Design documentation quality influential variables in the construction sector

Peter Agbaxode1,4, Sitsabo Dlamini2 and Ehsan Saghatforoush3

1PhD Student, School of Construction Economics and Management, University of the Witwatersrand, Johannesburg, South Africa. Email: agbapieroo@gmail.com
2Senior Lecturer, School of Construction Economics and Management, University of the Witwatersrand, Johannesburg, South Africa. Email: sitsabo.dlamini@wits.ac.za
3Associate Professor, School of Construction Economics and Management, University of the Witwatersrand, Johannesburg, South Africa. Email: ehsan.saghatforoush@wits.ac.za
4Corresponding author: agbapieroo@gmail.com

Abstract

There are numerous studies on design documentation variables without efforts to evaluate their level of importance. Therefore, the aim of this study is to evaluate the significance of these variables towards improving design documentation quality. A questionnaire survey to identify the significance of key quality variables was carried out. A total of 139 variables on design documentation quality were used. The mean score and Standard deviation of each factor were used to determine the level of significance. Based on responses from 112 construction industry players, the significance of each variable is determined. Design documentation is fit for purpose was considered highly important as an attribute while Inadequate and Insufficient documentation was ranked highest for quality influential factors. The findings will provide valuable data to stakeholders, researchers, and academics and will help enhance project performance because professionals will be aware of key factors that can influence design documentation quality. It will also aid in providing solution to sustainable infrastructure design and delivery challenges in the industry. The study offers a pragmatic data and empirical evidence to expand knowledge on design documentation quality. It is the first of its kind that explored the significance of design documentation quality variables based on the outcome of a meta-synthesis.

Keywords: Design documentation, design document quality, quality influential variables, quality improvement, construction sector

1. Introduction

The efficiency of a construction project is underpinned by design documentation quality provided [1], therefore efforts must be gathered during the production of design documentation to improve quality. While it is required of design documentation to be of good quality (precise or accurate, comprehensive and unambiguous) to attain project efficiency, it is rather unfortunate that these documents practically contain erroneous or conflicting information and are often incomplete [1]. However design documentation must ensure fitness for purpose and be effective by communicating the design intent [2,3].

Globally, design documentation quality in the construction sector is poor [2,4]. Tuhacek and Svoboda [4] argued that design documentation in practice is poor hence efforts are required to improve the quality. The consequences of poor documentation quality on project delivery are project delays, poor project quality and upsurges in cost [4–6]. In finding solution to this worrying situation, researchers and practitioners have proposed various means to improve the quality. The use of computer programs such as
Building Information Modelling (BIM) [7], use of design checklists and establishment of quality control departments [6,8]. The development of a measuring instrument for evaluating the quality was proposed by Akampurira and Windapo [2]. This is an indication that poor design documentation quality exists within the construction industry hence efforts must be directed towards improving on the quality.

There are numerous studies on design documentation variables in the construction sector without efforts to evaluate the importance of these variables in improving the quality. However, without identifying the design documentation variables that has high influence on the quality, it will be difficult to improve on the quality. Therefore, the aim of this study is to evaluate each variable that influences design documentation quality and rank the factors on the basis of significance attached. This provides an overview of the factors that highly influence design documentation quality. The following section presents relevant literature regarding design documentation quality in the construction sector.

2. Literature Review

The socio-economic development of nations across the world is largely influenced by the physical infrastructure that is produced by the construction sector [9,10]. The sector contributes about ten percent (10%) of Gross Domestic Product (GDP) and employs about ten percent (10%) of the labor force in countries around the world [7,11,12]. Therefore consideration must be given to factors that may influence inefficiency in the sector. This has necessitated the need for a study on design documentation quality since it influences construction efficiency.

2.1 Design documentation

The accuracy and clarity of design documentation is important in project delivery since it serves as the yardstick for executing the project. It is these documentation that is produced by consultants that contractors use in executing the project [2,13]. Therefore the efficiency of a project is dependent on its clarity and completeness [14]. This notwithstanding, sufficient information and the actual intent of the design should be contained in the documentation provided for a project [2,15]. The client, consultants, contractors and other key stakeholders exchange a variety of design documentation during project delivery [16,17]. These include but not limited to design drawings; specifications; Bill of Quantities; schedule of rates, basic prices; form of tender or contract; conditions of contract [2,16,18–22].

