Оценка острого ингаляционного риска здоровью от воздействия продуктов потребления…

УДК 614.7
DOI: 10.21668/health.risk/2021.2.06

Научная статья

ОЦЕНКА ОСТРОГО ИНГАЛЯЦИОННОГО РИСКА ЗДОРОВЬЮ ОТ ВОЗДЕЙСТВИЯ ПРОДУКТОВ ПОТРЕБЛЕНИЯ НИКОТИНСОДЕРЖАЩЕЙ ПРОДУКЦИИ В ВОЗДУХЕ ЗАКРЫТЫХ ПОМЕЩЕНИЙ

Е.В. Зарицкая¹², В.Н. Федоров¹², И.Ш. Якубова²

¹Северо-Западный научный центр гигиены и общественного здоровья, Россия, 191036, г. Санкт-Петербург, ул. 2-я Советская, 4
²Северо-Западный государственный медицинский университет имени И.И. Мечникова, Россия, 195067, г. Санкт-Петербург, ул. Кирочная, 4

Современные исследования показывают, что использование электронных систем потребления никотина оказывает менее вредное воздействие на здоровье человека по причине существенно меньшего количества выделяемых вредных веществ. Тем не менее среди них могут содержаться различные органические и неорганические вещества, воздействие которых не в полной мере прогнозируется. Необходимы дополнительные исследования, в том числе так называемого «пассивного потребления» электронных сигарет, и оценка риска для здоровья от их воздействия.

Оценен острый риск здоровью при пассивном потреблении табака и никотинсодержащей продукции. Моделировался процесс потребления табака или никотина реальными потребителями (добровольцами), выявленный по количеству сеансов потребления. Были исследованы три вида продукции: табачные сигареты (сигареты), электронная система доставки никотина и электронная система нагревания табака. Измерение фоновых показателей качества воздуха выполнялось в специальном помещении до начала каждого исследования. Также были проведены эксперименты в таких называемых «контрольных группах»: испытуемые не потребляли продукцию, но находились в аналогичных условиях. Оценка риска выполнялась в соответствии с Р 2.1.10.1920-04 «Руководство по оценке риска для здоровья населения при воздействии химических веществ, загрязняющих окружающую среду».

Употребление электронных систем доставки никотина и нагревания табака существенным образом не меняет состав воздуха и не создает неприемлемого острого риска для здоровья человека. При комбинированном действии веществ-загрязнителей на органы и системы установлено незначительное превышение допустимого риска для органов дыхания, глаз и системного действия, которое практически не отличается от уровня контрольной группы. Курение сигарет формирует неприемлемые уровни острого риска уже через 1,5 ч эксперимента, которые были обусловлены повышением концентраций acetaldehyde, формальдегида, взвешенных частиц PM2,5, PM10 и монооксида углерода.

Ключевые слова: риск здоровью, острый риск, острый добавочный риск, пассивное потребление, табак, никотинсодержащие продукты, сигареты, электронные системы доставки никотина, электронные системы нагревания табака.

По данным Минздрава ежегодно в России от болезней, связанных с курением, умирают до 300 тысяч человек [1, 2]. По данным ВОЗ употребление табака является одной из самых значительных угроз для здоровья человека, из-за которой ежегодно в мире умирают около 7 млн человек, 890 тысяч из них некурящие, подвергавшиеся воздействию табачного дыма [3, 4].

Согласно «Концепции осуществления государственной политики противодействия потреблению табака и иной никотинсодержащей продукции на период до 2035 года»¹, Минздрав России намерен

© Зарицкая Е. В., Федоров В. Н., Якубова И. Ш., 2021

Зарицкая Екатерина Викторовна – руководитель отдела лабораторных исследований; аспирант кафедры профилактической медицины и охраны здоровья (e-mail: zev-79@mail.ru; тел.: 8 (812) 717-96-43; ORCID: http://orcid.org/0000-0003-2481-1724).

Федоров Владимир Николаевич – научный сотрудник отделения анализа, оценки и прогнозирования отдела исследований среды обитания и здоровья населения в Арктической зоне Российской Федерации; младший научный сотрудник (e-mail: vt1986@mail.ru; тел.: 8 (812) 717-01-54; ORCID: http://orcid.org/0000-0003-1378-1232).

Якубова Ирек Шавкатович – доктор медицинских наук, профессор кафедры профилактической медицины и охраны здоровья (e-mail: yakubova-work@yandex.ru; тел.: 8 (812) 543-17-47; ORCID: http://orcid.org/0000-0003-2437-1255).

