Long Alternating Paths Exist

Wolfgang Mulzer
FU Berlin
Berlin

Pavel Valtr
Charles-University
Prague
The Problem

Given: 2n points, convex, n red, n blue

Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

No!
The Problem

Given: 2n points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings
The Problem

Given: 2n points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

Yes!
The Problem

Given: 2n points, convex, n red, n blue

Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings

Question: What is the longest alternating path? algorithmically easy (dynamic programming)
The Problem

Given: 2n points, convex, n red, n blue
Want: (noncrossing) alternating path: alternate between red and blue, every point used at most once, no crossings
Question: What is the longest alternating path as a function of n, alt(n)? (min over all colorings)
Easy Lower Bound (Erdős, 1980s)

Take any halving line. One side has $\geq n/2$ red points. Other side has $\geq n/2$ blue points. Connect into an alternating path with n points.

Thus: $\text{alt}(n) \geq n$
Better Lower Bounds

run: maximal sequence of consecutive points of the same color

Theorem [Kynčl, Pach and Tóth ‘08]: $\text{alt}(n) \geq n + \text{#runs}/2 - 1$

Theorem [Mészáros‘11]: $\text{alt}(n) \geq n + \lceil (n - 1) / \text{#runs} \rceil$

Corollary: $\text{alt}(n) \geq n + \Omega(\sqrt{n})$
Our Result

Theorem: \(\exists \epsilon > 0: \text{alt}(n) \geq (1+\epsilon)n \)

Remark: also for monochromatic matchings can also interpreted as a statement about (anti)palindromic subsequences in circular words.
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]

Assume \(\text{alt}(n) > 1.5n + 2 \)

\(\leq 0.5n \text{ red points.} \)
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]

Assume \(\text{alt}(n) > 1.5n + 2 \)
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]

Assume \(\text{alt}(n) > 1.5n + 2 \)

\[\leq 0.25n \text{ blue points} \]

\[0.5n \]

\[0.75n \leq 0.5n \text{ red points} \]

\[0.5n \]

\[0.25n \]
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]

Assume \(\text{alt}(n) > 1.5n + 2 \)
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]

Assume \(\text{alt}(n) > 1.5n + 2 \)
More Background: Upper Bounds

[Erdős, 1980s]

\[\text{alt}(n) \leq 1.5n + 2 \]

Assume \(\text{alt}(n) > 1.5n + 2 \)

\[\leq 0.5n \text{ red points} \]

\[\leq 0.25n \text{ blue points} \]
More Background: Upper Bounds

[Erdős, 1980s]
\[\text{alt}(n) \leq 1.5n + 2 \]

[Abellanas, Garcia, Hurtado, and Tejel ‘03; Kynčl, Pach and Tóth ’08; Mészáros ’11]
\[\text{alt}(n) \leq \frac{4n}{3} \approx 1.33n \]

[Csóka, Blázsik, Király and Lenger ’20]
\[\text{alt}(n) \leq (4 - 2\sqrt{2})n \approx 1.17n \]
Our Approach – Chunks

k-chunk: k points of one color and <k points of other color
k-configuration: partition into k-chunks
index (chunk): #points minority color/#points majority color
index (configuration): average index over all chunks
Our Approach – Configurations

Suppose: For every k, we can find a canonical k-configuration Γ_k on P.

Observation 1: If Γ_{1000} has index ≥ 0.1, a long alternating path exists.

Reason: There must be many runs.
Our Approach – Configurations

Suppose: For every k, we can find a canonical k-configuration Γ_k on P

Observation 2: If $\Gamma_{n/1000}$ has index <0.1, a long alternating path exists.

Reason: There must be a large unbalanced chunk.

→ Kynčl, Pach and Tóth
Our Approach – Configurations

Suppose: For every k, we can find a canonical k-configuration Γ_k on P

Thus: We can focus on a canonical $3k$-configuration Γ_{3k} with $1000 < 3k < n/1000$ and index ≈ 0.1
Our Approach – Separated Matchings

We now look at separated matchings.

separated matching: plane bichromatic matching, all segments intersected by one line

Obvious: separated matching with k edges \rightarrow alternating path with $2k$ points
Our Approach – Separated Matchings

We look at separated matchings.

separated matching: plane bichromatic matching, all segments intersected by one line

Obvious: separated matching with k edges \rightarrow alternating path with $2k$ points

We show: $\exists \, \varepsilon > 0 \Rightarrow \forall$ suitable $\Gamma_{3k} \; \exists$ sep. matching of $(1/2 + \varepsilon)n$ edges
Our Approach – Chunk Matchings

chunk matching: match $3k$-chunks in Γ_{3k} along a chunk-halving-line
random chunk pick chunk-halving-line uniformly at random
matching
Our Approach – Chunk Matchings

Observation: chunk matching \(\rightarrow\) separated matching
Our Approach – Chunk Matchings

Observation: chunk matching \rightarrow separated matching
Our Approach – Chunk Matchings

Observation: chunk matching → separated matching

Fact: A random chunk matching yields a separated matching of expected size $n/2$ (# edges).

Proof: Brute-force calculation.

Crucial: bound $\max\{r_1, r_2\} \geq (r_1 + r_2)/2$
Our Approach – Proof Strategy

Suppose: $3k$-configuration Γ_{3k} of index ≈ 0.1 is at hand

Consider: random chunk matching in Γ_{3k}

Lemma: If the individual chunk indices in Γ_{3k} have “large variance”, we get a separated matching with $(1/2 + \varepsilon)n$ edges in expectation.

\[\max\{b_1, b_2\} >> (b_1 + b_2)/2 \text{ edges} \]
Our Approach – Proof Strategy

Suppose: \(3k\)-configuration \(\Gamma_{3k}\) of index \(\approx 0.1\) is at hand

Consider: random chunk matching in \(\Gamma_{3k}\)

Lemma: If \(\Gamma_{3k}\) has “large variance”, we get a separated matching with \((1/2 + \varepsilon)n\) edges in expectation.

Otherwise: Consider refined \(k\)-configuration \(\Gamma_k\) for \(\Gamma_{3k}\) (it exists).

Lemma: If \(\Gamma_k\) has “large variance”, we get a separated matching with \((1/2 + \varepsilon)n\) edges in expectation.

3 red \(k\)-chunks

3 red \(k\)-chunks
Our Approach – Proof Strategy

Remains: 3k-configuration Γ_{3k} and refined k-configuration Γ_k with “uniform” chunks.

Main trick: gain when matching two 3k-chunks of the same color!

\[\max\{b_1, b_2\} \text{ edges} \]
Our Approach – Proof Strategy

Remains: $3k$-configuration Γ_{3k} and refined k-configuration Γ_k with “uniform” chunks.

Main trick: gain when matching two $3k$-chunks of the same color!

$\approx (4/3) \max\{b_1, b_2\} \text{ edges}$
Conclusion

very technical

very small ε

What is the right bound for $\text{alt}(n)$?

Questions?