25-hydroxyvitamin D Levels was not Associated with Blood Pressure and Arterial Stiffness in Patients with Chronic Kidney Disease

Kyung Mi Park1, Hak Hoon Jun2, Jinkun Bae3, Yu Bum Choi4, Dong Ho Yang4, Hye Yun Jeong4, Mi Jung Lee4, So-Young Lee4

1Department of Nephrology, Division of Nephrology, Department of Internal Medicine, Seochang Happy Internal Medicine Clinic, Incheon, 2Department of Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 3Department of Emergency Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, 4Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea

Received: November 20, 2017
Accepted: December 26, 2017
Corresponding Author: So-Young Lee, MD, PhD
Division of Nephrology, Department of Internal Medicine, CHA University School of Medicine, CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam 13496, Korea
Tel: +82-31-780-5025
Fax: +82-31-780-5219
E-mail: ysy0119@cha.ac.kr
*K. Park, H.H. Jun and J. Bae contributed equally to the work.

Background: We investigated the effect of vitamin D deficiency on cardiovascular risk profiles in an Asian population with chronic kidney disease (CKD).

Methods: A total of 210 participants (62 non-dialysis CKD patients and 148 hemodialysis [HD] patients) were enrolled between December 2009 and February 2010. Vitamin D deficiency was determined using the serum 25-hydroxyvitamin D [25(OH)D] concentration. Blood pressure and arterial stiffness were measured. Subjects were divided into groups according to 25(OH)D concentration based on a cut-off of 13.5 ng/mL in non-dialysis CKD patients and 11.3 ng/mL in HD patients.

Results: The mean age was 61.7±12.3 years in non-dialysis CKD patients and 57.0±12.7 years in HD patients. In the non-dialysis CKD group, mean estimated glomerular filtration rate (eGFR) was 29.7±15.4 mL/min/1.73 m². Mean 25(OH)D concentration was 13.6±7.8 ng/mL in non-dialysis CKD patients and 11.3±6.7 ng/mL in HD patients. More than half of the subjects had vitamin D deficiency (67.6% in non-dialysis CKD patients and 80.4% in HD patients).

There were no significant differences in systolic blood pressure, pulse pressure, and arterial stiffness between higher and lower 25(OH)D groups among non-dialysis CKD and HD patients. Multivariate analysis revealed that female sex (odds ratio [OR]: 5.890; 95% confidence interval [CI]: 2.597-13.387; p<0.001) and presence of diabetes (OR: 2.434; 95% CI: 1.103-5.370; p=0.028) were significantly associated with lower serum 25(OH)D levels in HD patients.

Conclusion: The prevalence of vitamin D deficiency was high in both non-dialysis CKD patients and HD patients. Serum 25(OH)D concentration was not a significant factor associated with blood pressure and arterial stiffness among non-dialysis CKD and HD patients.

Key Words: Blood pressure, Cardiovascular risk, Chronic kidney disease, 25-Hydroxyvitamin D

Introduction

Vitamin D is an essential nutrient with pleiotropic effects involving the kidneys1,2, cardiovascular system3,4, immune system5, and mineral-bone metabolism6, and is also involved in cancer7. Vitamin D levels are also associated with the glomerular filtration rate (GFR)8, and vitamin D deficiency is correlated with a rapid decline in GFR2.
Therefore, in chronic kidney disease (CKD), many patients have insufficiency or deficiency of vitamin D9,10. Vitamin D deficiency is significantly associated with adverse clinical outcomes in CKD and dialysis patients2,10-12. Patients with low 25-hydroxyvitamin D [25(OH)D] levels had higher all-cause mortality2 and higher risk of hospitalization12. Furthermore, peritoneal dialysis patients with a lower 25(OH)D concentration showed a significantly greater risk of fatal or nonfatal cardiovascular events10. Because cardiovascular disease is the most common cause of death in CKD patients13, evaluating the association between vitamin D deficiency and cardiovascular risk has clinical relevance.

Many previous observational studies have suggested the effect of vitamin D deficiency on adverse cardiovascular outcomes. Few studies have assessed vitamin D concentration and specific cardiovascular risk profiles in CKD patients. Furthermore, most studies have been confined to Western populations. Because of the differences in region, climate, nutritional status, and clinical practice patterns, we sought to investigate the effect of vitamin D deficiency on cardiovascular risk profiles in an Asian population with CKD. Therefore, in the current study, we measured the relationship of serum 25(OH)D with blood pressure and arterial stiffness in Korean patients with non-dialysis CKD and chronic hemodialysis (HD).

