Risk factors associated with loss to follow-up of breast cancer patients: A retrospective analysis

Qian Ouyang a, b, 1, Shunrong Li a, b, 1, Ming Gao a, c, 1, Liling Zhu a, b, Shiyun Xu a, b, Shunhao Meng d, Siqiao Wu d, Liqiu Huang d, Fengxi Su a, b, Zefang Ren e, Kai Chen a, b, **, Min Peng a, b, d, *

a Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
b Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, PR China
c Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, PR China
d Disease Registry Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, PR China
e Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, PR China

1 These authors contributed equally to this work.

** Corresponding author. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

* Corresponding author. Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Article history:
Received 15 October 2020
Received in revised form 5 February 2021
Accepted 17 February 2021
Available online 2 March 2021

Keywords:
Breast cancer
Loss to follow-up
Surveillance
Risk score

** A R T I C L E I N F O **

Abstract

** Background:** Loss to follow-up (LTFU) during post-operative surveillance of breast cancer patients is detrimental. The pattern of LTFU and its risk factors in Chinese breast cancer patients remains unknown.

Method: Eligible non-metastatic breast cancer patients who underwent surgery at our institution between 2009 and 2012 were included. The clinicopathological features, as well as the LTFU status, were retrieved from the REDCap database. LTFU was defined as the absence of patients for at least 12 months since her last contact. 5-year LTFU was defined as the LTFU status of each patients at 5 years after surgery. The incidence and potential risk factors of LTFU were analyzed. A LTFU-risk score was developed and was predictive of LTFU.

Results: A total of 1536 patients with breast cancer were included, and 411(26.8%) patients were 5-year LTFU. 198 patients were LTFU in the first year. Univariate and multivariate analysis revealed that age (younger and older), a lack of medical insurance, longer distance from residence to the hospital, pathology (DCIS/Paget’s/Phyllodes), lymph node metastasis, the absence of endocrine therapy and fewer than five contact numbers were significantly and independently associated with the risk of LTFU. A LTFU-risk score was developed and was predictive of LTFU.

Conclusions: A series of risk factors were significantly associated with post-operative LTFU of breast cancer patients. Patients with different risks of LTFU could possibly be identified, and surveillance plans could be individualized for different patients, so as to effectively reduce the overall LTFU rate, and optimize the allocation of medical resources.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Breast cancer is the most common female malignancy in China, with an age-standardized incidence rate of 30.54/100,000 people in 2015 [1], and its incidence has increased significantly over the past three decades, growing annually by 3–5% [2–4]. The median 5-year relative survival across previous studies was 88% [5–11], suggesting that most patients will be long-term survivors. As a result, the need to manage post-operative adverse events, as well as monitor recurrence/death highlights the necessity of post-operative follow-up. From the perspective of clinical research, high-quality surveillance/follow-up data are prerequisite to assure the validity and
Western countries. Because patients with breast cancer in China studies [13–15]. However, most of these studies were conducted in Western countries. Because patients with breast cancer in China are on average, 10 years younger than their Western counterparts [16–18], in addition to the distinct cultural and socioeconomic environment of the country, it is necessary to explore the risk factors of LTFU in the Chinese breast cancer population. To our knowledge, the risk factors of LTFU remain largely unknown.

In the breast tumor center of Sun Yat-sen Memorial Hospital (SYSMH), Sun Yat-sen University, patients with breast cancer were educated to return to the clinic for follow-up, based on the surveillance plan suggested by the National Comprehensive Cancer Network guidelines [19]. This study investigated the LTFU rate of the patients with breast cancer in our single institution. Additionally, we explored the potential risk factors of LTFU.

2. Materials and methods

We included patients with non-metastatic (stage 0/TIS, I, II and III) breast cancer who underwent breast-conserving surgery or mastectomy at SYSMH between January 1, 2009 and December 31, 2012 from the Research Electronic Data Capture (REDCap), maintained by SYSMH [20,21]. For eligible patients, we collected their demographic information, staging, pathology, treatment, recurrence/death, and the date of the last follow-up. Patients were instructed to return to the clinic for post-operative follow-up visits every 3 months for the first 2 years after surgery, every 6 months for years 3–5 after surgery, and annually thereafter. For patients who did not return to the clinic as scheduled, we did not have any programs to contact or inform them. In this study, we retrieved the information of the patients’ return visits from REDCap. LTFU was defined as the absence of patients for at least 12 months since her last contact. The date of LTFU was defined as the date of the patient’s last contact. The time to LTFU was defined as the interval between the date of surgery and the LTFU date. The primary endpoint of this study was the 5-year LTFU rate.

