OBJECTIVE—Specific alleles of non-HLA genes INS, CTLA-4, and PTPN22 have been associated with type 1 diabetes. We examined whether some of these alleles influence development of islet autoimmunity or progression from persistent islet autoimmunity to type 1 diabetes in children with high-risk HLA-DR,DQ genotypes.

RESEARCH DESIGN AND METHODS—Since 1993, the Diabetes Autoimmunity Study in the Young (DAISY) has followed 2,449 young children carrying HLA-DR,DQ genotypes associated with type 1 diabetes. Of those, 112 have developed islet autoimmunity (persistent autoantibodies to insulin, GAD65, and/or IA-2), and 47 of these have progressed to type 1 diabetes. The influence of polymorphisms of INS (−23Hph1), CTLA-4(T17A), and PTPN22(R620W) on development of persistent islet autoimmunity and progression to type 1 diabetes was evaluated by parametric models and by survival analyses.

RESULTS—PTPN22(R620W) allele T was associated with development of persistent islet autoimmunity (hazard ratio 1.83 [95% CI 1.27–2.63]) controlling for ethnicity, presence of HLA-DR3/4,DQB1*0302, and having a first-degree relative with type 1 diabetes. Survival analyses showed a significantly higher risk of persistent islet autoimmunity by age 10 years for the TT genotype (27.3%) than for the CT or CC genotype (7.9 and 5.3%, respectively). Cumulative risk of persistent islet autoimmunity was slightly higher (P = 0.002) for the INS(−23Hph1) AA genotype (7.8%) than for the AT or TT genotype (4.2 and 6.4% risk by age 10 years, respectively).

CONCLUSIONS—Whereas the HLA-DR3/4,DQB1*0302 genotype had a dramatic influence on both development of islet autoimmunity and progression to type 1 diabetes, the PTPN22(R620W) T allele significantly influences progression to persistent islet autoimmunity in the DAISY cohort. Diabetes 58:1028–1033, 2009

RESEARCH DESIGN AND METHODS

Since 1993, DAISY has followed two cohorts of young children at increased risk of type 1 diabetes: the siblings and offspring cohort (SOC) of relatives of type 1 diabetes patients and the general population newborn cohort (NEC). The latter consists of children expressing type 1 diabetes susceptibility HLA-DR,DQ genotypes identified through screening of over 31,000 newborns at St. Josephs Hospital, Denver, Colorado. The details of screening and follow-up have been previously published (14). Children in this cohort have been followed from birth to an average age of 7.0 years (range 5 months to 19.7 years). Informed consent was obtained from the parents of each study participant.
subject. The Colorado Multiple Institutional Review Board approved all study protocols.

Islet autoantibodies. Measurement of biochemical islet autoantibodies was performed in the laboratory of G.S.E. at the Barbara Davis Center. We used radioimmunoassays for autoantibodies to insulin, GAD65, and IA2. The combined GAD65 autoantibody (GAA) and IA2 autoantibody (ICAI522A) (or IA2A) radioassay was done in duplicates on a 96-well filtration plate, and radioactivity was counted on a TopCount 96-well plate beta-counter using methods previously described (15). The interassay coefficients of variation are 10 and 5% (n = 50) for GAA and ICA512AA, respectively. The upper limits of normal nondiabetic sera (0.032 for GAA, 0.049 for ICA512AA) were established as the 99th percentile of 108 healthy controls. In the 2005 Diabetes Autoantibody Standardization Program (DASP) workshop (16), the sensitivity and specificity were 76 and 99%, respectively, for GAA and 64 and 100%, respectively, for ICA512AA. Insulin autoantibodies were measured by a micro–insulin autoantibody (IAA) assay. An index was determined based on the difference in counts per minute between wells without and with cold insulin, with a positivity criterion of 0.010, which was the 99th percentile of the difference in counts per minute between wells without and with cold micro–insulin autoantibody (IAA) assay. An index was determined based on normal nondiabetic sera (0.032 for GAA, 0.049 for ICA512AA) were established on two consecutive visits 3–6 months apart and progressing to type 1 diabetes, defined by a random blood glucose measurement >200 mg/dl and/or an A1C >6.3% in the presence of diabetes symptoms.

