Distribution of eigenvalues of sample covariance matrices with tensor product samples

D. Tieplova

Abstract

We consider $n^2 \times n^2$ real symmetric and hermitian matrices M_n, which are equal to sum of m_n tensor products of vectors $X^\mu = B(Y^\mu \otimes Y^\mu)$, $\mu = 1, \ldots, m_n$, where Y^μ are i.i.d. random vectors from $\mathbb{R}^n(\mathbb{C}^n)$ with zero mean and unit variance of components, and B is an $n^2 \times n^2$ positive definite non-random matrix. We prove that if $m_n/n^2 \to c \in [0, +\infty)$ and the Normalized Counting Measure of eigenvalues of BJB, where J is defined below in (2.6), converges weakly, then the Normalized Counting Measure of eigenvalues of M_n converges weakly in probability to a non-random limit and its Stieltjes transform can be found from a certain functional equation.

1 Introduction

Sample covariance matrices appeared initially in statistics in the 1920s -1930s. Nowadays these random matrices are widely used in statistical mechanics, probability theory and statistics, combinatorics, operator theory and theoretical computer science in mathematics, and also telecommunication theory, qualitative finances, structural mechanics, etc. (see e. g. [2]).

We consider sample covariance matrices of the form:

$$M_n = \frac{1}{n}XTX^*,$$

(1.1)

where X is an $n \times m$ matrix whose entries are i.i.d. random variables such that

$$\mathbb{E}\{X_{ij}\} = 0, \quad \mathbb{E}\{X_{ij}^2\} = 1$$

(1.2)

and T is a $m \times m$ positive definite matrix. One of the first questions in studying of ensembles of random matrices is on their Normalized Counting Measure of eigenvalues, which is defined by formula

$$N_n(\Delta) = \text{Card}\{i \in [1, n] : \lambda_i \in \Delta\}/n,$$

where

$$-\infty < \lambda_1 \leq \ldots \leq \lambda_n < \infty$$

are the eigenvalues of M_n. Also let σ_m be the Normalized Counting Measure of eigenvalues $\{\tau_i\}_{i=1}^m$ of T.

First rigorous result on the model (1.1) was obtained in [9], where it was proved that if $\{m_n\}$ is a sequence of positive integers such that

$$m_n \to +\infty, \quad n \to +\infty, \quad c_n = m_n/n \to c \in [0, +\infty),$$

then N_n converges weakly to σ_n.
and the sequence σ_m converges weakly to the probability measure σ:

$$\lim_{n \to \infty} \sigma_m = \sigma,$$

then the Normalized Counting Measure N_n of eigenvalues M_n converges weakly in probability to a non-random measure N ($N(\mathbb{R}) = 1$). The Stieltjes transform f of N,

$$f(z) = \int \frac{N(d\lambda)}{\lambda - z}, \quad \Im z \neq 0,$$

is uniquely determined by the equation

$$f(z) = \left(c \int \frac{\tau \sigma(d\tau)}{1 + \tau f(z)} - z\right)^{-1}.$$

Since then a lot of ensembles were considered. We mention two versions of ensembles of sample covariance matrices, similar to (1.1). The first is

$$BXX^*B,$$ \hspace{1cm} (1.3)

where X is an $n \times m$ matrix whose entries are i.i.d. random variables satisfying (1.2) and B is an $n \times n$ matrix. Note that while studying the eigenvalues of (1.3) we can consider the matrices X^*B^2X instead of (1.3) coinciding with (1.1) for $T = B^2$. The second version is

$$(R_n + aX_n)(R_n + aX_n)^*,$$ \hspace{1cm} (1.4)

where X_n is an $n \times m$ matrix whose entries are i.i.d. random variables satisfying (1.2), $a > 0$ constant, and R_n is an $n \times m$ random matrix independent of X_n.

Numerous results and references on the eigenvalue distribution of these random matrices can be found in [3], [4].

The paper is organized as follows. In Section 2 we present our result. In Section 3 we give the proof of the main theorem and in Section 4 we prove all the technical results which we use in Section 3. We denote by C, c, etc., various constants appearing below, which can be different in different formulas.

2 Problem and main results

Let us define multi-indexes $i = (i_1, i_2)$, where $i_1, i_2 = 1, n$, and inversion in multi-indexes $\bar{i} = (i_2, i_1)$. Let

$$B = B_n = \{B_{i,j}\}$$ \hspace{1cm} (2.1)

be an $n^2 \times n^2$ real symmetric or hermitian matrix.

We consider real symmetric or hermitian random matrices

$$M_n = \frac{1}{n^2} \sum_{\mu=1}^{m} X^\mu \otimes \bar{X}^\mu,$$ \hspace{1cm} (2.2)

where the vectors X^μ are given by the formula (cf. (1.3))

$$X^\mu = B(Y^\mu \otimes Y^\mu), \mu = 1, \ldots, m,$$ \hspace{1cm} (2.3)
and \(Y^\mu = \{ Y_i^\mu \}_{i=1}^n \), \(\mu = 1, \ldots, m \), are vectors of \(\mathbb{R}^n \) (or \(\mathbb{C}^n \)) such that \(\{ Y_i^\mu \} \) (or \(\{ RY_i^\mu, SY_i^\mu \} \)) are i.i.d. random variables for all \(i = 1, n, \mu = 1, \ldots, m \) and

\[
E \{ Y_i^\mu \} = 0, \quad E \{ Y_i^\mu Y_{i_k}^{\nu} \} = \delta_{ik} \delta_{\mu\nu}, \tag{2.4}
\]

in the real symmetric case and

\[
E \{ Y_i^\mu \} = E \{ Y_i^\mu Y_{i_k}^{\nu} \} = 0, \quad E \{ \bar{Y}_i^\mu \bar{Y}_{i_k}^{\mu} \} = \delta_{ik} \tag{2.5}
\]

in the hermitian case. Introduce the \(n^2 \times n^2 \) matrix

\[
J_{p,q} = \delta_{pq} + \delta_{\bar{p}q}, \tag{2.6}
\]

and denote by \(N_n \) and \(\sigma_n \) the Normalized Counting Measure of eigenvalues of \(M_n \) and \(BJB \) respectively.

