PGC-1α deficiency reveals sex-specific links between cardiac energy metabolism and EC-coupling during development of heart failure in mice

Nikolay Naumenko1†, Maija Mutikainen1†, Lari Holappa1, Jorge L. Ruas2, Tomi Tuomainen1, and Pasi Tavi1*

1A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland; and 2Department of Physiology and Pharmacology Karolinska Institutet, Biomedicum, Solnavägen 9 171 65 Solna, Sweden

Received 14 October 2020; editorial decision 23 May 2021; accepted 3 June 2021

Time for primary review: 30 days.

Aims

Biological sex has fundamental effects on mammalian heart physiology and pathogenesis. While it has been established that female sex is a protective factor against most cardiovascular diseases (CVDs), this beneficial effect may involve pathways associated with cardiac energy metabolism. Our aim was to elucidate the role of transcriptional coactivator PGC-1α in sex dimorphism of heart failure (HF) development.

Methods and results

Here, we show that mice deficient in cardiac expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) coactivator-1α (PGC-1α) develop dilated HF associated with changes in aerobic and anaerobic metabolism, calcium handling, cell structure, electrophysiology, as well as gene expression. These cardiac changes occur in both sexes, but female mice develop an earlier and more severe structural and functional phenotype associated with dysynchronous local calcium release resulting from disruption of t-tubular structures of the cardiomyocytes.

Conclusions

These data reveal that the integrity of the subcellular Ca2+ release and uptake machinery is dependent on energy metabolism and that female hearts are more prone to suffer from contractile dysfunction in conditions with compromised production of cellular energy. Furthermore, these findings suggest that PGC-1α is a central mediator of sex-specific differences in heart function and CVD susceptibility.
1. Introduction

Biological sex has a significant impact on mammalian heart physiology throughout the lifespan. In humans, sex bias has been recognized in the prevalence and outcome of various cardiac diseases and sex dimorphism has been recapitulated in animal disease models. Sex dimorphism is manifested as a spectrum of physiological specifications of the heart, including size, contractile performance, and energy metabolism and at the level of individual cardiomyocytes calcium signalling and electrophysiology.

While the overall biological lifetime risk for cardiovascular diseases (CVDs) is similar between sexes, men develop diseases earlier than women. The combined effect of female chromosomes and oestrogen reduces the risk of atherosclerosis, ischaemic heart disease, and hypertension. While female sex is a protecting factor against most cardiac diseases of pre-menopausal females, some reports suggest that female sex is associated specifically with greater prevalence or worse prognosis in metabolic cardiomyopathies and hypertrophic cardiomyopathy.

A central difference in cardiac pathophysiology between sexes is that compared to males, females develop more favourable forms of hypertrophy associated with beneficial adaptation of cardiac energy metabolism in response to either physiological or pathological cardiac load. It can be hypothesized that pathways mediating metabolic plasticity in females might be central in explaining the sex disparities in CVDs.

We hypothesized that the progression of diseases associated with compromised myocardial energy metabolism might reveal some of the mechanisms behind sexual dimorphism in CVDs. To test this hypothesis, we studied mice deficient in cardiac PGC-1α, a model that recapitulates the energy metabolic changes associated with the development of heart failure (HF) including gradual suppression of energy metabolism and parallel decline of the contractile function leading to HF. We demonstrate that female Heart-PGC-1α KO mice develop HF earlier than male mice due to earlier development of severe contractile dysfunction and specific changes in the regulation of subcellular Ca2+ release and uptake resulting in dilated heart failure.
from disruption of transverse tubules (t-tubules). This work sets PGC-1α as a central mediator of sex-specific differences in heart function and CVD susceptibility.

2. Methods

All detailed method sections are provided in the Supplementary material online.

2.1 Ethical approval

All animal experiments were carried out with authorization by The National Animal Experiment Board of Finland (animal experimentation permit # ESAVI/7867/2018) and following the guidelines of The Finnish Act on Animal Experimentation, which comply with the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals.

2.2 Experimental animals

Male and female mice homozygous for floxed Pgc-1α and hemizygous for Myh6-Cre (Heart-PGC-1α KO) were used in experiments. Age-matched littermates homozygous for floxed Pgc-1α and negative for Myh6-Cre were used as a control. For the collection of tissues, animals were euthanized with CO₂ inhalation, followed by cervical dislocation. For cell isolation, animals were euthanized by cervical dislocation without preceding CO₂ inhalation.

2.3 Survival follow-up

Heart-PGC-1α KO mice were aged as long as they did not show visually observable signs of impaired cardiac function, which were considered as time points for euthanasia.

2.4 Echocardiography

For echocardiography, a high-resolution Vevo2100 Ultrasound imaging system (Visual Sonics Inc., Toronto, Canada) was used as described previously. Animals at the ages of 10, 12, and 16 weeks were imaged under inhalation anaesthesia [induction with 3.5–4% isoflurane (Baxter International Inc., Deerfield, IL, USA) and 350–400 mL/min air, maintenance with 2–2.5% isoflurane and 200–250 mL/min air] and kept on a heated platform during and shortly after the imaging.

2.5 RNA sequencing

Total RNA from left ventricular tissue of 18-week-old mice was isolated with TRI reagent (Sigma-Aldrich) using TissueLyzer II (Qiagen) in homogenization. Library preparation and sequencing were performed in the Finnish Functional Genomics Centre (Turku, Finland). RNA sequencing libraries were prepared from 300 ng total RNA according to Illumina TruSeq Stranded mRNA Sample Preparation Guide (#15031047). Libraries were sequenced with Illumina HiSeq 3000 instrument using 50bp single-end sequencing and sequencing data were analysed with software described in the Supplementary material online.

