Performance Improvement of LiF/ZnO Codoped Lead-Free Piezoelectric Ceramics

Ching-Hsing Pei, Mei-Li Chen, Kai-Huang Chen, and Chien-Min Cheng

Department of Game and Toy Design, Tung-Fang Institute, No. 110, Dongfang Rd., Hunei Dist., Kaohsiung City 82941, Taiwan
1Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., Tainan City 710, Taiwan
2Department of Digital Game and Animation Design, Tung-Fang Institute, No. 110, Dongfang Rd., Hunei Dist., Kaohsiung City 82941, Taiwan
3Department of Electronic Engineering, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., Tainan City 710, Taiwan

(Received August 30, 2016; accepted January 6, 2017)

Keywords: lead-free ceramics, piezoelectric ceramics, sintering temperature

In this study, a series of Li0.058(Na0.535K0.480)0.966(Nb0.90Ta0.10)O3 (LNKNT) + (x)ZnO + (y)LiF (x = 0, 0.4, and 0.6 wt%; y = 0 and 0.2 wt%) lead-free piezoelectric ceramics were fabricated by a conventional solid-state reaction method. The codoping of ZnO and LiF could significantly improve the sintering ability of LNKNT ceramics by reducing the optimal sintering temperature from 1090 to 990 °C. The crystal phases and microstructures were analyzed by X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The dielectric characteristics, electromechanical coupling factors, piezoelectric constants, and P–E curves were also measured and investigated. From the results, as 0.6 wt% ZnO and 0.2 wt% LiF were added into pure LNKNT ceramics, uniform and condensed grains can be obtained easily, and thus the sintering temperature can be decreased from 1090 °C (pure LNKNT) to 990 °C. Compared with pure LNKNT, ZnO/LiF codoped LNKNT has better orthorhombic and tetragonal coexistence phases. In this study, the optimal d_{33} values were improved from 279 pC/N (pure LNKNT) to 304 pC/N (LNKNT-6Z2LF), and k_p were improved from 0.46 (LNKNT) to 0.48 (LNKNT-6Z2LF). Hence, the codoping of ZnO and LiF can improve the sintering ability of the LNKNT ceramics effectively.

1. Introduction

Lead-free piezoelectric materials that are environmentally friendly from the viewpoint of sustainable development have attracted attention in recent years. Among them, (K0.5Na0.5)NbO3 (KNN)-based piezoelectric ceramics are considered promising candidates because of their markedly enhanced piezoelectric properties. An important key approach for improving the electrical properties of KNN ceramics is to lower the tetragonal–orthorhombic phase transition (T_{O-T}), producing a coexistence of the tetragonal and orthorhombic phases at low temperature. In addition, Matsubara et al. reported that, for KNN ceramics, the partial substitution of Li for A site ions and Ta for B site ions enhances their dielectric and piezoelectric properties considerably. Recently, by
introducing LiNbO$_3$ into the KNN ceramics with the nominal optimal K:Na ratio of 0.48:0.535, an exact morphotropic phase boundary (MPB) separating orthorhombic and tetragonal phases has been determined, in which a d_{33} of 314 pC/N has been obtained in the nonstoichiometric composition of Li$_{0.058}$(Na$_{0.535}$K$_{0.480}$)$_{0.942}$NbO$_3$.8

Furthermore, some dopants such as ZnO, SnO$_2$, and Yb$_2$O$_3$ were found to promote densification as well.9,10 An ideal sintering aid should effectively lower the sintering temperature while maintaining the piezoelectric properties as best as possible. Caballero et al.11 and Kim et al.12 reported that ZnO has been successfully used to reduce the dielectric losses in different materials. It has been shown that the addition of ZnO helps to increase the density of the material and avoids deliquescence.

Because LiF exhibits a low melting point of 845 °C, it is commonly used in the synthesis of molten salts. The low melting point of LiF indicates that it may form a liquid phase during the sintering process, which may promote densification and grain growth of KNN-based piezoceramics. Hence, in this study, to improve the sintering ability and piezoelectric characteristics of Li$_{0.058}$(Na$_{0.535}$K$_{0.480}$)$_{0.942}$NbO$_3$ (denoted as LNKNT) piezoceramics, small amounts of ZnO and LiF were added to LNKNT piezoceramics at the same time and with the composition of Li$_{0.058}$(Na$_{0.535}$K$_{0.480}$)$_{0.942}$NbO$_3$ + (x)ZnO + (y)LiF (denoted as LNKNT-xZyLF). The effect of codoped LiF/ZnO on the phase structure as well as the microstructure of LNKNT ceramics was systematically investigated.

