Multiple solutions for a Neumann system involving subquadratic nonlinearities

Alexandru Kristály
Department of Economics, Babeş-Bolyai University, Str. Teodor Mihali, nr. 58-60, 400591 Cluj-Napoca, Romania

Dušan Repovš
Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

Abstract
In this paper we consider the model semilinear Neumann system
\[
\begin{align*}
-\Delta u + a(x)u &= \lambda c(x)F_u(u, v) \quad \text{in } \Omega, \\
-\Delta v + b(x)v &= \lambda c(x)F_v(u, v) \quad \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]
where \(\Omega \subset \mathbb{R}^N \) is a smooth open bounded domain, \(\nu \) denotes the outward unit normal to \(\partial \Omega \), \(\lambda \geq 0 \) is a parameter, \(a, b, c \in L^\infty(\Omega) \setminus \{0\} \), and \(F \in C^1(\mathbb{R}^2, \mathbb{R}) \setminus \{0\} \) is a nonnegative function which is subquadratic at infinity. Two nearby numbers are determined in explicit forms, \(\lambda \) and \(\lambda' \) with \(0 < \lambda < \lambda' \), such that for every \(0 \leq \lambda < \lambda \), system \((N_\lambda)\) has only the trivial pair of solution, while for every \(\lambda > \lambda' \), system \((N_\lambda)\) has at least two distinct nonzero pairs of solutions.

Keywords: Neumann system, subquadratic, nonexistence, multiplicity.

1 Introduction
Let us consider the quasilinear Neumann system
\[
\begin{align*}
-\Delta_p u + a(x)|u|^{p-2}u &= \lambda c(x)F_u(u, v) \quad \text{in } \Omega, \\
-\Delta_q v + b(x)|v|^{q-2}v &= \lambda c(x)F_v(u, v) \quad \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]
where \(p, q > 1; \Omega \subset \mathbb{R}^N \) is a smooth open bounded domain; \(\nu \) denotes the outward unit normal to \(\partial \Omega \); \(a, b, c \in L^\infty(\Omega) \) are some functions; \(\lambda \geq 0 \) is a parameter; and \(F_u \) and \(F_v \) denote the partial derivatives of \(F \in C^1(\mathbb{R}^2, \mathbb{R}) \) with respect to the first and second variables, respectively.

Recently, problem \((N^p,q_\lambda)\) has been considered by several authors. For instance, under suitable assumptions on \(a, b, c \) and \(F \), El Manouni and Kbir Alaoui [5] proved the existence of an interval \(A \subset (0, \infty) \) such that \((N^p,q_\lambda)\) has at least three solutions whenever \(\lambda \in A \) and \(p, q > N \). Lisei and Varga [8] also established the existence of at least three solutions for the system \((N^p,q_\lambda)\) with nonhomogeneous and nonsmooth Neumann boundary conditions. Di Falco [3] proved the

1Research supported by CNCSIS grant PCCE-55/2008 ”Sisteme diferenţiale în analiza nelineară şi aplicaţii”, by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by Slovenian Research Agency grants P1-0292-0101 and J1-2057-0101.
existence of infinitely many solutions for \((N_{\lambda}^{p,q})\) when the nonlinear function \(F\) has a suitable oscillatory behavior. Systems similar to \((N_{\lambda}^{p,q})\) with the Dirichlet boundary conditions were also considered by Afrouzi and Heidarkhani [1, 2], Boccardo and de Figueiredo [3], Heidarkhani and Tian [6], Li and Tang [7], see also references therein.

The aim of the present paper is to describe a new phenomenon for Neumann systems when the nonlinear term has a subquadratic growth. In order to avoid technicalities, instead of the quasilinear system \((N_{\lambda}^{p,q})\), we shall consider the semilinear problem

\[
\begin{aligned}
-\Delta u + a(x)u &= \lambda c(x)F_u(u,v) \quad \text{in } \Omega, \\
-\Delta v + b(x)v &= \lambda c(x)F_v(u,v) \quad \text{in } \Omega, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &= 0 \quad \text{on } \partial \Omega.
\end{aligned}
\]

\((N_{\lambda})\)

We assume that the nonlinear term \(F \in C^1(\mathbb{R}^2, \mathbb{R})\) satisfies the following properties:

\((F_+)\) \(F(s,t) \geq 0\) for every \((s,t) \in \mathbb{R}^2\), \(F(0,0) = 0\), and \(F \not\equiv 0\);

\((F_0)\) \(\lim_{(s,t) \to (0,0)} \frac{F(s,t)}{|s|+|t|} = \lim_{(s,t) \to (0,0)} \frac{F(s,t)}{|s|+|t|} = 0\);

\((F_\infty)\) \(\lim_{|s|+|t| \to \infty} \frac{F(s,t)}{|s|+|t|} = \lim_{|s|+|t| \to \infty} \frac{F(s,t)}{|s|+|t|} = 0\).

