Shortlisting putative candidate genes underlying qDTY$_{1.1}$, a major effect drought tolerant QTL in rice (Oryza sativa L.)

Krishna Sai Karnatam, Deepa Jaganathan, Kambale Rohit Dilip, Manikanda Boopathi N and Raveendran Muthurajan*

Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore - 641 003, Tamil Nadu, India
*E-Mail: raveendrantnau@gmail.com

Abstract
Drought is one of the major constraints affecting rice (Oryza sativa L.) productivity and production. Conventional breeding is leading to slow progress in developing drought tolerant varieties. In this context, mapping consistent major effect QTLs and unraveling molecular basis of those QTLs will pave way for deployment of those QTLs into breeding applications. Out of more than 2500 drought tolerance related QTLs, hardly 5 to 10 QTLs have been put into breeding applications due to larger QTL window, lack of tightly linked markers and lack of knowledge on candidate genes underlying QTLs. In this present study, in silico analysis was carried out to characterize a major effect QTL qDTY$_{1.1}$ region on chromosome 1 for its gene content, drought responsiveness of genes in the QTL window and metabolic functions. Out of 352 genes residing in the qDTY$_{1.1}$ window, 50% of the genes were found to be drought responsive. Bioinformatics search identified precise drought responsive expression pattern of 100 genes in the QTL window. Fifty seven genes were found to be up regulated and forty three genes were found to be down regulated. The qDTY$_{1.1}$ region is found to contain 23 drought responsive transcription factors such as WRKY, bZIP, NAC, AP2 and C2H2. These drought responsive genes are confirmed for the possession of drought responsive cis elements like DRE, ABRE, MYB and MYC.

Key words
Rice, drought tolerance, QTL, in silico analysis, Transcription Factors.

INTRODUCTION
Increasing global population demands at least 50% of increase in food production by 2050 (Muthu, 2019). But, prevailing growth rate of yields in major crops is not satisfactory (Ray et al., 2013). Rice is one of the important staple cereals in India whose yield is frequently affected by abiotic stresses including drought, salinity, heat and submergence (Dixit et al., 2017). Further, changing climate increases the frequency such occurrences and thus posing serious threat for reaching the targeted production of 160 million tonnes during 2050. Among all abiotic stresses, drought remains at the top in limiting rice production and thus causing major threat to food security (Zhang, 2018). Progress through conventional breeding approaches in developing drought tolerant rice genotypes is slow due to the complexity of tolerance mechanisms. Recent progress in genetic mapping of drought tolerance traits in rice paved the way for accelerated development of drought tolerant rice genotypes through molecular breeding (Kamoshita et al., 2008; Khowaja et al., 2009; Suiji et al., 2012; Mai et al., 2014; Swamy et al., 2017). Approximately 2137 QTLs have been reported to be associated with drought tolerance related traits in rice until 2009 (Courtois et al., 2009) and currently it would have crossed 2500. Only limited number of QTLs have been put into breeding applications because of their
consistency across environments, effect on yield during stress and availability of tightly linked markers.

Among the various drought tolerance related QTLs, a major effect loci qDTY$_{1.1}$, flanked by RM11943 and RM431 on Chromosome 1 has been reported by several authors (Vikram et al., 2011). This QTL showed a consistent effect in high yielding multiple elite genetic backgrounds viz., Swarna, IR64, and MTU1010 (Vikram et al., 2011). However, qDTY$_{1.1}$ was reported to be tightly linked to sd1 loci controlling plant height in rice. (Vikram et al., 2015) demonstrated that such linkage between drought tolerance and height was successfully overcome by increasing population size and by use of dense markers in the target region. This indicated that such larger QTLs require fine mapping and QTL cloning which will allow us to develop gene based markers for precise introgression of QTLs with minimum linkage drag.

