East African quintessential plants claimed to be used as blood purifiers, cleansers, detoxifiers and tonics: an appraisal of ethnobotanical reports and correlation with reported bioactivities

Timothy Omara¹,²*

Abstract

Background: Blood cleansing, purification, detoxification or strengthening is an ancient folkloric East African practice without any validated scientific underpinnings. This study was undertaken to retrieve ethnobotanical information and reported bioactivities of plants claimed to be blood purifiers, cleansers, detoxifiers and tonics in Eastern Africa and correlate their claimed use with scientific studies to find out whether there is any justification for their use in this ancient practice.

Method: An elaborate review was performed in electronic databases (PubMed, Science Direct, Scopus, Springer Link, Wiley Online Library, Taylor & Francis Online, SciFinder, Google Scholar, Web of Science) and the Google search engine to retrieve information on ethnomedicinal plants used in East Africa in blood purification, detoxification, cleansing or strengthening and their investigated bioactivities related to their use in this traditional practice.

Results: The search retrieved 74 plant species from 45 families distributed among 66 genera with some documented bioactivities, though, with little correlation with their traditional utilization in blood purification, cleansing, detoxification and strengthening. Some justification of the link between blood purification, cleansing, detoxification and strengthening and the use of the plants as antiplatelet aggregation, vasorelaxant, bronchodilatory, antihyperlipidaemic, cardioprotective, antiatherosclerotic and immunomodulatory agents were evident, but majorly antimicrobial activity has been investigated in most species. Thus, only 15 (20.2%) of the plant species (Allium sativum, Moringa oleifera, Olea capensis, Clausena anisata, Centella asiatica, Nasturtium officinale, Solanum nigrum, Withania somnifera, Rubus apetalus, Delonix elata, Persia americana, Aloe vera, Azadirachta indica, Echinacea angustifolia and Dioscorea bulbifera) could be directly correlated with studies pertaining to blood health.

Conclusion: Medicinal plants used in blood purification, cleansing, detoxification and strengthening in East Africa play a holistic role in rejuvenation of overall human health. Few studies have examined their bioactivities pertaining to blood health. Thus, bioactivities and pharmacological activities (such as blood thinning, hypolipemic, cardioprotective, immunomodulatory, tonic and renoprotective properties) and phytochemicals of the claimed plants warrant further investigations.

*Correspondence: prof.timo2018@gmail.com; prof.timo2018@mu.ac.ke

¹ Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya

Full list of author information is available at the end of the article
Background

Natural products continue to be well recognized as the source of most known therapeutically effective commercial drugs. This is due to their distinct features and their being the origin of many pharmaceutical products, including digoxin, acetylsalicylic acid, atropine, morphine and colchicine (Atanasov et al. 2021). Plants are the most widely used natural products for their supposed medicinal potential from time immemorial. They are reportedly used by more than 60% of the global population for treatment of various diseases and conditions (WHO 2019). This is evident in developing countries where there are shrinking health services, poverty and the aphorism that herbal medicines are more effective, safe, affordable and culturally acceptable (Schultz et al. 2020; Tabuti et al. 2010; Tugume et al. 2016). Therefore, increased ethnobotanical surveys and pharmacological investigations have been done for medicinal flora worldwide in the past decades.

In Africa, and particularly Eastern Africa, which is a treasure trove of medicinal plants, several plants have been reported to be used in traditional medicine. The range of diseases and conditions treated span from simple wounds, cough and fevers to complicated conditions such as cancer, snakebites and blood purification (Schultz et al. 2020; Omara et al. 2021a; Kathambi et al. 2020; Anywar et al. 2020). Blood cleansing, purification, detoxification or strengthening is an old complementary and alternative medicine practice which has involved the use of plants in many cultures. However, there are no clearly established scientific evidences which indicate the role of plants in this ancient practice (Vuuren and Frank 2020; Keville 1990; Akter et al. 2012). In the current study, ethnobotanical information and bioactivities of plants popularly claimed to be used as blood purifiers, blood cleansers, blood detoxifiers or blood tonics in Eastern Africa were explored. The bioactivities were correlated with the claimed use of the plants to discern if there is any justification for their use in this ancient practice.

Methodology

This non-systematic review retrieved scholarly information on ethnomedicinal plants claimed to be used in East Africa for blood purification, detoxification, cleansing or strengthening dated until August 2021. East Africa was taken as East African community, the region including Uganda, Kenya, Tanzania, Rwanda, Burundi and South Sudan (Omara et al. 2021b). An elaborate electronic review was performed in PubMed, Science Direct, Scopus, Springer Link, Wiley Online Library, Taylor & Francis Online, SciFinder, Google Scholar and Web of Science Core Collection. A more general search was further performed using the Google search engine to capture documents, reports, botanical databases and theses from various University repositories. This gathered all the published work (ethnobotanical books, reviews, reports, theses and primary scientific articles) with data on medicinal plants related to the six countries. For this review and in the traditional use context, the terms “blood purifier, blood cleanser, blood detoxifier, blood tonic, blood invigorant or blood strengthener” were used as the search key words in the retrieved reports. Those reports relating to plant usage as tonics (invigorants) and blood thinners, in blood clotting and bloodletting or for treating blood in the stool and blood pressure were excluded as these denoted treatments relating to specific blood diseases (Vuuren and Frank 2020).

Missing information in some studies such as local names and misspelled botanical names was checked from the Google search engine and botanical databases: The Plant List, International Plant Names Index, NCBI taxonomy browser and Tropicos. Most plant names were checked manually in the botanical databases at the point of entry, while the remainder were part of the checked list of ethnomedicinal flora of East Africa (Omara et al. 2021b; Omara 2020a). Another targeted review was undertaken to examine supportive evidences for the potential medical use of the claimed species to discern if scientific explanations could be advanced about their blood purifying, cleansing, detoxifying or strengthening potential.

Causes of sicknesses and the need for blood purification

In East Africa, sicknesses are usually correlated with their possible causes and as such, the medication and posology are contingent on the cause of the disease (Omara 2020b; Chhabra et al. 1984, 1993). For life-threatening illnesses or incidences where concerns cite that supernatural forces are behind diseases, diviners may be consulted (Sindiga 1994; Fratkin 1996). Communities attribute illnesses to external polluting influences that interferes with the normal body physiology (impairs digestive and...
blood circulatory systems) (Fratkin 1996). These may include consuming the “wrong” foods (such as Cheko che makiyo—fresh unboiled milk, dirty water, ikwek—vegetables such as Solanum nigrum and Gynadropis gyandra), introduction of contagious substances from ill people, transgression of a social rule by the victim or a family member. Sometimes, it may also be due to conflicts in relationships between the patient and the spirits, or a violation of witchcraft-related rites and fetishes, and in extreme cases witchcraft (sorcery attacks) (Chhabra et al. 1984; Fratkin 1996; Kaendi 1994; Schlage et al. 2000; Irakiza et al. 2016; Salinitro et al. 2017; Kigenyi 2016). Therefore, determining the origin of an illness is pivotal in the prescription of the appropriate remedy and posology. Traditional treatment regimens are thus meant to relieve intestinal blockages through herbal purgatives and laxatives, or in the case of sorcery, consulting diviners who at their own discretion dispense ritually protective herbal medicines (Fratkin 1996; Salinitro et al. 2017). If evil and ancestral spirits or gods are blamed for the malady, a ritual or ceremony to placate them is arranged. If broken cultural rules or taboos are named as the cause, an act of penance or restitution is prescribed.

In East Africa, blood is considered sacred (Merker 1904; Arhem 1989). For example, when drunk from ritually slaughtered animals among the Maasai of Kenya, it is a sacred food and is symbolically associated with death and rebirth (Arhem 1989). A trial ordeal is reported in which this ethnic group uses blood to prove the innocence of people: a person under trial is made to drink blood under a special curse; if he survives the trial he is declared innocent, if he gets sick or dies he is proven guilty (Arhem 1989; Hollis 1905). Among the Maasai of Tanzania, motorí—a blood-based medicinal soup is commonly consumed with meat and also eaten by the sick. It is typically composed of boiled fat and blood of cows, sheep and goats mixed with medicinal herbs to aid digestion or act as a prophylactic (Roulette et al. 2018). Within the context of traditional medicine, several conditions may induce the need for blood purification, cleansing, detoxification or strengthening (Table 1). However, the plants may also be administered to individuals as a prophylactic or solace therapy during recuperation (Kigen et al. 2017).

In modern medicine however, blood purification is sought as an extracorporeal therapy in extreme cases of renal, hepatic, blood circulatory or immune-inflammatory disease conditions (Thongboonkerd 2010). In this case, blood is taken from a patient’s circulation through an extracorporeal circuit; a purification process is applied to it before it is recirculated back into the body. The common purification procedures medically recommended include haemodialysis, hemofiltration, apheresis, autotransfusion and plasmapheresis (Zhou et al. 2013) which ajusts leukocyte recruitment and responsiveness, boosts body immunity, enhances white blood cells’ antigen-presenting and phagocytic capability, as well as oxidative burst of immune cells (such as neutrophils and monocytes) (Peng et al. 2010).

Table 1 Conditions linked with the need for a blood purifier, cleanser, detoxifier or tonic according to East African folk medicine diagnoses

Medical condition	References
Anaemia, allergies and inappetence	Kigen et al. 2017; Gumisiriza et al. 2019; Kimondo et al. 2015
Renal problems, splenomegaly and pancreatitis	Kigen et al. 2017; Muriuki 2011; Koch et al. 2005
Cerebrovascular and ocular disorders	Kigen et al. 2017
Gynaecology and childbirth. To “clean” women after giving birth or facilitate placenta expulsion	Kigen et al. 2017; Kiringe 2006
Aches, pains, dermal diseases, oedema	Fratkin 1996; Kigen et al. 2017; Odongo et al. 2018; Posthouwer 2015; Maundu et al. 2001
Malaria	Odongo et al. 2018; Maundu et al. 2001
Circulatory system disorders, menstrual cramps, hypertension, postmenopausal syndrome	Fratkin 1996; Kigen et al. 2017; Posthouwer 2015; Maundu et al. 2001
Compromised/weakened immunity	Anywar et al. 2020
Diabetes mellitus (hyperglycaemia), hyperlipidaemia	Kigen et al. 2017
Toxins in blood	Fratkin 1996
Wrong eating habits (digestive system disorders), food poisoning, brucellosis, constipation	Fratkin 1996; Muriuki 2011; Maundu et al. 2001
2019). East African traditional healers, however, connect the use of blood purifiers to their use as rejuvenators (tonics) (Table 2). Though used for blood purification, these plants are used to treat a range of other diseases and conditions including cancer, venereal diseases, epilepsy, fatigue, fevers, asthma and drug addiction. For example, *Rotala tenella* (Guill and Per) Hiern is used for management of peripheral neuropathy, muscle cramps, joint pains, pre- and postmenopausal syndromes, lumbago, obesity, cardiovascular/cerebrovascular disorders and hyperlipidaemia other than being used as a blood cleanser. The plant is also popularized among athletes as it is believed to house nutrients that prevent muscle injury (Kigen et al. 2017). Only *Citrullus lanatus*, *Cymbopogon citratus* (DC.) Stapf, *Dioscorea bulbifera* L., *Delonix elata* (L.) Gamble, *Vachellia seyal* (Delile) P.J.H. Hurter were reported to be used primarily for blood purification.

A total of 74 plants from 45 families distributed among 66 genera have been reported for use in blood purification, detoxification, cleansing or strengthening in East Africa (Table 2). Two unidentified plants (*Mukururitti* and *Ruguru*) were also reported to be used as blood cleansers in Kenya (Muriuki 2011). The most represented families were Fabaceae (with 7 species), Asteraceae and Rutaceae (4 species each), Amaranthaceae, Meliaceae and Solanaceae with 3 species each. *Aloe* was the most common genera (represented by 3 species) followed by *Acacia, Amaranthus, Dioscorea* and *Solanum* (represented by 2 species each). The *Aloe* genus is known as a common ingredient of most blood purifier products sold in East Africa (Ugabox 2021; Pigiame 2017).

The herbal remedies are principally prepared as decoctions, chewed, steamed, eaten as a vegetable (e.g. *Chenopodium album* and *Solanum anguivii*) or taken as spices in food (e.g. *Allium sativum* and *Persia americana*). These remedies are obtained from plant leaves (30.8%), roots (20.6%), bark (12.1%) and fruits (10.3%) (Fig. 1). These are sometimes dried and powdered prior to administration and sometimes mixed with soup, especially for bitter plants (blood tonics). Other recipes included soot from burnt flowers, roots and leaves which are licked. Raw honey (*Kumat* in native Markweta of Kenya) was also reported to be consumed as a blood cleanser (Kigen et al. 2017).

