Development of a tool for coding safety-netting behaviours in primary care: a mixed-methods study using existing UK consultation recordings

INTRODUCTION

‘Safety netting’, also known as ‘contingency planning’, has become an integral part of clinical care in a variety of settings and is now widely considered to form part of best practice in primary care.1–3 Despite this, there is a lack of evidence on how often and which safety-netting strategies are utilised in clinical practice; how patients immediately respond; and the effects of safety netting on patient safety.4,5

Neighbour initially described the safety-netting checkpoint as three questions the clinician should ask themselves: if I’m right what do I expect to happen; how will I know if I’m wrong, and what would I do then?6 Subsequently, the term ‘safety netting’ has been used to describe a diverse array of activities including: educating patients on symptoms to look out for, explaining the expected time course of illnesses, communicating uncertainty, review at a set time period (follow-up), clinician training, liaison between healthcare professionals, ensuring investigations are reviewed appropriately trained healthcare professionals and acted on, and other system factors.7,8

As safety-netting activities are so ingrained in clinical practice and recommended in multiple guidelines, randomised controlled trials of managing patients with or without safety netting may be deemed to be ethically inappropriate. Observational studies offer an alternative study design to evaluate safety-netting practices and potential effects on patient outcomes, but currently there are no tools available to systematically assess clinician safety-netting communication behaviours.

Though there have been some quantitative evaluations of safety-netting practices,4,9 many research studies in primary care have been qualitative in nature.2,10–12 Quantitative studies based on review of medical notes are limited by the accuracy of the information recorded and qualitative research suggests that documentation of safety netting is poor.10 Moreover, previous evaluation of video-recorded primary care consultations has demonstrated that not all problems discussed are documented in the medical notes.13 Coding tools, independently applied to observed or recorded clinician–patient interaction, enable the quantification of communication in healthcare encounters.14,15 The assessment of real consultations in this way allows for independent evaluation of complex interactions between clinicians and patients [or carers].16

The aim of this study was to develop an interaction coding tool that could be used to quantify when and how ‘safety-netting advice’, see definition in Box 1, is delivered during healthcare encounters, how patients immediately respond to the advice, and what is documented in the medical notes.

Abstract

Background
Safety netting is recommended in a variety of clinical settings, yet there are no tools to record clinician safety-netting communication behaviours.

Aim
To develop and assess the inter-rater reliability (IRR) of a coding tool designed to assess safety-netting communication behaviours in primary care consultations.

Design and setting
A mixed-methods study using an existing dataset of video- and audio-recorded UK primary care consultations.

Method
Key components that should be assessed in a coding tool were identified using the published literature and relevant guidelines. An iterative approach was utilised to continuously refine and generate new codes based on the application to real-life consultations. After the codebook had been generated, it was applied to 35 problems in 24 consultations independently by two coders. IRR scores were then calculated.

Results
The tool allows for the identification and quantification of the key elements of safety-netting advice including: who initiates the advice and at which stage of the consultation; the number of symptoms or conditions the patient is advised to look out for; what action patients should take and how urgently, as well as capturing how patients respond to such advice plus important contextual codes such as the communication of diagnostic uncertainty, the expected time course of an illness, and any follow-up plans. The final tool had substantial levels of IRR with the mean average agreement for the final tool being 88% (κ = 0.66).

Conclusion
The authors have developed a novel tool that can reliably code the extent of clinician safety-netting communication behaviours.

Keywords
clinical coding; health communication; patient safety; primary health care; reproducibility of results; safety netting; video recording.
Defining safety-netting advice

After identifying multiple definitions of ‘safety netting’ in the published literature and reviewing common themes, the authors chose to separate the generic term ‘safety netting’ from ‘safety-netting advice’. Roland and colleagues’ definition of safety netting was adapted to explicitly include the importance of reviewing symptoms if they persist, which has been described as a key element of safety-netting advice in general practice. In this study safety-netting advice was defined as: ‘Information shared with a patient or their carer designed to help them identify the need to seek further medical help if their condition fails to improve, changes, or if they have concerns about their health.’

