Some remarks on Kurepa’s left factorial

Bernd C. Kellner

Abstract

We establish a connection between the subfactorial function $S(n)$ and the left factorial function of Kurepa $K(n)$. Some elementary properties and congruences of both functions are described. Finally, we give a calculated distribution of primes below 10000 of $K(n)$.

Keywords: Left factorial function, subfactorial function, derangements

Mathematics Subject Classification 2000: 11B65

1 Introduction

The subfactorial function is defined by

$$S(n) = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}, \quad n \in \mathbb{N}_0$$

which gives the number of permutations of n elements without any fixpoints, also called derangements of n elements, see [6, p. 195]. This was already proven by P. R. de Montmort [2] in 1713. L. Euler [3] independently gave a proof in 1753, see also [4]. This function has the properties ($e \approx 2.71828$ is Euler’s number)

$$S(n) = n S(n-1) + (-1)^n, \quad (1.1)$$
$$S(n) = (n-1) (S(n-1) + S(n-2)), \quad (1.2)$$
$$S(n) = \left\lfloor \frac{n!}{e} \right\rfloor + \delta_n \quad \text{with} \quad \delta_n = \begin{cases} 0, & 2 \nmid n \\ 1, & 2 \mid n \end{cases} \quad (1.3)$$

Kurepa’s left factorial function is defined by

$$K(0) = 0, \quad K(n) = \sum_{k=0}^{n-1} k!, \quad n \in \mathbb{N}.$$

In 1971 D. Kurepa [8] introduced the left factorial function which is denoted by $!n = K(n)$. Sometimes the subfactorial function is also denoted by $!n$, so we do not use this notation to avoid confusion. For more details of the following conjecture see a overview of A. Ivić and Ž. Mijajlović [7].
Conjecture 1.1 (Kurepa’s left factorial hypothesis)
The following equivalent statements hold

\[
(K(n), n!) = 2, \quad n \geq 2, \\
K(n) \not\equiv 0 \pmod{n}, \quad n > 2, \\
K(p) \not\equiv 0 \pmod{p}, \quad p \text{ odd prime}.
\]

Recently, D. Barsky and B. Benzaghou [1] have given a proof of this hypothesis. Since \(K(n)\) is also related to Bell numbers \(B_n\) via

\[
K(p) \equiv B_{p-1} - 1 \pmod{p}
\]

for any prime \(p\), they actually proved that \(B_{p-1} \not\equiv 1 \pmod{p}\) is always valid for any odd prime \(p\).

Gessel [5, Sect. 7/10] gives some recursive identities of \(S(n)\), \(B_n\), and others with umbral calculus. Define symbolically \(S^n = S(n)\) and \(B^n = B_n\) with \(S^0 = B^0 = 1\), then one may write

\[
B^{n+1} = (B + 1)^n \quad \text{and} \quad n! = (S + 1)^n, \quad n \geq 0. \tag{1.4}
\]

Interestingly, both sequences have the same property as follows.

Lemma 1.2 Let \(p\) be a prime. Then

\[
\sum_{k=0}^{p} (-1)^k B_k \equiv \sum_{k=0}^{p} (-1)^k S(k) \equiv 0 \pmod{p}
\]

with

\[
B_p \equiv 2 \pmod{p} \quad \text{and} \quad S(p) \equiv -1 \pmod{p}.
\]

Proof. By (1.1) and Wilson’s theorem, we have \(S(p) \equiv -1 \equiv (p - 1)! \pmod{p}\). Hence, we can rewrite (1.4) by \(B^p \equiv (B + 1)^{p-1}\) and \(S^p \equiv (S + 1)^{p-1} \pmod{p}\). Since \(\binom{p-1}{k} \equiv (-1)^k \pmod{p}\) for \(0 \leq k < p\), this provides the proposed congruence. Now, we use a congruence of Touchard for Bell numbers, see [5, Sect. 10, Theorem 10.1]. Then

\[
B_{n+p} - B_{n+1} - B_n \equiv 0 \pmod{p}, \quad n \geq 0.
\]

With \(n = 0\) and \(B_0 = B_1 = 1\), we obtain \(B_p \equiv 2 \pmod{p}\). \(\square\)

First values of \(K(n)\), \(S(n)\), and \(B_n\) are given in the following table.