Statistical analysis. All analyses were performed in SAS version 9.1. (SAS Institute, Cary, NC). The SNPs were in Hardy-Weinberg equilibrium for both affected and unaffected subjects. Ongoing recruitment since 1994 and continuing follow-up have resulted in variable lengths of follow-up, producing right-censored data. Some of the affected children were positive for autoantibodies on their first blood draw, producing left-censored data. Multiple imputation was used to generate time of autoantibodies status change for the left-censored subjects in order to perform an analysis on progression to type 1 diabetes. Two outcomes were analyzed, i.e., time to persistent islet autoimmunity and time from persistent islet autoimmunity to type 1 diabetes. The level of significance was set at 0.05.

RESULTS

Of the 2,449 children included in this analysis, 112 have developed persistent islet autoimmunity, i.e., one or more islet autoantibody (IAA, GAA, or IA2A), in samples collected on two consecutive visits 3–6 months apart and positive at the last visit; 47 of these children have progressed to type 1 diabetes, defined by a random blood glucose measurement >200 mg/dl and/or an A1C >6.3% in the presence of diabetes symptoms.

TABLE 1	Characteristics of the DAISY cohort			
	Affected (n = 112)	Unaffected (n = 2,337)	Unadjusted HR (95% CI)	P
†HLA-DR3/4 DQB1*0302	47 (42.0)	443 (19.0)	3.10 (2.13–4.51)	<0.001
First-degree relative with type 1 diabetes	74 (66.1)	1,004 (43.0)	2.03 (1.37–3.00)	<0.001
Sex (female)	62 (55.4)	1,106 (47.3)	1.38 (0.95–2.00)	0.093
†Non-Hispanic white	96 (85.7)	1,667 (71.8)	1.89 (1.11–3.21)	0.018
‡Follow-up time (years)	4.85 ± 3.6	7.11 ± 4.4		

Data are n (%) or means ± SD unless otherwise indicated. Please note that DAISY cohort is highly enriched in HLA DR3/4 DQB1*0302 genotypes. †HLA data missing for 4 children and ethnicity data missing for 16 children. ‡For affected, age of the child at the first of two consecutive positive visits; for unaffected, age of the child at the last visit. Boldface represents statistical significance.

TABLE 2	Association of three SNPs with conversion to persistent islet autoimmunity and progression from persistent islet autoimmunity to type 1 diabetes			
Risk allele	Unaffected (n = 2,337)	Affected (n = 112)	Unadjusted HR (95% CI)	P
PTPN22 (T)	37 (16.8)	176 (78.6)	1.81 (1.26–2.59)	0.001
INS (A)	176 (78.6)	1,500 (65.3)	1.48 (1.06–2.06)	0.020
CTLA4 (G)	95 (42.8)	1,150 (49.3)	1.11 (0.85–1.46)	0.429
Conversion to persistent islet autoimmunity* (112 cases/2449 subjects in total)				
Adjusted HR (95% CI)	P			
PTPN22 (T)	1.83 (1.27–2.63)	0.001		
INS (A)	1.39 (0.99–1.95)	0.053		
CTLA4 (G)	1.12 (0.86–1.46)	0.415		
Progression to type 1 diabetes† (47 cases/112 IA subjects)				
Adjusted HR (95% CI)	P			
PTPN22 (T)	0.98 (0.50–1.93)	0.962		
INS (A)	1.34 (0.72–2.52)	0.353		
CTLA4 (G)	0.54 (0.33–0.88)	0.014		

Data are n (%) unless otherwise indicated. *Parametric model controlled for HLA-DR3/4, DQB1*0302, ethnicity, sex, and first-degree relative with type 1 diabetes. †Additionally controlled for age at onset of islet autoimmunity. ‡PTPN22 (R620W) data missing for 5, CTLA4 (T17A) for 14, and INS23Hph1 for 23 children. Boldface represents statistical significance. IA, islet autoimmunity.
carried the risk alleles for *PTPN22* and *INS* with, respectively, unadjusted HR 1.81 (95% CI 1.26–2.59, \(P = 0.001 \)) and 1.48 (1.06–2.06, \(P = 0.019 \)).

Cumulative incidence of the development of persistent islet autoimmunity and progression from islet autoimmunity to type 1 diabetes by genotypes for each SNP was estimated by survival analyses. The *PTPN22* (R620W) TT genotype was associated with a significantly (\(P = 0.002 \)) higher incidence of persistent islet autoimmunity (27.3% by age 10 years) than the CT (7.9%) or CC (5.3%) genotype (Fig. 1A). Cumulative incidence of progression to type 1 diabetes was also high in children with the *PTPN22* TT genotype, with three of four children progressing to type 1 diabetes. However, these results are not statistically significant, likely due to the small sample size (Fig. 1B).

