Title	Relationship Between Ventilation and Predicted Arterial CO2 Pressure During Recovery From an Impulse-Like Exercise Without Metabolic Acidosis
Author(s)	Afroundeh, R.; Arimitsu, T.; Yamanaka, R.; Lian, C. S.; Shirakawa, K.; Yunoki, T.; Yano, T.
Citation	Physiological research, 62(4): 387-393
Issue Date	2013
Doc URL	http://hdl.handle.net/2115/53329
Type	article
File Information	62_387.pdf
Relationship Between Ventilation and Predicted Arterial CO₂ Pressure During Recovery From an Impulse-Like Exercise Without Metabolic Acidosis

R. AFROUNDEH¹, T. ARIMITSU¹, R. YAMANAKA¹, C. S. LIAN¹, K. SHIRAKAWA¹, T. YUNOKI², T. YANO²

¹Graduate School of Education, Hokkaido University, Sapporo, Japan, ²Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan

Received July 26, 2012
Accepted January 25, 2013
On-line April 16, 2013

Summary
We investigated ventilation (VE) control factors during recovery from light impulse-like exercise (100 watts) with a duration of 20 s. Blood ions and gases were measured at rest and during recovery. VE, end tidal CO₂ pressure (PETCO₂) and respiratory exchange ratio (RER) were measured continuously during rest, exercise and recovery periods. Arterial CO₂ pressure (PaCO₂ pre) was estimated from PETCO₂ and tidal volume (VT). RER at 20 s of exercise and until 50 s during recovery was significantly lower than RER at rest. Despite no change in arterialized blood pH level, PaCO₂ pre was significantly higher in the last 10 s of exercise and until 70 s during recovery than the resting value. VE increased during exercise and then decreased during recovery; however, it was elevated and was significantly higher than the resting value until 155 s (p<0.05). There was a significant relationship between VE and PaCO₂ pre during the first 70 s of recovery in each subject. The results suggest that PaCO₂ drives VE during the first 70 s of recovery after light impulse-like exercise. Elevated VE in the interval from 70 s until 155 s during recovery might be due to neural factors.

Key words
Arterial CO₂ pressure • Impulse-like exercise • Recovery • Respiratory exchange ratio • Ventilation

Introduction
The chemosensory mechanism (feedback control) is one of the important ventilatory control mechanisms in exercise (Dempsey 2006, Waldrop et al. 2006). This mechanism involves stimulation of peripheral chemoreceptors by an increase in hydrogen ion concentration [H⁺] (Wasserman et al. 1975, Whipp 1994, Peronnet et al. 2007, Ward 2007) or by arterial potassium (K⁺) (Yoshida et al. 1990).

It is known that exercise of a very short duration with maximal effort can induce production of lactic acid (Osnes and Hermansen 1972, Gaitanos et al. 1993) and that lactic acid persists in the blood for a long time after exercise (Knuttgen and Saltin 1972). During the early period of recovery, a downward shift in the CO₂ dissociation curve may occur due to an increase in blood lactate (ΔLa). This shift should help CO₂ elimination from blood to the lungs, and the eliminated CO₂ should be expired from the lungs to air by ventilation (VE) (Yano et al. 2009).

Arterial carbon dioxide pressure (PaCO₂) can also stimulate VE through peripheral and central chemoreceptors (Clement et al. 1992). However, PaCO₂ remains at constant level during moderate exercise (Wasserman et al. 1967, Oren et al. 1981) and PaCO₂ is reduced during strenuous exercise due to hyperventilation (Kowalchuk et al. 1988, Stringer et al. 1992). Likewise, PaCO₂ is the major factor controlling [H⁺] known as the Stewart model (Stewart 1983, Duffin 2010). Therefore, it
is thought that PaCO₂ has no effect on \(\dot{V}E \) in an exercise condition or that it has an indirect effect via changes in [H⁺] (Duffin 2005, Poon 2011). Nevertheless the results of our previous study revealed that \(\dot{V}E \) during recovery from one impulse-like exercise was not different from \(\dot{V}E \) during recovery from five repeated impulse-like exercises despite different pH levels, and the similarity of \(\dot{V}E \) could be explained by the difference in PaCO₂ kinetics, suggesting that pH is not the only humoral factor that drives \(\dot{V}E \) and that PaCO₂ has a direct effect on \(\dot{V}E \) (Afroundeh et al. 2012).

