Phylogenetic analysis of cubilin (CUBN) gene

Abjal Pasha Shaik1⋆, Abbas H Alsaeed1*, S Kiranmayee2, VK Bammidi3 & Asma Sultana4

1College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia; 2Queens Hospital, Burton Hospitals NHS Trust, Burton On Trent, Staffordshire, UK; 3Stapenhill Medical Centre, Burton On Trent, Staffordshire, UK; 4Janaki Nagar, Tolichowki, Hyderabad, India; Abjal Pasha Shaik *Email: afzalshaik@gmail.com; Phone: +966544023766; Fax: +96614684995; *Corresponding author
$ All authors contribute equally

Received November 25, 2012; Accepted November 26, 2012; Published January 09, 2013

Abstract:
Cubilin (CUBN; also known as intrinsic factor-cobalamin receptor [Homo sapiens Entrez Pubmed ref NM_001081.3; NG_008967.1; GI: 119606627]), located in the epithelium of intestine and kidney acts as a receptor for intrinsic factor - vitamin B12 complexes. Mutations in CUBN may play a role in autosomal recessive megaloblastic anemia. The current study investigated the possible role of CUBN in evolution using phylogenetic testing. A total of 588 BLAST hits were found for the cubilin query sequence and these hits showed putative conserved domain, CUB superfamily (as on 27th Nov 2012). A first-pass phylogenetic tree was constructed to identify the taxa which most often contained the CUBN sequences. Following this, we narrowed down the search by manually deleting sequences which were not CUBN. A repeat phylogenetic analysis of 25 taxa was performed using PhyML, RAxML and TreeDyn softwares to confirm that CUBN is a conserved protein emphasizing its importance as an extracellular domain and being present in proteins mostly known to be involved in development in many chordate taxa but not found in prokaryotes, plants and yeast.. No horizontal gene transfers have been found between different taxa.

Keywords: Cubilin, CUBN, Amino acid sequences, Phylogeny, Sequence alignment

Background:
Cubilin (CUBN, also known as intestinal intrinsic factor receptor or intrinsic factor-cobalamin receptor or intrinsic factor-vitamin B12 receptor), acts as a co-transporter and helps in the uptake of lipoprotein, vitamin and iron. It functions as a transporter in many absorptive epithelia (intestine, renal proximal tubules and embryonic yolk sac) [1]. A potential role of mutations in CUBN gene has been hypothesized to play a role in the etiology of autosomal recessive megaloblastic anemia [2]. This hereditary condition is also known as MGA1 Norwegian type or Imerslund-Grasbeck syndrome. The disease is characterized by defective absorption of vitamin B12 and impaired function of the enzyme thymidine synthase; therefore, DNA synthesis, particularly during erythropoiesis is affected [1, 3]. Cubilin interacts with megalin in a calcium dependent manner by forming a dual-receptor complex called cubam which facilitates the uptake of specific ligands like hemoglobin, uteroglobin etc. [4]. In addition, CUBN also controls and facilitates endocytosis of various ligands [5, 6]. In the proximal tubule cells, cubilin helps in reabsorption of vitamin D binding protein from glomerular filtrates and assists in the synthesis of 1α,25-dihydroxyvitamin D(3) [7, 8]. In addition, a missense mutation in CUBN gene was found to alter the levels of [9].

The cubilin protein has 27 CUB domains and 7 EGF-like domains and is coded by the human CUBN gene is located on chromosome 10 (10p12.31; 11933 bp mRNA; Entrez PubMed ref NM_001081.3; NG_008967.1; GI:119606627) and expressed as a 3623 amino acid, 460 kDa receptor [10]. The acquisition of CUBN in eukaryotes indicates one of the important events in evolution of cells. Because of the inherent role of CUBN as a transporter in many epithelia and its ability to facilitate absorption of hemoglobin and other important ligands, we aimed to understand if variance in this gene exists among in various organisms using a phylogenetic analysis of published protein sequences.
Figure 1: First pass phylogenetic tree constructed by multiple alignment using BLAST pairwise alignments: Results presented using Taxonomic name. First pass phylogenetic tree constructed showed that the CUBN sequences were mostly from arthropods, placozoans, nematodes, tunicates, rabbits, hares, primates, rodents, placental, odd toed ungulates, even toed ungulates, bivalves, lancelets, hemichordates, sea urchins, bony fishes, amphibians, birds, lizards, marsupials and monotremes.