Example 1.1 A typical nonlinearity which fulfils hypotheses \((F_+), (F_0)\) and \((F_\infty)\) is \(F(s,t) = \ln(1 + s^2 t^2)\).

We also introduce the set

\[\Pi_+(\Omega) = \{ a \in L^\infty(\Omega) : \text{essinf}_{\Omega} a > 0 \}.\]

For \(a, b, c \in \Pi_+(\Omega)\) and for \(F \in C^1(\mathbb{R}^2, \mathbb{R})\) which fulfils the hypotheses \((F_+), (F_0)\) and \((F_\infty)\), we define the numbers

\[s_F = 2\|c\|_{L^1} \max_{(s,t) \neq (0,0)} \frac{F(s,t)}{\|a\|_{L^1}s^2 + \|b\|_{L^1}t^2}, \quad S_F = \max_{(s,t) \neq (0,0)} \frac{|sF_s(s,t) + tF_t(s,t)|}{\|c/a\|_{L^\infty}^{-1}s^2 + \|c/b\|_{L^\infty}^{-1}t^2}.\]

Note that these numbers are finite, positive and \(S_F \geq s_F\), see Proposition 2.1 (here and in the sequel, \(\| \cdot \|_{L^p}\) denotes the usual norm of the Lebesgue space \(L^p(\Omega), p \in [1, \infty]\)).

Our main result reads as follows.

Theorem 1.1 Let \(F \in C^1(\mathbb{R}^2, \mathbb{R})\) be a function which satisfies \((F_+), (F_0)\) and \((F_\infty)\), and \(a, b, c \in \Pi_+(\Omega)\). Then, the following statements hold.

(i) For every \(0 \leq \lambda < S_F^{-1}\), system \((N_{\lambda})\) has only the trivial pair of solution.

(ii) For every \(\lambda > S_F^{-1}\), system \((N_{\lambda})\) has at least two distinct, nontrivial pairs of solutions \((u_\lambda^i, v_\lambda^i) \in H^1(\Omega)^2, \ i \in \{1, 2\}\).
Remark 1.1 (a) A natural question arises which is still open: how many solutions exist for \((N_\lambda)\) when \(\lambda \in [S_F^{-1}, s_F^{-1}]\)? Numerical experiments show that \(s_F\) and \(S_F\) are usually not far from each other, although their origins are independent. For instance, if \(a = b = c\), and \(F\) is from Example 1.1 we have \(s_F \approx 0.8046\) and \(S_F = 1\).

(b) Assumptions \((F_+), (F_0)\) and \((F_\infty)\) imply that there exists \(c > 0\) such that

\[
0 \leq F(s, t) \leq c(s^2 + t^2) \quad \text{for all } (s, t) \in \mathbb{R}^2,
\]

i.e., \(F\) has a subquadratic growth. Consequently, Theorem 1.1 completes the results of several papers where \(F\) fulfills the Ambrosetti-Rabinowitz condition, i.e., there exist \(\theta > 2\) and \(r > 0\) such that

\[
0 < \theta F(s, t) \leq sF_s(s, t) + tF_t(s, t) \quad \text{for all } |s|, |t| \geq r.
\]

Indeed, (1.2) implies that for some \(C_1, C_2 > 0\), one has \(F(s, t) \geq C_1(|s|^\theta + |t|^\theta)\) for all \(|s|, |t| > C_2\).

The next section contains some auxiliary notions and results, while in Section 3 we prove Theorem 1.1. First, a direct calculation proves (i), while a very recent three critical points result of Ricceri [9] provides the proof of (ii).

