Pseudoscalar perturbations and polarization of the cosmic microwave background

Maxim Pospelov1,2, Adam Ritz1 and Constantinos Skordis2

1Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2 Canada
2Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada

(Dated: August 2008)

We show that models of new particle physics containing massless pseudoscalar fields super-weakly coupled to photons can be very efficiently probed with CMB polarization anisotropies. The stochastic pseudoscalar fluctuations generated during inflation provide a mechanism for converting E-mode polarization to B-mode during photon propagation from the surface of last scattering. The efficiency of this conversion process is controlled by the dimensionless ratio $H/(2\pi f_a)$, where H is the Hubble scale during inflation, and f_a^{-1} is the strength of the pseudoscalar coupling to photons. The current observational limits on the B-mode constrain this ratio to be less than 0.07, which in many models of inflation translates to a sensitivity to values of f_a in excess of 10^{14} GeV, surpassing the sensitivity of other tests.

Introduction:— Within the last decade, precise observations of fluctuations in the cosmic microwave background (CMB) have provided us with a powerful probe of cosmology, and been the driving force in pinning down the parameters in the concordance ΛCDM model. In recent times, gains in sensitivity have allowed us to complement observations of the temperature fluctuations with those in various components of polarization. Much of the focus has been aimed at the detection of the so-called B-mode of polarization, as it is an important probe of primordial gravitational waves, and thus of the possible mechanism for inflation. However, precision probes of polarization in various modes also present us with a powerful set of tools to test for new degrees of freedom of polarization already place stringent constraints on any new light pseudoscalar degrees of freedom through their stochastic fluctuations generated during inflation.

The interactions of a massless (or nearly massless) pseudoscalar field a with photons may be parametrized in terms of a dimensionful coupling constant f_a^{-1},

$$\mathcal{L}_{\gamma a} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^\mu a + \frac{a}{2f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}$$ (1)

where $F_{\mu\nu}$ is the electromagnetic field strength tensor, and $\tilde{F}_{\mu\nu}$ its dual. We note that the absence of a potential, $V(a) = 0$, is protected by the shift symmetry of this Lagrangian, $a \rightarrow a + c\text{ost}$, and while it is also natural to expect that the pseudoscalar a would have derivative couplings to the spins of other particles, this does not affect the physics of the CMB. The presence of the photon coupling implies that a space-time variation of the field a will induce a rotation $\Delta\psi$ of the polarization of an electromagnetic wave. Provided the photon wavelength is much smaller than the characteristic scale on which the field a varies \cite{1}, the rotation angle is independent of frequency:

$$\Delta\psi = \frac{1}{f_a}\Delta a.$$ (2)

In the past, CMB polarization has been used to probe an induced rotation angle due to a spatially homogeneous pseudoscalar profile $a = a(t)$ \cite{2,3}, with the latest data \cite{1,4} giving comparable sensitivity to the strongest constraints from polarized extra-galactic radio sources \cite{3}. However, the time evolution of the background effectively amounts to a bulk violation of parity and/or Lorentz invariance. Here, we consider a scenario perfectly in keeping with standard cosmology, and focus on a stochastic background for the pseudoscalar as would arise from a period of inflation. We exploit the fact that all massless scalars have a universal amplitude for fluctuations generated during inflation, $\delta a = H/(2\pi)$, where H is the inflationary Hubble parameter at horizon crossing. Without loss of generality, we are allowed to choose $a_{\text{now}} = 0$, and then the additional rotation ψ \cite{2} for a photon arriving from the direction \hat{n} is simply given by the randomly fluctuating value of $A(\hat{n}, \tau) = a(\hat{n}, \tau)/f_a$ at the surface of last scattering (LSS), $\tau \sim \tau_{\text{LSS}}$, where τ is the conformal time. To quantify the effect, we introduce the dimensionless parameter c_a:

$$c_a = \left(\frac{H}{2\pi f_a}\right)^2, \quad |\Delta\psi| \sim \sqrt{c_a}.$$ (3)

It is then apparent that any $O(1)$ probe of these fluctuations will provide impressive sensitivity to f_a on the order of the inflationary Hubble scale. For a scale-invariant source of inflationary perturbations in the field a, the evolution of the rotation angle ψ with the scale factor $R(t)$ can be pictured as an effective random walk where each efold of expansion corresponds to a separate step, so that the cumulative effect can be further enhanced relative to \cite{3}: $(\Delta\psi)^2 \sim c_a\ln(R_{\text{now}}/R)$.