2.1. Statistical analysis

Descriptive analyses of baseline demographic and clinicopathological features were conducted. Continuous variables were reported as the median and range, and categorical variables were reported as percentages. To analyze the potential risk factors of 5-year LTFU, we used univariate and multivariate logistic regression analyses. In this study, P < 0.05 denoted statistical significance. Data analyses were performed using Stata version 15.1 software (StataCorp, College Station, TX, USA). This study was approved by the ethical committee of SYSMH.

3. Results

In total, 1536 eligible patients with pathologically confirmed breast cancer who underwent surgery between 2009 and 2012 at SYSMH were identified via REDCap (Table 1). Among these patients, 97 (6.32%) patients died within 5 years after surgery, and they were not considered in the 5-year LTFU analysis. Meanwhile, 411 (26.76%) patients were lost to follow-up within 5 years, and 198 patients were considered lost to follow-up within 1 year (Fig. 1). The median time to LTFU was 13.2 months (interquartile range: 3.98–30.39).

Univariate analysis illustrated that age (<39 vs. 55 vs. 40–54), year of diagnosis (2009 vs. 2011/2012), type of residence (countryside vs. city), distance between patients’ residence and the hospital (longer vs. shorter), GDP levels of the area of residence (lower vs. higher), and medical insurance status (uninsured vs. insured) were significantly associated with LTFU (Table 2). Other socioeconomic factors, such as educational level, marital status, and religion, were not associated with LTFU. We further explored the impact of the completeness of the personal information provided by the patients. We observed that patients who provided more ways of contact (≥5 vs. 0/1) and a residential addresses (Yes vs. No) were less likely to be lost to follow-up. Furthermore, we observed that patients with minimally invasive tumors (T0/Tis vs. T2/T1) were more likely to be lost to follow-up. Patients who were diagnosed with phyllodes tumors or ductal carcinoma in situ (DCIS) were also more likely to be lost to follow-up. In addition, no receipt (vs. receipt) of adjuvant chemotherapy, radiotherapy, and endocrine therapy was significantly associated with LTFU.

To identify independent risk factors associated with 5-year LTFU, we used a logistic regression model (Table 3) and observed that age (younger and older), a lack of medical insurance, longer distance from residence to the hospital, pathology (DCIS/Paget’s/phyllodes), lymph node metastasis, the absence of endocrine therapy and fewer than five contact numbers were significantly and independently associated with the risk of LTFU.

To codify the possible impact of the risk factors, we developed a LTFU risk score based on the risk factors of each patient (Table 4). We observed that the LTFU risk score was significantly associated with the LTFU (P < 0.00001) (Fig. 2).

4. Discussion

This was the first to investigate the risk factors of LTFU in patients with breast cancer after surgery in China. In our study, the LTFU rate of 26.8% (median follow-up, 51.7 months) represented an acceptable and natural attrition rate without any intervention in postoperative patients compared with rates of 10%–50% described in previous studies [13,14,22]. Consistent with previous studies, older age, longer distance to the hospital, lymph node metastasis, and a lack of endocrine therapy were significant risk factors of LTFU [14,22]. Furthermore, we have new findings that tumor pathology (DCIS/Paget’s/phyllodes), younger age, a lack of medical insurance, fewer ways of contact were also associated with the tendency to LTFU.

4.1. The importance of preventing LTFU

Post-operative surveillance and follow-up are required for breast cancer survivors to deliver medical care, improve health-related quality of life, ensure compliance to endocrine therapy, and support clinical research, as high-quality data for clinical outcomes would be necessary for hypothesis generation during clinical research [23]. The National Accreditation Program For Breast Centers and European Society of Breast Cancer Specialists accreditation programs, which aim to accredit breast treatment centers in North American and European countries, respectively, required the development of a standard survivorship care plan [24,25]. The American Society of Clinical Oncology also determined the minimum data elements that need to be collected during surveillance [12]. The importance of surveillance and follow-up for patients with breast cancer is not extensively recognized in China.

Additionally, survivorship tends to be longer for breast cancer patients who

...
survivors than for survivors of other solid cancers. Thus, the completeness of follow-up data, especially those related to clinical outcomes (e.g., relapse, breast cancer death), is critical for clinical research. Although numerous methods were proposed to correct the bias induced by LTFU, it is impossible to eliminate its detrimental effects for data analysis [26]. The Cochrane Handbook, a guide for high-quality systematic reviews of published literature, considers LTFU as an important source of bias that needs to be addressed and evaluated [27].

