In Silico Analysis of miRNA-mediated ceRNAs as Potential Molecular Biomarkers in Glioblastoma

Orcun Avsar

1 Department of Molecular Biology and Genetics, Faculty of Science and Art, Hitit University, Corum, Turkey

Received: 14.04.2021; Revised: 04.08.2021; Accepted: 12.08.2021

Abstract

Objectives: Glioblastoma multiforme (GBM) is defined as the most frequent and lethal form of the primary brain tumors in the central nervous system (CNS) in adults. Recent studies have focused on the identification of the new targets for the diagnosis and treatment of GBM and resulted in great interest for miRNAs due to their regulatory effects in cancer pathogenesis. Thus, we aimed to characterize novel molecular biomarkers for GBM by computational analysis.

Methods: 118 miRNAs that are clinically related with glioblastoma and proven by experimentally were exported through miRTarBase database. 1016 genes projected by these 118 miRNAs were determined via ComiR database. Subsequently, the genes with transcribed ultraconserved regions (T-UCRs) in their exonic regions were designated and the genes which have potential competing endogenous RNA (ceRNA) activities were extracted. Genes with remarkable expression profile differences between glioblastoma and normal brain tissues among ceRNAs that are associated with glioblastoma involving T-UCR were identified.

Results: The statistical analysis of the correlation between PBX3 and NRXN3 genes and glioblastoma was carried out by Spearman correlation test. PBX3 and NRXN3 expression was significantly higher and lower in glioblastoma than in normal brain tissues, respectively. On the other hand, the other genes did not have any remarkable differential expression pattern.

Conclusion: Based on the findings of the current study, it is determined that NRXN3 acts as a tumor suppressor gene and NRXN3 gene is downregulated in GBM. PBX3 gene functions as an oncogene and is upregulated in GBM.

Keywords: Glioblastoma, GBM, miRNA, ceRNA, T-UCR.

DOI: 10.5798/dicletip.987908

Correspondence / Yazışma Adresi: Orcun Avsar, Department of Molecular Biology and Genetics, Faculty of Science and Art, Hitit University, Corum, Turkey e-mail: orcunavsar.gen@gmail.com
Glioblastomada Potansiyel Moleküler Biyobelirteçler Olarak miRNA Aracılı ceRNA'ların İn Siliko Analizi

Öz
Glioblastoma multiforme (GBM), yetişkinlerde santral sinir sistemi (SSS)'ndeki primer beyin tümörlerinin en sık görülen ve en öldürücü tipi olarak tanımlanmaktadır. Ön yıllardaki çalışmalar, GBM'ın teşhisi ve tedavisi için yeni hedeflerin tanımlanmasına odaklanmış ve kanser patogenezindeki düzenleyici etkileri nedeniyle miRNA'lara büyük ilgi uygandırmıştır. Bu nedenle, bu çalışmada GBM için yeni moleküler biyobelirteçlerin hesaplamalı analizlerle tanımlanması amaçlanmıştır.

Yöntemler: Glioblastoma ile klinik olarak ilişkili olan ve deneysel olarak kanıtlanmış 118 miRNA, miRTarBase veri tabanından elde edildi. Elde edilen 118 miRNA tarafından hedeflenen 1016 gen ComiR veri tabanı aracılığıyla belirlendi. Akabinde, ekzonik bölgelerinde transkribe edilmiş ultra-korunmuş bölgelere (T-UCR) sahip genler belirlendi ve potansiyel olarak endojen rekabetçi RNA (ceRNA) aktivitelerine sahip olan genler ekstrakte edildi. T-UCR içeren glioblastoma ile ilişkili ceRNA'lar arasında glioblastoma ve normal beyin dokuları arasında önemli ekspresyon profili farklılıklarına sahip genler tanımlandı.

Bulgular: PBX3 ve NRXN3 genleri ile glioblastoma arasındaki korelasyonun istatistiksel analizi Spearman koralasyon testi ile gerçekleştirildi. Normal beyin dokularına göre glioblastomada PBX3 gen ekspresyonu daha yüksekti iken NRXN3 gen ekspresyonu daha düşüktü. Diğer taraftan, diğer genler anlamlı farklılık gösteren ekspresyon paternine sahip değildi.

Sonuç: Mevcut çalışmaların bulgularına göre, NRXN3 geninin tümör baskılayıcı olarak işlev gördüğü ve GBM'de downregüle edildiği ve PBX3 geninin onkogen olarak görev aldığı ve GBM'de upregulated olduğu belirlendi.

Anahtar kelimeler: Glioblastoma, GBM, miRNA, ceRNA, T-UCR.

INTRODUCTION

Glioblastoma is classified as primary glioblastoma multiforme (GBM) which is seen in 80% of cases with the onset approximately at age 62, and secondary GBM which is derived from oligodendrogliomas or astrocytomas with the onset at age 45 on average. GBM is defined as the most frequent and lethal form of the primary brain tumors in the central nervous system (CNS) in adults and classified as Grade IV by the World Health Organization. Approximately 1/3 of primary brain tumors is glioblastoma multiforme. The diagnosis and treatment of GBM is challenging and treatment options have not altered over many years even its high frequency.

MicroRNAs (miRNAs) that are non-coding and short (18-22 nucleotides) RNA molecules are expressed in the cells of many organisms. miRNAs modulate gene and protein expression by degrading target mRNA or blocking translation. Thousands of miRNA genes have been designated in the genomes of many organisms such as plants, animals. Approximately 60% of the human genome and nearly every gene clusters are estimated to be regulated by miRNAs. MicroRNAs are key players of numerous biological functions and disruption of the function of miRNAs cause to many diseases such as cancer and neuropsychiatric diseases. Moreover, in recent years, miRNA regulation of physiology of cells, miRNA therapeutics, xenomiRs, and miRNA biomarkers have been receiving a great deal of attention by researchers.
repressive action of miRNA is deactivated by “ceRNAs” or “miRNA sponges”. The ceRNAs which have many MREs for a miRNA show multiple interactions and it is resulted with a complex regulatory network. Dysregulation of ceRNA network leads to various human diseases such as cancer. ceRNAs are key players of carcinogenesis and molecular pathways are affected by ceRNA interactions. Hence, underlying molecular mechanisms of cancer may be elucidated by the analysis of ceRNAs6,7.

Ultra-conserved regions (UCRs) are non-coding DNA sequences and conserved among mice, rats, and human beings. UCRs were discovered in mice, rats, and human genomes by bioinformatics tools in 2004. More than 90% of ultra-conserved regions are transcribed (T-UCRs) in normal tissues and are modulated at the level of transcription in carcinogenesis. The expression levels of T-UCRs have tissue-specific pattern. Recent studies conducted with genome-wide expression profiling approach have demonstrated that T-UCRs show divergent profiles in various cancer types and support their roles in tumorigenesis8.