The relatively frequent use of roots is related to the fact that blood—which is internal to the body—is hidden, just as root structures are hidden in the ground. This gives a correlation to the doctrine of signature concept, i.e. herbs with shape or colour resemblances to body parts could be used to manage ailments of those body parts (Efferth and Greten 2016). Further, a pharmacognostical tenet exists in East African traditional medicine in which red-coloured plants, their parts or herbal preparations cognate with their potential to be used to treat blood-related conditions such as fever, pimples, acne and venereal diseases. For example, a decoction of *Visnia orientalis* roots is taken as a remedy for lassitude, and because the plant exudes a red gum which resembles blood, it is thought that this can strengthen the blood. Similarly, the sundried and stone-ground *Visnia orientalis* bark powder is made into a paste with castor oil which is rubbed onto pimples, acne, smallpox, chickenpox or primary syphilis (Kokwaro 1993).

Evidently, there is an East African traditional link between the magical properties of the identified plants and bloodletting, the spilling of blood or connection to spiritual uses (Table 3). This could be because some of the conditions that require blood purification are linked to spiritual causes such as sorcery (Fratkin 1996; Salinietro et al. 2017). In this context, some plants are used to dissuade evil spirits, provide protection against witchcraft, “summon” the rains and other rituals of purification. Similar spiritual linkage of plants used in blood purification has been reported in various communities in Southern Africa (Wyk and Gericke 2000; Moteetee 2017; Maroyi 2011).