Fine mapping is time consuming and labor intensive process as it involves development and screening a large number of back cross progenies, use of large number of markers in the QTL window and extensive phenotyping. Availability of genomic information including whole genome sequence information, expression data across diverse growth/environmental conditions and sophisticated bioinformatics allowed molecular dissection of QTLs so as to identify putative candidate genes underlying QTLs. In silico analysis of a major effect drought tolerance QTL on chromosome 9 spanning 22 cM (73 cM to 95 cM) revealed the presence of 145 genes and further exploration of expression data shortlisted potential candidate genes like Aquaporin (OsPIP2; 7) and cytochromeP450 (OsCYP78A3) (Ramya et al., 2010). Similar studies have been undertaken to shortlist genes underlying QTLs for salt tolerance (Abhayawickrama et al., 2020), and grain protein content (Indurkar et al., 2015).

Based on the above facts, current study was undertaken to unravel the molecular basis of a major effect QTL qDTY$_{1.1}$, linked to grain yield under drought stress in rice. Detailed bioinformatics analyses were carried out to identify the stress responsive genes, their possible roles in metabolic pathways related to drought tolerance and also to analyze the presence of cis elements in the promoter region(s).

MATERIALS AND METHODS

Details of the target QTL

A drought tolerant QTL, qDTY$_{1.1}$, was selected based on literature survey (Table 1) and its physical location was delineated from Gramene database (http://archive.gramene.org/qtl/). Two overlapping loci viz., loci flanked by RM 486 and RM 472 (34.95 – 37.88 Mb) as reported by (Venuprasad et al., 2012) and nearby region flanked by RM 11943 and RM 431 (37.85 – 38.89 Mb) as reported by (Vikram et al., 2011) were chosen for the analysis.

In silico analysis of qDTY$_{1.1}$

Genes located in the QTL window (34.95 Mb - 38.89 Mb) were identified from TIGR Rice pseudomolecules version 7.0(http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/) available with Rice Annotation Project.

Identification of drought responsive genes in qDTY1.1

Putative drought responsive genes in the QTL window and their level of expression were picked up from the publicly available expression database namely Rice Metasys(http://14.139.229.201/RiceMetaSys/index.php). Drought responsive expression pattern of the genes located in qDTY$_{1.1}$ was also assigned using the same database. Drought responsive expression pattern (Log Fold Change) of these genes in tissues like leaves, panicle and root were identified.

Pathway mapping of drought responsive genes

Identified drought responsive genes were mapped onto metabolic pathways based on literature survey and gene ontology database. The locus ID of the drought responsive genes was converted to RAP ID using RAP DB (https://rapdb.dna.affrc.go.jp/index.html) and used for search in the KEGG and TIGR database.

Identification of transcription factors modulating drought responses

Transcription factors putatively modulating drought responses were identified. Using PlantPAN 3.0 database (http://plantpan.itps.ncku.edu.tw/). Individual drought responsive transcription factors in these regions were downloaded and annotated for their function using literatures.

Table 1. Details of studies reporting association of qDTY$_{1.1}$ with drought tolerance in rice

S.no	Population	Marker interval	Explained phenotypic variation (%)	Reported by
1.	N22/Swarna	RM11943-RM431	13.4	(Vikram et al., 2011)
2.	N22/IR64	RM11943-RM431	16.9	(Vikram et al., 2011)
3.	N22/MTU1010	RM11943-RM431	12.6	(Vikram et al., 2011)
4.	Apo/IR64	RM486-RM472	-	(Venuprasad et al., 2012)
5.	Dhagaddeshi/Swarna	RM431-RM104	22.6	(Ghimire et al., 2012)
6.	Dhagaddeshi/IR64	RM104-RM12091	9.2	(Ghimire et al., 2012)
To analyze the presence of drought responsive cis regulatory elements in promoter region, 1000 bp up stream sequences of all 100 drought responsive genes were individually downloaded from RAP DB and TIGR database. These 1 kb upstream sequences were analyzed in the PLACE database (https://www.dna.affrc.go.jp/PLACE/?action=newplace). Position and frequency in the occurrence of drought responsive cis regulatory elements like ABRE/CRT, DRE, MYB and MYC were analyzed (Table 2.)