¹ О Концепции осуществления государственной политики противодействия потреблению табака и иной никотинсодержащей продукции в РФ на период до 2035 г. и дальнейшую перспективу: Распоряжение Правительства РФ от 18 ноября 2019 г. № 2732-р [Электронный ресурс] // Гарант: информационно-правовой портал. – URL: https://www.garant.ru/products/ipo/prime/doc/72943536/ (дата обращения: 27.01.2021).
достичь максимального снижения показателей заболеваемости и смертности от болезней, связанных с курением, а также не допустить распространения никотиносодержащей продукции среди населения. Для достижения целей концепции формируется система управления ее реализацией, которая предполагает создание механизма мониторинга, оценки и минимизации рисков.

В соответствии с Концепцией число курильщиков среди взрослого населения к 2035 г. должно снизиться до 21 %. За исходные данные приняты значения по состоянию на 31 декабря 2018 г., согласно которым в РФ зафиксировано 29 % курильщиков среди взрослого населения.

Обращает на себя внимание то, что в последние годы среди населения набирают популярность новые виды курительных изделий: электронные системы доставки никотина и электронные системы нагревания табака (ЭСДН, ЭСНТ) [5, 6]. Особенно это актуально для молодежи в возрасте 18–24 лет, в этом возрасте такой продукцию пользуются 19,1 % человек, что в 10 раз выше, чем в других возрастных группах [7]. Вейпинг в электронном виде уже очень широко распространен в мире, и многие страны вводят строгие правила в свете появляющихся фактических данных, свидетельствующих о негативном воздействии вейпинга на здоровье человека [8–12]. Принятие законодательных актов относительно запрета на использование электронных сигарет в общественных местах в настоящее время затруднительно, хотя такая инициатива была внесена в Государственную Думу РФ, но отсутствие доказательной базы риска здоровья при «пассивном употреблении» никотинсодержащей продукции не позволяет определить ограничительные меры при распространении альтернативных табачным изделиям никотинсодержащих продуктов [13–21].

Кроме того, ряд исследований [22] электронных сигарет и эталонного продукта — лекарственно-го никотинового ингалятора, проведенные в США, Великобритании и Польше, показали, что ЭСДН прудуцируют некоторые токсичные вещества, уровень которых ниже, чем в сигаретном дыме в 9–450 раз. При этом во вдыхаемой смеси при использова-
Оценка острого ингаляционного риска здоровья от воздействия продуктов потребления …

жующей среды США5. Интегрированная информационная система оценки химических рисков (IRIS).

Оценка риска проводилась на базе органа по оценке риска, сертифицированного в Системе добровольной сертификации органов по оценке риска здоровью населения (Сертификат соответствия № СДС 062, зарегистрирован в Реестре Системы 26 декабря 2018 г.).

В данной работе рассматривался сценарий кратковременного (острого) воздействия в течение нескольких часов. Выбор сценария обусловлен следующими факторами:

– в эксперименте моделировался сценарий воздействия загрязнителей с учетом их потенциального вдыхания с воздухом закрытых помещений (так называемое «пассивное потребление»), а не непосредственно при употреблении продукции (так называемое «активное потребление»);

– эксперимент предусматривал пребывание в помещении «пассивных потребителей» ограниченное количество времени;

– отсутствие возможности спрогнозировать периодичность контакта, экспонирующего в реальной ситуации с исследованными веществами в течение его жизни и, как следствие, невозможность расчета хронической дозовой нагрузки [11, 16, 17, 19].

Применительно к рассматриваемой ситуации моделировались условия 4,5-часового воздействия загрязнителей в воздухе закрытых помещений, что характеризуется кратковременным воздействием и реализуется в виде сценария острого воздействия.

Для оценки острого риска от воздействия загрязнителей применялись референтные концентрации при остром ингаляционном воздействии – ARfC. Значения этих концентраций принимались на основании приложения 2 к Руководству Р 2.1.10.1920-04, а также на основании баз данных US EPA и OEHHA.

В работе использовалась стандартная формула для расчета острого риска (коэффициента опасности HQr):

$$\text{HQ}_r = \frac{C}{ARfC},$$

где C – концентрация вещества; ARfC – референтная концентрация при остром воздействии.

Помимо оценки острого риска в соответствии с Р 2.1.10.1920-04 авторами также проводились расчеты показателя, представляющего собой разницу между острым риском от воздействия определенного вещества в группе, потребляющей табак или никотин, на конкретный момент времени эксперимента и острым риском, характерным для контрольной группы в тот же момент времени эксперимента. Для данного показателя авторы использовали термин «острый добавочный риск» (HQr_add), для расчета которого была применена следующая формула:

$$\text{HQ}_{r, \text{add}} = \text{HQ}_{r, 1} - \text{HQ}_{r, \text{bkgd}},$$

где HQr,1 – значение острого риска на момент времени эксперимента (времени отбора проб); HQr, bkgd – значение фонового острого риска в контрольной группе на тот же момент времени эксперимента.

Результаты и их обсуждение. На этапе идентификации опасности оценивался состав загрязнителей воздуха закрытых помещений, образующихся при различных способах потребления табака или никотина (табл. 1).

