Experimental progress on layered topological semimetals

Junchao Ma, Ke Deng, Lu Zheng, Sanfeng Wu, Zheng Liu, Shuyun Zhou and Dong Sun

1 International Center for Quantum Materials, School of Physics, Peking University, NO. 5 Yiheyuan Road, Beijing 100871, People’s Republic of China
2 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China
3 School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
4 Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, United States of America
5 Collaborative Innovation Center of Quantum Matter, Beijing, People’s Republic of China
6 These authors contributed equally to this work.

E-mail: sundong@pku.edu.cn, syzhou@mail.tsinghua.edu.cn, z.liu@ntu.edu.sg and swu02@mit.edu

Keywords: layered topological materials, transitional metal dichalcogenide, Fermi arc, Dirac semimetal, Weyl semimetal, quantum spin Hall insulator

Abstract

We review recent experimental progresses on layered topological materials, mainly focusing on transitional metal dichalcogenides with various lattice types including 1T, Td and 1T’ structural phases. Their electronic quantum states are interestingly rich, and many appear to be topological nontrivial, such as Dirac/Weyl semimetallic phase in multilayers and quantum spin hall insulator phase in monolayers. The content covers recent major advances from material synthesis, basic characterizations, angle-resolved photoemission spectroscopy measurements, transport and optical responses. Following those, we outlook the exciting future possibilities enabled by the marriage of topological physics and two dimensional van der Waals layered heterostructures.

1. Introduction

Two dimensional (2D) layered van der Waals materials and topological materials are two important areas attracting enormous research interest in materials sciences and condensed matter physics [1–5]. Although the overlap of these two fields dates back to layered topological insulator e.g. Bi2Se3 [6, 7], it is not until the recent experimental verification of type-II Dirac/Weyl semimetal and quantum spin hall insulator in 2D layered transitional metal dichalcogenides (TMDCs) family that these two fields have merged together unprecedentedly [8–11]. The emergence of 2D layered topological materials provides excellent opportunities to explore and engineer topological properties of quantum materials, as 2D layered materials can be conveniently integrated into van der Waals heterostructures by vertically stacking [12–14]. Such artificial van der Waals solids may lead to high performance functional quantum devices and enable many interesting applications of quantum phenomena. The physical properties of Dirac/Weyl semimetals have been discussed in a few comprehensive reviews [15–18]. In this review, we focus on particularly the experimental progress on Dirac/Weyl semimetals of 2D layered material candidates, e.g. semimetallic transitional metal dichalcogenides. We cover a wide range of experimental aspects, including synthesis, basic material characterization, unique topological band structure and surface states as revealed by angle resolved photo emission spectroscopy (ARPES) measurement, and interesting quantum and topological phenomena revealed by transport and optical measurements. As the experimental investigation regarding Dirac/Weyl semimetals is still at its early stage, a large amount of effort focuses on experimental testing and verification of the Dirac/Weyl semimetal candidates, and many other interesting topics remain to be explored. Special attention will be drawn on their optical response in this review, although related experimental reports are relatively rare. In light of this, we will also include some discussions on representative experimental work on bulk topological semimetals, especially in the optical response part, from which we hope to provide a guidance to the study of the 2D layered counterparts. We note that there is a parallel theoretical review on relevant topics by Qian et al, hence theoretical aspects are not at the center of gravity here. The goal of this review is to summarize the existing
experimental progress with a hope to shine light for future developments. Several future experimental possibilities are discussed at the end of this review.

2. Concept of topological semimetals

In Landau’s classification, states of matter are classified through the principle of spontaneous symmetry breaking, e.g. ferromagnetic states are related to time-reversal symmetry breaking. After the discovery of quantum Hall effect (QHE) [19], it has been recognized over the past decades that such classification is incomplete, and the concept of topology has to be introduced to understand condensed matter systems. For example, it is necessary to classify two-dimensional (2D) electronic systems by their topological invariants determined from their band structures (e.g. Chern number or TKNN number) [20, 21].

In addition, the marriage between topology and symmetry leads to the understanding of a large family of materials with novel physics. An excellent example is time reversal invariant topological insulators (TI), a peculiar type of insulators with nontrivial band topology. Experimentally, 2D TI exhibits quantum spin Hall effect (QSHE) (figure 1(c)), while three dimensional (3D) topological insulators feature helical surface mode [22, 23]. Such topological insulators are characterized by a topological invariant called Z_2 index and topologically protected gapless surface states [22, 23].

Further studies revealed that the topological classification of the band structure can be extended to semimetals, leading to the concept of Dirac semimetals, in which 3D Dirac fermions emerge [24–30]. The Dirac fermions in 3D Dirac semimetals are protected by the crystal symmetry of the bulk crystal (figure 1(a)). If inversion- or time-reversal symmetry is broken, each Dirac fermion can be split into two Weyl fermions (figure 1(b)). Weyl fermions have been realized in TaAs [18, 31, 32]. While 3D Dirac semimetal states exist if the related symmorphic symmetry is preserved [18, 33], as critical points of topological phase transitions, Weyl semimetal states are expected to be more robust since their gapless band crossings are pairs of topological defects, and they cannot be gapped out unless they are annihilated in pairs [24]. More recently, it was realized that topological semimetal can be further categorized into two types according to Lorentz invariant [15, 16, 34]. In type-I Dirac/Weyl semimetal states, the linear Dirac cone obeys Lorentz invariant, while in type-II Dirac/Weyl semimetal, the Dirac cone is significantly tilted and cannot be adiabatically transformed to the untilted one (figure 1(a)), thus breaking the Lorentz invariance [11, 33, 35–39]. In addition, both type-II Dirac and Weyl fermions exist in solids and have no counterparts in high energy physics, thus providing a model system for investigating new topological states beyond the standard model.

TMDCs with the chemical formula of MX₂ (M = Mo, W, X = S, Se and Te) have attracted extensive research interests with intriguing properties for electronics, optoelectronics and valleytronics applications in the past decade [4, 40–46]. It has been realized that strong spin–orbit coupling of some TMDCs, together with the rich crystal structures, e.g. hexagonal (H), trigonal (1T), distorted trigonal (1T′) and tetragonal (T₄) structure, can provide an interesting platform for realizing new topological phases. Under ambient conditions, MoS₂ and WSe₂ favor 2H phases which are often semiconductors [47]; TaS₂ can possibly exist in several stable forms including 2H and 1T, whose phase diagrams harbor a number of interesting states ranging from charge density wave [48], superconductivity to even possibly quantum spin liquid [49]; MoTe₂ favors semiconducting 2H phase or metallic 1T′ phase (which undergoes a transition to T₄ under low temperature) [10]; and WTe₂ is a semimetal stabilized at T₄ phase. One excellent example of their topological quantum phases can be found in 1T′-MX₂ monolayers, which have been proposed to be a large gap 2D topological insulator that hosts quantum spin Hall effect back to 2014 [8]. The experimental study of such systems has been achieved very recently [50–55]. In the meantime, the investigation of type-II 3D Dirac/Weyl fermions in the bulk 1T′ and T₄ structured MX₂ have developed rapidly during the past few years [9–11, 16, 18, 34, 36, 56]. In this review, we focus on these recently discovered topological states in TMDCs, including 3D Weyl fermions, 3D Dirac fermions and 2D topological insulators, as summarized in figure 1 below.

3. Synthesis methods of basic material characterization

Currently, a few synthetic strategies have been applied to prepare 2D Layered materials, such as solid-state reaction, molecular beam epitaxy (MBE), chemical vapor deposition (CVD) and chemical synthesis. 2D TMDCs typically crystallize into 2H, 1T, 1T′ and T₄ phases. The 2H and 1T phase are primarily semiconducting as the most common structure, while the 1T′ and T₄ compounds are typically semimetallic with the salient quantum phenomena [57]. Among TMDCs, MoTe₂ and WTe₂ have been widely studied in terms of edge states, magneto-transport and phase transition.