Safety-netting advice was distinguished from follow-up: to qualify as safety-netting advice, it had to include contingency planning (predominantly, ‘if x happens then do y’), whereas follow-up was identified as a non-contingent review or investigation of a problem. During the pilot study, the authors encountered numerous other contingency plans that did not meet their definition of safety-netting advice and listed these under the exclusion criteria with examples for coders (Box 1). Any problems incidentally raised for third parties, for example, child of patient, were also excluded owing to the restrictions set out in the original database collection.

Initially the authors considered including limited prognostic statements, for example, ‘this should get better in 1 week’, with the coding tool as a form of safety-netting advice, but on final discussion with the research team and the patient group the authors decided to treat this as a ‘contextual’ code, along with existence of any diagnostic uncertainty, ‘I’m not sure what this is’, and planned follow-up.

Data

Consultation recordings used in the development and evaluation of the tool were obtained from the ‘One in a Million’ Primary Care Consultation Archive, collected during 2014–2015, full details of which are reported elsewhere. There were 318 unselected adult consultations (300 video, 17 audio-only, one transcript-only) available with consent for use in this project involving 23 different GPs based in 12 GP practices in the West of England. The content of the consultations had previously been transcribed and coded into patient ‘problems’ using the Complex Consultations Tool. The archive also contains linked data in the form of GP and patient demographic information and pre- and post-visit questionnaires.

Codebook development

In 2016 the authors searched major databases including: EMBASE, MEDLINE, CINAHL, Cochrane Library, Web of Science Core Collection, Scopus, PubMed, and PubMed Central for the term ‘safety-netting’ (which also returns hits for ‘safety netting’) and ‘safety net advice’. A literature
review was conducted by the first author, along with a search of clinical guidelines and all articles citing the seminal work by Almond and colleagues. The authors also drew on existing codes for safety-netting communication behaviours developed in the "Understanding the causes of miscommunication in primary care consultations for children with acute cough" (UnPAC) study of paediatric primary care consultations. Development work using 93 consultations from the archive obtained by a random sample stratified by GP was conducted to further develop and test the codebook. Consultations containing safety-netting advice were independently assessed by two coders, new codes were generated, and existing codes refined. An iterative approach of coding, discussion, and refinement of the codebook with further examples added to illustrate each code was used.

Five members of the public were recruited to advise on further refinements that would be important to include from a patient’s perspective. Participants were recruited from a list of people who had agreed to be contacted and were reimbursed for their travel and time. Once both coders were satisfied with the contents of the codebook, formal assessment of inter-rater reliability (IRR) of the safety-netting codes was initiated.

Presence or absence of safety-netting advice

Two coders independently reviewed a random sample of 10% (32/318) of the consultations.

Table 1. Inter-rater reliability scores for final safety-netting tool

Code	Variables	Agreement, % (weighted)	κ (ICC)
Safety-netting contextual codes			
Diagnostic uncertainty	No, yes, n/a	80	0.62
Expected time course of illness	No, yes, n/a	83	0.66
Follow-up	None, investigation only, practice, same GP,	74 (83)	0.77
	other, multiple		
Follow-up documentation	No, yes, CBD, n/a	100	1
Safety-netting advice codes			
Applicable to problem, treatment or	Problem, treatment or management plan, both	88 (92)	0.75
management plan, or both			
Stage of the consultation	Establishing reason, gathering information,	82	0.67
	delivering diagnosis, treatment planning,		
	closing, unclear		
Initiation	Clinician, patient	96	0
Format	Conditional plus course of action, conditional	98	0.79
	warning only		
Strength of endorsement	Weaker, neutral, stronger	94	0.87
Conditions/symptoms, n	1–20	84 (99)	0.89 (0.86)
Generic or specific advice	Generic, specific	80	0.61
Action advised	None (conditional only), other in-hours,	88	0.78
	practice, same HCP, OOH, 999		
Timescale of action	Not specified, fixed, immediate	92	0.80
Focus of action	No action, clinician focused, patient focused,	84 (89)	0.79
	both		
Patient response	No response, resists, nods only, acknowledgement or accepts	80	0.55
Patient questions	No, yes	97	0.65
Written information	Verbal only, verbal and written, unclear	94	0
Documentation	No, yes, CBD	85	0.71
Total mean average		88 (90)	0.66

n= not applicable. OOH = out of hours.

