Some problems about co-consonance of topological spaces

Zhengmao He, Bin Zhao

School of Mathematics and Statistics, Shaanxi Normal University,
Xi’an 710119, P.R. China

Abstract

In this paper, we first prove that the retract of a consonant space (or co-consonant space) is consonant (co-consonant). Using this result, some related results have obtained. Simultaneously, we proved that (1) the co-consonance of the Smyth powerspace $P_S(X)$ implies the co-consonance of X under a necessary condition; (2) the co-consonance of X implies the co-consonance of the smyth powerspace under some conditions; (3) if the lower powerspace $P_H(X)$ is co-consonant, then X is co-consonant; (4) the co-consonance of X implies the co-consonance of the lower powerspace $P_H(X)$ with some sufficient conditions.

Key words: retraction; consonant space; co-consonant space; Smyth powerspace; lower powerspace

MSC: 06B35, 06B30, 54A05

1 Introduction

Given a topological space X, there are two topologies on $\mathcal{O}(X)$, let $\mathcal{O}(X)$ be the poset of all open sets of X with inclusion order. In this paper, we consider three kinds of topologies on $\mathcal{O}(X)$. One is the topology τ that has a base $\{\square Q \mid Q \text{ is compact in } X\}$, where $\square Q = \{V \in \mathcal{O}(X) \mid Q \subseteq V\}$, the second is the Scott topology $\sigma(\mathcal{O}(X))$ and the third is the upper topology $\nu(\mathcal{O}(X))$. It is not difficult to find that $\tau \subseteq \sigma(\mathcal{O}(X))$. A topological space

1 This work is supported by the National Natural Science Foundation of China (Grant no. 11531009).
2 Corresponding author: B. Zhao.
3 E-mail addresses: hezhengmao@snnu.edu.cn, zhaobin@snnu.edu.cn.
X is consonant if $\tau = \sigma(\mathcal{O}(X))$. Equivalently, a space X is consonant if the Upper Kuratowski topology and the co-compact on the set of all closed sets of X are equal (see [13]). Consonant spaces have been researched by many scholars and the more conclusions about consonance can see [1,4,13]. Given a poset P, the upper topology $\nu(P)$ on P is a topology that has a subbase $\{P \setminus \downarrow x \mid x \in P\}$. Clearly, $\nu(P) \subseteq \sigma(P)$, where $\sigma(P)$ is the Scott topology on P. A topological space is co-consonant if the upper topology and the Scott topology on the open set lattice $\mathcal{O}(X)$ coincide (see [2]). Compared with the consonance, the co-consonance is lack of research. In this paper, we focus our interest on co-consonant spaces.

Retract is an ordinary relation of topological spaces. There are many topological properties which are preserved by retraction, such as sobriety, well-filteredness, d-spaces. Naturally, it arises the following two questions:

(1) Is the retract of a consonant space consonant?

(2) Is the retract of a co-consonant space co-consonant?

In section 3, we give a positive answer. Using this result, some related conclusions are discovered.

Given a topological space X, there are two constructions of topological spaces, namely, the lower powerspace $P_H(X)$ and smyth powerspace $P_S(X)$ (see [5,7]). Recently, M. Brecht and T. Kawai proved that X is consonant iff the lower powerspace and Smyth powerspace on X is commute (see [2]). Furthermore, M. Brecht and T. Kawai asked that whether the consonance is preserved by the Smyth powerspace construction. This question is first answered by Z. Lyu, Y. Chen, and X. Jia (see [11]). It has proved in [11] that if X is consonant and for natural number n,

$$\Sigma(\prod^n \mathcal{O}(X)) = \prod^n \Sigma(\mathcal{O}(X)),$$

then $P_S(X)$ is consonant. Similarly, Y. Chen, H. Kou and Z. Lyu also showed that if X is consonant and for natural number n,

$$\Sigma(\prod^n \mathcal{O}(X)) = \prod^n \Sigma(\mathcal{O}(X)),$$

then $P_H(X)$ is consonant (see [3]). Naturally, it arises the following questions.

(3) Is X co-consonant when $P_S(X)$ is co-consonant?

(4) Is the smyth powerspace $P_S(X)$ of a co-consonant space X co-consonant?

(5) Is the lower powerspace $P_H(X)$ of a co-consonant space X co-consonant?

(6) Is X co-consonant when $P_H(X)$ is co-consonant?
In section 4, we will give some answers for these questions.

2 Preliminaries

Given a poset P and $A \subseteq P$, let

$$\uparrow A = \{x \in P \mid a \leq x \text{ for some } a \in A\}$$

and

$$\downarrow A = \{x \in P \mid x \leq a \text{ for some } a \in A\}.$$

For every $x \in P$, we write $\downarrow x$ for $\downarrow \{x\}$ and $\uparrow x$ for $\uparrow \{x\}$.

Let P be a poset and $x, y \in P$. We say that x is way below y, in symbols $x \ll y$, iff for all directed subsets $D \subseteq P$ for which $\bigvee D$ exists, $y \leq \bigvee D$ implies $x \leq d$ for some $d \in D$. If $\Downarrow a = \{b \in P \mid b \ll a\}$ is directed and $\bigvee \Downarrow a = a$ for all $a \in P$, we call P a continuous poset. A complete lattice L is called a continuous lattice if L is a continuous poset.

Let P be a poset. A subset U of P is Scott open (see [5]) if (i) $U = \uparrow U$ and (ii) for any directed subset D, $\bigvee D \in U$ implies $D \cap U \neq \emptyset$ whenever $\bigvee D$ exists. The Scott open sets on P form the Scott topology $\sigma(P)$. The Scott space $(P, \sigma(P))$ will be simply written as $\Sigma(P)$. The upper topology $\upsilon(P)$ on poset P is a topology that has $\{P \setminus \downarrow x \mid x \in P\}$ as a subbase.

For a T_0 space (X, τ), the specialization order \leq on X is defined by $x \leq y$ if and only if $x \in \text{cl}(\{y\})$ (see [5], p. 42). We use $\mathcal{O}(X)$ ($\Gamma(X)$) to denote the lattice of all open(closed) subsets of X. Note that for each subset $A \subseteq X$, $\uparrow A$ is equal to the intersection of all the open sets containing A and we say $\uparrow A$ is the saturation of A. A subset $A \subseteq X$ is saturated if $A = \uparrow A$.

