The Radicals of Hopf Module Algebras *

Shouchuan Zhang
Department of Mathematics, Hunan University
Changsha 410082, P.R.China. E-mail:z9491@yahoo.com.cn

Abstract

The characterization of \(H \)-prime radical is given in many ways. Meantime, the relations between the radical of smash product \(R \# H \) and the \(H \)-radical of Hopf module algebra \(R \) are obtained.

0 Introduction and Preliminaries

In this paper, let \(k \) be a commutative associative ring with unit, \(H \) be an algebra with unit and comultiplication \(\Delta \) (i.e. \(\Delta \) is a linear map: \(H \to H \otimes H \)), \(R \) be an algebra over \(k \) (\(R \) may be without unit) and \(R \) be an \(H \)-module algebra.

We define some necessary concept as follows.

If there exists a linear map \[
\begin{align*}
H \otimes R & \longrightarrow R \\
h \otimes r & \mapsto h \cdot r
\end{align*}
\]
such that \(h \cdot rs = \sum (h_1 \cdot r)(h_2 \cdot s) \) and \(1_H \cdot r = r \) for all \(r, s \in R, h \in H \), then we say that \(H \) weakly acts on \(R \). For any ideal \(I \) of \(R \), set \((I : H) := \{ x \in R | h \cdot x \in I \text{ for all } h \in H \} \).

\(I \) is called an \(H \)-ideal if \(h \cdot I \subseteq I \) for any \(h \in H \). Let \(I_H \) denote the maximal \(H \)-ideal of \(R \) in \(I \). It is clear that \(I_H = (I : H) \). An \(H \)-module algebra \(R \) is called an \(H \)-simple module algebra if \(R \) has no non-trivial \(H \)-ideals and \(R^2 \neq 0 \). \(R \) is said to be \(H \)-semiprime if there are no non-zero nilpotent \(H \)-ideals in \(R \). \(R \) is said to be \(H \)-prime if \(IJ = 0 \) implies \(I = 0 \) or \(J = 0 \) for any \(H \)-ideals \(I \) and \(J \) of \(R \). An \(H \)-ideal \(I \) is called an \(H \)-(semi)prime ideal of \(R \) if \(R/I \) is \(H \)-(semi)prime. \(\{a_n\} \) is called an \(H \)-m-sequence in \(R \) with beginning \(a \) if there exist \(h_n, h'_n \in H \) such that \(a_1 = a \in R \) and \(a_{n+1} = (h_n a_n) b_n (h'_n a_n) \) for any

*This work was supported by the National Natural Science Foundation
natural number n. If every H-m-sequence $\{a_n\}$ with $a_{7,1,1} = a$, there exists a natural number k such that $a_k = 0$, then a is called an H-m-nilpotent element. Set
\[W_H(R) = \{ a \in R \mid a \text{ is an } H$-$m$-nilpotent element} \].

R is called an H-module algebra if the following conditions hold:

(i) R is a unital left H-module (i.e. R is a left H-module and $1_H \cdot a = a$ for any $a \in R$);

(ii) $h \cdot ab = \sum(h_1 \cdot a)(h_2 \cdot b)$ for any $a, b \in R$, $h \in H$, where $\Delta(h) = \sum h_1 \otimes h_2$.

H-module algebra is sometimes called a Hopf module.

If R is an H-module algebra with a unit 1_R, then
\[h \cdot 1_R = \sum_h (h_1 \cdot 1_R)(h_2 S(h_3) \cdot 1_R) \]
\[= \sum_h h_1 \cdot (1_R(S(h_2) \cdot 1_R)) = \sum_h h_1 S(h_2) \cdot 1_R = \epsilon(h)1_R, \]
i.e.
\[h \cdot 1_R = \epsilon(h)1_R \]
for any $h \in H$.

An H-module algebra R is called a unital H-module algebra if R has a unit 1_R such that $h \cdot 1_R = \epsilon(h)1_R$ for any $h \in H$. Therefore, every H-module algebra with unit is a unital H-module algebra. A left R-module M is called an R-H-module if M is also a left unital H-module with $h(am) = \sum(h_1 \cdot a)(h_2 m)$ for all $h \in H, a \in R, m \in M$. An R-H-module M is called an R-H-irreducible module if there are no non-trivial R-H-submodules in M and $RM \neq 0$. An algebra homomorphism $\psi : R \rightarrow R'$ is called an H-homomorphism if $\psi(h \cdot a) = h \cdot \psi(a)$ for any $h \in H, a \in R$. Let r_b, r_j, r_l, r_m denote the Baer radical, the Jacobson radical, the locally nilpotent radical, the Brown-MacCoy radical of algebras respectively. Let $I \triangleleft_H R$ denote that I is an H-ideal of R.

1 The H-special radicals for H-module algebras

J.R. Fisher [7] built up the general theory of H-radicals for H-module algebras. We can easily give the definitions of the H-upper radical and the H-lower radical for H-module algebras as in [11]. In this section, we obtain some properties of H-special radicals for H-module algebras.

Lemma 1.1 (1) If R is an H-module algebra and E is a non-empty subset of R, then $(E) = H \cdot E + R(H \cdot E) + (H \cdot E)R + R(H \cdot E)R$, where (E) denotes the H-ideal generated by E in R.

(2) If B is an H-ideal of R and C is an H-ideal of B, then $(C)^3 \subseteq C$, where (C) denotes the H-ideal generated by C in R.

Proof. It is trivial. \square
Proposition 1.2 (1) \(R \) is \(H \)-semiprime iff \((H \cdot a)R(H \cdot a) = 0\) always implies \(a = 0 \) for any \(a \in R \).

(2) \(R \) is \(H \)-prime iff \((H \cdot a)R(H \cdot b) = 0\) always implies \(a = 0 \) or \(b = 0 \) for any \(a, b \in R \).

Proof. If \(R \) is an \(H \)-prime module algebra and \((H \cdot a)R(H \cdot b) = 0\) for \(a, b \in R \), then \((a)^2(b)^2 = 0\), where \((a)\) and \((b)\) are the \(H \)-ideals generated by \(a \) and \(b \) in \(R \) respectively. Since \(R \) is \(H \)-prime, \((a) = 0 \) or \((b) = 0 \). Conversely, if \(B \) and \(C \) are \(H \)-ideals of \(R \) and \(BC = 0 \), then \((H \cdot a)R(H \cdot b) = 0\) and \(a = 0 \) or \(b = 0 \) for any \(a \in B, b \in C \), which implies that \(B = 0 \) or \(C = 0 \), i.e. \(R \) is an \(H \)-prime module algebra.

Similarly, part (1) holds. \(\Box \)

Definition 1.4 \(\mathcal{K} \) is called an \(H \)-(weakly)special class if

(S1) \(\mathcal{K} \) consists of \(H \)-(semiprime)prime module algebras.

(S2) For any \(R \in \mathcal{K} \), if \(0 \neq I \triangleleft_H R \) then \(I \in \mathcal{K} \).

(S3) If \(R \) is an \(H \)-module algebra and \(B \triangleleft_R R \) with \(B \in \mathcal{K} \), then \(R/B^* \in \mathcal{K} \), where \(B^* \) consists of \(a \in R \) such that \((H \cdot a)B = 0 = B(H \cdot a)\).

It is clear that (S3) may be replaced by one of the following conditions:

(S3') If \(B \) is an essential \(H \)-ideal of \(R \)(i.e. \(B \cap I \neq 0 \) for any non-zero \(H \)-ideal \(I \) of \(R \)) and \(B \in \mathcal{K} \), then \(R \in \mathcal{K} \).