4.2. The risk factors of LTFU

Currently, the post-operative surveillance/follow-up program suggested by NCCN guidelines aims to monitor breast cancer relapse without any consideration to providing different intensities of follow-up for patients with different LTFU risks [19]. To optimize the allocation of medical resources during follow-up, investigating the underlying risk factors of LTFU is important. However, the risk factors of LTFU have not been widely studied. Kukar et al. investigated patients with breast cancer in the USA and concluded that older age at diagnosis, tumor stage, longer driving distance from home to the cancer center, prior cancer recurrence, and last visit at a surgical oncology rather than a medical oncology clinic were risk factors for LTFU [22].

Table 1

Demographic and clinicopathological characteristics of patients.

Features	N = 1536	Features	N = 1536
LTFU at 5 years after surgery		T-Stage	
No	1125 (73.2)	T0/Tis	153 (10.0)
Yes	411 (26.8)	T1	609 (39.6)
Age group of diagnosis		T2	410 (26.7)
<39 y	309 (20.1)	T3/T4	52 (3.4)
40–54 y	750 (48.8)	Tx/Unknown	312 (20.3)
>55 y	477 (31.1)	N-Stage	
Year of surgery		N0	948 (61.7)
2009	313 (20.4)	N1	361 (23.5)
2010	321 (20.9)	N2/N3	227 (14.8)
2011	423 (27.5)	ER status	
2012	479 (31.2)	Negative	322 (21.0)
Type of residence		Positive	1194 (77.7)
City	1182 (77.0)	Unknown	20 (1.3)
Countryside	354 (23.0)	PR Status	
Education level		Negative	441 (28.7)
Primary school	300 (19.5)	Positive	1075 (70.0)
Middle school	839 (54.6)	Unknown	20 (1.3)
University	356 (23.2)	HER2 Status	
Unknown	41 (2.7)	Negative	929 (60.5)
Single	61 (4)	Positive	306 (19.9)
Married	1457 (94.9)	Intermediate	270 (17.6)
Divorced/Widowed	18 (1.2)	Unknown	31 (2.0)
Religious		Type of breast surgery	
No	1469 (95.6)	Mastectomy	696 (45.3)
Yes	51 (3.3)	BCS	840 (54.7)
Unknown	16 (1.0)	Type of axillary surgery	
Medical insurance		ALND	682 (44.4)
Insured	1034 (67.3)	SLNB	854 (55.6)
Uninsured	469 (30.5)	Adjunct chemotherapy	
Unknown	33 (2.1)	No	175 (11.4)
Distance from residence to hospital		Yes	1361 (88.6)
Less than 100 km	746 (48.6)	Anti-Her2 therapy	
More than 100 km	790 (51.4)	No	1464 (95.3)
GDP level of the patients’ residence		Yes	72 (4.7)
More than 100,000 CNY	902 (58.7)	Adjunct endocrine therapy	
Less than 100,000 CNY	526 (34.2)	No	184 (12.0)
Unknown	108 (7.0)	Yes	1254 (81.6)
Comorbidities		Unknown	98 (6.4)
No	1214 (79.0)	Adjunct radiotherapy	
Yes	322 (21.0)	No	343 (22.3)
Pathology		Yes	858 (55.9)
DCIS/Paget’s/Phyllodes tumor	160 (10.4)	Unknown	335 (21.8)
IDC	1300 (84.6)	Amount of the ways of contacts provided	
Others	76 (4.9)	None/1	301 (19.7)
Grade		2–4	1126 (73.3)
I	112 (7.3)	>5	107 (7.0)
II	459 (29.8)	Amount of the addresses provided	
III	429 (27.9)	None	148 (9.6)
Not available	536 (34.9)	≥1	1388 (90.4)
AbbreviationsALND, Axillary lymph node dissection; GDP, Gross domestic product; CNY, ChineseYuan; BCS, Breast-conserving surgery; DCIS, Ductal carcinoma in situ; ER, Estrogen receptor; HER2, Human epithelial growth factor receptor-2; IDC, Infiltrative ductal carcinoma; LTFU, Loss to follow-up; PR, Progesterone receptor; SLNB, Sentinel lymph node biopsy.			
Q. Ouyang, S. Li, M. Gao et al. The Breast 57 (2021) 36–42

after surgery were significantly correlated with LTFU among patients with breast cancer [14]. However, socioeconomic factors vary among different countries, which might significantly contribute to the different results found in different countries. Thus, it is necessary to investigate the patterns of LTFU and its risk factors in female Chinese patients with breast cancer. In our study, we noticed additional risk factors of LTFU that were not previously reported [14,22].