For a topological space X, we shall use $\mathcal{Q}(X)$ to denote the poset of all nonempty compact saturated subsets of X with the reverse inclusion order. The upper Vietoris topology on $\mathcal{Q}(X)$ is the topology that has $\{\Box U \mid U \in \mathcal{O}(X)\}$ as a base, where $\Box U = \{K \in \mathcal{Q}(X) \mid K \subseteq U\}$. The upper Vietoris topological space (or called Smyth powerspace) is denoted by $P_S(X)$. Naturally, $\{\Diamond U \mid U \in \Gamma(X)\}$ is a subbase of the closed sets of $P_S(X)$, where $\Diamond U = \{Q \in \mathcal{Q}(X) \mid Q \cap U \neq \emptyset\}$. Then the specialization order of the upper space $P_S(X)$ is the reverse inclusion order.

Given a topological space X, the lower powerspace on $\Gamma(X)$ is the topology that has $\{\Diamond U \mid U \in \mathcal{O}(X)\}$ as a subbase, where $\Diamond U = \{V \in \Gamma(X) \mid U \cap V \neq \emptyset\}$. The lower powerspace is denoted by $P_H(X)$. Then $\{\Box U \mid U \in \Gamma(X)\}$ is a subbase of the closed sets of $P_H(X)$, where $\Box U = \{F \in \Gamma(X) \mid F \subseteq U\}$. One can see that $\Diamond (U \cup V) = (\Diamond U) \cup (\Diamond V)$ for each pair of open sets U and V.

3
Let X be a T_0 space. A nonempty subset F of X is irreducible, if for any $A, B \in \Gamma(X)$, $F \subseteq A \cup B$ implies $F \subseteq A$ or $F \subseteq B$. For every $x \in X$, $cl\{x\}$ is an irreducible closed set of X. A topological space X is called to be sober if every irreducible closed set of X is the closure of an unique singleton set. A topological space X is well-filtered if for each filtered family \mathcal{F} of compact saturated subsets of X and each open set U of X, $\bigcap \mathcal{F} \subseteq U$ implies $\mathcal{F} \subseteq U$ for some $F \in \mathcal{F}$. It is well known that every sober space is well-filtered (see [5]). A topological space X is coherent if the intersection of two compact saturated subsets is compact. For every complete lattice L, the Scott space $\Sigma(L)$ is well-filtered and coherent (see [10,14]).

3 The retract of consonant and co-consonant

In the following, we will give positive answers to the question 1 and question 2 proposed in introduction.

Definition 3.1 A T_0 space X is consonant if for every $\mathcal{F} \in \sigma(\mathcal{O}(X))$ and $U \in \mathcal{F}$, there is $Q \in \mathcal{Q}(X)$ such that $U \in \square Q \subseteq \mathcal{F}$, where $\square Q = \{V \in \mathcal{O}(X) \mid Q \subseteq V\}$.

Example 3.2 (1) Every locally k_ω space is consonant (see [15]).
(2) A topological space X is locally compact iff X is a core-compact and consonant space (see [3]).
(3) The Sorgenfrey line is not consonant (see [7]).

Definition 3.3 (see [2]) A T_0 space X is co-consonant if for every $\mathcal{F} \in \sigma(\mathcal{O}(X))$ and $U \in \mathcal{F}$, there is a finite subset $\mathcal{E} \subseteq \Gamma(X)$ such that $U \in \bigcap \{\lozenge A \mid A \in \mathcal{E}\} \subseteq \mathcal{F}$, where $\lozenge A = \{V \in \mathcal{O}(X) \mid A \cap V \neq \emptyset\}$.

4
Clearly, \(X \) is co-consonant iff the upper topology is agree with the Scott topology on \(\mathcal{O}(X) \).

Example 3.4 (1) If \(X \) is a quasi-polish space, then \(P_S(X) \) is a co-consonant space (see [2]).

(2) Let \(L \) be the Isbell complete lattice (see [3]). We define \(\mathcal{O}(\hat{L}) = \{ \hat{L} \setminus K \mid K \in \mathcal{Q}(L) \} \), where \(\hat{L} = L \setminus \{ 1_L \} \) and \(1_L \) is the top element of \(L \). Then \((L, \mathcal{O}(\hat{L})) \) is a topological space and \(\Sigma(\mathcal{O}(\hat{L})) \) is non-sober (see [3]). By Proposition 2.9 in [10], the upper topology on \(\mathcal{O}(\hat{L}) \) is sober. Hence we can assert that \(\sigma(\mathcal{O}(\hat{L})) \neq \nu((\mathcal{O}(\hat{L}))) \). This implies that \((L, \mathcal{O}(\hat{L})) \) is not co-consonant.

The Example 3.4(2) illustrates that the following conclusion holds.

Fact 3.5 Let \(X \) be a topological space. If \(X \) is co-consonant, then \(\Sigma(\mathcal{O}(X)) \) is sober.

Next, we will give two kinds of order spaces which are co-consonant. Given a poset \(P \), the Alexandroff topology \(\alpha(P) \) is the topology consisting of all its upper subsets of \(P \).

Proposition 3.6 Let \(P \) be a poset. Then the Alexandroff topological space \((P, \alpha(P)) \) is co-consonant.

Proof. It is clear that \(\nu(\alpha(P)) \subseteq \sigma(\alpha(P)) \). Let \(V \in \sigma(\alpha(P)) \) and \(V \in \mathcal{V} \) with \(V \neq \emptyset \). Note that \(V = \bigcup \{ \uparrow F \mid F \subseteq V \text{ is a finite non-empty subset} \} \). It follows from \(V \in \sigma(\alpha(P)) \) that there exists a subset \(F_0 = \{ x_1, x_2, \ldots, x_n \} \) of \(V \) such that \(\uparrow F_0 \in \mathcal{V} \). Clearly \(V \in \bigcap_{1 \leq m \leq n} \alpha(P) \setminus \downarrow (P \setminus (\downarrow x_m)) \). Let \(B \in \bigcap_{1 \leq m \leq n} \alpha(P) \setminus \downarrow (P \setminus (\downarrow x_m)) \). Then \(B \in \alpha(P) \) and \(B \cap \downarrow x_m \neq \emptyset \) for all \(1 \leq m \leq n \). This means that \(x_m \in B \) for all \(1 \leq m \leq n \). Since \(\uparrow F_0 = \bigcup_{1 \leq m \leq n} \uparrow x_m \in \mathcal{V} \), we have \(B \in \mathcal{V} \). So \(V \in \bigcap_{1 \leq m \leq n} \alpha(P) \setminus \downarrow (P \setminus (\downarrow x_m)) \subseteq \mathcal{V} \) and thus \(\nu(\alpha(P)) = \sigma(\alpha(P)) \). \(\Box \)

Proposition 3.7 Let \(P \) be a continuous poset. Then \(\Sigma(P) \) is co-consonant.

