Original Article

Nordihydroguaiaretic Acid Extends the Lifespan of *Drosophila* and Mice, Increases Mortality-Related Tumors and Hemorrhagic Diathesis, and Alters Energy Homeostasis in Mice

Stephen R. Spindler, Patricia L. Mote, Alex L. Lublin, James M. Flegal, Joseph M. Dhahbi, and Rui Li

*Department of Biochemistry, University of California at Riverside, Riverside, California; †Department of Statistics, University of California at Riverside, Riverside, California; ‡Botany and Plant Sciences, University of California at Riverside, Riverside, California

*Address correspondence to Stephen R. Spindler, Department of Biochemistry, University of California at Riverside, Riverside, CA 92521. E-mail: spindler@ucr.edu

Received April 24, 2014; Accepted September 15, 2014

Decision Editor: Rafael de Cabo, PhD

Abstract

Mesonordihydroguaiaretic acid (NDGA) extends murine lifespan. The studies reported here describe its dose dependence, effects on body weight, toxicity-related clinical chemistries, and mortality-related pathologies. In flies, we characterized its effects on lifespan, food consumption, body weight, and locomotion. B6C3F1 mice were fed AIN-93M diet supplemented with 1.5, 2.5, 3.5, or 4.5 g NDGA/kg diet (1.59, 2.65, 3.71 and 4.77 mg/kg body weight/day) beginning at 12 months of age. Only the 3.5 mg/kg diet produced a highly significant increase in lifespan, as judged by either the Mantel–Cox log-rank test (*p* = .008) or the Gehan–Breslow–Wilcoxon test (*p* = .009). NDGA did not alter food intake, but dose-responsively reduced weight, suggesting it decreased the absorption or increased the utilization of calories. NDGA significantly increased the incidence of liver, lung, and thymus tumors, and peritoneal hemorrhagic diathesis found at necropsy. However, clinical chemistries found little evidence for overt toxicity. While NDGA was not overtly toxic at its therapeutic dosage, its association with severe end of life pathologies does not support the idea that NDGA consumption will increase human lifespan or health-span. The less toxic derivatives of NDGA which are under development should be explored as anti-aging therapeutics.

Key Words: NDGA—Lifespan—Longevity—Dose–response—Therapeutic

Nordihydroguaiaretic Acid (NDGA) is a lignin which constitutes about 12.5% of the dry weight of the leaves and twigs of the creosote bush, *Larrea tridentate* [Reviewed in (1–4)]. Aqueous extracts of creosote leaves and twigs have been used medicinally by indigenous North American tribes to treat over 50 health disorders, ranging from colds to cancer (2–4). NDGA was once classified as “generally recognized as safe” by the Federal Food and Drug Administration, and used as an antioxidant food additive. This classification was withdrawn after studies in rats showed that NDGA produced serious kidney toxicity and other pathologies, including stunted growth and internal hemorrhages [(5); Reviewed in (6)]. Human consumption of creosote leaf and stem extracts as dietary
supplements led to cases of hepatitis, cirrhosis, and fulminant liver failure (4,7,8). Despite these findings, a recent Google internet search identified multiple vendors selling creosote leaf extracts as medicinal health aids.

In vitro studies have shown that NDGA is an inhibitor of intercellular inflammatory signaling, tumor cell proliferation, insulin-like growth factor-1 (IGFIR) and HER2 receptor activation, and oxidative phosphorylation (4,9). Based on the therapeutic potential suggested by these results, the National Institute of Health Interventions Testing Program (NIH-ITP) undertook studies of the effects of NDGA on murine lifespan (10–12). They found that 2.5 g of NDGA/kg diet produced a significant 12% increase in median lifespan for male mice, but not females (12). A second study found no effect on the lifespan of female mice (11). A third study censored after 70% mortality suggested that multiple NDGA doses may extend the lifespan of male mice (10). No necropsy, pathology, or toxicology results were reported, nor was food consumption reported. In Drosophila, a single dose study found a nonsignificant increase in lifespan (13).