2.6 Quantitative RT-PCR

cDNA was synthesized from ventricular total RNA of 18- and 22-week-old mice with the RevertAid First Strand cDNA Synthesis Kit (ThermoFisher Scientific, Waltham, MA, USA). TaqMan-based quantitative PCR was performed with StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). Sequences of the fluorogenic probes and primers are presented in Supplementary material online, Table S1. Expression level of hypoxanthine-guanine phosphoribosyltransferase gene was used in normalization.

2.7 Single-cell isolation

Adult cardiomyocytes were isolated from 18-week-old mice or from 22-week-old animals as described previously.

2.8 Analysis of energy metabolism in isolated cardiomyocytes

Energy metabolism was assessed with Seahorse XF24 Analyzer (Agilent Technologies) as described earlier.

2.9 Confocal imaging of isolated cardiomyocytes

For calcium and t-tubule imaging the confocal imaging system (FluoView 1000, Olympus, Japan) was used. Cytosolic calcium signals in Fluo4-loaded cells were measured as described previously. For t-tubule staining CellMask Orange was used. Images were analysed using FluoView 4.0 (Olympus, Japan), ImageJ 1.5 (https://imagej.nih.gov/ij/), and MatchedMyo software.

2.10 Ca^{2+} flux protocol

To estimate calcium fluxes, Fluo4-loaded cardiomyocytes were exposed to Tyrode-based solutions with different compositions (Figure 5A). Sarcoplasmic reticulum (SR) calcium leak through ryanodine receptors (RyRs) was estimated in 0 Ca^{2+} and 0 Na\(^+\) solution with tetracaine. SR calcium content was assessed by caffeine application and SR Ca^{2+} - ATPase activity (SERCA) by single exponential fitting of caffeine-induced Ca^{2+} transient decay. Second extended caffeine pulse was used to measure the plasma membrane Ca^{2+} - ATPase activity (PMCA). Restoring to normal [Na\(^+\)] and [Ca^{2+}] in this condition led to accelerating of decay which was used to quantify sodium–calcium exchanger activity.

2.11 Spatiotemporal characteristics of calcium release

For detailed assessment of spatial and temporal dyssynchrony of calcium release in Fluo4-loaded cardiomyocytes, we analysed time course parameters of the local calcium transient (locCaT) at subcellular level. Briefly, fluorescence intensity was analysed for every single pixel of the original line-scans. The degree of locCaT dyssynchrony was assessed as the standard deviation (σ) in the time course of locCaTs within the cell. For spatial-σ, only one whole cell calcium transient (CaT) was included into the analysis. To measure temporal-σ (Figure 6F) five consecutive CaTs were analysed and to evaluate structural-σ, we eliminated beat-to-beat deviation in calcium release by averaging five frames of original line-scan with five consecutive CaTs as described previously.

2.12 Whole cell patch-clamp

For ionic currents and action potential (AP) recordings, a patch-clamp amplifier Axopatch 200B in combination with a Digitida 1440 A and Clampex 10 software (Molecular Devices Inc., Sunnyvale, CA, USA) were used. Protocols for AP, L-type Ca^{2+} current, and potassium currents recordings were as described previously. Analysis of the recordings was performed with ClampFit 10 (Molecular Devices).
2.13 Histology and western blot
Histology and western blot protocols are described in the Supplementary material online.

2.14 Statistical testing
OriginPro program (OriginLab Corporation, Northampton, MA, USA) was used for statistical analysis. Results are presented as mean ± standard error of the mean. Hierarchical linear model was used for data from experiments with isolated cardiomyocytes. In other cases, statistical significance and interaction between sex and genotype were estimated with two-way ANOVA followed by Bonferroni post hoc test.

3. Results
3.1 PGC-1α deficiency-induced HF shows sexual dimorphism

PGC-1α KO + Myh6-Cre (Heart-PGC-1α KO) mice have normal PGC-1α expression in other tissues except for the heart, which completely lacks PGC-1α expression in both male and female animals (Figure 1A). At birth, PGC-1α KO animals were undistinguishable from littermate controls but by 16 weeks of age both sexes showed signs of developing cardiomyopathy, manifested as premature death from 23 weeks onwards in females, and 25 weeks onwards in males with a significant difference between sexes (Figure 1B). During the period preceding the premature death of the animals, from 10 to 16 weeks of age, cardiac function developed differently between males and females. Up to 16 weeks of age male KO mice showed very small changes, compared to their age-matched controls, in ejection fraction (EF), left ventricular volume (LV vol), or LV wall thickness. Female animals, on the other hand, showed significant decreases in EF and LV wall thickness as well as an increase in LV vol compared to control animals (Figure 1C and D). At the 16 weeks of age, control mice showed physiological sex-dependent differences in the LV vol and EF (Figure 1D). At this time point, PGC-1α deficiency affected almost exclusively female animals, which showed clear signs of dilated HF indicated by decrease of the EF, increase in left ventricular volume (LV Vol; s and LV Vol; d) and thinning of anterior and posterior walls in systole, together resulting in reduced cardiac output (CO; Figure 1D).

