Z$_2$ Gauge Theory of Electron Fractionalization in Strongly Correlated Systems

T. Senthil and Matthew P. A. Fisher
Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030
(February 1, 2008)

We develop a new theoretical framework for describing and analyzing exotic phases of strongly correlated electrons which support excitations with fractional quantum numbers. Starting with a class of microscopic models believed to capture much of the essential physics of the cuprate superconductors, we derive a new gauge theory - based upon a discrete Ising or Z$_2$ symmetry - which interpolates naturally between an antiferromagnetic Mott insulator and a conventional d-wave superconductor. We explore the intervening regime, and demonstrate the possible existence of an exotic fractionalized insulator - the nodal liquid - as well as various more conventional insulating phases exhibiting broken lattice symmetries. A crucial role is played by vortex configurations in the Z$_2$ gauge field. Fractionalization is obtained if they are uncondensed. Within the insulating phases, the dynamics of these Z$_2$ vortices in two dimensions (2d) is described, after a duality transformation, by an Ising model in a transverse field - the Ising spins representing the Z$_2$ vortices. The presence of an unusual Berry’s phase term in the gauge theory, leads to a doping-dependent “frustration” in the dual Ising model, being fully frustrated at half-filling. The Z$_2$ gauge theory is readily generalized to a variety of different situations - in particular, it can also describe 3d insulators with fractional quantum numbers. We point out that the mechanism of fractionalization for $d > 1$ is distinct from the well-known 1d spin-charge separation. Other interesting results include a description of an exotic fractionalized superconductor in two or higher dimensions.

I. INTRODUCTION

Strongly interacting many-electron systems in low dimensions can exhibit exotic properties, most notably the presence of excitations with fractional quantum numbers. In these instances the electron is “fractionalized” - effectively splintered into constituents which essentially behave as free particles. The classic example is the one-dimensional (1d) interacting electron gas [1], which exhibits many anomalous properties such as the separation of the spin and the charge of the electron. Electron “fractionalization” is also predicted to occur in 2d systems in very strong magnetic fields that exhibit the fractional quantum Hall effect [2]. Recent experiments have given strong supporting evidence of fractionalization both in quantum Hall systems [3] and in carbon nanotubes [4]. Motivated by these examples, several authors have proposed the possibility of electron fractionalization in various other experimental systems. Perhaps the most tantalizing is the suggestion by P.W. Anderson [5] of “spin-charge separation” in cuprate high-T_c materials. However, this suggestion is currently surrounded with considerable controversy, in part because the 1d electron gas and the fractional quantum Hall effect appear to be rather special situations which do not readily generalize. Indeed, in 1d the Fermi liquid breaks down even at weak coupling and in the quantum Hall regime the kinetic energy is strongly quenched by a time reversal breaking magnetic field.

In this paper, we will explore theoretically the possibility of electron fractionalization in strongly correlated systems in spatial dimensions $d > 1$ in the presence of time reversal symmetry. Our primary motivation is the cuprates, though we expect our results to be of significance to a variety of other strongly interacting systems. Early attempts [6–8] to implement theoretically Anderson’s suggestion of 2d spin-charge separation typically started with either a quantum spin model or the t-J model. Slave boson/fermion representations of the spin and electron operators were employed to obtain a mean field “saddle-point” exhibiting spin-charge separation. The slave boson/fermion representation introduces a gauge symmetry - U(1) in the simplest formulations - and requires inclusion of a corresponding gauge field. Fluctuations about the mean field theory lead to a strongly interacting gauge theory about which very little is reliably known. It is then quite difficult to reach any definitive conclusions about the true low energy behaviour - in particular whether spin-charge separation survives beyond the mean field level. An alternate more recent approach [9,10], describes strongly correlated electron systems in 2d in a dual language where the vortices in the many-electron wavefunction are the fundamental degrees of freedom. In this approach, insulating phases can be obtained by condensing vortices. Fractionalized insulators arise upon condensing pairs of vortices.

In this work we introduce a new gauge theory approach which enables us to reliably address issues of fractionalization. In contrast to the slave boson/fermion representation, our gauge symmetry is discrete - in fact, an Ising or Z$_2$ gauge symmetry. This has several advantages. Firstly, gauge theories with discrete symmetry are much simpler to analyze than those with continuous symmetries [11], so that it is possible for us to make definitive statements about low energy physics. But in addition, the pure Z$_2$ gauge theory in $2 + 1$ space-time dimensions...
is dual to the 3d classical Ising model, which implies the existence of two distinct quantum phases \mathbb{Z}_2. In one of these two phases “charges” are deconfined, in marked contrast to the pure 2 + 1 dimensional $U(1)$ gauge theory which is always in a confining phase \mathbb{Z}_3. The presence of deconfinement allows us to demonstrate the existence of insulating phases exhibiting electron fractionalization, and to describe their basic properties. Remarkably, fractionalization in our Z_2 gauge theory approach is physically equivalent to vortex pairing in the earlier dual formulation $[10]$. We demonstrate this equivalence by combining the standard boson-vortex duality $[14]$ with the Ising duality mentioned above.

In addition to the fractionalized phases, our approach allows us to readily access the more conventional confined phases, and the concomitant confinement transitions. Furthermore, the Z_2 gauge theory can be readily generalized to describe a variety of different situations - arbitrary spatial dimensions, spin-rotation non-invariant systems, etc. Some of these generalizations are explored towards the end of the paper. For the most part, we concentrate on spin-rotation invariant electronic systems in 2d. An overview and summary of our main results may be found at the end of this introductory section.

In the context of frustrated quantum spin models, Read and Sachdev $[15]$ have demonstrated the possibility of disordered phases with fractionalization of spin. Specifically, an $Sp(2N)$ antiferromagnet at large N and the related quantum dimer model $[16,17]$ were shown to reduce to a Z_2 gauge theory when frustration was present. In the deconfined phase of the gauge theory free propagating spinons (spin 1/2 excitations) would be possible. Somewhat similarly, in the slave-fermion representation of the conventional Heisenberg magnet which introduces an $SU(2)$ gauge invariance, X.G. Wen $[18]$ proposed obtaining fractionalization of spin by pairing and condensating pairs of spinons. This reduces the gauge symmetry down to Z_2. In contrast, we show explicitly that the conventional Heisenberg spin model can be directly written as a Z_2 gauge theory coupled to fermionic spinons, even in the absence of any frustration. The key observation is that with fermionic spinons, the local constraint of single occupancy is equivalent to the constraint of an odd number of fermions per site. This latter constraint can be implemented with a discrete Z_2 gauge field. Such a Z_2 gauge description may also be obtained with the Majorana fermion representation of Heisenberg spins $[19]$. The basic physics underlying our description of electron fractionalization is perhaps most readily understood in $d = 2$. At the heart of quantum mechanics is wavefunction - the familiar vortices with circulation quantized in units of Q_v. A fundamental property of such vortices is that the product of their quantum of circulation and the particle charge is a constant,

$$Q_v = hc.$$

It is this simple identity which underlies the two known examples of “fractionalization” in two-dimensions, and is at the heart of the Z_2 gauge theory developed in this paper. In a BCS superconductor, the pairing of electrons to form a Cooper pair with charge $Q_v = 2e$, implies a “halving” of the flux quantum, $Q_v = \frac{1}{2}(hc/e)$ - which is tantamount to “vortex fractionalization”. The second example of 2d fractionalization occurs in the fractional quantum Hall effect $[3]$. In the $\nu = 1/3$ state three vortices bind to each electron forming a “composite boson” with total circulation $Q_v = 3(hc/e)$, which then condenses. The above identity implies the existence of topological excitations in this condensate with electrical charge $\frac{2}{3}e$ - the celebrated Laughlin quasiparticles.

The route to electron fractionalization that we explore in this paper is physically equivalent to a pairing of vortices, precisely as in earlier work by Balents et. al. $[9,10]$. But the mathematical implementation is rather different. Balents et. al. argued that a pairing and condensation of conventional $Q_v = hc/2e$ BCS vortices in a singlet superconductor, results in an exotic fractionalized insulator. As Eqn. 1 demonstrates, this insulator should support spinless charge e excitations. Our analysis begins by noting that such an excitation can be thought of as “one-half” of a Cooper pair. We implement this fractionalization by formally re-expressing the Cooper pair creation operator as the product of two “chargon” operators, b_1^\dagger, each creating a spinless, charge e boson. This change of variables introduces a local Z_2 symmetry, since it is possible to change the sign of b_1^\dagger on any given lattice site while leaving the Cooper pair operator invariant. This is the origin of a local Ising, or Z_2, gauge symmetry - described mathematically in terms of a Z_2 gauge field. In the exotic fractionalized insulator, there are strange gapped excitations which are vortices in the Z_2 gauge field. These excitations - which we refer to as “visons” because they can be represented in terms of Ising spins - are the remnants of the unpaired $hc/2e$ BCS vortices, which survive in the fractionalized insulator. As we shall see, when the visons condense they drive “confinement”, thereby destroying fractionalization. These vortices will play an absolutely central role throughout this paper, since any insulator with gapped visons is necessarily fractionalized.

Motivated by the cuprate superconductors, we will focus on a particular class of microscopic lattice models designed to capture much of the physics believed essential to these materials. (Our description of fractionalization is, however, more general and is not restricted to these models.) The models describe electrons hop-
scopic” pairing fluctuations are two fold. Firstly, as the
outset. Our reasons for similarly incorporating “micro-
al. [9]. Many microscopic models of the cuprates, such as
the $t-J$ model, incorporate spin fluctuations from the
outset. Our reasons for similarly incorporating “micro-
scopic” pairing fluctuations are two fold. Firstly, as the
superconducting phase is a well-established and reason-
ablely well-understood part of the high-T_c phase diagram
just like the antiferromagnet - it serves as a useful point
de part of departure to access more puzzling regions of the phase

diagram. This point of view was also advocated in Ref.
[21]. But there are also more microscopic reasons to in-
clude pairing fluctuations from the outset. In particular,
as emphasized, for instance in Ref. [5], a spin-spin inter-
action term as in the $t-J$ model can be suggestively re-
written in terms of electron operators as

$$S_{r'} \cdot S_r = -\frac{1}{2} \left(c_{r'}^\dagger c_{r'}^\dagger \cdot c_r c_{r'} \right) + \frac{1}{4} \rho_r \rho_{r'}.$$

with $\rho_r = c_r^\dagger c_r$. For antiferromagnetic exchange the first
term is an attractive pairing interaction in the $d_{x^2-y^2}$ (or
extended-s) wave channel. As in BCS theory, this inter-
action may be decoupled (in a functional integral) with
a complex auxiliary pair field η_{ij} as

$$\sum_{r<r'} J|2\eta_{r'r'}|^2 + [\eta_{r'r'} a_{r'r'}(c_{r'} c_{r'}^\dagger - c_r c_r^\dagger) + c.c.].$$

Here $a_{r'r'} = +1$ for bonds along the x-direction, and
equals -1 for bonds along the y-direction. With $\langle \eta \rangle \neq 0,$
this corresponds to a superconducting phase with $d_{x^2-y^2}$ symmetry. But more generally, η can be decomposed
into an amplitude and a phase, $\eta = \Delta e^{i\varphi}$. Ignoring fluctua-
tions in the amplitude leads to a model of the type
we consider below, with local fluctuating d-wave pairing
correlations.

Further motivation for inclusion of such pairing fluc-
tuations is provided by resonating valence bond (RVB)
ideas [22]. The wavefunction for an RVB Mott insula-
tor can be obtained from the wavefunction of a super-
conductor by Gutzwiller projecting into a subspace with
exactly one electron per site. Some mean field theories
of the RVB state are equivalent to starting out with just
the superconducting wavefunction. Gauge field fluctua-
tions about the mean field solution are supposed to carry out
this highly non-trivial projection, and destroy the su-
perconductivity. A natural physical route to achieve this
end is to include strong phase fluctuations of the mean
field order parameter. Indeed, a recent preprint [23] ar-
gues that fluctuations about the mean field theory of the
d-wave RVB state [24] are formally equivalent to a theory
of a phase-fluctuating d-wave superconductor.

With these motivations, we consider generalized Hub-
bard type models of the form

$$H = H_0 + H_J + H_u + H_\Delta$$

with

$$H_0 = -t \sum_{r \to r'} c_{r,\alpha}^\dagger c_{r',\alpha} + h.c.,$$

$$H_J = \sum_{r \to r'} \mathbf{S}_r \cdot \mathbf{S}_{r'},$$

$$H_u = \sum_r u(N_r - N_0)^2,$$

$$H_\Delta = \sum_r \left(e^{i2\varphi} p_r + h.c. \right).$$

with the local d-wave pair field defined as,

$$p_r = \sum_{r' < r} \Delta_{r'r}(c_{r'} c_{r'}^\dagger - c_r c_r^\dagger).$$

Here, $c_{r\alpha}$ denotes an electron operator at site r of (say)
a 2d square lattice with spin polarization $\alpha = \uparrow, \downarrow$. The
electron density and spin operators are the usual bilin-
erars: $\rho_r = c_{r\uparrow}^\dagger c_{r\uparrow}$ and $\mathbf{S}_r = \frac{1}{2} c_{r\uparrow} \sigma c_{r\downarrow}$ with σ a vector
of Pauli matrices. The term H_u is an on-site repul-
sion. Strong local tendencies for $d_{x^2-y^2}$ pairing are in-
corporated through the term H_Δ. In the definition of
p_r in Eqn. (3), the summation is over the four nearest
neighbours of the site r and $\Delta_{r'r} = \Delta$ for bonds along
the x-direction, and $\Delta_{r'r} = -\Delta$ for bonds along the y-
direction. With this choice, the operator p_r destroys a
$d_{x^2-y^2}$ pair of electrons centered at the site r.

As discussed above, this anomalous term can be ob-
tained by decoupling a local spin-exchange interaction -
which is attractive in the d-wave pairing channel - with a
complex Hubbard Stratanovich field. Here, we keep the
amplitude Δ fixed, but include (quantum) fluctuations of the
local pair field phase, φ_r. This phase is canonically
conjugate to the Cooper pair number operator, n_r:

$$[\varphi_r, n_{r'}] = i\delta_{r'r'}.$$

Due to the anomalous term in H_Δ, the two densities ρ_r and
n_r are not separately conserved. The conserved electrical charge density is simply the sum of the Cooper pair
and electron densities,

$$N_r = 2n_r + \rho_r.$$

It is this total density that enters into the local on-site
Hubbard interaction term. The c-number N_0 plays the
role of a chemical potential, determining the overall elec-
trical density.

This Hamiltonian describes interacting electrons in a
system with strong local pairing and spin fluctuations.
Since φ_r is a dynamical quantum field, these pairing fluc-
tuations do not necessarily lead to a superconducting
ground state. In addition to the pairing interaction
terms, the above Hamiltonian includes interactions in the spin singlet (u) and spin triplet (J) particle/hole channels. The Hamiltonian retains the important global symmetries, corresponding to conservation of spin and electrical charge. It is worth emphasizing that the theoretical description of electron fractionalization that we develop below is not in the least restricted to this particular Hamiltonian.

A. Overview

Due to the length of this paper, we first provide a brief synopsis of our approach and of the key results. We start with the observation of Kivelson and Rokhsar [22] that, in an appropriate sense, a (singlet) superconductor already has separation of spin and charge. If one imagines inserting an electron into the bulk of a superconductor, its charge gets screened out by the condensate to leave behind a neutral spin-carrying excitation - a “spinon”. A mathematical implementation of this idea [21] essentially amounts to binding half of a Cooper pair to an electron to produce a neutral spinon. Following these ideas, we first split the Cooper pair operator into two pieces, each piece creating an excitation with charge e but spin zero. These are the same quantum numbers as the “holon”. But since this object seems to be defined rather differently, and in any event is not directly tied to the doping of a Mott insulator, we prefer to refer to it as a “chargon”. The square of the chargon operator creates the Cooper pair. Next, we define a neutral “spinon” operator by multiplying together the chargon and electron operators. Changing variables from the electrons and Cooper pairs to chargons and spinons introduces a degree of redundancy in the description. Specifically, all physical observables are invariant under a local change in the sign of the spinon and chargon operators. This implies that the resulting theory must have a local Z2 gauge invariance.

In Section II, we carefully re-express the above model in terms of the chargon and spinon operators, paying special attention to the local Z2 gauge symmetry. Following techniques familiar from slave boson/fermion theories, we derive an action in terms of the chargon and spinon fields coupled to a fluctuating Z2 gauge field. This takes the form

\[
S = S_c + S_s + S_B,
\]

\[
S_c = -t_c \sum_{\langle ij \rangle} \sigma_{ij} (b_i^\dagger b_j + c.c.),
\]

\[
S_s = - \sum_{\langle ij \rangle} \sigma_{ij} \left(t_{ij}^s f_{i\alpha}^\dagger f_{j\alpha} + t_{ij}^f f_{i\alpha}^\dagger f_{j\alpha} + c.c. \right) - \sum_i \hat f_{i\alpha}^\dagger f_{i\alpha}.
\]

Here \(S_c \) describes the charge dynamics with \(b_i \equiv e^{-i\phi_i} \) the chargon field defined on a \(d + 1 \) dimensional space-time lattice labelled by \(i, j \). The spin is carried by the (Grassmann-valued) spinon fields, \(f_i \) and \(\hat f_i \), also living on the lattice sites. The chargon and spinon fields are “minimally coupled” to an Ising \(Z_2 \) gauge field \(\sigma_{ij} = \pm 1 \) living on the links of the space-time lattice. The form of the charge and spin actions, \(S_c \) and \(S_s \), could have been guessed on symmetry grounds (the global charge \(U(1) \), the global spin \(SU(2) \) and the local \(Z_2 \) gauge symmetry), but the derivation in Section II shows the presence of an additional term \(S_B \). This is a “Berry phase” term that takes the form

\[
S_B = -i \sum_{i,j} N_0 [2\pi l_{ij} - \frac{\pi}{2}(1 - \sigma_{ij})].
\]

Here \(\tau \) refers to the time direction, and \(l_{ij} \) is an integer on each temporal link defined in terms of the \(\phi \) and \(\sigma \) fields as,

\[
l_{ij} = \text{Int} \left[\frac{\Phi_{ij}}{2\pi} + \frac{1}{2} \right],
\]

with \(\Phi_{ij} \) the gauge invariant phase difference across the temporal link:

\[
\Phi_{ij} = \phi_i - \phi_j + \frac{\pi}{2}(1 - \sigma_{ij}).
\]

The symbol \(\text{Int} \) refers to the integer part. The Berry phase term simplifies considerably for integer \(N_0 \). For even integer \(N_0 \), we simply have \(e^{-S_B} = 1 \), while for odd integer \(N_0 \),

\[
e^{-S_B} = \prod_{i,j} \sigma_{ij}, \quad N_0 \text{ odd.}
\]

A rough estimate of the dimensionless couplings \(t_c, t^*, t^\Delta \) in terms of the parameters \(t, u, J, \Delta \) of the original microscopic Hamiltonian may be obtained in the physically interesting limit of large \(u \) and small \(t \) near half-filling:

\[
t_c \sim \left(\frac{\sqrt{tu}}{J} \right)^{\frac{1}{3}} \sqrt{\frac{t}{u}}, \quad t^* \sim \left(\frac{J}{t} \right) t_c, \quad t^\Delta \sim \frac{\Delta}{t} t_c.
\]
the $d_{x^2-y^2}$ superconductor. Thus, the above Z_2 gauge theory action has the remarkable property of interpolating between the Heisenberg antiferromagnet in one limit and a $d_{x^2-y^2}$ superconductor in the opposite limit. Determining the properties of this model in the intervening regime (with t_c of order one) is an extremely interesting question in the context of the cuprate materials, and will be one of the prime focuses of our analysis. Specifically, within the present Z_2 gauge theory we will explore the different possible routes between these two limits (which depend on the parameters in the action). Most importantly, for certain parameter regimes we will demonstrate the possibility of obtaining an exotic fractionalized insulating phase - dubed the nodal liquid in previous work [21] - intervening between the antiferromagnet and the $d_{x^2-y^2}$ superconductor. For other parameter regimes, a number of conventional insulating phases (i.e., with no fractionalization) are accessible, including various phases with spin-Peierls and/or charge order.

To gain a simple understanding of these results it is extremely convenient to integrate out the chargons to give an effective action depending only on the spinons and the Z_2 gauge field σ. This is legitimate provided the chargons are gapped, as they will be in all of the insulating phases (with $N_0 = 1$). The most important effect of this integration will be to generate a “kinetic” term for the Z_2 gauge field σ:

$$S_\sigma = -K \sum_\Box \left[\prod_\Box \sigma_{ij} \right].$$

(21)

Here, the product is of the Z_2 gauge fields around an elementary plaquette of the space-time lattice, and this product is then summed over all plaquettes. Clearly, S_σ is the direct Ising analog of the $F_{\mu\nu}^2$ term which enters the Lagrangian of ordinary $U(1)$ electromagnetism. The value of the parameter K is determined by the chargon coupling, increasing monotonically with t_c. The full effective action appropriate to the insulating phases is simply

$$S = S_s + S_\sigma + S_B.$$

(22)

Since the onset of superconductivity will occur at some critical value of order one, $t_s^* \approx 1$, the validity of the effective action requires $t_s < t_s^*$. Near this limit, but on the insulating side, K will also be of order one.