Adverse side effects, toxicity and antidotes of the identified plant species

From the reviewed studies, toxicity of plants with reported use as blood purifiers, cleansers, detoxifiers or tonics was not a very common occurrence. However, *Aloe* species reportedly caused stomach ache, diarrhoea, general body weakness and mild headache (Kamau et al. 2016c). *Rhamnus prinoides* and *Prunus africana* had diuretic side effects (Kamau et al. 2016c), while *Euclea divinorum* and *Ricinus communis* had purgative and laxative effects (Kamau et al. 2016c; Kigen et al. 2014). From the foregoing, traditional medicine practitioners tended to add animal fats, bovine milk, bone soup or used more than one plant part to neutralize toxic herbal preparations. For example, *R. prinoides* are used along with *Periploca linearifolia*, *Carissa edulis* and *Rotheca myricoides*, while *P. africana* could be prepared with *Acacia nilotica* or *Tremma orientalis*. About half a glass of *Achyranthes aspera* leaves and *Ficus natalensis* (roots) were added to the preparation of *Euclea divinorum* (Kamau et al. 2016c). However, some practitioners prepare formulations with more than one plant (or plant parts) as a trick of keeping the secrecy of their formula (Kuria et al. 2001). Overall, it should be emphasized that plant toxicity is important in initiating purgation and emesis which are regarded as the key treatment regimen for diseases in Eastern Africa (Omara 2020b; Kaendi 1994; Kiringe 2006). Thus, it is one route of freeing the body of toxins,
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
Alliaceae	Allium sativum L	Katunguluccumu	Bulb (chew & swallow)	Reduce heartbeat, **blood cleanser**, bad breath, stomach ache, constipation, swollen rib cage, snakebites (Tugume et al. 2016)	Antidiabetic, anticancer, hepatoprotective, antimicrobial and antihyperlipidaemic activities (Omara et al. 2020; Kaur et al. 2016), antplatelet aggregation, cardio-protective and antithrombotic effects (Sobenin et al. 2019; Silagy and Neil 1994; Borda et al. 1996)
Aloeaceae	Aloe tweediae Christian	Cheretwo (Markweta)	Leaves (Sap used)	Peptic ulcers, **blood cleanser**, infertility, arthritis, respiratory disorders, allergies, obesity, wounds (Kigen et al. 2017)	No relevant investigation
Aloeaceae	Aloe vera (L.) Burm.f	Rukaka	Leaves (Not specified)	Malaria, **blood cleanser**, allergy, typhoid, yellow fever, stomach ache, worms (Gumisiriza et al. 2019)	Antimicrobial, wound healing, anti-inflammatory, antifungal, hypoglycaemic, anticancer, immunomodulatory and gastroprotective properties (Mukherjee et al. 2014)
Amaranthaceae	Amaranthus graecizans	Rwoga/terere (Embu, Mbeere, Meru)	Not specified	Blood purifier, immunity booster, increase blood, AIDS, diabetes (Muriuki 2011)	Antioinflammatory, anti-inflammatory and protease inhibition activities (Ishiaq et al. 2017)
Amaranthaceae	Amaranthus retroflexus L	Tsimboka	Leaves (Not specified)	Blood purifier, brain health, constipation, wound healing (Advertiser 2020)	Antioxidant, antimicrobial activities (Pacífico et al. 2008; Pioata et al. 2016; Marín et al. 2014; Tenzeva et al. 2019)
Amaranthaceae	Beta vulgaris L	Beetroot (English), no local name	Bulb (Eaten/prepared juice from it is drunk)	Purifying blood and liver (Beetroot in Uganda 2019)	Cytotoxicity (Kapadia et al. 2011), cardioprotective, antihypertensive and renoprotective properties (Mirmiran et al. 2020)
Anacardiaceae	Lonsea schweinfurthii Engl	Mubindabindi (Mbeere), Mumbu (Swohil)	Leaves (Not specified)	Allergies, arthritis, back/bone joint problems, **blood purifier**, blood tonic, cough/colds/flu, diabetes, dislocation, gouts, joints, liver, pneumonia, prostate cancer (Muriuki 2011; Posthouwer 2015)	Antiviral, antiangiarial, acetylcholinesterase inhibitory, antiapoptotic, antibacterial, anti-inflammatory, antioxidant, antiplastemoidal, antitrypanosomal, hepatoprotective and cytotoxic properties (Maroyi 2019)
Apioaceae	Centella asiatica	Mbutamu/ Kutukumu/Kabo Kabakyala (Luganda)	Whole plant (Decoction taken)	**Blood purifier**, leprosy, psoriasis, respiratory infections, ulcers, colds, eczema, hepatitis, epilepsy, fatigue, fevers, asthma and syphilis among others (Komakech 2017)	Hepatoprotective, cardioprotective, antioxidant, antidepressant, antibacterial, antifungal, anticancer, anticoagulatative and anti-inflammatory, antimycotic, sedative and anxiolytic properties (Das 2011)
Asteraceae	Artemisia annua L	Artemesia (English)	Leaves (ingested with rock salt)	Cancer, cough, indigestion, **blood cleanser**, malaria/fever (Anywar et al. 2020)	Antimalarial, antihypertensive, antimicrobial, anticancer, antioxidant, antiviral and anti-inflammatory activities (Sadiq et al. 2014)
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
--------------	----------------	------------	--------------------------------	--	-----------------------
Asteraceae	Echinacea angustifolia DC	Echinacea	Roots, leaves (Decoction, taken)	Used for infections, e.g. cough, sinus and a blood cleanser (Anywar et al. 2020)	Immuno-modulatory, anti-tumour and anti-inflammatory activities (Barnes et al. 2005; Tragni et al. 1988; Voade and Jacobson 1972)
Asteraceae	Senecio hadiensis Forsk	Chepchirmitit (Marakwet)	Stem, roots, leaves (Decoction)	Malaria, kidney disease, blood cleanser, soap (Kigen et al. 2017)	Antitumor activity (Orabi 2009)
Asteraceae	Vernonia myriantha	Tebengwo (Tugen)	Not specified	Colic pain, blood purification (Rufford 2020)	Antibacterial activity (Nigussie et al. 2020)
Basellaceae	Basella alba L	Kiraita (Markweta)	Leaves (Decoction)	Abdominal upsets, joint pains, lumbago, anaemia, blood cleanser (Kigen et al. 2017)	Antimicrobial, anti-inflammatory antiviral, antidiabetic, antioxidant, hepatoprotective, immunomodulatory activities (Deshmukh and Gaikwad 2014; Kumar et al. 2013)
Bignoniaceae	Kigelia africana Lam	Mwegea (Swahili)	Roots, leaves, bark, fruits (Decoction taken)	Gonorrhoea, syphilis, drug addiction, jaundice, madness, cataract, blood cleanser, increase blood pressure, measles and postpartum bleeding (Posthouwer 2015; Loice 2018)	Antibacterial, anti-fungal, antiprotozoal, anticonvulsant, anti-inflammatory, analgesic, antidiabetic, antiproliferative and antioxidant activities (Nabatanzi et al. 2020)
Brassicaceae	Nasturtium officinale W.T. Aiton	Kiibira, N’gyondo kop Elijah (Marakwet)	Leaves (Decoction)	Peptic ulcers, anaemia, allergies, blood cleanser (Kigen et al. 2017)	Immuno-modulatory, hypolipemic, antioxidant, anticancer, antidiabetic, anti-inflammatory, antibacterial and cardioprotective effects (Klimek-Szytkutowicz et al. 2018)
Cactaceae	Opuntia monacantha Haw	Makatar (Marakwet)	Roots, leaves, fruits (Boiled or burnt to soot; fruits chewed)	Oral candidiasis, diabetes, pancreatitis, blood cleanser (Kigen et al. 2017)	Antidiabetic, antiradical and hepatoprotective activities (Yang et al. 2008; Saleem et al. 2015; Valente et al. 2010)
Cannabaceae	Cannabis sativa L	Njagga (Luganda), jai (Lango)	Leaves (Decoction taken, maybe taken in tea or milk)	Treat tuberculosis, cancer, blood cleanser, asthma, diarrhoea (Anywar et al. 2020)	Antimicrobial, anticancer, anti-inflammatory, neuroprotective, anxiolytic, analgesic, renoprotective, antioxidant, myorelaxant activities (Lim et al. 2021)
Capparaceae	Boscia coriacea	Kaire (Mbeere), Muthangira (Meru)	Not specified	Dental problems, blood detoxifier, eye problems, meat appetite, pneumonia, prostate cancer, tonsillitis (Muruki 2011)	Antifungal activity (Kiswii et al. 2014)
Capparaceae	Capparis tormentosa Lam	Mukolokombi (Luganda), Agodamar Longo	Roots (Decoction)	Blood cleanser, diarrhoea, pain (Anywar et al. 2020)	Antiplasmodial, antimalarial, antioxidant, anti-inflammatory, anti-diabetic and antimicrobial activities (Gebrehiwot and Chaithanya 2020)
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
--------------	----------------	------------	-------------------------------	--	-----------------------
Capparidaceae	Cleome gynandra L	Sakiat (Marakwet)	Leaves and roots (Chewed, or decoction taken)	Colic pain in infants, ear infection, **blood cleanser** (Kigen et al. 2017)	Antioxidant, anticancer, immunomodulatory and anti-diabetic activities (Moyo et al. 2018; Mishra et al. 2011)
Capparidaceae	Maerua subcordata (Girg.) DeWolf	Chepan'iny (Marakwet)	Roots (Chewed)	Colic pain in adults, anorexia, **blood cleanser** (Kigen et al. 2017)	Antifungal activity (Tegegne and Pretorius 2007)
Celastaceae	Maytenus senegalesis (Lam.) Exell	Jigelwo (Marakwet)	Bark, roots (Decoction)	Lumbago, **blood cleanser** (Kigen et al. 2017)	Antiplasmodial, antiproliferative, analgesic, anti-inflammatory, antimicrobial activities (Silva et al. 2011; Umar et al. 2019; Nabende et al. 2014)
Chenopodiaceae	Chenopodium album L	Montrichot (Markweta)	Whole plant (Boiled & eaten as a vegetable)	Abdominal upsets in infants, **blood detoxifier** in pregnancy (Kigen et al. 2017)	Antimicrobial, antipruritic, anti-inflammatory (Poonia and Upadhayay 2015), anti-nociceptive (Kawwani and Sisodia 2015)
Chrysobalanacea	Parinari curatellifolia Planch. ex Benth	Mnazi (Haya), Naji (Sukuma)	Root bark (Decoction)	Threatened abortion, malaria, as a **blood tonic** and cardiac stimulant (Watt and Breyer-Brandwijk 1962)	Antibacterial, antitymococcal, haemolytic (Karou et al. 2011; Bhunu et al. 2017), antioxidant, hypoglycaemic, anti-hyperlipidaemic, hepatoprotective, anti-antivenom and cardioprotective activities (Obonnia et al. 2008; Olaleye et al. 2014; Josiah et al. 2020; Halliu et al. 2020; Manuwa et al. 2017)
Convolvulaceae	Cuscuta L/Dodder species	Kabula kikolo (Luganda)	Leaves (Powder mixed with honey, water and taken)	Baldness, gonorrhoea, stomach ache, **blood purifier**, liver cirrhosis, libido, sperm quality (Quick Herbal Remedies Uganda 2018)	Hepatoprotective activity (Yen et al. 2008)
Convolvulaceae	Ipomoea lappidosa Wilhelm Vatke	Ndaria (Marakwet)	Twigs, roots, leaves (Decoction taken)	Ocular disorders, toothache, paraesthesia, **blood cleanser** (Kigen et al. 2017)	No relevant investigation
Crassulaceae	Kalanchoe lanceolata (Forssk.) Pers	Kipchebes (Marakwet)	Flowers (Burnt to soot and used)	Splenomegaly, hepatomegaly, **blood cleanser** (Kigen et al. 2017)	No relevant investigation
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
--------------	----------------	------------	---------------------------------	--	------------------------
Cucurbitaceae	Citrullus lanatus	Watermelon (English)	Fruits (Not specified)	**Blood cleanser** (Muriuki 2011)	Antioxidant, antiproliferative, cardioprotective, antihyperglycaemic, anti-inflammatory activities (Zamuz et al. 2021)
	Momordica foetida Schumach	Ebombo	Flowers (Decoction taken)	**Cleansing stomach** and **blood vessels** (Asiimwe et al. 2021)	Antioxidant (Acquaviva et al. 2013), antidiabetic (Venter et al. 2008), antimicrobial (Odeleye et al. 2009) activities
Dioscoreaceae	Dioscorea bulbifera L	Kamahunyu	Bulb (Eaten)	**Blood cleanser** (Anywar et al. 2020)	Anticancer, antibacterial, antiviral, immunomodulatory, anti-inflammatory, anti-diabetic, anti-obesity, analgesic, antioxidant, antidiabetic, antidyplipidemic and neuroprotective activities (Galani and Patel 2017; Kundu et al. 2021)
	Dioscorea minutifolia Engl	Rukwa rwa ngoma/ mbiti (Embu)	Not specified	**Blood cleanser**, viral diseases, rheumatism (Muriuki 2011)	No relevant investigation
Ebenaceae	Euclea divinorum Hiern	Kapcheptuin (Marakwet)	Fruits	Chewed. Abdominal upsets, skin disorders, **blood cleanser**, invigorant, prophylaxis of cancer and respiratory disorders (Kigen et al. 2017)	Cytotoxic (Mebe et al. 1998) and antimicrobial activities (Ngari et al. 2013; Nyambe 2014; Mbabazi et al. 2020)
Euphorbiaceae	Croton macrostachyus Hochst. Ex Delile	Mutuntu	Leaves, roots, stem bark (Not specified)	Wounds, cough, **digestive** and **blood circulation system** (Odongo 2013)	Antibacterial, antifungal, antitumour, antidiarrhoeal, sedative, anti-inflammatory, antioxidant, anticonvulsant, hepatoprotective and antiproliferative activities (Maroyi 2017; Tafere et al. 2020)
	Ricinus communis L	Kariki, Mbariki, Mubariki, Mucariki (Embu, Mbeere), Mwariki (Meru)	Roots, seeds (Not specified)	Bites, **blood cleanser**, burns, constipation, cough, **detoxifier**, family planning, hard stool, indigestion, wounds, libido (Muriuki 2011)	Antioxidant, analgesic, bone regeneration, antinociceptive, hepatoprotective, antimicrobial, antiproliferative and anti-inflammatory activities (Marwat et al. 2017)
Fabaceae	Acacia hockii De Wild	Akaasana (Luganda), Okuto atino (Lango)	Bark (Decoction)	HIV symptoms, anaemia, **blood cleanser**, cough (Anywar et al. 2020)	Anti-inflammatory, wound healing, antioxidant and antipyretic activities (Kamau et al. 2016a, 2016b; Zaruwa et al. 2020; Sychu et al. 2020)
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
--------------	---------------------------------	-------------------------------------	---------------------------------	---	--
Fabaceae	*Acacia seyal* (L.) Willd	Naibeere (Lusoga)	Leaves, branches, fruits (Decoction)	Fever, **blood tonic**, skin infections, diarrhea, fatigue (Anywar et al. 2020)	Antioxidant, anticancer, anti-inflammatory and antibacterial activities (Elmi et al. 2020; Zingue et al. 2018; Elnour et al. 2018)
Fabaceae	*Delonix elata* (L.) Gamble	Mwarange	Not specified	**Blood purifier** (Muriuki 2011)	Antioxidant, antibacterial, wound-healing, prophylactic, antinociceptive, hepatoprotective, anti-hyperlipidaemic activities (Chitra 2011; Ravindra and Priyanka 2018; Krishnappa et al. 2016)
Fabaceae	*Entada abyssinica* A. Rich	Mwolola (Luganda, Lusoga)	Branches, leaves (Decoction)	Syphilis, **blood tonic**, fever, chest and abdominal pain, fatigue, anaemia, ulcers, skin ulcers/lesions (Anywar et al. 2020)	Antioxidant, anti-inflammatory, antimicrobial, antitypanosomal and anticancer activities (Teke et al. 2011; Sempombe et al. 2014; Olaide et al. 2015; Kuete et al. 2013)
Fabaceae	*Erythrina abyssinica* Lam. ex DC	Omurembbe	Bark, roots (Decoction taken)	Body swellings, chest problems, **blood cleanser** (Odongo et al. 2018)	Antioxidant, antiviral, antymycobacterial, antiplasmodial, anti-inflammatory, antianaemic, antibacterial and antifungal activities (Obakiro et al. 2021)
Fabaceae	*Indigofera swaziensis* Bolus	Amaari (Iraqv)	Roots (Decoction)	Relieve general body pains, **purify blood** and give the body a stimulating effect (Kokwaro 1993)	No relevant investigation
Fabaceae	*Vachellia seyal* (Delile) P.J.H. Hurter	Lerignet (Marakwet)	Bark (Decoction)	**Blood cleanser** (Kigey et al. 2017)	No relevant investigation
Flacourtiaceae	*Dovyalis abyssinica* (A. Rich) Warb	Mindilliwo (Marakwet)	Bark, roots, fruits (Decoction, dried and powdered, fruits chewed)	Seizures (epilepsy), muscle pains, joint pains, invigorant, **blood cleanser**, skin rashes (Kigey et al. 2017)	Antibacterial, antifungal and antitypanosomal activities (Legesse et al. 2015; Tadesse et al. 2015; Geydi et al. 2005)
Hypericaceae	*Vismia orientalis* Engl	Mpera, Mguwe (Digo)	Roots (Decoction)	Pimples, acne, smallpox, chickenpox or primary syphilis. It **strengthens the blood** (Kokwaro 1993)	Antiprotozoal activity (Mbawambo et al. 2004)
Labiatae	*Leonotis mollissima* Guerke	Olbibi	Leaves (Infusion or decoction taken)	Antiseptic, skin rashes, **blood purifier** (Kigey et al. 2019)	Antimicrobial (Kinuthia 2019) and antiplasmodial (Waiganjo et al. 2020) activities
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
-------------	------------------------------------	---------------------------	--	--	--
Lamiaceae	Ocimum gratissimum L	Omujaja (Luganda)	Leaves (Taken as tea)	Blood cleanser, boosts appetite, hypertension and prevents insomnia (Vision 2010)	Anticonvulsant, sedative, anxiolytic, antidepressant-like antifungal, hepatoprotective, antidiabetic, anticancer activity, antibacterial, anti-diarrhoeal and antioxidant activities (Piyanka et al. 2018; Nasser et al. 2020)
Lauraceae	Persia americana Mill	Avocado (English), Ovakedo (Luganda)	Leaves, fruits (Decoction or eaten with food)	Amoebiasis, blood purifier, cancer, cough, immune booster, increase blood, malaria, prostate cancer, rheumatism, ulcers, anaemia, blood tonic, respiratory infections, herpes zoster (Anywar et al. 2020; Muriuki 2011)	Immunomodulatory, hypoglycaemic, antiviral, analgesic, anti-inflammatory, hypotensive, anticonvulsant, vasorelaxant, antiscarring and antioxidant activities (Bittencourt et al. 2020; Iweala et al. 2009; Yasar et al. 2010)
Lythraceae	Rotala tenella (Guill and Per) Hiern	Chepkitiot/Kitonde (Marakwet)	Whole plant (Boiled or consumed raw)	Blood cleanser, lumbago, obesity, cerebrovascular disorders, hyperlipidaemia (Kigen et al. 2017)	No relevant investigation
Malvaceae	Adansonia digitata L	Dakaumo, gendar-yandi	Leaves (Not specified)	Inflammation, kidney and bladder diseases, blood cleaning, diarrhea, asthma (Rines and Eckman 1993)	Antimicrobial, antiscarring, analgesic, hepatoprotective, antidiabetic, antioxidant, antiviral, hepatoprotective, anticancer and antipyretic properties (Sundarambal et al. 2015)
Malvaceae	Hibiscus acetosella Welw. ex Hiern	Mask mallow (English)	Fresh leaves (Decoction mixed with salt)	Blood purifier (blood tonic), increase blood in the body (UgMed 2020)	Antibacterial and antioxidant activities (Lyu et al. 2020)
Meliaceae	Azadirachta indica A. Juss	Muarrubaini (Kamba), Mwarobaini (Wbere, Meru)	Leaves (Not specified)	Amoebiasis, blood purifier, brucellosis, cough, dental problems, diabetes, hypertension, wounds, inappetence, malaria, typhoid (Muriuki 2011; Wągonjo 2013)	Antibacterial, antifungal, antitoxicant, antiviral, hepatoprotective, antinociceptive, immunomodulatory and antipyretic properties (Singh et al. 2020; Islas et al. 2020)
Meliaceae	Ekebergia capensis Sparrm	Not reported	Roots (Decoction/pounding)	Blood cleanser, fever, diarrhoea, skin infections, malaria (Anywar et al. 2020)	Antiplasmodial activity (Koch et al. 2005; Clarkson et al. 2004)
Meliaceae	Melia azedarach L	Mwarubaine	Leaves, bark, roots (Decoction taken orally/applied topically)	Malaria, blood cleanser, skin diseases, stomach and headaches (Odongo et al. 2018)	Antibacterial, antifungal, antitoxicant, antiviral, hepatoprotective and antipyretic properties (Singh et al. 2020)
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
--------------	----------------	------------	---------------------------------	---------------------------------------	-----------------------
Moringaceae	*Moringa oleifera* Lam	Moringa (English)	Leaves, roots, bark, seeds (Chewed/make juices-infusion)	Cleansing blood and liver, treating AIDs, amoebiasis, asthma, blood cleanser, blood purifier, cancer, detoxifier, fibroids, general body health, malaria, rheumatism, stomach disorders, typhoid (Muriuki 2011; Wamai 2019)	Anticancer, antihypertensive, antioxidant, cardioprotective, antibacterial, hepatoprotective, bronchodilatory activity, immunomodulatory, antilucre and anti-inflammatory activities (Fidrianny et al. 2021; Vergara-Jimenez et al. 2017)
Myrtaceae	*Syzygium cordatum*	Muriru	Leaves (Infusion taken)	Blood cleanser, tea (Kathambi et al. 2020)	Antibacterial, antifungal, anti-inflammatory, antiproliferative, antioxidant, antidiabetic activities (Maroyi 2018)
Oleaceae	*Olea capensis* L OR *Olea europaea* (Olive)	Masat (Marakwet)	Bark (Decoction/pounding dry material)	Dewormer, blood cleanser (Kigen et al. 2017)	Antidiabetic, anticancer, antimicrobial, anti-inflammatory, antinociceptive, neuroprotective, gastroprotective, antioxidant, anti-inflammatory and cardioprotective activities (Hashmi et al. 2015)
Phyllanthaceae	*Antidesma venosum* E.Mey. ex Tul	Muthithia, Mwithuthuko (Embu)	Not specified	Amoebiasis, back/joint/bone problems, blood purifier, cough/cold/flu, diabetes, immune booster, low libido, malaria, pneumonia, rheumatism, stomach disorders, tonsillitis (Muriuki 2011)	Anti-inflammatory (Fawole et al. 2009), antimicrobial and antioxidant activities (Gitu 2009)
Phyllanthaceae	*Bridelia micrantha* (Hochst.) Baill	Mukwego (Embu, Mbeere, Meru), Muko (Embu)	Bark, leaves (Not specified)	Blood purifier, brucellosis, cancer, hypertension, increase blood, malaria, typhoid (Muriuki 2011)	Anti-diarrhoeal (Lin et al. 2002) and antioxidant (Nwaehujor and Udeh 2011) activities, anticancerulant and sedative effects (Bum et al. 2012)
Poaceae	*Cymbopogon citratus* (DC.) Stapf	Kisubi (Luganda), Lum cai (Lango)	Leaves (Not specified)	Blood cleanser (Anywar et al. 2020)	Antimalarial and antitumor activity (Omara et al. 2020; Tchoumbougning et al. 2005)
Poaceae	*Yushania alpine* (K.Schum) W. C. Lin	Tegaa (Marakwet)	Stem (powdered)	Oedema, blood cleanser (Kigen et al. 2017)	No relevant investigation
Primulaceae	*Myrsine melanophloeos* (L.) Mez	Kigeta/mugeta (Mbeere)	Seeds (Not specified)	After-birth pains, amoebiasis, back/bone/joints pains, blood purifier, constipation, diarrhoea, kidney disorders, inappetence, malaria, prostate cancer, skin diseases, stomach disorders, typhoid (Muriuki 2011)	No relevant investigation
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
-------------	----------------	------------	-------------------------------	--	-----------------------
Rhamnaceae	Rhamnus prinoides (L'Hér)	Mukithia (Embu), Mugorona (Meru)	Roots (Not specified)	Allergies, amoebiasis, back/joint/bone problems, **blood cleanser**, dental problems, general body health, inappetence, malaria, pneumonia, stomach disorders, typhoid (Muriuki 2011)	Antimalarial, antioxidant, anti-inflammatory, antibacterial, antimycobacterial (Nigussie et al. 2021) and acetylcholinesterase inhibition (Crowch and Okello 2009) activities
Rosaceae	Prunus africana (Hook.F.) Kalkm	Mwiria (Embu), Muiri (Meru)	Bark, leaves (Decoction)	Amoebiasis, arthritis, blood cancer, **blood cleanser**, brucellosis, cancer, diabetes, diarrhoea, epilepsy, hypertension, increase **blood**, indigestion, inappetence, malaria, meat allergy, pneumonia, prostrate problems, typhoid (Kahambi et al. 2020; Muriuki 2011; Kamau et al. 2016c)	Antimicrobial, antiandrogenic, antiangiogenic, analgesic, astringent, anti-inflammatory, anticancer, antioxidant, antifungal and antimalarial activities (Omara et al. 2020; Clarkson et al. 2004; Mwitari et al. 2013; Mutuma et al. 2020)
Rosaceae	Rubus apetalus Poir	Momonio (Marakwet)	Fruits (Eaten)	**Blood cleanser**, malnutrition, prophylaxis of cancer (Kigen et al. 2017)	Antidiabetic, antioxidant, antihyperlipidaemic and antithrombotic activities (Raghavendra et al. 2019)
Rutaceae	Citrus limon	Mutimu (Embu, Mbeere) Ndimu, Murimu (Embu)	Fruits (Not specified)	Asthma, back/joint/bone problems, **blood cleanser**, chest congestions, cough, lack of appetite, malaria, rheumatism, typhoid (Muriuki 2011)	Hepatoprotective, anti-obesity, anticancer, antioxidant, anti-allergic, antidiabetic antimicrobial and anti-inflammatory activities (Klimek-Szczykutowicz et al. 2020)
Rutaceae	Clausena anisata (Willd.) Hook.f. ex Benth	Chebunowo (Marakwet)	Bark (Decoction)	Emetic, **blood cleanser** (Kigen et al. 2017)	Antidiabetic (Ojewole 2002), antibacterial, cytotoxic (Tatsimo et al. 2015), anticonvulsant (Makanju 1983; Kenechukwu et al. 2012), antifungal (Hamza and van den Bout-van den Beukel CPJ, Matee MIN, Moshi MJ, Mkii FHM, Seleman HO, Mbwambwo ZH, Van der Ven AJAM, Verweij PE, 2006), antihypertensive (Duncan et al. 1999), anti-inflammatory (Adebayo et al. 2015), antimarial, analgesic (Okokon et al. 2012), antimicrobial (Sen-thil Kumar and Venkatesalu 2009; Osei-Safo et al. 2010; Agyepong et al. 2014, Christensen et al. 2015; Lawal et al. 2015a) and anti-oxidant activities (Lawal et al. 2015b)
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
-------------	-------------------------	-----------------------	--------------------------------	---	--
Rutaceae	Harrisonia abyssinica	Mutagataga (Embui)	Not specified	Blood purifier, malaria (Muriuki 2011)	Antimarial (Oduor 2016), antimicrobial, antioxidant (Kilonzo and Munisi 2021),
	Olive				antimalarial (Kilonzo and Munisi 2021), antipyretic (Nthiga et al. 2016), antioxidant
Rutaceae	Vepris nobilis (Dellie)	Kuryot (Marakwet)	Bark, roots (Decoction)	Arthritis, backache, blood cleanser, invigorant, immunostimulant (Kigen et al. 2017)	Analgesic, antipyretic, antimarial, antimalarial, anti-inflammatory, anti-caseinolytic,
	Mziray				anti-inflammatory, anti-leishmanial and anti-trypanosomal activities (Omujal 2020)
Santalaceae	Osyris lanceolata	Mutero (Mbeere), Muchai (Muru)	Roots (Not specified)	AIDS, allergies, blood purifier, malaria, pneumonia, prostate cancer, rheumatism, stomach disorders (Muriuki 2011)	Antioxidant (Abbe et al. 2019), antidiabetic (Nakotto et al. 2021), antihyperlipidaemic,
	Hochst. & Steudel				antiperoxidative and hypoglycaemic effects (Molehin et al. 2020)
Solanaceae	Solanum anguivi	Katunkuma (Luganda)	Fruits (Steam and eat as a vegetable)	Treat measles, hypertension, weakness during sickness and as a blood cleanser (Tugume et al. 2016)	Antioxidant (Abbe et al. 2019; Elekofehinti et al. 2013), anti-diabetic (Nakotto et al. 2021), antihyperlipidaemic, antiperoxidative and hypoglycaemic effects (Molehin et al. 2020)
	Hook				
Solanaceae	Solanum nigrum	Managu/ Lisutsa	Not specified	Asthma, bronchitis, earache, stomach, joint, jaundice. For blood purification (Advertiser 2020)	Immunomodulatory, antidiabetic, hepatoprotective, antimicrobial, antioxidant, analgesic, anti-cancer, anti-seizure and cardioprotective activities (Chauhan et al. 2012)
Solanaceae	Withania somnifera	Olesayiet	Root bark (Not specified)	Blood tonic and rejuvenator, back and joint aches, calactagogue and for appetite (Kimondo et al. 2015)	Antimicrobial, anti-tumour, cardio-protective immunomodulatory, antioxidant, anti-convulsant and anti-inflammatory effects (Kalna and Kaushik 2017)
Urticaceae	Urtica massaica	Thabai (Kikuyu)	Not specified	Arthritis, blood purifier, diabetes, energy booster, wounds, heartburns, hypertension, inappetence, low libido, pneumonia (Muriuki 2011)	Antimicrobial activity (Kipruto et al. 2019) and aphrodisiac effects (Oloro et al. 2020)
Verbenaceae	Lantana trifolia	Kayukiyuki (Luganda, Lusoga)	Leaves, flowers (Not specified)	All HIV/AIDS symptoms, blood cleanser, cough, ear infections (Anywar et al. 2020)	Anti-inflammatory, antinociceptive and antipyretic effects (Uzcátegui et al. 2004)
Plant family	Botanical name	Local name	Part used (preparation method)	Ethnobotanical uses (Ailments treated)	Reported bioactivities
-----------------	----------------	------------	--------------------------------	---	---
Xanthorhooeaceae	Aloe species	Kibiricha, Kirunga, Murucha, Sukurui (Meru), Eshikaha	Leaves (sap), roots (Decoction taken)	Allergies, amoebiasis, athlete’s foot, **blood purifier, detoxifier**, diabetes, goitre, HIV/AIDS, wounds, malaria, muscle cramps, pneumonia, prostate cancer, skin diseases, typhoid, ulcers, diabetes, **blood cleanser** (Muriuki 2011; Odongo et al. 2018; Dharani and Yenesew 2010)	Various bioactivities reported in this genus, some of which are relevant to blood purification
resulting in blood purification, detoxification, cleansing or strengthening.

