Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry

Elissaios Stavrou,*†‡ Sergey Lobanov,†§ Huafeng Dong,§ Artem R. Oganov,∥§⊥# Vitali B. Prakapenka,@ Zuzana Konôpková,△ and Alexander F. Goncharov∗†∇††

†Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, U.S.A.
‡Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350
¶V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, 3 Pr. Ac. Koptyga, Novosibirsk 630090, Russia.
§Department of Geosciences, Center for Materials by Design, Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794–2100, U.S.A.
∥Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, 5 Nobel St., Moscow 143026, Russia
⊥Moscow Institute of Physics and Technology, 9 Institutskiy lane, Dolgoprudny city, Moscow Region, 141700, Russia
#School of Materials Science, Northwestern Polytechnical University, Xi’an,710072, China
@Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
△DESY Photon Science, D-22607 Hamburg, Germany
∇University of Science and Technology of China, Hefei, 230026, China
††Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

E-mail: stavrou1@llnl.gov; agoncharov@carnegiescience.edu
Abstract

Search of compounds with C$_x$N$_y$ composition hold a great promise in creating materials which would rival diamond in hardness due to the very strong and relatively low-ionic C-N bond. Early theoretical and experimental works on C$_x$N$_y$ compounds were based on the hypothetical structural similarity of predicted C$_3$N$_4$ phases with known binary A$_3$B$_4$ structural-types; however, the synthesis of C$_3$N$_4$ other than g-C$_3$N$_4$ remains elusive. Here we explore an elemental synthesis at high pressures and temperatures in which the compositional limitations due to the use of precursors in the early works are substantially lifted. Using in situ synchrotron X-ray diffraction and Raman spectroscopy we demonstrate the synthesis of highly incompressible Pnmm CN compound (x=y=1) with sp3 hybridized carbon above 55 GPa and 7000 K. This result is supported by first principles evolutionary search, which finds that CN is a most stable compound above 14 GPa. On pressure release below 6 GPa the synthesized CN compound amorphizes maintaining its 1:1 stoichiometry as confirmed by Energy-Dispersive X-ray Spectroscopy. This work underscores the importance of understanding of novel high-pressure chemistry laws that promote extended 3D C-N structures, never observed at ambient conditions. Moreover, it opens a new route for synthesis of superhard materials based on novel stoichiometries.

Introduction

Since the pioneering work of Liu and Cohen1 introducing a new class of highly incompressible solids, the search for C$_3$N$_4$ materials harder than diamond has become the Holy Grail in the field of superhard materials. The original proposal was based on realization that carbon atoms in a hypothetical C$_3$N$_4$ compound in the β-Si$_3$N$_4$ structure are bound to 4 nitrogen atoms by very strong C-N bonds, which are shorter in comparison to the C-C bond in diamond (1.47 vs 1.53 Å at ambient pressure) and the material is of low ionicity. In the subsequent work of Teter and Hemley,2 a number of structures with similar bonding prop-
erties have been proposed. These structures, with the exception of the graphite-like g-C$_3$N$_4$, have the sp^3 and sp^2 bonding for C and N atoms, respectively with the formation of CN$_4$ corner sharing tetrahedra (see Fig. 1(c)) where C atoms are connected with 4 N atoms and N atoms with 3 C atoms. The bulk moduli of these compounds have been calculated (using a DFT method) to be very high, exceeding that of diamond for the majority of structures, and, moreover, revealing very high densities and the presence of wide optical bandgaps (> 3 eV). These early predictions were based on the structural similarity with known A$_3$B$_4$ structural types, but for materials with atomic substitution. For instance, α- and β-C$_3$N$_4$ are analogues to α- and β-Si$_3$N$_4$, respectively; while cubic C$_3$N$_4$ is analogous to Th$_3$P$_4$.

These first theoretical predictions triggered extensive experimental and theoretical studies aiming at the synthesis of such unique covalent compounds. These attempts involved mainly the use of chemical precursors, such as for instance triazine (C$_3$N$_3$H$_3$) based compounds, to synthesize C$_3$N$_4$ phases through various mechano-chemical techniques usually in the form of thin films and nanocrystals. Following this route, the synthesis of α-, $^3 \beta$-,4-6 and mainly g-C$_3$N$_4$,7,8 had been reported but these results were subsequently disputed as the identification of their structures was often ambiguous due to the limited quantity and heterogeneity of samples. Moreover, it appears that shock compression of the precursor materials results in diamond-like carbon containing nitrogen only at the impurity level.9,10 The synthesis of a cubic C$_3$N$_4$ phase, diverse (less dense) from the theoretically predicted2 has been reported1 using high pressure and temperature conditions in the diamond anvil cell (DAC) experiments, but these results have not been confirmed by other studies, and moreover, large volume press synthesis in similar conditions resulted in preferable diamond production.12 In addition, although some new “C$_3$N$_4$” phases have been reported starting from g-C$_3$N$_4$, these observations could be due to the presence of hydrogen in starting compounds.13

