Temporal change in chromatin accessibility predicts regulators of nodulation in Medicago truncatula

Sara A. Knaack1†, Daniel Conde2†, Sanhita Chakraborty3, Kelly M. Balmant2, Thomas B. Irving3, Lucas Gontijo Silva Maia3, Paolo M. Triziozzi2, Christopher Dervinis3, Wendell J. Pereira2, Junko Maeda3, Henry W. Schmidt2, Jean-Michel Ané3,4, Matias Kirst2,5* and Sushmita Roy1,6,7*

Abstract

Background: Symbiotic associations between bacteria and leguminous plants lead to the formation of root nodules that fix nitrogen needed for sustainable agricultural systems. Symbiosis triggers extensive genome and transcriptome remodeling in the plant, yet an integrated understanding of the extent of chromatin changes and transcriptional networks that functionally regulate gene expression associated with symbiosis remains poorly understood. In particular, analyses of early temporal events driving this symbiosis have only captured correlative relationships between regulators and targets at mRNA level. Here, we characterize changes in transcriptome and chromatin accessibility in the model legume Medicago truncatula, in response to rhizobial signals that trigger the formation of root nodules.

Results: We profiled the temporal chromatin accessibility (ATAC-seq) and transcriptome (RNA-seq) dynamics of M. truncatula roots treated with bacterial small molecules called lipo-chitooligosaccharides that trigger host symbiotic pathways of nodule development. Using a novel approach, dynamic regulatory module networks, we integrated ATAC-seq and RNA-seq time courses to predict cis-regulatory elements and transcription factors that most significantly contribute to transcriptomic changes associated with symbiosis. Regulators involved in auxin (IAA4-5, SHY2), ethylene (EIN3, ERF1), and abscisic acid (ABI5) hormone response, as well as histone and DNA methylation (IBM1), emerged among those most predictive of transcriptome dynamics. RNAi-based knockdown of EIN3 and ERF1 reduced nodule number in M. truncatula validating the role of these predicted regulators in symbiosis between legumes and rhizobia.

Conclusions: Our transcriptomic and chromatin accessibility datasets provide a valuable resource to understand the gene regulatory programs controlling the early stages of the dynamic process of symbiosis. The regulators identified provide potential targets for future experimental validation, and the engineering of nodulation in species is unable to establish that symbiosis naturally.

Keywords: Nitrogen fixation, Nodulation, Symbiosis, Chromatin accessibility, Transcriptome and chromatin dynamics, Gene regulatory network, Cis-regulatory elements, Machine learning, Medicago

Introduction

Legumes such as Medicago truncatula can establish a well-characterized mutualism with nitrogen-fixing rhizobia. Signal exchanges between the host plant and bacteria initiate intracellular infection of host cells, followed...
by the development and colonization of root nodules [1]. Nodules provide a unique niche for the bacteria and fix nitrogen. Nodulating plants can grow with little to no outside sources of nitrogen and even build soil nitrogen levels for subsequent crops [2]. Hence, understanding symbiotic processes between legumes and rhizobia is extremely valuable for the productivity and sustainability of agricultural systems worldwide.

Symbiosis begins with compatible rhizobia detecting flavonoids and isoflavonoids produced by the legume host [3] and subsequent release of lipo-chitooligosaccharides (LCOs) by the bacteria. The host plant perceives LCOs with LysM domain receptor-like kinases homologs, such as Nod factor perception (NFP) and LysM domain receptor-like kinase 3 (LYK3) in *M. truncatula* [4, 5]. LCO perception activates a signaling cascade, involving the plasma membrane-localized LRR-type receptor kinase doesn’t make infections 2/nodulation receptor kinase (MtDMI2/MtNORK), the calcium-regulated calcium channel (MtDMI1), cyclic nucleotide-gated calcium channels, *M. truncatula* calcium ATPase 8 (MtMCA8), and including the components of the nuclear pore complex [6–8]. The cascade results in oscillations of nuclear calcium concentrations, detectable by the nucleus-localized calcium/calmodulin-dependent protein kinase (CCaMK, MtDMI3 in *M. truncatula*) [9]. CCA MK activates the transcription factor (TF) interacting protein of DMI3 (MtIPD3/CYCLOPS). Downstream, other TFs are activated, such as nodulation-signaling pathway 1 and 2 (NSP1 and NSP2), Nodule INception (NIN), ethylene response factor required for nodulation 1, 2, and 3 (ERN1, 2, and 3), and nuclear factor YA-1 and YB-1 (NF-YA1 and NF-YB-1) [10, 11].

The coordinated activity of these TFs triggers transcriptional changes [12] essential for infection of the root hair cells (in *M. truncatula*), nodule organogenesis, and infection of the nodule cortex [10]. These processes require changes in chromatin accessibility [13] on a continuum from closed to open, which are important for cell function [14]. Chromatin reorganization has been shown to regulate a number of processes in plants including photomorphogenesis and flowering [15, 16]. For example, active DNA demethylation by DEMETER (DME) is critical for gene expression reprogramming during nodule differentiation in *M. truncatula* and the acquisition of organ identity [13]. Also, in *M. truncatula*, the gene expression level of nodule-specific cysteine-rich genes (NCR) across root nodule zones are correlated with chromatin accessibility [17].

The extent of chromatin accessibility change and impact on transcriptional regulation in rhizobial infection, colonization, and nodule development, remains unknown. Thus, we measured temporal changes in the transcriptome (RNA-seq—ribonucleic acid sequencing) and genome-wide chromatin accessibility (ATAC-seq—assay for transposase-accessible chromatin using sequencing) in response to *Sinorhizobium meliloti* LCOs in *M. truncatula roots* (Fig. 1A). To characterize the role of chromatin accessibility and consequent impact on transcriptional dynamics, we applied a novel algorithm, dynamic regulatory module networks (DRMN) [18], to predict gene expression as a function of chromatin accessibility profiles of cis-regulatory features. DRMN results suggest that chromatin accessibility and specific TFs play a critical role in regulating the transcriptional dynamics in response to LCOs.

Results

Root transcriptome response to LCOs involves genes activated by rhizobia and early nodule development in Medicago

We profiled the global transcriptomic changes of rhizobium LCO signaling with RNA-seq in *M. truncatula* using the Jemalong A17 genotype, treated with LCOs purified from *S. meliloti*. An LCO concentration of 10^{-8} M was used, as in previous studies [19, 20]. Samples were analyzed for control ($t = 0$ h) and seven time-point conditions after treatment (15 and 30 min; 1, 2, 4, 8, and 24 h). Principal component analysis (PCA) showed clustering of biological replicates and time-dependent ordering, the first component explaining ~36% of variation (Fig. 1B, Additional file 1: Figure S1). Comparison of
Fig. 1 (See legend on previous page.)
expression levels at each time point (relative to control, $t = 0$ h) revealed 12,839 differentially expressed (DE) genes with significant change in expression (adjusted-$P < 0.05$), including 7540 and 7051 upregulated and downregulated at one time point relative to control, respectively (Additional file 1: Figure S2A). When comparing any pair of time-points we identified 17,391 DE genes in total (Additional file 1: Figure S2A). Both the statistics (Additional file 1: Figure S2B) and heat-maps of DE genes (Additional file 1: Figure S2C, D) present clear patterns of temporal change.

