A thiol redox sensor in soluble epoxide hydrolase enables oxidative activation by intra-protein disulfide bond formation

Rebecca L. Charles a,1, Giancarlo Abis b,2,1, Beatriz F. Fernandez c, Sebastian Guttzeit c, Roberto Buccafusca d, Maria R. Conte b,**, Philip Eaton a,**

a Queen Mary University of London, William Harvey Research Institute, Charterhouse Square, London, EC1M 6BQ, UK
b King’s College London, Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, London, SE1 1UL, UK
c King’s College London, The British Heart Foundation Centre of Excellence, The Rayne Institute, St Thomas’ Hospital, London, SE1 7EH, UK
d Queen Mary University of London, School of Biological and Chemical Sciences, Mile End Road, London, E1 4NS, UK

A R T I C L E I N F O

Keywords:
Redox regulation
Oxidation
Angiotensin II
Disulfide
Soluble epoxide hydrolase

A B S T R A C T

Soluble epoxide hydrolase (sEH), an enzyme that broadly regulates the cardiovascular system, hydrolyses epoxideicosatrienoic acids (EETs) to their corresponding dihydroxyicosatrienoic acids (DHETs). We previously showed that endogenous lipid electrophiles adduct within the catalytic domain, inhibiting sEH to lower blood pressure in angiotensin II-induced hypertensive mice. As angiotensin II increases vascular H2O2, we explored sEH redox regulation by this oxidant and how this integrates with inhibition by lipid electrophiles to regulate vasotone. Kinetics analyses revealed that H2O2 not only increased the specific activity of sEH but increased its affinity for substrate and increased its catalytic efficiency. This oxidative activation was mediated by formation of an intra-disulfide bond between C262 and C264, as determined by mass spectrometry and substantiated by biotin-phenylarsinate and thioredoxin-trapping mutant assays. C262S/264S sEH mutants were resistant to peroxide-induced activation, corroborating the disulfide-activation mechanism. The physiological impact of sEH redox state was determined in isolated arteries and the effect of the pro-oxidant vasopressor angiotensin II on arterial sEH redox state and vasodilatory EETs indexed in mice. Angiotensin II induced the activating intra-disulfide in sEH, causing a decrease in plasma EET/DHET ratios that is consistent with the pressor response to this hormone. Although sEH C262–C264 disulfide formation enhances hydrolysis of vasodilatory EETs, this modification also sensitized sEH to inhibition by lipid electrophiles. This explains why angiotensin II decreases EETs and increases blood pressure, but when lipid electrophiles are also present, that EETs are increased and blood pressure lowered.

1. Introduction

Soluble epoxide hydrolase (sEH) is distributed widely in tissues and is an important regulator of the cardiovascular system [1]. This hydrolase is homodimeric with each monomer consisting of a C-terminal domain with epoxide hydrolase activity and an N-terminal domain (NTD) with phosphatase activity [2,3]. The C-terminal domain catalyzes the hydrolysis of epoxides to their corresponding diols. epoxy-fatty acids, such as epoxyicosatrienoic acids (EETs), epoxydocosapentaenoic acids (EpDPEs), α- and γ-epoxyoctadecadienoic acids (α/γ-EpODEs) and epoxyoctadecanoic acids (EPOEs) are examples of endogenous substrates of sEH. Among these, EETs are the most studied and are known for their ability to induce vasodilation and decrease blood pressure (BP) [4–8]. sEH hydrolyses EETs to their corresponding diols, namely dihydroxyicosatrienoic acids (DHETs), causing blood pressure to increase. Conversely, inhibition of sEH increases EETs that induce vasodilation, highlighting this enzyme as an important determinant of cardiovascular health and disease [9–15].
Inhibitors of sEH offer broad cardiovascular protection, including blockade of smooth muscle proliferation [16], reduction of atherosclerosis and hypertension [13,17–21], prevention and regression of cardiac hypertrophy, failure [22–24], and fibrosis [25]. sEH is expressed in non-vascular tissues, with its inhibition limiting ischemic damage to the heart [26–31], brain and other organs [32,33]. Similarly, sEH null mice are protected from cardiovascular pathologies [28]. On the other hand, genetic alterations that enhance sEH activity are a risk factor for human heart failure [22].

sEH activity was considered to be controlled principally by its expression levels [34]. However, we showed sEH activity is inhibited by electrophilic lipids, such as 15-deoxy-

\[\Delta^1 \] -Prostaglandin J₂ \((15d-\text{PGJ}_2) \) [35–37]. These endogenous lipid electrophiles bind and covalently adduct within the hydrolase C-terminal domain, inhibiting its catalytic activity to provide post-translational regulation of sEH.

The abundance of EETs is commonly decreased in cardiovascular disease scenarios such as myocardial infarction, hypertension, and diabetes [22,28,39], and as mentioned above, polymorphisms that increase hydrolase activity cause heart failure. This decline in EETs is likely causal in the pathogenesis of these conditions, with sEH inhibitors that can increase epoxy-fatty acids providing therapy [40]. Cardiovascular disease has been broadly linked, often causally, with oxidative stress. This is notable in the context of this study in which we describe a new mechanism of oxidative activation of sEH that would account for the loss of protective EETs.

Given that hydrogen peroxide \((\text{H}_2\text{O}_2) \) and lipid peroxides are ubiquitous and commonly mediate signalling to control physiological processes by modulating the redox state of proteins [41,42], we determined their impact on sEH activity. We were intrigued to find that \(\text{H}_2\text{O}_2 \) oxidized and activated the hydrolase. Consequently, we investigated the molecular basis of this oxidative activation, tested if it occurred in cells and tissues and determined if there was a physiological manifestation of these events. The oxidative activation of sEH was caused by formation of an intra-disulfide bond between C262 and C264. Furthermore, angiotensin II, known for its ability to increase cellular \(\text{H}_2\text{O}_2 \) [43,44], induced the formation of an activating intra-disulfide bond in mouse tissues, resulting in decreased plasma EET/DHET ratios. Thus, this new mechanism in which sEH is activated by oxidative intra-disulfide bond formation, may at least in part, contribute to the increase in blood pressure caused by angiotensin II. Formation of the disulfide also serves to sensitize sEH to inhibition by lipid electrophiles. This explains why angiotensin II decreases EETs and increases blood pressure, but in contrast, when lipid electrophiles are concomitantly present, EET levels are instead increased, and blood pressure lowered.

2. Materials and methods

2.1. Recombinant protein production

The sEH full-length protein was cloned into pcDNA3.1D/V5-His-TOPO® vector (Invitrogen) as described earlier [45]. It was expressed in HEK293-F cells and purified using Ni²⁺-IMAC as described earlier [45]. Following successful purification, the protein fractions were pooled and the imidazole was removed using desalting spin columns (Zeba, ThermoFisher). The protein was then stored in 50 mM Tris pH 7.5, 300 mM NaCl and then snap frozen in liquid \(N_2 \) and stored at \(-80^\circ \text{C}\). Single mutants C262S, C264S, C262A and C264A were generated using the Quickchange II XL (Agilent) kit. Primers were designed using the Quick-change Primer Designer online tool. Successful mutagenesis was confirmed by sequencing (Eurofins MWG). The sEH mutants were expressed and purified as above as the WT protein. The sEH C-terminal domain was cloned as described earlier [45]. sEH C-terminal domain C264S mutant were obtained using the Q5® Site-Directed Mutagenesis Kit (NEB) and primers designed using the NEB Changer tool. sEH C-terminal domain WT and mutants were purified as described earlier [45] and stored at \(-80^\circ \text{C}\) in the same buffer used for the full-length protein. Protein concentration was adjusted according to the theoretical molecular weight and extinction coefficient, obtained using the ProtParam ExPASY tool [46].