Proof. Let \(U \in \sigma(\sigma(P)) \) and \(U \in \mathcal{U} \). Since \(P \) is a continuous poset, we have \(U = \bigcup_{u \in U} \uparrow u \). Note that \(S = \bigcup_{1 \leq s \leq m} \uparrow u_s \mid u_s \in U, m \in \mathbb{N} \} \) is directed and \(U = \bigcup S \). As \(U \in \sigma(\sigma(P)) \), there are finitely \(u_1, u_2, \ldots, u_n \in U \) such that \(\bigcup_{1 \leq k \leq n} \uparrow u_k \in \mathcal{U} \). Define a map \(f_n : \prod P \rightarrow \Sigma(\sigma(P)) \) as follows

\[
\forall (x_1, x_2, \ldots, x_n) \in \prod P, f((x_1, x_2, \ldots, x_n)) = \bigcup_{1 \leq k \leq n} \uparrow x_k.
\]

5
Clearly, \(\downarrow u_1 \times \downarrow u_2 \times \cdots \times \downarrow u_n \subseteq f_n^{-1}(U) \). Let \(V \in \bigcap_{1 \leq k \leq n} \downarrow u_k \). Then for all \(1 \leq k \leq n \), \(V \cap \downarrow u_k \neq \emptyset \). This means that \(u_k \in V \). Since \(\bigcup_{1 \leq k \leq n} \uparrow v_k \subseteq V \) and \(U \in \sigma(\sigma(P)) \), we have \(V \in U \). This implies that \(U \in \bigcap_{1 \leq k \leq n} \downarrow u_k \subseteq U \). Thus, \(\Sigma(P) \) is co-consonant. \(\square \)

A topological space \(X \) is a retract of a topological space \(Y \) if there are two continuous maps \(f : X \to Y \) and \(g : Y \to X \) such that \(g \circ f = id_X \).

Theorem 3.8 Let \(X \) be a T_0 space. If \(X \) is a retract of a consonant space \(Y \), then \(X \) is consonant.

Proof. Let \(F \in \sigma(\mathcal{O}(X)) \) and \(U \in F \). Since \(X \) is a retract of \(Y \), there are two continuous maps \(f : X \to Y \) and \(g : Y \to X \) such that \(g \circ f = id_X \).

Define a mapping \(\alpha : \Sigma(\mathcal{O}(Y)) \to \Sigma(\mathcal{O}(X)) \) as follows:

\[
\forall U \in \mathcal{O}(Y), \alpha(U) = f^{-1}(U).
\]

Clearly, \(\alpha \) is continuous. So we have \(\tilde{F} = \alpha^{-1}(F) \in \sigma(\mathcal{O}(Y)) \). Since \(g \circ f = id_X \), \(g \) is a surjection and for every subset \(A \subseteq X \), \(A = f^{-1}(g^{-1}(A)) \). So \(f^{-1}(g^{-1}(U)) = U \) and thus \(g^{-1}(U) \in \tilde{F} \). Since \(Y \) is consonant and \(g^{-1}(U) \in \tilde{F} \), there is \(Q \in \mathcal{Q}(Y) \) such that \(g^{-1}(U) \subseteq \square Q \subseteq \tilde{F} \). Note that for each subset \(B \subseteq X \), \(g(g^{-1}(B)) = B \) since \(g \) is a surjection.

Claim: \(U \in \square \uparrow g(Q) \subseteq F \).

Clearly, \(\uparrow g(Q) \in \mathcal{Q}(X) \) and \(\uparrow g(Q) \subseteq \uparrow g(g^{-1}(U)) = U \). Whence, \(U \in \square \uparrow g(Q) \). For each open set \(E \in \square \uparrow g(Q) \), \(g(Q) \subseteq \uparrow g(Q) \subseteq E \). This implies that

\[
Q \subseteq g^{-1}(g(Q)) \subseteq g^{-1}(E).
\]

Therefore, \(g^{-1}(E) \in \square Q \) and hence \(g^{-1}(E) \in \tilde{F} \). This implies that \(E = f^{-1}(g^{-1}(E)) \in F \). This means that \(\square \uparrow g(Q) \subseteq F \). Hence, \(X \) is consonant. \(\square \)

Theorem 3.9 Let \(X \) be a T_0 space. If \(X \) is a retract of a co-consonant space \(Y \), then \(X \) is co-consonant.

Proof. Let \(F \in \sigma(\mathcal{O}(X)) \) and \(U \in F \). Since \(X \) is a retract of \(Y \), there are two continuous mappings \(f : X \to Y \) and \(g : Y \to X \) such that \(g \circ f = id_X \). Similarly, by the proof of Theorem 3.8, \(\tilde{F} = \{ V \in \mathcal{O}(Y) \mid f^{-1}(V) \in F \} \in \sigma(\mathcal{O}(Y)) \) and \(g^{-1}(U) \in \tilde{F} \). By the co-consonance of \(Y \), there is a finite subset \(\mathcal{E} \subseteq \Gamma(Y) \) such that \(g^{-1}(U) \in \cap \{ \uparrow A \mid A \in \mathcal{E} \} \subseteq \tilde{F} \). Let \(\tilde{\mathcal{E}} = \{ f^{-1}(A) \mid A \in \mathcal{E} \} \). It follows form the continuity of \(f \) that \(\tilde{\mathcal{E}} \) is a finite subset of \(\Gamma(X) \).

Claim: \(U \in \cap \{ \uparrow B \mid B \in \tilde{\mathcal{E}} \} \subseteq F \).
Since \(g^{-1}(U) \in \bigcap \{ \Diamond A \mid A \in \mathcal{E} \} \), \(g^{-1}(U) \cap A \neq \emptyset \) for each \(A \in \mathcal{E} \). Take \(y \in g^{-1}(U) \cap A \). So \(g(y) \in U \) and thus \(y = f(g(y)) \in A \). Equivalently, \(g(y) \in U \cap f^{-1}(A) \). This means that \(U \in \bigcap \{ \Diamond B \mid B \in \mathcal{F} \} \). Take \(W \in \bigcap \{ \Diamond B \mid B \in \mathcal{F} \} \). One can easily check that \(f(x) \in g^{-1}(W) \cap A \). This implies that \(g^{-1}(W) \in \bigcap \{ \Diamond A \mid A \in \mathcal{E} \} \). So \(W = f^{-1}(g^{-1}(W)) \in \mathcal{F} \) and thus \(\bigcap \{ \Diamond B \mid B \in \mathcal{F} \} \subseteq \mathcal{F} \). Therefore \(X \) is co-consonant.