Thus, the effects of NDGA dosage on lifespan, and its effects on food consumption, end of life pathologies, energy disposition, and phylogenic conservation of the response are unclear. For these reasons, we conducted dose–response studies of the effects of NDGA on lifespan in mice and Drosophila melanogaster (Drosophila). We also investigated the effects of NDGA on food intake, body weight, and mortality-related pathologies in mice. In Drosophila, we characterized its effects on lifespan, food consumption, body weight, and locomotion. Induced calorific restriction (CR) is a possible explanation for lifespan responses when food consumption is not monitored (14).

Methods

Mouse Studies

Mouse lifespan, weight, and food consumption were monitored as described in detail previously (15). Briefly, male B6C3F1 mice (Harlan Breeders; Indianapolis) were randomly assigned to treatment groups at 12 months of age. Two hundred ninety-seven control mice were shifted from ad libitum chow feeding (Diet # 5001, Purina Mills, Richmond, IN) to daily feeding with 13.3 kcal/day/mouse of control diet [American Institute of Nutrition (AIN)-93M diet; Diet No. F05312; Bio-Serv, Frenchtown, NJ]. Four groups of 18 mice each were shifted to daily feeding with an identical quantity of control diet supplemented with NDGA at either 1.5, 2.5, 3.5, or 4.5 g per kg diet (approximately 1.59, 2.65, 3.71, 4.77 mg/kg body weight/day, respectively). All mice were fed daily. Food consumption and health were monitored at the time of feeding, and any un eaten food noted. With few exceptions, all food was eaten each day. NDGA was mixed with the powdered diet and cold-pressed into 1 g pellets by Bio-Serv. The food was stored moisture free at 4 °C until used. The mice had ad libitum access to tap water, which was acidified (pH 4.0) to reduce colonization by *Pseudomonas* (16,17). Mice were weighed bimonthly. The health of the mice was examined twice daily by laboratory staff and weekly by a veterinarian. Dead mice were stored at −20 °C until necropsy. This study was approved by the Institutional Animal Care and Use Committee at the University of California, Riverside.

Drosophila Studies

Drosophila (Wild-type Oregon-R-C; Bloomington Drosophila Stock Center, Department of Biology, Indiana University, Bloomington, IN) lifespan determinations were performed as described in detail previously (21,22), using 0, 1, or 3 mg/mL NDGA. Capillary Feeder (CAFE) assays (23) and fecal plaque assays (FPAs (24,25)) were performed as described (26). The flies were replaced every 6 months.
with new stocks from the supplier. The effect of NDGA on FPA plaque size was determined as described (21,22). The effects of NDGA on locomotor activity were determined as described previously (26). Briefly, one day old male flies were exposed to 3 mM NDGA in DMSO or vehicle treatments in 95 × 2.5 mm glass vials for 3 days (at 25 °C with 12 hour light/dark cycle). After 3 days, movement of the flies was monitored for 72 hours using a TriKinetics Locomotor Activity Monitor (LAM 32). Beam breaks were recorded using the accompanying software. Means ± SEM were calculated for 30 minute time increments over the entire 72 hour trial (144 recordings). An unpaired, two-sample t test was used to determine the significance of differences between experimental and control treatments using GraphPad Prism 5.

Results

Lifespan Results

Male mice were fed NDGA in their food at 1.5, 2.5, 3.5, or 4.5 g/kg diet (160, 267, 373, 480 mg/kg bw/d), beginning at 12 months of age. Median lifespan was extended by 12% at 373 mg/kg bw/d (~13.5 mg/mouse/day; Mantel–Cox p = .008; Gehan–Breslow–Wilcoxon p = .009; Figure 1). The Gehan–Breslow–Wilcoxon test gives more weight to deaths at early time points, while the Mantel-Cox test gives equal weight to all time points. Despite its effects on median lifespan, we found no effect of 373 mg of NDGA/kg bw/d (3.5 g/kg diet) on maximum lifespan using the method of Gao et al. (27). Maximum lifespan is variously defined as the lifespan of the longest lived 10% or 20% of a cohort. Here, we eliminated the lifespan data below a pooled quantile of 0.8. The resulting Mann–Whitney U test had a p-value of .8932.

The dose of NDGA which extended median lifespan is within 12% of that initially reported to extend the lifespan of the NIH-ITP mice (~417 mg/kg bw/d (12)). In our study, only this dose extended lifespan (Figure 1). Recently, the NIH-ITP reported lifespan extension censored data at higher and lower dosages. Further study will be needed to resolve these differences.