A total of 51 discrete episodes of safety-netting advice for 35 problems in 24 consultations were recorded. *Weight: 0.5 (half credit) if multiple matched to any other code other than none. *Inter-rater reliability not assessed when n/a as no follow-up or safety-netting advice, or when no medical records available. *Weight: 0.5 when both matched with either problem or treatment. *One variable dropped, limited prognostic statement only. *Quadratic weighting. *From a repeated cycle of coding tool analysis based on 25 episodes of safety-netting advice across 13 problems from 10 consultations. *Weight: 0.5 when both matched with either clinician- or patient-focused action.
Table 2. Patient characteristics

Characteristics	SNA screening, n(%)	Full tool application, n(%)
Sex		
Male	15 (46.9)	10 (41.7)
Female	17 (53.1)	14 (58.3)
Age, years		
18–34	8 (25.0)	7 (29.2)
35–49	8 (25.0)	5 (20.8)
50–64	7 (21.9)	6 (25.0)
≥65	6 (18.8)	3 (12.5)
Not reported	3 (9.4)	3 (12.5)
Ethnic group		
White	27 (84.4)	19 (79.2)
Other	4 (12.5)	4 (16.7)
Not reported	1 (3.1)	1 (4.2)
IMD quintile		
1 (least deprived)	10 (31.3)	5 (20.8)
2	7 (21.9)	6 (25.0)
3	3 (9.4)	3 (12.5)
4	1 (3.1)	1 (4.2)
5 (most deprived)	11 (34.4)	9 (37.5)

The full coding tool was applied to all consultations from the screening process that contained safety-netting advice. IMD = Index of Multiple Deprivation. SNA = safety-netting advice.

Problem	Patient number 76, depressive disorder
Condition	Strength of endorsement
GP: ‘Keep an eye on these thoughts. If they get worse, you must come to open surgery; talk to one of us straight away’	
Patient: ‘Yes, sound’	
Patient response	Timescale of action
Patient: ‘Yes, sound’	
Initiation: by clinician	
Stage of consultation: closing	
Application: to problem	
Format: conditional plus course of action	
Strength of endorsement: stronger	
Conditions or symptoms: ‘... they get worse’ (n = 1)	
Generic or specific: generic	
Action advised: return to/contact practice	
Focus of action: patient	
Timescale of action: immediate/urgent	
Patient responses: acknowledgement/acceptance	
Questions asked: none	
Communication: verbal only	

Consultations for the presence or absence of safety-netting advice using both transcripts and consultation recordings. Each coder recorded whether they thought safety-netting advice had been provided for each problem raised in the consultation, recorded the line number where the safety-netting advice started, and highlighted the relevant part of the transcript. Where there was disagreement between coders, a third member of the research team was consulted until a group consensus was met. One coder, the first author, then screened the rest of the database.

Application of coding tool to a sample of consultations

All consultations or problems identified as including safety-netting advice from this stage of the process were then deemed eligible for coding. An a priori overall target of 85% inter-rater agreement was set. Again, both transcripts and consultation recordings were used together to facilitate accurate coding. Data on safety-netting using the new tool were collected using Microsoft Excel. After coding was complete, data were imported into Stata (version 15.1) for analysis.

