Immunizing Markets Against the Pandemic: COVID–19 Vaccinations and Stock Volatility Around the World

Abstract
The COVID-19 pandemic has exerted a noteworthy impact on stock market volatility around the world. Can vaccination programs revert these adverse effects? To answer this question, we scrutinize daily data from 66 countries from January 1, 2020 to April 30, 2021. We provide convincing evidence that COVID-19 vaccination assists in stabilizing the global equity markets. The drop in volatility is robust to many considerations and does not result solely from either the pandemic itself or the government policy responses—the negative correlation remains significant after controlling for these factors. The impact of vaccinations is relatively stronger within developed markets than in emerging ones.

Keywords: stock market volatility; COVID-19 pandemic; novel coronavirus; vaccinations.

JEL codes: G01, G12, G15, G18, H12, H51, I18, Q54.
1. Introduction

The global-scale spread of COVID-19 has exerted an unprecedented impact on financial markets (Zaremba et al., 2020; Al-Awadhi et al., 2020; Baek, Mohanty, & Glambosky, 2020; Albuescu, 2021). The effect was further exacerbated by devastating containment and closure policies (Zaremba et al., 2020; Heyden & Heyden, 2021). The arrival of the first coronavirus vaccines in early 2021 brought with it promises of both a return to normality and stability within the financial market. However, have they succeeded? Do mass vaccinations help play a role in stabilizing financial markets? In this paper, we investigate the empirical relation between daily mass vaccinations and stock market volatility.

We focus on volatility, as it can be regarded as a barometer of macroeconomic and financial risk, stress, or uncertainty (Zaremba et al., 2020). Stock market volatility is a key input in asset pricing models (French, Schwert, & Stambaugh, 1987; Chung, Wang, & Wu, 2019). It is countercyclical and can be induced by large swings in risk premia that investors require to invest in the stock market (Mele, 2017). Volatility can be driven by the consumption growth uncertainty (Tauchen, 2011). High volatility can disrupt consumption and investment plans in the economy (Campbell, 1993; Campbell, 1996; Campbell et al., 2018). Furthermore, in the consumption-based capital asset pricing model with habit formation of Campbell and Cochrane (1999), stock market volatility can encompass external habit formation, which lies at the heart of consumers’ or investors’ psychology. This highlights the importance of monitoring stock market volatility by financial analysts, investors, policymakers, and regulators.

To test the effect of vaccination on stock market volatility, we use data covering 66 markets from around the world for the period of the global COVID-19 pandemic, which ranges from 2020 to 2021. We employ novel international vaccination data that, to our knowledge, has not been employed in any finance studies so far. Using panel regressions, we examine the relationship between various measures of vaccinations and daily stock market volatility.

We find that mass vaccinations significantly decrease the stock market volatility. The decline is independent of the impact of the pandemic’s dynamics or the related government policy responses. Furthermore, the phenomenon is robust to many considerations. Moreover, the effect of vaccinations on stock market volatility is relatively more robust in developed than in emerging markets.

Our study contributes to two principal strains of the finance literature. First, we add to the research on the impact of the COVID-19 pandemic on the volatility in international financial markets. Earlier studies primarily concentrated on the role of the pandemic itself—including infections and casualties—or the related government policy responses (Baek et al., 2020; Albuescu, 2021; Bai et al., 2021; Engelhardt et al., 2021; Zaremba et al., 2021b). We are the first to explore the role of mass COVID-19 vaccination programs on stock market volatility. Second, we extend the discussion on how the financial markets react to the news on vaccines. Only a few articles have scrutinized this issue. Chan et al. (2021) document that equity markets react positively when consecutive phases of clinical trials begin. On the other hand, Acharya et al. (2021) explore how successful vaccination programs may affect global wealth. To the best of our knowledge, the vaccines’ role within global market volatility remains unchartered territory.
The remainder of the article proceeds as follows. Section 2 surveys the related literature. Section 3 summarizes our data and methodology. Section 4 presents the empirical findings. Finally, Section 5 concludes the study.

2. Literature Review

The outbreak of COVID-19 in December 2019 and its worldwide effects have attracted researchers’ attention, and the number of studies exploring the impact of the pandemic on financial markets has increased exponentially. Early studies focused on the pandemic’s impact on financial markets. In this vein, Al-Awadhi et al. (2020), Topcu and Gulal (2020), and Ashraf (2020a) document that the growth-rate of confirmed COVID-19 cases and deaths negatively influence the stock prices. The effect of the pandemic is found to be heterogeneous across industries (Baek et al. 2020; Goodell & Huynh, 2020; Lie et al., 2021). A further extension is performed on the effects of the pandemic on liquidity (Zaremba et al., 2021b; Haroon & Rizvi, 2020) and volatility (Onali, 2020; Baek et al., 2020; Albuiescu, 2021; Bai et al., 2021; Engelhardt et al., 2021; Zaremba et al., 2020). In addition to equities, ample studies explore the influence on other asset classes such as oil prices (Sharif et al., 2020; Wu et al., 2021), gold (Mensi et al., 2020; Gharib et al., 2021), cryptocurrencies (Conlon & McGee, 2020; Demir et al., 2020), exchange rates (Njindan Iyke, 2020), real estate (Ling et al., 2020; Milcheva, 2021), and bonds (Falato et al., 2020). In addition to the impact of COVID-19-related deaths and cases, the government restrictions imposed to flatten the curve are explored (Ashraf, 2020b; Heyden & Heyden, 2021; Kizys, 2021).

A number of studies investigate which firm-specific factors can mitigate the impact of the pandemic. Ding et al. (2021), Ramelli and Wagner (2020), and Fahlenbrach et al. (2021) emphasize the role of pre-pandemic financial conditions such as low debt, high profitability, and higher financial flexibility to cope with COVID-19. Broadstock et al. (2021), Albuquerque et al. (2021), and Ding et al. (2021) show that stock prices of firms with high environmental ratings and ESG scores are more resilient to the pandemic, while Bae et al. (2021), as well as Takahashi and Yamada (2021) argue that ESG scores cannot provide such an immunity. Exposure to international trade (Ramelli & Wagner, 2020), market power (Hyun et al., 2020), corporate culture (Li et al., 2020), work from home feasibility (Bai et al., 2020), and family ownership (Ding et al., 2021) are among the factors that can influence the firm performance during the pandemic period. In addition to firm-level factors, the same research questions are also explored at the country level. Prior studies show that the market-level immunity is affected by national culture (Ashraf, 2021; Fernandez-Perez et al., 2021; Kaczmarek et al., 2021), the level of economic freedom (Erdem, 2020), government responses to the pandemic (Phan & Narayan, 2020), and pre-pandemic economic conditions (Zaremba et al., 2021a).

An exciting, yet unexplored, field is the impact of vaccines’ development and the beginning of mass vaccinations on financial markets. The finance literature explores the impact of clinical trial success of drug development (Rothenstein et al., 2011; Hwang, 2013), new drug approvals (Chen et al., 2020), and even news about the potential development of new cancer-curing drugs (Huberman & Regev, 2001) on the stock returns of pharmaceutical companies. However, to our knowledge, research about the vaccine development impact on stock markets is absent until the recent COVID-19 pandemic. The world has not experienced a widespread health crisis such as this; furthermore, asymptomatic transmission of COVID-19 during the
incubation period makes vaccination the only solution to achieve herd immunity. In this regard, pharmaceutical companies in Germany, the United States, and China have developed COVID-19 vaccines, which get emergency use authorization from regulatory bodies. Countries have started mass vaccination programs. Only a few articles scrutinized this issue, and we mainly contribute to this scarce, yet essential, field.

Acharya et al. (2020) develop an asset-pricing perspective to estimate the value of a cure by constructing a novel “vaccine progress indicator.” They estimate that a decrease in the expected vaccine deployment time by a year leads to an increase in the stock market return (around 4% to 8% on a daily basis). Moreover, they calculate the exposure levels within each industry and explore the impact of vaccine progress in the cross-section of industries. Industries that are exposed to the pandemic experience a higher positive impact as the vaccine is deployed sooner. Chan et al. (2021) analyze the stock market reactions to the start of human clinical trials for COVID-19 vaccine candidates. They find that the average abnormal return in 49 countries rises by 15.2 basis points (bps) on the first day of clinical trials after controlling for the growth in COVID-19 cases and deaths, as well as investor sentiment. Moreover, the abnormal return increases by 30.0 bps and 51.7 bps on the first day of phase 2 and phase 3 of the human clinical trials of vaccine candidates, respectively. This implies that stock market reactions are even more substantial as vaccine development progresses to later phases.

It is also documented that there is a heterogeneous reaction towards vaccines developed in the United States, China, and other countries. Finally, Hong et al. (2021) construct a model of pandemic risk management and firm valuation. They found that a higher vaccine arrival timing risk will trigger the magnitude of the pandemic shock. Asset valuations are highly sensitive to vaccine arrival rates. The arrival of the vaccine would shift the stock prices to pre-pandemic levels.