The solid-state reactions, including physical vapor transport (PVT) [38–60] and chemical vapor transport (CVD) [61–64], are the most widely used and effective methods to grow single crystal 2D materials with the assistance of small amount transport agency (figure 2(a)). Large-scale and less defects layered 2D Dirac/Weyl semimetals like WTe₂ [65], MoTe₂ [57], PtSe₂ [11], PtTe₂ [33], and even ternary TMDC alloys such as TaIrTe₄ [39, 66], W₂Mo₁₋ₓTe₂ [67] have been obtained by solid-state reaction. Most Mo and W-dichalcogenides are stable in the semiconducting 2H phase. WTe₂ tends to crystalize into T₄ phase. Both 2H and 1T′ phases can be found in MoTe₂ and both are thermodynamically stable. 2H-MoTe₂ and
1T′-MoTe2 can be synthesized by flux based solid-state reaction. During the synthesis of MoTe2, a low cooling rate results in 2H-MoTe2, while the rapid quench cooling yielding the 1T′-MoTe2. Monolayer and few layer TMDCs can be achieved by mechanical exfoliation and solution exfoliation (figures 2(b) and (c)). Mechanical exfoliation with ‘scotch tape’ was first developed to exfoliate single layer graphene [68], and now widely used in cleaving bulk layered materials to obtain high quality samples [69–71]. Since monolayer and bilayer WTe2 degraded quickly in air [72], the exfoliation is generally carried out in glove box under Ar atmosphere [73]. Yu et al presented an acetone exfoliation of bulk single crystal Td-WTe2 into nanosheets [63].

Complimentary to solid reactions, MBE and CVD are promising techniques for large-scale and less defects 2D materials and van der Waals heterostructures. MBE technique attracted increasing attention due to the epitaxial thickness and doping control for desirable large and high-crystallinity samples, such as MoS2 [74], MoSe2 [75], WSe2 [76], and MoTe2 [77]. More importantly, MBE can realize various heterostructures with pre-designed 2D blocks [78, 79]. However, the challenges in the MBE growth lies on that the different vapor pressure between different source materials and the low melting points of sulfur precursors, which results into a narrow ‘growth window’ and strict growth conditions. Therefore, only a few TMDCs can be grown by this method. The single-crystal monolayer PtSe2 (Type-II Dirac Semimetal) has been obtained by direct selenization of Pt substrate at 270 °C [80] and MBE [81]. PtSe2 [82] and PtTe2 [83] can also be synthesized by CVD method [84–90].

Apart from the methods above, hydrothermal method is also proved to be a facile and low-cost approach to synthesize 2D materials, such as MoS2 [93], MoSe2 [93], WS2 [94], and WSe2 [95], 1T′-MoTe2 [96] and WTe2 [97]. Being an alternative way, hydrothermal method can produce a large amount of high-quality TMDC samples under low reaction temperature.

4. Basic material characterizations

Characterization techniques such as optical microscopy (OM), Raman scattering spectroscopy, photoluminescence (PL), atomic force microscopy (AFM), transmission-electron microscopy (TEM) and scanning transmission electron microscope (STEM) are widely employed to characterize 2D materials, as shown in figure 3.

Figure 1. A summary of topological states realized in transition metal dichalcogenides. (a)–(c) 3D Dirac semimetal, 3D Weyl semimetal and 2D topological insulator (top row), the host materials (middle row) and the corresponding crystal structure (bottom row).
Optical microscopy provides a simple, swift and reliable way to identify the geometries and estimate the thicknesses of 2D materials like graphene, MoS$_2$, WSe$_2$ and TaS$_2$. [84, 85]. Based on the contrast, one can estimate the layer numbers [98, 99]. As shown in figure 3(a), the optical microscopy image of an ultrathin MoS$_2$ flake from 1-15 layers on 90 nm SiO$_2$/Si are presented.

Raman spectroscopy, as the non-destructive technique, is usually employed to identify the species of 2D materials, the quality of 2D materials and, more interestingly, the inversion symmetry breaking in layered Weyl semimetals. Raman spectra contains the information of not only structural properties, but also the layer thickness, band structures, strain effects, doping type, concentration, electron-phonon coupling, interlayer coupling [100], charge excitations [101], fermi level [102] and magnetism in 2D materials [103]. Fu et al systemically studied the thickness-dependent charge density wave (CDW) phase transitions of 1T-TaS$_2$ by temperature-dependent Raman spectra and plot the thickness-temperature phase diagram [104]. Raman spectra are sensitive to crystal symmetry, therefore it can be useful to reveal the inversion symmetry breaking, considering that the noncentrosymmetry is a prerequisite for non-magnetic Weyl semimetals [105]. Zhang et al presented direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature
phase of MoTe2 by systematic Raman experiments as shown in figure 5 [106]. Additionally, the photoluminescence (PL) spectroscopy is commonly used to evaluate the band structure, impurity/defect impacts of materials [4, 86, 107]. For example, the strong PL can be obtained from direct band gap semiconductors, while it is difficult for indirect semiconductors. This phenomenon was first observed by Wang et al and Mak et al in MoS2 [108, 109], and following many monolayer semiconductors show the similar properties including MoSe2 [75, 110], WS2 [111–113], and WSe2 [114, 115].

AFM are mostly employed to identify thickness of 2D materials [116]. It also can be used to determine the surface potential, modulus, adhesion, conductivity, IR absorption and reflection of 2D materials [85, 86, 88]. With the special tips, AFM even works under liquids as well as in the ambient pressure. Interestingly, Wang et al studied the surface potential and vertical piezoelectricity of CdS thin films by scanning Kelvin force microscopy (SKFM) and piezoelectric force microscopy (PFM) and demonstrated the vertical piezoelectric domains at the CdS thin films with piezoelectric coefficient (d_{33}) was 32.8 pm V$^{-1}$, which value is nearly three times larger than that of the bulk one [117].

TEM (transmission electron microscopy) and STEM (scanning transmission electron microscopy) are often used to evaluate the atomic structure and composition of 2D materials, such as crystal structure, surface properties, interlayer stacking relationships, domain sizes, and elemental configuration [118–121]. In TEM, selected area electron diffraction (SAED) patterns can resolve the crystal structures of 2D materials, as well as the crystallographic orientation between two crystals [62, 119, 122]. Electron energy loss spectroscopy (EELS) and Energy dispersive x-ray spectroscopy (EDX) are used to image an individual or separate atom in a single layer [63, 91, 123, 124]. Due to its very high lateral resolution and low accelerating voltage, STEM becomes more popular to obtain atomically resolved images of 2D materials. Atomic arrangements of the 2H- and 1T$'$-MoTe2 can be seen by STEM, as shown in figure 3 (d), in which the unit cells are clearly related to the simulated unit cell [57]. Also, MoS2/WSe2 van der Waals hetero-bilayer structures with different local rotational alignment can be resolved by STEM, which exhibited the Moiré patterns with well-defined periodicity simulations [121].

5. ARPES verification and characterization of Band structure and surface states

Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for resolving the electronic structure
of both the bulk and surface states, and a comparison of ARPES results with theoretical calculation has been critical for verifying these intriguing topological phases, e.g. Dirac/Weyl semimetals. Therefore, in this section, we will focus mainly on the ARPES evidence for experimental realization of these topological phases. In a 3D topological Dirac semimetal, the 3D Dirac band touching arises from certain symmetry protection, giving rise to linearly dispersing bulk band, with double surface states connecting a pair of Dirac points forming closed Fermi surface. The 3D Dirac semimetal state has been confirmed in Na₃Bi and Cd₃As₂ systems by observing the linear band dispersion and closed double Fermi arcs [29, 125–127]. Moreover, 3D Weyl semimetals possess pairs of linear dispersing bulk band structure and open topological surface states. ARPES shows its advantage in distinguishing those features which has led to the observation of Weyl semimetallic phase in TaAs. The observation of Fermi arc features and pairs of linearly dispersed bulk band serve as the smoking gun evidences of Weyl semimetal states [31, 32, 128].

5.1. Type-II Weyl semimetal

In a Weyl semimetal, Weyl points carry a left- or right-handed chirality and they always appear in pairs of opposite chirality according to a no-go theorem [129]. One intriguing property of Weyl semimetal is that it has open Fermi surface called Fermi arc, which is formed by topological surface state [3] and connects the projected Weyl points with different chiralities [3]. Following the realization of Weyl fermions, it was realized theoretically that Weyl fermions can have two different types [34]. Different to the type-I Weyl fermion observed in TaAs, type-II Weyl fermions has a strongly tilted Dirac cone along certain momentum direction (figure 4) and thereby breaking the Lorentz invariance. This new type of Weyl fermion emerges at the touching points between electron and hole pockets, and therefore there is finite density of states at the Weyl point.