Materials and Methods

1. Subjects

This study is part of a larger study investigating the effect of low vitamin D levels on clinical outcomes12. We screened and recruited non-dialysis CKD and chronic HD patients between December 2009 and February 2010 at CHA Bundang Medical Center. CKD stage was determined according to the Kidney Disease Outcomes Quality Initiative guidelines14. Estimated glomerular filtration rate (eGFR) was calculated using the equation of the Modification of Diet in Renal Disease Study Group15. Non-dialysis CKD patients included those with two previous, consecutive eGFR measurements of less than 60 mL/min/1.73 m2 at an interval of 3-6 months. Chronic HD patients were those who underwent regular HD treatment for at least three months on a schedule of three times per week (>12 hours/week). We excluded subjects who were <20 or >90 years of age or had an acute infectious disease, unstable vital signs, malignancy, or a prior history of kidney transplantation. Patients were also excluded if they were on active vitamin D supplements, vitamin D analogs, warfarin, steroids, or anticonvulsants within the 6 months prior to study enrollment. A total of 210 participants (62 non-dialysis CKD patients and 148 HD patients) were finally enrolled and analyzed in this study. This study was carried out in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of CHA Bundang Medical Center. Written consent was acquired from all participants.

2. Demographic and biochemical data collection

Demographic and biochemical data were collected at study entry. Age, sex, presence of diabetes and previous cardiovascular disease, and use of medication for renin-angiotensin system blockade, lipid lowering therapy, and calcium-based phosphate binders were recorded. Body mass index (BMI) was calculated as body weight in kilograms divided by height in meters squared. Blood samples were obtained before the hemodynamic study. In HD patients, blood sampling was done during the predialysis period. Biochemical variables, including white blood cell count, hemoglobin, albumin, blood urea nitrogen, calcium, phosphorous, intact parathyroid hormone (iPTH; iPTH), high-sensitivity C-reactive protein (hs-CRP), 25-hydroxyvitamin D\textsubscript{2+3}, and 1,25-(OH)\textsubscript{2} vitamin D\textsubscript{3}, were measured. Serum calcium was adjusted for serum albumin. iPTH levels were evaluated by electrochemiluminescence immunoassay. Serum 25(OH)D concentrations were measured using a chemiluminescent immunoassay (LIAISON; DiaSorin Inc., Saluggia, Italy). Levels of 1,25-(OH)\textsubscript{2}D were determined using a 125I radioimmunoassay (DiaSorin Inc.).

3. Measurement of cardiovascular risk profiles

Before measurement of cardiovascular risk profiles, participants were instructed to avoid exercise, caffeine, high-fat foods, or tobacco for at least 12 hours. Blood pressure was measured three times after 15 minutes of recumbency. The average value of three measurements was utili-
ized for data analysis. Pulse pressure was calculated using the following formula: pulse pressure = systolic blood pressure - diastolic blood pressure. Arterial stiffness was determined using brachial-ankle pulse wave velocity (baPWV) with a commercially available device (VP-2000; Colin, Komaki, Japan). After 15 minutes of recumbency, pulse wave forms were obtained from the brachial and posterior tibial artery. Pulse wave velocity was calculated as the distance between two arterial recording sites divided by transit time, as described previously. In non-dialysis CKD patients, the mean baPWV of the right and left sides was used. A single value of baPWV from one arm without arteriovenous access was used for analysis in the HD group. Blood pressure and arterial stiffness measurements were conducted by a single practitioner who was blinded to clinical information.

4. Statistical analysis

Continuous variables are expressed as mean±standard deviation and categorical variables as a number (percentage). Based on previous studies, vitamin D deficiency was defined as serum 25(OH)D levels <15 ng/mL and vitamin D insufficiency was defined as serum 25(OH)D levels of 15-30 ng/mL. To compare baseline characteristics and cardiovascular risk profiles according to 25(OH)D concentrations, subjects were divided into a higher and a lower 25(OH)D group. The average 25(OH)D concentrations were 13.5 ng/mL in non-dialysis CKD patients and 11.3 ng/mL in HD patients. To compare clinical data and cardiovascular risk profiles, Student’s t-tests were performed for continuous variables and chi-square tests were performed for categorical variables. Pearson’s correlation coefficients were used to assess the relationship between the serum 25(OH)D level and 1,25-(OH)2D level. We performed binary logistic regression analysis to investigate the effects of covariates on serum 25(OH)D in HD patients. A p-value less than 0.05 was considered statistically significant. Statistical analyses were performed with SPSS for Windows (version 18.0; SPSS Inc., Chicago, IL, USA).

