Indestructibly productively Lindelöf and Menger function spaces

Alexander V. Osipov

Krasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russia

Abstract

For a Tychonoff space X and a family λ of subsets of X, we denote by $C_{\lambda}(X)$ the T_1-space of all real-valued continuous functions on X with the λ-open topology.

A topological space is productively Lindelöf if its product with every Lindelöf space is Lindelöf. A space is indestructibly productively Lindelöf if it is productively Lindelöf in any extension by countably closed forcing. A Menger space is a topological space in which for every sequence of open covers U_1, U_2, \ldots of the space there are finite sets $F_1 \subset U_1, F_2 \subset U_2, \ldots$ such that family $F_1 \cup F_2 \cup \ldots$ covers the space.

In this paper, we study indestructibly productively Lindelöf and Menger function spaces. In particular, we proved that the following statements are equivalent for a T_1-space $C_{\lambda}(X)$:

1. $C_{\lambda}(X)$ is indestructibly productively Lindelöf;
2. $C_{\lambda}(X)$ is metrizable Menger;
3. $C_{\lambda}(X)$ is metrizable σ-compact;
4. X is pseudocompact, $D(X)$ is a dense C^*-embedded set in X and the family λ consists of all finite subsets of $D(X)$, where $D(X)$ is the countable set of all isolated points of X;
5. $C_{\lambda}(X)$ is homeomorphic to $C^*_p(\mathbb{N})$.

Keywords: Menger property, Hurewicz property, set-open topology, σ-compact, function space, indestructibly Lindelöf, productively Lindelöf, indestructibly productively Lindelöf, selection principles

2010 MSC: 54C25, 54C35, 54C40

Email address: OAB@list.ru (Alexander V. Osipov)
1. Introduction

A space X is said to be Menger [16] (or, [31]) (X satisfies $S_{fin}(O,O)$) if for every sequence $(U_n : n \in \mathbb{N})$ of open covers of X, there are finite subfamilies $V_n \subset U_n$ such that $\bigcup\{V_n : n \in \mathbb{N}\}$ is a cover of X.

Note that every σ-compact space is Menger, and a Menger space is Lindelöf. The Menger property is closed hereditary, and it is preserved by continuous maps. It is well known that the Baire space $\mathbb{N}^\mathbb{N}$ (hence, \mathbb{R}^ω) is not Menger.

Menger conjectured that in ZFC every Menger metric space is σ-compact. Fremlin and Miller [12] proved that Menger’s conjecture is false, by showing that there is, in ZFC, a set of real numbers that is Menger but not σ-compact.

For a function space $C_p(X)$: Velichko proved that $C_p(X)$ is σ-compact iff X is finite and Arhangel’skii proved that $C_p(X)$ is Menger iff X is finite [6].

For a function space $C_\lambda(X)$ the situation is more interesting.

Theorem 1.1. (Nokhrin) (Theorem 5.13 in [21]) For a space X the following statements are equivalent:

1. $C_\lambda(X)$ is σ-compact;
2. X is pseudocompact, $D(X)$ is a dense C^*-embedded set in X and the family λ consists of all finite subsets of $D(X)$, where $D(X)$ is the set of all isolated points of X.

Theorem 1.2. (Osipov) (Theorem 3.4 in [24]) A space $C_\lambda(X)$ is Menger iff it is σ-compact.

Various properties between σ-compactness and the Menger property are investigated in the papers [11, 33, 35] and others. We continue to study these properties on a function T_1-space $C(X)$ with the set-open topology.

2. Main definitions and notation

Throughout this paper X will be a Tychonoff space. Let λ be a family nonempty subsets of X and let $C(X)$ be a set of all continuous real-valued functions on X. Denote by $C_\lambda(X)$ the set $C(X)$ is endowed with the λ-open topology. The elements of the standard subbases of the set-open topology:
\[[F, U] = \{ f \in C(X) : f(F) \subseteq U \}, \text{ where } F \in \lambda, \ U \text{ is an open subset of the real line } \mathbb{R}. \]

Note that if \(\lambda \) consists of all finite (compact) subsets of \(X \) then the \(\lambda \)-open topology coincides with the topology of pointwise convergence (the compact-open topology), that is \(C_\lambda(X) = C_p(X) \) \((C_\lambda(X) = C_k(X)) \). The set-open topology was first introduced by Arens and Dugundji in [2] and studied over the last years by many authors. We continue to study the different topological properties of the space \(C(X) \) with the set-open topology (see [21-27]).