In what follows by saying that the matrix bounded we will mean that its Euclidian (or hermitian) norm \(|\cdots| < c \) for some constant \(c \). The main result of the paper is

Theorem 1 Let \(M_n \) be a random matrix defined by (2.1) – (2.2). Assume that the sequence \(\sigma_n \) converges weakly to a probability measure \(\sigma \):

\[
\lim_{n \to \infty} \sigma_n = \sigma,
\]

\(B \) is bounded uniformly in \(n \), and \(\{ m_n \} \) is a sequence of positive integers such that

\[
m_n \to +\infty, \quad n \to +\infty, \quad c_n = m_n/n^2 \to c \in [0, +\infty).
\]

Then the Normalized Counting Measures \(N_n \) of eigenvalues of \(M_n \) converge weakly in probability to a non-random probability measure \(N \), and if \(f^{(0)} \) is the Stieltjes transform of \(\sigma \), then the Stieltjes transform \(f \) of \(N \) is uniquely determined by the equation

\[
f(z) = f^{(0)} \left(\frac{z}{c - zf(z) - 1} \right) (c - zf(z) - 1)^{-1}
\]

in the class of Stieltjes transforms of probability measures.

3 Proof of the main result

We will prove the theorem for the technically simpler case of hermitian matrices. The case of real symmetric matrices is analogous. Next proposition sets the one-to-one correspondence between finite nonnegative measures and their Stieltjes transforms.

Proposition 1 Let \(f \) be the Stieltjes transform of a finite nonnegative measure \(m \). Then:

(i) \(f \) is analytic in \(\mathbb{C} \setminus \mathbb{R} \), and \(f(\overline{z}) = f(z) \);

(ii) \(\Im f(z) \Im z > 0 \) for \(\Im z \neq 0 \);

(iii) \(|f(z)| \leq m(R)/|\Im z| \), in particular, \(\lim_{\eta \to +\infty} \eta |f(i\eta)| \leq \infty \);

(iv) for any function \(f \) possessing the above properties there exists a nonnegative finite measure \(m \) on \(\mathbb{R} \) such that \(f \) is its Stieltjes transform and

\[
\lim_{\eta \to +\infty} \eta |f(i\eta)| = m(\mathbb{R}); \tag{3.1}
\]
(v) if Δ is an interval of \mathbb{R} whose edges are not atoms of the measure m, then we have the Stieltjes-Perron inversion formula
\[
m(\Delta) = \lim_{\varepsilon \to +0} \frac{1}{\pi} \int_{\Delta} \Im f(\lambda + i\varepsilon) d\lambda;
\]

(vi) the above one-to-one correspondence between finite nonnegative measures and their Stieltjes transforms is continuous if we use the uniform convergence of analytic functions on a compact set of infinite cardinality of $\mathbb{C}\setminus\mathbb{R}$ for Stieltjes transforms and the vague convergence for measures in general and the weak convergence of probability measures if the r.h.s. of (3.1) is 1;

For the proofs of assertions see e.g. [1, Section 59] and [5]. Now recall some facts from linear algebra on the resolvent of real symmetric or hermitian matrix:

Proposition 2 Let M be a real symmetric (hermitian) matrix and
\[
G_M(z) = (M - z)^{-1}, \Im z \neq 0,
\]
be its resolvent. We have:

(i) \[
|G_M(z)| \leq |\Im z|^{-1}; \tag{3.2}
\]

(ii) if $G_1(z)$ and $G_2(z)$ are resolvents of real symmetric (hermitian) matrices M_1 and M_2 respectively then:
\[
G_2(z) = G_1(z) - G_1(z)(M_2 - M_1)G_2(z); \tag{3.3}
\]

(iii) if $Y \in \mathbb{R}^n(\mathbb{C}^n)$, then
\[
G_{M+Y \otimes Y} = G_M - \frac{G_M(Y \otimes \bar{Y})G_M}{1 + (G_M Y, Y)}, \quad \Im z \neq 0. \tag{3.4}
\]

In what follows we need
\[
Y_i^{\mu(\tau)} = Y_i^{\mu(\tau)}1_{|Y_i^{\mu(\tau)}| \leq \tau \sqrt{n}}, \quad Y_i^{\mu(\tau)\circ} = Y_i^{\mu(\tau)} - \mathbb{E}\{Y_i^{\mu(\tau)}\}.
\]

It is easy to see that these random variables satisfy condition
\[
\mathbb{E}\{Y_i^{\mu(\tau)\circ}\} = \mathbb{E}\{(Y_i^{\mu(\tau)\circ})^2\} = 0, \quad \mathbb{E}\{|Y_i^{\mu(\tau)\circ}|^2\} = 1 + o(1), \quad n \to +\infty, \tag{3.5}
\]
\[
\mathbb{E}\{|Y_i^{\mu(\tau)\circ}|^k\} \leq n^{(k-2)/2} \tau^{k-2}. \tag{3.6}
\]

Similarly to X^μ and M_n we can define
\[
X^{\mu(\tau)} = B(Y^{\mu(\tau)\circ} \otimes Y^{\mu(\tau)\circ}), \quad M_n^\tau = \frac{1}{n^2} \sum_{\mu=1}^{m} X^{\mu(\tau)} \otimes \bar{X}^{\mu(\tau)}.
\]