The assumption about the 3:4 stoichiometry of the high-pressure hypothetical phases has been challenged by Cote and Cohen,14 who realized that the original proposal based on the 3:4 composition does not gain the experimental support. Indeed, a priori, the most stable
composition for the C\textsubscript{x}N\textsubscript{y} materials at high pressures is unclear because carbon can exist in both \textit{sp}2 and \textit{sp}3 hybridized states. Therefore, carbon nitrides with 1:1 stoichiometry (CN) have been theoretically proposed14 as more stable than the C\textsubscript{3}N\textsubscript{4} compounds at elevated pressures. As in the case of C\textsubscript{3}N\textsubscript{4}, initial theoretical predictions for the CN compounds14–16 were based on known structural types of AB compounds like zincblende, rocksalt, body centered tetragonal (bct), etc. More recent theoretical studies,17–19 based on advanced structural search algorithms, have proposed additional CN crystal structures including a cg-CN,17 an orthorhombic \textit{Pnnm} CN18 and a tetragonal \textit{P4\textsubscript{2}/m} with very similar to \textit{Pnnm} CN structural characteristics.19 It is noteworthy that the predicted \textit{Pnnm} structure is identical with the \textit{β}-InS which has been proposed as the most energetically favored structure by Hart \textit{et al.}15 based on DFT calculations of the known structural types. For CN 1:1 compound composition, carbon can be either in \textit{sp}2 or \textit{sp}3 configurations with C atoms connected with 3 N atoms or 3 N and 1 C atom respectively. Representative phases of each family of CN materials are cg-CN and \textit{β}-InS for \textit{sp}2 and \textit{sp}3 hybridized carbon respectively (Figure 1). Ultrahard materials (Hardness H > 40GPa) are expected to occur for both bonding schemes (cg-CN, \textit{β}-InS), as opposed to elemental carbon, which is superhard for the \textit{sp}3 bonding scheme only. As described in details by Hart \textit{et al.}, the CN “\textit{sp}3 family” arises from alternating C and N around graphite rings (see Figure 1 (a)) with additional C-C bonding between the sheets. These interlayer bonds may be between pairs of sheets, resulting in the layered GaSe-like CN structure,15 or between multiple sheets forming a 3D network as in \textit{β}-InS.

Low dimensionality CxNy compounds with covalent C-N bonds are known to exist at ambient conditions as in the case of heterocyclic compounds such as Pyridine and Triazol. Pressure-induced polymerization, towards the formation of 2D layered structures, has been reported in the case of cyanide monomers.20 However, solid evidences of a subsequent formation of a CxNy 3D network are still missing. Thus, the possible formation of a compound with covalent C-N single bonds forming a 3D network framework would represent a completely new chemical behavior.
Experimentally, in this study we focus in an elemental synthesis by not restricting the initial compositions of the reagents (as opposed to using chemical precursors) and also using very clean hydrogen free techniques; we apply only thermodynamic stimuli (pressure and temperature), using a standard laser heated (LH) DAC configuration, attempting to grow the most stable material irrespectively of the composition. We report the experimental synthesis of a \textit{Pnnm} (\(\beta\-\text{InS}\)) CN phase under high pressure and high temperature conditions examined by \textit{in-situ} high P-T visual observations, synchrotron X-ray diffraction (XRD) and Raman confocal spectroscopy and also Energy-dispersive X-ray spectroscopy (EDX) probes at ambient conditions. We stress that pressure is the necessary thermodynamic stimulus for the synthesis of \(\text{C}_x\text{N}_y\) compounds, regardless of their structure and composition. Previous theoretical studies have indicated a ca. 10-15 GPa threshold above which \(\text{C}_x\text{N}_y\) compounds become thermodynamically stable in respect to decomposition to elemental carbon and nitrogen.\(^{18}\) This is further justified by the theoretical calculations of this study. Moreover, high temperature is essential for overcoming kinetic barriers. The detailed report of the theoretical investigation of the phase diagram of the \(\text{C}_x\text{N}_y\) compounds using evolutional search (USPEX code\(^{21}\)) is published in Ref.\(^{22}\) In this paper we present only the theoretical results which are relevant for the major topic of the paper (see Methods in Supporting information). This work increases our understanding of the emerging field of high-pressure chemistry and opens a new route for the synthesis of superhard materials based on novel stoichiometries instead of the long-sought \(\text{C}_3\text{N}_4\).

Results

We have performed LH experiments at various pressures using dedicated systems combined with Raman spectroscopy\(^{23}\) and XRD.\(^{24}\) Single-crystal graphite and high-pressure gas-loaded \(\text{N}_2\) (served also as a pressure medium) have been used as reagents (see Methods in Supporting information). From these runs (see Fig. S1 and Table S1, for the full list of experimental...
runs) we observe that for pressures below 45-50 GPa and above 70 GPa diamond was the only product after quenching to room temperature. The maximum achieved temperatures were < 3000 and 5000 K, respectively, as coupling of the laser radiation with the sample becomes progressively smaller once diamond forms preempting the formation of C-N compounds. In contrast, laser heating between 50-70 GPa resulted to higher achievable temperatures (> 7000 K) because of the runaway temperature increase due to formation of metallic carbon melt. These experiments must have produce metallic molten carbon as they reached temperatures well above the melting line of diamond at this pressure, see Fig. S1. No diamond formation has been observed in runs with successful C-N synthesis.

XRD patterns before LH at 55 and 65 GPa (Figure 2(a)) of two independent runs reveal 2 families of Bragg peaks: i) high pressure form of carbon (HP-C) and ii) ϵ or ζ - phases of molecular nitrogen. In the case of experiments using iridium ring as a spacer to detach carbon sample from the diamond anvil, additional diffraction peaks from iridium have been observed; in contrast, no rhenium peaks (gasket material) have been observed with the recessed gasket configuration. Bragg peaks positions of HP-C before LH are in agreement with previous studies (Fig. S2(a), data of this study and Ref. 29). Moreover, the determined in this study EOS of N$_2$ is in agreement with the previous studies (Fig. S2(b)). XRD pattern of quenched samples in the close vicinity of the laser heated spot reveals the appearance of new intense Bragg peaks (Fig. 2(b)), the decrease of the relative intensity of nitrogen related peaks, and the disappearance of the broad intense HP carbon peaks. A slight (\approx 2-5 GPa) decrease of pressure was normally observed after LH. Remarkably, visual observation of the DAC indicates the presence of a transparent material exactly at the laser heated spot (inset to Figure 3). Since no Bragg and Raman peaks representative of diamond were observed, the observation of a transparent substance indicates the formation of a material other than diamond.