Furthermore, the extant finance literature offers convincing evidence linking the spread of the pandemic with the heightened volatility (Albulescu, 2021; Baek, Mohanty, & Glamposky, 2020; Bai et al., 2021; Engelhardt et al., 2021; Zaremba et al., 2020). Such volatility can occur due to rising economic uncertainty during the pandemic period (Altig et al., 2020; Baker et al., 2020; Sharif, Aloui, & Yarovaya, 2020), unexpected government interventions to flatten the curve, negative demand- and supply-side shocks, the constant flow of policy-related news, and divergence of opinions that affects trading activity (Harris & Raviv, 1993; Banerjee, 2011).

All these mechanisms may be partly alleviated or reverted by the introduction of vaccines. Heading towards a herd immunity, achieved thanks to vaccinations, lowers the risks of unexpected and uncontrolled growth of the pandemic. It also decreases the potential fatalities. The results should provide less economic uncertainty, lower likelihood of unexpected policies, and—in the end—greater price stability. However, vaccines can also have the opposite effect. Broad and successful vaccination campaigns may result in an overall improvement in the economy-wide sentiment, which correlates closely with the broad stock market sentiment (Jansen & Nahuis, 2003; Otoo, 1999). This positive sentiment can drive volatility up, facilitating more trading and attracting retail investors (Brown, 1999; Kumari & Mahakud, 2015; Wang, Keswani, & Taylor, 2006). In consequence, the overall effect of the vaccines on volatility may

1 “News implied volatility and disaster concerns,” (Manela & Moreira, 2017).

2 Hasan et al. (2021) indicate that the COVID-19 pandemic adversely affected the costs of financing.
be unsure. It is, therefore, an empirical issue as to whether mass vaccinations are associated with more or less stock return volatility.

3. Data and Methods

To investigate the effect of COVID–19 vaccinations on stock return volatility, we use daily stock market and pandemic–related data for 66 countries (covered by Datastream Global Equity Indices) from January 1, 2020, to April 30, 2021. Our study period starts on the first trading day after December 31, 2019 when the World Health Organization (WHO) was informed of pneumonia cases of unknown cause being detected in Wuhan City, China (WHO, 2020). We gather vaccination statistics from a novel dataset from the COVID–19 Data Hub website, funded by the Institute for Data Valorization (IVADO, Canada). To the best of our knowledge, this data has, so far, never been used in finance studies. We exclude China from our analysis because of the unavailability of daily vaccination data for this country. Table 1 visualizes the list of markets covered by our data set.

[Insert Table 1 about here]

In our principal empirical analysis, we estimate different specifications of the following model:

\[VOLATILITY_{i,t} = \alpha + \beta \cdot VACCINATION_{i,t-1} + \Gamma' \cdot CONTROLS_{i,t} + \Lambda' \cdot WEEKDAY_{i,t} + \epsilon_{i,t}, \]

where \(VOLATILITY_{i,t} \) is one of two variables, Log \(|R|_{i,t}\) and Log \(|RR_{CAPM}|_{i,t}\) for country \(i\) on day \(t\). The dependent variable Log \(|R|\) is the natural logarithm of absolute daily returns. The use of absolute returns to measure volatility is informed by Antonakakis and Kizys (2015). To ensure the robustness of our findings, we consider an alternative measure of stock return volatility; namely, the natural logarithm of absolute residual returns from the CAPM model, Log \(|RR_{CAPM}|\), similarly as in Schwert (1989). Following Zaremba (2020), the logarithmic transformation a) warrants that daily volatility in levels is positive definite, and b) allows to account for the presence of non-linearities in the relation between the level of volatility and its covariates. The residual is estimated using rolling regressions based on five years of daily data. The market return in the model is proxied by the value-weighted portfolio of all the markets in the sample. The risk-free return is sourced from Kenneth R. French’s website.

Our primary focus is on the coefficient of VACCINATION. To assure the robustness of our findings, we use four different vaccination-related variables. Namely, i) Log (Daily Vaccinations), defined as the natural logarithm of the daily number of COVID-19 vaccinations. ii) Daily Vaccinations Per 100,000, computed as the daily number of COVID-19 vaccinations divided by the country population and then multiplied by 100,000. We use daily vaccinations by 100,000 instead of daily vaccinations per million to improve the readability of our tables by scaling up the coefficients of this variable (using only four decimals). iii) Vaccination Period, which is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, Our results are robust to starting the period at different later dates, such as March 11, 2020, the date at which the WHO announced the COVID–19 outbreak a pandemic. 4

4 https://covid19datahub.io.

5 In an unreported analysis, we experimented with including Chinese statistics based on interpolated newspaper estimates. Our findings remained unaffected.

6 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
and zero otherwise. Finally, iv) Δ Daily Vaccinations Dummy, which is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Negative coefficients of these four variables would suggest that stock market volatility decreases with the daily number of vaccinated individuals and when the countries get access to COVID-19 vaccines.

CONTROLS is a vector of control variables, which are shown in prior studies to affect stock return volatility (Zaremba et al., 2020; Bae et al., 2021). This includes i) Stringency Index, a score between 0 and 100 that reflects the stringency of a government policy response to the COVID-19 pandemic. The index, obtained from Hale et al. (2021), aggregates a range of different containment and closure measures (Zaremba et al., 2020). ii) BM, which is the book-to-market ratio based on accounting data lagged by four months to avoid look-ahead bias. iii) Log (TV), computed as the natural logarithm of daily trading volume in U.S. dollars. iv) Δ Infections to Cases, defined as the daily change in the number of COVID-19 infections to the cumulative number of cases. v) Δ Deaths to Cases, which is the daily change in the number of COVID–19 deaths to the cumulative number of cases. Finally, vi) U.S. Elections, which is a dummy variable that takes the value 1 for the period that starts at November 3, 2020 (election date) and ends on January 7, 2021 (when the Congress confirmed Joe Biden as the winner), and zero otherwise. **Weekday dummies (WEEKDAY)** is a vector of indicator variables to control for the potential day of the week effect on market return volatility (Kiymaz & Berument, 2003). Furthermore, to extend Equation (1) to a dynamic panel framework, we add the lagged dependent variable to the list of control variables.

Panel A of Table 2 reports descriptive statistics about the variables used in our primary analysis. All continuous variables are winsorized at the 1st and the 99th percentiles to mitigate the effect of outliers. Statistics on the two dependent variables are in line with those of Zaremba et al. (2020) with a mean Log |R| and mean Log |RR_CAPM| of -5.277 and -5.375, respectively. Table 2 also shows that the average number of daily vaccinations per 100,000 is relatively low (less than 71); this is because most of the country-day observations are not in the vaccination period (mean Vaccination Period of 0.207). Panels B and C of Table 2 display descriptive statistics for the subsamples of developed and emerging markets, respectively. Not surprisingly, the vaccination-related variables are, on average, higher in developed countries compared to emerging ones.

Table 3 shows the pairwise correlation coefficients between all the variables used in our principal analysis and indicates that Log |R| and Log |RR_CAPM| are both significantly and negatively correlated with each of the four vaccination-related variables, thus providing preliminary evidence that COVID-19 vaccination programs play an important role in stabilizing the global equity markets. Moreover, the correlation coefficients between the four vaccination variables are highly positive (more than 0.597). Interestingly, the correlations among the regressors are generally low, except those between Log (TV) and Log (MV). Thus, we run our regressions after using only one of these two variables as a regressor.
The baseline regression, outlined in Equation (1), is estimated using three different methods: pooled ordinary least squares (OLS), fixed effects, and random effects estimator. First, the use of pooled OLS is motivated by other studies that examined the effects of COVID-19 on financial markets (see, e.g., Kizys et al., 2021; Papadamou et al., 2021). Following Wooldridge (2002, p. 150), the pooled OLS estimator is consistent insofar as it meets two conditions: i) the orthogonality conditions $E(X_{i,t}'e_{i,t}) = 0$, where $X_{i,t}'$ is the row vector of the explanatory variables ($\text{VACCINATION}, \text{CONTROLS}$, and WEEKDAY); and ii) the mild rank condition $E(\sum_{t=1}^{T}X_{i,t}'X_{i,t}) = K$, where K is the number of explanatory variables in the model. Second, the fixed effects estimator additionally allows to account for any observed heterogeneity in stock market volatility across countries. An advantage of the fixed effects estimator is that it allows for arbitrary correlation between the unobserved country fixed effect and the observed explanatory variables, $X_{i,t}$. Third, juxtaposed with the pooled OLS and fixed effects estimators, the random effects estimator carries several advantages and may be preferred under specific scenarios. First, when the sample is relatively small and is relative to the entire population (Gelman et al., 2005; Green & Tukey, 1960). Second, the random effects estimator is preferred if the focus is on the entire population from which the sample is drawn, rather than in unobserved country-specific characteristics, per se (Gelman et al., 2005; Searle, Casella, & McCulloch, 2009, p. 15-16). Third, the fixed effects estimation method requires estimating country-specific intercepts, which can come at the cost of a significant reduction in the number of degrees of freedom if the cross-sectional dimension is large. Fourth, the random effects estimator allows to control for time-invariant predictors of stock market volatility. Notably, our conclusions do not depend on this methodological choice. Therefore, the results remain qualitatively unchanged (see Section 4.2 for details).

4. Results

We begin our discussion of results with an overview of the general findings. Subsequently, we turn to further robustness checks and additional analyses.

