Effects of low-concentration atropine eye drops on the optical quality of the eyes in myopic children

Weiran Li1,2, Yiting Cao1,2, Jibo Zhou1,2

Purpose: The present study was performed to compare the optical quality of the eyes of myopic children before and after treatment with atropine eye drops of different concentrations. Methods: In the study population of 71 patients (131 eyes), 34 patients (63 eyes) were given 0.01% atropine eye drops and 37 patients (68 eyes) were given 0.05% atropine eye drops. The modulation transfer function (MTF) cutoff frequency, Strehl ratio, objective scattering index (OSI), and predicted visual acuities (PVAs 100%, 20%, and 9%) under different lighting conditions were measured before and after two weeks of atropine treatment. Results: After using 0.05% atropine eye drops for two weeks, the Strehl ratio decreased from 0.27 ± 0.07 to 0.23 ± 0.07 (P = 0.0026), PVA 20% decreased from 1.15 ± 0.32 to 1.03 ± 0.36 (P = 0.0344), and PVA 9% decreased from 0.74 ± 0.23 to 0.64 ± 0.23 (P = 0.0073). The OSI was significantly higher after using 0.05% than 0.01% atropine eye drops (P = 0.0396), while both the Strehl ratio and PVA 20% were lower after using 0.05% than 0.01% atropine eye drops (P = 0.0087 and P = 0.0492, respectively). Conclusion: The children’s optical quality did not change significantly after using 0.01% atropine eye drops, whereas it decreased after using 0.05% atropine eye drops.

Key words: Low-concentration atropine eyedrops, myopia, myopic children, optical quality analysis system (OQAS), optical quality

Myopia is the most common ocular disorder worldwide and its prevalence has been increasing over the past several decades, especially in East Asia.1–4 A number of methods are available to control the progression of myopia, including orthokeratology, peripheral defocus contact lenses, and increased outdoor activity.5–8 Atropine eye drops have been shown to be an effective method to control the progression of myopia in children.9–12 Atropine has a dose-related effect on the progression of myopia with greater effects and more obvious side effects, including photophobia, poor near vision, and rebound effects after withdrawal, observed at higher doses.10 All of these risks seem to be mitigated by treatment with lower concentrations of atropine. Many studies have shown that moderate and low concentrations of atropine (e.g., 0.01%, 0.025%, 0.05%, and 0.1%) could control the progression of myopia in children with reasonable efficacy, minimal side effects, convenience of application, and slight rebound effects after discontinuation.9–12 However, the efficacy and side effects (reduction in the degree of pupil dilation during accommodation and symptoms, such as photophobia and blurred near vision) of low-dose atropine differ according to the dose applied.10,11,12 Yam et al.11 and Moon and Shin14 reported that different doses of atropine (0.01%, 0.025%, and 0.05%) exerted different effects on the progression of myopia, but only Yam et al.11 reported the dose-dependent side effects.

This study was performed to determine whether there were differences in the optical quality of the eyes of myopic children after treatment with different doses of atropine (0.05% or 0.01%) administered as eye drops.

Methods

The research protocol was reviewed and approved by the Research Ethics Committee, and the study was performed in accordance with the Declaration of Helsinki. Written informed consent was obtained from the parents or guardians of all participants, and verbal consent was obtained from the participants. All procedures were based on the intention-to-treat principle.

Participants

71 children (131 eyes), aged 5–15 years, with spherical power between -0.50 and -6.00 diopters (D) in at least one eye, astigmatism ≤2.5 D, and best-corrected visual acuity (BCVA; expressed as the logarithm of the minimum angle of resolution, that is, log-MAR) no worse than 0.096 were enrolled in this trial. The average age of all children was 9.43 ± 2.03 years. The exclusion criteria were ocular diseases (e.g., cataracts, congenital retinal diseases, amblyopia, and strabismus), previous regular use of atropine or pirenzipine, or orthokeratology or other optical methods for myopia control, allergies to atropine, or systemic diseases.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Cite this article as: Li W, Cao Y, Zhou J. Effects of low-concentration atropine eye drops on the optical quality of the eyes in myopic children. Indian J Ophthalmol 2022;70:2107-10.
(e.g., endocrine, cardiac, and respiratory diseases). The participants were randomized to receive 0.05% or 0.01% atropine eye drops, and both sex and age were balanced across the two groups.

