Schubert polynomials and the inhomogeneous TASEP on a ring

Donghyun Kim\(^1\), and Lauren K. Williams\(^2\)

\(^1\)Department of Mathematics, University of California at Berkeley, CA
\(^2\)Department of Mathematics, Harvard University, Cambridge, MA

Abstract. Consider a lattice of \(n\) sites arranged around a ring, with the \(n\) sites occupied by particles of weights \(\{1, 2, \ldots, n\}\); the possible arrangements of particles in sites thus corresponds to the \(n!\) permutations in \(S_n\). The inhomogeneous totally asymmetric simple exclusion process (or TASEP) is a Markov chain on the set of permutations, in which two adjacent particles of weights \(i < j\) swap places at rate \(x_i - y_{n+1-j}\) if the particle of weight \(j\) is to the right of the particle of weight \(i\). (Otherwise nothing happens.) In the case that \(y_i = 0\) for all \(i\), the stationary distribution was conjecturally linked to Schubert polynomials by Lam-Williams, and explicit formulas for steady state probabilities were subsequently given in terms of multiline queues by Ayyer-Linusson and Arita-Mallick. In the case of general \(y_i\), Cantini showed that \(n\) of the \(n!\) states have probabilities proportional to double Schubert polynomials. In this paper we introduce the class of evil-avoiding permutations, which are the permutations avoiding the patterns 2413, 4132, 4213 and 3214. We show that there are \(\frac{(2+\sqrt{2})^{n-1}-(2-\sqrt{2})^{n-1}}{2}\) evil-avoiding permutations in \(S_n\), and for each evil-avoiding permutation \(w\), we give an explicit formula for the steady state probability \(\psi_w\) as a product of double Schubert polynomials. We also show that the Schubert polynomials that arise in these formulas are flagged Schur functions, and give a bijection in this case between multiline queues and semistandard Young tableaux.

Keywords: Schubert polynomials, TASEP, multiline queues

1 Introduction

In recent years, there has been a lot of work on interacting particle models such as the asymmetric simple exclusion process (ASEP), a model in which particles hop on a one-dimensional lattice subject to the condition that at most one particle may occupy a given site. The ASEP on a one-dimensional lattice with open boundaries has been linked to Askey-Wilson polynomials and Koornwinder polynomials [8, 3, 7], while the ASEP on a ring has been linked to Macdonald polynomials [5, 6]. The inhomogeneous totally...
asymmetric simple exclusion process (TASEP) is a variant of the exclusion process on the
ring in which the hopping rate depends on the weight of the particles. In this paper
we build on works of Lam-Williams [10], Ayyer-Linusson [2], and especially Cantini [4]
to give formulas for many steady state probabilities of the inhomogeneous TASEP on a
ring in terms of Schubert polynomials.

Definition 1.1. Consider a lattice with \(n \) sites arranged in a ring. Let \(\text{St}(n) \) denote the
\(n! \) labelings of the lattice by distinct numbers \(1, 2, \ldots, n \), where each number \(i \) is called
a particle of weight \(i \). The inhomogeneous TASEP on a ring of size \(n \) is a Markov chain with
state space \(\text{St}(n) \) where at each time \(t \) a swap of two adjacent particles may occur: a
particle of weight \(i \) on the left swaps its position with a particle of weight \(j \) on the right
with transition rate \(r_{i,j} \) given by:

\[
r_{i,j} = \begin{cases}
 x_i - y_{n+1-j} & \text{if } i < j \\
 0 & \text{otherwise}
\end{cases}
\]

In what follows, we will identify each state with a permutation in \(S_n \). Following [10, 4], we multiply all steady state probabilities for \(\text{St}(n) \) by the same constant, obtaining
"renormalized" steady state probabilities \(\psi_w \), so that

\[
\psi_{123...n} = \prod_{i<j} (x_i - y_{n+1-j})^{j-i-1}.
\]

(1.1)

See Figure 1 for the state diagram when \(n = 3 \).