Methodology:
Data Set, Sequence Alignment and Construction of Phylogenetic Tree
We queried the GenBank database [11] for all available protein sequences of the CUBN. The retrieved sequences were saved in FASTA format. An initial first-pass phylogenetic tree was constructed using Neighbour Joining method [12] (maximum sequence difference of 0.85) using Domain Enhanced Lookup Time Accelerated Basic Local Alignment Search Tool [DELTA BLAST] pairwise alignments between the query and the database sequences searched [13]. Grishin computation was used by the software to calculate the evolutionary distance between any two sequences. This was modeled as expected fraction of amino acid substitutions per site [14].

The list of sequences obtained after DELTA BLAST were narrowed down to delete sequences which are not CUBN and which were hypothetical. The concerned retrieved sequences were then aligned using Kalign software 2.03 version [15] with the results being produced in the Clustal W [16] format and employing a gap extension penalty of 0.85. The phylogenetic tree was reconstructed using the maximum likelihood method implemented in the PhyML program (v3.0 aLRT) [17, 18]. The Jones-Taylor-Thornton (JTT) substitution model was selected along with gamma-distributed rate categories to account for rate heterogeneity across sites. The reliability for internal branch was assessed using the aLRT test (SH-Like). The graphical representation and edition of the phylogenetic tree were performed with TreeDyn [19]. The RAxML (Randomized Accelerated Maximum Likelihood) program version 7.2.8 was then used for sequential and parallel Maximum Likelihood of the sequences [20]. An additional analysis of the presence of horizontal gene transfer was performed using the T-REX online software [21].
Results:
From the NCBI GenBank database, 588 sequences of CUBN covering the CUB domain (Figure 1) were used to construct a first-pass phylogenetic tree. The sequences were mostly from arthropods, placozoans, nematodes, tunicates, rabbits, hares, primates, rodents, placentaals, odd toed ungulates, even toed ungulates, bivalves, lancelets, hemichordates, sea urchins, bony fishes, amphibians, birds, lizards, marsupials and monotremes. This tree however had many repetitive and unrelated sequences which were deleted. A high degree of sequence similarity of CUBN enzyme in many of the selected sequences was observed during phylogeny reconstruction. Putative conserved domains were observed in many taxa at the CUB domain CUB domain (cd00041); extracellular domain; present in proteins mostly known to be involved in development; not found in prokaryotes, plants and yeast [22]. The actual alignment after DELTA BLAST was detected with cd00041, Cd Length: 113 Bit Score: 139.08, E-value: 4.18e-37. The final accession information for the tested sequences (n=25) are presented in Table 1 (see supplementary material); multiple sequence alignment is presented in Appendix 1. Using the PhyML program a tree was constructed for these sequences, the results of which are presented in (Figure 2). RAxML revealed that there were 3782 distinct alignment patterns and the proportion of gaps and completely undetermined characters in this alignment was 24.21%. RAxML rapid bootstrapping and subsequent ML search showed an ML estimate of 25 per site rate categories (Figure 3). No horizontal gene transfers have been observed in the selected taxa.

Discussion:
The acquisition of cubilin and its importance in evolution was assessed by using a mix of programs to construct a phylogenetic tree [23, 24]. It is interesting to note that CUBN as a protein with receptor function has arisen only in the eukaryotes and thus not found in prokaryotes and plants. Cubilin is very helpful in the absorption of Vit B12 from the intestinal epithelia on which animals and protists are dependent for various biochemical pathways; however, they do not have the ability to synthesize it. It should be noted that plants and fungi neither produce Vit B12 nor use it but animals and protists use it but cannot synthesize it owing to the very complex de novo biosynthesis pathways [25]. The acquisition of cubilin in these phyla from an evolutionary stand point explains why mammalians have an efficient mechanism for uptake of extrinsic Vit B12.
have evaluated horizontal gene transfers in the selected organisms. It is well understood that this involves a transfer of genetic material from one lineage to another commonly found in prokaryotes as an adaptation mechanism to environment [21]. However, the selected organisms did not show the presence of this phenomenon. The final phylogenetic tree indicated that CUBN is a relatively new protein having evolved very late in evolution (Figures 2 & 3). Also, no homologous gene transfer has been observed among the short-listed organisms which are indicative of the largely conserved domains within the amino acid sequences.

Conclusion:
Acquisition of CUBN in relatively evolved organisms indicates its crucial role in the physiology of cells. A higher conservation at CUB domains indicates preserved function. The phylogenetic tree for CUBN revealed the presence of this gene in eukaryotes and indicated its importance in the biochemical pathways related to absorption of many ligands from the epithelial linings in cells re-emphasizing the importance of certain proteins in evolution.

Acknowledgement:
Authors would like to extend their appreciation to the Research Centre, College of Applied Medical Sciences and Deanship of Scientific Research at King Saud University for funding this research.