The existence of type II Weyl fermion was first proposed in WTe₂ [34]. However, the separation of the proposed Weyl points in the momentum space is very small (0.7% of the reciprocal lattice vector), making it extremely challenging to resolve the Fermi arc feature via ARPES measurement [56, 130]. Luckily, theoretical calculation suggests that the Fermi arc features of another candidate, T₃-MoTe₂, are much larger and potentially accessible for spectroscopic studies [56, 130]. MoTe₂ is usually stable at 1T’ phase at room temperature, but it undergoes a structural phase transition at ~250 K from 1T’ to possibly T₃ phase (similar to WTe₂) [131] that can break the inversion symmetry. The symmetry breaking has been confirmed by observing the emergence of infrared-active Raman modes below the structural phase transition temperature (figure 5) [106], which is verified in a number of Raman spectroscopic studies [67, 105, 132–137].

The most challenging part in revealing type-II Weyl semimetal is that the Fermi arcs emerge in a small region between the bulk electron and hole pockets [56,130]. To identify the topological surface states, several surface-sensitive techniques are employed. Signatures of the Fermi arcs and topological surface states are identified in ARPES (figure 6) by using different photon energies. In particular, laser source at 6.2 eV is sensitive to the bulk states while ultraviolet photon energy from synchrotron are surface sensitive and critical for revealing the surface states [10]. A comparison of the calculated band structures for the 1T’ and T₃ phases allows one to distinguish the trivial surface states from the topological Fermi arcs. The topological states are expected to exist only in the low temperature phase and are connected to the Weyl points. The experimentally measured termination points and the evolution as a function of energy match well with the calculation (figure 6(c)) [10]. Other ARPES works also show results that are consistent with the topological surface states and Fermi arc [38, 138–143]. Additional supporting evidence is provided by utilizing quasiparticle interference (QPI) obtained via scanning tunneling spectroscopy. Scattering vectors q₁ and q₂ which connect the termination points of the Fermi arcs (figures 6(d) and (e)) are identified and their dispersions suggest that they are scattered from a pair of
topological Fermi arcs [10]. More extensive QPI results can be found in later works [144–146]. The signatures of Fermi arcs from two complementary surface-sensitive techniques (ARPES and STM), and their good agreement with the calculated results, establish T_d-MoTe$_2$ as a type-II Weyl semimetal [10]. Moreover, apart from the spectroscopic evidence of type II Weyl semimetalic states in MoTe$_2$, detailed Fermi surface topology and Te-vacancy dependent superconducting phase have also been studied by quantum oscillation measurements [147].

Since MoTe$_2$ in the T_d phase breaks the inversion symmetry, different terminated surfaces (0 0 1) and (0 0 −1) will give rise to different polarities and very different connectivity of Weyl points. Experimental evidence for the different surface termination has been revealed by several groups as shown in figure 7 [139, 148]. In addition to the establishment of type-II Weyl semimetal state in T_d-MoTe$_2$, many efforts have also been made in the investigation of WTe$_2$. Although still under debate, topological surface states together with trivial surface state have been revealed by ARPES and STM [9, 149–154]. The doping evolution of WTe$_2$ and MoTe$_2$ has also been investigated. By doping WTe$_2$ with Mo, the Fermi arcs can be tuned to be larger in comparison

Figure 5. (a) Illustration of structural phase transition of MoTe$_2$. (b) Raman spectra at 320 K and 80 K respectively, A and D marked with arrows indicate the Raman-inactive mode in 1T phase emerge at low temperature. Figures (a) and (b) are reproduced with permission from [106], © 2016 Nature Publishing Group.

Figure 6. (a) A calculated Fermi surface of T_d-MoTe$_2$. (b) ARPES measurement of a band structure along Γ–X direction, (c) The constant energy map with comparison with calculation results. Arrows point out the nontrivial Fermi arc states. (d) The FFT power spectra of the dI/dV maps from STS of T_d-MoTe$_2$, and shows the QPI pattern of T_d-MoTe$_2$. (e) An illustrative figure to show all the extremal pairs owing to a pair of topological Fermi arcs. Figures (a)–(e) are reproduced with permission from [10], © 2016 Nature Publishing Group.
to WTe₂, assuming that the crystal structure of WTe₂ is preserved upon doping [35, 155]. Recent systematic characterization of W-doped MoTe₂ suggests that the Tₐ phase can be stabilized at room temperature with 8% W substitution [156]. The doping of MoTe₂ by Nb has also been investigated and the phase diagram has been obtained [157]. Besides phase tuning with different element substitution, the emergent rich structural and electronic phases are also revealed to be sensitive to Te-deficient [147, 158, 159].

5.2. Type-II Dirac semimetal

The classification of type-II versus type-I can also be extended to Dirac semimetals. Soon after the discovery of type-II Weyl semimetals in MoTe₂, type-II 3D Dirac fermions were reported in PtTe₂ by Zhou group as shown in figure 8 [33]. ARPES measurements reveal two Dirac cones in the 3D momentum space at about −1 eV below Eₚ. These two Dirac cones emerge at the intersection between the electron and hole pocket and they are strongly tilted along the kₑ direction. Being similar to PtTe₂, PtSe₂ has also been established as a type-II Dirac semimetal both theoretically and experimentally [11, 36]. Another cousin of PtTe₂ and PtSe₂, PdTe₂ not only has the same crystal symmetry and resembled band structure [160, 161], but also is realized later to have nontrivial Berry phase [161–167]. Thus it is also believed to be a type-II Dirac semimetal. Intriguingly, if reducing the thickness of the 3D Dirac semimetal PtSe₂, it will go through a crossover from Dirac semimetal in 3D to a semiconductor at the 2D limit [80, 81, 168–170]. In the single layer condition, helical spin texture with spin-layer locking induced by local Rashba (R2) effect has also been revealed in monolayer of PtSe₂ [81, 171].

5.3. Monolayer quantum spin Hall insulator

Before the realization of 3D Weyl and Dirac semimetals, quantum spin hall effect (QSH) has already been predicted in single layer distorted trigonal structure 1T'-MX₂ (M = W and Mo, X = S, Se and Te) in 2014 [8]. Unlike hexagonal semimetalllic graphene, monolayer 1T'-MX₂ is monoclinic and expected to be a 2D topological insulator (TI) due to the band inversion caused by the distorted structure and a sizeable gap opening is expected near the Fermi level (thanks to the strong spin-orbital coupling of metal d orbital). A helical surface state has been predicted inside in the gap [8, 50]. In addition, the inverted band and nontrivial topology are predicted to be tunable by...
strains, electric fields etc. Such tunability might enable the application in field effect transistor (FET) [8, 50]. Most tantalizingly, Van der Waals heterostructure formed by 1T′-MX2 is proposed to be topological field effect transistors (vdW-TFET) [8].

Recently, ARPES measurement of this novel 2D quantum state has been realized in the epitaxy grown monolayer WTe2 film [51]. The measurement (figure 9(b)) confirms the predicted signature of topological band inversion (figure 9(a)), and a gap of 45 meV has been revealed (figure 9(c)). Scanning tunneling microscopy (STM) measurements further confirm the insulating bulk state with a gap opening and the metallic edge state (figure 9(d)), providing additional support for the 2D TI or QSHI [51]. The recent quantum transport measurements provide another direct way to study the 2D topological state, which we summarize in the next section. Not only monolayer WTe2 can achieve QSHE, but also other compounds with same symmetry and proper spin–orbit coupling. Monolayer T3-WTe2 film serves as the first established 2D TI in TMDC compounds, and its cousins are expected to behave similar [53, 55, 172, 173], although further experimental evidence is needed for verification.