To corroborate these results with previous work on transcriptome dynamics of symbiosis, the identified DEGs were compared to DEGs identified from a published time course data of *M. truncatula* roots inoculated with rhizobium from Larraínzar et al. [12] (see Additional file 1: Figure E-G). Comparisons were made to DEGs in the following genotypes: Jemalong A17 wild type, LCO-insensitive *nfp*, infection *lyk3* mutant, and LCO-hypersensitive *skl* mutant. The highest similarity, measured by F-score, to our DEG set was for the mutant genotype most sensitive to LCOs, *skl* (0.53), and the wild-type (WT) strain (0.40). Marker genes for rhizobium-induced nodulation were upregulated (compared to $t = 0$ h), including *NIN* (*nodule inception*, induced after 15 min, with a maximum induction at $t = 1$ h), *CRE1* (*cytokinin response* 1, at 4 h, 8 h, and 24 h), *ENOD11* (*early nodulin* 11, highly induced at 8 and 24 h), *RPG* (*rhizobium-directed polar growth*, at 4 h), and *ERN1* (*ethylene responsive factor required for nodulation* 1, induced as early as $t = 15$ min, Fig. 1D). The similarity was lowest for the *lyk3* (0.26) and *nfp* (0.17) mutants (Fig. 1C, see Additional file 1: Figure S2E, F). Furthermore, when comparing individual time points, DE gene sets are most similar for the later time points (Additional file 1: Figure S2G). While our DEGs had the greatest overlap with the *skl* genotype DEGs, we detected more DEGs compared to Larraínzar et al, likely due to differences in growth conditions (aeroponics versus agar plates) and treatment (purified LCOs versus *Sinorhizobium medicae*), both inducing a strong LCO response.

To examine more complex transcriptome dynamics beyond pairwise DE analysis associated with LCO response, we applied ESCAROLE, a probabilistic clustering algorithm designed for non-stationary time series [21]. The expression data were clustered into seven modules at each time point (very low, low, medium-low, medium, medium-high, high and very high expression, Fig. 2A). Seven modules maximized the log-likelihood and silhouette index (Additional file 1: Figure S3A, B). Next, 12,261 transitioning genes (those changing module assignment over time) were identified, including several implicated in symbiosis (Additional file 1: Figure S3C).

Transitioning genes with similar dynamics were clustered using hierarchical clustering, identifying 112 clusters (≥ 10 genes each) (Fig. 2B) including 11,612 genes (Methods). Among clusters representing downregulation of expression over time, several were enriched for Gene Ontology (GO) processes implicated in defense responses to bacterium (cluster 293, downregulated from 2–4 h), and the biosynthesis of plant hormones involved in the suppression of nodulation (Fig. 2C). For instance, cluster 299 (downregulated after 2 h) is enriched (hypergeometric test $q = 0.05$) for jasmonic acid (JA) biosynthesis and JA response genes, including *Coronatine insensitive 1* (*COI1*), which forms part of the JA co-receptor complex for the perception of the JA-signal [22]. Among the gene clusters upregulated over time, several are implicated in early stages of symbiosis and nodule development. For instance, cluster 186 (induced 2–4 h after LCO treatment; Fig. 2C) is enriched in genes implicated in the regulation of meristem growth, including an *Arabidopsis thrixoras* 3 (*ATX3*) homolog (MtrunA17Chr4g0005621) and a lateral organ boundaries domain (LBD) transcription factor (MtrunA17Chr4g0043421). *ATX3* encodes an H3K4 methyltransferase [23], and LBD proteins are characterized by a conserved lateral organ boundaries (LOB) domain and are critical regulators of plant organ development [24], including lateral roots and nodules [25]. This cluster also contains *EPP1* and the cytokinin receptor *CRE1*, both positive regulators of early nodule symbiosis and development [26, 27]. Other essential regulators of LCO signaling are also found in clusters exhibiting induction under LCO treatment (Additional file 1: Figure S3D), such as *DMI1* (cluster 197, Fig. 2C), *NIN* (cluster 205), *NF-YA1* (cluster 177), and the marker of LCO perception *ENOD11* (cluster 296). Together, the DE and ESCAROLE analysis showed that *M. truncatula* response to LCOs is characterized by complex expression dynamics recapitulating several known molecular features of this process.

LCO treatment causes genome-wide changes in chromatin accessibility

To study chromatin accessibility changes in a genome-wide manner in response to LCOs, we performed ATAC-seq on samples at all time points matching our RNA-seq time course. Overall, 54–235 million paired-end reads were obtained for each sample, with 46–75% mappable to the (v5) reference genome (Additional file 1: Figure S4). Moreover fragment distributions in ±1 kbp of the transcription start site (TSS) were examined (Additional file 1: Figure S5, see Methods) and favorably compared to previously published *M. truncatula* ATAC-seq data [28] (Additional file 1: Figure S6).

We next evaluated aggregated chromatin accessibility in gene promoter regions, defined as ±2 kbp around
the TSS, across time. To quantify promoter accessibility, we obtained the mean per base pair (per-bp) read coverage within each region, for each time point. For each time-point, the log-ratio of per-bp read coverage in each promoter was taken relative to the global mean of per-bp coverage, quantile normalized across time points. High consistency was found between promoter signals between technical replicates from each time point based on Pearson's correlation (Additional file 1: Figure S7, Pearson correlation 0.965–0.990) and PCA (Additional file 1: Figure S8A). We partitioned the resulting 51,007 gene promoter accessibility profiles into six characteristic patterns (clusters) using k-means clustering (Fig. 3A, Additional file 1: Figure S8B). Clusters 1 (14,338 genes) and 6 (13,083 genes) exhibit general patterns of decrease and increase in accessibility, respectively, whereas clusters 2–5 (5460–6377 genes) present more transient variation. The correlation of accessibility between time points suggests an overall reorganization of promoter accessibility 1–2 h after the treatment (Additional file 1: Figure S8C). The temporal change in accessibility is evident for the promoters of several nodulation genes, including CRE1, CYCLOPS, and EIN2 (Fig. 3B, Additional file 1: Figure S8D, E; prepared with the Integrative Genome Viewer—IGV) [29]. PCA of the promoter signals showed time-dependent variation (Fig. 3C, Additional file 1: Figure S8A), with the first component explaining > 50% of the variance.

We called peaks for each time point using the Model-based Analysis of ChIP-Seq version 2 (MACS2) algorithm [30] (Additional file 1: Figure S9A) and merged peaks across time points with at least 90% overlap into universal peaks (Additional file 1: Figure S9B). Chromatin accessibility peaks showed a similar genomic

Fig. 2 Transcriptome dynamics in response to LCOs. A ESCAROLE results for seven modules, based on transcript abundance data. Each heatmap includes genes assigned to that module at that time point, and the height of each heatmap corresponds to the number of genes (inset numbers). B The module assignment heatmap depicting typical gene expression trends obtained by hierarchical clustering of gene module profiles into transitioning gene sets. Shown are the mean module assignments, number of genes in each set, and expression levels at each time point for each cluster. Arrows indicate two example trends of expression change. C Examples of transitioning gene sets showing gene expression upregulation or downregulation, enriched for genes implicated in nodulation such as defense response to bacterium (cluster 293) and meristem growth (cluster 186)
distribution across time points, with 32.1% of peaks located within 2 kbp upstream and 100 bp downstream of a gene TSS (Additional file 1: Figure S9A-C) and spanning 50.4 Mbp (11.7%) of the *M. truncatula* (v5) genome. As with the promoter accessibility, clustering accessibility profiles of universal peaks identified distinct patterns of temporal change (Additional file 1: Figure S9D, E).

Several of the clusters were associated with known TF motifs (Additional file 1: Figure S9F) and specific types of genomic regions. For example, clusters 1, 2, and 7 had higher proportions of intergenic peaks (hypergeometric test $P < 0.05$, Additional file 1: Figure S9G). Genes mapped to peaks associated with cluster 2 were enriched for photosynthesis and protein-chromophore linkage.
Collectively, these results suggest that LCO treatment had a genome-wide impact on chromatin accessibility, prospectively associated with simultaneous change in gene expression.

Chromatin accessibility is correlated with transcriptional dynamics of nodulation genes

We evaluated the relationship between gene expression and promoter chromatin accessibility ±2 kbp around the TSS and universal peaks within 10 kbp upstream and 1 kbp downstream of a gene TSS. Correlating promoter accessibility and gene expression profiles identified 6429 genes with significant correlation (Fig. 4A, \(P < 0.05 \) relative to random permutation): 4777 with positive correlation and 1652 with negative correlation (Fig. 4B), representing 17.2% of the 37,356 genes analyzed. Among these were 36 genes with known roles in symbiosis (Additional file 1: Figure S8D), including ERN1, CRE1, LYK10/EPR3, SKL/EIN2, and IDP3/CYCLOPS with positive correlation, and LYK8, ERN2, CAMTA3, and CAMTA4 with negative correlation. We next examined significantly correlated genes (Fig. 4A) and visualized those expression and accessibility profiles as ordered by the promoter accessibility clusters (Fig. 3A), separately for positive and negative correlation (Fig 4B). This revealed robust patterns of consistency between promoter accessibility and expression.

