Expression of Amyloid-Associated miRNAs in Both the Forebrain Cortex and Hippocampus of Middle-Aged Rat

Hui Chea Li-Hua Suna Fei Guoa Hui-Fang Niua Xiao-Lin Sua Ya-Nan Baoa Zidong Donna Fua Huai-lei Liub Xu Houb Bao-Feng Yanga Jing Aia

aDepartment of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), bDepartment of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China

Key Words
Aging • microRNAs • APP • BACE1 • Learning • Memory

Abstract
Background: Aging is associated with the gradual cognitive decline and shows the typical senile plaque formation in the brain, which results from the aggregation of beta amyloid (Aβ) peptide following the abnormal proteolytic processing of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. Accumulating evidence indicates that several microRNAs (miRNAs) are involved in the Alzheimer’s disease (AD) by regulating the expression of APP and BACE1 proteins. However, the cognitive ability and the expression profile of the APP- and BACE1-associated miRNAs in the middle-aged population are largely unknown.

Methods: The learning and memory ability in rats were determined by Morris Water Maze test. The protein levels of APP and BACE1 were detected by western blotting. The quantitative polymerase chain reaction was used to identify the miRNAs levels in forebrain cortex and the hippocampus. Results: Middle-aged rats have declined learning ability without changes in the memory ability, and increased APP and BACE1 protein expression in the forebrain cortex. Computational analysis using Targetscan and Pictar databases reveals that totally 4 predicted miRNAs have conserved binding site with APP, namely miR-106b, -17-5p, -153, -101. All of them showed decreased expression in both the forebrain cortex and hippocampus. Among the 10 predicted miRNAs targeting BACE1, different expression profiles were identified in the forebrain cortex (decreased: miR-9, -19a, -135a, -15b, -16, -195, -29c, -214; increased: miR-124; no change: miR-141) and the hippocampus (decreased: miR-9, -15b, -16, -195, -29c, -214; increased: miR-19a, -135a, -214, -141) in the middle-aged rats compared with the young rats. Conclusion: Our results provided the first evidence that middle-aged rats have begun displaying cognitive disability with abnormal expression of APP- and BACE1-related miRNAs in the hippocampus and forebrain cortex.
Introduction

With the increasing aging population, the incidence of progressive deterioration of cognitive abilities is dramatically increased [1]. Although it is debatable when age-related cognitive decline begins, middle age is the stage when a portion of the population starts to have notable physical decline [2, 3]. The phenomenon suggests that the middle-aged adults may begin to undergo the process of cognitive decline. However, the molecular mechanism is largely unknown.

The decrease of brain volume, loss of synapses, disorder motor, and cognitive impairments are observed in the aging brain, which are risk factors of neurodegenerative diseases such as Alzheimer’s disease (AD) [4-6]. Previous data suggested that senile plaque, a major hallmark of both aging and dementia, is triggered by the aggregation of beta amyloid (Aβ) derived from the endoproteolysis of APP [7-11]. There are two different pathways of proteolytic processing of APP: one is the non-amyloidogenic pathway in which APP is cleaved by α-secretase and γ-secretase, the other is the amyloidogenic pathway processed by β-secretase (BACE1) and γ-secretase [12-15]. BACE1 is the major enzyme of Aβ formation and has ubiquitously higher expression in neurons of the hippocampus, cortex, and cerebellum, but lower expression in the gliocytes [16]. The activity of BACE1 is increased with aging in human, monkey, and mouse [17]. Furthermore, Aβ42 is found strongly accumulated early in the cortex, and a little later in the hippocampus in aged people between 50 and 79 years [18], and the senile plaques were also found in the cortex of 28-30 month of aged rats[19]. These results suggested that dysfunctions of APP and BACE1 might participate in the progress of normal aging and age-associated disorder. However, whether the changes of APP and BACE1 are present in the cortex and hippocampus of rats at the middle-aged stage are unclear.