Bioactivities of the identified plants

From the reviewed bioactivities of the plants, most investigations were centred on the antimicrobial activity of extracts of the plant parts (upto 65%). This is supported by the reports of ethobotanical surveys which tended to report the use of the plant parts in treatment of gastrointestinal, dermatological and respiratory ailments (Table 2). The plausible explanation for this could be the ease and relatively low cost of in vitro antimicrobial testing compared to other reported complex uses of the plants such as treating tuberculosis, HIV/AIDS and malignancies. The current upsurge in antibiotic resistance by genetically versatile microbes could be another explanation (Omara et al. 2021c).

Despite the foregoing observation, few studies have investigated bioactivities of the identified species against pathogenic infections (such as tuberculosis, malaria, viral hemorrhagic fever, hepatitis B and C, syphilis and HIV) which are related directly to blood. The most studied plant species (Allium sativum, Basella alba, Centella asiatica, Citrus limon, Clausena anisata, Dioscorea bulbifera, Erythrina abyssinica, Kigelia africana, Lannea Schweinfurthii, Moringa oleifera, Nasturtium officinale, Solanum nigrum and Withania somnifera) also have extensive reviews of their various bioactivities (Table 2). However, few of these bioactivities are confirmatory of the supposed use of the plants in purifying, cleansing, detoxifying or strengthening blood and possess little direct positive correlation with (good) blood health. Only 15 (20.2%) species could be correlated with studies pertaining to blood health, for instance, anti-platelet aggregation, vasorelaxant, bronchodilatory, antihyperlipidaemic, cardioprotective and anti-atherosclerotic effects of Allium sativum (Kaur et al. 2016; Sobenin et al. 2019; Silagy and Neil 1994; Bordia et al. 1996; Fehri et al. 2011) and Moringa oleifera (Acuram and Hernandez 2019; Aniss et al. 2020; Mehta and Agrawal 2008; Dillasamola et al. 2018; Arabshahi-Delouee et al. 2009; Cáceres et al. 1992; Aekhammarat et al. 2020), antihypertensive and cardioprotective activities of Olea capensis (Susalit et al. 2011; Circosta et al. 1990; Scheffler et al. 2008) and antihyperlipidaemic activity of Clausena anisata (Duncan et al. 1999; Lechaba et al. 2016). Cardioprotective activities were also reported for Centella asiatica (Das 2011), Nasturtium officinale (Fogarty et al. 2013), Solanum nigrum (Bhatia et al. 2011) and Withania somnifera (Mohanty et al. 2008), while antihyperlipidaemic and vasorelaxant activities were reported for Rubus apetalus (Raghavendra et al. 2019) and Delonix elata (Ravindra and Priyanka 2018) and Persia americana (Owolabi et al. 2005), respectively. These constitute the first 11 species with notable bioactivities relating to blood health.

Earlier studies among the rural Maasai people of East Africa indicated that they possessed lower blood cholesterol levels compared to those in urban centres and some Europeans, despite their high customary fat diet (Biss et al. 1971a, b; Mann et al. 1964). Day et al. (1976) later suggested that the low serum cholesterol levels of rural Maasai populace could be attributed to their frequent use of medicinal herbs, though the same team never published something more to confirm or reject their assertion. It is hypothesized that the low number of studies focusing on westernized aspects of blood purification, cleansing, detoxification or strengthening potential of the identified plant species could be because this concept from an African perspective is rarely used independently, and possess strong connections with rituals (Table 3) and other religious practices (Cumes 2013; White 2015) that cannot be commingled with modern medicine (Vuuren and Frank 2020).