One of the most aggressive cancers, glioblastoma is challenging for treatment. Recent studies have focused on the determination of the new targets for the diagnosis and treatment of GBM and resulted in great interest for miRNAs due to their regulatory effects in normal conditions and cancer pathogenesis. According to the properties of miRNAs, it is aimed to identify novel molecular biomarkers for GBM by in silico analysis in this study.

METHODS

miRNA selection

First of all, the miRNAs that are implicated in the pathogenesis of glioblastoma were selected. In this regard, one hundred and eighteen miRNAs that are clinically related with glioblastoma and proven by experimentally were exported through miRTarBase database. Extensive information about experimentally verified miRNA-target interactions was obtained from the miRTarBase database. Scientists can apply for the database in order to confirm novel targets of miRNA9,10.

miRNA-mediated ceRNAs analysis

One thousand sixteen genes projected by these one hundred and eighteen miRNAs were determined using the ComiR database. The genes with ComiR score greater than 0.8685 were taken into account in this study. ComiR is an online web server for combinatorial miRNA target estimation and has a free access for academic users. ComiR estimates the potential of being targeted by a group of microRNAs for a mRNA in fly, mouse, worm or human genomes and each one may have zero, one or more targets on its 3'UTR. In identification the modulator potential of a mRNA from a cluster of miRNAs, ComiR uses the levels of miRNA expression which are provided by the users in a combination of relevant machine learning techniques and thermodynamic modeling in order to make more certain estimations. For each gene, the tool indicates the possibility of being functional target of a group of miRNAs according to the relative miRNA expression levels10-12. It is expected that RNA transcripts of the given genes have potential ceRNA activities for the microRNAs and this regulation may occur via miRNA-sponging mechanism13.

Matching of ceRNAs with the genes containing T-UCR

Ultra-conserved regions (UCRs) in the human genome were determined by Bejerano et al.14. The genes involving these regions classified as downstream, upstream, and exonic based on the localization within the gene14. In this study, the genes with T-UCR in their exonic regions were designated and the genes which have potential ceRNA activities were extracted in the previous analysis.
Analysis of differential gene expression between glioblastoma and normal brain tissues

The genes with remarkable expression differences between brain tissue and glioblastoma multiforme from glioblastoma-associated ceRNAs involving T-UCR were designated via Gene Expression Profiling Interactive Analysis (GEPIA) database10,12. GEPIA that is user-friendly web tool delivers normal and cancer gene expression and interactive analysis data15.

Analysis of the correlation between PBX3 and NRXN3 genes in glioblastoma

Analysis of differential gene expression ensures to find the tumor-specific genes by comparing normal and tumor groups10,12. The statistical analysis of the relationship between PBX3 and NRXN3 genes and glioblastoma was carried out by the use of Spearman correlation test.

