The 100 most cited Poultry Science papers

Robert L. Taylor, Jr., Editor-in-Chief

Poultry Science continues the journal’s centennial celebration. A total of 79,218 peer-reviewed papers were published from 1921 to 2020. These papers encompassed a breadth of topics as well as sphere of influence. The results reported in some papers produced immediate impact by changing practices or procedures, whereas other articles yielded a steady increase in influence once their value was perceived. Questions arose about the papers that epitomize significant contributions to our discipline. Cumulative citation data represent one measure of a paper’s utility.

Citation data were only available for 1945 to 2020 and were drawn from Clarivate’s Web of Science Platform (https://clarivate.libguides.com/webofscienceplatform). Therefore, the 100 most cited papers cover that period rather than the entire Poultry Science centennial, 1921 to 2020. Citations from all databases on the Web of Science Platform were included rather than limiting the numbers to a single platform. The top 100 papers have been cited 26,404 times for an average of 264.04 citations per article, a number which would rank 28th in the top 100 citation list.

Interesting facts are highlighted in the top citations list and the associated tables. A total of 319 authors appeared on the 100 most cited papers, meaning that the average authors per paper were 3.19. Two hundred seventy-six unique authors contributed to these publications. Thirty-one authors appeared multiple times, with seven authors who occurred 3 or more times (Table 1). The corresponding author listed for each publication was used to identify originating organization and country. These 100 papers came from 56 unique sources. Eight points of origin represented thirty-six percent of the total (Table 2). These sources were influenced by the most cited authors, but the 2 factors lacked universal association. Country of origin had 16 unique entities with 13 countries appearing multiple times (Table 2). Eighty-one percent of the papers came from 5 countries.

The publication decade, which covered every ten-year period decade between 1950 and 2010, is shown in Table 3. The oldest paper was published in 1952, whereas the most recent article appeared in 2014. Seventy-seven percent of the papers were published since 1990 and 52% were published after 2000. Four papers in the list were dated in the 1950s, including those ranked 2 and 3. Eight papers were published in 2000, the top single year.

Table 1. Authors appearing three or more times in the 100 most cited papers published in Poultry Science 1945 to 2020.

Name	Total author (n)	First or last author (n)
Uni, Z.	5	5
Sklan, D.	5	4
Ferret, P. R.	4	0
Havenstein, G. B.	3	3
Silversides, F. G.	3	2
Noy, Y.	3	1
Smith, M. O.	3	1

Table 2. Institution or agency and country of corresponding authors of the 100 most cited papers published in Poultry Science 1945 to 2020.

Corresponding author institution	n
Hebrew University of Jerusalem, Israel	6
University of Georgia	5
USDA-ARS	5
Agriculture and Agri-Food Canada	4
Michigan State University	4
North Carolina State University	4
Purdue University	4
Roslin Institute, Scotland	4
Others	64

Corresponding author country	n
US	52
Canada	12
Israel	8
Spain	5
Scotland	4
Others	19
Table 4 shows the topics covered based upon author-defined key words. Two caveats are noted for this information. First, the titles were not parsed for their word content and earlier publications did not have key words. Second, related variants of key words were combined to give the totals. The seven most frequent key words were broiler, antibiotic, intestinal microflora, egg, immunity, intestine, and layer.

The most cited paper, “Application of prebiotics and probiotics in poultry production” by J. A. Patterson and K. M. Burkholder from Purdue University (Poult. Sci. 82:627–631; https://doi.org/10.1093/ps/82.4.627), was published in 2003. This paper has 742 citations or 2.8% of the total for the 100 most cited works. Prebiotics, bursa of Fabricius, a blood diluent, antibiotics, and a metabolizable energy assay are topics covered in the top 5 most cited papers. Citations for these 5 works totaled 3,332, which represents 12.6% of the total.

Table 3. Decade issued of the 100 most cited papers published in Poultry Science 1945 to 2020.