The statistical design and animal husbandry used in these studies have been described in detail elsewhere (15,18,26,28).

Food Consumption and Body Weight

Food consumption and body mass were monitored throughout the study (Figure 2). The mice are essentially all their food each day, with the exception of a single excursion by the 1.5 g/kg diet group late in life. This is consistent with the instability of the weights in late life due to the smaller number of mice and the presence of more age-related pathologies.

The weights of the mice were analyzed using a mixed effects model with a BIC model selection criterion, as described previously [Table 1; Reference (15)]. These results suggest that the weights of the 2.5 and 4.5 g/kg diet-treated mice, as well as the 20% and 40% CR mice were reduced significantly relative to those of the control group (Figure 2; Table 1). The differences between the weights of the control and the 1.5 and 3.5 g/kg diet-treated groups were close to significance by this test (Table 1). A LRT suggests that the weights of all the groups except the 1.5 g/kg diet group differed significantly from those of the control group. An AIC model selection criteria suggests that all the diets groups differed significantly from the control group (Table 1).

The group consuming the highest dose of NDGA weighed less than the 20% calorically restricted (20% CR) group at younger ages, when the data were more accurate due to sample sizes. This weight reduction occurred without reduced food intake by the NDGA-treated mice. Thus, NDGA appears to alter either calorie absorption or utilization by the mice.

Pathologies Associated with Mortality

Death-related pathology has not been reported previously (10–12). The results of the necropsies from our study are summarized in Tables 2 and 3. Focusing on the aggregated results for the pathologies for all the groups, there was a highly or very highly significant increase in liver and lung tumors, enlarged thymuses (indicative of thymomas or lymphomas), and hemorrhage into the peritoneum (hemorrhagic diathesis; Table 2). There was not an obvious dose–response relationship for these pathologies, likely due to the relatively small group sizes. However, even the lowest dose of NDGA produced significant pathologies (Table 2). NDGA decreased the size of liver tumors by 24% relative to those found in the control mice, suggesting that it may decrease the rate of tumor growth. However, the total mass of the tumors per mouse was unchanged, suggesting it may increase hepatic tumorigenesis (Tables 2 and 3; see Discussion below).

Clinical Chemistries

In view of the clinical evidence of hepatotoxicity and nephrotoxicity in humans and rodents consuming NDGA, we investigated whether NDGA produced signs of toxicity at the concentrations used in these lifespan studies. Male B6C3F1 mice were treated with NDGA or control diet for 9 weeks, and clinical chemistries performed. The results are shown in Table 4. Little evidence for toxicity was found. Alanine
transaminase (ALT) was significantly decreased by the higher doses of NDGA, which is the opposite of what would be expected if the drug was toxic to the liver or kidneys. Aspartate transaminase (AST), alkaline phosphatase, bilirubin, and creatinine levels, which can also be signs of toxicity if elevated, were unchanged.

Triglyceride and glucose levels were elevated. Triglyceride elevation can be a sign of compromised liver or kidney function. However, the elevated triglyceride and glucose levels seem more likely to have resulted from the alterations in energy homeostasis evinced by the decrease in body weight in the absence of a change in caloric consumption (Figure 2; Table 1).

Conservation of the Lifespan Response
To further characterize the effects of the drug, we investigated its effects on the lifespan of Drosophila. Optimum oral treatment with NDGA at 3.0 mg/mL medium increased the median lifespan of the flies by approximately 23% (Figure 3). Similar results were replicated in two additional trials. These results suggest that at least some of the target(s) of NDGA action are phylogenetically conserved between mice and flies. The relatively short lifespans of the control flies are the result of using large flybottles, which induce more flight time (21,22). Similar results were replicated in two additional trials. These results suggest that at least some of the target(s) of NDGA action are phylogenetically conserved between mice and flies. The relatively short lifespans of the control flies are the result of using large flybottles, which induce more flight time (21,22).