For a topological property \(P \), A.V. Arhangel’skii calls \(X \) projectively \(P \) if every second countable image of \(X \) is \(P \). Arhangel’skii consider projective \(P \) for \(P = \sigma \)-compact, analytic and other properties [3]. The projective selection principles were introduced and first time considered in [18]. Lj.D.R. Kočinac characterized the classical covering properties of Menger, Rothberger, Hurewicz and Gerlits-Nagy in term of continuous images in \(\mathbb{R}^\omega \).

Theorem 2.1. (Kočinac) A space is Menger if and only if it is Lindelöf and projectively Menger.

Recall that, if \(X \) is a topological space and \(\mathcal{P} \) is a topological property, we say that \(X \) is \(\sigma \)-\(\mathcal{P} \) if \(X \) is the countable union of subspaces with the property \(\mathcal{P} \). So a space \(X \) is called \(\sigma \)-compact (\(\sigma \)-pseudocompact, \(\sigma \)-bounded), if \(X = \bigcup_{i=1}^{\infty} X_i \), where \(X_i \) is a compact (pseudocompact, bounded) for every \(i \in \mathbb{N} \).

A subset \(A \) of a space \(X \) is said to be bounded in \(X \) if for every continuous function \(f : X \mapsto \mathbb{R} \), \(f|A : A \mapsto \mathbb{R} \) is a bounded function. Every \(\sigma \)-bounded space is projectively Menger (Proposition 1.1 in [3]).

Recall that a family \(\lambda \) of nonempty subsets of a topological space \((X, \tau) \) is called a \(\pi \)-network for \(X \) if for any nonempty open set \(U \in \tau \) there exists \(A \in \lambda \) such that \(A \subseteq U \).

By Theorem 4.1 in [21], the space \(C_\lambda(X) \) is a \(T_1 \)-space (=Hausdorff space) iff \(\lambda \) is a \(\pi \)-network of \(X \).

Throughout this paper, a family \(\lambda \) of nonempty subsets of the set \(X \) is a \(\pi \)-network.

Many topological properties are defined or characterized in terms of the following classical selection principles. Let \(\mathcal{A} \) and \(\mathcal{B} \) be sets consisting of families of subsets of an infinite set \(X \). Then:
$S_1(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each n, $b_n \in A_n$, and \{b_n : n \in \mathbb{N}\} is an element of \mathcal{B}.

$S_{fin}(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each n, $B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

$U_{fin}(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: whenever $U_1, U_2, \ldots \in \mathcal{A}$ and none contains a finite subcover, there are finite sets $F_n \subseteq U_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{B}$.

In this paper, by a cover we mean a nontrivial one, that is, \mathcal{U} is a cover of X if $X = \bigcup \mathcal{U}$ and $X \notin \mathcal{U}$.

An open cover \mathcal{U} of a space X is:
- an ω-cover if every finite subset of X is contained in a member of \mathcal{U};
- a γ-cover if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U}.

For a topological space X we denote:
- \mathcal{O} — the family of open covers of X;
- Γ — the family of open γ-covers of X;
- Ω — the family of open ω-covers of X.

Many equivalences hold among these properties, and the surviving ones appear in the following Diagram (where an arrow denotes implication), to which no arrow can be added except perhaps from $U_{fin}(\Gamma, \Gamma)$ or $U_{fin}(\Gamma, \Omega)$ to $S_{fin}(\Gamma, \Omega)$ [15].
Definition 2.2. A topological space X is
- Indestructibly Lindelöf if it is Lindelöf in every countably closed forcing extension [32, 7].
- Productively Lindelöf if $X \times Y$ is Lindelöf for any Lindelöf space Y [8].
- Indestructibly productively Lindelöf if it is productively Lindelöf in every extension by countably closed forcing [7].
- Powerfully Lindelöf if its ωth power is Lindelöf [1, 7].
- Alster if every cover by G_{δ} sets that covers each compact set finitely includes a countable subcover [1].
- Rothberger (X satisfies $S_{1}(\mathcal{O}, \mathcal{O})$) if for each sequence of open covers $\{U_{n}\}_{n<\omega}$, there are $\{U_{n}\}_{n<\omega}$, $U_{n} \in \mathcal{U}_{n}$, such that $\{U_{n}\}_{n<\omega}$ is a cover [28].
- Hurewicz (X satisfies $U_{\text{fin}}(\mathcal{O}, \Gamma)$) if for each sequence $\{U_{n} : n < \omega\}$ of γ-covers, there is for each n a finite $\mathcal{V}_{n} \subset \mathcal{U}_{n}$ such that either $\bigcup \mathcal{V}_{n} : n < \omega$ is a γ-cover, or else for some n, \mathcal{V}_{n} is a cover [16, 17].