4.1. Baseline Empirical Findings

Our baseline empirical findings are summarized in Table 4. In the estimated regression models, as summarized in Columns 1-4, the stock return volatility is constructed as the natural logarithm of absolute daily returns, which can be regarded as a total (i.e., systematic and unsystematic) risk of investment. By contrast, in Columns 5-8, the volatility measured as the natural logarithm of absolute daily residual returns, obtained from the CAPM, can be interpreted as an unsystematic risk of investment. In Columns 1 and 5 (2 and 6, 3 and 7, 4 and 8), the key explanatory variable is the log of daily vaccinations (Daily Vaccinations Per 100,000, Vaccination Period, and Δ Daily Vaccinations Dummy, respectively).

[Insert Table 4 about here]

We begin by scrutinizing the coefficient estimates summarized in Columns 1 and 5. The results show that the log of daily vaccinations exerts a negative and significant effect (at the 1% significance level) on stock return volatility. This effect has a similar size for the two volatility measures. Therefore, both the systematic and unsystematic risks of investment diminish in response to mass vaccinations. Specifically, when daily vaccinations increase by 10%, stock return volatility decreases by 0.245% if the volatility is measured as the log of absolute returns;
on the other hand, it decreases by 0.193% if the volatility is measured as the log of absolute residual returns.

In agreement with the results displayed in Columns 1 and 5, the coefficient estimates reported in Columns 2 and 6 indicate that the number of vaccinations per 100,000 has a negative and significant effect on the two measures of stock market volatility. Thus, the larger the share of a population is immunized, the larger the volatility decline is in international stock markets. Specifically, if 1,000 individuals per 100,000 are immunized on a given day, the stock market volatility declines by 0.4% and 0.3% if the volatility is measured as the log of absolute returns and the log of absolute residual returns, respectively.

Qualitative similar results are echoed in Columns 3 and 7, which indicate that stock market volatility declined markedly after mass vaccinations were rolled out irrespective of the vaccination scale. Concretely, the stock market volatility is 0.2824% (0.2271%) lower after the rollout of vaccines than before the rollout if the logarithm of absolute returns (residual returns) is used as the dependent variable.

Next, we also scrutinize if an increase in daily vaccinations manifests in volatility declines. In this regard, the results summarized in Columns 4 and 8 show that positive changes in the number of persons immunized during vaccination campaigns trigger adverse effects on volatility. Notably, in countries where the number of daily vaccinations on average increased during the vaccination period, the volatility decreased by 0.2041% and 0.2008% for absolute returns and absolute residual returns, respectively.

All in all, mass vaccinations stabilize stock market volatility through reduced uncertainty levels. This finding is consistent with Altit et al. (2020), who underscore the time needed to develop and deploy vaccines as one of the key risk elements of the multidimensional economic uncertainty driven by the COVID-19 pandemic. This finding contrasts with the positive volatility effect of the Stringency Index, which synthesizes nonpharmaceutical government interventions. Along similar lines, Zaremba et al. (2020) document that nonpharmaceutical government responses, such as public information campaigns or cancellations of public events to reduce the reproduction rate of COVID-19, can trigger rises in stock market volatility. By contrast, we find that government health policies, which aim to achieve herd immunity within society through mass vaccinations, are conducive to volatility declines in international stock markets. In agreement with Zaremba et al. (2020), the negative volatility effect of mass vaccinations may also signal a lower probability of stringent government responses to the COVID-19 pandemic in the future.

Moreover, vaccinations can improve public health and boost public investments (Masia et al., 2018), which leads to higher life expectancy. Higher life expectancy, in turn, increases households’ incentive to smooth consumption over time and save a larger share of their income (Heaton & Lucas, 1999), possibly in the form of stock market investments. Thus, when a vaccination campaign is rolled out in a country, there is a higher probability of a bull market stance, which is associated with a reduced risk of fire sales and lower stock market volatility.

4.2. Robustness Checks
We undertake a number of robustness checks to ensure the validity of our results. The robustness checks are displayed in Tables 5 to 7, which, in turn, consist of a number of panels. In Table 5, Panel A, we summarize the estimation results of three different regression models: pooled OLS regressions without weekday dummies (Columns 1-4), fixed-effects regressions (Columns 5-8), and random-effects regressions (Columns 9-12). While weekday dummies are commonly used to control for the day of the week effect, we run our model without weekday dummies to explore whether our conclusions remain virtually intact. The baseline regression is estimated using pooled ordinary least squares (OLS) despite the fact that this approach is consistent under specific conditions. To overcome this possible concern, we perform fixed- and random-effects estimations. The fixed effects estimator accounts for any observed heterogeneity in stock market volatility across countries, while the random effects estimator carries several advantages and may be preferred under specific scenarios, which are discussed above.

To further verify that our findings are robust, we visualize in Table 5, Panel B, estimation results from regression models with alternative measures of the dependent variable, in line with the previous studies. In Columns 1-4, the dependent variable is the logarithm of absolute residual returns from the Fama and French (1993) model. In Columns 5-8, the results are for the logarithm of absolute residual returns from Asness, Moskowitz, and Pedersen (2013). Columns 9-12 display the results for the logarithm of absolute residual returns from the Carhart (1997) model. The details of the estimation of these residuals closely follow those of Zaremba et al. (2020).

[Insert Table 5 about here]

The robustness checks in Table 6 concentrate on additional control variables that might affect the stock market volatility. In Table 6, Panel A, we include different asset pricing variables: the logarithm of market capitalization (Columns 1-4) and the momentum factor (Columns 5-8). As the early period of the pandemic (from February 18 to March 20, 2020) has a shocking and severe effect on the financial markets (Bae et al., 2021), we control for this period in the estimation with the crisis dummy (Columns 9-12).

Furthermore, it is well-known that there are seasonal effects (such as January effect, sell in May and go away, and end of the year), which might affect the stock markets. To control for such an effect, we additionally incorporate monthly (Columns 1-4) and quarterly (Columns 5-8) dummies in Table 6, Panel B.

[Insert Table 6 about here]

Finally, Table 7 considers alternative holding periods. To assure that our conclusions do not depend on our specific choice of the study period, we experiment with several alternative starting points. Table 7, Panel A, displays the results for the research period beginning on March 11, 2020, when the WHO considered the COVID-19 as a pandemic. The study period in Panel B, on the other hand, starts on June 6, 2020. This date was chosen by Bae et al. (2021) as the symbolic end of the initial post-crisis rebound period. Lastly, the starting date in Panel C is August 11, 2020, when Russia approved the world’s first COVID-19 vaccine.

[Insert Table 7 about here]
Tables 5 to 7 show that our baseline results remain robust to the various model specifications, alternative stock market volatility measures, different control variables, and modified study periods. Importantly, in all cases, the four vaccination indicators exert a negative and significant effect on the stock market volatility. Notably, the volatility effect of each vaccination measure generally features a comparable magnitude across the various model specifications. To sum up, while a vaccination campaign can improve public health in a country, our findings show that its effects extend beyond the health sector; namely, a vaccination campaign in a country is associated with a stock market volatility decline.

4.3. Vaccination Effects in Developed and Emerging Markets

So far, the global vaccination programs have revealed a striking vaccination gap between developed and emerging markets. While more than 450 million doses have already been administered worldwide, the vast majority of them have benefited the inhabitants of developed countries (Toole, 2021). An investigation of commitments to buy 7.48 billion doses of COVID-19 vaccines in November 2020 revealed that more than half would go to just 14% of the global population who live in high-income countries (So & Woo, 2020). The Economics Intelligence Unit (2021) estimates that more than 85% of developing countries will not have widespread access to vaccines until 2023.

Figure 1 presents elementary vaccination statistics through time. Over the sample period, the developed markets administered more doses than the emerging ones (Figure 1, Panel A). The discrepancy becomes even more remarkable when considering the relative size of populations (Figure 1, Panel B). Since there are many more people living in emerging markets than in developed markets, the difference in doses administered per 1,000 inhabitants widens further. While in the developed countries in our sample, on average, 448 doses per 1,000 inhabitants were administered (as of April 30, 2021), the equivalent number for the remaining markets was only 84.

Figure 2 visualizes the variation over time in the average volatility. In Panel A, the equally weighted volatility measure is shown. In Panel B, the value-weighted volatility measure is shown, where the weights were calculated based on the market capitalization in a country on a given day. The figure indicates that volatility increased markedly in March/April 2020, when the WHO declared the COVID–19 outbreak a pandemic. Interestingly, the equally-weighted volatility is generally higher for the developed market countries relative to emerging market countries over the sample period. Nevertheless, following the rollout of vaccines, the volatility declined more in the developed countries than in the emerging market countries. One possible reason is that in the developed countries, more doses were administered to the populations and at a higher rate than in the emerging market countries.

Notably, this difference in vaccination rates may also influence investor expectations. Consequently, the traders in developed markets may see a reduced likelihood of future unexpected pandemic-linked perturbations; in emerging markets, such expectations could be less justified. Both the present situation and its future implications may exert influence at the prevailing stock price volatility level. To scrutinize this, we replicate our baseline analyses from Table

7 The data is from https://www.bloomberg.com/graphics/covid-vaccine-tracker-global-distribution/ (March 23, 2021).
in developed and emerging markets separately. We closely follow the market classification by MSCI.

The results of this exercise, as reported in Table 8, uncover two essential findings. First, vaccinations help to reduce market volatility in both emerging and developed markets. In both categories, the relevant slope coefficients are negative and significant across all the different vaccination proxies. In other words, the overall vaccination effect does not depend on the level of market development.

