \[(16) \]
we get,
\[\frac{f_{b \to B_c^+}}{f_{b \to B_u^+}} = \frac{\left(1.22 - 1.75 \right) \times 10^{-4}}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \text{(using [55])} \] \[(18) \]
\[\frac{f_{b \to B_c^+}}{f_{b \to B_u^+}} = \frac{\left(0.74 - 1.40 \right) \times 10^{-4}}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} \text{(using [56])} \] \[(19) \]
As the LHCb and CMS measurements of \(R_{\pi^+ / K^+} \) are about 2.5\% away from each other, we consider them separately and do not use their average. Moreover, while the LHCb Collaboration uses the cuts \(0 < p_T(B_c^+) < 20 \text{ GeV} \) and \(2.0 < \eta < 4.5 \) in their analysis (at \(\sqrt{s} = 8 \text{ TeV} \)), the CMS Collaboration uses \(p_T(B_c^+) > 15 \text{ GeV} \) and \(|\eta| < 1.6 \) (at \(\sqrt{s} = 7 \text{ TeV} \)). Thus the discrepancy could be due to the dependence of \(f_{b \to B_c^+} / f_{b \to B_u^+} \) on kinematics.

Plugging Eqs. (18) and (19) into Eq. 6, one can obtain a bound on \(\mathcal{B}(B_c^+ \to \tau^- \bar{\nu}_{\tau}) \) directly as a function of \(\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu}) \). This is shown in the right panel of Fig. 6.

Using \(\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu}) \leq 2.5 \times 10^{-2} \), as used in [45], we get \(f_{b \to B_c^+} / f_{b \to B_u^+} \geq 3 \times 10^{-3} \) and \(\mathcal{B}(B_c^- \to \tau^- \bar{\nu}_{\tau}) \leq 14\% \) from the CMS data, the latter being similar but slightly weaker than [45].

We would like to make two comments at this stage:

- The bound on \(\mathcal{B}(B_c^- \to \tau^- \bar{\nu}_{\tau}) \) depends linearly on \(\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu}) \). As \(\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu}) \) has not yet been measured, a model independent bound is not possible. Moreover, even the SM calculation, and in particular the uncertainty, is not fully under control at the moment. Thus, a precise bound on \(\mathcal{B}(B_c^- \to \tau^- \bar{\nu}_{\tau}) \) cannot be obtained currently.

- Even in the presence of better information on \(\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu}) \), Eqs. (18) and (19) provide values of \(f_{b \to B_c^+} / f_{b \to B_u^+} \) at the LHC and for the specific kinematic regions used in [55] and [56]. As discussed before, the value of \(f_{b \to B_c^+} / f_{b \to B_u^+} \) at LEP may be different from the above because of 1) larger average \(p_T \) of the b-mesons produced at LEP 2) \(b \bar{b} \) pairs produced at LEP are in the colour singlet state contrary to most of the \(b \bar{b} \) pairs produced at the LHC which are in the colour octet state.

In view of the above, we try to estimate the ratio \(f_{b \to B_c^+} / f_{b \to B_u^+} \) at LEP using the event generator Pythia8 [57, 58] which has Hadronization model tuned to provide a good description of the available experimental data. The results are shown in Table. II. In each of the cases presented in Table. II, we have generated 1 million events in order to reduce the statistical uncertainty. In Case-I, we have used the same \(p_T \) and \(\eta \) cuts as in [56], and get a value \(f_{b \to B_c^+} / f_{b \to B_u^+} = 1.06 \times 10^{-3} \) which is much smaller than \(f_{b \to B_c^-} / f_{b \to B_u^-} = 3 \times 10^{-3} \) which was used to obtain a bound \(\mathcal{B}(B_c^- \to \tau^- \bar{\nu}_{\tau}) \leq 10\% \). Note that, from Eq. 19, \(f_{b \to B_c^-} / f_{b \to B_u^-} = 1.06 \times 10^{-3} \) would correspond to \(\mathcal{B}(B_c^- \to J/\psi \mu^+ \nu_{\mu}) \approx 6 \times 10^{-2} \) (see the left panel of Fig. 6) which is much larger than the values considered in [45]. In the third row of Table. II, we