Таблица 1

Наименование	ARfC, мг/м³
Фormalдегид	0,048
Ацетальдегид (уксусный альдегид)	0,115
Бутан-1,3-диен (диинил)	0,11
Бензол	0,15
Метиленбензол (толуол)	3,8
Углерода оксид	23
Азот диоксид (азота (IV) оксид)	0,47
Азот (II) оксид (азота оксид)	0,72
PM2,5	0,065
PM10	0,15

При измерении: ARfC – референтные концентрации при остром воздействии; PM10 – взвешенные вещества с массовой концентрацией частиц диаметром менее 10 мкм; PM2,5 – взвешенные вещества с массовой концентрацией частиц диаметром менее 2,5 мкм.

Оценка острого риска для здоровья, выполненная на основании результатов лабораторных исследований воздуха закрытых помещений, показала, что при моделируемом в эксперименте сценарии курения сигарет качество воздуха становится неприемлемым уже через 1,5 ч. Это обусловлено, в первую очередь, повышением концентраций ацетальдегида, формальдегида и взвешенных веществ, которые формируют неприемлемые уровни риска, превышающие допустимую величину более чем в 1,5–2 раза после 1,5 ч эксперимента. В экспериментах с потреблением ЭСДН и ЭСНТ превышений приемлемого уровня острого риска, обусловленного ацетальдегидом и формальдегидом, не обнаружено в течение всего эксперимента (табл. 2, 3).

В целом можно констатировать, что загрязнение воздуха закрытых помещений, обусловленное употреблением ЭСДН и ЭСНТ, не создает неприемлемого острого риска, обусловленного атмосферным воздействием, но не обнаружено в течение всего эксперимента. В целом можно констатировать, что загрязнение воздуха закрытых помещений, обусловленное употреблением ЭСДН и ЭСНТ, не создает неприемлемого риска для здоровья человека даже при длительном нахождении в помещении с отсутствием вентиляции, во время как курение сигарет формирует неприемлемый уровень острого риска уже через 1,5 ч эксперимента (см. табл. 2).

5 Environmental Topics [Электронный ресурс] // The Office of Environmental Health Hazard Assessment (OEHHA). – URL: https://oeha.ca.gov/environmental-topics (дата обращения: 26.01.2021).

ISSN (Print) 2308-1155 ISSN (Online) 2308-1163 ISSN (Eng-online) 2542-2308 63
Компонент	Вид эксперимента	Концентрация вещества (средние значения, мг/м³) и значения риска							
	Фоновые значения (вре‌‌мя отбора 8:00–9:30)	Концентрация (вре‌‌мя отбора 9:40–11:10)	Через 1,5 ч	Через 3 ч	Через 4,5 ч				
	Концентрация	Остры́й риск							
	Остры́й добавочн‌‌ый риск	Остры́й добавочн‌‌ый риск	Остры́й добавочн‌‌ый риск						
Бензол	Контроль	0,0011	0,007	0,016	0,016	0,011	0,007	0,009	0,006
	Сигареты	0,0009	0,006	0,014	0,009	0,083	0,027	0,18	0,107
	ЭСДН	0,0009	0,006	0,022	0,02	0,004	0,0029	0,02	-0,054
	ЭСНТ	0,0013	0,009	0,015	0,01	-0,001	0,0155	0,01	-0,063
Тoluол	Контроль	0,0344	0,001	0,0053	0,001	0,0054	0,001	0,005	0,001
	Сигареты	0,0019	0,001	0,023	0,01	0,005	0,041	0,01	0,009
	ЭСДН	0,0022	0,001	0,057	0,002	0,0083	0,002	0,001	0,0088
	ЭСНТ	0,0044	0,001	0,045	0,001	0,004	0,001	0,001	0,001
Формальдегид	Контроль	0,024	0,05	0,035	0,73	0,038	0,79	0,044	0,92
	Сигареты	0,026	0,542	0,072	1,5	0,71	1,29	0,106	2,21
	ЭСДН	0,024	0,05	0,033	0,69	-0,042	0,042	0,88	0,044
	ЭСНТ	0,022	0,458	0,029	0,6	-0,125	0,031	0,65	-0,146
Ацетальдегид	Контроль	0,0008	0,007	0,014	0,12	0,017	0,15	0,018	0,16
	Сигареты	0,0009	0,078	0,125	0,99	0,067	0,23	0,133	0,29
	ЭСДН	0,0008	0,007	0,017	0,15	0,026	0,002	0,001	0,0088
	ЭСНТ	0,0009	0,078	0,02	0,17	0,052	0,031	0,27	0,042
Углерод оксид	Контроль	0,034	0,523	0,048	0,74	0,044	0,68	0,053	0,82
	Сигареты	0,026	0,4	0,068	10,46	9,723	1,2	18,46	17,65
	ЭСДН	0,085	0,692	0,065	1,0	0,262	0,12	0,083	0,129
	ЭСНТ	0,039	0,071	1,09	0,354	0,071	1,09	0,415	0,78
Азот (II) оксид (Азот (IV) оксид)	Контроль	0,0048	0,032	0,042	0,28	0,047	0,31	0,051	0,34
	Сигареты	0,0035	0,023	0,066	4,4	4,12	1,2	0,88	7,687
	ЭСДН	0,053	0,353	0,066	0,44	0,16	0,097	0,65	0,333
	ЭСНТ	0,038	0,253	0,073	0,49	0,207	0,075	0,50	0,187