2.2. In vitro sEH enzymatic assays

Activity of WT and mutant sEH proteins were measured using a spectrofluorometric method [47]. The assay uses the substrate 3-phenyl-cyano (6-methoxy-2-naphthalenyl) methyl ester-2-oxiraneacetic acid (PHOME – Cayman), which is hydrolysed by sEH to generate a fluorescent end-product, 6-methoxy-2-naphthaldehyde (6M2N). Specific activity of the recombinant enzymes was measured as described before [45]. Briefly, full-length protein and C-terminal domain enzymes were diluted with reaction buffer (25 mM TRIS-HCl pH 7.4) to respectively \(322 \) nM and \(8 \) μM, to be then mixed with 10 μM TCEP. For oxidation experiments, full-length protein and C-terminal domain enzymes were oxidized with a final concentration of 1, 10 or 100 μM \(\text{H}_2\text{O}_2 \) or tert-butyl hydroperoxide for 10 min at room temperature. A time course determined that a 10 min pre-treatment with \(\text{H}_2\text{O}_2 \) was optimal in terms of maximally stimulating the hydrolase, as shown in Supplementary Fig. 1A. In specific activity measurements, the hydrolase was further diluted in reaction buffer in a black 96-well polystyrene microtiter plate (ThermoFisher) to different final concentrations (full-length protein 1, 2, 4, 5, 8, 10 nM; C-terminal domain 5, 10, 50, 100 and 200 nM), then PHOME (0.25 μM final concentration), freshly prepared in DMSO, was added to the 96-well plate. For Michaelis-Menten kinetic experiments, different substrate concentrations were aliquoted in a black 96-well plate (full-length protein 0.25, 0.5, 1, 5, 10, 100 μM; C-terminal domain 0.25, 0.75, 1.5, 5, 10, 20 μM), to then add full-length protein and C-terminal domain enzymes at a final concentration of respectively 8 nM and 15 nM. Relative fluorescence (RFUs) was monitored at excitation 330 nm/emission 450 nm every min for 15 min using CLARIOstar plate reader (BMG Labtech) or a POLARStar Omega (BMG Labtech). A standard curve using 6M2N was used for quantification purposes as described before [45]. IC50 measurements for both full-length protein and C-terminal domain proteins with 15d-PGJ₂ or AUDA were performed as detailed before [37], oxidation was induced with a final concentration of 1, 10 or 100 μM \(\text{H}_2\text{O}_2 \) or tert-butyl hydroperoxide for 10 min at room temperature, when required. The readout at 15 min was used to build the IC50 curve, fitted with \(\log \) (inhibitor) vs. response - variable slope” in GraphPad, and further considered exclusively if \(R^2 \) was >0.9.

2.3. Quantification of the covalently modified sEH with biotin-15d-PGJ₂

To assess if oxidation affected electrophilic 15d-PGJ₂ adducting to sEH, biotinylated-15d-PGJ₂ (Cayman) was used in an adaptation of the enzymatic assay method described above. Briefly, full-length protein sEH protein was reduced with 10 μM TCEP on ice for 15 min, then diluted in freshly prepared 25 mM TRIS-HCl pH 7.4 to a final concentration of 322 nM. The proteins were then incubated at room temperature for 10 min with or without \(\text{H}_2\text{O}_2 \) (final concentration 1 μM), the proteins were then subsequently incubated at room temperature for 30 min with biotinylated-15d-PGJ₂ (final concentration 10 μM). Protein samples were then re-suspended with an equal volume of 2x reducing Laemmli SDS sample buffer (total volume 100 μL). Protein samples were loaded and separated by SDS-PAGE using Mini-protein 3 system (Bio-Rad) and transferred to PVDF membranes (Bio-Rad). Blots were incubated with the biotin-antibody (#D5A7, Cell Signaling) diluted 1:1000 for 1 h in PBS-Tween 5% milk overnight. One hr of incubation with horseradish peroxidase-coupled anti-rabbit (#7074, Cell Signaling) IgG secondary antibody (diluted 1:1000 in PBS-Tween in 5% milk) was used to detect the primary antibody, along with ECL reagent (ThermoFisher).
2.4. Cell sEH activity assays

Cells treated with or without H$_2$O$_2$ were harvested and lysed in 0.5% digitonin lysis buffer and centrifuged at 3000 g for 5 min at 4 °C. sEH activity was measured with Cyan (6-methoxy-2-naphthalenyl)methyl [(2,3)-3-phenylloxiranyl]methyl ester, carbonic acid (Epoxy Fluor 7, Cayman) as a substrate. Total cell lysates were treated with or without AUDE to a final concentration 50 μM for 15 min at 37 °C to determine the sEH contribution of Epoxy Fluor 7 hydrolysis. Subsequently 10 μM Epoxy Fluor 7 (final concentration) was added and fluorescence measurements made at excitation 330/emission 465 nm every 2 min for 1 h using a CLARIOstar plate reader (BMG Labtech) at 37 °C. Protein concentration was measured using the bicinchoninic acid assay. A standard curve using 6M2N was used for quantification purposes.

2.5. Liquid chromatography-tandem mass spectrometry

100 μg of protein was dissolved in 70% formic acid prepared in UHQ Water. The protein was chemical digested following addition of a few crystals of Cyanogen Bromide (Sigma Aldrich, USA). The reaction was carried out at ambient temperature and in the dark for 5 h and stopped with the addition of 2 mL of UHQ water. The sample was lyophilised and reconstituted in 100 μL of 50 mM ammonium bicarbonate pH 8.4 and a second digestion was performed with the MS grade Trypsin Gold (Promega, USA) using a 1:50 enzyme:substrate ratio. The reaction was incubated at 37 °C for 5 h and halted by addition of formic acid to a final concentration of 0.5%. The digested samples were analysed using an Acquity UHPLC system (Waters Corporation, Milford, MA, USA) using an Acquity H Class UPLC instrument, interfacing through an electrospray ionization (ESI) LockSpray source to a High Definition Mass Spectrometer (HDMS) Synapt G2Si qToF, Waters Corporation, Milford, MA, USA and UNIFI 1.8 (Waters Corporation, Milford, MA, USA). Quantification of oxylipins was executed by CRM (multireaction monitoring) in negative ion mode using the following precursor ion > fragment ion transitions:

5 (6)EET (m/z 319.5 > 191.2), 5 (6)DiHET (m/z 337.2 > 145.1), 8 (9)EET m/z 319.2 > 155.1), 8 (9)DiHET (m/z 337.2 > 127.1), 11 (12) EET (m/z 319.2 > 167.1), 11 (12)DiHET (m/z 337.2 > 167.1), 14 (15) EET (m/z 319.2 > 219.2), 14 (15)DiHET (m/z 337.2 > 207.1), 14 (15)EET-d11 (m/z 330.5 > 219.2), 14(15)DiHET-d11 (m/z 348.6 > 207.1).

EETs were quantified by linear regression analysis following the generation of a standard curve containing all EET analytes at concentrations ranging from 0.039 ng/mL to 50 ng/mL, and a fixed amount of EET d11, the internal standard, at a concentration of 50 ng/mL. Similarly, DiHET were quantified using a standard with calibrants in concentrations ranging from 0.039 pg/mL to 5 ng/mL, and the diHET d11 as an internal standard at a fixed concentration of 5 ng/mL.

2.7. N-Biotinyl p-aminophenyl arsanic acid (Biotin-PAA) far western

The bespoke synthesis of N-Biotinyl p-aminophenyl arsanic acid (Biotin-PAA) was commissioned to SynInnova Laboratories Inc. Recombinant protein was treated under control conditions, with H$_2$O$_2$ (100 or 500 μM), 100 μM DTT or β-mercaptoethanol (5% v/v) for 15 min at room temperature. Protein samples were then re-suspended with an equal volume of 2x non-reducing SDS sample buffer. Protein samples were loaded and separated by SDS-PAGE using Mini-protean 3 system (Bio-Rad) and transferred to PVDF membranes (Bio-Rad). Membranes were blocked for 1 h at RT in Dilution Buffer from Pierce™ Far-Western Biotinylated Protein:Protein Interaction Kit (Thermo Fisher). Biotin-PAA was diluted to 0.4 mM in Dilution Buffer and incubated with the membrane for 1 h at RT. The membrane was then washed 6 times with PBS-T and subsequently incubated with Streptavidin-HRP at 1:10,000. Protein bands were visualized on chemiluminescence film (GE Healthcare) following incubation of the membranes with ECL Western Blotting Detection Reagents (Pierce).

2.8. C35A thioredoxin trapping mutant

Modified pcDNA3.1+/-C plasmids, containing a FLAG tag, with either WT thioredoxin or C35A thioredoxin trapping mutant were purchased from GeneScript. HEK cells were maintained in DMEM with 10% FCS and antibiotics. For treatment of HEK, cells were plated on to 12 well plates. HEK cells were transfected either with WT sEH DNA, C35A TRX DNA, C262A sEH DNA or doubly transfected either with WT sEH and C35A TRX DNA or C262A sEH and C35A TRX DNA using Lipofectamine 2000 (ThermoFisher) following the manufacturer’s instructions. 24 hr after transfection the cells were treated with or without auranofin (2.5 μM) for 30 min. Following treatment, the cells were lysed in immunoprecipitation buffer (100 mM Tris pH 7.4, 0.5% Triton-X100, and supplemented with one complete mini EDTA-free protease inhibitor tablet) and subjected to FLAG immunoprecipitation. Briefly, the lysates were incubated with FLAG-agarose beads (Sigma) for 1 h on a rotating wheel. After three washes with immunoprecipitation buffer the precipitates were re-suspended in Laemmli SDS sample buffer containing at 95 °C. Protein samples were loaded and separated by SDS-PAGE (4-20%
were incubated with the sEH antibody (#10010146, Cayman) diluted 1:1000 in PBS-Tween 5% milk overnight. One hr of incubation with horseradish peroxidase-coupled anti-rabbit (#7074, Cell Signaling) IgG secondary antibody (diluted 1:1000 in PBS-Tween in 5% milk) was used to detect the primary antibody, along with ECL reagent (ThermoFisher).