There are several limits in which the properties of this effective action may be reliably analysed. A schematic phase diagram is shown in Fig. 1. As mentioned above, with $K = t_c = 0$ the action describes the Heisenberg antiferromagnet, which in 2d exhibits Neel long-ranged order at zero temperature. The opposite limit of large K is far more interesting, though. Indeed, when $K = \infty$, fluctuations of the Z_2 gauge field σ_{ij} are frozen, and one can set $\sigma_{ij} \approx 1$ on all the links. This results in a phase with deconfined spinons propagating freely with the gapless “d-wave” dispersion - the “nodal liquid”. Similarly, the chargons are also deconfined, existing as gapped excitations in this insulating phase. The nodal liquid is thus a genuinely “fractionalized” insulator, within which the electron has splintered into two pieces that propagate independently. On reducing K from ∞, the nodal liquid continues to be stable until a certain critical value K_c of order one, where the gauge field undergoes a confinement transition. For $K < K_c$ the chargons and spinons are no longer legitimate excitations, but rather are confined together to form the electron (or other composites built from the electron such as magnons or Cooper pairs).

This corresponds to a conventional insulating phase. As we argue in Section IV, the confinement transition is accompanied by a breaking of translational symmetry leading to spin-Peierls order - at least for small spinon couplings t_s^*, t^A. This may be understood from the limit when $t_s^*, t^A = 0$. Then, as we show in Section IV, we are left with a pure Z_2 gauge theory with the Berry phase term S_B which is exactly dual to the fully frustrated Ising model in a transverse magnetic field. Ordering the Ising spins in this dual global Ising model leads to confinement. Physically, the Ising spins represent vortices in the Z_2 gauge field - namely, the vison excitations mentioned in the previous subsection. This same model also arose in the studies of Sachdev and coworkers [16,17] on frustrated large N quantum antiferromagnets. Numerical studies [16] show that the ordering in the Ising model is accompanied by breaking of translational symmetry. The nature of the confined phase(s) at large spinon coupling remains uncertain at present.

FIG. 1. Schematic zero temperature phase diagram of the insulating phases showing the three limits mentioned in the text. The horizontal axis measures the strength of the coupling K obtained by integrating out the chargons. The vertical axis is a measure of the spinon couplings t_s^*, t^A. Here AF denotes the Heisenberg antiferromagnet, SP denotes an insulator with broken translational and rotational invariances such as a spin-Peierls state, and NL denotes the nodal liquid with fractionalized excitations.
These results demonstrate the possibility of two alternate routes between an antiferromagnet and a d-wave superconductor. In one instance, as the chargon hopping t_c is increased towards the critical value for the onset of superconductivity t_{c*}, the value of the parameter K stays smaller than the critical value for deconfinement, K_c. In this case, all of the insulating phases preceding the superconductor are “conventional”, with confinement of chargons and spinons. Alternately, if K exceeds K_c before the transition into the superconductor, the fractionalized nodal liquid phase will occur - sandwiched between the d-wave superconductor and a conventional insulator. Since both the superconducting and the deconfinement transitions occur when t_c (and hence K) is of order one, the deconfinement boundary is expected to be “near” the onset of superconductivity. It is thus difficult to ascertain which of these two scenarios will be realized. The precise phase diagram interpolating between the antiferromagnet and superconductor will likely depend sensitively on various microscopic details.

Considerable further insight is provided into the mechanism of electron fractionalization in an alternate dual formulation in which we trade the chargon fields for the $hc/2e$ vortices which occur in a conventional superconductor. In Appendix B, we show how this may be done following standard duality transformations for the classical three dimensional XY model. Starting with the full Z_2 gauge theory in Eqn. $[12]$, the resulting dual theory is a lattice action for the $hc/2e$ vortices coupled to the spinons. The vortices see a fluctuating $U(1)$ gauge field α whose circulation is the total electrical three current. Further, the $hc/2e$ vortices have a long-ranged statistical interaction with the spinons: When a spinon encircles such a vortex, its wavefunction acquires a phase of π. In the present formulation, a π flux of the Z_2 gauge field σ is effectively attached to each vortex. As the spinons are minimally coupled to σ, they acquire the expected phase of π upon encircling each vortex. Mathematically, this flux attachment is implemented by an analog of a Chern-Simons term for the Ising group. Quite remarkably, this Ising Chern-Simons term emerges automatically from the duality transformation in Appendix B.

This dual representation of the Z_2 gauge theory is in fact essentially identical to the vortex field theory introduced in Ref. $[9]$ on a phenomenological basis starting with a BCS superconductor. In that work, the statistical interaction between spinons and vortices was put in by hand, employing a $U(1)$ Chern-Simons terms to attach flux to the $spin$ of the spinons. An advantage of the Ising Chern-Simons terms is that it does not break spin-rotational invariance, and in fact is possible even for spinless electrons. Moreover, it enables the description of an exotic superconducting phase in which the Ising flux de-attaches from the vortices (see below). In this dual description, superconducting phases correspond to vortex vacuua, while insulating phases correspond to vortex condensates. Simply condensing the $hc/2e$ vortices leads to confined insulating phases. Accessing deconfined insulating phases requires condensation of paired vortices, without condensation of single ones. In this way one obtains an alternate dual description of the fractionalized nodal liquid. The Z_2 gauge theory formulation suggests a mechanism for such vortex pairing: Since the chargons also have a long-ranged statistical interaction with $hc/2e$ vortices their motion is “frustrated” in the presence of such vortices. Pairing the vortices reduces this frustration, allowing the charge to propagate more easily, and lowering the kinetic energy.

Superconducting phases are readily accessed in either the Z_2 gauge theory “particle” formulation of Eqn. $[13]$, or its dual vortex counterpart. In the particle formulation, when t_c becomes large and the charge e chargons condense, the result is a $d_{x^2-y^2}$ superconductor - denoted dSC. This superconductor is conventional, perhaps surprising since BCS theory involves the condensate of a charge $2e$ Cooper pair. But as we demonstrate in Section II, the chargon condensate supports $hc/2e$ vortices, and shares all other properties with a conventional BCS superconductor. It is interesting to ask if it is possible to have a superconductor where the chargon pairs have condensed, while the single chargons have not. Such a superconductor, which we label dSC^*, can be readily described with the present Z_2 gauge theory formulation. As detailed in Sec. VII, dSC^* is a truly exotic superconducting phase with many unusual properties.

The Z_2 gauge theory is readily generalized to a wide variety of other situations. In particular, the “particle” formulation of Eqn. $[12]$ is valid in any spatial dimension. In 3d there again exist fractionalized insulating phases (and of course confined ones) which can be accessed by the theory. Remarkably, as we argue in Section VIII B, in contrast to the 2d case, a fractionalized insulator in 3d exists as a distinct finite temperature phase, separated by a classical phase transition from the high temperature limit. For an anisotropic layered three dimensional material, it is also possible to have another 3d fractionalized phase consisting of weakly coupled 2d phases, but this phase is destroyed by thermal fluctuations. It is also noteworthy that the Z_2 gauge theory formulation seems incapable of describing fractionalization in 1d. This indicates that the “solitonic” mechanism of fractionalization in $d = 1$, is qualitatively different than “vortex pairing” which describes fractionalization in higher dimensions.

We conclude this section with an outline of the rest of the paper. Section II contains the formal derivation of the Z_2 gauge theory from the microscopic models. For ease of presentation, and as it is simpler, we will first provide the technical details of the derivation for situations with local s-wave pairing. In Appendix B, we show how situations with $d_{x^2-y^2}$ pairing, the case of interest for the cuprates, can be readily handled. We next describe, in Section III, the physics of fractionalization and
confinement in the simplest possible context - that of s-wave pairing with an even number of electrons per unit cell. We then consider, in Section III the more interesting situation of d-wave pairing with an odd number of electrons per unit cell. Section IV formulates and develops the dual description in terms of vortices. The results of Section IV are reobtained in this representation. We then move on in Section V to show how doping away from half-filling may be incorporated into the formalism. In Section VI, we discuss the possibility of other exotic fractionalized phases, in particular the superconductor \mathcal{SC}^* mentioned above, in both the particle and vortex formulations. Section VII discusses various generalizations of the theory, including spatial dimensions other than two, finite temperature, and situations with no spin rotational invariance. We also briefly discuss a useful analogy with Z_2 lattice gauge theories of classical nematic systems. In Section VIII, we discuss the relationship between this work, and several other previous approaches to fractionalization in strongly correlated systems. Contact will be made, when possible, with the earlier dual vortex descriptions of the nodal liquid, and with the slave boson/fermion approaches. Section IX contains a discussion of the experimental signatures of the various novel phases described in earlier sections. We conclude with a summary of our main results. Various appendices contain technical details not presented in the main text.

II. MODELS AND Z2 GAUGE THEORY

To describe our techniques in the simplest possible context, we will start with a microscopic model that has local s-wave pairing correlations. This can be readily generalized to other symmetries such as d-wave (see the end of this Section, and Appendix B). Of course, with strong local on-site repulsion (positive u above) d-wave pairing fluctuations are presumably more energetically viable, and also of central interest in the context of cuprate superconductivity.

Consider then a generalized Hubbard type model:

$$H = H_0 + H_u + H_J + H_\Delta,$$

with

$$H_0 = -t \sum_{\langle rr' \rangle} c_{r\alpha}^\dagger c_{r'\alpha} + h.c.,$$

$$H_u = \sum_r u(N_r - N_0)^2,$$

$$H_J = J \sum_{\langle rr' \rangle} [S_r \cdot S_{r'} + \frac{1}{4}\rho_r \rho_{r'}],$$

$$H_\Delta = \Delta \sum_r (e^{i\phi_r} c_{r1} c_{r1} + h.c.).$$

As earlier, $c_{r\alpha}$ denotes an electron operator at site r with spin α and the electron density and spin operators are the usual bilinears: $\rho_r = \frac{1}{2} c_{r\alpha}^\dagger c_{r\alpha}$ and $S_r = \frac{1}{2} c_{r\alpha}^\dagger \sigma^\alpha c_{r\alpha}$. This Hamiltonian is essentially the same as Eqn. 3 in the introduction, except that it has local s-wave pairing rather than d-wave, and we have added a term proportional to $\rho_r \rho_{r'}$ in H_J. These modifications have been made to both simplify the derivation and the subsequent analysis of the Z_2 gauge theory. We return later to the more physically interesting case of local d-wave pairing.

Here, ϕ_r is the phase of a local s-wave Cooper pair field and is canonically conjugate to the Cooper pair number operator, n_r: $[\phi_r, n_r] = i\delta_{r' r}$. As before, since ϕ_r is a dynamical quantum field, these pairing fluctuations do not necessarily lead to a superconducting ground state. The conserved electrical charge density is the sum of the Cooper pair and electron densities

$$N_r = 2n_r + \rho_r. \quad (28)$$

A. Split the Cooper pair

We now proceed to split the Cooper pair into two pieces. Consider an operator b_r defined as,

$$b_r^\dagger = s_re^{i\phi_r/2} = e^{i\phi_r}, \quad (29)$$

with $s_r = \pm 1$ an Ising “spin” variable. With this definition the new field,

$$\phi_r = \frac{\phi_r}{2} + \frac{\pi}{2}(1 - s_r), \quad (30)$$

can be treated as a phase lying in the interval zero to 2π, with b_r invariant under the transformation: $\phi_r \rightarrow \phi_r + 2\pi$ and $s_r \rightarrow -s_r$. The square of b_r^\dagger creates a Cooper pair,

$$e^{i\phi_r} = (b_r^\dagger)^2, \quad (31)$$

so that b_r^\dagger creates a spinless excitation with charge e, essentially one-half of a Cooper pair. We refer to this operator as a “chargon” operator.

In order to separate out the charge and spin degrees of freedom it will be extremely useful to define an electrically neutral but spin carrying fermion operator (a “spinon”):

$$f_r^\dagger = b_r c_{r\alpha}^\dagger. \quad (32)$$

This operator carries the spin of the electron, but is electrically neutral as verified by noting that it commutes with the total electrical charge density N_r. On the other hand, the chargon is electrically charged, and its phase is canonically conjugate to the total electrical charge density

$$[\phi_r, N_{r'}] = i\delta_{r' r}. \quad (33)$$
At this stage it is legitimate to implement an operator change of variables in the full Hamiltonian, replacing the electron and Cooper pair operators \((\phi, n, c, c^\dagger)\) by chargons and spinons \((\phi, N, f, f^\dagger)\). This gives,

\[H = H_0 + H_u + H_J + H_\Delta, \quad (34) \]

with

\[H_0 = -t \sum_{\langle rr' \rangle} b_r^\dagger b_r, f_{r\alpha} f^{\dagger}_{r'\alpha} + h.c., \quad (35) \]

\[H_\Delta = \Delta \sum_r (f_{r\uparrow} f_{r\downarrow} + h.c.), \quad (36) \]

with \(H_u\) unchanged and \(H_J\) of the same form as in Eqn. \[26\] but with spinon operators replacing the electron operators: \(\rho_r = f_{r\alpha}^\dagger f_{r\alpha}\) and \(S_r = \frac{1}{2} f_{r\alpha}^\dagger \sigma f_{r\alpha}\).

There are several extremely important points to stress about this seemingly innocuous change of variables. Firstly, one can change the sign of both the chargon and spinon operators on any given site \(r\),

\[b_r \rightarrow -b_r; \quad f_{r\alpha} \rightarrow -f_{r\alpha}, \quad (37) \]

without affecting the original Cooper pair or electron operators. This implies that quite generally the transformed Hamiltonian must also be invariant under this local Ising \(Z_2\) symmetry - as can be readily checked in Eqns. \[55\] and \[56\]. As we shall shortly see, in a path integral formulation this local \(Z_2\) symmetry will be manifest in terms of an \(Z_2\) gauge field. Secondly, because of this redundancy introduced in the change of variables, a constraint must be imposed on the Hilbert space spanned by the spinon and chargon operators.

To understand the origin of this constraint, consider first the Hilbert space of the original Hamiltonian. In a number-diagonal basis, the Hilbert space on each site \(r\) is a direct product of states with an arbitrary integer number of Cooper pairs \((n_r)\) and the four electron states consistent with Pauli - empty, doubly occupied or singly occupied with an electron of either spin. Since the chargon has only one-half the charge of the Cooper pair, the full Hilbert space spanned by the chargon and spinon operators is actually twice as large, and it is essential to project down into the physical Hilbert space of electrons and Cooper pairs. From Eqn. \[26\], it is clear that this can be achieved by imposing a constraint that the sum (or difference) of the number of chargons \((N_r)\) and spinons \((\rho_r = f_{r\alpha}^\dagger f_{r\alpha})\) on each site is an even integer:

\[(-1)^{N_r + \rho_r} = 1. \quad (38) \]

This implies, for example, that a site with a single chargon but no spinon is unphysical and forbidden, whereas a spinon and chargon together (an electron) is allowed.

\[B. \ Path \ Integral \ and \ Z_2 \ gauge \ Theory \]

The most convenient way to implement the constraint on the spinon and chargon Hilbert space is in a (Euclidian) path integral representation of the partition function. To this end we define a projection operator,

\[\mathcal{P} = \prod_r \mathcal{P}_r, \quad (39) \]

with

\[\mathcal{P}_r = \frac{1}{2} [1 + (-1)^{N_r + \rho_r}] = \frac{1}{2} \sum_{\sigma_r = \pm 1} e^{i\frac{\pi}{4}(1 - \sigma_r)(N_r + \rho_r)}, \quad (40) \]

which projects into the physical Hilbert space. Here, \(\sigma_r = \pm 1\) is an Ising-like field and \(\rho_r = f_{r\alpha}^\dagger f_{r\alpha}\). As can be verified directly from Eqn. \[34\], this projection operator commutes with the chargon-spinon Hamiltonian,

\[[\mathcal{P}, H] = 0, \quad (41) \]

so that the Hamiltonian does not cause transitions out of the physical Hilbert space.

The partition function can be written as,

\[Z = Tr[e^{-\beta H \mathcal{P}}], \quad (42) \]

where the trace is over the full Hilbert space spanned by the chargon and spinon operators \((\phi, N, f, f^\dagger)\). A Euclidian path integral representation can be obtained as usual by splitting the exponential,

\[Z = Tr[(e^{-\epsilon H \mathcal{P}})^M], \quad (43) \]

with \(M\) “time slices” and \(\epsilon = \beta/M\). Here, we have inserted projection operators into each time slice. Working with fermion coherent states and eigenstates of the chargon phase \(\phi\), a path integral representation can be readily derived - as detailed in Appendix A - giving,

\[Z = \int \prod_{i\alpha} d\tilde{f}_{i\alpha} df_{i\alpha} d\phi_i \sum_{N_i = -\infty}^{\infty} \sum_{\sigma_i = \pm 1} e^{-S}, \quad (44) \]

where the integration is over Grassman numbers \(f\) and \(\tilde{f}\) and a c-number phase \(\phi\) in the interval zero to \(2\pi\). Here, \(i = (r, \tau)\) runs over the \(2 + 1\)-dimensional space time lattice with \(\tau = 1, 2, ..., M\) time slices. The Euclidian action takes the form,

\[S = S^f_r + S^\phi_r + \epsilon \sum_{\tau = 1}^M H(N_r, \phi_r, \tilde{f}_r f_r), \quad (45) \]

with
Here, we have suppressed the explicit r and α subscripts on the fields, displaying only the time-slice dependencies. As usual, the bosonic phase field and the Ising field both have the expected periodic boundary conditions, whereas the fermions are anti-periodic:

$$\phi_{r=M+1} = \phi_{r=1}; \quad \sigma_{r=M+1} = \sigma_1; \quad f_{r=M+1} = -f_1. \quad (48)$$

Notice that the Ising variables live on the links connecting adjacent time slices, and can thus be correctly interpreted as a gauge field. In fact, the Ising field σ is minimally coupled to both spinons and chargons, as the time component of a gauge field. Moreover, the local Z_2 symmetry of the Hamiltonian in Eqn. [44] is manifest in the path integral as a full fledged Ising Z_2 gauge symmetry:

$$f_{i\alpha} \rightarrow e^{i\epsilon_i} f_{i\alpha}; \quad \bar{f}_{i\alpha} \rightarrow e^{i\bar{i}} \bar{f}_{i\alpha}; \quad \phi_i \rightarrow \phi_i + \frac{\pi}{2} (1 - \epsilon_i), \quad (49)$$

together with a transformation of the gauge field,

$$\sigma_{ij} \rightarrow \epsilon_i \sigma_{ij} \epsilon_j. \quad (50)$$

Here, $\epsilon_i = \pm 1$, and σ_{ij} lives on the link connecting two “nearest neighbor” space-time lattice points, differing by one time slice.

Our final goal is to beat the model into a form which also includes Z_2 gauge fields on the spatial links, so that space and time end up on more equal footing. Our approach follows closely the standard methods in slave fermion or slave boson treatments of Heisenberg magnets. First, we perform a Hubbard-Stratanovich decoupling of the spin interaction terms in the Euclidian action:

$$e^{-\epsilon H_J} = \int \prod_{\langle rr' \rangle} d\chi_{rr'}(\tau) d\chi_{rr'}^*(\tau) e^{-S_{hs}}, \quad (51)$$

$$S_{hs} = \epsilon \sum_{\langle rr' \rangle} \int d\chi_{rr'}(\tau) d\chi_{rr'}^*(\tau) e^{-S_{hs}}, \quad (52)$$

Here, $\chi_{rr'}(\tau)$ are a set of complex fields which live on each of the nearest neighbor spatial links. Next, a simple change of variables can be performed which eliminates the remaining quartic spinon-chargon interaction, in H_0 in Eqn. [53]:

$$\chi_{rr'} \rightarrow \chi_{rr'} - \frac{1}{2} b_r^* b_{r'}, \quad (53)$$

where $b_r^* \equiv e^{i\phi_r}$. The full Euclidian action then takes the form, $S = S^I_r + S^B_r + S_r$, with the spatial interactions given by,

$$S_r = \epsilon \sum_{\tau} (H_u + H_\Delta) + S_{\chi}, \quad (54)$$

with

$$S_{\chi} = \epsilon \sum_{\langle rr' \rangle} 2J |\chi_{rr'}|^2 - [\chi_{rr'}(2b_r^* b_{r'} + J f_{r\alpha} f_{r'\alpha}) + c.c.]. \quad (55)$$

The terms in S_{χ} correspond to the hopping of spinons and chargons in the presence of a common fluctuating gauge field, χ, on the near neighbor links.

Up to this stage, all of the formal manipulations that we have performed have been exact, so that the full Euclidian action gives a faithful representation of the original “microscopic” electron Hamiltonian. But now, following standard slave fermion/boson techniques, we perform an approximation, treating the functional integral over the Hubbard-Stratanovich field, χ, within a saddle point approximation. [While it might be possible to find an appropriate “large-N” generalization of the model for which this approximation becomes exact, we do not pursue this tack here.] The simplest saddle-point corresponds to setting all of the link fields equal to a single real constant: $\chi_{rr'} = \chi_0$. The saddle-point value for χ_0 can (in principle) be obtained by integrating out the spinons (which are Gaussian) and the chargons (which are not). This saddle-point respects two important discrete symmetries of the model - translational and time-reversal invariance. But the saddle-point does not respect the Z_2 gauge symmetry in Eqns. [49] and [50]. This serious flaw can be easily remedied, though, by retaining a particular set of fluctuations about the saddle point. The simplest choice consistent with the Z_2 gauge symmetry corresponds to allowing the sign of $\chi_{rr'}$ to change, keeping the magnitude fixed, putting

$$\chi_{rr'} = \sigma_{rr'} \chi_0. \quad (56)$$

Here, $\sigma_{rr'}(\tau) = \pm 1$ are a set of Ising fields living on the spatial links of the space-time lattice. Within this restricted manifold the theory consists of chargons and spinons hopping on a space-time lattice, minimally coupled to an Z_2 gauge field.