Таблица 3

Концентрации загрязнителей и острый риск от отдельных продуктов потребления табака или никотина в воздухе закрытых помещений через 4,5 ч эксперимента

Компонент	Вид эксперимента	Концентрация загрязнителя, мг/м³	Острый риск				
	Me	Q_{25-75}\%	Me	Q_{25-75}\%			
Формальдегид	Контроль	0,0365	0,03225	0,0395	0,76	0,67	0,82
	Сигареты	0,0886	0,0605	0,1015	1,79	1,26	2,11
	ЭСДН	0,0375	0,03075	0,0425	0,78	0,64	0,89
	ЭСНТ	0,03	0,02725	0,03225	0,63	0,57	0,67
Ацетальдегид (Уксусный альдегид)	Контроль	0,0155	0,0125	0,01725	0,14	0,11	0,15
	Сигареты	0,1935	0,096	0,2795	1,68	0,83	2,43
	ЭСДН	0,0235	0,01475	0,0845	0,20	0,13	0,74
	ЭСНТ	0,0255	0,01725	0,03375	0,22	0,15	0,29
С учетом сведений о направленности действия различных веществ на основании данных из Приложени 2 к руководству Р 2.1.10.1920-04 был сформирован перечень критических органов и систем, для которых ожидается неблагоприятное воздействие исследуемых веществ при однонаправленном воздействии (табл. 4).

Анализ комбинированного однонаправленного действия различных веществ на отдельные органы и системы, выраженные в виде значений индекса опасности HI, показал, что наиболее высокие значения острого риска характерны для органов дыхания и системного действия на организм при курении сигарет – величины риска 28,68 и 26,02 с учетом фоновых концентраций, и 26,54 и 24,86 – без учета фоновых концентраций (острый добавочный риск) соответственно (табл. 5, 6). Следует отметить, что значения острого риска для всех органов и систем, чувствительных к изученным компонентам, имеют наименьшие уровни при сценарии потребления ЭСНТ, которые практически не отличаются от уровней контрольной группы.

Анализ значений острого риска и острого добавочного риска показывает, что вклад фонового загрязнения не оказывает существенного влияния на формирование острого риска, о чем свидетельствует незначительная разница в уровнях риска (см. табл. 5, 6).

Несмотря на ряд мер, предпринятых для чистоты проводимого эксперимента, следует отметить объективные факторы, которые создают сложности в оценке полученных результатов:
1. Для сравнительной оценки выделения вредных веществ полагалось бы унифицировать количество потребляемой продукции разных видов. Однако нами моделировался фактический процесс потребления табака или никотина реальными потребителями этих видов продукции, выраженный по количеству сеансов потребления. По этой причине указанной неопределенностью можно пренебречь.
Таблица 4

Критические органы и системы	Количество веществ с однородным действием	Вещество
Органы дыхания	6	Толуол, формальдегид, извещенные частицы PM2.5, PM10, азота оксид, азота диоксид
Нервная система	1	Толуол
Развитие	2	1,3-бутадиен, углерода монооксид
Глаза	3	Толуол, формальдегид, ацетальдегид
Кровь	1	Углерода оксид
Системное действие на организм	2	Извещенные частицы PM2.5, PM10

Таблица 5

Значения индексов опасности острого неканцерогенного риска (HI) от комбинированного действия веществ для различных органов и систем с учетом фоновых концентраций

Вид эксперимента	Значения острого неканцерогенного риска для отдельных органов и систем (индекс опасности HI) при экспозиции 4,5 ч					
	органы дыхания	системное действие	нервная система	развитие	глаза	кровь
------------------	----------------	-------------------	----------------	----------	-------	-------
Контрольная группа (некурящие)	2,14	1,16	0,001	1,62	1,08	1,62
Курение сигарет	26,68	26,02	0,014	18,52	5,11	18,52
Потребление ЭСДН	2,86	1,89	0,002	4,58	3,08	4,58
Потребление ЭСНТ	2,41	1,58	0,001	1,67	1,12	1,67

Таблица 6

Значения индексов опасности острого неканцерогенного риска (HI) от комбинированного действия веществ для различных органов и систем без учета фоновых концентраций