2.9. Recombinant protein shifts

100 ng recombinant protein (WT or C262A) was treated with H₂O₂ for 15 min, prior to the addition of non-reducing sample buffer. In some samples reducing agent, β-mercaptoethanol, was added. Protein samples were loaded and separated by SDS-PAGE (as described above), using 10% Mini--Protean® Precast Protein Gels (Bio-Rad) run at 90 V for 90 min.

2.10. Angiotsenin II treatment in mice

All procedures were performed in accordance with the Home Office Guidance on the Operation of the Animals (Scientific Procedures) Act 1986 in UK and were approved by an institutional review committee. Mice were anesthetized and subjected to subcutaneous implantation of osmotic minipumps (model 1007D; Alzet) for delivery of angiotensin II osmotic minipumps (model 1007D; Alzet) for delivery of angiotensin II at an infusion rate of 1 mg/kg/day for 7 days.

2.11. sEH activity in heart samples

Hearts were rapidly isolated and frozen in liquid nitrogen at the end of the protocol. They were then powdered with a pestle and mortar under liquid nitrogen, which were then stored in until further analysis. The hearts were homogenised (1 mL of buffer per 100 mg of cardiac tissue) on ice in 100 mM Tris pH 7.4 supplemented with a complete mini EDTA-free protease inhibitor (Roche) using a Polytron tissue grinder. sEH activity was determined as described earlier [36].

2.12. sEH quantification and molecular shifts in in vivo heart samples

Powdered heart samples were homogenised (1 mL of buffer per 100 mg of cardiac tissue) on ice in 100 mM Tris pH 7.4 supplemented with complete mini EDTA-free protease inhibitor (Roche) using a Polytron tissue grinder. Soluble fractions were prepared from the homogenate by adding Triton-X100 to achieve a final concentration of 1% (v/v), with mixing and incubation on ice for 5 min prior to centrifugation at 25,000 g for 5 min at 4 °C. A sample of the homogenates were re-suspended in an equal volume of 2× non-reducing SDS sample buffer. In some samples reducing agent, β-mercaptoethanol, was added to the sample buffer. Protein samples were loaded and separated by SDS-PAGE as described above.

2.13. Myography

Thoracic aorta from mice were mounted in a Danish Myo Technology tension myograph, stretched to the optimal pretension condition with Danish Myo Technology normalization module and bathed in Krebs solution at 37 °C with a 95% O₂:5% CO₂ environment. Vasotone measurements were made after wash up with KCl (60 mM) by determining the responses of U46619-contracted (0.1 μM) to cumulatively increasing concentrations of 15d-PGJ₂ or H₂O₂. In some experiments, vessels were pre-treated with 1 μM H₂O₂ for 30 min prior to the addition of 15d-PGJ₂.

2.14. AlloSigMA analysis

AlloSigMA is a structure-based statistical mechanical model tool which calculates the per-residue allosteric free energies (Δgᵢ) associated with residues perturbation. Per-residue Δgᵢ > 0 and Δgᵢ < 0 correspond to increased and decreased free energies respectively, associated to allosteric signalling following a perturbation [48,49]. Our analysis was carried out on the AlloSigMA web-server [50] in probing map mode, perturbing C262 and C264 on the X-ray crystal structure of hsEH C-terminal domain (PDB entry code 6I5E) [37]. The per-residue Δgᵢ values above ±1 standard deviation were reported on the hsEH protein structure in blue and red colour scales to indicate, respectively, stabilised and destabilised residues.

2.15. PyMOL and MOLE analyses

Using the sculpting tool in PyMOL Molecular Graphics System 2.0 (Schrödinger, LLC), a disulfide bond between C262 and C264 was modelled into the crystal structure of sEH (PDB entry number 1S8O) [51]. The results were analysed and visualized in PyMOL. Using MOLE 2.5, a toolkit for automated location and characterisation of protein cavities [52], the volume of the active site tunnel of oxidized and reduced sEH protein structures was measured. The analysis was performed using probe radius of 5 Å and an interior threshold of 1.1 Å.

2.16. Michaelis-Menten modeling

Using the kinetic data generated in experiments above and the Michaelis-Menten equation, we extrapolated these results and generated further data points over a wider range of substrate concentrations and plotted the data using Excel.

2.17. COPA analysis

COPA (Cysteine Oxidation Prediction Analysis) is a free internet software program accessible at http://copia.calstatela.edu. Through the analysis of the X-ray crystallography structure coordinates available in the Research Collaboratory for Structural Bioinformatics Proteins Data Bank (RCSB PDB), the software predicts cysteines susceptibility to the formation of disulfide bonds in non-membrane proteins in solution [53]. The analysis was herein performed on 26 randomly selected deposited X-ray crystallography structures of sEH (SI Table 1), all obtained in highly reducing experimental conditions (>3 mM DTT).

2.18. Protein sequence alignments

Primary sequence alignments of sEH were obtained with ClustalW multiple sequence alignment server [64] and alignment figures were generated using Jalview [65].

2.19. Statistical analysis

Results are presented as mean ± standard error of the mean (SEM). Differences between groups were assessed using analysis of variance (ANOVA) followed by a two-tailed unpaired Student’s t-test or for multiple comparisons a Tukey’s post-hoc analysis. Results were considered significant with p-values less or equal to 0.05.

3. Results

3.1. sEH is activated upon exposure to H₂O₂

H₂O₂ or tert-butyl peroxide significantly increased the specific activity of full length recombinant sEH in vitro (Fig. 1A and B), enhancing its ability to hydrolyse epoxide substrate. However, the increased specific activity was not observed with 1 mM H₂O₂, which may be considered a supraphysiological concentration (Supplementary Fig. 1B). Exposing a recombinant C-terminal fragment domain of sEH, the domain responsible for epoxy-fatty acid hydrolysis, to H₂O₂ similarly increased the specific activity of the hydroxase, recapitulating the oxidant-induced activation in the full-length enzyme (Supplementary
This is consistent with the increased hydrolase activity being predominantly, if not exclusively, linked to oxidative changes in the C-terminal domain. Pre-treatment of recombinant sEH protein \textit{in vitro} with H$_2$O$_2$ or tert-butyl hydroperoxide also potentiated the inhibition induced by the physiological inhibitor 15d-PGJ$_2$ (Fig. 1C). Further analysis using biotin-15d-PGJ$_2$ revealed that more of this electrophile adducted to sEH when there had been a pre-treatment with H$_2$O$_2$ (inset on Fig. 1C).

Analysis of full length sEH inhibition by 15d-PGJ$_2$, with or without prior exposure to H$_2$O$_2$ or tert-butyl hydroperoxide, revealed a significant decrease of the half maximal inhibitory concentration (IC$_{50}$) upon oxidation. This was demonstrated by the fact that the dose-dependent inhibition of sEH by 15d-PGJ$_2$ was significantly leftward shifted when sEH was pre-treated with either of the peroxide oxidants (Fig. 1D and E). Thus, when the enzyme is oxidized, a lower concentration of the electrophilic inhibitor is required to obtain the same degree of hydrolase inhibition, indicating that these two mechanisms work synergistically.

Essentially 15d-PGJ$_2$ is a more potent inhibitor of oxidized than reduced sEH, an observation that was also made in separate studies with recombinant C-terminal domain protein (Supplementary Fig. 1D). Interestingly, pre-treatment of full length or C-terminal domain sEH with peroxide did not sensitize the hydrolase to inhibition by the synthetic inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), indicating that the potentiation of inhibition might be linked to specific binding properties of 15d-PGJ$_2$ (Fig. 1F and G and Supplementary Fig. 1E).

3.2. An intra-protein disulfide bond mediates hydrolase activation by H$_2$O$_2$

We reasoned that the activation of sEH by peroxide molecules is likely mediated by the oxidative post-translational modification of one or more of the cysteines within the hydrolase domain. H$_2$O$_2$ can react with protein thiols generating sulfenic acid, which, in turn, can be reduced by adjacent thiols, catalysing the formation of reversible intramolecular disulfide bonds [66]. We performed a bioinformatics analysis with the Cysteine Oxidation Prediction Algorithm (COPA) [67], screening 29 X-ray crystallography structures of sEH previously reported in the RCSB PDB database. This revealed an average distance between C262 and C264 of 4.02 ± 0.10 Å and the algorithm predicted a high likelihood that this cysteine pair can form a disulfide (Supplementary Fig. 1F).