Hereafter we work under this fixed-magnitude approximation. Within this approximation the full partition function can be expressed as a functional integral,

$$\hat{Z} = \int \prod_{i\alpha} df_{i\alpha} df_{i\alpha} d\phi_i \sum_{N_i=-\infty}^{\infty} \prod_{\langle ij \rangle} \frac{1}{2} \epsilon_{ij} \sum_{\sigma_{ij}=\pm 1} e^{-S}, \quad (57)$$

with Z_2 gauge fields σ_{ij} living on the near neighbor links of the space-time lattice, and
with
\[S = S_f^i + S^\phi + S_0 + S_u + S_\Delta, \] (58)

with
\[S_f^i = \sum_{i,j=i+\bar{\tau}} [\bar{f}_{i\alpha}(\sigma_{ij} f_{j\alpha} - f_i)], \] (59)
\[S^\phi = -i \sum_{i,j=i+\bar{\tau}} N_i [\phi_i - \phi_j + \frac{\pi}{2}(1 - \sigma_{ij})], \] (60)
\[S_u = \epsilon u \sum_i (N_i - N_0)^2, \] (61)
\[S_\Delta = \epsilon \Delta \sum_i (\bar{f}_{i1} f_{i1} + \bar{f}_{i2} f_{i2}), \] (62)
\[S_0 = -\epsilon \sum_{i,j=i+\bar{\tau}} \sigma_{ij} (t_0 b_i^* b_j + J_0 \bar{f}_{i\alpha} f_{j\alpha} + c.c.), \] (63)

where we have defined \(t_0 = 2t\chi_0 \) and \(J_0 = J\chi_0 \).

Notice that the full action is local in the integers \(N_i \), so the summation can be performed independently at each space-time point. A straightforward Poisson resummation gives
\[\sum_{N_i} e^{-(S_u+S^\phi)} = \exp[\sum_{i,j=i+\bar{\tau}} V(\Phi_{ij})], \] (64)

where \(\Phi_{ij} = \phi_i - \phi_j + \frac{\pi}{2}(1 - \sigma_{ij}) \) is the gauge invariant phase difference along a temporal link. Here, the periodic potential \(V(\Phi) \) is given by
\[e^{V(\Phi)} = \sum_{l=-\infty}^{\infty} e^{-\frac{i\epsilon}{2\pi} (\Phi - 2\pi l)^2 + iN_0(2\pi l - \Phi)}, \] (65)

and we have dropped an overall multiplicative constant.

In the limit of small \(\epsilon u \), the sum over \(l \) will be dominated by precisely one term which minimizes \(|\Phi - 2\pi l| \). This occurs for integer \(l \) satisfying \(|\Phi - 2\pi l| < \pi \), or equivalently,
\[l = Int[\frac{\Phi}{2\pi} + \frac{1}{2}]. \] (66)

Moreover, for small \(\epsilon u \) we may approximate
\[e^{-\frac{i\epsilon}{2\pi} (\Phi - 2\pi l)^2} \sim e^{-\frac{i\epsilon}{2\pi} [1 - \cos(\Phi - 2\pi l)]}, \] (67)
\[= e^{-\frac{i\epsilon}{2\pi} [1 - \cos(\Phi)]}. \] (68)

Within this approximation the sum over \(l \) becomes simply,
\[e^{V(\Phi)} \approx e^{\frac{i\epsilon}{2\pi} [\cos(\Phi)] + iN_0(2\pi l - \Phi)}, \] (69)

with \(l \) given by Eqn. 66. We have again dropped an overall multiplicative constant.

The full \(N \) sum in the action then leads to
\[\sum_{N_i} e^{-(S_u+S^\phi)} = e^{\sum_{i,j=i+\bar{\tau}} \frac{i\epsilon}{2\pi} \sigma_{ij} \cos(\phi_i - \phi_j) - S_B}, \] (70)

with the “Berry phase” term \(S_B \) given by
\[S_B = -iN_0 \sum_{i,j=i+\bar{\tau}} (2\pi l_{ij} - \Phi_{ij}), \] (71)
\[= -iN_0 \sum_{i,j=i+\bar{\tau}} [2\pi l_{ij} - \frac{\pi}{2}(1 - \sigma_{ij})]. \] (72)

In obtaining the last line, we have re-expressed \(\Phi_{ij} \) in terms of \(\phi \) and \(\sigma \), and used the \(\beta \)-periodic boundary conditions on \(\phi \) to drop the term involving \(\phi_i - \phi_j \). The “Berry phase” term is the only term in the action which depends on the (average) occupation number per unit cell, \(N_0 \). It simplifies considerably for integer \(N_0 \). For even integer \(N_0 \), we simply have \(e^{-S_B} = 1 \), while for odd integer \(N_0 \),
\[e^{-S_B} = \prod_{i,j=i+\bar{\tau}} \sigma_{ij}, \] \(N_0 \) odd. \(73 \)

As we shall see, the Berry’s phase term will lead to subtle yet important differences between Mott insulators with odd integer \(N_0 \) and band insulators with even \(N_0 \).

The Euclidian path integral is only identical to the Hamiltonian formulation in the strict \(\epsilon \to 0 \) limit. But since the original lattice Hamiltonian is already an effective low energy theory, the time continuum limit which involves arbitrarily high energies is not actually of interest. For these reasons, hereafter we keep \(\epsilon \) finite, viewing it as an inverse “high energy” cutoff in the theory. Since the kinetic (t) and interaction (u) energy scales are the largest in the theory, it is convenient to choose the value of \(\epsilon \) so that the charge sector of the theory is isotropic on the 2+1-dimensional space-time lattice. To this end, we require that the spatial chargon hopping strength equals the temporal one: \(\frac{1}{\epsilon} = 2t_0 \), which implies
\[\frac{1}{\epsilon} = 2\sqrt{t_0 u}. \] (74)

With this choice of \(\epsilon \) the full Euclidian action reduces to a much simpler and more compact form:
\[S = S_c + S_s + S_B \] (75)
with
\[S_c = -t_c \sum_{(ij)} \sigma_{ij} (b_i^* b_j + h.c.), \] (76)
\[S_s = \sum_{(ij)} (t_{ij}^* \sigma_{ij} \bar{f}_{i1} f_{j1} + c.c.) + \delta_{ij} (t_{ij} \bar{f}_{i1} f_{j1} + c.c. - \bar{f}_{i1} f_{i1}), \] (77)
and \(S_B \) as defined above. Here, the dimensionless chargon coupling strength is given in terms of the microscopic parameters \(t, u \) and \(\chi_0 \) to be
\[t_c = t_0 = \sqrt{\frac{\chi_0}{2u}}. \] (78)
The dimensionless spinon coupling along the nearest neighbor spatial links is
\[t^s_{ij} = c J_0 = J \sqrt{\frac{\chi_0}{S t u}}. \] (79)
whereas \(t^\Delta_{ij} = -1 \) along the neighboring temporal links.
Similarly, the coupling constant for the spinon pairing is
\[t^\Delta = \frac{\Delta}{\sqrt{S t \chi_0 u}}. \] (80)
As will be shown in Section IV, for the physically interesting case of d-wave pairing near half-filling, the parameter \(\chi_0 \) may be roughly estimated to be
\[\chi_0 \sim \left(\frac{tu}{J^2} \right)^{\frac{1}{2}}. \] (81)
This can be used to obtain rough estimates of the three dimensionless coupling constants, \(t_c, t^s \) and \(t^\Delta \). For the most part, however, we will treat these couplings as phenomenological parameters.

The partition function involves an integration over the on-site chargon phase (\(\sigma_i \)) and spinon Grassman fields (\(\tilde{f}_i, f_i \)), as well as a summation over the \(Z_2 \) gauge fields (\(\sigma_{ij} = \pm 1 \)) which live on the nearest neighbor links of the Euclidian space time lattice. This “final” form for the theory is exceedingly simple, consisting of chargons and spinons hopping around, minimally coupled to a dynamical \(Z_2 \) gauge field. This form could have essentially been guessed just using a knowledge of the field content (chargons and spinons) and the required symmetries; \(U(1) \) charge conservation, \(SU(2) \) spin conservation and the local \(Z_2 \) gauge symmetry. Perhaps the only subtlety is the presence of the term \(S_B \) in the action when the filling factor \(N_0 \) is not an even integer. Among the additional terms which are allowed by these symmetries, is a field strength term for the \(Z_2 \) gauge field:
\[S_\sigma = -K \sum_{\Box} \prod_{ij} \sigma_{ij}. \] (82)
Here, the product denotes the gauge invariant product of the Ising fields around an elementary plaquette. This Ising field strength is then summed over all space-time plaquettes. Clearly, \(S_\sigma \) is the direct Ising analog of the \(F_\mu^2 \) term which enters the Lagrangian of ordinary \(U(1) \) electromagnetism. Even though not present in the derivation presented here, this field strength term will be generated upon integrating out the chargon or spinon matter fields, as discussed below.

In Appendix B we show how the above analysis can be generalized to the case in which local d-wave pairing correlations are incorporated from the outset as in the Hamiltonian Eqn. 1 rather than s-wave as assumed above. The derivation of the effective \(Z_2 \) gauge theory proceeds in much the same fashion, and one arrives at the same model except with the spinon action given instead by
\[S_s = -\sum_{(ij)} \sigma_{ij} (t^s_{ij} \tilde{f}_{io} f_{j0} + t^s_{ij} f_{i\downarrow} f_{j\uparrow} + c.c.) - \sum_i \tilde{f}_{io} f_{i0}. \] (83)
Here, \(t^s_{ij} \) denotes a d-wave pairing amplitude living on the nearest neighbor spatial bonds, with amplitude \(+t^\Delta \) on the x-axis bonds and \(-t^\Delta \) along the y-axis bonds. Notice that the \(Z_2 \) gauge field \(\sigma_{ij} \) enters here, because the d-wave pair field lives on the links. This form exhibits the required Ising \(Z_2 \) gauge symmetry, being invariant under the transformation in Eqn. 49. As shown in Section IV, a rough estimate of the various coupling constants in this case is
\[t_c \sim \left(\frac{\sqrt{tu}}{J} \right)^{\frac{1}{2}} \sqrt{\frac{t}{u}} \quad t^s \sim \left(\frac{J}{t} \right) t_c \quad t^\Delta \sim \frac{\Delta}{t} t_c. \] (84)
Here \(t^s \) and \(t^\Delta \) refer only to the spatial couplings. But we will once again regard these as phenomenological parameters.

III. FRACTIONALIZATION AND CONFINEMENT

In this section we will analyze some of the phases which are described by the \(Z_2 \) gauge theory model derived in Section II. While the \(Z_2 \) gauge formulation is valid in general dimension, for concreteness and simplicity we specialize to two dimensions, generalizing briefly to other dimensions in Section VIII A. Moreover, for illustrative purposes we focus first on the simplest case with an even number of electrons per site (unit cell), and presume the presence of local s-wave pairing correlations. As we shall see, in this case the model can exhibit a conventional band insulator. In Section IV we will turn to the more physically interesting situation with an odd number of electrons per site. At that stage we will focus on local d-wave pairing correlations, which are more tenable in the presence of a large positive on-site Hubbard \(u \) as well as being of direct relevance to the cuprates. Doping away from half-filling will be discussed in Section VII.

With even integer \(N_0 \) and local s-wave pairing correlations the full action consists of two contributions, \(S = S_c + S_s \), corresponding to the charge and spin sectors, respectively:
\[S_c = -t_c \sum_{(ij)} \sigma_{ij} (b_i^\dagger b_j + c.c.), \] (85)
\[S_s = -\sum_{(ij)} t^s_{ij} \sigma_{ij} (\tilde{f}_i f_j + c.c.) - \sum_i \tilde{f}_i f_i \] (86)
\[+ t^\Delta \sum_i (f_{i\uparrow} f_{i\downarrow} + c.c.). \] (87)
The first term, which describes the dynamics of the chargons, $b^* = e^{i\phi}$, minimally coupled to an Z_2 gauge field, exhibits the global $U(1)$ charge conservation symmetry. The spinons also carry the Z_2 Ising "charge". Due to the s-wave form of the anomalous "pairing" term the spinons, which are paired into singlets, should be gapped out.

1. Correlated "Band" Insulators

We first consider electrically insulating states. When the dimensionless chargon coupling t_c is much smaller than unity, the chargons cannot propagate at low energies and a charge gap results. In this case, with both spinons and chargons gapped out, it is possible to integrate them out from the theory, leaving the Z_2 gauge field σ as the only remaining field. This integration will generate additional terms in the Lagrangian, depending on σ, which will be local in space-time and must also be gauge invariant. The most important such term is simply,

$$S_\sigma = -K \sum \prod_{\square} \sigma_{ij},$$

which describes a pure Z_2 gauge theory.

Remarkably, this simple gauge theory exhibits a phase transition as the coupling K is varied. Indeed, as shown originally by Wegner [12,11], the pure Z_2 gauge theory in $3D$ is dual to the familiar three-dimensional Ising model:

$$S_{\text{dual}} = -K_d \sum_{\langle ij \rangle} v_i v_j,$$

with Ising spins, $v_i = \pm 1$, living on the sites of the dual lattice. The dimensionless Ising model coupling, K_d, is simply related to K: $\tanh(K_d) = e^{-2K}$. This form shows that the high and low "temperature" phases are exchanged under the duality transformation. The details of this duality transformation are given in Appendix C.

As emphasized originally by Wilson [27], a direct characterization of the two phases of the pure gauge theory is given in terms of the correlator,

$$G_C = \langle \prod_\mathcal{C} \sigma_{ij} \rangle,$$

where the average is for the pure gauge theory and the product is taken around a closed loop in space-time, denoted \mathcal{C}. For $K < K_c$ the Wilson-loop satisfies an "area law", with $G_C \sim e^{cA}$, with loop area A, and c a K-dependent constant. When $K > K_c$, G_C decays more slowly, only exponentially with the perimeter of the loop.

What do these two phases correspond to in physical terms? Consider first the large K limit, which is the high temperature phase of the dual Ising model. As $K \to \infty$ all of the gauge field plaquette sums will be equal to plus one. In this case it is possible to choose a gauge in which all of the Ising link variables are also unity, $\sigma_{ij} = 1$. In this phase the chargons and spinons can propagate at energies above their respective gaps. Apparently, the Hamiltonian contains gapped excitations which carry the quantum numbers of spinons and chargons. The electron has effectively been fractionalized! We denote this exotic insulating state with deconfined chargons and spinons as T^*. It is exceedingly important to emphasize that the splintering of the electron into spin and charge carrying constituents is conceptually unrelated to the presence or absence of spin order. Indeed, electron fractionalization can occur even in the presence of strong spin-orbit interactions which destroys spin-rotational invariance - in that case the states of the fermionic f-particles cannot be labelled by spin.

As the coupling K is reduced, so long as the gauge theory is in its perimeter phase, the energy to separate particles carrying the Z_2 charge remains finite, even for infinite separation. The chargons and spinons are deconfined. Further, with $K < \infty$, configurations of the Z_2 gauge theory with plaquette products equal to minus one will become possible. One can think of such plaquettes as being "pierced" by non-zero "Z_2 flux" or Z_2 vorticity. Because the number of such plaquettes on any given elementary space-time cube is even, the fluxes form "tubes" - analogous to Abrikosov vortices in a Type II superconductor - which propagate in space-time as particles. These particles can scatter and can annihilate in pairs, but since their number is conserved modulo 2 they carry a conserved Z_2 "charge". We will refer to these particle-like Z_2 vortices as "visons". One can define a vison "3-current", j_v - a field which lives on the links of the dual lattice and takes one of two values, zero or one - which satisfies,

$$(-1)^{j_v} = \prod_\mathcal{C} \sigma_{ij}.$$
As K is reduced further the gauge theory undergoes a phase transition at K_c into its “area-law” phase. This implies that the energy to separate two spinons or chargons, inserted as “test” charges at spatial separation, R, grows linearly with R. In this “confined” insulating phase, denoted \mathcal{I}, free chargons and spinons do not exist in the spectrum. The only allowed particle excitations are those that are “charge neutral” - that is, invariant under the Z_2 gauge transformation. Any bound state with an even number of chargons plus spinons is “neutral”. In addition to the electron, this includes any composite built from electrons, such as a Cooper pair or a magnon. In the phase \mathcal{I} these electron-like excitations will be gapped. This phase is the familiar “band insulator” with an even number of electrons per unit cell.

Note that with $K < K_c$, the dual Ising model orders, $\langle v_i \rangle \neq 0$. This corresponds to a “condensation” of the visons. Remarkably, Z_2 vortex condensation leads directly to a “confinement” for the chargons and spinons. To understand confinement directly in terms of the dual Ising model, consider the effect of inserting two static “test” chargons, separated by a distance R. Each chargon lives on a (spatial) plaquette of the dual Ising model. Due to the geometrical phase factor between visons and chargons, the presence of a chargon corresponds to a “frustrated plaquette” in the dual Ising model - that is, a plaquette with an odd number of negative Ising couplings. To frustrate two plaquettes, it suffices to introduce an interconnecting string of negative Ising bonds. In the ordered phase of the dual Ising model, the energy of this string will clearly be linear in its length, thereby confining the two chargons.

It is worth drawing a very important distinction between the Ising gauge theory considered here, and the gauge theories introduced by Baskaran and Anderson and generalized and extensively studied by several authors. In the simplest version of these theories, the spin itself is effectively fractionalized, decomposed into a bilinear of spinful (complex) fermion operators, rather than splitting the Cooper pair into two chargons as discussed above. These spinful fermion operators - the spinons - are minimally coupled to a compact $U(1)$ gauge field. But in contrast to the Z_2 gauge field which exhibits both a confined and deconfined phase, the $U(1)$ theory has only a single phase. In this phase, point like monopole excitations in 2+1-dimensional space-time always proliferate, and drive spinon confinement. The electron is, then, ultimately not expected to be fractionalized in these theories.

2. Superconducting phases

We now turn to a description of superconductivity within the Z_2 gauge theory. Since the spinons will be gapped into singlets within the superconducting phase, it is legitimate to integrate them out, generating once again a field strength term for the gauge field as in Eqn. When the dimensionless chargon “hopping” amplitude, t_c, increases and becomes much larger than unity, one expects the chargons to condense, $\langle e^{i\phi} \rangle \neq 0$. For large K so that the gauge field is effectively frozen, this chargon condensation transition is simply a $3D$ classical XY transition. Since the chargon carries electric charge e, in this phase the charge $U(1)$ symmetry is broken, and a Meissner effect results. But the chargon also carries Z_2 charge, so that the Z_2 gauge symmetry is also spontaneously broken. Within a conventional BCS description of superconductivity, the order parameter (the Cooper pair) carries charge $2e$, so one might be tempted to conclude that this “chargon condensate” is perhaps some sort of exotic unconventional superconducting phase. In particular, it is not a priori clear that the chargon condensate can support a conventional $hc/2e$ BCS vortex. To highlight the confusion, it’s instructive to focus on the regime with large K, where a good description of the ground state can be obtained by setting $\sigma_{ij} = 1$ on every link, and taking the chargon phase ϕ_c a space-time independent constant. Consider placing an $hc/2e$ vortex at the (spatial) origin. Upon encircling this $U(1)$ vortex at a large distance, the phase of the chargon wavefunction must wind by π. This is of course not possible with a smoothly varying phase field, but requires the introduction of a “cut” running from the vortex to spatial infinity across which the phase jumps by π. The energy of this cut is, however, linear in its length with a line tension proportional to $t_c|\langle e^{i\phi} \rangle|^2$. It thus appears that $hc/2e$ vortices are themselves confined, and not allowed in the superconducting chargon condensate. But imagine changing the sign of all the Z_2 gauge fields, σ_{ij}, which “cross” the cut. This corresponds to placing a Z_2 vortex at the origin. These sign changes “unfrustrate” the XY couplings across the cut, so that the line tension vanishes. It is thus apparent that a bound state of a Z_2 vortex and the $hc/2e$ $U(1)$ vortex (in the phase of the chargon) can exist within the chargon condensate. It is this bound state which corresponds to the elementary BCS vortex in the conventional description of a superconductor.

It is worth emphasizing that both the “naked” $hc/2e$ $U(1)$ vortex and the Z_2 vortex - the vison - are confined in the superconducting phase. For example, the energy cost to pull apart two Z_2 vortices also grows linearly with separation. To see this, introduce two visons by changing the sign of the Z_2 gauge field along an interconnecting “line”. Due to the chargon condensate which breaks the Z_2 gauge symmetry making the gauge field “massive”, each negative bond costs an energy $4t_c$, implying linear confinement.
Thus the distinct massive excitations (apart from the Anderson-Higgs plasma mode necessitated by the $U(1)$ symmetry breaking) in the chargon condensate are the spinons and the BCS $hc/2e$ vortices. This is exactly as required in a conventional superconducting phase. Further, since the spinons are minimally coupled to the Z_2 gauge field, there is a long range statistical interaction between the spinons and the BCS vortices. In effect, a spinon “sees” the Z_2 vortex - which is bound to the $hc/2e$ vortex - as a source of “Ising flux”. This too is as required in a conventional superconductor. Thus, the chargon condensate does in fact describe a conventional superconducting phase - denoted hereafter as SC.