Statistical analysis

Both percentage agreements and Cohen’s κ, weighted for partial agreements, were used to assess IRR for categorical data.27 Full weightings with explanations for the codes are given in Table 1. To assess IRR for continuous data it is preferable to calculate an intra-class correlation coefficient (ICC) but a quadratically-weighted κ is also an accepted method and has been shown to be equivalent to ICC under certain conditions.28,29 A two-way mixed-effects ICC was calculated for the absolute agreement between coders and reported individual ICCs. A mixed-effects model was used because coders were not randomly sampled from a population of potential coders (though ICC estimates for mixed and random models are identical, this notation is only important for interpretation of the ICC estimates).30 A mean average percentage agreement and κ score were reported for the final coding tool. Both a quadratically weighted κ and an ICC were reported for the one code with continuous data.

RESULTS

Sample characteristics

The unstratified random sample of 32/318 patients contained consultations from 19/23 GPs (9 male, 10 female) in the archive, working across 12 practices, with a range of one to three consultations from the same GP. All GPs included in the screening were of a self-reported white ethnic group with an age range of 32–62 years and a mean average age of 47 years. There were 15 male and 17 female participants with an age range of 20–83 years, with a mean average age of 48 years. Of the patients, 27 described themselves being white and four reported belonging to another ethnic group; see Table 2 for patient characteristics.

Tool components

The final tool compromised four main types of codes: administrative codes; safety-netting contextual codes; safety-netting advice codes; and an additional optional set of problem contextual codes. Administrative codes recorded assigned study identification number, how many problems were raised during consultation, and the type of problem using the International Classification of Primary Care (ICPC-2) classification.31 These administrative codes were based on information from the original ‘One in a Million’ study and not included in the IRR testing.

Contextual codes recorded elements that have been described as key features of
Both plan treatment or management of a problem, or both.

Box 3. Examples of safety-netting advice for a problem, for a treatment or management plan for the problem, or both

Problem	Treatment/management plan	Both
Antiflammatories are really good at pain thinning, but they’re bad at irritating the lining of the stomach. And in the worst case it can cause an ulcer and bleeding. So, if you’re getting indigestion pains, coughing up blood, or your stool is very dark and black and sticky, you must stop the naproxen and come and see me straight away.	‘And of course, if things are getting worse rather than better in the meanwhile, or any problems with the antibiotics, we’ll see you before.’	
‘And of course, if things are getting worse rather than better in the meanwhile, or any problems with the antibiotics, we’ll see you before.’	‘Yes, well, any problems, come back.’	
‘Yeah’, positive assessments ‘great, fine’, and acceptance ‘OK, all right, sure’. These codes were subsequently collapsed into a single ‘acknowledgement or acceptance’ code. Two codes (the action advised and the action required) were developed and recorded.	‘I’d like to have another look at it’; and both doctor- and patient-focused action, you must come back so I can have another look at it.’	
the timescale of action] that were deemed to have performed substandardly but were judged to be essential to retain underwent further refinement and were evaluated in 10 further randomly selected consultations that contained safety-netting advice (13 problems, 25 discrete episodes of safety-netting advice) using the relevant parts of the written transcripts only. The authors also wanted to differentiate whether coders thought the safety-netting advice and follow-up plans had been fully or only partially documented in the patient’s medical notes and if diagnostic uncertainty and the expected time courses of illness were delivered with the safety-netting advice or at a separate part of the consultation, but IRR scores demonstrated that in its current format coders could not reliably discriminate to this level of detail.

Adjustments and dropped codes
Three codes were removed from the tool as the coders struggled to reliably differentiate between the different variables. A list of all the dropped codes and their IRR scores are shown in Supplementary Table 2. Two contextual codes, which both had substantial IRR score — “is this the first presentation with this problem to healthcare professional?” (agreement 89%, κ = 0.71) and “is a diagnosis given” (agreement 74%, κ = 0.62) — were deemed non-essential to the coding tool on final review and therefore moved to the optional section of the coding tool. This decision was made primarily to reduce the time taken to complete the coding tool.