Female mice had smaller heart and cardiomyocyte sizes, and the same difference was present in PGC-1α KO animals (Figure 1E). It appears that PGC-1α KO mice have no hypertrophy but instead the phenotype is associated with LV dilatation, which is more pronounced in female animals (Figure 1F and G and Supplementary material online, Figure S1). Histological cross-sections showed slight changes in PGC-1α KO hearts already at the age of 12 weeks and LV dilatation was apparent at the age of 18 weeks especially in female KO mice (Supplementary material online, Figure S1). At the age of 21 weeks signs of LV dilatations were more pronounced as the LV wall thickness was significantly reduced, and the LV inner diameter was increased in both male and female KO animals (Figure 1G). As a result, PGC-1α KO animals had significantly reduced relative wall thickness, and change was more pronounced in females (Figure 1F and G). These structural changes were associated with similar changes in expression of HF marker genes in both female and male PGC-1α KO hearts at the ages of 18 and 22 weeks, except for α-myosin heavy chain (Myh6) which was reduced only in female PGC-1α KO hearts (Figure 1H).

3.2 PGC-1α deficiency-induced transcriptional remodelling is similar between sexes
To get a better view of the overall changes induced by the PGC-1α knockout in male and female hearts, we performed RNA sequencing from left ventricular tissues. Hierarchical clustering of samples based on expression of 11790 genes passing the expression level filter (Supplementary material online, Figure S2A) showed that the samples were segregated by the genotype and further by sex (Figure 2A), which implicates the genotype as the main factor affecting ventricular transcriptome. Supporting this, principal component analysis led to a similar clustering of samples (Supplementary material online, Figure S2B). When comparing the sex differences, 46 genes had different expression between control males and females (Figure 2B, left). In the KO hearts, 58 genes had different expression level between sexes (Figure 2B, right), from which 24 genes maintained the sex difference present in control animals and 34 genes acquired significant difference (Figure 2C). Genes with differential expression between males and females are shown in heatmap in Supplementary material online, Figure S2C. In the gene set enrichment analysis, no gene ontology (GO) biological processes were significantly enriched among the genes with sex difference (Supplementary material online, Table S2). Comparison between control and KO hearts revealed differential expression of 1364 genes in males and 1285 in females (Figure 2D) with considerable overlap between the genes affected in males and females (Figure 2E). As expected, in both sexes GO biological processes related to oxidative metabolism were among the top enriched ones (Figure 2F and Supplementary material online, Table S2). Lack of PGC-1α had also different effect on many transcripts between males and females (Figure 2E), which led to some differences in the enriched gene pathways (Figure 2F). Further inspection of genes passing the differential expression filter only in either of the sexes reveals similar expression pattern in the opposite sex (Supplementary material online, Figure S2D and E), which explains the exceedingly small changes in sex differences between controls and knockouts (Figure 2G). In addition, clustering of samples is not changed dramatically when it is performed with these subsets of genes (Supplementary material online, Figure S2D and E) compared to when all genes are used (Figure 2A). A similar trend is seen when genes belonging to specific pathways enriched only in either of the sexes are analysed (Supplementary material online, Figure S2F and G). We also measured gene expression changes from the members of PGC-1α cascade to see if the differential survival between sexes could be explained by their differential regulation. We quantified expression changes at the age of 18 weeks and at the age of 22 weeks, which is closer to the time point where survival of males and females starts to differ (Figure 1B). PGC-1α knockout was not compensated in either of the sexes and in either of the time points by PGC-1β gene (Pparc) expression (Figure 2G). Furthermore, gene expression of transcription factors (PPARs, ORRs, MEF2) known to be co-activated by PGC-1α in cardiac myocytes were reduced to similar extent in males and females in both time points (Figure 2H). Expression of known PGC-1α target genes 3-hydroxybutyrate dehydrogenase 1 (Fabp1) and superoxide dismutase 2 (Sod2) were robustly decreased in both sexes and time points (Figure 2I). Finally, mitochondrial transcription factor A (Tfam) and cytochrome b (mt-Cytb) were both similarly reduced in all the groups suggesting similar repression of mitochondrial function in males and females (Figure 2J). Analysis of gene expression indicates that males and females respond similarly to PGC-1α deficiency both in the level of overall transcriptome and in the level of individual genes belonging to the PGC-1α cascade.
Figure 1 PGC-1α knockout causes sex-specific gradual cardiac dilatation and contractile suppression. (A) PGC-1α western blot from ventricular tissue of male and female Heart-PGC-1α KO and control mice. (B) Survival of male and female KO and control mice during a 250-day follow-up period (male Ctrl n = 5, male KO n = 5, female Ctrl n = 10, female KO n = 8). (C) Ejection fraction (EF), systolic left ventricular volume (LV vol), and systolic left ventricular posterior wall thickness (LVPW; s) of male and female KO mice shown as relative to average value in age-matched littermate controls at the ages of 10, 12, and 16 weeks (n = 8). (D) Parameters from echocardiography of 16-week-old male and female KO and control mice. CO, cardiac output; d, diastole; EF(%), ejection fraction shown as percentage; HR, heart rate; LVAW, left ventricular anterior wall thickness; LVPW, left ventricular posterior wall thickness; LV vol, left ventricular volume; s, systole (n = 8). (E) Heart weight to tibia length ratio (upper) (males n = 8, females n = 6) at the age of 16 weeks and cell capacitance at the age of 18 weeks [lower panel; male Ctrl n = 11/69 (animals/cells), male KO n = 10/53, female Ctrl n = 8/47, and female KO n = 8/43]. (F) Representative haematoxylin–eosin stained cross-sections of 21-week-old male and female mice hearts (scale bar 1 mm). (G) Ventricle wall thickness, inner perimeter derived diameter, and relative wall thickness of left ventricles measured from the histological sections (n = 9) of 21-week-old mice. (H) Ventricle expression of heart failure marker genes at the ages of 18 (n = 8) and 22 (n = 5) weeks (refer to Supplementary material online, Table S1 for gene abbreviations). Statistical significance from hierarchical linear model (E) and ANOVA Bonferroni post hoc test (B–D, G, and H); *P < 0.05, **P < 0.01, ***P < 0.001.
3.3 PGC-1α deficiency suppresses cardiomyocyte energy metabolism in both sexes