\textbf{RESULTS}

In the current study, one hundred and eighteen miRNAs that are clinically associated with glioblastoma and proven by experimentally by the use of miRTarBase database are shown in Table I. One thousand sixteen genes that are simultaneously targeted by these 118 miRNAs were shown in supplementary I. The genes with ComiR score greater than 0.8685 were taken into account in this study. The genes which include T-UCR in exons based on the study of Bejerano et al.14 was determined and afterwards, the ones which have potential ceRNA activities were extracted and are shown in Table II.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|}
\hline
Gene ID & ComiR equal abundance score \tabularnewline
\hline
SCYL3 & 0.9157 \tabularnewline
LASP1 & 0.914 \tabularnewline
CFLAR & 0.9162 \tabularnewline
SARM1 & 0.8693 \tabularnewline
FKBP4 & 0.9142 \tabularnewline
THSD7A & 0.8691 \tabularnewline
KMT2E & 0.8685 \tabularnewline
ZNF263 & 0.9143 \tabularnewline
MAP3K9 & 0.916 \tabularnewline
TTC22 & 0.9112 \tabularnewline
GAS7 & 0.9159 \tabularnewline
E2F2 & 0.9151 \tabularnewline
CDKL5 & 0.8693 \tabularnewline
ST3GAL1 & 0.8685 \tabularnewline
REV3L & 0.9225 \tabularnewline
IDS & 0.8685 \tabularnewline
ZNF200 & 0.9121 \tabularnewline
LRRC23 & 0.9112 \tabularnewline
HFE & 0.8686 \tabularnewline
SLC7A14 & 0.8689 \tabularnewline
NUDCD3 & 0.8692 \tabularnewline
IGF1 & 0.8691 \tabularnewline
PRDM11 & 0.9222 \tabularnewline
NRXN3 & 0.8686 \tabularnewline
SLC45A4 & 0.9155 \tabularnewline
GRAMD1B & 0.8689 \tabularnewline
NDUFS1 & 0.8695 \tabularnewline
KPNA6 & 0.8688 \tabularnewline
AGPAT4 & 0.8692 \tabularnewline
POU2F2 & 0.9223 \tabularnewline
SNX1 & 0.8694 \tabularnewline
IKZF2 & 0.9157 \tabularnewline
UBA6 & 0.869 \tabularnewline
GAB2 & 0.9137 \tabularnewline
DAPK2 & 0.869 \tabularnewline
ADAM28 & 0.9155 \tabularnewline
HDAC9 & 0.9155 \tabularnewline
SNX29 & 0.8691 \tabularnewline
RSF1 & 0.8691 \tabularnewline
ADAMTS6 & 0.9156 \tabularnewline
H6PD & 0.8693 \tabularnewline
NEDD4L & 0.8688 \tabularnewline
KIAA2022 & 0.8689 \tabularnewline
HEBP2 & 0.8695 \tabularnewline
MPHOSPH9 & 0.9133 \tabularnewline
SIKE1 & 0.8689 \tabularnewline
FOXN3 & 0.869 \tabularnewline
AP5M1 & 0.9226 \tabularnewline
EIF2AK2 & 0.8695 \tabularnewline
KMT2C & 0.8697 \tabularnewline
ATP2B4 & 0.9146 \tabularnewline
RIOK2 & 0.9133 \tabularnewline
BCAT1 & 0.8693 \tabularnewline
MON2 & 0.9224 \tabularnewline
EPN1 & 0.9162 \tabularnewline
ZNF275 & 0.9153 \tabularnewline
HIPK2 & 0.8695 \tabularnewline
UHRF1BP1 & 0.8686 \tabularnewline
GNAI3 & 0.9162 \tabularnewline
WDR3 & 0.9224 \tabularnewline
\hline
\end{tabular}
\caption{The genes targeted by these 118 glioblastoma-associated miRNAs simultaneously.}
\end{table}
Gene	Value				
PKN2	0.9145				
SLK	0.9144				
MTHFD2	0.9148				
SLC9A7	0.8691				
CD84	0.8694				
ATXN3	0.9237				
DNTTIP2	0.9149				
RRP15	0.869				
ROCK1	0.8689				
PSME4	0.9155				
NEDD4	0.8691				
GNB5	0.9159				
PTPN3	0.9152				
EXOC5	0.9159				
RAD18	0.8685				
MGA74A	0.8688				
ZFYVE26	0.9223				
RPS6KA6	0.8693				
SMC1A	0.9234				
CHFR	0.8694				
TRHDE	0.9161				
P4HA2	0.9114				
IGF2BP2	0.9128				
MGLL	0.9145				
IPCF1	0.869				
ADD2	0.8693				
RASAL2	0.9162				
ZNF37A	0.8688				
FNDIC3B	0.9155				
WDR62	0.8688				
BCAP29	0.9151				
SEC31B	0.9151				
RBM7	0.8689				
RBMS2	0.8694				
PLXNA2	0.869				
PAG1	0.8686				
MBNL3	0.9162				
PPP1R12B	0.8696				
DNAJC10	0.9162				
DCX	0.9159				
ACER3	0.8687				
PIK3C3	0.8685				
N4BP2	0.8691				
RUNX1T1	0.8687				
RIF1	0.8694				
RAB21	0.8696				
CDH7	0.9161				
MEF2C	0.9134				
BZW1	0.9119				
PGR	0.8695				
FAM135A	0.9158				
ERC1	0.8687				
XP01	0.869				
LYRM2	0.9157				
ZNF264	0.9162				
SSH1	0.8696				
MAP3K4	0.9134				
PTPN4	0.8687				
C20orf194	0.9145				
MAVS	0.8696				
NOS1	0.8689				
ZBTB25	0.9161				
ARHGAP4	0.9143				
GPATCH2L	0.9162				
PCBP4	0.9199				
ZNF268	0.9224				
PDPR	0.8686				
TNRC6A	0.8695				
DTX2	0.9096				
RGS17	0.8685				
SNAP23	0.9116				
AGO1	0.9162				
GPATCH2	0.9156				
ECHDC1	0.9118				
CBX5	0.9226				
FKBPF5	0.8692				
CDC5L	0.9142				
CDC34	0.9106				
MTAP	0.9157				
CECR2	0.915				
DDTL	0.9106				
MAPK1	0.8695				
ADRBK2	0.8692				
TIP111	0.91				
RBFOX2	0.8688				
MTMR3	0.8687				
MIEF1	0.9142				
KIAA0930	0.9151				
DDH1	0.9162				
VTI1B	0.8685				
SPTLC2	0.8688				
GALNT16	0.9152				
DICER1	0.9155				
ZC3H14	0.9162				
KIAA0391	0.9219				
SLC52A3	0.9124				
ST8SIA5	0.8695				
CEP192	0.8693				
RNMT	0.9154				
LIPG	0.8695				
ANKRD12	0.915				
MIB1	0.915				
PGRMC1	0.9103				
ALG13	0.9151				
PORCN	0.9126				
KLF8	0.9149				
FGF14	0.9161				
FNDIC3A	0.915				
STK24	0.9235				
KATNAL1	0.9152				
INTS6	0.8696				
NFA57	0.8696				
LONP2	0.8687				
Gene	Score	Gene	Score	Gene	Score
--------	-------	--------	-------	--------	-------
CCDC113	0.9147	INTS2	0.9114	KLHL24	0.9152
SLC7A6	0.9157	LUC7L3	0.8688	INO80D	0.8696
ESRP2	0.9134	GABRA4	0.8695	TTL	0.9161
MLYCD	0.8694	CLNK	0.9142	TFCP2L1	0.8693
GSPT1	0.8689	CTSC	0.869	DNAJC27	0.8685
GGA2	0.9152	DTX4	0.9148	APC2	0.9142
XYLTI1	0.8694	CCND1	0.9122	TTC31	0.9139
HOMER2	0.916	CBL	0.9161	PAPOLG	0.8685
EHD4	0.8687	CASX	0.913	ELMOD3	0.9131
ATP8B4	0.8687	SOX6	0.8691	GCCX	0.8692
DTWD1	0.8696	CAPRIN2	0.9159	ZNF142	0.8691
SLC30A4	0.8686	DUSP16	0.9143	HDLBP	0.9124
MYEF2	0.8689	C12orf49	0.8694	PLCL1	0.8692
FZD3	0.9226	TBC1D30	0.9156	KYNU	0.8696
UBE2W	0.9161	CNOT2	0.9129	AAK1	0.9162
TUBB4A	0.9126	KRR1	0.869	ARID3A	0.9209
AKAP8	0.9139	ST8SIA1	0.869	PLEKHA3	0.9237
AVL9	0.8687	FRK	0.8696	TNR	0.8694
CDK6	0.8694	SOD2	0.8692	GPX7	0.9113
ITGB8	0.869	RNF8	0.8687	KCNC4	0.8697
TTC26	0.914	ZNF451	0.8694	MEF2D	0.9156
TFEC	0.8685	ASCC3	0.9139	C1orf21	0.9162
HOXA1	0.9116	KIAA1244	0.8694	TROVE2	0.9155
PLEKHA8	0.9158	SLC16A10	0.9225	MTR	0.8691
API51	0.9112	IMPG1	0.869	RIMS3	0.869
C1GALT1	0.8688	GHR	0.9153	AKT3	0.8688
TMEM106B	0.8696	COL4A3BP	0.9149	CTBS	0.8688
FKTN	0.9224	PRLR	0.9225	TMED5	0.8686
TGFBR1	0.915	SKP1	0.9161	DR1	0.8695
AKNA	0.9146	CPEB4	0.9146	PTBP2	0.8696
KCNT1	0.9222	KPNA1	0.9156	DIEXF	0.8693
RGP1	0.8686	UBE3A	0.9221	SLC5A9	0.9113
ABCA2	0.8685	XRN1	0.9154	SGIP1	0.8688
CCNJ	0.9133	BBX	0.9159	ADGB	0.916
PLEKHA1	0.8696	KIAA1257	0.8685	MED28	0.9162
BMPR1A	0.916	HEMK1	0.9241	SLC16A7	0.8696
CPEB3	0.9158	ACRVR2B	0.9161	DCLRE1B	0.9138
FBXL20	0.8695	ABCC5	0.9144	CCND2	0.9222
Gene	Value	Gene	Value	Gene	Value