4.3. Younger age

The studies by Kukar et al. and Ruddy et al. did not find an association between younger age and LTFU risk [22,28]. However, we observed that younger patients (age ≤ 39 years) were more likely to experience LTFU than those 40–54 years old for several reasons. First, with the rapid economic development of China, the migration of women from rural areas to urban areas has continuously increased since the late 1970s, and young women comprise the most mobile population [29,30]. Thus, once they move to another city, the likelihood of LTFU might increase. Second, young patients are more likely to engage in busy work. As the main workforce of society, young women (age ≤ 39 years) work longer hours than their counterparts in Western countries [31,32]. Consequently, busier women may have less time to adhere to clinical advice and visit the clinic as suggested, which may contribute to LTFU.

4.4. Lack of insurance

In our study, we observed that uninsured patients (469/1536, 30.5%) were more likely to be lost to follow-up. The result may be attributed to two reasons. First, uninsured patients are more likely to have less education and lower income, which are usually associated with compromised breast cancer awareness and reduced adherence to post-operative surveillance plans. Another reason for these associations could be the misclassification of the insurance type in our medical system, which is a limitation of our study. For patients who were not living in Guangzhou (the city in which our hospital is located), their medical insurance might not always be correctly updated in our HIS system, hence, some patients might be mistakenly labeled as “uninsured.” Therefore, these patients might receive follow-up surveillance at their local hospitals, leading to an increased risk of LTFU. They might also receive a higher reimbursement rate. China has a unique social health insurance system in which patients might receive less reimbursement if they do not receive medical treatment in their own residence area [33,34]. As reported by Yao et al., local residents under a social health insurance scheme were more likely to seek medical attention when needed and leave a health record than patients who were outside of their area of residence [35].

4.5. Ways of contact

Special attention should be paid to the number of provided contacts. We noticed that patients with ≥ 5 ways of contact were less likely to be lost to follow-up. This result has strong implications for medical institutions in China. Because the aforementioned risk factors of LTFU, including the medical insurance and lymph node status, cannot be controlled by the center, additional ways of contact should be collected in daily practice, especially for patients with high risks of LTFU. We suggested the collection of contact information from patients as well as their relatives, families, or friends with their informed consent. Even if the patient moves to another city and changes the mode of contact, we could easily communicate with him or her by contacting his or her relatives, families, or friends. For patients who refuse or who were unable to provide additional means of contact, we should educate and inform them about the benefits of providing additional contact information. Furthermore, contact details should be continuously updated. To reduce the risk of loss of contact because of changes of patients’ residence and employment, new contact information should be routinely collected during follow-up care.

4.6. Pathology

Patients with DCIS/Paget’s/phyllodes tumors were more likely to be lost to follow-up than those with IDC because the former tumors are less invasive than IDC and patients were not fully aware of the necessity of follow-up. In addition, a lack of adjuvant therapy for DCIS/Paget’s/phyllodes tumors may also contribute to LTFU.

4.7. The clinical implications of the characteristics of LTFU

Because reducing the risk of LTFU is extremely important, our study may be informative for dealing with this problem. In our study, 26.8% of patients were lost to follow-up at 5 years after surgery, and half of them were lost to follow-up within 1 year after surgery, underlining the necessity of the first follow-up visit within the first 12 months after surgery. More intensive follow-up plan could be considered for patients within the first 1 year after surgery.

Furthermore, we found risk factors that independently associated with LTFU, and the risk of LTFU was dramatically increased when two or more of the aforementioned risk factors were present, prompting close attention for these “high-risk” patients. To quantify the impact of the possible risk factors, an LTFU risk score was developed to evaluate the risk of LTFU for each patient and design individualized follow-up plans. Less or more intensive follow-up plans could be suggested for patients with low and high LTFU risk scores, respectively, to optimize the allocation of medical resources. For patients at high risk of LTFU, we could consider several approaches. First, patients could be informed of the importance of post-operative follow-up during the peri-operative period and as in the clinic. In addition, the only modifiable factor of the LTFU risk score is the number of ways of contact. During the disease registration, more additional contact information (phone number/email address/WeChat account) were suggested to be collected from patients as well as their family members. Moreover, consistently updating patient contact information during post-operative follow-up.

Fig. 1. Cumulative incidence of LTFU (Loss to follow-up) of the study cohort.

Cumulative incidence of LTFU (Loss to follow-up) of the study cohort.
Table 2

Univariate analysis of demographic and pathologic characteristics associated with LTFU.