2 Preliminaries

A solution for \((N_\lambda)\) is a pair \((u, v) \in H^1(\Omega)^2\) such that

\[
\begin{aligned}
\int_\Omega (\nabla u \nabla \phi + a(x) u \phi) dx &= \lambda \int_\Omega c(x) F_u(u, v) \phi dx \quad \text{for all } \phi \in H^1(\Omega), \\
\int_\Omega (\nabla v \nabla \psi + b(x) v \psi) dx &= \lambda \int_\Omega c(x) F_v(u, v) \psi dx \quad \text{for all } \psi \in H^1(\Omega).
\end{aligned}
\]

Let \(a, b, c \in \Pi_+(\Omega)\). We associate to the system \((N_\lambda)\) the energy functional \(I_\lambda : H^1(\Omega)^2 \rightarrow \mathbb{R}\) defined by

\[
I_\lambda(u, v) = \frac{1}{2} (\|u\|_a^2 + \|v\|_b^2) - \lambda \mathcal{F}(u, v),
\]

where

\[
\|u\|_a = \left(\int_\Omega |\nabla u|^2 + a(x) u^2 \right)^{1/2} ; \|v\|_b = \left(\int_\Omega |\nabla v|^2 + b(x) v^2 \right)^{1/2},
\]

and

\[
\mathcal{F}(u, v) = \int_\Omega c(x) F(u, v).
\]

It is clear that \(\|\cdot\|_a\) and \(\|\cdot\|_b\) are equivalent to the usual norm on \(H^1(\Omega)\). Note that if \(F \in C^1(\mathbb{R}^2, \mathbb{R})\) verifies the hypotheses \((F_0)\) and \((F_\infty)\) (see also relation (1.1)), the functional \(I_\lambda\) is well-defined, of class \(C^1\) on \(H^1(\Omega)^2\) and its critical points are exactly the solutions for \((N_\lambda)\). Since \(F_s(0, 0) = F_t(0, 0) = 0\) from \((F_0)\), \((0, 0)\) is a solution of \((N_\lambda)\) for every \(\lambda \geq 0\).

In order to prove Theorem 1.1 (ii), we must find critical points for \(I_\lambda\). In order to do this, we recall the following Ricceri-type three critical point theorem. First, we need the following notion: if \(X\) is a Banach space, we denote by \(\mathcal{W}_X\) the class of those functionals \(E : X \rightarrow \mathbb{R}\) that possess the property that if \(\{u_n\}\) is a sequence in \(X\) converging weakly to \(u \in X\) and \(\liminf_n E(u_n) \leq E(u)\) then \(\{u_n\}\) has a subsequence strongly converging to \(u\).
Theorem 2.1 [9, Theorem 2] Let X be a separable and reflexive real Banach space, let $E_1 : X \to \mathbb{R}$ be a coercive, sequentially weakly lower semicontinuous C^1 functional belonging to \mathcal{W}_X, bounded on each bounded subset of X and whose derivative admits a continuous inverse on X^*; and $E_2 : X \to \mathbb{R}$ a C^1 functional with a compact derivative. Assume that E_1 has a strict local minimum u_0 with $E_1(u_0) = E_2(u_0) = 0$. Setting the numbers
\[
\tau = \max \left\{ 0, \limsup_{\|u\| \to \infty} \frac{E_2(u)}{E_1(u)}, \limsup_{u \to u_0} \frac{E_2(u)}{E_1(u)} \right\},
\] (2.2)
\[
\chi = \sup_{E_1(u) > 0} \frac{E_2(u)}{E_1(u)},
\] (2.3)
assume that $\tau < \chi$.

Then, for each compact interval $[a, b] \subset (1/\chi, 1/\tau)$ (with the conventions $1/0 = \infty$ and $1/\infty = 0$) there exists $\kappa > 0$ with the following property: for every $\lambda \in [a, b]$ and every C^1 functional $E_3 : X \to \mathbb{R}$ with a compact derivative, there exists $\delta > 0$ such that for each $\theta \in [0, \delta]$, the equation
\[
E_1'(u) - \lambda E_2'(u) - \theta E_3'(u) = 0
\]
admits at least three solutions in X having norm less than κ.

We conclude this section with an observation which involves the constants s_F and S_F.

Proposition 2.1 Let $F \in C^1(\mathbb{R}^2, \mathbb{R})$ be a function which satisfies (\mathbf{F}_+), (\mathbf{F}_0) and (\mathbf{F}_∞), and $a, b, c \in \Pi_+(\Omega)$. Then the numbers s_F and S_F are finite, positive and $S_F \geq s_F$.

