Catamenial dermatoses associated with autoimmune, inflammatory, and systemic diseases: A systematic review

Cameron Zachary, MSa,b, Nathan Fackler, MSa,b, Margit Juhasz, MD, MScb, Christine Phamb,c, Natasha Atanaskova Mesinkovskad, PhDc,*

a Georgetown University, School of Medicine, Washington, D.C., United States
b University of California, Irvine, Department of Dermatology, Irvine, CA, United States
c University of California, Irvine, School of Medicine, Irvine, CA, United States

Background: Sex hormones are important in female sexual physiology, growth, and homeostasis. Through skin receptors, sex hormones contribute to the dermatologic pathology known as catamenial dermatoses.

Objective: This study aims to summarize the literature on catamenial dermatoses and menses-induced exacerbations of chronic dermatoses.

Methods: This systematic review used the PRISMA method. PubMed was searched using the terms “menses” and “skin” in July 2018, and an assessment was conducted of the relevant literature on skin diseases related to non-pathologic menstruation, such as polycystic ovarian syndrome. Pathology associated with androgenetic acne was excluded from the study.

Results: A total of 102 studies with 1269 female patients were included. The most commonly reported primary catamenial dermatoses were autoimmune progesterone dermatitis and autoimmune estrogen dermatitis. The most commonly reported chronic skin disorders exacerbated by menses were psoriasis, Behcet’s disease, and eczematous dermatoses.

Conclusion: Physicians should be aware of the nature of catamenial dermatoses and their presentation with normal sexual physiology. Patients with chronic dermatoses should be appropriately counseled on menstruation-related exacerbations. Further research needs to be conducted to determine the interplay between immune regulation and sex hormones in catamenial dermatoses and to elucidate effective therapies.

© 2019 Published by Elsevier Inc. on behalf of Women’s Dermatologic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and inhibit the action of circulating androgens, thereby increasing
be observed, which is known to block androgen receptors (ARs)
Toward the end of the luteal phase, a decline in progesterone can
production, resulting in increased cutaneous microflora burden.
the end of the follicular phase and periovulation cause skin sebum
modulation of skin cell activity (Hermanns-Le et al., 2013). The
may be influenced by the menstrual cycle, specifically by hormonal
Given these previous observations, sex hormones are hypothesized
to influence the biologic properties of the immune system and
This systematic review aims to catalog the available evidence
with regard to skin pathologies occurring in conjunction with men-
strual periods, also known as catamenial dermatoses.

Menstrual cycle, sex hormones receptors, and the skin

Circulating sex hormones (i.e., estrogens, progesterone, and
androgens) regulate skin homeostasis. Thus, cutaneous disease
may be influenced by the menstrual cycle, specifically by hormonal
modulation of skin cell activity (Hermanns-Le et al., 2013). The
menstrual cycle is split into two phases: the follicular phase (dom-
inated by estradiol) and the luteal phase (dominated by proges-
terone). Initially, increased levels of estrogens and androgens at
the end of the follicular phase and periovulation cause skin sebum
production, resulting in increased cutaneous microflora burden.
Toward the end of the luteal phase, a decline in progesterone can
be observed, which is known to block androgen receptors (ARs)
and inhibit the action of circulating androgens, thereby increasing
AR activation (Raghunath et al., 2015).

In addition, during menstruation, progesterone and estrogen
decline below basal testosterone levels, creating a relative increase
in testosterone that may exacerbate androgen-dependent der-
matoses. The activation of ARs by testosterone may also result in
increased sebum production creating a favorable extracellular
environment for Propionibacterium acnes and thus contributing to
hormonal acne flares (Geller et al., 2014). Although this proposed
theory is controversial because the exact mechanism of
menstrual-related acne is currently unknown, it highlights an
underlying association between the menstrual cycle and certain
dermatoses.

While estrogen receptors (ERs) are widespread in the epidermis
and dermis, progesterone receptors (PRs) are sparse (Farage et al.,
2009). ER-β is highly expressed in basal keratinocytes, sebocytes,
and eccrine sweat glands; ER-α is expressed in sebocytes. PRs are
located in keratinocyte and sebocyte nuclei. ARs are localized to
keratinocytes, 10% of dermal fibroblasts, sebaceous gland basal
cells, sebocytes, and the dermal cell layer of hair follicles. Very
few eccrine sweat glands express ARs (Pelletier and Ren, 2004).

Cyclic estrogen and progesterone production activate skin recep-
tors and maintain skin homeostasis, including components of bar-
rier function such as epidermal thickness, hydration, lipid and
sebum production, and fat deposition. Hormones affect dermal col-
lagen content and thus alter skin elasticity and aging (Farage et al.,
2009; Shah and Maibach, 2001). Estrogen induces dermal sebaceous
glands to produce intracellular versican and fibroblasts to release
extracellular hyaluronic acid that increases skin moisture (Farage
et al., 2009). Estrogen is also involved in the regulation of ultraviolet
(UV)-induced skin damage and pigmentation by inducing intraepi-
dermal melanogenesis, which causes transient patchy hyperpig-
mentation around the eyelids prior to menstruation. The effect of
progesterone on skin physiology is not well known (Farage et al.,
2009; Hermanns-Le et al. 2013; Stephens, 1997).

