An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS

Sayed Hossein Siadatifard¹, Masumeh Abdoli-Senejani¹ and Mohammad Ali Bodaghifard*¹

Abstract: An efficient procedure for the synthesis of bisindolylmethanes from condensation of indole and aromatic aldehydes or ketones is described. The aromatic electrophilic substitution reactions of indole with aromatic aldehydes and ketones are achieved in the presence of tetrabutylammonium hydrogen sulfate as a mild and efficient solid acid catalyst. This methodology offers several advantages such as good yields, simple procedure, mild and environmentally benign conditions.

Subjects: Environmental Chemistry; Medicinal & Pharmaceutical Chemistry; Organic Chemistry

Keywords: bis(indolyl)methane; condensation; green synthesis; tetrabutylammonium hydrogen sulfate

1. Introduction
The indole ring system is present in many natural products, pharmaceuticals, and agrochemicals. These compounds bearing indole moiety have shown many pharmaceutical properties such as antimicrobial, antibacterial, antiviral, antifungal, antimetastatic, radical scavenging, analgesic, and anti-inflammatory activities (Bell, Carmeli, & Sar, 1994; Benabadji, Wen, Zheng, Dong, & Yuan, 2004; Fahy, Potts, Faulkner, & Smith, 1991; Irie et al., 1999; Kamal et al., 2009; Kobayashi et al., 1994; Kuethe, 2006; Shirli, Zolfoghi, Kruger, & Tanbakouchian, 2010; Sivaprasad, Perumal, Prabavathy, & Mathivanan, 2006; Sujatha, Perumal, Muralidharan, & Rajendran, 2009; Valeria & Ernesto, 1998). Numerous inhibitory activities are reported for bisindolylmethanes (BIMs) derivatives in different cancer including bladder cancer, lung cancer cells, colon cancer, prostate cancer, breast tumor cells (Ge, Fares, & Yannai, 1999; Gong, Firestone, & Bjeldanes, 2006; Gong, Sohn, Xue, Firestone, & Bjeldanes, 2006;...
Ichite et al., 2009; Ling & Wan-Ru, 2004; Nachshon-Kedmi, Yannai, & Fares, 2004; Safe, Papineni, & Chintharlapalli, 2008; Sung et al., 2007). The oxidized forms of BIMs are utilized as dyes (Novak, Kramer, Klapper, Daasch, & Murr, 1976) and colorimetric sensors (He et al., 2006; Martinez, Espinosa, Tarraga, & Molina, 2008).

A simple and standard method for the synthesis of bis(indolyl)methanes is the Friedel–Crafts reaction between indoles and carbonyl compounds in the presence of an acid or base. Varieties of catalytic reagents used in the synthesis of BIMs have been reviewed (Shiri et al., 2010). Various Brönsted acids (Ramesh, Banerjee, Pal, & Das, 2003; Zahran, Abdin, & Salama, 2008), Lewis acids (Chen, Yu, & Wang, 1996; Kundu & Maiti, 2008; Qu et al., 2011), heterogeneous acidic catalyst (Firouzabadi, Iranpoor, & Jafari, 2006), ionic liquid (Kalantari, 2015; Veisi, Hemmati, & Veisi, 2009), and some other catalysts have been applied for this synthesis (Haghighi & Nikoofar, 2014; Hojati, Zeinali, & Nematzadoust, 2013; Pore, Desai, Thopate, & Wadgaonkar, 2006; Xie, Sun, Jiang, & Le, 2014). Although these protocols are valuable, most of them suffer from one or more drawbacks including long reaction times, low yields of products, harsh reaction conditions, corrosive reagents, and use of expensive and/or toxic catalysts and solvents. Moreover, many Lewis acids are deactivated or sometimes decomposed by nitrogen-containing reactants. It is clear that due to the biological activities and versatile application possibilities of BIMs, there is a continuous quest for more efficient, mild, and clean procedures for synthesis of these compounds. This prompted us to investigate the feasibility of less hazardous, solvent-free synthesis of aryl-3,3′-bis(indolyl)methane derivatives under modified experimental conditions.

