Research Article

On the Convergence Ball and Error Analysis of the Modified Secant Method

Rongfei Lin¹, Qingbiao Wu², Minhong Chen³, and Xuemin Lei²

¹Department of Mathematics, Taizhou University, Linhai 317000, Zhejiang, China
²Department of Mathematics, Zhejiang University, Hangzhou 310027, Zhejiang, China
³Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310012, Zhejiang, China

Correspondence should be addressed to Qingbiao Wu; qbwu@zju.edu.cn

Received 21 January 2018; Revised 14 March 2018; Accepted 11 April 2018; Published 2 July 2018

Academic Editor: Kaliyaperumal Nakkeeran

Copyright © 2018 Rongfei Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We aim to study the convergence properties of a modification of secant iteration methods. We present a new local convergence theorem for the modified secant method, where the derivative of the nonlinear operator satisfies Lipchitz condition. We introduce the convergence ball and error estimate of the modified secant method, respectively. For that, we use a technique based on Fibonacci series. At last, some numerical examples are given.

1. Introduction

A large number of nonlinear dynamic systems and scientific engineering problems can be concluded to the form of nonlinear equation

\[f(x) = 0, \] (1)

where \(f \) is a nonlinear operator defined on a convex subset \(D \) of a complex dimension space \(C \). Hence, finding the roots of the nonlinear (1) is widely required in both mathematical physics and nonlinear dynamic system. Iterative methods are considerable methods. There are many iterative methods for solving the nonlinear equation.

Secant method [1, 2], which uses divided differences instead of the first derivative of the nonlinear operator, is one of the most famous iterative methods for solving the nonlinear equation. Secant method reads as follows:

\[x_{n+1} = x_n - f(x_n)(x_n - x_{n-1}) \]
\[n \geq 0 \] \((x_0, x_{-1} \in D) \) (2)

where the operator \([x, y; f]\) is called a divided difference of first-order for the operator \(f \) on the points \(x \) and \(y(x \neq y) \) if the following equality holds:

\[[x, y; f](x - y) = f(x) - f(y). \] (3)

Due to the well performance of the secant method, secant method and secant-like methods have been widely studied by many authors [3–11]. The authors [12] proposed a new method for solving the nonlinear equation.

Convergence ball is a very important issue in the study of the iterative procedures. When nonlinear operator \(f \) is first-order differentiable convex subset \(D \) can be open or closed, suppose \(x_* \) is the root of the equation \(f(x) = 0 \), an open area \(B(x_*, R) \) is called the convergence ball of the iterative algorithm. Authors [13–17] have discussed the convergence of the iterative methods using a convergence ball \(B(x_*, R) \) with center \(x_* \) and radius \(R \). For example, Ren and Wu [15] discussed the convergence of the secant method under Hölder continuous divided differences using a convergence ball.

In this study, we consider the modified secant method with the below form based on [12]

\[x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{3f(x_n) + f(x_{n-1}) - 4f((x_n + x_{n-1})/2)} \]
\[n \geq 0 \] (4)

and we will establish the convergence ball and give the error analysis of the modified secant method for the nonlinear equation.
2. Convergence Ball Study

Theorem 1. Suppose x_* is the root of the equation $f(x) = 0$ and $f'(x) \neq 0$. f is first-order differentiable, where the derivative of f satisfies the Lipschitz condition: $|f'(x_*)^{-1}(f'(x) - f'(y))| \leq K|x - y|$ for all $x, y \in D$ and $K > 0$. Then, the sequence $\{x_n\}$ generated by the modified secant method (4), starting from any two initial points $x_0, x_1 \in B(x_*, R)$, converges to the solution x_*. x_* is the unique solution in $B(x_*, 2/K)$, where $B(x_*, R) \subset B(x_*, 2/K)$. Moreover, the following error estimate holds:

$$|x_n - x_*| \leq R \left(\frac{|x_n - x_0|}{R} \right)^{F_n} \left(\frac{|x_n - x_{n-1}|}{R} \right)^{F_{n-1}}.$$

$$x_n - x_{n+1} = x_n - x_{n-1} + \frac{f(x_n)(x_n - x_{n-1})}{3f(x_n) + f(x_{n-1}) - 4f\left(\frac{x_n + x_{n-1}}{2}\right)}$$

$$= x_n - x_{n-1} + \frac{(f(x_n) - f(x_*))(x_n - x_{n-1})}{3f(x_n, x_{n+1})/2 + f(x_{n-1}, x_{n+1})/2}$$