(S3'') If there exists an \(H \)-ideal \(B \) of \(R \) with \(B^* = 0 \) and \(B \in \mathcal{K} \), then \(R \in \mathcal{K} \).

It is easy to check that if \(\mathcal{K} \) is an \(H \)-special class, then \(\mathcal{K} \) is an \(H \)-weakly special class.

Theorem 1.5 If \(\mathcal{K} \) is an \(H \)-weakly special class, then \(r^\mathcal{K}(R) = \cap \{ I \triangleleft_H R \mid R/I \in \mathcal{K} \} \), where \(r^\mathcal{K} \) denotes the \(H \)-upper radical determined by \(\mathcal{K} \).

Proof. If \(I \) is a non-zero \(H \)-ideal of \(R \) and \(I \in \mathcal{K} \), then \(R/I^* \in \mathcal{K} \) by (S3) in Definition 1.4 and \(I \not\in I^* \) by Proposition 1.3. Consequently, it follows from [7, Proposition 5] that

\[
r^\mathcal{K}(R) = \cap \{ I \mid I \text{ is an } H\text{-ideal of } R \text{ and } R/I \in \mathcal{K} \} .
\]

\(\Box \)
In this section, we give the characterization of \(H \)-radical (i.e. if \(R \) is an \(r \)-\(H \)-module algebra and \(B \) is an \(H \)-ideal of \(R \), then so is \(B \)) and any nilpotent \(H \)-module algebra is an \(r \)-\(H \)-module algebra, then \(r \) is called a supernilpotent \(H \)-radical.

Proposition 1.7 \(r \) is a supernilpotent \(H \)-radical, then \(r \) is \(H \)-strongly hereditary, i.e. \(r(I) = r(R) \cap I \) for any \(I \triangleleft_H R \).

Proof. It follows from \([7, \text{Proposition 4}] \). \(\square \)

Theorem 1.8 If \(\mathcal{K} \) is an \(H \)-weakly special class, then \(r^\mathcal{K} \) is a supernilpotent \(H \)-radical.

Proof. Let \(r = r^\mathcal{K} \). Since every non-zero \(H \)-homomorphic image \(R' \) of a nilpotent \(H \)-module algebra \(R \) is nilpotent and is not \(H \)-semiprime, we have that \(R \) is an \(r \)-\(H \)-module algebra by Theorem 1.5. It remains to show that any \(H \)-ideal \(I \) of \(r \)-\(H \)-module algebra \(R \) is an \(r \)-\(H \)-ideal. If \(I \) is not an \(r \)-\(H \)-module algebra, then there exists an \(H \)-ideal \(J \) of \(I \) such that \(0 \neq I/J \in \mathcal{K} \). By (S3), \((R/J)/(I/J)^* \in \mathcal{K} \). Let \(Q = \{ x \in R \mid (H \cdot x)I \subseteq J \) and \(I(H \cdot x) \subseteq J \} \). It is clear that \(J \) and \(Q \) are \(H \)-ideals of \(R \) and \(Q/J = (I/J)^* \). Since \(R/Q \cong (R/J)/(Q/J) = (R/J)/(I/J)^* \) and \(R/Q \) is an \(r \)-\(H \)-module algebra, we have \((R/J)/(I/J)^* \) is an \(r \)-\(H \)-module algebra. Thus \(R/Q = 0 \) and \(I^2 \subseteq J \), which contradicts that \(I/J \) is a non-zero \(H \)-semiprime module algebra. Thus \(I \) is an \(r \)-\(H \)-ideal. \(\square \)

Proposition 1.9 \(R \) is \(H \)-semiprime iff for any \(0 \neq a \in R \), there exists an \(H \)-m-sequence \(\{a_n\} \) in \(R \) with \(a_{7,1,1} = a \) such that \(a_n \neq 0 \) for all \(n \).

Proof. If \(R \) is \(H \)-semiprime, then for any \(0 \neq a \in R \), there exist \(b_1 \in R \), \(h_1 \) and \(h'_1 \in H \) such that \(0 \neq a_2 = (h_1 \cdot a_1)b_1(h'_1 \cdot a_1) \in (H \cdot a_1)R(H \cdot a_1) \) by Proposition 1.2, where \(a_1 = a \). Similarly, for \(0 \neq a_2 \in R \), there exist \(b_2 \in R \) and \(h_2 \) and \(h'_2 \in H \) such that \(0 \neq a_3 = (h_2 \cdot a_2)b_2(h'_2 \cdot a_2) \in (H \cdot a_2)R(H \cdot a_2) \), which implies that there exists an \(H \)-m-sequence \(\{a_n\} \) such that \(a_n \neq 0 \) for any natural number \(n \). Conversely, it is trivial. \(\square \)

2 \(H \)-Baer radical

In this section, we give the characterization of \(H \)-Baer radical (\(H \)-prime radical) in many ways.

Theorem 2.1 We define a property \(r^H_b \) for \(H \)-module algebras as follows: \(R \) is an \(r^H_b \)-\(H \)-module algebra iff every non-zero \(H \)-homomorphic image of \(R \) contains a non-zero nilpotent \(H \)-ideal; then \(r^H_b \) is an \(H \)-radical property.
Proof. It is clear that every H-homomorphic image of $r_{Hb}H$-module algebra is an $r_{Hb}H$-module algebra. If every non-zero H-homomorphic image B of H-module algebra R contains a non-zero $r_{Hb}H$-ideal I, then I contains a non-zero nilpotent H-ideal J. It is clear that (J) is a non-zero nilpotent H-ideal of B, where (J) denotes the H-ideal generated by J in B. Thus R is an $r_{Hb}H$-module algebra. Consequently, r_{Hb} is an H-radical property. \(\square\)

r_{Hb} is called H-prime radical or H-Baer radical.

Theorem 2.2 Let

$$E = \{ R \mid R \text{ is a nilpotent } H \text{-module algebra} \},$$

then $r_E = r_{Hb}$, where r_E denotes the H-lower radical determined by E.

Proof. If R is an $r_{Hb}H$-module algebra, then every non-zero H-homomorphic image B of R contains a non-zero nilpotent H-ideal I. By the definition of the lower H-radical, I is an r_EH-module algebra. Consequently, R is an r_EH-module algebra. Conversely, since every nilpotent H-module algebra is an $r_{Hb}H$-module algebra, $r_E \leq r_{Hb}$. \(\square\)

Proposition 2.3 R is H-semiprime if and only if $r_{Hb}(R) = 0$.

Proof. If R is H-semiprime with $r_{Hb}(R) \neq 0$, then there exists a non-zero nilpotent H-ideal I of $r_{Hb}(R)$. It is clear that H-ideal (I), which the H-ideal generated by I in R, is a non-zero nilpotent H-ideal of R. This contradicts that R is H-semiprime. Thus $r_{Hb}(R) = 0$. Conversely, if R is an H-module algebra with $r_{Hb}(R) = 0$ and there exists a non-zero nilpotent H-ideal I of R, then $I \subseteq r_{Hb}(R)$. We get a contradiction. Thus R is H-semiprime if $r_{Hb}(R) = 0$. \(\square\)

Theorem 2.4 If $K = \{ R \mid R \text{ is an } H \text{-prime module algebra} \}$, then K is an H-special class and $r_{Hb} = r^K$.