Consider $n^2 \times n^2$ matrices
\[
K_n = \frac{1}{n^2} \sum_{\mu=1}^{m} C^{\mu} \otimes \bar{C}^{\mu}, \quad \hat{K}_n = \frac{1}{n^2} \sum_{\mu=1}^{m} C^{\mu} \otimes \bar{X}^{\mu},
\]

Then

\[C_1^\mu = \sum_p B_{i,p} (Y_{p_1}^{\mu} Y_{p_2}^{\mu} (1 - \delta_{p_1,p_2}) + Y_{p_1}^{\mu(\tau)} Y_{p_2}^{\mu(\tau)} \delta_{p_1,p_2}). \]

(3.7)

Here and below \(\sum_p = \sum_{p_1=1}^{n} \sum_{p_2=1}^{n} \).

We need the following simple fact, a version of the min-max principle of linear algebra (see e. g. [7], Section I.6.10).

Proposition 3 Let \(M_1 \) and \(M_2 \) be \(n \times n \) hermitian matrices and \(N_1 \) and \(N_2 \) be Normalized Counting Measures of their eigenvalues. Then we have for any interval \(\Delta \subset \mathbb{R} \):

\[|N_1(\Delta) - N_2(\Delta)| \leq \text{rank}(A_1 - A_2)/n. \]

(3.8)

Let \(N_n, N_n^{(1)} \) and \(\tilde{N}_n^{(1)} \) be the Normalized Counting Measure of eigenvalues of matrices \(M_n, K_n \) and \(\tilde{K}_n \) respectively. Then according to (3.8) and (3.7)

\[|N_n - N_n^{(1)}| \leq |N_n - \tilde{N}_n^{(1)}| + |\tilde{N}_n^{(1)} - N_n^{(1)}| \leq \text{rank}(M_n - \tilde{K}_n)/n^2 + \text{rank}(\tilde{K}_n - K_n)/n^2
\]

\[\leq \frac{1}{n^2} \left(\text{rank} \left\{ \sum_p B_{i,p} \left\{ \sum_{\mu=1}^{m} (Y_{p_1}^{\mu(\tau)} Y_{p_2}^{\mu(\tau)} - Y_{p_1}^{\mu} Y_{p_2}^{\mu}) \delta_{p_1,p_2} \tilde{X}_{\mu}^{p,q} \} \right\}_{p,q} \right)_{i,q}
\]

\[+ \text{rank} \left\{ \sum_{q} \left(\sum_{\mu=1}^{m} C_{p}^{\mu}(Y_{q_1}^{\mu(\tau)} Y_{q_2}^{\mu(\tau)} - Y_{q_1}^{\mu} Y_{q_2}^{\mu}) \delta_{q_1,q_2} \tilde{Y}_{\mu}^{p,q} \} \right)_{p,q} \right\}_{p,q} \right) = \frac{2}{n}. \]

Lemma 1 Let \(G^{(1)}(z) \) and \(G^{\tau}(z) \) be the resolvents of the matrices \(K_n \) and \(M_n^\tau \) respectively. Then

\[\frac{1}{n^2} |\text{E}\{\text{Tr}(G^{(1)}(z) - G^{\tau}(z))\}| = o(1), \ n \to +\infty. \]

Proof. Consider the \((n^2 + m) \times (n^2 + m)\) block matrices \(\tilde{M}_n \) and \(\tilde{M}_n^\tau \) such that:

\[\tilde{M}_n = \begin{pmatrix} 0 & A^* \\ A & 0 \end{pmatrix}, \quad \tilde{M}_n^\tau = \begin{pmatrix} 0 & (A^\tau)^* \\ A^\tau & 0 \end{pmatrix}, \]

(3.9)

where \(A, A^\tau \) are \(n^2 \times m \) matrices and

\[A_{i,\mu} = n^{-1} C_{i}^{\mu}, \quad A_{i,\mu}^\tau = n^{-1} X_{i}^{\mu(\tau)}. \]

Denote \(\tilde{G}(z) \) and \(\tilde{G}^{\tau}(z) \) the resolvents of matrices \(\tilde{M}_n \) and \(\tilde{M}_n^\tau \) respectively. Using formula of inversion of block matrix, we get:

\[\text{Tr}(G^{(1)}(z^2) - G^{\tau}(z^2)) = -\frac{z}{2} \text{Tr}(\tilde{G}(z) - \tilde{G}^{\tau}(z)). \]

(3.10)
Now we should estimate the last expression. From (3.3) we have:

\[|\text{Tr}(\tilde{G} - \tilde{G}^\tau)| = |\text{Tr}(\tilde{G}\tilde{G}^{\tau} (\tilde{M}_n - \tilde{M}_n^\tau))| \]

\[\leq (\text{Tr}(\tilde{G}\tilde{G}^{\tau} \tilde{G}^* \tilde{G}^{\tau*}))^{1/2} (\text{Tr}(\tilde{M}_n - \tilde{M}_n^\tau)(\tilde{M}_n^* - \tilde{M}_n^{\tau*}))^{1/2}. \]

