Euler-Poincare Formalism of Peakon Equations with Cubic Nonlinearity

Guha P*
Centre Interfacultaire Bernoulli, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Abstract

We present an Euler-Poincaré (EP) formulation of a new class of peakon equations with cubic nonlinearity, viz., the Degasperis-Qiao and V. Novikov equations, in two almost equivalent ways. The first method is connected to flows on the spaces of Hill’s and first order differential operator and the second method depends heavily on the flows on space of tensor densities. We give a comparative analysis of these two methods. We show that the Hamiltonian structures obtained by Qiao and Hone and Wang can be reproduced by EP formulation. We outline the construction for the 2+1-dimensional generalization of the peakon equations with cubic nonlinearity using the action of the loop extension of Vect(S’) on the space of tensor densities.

Keywords: Spaces of tensor densities; Fokas-Qiao equation; Novikov equation; Bi-Hamiltonian; 2+1-dimensional peakon equation

Mathematics Subject Classifications (2000): 53A07, 53B50

Introduction

The one-parameter family of shallow water equations

\[u_t + (b+1)uu_x = bu u_{xx} + uu_{xxx}, \]

(1)

where \(b \) is a real parameter, has recently drawn some attention. This equation is called the b-field equation by Degasperis, Holm and Hone [1,2], who introduced this equation. They showed the existence of multi-peakon solutions for any value of \(b \), although only the special cases \(b=2,3 \) are integrable, having bi-Hamiltonian formulations. In the literature the partial differential equation (1) is also known as the Degasperis-Holm-Hone (or DHH) equation. The \(b=2 \) case is the well-known Camassa-Holm (CH) equation [3] and \(b=3 \) is the integrable system discovered by Degasperis and Procesi [4]. The most interesting feature of the CH equation is to admit peaked soliton (peakon) solutions. A peakon is a weak solution in some Sobolev space with corner at its crest. The stability and interaction of peakons were discussed in several references [5-7]. Using the Helmholtz field \(m=u-uxx \), the DHH equation (1) allows reformulation in a more compact form

\[m_t + (u^2 - u_x^2)m_x + 2uu_{xxx} = 0. \]

(2)

where the three terms correspond respectively to evolution, convection and stretching of the one-dimensional flow. Recently Lundmark and Szmigielski [8,9] used an inverse scattering approach to determine a construction of (2+1) dimensional integrable systems which yield peakon/dromion type solutions.

In an interesting paper Fokas et al. [13] proposed an algorithmic construction of (2+1) dimensional integrable systems which yield peakon/dromion type solutions.

\[q_{xx} - v_{xxt} + aq_{xx} + bq_{xxt} + c(q_{xxt} + 2q_{xxt}) - cq_{xxt} = 0. \]

(3)

This equation can also be identified [11,12] with the potential form of the Camassa-Holm or peakon analogue of the Calogero-Bogoyavlenskii-Schiff (CBS) equation (for \(a=0 \)), one of the most well-known (2+1)-dimensional Korteweg-deVries (KdV) type system. Equation (3) reduces CBS equation for \(v=0 \). It is known [12] that (3) is an Euler-Poincare flow on the co-adjoint orbit of loop Virasoro algebra with respect to \(H^1 \)-Sobolev norm.

In addition to the CH equation and DP equation, other integrable models with peakon solutions have been studied in recent years. The topic of this communication is to formulate the Euler-Poincare theory of the peakon type equations with cubic nonlinearity. One must note that the nonlinear term in the Camassa-Holm type systems and their two component generalizations are quadratic. So it is natural to ask whether there exist integrable systems admitting peakon solutions with cubic nonlinearity terms. Among these models, there are two integrable peakon equations with cubic nonlinearity. Recently Qiao found a peakon equation with cubic nonlinearity, which can also be written as:

\[m_t + (u^2 - u_x^2)m_x + 2uu_{xxx} = 0. \]

(4)

This inspired Novikov to find another peakon equation with cubic nonlinearity while studying symmetry classification of nonlocal PDEs with quadratic or cubic nonlinearity.

\[u_t - u_{xxx} + 4u^2u_x = 3uu_xu_{xx} + u^2u_{xxx}. \]

(5)

Hone and Wang [14] gave the Lax pair, bi-Hamiltonian structure, and peakon solutions of this equation.

Note that the equation (4) was independently found by Fokas.