Other important conditions associated with bad blood health and may be the reason for medicating with a blood purifier (Table 1) such as inappetence and hyperlipidaemia (high serum levels of one or more of total cholesterol, low-density lipoprotein cholesterol, triglycerides or both) have not been investigated for most of the identified species. Evidently, blood purification, cleansing and detoxification procedures in East Africa are strongly correlated with overall human health status. This fact is attested to by the inclusion of parts of common culinary spices, vegetables and food plant species such as Allium sativum (garlic), Amaranthus graecizans, Amaranthus retroflexus, Beta vulgaris (beetroot), Citrullus lanatus (watermelon), Cleome gynandra, Persia americana (avocado) and Citrus limon (lemon) in the herbal preparations.
It is interesting to note that *Acacia seyal*, *Entada abyssinica*, *Hibiscus acetosella*, *Lannea schweinfurthii*, *Parinari curatellifolia* and *Persia americana* were also indicated to be utilized as blood tonics, while *Euclea divinorum*, *Dovyalis abyssinica* and *Vepris nobilis* were indicated as invigorants (tonics). Use of bitter tonics is an old time practice believed to confer beneficial effects on appetite and digestion, through *amarum* effect, which enhances the flow of saliva, gastric juices via the pneumogastric *nervus vagus* and the bile (Wyk and Wink 2004; McMullen 2017). Such bitter plant extracts have also been established to exert an effect on the cardiovascular system through reduction of the heart beat rate and cardiac stroke volume (Schulz et al. 2001). Among the species identified in this study, only *Withania somnifera* (with bitterness values between 2000 and 5000, i.e. moderately bitter) was previously reported to possibly improve digestion and appetite (Olivier and Wyk 2013). Thus, the role of the identified species as tonics in correlation to their claimed use as blood purifiers, cleansers and detoxifiers warrants further probing research.

Table 3

Plant	Spiritual/ritual uses	References
Clausena anisata (Willd.) Hook. F. ex Benth	Treat conditions caused by witchcraft, spirits and “magic,” i.e. chase away bad spirits	Schlage et al. 2000; Posthouwer 2015
Cleome gynandra L.	For rituals	Musinguzi et al. 2006
Croton macrostachyus Hochst. Ex Delile	Used in rituals against evil spirits and against witchcraft (as protection)	Posthouwer 2015; Hines and Eckman 1993; Kakudidi 2004
Cuscuta L. species	Used by bad people to make others roam up and down without settling. To grow taller if you are below 23 years, the plant leaves is mixed with *mucuna* seed powder and taken with milk at night	Quick Herbal Remedies Uganda 2018
Entada abyssinica A. Rich	Used in rainmaking rituals and to cleanse twins and religious ceremonies. Used with some incantations in cases where lightning stroke a person or near a home, to cleanse the family from evils that caused the incidence	Hines and Eckman 1993; Kakudidi 2004
Erythrina abyssinica Lam. ex D.C.	Used in rituals and for protection from evil spirits. It is planted on graves and in religious ceremonies for Manni (a god)	Irakiza et al. 2016; Hines and Eckman 1993; Kakudidi 2004
Euclea divinorum Hiern	Given to candidates during initiation by the Sebei of Uganda or used in important “koresék” (Sebei ceremonies (rituals of purification). The root and bark are made into a soup which is taken as a tonic among Sebei of Uganda, Maasai and Batemi of Tanzania	Kokwaro 1993; Johns et al. 1999
Kigelia africana Lam	Used in rituals, especially against evil spirits. Fruits if applied on a girls’ nipples make the breasts grow long, make her ugly and she cannot be married	Posthouwer 2015; Hines and Eckman 1993; Kakudidi 2004
Lantana trifolia L.	Roots and stems used for cleansing and blessing animals. Used in many rituals, including those involving livestock	Maundu et al. 2001; Mweru 2018
Lannea schweinfurthii Engl	Roots boiled and then the bewitched washes in the water, which is poured out at the nearest road junction	Hines and Eckman 1993
Olea capensis	A sacred tree used during the ceremony of initiating the olorip-olasar (a highly respected young leader among the Maasai of Kenya). The night after his selection, he leans against one of the trees regarded as “peaceful” or “harmless” without flinching	Maundu et al. 2001
Osyris lanceolata	Treating conditions caused by witchcraft, spirits and magic	Schlage et al. 2000
Urtica massaica Mildbr	Plants are cut and placed in a sting line of two rows where boys for circumcision run through it several times until their bodies are numb, making them ready for the ritual	Amuka et al. 2014
Withania somnifera (L.) Dunal	Intestinal parasites introduced by witchcraft	Watt and Breyer-Brandwijk 1962

* Used with those of *Olea europaea* subspecies *africana*, *Podocarpus* species and a fig (*Ficus thonningii*)
Another school of thought in relation to the holistic health effect of the identified species is their potential immunomodulatory properties. Positive immunomodulatory effect has been reported for *Allium sativum* (Mirabeau and Samson 2012), *Aloe vera* (Im et al. 2010), *Azadirachta indica* (Durrani et al. 2008), *Centella asiatica* (Das 2011), *Echinacea angustifolia* (Kim et al. 2002), *Dioscorea bulbifera* (Cai et al. 2016), *Moringa oleifera* (Li et al. 2020), *Nasturtium officinale* (Schulze et al. 2021), *Persea americana* (Bittencourt et al. 2020), *Solanum nigrum* (Hanifa et al. 2011) and *Withania somnifera* (Ziauddin et al. 1996; Davis and Kuttan 2000; Chandran and Patwardhan 2017). These constitute the last 4 species with a bioactivity relating to good blood health. Thus, immunomodulatory effect could also be investigated for other species such as *Amaranthus graecizanzis* and *Antiadesma venosum* which were in addition to blood cleansing indicated as immune system boosters. Of the 74 species identified, there were 9 species (12.2%) for which no positive health-related research existed (Table 2). This presents a research gap for future studies on the pharmacological activities of these species.

Conclusions

Blood is considered sacred in East Africa, and ethnomedical plants used in blood purification, cleansing, detoxification and strengthening play a revered holistic role. The claimed use of the plants identified could be due to their various biological properties which exert an overall positive effect on human health. However, these bioactivities in most species identified could not be directly correlated with their claimed use in this traditional practice. Further studies should explore blood thinning, hypolipecemic, cardioprotective, immunomodulatory, tonic and renoprotective properties of the understudied species. Of the 9 species with no reported bioactivities, *Aloe tweediae*, *Ipomoea lapidosa*, *Kalanchoe lanceolata*, *Rotala tenella* and *Yushania alpine* need to be investigated as they have been indicated to be used in the treatment of other conditions directly linked with blood purification, cleansing or detoxification, for example, hyperlipidaemia, obesity, cerebrovascular disorders, viral diseases, paraesthesia, splenomegaly, hepatomegaly, oedema, kidney disorders and inappetence.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares that there is no conflict of interest regarding the publication of this paper.

Author details

1Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya. 2Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya.

Received: 14 September 2021 **Accepted:** 10 October 2021 **Published online:** 18 October 2021

References

Abbe CY, Abooa N, Ahi PA, Dan GC (2019) Antioxidant content in *Solanum anguivi* Lam berries as affected by cooking at different stages of ripening. Asian Food Sci J 13(2):1–10

Acquaviu R, Di Giacomo C, Vanella L, Santangelo R, Sorrenti V, Barbagallo I, Genovese C, Mastrojanni S, Ragusa S, Laul I (2013) Antioxidant activity of Extracts of Momordica Foetida Schumach. et Thonn. Molecules 18(3):3241–3249

Acuram LK, Hernandez CLC (2019) Anti-hypertensive effect of *Moringa oleifera* Lam. Cogent Biol 5:1596526

Adebayo SA, Dzoyem JP, Shai LJ, Elfot JN (2015) The anti-inflammatory and antioxidant activity of 25 plant species used traditionally to treat pain in southern African. BMC Compl Alternat Med 15:159

Advertiser (2020) List Of Herbal Vegetables In Kenya That Will Boost Your Health. https://victormatara.com/list-of-herbal-vegetables-in-kenya-that-will-boost-your-health/. Accessed 20 July 2021

Aekthammarat D, Panapangphet P, Tangsucharit P (2020) Moringa oleifera leaf extract induces vasorelaxation via endothelium-dependent hyperpolarization and calcium channel blockade in mesenteric arterial beds isolated from L-NAME hypertensive rats. Clin Exp Hypertens 42(6):490–501

Agypepong N, Agaye C, Adarkwa-Yadom M, Gbedema SY (2014) Phytochemical investigation and anti-microbial activity of *Clausena anisata* (Willd), Hook. Afr J Tradit Complement Altern Med 11(3):200–209

Akter S, Das PR, Islam MT, Kabir MH, Harque M, Khatun Z, Nurunnabi M, Khatun Z, Lee Y, Jahan R, Rahmatullah M (2012) A selection of medicinal plants used as blood purifiers by folk medicinal practitioners of Bangladesh. Am Eurasian J Sustain Agric 6(3):188–194

Amuka O, Okemo PO, Machocho AK, Mbuga PK (2014) Ethnobotanical survey of selected medicinal plants used by Ogiek Communities in Kenya against microbial infections. Ethnobot Res Appl 12:627–641

Annis ND, Rahman NHYA, Zazaza AM (2020) Cardioprotective effect of *Moringa Oleifera* against doxorubicin cardiotoxicity in leukemia rat model. Int J Pharmaceut Phytopharmacol Res 10(2):148–161

Anywar G, Kadudi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H (2020) Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda. J Ethnopharmacol 246:11205

Arabshahi-Deloue S, Aalam M, Urooj A, Krishnakanthan TP (2009) *Moringa oleifera* leaves as an inhibitor of human platelet aggregation. Pharmaceut Biol 47(6):734–739

Arhem K (1989) Maasai food symbolism—the cultural connotations of milk, meat, and blood in the pastoral Maasai diet. Anthropos 84:1–23

Arora SK, Iturnkar PR, Verma PR, Bhardwaj AP, Kokare DM (2014) Involvement of NFκB in the antithrombotic potential of *Chenopodium album* L. aerial parts extracts. J Ethnopharmacol 155(1):222–229

Asiimwe S, Namukobe J, Byamukama R, Imalingat B (2021) Ethnobotanical survey of medicinal plant species used by communities around Mabira and Mpanga Central Forest Reserves, Uganda. Trop Med Health 49(1):52

Atanasov AG, Zotevich SB, Dirsch VM, International Natural Product Sciences Taskforce, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3):200–216

Barnes J, Anderson LA, Gibbons S, Phillipson JD (2005) *Echinacea* species (Echinacea angustifolia (DC.) Hel., *Echinacea pallida* (Nutt.) Nutt., *Echinacea angustifolia* (Kim et al. 2002), *Echinacea pallida* (Nutt.) Nutt., *Echinacea angustifolia* (Mirabeau and Samson 2012), *Aloe vera* (Im et al. 2010), *Azadirachta indica* (Durrani et al. 2008), *Centella asiatica* (Das 2011), *Echinacea angustifolia* (Kim et al. 2002), *Dioscorea bulbifera* (Cai et al. 2016), *Moringa oleifera* (Li et al. 2020), *Nasturtium officinale* (Schulze et al. 2021), *Persea americana* (Bittencourt et al. 2020), *Solanum nigrum* (Hanifa et al. 2011) and *Withania somnifera* (Ziauddin et al. 1996; Davis and Kuttan 2000; Chandran and Patwardhan 2017). These constitute the last 4 species with a bioactivity relating to good blood health. Thus, immunomodulatory effect could also be investigated for other species such as *Amaranthus graecizanzis* and *Antiadesma venosum* which were in addition to blood cleansing indicated as immune system boosters. Of the 74 species identified, there were 9 species (12.2%) for which no positive health-related research existed (Table 2). This presents a research gap for future studies on the pharmacological activities of these species.

Conclusions

Blood is considered sacred in East Africa, and ethnomedical plants used in blood purification, cleansing, detoxification and strengthening play a revered holistic role. The claimed use of the plants identified could be due to their various biological properties which exert an overall positive effect on human health. However, these bioactivities in most species identified could not be directly correlated with their claimed use in this traditional practice. Further studies should explore blood thinning, hypolipecemic, cardioprotective, immunomodulatory, tonic and renoprotective properties of the understudied species. Of the 9 species with no reported bioactivities, *Aloe tweediae*, *Ipomoea lapidosa*, *Kalanchoe lanceolata*, *Rotala tenella* and *Yushania alpine* need to be investigated as they have been indicated to be used in the treatment of other conditions directly linked with blood purification, cleansing or detoxification, for example, hyperlipidaemia, obesity, cerebrovascular disorders, viral diseases, paraesthesia, splenomegaly, hepatomegaly, oedema, kidney disorders and inappetence.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The author declares that there is no conflict of interest regarding the publication of this paper.

