Using large clostridial cytotoxins as tools, the role of Rho GTPases in activation of RBL 2H3 hm1 cells was studied. *Clostridium difficile* toxin B, which glucosylates Rho, Rac, and Cdc42 and *Clostridium sordellii* lethal toxin, which glucosylates Rac and Cdc42 but not Rho, inhibited the release of hexosaminidase from RBL cells mediated by the high affinity antigen receptor (FceRI). Additionally, toxin B and lethal toxin inhibited the intracellular Ca\(^{2+}\) mobilization induced by FceRI-stimulation and thapsigargin, mainly by reducing the influx of extracellular Ca\(^{2+}\). In patch clamp recordings, toxin B and lethal toxin inhibited the calcium release-activated calcium current by about 45%. Calcium release-activated calcium current, the receptor-stimulated Ca\(^{2+}\) influx, and secretion were inhibited neither by the Rho-ADP-ribosylating C3-fusion toxin C2IN-C3 nor by the actin-ADP-ribosylating *Clostridium botulinum* C2 toxin. The data indicate that Rac and Cdc42 but not Rho are not only involved in late exocytosis events but are also involved in Ca\(^{2+}\) mobilization most likely by regulating the Ca\(^{2+}\) influx through calcium release-activated calcium channels activated via FceRI receptor in RBL cells.

Cross-linking of the high affinity IgE receptor (FceRI) by antigen-binding induces a cascade of morphological and biochemical reactions, finally resulting in degranulation (1). Several signaling events have been described, which appear to be essential for FceRI-mediated degranulation, including activation of protein tyrosine kinases and increase of intracellular Ca\(^{2+}\) (Refs. 2 and 3; for review, see Refs. 4 and 5). Activation of FceRI leads to the stimulation of phospholipase C\(_y\) and an increase of IP\(_3\) levels, which depletes endoplasmic Ca\(^{2+}\) stores.

Subsequently, a transient increase in the intracellular concentration of Ca\(^{2+}\) ([Ca\(^{2+}\)]\(_{i}\)) is followed by a sustained plateau which reflects the entry of extracellular Ca\(^{2+}\) (6). This Ca\(^{2+}\) entry is suggested to depend on the depletion of intracellular Ca\(^{2+}\) stores and is termed capacitative Ca\(^{2+}\) entry (for review, see Refs. 7 and 8). The inward Ca\(^{2+}\) current in RBL cells that seems to contribute to this entry is designated I\(_{\text{CRAC}}\) for calcium release-activated calcium current. However, the regulatory mechanisms leading to activation of I\(_{\text{CRAC}}\) is still unclear. Small GTPases have been suggested to participate in receptor-mediated Ca\(^{2+}\) influx in RBL cells and mast cells (9).

The small GTPases of the Rho family including Rho, Rac, and Cdc42 play important roles in regulation of the actin cytoskeleton (10). RhoA participates in growth factor-mediated formation of stress fibers and cell adhesions (11). Rac regulates membranes ruffling and lamellipodia (12), and Cdc42 controls the formation of filopodia (13). In addition, Rho GTPases participate as molecular switches in various signaling processes including regulation of phospholipase D (14), phospholipase C\(_\beta\) (15), phosphoinositide 3-kinase (16, 17), and phosphatidylinositol-4-phosphate 5-kinase (18). Furthermore, Rho subfamily proteins are involved in activation of transcription, cell cycle progression, and transformation (for review, see Refs. 10 and 19). The low molecular mass GTP-binding proteins of the Rho family (Rho, Rac, Cdc42) appear to be involved in activation of mast cells and RBL cells (20). Introduction of Rac into permeabilized mast cells cause secretion (21), and expression of dominant inhibitory forms of Cdc42 and Rac1 inhibits antigen-induced degranulation (22).

Various bacterial toxins have been established as tools to study the function of small GTPases (23). *Clostridium botulinum* C3 transferase and related C3-like exoenzymes, including the C3 chimeric toxin C2IN-C3, selectively ADP-ribosylate RhoA, RhoB, and RhoC at Asn-41, thereby inhibiting their biological functions (24–27). The family of large clostridial cytotoxins inactivate small GTPases by glucosylation (28). Whereas *Clostridium difficile* toxins A and B monoglucosylate Rho GTPases including Rho, Rac, and Cdc42 at Thr-37 or Thr-35, respectively (29), the lethal toxin from *Clostridium botulinum* modifies Rac, possibly Cdc42, but not Rho (30, 31). In addition, Ras subfamily proteins (e.g. Ras, Ral, and Rap) are glucosylated by the lethal toxin.