RESULTS AND DISCUSSION

qDTY1.1, a major effect drought tolerance related QTL located on rice chromosome 1 (flanked between RM 11943 to RM 431and RM 486 to 472) was reported to be responsible for increased grain yield under drought stress and found to be consistent across different genetic backgrounds (Vikram et al., 2011; Venuprasad et al., 2012). Bioinformatics analysis using TIGR database identified around 352 putative protein encoding genes in the QTL region. qDTY1.1 was found to harbor this region was found to harbour several drought tolerance related genes namely, WRKY, serine/threonine protein- kinase, MYB, etc. Systematic search using Rice Metasys database identified 140 drought responsive genes (Table 3.). Subsequent analysis for picking up the level of drought responsive changes exhibited by these genes using Metasys database revealed that expression data was available only for 100 genes which were used for further analysis. Out of the 100 drought responsive genes available with expression data, 57 genes were found to be up-regulated and 43 were found to be down regulated (Fig. 1).

Table 2. Details of drought responsive cis elements searched in this study

S.no	Cis-acting elements	Conserved cis motif sequence	Reference
1.	ABRE	ACCTGTC, ACCTGTC	(Uno et al., 2000)
2.	DRE/CRT	A/GCCGAC	(Yamaguchi-Shinozaki and Shinozaki, 2005)
3.	MYB	C/TAACG/TG	(Abe et al., 1997; Abe et al., 2003)
4.	MYC	CACATG/CATGTG	(Abe et al., 1997; Abe et al., 2003)

Fig. 1. Number of drought responsive genes of qDTY1.1 in various tissues
Table 3. List of drought responsive genes found in qDTY1.1