To investigate if a disulfide, as anticipated, forms under the oxidizing conditions and whether this activates the hydrolase, full length recombinant sEH was reduced with dithiothreitol (DTT) or oxidized by peroxide molecules. (A) H$_2$O$_2$ increased sEH activity as did (B) tert-Butyl peroxide. (C) H$_2$O$_2$ potentiated 15d-PGJ$_2$-dependent inhibition of sEH. H$_2$O$_2$ also potentiated adduction of 15d-PGJ$_2$ to sEH as measured by incorporation of a biotin-labelled analogue detected by Western blotting. This potentiation was absent with the par excellence sEH inhibitor, AUDA. Data was normalised to percentage of control. (D-E) IC$_{50}$ for 15d-PGJ$_2$-dependent inhibition of hydrolase activity with or without peroxide treatment. Data was normalised to percentage of control. (F-G) IC$_{50}$ for AUDA-dependent inhibition of hydrolase activity with or without peroxide treatment. Data was normalised to percentage of control.

Table 1

PDB	Reference	PDB	Reference	PDB	Reference	PDB	Reference
1S8O	[51]	3I1Y	[54]	4HAH	[59]	3WK7	[56]
1VJ5	[51]	3I28	[54]	4J03	[57]	3WK8	[56]
1ZD2	[58]	3K00	[59]	4JNC	[60]	3WK9	[56]
1ZD3	[58]	3ANS	[61]	3WK4	[56]	3WKE	[56]
1ZD4	[58]	3ANT	[61]	3WK5	[56]	3WKA	[56]
1ZD5	[58]	3PDC	[62]	3WK6	[56]	3WK8	[56]
3OTQ	[63]	3WKC	[56]				

Fig. 1C).
exposure to \(\text{H}_2\text{O}_2 \) or room air. These sEH preparations were individually chemically digested and analysed by liquid chromatography-tandem mass spectrometry. A peptide corresponding to the expected mass-to-charge ratio \((m/z)\) of the peptide containing an intra-disulfide between C262 and C264 was observed in the samples exposed to air without DTT \((\text{expected } m/z = 744.5994; \text{observed } m/z = 744.5991)\). The C262-C264 disulfide was confirmed by fragmentation of the peptide and identification of its b and y ions \((\text{Fig. 2A})\). The oxidized peptide was not observed in the DTT-treated sample \((\text{Fig. 2B})\), indicating that the disulfide bond occurs as a consequence of oxidation and can be reduced by DTT. In samples treated with \(\text{H}_2\text{O}_2 \), two peptides with mass-to-charge ratios \((m/z)\) that indicate the presence of an intra-disulfide between C262 and C264 were observed \((\text{Supplementary Fig. 2A})\). These results conclusively demonstrate that a disulfide bond forms between C262 and C264 in sEH as a result of oxidation.

To substantiate the COPA bioinformatics analysis and mass spectrometry findings that indicate sEH can form a disulfide, we performed an N-biotinyl p-aminophenyl arsonic acid \((\text{biotin-PA})\) binding assay, applying this reporter compound to Western blots containing sEH exposed to reducing or oxidizing conditions. The PAAb mobility selectively complexes with proteins with reduced, but not oxidized, vicinal thiols \([68]\) and so can be used to index the redox state of sEH, with the biotin functionality enabling quantification of binding. Under reducing conditions with DTT or mercaptoethanol, when the vicinal cysteine thiols are in their reduced –SH form, biotin-PAAb complexed with sEH and was detected using the Western blot overlay method. In contrast, when sEH was air oxidized or exposed to \(\text{H}_2\text{O}_2 \), no signal was detected \((\text{Fig. 2C, upper blot})\), consistent with oxidative intra-protein disulfide bond formation and adding support to the analysis by mass spectrometry. These samples were analysed on another gel probed with an antibody to sEH \((\text{Fig. 2C, lower blot})\), confirming that hydrolase protein was present in each sample, including those that did not generate a signal in the biotin-PAAb assay. Notably, it became apparent that sEH migrated faster on the gel in the oxidized compared to the reduced form. It is well known that intra-disulfide bond formation can induce such downward gel shifts \([66]\), providing a convenient readout of the thiol-disulfide redox state of sEH. To establish if the gel shift reflected the presence or absence of a C262-C264 intra-disulfide, we compared the gel migration of wild type \((\text{WT})\) sEH or C262A sEH, which cannot form the intra-disulfide, under \(\text{H}_2\text{O}_2 \) oxidizing or DTT reducing conditions. The downward gel shift induced by \(\text{H}_2\text{O}_2 \) in WT sEH was absent in the C262S mutant \((\text{Fig. 2D and E})\), corroborating oxidation induces an intra-disulfide between C262 and C264 that causes a faster migrating band on non-reducing gels.

3.3. Reduction of disulfide-sEH by thioredoxin in cells

In the cellular context, proteins that are regulated by disulfides are typically returned to their reduced –SH state by the disulfide reductase thioredoxin \([68]\). Thioredoxin uses two cysteine residues, namely C32 and C35, to catalyse the reduction of protein disulfide bonds. Thioredoxin C32 undergoes a thiol-disulfide exchange with disulfide-containing targets proteins, becoming covalently conjoined by a disulfide bond. This association is transient as it is rapidly resolved by C35, generating a reduced target protein in exchange for oxidation of thioredoxin \([68]\). C35A thioredoxin is unable to complete this reduction cycle and so becomes trapped on the disulfide-targets proteins that it attempts to reduce. We therefore expressed a C35A HA-thioredoxin-FLAG ‘trapping mutant’ in HEK cells expressing sEH. The affinity tagged thioredoxin allows its capture and the presence or absence of conjoined sEH to be determined. HEK cells expressing WT sEH or C262A sEH together with C35A thioredoxin were exposed to vehicle or auranozin, a thioredoxin reductase inhibitor that causes disulfide proteins to accumulate and increase their interaction with thioredoxin \([69]\). WT sEH basally interacted with C35A thioredoxin and this was enhanced by treatment with auranozin, events that did not occur in cells expressing C262S sEH \((\text{Fig. 2F and G})\). These data provide further evidence that sEH forms an intra-protein C262-C264 disulfide. Importantly, it also demonstrates this occurs in cells and is recycled back to the reduced state by thioredoxin, which would return hydrolase activity to basal after oxidative activation.

3.4. Impact of disulfide formation on sEH enzyme kinetics

To characterise the impact of oxidation on increasing hydrolase activity, Michaelis-Menten kinetics analyses were performed, comparing the performance of full length recombinant sEH in the reduced or intra-protein disulfide state. \(\text{H}_2\text{O}_2 \) decreased \(\text{K}_M \) of sEH for substrate in a concentration-dependant manner, with the maximum decrease being ~4-fold lower than in the reduced hydrolase \((\text{Fig. 3A})\). This indicates that disulfide-sEH requires less substrate to reach half of the \(\text{V}_{\text{max}} \) of the enzyme. The \(k_{\text{cat}}/k_{\text{M}} \) was also significantly increased, indicating that the catalytic efficiency of the enzyme was enhanced upon formation of the disulfide bond \((\text{Fig. 3B})\). Oxidation decreased the \(\text{V}_{\text{max}} \), indicating the hydrolysis rate was decreased \((\text{Supplementary Fig. 3A})\). Virtually identical results were obtained with the recombinant C-terminal domain protein, again consistent with oxidants enhancing activity by post-translationally modifying cysteines in this domain \((\text{Supplementary Fig. 3C, D and E})\).

Additionally, using the Michaelis-Menten kinetics curves determined in the experiments described above, we projected how the activity rate of sEH changes over a wide range of substrate concentrations \((\text{Supplementary Fig. 3F})\). This analysis indicates that oxidation principally increases sEH activity (approximately 2.5-fold) at the lower substrate concentrations tested \((\text{Inset on Supplementary Fig. 3F})\). It is notable that these lower concentrations reflect those that occur physiologically \([70]\) and importantly suggests that oxidation renders sEH capable of hydrolysing endogenous, basal levels of substrates that may otherwise be unable to metabolize efficiently.

3.5. Cysteines 262 and 264 are required for oxidative activation of sEH

Based on our findings above, the candidate cysteine residues C262 and C264 were mutated to serine to produce C262S or C264S mutant recombinant enzymes that were purified for activity analysis. The increased sEH activity observed in WT hydrolase upon \(\text{H}_2\text{O}_2 \) treatment was absent in both of the serine mutants \((\text{Fig. 3C})\). WT or C262S or C264S sEH were also expressed in HEK cells, before exposure to vehicle or \(\text{H}_2\text{O}_2 \) and measuring the impact on hydrolase activity. Again, this demonstrated that the WT sEH activity was increased by \(\text{H}_2\text{O}_2 \) treatment, but was absent in both the serine and alanine mutants that cannot form the activating disulfide when exposed to oxidant \((\text{Fig. 3D and E})\). These observations are consistent with C262 and C264 being crucial to the peroxide induced activity increase.