Here we studied the effects of toxins on degranulation, Ca\(^{2+}\) mobilization, and I\(_{\text{CRAC}}\) in RBL 2H3 hm1 cells. We report that toxin B and lethal toxin but not the Rho-modifying chimeric toxin C2IN-C3 inhibit secretion and increase of [Ca\(^{2+}\)]\(_{i}\) by the FceRI receptor in RBL cells. Moreover, the toxins inhibit thapsigargin-induced Ca\(^{2+}\) mobilization and the activation of I\(_{\text{CRAC}}\) by depletion of intracellular Ca\(^{2+}\) stores, indicating that Rac/Cdc42 but not Rho participates in regulation of capacitative Ca\(^{2+}\) entry.
EXPERIMENTAL PROCEDURES

Materials—C. difficile toxin B (32), C. sordelli lethal toxin (30), C. botulinum C2 toxin (33), and the C3 fusion toxin (C2IN-C3) (27) were prepared as described recently. Trinitrophenyl-ovalbumin (TNP-OVA) and IgE were kindly donated by Dr. A. Hoffmann (Paul-Ehrlich Institute, Langen, Germany). Pura-2-ace toxymethyltransferase was obtained from Molecular Probes (Göttingen, Germany). Thapsigargin was obtained from Calbiochem.

Cell Culture—Rat Basophilic Leukemia cells transfected with the human muscarinic receptor (34) (RBL 2H3 hm1, a gift from Dr. G. Schultz (Institut für Pharmakologie, Freie Universität Berlin, Berlin, Germany) and Dr. P. Jones (University of Vermont, Burlington, VT)) were grown in Eagle’s minimum essential medium with Earle’s salts supplemented with 15% (v/v) heat-inactivated fetal calf serum, 4 mM glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin in a humidified atmosphere of 5% CO2 at 37 °C. RBL 2H3 m1 cells were detached from culture plates with SK buffer (125 mM NaCl, 1.5 mM EDTA, 5.6 mM glucose, 10 mM HEPES, pH 7.2) by trypsinization. To avoid a partial destruction of membrane receptors, Subconfluent cells were preloaded with anti-TNP IgE (0.3 μg/ml) 12–24 h prior to antigen stimulation experiments. Thereafter, the medium was changed and the cells were treated with toxins for the indicated times and concentrations.

Treatment with Toxins—RBL cells were treated with C. difficile toxin B (40 ng/ml, 2–4 h), C. sordelli lethal toxin (40 ng/ml, 2–4 h) C. botulinum C2 toxin (100 ng/ml C2I and 200 ng/ml C2I 4 h), or C. limosum C3 exoenzyme (100 ng/ml C2I and 200 ng/ml C2IN-C3, 4 h) for the indicated times and concentrations. After toxin treatment, cells were washed three times with the appropriate buffer used for the intended experiments, cells were washed and resuspended in serum-free minimal essential medium and loaded with fura-2-acetoxymethyltransferase (2.5 μM) for 15 min at 37 °C. Then, cells were washed three times with HEPES-buffered salt solution (130 mM NaCl, 5.4 mM KCl, 0.9 mM NaH2PO4, 0.8 mM MgSO4, 1.8 mM CaCl2, 10 mM glucose, and 20 mM HEPES, pH 7.4), and cell density was adjusted to 106 cells/ml. Experiments were carried out at room temperature in HEPES-buffered salt solution using a Perkin Elmer LS 50B spectrophotometer. The fluorescence of cells suspension was examined at an emission wavelength of 510 nm and excitation wavelengths of 340 and 380 nm, respectively. Results are presented as changes in fluorescence ratio 340/380 over time.