In the case that \(y_i = 0 \), Lam and Williams [10] studied this model\(^1\) and conjectured
that after a suitable normalization, each steady state probability \(\psi_w \) can be written as a
monomial factor times a positive sum of Schubert polynomials, see Table 1 and Table 2. They also gave an explicit formula for the monomial factor, and conjectured that under
certain conditions on \(w \), \(\psi_w \) is a multiple of a particular Schubert polynomial. Subse-
quently Ayyer and Linusson [2] gave a conjectural combinatorial formula for the sta-
tionary distribution in terms of multiline queues, which was proved by Arita and Mallick
[1]. In [4], Cantini introduced the version of the model given in Definition 1.1\(^2\) with \(y_i \)
general, and gave a series of exchange equations relating the components of the stationary
distribution. This allowed him to give explicit formulas for the steady state probabilities
for \(n \) of the \(n! \) states as products of double Schubert polynomials.

In this paper we build on [4, 2, 1], and give many more explicit formulas for steady
state probabilities in terms of Schubert polynomials: in particular, we give a formula for
\(\psi_w \) as a product of (double) Schubert polynomials whenever \(w \) is evil-avoiding, that is, it

\(^1\)However the convention of [10] was slightly different; it corresponds to labeling states by the inverse
of the permutations we use here.

\(^2\)We note that in [4], the rate \(r_{i,j} \) was \(x_i - y_j \) rather than \(x_i - y_{n+1-j} \) as we use in Definition 1.1.
Schubert polynomials and TASEP

\[x_1 - y_1 \]
\[x_2 - y_1 \]
\[x_1 + x_2 - y_1 - y_2 \]
\[x_1 - y_2 \]
\[x_1 - y_1 \]
\[x_1 + x_2 - y_1 - y_2 \]
\[x_1 - y_1 \]
\[x_1 - y_1 \]
\[x_1 - y_2 \]
\[x_1 - y_1 \]
\[x_1 - y_2 \]
\[x_2 - y_1 \]
\[x_1 + x_2 - y_1 - y_2 \]
\[x_1 - y_1 \]
\[x_1 - y_1 \]
\[x_1 - y_1 \]
\[x_1 + x_2 - y_1 - y_2 \]

Figure 1: The state diagram for the inhomogeneous TASEP on \(\text{St}(3) \), with transition rates shown in blue, and steady state probabilities \(\psi_w \) in red. Though not shown, the transition rate \(312 \to 213 \) is \(x_2 - y_1 \) and the transition rate \(231 \to 132 \) is \(x_1 - y_2 \).

Table 1: The renormalized steady state probabilities for \(n = 4 \).

State \(w \)	Probability \(\psi_w \)
1234	\((x_1 - y_1)^2(x_1 - y_2)(x_2 - y_1)\)
1324	\((x_1 - y_1)\mathcal{S}_{1432}\)
1342	\((x_1 - y_1)(x_2 - y_1)\mathcal{S}_{1423}\)
1423	\((x_1 - y_1)(x_1 - y_2)(x_2 - y_1)\mathcal{S}_{1243}\)
1243	\((x_1 - y_2)(x_1 - y_1)\mathcal{S}_{1342}\)
1432	\(\mathcal{S}_{1423}\mathcal{S}_{1342}\)

avoids the patterns 2413, 4132, 4213 and 3214.\(^3\) We show that there are \(\frac{(2+\sqrt{2})^{n-1}+(2-\sqrt{2})^{n-1}}{2} \) evil-avoiding permutations in \(S_n \), so this gives a substantial generalization of Cantini’s previous result [4] in this direction. We also prove the monomial factor conjecture from [10]. Finally, we show that the Schubert polynomials that arise in our formulas are flagged Schur functions, and give a bijection in this case between multiline queues and semistandard Young tableaux.

In order to state our main results, we need a few definitions. First, we say that two states \(w \) and \(w' \) are equivalent, and write \(w \sim w' \), if one state is a cyclic shift of the other.