The significant decrease in \(\text{K}_M \) in WT sEH induced by \(\text{H}_2\text{O}_2 \) was also absent in the C262S full-length mutant recombinant protein, though minor decreases in \(\text{K}_M \) were observed for C264S mutated full-length protein following \(\text{H}_2\text{O}_2 \) treatment, which were not significantly different \((\text{Fig. 3A})\). There were no significant changes in \(\text{V}_{\text{max}} \) in either C262S or C264S mutated full-length proteins following \(\text{H}_2\text{O}_2 \) treatment \((\text{Supplementary Fig. 3B})\). Unlike WT hydrolase, there was no significant change in the \(\text{K}_M \) of the C262S sEH mutant following \(\text{H}_2\text{O}_2 \) treatment. An increase in \(k_{\text{cat}} \) for C264S \((\text{Fig. 3B})\) was observed, although negligible compared to the large increase induced in the WT by \(\text{H}_2\text{O}_2 \). When the C264 thiol was mutated to a non-reactive serine residue in the C-terminal domain preparation, no significant changes in either \(\text{K}_M \), \(k_{\text{cat}} \) or \(\text{V}_{\text{max}} \) upon oxidation were observed \((\text{Supplementary Fig. 3G, H and I})\), once again recapitulating the observations made with full-length protein. Altogether, these findings are consistent with C262 and C264 being crucial to the peroxide-induced activity increase, through the formation of the intra-protein disulfide observed in our experiments.
A

Air oxidised protein

\[2^LHVELGSPAVCLCHPESWYSR^{75}\]

![Graph showing intensity (counts) against mass (Da)]

Observed m/z: 744.5991, Mass error: -0.4 ppm, Charge: 4⁺.
Observed mass: 2675.374 Da

B

DTT treated protein

\[2^DVRHLVELGSPAVCLCHPESWYSR^{75}\]

![Graph showing intensity (counts) against mass (Da)]

Observed m/z: 808.9036, Mass error: 9.9 ppm, Charge: 4⁺.
Observed mass: 3235.927 Da

C

Far Western Blot Overlay, IB: Streptavidin-HRP

sEH Reduced

IB: Anti-sEH

50kDa

IB: Anti-sEH

sEH Oxidised

\[H_2O_2 (\mu M)\]

100 500 - -

\[\beta\text{-Mercaptoethanol} \]

100 \mu M DTT

50

75

D

IB: Anti-sEH

sEH Reduced

\[100 \mu M H_2O_2\]

sEH Oxidised

50

75

E

IB: Anti-sEH

100 \mu M DTT

50

75

F

Input Lysate, IB: Anti-sEH

WT sEH

C35A Trx

WT sEH

C262S sEH

C35A Trx

Auranofin

G

IP: Anti-FLAG, IB: Anti-sEH

WT sEH

C35A Trx

WT sEH

C262S sEH

C35A Trx

Auranofin

(caption on next page)
Fig. 2. sEH oxidation results in the formation of a disulfide bond. (A) An LC-MS/MS spectra identifying a peptide with an m/z of 744.5991± (−0.4 ppm) was assigned to the peptide VHVFELGSGPACLCGGFPEWYSWR275 in the air oxidized protein samples. A disulfide bond was detected between the two cysteine residues, C262 and C264, as shown in red. The peptide was confidently assigned through the identification of its b and y ions as shown. (B) A peptide with an m/z of 808.9036± (9.9 ppm) was identified and assigned to peptide VHVFELGSGPACLCGGFPEWYSWR275, indicating the absence of a disulfide bond as is anticipated when the reductant DTT was present. (C) Analysis with biotin-PAA confirmed disulfide bond formation via vicinal thiols within purified recombinant sEH. Following peroxide treatment, biotin-PAA was unable to adduct to sEH, however in reduced samples a band corresponding to sEH was observed when probed with streptavidin-HRP. Western blot below showing that WT sEH protein was present in all lanes following biotin-PAA treatment. This non-reducing blot also showed there was a downwards band shift in sEH when it was exposed to oxidizing conditions. (D-E) In separate experiments, recombinant sEH protein samples, which had been exposed to reducing or oxidizing conditions, were probed to monitor the downwards band shift in sEH. There was a downwards band shift in WT sEH after oxidant exposure, consistent with disulfide formation. In contrast, C262S sEH did not as it does not have the thiols needed to form the disulfide that mediates the shift. (F) A C35A Trx trapping mutant was used to identify proteins that form disulfide bonds. Western blot indicating there was equal amounts of sEH in the input for the immunoprecipitation. (G) Western blot showing sEH immunoprecipitated from C35A Trx tapping mutant. Following auranofin treatment, a significant amount of WT sEH was captured by the C35A Trx trapping mutant. However, when C262S sEH is used there is significantly less sEH captured by the C35A Trx trapping mutant. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Enzymatic analysis of sEH. (A) H2O2 treatment reduced the Kau of purified recombinant WT sEH, indicating an increased affinity for substrate upon oxidation. No significant changes in Kau was observed for the C262S mutated purified recombinant protein following H2O2 treatment. A minor decrease in Kau was observed for the C264S mutated purified recombinant protein following H2O2 treatment, which was not significantly different. (B) An increase in Ksp of recombinant WT sEH was observed following H2O2 treatment, indicating an enhanced catalytic efficiency upon oxidation. There was no change in catalytic efficiency (Ksp) of C262S following H2O2 treatment, however in C264S sEH the Ksp was a minor increase. (C) The mutation of the thiol moieties of C262 and C264 into non-reactive serine residues abrogated the significant increase in specific activity that was observed with WT sEH recombinant enzyme. Data were normalised to percentage of control. (D-E) WT sEH, C262S, C264S, C262A or C264A proteins were overexpressed in HEK cells and their sEH activity was assessed with or without exposure to H2O2. There was a significant increase in WT sEH activity following H2O2 treatment, which was not observed in cells expressing any of the mutated proteins. Data was normalised to percentage of control.

3.6. In silico analysis of disulfide bond formation in sEH

To evaluate the effects of disulfide bond formation on the structure of human sEH we performed an AlloSigMA analysis. The software calculates the per-residue allosteric free energy variations (ΔGφ) as a consequence of a molecular perturbation, namely a disulfide in this case. In this analysis, residues showing an increase in ΔGφ are destabilised and exhibit increased dynamics, and vice versa when a decrease in ΔGφ is observed [48]. This analysis indicated that the catalytic triad was largely unaffected by the formation of the disulfide bond, while the W334 niche of the active site becomes more rigid and the F267 pocket more dynamic (Fig. 4). The magnitude of the observed ΔGφ values would indicate a likely conformational rearrangement of the amino acids forming the surface of the F267 pocket (Supplementary Fig. 4A), which may presumably enable both substrate and 15d-PGJ2 to accommodate better in the active site. This would account for the enhanced substrate hydrolysis, as well as the potentiated inhibition by 15d-PGJ2 when present, if sEH is oxidized to the disulfide state. We then mimicked a disulfide bond on the reduced X-ray crystallographic structure of human sEH (PDB entry number 1580) in PyMOL and used MOLE to measure the active site tunnel volume. This showed there was a general reduction in tunnel volume, from 5533 to 3529 Å3 when the disulfide was present (Supplementary Fig. 4B). Although our analysis is based only on local atomic geometries optimisation of the structure, this would agree with the AlloSigMA analysis that indicates that the enzyme undergoes a subtle conformational rearrangement that likely enhances the affinity for substrate and inhibitor. Surprisingly, the AlloSigMA analysis indicates a significant increase in the rigidity of the dimer interface (Fig. 4).

3.7. sEH activation in vivo contributes to angiotensin II mediated hypertension

We hypothesised that angiotensin II may promote sEH oxidative activation in vivo because this vasopressor hormone increases
endogenous H$_2$O$_2$ via oxidase activation [44,71]. There was a significant increase in sEH expression and activity in the myocardium of mice administered angiotensin II (Fig. 5A and B). However, the increased activity after angiotensin II exposure was much more than could be accounted for by the increase in sEH expression (Fig. 5C and D). This is consistent with another mechanism, namely the oxidative activation of sEH described herein, mediating the increased hydrolase activity.

Consistent with increased sEH activity in mice exposed to angiotensin II, there was a significant decrease in 14,15-EET/DHET and 11,12-EET/DHET ratios in their plasma compared to those that received vehicle (Fig. 5E and F). In contrast, no significant differences were observed in plasma 5,6- or 8,9-EET/DHET ratios (Fig. 5G and H). We subsequently measured intra-protein disulfide levels in cardiac tissue of these mice using the non-reducing gel shift assay described above, which showed greater hydrolase oxidation in the angiotensin II group (Fig. 5I and J). The finding that the vasopressor angiotensin II decreased vasodilatory EETs in plasma is causally consistent with the concomitant disulfide-dependant activation of sEH in these mice.