Here and below we drop the argument \(z \). Relations (3.2) and (3.9) implies:

\[|\text{Tr}(\tilde{G} - \tilde{G}^\tau)| \leq \frac{n}{3z^2} (\text{Tr}(2(A - A^\tau)(A^* - (A^\tau)^*))^{1/2} \]

\[= \frac{1}{n3z^2} \left(2 \sum_{\mu=1}^{m} \sum_{\mu_1, \mu_2} (C_{\mu}^\mu - X_{\mu}^{\mu(\tau)}) (C_{\mu}^\mu - X_{\mu}^{\mu(\tau)}) \right)^{1/2} \]

\[= \frac{1}{n3z^2} \left(2 \sum_{\mu=1}^{m} \sum_{\mu_1, \mu_2} B_{\mu_1 \mu_2} (Y_{\mu_1} Y_{\mu_2} - Y_{\mu_1}^{\mu(\tau)} Y_{\mu_2}^{\mu(\tau)}) \right)^{1/2} \]

\[= \frac{1}{n3z^2} \left(2 \sum_{\mu=1}^{m} \sum_{\mu_1, \mu_2} B_{\mu_1 \mu_2}^2 (Y_{\mu_1} Y_{\mu_2} - Y_{\mu_1}^{\mu(\tau)} Y_{\mu_2}^{\mu(\tau)}) \right)^{1/2}. \]

Notice that in view of (3.5) and (2.5) entries where one of indexes \(\{p_1, p_2, q_1, q_2\} \) is different from others equal zero. Thus

\[|\text{Tr}(\tilde{G} - \tilde{G}^\tau)| \leq \frac{1}{n3z^2} \left(2 \sum_{\mu=1}^{m} \sum_{\mu_1, \mu_2} B_{\mu_1 \mu_2}^2 (Y_{\mu_1} Y_{\mu_2} - Y_{\mu_1}^{\mu(\tau)} Y_{\mu_2}^{\mu(\tau)}) \right)^{1/2}. \]

Relations (3.5) and (2.5) implies

\[\mathbf{E}(|Y_{\mu_1}^{\mu(\tau)} Y_{\mu_2}^{\mu(\tau)}|^2(Y_{\mu_1} Y_{\mu_2} - Y_{\mu_1}^{\mu(\tau)} Y_{\mu_2}^{\mu(\tau)})^2) \]

\[= 1 - (1 + o(1)) - (1 + o(1)) + (1 + o(1)) = o(1). \]

Combining all above we get

\[\frac{1}{n^2} |\mathbf{E}\{\text{Tr}(\tilde{G} - \tilde{G}^\tau)\}| < \frac{(2m \text{Tr}(JB)^2 o(1))^{1/2}}{n3z^2} = \frac{\sqrt{2m}}{n3z^2} o(1). \]

Finally in view of (3.10)

\[\frac{1}{n^2} |\mathbf{E}\{\text{Tr}(G(z)^{(1)} - G^\tau(z))\}| < \frac{\sqrt{m}}{\sqrt{2n3z}} o(1) = o(1). \]

It follows from Lemma 1 that for our purposes it suffices to prove Theorem 1 for matrix \(M_n^\tau \). Hence below we will assume that \(M_n \) is replaced by \(M_n^\tau \). To simplify notations we drop the index \(\tau \) and denote

\[G(z) = (M_n - z)^{-1}, \quad G^\mu(z) = G_{|X^\mu=0}, \quad N = n^2. \]

In the proof of main theorem we need some results
Lemma 2 If F is a non-random $N \times N$ matrix such that $|F| \leq c$ then
(i)
\[
E\{(FG^\mu X^\mu, X^\mu)\} = \text{Tr}(FG^\mu BJB),
\]
\[
\text{Var}\{N^{-1}(FG^\mu X^\mu, X^\mu)\} = o(1), \ n \to +\infty;
\]
(ii)
\[
\frac{1}{N} |\text{Tr}F(G - G^\mu)| = O(N^{-1});
\]
(iii)
\[
\text{Var}\{N^{-1}\text{Tr}(FG)\} \leq \frac{c}{N}.
\]

The proof of the lemma is given in Section 4.

According to (3.4), we have
\[
G_{i,j} = G^\mu_{i,j} - N^{-1} \frac{(G^\mu X^\mu)_i(G^\mu \bar{X}^\mu)_j}{1 + N^{-1}(G^\mu X^\mu, X^\mu)}.
\]

Hence,
\[
(GX^\mu)_i = \frac{(G^\mu X^\mu)_i}{1 + N^{-1}(G^\mu X^\mu, X^\mu)}.
\]

Take any $N \times N$ bounded matrix K. Then
\[
\frac{1}{N} \text{Tr}(KGM) = \frac{1}{N^2} \sum_{\mu=1}^{m} \sum_{i,j} K_{i,j}(GX^\mu)_i(\bar{X}^\mu)_j
\]
\[
= \frac{1}{N^2} \sum_{\mu=1}^{m} \sum_{j} \frac{(KG^\mu X^\mu)_j(\bar{X}^\mu)_j}{1 + N^{-1}(G^\mu X^\mu, X^\mu)} = \frac{1}{N^2} \sum_{\mu=1}^{m} \frac{(KG^\mu X^\mu, X^\mu)}{1 + N^{-1}(G^\mu X^\mu, X^\mu)}.
\]

To analyze the r.h.s. of (3.14), let us show first that if C and D are random variables, such that $E\{|C|^2 + |D|^2\} < c$ and
\[
\bar{C} = E\{C\}, \quad C^\circ = C - \bar{C}, \quad \bar{D} = E\{D\}, \quad D^\circ = D - \bar{D},
\]
then
\[
E\left\{ \frac{C}{D} \right\} = \frac{\bar{C}}{\bar{D}} + O\left(E\left\{ \frac{|C^\circ|^2 + |D^\circ|^2}{|D|^2} \right\} \right).
\]

Indeed,
\[
\frac{C}{D} = \frac{\bar{C} + C^\circ}{\bar{D}} - \frac{(\bar{C} + C^\circ)D^\circ}{\bar{D}^2} + O\left(\left(\frac{D^\circ}{\bar{D}} \right)^3 \right).
\]

Thus
\[
E\left\{ \frac{C}{D} \right\} = \frac{\bar{C}}{\bar{D}} + E\left\{ \frac{C^\circ D^\circ}{\bar{D}^2} \right\} + O\left(\frac{|D^\circ|^3}{\bar{D}^3} \right) \leq \frac{\bar{C}}{\bar{D}} + E\left\{ \frac{|C^\circ|^2}{|D|^2} + c \frac{|D^\circ|^2}{|D|^2} \right\}.
\]
The last inequality implies (3.15).