Analysis stratified by the presence of the *HLA-DR3/4,DQB1*0302 genotype revealed the highest risk of islet autoimmunity in children carrying *HLA-DR3/4,DQB1*0302 and *PTPN22* TT genotypes (33.8% by the age of 10), although this is not statistically different from the risk in
The next highest risk genotypes were HLA-non-DR3/4,DQB1*0302, PTPN22 TT and HLA-DR3/4,DQB1*0302, PTPN22 CT, with the risks of islet autoimmunity by age 10 years being 25.0 and 24.8%, respectively (Fig. 2A).

The INS genotype appeared to modulate slightly ($P = 0.02$) the cumulative incidence of persistent islet autoimmunity (Fig. 2B). Within 10 years of detection of persistent islet autoimmunity, 7.8% of children with the INS AA genotype developed type 1 diabetes compared with 4.2 and 6.4% of those with AT and TT, respectively. There were no differences in the rate of progression from persis-
tent islet autoimmunity to type 1 diabetes by the \textit{INS-}23Hph1 genotypes (data not shown). Survival analyses of development of persistent islet autoimmunity and progression to type 1 diabetes showed no differences by \textit{CTLA-4} genotypes (data not shown).

We further analyzed the associations of these three SNPs with development of persistent islet autoimmunity and progression from persistent islet autoimmunity to type 1 diabetes in a multivariate parametric model controlling for the presence of the \textit{HLA-DR3/4,DQB1*0302} genotype, ethnicity, sex, family history of type 1 diabetes, and age at detection of islet autoimmunity (Table 2). The presence of the \textit{PTPN22} T allele was a significant independent predictor of the development of persistent islet autoimmunity (HR 1.83 [95% CI 1.27–2.63], \(P = 0.001 \)). However, the \textit{PTPN22} T allele did not independently predict progression from islet autoimmunity to type 1 diabetes (0.98 [0.50–1.93], \(P = 0.96 \)). The \textit{INS} genotype did not independently predict islet autoimmunity or type 1 diabetes. The \textit{CTLA-4} G allele, normally associated with type 1 diabetes risk, did not independently predict islet autoimmunity but was negatively associated with progression from islet autoimmunity to type 1 diabetes (0.54 [0.33–0.88], \(P = 0.01 \)). There was no interaction between the effect of the \textit{HLA-DR3/4,DQB1*0302} genotype and either \textit{PTPN22}, \textit{INS}, or \textit{CTLA-4} genotypes for the risk of islet autoimmunity or type 1 diabetes (data not shown).

We also performed analyses by cohort, i.e., including 1,371 children from the NEC and 1,078 children from the SOC (supplemental Tables 1 and 2, available in an online appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db08-1179/DC1). Affected NEC subjects with persistent islet autoimmunity more often carried the risk alleles for \textit{INS} and \textit{CTLA4} with, respectively, unadjusted HR 1.91 [95% CI 1.08–3.36, \(P = 0.03 \)] and 1.58 (1.02–2.45, \(P = 0.04 \)), whereas affected SOC subjects with persistent islet autoimmunity more often carried the risk allele for \textit{PTPN22} with unadjusted HR 1.95 (1.27–3.00, \(P = 0.002 \)). In a multivariate parametric model, the \textit{PTPN22} T allele was associated with progression to persistent islet autoimmunity in SOC subjects (HR 2.17 [95% CI 1.41–3.33], \(P < 0.001 \)), whereas the \textit{CTLA4} G allele was an independent predictor of the development of persistent islet autoimmunity in NEC subjects (1.57 [1.01–2.44], \(P = 0.046 \)). The \textit{CTLA-4} G allele, normally associated with type 1 diabetes risk, was negatively associated with progression from islet autoimmunity to type 1 diabetes in SOC subjects only (0.41 [0.22–0.78], \(P = 0.006 \)). However, these results should be interpreted with caution due to the small sample size.