To investigate this mechanism further, we treated isolated arteries with a low dose of H$_2$O$_2$. Aortas were chosen as a model artery because they do not dilate at the H$_2$O$_2$ concentration used to induce sEH oxidation, in fact at low doses of H$_2$O$_2$ aortas constrict (Fig. 5K) [72]. Whilst resistance arteries are more relevant to blood pressure control, they cannot be used with this protocol because they dilate efficiently to low concentrations of H$_2$O$_2$ alone [73]. Aortas were pre-treated with H$_2$O$_2$ to induce the disulfide in the hydrolase, after which they were exposed to cumulatively increasing concentrations of the physiological sEH inhibitor 15d-PGJ$_2$. This sEH inhibitor relaxes arteries because it increases the abundance of vasodilatory EETs [35]. Low dose H$_2$O$_2$ induced a minor but statistically significant vasoconstriction as shown in Fig. 5K. However, when this treatment was combined with 15d-PGJ$_2$, there was a leftward shift in the concentration-response relaxation curve to this lipid (Figure 5L). Thus, H$_2$O$_2$-induced sensitization of the arterial relaxation to 15d-PGJ$_2$ manifests as a decreased IC$_{50}$ (Figure 5M). So, despite starting off more constricted, the aortas dilated more to 15d-PGJ$_2$ when pre-treated with H$_2$O$_2$.

This is consistent with our biochemical findings above (Fig. 1), whereby peroxide also decreased the IC$_{50}$ for sEH inhibition by 15d-PGJ$_2$. The intra-protein disulfide levels in aortas was determined following low dose H$_2$O$_2$ treatment by Western blotting. Again, there was a subtle but significant shift in the amount of oxidized sEH form as observed on the Western blot following peroxide treatment, indicating sEH formed the intra-protein disulfide in vivo (Figure 5N).

Overall, these results indicate that sEH activation by intra-protein disulfide bond contributes to vasoconstriction and hypertension induced by angiotensin II.

4. Discussion

Inhibiting sEH attenuates the hydrolytic loss of epoxy-fatty acids, including cyto-protective EETs [11,12,20,24]. Consequently, an abundance of pharmacological inhibitors of sEH have been developed [74], with the rationale that they will increase epoxy-fatty acids levels to enable their beneficial actions. sEH is also inhibited by oxidative post-translational modifications, whereby endogenous or dietary electrophilic lipids adduct to cysteine residues [35,36], or peroxynitrite nitrates tyrosine residues [75].

Here we report another mechanism of oxidative post-translational
Fig. 5. In vivo assessment of novel intra-protein disulfide in sEH. (A) Reducing Western blots showing that angiotensin II induced sEH expression over 7 days. The lower GAPDH blot confirms equal protein loading. (B) Angiotensin II treatment significantly increased sEH expression in mouse hearts. (C) Angiotensin II treatment significantly increased sEH activity in mouse hearts. (D) Correcting hydrolase activity for the increased sEH protein content revealed that hydrolase activity was still significantly increased, consistent with oxidant-induced activation of the hydrolase. (E-H) There was a significant decrease in the EET/DHET ratio for 14,15-EET/DHET and 11,12-EET/DHET as compared to saline treatment. No significant differences were observed for the 8,9- or 5,6-EET/DHET ratios. (I-J) Non-reducing blot showing there was a downward band shift in sEH in the hearts from angiotensin II treated mice, with quantification shown below, consistent with oxidant-induced disulfide formation. (K) H$_2$O$_2$ induced constriction of mouse aortas, consistent with sEH activation. (L-M) H$_2$O$_2$ pre-treatment potentiated 15d-PGJ$_2$-induced arterial dilation, as indicated by the dose-response curve being shifted to the left as compared to the 15d-PGJ$_2$ alone and by the decreased EC50. (N) Mouse aortas were assessed for intra-protein disulfide bond formation following peroxide treatment. There was a subtle downwards shift to the faster migrating oxidized form of sEH as shown in the Western blot.
regulation in which H$_2$O$_2$ induces an intra-protein disulfide bond that activates the hydrolase to decrease EETs. We not only show and characterise this oxidative activation mechanism in detail using recombinant sEH in vitro and in cells, but also demonstrate that it operates in vivo in mice. The Graphical abstract provides a schematic overview of our findings. The observation that sEH can be activated by oxidants is especially notable given the huge investment in developing and testing inhibitors of this hydrolase for therapeutic purposes [76,77]. With these considerations in mind, a logical assertion is that the oxidative activation of sEH is likely to be maladaptive. In the context of cardiovascular disease, increasing sEH activity is considered detrimental and is attributed to loss of protective EETs [13,20–22]. Indeed, oxidative stress has routinely been implicated in the pathogenesis of hypertension. A common explanation for this is oxidative loss of nitric oxide; but the oxidative activation of sEH would provide an additional mechanism. Interestingly, a recent study showed bovine mastitis was associated with a concomitant increase in oxidants and sEH activity [22,39,78]; consistent with the disulfide activation reported herein.

Our results indicated that sEH activity was increased by oxidation induced by low physiological concentrations of H$_2$O$_2$. However, this effect was lost upon exposure to 1 mM H$_2$O$_2$, which instead caused some inhibition, as previously observed when similarly high concentrations of oxidants were assessed [79,80]. The bioinformatics analysis showed that C262 and C264 were highly conserved in the phylogenetic tree from Xenopus tropicalis to Homo sapiens. Interestingly, the amino acids around these cysteines also showed a high degree of homology, consistent with C262 and C264 having important roles in the maintenance of structure or function of sEH, including in humans. Overall, our data indicated that sEH oxidation induced a disulfide bond between C262 and C264. This post-translational modification significantly increased the specific activity and catalytic efficiency of sEH. Our detailed enzymology analysis collectively indicated that oxidation to the disulfide state allows sEH to hydrolytically transform more substrate into product per unit time. Mutation of C262 to serine abrogated the oxidative activation and changes in K_M and k_{cat} observed in WT sEH on exposure to H$_2$O$_2$. However, the C264S mutant showed an insignificant trend for the K_M to be decreased and the C264S k_{cat} was significantly increased after H$_2$O$_2$ treatment. These alterations in hydrolase performance after exposure to H$_2$O$_2$ are minor compared to those in WT and may be because C262 is more oxidant reactive than C264. In this scenario, C262 may react with H$_2$O$_2$ to stepwise form a sulfenic acid, which can be further oxidized to sulfonic or sulfonic acid, events that would potentially explain these oxidants being more oxidant reactive than C264. In this scenario, C262 may react with thioredoxin-dependant substrate reduction caused more sEH to be captured with the trap mutant.

We investigated if C262–C264 disulfide-sEH formed in vivo and if so whether oxidation event mediated a physiological effect. Angiotensin II is a pro-oxidant peptide hormone that causes arterial constriction, elevating blood pressure in animals and humans [83], it also stimulates NADPH oxidases, producing superoxide and H$_2$O$_2$ [43,84,85]. Consequently, we speculated that angiotensin II may therefore indirectly induce a disulfide bond in sEH, activating the hydrolase. Indeed, angiotensin II induced a disulfide bond within sEH, and increased its activity. These observations are consistent with our biochemical findings in which recombinant sEH in vitro or in cells is activated by oxidation.

EETs were decreased in mice exposed to angiotensin II or in models of ischemia-reperfusion, scenarios where oxidant levels are also increased [13,21,86,87], consistent with our findings that oxidation induces activation of sEH. EETs offer several cardiovascular benefits, including reducing blood pressure, attenuating ischemic damage and modulating inflammatory responses. Therefore, an increase in sEH activity due to disulfide bond formation will limit the protective cardiovascular effects of the EETs. Inhibition of sEH offers cardiovascular protection in a variety of different disease scenarios [21,88], which is consistent with oxidative activation of the hydrolase causally contributing to the pathogenesis of cardiovascular disease. In this connection, there are a number of human single-nucleotide polymorphisms (SNPs) in sEH that enhance hydrolase activity and are risk factors for human heart failure [89]. Interestingly, the human polymorphism R287Q is capable of disrupting the enzyme dimerization, and reducing in vitro epoxy-hydrolytic activity [90]. Perhaps enhanced rigidity at the dimerization interface induced by the disulfide bond between C262 and C264, as our AlloSigMA analysis indicated may occur, stabilises the dimer in solution to increase hydrolase activity.
The plasma of angiotensin II treated mice showed significantly decreased 14,15-EET/DHET and 11,12-EET/DHET ratios, consistent with C262-C264 disulfide activation of sEH enhancing hydrolysis of EETs. Interestingly, sEH activation and increased DHET abundance was observed in HEK cells during nitrosative stress and was attributed in part to S-nitrosation of C264 [38]. This is notable, as we have previously shown that S-nitrosated proteins generically transition to disulfide bond formation [91], hence it is likely that the S-nitrosation of C264 induced the activating intra disulfide with C262. In contrast to the increase in 14,15-EET/DHET and 11,12-EET/DHET during angiotensin II treatment, the 8,9- or 5,6-EET/DHET ratios were not altered. sEH has some selectivity towards different EET regioisomers, with 14,15-EET being its preferred substrate, followed by 11,12- and 8,9-EET, with 5,6-EET being considered a poor sEH substrate [92]. Of course, formation of the disulfide may changes this substrate selectivity and could account for the 8,9- or 5,6-EET/DHET ratios not changing. Although there are well-established mechanisms of angiotensin II-induced hypertension [93], our observations are consistent with oxidant-induced sEH activation also plays a causal role, although it is difficult to determine the relative contribution of the various mechanisms.