Acidic tetrabutylammonium hydrogen sulfate (TBAHS) act as a phase transfer catalyst and performs many organic transformations under mild conditions. It has been used for dehydration and cyclization step in Hantzsch reaction (Tripathi, Tewari, & Dwivedi, 2004). TBAHS has been applied for one-pot synthesis of pyran[2,3-c]pyrazoles via domino/Knoevenagel-hetero-Diels–Alder reaction (Parmar, Teraiya, Patel, & Talpada, 2011). It also has been used for synthesis of 3,4-diarylpyrimidin-2(1H)-ones (Shaabani, Bazgir, & Arab-Ameri, 2004), 1,8-dioxo-octahydroxanthenes (Karade, Sathe, & Kaushik, 2007), 5-substituted 1H-tetrazoles (Wang, Liu, & Cheon, 2015), and other heterocyclic compounds (Jończyk & Kuślicki, 1993; Parmar, Teraiya, Barad, Sharma, & Gupta, 2013). TBAHS is an inexpensive, safe-handleable and thermally stable substance.

For unique catalyst features of TBAHS and in continuation of our efforts to develop green and mild methodologies for the synthesis of heterocycles (Bodaghifard, Solimannejad, Asadbegi, & Dolatabadifarrahani, 2016; MobiniKhalede, Foroughifar, & Bodaghifard, 2011), herein we wish to report a mild, efficient, and green procedure for the synthesis of biologically interesting mono- and di-bisindolylmethane derivatives via the reaction of indole and aldehydes or ketones in the presence of TBAHS in solvent-free condition or using a little amount of solvent (Scheme 1).

Scheme 1. TBAHS efficiently catalyzed synthesis of bisindolylmethanes.

$$\text{DH}_1 + \text{DH}_2 \rightarrow \text{DH}_3$$

A: Bu4NHSO4 (0.1 mmol), 60 °C, EtOAc (1 mL).
B: Bu4NHSO4 (0.1 mmol), 60 °C.
2. Results and discussion

In order to determine the optimum reaction conditions, we examined the influence of the temperature, reaction time, and the amounts of TBAHS upon a model reaction between benzaldehyde (1 mmol) and indole (2 mmol) (Scheme 2). The best result was obtained with 0.1 mmol of TBAHS at 60°C using 1 mL EtOAc or in the absence of any solvent (Table 1, entry 5 and 6). Increasing the amount of catalyst to 0.2 mmol does not affect the product yield (Table 1, entry 10). Moreover, the catalyst is essential and in the absence of the catalyst, poor yield of the corresponding BIM is produced (Table 1, entry 7, 11).

Encouraged by these results, we studied the reaction of various aldehydes and ketones under optimized conditions to better understand the scope and generality of this simple procedure (Scheme 1).

A series of aromatic aldehydes and ketones underwent an electrophilic substitution reaction with indole smoothly, to afford a range of substituted bis(indolyl)methanes in good to excellent yields (Table 2, 3a–o). The results showed that the reaction proceeds very efficiently in all cases. This method is equally effective for aldehydes bearing electron withdrawing or donating groups in the aromatic rings. Furthermore, reactions of ketones with indole were satisfactorily performed by the current pathway but they need longer times and afforded lower yield of products than aldehydes due to lower reactivity of ketones. The products 3i and 3m are novel compounds and have been fully characterized by their elemental analysis, FT-IR and 1H and 13C NMR spectra. The results indicated that the method A need less time that can be related to more and faster interaction of starting materials in the presence of little amount of ethyl acetate. In the absence of ethyl acetate and solid-state manner (method B), the interaction slowed down and in longer time produced the desired products.