[Insert Table 8 about here]

Second, the absolute values of the coefficients are visibly higher in developed markets than in emerging ones. Furthermore, for all of the considered vaccination variables, the difference is significant and formally confirmed by Chi-squared tests of cross-model comparisons between the vaccination coefficients using seemingly unrelated estimations.

To further verify the validity of our findings concerning the more substantial effect in developed markets, we check the robustness using an alternative methodological approach. To be specific, we replicate our baseline regressions from Table 4 after adding i) the variable Developed, which is a dummy variable that takes the value of 1 if the economy is a developed one, and zero otherwise, and ii) an interaction term between the variable Developed and each one of the four vaccination variables. The results of this test, reported in Table 9, confirm our initial observations from Table 8. The interaction terms exert negative and significant effects on stock market volatility. This finding corroborates the remarkable difference in the vaccination-volatility nexus between the developed and emerging markets.

[Insert Table 9 about here]

To sum up, our findings provide support for the notion that the impact of vaccinations on market volatility has been more substantial in developed rather than in emerging markets.

5. Concluding Remarks

This study documents that mass vaccinations help to stabilize the global equity markets. The beginning and development of the vaccinations decrease stock market volatility in a country after controlling for the pandemic’s influence, the related containment and closure policies, and the market-specific characteristics. Our findings are robust to a battery of robustness tests such as modified regressions specifications and estimation approaches, alternative volatility measures, or consideration of additional control variables.

Our conclusions have direct practical implications. Investors should closely follow the development of vaccination policies of countries. While some countries make a significant progress in terms of vaccinating the majority of their populations, others are far beyond achieving this point. There are also supply shortages of vaccination, and there can be halting periods due to delays in receiving the vaccination orders. Therefore, investors might need to alter their portfolios based on the vaccination policies. Depending on their investing strategies, they might prefer investing in countries with high or low vaccination rates. They will also bear in mind that the impact of vaccination is heterogeneous in developed and emerging markets. The decrease in volatility may be beneficial for trading conditions and long-run development. Lower
volatility decreases the risk of fire sale episodes and discourages investors from moving their capital to safer asset classes. Limited volatility may also translate into a lower cost of capital—facilitating economic growth. It can also improve intertemporal smoothing of consumption for households. In addition to investors, policymakers worldwide should also be aware of the meaningful impact of mass vaccinations not only on businesses, but also on financial markets.

Further studies on the topics discussed in this paper may explore the impact of vaccinations on other asset classes, such as currencies or corporate bonds. Moreover, the principal limitation of our study is the fresh and relatively short data set. Admittedly, vaccine-related news can be more directly linked with one or more channels, which predict a decrease in stock market volatility. However, exploring the vaccine-related news-volatility nexus would require a longer sample period to ensure that subsamples of no news and good news are informative. Therefore, although such an extension is interesting and important, we leave it for future research.
References

Acharya, V.V., Johnson, T., Sundaresan, S. & Zheng, S., (2020). The value of a cure: An asset pricing perspective (No. w28127). National Bureau of Economic Research.

Al-Awadhi, A. M., Alsaifi, K., Al-Awadhi, A., & Alhammadi, S. (2020). Death and contagious infectious diseases: Impact of the COVID-19 virus on stock market returns. Journal of Behavioral and Experimental Finance, 27, 100326.

Albuiescu, C. T. (2021). COVID-19 and the United States financial markets’ volatility. Finance Research Letters, 38, 101699.

Albuquerque, R., Koskinen, Y., Yang, S., & Zhang, C. (2020). Resiliency of environmental and social stocks: An analysis of the exogenous COVID-19 market crash. Review of Corporate Finance Studies, 9(3), 593-621.

Altig, D., Baker, S., Barrero, J. M., Bloom, N., Bunn, P., Chen, S., ... & Thwaites, G. (2020). Economic uncertainty before and during the COVID-19 pandemic. Journal of Public Economics, 191, 104274.

Antonakakis, N., & Kizys, R. (2015). Dynamic spillovers between commodity and currency markets. International Review of Financial Analysis, 41, 303-319.

Ashraf, B. N. (2020a). Stock markets’ reaction to COVID-19: Cases or fatalities?. Research in International Business and Finance, 54, 101249.

Ashraf, B. N. (2020b). Economic impact of government interventions during the COVID-19 pandemic: International evidence from financial markets. Journal of behavioral and experimental finance, 27, 100371.

Ashraf, B. N. (2021). Stock markets’ reaction to COVID-19: Moderating role of national culture. Finance Research Letters, 101857.

Asness, C. S., Moskowitz, T. J., & Pedersen, L. H. (2013). Value and momentum everywhere. Journal of Finance, 68(3), 929-985.

Bae, K. H., El Ghoul, S., Gong, Z.J., & Guedhami, O. (2021). Does CSR matter in times of crisis? Evidence from the COVID–19 pandemic. Journal of Corporate Finance, 67, 101876.

Baek, S., Mohanty, S. K., & Glambosky, M. (2020). COVID-19 and stock market volatility: An industry level analysis. Finance Research Letters, 37, 101748.

Bai, L., Wei, Y., Wei, G., Li, X., & Zhang, S. (2021). Infectious disease pandemic and permanent volatility of international stock markets: A long-term perspective. Finance Research Letters, 101709.

Bai, J., Brynjolfsson, E., Jin, W., Steffen, S., & Wan, C. (2020). Digital resilience: How work-from-home feasibility affects firm performance. Available at: https://papers.ssrn.com/sol3/Papers.cfm?abstract_id=3616893.

Baker, S. R., Bloom, N., Davis, S. J., Kost, K., Sammon, M., & Viratyosin, T. (2020). The unprecedented stock market reaction to COVID-19. Review of Asset Pricing Studies, 10(4), 742-758.

Banerjee, S. (2011). Learning from prices and the dispersion in beliefs. Review of Financial Studies, 24(9), 3025-3068.

Brown, G. W. (1999). Volatility, sentiment, and noise traders. Financial Analysts Journal, 55(2), 82-90.

Campbell, J.Y. (1993). Intertemporal Asset Pricing without Consumption Data. American Economic Review, 83(3), 487-512.

Campbell, J.Y. (1996). Understanding risk and return. Journal of Political economy, 104(2), 298-345.

Campbell, J.Y., & Cochrane, J.H. (1999). By force of habit: A consumption-based explanation of aggregate stock market behavior. Journal of Political Economy, 107(2), 205-251.

Campbell, J.Y., Giglio, S., Polk, C., & Turley, R. (2018). An intertemporal CAPM with stochastic volatility. Journal of Financial Economics, 128(2), 207-233.
Chan, K.F., Chen, Z., Wen, Y., & Xu, T. (2021). COVID-19 vaccines: Saving lives and the global stock markets. Available at SSRN: https://ssrn.com/abstract=3785533 or http://dx.doi.org/10.2139/ssrn.3785533.

Chen, Y. J., Feng, Z. Y., Li, Y. P., & Huang, H. W. (2020). The economic consequences of US FDA new drug approvals: evidence from Taiwan pharmaceutical and biotech companies. Innovation, 1-21.

Christie, A. A. (1982). The stochastic behavior of common stock variances: Value, leverage and interest rate effects. Journal of Financial Economics, 10, 407-432.

Chung, K.H., Wang, J., & Wu, C. (2019). Volatility and the cross-section of corporate bond returns. Journal of Financial Economics, 133(2), 397-417.

Conlon, T., & McGee, R. (2020). Safe haven or risky hazard? Bitcoin during the COVID-19 bear market. Finance Research Letters, 35, 101607.

del Rio-Chanona, R.M., Mealy, P., Pichler, A., Lafond, F., & Farmer, J.D. (2020). Supply and demand shocks in the COVID-19 pandemic: an industry and occupation perspective. Oxford Review of Economic Policy, 36(S1), S94-S137.

Demir, E., Bilgin, M. H., Karabulut, G., & Doker, A. C. (2020). The relationship between cryptocurrencies and COVID-19 pandemic. Eurasian Economic Review, 10(3), 349-360.

Ding, W., Levine, R., Lin, C., & Xie, W. (2021). Corporate immunity to the COVID-19 pandemic. Journal of Financial Economics, forthcoming.

Dzielinski, M. (2012). Measuring economic uncertainty and its impact on the stock market. Finance Research Letters, 9(3), 167-175.

Economist Intelligence Unit. (2021). More than 85 poor countries will not have widespread access to coronavirus vaccines before 2023. Available at https://www.eiu.com/n/85-poor-countries-will-not-have-access-to-coronavirus-vaccines/.

Engelhardt, N., Krause, M., Neukirchen, D., & Posch, P. N. (2021). Trust and stock market volatility during the COVID-19 crisis. Finance Research Letters, 38, 101873.

Erdem, O. (2020). Freedom and stock market performance during Covid-19 outbreak. Finance Research Letters, 36, 101671.

Fallonbrach, R., Rageth, K. & Stulz, R.M., (2021). How valuable is financial flexibility when revenue stops? Evidence from the COVID-19 crisis Review of Financial Studies, forthcoming.

Falato, A., Goldstein, I., & Hortaçsu, A. (2020). Financial fragility in the COVID-19 crisis: The case of investment funds in corporate bond markets (No. w27559). National Bureau of Economic Research.