--------	-------	--------	-------	--------	-------
CYP20A1	0.8695	POLR1B	0.9153	LRRC41	0.9107
TRPM6	0.9135	THOC2	0.9141	ENOSF1	0.9147
TRIM67	0.9157	MED1	0.8686	GRSF1	0.8688
FBXW2	0.9161	GPCPD1	0.915	PCBD2	0.869
RBM18	0.8686	TMX4	0.9152	SCO1	0.8693
ONECUT2	0.9241	AP5S1	0.9155	STARD13	0.9137
YLPM1	0.9152	MKKS	0.9155	LARGE	0.8687
NEK9	0.9154	RALY	0.9223	MYO18B	0.8687
DNA1	0.8693	CEP250	0.916	FAM83F	0.8697
NRDE2	0.8695	AMOT	0.9155	MBD2	0.9218
ZNF410	0.9126	AGO3	0.9226	WNT2B	0.916
YIPF4	0.8695	THRA	0.9143	MYCN	0.9119
FAM178A	0.9146	PCNXL4	0.9162	CRB1	0.9223
HELLS	0.9155	MASP1	0.915	KLRD1	0.9237
MOB3B	0.869	HELB	0.9161	AGO4	0.9153
B4GALT4	0.8686	RAP1B	0.8696	BTF3L4	0.8685
ACVR2A	0.9152	RAB3IP	0.8691	DAGLA	0.9156
ODF2L	0.8685	PTPRB	0.869	FADS2	0.9131
ZNF644	0.9106	DYRK2	0.9158	CLOCK	0.9159
SEPT7	0.8689	ZNF835	0.9126	DZIP1	0.8685
CHST3	0.915	HIP1	0.8688	MTO1	0.9161
SLC25A16	0.8686	FOXP2	0.9224	ZC3H10	0.8693
SPRYD7	0.9117	MKLN1	0.9161	CD164	0.914
NLN	0.9219	TMOD2	0.8693	REPS1	0.8687
ATPAF1	0.9145	ICE2	0.9158	USP15	0.8696
ACVR1C	0.8687	ARPP19	0.869	CPM	0.8689
LPGAT1	0.9224	CALML4	0.9137	KIAA0513	0.8693
PARD6B	0.9151	KCNC1	0.8689	SLC9A5	0.9149
RAB22A	0.8691	PRRG3	0.8685	RC3H1	0.8692
BCS4	0.8689	ATP8B3	0.9158	TTL4	0.9121
STAMB satin	0.8687	DDA1	0.9155	ALDH1L2	0.9158
HIF3A	0.9155	TULP4	0.8689	USP44	0.9192
NQO2	0.916	PXDN	0.9132	SLC41A2	0.9146
ATXN1	0.8694	PGPEP1	0.9156	ALPK3	0.8687
SH3TC1	0.9219	ZNF557	0.8687	LIMD2	0.9224
ATP5S	0.9225	ZNF341	0.9215	KAT7	0.8695
GGA3	0.9154	NFATC1	0.9121	SKIL	0.922
GTF3C4	0.8688	RAB11FIP4	0.9154	UGGT1	0.9157
Gene	Score				
-----------	-------				
ARHGGEF39	0.9131				
YIPF3	0.9113				
SLC22A23	0.8688				
TAF8	0.9159				
CPEB2	0.9205				
RAB30	0.8694				
SLCOSA1	0.9155				
TMPRSS4	0.8686				
UNCI3C	0.9159				
CTDSPL2	0.9151				
THBS1	0.8687				
ITGA11	0.9223				
ADAM10	0.8695				
TTTL7	0.869				
IFI44L	0.9152				
ADAMTS14	0.9123				
SSFA2	0.9157				
ABI2	0.8697				
PARP9	0.9151				
CNOT6L	0.8689				
KIAA1644	0.922				
NDUFA9	0.8686				
TARBP2	0.9126				
ACVRL1	0.913				
ANKRD52	0.9234				
ZNF740	0.9158				
WDFY2	0.8691				
NOVA1	0.9159				
SYT16	0.8696				
SLC38A6	0.9145				
NAA30	0.9234				
RAB15	0.9215				
TSPAN3	0.9159				
IGF1R	0.9224				
ABHD2	0.8693				
NTRK3	0.9226				
DET1	0.9138				
ZNF710	0.9147				
FTO	0.9161				
NKD1	0.8691				
GFOD2	0.9156				
PCTP	0.9129				
GNAL	0.8685				
C18orf21	0.9084				
GALNT1	0.9129				
GAREM	0.8685				
TPS3	0.913				
TBCD	0.9108				
TRIM65	0.9114				
RNF165	0.9161				
WTIP	0.8695				
POU2F1	0.9237				
ABL2	0.916				
RGS16	0.9116				
LHX9	0.9155				
SNX27	0.8693				
GABPB2	0.916				
SYT14	0.8691				
ACP1	0.9116				
PLEKHA6	0.9156				
PTPN7	0.9114				
SYT2	0.8691				
TEX261	0.9145				
ZC3H8	0.9158				
KIAA1715	0.8692				
GULP1	0.869				
SPAG16	0.922				
LIMD1	0.9161				
ZNF660	0.9158				
MUC4	0.9146				
TBCK	0.869				
SPATA5	0.8689				
METTL14	0.9157				
USP53	0.9148				
UGT3A1	0.9154				
SSBP2	0.869				
PPIP5K2	0.8696				
BDP1	0.9145				
TNFAIP8	0.9159				
ATG12	0.9151				
ARHGAP26	0.8693				
PCOXY1L	0.9138				
G3BP1	0.869				
GFO1D1	0.8691				
IRAK1BP1	0.8687				
MMS22L	0.9155				
FAXC	0.8694				
CLVS2	0.8695				
RNF217	0.9225				
SHPRH	0.8695				
PURB	0.8691				
CASK	0.8691				
KDM6A	0.9143				
DIAPH2	0.916				
FAM135B	0.9154				
VLDLR	0.916				
UGCC	0.9136				
SNX30	0.9221				
NR6A1	0.9237				
A1CF	0.9225				
EIF4EBP2	0.8688				
CNNM2	0.8696				
INTS4	0.9135				
SOGA1	0.8695				
PCDH15	0.8689				
CDH8	0.9154				
LPHN3	0.916				
PDCD4	0.913				
CD226	0.8696				
FREM2	0.8691				
DCP1B	0.9121				
THR8	0.8689				
GXYLT1	0.9158				
AKAP6	0.9161				
Gene	Score				
--------	-------				
THRSP	0.9104				
ADAMTS12	0.9151				
C4orf33	0.8689				
WWC2	0.8686				
GABRA2	0.8688				
GFRA1	0.8695				
CACUL1	0.8694				
RABGAP1L	0.8687				
PTPN14	0.8694				
EPG5	0.8689				
ATP5A1	0.8686				
GUCY1A2	0.9226				
ZNF773	0.8692				
FARP1	0.9157				
ZNF117	0.8685				
SREK1P1	0.9223				
SMARCA5	0.8685				
RANBP2	0.9117				
ASAP1	0.9222				
PTPRD	0.9149				
CNKSR3	0.9237				
SREK1	0.8686				
HS2ST1	0.869				
MSI2	0.8689				
CHST9	0.9162				
OTULIN	0.8685				
LRRK1	0.9162				
ENAH	0.9161				
GPR26	0.8691				
ADAMTS5	0.8688				
PIEZ2O2	0.8687				
APOOL	0.869				
ATP6V1C1	0.9151				
PDZD9	0.9115				
PPARGC1B	0.9224				
LSM11	0.8689				
AFF2	0.8693				
PSD3	0.8694				
MMP16	0.8693				
BACH1	0.9127				
ANKR09	0.8686				
UQCRB	0.8688				
AIFM1	0.9129				
FBX032	0.8689				
B3GNT7	0.9134				
ATP2B2	0.8685				
STEAP2	0.8689				
HYDIN	0.9151				
MYO1E	0.8687				
KCNJ6	0.8696				
TSPAN18	0.9152				
DGKI	0.8696				
UBN2	0.8695				
BRAF	0.8693				
AP3S2	0.8688				
WIP12	0.9142				
PAFAH2	0.914				
XKR8	0.9115				
EYA3	0.8687				
CLSTN2	0.8696				
PPP1R15B	0.9142				
AGPAT6	0.9151				
ELK4	0.9161				
TNN11	0.869				
IGF2BP1	0.9235				
SCUBE1	0.8692				
STARD9	0.9204				
ACE	0.9124				
BSDC1	0.9125				
ZBTB8A	0.869				
ZNF362	0.9125				
TRAPP10	0.8685				
ICOSL6	0.9152				
TAO1K1	0.8691				
MFSD12	0.9099				
PLXDC1	0.8686				
IKZF3	0.9161				
ACOX1	0.8688				
TMEM143	0.9099				
FNNL3	0.9162				
TREML1	0.9102				
CNF	0.9226				
PRKAA2	0.8693				
CTRC	0.9147				
RBBP4	0.916				
UBXN10	0.8686				
NFIA	0.8693				
ZNF326	0.8693				
SLC30A7	0.8689				
VANGL2	0.914				
ACP6	0.9234				
WDR26	0.8686				
REL	0.9162				
DISC1	0.8688				
FAM84A	0.869				
DUSP19	0.8685				
SMARCA1	0.9141				
EOGT	0.9132				
EIF4E3	0.8694				
LRRCS8	0.8692				
CCD141	0.8686				
ICA1L	0.8692				
RYBP	0.9155				
RPP14	0.8692				
RBM47	0.9146				
APBB2	0.9158				
TTC14	0.9158				
SENP2	0.9151				
IFT122	0.9153				
SFMBT1	0.9111				
CDC25A	0.9184				
INTU	0.8696				
RNFI23	0.9139				
MFSD8	0.9144				
Gene	Value				
--------	-------				
WDR41	0.9142				
GPX8	0.9147				
RICTOR	0.8692				
DCBLD1	0.9118				
KIF6	0.8685				
USP49	0.8692				
DLC1	0.913				
ADCY1	0.8694				
TP53INP1	0.8685				
KIAA1958	0.9225				
STRBP	0.9147				
HDX	0.9151				
BRWD3	0.8685				
SLITRK5	0.9226				
CFL2	0.8691				
SUGT1	0.9162				
PGM2L1	0.9154				
SLC16A9	0.9141				
AMER2	0.8695				
PDXD8	0.8692				
FAM204A	0.8696				
CLEC1B	0.9142				
FUNDC2	0.8689				
AGBL2	0.919				
CPSF2	0.9162				
ARL5B	0.8689				
ADAMTS15	0.9135				
HIF1AN	0.9226				
SPINT1	0.9096				
ARIH1	0.9237				
SYNP02L	0.9135				
TRIM44	0.8696				
TPP1	0.9134				
TRIM66	0.8692				
PRTG	0.9225				
PKD1L2	0.9138				
NA	0.9224				
TMED3	0.8696				