6. Transport properties

In this section we review the recent quantum transport measurements of layered topological materials, with emphasis on TMDCs. The nontrivial topology of electron wavefunctions in topological materials can give rise to highly specific, unusual transport behaviors that are protected from local perturbations. The remarkable examples are the precisely quantized Hall resistance in integer and fractional quantum Hall effects and quantum anomalous Hall effect. These rare examples, however, have uncovered the possibilities of a zoo of rich topological quantum states [174], even at zero magnetic field. One interesting situation is at the intersection of topology and correlations. This is appealing because excitations in correlated many-body systems can behave as a fraction of one electron [175], although a free electron is fundamentally undividable. Fractionalized particles in topological materials, such as Majorana modes in topological superconductors, can in principle provide a way to encode quantum information nonlocally, immune to errors [176]. To date, it remains to be an outstanding goal to identify many novel topological states, especially those with fractionalized excitations.

A promising direction is to look into 2D layered materials. Electron correlations have known to be essential in many layered materials, among which the most well-known examples are perhaps cuprates and iron-based superconductors. Theoretically, there also exists a large number of predicted 2D materials with nontrivial topological properties [8, 177–184]. In fact, it is the prediction of identifying graphene as a quantum spin Hall insulator (QSHI) in 2005 [177], together with others [22, 23, 185], that gives rise to the notion of topological insulators. However, experimental study of many predicted 2D layered topological materials remains difficult, often due to their unstable structures. Recent experimental and theoretical progresses on T3 or 1T′ layered TMDCs, in particular WTe2 and MoTe2, have shed new light in this direction. On one hand, bulk MoTe2 and WTe2 may host Weyl physics [34, 56] and they also exhibit superconductivity at low temperatures and/or under pressure [186–188]. On the other hand, monolayer TMDCs has distinct properties compared to the bulk. Particularly, monolayer WTe2 is found to be a quantum spin Hall insulator with large bandgap [8, 50–52, 54, 55]. Upon moderate electron doping though dielectric field effect, the monolayer also exhibits superconductivity [189]. Consequently, WTe2 and MoTe2 provide new material platforms to study the interplay between topology and superconductivity, where topological superconductivity and Majorana modes may be possible [22, 23]. More generally, these observations point to the possibilities of using 2D layered materials for identifying and engineering novel topological states of matter and their excitations.

6.1. Chiral Anomaly and extremely large magnetoresistance and negative magnetoresistance

In 2014, Ali et al [65] reports extremely large, non-saturating magneto-resistance (MR) when a high quality WTe2 crystal is subject to a magnetic field perpendicular...
to the layer plane ($B//c$ axis), as shown in figure 10(a). The MR can be as high as 13 million percent at 0.53 K in a field of 60 T. This unusual behavior highlights the unconventional semimetallic properties of the material. The explanation of the large MR is attributed to the equal populations of electron and hole carriers (electron-hole compensation) in the material [65], which can naturally give rise to the observed quadratic dependence on B.

Such explanation in WTe$_2$ is consistent with ARPES measurement on the band structure [190]. Similarly, T_d-MoTe$_2$ displays large MR (> 10%) at low temperatures, too (figure 10(b)) [147, 191–193]. However, ARPES measurement refers to T_d-MoTe$_2$ as a non-compensated semimetal [193], so that its large MR requires a different explanation. It has also been suggested that spin orbital coupling may play a role in the observed large MR [194]. Understanding this large MR remains to be an open and interesting question.

Soon after the observation of the large MR, Soluyanov et al in 2005 develops the concept of type II Weyl semimetal [34], of which T_d-WTe$_2$ and T_{d}-MoTe$_2$ [56] are the proposed examples. Although experiments have suggested that the Weyl physics is not necessary to the observed large MR under perpendicular fields, the topological physics manifest itself in transport through another remarkable phenomenon called chiral anomaly [195], an interesting quantum behavior that breaks the conservation law of particles with given chirality. The chiral anomaly is first observed in Dirac semimetal Na$_3$Bi by Xiong et al [195]. In their experiment, the observed negative MR for $B//E$ (E is the direction of applied current) is the evidence of the existence of chiral anomaly. Notably, a very recent work has ruled out the trivial explanation of the negative MR based on ‘current-jetting’ effects [196], which further strengthens the conclusion of the chiral anomaly.

Subsequently, the chiral anomaly has been used to test the physics of type II Weyl semimetal predicted in WTe$_2$ [34, 154, 197–201]. Particularly, the tilted Weyl cone in the band structure can lead to an anisotropic negative MR when the direction of $B//E$ is varied, in contrast to the type I un-tilted cone. Indeed, this chiral anomaly evidence has been reported in WTe$_2$ for $B//E//b$ axis (figure 10(c)), but not for $B//E//a$ axis [154, 201]. This anisotropic effect, together with the observation of an extra quantum oscillation attributed to a Weyl obit, provides an interesting quantum transport study related to the type II Weyl physics [154].

6.2. Superconductivity

Interestingly, both WTe$_2$ and MoTe$_2$ can also exhibit superconductivity. In 2015, two groups report the induced superconductivity in WTe$_2$ under static pressure [187, 188]. The maximum transition temperature T_c is found to be about 7 K at around 13 GPa or 17 GPa (figure 11(a)). A superconducting dome is observed in both studies [187, 188]. The appearance of the superconductivity accompanies with the suppression of the large MR, suggesting the existence of a quantum critical point driven by pressure, as proposed by the authors [187]. The suppression of the large MR can be understood by the violation of the electron-hole compensation due to the structural change of fermi surface. The exact mechanism of the superconductivity is yet confirmed. It has been suggested that a T_d to 1T’ phase transition may happen under high pressure [202], which could be related to the observed superconductivity in WTe$_2$. In contrast to WTe$_2$, T_{d}-MoTe$_2$ exhibits intrinsic superconductivity with T_c ~ 0.1 K (figure 11(b)) [186].

High pressure can significantly alter the superconducting properties, and T_c reaches its maximum of about 8.5 K at 11.7 GPa (figure 11(b)). The author also suggests that the 1T’ to T_d phase transition may play a role in explanation the superconductivity. No superconductivity has been found under pressure for 2H-MoTe$_2$. These findings point to an interesting situation of superconducting Weyl semimetals, in which topological superconductivity may arise. The topological properties of the superconducting states have yet been studied and their investigation represents an interesting future direction.

6.3. Quantum spin Hall insulators

The properties of monolayer and few layer van der Waals materials are often distinct from the bulk counterparts. It is also true for WTe$_2$ and MoTe$_2$. Theoretically, it has been predicted that the monolayer...
1T′ or Td TMDCs are QSHI if a bandgap develops [8,50]. Experimentally it has been found that monolayer and bilayer WTe2 indeed acquires a gap (figures 12(a)–(c)) [54], different from the original calculation [8] but consistent with a later one [50]. Few layer WTe2 remains semimetallic (figure 12(a)), but their properties significantly alter from the bulk [203–205]. For example, the MR samples behaves qualitatively different and can be tuned over a large range electrostatically [204]. In few layer WTe2, ferroelectric behaviors appear even at metallic states [206].

The WTe2 monolayer’s quantum spin Hall state has recently been intensively investigated using multiple means, including quantum transport [54,55], ARPES [51], STM [51–53] and microwave impedance microscope (MIM). In quantum transport measurement, the QSH effect produces several remarkable phenomena, which can be used to characterize the effect. First, a QSHI is an insulator in its interior but its edge hosts a conducting channel. Second, the conducting edge channel is described by a helical mode, in which electrons with opposite spin counter-propagate. The helical edge mode, which preserves the time reversal symmetry, results in a highly specific quantum conductance of \(\frac{e^2}{h} \) per edge. Third, the edge conductance should be significantly reduced under breaking time reversal symmetry due to the loss of protection. Experimentally, Fei et al [54] showed that the edge state conduction appears in monolayer but is absent in bilayer. The observed conductance of monolayer edge is less than the expected quantum value and is associated with a zero-bias anomaly, which prevents the identification of the helical nature. By designing a specific device geometry combing bottom and top gates, Wu et al [55] successfully revealed the intrinsic edge conductance of monolayer WTe2 to be \(\sim \frac{e^2}{h} \) per edge (figure 12(d)), confirmed by length dependence study. The device’s behavior under magnetic fields is also consistent with the prediction from QSH effect. Particularly, the authors observed evidence of the Dirac point in the helical edge band. Combined with theory and other types of measurements, the QSH state in monolayers WTe2 is believed to be established. Due to the large band gap, the QSH state dominates the transport up to \(\sim 100 \) K (figure 12(e)), significantly larger than the other two QSH systems based on semiconductor heterostructures.

