An Improved Algorithm to Enhance Recovery Stability for Low-Rank Image

Fei-Yu LIAN1,a, Qian-Hui ZHAO2,b,* and De-Gang XU1,c

1College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China

2School of Software & Applied Science Technology, Zhengzhou University, Zhengzhou, China

alfywork@163.com, btdrpaper@163.com, cxudenggang@126.com

\textbf{Keywords:} Low-rank image, Low-rank matrix, Frobenius norm, LRMR model, Augmented lagrange multiplier method

\textbf{Abstract.} When recovering original image for low-rank image with noise, the effect usually has not been satisfactory through minimizing matrix nuclear norm to obtain low-rank resolution. Aiming at this problem, we introduced Frobenius norm of low-rank matrix, and combined with original low-rank matrix nuclear norm to form new regular item, and utilized an augmented lagrange multiplier method to resolve the problem after convex relaxation. Through adding $\| \mathbf{F} \|$ item on the base of original low-rank image recovery model, we can get better denoising result for low-rank image. The experimental results indicated that, by selecting proper parameters, the improved algorithm has superior recovery result compared to traditional LRMR model on wiping off impulse noise and gaussian noise.

\section*{Introduction}

Recently, sparse representation for vector data has been becoming a new form of expression for data in compressed sensing theory [1]. Low-rank matrix recovery (LRMR) generalize has generalized the data representation to matrix, and has been becoming a research hotspot for image sparse representation [2]. At present, LRMR have made significant progress in the field of artificial intelligence [3]. For example, LRMR can be used in face recognition [3]. Literature [4, 5] put forward a RAIA (Robust Associate with Image Alignment) algorithm based on LRMR which can remove obstructions on face. Literature [6] applied LRMR to analysis of texture of low-rank image, and realized an adjustment for characters in images. Literature [7] applied LRMR to background modeling for surveillance video, and distinguished active prospects from motionless background.

There are usually much noise such as Gaussian noise and impulse noise in real images, which leads bad recovery stability from original images when applied LRMR algorithms. Although LRMR can separate low-rank matrix from sparse matrix for low-rank images involved noise, sparse matrix is generally sparse in distribution and has big random amplitude. Concerning this issue, we used Frobenius norm of matrix to be recovered as new regular term, and joined original core norms of matrix to be recovered to perform regularization. In the above scheme, sparse matrix may include random impulse noise and even Gaussian noise, which enhanced denoising property. Simulation results showed, the proposed model proposed in the paper based on the above scheme had an obvious effect for all kinds of noise removing and improved recovery stability for low-rank matrix.

\section*{Solution and Model for Low-Rank Matrix Recovery}

\textbf{Model for Low-Rank Matrix Recovery}

Low-rank matrix recovery, which called low-rank sparse matrix decomposition (LRSMD) or robust principal component analysis (RPCA) [8], is to recognize the broken elements automatically and recover original matrix when some elements in matrix were broken. The prediction of recovering matrix is that matrix is low-rank or rough low-rank. Suppose matrix \mathbf{E} is a sparse
matrix with noise, and D is a low-rank that destroyed by E, the recovery of matrix D may be regarded as a following optimization problem:

$$\min \text{rank}(A) + \lambda \|E\|_0 \quad \text{s.t.} \quad A + E = D$$ \hspace{1cm} (1)$$

where $\|E\|_0$ is the number of nonzero elements of sparse matrix, namely, also known as norm ℓ_0 of E. Although Eq(1) can be realized in theory, calculated amount is actually very large, in other words, the calculation of Eq(1) is a NP hard problem, so, we only give approximate solution of it. In order to find suitable norm, based on the Candes’ proving, for minimized resolution, norm ℓ_1 (the sum of absolute value of all elements in matrix) is close to norm ℓ_0, and core norm is norm ℓ_1 of singular value. So, the rank function of matrix of Eq(1) can be approximated with core norm, namely,

$$\min \|A\|_1 + \lambda \|E\|_1 \quad \text{s.t.} \quad A + E = D$$ \hspace{1cm} (2)$$

where

$$\|A\|_1 = \sum_{k=1}^{n} \sigma_k(A)$$

$$\lambda = 1/\sqrt{\max(m,n)}$$

In Eq.(2), $\|A\|_1$ is core norm, $\sigma_k(A)$ is the k-th singular value of matrix A, and λ is weight. This equation converts resolution of convex optimization to resolution of traces of matrix [9].