\(^3\)We call these permutations evil-avoiding because if one replaces \(i \) by 1, \(e \) by 2, \(l \) by 3, and \(v \) by 4, then evil and its anagrams vile, veil and leiv become the four patterns 2413, 4132, 4213 and 3214. Note that Leiv is a name of Norwegian origin meaning “heir.”
Table 2: The renormalized steady state probabilities for \(n = 5 \), when each \(y_i = 0 \). In the table, \(x^{(a,b,c)} \) denotes \(x_1^a x_2^b x_3^c \).

State \(w \)	Probability \(\psi_w \)
12345	\(x^{(6,3,1)} \)
12354	\(x^{(5,2,0)} S_{13452} \)
12435	\(x^{(4,1,0)} S_{14532} \)
12453	\(x^{(4,1,1)} S_{14523} \)
12534	\(x^{(5,2,1)} S_{12453} \)
12543	\(x^{(3,0,0)} S_{14523} S_{13452} \)
13245	\(x^{(3,1,1)} S_{15423} \)
13254	\(x^{(2,0,0)} S_{15423} S_{13452} \)
13425	\(x^{(3,2,1)} S_{15243} \)
13452	\(x^{(3,3,1)} S_{15234} \)
13524	\(x^{(2,1,0)} (S_{164325} + S_{25431}) \)
13542	\(x^{(2,2,0)} S_{15234} S_{13452} \)
14235	\(x^{(4,2,0)} S_{13542} \)
14253	\(x^{(4,2,1)} S_{12543} \)
14325	\(x^{(1,0,0)} (S_{1753246} + S_{265314} + S_{2743156} + S_{356214} + S_{364215} + S_{365124}) \)
14352	\(x^{(1,1,0)} S_{15234} S_{14532} \)
14523	\(x^{(4,3,1)} S_{12534} \)
14532	\(x^{(1,1,1)} S_{15234} S_{14523} \)
15234	\(x^{(5,3,1)} S_{12354} \)
15243	\(x^{(3,1,0)} (S_{146325} + S_{24531}) \)
15324	\(x^{(2,1,1)} (S_{15432} + S_{164235}) \)
15342	\(x^{(2,2,1)} S_{15234} S_{12453} \)
15423	\(x^{(3,2,0)} S_{12534} S_{13452} \)
15432	\(S_{15234} S_{14523} S_{13452} \)

In the table, \(x^{(a,b,c)} \) denotes \(x_1^a x_2^b x_3^c \).

E.g. \((w_1, \ldots, w_n) \sim (w_2, \ldots, w_n, w_1) \). Because of the cyclic symmetry inherent in the definition of the TASEP on a ring, it is clear that the probabilities of states \(w \) and \(w' \) are equal whenever \(w \sim w' \). We will therefore often assume, without loss of generality, that \(w_1 = 1 \). Note that up to cyclic shift, \(St(n) \) contains \((n - 1)! \) states.

Definition 1.2. Let \(w = (w_1, \ldots, w_n) \in St(n) \). We say that \(w \) is a \(k \)-Grassmannian permutation, and we write \(w \in St(n, k) \) if: \(w_1 = 1 \); \(w \) is evil-avoiding, i.e. \(w \) avoids the patterns 2413, 3214, 4132, and 4213; and \(w^{-1} \) has exactly \(k \) descents, equivalently, there are exactly \(k \) letters \(a \) in \(w \) such that \(a + 1 \) appears to the left of \(a \) in \(w \).

Definition 1.3. We associate to each \(w \in St(n, k) \) a sequence of partitions \(\Psi(w) = (\lambda^1, \ldots, \lambda^k) \) as follows. Write the Lehmer code of \(w^{-1} \) as \(\text{code}(w^{-1}) = c = (c_1, \ldots, c_n) \);
Schubert polynomials and TASEP

since w^{-1} has k descents, c has k descents in positions we denote by a_1, \ldots, a_k. We also set $a_0 = 0$. For $1 \leq i \leq k$, we define $\lambda^i = (n - a_i)^{a_i} - (0, \ldots, 0, c_{a_i-1+1}, c_{a_i-1+2}, \ldots, c_{a_i})$.

See Table 3 for examples of the map $\Psi(w)$.