*Corresponding author: Guha P, Centre Interfacultaire Bernoulli, Ecole Polytechnique Federale de Lausanne, SB CIF-GE, Station 7, CH-1015, Lausanne, Switzerland, Tel: +41216931111; E-mail: partha@boson.bose.res.in

Received May 11, 2015; Accepted July 20, 2015; Published July 29, 2015

Citation: Guha P (2015) Euler-Poincare Formalism of Peakon Equations with Cubic Nonlinearity. J Generalized Lie Theory Appl 9: 225. doi:10.4172/1736-4337.1000225

Copyright: © 2015 Guha P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
are (13)

\[\frac{d^2}{dx^2} + u(x) \]

where \(u \) is a periodic potential: \(u(x+2\pi) = u(x) \in C^\infty(R) \). The Hill’s operator maps

\[\Delta : \frac{1}{2} \rightarrow \frac{1}{2} \]

The action of \(\text{Vect}(S') \) on the space of Hill’s operator \(\Delta \) is defined by the commutation with the Lie derivative

\[[L_{f(x)} \frac{d}{dx}, \Delta] = \frac{1}{2} \left(\frac{\partial^3}{\partial x^3} + 2\alpha \partial + u' \right) \]

Thus, right hand side denotes the co-adjoint action of \(\text{Vect}(S') \) on its dual \(\Delta \) with respect to \(L^2 \) norm on the space of algebra.

Lemma 2.1: The Lie derivative action on \(\Delta \) yields

\[ad^* \eta([udx^2]) = \frac{1}{2} \left(\frac{\partial^3}{\partial x^3} + 2\alpha \partial + u' \right) \]

Proof: By direct computation.

It is clear from the definition of the Lie derivative on the space of Hill’s operator that this coincides with the co-adjoint action of a vector \(\eta = f(x) \) on its dual \(u dx^2 \):

\[df \frac{dx}{u dx^2} \] for \(H(u) = \frac{1}{2} \int S u^2 dx \) and it is given by

\[u_t + u u_x + 6 uu_x = 0 \]

Camassa-Holm in lie derivative method

Before we are going to embark the Camassa-Holm equation let us briefly recapitulate the usual co-adjoint method with respect to \(H' \) norm.

On the Virasoro algebra we consider the \(H' \) inner product, which is defined as \((f(x) \frac{dx}{u dx} , v) \in V' \) and a point \((udx^2, \lambda) \) or \((udx^2, \lambda) \) on the dual space is given by

\[\langle f(x) \frac{dx}{u dx} , (udx^2, \lambda) \rangle = \lambda + \int S f(x) u(x) dx + \int S f(x) u x \lambda \]
Let us compute the co-adjoint action \(\text{ad}^* \hat{u} \rvert_{H'} \) of the vector field \(f(x) \frac{d}{dx}, \nu \) \(\forall \nu \) its dual \((udx^\otimes_2, \lambda) \) with respect to \(H' \) norm.

Lemma 2.4:
\[
\text{ad}^* \hat{u} \rvert_{H'} = (1 - \partial^2)^{-1} \left[f(x)(1 - \partial^2) u_0 + 2 f'(1 - \partial^2)u + \lambda f'' \right].
\]

(14)

where \(\hat{u} = (u \, dx^\otimes_2, \lambda) \) and \(\hat{f} = (f(x) \frac{d}{dx}, \nu) \).

Proof: By direct computation.

Corollary 2.5: Using the Helmholtz function \(m = u - u_x \) Equation (14) can be rewritten as
\[
\text{ad}^* \hat{u} \rvert_{H'} = (1 - \partial^2)^{-1} \left[fm_x + 2 f_x m + \lambda f_{xxx} \right],
\]
and corresponding Hamiltonian operator is given by
\[
O^H = (1 - \partial^2)^{-1} (\partial^2 \lambda^3 + \partial m + m').
\]

(16)

Let us state co-adjoint action of \(\text{Vect}(S^1) \) on its dual in terms of Lie derivative language. It is clear that Lie derivative of \(\text{Vect}(S^1) \) on the space of Hill's operator should reflect the co-adjoint action with respect to \(H' \) norm, hence the Lie derivative equation must be expressed in terms m, i.e., Helmholtz operator acting on \(u \).

Definition 2.6: The \(\text{Vect}(S^1) \) action on the space of Hill's operator \(\Delta \) with respect to \(H' \) metric is defined as
\[
[\text{L}_f(x) \frac{d}{dx}, \Delta]_{H'} \equiv \frac{1}{2} \left(\hat{\Delta} \Delta - \Delta^2 \right) \frac{1}{f(x)} \frac{d}{dx} - \frac{1}{f(x)} \frac{d}{dx}, \Delta.
\]

(17)

where
\[
\hat{\Delta} = \lambda \frac{d^2}{dx^2} + m(x), \quad m = (u - u_xx).
\]

Therefore Lie derivative \(\text{L}_f(x) \frac{d}{dx} \) action yields the following scalar operator, i.e. the operator of multiplication by a function.