The Resolution Based on Alternate Augmented Lagrange Multiplier

After proved possibility of low-rank matrix recovery in theory by Recht et al, many scholars have deeply studied on recovery algorithms. For the resolution of Eq. (2), literature [10] adopted iterative threshold algorithm, which has simple calculation but low rate of convergence and difficult choice for step size. To solve the question, a quick threshold algorithm with less iteration time was proposed in literature [10]. Literature [11] proposed a gradient algorithm with accelerating adjacent areas, although this algorithm is similar to the quick threshold iterative algorithm, it reduced iterative times. Literature [12] proposed an alternating direction multiplier algorithm, which is similar to augmented lagrange multiplier algorithm (ALM). ALM is a low-rank matrix recovery algorithm with less memory space, higher speed and better precision [13]. In this paper, we mainly studied optimization procedure of ALM.

Augmented lagrange function need to be constructed for applying ALM to low-rank matrix recovery, as shown in eq. (3)

$$L(A, E, Y, \mu) = \|A\|_1 + \lambda \|E\|_1 + \langle Y, D - A - E \rangle + \frac{\mu}{2} \|D - A - E\|_F^2$$ \hspace{1cm} (3)$$

where Y is lagrange multiplier, and μ is penalty parameter for convergent of algorithm.

Based on the proof of literatures [13, 14], A and E need to be updated only once, we can get an approximate solution, which make the algorithm to converge to optimal solution. Hereby, we can get a quicker algorithm. An inexact augmented lagrange multiplier is shown below:

$$A_{k+1} = \arg \min L(A_{k+1}, E_k, Y_k, \mu_k) = D - E_k + \mu_k^{-1} Y_k$$ \hspace{1cm} (7)$$

$$E_{k+1} = \arg \min L(A_k, E_{k+1}, Y_k, \mu_k) = S_{\mu_k}^{-1} (D - A_k + \mu_k^{-1} Y_k)$$ \hspace{1cm} (8)$$
Algorithm flow is shown in Fig. 1. IALM algorithm has been largely successful in denoising of low-rank image, such as faster than APG, and same precision, which made the study and application of LRMR to be got considerable progress. However, the processing of Gaussian noise of low-rank image is not very satisfactory. To address this problem, we improved LRMR model to process Gaussian noise and impulse noise very well.

The Improvement of Denoising Algorithm for Low-Rank Matrix

Stability of Low-Rank Recovery

The model of low-rank matrix recovery has usually special requirements to sparse matrix, which leads to instability of denoising, and limits practical application of model of low-rank matrix recovery. Literature [15] explained that sparsity and stability of solution of model cannot be satisfied simultaneously, and the balance of the both needs to be considered under regarding both of Frobenius norm and L1 norm as regularization term. The model in Literature [16] combined L1 norm with L2 norm as penalty function, and combined with least square regression, which got the balance between stability and sparsity.

Usually, L1 norm can generate sparse solution, but has some disadvantages such as super compression or unstable solution while L2 norm has better stability but difficult sparse solution. Known from previous analysis, due to the only considering of regulation term of L1 norm in model, for the image with stronger correlation, it is possible for low-rank recovery problem we cannot get stable solution. Concerning this issue, in the recovery model for low-rank image in this paper, we combined core function of matrix that will be recovered with Frobenius norm, and utilized core function to control sparsity and uniqueness of matrix that will be recovered, and utilized Frobenius norm to control stability of solution, to achieve goal of enhancing image recovery stability. Improved recovery model is shown as Eq. (9).

\[
\text{min} \| A \|_F^\gamma + \lambda \|E\|_1 + \gamma \|A\|_F^\delta \quad \text{s.t.} \quad A + E = D
\]

(9)
Improved Algorithm

The basic idea of the improved algorithm is to use augmented Lagrangian to solve recovery problem of matrix which including $\|A\|_F^2$ term. The function of augmented Lagrangian including $\|A\|_F^2$ is as following:

$$L(A,E,Y,\mu) = |A| + \lambda \|E\|_F + \mu |A| + \langle Y, D - A - E \rangle + \frac{\mu}{2} \|D - A - E\|_F^2$$ \hspace{0.5cm} (10)

Adopt variable separating method to resolve eq.(10), the flow chart of the improved algorithm is shown in Fig.2.

Objective function is strong convex. Combined $|A|$, with $\|A\|_F$, uniqueness and stability of solution can all be enhanced? The following experiment deeply demonstrated the performance of improved model.

Experimental Results and Analysis

Comparison of Performance of Algorithms

Comparative result between improved algorithm and IALM is shown in Table 1. Matrix is generated randomly by triad of $\{m, \text{rank}(A), \|E\|\}$, where m is dimensions of matrix. In experiment, a matrix $A^T = LR^T$ which rank equals r was generated, where L and R are $m \times r$ random matrices. Meanwhile, a sparse matrix E^* with number of nonzero elements of $\|E\|$, was generated, and its nonzero elements are even distributed in area of [-500,500], and at last, an object matrix was generated according to $D = A^* + E^*$.