Sex hormones also influence the cutaneous immune milieu,
which may play an important role in the cyclical exacerbations
of catamenial dermatoses. Cytotoxic and helper T-cells, as well as
macrophages and monocytes, express ER-α and -β. The activation
of estrogen pathways is associated with toll-like receptors (TLRs)
expression. TLR upregulation lowers the innate immune threshold
and enhances immune response when estrogen levels are elevated,
which may explain why certain autoimmune conditions fluctuate
in severity during menstruation. Membrane-bound PR-α has been
detected in the outer cellular membrane of CD8+ T-cells during the
luteal phase, but not CD4+ lymphocytes (Dosiou et al., 2008; Young
et al., 2014).

Sex hormone receptors in the skin play a role in homeostasis.
Increases in relative proportions of hormones may lead to skin
pathology. This systematic review provides an overview of the cur-
rent literature on catamenial dermatoses.

Methods

The search terms “menses” and “skin” were used in July 2018 to
conduct a systematic review in the PubMed database, including
autoimmune progesterone dermatitis, autoimmune estrogen der-
matitis, allergic contact dermatitis (ACD), atopic dermatitis (AD),
Behcet’s syndrome, bullous pemphigoid (BP), hereditary angioe-
dema (HA) impetigo herpetiformis (IH), keratosis follicularis (KF),
psoriasis, pyoderma gangrenosum (PG), and systemic lupus ery-
thematosus (SLE). After identification of relevant dermatoses, each
disease was individually searched with “menses,” along with
[“allergies” and “skin” and “menses”], [“progesterone dermatitis”
and “case”], and [“estrogen dermatitis” and “case”].

The inclusion criteria were case reports and series, clinical stud-
ies, and clinical trials written in English. The exclusion criteria
included review articles; manuscripts in a language other than
English; articles focusing on male sex or hormonal physiology;
abnormal female sexual physiology including dysmenorrhea,
endometriosis, polycystic ovarian syndrome, and hormonal physi-
ology of pregnancy; and articles on dermatoses secondary to med-
ications. Studies that reported on exacerbations of catamenial acne
vulgaris, androgenetic acne cystica, and associated conditions such
as hidradenitis suppurativa were omitted because the correlation
between disease and hormonal variation is well established
(Fig. 1).
Results

Initially, 366 studies were identified through the PubMed database. Screening of the titles and abstracts excluded 235 studies, with another 29 studies excluded after full-article review. A total of 102 articles (with a total 1269 patients) reported on the cutaneous manifestations of inflammatory diseases, such as ACD, AD, androgenic manifestations of inflammatory diseases, such as ACD, AD, autoimmune progesterone or estrogen dermatitis [AIPD/AIED] and cutaneous manifestations of inflammatory diseases, such as ACD, AD, Behcet's syndrome, BP, HA, IH, KT, psoriasis, PG, and SLE.

Autoimmune dermatoses

Autoimmune progesterone dermatitis

AIPD, the most common primary catamenial dermatosis, is a reaction to luteal phase progesterone (Herzberg et al., 1995). Hypotheses of AIPD pathogenesis include the development of progesterone autoantibodies to endogenous or exogenous hormone and immune complex deposition. The clinical presentation is similar to inflammatory conditions including AD, urticaria, angioedema, and drug eruptions, making AIPD difficult to diagnose (Wintzen et al., 2004; You et al., 2017).