Decade published	n	Top year (n)
1950	4	1956 (2)
1960	5	1962 (2)
1970	5	1970, 1975, 1976, 1978, 1979 (1)
1980	9	1980, 1985, 1987, 1988 (2)
1990	25	1999 (6)
2000	44	2000 (8)
2010	8	2010, 2011 (3)

The Poultry Science Association invites you to celebrate the success of Poultry Science by examining the journal’s 100 most cited papers shown in Table 5. A digital collection of these articles has also been assembled. The link also provides access to the list.

Table 4. Most frequent author-defined key words for the 100 most cited papers published in Poultry Science 1945 to 2020.

Key word	n	Variants
Broiler	13	broiler, broiler chicken
Antibiotic	10	antimicrobial, antibiotic alternative, antibiotic growth promoter, antibiotics, antimi-
Intestinal microflora	10	ceal microflora, intestinal microbial population, intestinal microbiome, intesti-
Egg	7	egg quality, egg component, egg compo-
Immunity	7	immune response, immune function, immunoglobulin, inflammation
Intestine	7	intestinal tract, ceca, cecum
Layer	7	laying hen, layer strain

Table 5. The 100 most cited papers published in Poultry Science 1945 to 2020. Cited equals number of citations across all databases, ties noted (https://clarivate.libguides.com/webofscienceplatform).

Rank	T = ties	Cited (n)	Publication
1		742	Patterson, J. A., and K. M. Burkholder. 2003. Application of prebiotics and probiotics in poultry production. Poult. Sci. 82:627–631; https://doi.org/10.1093/ps/82.4.627
2		710	Glick, B., T. S. Chang, and R. G. Jaap. 1956. The bursa of Fabricius and antibody production. Poult. Sci. 35:224−225. https://doi.org/10.3382/ps.0350224
3		683	Natt, M. P., and C. A. Herrick. 1952. A new blood diluent for counting the erythrocytes and leukocytes of the chicken. Poult. Sci. 31:735–738. https://doi.org/10.3382/ps.0310735
4		663	Dibner, J. J., and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: history and mode of action. Poult. Sci. 84:634–643. https://doi.org/10.3382/ps.84.634
5		534	Silbald, I. R. 1976. Bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 55:303–308. https://doi.org/10.3382/ps.0550303
6		493	Spring, P., C. Wenk, K. A. Dawson, and K. E. Newman. 2000. The effects of dietary mannanoligosacharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult. Sci. 79:205−211. https://doi.org/10.1093/ps/79.2.205
7		491	Hernandez, F., J. Madrid, V. Garcia, J. Orengo, and M. D. Megias. 2004. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83:169−174. https://doi.org/10.3382/ps.83.2.169
8		484	Rieke, S. C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 82:632−639. https://doi.org/10.3382/ps.82.4.632
9		478	Simopoulos, A. P. 2000. Human requirement for n-3 polyunsaturated fatty acids. Poult. Sci. 79:961−970. https://doi.org/10.1093/ps/79.7.961
10		469	Castanon, J. J. R. 2007. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 86:2466−2471. https://doi.org/10.3382/ps.2007-00249
T11		438	Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 versus 2001 broiler feedings. Poult. Sci. 82:1500−1508. https://doi.org/10.1093/ps/82.4.1500
T11		438	Xu, Z. R., C. H. Hu, M. S. Xia, X. A. Zhan, and M. Q. Wang. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 82:1036−1036. https://doi.org/10.1093/ps/82.6.1030
13		437	Salih, A. M., D. M. Smith, J. F. Price, and L. E. Dawson. 1987. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 66:1483−1488. https://doi.org/10.3382/ps.0661483

(continued)
Table 5 (Continued)