Next, we present some applications of Theorem 3.8 and Theorem 3.9.

Remark 3.10 (1) For a complete lattice \(L \), \(\Sigma L \) is a retract of \(\Sigma(\Gamma(\Sigma L)) \) (see [12]).

(2) Let \(X \) be a \(T_0 \) space. Define mappings \(\phi : P_S(X) \to P_S(P_S(X)) \) and \(\varphi : P_S(P_S(X)) \to P_S(X) \) as follows:
\[
\forall Q \in \mathcal{Q}(X), \phi(Q) = \uparrow_{P_S(X)}\xi(Q)
\]
and
\[
\forall A \in \mathcal{Q}(P_S(X)), \varphi(A) = \bigcup A,
\]
where the mapping \(\xi : X \to P_S(X) \) is defined by \(\xi(x) = \uparrow x \). Then \(\phi \) and \(\varphi \) are continuous such that \(\varphi \circ \phi = \text{id}_{P_S(X)} \) and \(\phi \circ \varphi \geq \text{id}_{P_S(P_S(X))} \). So we can conclude that \(P_S(X) \) is a strong retract of \(P_S(P_S(X)) \).

Corollary 3.11 (1) Let \(L \) be a complete lattice. If \(\Sigma(\Gamma(L)) \) is consonant (co-consonant), \(\Sigma L \) is consonant (co-consonant).

(2) Let \(X \) be a \(T_0 \) space. If \(P_S(P_S(X)) \) is consonant (co-consonant), \(P_S(X) \) is consonant (co-consonant).

Lemma 3.12 (see [13]) Let \(L \) be a complete lattice. Then \(\mathcal{Q}(L) = \mathcal{Q}(\Sigma L) \) is a complete Hetying algebra.

Remark 3.13 Let \(L \) be a complete lattice. Then for any \(\{ Q_i \mid i \in I \} \subseteq \mathcal{Q}(L) \), \(\bigvee_{i \in I} Q_i = \bigcap_{i \in I} Q_i \).

Lemma 3.14 Let \(L \) be a complete lattice. If \(\Sigma L \) is consonant, then \(\Sigma(\mathcal{Q}(L)) \) is a retract of \(\Sigma(\sigma(\sigma(L))) \).

Proof. Define mappings \(f : \Sigma(\mathcal{Q}(L)) \to \Sigma(\sigma(\sigma(L))) \) and \(g : \Sigma(\sigma(\sigma(L))) \to \Sigma(\mathcal{Q}(L)) \) as follows:
\[
\forall Q \in \mathcal{Q}(L), f(Q) = \Box Q,
\]
and
\[
\forall \mathcal{F} \in \sigma(\sigma(L)), g(\mathcal{F}) = \bigcap \mathcal{F}.
\]
Proposition 3.16
Let \(\Sigma L \) be consonant and \(F \in \sigma(\sigma(L)) \), there exists \(K \subseteq Q(L) \) such that \(F = \bigcup \{ \Box K \mid K \in K \} \). Then \(\bigcap F = \bigcap \{ \bigcup \{ \Box K \mid K \in K \} \} = \bigcap \bigcap K \subseteq \bigcap K \). By Remark 3.12, we can see \(\bigcap F \in Q(L) \) and \(g \) is well-defined. Clearly, \(g \circ f = id_{\Sigma Q(L)} \).

Claim: \(f \) and \(g \) are continuous mappings.

Let \(\{ Q_i \mid i \in I \} \subseteq Q(L) \) be a directed subset. By Remark 3.12, \(\bigvee \{ Q_i \mid i \in I \} = \bigcap \{ Q_i \mid i \in I \} \). Then
\[
\begin{align*}
 f(\bigvee \{ Q_i \mid i \in I \}) &= f(\bigcap \{ Q_i \mid i \in I \}) = \Box(\bigcap \{ Q_i \mid i \in I \}).
\end{align*}
\]
Clearly,
\[
\bigvee \{ f(Q_i) \mid i \in I \} = \bigcup \{ \Box Q_i \mid i \in I \} \subseteq f(\bigvee \{ Q_i \mid i \in I \}) = \Box(\bigcap \{ Q_i \mid i \in I \}).
\]
For each \(A \in \Box(\bigcap \{ Q_i \mid i \in I \}) \), equivalently \(\bigcap \{ Q_i \mid i \in I \} \subseteq A \). Since \(\Sigma L \) is well-filtered, there exists \(Q_{i_0} \) such that \(Q_{i_0} \subseteq A \). So \(A \in \Box Q_{i_0} \) and thus
\[
\begin{align*}
 f(\bigvee \{ Q_i \mid i \in I \}) &\subseteq \bigvee \{ f(Q_i) \mid i \in I \}.
\end{align*}
\]
Hence, \(f(\bigvee \{ Q_i \mid i \in I \}) = \bigvee \{ f(Q_i) \mid i \in I \} \). This means that \(f \) is Scott continuous. Let \(\{ F_i \mid i \in I \} \subseteq \sigma(\sigma(L)) \) be a directed subset. Then \(g(\bigvee \{ F_i \mid i \in I \}) = g(\bigcup \{ F_i \mid i \in I \}) = \bigcap \{ \bigcup F_i \mid i \in I \} = \bigcap \bigcap F_i = \bigvee \{ g(F_i) \mid i \in I \} \). So \(g \) is also Scott continuous. Hence, \(\Sigma(Q(L)) \) is a retract of \(\Sigma(\sigma(\sigma(L))) \). \(\square \)

By Theorem 3.8 and Theorem 3.9, we have the following corollary immediately.

Corollary 3.15 Let \(L \) be a complete lattice. If \(\Sigma L \) is consonant, then the following statements hold:

1. if \(\Sigma(\sigma(\sigma(L))) \) is consonant, then \(\Sigma(Q(L)) \) is consonant;
2. if \(\Sigma(\sigma(\sigma(L))) \) is co-consonant, then \(\Sigma(Q(L)) \) is co-consonant.

Proposition 3.16 Let \(X \) and \(Y \) be a pair of \(T_0 \) spaces. If \(X \times Y \) is co-consonant (consonant), then \(X \) is co-consonant (consonant).