\(n\)	0	1	2	3	4	5	6	7	8	9	10
\(K(n)\)	0	1	2	4	10	34	154	874	5914	46234	409114
\(S(n)\)	1	0	1	2	9	44	265	1854	14833	133496	1334961
\(B_n\)	1	1	2	5	15	52	203	877	4140	21147	115975
2 Congruences between $K(n)$ and $S(n)$

Lemma 2.1 Let n be a positive integer, then

$$K(n) \equiv (-1)^{n-1} S(n-1) \pmod{n}.$$

Proof. Case $n = 1$ is trivial. Let $n \geq 2$. Then we have

$$(−1)^{n−1}S(n−1) = \sum_{k=0}^{n-1} (-1)^{n−1−k} \left(\begin{array}{c} n−1 \\ k \end{array}\right) (n−1−k)! = \sum_{k=0}^{n-1} (-1)^{k} \left(\begin{array}{c} n−1 \\ k \end{array}\right) k!$$

by turning the summation. Since it is valid for $0 \leq k < n$

$$(−1)^{k} \left(\begin{array}{c} n−1 \\ k \end{array}\right) k! = (-1)^{k} (n−1)\cdots(n−k) \equiv k! \pmod{n},$$

this provides, term by term, the congruence claimed above. □

By Lemma 2.1 and (1.3), we easily obtain a generalization, however, which is only noted for primes elsewhere.

Corollary 2.2 Let n be a positive integer, then

$$K(n) \equiv (-1)^{n-1} \left\lfloor \frac{(n−1)!}{e} \right\rfloor + \delta_{n-1} \pmod{n}.$$

Hence, (KH) is equivalent to

$$\left\lfloor \frac{(n−1)!}{e} \right\rfloor \not\equiv -\delta_{n-1} \pmod{n}, \quad n > 2,$$

while by recursive property (1.1)

$$\left\lfloor \frac{n!}{e} \right\rfloor \equiv -\delta_{n-1} \pmod{n}, \quad n \geq 1$$

is always valid.

Corollary 2.3 Let n be a positive integer, then (KH) is equivalent to

$$\left\lfloor \frac{n!}{e} \right\rfloor - \left\lfloor \frac{(n−1)!}{e} \right\rfloor \equiv 0 \pmod{n} \iff n = 1, 2.$$

Lemma 2.4 Let p be a prime, then

$$K(p) - K(p - l) \equiv -\frac{S(l-1)}{(l-1)!} \pmod{p}, \quad l = 1, \ldots, p.$$

3
Proof. Let \(l \in \{1, \ldots, p\} \). We then have
\[
K(p) - K(p - l) = \sum_{k=p-l}^{p-1} k! = \sum_{k=1}^{l} (p - k)! \equiv \sum_{k=1}^{l} \frac{(-1)^k}{(k-1)!} = -S(l - 1) \cdot \frac{l}{(l-1)!} \quad \text{(mod } p),
\]
since
\[
(p - k)! \equiv \frac{(-1)^k}{(k-1)!} \quad \text{(mod } p) \tag{2.1}
\]
follows by Wilson’s theorem. \(\square \)

Corollary 2.5 Let \(p \) be an odd prime, then \((KH)\) implies for \(0 \leq l < p \)
\[
K(p - 1 - l) \not\equiv \frac{S(l)}{l!} \quad \text{(mod } p)
\]
respectively
\[
l! K(p - 1 - l) \not\equiv \left\lfloor \frac{l!}{e} \right\rfloor + \delta_l \quad \text{(mod } p).
\]
Since \((KH)\) is true, we obtain, as an example, the following congruences
\[
K(p) \not\equiv 0, \ K(p - 1) \not\equiv 1, \ K(p - 2) \not\equiv 0, \ K(p - 3) \not\equiv \frac{1}{2}, \ K(p - 4) \not\equiv \frac{1}{3} \quad \text{(mod } p).
\]

3 Properties of \(K(n) \)

To describe some interesting properties of \(K(n) \), we introduce the following definition which we name after Kurepa.