A schematic phase diagram is shown in the $K-t_c$ plane in Fig. 2. The transition from the fractionalized insulator \mathcal{I} into SC is essentially a superconductor-insulator transition for the charge e chargons. These exist as finite energy excitations in \mathcal{I} - superconducting order is obtained if they condense. On the other hand, the transition from the conventional insulator I into SC can be viewed as a superconductor-insulator transition for charge $2e$ Cooper pairs. This can be seen by considering the $K = 0$ limit, where it is possible to integrate out the Z_2 gauge field and arrive at an effective theory of Cooper pair hopping:

$$S_{\text{pair}} = -2t_c \sum_{(ij)} \cos[2(\phi_i - \phi_j)].$$ \hspace{1cm} (92)

IV. ODD NUMBER OF ELECTRONS PER UNIT CELL WITH D-WAVE PAIRING

Having explored the physics of electron fractionalization which follows from the Z_2 gauge theory in the simplest of cases with an even number of particles per site in the presence of s-wave pairing correlations, we turn now to a much more interesting and challenging situation: Correlated Mott insulators with one electron per unit cell in the presence of local d-wave pairing correlations. As we shall see, in this case the Z_2 gauge theory has two simple limiting regimes - one describing a d-wave superconductor and the other a conventional antiferromagnetic insulator. But in the interesting crossover regime between these two limits, a number of other phases can be readily described within the Z_2 gauge theory. Besides a spin-Peierls ordered phase, the theory gives a simple description of the *nodal liquid* - an exotic fractionalized insulator with gapless fermionic quasiparticles. With one electron per unit cell, *confinement* transitions out of the d-wave superconductor or nodal liquid are inextricably linked to breaking of translational symmetry.

The full theory of interest can be written as

$$S = S_c + S_s + S_B, \hspace{1cm} (93)$$

$$S_c = -2t_c \sum_{(ij)} \sigma_{ij} \cos(\phi_i - \phi_j), \hspace{1cm} (94)$$

$$S_s = - \sum_{(ij)} \sigma_{ij} (t_{ij}^s \bar{f}_i f_j + t_{ij}^\Delta \bar{f}_i f_j + \text{c.c.}) - \sum_i \bar{f}_i f_i. \hspace{1cm} (95)$$

As shown in Eqns. 72 and 73, with odd integer N_0 there is an extra Berry’s phase term in the action,

$$S_B = -\frac{\pi}{2} \sum_{i,j=1-\tau} (1 - \sigma_{ij}). \hspace{1cm} (96)$$

It is instructive to consider various limiting cases described by the above action. First consider the limit $t_c = 0$. Then $S_c = 0$, and the ϕ fields may be trivially integrated out. Surprisingly, the partition function for the remaining spin sector of the theory is formally equivalent to the Heisenberg antiferromagnetic spin model. To demonstrate this we first trace over the two allowed values of the Z_2 gauge field σ_{ij} on each link. Consider first the spatial links, which enter the action in the form,

$$S_s^r = \sum_{<rr'>} \sum_{\tau} \sigma_{rr'}^r \mathcal{A}_{rr'}^r, \hspace{1.5cm} (97)$$

$$\mathcal{A}_{rr'}^r = -t_{rr'}^r (\bar{f}_r f_{r'} + \text{c.c.}) - t_{rr'}^\Delta (\bar{f}_r f_{r'} - (\uparrow \rightarrow \downarrow)) + \text{c.c.}. \hspace{1cm} (98)$$

For notational simplicity we have suppressed the τ index on the fermion fields. Tracing over the $\sigma_{rr'}^r$ fields for each (independent) spatial link and exponentiating the result generates a term in the action of the form,

$$S_r = -\sum_{<rr'>} \sum_{\tau} \ln \cosh (\mathcal{A}_{rr'}^r). \hspace{1cm} (99)$$

Since \mathcal{A} is bi-linear in the fermion fields, upon expanding in powers of \mathcal{A} one generates a series of terms that involve multiples of four spinons.

Now consider the trace of σ_{ij} along the temporal links. Recall that the effect of the gauge field $\sigma_{i,j=1-\tau}$ along
the temporal links is precisely to impose the constraint Eqn. 35 on the Hilbert space in a Hamiltonian formulation. With the \(\phi \) fields integrated out, at \(t_c = 0 \), this constraint reduces to requiring

\[(-1)^{n_f} = -1, \quad (100) \]

at each site of the spatial lattice. Due to Pauli exclusion this is equivalent to the constraint that \(n_f = 1 \) at each site. Thus, after tracing out the \(\sigma \) field, the Hamiltonian obtained from \(S_r \) is constrained to operate on a Hilbert space with exactly one spinon per site. This Hamiltonian consists of a sum of terms for each nearest neighbour spatial link. With the additional requirement of spin rotation symmetry, the Hamiltonian must take the form of the Heisenberg spin Hamiltonian,

\[H = J \sum_{<rr'>} S_r \cdot S_{r'}. \quad (101) \]

This can be verified directly from \(S_r \) by expanding out the \(\text{ln} \) \(\cosh \) term, and re-expressing the spinon operators in terms of the spin operators, \(S_r = f_j^\dagger \sigma f_r \). This leads to an explicit expression for the exchange interaction:

\[J = \frac{1}{\epsilon} \left((t^s)^2 + \frac{(t^A)^2}{4} \right), \quad (102) \]

where \(\epsilon \) is the discrete time slice defined in Eqn. 74.

Recovering the Heisenberg antiferromagnet in the limit \(t_c \to 0 \) provides a way to obtain a rough estimate for the saddle-point parameter \(\chi_0 \). First, we note that \(t^s \) and \(t^A \) can be re-expressed in terms of the parameters \(t, u, J, \Delta \) and \(\chi_0 \) using Eqs. 79 and 80. Though these relations are strictly valid for \(s \)-wave pairing, they suffice to give rough estimates even for the \(d \)-wave case. It is, however, necessary to modify the equation for \(t^A \) due to the slightly different decoupling in the \(d \)-wave case (See Appendix B). Assuming that the saddle point value \(\eta_0 \sim \chi_0 \), we get

\[t^A \sim \frac{\Delta}{J} t^s. \quad (103) \]

Combining Eqs. 74 and 103 with Eqn. 102 and assuming \(\Delta \ll J \), leads to an estimate for \(\chi_0 \),

\[\chi_0 \sim \left(\frac{tu}{J^2} \right)^{1/4}, \quad (104) \]

which is appropriate in the limit of large \(u/t \). Having estimated \(\chi_0 \), one can use Eqs. 78, 79 and 103 to obtain estimates for the three dimensionless coupling constants, \(t_c, t^s \) and \(t^A \), respectively. The resulting estimates are given in Eqn. 24.

Having established the equivalence of the action in Eqn. 33 to the Heisenberg antiferromagnet in the limit \(t_c \to 0 \), we briefly consider the opposite large \(t_c \) limit. With sufficiently large \(t_c \) the chargons will condense, and as argued in the previous section this describes a conventional superconducting phase. But due to the assumed form of the pairing correlations, the pairing symmetry here will be \(d_{x^2-y^2} \). Thus, the \(Z_2 \) gauge theory in Eqn. 33 has the remarkable property that it describes a conventional antiferromagnet for small chargon coupling, and a conventional \(d_{x^2-y^2} \) superconductor in the opposite extreme. We now turn our attention to the exceedingly interesting regime between these two limits.

3. Correlated Mott insulators

When the chargon coupling strength \(t_c \) is small, the chargons will be gapped out, and the system in an insulating phase. In this case, it is appropriate to integrate out the chargon fields to obtain an effective action for the spinons and the gauge field \(\sigma \). The main result of this integration will be to generate a plaquette product term of the form,

\[S_\sigma = -K \sum_\square \left[\prod_{ij} \sigma_{ij} \right]. \quad (105) \]

The full remaining action which is valid within the insulating phases is then simply,

\[S = S_s + S_\sigma + S_B. \quad (106) \]

The parameter \(K \) depends on the coupling \(t_c \), vanishing at \(t_c = 0 \) and increasing monotonically with \(t_c \). The transition to superconductivity will occur when \(t_c \sim 1 \). Near this limit, but on the insulating side, the value of \(K \) will also be of order one. Keeping this in mind, we first find it convenient to analyze the phase diagram of the above action for arbitrary \(K \), incorporating later the superconducting phase.

The action in Eqn. 106 has three dimensionless coupling constants, \(t^s, t^A \) and \(K \). Considerable progress can be made in determining the phase diagram by focussing on three different limits. The first, considered above, is \(K = 0 \) where the model reduces to the Heisenberg spin model. The second tractable limit is large \(K \). If \(K = \infty \) the gauge field is frozen out and it is possible to choose a gauge with \(\sigma_{ij} = 1 \) on every link. Then, the only remaining piece of the action describes non-interacting spinons with a gapless “\(d \)-wave” dispersion at four points in the Brillouin zone. This is the “nodal liquid” phase - obtained in earlier work [24,25] by vortex-pairing within a dual vortex formulation. The nodal liquid is a fractionalized insulator with deconfined, gapless spinons and gapped chargons. For large but finite \(K \) and in the absence of \(S_B \), the \(Z_2 \) gauge theory is in its perimeter law phase. As we show below, this continues to hold even in the presence of \(S_B \) - in fact, the region of stability of the perimeter phase is enhanced by the \(S_B \) term. Thus, the
chargons and spinons remain deconfined and the nodal liquid phase survives for large but finite K.

As with the fractionalized insulator discussed in Section 11, apart from the chargons and the spinons there is another distinct excitation in the nodal liquid phase - the Z_2 vortex configuration in the σ field, dubbed the “vison”. The vison is a gapped excitation in the nodal liquid. As before, due to the minimal coupling of the chargons and the spinons to the Z_2 gauge field σ, they each acquire a phase of π upon encircling a vison. There is thus a long ranged statistical interaction between a chargon (or a spinon) and a vison.

The third tractable limit of the action Eqn. 106 is small t^* and t^Δ. (Estimates appropriate to the cuprates obtained from Eqn. 23, suggest that these couplings will most likely be much smaller than one.) In the extreme limit of $t^* = t^\Delta = 0$, we are left with a pure Z_2 gauge theory described by $S_{eff} = S_\sigma + S_B$. To explore the effects of the Berry’s phase term S_B on the gauge theory, it is useful to pass to the dual representation. Recall that for $S_B = 0$ the dual theory is simply the 2 + 1–dimensional Ising model, with the Ising spin operators ($\sigma_i = \pm 1$) creating the “vison” excitations. To implement the duality transformation with the Berry’s phase term present, it is convenient to first rewrite it as,

$$S_B = i\frac{\pi}{4} \sum_{ij} (1 - \sigma_{ij}) (1 - \mu_{ij}^{ext}).$$

Here μ_{ij}^{ext} can be viewed as an “external” Z_2 gauge field living on the links of the dual lattice, which satisfies $\prod_{\mu} \mu_{ij}^{ext} = -1$ through every spatial plaquette. In this form one can readily generalize the duality transformation in Appendix C to give,

$$S_{dual} = -K_d \sum_{ij} v_i \mu_{ij}^{ext} v_j,$$

with dual coupling satisfying; $\text{tanh}(K_d) = e^{-2K}$. Due to the Berry’s phase term, every spatial plaquette (with normals along the time direction) in the dual Ising model is frustrated. In the time continuum limit this becomes a 2d quantum transverse-field Ising model which is fully frustrated.

The quantum Ising model on a fully frustrated square lattice has been studied extensively by several authors in general, several other ordered phases of the fully

![Figure 3](image-url)

FIG. 3. One possible ordered low temperature phase of the fully frustrated transverse field Ising model in two spatial dimensions. The thick lines represent the frustrated bonds. The dashed lines denote the links of the dual lattice where the corresponding “singlet bonds” live.

As K_d is increased, it has been found that the Ising model orders - breaking the global Z_2 spin flip symmetry. But due to the frustration, this ordering is accompanied by a spontaneous breaking of translational symmetry. It is convenient to characterize this symmetry breaking in terms of the gauge-invariant energy densities of the near-neighbor bonds: $\mathcal{E}_{ij} = -\langle v_i \mu_{ij}^{ext} v_j \rangle$. It is found that some of the bonds are “frustrated” with positive \mathcal{E}_{ij}, while the remaining are “happy” with negative bond energies. In the spatially broken ordered phases, it is found that these frustrated bonds form lines (see Fig. 3), which run along the principle axis of the square lattice (columns or rows). There are four favored configurations, corresponding to frustrated bonds along every other column, or along every other row. Within each of these phases, a particular gauge choice can be made with $\mu_{ij}^{ext} = -1$ on each “frustrated” bond. With this choice of gauge, the Ising spins, v_i, exhibit a global ferromagnetic ordering. Altogether, the ground state is thus eight-fold degenerate and breaks the Z_2 spin flip, translational and rotational symmetries.
frustrated Ising model are possible - some of these are explored in the Landau theory of the first reference in Ref. 29. These phases may perhaps be stabilized by very large K_d, and/or longer ranged interactions beyond the simplest nearest neighbour model studied in Ref. [16]. We will not consider these other possible phases in the present paper.

What are the effects of a small non-zero t^t and t^Δ which couple the spinons to the Z_2 gauge field? In the context of quantum antiferromagnets, Sachdev [16,17] has suggested that the spatial ordering of the Ising model corresponds to a spin-Peierls ordering. This interpretation appears to be consistent within our present framework. Specifically, associated with each frustrated bond in the Ising model, is a corresponding frustrated plaquette on the dual lattice “pierced” by that bond. The expectation value of the plaquette product in the gauge theory will therefore be modulated in these ordered phases, with $\langle \prod_i \sigma_{ij} \rangle \approx -E_{ij}$. Upon including the coupling to the spinons, this modulation of the energy density will, in general, induce a modulation in various other physical quantities. In particular, the quantum expectation value $< S_r \cdot S_r' >$ evaluated for each bond will be spatially modulated - bonds which “cross” the frustrated lines of the dual lattice will have a different value for this expectation value from other bonds. Presuming the spin rotation invariance remains unbroken, this state corresponds to a spin-Peierls phase - which we denote as SP. The “singlet bonds” in this phase are arranged in a columnar fashion - running perpendicular to the lines of frustrated bonds in the dual Ising model as depicted in Fig. 3.

Since the Ising spins in the fully frustrated Ising model order ferromagnetically in these modulated phases (with an appropriate gauge choice for $\mu_{ij}^{\tau_1}$) implying a vison condensation, $\langle v_i \rangle \neq 0$, confinement is expected. To see this, consider evaluating the Wilson loop correlator defined in Eqn. 6. In the dual frustrated Ising model, this corresponds to changing the sign of all the Ising couplings on bonds which “pierce” through the loop. Being ferromagnetically ordered, this will cost an energy (action) proportional to the area of the loop - the signature of confinement. Thus, as expected, the spin-Peierls state is a conventional insulator, with confined spinons and chargons. The gapped spin-one excitations made by breaking the singlet bonds can then be thought of as a (confined) pair of spinons.

The three limiting cases discussed above suggest the phase diagram shown in Fig. 4 for the action in Eqn. 106. Consider first the regime with small t^t and t^Δ. At very small K a conventional antiferromagnetic insulator is expected. With increasing K there is presumably a phase transition into a conventional spin-Peierls insulator with confined chargons and spinons. Upon further increasing K, the spin Peierls phase undergoes a deconfinement transition into the fractionalized nodal liquid phase. For large t^t and t^Δ, the antiferromagnet and nodal liquid phases will still be present in the limit of very small and large K, respectively. But it is not clear which phases will be present when all three of the coupling constants are of order one. In particular, it is unclear whether it is possible to have a direct second order phase transition from the antiferromagnet into the nodal liquid, or whether there will always be an intervening (spin-Peierls) phase.

FIG. 4. Schematic zero temperature phase diagram showing one possible scenario for the evolution from the antiferromagnet (AF) to the d-wave superconductor dSC. In this scenario, all the insulating phases are conventional. The thick lines indicate confinement of the chargons and spinons. For concreteness, we have chosen to display a particular sequence of confined phases, namely, a transition from AF to a spin-Peierls (SP) insulator, and a further transition to dSC.

FIG. 5. The other qualitatively different scenario for the evolution from the antiferromagnet to the d-wave superconductor. In this case, on increasing t_c, a transition to the fractionalized nodal liquid (NL) phase occurs before the onset of superconductivity.

We now discuss the implications of these results for the phase diagram of the full Z_2 gauge theory in which the charge degrees of freedom are present and superconductivity is possible. Of primary interest is the evolution from the antiferromagnet to the d-wave superconductor upon increasing the chargon coupling, t_c. A transition into the superconductor is expected to occur at some critical chargon coupling, t_c^*, of order one. For smaller t_c in the insulating regime, the dimensionless coupling K will at most be of order one. One can imagine two qualitatively distinct possibilities upon tuning towards the superconductor from the insulating phases. First, it may be that even when t_c increases to t_c^*, the value of K will remain smaller than the critical value needed for deconfinement, K_c. In this case, all the intermediate phases between the antiferromagnet and the superconductor will be conventional confined phases. This is illustrated in Fig. 5. Alternately, it may be that K exceeds K_c before the onset of superconductivity. This would imply the existence of the deconfined nodal liquid phase intervening between the d-wave superconductor and a conventional insulator. This is illustrated in Fig. 3.

Which one of these two possibilities is realized will pre-
sumably depend sensitively on microscopic details. Indeed, since K is of order one when t_c approaches t_c^*, it seems likely that the onset of superconductivity will occur close to the boundary between the confined and deconfined insulating phases. But in any event, our analysis has firmly established the possibility of the deconfined nodal liquid phase. It remains as a challenge to determine whether this exotic fractionalized insulator is realized in the cuprates.

In the next section, we will describe much of the physics discussed here in a dual formalism in terms of vortices rather than the chargons. This will provide considerable further insight, and make connections with earlier approaches.

V. DUAL VORTEX REPRESENTATION

For a system of interacting bosons in two spatial dimensions, it is well-known that the insulating phases can be described as a condensate of vortices in the many particle wave-function. More formally, it is possible to set up a dual description where the vortices, rather than the particles, are the fundamental degrees of freedom such that the insulating phase is a vortex condensate while the superfluid phase is the vortex vacuum. For the electronic systems considered in this paper, it is natural to attempt to do the same, and work with a dual description in terms of vortices in the Cooper pair phase φ, and the spinons. Since the Cooper pair has charge 2e, these are the $\frac{hc}{2e}$ vortices which occur in a conventional superconductor. Besides providing additional insight into the mechanism and nature of electron fractionalization, passing to a dual vortex description enables us to make contact with earlier work which describes fractionalization in terms of vortex pairing.

We will start with the full chargon-spinon action $S = S_v + S_a + S_s + S_{CS} + S_B$, discussed in the last section, and perform a duality transformation to trade the chargon fields for the $\frac{hc}{2e}$ vortices. This differs somewhat from the conventional duality transformation \[S \rightarrow \frac{hc}{2e} \] from bosons to vortices due to the coupling of the chargons to the Z_2 gauge field.

To understand how to deal with the chargon coupling to the σ field, it is useful to first review the well-known self-duality of the Z_2 gauge theory with Ising matter fields in $2+1$ dimensions. This is done in detail in Appendix C. The duality proceeds by first rewriting the partition function in terms of a Z_2 current for the Ising matter fields and the Z_2 gauge field, σ_{ij}. The Z_2 current lives on the links of the lattice and can take one of two values 0, 1. It is conserved modulo 2 at each site of the lattice. This conservation law can be implemented by writing the Z_2 current as the flux of a dual Z_2 gauge field, denoted as μ_{ij}. (This is completely analogous to the duality of the three dimensional classical XY model).

Eliminating the Z_2 current in favor of the dual gauge field gives an action written entirely in terms of two Z_2 gauge fields (σ_{ij} and μ_{ij}) which are duals of each other. The original Z_2 gauge field, σ_{ij} may be eliminated by expressing its flux as the current of a dual Ising matter field, the vison v_i. The resulting theory has the same form as the original Z_2 gauge theory with matter fields, but is dual to it.