Results

1. Baseline characteristics and the prevalence of vitamin D deficiency

Sixty-two non-dialysis CKD subjects and 148 HD subjects were assessed. Baseline characteristics are shown in Table 1. The mean age of the non-dialysis CKD patients was 61.7±12.3 years and that of the HD patients was 57.0±12.7 years. Among the non-dialysis CKD patients, 39 (62.5%) were men; 71 (52.0%) of the HD patients were men. The prevalence rates of diabetes and previous cardiovascular disease were 50.0% and 21.9%, respectively, in the non-dialysis CKD group and 48.6% and 39.9%, respectively, in the HD group. In the non-dialysis CKD group, mean eGFR was 29.7±15.4 mL/min/1.73 m². Mean Kt/V urea was 1.4±0.4 in the HD group. Mean systolic and diastolic blood pressures were 135.6±20.2 and 55.8±13.4 mmHg in the non-dialysis CKD and 145.3±25.2 and 62.6±16.6 mmHg in the HD group, respectively. In addition, the mean baPWV of non-dialysis CKD and HD patients was 17.3±4.5 and 18.4±4.3 m/s, respectively. The mean 25(OH)D concentrations were 13.6±7.8 ng/mL in the non-dialysis CKD patients and 11.3±6.7 ng/mL in the HD patients. Most of the patients had vitamin D deficiency (67.6% of non-dialysis CKD patients and 80.4% of HD patients, respectively) and only a small proportion had adequate vitamin D levels (3.2% of non-dialysis CKD patients and 2.0% of HD patients). Analysis using Pearson’s correlation coefficient revealed a direct association between the serum 25(OH)D level and 1,25-(OH)2D level in the non-dialysis CKD patients (r=0.458, p<0.001; Fig. 1A), but there was no significant correlation between the serum 25(OH)D level and 1,25-(OH)2D level in the HD patients (r=0.138, p=0.138; Fig. 1B).

2. Comparison of clinical characteristics according to serum 25(OH)D levels

When subjects were divided into higher and lower 25(OH)D groups (Table 2), the proportion of men was significantly higher in the higher 25(OH)D group in both non-dialysis CKD and HD patients (79.2%, p=0.048 and 78.8%, p<0.001, respectively). In contrast, the proportion of diabetes was significantly greater in the lower 25
(OH)D group in the HD patients (56.3%, p=0.009). In the non-dialysis CKD patients, lower eGFR (20.4±9.7 vs 37.5±15.0, p<0.001, respectively) was observed in the lower 25(OH)D group, accompanied by significantly lower hemoglobin but higher phosphorous and iPTH concentrations compared to those in the higher 25(OH)D group (Table 2). This suggested that the decreased uptake of 25(OH)D by impaired kidneys may contribute to vitamin D deficiency or insufficiency in non-dialysis CKD patients18). In the lower 25(OH)D group, significantly decreased serum albumin levels and higher hs-CRP levels were observed among non-dialysis CKD patients (Table 2). In HD patients, albumin levels and the use of calcium-based phosphate binders were significantly lower in the lower 25(OH)

Table 1. Baseline characteristics of subjects

	Non-dialysis CKD patients	HD patients	p-value
Number (%)	62 (29.5)	148 (70.5)	-
Age (years)	61.7±12.3	57.0±12.7	0.014
Men (%)	62.5	52.0	0.128
Diabetes (%)	50.0	48.6	0.763
BMI (kg/m²)	24.2±3.3	24.4±3.6	<0.001
Previous CVD (%)			
Coronary artery disease	4.3	18.2	0.004
Cerebrovascular attack	17.2	27.0	0.163
Peripheral artery disease	4.3	12.2	0.133
eGFR (mL/min/1.73 m²)	29.7±15.4	-	
Kt/V urea	-	1.4±0.4	
WBC (10³/μL)	6.3±2.0	6.3±2.0	0.838
Hemoglobin (g/dL)	11.5±1.6	10.5±2.7	0.010
Albumin (mg/dL)	4.2±0.4	3.9±0.4	<0.001
BUN (mg/dL)	37.8±19.8	63.9±21.1	<0.001
Calcium (mg/dL)	9.1±0.6	9.2±0.9	0.578
Phosphorous (mg/dL)	3.5±0.7	4.8±1.7	<0.001
iPTH (pg/dL)	96.8±123.9	178.6±252.3	0.002
CRP (mg/dl)	0.2±0.4	0.5±1.5	0.031
Medications			
ACEi/ARBs (%)	85.2	84.0	0.854
Statin (%)	48.4	45.3	0.650
Ca based P-binder (%)	14.1	73.0	<0.001
SBP (mmHg)	135.6±20.2	145.3±25.2	0.005
PP (mmHg)	55.8±13.4	62.6±16.6	0.003
BaPWV (m/s)	17.3±4.5	18.4±4.3	0.108
1,25(OH)2D (ng/mL)	31.1±13.9	22.5±8.5	<0.001
25(OH)D (ng/mL)	13.6±7.8	11.3±6.7	0.049
Status of 25(OH)D [14]			
Normal (>30 ng/mL, %)	2 (3.2)	3 (2.0)	0.061
Insufficiency (15-30 ng/mL, %)	18 (29.0)	26 (17.6)	
Deficiency (<15 ng/mL, %)	42 (67.6)	119 (80.4)	