Inter-rater reliability scores
At the consultation level, coders agreed on the presence or absence of safety-netting advice for 32/32 consultations (100%, κ = 1.0). At the problem level, coders agreed on the presence or absence of safety-netting advice for 49/55 problems (89%, κ = 0.77). The ICC for the number of separate times safety-netting advice was discussed in each consultation and for each medical problem was 0.88 and 0.73 respectively. A contributing factor towards the lower ICC for safety-netting advice per medical problem was if generic safety-netting advice, for example, ‘any problems let me know’, was not listed under all the problems it could have applied to.

Incidents where one coder missed an episode of safety-netting advice but incorrectly labelled a non-safety-netting contingency plan [exclusion criteria, Box 1] occurred once for coder 1 and three times for coder 2. This only positively affected the IRR results for the presence or absence of safety-netting advice for one consultation and one medical problem. Because agreement scores do not differentiate between correct agreements and false agreements, the authors also reported how many of the 51 discrete episodes of safety-netting advice each coder correctly identified and any false positives. Full details of correct and false positive identification of safety-netting advice by coders are shown in Supplementary Table 3. Coder 1 correctly identified 48/51 (94.1%) episodes of safety-netting advice, whereas coder 2 correctly identified 45/51 (88.2%) of episodes.

The review process identified 51 separate episodes where the GPs gave safety-netting advice for 35 problems in 24 consultations. Table 1 demonstrates the IRR scores assessed in the coding tool. One code ‘does the safety-netting advice apply to this problem or multiple problems?’ was wholly dependent on the screening for the presence or absence of safety-netting advice for each problem, therefore IRR was not reassessed. The mean average unweighted percentage agreement was 88% (90% weighted) and mean average κ score was 0.66 for the final tool.

Final tool
The final codebook and coding tool are included as Supplementary Tables 1 and 4. As the codebook is publicly available online, the exact extracts from the consultations that were utilised in the development of the codebook have been replaced with example data.

DISCUSSION

Summary
To the best of the authors’ knowledge, the development and initial evaluation of the first tool specifically designed to capture when and how safety-netting advice is delivered and received in healthcare encounters is described here. The tool allows for quantification of all the different components of safety-netting advice including: whether the clinician or patient initiate the advice; the stage of the consultation at which the advice is discussed; the formatting of the advice; the strength of the advice endorsement; the number and type of conditions or symptoms the patients are informed to look out for; whether the advice is generic or specific; how the patient should seek further help and how quickly they need to act; how patients respond to the advice; whether patients ask further questions about the advice; if any written information
is given; and if the clinicians document any safety-netting advice in the medical notes. The tool also includes codes designed to capture contextual data for each problem raised during the consultations, such as the communication of any diagnostic uncertainty, the expected time course of the illness, and whether any follow-up is arranged for the problem.

Strengths and limitations

In the face of uncertainty around the reach of the term ‘safety netting’, a clear definition of ‘safety-netting advice’ was generated based on the published literature and a robust set of inclusion and exclusion criteria was created that was grounded in the published literature, clinical experience, and, perhaps most importantly, from watching multiple real-life consultations.

IRR testing between two coders demonstrated the tool could be reliably used to evaluate safety-netting advice in GP consultations with an overall percentage agreement of 88% (unweighted), which exceeded the pre-set target of 85% for this study. The mean average κ score of 0.66 is deemed ‘substantial’ agreement by Landis and Koch, and falls into the second highest category of agreement levels.35

Only one episode was not adequately explained by the categories available in the format section of the codebook. This example was omitted from the IRR scoring and the codebook updated with this minor alteration. Though it is possible that there might be other cases that could be considered safety-netting advice that may not fit the codebook, the tool has been extensively tested and applied to a total of 390 episodes.36

When assessing IRR, weighted κ scores were used with caution owing to their inherent subjectivity but potentially could have been utilised more. For example, the authors asked coders to differentiate if the action advised in the safety-netting advice was to return to the practice or specifically the same GP. These actions are very similar; and, potentially, it would be too stringent to treat them as unweighted codes, which may underestimate the true IRR of the tool.