Correlating accessibility of universal peaks centered within 10 kbp upstream to 1 kbp downstream of gene TSSs identified 100,722 peak-gene mappings (out of a total 125,140) associated with 28,803 (of 37,536) expressed genes (Fig. 4C, Additional file 1: Figure S9C and G). Peak accessibility was significantly correlated with gene expression in 15.7% of these pairings (Fig. 4C), comparable to the 17.2% (6429) genes with significant correlation between expression and gene TSS accessibility. When considering each gene and only the most correlated peak (28,803 selected pairs), 34.4% (9912 genes) were significantly correlated, including 56 nodulation genes (Fig. 4D). Of these 9912 genes presenting significant correlation, 5735 (57.9%) do not present significant correlation with the corresponding promoter accessibility, indicating a prominent role for distal regulation (>2 kbp of gene TSS) for these genes. Such peaks were in general more distal from TSS sites than those that presented significant correlation with corresponding TSS accessibility (Kolmogorov-Smirnov/KS test \(P < 0.05 \)).

Finally, the ESCAROLE-defined transitioning gene clusters exhibited coordinated trends between expression profiles for significantly positively (i) or negatively (ii) correlated gene-peak mappings.
promoter accessibility and gene expression (Fig. 2B, Additional file 1: Figure S3D). Two thousand five hundred one of the 11,612 (21.5%) transitioning genes that could be clustered exhibited significant correlation between their profiles of expression and promoter chromatin accessibility. These results suggest that chromatin accessibility is an important regulatory mechanism in transcriptional response to LCOs.

DRMN integration of ATAC-seq and RNA-seq data identifies key regulators that determine gene expression dynamics in response to LCOs

To better understand how chromatin accessibility contributes to transcriptional changes in rhizobia-plant symbiosis, we applied dynamic regulatory module networks (DRMN) [18] to integrate the RNA-seq and ATAC-seq time course data. DRMN extends the ESCAROLE analysis (which examined only the transcriptome) by modeling the relationship between variation in accessibility and gene expression. DRMN predicts gene expression as a function of regulatory features [31] by first grouping genes into modules based on expression levels (similar to ESCAROLE) and then learning a regulatory program for each module. DRMN uses regularized regression and multi-task learning to incorporate the temporal nature of a data set [32] to simultaneously learn regression models for each module in each time point.

We applied DRMN with seven expression modules using two types of features (Fig. 5A, Additional file 2: Tables S1-S4): (1) the aggregated signal of ATAC-seq reads in gene promoters (± 2 kbp of the TSS) and (2) the ATAC-seq signal in genomic coordinates of known motifs within −10 kbp and +1 kbp of the TSS. Both feature types represent chromatin accessibility, but the first
is independent of the presence of known motifs, whereas the second captures the accessibility of motif sites. Motif features were based on the CisBP v1.2 database for *M. truncatula* [33] and curated motifs of several known regulators of root nodulation, including CYCLOPS, NSP1, NIN, and the nitrate response *cis*-element (NRE). Hyper-parameters for DRMN were selected using a grid search and quality of inferred modules (Additional file 1: Figure S10A). The DRMN modules represent statistically different expression levels (Additional file 1: Figure S10B, Kolmogorov-Smirnov test *P* < 10⁻³⁰⁰). To assess the extent to which DRMN captures variation in expression, we correlated predicted and measured expression levels (Fig. 5B, Additional file 1: Figure S10A, C). The mean Pearson correlation of predicted and measured values per module was 0.26–0.46 (Additional file 1: Figure S10C) across all modules and time points, the least expressed module being most difficult to predict. Comparing the genes in each module showed that the modules are more similar (*F*-score 0.88–0.94, Fig. 5C) before and after 2 h, than across this time point (*F*-score < 0.80), suggesting a significant module reorganization at ~2 h. This is consistent with the general reorganization of promoter accessibility ~1–2 h after the treatment and global expression correlation around 2 h (Additional file 1: Figure S8C). We additionally tested the modules for enrichment of known motifs (Additional file 1: Figure S11, Additional file 2: Table S3) and Gene Ontology (GO) processes (Additional file 1: Figure S12). Several regulators (e.g., KNOX and EDN transcription factor family members) and processes relevant to symbiosis were identified, including nodule morphogenesis, root-hair elongation, and the MAPK cascade, as well as others relating to gene regulation and chromatin organization. Finally, we used the DRMN module assignments to define transitioning gene sets (Fig. 5D, Additional file 1: Figure S13A), similar to those from ESCAROLE (Fig. 2B, Additional file 1: Figure S13B). We identified 79 transitioning gene clusters including 10,176 genes, of which 5332 (>50%) were differentially expressed with DESeq (hypergeometric-test overlap adjusted-*P* < 0.05), and (8398) 77% were identified in ESCAROLE, indicating consistency between the analyses.

We used the DRMN results to prioritize regulators that shape transcriptional response to LCOs. Specifically, we identified regulators whose regression coefficient changed significantly (*T*-test *P* < 0.05) between 0–2 and 4–24 h, corresponding to the reorganization of expression modules (Fig. 5C). According to this criterion chromatin accessibility of gene promoters was an important predictor of expression for highly expressed genes (“Promoter ATAC-seq” for modules 5 and 6, Fig. 6A). We also identified the TFs IBM1 (increase in BONSAI methylation 1), ERF1 (ethylene response factor 1), EDN1-3 (ERF differentially regulated during nodulation 1, 2, and 3), EIN3 (ethylene insensitive 3), SHY2 (short hypocotyl 2), ABI4-5 (abscisic acid-insensitive 4 and 5), MTF1 (MAD-box transcription factor 1), and MtRRB15 (type-B response regulator 15), as well as several markers of meristem cells, KNOX and PLT (PLETHORA) protein families as important regulators (Fig. 6B, Additional file 1: Figure S11).

Identification of the targets of DRMN-prioritized regulators

DRMN identified regulators of gene expression dynamics in response to LCOs. Next, we aimed to identify their gene targets. Expression-based network inference is commonly used to define regulator-gene relationships [34] but is challenging with only 8 time-points. To address this, we used the DRMN transitioning gene sets and regulatory motifs selected by a regularized regression method, multi-task group LASSO (MTG-LASSO, where LASSO stands for least absolute shrinkage and selection operator) to define the targets of a gene (Methods). This approach modeled the variation in expression of each of the 79 transitioning gene clusters using a structured sparsity approach, multi-task group LASSO (MTG-LASSO) (SLEP v4.1 package [35], Fig. 7A, Additional file 2: Table S4) to identify regulators (motifs/TFs) for each of the transitioning gene clusters. Here, the same feature data from the DRMN analysis was used. We determined MTG-LASSO parameter settings for all 79 transitioning gene sets, identifying 33 with significant regulatory motif associations (Additional file 1: Figure S14). This generated 122,245 regulatory edges connecting 126 regulatory motifs to 5978 genes (Fig. 7B). Several gene sets exhibit consistent downregulation of expression and corresponding reduction in accessibility of predicted regulatory motifs between 0–2 and 4–24 h (Fig. 7C). For example, gene set 214 (57 genes) shows downregulation of gene expression and reduced motif accessibility (after 4 h) for multiple TFs: MTF1 and BHLH (Fig. 7C). Similarly, gene set 182 was predicted to be regulated by EDN3, MTF1, EIN3, and NF-Box motif and exhibited correlated trends...
Fig. 6 (See legend on previous page.)
between gene expression and regulatory feature accessibility (Fig. 7C). We prioritized regulators based on the number of targets they were predicted to regulate and found several known and novel regulators in the top-ranking set, such as ERF1 (ethylene response factor 1), EDN1-3 (ERF differentially regulated during nodulation 1, 2, and 3), EIN3 (ethylene insensitive 3), SHY2 (short hypocotyl 2), and MTF1 (MAD-box transcription factor 1) (Fig. 7D).