MicroRNAs (miRNAs) are conserved ~22 nucleotides non-coding RNAs that regulate gene expression by translation inhibition or mRNA degradation [20]. Accumulating studies suggest that miRNAs can affect the aging-related pathways. There is evidence that approximately one third of miRNAs in C. elegans is altered in the expression level across the lifespan [21]. In addition to C. elegans, the expression levels of miRNAs were changed in aged mice and the elderly [22, 23]. It is noteworthy that increasing evidence indicated that BACE1 expression is regulated by miR-328, -298, -29c and miR-107 in AD patients and mice [24-26]. Meanwhile, the expressions of miR-17, -101 and miR-16 decreased, which was accompanied with significantly high level of APP [27, 28]. These data indicated that miRNAs might be involved in the age-related pathologies.

In the present study, we reported for the first time that rats at ages of 18 months showed cognitive deficit with changes in APP- and BACE1-related miRNAs expression.

Materials and Methods

Animal

Male Wistar young (6 months old) and middle-aged (18 months old) rats (obtained from the Animal Center of the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China) were housed in the temperature-control room (23 ± 1°C) with humidity of 50 ± 10% and allowed free access to food and water. All animals and experimental procedures were approved and carried out in accordance with the Experimental Animal Ethic Committee of Harbin Medical University, China (No.HMUIRB-2008-06) and the Institute of Laboratory Animal Science of China (A5655-01). All procedures were conformed to the Directive 2010/63/EU of the European Parliament.

Morris water maze (MWM)

MWM hidden platform trail was performed using a previous method with some modifications [29]. Briefly, the maze was filled with opaque water (23±1°C) via addition of black food nontoxic pigment and divided into four quadrants. A submerged escape platform (20 cm diameter platform, top surface 2.0 cm below water level) was located in the center of the first quadrant. Before training, the pupillary light reflex
was tested through all rats, and rats with disabled pupillary light reflex were excluded from the experiment to avoid the effect of the animal's vision on the test. On the first day, rats were released into the water facing the pool wall and allowed to swim to search the hidden platform. If they failed to find the target within 120 s, they were guided to the platform and allowed to rest for at least 20 s. In the following 5 consecutive days, rats were trained to find a hidden platform. The length of the swim path (distance in centimeters) was recorded using a video camera-system. MWM probe trial session was conducted on the 6th day. In the probe trial, the platform was removed from the pool and each rat received one 120 s swim. The times of crossing platform (X) and percentage time spent in target quadrant (Q) were monitored by an online DigBehav-Morris water maze Video Analysis System (Mobile Datam Software Technology Co. Ltd., Shanghai, China).

Western blot analysis

Proteins were extracted from the hippocampus and forebrain cortex of young and middle-aged rats for immunoblotting analysis. Briefly, tissue were lysed with RIPA buffer (50mM Tris-HCl, pH7.4; 150mM NaCl; 0.1% Tryton X-100; 0.25% Na-deoxycholate; 0.1M EDTA and 1% SDS) containing protease inhibitor cocktail (Roche Applied Science, Mannheim, Germany) on ice for 30 min. The supernatant were collected after centrifuging 13500rpm at 4°C for 15 min. The concentration of protein samples were measured spectrophotometrically using a BCA kit (Universal Microplate Spectrophotometer; Bio-Tek Instruments, Winooski, VT, USA). The proteins were loaded onto a 10% SDS-PAGE gel, and then transferred onto nitrocellulose membranes, which were incubated in 5% non-fat dry milk in TBST for 2 h at room temperature. Primary antibodies used were the following: anti-APP (Cat no. MAB348; 1:1000; Millipore, Unite States, US), anti-BACE1 (Cat no. ab2077; 1:1000; Abcam, Cambridge, MA) and GAPDH (Cat no. sc-137179; 1:1000; Santa Cruz Biotechnology, Santa Cruz, CA). The secondary antibody was incubated in room temperature for 1 h. The bands were captured on Odyssey Infrared Imaging System (LI-COR) and quantified with Odyssey v3.0 software by measuring the band intensity (area×OD) in each group and normalizing to GAPDH.