The Bragg peaks of the new phase can be well indexed with an orthorhombic $Pnmm$ (58) cell with $Z=4$ with $a= 4.664$ Å, $b=3.664$ Å and $c=2.455$ Å at 65 GPa (Fig. 3). Moreover, we
compared the experimental and the calculated patterns of the theoretically predicted phases with: (a) 1:1 stoichiometry, including zincblende,14 rocksalt,14 body-centered-tetragonal,14 \textit{cg-CN},17 GaSe15 and β-InS15,18 and (b) 3:4 stoichiometry, including α-, β-, g-, cubic and pseudocubic- C_3N_4.1,2 The almost perfect match, for all new peaks, can be observed in the case of $Pnnm$ β-InS-type structure (Fig. 3 and Table S2) while there is no match with other predicted structures, see Fig. S3. Representative Le Bail refinements of the experimentally observed diffraction patterns, after LH at the highest pressure for each run, based on the β-InS-type structure are shown in Figure 3 and Fig. S4 for the separate synthesis at 65 (using a recessed gasket configuration) and 55 GPa, (using an Iridium ring spacer) respectively. Preferred orientation effects and strongly anisotropic peak broadening effects (Fig. 3 inset and Fig. S4(b)), which are usual in HP-HT synthesis, prevent us from a full structural refinement (Rietveld) of the positional parameters. According to the theoretical predictions both carbon and nitrogen occupy 4g (x,y,0) Wyckoff positions with (0.355,0.566,0) and (0.816, 0.744, 0), respectively. Using these positional parameters we observe a fair agreement between calculated and observed intensities. To rule out the possible effect of different experimental configurations (Ir, Pt spacers or recessed gasket) on the crystal structure and stoichiometry of the synthesized compound we compared the XRD patterns of the independent synthesis at the same pressure (Fig. S5). No difference, except of the relative intensity of Bragg peaks, has been observed, a result that indicates the absence of any influence of the experimental configurations on the synthesized compound. Moreover, XRD patterns collected at spacers positions and at the internal edge of the Rhenium gasket hole revealed that no reaction between the spacers/gasket and nitrogen has been occurred away from the laser heated spot \textit{i.e.} only the Bragg peaks originating from hcp/fcc Rhenium/Iridium and N_2 were present.

Raman spectra (Fig. 4(a)), measured upon pressure release, of the new phase show a rich spectrum, characteristic of a low symmetry cell. The lattice modes of $N_2$27 can be readily separated as they are broader. The synthesized material remains stable on unloading, which was verified by XRD measurements, see below. Twelve Raman-active zone-center modes are
predicted from group theory in the case of the $Pnnm$ structure, with the symmetries: $4A_g + 4B_{1g} + 2B_{2g} + 2B_{3g}$. Up to 13 narrow Raman bands have been observed in the quenched sample at low pressure while 12 have been observed at pressures above 20 GPa and up to 35 GPa (Fig. 4). A weak extra mode in the low-frequency spectral range, observed only below 20 GPa, cannot be explained at this point but it can be an artifact (e.g. fluorescence) as the spectra are weak, position dependent and superimposed by a fluorescence. Above 35 GPa the high-frequency CN modes interfere with the Raman signal of stressed diamond anvils; moreover, strong sample fluorescence did not allow to obtain high quality data at these conditions. The observed at 15-35 GPa Raman bands are grouped in 3 spectral regions in a remarkable qualitative agreement with the reported previously Raman spectra of InS (e.g., Ref. 31) as well as in a reasonably good match with the theoretically calculated Raman frequencies, given the fact that LDA usually overestimates the phonon frequencies (Fig. 4). We tentatively assign the experimentally observed Raman modes following the results of the theoretical calculations (Fig. S6). A plausible explanation of the moderate agreement between the calculated and observed Raman modes intensities is that the vibrational vectors are coupled (see figure S6). Thus, the relative intensity of two or more modes of the same symmetry can vary depending on this coupling and may not be very well reproduced by theory. Moreover, the materials synthesized at extreme pressure-temperature conditions are highly textured (Fig. 3 inset and Fig. S4(b)) which can distort the intensities.

The high-frequency modes of the CN are expected to be below the C-C stretching region of diamond at a given pressure, since the C-C bond in $Pnnm$ CN is slightly longer (1.57 Å) than in diamond. All but one experimentally observed Raman modes show normal mode behavior with increasing pressure. A high-frequency weak C-C stretching mode, tentatively assigned to the B_{1g} mode (out-of-phase C-C stretching with simultaneous out-of-phase C-N bond stretching, see supplementary Figure 5), shows red-shift with increasing pressure. This can be understood as due to tilting of the C-C bond under pressure as discussed below. Overall, our Raman observations signify the presence of the C-N interatomic bonding and together
with X-ray diffraction unequivocally identifies the material as \textit{Pnnm} CN. Comparison of the experimentally observed CN Raman modes with those reported in the case of PtN$_2$ \cite{32} and Re$_3$N$_3$ \cite{33} (Fig. S5(b)) further justifies the argument that no reaction products between the spacers/gasket and nitrogen are present in the area of the synthesized compound.