DISCUSSION

Whereas the associations between the \textit{INS}, \textit{CTLA-4}, and \textit{PTPN22} polymorphisms and type 1 diabetes are widely accepted, this study is the first comprehensive analysis of the effects of these genes on the age-specific incidence of persistent islet autoimmunity that precedes diagnosis of diabetes in all patients but may not necessarily lead to clinical diabetes. The distinction between the risk factors for islet autoimmunity versus type 1 diabetes is important because of potentially different mechanisms of gene-environment and gene-gene interaction in triggering islet autoimmunity versus epitope spreading and progressive loss of β-cell mass leading to overt diabetes. The results confirm the pivotal role of HLA-DR,DQ in both triggering islet autoimmunity and progression to type 1 diabetes. Whereas the \textit{PTPN22} 1858 T allele may play a role at both stages leading to type 1 diabetes (18) and predict faster loss of the β-cell function afterward (19), in our population it appears to have an effect independent of the HLA-DR,DQ at the initial stage of islet autoimmunity development. \textit{PTPN22} (R620W) results in a missense mutation that changes an arginine at position 620 to a tryptophan and, thereby, abrogates the ability of the molecule to bind to the signaling molecule Csk (3,20). The LYP-Csk complex downregulates T-cell receptor signaling, and the diabetes-associated variant is reported to result in greater inhibition of T-cell receptor signaling (8,21,22). Consistent with an early and general effect on immune function is the finding that the minor tryptophan-encoding allele is associated with a series of autoimmune disorders including rheumatoid arthritis, systemic lupus erythematosus, Hashimoto thyroiditis, and Graves’ disease (23,7,24). Hermann et al. (18) showed evidence that \textit{PTPN22} (R620W) regulates type 1 diabetes-specific autoimmunity and strongly affects the progression from preclinical to clinical diabetes in islet cell antibody–positive individuals.

Interestingly, when doing analyses separately by cohort, the \textit{PTPN22} T allele is a strong independent predictor of the development of persistent islet autoimmunity in the SOC cohort, whereas the \textit{CTLA-4} G allele is associated with progression to persistent islet autoimmunity in the NEC cohort. Different genetic loci influence the development of persistent islet autoimmunity and type 1 diabetes in individuals who have a family history of type 1 diabetes, and \textit{PTPN22} seems to be one of the genetic factors responsible for increased type 1 diabetes risk in relatives of type 1 diabetic subjects.

The number of subjects carrying the \textit{PTPN22} TT genotype is small, especially when analyzing progression from persistent islet autoimmunity to type 1 diabetes. Although three of four such children progress to type 1 diabetes, these results should be interpreted with caution due to the small sample size. This finding requires replication in independent populations.

Alternately, this study provides little support for a major independent effect of the \textit{INS(-23Hph1)} or the \textit{CTLA-4} (T17A) polymorphisms on triggering islet autoimmunity or progression to type 1 diabetes. The insulin gene has been consistently associated with type 1 diabetes in almost all the populations that have been tested, with an odds ratio (OR) between 2 and 3 (1,5). We found a weak association of \textit{INS} AA genotype with persistent islet autoimmunity, but not with progression to type 1 diabetes, after adjusting for the effect of the \textit{HLA-DR3/4,DQB1*0302} genotype and demographic factors. The adjustment or smaller sample size may account for weaker than expected effect (25,26). Although \textit{INS} is a known factor associated with type 1 diabetes risk, its genetic effect seems to be rather weak overall and is therefore unlikely to help in identifying individuals at risk of type 1 diabetes in the general population. The OR for \textit{CTLA-4} association with type 1 diabetes is normally not greater than 1.5 (2,27). In this study, the decreased HR for progression from islet autoimmunity to type 1 diabetes with allele G (normally associated with risk) is likely a spurious finding. Overall, \textit{CTLA-4} appears to be a stronger determinant of Graves’ disease than of type 1 diabetes (27).

In conclusion, the \textit{PTPN22} gene seems to have a large influence on the development of early islet autoimmunity associated with early progression to type 1 diabetes and may be useful in disease prediction using genetic markers.
With more accurate prediction, intervention can be provided for individuals at greatest risk.

ACKNOWLEDGMENTS

This research was supported by National Institutes of Health Grants R37 DK32493 (DAISY) and P30 DK57516 (DERC Clinical Investigation Core), A.K.S. was supported by the O’Brien Fellowship Foundation.

No potential conflicts of interest relevant to this article were reported.