6.4. Field effect induced superconductivity

Superconductivity also appears in the monolayer [189]. When the same QSH device reported in [55] is cooled down to below 1 K, a superconducting transition is found when the WTe2 monolayer is electron doped by the gates (figure 13(a)). The same result has also been observed by Cobden and Folk’s collaboration [207]. The critical doping for the onset of superconductivity is reported to be about \(5 \times 10^{12} \) cm\(^{-2} \), a very low density for superconductors. \(T_c \) increases with increasing doping in the accessible region of the reported devices, with a maximum about 1 K. Moreover, the upper critical field significantly exceeds the Pauli paramagnetic limits when in-plane magnetic field is applied. Note that the superconductivity in bulk WTe2 is found only by applying pressure and few layer WTe2 grown by MBE also displays superconductivity beyond Pauli limit [205]. Indeed, the large in-plane critical fields of 2H TMD (e.g. MoS2 and NbSe2) has been explained by the Ising superconductivity resulted from the strong spin-valley locking, whose appearance relies on the explicit inversion symmetry breaking. However, the crystal symmetry and band structure in monolayer WTe2 is very different and thus one cannot directly apply the Ising mechanism to the WTe2 case. Other possible mechanisms may be speculated, such as strong spin–orbit scattering with impurities and spin-triplet pairing. However, this exact mechanism needs to be uncovered with further experimental studies.

A preliminary electronic phase diagram for monolayer WTe2 is summarized in figure 13(b), in which a QSH insulating phase resides nearby the superconducting phase. Interesting future directions include the investigation of (1) the origin of the insulating and superconducting gap; (2) the topological properties of the superconducting state; and (3) the possibilities...
of constructing non-abelian excitations in the monolayer. Moreover, the electric field induced superconductivity in the monolayer allows for engineering superconducting nano-device in a single atomic plane. It will also be exciting to extend the study to monolayer MoTe2 and other van der Waals monolayers and heterostructures.

7. Optical response

Optical approaches are indispensable routes to probe the fundamental topological properties and to control of electron’s quantum degree of freedoms. Although there are many theoretical proposals toward this direction on topological semimetals, the experimental progress lacks behind because the relevant optical wavelength range to probe the vicinity of the Dirac/Weyl points of the topological semimetals usually lies in the THz to mid-IR wavelength range which is technically more challenging comparing to relatively matured visible and near-IR wavelength range. Regarding mechanically exfoliated 2D layered materials, it is more difficult due to the limitation on the size of the sample that can be obtained, which is usually smaller than the diffraction limit of the desired wavelength. In this part, we review the current optical experiments progress in verification of topological semimetals and interesting optical phenomenon that can manifest the topological features of topological semimetals. As most experimental progress so far is based on bulk topological semimetals instead of 2D layered ones, the experimental results discussed in this session are mostly based on bulk materials, especially model systems such as Cd3As2 and TaAs, but the optical effects discussed below are quite universally applicable to 2D layered topological semimetals. The related practical optical device application prospects are also discussed.
7.1. Linear ac optical interband response
The simplest Hamiltonian that describes a semimetal with energy directly proportional to the crystal momentum via an isotropic Fermi velocity would lead to an ac optical interband response linear with photon energy (Ω), and passes through the origin in the limit $\Omega \to 0$ [208]. This linear behavior is widely considered to be an important optical signature of 3D Dirac Semimetal. While in the Weyl phase, due to the break of the degeneracy of Dirac cones, instead of a linear response, there are two quasilinear regions with different slopes in the interband optical response as shown in figure 14(a) [209]. A singularity is proposed to occur at Ω_c. Transitions occurring in the region between the two Weyl nodes are blocked when Ω exceeds Ω_c, giving rise to the reduced slope. The evolution of ac optical interband response from Dirac Semimetal to Weyl semimetal and gapped semimetal phases are discussed theoretically in detail by Tabert and Carbotte [209] and Mukherjee and Carbotte [210]. In real material, the Dirac/Weyl cones will have certain tilting and doping, this linear relationship is modified as the cone is titled or doped, which makes the verification of Dirac/Weyl semimetals through an optical conductivity measurement more intriguing.

On the other hand, magneto-infrared spectroscopy is an established experimental approach to identify the linear dispersed band structure, through the measurement of magnetic field (B) dependence of Landau level (LL) transitions [221–223]. The massless linear dispersed energy band can be recognized by the linear dependence of Landau level transition with \sqrt{B} instead of B, and this dependence has been experimentally observed on layered Dirac semimetal candidate ZrTe$_5$ [224, 225] and bulk Dirac semimetal Cd$_3$As$_2$ [226]. For Weyl semimetals, it is found experimentally that the LL transitions deviates from the expectation for isolated Weyl points due to the coupling effect between Weyl nodes [227] and chiral nature of the Weyl nodes [228].

7.2. Chiral anomaly related optical response
If further asked whether there is intrinsic topological signature of Dirac/Weyl semimetals that can be manifested in optical spectrum, the answer may be related to chiral anomaly, which is one
of the remarkable characters of these systems. Mechanism of chiral anomaly has been discussed in the section 6.1. Many early attempts to detect Dirac/Weyl semimetals have focused on transport experiments regarding chiral anomaly. Optically, so far few experimental evidence has been established, such as a large Kerr rotation in Cd₃As₂ [229], but many theoretical schemes have been proposed regarding this aspect. Ashby and Carbotte have proposed an optical absorption experiment, in which the interband optical conductivity shows step-like features at finite frequencies as shown in figure 14(c) [230]. However, low temperature and high quality samples are suggested for measurable experimental features, as high temperature and scattering processes caused by impurities can smooth these features out. Additionally, the photon energy is below 40 meV in their calculation, so the absorption experiment has to be carried out in THz regime. Alternatively, Hosur and Qi et al proposed that the chiral anomaly can be probed by measuring the optical activity via circular dichroism. Particularly, in the absence of \(\mathbf{E} \cdot \mathbf{B} \), the Fermi levels at the two Weyl nodes with opposite chiralities are equal. An applied \(\mathbf{E} \cdot \mathbf{B} \) field pumps charge across the nodes, resulting in a charge imbalance between them and a consequent net anomalous contribution to \(\gamma \) (adapted from [231], © 2015 American Physical Society). Regardless, the novel Weyl semimetal TaAs, as well as its related siblings (TaP, NbAs, NbP), should exhibit novel optical activity of a polar vector nature that in principle can be identified by appropriate resonant x-ray diffraction measurements, as proposed by Norman et al [232].

Figure 14. Calculated interband optical conductivity (\(\sigma_{xx} \)) and chiral anomaly. (a) \(\sigma_{xx} \) in the WSM phase before the massive band contributes. Two quasilinear regions are observed with a singularity occurs at \(\Omega_b \). Inset shows the band structure near the Weyl nodes (adapted from [209], © 2016 American Physical Society). (b) \(\sigma_{xx} \) with a distinctive peaklike frequency dependence arising from the DSM Fermi arc surfaces states (adapted from [208], © 2017 American Physical Society). (c) \(\sigma_{xx} \) with steplike signatures for a clean Weyl semimetal after the application of \(\mathbf{E} \cdot \mathbf{B} \) field (adapted from [230], © 2014 American Physical Society). (d) Illustration of gyrotropy induced by an \(\mathbf{E} \cdot \mathbf{B} \) field in WSMs. Colored (white) regions denote filled (empty) states and the two colors indicate Weyl nodes of opposite chiralities. The curved red arrow shows charge transfer across the nodes pump by an \(\mathbf{E} \cdot \mathbf{B} \) field, resulting in a charge imbalance between the nodes and a consequent net anomalous contribution to \(\gamma \) (adapted from [231], © 2015 American Physical Society).
7.3. Broadband photocurrent response