With decreasing pressure the newly synthesized phase remains stable up to 12 GPa as evidenced from XRD measurements and optical observations (Fig. S7). Pressure dependence of the lattice parameters and volume per atom equation of state (EOS) of \textit{Pnnm} CN phase together with the theoretically predicted ones are shown in Figure 5. It is interesting to note a small negative compressibility along b-axis, which may be related to a similar observation in \textit{\beta}-InS compound under pressure.\cite{31} This observation corroborates with the Raman mode softening (Fig. 4), which is also similar to observations in Ref.\cite{31} A plausible scenario of such anisotropic behavior is that the high compressibility of a-axis results in the tilting of the C-C dumbbells, with respect to a-axis (Figure 1(d)) so, the C-C bond distance remains almost constant. Consequently, this results in an increase of b-axis. We have fitted the pressure-volume data by the third-order Birch equation of state\cite{34} and determined the bulk modulus B_0 and its first pressure derivative B'_0. The results of the fit are: $B_0=400$ (20) GPa, $B'_0=3.4$ (2) and $V_0=6.04$ (3) Å3. The experimentally determined volume at ambient pressure is in a very good agreement with theoretically predicted ones (5.98 Å3 by Hart et al.\cite{15} and 6.12 Å3 by Wang\cite{18}). The synthesized material appears less compressible than predicted by Hart \textit{et al.} (no B'_0 value is given in this study so a value of 4 is used for the EOS of figure 5) but almost the same as predicted by Wang.\cite{18} So, the compressibility of the synthesized compound is comparable or even smaller than that of superhard c-BN.\cite{35}

New Bragg peaks appear upon decompression below 12 GPa at 300 K in addition to the peaks from \textit{Pnnm} CN phase and the \textit{\delta}-phase of N$_2$ (Fig. S8). These peaks cannot be attributed to the tetragonal $P4_2/m$ CN phase or the other previously proposed CN or C$_3$N$_4$ phases. We have indexed these peaks with a monoclinic cell with a volume suggestive of a 4 formula unit cell in the case of 1:1 stoichiometry. Theoretical calculations revealed a
monoclinic cell (SG \(Pc (7) \ Z=4 \)) which has the same bonding configuration (\(sp^3 \) hybridized carbon, see Figure 1) with previously proposed \(Pnnm \) and \(P4_2/m \) phases, albeit with higher enthalpy. With further pressure release both XRD Bragg and Raman peaks from the synthesized compound disappear below 6 GPa and the laser heated spot becomes opaque. EDX spectroscopy of extracted samples reveal that a CN compound is preserved (Figure 6). We find that the composition of 5 recovered samples probed in different areas, is consistent with the 1:1 stoichiometry. Variations in C/N (Table 1) are likely due to sample geometrical imperfections as well as to residual (unreacted) carbon in the x-ray extraction volume. It is plausible to assume that the unreacted carbon, away from the LH spot, was detected because of the EDX electrons diffusion (spreading of the electron beam) due to the low density of the extracted specimen (porous-like), the low-Z nature of the specimen and the relatively low acceleration voltage used in this study. Oxygen impurity may be due to organic contamination. A plausible scenario is that \(Pnnm \) CN becomes unstable below ca. 12 GPa with respect to decomposition to carbon and nitrogen, as predicted by the theoretical calculations of this study and also from previous theoretical studies.\(^{18,19}\) However, instead of decomposing, because of kinetic barriers, it transforms to a metastable phase (monoclinic \(Pc \)), while carbon remains in \(sp^3 \) bonding configuration. At lower pressures (<6 GPa) this metastable phase becomes dynamically unstable and eventually amorphizes\(^{36,37}\) keeping its (metastable) composition.

In order to examine the thermal effects on the stability of the CN \(Pnnm \) we have performed Gibbs free energy calculations for various low relative enthalpy CN phases under variable temperature, in the 0-7000K range, and pressure, in the 0-70 GPa range, conditions. As an example we show in Fig. S9(a) the results of our calculations at 55 GPa. The results of our calculations are summarized as follows: (a) The \(Pnnm \) is always the most stable phase from 0K up to a critical temperature that ranges between \(\approx 1050K \) at 0 GPa up to \(> 1700K \) at 70 GPa. (b) Two alternative CN phases, namely \(P4_2/m \) and \(Pbam \), become more stable than the \(Pnnm \) phase above the critical temperature. These high-temperature
phases are closely related with the \textit{Pnnm} phase as they have the same bonding configuration (sp^3 hybridized carbon) and share common structural characteristics such as the formation of 10 and 6 members rings, see inset in Fig. S9(a). Although the possible formation of the HT phases are beyond the scope of this study, as the sample was rapidly quenched at RT and the melting line of the CN compounds in not known, it is plausible to assume that the high-temperature phases and the \textit{Pnnm} phase are related through a temperature induced phase transition. The comparison between the experimental pattern after LH at 65 GPa and the calculated patten of the \textit{Pbam} phase definitely rules out the possible formation of the metastable at RT, \textit{Pbam} phase, see Fig. S9(b).

Discussion

Apart of the results of the XRD, Raman and EDX measurements, the transparency of the material in the laser heated spot, indicating a wide band gap material, is also in favor to the synthesis of the β-InS-type CN phase. The electronic bandstructure of the various CN phases is determined by the carbon bonding configuration (sp^2 or sp^3).\(^{14}\) Only crystal structures with sp^3 bonded carbon can be insulators\(^{15}\) while crystal structures with sp^2 bonded carbon (e.g. cg-CN) are expected to be metallic.\(^ {17}\) This is in a simple analogy with graphite and diamond. Thus, the transparency of the synthesized material can be used as an additional sample diagnostics. Indeed our calculations,\(^ {22}\) as well as earlier theoretical predictions,\(^ {18}\) indicate that \textit{Pnnm} CN has a wide band gap of 3.7 eV. Since single C-C bonds should only occur for sp^3 bonded carbon,\(^ {14,15}\) we conclude that the synthesized compound must have such bonds, which is an important ingredient for making this material superhard and additionally stabilizes the structure.

According to the theoretical results of this study (Figure 7 (a)) and Ref.,\(^ {22}\) above 14 GPa CN compounds become thermodynamically stable with respect to decomposition to elemental carbon and nitrogen. Our experimental results indicate that higher pressure is
needed for the successful formation of CN. This difference is not unusual (as in the case of graphite-diamond transformation), and, moreover, at lower pressures it may be difficult to achieve the necessary high temperatures for synthesis. Nevertheless, the convex hull diagram for the C-N system (Figure 7(b)) agrees with the experimental findings that the CN compound is more stable than the C$_3$N$_4$ one at pressure between the stability threshold (14 GPa) and the experimental synthesis pressure.