To investigate the energy metabolic capacity and substrate specificity of control and KO cardiomyocytes, we conducted in vitro metabolic analysis using Seahorse XF cell analyser. Overall, glycolytic capacity (extracellular acidification rate) in the presence of glucose (Figure 3A) and aerobic capacity (oxygen consumption rate) both in the presence of glucose (Figure 3B) or palmitate (Figure 3C) were suppressed in the KO cardiomyocytes of both sexes. Lack of PGC-1α had more pronounced effects.
Figure 3 PGC-1α deficiency suppresses cardiomyocyte energy metabolism. (A–C) Cells isolated from 18-week-old animals were supplemented with different energy substrates, and basal and FCCP induced maximal energy consumption were determined. (A) Averaged extracellular acidification rate (ECAR) traces (left) and analysis of basal and maximal ECAR (right) in cells supplemented with glucose. (B) Averaged oxygen consumption rate (OCR) traces (left) and analysis of basal and maximal OCR (right) in cells supplemented with glucose. (C) Averaged OCR traces (left) and analysis of basal and maximal OCR (right) in cells supplemented with palmitate. (D) Western blot analysis (left) and quantification (right) of 5′ AMP-activated protein kinase (AMPK) in left ventricular tissue from 18-week-old animals. (E) Western blot analysis (left) and quantification (right) of Thr172 phosphorylated AMPK in left ventricular tissue. (F) Ratio of phosphorylated AMPK and total AMPK in left ventricular tissue. In (A–C), male Ctrl n = 5/25 (animals/seahorse wells), male KO n = 5/25, female Ctrl n = 7/35, female KO n = 7/35. In (D–F), n = 4. Statistical significance from hierarchical linear model (A–C) and ANOVA Bonferroni post hoc test (D and E): *p < 0.05, †p < 0.01, ‡p < 0.001.
on female cardiomyocyte glycolytic capacity compared to male cells (Figure 3A). No significant interaction between sex and genotype was detected in energy substrate preference. Activation of S’AMP-activated protein kinase (AMPK) was assessed to see whether KO hearts suffer from energy deprivation. Total AMPK was increased in female KO when compared to male control (Figure 3D). Similarly, the amount of AMPK phosphorylated at residue Thr172, indicating AMPK activation, was increased in female KO heart in comparison to all other experimental groups suggesting that PGC-1α deficiency has more severe effects on cardiac energy production in females (Figure 3E). The ratio of phosphorylated and total AMPK did not differ among the experimental groups (Figure 3F).

3.4 PGC-1α deletion diminishes the sex disparity of electrophysiology parameters

Sex-specific features in cardiac electrophysiology give rise to sex-specific physiological features and contribute to sex disparity of the disease progression. Accordingly, in control animal myocytes females had longer APs (Figure 4A and B) than males as described before. Despite that expression of Na+/K+-ATPase (Atp1a1) and voltage activated Na⁺-channel subunit (Scn5a) were reduced by PGC-1α deficiency in both sexes (Supplementary material online, Figure S3A), PGC-1α KO did not affect resting membrane potential or AP amplitudes (Supplementary material online, Table S3). PGC-1α deficiency did increase the AP duration at 60–80% of repolarization in males, whereas no difference between female KO and female control was detected (Figure 4A and B).

Male cardiomyocytes had higher calcium current densities (ICaL; Figure 4C and D) compared to females, but this sex difference was abolished in KO myocytes without alteration in voltage-dependent activation/inactivation (Figure 4E). These changes were accompanied by downregulation of Cacna1C in both male and female KO animals (Supplementary material online, Figure S3A).

Among the measured potassium currents, control males had higher density of ultra-rapid delay rectifier K⁺ current (IKur) which was reduced in KO males, equalizing the sex differences in IKur between KO males and KO females (Figure 4H and I). Transient outward current (IK1; Figure 4F), inward-rectifier (IK1; Figure 4G), and steady-state potassium current (IKss; Figure 4H) were not different between sexes nor were they changed upon PGC-1α deletion. Expression of genes encoding potassium channel subunits was affected by PGC-1α deficiency, but the response showed no sex disparity, and transcripts were similarly changed in both male and female KO hearts ranging from suppressed expression (Kcnb1, Kcnd2, Kcnj2, and Kcnb1), to unaltered (Kcnb4) and upregulated (Kcnb1) (Supplementary material online, Figure S3A). Overall, PGC-1α deficiency equalized the sex-dependent electrophysiological differences between males and females at the level of measured potassium currents, calcium currents, and AP length.

3.5 PGC-1α deficiency has sexually dimorphic effects on cardiomyocyte Ca²⁺ signalling

To estimate whether the functional and structural changes seen in female PGC-1α KO hearts are associated with disturbances in cellular calcium cycling, we employed a specific protocol designed to isolate different calcium extrusion and uptake mechanisms from each other (Figure 5A). This analysis revealed some sex disparity in cardiomyocyte Ca²⁺ handling, namely, female control myocytes showed higher PMCA activity and RyR Ca²⁺-leak compared to male control myocytes.