Rank	Cited (n)	Publication	
18	338	Kissing, K. C. 1998. Nutritional modulation of resistance to infectious diseases. Poult. Sci. 77:1119–1125. https://doi.org/10.1093/ps/77.8.1119	
T19	316	Quinteiro, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. M. Sa, A. J. P. Ferreira, and J. Palermo-Neto. 2010. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 89:1905–1914. https://doi.org/10.3382/ps.2010-00812	
21	299	Jin, L. Z., Y. W. Ho, N. Abdallah, and S. Jalaludin. 1998. Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures. Poult. Sci. 77:1259–1265. https://doi.org/10.1093/ps/77.9.1259	
22	290	Havenstein, G. B., P. R. Ferket, and M. A. Qureshi. 2003. Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82:1509–1518. https://doi.org/10.1093/ps/82.10.1509	
23	285	Joerg, R. D. 2003. Alternatives to antibiotics: bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 82:640–647. https://doi.org/10.1093/ps/82.4.640	
24	277	Noy, Y., and D. Sklan. 1995. Digestion and absorption in the young chick. Poult. Sci. 74:366–373. https://doi.org/10.3382/ps.0740366	
25	268	Smith, J., W., and P. B. Hamilton. 1970. Aflatoxicosis in broiler chicken. Poult. Sci. 49:207–215. https://doi.org/10.3382/ps.049207	
T26	265	Mountzouris, K. C., P. Tsirtsikos, I. Palamidi, A. Arvaniti, M. Mohnl, G. Schatzmayr, and K. Fegeros. 2010. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89:58–67. https://doi.org/10.3382/ps.2009-00308	
T26	265	Dransfield, E., and A. A. Soonsick. 1999. Relationship between muscle growth and poultry meat quality. Poult. Sci. 78:743–746. https://doi.org/10.1093/ps/78.5.743	
26	264	Uni, Z., S. Ganot, and D. Sklan. 1998. Posthatch development of mucosal function in the broiler small intestine. Poult. Sci. 77:75–82. https://doi.org/10.1093/ps/77.1.75	
259	259	Baker, D. H., and Y. M. Han. 1994. Ideal amino acid profile for chicks during the first 3 weeks posthatching. Poult. Sci. 73:1441–1447. https://doi.org/10.3382/ps.0731441	
257	257	Julian, R. J. 1998. Rapid growth problems: ascesis and skeletal deformities in broilers. Poult. Sci. 77:1773–1780. https://doi.org/10.1093/ps/77.12.1773	
251	251	Leveille, G. A., D. R. Romses, Y. Y. Yeh, and E. K. O’hea. 1975. Lipid biosynthesis in chick. A consideration of site of synthesis, influence of diet and possible regulatory mechanisms. Poult. Sci. 54:1075–1093. https://doi.org/10.3382/ps.0541075	
252	252	Silversides, F. G., and T. A. Scott. 2001. Effect of storage and layer age on quality of eggs from two lines of hens. Poult. Sci. 80:1240–1243. https://doi.org/10.3382/ps.80.1240	
244	244	Rath, N. C., G. R. Huff, W. E. Huff, and J. M. Balog. 2000. Factors regulating bone maturity and strength in poultry. Poult. Sci. 79:1024–1032. https://doi.org/10.1093/ps/79.7.1024	
T34	233	Engelberg, R. M., M. S. Hedemann, S. Steenfeldt, and B. B. Jensen. 2004. Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poult. Sci. 83:925–938. https://doi.org/10.3382/ps.0340175	