Вид эксперимента	Значения острого добавочного неканцерогенного риска для отдельных органов и систем (индекс опасности HI) при экспозиции 4,5 ч					
	органы дыхания	системное действие	нервная система	развитие	глаза	кровь
------------------	----------------	-------------------	----------------	----------	-------	-------
Контрольная группа (некурящие)	–	–	–	–	–	–
Курение сигарет	26,54	24,86	0,01	16,90	4,04	16,90
Потребление ЭСДН	0,72	0,74	0,001	2,96	2,00	2,96
Потребление ЭСНТ	0,26	0,42	0,00	0,05	0,04	0,05

2. В ходе эксперимента отмечено наличие «веществ-маркеров» в воздухе помещения в контрольной группе и на стадии фоновых (начальных) концентраций.

3. Ряд «веществ-маркеров» присутствует в атмосферном воздухе и может влиять на результаты эксперимента.

4. В целях эффективного лабораторного обнаружения «веществ-маркеров» в воздухе эксперимент не предусматривал вентиляцию помещения. По этой причине полученные абсолютные значения могут не совпадать с аналогичными данными, полученными другими исследователями.

Анализ динамики добавочного острого риска показывает, что из всех видов исследованной продукции наибольший добавочный острый риск вносит курение сигарет (рисунок). В целом для всех способов потребления табака или никотина характерно увеличение добавочного риска в течение эксперимента, что обусловлено увеличением концентрации вредных веществ. В то же время нарастание добавочного риска наиболее выражено в случае курения сигарет, что иллюстрирует рисунок. При потреблении ЭСДН и ЭСНТ динамика роста добавочного риска была существенно ниже практически для всех показателей, а в ряде случаев эта динамика равна нулю или даже отрицательна.

Выводы. Оценка риска здоровью, выполненная на основании результатов лабораторных исследований проб воздуха закрытых помещений, с уче- том сформированного в ходе эксперимента сценария воздействия в течение 4,5 ч показала, что потребление ЭСДН и ЭСНТ существенным образом не меняет состав воздуха и не создает при этом
Рис. Динамика добавочного острого риска при различных способах потребления табака или никотина:

а – от воздействия бензола; б – от воздействия толуола; в – от воздействия формальдегида;

г – от воздействия этаноламина; д – от воздействия взвешенных частиц PM2.5; е – от воздействия взвешенных частиц PM10; ж – от воздействия оксида углерода; з – от воздействия оксида азота (II)
неприемлемого острого риска для здоровья человека. При рассмотрении комбинированного действия веществ-загрязнителей на органы и системы было установлено незначительное превышение допустимого риска для органов дыхания, глаз и системного действия, которое практически не отличается от уровней контрольной группы. В то же время курение сигарет формирует неприемлемые уровни острого риска уже через 1,5 ч эксперимента, которые были обусловлены повышением концентраций ацетальдегида, формальдегида, взвешенных частиц PM$_{2.5}$, PM$_{10}$ и монооксида углерода. При использовании ЭСДН повышенные уровни риска достигались через 3 ч и только от воздействия двух веществ – ацетальдегида и оксида углерода.

Полученные данные позволяют рекомендовать оборудование раздельных мест для курения ЭСДН, ЭНТ и табачных сигарет, поскольку потребители ЭСДН и ЭНТ могут подвергаться добавочному риску от воздействия табачного дыма.

Финансирование. Исследование не имело спонсорской поддержки.

Конфликт интересов. Авторы данной статьи сообщают об отсутствии конфликта интересов.