2.2 Design documentation quality

An enhancement in design documentation quality often leads to an achievement in value for money [23]. However, quality can be defined as "the degree to which a set of inherent characteristics fulfills requirements" [24] and this can be categorized into poor, good, and excellent.Completeness, relevance, clarity, timeliness, accuracy, coordination, final checking, certainty, standardization of documentation and conformity are among ten (10) attributes of design documentation quality that McFallan and Tilley [26,27] recommended after a study on design documentation quality. Laryea [20] also stated similar attributes in a study on tender documentation quality in the United Kingdom. Hence a combined assessment of the degree of these quality attributes determines design documentation quality in practice.

Globally, design documentation quality is poor [2] and this calls for concern in the industry across the world [2,4,5,7,19,29–31]. In practice, design documentation is poor and bedeviled with unclear, inconsistent and inadequate information [5,20,32] thereby resulting in inaccurate cost estimates [33] and leads to an increase in project markups [34]. Therefore in a bid to enhance project efficiency, there is the need for an improvement in design documentation quality. This poor quality has been in existence over the past decades [20,25,35,36] and often denies clients from achieving value for money [21].
2.3 Design documentation quality variables
A study by Dosumu and Aigbavboa [7] on evaluating the causes, effects, and solutions of design error posited lack of coordination between design documentation, poor drawings, omissions, and mistakes, as main factors responsible for poor design documentation quality. Poor documentation quality is characterized with conflicting and inaccurate information, lack of clarity, insufficient details, un-amended standard specifications, and documents not clearly projecting project requirements [27]. Others are poor specification writing, discrepancies between bill of quantities, drawings and specifications, and poorly prepared tender documents [20,25]. Therefore there are numerous factors that are responsible for poor design documentation quality.

The delivery of construction projects is highly influenced by poor design documentation quality which often results in claims, rework, shoddy works, disputes, and litigation [11,35,37,38]. It accounts for incorrect cost estimates, higher margins in bids, project costs overruns and project delays [1,20,33,39]. Therefore in a bid to improve the efficiency of the construction process to ensure client satisfaction and project profitability, design documentation quality must be improved [40,41].

2.4 Enhancing design documentation quality
The quality of design documentation produced for most construction projects continue to decrease despite numerous efforts by both researchers and practitioners over the years to improve the quality [25–27,35,36]. Various strategies such as increasing design fees, design and documentation coordination, independent reviews, setting standards for documentation quality control and service, education on constructability, and accountability of design consultants have been proposed to help improve design documentation quality [3]. Other strategies include having design checklists, verifying documents before use, use of BIM or other computer programs, and establishing quality control departments [6–8].

The need for industry changes and initiatives to enhance design documentation quality has been recommended by Tilley et al. [3] in a research on improving design documentation quality. While Akampurira and Windapo [2] after a study on design documentation quality attributes recommends the development of an instrument for assessing design documentation quality, nonetheless, there exist numerous tools for assessing design quality [42,43].

There exist numerous studies on design documentation quality with majority recommending improvement in the quality [5]. However, it will be difficult to improve on the quality without identifying the variables that has high influence on the quality. Therefore, the aim of this study is to evaluate each variable that influences design documentation quality and rank the factors on the basis of significance attached. The methodology is presented in the next section.

3. Methodology
3.1 Study design
The philosophical stance for this research is positivism. Positivism infers “importance of what is posited, and focus strictly on scientific empiricist method designed to yield pure data and facts uninfluenced by human interpretation or bias” [44]. Epistemologically, positivism is a scientific method that observes and measures facts [44] hence the choice for this study since the target is to observe and measure facts with regards to design documentation quality in practice.

The methodological choice for this study is quantitative. The data collection technique is questionnaire and analysis is numerical which is the basis for quantitative research [44]. The study employs deductive approach since this approach emphasizes causality and starts with a theory that is tested to either falsify or verify the theory [44]. The logic is that when the premises are true, the conclusions shall also be true hence propositions are evaluated based on data collected [44].
3.2 Synthesizing data

In order to achieve the aim of this study, an extensive literature review was conducted on design documentation quality in the construction industry using a meta-synthesis approach. Relevant and appropriate research articles were selected through a screening process under the meta-synthesis approach. In achieving this, keywords that are related to the research question were used as the first step to search in appropriate and reliable scientific databases followed by a review of titles and abstracts of articles. The meta-synthesis approach achieved an extraction of a total of 139 variables on design documentation quality within the construction industry. These synthesized factors were classified and categorized to clearly explain the relevance and significance of each factor.

3.3 Survey questionnaire

An online survey questionnaire was developed and distributed to respondents (construction sector professionals). The questionnaire aim to assess the level of significance attached to each factor or variable. The use of questionnaire for this study was because it provides an efficient opportunity to each respondent to respond to the same set of questions [44]. It also ensure that the right information that is needed to achieve the set objective for this study is collected [44]. The assessment of the factors in the survey was based on a five-point Likert scale of importance.