In addition, a recent study showed that ventilatory response during recovery from intense exercise is not associated with pH and PaCO₂ but is associated with a central neural mechanism (Yamanaka et al. 2011). Involvement of neural factors in \(\dot{V}E \) control during recovery from intense exercise has also been suggested by Clement et al. (1996).

In order to extract only the effect of PaCO₂ on \(\dot{V}E \), we decided to study \(\dot{V}E \) control during recovery from work of a very light intensity that induces no metabolic acidosis. Furthermore, it has not been determined whether central and/or peripheral neural factors affect \(\dot{V}E \) during recovery from exercise of very light intensity. Therefore, the purpose of the present study was to determine the relationship between PaCO₂ and \(\dot{V}E \) and to determine whether neural factors are involved in \(\dot{V}E \) control during recovery from an impulse-like exercise that induces no metabolic acidosis.

Methods

Subjects

Six healthy males participated in this study. The subjects’ mean age, height and body weight were 21.6±2.1 (SD) years, 173.6±8.2 cm and 66.7±8.7 kg, respectively. Each subject signed a statement of informed consent following a full explanation regarding the nature of the experiment. The Ethics Committee of Hokkaido University Graduate School of Education approved the present study.

Design

Each subject attended our laboratory to perform one test. Each subject was instructed to refrain from intense physical exercise, drinking alcohol and taking caffeine for 24 h prior to the tests. None of the subjects had a smoking habit.

Experimental protocol

Each subject performed one test consisting of one impulse-like exercise for 20 s. The test was performed with resistive load of 100 watts at 80 rpm by a bicycle ergometer (Ergometer 232 CXL, Combi, Tokyo, Japan). Each subject came to the laboratory 1 h before the start of the test. An experimental instrument was attached to each subject before the experiment. Subjects performed 100 watts impulse-like test after resting for 3 min on a bicycle seat.

Measurements and determinations

Blood samples (125 µl) were collected from fingertips using a capillary tube. Each subject’s hand was pre-warmed in 40-45 °C water prior to each test in order to arterialized capillary blood. It has been shown that such blood samples might not accurately reflect arterial O₂ pressure but can closely reflect arterial CO₂ and pH (Zavorsky et al. 2007). Twenty five-µl samples were analyzed using a lactate analyzer (YSI-1500 sport, YSI, Ohio, USA) to measure blood lactate concentration (La¯), and 100-µl samples were analyzed using a blood gas analyzer (i-STAT, i-STAT Corporation, Abbott Park, IL, USA) to measure O₂ partial pressure (PaO₂), PaCO₂, potassium concentration (K⁺) and pH. HCO₃⁻ concentration \([\text{HCO}_3^-]\) was calculated from pH and PCO₂ by using the Henderson-Hasselbalch equation. The lactate analyzer was calibrated by a standard lactate solution of 5 mmol.l⁻¹ and the blood gas analyzer was calibrated by known calibration liquid (pH: 7.43, PCO₂: 30 Torr, PO₂: 160 Torr, [Na⁺]: 140 mEq.l⁻¹, [K⁺]: 4 mEq.l⁻¹) before the test. Blood was sampled at rest and after 1 min, 5 min, and 10 min during the recovery period.

Data on respiration gas exchange were obtained using a respiratory gas analyzer (AE-280S, Minato Medical Science, Osaka, Japan). VE was measured by a hot-wire flow meter, and the flow meter was calibrated with a syringe of known volume (2 liters). O₂ and CO₂ concentrations were measured by a zirconium sensor and infrared absorption analyzer, respectively. The gas analyzer was calibrated by known standard gas (O₂: 15.17 %, CO₂: 4.9 %). Respiration gas exchange was measured continuously during rest, exercise, and recovery periods.