EIN3 and ERF1 are important regulators of root nodule symbiosis in *M. truncatula*

To experimentally test the involvement of DRMN prioritized transcription factors in root nodule symbiosis, we selected three TFs, EIN3, ERF1, and IAA4-5 which were among the DRMN selected regulators (Fig. 7D). We knocked down the expression of the corresponding genes by RNAi and examined the nodulation phenotype in composite *M. truncatula* plants ([Methods](#)). Knockdown of MtrunA17Chr5g0440591 (EIN3) and MtrunA17Chr1g0186741 (ERF1) significantly lowered the number of nodules produced on the RNAi roots (Fig. 8A, Additional file 1: Figure S15A, P<0.05 from an ANOVA test followed by Tukey’s HSD test post hoc). Knockdown of MtrunA17Chr1g0166011 (IAA4-5) did not alter nodulation relative to the empty vector (EV) control (Additional file 1: Figure S15B, Additional file 2: Table S5). These nodules were all colonized by *S. meliloti* (Fig. 8B). Together, these results validate the role of EIN3 and ERF1 in rhizobium-legume symbiosis, as predicted by DRMN.

Discussion

The enormous economic and environmental cost of plant nitrogen fertilization motivates efforts towards identifying molecular mechanisms underlying legume perception of nitrogen-fixing bacteria and nodule development. We dissected the gene regulatory network in *M. truncatula* roots in response to *S. meliloti* LCOs by jointly profiling the temporal changes in the transcriptome and chromatin accessibility and integrating these data computationally. Extensive changes in the transcriptome are known to occur in *Medicago* roots in response to rhizobia signals, and we show these changes are accompanied and facilitated by extensive chromatin remodeling. While the overall percentage of accessible chromatin regions remained similar across our time course experiment, regions of accessibility underwent a dramatic shift 1–2 h after treatment. This remodeling appears to anticipate the development of root nodules, which requires stringent temporal and spatial control of gene expression. Chromatin accessibility of gene promoters notably also emerged as a significant predictor of gene expression (Fig. 6). These changes in chromatin accessibility enable and enhance the transcriptional changes required for nodule development by providing regulators access to promoters that may be inactive in other stages of plant development. Correlation was additionally observed between gene expression and promoter chromatin accessibility profiles of several essential regulators of nodulation, including ERN1, CRE1, SKL/EIN2, IDP3/CYCLOPS, and EIN2. Close coordination between chromatin accessibility and gene expression in LCO response is likely essential for root nodule development.

We applied novel methods for time-series analysis, ESCAROLE and DRMN [36], to model temporal changes in gene expression and chromatin accessibility. ESCAROLE enabled us to characterize the transcriptional dynamics beyond pairwise differential expression analysis, while DRMN allowed us to jointly analyze transcriptome and chromatin dynamics and predict which transcription factors (TFs) are most important for expression dynamics. Consistent with the theme of chromatin reorganization under LCO treatment response, DRMN identified IBM1 as a critical regulator. IBM1 encodes a JmjC domain-containing histone demethylase that catalyzes the removal of H3K9 methylation and di-methylation in Arabidopsis [37]. DRMN also identified regulatory genes involved in hormone responses in the early steps of symbiosis and nodule formation such as ethylene (ERF1, EDN1-3, and EIN3) and ABA (ABI4-5). EIN3 is a transcription factor mediating ethylene-regulated gene expression and...
Fig. 7 (See legend on previous page.)

A

MTG-LASSO regression framework

\[\mathbf{Y} = \mathbf{XB} + \mathbf{e} \]

\[||\mathbf{Y} - \mathbf{XB}||_2^2 + \lambda ||\mathbf{B}||_1/2 \]

B

C

(i) Cluster 112

(ii) Cluster 182

(iii) Cluster 214

(iv) Cluster 255

D

Ranking of regulatory features
morphological responses in Arabidopsis. The role of EIN3 in rhizobium-legume symbiosis or LCOs signaling remains uncharacterized, but sickle (skl) mutants for an EIN2 ortholog develop more infection threads and nodules and respond more to LCOs than wild-type plants, and ethylene treatment inhibits LCO signaling and nodule formation [38]. ABI4 and ABI5, basic leucine zipper transcription factors implicated in several plant functions, coordinate LCO and cytokinin signaling during nodulation in M. truncatula [39]. DRMN also identified regulators associated with the hormones involved in the nodule initiation, auxin (SHY2), and cytokinin (MtRRB15). SHY2, a member of the Aux/IAA family, plays a critical role in cell differentiation at root apical meristem and is activated by cytokinin [40, 41]. SHY2 was proposed as a candidate for nodule meristem regulation and differentiation after showing a very localized expression pattern in the nodule meristematic region [42]. Also related to nodule meristem initiation, KNOX TF-family members and PLT1-5 were predicted as regulators of gene expression in response to LCOs. MtPLT genes (MtPLT1-5) are part of the root developmental program recruited from root formation and control meristem formation and maintenance for root and nodule organogenesis [43]. We experimentally validated two of our regulators EIN3 and ERF1 using RNAi in M. truncatula and showed a significant effect in nodule formation. Prior work of Asamizu et al. [44] independently supports the observation of the ERF1 ortholog as an effector of nodule development in L. japonicus, where the number of nodules was likewise reduced in a similar RNAi experiment. Their findings suggest ERF1 is induced by rhizobium on a 3 to 24 h time scale, echoing the observed time scale of chromatin reorganization in M. truncatula in our work. Recent work of Reid et al. [45] emphasizes an early, positive role of ethylene in rhizobium-legume symbiosis in L. japonicus, which supports why we observe ethylene-related TFs having a positive impact on nodulation, unlike the ethylene insensitive skl mutation [38]. The exact mechanisms by which these genes regulate rhizobium-legume symbiosis can be explored in future research.

Fig. 8 RNAi knockdown of EIN3 and ERF1 reduced the number of nodules on M. truncatula plants. A Data for empty vector control, and EIN3 and ERF1 knock down roots (n = 20, 16, and 13 replicates respectively) were analyzed by ANOVA followed by Tukey’s HSD test for multiple comparisons. Box plots not connected by the same letter are significantly different (P < 0.05). One extreme outlier (29 nodules) was excluded in the MtrunA17Chrg0186741 (ERF1) experiment. B Images of nodules on subtending root supporting the effectiveness of RNAi. Blue color (top) indicates the rhizobial infection (S. mellioti constitutively expressing lacZ), and the red fluorescence marker (bottom) identifies transgenic roots (white scale bar = 1 mm)
Our analysis predicted genome-wide targets for transcription factors, including novel regulators identified by DRMN and previously known regulators of root nodulation, such as NIN, NF-YA1/NF-YB1, and CYCLOPS. For example, MTG-LASSO analysis predicted NIN as a direct target of SHY2 and MTF1, and FLOT4, required for infection thread formation, as a target of IBM1 [46]. Among known regulators, MTG-LASSO indicated that ARF16a and SPK1 are targets of NF-Y TFs. ARF16a and SPK1 control infection initiation and nodule formation [1]. Several NF-Y genes (NF-YA5 and NF-YB17) were identified as regulated by CYCLOPS. These predicted regulatory relationships can be tested with future validation experiments and uncover key mechanisms underlying the regulation of gene expression in LCO response.

Conclusions
The regulatory mechanisms underlying plant-microbe symbiotic relationships remain poorly characterized. Here, we present a novel dataset that profiles the concurrent changes in transcriptome and chromatin accessibility in the model legume, Medicago truncatula, in response to rhizobia signal that trigger nodule formation. We have jointly modeled the transcript and transcriptome time series data to predict the most critical regulators of the response to these signals and that underlie molecular pathways driving nodule formation. Our transcriptomic and accessibility datasets and computational framework to integrate these datasets provide a valuable resource for identifying key regulators for the establishment of root nodulation symbiosis in M. truncatula that could inform engineering of nodulation in species unable to establish that symbiosis naturally.