In what follows, we analyze the generation of the B-mode of CMB polarization from the inflationary fluctuations of a massless pseudoscalar. We use the B-mode
spectrum to deduce a precise limit on c_a, and finally describe its implications for models of particle physics incorporating new pseudoscalar fields. We should note that the impact of inflationary axion perturbations has previously been discussed in the context of isocurvature perturbations on the CMB temperature spectrum [3], but this is not directly relevant for non-axionic massless pseudoscalars. The technical aspects of our analysis do nonetheless have parallels with studies of the impact on the CMB spectra of stochastic magnetic fields [7], of scalar moduli [8], and of weak lensing, in that the convolution of an additional fluctuating source with the underlying density perturbations tends to mix the various power spectra for temperature and E and B-mode polarization.

Generating B-mode polarization:—At the LSS the underlying spectrum of scalar (and tensor) perturbations leaves its imprint on the CMB through anisotropies in temperature and linear polarization, the latter generated by Thomson scattering. Linear polarization is conveniently described in terms of the Q and U Stokes parameters, and while a single scalar perturbation mode with $\vec{k}||\hat{z}$ does not generate Q, it generates U. We generalize the approach of Zaldarriaga and Seljak [9] where, for a mode of momentum k directed along \hat{z}, the observed value of Q in a given direction \hat{n} can be written as an integral over conformal time τ along the line of sight,

$$Q(k, \hat{n}) = \frac{3}{4}(1 - \mu^2) \int_0^{\tau_0} e^{i\tau_0} x \Pi(k, \tau) \Delta_A(\tau, \mu) \tau_d\,,$$

(4)

Here $x = k(\tau_0 - \tau)$ and $\mu = \vec{k} \cdot \hat{n}$. The source and visibility functions, $\Pi(k, \tau)$ and $\Delta_A(x)$ [3], reflect the details of the generation of polarization via Thomson scattering at the LSS. In the presence of a small stochastic rotation [2], a U component would also be generated, $U \simeq 2\Delta\psi Q = 2AQ$. This rotation also depletes Q, but this is a less significant effect. It then follows that for the combination of a single Fourier mode of the underlying scalar perturbation, with $\vec{k}||\hat{z}$, and one Fourier mode of the pseudoscalar perturbation with arbitrary direction \vec{q}, the result for U can be expressed as

$$U(k, q, \hat{n}) = \frac{3}{2}(1 - \mu^2) \int_0^{\tau_0} e^{i\tau_0} x \nu g(\tau) \Pi(k, \tau) \Delta_A(\tau, \mu) \tau_d\,,$$

(5)

In this expression, $y = q(\tau_0 - \tau)$ and $\nu = \vec{q} \cdot \hat{n}$. $\Delta_A(\tau, \mu)$ is the transfer function, that has a generic form for any massless (pseudo)scalar field: $\Delta_A(\tau, \mu)$ is normalised to one on large scales, and oscillates with a decaying envelope determined by the matter content on sub-horizon scales. At the next step, we calculate basis-independent expansion coefficients by performing the projection onto spin 2-weighted spherical harmonics, $a_{Blm} = -\int d\Omega(Y_{2,lm}^* \cdot Y_{2,lm}^* \Pi(\hat{n})) / 2$, as described in [3],

$$a_{Blm} = \frac{3}{2} \left[\frac{(l - 2)!}{(l + 2)!} \right] \int d\Omega \int_0^{\tau_0} d\tau (m^2 - (1 + \mu^2)^2) x^2 e^{i\tau_0 + i\nu} F(\tau, \vec{k}, \hat{q})\,.$$

(6)

Since the a_{Blm}’s are basis-independent, we are now allowed to generalize the scalar-pseudoscalar source function to modes of arbitrary direction \vec{k} and \vec{q}, which are in turn determined by the primordial scalar $\xi(k)$ and pseudoscalar $\xi_A(q)$ perturbations:

$$F(\tau, \vec{k}, \hat{q}) = g(\tau) \Pi(k, \tau) \Delta_A(q, \tau) \Delta_A(\hat{k}l, q)\,.$$

(7)

The standard assumption that these perturbations are gaussian random variables implies

$$\langle \xi(\vec{k}l)\xi(\vec{k}l') \rangle = P_\phi(kl) \delta^{(3)}(\vec{k}l - \vec{k}l'),$$

$$\langle \xi_A(\vec{q}l)\xi_A(\vec{q}l') \rangle = P_A(ql) \delta^{(3)}(\vec{q}l - \vec{q}l'),$$

(8)

where P_ϕ is the (now rather well-measured) primordial power spectrum for scalar perturbations. The scalar primordial power spectrum P_ϕ sources the CMB anisotropy and indeed structure formation, while the pseudoscalar power spectrum P_A is, in our approach, directly linked to c_a in [3] by the standard inflationary prediction,

$$P_A(q) = \frac{c_a}{4\pi q} q^{n_a - 1}\,.$$

(9)

Here n_a is the spectral index of the pseudoscalar primordial power spectrum, with $n_a = 1$ being scale invariant. Note that the factor of 4π reflects the normalization convention for Fourier transforms in [3] that we follow in this paper.