Quantitative RT-PCR analysis

The analysis of mRNA expression was performed as described. Total RNA was isolated from the forebrain cortex and hippocampus of young or middle-aged rats using TRIzol reagent (Invitrogen, Carlsbad, CA) according to manufacturer’s instructions [30]. 500ng total RNA was reverse-transcribed by the High Capacity cDNA Reverse Transcription kit (Cat no. 4368814, Applied Biosystems, Foster City, CA) with random primer following the manufacturer’s instructions. Quantitative polymerase chain reaction (qPCR) was done using the TaqMan® Gene Expression Master Mix (Cat no. 4369016, Applied Biosystems, Foster City, CA) with probes for APP (ID: Rn00570673_m1), BACE 1 (ID: Rn00569988_m1) and GAPDH (ID: Rn01462662_g1) purchased from Applied Biosystems. The PCR procedure was as follows: 95°C for 10 min, followed by 40 cycles with 95 °C for 15 sec, 60°C for 30 sec and 72°C for 30 sec. U6 was used as internal control. ∆∆Ct was calculated for each sample, and expression levels of mRNA were calculated using the 2^−∆∆Ct method.

Bioinformatics analysis

TargetScan 5.2 (http://www.targetscan.org/vert_50/) and Pictar (version: 2010) were used to identify the miRNAs that target APP and BACE1.

Data analysis

All values were described as mean ± SEM. Day-by-day comparisons between two groups were performed using one-way repeated measure ANOVA. The two-tail Student’s t-test was used for comparisons between two groups with SPSS19.0. p<0.05 was considered as statistically significant.
Table 1. MiR-specific reverse-transcription primers

miRNA	primer sequence (5’-3’)
miR-106b	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-17-5p	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-153	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-101	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-9	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-19a	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-135a	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-15b	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-16	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-195	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-29c	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-124	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-214	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-141	GTCGTATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
u6	CGTTCACGAATTTCGCTTAT

Table 2. MiR-specific forward and Reverse primers for PCR

miRNA	primer sequence (5’-3’)
miR-106b	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-17-5p	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-153	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-101	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-9	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-19a	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-135a	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-15b	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-16	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-195	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-29c	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-124	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-214	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
miR-141	Forward: GGTTGAAAGCTTCTGACAG Reverse: TATCCAGTGCGTGTTTGGAGATGGCAGCTGACATGGATACGCATCTTCGC
U6	Forward: GCTTCACGAATTTCGCTTAT Reverse: CGTTCACGAATTTCGCTTAT

Results

Cognitive deficit in middle-aged rats

Using the MWM test, we found the ability of spatial learning was significantly impaired in middle-aged rats compared with young rats. First, after guiding a direct path to the hidden platform located in the first quadrant from the second quadrant of the tank, the middle-aged rats had longer swim distance to navigate to the hidden platform than young rats starting from the third and fourth quadrant on day one (Fig. 1A. for quadrant: F(2,28)=9.19, p=0.001; for group: F(1,14)=6.214, p=0.026), indicating that the learning abilities of using
cues as navigational guides in middle-aged rats are declined. Second, in learning trial, the middle-aged rats also took more swim distance to find the hidden platform after they had been released into the tank in all of the three non-target quadrants day-by-day (Fig. 1B-D, Q2: For groups: \(F(1,14) = 19.38, p = 0.001 \); for days \(F(4,56) = 20.108, p < 0.0001 \); for groups x training days: \(F(4,56)=1.37, p = 0.256 \); Q3: For groups: \(F(1,14) = 11.278, p = 0.005 \); for days \(F(4,56) = 6.189, p < 0.0001 \); for groups x training days: \(F(4,56)=0.723, p = 0.58 \); Q4: For groups: \(F(1,14) = 12.789, p = 0.003 \); for days \(F(4,56) = 2.731, p=0.038 \); for groups x training days: \(F(4,56)=0.165, p = 0.955 \). The results suggested that middle-aged rats have the decreased ability to combine cues with memory to reach the target. In addition, in the probe trial, both platform crossings and spending time in the target quadrant of middle-aged rats were similar with those in young rats \((p > 0.05) \). These results indicated that middle-aged rats might not display declined memory ability (Fig. 1E, F).