It is well known that the correlation between bulk modulus, or even shear modulus (G) which is considered more straightforward, and material hardness (H) is not direct and monotonic. However, a high bulk modulus is usually, but not always, a strong indication of possible high hardness. During the last decade, substantial effort has been made towards understanding the microscopic factors which determine hardness. The common consensus is that high hardness depends on: (a) shortness of bond length, (b) high number of bonds, (c) high number of valence electrons and (d) high covalency of bonds. The CN $Pnnm$ phase synthesized in this study satisfies all conditions and is superior in comparison to B-N due to lower ionicity. Moreover, since metallic bonding always reduces hardness, due to the delocalized bonding, the sp^3 CN $Pnnm$ phase (unlike metallic sp^2 bonded ones) we report in this study, is the most promising one. Indeed, the theoretically calculated hardness, based on microscopic parameters semiempirical models, of β-InS-type CN determined as 59.6 GPa here, 62.3 GPa in Ref. and 62.5 in Ref., is comparable to that of superhard c-BN but less than that of diamond. Further studies are needed, such as of the stability of $Pnnm$ CN at low temperatures and micro-hardness tests, which are precluded now because the synthesized material is not recoverable at ambient pressure-temperature conditions.

It is interesting to compare the results of our study with relevant “elemental” synthesis, using the same DAC-LH experimental configuration, of other compounds like the BN and B$_2$O$_3$. The main issue is whether, and in what extend, the mesoscopic state of the reactants have an influence on the stoichiometry of the obtained compounds due to an increased ability of liquid state to provide the constant supply of the element in the liquid state
lower melting temperature) within the laser heated spot. In the case of the B-N system, the synthesis of \(h \)- and \(c \)-BN has been observed starting from elemental reagents at high pressure and temperature conditions.\(^4^5\) According to the known high pressure melting lines of B\(^4^6\) and N\(^4^7\) these conditions (e.g. 6.9 GPa, 1800K) correspond to B and N in a solid and liquid state respectively. However, only the known stoichiometric BN compound has been formed probably because a nitrogen rich compound is not stable. In the case of the B-O system the oxide with the maximum oxygen fraction has been synthesized\(^4^4\) i.e. \(\text{B}_2\text{O}_3 \) instead of \(\text{B}_6\text{O} \) (both being known stable compounds) at thermodynamic conditions corresponding to B and O in a solid and liquid\(^4^8\) states respectively. This was attributed to the constant supply of oxygen within the laser heated spot. From the previous discussion it is plausible to conclude that the messoscopic state of the reagents can influence the stoichiometry of the synthesized compound in the case that alternative stable stoichiometries (B-O system) exists however, it cannot “induce” stoichiometries which are not stable (B-N system).

In the present study we observe that a compound with lower N composition is formed i.e. CN instead of \(\text{C}_3\text{N}_4 \). This result may have two origins: First, according to previous theoretical studies\(^1^4,1^5,1^7,1^8\) CN compounds with 1:1 stoichiometry are expected to be more stable than than \(\text{C}_3\text{N}_4 \), mainly due to the increased N-N separation as such bonds are not energetically favorable.\(^1^4\) Moreover, \(\text{C}_3\text{N}_4 \) and \(sp^3 \) CN compounds, in spite C is in \(sp^3 \) configuration in both of them, have a principal difference in bonding configuration: carbon atoms are connected with only nitrogens in the former one and with three nitrogens and one carbon in the latter one. The presence of strong C-C bonds is in favor to formation of thermodynamically stable material. This is further justified by the theoretical results of this study, Figure 7. The observation of a CN compound in a nitrogen-rich “environment” further justifies our experimental and theoretical findings that the 1:1 stoichiometry is more stable than the 3:4 one. Second, the synthesis of the CN compound has been observed only at temperatures higher than the melting temperature of carbon at the corresponding pressure, that is both reagents are in the liquid state. In this case there is no difference in the meso-
scopic state of the reagents and an almost unbiased synthesis takes place in a homogeneous nucleation reaction, as opposed to heterogeneous in the B-N and B-O systems, towards the most stable stoichiometry. At temperatures below the melting line of carbon the existence of the extremely stable diamond phase imposes high kinetic barriers for the reaction and thus makes the melting of carbon a crucial precondition for the reaction between C and N.

Our combined experimental and theoretical study provides the first unambiguous evidence of a novel carbon nitride phase with a 1:1 stoichiometry where carbon atoms are in sp^3 bonding configuration forming a complete three-dimensional network. This $Pnma$ CN phase was synthesized at high pressure and high temperatures in the conditions where compounds with any (presumably the most stable) composition could be formed. Other previously predicted materials (e.g., C_3N_4) did not form suggesting that they are metastable at these conditions. The CN $Pnma$ phase has all the necessary ingredients to be a prototype of a new family of superhard materials. This finding provides critical information for search of new carbon nitride “superhard” materials with technological applications and also provides a crucial insight on the diverse chemical bonding of carbon under extreme conditions. Finally, it is noteworthy that our study underscores the importance of understanding of novel high-pressure chemistry laws. A number of previous investigations (e.g. Ref.49) have concluded that 3D carbon nitrides are non-existent material based on the fact that, chemists never found a single hint of the existence of a covalent, single bonded CN network. In contrast, local C-N bonds are known to exist at ambient conditions, as in the case of monomeric heterocyclic compounds or in a 2D arrangement as in the case of g-C_3N_4. The results of this study reveal the formation of a network solid which has simultaneously C-C and C-N covalent bonds that indicate not only an unusual phase-stoichiometry at high pressure and temperature conditions but a completely new chemical behavior.

Supporting Information

Experimental methods, theoretical methods and supporting figures and tables.