Proof. Obviously, $(S1)$ holds. If I is a non-zero H-ideal of an H-prime module algebra R and $BC = 0$ for H-ideals B and C of I, then $(B)^3(C)^3 = 0$ where (B) and (C) denote the H-ideals generated by B and C in R respectively. Since R is H-prime, $(B) = 0$ or $(C) = 0$, i.e. $B = 0$ or $C = 0$. Consequently, $(S2)$ holds. Now we shows that $(S3)$ holds. Let B be an H-prime module algebra and be an H-ideal of R. If $JI \subseteq B$ for H-ideals I and J of R, then $(BJ)(IB) = 0$, where $B^* = \{ x \in R \mid (H \cdot x)B = 0 = B(H \cdot x) \}$. Since B is an H-prime module algebra, $BJ = 0$ or $IB = 0$. Considering I and J are H-ideals, we have that $B(H \cdot J) = 0$ or $(H \cdot I)B = 0$. By Proposition 1.3, $J \subseteq B^*$ or $I \subseteq B^*$, which implies that R/B^* is an H-prime module algebra. Consequently, $(S3)$ holds and so K is an H-special class.
Next we show that $r_{Hb} = r^K$. By Proposition 1.5, $r^K(R) = \cap \{I \mid I$ is an H-ideal of R and $R/I \in K\}$. If R is a nilpotent H-module algebra, then R is an r^K-H-module algebra. It follows from Theorem 2.2 that $r_{Hb} \leq r^K$. Conversely, if $r_{Hb}(R) = 0$, then R is an H-semiprime module algebra by Proposition 2.3. For any $0 \neq a \in R$, there exist $b_1 \in R$, $h_1, h'_1 \in H$ such that $0 \neq a_2 = (h_1 \cdot a_1)b_1(h'_1 \cdot a_1) \in (H \cdot a_1)R(H \cdot a_1)$, where $a_1 = a$. Similarly, for $0 \neq a_2 \in R$, there exist $b_2 \in R$ and $h_2, h'_2 \in H$ such that $0 \neq a_3 = (h_2 \cdot a_2)b_2(h'_2 \cdot a_2) \in (H \cdot a_3)R(H \cdot a_2)$. Thus there exists an H-m-sequence $\{a_n\}$ such that $a_n \neq 0$ for any natural number n. Let

$$\mathcal{F} = \{I \mid I$ is an H-ideal of R and $I \cap \{a_1, a_2, \ldots\} = \emptyset\}.$$

By Zorn’s Lemma, there exists a maximal element P in \mathcal{F}. If I and J are H-ideals of R and $I \not\subseteq P$ and $J \not\subseteq P$, then there exist natural numbers n and m such that $a_n \in I$ and $a_m \in J$. Since $0 \neq a_{n+m+1} = (h_{n+m} \cdot a_{n+m})b_{n+m}(h'_{n+m} \cdot a_{n+m}) \in IJ$, which implies that $IJ \not\subseteq P$ and so P is an H-prime ideal of R. Obviously, $a \notin P$, which implies that $a \notin r^K(R)$ and $r^K(R) = 0$. Consequently, $r^K = r_{Hb}$. □

Theorem 2.5 $r_{Hb}(R) = W_H(R)$.

Proof. If $0 \neq a \notin W_H(R)$, then there exists an H-prime ideal P such that $a \notin P$ by the proof of Theorem 2.4. Thus $a \notin r_{Hb}(R)$, which implies that $r_{Hb}(R) \subseteq W_H(R)$. Conversely, for any $x \in W_H(R)$, let $R = R/\sim_{Hb}(R)$. Since $r_{Hb}(R) = 0$, R is an H-semiprime module algebra by Proposition 2.3. By the proof of Theorem 2.4, $W_H(\bar{R}) = 0$. For an H-m-sequence $\{\bar{a}_n\}$ with $\bar{a}_1 = \bar{x}$ in \bar{R}, there exist $\overline{b}_n \in \bar{R}$ and $h_n, h'_n \in H$ such that

$$\overline{a}_{n+1} = (h_n \cdot \overline{a}_n)\overline{b}_n(h'_n \cdot \overline{a}_n)$$

for any natural number n. Thus there exists $a'_n \in R$ such that $a'_n = x$ and $a'_{n+1} = (h_n \cdot a'_n)\overline{b}_n(h'_n \cdot a'_n)$ for any natural number n. Since $\{a'_n\}$ is an H-m-sequence with $a'_1 = x$ in R, there exists a natural number k such that $a'_k = 0$. It is easy to show that $\overline{a}_n = \overline{a}'_n$ for any natural number n by induction. Thus $\bar{a}_k = 0$ and $\overline{a} \in W_H(\bar{R})$. Considering $W_H(\bar{R}) = 0$, we have $x \in r_{Hb}(R)$ and $W_H(R) \subseteq r_{Hb}(R)$. Therefore $W_H(R) = r_{Hb}(R)$. □

Definition 2.6 We define an H-ideal N_α in H-module algebra R for every ordinal number α as follows:

(i) $N_0 = 0$.

Let us assume that N_α is already defined for $\alpha \prec \beta$.

(ii) If $\beta = \alpha + 1$, N_β/N_α is the sum of all nilpotent H-ideals of R/N_α.

(iii) If β is a limit ordinal number, $N_\beta = \sum_{\alpha \prec \beta} N_\alpha$.

By set theory, there exists an ordinal number τ such that $N_\tau = N_{\tau+1}$.

Theorem 2.7 $N_\tau = r_{Hb}(R) = \cap \{I \mid I$ is an H-semiprime ideal of $R\}$.

6
Proof. Let \(D = \cap \{ I \mid I \text{ is an } H\text{-semiprime ideal of } R \} \). Since \(R/N_\tau \) has not any non-zero nilpotent \(H \)-ideal, we have that \(r_{Hb}(R) \subseteq N_\tau \) by Proposition 2.3. Obviously, \(D \subseteq r_{Hb}(R) \). Using transfinite induction, we can show that \(N_\alpha \subseteq I \) for every \(H \)-semiprime ideal \(I \) of \(R \) and every ordinal number \(\alpha \) (see the proof of [12, Theorem 3.7]). Thus \(N_\tau \subseteq D \), which completes the proof. \(\Box \)

Definition 2.8 Let \(\emptyset \neq L \subseteq H \). An \(H \)-m-sequence \(\{ a_n \} \) in \(R \) is called an \(L \)-m-sequence with beginning \(a \) if \(a_{7,1,1} = a \) and \(a_{n+1} = (h_n, a_n)b_n(h'_n, a_n) \) such that \(h_n, h'_n \in L \) for all \(n \). For every \(L \)-m-sequence \(\{ a_n \} \) with \(a_{7,1,1} = a \), there exists a natural number \(k \) such that \(a_k = 0 \), then \(R \) is called an \(L \)-m-nilpotent element, written as \(W_L(R) = \{ a \in R \mid a \text{ is an } L \text{-m-nilpotent element} \} \).

Similarly, we have

Proposition 2.9 If \(L \subseteq H \) and \(H = kL \), then

(i) \(R \) is \(H \)-semiprime iff \((L.a)R(L.a) = 0 \) always implies \(a = 0 \) for any \(a \in R \).

(ii) \(R \) is \(H \)-prime iff \((L.a)R(L.b) = 0 \) always implies \(a = 0 \) or \(b = 0 \) for any \(a, b \in R \).

(iii) \(R \) is \(H \)-semiprime if and only if for any \(0 \neq a \in R \), there exists an \(L \)-m-sequence \(\{ a_n \} \) with \(a_1 = a \) such that \(a_n \neq 0 \) for all \(n \).

(iv) \(W_H(R) = W_L(R) \).

3 The \(H \)-module theoretical characterization of \(H \)-special radicals

If \(V \) is an algebra over \(k \) with unit and \(x \otimes 1_V = 0 \) always implies that \(x = 0 \) for any right \(k \)-module \(M \) and for any \(x \in M \), then \(V \) is called a faithful algebra to tensor. For example, if \(k \) is a field, then \(V \) is faithful to tensor for any algebra \(V \) with unit.