2.1. Experimental

All chemicals and solvents were obtained from commercial sources and used without further purification. All known organic products were identified by comparison of their physical and spectral data with those of authentic samples. Thin layer chromatography (TLC) was performed on UV-active precoated plates of silica gel (TLC Silica gel60 F254). The FTIR spectrum was recorded on a Shimadzu IR-470 spectrometer using KBr disks. The 1H and 13C NMR spectra were recorded on a Brucker Avance spectrometer operating at 400, 300 and 100, 75 MHz, respectively, in DMSO-d6 or CDCl3 with TMS as an internal standard. Coupling constants, J, were reported in Hertz units (Hz). Spin multiplicities are shown as s (singlet), br s (broad singlet), d (doublet), dd (doublet of doublet), t (triplet), and m (multiplet). Elemental analyses were performed by Vario EL equipment at Arak University.

2.1.1. General procedure for synthesis of bis(indolyl)methanes catalyzed by Bu4NHSO4

Method A: To a mixture of indole (2 mmol), aldehyde, or ketone (1 mmol) ethyl acetate (1 mL) as a solvent, Bu4NHSO4 (0.1 mmol) was added and the mixture stirred magnetically at 60°C. After complete conversion, as indicated by TLC (hexane/ethyl acetate 4:1), the reaction mixture was cooled to room temperature and crushed ice was added. The precipitate was filtered and dried under vacuum. The product was purified by recrystallization hexane–ethyl acetate (Table 2).
Method B: To a mixture of indole (2 mmol) and aldehyde or ketone (1 mmol), Bu₄NHSO₄ (0.1 mmol) was added and the mixture stirred magnetically at 60°C. After complete conversion, as indicated by TLC (hexane/ethyl acetate 4:1), the reaction mixture was cooled to room temperature and crushed ice was added. The precipitate was filtered and dried under vacuum. The product was purified by recrystallization from hexane–ethyl acetate (Table 2).
2.1.2. General procedure for synthesis of di-bis(indolyl)methanes

To a mixture of indole (4.5 mmol) and dialdehyde (1 mmol) Bu₄NHSO₄ (0.1 mmol) was added and the mixture stirred magnetically at 60°C. After complete conversion, as indicated by TLC (hexane:acetone 4:1), the reaction mixture was quenched by adding ice water (10 ml). The precipitate was filtered, evaporated, and the corresponding di-bis(indolyl)methanes were obtained in excellent yields and then recrystallized from hexane–ethyl acetate to afford pure products (Table 2, entry 9–10).

3. Conclusion

In summary, we have developed a novel, efficient, and environmentally benign method for the synthesis of pharmaceutically important bis(indolyl)methanes and di-bis(indolyl)methanes using tetrabutylammonium hydrogen sulfate in excellent yield. This new protocol has advantages over previously reported procedures such as cleaner reaction profiles, use of inexpensive catalyst, simple experimental and work-up procedure, high conversions, and high yield and chemoselectivity, hence believed to be superior over many existing synthetic methods. Also two novel BIM derivatives have been synthesized and characterized by spectroscopic data.

Supplementary material
Supplementary material for this article can be accessed here http://dx.doi.org/10.1080/23312009.2016.1188435.

Funding
This work is supported by Islamic Azad University, Arak Branch (IR).

Author details
Sayed Hossein Siadatifard1
E-mail: Siyadatifard@yahoo.com
Masumeh Abdoli-Senejani1
E-mail: mabdoli@iau-arak.ac.ir
Mohammad Ali Bodaghifard2
E-mail: mbodaghi2007@yahoo.com

1 Department of Chemistry, Islamic Azad University-Arak Branch, Arak, Iran.
2 Faculty of Science, Department of Chemistry, Arak University, Arak, Iran.

Citation information
Cite this article as: An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS, Sayed Hossein Siadatifard, Masumeh Abdoli-Senejani & Mohammad Ali Bodaghifard, Cogent Chemistry (2016), 2: 1188435.

References
Bell, R., Carmeli, S., & Sar, N. (1994). Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. Journal of Natural Products, 57, 1587–1590. http://dx.doi.org/10.1021/np0003022

Benabadji, S. H., Wen, R., Zheng, J., Dong, X., & Yuan, S. (2004). Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacologica Sinica, 25, 666–671.