Proposition 2.7:
\[
[\text{L}_f(x) \frac{d}{dx}, \Delta]_{H'} = \frac{1}{2} \left(\hat{\Delta} \Delta - \Delta^2 \right) \frac{1}{f(x)} \frac{d}{dx} f(x).
\]

(18)

The L.H.S. of equation denotes the co-adjoint action evaluated with respect to \(H' \) norm. Thus we obtain the R.H.S. (Equation (18)).

Lemma 2.8: The co-adjoint action of vector field \(f(x) \frac{d}{dx} \) on its dual with respect to the right invariant \(H' \) metric can be realized as
\[
\text{ad}^* \hat{u} \rvert_{H'} = (1 - \partial^2)^{-1} \left[L_{f(x)} \frac{d}{dx}, \Delta \right]_{H'}
\]

This yields the Hamiltonian structure of the Camassa-Holm equation
\[
O^H = (1 - \partial^2)^{-1} \left(\frac{1}{2} \hat{\Delta} \Delta + 2 \partial \hat{m} + m' \right).
\]

(19)

At this stage we assume \(\lambda = 0 \), since we do not require the cocycle term to compute the Camassa-Holm equation. It is clear that the term \(\frac{1}{2} \hat{\Delta} \Delta \) manufactures from the cocycle term.

Therefore, the Euler-Poincare equation
\[
u_t = -O^{CH}_{CH} \frac{\delta H}{\delta u} \text{ where } O^{CH} = 2 \partial \hat{m} + m'.
\]

\[= -(1 - \partial^2)^{-1} (2m\hat{\psi} + m) \text{ with } H = \frac{1}{2} \int_\Omega u^2 \, dx\]

(20)

\[\Rightarrow m_t + 2mu + m = 0\]

yields the Camassa-Holm equation.

Euler-Poincare formalism of Whitham-Burgers equations

Let us consider a first order differential operator \(\Delta_1 = \frac{d}{dx} + u(x) \) acting on the space of tensor densities of degree \(-\frac{1}{2}\), i.e., \(F_{-\frac{1}{2}} \in \Gamma(\Omega^2) \).

This \(\Delta_1 \) maps
\[
\Delta_1 = \frac{d}{dx} + u(x) : F \rightarrow \frac{1}{2} F_{-\frac{1}{2}}
\]

Definition 2.9: The \(\text{Vect}(S^1) \) action on \(\Delta_1 \) is defined by the commutator with the Lie derivative
\[
[L_{f(x)} \Delta_1]_{H} = \frac{1}{2} \left[L_{f(x)} \frac{d}{dx}, \Delta_1 \Delta_{-\frac{1}{2}} \right]_{H}.
\]

(21)

The result of this action is a scalar operator, i.e. the operator of multiplication by a function, given by
\[
[L_{f(x)} \frac{d}{dx}, \Delta_1]_{H} = \frac{1}{2} f'(x) + u f(x) + u' f(x).
\]

(22)

This action yields the operator of the Burgers equation
\[
O_B = \frac{1}{2} \frac{d^2}{dx^2} + u \frac{d}{dx} + u'.
\]

(23)

Remark: The operator (23) is not a Poisson operator, since it does not satisfy the skew symmetric condition. When a vector field \(\text{Vect}(S^1) \) acts on the space of Hill's operator, it generates a Poisson flow, that is, operator involves in this flow is Poisson operator. But when \(\text{Vect}(S^1) \) acts on the space of first order differential operators, it does not generate a Poisson flow. Thus we obtain an almost Poisson operator.

Now we study the \(H' \) analogue of our previous construction Let us normalize the first order differential operator as \(\Delta_1 = \frac{d}{dx} + u(x) \).

Lemma 2.10:
\[
[L_{f(x)} \frac{d}{dx}, \Delta_1]_{H} = \frac{1}{2} f'(x) + u f(x) + m (x).
\]

(24)

Again, we can interpret this equation as an action of the vector field \(L_{f(x)} \frac{d}{dx} \) on the space of modified first order scalar differential operator \(2 \frac{d}{dx} + m \). The factor “2” is just the normalization constant.

