FAST MATRIX BASED COMPUTATION OF EIGENVALUES IN POLSAR DATA

Allan A. Nielsen*

Technical University of Denmark
DTU Compute – Applied Mathematics and Computer Science
DK-2800 Kgs. Lyngby, Denmark

ABSTRACT

We describe calculation of eigenvalues of 2×2 and 3×3 Hermitian matrices as used in the analysis of multilook polarimetric SAR data. The eigenvalues are calculated as the roots of quadratic or cubic equations. The methods are well suited for fast matrix oriented computer implementation and the speed-up over calculations based on for-loops and built-in eigenproblem solvers is enormous.

1. INTRODUCTION

This paper deals with fast matrix based calculations of eigenvalues of 2×2 and 3×3 Hermitian matrices. Specifically, we compare (Matlab) computing times for the suggested matrix oriented calculations with a simple implementation with for loops over rows and columns and calls to the built-in eigenvalue function eig.

We use a change detection setting for illustration of the calculations. In the analysis of multi-look polarimetric synthetic aperture radar (SAR) data described by Hermitian (variance-) covariance matrices, the complex Wishart distribution can be used for change detection between acquisitions at two time points [1]. Many authors have worked with this type of change detection, see for example [2–7]. In [3,5] we work specifically with change between several time points.

Using a change detection setting for illustration of the calculations. In the analysis of multi-look polarimetric synthetic aperture radar (SAR) data described by Hermitian (variance-) covariance matrices, the complex Wishart distribution can be used for change detection between acquisitions at two time points [1]. Many authors have worked with this type of change detection, see for example [2–7]. In [3,5] we work specifically with change between several time points.

2. MULTILOOK POLARIMETRIC SAR DATA

In the covariance matrix formulation of multilook polarimetric SAR data each pixel can be described by a complex 3×3 matrix

\[
C = \begin{bmatrix}
S_{hh} S^*_{hh} & S_{hh} S^*_{hv} & S_{hh} S^*_{vh} \\
S_{hv} S^*_{hv} & S_{hv} S^*_{hv} & S_{hv} S^*_{vh} \\
S_{vh} S^*_{vh} & S_{vh} S^*_{hv} & S_{vh} S^*_{vh}
\end{bmatrix}.
\]

This matrix is Hermitian also known as self-adjoint, i.e., the matrix is equal to its own conjugate transpose. If we multiply by the number of looks, n, $Z = n \ C$ will follow a complex Wishart distribution (for fully developed speckle). This is the matrix that is used in the change detection methods described in [2–5,7]. Below and for the methods in [9,10] we may work on C or Z, here we’ll use Z.

3. EIGENVALUES

Let us use the notation

\[
Z = \begin{bmatrix}
k & a & \rho \\
a^* & \xi & b \\
\rho^* & b^* & \zeta
\end{bmatrix}
\]

which has trace $\text{tr} \ Z = k + \xi + \zeta$ and determinant

$$
\det Z = k \xi \zeta + a b^* + a^* b - |a|^2 \zeta - |b|^2 k - |\rho|^2 \xi.
$$

The first, fourth, fifth and sixth terms are real. The second and third terms are complex conjugates of each other. Since the imaginary parts cancel out, the sum of the two terms is twice the real part. Both trace and determinant of Z are real. Fast matrix inversion and fast determinant calculation are dealt with in [13].

Below we give computational details for determination of the eigenvalues of Z. For completeness we start by giving the more well known solution to the dual pol case. The solutions given are well suited for fast matrix based computer implementation.

3.1. Dual pol case

For dual polarimetry we have, say, the upper left 2×2 matrix of Z only

\[
\begin{bmatrix}
k & a \\
a^* & \xi
\end{bmatrix}.
\]

The trace is $k + \xi$, the determinant is $k \xi - |a|^2$, both are real. The eigenvalue problem

\[
(k - \lambda)(\xi - \lambda) - |a|^2 = 0
\]

can be written as

\[
A \lambda^2 + B \lambda + C = 0
\]

which has the well known solution

\[
\lambda = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}.
\]

Here $A = 1$, B is minus the trace and C the determinant so we get

\[
\lambda = \frac{k + \xi \pm \sqrt{(k + \xi)^2 - 4(k \xi - |a|^2)}}{2} = \frac{k + \xi \pm \sqrt{(k - \xi)^2 + 4|a|^2}}{2}.
\]
The discriminant \((k - \xi)^2 + 4|a|^2\) is always nonnegative so the eigenvalues are real. The discriminant is zero if and only if \(k = \xi\) and \(|a|^2 = 0\), i.e., the matrix we are analyzing is proportional to the identity matrix in which case the double eigenvalue is \(k = \xi\).