To obtain continuous data of PaCO₂, it was estimated from end tidal CO₂ pressure (PETCO₂) and tidal volume (Vₜ) using the formula from Jones et al. (1979):

\[
\text{PaCO}_2 = \frac{\text{PETCO}_2 \times V_t}{\text{CO}_2\text{dead space}}
\]
Predicted \(\text{PaCO}_2 (\text{PaCO}_2_{\text{pre}}) = 5.5 + 0.90 \text{PETCO}_2 - 0.0021V_T \).

Statistical analysis

Results are presented as means ± standard deviations (SD). One-way ANOVA for repeated measures was used to examine the time effect. If F ratios were significant, the Dunnet post-hoc test was used for comparison. A value of \(p<0.05 \) was regarded as statistically significant.

Fig. 1. Changes in end tidal CO\(_2\) pressure (PETCO\(_2\)) (upper panel) and predicted arterial carbon dioxide (PaCO\(_2\)\(_{\text{pre}}\)) (lower panel) during 100 watts impulse-like exercise and recovery from 100 watts impulse-like exercise. Vertical dashed line bar indicates exercise time. Data presented are means ± SD. *significantly different from rest value (\(p<0.05 \)).

Results

No significant change was observed in arterIALIZED pH, \(\text{La}^- \), \(K^+ \), \(\text{HCO}_3^- \), \(\text{PaO}_2 \) and \(\text{PaCO}_2 \) levels during recovery at any time point versus rest time (\(p>0.05 \)). Mean values of these humoral factors are presented in Table 1.

\(\text{PaCO}_2 \) was predicted from PETCO\(_2\) and tidal volume (\(V_T \)). Both \(\text{PaCO}_2\)\(_{\text{pre}}\) and PETCO\(_2\) were increased during exercise and peaked at 20 s during recovery (41.05±1.82 mm Hg and 42.08±2.14 mm Hg, respectively) and then decreased to the resting values (34.69±1.97 mm Hg and 34.33±2.5 mm Hg, respectively). They were significantly higher at 15 s and 20 s during exercise and until 70 s during recovery compared with the rest values (\(p<0.05 \)). The kinetics of PETCO\(_2\) and PaCO\(_2\)\(_{\text{pre}}\) was the same during impulse-like exercise and during recovery from impulse-like exercise. These changes are shown in Figure 1.

As can be seen in Figure 2, respiratory exchange ratio (RER) decreased during exercise and the first 20 s during recovery. It was significantly lower at 20 s during exercise and until 50 s during recovery versus the rest value (\(p<0.05 \)). VE increased during exercise, reached the highest level at 20 s of exercise (27.45±4.02 l.min\(^{-1}\)), and then decreased during recovery from impulse-like exercise. However, the decline in VE at 5 s of recovery (starting point of recovery) was not significant compared to VE at the end of exercise and it was elevated and

![Fig. 2. Changes in respiratory exchange ratio (RER) (upper panel) and ventilation (VE) (lower panel) during 100 watts impulse-like exercise and recovery from 100 watts impulse-like exercise. Vertical dashed line bar indicates exercise time. Data presented are means ± SD. *significantly different from rest value (\(p<0.05 \)).](image-url)
significantly higher than the rest value (12.09±1.69 L min⁻¹) until 155 s during recovery from impulse-like exercise (p<0.05).

There was a significant relationship between V_{E} and $PaCO_2$ pre during the first 70 s of recovery in each subject (Fig. 3). The correlation coefficients obtained for all subjects ranged from $r=0.572$ to $r=0.805$ (p<0.05).