Data are presented as means±SD or number of observations (%).
Abbreviations: 1,25(OH)2D, 1,25-dihydroxyvitamin D; 25(OH)D, 25-hydroxyvitamin D; ACEi, angiotensin-converting enzyme inhibitor; ARBs, angiotensin II receptor blockers; BaPWV, brachial-ankle pulse wave velocity; BMI, body mass index; BUN, blood urea nitrogen; Ca based P-binder, calcium-based phosphate binder; CRP, C-reactive protein; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; iPTH, intact parathyroid hormone; PP, pulse pressure; SBP, systolic blood pressure; WBC, white blood cell.
Fig. 1. Pearson’s correlation coefficient (R) and p-value (P) for 1,25-(OH)2D and 25(OH)D. (A) Scatter plot of 1,25-(OH)2D and 25(OH)D in non-dialysis CKD patients and (B) HD patients. CKD, chronic kidney disease; HD, hemodialysis.

D group (Table 2).

In non-dialysis CKD patients, systolic blood pressure (137.8±18.8 vs. 131.9±22.3 mmHg, p=0.276), pulse pressure (57.1±12.5 vs. 52.9±14.5 mmHg, p=0.198) and baPWV (17.6±4.7 vs 17.0±4.1 m/s, p=0.639) were slightly higher in the lower 25(OH)D group, but there was no statistical significance (Table 2). Systolic blood pressure, pulse pressure, and baPWV showed no trend or statistical significance in a comparison between HD patients with higher and lower 25(OH)D (Table 2).

3. Factors associated with lower serum 25(OH)D levels in HD patients

In univariate analysis, female sex (odds ratio [OR]: 6.212; 95% confidence interval [CI]: 2.838-13.597; p<0.001), presence of diabetes (OR: 2.429; 95% CI: 1.207-4.887; p=0.013), and BMI (OR: 0.889; 95% CI: 0.798-0.991; p=0.034) were found to be independent predictors of serum 25(OH)D <11.3 ng/mL in HD patients (Table 3). However, multivariate logistic analysis revealed that only female sex (OR: 5.890; 95% CI: 2.597-13.387; p<0.001) and presence of diabetes (OR: 2.434; 95% CI: 1.103-5.370; p=0.028) were significantly associated with lower serum 25(OH)D levels (<11.3 ng/mL) in HD patients (Table 3).

Discussion

This study showed that the prevalence of vitamin D deficiency was high in both non-dialysis CKD patients and HD patients. More than half of subjects had vitamin D deficiency and less than 5% of the subjects had adequate vitamin D levels. Our study also demonstrated that cardiovascular risk was greater in the lower serum 25(OH)D group among non-dialysis CKD patients. The lower serum 25(OH)D group among non-dialysis CKD patients also had higher values for systolic blood pressure, pulse pressure, and baPWV, but there was no statistical significance. We did not find significant differences in cardiovascular risk profiles among HD patients according to the serum 25(OH)D level.