Inhibition of ICRAC by Clostridial Cytotoxins

Measurements of [Ca2+]o, in Cell Suspension—RBL cells were treated with toxins from culture plates with SK buffer (125 mM NaCl, 1.5 mM EDTA, 5.6 mM glucose, 10 mM HEPES, pH 7.2). Following centrifugation, cells were washed and resuspended in serum-free minimal essential medium loaded with fura-2-acetoxymethyltransferase (2.5 μM) for 45 min at 37 °C. Then, cells were washed three times with HEPES-buffered salt solution (130 mM NaCl, 5.4 mM KCl, 0.9 mM NaH2PO4, 0.8 mM MgSO4, 1.8 mM CaCl2, 10 mM glucose, and 20 mM HEPES, pH 7.4), and cell density was adjusted to 106 cells/ml. Experiments were carried out at room temperature in HEPES-buffered salt solution using a Perkin Elmer LS 50B spectrophotometer. The fluorescence of cells suspension was examined at an emission wavelength of 510 nm and excitation wavelengths of 340 and 380 nm, respectively. Results are presented as changes in fluorescence ratio 340/380 over time.

Inhibition of ICRAC by Clostridial Cytotoxins was measured at room temperature 2 days later using a cell-imaging system (Till Photonics, Planegg, Germany). In the day of experiments, the cells were incubated in medium containing fura-2-acetoxymethyltransferase (4 μM) for 1 h at room temperature. Subsequently, the culture medium was replaced by a bath solution with a Ca2+ concentration of <10 nM (zero Ca2+: 115 mM NaCl, 0.5 mM EGTA, 2 mM MgCl2, 5 mM KCl, 10 mM HEPES, pH 7.2 (NaOH)). The Ca2+ concentration in bath was increased to 1 mM (1 mM Ca2+: 115 mM NaCl, 1 mM MgCl2, 2 mM CaCl2, 5 mM KCl, 10 mM HEPES, pH 7.2 (NaOH) during the fluorescence measurements. Images of 10–25 cells/coverslip were obtained every 3 s at an emission wavelength of 510 nm and excitation wavelengths of 340 and 380 nm, respectively. The fluorescence ratios were calibrated in vivo as described previously (38). Experiments were paired by alternating Ca2+ measurements in control and toxin-treated coverslips. The data were pooled for statistical analysis and are given as mean ± S.E.

Patch-clamp Techniques—Ionic currents were measured in whole cell configuration (39) using an EPC-9 amplifier (HEKA Electronic, Lambrecht, Germany). Whole cell recordings were conducted at room temperature 2–3 days after plating the RBL cells in plastic dishes. For most experiments, depletion of Ca2+ stores was induced by cell dialysis through the patch-clamp pipettes (1–2 meghoms) with 20 μM IP3, 115 mM CsCl, 4 mM MgCl2, 10 mM EGTA, and 10 mM HEPES (pH 7.2 (CsOH)). When cells were stimulated with the antigen, the dialysate contained no IP3, 10 mM Chol, 70 mM CsCl, 4 mM ATP-Mg and 10 mM HEPES were added. The bath solution contained 10 mM CaCl2, 115 mM NaCl, 2 mM MgCl2, 5 mM KCl, and 10 mM HEPES (pH 7.2 (NaOH)). Liquid junction potentials were corrected a posteriori (40). The membrane potential was clamped at 0 mV throughout the experiments and whole cell currents were scanned with ramps from +80 mV to −100 mV (0.9 V/s). The current and voltage leak potentials for chloride (Ecl) were 0 mV, a current segment of 15 ms was recorded at the holding potential of 0 mV before each ramp was applied. After breaking into whole cell, 12 ramps were delivered every 2 s to obtain reliable leak currents for subsequent leak subtraction. Thereafter, the development of the whole cell currents was followed with ramps delivered every 4 s. Whole cell currents were sampled at 10 kHz and filtered at 1.5 kHz. Series resistance (R) and whole cell membrane capacitance (Cm) were electronically compensated (40–50%) before each ramp.