Methods
Plant material and treatment
Seeds of wild-type Medicago truncatula Jemalong A17 strain (available through the USDA Germplasm Resources Information Network (GRIN)) were sterilized and germinated in 1% agar plates, including 1μM GA3. Plates were stored at 4 °C for 3 days in the dark and placed at room temperature overnight for germination. Seedlings were grown vertically for 5 days on a modified Fahraeus medium with no nitrogen [47], in a growth chamber (24 °C, 16 h light/8 h dark cycle, 70 μmol m⁻² s⁻¹ photosynthetic photon flux). LCOs were purified from S. meliloti strain 2011 as described previously [48]. Next, seedling roots were immersed in a solution of purified LCOs (10⁻⁸ M) or 0.005% ethanol solution (control) for 1 h. Roots were cut and immediately used for nuclei extraction and generation of ATAC-seq libraries (see below) or snap-frozen in liquid nitrogen for posterior RNA isolation and sequencing. Roots were collected at 0 h (control), 15, 30 min, 1, 2, 4, 8, and 24 h after LCO treatment. Roots from seven plants were pooled for each of three biological replicates used in RNA sequencing, while roots from 15 plants were pooled for one replicate used in ATAC-seq, in each time point of the experiment.

ATAC-seq library preparation and sequencing
For ATAC-seq library preparation, we followed the protocol described previously [49] with modifications. Before nuclei isolation, all materials were precooled to 4 °C. Briefly, roots were chopped for 2 min in 1 ml of pre-chilled lysis buffer (15 mM Tris-HCl pH7.5, 2 mM EDTA, 20 mM NaCl, 80 mM KCl, 0.5 mM spermine, 15 mM 2-ME, 0.15 % TritonX-100) in a cold room. This step was repeated four times with a 1 min interval between repetitions. The homogenate was filtered through one layer of pre-wetted Miracloth, loaded on the surface of a 2 ml dense sucrose buffer (1.7 M sucrose, 10 mM Tris-HCl pH8.0, 2 mM MgCl₂, 5 mM 2-ME, 1 mM EDTA, 0.15 % Triton X100), and centrifuged (2400 g, 20 min at 4 °C). The supernatant was removed, and the nuclei were resuspended in 500 μl of lysis buffer and then filtered in 70 μm and 40 μm filters consecutively. The nuclei were then collected by centrifuging the solution at 1000g for 5 min at 4 °C. After washing with 950 μl 1×TAPS buffer (10 mM TAPS-NaOH, pH8.0, 5 mM MgCl₂), the samples were centrifuged again at 1000g for 5 min at 4 °C. The supernatant was removed, leaving the nuclei suspended in approximately 10 μl of solution. Next, 1.5 μl of Tn5 transposase (Illumina FC-121-1030), 15 μl of Tagmentation buffer, and 13.5 μl of ddH₂O were added to the solution. The reaction was incubated at 37 °C for 30 min. The product was purified using a QIAGEN MinElute PCR Purification kit and then amplified using Phusion DNA polymerase. One microliter of the product was used in 10 μl qPCR cocktail with Sybr Green. Cycle number X was determined as the cycle were the ¼ of the maximum signal was reached. Then, we amplified the rest of the product in a Phusion (NEB) PCR system with X-2 cycles (10 to 15 cycles, 50 μl of reaction). Amplified libraries were purified with AMPure beads (Beckman Coulter), and library concentrations were determined using a Qubit. Sequencing was carried out in an Illumina HiSeqX (2 x 150 cycles) at the HudsonAlpha Institute for Biotechnology (Huntsville, AL, USA).

RNA-seq library preparation and sequencing
For each RNA extraction, roots from 7 plants were pooled and ground while keeping the sample frozen.
RNA extraction was performed as described previously [50]. Libraries were prepared using 1 μg of RNA in the NEBNext Ultra™ Directional RNA Library Prep Kit following the supplier’s instructions (New England Biolabs, Ipswich, MA, USA). Sequencing was carried out with an Illumina HiSeq3000 (2 × 100 cycles) at the Interdisciplinary Center for Biotechnology Research at the University of Florida (Gainesville, FL, USA).

RNA-seq data pre-processing and quality control

Between 8.7 and 17.9 million, 2 × 100 bp reads were obtained after sequencing the 24 RNA-seq libraries. Reads were aligned with Kallisto [51] to the *M. truncatula* transcriptome (v5, [52], Additional file 1: Figure S1). The average of the alignment rates across time points was 87–95%. A total of 37,536 genes were detected with non-zero expression at any of the time points. The data were processed with SLEUTH [53] for further analysis. Finally, TPM expression values were quantile-normalized and log-transformed before being used as input for further analysis. Principle component analysis was applied to these data in MATLAB (Fig. 1A). For comparative purposes, transcriptome time course data related to root nodulation [12] obtained from the *M. truncatula* wild-type reference accession Jemalong A17 and three mutants (*lyk3, nfp, and skl/ein2*), were analyzed using the same Kallisto/SLEUTH approach. The 144 samples characterized in that experiment presented alignment rates of 91–96%, except four outliers with rates of 73–88%. Analysis of this data set detected 40,988 genes with non-zero expression, of which 36,298 were in common with the 37,536 identified in the present LCO-treatment experiment (Additional file 1: Figure S1).

Differential expression analysis of RNA-seq time course and comparison with existing data

DESeq [54] was applied to both the data generated in the present work and previously published data sets for four rhizobial treatment [12]. The expected count matrices of each data set were used as input to the DESeq algorithm, used in a default manner per the author recommendations. For each of the five time-course experiments, we assessed differential expression relative to control (time 0 h) for each later time point (Additional file 1: Figure S2A and S2E, left) as well as between pairs of time points (Additional file 1: Figure S2E). An adjusted *P* threshold of 0.05 was applied to select differentially expressed (DE) genes for each time point in each experiment. Statistics (Additional file 1: Figure S2B) and heat-maps for genes DE relative to control and between (all) time points (Additional file 1: Figure S2C and D) present clear patterns of temporal change.

For the Larrainzar et al. data set [12], we also identified differentially expressed genes between the three mutants (*lyk3, nfp, and skl/ein2*) relative to the wild-type reference (Jemalong A17) for matched time points (Additional file 1: Fig S2E, right). As in the first analysis the union of genes identified at any time point defined the set of differentially expressed genes for the dataset.

The union of differentially expressed genes across time points was used for comparisons between data sets. We quantified the degree of overlap between DE gene sets with an *F*-score, or harmonic mean, of the fraction of overlapping genes in each set using the union across all time points (Fig. 1C, Additional file 1: Figure S2F) as well as individual pairs of time points (Additional file 1: Figure S2G). For two sets of *N*₁ and *N*₂ genes, respectively, and *N*₀ in common between the two, the *F*-score is defined as:

\[F = 2 \frac{\frac{N_0}{N_1} \cdot \frac{N_0}{N_2}}{\frac{N_0}{N_1} + \frac{N_0}{N_2}} \]

Expression clustering analysis with ESCAROLE

We analyzed the LCO-treatment time course data with ESCAROLE [21] to characterize the temporal changes in the transcriptome. We included 37,536 genes with at least one non-zero count in at least one of the 24 experiments (3 replicates × 8 time points). Transcriptome data from each time point were grouped by k-means clustering and used as an input module assignment for the ESCAROLE algorithm (Fig. 3). The algorithm was run for 100 iterations with non-fixed covariance Gaussian mixture model (GMM) clustering, and *k* = 7 modules. The selection of *k* = 7 was determined by the mean silhouette index per time point and overall BIC-corrected likelihood score (Additional file 1: Figure S3A, B). From ESCAROLE, we obtain a module assignment for each gene at each time point and identified sets of genes that transition in their module assignment across the eight time points (Fig 2B).