Gene	Value
GALR1	0.9161
TVP23A	0.9143
SLFN5	0.8689
GREM1	0.8696
SGS1M	0.9145
PBX3	0.9124
FBXO22	0.9162
IRGQ	0.916
ZNF226	0.9155
ANKRD11	0.8691
ZNF641	0.9223
TTYH1	0.9213
MAPK1P1	0.9159
POLR3D	0.9216
FAM84B	0.9151
TET2	0.9152
ANKRD49	0.914
IRS1	0.8688
MECP2	0.8692
RAB3B	0.8696
SH3TC2	0.8694
SHE	0.8688
PTAFR	0.9212
HIC2	0.923
TOR1AI	0.8691
MAP3K2	0.869
Gene	Score
--------	-------
TMEM167A	0.8687
SH3PXD2B	0.8687
C4orf32	0.8692
FZD4	0.8685
PDE12	0.916
CAS1A	0.916
VCPIP1	0.8691
YPEL2	0.915
CADM2	0.869
SMAD2	0.9162
EIF3F	0.9155
ALG10B	0.8695
RPS6KB2	0.9185
MLXIP	0.9157
SLC35E3	0.8696
ZDHHC21	0.8694
JAKMIP2	0.8689
SPRYD4	0.9162
RNF152	0.916
ZNF843	0.9137
MTX3	0.9153
SLC38A9	0.9127
POLE	0.8693
SCN4B	0.9146
RIMKLA	0.8691
RPS6KA3	0.9153
HIC1	0.915
PAWR	0.9159
MIEF2	0.9133
SAMD12	0.916
IL17RA	0.8687
ARL6IP6	0.9131
AMER3	0.9146
NT5DC1	0.8689
CSRNNP3	0.8693
PXT1	0.9124
CLK3	0.8696
ARID3B	0.9221