There were four (4) sections of the questionnaire survey; Section A contains demographic information of respondents; Section B contains design documentation quality attributes and indicators; Section C is factors influencing design documentation quality, and Section D makes provision for comments and additional factors from respondents.

Validity and reliability of the instrument was ensured by conducting a pilot study with professionals in the industry with the aim to test the variables; detect ambiguities and to provide opportunity for any overlooked factor to be added. The next section presents results and appropriate discussions.

4. Results and Discussions

A questionnaire survey to identify the significance of the variables was sent to 229 purposefully selected respondents who are construction sector professionals such as site supervisors, engineers, quantity surveyors, architects, project managers and managing directors, in the Ghanaian construction industry as presented in Table 4.1. There were a total of 112 respondents representing 49% response rate. These respondents have significant experiences in the construction sector as presented in Table 4.1, therefore had an in-depth knowledge in responding to the survey.

Table 4.1: Demographic information.

Role in the Construction Sector	Frequency	Percent
Foreman or Supervisor	19	16.96
Engineer or Technologist	23	20.54
Quantity Surveyor	28	25.00
Architect	14	12.50
Project or Construction Manager	18	16.07
Managing Director	10	8.93
Total	112	100.00

Years of Experience in the Construction Sector	Frequency	Percent
1yr – 5yrs	19	16.96
6yrs – 10yrs	42	37.50
11yrs – 20yrs	41	36.61
21yrs – 30yrs	5	4.46
31yrs – 40yrs	3	2.68
Above 40yrs	2	1.79
Total	112	100.00

The educational level of respondents is important in this study therefore, presented in figure 4.1 with major qualifications as; Higher National Diploma (HND), 1st degree, Masters and Postgraduate degrees.
A total of 139 variables composed of 19 quality attributes, 109 quality influential factors and 11 indicators of design documentation quality were used. The mean score and Standard deviation of each factor was used to determine their level of importance. The assessment of the factors in the survey was based on a five-point Likert scale of importance with each factor scored on a scale of 1 to 5 where Not Important is rated as 1, Important rated as 2, Not very Important rated as 3, Very Important rated as 4 and, Highly Important rated as 5. The results and their appropriate discussions are presented in the next section.

4.1 Design documentation quality attributes and indicators

Table 4.2 and 4.3 presents the ranking of factors on design documentation quality attributes and assessment indicators respectively. A total of 30 micro factors grouped into 2 appropriate macro factors which are design documentation quality attributes and indicators for measuring the quality were ranked.

![Figure 4.1: Educational level of respondents](image)

Macro factors	S/N	Micro factor codes	Mean	SD	Ranking
1 Quality attributes of design documentation	1	Design documentation is fit for purpose	4.52	0.849	1
	2	Completeness of design documentation	4.31	0.881	2
	3	Relevance of design documentation	4.29	0.834	3
	4	Accuracy of design documentation	4.29	0.845	4
	5	Clarity of design documentation	4.29	0.885	5
	6	Easily communicated and constructed	4.28	0.853	6
	7	Final checking of design documentation	4.25	0.811	7
	8	Aligned with the owner’s requirements as set out in a project brief	4.23	0.859	8
	9	Conformity of design documentation	4.23	0.939	9
	10	Standardization of documentation	4.22	0.887	10
	11	Coordination of design documentation	4.21	0.864	11
	12	Design documentation is concise	4.19	0.954	12
	13	Certainty of design documentation	4.18	0.979	13
	14	Legibility of design documentation	4.16	0.865	14
	15	Design documentation is consistent	4.16	0.954	15
	16	Timeliness of design documentation	4.15	0.942	16
	17	Topographical representation of design	4.00	0.934	17
	18	Unambiguous and coherent design documentation	3.95	1.056	18
	19	Geological representation of design	3.94	1.003	19

4.1.1 Results of design documentation quality attributes

This category is composed of 19 factors as presented in Table 4.2. Analysis indicates that 17 factors had mean scores range from 4.00 to 4.52 indicating their high level of significance. Design documentation is fit for purpose was ranked highest with a mean score of 4.52 whiles topographical representation of design had a least mean score of 4.00. This is consistent with studies by [2,15, 25–27, 31, 35, 39, 45].
Table 4.3: Ranking of design documentation quality assessment indicators.