Proof. Fix a \(y_0 \in Y \), the mapping \(\alpha_{y_0} : X \longrightarrow X \times Y \) is given by
\[
\forall x \in X, \quad \alpha_{y_0}(x) = (x, y_0).
\]
For each \(A \in O(X \times Y) \), \(A = \bigcup_{i \in I} U_i \times V_i \) for some \(\{ U_i \mid i \in I \} \subseteq O(X) \) and

8
\{V_i \mid i \in I\} \subseteq \mathcal{O}(Y)$. One can check that

$$\alpha_{y_0}^{-1}(A) = \begin{cases} \bigcup_{i \in I_0} U_i, & I_0 = \{i \in I \mid y_0 \in V_i\} \neq \emptyset, \\ \emptyset, & y_0 \notin \bigcup_{i \in I} V_i. \end{cases}$$

This means that α_{y_0} is a continuous mapping. Clearly, $p \circ \alpha_{y_0} = \text{id}_X$, where $p : X \times Y \longrightarrow X$ is the projection. So we can assert that X is a retract of $X \times Y$. By Theorem 3.8 and Theorem 3.9, X is co-consonant (consonant).

\section{Co-consonance of powerspaces}

In this section, we will give some answers for those four questions which is proposed in the introduction. Specifically, the answer of question 3 is negative and the partial answers of question 4 and question 5 is given. Furthermore, the answer of question 6 is positive.

Before answering question 3, it is necessary to introduce the concept of strongly compact subsets. A subset K of a topological space X is strongly compact if for each open set U, $K \subseteq U$ implies that there is a finite subset $F \subseteq X$ such that $K \subseteq \uparrow F \subseteq U$ (see [2]).

\textbf{Lemma 4.1} \textit{(see [2])} Let X be a co-consonant T_0 space. Then every compact subset of X is strongly compact.

In the following, we prove that the converse of Lemma 4.1 is true if $P_S(X)$ is co-consonant.

\textbf{Theorem 4.2} Let X be a T_0 space. If $P_S(X)$ is co-consonant and every compact subset of X is strongly compact, then X is co-consonant.

\textbf{Proof.} Define a mapping $\xi : X \longrightarrow P_S(X)$ by $\xi(x) = \uparrow x$, for all $x \in X$. Then ξ is continuous. So the mapping $f : \mathcal{O}(P_S(X)) \longrightarrow \mathcal{O}(X)$ is well defined, where $f(U) = \xi^{-1}(U)$ for all $U \in \mathcal{O}(P_S(X))$. Clearly, f is Scott continuous. For each $\mathcal{H} \in \sigma(\mathcal{O}(X))$ and $U \in \mathcal{H}$. Then $\square U \in f^{-1}(\mathcal{H})$ and

$$f^{-1}(\mathcal{H}) = \{\bigcup_{i \in I} \square U_i \mid f(\bigcup_{i \in I} \square U_i) \in \mathcal{H}\}$$

$$= \bigsqcup_{i \in I} \{x \mid \uparrow x \in \bigcup_{i \in I} \square U_i \in \mathcal{H}\}$$

$$= \bigsqcup_{i \in I} \{x \mid x \in \bigcup_{i \in I} U_i \in \mathcal{H}\}$$

$$= \bigcup_{i \in I} \bigsqcup_{i \in I} U_i \in \mathcal{H}.\}$$
By the continuity of f, $f^{-1}(\mathcal{H}) \in \sigma(\mathcal{O}(P_s(X)))$. Since $P_s(X)$ is co-consonant, there is a finite subset $F \subseteq \Gamma(P_s(X))$ such that $\Box U \in \bigcap\{\Diamond F \mid F \in F\} \subseteq f^{-1}(\mathcal{H})$. For each $F \in F$, let $F = \bigcap\{\Diamond V_i \mid i \in I_F\}$, where $\{V_i \mid i \in I_F\} \subseteq \Gamma(X)$. Since $\Box U \in \Diamond F$ for each $F \in F$, there exists a $Q_F \in \mathcal{Q}(X)$ such that $Q_F \subseteq U$ and $Q_F \in F$. By assumption, Q is strongly compact. Then there is a finite subset N_F such that $Q_F \subseteq \uparrow N_F \subseteq U$. Let $\bar{F} = \{\text{cl}(\{x\}) \mid x \in \bigcup_{F \in F} N_F\}$. Clearly, \bar{F} is a finite subset of $\Gamma(X)$.

claim 1: $U \in \bigcap\{\Diamond A \mid A \in \bar{F}\}$.

For each $x \in \bigcup_{F \in F} N_F$, $x \in N_{F_0}$ for some $F_0 \in F$. It follows form $\uparrow N_{F_0} \subseteq U$ that $x \in U$. So $U \in \Diamond(\text{cl}(\{x\}))$ and thus $U \in \bigcap\{\Diamond A \mid A \in \bar{F}\}$.

claim 2: $\bigcap\{\Diamond A \mid A \in \bar{F}\} \subseteq \mathcal{H}$.

Let V be an open set of X with $V \in \bigcap\{\Diamond A \mid A \in \bar{F}\}$. Then for each $x \in \bigcup_{F \in F} V \cap \text{cl}(\{x\}) \neq \emptyset$. This means that $\bigcup_{F \in F} N_F \subseteq V$. Thus for each $F \in F$, $\uparrow N_F \subseteq \Box V$. Since $Q_F \subseteq \uparrow N_F$ and $Q_F \in F$, $\uparrow N_F \in F$. It follows from $\uparrow N_F \subseteq \Box V \cap F$ that $\Box V \subseteq \Diamond F$ for each $F \in F$. Since $\bigcap\{\Diamond F' \mid F' \in F\} \subseteq f^{-1}(\mathcal{H})$, $\Box V \in f^{-1}(\mathcal{H})$. Then there are open sets $\{U_i \mid i \in I\} \subseteq \mathcal{O}(X)$ such that $\Box V = \bigcup_{i \in I} \Box U_i$ and $\bigcup_{i \in I} U_i \in \mathcal{H}$. Note that

$$V = \bigcup_{i \in I} \Box V = \bigcup_{i \in I} (\bigcup_{i \in I} \Box U_i) = \bigcup_{i \in I} (\bigcup_{i \in I} U_i) = \bigcup_{i \in I} U_i.$$

So we have $V \in \mathcal{H}$. Hence the claim 2 is proved. By two claims, we can conclude that X is co-consonant. □

Note that the co-consonance of $P_s(X)$ does not imply that every compact subset of X is strongly compact. Please see the following example.

