Universality in nuclear dependence coefficient $\alpha(q_T)$

Xiaofeng Guo1, Jianwei Qiu2, and Xiaofei Zhang2

1Department of Physics and Astronomy, University of Kentucky
Lexington, Kentucky 40506, USA
2Department of Physics and Astronomy, Iowa State University
Ames, Iowa 50011, USA

(February 16, 2000)

We derive the nuclear dependence coefficient $\alpha(q_T)$ for Drell-Yan and J/ψ production. We show that at small q_T, the $\alpha(q_T)$ is given by an universal functional form: $\alpha(q_T) = a + bq_T^2$, and the parameters a and b are completely determined by either perturbatively calculable or independently measurable quantities. This universal functional form $\alpha(q_T)$ is insensitive to the A, and is consistent with existing data.

$\frac{d\sigma^{A}}{dQ^{2}dq_{T}^{2}} = N_{DY} \frac{1}{2\tau^{2}} e^{-q_{T}^{2}/2\tau^{2}}, \tag{2}$

with N_{DY} a dimensional normalization and τ the width.

In region (II), the spectrum can be calculated in QCD perturbation theory with resummation of large logarithms, such as $(\alpha_s \ln^3 (Q^2/q_T^2))^\alpha$, which are due to the gluon radiations from incoming partons Ψ. The resummation is extremely important for W^\pm and Z^0 production at collider energies because the Q^2/q_T^2 can be as large as 8×10^3 for $q_T \sim 1$ GeV. However, for the Drell-Yan production at fixed target energies, the resummation is much less important because of much smaller value of Q^2/q_T^2. In fact, as shown in Ref. [12], all existing data for q_T as large as 2.5 GeV can be well represented by extending the Gaussian-like distribution in Eq. (2) from region (I) to region (II).

In region (III), the transverse momentum spectrum can be calculated in perturbative QCD [13]. Therefore, the Drell-Yan q_T-spectrum at fixed target energies can be represented by

$\frac{d\sigma}{dQ^{2}dq_{T}^{2}} = \frac{d\sigma^{(I)}}{dQ^{2}dq_{T}^{2}} + \left[\frac{d\sigma^{(II)}}{dQ^{2}dq_{T}^{2}} - \frac{d\sigma^{(I)}}{dQ^{2}dq_{T}^{2}} \right] \theta(q_T - q_T^0), \tag{3}$

where $d\sigma^{(I)}/dQ^{2}dq_{T}^{2}$ is the perturbatively calculated q_T-spectrum for $q_T > q_T^0$, and $d\sigma^{(I)}/dQ^{2}dq_{T}^{2}$, defined in Eq. (2), fits data in regions (I)+(II).

Using moments of the Drell-Yan q_T-spectrum in Eq. (3), we can relate N_{DY} and τ in Eq. (2) to physical quantities. At fixed target energies, the contribution from the second term in Eq. (3) to $d\sigma/dQ^2$ is much less than one percent. Therefore, up to less than one percent uncertainty, $N_{DY} \approx d\sigma/dQ^2$.

Define the averaged transverse momentum square as $\langle q_T^2 \rangle \equiv \int dq_T^2 q_T^2 (d\sigma/dQ^2dq_T^2)/(d\sigma/dQ^2)$. We find [14]...
that the contribution of the second term in Eq. (3) to \(q_T^2 \) is much less than ten percent of the first term. Therefore, by iteration, we obtain \(2\tau^2 \approx (q_T^2) - \Gamma(q_T^2) \) with
\[
\Gamma(q_T^2) = \frac{1}{d\sigma/dq_T^2} \int_{q_T^2} d\omega^2 \left[\frac{d\sigma(III)}{dQ^2dq_T^2} - \frac{d\sigma(I)}{dQ^2dq_T^2} \right] dq_T^2, \tag{4}
\]
where \(2\tau^2 \) in \(d\sigma(III)/dQ^2dq_T^2 \) in Eq. (4) is approximately given by \((q_T^2) \). Substituting the \(N_{DY} \) and \(\tau \) into Eq. (3), we obtain the Drell-Yan spectrum for \(q_T < q_T^* \) as
\[
\frac{d\sigma^{hN}}{dQ^2dq_T^2} \approx \frac{d\sigma^{hN}/dQ^2}{\langle q_T^2 \rangle^{hN} - \Gamma(q_T^2)^{hN}}. \tag{5}
\]

Most importantly, the \(\Gamma(q_T^2) \) in Eq. (3) is small and perturbatively calculable.