Macro factors	S/N	Micro factor codes	Mean	SD	Ranking
2 Indicators	20	Revisions to architectural and engineering drawings	4.16	0.899	1
for measuring	21	The number and analysis of Requests for Information (RFI)	4.11	1.071	2
design	22	Value of rework	4.07	0.877	3
documentation	23	The submission of field technical queries	4.04	0.873	4
quality	24	The number of variation orders	4.00	0.920	5
	25	The issuance of new architectural and engineering drawings	3.99	0.925	6
	26	Paid delays	3.98	1.039	7
	27	The number and analysis of revisions to drawing registers	3.93	0.951	8
	28	The submission of early warnings (NEC contract)	3.93	0.998	9
	29	Lost or non-productive time	3.86	0.915	10
	30	Scope disputes	3.83	0.963	11

4.1.2 Results of design documentation quality assessment indicators
This category is composed of 11 factors as presented in Table 4.3. Respondents considered revisions to architectural and engineering drawings, the number and analysis of Requests for Information (RFI), Value of rework, submission of field technical queries, and the number of variation orders as most significant factors with mean scores of 4 and above. This is consistent with studies by [3, 15, 29, 35, 38, 46-47].

4.2 Factors influencing design documentation quality in the construction sector
Table 4.4 presents factors that influence design documentation quality in the construction sector. A total of 109 micro factors grouped into 5 appropriate macro factors which are design documentation related; designer’s (consultants) related; owner related; collaboration related; and external related factors.

Table 4.4: Ranking of design documentation quality influential factors.

Macro Factors	S/N	Micro Factor Codes	Mean	SD	Ranking
1 Design	1	Inadequate and Insufficient documentation	4.45	0.994	1
Documentation	2	Changes to specifications	4.28	0.762	2
Related	3	Incorrect drawings	4.26	0.937	3
Factors	4	Disparities between bil of quantities, drawings and specifications	4.25	0.915	4
	5	Design Changes and Frequent Change orders	4.22	0.975	5
	6	Discrepancy and conflict in contract documents	4.21	0.905	6
	7	Poor and Incomplete specification writing	4.21	0.922	7
	8	Lack of clarity and legibility	4.21	0.922	8
	9	Incomplete and inexplicit drawings	4.20	0.976	9
	10	Unavailability of detailed information	4.18	0.882	10
	11	Omissions and Ambiguity in documents	4.17	0.879	11
	12	Poor working drawings	4.16	0.926	12
	13	Deficient or missing information	4.15	0.970	13
	14	Variations and revisions to design	4.13	0.871	14
	15	Discrepancies between the specification and the design drawings	4.13	1.006	15
	16	Incomplete designs	4.13	0.941	16
	17	Wrong/inadequate description in specification	4.11	0.943	17
	18	Outdated and unclear technical specifications	4.08	0.892	18
	19	Design error	4.07	0.908	19
	20	Inaccurate details	4.05	0.928	20
	21	Unworkable details and unachievable tolerances	4.04	0.910	21
	22	Error in design calculation	4.03	0.944	22
	23	Documents does not conform to Code and Building Regulation	3.99	0.905	23
	24	Quantum of Requests for Information	3.96	0.939	24
	25	Reliance upon generic specifications documents	3.97	0.875	25
	26	Dimensional errors	3.89	0.894	26
	27	Pricing errors	3.89	0.914	27
	Related Factors	Mean	Standard Deviation		
---	---	------	--------------------	---	
2	**Designer’s (Consultants) Related Factors**				
28	Measurement errors	3.88	0.937	28	
29	Provision of voluminous and irrelevant documentation	3.86	1.130	29	
30	Symbol and abbreviation errors	3.84	1.000	30	
31	Approximation error	3.82	0.932	31	
32	Arithmetic errors	3.80	0.984	32	
33	Random errors	3.67	0.904	33	
34	Inadequate design staff	4.31	0.987	1	
35	Failure to provide relevant training to staff	4.18	0.851	2	
36	Absence of an experienced overall design manager	4.17	0.837	3	
37	Designer’s failure to clearly understand the client’s brief	4.15	0.841	4	
38	Inadequate experience of designers	4.13	0.829	5	
39	Lack of experience on similar projects	4.13	0.875	6	
40	Negligence of the Professional	4.13	0.905	7	
41	Reuse of design documents and details from previous projects without effective review by the designer	4.12	0.857	8	
42	Insufficient planning of workload	4.11	0.943	9	
43	Failure to adopt quality assurance systems e.g. ISO 9001	4.09	0.833	10	
44	Consultant’s Professional experience	4.09	0.865	11	
45	Inadequate or ineffective use of new technology	4.05	0.858	12	
46	Designer’s workload	4.05	0.976	13	
47	Poor allocation of time with consideration to available workload	4.04	0.864	14	
48	Lack or improper use of modern design software	4.04	0.865	15	
49	Designer’s lack of experience on similar projects	4.04	0.884	16	
50	Low professional fees	4.04	0.890	17	
51	Lack of quality assurance systems and procedures in consultant’s team	4.04	0.900	18	
52	Designer’s unfamiliarity with construction techniques and materials.	4.04	0.929	19	
53	Lack of time available for checking and correlating information’s on all design documents	4.04	0.929	20	
54	Leaving design issues to be sorted out in the construction process	4.02	0.838	21	
55	Terms of reference not consistent with expected deliverables	4.00	0.816	22	
56	Lack of innovation and design options due to low fees	3.99	0.905	23	
57	Absence of ‘in-house’ design management policies and procedures	3.99	0.935	24	
58	Inadequate supervision of junior design staff	3.98	0.849	25	
59	Unrealistic contract durations imposed by client	3.97	0.991	26	
60	Incorrect assumptions	3.96	0.914	27	
61	Increase design staff members, rather than increasing the number of hours of work	3.96	0.939	28	
62	Tight design schedule	3.95	0.966	29	
63	Allocation of staff to many projects at the same time	3.91	0.991	30	
64	Improper use of design software	3.89	0.933	31	
65	Concurrent or overlapping activities	3.85	0.882	32	
3	**Owner Related Factors**				
66	Low design fees paid by owners	4.10	1.123	1	
67	Selection of designers on the basis of lowest price selection strategy	3.99	0.905	2	
68	Frequent design changes by client	3.97	0.944	3	
69	Provision of wrong or insufficient information by the client	3.96	0.914	4	
70	Lack of client knowledge of the importance of the design phase to construction economy and maintenance operation	3.95	0.919	5	
71	Selection of designers on the basis of reputation instead of efficiency	3.94	0.971	6	
72	Erroneous and Conflicting information from the client	3.89	0.990	7	
73	Lack of motivation to consultants	3.86	0.985	8	
74	No focal person on client team responsible for design coordination and providing information	3.85	0.961	9	
75	Change in project requirements by client at later stages	3.85	1.024	10	
76	Lack or inadequate client’s review of interim and final design documents submission	3.84	0.973	11	
4.2.1 Design documentation related factors