AUTHOR INFORMATION:
Corresponding Authors:
*(E.S.) E-mail: stavrou1@llnl.gov
*(A.F.G.) E-mail: agoncharov@carnegiescience.edu

Author Contributions
E.S., A. G. and A. R. O. designed the study, E. S., S. L. and A. G. performed the experiments and analyzed the experimental data, H. D. and A.R.O. performed the calculations, Z. K. and V. P. performed experiments and contributed to the experimental methods.

Notes The authors declare no competing financial interests.

Acknowledgments E.S. thank Karl Syassen for providing high quality natural graphite. S.L. thanks John Armstrong for technical assistance with SEM. This work was supported by the DARPA (Grants No. W31P4Q1310005 and No. W31P4Q1210008), the National Natural Science Foundation of China (grant number 21473211) and the Deep Carbon Observatory DCO. A. F. G. was partly supported by Chinese Academy of Sciences visiting professorship for senior international scientists (Grant No. 2011T2J20 and Recruitment Program of Foreign Experts. S.S.L. was partly supported by the Ministry of Education and Science of Russian Federation (No. 14.B25.31.0032). Part of this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344. GSECARS is supported by the U.S. NSF (EAR-0622171, DMR-1231586) and DOE Geosciences (DE-FG02-94ER14466). Use of the APS was supported by the DOE-BES under Contract No. DE-AC02-06CH11357. The research leading to these results has received funding from the European Communitys Seventh Framework Programme (FP7/2007-2013) under grant agreement n 312284.
Table 1: Elemental analyses from the spots in Fig 6, not corrected for sample geometry. The overall uncertainty is < 15%.

spectrum No.	C, at%	N, at%	C/N
1	54.57	45.43	1.20
2	55.02	44.98	1.22
3	55.43	44.57	1.24
4	55.67	44.33	1.26

Figure 1: Schematic representations of: (a) β-InS-type crystal structure of CN, (b) cg-CN, (c) α-Si$_3$N$_4$-type crystal structure of C$_3$N$_4$, (d) β-InS-type crystal structure of CN viewed along c-axis, the tilting of the C-C bond in respect to the a axis is highlighted by the red dashed line and (e) monoclinic Pc crystal structure of CN. Black and blue spheres indicate carbon and nitrogen atoms respectively.
Figure 2: XRD patterns (a) before and (b) after LH at 65 GPa. ϵ-N$_2$, HP-C and $Pnnm$ CN peaks are marked with blue, gray and red vertical lines respectively. The 2-theta position and the height of the vertical lines represents the expected (calculated) Bragg peaks positions and intensities respectively. Calculations were preformed, using the POWDER CELL program50 for the corresponding crystal structures according to the EOSs determined experimentally in this study and assuming continuous Debye rings of uniform intensity.
Figure 3: Le Bail refinement for CN at 65 GPa. *Pnnm* CN and ζ-N₂ peaks are marked with green and blue vertical lines respectively. The X-ray wavelength is 0.3344 Å. The insets show: (a) a microphotograph of the sample after heating in transmitted light, indicating the transparency of the synthesized phase and (b) 2-D XRD image of the *Pnnm* CN and ζ-N₂ mixture.
Figure 4: (a) Raman spectra at 15 and 35 GPa. Red curves correspond to CN and gray curves - to molecular N_2, measured in the same high pressure cavity. The Raman peaks of \textit{Pnnm} CN are marked by arrows: red arrows correspond to the peaks increasing (in frequency) with pressure and blue arrow pointing up- to a weak peak decreasing with pressure). (b) Frequencies of Raman modes of \textit{Pnnm} CN against pressure upon decompression. Experimental results with blue symbols and theoretically predicted with green (GGA18) and red (LDA this study) lines. The light blue area represents the frequency range dominated by Raman scattering of diamond. The error bars correspond to the bandwidth of broad Raman peaks, which were observed after the laser heating at 55 GPa.
Figure 5: Pressure dependence of (a) lattice parameters and (b) Volume per atom of \textit{Pnmm} CN. Experimental data are shown with solid symbols and theoretical predictions with open ones. The solid curves in (b) are the third-order Birch EOS for diamond (blue) according to Zhu \textit{et al.}51 the synthesized CN phase (red) and theoretical EOS predicted for \textit{Pnmm} CN (black) according to this study and also Wang18 and to Hart \textit{et al.}15 (green).
Figure 6: Representative EDX spectra, from different spots, of the CN compound at ambient conditions normalized to the N peak. The Cu and O peaks seen from spots close to the edge arise from the Cu foil used as a conducting substrate (see methods). The inset shows SEM/EDX micrograph and elemental maps of the surface of the recovered CN compound. Elemental analyses from the spots (not corrected for sample geometry) are summarized in Table 1.
Figure 7: (a) Formation enthalpies per formula unit, determined by theoretical calculations of this study, relative to carbon and nitrogen as a function of pressure. Black, red and blue curves correspond to the tetragonal P_{42}/m, orthorhombic $Pnnm$ and monoclinic Pc CN phases, respectively. (b) Predicted convex hull diagrams of C-N system at selected pressures. Solid and open circles represent stable and metastable compounds respectively.
References

(1) Liu, A.; Cohen, M. Prediction of New Low Compressibility Solids. Science 1989, 245, 841–842.

(2) Teter, D.; Hemley, R. Low-Compressibility Carbon Nitrides. Science 1996, 271, 53–55.

(3) Chen, Y.; Guo, L. P.; Wang, E. G. Experimental Evidence for Alpha- and Beta-phases of Pure Crystalline C\textsubscript{3}N\textsubscript{4} in Films Deposited on Nickel Substrates. Philos. Mag. Lett. 1997, 75, 155–162.

(4) Niu, C.; Lu, Y. Z.; Lieber, C. M. Experimental Realization of the Covalent Solid Carbon Nitride. Science 1993, 261, 334–337.