To obtain a dual representation of the system of chargons and spinons coupled to the Z_2 gauge field σ_{ij}, we need to combine the dual representation of the Z_2 gauge theory with the standard duality transformation of the XY model. As shown in detail in Appendix D, this is readily done. For the time being, we will only consider the situation with local d-wave pairing and an odd number of electrons per unit cell. The result is a lattice action in terms of $\frac{hc}{2e}$ vortices, which are minimally coupled to a fluctuating $U(1)$ gauge field a whose circulation is the total electrical current. In addition, the $\frac{hc}{2e}$ vortices are minimally coupled to a Z_2 gauge field μ_{ij}. The full action is given by

\begin{align}
S &= S_v + S_a + S_s + S_{CS} + S_B, \\
S_v &= -\tau_v \sum_{<ij>} \mu_{ij} \cos(\theta_i - \theta_j + \frac{\alpha_{ij}}{2}), \\
S_a &= \frac{\kappa}{8\pi^2} \sum_{ij} (\Delta \times a_{ij})^2, \\
S_s &= -\sum_{\langle ij \rangle} \sigma_{ij} [\bar{t}^e_{ij} \bar{f}_i f_j + \bar{t}^o_{ij} f_i \bar{f}_j] - \sum_i \bar{f}_i f_i, \\
S_{CS} &= \sum_i \frac{\pi}{4} (1 - \prod_\Box \sigma)(1 - \mu_{ij}).
\end{align}

Here $e^{i\theta_i}$ creates the $\frac{hc}{2e}$ vortex, and f_i is the spinon as before. The first term represents single vortex hopping, while the second is a kinetic term for the $U(1)$ gauge field a_{ij}. The flux of a is the total electrical current - in particular a flux of 2π through a spatial plaquette adds an electric charge of one - a chargon. Together these two terms comprise the usual dual vortex representation of a set of charge $2e$ Cooper pairs, except that here the vortices are minimally coupled to an additional Z_2 gauge field μ_{ij}. This leads to a vortex-spinon coupling mediated by S_{CS}. This term has a structure very similar to a Chern-Simons term (although it is for the group Z_2), and as discussed below, plays a similar role. The Berry’s phase term S_B is the same as before.

The full dual action is invariant under a local $U(1)$ gauge transformation

\begin{align}
\theta_i &\rightarrow \theta_i + \Lambda_i, \\
\alpha_{ij} &\rightarrow \alpha_{ij} - \frac{\Lambda_i - \Lambda_j}{2}.
\end{align}

This is standard in the dual vortex description of XY models in three dimensions. The corresponding conserved charge is the vorticity. This action has an additional Z_2 gauge symmetry under which
Thus, the Chern-Simons term has effectively attached a vortex hopping term in the action by a Villain potential,

$$e^{i\theta_{ij}} \rightarrow \epsilon_i e^{i\theta_{ij}}; \quad \mu_{ij} \rightarrow \epsilon_i \mu_{ij} \epsilon_j.$$ \hspace{1cm} (116)

with $\epsilon_i = \pm 1$. We emphasize that this gauge symmetry is distinct from the local Z_2 gauge symmetry of the spinon-chargon action, but in fact is dual to it.

To get some intuition for the term S_{CS}, it is instructive to replace the vortex hopping term in the action by a Villain potential,

$$e^{J_v \cos \theta_{ij}} \rightarrow \sum_{J_v = -\infty}^{\infty} e^{-J_v^2/2h} e^{iJ_v \theta_{ij}},$$ \hspace{1cm} (117)

where $\theta_{ij} = \theta_i - \theta_j + \frac{2}{\pi} + \frac{1}{2}(1 - \mu_{ij})$ is the gauge invariant phase difference. Here the integer field J_v that lives on the links of the lattice represents the 3-current of the $hc/2e$ vortices. After this replacement it is possible to explicitly perform the summation over the gauge field μ_{ij}. For each link of the lattice this contributes a term to the partition function of the form, $1 + (-1)^{J_v} \prod_{\Box} \sigma$, which vanishes unless

$$(-1)^{J_v} = \prod_{\Box} \sigma.$$ \hspace{1cm} (118)

Thus, the Chern-Simons term has effectively attached a Z_2 flux of the gauge field σ - a “vison” - to each $hc/2e$ vortex. As discussed in Section [V] this composite comprised of an $hc/2e$ vortex bound to the Z_2 vison is nothing but the familiar BCS vortex. Due to the attached vison, when a spinon is taken around the BCS vortex it acquires the expected π phase factor.

Alternatively, it is possible to perform an “integration by parts” on S_{CS} which effectively exchanges the role of σ and μ, and then perform a summation over σ. This leads to the additional constraint,

$$(-1)^{J_f} = \prod_{\Box} \mu_i.$$ \hspace{1cm} (119)

with J_f the spinon 3-current. A Z_2 flux in the gauge field μ has thereby been attached to each spinon. More precisely, since the spinon number is only conserved modulo 2 due to the anomalous pairing term, the Z_2 flux is attached whenever an odd number of spinons propagates. The net effect of this Z_2 Chern-Simons term is to implement mathematically the long-ranged statistical interaction between BCS vortices and spinons. This kind of flux attachment may be familiar to many readers for the $U(1)$ group from theories of the quantum Hall effect. But since the spinon number itself is not conserved, implementing this statistical interaction with a $U(1)$ Chern-Simons term is problematic. It is a remarkable aspect of the duality transformation in Appendix [V], that this Ising-like Chern-Simons terms emerges so naturally.

A. Phases

We now analyze the phases in this dual vortex description, focusing on the most interesting case of an odd number of electrons per site with local d-wave pairing correlations. In the vortex description the superconducting phase corresponds to a vortex vacuum, and the insulating phases are vortex condensates. We consider first two simple limiting cases, firstly the superconductor with vanishingly small vortex hopping $t_v \rightarrow 0$, and then the insulator with $t_v \rightarrow \infty$.

When t_v is zero the summation over the gauge field μ can be performed, giving the constraint $\prod_{\Box} \sigma = 1$. It is then possible to pick a gauge with $\sigma_{ij} = 1$ on every link. The resulting action has two pieces, S_μ which describes the gapless sound mode of the superconductor (gapped when long-ranged Coulomb interactions are included) and the spinon piece S_σ. With $\sigma_{ij} = 1$ the spinons can freely propagate and describe the gapless nodal quasiparticles. A correct description of a conventional d-wave superconductor is thereby recovered.

Consider next the opposite limit with $t_v \rightarrow \infty$. In this regime the $hc/2e$ vortices will condense, $\langle e^{i\theta} \rangle \neq 0$. The dual “Anderson-Higgs” mechanism leads to a mass term for the gauge field a_{ij}, indicative of a charge gap. With one electron per unit cell the resulting phase is thus a Mott insulator. In the absence of any gapped charge excitations ($\Delta \times a = 0$), it is possible to choose a gauge with $a_{ij} = 0$ on every link. The vortex hopping term becomes, $S_v = -\hbar \sum_{ij} \mu_{ij}$, with a non-zero “field” $h = t_v \langle e^{i\theta} \rangle^2$.

When this “field” is large one can set $\mu_{ij} = 1$ on each link, so that the Chern-Simons terms vanishes. The full action then reduces to $S_{\text{eff}} = S_\mu + S_B$. At this stage the summation over the σ gauge field can be performed explicitly. As detailed in the previous section, the resulting model reduces to a simple 2d near-neighbor Heisenberg antiferromagnet. Thus, we readily recover the simple antiferromagnet from the dual representation by condensing $hc/2e$ vortices.

Finally, in this section we wish to recover a dual description of the fractionalized “nodal liquid”. Since the nodal liquid is electrically insulating it requires vortex condensation. But as established in the previous section, the nodal liquid supports gapped Z_2 vortices - the “vison” excitations. Since the Chern Simons term attaches a vison to each $hc/2e$ vortex, it is clear that to obtain the nodal liquid the $hc/2e$ vortices cannot be condensed. But since the square of the vison operator is unity $(v_i^2 = 1)$, a pair of $hc/2e$ BCS vortices does not carry a vison with it. As we now show, the nodal liquid can be obtained from the d-wave superconductor by pairing BCS vortices, and then condensing the hc/e vortex composite.

To this end, we add an extra vortex pair hopping term to the action,
Here, $e^{i\theta_{2i}} = (e^{i\phi})^2$, thus creating a pair of BCS vortices. Notice that the \(hc/e\) vortex is also minimally coupled to the $U(1)$ gauge field - as required by the dual $U(1)$ symmetry of the action, but is not coupled to the \mathbb{Z}_2 gauge field, μ_{ij}, because it carries no vison charge. We now consider taking t_{2v} large and condensing the hc/e vortex, $e^{i\theta_{2i}} \neq 0$, keeping the \(hc/2e\) vortex uncondensed. Before doing this it is convenient to re-express the $hc/2e$ vortex as

$$e^{i\theta_{t}} = v_i e^{i\theta_{2i}/2},$$

with $v_i = \pm 1$ the vison operator. Notice that with this identification the field θ_2 can be treated as an angular variable, since the right side is invariant under the combined transformation, $\theta_2 \rightarrow \theta_2 + 2\pi$ and $v_i \rightarrow -v_i$. We finally find it convenient to absorb the field θ_{2i} into the gauge field a_{ij} by the gauge transformation,

$$a_{ij} \rightarrow a_{ij} + \theta_{2i} - \theta_{2j}.$$

In this gauge, the vortex hopping terms become

$$S_v = -t_v \sum_{ij} v_i \mu_{ij} v_j \cos\left(\frac{a_{ij}}{2}\right),$$

$$S_{2v} = -t_{2v} \sum_{ij} \cos(a_{ij}).$$

In the insulating phase with large t_{2v}, there will again be a charge gap due to the dual Anderson-Higgs mechanism, coming from the hc/e vortex condensate. Above the gap will be charge e chargons, corresponding to a 2π flux tube in a_{ij}. In the absence of any charged excitations one can set $a_{ij} = 0$, and the single vortex hopping term becomes,

$$S_v = -t_v \sum_{ij} v_i \mu_{ij} v_j.$$

The full effective action is $S_{\text{eff}} = S_v + S_s + S_{\text{CS}} + S_B$. When t_v is small the visons will be uncondensed $\langle v_i \rangle = 0$. In this limit the summation over the μ gauge field can be performed, and due to the Chern Simons term leads to the constraint, $\prod_i \sigma = 1$. One can then choose a gauge with $\sigma_{ij} = 1$ on each link, which sets $S_B = 0$. The only remaining term in S_{eff} describes free propagating spinons. These are the gapless nodons in the insulating nodal liquid.

We thereby recover a description of the nodal liquid from the dual vortex formulation. In addition to the gapless nodons, the nodal liquid supports two gapped excitations: the chargon and the vison. As clear from the above analysis, the vison is simply a remnant of the \(hc/2e\) BCS vortex which survives into the nodal liquid upon condensation of the hc/e vortex pair. Physically, since the vorticity is only conserved modulo 2 (in units of $hc/2e$) once the field $e^{i\theta_{2i}}$ has condensed, only a conserved \mathbb{Z}_2 remains from the $hc/2e$ BCS vortex. As before, the vison picks up a π phase change when it is transported around either a spinon or a chargon. To see this, note that a chargon corresponds to a π flux in $a_{ij}/2$ and the nodon (spinon) a π flux in μ_{ij}. As seen in Eqn. [23], the vison is minimally coupled to both of these gauge fields, thus acquiring a sign change upon encircling the spinon or chargon.

It is worth emphasizing that a clear mechanism for vortex pairing can be found from the analysis in the previous section. Since the chargons and visons (or vortices) have a long-ranged statistical interaction, motion of the charge is greatly impeded by the presence of unpaired visons. On the other hand, once the $hc/2e$ vortices are paired, the charge can move coherently. Thus, the presence of a large kinetic energy makes vortex pairing energetically favorable.

It is finally worth mentioning that in the limit $S_s = 0$, one readily recovers the fully frustrated Ising model considered in the previous section. To see this, note first that S_B can be re-written in the form of a Chern-Simons terms with μ replaced by μ^{ext}, where $\prod_i \mu^{\text{ext}} = -1$ through all spatial plaquettes. With $S_s = 0$, one can then perform the summation over the σ gauge field, and this sets $\mu_{ij} = \mu^{\text{ext}}$. The remaining term in S_{eff} is the fully frustrated Ising model:

$$S_v = -t_v \sum_{ij} \mu^{\text{ext}}_{ij} v_i v_j.$$

VI. DOPING

Our analysis has so far focused only on situations with an integer number, N_0, of electrons per unit cell. Finite doping leading to non-integer N_0 does not crucially modify our discussion of fractionalization issues. Indeed, both confined and fractionalized insulating phases can exist for non-zero doping. At a qualitative level, in both kinds of insulating phases, the main effect of non-integer N_0 will be to induce charge order, accompanied by translational symmetry breaking. The precise nature of this charge order presumably depends on the details of the system, and may be sensitive to the presence of long-ranged Coulomb interactions.

Formally, non-integer values of N_0 can be incorporated into either the particle or vortex representations as follows. In the particle representation, as discussed in Section III, the main effect of non-integer N_0 is to modify the Berry phase term to

$$S_B = -i \sum_{i,j=1} N_0 (2\pi l_{ij} - \pi (1 - \sigma_{ij})).$$

20
Here, l_{ij} is an integer defined on each temporal link given by

$$l_{ij} = \text{Int} \left[\frac{\Phi_{ij}}{2\pi} + \frac{1}{2} \right],$$

(128)

where $\Phi_{ij} = \phi_i - \phi_j + \frac{\pi}{2}(1 - \sigma_{ij})$ is the gauge-invariant phase difference between two sites. When N_0 is not an integer, this Berry phase term leads to complex Boltzmann weights in the partition function sum. This is not too surprising— even in the absence of any gauge field coupling, the partition function for simple Boson Hubbard models at arbitrary chemical potential involves complex weights.

The presence of such complex weights does not pose a problem for the existence of the fractionalized insulator. We recall that the fractionalized phase is obtained when the gauge field σ_{ij} is in its perimeter phase. Deep in this phase, we may set $\sigma_{ij} \approx 1$ on each space-time link so that the Berry phase term S_B becomes independent of σ_{ij}. The resulting action then describes a lattice model of bosonic chargons at filling N_0 and the fermionic spinons, decoupled from one another. Thus the chargons and spinons will still be deconfined. However, the ground state will generally exhibit charge ordering accompanied by broken translational invariance. Confined conventional insulating phases at non-integer N_0 clearly also exist.

Numerical simulations of the Z_2 gauge theory at arbitrary N_0 to determine the precise nature of the charge ordering in these insulating phases will be seriously hampered by the presence of these complex weights in the partition function. Fortunately, in the dual vortex representation, non-integer N_0 enters in a more innocuous manner. To generalize the duality transformation to arbitrary N_0 is straightforward, because the Villain representation of the chargon hopping term in Eqn. $D4$ is simply modified to read,

$$\frac{K}{2} \sum_{<ij>} (J_{ij} - 2\pi N_{ij})^2.$$

(129)

Here, $N_{ij} = N_0$ for temporal links, and is zero otherwise. Proceeding with the duality transformation gives the action,

$$S = S_v + S_s + S_{CS} + \tilde{S}_a,$$

(130)

where the first three terms are the same as before in Eqn. 109. The last term, which was equal to $S_a + S_B$ for integer N_0, becomes instead,

$$\tilde{S}_a = \frac{K}{8\pi^2} \sum_{\square} (\Delta \times a_{ij} - 2\pi N_{ij})^2.$$

(131)

Notice that in this dual representation, N_0 acts like an external “magnetic field” piercing each spatial plaquette.

For the particular case of odd integer N_0, it is instructive to see how the term S_B may be recovered. To that end, we define a new “external” gauge field a^{ext} on the links of the dual lattice such that,

$$\Delta \times a^{ext}_{ij} = 2\pi N_{ij}.$$

(132)

We now absorb a^{ext} into a by the shift $a \to a - a^{ext}$. This eliminates a^{ext} so that $\tilde{S}_a \to S_a$, but modifies the vortex hopping term which becomes,

$$S_v = -t_v \sum_{<ij>} \mu_{ij} \cos \left(\theta_i - \theta_j + \frac{a_{ij} + a^{ext}_{ij}}{2} \right).$$

(133)

For odd integer N_0 (say $N_0 = 1$) one may choose,

$$a^{ext}_{ij} = 2\pi n_{ij},$$

(134)

with integer n_{ij}, which satisfies $\Delta \times n_{ij} = N_0 = 1$ for every spatial plaquette and is zero for all other plaquettes. With this choice we may write,

$$S_v = -t_v \sum_{<ij>} \mu_{ij} \mu^{ext}_{ij} \cos (\theta_i - \theta_j + \frac{a_{ij}}{2}),$$

(135)

where $\mu^{ext}_{ij} = (-1)^{n_{ij}}$. Notice that the flux $\prod_{\square} \mu$ is -1 for every spatial plaquette, and zero for other plaquettes. If we now perform the shift, $\mu \to \mu^{ext}$, the field μ^{ext} is eliminated from S_v but reappears in $S_{CS}(\mu^{ext})$. But upon noting the form of the Berry’s phase term in Eqn. 107, one can easily demonstrate that $S_{CS}(\mu^{ext}) = S_{CS}(\mu) + S_B$. We thereby recover the earlier Berry’s phase form for the case with odd integer N_0.

The dual representation for arbitrary N_0 is simpler looking than the one in the particle formulation, and is probably better suited to discuss issues such as the nature of charge ordering at finite doping. In particular, if we ignore the coupling to the spinons and set $\prod_{\square} \mu = 1$, the remaining partition function sum involves only real weights, and can presumably be evaluated numerically.

VII. OTHER EXOTIC FRACTIONALIZED PHASES

In this section we will briefly explore the possibility of obtaining other fractionalized phases different than the ones discussed so far. The most interesting phase that emerges is a novel fractionalized superconductor - we will describe its properties in both the particle and vortex formulations.
A. Particle description

In earlier sections we argued that when the charge e chargon condenses, the resulting phase is a conventional superconductor. This is perhaps surprising, since in a conventional BCS description the order parameter carries charge 2e. One might ask whether it is possible to have a superconducting phase in which the chargon pairs (i.e., the Cooper pairs) have condensed, while single charges have not. As we now demonstrate, such a superconducting phase - which we denote as SC^* - can exist and has a surprisingly simple description in terms of our Z_2 gauge theory. For simplicity, we will initially present the discussion for s-wave pairing with an even number of electrons per unit cell.

The appropriate action from Eqns. 88 and 89 in Section III, takes the form $S = S_e + S_s + S_K$. As discussed there, the kinetic term for the gauge field S_e, although not present in the original action, will in any case be generated upon integrating out high-energy modes. To access the chargon pair condensate phase, it is extremely convenient to add an explicit pair hopping term to the action, S_{pair} from Eqn. 92. For large pair-hopping amplitude, t_2, the chargon pairs will condense, leaving the single chargons uncondensed:

$$\langle e^{2i\phi} \rangle \neq 0; \quad \langle e^{i\phi} \rangle = 0. \quad (136)$$

This still breaks the global $U(1)$ charge symmetry, and so describes a superconductor, but one with rather exotic properties. To examine this phase it suffices to take $t_2 \to \infty$ which allows one to set $2\phi_i$ equal to 2π times an integer, or equivalently,

$$\phi_i = \frac{\pi}{2}(1 - s_i), \quad (137)$$

with the value of the Ising spins, $s_i = \pm 1$, arbitrary. In this limit, the chargon creation operator equals the Ising spin: $e^{i\phi_i} = s_i$. After integrating out the massive spinons, this leaves an effective theory of the form:

$$S_{1-gauge} = -2t_c \sum_{\langle ij \rangle} s_i \sigma_{ij} s_j - K \sum \prod \sigma_{ij}, \quad (138)$$

with t_c the chargon “hopping” strength.

This theory, which describes Ising spins “minimally coupled” to a Z_2 gauge field, has been extensively studied by Fradkin and Shenker 30 as a toy model of confinement. The phase diagram in the $t_c - K$ plane is shown in Fig. 6. In the $K \to \infty$ limit the model reduces to a global Ising model for the spins. With increasing t_c there is an Ising transition into a phase with $\langle s_i \rangle \neq 0$ (the “Higgs” phase), which corresponds to the chargon-condensed SC^* phase. Along the $t_c = 0$ axis the pure Z_2 gauge field exhibits a confinement transition with decreasing K. Fradkin and Shenker argued that the “Higgs” and confined phases could be continuously connected, by noting the absence of a phase transition along the $t_c = \infty$ and $K = 0$ lines. Moreover, as detailed in Appendix 3 this model is in fact self-dual, and maps into an equivalent model with new parameters reflected across the dashed line.

![FIG. 6. Schematic zero temperature phase diagram for the Z_2 gauge theory coupled to matter fields described by the action Eqn. 138.](image)

The phase with large K but small t_c corresponds to the exotic new superconducting phase, SC^*. In this phase there are four deconfined massive excitations: (i) the spinon, (ii) an hc/2e $U(1)$ vortex, (iii) the Ising spin s_i and (iv) the Z_2 vortex in the gauge field σ - the “vison”. In striking constrast to a conventional superconducting phase, in SC^* the $U(1)$ and Z_2 vortices can exist as separate excitations, and are not confined to one another. In order to distinguish this $hc/2e$ vortex from the BCS vortex, we will refer to it as an $hc/2e$ vorton. The Ising spin excitation s is a remnant of the chargon. In the paired-chargon condensate SC^* phase, the global $U(1)$ charge symmetry is not fully broken - there is an unbroken Z_2 “charge” symmetry $(s_i \to -s_i)$ corresponding to an invariance under a sign change of the chargon operator. Although the electrical $U(1)$ charge of the chargon is not conserved, the chargon number is conserved modulo 2, a reflection of this unbroken Ising symmetry. Indeed, one can define a conserved Ising “charge” as, $Q_2 = (-1)^N = \pm 1$, where N is the chargon number operator. Since the Ising spin operator changes the sign of Q_2, the massive spin excitation carries the conserved Z_2 electrical charge of the chargon. We refer to this excitation as an “ison”.