For the Drell-Yan \(q_T \)-spectrum in hadron-nucleus collisions, we also need to consider multiple scattering. Similar to the single-scattering case, at the leading order in perturbation theory, the double-scattering contribution is also proportional to a \(\delta \)-function \(\delta \),
\[
\frac{d\sigma^{hA}}{dQ^2dq_T^2} \propto T_{qg}(x_1, x_2, k_T) \delta^2(\vec{q}_T - \vec{k}_T), \tag{6}
\]
where the subscript \(D \) indicates the double scattering, \(T_{qg}(x_1, x_2, k_T) \) is the quark-gluon correlation function \([13,14] \), where \(x_1, x_2 \), and \(x_2 \) are the momentum fractions carried by the quark and gluon fields. The \(k_T \) in Eq. (6) represents the intrinsic momentum of the gluon which gives additional scattering. Following the same arguments leading to Eq. (2), we can show \(\Delta q^2 \) that if the partons’ intrinsic \(k_T \)-dependence has a Gaussian-like distribution, the double scattering contributions to the Drell-Yan \(q_T \)-spectrum in small \(q_T \) region can also be represented by a Gaussian form.

In high \(q_T \) region, the Drell-Yan \(q_T \)-spectrum in hadron-nucleus collision also has a perturbative tail. The Drell-Yan \(q_T \)-spectrum at large \(q_T \) in hadron-nucleus collisions was calculated in Ref. \([11] \). The nuclear dependence of Drell-Yan \(q_T \)-spectrum depends on two types of multiparton correlation functions inside the nucleus: \(T^{DH} \) and \(T^{SH} \), which correspond to the double-hard and soft-hard double scattering subprocesses respectively \([11] \). These correlation functions are as fundamental as the well-known parton distributions, and can be extracted from other physical observables.

Similar to deriving Eq. (3), we can derive
\[
\frac{d\sigma^{hA}}{dQ^2dq_T^2} = \frac{d\sigma^{hA}/dQ^2}{\langle q_T^2 \rangle^{hA} - \Gamma(q_T^2)^{hA}} e^{-q_T^2 / \langle \langle q_T^2 \rangle \rangle^{hA} - \Gamma(q_T^2)^{hA}}. \tag{7}
\]

where \(\langle q_T^2 \rangle^{hA} = \langle q_T^2 \rangle^{hN} + \Delta(q_T^2)^{hA} \). \(\Delta(q_T^2)^{hA} \) is the transverse momentum broadening and calculable in QCD perturbation theory \([15,16] \). In Eq. (7), \(\Gamma(q_T^2)^{hA} \) is a small contribution to \(\langle q_T^2 \rangle^{hA} \), and it is calculable and depends on the perturbative tail of the \(q_T \)-spectrum.

Substituting Eqs. (3) and (7) into Eq. (8), we derive \(\alpha(q_T) \) for the Drell-Yan production in small \(q_T \) region:
\[
\alpha_{DY}(q_T) = 1 + \frac{1}{\ln(A)} \left[\ln \left(\frac{R_{DY}^A (Q^2)}{\langle q_T^2 \rangle^{hN} - \Gamma(q_T^2)^{hN}} \right) \right] + \frac{\chi_{DY}}{1 + \chi_{DY}} \frac{q_T^2}{\langle q_T^2 \rangle^{hN} - \Gamma(q_T^2)^{hN}}, \tag{8}
\]
where \(R_{DY}^A (Q^2) = (1/A)(d\sigma^{hA}/dQ^2) / (d\sigma^{hN}/dQ^2) \). The \(\chi_{DY} \) in Eq. (8) is defined by
\[
\chi_{DY} = \frac{\Delta(q_T^2)^{hA}}{\langle q_T^2 \rangle^{hN} - \Gamma(q_T^2)^{hN}} \approx \frac{\Delta(q_T^2)^{hA}}{\langle q_T^2 \rangle^{hN}}, \tag{9}
\]
where \(\Delta(q_T^2)^{hA} = \Gamma(q_T^2)^{hA} - \Gamma(q_T^2)^{hN} \), and is much smaller than \(\Delta(q_T^2)^{hA} \) \([12] \). The \(\alpha_{DY}(q_T) \) in Eq. (8) has a quadratic dependence on \(q_T \).