T34	234	Qin, M., D. L. Fletcher, D. P. Smith, and J. K. Northcutt. 2001. The effect of broiler breast meat color on pH, moisture, water-holding capacity, and emulsification capacity. Poult. Sci. 80:676–680. https://doi.org/10.3382/ps.80.5.676	
239	239	Goto, N., H. Kodama, K. Okada, and Y. Fujimoto. 1978. Suppression of phytomenadione skin response in thymectomized chickens. Poult. Sci. 57:246–250. https://doi.org/10.3382/ps.0570246	
237	237	Phillips, T. D., L. F. Kubena, R. B. Harvey, D. R. Taylor, and N. D. Heidelbaugh. 1988. Hydrated sodium calcium aluminosilicate: a high-affinity sorbent for aflatoxin. Poult. Sci. 67:243–247. https://doi.org/10.3382/ps.0670243	
235	235	Ravindran, V., S. Cakunah, G. Ravindran, and W. L. Bryden. 1999. Influence of microbial phytase on apparent ileal amino acid digestibility of feedstuffs for broilers. Poult. Sci. 78:649–706. https://doi.org/10.3382/ps.78.5.649	
233	233	Havenstein, G. B., P. R. Ferket, S. E. Scheidler, and B. T. Larson. 1994. Growth, livability, and feed conversion of 1957 vs 1991 broilers when fed “typical” 1957 and 1991 broiler diets. Poult. Sci. 73:1785–1794. https://doi.org/10.3382/ps.0731785	
228	228	Lay, D. C., R. M. Fulton, P. Y. Hester, D. M. Karcher, J. B. Kjaer, J. A. Mench, B. C. Mullens, R. C. Newberry, C. J. Nicol, N. P. O’Sullivan, and R. E. Porter. 2011. Hen welfare in different housing systems. Poult. Sci. 90:278–294. https://doi.org/10.3382/ps.2010-00962	
226	226	Bartlett, J. R., and M. O. Smith. 2003. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 82:1580–1588. https://doi.org/10.1093/ps/82.10.1580	
225	225	Hill, F. W., and L. M. Dansky. 1954. Studies of the energy requirements of chickens: 1. The effect of dietary energy level on growth and feed consumption. Poult. Sci. 33:112–119. https://doi.org/10.3382/ps.0330112	
224	224	Crespo, N., and E. Esteve-Garcia. 2001. Dietary fatty acid profile modifies abdominal fat deposition in broiler chickens. Poult. Sci. 80:71–78. https://doi.org/10.1093/ps/80.1.71	
T44	222	Yegani, M. M., and D. R. Korver. 2008. Factors affecting intestinal health in poultry. Poult. Sci. 87:2052–2063. https://doi.org/10.3382/ps.2008-00091	
Rank	T = ties	Cited (n)	Publication
------	----------	-----------	-------------
T44	222		Sandercock, D. A., R. R. Huber, G. R. Nute, M. A. Mitchell, and P. M. Hocking. 2001. Acute heat stress-induced alterations in blood acid-base status and skeletal muscle membrane integrity in broiler chickens at two ages: implications for meat quality. Poult. Sci. 80:418–425. https://doi.org/10.1093/ps/80.4.418
46			Araba, M. and N. M. Dale. 1990. Evaluation of protein solubility as an indicator of overprocessing soybean meal. Poult. Sci. 69:76–83. https://doi.org/10.3382/ps.0690076
47			Baurhoo, B., L. Phillip, and C. A. Ruiz-Feria. 2007. Effects of purified lignin and mannann oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult. Sci. 86:1070–1078. https://doi.org/10.1093/ps/86.6.1070
48			Zhang, A. W., B. D. Lee, S. K. Lee, K. W. Lee, G. H. An, K. B. Song, and C. H. Lee. 2005. Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poult. Sci. 84:1015–1021. https://doi.org/10.1093/ps/84.7.1015