We define transitioning gene sets from ESCAROLE results by grouping genes with a similar module transition profile with agglomerative hierarchical clustering (Fig 3C, Additional file 1: Figure S3D). The pairwise distance between genes used for this clustering approach was the fraction of mismatches in the module assignment across the (8 point) time course. The distance threshold (to determine the cut on the dendrogram for the hierarchical clustering) and the minimum number of genes in a cluster were the input parameters to define the transitioning gene clusters in this approach. In choosing settings for these parameters, we tested different pairwise distance threshold values (those corresponding to 0–4 mismatches between module assignment profiles) and
examined the resulting cluster sets for their size, overlap with differentially expressed genes, and enrichments of Gene Ontology (GO) and motif terms (see also the “Integrative analysis of RNA-seq and ATAC-seq time course data using the dynamic regulatory module networks algorithm” section). We chose a pairwise distance threshold of 0.26 in the hierarchical clustering analysis (corresponding to two mismatches across the 8-point time course) based on these results and used those clusters with 10 or more genes to define the 112 transitioning gene sets from the ESCAROLE results.

Exploratory analysis of ATAC-seq data

Data pre-processing

Each of the eight ATAC-seq libraries was paired-end sequenced twice, and 54 to 235 million reads were obtained from each sequencing library (Additional file 1: Figure S4A and B). The data were aligned with Bowtie 2 [55] to the *M. truncatula* v5 genome, with 46–75% of the data found mappable (alignable) to the reference genome. Properly paired fragments with a quality score of 3 or greater were then obtained with “samtools view -Sb -q3 -f2” (Properly paired, Additional file 1: Figure S4A, B) and duplicate-removal was applied with “samtools rmdup” [56] to define the final library data sets utilized (Selected, Additional file 1: Fig S4A, B).

Fragment length distributions of each time-point data set (Additional file 1: Figure S4C) present the expected ~10 bp DNA pitch but not nucleosome occupancy dependence first illustrated by Buenrostro et al. [57]. This is consistent with previously published plant ATAC-seq data from Blajic et al. [58] (see Fig. 2A of that work). The absence of nucleosome occupancy dependence can be in part due to aspects of the ATAC-seq protocol implemented in plants versus mammals. Another explanation could be the large proportion of our reads mapping to promoter regions, which tend to be nucleosome depleted further explaining the diminished nucleosome pitch. Moreover, TSS-centric (±1kb) distributions of selected fragments for each time point were analyzed using the ATACSeqQC [59] pipeline and the ChIPpeakAnno [60] toolset’s featureAlignedHeatmap function and found to be both favorable (Additional file 1: Figure S5A and B) and comparable to results from the Maher et al. *M. truncatula* data (Additional file 1: Figure S6A and B) analyzed in the same way.

Peak calling was performed by applying MACS2 [30] to ATAC-seq data from each time point using the command:

```
macs2 callpeak –t < bam file > –n < Name > – – format BAMPE – gsize = 3.4e8
```
The signal for the universal peaks was similarly quantified by the log-ratio of the mean per-bp coverage of the respective peak region relative to the global average per-bp coverage. For both data sets, this was followed by quantile normalization across time points, providing a continuous measure of the accessibility of gene promoter and peak regions.

To evaluate the relationship between gene expression and either promoter or universal peak accessibility, we first performed a zero-mean transformation of each gene’s expression profile and the corresponding accessibility profiles. Next, a Pearson’s correlation was estimated. To assess the significance of correlation, we generated a null distribution of correlations from 1000 random permutations of the time points. We computed a P-value that estimates the probability of observing a correlation in the permuted data more significant in magnitude than an observed correlation, treating a correlation in the permuted data more significant describing the corresponding gene’s expression. This distance cutoff was motivated by the experimental validation of the *daaphne* mutation for the *NIN* ([NODULE INCEPTION]) gene in *Lotus japonicus* by Yoro et al. [69], which is an insertion in a regulatory site ~7 kbp from this gene and affects its expression. Moreover, Liu et al. [70] have likewise validated similar regulatory interactions between sites ~5 kbp upstream of the *NIN* gene in *M. truncatula*. For each gene, the accessibility of multiple instances of the same motif mapped to that gene was summed. Finally, the aggregated motif accessibility feature data were merged across the time course and quantile normalized [64]. The normalized accessibility data for ±2 kbp promoter regions were also included as a predictive feature of gene expression.

The DRMN algorithm takes as input the number of modules, *k*, and uses a regularized regression model, Fused Lasso [71], to learn regression models for each module, *k*, for all time points jointly. This has the following objective:

\[
\min_{\Theta} \sum_{c} \left(\sum_{c,k} \left\| X_{c,k} - Y_{c,k} \Theta_{c,k}^{T} \right\|^2 + \rho_1 \left\| \Theta_{c,k} \right\|_1 \right) + \sum_{c,k} \rho_2 \left\| \Theta_{c,k} - \Theta_{c,k}^{\prime} \right\|_1 + \rho_3 \left\| \Theta_{c,k} \right\|_{2,1}
\]

Here, *X* is the *n_k* X 1 vector of expression levels for *n_k* genes in modules *k* for time point *c*, *Y* is *n_k* X *p* motif-accessibility feature matrix corresponding to the same genes, *Θ* is the regression coefficients which represent the quantified association of gene expression with individual regulatory motif features. Here, *Θ* is the matrix of coefficients across time points. The sum over *c, c′* represents the sum over pairs of consecutive time points. Specifically, here, *∥·∥_1* is the *l_1* norm (sum of absolute values), *∥·∥_2* is the *l_2* norm (square-root of the sum of each value), and *∥·∥_{2,1}* is the *l_{1,2}* norm, i.e., the sum of the *l_2* norm of the columns of the given matrix.
Furthermore, ρ_1, ρ_2, and ρ_3 are hyper-parameters of the model that need to be tuned for optimal training and inference of DRMs. These parameters represent (1) a sparsity penalty, (2) enforcing similarity of features for consecutive time points, and (3) enforcing an overall similarity of feature selection across all time points. We used several criteria to determine these hyper-parameter settings. The most important is the Pearson correlation used several criteria to determine these hyper-parameter settings of feature selection across all time points. We selected ρ_1 (values of 1, 5–60 in increments of 5, and 75 and 100) and ρ_2 (values of 0–60 in increments of 5, and 75 and 100) independently and assessed the resulting predictive power for all models inferred. Predictive power generally monotonically decreased with increasing values of either parameter for values of $\rho_1>10$, while for $\rho_2<25$, the clustering was unstable. A choice was made for $\rho_1=5$ over $\rho_1=1$, since predictive power correlation was marginally higher for $\rho_2=30–60$.

With the ρ_1 parameter fixed to 5, a second independent scan of ρ_2 and ρ_3 was performed with (1) ρ_2 varied from 25–60 in increments of 5, 75, and 100, and (2) ρ_3 scanned for values of 0–60 in increments of 5, 75, and 100. For settings of $\rho_3=5–20$, there tended to be unstable predictive power of the least expressed module, recovering comparable but not greater performance compared to results for $\rho_3=0$ or $\rho_3>20$, indicating no advantage for setting $\rho_3>0$. We considered the cross-validation predictive power, silhouette index of modules, and similarity to ESCAROLE modules, in determining a setting for ρ_3 (Additional file 1: Figure S10A). Comparable performance was found for $\rho_3=30–60$, but $\rho_3=45$ and 50 maximized the mean threefold cross-validation performance. We selected $\rho_2=45$, as it was the lower of the two settings to avoid unnecessarily high values for a hyperparameter. Based on this assessment results for the hyperparameter settings of $\rho_1=5$, $\rho_2=45$, and $\rho_3=0$ were chosen.

We ran DRMN on our time-course data set for $k=7$ input modules, based on the optimal numbers of modules determined in the ESCAROLE analysis. Each module (Additional file 2: Table S1) was predicted to have multiple regulators based on DRMN’s fused regression model. To allow initial interpretation of the regulators, we filtered them as follows: (1) the magnitude of regulator-module edge-weights (Additional file 2: Table S2) in at least one time point being greater than 0.02 and (2) the regulatory motif being enriched in the module (FDR corrected q-value from hyper-geometric test, $q<0.05$) for all time points (Additional file 1: Figure S11, Additional file 2: Table S3). The modules were also tested for enrichment of GO terms, using an FDR corrected hyper-geometric test ($q<0.05$) to define significant enrichment (Additional file 1: Figure S12, Additional file 2: Table S3).