2. Experimental Procedure

From the composition of Li$_{0.058}$(Na$_{0.535}$K$_{0.480}$)$_{0.942}$Nb$_{0.9}$Ta$_{0.1}$O$_3$ and by the conventional solid-state reaction method, proportional high-purity (>99.5%) raw materials (Na$_2$CO$_3$, K$_2$CO$_3$, Li$_2$CO$_3$, Nb$_2$O$_5$, and Ta$_2$O$_5$) were used. After mixing, grinding, and 850 °C / 2 h calcination, commercially available ZnO and LiF (>99.5%) sintering promoters were then introduced into LNKNT with the formula of LNKNT + (x)ZnO + (y)LiF (x = 0, 0.4, and 0.6 wt%; y = 0 and 0.2 wt%), mixed, ball-milled for 10 h in ethanol, and dried. After adding 5 wt% polyvinyl alcohol (PVA) as binder, the resulting powders were ground again, dried, and pressed into pellets 12 mm in diameter under a pressure of 150 MPa. Finally, these samples were debindered and sintered in air between 950 and 1120 °C for 2 h. The crystal structure of the sintered samples was analyzed by X-ray diffraction (XRD) using CuK$_{α}$ radiation ($2θ = 20–60^°$), and their microstructures were characterized by scanning electron microscopy (SEM). After painting the electrodes and polarizing (3.5 kV/mm) in 140 °C silicon oil for 30 min, the piezoelectric constant (d_{33}) was measured using a d_{33} meter, and by using the impedance analyzer (HP4294A), the electromechanical coupling factors (k_p) were determined by the resonance and antiresonance method according to IEEE standards. The polarization–electric field ($P–E$) hysteresis loops were measured using a ferroelectric tester, and the remanent polarizations (P_r) and coercive fields (E_c) were then obtained.

3. Results and Discussion

Figure 1 shows the XRD patterns ($2θ = 20–60^°$ and 44–47°) of the LNKNT + (x)ZnO + (y)LiF (x = 0, 0.4, and 0.6 wt%; y = 0 and 0.2 wt%) ceramics sintered at 990 °C for 2 h. The SEM images of the LNKNT-xZyLF (sintered at 990 °C for 2 h) ceramics are shown in Fig. 2. It can be seen that the peaks of ZnO and LiF are not clear owing to their small concentrations. No clear second phases can
be found, and all specimens reveal pure perovskite structures with cubic-type grains. Furthermore, from the 44–47° figure presented, we can observe that, compared with the pure LNKNT, the ZnO/LiF codoped LNKNT reveals better orthorhombic and tetragonal coexistent phases.

Figure 3 shows the relative dielectric constants and dielectric loss variations of the LNKNT-xZyLF ceramics as a function of sintering temperature. From the relative dielectric constants
shown, it can be observed that pure LNKNT reveals lower relative dielectric constants than the others. Moreover, as the sintering temperature increases from 950 to 1120 °C, all the relative dielectric constants increase to a maximum value gradually and then decrease. However, except for the pure LNKNT specimens (obtained at 1090 °C) and LNKNT-6Z2LF specimens (obtained at 990 °C), all the maximum dielectric constants are obtained at 1020 °C. The maximum relative dielectric constants are about 1200 for pure LNKNT and 1800 for LNKNT-6Z2LF. This means that the additions of ZnO and LiF have obvious effects, i.e., (1) increasing the dielectric constant and (2) decreasing the sintering temperature. However, the dielectric loss variation shown in Fig. 3(b) decreases to a minimum value and then increases with increasing sintering temperature for all the specimens, and all the minimum dielectric losses occur at 1020 °C. In particular, for the LNKNT-0Z2LF specimens, the dielectric loss reveals a lower value (<0.02) than those of the others, and LiF-doped specimens reveal larger dielectric constants and lower dielectric losses. This means that LiF dopants can improve the dielectric properties of LNKNT ceramics effectively.