Author details

1Africa Centre of Excellence II in Phytochemicals, Textile and Renewable Energy (ACE II PTRE), Moi University, Eldoret, Kenya. 2Department of Chemistry and Biochemistry, School of Sciences and Aerospace Studies, Moi University, Eldoret, Kenya.

Received: 14 September 2021 **Accepted:** 10 October 2021 **Published online:** 18 October 2021
purpurea (L. Moench): a review of their chemistry, pharmacology and clinical properties. J Pharm Pharmacol 57(8): 929–954

Beetroot in Uganda (2019). https://www.africa-ugandabusiness-travel-guide.com/beetrootsinuganda.html. Accessed 17 Jun 2021

Bhatia N, Maiti P, Kumar A, Tuli A, Aca T, Khan M (2013) Evaluation of cardiovascular Activity of Methanolic Extract of Solanum nigrum Linn. Rats Int J Drug Dev Res 3(5):139–147

Bhunu B, Mautsa R, Mukan ganyama S (2017) Inhibition of biofilm formation in Mycobacterium smegmatis by Panarina curatelfifolia leaf extracts. BMC Complement Altern Med 17:285

Biss K, Ho KJ, Mikkelson B, Lewis LA, Taylor CB (1971a) The Masai of East Africa: some unique biological characteristics. Arch Pathol 91(5):387–410

Biss K, Taylor CB, Lewis LA, Mikkelson B, Ho KJ (1971b) Atherosclerosis and lipid metabolism in the Masai of East Africa. Afr J Med Sci 2(3):249–257

Bittencourt MLF, Athaydes B, Kitagawa R, Gonzalves R (2020) Persea americana Mill. (Avocado) leaves decrease oxidative stress and produce immunomodulatory effect. In: Proceedings of Brazilian Conference on Natural Products and Annual Meeting on Micromolecular Evolution, Systematics and Ecology

Bordia A, Verma SK, Srivastava KC (1996) Effect of garlic on platelet aggregation and anti-inflammatory and diuretic activity. J Ethnopharmacol 36(3):233–237

Bhunu B, Mautsa R, Mukanganyama S (2017) Inhibition of biofilm formation in Some traditional medicinal plants. IJ Ethnopharmacol 11(2):157–179

Crowch CM, Okello EJ (2009) Kinetics of acetylcholinesterase inhibitory activity of Some traditional medicinal plants. IJ Ethnopharmacol 97:250–256

Chhabra SC, Mihui EN (1984) Psychochemical screening of Tanzanian medicinal plants. J Ethnopharmacol 1(2):157–179

Chhabra SC, Mahunnah RLA, Mshiu EN (1993) Plants used in traditional medicine in Eastern Tanzania. J Ethnopharmacol 39(2):83–103

Chitra M (2011) In vitro antioxidant activity of Delonix elata L. Asian J Pharmaceut Health Sci 1(4):221–224

Christensen CB, Soilberg J, Stensvold CR, Jäger AK (2015) Activity of medicinal plants from Ghana against the parasite gut protist Blastocystis. J Ethnopharmacol 174:569–575

Circosta C, Occhiuto F, Gregorio A, Toigo S, de Pasquale A (1990) The cardiovascular activity of the shoots and leaves of Olea europaea L. and olearium. Plantes Medicinales Et Phytotherapie 24(4):264–277

Clarke C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwan D (2013) South African indigenous healing: how it works. Explore Today 13(7):1006–1011

Cuma D (2013) South African indigenous healing: how it works. Explore 9(1):58–68

da Silva G, Serrano R, Silva O (2011) Maytenus heterophylla and Maytenus senegalensis, two traditional herbal medicines. J Nat Sci Biol Med 2(1):59–65

Das AK (2011) Review on nutritional, medicinal and pharmacological properties of Centella asiatica (Indian pennywort). J Biol Active Prod Nat 1:216–228

Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71(1–2):193–200

Day J, Cam ruthers M, Bailey A, Robinson D (1976) Anthropometric, physiological, and biochemical differences between rural and urban Maasai. Atherosclerosis 23(2):357–361

Deshmukh SA, Gaikwad DK (2014) A review of the taxonomy, ethnobotany, phytochemistry and pharmacology of Basella alba (Basellaceae). J Appl Pharmac Sci 4(01):153–165

Dharani N, Veneseew A (2010) Medicinal plants of East Africa-an illustrated guide. Dr. Drono publishing, Nairobi, Kenya. p 57

Dillasamola D, Aldy Y, Fakhri M, Diliarosta S, Biomey OP (2018) Immunomodulatory effect test from moringa leaf extract (Moringa oleifera L) with carbon clearance method in male white mice. Asian J Pharmaceut Clin Res 11(9):241–245

Duncan AC, Jäger AK, van Staden J (1999) Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors. J Ethnopharmacol 68(1–3):63–70

Durrani FR, Chand N, Jan M, Sultan A, Durrani Z, Akhtar S (2008) Immunomodulatory and growth promoting effects of neem leaves infusion in broiler chicks. Sarhad J Agric 24(4):655–659

Effert T, Grethen H (2016) Doctrine of signatures-mystic heritage or outdated relic from middle-aged phytotherapy. Med Aromat Plants S 5(4):e177

Ekeledhenti G, Kandem JP, Bolongin AA, Aghayde ML, Lopes SR, Waczuk EP, Kade U, Aduanlavo IG, Rocha JBT (2013) African eggplant (Solanum anguivi Lam) fruit with bioactive polyphenolic compounds exerts in vitro antioxidant properties and inhibits CA2+–induced mitochondrial swelling. Asian Pac J Trop Biomed 3(10):757–766

Elmi A, Spina R, Riser A, Philippot S, Mérito A, Duval RE, Abdoul-latif FM, Lauraisn-Mattard D (2020) Evaluation of antioxidant and antibacterial activities, cytotoxicity of Acacia seyal Del bark extracts and isolated compounds. Molecules 25(10):2392

Elour N, Mirghani M, Kabbashi N, Md Alam Z, Musa K (2018) Study of antioxidant and anti-inflammatory crude methanol extract and fractions of Acacia seyal Gum. J Pharmicol Pharmacother 5(1):3

Favole OA, Ndhiala AR, Amoo SO, Finnie JF, Van Staden J (2009) Anti-inflammatory and phytotoxic properties of twelve medicinal plants used for treating gastro-intestinal ailments in South Africa. J Ethnopharmacol 123:237–243

Fehri B, Ahmed MK, Aiache JM (2011) The relaxant effect induced by Allium sativum L. bulb aqueous extract on rat isolated trachea. Pharmacog Mag 7(25):14–18

Fidusanny I, Kanapa J, Singgh M (2021) Phytochemistry and pharmacology of Moringa tree: an overview. Biointerface Res Appl Chem 1(3):10776–10789

Fogarty MC, Hughes CM, Burke G, Brown JC, Davison GW (2013) Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation. Br J Nutr 109(2):293–301

Fratkin E (1996) Traditional medicine and concepts of healing among Samburu pastoralists of Kenya. J Ethnobiol 16:63–97

Galin V, Patel D (2017) A comprehensive phytopharmaceutical review of Dioscorea bulbifera Linn. Int J Environ Sci Nat Res4(5):555650

Gebrehiwot S, Chaithanya KK (2020) Traditional uses, phytochemistry, and pharmacological properties of Capparis tomentosa Lam.: a review. Drug Invent Today 13(7):1006–1011

Geyid A, Abebe D, Debella A, Makonnen Z, Frehiwot A, Teka F, Kebede T, Gebrehiwot S, Chaithanya KK (2020) Traditional uses, phytochemistry, and pharmacological properties of two traditional medicinal plants used for treating gastro-intestinal ailments in South Africa. J Ethnopharmacol 123:237–243

Gobu BM, Manchoo AK, Mwihia SK, Ngugi MP (2020) In vitro antioxidant activities of methanolic extracts of Caesalpinia volkensii Harms., Vemonia Ispopus O. Hoffm., and Acacia hockii De Wild. Evid-Based Complement Alternat Med 2020:3586268

Gumisiriza H, Birungi G, Olet EA, Sesaazi CD (2019) Medicinal plant species used by local communities around Queen Elizabeth National Park, Maramagambo Central Forest Reserve and Ihimbo Central Forest Reserve, South western Uganda. J Ethnopharmacol 239:111926

Halili ME, November N, Ugwah-Oguejiofor CJ, Jega AF, Nefai MS (2020) Anti-snake venom and analgesic activities of extracts and betulinic and oleandric acids isolated from Panarina curatelfifolia. J Med Plants Econ Dev 41(1):a77
medicinal plants against drug sensitive and multidrug resistant cancer cells. BMC Compl Alternat Med 13:250

Kumar S, Prasad AK, Iyer SV, Vaidya SK (2013) Systematic pharmacognostical, phytochemical and pharmacological review on an ethno medicinal plant, Basella alba L. J Pharmacog Phytother 5(4):53–58

Kundu BB, Vannik A, Farheen A, Jha P, Pandey DK, Kumar V (2021) Dioscorea bulbifera L. (Dioscoreaceae): a review of its ethnomedical, pharmacognostical and conservation needs. South Afr J Bot 204:365–374

Kuria KAM, De Coster S, Muriki G, Masengo K, Hoogmartens LGM (2001) Antimalarial activity of Acacia remota Benth (Labiatae) and Caesalpinia voillensis Harms. (Caesalpiniaeaceae): in vitro confirmation of ethnopharmacological use. J Ethnopharmacol 74(2):141–148

Lawal IO, Grierson DS, Afuolajy AJ (2015a) The antibacterial activity of Clausena anisata hook, a South African medicinal plant. Afr J Tradit Complement Altern Med 12(1):23–27

Lawal IO, Grierson DS, Afuolajy AJ (2015b) Phytochemical and antioxidant investigations of a Clausena anisata hook, a South African medicinal plant. Afr J Tradit Complement Altern Med 12(1):26–37

Lechaba NMT, Schutte PJ, Hay L, Böhmer L, Govender MM (2016) The effects of an aqueous leaf extract of Clausena anisata (Wildl) Hook. Ex Benth. on blood pressure, urine output, angiotensin II levels and cardiac parameters in spontaneously hypertensive rats. J Med Plants Res 10(28):425–434

Legesse BA, Tamir A, Bezabeh B (2019) Phytochemical screening and antibacterial activity of leaf extracts of Dovyalis abyssinica. J Emerg Technol Innov Res 6(6):453–465

Li C, Dong Z, Zhang B, Huang Q, Liu G, Fu X (2020) Structural characterization and immune enhancement activity of a novel polysaccharide from Morinda oleifera leaves. Carbohydr Polym 234:115897

Lim X, Tan T, Muhd Rosli S, Sa’at M, Sirdar Ali S, Syed Mohamed A (2021) Moringa oleifera (Harms): in vivo confirmation of ethnopharmacological use. J Ethnopharmacol 74(2):141–148

Lin J, Puckree T, Mvelase TP (2002) Anti-diarrhoeal evaluation of some medicinal plants against drug sensitive and multidrug resistant cancer cells. BMC Compl Alternat Med 13:250

Kumar BB, Vanni K, Farheen A, Jha P, Pandey DK, Kumar V (2021) Dioscorea bulbifera L. (Dioscoreaceae): a review of its ethnomedical, pharmacognostical and conservation needs. South Afr J Bot 204:365–374

Mawanu TR, Akemolodun AC, Crown OO, Komolafe K, Olaleye MT (2017) Toxicological assessment and ameliorative effects of Panax quinquefolius (Hook. f) Kalkman (bark extracts) and Harrisonia abyssinica (Oliv.) (bark extracts): a comparative study. J Med Plants Res 21(2):139

Maku ngau OOA (1983) Behavioral and anticonvulsant effects of an aqueous extract from the roots of Clausena anisata (Rutaceae). Int J Crude Drug Res 21(1):29–32

Mann GV, Shaffer RD, Anderson RS, Sandstead HH, Prendergast H, Mann JC, Rose S, Powell-Jackson J, Dicks K (1994) Cardiovascular disease in the Masai. J Ethnopharmacol 40(2):289–312