Bodaghifard, M. A., Solimannejad, M., Asadbegi, S., & DolatabadiFarahani, S. (2016). Mild and green synthesis of tetrohydrobenzopyran, pyranopyrimidinone and polyhydroquinoline derivatives and DFT study on product structures. Research on Chemical Intermediates, 42, 1165–1179. http://dx.doi.org/10.1007/s11644-015-2079-1

Chen, D., Yu, L., & Wang, P. G. (1996). Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones. Tetrahedron Letters, 37, 4467–4470. http://dx.doi.org/10.1016/0040-4039(96)00958-6

Fahy, E., Potts, B. C. M., Faulkner, D. J., & Smith, K. (1991). 6-bromotryptamine derivatives from the gulf of California tunicate didemnum candidum. Journal of Natural Products, 54, 564–569. http://dx.doi.org/10.1021/np50074032

Frouzabad, H., Iranpoor, N., & Jafari, A. A. J. (2006). Aluminiumdodecatungstophosphate (AlW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives. Journal of Molecular Catalysis A: Chemical, 244, 168–172. http://dx.doi.org/10.1016/j.jolca.2005.09.005

Ge, X., Fores, F. A., & Yanoii, S. (1999). Induction of apoptosis in MCF-7 cells by indole-3-carbinol is independent of p53 and box. Anticancer Research, 19, 3199–3203.

Gong, Y., Firestone, G. L., & Bjeldanes, L. F. (2006). 3,3′-diindolylmethane is a novel topoisomerase II catalytic inhibitor that induces s-phase retardation and mitotic delay in human hepatoma HepG2 cells. Molecular Pharmacology, 69, 1320–1327. http://dx.doi.org/10.1124/mol.105.018978

Gong, Y., Sohn, H., Xue, L., Firestone, G. L., & Bjeldanes, L. F. (2006). 3,3′-diindolylmethane is a novel mitochondrial ATP synthase inhibitor that can induce p21Cip1/Waf1 expression by induction of oxidative stress in human breast cancer cells. Cancer Research, 66, 4880–4887. http://dx.doi.org/10.1158/0008-5472.CAN-05-4162

Haghighi, M., & Nikofoor, K. J. (2014). Nano TiO2/SiO2: An efficient and reusable catalyst for the synthesis of oxindole derivatives. Journal of Saudi Chemical Society, retrieved from: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=llpcGOYAAAAJ&citation_for_view=llpcGOYAAAAJ:ufrVoPGSRksC. doi:10.1016/j.jscs.2014.09.002

He, X., Hu, S., Liu, K., Guo, Y., Xu, J., & Shao, S. (2006). Oxidized bis(indolyl)methane: A simple and efficient chromogenic-sensing molecule based on the proton transfer signaling mode. Organic Letters, 8, 333–336. http://dx.doi.org/10.1021/ol052770r

Hojati, S. F., Zeinali, T., & Nematdoust, Z. (2013). A novel method for synthesis of bis(indolyl)methanes using 1,3-dibromo-5,5-dimethylhydantoin as a highly efficient catalyst under solvent-free conditions. Bulletin of the Korean Chemical Society, 34, 117–120. http://dx.doi.org/10.5012/bkcs.2013.34.1117

Ichite, N., Chougule, M. B., Jackson, T., Fulzele, S. V., Safe, S., & Singh, M. (2009). Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clinical Cancer Research, 15, 543–552. http://dx.doi.org/10.1158/1078-0432.CCR-08-1558
Irie, T., Kubushiri, K., Suzuki, K., Tsukazaki, K., Umezawa, K., & Nozawa, S. (1999). Inhibition of attachment and chemotactic invasion of uterine endometrial cancer cells by a new vinca alkaloid, conophylline. Anticancer Research, 19, 3063–3066.