To proceed, we expand the exponential $e^{i\mu + i\nu}$ in (6) into a basis of products of spherical harmonics, and using their orthogonality and completeness, perform all the angular integrals. Deferring the remaining details [10], we obtain

$$C_{BI} = \frac{1}{2\ell + 1} \sum_{m} (a_{Blm}^* a_{Blm}) = \frac{4(4\pi)^3}{2\ell + 1} \left(\frac{l_1 l_2}{(l_1 - 1)!} \right)^2 \times \int k^2 P_\phi q^2 P_A dk dq |\Delta_{l_1 l_2 m}(k, q)|^2\,,$$

(10)

with the generalized transfer function,

$$\Delta_{l_1 l_2 m}(k, q) = \frac{3}{4} \int_0^{\tau_0} d\tau q(\tau) j_{l_1}(x_j) j_{l_2}(y) \times \left[\frac{(l_1 + 2)!}{(l_1 - 2)! x^2} \right] \Delta_A(\tau, q) \Pi(\tau, k)\,.$$

(11)

The sum over m can be straightforwardly computed, while the summation range for l_1 and l_2 is restricted
to $|l_1 - l_2| \leq l \leq l_1 + l_2$, which is enforced by the Wigner $3j$-symbol. It is important to note that the cross-correlations TB and EB vanish on account of the overall conservation of parity.

At this point we assume a spectrum of scalar fluctuations with scalar spectral index $n = 0.963$ chosen according to the best fit model for the WMAP5 CMB data, and take the pseudoscalar spectral index n_a to have the same value. We used our own code based on CMBfast [11] to numerically calculate the functions $\Pi(k, \tau)$ and $\Delta_A(\tau, q)$ for the WMAP5 best fit model, and then to compute C_{BI} using Eqs. (9)–(11). Fig. 1 displays the results for C_{BI} for a fiducial choice of $c_a = 4.2 \times 10^{-3}$. For comparison, the plot also shows C_{EI} as well as the B-modes generated by primordial tensor perturbations with $r = 0.14$ and by lensing of the E-mode. The qualitative form of C_{BI} induced by pseudoscalar perturbations can be understood by looking at the dominant regions in the l_1 and l_2 sums. For large l, we find that $l_1 \sim l$, while the sum over l_2 is effectively truncated at a lower value of order $l_{2, \text{max}} \sim (\tau_0 - \tau_{\text{LS}})/\tau_{\text{LS}} \sim 50$ (higher values of l_2 contribute no more than about 2% to the C_{BI}'s on small scales). Thus for large $l \sim 1000$ the induced B-mode closely tracks the underlying E-mode. For lower values of $l \sim O(1)$, both l_1 and l_2 saturate at higher scales so the B-mode is somewhat larger. Finally, the overall scale of the oscillations in C_{BI} is slightly suppressed as is to be expected from convoluting the underlying E-mode source with a gaussian random variable.

It is important to keep in mind that our approximation, which assumes a small rotation angle, may break down once C_{BI} becomes comparable to C_{EI}. Consequently, for setting constraints on C_{BI} we choose l in the interval 100–1000, where the most recent experimental results of QUaD [12] probe the B-modes well below the detected E-mode level, $C_{BI} \sim O(0.1) \times C_{EI}$. The QUaD limits, shown in Fig. 1, impose a stringent constraint on c_a:

$$c_a < 4.2 \times 10^{-3} \quad \Rightarrow \quad f_a > 2.4 \times 10^{14} \text{ GeV} \times H_{14},$$

where we have introduced $H_{14} \equiv H/10^{14}$ GeV, a normalization inspired by the fact that $H_{14} \sim O(1)$ is close to the maximal inflationary value of H allowed by observations. The inflationary Hubble scale can be traded for the tensor-to-scalar ratio r, commonly used to parametrize the strength of all massless perturbations including gravitational waves, $r = 0.14 \times H^2_{14}$. Note that from Eq. (3), the conclusion that $c_a \ll 1$ justifies a posteriori our perturbative treatment of the rotation of polarization. The constraint (12) is the main result of this Letter, and in what follows we discuss its implications.