Expression of APP and BACE1 in both the forebrain cortex and hippocampus of middle-aged rats

Overexpression of APP and BACE1 contribute to the formation of Aβ and participate in the aging process [17, 18, 31-33]. In this study, we found that the protein level of APP was elevated in both the forebrain cortex and hippocampus of the middle-aged rats compared to young rats (Fig. 2A, B, \(*p < 0.05 \), n=6 for each group). Interestingly, the mRNA level of APP was not changed in either the forebrain cortex or hippocampus of middle-aged group compared to young rats (Fig. 2C, D, \(p > 0.05 \), n=6 for each group).
Strikingly, as illustrated in Fig.3A and 3B, the protein level of BACE1 significantly increased in the forebrain cortex, however, it was lower in the hippocampus in rats at middle-age compared to young rats (*p < 0.05, n=6 for each group). The mRNA level of BACE1 decreased in the forebrain cortex (Fig. 3C, *p < 0.05, n=6 for each group). However, it showed
no significant change in the hippocampus of middle-aged rats compared to young rats (Fig. 3D, \(p > 0.05 \), \(n=6 \) for each group).

These data implicated that the post-transcriptional regulation of APP and BACE1 plays an important role in aging process.

Different expression patterns of APP-associated miRNAs between the young and middle-aged rats

Accumulating evidence suggested that miRNAs regulated the expression of APP both \textit{in vitro} and \textit{in vivo} [27, 28]. Thus, we hypothesized that the disturbed level of APP during middle-aged stage was in part due to post-transcriptional regulation of miRNAs. In order to select APP-associated miRNAs, the Targetscan database was used. Typically, miRNAs have both conserved and poorly conserved binding sites in the 3' untranslated region (3'UTR) of target genes. Friedman \textit{et al.} reported that the miRNAs with evolutionarily conserved target sites cause stronger effects than non-conserved sites [34]. Therefore, we selected miRNAs that have conserved binding sites in the 3'UTR of target genes by Targetscan database, and then sifted by the Pictar database. In the present study, 23 miRNAs were found in Targetscan database and 26 miRNAs were found in the Pictar database. Four miRNAs, namely \textit{miR-106b}, \textit{-17-5p}, \textit{-101} and \textit{-153}, were found in both two databases (Fig.4A) and identified to be important to the regulation of APP expression by previous studies [28, 35, 36]. We then performed qRT-PCR to quantify the levels of these four miRNAs in both the forebrain cortex and hippocampus tissues of young and middle-aged rats. All of these miRNAs were significantly decreased in both the forebrain cortex and hippocampus of middle-aged rats compared to young rats (Fig.4B, C, \(* p < 0.05\), \(** p < 0.01\), \(n=6 \) for each group).
Different expression profile of BACE1-associated miRNAs between young and middle-aged rats

Using the same strategy with APP, 58 miRNAs were found in Targetscan database, and 23 miRNAs were found in the Pictar database. After taking the intersection, ten miRNAs were sifted (Fig. 5A). As shown in Fig. 5B, in the forebrain cortex, miR-9, -19a, -135a, -15b, -16, -195, -29c and miR-214 were lower in middle-aged rats. However, the miR-124 was higher, but miR-141 showed no significant change (*p < 0.05 vs young group, n=6 for each group). In the hippocampus, miR-9, -15b, -16, -195, -29c and miR-124 were lower, but miR-19a, -135a, -214 and miR-141 were higher in the middle-aged rats (Fig. 5C, *p < 0.05, n=6 for each group).