Example 4.3 Let $P = \{\infty\} \cup \mathbb{N}$ and \mathbb{N} be the set of all natural numbers. The order on P is given by:

$$\forall x \in P, \, x \leq \infty.$$

Then $X = (P, \nu(P))$ is a quasi-polish space (see [2] Example 3.2). By Example 3.4(1), $P_s(X)$ is co-consonant. It is not difficult to verify that X is a compact space. However the compact subset P is not strongly compact in X. So we can assert that X is not co-consonant.

The following conclusion is one of the most important conclusions of this paper. This gives a partial answer of question 4.

Theorem 4.4 Let X be a co-consonant space. If for every natural number n,

$$\Sigma(\prod^n \mathcal{O}(X)) = \prod^n \Sigma(\mathcal{O}(X)),$$

10
then $P_S(X)$ is co-consonant.

Proof. Let $\mathcal{F} \in \sigma(\mathcal{O}(P_S(X)))$ and $\mathcal{F} \in \mathcal{F}$. Then $\mathcal{F} = \bigcup_{i \in I} \Box U_i$ for some family $\{U_i \in \mathcal{O}(X) \mid i \in I\}$. Since \mathcal{F} is Scott open, there is a finite subset $\{U_k \mid 1 \leq k \leq n\} \subseteq \{U_i \mid i \in I\}$ such that $\bigcup_{1 \leq k \leq n} \Box U_k \in \mathcal{F}$. Define a mapping $\beta_n : \Sigma(\prod(\mathcal{O}(X))) \rightarrow \Sigma(\mathcal{O}(P_S(X)))$ as follows:

$$\beta_n(V_1, V_2, \ldots, V_n) = \bigcup_{i=1}^n \Box V_i.$$

Since β_n is Scott continuous for each component V_i, β_n is continuous. As $\Sigma(\prod(\mathcal{O}(X))) = \prod_{n} \Sigma(\mathcal{O}(X))$, β_n is also continuous form $\prod_{n} \Sigma(\mathcal{O}(X))$ to $\Sigma(\mathcal{O}(P_S(X)))$. Then there are finitely Scott open sets $\{\mathcal{H}_k \mid 1 \leq k \leq n\} \subseteq \sigma(\mathcal{O}(X))$ such that

$$(U_1, U_2, \ldots, U_n) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_n \subseteq \beta_n^{-1}(\mathcal{F}).$$

By the co-consonance of X, there is a finite subset $\mathcal{E}_k \subseteq \Gamma(X)$ such that $U_k \in \cap\{\Diamond V \mid V \in \mathcal{E}_k\} \subseteq \mathcal{H}_k$, for each $1 \leq k \leq n$. Let $E_k = \cap\{\Diamond V \mid V \in \mathcal{E}_k\}$. Then $\mathcal{E} = \{E_k \mid 1 \leq k \leq n\}$ is a finite subset of $\Gamma(P_S(X))$.

Claim 1: $\bigcup_{1 \leq k \leq n} \Box U_k \in \mathcal{E} = \{\Diamond E_k \mid 1 \leq k \leq n\}$.

For each $1 \leq k \leq n$, $U_k \in \cap\{\Diamond V \mid V \in \mathcal{E}_k\}$. Then for each $V \in \mathcal{E}_k$, $U_k \cap V \neq \emptyset$. Take a $x_{k,V} \in U_k \cap V$. Let $F_k = \uparrow\{x_{k,V} \mid V \in \mathcal{E}_k\}$. By the finiteness of \mathcal{E}_k, F_k is compact in X. Clearly, $F_k \supseteq \Box U_k \cap E_k$. It follows from $\Box U_k \in \Diamond E_k$ that $\bigcup_{1 \leq k \leq n} \Box U_k \in \Diamond E_k$. So $\bigcup_{1 \leq k \leq n} \Box U_k \in \cap\{\Diamond E_k \mid 1 \leq k \leq n\}$ and thus $\mathcal{F} \in \cap\{\Diamond E_k \mid 1 \leq k \leq n\}$.

Claim 2: $\cap\{\Diamond E_k \mid 1 \leq k \leq n\} \subseteq \mathcal{F}$.

For each $\bigcup_{j \in J} \Diamond W_j \in \cap\{\Diamond E_k \mid 1 \leq k \leq n\}$, we have that for each $1 \leq k \leq n$, there is a $Q_k \in \mathcal{Q}(X)$ such that $Q_k \in \bigcup_{j \in J} \Diamond W_j \cap E_k$. Then there exists $j_k \in J$ satisfying $Q_k \in \Box W_{j_k}$. As $Q_k \in E_k$ and $Q_k \in \Box W_{j_k}$, $W_{j_k} \in \cap\{\Diamond V \mid V \in \mathcal{E}_k\}$. This means that $W_{j_k} \in \mathcal{H}_k$ for each $1 \leq k \leq n$. So we have

$$(W_{j_1}, W_{j_2}, \ldots, W_{j_n}) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_n \subseteq \beta_n^{-1}(\mathcal{F}).$$

Whence, $\bigcup_{1 \leq k \leq n} \Box W_{j_k} \in \mathcal{F}$. Since \mathcal{F} is an upper set in $\mathcal{O}(P_S(X))$, $\bigcup_{j \in J} \Box W_j \in \mathcal{F}$. Those two claims imply that $P_S(X)$ is co-consonant. \(\square\)

By Lemma 2.1, Lemma 2.2 and Theorem 4.4, the following conclusion holds immediately.

Corollary 4.5 Let X be a co-consonant space. If X is core-compact or $\Sigma(\mathcal{O}(X))$
is first-countable, then \(P_s(X) \) is co-consonant.

The next conclusion demonstrates that co-consonance of original space is necessary for the co-consonance of lower powerspace. Thus we give a positive answer of question 6.

Theorem 4.6 Let \(X \) be a \(T_0 \) space. If \(P_H(X) \) is co-consonant, then \(X \) is co-consonant.