$$= x_n - x_{n-1} + \frac{f[x_n, x_*(x_n - x_*)](x_n - x_{n-1})}{2f[x_n, x_*](x_n - x_*)}$$

$$= x_n - x_{n-1} + \frac{2f[x_n, x_*](x_n - x_*)}{(x_n - x_{n-1})}$$

$$= (x_n - x_*)(1 - \frac{2f[x_n, x_*]}{3f[x_n, x_{n+1}]/2 - f[x_{n-1}, x_{n+1}]/2})$$

$$= (x_n - x_*)\left(3\frac{f[x_n, x_{n+1}]/2 - f[x_{n-1}, x_{n+1}]/2}{2f[x_n, x_*]}\right)$$

$$- f'\left(tx_{n-1} + (1-t)\frac{x_n + x_{n-1}}{2}\right)$$

$$- 2f'\left(tx_n + (1-t)x_*\right)\right|,$$

$$= \left[3f[x_n, x_{n+1}]/2 - f[x_{n-1}, x_{n+1}]/2\right]$$

$$- f\left(x_{n-1}, \frac{x_n + x_{n-1}}{2}\right)$$

$$- 3f\left(x_{n-1}, x_{n+1}/2\right) + f\left(x_{n-1}, \frac{x_n + x_{n-1}}{2}\right)$$

$$= \left[3f[x_n, x_{n+1}]/2 - f[x_{n-1}, x_{n+1}]/2\right]$$

$$- f\left(x_{n-1}, \frac{x_n + x_{n-1}}{2}\right)$$

$$+ f\left(tx_{n-1} + (1-t)\frac{x_n + x_{n-1}}{2}\right)\right|.$$
Using Lipschitz condition with the above (9) and (10), we have
\[
\left| f'(x_s)^{-1} \left(3f \left[x_n, \frac{x_n + x_{n-1}}{2} \right] - f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \right) - (tx_n + (1 - t)x_s) \right| dt \\
\leq K \left| x_n - x_s + x_s - x_{n-1} \right| \left(3 \right) \\
+ 2K \left| x_n - x_s + (x_n - x_s) \right| \leq K \left| x_s - x_n \right| \\
+ K \left| x_s - x_{n-1} \right| ,
\]
(11)
and
\[
\left| 2 - f'(x_s)^{-1} \left(3f \left[x_n, \frac{x_n + x_{n-1}}{2} \right] - f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \right) \right| \\
\leq \int_0^1 \left(2K \left| x_s - \left(tx_n + (1 - t) \frac{x_n + x_{n-1}}{2} \right) \right| + K \left| \left(tx_{n-1} + (1 - t) \frac{x_n + x_{n-1}}{2} \right) - \left(tx_n + (1 - t) \frac{x_n + x_{n-1}}{2} \right) \right| \right) dt \\
\leq 2K \int_0^1 \left| 1 + \frac{t}{2} (x_s - x_n) + \frac{1 - t}{2} (x_s - x_{n-1}) \right| dt + K \int_0^1 \left| t(x_{n-1} - x_n) \right| dt \leq 2K \left(\frac{3}{4} \left| x_s - x_n \right| + \frac{1}{4} \left| x_s - x_{n-1} \right| \right) \\
+ K \left| (x_s - x_n) + (x_{n-1} - x_s) \right| \leq 2K \left| x_s - x_n \right| + K \left| x_s - x_{n-1} \right| .
\]
(12)
We divide above inequality (12) number 2, so
\[
\left| 1 - f'(x_s)^{-1} \left(3f \left[x_n, \frac{x_n + x_{n-1}}{2} \right] - f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \right) \right| \\
\leq f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \leq K \left| x_s - x_n \right| + \frac{K}{2} \left| x_s - x_{n-1} \right| ,
\]
(13)
According to the definition of R and \(x_n, x_{n-1} \in B(x_s, R) \), we get \(K \left| x_s - x_n \right| + (K/2)\left| x_s - x_{n-1} \right| < \frac{3}{5} < 1 \), by Banach Lemma, so \(3f \left[x_n, (x_n + x_{n-1})/2 \right] - f \left[x_{n-1}, (x_n + x_{n-1})/2 \right] \) is reversible and also
\[
\left| 2 - f'(x_s) \right| \\
\leq \left(3f \left[x_n, \frac{x_n + x_{n-1}}{2} \right] - f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \right)^{-1} \\
\leq \frac{1}{1 - K \left| x_s - x_n \right| - (K/2) \left| x_s - x_{n-1} \right|} .
\]
(14)
Dividing (14) inequality number 2, we can get
\[
\left(3f \left[x_n, \frac{x_n + x_{n-1}}{2} \right] - f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \right)^{-1} \\
\leq \frac{1}{2 - 2K \left| x_s - x_n \right| - K \left| x_s - x_{n-1} \right|} ,
\]
and with (11) and (15), we get following estimate formula:
\[
\left| f'(x_s)^{-1} \left(3f \left[x_n, \frac{x_n + x_{n-1}}{2} \right] - f \left[x_{n-1}, \frac{x_n + x_{n-1}}{2} \right] \right) \right| \\
\leq \frac{K \left| x_s - x_n \right| + K \left| x_s - x_{n-1} \right|}{2 - 2K \left| x_s - x_n \right| - K \left| x_s - x_{n-1} \right|} .
\]
(16)
and with (6) and (16) and $x_n, x_{n-1} \in B(x_*, R)$, we get following estimate formula:

$$
|x_* - x_{n+1}| \leq |x_* - x_n| \left| \frac{3 f \left[x_n (x_n + x_{n-1}) / 2 \right] - f \left[x_{n-1}, (x_n + x_{n-1}) / 2 \right] - 2 f \left[x_n, x_* \right] / 2}{3 f \left[x_n (x_n + x_{n-1}) / 2 \right] - f \left[x_{n-1}, (x_n + x_{n-1}) / 2 \right]} \right| \leq |x_* - x_n| \left| \frac{KR + KR}{2 - 2KR - KR} \right| = |x_* - x_n| < R.
$$

From the definition of ρ_n and above formulation, we can get

$$
|x_* - x_n| \leq R \left(\frac{|x_* - x_0|}{R} \right)^{F_n} \left(\frac{|x_* - x_{n-1}|}{R} \right)^{F_{n-1}} = \frac{2}{5K} \left(\frac{5K}{2} \right)^{F_n} \left(\frac{5K}{2} \right)^{F_{n-1}} (n \geq 1).
$$

At last, we show the uniqueness of the solution in the area $B(x_*, 2/K)$. Assume that there exists another solution $y_* \in B(x_*, 2/K)$, $y_* \neq x_*$. We consider the operator

$$
A = \int_0^1 f'(tx_* + (1-t)y_*) \, dt.
$$

Since $A[y_* - y_1] = f(y_1) - f(x_1) = 0$, if operator A is invertible, then $y_* = x_*$. Indeed from (24), we have

$$
\left| 1 - f' (x_*) \right|^{-1} A
$$

$$
= \left| f' (x_*) \right|^{-1} \int_0^1 \left(f' (x_*) - f' (tx_* + (1-t)y_*) \right) \, dt
$$

$$
\leq K \int_0^1 |(1-t)(x_* - y_*)| \, dt = \frac{K}{2} |x_* - y_*| < 1.
$$

Then, by Banach lemma, we can tell that operator A is invertible. From the definition of radius R, it is easy to verify that the ball $B(x_*, 2/K)$ is bigger than $B(x_*, R)$.

That completes the proof of Theorem 1. □

3. Numerical Examples

In this section, the convergence ball results were applied to numerical examples.

Example 1. Let us consider

$$
f(x) = x^2 - 1, \quad x \in [0, 2].
$$

It is obviously that $f'(f(x)) = 2x$, $f(x) = 0$ has a root $x_1 = 1$ and $f'(x_*) = 2$. It is easy to know

$$
\left| f' (x_*) \right|^{-1} \left(f' (x) - f' (y) \right) \leq |x - y|.
$$

According to Theorem 1, we can obtain the fact that the radius of the convergence ball of the modified secant method is $R = 2/5 = 0.4$ at least.
Example 2. Let us consider the following numerical problem which has been studied in [4, 11, 13]:

\[f(x) = e^x - 1, \]
\[D = [-1, 1]. \] (28)

\[f'(x) = e^x, x_0 = 0, \text{ and } f'(x_0) = 1. \]

We know \(|e^x - e^y| \leq e|y - x|\); hence,

\[\left| f'(x_0) \right|^{-1} \left| f'(x) - f'(y) \right| \leq e \left| |x - y| \right|. \] (29)

So \(K = e\) in this problem.

By Theorem 1, we can obtain the fact that the radius of the convergence ball of the modified secant method is \(R = 2/5K = 7/5 \approx 1.4\) at least.