Joriczyk, A., & Kulisti, T. (1993). A simple synthesis of 2-phenylethynyl- and 2-phenylthioethynyl-2-substituted phenylecetonitriles under phase-transfer catalytic (PTC) conditions. Synthetic Communications, 23, 1801–1811. http://dx.doi.org/10.1080/00397919308011280

Kalantar, M. (2013). Synthesis of 1,8-dioxo-octahydroxanthene and bis(indolyl)methanes catalyzed by [Et₃NH][H₂PO₄] as a cheap and mild acidic ionic liquid. Arabian Journal of Chemistry, 5, 319–323. Retrieved from: http://www.sciencedirect.com/science/article/pii/S1878352110001802

Kamal, A., Khan, M. N. A., Reddy, K. S., Srikanth, Y. V. V., Ahmed, S. K., Kumar, K. P., & Murthy, U. S. N. (2009). An efficient synthesis of bis(indolyl)methanes and evaluation of their antimicrobial activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 559–565. http://dx.doi.org/10.1080/14756360802292974

Karde, H. N., Sathe, M., & Kausik, M. P. (2007). An efficient synthesis of 1,8-dioxo-octahydroxanthene using tetrabutylammonium hydrogen sulfate. Arkivoc, xiii, 252–258.

Kabayashi, M., Aoki, S., Gato, K., Matsunami, K., Kurosu, M., & Kitagawa, I. (1994). Trisindoline, a new antibiotic indole trimer, produced by a bacterium of Vibrio sp. separated from the marine sponge Hyrtios alatum. Chemical & Pharmaceutical Bulletin, 42, 2449–2451. http://dx.doi.org/10.1248/cpb.62.2449

Kuete, J. T. (2006). A general approach to indoles: Practical applications for the synthesis of highly functionalized pharmaphoraphes. CHIMIA International Journal for Chemistry, 60, 543–553. http://dx.doi.org/10.2533/chimia.2006.543

Kundu, P., & Maiti, G. (2008). A mild and versatile synthesis of bis(indolyl)methanes under phase-transfer catalytic (PTC) conditions. Bioorganic & Medicinal Chemistry Letters, 18, 441–445. http://dx.doi.org/10.1016/j.bmcl.2006.09.019

Ling, J., & Won-Ru, C. (2004). U.S. Patent WO2004021847 A2. Martínez, R., Espinosa, A., Tarragó, A., & Molina, P. (2006). Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron, 64, 2184–2191. http://dx.doi.org/10.1016/j.tet.2007.02.025

Mobinikhaledi, A., Foroughifard, N., & Bodaghfard, M. A. (2011). Simple and efficient method for three-component synthesis of spirooxindoles in aqueous and solvent-free media. Synthetic Communications, 41, 441–450. http://dx.doi.org/10.1080/003979110035887507

Nachshon-Kedmi, M., Yannai, S., & Fares, F. A. (2004). Induction of apoptosis in human prostate cancer cell line, PC3, by 3,3′-diindolylmethane through the mitochondrial pathway. British Journal of Cancer, 91, 1358–1363. http://dx.doi.org/10.1038/sj.bjc.6602145

Novak, T. J., Kramer, D. N., Klapfer, H., Daasch, L. W., & Muri, B. L. (1976). Formation of dyes derived from diindolylpyridylmethanes. The Journal of Organic Chemistry, 41, 870–875. http://dx.doi.org/10.1021/jo00867a020

Parmar, N. J., Teraiya, S. B., Barad, H. A., Sharma, D., & Gupta, V. K. (2013). Efficient one-pot synthesis of precursors of some novel aminocromone annulated heterocycles via domino knoevenagel–hetero-diels–alder reaction. Synthetic Communications, 43, 1577–1586. http://dx.doi.org/10.1080/00397911.2011.652755

Parmar, N. J., Teraiya, S. B., Patel, R. A., & Talpada, N. P. (2011). Tetrabutylammonium hydrogen sulfate mediated domino reaction: Synthesis of novel benzopyran-annulated pyrano[2,3-c]pyrazoles. Tetrahedron Letters, 52, 2853–2856. http://dx.doi.org/10.1016/j.tetlet.2011.03.108

Pos, D. M., Desai U. V., Tripathe, T. S., & Wadagankor, P. P. (2000). A mild, expedient, solventless synthesis of bis(indolyl)methanes using silica sulfuric acid as a reusable catalyst. Arkivoc, xii, 75–80.