Discussion

In the present study, we found that 18-month-old Wistar rats displayed cognitive impairment with changes in APP and BACE1 expression in both the hippocampus and forebrain cortex. In addition, we reported for the first time that different expression profile of amyloid-related miRNAs in the hippocampus and forebrain cortex between the young and middle-aged rats. This suggests that imbalanced expression of amyloid-associated miRNAs might be involved in the declined cognitive ability with abnormal expression of APP and BACE1 proteins in the middle-aged rats.

Aging is characterized by the gradual decline in learning and memory ability [37, 38]. Clinical study displayed that the age-related cognitive deficit could start from midlife of human, but it is relatively greater in person at the age 70 years old or more [39]. Disclosing the early risk factors for cognitive decline prior to aging is very important to prevent the onset and deterioration of aging-induced cognitive decline. Although some studies have reported that aging rats displayed significant cognitive deficit, they all used rats at the
ages of over 20 months old [40-42]. In the present study, we selected rats at the age of 18 months as the middle-aged stage because it matches with the age of 45 years old in human, which is the beginning stage of the cognitive decline reported previously [43-45]. Here, we found that 18-month-old rats displayed impaired cognitive ability by MWM technique. The main characteristic of impaired cognitive ability in middle-aged rats is the decreased learning ability without marked memory decline as evaluated by MWM. This result is similar with previous study, which demonstrated that middle-aged rats (18 months old) showed significantly slower escape latency and longer swimming distance in cued trial than those in young rats, without significant difference in probe trial between two groups [46].

Over the last decades, emerging evidence supported that a variety of neurobiological variables contributed to the age-related cognitive decline in normal aging brain. APP and BACE1 play critical roles in brain atrophy, cortical thickness and neuron loss via the proteolytic product Aβ during normal aging [47-49]. In our present study, loss of cognition was found in the middle-aged rats. Therefore, we focused on the APP and BACE1, and determined whether dysfunction of APP and BACE1 are associated with cognitive decline in middle-aged rats.

Interestingly, in this study, the protein level of APP is higher in both the forebrain cortex and hippocampus of middle-aged rat than young rats without changes of APP mRNA level. The mismatch in APP mRNA level from its protein level in middle-aged rats suggested a possible post-transcriptional depression effect. Emerging evidence showed that post-transcriptional repression mediated by miRNA occurred through translation repression and degradation of target mRNA. MiRNA-mediated translational repression could result in the inhibition of ribosome assembly onto the target mRNA, leading to the reduction in protein synthesis [50-52]. Moreover, miRNAs could also degrade target mRNAs [53]. Mehmet Somel et al. [54] reported that aged-related miRNAs expression profiles show a negative correlation with their targets' expression profiles at mRNA and protein level. It is shown that miRNAs played a critical role in regulating the expression of target gene in post-transcriptional level during normal aging. We hence hypothesized that miRNAs might participate in the declined cognitive function, and the abnormal expression of APP and BACE1 proteins in rats at ages of 18 months old. As expected, we found that all of the four APP-associated miRNAs, compared with young rats, decreased in both the cortex and hippocampus of middle-aged rats. That could explain why the protein level of APP increased in both the cortex and hippocampus of middle-aged rats. It is noteworthy that miR-17-5p, miR-106b, miR-153 and miR-101 were all identified to regulate APP expression in neuronal cell lines [28, 35, 36, 55]. The results suggested that changes of miR-17-5p, miR-106b, miR-153 and miR-101 may be important risk factors of cognitive decline in the middle-aged rats.