The L.H.S denotes co-adjoint action with respect to \(H' \) norm. Once again we convert this to \(L' \) action, given as
\[
[L_{f(x)} \frac{d}{dx}, \Delta_1]_{L} = \frac{1}{2} f'(x) + m (x) + f(x), \quad m = u - u_x.
\]

The Hamiltonian operator of the Whitham-Burgers equation becomes
\[
O_{W_B} = -(1 - \partial^2)^{-1} \partial^2 \hat{\psi} \lambda^2
\]

(25)
The Euler-Poincare flow on the space of first order operators with respect to H' norm yields the Whitham Burgers equation
\[m + u_m + 3m_m = 0. \quad (26) \]

Euler-Poincare formalism and b-field equation and the Camassa-Holm-Whitham-Burgers equation

In this section we will state the Euler-Poincare construction for the the Degasperis-Procesi equation
\[m + u_m + 3m_m = 0, \quad \text{with} \quad m = u - u', \quad (27) \]
b-field equation and the Camassa-Holm-Whitham-Burgers equation. Latter one is the peakon analogue of the KdV-Burgers equation.

We need to combine the $\text{Vect}(S^1)$ action on both second and first order differential operators, Λ_2 and Λ_1, respectively, with respect to H' norm.

Definition 2.1: The $\text{Vect}(S^1)$ action the pencil of operators $\Lambda^{\lambda,\mu}$ as $\Lambda_2 + \mu \Lambda_1$ is given by
\[[L_f(x),d/dx]^{\lambda,\mu} = \delta[L_f(x),\Lambda_2]^{\lambda,\mu} + \mu [L_f(x),\Lambda_1]^{\lambda,\mu}, \quad (28) \]
where
\[\Lambda_2 = k_1 d^2/dx^2 + m(x), \quad \Lambda_1 = 2k_2 d/dx + m(x). \]
The pencil of Hamiltonian structures corresponding to $\text{Vect}(S^1)$ action on $\Lambda^{\lambda,\mu}$ is given by
\[O^{(1)}_{\lambda,\mu} = -((1 - \nu^2)^{-1} k_1^2 d^3 + \nu m + m d) + \mu (k_2 d^2 + \nu m) \cdot m = u - vu_{xx}. \quad (29) \]

If we assume $k_1 = k_2 = 0$ and $\lambda = 2$ and $\mu = -1$, we obtain the operator of Degasperis-Procesi equation
\[O_{DP} = -((1 - \nu^2)^{-1} (\nu m + 2m d) \cdot m = u - vu_{xx}. \quad (30) \]
The operator of the b-field equation can be obtained from $k_1 = k_2 = 0$ and $\lambda = b - 1$ and $\mu = (b - 2)$, given by
\[O_b = -((1 - \nu^2)^{-1} (m - b m d) \cdot m = u - vu_{xx}. \quad (31) \]
It is clear from this expression and the construction that for $b = 3$ case we obtain the Degasperis-Procesi operator and for $b = 2$ we recover the famous Camassa-Holm equation.

The Euler-Poincare equation
\[m_t + u_m + bm u = 0, \quad m = u - vu_{xx}. \quad (32) \]
yields the b-field equation
\[m_t + m u + bm u = 0, \quad m = u - vu_{xx}. \]
This is the derivation of the b-field equation using tensor algebra, and it was given in [11,12]. Consider the dual space of F_0 with a frozen m structure. In other words, we fix some point $m_0 \in F_0$ and define the generalized Hamiltonian structure. This immediately yields the first or frozen Hamiltonian structure
\[O_{frozen} = bm \ddot{\partial}, \quad (33) \]
This can be easily normalized as $O_{frozen} = \ddot{\partial}$.

The Camassa-Holm-Whitham-Burgers equation: The KdV-Burgers equation is given by
\[u_t + ku u + \beta u_{xxx} + \eta u u_x = 0, \quad (34) \]
where $k\beta$ and η are constants. It appears naturally in un magnetized dusty plasma and yields shock waves.

Proposition 2.12: The Euler-Poincare flow $u_t = -\partial_{H}^{b} \frac{\delta H}{\delta u}$ on space of Hill’s and first-order differential operators with respect to H'-metric yields the Camassa-Holm-Whitham- Burgers equation
\[m_t + (\lambda + \mu)m u + (2\lambda + \mu) mu_x + ku_{xxx} + \beta u_{xx} = 0, \quad m = u - vu_{xx}, \]
where $k = k_1 / 2$ and $\beta = k_2 \mu$. This reduces to the KdV-Burgers equation for $v = 0$.