Gene	Score
C14orf28	0.9215
ZNF154	0.8686
SOCS4	0.9221
FGD6	0.869
PLD5	0.9159
ZNF609	0.869
TSPYL5	0.9146
YOD1	0.9146
GPR157	0.9144
LRRC57	0.916
AEN	0.9132
NME9	0.9126
ZNF678	0.922
RFX7	0.869
RNF41	0.8688
RTKN2	0.8685
MGAT4C	0.8697
CREB3L2	0.9159
RGMA	0.8695
HHIPL1	0.9156
FIGN	0.9237
PLCXD1	0.9155
MXRA7	0.9158
PAPPA	0.9223
C16orf72	0.9224
PLCXD3	0.9156
CEP63	0.9151
GJC1	0.9157
CALN1	0.8694
POTEC	0.9218
ZNF623	0.8688
MACC1	0.8686
KREME1N	0.9154
KCTD16	0.8695
B3GALT5	0.9162
TMPRSS2	0.9123
FAM120C	0.8688
GOLGA6L4	0.9143
PCDH9	0.9162
SDR42E1	0.9225
FLRT2	0.9162
FAM43A	0.9107
PURA	0.8695
ZBTB37	0.9237
TNFAIP8L1	0.9139
RADD	0.8695
IFNH1	0.9145
BRCC3	0.9122
LSAMP	0.8693
LMLN	0.9158
PBX1	0.9158
C16orf52	0.9146
YTHDF3	0.8686
PIGP	0.8693
IKZF1	0.8687
PTCH1	0.9161
CYP2R1	0.9128
MARC1	0.8688
ZNF555	0.8686
KPHA4	0.9225
FSD2	0.8686
PPARA	0.9161
NAPI1	0.9226
SESTD1	0.8691
TET3	0.9221
LIN28B	0.9235
TMEM256-PLSCR3	0.9117
FAM122A	0.9151
SHISA7	0.8688
ZC3H6	0.9161
NCR3LG1	0.869
ZNF793	0.8685
ZNF383	0.8689
CENPP	0.8687
RALGAPA2	0.9144
Gene	Expression
-----------	------------
ASAHI2	0.9151
PTAR1	0.9224
PARVB	0.8688
VWC2	0.8694
SNTN	0.9217
BEND4	0.916
NA	0.9137
PPTLAD2	0.9225
KCTD21	0.9122
NDUFA4	0.9197
FAM179A	0.9159
PTPRT	0.9158
PLEKHG4	0.8685
RYR1	0.8686
SRGAP3	0.9157
LCOR	0.8691
FUT4	0.8685
ZNF774	0.8692
ZNF765	0.9225
TSC22D2	0.869
ZNF605	0.8693
IPO4	0.9148
GDAP2	0.9224
TPK1	0.9138
MAN2A2	0.9145
HDAC2	0.869
SLC22A25	0.9138
WNK3	0.8687
ZKSCAN5	0.8685
TECPR2	0.9152
ZNF512B	0.9213
ZNF431	0.9225
NF1	0.8687
COL27A1	0.9144
POTE1	0.9142
NHLRC2	0.9162
FLNA	0.8692
SRGAP1	0.9226
LRRC8B	0.8688
NOL4L	0.8686
C6orf141	0.9121
DDI2	0.8689
TRIM33	0.8685
LRP10	0.9151
CDC42SE1	0.9144
EME2	0.915
ZNF81	0.8687
ERO1L	0.9154
MBP	0.8694
ZNF248	0.9149
MRPL42	0.8696
ZNF26	0.8696
ZNF528	0.9158
MDM4	0.9162
IP09	0.9158
SLC5A3	0.8693
CN0T7	0.8691
LRIG2	0.8695
MAP3K3	0.9135
ATG9A	0.9146
EFCAB2	0.8689
CHIC1	0.9155
PHACTR4	0.9148
PBX2	0.9108
FAM155A	0.8692
PSORS1C2	0.9099
FBXO48	0.8689
PCDHA4	0.9224
TRIM13	0.9158
SLC35B4	0.915
ZBTB10	0.9158
TMEM170B	0.8689
GPR56	0.9148
C15orf59	0.9153
C5orf51	0.9156
ONECUT3	0.9158
NYNRIN	0.9194
ATP10A	0.8686
PBX2	0.9108
PSORS1C2	0.9105
VGLL3	0.8695
METTL6	0.9151
XKR4	0.9162
PRR22	0.9135
C17orf51	0.869
FGFR10P	0.8696
GIMAP1	0.9148
NRAS	0.915
SYNJ2BP	0.916
LEPROT	0.8687
RPS29	0.8691
ZNF891	0.9226
VSTM5	0.9139
PEX26	0.9237
SIAH3	0.9158
CCDC7	0.9141
PLXNA4	0.916
APOL6	0.8693
PBX2	0.9108
PSORS1C2	0.9105
PBX2	0.9108
PSORS1C2	0.9105
KIAA0040	0.8685
PBX2	0.9108
Table I: miRNAs implicated in the pathogenesis of glioblastoma.

Gene	Value	Gene	Value	Gene	Value
ARHGEF38	0.9146	ZNF432	0.9142	TRABD2B	0.8689
TMEM189	0.8693	CUX1	0.8695	SLC25A53	0.8687
ARHGAP8	0.9207	P2RX5-TAX1BP3	0.8686	NUDT3	0.8694
AMACR	0.913	ITGB3	0.9139	GRIN2B	0.9226
PEG10	0.9158	NA	0.9149	ZBTB88	0.9225
NA	0.9113	RBM15B	0.8685	SOCS7	0.8689
MARS2	0.9106	XKR7	0.8688	GOLGA6L9	0.9147
PRR5-ARHGAP8	0.9092	TMEM178B	0.9225	ZNF280B	0.9147
FMN1	0.8694	GAN	0.924	DDTL	0.9107
DNAH100S	0.8686	NA	0.8687	TTYH1	0.9135
PCDHA10	0.8693	NA	0.9139	TTYH1	0.9135
ATXN7L3B	0.9224	C19orfB4	0.9112	NA	0.9141
NA	0.8685	RNF115	0.8695	RBFOX2	0.8688
SOGA3 KIAA0408	0.9224	ZNF850	0.9156	ZNF8	0.9161
NOXS	0.8689	NA	0.9201		