Sixty-seven case reports and seven case series (n = 110; age range: 13–55 years) were identified. AIPD diagnostic criteria include skin lesions associated with the menstrual cycle, a positive skin or systemic response to an intramuscular or intradermal progesterone challenge, and symptomatic improvement of a rash with inhibition of ovulation (Stranahan et al., 2006; Warin, 2001). The most common symptoms of AIPD include urticaria (n = 50), pruritus (n = 27), angioedema (n = 21), and erythema multiforme (n = 19). Symptoms of AIPD begin 3 to 10 days prior to and resolve 1 to 2 days after menses (Anderson, 1984; Asai et al., 2009; Bandino et al., 2011; Baptiste and Baldwin, 2004; Berger, 1969; Bernstein et al., 2011; Bolaji and O'Dwyer, 1992; Camaes et al., 2017; Chawla et al., 2009; Choi et al., 2009; Cucuorcica et al., 2006; Cristaudo et al., 2007; Dedeker et al., 2005; Detrixhe et al., 2017; Domeyer-Klenske et al., 2015; Drayer et al., 2018; Farah and Sibbaku, 1971; Foer et al., 2016; Fournier, 2015; Frieder and Younus, 2016; Garcia-Ortega and Scorza, 2011; George and Badawy, 2012; Georgouras, 1981; Grunnet et al., 2017; Hacinecipoglu et al., 2016; Haley et al., 2002; Hart, 1977; Herzberg et al., 1995; Hill and Carr, 2013; Honda et al., 2014; Izu et al., 2001; Jenkins et al., 2008; Jones and Gordon, 1969; Kakarla and Zurawin, 2006; Katayama and Nishioka, 1985; Kaygusu et al., 2014; Lahham Bennani et al., 2012; Le and Wood, 2011; Lee et al., 1992; Lee et al., 2011; Mbonile, 2016; Medeiros et al., 2010; Moghadam et al., 1998; Mokhtari et al., 2017; Moody and Schatten, 1997; Nasabzadeh et al., 2010; Nemeth et al., 2009; Oskay et al., 2002; Ozmèn and Akturk, 2016; Poffet et al., 2011; Prieto-Garcia et al., 2011; Rasi and Khatami, 2004; Rodenas et al., 1998; Salman and Ergun, 2017; Shahar et al., 1997; Snyder and Krishnaswamy, 2003; Stephens et al., 1989; Stone and Downham, 1981; Teelucksingh and Edwards, 1990; Toms-Whittle et al., 2011; Tromovitch and Heggli, 1967; Vasconcelos et al., 2000; Walling and Scuhup, 2008; Warin, 2001; Wingate-Saul et al., 2015; Wintzen et al., 2004; Wojnarowska et al., 1985; Yee and Cunliffe, 1994; You et al., 2017). Although rare, autoimmune progesterone anaphylaxis may occur up to 1 month prior to menses (Bemanian et al., 2007).

AIPD therapies decrease inflammation and endogenous progesterone production, including antihistamines, systemic steroids, gonadotropin-releasing hormone analogs, conjugated estrogen, oral contraceptives, tamoxifen, and hysterectomy with bilateral salpingo-oophorectomy. Patients may respond well to any of the therapies listed, but the only modality with complete remission of disease in all treated patients is bilateral salpingo-oophorectomy (Table 1; Anderson, 1984; Asai et al., 2009; Bandino et al., 2011; Baptist and Baldwin, 2004; Berger, 1969; Bernstein et al., 2011; Bolaji and O’Dwyer, 1992; Camaes et al., 2017; Chawla et al., 2009; Choi et al., 2009; Cucuorcica et al., 2006; Cristaudo et al., 2007; Dedeker et al., 2005; Detrixhe et al., 2017; Domeyer-Klenske et al., 2015; Drayer et al., 2018; Farah and Sibbaku, 1971; Foer et al., 2016; Fournier, 2015; Frieder and Younus, 2016; Garcia-Ortega and Scorza, 2011; George and Badawy, 2012; Georgouras, 1981; Grunnet et al., 2017; Hacinecipoglu et al., 2016; Haley et al., 2002; Hart, 1977; Herzberg et al., 1995; Hill and Carr, 2013; Honda et al., 2014; Izu et al., 2001; Jenkins et al., 2008; Jones and Gordon, 1969; Kakarla and Zurawin, 2006; Katayama and Nishioka, 1985; Kaygusu et al., 2014; Lahham Bennani et al., 2012; Le and Wood, 2011; Lee et al., 1992; Lee et al., 2011; Mbonile, 2016; Medeiros et al., 2010; Moghadam et al., 1998; Mokhtari et al., 2017; Moody and Schatten, 1997; Nasabzadeh et al., 2010; Nemeth et al., 2009; Oskay et al., 2002; Ozmèn and Akturk, 2016; Poffet et al., 2011; Prieto-Garcia et al., 2011; Rasi and Khatami, 2004; Rodenas et al., 1998; Salman and Ergun, 2017; Shahar et al., 1997; Snyder and Krishnaswamy, 2003; Stephens et al., 1989; Stone and Downham, 1981; Teelucksingh and Edwards, 1990; Toms-Whittle et al., 2011; Tromovitch and Heggli, 1967; Vasconcelos et al., 2000; Walling and Scuhup, 2008; Warin, 2001; Wingate-Saul et al., 2015; Wintzen et al., 2004; Wojnarowska et al., 1985; Yee and Cunliffe, 1994; You et al., 2017). Although rare, autoimmune progesterone anaphylaxis may occur up to 1 month prior to menses (Bemanian et al., 2007).