Computation of Hamiltonian structure via deformed bracket

Let us introduce a new algebraic structure, called b-algebra. The commutator (or Lie bracket) is defined in a following way:

Definition 2.13: The b-bracket between $v(x) \frac{d}{dx}$ and $w(x) \frac{d}{dx}$ is defined as
\[[v, w]_b = vw - (b-1)wv. \quad (35) \]
This b-bracket can also be expressed as
\[[v, w]_b = \frac{b}{2} [v, w] - \frac{b-2}{2} [v, w] w, \quad (36) \]
where $[v, w] = vw - v w$ and $[v, w]_m = vw + v w$.

Remark: The b-bracket can be interpreted as an action of $\text{Vect}(S^1)$ on $F_{-(b-1)}(S^1)$, a tensor densities on S^1 of degree $-(b-1)$. For $b = 2$ this is just a vector field action corresponding to a Lie algebra. Moreover because of $[v, w]_m$ term b-bracket is not a skew-symmetric bracket, it is a deformation of the bracket of vector fields.

There is a pairing
\[\langle \cdot, \cdot \rangle : F_{-\nu} \otimes F_{-\mu} \to \mathbb{R} \]
given by
\[\langle a(x) dx^b, b(x) dx^{1-b} \rangle = \int S^1 a(x) b(x) dx. \quad (37) \]
which is $\text{Diff}(S^1)$ -invariant.

Definition 2.14: We denote b-algebra by $F_{-(b-1)}$ and its dual by F_0. Thus we can define a pairing according to (9)
\[\langle a(x) dx^{(b-1)}, b(x) dx^b \rangle = \int S^1 a(x) b(x) dx. \]
Let us compute the co-adjoint action with respect to the b-field equation.

Lemma 2.14:
\[\langle ad^{H_t} f, (ad a) g \rangle = \int S^1 (f(1-\nu^2)^{-1} [f(1-\nu^2)^2] u_x + h f(1-\nu^2)^2 u_x - \nu m u_x \cdot m = u - vu_{xx}. \quad (38) \]

Proof: We suppress all the density terms, thus from the definition we obtain
\[<ad^f u> g > H_t = <-u, \langle f g \rangle H_t > H_t \]
\[= -<u, \langle f g \rangle dx^{1-b} > H_t , \]
hence the pairing is well-defined. Let us compute
\[R.H.S. = \int_S (u f g' - (b-1) u f g') \, dx + v \int_S u' (f g' - (b-1) f g') \, dx = \int_S \left[f (1 - v \partial^2) u + b f' (1 - v \partial^2) u \right] \, dx \]
\[L.H.S. = \int_S (a d H')^2 \, dx + v \int_S (a d H')^2 \, dx = \int_S \left[f (1 - v \partial^2) a d H' \right] \, dx \]

Thus by equating the R.H.S. and L.H.S. we obtain the above formula.

Proposition 2.15: The Euler-Poincaré flow generated by the action of generalized vector field \(\gamma \in F_{(b,1)} \) on the dual space of tensor densities \(u \in F_0 \) yields the b-field equation
\[m_1 \, \partial_t u + bm_1 u = 0, \]
where \(O_b \) is the second generalized Hamiltonian structure.

Hamiltonian Structures of Integrable Peakon Equations with Cubic Nonlinearity

The subject of this section is to study the Hamiltonian structure of the partial differential equation
\[m_t + \left(m^{(2)} u - u \right) = 0, \tag{39} \]

which was recently obtained by Qiao [18,20]. One must note that this equation was first appeared in the paper of Thanasis Fokas [15]. Qiao described more details of its properties in the dispersionless case. So we propose to call this equation as the Fokas-Qiao equation. This inspired Novikov [22] to seek other integrable equations of this kind, given by
\[m_1, m u + bm u = 0. \tag{40} \]

Hone and Wang [14] gave a matrix Lax pair for Novikov's equation, and showed how it is related by a reciprocal transformation to the Novikov equation. This inspired Qiao described more details of its properties in the dispersionless case.