Let \(C = N^{-1}(K\mu X, X) \), \(D = 1 + 2N^{-1}(G\mu X, X) \). Since matrix \(K \) is bounded, it follows from (3.11) that
\[
E_{\mu}\{|C|^2\} = E_{\mu}\{|D|^2\} = o(1), \; n \to +\infty.
\]
This, (3.14) and (3.15) imply
\[
\frac{1}{N} E\{\text{Tr}(KGM)\} = \frac{1}{N} \sum_{\mu=1}^{m} \left(E\left\{ \frac{N^{-1}\text{Tr}(K\mu BJ B)}{1 + N^{-1}\text{Tr}(G\mu BJ B)} \right\} + o(1) \right). \tag{3.16}
\]
In the r.h.s. of (3.16) result (3.12) allows us to replace \(G\mu \) with \(G_{1} = \frac{1}{N} E\{\text{Tr}(KGM)\} = E_{\mu}\{c_{n}b_{n}^{-1}\text{Tr}(GBJB)\} + o(1)\). \tag{3.17}
The last step is to replace \(N^{-1}\text{Tr}(KGBJB) \) and \(N^{-1}\text{Tr}(GBJB) \) in (3.17) with their expectations. We use again (3.15) with \(C = N^{-1}\text{Tr}(KGBJB), \; D = 1 + N^{-1}\text{Tr}(GBJB) \). It follows from (3.17) and (3.13)
\[
\frac{1}{N} E\{\text{Tr}(KGM)\} = \frac{c_{n}N^{-1}E\{\text{Tr}(KGBJB)\}}{1 + N^{-1}E\{\text{Tr}(GBJB)\}} + o(1). \tag{3.18}
\]
Note that
\[
\frac{1}{N} E\{\text{Tr}(KGM)\} = \frac{1}{N} E\{\text{Tr}(K(G(M - z) + Gz))\} = \frac{1}{N} E\{\text{Tr}K\} + \frac{z}{N} E\{\text{Tr}(KG)\}.
\]
This and (3.18) imply that for any bounded matrix \(K \)
\[
\frac{1}{N} E\{\text{Tr}K\} = \frac{1}{N} E\{\text{Tr}(KG(c_{n}b_{n}^{-1}BJB - z))\} + o(1), \tag{3.19}
\]
where
\[
b_{n} = 1 + N^{-1}E\{\text{Tr}(GBJB)\}. \tag{3.20}
\]
Taking \(K = (c_{n}b_{n}^{-1}BJB - z)^{-1} \), we obtain
\[
\frac{1}{N} E\{\text{Tr}(c_{n}b_{n}^{-1}BJB - z)^{-1}\} = f_{n}(z) + o(1), \tag{3.21}
\]
where
\[
g_{n}(z) = \frac{1}{N} \text{Tr}(G(z)), \quad f_{n}(z) = E\{g_{n}(z)\}.
\]
It follows from (3.19) with \(K = I \)
\[
\frac{1}{N} E\{\text{Tr}(I + zG)\} = \frac{c_{n}}{b_{n}}(b_{n} - 1) + o(1).
\]
Then we get
\[
1 + zf_{n}(z) = c_{n}(1 - \frac{1}{b_{n}}) + o(1).
\]
Now we can find b_n:

$$b_n = \frac{c_n}{c_n - zf_n(z) - 1 + o(1)}. \quad (3.22)$$

This and (3.21) yield

$$f_n(z) = f_n^{(0)}\left(\frac{z}{c_n - zf_n(z) - 1}\right)(c_n - zf_n(z) - 1)^{-1} + o(1), \quad (3.23)$$

where

$$f_n^{(0)}(z) = \frac{1}{N}E\{\text{Tr}(BJB - z)^{-1}\}.$$

The sequence $\{f_n\}$ consists of functions, analytic and uniformly bounded in n and z. Hence, there exists an analytic in $C \setminus \mathbb{R}$ function f and a subsequence $\{f_{n_j}\}$ that converges to f uniformly on any compact set of $C \setminus \mathbb{R}$. In addition we have

$$\exists f_n(z)\exists z > 0, \exists z \neq 0$$

thus $\exists f(z)\exists z \geq 0, \exists z \neq 0$. By Proposition (vi) and the hypothesis of the theorem on the weak convergence of the sequence σ_n to σ, the sequence $f_n^{(0)}$ of their Stieltjes transforms consists of analytic in $C \setminus \mathbb{R}$ functions that converge uniformly on a compact set of $C \setminus \mathbb{R}$ to the Stieltjes transform $f^{(0)}$ of the limiting counting measure σ of matrices BJB. This allows us to pass to the limit $n \to +\infty$ in (3.23) and to obtain that the limit f of any converging subsequence of the sequence f_n satisfies functional equation

$$f(z) = f^{(0)}\left(\frac{z}{c - zf(z) - 1}\right)(c - zf(z) - 1)^{-1}, \quad (3.24)$$

and $\exists f(z)\exists z \geq 0, \exists z \neq 0$. The proof of the uniqueness of solution of the equation in the class of functions, analytic for $\exists z \neq 0$ and such that $\exists f(z)\exists z \geq 0, \exists z \neq 0$ is analogues to [9]. Hence, the whole sequence f_n converges uniformly on a compact set of $C \setminus \mathbb{R}$ to the unique solution f of the equation. Let’s show that the solution possesses the properties $\exists f(z)\exists z \geq 0, \exists z \neq 0$ and $\lim_{\eta \to +\infty} |f(i\eta)| = 1$. Assume that $\exists f(z_0) = 0, \exists z_0 \neq 0$. Then (3.24) implies that