Definition 1.4. Given a positive integer n and a partition λ of length $\leq (n-2)$, we define an integer vector $g_n(\lambda) = (v_1, \ldots, v_n)$ of length n as follows. Write $\lambda = (\mu^1_1, \ldots, \mu^l_l)$ where $k_i > 0$ and $\mu_1 > \cdots > \mu_l$. We assign values to the entries (v_1, \ldots, v_n) by performing the following step for i from 1 to l.

- (Step i) Set $v_{n-\mu_i}$ equal to μ_i. Moving to the left, assign the value μ_i to the first $(k_i - 1)$ unassigned components.

After performing Step l, we assign the value 0 to any entry v_j which has not yet been given a value.

Note that in Step 1, we set $v_{n-\mu_1}, v_{n-\mu_1-1}, \ldots, v_{n-\mu_1-k_1+1}$ equal to μ_1.

Example 1.5.

\[
g_5((2, 1, 1)) = (0, 1, 2, 1, 0) \quad g_6((3, 2, 2, 1)) = (0, 2, 3, 2, 1, 0) \quad g_6((3, 1, 1)) = (0, 0, 3, 1, 1, 0).
\]

The main result of this paper is **Theorem 3.1**. We state here our main result in the case that each $y_i = 0$. The definition of Schubert polynomial can be found in Section 2.

Theorem 1.6. Let $w \in \text{St}(n, k)$ be a k-Grassmannian permutation, as in Definition 1.2, and let $\Psi(w) = (\lambda^1, \ldots, \lambda^k)$. Adding trailing 0’s if necessary, we view each partition λ^i as a vector in $\mathbb{Z}_{\geq 0}^{n-2}$, and set $\mu := (\binom{n-1}{2}, \binom{n-2}{2}, \ldots, \binom{2}{2}) - \sum_{i=1}^k \lambda^i$. Then when each $y_i = 0$, the renormalized steady state probability ψ_w is given by

\[
\psi_w = x^\mu \prod_{i=1}^k g_n(\lambda^i),
\]

where $g_n(\lambda^i)$ is the Schubert polynomial associated to the permutation with Lehmer code $g_n(\lambda^i)$, and g_n is given by Definition 1.4.

Equivalently, writing $\lambda^i = (\lambda^i_1, \lambda^i_2, \ldots)$, we have that

\[
\psi_w = x^\mu \prod_{i=1}^k s_{\lambda^i}(X_{n-\lambda^i_1}, X_{n-\lambda^i_2}, \ldots),
\]

where $s_{\lambda^i}(X_{n-\lambda^i_1}, X_{n-\lambda^i_2}, \ldots)$ denotes the flagged Schur polynomial associated to shape λ^i, where the semistandard tableaux entries in row j are bounded above by $n - \lambda^i_j$.
We illustrate Theorem 1.6 in Table 3 in the case that $n = 5$.

Proposition 1.7. The number of evil-avoiding permutation in S_n satisfies the recurrence $e(1) = 1, e(2) = 2, e(n) = 4e(n - 1) - 2e(n - 2)$ for $n \geq 3$, and is given explicitly as

$$
e(n) = \frac{(2 + \sqrt{2})^{n-1} + (2 - \sqrt{2})^{n-1}}{2}.
$$

(1.2)

This sequence begins as 1, 2, 6, 20, 68, 232, and occurs in Sloane’s encyclopedia as sequence A006012. The cardinalities $|\text{St}(n,k)|$ also occur as sequence A331969.

Remark 1.8. Let $w(n,h) := (h, h-1, \ldots, 2, 1, h+1, h+2, \ldots, n) \in \text{St}(n)$. In [4, Corollary 16], Cantini gives a formula for the steady state probability of state $w(n,h)$, as a trivial factor times a product of certain (double) Schubert polynomials. Note that our main result is a significant generalization of [4, Corollary 16]. For example, for $n = 4$, Cantini’s result gives a formula for the probabilities of three states – $(1, 2, 3, 4), (1, 3, 4, 2),$ and
(1, 4, 3, 2). And for \(n = 5 \), his result gives a formula for four states – \((1, 2, 3, 4, 5), (1, 3, 4, 5, 2), (1, 4, 5, 3, 2)\), and \((1, 5, 4, 3, 2)\). On the other hand, Theorem 1.6 gives a formula for all six states when \(n = 4 \) (see Table 1) and 20 of the 24 states when \(n = 5 \). Asymptotically, since the number of special states in \(S_n \) is given by (1.2), Theorem 1.6 gives a formula for roughly \(\frac{(2 + \sqrt{2})^{n-1}}{2} \) out of the \((n-1)!\) states of \(\text{St}(n) \).