The association between vitamin D and blood pressure has been thoroughly investigated in the general population. Several observational studies and cross-sectional studies demonstrated that vitamin D had a significant association with hypertension. In a study using data from the Korea National Health and Nutrition Examination Survey, 25(OH)D showed inverse correlations with systolic and diastolic blood pressure, while serum PTH levels showed positive correlations with systolic and diastolic blood pressure in 4,513 participants not taking antihy-
pertensive medication24). In the elderly, lower serum 25 (OH)D levels were inversely and independently associated with blood pressure in subjects who were over 64 years of age23). Moreover, Belen et al.25 showed that lower serum 25(OH)D concentrations had an independent relationship with the presence of resistant hypertension. They included 50 subjects with resistant hypertension, 50 with controlled hypertension, and 50 normotensive subjects. Serum 25(OH)D levels were significantly lower in the resistant hypertensive group compared to the controlled hypertensive and normotensive groups23). However, there are still conflicting results regarding the association between vitamin D and blood pressure26,27. Randomized trials investigating the effect of vitamin D supplementation on blood pressure have shown equivocal results27. The Women’s Health Initiative was a randomized trial that investigated dietary supplementation with calcium plus vitamin D in 36,000 menopausal women with a median follow up dura-

Table 2. Comparison of clinical characteristics based on mean 25(OH)D serum levels

	Non-dialysis CKD patients	HD patients	p-value	Non-dialysis CKD patients	HD patients	p-value
Number (%)	24 (38.7)	38 (61.3)	-	52 (35.1)	96 (64.9)	-
25(OH)D (ng/mL)	21.5±6.9	8.8±2.9	<0.001	18.0±7.0	7.7±2.1	<0.001
1,25-(OH)$_2$D (ng/mL)	37.8±17.8	27.0±8.5	<0.001	23.7±8.9	21.9±8.4	0.099
Age (years)	62.3±11.6	61.4±12.5	0.412	56.1±13.0	58.9±11.8	0.071
Men (%)	19 (79.2)	21 (55.3)	0.048	41 (78.8)	36 (37.5)	<0.001
Diabetes (%)	10 (41.7)	22 (57.9)	0.162	18 (34.6)	54 (56.3)	0.009
BMI (kg/m2)	24.0±2.7	24.4±3.6	0.252	23.0±2.9	29.1±3.3	0.195
Previous CVD (%)	5 (20.8)	9 (23.7)	0.525	23 (44.2)	36 (37.5)	0.266
CAD	1 (4.2)	1 (2.6)	0.628	7 (13.5)	20 (20.8)	0.189
CVA	4 (16.7)	7 (18.4)	0.572	17 (32.7)	23 (40.4)	0.171
PAD	1 (4.2)	2 (5.3)	0.669	5 (9.8)	13 (13.5)	0.354
eGFR (mL/min/1.73 m2)	37.5±15.0	20.4±9.7	<0.001	-	-	-
WBC (103/μL)	6.2±1.6	6.4±2.2	0.185	6.2±1.9	6.3±2.1	0.641
Hb (g/dL)	12.3±1.6	11.0±1.3	<0.001	10.3±0.9	10.6±3.2	0.383
Albumin (mg/dL)	4.4±0.3	4.1±0.4	<0.001	4.0±0.3	3.9±0.4	0.020
BUN (mg/dL)	32.8±14.6	40.8±21.6	<0.001	65.3±17.9	63.3±22.6	0.454
Calcium (mg/dL)	9.2±0.4	9.1±0.6	0.052	9.2±0.7	9.2±1.0	0.980
P (mg/dL)	3.5±0.7	3.8±1.0	<0.001	5.0±1.8	4.8±1.8	0.238
iPTH (pg/dL)	59.1±50.1	119.4±146.2	<0.001	170.6±208.0	183.0±273.2	0.693
CRP (mg/dL)	0.2±0.3	0.2±0.4	0.038	0.3±0.6	0.6±1.9	0.115
Medications						
ACEi/ARBs (%)	20 (83.3)	38 (100)	0.061	36 (69.2)	77 (80.2)	0.198
Statin (%)	11 (45.8)	20 (52.6)	0.397	22 (44.0)	45 (47.4)	0.417
Ca based P-binder (%)	4 (16.7)	5 (13.2)	0.487	41 (82.0)	67 (70.5)	0.022
SBP (mmHg)	131.9±22.3	137.8±18.8	0.276	146.0±26.0	143.0±23.8	0.406
PP (mg/dL)	52.9±14.5	57.5±12.5	0.198	64.0±16.2	60.2±17.2	0.184
BaPWV (m/s)	17.0±4.1	17.6±4.7	0.639	18.4±4.5	18.5±4.0	0.871

Data are presented as means±SD or number of observations (%).