To gain some physical insight into this strange ison particle, consider what happens when an electron is added to a superconductor. The electron creation operator can be decomposed into the product of a spinon and a chargon,

$$e_{\alpha}^i = b_{\alpha}^i f_{\alpha}^i \approx s_i f_{\alpha}^i. \quad (139)$$
The second equality is valid within the two superconducting phases. In the conventional superconductor SC, the ison is also condensed, $(s_i) \neq 0$, so that the electron is essentially equal to the spinon. Thus the spin of the added electron is carried away by the spinon - the conventional BCS quasiparticle - whereas the electrical charge is carried by the condensate. On the other hand, in SC^* adding an electron not only increases the conserved spin by $1/2$, but changes the conserved Z_2 “electrical charge”. The spin and Z_2 charge are carried away by two separate massive excitations - the spinon and ison. Thus, the SC^* phase exhibits an exotic form of spin-charge separation.

It is again important to ask about geometric phase factors acquired when any of the four massive excitations in SC^* encircle another. First, note that both the ison and the spinon are minimally coupled to the gauge field σ. Consequently, they both acquire a phase factor of π on encircling the Z_2 vortex, namely the vison. The ison, being a remnant of a chargon, also acquires a phase of π on encircling an $hc/2e$ vortex. Thus the pairs - (spinon, vison), (ison, vison), and (ison, $hc/2e$ vortex) - acquire phase factors of π upon encircling one another. Equivalently, there are long-ranged statistical interactions between any two members of a pair. All other pairs of excitations do not acquire any geometrical phase factors. Note in particular that the $hc/2e$ vortex, being unbound from the Z_2 vison, does not have a long range statistical interaction with the spinon in SC^*. This distinguishing feature will have several important consequences in the dual vortex description developed in the next section.

SC	SC^*
I	I^*

FIG. 7. Schematic zero temperature phase diagram displaying the four phases SC, SC^*, I, and I^*.

The transition from SC^* to SC occurs on condensing the ison - so that single chargons are themselves condensed. Note that ison condensation leads to confinement of the excitations it has long-ranged statistical interactions with - the $hc/2e$ vortex and the vison ($i.e.$ the Z_2 vortex). The result is the BCS $hc/2e$ vortex, as discussed earlier in Section III.

The transition from I into SC^* upon increasing t_2, can be understood as a superconductor-insulator transition of charge $2e$ chargon (or Cooper) pairs. Note that a direct transition from the conventional insulator I to SC^* is not generically possible.

Figure 8 is a schematic phase diagram exhibiting the four phases - SC, SC^*, I and I^* - as well as the intervening transitions. Of the four, it is only in the band insulator I that spinons are confined. In the other three phases the Z_2 vortex is gapped out and unconfined. These three phases exhibit excitations with “fractionalized” quantum numbers. It is the condensation of the Z_2 vortex which leads to confinement, leaving only the electron in the spectrum.

1. Odd number of electrons per unit cell

We now briefly consider the superconducting phases with odd integer filling, but still presuming s-wave pairing. Since chargon pairs are condensed in both SC and SC^*, it suffices again to consider very large pair hopping amplitude, t_2. Moreover, with condensed chargon-pairs, the chargon operator can be replaced by the Ising spin, $b_i s_i = \pm 1$ - the “ison” - as discussed above. After integrating out the gapped spinons, the effective theory again reduces to the Ising matter-plus-gauge theory as in Eqn. (138), but with the addition of the Berry’s phase term, S_B:

$$S_{\text{eff}} = -2t_e \sum_{\langle ij \rangle} s_i \sigma_{ij} s_j - K \prod_{\square} \prod_{\square} \sigma_{ij} + S_B[\sigma_{ij}],$$

(140)

Note that the SC^* phase is realized only for large K, as discussed above. In this limit, we have emphasized several times, the effects of the Berry phase term S_B are expected to be innocuous. Thus, SC^* will continue to exist even in the presence of S_B. To see this in more detail, it is once again illuminating to pass to a dual representation, which exchanges the isons for the visons:

$$S_{\text{dual}} = -K_d \sum_{\langle ij \rangle} v_i \mu_{ij} v_j - t_d \prod_{\square} \prod_{\square} \mu_{ij}^{\text{ext}},$$

(141)

with $\tanh(t_d) = e^{-4t_e}$ and $\tanh(K_d) = e^{-2K}$. Here μ_{ij} is a dynamical Z_2 gauge field, and as before μ_{ij}^{ext} is an “applied” field with $\prod_{\square} \mu_{ij}^{\text{ext}} = -1$ through all spatial plaquettes. This theory is a direct Z_2 analog of a $U(1)$ superconductor in the presence of an applied magnetic field.
Consider briefly the phase diagram in the $t_c - K$ plane. A schematic phase diagram is shown in Fig. 8. Progress can be made in various limiting regimes. For $K_d = 0$ the theory reduces to a pure Z_2 gauge theory with gauge field, $\tilde{\mu}_{ij} = \mu_{ij}^{ext}$. Since μ_{ij}^{ext} plays no role in this limit, the resulting phases are identical to that with even integer N_0 analyzed in the previous subsection. In particular, for large t_c, we have a conventional superconductor SC with broken Z_2 gauge symmetry, while for small t_c, we get the exotic superconductor SC^\ast. These phases survive for small K_d. It is easy to establish the absence of phase transitions for $t_c = \infty$ and $K = 0$. For $t_d = \infty$, on the other hand, one can set $\mu_{ij} = \mu_{ij}^{ext}$, and the model reduces to the fully frustrated Ising model. As discussed extensively in Section IV, the results of Ref. [16] show the existence of an ordered phase for large t_d where translationally symmetry is spontaneously broken. In general, this is expected to lead to spin-Peierls order. In this case, though, the spin-Peierls order co-exists with superconductivity. We will denote this phase as $SC - SP$. Several other ordered phases are presumably also possible though we will not discuss these here.

In the $SC - SP$ phase the external gauge field “penetrates” with $\mu_{ij} \approx \mu_{ij}^{ext}$, and the Ising model is frustrated. But as t_d is reduced, it eventually becomes favorable to “screen” out this external field, and enter a “Meissner” phase with $\langle \prod_i \mu_{ij} \rangle \approx 1$. When this happens the broken translational symmetry disappears - along with the frustration - and one enters into SC.

![Schematic phase diagram for the superconducting phases with an odd number of electrons per unit cell. The $SC - SP$ phase is discussed in the text. The precise topology of the phase diagram when the couplings t_c and K are both of order one is not firmly established.](image)

Fig. 8. Schematic zero temperature phase diagram for the superconducting phases with an odd number of electrons per unit cell. The $SC - SP$ phase is discussed in the text. The precise topology of the phase diagram when the couplings t_c and K are both of order one is not firmly established.

2. *d-wave pairing and doping*

The discussion above generalizes readily to the case of *d*-wave pairing. In particular, a dSC^\ast phase where char-}

In the presence of finite doping with non-integer N_0, in either the *s*-wave or the *d*-wave case, the SC^\ast phase is expected to survive, since the S_B term is innocuous in this phase. The conventional superconducting phases will be more sensitive to the value of N_0 - several additional superconducting phases with broken lattice symmetries are presumably possible.

B. Vortex description

In this subsection we show how the superconductor SC^\ast may be described in the dual vortex formulation. The discussion in Section IV was based on the action in Eqns. [10] for the spinons and $hc/2e$ vortices. The sym-}

It is of interest to explore the phase diagram for arbitrary positive values of the couplings K_σ and K_μ. We will show that the superconductor SC^\ast emerges quite naturally for large K_σ and K_μ. As shown below, an important physical consequence of the addition of these K_σ and K_μ terms is that the Chern-Simons term S_{CS} is no longer effective in attaching flux to the vortices and the spinons. Note that, in the absence of flux attachment, the field $e^{i\phi}$ creates a “naked” $hc/2e$ vortex, i.e., an $hc/2e$ vorton. Attaching flux of the field σ, i.e., a vison, converts this into a regular $hc/2e$ BCS vortex.

For ease of presentation, we specialize to the case of *s*-wave pairing and an even number of electrons per unit cell. In that case, the term S_B may be dropped from the action. Further, the spinons are gapped and can be integrated out. This will lead to an innocuous renormalization of the value of K_σ.

In the vortex description, superconducting phases corre-}

24
present originally). The resulting action has only the terms,
\[
S = S_\sigma + S_\mu + S_{CS}.
\] (144)
The term \(S_\sigma \) leads to a gapless linear dispersing excitation (in the absence of long-ranged Coulomb interactions), and corresponds physically to the sound modes of the superconductor. The remaining three terms only involve the two \(Z_2 \) gauge fields \(\sigma \) and \(\mu \). As shown in Appendix [3], this action is equivalent to that of the \(Z_2 \) gauge theory with Ising matter fields. If we choose to integrate out the \(\mu \), this is exactly the same as the Ising effective action derived in the previous subsection (Section [7A]) to discuss the superconducting phases. Alternatively, we can integrate out the \(\sigma \) field to obtain the dual theory as in Eqn. [144].

\[
S = S_{vis} + S_\mu,
\] (145)
\[
S_{vis} = -K_d^d \sum_{ij} v_i \mu v_j.
\] (146)

Here \(\text{tanh}(K_d^d) = e^{-2K_\sigma} \), so that \(K_d^d \) is the coupling dual to \(K_\sigma \). Once again, \(v_i \) creates a vison, whose \(Z_2 \) current is equal to the flux of the \(\sigma \) field. On the other hand, the vortex configurations of the gauge field \(\mu \) correspond to the ison excitations.

As discussed earlier, the \(Z_2 \) gauge theory with matter fields has two phases - a Higgs-confined phase and a deconfined phase. The Higgs-confined phase describes the conventional superconductor \(SC \), and is perhaps easiest to understand in the limit in which both \(K_\mu \) and \(K_d^d \) are small. With small \(K_\mu \) the gauge field is in its confining phase, so that test charges coupling to the gauge field \(\mu \) are confined. There are actually two different particles minimally coupled to \(\mu \) - the \(\frac{hc}{2e} \) vorton and the vison, with creation operator \(e^{i\theta} \) and \(v_i \), respectively. As before, the confined vorton-vison bound state is the conventional \(\frac{hc}{2e} \) BCS vortex.

The deconfined phase describes the exotic superconductor \(SC^* \). In this phase, test charges that couple to \(\mu \) are deconfined. This implies that the \(\frac{hc}{2e} \) vorton and the vison are not bound together, and can propagate as independent gapped excitations, in agreement with the earlier discussion. In effect, within \(SC^* \) the Chern-Simons term has been rendered ineffective and does not attach flux. Also, configurations with \(\pi \) flux in the gauge field \(\mu \), corresponding to the “ison”, exist as finite energy excitations. Thus, as before we conclude that there are four gapped excitations in \(SC^* \) - the \(\frac{hc}{2e} \) vorton, the spinon, the vison, and the ison.

Note that a transition from \(SC^* \) to an insulator obtained by condensing the \(\frac{hc}{2e} \) vortons (which are the fundamental \(U(1) \) vortices in this phase) leads naturally to the fractionalized insulator \(I^* \). This is because the vison is unbound from the \(\frac{hc}{2e} \) vorton in \(SC^* \), so that condensation of the latter leaves the former uncondensed. Indeed, the distinct excitations in the resulting insulator are the charogens, the spinons, and the visons - as appropriate to \(I^* \). Thus, the exotic insulator \(I^* \) may either be reached from \(SC \) by condensing \(\frac{hc}{2e} \) vortons or from \(SC^* \) by condensing \(\frac{hc}{2e} \) vortons. In either case, the vison remains uncondensed.

This completes the dual description of \(SC^* \). Complications such as \(d \)-wave pairing or arbitrary filling \(N_0 \) can be handled straightforwardly in this dual formulation as well, though we shall not do so here.

VIII. EXTENSION AND GENERALIZATIONS

A. General spatial dimension

The \(Z_2 \) gauge theory formulation (in the particle representation) is readily generalized to arbitrary spatial dimension. The cases of physical interest are three dimensions (3d) and one dimension (1d), which we discuss in turn. For simplicity, we will restrict our attention to situations with integer filling per unit cell. The most important effect of spatial dimensionality enters in the properties of the pure \(Z_2 \) gauge theory with action,
\[
S = S_\sigma + S_B,
\] (147)
with \(S_B \) included when there are an odd number of electrons per unit cell.

1. \(d = 3 \)

In 3d and in the absence of \(S_B \), the \(Z_2 \) gauge theory again has two phases distinguished by the behaviour of the Wilson loop correlator (“area law” versus “perimeter law”). As in 2d, the presence of \(S_B \) will enhance the stability of the perimeter phase, but the area law phase will still be present. The presence of the perimeter law phase, implies the existence of 3d insulators with electron fractionalization. But in contrast to 2d, the flux tubes in the \(Z_2 \) gauge field - the visons- are not point-like excitations, but become extended string-like excitations in 3d. The area law phase again describes various confined insulating phases. Whether the presence of \(S_B \) leads to broken translational symmetry as in 2d is an interesting open question. Note, however, that in 3d it is not possible to pass to a dual global Ising model. In fact, the pure \(Z_2 \) gauge theory (in the absence of \(S_B \)) is in fact self-dual [2] in three spatial dimensions.

To discuss the superconducting phases \(SC \) and \(SC^* \), it is necessary to understand the properties of the \(Z_2 \) gauge theory coupled to Ising matter fields. In the absence of \(S_B \), it is known [3] that in three spatial dimensions, there are again two phases - the Higgs-confined phase,
and the deconfined phase. These correspond to \mathcal{S} and \mathcal{S}^*, respectively. Their distinguishing properties will be qualitatively similar to the 2d case. As in 2d, we expect that the main effect of S_B would only be to make possible the existence of an \mathcal{S} phase with broken translational symmetry.

In layered quasi-two dimensional systems, fractionalized insulating phases in which each layer is decoupled from the others are possible, and exist as distinct phases from the isotropic ones discussed above. Such phases are currently under further investigation.

Finally, it is worth emphasizing that while the extension to 3d is straightforward in the particle representation, the dual vortex representation necessarily involves string-like vortex degrees of freedom.

2. $d = 1$

In one spatial dimension (1d), the Z_2 gauge theory is always in its area law phase, with or without the S_B term. Thus, our formulation is incapable of describing electron fractionalization in one dimension. Evidently, fractionalization in $d = 1$ must have different physical origins than for $d > 1$. To highlight this point, note that 1d fractionalization can be continuous, as exemplified by the spinless Luttinger liquid which supports charge-carrying excitations with essentially arbitrary (even irrational) charge. For $d > 1$, on the other hand, fractionalization is discrete - the fractionally charged excitations carry a definite rational fraction of the electron charge. As in the fractional quantum Hall effect, this discreteness can be traced to the binding (and condensation) of a discrete number of vortices. This physics appears to be qualitatively different than the “solitonic” mechanism responsible for fractionalization in 1d.

B. Finite temperature

In our formulation there is a sharp distinction between fractionalized and confined phases at zero temperature, which is independent of whether or not the phases in question have any sort of conventional long-ranged order. It is extremely interesting to ask whether this sharp distinction survives at finite temperature. Consider first the deconfined phases in 2d. In these phases, the point-like vison excitations are gapped at zero temperature. However, since the energy cost to create a vison is finite, at any non-zero temperature there will be a non-vanishing density of thermally excited visons. In the absence of other kinds of order (eg. magnetic), this low temperature regime will be smoothly connected to the high temperature limit, without an intervening finite temperature transition. Thus, in 2d the sharp distinction between fractionalized and confined insulators does not survive at finite temperature.

But in 3d, the vison excitations in the deconfined phase are string-like extended objects, with an energy cost proportional to their length. Consequently, at low temperatures arbitrarily large vison loops will not be thermally excited - the vison loops will be “bound”. As the temperature increases, there will be a transition at which the vison loops unbind and proliferate. Thus, the fractionalized insulator in three spatial dimensions undergoes a finite temperature phase transition associated with the unbinding of vison loops. A defining characteristic of the low temperature phase is that vison loops will cost a free energy linear in their length. Equivalently, $\hbar c/2e$ (or Z_2) magnetic monopole “test charges” are confined even at finite temperature, with an infinite free energy cost to separate them. A confinement of monopoles is also one of the characteristics of a 3d superconductor, but quite remarkably the confinement here is occurring in a “normal” non-superconducting phase. The conventional insulating phases with confinement at zero temperature, on the other hand, will not exhibit finite temperature transitions (other than those associated with the loss of conventional long-ranged order - eg. magnetic).

To understand the origin of these results, we briefly discuss the properties of the pure Z_2 gauge theory (with no matter fields) in $3 + 1$ space-time dimensions in more detail. At zero temperature the theory is self-dual - the duality transformation interchanges the “electric” and “magnetic” fields of the gauge theory. For $K > K_c$ when the gauge theory is in its deconfining phase, the theory has string-like vison excitations (which are Z_2 “magnetic” flux tubes) with a finite energy cost per unit length. For $K < K_c$ the gauge theory confines with area law Wilson loops, but there are nevertheless string-like excitations in this phase as well. These can be understood via duality, which interchanges the area and perimeter law phases - the string-like excitations in the area law phase are simply flux tubes of the dual Z_2 gauge field. Physically, these dual tubes are “electric flux tubes” responsible for the confinement of “electric” charge in the area law phase. Specifically, when two test Z_2 “electric” charges separated by a distance R are introduced into the system, the resulting “electric” flux is concentrated in a tube that extends from one test charge to the other with an energy cost proportional to R - the linear confinement. Similarly, in the perimeter phase, dual test charges (Z_2 “monopoles”) that act as sources for the visons are confined.
for each site \vec{r}' of the spatial lattice. Here \vec{r} is a vector along the (imaginary) time direction of length the time-slice. The product is over all the temporal links at that site, and M is the number of time slices. This operator L_r is often referred to as the “Polyakov loop”. The free energy $F(r, r')$ to introduce two test charges at sites r, r' is directly related to the correlator of L_r through

$$e^{-F(r,r')/T} = \langle L_rL_{r'} \rangle.$$

Thus, test charges will be confined if this correlator goes to zero at large distances - on the other hand, if this correlator goes to a constant, the test charges will be deconfined. Furthermore, consider the following transformation on the gauge fields

$$\sigma_{\vec{r}+n\vec{\tau},\vec{r}+(n_0+1)\vec{\tau}} \rightarrow e\sigma_{\vec{r}+n\vec{\tau},\vec{r}+(n_0+1)\vec{\tau}}$$

where $e = \pm 1$ independent of r, and n_0 is fixed. The action of the pure gauge theory is invariant under this transformation - implying a global Ising symmetry of the theory. The operator L_r, however, transforms as

$$L_r \rightarrow eL_r.$$

Thus L_r is an order parameter for this global Ising symmetry. In the low temperature phase for $K < K_c$, L_r has no expectation value, the global Ising symmetry is unbroken, and test charges are confined. At high temperatures, however, L_r acquires an expectation value breaking the global Ising symmetry, and the test charges are deconfined.

For $K > K_c$, the self-duality of the Z_2 gauge theory implies the existence of a dual global Ising symmetry, with an order parameter that is the dual analog of the Polyakov loop. In the low temperature phase, this dual global symmetry is unbroken - in this phase dual test charges (i.e. Z_2 monopoles) are confined. At high temperatures this dual global symmetry is broken and the dual test charges are deconfined.

Consider next the effects of coupling matter fields (the chargons and the spinons) to the Z_2 gauge field. As these carry Z_2 gauge “electric” charge, it is easy to see that the action is no longer invariant under the transformation in Eqn. 150. Indeed, this transformation is equivalent to changing the boundary conditions on the chargon fields from $(\beta-)$periodic to anti-periodic, and vice versa for the spinons. Moreover, if the matter coupling is weak, the matter fields may formally be integrated out \cite{polyakov} to leave behind a “magnetic field” term that couples linearly to the Polyakov loop order parameter of the global Ising symmetry. There is then no longer any transition separating the low and high temperature regimes. Physically, this is exactly as expected - for $K < K_c$, the electronic system is in a conventional confined insulating phase at zero temperature.

On the other hand, since the chargons and spinons do not carry any dual Z_2 “magnetic” charge, the dual global

\[L_r = \prod_{n=0}^{M-1} \sigma_{\vec{r}+n\vec{\tau},\vec{r}+(n_0+1)\vec{\tau}} \]

\[\text{(148)} \]

Now consider the properties of the gauge theory at finite temperature. The phase diagram is well-known \cite{31} and is shown in Fig. \ref{fig:fig9}. There are three finite temperature phases. For $K > K_c$, at small but non-zero temperatures, large (“magnetic”) vison loops are bound as their energy cost is proportional to their length. Similarly, for $K < K_c$ at low temperatures, large “electric” flux loops are bound. At high temperature, for any K, both kinds of loops are unbound. The transition from the low temperature to the high temperature phase is therefore associated with the unbinding of (electric) magnetic vison loops for K (lesser) greater than K_c.