When it comes to the interplay of the optical and electrical response, the measurement of photocurrent response is an effective experimental approach. When light excitation is above the bandgap, electron–hole pairs will be injected in the material and separated by certain mechanisms, which lead to measurable photocurrent in external circuit. In topological Dirac/Weyl semimetals, the linear energy dispersion and zero bandgap are symmetry protected around Dirac/Weyl nodes, allowing photons of arbitrary low energy to excite the electrons from valence to conduction band if the Fermi level is at the Dirac/Weyl nodes with no Pauli blocking effect due to doping. Thus the photo-response of Dirac/Weyl semimetals are usually broadband and suitable for photo-detection over full broad spectrum range (figure 15(a)) with extra advantages such as carrier multiplication benefiting from the linear dispersed band at the vicinity of the Dirac/Weyl nodes for long wavelength [233–236]. The broadband response from visible to mid-infrared has been verified by Wang et al. [237] and Lai et al. [238, 239] on 3D Dirac Semimetal Cd$_3$As$_2$ and layered type-II Weyl semimetal MoTe$_2$ and TaIrTe$_4$ respectively. Due to the lack of bandgap, the semimetal based photodetectors are preferred to be operated in an unbiased manner to avoid the dark current. Practically the self-powered mode can greatly facilitate portable and wearable photodetection application and semimetals are also more favorable than gapped semiconductors for the unbiased operation benefiting from better contacts with metal electrodes. With a cross-polarized pump-probe measurement, the response time of Cd$_3$As$_2$ device is approximately 6.87 ps (figure 15(b)), which is comparable to graphene [237]. In contrast, the response time of photodetectors based on layered type-II WSMs MoTe$_2$ and TaIrTe$_4$ are approximately 31.7 µs and 27.0 µs under 10.6 µm excitation [238–240]. In addition, these layered WSMs show strong polarization dependence. The anisotropy is found to be wavelength dependent and increase as the excitation gets closer to the Weyl nodes.

7.4. Transient optical response and practical ultrafast application prospects

Dirac/Weyl semimetals feature gapless band structure and rapid transient relaxation time of photoexcited carriers, which enables convenient optoelectronic devices with ultrafast response and broad spectrum range. In terms of immediate practical optoelectronic applications, saturated absorber and optical switch are two prospects beyond photodetection based on DSM/WSM. Among various DSM/WSM, the transient dynamics of Cd$_3$As$_2$ has been very well characterized with broadband probe from near-infrared to THz [241–243], indicating transient time on the order of picosecond timescale (figure 15(c)). Transient spectroscopy work on other DSM/WSM indicates similar transient time scale [244]. This transient time is similar to graphene and quite typical for semimetals. Benefiting from this ultrafast transient time, ultrafast photodetector, optical switch and saturate absorber (figures 15(d)–(g)) based on Cd$_3$As$_2$ has realized experimentally, and among them, the photo-detection and optical switch is demonstrated to work in mid-infrared range [237, 245, 246].

7.5. Circular photogalvanic effect and optical excitation of chiral carriers

Weyl nodes are monopoles of Berry curvature and low energy excitations in the vicinity of Weyl nodes behave as chiral Weyl fermions. The chirality of Weyl...
points in WSM brings abundant physical phenomena that correlates to circular dichroism according to the optical selection rule derived from the conservation of angular momentum: the absorption of left/right circular polarized (LCP/RCP) light couples to the Weyl points with opposite chirality as shown in figure 16(a). Circular dichroism is an important tool to detect and control chirality in Weyl semimetals. These aspects have attracted broad theoretical and experimental attentions, as this would lead to experimentally measurable effect that is related to the chiral nature of the carriers in Weyl semimetals. In single Weyl cone, circular polarized light is supposed to inject carriers on one side of the Weyl cone, leading to directional current. In Dirac semimetals (DSM), two Weyl points with opposite chirality are degenerate and form one Dirac point. Therefore, the circular selection rules vanish in Dirac semimetal as transitions are allowed on both side of the Dirac cones with circular excitation [247].

Similarly, as the Weyl cones with opposite chirality always come in pairs in any WSMs, the directional current generated within this pair can cancel each other, providing no experimentally measurable net photocurrent. However, Chan et al proposed that this problem can be addressed in WSMs with tilted Weyl cones as a result of the decreased symmetry [247] as shown in figure 16(b). Combined with Pauli blockade and circular selection rules, the optical transition in one Weyl cone is blocked, which results in directional photocurrent generation under the excitation of circular polarized light. As LCP and RCP light can inject photocurrent with different direction (figure 16(c)), this would lead to nonvanishing Circular photogalvanic effect (CPGE), which is observable experimentally through circular polarization dependent photocurrent measurement by rotating a quarter waveplate. CPGE has been experimentally observed by Ma et al [248] on Type-I Weyl semimetal TaAs along specified crystal direction with 10.6 µm excitation, where the direction of the photocurrent changes depending on the polarization of excitation light as shown in figure 16(d).

In layered type-II WSMs, such as MoTe$_2$ and TaIrTe$_4$, although the Weyl cones are strongly tilted, the in-plane C_{2v} symmetry leads to cancellation of CPGE effect of a pair of mirror symmetry related Weyl cones. However, the CPGE effect is also experimentally observed in these materials [249, 250]. Certain mechanisms has to come into play to break the mirror symmetry to provide a net CPGE, which are still under debates. Ji et al observed CPGE with 750 nm excitation in layered type-II WSM MoTe$_2$. The C_{2v} symmetry is claimed to be broken as a result of spatially inhomogeneous optical excitation due to a focused Gaussian beam in this work. Nevertheless, the optical excitation in this work is far from the Weyl cones, and the physics behind it may not related to the chirality of Weyl cones [249]. In parallel, Ma et al [250] also observed CPGE in TaIrTe$_4$ with 4.0 µm and

![Figure 16](image.png)

Figure 16. (a) Chirality selection rule: LCP (RCP) light along $+$ excites the $-k_z$ ($+k_z$) side of the $\chi = +1$ Weyl node but the $+k_z$ ($-k_z$) side of the $\chi = -1$ Weyl node. (b) In the presence of a finite tilt and a finite chemical potential away from the Weyl node, the Pauli blockade becomes asymmetric about the nodal point, which result in non-cancelled photocurrent [247, 248]. (c) Schematic illustration of the mid-IR photocurrent microscope setup. Polarization is tunable between LCP and RCP by rotating the quarter waveplate (QWPL) and the direction of the photocurrent is tunable as a result. (d) Polarization-dependent photocurrents at $T = 10$ K measured along specific orientation of TaAs with 10.6 µm excitation [248], © 2018 Nature Publishing Group.
J Ma et al

10.6 \(\mu\)m excitation, where this symmetry breaking is attributed to a background of DC electrical field generated by photo-thermoelectricity or built-in electric field at the interface with electrodes.

When it thins down to monolayer, as QSHI discussed in section 5.3, strong and electrically tunable Berry curvature concentrate near the band edge and show a bipolar configuration about the mirror plane. As a result, interband transitions near the band edge also select opposite circular polarization light, while CPGE occurs when a nonzero Berry curvature dipole exists. Recently, with monolayer QSHI WTe2, this effect has been observed experimentally by Xu et al [251].

7.6. Topological enhanced nonlinear response

When strong light irradiation is applied to materials, nonlinear polarizations happen under strong ac electric field and realize abundant nonlinear optical effects. In topological semimetals, by scaling laws, the Dirac fermion in two dimensions shows the giant nonlinear responses to electromagnetic fields in the terahertz region as shown in figure 17(a) [252]. Besides, various nonlinear optical effects, such as the shift current, photovoltaic Hall response, are governed by a vector field defined by Berry connection, so that they 'can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature' theoretically [253] as shown in figures 17(b) and (c).

As the Berry curvature diverges at the Weyl nodes, the nonlinear response is usually enhanced at the singularity points as shown in figures 17(d) and (f) [254, 255].