In addition, we found there are ten miRNAs that have conserved binding site with 3’UTR of BACE1 based on the two databases. Among these miRNAs, miR-195, -29c and -124 were identified to regulate the expression of BACE1 [24, 56, 57], and miR-9, -19a,-135a, -15b, -16, -214 and -141were reported to be associated with aging [58-60]. Interestingly, we found different expression profile between the forebrain cortex and hippocampus in the middle-aged rats. There are eight of them that are decreased in the forebrain cortex, while only six miRNAs are decreased in the hippocampus. On the other hand, there is one miRNA in the forebrain cortex, but there are four miRNAs in the hippocampus that are increased in the middle-aged rats. Considering the inconsistent expression of BACE1 between the forebrain cortex and hippocampus of the middle-aged rats, we hypothesized that it might be associated with the different expression of miRNAs in these two regions. For detail, in the forebrain cortex, the expression of BACE1 is increased. There are eight miRNAs that are decreased, whereas only one miRNA was increased. In the hippocampus, the expression of BACE1 is decreased. Coincidentally, there were four miRNAs that are increased, and six that are decreased. However, whether the discrepancy expression of BACE1 in the forebrain cortex and hippocampus results from the combination effect of the changes of all these miRNAs still need to be investigated in the future. In addition, for the decreased expression of BACE1 in the hippocampus, we could not exclude the following reasons: (1)
other upregulated miRNAs may not be found based on the limited predictions by present database. (2) regulatory mechanisms of non-miRNAs may be involved in the process as well.

In the present study, we reported that middle-aged rats have begun to display the cognitive decline accompanied with changes of APP and BACE1 expression. In addition, we here for the first time reported that abnormal expression of amyloid-associated miRNAs has begun in the middle-aged rats, suggesting that miRNAs participate in the process of aging associated with cognitive decline. However, whether these changed miRNAs participate in the regulatory process of APP and BACE expression in middle-aged rats and whether these changed miRNAs combination could be biomarkers to predict the early cognitive decline, still need to be studied further.

Acknowledgements

This work was supported by Natural Science Foundation of China (81271207, 81070882, 81000499), Creative Research Groups of The National Natural Science Foundation of China (81121003), The postgraduate innovation scientific research project of Heilongjiang Province (YJSCX2012-244HLJ).

References

1. Kramer AF, Bherer L, Colcombe SJ, Dong W, Greenough WT: Environmental influences on cognitive and brain plasticity during aging. J Gerontol A Biol Sci Med Sci 2004;59:M940-957.
2. Salthouse TA: When does age-related cognitive decline begin? Neurobiol Aging 2009;30:507-514.
3. Foster TC: Biological markers of age-related memory deficits: treatment of senescent physiology. CNS drugs 2006;20:153-166.
4. Peters A, Sethares C, Luebke JI: Synapses are lost during aging in the primate prefrontal cortex. Neuroscience 2008;152:970-981.
5. Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, Harwood M, Hinds S, Press GA: Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 2000;216:672-682.
6. Sowell ER, Thompson PM, Toga AW: Mapping changes in the human cortex throughout the span of life. Neuroscientist 2004;10:372-392.
7. Oh H, Mormino EC, Madison C, Hayenga A, Smiljic A, Jagust WJ: beta-Amyloid affects frontal and posterior brain networks in normal aging. Neuroimage 2011;54:1887-1895.
8. Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH: A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006;440:352-357.
9. Golde TE, Dickson D, Hutton M: Filling the gaps in the abeta cascade hypothesis of Alzheimer’s disease. Curr Alzheimer Res 2006;3:421-430.
10. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353-356.
11. Ellenbein HA, Rosen RF, Stephens SL, Switzer RC, Smith Y, Pare J, Mehta PD, Warzuk R, Walker LC: Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 2007;22:155-167.
12. Furukawa K, Sopher BL, Rydel RE, Begley JG, Pham DG, Martin GM, Fox M, Matsson MP: Increased activity-regulating and neuroprotective efficacy of alpha-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain. J Neurochem 1996;67:1882-1896.
13. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiz A, Denison ES, Smith J, Pare J, Mehta PD, Warzuk R, Walker LC: Cerebral beta-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 2007;22:155-167.
14. Ling Y, Morgan K, Kakheker N: Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol 2003;35:1505-1535.
15. Cole SL, Vassar R: Linking vascular disorders and Alzheimer’s disease: potential involvement of BACE1. Neurobiol Aging 2009;30:1535-1544.
Che et al.: miRNAs Expression in the Brain of Middle Aged Rat

Grüninger-Leitch F, Schlatter D, Küng E, Nelböck P, Döbell H: Substrate and inhibitor profile of BACE (beta-secretase) and comparison with other mammalian aspartic proteases. J Biol Chem 2002;277:4687-4693.

Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, Irizarry MC: Beta-secretase activity increases with aging in human, monkey, and mouse brain. Am J Pathol 2004;164:719-725.

Funato H, Yoshimura M, Kasui K, Tamaoka A, Ishikawa K, Ohkoshi N, Namekata K, Okeda R, Ihara Y: Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer’s disease. Am J Pathol 1998;152:1633-1640.

Vaughan DW, Peters A: The structure of neuritic plaque in the cerebral cortex of aged rats. J Neuropathol Exp Neurol 1981;40:472-487.

Russo G, Giordano A: miRNAs: from biogenesis to networks. Methods Mol Biol 2009;563:303-352.

Ibáñez-Ventoso C, Yang M, Guo S, Robins H, Padgett RW, Driscoll M: Modulated microRNA expression during adult lifespan in Caenorhabditis elegans. Aging Cell 2006;5:235-246.

Bates DJ, Li N, Liang R, Sarojini H, An J, Masternak MM, Bartke A, Wang E: MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging. Aging Cell 2010;9:1-18.

Maes OC, An J, Sarojini H, Wang E: Murine microRNAs implicated in liver functions and aging process. Mech Ageing Dev 2008;129:534-541.

Zong Y, Wang H, Dong W, Quan X, Zhu H, Xu Y, Huang L, Ma C, Qin C: miR-29c regulates BACE1 protein expression. Brain Res 2011;1395:108-115.

Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT: The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008;28:1213-1223.

Boissonneault V, Plante I, Rivest S, Provost P: MicroRNA-29b and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 2009;284:1971-1981.

Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X: MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol Aging 2012;33:522-534.

Hébert SS, Horré K, Nicolai L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B: MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 2009;33:422-428.

Morris R: Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984;11:47-60.

Bonev B, Pisco A, Papalopulu N: MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis. Dev Cell 2010;19:19-32.

Zhou ZD, Chan CH, Ma QH, Xu XH, Xiao ZC, Tan EK: The roles of amyloid precursor protein (APP) in neurogenesis: Implications to pathogenesis and therapy of Alzheimer disease. Cell Adh Migr 2011;5:280-292.

Prox J, Rüttger A, Saftig P: Physiological functions of the amyloid precursor protein secretases ADAM10, BACE1, and presenilin. Exp Brain Res 2012;217:331-341.

Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC: BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 2005;25:11693-11709.

Friedman RC, Farh KK, Burge CR, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.

Vilardo E, Barbato C, Ciotti M, Cogoni C, Ruberti F: MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. J Biol Chem 2010;285:18344-18351.

Long JM, Ray B, Lahiri DK: MicroRNA-153 physiologically inhibits expression of amyloid-beta precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012;287:31298-31310.

Driscoll I, Hamilton DA, Petropoulos H, Yeo RA, Brooks WM, Baumgartner RN, Sutherland RJ: The aging hippocampus: cognitive, biochemical and structural findings. Cereb Cortex 2003;13:1344-1351.

Vanguilder HD, Bixler GV, Sonntag WE, Freeman WM: Hippocampal expression of myelin-associated inhibitors is induced with age-related cognitive decline and correlates with deficits of spatial learning and memory. J Neurochem 2012;121:77-98

Aartsen MJ, Smits CH, van Tilburg T, Knipscheer KC, Deeg D: Activity in older adults: cause or consequence of cognitive functioning? A longitudinal study on everyday activities and cognitive performance in older adults. J Gerontol B Psychol Sci Soc Sci 2002;57:P153-162.
40 Kawarabayashi T, Shoji M, Yamauchi H, Tanaka M, Harigaya Y, Ishiguro K, Hirai S: Amyloid beta protein precursor accumulates in swollen neurites throughout rat brain with aging. Neurosci Lett 1993;153:73-76.