Two P–E curves of the LNKNT-4Z2LF and LNKNT-6Z2LF specimens for different sintering temperatures are plotted in Fig. 4. In addition, Fig. 5 shows the remanent polarization (P_r) and coercive field (E_c) variations of the LNKNT-xZyLF ceramics. As the sintering temperature increases from 950 to 1120 °C, both the P_r and E_c values become maximums at first, and then decrease gradually. For the LNKNT-4Z2LF specimens, at a sintering temperature of 1020 °C, we obtain maximum P_r and E_c values of 13.52 μC/cm2 and 2.22 kV/mm, respectively. However, for the LNKNT-6Z2LF specimens, at a sintering temperature of 990 °C, we obtain maximum P_r and E_c values of 11.42 μC/cm2 and 2.22 kV/mm, respectively.

The variations of piezoelectric constants (d_{33}) and electromechanical coupling factors (k_p) of the LNKNT-xZyLF ceramics are presented in Fig. 6. It is clear that, for all the specimens, the d_{33} values first increased, reached a maximum value, and then decreased gradually. The maximum d_{33} value of LNKNT-6Z2LF is 304 pC/N and its sintering temperature is only 990 °C. However, for pure LNKNT, the maximum d_{33} value is only 279 pC/N and it is sintered at 1090 °C. Hence, it is clear that, owing to the addition of ZnO and LiF liquid-phase sintering promoters, the optimal sintering temperature of 1090 °C can be reduced significantly to 990 °C by ZnO/LiF codoping, and
Fig. 4. $P-E$ curves of LNKNT-xZyLF ceramics: (a) 4Z2LF and (b) 6Z2LF.

Fig. 5. (a) Remanent polarizations and (b) coercive fields of LNKNT-xZyLF ceramics.

Fig. 6. (a) Piezoelectric constants and (b) electromechanical coupling factors of LNKNT-xZyLF ceramics.
the piezoelectric characteristics (d_{33} values) can be improved from 279 to 304 pC/N. Furthermore, for the electromechanical coupling factors (k_p) of the LNKNT-6Z2LF ceramics shown in Fig. 6(b), as the sintering temperature increased from 950 to 1090 °C, all the k_p values reveal a trend similar to the d_{33} values. Moreover, except for the pure LNKNT specimens (obtained at 1090 °C) and LNKNT-6Z2LF specimens (obtained at 990 °C), all the maximum k_p values are obtained at 1020 °C. For the pure LNKNT specimens sintered at 1090 °C, the maximum k_p value is 0.46. However, for LNKNT-6Z2LF specimens sintered at 990 °C, the maximum k_p value is 0.48.

Previously, Safari and Akdogan (13) illustrated the relationship among P_r, d_{33}, and ε_r values as

$$d_{33} = 2K\varepsilon_0\varepsilon_r P_r$$ \hspace{1cm} (1)$$

where K is a constant between 0.05 and 0.1 m4/C2 for different materials, ε_r is the relative permittivity, and ε_0 is the permittivity of vacuum. Therefore, in Fig. 7, as we choose K as 0.085 m4/C2 for the LNKNT-6Z2LF ceramic, we reveal a comparison of its measured d_{33} values, theoretical d_{33} values [calculated from Eq. (1)], and measured P_r values. It is clearly found that, as the sintering temperature increased from 950 to 990 °C, these three values (measured d_{33}, theoretical d_{33}, and measured P_r) reveal the same variation tendency (increase to a maximum and then decrease gradually), which also confirms the relationship between the d_{33} values and the P_r values in Eq. (1).

![Fig. 7. (Color online) Comparison of measured d_{33} values, theoretical d_{33} values, and measured P_r values of LNKNT-6Z2LF ceramics.](image)

d_{33} (pC/N)	k_p	$\tan\delta$	ε_r	Density (g/cm3)	Sintering temperature (°C)	
LNKNT	279	0.46	0.019	1203	4.421	1090
LNKNT-0Z2LF	285	0.45	0.016	1561	4.334	1020
LNKNT-4Z0LF	265	0.43	0.022	1263	4.467	1020
LNKNT-6Z0LF	272	0.44	0.021	1349	4.448	1020
LNKNT-4Z2LF	290	0.45	0.020	1721	4.422	1020
LNKNT-6Z2LF	304	0.48	0.020	1801	4.453	990
4. Conclusions

The influences of ZnO and LiF codoped on the phase structure and the dielectric and piezoelectric properties of LNKNT ceramics were investigated. As concluded in Table 1, the optimal sintering temperature was improved from 1090 °C (pure LNKNT) to 990 °C (LNKNT-6Z2LF) owing to the codoping of ZnO and LiF sintering promoters. Even though the sintering temperature was only 990 °C, the optimal d_{33} values were improved from 279 pC/N (pure LNKNT) to 304 pC/N (LNKNT-6Z2LF), and k_p was improved from 0.46 (LNKNT) to 0.48 (LNKNT-6Z2LF). Finally, ZnO and LiF are suitable as sintering promoters of KNN-based piezoelectric ceramics for future applications.