Procedure

The patients in this study were examined and their sex, age, spherical power, cylinder power, and axial length (AL) were recorded on the first visit to our clinic. Myopic eyes were treated with 0.05% or 0.01% atropine eye drops (once nightly). All examinations were repeated after two weeks of treatment. The cycloplegia regimen was to apply one drop (six times, at five-minute intervals) of 0.5% tropicamide phenylephrine (Santen, Osaka, Japan) into both eyes. Refraction was measured with an autorefractor (RM-1; Topcon, Tokyo, Japan) ten minutes after applying the final drop. The mean spherical equivalent (SE) was calculated as spherical power plus half the cylinder power. The AL was measured by optical biometry (IOL Master 500; Carl Zeiss Meditec, Jena, Germany) and the intraocular pressure (IOP) was measured by tonometry (iCare IC100; iCare, Vantaa, Finland). Only treated eyes were recorded, while the healthy eyes were not. All examinations were performed and results were recorded by a technician blinded to the groups.

Optical quality measurement

The modulation transfer function (MTF) cutoff frequency, Strehl ratio, objective scattering index (OSI), and predicted visual acuities (PVAs 100%, 20%, and 9%) were measured under photopic lighting conditions using an Optical Quality Analysis System™ (OQAS; Visiometrics, Terrassa, Spain) preoperatively and after two weeks of atropine treatment. During measurement, the subjects placed their chin on the chinrest of the instrument tray and were asked to fix the center of a figure. With the exception of OSI where the system automatically set the pupil diameter to 4 mm, all other parameters were measured according to the corresponding pupil diameter of the patient. The OQAS system could automatically correct refractive errors from -8 D to +8 D. To ensure the accuracy of the results, the measurements were repeated three times, and the average of the three results was calculated.

The OQAS system assesses optical quality in a completely objective manner. OSI objectively reflected the situation of scattered light in the eye, and its value was defined as the ratio of the peripheral light intensity of the dual-channel image to the central peak light intensity, with a higher OSI value indicating a higher level of intraocular scatter. The MTF cutoff value (i.e., the cutoff value of the MTF on the x-axis) represents the highest spatial frequency in a low-contrast environment in units of cycles per degree (cpd). The MTF cutoff in the double-pass system was the frequency at which the MTF reached a value of 0.01. As the point spread function (PSF) images recorded by the double-pass system were disturbed by high-frequency signals and high-frequency signals inevitably appeared in the camera equipment, the frequency measurement may be unstable when the MTF is extremely small. To solve this problem, the system set the MTF threshold to 0.01, corresponding to 1% contrast. Therefore, the MTF cutoff value was equivalent to the highest frequency at which the optical system could focus an object on the retina under conditions of 1% contrast. The Strehl ratio reflected the influence of the wavefront aberration of the optical system on the light intensity at the imaged center point and was defined as the ratio of the measured PSF peak to the ideal perfect optical system (without aberrations). PVA 100%, 20%, and 9% only considered the optical system of the eye (i.e., predicted the best visual acuity of the patient at 100%, 20%, and 9% contrast based on the measured aberrations and intraocular scatter).

Statistical analysis

All statistical analyses were performed using StatView software (ver. 9.4; SAS, Cary, NC). Generalized estimating equations were used to compare the data before and after medication, and the data between different groups. The results are expressed as mean ± standard error. In all analyses, P < 0.05 was taken to indicate statistical significance.

Results

A total of 71 children (131 eyes) were enrolled in this study, and none were lost to follow-up. In total, 34 children (63 eyes) were treated with 0.01% atropine eye drops and 37 children (68 eyes) were treated with 0.05% atropine eye drops. There were no significant differences in demographic characteristics or optical quality before treatment between the two groups [Table 1].

Table 2 shows the changes in visual quality parameters before and after treatment with 0.01% and 0.05% atropine eye drops. After treatment with 0.05% atropine eye drops for two weeks, the Strehl ratio decreased from 0.27 ± 0.07 to 0.23 ± 0.07 (P = 0.0026), PVA 20% decreased from 1.15 ± 0.32 to 1.03 ± 0.36 (P = 0.0344), and PVA 9% decreased from 0.74 ± 0.23 to 0.64 ± 0.23 (P = 0.0073).

Table 3 shows the difference in optical quality between 0.01% and 0.05% atropine eye drops after two weeks of treatment. The OSI was significantly higher after using 0.05% than 0.01% atropine eye drops (P = 0.0396), whereas both the Strehel ratio and PVA 20% were lower after using 0.05% than 0.01% atropine eye drops (P = 0.0087 and P = 0.0492, respectively).

Discussion

The OQAS system was used to examine changes in objective optical quality in the eyes of myopic children after treatment.
with 0.05% or 0.01% atropine eye drops. The results indicate that
the optical quality did not change significantly after two weeks of treatment with 0.01% atropine eye drops, but
decreased after two weeks of treatment with 0.05% atropine
eye drops.