Fernandez-Perez, A., Gilbert, A., Indriawan, I., & Nguyen, N. H. (2021). COVID-19 pandemic and stock market response: A culture effect. Journal of Behavioral and Experimental Finance, 29, 100454.

French, K.R., Schwert, G.W., & Stambaugh, R.F. (1987). Expected stock returns and volatility. Journal of Financial Economics, 19(1), 3-29.

Gelman, A. (2005). Analysis of variance: Why it is more important than ever. Annals of Statistics, 33(1), 1-31.

Gharib, C., Mefteh-Wali, S., & Jabeur, S. B. (2021). The bubble contagion effect of COVID-19 outbreak: Evidence from crude oil and gold markets. Finance Research Letters, 38, 101703.

Goodell, J. W., & Huynh, T. L. D. (2020). Did Congress trade ahead? Considering the reaction of US industries to COVID-19. Finance Research Letters, 36, 101578.

Green, B.F., & Tukey, J.W. (1960). Complex analyses of variance: general problems. Psychometrika, 25, 127-152.

Haroon, O., & Rizvi, S. A. R. (2020). Flatten the curve and stock market liquidity—an inquiry into emerging economies. Emerging Markets Finance and Trade, 56(10), 2151-2161.

Harris, M., & Raviv, A. (1993). Differences of opinion make a horse race. Review of Financial Studies, 6(3), 473-506.

Hasan, I., Politsidis, P. N., & Sharma, Z. (2021). Global syndicated lending during the COVID-19 pandemic. Journal of Banking & Finance, 106121.
Heaton, J., & Lucas, D. (1999). Stock prices and fundamentals. *NBER Macroeconomics Annual*, 14, 213-242.

Heyden, K. J., & Heyden, T. (2021). Market reactions to the arrival and containment of COVID-19: An event study. *Finance Research Letters*, 38, 101745.

Hong, H., Kubik, J., Wang, N., Xu, X., & Yang, J. (2020). *Pandemics, vaccines and corporate earnings*. National Bureau of Economic Research w27829. Available at: https://www.nber.org/system/files/working_papers/w27829/w27829.pdf

Hong, H., Wang, N., & Yang, J. (2021). Implications of stochastic transmission rates for managing pandemic risks. *Review of Financial Studies*, forthcoming

Huberman, G., & Regev, T. (2001). Contagious speculation and a cure for cancer: A nonevent that made stock prices soar. *The Journal of Finance*, 56(1), 387-396.

Hwang, T. I. (2013). Stock market returns and clinical trial results of investigational compounds: an event study analysis of large biopharmaceutical companies. *PloS One*, 8(8), e71966.

Hyun, J., Kim, D. & Shin, S.R., (2020). The Role of Global Connectedness and Market Power in Crises: Firm-level Evidence from the COVID-19 Pandemic. *Covid Economics: Vetted and Real-Time Papers*, 49.

Jansen, W. J., & Nahuis, N. J. (2003). The stock market and consumer confidence: European evidence. *Economics Letters*, 79(1), 89-98.

Kaczmarek, T., Perez, K., Demir, E., & Zaremba, A. (2021). How to survive a pandemic: The corporate resiliency of travel and leisure companies to the COVID-19 outbreak. *Tourism Management*, 84, 104281.

Kiymaz, H., & Berument, H. (2003). The day of the week effect on stock market volatility and volume: International evidence. *Review of Financial Economics*, 12(4), 363–380.

Kizys, R., Tzouvanas, P., & Donadelli, M. (2021). From COVID-19 herd immunity to investor herding in international stock markets: The role of government and regulatory restrictions. *International Review of Financial Analysis*, 74, 101663.

Kumari, J., & Mahakud, J. (2015). Does investor sentiment predict the asset volatility? Evidence from emerging stock market India. *Journal of Behavioral and Experimental Finance*, 8, 25-39.

Li, K., Liu, X., Mai, F., & Zhang, T. (2020). The role of corporate culture in bad times: Evidence from the COVID-19 pandemic. Available at: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3632395

Mensing, W. (2021). Volatility and the cross-section of real estate equity returns during Covid-19. *Journal of Real Estate Finance and Economics*, forthcoming.

Narayan, P. K., Phan, D. H. B., & Liu, G. (2021). COVID-19 lockdowns, stimulus packages, travel bans, and stock returns. *Finance Research Letters*, 38, 101732.

Njindan Iyke, B. (2020). The disease outbreak channel of exchange rate return predictability: Evidence from COVID-19. *Emerging Markets Finance and Trade*, 56(10), 2277-2297.
Onali, E., 2020. Covid-19 and stock market volatility. Available at SSRN 3571453.
Otoo, M. W. (1999). Consumer sentiment and the stock market. Available at SSRN 205028.
Papadamou, S., Fassas, A. P., Kenourgios, D., & Dimitriou, D. (2021). Flight-to-quality between global stock and bond markets in the COVID era. Finance Research Letters, 38, 101852.
Pastor, L., & Veronesi, P. (2012). Uncertainty about government policy and stock prices. Journal of Finance, 67(4), 1219-1264.
Ramelli, S., & Wagner, A. F. (2020). Feverish stock price reactions to COVID-19. The Review of Corporate Finance Studies, 9(3), 622-655.
Rothenstein, J. M., Tomlinson, G., Tannock, I. F., & Detsky, A. S. (2011). Company stock prices before and after public announcements related to oncology drugs. Journal of the National Cancer Institute, 103(20), 1507-1512.
Schwert, G.W. (1989). Why does stock market volatility change over time? Journal of Finance, 44, 1115-1153.
Searle, S.R., George Casella, G., & McCulloch, C.E. (2009). Variance Components, Vol. 391. John Wiley & Sons.
Sharif, A., Aloui, C., & Yarovaya, L. (2020). COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach. International Review of Financial Analysis, 70, 101496.
So, A. D., & Woo, J. (2020). Reserving coronavirus disease 2019 vaccines for global access: Cross sectional analysis. BMJ, 371, m4750.
Su, Z., Fang, T., & Yin, L. (2019). Understanding stock market volatility: What is the role of US uncertainty? The North American Journal of Economics and Finance, 48, 582-590.
Takahashi, H., & Yamada, K. (2021). When the Japanese stock market meets COVID-19: Impact of ownership, China and US exposure, and ESG channels. International Review of Financial Analysis, 74, 101670.
Tauchen, G. (2011). Stochastic volatility in general equilibrium. The Quarterly Journal of Finance, 1(04), 707-731.
Toole, M., (2021). 3 ways to vaccinate the world and make sure everyone benefits, rich and poor. The Conversation, available at https://theconversation.com/3-ways-to-vaccinate-the-world-and-make-sure-everyone-benefits-rich-and-poor-155943.
Topcu, M., & Gulal, O. S. (2020). The impact of COVID-19 on emerging stock markets. Finance Research Letters, 36, 101691.
Wang, Y. H., Keswani, A., & Taylor, S. J. (2006). The relationships between sentiment, returns and volatility. International Journal of Forecasting, 22(1), 109-123.
WHO (2020). “Pneumonia of Unknown Cause – China.” Retrieved from https://www.who.int/csr/don/05–january–2020–pneumonia–of–unknown–cause–china/en/
Wooldridge, J. M. (2002). Econometric analysis of cross section and panel data. MIT Press.
Wu, B., Wang, L., Wang, S., & Zeng, Y. R. (2021). Forecasting the US oil markets based on social media information during the COVID-19 pandemic. Energy, 120403.
Zaremba, A. (2019). The cross section of country equity returns: a review of empirical literature. Journal of Risk and Financial Management, 12(4), 165.
Zaremba, A., Aharon, D.Y., Demir, E., Kizys, R. and Zawadka, D., 2021b. COVID-19, government policy responses, and stock market liquidity around the world: A note. Research in International Business and Finance, 56, 101359.
Zaremba, A., Kizys, R., Aharon, D. Y., & Demir, E. (2020). Infected markets: Novel coronavirus, government interventions, and stock return volatility around the globe. Finance Research Letters, 35, 101597.
Zaremba, A., Kizys, R., Tzouvanas, P., Aharon, D. Y., & Demir, E. (2021a). The quest for multidimensional financial immunity to the COVID-19 pandemic: Evidence from international stock markets. Journal of International Financial Markets, Institutions and Money, 71, 101284.
Figure 1: Vaccination Rates in Developed and Emerging Markets

The figure provides an overview of vaccination intensity in developed and emerging markets from when the vaccination programs officially started. Panel A presents the total number of vaccinations in millions. Panel B shows the number of shots given per 1,000 inhabitants. The data for the period December 14, 2020, to April 30, 2021, is sourced from the COVID–19 Data Hub.
Figure 2: Volatility in International Markets During the COVID-19 Pandemic

The figure presents the average absolute returns (in %) across markets that were considered in our sample. The reported measures of volatility are for the subsamples of 22 developed and 44 emerging markets. The study period runs from January 1, 2020, to April 30, 2021. Panel A reports equal-weighted averages, while Panel B presents averages weighted according to the market capitalization.
This table lists the countries covered by our study.