Variable	OR(95%CI)	P	Variable	OR(95%CI)	P
Age group of diagnosis			T-stage		
40–54 y	1		T0/Tis	1	
≤ 39 y	1.45(1.08–1.94)	0.013	T1	0.56(0.38–0.83)	0.004
≥ 55 y	1.29(1.00–1.68)	0.051	T2	0.67(0.45–1.01)	0.036
Year of surgery			T3/T4		
2009	1		Tx/Unknown	1.11(0.73–1.66)	0.630
2010	1.04(0.74–1.45)	0.831	N-stage		
2011	0.72(0.52–0.01)	0.046	N0	1	
2012	0.68(0.49–0.95)	0.010	N1	0.86(0.66–1.15)	0.321
Type of residence			N2/N3		
City	1		1.28(0.89–1.67)	0.221	
Countryside	1.71(1.32–2.21)	<0.001	ER status		
Education level			Negative	1	
Primary school	1		Positive	0.78(0.59–1.02)	0.071
Middle school	0.82(0.61–1.09)	0.175	Unknown	5.41(2.02–14.50)	0.001
University	0.83(0.60–1.18)	0.313	PR status		
Unknown	1.29(0.62–2.45)	0.558	Negative	1	
Marital status			Positive	0.75(0.59–0.96)	0.025
Single	1		Unknown	5.43(2.03–14.37)	0.001
Married	1.12(0.62–2.03)	0.707	HER2 status		
Divorced/Widowed	1.53(0.49–4.80)	0.462	Negative	1	
Religions			Positive	1.10(0.82–1.47)	0.528
No	1		Intermediate	0.92(0.67–1.26)	0.620
Yes	1.39(0.77–2.51)	0.279	Unknown	4.52(2.16–9.44)	<0.001
Unknown	1.26(0.44–4.66)	0.668	Mastectomy	1	
Medical insurance			BCS	0.87(0.69–1.09)	0.213
Insured	1		Type of axillary surgery		
Uninsured	2.28(1.80–2.90)	<0.001	ALND	1	
Unknown	2.11(1.02–4.36)	0.043	SLNB	1.01(0.80–1.27)	0.944
Distance from residence to hospital			Anti-HER2 therapy		
Less than 100 km	1		No	1	
More than 100 km	2.70(2.12–3.42)	<0.001	Yes	0.59(0.43–0.83)	0.002
GDP level of the patients’ residence			Adjuvant chemotherapy		
More than 100,000 CNY	1		No	1	
Less than 100,000 CNY	2.13(1.67–2.70)	<0.001	Yes	0.59(0.32–1.09)	0.091
Unknown	3.07(2.03–4.64)	<0.001	Adjuvant endocrine therapy		
Comorbidities			No	1	
No	1		Yes	0.45(0.32–0.62)	<0.001
Yes	0.83(0.62–1.10)	0.195	Unknown	1.87(1.14–3.06)	0.014
Pathology			Adjuvant radiotherapy		
DCIS/Paget’s/Phyllodes tumor	1		No	1	
IDC	0.49(0.35–0.69)	<0.001	Yes	0.68(0.51–0.91)	0.008
Others	0.44(0.25–0.84)	0.012	Unknown	1.49(1.08–2.05)	0.016
Grade			Amount of the ways of contacts provided		
I	1		0–1	1	
II	0.77(0.48–1.24)	0.277	2–4	0.69(0.52–0.90)	0.007
III	0.97(0.61–1.57)	0.917	≥5	0.40(0.23–0.70)	0.001
Not available	1.40(0.88–2.22)	0.152	Amount of the addresses provided		
			None	1	
			≥1	0.50(0.35–0.70)	<0.001
			Employer/Company was provided		
			No	1	
			Yes	0.73(0.53–1.01)	0.059

Abbreviation: LTFU, Loss to follow-up; GDP, Gross domestic product; CNY, Chinese Yuan; DCIS, Ductal carcinoma in situ; IDC, Invasive ductal carcinoma; ALND, Axillary lymph node dissection; BCS, Breast-conserving surgery; ER, Estrogen receptor; HER2, Human epithelial growth factor receptor-2; PR, Progesterone receptor; SLNB, Sentinel lymph node biopsy. OR, Odds ratio; CI, Confidence interval.

up is also recommended.