In this section, we need to add the following condition: \(H \) is faithful to tensor.

We shall characterize \(H \)-Baer radical \(r_{Hb} \), \(H \)-locally nil radical \(r_{Hl} \), \(H \)-Jacobson radical \(r_{Hj} \) and \(H \)-Brown-McCoy radical \(r_{Hbm} \) by \(R \)-\(H \)-modules.

We can view every \(H \)-module algebra \(R \) as a sub-algebra of \(R\#H \) since \(H \) is faithful to tensor. By computation, we have that

\[
h \cdot a = \sum (1\#h_1)a(1\#S(h_2))
\]

for any \(h \in H, a \in R \), where \(S \) is the antipode of \(H \).

Definition 3.1 An \(R \)-\(H \)-module \(M \) is called an \(R \)-\(H \)-prime module if for \(M \) the following conditions are fulfilled:

(i) \(RM \neq 0; \)
(ii) If \(x \) is an element of \(M \) and \(I \) is an \(H \)-ideal of \(R \), then \(I(Hx) = 0 \) always implies \(x = 0 \) or \(I \subseteq (0 : M)_R \), where \((0 : M)_R = \{a \in R \mid aM = 0\} \).

Definition 3.2 We associate to every \(H \)-module algebra \(R \) a class \(\mathcal{M}_R \) of \(R-H \)-modules. Then the class \(\mathcal{M} = \bigcup \mathcal{M}_R \) is called an \(H \)-special class of modules if the following conditions are fulfilled:

1. \((M1)\) If \(M \in \mathcal{M}_R \), then \(M \) is an \(R-H \)-prime module.
2. \((M2)\) If \(I \) is an \(H \)-ideal of \(R \) and \(M \in \mathcal{M}_I \), then \(IM \in \mathcal{M}_R \).
3. \((M3)\) If \(M \in \mathcal{M}_R \) and \(I \) is an \(H \)-ideal of \(R \) with \(IM \neq 0 \), then \(M \in \mathcal{M}_I \).
4. \((M4)\) Let \(I \) be an \(H \)-ideal of \(R \) and \(R = R/I \). If \(M \in \mathcal{M}_R \) and \(I \subseteq (0 : M)_R \), then \(M \in \mathcal{M}_R \). Conversely, if \(M \in \mathcal{M}_R \), then \(M \in \mathcal{M}_R \).

Let \(\mathcal{M}(R) \) denote \(\cap \{(0 : M)_R \mid M \in \mathcal{M}_R\} \), or \(R \) when \(\mathcal{M}_R = \emptyset \).

Lemma 3.3

1. \((1)\) If \(M \) is an \(R-H \)-module, then \(M \) is an \(R \#H \)-module. In this case, \((0 : M)_R \cap R = (0 : M)_R \) and \((0 : M)_R \) is an \(H \)-ideal of \(R \).
2. \((2)\) \(R \) is a non-zero \(H \)-prime module algebra iff there exists a faithful \(R-H \)-prime module \(M \);
3. \((3)\) Let \(I \) be an \(H \)-ideal of \(R \) and \(\bar{R} = R/I \). If \(M \) is an \(\bar{R}-H \)-(resp. prime, irreducible)module and \(I \subseteq (0 : M)_R \), then \(M \) is an \(\bar{R}-H \)-(resp. prime, irreducible)module (defined by \(h \cdot (a + I) = h \cdot a \) and \((a + I)x = ax \)). Conversely, if \(M \) is an \(\bar{R}-H \)-(resp. prime irreducible)module, then \(M \) is an \(R-H \)-(resp. prime, irreducible)module (defined by \(h \cdot a = h \cdot (a + I) \) and \(ax = (a + I)x \)). In the both cases, it is always true that \(R/(0 : M)_R \cong \bar{R}/(0 : M)_{\bar{R}} \).
4. \((4)\) \(I \) is an \(H \)-prime ideal of \(R \) with \(I \neq R \) iff there exists an \(R-H \)-prime module \(M \) such that \(I = (0 : M)_R \);
5. \((5)\) If \(I \) is an \(H \)-ideal of \(R \) and \(M \) is an \(I-H \)-prime module, then \(IM \) is an \(R-H \)-prime module with \((0 : M)_I = (0 : IM)_R \cap I \);
6. \((6)\) If \(M \) is an \(R-H \)-prime module and \(I \) is an \(H \)-ideal of \(R \) with \(IM \neq 0 \), then \(M \) is an \(I-H \)-prime module;
7. \((7)\) If \(R \) is an \(H \)-semiprime module algebra with one side unit, then \(R \) has a unit.

Proof.

1. Obviously, \((0 : M)_R = (0 : M)_{R \#H} \cap R \). For any \(h \in H, a \in (0 : M)_R \), we see that \((h \cdot a)M = \sum(1 \#h_1)a(1 \#S(h_2))M \subseteq \sum(1 \#h_1)aM = 0 \) for any \(h \in H, a \in R \). Thus \(h \cdot a \in (0 : M)_R \), which implies \((0 : M)_R \) is an \(H \)-ideal of \(R \).

2. If \(R \) is an \(H \)-prime module algebra, view \(M = R \) as an \(R-H \)-module. Obviously, \(M \) is faithful. If \(I(H \cdot x) = 0 \) for \(0 \neq x \in M \) and an \(H \)-ideal \(I \) of \(R \), then \(I(x) = 0 \) and \(I = 0 \), where \((x) \) denotes the \(H \)-ideal generated by \(x \) in \(R \). Consequently, \(M \) is a faithful \(R-H \)-prime module. Conversely, let \(M \) be a faithful \(R-H \)-prime module. If \(IJ = 0 \) for two \(H \)-ideals \(I \) and \(J \) of \(R \) with \(J \neq 0 \), then \(JM \neq 0 \) and there exists \(0 \neq x \in JM \) such
that \(I(Hx) = 0 \). Since \(M \) is a faithful \(R-H \)-prime module, \(I = 0 \). Consequently, \(R \) is \(H \)-prime.

(3) If \(M \) is an \(R-H \)-module, then it is clear that \(M \) is a (left) \(\overline{R} \)-module and \(h(\overline{ax}) = h(ax) = \sum (h_1 \cdot a)(h_2x) = \sum [h_1 \cdot a](h_2x) = \sum (h_1 \cdot a)(h_2x) \) for any \(h \in H \), \(a \in R \) and \(x \in M \). Thus \(M \) is an \(\overline{R} \)-\(H \)-module. Conversely, if \(M \) is an \(\overline{R} \)-\(H \)-module, then \(M \) is an (left) \(R \)-module and

\[
h(ax) = h(\overline{a}x) = \sum (h_1 \cdot \overline{a})(h_2x) = \sum \overline{h_1} \cdot a(h_2x) = \sum (h_1 \cdot a)(h_2x)
\]

for any \(h \in H \), \(a \in R \) and \(x \in M \). This shows that \(M \) is an \(R-H \)-module.

Let \(M \) be an \(R-H \)-prime module and \(I \) be an \(H \)-ideal of \(R \) with \(I \subseteq (0 : M)_R \). If \(\overline{J}(Hx) = 0 \) for \(0 \neq x \in M \) and an \(H \)-ideal \(J \) of \(R \), then \(J(Hx) = 0 \) and \(J \subseteq (0 : M)_R \). This shows that \(\overline{J} \subseteq (0 : M)_{\overline{R}} \). Thus \(M \) is an \(R-H \)-prime module. Similarly, we can show the other assert.