The experiments were conducted to obtain a similar number of whole cell recordings with control and toxin-treated cells in the same day. Typically, the size (Cm) of the RBL 2H3 hm1 cells corresponds to 10–20 pF and was not changed by the treatment with toxins (controls, 15 ± 6 pF, n = 3; C. botulinum C2 toxin, 14 ± 6 pF, n = 3; C. botulinum C2 toxin + Thapsigargin (300 nM), 14 ± 6 pF, n = 3; C. sordelli lethal toxin, 16 ± 6 pF, n = 22; lethal toxin, 16.6 ± 1.2 pF, n = 12). Immediately after breaking into whole cell, an outward current component was usually observed in RBL 2H3 hm1 cells (Fig. 5A) but not in RBL-3 cells (data not shown). This outward current was not apparently modified by the treatment with toxin (Fig. 5B) and disappeared within the first 4 s of recording. Therefore, the currents obtained at 4–6 s of recording were used for leak subtraction when IP3 was dialyzed into the cells.

**p-nitrophenyl phosphate, 20 μg/ml aprotinin, 10 μM Tris/HCl, pH 8.0, cell lysates were centrifuged (14,000 × g) for 10 min at 4 °C, and the supernatant agitated for 2 h at 4 °C with anti-Rho, anti-Rac2, and anti-Cdc42 from Santa Cruz Biotechnology (Santa Cruz, CA), and anti-Myosin antibody from Oncogene Science (Uniondale, NY). Proteins were added and the mixture agitated for 1 h. Beads were collected (14,000 × g, 5 min), washed twice with ice-cold PBS, mixed, and boiled with sample buffer. Proteins were separated by SDS-PAGE (15%), followed by immunoblotting as described (36). Visual-
Because treatment of RBL cells with clostridial toxins affects the cytoskeleton possibly interfering with the adherence of cells, we first tested the effects of the toxins in suspension. Under these conditions and in the presence of extracellular Ca$^{2+}$, toxin B and lethal toxin blocked the Ca$^{2+}$ mobilization (Fig. 3A). Next, we tested the effects of C3 exoenzyme, which selectively modifies RhoA, -B, and -C but not Rac or Cdc42. Because cell accessibility of C3 exoenzyme is rather poor, we used the fusion toxin C2IN-C3, which is able to enter cells readily and shows the same substrate specificity as C3 (27). As shown in Fig. 3B, C2IN-C3 did not affect TNP-OVA-induced Ca$^{2+}$ mobilization. The glucosylating cytotoxins affect the actin cytoskeleton in many cell types including RBL cells (23); therefore, we studied the role of the redistribution of the actin cytoskeleton on the Ca$^{2+}$ response using C. botulinum C2 toxin, which ADP-ribosylates actin and induces depolymerization of actin filaments (33). C2 toxin did not inhibit but rather increased the late phase of the Ca$^{2+}$ transients induced by TNP-OVA (Fig. 3C).

The effects of the toxin B and lethal toxin shown in Fig. 3 can be explained by inhibition of one or several steps in the intracellular signaling cascade initiated by stimulation of the FceRI receptor and leading to mobilization of intracellular Ca$^{2+}$. To test a possible effect of toxin B and lethal toxin on the signaling cascade between release of Ca$^{2+}$ from intracellular stores and activation of capacitative Ca$^{2+}$ influx, we used thapsigargin, a potent inhibitor of Ca$^{2+}$ ATPases involved in Ca$^{2+}$ storage, that is frequently used to induce opening of store-regulated Ca$^{2+}$ channels in a receptor-independent manner (41). Moreover, thapsigargin and antigen reportedly activate the same store-regulated Ca$^{2+}$ influx in RBL cells (42). As shown in Fig. 4A, toxin B and lethal toxin inhibited the thapsigargin-induced Ca$^{2+}$ mobilization. Again, thapsigargin-induced Ca$^{2+}$ mobilization was not inhibited by C2 toxin (Fig. 4B). This finding supported the view that toxin B and lethal toxin likely affect the capacitative Ca$^{2+}$ influx underlying the Ca$^{2+}$ mobilization induced by FceRI receptor stimulation.

Therefore, we studied the effects of the toxins in patch clamp experiments to detect a possible inhibition of I$^{\text{CRAC}}$. The depletion of Ca$^{2+}$ stores was induced in a receptor-independent manner by cell dialysis with IP$_3$ (Fig. 5). Typically, the current-voltage relationships changed very rapidly reflecting the increase of inward currents both in control and toxin-treated cells and steady-state current levels were attained after 60 s after beginning of the dialysis of IP$_3$ (Fig. 5A). No difference in the time course of current activation was observed between control and toxin treated cells, except that the steady-state currents were consistently smaller in cells treated with toxin B (Fig. 5B).