Though κ scores are a widely accepted method of assessing IRR they are not without issues. First, two codes (who initiates the advice; and is written advice given) returned κ scores of 0 yet had high percentage agreements (96% and 94% respectively). This is because of the very low incidence of patient-initiated safety-netting advice and written advice, which creates a high level of expected agreement in the κ statistic calculation. This penalisation is recognised as part of the κ statistic ‘paradox’ and therefore may underestimate the IRR of the tool.37 Both weighted and unweighted percentage agreement scores have been provided for this reason.

Second, κ scores are also influenced by the number of variable categories available and therefore the individual κ scores for each code best represent the IRR rather than the overall mean average κ.38,39

In an ideal coding tool all codes should be independent of one another to avoid double penalisation or reward of a single decision, which was not always possible. For example, the documentation of follow-up is dependent on whether the coder thought any follow-up was present in the first instance. To avoid double penalisation or reward only IRR of this code was assessed when both coders agreed there was some form of follow-up. Fortunately, there were no cases where coders disagreed that there were at least some follow-up plans in place and all disagreements originated from the type of follow-up code. Furthermore, to avoid over-inflating IRR scores for documentation codes, agreement scores were not included if no medical notes were available.

Some codes that returned poor IRR scores had to be collapsed down into broader categories or removed. Two codes that were deemed essential had to undergo a further round of testing after additional refinement. Other limitations included the fact that only coder ratings by two coders were used in the formal assessment of IRR, both of whom were involved in the development of the tool. However, by creating a detailed codebook to accompany the tool, the authors have included specific examples and clear explanations to aid assignment of codes for future coders. Furthermore, when multiple actions were included in the safety-netting advice, the authors chose to code the highest ‘action’ variable recommended. For example, if a GP recommended that a patient return to them for help or if it was out-of-hours (OOH) to ring 111, the action would be coded as ‘contact OOH services’. Future editions of the coding tool could potentially map different symptoms listed by the GP onto separate actions, but this may make the coding tool more labour intensive.

Comparison with existing literature

Although there are numerous other coding tools that assess other specific parts of the consultation, this study is the first to describe a tool specifically designed to quantify the delivery and receipt of safety-
Funding

This project was funded as part of Peter Edwards’ Elizabeth Blackwell Clinical Primer Research Fellowship, which was supported by the Wellcome Trust Institutional Strategic Support Fund and Avon Primary Care Research Collaborative (grant reference number ISSF3: 204813/Z/16/Z). Matthew Ridd was funded by a National Institute for Health Research (NIHR) Post-Doctoral Research Fellowship (grant reference number PDF-2014-07-013). Rebecca Barnes was funded by NIHR Collaboration for Leadership in Applied Health Research and Care West. The views expressed in the publication are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

Ethical approval

NHS ethical approval was obtained for this study from the London Brent Ethics Committee (16/LO/1739) and access to the One in a Million Primary Care Consultation Archive was approved by the University of Bristol Data Access Committee.

Provenance

Freely submitted; externally peer reviewed.

Competing interests

The authors have declared no competing interests.

Acknowledgements

The authors would like to thank their patient and public involvement group who helped evaluate and refine the tool, all the doctors and patients who participated in the original One in a Million study, and the UnPAC study ‘Understanding the causes of miscommunication in primary care consultations for children with acute cough’ funded by the NIHR School for Primary Care Research.

Open access

This article is Open Access: CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).

Discuss this article

Contribute and read comments about this article: bjgp.org/letters

Implications for research and practice

The presented tool will allow for the systematic assessment of safety-netting communication behaviours in video- and audio-recorded primary care consultations. This will permit further evaluation of prior research findings, for example, that safety-netting advice is often not documented in the medical notes and tends to be vague.

The present findings suggest that this tool, in its current format, cannot be used to reliably determine if the GP checked patient understanding of the safety-netting advice (low IRR). It may only be possible to assess this by means of a patient-completed questionnaire after the consultation. This is likely to provide a more accurate assessment of patient understanding, as patients may be too embarrassed to admit that they have not understood a doctor’s advice when asked directly in a consultation. Minor adaptations, such as reducing the number of codes, may be required for use in live consultations where immediate feedback is required, as the current tool was tested on recorded consultations where coders had the ability to replay sections of the consultation.