Maruyama H, Handa H, Aoki A, Nomura S, Ueda T, Utsumi M, Tanabe K, Mittal R, Kato Y, Sugo Y, Yoshida M, Endo K, Hori S, Hori D (2012) Evaluation of the anti-asthmatic activity of moringa oleifera leaf extract in Dhakshina. J Ethnopharmacol 74(2):141–148

Mishra A, Agrawal B (2008) Investigation into the mechanism of action of Moringa oleifera for its anti-asthmatic activity. Orient Pharm Exp Med 8(2):24–31

Mukherjee PK, Nema NK, Maity N, Mukherjee K, Harwansh RK (2014) Antimicrobial activity of Parinari curatellifolia R. Br. (Euphorbiaceae) as assessed by some factors influencing cultivation by farmers East of Mt Kenya. Dissertation, University of Natural Resources and Applied Life Sciences, Vienna

Munyua PH, Moraa SD, Wandayi MW, Owino IO (2013) Systematic pharmacognostical, phytochemical and pharmacological properties. Molecules 18(8):10674–10691

Mwarurwa TR, Akemolodun AC, Crown OO, Komolafe K, Olaleye MT (2017) Toxicological assessment and ameliorative effects of Panax quinquefolius (Hook. f) Kalkman (bark extracts) and Harrisonia abyssinica (Oliv.) (bark extracts): a comparative study. J Med Plants Res 21(2):139

Ngunzi J (2011) Medicinal trees in smallholder agroforestry systems: assessing some factors influencing cultivation by farmers East of Mt Kenya, Dissertation, University of Natural Resources and Applied Life Sciences, Vienna

O’Hara S, Kavanagh RS, Melia S, Mulcahy K, Foy A, Lovegrove E, McCarthy P, Mulvihill C, Egan T, O’Byrne C, Flinn M (2014) The effects of a scoping review of current evidence. PLoS ONE 10(9):e0139119

Oluwole A (2018) Study of the extent of use, efficacy and acute toxic effects of Marowitzia nigra. J Ethnopharmacol 23(5):1084–1088

Omura K, Sato R (1964) The determination of cytochrome c and other ferredoxins. Arch Biochem Biophys 18:75–85

Ouahabi D (2012) Ethnopharmacological Uses, Phytochemistry, and Pharmacological Properties of Croton macrostachyus Hochst: Ex Delle: A Comprehensive Review. Evid-Based Complement Alternat Med 2017: 1694671

Maroyi A (2018) Syzygium Cordatum Hochst. ex Krauss: an overview of its ethnobotany, phytochemistry and pharmacological properties. Molecules 23(5):1084

Marwat SK, Rehman F, Khan EA, Baloch MS, Sadiq M, Ullah I, Javeera S, Shaheen S (2017) Rhus communis-ETHnomedical uses and pharmacological activities. Pak J Pharmaceut Sci 30(5):1815–1827

Mehta A, Agrawal B (2008) Investigation into the mechanism of action of Moringa oleifera for its anti-asthmatic activity. Orient Pharm Exp Med 8(2):24–31

Mekhitarian M (2010) Die Masai. Ethnographische Monographie eines ostafrikanischen Semitenvolkens. Dietrich Rei- mer, Berlin

M Compliance TV, Samson ES (2012) Effect of Allium cepa and Allium sativum on some immunological cells in rats. Afr J Tradit Complement Altern Med 9(3):374–379

Mirmiran P, Houshialisadat Z, Gaeini Z, Aizizi F (2020) Functional properties of beetroot (Beta vulgaris) in management of cardio-metabolic diseases. Nutr Metab 17:3

Mishra S, Moharana S, Dash M (2011) Review on Cleome gynandra. Int J Res Pharm Chem 1(3):681–689

Mohanty I, Arya D, Gupta S (2008) Withania somnifera provides cardioprotection and attenuates ischemia-reperfusion induced apoptosis. Clin Nutr 27(4):635–642

Molehin OR, Elekofehinti OO, Oyeyemi AO (2020) Antihyperlipidemic, antiperoxidative and hypoglycemic effects of Saponins from Solanum anguivi Lam. Fruits in Allkoan-induced Diabetic Rats. The FASEB J. https://doi.org/10.1096/fasebj.2020.34.s1.00510

Moteete A (2017) A review of plants used for magic by Basotho people in comparison with other cultural groups in Southern Africa. Indian J Tradit Knowl 16(2):229–234

Moyo M, Amoo S, Aremu A, Cruz J, Subrová M, Jarolímová M, Tarkowski P, Doležal D (2018) Determination of mineral constituents, phytochemicals and antioxidant qualities of Cleome gynandra, compared to Brassica oleracea and Beta vulgaris. Front Plant Sci 5:1.28

Mukherjee PK, Nema NK, Maiti N, Mukherjee K, Harvanish RK (2014) Phytochemical and Therapeutic Profile of Aloe vera. J Nat Remed 14(1):1–26

Muriuki J (2011) Medicinal trees in smallholder agroforestry systems: assessing some factors influencing cultivation by farmers East of Mt Kenya, Dissertation, University of Natural Resources and Applied Life Sciences, Vienna

Musinguzi E, Kikafunda JK, Kiremire BT (2006) Utilization of Indigenous Food Plants in Uganda: A Case Study of South-Western Uganda. Afr J Food Agric Nutr Dev 6(2):1–21

Mutumba GG, Joseph N, King’ori MA, Silas K, (2020) Phytochemical and anti-inflammatory analysis of Prunus africana bark extract. Res J Pharmacogn 7(4):31–38

Mwewu P (2018) Use and Conservation of Wild Medicinal Food Plants in Loita, Narok County Kenya. PhD Thesis, University of Nairobi, Nairobi.

Mwiguzi E, Kikaunda JK, Kirimire BT (2006) Utilization of Indigenous Food Plants in Uganda: A Case Study of South-Western Uganda. Afr J Food Agric Nutr Dev 6(2):1–21

Mwata P, Ayeka P, Onchico J, Matu E, Bi C (2013) Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya. Witha- nia somnifera, Warburgia ugandensis, Prunus africana and Plectranthus barbatus. Plots ON 8(6):e65619
Nabatanzi A, Nikadimeng SM, Lail N, Kabasa JD, McGaw LJ (2020) Ethnobotany, phytochemistry and pharmacological activity of *Kigelia africana* (Lam.) Benth. (Bignoniaceae). Plants 9(6):753

Nabende NP, Karanja MS, Mwatha JK, Wachira SW (2014) Anti-proliferative activity of *Prunus africana*, *Warburgia stuhlmannii* and *Myrtus senegalensis* extracts in breast and colon cancer cell lines. Eur J Med Plants 5(4):366–376

Nakitto AMS, Rudloff S, Borscha C, Wagner AE (2021) Solanum anguivi Lam. ex DC. (Solanaceae) seeds in alloxan-induced diabetes in rats. Afr J Biotechnol 7(17):2998–3003

Namukobe J, Owor RO, Gavamukulya Y, Bunalema L (2021) Traditional medicines for hepatoprotective and anti-oxidant activities on Wistar rats. Asian Pac J Trop Med 4(10):796–798

Namukwaya IA, Odeleye O, Oyedeji O, Shode F (2009) Constituents of *Momordica foetida* (Cucurbitaceae) seeds in alloxan-induced diabetes in rats. Adv Tradit Med. https://doi.org/10.1007/s13596-021-00600-8

Nassazi W, K’Owino IO, Makatiani J, Wachira S (2020) Phytochemical composition, antioxidant and antiproliferative activities of *African Basil (Ocimum gratissimum) Le*. Leaves. Asian J Appl Chem Res 6(4):1–18

New Vision (2020) Cleanse your body with Omujaja. https://www.newvision.co.ug/news/1278915/1-cleanse-body-eur-omujaja-eur. Accessed 10 Jul 2021

Ngari F, Wanjau R, Njagi E, Gikonyo N (2013) Safety and antimicrobial properties of *Euclea divinorum* Hiern, chewing sticks used for management of oral health in Nairobi County, Kenya. J Pharmaceut Biomed Sci 3(3):1–8

Ngassim G, Erbedo A, Ashenafi S (2020) In vitro anti-bacterial activities of aqueous, ethanol and chloroform crude extracts of *Olimia rochetiana* and *Vernonia mossambica* on helminth fever. J Trop Pharm Chem 5(29):99–110

Ngassim G, Alemu M, Ibrahim F, Werede Y, Tegegn M, Neway S, Endale M (2021) Phytochemicals, traditional uses and pharmacological activity of *Rhamnus prinoides*: a review. Int J Sec Med 8(2):136–151

Nthiga P, Kamau J, Safari V, Mwionjora J, Mburu D, Ngugi M (2016) Antipyretic potential of methanolic stem bark extracts of *Hamsonia Abyssinica* Oliv and *Londiphychia Buchanani* (Haller F) Staff in Wistar Rats. J Appl Pharm 8(3):227

Nwaehujor CO, Udeh NE (2011) Screening of ethyl acetate extract of *Parinari curatellifolia* Planch, (Chrysobalanaceae) seeds in alloxan-induced diabetes in rats. Afr J Biotechnol 10(5):214–219

Njens P, Khodse Tj, Kusimbe B, Imanirampa L, Waako P, Bajunirwe F, Ganafa AA (2016) Phytochemical and efficacy study on four herbs used in erectile dysfunction. *Mondia whitei*, *Cola acuminata*, *Urtica massaica*, and *Tarenna graveolens*. Afr J Pharm Pharmacol 10(37):785–790

Oma Omara T (2020a) Antimalarial plants used across Kenyan Communities. Evid-Based Complement Altern Med 2020:20538602

Oma Omara T (2020b) Plants used in antiviral therapy in rural Kenya: ethnomedicine and future perspectives. J Toxicol 2020:2188251

Oma Omara T, Kiprop AK, Ramkat RC, Cherutui J, Kagoya S, Nyangena DM et al (2020) Medicinal plants used in traditional management of cancer in Uganda: a review of ethnobotanical surveys, phytochemistry, and anticancer studies. Evidence-Based Complement Alternat Med 2020:3529081

Oma Omara T, Kiprop AK, Kosgei VJ (2021a) *Albizia coriaria* Welw ex Oliver: a review of its ethnomedicine, phytochemistry and ethnopharmacology. Adv Tradit Med. https://doi.org/10.1155/2020/13596-021-00600-8

Oma Omara T, Nakiguli CK, Nyal RJ, Opondo FA, Otoni SB, Ndiege ML, Mbabazi I, Nassazi W, Netztyarempe P, Kagoya S, Okwir A, Etimu E (2021b) Medicinal plants used as snake venom antidotes in East African Communities: review and assessment of scientific evidences. J Med Chem Sci 4(2):107–144

Oma Omara T, Kiprop AK, Kosgei VJ (2021c) Intraspecific variation of phytochemicals, antioxidant, and antibacterial activities of different solvent extracts of *Albizia coriaria* leaves from some agroecological zones of Uganda. Evid-Based Complement Altern Med 2021:2335454

Omujal F (2020) Phytochemistry and Ethnopharmacology of *Vebris nobilis* L.) Leaves. Asian J Appl Chem Res 6(4):1–18

Oko E (2014) Evaluation of Antimicrobial activity of *Oxysris lanceolata* (East African Sandalwood). MSc Thesis, Jomo Kenyatta University of Agriculture and Technology, Nairobi

Okabi K (2009) Cytoxicity phytochemicals. Planta Med 75: S33

Olearo S, Delile (Rutaceae). In: Pharmacognosy - Medicinal Plants, IntechOpen. pp 1–16

Omolabi M, Jaja S, Coker H (2005) Vasorelaxant action of aqueous extract of *African Sandalwood*. MSc Thesis, Jomo Kenyatta University of Agricul-

Opari P, Kihdze TJ, Katusiime B, Imanirampa L, Waako P, Bajunirwe F, Ganafa AA (2020) Antioxidant, and antibacterial activities of different solvent extracts from some agroecological zones of Uganda. J Tradit Complement Med 5(3):364–368

Oregiha O, Oyedeyi O, Odeh F (2009) Constituents of *Morinda foetida* and evaluation of their antimicrobial activity. Planta Med 75(04):24

Odongo SO (2013) Medicinal plants of Chuka community in Tharaka Nithi County, Kenya and some of their selected essential elements. MSc Thesis, Kenyatta University, Nairobi

Odongo E, Mungai N, Mutai P, Karumi E, Mwangi J, Omale J (2018) Ethnobotanical survey of the medicinal plants used in Kakamega County, Western Kenya. Appl Med Res 4(2):22–40

