Asymptotically Tight Bounds on the Time Complexity of Broadcast and its Variants in Dynamic Networks

Antoine El-Hayek1, Monika Henzinger2, Stefan Schmid3

1Faculty of Computer Science, University of Vienna
2IST Austria
3TU Berlin, Germany

ITCS 2023
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
- Broadcast is when 1 I.D. reaches everyone
Information Dissemination in Dynamic Rooted Trees

- The network of each round can be a different rooted tree.
- Each node transmits all I.D.s it has received in previous rounds.
- Broadcast is when 1 I.D. reaches everyone
- How many rounds do we need to ensure Broadcast?
Adversarial Model

- An adversary can choose any network among a set A of predefined networks.
- There’s an objective the adversary tries to delay as much as possible.
- We want to determine the number of rounds T the adversary can delay the objective.

Example for $n - 1$ rounds:

![Diagram](image-url)
Previous Work

- [Charron-Bost, Schiper ‘09] + [Charron-Bost, Függer, Nowak ‘15] : $O(n \log n)$.
- [Zeiner, Schwarz, Schmid ‘19] : $O(n \log n)$ (General Case); $O(kn)$ if k internal nodes or k leaves in each round.
- [Függer, Nowak, Winkler ’20] : $O(n \log \log n)$.

Our Work: $\theta(n)$
Main intuitions

Main Observation

Any I.D. received by the root before the start of a round, is received by at least one new process during the round.
Main Observation
Any I.D. received by the root before the start of a round, is received by at least one new process during the round.

Round 1

Round 2

Round 3
Main intuitions

Main Observation

Any I.D. received by the root before the start of a round, is received by at least one new process during the round.

- If an I.D. has been received by \(n \) roots, then everyone has received the I.D.
- We will keep track of the I.D.s the root has received before each round.
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.

I.D.s

$n=5$

rounds: 1, 2, 3, 4, ..., $3n$

root: 1, 1, 3, 2, ...

1

2

3

4

1

21

32

43

54

1

21

321

432

543

132

4321

132

4321

21

5432

321

54321

...
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.

\[
\text{I.D.s} \\
1 \\
2 \\
3 \\
4 \\
n=5 \\
\text{rounds} \quad 1 \quad 2 \quad 3 \quad 4 \quad \cdots \quad 3n \\
\text{root} \quad 1 \quad 1 \quad 3 \quad 2 \quad \cdots
\]
Create a new graph:

- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.

 Antoine El-Hayek, Monika Henzinger, Stefan Schmid

Variants of Broadcast
Create a new graph:

- one node for each I.D.
- one node for each round.

For each round \(t \), add an edge from every I.D. the root has received, and from every round \(t' < t \) if the root of \(t \) has received the I.D. of the root of \(t' \).
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.
Create a new graph:

- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.

I.D.s	rounds
1	1
2	1
3	3
4	2
5	3

root	1	1	3	2	...

1	21	32	43	54
21	321	432	543	1
321	4321	5432	132	21
4321	54321	132	4321	21
54321	132	21	54321	...
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round \(t \), add an edge from every I.D. the root has received, and from every round \(t' < t \) if the root of \(t \) has received the I.D. of the root of \(t' \).
Create a new graph:

- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round \(t \), add an edge from every I.D. the root has received, and from every round \(t' < t \) if the root of \(t \) has received the I.D. of the root of \(t' \).
Create a new graph:
- one node for each I.D.
- one node for each round.

For each round t, add an edge from every I.D. the root has received, and from every round $t' < t$ if the root of t has received the I.D. of the root of t'.
Observations:

- If a node has degree at least n, then the corresponding I.D. has reached everyone.
- Round t has in-degree at least t.
- The total number of edges is larger than $\sum_{t=1}^{3n} t = \frac{9n^2}{2}$.
- We have $4n$ nodes total.
The Upper Bound

An upper bound for Broadcast on rooted trees is $O(n)$.
The Upper Bound
An upper bound for Broadcast on rooted trees is $O(n)$.

The Lower Bound
A lower bound for Broadcast on rooted trees is $\Omega(n)$.

aZeiner, M., Schwarz, M., and Schmid, U. (2019). On linear-time data dissemination in dynamic rooted trees. Discrete Applied Mathematics, 255, 307-319.
k-Broadcast

k-Broadcast on k-Rooted Networks

- **A**: the set of networks on \(n \) processes with \(k \) roots.
- **Objective**: \(k \) I.D.s that has each been received by everyone.
- **We prove** \(T = \Theta(n) \).
k-Broadcast

k-Broadcast on k-Rooted Networks

- **A**: the set of networks on n processes with k roots.
- **Objective**: k I.D.s that has each been received by everyone.
- **We prove**: $T = \Theta(n)$.

Round 1
- **2-Broadcast in 3 rounds.**
- Broadcasters: 1 and 2.

Round 2

Round 3

Antoine El-Hayek, Monika Henzinger, Stefan Schmid

Variants of Broadcast
The Upper Bound

An upper bound for k-Broadcast on networks with k roots is $O(n)$.
The Upper Bound
An upper bound for k-Broadcast on networks with k roots is $O(n)$.

The Lower Bound
A lower bound for k-Broadcast on networks with k roots is $\Omega(n)$.
Cover of size k on k-Forests

- A: the set of forests on n processes with k rooted trees.
- Objective: k I.D.s such that everyone has received at least one of them.
- We prove $T = \Theta(n)$.
k-Cover

Cover of size \(k \) on \(k \)-Forests

- **\(A \):** the set of forests on \(n \) processes with \(k \) rooted trees.
- **Objective:** \(k \) I.D.s such that everyone has received at least one of them.
- **We prove** \(T = \Theta(n) \).

2-Cover in 2 rounds.
Coverers: 1 and 2.
Results

The Upper Bound
An upper bound for Cover of size k on k-forests is $O(n)$.

The Lower Bound
A lower bound for Cover of size k on k-forests is $\Omega(n-k)$.

Antoine El-Hayek, Monika Henzinger, Stefan Schmid
The Upper Bound
An upper bound for Cover of size k on k-forests is $O(n)$.

The Lower Bound
A lower bound for Cover of size k on k-forests is $\Omega(n - k)$.
Main Takeaway

In the worst case scenario, when enough connectivity is ensured and when there is no limit on the message sizes, data dissemination is linear.

Future Work:

- Find ways to speed up the objectives by constraining the adversary differently.
- Look at a random adversary rather than a “smart” one.
- Look at applications - Leader election or Consensus.
- Look at message size constraints.