To identify module network edges that were significantly varying in time we first merged module network edge weights across time points per module and identified those edge weights that were significantly varying (t-test $P<0.05$ as implemented in MATLAB with the ttest2() function) across the 0–1 and 2–24 h portions of the time course. The choice to compare across the 1–>2 h time point transition was motivated by the observation of module reorganization at this time window (Fig. 5C). Those regulatory edges found to be significantly varying are likely important at the module level of organization (Fig. 6).

Inferring fine-grained regulator-target interactions

We identified fine-grained regulator gene interactions by predicting regulators for individual genes in transitioning gene sets using a structured sparsity approach called multi-task group lasso (MTG-LASSO, Fig. 7A). MTG-LASSO is a type of multi-task learning framework, where one performs a regression for multiple tasks simultaneously to share information among the tasks. Here, each gene in the gene set is a task, and MTG-LASSO enables us to select the same regulator (motif) for all genes in the set but with different regression parameters. The regulator identity defines the “group” in MTG-LASSO which includes the regression weights for the regulator for all genes in the set. MTG-LASSO selects or unselects entire groups of regression weights. The MTG-LASSO objective for each gene set is:

$$\min_{\Theta} \sum_{g} \frac{1}{2} \left\| X_g - \sum_{m} Y_{m,g}\Theta_{m,g} \right\|_2^2 + \lambda \|\Theta\|_1/2$$

Here, X_g is the expression profile over time for gene g, and $Y_{m,g}$ is the vector of motif accessibility features for
motif \(m \) and gene \(g \) over time. The parameters \(\Theta_{m,g} \) are the regression coefficients for predicting the expression of \(g \) using the feature data for motif \(m \). This second term denotes the \(\| \cdot \|_{1/2} \) norm defined as \(\sum_{m} \sum_{g} \Theta_{m,g}^{2} \) and is used for (1) penalizing the number selected motif features according to the \(l_1 \) norm and (2) enforcing smoothness of the regression coefficients across genes according to the \(l_2 \) norm. \(\lambda \) is the hyper-parameter for controlling the number of identified regulators to number of target genes, including 31 well-studied regulators (specifically with common names in the v5 genome annotations). The remaining 73 motifs were assigned to 261 \(M. \) truncatula genes in the v5 genome assembly that were additionally identified as transcription factors (TFs). The relatively high number of motif to gene name mappings is because TF names were provided in CisBP v1.2 as systematic gene names from the v3/v3.5 \(M. \) truncatula genome assemblies rather than v5. We used a 70% BLAST similarity score to define mappings from \(M. \) truncatula v3/v3.5 genome systematic gene names to v5 genome systematic gene names.

Validation of predicted regulators of nodulation with RNAi

We used RNAi to validate three predicted regulators from our DRMN analysis, EIN3, ERF1, and IAA4-5. A BLAST was performed for all primers against the \(M. \) truncatula genome to ensure specificity. The primers were chosen for the validation of RNAi do not overlap with the RNAi regions (utilized primers provided in Additional file 1: Table S1).

To validate RNAi, total RNA was extracted from transformed roots of each genotype using Qiagen RNeasy Plant Mini kit and genomic DNA removed using TURBO DNA-free™ Kit (Ambion). First-strand cDNA was synthesized using RevertAid RT Reverse Transcription Kit (Thermo Scientific™). Quantitative RT-PCR was performed using BIORAD SsoAdvanced Universal SYBR Green Supermix on BIORAD CFX96™ Real-time system; C1000 Touch™ Thermal cycler. The \(HEL \) and \(UBC9 \) genes were used as endogenous controls. Two (EIN3—\(MtrunA17Chr5g0440591 \)) or three (ERF1—\(MtrunA17Chr1g0186741 \)) technical replicates were used. A BLAST was performed for all primers against the \(M. \) truncatula v5 genome to ensure specificity. The primers chosen for the validation of RNAi do not overlap with the RNAi regions (utilized primers provided in Additional file 1: Table S1).

The RNAi expression clones were introduced into Agrobacterium rhizogenes MSU440 with electroporation. Composite \(M. \) truncatula plants were generated as previously described [73]. Three weeks after transformation with \(A. \) rhizogenes MSU440, the roots were screened for red fluorescence of tdTomato, and the composite plants with red roots were transferred to growth pouches containing modified nodulation medium (MNM) [74]. The plants were acclimated for 4 days and inoculated with \(S. \) meliloti 1021 harboring pXLG4 [75]. Two weeks post
inoculation, live seedlings were stained for lacZ (5 mM potassium ferrocyanide, 5 mM potassium ferricyanide, and 0.08% X-gal in 0.1 M PIPES, pH 7) overnight at 37 °C. Roots were rinsed in distilled water, and nodules were visualized and counted under a Leica fluorescence stereomicroscope (Fig. 8B, Additional file 2: Table S5).

Abbreviations
ATAC-seq: Assay for Transposase-Accessible Chromatin using sequencing; C V: Cross-validation (appears in Figure S10); DEGs: Differentially expressed genes; DRMN: Dynamic regulatory module networks—the primary algorithm and software tool utilized in this work; GMM: Gaussian mixture model; GO: Gene ontology; LASSO: Least absolute shrinkage and selection operator; MTG-LASSO: Multi-task group LASSO; PCA: Principal component analysis; RNA-seq: Ribonucleic acid sequencing; RNAi: Ribonucleic acid interference; TF: Transcription factor, i.e., regulatory protein; TPM: Transcripts per million; TSS: Transcription stop site; TTS: Transcription start site.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12295-022-01450-9.

Additional file 1: Table S1. Primers used in the RNAi validation study. Figure S1. Analysis workflow. Figure S2. Detailed DE gene statistics summary. Figure S3. Supplementary ESCAROLE clustering results. Figure S4. ATAC-seq data alignment statistics and fragment length distributions. Figure S5. ATAC-seq activity heatmaps and line plots for ±1 kb TSS regions in LCO-treatment data. Figure S6. ATAC-seq activity heatmaps and line plots for ±1 kb TSS regions in the comparable Maher et al. Medicago root sample data. Figure S7. Correlation of aggregated ATAC-seq activity for ±2 kb promoter regions. Figure S8. Supplementary ATAC-seq promoter analysis plots. Figure S9. Supplementary ATAC-seq peak-calling analysis plots. Figure S10. DRMN hyper-parameter tuning summary. Figure S11. DRMN module network edge-weight summary. Figure S12. DRMN module GO enrichment summary. Figure S13. Summary of ESCAROLE and DRMN transitioning gene set statistics and comparison. Figure S14. Summary of MTG-LASSO results and parameter tuning. Figure S15. Supplementary RNAi validation information.

Additional file 2: Table S1. DRMN module assignments (all genes, all time points). Table S2. Inferred module-network edge-weights from DRMN. Table S3. Module motif enrichments. Table S4. MTG-LASSO target predictions. Table S5. RNAi validation results.

Acknowledgements
We acknowledge the support of the Center of High Throughput Computing at UW-Madison to enable computational experiments. Additional thanks to Spencer Halberg (University of Wisconsin - Madison) for support in preparing the web-supplement for visualizing the MTG-LASSO and DRMN results.

Authors’ contributions
S.R., J.-M.A., M.K., S.A.K., and D.C. conceived and designed the study. D.C., K.M.B., T.B.I., L.G.M., P.M.T., C.D., S.C., and H.W.S. planned and carried out the wet laboratory experiments. J.M. developed biological resources (LCO). S.A.K., S.R., and W.J.P. carried out bioinformatic analysis. S.R., J.-M.A., M.K., S.A.K., and D.C. drafted the manuscript. All authors read and approved the final manuscript.

Authors’ information
Twitter handles: @syroyys (Sushmita Roy), @JeanMichelAne (Jean-Michel Ane), @SaraKnaack (Sara Anita Knaack), @DanCondeRF (Daniel Conde), @ForestGenomics (Matias Kist)

Funding
This work was supported by the Department of Energy Office of Science Biological and Environmental Research (DE-SC0018247 to M.K., J.-M.A and S.R.).