At the leading order in \(\alpha_s \), \(\Delta(q_T^2)^{hA} \propto T_{qg}^{SH}(x) = \lambda^2 A^{1/3} q(x) \) with \(q(x) \) the normal quark distribution and the parameter \(\lambda^2 \) proportional to the size of averaged color field strength square inside a nuclear target \([9] \). Consequently, we have \(\Delta(q_T^2)^{hA} = b_{DY} A^{1/3} \) with \(b_{DY} \propto \lambda^2 \). In this letter, we use a measured \(b_{DY} \approx 0.022 \text{ GeV}^2 [15] \) to fix \(\lambda^2 \) and \(T_{qg}^{SH} \). Taking the small \(\chi_{DY} \) limit, and using the fact that \(R_{DY}^A (Q^2) \approx 1 \), we derive
\[
\alpha_{DY}(q_T) \approx 1 + \frac{b_{DY} \langle q_T^2 \rangle^{hN}}{\langle q_T^2 \rangle^{hN} - \Gamma(q_T^2)^{hN}} \left[-1 + \frac{q_T^2}{\langle q_T^2 \rangle^{hN}} \right]. \tag{10}
\]
In deriving Eq. (10), we used \(A^{1/3} \sim \ln(A) \), which is a good approximation for most relevant targets. Eq. (10) shows that the leading contribution to \(\alpha_{DY}(q_T) \) does not depend on the \(A \).

![FIG. 1. \(\alpha_{DY}(q_T) \) for the Drell-Yan production as a function of \(q_T \). At small \(q_T \), the \(\alpha_{DY}(q_T) \) in Eq. (8) is used. At large \(q_T \), QCD predictions from Ref. [10] are plotted with \(r_0 = 1.1 \text{ fm} \) and \([xG(x)]_{x_{so}} = 3 \) for the possible maximum and minimum values of the \(C \).](image-url)
In Fig. 1 we plot $\alpha_{DY}(q_T)$ for targets with $A = 12$ and $A = 184$. At small q_T, we used Eq. (8) and set the small $\Gamma(q_T^2) = 0$. We also used the measured $(\langle q_T^2 \rangle_{hN}) = 1.8$ GeV2, and $\Delta(\langle q_T^2 \rangle_{hA}) = 0.022A^{1/3}$ GeV2 [12, 17]. At large q_T, we plot the QCD predictions from Ref. [14], which depend on both T^{SH} and T^{DH}. T^{SH} is fixed by $\Delta(\langle q_T^2 \rangle_{hA})$. However, there is no direct observable yet to extract T^{DH} [11]. Because of the operator definition of $T^{DH}(x_1, x_2)$, it was assumed that $T_{ij}^{DH}(x_1, x_2) = (2\pi C)A^{4/3}f_1(x_1)f_2(x_2)$ with f_1 and f_2 parton distributions of flavor f_1 and f_2 [10]. Assuming no quantum interference between different nucleon states, one derives $C = 0.35/(8\pi r_0^2) \text{ GeV}^2$ with $r_0 \approx 1.1 - 1.25 \text{ fm}$, which is just a geometric factor for finding two nucleons at the same impact parameter [14]. On the other hand, when x_1 (or x_2) goes to zero, the corresponding parton fields reach the saturation region, and the T^{DH} is reduced to T^{SH}. Therefore, we have $C \approx \lambda^2/(2\pi[xG(x)]_{x=0})$ [12], where $[xG(x)]_{x=0}$ is of the order of unity [14]. Because of a combination of a small value of the measured λ^2 from Drell-Yan data [17] and a choice of $[xG(x)]_{x=0} \approx 3$ [12], these two approaches result into a factor of 20 difference in numerical value for the parameter C [13] as well. The values for the C obtained in Ref. [14] without any quantum interference should represent a possible maximum for C, while the value obtained in Ref. [12] with full quantum interference (in saturation region) represents a possible minimum for the C. In Fig. 1, we plot the perturbatively calculated $\alpha_{DY}(q_T)$ [10] at large q_T with the maximum and minimum values of the λ^2 discussed above, and let the $\alpha(q_T)$ in small q_T naturally linked to that at large q_T. Fig. 1 also shows that $\alpha_{DY}(q_T)$ is insensitive to the atomic number A. In Fig. 2 we plot $R(A, q_T) = A^{\alpha_{DY}(q_T)}$ by using $\alpha_{DY}(q_T)$ in Fig. 1 and compare our predictions with data from E772 [13, 15]. Without any extra free fitting parameters, our predictions shown in Fig. 2 are consistent with data at small q_T, and due to the large error in data at high q_T, current Drell-Yan data are consistent with almost any value for the C between the maximum and the