We applied the above algorithms to resolve \hat{E} and \hat{A}, and calculated run time and iteration time of each algorithm. Simulation results indicated that improved model has higher precision, but consumed more time than LRMR in de-nosing. With increase of dimensions, calculating speed of the improved model increased substantially. For processing Gaussian noise, the improved model was less than LRMR one percent point in relative error, but its precision and calculating speed were superior to LRMR obviously.

m	rank	method	Uniform distribution(sparse rate:0.05)	Gaussian distribution(mean value:0, variance:0.01)		
			Time(s)	iterations	Time(s)	iterations
100	10	Improved algorithm	0.5923	31	0.6722	37
		LRMR	0.5142	24	0.6843	36
20	20	Improved algorithm	0.8324	32	0.8746	40
		LRMR	0.8102	33	0.9102	39
200	20	Improved algorithm	2.3247	29	3.5867	41
		LRMR	2.1358	31	4.1203	39
40	40	Improved algorithm	4.5726	30	4.8923	40
		LRMR	4.6781	31	5.2314	38
500	50	Improved algorithm	17.3242	31	21.4356	39
		LRMR	18.9756	29	24.7238	39
100	100	Improved algorithm	26.4327	32	29.3201	39
		LRMR	28.9435	30	32.1208	39
Samples for Image Denoising

In order to verify the denoising performance of the improved model, taking monochrome bar code images with resolution of 512×512 as examples, we tested the improved model proposed in this paper under increasing impulse noise and Gaussian noise in images from 10% up to 50%. Image recovery results are shown as Table 2.

Fig.3 shows the comparation of recovery error rate of barcode images with resolution of 512×512 between improved model and LRMR model, and Fig.4 shows the comparation of signal to noise ratio of the two models.

Table 2. Recovery results of noise image using improved model.

Noise/%	SNR/dB	PSNR/ dB	Time/s	Error noise variance	SNR/ dB	PSNR/ dB	Time/s	Error	
10	67	82	6.89	0.00011	0.00625	43	45	6.11	0.00423
20	54	75	7.97	0.00019	0.0125	40	42	7.12	0.00581
30	48	60	8.12	0.00033	0.025	34	39	7.18	0.01296
40	38	48	9.83	0.00075	0.05	31	36	7.92	0.02432
50	25	32	11.28	0.00283	0.1	28	30	8.46	0.10794

As you can see in Fig.3, when impulse noise reaches 40%, the error rate of the improved model is on the level of 10^{-4}, which is very ideal. When impulse noise increase to 50%, the error rate of the improved model increase to the level of 10^{-3}, which still lower than LRMR model with the error rate of level of 10^{-2}. Fig.4 includes recovery SNR and PSNR of barcode images, and shows that, with the increasement of impulse noise, the SNR of improved model reduce gradually, and when noise reaches 50%, the SNR of improved model is lower than 30dB, but is higher than LRMR. For Gaussian noise, the PSNR of improved model is higher than LRMR up 10dB, which shows greater advantage. Especially, when variance reaching 0.05, PSNR even reach up to 30dB.

Through adding scratch, 40% impulse noise and Gaussian noise with variance of 0.05 into original low-rank images, we verified the performance of LRMR and the improved algorithm, as shown in Fig.5. It can be seen from Fig.5 that satisfied effects are obtained for the recovery of the three kinds of images using improved algorithm proposed in the paper, especially, signal to noise rate reaches up to 20dB due to removing Gaussian noise, and higher than LRMR nearly 10dB, and error rate is lower than LRMR roughly two point of percent. On recovery time, the improved algorithm is also quicker than LRMR two seconds, while LRMR has few effect for Gaussian noise, and has poor satisfied result for scratch besides impulse noise.
Figure 5. The comparison of de-noising effect between improved model and LRMR.

Fig.6 shows the processing results for the real low-rank images with 40% of impulse noise using improved model.
Figure 6. Comparison of de-noising effect between LRMR and improved model.

Fig.6 shows the effect of removing impulse noise. It can be seen from Fig.6 that, for CT images and wall images, the recovery effect of LRMR is not good due to some impulse noise, while the improved model proposed in the paper has better effect for removing impulse noise, which indicates better image recovery effect. Table 3 shows the comparing result of improved model and LRMR for removing impulse noise.