(4) If \(I \) is an \(H \)-prime ideal of \(R \) with \(R \neq I \), then \(\overline{R} = R/I \) is an \(H \)-prime module algebra. By Part (2), there exists a faithful \(\overline{R} \)-\(H \)-prime module \(M \). By part (3), \(M \) is an \(R-H \)-prime module with \((0 : M)_R = I \). Conversely, if there exists a \(R-H \)-prime \(M \) with \(I = (0 : M)_R \), then \(M \) is a faithful \(\overline{R} \)-\(H \)-prime module by part (3) and \(I \) is an \(H \)-prime ideal of \(R \) by part (2).

(5) First, we show that \(IM \) is an \(R \)-module. We define

\[
a(\sum_i a_i x_i) = \sum_i (aa_i)x_i
\]

for any \(a \in R \) and \(\sum_i a_i x_i \in IM \), where \(a_i \in I \) and \(x_i \in M \). If \(\sum_i a_i x_i = \sum_i a'_i x'_i \) with \(a_i, a'_i \in R \), \(x_i, x'_i \in M \), let \(y = \sum_i (a_i)x_i - \sum_i (aa'_i)x'_i \). For any \(b \in I \) and \(h \in H \), we see that

\[
b(hy) = \sum_i b\{h[(aa_i)x_i - (aa'_i)x'_i]\} = \sum_i \sum_{(h)} b\{[(h_1 \cdot (aa_i))(h_2x_i)] - [h_1 \cdot (aa'_i)](h_2x'_i)\} = \sum_i \sum_{(h)} \{b[(h_1 \cdot a)(h_2 \cdot a_i)](h_3x_i) - b[(h_1 \cdot a)(h_2 \cdot a'_i)](h_3x'_i)\} = \sum_i \sum_{(h)} b(h_1 \cdot a)[h_2(a_i x_i) - h_2(a'_i x'_i)] = \sum_i b(h_1 \cdot a)h_2 [a_i x_i - a'_i x'_i] = 0.
\]

Thus \(I(Hy) = 0 \). Since \(M \) is an \(I-H \)-prime module and \(IM \neq 0 \), we have that \(y = 0 \). Thus this definition in (1) is well-defined. It is easy to check that \(IM \) is an \(R \)-module. We see that

\[
h(a \sum_i a_i x_i) = \sum_i h[(aa_i)x_i]
\]
for any $h \in H$ and $\sum_i a_i x_i \in IM$. Thus IM is an R-H-module.

Next, we show that $(0 : M)_I = (0 : IM)_R \cap I$. If $a \in (0 : M)_I$, then $aM = 0$ and $aIM = 0$, i.e. $a \in (0 : IM)_A \cap I$. Conversely, if $a \in (0 : IM)_R \cap I$, then $aIM = 0$. By part (1), $(0 : IM)_R$ is an H-ideal of R. Thus $(H \cdot a)IM = 0$ and $(H \cdot a)I \subseteq (0 : M)_I$. Since $(0 : M)_I$ is an H-prime ideal of I by part (4), $a \in (0 : M)_I$. Consequently, $(0 : M)_I = (0 : IM)_R \cap I$.

Finally, we show that IM is an R-H-prime module. If $RIM = 0$, then $RI \subseteq (0 : M)_R$ and $I \subseteq (0 : M)_R$, which contradicts that M is an I-H-prime module. Thus $RIM \neq 0$. If $J(Hx) = 0$ for $0 \neq x \in IM$ and an H-ideal J of R, then $JI(Hx) \subseteq J(Hx) = 0$. Since M is an I-H-prime module, $JI \subseteq (0 : M)_I$ and $J(IM) = 0$. Consequently, IM is an R-H-prime module.

(6) Obviously, M is an I-H-module. If $J(Hx) = 0$ for $0 \neq x \in M$ and an H-ideal J of I, then $(J)^3(Hx) = 0$ and $(J)^3 \subseteq (0 : M)_R$, where (J) denotes the H-ideal generated by J in R. Since $(0 : M)_R$ is an H-prime ideal of R, $(J) \subseteq (0 : M)_R$ and $J \subseteq (0 : M)_I$.

Consequently, M is an I-H-prime module.

(7) We can assume that u is a right unit of R. We see that

$$
(h \cdot (au - a))b = \sum (1#h) (au - a)(1#S(h_2))b = 0
$$

for any $a, b \in R, h \in H$. Therefore $(H \cdot (au - a))R = 0$ and $au = a$, which implies that R has a unit. □

Theorem 3.4 (1) If \mathcal{M} is an H-special class of modules and $\mathcal{K} = \{ R \mid$ there exists a faithful R-H-module $M \in \mathcal{M}_R \}$, then \mathcal{K} is an H-special class and $r^\mathcal{K}(R) = \mathcal{M}(R)$.

(2) If \mathcal{K} is an H-special class and $\mathcal{M}_R = \{ M \mid M$ is an R-H-prime module and $R/(0 : M)_R \in \mathcal{K} \}$, then $\mathcal{M} = \cup \mathcal{M}_R$ is an H-special class of modules and $r^\mathcal{K}(R) = \mathcal{M}(R)$.

Proof. (1) By Lemma 3.3(2), $(S1)$ is satisfied. If I is a non-zero H-ideal of R and $R \in \mathcal{K}$, then there exists a faithful R-H-prime module $M \in \mathcal{M}_R$. Since M is faithful, $IM \neq 0$ and $M \in \mathcal{M}_I$ with $(0 : M)_I = (0 : M)_R \cap I = 0$ by (M3). Thus $I \in \mathcal{K}$ and $(S2)$ is satisfied. Now we show that $(S3)$ holds. If I is an H-ideal of R with $I \in \mathcal{K}$, then there exists a faithful I-H-prime module $M \in \mathcal{M}_I$. By (M2) and Lemma 3.3(5), $IM \in \mathcal{M}_R$ and $0 = (0 : M)_I = (0 : IM)_R \cap I$. Thus $(0 : IM)_R \subseteq I^*$. Obviously, $I^* \subseteq (0 : IM)_R$. Thus
\(I^* = (0 : IM)_R \). Using (M4), we have that \(IM \in \mathcal{M}_R \) and \(IM \) is a faithful \(\mathcal{R} \)-\(H \)-module with \(\mathcal{R} = R/I^* \). Thus \(R/I^* \in \mathcal{K} \). Therefore \(\mathcal{K} \) is an \(H \)-special class.

It is clear that

\[
\{ I \mid I \text{ is an } H \text{-ideal of } R \text{ and } R/I \in \mathcal{K} \} = \{(0 : M)_R \mid M \in \mathcal{M}_R \}.
\]

Thus \(r^\mathcal{K}(R) = \mathcal{M}(R) \).

(2) It is clear that (M1) is satisfied. If \(I \) is an \(H \)-ideal of \(R \) with \(M \in \mathcal{M}_I \), then \(M \) is an \(I \)-\(H \)-prime module with \(I/(0 : M)_I \in \mathcal{K} \). By Lemma 3.3(5), \(IM \) is an \(R \)-\(H \)-prime module with \((0 : M)_I = (0 : IM)_R \cap I \). It is clear that

\[
(0 : IM)_R = \{ a \in R \mid (H \cdot a)I \subseteq (0 : M)_I \text{ and } I(H \cdot a) \subseteq (0 : M)_I \}
\]

and

\[
(0 : IM)_R/(0 : M)_I = (I/(0 : M)_I)^*.
\]

Thus \(R/(0 : IM)_R \cong (R/(0 : M)_I)/(0 : IM)_R/(0 : M)_I = (R/(0 : M)_I)/(I/(0 : M)_I)^* \in \mathcal{K} \), which implies that \(IM \in \mathcal{M}_R \) and (M2) holds. Let \(M \in \mathcal{M}_R \) and \(I \) be an \(H \)-ideal of \(R \) with \(IM \neq 0 \). By Lemma 3.3(6), \(M \) is an \(I \)-\(H \)-prime module and \(I/(0 : M)_I = I/(0 : M)_R \cap I \equiv (I + (0 : M)_R)/(0 : M)_R \). Since \(R/(0 : M)_R \in \mathcal{K} \), \(I/(0 : M)_I \in \mathcal{K} \) and \(M \in \mathcal{M}_I \). Thus (M3) holds. It follows from Lemma 3.3(3) that (M4) holds.