Discussion

The subjects in the present study performed an impulse-like exercise with work intensity of 100 watts and duration of 20 s. PETCO₂ and PaCO₂ pre were significantly higher than the rest values during recovery from 100 watts impulse-like exercise until 70 s. VE was significantly higher than the rest value during recovery until 155 s. There was a significant relationship between PaCO₂ pre and VE in each subject using the first 70 s of recovery.

It has been reported that lactate is produced during a very short exercise with high intensity (Gaitanos et al. 1993) and that blood lactate level increases during recovery from this type of exercise and may stimulate peripheral chemoreceptors during this period (Clement et al. 1992, 1996). Another factor that is known to increase during exercise and recovery and to stimulate peripheral chemoreceptors and subsequent increase in VE response is K⁺ (Paterson et al. 1989, Yoshida et al. 1990). The intensity of work used in the present study was too light and induced no metabolic acidosis and no change in

Table 1. Mean values ± SD of blood ions and gases at rest and during recovery from 100 watts impulse-like exercise.

	Rest	1 min	5 min	10 min
pH	7.41±0.02	7.40±0.02	7.41±0.02	7.39±0.01
PaO_2 (mm Hg)	86.1±5.9	87.3±6.8	89.9±4.2	86.3±4.1
$PaCO_2$ (mm Hg)	38.4±2.8	39.6±2.5	39.7±2.2	40.4±2.2
K^+ (mmol.l⁻¹)	3.90±0.24	3.94±0.19	3.97±0.25	3.81±0.20
La^- (mmol.l⁻¹)	1.00±0.21	1.12±0.23	1.00±0.18	0.99±0.18
HCO_3^- (mmol.l⁻¹)	24.4±1.6	24.7±1.1	25.2±1.2	24.9±1.3

Values represent means ± SD (N=6) for each time point. ArterIALIZED blood pH, lactate (La^-), potassium (K^+), partial pressure of oxygen (PaO_2) and partial pressure of carbon dioxide ($PaCO_2$) were not significantly different from rest values during recovery (p>0.05).

![Fig. 3.](image-url) Relationships between predicted arterial carbon dioxide (PaCO₂ pre) and ventilation (VE) during recovery from 100 watts impulse-like exercise in each subject ($r=0.572$ to $r=0.805$; p<0.05). Data presented are data for the first 70 s of recovery in each subject.
arterialized blood \(\text{La}^- \), \(\text{pH} \), or \(\text{K}^+ \) during recovery. Thus, the elevated \(\text{VE} \) during recovery cannot be attributed to these factors. However, a significant change in \(\text{PaCO}_2 \) \(\text{pre} \) level was observed during exercise and the first 70 s of recovery. The mechanism by which \(\text{PaCO}_2 \) \(\text{pre} \) increased during exercise and the first few seconds of recovery in this study is not clear. However, it has been reported that the slightly slower time course of \(\text{VE} \) than that of \(\text{VO}_2 \) may elicit a small transient rise in \(\text{PaCO}_2 \) (Whipp 1983, Haouzi et al. 2002). Another possible mechanism is that \(\text{VE} \) would have been insufficient for expiring \(\text{CO}_2 \) from the lungs that results in a reduction in \(\text{RER} \). This would lead to an increase in body \(\text{CO}_2 \) stores and consequently increase in \(\text{PaCO}_2 \) level. \(\text{PaCO}_2 \) is known to be another important factor for stimulation of peripheral and central chemoreceptors, and these chemoreceptors are capable of modulating changes in \(\text{VE} \). Carotid bodies respond rapidly to hypercapnia (Eyzaquirre and Zapata 1984), and central chemoreceptors would be stimulated more by hypercapnia than by acute metabolic acidosis of arterial blood because the blood-brain barrier is relatively impermeable to \(\text{H}^- \) but is permeable to \(\text{CO}_2 \) (Clement et al. 1992). In the present study a significant, though not high, correlation coefficient was obtained in the relationship between \(\text{VE} \) and \(\text{PaCO}_2 \) \(\text{pre} \) during the first 70 s of recovery in each subject. Furthermore, \(\text{VE} \) response at the starting point of recovery was not significantly different from \(\text{VE} \) response at the end point of exercise, while an abrupt decline in \(\text{VE} \) response is expected at the end of exercise due to the disappearance of neural signals from mechanical receptors in working muscle (Turner 1991). These findings demonstrate that \(\text{VE} \) is mediated partly by \(\text{PaCO}_2 \) and that the stimulatory effect of \(\text{PaCO}_2 \) on \(\text{VE} \) in the first 70 s of recovery may prevent the expected decline of \(\text{VE} \) at the start of recovery.