Definition 2.3. We play a Menger game (M-game) in which ONE chooses in the nth inning an open cover \mathcal{U}_{n} and TWO choses a finite $\mathcal{V}_{n} \subset \mathcal{U}_{n}$. TWO wins if $\bigcup \mathcal{V}_{n} : n < \omega$ covers X.

Hurewicz proved X is Menger if and only if ONE has no winning strategy [16].

Figure 1. The Scheepers Diagram for Lindelöf spaces.
The Tall’s Diagram in Figure 2 (see Diagram in [35]) below shows the relationships among the properties we have discussed in this article.

![Diagram showing relationships among properties]

Figure 2. The Tall’s Diagram for Lindelöf spaces.

Theorem 2.4. For a space X the following statements are equivalent:

1. $C_\lambda(X)$ is σ-compact;
2. $C_\lambda(X)$ is Alster;
3. (CH) $C_\lambda(X)$ is productively Lindelöf;
4. "TWO wins M-game" for $C_\lambda(X)$;
5. $C_\lambda(X)$ is projectively σ-compact and Lindelöf;
6. $C_\lambda(X)$ is Hurewicz;
7. $C_\lambda(X)$ is Menger;
8. X is a pseudocompact, $D(X)$ is a dense C^*-embedded set in X and family λ consists of all finite subsets of $D(X)$, where $D(X)$ is the set of all isolated points of X;
9. $(C_\lambda(X))^n$ is Menger for every $n \in \mathbb{N}$;
10. $C_\lambda(X)$ satisfies $S_{\text{fin}}(\Omega, \Omega)$;
11. $C_\lambda(X)$ is σ-countably compact and Lindelöf;
12. $C_\lambda(X)$ is σ-pseudocompact and Lindelöf;
13. $C_\lambda(X)$ is σ-bounded and Lindelöf;
14. $C_\lambda(X)$ is homeomorphic to $\bigcup_{i=1}^{\infty} [-i, i]^{D(X)}$.

6
Proof. (1) ⇒ (2). It is obvious that every σ-compact space is Alster.

(1) ⇒ (4). It is obvious that every σ-compact space has "TWO wins M-game".

(2) ⇒ (3). Every Alster space is productively Lindelöf [1].

(2) ⇒ (5). Since Alster metrizable spaces are σ-compact [1], then every Alster space is projectively σ-compact and Lindelöf.

(4) ⇒ (5). By Theorem 18 in [35].

(7) ⇒ (1). By Theorem 1.2.

(9) ⇔ (10). By Theorem 3.9 in [15].

(13) ⇒ (1). Every σ-bounded space is projectively Menger (Proposition 1.1 in [3]). By Theorem 2.4, \(C_\lambda(X) \) is Menger. By Theorem 1.2, \(C_\lambda(X) \) is σ-compact.

(1) ⇔ (14). By Theorem 5.5 in [21].

The remaining implications are trivial and follows from the definitions [35]. □

Corollary 2.5. If \(C_\lambda(X) \) is Menger. Then \(C_\lambda(X) \) is powerfully (productively) Lindelöf.

Proof. If \(C_\lambda(X) \) is Menger, then, by Theorem 2.4, \(C_\lambda(X) \) is σ-compact and hence it is Alster. But Alster spaces are powerfully (productively) Lindelöf [1]. □

Corollary 2.6. \(C_k(X) \) is Menger (σ-compact, Hurewicz, Alster) if and only if \(X \) is finite.

For the selection properties of the space \(C_\lambda(X) \) (see Fig. 2) we have next trivial corollaries.