Definition 3.1 Let \(p \) be an odd prime. The pair \((p, n)\) is called a Kurepa pair if \(p^r \mid K(n) \) with some integer \(r \geq 1 \). The max. integer \(r \) is called the order of \((p, n)\). The index of \(p \) is defined by
\[
i_K(p) = \#\{n : (p, n) \text{ is a Kurepa pair}\}.
\]
If \(i_K(p) > 0 \), then \(p \) is called a Kurepa prime.

We have, e.g., the Kurepa pairs \((19, 7)\), \((19, 12)\), and \((19, 16)\). If \((KH)\) would fail at an odd prime \(p \), then this would imply \(i_K(p) = \infty \). This is an easy consequence of
\[
p \mid K(p), \ p \mid (p + m)! \quad \text{for } m \geq 0.
\]
The case \(p = 2 \) is handled separately. One easily sees that \(2 \mid K(n) \) for \(n \geq 2 \) and \(K(n) \equiv 2 \pmod{4} \) for \(n \geq 4 \). First values of \(i_K(p) \) are given in the following table.

\(p \)	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61
\(i_K(p) \)	0	1	1	1	0	1	3	1	0	2	1	2	0	0	0	0	1
Theorem 3.2 Let \((p, n)\) be a Kurepa pair. Then \(p > n > 3\) is valid with
\[K(p) \equiv (-1)^n n! S(p - 1 - n) \pmod{p} \]
which implies \(p \nmid S(p - 1 - n)\). Furthermore one has \(i_K(p) \leq \left\lfloor \frac{p - 1}{4} \right\rfloor\). Consequently, there exist infinitely many Kurepa primes.

Proof. For now, let \(p\) be an odd prime. Let \((p, n)\) be a Kurepa pair. Since \(p \nmid K(p + m)\) for \(m \geq 0\) by validity of \((K)\) and first values of \(K(\cdot)\) are 0, 1, 2, 4, this yields \(p > n > 3\).

We use Lemma 2.4 with \(n = p - l\), then we have
\[0 \not\equiv K(p) - K(n) \equiv \frac{S(p - 1 - n)}{(p - 1 - n)!} \pmod{p} \]
which provides the result by means of (2.1) and also \(p \nmid S(p - 1 - n)\). Now, we have to count possible Kurepa pairs. Corollary 2.5 shows that \(K(p - 2) \not\equiv 0 \pmod{p}\). If \(p \mid K(n)\) then \(p \nmid K(n + l)\) for \(l = 1, 2, 3\). This is seen by \(n! \not\equiv 0 \pmod{p}\) and
\[n! + (n + 1)! = (n + 2)! \not\equiv 0, n! + (n + 1)! + (n + 2)! = (n + 2)^2 n! \not\equiv 0 \pmod{p}, \]
since \(n \neq p - 2\). On the other side, we have \(4 \leq n \leq p - 1\). Then a simple counting argument provides \(i_K(p) \leq \left\lfloor \frac{p - 1}{4} \right\rfloor\). Finally, \(K(n) \to \infty\) for \(n \to \infty\) and \(p \mid K(n)\) \Rightarrow \(p > n\) for odd primes imply infinitely many Kurepa primes. □

Now, the remarkable fact of \(K(n)\) is the finiteness of Kurepa pairs for all odd primes.

In \(p\)-adic analysis, the series
\[K(\infty) = \sum_{k=0}^{\infty} k! \]
is an example of a convergent series resp. \(K(n)\) is a convergent sequence which lies in \(\mathbb{Z}_p\), the ring of \(p\)-adic integers. Then \((K)\) is equivalent to \(K(\infty)\) is a unit in \(\mathbb{Z}_p\) for all odd primes \(p\). The behavior \((\pmod{p^r})\) is illustrated by the following theorem. Note that \(l_r\) is related to the so-called Smarandache function for factorials.

Theorem 3.3 Let \(p, r\) be positive integers with \(p\) prime. Then the sequence
\[K(n) \pmod{p^r}, \quad n \geq 0 \]
is constant for \(n \geq l_r p\) with \(r \geq l_r\) and
\[l_r = \min_l \left\{ l : l + \frac{l - \sigma_p(l)}{p - 1} \geq r \right\}, \]
where \(\sigma_p(l)\) gives the sum of digits of \(l\) in base \(p\).