Another point worth mentioning is that the Schubert polynomials that occur in the formulas of [4] are all of the form \(S_{\sigma(a,n)} \), where \(\sigma(a,n) \) denotes the permutation \((1, a+1, a+2, \ldots, n, 2, 3, \ldots, n)\). However, many of the Schubert polynomials arising as factors of steady probabilities are not of this form. Already we see for \(n = 4 \) the Schubert polynomials \(S_{1432} \) and \(S_{1243} \), which are not of this form.

Note that it is common to consider a version of the inhomogeneous TASEP in which one allows multiple particles of each weight \(i \). This is the version studied in several of the previous references, and also in [11] (which primarily considers particles of types 0, 1 and 2). We plan to work in this generality in our subsequent work. However, since our focus here is on Schubert polynomials, we restrict to the case of permutations.

2 Background on permutations and Schubert polynomials

We let \(S_n \) denote the symmetric group on \(n \) letters, which is a Coxeter group generated by the simple reflections \(s_1, \ldots, s_{n-1} \), where \(s_i \) is the simple transposition exchanging \(i \) and \(i+1 \). We let \(w_0 = (n, n-1, \ldots, 2, 1) \) denote the longest permutation.

For \(1 \leq i < n \), we have the divided difference operator \(\partial_i \) which acts on polynomials \(P(x_1, \ldots, x_n) \) as follows:

\[
(\partial_i P)(x_1, \ldots, x_n) = \frac{P(\ldots, x_i, x_{i+1}, \ldots) - P(\ldots, x_{i+1}, x_i, \ldots)}{x_i - x_{i+1}}.
\]

If \(s_{i_1} \ldots s_{i_m} \) is a reduced expression for a permutation \(w \), then \(\partial_{i_1} \ldots \partial_{i_m} \) depends only on \(w \), so we denote this operator by \(\partial_w \).

Definition 2.1. Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) be two sets of variables, and let

\[
\Delta(x, y) = \prod_{i+j \leq n} (x_i - y_j).
\]

To each permutation \(w \in S_n \) we associate the double Schubert polynomial

\[
\mathcal{S}_w(x, y) = \partial_{w^{-1}w_0}\Delta(x, y),
\]

where the divided difference operator acts on the \(x \)-variables.
Definition 2.2. A partition $\lambda = (\lambda_1, \ldots, \lambda_r)$ is a weakly decreasing sequence of positive integers. We say that r is the length of λ, and denote it $r = \text{length}(\lambda)$.

Definition 2.3. The diagram or Rothe diagram of a permutation w is

$$D(w) = \{(i, j) \mid 1 \leq i, j \leq n, w(i) > j, w^{-1}(j) > i\}.$$

The sequence of the numbers of the points of the diagram in successive rows is called the Lehmer code or code $c(w)$ of the permutation. We also define $c^{-1}(l)$ to be the permutation whose Lehmer code is l. The partition obtained by sorting the components of the code is called the shape $\lambda(w)$ of w.

Example 2.4. If $w = (1, 3, 5, 4, 2)$ then $c(w) = (0, 1, 2, 1, 0)$ and $\lambda(w) = (2, 1, 1)$.

Definition 2.5. We say that a permutation w is vexillary if and only if there does not exist a sequence $i < j < k < \ell$ such that $w(j) < w(i) < w(\ell) < w(i)$. Such a permutation is also called 2143-avoiding.

Definition 2.6. We define the flag of a vexillary permutation w, starting from its code $c(w)$, in the following fashion. If $c_i(w) \neq 0$, let e_i be the greatest integer $j \geq i$ such that $c_j(w) \geq c_i(w)$. The flag $\phi(w)$ is then the sequence of integers e_i, ordered to be increasing.