Corollary 2.7. If \(C_\lambda(X) \) is Rothberger (in particular, \(S_1(\Omega, \Gamma) \) or \(S_1(\Omega, \Omega) \)). Then \(X = \emptyset \).

Proof. If \(C_\lambda(X) \) is Rothberger, then it is Menger and, by Theorem 2.4, \(X \) contains an isolated point. Hence, the real line \(\mathbb{R} \subset C_\lambda(X) \). But every Rothberger subset of the real line has strongly measure zero [29]. It follows that \(X = \emptyset \). □

Corollary 2.8. If \(C_\lambda(X) \) has the property \(S_1(\Gamma, \mathcal{O}) \) (in particular, \(S_1(\Gamma, \Gamma) \) or \(S_1(\Gamma, \Omega) \)). Then \(X = \emptyset \).
Proof. If $C_\lambda(X)$ has the property $S_1(\Gamma, \mathcal{O})$, then it is Menger and, by Theorem 2.4, X contains an isolated point. Hence, the Cantor set $2^\omega \subset C_\lambda(X)$. But the Cantor set, 2^ω, is not in the class $S_1(\Gamma, \mathcal{O})$ [15]. It follows that $X = \emptyset$.

Note that every σ-compact topological space is a member of both the class $S_{\text{fin}}(\Omega, \Omega)$ and $U_{\text{fin}}(\Gamma, \Gamma)$ (Theorem 2.2 in [15]). It follows that if $C_\lambda(X)$ is Menger then $C_\lambda(X)$ has the properties $S_{\text{fin}}(\Omega, \Omega)$ and $U_{\text{fin}}(\mathcal{O}, \Gamma)$ (in particular, $S_{\text{fin}}(\Gamma, \Omega)$ and $U_{\text{fin}}(\mathcal{O}, \Omega)$).

Remark 2.9. If X is compact and $C_\lambda(X)$ is Menger, then X is homeomorphic to $\beta(D)$, where $\beta(D)$ is Stone-\v{C}ech compactification of a discrete space D, and $\lambda = [D]^{<\aleph_0}$.

A Lindelöf space Y is called a Michael space, if $\omega^\omega \times Y$ is not Lindelöf.

- (Repovs-Zdomskyy) If there exists a Michael space (this follows from $b = \aleph_1$ or $\mathfrak{d} = \text{Cov}(\mathcal{M})$), then every productively Lindelöf spaces has the Menger property (Proposition 3.1 in [13]).
- (Repovs-Zdomskyy) If $\text{Add}(\mathcal{M}) = \mathfrak{d}$, then every productively Lindelöf space has the Hurewicz property (Theorem 1.1 in [14]).
- (Zdomskyy) If $u = \aleph_1$, then every productively Lindelöf space has the Hurewicz property.
- (Tall) $\mathfrak{d} = \aleph_1$ implies productively Lindelöf spaces are Hurewicz. (Theorem 10 in [35]).
- (Tall) $b = \aleph_1$ implies every productively Lindelöf space is Menger (Theorem 7 in [35]).

Proposition 2.10. If $b = \aleph_1$ (or $\text{Add}(\mathcal{M}) = \mathfrak{d}$ or $u = \aleph_1$ or $\mathfrak{d} = \aleph_1$), then every productively Lindelöf space $C_\lambda(X)$ is σ-compact.

Proof. If $b = \aleph_1$ (or $\text{Add}(\mathcal{M}) = \mathfrak{d}$ or $u = \aleph_1$ or $\mathfrak{d} = \aleph_1$) and $C_\lambda(X)$ is productively Lindelöf, then $C_\lambda(X)$ is Menger. By Theorem 1.2, $C_\lambda(X)$ is σ-compact. \qed

Denote by $C_p^*(\mathbb{N})$ the set of all bounded continuous real-valued functions on \mathbb{N} with the topology of pointwise convergence.

Theorem 2.11. For a space X the following statements are equivalent:

1. $C_\lambda(X)$ is indestructibly productively Lindelöf;
2. $C_\lambda(X)$ is metrizable σ-compact;
3. $C_\lambda(X)$ is metrizable Menger;
4. X is a pseudocompact, $D(X)$ is a dense C^*-embedded set in X, family λ consists of all finite subsets of $D(X)$, where $D(X)$ is the countable set of all isolated points of X;
5. $C_\lambda(X)$ is homeomorphic to $C^*_p(\mathbb{N})$.