Example 3. Let us consider the nonlinear equation

\[f'(x) = \frac{2}{5} \sin x + x, \quad x \in [0, 2]. \] (30)

Here, \(f'(x) = (2/5) \cos x + 1, x_0 = 0, \text{ and } f'(x_0) = 7/5. \)

We know that \(|\cos x - \cos y| \leq |x - y|\); then it is obvious that

\[\left| f'(x_0) \right|^{-1} \left| f'(x) - f'(y) \right| \leq \frac{2}{7} \left| x - y \right|. \] (31)

In this case, the radius of the convergence ball of the modified secant method is \(R = 2/5K = 7/5 \approx 1.4\) at least, according to Theorem 1.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant nos. 11771393, 11371320, and 11632015), Zhejiang Natural Science Foundation (Grant nos. LZ14A010002, LQ18A010008), Scientific Research Fund of Zhejiang Provincial Education Department (Grant no. FX2016073), and the Science Foundation of Taizhou University (Grant no. 2017PY028).

References

[1] J. W. Schmidt, “Regula-falsi-Verfahren mit konsistenter Steigung und Majorantenprinzip,” Periodica Mathematica Hungarica, vol. 5, pp. 187–193, 1974.
[2] A. S. Sergeev, “The method of chords,” Sibirskii Matematicheski Zhurnal, vol. 2, pp. 282–289, 1961.
[3] M. A. Hernandez, M. J. Rubio, and J. A. Ezquerro, “Secant-like methods for solving nonlinear integral equations of the Hammerstein type,” Journal of Computational and Applied Mathematics, vol. 115, pp. 245–254, 2000.
[4] M. A. Hernandez and M. J. Rubio, “The secant method and divided differences Holder continuous,” Applied Mathematics and Computation, vol. 124, no. 2, pp. 139–149, 2001.
[5] H. M. Ren, S. J. Yang, and Q. B. Wu, “A new semilocal convergence theorem for the Secant method under Holder continuous divided differences,” Applied Mathematics and Computation, vol. 182, no. 1, pp. 41–48, 2006.
[6] J. A. Ezquerro, M. Grau-Sánchez, M. A. Hernández, and M. Noguera, “Semilocal convergence of secant-like methods for differentiable and nondifferentiable operator equations,” Journal of Mathematical Analysis and Applications, vol. 398, no. 1, pp. 100–112, 2013.
[7] M. J. Nijmeijer, “A method to accelerate the convergence of the secant algorithm,” Advances in Numerical Analysis, vol. 2014, Article ID 321592, 14 pages, 2014.
[8] J. A. Ezquerro, M. A. Hernandezveron, and A. I. Velasco, “An analysis of the semilocal convergence for secant-like methods,” Applied Mathematics and Computation, vol. 266, pp. 883–892, 2015.
[9] A. A. Magrenan and I. K. Argyros, “New improved convergence analysis for the secant method,” Mathematics and Computers in Simulation, vol. 119, pp. 161–170, 2016.
[10] A. Calicicotti, G. Fasano, and M. Roma, “Preconditioned non-linear conjugate gradient methods based on a modified secant equation,” Applied Mathematics and Computation, vol. 318, pp. 196–214, 2018.
[11] A. Kumar, D. K. Gupta, E. Martinez, and S. Singh, “Semilocal convergence of a secant-type method under weak Lipschitz conditions in Banach spaces,” Journal of Computational and Applied Mathematics, vol. 330, pp. 732–741, 2018.
[12] X.-H. Lei and L.-P. Chen, “A new method for solving the nonlinear equation (in Chinese),” Journal of Capital Normal University (Natural Science Edition), vol. 22, pp. 20–24, 2001.
[13] X.-H. Wang, “On the Mysovskich theorem of Newton method (in Chinese),” Chinese Annals of Mathematics, vol. 2, pp. 283–288, 1980.
[14] Z. Huang, “The convergence ball of Newton’s method and uniqueness ball of equations under Holder-type continuous derivatives,” Computers & Mathematics with Applications. An International Journal, vol. 47, no. 2-3, pp. 247–251, 2004.
[15] H. M. Ren and Q. B. Wu, “The convergence ball of the Secant method under Holder continuous divided differences,” Journal of Computational and Applied Mathematics, vol. 194, no. 2, pp. 284–293, 2006.
[16] Q. Wu and H. Ren, “Convergence ball of a modified secant method for finding zero of derivatives,” Applied Mathematics and Computation, vol. 174, no. 1, pp. 24–33, 2006.
[17] H. Ren and Q. Wu, “Convergence ball of a modified secant method with convergence order 1.839...,” Applied Mathematics and Computation, vol. 188, no. 1, pp. 281–285, 2007.