$$\exists \int \frac{d\sigma(\lambda)}{(c - 1)\lambda - z_0(f(z_0) - 1)} = C \exists f^{(0)}(z) = 0,$$

where C is some real constant and $\exists z \neq 0$. This is impossible because, according to Proposition (ii), $\exists f^{(0)}(z)$ is strictly positive for any nonreal z. Since $|f(i\eta)| < \eta^{-1}$ we have

$$\lim_{\eta \to +\infty} \eta |f(i\eta)| = \lim_{\eta \to +\infty} \int \frac{\eta d\sigma(\lambda)}{(c - 1)\lambda - i\eta - i\eta f(i\eta)} = 1$$

This and the Proposition (iv) imply that f is Stieltjes transform of a probability measure.

□
4 Proofs of the lemma \[2\]

(i) It follows from \[25\]

\[
E_{\mu}\{(FG^\mu X^\mu, X^\mu)\} = \text{Tr}(FG^\mu BJ B).
\]

Denote

\[
r_n^\mu = (FG^\mu X^\mu, X^\mu) - \text{Tr}(FG^\mu BJ B).
\]

We need to show that \(E_{\mu}\{(N^{-1}r_n)^2\} = o(1), \ n \to +\infty\). Rewrite

\[
r_n^\mu = \sum_{i,j,p,q} (FG^\mu)_{i,j}B_{j,p}B_{q,i}(Y^\mu_{p_1}Y^\mu_{p_2}Y^\mu_{q_1}Y^\mu_{q_2} - J_{p,q})
= \sum_{i,j} (FG^\mu)_{i,j} \left(\sum_p B_{j,p}B_{p,i}(|Y^\mu_{p_1}|^2|Y^\mu_{p_2}|^2 - 1) \right)
+ \sum_p B_{j,p}B_{p,i}(|Y^\mu_{p_1}|^2|Y^\mu_{p_2}|^2 - 1)
+ \sum_{p \neq q \neq q'} B_{j,p}Y^\mu_{p_1}Y^\mu_{p_2}B_{q,i}Y^\mu_{q_1}Y^\mu_{q_2}
= \sum_{i,j} (FG^\mu)_{i,j} \left(\sum_p B_{j,p}(JB)_{p,i}(|Y^\mu_{p_1}|^2|Y^\mu_{p_2}|^2 - 1) \right)
+ \sum_{p \neq q \neq q'} B_{j,p}Y^\mu_{p_1}Y^\mu_{p_2}B_{q,i}Y^\mu_{q_1}Y^\mu_{q_2}.
\]

Since \(G^\mu\) is independent of \(Y^\mu\), we obtain

\[
E_{\mu}\{(N^{-1}r_n)^2\} = \frac{1}{N^2} E_{\mu}\left\{ \left(\sum_{i,j} (FG^\mu)_{i,j} \right)^2 \left(\sum_p B_{j,p}(JB)_{p,i}(|Y^\mu_{p_1}|^2|Y^\mu_{p_2}|^2 - 1) \right) \right\}
+ \sum_{p \neq q \neq q'} B_{j,p}Y^\mu_{p_1}Y^\mu_{p_2}B_{q,i}Y^\mu_{q_1}Y^\mu_{q_2}.
\]

\[
= \frac{1}{N^2} E_{\mu}\left\{ \sum_{i,j} \sum_{\nu,j'} (FG^\mu)_{i,j}(\tilde{F}G^\mu)_{\nu,j'} \left(\sum_p \sum_{p' \neq q' \neq q} B_{j,p}Y^\mu_{p_1}Y^\mu_{p_2}B_{q,i}Y^\mu_{q_1}Y^\mu_{q_2} \tilde{B}_{j',p'}Y^\mu_{p'_1}Y^\mu_{p'_2} \tilde{B}_{q',i'}Y^\mu_{q'_1}Y^\mu_{q'_2} \right) \right\}
+ \frac{1}{N^2} E_{\mu}\left\{ \sum_{i,j} \sum_{\nu,j'} (FG^\mu)_{i,j}(\tilde{F}G^\mu)_{\nu,j'} \left(\sum_p \sum_{p' \neq q' \neq q} B_{j,p}(JB)_{p,i}(\tilde{B}_{j',p'}Y^\mu_{p'_1}Y^\mu_{p'_2}B_{q',i'}Y^\mu_{q'_1}Y^\mu_{q'_2}) \right) \right\}
= \frac{2}{N^2} E_{\mu}\left\{ \sum_{i,j} \sum_{\nu,j'} (FG^\mu)_{i,j}(\tilde{F}G^\mu)_{\nu,j'} \left(\sum_p \sum_{p' \neq q' \neq q} B_{j,p}(JB)_{p,i}(\tilde{B}_{j',p'}Y^\mu_{p'_1}Y^\mu_{p'_2}B_{q',i'}Y^\mu_{q'_1}Y^\mu_{q'_2}) \right) \right\} = \frac{1}{N^2}(R_1 + R_2 + R_3).
\]