Hamiltonian structures of the Fokas-Qiao equation

Qiao studied Hamiltonian structures for \(b=1 \) case of DHF equation with cubic nonlinearity. Recently Qiao and his coauthors showed that this cubic nonlinear equation possesses the bi-Hamiltonian structure, namely, it can be written as
\[m_t = J \frac{\partial H_0}{\partial m}, \quad \text{with} \quad J = \hat{\partial} \hat{\partial} - \hat{m} \hat{\partial}_m, \quad K = \hat{\partial}^3 \hat{\partial}_m, \tag{41} \]

where
\[H_0 = 2 \int_S u m \, dx, \quad H_1 = \frac{1}{4} \int_S (u^4 + 2 u^2 u_x^2 - \frac{1}{3} u_x^4) \, dx. \tag{42} \]

The first Hamiltonian structure can be simplified to
\[J = - (m \hat{\partial}_m - \hat{m} \hat{\partial}_m - m^2 \hat{\partial}_m). \]

Proposition 3.1: The Fokas-Qiao equation in the Hamiltonian form
\[\frac{1}{2} m_t = J \frac{\partial H_0}{\partial m}, \quad \text{with} \quad H_0 = 2 \int_S u m \, dx \quad \text{and} \quad J = - \hat{m} \hat{\partial}_m - m^2 \hat{\partial}_m \]

is equivalent to
\[m_t = O \frac{\partial H_1}{\partial u}, \quad \text{for} \quad H_1 = \frac{1}{4} \int_S (u^4 + 2 u^2 u_x^2 - \frac{1}{3} u_x^4) \, dx. \tag{43} \]

Proof: By simple computation we obtain
\[m_t = - \left(m \hat{\partial}_m - \hat{m} \hat{\partial}_m - m^2 \hat{\partial}_m \right) \frac{\partial H_0}{\partial m} = - \left(m \hat{\partial} - \hat{m} \hat{\partial}_u - m^2 \hat{\partial}_u \right) \frac{\partial H_1}{\partial u}. \]

Thus by straight forward calculation we obtain
\[m_t = - \hat{\partial} \frac{\partial H_1}{\partial u} = - (1 - \hat{\partial}^2) \frac{\partial H_1}{\partial m} = K \frac{\partial H_1}{\partial m}. \tag{44} \]

Hamiltonian structure of V. Novikov equation

Novikov [22] studied Hamiltonian structures for \(b=3/2 \) case of DHF equation with cubic nonlinearity. The V. Novikov equation can be expressed as
\[m_t = B_1 \frac{\partial H_1}{\partial m}, \tag{45} \]

where the second Hamiltonian structure is given by
\[B_1 = -2 (3 m D_x + 2 m u_x) (4 D_x - D_x^3) (3 m D_x + m_1). \tag{46} \]

Proposition 3.2: The V. Novikov equation is equivalent to
\[m_t = O \frac{\partial H_1}{\partial u}, \quad \text{for} \quad H_1 = \frac{1}{2} \int_S u^3 \, dx. \tag{47} \]

where \(O = -2 (m_1 + 3 m \hat{\partial}) \) for \(b=3/2 \) case.

Proof: Our goal is to show
\[(4 D_x - D_x^3) (3 m D_x + m_1) \frac{\partial H_1}{\partial m} = \frac{\partial H_1}{\partial u}, \quad \text{where} \quad H_1 = \frac{1}{2} \int_S u^3 \, dx. \]

We insert \(\frac{\partial H_1}{\partial m} = \frac{1}{2} u \) to left hand side of above equation. By simple computation one can check that
\[(3 m u_x + m_1 u) = 4 u u_x - 3 u u_x + u_{xxx} u = \frac{1}{2} (4 \hat{\partial} - \hat{\partial}_u^3) (u^2). \]

thus we obtain
\[\frac{1}{2} (4 \hat{\partial} - \hat{\partial}_u^3) (3 m u_x + m_1 u) = \frac{1}{4} u_x^2. \]

Finally we obtain the V. Novikov equation via
\[m_t = -2(3m \dot{m} + m_x) \frac{\delta H}{\delta u}. \]

Therefore the Hamiltonian structure found by Hone and Wang [14] coincides with our Hamiltonian structure. The first or frozen Hamiltonian structure can be easily found as

\[m_t = -\phi \frac{\delta H_0}{\delta u}, \quad \text{where} \quad \frac{\delta H_0}{\delta u} = 2u_x^2 - u_{xx}. \tag{48} \]

This equation can also be expressed as \(m_t = -(4 - \phi^2)(u_x). \)

Proposed new peakon equation with cubic nonlinearity: Let us propose a new peakon equation with cubic nonlinearity which is a generalization of both the Fokas-Qiao equation and Novikov equation. It is given by

\[m_t = -(m_x + bn\phi) \frac{\delta H}{\delta u}, \quad \text{where} \quad \frac{\delta H}{\delta u} = (\mu u^2 - \nu v^2), \tag{49} \]

or

\[m_t + m_x(\mu u^2 - \nu v^2) + bm(\mu u^2 - \nu v^2)_x = 0, \quad \text{where} \quad m = u - u_x. \tag{50} \]