(5) Yu, K. M.; Cohen, M. L.; Haller, E. E.; Hansen, W. L.; Liu, A. Y.; Wu, I. C. Observation of Crystalline C\textsubscript{3}N\textsubscript{4}. Phys. Rev. B 1994, 49, 5034–5037.

(6) Yin, L. W.; Li, M. S.; Liu, Y. X.; Sui, J. L.; Wang, J. M. Synthesis of Beta Carbon Nitride Nanosized Crystal through Mechanochemical Reaction. J. Phys.: Condens. Matter 2003, 15, 309.

(7) Guo, Q.; Xie, Y.; Wang, X.; Lv, S.; Hou, T.; Liu, X. Characterization of Well-crystallized Graphitic Carbon Nitride Nanocrystallites via a Benzene-thermal Route at Low Temperatures. Chem. Phys. Lett. 2003, 380, 84–87.

(8) Jürgens, B.; Irran, E.; Senker, J.; Kroll, P.; Muller, H.; Schnick, W. Melem (2,5,8-triamino-tri-s-triazine), an Important Intermediate During Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-state NMR, and Theoretical Studies. J. Am. Chem. Soc. 2003, 125, 10288–10300.

(9) Komatsu, T. Attempted Preparation of Diamond-like Carbon Nitride by Explosive Shock Compression of Poly(methineimine). J. Mater. Chem. 1998, 8, 2475–2479.
(10) Liu, J.; Sekine, T.; Kobayashi, T. A New Carbon Nitride Synthesized by Shock Compression of Organic Precursors. *Solid State Commun.* **2006**, *137*, 21–25.

(11) Zinin, P. V.; Ming, L. C.; Sharma, S. K.; Hong, S. M.; Xie, Y.; Irifune, T.; Shinmei, T. Synthesis of New Cubic C$_3$N$_4$ and Diamond-like BC$_3$ Phases Under High Pressure and High Temperature. *J. Phys.: Conf. Ser.* **2008**, *121*, 062002.

(12) Kurakevych, O. O. Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: From Diamond to the Latest Results (a Review). *Journal of Superhard Materials* **2009**, *31*, 139–159.

(13) Kojima, Y.; Ohfuji, H. Structure and Stability of Carbon Nitride Under High Pressure and High Temperature up to 125 GPa and 3000 K. *Diamond Relat. Mater.* **2013**, *39*, 1–7.

(14) Cote, M.; Cohen, M. L. Carbon Nitride Compounds with 1:1 Stoichiometry. *Phys. Rev. B* **1997**, *55*, 5684.

(15) Hart, J. N.; Claeyssens, F.; Allan, N. L.; May, P. W. Carbon Nitride: *ab-initio* Investigation of Carbon-rich Phases. *Phys. Rev. B* **2009**, *80*, 174111.

(16) Kim, E.; Chen, C. F.; Kohler, T.; Elstner, M.; Frauenheim, T. Tetragonal Crystalline Carbon Nitrides: Theoretical Predictions. *Phys. Rev. Lett.* **2001**, *86*, 652–655.

(17) Wang, X.; Bao, K.; Tian, F.; Meng, X.; Chen, C.; Dong, B.; Li, D.; Liu, B.; Cui, T. Cubic Gauche-CN: A Superhard Metallic Compound Predicted via First-principles Calculations. *J. Chem. Ph.* **2010**, *133*, 044512.

(18) Wang, X. Polymorphic Phases of sp$_3$-hybridized Superhard CN. *J. Chem. Ph.* **2012**, *137*, 184506.

(19) Zhang, M.; Wei, Q.; Yan, H.; Zhao, Y.; Wang, H. A Novel Superhard Tetragonal Carbon Mononitride. *J. Phys. Chem. C* **2014**, *118*, 3202–3208.
(20) Tomasino, D.; Chen, J.-Y.; Kim, M.; Yoo, C.-S. Pressure-induced Phase Transition and Polymerization of Tetracyanoethylene TCNE. *J. Chem. Phys.* **2013**, *138*, 094506.

(21) Oganov, A. R.; Ma, Y.; Lyakhov, A. O.; Valle, M.; Gatti, C. Evolutionary Crystal Structure Prediction as a Method for the Discovery of Minerals and Materials. *Rev. Mineral. Geochem.* **2010**, *71*, 271–298.

(22) Dong, H.; Oganov, A. R.; Zhu, Q.; Qian, G.-R. The Phase Diagram and Hardness of Carbon Nitrides. *Sci. Rep.* **2015**, *5*, 9870–.

(23) Goncharov, A. F.; Montoya, J. A.; Subramanian, N.; Struzhkin, V. V.; Kolesnikov, A.; Somayazulu, M.; Hemley, R. J. Laser Heating in Diamond Anvil Cells: Developments in Pulsed and Continuous Techniques. *Journal of Synchrotron Radiation* **2009**, *16*, 769–772.

(24) Prakapenka, V. B.; Kubo, A.; Kuznetsov, A.; Laskin, A.; Shkurikhin, O.; Dera, P.; Rivers, M. L.; Sutton, S. R. Advanced Flat Top Laser Heating System for High Pressure Research at GSECARS: Application to the Melting Behavior of Germanium. *High Pressure Research* **2008**, *28*, 225–235.

(25) Bundy, F. P.; Bassett, W. A.; Weathers, M. S.; Hemley, R. J.; Mao, H.-K.; Goncharov, A. F. The Pressure-temperature Phase And Transformation Diagram for Carbon; Updated Through 1994. *Carbon* **1996**, *34*, 141–153.

(26) Olijnyk, H. High-pressure X-ray-diffraction Studies on Solid N$_2$ up to 43.9 GPa. *J. Chem. Ph.* **1990**, *93*, 8968.