To analyze this difference, the current amplitudes were normalized to cell size (Fig. 6). In control and toxin-treated cells (Fig. 6A), the whole cell currents showed an inward rectification and reversed at strong positive potentials (data not shown), as described for I$^{\text{CRAC}}$ in various cell systems (43). When the whole cell currents of cells treated with toxin B and lethal toxin were scaled by a factor of 1.4–1.7, the scaled currents superimposed on whole cell currents measured in paired control cells (Fig. 6A, inset). By contrast, I$^{\text{CRAC}}$ was not much changed by treatment with C2IN-C3 (Fig. 6A). When paired experiments were compared, the current amplitudes of cells treated with toxin B and lethal toxin were 46% and 40% smaller than control current densities at ≈ 80 mV, respectively (Fig. 6B). At ≈ 80 mV, the current densities of cells treated with C2IN-C3 were not significantly smaller than controls but significantly larger than current densities of cells treated with toxin B and lethal toxin ($p < 0.01$). Since the equilibrium potential for chloride was 0 mV in the present experimental conditions, we compared also current densities at 0 mV in order.
to rule out a possible contamination of Cl currents. Although the amplitude of steady-state currents at 0 mV is small in RBL cells (5–10 pA), the current densities of cells treated with toxin B and lethal toxin but not with C2IN-C3 were consistently smaller than current densities of control cells (control, 0.41 ± 0.23 pA/pF, $n = 17$; C2IN-C3, -0.35 ± 0.21 pA/pF, $n = 8$; toxin B, -0.25 ± 0.17 pA/pF, $n = 18$; lethal toxin, -0.21 ± 0.14 pA/pF, $n = 9$). Same inhibition by the glucosylating toxins was observed when I_{CRAC} was activated by stimulation of the FceRI receptor with TNP-OVA in cells primed with anti-TNP-IgE (Fig. 7) instead of depletion of Ca$^{2+}$ stores induced by dialysis of IP$_3$ (Figs. 5 and 6). These results strongly indicate both toxin B and lethal toxin but not C2IN-C3 inhibited I_{CRAC} in RBL cells, probably by interfering at steps of the signaling cascade between depletion of Ca$^{2+}$ stores and activation of CRAC channels in the plasma membrane of RBL cells. Furthermore, since in contrast to the effects of the clostridial cytotoxins, the fusion toxin C2IN-C3 did not reduce whole cell currents, it is likely that Rac and Cdc42 but not Rho are involved in the activation of I_{CRAC} following stimulation of the FceRI receptor.
The Ca\(^{2+}\) signals of RBL cells are normally characterized by a biphasic response. The initial transient phase due largely to a Ca\(^{2+}\) release from IP\(_3\) is usually followed by a sustained plateau due to capacitative Ca\(^{2+}\) entry through CRAC channels (43, 44). Since the experiments shown in Figs. 5–7 indicated that toxin B and lethal toxin inhibited the activation of I\(_{\text{CRAC}}\), we tested whether the capacitative Ca\(^{2+}\) entry is modified by toxin B. In the absence of extracellular Ca\(^{2+}\), stimulation of the FcεRI receptor of adherent RBL cells by TNP-OVA caused a small and transient increase in [Ca\(^{2+}\)]\(_i\), due to release of Ca\(^{2+}\) from intracellular stores (Fig. 8A). After increasing the extracellular Ca\(^{2+}\) concentration to 1 mM, the capacitative Ca\(^{2+}\) entry was observed in control and toxin-treated cells (Fig. 8A). Treatment of RBL cells with toxin B did not effect the release of Ca\(^{2+}\) from intracellular stores observed in the absence of extracellular Ca\(^{2+}\) but inhibited the capacitative Ca\(^{2+}\) entry in the presence of 1 mM [Ca\(^{2+}\)]\(_i\), by about 52% (Fig. 8B). These results support the view that toxin B and lethal toxin reduce the Ca\(^{2+}\) mobilization induced by activation of the FcεRI receptor mainly by inhibiting I\(_{\text{CRAC}}\) and consequently the capacitative Ca\(^{2+}\) entry in RBL cells.