Figure 2. Food consumption and body weight of the mice shown in Figure 1. Shown is the body weight of the control (closed black circles); 40% CR fed (closed orange circles); 20% CR fed (closed fuchsia circles); 1.5 g NDGA/kg diet (closed gold circles); 2.5 g NDGA/kg diet (closed green circles); 3.5 g NDGA/kg diet (closed purple circles); and 4.5 g NDGA/kg diet (closed blue circles). The standard deviations of the weights were omitted for clarity. Food consumption as a percent of the Kcal offered with respect to the Kcals consumed during the preceding month is shown for control, open black circles); 40% CR fed (open orange circles); 20% CR fed (open fuchsia circles); 1.5 g NDGA/kg diet (open gold circles); 2.5 g NDGA/kg diet (open green circles); 3.5 g NDGA/kg diet (open purple circles); and 4.5 g NDGA/kg diet (open blue circles). The significance of differences in body weights between groups is shown in Table 1. A preliminary report of these data from 365 to 1,063 days of age was published previously (14).

Discussion
The results presented here show that NDGA can extend murine and Drosophila lifespan. In our study, the therapeutic window for this longevity effect was narrow in mice. NDGA consumption, even at doses below its therapeutic dose, was associated with an increase in multiple tumor types and hemorrhagic diathesis. The drug also increased the lifespan of Drosophila, suggesting its target(s) and mechanism(s) of action may be phylogenetically conserved. However, aspects of the response in flies were unlike those in mice. In flies, NDGA did not appear to affect energy uptake or utilization.

Drug Dosages
In our studies, 3.5 g/kg diet (373 mg NDGA/kg bw/d) extended lifespan, but higher and lower dosages were ineffective. The effective dose in Drosophila was 3.0 mg NDGA/kg food. The NIH-ITP found that NDGA extended male mouse lifespan at 2.5 g NDGA/kg diet, which they estimated supplied approximately 417 mg/kg bw/d (10,11). However, the actual dose was uncertain because food intake was not continuously measured in this study. More recently, they report that NDGA at 0.8 or 5.0 g/kg food produced lifespan effects similar to that of 2.5 g/kg diet. These data were censored at 30% survival, and thus further study will be required to determine the dose response range of the lifespan effect in mice (12).

Toxicity
The NIH-ITP did not report necropsy or toxicity studies for their NDGA-treated mice (10,12). Based on the mortality-related pathologies we found, there was an association between NDGA consumption and an increased incidence of liver, lung, and thymus tumors, and increased hemorrhagic diathesis. There was little evidence for acute liver or kidney toxicity as measured by serum chemistries. However, others reported that treatment of mice with 5.0 g NDGA/kg diet, a concentration reported to extend lifespan by the NIH-ITP, stunted the growth of male and female mice, and induced inflammatory cecal lesions, hemorrhages, and cysts in rats [reviewed in (6)]. Thus, the doses of NDGA which extend murine lifespan appear to overlap the dosages which produce serious pathologies.

In humans, the consumption of dietary supplements containing creosote leaf and stem extracts resulted in toxic hepatitis, cirrhosis, and fulminant liver failure (4,7,36,37). However, NDGA also was found to suppress signaling through the IGFIR and to suppress the androgen-stimulated growth of human prostate cancer cells in culture (38–40). These studies led to clinical investigation of its safety and efficacy for the treatment of prostate cancer (41,42). In humans, continuous oral dosing at up to 2.5 g/d (~31 mg/kg bw/d), one-tenth of the dose which extended lifespan in this study in mice, was tolerated, except for the development of elevated AST or ALT (transaminitis) in some patients (Table 8). Food consumption was quantified in two ways. We used our modifications of the CAFE assay (Table 5) and the Fecal Plaque Assay (FPA; Table 6; References (21,22)). No effect on food consumption was found by either technique. Long-term NDGA treatment also did not change body weight (Table 7). Locomotor activity was quantified using a LAM 32 Activity Monitor (TriKinetics) as described previously (Table 8; Reference (26)). There was no significant difference between the activity of flies consuming food containing NDGA or an equivalent volume of vehicle. Together, these results indicate that the effects of NDGA on Drosophila lifespan were not due to CR or altered locomotor activity. Further, we did not detect a disequilibrium between food intake and weight in this species as we did in the mice.
Table 2. Necropsy Results from the Mouse Longevity Studies Shown in Figure 1