3.2. Quad/full pol case

In this case we have the full matrix \(Z\). The eigenvalues \(\lambda\) of \(Z\) are the roots of the cubic equation

\[
0 = (k - \lambda)(\xi - \lambda)(\zeta - \lambda) + ab\rho^2 + a^* b^* \rho
\]

The discriminant is zero if and only if \(k = \xi = \zeta\) of the cubic equation

\[
f = \left|\begin{array}{ccc}
|a|^2 & |b|^2 & |\rho|^2 \\
|b|^2 & |\rho|^2 & |\Lambda|^2 \\
|\rho|^2 & |\Lambda|^2 & |\rho|^2
\end{array}\right| = 0
\]

where \(a, b, \rho = \frac{1}{\sqrt{A}}, \lambda = -\text{tr} \ Z, C = k\xi + k\zeta + \xi \zeta - |a|^2 - |b|^2 - |\rho|^2,\) and \(D = -\det \ Z\). The eigenvalues are important for example in the Cloude-Pottier decomposition of polarimetric SAR data \([14]\).

To find the inflection point \((\lambda_i, f(\lambda_i))\) of the cubic function

\[
f(\lambda) = A\lambda^3 + B\lambda^2 + C\lambda + D
\]

with first and second derivatives

\[
f'(\lambda) = 3A\lambda^2 + 2B\lambda + C
\]

\[
f''(\lambda) = 6A\lambda + 2B,
\]

set the second derivative to zero leading to

\[
\lambda_i = \frac{-B}{3A},
\]

\[
f(\lambda_i) = \frac{2B^3}{27A^2} - \frac{1}{3} BC + D.
\]

To solve the cubic equation \(f(\lambda) = 0\), divide by \(A\) and introduce

\[
\lambda = x - \frac{B}{3A}
\]

which translates the inflection point along the x-axis so that its abscissa becomes zero to obtain

\[
x^3 + 3px + 2q = 0.
\]

The solution depends on the sign of the discriminant

\[
3q^2 - 4p^3 < 0
\]

Let

\[
x = \sqrt[3]{q} + \sqrt[3]{-p},
\]

\[
x = -\sqrt[3]{q} - \sqrt[3]{-p}
\]

\[
x = 0
\]

For the critical points \(x_c\) of \(f(x)\) we have

\[
f'(x_c) = 3x^2_c + 3p = 0, \quad x_c = \pm \sqrt{-p}. \quad p < 0 \text{ means we have an inflection point and both a local minimum (at } x_c = \sqrt{-p} \text{) and a local maximum (at } x_c = -\sqrt{-p}. \quad \text{For } p \geq 0 \text{ we have an inflection point only, no local extrema.}
\]

To find the eigenvalues substitute

\[
x = z - \frac{p}{z}, \quad z \neq 0
\]

(due to François Viète, late 1500s) into \(x^3 + 3px + 2q = 0\) to get

\[
z^3 - \left(\frac{p}{z}\right)^3 + 2q = 0
\]

which leads to a quadratic equation for \(z^3\)

\[
(z^3)^2 + 2q(z^3) - p^3 = 0.
\]

The solution for \(z^3\) is

\[
z^3 = -q \pm \sqrt{q^2 + p^3}.
\]

The solution depends on the sign of the discriminant \(q^2 + p^3 < 0\) is referred to as the \textit{casus irreducibilis}, the irreducible case. Instead we may use another substitution (also due to Viète) for \(x\) in \(x^3 + 3px + 2q = 0\) namely \(x = u \cos \theta\) leading to

\[
u^3 \cos^3 \theta + 3pu \cos \theta + 2q = 0.
\]

In order to take advantage of the trigonometric identity

\[
4 \cos^3 \theta - 3 \cos \theta - \cos(3\theta) = 0
\]

we divide by \(u^3\) \((u \neq 0\) leading to

\[
4 \cos^3 \theta - 3 \cos \theta - \frac{8q}{u^3} = 0,
\]

and choose \(u\) such that \(12p/u^2 = -3\), i.e., \(u^2 = -4p\) and \(u = 2\sqrt{-p}\) which gives

\[
4 \cos^3 \theta - 3 \cos \theta - \frac{q}{p\sqrt{-p}} = 0, \quad p \neq 0
\]

or

\[
\cos(3\theta) = \frac{q}{p\sqrt{-p}}
\]

This gives (arccos is the inverse cosine sometimes written as \(\cos^{-1}\))

\[
3\theta = \arccos \left(\frac{q}{p\sqrt{-p}}\right) - (k - 1)2\pi = 3\theta_k, \quad k = 1, 2, 3
\]

\[
x_k = 2\sqrt{-p} \cos \theta_k,
\]

and finally

\[
\lambda_k = x_k - \frac{B}{3A} = x_k + \frac{k + \xi + \zeta}{3}.
\]

We see that

\[
\cos \theta_2 = \cos((\theta_1 - 2\pi/3)) = -\cos(\theta_1 + \pi/3)
\]

\[
\cos \theta_3 = \cos((\theta_1 - 4\pi/3)) = -\cos(\theta_1 - \pi/3),
\]

Since all terms are negative squares, \(p \leq 0\) and \(p = 0\) if and only if \(k = \xi = \zeta\) and \(|a|^2 = |b|^2 = |\rho|^2 = 0\), i.e., the matrix we are analyzing is proportional to the identity matrix in which case the triple eigenvalue is \(k = \xi = \zeta\).
and that the three cosines, \(\cos \theta_k \), sum to 0, so \(x_3 = -x_1 - x_2 \). Since \(\arccos \) gives angles in \([0, \pi]\), i.e., \(0 \leq 3\theta_1 \leq \pi \), we have

\[
\begin{align*}
0 & \leq \theta_1 \leq \pi/3 \\
-2\pi/3 & \leq \theta_2 \leq -\pi/3 \\
-4\pi/3 & \leq \theta_3 \leq -\pi,
\end{align*}
\]

and hence \(x_1 \geq x_2 \geq x_3 \).