Cardiomyocytes isolated from PGC-1α deficient hearts of both sexes had lower CaT amplitudes and reduced sarcoplasmic (SR) Ca2+ stores compared to their controls (Figure 5B and C). The changes were accompanied by lower expression of RyR (Ryr2) in both male and female KO animals and reduced calsequestrin 2 (Casq2) in female KO (Supplementary material online, Figure S3B). When calcium signals of male and female KO myocytes were compared, female myocytes showed smaller CaT amplitudes and longer CaT decays (Figure 5B and
Figure 5 PGC-1α deficiency disrupts Ca^{2+} handling in female cardiomyocytes. (A) Graphical representation of sarcoplasmic reticulum (SR) Ca^{2+} fluxes estimation protocol [see details in Section 2; brief epochs description: epoch a—basic Ca^{2+} transient (CaT) parameters, epoch b—ryanodine receptor (RyR) Ca^{2+} leak, epoch c—SR Ca^{2+} content, epoch d—SR calcium ATPase (SERCA) activity, epoch e—plasma membrane calcium ATPase (PMCA) activity, epoch f—Na^{+}/Ca^{2+} exchanger (NCX) activity; NT, normal Tyrode solution; TC, tetracaine). (B–E) CaT properties of cardiomyocytes isolated from 18-week-old mice [male Ctrl n = 4/89 (animals/cells), male KO n = 4/88, female Ctrl n = 3/47, and female KO n = 3/56]: (B) CaT amplitude, (C) SR Ca^{2+} content, (D) CaT decay, (E) fractional Ca^{2+} release. (F–I) Estimated Ca^{2+} fluxes: (F) RyR Ca^{2+} leak, (G) SERCA activity, (H) NCX activity, (I) PMCA activity. In (G and H), t from single exponential fit. In (I), slope from linear fit. In scatter charts red line depicts mean, whiskers SEM and cyan line distribution. Representative calcium transients from male (J) and female (K) cardiomyocytes in response to 0.5, 1, 2, 3, and 5 Hz electrical stimulation. (L) Means of the CaT amplitudes, (M) peak, (N) decay time 66% (decay), and (O) baseline of CaT evoked by frequent electrical stimulation (male Ctrl n = 5/24, male KO n = 4/31, female Ctrl n = 3/28, and female KO n = 3/29). Hierarchical linear model significance shown pairwise Ctrl vs. KO; *P < 0.05, **P < 0.01 and ***P < 0.001.
Figure 6 PGC-1α deficiency induces spatiotemporal dysynchrony of local calcium release in female myocytes. (A) Graphical explanation of workflow for spatial dysynchrony (spatial-σ) estimation. Yellow line is corresponding to global CaT profile in the original line-scan recording. In the zoomed in analysis region, black curve represents a profile of time-to-peak obtained from individual pixels of the line-scan. (B) Some representative traces of local CaTs [obtained at pixels shown by coloured arrows in (A); t₁, t₂, ... tₙ is time-to-peak]. (C) Representative profiles of time-to-peak from which standard deviations were calculated. (D) Spatial-σ of CaT rise time. (E) Spatial-σ of CaT decay time. (F) Graphical explanation of beat-to-beat dysynchrony (temporal-σ) estimation. Yellow line is corresponding to global CaT profile in the original line-scan recording. Black curves represent profiles of local CaT decays and arrows show measured values (Val₁, ... Valₙ) from which corresponding pixels’ standard deviations (σ₁, ... σₙ) were calculated. Mean of each pixel’s standard deviations was considered as temporal-σ of the cell. (G) Graphical explanation of structural dysynchrony (structural-σ) estimation. Averaged line-scan frame was acquired from consecutive CaT frames and analysed as in spatial-σ estimation. (H) Temporal-σ of CaT rise time. (I) Temporal-σ of CaT decay time. (J) Structural-σ of CaT rise time. (K) Structural-σ of CaT decay time. In scatter charts red line depicts mean, whiskers SEM and cyan line distribution. Eighteen-week-old animals; Ctrl n = 4/86 (animals/cells), male KO n = 4/88, female Ctrl n = 3/47, and female KO n = 3/56. Hierarchical linear model significance: *P < 0.05 and **P < 0.001.
However, despite the similar frequency-dependent acceleration of the CaT level leading to variability in calcium signals and contributing to HF.47–49 Latter types of changes induce compromised calcium release and uptake at fixed spots in the cell substructures, whereas transient modifications are likely to contribute to beat-to-beat deviation. To distinguish these from each other, we divided the original line-scans into 2000 ms long frames (Figure 6G). After elimination of the beat-to-beat variance by averaging the frames, the remaining variance (structural-σ) was considered to originate from long lasting, structural modifications. This analysis revealed that part of the dysynchrony characteristic to female KO cardiomyocytes results from the structural changes (Figure 6 and K) or changes that over last the beat-to-beat variation in local Ca2⁺ release and uptake. Collectively our data indicate that the single most important physiological difference between male and female PGC-1α-KO cardiomyocytes is the dyssynchronized local calcium release and uptake, which is likely to explain more severe cardiac phenotype and worse survival of female Heart-PGC-1α-KO mice.