Definition 2.7. Let X_i denote the family of indeterminates x_1, \ldots, x_i. For d_1, \ldots, d_n a weakly increasing sequence of n integers, we define the flagged Schur function

$$s_\lambda(X_{d_1}, \ldots, X_{d_n}) = \sum_T x^{\text{type}(T)},$$

where the sum runs over the set of semistandard tableaux T with shape λ for which the entries in the ith row are bounded above by d_i.

There is also a notion of flagged double Schur polynomials. One can define them in terms of tableaux or via a Jacobi-Trudi type formula [12, Section 2.6.5].

Theorem 2.8. [12, Corollary 2.6.10] If w is a vexillary permutation with shape $\lambda(w)$ and with flags $\phi(w) = (f_1, \ldots, f_m)$ and $\phi(w^{-1}) = (g_1, \ldots, g_m)$, then we have

$$\mathcal{G}_w(x; y) = s_\lambda(w)(X_{f_1} - Y_{g_m}, \ldots, X_{f_m} - Y_{g_1}),$$

i.e. the double Schubert polynomial of w is a flagged double Schur polynomial.
3 Main results

Let \(w \in S_n \) be a state. In what follows, we write \(a \rightarrow b \rightarrow c \) if the letters \(a, b, c \) appear in cyclic order in \(w \). So for example, if \(w = 1423 \), we have that \(1 \rightarrow 2 \rightarrow 3 \) and \(2 \rightarrow 3 \rightarrow 4 \), but it is not the case that \(3 \rightarrow 2 \rightarrow 1 \) or \(4 \rightarrow 3 \rightarrow 2 \).

\[
xyFact(w) = \prod_{i=1}^{n-2} \prod_{k>i+1} (x_1 - y_{n+1-k}) \cdots (x_i - y_{n+1-k}). \tag{3.1}
\]

The following is our main theorem; when each \(y_i = 0 \), it reduces to Theorem 1.6.

Theorem 3.1. Let \(w \in \text{St}(n,k) \), and write \(\Psi(w) = (\lambda^1, \ldots, \lambda^k) \). Then the (renormalized) steady state probability is given by

\[
\psi_w = xyFact(w) \prod_{i=1}^{k} g_n(\lambda^i),
\]

where \(g_n(\lambda^i) \) is the double Schubert polynomial associated to the permutation with Lehmer code \(g_n(\lambda^i) \), and \(g_n \) is given by Definition 1.4.

We also prove the monomial factor conjecture from [10]. Suppose that \(y_i = 0 \) for all \(i \). Given a state \(w \), let \(a_i(w) \) be the number of integers greater than \((i+1)\) on the clockwise path from \((i+1)\) to \(i \). Let \(\eta(w) \) be the largest monomial that can be factored out of \(\psi_w \). The following statement was conjectured in [10, Conjecture 2].

Theorem 3.2. Let \(w \in \text{St}(n) \). Then

\[
\eta(w) = \prod_{i=1}^{n-2} x_i^{a_i(w) + \cdots + a_{n-2}(w)}.
\]

4 Multiline queues and semistandard tableaux

It was proved in [1] that when each \(y_i = 0 \), the steady state probabilities \(\psi_w \) for the TASEP on a ring can be expressed in terms of the multiline queues of Ferrari and Martin [9]. On the other hand, we know from Theorem 1.6 that when \(w \in \text{St}(n,1) \) (i.e. \(w^{-1} \) is a Grassmann permutation and \(w_1 = 1 \)), \(\psi_w \) equals a monomial times a single flagged Schur polynomial. In this section we will explain that result by giving a bijection between the relevant multiline queues and the corresponding semistandard tableaux.