This equation reduces to the Fokas-Qiao equation for \(b = \mu = v = 1 \) and \(V. \) Novikov equation [22] for \(b = 3/2, \mu = 2 \) and \(v = 0. \)

2+1 cubic peakon equations

It is known that the Virasoro algebra can be extended to two space variables [23]. A natural way to do this is to consider the loops on it. One defines the loop group on \(\text{Diff}(S^1) \) as follows

\[L \left(\text{Diff}(S^1) \right) = \left\{ \phi : S^1 \to \text{Diff}(S^1) \mid \phi \text{ is differentiable} \right\}, \]

the group law being given by

\[(\phi \circ \psi)(y) = \phi(y) \circ \psi(y), \quad y \in S^1. \]

We also know that the corresponding Lie algebra \(\mathfrak{l}(\text{Vect}(S^1)) \) consisting of vector fields on \(S^1 \) depending on one more independent variable \(y \in \mathbb{S}^1. \) The loop variable is thus denoted by \(y \) and the variable on the "target" copy of \(S^1 \) by \(x. \) The elements of \(\mathcal{L}(\text{Vect}(S^1)) \) are of the form

\[\left(f(x,y) \frac{\partial}{\partial x}, \quad g(x,y) \frac{\partial}{\partial y} \right) \] for \(f \in C^\infty (S^1 \times S^1) \) and the Lie bracket reads as follows [1]

\[\left[f(x,y) \frac{\partial}{\partial x}, g(x,y) \frac{\partial}{\partial y} \right] = \left(f(x,y)g_x(x,y) - f_x(x,y)g(x,y) \right) \frac{\partial}{\partial x}. \]

We extend this scheme to the space of tensor densities [12]. Consider \(G \) to be the associated loop group corresponding to \(G_t \) whose Lie algebra is given by

\[\mathfrak{g}_1 = L(\mathcal{F}_{-(b-1)}). \]

Consider an action of \(L(\text{Vect}(S^1)) \) on \(L(\mathcal{F}_{-(b-1)}) \)

\[L \left(\frac{f}{g} \right)(g(dx)^{(b-1)}) = (f g_s - (b-1)f g) dx^{-(b-1)}, \tag{51} \]

this yields a new bracket.

Let us introduce \(H^1 \) norm on the algebra \(\mathfrak{g}_1. \)

Definition 3.3: The \(H^1 \) Sobolev norm on the tensor density algebra is defined as

\[\| f(x,y) dx^{-(b-1)} u(x,y) k dx^{(b)} \|^2_{H^1} = \int_{S^1} f u dx + v \int_{S^1} f d_x u dx. \tag{52} \]

Proposition 3.4: The co-adjoint action with respect to \(H^1 \) metric of

\[\text{the Lie algebra } \mathfrak{g} \text{ is given by} \]

\[\left(\frac{d}{dx} \right) \left(\phi(x,y)(dx)^b \right) = \left(f m_x + b f_x m \right) dx^b, \]

where \(m = (1 - \phi^2) u. \)

Corollary 3.5: The Hamiltonian operator corresponding to the co-adjoint action of the cotangent loop Virasoro algebra with respect to \(H^1 \) metric is given by

\[\hat{O} = -(1 - \phi^2)^{-1} \left(\partial_x m + (b-1)m \partial_x \phi \right). \tag{53} \]

Proposition 3.6: The Euler-Poincare flow on the \(\mathfrak{g}_1 \) orbit yields the \(2+1 \) dimensional \(b \)-field equation

\[m_t + m_x \phi^{-1}(\mu u^2 - \nu v^2)_x + bm(\mu u^2 - \nu v^2)_x = 0 \]

where the Hamiltonian is given by \(\frac{\delta H}{\delta u} = \phi^{-1}(\mu u^2 - \nu v^2)_y, \)

which reduces to \(1+1 \)-dimensional \(b \)-field equation for \(y = x. \)

It is clear that the equation becomes the Fokas-Qiao equation for \(y = x, b = \mu = v = 1 \) and \(V. \) Novikov equation for \(y = x, b = 3/2, \mu = 2 \) and \(v = 0. \)

Conclusion

We have studied the Euler-Poincare formalism of the cubic peakon equations using two different but equivalent methods. The first Euler-Poincare framework is based on the flows defined on the spaces of Hill’s and first order differential operators and the second one is studied using the algebra of tensor densities. We have explicitly derived the Hamiltonian structures of the cubic peakon equations as given by Qiao, Hone and Wang using the Euler-Poincare formalism. We also derived \(2+1 \)-dimensional cubic peakon equations using the action of the loop extension of \(\text{Vect}(S^1) \) on the space of tensor densities. It would be interesting to derive other novel features of these equations using EP theory.