AIPD therapies decrease inflammation and endogenous progesterone production, including antihistamines, systemic steroids, gonadotropin-releasing hormone analogs, conjugated estrogen, oral contraceptives, tamoxifen, and hysterectomy with bilateral salpingo-oophorectomy.
77% of cases demonstrate a complete resolution with tamoxifen. Estrogen and its receptors. Review of the literature revealed that only to reappear after delivery, suggesting that increased estrogen sensitivity and the absence of progesterone sensitivity may worsen with the menstrual cycle (Stevens et al., 1993). Of note, psoriasis often improves, and may resolve, during pregnancy menstrual worsening of skin lesions. Along with AIPD, the major diagnostic clue for AIED is premenarcheal manifestations (Table 1; Bourgeault et al., 2017; Elcin et al., 2000; Walling and Scupham, 2008; Warin, 2001; Wingate-Saul et al., 2015; Wintzen et al., 2004; Wojnarowska et al., 1985; Yee and Cunliffe, 1994; You et al., 2017).

Autoimmune estrogen dermatitis

Similar to AIPD, AIED is a cyclical cutaneous eruption caused by estrogen sensitivity during the menstrual follicular phase. Eight case reports and two case series (n = 26; age range: 21–47 years) were found. Clinically, AIED is similar to AIPD with pruritus (n = 10) or urticaria (n = 9) as the most common presenting cutaneous manifestations (Table 1; Bourgeault et al., 2017; Elcin et al., 2017; Kim et al., 1997; Kumar and Georgouras, 1999; Leylek et al., 1997; Murano and Koyano, 2003; Perdue et al., 2014; Shelley et al., 1995; Yoon et al., 2005; Yotsumoto et al., 2003). Along with AIPD, the major diagnostic clue for AIED is premenstrual worsening of skin lesions.

To differentiate AIED from AIPD, intradermal skin tests identifying estrogen sensitivity and the absence of progesterone sensitivity must be completed (Shelley et al., 1995). Therapy for AIED targets estrogen and its receptors. Review of the literature revealed that 77% of cases demonstrate a complete resolution with tamoxifen.

Exacerbations of chronic inflammatory dermatoses

Psoriasis. Three relevant studies (n = 48) were found (Ceovic et al., 2013; Mowad et al., 1998; Murase et al., 2005). Although the exact pathogenesis of psoriasis is unknown, imbalanced T-helper (Th) cells (Th1 and Th17) are believed to affect inflammation. Disease distribution is bimodal in women, with peaks during late adolescence/early 20s and the perimenopausal period; disease severity may worsen with the menstrual cycle (Stevens et al., 1993). Of note, psoriasis often improves, and may resolve, during pregnancy only to reappear after delivery, suggesting that increased estrogen and progesterone may be associated with decreased disease severity (Ceovic et al., 2013; Mowad et al., 1998). A case-control study comparing 47 pregnant with 27 nonpregnant, menstruating women with psoriasis demonstrated that increased estradiol, estriol, and the estrogen:progesterone ratio were correlated with improvement in psoriasis-affected body surface area (Murase et al., 2005).

Behcet’s syndrome. Behcet’s syndrome is characterized by uveitis and recurring ulcers of the mouth and genitals. Multiple studies report disease flare associated with menstruation. Two case reports and two case series (n = 229) were found (Bang et al., 1997; Guzelant et al., 2017; Hewitt, 1971; Oh et al., 2009). In a study of 27 postpartum women, nine experienced exacerbations of their disease related to menstruation, with the hypothesis that flares were related to increased progesterone (Bang et al., 1997).

More recently, a survey study of premenopausal women with Behcet’s syndrome (n = 200) reported that 68% of women experienced exacerbation of at least one skin or mucosal lesion during menses (Guzelant et al., 2017). Successful treatment of Behcet’s syndrome with oral contraceptives further supports the hypothesis that flares are associated with endogenous progesterone levels (Hewitt, 1971; Oh et al., 2009).

Eczematous dermatoses. Although dermatitis may present as part of AIPD or AIED, AD severity may also cycle with menstruation. In one cohort study (n = 286), 47% of patients reported worsened clinical symptoms 1 week prior to menstruation (Kiriyama et al., 2003). One case report described ACD exacerbated by menstruation in a 41-year-old woman. The patient presented with a 2-year history of cyclic, self-healing skin eruptions clinically described as multiple, symmetrical, erythematous, nonpruritic papules on the upper trunk, neck, and arms, associated with abdominal distention and cramps. Symptoms appeared 3 to 7 days before menses and improved with menstruation onset. The patient had a copper-containing intrauterine device placed 12 years prior, and patch test results were positive for copper sulfate. After the copper intrauterine device was removed, the lesions resolved (Pujol et al., 1998).

Hereditary angioedema. HA is characterized by recurrent swelling of the face, limbs, intestinal tract, and airway. In one case series, a mother and daughter with HA experienced worsening edema and erythema of the chest and back during the menstrual luteal phase. At the age of 35 years, the mother was considered the first reported case of premenstrual HA exacerbation. The daughter demonstrated worsening symptoms after taking estrogen-containing oral contraceptives (Yip and Cunliffe, 1992).