Proof. (1) \Rightarrow (4). By Theorem 9 in [35], indestructibly productively Lindelöf spaces are projectively σ-compact and hence Hurewicz and Menger. By Theorems 1.1 and 1.2, X is a pseudocompact, $D(X)$ is a dense C^*-embedded set in X and family λ consists of all finite subsets of $D(X)$, where $D(X)$ is the set of all isolated points of X.

Assume that $\kappa = |D(X)| > \aleph_0$. Then $C_\lambda(X, \mathbb{I})$ is homeomorphic to the space \mathbb{I}^κ (Theorem 5.5 in [21]) where $\mathbb{I} = [-1, 1]$. It follows that the compact space $C_\lambda(X, \mathbb{I})$ includes a copy of 2^{ω_1}. Note that every indestructibly productively Lindelöf space is indestructibly Lindelöf. By Lemma 4.7 and Corollary 4.4 in [10], $C_\lambda(X)$ is destructibility. It follows that $|D(X)| \leq \aleph_0$.

(4) \Rightarrow (3). By Theorem 2.4, $C_\lambda(X)$ is Menger. Clearly that, if $|D(X)| \leq \aleph_0$ then $w(C_\lambda(X)) = \aleph_0$ and hence $C_\lambda(X)$ is metrizable.

(3) \Rightarrow (2). By Theorem 1.2.

(2) \Rightarrow (1). By Theorem 7 in [7], a metrizable space is indestructibly productively Lindelöf if and only if it is σ-compact.

(5) \Leftrightarrow (2). By Theorem 5.5 in [21], if $C_\lambda(X)$ is σ-compact then $C_\lambda(X)$ is homeomorphic to the space $\bigcup_{i=1}^{\kappa} [-i, i]^\kappa$ where $\kappa = |D(X)|$. Since $C_\lambda(X)$ is metrizable then $\kappa \leq \aleph_0$. It follows that $C_\lambda(X)$ is homeomorphic to $\bigcup_{i=1}^{\aleph_0} [-i, i]^\aleph_0$. Note that $\bigcup_{i=1}^{\aleph_0} [-i, i]^\aleph_0$ is homeomorphic to $C^*_p(\mathbb{N})$.

Corollary 2.12. $C_k(X)$ is indestructibly productively Lindelöf iff X is finite.

Remark 2.13. If X is compact and $C_\lambda(X)$ is indestructibly productively Lindelöf, then X is homeomorphic to $\beta\mathbb{N}$, where $\beta\mathbb{N}$ is Stone-Čech compactification of the natural numbers \mathbb{N}, and $\lambda = [\mathbb{N}]^{<\aleph_0}$.

References

[1] K. Alster, *On the class of all spaces of weight not greater than ω_1 whose Cartesian product with every Lindelöf space is Lindelöf.* Fund. Math. 129 (1988) 133-140.
[2] R. Arens, J. Dugundji, *Topologies for function spaces*, Pacific. J. Math., 1, (1951) 5–31.

[3] A.V. Arhangel’skii, *Continuous maps, factorization theorems, and function spaces*, Trudy Moskovsk. Mat. Obshch., 47, (1984) 3–21.

[4] A.V. Arhangel’skii, *Hurewicz spaces, analytic sets and fan tightness of function spaces*, Sov. Math. Dokl., 33, (1986) 396–399.

[5] A.V. Arhangel’skii, *Projective σ-compactness, ω_1-caliber, and C_p-spaces*, Topology and its Applications, 157, (2000) 874–893.

[6] A.V. Arhangel’skii, *Topological function spaces*, Moskow. Gos. Univ., Moscow, (1989), 223 pp. (Arhangel’skii A.V., *Topological function spaces*, Kluwer Academic Publishers, Mathematics and its Applications, 78, Dordrecht, 1992 (translated from Russian)).

[7] L.F. Aurichi, F.D. Tall, *Lindelöf spaces which are indestructible, productive, or D*, Topology and its Applications, 159, (2012) 331–340.

[8] M. Barr, J.F. Kennison, and R. Raphael, *On productively Lindelöf spaces*. Sci. Math. Jpn. 65 (2000) 319-332.