The other possible factor driving \(\text{VE} \) during recovery is after-discharge, or short-term potentiation of ventilatory drive that sustains hyperpnoea even after a stimulus is withdrawn (Eldridge et al. 1985). The time constant for after-discharge has been reported to range from 51 to 57 s in anesthetized cats (Eldridge and Gillkumar 1978, 1980). Thus, it can be assumed that after-discharge is involved in \(\text{VE} \) control in the first 70 s of recovery.

The results of this study showed that \(\text{VE} \) was still significantly higher than the rest value until 155 s of recovery, of which time \(\text{PaCO}_2 \) \(\text{pre} \) had already recovered to the rest value. This result suggests that factors other than humoral factors mediate \(\text{VE} \) during this period. Our result is consistent with the results of a study performed by Clement et al. (1996) in which they concluded that \(\text{VE} \) remains stimulated at 30 min after the end of exercise by processes other than post-exercise metabolic acidosis and likely by the central influence (Clement et al. 1996). Although we did not measure the levels of any neural factors in this study, it is possible that some of the neural factors that have been proposed in previous reports are involved in this elevated response of \(\text{VE} \). For example, Yamanaka et al. (2011) suggested that ventilatory response during recovery after intense exercise is associated with effort sense indirectly elicited by central motor command (Yamanaka et al. 2011). Thin fiber afferents (i.e., groups III and IV) in working muscles that are thought to respond to mechanical and metabolic stimuli (McCloskey and Mitchell 1972, Kaufman et al. 1983) and also to respond to mechanical distension of the peripheral vascular network and change in the volume of blood in the venular system (Haouzi et al. 2001a) have also been reported to be involved in \(\text{VE} \) response during recovery from exercise (Haouzi et al. 1993, Fukuba et al. 2007). The results of the study performed by Fukuba et al. (2007) showed that femoral vascular occlusion significantly reduced \(\text{VE} \) response during recovery from either supra-AT or sub-AT exercise; however, the deficit was much larger during supra-AT than during sub-AT exercise. Based on those results, they concluded that metabolites do not play an important role in post-exercise \(\text{VE} \) through the intramuscular chemoreflex and rather mechanisms related to the hemodynamic effects of suddenly altered muscle perfusion seem more consistent with this phenomenon (Fukuba et al. 2007). Similarly, obstruction of blood flow to lower limbs reduced the normal \(\text{VE} \) response to impulse-like exercise, and the involvement of groups III and IV afferent fibers in \(\text{VE} \) control was proposed (Haouzi et al. 2001b). Haouzi et al. (2002), who investigated the effect of body position on \(\text{VE} \) response following an impulse exercise, speculated that the higher \(\text{VE} \) response in the upright (U) position than in the supine (S) position could be partly related to higher stimulation of thin muscle afferent fibers in the U position than in the S position, since the load imposed on venous return was much higher in the U position than in the S position (Haouzi et al. 2002). Therefore, the possibility that thin fiber afferents are involved in \(\text{VE} \) response during recovery from impulse-like exercise without metabolic acidosis exists and needs to be proved experimentally in future studies.
In conclusion, the results of the present study demonstrate that VE response during the first 70 s of recovery after impulse-like exercise of 100 watts intensity is attributed partly to PaCO₂, and VE recovers to the rest value later than PaCO₂ at 155 s of recovery time, with neural factors presumably driving VE in this period.