Organ	Pathology	Diet Treatment	Number of Necropsied Mice in Each Treatment Group	Number of Mice with Indicated Pathology	Percent of Mice with Indicated Pathology	p-value from Fisher’s Exact Test	
		Control	NDGA (1.5 g/kg diet)	NDGA (2.5 g/kg diet)	NDGA (3.5 g/kg diet)	NDGA (4.5 g/kg diet)	NDGA (All Groups)
		(n = 72)	(n = 18)	(n = 18)	(n = 18)	(n = 18)	(n = 54)
	Spleen	Enlarged/tumorous	43 (59.7%)	13 (72.2%)	14 (77.8%)	13 (72.2%)	9 (50.0%)
	Liver	Tumor	22 (30.6%)	10 (55.6%)	9 (50.0%)	9 (50.0%)	10 (55.6%)
		Enlarged/fatty liver	3 (4.2%)	1 (5.6%)	0 (0.0%)	2 (11.1%)	1 (5.6%)
		Hemangioma	7 (9.7%)	0 (0.0%)	0 (0.0%)	1 (5.6%)	1 (1.4%)
	Intestinal	Tumor	9 (12.5%)	1 (5.6%)	7 (38.9%)	1 (5.6%)	4 (22.2%)
	Lung	Tumor	11 (15.3%)	9 (50.0%)	7 (38.9%)	6 (33.3%)	9 (50.0%)
	Penis	Necrosed/inflamed	6 (8.3%)	0 (0.0%)	1 (5.6%)	1 (5.6%)	1 (1.4%)
	Seminal vesicles	Enlarged	3 (4.2%)	4 (22.2%)	1 (5.6%)	5 (27.8%)	0 (0.0%)
	Bladder	Distended	12 (16.7%)	1 (5.6%)	2 (11.1%)	3 (16.7%)	0 (0.0%)
	Kidneys	Enlarged/tumorous	3 (4.2%)	3 (16.7%)	3 (16.7%)	2 (11.1%)	3 (4.2%)
	Thymus						
	Intestinal						
	Skin/abdominal cavity	Fibroma	4 (5.6%)	1 (5.6%)	1 (5.6%)	1 (5.6%)	0 (0.0%)
	Peritoneum	Hemorrhage	11 (15.3%)	4 (22.2%)	3 (16.7%)	2 (11.1%)	5 (27.8%)

*Number of necropsied mice in each treatment group. Not all mice in the control group were necropsied. The necropsied control mice approximated the distribution of ages in the treatment groups.

†Number of necropsied mice in each treatment group with the indicated pathologies.

‡Percent of the necropsied mice in each treatment group with the indicated pathologies.

§Significance of the differences from the control values were determined using Fisher’s exact test. For convenience, values which were significantly different are in bold type.
Table 3. Liver Tumor Mass of the Mice Shown in Table 2 and Figure 1

Group	Liver Tumor Mass (g)	Number of Mice with Tumors
Control (n=72)	1.2 ± 0.18	12
NDGA (0.78 mg/kg diet) (n=72)	0.78 ± 0.16	12
NDGA (1.2 mg/kg diet) (n=72)	1.2 ± 0.18	12
NDGA (2.5 mg/kg diet) (n=72)	0.78 ± 0.16	12
NDGA (3.5 mg/kg diet) (n=72)	0.78 ± 0.16	12
NDGA (4.5 mg/kg diet) (n=72)	0.78 ± 0.16	12
NDGA (All groups)	0.12 ± 0.03	1

*Tumor mass was calculated as \((\pi/6 \times l \times w \times h) \times 1.0\) g, where \(l\) is length, \(w\) is width, and \(h\) is the height of each tumor. One cm = 1 gram.

Possible Mechanisms for the Longevity Effects of NDGA

A large number of molecular mechanisms have been proposed to explain the presumed, but as yet largely undocumented, health benefits of NDGA [Reviewed in (4)].

mTOR

Perhaps the most probable mechanism for the longevity effects of NDGA is its inhibitory effects on the activity of mammalian target of rapamycin complex 1 (mTORC1 (45)). mTORC1 inhibition is a well-established mechanism for the extension of mouse and *Drosophila* lifespan (22,46–49). A recent review of the literature argues that rapamycin inhibition of mTORC1 extends mouse lifespan by suppressing cancer formation and growth (30). However, it will be important to discover whether the dosages of NDGA that extend lifespan actually inhibit mTORC1 activity in tissues shown to be important to its longevity effects.