It is clear that

\[
\{ I \mid I \text{ is an } H \text{-ideal of } R \text{ and } 0 \neq R/I \in \mathcal{K} \} = \{(0 : M)_R \mid M \in \mathcal{M}_R \}.
\]

Thus \(r^\mathcal{K}(R) = \mathcal{M}(R) \).

\[
\text{Theorem 3.5} \quad \text{Let } \mathcal{M}_R = \{ M \mid M \text{ is an } R \text{-} H \text{-prime module} \} \text{ for any } H \text{-module algebra } R \text{ and } \mathcal{M} = \cup \mathcal{M}_R. \text{ Then } \mathcal{M} \text{ is an } H \text{-special class of modules and } \mathcal{M}(R) = r_{H^b}(R).
\]

\[
\text{Proof.} \text{ It follows from Lemma 3.3(3)(5)(6) that } \mathcal{M} \text{ is an } H \text{-special class of modules. By Lemma 3.3(2),}
\]

\[
\{ R \mid R \text{ is an } H \text{-prime module algebra with } R \neq 0 \} =
\{ R \mid \text{there exists a faithful } R \text{-} H \text{-prime module} \}
\]

Thus \(r_{H^b}(R) = \mathcal{M}(R) \) by Theorem 2.4(1).

\[
\text{Theorem 3.6} \quad \text{Let } \mathcal{M}_R = \{ M \mid M \text{ is an } R \text{-} H \text{-irreducible module} \} \text{ for any } H \text{-module algebra } R \text{ and } \mathcal{M} = \cup \mathcal{M}_R. \text{ Then } \mathcal{M} \text{ is an } H \text{-special class of modules and } \mathcal{M}(R) = r_{H^j}(R), \text{ where } r_{H^j} \text{ is the } H \text{-Jacobson radical of } R \text{ defined in [7].}
\]
Proof. If \(M \) is an \(R\)-\(H \)-irreducible module and \(J(Hx) = 0 \) for \(0 \neq x \in M \) and an \(H \)-ideal \(J \) of \(R \), let \(N = \{ m \in M \mid J(Hm) = 0 \} \). Since \(J(h(am)) = J(\sum_{h_1 \in H} (h_1 \cdot a)(h_2m)) = 0 \), \(am \in N \) for any \(m \in N, h \in H, a \in R \), we have that \(N \) is an \(R \)-submodule of \(M \). Obviously, \(N \) is an \(H \)-submodule of \(M \). Thus \(N \) is an \(R\)-\(H \)-submodule of \(M \). Since \(N \neq 0 \), we have that \(N = M \) and \(JM = 0 \), i.e. \(J \subseteq (0 : M)_R \). Thus \(M \) is an \(R\)-\(H \)-prime module and \((M_1)\) is satisfied. If \(M \) is an \(I\)-\(H \)-irreducible module and \(I \) is an \(H \)-ideal, then \(IM \) is an \(R\)-\(H \)-module. If \(N \) is an \(R\)-\(H \)-submodule of \(IM \), then \(N \) is also an \(I\)-\(H \)-submodule of \(M \), which implies that \(N = 0 \) or \(N = M \). Thus \((M_2)\) is satisfied. If \(M \) is an \(R\)-\(H \)-irreducible module and \(I \) is an \(H \)-ideal of \(R \) with \(IM \neq 0 \), then \(IM = M \). If \(N \) is a non-zero \(I\)-\(H \)-submodule of \(M \), then \(IN \) is an \(R\)-\(H \)-submodule of \(M \) by Lemma 3.3(5) and \(IN = 0 \) or \(IN = M \). If \(IN = 0 \), then \(I \subseteq (0 : M)_R \) by the above proof and \(IM = 0 \). We get a contradiction. If \(IN = M \), then \(N = M \). Thus \(M \) is an \(I\)-\(H \)-irreducible module and \((M_3)\) is satisfied.

It follows from Lemma 3.3(3) that \((M_4)\) holds. By Theorem 3.4(1), \(\mathcal{M}(R) = r_{Rj}(R) \). □

J.R. Fisher [7, Proposition 2] constructed an \(H \)-radical \(r_H \) by a common hereditary radical \(r \) for algebras, i.e. \(r_H(R) = (r(R) : H) = \{ a \in R \mid h \cdot a \in r(R) \text{ for any } h \in H \} \). Thus we can get \(H \)-radicals \(r_{bH}, r_{1H}, r_{jH}, r_{bnH} \).

Definition 3.7 An \(R\)-\(H \)-module \(M \) is called an \(R\)-\(H \)-BM-module, if for \(M \) the following conditions are fulfilled:

(i) \(RM \neq 0 \);

(ii) If \(I \) is an \(H \)-ideal of \(R \) and \(I \nsubsetneq (0 : M)_R \), then there exists an element \(u \in I \) such that \(m = um \) for all \(m \in M \).

Theorem 3.8 Let \(\mathcal{M}_R = \{ M \mid M \text{ is an } R\)-\(H \)-BM-module \} \) for every \(H \)-module algebra \(R \) and \(\mathcal{M} = \cup \mathcal{M}_R \). Then \(\mathcal{M} \) is an \(H \)-special class of modules.

Proof. It is clear that \(M \) satisfies \((M_1)\) and \((M_4)\). To prove \((M_2)\) we exhibit: if \(I \nsubsetneq H \) \(R \) and \(M \in \mathcal{M}_I \), then \(M \) is an \(I\)-\(H \)-prime module and \(IM \) is an \(R\)-\(H \)-prime module. If \(J \) is an \(H \)-ideal of \(R \) with \(J \nsubsetneq (0 : M)_R \), then \(JI \) is an \(H \)-ideal of \(I \) with \(JI \nsubsetneq (0 : M)_I \). Thus there exists an element \(u \in JI \subseteq J \) such that \(um = m \) for every \(m \in M \). Hence \(IM \in \mathcal{M}_R \).

To prove \((M_3)\), we exhibit: if \(M \in \mathcal{M}_R \) and \(I \) is an \(H \)-ideal of \(R \) with \(IM \neq 0 \). If \(J \) is an \(H \)-ideal of \(I \) with \(J \nsubsetneq (0 : M)_I \), then \((J) \nsubsetneq (0 : M)_R \), where \((J) \) is the \(H \)-ideal generated by \(J \) in \(R \). Thus there exists an elements \(u \in (J) \) such that \(um = m \) for every \(m \in M \). Moreover,

\[m = um = uum = uuum = u^3m \]

and \(u^3 \in J \). Thus \(M \in \mathcal{M}_I \). □
Proposition 3.9 If M is an R-H-BM-module, then $R/(0 : M)_R$ is an H-simple module algebra with unit.