Acknowledgements

This work was kindly supported by the Ministry of Science and Technology of the Republic of China (MOST 104-2221-E-218-023, 105-2221-E-218-034, and 104-2623-E-218-001-ET).

References

1. M. D. Maeder, D. Damjanovic, and N. Setter: J. Electroceram. 13 (2004) 385.
2. P. K. Panda: J. Mater. Sci. 44 (2009) 5049.
3. P. Palei and P. Kumar: J. Phys. Chem. Solids 73 (2012) 827.
4. J. Yoo: Ferroelectrics 437 (2012) 81.
5. J. Liu, J. Zhu, M. Wang, Y. Pu, X. Li, P. Sun, L. Feng, X. Zhu, J. Zhu, and D. Xiao: Ceram. Int. 385 (2012) 81.
6. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, and S. Hirano: J. Am. Ceram. Soc. 88 (2005) 1190.
7. M. Matsubara, T. Yamaguchi, K. Kikuta, and S. Hirano: Jpn. J. Appl. Phys. 44 (2005) 6136.
8. P. Zhao, B. P. Zhang, and J. F. Li: Appl. Phys. Lett. 87 (2007) 242909.
9. R. Zuo, J. Rödel, R. Chen, and L. Li: J. Am. Ceram. Soc. 89 (2006) 2010.
10. H. Li, W. Yang, Z. Zhou, and H. Tian: Electron. Mater. Lett. 9 (2013) 649.
11. A. C. Caballero, J. F. Fernández, C. Moure, P. Durán, and Y. M. Chiang: J. Am. Ceram. Soc. 81 (1998) 939.
12. S. J. Kim, C. Y. Kang, J. W. Choi, H. J. Kim, M. Y. Sung, and S. J. Yoon: Jpn. J. Appl. Phys. 46 (2007) 276.
13. A. Safari and E. K. Akdogan: Piezoelectric and Acoustic Materials for Transducers (Springer, Gewerbestrasse, 2008) Chap. 2, p. 21.

About the Authors

Ching-Hsing Pei received his B.S., M.S., and Ph.D. degrees from Tamkang University, National Central University, and Southern Taiwan University of Science and Technology, Taiwan, in 1985, 1987, and 2016, respectively. From 1987 to 2015, he was a lecturer of Tung-Fang Design Institute, Taiwan. Since 2016, he has been an associate professor at the same university. His research interests are electronic ceramics, thin films, and toy materials.
Mei-Li Chen received her B.S., M.S., and Ph.D. degrees from National Changhua University of Education, National Central University, and Southern Taiwan University of Science and Technology, Taiwan, in 1983, 1985, and 2007, respectively. From 1986 to 2007, she was a lecturer of Southern Taiwan University of Science and Technology, Taiwan. Since 2008, she has been an associate professor at the same university. Her research interests are electronic ceramics, thin films, and materials for energy.

Kai-Huang Chen was born in Kaohsiung City, Taiwan, R.O.C. on Oct. 29, 1973. He received his B.S. and M.S. degrees in electronic engineering from National Yunlin University of Science and Technology in 1999 and 2001, respectively. In addition, he received his Ph.D. degree in electrical engineering from National Sun-Yat-Sen University, Kaohsiung, Taiwan, in 2007. He is an associate professor in the Department of Electronics Engineering and Computer Science, Tung-Fang Design University. Recently, he has been interested in the study of various functional ceramic applications and ceramic printed antennas.

Chien-Min Cheng received his B.S., M.S., and Ph.D. degrees from National Taiwan Ocean University, National Cheng Kung University, and National Sun Yat-Sen University, Taiwan, in 1984, 1990, and 2008, respectively. From 2009 to 2012, he was an associate professor at Southern Taiwan University of Science and Technology, Taiwan. Since 2013, he has been a professor at the same university. His research interests are electronic ceramics, thin films, ceramic antennas, and materials for energy.