Our observations not only demonstrate that disulfide formation enhances sEH activity, but also shows it sensitizes the hydrolysis to inhibition by the electrophilic lipid 15d-PGJ2 when it is present. These results are consistent with the peroxide-induced disulfide causing a conformational change that both enhances utilization of substrates as well as inhibition by 15d-PGJ2, consistent with the structural modeling outlined above. Interestingly, peroxide-induced sensitization was not observed with the inhibitor AUDA. Although a crystal structure of sEH with AUDA bound is not available, the interaction of this inhibitor within the active site may be unaffected by the disulfide, based on its physico-chemical properties. This oxidant-induced sensitization to inhibition by 15d-PGJ2 was recapitulated in isolated arteries, whereby low dose H2O2 pre-treatment enhanced arterial vasodilation to 15d-PGJ2. Thus, despite arteries being slightly more constricted after pre-treatment with low dose H2O2, which could be due to disulfide activation of sEH, their subsequent dilatory responses to 15d-PGJ2 were enhanced compared to those without the initial exposure to oxidant.

In conclusion, sEH activity is redox regulated by the presence or absence of an intra-disulfide bond. Oxidants such as H2O2 induce a C262-C264 intra-disulfide that increases hydrolysis of vasodilatory EETs to cause vasoconstriction and increase blood pressure. Formation of the disulfide lowers the Km of sEH for its substrates, enabling efficient hydrolysis of the basal levels of EETs. This disulfide-activation mechanism, which occurs in vivo in response to the pro-oxidant angiotensin II, may in part account for the pressor effect of this hormone. Formation of the disulfide also serves to sensitize sEH to inhibition by lipid electrophile if they are present. This explains why angiotensin II decreases EETs and increases blood pressure, but when lipid electrophiles are present, EET levels are instead increased and blood pressure lowered. It is conceivable that people who consume a Mediterranean diet, which provides lipid electrophilic substrates, maintain a normal blood pressure during oxidative stress because of the sEH inhibition mechanism described here.

Author contributions

R.L.C., G.A., M.R.C., and P.E. designed research; R.L.C., G.A., B.F.F., S.G., and R.B. performed research; R.L.C., G.A., B.F.F., S.G., R.B., M.R.C., and P.E. analysed data; R.L.C., G.A., M.R.C., and P.E. wrote the paper.

Declaration of competing interest

None of the authors have any conflicts of interest to declare.

Acknowledgments

This study is supported by a British Heart Foundation Intermediate Fellowship to R.C. (FS/17/36/32874). G.A. was supported by a BHF interdisciplinary PhD studentship and a pump priming award from the BHF Centre of Excellence, King’s College London (PG/15/26/31373). P. E. is supported by The Barts Charity Cardiovascular Programme Award G00913 and programme grants from the British Heart Foundation and the Medical Research Council.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.redox.2021.102107.

References

[1] J.D. Imig, Epoxydes and soluble epoxyeicosatrienoic acid hydroxylase in cardiovascular physiology, Physiol. Rev. 92 (2012) 101–130.
[2] M.A. Argiriadis, C. Morisseau, B.D. Hammock, D.W. Christianon, Detoxification of environmental mutagens and carcinogens: structure, mechanism, and evolution of human epoxide hydrolase, Proc. Natl. Acad. Sci. U. S. A. 96 (1999) 10637–10642.
[3] J.K. Beetham, et al., Gene evolution of epoxide hydrolases and recommended nomenclature, DNA Cell Biol. 14 (1995) 61–71.
[4] W.R. Campbell, et al., 14,15-Dihydroxyeicosatrienoic acid relaxes bovine coronary artery by activation of K(Ca) channels, Am. J. Physiol. Heart Circ. Physiol. 282 (2002) H1656–H1664.
[5] W.B. Campbell, D. Gebremedhin, P.F. Pratt, D.R. Harder, Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors, Circ. Res. 78 (1996) 415–423.
[6] W.B. Campbell, D.R. Harder, Endothelium-derived hyperpolarizing factors and vascular cytochrome P450 metabolites of arachidonic acid in the regulation of tone, Circ. Res. 84 (1999) 484–488.
[7] I. Fleming, et al., Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells, Arterioscler. Thromb. Vasc. Biol. 27 (2007) 2612–2618.
[8] A. Lutja, et al., Compensatory mechanism for homeostatic blood pressure regulation in Epha2 gene-disrupted mice, J. Biol. Chem. 282 (2007) 2891–2898.
[9] J.D. Imig, B.D. Hammock, Soluble epoxyeicosatrienoic acid as a therapeutic target for cardiovascular diseases, Nat. Rev. Drug Discov. 8 (2009) 794–805.
[10] N. Chaimvimovnat, C.M. Ho, H.J. Tsi, B.D. Hammock, The soluble epoxyeicosatrienoic acid as a pharmacological target for hypertension, J. Cardiovasc. Pharmacol. 50 (2007) 225–237.
[11] J.P. Marano Jr., Soluble epoxyeicosatrienoic acid, a target with multiple opportunities for cardiovascular drug discovery, Curr. Top. Med. Chem. 9 (2009) 452–463.
[12] J.D. Imig, Cardiovascular therapeutic aspects of soluble epoxyeicosatrienoic acid inhibitors, Cardiovasc. Drug Rev. 24 (2006) 169–188.
[13] J.D. Imig, et al., An orally active epoxyeicosatrienoic acid inhibitor lowers blood pressure and provides renal protection in salt-sensitive hypertension, Hypertension 46 (2005) 975–981.
[14] G.J. Gross, K. Nithipatikom, Soluble epoxyeicosatrienoic acid: a new target for cardioprotection, Curr. Opin. Invest. Drugs 10 (2009) 253–258.
[15] X. Fang, Soluble epoxyeicosatrienoic: a novel target for the treatment of hypertension, Recent Pat. Cardiovasc. Drug Discov. 1 (2006) 67–72.
[16] B.B. Davis, et al., Attenuation of vascular smooth muscle cell proliferation by 1-cyclohexyl-3-dodecyl amine is independent of soluble epoxyeicosatrienoic acid inhibition, J. Pharmacol. Exp. Therapeut. 316 (2006) 815–821.
[17] A. Ulu, et al., Soluble epoxyeicosatrienoic acid inhibitors reduce the development of atherosclerosis in apolipoprotein e-knockout mouse model, J. Cardiovasc. Pharmacol. 52 (2008) 314–323.
[18] M. Revermann, Pharmacological inhibition of the soluble epoxyeicosatrienoic acid from mouse to man, Curr. Opin. Pharmacol. 10, 173-178.
[19] J.J. Olearczyk, et al., Administration of a substituted adamantyl urea inhibitor of soluble epoxyeicosatrienoic acid hydroxylase protects the kidney from damage in hypertensive poto-Kakizaki rats, Clin. Sci. (Lond.) 116 (2009) 61–70.
[20] O. Jung, et al., Soluble epoxyeicosatrienoic acid is a main effector of angiotensin II-induced hypertension, Hypertension 45 (2005) 795–765.
[21] J.D. Imig, X. Zhao, J.H. Capdevila, C. Morisseau, B.D. Hammock, Soluble epoxyeicosatrienoic acid hydroxylase inhibition lowers arterial blood pressure in angiotensin II hypertension, Hypertension 39 (2002) 690–694.
[22] J. Monti, et al., Soluble epoxyeicosatrienoic acid is a susceptibility factor for heart failure in a rat model of human disease, Nat. Genet. 40 (2008) 529–537.
[23] T.R. Harris, N. Li, N. Chaimvimovnat, B.D. Hammock, The potential of soluble epoxyeicosatrienoic acid inhibition in the treatment of cardiac hypertrophy, Congest. Heart Fail. 14 (2008) 219–224.
[24] D. Ai, et al., Soluble epoxyeicosatrienoic acid plays an essential role in angiotensin II-induced cardiac hypertrophy, Proc. Natl. Acad. Sci. U. S. A. 106 (2009) 564–569.
[25] P. Sürüm, et al., Unique mechanistic insights into the beneficial effects of soluble epoxyeicosatrienoic acid inhibitors in the prevention of cardiac fibrosis, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 5618–5623.
M. J. Merkel et al., Inhibition of soluble epoxide hydrolase preserves J.M. Seubert, et al., Role of soluble epoxide hydrolase in postischemic recovery of J. Seubert, et al., Beneficial effects of soluble epoxide hydrolase inhibitors in myocardial D. Zelden, K. Nishipatikom, G.J. Gross, Role of epoxyeicosatrienoic acids in protecting the myocardium following ischemia/reperfusion injury, Prostag. Other Lipid Mediat. 82 (2007) 50-59.