Tumor Growth

In our studies, NDGA decreased the mass of liver tumors by 24% relative to those found in control mice, suggesting that it decreased the rate of liver tumor growth (Table 3). These observations are consistent with in vitro and in vivo studies showing that NDGA inhibits the growth and proliferation, and induces the apoptosis of multiple cancer cell types (51–54). These effects likely result from the inhibitory effects of NDGA on growth factor signaling (38–40). In mammals, NDGA inhibits IGFIR activation, IGFIR and HER2 tyrosine kinase activity, androgen dependent growth of cultured prostate tumor cells, and growth of cultured HER2-overexpressing human breast cancer cells (38–40).

In our studies, NDGA appeared to increased hepatic tumor number (Tables 2 and 3), and to increase the prevalence of lung and thymus tumors (Table 2). Taken together, the data suggest that while NDGA reduces tumor growth rates, it increases tumor formation.

IGF-I

Inhibition of IGF1 receptor signaling can enhance rodent lifespan, although these effects are sex and background dependent (55,56). There is less of an effect on lifespan on the C57BL/6J background than on the 129SvPas background (56). Female mice heterozygous null for the IGF1R exhibit extended longevity, while their male counterparts do not (56,57). In other studies, neither male nor female mice with reduced IGF levels experience an increase in mean lifespan (55). Together, these results suggest that if a lifespan effect is observed when IGF activity is inhibited, females, rather than males respond. Thus, this response is the opposite of that found with NDGA, where males rather than females respond. Thus, reduced IGFIR activity alone is unlikely to be the major mechanism by which NDGA extends murine lifespan.

Hormesis

It is possible that NDGA induces a hormetic response which leads to increased lifespan. Hormetic stimuli are thought to produce molecular damage at low doses, which stimulate increased maintenance and
Table 4. Clinical Chemistries on Serum from Control and NDGA Fed Mice

Test	CON	NDGA 1.5 gm/kg	NDGA 2.5 gm/kg	NDGA 3.5 gm/kg	NDGA 4.5 gm/kg	All	Two Lowest	Two Highest							
		Result	Result	Result	Result		Result	Result							
		p	p	p	p		p	p							
Alanine Aminotransferase (U/L)	42.9±13.5	38.4±19.3	.641	26.5±3.6	.017	23.4±8.1	.012	28.6±8.0	.042	29.5±12.1	.042	32.4±14.6	.137	26.2±8.1	.018
Aspartate Aminotransferase (U/L)	175.7±80.0	134.5±38.7	.261	134.5±38.7	.261	97.6±14.5	.045	125.2±43.8	.184	124.0±37.0	.149	134.5±36.9	.239	112.7±35.4	.090
Alkaline Phosphatase (U/L)	92.9±19.7	122.9±25.5	.043	110.6±22.0	.159	102.2±16.2	.390	97.1±25.2	.744	108.5±23.5	.107	116.8±23.6	.033	99.5±20.7	.050
Blood Urea Nitrogen (mg/dL)	19.8±2.2	21.0±4.3	.571	19.2±2.7	.676	23.6±3.4	.070	22.6±4.3	.197	21.5±3.9	.161	20.1±3.6	.836	23.1±3.8	.036
Cholesterol (mg/dL)	201.3±31.6	228.0±20.8	.098	231.7±32.9	.121	210.5±8.0	.485	191.8±18.5	.519	215.7±26.6	.305	229.9±26.3	.071	200.3±17.1	.941
Creatinine (mg/dL)	0.092±0.024	0.085±0.010	.499	0.087±0.020	.668	0.109±0.020	.226	0.097±0.022	.693	0.094±0.020	.872	0.086±0.015	.554	0.103±0.021	.370
High Density Lipoprotein (mg/dL)	211.8±31.0	229.2±17.2	.233	233.1±27.0	.214	215.6±14.4	.780	202.7±18.2	.528	220.4±22.4	.515	231.2±21.7	.178	208.6±17.1	.808
Low Density Lipoprotein (mg/dL)	23.5±10.3	51.4±17.4	.011	46.0±17.2	.026	31.1±7.1	.165	23.8±8.8	.954	38.2±17.3	.013	48.7±16.7	.001	26.8±8.7	.499
Bilirubin (mg/dL)	0.046±0.023	0.061±0.035	.417	0.075±0.019	.031	0.058±0.035	.546	0.036±0.018	.368	0.057±0.030	.321	0.068±0.028	.088	0.046±0.028	.964
Total Protein (g/dL)	5.88±0.49	6.18±0.29	.210	6.41±0.29	.042	6.40±0.63	.167	6.06±0.27	.427	6.26±0.39	.103	6.30±0.30	.081	6.22±0.47	.181
Triglyceride (mg/dL)	47.1±7.6	32.9±10.1	.020	45.9±15.4	.865	72.1±27.9	.122	70.7±22.8	.060	54.7±25.0	.215	39.4±14.2	.143	71.3±23.9	.009
Glucose (mg/dL)	145.7±29.3	184.3±13.2	.014	173.0±36.1	.173	210.6±33.6	.010	170.0±44.8	.289	183.3±35.2	.016	178.7±26.5	.033	188.5±43.6	.025