Implications for particle physics: Given the conventional picture of inflationary cosmology, the constraint obtained above applies to massless pseudoscalars (or almost massless with a mass below the Hubble scale at decoupling) and it is important to consider how such new low-energy degrees of freedom may naturally arise. Recall that massless pseudoscalar fields coupled to the operator $G_{\mu\nu}G^{\mu\nu}$ in QCD, namely axions, resolve the strong CP problem in a natural way [13] while gaining an anomaly-induced mass $m_a \sim f_a/\tau$. While this mass is large compared to the scales relevant here, this mechanism for inducing a mass is unique, and thus should two or more pseudoscalars couple to the QCD anomaly, only one linear combination would become massive [14]. Schematically, below the QCD scale, such models lead to an effective Lagrangian of the form,

$$\left(\frac{a_1}{2g_1} + \frac{a_2}{2g_2}\right) G_{\mu\nu}G^{\mu\nu} + \left(\frac{a_1}{2f_1} + \frac{a_2}{2f_2}\right) F_{\mu\nu}F^{\mu\nu} \rightarrow L_{\text{QCD}a} + \frac{a}{2f_a} F_{\mu\nu}F^{\mu\nu},$$

where besides the Lagrangian $L_{\text{QCD}a}$ for the QCD-axion, one has a massless pseudoscalar a as part of $L_{\gamma a}$ in [11] with $f_a^{-1} = (g_2/f_2 - g_1/f_1)/\sqrt{g_1^2 + g_2^2}$. In the absence of any special reasons for cancellation, the generic case is $f_a^{-1} \neq 0$. Although we refrain from assessing the likelihood of new high-energy physics leading to two or more light pseudoscalar fields, we can refer to various scenarios in string theory where multiple pseudoscalar moduli
are a generic prediction (see e.g. [15]). Therefore, the Lagrangian \mathcal{L} can easily originate from a more fundamental theory with multiple degrees of freedom. Note that it would take a significant increase in sensitivity before the limit in Eq. (12) could start probing f_a at the scales most relevant for string theory, $f_a \sim 10^{10}\text{ GeV} H_{14}$.

Existing constraints on the coupling f_a arise via several known mechanisms. Most notably, the CAST experiment directly limits the emission of pseudoscalars from the solar interior and has obtained the limit $f_a > 2 \times 10^{16}\text{ GeV}$ [10], which is quite competitive with stellar constraints that typically require $f_a \gtrsim 10^{11}\text{ GeV}$ [12]. A massless pseudoscalar-photon coupling in the intergalactic magnetic field provides an additional means of probing f_a [13] which is, however, strongly dependent on the assumptions concerning the strength of magnetic field, its redshift behavior and the number density of free electrons. Thus we observe that for $H_{14} \sim O(1)$, the constraint (12) derived in this paper is more stringent than any other constraint on massless pseudoscalars by at least two orders of magnitude.

Concluding Remarks:— Despite all the evidence for physics beyond the Standard Model in the neutrino sector and in cosmology, there is no compelling need for new degrees of freedom at or below the electroweak scale. Indeed, neutrino masses and dark matter can arise from ultra-heavy degrees of freedom, while dark energy is currently consistent with being just a cosmological constant. Nonetheless, many models of new high-energy physics do lead to new light degrees of freedom whose mass may be protected by symmetry, as is the case for the pseudoscalars considered here, and we have shown that CMB physics can potentially be a very important probe of such models. The stochastic fluctuations of a light pseudoscalar field generated during inflation can induce the conversion of E-mode to B-mode polarization in the CMB, and with the current upper bounds this already leads to stringent constraints (12). It is anticipated that forthcoming experiments such as BICEP will significantly improve the sensitivity to $H/(2\pi f_a)$ provided the background due to lensing can be handled appropriately, and thus these experiments may provide the primary sensitivity to new physics of this type.

The search for primordial gravitational waves using B-modes has intrinsic limitations in that the effect scales as $(H/M_p)^2$, and so for H below 10^{13} GeV the detection of tensor modes in the CMB becomes problematic. In this respect, the search for pseudoscalar fluctuations provides an independent motivation for studying B-modes, which is less predicated on the scale of inflation being large. Indeed, with the existing constraints on f_a [10], B-modes may be generated at an observable level within a wide class of inflationary models with $10^{10}\text{ GeV} \lesssim H \lesssim 10^{14}\text{ GeV}$. However, since both pseudoscalars and gravitational waves (when combined with the background contribution from lensing) can have similar power spectra up to normalization, it will be important to investigate whether the two can be distinguished observationally [10].

Acknowledgments:— We thank N. Afshordi, N. Kaloper, V. Mukhanov and S. Speziale for helpful discussions. The work of M.P. and A.R. was supported in part by NSERC of Canada, and research at the Perimeter Institute is also supported in part by NSERC and by the Province of Ontario through MEDT.