R. L. Charles, et al., Protection from hypertension in mice by the Mediterranean diet mediated by nitro fatty acid inhibition of soluble epoxide hydrolase, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) E1877-1872.

T. Duflot, et al., Benzenoids as inhibitors of soluble epoxide hydrolase in myocardial infarction model: insight gained using metabolic approaches, J. Mol. Cell. Cardiol. 47 (2009) 835-845.

J. M. Merkel et al., Inhibition of soluble epoxide hydrolase preserves cardiomyocytes: role of STAT3 signaling. Am. J. Physiol. Heart Circ. Physiol. 298, H679-6867.

K.W. Sellers, et al., Novel mechanism of brain soluble epoxide hydrolase-mediated blood pressure regulation in the spontaneously hypertensive rat. Faseb. J. 19 (2005) 626-628.

M.J. Corenblum, et al., Altered soluble epoxide hydrolase gene expression and function and vascular disease risk in the stroke-prone spontaneously hypertensive rat, Hypertension 51 (2008) 567-573.

T.R. Harris, B.D. Hammock, Soluble epoxide hydrolase gene structure, expression and deletion, Gene 526 (2013) 61-74.

R.L. Charles, et al., Redox regulation of soluble epoxide hydrolase by 15-deoxy-delta-prostaglandin J2 controls coronary hypoxic vasodilation, Circ. Res. 108 (2011) 324-334.

R.L. Charles, et al., Protection from hypertension in mice by the Mediterranean diet is mediated by nitro fatty acid inhibition of soluble epoxide hydrolase, Proc. Natl. Acad. Sci. U. S. A. 111 (2014) 18167-1872.

A. Abis, et al., Altered bioavailability of epoxyeicosatrienoic acids is associated with conduit artery endothelial dysfunction in type 2 diabetic patients. Cardiovasc. Diabetol. 18 (2019) 35.

H.C. Shen, B.D. Hammock, Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications, J. Med. Chem. 55 (2012) 1789-1808.

A.W. Girotti, Lipid peroxidegeneration, turnover, and effectors of action systems, J. Lipid Res. 39 (1998) 1529-1542.

E.A. Veal, A.M. Higgins, J. Herings, T.Coffe: a novel method for fast and accurate multiple sequence alignment, J. Mol. Biol. 302 (2000) 205-217.

A.M. Waterhouse, J.B. Procter, D.M. Martin, M. Clamp, G.J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics 25 (2009) 1189-1191.

P. Eaton, Protein thiol oxidation and health: disease: techniques for measuring disulfides and related modifications in complex protein mixtures, Free Radic. Biol. Med. 40 (2006) 1889-1899.

H.A. Woo, et al., Reduction of cysteine sulfenic acid by sulfiredoxin is specific to 2-cys peroxiredoxin, J. Biol. Chem. 280 (2005) 3125-3128.

A. Holmgren, B.Mjörnstedt, Thioredoxin and thioredoxin reductase, Methods Enzymol. 252 (1995) 199-208.

C. Márquez-Osuna, et al., Thioredoxin reductase by aurofoin induces apoptosis in cisplatin-resistant human ovarian cancer cells, Free Radic. Biol. Med. 42 (2007) 872-881.

H. Jiang, et al., Identification of 5,6-trans-epoxyeicosatrienoic acid in the phospholipids of red blood cells, J. Biol. Chem. 279 (2004) 36412-36418.

D. Ai, et al., Angiotensin II up-regulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 9016-9023.

N. Arzandan, W.H. Beierwaltes, P.J. Pagano, Distinct hydrogen peroxide-induced constriction in multiple mouse arteries: potential influence of vascular polarization, Pharmacol. Rep. 60 (2008) 61-67.

O. Pysyazhna, O. Rudyk, P. Eaton, Single atom substitution in mouse protein kinase G eliminates oxidant sensing to cause hypertension, Nat. Med. 18 (2012) 286-290.

H.C. Shen, Soluble epoxide hydrolase inhibitors: a patent review, Expert Opin. Ther. Pat. 20 (2010) 941-956.

E. Barbosa-Sicard, et al., Inhibition of the soluble epoxide hydrolase by tyrosine nitration, J. Biol. Chem. 284 (2009) 28156-28163.

R.H. Ingraham, R.D. Gless, H.Y. Lo, Soluble epoxide hydrolase inhibitors and their potential for treatment of multiple pathologic conditions, Curr. Med. Chem. (2011) 587-603.

C. Morriseau, B.D. Hammock, Impact of soluble epoxide hydrolase and epoxyeicosanoids on human health, Annu. Rev. Pharmacol. Toxicol. 53 (2013) 577-587.

M. Vavragira, et al., Activity of iNOS and oxidant status during systemic bovine coliform mastitis, Antioxidants 10 (2021) 8122.

C. Morriseau, B.L. Ward, D.G. Gilchrist, B.D. Hammock, Multiple epoxide hydrolases in Alternaria alternata f. sp. lycopersici and their relationship to medium composition and host-specific toxin production, Appl. Environ. Microbiol. 65 (1999) 2388-2395.

E.C. Dietze, et al., Inhibition of human and murine cytosolic epoxide hydrolase by group-selective reagents, Comp. Biochem. Physiol. B 104 (1993) 296-306.

L. Weingarten (2008) Identification of novel cytosolic thioredoxin-1 target proteins in mammalian cells by mechanism-based kinetic trapping.

J. M. Messina, et al., How thioredoxin can reduce a buried disulfide bond, J. Mol. Biol. 339 (2004) 527-537.

P.K. Mehta, K.K. Griendling, Angiotensin II cell signaling: physiological and pathologival effects in the cardiovascular system, Am. J. Physiol. Cell Physiol. 292 (2007) C259-C297.

T. Souza, et al., Role of H2O2(2) in hypertension, renin-angiotension system activation and renal medullary dysfunction caused by angiotensin II, Br. J. Pharmacol. 166 (2012) 2386-2401.

A.M. Zafar, et al., Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy, Hypertension 32 (1998) 488-495.

Z. Cai, et al., Soluble epoxide hydrolase inhibition protected against angiotensin II-induced adventitial remodeling, Sci. Rep. 7 (2017) 6926.

Z. Cai, et al., CYP2J2 overexpression increases EETs and protects against angiotensin II-induced vascular hypertrophy, J. Lipid Res. 54 (2013) 1448-1456.

X. Zhao, et al., Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage, J. Am. Soc. Nephrol. 15 (2004) 1244-1253. [57] C. Morriseau, S. Pakhomova, S.H. Wang, M.E. Newcomer, B.D. Hammock, Inhibition of soluble epoxide hydrolase by fulvestrant and sulfoxides, Bioorg. Med. Chem. Lett. 23 (2013) 3818-3821.

G.A. Gomez, C. Morriseau, B.D. Hammock, D.W. Christianson, Human soluble epoxide hydrolase: structural basis of inhibition by 4-(3-cyclohexylurido)-carboxylic acids, Protein Sci. 15 (2006) 56-64.

A.B. Eldrup, F. Soleymanzadeh, A. Kukulka, S. De Lombaert, Optimization of piperidyl-ureas as inhibitors of soluble epoxide hydrolase, Bioorg. Med. Chem. Lett. 20 (2010) 571-575.
[89] C.R. Lee, et al., Genetic variation in soluble epoxide hydrolase (EPHX2) and risk of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study, Hum. Mol. Genet. 15 (2006) 1640–1649.

[90] J.W. Nelson, R.M. Subrahmanyan, S.A. Summers, X. Xiao, N.J. Alkayed, Soluble epoxide hydrolase dimerization is required for hydrolase activity, J. Biol. Chem. 288 (2013) 7697–7703.

[91] K. Wolhuter, et al., Evidence against stable protein S-nitrosylation as a widespread mechanism of post-translational regulation, Mol. Cell. 69 (2018) 438–450, e435.

[92] G. Abis, R. Pacheco-Gomez, T.T.T. Bui, M.R. Conte, Isothermal titration calorimetry enables rapid characterization of enzyme kinetics and inhibition for the human soluble epoxide hydrolase, Anal. Chem. 91 (2019) 14865–14872.

[93] S. Higuchi, et al., Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology, Clin. Sci. (Lond.) 112 (2007) 417–428.