Bullous pemphigoid. BP often afflicts elderly patients, making reports of disease fluctuation due to sex hormone changes rare. One case described a 19-year-old woman who was diagnosed with BP as a young teenager, and experienced extensive disease flare-ups after her first menses (Mori et al., 1994). Endogenous estrogens prolong the life of antibody-producing B-cells in murine models; thus, it can be hypothesized that increased estrogen may exacerbate this autoimmune disease (Peeva et al., 2005).

Impetigo herpetiformis. A single case of IH in a 26-year-old postpartum woman describes worsening symptoms prior to each menses for 7 years. Symptoms occurred 2 to 3 days before menstruation and would resolve after 7 days. The patient was unsuccessfully treated with oral cyclosporine, and the medication was discontinued. After 7 years, the IH exacerbations spontaneously resolved, with the hypothesis that skin estrogen receptors were depleted because of increasing age (Chaidemenos et al., 2005).

---

**Table 1**

Summary of reported cases of AIPD and AIED.

| AIPD                  | AIED                  |
|-----------------------|-----------------------|
| Age range (years)     | Age range (years)     |
| 13–55                 | 21–47                 |
| Manifestation n       | Manifestation n       |
| Urticaria             | Pruritus              |
| 50                    | 10                    |
| Pruritus              | Urticaria             |
| 27                    | 9                     |
| Angioedema            | Atopic dermatitis     |
| 21                    | 3                     |
| Erythema multiforme   | Anasarca/edema        |
| 19                    | 2                     |
| Vesiculobullous eruptions | Erythema annulare centrifugum |
| 11                    | 1                     |
| Atopic dermatitis     | Erythema multiforme   |
| 8                     | 1                     |
| Papules               | Telangiectasia        |
| 5                     | 1                     |
| Purpura               | Hyperpigmentation     |
| 4                     | 1                     |
| Anasarca/edema        | Papulovesicular Eruption |
| 4                    | 1                     |
| Fixed drug eruption   |                       |
| 3                     |                       |
| Steven Johnson syndrome |                     |
| 3                   |                       |
| Stomatitis            |                       |
| 3                   |                       |
| Erythema annulare centrifugum |       |
| 2                    |                       |

**Treatment**

| AIPD | AIED |
|------|------|
| Progesterone desensitization | Treatment n |
| 18   | 20   |
| Oophorectomy/hysterectomy    | Leuprolide (GnRH analog) |
| 14   | 2    |
| Combined oral contraceptive | Oophorectomy |
| 12   | 1    |
| Estrogen contraceptive       | Topical steroid agents |
| 10   | 1    |
| GnRH analog                  | None/lost to follow-up |
| 10   | 2    |
| Antihistamine                |                       |
| 6     |       |
| Tamoxifen                     |                       |
| 5     |       |
| None/lost to follow-up       | 26                   |

AIED, autoimmune estrogen dermatitis; AIPD, autoimmune progesterone dermatitis; GnRH, gonadotropin-releasing hormone.

Edwards, 1990; Toms-Whittle et al., 2011; Tromvitch and Heggli, 1967; Vasconcelos et al., 2000; Walling and Scupham, 2008; Warin, 2001; Wingate-Saul et al., 2015; Wintzen et al., 2004; Wojnarowska et al., 1985; Yee and Cunliffe, 1994; You et al., 2017.)
Keratosis follicularis (Darier disease). KF presents with hyperkeratotic, greasy papules of seborrhoeic areas, mucosal lesions, nail bed changes, and palmar pits (Espy et al., 1976). Women experience increased symptom severity compared to men, and symptoms may cyclically worsen with menses. One case series described eight premenopausal women who developed KF during menarche, which flared with menstruation. Three patients treated with estrogen-dominant oral contraceptives demonstrated improvement of symptoms, suggesting a connection between estrogen and KF flares (Espy et al., 1976).

Pyoderma gangrenosum. One case described a 34-year-old woman with a 6-month history of cyclic PG that worsened 1 week prior to menstruation. The patient’s PG resolved after suppression of menses via oral ethinyl estradiol and drospirenone taken daily for 1 month. This resolution suggests a relationship between female sex hormones and the disease course of PG (Jourabchi et al., 2016).

Lupus erythematosus. Female sex hormones may play a role in aggravating cutaneous symptoms of SLE, discoid lupus erythematosus, subacute cutaneous lupus, drug-induced lupus, and neonatal lupus. Estrogen has been shown to cause increased TLR expression in macrophages, upregulation of inflammatory pathways, and possible induction of autoimmune disease in predisposed patients. SLE is commonly treated with the antimalarial drug hydroxychloroquine, which inhibits endosomal TLRs.