Abbreviations: 1,25(OH)$_2$D, 1,25-dihydroxyvitamin D; 25(OH)D, 25-hydroxyvitamin D; ACEi, angiotensin-converting enzyme inhibitor; ARBs, angiotensin II receptor blockers; BaPWV, brachial-ankle pulse wave velocity; BMI, body mass index; BUN, blood urea nitrogen; Ca based P-binder, calcium-based phosphate binder; CAD, coronary artery disease; CRP, C-reactive protein; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; Hb, hemoglobin; iPTH, intact parathyroid hormone; P, phosphate; PAD, peripheral artery disease; PP, pulse pressure; SBP, systolic blood pressure; VD, vascular disease; WBC, white blood cell.
Table 3. Binary logistic regression analysis with 25(OH)D ≥11.3 or <11.3 ng/mL among HD patients

Univariate analysis	OR (95% CI)	p-value
Sex (male/female)	6.212 (2.838-13.597)	<0.001
Age (year)	0.982 (0.956-1.010)	0.203
Diabetes (absent/present)	2.429 (1.207-4.887)	0.013
Previous CVD (absent/present)	0.757 (0.381-1.502)	0.425
BMI (kg/m²)	0.889 (0.798-0.991)	0.034
P (mg/dL)	0.920 (0.757-1.119)	0.404
Albumin (mg/dL)	0.428 (0.154-1.190)	0.104
Ca based P-binder (nonuser/user)	0.525 (0.225-1.190)	0.136

Multivariate analysis	OR (95% CI)	p-value
Sex (male/female)	5.890 (2.597-13.387)	<0.001
Age (year)	0.974 (0.944-1.004)	0.093
Diabetes (absent/present)	2.434 (1.103-5.370)	0.028
BMI (kg/m²)	0.884 (0.782-1.000)	0.050

Abbreviations: 25(OH)D, 25-hydroxyvitamin D; BMI, body mass index; Ca-based P-binder, calcium-based phosphate binder; CI, confidence interval; CVD, cardiovascular disease; P, phosphate; OR, odds ratio.

The study showed no significant differences in blood pressure changes and incidence of hypertension between active treatment and placebo groups. Moreover, no significant differences in blood pressure or the incidence of hypertension were found in subgroups with low intake of vitamin D or low serum vitamin D levels. Jorde et al. also reported a cross-sectional association between serum 25(OH)D and blood pressure. However, lower serum 25(OH)D levels did not predict future hypertension or high blood pressure. In our study, there were no significant differences in systolic blood pressure, pulse pressure, and baPWV between higher and lower serum 25(OH)D groups in both non-dialysis CKD and HD patients (Table 2).

Studies on the association between vitamin D and blood pressure focused on the effect of mineral metabolism on blood pressure. In hypertensive animal models, calcium supplementation reduced blood pressure. Although early data indicated that hypertensive patients had lower serum calcium levels, evidence regarding the blood pressure lowering effect of calcium supplementation is weak. Intestinal calcium absorption is increased by vitamin D; therefore, vitamin D has an indirect effect on blood pressure. Vitamin D receptors have been found in vascular smooth muscle cells and the renin producing juxtaglomerular cells. Vitamin D inhibits upregulation of the renin-angiotensin system, leading to reduced renal vasoconstriction and atherosclerosis. Vitamin D also can regulate the expression of the natriuretic peptide receptor. These results have suggested a direct role of vitamin D on blood pressure, independent of calcium metabolism. In our study, blood pressure was not different according to the 25(OH)D levels in non-dialysis CKD and HD patients. The explanation for our findings is not clear. However, the difference in 25(OH)D levels may have been too small to result in a significant difference in cardiovascular profiles because the majority of subjects had low levels of vitamin D.

Various causes and risk factors for vitamin D deficiency and insufficiency have been reported in HD patients. Similar to the general population, age, female sex, low physical activity, diabetes, and body adiposity are associated with vitamin D deficiency in HD patients. In accordance with eGFR decreases and serum phosphate increases in CKD patients, the hyperphosphaturic hormone FGF-23 released from osteocytes has a role in suppression of renal 1-hydroxylase expression and induction of the degradation of 1,25-(OH2)D. Defective photoproduction of cholecalciferol in HD patients was also suggested. In our data, female sex and presence of diabetes were the only significant factors associated with lower 25(OH)D levels in HD patients after adjusting for covariates (Table 3).

This study has several limitations. First, because of the cross-sectional design, we cannot show a causal relationship between vitamin D and blood pressure. Second, the small number of subjects could have limited statistical sig-
nificance, leading to type II errors. Third, because this study did not perform an intervention using vitamin D, our results cannot infer a protective effect of vitamin D supplementation on blood pressure in CKD patients. A randomised controlled study regarding the effect of vitamin D supplementation on cardiovascular risk is worth investigating. Finally, this study included only Korean non-dialysis CKD and HD patients from a single center. Our results might not be generalizable to other populations and one should be cautious when interpreting this study.