Conflict of Interest
There is no conflict of interest.

Acknowledgements
The authors wish to acknowledge all the subjects for their participation in the study.

References

AFROUNDEH R, ARIMITSU T, YAMANAKA R, LIAN CS, YUNOKI T, YANO T: Effects of humoral factors on ventilation kinetics during recovery after impulse-like exercise. *Acta Physiol Hung* 99: 185-193, 2012.

CLEMENT ID, BASCOM DA, CONWAY J, DORRINGTON KL, O’CONNOR DF, PAINTER R, PATERSON DJ, ROBBINS PA: An assessment of central-peripheral ventilatory chemoreflex interaction in humans. *Respir Physiol* 88: 87-100, 1992.

CLEMENT ID, PANDIT JJ, BASCOM DA, ROBBINS PA: Ventilatory chemoreflexes at rest following a brief period of heavy exercise in man. *J Physiol* 495: 875-884, 1996.

DEMPSEY JA: Challenges for future research in exercise physiology as applied to the respiratory system. *Exerc Sport Sci Rev* 34: 92-98, 2006.

DUFFIN J: Role of acid-base balance in the chemoreflex control of breathing. *J Appl Physiol* 99: 2255-2265, 2005.

DUFFIN J: The role of the central chemoreceptors: A modeling perspective. *Respir Physiol Neurobiol* 173: 230-243, 2010.

ELDRIDGE FL, GILL-KUMAR P: Lack of effect of vagal afferent input on central neural respiratory afterdischarge. *J Appl Physiol* 45: 339-344, 1978.

ELDRIDGE FL, GILL-KUMAR P: Central neural respiratory drive and afterdischarge. *Respir Physiol* 40: 49-63, 1980.

ELDRIDGE FL, MILLHORN DE, KILEY JP, WALDROP TG: Stimulation by central command of locomotion, respiration and circulation during exercise. *Respir Physiol* 59: 313-337, 1985.

EYZAQUIRRE C, ZAPATA P: Perspectives in carotid body research. *J Appl Physiol* 57: 931-957, 1984.

FUKUBA Y, KITANO A, HAYASHI N, YOSHIDA T, UEOKA H, ENDO MY, MIURA A: Effects of femoral vascular occlusion on ventilatory responses during recovery from exercise in human. *Respir Physiol Neurobiol* 155: 29-34, 2007.

GAITANOS GC, WILLIAMS C, BOOBIS LH, BROOKS S: Human muscle metabolism during intermittent maximal exercise. *J Appl Physiol* 75: 712-719, 1993.

HAOUZI P, HUSZCZUK A, PORSZASZ J, CHALON B, WASSERMAN K, WHIPP BJ: Femoral vascular occlusion and ventilation during recovery from heavy exercise. *Respir Physiol* 94: 137-150, 1993.

HAOUZI P, CHENUEL B, CHALON B, HUSZCZUK A: Distension of venous structures in muscles as a controller of respiration. Frontiers in modeling and control of breathing: integration at molecular, cellular, and systems levels. *Adv Exp Med Biol* 499: 349-356, 2001a.

HAOUZI P, CHENUEL B, CHALON B: Control of breathing and muscle perfusion in humans. *Exp Physiol* 86: 759-768, 2001b.

HAOUZI P, CHENUEL B, CHALON B: Effects of body position on the ventilatory response following an impulse exercise in humans. *J Appl Physiol* 92: 1423-1433, 2002.

KAUFMAN MP, LONGHURST JC, RYBICKI KJ, WALLACH JH, MITCHELL JH: Effects of static muscular contraction on impulse activity of tests III and IV afferents in cats. *J Appl Physiol* 100: 105-112, 1983.

KNUTTGEN HG, SALTIN B: Muscle metabolites and oxygen uptake in short-term submaximal exercise in man. *J Appl Physiol* 32: 690-694, 1972.