Proof. Let I be any H-ideal of R with $I \not\subseteq (0 : M)_R$. Since M is an R-H-BM-module, there exists an element $u \in I$ such that $uam = am$ for every $m \in M, a \in R$. It follows that $a - ua \in (0 : M)_R$, whence $R = I + (0 : M)_R$. Thus $(0 : M)_R$ is a maximal H-ideal of R. Therefore $R/(0 : M)_R$ is an H-simple module algebra.

Next we shall show that $R/(0 : M)_R$ has a unit. Now $R \not\subseteq (0 : M)_R$, since $RM \neq 0$. By the above proof, there exists an element $u \in R$ such that $a - ua \in (0 : M)_R$ for any $a \in R$. Hence $R/(0 : M)_R$ has a left unit. Furthermore, by Lemma 3.7 (7) it has a unity element. \square

Proposition 3.10 If R is an H-simple-module algebra with unit, then there exists a faithful R-H-BM-module.

Proof. Let $M = R$. It is clear that M is a faithful R-H-BM-module. \square

Theorem 3.11 Let $\mathcal{M}_R = \{ M \mid M$ is an R-H-BM-module$\}$ for every H-module algebra R and $\mathcal{M} = \bigcup \mathcal{M}_R$. Then $r_{Hbm}(R) = \mathcal{M}(R)$, where r_{Hbm} denotes the H-upper radical determined by $\{ R \mid R$ is an H-simple module algebra with unit $\}$.

Proof. By Theorem 3.8, \mathcal{M} is an H-special class of modules. Let

$$\mathcal{K} = \{ R \mid \text{there exists a faithful } R$-$H$-$BM$-module $\}.$$

By Theorem 3.4(1), \mathcal{K} is an H-special class and $r^\mathcal{K}(R) = \mathcal{M}(R)$. Using Proposition 3.9 and 3.10, we have that

$$\mathcal{K} = \{ R \mid R$ is an H-simple module algebra with unit $\}.$$

Therefore $\mathcal{M}(R) = r_{Hbm}(R). \square$

Assume that H is a finite-dimensional semisimple Hopf algebra with $t \in I_H^1$ and $\epsilon(t) = 1$. Let

$$G_t(a) = \{ z \mid z = x + (t.a)x + \sum (x_i(t.a)y_i + x_iy_i) \text{ for all } x_i, y_i, x \in R \}.$$

R is called an r_{gr}-H-module algebra, if $a \in G_t(a)$ for all $a \in R$.

Theorem 3.12 r_{gr} is an H-radical property of H-module algebra and $r_{gr} = r_{Hbm}$.

Proof. It is clear that any H-homomorphic image of r_{gr}-H-module algebra is an r_{gr}-H-module algebra. Let

$$N = \sum \{ I <_H I$ is an r_{gr}-H-ideal of $R \}.$$

13
Now we show that N is an r_{gt}-H-ideal of R. In fact, we only need to show that $I_1 + I_2$ is an r_{gt}-H-ideal for any two r_{gt}-H-ideals I_1 and I_2. For any $a \in I_1, b \in I_2$, there exist $x, x_i, y_i \in R$ such that

$$a = x + (t \cdot a)x + \sum_i (x_i(t \cdot a)y_i + x_iy_i).$$

Let

$$c = x + (t \cdot (a + b))x + \sum x_i(t \cdot (a + b))y_i + x_iy_i \in G_t(a + b).$$

Obviously,

$$a + b - c = b - (t \cdot b)x - \sum x_i(t \cdot b)y_i \in I_2.$$

Thus there exist $w, u_j, v_j \in R$ such that

$$a + b - c = w + (t \cdot (a + b - c))w + \sum_{j} (u_j(t \cdot (a + b - c))v_j + u_jv_j).$$

Let $d = (t \cdot (a + b))w + w + \sum_j (u_j(t \cdot (a + b))v_j + u_jv_j)$ and $e = c - \sum_j u_j(t \cdot c)v_j - (t \cdot c)w$.

By computation, we have that

$$a + b = d + e.$$

Since $c \in G_t(a + b)$ and $d \in G_t(a + b)$, we get that $e \in G_t(a + b)$ and $a + b \in G_t(a + b)$, which implies that $I_1 + I_2$ is an r_{gt}-H-ideal.

Let $\bar{R} = R/N$ and \bar{B} be an r_{gt}-H-ideal of \bar{R}. For any $a \in B$, there exist $x, x_i, y_i \in R$ such that

$$\bar{a} = \bar{x} + (t \cdot \bar{a})\bar{x} + \sum (\bar{x_i}(t \cdot \bar{a})\bar{y}_i + \bar{x}_i\bar{y}_i)$$

and

$$x + (t \cdot a)x + \sum (x_i(t \cdot a)y_i + x_iy_i) - a \in N.$$

Let

$$c = x + (t \cdot a)x + \sum (x_i(t \cdot a)y_i + x_iy_i) \in G_t(a).$$

Thus there exist $w, u_j, v_j \in R$ such that

$$a - c = (t \cdot (a - c))w + w + \sum (u_j(t \cdot (a - c))v_j + u_jv_j)$$

and

$$a = (t \cdot a)w + w + \sum u_j(t \cdot a)v_j + u_jv_j + c - (t \cdot c)w - \sum u_j(t \cdot c)v_j \in G_t(a),$$

which implies that B is an r_{gt}-H-ideal and $\bar{B} = 0$. Therefore r_{gt} is an H-radical property.

\[\square \]

Proposition 3.13 If R is an H-simple module algebra, then $r_{gr}(R) = 0$ iff R has a unit.
Proof. If R is an H-simple module algebra with unit 1, then $-1 \notin G_t(-1)$ since

$$x + (t \cdot (-1))x + \sum (x_i(t \cdot (-1))y_i + x_iy_i) = 0$$

for any $x, x_i, y_i \in R$. Thus R is r_{gt}-H-semisimple. Conversely, if $r_{gt}(R) = 0$, then there exists $0 \neq a \notin G_t(a)$ and $G_t(a) = 0$, which implies that $ax + x = 0$ for any $x \in R$. It follows from Lemma 9.3.3 (7) that R has a unit. □

Theorem 3.14 $r_{gt} = r_{Hbn}$.

Proof. By Proposition 3.13, $r_{gt}(R) \subseteq r_{Hbn}(R)$ for any H-module algebra R. It remains to show that if $a \notin r_{gt}(R)$ then $a \notin r_{Hbn}(R)$. Obviously, there exists $b \in (a)$ such that $b \notin G_t(b)$, where (a) denotes the H-ideal generated by a in R. Let

$$\mathcal{E} = \{ I \triangleleft_H R \mid G_t(b) \subseteq I, b \notin I \}.$$

By Zorn’s Lemma, there exists a maximal element P in \mathcal{E}. P is a maximal H-ideal of R, for, if Q is an H-ideal of R with $P \subseteq Q$ and $P \neq Q$, then $b \in Q$ and $x = -bx + (bx + x) \in Q$ for any $x \in R$. Consequently, R/P is an H-simple module algebra with $r_{gt}(R/P) = 0$. It follows from Proposition 3.13 that R/P is an H-simple module algebra with unit and $r_{Hbn}(R) \subseteq P$. Therefore $b \notin r_{Hbn}(R)$ and so $a \notin r_{Hbn}(R)$. □

Definition 3.15 Let I be an H-ideal of H-module algebra R, N be an R-H-submodule of R-H-module M. (N, I) are said to have “L-condition”, if for any finite subset $F \subseteq I$, there exists a positive integer k such that $F^k N = 0$.

Definition 3.16 An R-H-module M is called an R-H-L-module, if for M the following conditions are fulfilled:

(i) $RM \neq 0$.