Proof. We have to determine a minimal \(l\) with the property \(\text{ord}_p(lp)! \geq r\). Counting factors which are divisible by \(p\), we obtain
\[\text{ord}_p(lp)! = l + \text{ord}_p l! = l + \frac{l - \sigma_p(l)}{p - 1} \]
by means of the \(p\)-adic valuation of factorials, see [9, Section 3.1, p. 241]. □
At the end, we give some results of calculated Kurepa pairs. There are $N = \pi(10000) - 1 = 1228$ odd primes below 10000. Let N_r be the number of odd primes with index $i_K(p) = r$ in this range. The following table shows the distribution of the index i_K.

r	0	1	2	3	4	5
N_r	459	472	213	58	23	3
N_r/N	0.37378	0.38436	0.17345	0.04723	0.01873	0.00244

The calculated Kurepa pairs with index $i_K(p) = 5$ are as follows.

| | | | | | |
|-----|-----|-----|-----|-----|
| (2203,277) | (2203,788) | (2203,837) | (2203,1246) | (2203,1927) |
| (5227,850) | (5227,1752) | (5227,3451) | (5227,4363) | (5227,4716) |
| (6689,1716) | (6689,2404) | (6689,3641) | (6689,3969) | (6689,6601) |

All primes below 10000 appear with a simple power in $K(n)$, except $K(3) = 4$. On the other side, the occurrence of higher powers p^r in $K(n)$ seems to be very rare. M. Zivkovic [10] gives the first example $54503^2 \mid K(26541)$. There are two Kurepa pairs $(54503,26541)$ and $(54503,49783)$, but only the first of them has order two.

One may ask whether the distribution of Kurepa pairs resp. the index i_K can be asymptotically determined and even proven. Are there infinitely many non-Kurepa primes p with $i_K(p) = 0$? It seems that this subject of $K(n)$ and its distribution of primes will be much simpler to attack as, for example, the more complicated but in a sense similar case of the distribution of irregular primes of Bernoulli numbers.

Acknowledgement

The author wishes to thank Prof. Ivić for informing about the problem of Kurepa.

Bernd C. Kellner
address: Reitstallstr. 7, 37073 Göttingen, Germany
email: bk@bernoulli.org

References

[1] D. Barsky and B. Benzaghoul. Nombres de Bell et somme de factorielles. *Journal de Théorie des Nombres de Bordeaux*, 16:1–17, 2004.

[2] P. R. de Montmort. Essai d’analyse sur les jeux de hasard. *2nd Edition of 1713, Paris, (reprinted in Annotated Readings in the History of Statistics, Springer-Verlag, 2001, 25–29)*, 130–143, 1713.

[3] L. Euler. Calcul de la probabilité dans le jeu de rencontre. *Memoires de l’académie des sciences de Berlin*, 7:255–270, 1753.

[4] L. Euler. Solutio quaestionis curiosae ex doctrina combinationum. *Memoires de l’académie des sciences de St.-Petersbourg*, 3:57–64, 1811.
[5] I. M. Gessel. Applications of the classical umbral calculus. *Algebra Universalis*, 49:397–434, 2003. arXiv:math.CO/0108121

[6] R. L. Graham, D. E. Knuth, and O. Patashnik. *Concrete Mathematics*. Addison-Wesley, Reading, MA, USA, 1994.

[7] A. Ivić and Ž. Mijajlović. On Kurepa’s Problems in Number Theory. *Publ. Inst. Math.*, 57(71):19–28, 1995. arXiv:math.NT/0312202

[8] D. Kurepa. On the left factorial function !n. *Math. Balkan.*, 1:147–153, 1971.

[9] A. M. Robert. *A Course in p-adic Analysis*, volume 198 of *Graduate Texts in Mathematics*. Springer-Verlag, 2000.

[10] M. Zivkovic. The number of primes \(\sum_{i=1}^{n} (-1)^{n-i} i!\) is finite. *Math. Comp.*, 68:403–409, 1999.