[9] M. Bonanzinga, F. Cammaroto, M. Matveev, *Projective versions of selection principles*, Topology and its Applications, 157, (2010) 874–893.

[10] R.R. Dias, F.D. Tall, *Indestructibly of compact spaces*, Topology and its Applications, 160, (2013) 2411–2426.

[11] H. Duanmu, F.D. Tall, L. Zdomskyy, *Productively Lindelöf and indestructibly Lindelöf spaces*, Topology and its Applications, 160:18, (2013) 2443–2453.

[12] A.W. Miller, D.H. Fremlin, *On some properties of Hurewicz, Menger and Rothberger*, Fund. Math., 129, (1988) 17-33.

[13] D. Repovš, L. Zdomskyy, *On the Menger covering property and D-spaces*, Proc. Amer. Math. Soc., 140:3 (2012) 1069–1074.

[14] D. Repovš, L. Zdomskyy, *Productively Lindelöf spaces and the covering property of Hurewicz*, Topology and its Applications, 169 (2014) 16–20.
[15] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, *The combinatorics of open covers, II*, Topology and its Applications, 73, (1996) 241–266.

[16] W. Hurewicz, *Über eine verallgemeinerung des Borelschen Theorems*, Math. Z. 24, (1925) 401-421.

[17] W. Hurewicz, *Über folger stetiger funktionen*, Fund. Math. 9, (1927), 193–204.

[18] Lj.D.R. Kočinac, *Selection principles and continuous images*, Cubo Math. J. 8 (2) (2006) 23–31.

[19] A.W. Miller, D.H. Fremlin, *On some properties of Hurewicz, Menger and Rothberger*, Fund. Math., 129, (1988) 17-33.

[20] K. Menger, *Einige Überdeckungssätze der punktmengenlehre*, Sitzungsberichte der Wiener Akademie, 133, (1924) 421–444.

[21] S.E. Nokhrin, *Some properties of set-open topologies*, Journal of Mathematical Sciences, 144:3, (2007) 4123–4151.

[22] S.E. Nokhrin, A.V. Osipov, *On the coincidence of set-open and uniform topologies*, Proc. Steklov Inst. Math., 267:1, (2009), 184–191.

[23] A.V. Osipov, *The Set-Open topology*, Topology Proceedings, 37, (2011) 205-217.

[24] A.V. Osipov, *Topological-algebraic properties of function spaces with set-open topologies*, Topology and its Applications, 3:159, (2012), 800–805.

[25] A.V. Osipov, *Group structures of a function spaces with the set-open topology*, Sib. Èlektron. Mat. Izv., 14, (2017) 1440-1446.

[26] A.V. Osipov, *Uniformity of uniform convergence on the family of sets*, Topology Proceedings, 50, (2017) 79-86.

[27] A.V. Osipov, *The Menger and projective Menger properties of function spaces with the set-open topology*, Mathematica Slovaca, submitted., arXiv:1803.07633v2

[28] A.V. Osipov, S. Özçağ, *Variations of selective separability and tightness in function spaces with set-open topologies*, Topology and its Applications, 217, (2017) 38–50.
[29] F. Rothberger, *Eine Verschärfung der Eigenschaft C”*, Fund. Math. 30, (1938) 50–55.

[30] M. Sakai, *The projective Menger property and an embedding of S_ω into function spaces*, Topology and its Applications, Vol. 220, (2017) 118–130.

[31] M. Sakai, M. Scheepers, *The combinatorics of open covers* in: K.P. Hart, J. van Mill, P. Simon (Eds.), Recent Progress in General Topology III, Atlantic Press, (2014) 751–799.

[32] F.D. Tall, *On the cardinality of Lindelöf spaces with points G_δ*, Topology and Its Applications, 63, (1995) 21–38.

[33] F.D. Tall, *Lindelöf spaces which are Menger, Hurewicz, Alster, productive, or D*, Topology and its Applications, 158:18, (2011) 2556–2563.

[34] F.D. Tall, B. Tsaban, *On productively Lindelöf spaces*, Topology and its Applications, 158, (2011) 1239–1248.

[35] F.D. Tall, *Productively Lindelöf spaces may all be D*, Canadian Mathematical Bulletin, 56:1, (2013) 203–212.