Список литературы

1. Зубарова Л.Д., Зубаров Д.М. Курение как фактор риска сердечно-сосудистых заболеваний // Казанский медицинский журнал. – 2006. – № 5. – С. 369–373.
2. Краснова Ю.Н. Влияние табачного дыма на органы дыхания // Сибирский медицинский журнал (Иркутск). – 2015. – № 6. – С. 11–15.
3. Мониторинг употребления табака и профилактическая политика [Электронный ресурс] // Всероссийская организация здравоохранения. – 2017. – URL: http://www.who.int/fctc/mediacentre/press-release/wntd–2017/en (дата обращения: 27.01.2021).
4. Электронные системы доставки никотина и электронные системы доставки никотина (ENDS/ENNDS). Отчет [Электронный ресурс] // Всероссийская организация здравоохранения. – 2017. – URL: https://www.who.int/tobacco/communications/statements/eletronic-cigarettes-january-2017/en (дата обращения: 27.01.2021).
5. Изучение влияния основных компонентов электронных сигарет на организм человека. Актуальные проблемы потребительского рынка товаров и услуг // А.В. Валова, Р.Н. Гарипова, О.Ю. Попова, П.И. Цапок // Актуальные проблемы потребительского рынка товаров и услуг: материалы IV международной заочной научно-практической конференции, посвященной 30-летию Кировского ГМУ. – Киров, 2017. – С. 31–34.
6. Салагай О.О., Сахарова Г.М., Антонов Н.С. Электронные системы доставки никотина и нагревания табака (электронные сигареты): обзор литературы // Наркология. – 2019. – № 9. – С. 77–100.
7. Курсирование электронных сигарет студентами медицинского Вуза / А.С. Богачева, Е.В. Зарицкая, И.Ш. Якубова, Н.Ю. Новикова, М.А. Лаушник // Профилактическая медицина – 2019 : сборник научных трудов всероссийской научно-практической конференции, посвященной 30-летию Кировского ГМУ. – Киров, 2017. – С. 31–34.
8. Влияние курения классических, электронных сигарет и кальянов на организм человека, в том числе на полость рта / Е.И. Шпак, А.Н. Галкин, Е.В. Удальцова, Т.В. Герасимова // Актуальные проблемы медицинской науки и образования: сборник статей VI Международной научной конференции. – 2017. – С. 188–192.
9. Evaluation of the Tobacco Heating System 2.2. Part 1: Description of the system and the scientific assessment program / M.R. Smith, B. Clark, F. Ljudicke, J.P. Schaller, P. Vanscheu // Regul Toxicol Pharmacol. – 2018. – Vol. 92, № 6. – P. 2145–2149. DOI: 10.1007/s00204-018-2215-y
10. Comparison of the impact of the Tobacco Heating System 2.2 and a cigarette on indoor air quality / M.I. Mitova, T.S. Nurgochin // Meditsinskiy zhurnal. – 2006. – № 5. – С. 369–373.
11. Levels of selected analytes in the emissions of «heat not burn» tobacco products that are relevant to assess human health risks / N. Mallock, L. Bjoss, R. Burk, M. Danziger, T. S. Hahn, H.-L. Trieu, J. Hahn [et al.] // Archives of Toxicology. – 2018. – Vol. 92, № 6. – P. 2145–2149. DOI: 10.1007/s00204-018-2215-y
12. IQOS: examination of Philip Morris International’s claim of reduced exposure / G. St. Helen, P. Jacob III, N. Nardone, N.L. Benowitz // Tobacco control. – 2018. – № 27. – P. S30–S36. DOI: 10.1136/ tobaccocontrol-2018-054321
13. Validation of selected analytical method using accuracy profiles to assess the impact of Tobacco Heating System on consumer exposure levels // M. Kusnierz, M. Guess, M. Wenzel, J. Hahn, T. S. Hahn [et al.] // Talanta. – 2016. – № 158. – P. 165–178. DOI: 10.1016/j.talanta.2016.05.022
ASSESSING ACUTE INHALATION HEALTH RISK CAUSED BY EXPOSURE TO PRODUCTS CREATED BY NICOTINE-CONTAINING STUFF CONSUMPTION IN ENCLOSED SPACES

E.V. Zaritskaya1,2, V.N. Fedorov1,2, I.S. Iakubova2

1North-West Scientific Center for Hygiene and Public Health, 4 2-ya Sovetskaya Str., Saint Petersburg, 191036, Russian Federation
2North-Western State Medical University named after I.I. Mechnikov, 41 Kirochnaya Str., Saint Petersburg, 195067, Russian Federation

Contemporary research reveals that electronic devices for nicotine consumption produce not so negative effects on health due to adverse chemicals being emitted in substantially lower quantities. Nevertheless, such consumption still results in emission of various organic and non-organic substances with their effects on health being rather unpredictable. It is necessary to conduct additional studies, including those focusing on passive smoking of electronic cigarettes and assessing health risks caused by exposure to them.

© Zaritskaya E.V., Fedorov V.N., Iakubova I.S., 2021

Ekaterina V. Zaritskaya – Head of the Laboratory Research Department, post-graduate student at the Department for Preventive Medicine and Health Protection (e-mail: zev-79@mail.ru; tel.: +7 (812) 717-96-43; ORCID: http://orcid.org/0000-0003-2481-1724).
Vladimir N. Fedorov – Researcher at the Department for Analysis, Assessment, and Prediction of the Environment and Population Health in the Arctic regions in the Russian Federation; Junior researcher (e-mail: v1986@mail.ru; tel.: +7 (812) 717-01-54; ORCID: http://orcid.org/0000-0003-1378-1232).
Irek S. Iakubova – Doctor of Medical Sciences, Professor at the Department for Preventive Medicine and Health Protection (e-mail: yakubova-work@yandex.ru; tel.: +7 (812) 543-17-47; ORCID: https://orcid.org/0000-0003-2437-1255).
Our research goal was to assess acute health risks caused by passive consumption of tobacco and nicotine-containing products.