In conclusion, our study demonstrated that vitamin D deficiency was common in both non-dialysis CKD patients and HD patients. Serum 25(OH)D concentration was not a significant factor associated with blood pressure and arterial stiffness among non-dialysis CKD and HD patients. A future, larger-scaled study is needed to clarify this issue.

Declarations

Funding
This study was supported by a grant from the Korea Society of Hypertension (2011).

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no conflicts of interest in this work

Consent for publication
All the co-authors gave their consent for publication.

Ethics approval and consent to participate
This study was approved by the Institutional Review Board of CHA Bundang Medical Center. Written consent was acquired from all participants.

References

1. Agarwal R, Acharya M, Tian J, Hippensteel RL, Melnick JZ, Qiu P, et al.: Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int 68(6):2823-2828, 2005
2. Ravani P, Malberti F, Tripepi G, Pecchini P, Cutrupi S, Pizzini P, et al: Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int 75(1):88-95, 2009
3. Zittermann A, Koerfer R: Protective and toxic effects of vitamin D on vascular calcification: clinical implications. Mol Aspects Med 29(6):423-432, 2008
4. Pilz S, Marz W, Wellnitz B, Seelhorst U, Fahleitner-Panntner A, Daimi HP, et al: Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab 93(10):3927-3935, 2008
5. Veldman CM, Cantorna MT, DeLuca HF: Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys 374(2):334-338, 2000
6. Kidney Disease: Improving Global Outcomes CKD-MBD-DWG. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009;(113):S1-130.
7. Holick MF: Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 79(3):362-371, 2004
8. Rickers H, Christiansen C, Christensen P, Christensen M, Rodbro P: Serum concentrations of vitamin D metabolites in different degrees of impaired renal function. Estimation of renal and extrarenal secretion rate of 24, 25-dihydroxyvitamin D. Nephron 39(3):267-271, 1985
9. London GM, Guerin AP, Verbeke FH, Pannier B, Boutouyrie P, Marchais SJ, et al: Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol 18(2):613-620, 2007
10. Wang AY, Lam CW, Sanderson JE, Wang M, Chan IH, Lui SF, et al.: Serum 25-hydroxyvitamin D status and cardiovascular outcomes in chronic peritoneal dialysis patients: a 3-y prospective cohort study. Am J Clin Nutr 87(6):1631-1638, 2008
11. Kramer H, Sempos C, Cao G, Luke A, Shoham D, Cooper R, et al.: Mortality rates across 25-hydroxyvitamin D (25(OH)D) levels among adults with and without estimated glomerular filtration rate <60 ml/min/1.73 m²: the third national health and nutrition examination survey. PLoS One 7(10):e47458, 2012
12. Ko EJ, Kim BH, Jeong HY, Soe SU, Yang DH, Lee SY: Serum 25-hydroxyvitamin D as a predictor of hospitalization-free survival in predialysis and dialysis patients with chronic kidney disease: a single-center prospective obser-
vational analysis. Kidney Res Clin Pract 35(1):22-28, 2016
13. Foley RN, Parfrey PS, Sarnak MJ: Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32(5 Suppl 3):S112-119, 1998
14. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. American journal of kidney diseases: the official journal of the National Kidney Foundation 39(2 Suppl 1):S1-266, 2002
15. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Annals of Internal Medicine 130(6):461-70, 1999
16. Andrade J, Er L, Ignaszewski A, Levin A: Exploration of association of 1,25-OH2D3 with augmentation index, a composite measure of arterial stiffness. Clinical journal of the American Society of Nephrology: CJASN 3(6):1800-4806, 2008
17. Adragao T, Pires A, Birne R, Curto JD, Lucas C, Goncalves M, et al.: A plain X-ray vascular calcification score is associated with arterial stiffness and mortality in dialysis patients. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association. European Renal Association 24(3):997-1002, 2009
18. Takemoto F, Shinki T, Yokoyama K, Inokami T, Harai S, Yamada A, et al.: Gene expression of vitamin D hydroxylase and megalin in the remnant kidney of nephrectomized rats. Kidney Int 64;414420, 2003