S.No	Locus ID	Annotation	Tissue	Fold Change (LogFC)	Expression of gene identified (*)
1	LOC_Os01g60660	methionyl-RNA synthetase, putative, expressed	Leaf	1.036	*
2	LOC_Os01g60700	serine/threonine-protein kinase NAK, putative, expressed	Leaf	1.369	*
3	LOC_Os01g61030	VHS and GAT domain containing protein, expressed	Leaf	1.097	*
4	LOC_Os01g61070	heavy metal-associated domain containing protein, expressed	Leaf	1.204	*
5	LOC_Os01g61500	BAG domain containing protein, expressed	Leaf	1.042	*
6	LOC_Os01g61830	zinc finger C-x8-C-x5-C-x3-H type family protein, expressed	Leaf	1.411	*
7	LOC_Os01g62190	ZOS1-15 - C2H2 zinc finger protein, expressed	Leaf	6.084	*
8	LOC_Os01g62210	50S ribosomal protein L17, putative, expressed	Leaf	1.179	*
9	LOC_Os01g62290	DnaK family protein, putative, expressed	Leaf	1.058	*
10	LOC_Os01g62300	SLT1 protein, putative, expressed	Leaf	1.187	*
11	LOC_Os01g62410	MYB family transcription factor, putative, expressed	Leaf	2.093	*
12	LOC_Os01g62610	peptidyl-prolyl cis-trans isomerase, FKBP-type, putative, expressed	Leaf	1.854	*
13	LOC_Os01g62650	pumilio-family RNA binding protein, putative, expressed	Leaf	1.217	*
14	LOC_Os01g62760	protein phosphatase 2C, putative, expressed	Leaf	2.306	*
15	LOC_Os01g62900	amino acid kinase, putative, expressed	Leaf	2.274	*
16	LOC_Os01g63090	phosphatidic acid phosphatase-related, putative, expressed	Leaf	1.675	*
17	LOC_Os01g63320	growth regulator related protein, putative, expressed	Leaf	1.295	*
18	LOC_Os01g63354	ELM2 domain containing protein, putative, expressed	Leaf	1.436	*
19	LOC_Os01g64280	sorting nexin 1, putative, expressed	Leaf	1.213	*
20	LOC_Os01g64300	DUF584 domain containing protein, putative, expressed	Leaf	2.449	*
21	LOC_Os01g64360	MYB family transcription factor, putative, expressed	Leaf	2.784	*
22	LOC_Os01g64520	uricase, putative, expressed	Leaf	2.233	*
23	LOC_Os01g64700	OsFBT3 - F-box and tubby domain containing protein, expressed	Leaf	1.396	*
24	LOC_Os01g64730	bZIP transcription factor domain containing protein, expressed	Leaf	2.661	*
25	LOC_Os01g64750	sterol 3-beta-glucosyltransferase, putative, expressed	Leaf	1.113	*
26	LOC_Os01g64970	CAMK_CAMK_like.11 - CAMK includes calcium/calmodulin depedent protein kinases, expressed	Leaf	2.012	
27	LOC_Os01g65200	proton-dependent oligopeptide transport, putative, expressed	Leaf	1.47	*
28	LOC_Os01g65310	DUF803 domain containing, putative, expressed	Leaf	1.539	*
29	LOC_Os01g65380	patellin protein, putative, expressed	Leaf	1.051	*
30	LOC_Os01g65520	Sad1 / UNC-like C-terminal domain containing protein, putative, expressed	Leaf	3.468	*
31	LOC_Os01g65780	glycosyl transferase, putative, expressed	Leaf	1.357	*
32	LOC_Os01g65986	DUF803 domain containing, putative, expressed	Leaf	1.146	*
33	LOC_Os01g66030	OsMADS2 - MADS-box family gene with MIKCC type-box, expressed	Leaf	1.443	*
34	LOC_Os01g66120	No apical meristem protein, putative, expressed	Leaf	1.071	*
35	LOC_Os01g66520	serine/threonine-protein kinase RIO-like, putative, expressed	Leaf	1.037	*
36	LOC_Os01g66850	pectinacetylesterase domain containing protein, expressed	Leaf	1.055	*
37	LOC_Os01g67300	RING-H2 finger protein, putative, expressed	Panicle	1.028	*
38	LOC_Os01g69020	OsFBX30 - F-box domain containing protein, expressed	Panicle	1.107	*
39	LOC_Os01g61430	HIT zinc finger domain containing protein, expressed	Panicle	1.695	*
40	LOC_Os01g61890	AT hook motif family protein, expressed	Panicle	1.195	*
41	LOC_Os01g62830	aspartic proteinase nepenthesin precursor, putative, expressed	Panicle	1.553	*
42	LOC_Os01g64630	actin, putative, expressed	Panicle	1.234	*
43	LOC_Os01g65080	ZOS1-18 - C2H2 zinc finger protein, expressed	Panicle	1.535	*
44	LOC_Os01g65200	proton-dependent oligopeptide transport, putative, expressed	Panicle	1.535	*
45	LOC_Os01g65900	chitin-inducible gibberellin-responsive protein, putative, expressed	Panicle	1.287	*
LOC_Os01g66120	No apical meristem protein, putative, expressed	Panicle 1.601			
LOC_Os01g66180	cytochrome c, putative, expressed	Panicle 1.46			
LOC_Os01g66420	PHD finger protein, putative, expressed	Panicle 1.499			
LOC_Os01g66520	serine/threonine-protein kinase RIO-like, putative, expressed	Panicle 1.843			
LOC_Os01g60730	RING-H2 finger protein, putative, expressed	Root 2.48			
LOC_Os01g62390	growth regulator related protein, putative, expressed	Root 1.004			
LOC_Os01g62980	LTP101 - Protease inhibitor/seed storage/LTP family protein precursor, expressed	Root 2.143			
LOC_Os01g63190	laccase precursor protein, putative, expressed	Root 2.143			
LOC_Os01g64730	bZIP transcription factor domain containing protein, expressed	Root 1.734			
LOC_Os01g66170	SNARE associated Golgi protein, putative, expressed	Root 1.086			
LOC_Os01g66500	phosphoribosylformylglycinamidine synthase, putative, expressed	Root 1.195			
LOC_Os01g66520	serine/threonine-protein kinase RIO-like, putative, expressed	Root 1.495			
LOC_Os01g61010	nodulin, putative, expressed	Leaf -2.17			
LOC_Os01g61170	prenylated rab acceptor, putative, expressed	Leaf -1.22			
LOC_Os01g61320	thioredoxin, putative, expressed	Leaf -1.57			
LOC_Os01g61590	CAMK_CAMK_like.1 - CAMK includes calcium/calmodulin dependent protein kinases, expressed	Leaf -1.01			
LOC_Os01g61880	respiratory burst oxidase, putative, expressed	Leaf -2.28			
LOC_Os01g62440	ribonuclease protein, putative, expressed	Leaf -1.47			
LOC_Os01g63190	laccase precursor protein, putative, expressed	Leaf -2.73			
LOC_Os01g63480	transferase family protein, putative, expressed	Leaf -1.3			
LOC_Os01g63770	transmembrane amino acid transporter protein, putative, expressed	Leaf -1.54			
LOC_Os01g64170	glycosyl hydrolases family 17, putative, expressed	Leaf -1.11			