REFERENCES

1. Bell GI, Horita S, Karam JH: A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33:176–183, 1984

2. Marron MT, Raffel LJ, Garchon HJ, Jacob CO, Serrano-Rios M, Martinez A: Kavvoura FK, Ioannidis JP: CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes: genome-wide association study. Diabetes 56:1275–1282, 2007

3. Bottini N, Musuneci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M, MacMurray J, Meloni GP, Lucarelli P, Pellecchia M, Eisenbarth GS, Comings D, Mustelin T: A functional variant of lymphoid tyrosine phosphatase is associated with type 1 diabetes. Nat Genet 36:337–338, 2004

4. Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 471:617–675, 2007

5. Barratt BJ, Payne F, Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JM, Dunger DB, Nutland S, Stevens S, Hicker LS, Todd JA: Type 1 diabetes subgroup with a female bias is characterized by failure in tolerance to thyroid peroxidase at an early age and a strong association with the cytotoxic T-lymphocyte-associated antigen-4 gene. Diabetologia 50:741–746, 2007

6. Torn C, Mueller PW, Schlosser M, Bonifacio E, Bingley PJ: Diabetes Antibody Standardization Program: evaluation of assays for autoantibodies to glutamic acid decarboxylase and islet antigen-2. Diabetologia 51:846–852, 2008

7. Hermann R, Lipponen K, Kivinemi M, Kakko T, Veijola R, Simell O, Knip M, Ionescu-Tirgoviste C, Rodine P, Graham RR, Ardlie KG, Gaffney PM, Moser KL, Begovich AB, Gregersen PK, Behrens TW: Genetic association of the lymphoid tyrosine phosphatase is associated by IDDM1/HLA for development of Type 1 diabetes. Diabetes 51:3396–3401, 2002

8. Petrone A, Spoletini M, Zampetti S, Capizzi M, Zavarella S, Osborn J, Pozzilli P, Buzzetti R: The PTPN22 620W variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 49:1198–1208, 2006

9. Petrone A, Spoletini M, Zampetti S, Capizzi M, Zavarella S, Osborn J, Pozzilli P, Buzzetti R: The PTPN22 620W gene variant in type 1 diabetes is associated with reduced residual β-cell function and worse metabolic control. Diabetes Care 31:1214–1218, 2008

10. Cloutier JF, Veillette A: Cooperative inhibition of T-cell antigen receptor signaling by a complex between a kinase and a phosphatase. J Exp Med 189:111–121, 1999

11. McKie R, Aregacha A, Onengut-Gumuscu S, Greenbaum C, Concanon P, Bingley PJ, Tchrakian E: Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Autoimmun 17:4704–4710, 2007

12. Aarnio J, Tresad A, Svee P, Marttila J, Oling V, Simell O, Knip M, Korner A, Madacsy L, Vasarhegyi B, Ionescu-Tirgoviste C, Hermann R: Reduced CD4(+)/CD8(+) T cell activation in children with type 1 diabetes carrying the PTPN22 Lys620Trp variant. J Autoimmun 31:13–21, 2008

13. Criswell LA, Pfeiffer KA, Lam RF, Gonzales B, Novitzko J, Kern M, Moser KL, Begovich AB, Carlton VE, Li W, Lee AT, Ortmann W, Behrens TW, Gregersen PK: Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 76:561–571, 2005

14. Lee AT, Li W, Liew A, Bombardier C, Weissman M, Massarotti EM, Kent J, Wolfe F, Begovich AB, Gregersen PK: The PTPN22 620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun 6:129–133, 2005

15. Hermann R, Laine AP, Veijola R, Vahlberg T, Sinell T, Laitinen I, Simell O, Moser KL, Ionescu-Tirgoviste C, Laitinen I, Joffe E: The effect of HLA class II, insulin and CTLA4 gene regions on the development of humoral beta cell autoimmunity. Diabetologia 48:1766–1775, 2005

16. Walter M, Albert E, Conrad M, Keller E, Hummel M, Bingley PJ, Todd JA, Ziegler AG, Bonifacio E: IDDM2/insulin VNTR modifies risk conferred by IDDM1/HLA for development of Type 1 diabetes and associated autoimmunity. Diabetes 46:712–720, 2003

17. Ueda H, Howson JM, Esposito I, Heward J, Snoek H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I, Payne F, Smyth D, Lowe C, Twells RC, Howlett S, Healy B, Nutland S, Kivinemi M, Kakko T, Veijola R, Simell O, Moser KL, Ionescu-Tirgoviste C, Savage DA, Maxwell AP, Carson DJ, Patterson CC, Franklin JA, Clayton DG, Peterson LB, Wicker LS, Todd JA: Gough SC: Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511, 2003