Proof. Define a mapping \(\xi : X \rightarrow P_H(X) \) by \(\xi(x) = cl(\{x\}) \), for all \(x \in X \). Then \(\xi \) is a topological embedding. So the mapping \(\eta : \mathcal{O}(P_H(X)) \rightarrow \mathcal{O}(X) \) is well defined, where \(\eta(U) = \xi^{-1}(U) \) for all \(U \in \mathcal{O}(P_H(X)) \). Clearly, \(\eta \) is Scott continuous. Let \(\mathcal{F} \in \sigma(\mathcal{O}(X)) \) and \(U \in \mathcal{F} \). By the definition of mapping \(\eta \), we have

\[
\eta^{-1}(\mathcal{F}) = \{ U \in \mathcal{O}(P_H(X)) \mid \xi^{-1}(U) \in \mathcal{F} \}
\]

\[
= \{ \bigcup_{i \in I} \left(\bigcap_{j \in J_i} \diamond U_j \right) \mid \{ x \mid cl(\{x\}) \in \bigcup_{i \in I} \left(\bigcap_{j \in J_i} \diamond U_j \right) \in \mathcal{F} \}
\]

\[
= \{ \bigcup_{i \in I} \left(\bigcap_{j \in J_i} \diamond U_j \right) \mid \{ x \mid \exists i_0 \in I, x \in \bigcap_{j \in J_{i_0}} U_j \} \in \mathcal{F} \}
\]

\[
= \{ \bigcup_{i \in I} \left(\bigcap_{j \in J_i} \diamond U_j \right) \mid \bigcup_{i \in I} \left(\bigcap_{j \in J_i} U_j \right) \in \mathcal{F} \},
\]

where \(J_i \) is finite for each \(i \in I \) and \(\{ U_j \mid j \in J_i \} \subseteq \mathcal{O}(X) \). Then \(\eta^{-1}(\mathcal{F}) \in \sigma(\mathcal{O}(P_H(X))) \) and \(\diamond U \in \eta^{-1}(\mathcal{F}) \). By the co-consonance of \(P_H(X) \), there is a finite subset \(\mathcal{E} \subseteq \Gamma(P_H(X)) \) such that

\[
\diamond U \in \bigcap \{ \diamond A \mid A \in \mathcal{E} \} \subseteq \eta^{-1}(\mathcal{F}).
\]

Then for each \(A \in \mathcal{E} \), \(\diamond U \cap A \neq \emptyset \). So there exists a nonempty closed \(F_A \subseteq X \) satisfying \(F_A \in \diamond U \cap A \). Let \(\tilde{\mathcal{E}} = \{ F_A \mid A \in \mathcal{E} \} \). Then \(\tilde{\mathcal{E}} \) is finite subset of \(\Gamma(X) \). Clearly, \(U \in \bigcap \{ \diamond F_A \mid A \in \mathcal{E} \} \). Let \(V \) be an open set with \(V \in \bigcap \{ \diamond F_A \mid A \in \mathcal{E} \} \). Then for each \(A \in \mathcal{E} \), \(V \cap F_A \neq \emptyset \). This means that \(F_A \in \diamond V \cap A \). Hence, \(\diamond V \in \bigcap \{ \diamond A \mid A \in \mathcal{E} \} \subseteq \eta^{-1}(\mathcal{F}) \). Whence, \(V = \eta(\diamond V) \in \mathcal{F} \). This implies that \(U \in \bigcap \{ \diamond B \mid B \in \tilde{\mathcal{E}} \} \subseteq \mathcal{F} \). Therefore, \(X \) is co-consonant. \(\square \)

Before answering question 5, it is necessary to introduce the following concept.

Definition 4.7 A topological space \(X \) is called intersection-compatible if for every pair of open sets \(U, V \in \mathcal{O}(X) \) and a closed set \(W \in \Gamma(X) \), \(U \cap W \neq \emptyset \) and \(V \cap W \neq \emptyset \) implies \(U \cap V \cap W \neq \emptyset \).

Remark 4.8 If every closed set of a topological space \(X \) is irreducible, then \(X \) is intersection-compatible. In particular, the Scott spaces of chains are intersection-compatible.
Theorem 4.9 Let X be a co-consonant and intersection-compatible space. If for every natural number n,

$$\Sigma(\prod^n \mathcal{O}(X)) = \prod^n \Sigma(\mathcal{O}(X)),$$

then $P_H(X)$ is co-consonant.

Proof. Let $F \in \sigma(\mathcal{O}(P_H(X)))$ and $J \in \mathcal{F}$. Then $\mathcal{F} = \bigcup \{ \bigcap \mathcal{O}U_j \}$, where J_i is finite for each $i \in I$ and $\{ U_j \mid j \in J_i, i \in I \} \subseteq \mathcal{O}(X)$. As \mathcal{F} is Scott open, there exists a finite subset $F_0 \subseteq I$ such that $\bigcup \{ \bigcap \mathcal{O}U_j \} \in \mathcal{F}$. For convenience, let $F_0 = \{1, 2, \ldots, n_0\}$.

Let $\mathcal{S}_1 = \{ \bigcup_{1 \leq k \leq n_0} U_{i_k} \mid i_k \in J_k \}$. Let $n = |\mathcal{S}_1|$ and $\mathcal{S}_1 = \{ U_1, U_2, \ldots, U_n \} \subseteq \mathcal{O}(X)$. Then

$$\bigcup_{i \in F_0} \bigcap_{j \in J_i} \mathcal{O}U_j = \bigcap_{U \in \mathcal{S}_1} \mathcal{O}U = \bigcap_{1 \leq k \leq n} \mathcal{O}U_k,$$

and $\bigcap_{1 \leq k \leq n} \mathcal{O}U_k \in \mathcal{F}$. Define a mapping $\beta_n : \Sigma(\prod^n \mathcal{O}(X)) \rightarrow \Sigma(\mathcal{O}(P_H(X)))$ as follows:

$$\beta_n(V_1, V_2, \ldots, V_n) = \bigcap_{i=1}^n \mathcal{O}V_i.$$

Since β_n is Scott continuous for each component V_i, β_n is continuous. As $\Sigma(\prod^n \mathcal{O}(X)) = \prod^n \Sigma(\mathcal{O}(X))$, β_n is also continuous form $\prod^n \Sigma(\mathcal{O}(X))$ to $\Sigma(\mathcal{O}(P_H(X)))$.

Then there are finitely Scott open sets $\{ \mathcal{H}_k \mid 1 \leq k \leq n \} \subseteq \sigma(\mathcal{O}(X))$ such that

$$(U_1, U_2, \ldots, U_n) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_n \subseteq \beta_n^{-1}(\mathcal{F}).$$

By the co-consonance of X, there is a finite subset $\mathcal{F}_k \subseteq \Gamma(X)$ such that $U_k \in \bigcap \{ \diamond A \mid A \in \mathcal{F}_k \} \subseteq \mathcal{H}_k$, for each $1 \leq k \leq n$. Let $\mathcal{E}_1 = \{ \square(\bigcup_{j=1}^n A_j) \mid A_j \in \mathcal{F}_j, 1 \leq j \leq n \}$. Clearly, \mathcal{E}_1 is a finite subset of $\Gamma(P_H(X))$.

claim 1: $\bigcap_{j=1}^n \mathcal{O}U_j \in \{ \diamond M \mid M \in \mathcal{E}_1 \}$.