19. Forman JP, Bischoff-Ferrari HA, Willett WC, Stampfer MJ, Curhan GC: Vitamin D intake and risk of incident hypertension: results from three large prospective cohort studies. Hypertension 46(4):676-682, 2005
20. Wang L, Manson JE, Buring JE, Lee IM, Sesso HD: Dietary intake of dairy products, calcium, and vitamin D and the risk of hypertension in middle-aged and older women. Hypertension 51(4):1073-1079, 2008
21. Scragg R, Sowers M, Bell C: Serum 25-hydroxyvitamin D, ethnicity, and blood pressure in the Third National Health and Nutrition Examination Survey. Am J Hypertens 20(7):713-719, 2007
22. Schmittz KJ, Skinner HG, Bautista LE, Finglinder TE, Langefeld CD, Hicks PJ, et al.: Association of 25-hydroxyvitamin D with blood pressure in predominantly 25-hydroxyvitamin D deficient Hispanic and African Americans. Am J Hypertens 22(8):867-870, 2009
23. Almirall J, Vaquerio M, Bare ML, Anton E: Association of low serum 25-hydroxyvitamin D levels and high arterial blood pressure in the elderly. Nephrol Dial Transplant. 25(2):503-509, 2010
24. Kim H, Chung YE, Jung SC, Im H, Yang SY, Kim DY, et al.: Independent associations of circulating 25-hydroxyvitamin D and parathyroid hormone concentrations with blood pressure among Koreans: The Korea National Health and Nutrition Examination Survey (KNHANES), 2009-2010. Calcif Tissue Int 93(6):549-555, 2013
25. Bolen E, Sahin I, Gungor B, Ayce B, Avci, II, Aysar M, et al.: Assessment of 25-Hydroxyvitamin D Levels in Patients with Resistant Hypertension. Med Princ Pract 25(1):25-30, 2016
26. Jorde R, Figschau Y, Emaus N, Hutchinson M, Grimes G: Serum 25-hydroxyvitamin D levels are strongly related to systolic blood pressure but do not predict future hypertension. Hypertension 55(3):792-798, 2010
27. Margolis KL, Martin LW, Ray RM, Kerby TJ, Allison MA, Curb JD, et al.: A prospective study of serum 25-hydroxyvitamin D levels, blood pressure, and incident hypertension in postmenopausal women. Am J Epidemiol 175(1):22-32, 2012
28. Hatton DC, McCarron DA: Dietary calcium and blood pressure in experimental models of hypertension. A review. Hypertension 23(4):513-530, 1994
29. McCarron DA: Low serum concentrations of ionized calcium in patients with hypertension. N Engl J Med 307 (4):226-228, 1982
30. Dickinson HO, Nicolson DJ, Cook JV, Campbell F, Beyer FR, Ford GA, et al.: Calcium supplementation for the management of primary hypertension in adults. Cochrane Database Syst Rev 2006(2):CD004639
31. Kawashima H: Receptor for 1,25-dihydroxyvitamin D in a vascular smooth muscle cell line derived from rat aorta. Biochem Biophys Res Commun 146(1):I-6, 1987
32. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP: 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest 110(2):229-238, 2002
33. Zhou C, Lu F, Gao K, Xu D, Gotzschan M, Xiao D: Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int 74(2):170-179, 2008
34. Chen S, Ni XP, Humphreys MH, Gardner DG: 1,25 dihydroxyvitamin d amplifies type a natriuretic peptide receptor expression and activity in target cells. Journal of the American Society of Nephrology: JASN. 16(2):329-339, 2005
35. Caravaca-Fontan F, Gonzales-Candia B, Luna, E, Caravaca F: Relative importance of the determinants of serum levels of 25-hydroxy vitamin D in patients with chronic kidney disease. Nefrologia 36:510-516, 2016
36. Mohiuddin SA, Marie M, Ashraf M, Hussein M, Almalki N: Is there an association between Vitamin D level and inflammatory markers in hemodialysis patients? A cross-sectional study. Saudi J Kidney Dis Transpl 27:460-466, 2016
37. Barreto Silva MI, Cavalieri VV, Lemos CC, Klein MR, Bregman R: Body adiposity predictors of vitamin D status in nondialyzed patients with chronic kidney disease: A cross-sectional analysis in a tropical climate city. Nutrition 33:240-247, 2017
38. Blau JE, Collins MT: The PTH-Vitamin D-FGF23 axis. Rev Endocr Metab Disord 16(2):165-174, 2015
39. Jacob AI, Sallman A, Santiz Z, Hollis BW: Defective photoproduction of cholecalciferol in normal and uremic humans. J Nutr 114;1313-1319, 1984