RESCATTERING EFFECTS AND TWO-STEP PROCESS IN KAON PHOTOPRODUCTION ON THE DEUTERON

A. SALAM\(^*\) AND K. MIYAGAWA

Simulation Science Center, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan

H. ARENHÖVEL

Institut für Kernphysik, Universität Mainz, D-55099 Mainz, Germany

T. MART

Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia

C. BENNHOLD

Center for Nuclear Studies, Department of Physics, The George Washington University, Washington, D.C. 20052, USA

W. GLÖCKLE

Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Kaon photoproduction on the deuteron is investigated by considering \(YN\) and \(KN\) rescattering and the two-step process \(\gamma d \rightarrow \pi NN \rightarrow KYN\). A strong enhancement in the total cross section is found from the two-step process. \(YN\) rescattering has remarkable effects in the inclusive and exclusive cross section, while the effect of \(KN\) rescattering is much less important.

1. Introduction

Kaon photoproduction on the deuteron has been investigated by several people. Li et al.\(^1\) have extracted the elementary cross section from the deuteron target in the study of neutron channels. In a recent paper Yamashita et al.\(^2\) have investigated the process \(\gamma d \rightarrow \pi NN \rightarrow KYN\) using the isospin symmetry. The effect of \(KN\) rescattering in the inclusive cross section is found to be less important compared to \(YN\) rescattering. However, the two-step process \(\gamma d \rightarrow \pi NN \rightarrow KYN\) is found to be significant in the total cross section.

\(^*\)Permanent address: Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia.
mura et al.2 have calculated the YN rescattering for the K^+ channels by using the Nijmegen YN potential3. They found sizeable effects in the inclusive cross sections from the YN rescattering. This work is extended by considering the two-step process $\gamma d \rightarrow \pi NN \rightarrow KYN$ and the KN rescattering4. Other recent calculations also investigated the YN rescattering5 and the pion mediated process in lowest order6.

This paper presents the calculation of K^+ and K^0 photoproduction on the deuteron by considering YN and KN rescattering and the two-step process. The formulations are shown in Section 2, the results in Sect. 3, and the conclusions in Sect. 4.

2. Some Formulations

In the deuteron rest frame the exclusive cross section is given by

\[\frac{d\sigma}{dp_K d\Omega_K d\hat{q}_Y} = \frac{m_{\gamma} m_N}{4(2\pi)^2 E_{\gamma} E_K W} \sum_{\mu_Y \mu_N \mu_d \lambda} \left[\sqrt{2} \langle \Psi_{\mu_Y \mu_N} | t^{\gamma K}_\lambda | \Psi_{\mu_d} \rangle \right]^2 \] \hspace{1cm} (1)

where μ_Y, μ_N, μ_d, and λ denote the spin projections of hyperon, nucleon, deuteron, and the photon polarization, respectively, $W^2 = (P_d + p_\gamma - p_K)^2$, and $\sqrt{2}$ comes from the proper antisymmetrization. The amplitude is approximated by the diagram in Figure 1.

Figure 1. Kaon photoproduction on the deuteron. Diagram (a) is impulse approximation (IA), (b) and (c) are YN and KN rescattering, respectively, and (d) is the two-step process (πK-process for short).

The impulse term and YN rescattering (diagram (a) and (b), respectively) are calculated simultaneously as

\[T_{IA+YN} = t^{tK} + t_{YN} G_{YN} t^{\gamma K}. \] \hspace{1cm} (2)

By inserting the Lippmann-Schwinger equation for t_{YN}, we get

\[T_{IA+YN} = (1 - V_{YN} G_{YN})^{-1} t^{tK}. \] \hspace{1cm} (3)

After solving the last equation in the partial wave decomposition, one obtains the YN rescattering amplitude by subtraction of the impulse term.
The KN rescattering (diagram (c)) is evaluated directly as
\[T_{KN} = t_{KN} G_{KN} t_{\gamma K}, \]
where we use a separable potential of rank-1 for V_{KN}. The πK-process (diagram (d)) is calculated in the same way as in the KN-rescattering.

3. Results

The results are calculated by using the elementary operator of Mart and Bennhold\cite{7} and the deuteron wave function of Bonn model\cite{8}. Fig. 2 shows the total cross section of $\gamma d \rightarrow KY N$ as function of E_{γ}. The πK-process (solid line) enhances the total cross section in all channels (dotted line). The next remarkable effect comes from YN rescattering (short-dash line), while the effect of KN rescattering (dash line) is negligible. Fig. 3 shows the differential cross section as function of θ_K calculated at different photon energies. YN rescattering has remarkable effects at forward angles, while the πK-process at larger angles. The inclusive cross section as function of p_K is shown in Fig. 4. YN rescattering shows remarkable effects at the threshold and peak region, while the effect of πK-process appears at smaller kaon momenta. Some enhancement, whose origin is from the S-matrix pole of V_{YN}\cite{9}, is found at the Σ-threshold in the Λ-channels (indicated by arrows in the figure). Fig. 5 shows the exclusive cross section in the forward kaon
angle at photon energy 1.3 GeV as function of θ'_Y measured relative to the direction of momentum transfer $\vec{p}_\gamma - \vec{p}_K$ in the deuteron rest frame. The
Λ-channels are calculated at kaon momentum 870 MeV/c and Σ-channels at 810 MeV/c. YN rescattering dominates the effect for all channels at larger θ'_Y.

4. Conclusions

Kaon photoproduction on the deuteron is calculated by considering YN and KN rescattering and the two step process. A strong enhancement in the total cross section is found from the two-step process. YN rescattering has remarkable effects in the inclusive and exclusive cross section, while the effect of KN rescattering is negligible.

Acknowledgments

AS would like to thank the Simulation Science Center, Okayama University of Science, Okayama for financial support and very kind hospitality.

References

1. X. Li, L.E. Wright, and C. Bennhold, Phys. Rev. C45, 2011 (1992).
2. H. Yamamura et al., Phys. Rev. C61, 014001 (1999).
3. P.M.M. Maessen et al., Phys. Rev. C40, 2226 (1989).
4. A. Salam, Dissertation, Johannes Gutenberg Universität, Mainz, 2003.
5. B.O. Kerbikov, Phys. Atom. Nucl. 64, 1835 (2001).
6. O.V. Maxwell, *Phys. Rev.* **C69**, 034605 (2004).
7. T. Mart and C. Bennhold, *Phys. Rev.* **C61**, 012201 (2000).
8. R. Machleidt, K. Holinde, and Ch. Elster, *Phys. Rep.* **149**, 1 (1987).
9. K. Miyagawa and H. Yamamura, *Phys. Rev.* **C60**, 024003 (1999).