49			Harmon, B. G. 1998. Avian heterophils in inflammation and disease resistance. Poult. Sci. 77:972–977. https://doi.org/10.3382/ps.077.9727
T50	212		Zaidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver, and F. E. Robinson. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93:2970–2982. https://doi.org/10.3382/ps.2014-04291
T50			Niewold, T. A. 2007. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci. 86:605–609. http://doi.org/10.3382/ps.86.6.605
T50			Zanella, I., N. K. Sakomura, F. G. Silversides, A. Fiqueirdo, and M. Pack. 1999. Effect of enzyme supplementation of broiler diets based on corn and soybeans. Poult. Sci. 78:561–568. https://doi.org/10.1093/ps/78.4.561
51			Qian, H., E. T. Kornegay, and D. M. Denbow. 1997. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium:total phosphorus ratio in broiler diets. Poult. Sci. 76:37–46. https://doi.org/10.1093/ps/76.1.37
54			Puvadolpird, S., and J. P. Thaxter. 2000. Model of physiological stress in chickens I. Response parameters. Poult. Sci. 79:363–369. https://doi.org/10.3382/ps.79.3.363
55			Amit-Romach, E., D. Sklan, and Z. Uni. 2004. Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci. 83:1093–1098. https://doi.org/10.1093/ps/83.7.1093
56			Whitehead, C. C., and R. H. Fleming. 2000. Osteoporosis in cage layers. Poult. Sci. 79:1033–1041. https://doi.org/10.1093/ps/79.7.1033
57			Gao, J., H. J. Zhang, S. H. Yu, S. G. Wu, I. Yoon, J. Quigley, Y. P. Gao, and G. H. Qi. 2008. Effects of yeast culture in broiler diets on performance and immunomodulatory functions. Poult. Sci. 87:1377–1384. https://doi.org/10.3382/ps.2007-00418
57			Van Laack, R. L., C. H. Liu, M. O. Smith, H. D. Lovdahl, and R. M. Van Laack. 2000. Characteristics of pale, soft, exudative broiler breast meat. Poult. Sci. 79:1057–1061. https://doi.org/10.3382/ps.79.7.1057
58			Viveros, A., S. Chamsarro, M. Pizarro, I. Arijé, C. Centeno, and A. Brenes. 2011. Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poult. Sci. 90:566–578. https://doi.org/10.3382/ps.0100889
59			Viveros, A., A. Brenes, I. Arijé, and C. Centeno. 2002. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult. Sci. 81:1172–1183. https://doi.org/10.1093/ps/81.8.1172
60			Hamilton, R. M. G. 1982. Methods and factors that affect the measurement of eggshell quality. Poult. Sci. 61:2022–2039. https://doi.org/10.3382/ps.61.2022
61			Moran, E. T. 2007. Nutrition of the developing embryo and hatchling. Poult. Sci. 86:1043–1049. https://doi.org/10.3382/ps.86.5.1043
62			Viveros, A., A. Brenes, I. Arijé, and C. Centeno. 2002. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poult. Sci. 81:1172–1183. https://doi.org/10.1093/ps/81.8.1172
63			Siegel, P. B. 1962. Selection for body weight at 8 weeks of age: 1. Short term response and heritabilities. Poult. Sci. 41:954–962. https://doi.org/10.3382/ps.41.954
64			Donaldson, W. E., G. F. Combs, and G. L. Romoser. 1956. Studies on energy levels in poultry rations. 1. The effect of calo-