miRNA	Value	miRNA	Value	miRNA	Value	miRNA	Value
hsa-let-7a-1	hsa-mir-137	hsa-mir-181b-2	hsa-mir-21	hsa-mir-30c-1			
hsa-let-7a-2	hsa-mir-139	hsa-mir-181c	hsa-mir-20	hsa-mir-30c-2	hsa-mir-455		
hsa-let-7a-3	hsa-mir-142	hsa-mir-181d	hsa-mir-218-1	hsa-mir-31	hsa-mir-486		
hsa-let-7d	hsa-mir-143	hsa-mir-183	hsa-mir-218-2	hsa-mir-3163	hsa-mir-491		
hsa-mir-101-1	hsa-mir-145	hsa-mir-184	hsa-mir-22	hsa-mir-32	hsa-mir-504		
hsa-mir-101-2	hsa-mir-146a	hsa-mir-18a	hsa-mir-221	hsa-mir-323a	hsa-mir-539		
hsa-mir-106a	hsa-mir-146b	hsa-mir-193a	hsa-mir-222	hsa-mir-32b	hsa-mir-7-1		
hsa-mir-10a	hsa-mir-148a	hsa-mir-195	hsa-mir-224	hsa-mir-326	hsa-mir-7-2		
hsa-mir-10b	hsa-mir-149	hsa-mir-196b	hsa-mir-23b	hsa-mir-328	hsa-mir-7-3		
hsa-mir-124-1	hsa-mir-151a	hsa-mir-19a	hsa-mir-25	hsa-mir-329-1	hsa-mir-708		
hsa-mir-124-2	hsa-mir-153-1	hsa-mir-19b-1	hsa-mir-26a-1	hsa-mir-329-2	hsa-mir-873		
hsa-mir-124-3	hsa-mir-153-2	hsa-mir-19b-2	hsa-mir-26a-2	hsa-mir-342	hsa-mir-885		
hsa-mir-125b-1	hsa-mir-155	hsa-mir-200	hsa-mir-27b	hsa-mir-34a	hsa-mir-9-1		
hsa-mir-125b-2	hsa-mir-15a	hsa-mir-200b	hsa-mir-29a	hsa-mir-367	hsa-mir-9-2		
hsa-mir-1260a	hsa-mir-16-1	hsa-mir-205	hsa-mir-29c	hsa-mir-376a-1	hsa-mir-9-3		
hsa-mir-128-1	hsa-mir-16-2	hsa-mir-206	hsa-mir-302a	hsa-mir-376a-2	hsa-mir-92a-1		
hsa-mir-128-2	hsa-mir-17	hsa-mir-208a	hsa-mir-302b	hsa-mir-381	hsa-mir-92a-2		
hsa-mir-1305	hsa-mir-181a-1	hsa-mir-208b	hsa-mir-302c	hsa-mir-425	hsa-mir-95		
hsa-mir-130a	hsa-mir-181a-2	hsa-mir-20a	hsa-mir-302d	hsa-mir-451a	hsa-mir-99a		
hsa-mir-134	hsa-mir-181b-1	hsa-mir-20b	hsa-mir-30a	hsa-mir-452			
The genes with remarkable expression profile differences between glioblastoma and normal brain tissues among glioblastoma-associated ceRNAs involving T-UCR were defined. Expression of PBX3 gene was significantly higher and NRXN3 gene expression was remarkably lower in glioblastoma than in normal brain tissues according to the current analysis. On the other hand, the other genes did not show any remarkable expression differences (Table III).

Table II: The glioblastoma-associated ceRNAs that match the genes containing T-UCR in the exonic regions.

UCR Number	Length (bp)	Gene Name
uc.378	251	NRXN3
uc.184	230	CPEB4
uc.33	312	PTBP2
uc.414	246	THRA
uc.280	220	PBX3
uc.393	275	CLK3

Table III: Expression values of ceRNAs with T-UCR that are associated with glioblastoma in normal brain tissues and glioblastoma.

Gene ID	Glioblastoma	Normal Brain Tissue
NRXN3*	1.84	18.41
CPEB4	14.04	11.54
PTBP2	12.1	11.96
THRA	99.62	144.88
PBX3*	19.54	3.29
CLK3	32.92	29.86

*shows remarkably differential expression profile between normal brain tissues and glioblastoma

The statistical analysis of the relationship between PBX3 and NRXN3 genes and glioblastoma multiforme was carried out via GEPIA database. It was determined that PBX3 and NRXN3 genes were significantly correlated with glioblastoma based on the Spearman correlation analysis (Figure 1) \(p=0.0014; R=-0.17 \).

![Figure 1](image)

Figure 1: The relationship of NRXN3 and PBX3 genes with glioblastoma.

DISCUSSION

Glioblastoma which is the most frequent and aggressive form of primary malignancies in adult human brains is characterized by tumor heterogeneity, diffuse invasion, drug resistance, and rapid growth. It has been clarified that miRNAs are implicated in tumorigenesis. Moreover, it has been observed that expression levels of miRNAs are differed between pathological and normal tissues. Recent studies have subclassified glioblastoma into five clinically and genetically distinct subtypes according to miRNA expression profiles and it has been supposed that miRNAs are important for the phenotypic characteristics of the subclasses\(^16,17\). The median survival time of patients with GBM is approximately 14 to 16 months despite standard treatment options and there is no cure at present. In recent years,
studies in this field have been focused on the identification of new targets for diagnostics and therapeutics for GBM. It is supposed that detection and quantifying miRNAs in serum and tissues will become a standard tool for diagnosis and prognosis of GBM and have a great potential for personalized treatment strategies18. In this regard, based on the idea that miRNAs are implicated in the pathogenesis of glioblastoma, we aimed to determine novel molecular biomarkers for GBM through \textit{in silico} analysis that uses glioblastoma-specific microRNAs, identifies their combinatorial target genes which have potential ceRNA activities. In this study, 118 microRNAs correlated with glioblastoma were obtained from miRTarBase database (Table I). The genes with ComiR score greater than 0.8685 were listed through 1016 genes that are simultaneously targeted by these 118 miRNAs. The genes with T-UCR in their exonic regions were selected based on the study of Bejerano et al.14. Subsequently, the genes which show potential ceRNA activities were extracted (Table II). Then, the genes with remarkable expression differences between GBM and normal brain tissues were extracted from glioblastoma-associated ceRNAs that include T-UCR. While PBX3 gene was highly expressed in GBM than in normal brain tissues, NRXN3 gene was significantly less expressed in GBM than in normal brain tissues according to the analysis in this study. On the other hand, other genes did not show any significant differences in expression pattern. According to the findings of the Spearman correlation analysis, PBX3 and NRXN3 genes were shown to have remarkable relationship with GBM.

PBX3 is a member of Pre-B-cell leukemia homeobox family and implicated in early development and several biological processes in adulthood. The location of PBX3 gene is on chromosome 9q33.3. PBX3 as a transcription factor shows a stable interaction with DNA and binds to DNA with a consensus sequence (TGATTGATTTGAT). It has been demonstrated that PBX3 is commonly associated with cancer and overexpressed in several types of cancers such as hematological malignancies and colorectal cancers. Moreover, PBX3 activates numerous signaling pathways such as MAPK/ERK signaling pathway. PBX3 functions as an oncogene and is implicated in the regulation of biological functions such as stimulating proliferation, colony formation, cell survival, and invasion19,20. It has been demonstrated that PBX3 is upregulated in gastric cancer cells and apoptosis is induced by targeting PBX3 gene in gastric cancer20. In a study conducted with glioma cell lines, it has been shown that PBX3 was overexpressed21. Xu et al. reported that PBX3 was significantly associated with invasion of GBM cells and mesenchymal transition22.