Denote

\[
H = BFG^\mu B,
\]
and introduce an $N \times N$ matrix Δ such that

$$\Delta_{ij} = \delta_{i1,j2}\delta_{i2,j1}.$$

It is easy to check that for any $N \times N$ matrix A

$$A_{i2i1,j1j2} = (\Delta A)_{i,j},$$

$$A_{i1j2,j2i1} = (A\Delta)_{i,j}. \quad (4.1)$$

Let us define the set $E = \{p_1, p_2, q_1, q_2, p'_1, p'_2, q'_1, q'_2\}$. Note that if in the set E there are 4 different numbers that

$$\mathbb{E}_\mu \{Y_\mu^p Y_\mu^{p'} Y_\mu^{q_1} Y_\mu^{q_2} Y_\mu^{p'_1} Y_\mu^{p'_2} Y_\mu^{q'_1} Y_\mu^{q'_2}\} = 0.$$

Hence we need to consider the sets I_1, I_2, I_3 and I_4 of all multi-indexes $\{p, q, p', q'\}$ of the special form:

$$I_1 = \left\{\{p, q, p', q'\} : \text{there are 3 different numbers (i, j, k) in the set } E\right\},$$

$$I_2 = \left\{\{p, q, p', q'\} : \text{there are 2 different numbers (i, j, k) in the set } E\right\},$$

where numbers a, b, c and d are all pairwise different,

$$I_3 = \left\{\{p, q, p', q'\} : \text{there are 3 different numbers (i, j, k) in the set } E\right\},$$

$$I_4 = \left\{\{p, q, p', q'\} : \text{there are 2 different numbers (i, j, k) in the set } E\right\},$$

or any inversion in the multi-indexes of such form. Since B, F, Δ and G^μ (in view of (3.2) are bounded, then there exists a constant c such that $|H| < c$. Hence in view of (4.1) and (3.6)

$$R_1 \leq \mathbb{E}_\mu \left\{ \sum_{I_1} H_{p,q} H_{p',q'} |Y_a^\mu|^2 |Y_b^\mu|^2 |Y_{c'}^\mu|^2 |Y_d^\mu|^2 + \sum_{I_2} H_{p,q} H_{p',q'} |Y_a^\mu|^2 |Y_b^\mu|^2 |Y_{c'}^\mu|^2 |Y_d^\mu|^2
+ \sum_{I_3} H_{p,q} H_{p',q'} |Y_i^\mu|^4 |Y_j^\mu|^2 |Y_k^\mu|^2 + Y_i^\mu |Y_j^\mu|^3 |Y_k^\mu|^2
+ \sum_{I_4} H_{p,q} H_{p',q'} |Y_i^\mu|^4 |Y_j^\mu|^2 |Y_k^\mu|^2 + |Y_i^\mu|^4 |Y_j^\mu|^3 |Y_k^\mu|^2 \right\}$$

$$\leq \hat{c} \left(\sum_{p_1, p'_1, q_1, q_2} \left(H + \Delta H + H\Delta + \Delta H\Delta \right) p_1 p_2 q_1 q_2 (\bar{H} + \Delta \bar{H} + \bar{H}\Delta + \Delta \bar{H}\Delta) p'_1 p'_2 q'_1 q'_2 \right.$$

$$+ \text{Tr}(H + \Delta H + H\Delta + \Delta H\Delta) (H + \Delta H + H\Delta + \Delta H\Delta)^*$$

$$\left. + |I_3| c^2 n^2 \tau^2 + |I_4| c^2 n^2 \tau^4 \right).$$

Since $\Delta^2 = I$ and $|I_3| = c_1 n^3$, $|I_2| = c_2 n^2$ we have:

$$R_1 \leq \hat{c} \left(\sum_{p_1, p'_1, q_1, q_2} C_{p_1 p_2, q_1 q_2} C_{p'_1 p'_2, q'_1 q'_2} \right.$$

$$+ \text{Tr}HH^* + \text{Tr}HH^* + cn^4 \tau),$$

where

$$C = H + \Delta H + H\Delta + \Delta H\Delta.$$
Denote by \tilde{C} an $n \times n$ matrix with coordinates

$$\tilde{C}_{p_2 q_2} = \sum_{p_1=1}^{n} C_{p_1 p_2; p_1 q_2}.$$

Then

$$R_1 \leq c \left(\text{Tr} \tilde{C}^* \tilde{C} + \text{Tr} H H^* + \text{Tr} \Delta H H^* + cn^4 \tau \right).$$

It is easy to see that $|\tilde{C}| < n|H| < nc$, hence

$$R_1 \leq c(n^3 + n^2 + n^4 \tau).$$

Divide the set $\{(p, p')\}$ of all possible indexes into four sets $\{I_i\}_{i=1}^{4}$ such that $(p, p') \in I_i$ if there are exactly i different numbers in the set (p_1, p_2, p'_1, p'_2). The matrices H and J are bounded, so in view of (3.5) and (3.6)

$$R_2 \leq cE \left\{ \sum_{I_1} |Y_{I_1}^\mu|^8 + \sum_{I_2} (|Y_{I_2}^\mu|^4 |Y_{I_2}^\mu|^4 + |Y_{I_2}^\mu|^6 |Y_{I_2}^\mu|^2) + \sum_{I_3} |Y_{I_3}^\mu|^4 |Y_{I_3}^\mu|^2 |Y_{I_3}^\mu|^2

+ \sum_{I_4} ((|Y_{I_3}^\mu|^2 |Y_{I_3}^\mu|^2 - 1)(|Y_{I_3}^\mu|^2 |Y_{I_3}^\mu|^2 - 1)) \right\} = c(|I_1|n^3 \tau^6 + |I_2|n^2 \tau^4 + |I_3|n \tau^2 + |I_4|o(1))$$

$$= cn^4(\tau + o(1)).$$

Note that if the set of indexes $(p_1, p_2, p'_1, p'_2, q_1, q'_2)$ has more than 3 or less than 2 different numbers then

$$E \left\{ \left(|Y_{p_1}^\mu|^2 |Y_{p_2}^\mu|^2 - 1 \right) \bar{Y}_{p'_1}^\mu \bar{Y}_{p'_2}^\mu Y_{q_1}^\mu Y_{q_2}^\mu \right\} = 0.$$