(continued)
Table 5 (Continued)

Rank	T = ties	Cited (n)	Publication
T76	187		Burkholder, K. M., K. L. Thompson, M. E. Einstein, T. J. Applegate, and I. A. Patterson. 2008. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella Enteritidis colonization in broilers. Poult. Sci. 87:1734–1741. [https://doi.org/10.3382/ps.2008-00107]
T76	187		Satterlee, D. G., and W. A. Johnson. 1968. Selection of Japanese quail for contrasting blood corticosterone response to immobilization. Poult. Sci. 47:35–32. [https://doi.org/10.3382/ps.0670625]
T78	186		Shepherd, E. M., and B. D. Fairchild. 2010. Footpad dermatitis in poultry. Poult. Sci. 89:2043–2051. [https://doi.org/10.3382/ps.2010-00770]
T78	186		Engelberg, R. T. M. S. Hedemann, T. D. Leser, and B. B. Jensen. 2000. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci. 79:1311–1319. [https://doi.org/10.1093/ps/79.9.1311]
T78	186		Fletcher, D. L. 1999. Broiler breast meat color variation, pH, and texture. Poult. Sci. 78:1323–1327. [https://doi.org/10.1093/ps/78.9.1323]
T78	186		Sebastian, S., S. P. Touchburn, E. R. Chavez, and C. Lague. 1996. The effects of supplemental microbial phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets. Poult. Sci. 75:729–736. [https://doi.org/10.3382/ps.0750729]
82		184	Berri, C. C., N. Wacrenier, N. Millet, and E. Le Bihan-Duval. 2001. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poult. Sci. 80:833–838. [https://doi.org/10.1093/ps.80.7.833]
T83	183		Wei, S., M. Morrison, and Z. Yu. 2013. Bacterial census of poultry intestinal microbiome. Poult. Sci. 92:671–683. [https://doi.org/10.3382/ps.2012-02822]
T83	183		Cherian, G., F. W. Wolfe, and J. S. Sim. 1996. Dietary oils with added tocophorols: effects on egg or tissue tocophorols, fatty acids, and oxidative stability. Poult. Sci. 75:423–431. [https://doi.org/10.3382/ps.0750423]
T83	183		Bailey, J. S., L. C. Blankenship, and N. A. Cox. 1991. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult. Sci. 70:2343–2348. [https://doi.org/10.3382/ps.0702433]
T86	182		Uni, Z., Y. Noy, and D. Sklan. 1999. Posthatch development of small intestinal function in the poult. Poult. Sci. 78:215–222. [https://doi.org/10.1093/ps/78.2.215]
T86	182		Teeter, R. G., M. O. Smith, F. N. Owens, S. C. Arp, S. Sangiah, and J. E. Breazile. 1985. Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chicks. Poult. Sci. 64:1000–1004. [https://doi.org/10.3382/ps.646006]
T86	182		Hill, F. W., D. L. Anderson, R. Renner, and L. B. Carew. 1960. Studies of the metabolizable energy of grain and grain products for chickens. Poult. Sci. 39:573–579. [https://doi.org/10.3382/ps.0390573]
89		181	Woelfel, R. L., C. M. Owens, E. M. Hirschler, and A. R. Sams. 2002. The characterization and incidence of pale, soft, and exudative broiler meat in a commercial processing plant. Poult. Sci. 81:579–584. [https://doi.org/10.1093/ps/81.4.579]
T90	180		Scheideler, S. E., and G. W. Froning. 1996. The combined influence of dietary flaxseed meal, level, form, and storage conditions on egg production and composition among vitamin E-supplemented hens. Poult. Sci. 75:1221–1226. [https://doi.org/10.3382/ps.0751221]
T90	180		Plavnik, I., and S. Hurwitz. 1985. The performance of broiler chicks during and following a severe feed restriction at an early age. Poult. Sci. 64:348–355. [https://doi.org/10.3382/ps.0640348]
92	179		Bacon, L. D. 1987. Influence of the major histocompatibility complex on disease resistance and productivity. Poult. Sci. 66:302–311. [https://doi.org/10.3382/ps.0660002]
93	177		Kim, G. B., Y. M. Seo, C. H. Kim, and I. K. Paik. 2011. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult. Sci. 90:75–82. [https://doi.org/10.3382/ps.2010-00732]
94	177		Mitchell, M. A., and P. J. Kettlewell. 1998. Physiological stress and welfare of broiler chickens in transit: solutions not problems! Poult. Sci. 77:1803–1814. [https://doi.org/10.1093/ps/77.12.1803]
95	175		Phelps, R. A., F. S. Shenstone, A. R. Kemmerer, and R. J. Evans. 1965. A review of cyclopropenoid compounds: biological effects of some derivatives. Poult. Sci. 44:358–394. [https://doi.org/10.3382/ps.0440358]
T96	174		Hamal, K. R., S. C. Burgess, I. Y. Pevzner, and G. F. Erf. 2006. Maternal antibody transfer from dam to their egg yolks, egg whites, and chicks in meat lines of chickens. Poult. Sci. 85:1364–1372. [https://doi.org/10.1093/ps/85.8.1364]
T96	174		Uni, Z., Y. Noy, and D. Sklan. 1995. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks. Poult. Sci. 74:1629–1634. [https://doi.org/10.3382/ps.0741622]
97	172		Crittenden, L. B., L. L. Provencer, L. Santangelo, I. Levin, H. Abplanalp, R. W. Briles, W. E. Briles, and J. B. Dodgson. 1993. Characterization of a red jungle fowl by white leghorn backcross reference population for molecular mapping of the chicken genome. Poult. Sci. 72:343–348. [https://doi.org/10.3382/ps.0720343]
T99	170		Hurwitz, S., M. Weisberg, U. Eisner, I. Bartov, G. Riesenfeld, M. Sharvit, A. Niv, and S. Bornstein. 1980. The energy requirements and performance of growing chickens and turkeys as affected by environmental temperature. Poult. Sci. 59:2290–2299. [https://doi.org/10.3382/ps.0592290]
T99	170		Eisen, E., B. B. Bohren, and H. E. McKean. 1962. Haugh unit as a measure of egg albumen quality. Poult. Sci. 41:1461–1468. [https://doi.org/10.3382/ps.0411461]