For each $M \in \mathcal{E}_1$, $M = \square(\bigcup_{j=1}^n A_j)$ and for every $1 \leq j \leq n$, $A_j \in \mathcal{F}_j$. Since $U_j \in \bigcap \{ \diamond A \mid A \in \mathcal{F}_j \}$ for all $1 \leq j \leq n$, then $U_j \cap A_j \neq \emptyset$. Take $x_j \in U_j \cap A_j$.

Then $\bigcup_{j=1}^n cl(\{x_j\}) \in (\bigcap_{j=1}^n \mathcal{O}U_j) \cap (\bigcap_{j=1}^n A_j)$. So $\bigcap_{j=1}^n \mathcal{O}U_j \in \{ \diamond M \mid M \in \mathcal{F} \}$ and thus $\mathcal{F} \in \bigcap \{ \diamond M \mid M \in \mathcal{E}_1 \}$.

claim 2: $\bigcap \{ \diamond M \mid M \in \mathcal{E}_1 \} \subseteq \mathcal{F}$.
For each \(A = \bigcup_{s \in S} \left(\bigcap_{t \in T_s} (\bigcap_{V_t} s \triangleright V_t) \right) \in \cap \{ \Diamond M \mid M \in E_1 \} \), where \(T_s \) is finite for each \(s \in S \) and \(\{ V_t \mid t \in T_s \} \subseteq \mathcal{O}(X) \). Similarly, since \(\cap \{ \Diamond M \mid M \in E_1 \} \) is Scott open in \(\mathcal{O}(P_H(X)) \), there are finite open sets \(V_1, V_2, \ldots, V_m \) of \(X \) such that \(\bigcap_{i=1}^{m} \triangleright V_i \subseteq A \) and \(\bigcap_{i=1}^{m} \triangleright V_i \in \cap \{ \Diamond M \mid M \in E_1 \} \). Suppose that there is a \(V_r (1 \leq r \leq m) \) such that \(V_r \not\in \cap \{ \Diamond A \mid A \in F_k \} \) for each \(1 \leq k \leq n \). Then for each \(1 \leq k \leq n \), there exists \(B_k \in F_k \) satisfying \(B_k \cap V_r = \emptyset \).

Let \(M_0 = \Box \left(\bigcup_{k=1}^{n} B_k \right) \). Clearly, \(M_0 \in E_1 \) and \(\bigcap_{i=1}^{m} \triangleright V_i \subseteq A \) and \(\bigcap_{i=1}^{m} \triangleright V_i \in \Diamond M_0 \). So there is a \(F \in \Gamma(X) \) such that \(F \subseteq \bigcup_{k=1}^{n} B_k \) and \(F \cap V_r \neq \emptyset \). This contradicts with \(B_k \cap V_r = \emptyset \), for each \(1 \leq k \leq n \). Then we can see that for each \(1 \leq i \leq m \), there is a \(1 \leq k \leq n \) such that \(V_i \in \cap \{ \Diamond A \mid A \in F_k \} \). For each \(1 \leq k \leq n \), let \(G_k = U_k \cap \{ V_i \mid 1 \leq i \leq m, V_i \in \cap \{ \Diamond A \mid A \in F_k \} \} \). Since \(X \) is a intersection-compatible space, \(G_k \in \cap \{ \Diamond A \mid A \in F_k \} \) for each \(1 \leq k \leq n \) and \(\bigcap_{k=1}^{n} \triangleright G_k \subseteq \bigcap_{i=1}^{m} \triangleright V_i \). Then we have

\[
(G_1, G_2, \ldots, G_n) \in \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_n \subseteq \beta_{n-1}^1(F).
\]

Whence, \(\bigcap_{k=1}^{n} \triangleright G_k \in \mathcal{F} \). Since \(\mathcal{F} \) is an upper set, it follows from \(\bigcap_{k=1}^{n} \triangleright G_k \subseteq \bigcap_{i=1}^{m} \triangleright V_i \subseteq A \) that \(A \in \mathcal{F} \). So the claim 2 is proved.

These two claims are enough for the proof. \(\Box \)

References

[1] B. Alleche, J. Calbrix, On the coincidence of the upper Kuratowski topology with the co-compact topology, Topology and its Applications, 93 (1999) 207-218.

[2] M. Brecht, T. Kawai, On the commutativity of the powerspace constructions, Logical Methods in Computer Science, 15 (3)(2019) 13.

[3] Y. Chen, H. Kou, Z. Lyu, Two topologies on the lattice of Scott closed subsets, Topology and its Applications, 306 (2022) 107918.

[4] S. Dolcki, G. Greco, A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide? Transactions of the American Mathematical Society, 347(1995)2869-2884.

[5] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, Cambridge, 2003.

[6] J. Goubault-Larrecq, A note by Matthew de Brecht, 2019, Preprint. Available at https://projects.lsv.ens-cachan.fr/topology/?page-id=1852, 2019.
[7] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, New Mathematical Monographs, vol. 22, Cambridge University Press, New York, 2013.

[8] Z. He, K. Wang, A compact space is not always SI-compact, Rocky Mountain Journal of Mathematics, 2021, in press.

[9] J. Isbell, Completion of a construction of Johnstone, Proceedings of the American Mathematical Society, 85 (1982) 333-334.

[10] X. Jia, A. Jung, Q. Li, A note on coherence of dcpos. Topology and its Applications, 2016 (209) 235-238.

[11] Z. Lyu, Y. Chen, X. Jia, Core-compactness, consonance and the Smyth powerspaces, Topology and its Applications, 312 (2022) 108066.

[12] H. Miao, Q. Li, D. Zhao, On two problems about sobriety of topological spaces, Topology and its Applications, 295 (2021) 107667.

[13] T. Nogura, D. Shakhmatov, When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies? Topology and its Applications, 70 (1996) 213-243.

[14] X. Xi, J. Lawson, On well-filtered spaces and ordered sets, Topology and its Applications, 228 (2017) 139-144.

[15] X. Xu, X. Xi, D. Zhao, A complete Heyting algebra whose Scott space is non-sober, Fundamenta Mathematicae, 252 (2021) 315-323.

[16] X. Xu, C. Shen, X. Xi, D. Zhao, On T_0 spaces determined by well-filtered spaces, Topology and its Applications, 282 (2020) 107323.