Proof. It follows by (\mathbf{F}_0) and (\mathbf{F}_∞) and by the continuity of the functions $(s, t) \mapsto \frac{F_0(s, t)}{|s| + |t|}$, $(s, t) \mapsto F_1(s, t)$ away from $(0, 0)$, that there exists $M > 0$ such that
\[
|F_0(s, t)| \leq M(|s| + |t|) \quad \text{and} \quad |F_1(s, t)| \leq M(|s| + |t|) \quad \text{for all } (s, t) \in \mathbb{R}^2.
\]
Consequently, a standard mean value theorem together with (\mathbf{F}_+) implies that
\[
0 \leq F(s, t) \leq 2M(s^2 + t^2) \quad \text{for all } (s, t) \in \mathbb{R}^2.
\] (2.4)
We now prove that
\[
\lim_{(s, t) \to (0, 0)} \frac{F(s, t)}{s^2 + t^2} = 0 \quad \text{and} \quad \lim_{|s| + |t| \to \infty} \frac{F(s, t)}{s^2 + t^2} = 0.
\] (2.5)
By (\mathbf{F}_0) and (\mathbf{F}_∞), for every $\varepsilon > 0$ there exists $\delta_\varepsilon \in (0, 1)$ such that for every $(s, t) \in \mathbb{R}^2$ with $|s| + |t| \in (0, \delta_\varepsilon) \cup (\delta_\varepsilon^{-1}, \infty)$, one has
\[
\frac{|F_0(s, t)|}{|s| + |t|} < \frac{\varepsilon}{4} \quad \text{and} \quad \frac{|F_1(s, t)|}{|s| + |t|} < \frac{\varepsilon}{4}.
\] (2.6)
By (2.6) and the mean value theorem, for every $(s, t) \in \mathbb{R}^2$ with $|s| + |t| \in (0, \delta_\varepsilon)$, we have
\[
F(s, t) = F(s, t) - F(0, t) + F(0, t) - F(0, 0) \leq \frac{\varepsilon}{2}(s^2 + t^2)
\]
which gives the first limit in (2.5). Now, for every \((s, t) \in \mathbb{R}^2\) with \(|s| + |t| > \delta^\varepsilon_1 \max\{1, \sqrt{8M/\varepsilon}\}\), by using (2.4) and (2.6), we have

\[
F(s, t) = F(s, t) - F \left(\frac{\delta^\varepsilon_1}{|s| + |t|} s, t\right) + F \left(\frac{\delta^\varepsilon_1}{|s| + |t|} s, t\right) - F \left(\frac{\delta^\varepsilon_1}{|s| + |t|} s, \frac{\delta^\varepsilon_1}{|s| + |t|} t\right)
\]

\[
+ F \left(\frac{\delta^\varepsilon_1}{|s| + |t|} s, \frac{\delta^\varepsilon_1}{|s| + |t|} t\right)
\]

\[
\leq \frac{\varepsilon}{4} (|s| + |t|)^2 + 2M\delta^\varepsilon_2
\]

\[
\leq \varepsilon (s^2 + t^2),
\]

which leads us to the second limit in (2.5).

The facts above show that the numbers \(s_F\) and \(S_F\) are finite. Moreover, \(s_F > 0\). We now prove that \(S_F \geq s_F\). To do this, let \((s_0, t_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}\) be a maximum point of the function \((s, t) \mapsto \frac{F(s, t)}{\|a\|_{L^1} s^2 + \|b\|_{L^1} t^2}\). In particular, its partial derivatives vanishes at \((s_0, t_0)\), yielding

\[
F_s(s_0, t_0)(\|a\|_{L^1} s_0^2 + \|b\|_{L^1} t_0^2) = 2\|a\|_{L^1} s_0 F(s_0, t_0);
\]

\[
F_t(s_0, t_0)(\|a\|_{L^1} s_0^2 + \|b\|_{L^1} t_0^2) = 2\|b\|_{L^1} t_0 F(s_0, t_0).
\]

From the two relations above we obtain that

\[
s_0 F_s(s_0, t_0) + t_0 F_t(s_0, t_0) = 2F(s_0, t_0).
\]