In summary, the authors have developed a tool that can be used to systematically evaluate clinician safety-netting communication behaviours, but further research is required to determine how patients interpret different forms of safety-netting advice and the effect they might have on clinical outcomes.
REFERENCES

1. Mitchell ED, Rubin G, Macleod U. Understanding diagnosis of lung cancer in primary care: qualitative synthesis of significant event audit reports. Br J Gen Pract 2013; DOI: https://doi.org/10.3399/bjgp13X66760.

2. Edwards PJ, Seddon JO, Barnes RK. Time for guidelines on safety netting? BMJ 2009; 359: e6411.

3. Jones D, Dunn L, Watt I, Macleod U. Safety netting for primary care: evidence from a literature review. Br J Gen Pract 2019; DOI: https://doi.org/10.3399/bjgp18X600193.

4. Nicholson BD, Mant D, Bankhead C. Can safety-netting improve cancer detection in patients with vague symptoms? BMJ 2016; 355: i6515.

5. Buntinx F, Mant D, Van den Brulu A, et al. Dealing with low-incidence serious diseases in general practice. Br J Gen Pract 2011; DOI: https://doi.org/10.3399/bjgp11X54879.

6. Neighbour R. The inner consultation: how to develop an effective and intuitive consultation style. 2nd edn. Oxford: Radcliffe, 2005.

7. Almond S, Mant D, Thompson M. Diagnostic safety-netting. Br J Gen Pract 2009; DOI: https://doi.org/10.3399/bjgp09X472971.

8. Nicholson BD, Goyder CR, Bankhead C, et al. Responsibility for follow-up during the diagnostic process in primary care: a secondary analysis of International Cancer Benchmarking Partnership data. Br J Gen Pract 2018; DOI: https://doi.org/10.3399/bjgp18X69561.

9. de Vos-Kerkhof E, Geurts DHF, Wiggers M, et al. Tools for ‘safety netting’ in common paediatric illnesses: a systematic review in emergency care. Arch Dis Child 2016; 101(2): 131–139.

10. Jones CH, Neil S, Lakhapnau M, et al. The safety netting behaviour of first contact clinicians: a qualitative study. BMC Fam Pract 2013; 14: 140.

11. Jones CH, Neil S, Lakhapnau M, et al. Information needs of parents for acute pediatric illnesses: a systematic review in emergency care. Arch Dis Child 2016; 101(2): 131–139.

12. Evans J, Ziebland S, MacArtney JI, et al. ‘One in a Million’: complex consultations in primary care: a tool for assessing the range of health problems and issues addressed in general practice consultations. BMC Fam Pract 2014; 15(1): 105.

13. Cabral C, Horwood J, Symonds J, et al. Understanding the influence of parent-physician communication on antibiotic prescribing for children with respiratory tract infections in primary care: a qualitative observational study using a conversation analysis approach. BMC Fam Pract 2019; 20(1): 102.

14. Cohen J. Weighted kappa: nominal scale agreement provision for scaled categories. J Clin Epidemiol 2016; 75: 164–170.

15. Fleiss JL, Cohen J. Equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ Psychol Meas 1973; 33(3): 613–619.

16. Halgren KA, Computing inter-rater reliability for observational data: an overview and tutorial. Tutor Quant Methods Psychol 2012; 8(1): 23–34.

17. Vos Kerkhof E, Geurts DHF, Wiggers M, et al. GP’s understanding and practice of safety netting for potential cancer presentations: a qualitative study in primary care. Br J Gen Pract 2018; DOI: https://doi.org/10.3399/bjgp18X694233.

18. Salisbury C, Prout S, Stewart K, et al. The content of general practice consultations: cross-sectional study based on video recordings. Br J Gen Pract 2013; DOI: https://doi.org/10.3399/bjgp13X643431.