Definition 4.1. Fix positive integers \(L \) and \(n \). A multiline queue \(Q \) is an \(L \times n \) array in which each of the \(Ln \) positions is either vacant or occupied by a ball. We say it has content \(\mathbf{m} = (m_1, \ldots, m_n) \) if it has \(m_1 + \cdots + m_i \) balls in row \(i \) for \(1 \leq i \leq n \). We number the rows from top to bottom from 1 to \(L \), and the columns from right to left from 1 to \(n \).
Definition 4.2. Given an $L \times n$ multiline queue Q, the bully path projection on Q is, for each row r with $1 \leq r \leq L - 1$, a particular matching of balls from row r to row $r + 1$, which we now define. If ball b is matched to ball b_0 in the row below then we connect b and b_0 by the shortest path that travels either straight down or from left to right (allowing the path to wrap around the cylinder if necessary). Here each ball is assigned a class, and matched according to the following algorithm:

- All the balls in the first row are defined to be of class 1.
- Suppose we have matched all the balls in rows $1, 2, \ldots, r - 1$ and have assigned a class to all balls in rows $1, 2, \ldots, r$. We now consider the balls in rows r.
- Pick any order of the balls in row r such that balls with smaller labels come before balls with larger labels. Consider the balls in this order; suppose we are considering a ball b of class i in row r. If there is an unmatched ball directly below b in row $r + 1$, we let $M(b)$ be that ball; otherwise we move to the right in row $r + 1$ and let $M(b)$ be the first unmatched ball that we find (wrapping around from column 1 to n if necessary). We match b to ball $M(b)$ and say that $M(b)$ is of class i.
- The previous step gives a matching of all balls in row r to balls below in row $r + 1$. We assign class $r + 1$ to any balls in row $r + 1$ that were not yet assigned a class. We now repeat the process and consider the balls in row $r + 1$.

After completing the bully path projection for Q, let $w = (w_1, \ldots , w_n)$ be the labeling of the balls read from right to the left in row L (where a vacancy is denoted by $L + 1$). We say that Q is a multiline queue of type w and let $MLQ(w)$ denote the set of all multiline queues of type w. We also consider a type of row r in Q to be the labeling of the balls read from right to the left in row r (where a vacancy is denoted by $r + 1$).

A vacancy in Q is called i-covered if it is traversed by a path starting on row i, but not traversed by any path starting on row i' such that $i' < i$.

See Figure 2 for an example.

![Figure 2: A multiline queue of type (1, 2, 4, 3, 5), and the corresponding semistandard tableau under the bijection in Proposition 4.7.](image)

We define a weight $wt(Q)$ for multiline queues. It was first introduced in [2].
Definition 4.3. Given an \(L \times n \) multiline queue \(Q \), let \(v_r \) be the number of vacancies in row \(r \) and let \(z_{r,i} \) be the number of \(i \)-covered vacancies in row \(r \). Set \(V_i = \sum_{j=i+1}^{L} v_j \). We define
\[
\text{wt}(Q) = \prod_{i=1}^{L-1} (x_i^{V_i}) \prod_{1 \leq i < r \leq L} (\frac{x_r}{x_i})^{z_{r,i}}.
\]

Example 4.4. The multiline queue \(Q \) in Figure 2 has a 1-covered vacancy in row 2, a 2-covered vacancy in row 3 and a 3-covered vacancy in row 4. The weight of \(Q \) is
\[
\text{wt}(Q) = x_3^{3+2+1}x_2^{2+1}x_1^{1}(\frac{x_2}{x_1})(\frac{x_3}{x_2})(\frac{x_4}{x_3}) = x_1^5x_2^3x_3x_4.
\]

The following result was conjectured in [2] and proved in [1].

Theorem 4.5. [1] Consider the inhomogeneous TASEP on a ring (with each \(y_i = 0 \)). We have
\[
\psi_w = \sum_{Q \in MLQ(w)} \text{wt}(Q).
\]

We now give a (weight-preserving up to a constant factor) bijection between multiline queues in \(MLQ(w) \) and certain semistandard tableaux, when \(w \in \text{St}(n,1) \), i.e. \(w^{-1} \) is a Grassmann permutation and \(w_1 = 1 \).