(ii) For every non-zero R-H-submodule N of M and every H-ideal I of R, if (N, I) has “L-condition”, then $I \subseteq (0 : M)_R$.

Proposition 3.17 If M is an R-H-L-module, then $R/(0 : M)_R$ is an r_{1H}-H-semisimple and H-prime module algebra.

Proof. If M is an R-H-L-module, let $\bar{R} = R/(0 : M)_R$. Obviously, \bar{R} is H-prime. If \bar{B} is an r_{1H}-H-ideal of \bar{R}, then (M, B) has ”L-condition” in R-H-module M, since for any finite subset F of B, there exists a natural number n such that $F^n \subseteq (0 : M)_R$ and $F^n M = 0$. Consequently, $B \subseteq (0 : M)_R$ and \bar{R} is r_{1H}-semisimple. □

Proposition 3.18 R is a non-zero r_{1H}-H-semisimple and H-prime module algebra iff there exists a faithful R-H-L-module.
Proof. If R is a non-zero r_{IH}-semisimple and H-prime module algebra, let $M = R$. Since R is an H-prime module algebra, $(0 : M)_R = 0$. If (N, B) has ”L-condition” for non-zero R-H-submodule of M and H-ideal B, then, for any finite subset F of B, there exists an natural number n, such that $F^nN = 0$ and $F^n(NR) = 0$, which implies that $F^n = 0$ and B is an r_{IH}-H-ideal, i.e. $B = 0 \subseteq (0 : M)_R$. Consequently, M is a faithful R-H-L- module.

Conversely, if M is a faithful R-H-L-module, then R is an H-prime module algebra. If I is an r_{IH}-H-ideal of R, then (M, I) has “L-condition”, which implies $I = 0$ and R is an r_{IH}-semisimple module algebra. □

Theorem 3.19 Let $\mathcal{M}_R = \{ M \mid M$ is an R-H-L-module$\}$ for any H-module algebra R and $\mathcal{M} = \cup \mathcal{M}_R$. Then \mathcal{M} is an H-special class of modules and $\mathcal{M}(R) = r_{HI}(R)$, where $K = \{ R \mid R$ is an H-prime module algebra with $r_{HI}(R) = 0\}$ and $r_{HI} = r^K$.

Proof. Obviously, $(M1)$ holds. To show that $(M2)$ holds, we only need to show that if I is an H-ideal of R and $M \in \mathcal{M}_I$, then $IM \in \mathcal{M}_R$. By Lemma 3.3(5), IM is an R-H-prime module. If (N, B) has the ”L-condition” for non-zero R-H-submodule N of IM and H-ideal B of R, i.e. for any finite subset F of B, there exists a natural number n such that $F^nN = 0$, then (N, BI) has ”L-condition” in I-H-module M. Thus $BI \subseteq (0 : M)_I = (0 : IM)_R \cap I$. Considering $(0 : IM)_R$ is an H-prime ideal of R, we have that $B \subseteq (0 : IM)_R$ or $I \subseteq (0 : IM)_R$. If $I \subseteq (0 : IM)_R$, then $I^2 \subseteq (0 : M)_I$ and $I \subseteq (0 : M)_I$, which contradicts $IM \neq 0$. Therefore $B \subseteq (0 : IM)_R$ and so IM is an R-H-L- module.

To show that $(M3)$ holds, we only need to show that if $M \in \mathcal{M}_R$ and $I \triangleleft_H R$ with $IM \neq 0$, then $M \in \mathcal{M}_I$. By Lemma 3.3(6), M is an I-H-prime module. If (N, B) has the ”L-condition” for non-zero I-H-submodule N of M and H-ideal B of I, then IN is an R-H-prime module and $(IN, (B))$ has ”L-condition” in R-H-module M, since for any finite subset F of (B), $F^3 \subseteq B$ and there exists a natural number n such that $F^{3n}N \subseteq F^{3n} = 0$, where (B) is the H-ideal generated by B in R. Therefore, $(B) \subseteq (0 : M)_R$ and $B \subseteq (0 : M)_I$, which implies $M \in \mathcal{M}_I$.

Finally, we show that $(M4)$ holds. Let $I \triangleleft_H R$ and $\bar{R} = R/I$. If $M \in \mathcal{M}_R$ and $I \subseteq (0 : M)_R$, then M is an \bar{R}-H- prime module. If (N, \bar{B}) has ”L-condition” for H-ideal \bar{B} of \bar{R} and \bar{R}-H-submodule N of M, then subset $F \subseteq B$ and there exists a natural number n such that $F^nN = (\bar{F})^nN = 0$. Consequently, $M \in \mathcal{M}_R$. Conversely, if $M \in \mathcal{M}_R$, we can similarly show that $M \in \mathcal{M}_R$.

The second claim follows from Proposition 3.18 and Theorem 3.4(1). □

Theorem 3.20 $r_{HI} = r_{IH}$.

16
Proof. Obviously, \(r_{lH} \leq r_{HI} \). It remains to show that \(r_{HI}(R) \neq R \) if \(r_{lH}(R) \neq R \). There exists a finite subset \(F \) of \(R \) such that \(F^n \neq 0 \) for any natural number \(n \). Let

\[\mathcal{F} = \{ I \mid I \text{ is an } H\text{-ideal of } R \text{ with } F^n \not\subseteq I \text{ for any natural number } n \} \]

By Zorn’s lemma, there exists a maximal element \(P \) in \(\mathcal{F} \). It is clear that \(P \) is an \(H \)-prime ideal of \(R \). Now we show that \(r_{lH}(R/P) = 0 \). If \(0 \neq B/P \) is an \(H \)-ideal of \(R/P \), then there exists a natural number \(m \) such that \(F^m \subseteq B \). Since \((F^m + P)^n \neq 0 + P \) for any natural number \(n \), we have that \(B/P \) is not locally nilpotent and \(r_{HI}(R/P) = 0 \). Consequently, \(r_{HI}(R) \neq R \). \(\square \)

In fact, all of the results hold in braided tensor categories determined by (co)quasitriangular structure.

References

[1] R. J. Blattner and S. Montgomery. Ideal and quotients in crossed products of Hopf algebras. J. Algebra 125 (1992), 374–396.
[2] R. J. Blattner, M. Cohen and S. Montgomery, Crossed products and inner actions of Hopf algebras, Transactions of the AMS., 298 (1986)2, 671–711.
[3] William Chin. Crossed products of semisimple cocommutive of Hopf algebras. Proceeding of AMS, 116 (1992)2, 321–327.
[4] William Chin. Crossed products and generalized inner actions of Hopf algebras. Pacific Journal of Math., 150 (1991)2, 241–259.
[5] Weixin Chen and Shouchuan Zhang. The module theoretic characterization of special and supernilpotent radicals for \(\Gamma \)-rings. Math.Japonic, 38(1993)3, 541–547.
[6] M. Cohen and S. Montgomery. Group–graded rings, smash products, and group actions. Trans. Amer. Math. Soc., 282 (1984)1, 237–258.
[7] J.R. Fisher. The Jacobson radicals for Hopf module algebras. J. algebra, 25(1975), 217–221.
[8] Shaoxue Liu. Rings and Algebras. Science Press, 1983 (in Chinese).
[9] S. Montgomery. Hopf algebras and their actions on rings. CBMS Number 82, Published by AMS, 1993.
[10] M. E. Sweedler. Hopf Algebras. Benjamin, New York, 1969.
[11] F. A. Szasz. Radicals of rings. John Wiley and Sons, New York, 1982.

[12] Shouchuan Zhang and Weixin Chen. The general theory of radicals and Baer radical for Γ-rings. J. Zhejiang University, 25 (1991), 719–724 (in Chinese).