KOWALCHUK JM, HEIGENHAUSER GJ, LINDINGER MI, SUTTON JR, JONES NL: Factors influencing hydrogen ion concentration in muscle after intense exercise. *J Appl Physiol* 65: 2080-2089, 1988.

JONES NL, ROBERTSON DG, KANE JW: Difference between end-tidal and arterial PCO₂ in exercise. *J Appl Physiol* 47: 954-960, 1979.
McCLOSKEY DI, MITCHELL JH: Reflex cardiovascular and respiratory responses originating in exercising muscle. *J Physiol* **224**: 173-186, 1972.

OSNES JB, HERMANSSEN L: Acid-base balance after maximal exercise of short duration. *J Appl Physiol* **32**: 59-63, 1972.

OREN A, WASSERMAN K, DAVIS JA, WHIPP BJ: Effect of CO₂ set point on ventilatory response to exercise. *J Appl Physiol* **51**: 185-189, 1981.

PATerson DJ, ROBBINS PA, CONWAY J: Changes in arterial plasma potassium and ventilation during exercise in man. *Respir Physiol* **78**: 323-330, 1989.

PERONNET F, MEYER T, AGUILANIU B, JUNEAU CE, FAUDE O, KINDERMANN W: Bicarbonate infusion and pH clamp moderately reduce hyperventilation during ramp exercise in humans. *J Appl Physiol* **102**: 426-428, 2007.

POON CS: Evolving paradigms in H⁺ control of breathing: From homeostatic regulation to homeostatic competition. *Respir Physiol Neurobiol* **179**: 122-126, 2011.

STRINGER W, CASABURI R, WASSERMAN K: Acid-base regulation during exercise and recovery in humans. *J Appl Physiol* **72**: 954-961, 1992.

STEWART PA: Modern quantitative acid-base chemistry. *Can J Physiol Pharmacol* **61**: 1444-1461, 1983.

TURNER DL: Cardiovascular and respiratory control mechanisms during exercise: An integrated view. *J Exp Biol* **160**: 309-340, 1991.

WALDROP TG, IWAMOTO GA, HAOUZI P: Point: Counterpoint: supraspinal locomotor centers do/do not contribute significantly to the hyperpnea of dynamic exercise. *J Appl Physiol* **100**: 1077-1083, 2006.

WARD SA: Ventilatory control in humans: constraints and limitations. *Exp Physiol* **92**: 357-366, 2007.

WASSERMAN K, VAN KESSEL AL, BURTON GG: Interaction of physiological mechanisms during exercise. *J Appl Physiol* **22**: 71-85, 1967.

WASSERMAN K, WHIPP BJ, KOYAL SN, CLEARY MG: Effect of carotid body resection on ventilatory and acid-base control during exercise. *J Appl Physiol* **39**: 354-358, 1975.

WHIPP BJ: Ventilatory control during exercise in humans. *Ann Rev Physiol* **45**: 393-413, 1983.

WHIPP BJ: Peripheral chemoreceptor control of exercise hyperpnoea in humans. *Med Sci Sports and Exerc* **26**: 337-347, 1994.

YAMANAKA R, YUNOKI T, ARIMITSU T, LIAN CS, YANO T: Effects of sodium bicarbonate ingestion on EMG, effort sense and ventilatory response during intense exercise and subsequent active recovery. *Eur J Appl Physiol* **111**: 851-858, 2011.

YANO T, YUNOKI T, MATSUURA R, ARIMITSU T: Relationship between hyperventilation and excessive CO₂ output during recovery from repeated cycling sprints. *Physiol Res* **58**: 529-535, 2009.

YOSHIDA T, CHIDA M, ICHIOKA M, MAKIGUCHI K, EGUCHI J, UDO M: Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery. *Eur J Appl Physiol* **61**: 193-196, 1990.

ZAVORSKY GS, CAO J, MAYO NE, GABBAY R, MURIAS JM: Arterial versus capillary blood gases: a meta-analysis. *Respir Physiol Neurobiol* **155**: 268-279, 2007.