There have been no previous studies regarding the changes
in visual quality after treatment with low-concentration atropine eye drops. In 2019, Liu et al.\cite{20} examined the changes
in visual quality after orthokeratology in 35 myopic children
with an average age of 11.46 ± 2.33 years, and found that the OSI
value increased significantly after 1 month and then recovered
slowly. Although orthokeratology and atropine both had an
effect in controlling myopia, their mechanisms of action were
different. The decrease in optical quality after orthokeratology
was related to stray light, while that associated with atropine
was related to changes in pupillary diameter and ciliary muscle
adjustment function.

Kaymak et al.\cite{20} reported that 24 h of using 0.01% atropine eye
drops had a significant impact on pupil size and adaptability in
young people, with a lower concentration of atropine in the eye
drops showing a smaller effect on pupil size. In another study,
Fu et al.\cite{21} reported a stronger effect in eye drops containing
0.02% than 0.01% atropine in controlling the progression of
myopia, but both 0.02% and 0.01% atropine eye drops increased
the pupillary diameter after 1 year of treatment (all P < 0.001).
Our results show that the optical quality decreased after two
weeks of treatment with 0.05% atropine eye drops. Previous
studies showed that pupil size showed different changes
according to the concentration of atropine in the eye drops;
thus, we propose that the optical quality may have decreased
because of the change in pupil diameter.\cite{21-23}

In the present study, the OSI was decreased in children
treated with 0.05% atropine eye drops. This indicates that

Table 2: Optical quality before and after atropine treatment

	Before 0.01%	2 weeks 0.01%	P	Before 0.05%	2 weeks 0.05%	P
OSI	0.38±0.30	0.41±0.31	0.9351	0.38±0.24	0.53±0.53	0.1285
MTF cutoff frequency	46.15±9.35	44.56±10.74	0.1688	44.11±9.13	41.47±11.43	0.0885
Strehl ratio	0.29±0.08	0.27±0.09	0.1950	0.27±0.07	0.23±0.07	0.0026
PVA 100%	1.55±0.30	1.49±0.36	0.0671	1.44±0.33	1.39±0.38	0.1188
PVA 20%	1.22±0.31	1.17±0.37	0.2071	1.15±0.32	1.03±0.36	0.0344
PVA 9%	0.79±0.25	0.76±0.29	0.2671	0.74±0.23	0.64±0.23	0.0073

MTF: modulation transfer function; OSI, objective scattering index; PVA, predicted visual acuity. P<0.05 was considered statistically significant.

**Table 3: Comparison of the optical quality after 2 weeks
of treatment with 0.01% and 0.05% atropine eye drops**

	0.01%	0.05%	P
OSI	0.41±0.31	0.53±0.53	0.0396
MTF cutoff frequency	44.56±10.74	41.47±11.43	0.0955
Strehl ratio	0.27±0.09	0.23±0.07	0.0087
PVA 100%	1.49±0.36	1.39±0.38	0.1574
PVA 20%	1.17±0.37	1.03±0.36	0.0492
PVA 9%	0.76±0.24	0.64±0.23	0.0560

MTF, modulation transfer function; OSI, objective scattering index; PVA, predicted visual acuity. P<0.05 was considered statistically significant.

This study has some limitations. First, the follow-up period
was short and we could not determine the changes in optical
quality after long-term use of low-concentration atropine eye
drops. Second, we had only objective examination results
and did not use questionnaires to analyze subjective optical
quality after using the atropine eye drops. Third, we compared
only two atropine concentrations—0.05% and 0.01%—and
therefore could not determine the optimal concentration with
good therapeutic effects and minimal side effects. In addition,
the measurement of OQAS can only subjectively reflect the
changes of optical quality. Our further studies aim to assess
the impact of atropine on visual quality subjectively by using
or designing a formal questionnaire survey with a score grade.
Finally, we only measured changes in visual quality in a bright
environment, and did not compare the effects of different
centres of eye drops on optical quality in bright and
dark environments.

Conclusion

In summary, the optical quality of the eyes of myopic children
did not change significantly after two weeks of treatment with
0.01% atropine eye drops, while the optical quality decreased
after two weeks of treatment with 0.05% atropine eye drops.
These results indicate that children using 0.05% atropine eye
drops require better living and study environments.

Acknowledgement

The English in this document has been checked by at least
two professional editors, both native speakers of English. For
a certificate, please see: http://www.textcheck.com/certificate/ibkbA8.