On the other hand, since \(a, b, c \in \Pi_+(\Omega)\), we have that

\[
\|c\|_{L^1} = \int_{\Omega} c(x) dx = \int_{\Omega} \frac{c(x)}{a(x)} a(x) dx \leq \left\| \frac{c}{a} \right\|_{L^\infty} \int_{\Omega} a(x) dx = \left\| \frac{c}{a} \right\|_{L^\infty} \|a\|_{L^1},
\]

thus \(\|c/a\|_{L^\infty}^{1/2} \leq \|a\|_{L^1}/\|c\|_{L^1}\) and in a similar way \(\|c/b\|_{L^\infty}^{1/2} \leq \|b\|_{L^1}/\|c\|_{L^1}\). Combining these inequalities with the above argument, we conclude that \(S_F \geq s_F\). \(\square\)

3 Proof of Theorem 1.1

In this section we assume that the assumptions of Theorem 1.1 are fulfilled.

Proof of Theorem 1.1 (i). Let \((u, v) \in H^1(\Omega)^2\) be a solution of \((N_\lambda)\). Choosing \(\phi = u\) and \(\psi = v\) in (2.1), we obtain that

\[
\|u\|^2_a + \|v\|^2_b = \int_{\Omega} (|\nabla u|^2 + a(x) u^2 + |\nabla v|^2 + b(x) v^2)
\]

\[
= \lambda \int_{\Omega} c(x)(F_u(u, v)u + F_v(u, v)v)
\]

\[
\leq \lambda S_F \int_{\Omega} c(x)(\|c/a\|_{L^\infty}^{1/2} u^2 + \|c/b\|_{L^\infty}^{1/2} v^2)
\]

\[
\leq \lambda S_F \int_{\Omega} (a(x) u^2 + b(x) v^2)
\]

\[
\leq \lambda S_F (\|u\|^2_a + \|v\|^2_b).
\]

Now, if \(0 \leq \lambda < S_F^{-1}\), we necessarily have that \((u, v) = (0, 0)\), which concludes the proof.
Proof of Theorem 1.1 (ii). In Theorem 2.1 we choose $X = H^1(\Omega)^2$ endowed with the norm $\| (u,v) \| = \sqrt{\| u \|_a^2 + \| v \|_b^2}$, and $E_1, E_2 : H^1(\Omega)^2 \to \mathbb{R}$ defined by

$$E_1(u,v) = \frac{1}{2} \|(u,v)\|^2 \quad \text{and} \quad E_2(u,v) = F(u,v).$$

It is clear that both E_1 and E_2 are C^1 functionals and $I_\lambda = E_1 - \lambda E_2$. It is also a standard fact that E_1 is a coercive, sequentially weakly lower semicontinuous functional which belongs to $\mathcal{W}_{H^1(\Omega)^2}$, bounded on each bounded subset of $H^1(\Omega)^2$, and its derivative admits a continuous inverse on $(H^1(\Omega)^2)^*$. Moreover, E_2 has a compact derivative since $H^1(\Omega) \hookrightarrow L^p(\Omega)$ is a compact embedding for every $p \in (2,2^*)$.

Now, we prove that the functional $(u,v) \mapsto \frac{E_2(u,v)}{E_1(u,v)}$ has similar properties as the function $(s,t) \mapsto \frac{F(s,t)}{s^2 + t^2}$. More precisely, we shall prove that

$$\lim_{\|(u,v)\| \to 0} \frac{E_2(u)}{E_1(u)} = \lim_{\|(u,v)\| \to \infty} \frac{E_2(u)}{E_1(u)} = 0. \quad (3.1)$$

First, relation (2.5) implies that for every $\varepsilon > 0$ there exists $\delta_\varepsilon \in (0,1)$ such that for every $(s,t) \in \mathbb{R}^2$ with $|s| + |t| \in (0,\delta_\varepsilon) \cup (\delta_\varepsilon^{-1}, \infty)$, one has

$$0 \leq \frac{F(s,t)}{s^2 + t^2} < \frac{\varepsilon}{4 \max\{\|c/a\|_{L^\infty}, \|c/b\|_{L^\infty}\}}. \quad (3.2)$$