Acknowledgement

The author is profoundly grateful to Professors Tudor Ratiu, Valentin Ovsienko, Andy Hone, Chand Devchand and Zhijun Qiao for discussing various things in different occasions. He expresses grateful thanks to Professor Tudor Ratiu for gracious hospitality at Bernoulli Centre, EPFL during his visit in the fall semester 2014.

References

1. Degasperis A, Holm DD, Hone ANW (2002) A New Integrable Equation with Peakon Solutions. Theoretical and Mathematical Physics 133: 1463-1474.

2. Degasperis A, Holm DD, Hone ANW (2002) Integrable and non-integrable equations with peakons. Nonlinear physics: theory and experiment. Proceedings of Nonlinear Physics-Theory and Experiment II/World Scientific, pp. 37-43.

3. Camassa R, Holm D (1993) An integrable shallow water equation with peaked solitons. Phys Rev Lett 71: 11: 1661-1664.

4. Degasperis A, Procesi M (1999) Asymptoticintegrability. Symmetry and perturbation theory. World Sci Publishing, River Edge, NJ.

5. Beals R, Sattinger D, Szmigielski J (2000) Multipeakonsand the classical moment problem. Advances in Mathematics 154: 229-257.

6. Constantin A, Strauss WA (2000) Stability of peakons. Communications on Pure and Applied Mathematics 53: 603.

7. Constantin A, Strauss WA (2002) Stability of the Camassa-Holm solitons. Journal of Nonlinear Science 12: 415-422.

8. Lundmark H, Szmigielski J (2003) Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Problems 6: 1241-1245.

J Generalized Lie Theory Appl ISSN: 1736-4337 GLTA, an open access journal Volume 9 • Issue 1 • 1000225
9. Lundmark H, Szmigielski J (2005) Degasperis-Procesi peakons and the discrete cubic string IMRP. International Mathematics Research Papers 2: 53-116.

10. Guha P (2007) Euler-Poincaré Formalism of (Two Component) Degasperis-Procesi and Holm-Staley type Systems. Journal of Nonlinear Mathematical Physics 14: 398-429.

11. Guha P (2008) Euler-Poincaré Flows on the Space of Tensor Densities and Integrable Systems Oberwolfach Report p. 33.

12. Guha P (2010) Euler-Poincaré Flows on the Loop Bott-Virasoro Group and Space of Tensor Densities and 2 + 1 Dimensional Integrable Systems. Reviews in Mathematical Physics 22: 485-505.

13. Fokas AS, Olver PJ, Rosenau P (1997) A plethora of integrable bi-Hamiltonian equations. Progress in Nonlinear Differential Equations and Their Applications 26: 93-101.

14. Hone ANW, Wang JP (2008) Integrable peakon equations with cubic nonlinearity. Journal of Physics A: Mathematical and Theoretical 41: 372002.

15. Fokas AS (1995) On a class of physically important integrable equations. Physica D: Nonlinear Phenomena 67: 145-150.

16. Fuchssteiner B (1996) Some tricks from the symmetry-toolbox for nonlinear equations; generalizations of the Camassa-Holm equation. Physica D: Nonlinear Phenomena 95: 229-243.

17. Olver PJ, Rosenau P (1996) Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E 53: 1900.

18. Qiao ZJ (2006) A new integrable equation with cuspons and W/M-shape-peaks solitons. J Math Phys 47: 112701.

19. Gui GL, Liu Y, Olver PJ, Qu CZ (2013) Wave-breaking and peakons for a modified Camassa-Holm equation. Communications in Mathematical Physics 319: 731-759.

20. Qiao ZJ (2007) New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W-shape peak solutions. J Math Phys 48: 08270.

21. Lazutkin VF, Pankratova TF (1975) Normal forms and the versal deformations for Hill's equation. Functional Analysis and Its Applications 9: 41-48.

22. Novikov V (2009) Generalisations of the Camassa-Holm equation. Journal of Physics A: Mathematical and Theoretical 42.

23. Ovsienko V, Roger C (2007) Looped cotangent Virasoro algebra and nonlinear integrable systems in dimension 2 + 1. Communications in Mathematical Physics 273: 357-378.