This category is composed of 33 factors as presented in Table 4.4. Analysis indicates that 22 factors had mean scores from 4.03 to 4.45 indicating their high level of significance. However, inadequate and insufficient documentation was ranked highest with a mean of 4.45 whiles error in design calculation had a least mean score of 4.03. These factors are consistent with studies by [4-7, 19, 20, 31, 35, 48, 50-52].

4.2.2 Designer’s (consultants) related factors

This category is composed of 32 micro factors as presented in Table 4.4. Analysis indicates that 22 factors had mean scores range from 4.00 to 4.31 indicating their high level of significance. However, inadequate design staff was ranked highest with a mean of 4.31 while terms of reference not consistent with expected deliverables scored a mean of 4.00. These factors are consistent with studies by [3-7, 14, 19, 20, 30, 31, 35, 36, 39, 45, 48, 50-53].
4.2.3 Owner related factors
This category is composed of 21 micro factors as presented in Table 4.4. Analysis indicates that low design fees had a mean score of 4.10 representing the highest ranked factor in this group. The remaining 20 factors had mean scores range from 3.64 to 3.99. Selection of designers on the basis of lowest price had a mean score of 3.99 while client type (public or private) scored a mean of 3.64 as the least score in this category. These factors are consistent with studies by [3-7, 14, 19, 20, 30, 31, 35, 36, 39, 45, 48, 50-53].

4.2.4 Collaboration related factors
This category is composed of 11 micro factors as presented in Table 4.4. Analysis indicates that in exception of insufficient and poor pre-design project meetings that had a mean score of 3.98 representing the least score in this category, all the other 10 factors had mean scores range from 4.05 to 4.29 which is an indication of their high significance. This shows the importance of collaboration during design documentation production. However, lack of continuous and effective communication between parties was ranked highest with a mean of 4.29 whiles discrepancies between different design disciplines scored a mean of 4.05. These is consistent with studies by [3-7, 14, 19, 20, 30, 31, 35, 36, 39, 45, 48, 50-53].