Developed Markets	Emerging Markets
1. Australia	1. Argentina
2. Austria	12. Greece
3. Belgium	13. Hungary
4. Canada	14. India
5. Denmark	15. Indonesia
6. Finland	16. Jordan
7. France	17. Kuwait
8. Germany	18. Lithuania
9. Ireland	19. Luxembourg
10. Israel	20. Malaysia
11. Italy	21. Malta
12. Japan	12. Greece
13. Netherlands	13. Hungary
14. New Zealand	14. India
15. Norway	15. Indonesia
16. Portugal	16. Jordan
17. Singapore	17. Kuwait
18. Spain	18. Lithuania
19. Sweden	19. Luxembourg
20. Switzerland	20. Malaysia
21. United Kingdom	21. Malta
22. United States	22. Mexico
23. Morocco	23. Morocco
24. Nigeria	24. Nigeria
25. Oman	25. Oman
26. Pakistan	26. Pakistan
27. Peru	27. Peru
28. Philippines	28. Philippines
29. Poland	29. Poland
30. Qatar	30. Qatar
31. Romania	31. Romania
32. Russia	32. Russia
33. Saudi Arabia	33. Saudi Arabia
34. Slovakia	34. Slovakia
35. Slovenia	35. Slovenia
36. South Africa	36. South Africa
37. South Korea	37. South Korea
38. Sri Lanka	38. Sri Lanka
39. Taiwan	39. Taiwan
40. Thailand	40. Thailand
41. Turkey	41. Turkey
42. UAE	42. UAE
43. Venezuela	43. Venezuela
Table 2: Descriptive Statistics

This table presents descriptive statistics on the different variables used in our primary analysis. Log |R| (Log |RR_{CAPM}|) is the logarithm of absolute daily returns (the logarithm of residual returns from the CAPM model). Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccination Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Stringency Index is a score between 0 and 100 that reflects the daily government response to COVID-19 and is computed using different government nonpharmaceutical interventions. BM is the book-to-market ratio. Log (TV) is the natural logarithm of daily trading volume in U.S. dollars. Log (MV) is the natural logarithm of market capitalization in U.S. dollars. Δ Infections to Cases is the daily change in the number of COVID-19 infections to the total number of confirmed COVID-19 cases (in percentage). Δ Deaths to Cases is the daily change in the number of COVID-19 deaths to the total number of confirmed COVID-19 cases (in percentage). US Elections is a dummy variable that takes the value of 1 for the period that starts at November 3, 2020 and ends at January 7, 2021, and zero otherwise. All continuous variables are winsorized at the 1st and 99th percentiles.

Variable	Log	R		Log	RR_{CAPM}		Log (Daily Vaccinations)	Daily Vaccinations Per 100,000	Vaccination Period	Δ Daily Vaccinations Dummy	Stringency Index	BM	Log (TV)	Log (MV)	Δ Infections to Cases	Δ Deaths to Cases	US Elections
Panel A: Descriptive statistics: Full sample																	
Mean	-5.277	-5.375	1.860	70.501	0.207	0.102	55.101	0.719	11.450	11.781	0.005	0	0.138				
St. deviation	1.395	1.265	0.402	219.282	0.405	0.302	25.622	0.424	3.499	2.084	0.059	0.001	0.345				
First quartile	-5.947	-6.036	0	0	0	0	42.130	0.521	9.087	10.170	-0.002	0	0				
Median	-5.053	-5.183	0	0	0	0	60.190	0.705	11.963	11.885	0	0	0				
Third quartile	-4.326	-4.500	0	0	0	0	74.540	0.925	14.066	13.267	0.003	0	0				
Panel B: Descriptive statistics: Developed markets																	
Mean	-5.119	-5.393	2.232	92.857	0.237	0.128	53.697	0.647	13.992	13.416	0.005	0	0.138				
St. deviation	1.306	1.215	0.459	251.692	0.426	0.334	24.331	0.241	2.019	1.496	0.058	0.001	0.345				
First quartile	-5.733	-6.015	0	0	0	0	40.740	0.472	12.542	12.385	-0.001	0	0				
Median	-4.910	-5.174	0	0	0	0	60.190	0.610	13.976	13.311	0	0	0				
Third quartile	-4.246	-4.549	0	0	0	0	71.300	0.778	15.237	14.465	0.003	0	0				
Panel C: Descriptive statistics: Emerging markets																	
Mean	-5.356	-5.366	1.667	58.876	0.192	0.089	55.803	0.756	10.151	10.963	0.004	0	0.138				
St. deviation	1.491	1.289	0.385	199.399	0.394	0.284	26.217	0.487	3.380	1.841	0.059	0.001	0.345				
First quartile	-6.055	-6.050	0	0	0	0	43.060	0.572	7.666	9.786	-0.002	0	0				
Median	-5.134	-5.187	0	0	0	0	61.110	0.786	10.453	10.822	0	0	0				
Third quartile	-4.376	-4.477	0	0	0	0	75.930	0.969	12.762	12.473	0.003	0	0				

21
Table 3: Pairwise Correlation Coefficients between Major Variables

This table displays correlation coefficients between the different variables used in our primary analysis. Log $|\text{R}|$ (Log $|\text{RR}_{\text{CAPM}}|$) is the logarithm of absolute daily returns (the logarithm of residual returns from the CAPM model). Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country's first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Stringency Index is a score between 0 and 100 that reflects the daily government response to COVID-19 and is computed using different government nonpharmaceutical interventions. BM is the book-to-market ratio. Log (TV) is the natural logarithm of daily trading volume in U.S. dollars. Log (MV) is the natural logarithm of market capitalization in U.S. dollars. Δ Infections to Cases is the daily change in the number of COVID-19 infections to the total number of confirmed COVID-19 cases (in percentage). Δ Deaths to Cases is the daily change in the number of COVID-19 deaths to the total number of confirmed COVID-19 cases (in percentage). US Elections is a dummy variable that takes the value of 1 for the period that starts at November 3, 2020 and ends at January 7, 2021, and zero otherwise. All continuous variables are winsorized at the 1st and 99th percentiles. The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively.

	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	
1. Log $	\text{R}	$	1.000											
2. Log $	\text{RR}_{\text{CAPM}}	$	0.611***	1.000										
3. Log (Daily Vaccinations)	−0.055***	−0.054***	1.000											
4. Daily Vaccinations Per 100,000	−0.053***	−0.054***	0.743***	1.000										
5. Vaccination Period	−0.073***	−0.068***	0.878***	0.619***	1.000									
6. Δ Daily Vaccinations Dummy	−0.039***	−0.041***	0.729***	0.597***	0.649***	1.000								
7. Stringency Index	0.052***	0.070***	0.209***	0.160***	0.219***	0.148***	1.000							
8. BM	0.024***	0.027***	−0.110***	−0.053***	−0.092***	−0.076***	0.098***	1.000						
9. Log (TV)	0.134***	0.078***	0.068***	0.025***	0.022***	0.038***	−0.008	−0.141***	1.000					
10. Log (MV)	0.081***	0.023***	0.094***	0.047***	0.048***	0.054***	−0.033***	−0.236***	0.917***	1.000				
11. Δ Infections to Cases	0.055***	0.041***	−0.034***	−0.020***	−0.039***	−0.015***	−0.065***	0.004	0.018***	0.008	1.000			
12. Δ Deaths to Cases	0.022***	0.015***	−0.018***	−0.009	−0.021***	−0.004	0.016***	0.011*	0.016***	0.008	0.335***	1.000		
13. US Elections	−0.051***	−0.032***	−0.117***	−0.109***	−0.098***	−0.063***	0.110***	−0.029***	0.013*	0.011*	−0.033***	−0.017***	1.000	
Table 4: Main Regressions

This table presents pooled OLS estimates of the relationship between COVID-19 vaccinations and stock return volatility. The dependent variables are the logarithm of absolute daily returns (Log |R|, Columns 1–4) and the logarithm of absolute residual returns from the CAPM model (Log |RR\textsubscript{CAPM}|, Columns 5–8). Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations Per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Stringency Index is a score between 0 and 100 that reflects the daily government response to COVID-19 and is computed using different government nonpharmaceutical interventions. BM is the book-to-market ratio. Log (TV) is the natural logarithm of daily trading volume in U.S. dollars. Log (MV) is the natural logarithm of market capitalization in U.S. dollars. Δ Infections to Cases is the daily change in the number of COVID-19 infections to the total number of confirmed COVID-19 cases (in percentage). Δ Deaths to Cases is the daily change in the number of COVID-19 deaths to the total number of confirmed COVID-19 cases (in percentage). US Elections is a dummy variable that takes the value of 1 for the period that starts at November 3, 2020 and ends at January 7, 2021, and zero otherwise. All continuous variables are winsorized at the 1st and 99th percentiles. All specifications include weekday dummies. Heteroskedasticity-robust t-statistics are in parentheses beneath the regressions’ coefficients. The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively. Obs. and R² denote the number of observations and the coefficient of determination, respectively.