References:
[1] Kozyraki R et al. Blood. 1998 91: 3593 [PMID: 9572993]
[2] Aminoff M et al. Nat Genet. 1999 21: 309 [PMID: 1008186]
[3] Moesstrup SK et al. J Biol Chem. 1998 273: 5235 [PMID: 9478979]
[4] Fyfe JC et al. Blood. 2004 103: 1573 [PMID: 14576052]
[5] Kozyraki R et al. Nat Med. 1999 5: 656 [PMID: 10371504]
[6] Kozyraki R et al. Proc Natl Acad Sci U.S.A. 2001 98: 12491 [PMID: 11606717]
[7] Kasada R et al. Ther Apher Dial. 2011 Suppl 1: 14 [PMID: 21595846]
[8] Nykjaer A et al. Proc Natl Acad Sci U.S.A. 2001 98: 13695 [PMID: 11717447]
[9] Böger CA et al. J Am Soc Nephrol. 2011 22: 555 [PMID: 21355061]
[10] http://ghr.nlm.nih.gov/gene/CUBN
[11] Benson DA et al. GenBank Nucleic Acids Res. 2011 39 (Database issue) D32 [PMID: 21071399]
[12] Saitou N et al. Mol Biol Evol. 1987 4: 406 [PMID: 3447015]
[13] Borabyn GM et al. Biol Direct. 2012 7: 12 [PMID: 22510480]
[14] Grishin NV, J Mol Evol. 1995 41: 675 [PMID: 18345592]
[15] Lassmann T et al. Nucleic Acids Res. 2009 37: 858 [PMID: 19103665]
[16] Thomson JD et al. Nucleic Acids Res. 1994 22: 4673 [PMID: 7984417]
[17] Dereeper A et al. Nucleic Acids Res. 2008 36:W465 [PMID: 18424797]
[18] Dereeper A et al. BMC Evol Biol. 2010 10: 8 [PMID: 20067610]
[19] Chevenet F et al. BMC Bioinformatics. 2006 10: 439 [PMID: 17032440]
[20] Stamatakis A et al. Syst Biol. 2008 75: 758 [PMID: 18853362]
[21] Boc A et al. Nucleic Acids Res. 2012 40: W573 [PMID: 22675075]
[22] Marchler-Bauer A et al. Nucleic Acids Res. 2013 41: 225 [PMID: 21109532]
[23] Wu CH et al. Nucleic Acids Res. 2006 34: D191 [PMID: 16381842]
[24] Strait DS et al. J Hum Evol. 2004 47: 399 [PMID: 15566946]
[25] Roth JR et al. Annu Rev Microbiol. 1996 50: 137 [PMID: 8905078]
[26] Jones DT et al. Comput Appl Biosci. 1992 8: 275 [PMID: 1633570]

License statement: This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited

Edited by P Kanguane

Citation: Shaik et al. Bioinformation 9(1): 029-036 (2013)
Table 1: Accession details of short-listed Cubilin (CUBN) sequences

Accession	Description
EAW96221.1	Homo sapiens
XP_003831226.1	Pan paniscus – Predicted
XP_003257731.1	Nomascus leucogenys– Predicted
XP_003903687.1	Saimiri boliviensis boliviensis– Predicted
XP_003919387.1	Papio anubis– Predicted
XP_003786834.1	Otolemur garnettii– Predicted
XP_003988178.1	Felis catus– Predicted
EHB09007.1	Heterocephalus glaber
EDL78718.1	Rattus norvegicus– isoform CRA_b
XP_002666724.2	Danio rerio– Predicted
XP_001235156.2	Gallus gallus– Predicted
EKC18187.1	Crassostrea gigas
XP_003455793.1	Oreochromis niloticus– Predicted
XP_002806994.1	Callithrix jacchus– Predicted
EG160892.1	Acromyrmex echinatior
EFN89302.1	Harpegnathos saltator
XP_394526.3	Apis mellifera– Predicted
XP_001843996.1	Callithrix jacchus– Predicted
EFN66210.1	Camponotus floridanus
XP_001655059.1	Aedes aegypti
EFX86741.1	Daphnia pulex
EJH68165.1	Danaus plexippus
XP_003381549.1	Trichinella spiralis
EGW02057.1	Cricetulus griseus
ABV24853.1	Xenopus (Silurana) tropicalis
AAF61487.1	Mus musculus
Appendix 1: Kalign: Multiple sequence alignment [CLUSTAL format] of short-listed sequences
Similar residues are colored as the most conserved one (according to BLOSUM62).