Fix $p \in (2,2^*)$. Note that the continuous function $(s,t) \mapsto \frac{F(s,t)}{|s|^p + |t|^p}$ is bounded on the set $\{(s,t) \in \mathbb{R}^2 : |s| + |t| \in [\delta_\varepsilon, \delta_\varepsilon^{-1}]\}$. Therefore, for some $m_\varepsilon > 0$, we have that in particular

$$0 \leq F(s,t) \leq \frac{\varepsilon}{4 \max\{\|c/a\|_{L^\infty}, \|c/b\|_{L^\infty}\}} (s^2 + t^2) + m_\varepsilon (|s|^p + |t|^p) \quad \text{for all} \quad (s,t) \in \mathbb{R}^2.$$

Therefore, for each $(u,v) \in H^1(\Omega)^2$, we get

$$0 \leq E_2(u,v) = \int_\Omega c(x)F(u,v)
\leq \int_\Omega c(x) \left[\frac{\varepsilon}{4 \max\{\|c/a\|_{L^\infty}, \|c/b\|_{L^\infty}\}} (u^2 + v^2) + m_\varepsilon (|u|^p + |v|^p) \right]
\leq \int_\Omega \left[\frac{\varepsilon}{4} (a(x)u^2 + b(x)v^2) + m_\varepsilon c(x)(|u|^p + |v|^p) \right]
\leq \frac{\varepsilon}{4} \| (u,v) \|^2 + m_\varepsilon \| c \|_{L^\infty} S_p^0 (\| u \|_a^p + \| v \|_b^p)
\leq \frac{\varepsilon}{4} \| (u,v) \|^2 + m_\varepsilon \| c \|_{L^\infty} S_p^0 \| (u,v) \|^p,$$

where $S_l > 0$ is the best constant in the inequality $\| u \|_{L^l} \leq S_l \min\{\| u \|_a, \| u \|_b\}$ for every $u \in H^1(\Omega)$, $l \in (1,2^*)$ (we used the fact that the function $\alpha \mapsto (s^\alpha + t^\alpha)^{\frac{1}{\alpha}}$ is decreasing, $s,t \geq 0$). Consequently, for every $(u,v) \neq (0,0)$, we obtain

$$0 \leq \frac{E_2(u,v)}{E_1(u,v)} \leq \frac{\varepsilon}{2} + 2m_\varepsilon \| c \|_{L^\infty} S_p^0 \| (u,v) \|^{p-2}.\]
Since \(p > 2 \) and \(\varepsilon > 0 \) is arbitrarily small when \((u, v) \to 0 \), we obtain the first limit from \((3.1)\). Now, we fix \(r \in (1, 2) \). The continuous function \((s, t) \mapsto \frac{F(s, t)}{|s|^r + |t|^r} \) is bounded on the set \(\{(s, t) \in \mathbb{R}^2 : |s| + |t| \leq \delta_\varepsilon, \delta_\varepsilon^{-1}\} \), where \(\delta_\varepsilon \in (0, 1) \) is from \((3.2)\). Combining this fact with \((3.2)\), one can find a number \(M_\varepsilon \) such that

\[
0 \leq F(s, t) \leq \frac{\varepsilon}{4} \max\{\|c/a\|_{L^\infty}, \|c/b\|_{L^\infty}\} (s^2 + t^2) + M_\varepsilon (|s|^r + |t|^r) \quad \text{for all } (s, t) \in \mathbb{R}^2.
\]

The Hölder inequality and a similar calculation as above show that

\[
0 \leq E_2(u, v) \leq \frac{\varepsilon}{4} \| (u, v) \|^2 + 2^{1-r} M_\varepsilon \| c \|_{L^\infty} S_r^\varepsilon \| (u, v) \|^r.
\]

For every \((u, v) \neq (0, 0) \), we have that

\[
0 \leq \frac{E_2(u, v)}{E_1(u, v)} \leq \frac{\varepsilon}{2} + 2^{2-r} M_\varepsilon \| c \|_{L^\infty} S_r^\varepsilon \| (u, v) \|^{r-2}.
\]

Due to the arbitrariness of \(\varepsilon > 0 \) and \(r \in (1, 2) \), by letting the limit \(\| (u, v) \| \to \infty \), we obtain the second relation from \((3.1)\).