3.7 PGC-1α deficiency leads to disruption of the t-tubular structures of cardiomyocytes

As described, PGC-1α deficiency results in drastic changes of the global and subcellular calcium signalling of especially female cardiomyocytes. To further study the structural changes associated with it we next visualized t-tubule structures of the cardiomyocytes isolated from 22-week-old mouse ventricles. Indeed, the cardiomyocytes from Heart-PGC-1α-KO mouse ventricles showed distorted tubular system characterized by reduced cytosolic area with intact t-tubule (TT content) and increased area devoid of t-tubule (TA content; Figure 7A and B). As expected based on calcium dysynchrony results, these changes were more pronounced in female KO myocytes (Figure 7B). Additionally, together with TT content and TA content changes, we found enhanced longitudinal t-system (LT content) in the myocytes of both male and female PGC-1α KO mice, which is a typical observation in HF.51 Similarly, irregular t-tubule structures were found in both male and female PGC-1α KO cardiomyocytes (Figure 7B and C).

Overall, the observed disruptive changes in t-tubule structures are sufficient to explain the dysynchrony of the subcellular calcium signals in female PGC-1α KO (Figure 6). Male Heart-PGC-1α-KO had moderate changes in their subcellular calcium signals compared to females, mainly a decrease in the calcium release synchrony efficiency in 18-week-old animals (Supplementary material online, Figure S5B). However, at the age of 22 weeks male Heart-PGC-1α-KO cardiomyocytes showed similar, although milder changes in t-tubule structures, suggesting that the pathological development associated with PGC-1α deficiency eventually affects both sexes, although male mice develop HF later than females.

4. Discussion

The widely recognized importance of biological sex on cardiac physiology and pathogenesis has prompted specific recommendations for clinical and basic research.2 However, sex-specific clinical practices or therapies are emerging slowly in the absence of deeper understanding of the specific mechanism behind sex dimorphism in cardiac disease progression. Here, we have tested the hypothesis that energy metabolism has a central role in sex dimorphism of HF progression and that a
signalling cascade involving PGC-1α might have a role in it. We demonstrate that mice deficient in cardiac PGC-1α expression develop dilated HF associated with suppression of energy metabolism, compromised calcium handling of cardiomyocytes, remodelling of electrophysiological properties of cardiomyocytes as well as substantial remodelling of gene expression. These changes occur in both sexes, but female mice develop a more severe structural and functional phenotype at a younger age. The HF endpoint of both sexes results from metabolic alterations associated with disruption of t-tubules and dyssynchrony of local calcium signals resulting in compromised calcium regulation of the cardiomyocytes.

Reduction of PGC-1α expression has been associated with the development of cardiac hypertrophy and HF, while increased PGC-1α expression has been suggested to mediate part of the effects of exercise. Supporting this, PGC-1α deletion compromises cardiac function and

Figure 7 PGC-1α deficiency induces disruption of the cardiomyocyte T-tubule structures. (A) Representative confocal images of CellMask Orange Plasma Membrane labelled cardiomyocytes at the age of 22 weeks showing regular t-tubule structure (blue area), absence of t-tubules (red), longitudinal tubules (green), and non-regular tubules (grey) with enlargements below (yellow box and arrows). (B) Quantification of t-tubule structures [TT content—percentage of t-tubule regular structure, TA content—absence of t-tubules, LT content—longitudinal tubules, and IT content—irregular tubules; male Ctrl n = 3/50 (animals/cells), male KO n = 3/39, female Ctrl n = 3/39, female KO n = 3/27]. (C) Representative female KO cell shows longitudinal (arrows) and irregular tubule structures. Hierarchical linear model significance: *P < 0.05, †P < 0.01, ‡P < 0.001.
metabolism while moderate PGC-1α deficiency in males and females that is the main reason for faster progression on phenotype in female PGC-1α KO.

Heart-PGC-1α-KO mice demonstrate the intimate interplay between compromised energy metabolism and consequent development of HF. During this process, hearts are prone to develop contractile dysfunction at the organ and cellular level originating from disruption of cardiomyocyte t-tubules and loss of coordination of the cellular Ca2+ handling. In healthy adult ventricular cardiomyocytes, efficient Ca2+ release and uptake rely on highly organized coupling between plasma membrane LTCCs and SR RyRs brought together by dense arrays of t-tubules. The fundamental purpose of these structures is to reduce the delay between electrical excitation and Ca2+ release as well as reduce the Ca2+ diffusion distances within the cytosol. Because of this essential role in controlling the local Ca2+ release, disruptions of these structures effectively compromise the whole cell Ca2+ signals as well as contraction. Compromised coupling between LTCCs and RyRs as well as dysfunction of CRUs can result in dyssynchrony of the local Ca2+ release and uptake at spatial (dys synchrony) and temporal (alternans) domain.

During the development of HF, the substructures of cardiomyocytes, including the t-tubules, revert to an immature phenotype, which is likely a major contributing factor to the compromised calcium signalling in HF and a predictive factor for LV dysfunction.

According to our data, the major difference between female and male hearts is the earlier appearance of the dys synchrony of the local Ca2+ signals in female KO cardiomyocytes, associated with parallel degradation of the t-tubules. While specific molecular mechanisms for this subcellular remodelling have not yet been identified, proteins such as BIN1 and junctophilin-2 have been implicated in the regulation of t-tubule development and pathological remodelling. Similarly, specific signals or signalling cascades for pathological t-tubule remodelling have not been identified, but it has been shown that cardiac workload and ventricular wall stretch regulate the t-tubule structures.