Financial support and sponsorship

This work was partially supported by the National
Natural Science Foundation of China, Foundation Number
8137050, and the Science and Technology Commission of
Shanghai (17DZ2260100). The funding agency had no role in the
design or conduct of the study; data collection; management,
analysis, or interpretation of the data; preparation; review;
approval of the manuscript; or in the decision to submit the manuscript for publication.

Conflicts of interest
There are no conflicts of interest.

References
1. Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia: Prevalence and risk factors for myopia. Ophthalmic Physiol Opt 2012;32:3-16.
2. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Oph Phys Optics 2005;25:381-91.
3. Sun J, Zhou J, Zhao P, Lian J, Zhu H, Zhou Y, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Invest Ophthalmol Vis Sci 2012;53:7504-9.
4. Jung SK, Lee JH, Kakizaki H, Jee D. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. Invest Ophthalmol Vis Sci 2012;53:5579-83.
5. Sun Y, Xu F, Zhang T, Liu M, Wang D, Chen Y, et al. Correction: Orthokeratology to control myopia progression: A meta-analysis. PLoS One 2015;10:e0130646. doi: 10.1371/journal.pone.0130646.
6. Kwok E, Patel B, Backhouse S, Phillips JR. Peripheral refraction in high myopia with spherical soft contact lenses. Optom Vis Sci 2012;89:263-70.
7. Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ. The association between time spent outdoors and myopia in children and adolescents: A systematic review and meta-analysis. Ophthalmology 2012;119:2141-51.
8. Zadnik K, Mutti DO. Outdoor activity protects against childhood myopia—let the sun shine in. JAMA Pediatr 2019;173:415-6.
9. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the treatment of childhood myopia. Ophthalmology 2006;113:2285-91.
10. Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: Myopia control with atropine 0.01% eyedrops. Ophthalmology 2016;123:391-9.
11. Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E, et al. Low-concentration atropine for myopia progression (LAMP) study: A randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology 2019;126:113-24.
12. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, et al. Efficacy comparison of 16 interventions for myopia control in children: A network meta-analysis. Ophthalmology 2016;123:697-708.
13. Chen Z, Li T, Yao P, Xu Y, Zhou X. Effects of 0.05% racanisodamine on pupil size and accommodation. Optom Vis Sci 2010;87:966-70.
14. Moon JS, Shin SY. The diluted atropine for inhibition of myopia progression in Korean children. Int J Ophthalmol 2018;11:1657-62.
15. Tian M, Miao H, Shen Y, Gao J, Mo X, Zhou X. Intra-and Intersession Repeatability of an Optical Quality and Intraocular Scattering Measurement System in Children. PLoS One 2015;10:e0142189. doi: 10.1371/journal.pone.0142189.
16. Artal P, Benito A, Pérez GM, Alcón E, De Casas A, Pujol J, et al. An objective scatter index based on double-pass retinal images of a point source to classify cataracts. PLoS One 2011;6:e16823. doi: 10.1371/journal.pone.0016823.
17. Jiang B, Liu Y. An analysis on the equivalence of the eye to a system with aberration. Sci Sin B 1982;25:970-80.
18. Liu G, Jin N, Bi H, Du B, Gu T, Zhang B, et al. Long-term changes in straylight induced by overnight orthokeratology: An objective measure using the double-pass system. Curr Eye Res 2019;44:11-8.
19. Kaymak H, Fricke A, Mauritz Y, Löwinger A, Klabe K, Breyer D, et al. Short-term effects of low-concentration atropine eye drops on pupil size and accommodation in young adult subjects. Graefes Arch Clin Exp Ophthalmol 2018;256:2211-7.
20. Fu A, Stapleton F, Wei L, Wang W, Zhao B, Watt K, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: Low-dose atropine and myopia progression. Br J Ophthalmol 2020;104:1355-41.
21. Ha A, Kim S, Shim S, Kim Y, Jung J. Efficacy and safety of 8 atropine concentrations for myopia control in children: A network meta-analysis. Ophthalmology 2022;129:322-33.
22. Joachimsen L, Farassat N, Bleul T, Böhringer D, Lagrèze W, Reich M. Side effects of topical atropine 0.05% compared to 0.01% for myopia control in German school children: A pilot study. Int Ophthalmol 2021;41:2001-8.
23. Kuo H, Ke C, Chen S, Sun H. The impact of clinical atropine use in Taiwanese school children: Changes in physiological characteristics and visual functions. Children (Basel, Switzerland) 2021;8. doi: 10.3390/children8111054.