In presence of magnetic field, the linear and second-order nonlinear optical responses of Weyl semimetals are theoretically treated by a semiclassical Boltzmann equation approach by Morimoto et al [256]. The theory predicts strong second harmonic
generation (SHG) proportional to B that is enhanced as the Fermi energy approaches the Weyl point, as a consequence of the divergence of the Berry curvature and orbital magnetic moment near the Weyl point. In this regard, the SHG of Weyl semimetals under B is tied to the monopole physics in the momentum space described by the Berry curvature. Especially, when the magnetic field is parallel to the optical electric field, chiral anomaly enhances the SHG signal compared to the case where $B \perp E$. In practice, these divergences are cut off by the energy broadening due to the nonzero relaxation time and by excessive electric field E as the semiclassical treatment is invalid then. Experimentally, the enhancement of SHG can be detected as a large Kerr rotation signal, and the magnitude of the nonlinear magneto-optical susceptibility of TaAs at 0.1 eV photon with magnetic field is estimated to be 2–3 order larger than GaAs at visible light range [256].

The experimental observation of such strong SHG is first realized by Wu et al [257] on type-I WSM TaAs. Strikingly, an extreme anisotropy and large absolute magnitude of second-harmonic optical susceptibility were detected from (1 1 2) surface without an external magnetic field, which can exceed the values in the benchmark materials GaAs and ZnTe by approximately one order of magnitude as shown in figure 17(e). The measurement, however, is performed with fundamental wavelength of 800 nm, which is far above the transition around the singularity point (Weyl node). As a result, connection between large nonlinear coefficient and the Weyl physics remains to be investigated further with low photon energy measurement at mid/far-infrared or even THz wavelength range. Experiments on Type-II category regarding SHG is still missing.

Another Berry curvature singularity enhanced nonlinear response in WSMs is the shift current response. This has been observed experimentally in both Type-I TaAs by Osterhoudt et al [240] and Type II TaIrTe$_4$ by Ma et al [250]. The measurement on TaAs by Osterhoudt et al [240] is performed with single wavelength excitation at 10.6 μm, with a glass coefficient (namely responsivity divided by the absorption coefficient) reported nearly one order of magnitude larger than previous results, as shown in figure 17(g). In Type-II WSM TaIrTe$_4$, Ma et al has observed unusual large photocurrent response with 4 μm excitation, which is attributed to third order nonlinear response instead of second order, as the related second order nonlinear coefficient should be zero due to mirror symmetry of the material [250]. Multiple wavelengths are measured in this work, and the exceptional responsivity observed at 4 μm is believed to related to the doping level of the sample as predicted by theoretical work of Xu et al [258]. Indeed, Xu et al also point out theoretically that the shift current response has strikingly different frequency dependent behaviors between type-I and type-II WSMs in terms of their frequency dependence. The optical conductivity due to shift current response σ_{shift} of type-I WSMs is proportional to ω under zero doping and zero temperature, exhibiting a vanishing property. In stark contrast, in type-II WSMs, second-order optical conductivity σ_{shift} is inversely proportional to the frequency ω of incident light under zero doping and zero temperature. Though, the vanishing and divergent behaviors will be truncated and a peak at tunable frequencies with tunable amplitude will be formed with doping and temperature changed [258]. Concretely, shift current calculation in the realistic material band structures of TaAs was also carried out by Zhang et al recently and showed a similar result [255]. To conclude, the diverging property originates from monopoles of the Berry connection around Weyl nodes and results in strongly enhanced photocurrent response under long wavelength excitation. Inversely, we note the shift current response also provides a means to probe the Berry curvature and distinguish Fermi surface topologies from this aspect.

8. Outlook

Existing experiments have focused on the discovery of new topological materials and the demonstration of the associated physics. In material aspects, stable Weyl semimetals with minimum number of nodes separated from trivial bands, ideally close to the Fermi level with a large momentum separation between nodes, are highly desired. In layered category, TaIrTe$_4$ as an inversion symmetry breaking Weyl semimetal [39, 259, 260], may be a good candidate. In parallel, other ternary transition metal chalcogenides MM$'$_Te$_4$, where M = (Ta, Nb) and M$' = $ (Ir, Rh), are also theoretically predicted to be Weyl semimetals [261] and worthy of further experimental verifications. In addition, exotic types of WSM, such as a magnetic WSM that breaks time reversal symmetry but preserves inversion symmetry, is still lacking and its layered candidates are highly desired. In long term, synthesis of large-area high-quality materials is always prerequisite for not only the demonstration of interesting topological physics but also mass scale device applications. For layered materials, it is equally important to achieve the epitaxial growth of multiple layers with atomically clean interface between different layers to form various kinds of heterostructures.

Innovating measurement and control schemes are also essential to move forward. In fact, many exotic quantum states cannot be well understood without the development of new probing tools. These new tools may require the integration of different kinds of techniques at extreme conditions. Achieving quantum control of the new physics is another direction, which may be possible by integrating electrical and optical means, leading to practical applications. Particularly, it is desirable to develop techniques at different frequencies, especially in GHz and THz range, tailored for the interesting topological quantum physics.

The unique, unprecedented advantages of 2D layered materials lie in its easy access to interface engi-
engineering, by forming Van der Waals heterostructures [262–264]. Such structures can integrate superior functionality of established 2D layered materials, such as insulating boron nitride [265–268] and high mobility graphene [269, 270], for studying new materials and physics. Moreover, 2H-TMDCs can be utilized to offer coupled spin-valley degree of freedom [271–275] and 2D ferromagnet is suitable for introducing magnetization [276–278]. Reversely, layered topological semimetals, along with QSHI, also bring unique building blocks to the 2D family, such as the protected surface states, chiral carriers of Weyl semimetals and strong SOC. Exotic physics may be expected in the future. For example, superconductivity in Weyl materials and QSHI may give rise to a new route for realizing non-abelian anyons, which is of great interest in quantum information science [279–281].

In terms of applicable end that possibly enter our everyday life finally, besides the aforementioned conventional application in optoelectronics including photodetector and optical switch; straightforwardly, topological semimetals can be employed for surface-related chemical process such as the catalysis utilizing their robust surface states [282] and in high-speed electronics exploiting the high mobility and large MR [65, 147, 191–193, 283–285]. Their potential application toward spintronics is also interesting: it was proposed that a spin-filter transistor with a controllable spin polarized current can be realized by thin film WSMs [286]. Besides, the room temperature QSHI, in monolayer form, plays an important role in converting charge current to spin current efficiently [287]. Furthermore, QSHI together with the exhibited superconductivity, are very promising material platform for quantum computing based on topological protection [189, 207]. More importantly, it is clear that the exploration of the new physics harbored by layered topological materials and their heterostructures is still in its infancy and perhaps ahead of us is something far more exotic than what we have imagined.

Acknowledgments

JM and DS thank the support by the National Natural Science Foundation of China (NSFC Grant Nos. 11674013, 11704012) and the State Key Laboratory of Precision Measurement Technology and Instruments Fund for open topics. KD and SZ acknowledge the support of Ministry of Science and Technology of China (Grants No. 2016YFA0301004) and Beijing Advanced Innovation Center for Future Chip (ICFC). LZ and ZL acknowledge the support of the Singapore National Research Foundation under NRF award number NRF–RF2013–08 and MOE Tier 2 MOE2016–T2–2–153. SW acknowledges the support of the MIT Pappalardo Fellowship in Physics.