\(p_T(B_c^+) \)	\(f_{b \to B_c^+} / f_{b \to B_u^+} \)		
\(> 15 \text{ GeV} \) \(\eta	< 1.6 \)	0.255 \(\times 10^{-4} \) 1.06 \(\times 10^{-3} \)
\(< 15 \text{ GeV} \) \(\eta	< 1.6 \)	0.301 \(\times 10^{-4} \) 1.89 \(\times 10^{-3} \)
\(> 15 \text{ GeV} \) \(\eta	< 1.6 \)	0.374 \(\times 10^{-4} \) 1.09 \(\times 10^{-3} \)
\(> 15 \text{ GeV} \) \(\eta	< 1.6 \)	0.255 \(\times 10^{-4} \) 0.98 \(\times 10^{-3} \)
LEP (at the \(Z \) peak) \(\eta	< 1.6 \)	0.42 \(\times 10^{-4} \) 1.07 \(\times 10^{-4} \)

TABLE II. Hadronization fractions calculated from Pythia8.
\[f_{b \to B^-} = 0.094 \] (not shown in the table), and
\[f_{b \to B^-}/f_{b \to B^0} = 1.07 \times 10^{-3}, \] the first two numbers being consistent with their experimental measurements \[4, 47\]. Using the number \(f_{b \to B^-}/f_{b \to B^0} = 1.07 \times 10^{-3} \), from Fig. 5, we get
\[
\mathcal{B}(B_c^- \to \tau^- \bar{\nu}_\tau) \leq 39\%.
\] (20)

We warn the readers that this bound should only be taken as an estimate because, after all, Pythia only uses a Hadronization model adjusted to describe a large amount of available experimental data well (as we saw, indeed it reproduced the correct values for \(f_{b \to B^-} \) and \(f_{b \to B^0} \)), and the value of \(f_{b \to B^-} \) obtained from Pythia is neither based on any first principle calculation nor on direct experimental data.

To summarise, in this short note, we have shown that

- the recent Belle results on \(R_D \) and \(R_{D^*} \) have interesting implications on the various possible EFT explanations of the data. The most important being that the pure tensor explanation is now completely allowed both by the measurement of \(F_D^P \) and the high-\(p_T \ p p \to \tau \nu \) searches by ATLAS and CMS.

- the solution in terms of a pure right-chiral vector current (involving right-chiral neutrinos) has now moved into the 2\(\sigma \) allowed range of the LHC \(p p \to \tau \nu \) searches.

- the upper bound on the branching fraction of \(B_c^- \to \tau^- \bar{\nu}_\tau \) from the LEP data is much weaker than the bound 10\% used in the recent literature. Our estimate of this bound, based on the Hadronization model implemented in Pythia8, is approximately 40\%. This bound, while being independently important, may also have interesting implications on the various scalar-pseudoscalar explanations of the \(R_D \) and \(R_{D^*} \) data.

Acknowledgement

The research of DB was supported in part by the Israel Science Foundation (grant no. 780/17) and by the Krutman Foundation Post-Doctoral Fellowship. DG would like to acknowledge support through Ramanujan Fellowships of the Department of Science and Technology, Government of India.

References

[1] G. Caria. \url{http://moriond.in2p3.fr/2019/EW/slides/6_Friday/3_YSF/1_gcaria_moriond2019.pdf}, Talk given at Rencontres de Moriond, March 22 2019.

[2] Belle collaboration, A. Abdesselam et al., Measurement of \(R(D) \) and \(R(D^*) \) with a semileptonic tagging method. \[1904.08794\].

[3] S. Aoki et al., Review of lattice results concerning low-energy particle physics, \textit{Eur. Phys. J. C77} (2017) 112, \[1607.00299\].

[4] Y. Amhis et al., Averages of \(b \)-hadron, \(c \)-hadron, and \(\tau \)-lepton properties as of summer 2016, Online update at \url{http://www.slac.stanford.edu/xorg/hflav/semi/fpcp17/RDRDs.html}, \[1612.07233\].