\[\alpha_{3j/\psi}(q_T) = 1 + \frac{1}{\ln(A)} \left(\ln \left(\frac{R_A^{3j/\psi}}{1 + \chi_{3j/\psi}} \right) + \frac{q_T^2}{\Gamma(3j/\psi)} \right), \]

where $R_A^{3j/\psi} = (1/A)\sigma^{3j/\psi}_{hA}/\sigma^{3j/\psi}_{hN}$, and $\chi_{3j/\psi}$ is defined by

\[\chi_{3j/\psi} = \frac{\Delta \langle q_T^2 \rangle_{3j/\psi} - \Delta \Gamma(3j/\psi)/\Gamma(3j/\psi)}{\langle q_T^2 \rangle_{3j/\psi} - \Gamma(3j/\psi)/\Gamma(3j/\psi) \approx \Delta \langle q_T^2 \rangle_{3j/\psi}}. \]

Similar to the Drell-Yan case, $\Gamma(q_T^2)_{3j/\psi}$ and $\Delta \Gamma(q_T^2)_{3j/\psi}$ are perturbatively calculable, and much smaller than $\langle q_T^2 \rangle_{3j/\psi}$ and $\Delta \langle q_T^2 \rangle_{3j/\psi}$ respectively [12].

One major difference between J/ψ production and the Drell-Yan process is the nuclear dependence of $R_A^{3j/\psi}$. Clear nuclear suppression for $\sigma^{3j/\psi}_{3j/\psi}$ has been observed [20]. Since we are only interested in the general features of $\alpha(q_T)$, we adopt the following simple parameterization

\[R_A^{3j/\psi} = \frac{1}{A} \frac{\sigma^{3j/\psi}_{hA}}{\sigma^{3j/\psi}_{hN}} = e^{-\beta A^{1/3}}, \]

which fits all experimental data on J/ψ suppression in hadron-nucleus collisions [21, 22]. The $A^{1/3}$ factor in Eq. (13) represents an effective medium length, and β is a constant [12].

Similar to the Drell-Yan process, $\Delta \langle q_T^2 \rangle_{3j/\psi}$ is proportional to four-parton correlation functions $\rho_{3j/\psi}$ [12]. Due to final-state interactions for J/ψ production, $\Delta \langle q_T^2 \rangle_{3j/\psi}$ depend on both quark-gluon and gluon-gluon correlation functions. We can define [12] that $\Delta \langle q_T^2 \rangle_{3j/\psi} = b_{3j/\psi} A^{1/3}$, where $b_{3j/\psi}$ can be calculated or extracted from data. From Ref. [17], we obtain $b_{3j/\psi} \approx 0.06 \text{ GeV}^2$. With

FIG. 2. Comparison of our $\alpha_{DY}(q_T)$ in Eq. (8) with the Drell-Yan data from Fermilab E772 collaboration [13, 15].

minimum discussed above. In order to test the theory and pin down the value of the C, we need either better data or different observables. Because of the strong dependence on the double-hard subprocesses, the angular dependence of the Drell-Yan pair [11] could be an excellent signal for measuring the C.

Similarly, we can also obtain the $\alpha(q_T)$ for J/ψ production. Kinematically, hadronic J/ψ production is like Drell-Yan production with $Q \sim M_{J/\psi}$, and its q_T-spectrum can also be characterized by three different regions as in the Drell-Yan case. Because J/ψ mass $M_{J/\psi}$ is smaller than any typical Q measured for the Drell-Yan continuum, the logarithm $\alpha_{J/\psi} = \ln^2(M_{J/\psi}/q_T)$ for J/ψ production is less important. Consequently, at fixed target energies, a Gaussian-like distribution can fit J/ψ's q_T-spectrum even better. Therefore, following the same arguments used above for the Drell-Yan production, we derive $\alpha(q_T)$ for J/ψ production in small q_T region,