DISCUSSION

Several studies have demonstrated that Rho GTPases are involved in FcεRI-mediated activation of RBL cells and mast cells (22, 45, 46). Secretion from permeabilized mast cells were increased by dominant active Rac and Rho proteins (20). Gomperts and co-workers suggested Rac and Cdc42 as candidates for \(^{\text{G}_{\text{E}_{\text{c}}}}\) a GTP-binding protein, mediating exocytosis in cells of hematopoietic origin (21). A role of small GTPases of the Rho family in RBL and mast cell activation was supported by recent findings that toxin B, which glucosylates and inactivates Rho GTPases, completely blocks secretion in these cells (36). However, the precise role of Rho GTPases in activation of RBL cells is still a matter of debate. Here we studied the effects of cloridial cytotoxins that inactivate Rho GTPases on the Ca\(^{2+}\) mobilization in RBL 2H3 hm1 cells. Our findings indicate that Rho GTPases play an essential role in the Ca\(^{2+}\) response of high affinity IgE receptors. Toxin B as well as lethal toxin inhibited not only the TNP-OVA-induced secretion but also the increase in [Ca\(^{2+}\)]\(_i\). The effects of the toxins were much stronger in the presence of extracellular Ca\(^{2+}\) suggesting an action on Ca\(^{2+}\) entry rather than on release from internal Ca\(^{2+}\) stores. Toxin B modifies all Rho GTPases known including Rho, Rac, and Cdc42 subtypes (29); lethal toxin inactivates Rac and, to a minor extent, Cdc42 but not Rho. In addition, Ras subfamily proteins like Ras and Ral are modified by lethal toxin (30). Thus, our data indicate that Rac (or Cdc42) but not Rho is involved in the toxins’ effects on Ca\(^{2+}\) mobilization. This notion is supported by the findings that the fusion toxin C2IN-C3, which selectively inactivates RhoA, -B, and -C, was without effect on secretion and Ca\(^{2+}\) mobilization (27, 47). Rho GTPases...
are master regulators of the actin cytoskeleton. Therefore, it was tested whether redistribution of the actin cytoskeleton plays a major role in toxin-caused inhibition of the Ca\(^{2+}\) response by FcεRI activation. Because C2 toxin, which causes depolymerization of actin filaments (33), showed no inhibition but rather an increase in Ca\(^{2+}\) mobilization, we conclude that the role of the Rho GTPases in the Ca\(^{2+}\) response is largely independent of the actin cytoskeleton.

Importantly, we observed that the clostridial cytotoxins also inhibited thapsigargin-induced increase in [Ca\(^{2+}\)]. Thapsigargin blocks sarcoplasmic endoplasmic reticulum Ca\(^{2+}\)-ATPases (41) and thereby promote influx of Ca\(^{2+}\) in RBL cells by passive depletion of IP\(_3\)-sensitive Ca\(^{2+}\) stores (42, 48). Thus, our data suggested that the toxin-sensitive step, e.g., the site of action of Rac/Cdc42 in regulation of Ca\(^{2+}\) mobilization, may be located downstream of IP\(_3\) production. To further substantiate this hypothesis, we performed whole cell patch-clamp experiments to characterize the CRAC channel suggested to be involved in ligand-regulated Ca\(^{2+}\) entry in RBL cells. In line with the findings on the Ca\(^{2+}\) mobilization determined with the Fura method, we observed inhibition of the TNP-OVA-induced increase in I\(_{\text{CRAC}}\) by the clostridial cytotoxins. Moreover, IP\(_3\)-induced activation of the CRAC channel was inhibited by the Rac/Cdc42-modifying toxins, suggesting a role of the GTPases in this process.

So far the precise regulatory functions of Rac/Cdc42 in Ca\(^{2+}\) responses are unclear. At least three models have been proposed for signaling capacitative Ca\(^{2+}\) entry (7, 49). First, it was suggested that a diffusible signaling factor (calcium influx factor) is generated and released from the endoplasmic reticulum (50). Second, conformational coupling model was proposed in which the endoplasmic reticulum IP\(_3\) receptor directly interacts with the Ca\(^{2+}\) channel in the plasma membrane. Finally, recent studies suggest a secretion-like coupling leading to fusion of vesicles containing Ca\(^{2+}\) channels with the plasma membrane, thereby allowing Ca\(^{2+}\) entry (52, 53).