Availability of data and materials
The datasets supporting the conclusions of this article are available in the GEO under accession GSE154845 [76]. All data generated or analyzed during this study are included in this published article, its supplementary information files, and publicly available repositories. Previously published data analyzed in support of this work consists of that of Larraínzar et al. [12] under NCBI BioProject accession PRJNA269201 [77] and of Maher et al. [28] under GEO accessions GSM2704259 and GSM2704260 [78]. The results from DRMN and MTG-LASSO gene target predictions are available in Additional file 2. A web-supplement for visualizing the MTG-LASSO results is available at https://medicago-drmnviz.discovery.wisc.edu.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA. 2 School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA. 3 Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA. 4 Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA. 5 Genetics Institute, University of Florida, Gainesville, FL 32611, USA. 6 Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI 53792, USA. 7 Department of Computer Sciences, University of Wisconsin, Madison, WI 53792, USA.

Received: 16 May 2022 Accepted: 25 October 2022

Published online: 09 November 2022

References
1. Roy S, Lu W, Nandety RS, Crook A, Mysore KS, Pislariu CI, et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 2020;32(1):15–41.
2. Sml V. Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles. 1999;13(2):647–62.
3. Genre A, Russo G. Does a common pathway transduce symbiotic signals in plant microbe interactions? Front Plant Sci. 2016;7(96):93. https://doi.org/10.3389/fpls.2016.00969.
4. Limpens E, Franken C, Smit P, Willemsse J, Bisseling T, Geurts R. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science. 2003;302(5645):630–3.
5. Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, et al. The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 2006;142(1):265–79.
6. Oldroyd GED. Speak, friend, and enter: Signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol. 2013;11(2):253–62.
7. Kim S, Zeng W, Bernard S, Liao J, Venkateshwaran M, Ane JM, et al. Ca2+–regulated Ca2+–channels with an RCK gating ring control plant symbiotic associations. Nat Commun. 2019;10(1):3703.
8. Capoern W, Sun J, Wysham D, Otegui MS, Venkateshwaran M, Hirsch S, et al. Nuclear membranes control symbiotic calcium signaling of legume roots. Proc Natl Acad Sci. 2011;108(34):14348–53.
9. Levy J. A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science. 2004;303(5662):1361–4.
10. Oldroyd GED, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet. 2011;45:119–44.
11. Venkateshwaran M, Volkelsen JD, Sussman MR, Anele JM. Symbiosis and the social network of higher plants. Curr Opin Plant Biol. 2013;16(1):118–27.
12. Larraínzar E, Rieky BK, Kim SC, Carrasquilla-Garcia N, Yu HJ, Hwang HJ, et al. Deep sequencing of the Medicago truncatula root transcriptome reveals a massive and early interaction between nodulation factor and ethylene signals. Plant Physiol. 2015;169(1):233–65.

13. Satgé C, Moreau S, Saltet E, Lefort G, Aurac MC, Remblèere C, et al. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat Plants. 2016;2:16166.

14. Poirier MG, Bussiek M, Langowski J, Widom J. Spontaneous access to DNA target sites in folded chromatin fibers. J Mol Biol. 2008;379(4):772–86.

15. Wu MF, Sang Y, Bezhani S, Yamaguchi N, Han SK, Li Z, et al. SWI2/SNF2 chromatin remodeling ATPases overcome polycomb repression and control floral organ identity with the LEAFY and SEPARATA3 transcription factors. Proc Natl Acad Sci U S A. 2012;109(9):3576–81.

16. Sun B, Loci LS, Guo S, He Z, Gan ES, Huang J, et al. Timing mechanism dependent on cell division is invoked by Polycomb eviction in plant stem cells. Science. 2014;343(6170):4543–8.

17. Satgé C, Moreau S, Sallet E, Lefort G, Auriac MC, Remblière C, et al. Knaack et al. BMC Biology (2022) 20:252

18. Chasman D, Iyer N, Fotuhi Siahpirani A, Estevez Silva M, Lippmann DJ, et al. Multitask learning. Mach Learn. 1997;28(1):41–75.

19. DoRego TG, Roider HG, de Carvalho FAT, Costa IG. Inferring epigenetic sequence specificity. Cell. 2014;158(6):1431–43.

20. Rose CM, Venkateshwaran M, Volkening JD, Grimsrud PA, Maeda J, Bailey MA, et al. Root developmental programs shape the Medicago truncatula nodule meristem. Development. 2015;142(17):2941–50.

21. Ding Y, Kalo P, Yendrek C, Sun J, Liang Y, Marsh JF, et al. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell. 2008;20(10):2681–95.

22. Arieh F, Braut-Hernandez M, Laffont C, Huault E, Braut M, Plet J, et al. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncata. Plant Cell. 2012;24(9):3838–52.

23. Takatsuka H, Umeda M. Hormonal control of cell division and elongation along an auxin-differentiation trajectories in roots. J Exp Bot. 2014;65(12):4167–81.

24. Roux B, Rodde N, Jardinard MF, Timmers T, Sauvial C, Loffert L, et al. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. Plant J. 2014;77(6):817–37.

25. Franssen HJ, Xiao TT, Kulikova O, Wan X, Bisseling T, Scheres B, et al. Root developmental programs shape the Medicago truncatula nodule meristem. Development. 2015;142(17):2941–50.

26. Franssen HJ, Xiao TT, Kulikova O, Wan X, Bisseling T, Scheres B, et al. Root developmental programs shape the Medicago truncula nodule meristem. Development. 2015;142(17):2941–50.

27. Franssen HJ, Xiao TT, Kulikova O, Wan X, Bisseling T, Scheres B, et al. Root developmental programs shape the Medicago truncula nodule meristem. Development. 2015;142(17):2941–50.

28. Lu Z, Hofmeister BT, Vollmers C, DuBois RM, Schmitz RJ. Combining ATAC-seq with nucleic sorting for discovery of cis-regulatory regions in plant genomes. Nucleic Acids Res. 2017;45(6):e41.

29. Chan S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report. 1993;11(1):113–6.

30. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.

31. Pimentel H, Bray NL, Melsted P, Pachter L. Dynamic analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14(7):687–90.

32. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

33. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.

34. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2017;6(7):gmx102.

35. Pimentel H, Bray NL, Melsted P, Pachter L. Differential analysis of RNA-seq quantification uncertainty. Nat Methods. 2017;14(7):687–90.

36. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience. 2017;6(7):gmx102.
61. Ou J, Liu H, Yu J, Kelliher MA, Castilla LH, Lawson ND, et al. ATACseqQC: a Bioconductor package for post-alignment quality assessment of ATAC-seq data. BMC Genomics. 2018;19(1):169.

62. Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, et al. Chip-peakAnno: a Bioconductor package to annotate Chip-seq and ChiP-chip data. BMC Bioinformatics. 2010;11(1):237.

63. Alireza Fotuhi Siahpirani. Roy Lab peak merging tool. 2020. https://github.com/Roy-lab/PeakMergingCode

64. Deborah Chasman, Sara Knaack and Sushmita Roy. Roy Lab signal aggregation tool. 2021. https://github.com/Roy-lab/drmn-utils/tree/master/feature_generation_tools/aggregateSignalRegion_nonLog

65. Alireza Fotuhi Siahpirani. Roy Lab peak merging tool. 2020. https://github.com/Roy-lab/drmn

66. Alireza Fotuhi Siahpirani and Sara Knaack. Roy Lab DRMN. 2020. https://github.com/Roy-lab/drmn

67. Zhou J, Liu J, Narayan VA, Ye J. Modeling disease progression via fused sparse group lasso. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’12. Beijing: ACM Press; 2012. p. 1095.

68. Yoro E, Suzaki T, Toyokura K, Miyazawa H, Fukaki H, Kawaguchi M. A positive regulator of nodule organogenesis, NODULE INCEPTION, acts as a negative regulator of rhizobial infection in Lotus japonicus. Plant Physiol. 2014;165(2):747–58.

69. Liu J, Rotten L, Limpens E, van der Molen T, van Velzen R, Chen R, et al. A remote cis-regulatory region is required for NIN expression in the pericycle to initiate nodule primordium formation in Medicago truncatula. Plant Cell. 2019;31(1):68–83.

70. Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP, et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. 2014;32(2):171–8.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.