Compared to the commonly used HF models demonstrating t-tubule remodelling Heart-PGC-1α KO is different in many ways, since the initial pathological stimuli does not include workload or ventricular wall stretch, but instead the primary trigger is the suppression of the energy metabolism. Accordingly, at the level of transcripts (Figure 2) PGC-1α deficiency affects predominantly genes involved in energy metabolism with very little effect on gene patterns typically involved in workload or wall stretch-induced HF or t-tubule remodelling. In contrast, according to metabolomic analysis the metabolite profile of the Heart-PGC-1α KO ventricles as well as loaded or infarcted hearts show significant similarities in changes of energy metabolites and degradation products of membrane lipids. Considering the high turnover rate of t-tubules one could speculate that the maintenance of the complex t-tubular arrangement is an energy demanding process, and hence compromised energy production might affect t-tubular network directly. While more specific pathways explaining the t-tubule changes in HF may hopefully emerge based on our current data it could be hypothesized that independently of the cause, compromised energy metabolism is associated with membrane degradation affecting t-tubules.

To summarize, this study demonstrates that the integrity of the subcellular Ca2+ release and uptake machinery is dependent on energy metabolism and suggests that female hearts are more prone to suffer from contractile dysfunction in conditions with compromised production of cellular energy. Furthermore, our data suggest that PGC-1α has a central role in sex disparity of metabolic cardiomyopathy.
Supplementary material

Supplementary material is available at Cardiovascular Research online.

Authors’ contributions

Conception: P.T. Design of the experiments, collection, analysis, and interpretation of data: N.N., M.M., T.T., L.H., and P.T. Providing the materials: J.L.R. Drafting the article and reviewing: M.M., N.N., T.T., L.H., J.L.R., and P.T. All authors approved the definitive version of the manuscript.

Conflict of interest: The authors declare no conflicts of interests.

Funding

This work was supported by the Academy of Finland [325510 to P.T.] and Sigrid Juselius Foundation (P.T.).

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

1. Humphries KH, Izadnegahdar M, Sedlak T, Sav J, Johnston N, Schenck-Gustafsson K, Shah RU, Regitz-Zagrosek V, Grewal J, Vaccarino V, Wei J, Bayre Meiz CN. Sex differences in cardiovascular disease—impact on care and outcomes. Front Neuroendocrinol 2017;46:46–70.

2. Ventura-Clapier R, Dzwonczyk E, Seeland U, Sperandio B, Brunelleschi S, Carpenter TC, Erdmann J, Fanconi F, Giannetta E, Grezeman E, Hofmann SM, Junien C, Kati S, Kubickiene K, Konig IR, Madic G, Malorni W, Miehl C, Miller VM, Reynolds RM, Shimokawa H, Tanioka K, Udelson JE, Cecchi C. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

3. Vijay V, Han T, Moland CL, Kweke JC, Fuscoc JC, Desai VG. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 2015;10:e0117047.

4. Murphy E, Armanian G, Fillmore N, Parks RJ, Sun J, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357–360.

5. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:190.

6. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Methods 2009;8:78–90.

7. Patil AP, Cassis LA, Eghbali M, Reue K, Sandberg K. Sex hormones and sex chromosome differences in rodent models of cardiovascular health and disease. Circ Res 2016;118:1294–1312.

8. Luiz ED, Leinwand LA. Sex-based cardiac physiology. Circ Res 2017;113:711–724.

9. Blencz CL, Harvey PA, Reckelhoff JF, Leinwand LA. The importance of biological sex and estrogen in rodent models of cardiovascular health and disease. Circ Res 2016;118:1294–1312.

10. Humphries KH, Wakker SG, Vander Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

11. Murphy E, Armanian G, Fillmore N, Parks RJ, Sun J, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods 2015;12:357–360.

12. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:190.

13. Humphries KH, Izadnegahdar M, Sedlak T, Sav J, Johnston N, Schenck-Gustafsson K, Shah RU, Regitz-Zagrosek V, Grewal J, Vaccarino V, Wei J, Bayre Meiz CN. Sex differences in cardiovascular disease—impact on care and outcomes. Front Neuroendocrinol 2017;46:46–70.

14. Ventura-Clapier R, Dzwonczyk E, Seeland U, Sperandio B, Brunelleschi S, Carpenter TC, Erdmann J, Fanconi F, Giannetta E, Grezeman E, Hofmann SM, Junien C, Kati S, Kubickiene K, Konig IR, Madic G, Malorni W, Miehl C, Miller VM, Reynolds RM, Shimokawa H, Tanioka K, Udelson JE, Cecchi C. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

15. Humphries KH, Wakker SG, Van der Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

16. Humphries KH, Wakker SG, Van der Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

17. Humphries KH, Wakker SG, Van der Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

18. Humphries KH, Wakker SG, Van der Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

19. Humphries KH, Wakker SG, Van der Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.

20. Humphries KH, Wakker SG, Van der Ploeg LL, Flint S, Stalhoodt D. The mechanisms underlying ICa heterogeneity across murine left ventricle. J Physiol 2017;594:745–466.
Sex dimorphism in metabolic heart failure

Translational perspective

Biological sex is an important variable in clinical medicine, cardiac physiology, and pathogenesis. However, sex-specific clinical practices or therapies are emerging slowly in the absence of deeper understanding of the specific mechanism behind sex dimorphism in cardiac disease progression. Here, we show that energy metabolism has a central role in sex dimorphism of heart failure (HF) progression and that a signalling cascade involving PGC-1α might have a role in it. We provide insights into sex-specific mechanisms of HF development which are necessary to identify sex-specific treatment practices for cardiovascular diseases.

40. Sikkel MB, Francis DP, Howard J, Gordon F, Rowlands C, Peters NS, Lyon AR, Harding SE, MacLeod KT. Hierarchical statistical techniques are necessary to draw reliable conclusions from analysis of isolated cardiomyocyte studies. Cardiovasc Res 2017;113:1743–1752.