We built a model for tobacco or nicotine consumption by actual consumers (volunteers) and the process was evaluated as per a number of consumption sessions. We examined three products: tobacco cigarettes (cigarettes), electronic nicotine delivery system (ENDS), and a tobacco heating system (IQOS). Background air quality parameters were measured in a specifically organized enclosed space prior to each study session. We also conducted experiments in so-called reference groups when research participants didn’t consume the examined products but were in the same conditions. Health risks were assessed as per the Guide R 2.1.10.1920-04 «The Guide on assessing health risks caused by exposure to chemicals that pollute the environment».

Use of ENDS and IQOS does not result in significant changes in air composition and does not cause unacceptable acute health risk. Combined effects produced by contaminants on organs and systems resulted in health risks for respiratory organs, eyes, and body as a whole being insignificantly higher than permissible levels; these risks were practically the same as those detected for a reference group. Tobacco smoking resulted in unacceptable acute risks 1.5 hours after an experiment started; these risks were caused by elevated concentrations of such contaminants as acetaldehyde, formaldehyde, PM2.5, PM10, and carbon monoxide.

Key words: health risk, acute risk, acute additional risk, passive smoking, tobacco, nicotine-containing products, cigarettes, electronic nicotine delivery systems, electronic tobacco heating devices.

References

1. Zubairova L.D., Zubairov D.M. Kurenie kak faktor riska serdechno-sosudistykh zabolovanii [Smoking as a risk factor causing cardiovascular diseases]. Kazanski meditsinskii zhurnal, 2006, no. 5, pp. 369–373 (in Russian).
2. Krasnova Yu.N. Effects of tobacco smoking on the respiratory system. Sibirs'kii meditsinskii zhurnal (Irkutsk), 2015, no. 6, pp. 11–15 (in Russian).
3. Tobacco use monitoring and preventive policy. World health organization, 2017. Available at: http://www.who.int/fctc/mediacentre/press-release/wndt-2017/en (27.01.2021).
4. Electronic Nicotine Delivery Systems and Nicotine Delivery Systems (ENDS/EnNDS). Report. World health organization, 2017. Available at: https://www.who.int/tobacco/communications/statements/electronic-cigarettes-january-2017/en (27.01.2021).
5. Valova A.V., Giripova R.N., Popova O.Yu., Tsapok P.I. Izuchenie vliyaniya osoobnykh komponentov elektronnykh sigaret na organizm cheloveka. Aktual'nye problemy potrebitel'skogo rynka tovarov i uslug: Materialy IV mezhdunarodnoi zaochnoi nauchno-prakticheskoi konferentsii, posvyashchennoi 30-letiyu Kirovskogo GMU. Kirov, 2017, pp. 31–34 (in Russian).
6. Salagai O.O., Sakharova G.M., Antonov N.S. Electronic nicotine delivery and tobacco heating systems (E-cigarettes): literature review. Narkologiya, 2019, no. 9, pp. 75–79 (in Russian).
7. Bogacheva A.S., Zaiturskaya E.V., Yakubova I.Sh., Novikova N.Yu., Laushkin M.A. Kurenie elektronnykh sigaret studentami meditsinskogo VUZa [Electronic cigarettes smoking by students attending a medical HEE]. Profilakticheskaya meditsina – 2019: sbornik nauchnykh trudov Vserossiiskoi nauchno-prakticheskoi konferentsii, posvyashchennoi 30-letiyu Kirovskogo GMU. Kirov, 2017, pp. 75–79 (in Russian).
8. Shpak E.I., Galkin A.N., Udal'tsova E.V., Gerasimova T.V. Vliyanie kureniya klassicheskikh, elektronnykh sigaret i kal'yanoj na organizm cheloveka, v tom chisle na polost' rta [Impacts produced by classic cigarettes, e-cigarettes, and hookah smoking on a human body, including the oral cavity]. Aktual'nye problemy meditsinskoi nauki i obrazovaniya: sbornik statei VI Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 2017, pp. 188–192 (in Russian).
9. Smith M.R., Clark B., Ljudicke F., Schaller J.P., Vanscheeuwijk P., Hoeng J., Peitsch M.C. Evaluation of the Tobacco Heating System 2.2. Part I: Description of the system and the scientific assessment program. Regul. Toxicol. Pharmacol., 2016, vol. 81, no. 2, pp. S17–S26. DOI: 10.1016/j.yrtph.2016.07.006.
10. Baidil'dinova G.K., Mukhanova S.K., Sergazy Sh.D., Mikhailovskii S.V., Gulyaev A.E., Nurgozhin T.S. Estimating a probability of reducing risks associated with smoking conventional cigarettes using the THS2.2 (IQOS) technology. Meditsina (Almaty), 2019, vol. 200, no. 2, pp. 42–50 (in Russian).
11. Mallock N., Bjoss L., Burk R., Danziger M., Shhelsch T., Hahn H., Trieu H.-L., Hahn J. [et al.]. Levels of selected analytes in the emissions of «heat not burn» tobacco products that are relevant to assess human health risks. Archives of Toxicology, 2018, vol. 92, no. 6, pp. 2145–2149. DOI: 10.1007/s00204-018-2215-y.
12. Helen G.St., Jacob III P., Nardone N., Benowitz N.L. IQOS: examination of Philip Morris International’s claim of reduced exposure. Tobacco control, 2018, no. 27, pp. S30–S36. DOI: 10.1136/tobaccocontrol-2018-054321.
13. Zavel'skaya A.Ya., Syrtsova L.E., Levshin V.F. Passive smoking and the risk of cervical cancer. Narkologiya, 2015, vol. 167, no. 11, pp. 52–56 (in Russian).
14. Titova O.N., Kulkov V.D., Sukhovskaya O.A. Passive smoking and respiratory diseases. Meditsinskii al'yanes, 2016, no. 3, pp. 73–77 (in Russian).
15. Pokhaznikova M.A., Kuznetsova O.Yu., Lebedev A.K. The prevalence of passive smoking and other risk factors of chronic obstructive pulmonary disease in Saint Petersburg. Rossiiskii semeynyi vrach, 2015, no. 4, pp. 21–28 (in Russian).
16. Mitova M.I., Kampilos P.B., Gujon-Ginlinger K.G., Mader S., Mottle N., Rubze Je.G., Farini M., Triker A.R. Comparison of the impact of the Tobacco Heating System 2.2 and a cigarette on indoor air quality. Regul. Toxicol. Pharmacol., 2016, no. 80, pp. 91–101. DOI: 10.1016/j.yrtph.2016.06.005.
17. Mottier N., Tharin M., Cluse C., Crudo J.-R., Luego M.G., Goujon-Ginglinger C.G., Jaquier A., Mitova M.I. [et al.]. Validation of selected analytical method using accuracy profiles to assess the impact of Tobacco Heating System on indoor air quality. *Talanta*, 2016, no. 158, pp. 165–178. DOI: 10.1016/j.talanta.2016.05.022