This disease favors women of reproductive age, with premenopausal women outnumbering men 9:1; postmenopausal and prepubescent women only outnumber men 2:1 (Young et al., 2014). Only one relevant case study (n = 57) was found, including 32 patients with SLE, 25% of whom reported experiencing cyclic flares; 16% of patients with discoid lupus erythematosus experienced cyclic flares. This study identified elevated estradiol prior to ovulation as the exacerbating factor (Yell and Burge, 1993).

### Discussion

The menstrual cycle is characterized by tightly regulated sex hormone fluctuations. Primary dermatoses, as well as exacerbations of chronic cutaneous disorders, may occur in association with these fluctuations. In cases of cyclic worsening of skin lesions, it is important that physicians consider menstrual cycle association (Table 2; DeRosa et al., 2015).

Immune cells and cytokines fluctuate with the menstrual cycle, especially regulatory T-cells (Arruvito et al., 2007). The level and activity of B-lymphocytes may also increase in the periovulatory period due to high estrogen levels (Grimaldi et al., 2002). During this period, estrogen levels are similar to those during pregnancy, preventing B-cell apoptosis and increasing autoreactive cell survival, which may be a possible explanation for cutaneous exacerbations of certain autoimmune diseases (Grimaldi et al., 2002). Estrogen enhances immune system activation via upregulation of TLR3/7/8/9. High estrogen levels may inappropriately lower the threshold of innate immune activation, creating a plausible mechanism for the increased prevalence of autoimmune disease in women (Cheesman et al., 1982; Cunningham and Gilkeson, 2011; Grimaldi et al., 2002; Oertelt-Prigione, 2012; Peeva et al., 2005; Young et al., 2014).

The most common primary catamenial dermatosis is AIPD. The recommended therapy is progesterone desensitization. However, the only treatment modality with complete AIPD remission is surgical removal of the ovaries and fallopian tubes. Other rare cases of menstrual cutaneous exacerbations include psoriasis, Bechet's syndrome, eczematous dermatoses including ACD and AD, BP, HA, and persistent postpartum IH. Estrogen is implicated as a cause of AIPD and lupus flares, as well as HA.

Most cutaneous conditions worsen in association with estrogen or progesterone, but KF may improve during periods of increased estrogen levels. The complex interaction between sex hormones and skin, as well as variations among individual diseases, demonstrate that further research is needed to delineate a sex hormone–skin axis. Until the causative mechanisms of catamenial dermatoses are understood, physicians should be aware that menses may cause disease exacerbation and should treat patients with a catamenial-associated flare of their primary or underlying dermatosis accordingly.

The rarity of certain catamenial dermatoses leads to limitations in this systematic review. The literature linking menstruation to ACD, BP, HA, IH, and PG are limited to singular reports. Details of disease flare, such as causative hormones/receptors, are not robustly reported. Further large-scale, cohort studies should be completed for each disease to determine the connection between exacerbation and menstrual cycle to better understand pathophysiology and treatment strategies.

### Conclusion

The menstrual cycle and female sex hormones (estrogen and progesterone) contribute to the pathogenesis of a variety of primary and chronic skin conditions through unknown mechanisms. Hypotheses include catamenial hormonal receptor activation, aberrant initiation of the innate immune system, prolongation of antibody production by B-cells, and survival of autoreactive cells. Evidence from the current literature suggests that hormonal fluctuations during menstruation exacerbate a vast range of dermatologic conditions, including autoimmune dermatoses, chronic dermatoses, and cutaneous manifestations of systemic diseases. Further large-scale studies are needed to determine whether estrogen or progesterone plays a large role in cutaneous disease flare and whether hormonal adjuvants are effective treatment modalities.

### Conflict of Interest

None.

### Funding

None.

### Study Approval

NA.

### Table 2

| Disease flare prior to menses | Disease flare during menses |
|------------------------------|-----------------------------|
| Autoimmune estrogen dermatitis | 14 days prior |
| Autoimmune progesterone dermatitis | 3–10 days prior |
| Eczematous dermatoses | 1 week prior |
| Hereditary angioedema | Unspecified |
| Impetigo herpetiformis | 2–3 days prior |
| Keratosis follicularis | Unspecified |
| Psoriasis | Unspecified |
| Pyoderma gangrenosum | 1 week prior |
| Systemic lupus erythematosus | Unspecified |
| Behcet's syndrome | |
| Bullous pemphigoid | |

C. Zachary et al. / International Journal of Women's Dermatology 5 (2019) 361–367

365

Evidence from the current literature suggests that hormonal fluctuations during menstruation exacerbate a vast range of dermatologic conditions, including autoimmune dermatoses, chronic dermatoses, and cutaneous manifestations of systemic diseases. Further large-scale studies are needed to determine whether estrogen or progesterone plays a large role in cutaneous disease flare and whether hormonal adjuvants are effective treatment modalities.
References