Dependent variable: Log	R		Dependent variable: Log	RR\textsubscript{CAPM}					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Log (Daily Vaccinations)\textsubscript{t–1}	-0.0245*** (−10.62)	-0.0004*** (−9.23)	-0.2824*** (−12.35)	-0.0193*** (−9.11)	-0.0003*** (−8.76)	-0.2271*** (−10.69)	-0.2008*** (−7.12)		
Daily Vaccinations Per 100,000\textsubscript{t–1}	-0.0004*** (−9.23)	0.1490*** (19.66)	0.1507*** (19.89)	0.1475*** (19.74)	0.1532*** (20.19)	0.1615*** (22.45)	0.1621*** (22.50)	0.1598*** (22.48)	0.1648*** (22.88)
Vaccination Period	0.1490*** (19.66)	0.1475*** (19.74)	0.1532*** (20.19)	0.1605*** (21.6755)	0.1657*** (21.2752)	0.1598*** (21.0595)	0.1648*** (21.1077)		
Stringency Index\textsubscript{t–1}	0.0026*** (7.09)	0.0023*** (6.20)	0.0026*** (7.17)	0.0017*** (5.70)	0.0029*** (8.38)	0.0027*** (7.82)	0.0029*** (8.54)	0.0026*** (5.72)	
BM\textsubscript{t–1}	0.1077*** (5.22)	0.1238*** (6.00)	0.1026*** (5.03)	0.1253*** (5.96)	0.0903*** (4.57)	0.1020*** (5.18)	0.0841*** (4.31)	0.0999*** (5.05)	
Log (TV)\textsubscript{t–1}	0.0578*** (21.36)	0.0567*** (20.95)	0.0575*** (21.45)	0.0566*** (20.85)	0.0375*** (15.03)	0.0367*** (14.72)	0.0372*** (15.02)	0.0368*** (14.72)	
Δ Infections to Cases\textsubscript{t–1}	1.1661*** (6.64)	1.1636*** (6.60)	1.1887*** (6.85)	1.1605*** (6.58)	1.1197*** (6.79)	1.1158*** (6.76)	1.1303*** (6.92)	1.1104*** (6.72)	
Δ Deaths to Cases\textsubscript{t–1}	11.4441 (1.05)	11.1499 (1.02)	12.8158 (1.20)	11.1452 (1.01)	21.6755** (2.21)	21.2752** (2.16)	22.0595** (2.29)	21.1077** (2.14)	
US Elections	-0.2449*** (−8.79)	-0.2308*** (−8.33)	-0.2397*** (−8.73)	-0.2156*** (−7.81)	-0.1574*** (−6.49)	-0.1491*** (−6.19)	-0.1555*** (−6.50)	-0.1383*** (−5.77)	
Weekday Dummies	Yes								
Obs.	20837	20837	20837	20837	20837	20837	20837	20837	
R²	0.0693	0.0680	0.0709	0.0663	0.0575	0.0570	0.0583	0.0564	
F–value	125.75***	122.81***	131.95***	119.45***	104.18***	103.55***	108.07***	100.88***	
Table 5: Robustness Tests: Alternative Regression Frameworks and Dependent Variables

This table presents the results of different robustness tests. Panel A displays the regression results using the logarithm of absolute daily returns (Log |RR|) as the dependent variable and after excluding the weekday dummies (Columns 1–4), and reports results from fixed effects (Columns 5–8) and random effects (Columns 9–12) estimations. In the regressions of Panel B, alternative dependent variables are used, namely, the logarithms of absolute residual returns from the Fama and French (1993) model (Log |RR_{FF}|, Columns 1–4), the Asness, Moskowitz, and Pedersen (2013) model (Log |RR_{AMP}|, Columns 5–8), and the Carhart (1997) model (Log |RR_{CAR}|, Columns 9–12). Daily Vaccinations is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero, otherwise. Heteroskedasticity-robust t- and z-statistics are in parentheses beneath the regressions’ coefficients. All continuous variables are winsorized at the 1st and 99th percentiles. The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively. Obs. and R² denote the number of observations and the coefficient of determination, respectively.

Panel A: Alternative regression frameworks

Dependent variable: Log	RR		Without Weekday dummies	Fixed effects regressions	Random effects regressions							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Log (Daily Vaccinations)	-0.0250***	-0.0004***	-0.2847***	-0.2211***	Yes							
Daily Vaccinations	-0.0179***	-0.0003***	-0.1928***	-0.1829***	Yes							
Vaccination Period	-0.0176***	-0.0003***	-0.2120***	-0.1747***	Yes							
Δ Daily Vaccinations Dummy	-0.0170***	-0.0003***	-0.1883***	-0.1706***	Yes							
Control variables	Yes											
Weekday Dummies	No	No	No	No	Yes							
Obs.	20837	20837	21413	20756	20837	20837	21413	20756	20837	20837	21413	20756
R²	0.0638	0.0626	0.0653	0.0610	0.0474	0.0463	0.0474	0.0454	0.0363	0.0338	0.0370	0.0320
F-value (Wald chi2)	174.16***	170.14***	183.40***	164.71***	51.40***	47.10***	50.30***	46.65***	666.80***	540.24***	712.48***	594.21***

Panel B: Alternative dependent variables

Dependent variable: Log	RR_{FF}		Dependent variable: Log	RR_{AMP}		Dependent variable: Log	RR_{CAR}					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Log (Daily Vaccinations)	-0.0179***	-0.0003***	-0.1928***	-0.1829***	Yes							
Daily Vaccinations	-0.0176***	-0.0003***	-0.2120***	-0.1747***	Yes							
Vaccination Period	-0.0170***	-0.0003***	-0.1883***	-0.1706***	Yes							
Δ Daily Vaccinations Dummy	-0.0170***	-0.0003***	-0.1883***	-0.1706***	Yes							
Control variables	Yes											
Weekday Dummies	Yes											
Obs.	20837	20837	21413	20756	20837	20837	21413	20756	20837	20837	21413	20756
R²	0.0531	0.0534	0.0529	0.0519	0.0522	0.0522	0.0527	0.0511	0.0518	0.0520	0.0513	0.0506
F-value	94.81***	95.11***	97.18***	92.52***	95.60***	95.71***	98.75***	92.84***	93.32***	94.22***	95.09***	90.95***
Table 6: Robustness Tests: Additional Control Variables

This table presents the results of different robustness tests. Panel A shows regression results using Log [R] as the dependent variable, and after including three variables—one at a time—as additional controls to our main regressions. Log (MV) is the natural logarithm of market capitalization in U.S. dollars. Momentum is defined as the total log return in months t-12 to t-2. Crisis is a dummy variable that takes the value of 1 for the COVID-19 crisis period from February 18 to March 20, 2020 (Bae et al., 2021). In Panel B, month (Columns 1–4) and quarter (Columns 5–8) dummies are added to the regressions. Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Heteroskedasticity-robust t-statistics are in parentheses beneath the regressions’ coefficients. All continuous variables are winsorized at the 1st and 99th percentiles. The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively. Obs. and R² denote the number of observations and the coefficient of determination, respectively.

Panel A: Additional control variables: Set 1

	Log (MV) t-1	Momentum t-1	Crisis
Log (Daily Vaccinations)	-0.0235***	-0.0173***	-0.0233***
Daily Vaccinations Per 100,000	-0.0004***	-0.0002***	-0.0004***
Vaccination Period	-0.2742***	-0.2452***	-0.2556***
Δ Daily Vaccinations Dummy	-0.1984***	-0.0941***	-0.1864***
Additional control variable	-0.1278***	-0.1039*	0.8424***
Control variables	Yes	Yes	Yes
Weekday Dummies	Yes	Yes	Yes
Obs.	20837	20837	20837
R²	0.0750	0.0701	0.0701
F-value	123.41***	116.96***	162.67***

Panel B: Additional control variables: Set 2

	With month dummies	With quarter dummies
Log (MV) t-1		
Daily Vaccinations Per 100,000		
Vaccination Period		
Δ Daily Vaccinations Dummy		
Control variables	Yes	Yes
Weekday Dummies	Yes	Yes
Obs.	20837	20837
R²	0.0923	0.0760
F-value	89.78***	110.22***
Table 7: Robustness Tests: Alternative Study Periods

This table presents the results of different robustness tests. In all panels, two dependent variables are used, namely, Log |R| (Columns 1-4 and Log |RR_{CAPM}| (Columns 5-8). Panels A, B, and C display the regression results for alternative periods that start at March 11, June 6, and August 11, 2020, respectively. Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Heteroskedasticity-robust t-statistics are in parentheses beneath the regressions’ coefficients. All continuous variables are winsorized at the 1st and 99th percentiles. The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively. Obs. and R^2 denote the number of observations and the coefficient of determination, respectively.