In the low temperature phase for $K < K_c$, the free energy of an isolated static test “electric” charge diverges, so that test charges are confined. In the high temperature deconfined phase, the free energy cost is finite. Formally, the pure Z_2 gauge theory has a global Ising symmetry at finite temperature which is broken in the high temperature phase. As shown by Polyakov \cite{31}, a convenient characterization of this transition is through the following operator:

\[L_r = \prod_{n=0}^{M-1} \sigma_{\vec{r}+n\vec{\tau},\vec{r}+(n_0+1)\vec{\tau}} \]

\[\text{(148)} \]
Ising symmetry remains even in their presence. The finite temperature transition for \(K > K_c \) should thus remain in tact. Consequently, we arrive at the striking conclusion that the three dimensional fractionalized insulator undergoes a finite temperature transition associated with the unbinding of vison loops. This conclusion will not be affected by the Berry’s phase term \(S_B \), which is quite innocuous in the fractionalized insulator.

C. Spin-rotation non-invariant systems

The \(Z_2 \) gauge theory formulation (in either the particle or vortex representations) works equally well in the absence of spin rotation invariance. In particular, fractionalized phases continue to exist even when spin is not a good quantum number. (Spinless fermion systems can also be handled with no fundamental modifications). For these reasons, we have avoided the term “spin-charge separation”, in favour of the more general term “electron fractionalization”.

D. Analogies with nematics

Certain aspects of our formulation might be familiar from the classical statistical mechanics of nematics. The order parameter for a nematic is a headless three component vector. Lattice models of nematics are usually formulated in terms of an ordinary three component vector - the headless nature being incorporated through a local \(Z_2 \) gauge symmetry which inverts the local vector order parameter. Here, we briefly explore the analogies between the classical phases of nematic systems, and the quantum phases discussed in this paper.

The analogy is closest if we consider \(s \)-wave pairing with an even number of electrons per unit cell, and further, integrate out the spinons to work with just the chargons and the \(\sigma \) field. The action describing the system is then,

\[
S = -2t_e \sum_{<ij>} \sigma_{ij} \cos(\phi_i - \phi_j) - K \sum_{\square} \prod_\square \sigma_{ij}.
\]

(152)

As formulated, this describes a quantum problem of chargons coupled to a fluctuating \(Z_2 \) gauge field in two spatial dimensions. But alternately, we may view it as a classical Hamiltonian for a three dimensional \(XY \) nematic. Indeed, an \(O(3) \) version of the same model was introduced a few years ago by Lammert, Rokhsar, and Toner \cite{Lammert} to describe nematic ordering in three dimensions. Further, they argued that their lattice gauge nematic model admits three distinct phases - an ordered nematic phase, and two isotropic phases. The nematic phase breaks the rotational symmetry, and the \(Z_2 \) gauge symmetry. For an \(XY \) system, this is the direct analog of the superconducting phase. Moreover, the physical \(hc/2e \) vortices of the superconductor correspond directly to the “disclinations” in the nematic fluid.

The two isotropic phases in the nematic are distinguished \cite{Lammert} by the free energy cost per unit length to externally impose a disclination line through the system. In particular, in the conventional isotropic phase, the free energy cost per unit length is zero (as the length goes to infinity). The disclinations are condensed. But, in the unconventional isotropic phase \cite{Lammert}, the free energy cost per unit length is a constant (as the length goes to infinity). In the context of this paper, the isotropic phases correspond to insulating phases. As we have elaborated at length, there are two insulating phases \(I \) and \(I^* \) which are distinguished by whether or not the visons (which are the relics of the \(hc/2e \) vortices in the insulating phases) are condensed. Thus, the conventional insulator corresponds, in the nematic analogy, to the conventional isotropic phase. Note that the energy cost of a vison (which is the action cost per unit length of the world-line) is zero in this phase. Similarly, the fractionalized insulator \(I^* \) corresponds to the unconventional isotropic phase of the \(XY \) nematic. In \(I^* \) the visons have finite energy cost, again just like the disclination lines in the unconventional isotropic fluid.

The phase transition between \(SC \) and either insulating phase is second order. In contrast, for the \(O(3) \) nematic system considered in Ref. \cite{Lammert}, the transition between the nematically ordered phase and the conventional isotropic phase is first order, while that to the other isotropic phase is second order. This difference is due to the \(XY \) symmetry of the superconducting system, as opposed to the \(O(3) \) symmetry of the nematic.

For the more general situation, with coupling to the spinons or with an odd number of electrons per unit cell, a direct correspondence with the nematic system no longer holds. Nevertheless, we believe that the discussion in this subsection may help (some) readers get further intuition and insight into our formulation.

IX. RELATION TO PREVIOUS APPROACHES

We now comment on the connection between the \(Z_2 \) gauge theory and earlier approaches to electron fractionalization. We begin by making contact with earlier papers on the “nodal liquid”. Earlier formulations of the nodal liquid (in Ref. \cite{Lammert} and \cite{Lammert}) focussed on the importance of “vortex-pairing” as a means to describe charge fractionalization in two-dimensions. In Ref. \cite{Lammert} a theory was formulated in terms of vortices in a local superconducting pair field, and shares many features with the approach taken here, particularly the dual formulation detailed in Section \cite{Lammert}. In Ref. \cite{Lammert}, Chern-Simons theory was used to convert spinful electrons into bosons, and a dual formulation was developed in terms of vortices in
these bosonic fields. The Z_2 gauge theory and its dual Ising Chern-Simons vortex theory developed in this paper, not only ties together both earlier approaches into a unified framework, but allows for a more direct quantitative analysis of “microscopic” models. We now describe this connection in a bit more detail.

In Ref. [9], a spinon operator was defined as an electron with its charge screened by “one-half” of a Cooper pair. The latter coincides precisely with the “chargon” introduced in Eqn. [23], showing the equivalence of the spinons as well. The importance of the long-ranged interaction between the spinon and $hc/2e$ vortex was emphasized in Ref. [9]. It was suggested that this interaction could be implemented by employing a $U(1)$ Chern-Simons term to attach flux to both species of particles. But since the spinon number is not conserved, it was suggested that the flux could be attached to the (conserved) z-component of the spin. Moreover, it was argued in Ref. [9] that due to the statistical interactions, condensation of $hc/2e$ vortices should lead to confinement of spinons. In the dual vortex formulation presented in this paper the statistical interaction between vortex and spinon is described in terms of a novel Ising-like Chern-Simons term. It is important to stress that this does not require the spin of the spinon to be conserved, in contrast to the $U(1)$ approach, since the “Ising-flux” is attached to the conserved Z_2 charge of the spinons. Moreover, the Ising formulation clearly shows that condensation of the $hc/2e$ vortices - or the visons - leads to confinement of spinons and chargons. In the global Ising model for the visons with $\langle v_i \rangle \neq 0$, the linear confinement is due to the required line of negative Ising couplings connecting the two spinons. In the Z_2 gauge theory formulation, it follows from the area law for the Wilson loop.

In Ref. [9], a theory was developed by converting spinful electrons into spinful bosons - using Chern-Simons to attach flux to the electrons spin - and then passing to a dual representation of vortices in these bosonic fields, denoted Φ_α with spin label $\alpha = \uparrow, \downarrow$. A lattice version of this theory can be written in terms of the phases, θ_α, of the vortex field operators, $\Phi_\alpha = e^{i\theta_\alpha}$, with effective Euclidian action,

$$S = -t_v \sum_{ij} \cos(\theta_{ia} - \theta_{ja} + a^{\alpha}_{ij}) + S_{cs}(a^\alpha).$$

(153)

Here, i, j label sites of the $2+1$ space-time lattice, t_v is a dimensionless vortex “hopping” term and S_{cs} is a Chern-Simons term involving the field $a^\alpha = a^\uparrow - a^\downarrow$. The curl of a^α corresponds to the conserved electrical current of the electrons with spin α. In Ref. [9], two different composite “pair” vortex operators were considered;

$$\Phi_\rho = \Phi_\uparrow \Phi_\downarrow = e^{i\theta_\rho}; \quad \Phi_\sigma = \Phi_\uparrow \Phi_\downarrow = e^{i\theta_\sigma},$$

(154)

which are minimally coupled to $a^{\rho/\sigma} = a^\uparrow \pm a^\downarrow$, respectively. The action can be re-expressed in terms of these composite phase fields using the relation

$$\theta_\rho = \frac{1}{2}(\theta^\rho \pm \theta^\sigma) + \frac{\pi}{2}v,$$

(155)

giving,

$$S = -t_v \sum_{ij} v_i v_j \cos((\theta^\rho_i - \theta^\rho_j + a^{\rho}_{ij})/2) \cos((\theta^\sigma_i - \theta^\sigma_j + a^{\sigma}_{ij})/2).$$

(156)

Here, the Ising spins $v_i = \pm 1$ are the “visons”. The primary emphasis of Ref. [9] was an analysis of fractionalized phases, such as the nodal liquid. It was emphasized that fractionalization occurs when $\langle v_i \rangle = 0$, and breaking the Ising symmetry with $\langle v_i \rangle \neq 0$ corresponds to confinement. Deep within the deconfined phase it is possible to integrate out the massive visons, which generates local terms such as,

$$S_{hc/e} = -t_{2c} \cos(\theta^\rho_i - \theta^\rho_j + a^\rho_{ij}),$$

(157)

which describes the hopping of the hc/e vortex pair, Φ_ρ, and

$$S_{spinon} = -t_s \cos(\theta^\rho_i - \theta^\rho_j + a^\rho_{ij}).$$

(158)

Due to the Chern-Simons terms above, this corresponds to the hopping of fermionic spinons which carry $S_z = 1/2$.

The relationship between this formulation, in terms of “electron” vortices, and the dual vortex theory of Section 5 constructed in terms of BCS $hc/2e$ vortices is at first not apparent. But consider introducing a vortex operator, $\Phi = e^{i\theta}$, whose square equals the hc/e vortex pair operator: $\Phi^2 = \Phi_\rho$. This requires that,

$$\theta = \frac{1}{2} \theta_\rho + \frac{\pi}{2}(1 - v),$$

(159)

which implies,

$$\Phi = v e^{i\theta/2}.$$

(160)

As defined Φ carries vorticity $hc/2e$, and can tentatively be identified as the BCS vortex. To complete this identification it is necessary to show that there is a long ranged statistical interaction between this $hc/2e$ vortex and the spinon. Evidence for this is provided by the following argument. We first imagine explicitly adding the vortex hopping term S_{spinon} to the action in Eqn. [156]. We then absorb the field θ^ρ into a^ρ. We may now re-express the action Eqn. [161] in terms of θ_i:

$$S = -t_v \sum_{\langle ij \rangle} \mu_{ij} \cos(\theta_i - \theta_j + \frac{1}{2} a_{ij}) + S_{spinon},$$

(161)

with

$$\mu_{ij} = \cos(\frac{1}{2} a^\rho_{ij}).$$

(162)
Here, we have defined $a_{ij} = a_{ij}^\rho$. In the presence of the vortex hopping term S_{spinon} above, if we specialize to the limit of large t_s, it is legitimate to restrict a_{ij}^ρ to be 2π times an integer. With that restriction the gauge field $\mu_{ij} = \pm 1$, reducing to an Ising Z_2 gauge field. Now, imagine putting a stationary spinon on one site of the original spatial lattice. In this dual vortex representation this corresponds to a plaquette with $\Delta \times a^\rho = 2\pi$, or equivalently to a product $\prod_{[ij]} \mu_{ij} = -1$ for all plaquettes pierced by the spinon “world-line”. Since the $\hbar c/2e$ vortex is minimally coupled to μ_{ij}, this establishes that it does indeed acquire a minus sign upon being transported around a spinon. In the dual vortex formulation in Section \sqrt{A} a π-flux tube in μ_{ij} is attached to each spinon by the Ising-like Chern-Simons term. To complete the mapping between these two formulations requires, finally, to re-fermionize the spinon creation operator, $e^{i\theta_{\alpha}}$, (fermionic due to the Chern-Simons term $S_{\alpha}[a^\alpha]$) effectively replacing it with spinful fermions \tilde{f}_{α}.

Finally we comment briefly on the relationship with theories based on slave boson/fermion approaches to electron fractionalization. A number of authors have examined insulating Heisenberg antiferromagnetic spin models in the hope of finding phases with deconfined spinon excitations through these approaches. However this program has generally been quite unsuccessful - the $U(1)$ or $SU(2)$ gauge symmetry introduced in the slave boson or fermion representations ultimately leads only to confined phases. A notable exception however is the work of Read and Sachdev \cite{RS} on large-N $Sp(2N)$ frustrated antiferromagnets, and related quantum dimer models \cite{RS}. Under certain special conditions, these authors demonstrated the existence of disordered phases with deconfined spinons in their theory. It is worth pointing out that fractionalization is achieved when the $U(1)$ gauge symmetry (introduced by the Schwinger boson representation of the $Sp(2N)$ spins) is broken down to Z_2 by condensation of pairs of bosons. The fully frustrated transverse field Ising model appears in that description as well \cite{RS}.

Slave boson representations of electron operators have been used extensively to discuss spin-charge separation issues in doped $t-J$ models. However, the resultant compact $U(1)$ or $SU(2)$ gauge theories presumably always lead to confinement, unless the gauge symmetry is broken down to Z_2. This may be achieved by pairing the spinons \cite{RS}. Indeed, the slave-boson mean field treatment of the $t-J$ model does find pairing of spinons below a finite temperature at low doping. As we have emphasized in this paper though, even in the undoped limit and without frustration, the Heisenberg spin model may be rewritten in terms of fermionic spinon operators coupled to a fluctuating Z_2 gauge field. Equivalently spinon pairing terms may be added to the Hamiltonian describing the Heisenberg magnet without altering any of the physical symmetries. We have shown that electron fractionalization is definitely possible once charge fluctuations are incorporated into the description.

\section{X. Conclusion and Discussion}

\subsection{A. Summary}

The primary focus of this paper was to explore the possibility of electron fractionalization in strongly correlated electron systems in spatial dimension greater than one, and in the presence of time reversal symmetry. We based our discussion on a particular class of microscopic models designed to capture the physics essential to the cuprates, although our description of fractionalization is more general. Starting from these models, we developed a new gauge theory of strongly correlated systems consisting of charge e, spin-zero bosons (the “chargons”) and charge zero, spin $1/2$ fermions (the “spinons”), both minimally coupled to a fluctuating Z_2 gauge field. Remarkably, the spin-sector of the theory at half filling and in the absence of charge fluctuations, is formally identical to a spin one-half Heisenberg antiferromagnet. In this limit the Z_2 gauge field enforces the constraint that the spinon number on each site is odd - physically equivalent to the single occupancy constraint, imposed with additional unneeded redundancy in earlier $U(1)$ gauge theory formulations of the Heisenberg model.

Charge fluctuations, however, are naturally incorporated into our Z_2 gauge theory, and when they become large the theory describes a $d_{x^2-y^2}$ superconductor. Analysis of the theory in the intermediate region reveals that there are two qualitatively different routes for the evolution from the antiferromagnet to the superconductor. One route is through conventional insulating phases in which fluctuations of the Z_2 gauge field confines together the chargon and the spinon, leaving only the electron in the spectrum. But a more interesting possibility takes one through phases in which the electron is fractionalized, and the chargons and spinons exist as deconfined excitations. With $d_{x^2-y^2}$ pairing, this fractionalized insulator is the nodal liquid \cite{220}, with gapless spinon excitations at four points of the Brillouin zone. It seems likely that the ultimate transition from the insulating phases to the $d_{x^2-y^2}$ superconductor occurs close to the boundary between the confined and deconfined insulating phases. Thus, which of these two qualitatively different routes is realized in any particular experimental system could depend sensitively on microscopic details.

In addition to the chargons and spinons, the $2d$ nodal liquid supports Ising-like point excitations - the “visons” - which correspond to vortices in the Z_2 gauge field. These gapped vision excitations play a central role in our analysis of fractionalization, as becomes clear upon passing to a dual description in terms of $\hbar c/2e$ BCS vortices (of a conventional superconductor) and the spinons. In this dual framework, the nodal liquid can be accessed by a
pairing and condensation of the $hc/2e$ vortices, as emphasized in earlier work \[9,10\]. This reveals that the vison excitations are simply the remnant of the unpaired $hc/2e$ vortices which survive in the insulating nodal liquid.

The utility of the vison excitations goes far beyond giving a simple description of the nodal liquid. Indeed, the pure Z_2 gauge theory in $2+1$ space-time dimensions is dual to the global $2+1$ dimensional Ising model - and the Ising spins are simply the vison creation operators. Remarkably, an unusual Berry’s phase term in the Z_2 gauge theory corresponds simply to frustration in the dual Ising model, with full frustration at half-filling. The fully frustrated quantum Ising model arose in earlier work by Sachdev and coworkers \[16,17\] in their analysis of frustrated magnets. Ordering the dual Ising model by condensation of the visons, generally will break translational symmetry and lead to conventional confined insulating phases such as the spin-Peierls phase. In three spatial dimensions ($3d$), the visons become loop-like excitations, and are closely related to vortex-line excitations which occur in a conventional superconductor. Surprisingly, this implies that a $3d$ fractionalized insulator “survives” at finite temperature, being separated from the high temperature regime by a finite temperature phase transition. As in a conventional superconductor, the $3d$ fractionalized insulator confines $hc/2e$ monopole excitations even at non-zero temperature.

Within the Z_2 gauge theory approach, a conventional superconductor is described as a condensate of charge e chargons. A superconducting phase involving condensation of chargon pairs (i.e Cooper pairs) without condensation of single chargons was shown to exist - this has several exotic properties distinguishing it from the conventional superconductor.

B. Experiments

We close with a very brief discussion of some of the experimental signatures of electron fractionalization. As we will see, experimental detection of fractionalization may be quite subtle. Further theoretical understanding of fractionalized phases leading to detailed experimental predictions are clearly called for. Our discussion will necessarily be brief.

1. **Two dimensional nodal liquid**

 Earlier work on the nodal liquid \[21,3\] outlined a number of experimental signatures of the two-dimensional nodal liquid, and we have little to add here. As pointed out in the earlier papers, perhaps the most telling indication will be in angle resolved photoemission (ARPES) which directly measures the electron spectral function as a function of the momentum k, and frequency ω. As the electron is fractionalized into the chargon and the spinon in the nodal liquid, its spectral function will not have a sharp quasiparticle peak even at zero temperature. Note that bound states of the chargon and the spinon (which could lead to sharp spectral features) are not expected here at low energies as the spinons are gapless.

2. **SC^***

 We have discussed the basic physics of the exotic superconductor SC^* obtained by condensing chargon pairs in Section \[VI\]. There are several qualitative experimental distinctions between this phase and the conventional superconductor which we now briefly discuss. The most striking is again in the electron spectral function as measured in ARPES. As discussed in Section \[VI\], the electron decays into a spinon and an Ising part of the charge - the “ison” excitation. Thus, we expect that the electron spectral function does not have a sharp quasiparticle peak in the SC^* phase. Again, since the isons are massive excitations while the spinons are gapless, bound states of the two are generally not expected at low energies. The presence of gapped ison excitations would also affect the thermodynamics, and contribute to the thermal conductivity at some intermediate temperatures. However, these signatures are likely to be quite subtle. A striking theoretical feature of SC^* is that the conventional BCS $hc/2e$ vortices are splintered into pieces - the $U(1)$ “vorton” carrying the circulating electrical currents, and the Z_2 vison. Since the spinons do not have a long-range statistical interaction with the $hc/2e$ vortex, it is tempting to speculate that the structure of the core states in such a vorton would be qualitatively different from that of an $hc/2e$ vortex in a conventional superconductor.

3. **Three dimensional effects**

 In striking contrast to a two dimensional nodal liquid, a genuinely three dimensional nodal liquid has a finite temperature phase transition associated with the unbinding of vison loops. This phase transition could lead to observable singularities in the measured properties of the system. But due to the highly anisotropic nature of the cuprates, it is perhaps more natural to speculate that a fractionalized phase would consist of decoupled $2d$ systems, with a confinement of spinons within each layer. Clarification of such interlayer confinement physics will be necessary in order to disentangle the subtle interlayer behavior of the cuprate materials, both in the normal and superconducting phases.

 We are grateful to Phil Anderson, Leon Balents, Tom Banks, Eduardo Fradkin, Doug Scalapino and R. Shankar for insightful discussions, and V. Ashvin for useful comments on the manuscript. We would particularly
like to thank Subir Sachdev for many helpful comments and his explanations of Z_2 gauge theories in the context of frustrated large N magnets. Thanks are due the Aspen Center of Physics where some of this work was carried out. This research was generously supported by the NSF under Grants DMR-97-04005, DMR-95-28378 and PHY94-07194.

APPENDIX A: PATH INTEGRAL

In this Appendix we derive a path integral expression for the partition function of the spinon-chargon Hamiltonian. A crucial role is played by the constraint on the Hilbert space, which naturally introduces an Z_2 gauge field.

To this end, we work with fermionic coherent states built from the spinon operators, f_α and f_α^\dagger, which are defined in the standard fashion:

$$|f_\alpha\rangle = e^{-f_\alpha f_\alpha^\dagger}|0\rangle,$$

(A1)

$$\langle f_\alpha | = \langle 0 | e^{f_\alpha f_\alpha^\dagger} ,$$

(A2)

where the spinon operators are denoted with “hats”, and f_α and f_α^\dagger are Grassmann numbers. The bra and ket states denoted with a “0”, are fermionic fock states with no spinons present. Here we have suppressed the dependence of the fermion operators and Grassman fields on the spatial coordinate, r. In the charge sector of the theory we choose a basis of states diagonal in the phase ϕ of the chargon field, denoted $|\phi\rangle$.