4.2.5 External related factors
This category is composed of 12 micro factors as presented in Table 4.4. Analysis indicates that lack of quality control criteria imposed by statutory authorities on design outputs had a mean score of 3.80 representing the highest ranked factor while frequent statutory changes in regulations and requirements scored a mean of 3.31 as the least score. These factors are consistent with studies by [3, 6, 7, 14, 19, 20, 30, 31, 35, 36, 39, 45, 48, 50-53]. The conclusion and recommendation is presented in the next section.

5. Conclusion and Recommendation
There are construction projects that progresses from inception to completion without significant design documentation challenges while others experiences significant challenges that ends up affecting the efficiency of the project. Therefore this study aimed to evaluate factors that influences design documentation quality and rank them on the basis of significance. A total of 139 factors composed of 19 quality attributes of design documentation, 11 indicators for measuring design documentation quality and 109 design documentation quality influential factors were used in this study.

On design documentation quality attributes, factors such as fit for purpose, completeness, relevance, accuracy, clarity, easily communicated and constructed, safety, final checking, aligned with the owner’s requirements, conformity, standardization, coordination, conciseness, certainty, legibility, consistency, timeliness, unambiguous and coherent design documentation were highly ranked. On quality assessment indicators, factors such as revisions to drawings, the number and analysis of Requests for Information (RFI), value of rework, the submission of field technical queries, and the number of variation orders were considered as most significant indicators. On factors influencing design documentation quality in the construction sector, there were 5 groups under this category. However, analysis of the factors in the various groups places design documentation related factors first; followed by designer’s (consultants) related factors; collaboration related factors; owner related factors; and external related factors in that order respectively. This is indicative that design documentation related factors influences design documentation quality to a high extent followed by designer’s (consultants) related factors and collaboration related factors.
The findings of this study provide valuable data to stakeholders, researchers, and academics and will help enhance project performance in the construction sector particularly in the production of design documentation. It offers a pragmatic data and an empirical evidence to expand knowledge on design documentation quality. The study however recommends a future research to build on the current study by considering a case study on specific projects to provide a more robust view of the current state of design documentation quality in the construction sector.

References

[1] Tilley, P.A., McFallan, S.L. and Tucker, S.N. (2000) Design and Documentation Quality and its Impact on the Construction Process. *Journal of the Australian Institute of Steel Construction*, 9.

[2] Akampurira, E. and Windapo, A. (2019) Key quality attributes of design documentation: South African perspective. *Journal of Engineering, Design and Technology*, 17, 362–82. https://doi.org/10.1108/JEDT-08-2018-0137

[3] Tilley, P.A., Mcfallan, S.L. and Sinclair, R.G. (2002) Improving Design and Documentation Quality. *CIB REPORT*, 361–80.

[4] Tuhacek, M. and Svoboda, P. (2019) Quality of Project Documentation. *IOP Conference Series: Materials Science and Engineering*, 471, 052012. https://doi.org/10.1088/1757-899X/471/5/052012

[5] Akampurira, E. and Windapo, A. (2018) Factors influencing the quality of design documentation on South African civil engineering projects. *Journal of the South African Institution of Civil Engineering*, 60. https://doi.org/10.17159/2309-8775/2018/v60n3a4

[6] Abdallah, A., Assaf, S. and Hassanain, M.A. (2018) Assessment of the consequences of deficiencies in design documents in Saudi Arabia. *Architectural Engineering and Design Management*, 1–15. https://doi.org/10.1080/17452007.2018.1561412

[7] Dosumu, O. and Aigbavboa, C. (2018) An assessment of the causes, cost effects and solutions to design-error induced variations on selected building projects in Nigeria. *Acta Structilia*, 25. https://doi.org/10.18820/24150487/as25i1.2

[8] Brown, J.T. (2002) Controlling costs using design quality workshops. *AACE International Transactions; Morgantown*, CS101–9.

[9] Ofori, G. (2012) Contemporary Issues in Construction in Developing Countries [Internet]. Spon Press, 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN.

[10] Voordijk, H. (2012) Contemporary Issues in Construction in Developing Countries. *Construction Management and Economics*, 30, 331–3. https://doi.org/10.1080/01446193.2012.665171

[11] Lopez, R., Love, P.E.D., Edwards, D.J. and Davis, P.R. (2010) Design Error Classification, Causation, and Prevention in Construction Engineering. *Journal of Performance of Constructed Facilities*, 24, 399–408. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000116

[12] Ofori, G. (2012) Developing the Construction Industry in Ghana: the case for a central agency. 19.