Table 3 gives the results of two kinds of algorithms in recovery time, error rate and SNR. As shown in Table 3, for images with weak correlation such as cloth, wallpaper, the proposed model has slower recovery time but better error rate and SNR than LRMR algorithm and for images with strong correlations such as wall space, CT, the propose algorithm not only has better performance in error rate and SNR, but also has less recovery time (faster more than 2s than LRMR). This is because the images with strong correlation have more dimensions and bigger ranks in recovered matrix. Taken together, the algorithm we proposed in this study has better recovery performance for the images with strong correlation, which makes the algorithm to own bigger real meaning.

Table 3. The comparation of recovery performance between improved model and LRMR in Fig.6.

Images	Algorithms	Time/s	SNR/dB	PSNR/dB	Error
Cloth	LRMR	7.214	21	24	0.0039
	Improved model	10.345	23	25	0.0031
Wallpaper	LRMR	8.782	19	22	0.0047
	Improved model	11.079	22	14	0.0042
Wall space	LRMR	10.823	13	17	0.0202
	Improved model	8.791	16	20	0.0107
CT	LRMR	12.565	9	12	0.0225
	Improved model	10.259	12	15	0.0178

Conclusion

In this paper, we proposed an improved denoising algorithm which can recover effectively original images corrupted by impulse noise or gaussian noise. By improving LRMR model, the proposed model enhanced inhibiting effect to gaussian noise and increased stability of recovery for images with strong correlation. By selecting parameters, the improved model can remove impulse noise and gaussian noise to the hilt, which makes the improved algorithm to be superior to LRMR obviously in recovery effect for images, especially for real images with strong correlation. Besides the above advantages, the improved model can also increase speed of image recovery. Experimental results show that the model proposed in the paper is an effective recovery method for noisy low-rank images.
Acknowledgement

This work was supported mainly by the Open Fund of key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou, China and Fund of Foundation and Frontier of Henan Province (No. 152300410079), Zhengzhou, China.

Reference

[1] Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research Advances on Structured Compressive Sensing[J]. Acta Automatica Sinica. 2013, 39(12):1980-1995.

[2] Zhou Jing, Wu Zhong-xiang. Research of Tracking Stock Index with Sparse Principal Component[J]. Chinese Journal of Engineering Mathematics. 2013, 30(2):159-168.

[3] Yang Rong-gen, Ren Ming-wu, Yang Jing-yu. Sparse Representation Based Face Recognition Algorithm[J]. Computer Science. 2010, 37(9):266-267.

[4] Peng Y, Ganesh A, Wright J, et al. Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images[C]. IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA: IEEE 2010:763-770.

[5] Hu Zheng-ping, Li Jing. Face Recognition of Joint Sparse Representation Based on Low-Rank Subspace Recovery[J]. Acta Electronica Sinica. 2013, 41(5):987-991.

[6] Li Wan-peng. Research on rotation invariant feature extract algorithm based on low-rank textures[D]. Master Degree Thesis. Yanshan University. 2013.

[7] Shi Jia-rong, Zhou Shui-sheng, Zheng Xiu-yun. Multilinear Robust Principal Component Analysis[J]. Acta Electronica Sinica. 2014, 42(8):1480-1486.

[8] Ganesh A, Wright J, Li X D, et al. Dense error correction for low-rank matrices via principal component pursuit[C]. IEEE International Symposium on Information Theory Proceedings. Austin, TX:IEEE 2010:1513-1517.

[9] Wang Ping. Study on the Algorithms for Matrix Reconstruction Problem via Convex Optimization[J]. Master Degree Thesis. Hainan Normal University. 2014.

[10] Beck A, Teboulle M. A fast iterative shrinkage thresholding algorithm for linear inverse problem[J]. SIAM Journal on Imaging Sciences, 2008, 2(1):183-202.

[11] Shi Jia-rong, Zheng Xiu-yun, Wei Zong-tian, Yang Wei. Survey on algorithms of low-rank matrix recovery[J]. Application Research of Computers. 2013, 30(6):1061-1065.

[12] Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine Learning, 2011, 3(1):1-122.

[13] Chen Yongyong, Wang Yongli, Yu Huihu. Matrix Rank Minimization Algorithm Based on Augmented Lagrangian Alternating Direction Method[J]. Journal of Shandong University of Science and Technolog. 2016, 35(4):106-113.

[14] Chang Chen-chen, Zong Qun. A Subspace Clustering Algorithm Based On Structured Low-rank Representation[J]. Computer Simulation. 2016, 33(4):277-282.

[15] Zou H, Zhang H H. On the adaptive elastic-net with a diverging number of parameters[J]. Annals of Statistics, 2009, 37(4):1733-1751.

[16] Li Shu, Xu Zhongming, He Yansong, et al. Generalized inverse beamforming via elastic net regularization[J]. Chinese Journal of Scientific Instrument. 2015, 36(5):1170-1176.