The partition function in Eqn. (39) can then be expressed as

$$Z = \int df_\alpha df_\alpha^\dagger \int_0^{2\pi} d\phi e^{-\bar f_\alpha f_\alpha \langle -\bar f_\alpha^\dagger \phi | (e^{-\epsilon H} P)^M | f_\alpha \phi \rangle},$$

(A3)

with $\epsilon = \beta/M$ and P the projection operator defined in Eqn. (39). Inserting the resolution of the identity between each time slice gives,

$$Z = \prod_{\tau=1}^{M} \int df_\tau df_\tau^\dagger d\phi_\tau e^{-\bar f_\tau f_\tau \langle -\bar f_\tau^\dagger \phi_\tau | (e^{-\epsilon H} P)^M | f_\tau \phi_\tau \rangle} \mathcal{M}_\tau ,$$

(A4)

with matrix elements

$$\mathcal{M}_\tau = \langle \bar f_\tau^\dagger \phi_\tau | e^{-\epsilon H} P | f_\tau \phi_{\tau-1} \rangle ,$$

(A5)

and appropriate boundary conditions on the fields: $f_{M+1} \equiv -f_1$ and $\phi_0 \equiv \phi_M$.

The matrix elements can be readily evaluated for small ϵ by inserting a complete set of states diagonal in the chargon number, N. Using the definition of the projection operator in Eqn. (39) gives,

$$\mathcal{M}_\tau = \frac{1}{2} \sum_{\sigma_\tau = \pm 1} \sum_{\sigma_{\tau-1} = -\infty}^{\infty} e^{iN_\tau [\phi_\tau - \phi_{\tau-1} + \frac{\pi}{2} (1 - \sigma_\tau) \tau]} e^{\bar f_\tau \phi_{\tau} f_\tau} E_\tau, $$

(A6)

with

$$E_\tau = e^{-\epsilon H(N_\tau \phi_\tau, \bar f_\tau \phi_{\tau})}.$$

(A7)

Upon making the change of variables in the Grassman functional integral,

$$\sigma_\tau f_\tau \rightarrow f_\tau,$$

(A8)

the full partition function can finally be re-expressed as,

$$Z = \int \prod_{\tau=1}^{M} df_\tau df_\tau^\dagger d\phi_\tau \sum_{N_\tau = -\infty}^{\infty} \sum_{\sigma_\tau = \pm 1} e^{-S},$$

(A9)

with,

$$S = S_f^f + S_f^\phi + \epsilon \sum_{\tau=1}^{M} H(N_\tau, \phi_\tau, \bar f_\tau f_\tau).$$

(A10)

with

$$S_f^f = \sum_{\tau=1}^{M} \langle \bar f_\tau (\sigma_{\tau+1} f_{\tau+1} - f_\tau) \rangle$$

(A11)

and

$$S_f^\phi = -\frac{J}{2} \sum_{\tau=1}^{M} N_\tau [\phi_\tau - \phi_{\tau-1} + \frac{\pi}{2} (1 - \sigma_\tau)].$$

(A12)

Throughout, we have suppressed the explicit r and α subscripts on the fields, displaying only the time-slice dependences.

APPENDIX B: Z_2 GAUGE THEORY WITH $D_{\chi^2-\gamma^2}$ PAIRING

In this Appendix, we will provide the outline of a microscopic derivation of the Z_2 gauge theory in the presence of $d_{\chi^2-\gamma^2}$ pairing correlations. We begin with the Hubbard-type Hamiltonian Eqn. (32) discussed in Section I:

$$H = H_0 + H_J + H_\Delta + H_u .$$

(B1)

The crucial difference with the s-wave case is in the structure of the “pairing” term H_Δ.

We now follow exactly the same strategy as in the s-wave case, defining chargon and spinon operators. A path integral representation of the partition function is readily set up with the main difference being in the pairing term which becomes
\begin{align}
S_\Delta &= \epsilon \sum_{<rr'>,\tau} \Delta_{rr'} (b^*_r b_{r'} + c.c) B_{rr'}, \\
B_{rr'} &= \Delta_{rr'} (f_{r1} f_{r'1} - (1-\eta_1) + c.c).
\end{align}

We have suppressed the \(\tau \) index on all fields. It will be convenient to use a slightly different decoupling of the \(H_J \) term. We write
\begin{align}
e^{-S_J} &= \int [d\chi_{rr'} d\chi'_{rr'} d\eta_{rr'} d\eta'_{rr'}] e^{-S_{hs}}, \\
S_{hs} &= S_{hs}[\chi] + S_{hs}[\eta], \\
S_{hs}[\chi] &= \epsilon \sum_{<rr'>,\tau} J [2|\chi_{rr'}|^2 - (\chi_{rr'} f_{rr'} \eta_{rr'} + c.c)], \\
S_{hs}[\eta] &= \epsilon \sum_{<rr'>,\tau} J [2|\eta_{rr'}|^2 + (\eta_{rr'} a_{rr'} (f_{r1} f_{r'1} - f_{r1} f_{r'1}) + c.c)].
\end{align}

Here \(a_{rr'} = +1 \) for bonds along the \(x \)-direction, and equals \(-1\) for bonds along the \(y \)-direction. Note that \(S_{hs}[\chi] \) is the same as before. This decoupling of the spin-spin interaction is standardly used in the \(SU(2) \) gauge theory formulations of the \(t-J \) model. We emphasize though that our formulation has, as we will show, only an \(Z_2 \) gauge symmetry. We now shift the two Hubbard-Stratonovich terms:
\begin{align}
\chi_{rr'} &\rightarrow \chi_{rr'} - \frac{J}{\Delta} b^*_r b_{r'}, \\
\eta_{rr'} &\rightarrow \eta_{rr'} - \frac{\Delta}{J} (b^*_r b_{r'} + c.c).
\end{align}

The shift of \(\chi \) is as before, and eliminates the spinon-chargon interaction coming from rewriting the electron hopping term. The shift of \(\eta \) eliminates the pairing term. The net spatial part of the action is then,
\begin{align}
S_r &= \epsilon \sum_{<rr'>} 2J (|\chi_{rr'}|^2 + |\eta_{rr'}|^2) + S_{cr} + S_{sr} + S_{sr}', \\
S_{cr} &= -\epsilon \sum_{<rr'>} J (2|\chi_{rr'}|^2 + 2\Delta (\eta_{rr'} + \eta'_{rr'})) b^*_r b_{r'} + c.c., \\
S_{sr} &= -\epsilon \sum_{<rr'>} J \chi_{rr'} f_{rr'} \eta_{rr'} + c.c., \\
S_{sr}' &= \eta_{rr'} \Delta_{rr'} (f_{r1} f_{r'1} - f_{r1} f_{r'1}) + c.c.
\end{align}

The shift in \(\eta \) also generates a “Cooper pair” hopping term \(\cos (2\phi_r - 2\phi_{r'}) \) with a negative hopping amplitude \(\text{order } \Delta^2/J \). This is not expected to be important for the issues of fractionalization that we primarily wish to discuss. So we will for the most part drop it.

The \(\chi, \eta \) integrals may be done by saddle point - a uniform, real saddle point solution \(<\chi_{rr'}> = \chi_0, <\eta_{rr'}> = \eta_0 \) breaks the \(Z_2 \) gauge symmetry. Parametrizing the fluctuations about it by \(\chi_{rr'} = \chi_0 \sigma_{ij}, \eta_{rr'} = \eta_0 \sigma_{ij} \) as before, we arrive at the Ising gauge theory appropriate for the \(d_{xy} - yz \) superconductor.

\section*{APPENDIX C: ISING SELF-DUALITY}

In this Appendix, we will review the self-duality of the \(Z_2 \) gauge theory with matter fields in 2 + 1 dimensions. As a limiting case, we recover the duality of the pure \(Z_2 \) gauge theory to the global Ising model. The theory is defined by the lattice action
\begin{align}
S[s, \sigma] &= S_s + S_{\sigma}, \\
S_s &= -J \sum_{i,j} s_i \sigma_{ij} s_j, \\
S_{\sigma} &= -K \sum_{\Box, \Box} \sigma_{ij}.
\end{align}

The constants \(J, K \) are assumed to be positive. The indices \(i,j \) label the sites of a three dimensional cubic lattice. It is convenient to first rewrite the \(s_i \sigma_{ij} s_j \) term on each bond using the following identity:
\begin{align}
e^{J s_i \sigma_{ij} s_j} &= A \sum_{n_{ij},=0,1} \exp \left[2J n_{ij} \right] \\
&+ \frac{i \pi}{2} n_{ij} (s_i - s_j + 1 - \sigma_{ij}) \right].
\end{align}

Here \(\text{tanh} (J_d) = e^{-2J} \), and \(A = \frac{1}{\sqrt{1-e^{-2J}}} \). From now on, we will drop the constant \(A \) as it just contributes to an overall multiplicative constant to the partition function. The \(n_{ij} \) take the values 0, 1. Upon using this identity for every bond, and doing the sum over \(s_i \), we get
\begin{align}
&\exp (-S_s) = T_{r_{\sigma_{ij}}} T_{n_{ij}} \left(\prod_i \cos \left(\frac{\pi}{2} (\bar{\Delta} \bar{n}) \right) \right) \\
&\exp \left(2J_d \sum_{ij} n_{ij} + \sum_i i \frac{\pi}{2} n_{ij} (1 - \sigma_{ij}) \right).
\end{align}

Here \(\bar{\Delta}, \bar{n} \) is the lattice divergence of the link variable \(n \).

We now notice that the cosine can be written as
\begin{align}
\cos \left(\frac{\pi}{2} (\bar{\Delta} \bar{n}) \right) &= (-1)^{\bar{\Delta} \bar{n}} \delta \left((-1)^{\bar{\Delta} \bar{n}}, 1 \right),
\end{align}

where \(\delta (m, n) \) is the Kronecker delta function for two integers \(m, n \). The term multiplying the delta function is a total derivative that contributes zero on summing over all sites - we will therefore drop it. Note that the delta function imposes conservation modulo 2 of the link variable \(n_{ij} \) at every site. This conservation can be made more explicit by defining a \(Z_2 \) current \(\alpha \):
\begin{align}
\alpha_{ij} &= (-1)^{n_{ij}}.
\end{align}

We now solve the current conservation condition by writing the \(Z_2 \) current \(\alpha \) on any link as the flux of a dual \(Z_2 \)
The gauge field μ through the plaquette of the dual lattice pierced by this link:

$$\alpha_{ij} = (-1)^{n_{ij}} = \prod_{\Box} \mu_{ij}. \quad (C10)$$

The n_{ij} are understood to be defined on the links of the dual lattice, and the plaquette product for the μ is around the appropriate plaquette of the dual lattice. Note that this is directly analogous to the standard duality transformation of the XY model.

We next solve for the n_{ij} in terms of the μ_{ij}:

$$n_{ij} = \frac{1 - \prod_{\Box} \mu_{ij}}{2}. \quad (C11)$$

The n_{ij} may now be eliminated from the action in favor of the μ_{ij}. The result (after dropping overall multiplicative constants) is the following identity

$$\sum_{s_i} e^{J \sum_{s_i} s_i \sigma_{s_i}} = \sum_{\mu} \exp(-S_\mu - S_{CS}), \quad \text{(C12)}$$

$$S_\mu = J_d \sum_{\Box} \prod_{\Box} \mu_{ij}, \quad \text{(C13)}$$

$$S_{CS} = \sum_{<ij>} i\frac{\pi}{4} \left(1 - \prod_{\Box} \mu\right)(1 - \sigma_{ij}). \quad \text{(C14)}$$

The last term has a structure similar to a Chern-Simons term, but for the group Z_2. It’s exponential is actually invariant under $\sigma \leftrightarrow \mu$. This can be seen as follows. Write

$$e^{-S_{CS}} = \prod_{<ij>} \left(\prod_{\Box} \mu \right)^{(1-\sigma_{ij})},$$

$$= \prod_{<ij>} e^{i\frac{\pi}{4} \sum_{<ij>} (\Delta \times (1-\mu))(1-\sigma_{ij})}. \quad \text{(C16)}$$

In the last equation, $\Delta \times \mu$ is the lattice curl of μ on the plaquette of the dual lattice pierced by $<ij>$. If we now perform a lattice integration by parts, we get

$$\exp\left(\sum_{<ij>} -i\frac{\pi}{4} (1 - \mu_{ij}) (\Delta \times (1 - \sigma))\right) \quad \text{(C17)}$$

$$= \exp\left(-\sum_{<ij>} i\frac{\pi}{4} \left(1 - \prod_{\Box} \sigma\right)(1 - \mu_{ij})\right), \quad \text{(C18)}$$

where now the sum is over links $<ij>$ of the dual lattice.

The full partition function can then be written as

$$Z = Tr_{\sigma,\mu} \exp(-S_\sigma - S_\mu - S_{CS}). \quad \text{(C19)}$$

The duality of the full action is now apparent. In particular, the action is invariant under the exchange $\sigma \leftrightarrow \mu$, $J_d \leftrightarrow K$. To make the duality even more explicit, we again use the identity Eqn. 332 to write

$$\sum_{\sigma} \exp(-S_\sigma - S_{CS}) = \sum_{v_i} \exp\left(K_d \sum_{ij} v_i \mu_{ij} v_j\right), \quad \text{(C20)}$$

where $v_i = \pm 1$ and \(tanh(K_d) = e^{-2K}\). The partition function now becomes

$$Z = Tr_{\tau,\mu} e^{K_d \sum_{ij} v_i \mu_{ij} v_j + J_d \sum_{\Box} \prod_{\Box} \mu_{ij}}, \quad \text{(C21)}$$

which is exactly of the same form as in terms of the original variables (s_i, σ_{ij}), but with the dual couplings (J_d, K_d), thus establishing the self-duality of the theory.

As a special case, consider the limit when $J = 0$. Then the action in Eqn. 31 is that of the pure Z_2 gauge theory. Under the duality transformation, we now get the form Eqn. 22 but with the dual coupling $J_d = \infty$. This means that the fluctuations of the dual gauge field μ are frozen - we may choose a gauge in which $\mu_{ij} = 1$ on every link. The dual action then simply reduces to that of a global Ising model for the v_i with the dual coupling K_d.

APPENDIX D: DUALITY OF THE MODEL WITH COMBINED $U(1)$ AND Z_2 INVARIANCES

In this Appendix, we will perform a duality transformation on the chargon-spinon action $S = S_c + S_s + S_\beta$ derived in Section III to work instead with vortex variables instead of the chargons. For simplicity, we will restrict ourselves to situations with an integer number of electrons per unit cell. In this case, the Berry phase term S_β is independent of thechargon phase field ϕ_i. In Section IV, we will provide the generalization necessary to handle non-integer number of electrons per unit cell. All of our transformations will focus entirely on the term in the action involving the chargon variables. This is simply a chargon hopping term:

$$S_c = -\sum_{<ij>} \sigma_{ij} (t_e b_i^* b_j + \text{c.c.}), \quad \text{(D1)}$$

$$= -\sum_{<ij>} 2t_e \cos \left(\phi_i - \phi_j + \frac{\pi}{2}(1 - \sigma_{ij})\right). \quad \text{(D2)}$$

Note that in the absence of σ_{ij}, this is just the action for the three dimensional XY model. The duality transformation for the 3DXY model is standard - here we will generalize it to include the Z_2 gauge field σ_{ij}.

Consider the partition function obtained by integrating over the chargon fields in the above action:

$$Z_{hol}[\sigma] = \int_0^{2\pi} \prod_i d\phi_i e^{-S_c}. \quad \text{(D3)}$$
As with the duality transformation of the XY model, it will be convenient to work with the Villain form of the action

$$S[\phi, J, \sigma] = \sum_{\langle ij \rangle} \kappa J_{ij}^2 / 2 + i J_{ij} (\phi_i - \phi_j + \frac{\pi}{2} (1 - \sigma_{ij})), $$

(D4)

where J_{ij} are integer valued fields that live on the links of the lattice, and are to be summed over in the partition function. As usual, this is strictly justified only in the limit $t_c \ll 1$ when $t_c = \exp(-\kappa / 2)$, though we do not expect any modifications to the physics by relaxing this assumption. The J_{ij} have the interpretation of being the total conserved electrical current on any link. This can be made more explicit by performing the integrals over ϕ_i which imposes the current conservation condition

$$\Delta \cdot J = 0.$$

(D5)

The symbol on the left hand side is the lattice divergence of the link variable J_{ij}. We proceed, as usual, by solving the current conservation condition by writing

$$2\pi J_{ij} = \Delta \times \vec{a}.$$

(D6)

The quantity \vec{a} lives on the links of the dual lattice, and is constrained to be 2π times an integer. The right hand side is the lattice curl of this variable \vec{a} on the plaquette of the dual lattice pierced by the link $<ij>$. The charge action now takes the form

$$S[a, \sigma] = \sum_\square \frac{\kappa}{8\pi^2} (\Delta \times a)^2 + \frac{i}{4} \sum_{\langle ij \rangle} (\Delta \times a)(1 - \sigma_{ij}).$$

(D7)

Here the first term is a sum over plaquettes of the dual lattice, and the lattice curl in the second term is on the plaquette pierced by the link $<ij>$. Now note that as $\sigma_{ij} = \pm 1$, the exponential of the second term can be written

$$\prod_{\langle ij \rangle} (-1)^{\frac{\Delta \times a}{2\pi^2}} (\frac{1 - \sigma_{ij}}{2}).$$

It is useful now to separate the integer $\frac{2\pi}{a}$ into its even and odd part by writing

$$a = 2\pi (2A + s),$$

(D8)

where A is an integer and $s = 0, 1$. Then, we have

$$\prod_{\langle ij \rangle} (-1)^{\frac{\Delta \times a}{2\pi^2}} (\frac{1 - \sigma_{ij}}{2}) = \prod_{\langle ij \rangle} \prod_\square (-1)^{s},$$

(D9)

where the product inside the brackets denotes the product over the links of the plaquette of the dual lattice pierced by $<ij>$. We now define

$$\mu_{ij} \equiv (-1)^s = 1 - 2s.$$

(D10)

Note that μ_{ij} lives on the links of the dual lattice and takes values ± 1. The product above can then be written

$$\exp \left(\frac{i}{4} \left(1 - \prod_\square \mu \right) (1 - \sigma_{ij}) \right).$$

(D11)

Note that μ satisfies

$$\prod_\square \mu = (-1)^{J_{ij}},$$

(D12)

where the plaquette product on the left hand side is on the plaquette of the dual lattice penetrated by the link $<ij>$. Thus, the conserved Z_2 charge current determines the flux of μ.

The action now becomes

$$S = \sum_\square \frac{\kappa}{8\pi^2} \left(\Delta \times \left(2A + \frac{1 - \mu}{2} \right) \right)^2 + S_{CS},$$

(D13)

$$S_{CS} = i \sum_{\langle ij \rangle} \frac{\pi}{4} \left(1 - \prod_\square \mu \right) (1 - \sigma_{ij}).$$

(D14)

At this stage, A is constrained to be integer-valued. We impose this integer constraint on A softly by adding a term

$$-t_v \sum_{\langle ij \rangle} \cos(2\pi A_{ij}).$$

(D15)

Here the sum is over the links of the dual lattice. The action can now be rewritten in terms of $a = 2\pi (2A + \frac{1 - \mu}{2})$:

$$S = S_v + S_a + S_{CS},$$

(D16)

$$S_v = -t_v \sum_{\langle ij \rangle} \mu_{ij} \cos \left(\frac{a_{ij}}{2} \right),$$

(D17)

$$S_a = \sum_\square \frac{\kappa}{8\pi^2} (\Delta \times a)^2.$$

(D18)

It is convenient to extract a “matter field” from the a_{ij} by letting

$$a_{ij} \to a_{ij} + 2(\theta_i - \theta_j).$$

(D19)

This changes S_v to

$$S_v = -t_v \sum_{\langle ij \rangle} \mu_{ij} \cos \left(\theta_i - \theta_j + \frac{a_{ij}}{2} \right),$$

(D20)

but leaves all the other terms unchanged. The field $e^{i\theta_i}$ may be interpreted as an $U(1)$ vortex creation operator. Several symmetries of the action above are apparent. It is invariant under a local $U(1)$ gauge transformation.
\[\theta_i \rightarrow \theta_i + \Lambda_i, \quad (D21) \]
\[a_{ij} \rightarrow a_{ij} - \frac{\Lambda_i - \Lambda_j}{2}, \quad (D22) \]

This is standard in the dual vortex description of XY models in three dimensions. However the action has an additional \(Z_2\) gauge symmetry under which
\[e^{i\theta_i} \rightarrow e^{i\theta_i}, \quad (D23) \]
\[\mu_{ij} \rightarrow \epsilon_i \epsilon_j \mu_{ij}, \quad (D24) \]
with \(\epsilon_i = \pm 1\). This \(Z_2\) gauge symmetry is actually dual to the one in the chargon-spinon action. Note that the action describes the vortices \(e^{i\theta_i}\) minimally coupled to the fluctuating \(U(1)\) gauge field \(a\), and also to the fluctuating \(Z_2\) gauge field \(\mu\). The field \(\mu\) is in turn coupled to the field \(\sigma\) by the term \(S_{CS}\).

This completes the duality transformation to the vortex description. Adding together the spinon action and the Berry phase term \(S_B\) gives the full dual action of Section 5.