LOC_Os01g64540	anthocyanidin 3-O-glucosyltransferase, putative, expressed	Leaf -3.04			
LOC_Os01g64670	soluble inorganic pyrophosphatase, putative, expressed	Leaf -1.17			
LOC_Os01g64960	chlorophyll A-B binding protein, putative, expressed	Leaf -1.64			
LOC_Os01g65100	peptide transporter, putative, expressed	Leaf -1.14			
LOC_Os01g65350	deoxynucleoside kinase family, putative, expressed	Leaf -1.61			
LOC_Os01g65560	snRK1-interacting protein 1, putative, expressed	Leaf -1.12			
LOC_Os01g65880	nodulin MIN3 family protein, putative, expressed	Leaf -1.09			
LOC_Os01g66000	NADH dehydrogenase I subunit N, putative, expressed	Leaf -4.5			
LOC_Os01g66970	zinc finger, C3HC4 type domain containing protein, expressed	Leaf -1.2			
LOC_Os01g60860	spotted leaf 1, putative, expressed	Panicle -1.17			
LOC_Os01g61170	prenylated rab acceptor, putative, expressed	Panicle -1.08			
LOC_Os01g61500	BAG domain containing protein, expressed	Panicle -1.35			
LOC_Os01g61760	myosin heavy chain-related, putative, expressed	Panicle -1.06			
LOC_Os01g62020	NAD dependent epimerase/dehydratase family domain containing protein, expressed	Panicle -1.38			
LOC_Os01g62850	membrane associated DUF588 domain containing protein, putative, expressed	Panicle -1.51			
LOC_Os01g62900	amino acid kinase, putative, expressed	Panicle -1.18			
LOC_Os01g64170	glycosyl hydrolases family 17, putative, expressed	Panicle -1.45			
LOC_Os01g64300	DUF584 domain containing protein, putative, expressed	Panicle -1			
LOC_Os01g64760	Yip1 domain containing protein, expressed	Panicle -1.77			
LOC_Os01g64860	OsSub11 - Putative Subtilisin homologue, expressed	Panicle -2.67			
LOC_Os01g65680	4,5-DOPA dioxygenase extradiol, putative, expressed	Panicle -1.02			
LOC_Os01g66110	methyltransferase, putative, expressed	Panicle -1.19			
LOC_Os01g66590	DUF260 domain containing protein, putative, expressed	Panicle -1.52			
LOC_Os01g62190	ZOS1-15 - C2H2 zinc finger protein, expressed	Root -2.17			
LOC_Os01g62420	trisepoxide isomerase, cytosolic, putative, expressed	Root -1.69			
LOC_Os01g62460	ZOS1-16 - C2H2 zinc finger protein, expressed	Root -1.28			
LOC_Os01g63690	hs1, putative, expressed	Root -2.44			
Gene ID	Description	Expression	Fold Change		
-----------------	--	------------	-------------		
LOC_Os01g64520	uricase, putative, expressed	Root	-2.32		
LOC_Os01g65100	peptide transporter, putative, expressed	Root	-1.68		
LOC_Os01g65110	POT family protein, expressed	Root	-5.18		
LOC_Os01g65650	receptor-like protein kinase HAIKU2 precursor, putative, expressed	Root	-1.37		
LOC_Os01g65880	nodulin Mn3 family protein, putative, expressed	Root	-2.95		
LOC_Os01g66940	kinase, pfkB family, putative, expressed	Root	-1.24		
LOC_Os01g60640	non-green plastid inner envelope membrane protein, putative, expressed	-	-		
LOC_Os01g60910	CAMK_KIN1/SNF1/Nim1_like.12 - CAMK includes calcium/calmodulin dependent protein kinases, expressed	-	-		
LOC_Os01g61044	transmembrane amino acid transporter protein, putative, expressed	-	-		
LOC_Os01g61620	protein kinase family protein, putative, expressed	-	-		
LOC_Os01g61670	ureidoglycolate hydrolase, putative, expressed	-	-		
LOC_Os01g61780	vacuolar ATP synthase 98 kDa subunit, putative, expressed	-	-		
LOC_Os01g61910	KIP1, putative, expressed	-	-		
LOC_Os01g62040	ruvB-like, putative, expressed	-	-		
LOC_Os01g62060	plant-specific domain TIGR01589 family protein, expressed	-	-		
LOC_Os01g62070	cation efflux family protein, putative, expressed	-	-		
LOC_Os01g62350	60S ribosomal protein L36-2, putative, expressed	-	-		
LOC_Os01g62480	laccase precursor protein, putative, expressed	-	-		
LOC_Os01g62660	MYB family transcription factor, putative, expressed	-	-		
LOC_Os01g62840	mannose-1-phosphate guanytransferase, putative, expressed	-	-		
LOC_Os01g62950	ras-related protein, putative, expressed	-	-		
LOC_Os01g63010	universal stress protein domain containing protein, putative, expressed	-	-		
LOC_Os01g63210	SOUL heme-binding protein, putative, expressed	-	-		
LOC_Os01g63220	kinase, pfkB family, putative, expressed	-	-		
LOC_Os01g63270	alpha-glucan phosphorylast isozyme, putative, expressed	-	-		
LOC_Os01g63290	transporter, major facilitator family, putative, expressed	-	-		
LOC_Os01g63580	glycerol-3-phosphate acyltransferase, putative, expressed	-	-		
LOC_Os01g63870	nucleobase-ascorbate transporter, putative, expressed	-	-		
LOC_Os01g63890	G10 protein, putative, expressed	-	-		
LOC_Os01g63930	cytochrome P450, putative, expressed	-	-		
LOC_Os01g63990	hydrolase, alpha/beta fold family protein, putative, expressed	-	-		
LOC_Os01g64010	specificity protein phosphatase, putative, expressed	-	-		
LOC_Os01g64100	glycosyl hydrolase, putative, expressed	-	-		
LOC_Os01g64120	2Fe-2S iron-sulfur cluster binding domain containing protein, expressed	-	-		
LOC_Os01g65110	POT family protein, expressed	-	-		
LOC_Os01g65200	proton-dependent oligopeptide transport, putative, expressed	-	-		
LOC_Os01g65230	AGC_AGC_other_PDK1_Pk61C.1 - AGC kinases include homologs to PKA, PKG and PKC, expressed	-	-		
LOC_Os01g65400	DNA polymerase I, putative, expressed	-	-		
LOC_Os01g65410	serine hydroxymethyltransferase, mitochondrial precursor, putative, expressed	-	-		
LOC_Os01g65902	apocytochrome f precursor, putative, expressed	-	-		
LOC_Os01g65920	F-box/LRR-repeat protein 2, putative, expressed	-	-		
LOC_Os01g66600	rhodanese-like, putative, expressed	-	-		
LOC_Os01g66680	S-domain receptor-like protein kinase, putative, expressed	-	-		
LOC_Os01g66700	beta-hexosaminidase precursor, putative, expressed	-	-		
LOC_Os01g66860	serine/threonine protein kinase, putative, expressed	-	-		