Rho proteins including Rho, Rac, and Cdc42 have been reported to regulate endocytic and/or exocytic events (54–56). Moreover, these GTPases have been suggested to be involved in Ca\(^{2+}\) signaling by various receptors. Recent studies on the Fc\(\gamma\) receptor signaling indicate that Rho GTPases participate in the Ca\(^{2+}\) response in J774 macrophages (57). In these cells, Rho itself appears to be essential, because microinjection of C3 exoenzyme blocked the Fc\(\gamma\) receptor-mediated Ca\(^{2+}\) response. As reported in the present article, however, in RBL cells, ADP-ribosylation of Rho by the fusion toxin C2-IN3-C3 neither affected Ca\(^{2+}\) signaling nor secretion. In HeLa cells, transfection of dominant negative N17Rac blocked Ca\(^{2+}\) influx stimulated by epidermal growth factor, suggesting an essential role of Rac...
Inhibition of I_{CRAC} by Clostridial Cytotoxins

in Ca^{2+} response mediated by the receptor tyrosine kinase (58). Thus, it appears that the involvement of Rho GTPases in Ca^{2+} mobilization largely depends on the cell type studied.

In summary, we show that Rac/Cdc42 but not Rho are not only essential for late secretory events of RBL cell activation but also control specifically the Ca^{2+} response induced by the high affinity IgE receptor (FceRI).

Acknowledgment—We thank Dr. V. Flockerzi for helpful critical reading of the manuscript.