Note that \(E_1 \) has a strict global minimum \((u_0, v_0) = (0, 0) \), and \(E_1(0, 0) = E_2(0, 0) = 0 \). The definition of the number \(\tau \) in Theorem \(2.1\) see \((2.2)\), and the limits in \((3.1)\) imply that \(\tau = 0 \). Furthermore, since \(H^1(\Omega) \) contains the constant functions on \(\Omega \), keeping the notation from \((2.3)\), we obtain

\[
\chi = \sup_{E_1(u, v) > 0} \frac{E_2(u, v)}{E_1(u, v)} \geq 2\|c\|_{L^1} \max_{(s, t) \neq (0, 0)} \frac{F(s, t)}{\|a\|_{L^1} s^2 + \|b\|_{L^1} t^2} = s_F.
\]

Therefore, applying Theorem \(2.1\) (with \(E_3 \equiv 0 \)), we obtain that in particular for every \(\lambda \in (s_F^{-1}, \infty) \), the equation \(I_\lambda'(u, v) \equiv E_1'(u, v) - \lambda E_2'(u, v) = 0 \) admits at least three distinct pairs of solutions in \(H^1(\Omega)^2 \). Due to condition \((\text{F}_3)\), system \((N_\lambda)\) has the solution \((0, 0)\). Therefore, for every \(\lambda > s_F^{-1} \), the system \((N_\lambda)\) has at least two distinct, nontrivial pairs of solutions, which concludes the proof.

Remark 3.1 The conclusion of Theorem \(2.1\) gives a much more precise information about the Neumann system \((N_\lambda)\); namely, one can see that \((N_\lambda)\) is stable with respect to small perturbations. To be more precise, let us consider the perturbed system

\[
\begin{cases}
-\Delta u + a(x)u = \lambda c(x) F_u(u, v) + \mu d(x) G_u(u, v) & \text{in } \Omega, \\
-\Delta v + b(x)v = \lambda c(x) F_v(u, v) + \mu d(x) G_v(u, v) & \text{in } \Omega, \\
\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0 & \text{on } \partial \Omega.
\end{cases} \quad (N_{\lambda, \mu})
\]

where \(\mu \in \mathbb{R} \), \(d \in L^\infty(\Omega) \), and \(G \in C^1(\mathbb{R}^2, \mathbb{R}) \) is a function such that for some \(c > 0 \) and \(\frac{1}{p} < \frac{2^* - 1}{2} \),

\[
\max\{|G_s(s, t)|, |G_t(s, t)|\} \leq c(1 + |s|^p + |t|^p) \quad \text{for all } (s, t) \in \mathbb{R}^2.
\]

One can prove in a standard manner that \(E_3 : H^1(\Omega)^2 \to \mathbb{R} \) defined by

\[
E_3(u, v) = \int_{\Omega} d(x) G(u, v) dx,
\]

is of class \(C^1 \) and it has a compact derivative. Thus, we may apply Theorem \(2.1\) in its generality to show that for small enough values of \(\mu \) system \((N_{\lambda, \mu})\) still has three distinct pairs of solutions.
References

[1] G.A. Afrouzi, S. Heidarkhani, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the $(p_1, ..., p_n)$-Laplacian, Nonlinear Analysis 73 (2010), 2594-2602.

[2] G.A. Afrouzi, S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the $(p_1, ..., p_n)$-Laplacian, Nonlinear Analysis 70 (2009), 135-143.

[3] A. G. Di Falco, Infinitely many solutions to the Neuman problem for quasilinear elliptic systems, Matematiche (Catania), 58 (2003), 117–130.

[4] L. Boccardo, G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differ. Equ. Appl. 9 (2002), 309-323.

[5] S. El Manouni, M. Kbiri Alaoui, A result on elliptic systems with Neumann conditions via Ricceri’s three critical points theorem, Nonlinear Analysis 71 (2009), 2343-2348.

[6] S. Heidarkhani, Y. Tian, Multiplicity results for a class of gradient systems depending on two parameters, Nonlinear Analysis 73 (2010), 547-554.

[7] C. Li, C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the (p, q)-Laplacian, Nonlinear Analysis 69 (2008), 3322-3329.

[8] H. Lisei, Cs. Varga, Multiple solutions for gradient elliptic systems with nonsmooth boundary conditions, Mediterranean Journal of Mathematics, in press, DOI: 10.1007/s00009-010-0052-1.

[9] B. Ricceri, A further three critical points theorem, Nonlinear Analysis 71 (2009), 4151-4157.