* - identified from database (1 to 100)
- - Not available in database (101 to 140)
Fig. 2. Pathway mapping of drought responsive genes

Fig. 3. Frequency in the occurrence of cis elements in the upstream of drought responsive genes
Among the up-regulated genes, ZOS1-15 - C2H2 zinc finger protein was found exhibit more than 6 fold change, Sad1 / UNC-like C-terminal domain containing protein was found to exhibit > 3 fold change and DUFS84 domain containing protein and a MYB family transcription factor were found to be having more than 2.5 fold change under drought. These up regulated genes were found to play a key role in drought resistance (Ramegowda et al., 2014; Liu et al., 2015; Tang et al., 2019). Pathway mapping of all the drought responsive genes revealed that these genes were found to be involved in key metabolic functions viz., responsive to drought stimuli (14%), Transcription factors (13%), Cell cycle (1%), Transporter (10%), signal transduction (5%), Metabolism (14%), Nucleotide metabolism (22%), protein modification (4%) and tropism (2%). Bioinformatic analysis revealed the presence of several signaling genes namely calcium dependent protein kinase, serine/threonine-protein kinase, protein kinase, amino acid kinase and ACG kinase in the qDTY1.1 region. These signaling molecules are reported to regulate stress responsive gene expression in rice (Xiong et al., 2002; Diédiou et al., 2008).