4.8. Limitations

Nevertheless, some limitations of this study must be addressed. First, this was a single-center, retrospective study with inherent bias that cannot be eliminated. Multicenter, prospective studies are necessary to validate our conclusions, especially the accuracy of our LTFU risk scores. Second, some personal information such as family income, occupation, and personal psychosocial status/personality, which may influence the risk of LTFU, was not available in our study. Third, we were unable to identify the exact cause of LTFU in our study, which might be especially important to improve our surveillance plans in clinical practice. A possible strategy to solve this problem could be collaboration with different hospitals, medical societies, the CDC, and related governmental departments and utilization of artificial intelligence technology to trace these patients. We believe that with the development of community hospitals and a network of family doctors, a well-coordinated surveillance network could be established in the future.

It should be noted that for patients who did not return to the clinic as scheduled at our institution, we did not have any ways to contact or inform them before 2015. However, the breast disease registry department was established in our center in 2015, and subsequently, all newly admitted patients have been prospectively followed, and the 5-year LTFU rate in the new tracking system has
been less than 5% (unpublished data). With the development of high-speed Internet and mobile social media, such as WeChat [36,37], interactive text message follow-up systems, patients are more easily contacted than in the past [38]. Furthermore, annual meetings for cancer survivors hosted by our center would presumably also help to decrease the likelihood of LTFU after surgery, but further studies are needed to confirm this speculation.

Our study is the first research investigating LTFU in patients with breast cancer in China, its patterns and risk factors, and also a potential LTFU-risk score which could be used to predict the risk of LTFU in clinical practice. We suggest that patients with higher risks of LTFU should be identified, and more individualized surveillance plans should be delivered to decrease their LTFU risks and therefore to improve their clinical outcomes.

Authors’ contributions

Q. Ouyang, S. Li, M. Gao et al. contributed to the conception of the study, data acquisition and design of the study. QO drafted the article. FS, ZR, KC and MP revised the paper for important intellectual content. KC and MP provided final approval of the version to be submitted.

Funding information

This study was funded by the Yat-sen Scholarship of Young Scientist program of Sun Yat-sen Memorial Hospital, Sun Yat-sen University (Recipient: Kai Chen), and by the grants from the Sun Yat-sen Clinical Research Cultivating Program of Sun Yat-sen Memorial Hospital, Sun Yat-sen University (#SYS-Q-202002, Recipient: Liling Zhu). This study was also supported by the Sun Yat-sen University Clinical Research 5010 Program (#2018022, Recipient: Kai Chen), as well as by the National Natural Science Foundation of Guangdong Province (# 2019A1515011467, Recipient: Shunrong Li.).

Ethical approval

Ethical approval was waived by the local Ethics Committee of Sun Yat-sen Memorial Hospital in view of the retrospective nature of the study and all the procedures being performed were part of the routine care.

Statement of informed consent

This is a retrospective study and we used data from a database, we do not need informed consent from the patients.

Table 3

Multivariate analysis identifying factors associated with LTFU.

Variables	OR(95%CI)	P
Age group of diagnosis		
40–54 y	1	
≤39 y	1.37(1.00–1.88)	0.05
>55 y	1.48(1.10–1.94)	0.009
Type of residence		
City	1	
Countryside	1.11(0.81–1.51)	0.525
Medical insurance		
Insured	1	
Uninsured	1.57(1.20–2.06)	0.001
Unknown	1.62(0.75–3.50)	0.217
Distance from residence to hospital		
Less than 100 km	1	
More than 100 km	2.06(1.37–3.11)	0.001
GDP level of the patients’ residence		
More than 100,000 CNY	1	
Less than 100,000 CNY	1.00(0.67–1.49)	0.993
Unknown	1.37(0.80–2.35)	0.251
Pathology		
DCIS/Paget’s/Phyllodes tumor	1	
IDC	0.59(0.40–0.89)	0.012
Others	0.51(0.26–0.99)	0.047
N-stage		
N0	1	
N1	1.01(0.74–1.38)	0.938
N2/N3	1.53(1.07–2.19)	0.02
Adjuvant chemotherapy		
No	1	
Yes	0.72(0.49–1.07)	0.106
Anti-HER2 therapy		
No	1	
Yes	0.58(0.30–1.11)	0.099
Adjuvant endocrine therapy		
No	1	
Yes	0.51(0.36–0.71)	0
Unknown	1.35(0.78–2.33)	0.282
Adjuvant radiotherapy		
No	1	
Yes	0.83(0.60–1.14)	0.25
Unknown	1.25(0.87–1.81)	0.227
Amount of the ways of contacts provided		
0-1	1	
2-4	0.86(0.64–1.16)	0.325
≥5	0.52(0.29–0.94)	0.029
Amount of the addresses provided		
None	1	
≥1	0.94(0.63–1.40)	0.773
Employer/Company was provided		
No	1	
Yes	1.01(0.71–1.44)	0.94

Abbreviation: LTFU, Loss to follow-up; GDP, Gross domestic product; CNY, Chinese Yuan; HER2, Human epidermal growth factor receptor-2; DCIS, Ductal carcinoma in situ; IDC, Invasive ductal carcinoma; OR, Odds ratio; CI, Confidence interval.