[5] HPQCD collaboration, H. Na, C. M. Bouchard, G. P. Lepage, C. Monahan and J. Shigemitsu, \(B \to D l \nu \) form factors at nonzero recoil and extraction of \(|V_{cb}| \), \textit{Phys. Rev. D92} (2015) 054510, \[1505.03925\]. [Erratum: Phys. Rev.D93,no.11,119906(2016)].

[6] D. Bigi, P. Gambino and S. Schacht, \(R(D^*) \), \(|V_{cb}| \), and the Heavy Quark Symmetry relations between form factors, \textit{JHEP} 11 (2017) 061, \[1707.09959\].

[7] S. Jaiswal, S. Nandi and S. K. Patra, \textit{Extraction of \(|V_{cb}| \) from \(B \to D^{(*)}\nu \) and the Standard Model predictions of \(R(D^*) \)}, \textit{JHEP} 12 (2017) 060, \[1707.09977\].

[8] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Combined analysis of semileptonic \(B \) decays to \(D \) and \(D^* : R(D^*) \), \(|V_{cb}| \), and new physics, \textit{Phys. Rev. D95} (2017) 115008, \[1703.05330\]. [Erratum: Phys. Rev.D97,no.5,059902(2018)].

[9] Belle collaboration, S. Hirose et al., \textit{Measurement of the \(\tau \) lepton polarization and \(R(D^*) \) in the decay \(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau \)}, \textit{Phys. Rev. Lett. 118} (2017) 211801, \[1612.00529\].

[10] Belle collaboration, S. Hirose et al., \textit{Measurement of the \(\tau \) lepton polarization and \(R(D^*) \) in the decay \(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau \) with one-prong hadronic decay at Belle}, \[1709.00129\].

[11] Belle collaboration, A. Abdesselam et al., \textit{Measurement of the \(D^{(*)} \) polarization in the decay \(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau \), in 10th International Workshop on the CKM Unitarity Triangle (CKM 2018) Heidelberg, Germany, September 17-21, 2018}, \[1903.03102\].

[12] LHCb collaboration, R. Aaij et al., \textit{Measurement of the ratio of branching fractions \(\mathcal{B}(B^+_c \to J/\psi \tau^-\bar{\nu}_\tau)/\mathcal{B}(B^-_c \to J/\psi \mu^-\bar{\nu}_\mu) \)}, \[1711.05623\].

[13] BaBar collaboration, J. P. Lees et al., \textit{Evidence for an excess of \(\bar{B} \to D^{(*)} \tau^-\bar{\nu}_\tau \) decays, Phys. Rev. Lett. 109} (2012) 101802, \[1205.5442\].

[14] BaBar collaboration, J. P. Lees et al., \textit{Measurement of an excess of \(\bar{B} \to D^{(*)} \tau^-\bar{\nu}_\tau \) decays and Implications for Charged Higgs Bosons, Phys. Rev. D88} (2013) 072012, \[1303.0571\].

[15] BaBar collaboration, M. Huschle et al., \textit{Measurement of the branching ratio of \(\bar{B} \to D^{(*)} \tau^-\bar{\nu}_\tau \) relative to \(\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell \) decays with semileptonic tagging at Belle, Phys. Rev. D92} (2015) 072014, \[1507.03233\].

[16] LHCb collaboration, R. Aaij et al., \textit{Measurement of the ratio of branching fractions \(\mathcal{B}(B^0 \to D^{(*)}\tau^-\bar{\nu}_\tau)/\mathcal{B}(B^0 \to D^{(*)}\mu^-\bar{\nu}_\mu) \)}, \textit{Phys. Rev. Lett. 115} (2015) 111803, \[1506.08164\]. [Erratum: Phys. Rev. Lett.115,no.15,159001(2015)].

[17] LHCb collaboration, Y. Sato et al., \textit{Measurement of the branching ratio of \(\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_\tau \) relative to \(\bar{B}^0 \to D^{(*)}\ell^-\bar{\nu}_\ell \) decays with a semileptonic tagging method, Phys. Rev. D94} (2016) 072007, \[1607.07923\].