Definition 4.6. Given a partition \(\lambda = (\mu_1^{b_1}, \cdots, \mu_k^{b_k}, 0^c) \), such that \(\mu_1 > \cdots > \mu_k > 0 \) and \(b_i > 0, c \geq 0 \), we define a permutation \(w(\lambda) \) as follows. Identify \(\lambda \) with the lattice path from \((\mu_1, \sum_{i=1}^{k} (b_i + c)) \) to \((0,0)\) that defines the southeast border of its Young diagram. Label the vertical steps of the lattice path from 1 to \(k \) from top to bottom, and then the horizontal steps in increasing order from right to left starting from \(k + 1 \). Reading off the numbers along the lattice path gives \(w(\lambda) \). See Figure 3.

![Figure 3: The partition \(\lambda = (2,2,1) \) and \(w(\lambda) = (1,2,4,3,5) \).](image)

Proposition 4.7. Given a partition \(\lambda = (\mu_1^{b_1}, \cdots, \mu_k^{b_k}, 0^c) \) as in Definition 4.6, let \(d = (d_1, \cdots, d_k) \) be the numbers assigned to horizontal steps right after vertical steps in the construction of \(w(\lambda) \). For example, in Figure 3, \(d = (4,5) \). Let \(d' \) be the vector
\[
d' = (d_1 - b_1, \cdots, d_1 - 1, d_2 - b_2, \cdots, d_2 - 1, \cdots, d_k - b_k, \cdots, d_k - b_k).
\]
Then there exists a bijection $f: \text{MLQ}(w) \rightarrow \text{SSYT}(\lambda, d')$ such that $wt(Q) = Kx^{\text{type}(f(Q))}$ for some monomial K, where $\text{SSYT}(\lambda, d')$ is the set of semistandard tableaux with shape λ for which the entries in the ith row are bounded above by d'_i. In particular, we have

$$\psi_{w(\lambda)} = \sum_{Q \in \text{MLQ}(w(\lambda))} wt(Q) = K \sum_{T \in \text{SSYT}(\lambda, d')} x^{\text{type}(T)} = Ks_\lambda(X_{d'_1}, X_{d'_2}, \ldots).$$

References

[1] C. Arita and K. Mallick. “Matrix product solution of an inhomogeneous multi-species TASEP”. In: Journal of Physics A: Mathematical and Theoretical 46 (2013).

[2] A. Ayyer and S. Linusson. “An inhomogeneous multispecies TASEP on a ring”. In: Advances in Applied Mathematics 57 (2014), pp. 21–43.

[3] L. Cantini. “Asymmetric simple exclusion process with open boundaries and Koornwinder polynomials”. In: Ann. Henri Poincare 18 (2017).

[4] L. Cantini. “Inhomogenous Multispecies TASEP on a ring with spectral parameters”. In: arXiv: Mathematical Physics (2016).

[5] L. Cantini, J. Gier, and M. Wheeler. “Matrix product formula for MacDonald polynomials”. In: Journal of Physics A: Mathematical and Theoretical 48 (May 2015).

[6] S. Corteel, O. Mandelshtam, and L. Williams. “From multiline queues to Macdonald polynomials via the exclusion process”. In: (2018).

[7] S. Corteel and L. Williams. “Macdonald-Koornwinder moments and the two-species exclusion process”. In: Selecta Math 24 (2019), pp. 2275–2317.

[8] S. Corteel and L. Williams. “Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials”. In: Duke Math 159 (2011), pp. 385–413.

[9] P. Ferrari and J. Martin. “Stationary distributions of multi-type totally asymmetric exclusion processes”. In: Ann. Prob 35 (2007).

[10] T. Lam and L. Williams. “A Markov chain on the symmetric group that is Schubert positive?” In: Experimental Mathematics 21 (2012), pp. 189–192.

[11] Olya Mandelshtam. “Toric tableaux and the inhomogeneous two-species TASEP on a ring”. In: Adv. in Appl. Math. 113 (2020), pp. 101958, 50. ISSN: 0196-8858.

[12] Laurent Manivel. Symmetric functions, Schubert polynomials and degeneracy loci. Vol. 6. SMF/AMS Texts and Monographs. American Mathematical Society, Providence, 2001, pp. viii+167. ISBN: 0-8218-2154-7.