Table 4

LTFU-risk score.*

Predictors	Score
Age group of diagnosis (≤39 y or ≥55 y)	1
Medical insurance (Uninsured)	1
Distance from residence to hospital (More than 100 km)	1
Pathology (DCIS/Paget’s/Phyllodes tumor)	1
N-stage (N2/N3)	1
Adjuvant endocrine therapy (No)	1
Amount of the ways of contacts provided (<5)	1

Abbreviation: LTFU, Loss to follow-up; DCIS, Ductal carcinoma in situ.

* LTFU-risk score was the sum of the total score above, ranging between 0 and 6.
Open access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Declaration of competing interest

The authors have no relevant financial disclosures or conflicts of interest to declare.

Acknowledgements

We appreciate the assistance from the Disease Registry Department, the Artificial Intelligence Lab and the Big Data Center of Sun Yat-sen Memorial Hospital, Sun Yat-sen University. We also appreciate the support from REDCap development team and research teams of Vanderbilt University Medical Center.

References

[1] Zheng R, Sun K, Zhang S, Zeng H, Zou X, Chen R, et al. Report of cancer epidemiology in China. 2015. Zhonghua zhong liu za zhi [Chinese journal of oncology] 2019;41(1):19–28.
[2] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. Ca - Cancer J Clin 2002;55(2):74–108. 2005.
[3] Porter P. "Westernizing" women's risks? Breast cancer in lower-income countries. N Engl J Med 2008;358(5):213–6.
[4] Anderson BO, Yip CH, Smith RA, Shyyan R, Sener SF, Eniu A, et al. Guideline implementation for breast healthcare in low-income and middle-income countries: overview of the Breast Health Global Initiative Global Summit 2007. Cancer 2008;113(S8):2221–43.
[5] Youlten DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival, and mortality. Cancer epidemiology 2012;36(3):237–48.
[6] Sankaranarayanan R, Swaminathan R, Brenner H, Chen K, Chia KS, Chen JC, et al. Cancer survival in Africa, Asia, and Central America: a population-based study. Lancet Oncol 2010;11(2):165–73.
[7] Chen J-G, Li W-G, Shen Z-C, Yao H-Y, Chang B, Zhu Y-R. Population-based cancer survival in Qdong, People's Republic of China. IARC scientific publications; 1998. p. 27–36.
[8] Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Res Treat 2016;159(3):395–406.
[9] Swaminathan R, Lucas E, Sankaranarayanan R. Cancer survival in africa, asia, the caribbean and Central America: database and attributes. IARC Sci Publ 2011;162:23–31.
[10] Chen J, Zhu J, Zhang Y, Lu J. Cancer survival in Qdong. 2011. China, 1992f2000.
[11] Xuhan H, Chen K, Min H, Shufen D, Jifang W. Cancer survival in Tianjin. 2011. China, 1991.'1999.
[12] Li BD, Brown WA, Ampil FL, Burton GV, Yu H, McDonald JC. Patient compliance is critical for equivalent clinical outcomes for breast cancer treated by breast-conservation therapy. Ann Surg 2000;231(6):883.
[13] Gill A, Gosain R, Bhandari S, Gosain R, Gill G, Abraham J, et al. Lost to follow-up among adult cancer survivors. Am J Clin Oncol 2018;41(10):1024–7. https://doi.org/10.1097/coc.0000000000000408.
[14] Ruddy KJ, Herrin J, Sangaralingham L, Freedman RA, Jemal A, Haddad TC, et al. Follow-up care for breast cancer survivors. J Natl Cancer Inst 2020;112(1):111–3. https://doi.org/10.1093/jnci/dpz203.
[15] Ettinger RL, Qiao F, Xie XJ, Watkins CA. Evaluation and characteristics of “dropouts” in a longitudinal clinical study. Clin Oral Invest 2004;8(1):18–24. https://doi.org/10.1007/s00784-003-0238-2.
[16] Li J, Zhang B-N, Fan J-R, Fang Y, Zhang P, Wang S-L, et al. A nation-wide multicenter 10-year (1999-2007) retrospective clinical epidemiological study of female breast cancer in china. BMC Cancer 2011;11(1):364.
[17] Leong SP, Shen Z-Z, Liu T-J, Agarwal G, Tajima T, Paik N-S, et al. Is breast cancer the same disease in Asian and Western countries? World J Surg 2010;34(10):2308–24.