Anderson RH. Autoimmune progesterone dermatitis. Cutis 1984;33:490–1.
Arrutio L, Sanz M, Banham AH, Fairbairn L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells in the follicular phase of the menstrual cycle: implications for human reproduction. J Immunol 2007;178:2572–8.
Asai J, Katoh N, Nakano M, Wada M, Kimishima S. Case of autoimmune progesterone dermatitis presenting as fixed drug eruption. J Dermatol 2009;36:643–5.
Banding JP, Thoppil J, Kennedy JS, Hivnor CM. Luteinizing hormone progesterone dermatitis caused by 17alpha-hydroxyprogesterone caproate for preterm labor prevention. Cutis 2011;88:241–3.
Bang D, Chun YS, Haam IB, Lee ES, Lee S. The influence of pregnancy on Behcet’s disease. Yonsei Med J 2010;51:437–43.
Baptist AP, Baldwin JL. Autoimmune progesterone dermatitis in a patient with endometriosis: Case report and review of the literature. Clin Mol Allergy 2004;2:10.
Bemanian ME, Gharamozlou M, Farahzadi MH, Nabavi M, Shirkhoda Z. Autoimmune progesterone anaphylaxis. Iran J Allergy Asthma Immunol 2007;6:97–9.
Berger H. Progesterone. Arch Dermatol 1969;100:107.
Bernstein IL, Bernstein DI, Lummus ZL, Bernstein JA. A case of progesterone-induced anaphylaxis, cyclic urticaria/angioidemia, and autoimmune dermatitis. J Womens Health (Larchmt) 2011;20:643–8.
Bolaji II, O’Dwyer EM. Post-menopausal cyclic eruptions: autoimmune progesterone dermatitis. Eur J Obstet Gynecol Reprod Biol 1992;47:169–71.
Bourgault E, Bujoil J, Doucet ME. A rare case of oestrogen dermatitis. Can Med Surg 2017;15:261–2.
Camoes S, Sampaio J, Rocha J, Tiago P, Lopes C. Autoimmune progesterone dermatitis: case report of an unexpected treatment reaction. Australas J Dermatol 2017;58:e132–4.
Ceovic R, Mance M, Bulvick Mokos Z, Svetec M, Kostovic K, Stuhlofer Buzina D. Psoriasis: Female skin changes in various hormonal stages throughout life—a pubertal pregnancy, and menopause. Biomed Res Int 2013 2013:571912.
Chaidemenos G, Lefaki I, Tsaliki A, Mournouelou O. Impetigo herpetiformis: menstrual exacerbations for 7 years postpartum. J Eur Acad Dermatol Venereol 2005;19:466–9.
Chvala SV, Quirk C, Sondheimer SJ, James WD. Autoimmune progesterone dermatitis: a rare case. Arch Dermatol 2009;145:341–2.
Coccorocca B, Gisondi P, Gubinelli E, Girolomoni G. Autoimmune progesterone dermatitis. Gynecol Endocrinol 2008;24:52–7.
Colangelo K, Haag S, Bonner A, Zelenets C, Poe J. Self-reported flaring varies during the menstrual cycle in systemic lupus erythematosus compared with rheumatoid arthritis and fibromyalgia. Rheumatol (Oxford) 2010;51:703–8.
Cristado A, Bordinignon V, Palamara F, De Rocco M, Pietravalle M, Picardo M. Progesterone sensitive interferon-gamma producing cells detected by ELISpot assay in autoimmune progesterone dermatitis. Clin Exp Dermatol 2007;32:439–41.
Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol 2011;40:66–73.
Dedecker F, Graesslin O, Quereux C, Gabriel R, Salmon-Ehr V. Autoimmune progesterone dermatitis: a rare pathology. Eur J Obstet Gynecol Reprod Biol 2007;132:120–1.
DeRossi A, Adams S, Fee KE. Progressively worsening cyclic rash: diagnosis and approach to care. J Am Osteopath Assoc 2015;115:738–44.
Detrixhe A, Nikkels AF, Dezfoulian B. Autoimmune progesterone dermatitis. Exp Dermatol 2010;35:e12–3.
Doelem-Klenske A, Robillard D, Pulvino J, Spratt D. Gonadotropin-releasing hormone agonist use in women with rheumatoid arthritis and fibromyalgia. Rheumatology (Oxford) 2011;50:703–8.
Dostiens C, Hamilton AE, Pang Y, Overgaard MT, Tulac S, Dong J, et al. Expression of autologous serum skin test result. Obstet Gynecol 2011;117:495–8.
Espy PD, Stone S, Jolly Jr HW. Hormonal dependency in Darier disease. Cutis 1981;22:109–12.
Grimaldi CM, Cleary J, Dagtas AS, Moussai D, Diamond B. Estrogen alters thresholds for B cell apoptosis and activation. J Clin Invest 2002;109:1625–33.