ORCID iDs

Sanfeng Wu https://orcid.org/0000-0002-6227-6286
Zheng Liu https://orcid.org/0000-0002-8825-7198
Shuyun Zhou https://orcid.org/0000-0002-9841-8610
Dong Sun https://orcid.org/0000-0002-0898-4548

References

[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109–62
[2] Moore J E 2010 Nature 464 194
[3] Wan X, Turner A M, Vishwanath A and Savrasov SY 2011 Phys. Rev. B 83 205101
[4] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 669
[5] Butler S Z et al 2009 Science 325 178
[6] Zhang H, Liu C-X, Qi X-L, Dai X, Fang Z. and Zhang S-C 2009 Nat. Phys. 5 438
[7] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[8] Wu Y, Mou D, Jo N H, Sun K, Huang L, Bud’ko S L, Canfield P C and Kaminski A 2016 Phys. Rev. B 94 121113
[9] Deng K et al 2016 Nat. Phys. 12 1105
[10] Zhang K, Yan M, Zhang H, Huang H, Arita M, Sun Z, Duan W, Wu Y and Zhou S 2017 Phys. Rev. B 96 235102
[11] Britnell L et al 2012 Science 333 947
[12] Geim A K and Grigorieva I V 2013 Nature 499 419
[13] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 461
[14] Jia S, Xu S-Y and Hasan M Z 2016 Nat. Mater. 15 1140
[15] Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337–54
[16] Wang S, Lin B-C, Wang A-Q, Yu D-P and Liao Z-M 2017 Adv. Phys. X 2 518–44
[17] Armitage P N, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[18] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494–7
[19] Chern S-S 1945 Ann. Math. 46 674–84
[20] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Phys. Rev. Lett. 49 405–8
[21] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045–67
[22] Qi X-L and Zhang S-C 2011 Rev. Mod. Phys. 83 1057–110
[23] Shiozaki M 2008 New J. Phys. 10 025002
[24] Murakami S, Iyo S, Arishita Y, Onoda M and Nagaosa N 2007 Phys. Rev. B 76 205304
[25] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[26] Wang Z, Sun Y, Chen X-Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[27] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[28] Liu Z K et al 2014 Science 343 864
[29] Liu Z K et al 2014 Nat. Mater. 13 677
[30] Xu S-Y et al 2015 Science 349 613
[31] Lv B Q et al 2015 Phys. Rev. X 5 031013
[32] Yan M et al 2017 Nat. Commun. 8 257
[33] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[34] Belopolski I et al 2016 Nat. Commun. 7 13643
[35] Huang H, Zhou Sand Duan W 2016 Phys. Rev. B 94 121117
[36] Chang G et al 2016 Sci. Adv. 2 e1600295
[37] Xu N et al 2016 arXiv:1601.02116
[226] Yuan X et al 2017 Nano Lett. 17 2211–9
[227] Jiang Y, Dun Z, Moon S, Zhou H, Koshino M, Smirnov D and Jiang Z. 2018 Nano Lett. 18 7726–31
[228] Yuan X et al 2018 Nat. Commun. 9 1854
[229] Zhang C et al 2017 Nat. Commun. 8 13741
[230] Ashby P E C and Carbotti J P 2014 Phys. Rev. B 89 245121
[231] Hosur P and Qi X-L. 2015 Phys. Rev. B 91 081106
[232] Norman M R 2015 Phys. Rev. B 92 241116
[233] Winzer T, Knorr A and Malic E 2010 Nano Lett. 10 4839–43
[234] Brida D et al 2013 Nat. Commun. 4 1987
[235] Tielrooij K J, Song C W, Jensen S A, Centeno A, Pesquera A, Zarutzu Ilurza A, Bonn M, Levitov L S and Koppen S F H L 2013 Nat. Phys. 9 248
[236] Chen J J et al 2015 ACS Nano 9 8851–8
[237] Wang Q et al 2017 Nano Lett. 17 834–41
[238] Lai J et al 2018 Adv. Mater. 30 1707152
[239] Lai J, Liu Y, Ma J, Zhuo X, Peng Y, Lu W, Liu Z, Chen J and Sun D 2018 ACS Nano 12 4055–61
[240] Osterhoudt G B, Diebel L K, Yang X, Stanco J, Huang X, Shen B, Ni N, Moll P, Ran Y and Burch K S 2019 Nat. Mater. (https://doi.org/10.1038/s41563-019-0297-4)
[241] Zhu C, Yuan X, Xiu F, Zhang C, Xu Y, Zhang R, Shi Y and Wang F 2017 Appl. Phys. Lett. 111 091101
[242] Lu W, Ge S, Liu X, Lu H, Li C, Lai J, Zhao C, Liao Z, Jia S and Sun D 2017 Phys. Rev. B 95 024303
[243] Lu W, Ling J, Xu F and Sun D 2018 Phys. Rev. B 98 104310
[244] Gao W et al 2018 Appl. Phys. Lett. 112 171112
[245] Zha C et al 2017 Nat. Commun. 8 14111
[246] Meng X, Zhu C, Li Y, Yuan X, Xiu F, Shi X, Yu Y and Wang F 2018 Opt. Lett. 43 1503–6
[247] Chan C-K, Lindner N H, Refael G and Lee P A 2017 Phys. Rev. B 95 041104
[248] Ma Q et al 2017 Nat. Phys. 13 842
[249] Ji Z et al 2018 arXiv:1802.04387
[250] Ma J, Gu Q, Liu Y, Lai J, Peng Y, Zhuo X, Liu Z, Chen J-H, Feng J and Sun D 2019 Nat. Mater. (https://doi.org/10.1038/s41563-019-0296-5)
[251] Xu S et al 2018 Nat. Phys. 14 900
[252] Morimoto T and Nagaosa N 2016 Phys. Rev. B 93 125125
[253] Morimoto T and Nagaosa N 2016 Sci. Adv. 2 e1501524
[254] Li Z, Jin Y-Q, Tohyama T, Itaka T, Zhang J-X and Su H 2018 Phys. Rev. B 97 085201
[255] Zhang Y, Ishizuka H, van den Brink J, Felser C, Yan B and Nagaosa N 2018 Phys. Rev. B 97 241118
[256] Morimoto T, Zhong S, Orenstein J and Moore J E 2016 Phys. Rev. B 94 245121
[257] Wu L, Patankar S, Morimoto T, Nair N L, Thevait E, Little A, Analytis J G, Moore J E and Orenstein J 2016 Nat. Phys. 13 350
[258] Yang X, Burch K and Ran Y 2017 arXiv:1712.09363
[259] Kooperriik K, Kasinathan D, Efremov D V, Khim S, Borisenko S, Büchner B and van den Brink J 2016 Phys. Rev. B 93 201101
[259] Haubold E et al 2017 Phys. Rev. B 95 241108
[261] Liu J, Wang H, Fang C, Fu L and Qian X 2017 Nano Lett. 17 467–75
[262] Yam C et al 2016 ACS Nano 10 9550–8
[263] Zeng L-H et al 2018 Adv. Funct. Mater. 28 1705970
[264] Wu Y-F, Zhang L, Li C-Z, Zhang Z-S, Liu S, Liao Z-M and Yu D 2018 Adv. Mater. 30 1707547
[265] Dean C R et al 2010 Nat. Nanotechnol. 5 722
[266] Xu J, Sanchez-Yamagishi J, Bulmash D, Jacquod P, Deshpande A, Watanabe K, Taniguchi T, Jarillo-Herrero P and LeRoy B J 2011 Nat. Mater. 10 282
[267] Britnell L et al 2012 Nano Lett. 12 1707–10
[268] Lee G-H et al 2013 ACS Nano 7 7931–6
[269] Wang X, Zhi L and Müllen K 2008 Nano Lett. 8 323–7
[270] Kim K S, Zhao Y, Jiang H, Lee S Y, Kim J M, Kim K S, Ahn J-H, Kim P, Choi J-Y and Hong B H 2009 Nature 457 706
[271] Xiao D, Liu G-B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[272] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 496
[273] Male K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[274] Hong X, Kim J, Shi S-E, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y and Wang F 2014 Nat. Nanotechnol. 9 682
[275] Rivera P, Seyller K L, Yu H, Schablrey J R, Yan J, Mandrus D G, Yao W and Xu X 2016 Science 351 688
[276] Gong C et al 2017 Nature 546 265
[277] Huang B et al 2017 Nature 546 270
[278] Zhong D et al 2017 Sci. Adv. 3 e1603113
[279] Teng M and Balents L 2012 Phys. Rev. B 86 054504
[280] Sato M and Fujimoto S 2016 J. Phys. Soc. Japan 85 072201
[281] Matasoshi S and Voichi A 2017 Rep. Prog. Phys. 80 076501
[282] Rajamathi C R et al 2017 Adv. Mater. 29 1606202
[283] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nature. Nat. Mater. 14 280
[284] Shekhar C et al 2015 Nat. Phys. 11 645
[285] Kumar N et al 2017 Nat. Commun. 8 1642
[286] Shi Z, Wang M and Wu J 2015 Appl. Phys. Lett. 107 102403
[287] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2013 Rev. Mod. Phys. 87 1213–69