[13] Loushine, T.W., Hoonakker, P.L.T., Carayon, P. and Smith, M.J. (2006) Quality and Safety Management in Construction. *Total Quality Management & Business Excellence*, 17, 1171–212. https://doi.org/10.1080/14783360600750469

[14] Love, P.E.D., Edwards, D.J. and Smith, J. (2005) Contract Documentation and the Incidence of Rework in Projects. *Architectural Engineering and Design Management*, 1, 247–59. https://doi.org/10.1080/17452007.2005.9684596

[15] Tilley, P.A., Adam, W. and Sherif, M. (1997) Indicators of design and documentation deficiency. *Proceedings of the Fifth Annual Conference of the International Group for Lean Construction*, 16, 137–48.

[16] Mena, Á., López, F., Framiñan, J.M., Flores, F. and Gallego, J.M. (2010) XPDRL project: Improving the project documentation quality in the Spanish architectural, engineering and construction sector. *Automation in Construction*, 19, 270–82. https://doi.org/10.1016/j.autcon.2009.10.001
[17] Halaris, C., Kerridge, S., Bafoutsou, G., Mentzas, G. and Kerridge, S. (2003) An Integrated System Supporting Virtual Consortia in the Construction Sector. *Journal of Organizational Computing and Electronic Commerce, 13*, 243–65. https://doi.org/10.1080/10919392.2003.9681163

[18] Yuni, N.K.S.E., Norken, I.N., Sudarsana, D.K. and Adnyana, I.B.P. (2017) Risk Analysis of Tender Documents on the Execution of Private Construction Work at Badung Regency, Bali Province, Indonesia. *Journal of Sustainable Development, 10*, 130. https://doi.org/10.5539/jsd.v10n4p130

[19] Sunday, D.O. and Afolarin, A.O. (2013) Causes, effects and remedies of errors in Nigerian construction documents. *Organization, Technology & Management in Construction: An International Journal, 5*, 676–86. https://doi.org/10.5592/otmcj.2013.1.4

[20] Laryea, S. (2011) Quality of tender documents: case studies from the UK. *Construction Management and Economics, 29*, 275–86. https://doi.org/10.1080/01446193.2010.540019

[21] Laryea, S. (2008) The tendering process and performance analysis of a public building project in Ghana. In: COBRA 2008 The Construction and Building Research Conference of the Royal Institution of Chartered Surveyors, 45 September 2008, Dublin Institute of Technology.

[22] Hajjar, D. and AbouRizk, S.M. (2000) Integrating Document Management with Project and Company Data. *Journal of Computing in Civil Engineering, 14*, 70–7. https://doi.org/10.1061/(ASCE)0887-3801(2000)14:1(70)

[23] Arditi, D. and Gunaydin, H.M. (1997) Total quality management in the construction process. *International Journal of Project Management, 15*, 235–43. https://doi.org/10.1016/s0263-7863(96)00076-2

[24] ISO 9000. (2015) Quality Management Systems - Fundamentals and Vocabulary [Internet].

[25] Tilley, P. and McFallan, S. (2000a) Design and Documentation Quality Survey: Comparison of Designers and Contractors Perspectives. *CSIRO, Melbourne, Victoria*.

[26] Tilley, P. and McFallan, S. (2000b) Design and Documentation Quality Survey: Designer’s Perspective. *CSIRO, Melbourne, Victoria*.

[27] Tilley, P. and McFallan, S. (2000c) Design and Documentation Quality Survey: Contractor’s Perspective. *CSIRO, Melbourne, Victoria*.

[28] Laryea, S. (2011) Quality of tender documents: case studies from the UK. *Construction Management and Economics, 29*, 275–86. https://doi.org/10.1080/01446193.2010.540019

[29] Akampurira, E. and Windapo, A.O. (2016) Conceptual Framework of Influencing Factors for Design Documentation Quality. *ResearchGate; Conference Paper*, 12.

[30] Malinda, M.J.K. (2017) Quality of project documentation as a major risk source in infrastructure projects in South Africa. *Master of Engineering in Civil Engineering, Stellenbosch University*, 222.

[31] Dosumu, O.S., Idoro, G.I. and Onukwube, H.N. (2017) Causes of Errors in Construction Contract Documents in Southwestern, Nigeria. *Journal of Construction Business and Management, JCBM (2017) 1*, 11–23.

[32] Fatawu, A. (2016) Assessing the Quality of Design and Contract Documentation and its Impact on Construction Projects Performance in Northern Ghana. *Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, MSc. Dissertation*.