Under the heading "Cubic equation" Wikipedia has a good description of the problem and a great illustration of the above trigonometric solution to the cubic equation. This illustration is reproduced in Figure 1.

Note, that with the cosine substitution we easily see that for \(p < 0 \) the eigenvalues are real (non-complex) irrespective of the sign of the discriminant \(q^2 + p^3 \).

3.2.1. Casus irreducibilis

In the casus irreducibilis or the irreducible case, the discriminant \(q^2 + p^3 < 0 \) and we may obtain a solution without the above cosine substitution. We have

\[
z^3 = -q \pm \sqrt{q^2 + p^3} = -q \pm i \sqrt{-q^3 - p^3}.
\]

\(z^3 \) may be written in polar coordinates with magnitude \(\rho^3 \) and argument \(3\theta \)

\[
z^3 = \rho^3 e^{i3\theta} = \rho^3 e^{i(3\theta - (k-1)2\pi)} = z^3_k, \quad k = 1, 2, 3,
\]

where

\[
\begin{align*}
(\rho^3)^2 &= (-q)^2 - q^2 - p^3 = -p^3, \\
\rho^3 &= -p \sqrt{-p}, \\
\cos(3\theta) &= \frac{q}{p \sqrt{-p}}
\end{align*}
\]

leading to

\[
3\theta = \arccos \left(\frac{q}{p \sqrt{-p}} \right) - (k - 1)2\pi = 3\theta_k, \quad k = 1, 2, 3.
\]

The cube roots of \(z^3_k \) are

\[
z_k = \rho e^{i\theta_k},
\]

and

\[
x_k = z_k \frac{p}{z_k} = \rho e^{i\theta_k} - \frac{p}{\rho} e^{-i\theta_k}.
\]

Since

\[
\begin{align*}
\rho &= \sqrt{-p}, \\
p &= \frac{p}{\sqrt{-p}} = -\sqrt{-p},
\end{align*}
\]

we get

\[
x_k = \sqrt{-p} \left(e^{i\theta_k} + e^{-i\theta_k} \right) = 2\sqrt{-p} \cos \theta_k.
\]

This is the same solution as obtained above with the cosine substitution. However, here we need \(p^2 + q^3 < 0 \) (which we have not checked), with the cosine substitution we need \(p < 0 \) only (which we have checked).

Fig. 1. For the cubic equation with three real roots \((p < 0) \), these roots are the projections onto the \(x \)-axis of the vertices \(A, B \) and \(C \) of an equilateral triangle. Vertex \(C \) corresponds to solution \(x_1 \), \(B \) to solution \(x_2 \) and \(A \) to solution \(x_3 \). The joint center of the triangle and the circumscribed circle has the same abscissa as the inflection point, \((k + \xi + \zeta)/3 \). The circle’s radius is \(2\sqrt{-p} \). This illustration is taken unchanged from [Wikipedia](https://creativecommons.org/licenses/by-sa/3.0/legalcode) and is licensed, see the author’s homepage. For 1024 by 1024 pixels full/quad pol, the cube roots \(z_k = \rho \cos(\theta_k) \) and dual pol including diagonal only data for change detection in polSAR data (with support functions), for calculating eigenvalues and derived quantities (entropy and two anisotropies) is available on the author’s homepage. For 1024 by 1024 pixels full/quad pol, both enormous speed-ups.

5. CONCLUSIONS

The speed-up factors (all approximate and for a few tests on 1024 by 1024 pixel images) for fast matrix based computer implementation based on the above eigenvalue calculations compared with a simple implementation based on calls to Matlab’s built-in eigenvalue solver eig in for loops over rows and columns, is 350 for dual pol and 175 for quad/full pol, both enormous speed-ups.

The largest absolute value of the difference between the eigenvalues obtained from the two methods is less than \(10^{-11} \). Matlab code covering quad/full pol as well as azimuthal symmetry and dual pol including diagonal only data for change detection in polSAR data (with support functions), for calculating eigenvalues and derived quantities (entropy and two anisotropies) is available on the author’s homepage. For 1024 by 1024 pixels full/quad pol, the eigenvalue calculations (with auxiliary variables entropy and two anisotropies) take a little less than 0.12 seconds elapsed time carried
The methods described here can be used in the analysis of Sentinel-1 and Radarsat-2 data also, as well as in other contexts, for example in the analysis of real symmetric variance-covariance matrices from RGB imagery.