Odour L (2016) Investigation of in vitro antiprolasmodial activities of *Caissa edulis*, *Araznachica indica*, *Cassa samoei* and *Hamsonia abysinica* on Plasmodium falciparum. MSc Thesis, Egerton University, Kenya

Ogbonna SO, Adefunke AN, Olajumobi SA, Anyka EN, Enwuru VN, Otolepe M (2008) Assessing plasma glucose and lipid levels, body weight and acute toxicity following oral administration of an aqueous ethanolic extract of *Parinari curatellifolia* Planch, *Chrysobalanaceae* seeds in alloxan-induced diabetes in rats. Afr J Biotechnol 7(17):2096–3003

Ojewole JA (2002) Hypoglycemic effect of *Clauensa ansilla* (Willd) Hook methanolic root extract in rats. J Ethnopharmacol 81(2):231–237

Okonk E, Etebong EO, Udobang JA, Essien GE (2012) Antiprolasmodial and analgesic activities of *Clauensa ansilla*. Asian Pac J Trop Med 5(3):214–219

Oladji O, Akinola Alada A, Kolawole O (2005) Anti-inflammatory properties of *Entada abyssinica* leaves. Pharmaceut Biol 43(7):583–585

Olaevey MT, Ambomey AE, Kayode K, Akinmoladun AC (2014) Protective effects of Panax cururatifolia flavonoids against acetaminophen-induced hepatic necrosis in rats. Saudi J Biol Sci 21(5):486–492

Olivier DK, van Wyk BE (2013) Bitterness values for traditional tonic plants of southern Africa. J Ethnopharmacol 147(3):676–679

Olote J, Khodse Tj, Kusimbe B, Imanirampa L, Waako P, Bajunirwe F, Ganafa AA (2016) Phytochemical and efficacy study on four herbs used in erectile dysfunction. *Mondia whitei*, *Cola acuminata*, *Urtica massaica*, and *Tarenna graveolens*. Afr J Pharm Pharmacol 10(37):785–790

Page 21 of 23

Raghavendra H, Upashe S, Reyes D, Floriano J (2019) Anti-diabetic and anti-oxidant activity of Rubus arapatius Poir and *Rubus steudneri* Schweinf.
Leaf extract on alloxan induced diabetes mellitus. J Bioanal Biomed 11(2):149–154
Ravindra BS, Priyanka GK (2018) Evaluation of anti-hyperlipidemic and anti oxidant activity of ethanolic extract of Delonix Eluto on high fat diet induced rats. Res J Pharmacog Phytochem 10(3):241–245
Roulette CJ, Njau EFA, Quinlan MB, Quinlan RJ, Call DR (2018) Medicinal foods and beverages among Maasai agro-pastoralists in northern Tanzania. J Ethnopharmacol 216:191–202
Rufford (2020) Ethnomedicine of Tugen Community, Baringo County- Kenya. https://www.rufford.org/files/19802-1920Mechanical%20Plants%20of%20Baringo%20Kenya.pdf. Accessed 20 Dec 2020
Sadiq A, Hayat MQ, Ashmar A (2014) Ethnopharmacology of Artemisia annua L: a review. In: Taraf Aftab, Jorge FS, Ferreira M, Masroor A, Khan MN (eds) Artemisia annua - pharmacology and biotechnology. Springer Nature, Switzerland AG, pp. 9–25
Saleem M, Irshad I, Baig MK, Naseer F (2015) Evaluation of hepatoprotective activity of chloroform and methanol extracts of Opuntia monacantha in paracetamol-induced hepatotoxicity in rabbits. Bangladesh. J Pharmacol 10(1):16–20
Salintirion M, Vicentini R, Bonomi C, Tassoni A (2017) Traditional knowledge on wild and cultivated plants in the Kilombero Valley (Morogoro Region, Tanzania). J Ethnobiol Ethnomed 13:14
Scheffler A, Rauwald HW, Kampa B, Mann U, Mohr FW, Dhein S (2008) Olea europaea leaf extracts: Ty-pC2+ channel antagonistic effects. J Ethnopharmacol 120(2):233–240
Schlage C, Mabula C, Mahunnah RLA, Heinrich M (2000) Medicinal plants of the Washambwa (Tanzania): documentation and ethnopharmacological evaluation. Plant Biol 2(1):82–92
Schultz F, Anywar G, Wack B, Quave CL, Garbe L (2020) Ethnobotanical study of selected medicinal plants traditionally used in the rural greater Mpigi region of Uganda. J Ethnopharmacol 256.112742
Schulz V, Hansen H, Schindler L, Dufner K, Elsener P, Giusti M (2015) Phytotherapy of an oncolytic hydrocarbon from American coneflower. J Nat Prod 78(1):183–187
Schulz V, Hansen H, Schindler L, Dufner K, Elsener P, Giusti M (2015) Phytotherapy of an oncolytic hydrocarbon from American coneflower. J Nat Prod 78(1):183–187
Semenjome J, Mugokeya V, Mihale MJ, Zacharia A, Ipagala P, Kilulya KF (2014) Phytochemical analysis and antibacterial activity of the alcoholic and the methanolic extracts of Ocimum gratissimum. Afr J Tradit Complement Alternat Med 11:57
Tadese B, Terefe G, Gebre KB, Akal, Subalasmbraniam R (2020) In vitro Antioxidant and in vivo Hepatoprotective Activities of Root Bark Extract and Solvent Fractions of Croton macrostachyus Hochst. Ex Del. (Euphorbiaceae) on Paracetamol-Induced Liver Damage in Mice. J Exp Pharmacol 12:301–311
Tatsimo SJN, Tamkou JDD, Lamsho TM, Mouaou FT, Lannang AM, Sarkar P, Proson A, Baq PK, Spiteller M (2015) LC-MS guided isolation of antibacterial and cytotoxic constituents from Clausena anisata. Med Chem Res 24:1468–1479
Tchoumboungang F, Zollo PHA, Dagne E, Mekonnen Y (2005) In vivo antimarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71(1):20–33
Tegegne G, Pretorius JC (2007) In vitro and in vivo antifungal activity of crude extracts and powdered dry material from Ethiopian wild plants against economically important plant pathogens. Biocontrol 52:877–888
Teke GN, Lunga PK, Wabo HK, Kuate JR, Vilarem M, Gacciotti G, Kikuchi H, Oshima Y (2011) Antimicrobial and antioxidant properties of methanol extract, fractions and compounds from the stem bark of Entada abyssinica Steind ex A. Satale. BMC Compil Alternat Med 11:57
Terziva S, Veliikjova K, Grozova N, Valcheva N, Dinev T (2019) Antimicrobial activity of Amaranthus spp. extracts against some mycotoxigenic fungi. Bul J Agric Sci 53(5):120–123
Thongboonkerd VJ (2010) Proteomics in extracellular blood purification and peritoneal dialysis. Proteomics 73(3):521–526
Tragni E, Galli CL, Tubaro A, Del Negro P, Della Loggia R (1988) Anti-inflammato- ratory activity of Echinacea angustifolia fractions separated on the basis of molecular weight. Pharmacol Res Commun 20(5):87–90
Tugume P, Kakudidi EK, Buyinza M, Namaalwa J, Kamatemesi M, Mucunguzi P et al (2016) Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve. Uganda J Ethnobiol Ethnomed 12:5
Ugaborgo (2021) Hambard Safi Blood Purifier Syrup for Sale in Uganda. http://www.ugabox.com/product/herbal-supplements/Hambard-Safi-Blood-Purifier-Syrup.html. Accessed 4 Jun 2021
Ulgmed (2020) Medicinal Plants of Uganda. https://ugmedweely.com/ plants--medicinal-power.html. Accessed 27 July 2021
Umar SI, Ndako M, Jigam AA, Adofeafolu SF, Igbunle GF, Lawal B (2019) Anti- plasmodial, anti-inflammatory, anti-nociceptive and safety profile of Maytenus senegalensis root bark extract on hepato-renal integrity in experimental animals. Comp Clin Path 28:1571–1579
Uççagutlu B, Ávila D, Suárez-Roca H, Quintero L, Ortega J, González B (2004) Anti-inflammatory, antimicrobial, antiparasitic and anticancerous effects of Lantana trifolia Lineanu in experimental animals. Invest Clin 45(4):317–322
Valente LMJ, Piaxao D, Nascimento AC, Santos PPP, Scheinhar LA, Maira MML, Tinoco UW, Gomes LNF, Silva JFM (2010) Antiradical activity, nutritional potential and flavonoids of the cladodes of Opuntia monacantha (Cactaceae). Food Chem 123(4):1127–1131
van de Venter M, Roux S, Bungu LC, Louw J, Crouch NR, Grace OM, Maharaj V, Pillay P, Sewnarian P, Bhagwandin N, Folb P (2008) Antidiabetic screening and scoring of 11 plants traditionally used in South Africa. J Ethnopharmacol 119:81–86
van Vuuren S, Frank L (2020) Review. Southern African medicinal plants used as blood purifiers. J Ethnopharmacol 249:112434
Van Wyk BE, Gericke N (2000) People’s plants: a guide to useful plants of Southern Africa. Briza Publications, Pretoria
Van Wyk B, Wink M (2004) Medicinal plants of the World. Briza Publications, Pretoria, South Africa
Vergara-Jimenez M, Almarafi MM, Fernandez ML (2017) Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants 6:491
Voadan DJ, Jacobson M (1972) Tumour inhibitors 3 Identification and synthesis of an oncolytic hydrocarbon from American coneflower roots. J Med Chem 15(6):619–623
Waigand FW (2013) Safety and antimicrobial activities of herbal materials used in management of oral health by traditional medical practitioners in Nairobi County, Kenya. Phd Thesis, Kenyatta University, Nairobi
Waigand B, Moriasi G, Onyancha J, Elias N, Kuregi K, Ouma M, Muregi F (2020) Antiplasmodial and cytotoxic activities of extracts of selected medicinal plants used to Treat Malaria in Embu County, Kenya. J Parasitol Res 2020:8871375
Warming M (2019) Minds Illuminated as Mak Hosts the Day of Moringa Science, Makerere University, Kampala, Uganda, https://news.mak.ac.ug/2019/07/minds-illuminatedmak-hosts-day-moringa-science. Accessed 31 Dec 2020
Watt JM, Breyer-Brandwijk MG (1962) The Medicinal and Poisonous Plants of Southern and Eastern Africa Being an Account of Their Medicinal and Other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal. Livingstone, Edinburgh, United Kingdom

White P (2015) The concept of diseases and health care in African traditional religion in Ghana. HTS Teol Stud 71(3):a2762

WHO (2019) WHO Global Report on Traditional and Complementary Medicine. WHO, Geneva

Yang N, Zhao M, Zhu B, Yang B, Chen C, Cui C, Jiang Y (2008) Anti-diabetic effects of polysaccharides from Opuntia monacantha cladode in normal and streptozotocin-induced diabetic rats. Innovat Food Sci Emerg Technol 9(4):570–574

Yasir M, Das S, Kharya MD (2010) The phytochemical and pharmacological profile of Persea americana Mill. Pharmacog Rev 4(7):77–84

Yen FL, Wu TH, Lin LT, Cham TM, Lin CC (2008) Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem Toxicol 46(5):1771–1777

Zamuz S, Munekata PES, Guillón B, Rocchetti G, Montesano D, Lorenzo JM (2021) Citrullus lanatus as source of bioactive components: an up-to-date review. Trends Food Sci Technol 111:208–222

Zaruwa MZ, Ater MM, Ubana MA, Muhammad BY, Enemali MO (2020) Wound healing potential of the aqueous extract of Acacia hockii de wild on wound excised albino rats. FUW Trends Sci Technol J 5(3):887–890

Zhou F, Peng Z, Murugan R, Kellum JA (2013) Blood purification and mortality in sepsis: a meta-analysis of randomized trials. Crit Care Med 41(9):2209

Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50(2):69–76

Zingue S, Njuh AN, Tuche AB, Tamsa J, Tchoupaing EN, Kakene SD, Sipping MTK, Njamen D (2018) In vitro cytotoxicity and in vivo antimammary tumor effects of the hydroethanolic extract of Acacia seyal (Mimosaceae) stem bark. BioMed Res Int 2018:2024602

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

➤ Convenient online submission
➤ Rigorous peer review
➤ Open access: articles freely available online
➤ High visibility within the field
➤ Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com