Qu, H.-E., Xiao, C., Wang, N., Yu, K.-H., Hu, Q.-S., & Liu, L.-X. (2011). RuCl₃·3H₂O catalyzed reactions: Facile synthesis of bis(indolyl)methanes under mild conditions. Molecules, 16, 3855–3868. http://dx.doi.org/10.3390/molecules16053855

Ramesh, C., Banerjee, J., Po, R., & Das, B. (2003). Silica supported sodium hydrogen sulfate and amberlyst-15: Two efficient heterogeneous catalysts for facile synthesis of bis- and tris (3H-indol-3-yl) methanes from Indoles and carbonyl compounds [1]. Advanced Synthesis & Catalysis, 345, 557–559. http://dx.doi.org/10.1002/adsc.200303022

Safe, S., Papinini, S., & Chintiharlapalli, S. (2008). Cancer chemotheraphy with indole-3-carbinol, bis(3-indolyl) methane and synthetic analogs. Cancer Letters, 269, 326–338. http://dx.doi.org/10.1016/j.canlet.2008.04.021

Shaobani, A., Baig, A., & Aarabi, M. (2004). Tetrabutylammonium hydrogen sulfate: An efficient catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Phosphorus, Sulfur, and Silicon and the Related Elements, 179, 2169–2175. http://dx.doi.org/10.1080/10426500490474615

Shiri, M., Zolfaghi, M. A., Kruger, H. G., & Tanbakouchian, Z. (2010). Bis- and trisindolylmethanes (BIMs and TIMs). Chemical Reviews, 110, 2250–2293. http://dx.doi.org/10.1021/cr900195a

Sivaprasad, G., Perumal, P. T., Prabavathy, V. R., & Mathivanan, N. (2006). Synthesis and anti-microbial activity of pyrazolylbisindoles—promising anti-fungal compounds. Bioorganic & Medicinal Chemistry Letters, 16, 6302–6305. http://dx.doi.org/10.1016/j.bmcl.2006.09.019

Sujaatha, K., Perumal, P. T., Murulidharan, D., & Rajendran, M. (2009). Synthesis, analgesic and anti-inflammatory activities of bis(indolyl)methanes. Indian Journal of Chemistry, 48B, 267–272.

Sung, D. C., Yoon, K., Chintharlapalli, S., Abdelrahim, M., Lei, P., Hamilton, S., ... Safe, S. (2007). Nur77 agonists induce proapoptotic genes and responses in colon cancer cells through nuclear receptor–dependent and nuclear receptor–independent pathways. Cancer Research, 67, 674–683.

Tripathi, R. P., Tewari, N., & Daviedi, N. (2004). Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Letters, 45, 9011–9014.

Valeria, L., & Ernesto, M. (1998). EP0887348 A1.

Veisi, H., Hemmati, S., & Veisi, H. (2009). Highly efficient method for synthesis of bis(indolyl)methanes catalyzed by FeCl₃. Journal of the Chinese Chemical Society, 56, 240–245. http://dx.doi.org/10.1002/jcsc.v56.5.6

Wang, Z., Liu, Z., & Cheon, S. H. (2015). Facile synthesis of 5-substituted 1H-tetrazoles catalyzed by tetrabutylammonium hydrogen sulfate in water. Bulletin of the Korean Chemical Society, 36, 198–202. http://dx.doi.org/10.1002/bkcs.2015.36.002

Xie, Z.-B., Sun, D.-Zh., Jiang, G.-F., & Le, Zh-G. (2014). Facile synthesis of bis(indolyl)methanes catalyzed by α-chymotrypsin. Molecules, 19, 1665–1677. http://dx.doi.org/10.3390/molecules19121665

Zahir, M., Abdin, Y., & Salama, H. (2008). Eco-friendly and efficient synthesis of bis (indolyl) methanes under microwave irradiation. Arkivoc, xii, 256–265.