REFERENCES
1. Beaven, M. A., and Metzger, H. (1993) ImmunoL. Today 14, 222–226
2. Hutchcroft, J. E., Geahlen, R. L., Deanin, G. G., and Oliver, J. M. (1992) Proc. Natl. Acad. Sci. U. S. A. 99, 5077–5111
3. Minoguchi, K., Benhamou, M., Swaim, W. D., Kawakami, Y., Kawakami, T., Nicholls, P. H., and Penner, R. (1996) Annu. Rev. Immunol. 14, 53–62
4. Susen, D., and Hall, A. (1992) Cell 70, 389–399
5. Price, L. S., Norman, J. C., Ridley, A. J., and Koffer, A. (1994) Curr. Biol. 5, 68–73
6. Brown, A. M., O’Sullivan, A. J., and Gemperts, B. D. (1998) Mol. Biol. Cell 9, 1053–1063
7. Guillenot, J.-C., Montcourrier, P., Vivier, E., Davoust, J., and Chavrier, P. (1997) J. Cell Sci. 110, 2215–2225
8. Aktories, K. (1997) Trends Biochem. Sci. 22, 282–288
9. Aktories, K., Rosener, S., Blaschke, U., and Chhatwal, G. S. (1988) Eur. J. Biochem. 172, 445–450
10. Paterson, H. F., Self, A. J., Garrett, M. D., Just, I., Aktories, K., and Hall, A. (1999) J. Cell Biol. 111, 1001–1007
11. Bar, H., Hofmann, F., Olenik, C., Just, I., and Aktories, K. (1998) Infect. Immun. 66, 1364–1369
12. Aktories, K., and Just, I. (1995) Trends Cell Biol. 5, 441–443
13. Just, I., Selzer, J., Wilm, M., Von Eichel-Streifer, C., Mann, M., and Aktories, K. (1995) Nature 375, 500–503
14. Just, I., Selzer, J., Hofmann, F., Green, G. A., and Aktories, K. (1996) J. Biol. Chem. 271, 10149–10153
15. Popoff, M. R., Chaves, O. E., Lemichet, E., Von Eichel-Streifer, C., Thelema, M., Chardin, P., Cussac, D., Charvier, P., Piatau, G., Giry, M., Gunzburg, J., and Boquet, P. (1996) J. Biol. Chem. 271, 10217–10224
16. Von Eichel-Streifer, C., Harperath, U., Bosse, D., and Hadding, U. (1987) Microb. Pathogen. 2, 307–318
17. Aktories, K., Barmann, M., Ohishi, I., Tsuayama, S., Jakobs, K. H., and Habermann, E. (1986) J. Immunol. 126, 389–392
18. Jones, S. V. P., Choi, O. H., and Beaven, M. A. (1991) FEBS Lett. 289, 47–50
19. Malcomb, K., Ross, A. H., Qiu, R.-G., Symons, M., and Exton, J. H. (1994) J. Biol. Chem. 269, 1749–1756
20. Bar, H., Hofmann, F., Olenik, C., Just, I., and Aktories, K. (1998) J. Biol. Chem. 271, 7324–7329
21. Aktories, K., and Just, I. (1995) Methods Enzymol. 256, 184–195
22. Harris, P., Hambrecht, J., Braslavski, L., Schrotz, G., Freichel, M., Murakami, M., Calvialle, A., and Flockerzi, V. (1998) EMBO J. 17, 4247–4248
23. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Pflugers Arch. 391, 85–100
24. Neher, E. (1992) Methods Enzymol. 207, 123–131
25. Treyer, M., Coopsen, C., and Christensen, S. B. (1998) Trends Pharmacol. Sci. 19, 131–135
26. Ali, H., Maeyama, K., Sagi-Eisenberg, R., and Beaven, M. A. (1994) Biochem. J. 304, 431–440
27. Henz, M., and Penner, R. (1992) Nature 355, 353–356
28. Norman, J. C., Price, L. S., Ridley, A. J., and Koffer, A. (1996) Mol. Cell Biol. 16, 1429–1442
29. Norman, J. C., Price, L. S., Ridley, A. J., and Koffer, A. (1994) J. Cell Biol. 126, 1005–1016
30. Just, I., Mohr, C., Schallehn, G., Menard, J., Dibbsbury, J. R., Vandeckerkhoove, J., van Damme, J., and Aktories, K. (1993) J. Biol. Chem. 268, 10274–10280
31. Zhang, L., and McCloskey, M. A. (1995) J. Physiol. 483, 59–66
32. Kroschewski, R., Hall, A., and Mellman, I. (1999) J. Cell Biol. 1429–1442
33. Polley, J. W., Jr. (1999) Cell 99, 5–8
34. Rizalinski, B. A., Willoughby, K. A., Hoffman, S. W., Fakle, J. R., and Ellis, J. (1999) J. Biol. Chem. 274, 175–182
35. Kiselev, K., Xu, X., Mozhayeva, G., Kuo, T., Pessah, I., Mignery, G., Zhu, X., Birnbaumer, L., and Muallem, S. (1998) Nature 396, 478–482
36. Yao, Y., Ferrer-Montiel, A. V., Montal, M., and Tsien, R. Y. (1999) Cell 98, 475–485
37. Gill, D. L., and van Rossum, D. B. (1999) Cell 98, 487–499
38. Lamaze, C., Chuang, T. H., Terlecky, L. J., Bokoch, G. M., and Schmid, S. (1996) Nature 382, 177–179
39. Schmalzing, G., Richter, H. P., Hansen, A., Schwarz, W., Just, I., and Aktories, K. (1995) J. Cell Biol. 130, 1319–1332
40. Kroschewski, R., Hall, A., and Mellman, I. (1999) Nat. Cell Biol. 1, 8–13
41. Hackmack, D. J., Botstein, O. D., Schreiber, A., Zhang, W., and Grinstein, S. (1997) J. Exp. Med. 186, 955–966
42. Peppelensboch, M. P., Tertois, L. G. J., De Vries-Smit, A. M. M., Qiu, R.-G., Mrabet, L., Symons, M. H., de Laat, S. W., and Bos, J. L. (1996) J. Biol. Chem. 271, 7883–7886
Inhibition of Calcium Release-activated Calcium Current by Rac/Cdc42-inactivating Clostridial Cytotoxins in RBL Cells
Nabil Djouder, Ulrike Prepens, Klaus Aktories and Adolfo Cavalié

J. Biol. Chem. 2000, 275:18732-18738.
doi: 10.1074/jbc.M001425200 originally published online April 3, 2000

Access the most updated version of this article at doi: 10.1074/jbc.M001425200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 57 references, 25 of which can be accessed free at
http://www.jbc.org/content/275/25/18732.full.html#ref-list-1