Further, this key region was found to harbor several important transcription factors like 6 WRKY, 3 C2H2, 3 bZIP, 2 MADS box, 2 WOX, 1 myb, 1 bHLH, 1 NF-YB, 1 LBD 1 NAC, 1 AP2 and 1 zinc finger nuclease (Joshi et al., 2016). In silico analysis of the 1 kb up stream region revealed that most of the genes were found to contain key drought responsive elements namely ABRE, DRE, MYB and MYC. (Fig. 3). Among these 100 genes, 44 genes identified to contain more than 10 MYB, 33 genes identified to contain more than 10 MYC in their 1 kb up stream region. Presence of these cis regulatory elements may be responsible for activation of several genes during drought (Sheshadri et al., 2016).

qDTY1.1 was found to contain 50% drought responsive genes and these genes were found to contain high frequency of drought responsive cis elements in their upstream. Shortlisted genes such as ZOS1-15 - C2H2 zinc finger protein (LOC_Os01g62190), Sad / UNC-like C-terminal domain containing protein (LOC_Os01g65520), MYB family transcription factor (LOC_Os01g64360) and bZIP Transcription factors (LOC_Os01g64730) can be considered as putative candidate genes for further validation through functional genomics studies.

REFERENCE

Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15(1):63-78. [Cross Ref]

Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K., 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell, 9(10):1859-1866. [Cross Ref]

Abhayawickrama, B.P., Gimhani, D.R., Kottearachchi, N.S. and Herath, V., 2020. Utilization of SNP-based Highly Saturated Molecular Map of a RIL Population for the Detection of QTLs and Mining of Candidate Genes for Salinity Tolerance in Rice. Journal of Agricultural Sciences–Sri Lanka, 15(3). [Cross Ref]

Courtois, B., Ahmadi, N., Khowaja, F., Price, A.H., Rami, J.F., Frouin, J., Hamelin, C. and Ruiz, M., 2009. Rice root genetic architecture: meta-analysis from a drought QTL database. Rice, 2(2-3):115-128. [Cross Ref]

Diédiou, C.J., Popova, O.V., Dietz, K.J. and Golldack, D., 2008. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC plant biology, 8(1):1-13. [Cross Ref]

Dixit, S., Singh, A., Sandhu, N., Bhandari, A., Vikram, P. and Kumar, A., 2017. Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Molecular breeding, 37(12): 143. [Cross Ref]

Ghimire, K.H., Quiatchon, L.A., Vikram, P., Swamy, B.M., Dixit, S., Ahmed, H., Hernandez, J.E., Borromeo, T.H. and Kumar, A., 2012. Identification and mapping of a QTL (qDTY1.1) with a consistent effect on grain yield under drought. Field Crops Research, 131:88-96. [Cross Ref]

Indurkar, A.B., Majgahe, S.K., Sahu, V.K., Vishwakarma, A., Premi, V., Shrutoffatava, P., Dubey, M. and Chandel, G., 2015. Identification, Characterization and Mapping of QTLs related to Grain Fe, Zn and Protein Contents in Rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 6(4):1059-1068. [Cross Ref]

Joshi, R., Wani, S.H., Singh, B., Bohra, A., Dar, Z.A., Lone, A.A., Pareek, A. and Singla-Pareek, S.L., 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in Plant Science, 7: 1029. [Cross Ref]

Kamoshita, A., Babu, R.C., Boopathi, N.M. and Fukai, S., 2008. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rained environments. Field crops research, 109(1-3):1-23. [Cross Ref]