18. Li H., Luo J., Jiang H., Zhu H., Hu S., Hou H., Hu J., Pang J. Chemical Analysis and Simulated Pyrolysis of Tobacco Heating System 2.2 Compared to Conventional Cigarettes. *Nicotine. Tob. Res.*, 2019, vol. 21, no. 1, pp. 111–118. DOI: 10.1093/ntr/nty005

19. Protano C., Manigrasso M., Avino P., Vitali M. Second-hand smoke generated by combustion and electronic smoking devices used in real scenarios: Ultrafine particle pollution and age-related dose assessment. *Environment international*, 2017, no. 107, pp. 190–195. DOI: 10.1016/j.envint.2017.07.014

20. Moiseev I.V., Podkopaev D.O., Savin V.M., Lesnyi V.V., Prikhod'ko R.P., Simdyanova T.P., Moiseyak M.B., Filatova I.A. [et al.]. Sravnitel'nye issledovaniya komponentnogo sostava sigaret i stikov «Parlament» dlya sistemy nargrevaniya tabaka IQOS [Comparative studies on component structure of «Parliament» cigarettes and tobacco units for IQOS tobacco heating devices]. *Mezhdunarodnyi industrial'nyi tabachnyi zhurnal «Tobakko-Revyu»*, 2017, no. 2 (83), pp. 50–61 (in Russian).

21. Zaritskaya E.V., Yakubova I.Sh., Mikheeva A.Yu., Alikbaeva L.A. Hygienic assessment of chemical composition of pollutants generated in various ways of consumption nicotine-containing product. *Gigiena i sanitariya*, 2020, vol. 99, no. 6, pp. 638–644 (in Russian).

22. Goniewicz M.L., Knysak J., Gawron M., Kosmider L., Sobczak A., Kurek J., Benowitz N. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. *Tobacco Control*, 2014, vol. 23, no. 2, pp. 133–139. DOI: 10.1136/tobaccocontrol-2012-050859

23. Schripp T., Markewitz D., Uhde E., Salthammer T. Does e-cigarette consumption cause passive vaping? *Indoor Air*, 2013, vol. 23, no. 1, pp. 25–31. DOI: 10.1111/j.1600-0668.2012.00792.x

Zaritskaya E.V., Fedorov V.N., Iakubova I.S. Assessing acute inhalation health risk caused by exposure to products created by nicotine-containing stuff consumption in enclosed spaces. *Health Risk Analysis*, 2021, no. 2, pp. 61–71. DOI: 10.21668/health.risk/2021.2.06.eng

Получена: 29.09.2020
Принята: 07.06.2021
Опубликована: 30.06.2021