41. Svensson K, Albert V, Cardel B, Salatino S, Handschin C. Skeletal muscle PGC-1alpha modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. FASEB J 2016;30:1976–1986.

42. Lu Z, Xu X, Hu X, Fasseti J, Zhu G, Tao Y, Li J, Huang Y, Zhang P, Zhao B, Chen Y. PGC-1 alpha regulates expression of myocardial mitochondrial antioxidants and myocardial oxidative stress after chronic systolic overload. Antioxid Redox Signal 2010;13:1011–1022.

43. Wu Y, Anderson ME. Reduced repolarization reserve in ventricular myocytes from female mice. Cardiovasc Res 2002;53:673–679.

44. Trépanier-Boulay V, St-Michel C, Tremblay A, Fiset C. Gender-based differences in cardiac repolarization in rat ventricle. Circ Res 2001;89:437–444.

45. Brouillette J, Rivald K, Lizotte E, Fiset C. Sex and strain differences in adult mouse cardiac repolarization: importance of androgens. Cardiovasc Res 2005;65:148–157.

46. Jones PP, MacQuaide N, Louch WE. Dyadic plasticity in cardiomyocytes. Front Physiol 2018;9:1773.

47. Singh JK, Barsegyan V, Bassi N, Marszalec W, Tai S, Mothkur S, Mulla M, Nico E, Ryanodine receptor dispersion disrupts Ca(2+) release in failing cardiac myocytes. Elife 2018;7:e39427.

48. Crocini C, Coppini R, Ferrantini C, Yan P, Loew LM, Tesi C, Cerba E, Poggesi C, Pavone FS, Sacconi L. Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci USA 2014;111:15196–15201.

49. Kolstad TR, van den Brink J, MacQuaide N, Lunde PK, Frisk M, Aronsen JM, Norden ES, Cataliotti A, Sjaastad I, Sejersted OM, Edwards AG, Lines GT, Louch WE. Ryanodine receptor dispersion disrupts Ca(2+) release in failing cardiac myocytes. Physiol Rep 2017;5:e13540.

50. Sjaastad I, Wasserstrom JA, Sejersted OM. Heart failure—a challenge to our current concepts of excitation-contraction coupling. J Physiol 2003;546:33–47.

51. Lipsett DB, Frisk M, Aronsen JM, Norden ES, Buonarati OR, Cataliotti A, Hell JW, Sjaastad I, Christensen G, Louch WE. Cardiomyocyte substructure reverts to an immature phenotype during heart failure. J Physiol 2019;597:1833–1853.

52. Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 2002;29:339–345.

53. Garnier A, Fortin D, Deomone C, Mammen I, Veulosi V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 2003;551:491–501.

54. Watson PA, Reusch JE, McCune SA, Leinwand LA, Luckey SW, Konhilas JP, Brown DA, Chiczec AJ, Sarraguna GC, Long CS, Moore RL. Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am J Physiol Heart Circ Physiol 2007;293:H246–H259.

55. Arany Z, He H, Lin J, Hoyer K, Handschin C, Toka O, Ahmad F, Matsui T, Chin S, Wu PH, Rybkin II, Shelton JM, Manieri M, Cinti S, Schoen FJ, Bassel-Duby R, Rosenzweig A, Ingwall JS, Spiegelman BM. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab 2005;1:259–271.

56. Whitehead N, Gill JF, Brink M, Handschin C. Moderate modulation of cardiac PGC-1alpha expression partially affects age-associated translational remodeling of the heart. Front Physiol 2018;9:242.

57. Neubauer S. The failing heart—an engine out of fuel. N Engl J Med 2007;356:1140–1151.

58. Cannell MB, Kong CH. Local control in cardiac E-C coupling. J Mol Cell Cardiol 2012;52:298–303.

59. Louch WE, Koivumaki JT, Tavi P. Calcium signalling in developing cardiomyocytes: implications for model systems and disease. J Physiol 2015;593:1047–1063.

60. Sun B, Wei J, Zhong X, Guo W, Yao J, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Chen SRW. The cardiac ryanodine receptor, but not sarcoplasmic reticulum Ca(2+)-ATPase, is a major determinant of Ca(2+) alternans in intact mouse hearts. J Biol Chem 2018;293:13650–13661.

61. Wei S, Guo A, Chen B, Kutschke W, Xie YF, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 2010;107:520–531.

62. Manira O, Frisk M, Louch WE. Regulation of cardiac T-tubular structure: opportunities for therapy. Curr Heart Fail Rep 2017;14:167–178.

63. Ibrahim M, Nader A, Yacoub MH, Terracciano C. Manipulation of sarcoplasmic reticulum Ca(2+) release in heart failure through mechanical intervention. J Physiol 2015;593:3253–3259.

64. Frisk M, Ruud M, Espe EK, Aronsen JM, Roe AT, Zhang L, Norseng PA, Sejersted OM, Christensen GA, Sjaastad I, Louch WE. Elevated ventricular wall stress disrupts cardiomyocyte T-tubule structure and calcium homeostasis. Cardiovasc Res 2016;112:443–451.

65. Sandsbury BE, DeMartino AM, Xie Z, Brooks AC, Brainard RE, Watson LJ, DeFilippis AP, Cummins TD, Harbeson MA, Brittian KR, Prabhu SD, Bhatnagar A, Jones SP, Hill BG. Metabolomic analysis of pressure-overloaded and infarcted mouse hearts. Circ Heart Fail 2014;7:634–642.

66. Hong T, Shaw RM. Cardiac T-tubule microanatomy and function. Physiol Rev 2017;97:227–252.