Khowaja, F.S., Norton, G.J., Courtois, B. and Price, A.H., 2009. Improved resolution in the position of drought-related QTLs in a single mapping population of rice by meta-analysis. BMC genomics, 10(1):276. [Cross Ref]
Liu, Q., Wang, Z., Xu, X., Zhang, H. and Li, C., 2015. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa). *PloS one*, 10(8): e0134753. [Cross Ref]

Mai, C.D., Phung, N.T., To, H.T., Gonin, M., Hoang, G.T., Nguyen, K.L., Do, V.N., Courtois, B. and Gantet, P., 2014. Genes controlling root development in rice. *Rice*, 7(1):30. [Cross Ref]

Muthu, S.S. ed., 2019. *Quantification of Sustainability Indicators in the Food Sector*. Springer Singapore. [Cross Ref]

Ramegowda, V., Basu, S., Krishnan, A. and Pereira, A., 2014. Rice growth under drought kinase is required for drought tolerance and grain yield under normal and drought stress conditions. *Plant physiology*, 166(3):1634-1645. [Cross Ref]

Ramya, M., Center, K.G., Bank, G.G.R., Raveendran, M., Nadu, T., Ramalingam, J. and Nadu, T., 2010. Insilico analysis of drought tolerant genes in rice. *Int J Biol Med Res*, 1(3).

Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A., 2013. Yield trends are insufficient to double global crop production by 2050. *PloS one*, 8(6):66428. [Cross Ref]

Sheshadri, S.A., Nishanth, M.J. and Simon, B., 2016. Stress-mediated cis-element transcription factor interactions interconnecting primary and specialized metabolism in planta. *Frontiers in plant science*, 7:1725. [Cross Ref]

Suji, K.K., Prince, K.S.J., Mankhar, P.S., Kanagaraj, P., Pooirma, R., Amutha, K., Kavitha, S., Bijji, K.R., Gomez, S.M. and Babu, R.C., 2012. Evaluation of rice (*Oryza sativa L.*) near iso-genic lines with root QTLs for plant production and root traits in rainfed target populations of environment. *Field Crops Research*, 137:89-96. [Cross Ref]

Swamy, B.M., Shamsudin, N.A.A., Abd Rahman, S.N., Mauleon, R., Ratnam, W., Cruz, M.T.S. and Kumar, A., 2017. Association mapping of yield and yield-related traits under reproductive stage drought stress in rice (*Oryza sativa L.*). *Rice*, 10(1):21. [Cross Ref]

Tang, Y., Bao, X., Zhi, Y., Wu, Q., Guo, Y., Yin, X., Zeng, L., Li, J., Zhang, J., He, W. and Liu, W., 2019. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. *Frontiers in plant science*, 10: 168. [Cross Ref]

Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K., 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. *Proceedings of the National Academy of Sciences*, 97(21):11632-11637. [Cross Ref]

Venuprasad, R., Bool, M.E., Quiatchon, L., Cruz, M.S., Amante, M. and Atlin, G.N., 2012. A large-effect QTL for rice grain yield under upland drought stress on chromosome 1. *Molecular Breeding*, 30(1):535-547. [Cross Ref]

Vikram, P., Swamy, B.M., Dixit, S., Ahmed, H.U., Cruz, M.T.S., Singh, A.K. and Kumar, A., 2011. qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. *BMC genetics*, 12(1):89. [Cross Ref]

Vikram, P., Swamy, B.M., Dixit, S., Singh, B.P., Miro, B., Kohli, A., Henry, A., Singh, N.K. and Kumar, A., 2015. Drought susceptibility of modern rice varieties: an effect of linkage of drought tolerance with undesirable traits. *Scientific reports*, 5:14799. [Cross Ref]

Xiong, L., Schumaker, K.S. and Zhu, J.K., 2002. Cell signaling during cold, drought, and salt stress. *The plant cell*, 14(suppl 1): S165-S183. [Cross Ref]

Yamaguchi-Shinozaki, K. and Shinozaki, K., 2005. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. *Trends in plant science*, 10(2):88-94. [Cross Ref]

Zhang, H., 2018. *Securing the 'Rice Bowl': China and Global Food Security*. Springer. [Cross Ref]