Other terms we divide into sets I_1 (3 different numbers) and I_2 (2 different numbers). Similarly to previous case

$$R_3 \leq c \left(\sum_{I_1} n \tau^2 + \sum_{I_2} n^2 \tau^4 \right) = cn^4 \tau.$$

At last, we get:

$$E_{\mu} \{(N^{-1}r^\mu)^2 \} \leq o(1) + c\tau.$$

Since this inequality is true for every τ, we have

$$E_{\mu} \{(N^{-1}r^\mu)^2 \} = o(1).$$

(ii) According to (3.4),

$$(F(G - G^\mu))_{i,j} = -\frac{N^{-1}(FG^\mu X^\mu)_{i,j}(G^\mu X^\mu)}{1 + N^{-1}(G^\mu X^\mu, X^\mu)}.$$

Hence

$$|\text{Tr}(F(G - G^\mu))| = \left| \frac{N^{-1}(FG^\mu X^\mu, G^\mu X^\mu)}{1 + N^{-1}(G^\mu X^\mu, X^\mu)} \right| \leq \frac{|F||((G^\mu)^*G^\mu X^\mu, X^\mu)|}{|3(G^\mu X^\mu, X^\mu)|}. $$
From the other hands by the spectral theorem

\[(G^\mu X^\mu, X^\mu) = \sum_{k=1}^{m-1} \frac{(v^k, X^\mu)^2}{\lambda_k - z},\]

where \(\{\lambda_k\}\) are eigenvalues of \(G^\mu\) and \(\{v^k\}\) are eigenvectors of \(G^\mu\). Then

\[|\Im(G^\mu X^\mu, X^\mu)| = |\Im z| \sum_{k=1}^{m-1} \frac{|(v^k, X^\mu)|^2}{(\lambda_k - z)(\lambda_k^* - z)}.\]

Besides,

\[((G^\mu)^*G^\mu X^\mu, X^\mu) = \sum_{k=1}^{m-1} \frac{|(v^k, X^\mu)|^2}{(\lambda_k - z)(\lambda_k^* - z)}.\]

Finally we get

\[\frac{1}{N} \text{Tr} F(G - G^\mu) \leq \frac{|F|}{N|\Im z|} = O(N).\]

(iii) To prove the lemma we need the follow statement of martingale bounds (see e.g. [6] for results and references):

Lemma 3 Let \(\{Y^\mu\}_{\mu=1}^m\) be a sequence of i.i.d random vectors of \(\mathbb{R}^n(\mathbb{C}^n)\). Assume that the function \(\phi : \mathbb{R}^{nm}(\mathbb{C}^{nm}) \to \mathbb{C}\) is a bounded Borel function such that

\[\sup_{X^1, \ldots, X^m \in \mathbb{R}^n(\mathbb{C}^n)} |\phi - \phi^\mu| \leq c,\]

where \(\phi^\mu = \phi |_{X^\mu=0}\). Then

\[\text{Var}\{\phi(Y^1, \ldots, Y^\mu)\} \leq 4c^2m.\]

Take \(\phi = \text{Tr}(FG)\). Then, using representation (3.4), we obtain

\[|\phi - \phi^\mu| = |\text{Tr} G - \text{Tr} G^\mu| = \frac{N^{-1}(G^\mu FG^\mu X^\mu, X^\mu)}{1 + N^{-1}(G^\mu X^\mu, X^\mu)}.\]

Similarly to the proof of the previous result we have

\[\frac{N^{-1}(G^\mu FG^\mu X^\mu, X^\mu)}{1 + N^{-1}(G^\mu X^\mu, X^\mu)} \leq c|\Im z|^{-1}.\]

Thus,

\[|\phi - \phi^\mu| \leq c|\Im z|^{-1}.\]

So, according to Lemma 3

\[\text{Var}\{g_n\} \leq 4c^2c_n/N.\]

Acknowledgements. The author is grateful to Prof.L.A.Pastur for statement of the problem and fruitful discussion.
References

[1] N. I. Akhiezer, I. M. Glazman, Theory of Linear Operators in Hilbert Space, Dover, New York, 1993.

[2] G. Akemann, J. Baik, P. Di Francesco, The Oxford handbook of random matrix theory, Oxford Univ. Press, Oxford, 2011.

[3] Z. D. Bai, J. W. Silverstein, Spectral analysis of large dimensional random matrices. Springer, New York, 2010.

[4] P. J. Forrester, Log-gases and random matrices. Princeton Univ. Press, Princeton, NJ, 2010.

[5] J. S. Geronimo, T. P. Hill, Necessary and sufficient condition that the limit of Stieltjes transforms is the Stieltjes transform, J. Approx. Theory, 2003.

[6] V. L. Girko, Theory of Stochastic Canonical Equations, vols.I, II Kluwer, Dordrecht, 2001.

[7] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1976.

[8] A. Lytova, L. Pastur, Central limit theorem for linear eigenvalue statistics of random matrices with independent entries, Annals of Probability 37, n5, 1778-1840 (2009).

[9] V. Marchenko, L. Pastur, The eigenvalue of distribution in some ensembles of random matrices. Math. USSR Sbornik 1, 1967.

[10] L. Pastur. M. Shcherbina, Eigenvalue Distribution of Large Random Matrices. Mathematical Survives and Monographs, V171, American Mathematical Society: Providence, Rhode Island, 2011.

[11] M. Shcherbina, Central Limit Theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. Journal of Mathematical Physics, Analysis, Geometry V7, N2, pp 176-192, 2011.