Panel A: Starting from March 11, 2020 (when the WHO considered the COVID-19 as a pandemic)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable:	Log	R		Daily Vaccinations Per 100,000	Vaccination Period	Δ Daily Vaccinations Dummy		
Log (Daily Vaccinations)	-0.0247^{***}	-0.0004^{***}	-0.2851^{***}	-0.2017^{***}	-0.0192^{***}	-0.0003^{***}	-0.2274^{***}	-0.1990^{***}
(t)	(-10.65)	(-9.24)	(-12.43)	(-6.67)	(-9.04)	(-8.64)	(-10.67)	(-7.03)
Control variables	Yes							
Weekday Dummies	Yes							
Obs.	17852	18376	17827	0.0642	0.0663	0.0606	0.0532	0.0527
R^2	0.0626	0.0663	0.0606	0.0532	0.0527	0.0546	0.0517	0.0546
F-value	99.16***	96.31***	105.36***	93.16***	81.58***	80.89***	85.79***	77.84***

Panel B: Starting from June 6, 2020 (end of the post-crisis recovery period, Bae et al., 2021)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable:	Log	R		Daily Vaccinations Per 100,000	Vaccination Period	Δ Daily Vaccinations Dummy		
Log (Daily Vaccinations)	-0.0149^{***}	-0.0003^{***}	-0.1785^{***}	-0.1175^{***}	-0.0113^{***}	-0.0002^{***}	-0.1428^{***}	-0.1273^{***}
(t)	(-6.26)	(-6.36)	(-7.57)	(-3.85)	(-5.16)	(-6.00)	(-6.49)	(-4.43)
Control variables	Yes							
Weekday Dummies	Yes							
Obs.	15611	16099	15586	0.0414	0.0427	0.0399	0.0340	0.0345
R^2	0.0415	0.0427	0.0399	0.0340	0.0345	0.0348	0.0348	0.0336
F-value	56.26***	59.67***	53.92***	44.34***	45.10***	46.60***	43.29***	43.29***

Panel C: Starting from August 11, 2020 (Russia approved the world’s first COVID-19 vaccine)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable:	Log	R		Daily Vaccinations Per 100,000	Vaccination Period	Δ Daily Vaccinations Dummy		
Log (Daily Vaccinations)	-0.0059^{**}	-0.0340^{**}	-0.1175^{**}	-0.0075^{***}	-0.0059^{**}	-0.0037^{**}	-0.1175^{**}	-0.0075^{***}
(t)	(-2.18)	(-3.77)	(-3.85)	(-3.01)	(-2.18)	(-3.77)	(-3.85)	(-3.01)
Control variables	Yes							
Weekday Dummies	Yes							
Obs.	16099	16099	15586	0.0414	0.0427	0.0399	0.0340	0.0345
R^2	0.0415	0.0427	0.0399	0.0340	0.0345	0.0348	0.0348	0.0336
F-value	56.26***	59.67***	53.92***	44.34***	45.10***	46.60***	43.29***	43.29***

Note: The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively. Obs. and R^2 denote the number of observations and the coefficient of determination, respectively.
	1	2	3	4	5	6	7	8
Daily Vaccinations Per 100,000	~0.0001	~0.0002	~0.0001	~0.0002	~0.0001	~0.0002	~0.0001	~0.0002
	(-3.33)	(-4.26)	(-3.33)	(-4.26)	(-3.33)	(-4.26)	(-3.33)	(-4.26)
Vaccination Period	~0.0880	~0.1095	~0.0267	~0.0790	~0.0880	~0.1095	~0.0267	~0.0790
	(-3.19)	(-4.27)	(-0.82)	(-2.58)	(-3.19)	(-4.27)	(-0.82)	(-2.58)
Δ Daily Vaccinations Dummy t-1	~0.0267	~0.0790	~0.0267	~0.0790	~0.0267	~0.0790	~0.0267	~0.0790
	(-0.82)	(-2.58)	(-0.82)	(-2.58)	(-0.82)	(-2.58)	(-0.82)	(-2.58)
Control variables	Yes							
Weekday Dummies	Yes							
Obs.	11330	11330	11759	11305	11330	11330	11759	11305
R^2	0.0356	0.0361	0.0365	0.0352	0.0336	0.0343	0.0336	0.0343
F–value	35.39***	35.75***	37.58***	34.81***	31.68***	32.39***	33.62***	31.20***
Table 8: The Effect of Vaccinations in Developed and Emerging Markets

This table presents pooled OLS estimates of the relationship between COVID-19 vaccinations and stock return volatility using two subsamples of emerged and developed economies. The dependent variable is the logarithm of absolute daily returns, Log |R|. Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations Per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Stringency Index is a score between 0 and 100 that reflects the daily government response to COVID-19 and computed using different government nonpharmaceutical interventions. BM is the book-to-market ratio. Log (TV) is the natural logarithm of daily trading volume in U.S. dollars. Log (MV) is the natural logarithm of market capitalization in U.S. dollars. Δ Infections to Cases is the daily change in the number of COVID-19 infections to the total number of confirmed COVID-19 cases (in percentage). Δ Deaths to Cases is the daily change in the number of COVID-19 deaths to the total number of confirmed COVID-19 cases (in percentage). US Elections is a dummy variable that takes the value of 1 for the period that starts at November 3, 2020 and ends at January 7, 2021, and zero otherwise. All continuous variables are winsorized at the 1st and 99th percentiles. All specifications include weekday dummies. The asterisks ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Obs. and R² denote the number of observations and the coefficient of determination, respectively. The last row shows Chi-squared tests of the cross-model comparison between the vaccination coefficients using seemingly unrelated estimations.

Emerging	Developed	Emerging	Developed	Emerging	Developed	Emerging	Developed
Log (Daily Vaccinations)_{t-1}	−0.0154***	−0.0420***	(−5.07)	(−11.65)			
Daily Vaccinations Per 100,000_{t-1}	−0.0003***	−0.0006***	(−4.68)	(−9.02)			
Vaccination Period	−0.1993***	−0.4790***	(−6.88)	(−12.54)			
Δ Daily Vaccinations Dummy_{t-1}	−0.1121***	−0.3608***	(−2.79)	(−7.74)			
Log	R	_{t-1}	0.1633***	0.1017***	(17.64)	(8.27)	
Stringency Index_{t-1}	0.0014***	0.0060***	(3.04)	(8.95)			
BM_{t-1}	0.1020***	0.1141*	(4.35)	(1.81)			
Log (TV)_{t-1}	0.0661***	0.0040	(18.46)	(0.54)			
Δ Infections to Cases_{t-1}	1.0466***	1.4971***	(4.98)	(5.48)			
Δ Deaths to Cases_{t-1}	9.0519	15.3455	(0.70)	(0.99)			
US Elections	−0.1890***	−0.3733***	(−5.62)	(−8.48)			
Weekday Dummies	Yes	Yes	Yes	Yes			
Obs.	13500	7337	13500	7337			
R²	0.0734	0.0596	0.0731	0.0527			
F-value	89.04***	38.69***	88.69***	33.94***			

Cross–model comparison 𝜒² for vaccination measures 32.02*** 12.22*** 34.38*** 16.68***
Table 9: The Effect of Vaccinations in Developed and Emerging Markets: Interactions

This table presents pooled OLS estimates of the relationship between COVID-19 vaccinations and stock return volatility after including a dummy variable, Developed Dummy, and the interactions between this dummy variable and the different vaccination-related variables. Two dependent variables are used, namely, Log |R| (Columns 1-4) and Log |RR_{CAPM}| (Columns 5-8). Dummy Developed is a dummy variable that takes the value of 1 if the economy is a developed one, and zero otherwise. Log (Daily Vaccinations) is the natural logarithm of the daily number of COVID-19 vaccinations. Daily Vaccinations per 100,000 is the daily number of COVID-19 vaccinations divided by the country population and multiplied by 100,000. Vaccinations Period is a dummy variable that equals 1 for the period starting from the country’s first vaccination day, and zero otherwise. Δ Daily Vaccinations Dummy is an indicator variable that equals 1 if the daily change in the number of COVID-19 vaccinations is strictly positive, and zero otherwise. Heteroskedasticity-robust t-statistics are in parentheses beneath the regressions’ coefficients. All continuous variables are winsorized at the 1st and 99th percentiles. The asterisks *** and ** denote statistical significance at the 1% and 5% levels, respectively. Obs. and R^2 denote the number of observations and the coefficient of determination, respectively.

	Dependent variable: Log	R		Dependent variable: Log	RR_{CAPM}			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Log (Daily Vaccinations)_{t-1}	-0.0213***	-0.0004***	-0.0164***	-0.0003***				
	(–7.11)	(–6.87)	(–6.07)	(–5.82)				
Daily Vaccinations Per 100,000_{t-1}	-0.2710***	-0.1746***	-0.2353***	-0.1632***				
	(–9.54)	(–4.38)	(–8.92)	(–4.42)				
Vaccination Period	-0.2194***	-0.1973***	-0.1632***					
	(–3.57)	(–2.50)	(–9.17)	(–9.71)				
Δ Daily Vaccinations Dummy_{t-1}	-0.0200***	-0.0002**	-0.0002**					
	(–4.56)	(–2.40)	(–2.50)	(–2.40)				
Developed_Dummy	0.0474*	0.0284	0.0564**					
	(1.96)	(1.22)	(2.33)	(1.10)				
Log (Daily Vaccinations)_{t-1} × Developed Dummy	-0.0213***	0.0564**						
	(–7.11)	(1.10)						
Daily Vaccinations Per 100,000_{t-1} × Developed Dummy	-0.0002**	-0.0002**						
	(–2.40)	(–2.50)						
Vaccination Period × Developed Dummy	-0.1899***	-0.1974***						
	(–4.04)	(–3.39)						
Δ Daily Vaccinations Dummy_{t-1} × Developed Dummy	-0.1522***							
	(–2.73)							
Control variables	Yes							
Weekday Dummies	Yes							
Obs.	20837	20837	21413	20756	20837	20837	21413	20756
R^2	0.0521	0.0496	0.0538	0.0475	0.0390	0.0377	0.0394	0.0367
F-value	87.78***	83.26***	92.96***	79.43***	66.66***	63.81***	68.52***	61.98***