[33] Akintoye, A. and Fitzgerald, E. (2000) A survey of current cost estimating practices in the UK. *Construction Management and Economics, 18*, 161–72. https://doi.org/10.1080/0144619003707799

[34] Liu, M. and Ling, Y.Y. (2005) Modeling a Contractor’s Markup Estimation. *Journal of Construction Engineering and Management, 131*, 391–9. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:4(391)

[35] Philips-Ryder, M., Zuo, J. and Jin, X.H. (2013) Evaluating Document Quality in Construction Projects – Subcontractors’ Perspective. *International Journal of Construction Management, 13*, 77–94. https://doi.org/10.1080/15623599.2013.10773217

[36] Slater, R. and Radford, A. (2012) Perceptions in the Australian Building Industry of Deficiencies in Architects’ Design Documentation and the Effects on Project Procurement. *Construction Economics and Building, 8*, 23–33. https://doi.org/10.5130/ajceb.v8i1.2995
[37] Mohamad, M.I. and Madon, Z. (2006) Understanding Contract Documentation. Proceedings of the 6th Asia-Pacific Structural Engineering and Construction Conference (APSEC 2006), 5 – 6 September 2006, Kuala Lumpur, Malaysia, 7.

[38] Love, P.E.D. and Li, H. (2000) Quantifying the causes and costs of rework in construction. Construction Management and Economics, 18, 479–90. https://doi.org/10.1080/01446190050024897

[39] Andi and Minato, T. (2003) Design documents quality in the Japanese construction industry: factors influencing and impacts on construction process. International Journal of Project Management, 21, 537–46. https://doi.org/10.1016/s0263-7863(02)00083-2

[40] Ling, F.Y.Y., Low, S.P., Wang, S.Q. and Lim, H.H. (2009) Key project management practices affecting Singaporean firms’ project performance in China. International Journal of Project Management, 27, 59–71. https://doi.org/10.1016/j.ijproman.2007.10.004

[41] Tilley, P. (2005) Design and Documentation Quality Problems – A Lean Thinking Opportunity. Proceedings of the International SCRI Symposium, Salford, UK, 12.

[42] Harputlugil, T., Gültekin, A.T., Prins, M. and Topçu, Y.İ. (2014) Architectural Design Quality Assessment Based On Analytic Hierarchy Process: A Case Study. Metu Journal of the Faculty of Architecture,. https://doi.org/10.4305/METU.JFA.2014.2.8

[43] Giddings, B., Sharma, M., Jones, P. and Jensen, P. (2013) An evaluation tool for design quality: PFI sheltered housing. Building Research & Information, 41, 690–705. https://doi.org/10.1080/09613218.2013.775895

[44] Saunders, M., Lewis, P. and Thornhill, A. (2016) Research Methods for Business Students. 7th ed. Pearson Education Ltd, Harlow, England.

[45] Abdalaziz, S.K. (2009) Factors Affecting the Quality of Design and Contractual Documents in Gaza Strip. MSc Dissertation in Construction Management, Islamic University of Gaza, 132.

[46] Zhang, Y., Luo, H. and He, Y. (2015) A System for Tender Price Evaluation of Construction Project Based on Big Data. Procedia Engineering, 123, 606–14. https://doi.org/10.1016/j.proeng.2015.10.114

[47] Han, S., Love, P. and Peña-Mora, F. (2013) A system dynamics model for assessing the impacts of design errors in construction projects. Mathematical and Computer Modelling, 57, 2044–53. https://doi.org/10.1016/j.mcm.2011.06.039

[48] Yap, J.B.H. and Skitmore, M. (2018) Investigating design changes in Malaysian building projects. Architectural Engineering and Design Management, 14, 218–38.

[49] Alarcón, L.F. and Mardones, D.A. (1998) Improving the design-construction interface. p. 1–12.

[50] Baloyi, M. and Agumba, J.N. (2014) Causes of disputes in construction projects in South Africa: a case of Gauteng province. Proceedings 8th Construction Industry Development Board (CIDB) Postgraduate ….

[51] Ramabodu, M.S. and Verster, J.J.P. (2013) Factors that influence cost overruns in South African public sector mega-projects. International Journal of Project Organisation and Management, 5, 48. https://doi.org/10.1504/IJPOM.2013.053153

[52] Oyewobi, L., Ibirorne, O., Ganiyu, B. and Ola-Awo, A. (2011) Evaluating rework cost-A study of selected building projects in Niger State, Nigeria. Journal of Geography and Regional Planning, 4, 147–51.

[53] Darwish, M.I. (2007) Factors Affecting Design Documentation Quality in Construction Industry. MSc Diss King Fahd University of Petroleum and Minerals,