41 Drapeau E, Mayo W, Aroussseau C, Le Moal M, Piazza PV, Abrous DN: Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 2003;100:14385-14390.

42 Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, Misek DE, Kuick RD, Wiggins RC: Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol 2005;16:2953-2966.

43 Andrello NA, Santos EF, Araújo MR, Lopes LR: Rat's age versus human's age: what is the relationship? Arq Bras Cir Dig 2012;25:49-51.

44 Singh-Manoux A, Dugravot A, Kauffmann F, Elbaz A, Anker J, Nabi H, Kivimaki M, Sabia S: Association of lung function with physical, mental and cognitive function in early old age. Age (Dordr) 2011;33:385-392.

45 Rapp PR, Amaral DG: Individual differences in the cognitive and neurobiological consequences of normal aging. Trends Neurosci 1992;15:340-345.

46 Oliveira L, Graeff FG, Pereira SR, Oliveira-Silva IE Franco GC, Ribeiro AM: Correlations among central serotonergic parameters and age-related emotional and cognitive changes assessed through the elevated T-maze and the Morris water maze. Age (Dordr) 2010;32:187-196.

47 Becker JA, Hedden T, Carmasín J, Maye J, Rentz DM, Putcha D, Fischl B, Greve DN, Marshall GA, Salloway S, Marks D, Buckner RL, Sperling RA, Johnson KA: Amyloid-beta associated cortical thinning in clinically normal elderly. Ann Neurol 2011;69:1032-1042.

48 Song MS, Baker GB, Todd KG, Kar S: Inhibition of beta-amyloid1-42 internalization attenuates neuronal death by stabilizing the endosomal-lysosomal system in rat cortical cultured neurons. Neuroscience 2011;178:181-188.

49 Ma T, Hoeffner CA, Wong H, Massaad CA, Zhou P, Iadecola C, Murphy MP, Pautler RG, Klann E: Amyloid beta-induced impairments in hippocampal synaptic plasticity are rescued by decreasing mitochondrial superoxide. J Neurosci 2011;31:5589-5595.

50 Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filippowicz W: Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005;309:1573-1576.

51 Nottrtort S, Simard MJ, Richter JD: Human let-7a microRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 2006;13:1108-1114.

52 Behm-Ansment I, Rehwinkel J, Doerks T, Stark A, Bork P, Iazaurralde E: mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 2006;20:1885-1898.

53 Liu J: Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008;20:214-221.

54 Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, Hu H, Lachmann M, Zeng R, Chen W, Khaitovich P: MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Res 2010;20:1207-1218.

55 Liang C, Zhu H, Xu Y, Huang L, Ma C, Deng W, Liu Y, Qin C: MicroRNA-153 negatively regulates the expression of amyloid precursor protein and amyloid precursor-like protein 2. Brain Res 2012;1455:103-113.

56 Ai J, Sun LH, Che H, Zhang R, Zhang TZ, Wu WC, Su XL, Chen X, Yang G, Li K, Wang N, Ban T, Bao YN, Guo F, Niu HF, Zhu YL, Zhu YX, Zhao SG, Yang BF: MicroRNA-195 protects against dementia induced by chronic brain hypoperfusion via its anti-amyloidogenic effect in rats. J Neurosci 2013;33:3989-4001.

57 Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W, Han S: The miR-124 regulates the expression of BACE1/beta-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 2012;209:94-105.

58 Tacutu R, Budovsky A, Yanai H, Fraifeld VE: Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective. Aging (Albany NY) 2011;3:178-1191.

59 Noren Hooten N, Abdelmohsen K, Gorospe M, Ejigou N, Zonderman AB, Evans MK: microRNA expression patterns reveal differential expression of target genes with age. PLoS One 2010;5:e10724.

60 Inukai S, de Lencastre A, Turner M, Slack F: Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One 2012;7:e40028.