[18] LHCb collaboration, R. Aaij et al., \textit{Test of Lepton Flavor Universality by the measurement of the \(B^0 \to D^{(*)}\tau^-\nu_\tau \) branching fraction using three-prong \(\tau \) decays, Phys. Rev. D97} (2018) 072013, \[1711.02505\].

[19] LHCb collaboration, R. Aaij et al., \textit{Measurement of the ratio of the \(B^0 \to D^{(*)}\tau^-\nu_\tau \) and \(B^0 \to D^{(*)}\mu^-\nu_\mu \) branching fractions using three-prong \(\tau \) lepton decays, Phys. Rev. Lett. 120} (2018) 171802, \[1708.08856\].

[20] A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata and
D. Bardhan, P. Byakti and D. Ghosh, L. Calibbi, A. Crivellin and T. Li, Lepton collaboration, M. Aaboud et al., $\sqrt{s_W}$ boson decaying to a W' and right-handed neutrinos, 1804.04134.

A. Greljo, D. J. Robinson, B. Shaky and J. Zupan, $R(D^{(*)})$ from W' and right-handed neutrinos, 1804.06462.

A. Azatov, D. Barducci, D. Ghosh, D. Marzocca and L. Ulbald, Combined explanations of B-physics anomalies: the sterile neutrino solution, JHEP 10 (2018) 092, [1807.10745].

M. Freytsis, Z. Ligeti and J. T. Ruderman, Flavor models for $B \to D^{(*)}\tau\bar{\nu}$, Phys. Rev. D92 (2015) 054018, [1506.08896].

A. Greljo, J. Martin Camalich and J. D. Ruiz-Álvarez, The Mono-Tau Menace: From B Decays to High-pr Tails, Phys. Rev. Lett. 122 (2019) 131803, [1811.07920].

W. Altmanshofer, P. S. Bhupal Dev and A. Soni, $R(D^{(*)})$ anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D96 (2017) 095010, [1704.06659].

S. Iguro, Y. Omura and M. Takeuchi, Test of the $R(D^{(*)})$ anomaly at the LHC, Phys. Rev. D99 (2019) 075013, [1810.05843].

R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184, [1505.05164].

R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and $U(2)$ flavour symmetry, Eur. Phys. J. C76 (2016) 67, [1512.01560].

L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D96 (2017) 115011, [1708.08450].

L. Calibbi, A. Crivellin and T. Li, Model of vector leptoquarks in view of the B-physics anomalies, Phys. Rev. D98 (2018) 115002, [1709.06992].

D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R_p and $R_{p\tau}$ anomalies, JHEP 04 (2017) 125, [1610.03038].

ATLAS collaboration, M. Aaboud et al., Search for High-Mass Resonances Decaying to $\tau\nu$ in pp Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector, Phys. Rev. Lett. 120 (2018) 161802, [1806.06992].

CMS collaboration, A. M. Sirunyan et al., Search for a W boson decaying to a τ lepton and a neutrino in proton-proton collisions at $\sqrt{s}=13$ TeV, Phys. Lett. B792 (2019) 107–131, [1807.11421].

D. Ghosh, https://indico.mtp.uni-mainz.de/event/178/contributions/1002/attachments/779/833/Talk_MTP_INDICO.pdf, Talk given at the Conference “LHCb and Belle II Opportunities for Model Builders”, Jan 28, 2019, Mainz.

M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the $R_{p\tau}$, R_p, and $(g-2)_\mu$ Anomalies, Phys. Rev. Lett. 116 (2016) 141802, [1511.01900].

I. Doršner, S. Fajfer, N. Košnik and I. Nisandžić, Minimally flavored colored scalar in $B \to D^{(*)}\tau\bar{\nu}$ and the mass matrices constraints, JHEP 11 (2013) 084, [1306.6493].

D. Bećirević, I. Doršner, S. Fajfer, N. Košnik, D. A. Faroughy and O. Sumensari, Scalar leptoquarks from grand unified theories to accommodate the B-physics anomalies, Phys. Rev. D98 (2018) 055003, [1806.05689].

Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Probing New Physics with q^2 distributions in $B \to D^{(*)}\tau\bar{\nu}$, Phys. Rev. D91 (2015) 114028, [1412.3761].