Neurexins (NRXNs) are a family of neuronal-specific cell surface proteins and they are implicated in cell recognition and adhesion. Moreover, the presynaptic terminal proteins are involved in synaptogenesis, neurotransmitter release and synaptic transmission and are also essential for the development and function of synapses. NRXN genes are differentially spliced into numerous isoforms23,24. It is known that FoxQ1 as a potential oncogene may induce tumor cell proliferation and migration by targeting NRXN3 gene in a direct way25. It has been reported that FoxQ1 stimulated cell proliferation and migration of glioma by suppressing NRXN3 gene and suggested that NRXN3 gene might be a tumor suppressor24. In the study conducted with breast cancer patients, G allele carriers in rs10146997 of NRXN3 gene was statistically related to the development of breast cancer26. It has been reported that NRXN3 gene expression was downregulated in the samples of GBM27. NRXN3 and PBX3 genes were associated with GBM in this present study and they were
suggested to have potential roles in carcinogenesis. It has been supposed that NRXN3 acts as a tumor suppressor gene and its expression is decreased in GBM according to the analysis in this study. On the other hand, PBX3 gene is suggested to function as an oncogene and is upregulated in GBM according to the in silico analysis.

CONCLUSION

The present study investigated the correlation of NRXN3 and PBX3 genes with GBM and this study supports the potential roles for the genes in the pathogenesis of glioblastoma. Additionally, further in vivo and in vitro studies are needed in order to elucidate tumor suppressor role of NRXN3 and oncogenic activity of PBX3 in GBM.

Ethics Committee Approval: This study did not require any ethical approval.

Declaration of Conflicting Interests: The authors declare that they have no conflict of interest.

Financial Disclosure: No financial support was received.

REFERENCES

1. Yool AJ, Ramesh S. Molecular targets for combined therapeutic strategies to limit glioblastoma cell migration and invasion. Front Pharmacol. 2020; 11: 358.
2. Haar CP, Hebbar P, Wallace GC, et al. Drug resistance in glioblastoma: A mini review. Neurochem Res. 2012; 37: 1192-200.
3. Yilmaz A, Altug F, Duz E, et al. Treatment options and effects of survival in glioblastoma multiforme. J Kartal. TR. 2012; 23: 25-9.
4. Laffont B, Rayner KJ. MicroRNAs in the pathobiology of atherosclerosis. CJCC. 2017; 33: 313-24.

invasion program in glioblastoma. J Exp Clin Cancer Res. 2019; 38.
5. Witwer KW, Halushka MK. Toward the promise of microRNAs- Enhancing reproducibility and rigor in microRNA research. RNA Biol. 2016; 13: 1103-16.
6. Sherin K, Nair AS. Review of computational prediction of competing endogenous RNA. J Proteom Bioinform. 2019; 12.
7. Qi M, Yu B, Yu H, et al. Integrated analysis of a ceRNA network reveals potential prognostic IncRNAs in gastric cancer. Cancer Med. 2020; 9: 1798-817.
8. Fassan M, Dall’Olmo L, Galasso M, et al. Transcribed ultraconserved noncoding RNAs (T-UCRs) are involved in Barret’s esophagus carcinogenesis. Oncotarget. 2014; 5: 7162-71.
9. Huang HY, Lin YCD, Li J, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020; 48: D148-D154.
10. Ergun S. In silico analysis of biomarker potentials of miRNA-mediated ceRNAs in prostate cancer. Dicle Med J. 2018; 45: 415-29.
11. ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Res. 2013; 41: W159-W164.
12. Us Altay D, Ergun S. In silico analysis of biomarker potentials of miRNA mediated ceRNAs in gastric neoplasms. MBSJHS. 2019; 5: 106-19.
13. Avsar O. Analysis of miRNA-mediated ceRNAs in the pathogenesis of renal cell carcinoma: An in silico approach. HJSE. 2020; 7: 223-38.
14. Bejerano G, Pheasant M, Makunin I, et al. Ultraconserved elements in the human genome. Science. 2004; 304:1321-5.
15. Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analysis. Nucleic Acids Res. 2017; 45: W98-W102.
16. Zhao Y, Huang W, Kim TM, et al. MicroRNA-29a activates a multi-component growth and

invasion program in glioblastoma. J Exp Clin Cancer Res. 2019; 38.
17. Touat M, Idbaih A, Sanson M, et al. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017; 28: 1457-72.
18. Shea A, Harish V, Afzal Z, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med. 2016; 5: 1917-46.
19. Morgan R, Pandha HS. PBX3 in cancer. Cancers. 2020; 12.
20. Li YS, Zou Y, Dai DQ. MicroRNA-320a suppresses tumor progression by targeting PBX3 in gastric cancer and is downregulated by DNA methylation. World J Gastrointest Oncol. 2019; 11: 842-56.
21. Pan C, Gao H, Zheng N, et al. Mir-320 inhibits the growth of glioma cells through downregulating PBX3. Biol Res. 2017; 50.
22. Xu X, Bao Z, Liu Y, et al. PBX3/MEK/ERK1/2/LIN28/let-7b positive feedback loop enhances mesenchymal phenotype to promote glioblastoma migration and invasion. J Exp Clin Cancer Res. 2018; 37: 158.
23. Harkin LF, Lindsay SJ, Xu Y, et al. Neurexins 1-3 each have a distinct pattern of expression in the early developing human cerebral cortex. Cereb Cortex. 2017; 27: 216-32.
24. Sun HT, Cheng SX, Tu Y, et al. FoxQ1 promotes glioma cells proliferation and migration by regulating NRXN3 expression. PLoS One. 2013; 8: e55693.
25. Xiang XJ, Deng J, Liu YW, et al. Mir-1271 inhibits cell proliferation, invasion and EMT in gastric cancer by targeting FOXQ1. Cell Physiol Biochem. 2015; 36: 1382-94.
26. Kusinska R, Gorniak P, Pastorczak A, et al. Influence of genomic variation in FTO at 16q12.2, MC4R at 18q22 and NRXN3 at 14q31 genes on breast cancer risk. Mol Biol Rep. 2012; 39: 2915-19.
27. Yang Q, Wang R, Wei B, et al. Gene and microRNA signatures are associated with the development and survival of glioblastoma patients. DNA Cell Biol. 2019; 38: 688-99.