19. Eley G, Edwards A, Wensing M, et al. Shared decision making: developing the OPTION scale for measuring patient involvement. Qual Saf Health Care 2003; 12(2): 93–99.

20. Henry SG, Chen M, Matthias MS, et al. Development of the chronic pain coding system (CPCS) for characterizing patient–clinician discussions about chronic pain and opioids. Pain Med 2016; 17(10): 1892–1905.

21. Asan O, Montague E. Using video-based observation research methods in primary care: a qualitative study based on video-recorded UK consultations. Br J Gen Pract 2019; DOI: https://doi.org/10.3399/bjgp19X606601.

22. Feinstein AR, Cicchetti DV. High agreement but low Kappa: I. the problems of two paradoxes. J Clin Epidemiol 1990; 43(6): 543–549.

23. Macle M, Willett WC. Misinterpretation and misuse of the kappa statistic. Am J Epidemiol 1987; 126(2): 161–169.

24. Beck Nielsen S. ‘If you don’t get better, you may come back here’: proposing conditioned follow-ups to the doctor’s office. Text and Talk 2018; 38(2): 217–242.

25. Proctor S, Stewart K, Reeves D, et al. Complex consultations in primary care: a tool for assessing the range of health problems and issues addressed in general practice consultations. BMC Fam Pract 2014; 15(1): 105.

26. Cabral C, Horwood J, Symonds J, et al. Understanding the influence of parent-physician communication on antibiotic prescribing for children with respiratory tract infections in primary care: a qualitative observational study using a conversation analysis approach. BMC Fam Pract 2019; 20(1): 102.

27. Cohen J. Weighted kappa: nominal scale agreement provision for scaled categories. J Clin Epidemiol 2016; 75: 164–170.

28. Silverman J, Kurtz S, Draper J. Skills for communicating with patients. 3rd edn. Boca Raton, FL: Taylor & Francis, 2013.

29. Byrne PS, Long BE. Doctors talking to patients. London: HMG, 1976.

30. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159–174.

31. Edwards PJ, Ridd MJ, Sanderson E, Barnes RK. One in a Million: a study of primary care consultations. 2017. BMJ 2018; 362: k738.

32. Gordon GH, Joos SK, Byrne J. Physician expressions of uncertainty during patient encounters. Patient Educ Couns 2000; 40(1): 59–65.

33. Silverman J, Kurtz S, Draper J. Skills for communicating with patients. 3rd edn. Boca Raton, FL: Taylor & Francis, 2013.

34. Byrne PS, Long BE. Doctors talking to patients. London: HMG, 1976.

35. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159–174.

36. Edwards PJ, Ridd MJ, Sanderson E, Barnes RK. Safety netting in routine primary care consultations: an observational study using video-recorded UK consultations. Br J Gen Pract 2019; DOI: https://doi.org/10.3399/bjgp19X606601.

37. Feinstein AR, Cicchetti DV. High agreement but low Kappa: I. the problems of two paradoxes. J Clin Epidemiol 1990; 43(6): 543–549.

38. Maclure M, Willett WC. Misinterpretation and misuse of the kappa statistic. Am J Epidemiol 1987; 126(2): 161–169.

39. Brenner H, Kliebsch U. Dependence of weighted kappa coefficients on the number of categories. Epidemiology 1996; 7(2): 199–202.

40. Beck Nielsen S. ‘If you don’t get better, you may come back here’: proposing conditioned follow-ups to the doctor’s office. Text and Talk 2018; 38(2): 217–242.

41. Cabral C, Ingram J, Hay AD, Horwood J. ‘You just say everything’s a virus’ — parent’s judgment of the credibility of clinician communication in primary care consultations for respiratory tract infections in children: a qualitative study. Patient Educ Couns 2014; 95(2): 248–253.

42. Graham S, Brooke J. Do patients understand? Perm J 2008; 12(3): 67–69.