Grumet KM, Powell KS, Miller JA, Davis LS. Autoimmune progesterone dermatitis manifesting as mucosal lupus erythematosus in the setting of HIV infection. JADAD Case Rep 2017:23:2–2.
Guzelant G, Oguzler Y, Esatoglu SN, Karatuzm G, Ozdogan H, Yurdaksu S, et al. Exacerbation of Behcet’s syndrome and familial Mediterranean fever with menstruation. Clin Exp Rheumatol 2017;35(Suppl 108):95–9.
Hacinecigoglu F, Benar H, Gonul M, Oktu Heper A. A case of autoimmune progesterone dermatitis characterized by grouped small vesicles. Clin Exp Dermatol 2016;41:681–2.
Haley S, Cohen AD, Lunenfeld E, Grossman N. Autoimmune progesterone dermatitis presented as erythema annulare centrifugum: Confirmation of progesterone sensitivity by in vitro interferon-gamma release. J Am Acad Dermatol 2002;47:311–3.
Hap PC, Farag, Osei E. Autoimmune progesterone dermatitis. Arch Dermatol 1977;100:431–2.
Hermans-L Te, Hermans JF, Lesuisse M, Pierard GE. Cyclic catamenial dermatomatos. Biomed Res Int 2013 2013:571912.
Herzberg AJ, Stroehmeyer CK, Cirillo-Hyland VA. Autoimmune progesterone dermatitis. J Am Acad Dermatol 1995;32:333–8.
Hewitt AB. Behcet’s disease. Alleviation of buccal and genital ulceration by an oral contraceptive agent. Br J Venes Dis 1971;47:52–3.
Hill JL, Carr TF. Iatrogenic autoimmune progesterone dermatitis treated with a novel intramuscular desensitization protocol. J Allergy Immunol Pract 2013;1:537–8.
Honda T, Kabashima K, Fuji Y, Katoh M, Miyachi Y. Autoimmune progesterone dermatitis that changed its clinical manifestation from anaphylaxis to fixed drug eruption-like erythema. J Dermatol 2014;41:447–8.
Izu K, Yamamoto O, Yamaguchi J, Ohta T, Asahi M. A case of autoimmune progesterone dermatitis. J UOE2001;23:431–6.
Jenkins J, Gei L. Autoimmune-progesterone dermatitis associated with infertility treatment. J Am Acad Dermatol 2008;58:353–5.
Jones WN, Gordon VH. Auto-immune progesterone eczema. An endogenous progesterone hypersensitivity. Arch Dermatol 1969;99:57–9.
Jourabchi N, Rhee SM, Lazarus GS. Premenstrual flares of pyoderma gangrenosum controlled with use of a combined oral contraceptive and antiandrogen (ethinyl estradiol/drospirenone). Br J Dermatol 2016;174:1096–7.
Kakarla N, Zurawin RK. A case of autoimmune progesterone dermatitis in an adolescent female. J Pediatr Adolesc Gynecol 2006;19:125–9.
Katayama I, Nishioka K. Autoimmune progesterone dermatitis with persistent anemia. Br J Dermatol 1985;112:487–91.
Kaygusuz I, Gumus II, Sarifakioglu E, Eser A, Bozkurt B, Kafali H. Autoimmune progesterone dermatitis. Obstet Gynecol 2014;53:420–2.
Kawaguchi M, Tanaka M, Kim KY, Lee YK, Kim YH, Kim KH. The photosensitivity localized in a vitiliginous lesion was associated with the intramuscular injections of synthetic progesterone during an in vitro fertilization-embryo transfer. Ann Dermatol 2009;21:88–91.
Kocvaric B, Gisondi P, Gubinelli E, Girolomoni G. Autoimmune progesterone dermatitis. Gynecol Endocrinol 2006;22:52–4.
Kofler L, Giaudon P, Klein H, Sperling S, Imboden J. Autoimmune progesterone dermatitis: a case report. JAAD Case Rep 2017;3:22–4.
Koike M, Ohara A, Narisada Y, Tabe T. Autoimmune progesterone dermatitis manifested as erythema multiforme in the setting of HIV infection. JAAD Case Rep 2017:23:2–2.
Korenblum B, Buchett KM, Gargiuolo AR, Lynch DM, Castells M, Wickner PG. Progestogen hypersensitivity in 24 cases: diagnosis, management, and proposed renaming and classification. J Allergy Allergy Clin Pract 2016;4:723–5.
Kουρνιάκη S, Bouka M, Stathopoulou S. Autoimmune progesterone dermatitis after treatment with oral contraceptives. JADAD Case Rep 2015:1:319–20.
Frieder J, Younus M. Autoimmune progesterone dermatitis with delayed intradermal skin reaction: a case report. Ann Allergy Asthma Immunol 2016;117:438–9.
Garcia-Ortega P, Scorza E. Progesterone autoimmunity dermatitis with positive autologous serum skin test result. Obstet Gynecol 2011;117:495–8.