M. Blanke, A. Crivellin, S. de Boer, M. Moscati, U. Nierste, I. Nisandžić et al., Impact of polarization observables and $B_c \to \tau\nu$ on new physics explanations of the $b \to c\tau\nu$ anomaly, Phys. Rev. D99 (2019) 075006, [1811.09603].

S. Iguro, T. Kitahara, Y. Omura, R. Watanabe and K. Yamamoto, D^* polarization vs. $R_{D^{(*)}}$ anomalies in the leptoquark models, JHEP 02 (2019) 194, [1810.08899].

A. Biswas, D. K. Ghosh, S. K. Patra and A. Shaw, $b \to c\tau\nu$ anomalies in light of extended scalar sectors, 1801.03375.

Z.-R. Huang, Y. Li, C.-D. Lu, M. A. Paracha and C. Wang, Footprints of New Physics in $b \to c\tau\nu$ Transitions, Phys. Rev. D98 (2018) 095018, [1808.03565].

A. G. Akeroyd and C.-H. Chen, Constraint on the branching ratio of $B_c \to \tau\bar{\nu}$ from LEP1 and consequences for $R(D^{(*)})$ anomaly, Phys. Rev. D96 (2017) 075011, [1708.04072].

L3 collaboration, M. Acciarri et al., Measurement of $D_c^+ \to \tau^-\bar{\nu}_\tau$ and a new limit for $B^- \to \tau^-\bar{\nu}_\tau$, Phys. Lett. B396 (1997) 327–337.

Particle Data Group collaboration, M. Tanabashi et al., Review of Particle Physics, Phys. Rev. D98 (2018) 030001.

LHCb collaboration, R. Aaij et al., Measurement of b-hadron production fractions in 7 TeV pp collisions, Phys. Rev. D85 (2012) 032008, [1111.2357].

CDF collaboration, T. Aaltonen et al., Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in pp Collisions at $\sqrt{s}=1.96$-TeV, Phys. Rev. D77 (2008) 072003, [0801.4375].

CDF collaboration, T. Aaltonen et al., First Measurement of the Ratio of Branching Fractions $B(\Lambda_b^0 \to \Lambda_c^- \mu^-\bar{\nu}_\mu)/B(\Lambda_b^0 \to \Lambda_c^- \pi^-\bar{\nu}_\mu)$, Phys. Rev. D79 (2009) 032001, [0810.3213].

LHCb collaboration, R. Aaij et al., Study of the kinematic dependences of Λ_b^0 production in pp collisions and a measurement of the $\Lambda_b^0 \to \Lambda_c^- \pi^-\tau^-\bar{\nu}_\tau$ branching fraction, JHEP 08 (2014) 143, [1405.6842].

LHCb collaboration, R. Aaij et al., Measurement of the fragmentation fraction ratio f_s/f_d and its dependence on B meson kinematics, JHEP 04 (2013) 001, [1301.5286].

ATLAS collaboration, G. Aad et al., Determination of the ratio of b-quark fragmentation fractions f_s/f_d in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 262001, [1507.08925].

LHCb collaboration, R. Aaij et al., Measurement of the ratio of B_s^0 branching fractions to $J/\psi\pi^+$ and $J/\psi\mu^+\nu_\mu$, Phys. Rev. D90 (2014) 032009, [1407.2126].

LHCb collaboration, R. Aaij et al., Measurement of B_s^0 production in proton-proton collisions at $\sqrt{s}=8$ TeV,
Phys. Rev. Lett. 114 (2015) 132001, [1411.2943].

[56] CMS collaboration, V. Khachatryan et al., Measurement of the ratio of the production cross sections times branching fractions of $B_c^+ \to J/ψπ^+$ and $B_c^- \to J/ψK^+$ and $B(B_c^+ \to J/ψπ^+π^+π^-)/B(B_c^- \to J/ψπ^+)$ in pp collisions at $\sqrt{s} = 7$ TeV, JHEP 01 (2015) 063, [1410.5729].

[57] T. Sjostrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026, [hep-ph/0603175].

[58] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159–177, [1410.3012].