\[\alpha_{J/\psi}(q_T) = 1 + \frac{1}{\ln(A)} \left[\ln \left(\frac{R_A^{J/\psi}}{1 + \chi_{J/\psi}} \right) + \frac{q_T^2}{\Gamma(J/\psi)} \right], \]
\[\langle q_T^2 \rangle_{\chi_{J/\psi}} \approx 1.68 \text{ GeV}^2 \]
we can also take the small \(\chi_{J/\psi} \) limit in Eq. (11) and obtain
\[\alpha_{J/\psi}(q_T) \approx 1 - \beta + \left(\frac{b_{J/\psi}}{\langle q_T^2 \rangle_{\chi_{J/\psi}}} \right) \left(-1 + \frac{q_T^2}{\langle q_T^2 \rangle_{\chi_{J/\psi}}} \right) \]
where \(A^{1/3} \sim \ln(A) \) was again used. It is clear from Eq. (14) that in small \(q_T \) region, \(\alpha_{J/\psi}(q_T) \) is also insensitive to the atomic number \(A \) of targets. Furthermore, the nuclear suppression in \(R_{J/\psi}^A \) corresponds to a \(q_T \)-independent shift in the magnitude of \(\alpha_{J/\psi}(q_T) \).

Because the \(R_{J/\psi}^A, \chi_{J/\psi} \), and other physical quantities in Eq. (11) can depend on \(x_F \), \(\alpha_{J/\psi}(q_T) \) can also be a function of \(x_F \). Experiments show that the larger \(x_F \), the more suppression for \(J/\psi \) production (or smaller \(R_{J/\psi}^A \)) [24]. Consequently, from Eq. (11), we will have smaller \(\alpha_{J/\psi}(q_T) \) at larger \(x_F \), which is consistent with experimental data [24]. Although we do not have all needed physical quantities in Eq. (11) for predicting the \(\alpha_{J/\psi} \) in different \(x_F \) regions, we can still test the universality of \(\alpha_{J/\psi}(q_T) \): the quadratic dependence on \(q_T \) and \(\alpha \) plot our fits using \(\alpha_{J/\psi}(q_T) \) in Eq. (11) and compared it with E866 data in the three \(x_F \) regions: small (SXF), intermediate (IXF), and large (LXF). Clearly, our universal functional form for \(\alpha_{J/\psi}(q_T) \) is consistent with all data in small \(q_T \) region (\(q_T < q_T^2 \sim M_{J/\psi}/2 \)).

In summary, we derived an universal functional form for \(\alpha(q_T) \) for both the Drell-Yan and \(J/\psi \) production in small \(q_T \) region (\(q_T < q_T^2 = \kappa Q \) with \(\kappa \approx 1/3 - 1/2 \)). All parameters defining \(\alpha(q_T) \) in Eqs. (8) and (11) are completely determined by either perturbatively calculable or independently measurable quantities. We show that \(\alpha(q_T) \) is extremely insensitive to the atomic weight \(A \) of targets. For the Drell-Yan process, \(\alpha(q_T) \) in Eq. (8) can be naturally connected to the perturbatively calculated \(\alpha(q_T) \) at large \(q_T \). A similar test can also be carried out for \(J/\psi \) production. \(J/\psi \) suppression in relativistic heavy ion collisions was predicted to signal the color deconfinement [24]. On the other hand, significant \(J/\psi \) suppression has been observed in hadron-nucleus collisions [24]. Therefore, understanding the features observed in \(\alpha(q_T) \) for \(J/\psi \) production is very valuable for finding the true mechanism of \(J/\psi \) suppression.

We thank M.J. Leitch, J.M. Moss, and J.-C. Peng for helpful communications about experiments. This work was supported in part by the U.S. Department of Energy under Grant Nos. DE-FG02-87ER40731 and DE-FG02-96ER40989.
ph/9905409, and references therein.

[18] J. M. Moss and P. L. McGaughey, private communications.

[19] A.H. Mueller, hep-ph/9904404.

[20] M. C. Abreu et al, Phys. Lett. B410, 337 (1997); M. C. Abreu et al, Phys. Lett. B444, 516 (1998).

[21] C. Benesh, J.-W. Qiu, and J.P. Vary, Phys. Rev. C50, 1015 (1994).

[22] D. Kharzeev, Nucl.Phys. A638, 279c(1998), and the references therein.

[23] D. M. Alde et al, Phys. Rev. Lett 66, 133 (1991); M. S. Kowitt et al, Phys. Rev. Lett. 72, 1318 (1994).

[24] T. Matsui and H. Satz, Phys. Lett. B178, 416 (1986).