(27) Gregoryanz, E.; Goncharov, A. F.; Sanloup, C.; Somayazulu, M.; Mao, H.-k.; Hemley, R. J. High P-T Transformations of Nitrogen to 170 GPa. *J. Chem. Ph.* **2007**, *126*, 184505.
(28) Cerenius, Y.; Dubrovinsky, L. Compressibility Measurements on Iridium. *J. Alloys Compd.* **2000**, *306*, 26–29.

(29) Wang, Y.; Panzik, J. E.; Kiefer, B.; Lee, K. K. M. Crystal Structure of Graphite under Room-temperature Compression and Decompression. *Sci. Rep.* **2012**, *2*, 520.

(30) Hanfland, M.; Syassen, K.; Fahy, S.; Louie, S. G.; Cohen, M. L. Pressure Dependence of the First-order Raman Mode in Diamond. *Phys. Rev. B* **1985**, *31*, 6896–6899.

(31) Schwarz, U.; Goncharov, A. F.; Syassen, K.; Gasanly, N. M. Structural Phase Transformation of InS at Higher Pressure. 1995.

(32) Gregoryanz, E.; Sanloup, C.; Somayazulu, M.; Badro, J.; Fiquet, G.; Mao, H.-k.; Hemley, R. J. Synthesis and Characterization of a Binary Noble Metal Nitride. *Nat Mater* **2004**, *3*, 294–297.

(33) Friedrich, A.; Winkler, B.; Refson, K.; Milman, V. Vibrational Properties of Re₃N from Experiment and Theory. *Phys. Rev. B* **2010**, *82*, 224106.

(34) Birch, F. Finite Strain Isotherm and Velocities for Single-crystal and Polycrystalline NaCl at High-Pressures and 300k. *J. Geophys. Res.* **1978**, *83*, 1257–1268.

(35) Goncharov, A. F.; Crowhurst, J. C.; Dewhurst, J. K.; Sharma, S.; Sanloup, C.; Gregoryanz, E.; Guignot, N.; Mezouar, M. Thermal Equation of State of Cubic Boron Nitride: Implications for a High-temperature Pressure Scale. *Physical Review B* **2007**, *75*, 224114.

(36) Deb, S. K.; Wilding, M.; Somayazulu, M.; McMillan, P. F. Pressure-induced Amorphization and an Amorphous-Amorphous Transition in Densified Porous Silicon. *Nature* **2001**, *414*, 528–530.

(37) Ferlat, G.; Seitsonen, A. P.; Lazzeri, M.; Mauri, F. Hidden Polymorphs Drive vitrification in B₂O₃. *Nat. Mater* **2012**, *11*, 925–929.
(38) Brazhkin, V.; Dubrovinskaia, N.; Nicol, M.; Novikov, N.; Riedel, R.; Solozhenko, V.; Zhao, Y. From our Readers: What does 'Harder than Diamond' Mean? *Nat. Mater.* 2004, 3, 576–577.

(39) Gao, F.; He, J.; Wu, E.; Liu, S.; Yu, D.; Li, D.; Zhang, S.; Tian, Y. Hardness of Covalent Crystals. *Phys. Rev. Lett.* 2003, 91, 015502.

(40) Li, K.; Wang, X.; Zhang, F.; Xue, D. Electronegativity Identification of Novel Superhard Materials. *Phys. Rev. Lett.* 2008, 100, 235504.

(41) Lyakhov, A. O.; Oganov, A. R. Evolutionary Search for Superhard Materials: Methodology and Applications to Forms of Carbon and TiO₂. *Phys. Rev. B* 2011, 84, 092103.

(42) Oganov, A. R.; Lyakhov, A. O.; Zhu, Q. In *Comprehensive Hard Materials*; Sarin, V. K., Ed.; Elsevier: Oxford, 2014; Chapter Theory of Superhard Materials, pp 59 – 79.

(43) Tang, X.; Hao, J.; Li, Y. A First-principles Study of Orthorhombic CN as a Potential Superhard Material. *Phys. Chem. Chem. Phys.* 2015, 17, 27821–27825.

(44) Nieto-Sanz, D.; Loubeyre, P.; Crichton, W.; Mezouar, M. X-ray Study of the Synthesis of Boron Oxides at High Pressure: phase Diagram and Equation of State. *Phys. Rev. B* 2004, 70, 214108.

(45) Yoo, C. S.; Akella, J.; Cynn, H.; Nicol, M. Direct Elementary Reactions of Boron and Nitrogen at High Pressures and Temperatures. *Phys. Rev. B* 1997, 56, 140–146.

(46) Solozhenko, V. L.; Kurakevych, O. O. Equilibrium P-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis. *Sci. Rep.* 2013, 3, 2351.

(47) Goncharov, A. F.; Crowhurst, J. C.; Struzhkin, V. V.; Hemley, R. J. Triple Point on the Melting Curve and Polymorphism of Nitrogen at High Pressure. *Phys. Rev. Lett.* 2008, 101, 095502.
(48) Weck, G.; Loubeyre, P.; Eggert, J. H.; Mezouar, M.; Hanfland, M. Melting Line and Fluid Structure Factor of Oxygen up to 24 GPa. *Phys. Rev. B* **2007**, *76*, 054121.

(49) Badzian, A.; Badzian, T.; Roy, R.; Drawl, W. Silicon Carbonitride, a New Hard Material and its Relation to the Confusion about Harder than Diamond C$_3$N$_4$. *Thin Solid Films* **1999**, *354*, 148 – 153.

(50) Kraus, W.; Nolze, G. *POWDER CELL* – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. *Journal of Applied Crystallography* **1996**, *29*, 301–303.

(51) Zhu, Q.; Oganov, A. R.; Salvadó, M. A.; Perttierra, P.; Lyakhov, A. O. Denser than Diamond: Ab Initio Search for Superdense Carbon Allotropes. *Phys. Rev. B* **2011**, *83*, 193410.