[18] Gondos A, Arndt V, Holleczek B, Stegmaier C, Ziegler H, Brenner H. Cancer survival in Germany and the United States at the beginning of the 21st century: an up-to-date comparison by period analysis. Int J Canc 2007;121(2):395–400.
[19] Network. NCC. Breast cancer(version 4.2020). In: NCCN clinical practice guidelines in oncology. 2020.
[20] Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inf 2009;42(2):377–81.
[21] Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inf 2019:95:103208.
[22] Kukar M, Watroba N, Miller A, Kumar S, Edge SB. Fostering coordinated survivorship care in breast cancer: who is lost to follow-up? Journal of cancer survivorship : research and practice 2014;8(2):199–204. https://doi.org/10.1007/s11764-013-0323-5.
[23] Lei Y-Y, Ho SC, Cheng A, Kock W, Lee C-XL, Cheung KL, et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research Guide-line is associated with better health-related quality of life among Chinese patients with breast cancer. J Nati Compr Canc Netw 2018;16(3):275–85.
[24] Surgeons ACo. National accreditation program for breast centers standards Manual. 2017.
[25] Biganzoli L, Marotti L, Hart CD, Cataliotti L, Cutuli B, Kühn T, et al. Quality indicators in breast cancer care: an update from the EUSOMA working group, vol. 86. Oxford, England: European journal of cancer; 1990. p. 59–81. https://doi.org/10.1007/978-94-009-7811-8_4.
[26] Krishman V, Manno M, Côté P. Loss to follow-up in cohort studies: how much is too much? Eur J Epidemiol 2004;19(8):751–60. https://doi.org/10.1023/b: ejep.0000003656.02655.f8.
[27] Julian Higgins J, Chandler Jacqueline, Miranda Cumpton, Li Tianjing, Page Matthew, Welch Vivian. Cochrane Handbook for systematic reviews of interventions. 2019.
[28] Ruddy KJ, Herrin J, Sangaralingham L, Freedman RA, Jemal A, Haddad TC, et al. Follow-up care for breast cancer survivors. J Natl Cancer Inst: J Natl Cancer Inst 2020;112(1):111–3.
[29] Hedlund M, Ronne-Engstrom E, Carlson M, Ekelsius L. Coping strategies, health-related quality of life and psychiatric history in patients with aneurysmal subarachnoid haemorrhage. Acta Neurochir 2010;152(8):1375–82.
[30] Zhu C-Y, Wang J-J, Fu X-H, Zhou Z-H, Zhao J, Wang C-X. Correlates of quality of life in China rural–urban female migrant workers. Qual Life Res 2012;21(3):495–503.
[31] Mishra V, Smyth R. Working hours in Chinese enterprises: evidence from matched employer–employee data. Ind Relat J 2013;44(1):57–77.
[32] Nie P, Otterbach S, Sousa-Poza A. Long work hours and health in China. Econ Rev 2015;34:212–29.
[33] Meng Q, Fang H, Liu X, Yuan B, Xu J, C. Socializing the consolidation health insurance schemes in China: towards an equitable and efficient health system. Lancet 2015;386:1484–92, 10002.
[34] Long C, Wang R, Feng D, Ji L, Feng Z, Tang S. Social support and health services use in people aged over 65 Years migrating within China: a cross-sectional study. Int J Environ Res Public Health 2020;17(13):4651.
[35] Yao Q, Liu C, Sun J. Inequality in health services for internal migrants in China: a national cross-sectional study on the role of fund location of social health insurance. Int J Environ Res Public Health 2020;17(17):6327.
[36] Sui Y, Wang T, Wang X. The impact of WeChat app-based education and rehabilitation program on anxiety, depression, quality of life, loss of follow-up and survival in non-small cell lung cancer patients who underwent surgical resection. Eur J Oncol Nurs 2020:45:101707.
[37] Lyu K-X, Zhao J, Wang B, Xiong G-X, Yang W-Q, Liu Q-H, et al. Smartphone application WeChat for clinical follow-up of discharged patients with head and neck tumors: a randomized controlled trial. Chin Med J 2016;129(12): 2816.
[38] Moradi A, Moeini M, Sanei H. The effect of interactive text message follow-up on health promoting lifestyle of patients with acute coronary syndrome. Iran J Nurs Midwifery Res 2017;22(4):267.