Notes. CON = control; p = p-value.

*Eight male B6C3F1 mice were treated with NDGA at each dosage or with control diet for 8 weeks. At 21 months of age they were bled by cardiac puncture. Clinical chemistries were performed on the 6–8 mice in each group with no obvious signs of pathology at necropsy.

Blood glucose levels were measured with the FreeStyle Lite Blood Glucose Monitoring System (Abbot Laboratories). The other blood tests were performed by the Comparative Pathology Laboratory, University of California, Davis.

All results and p-values for all NDGA treated groups considered together; Two Lowest, the number of pathologies and the p-values for the 1.5 and 2.5 g/kg diet fed mice considered together; Two Highest, the number of pathologies and p-values for the 3.5 and 4.5 g/kg diet fed mice considered together.

Calculated using unpaired two-sample t tests. For convenience, significant changes are indicated in bold.
repair, and thereby increased longevity (58). At high doses, damage becomes too extensive and the agents can reduce lifespan. Masoro and others have proposed that CR is a hormetic agent (35,59,60). In one example, the genic profiles produced by a group of progeroid mutations recapitulate the profiles produced by the prolongevity treatments of CR and GH deficiency in mice (60). The data regarding NDGA are not sufficiently developed to indicate whether it is a hormetic longevity agent. It appears to produce molecular damage at its optimum dosage for increasing lifespan, as evinced by the induction of cancers (Table 2) and modest liver and kidney toxicity in humans (41,42) and mice (Table 4). Thus, NDGA may be a hormetic lifespan agent. An unanswered question is whether the less toxic derivatives of NDGA such as tetra-O-methyl nordihydroguaiaretic acid will also be capable of extending murine and Drosophila lifespan (43,44).

Antioxidant Effects
One theory proposes that NDGA exerts positive effects on health because it is a potent scavenger of activated oxygen and nitrogen species in vitro and in vivo (4). However, exogenous antioxidants have not been shown to reproducibly extend mammalian lifespan, and they can shorten it (15,28,61–64). Further, the consumption of agents that increase oxidative stress, rather than reduce it, appear to be associated with enhanced longevity in mammals and other species (65).

Inflammation
NDGA reportedly suppresses proinflammatory gene expression and prostaglandin E2 production and thereby inhibits arachidonic acid 5-lipoxygenase and cytokine-stimulated activation of microglia and macrophages (66,67). Some data support an inverse correlation between inflammation and lifespan (68). However, correlative evidence has been misleading in the context of oxidative stress (61). In the absence of direct evidence for an association between reduced inflammation and extended lifespan, it is unclear whether inflammation has a direct role in lifespan extension by NDGA.

Oxidative Phosphorylation
NDGA is reportedly an inhibitor of oxidative phosphorylation (9). Inhibition of oxidative phosphorylation can increase rodent and fly lifespan (69,70). However, decreased rates of oxidative phosphorylation are not consistent with the dose responsive loss of body weight observed in our mice (Figure 2; Table 1). Inhibition of oxidative phosphorylation should preserve body weight, since it reduces the utilization of calories. In flies, NDGA had no effect on body weight, physical activity, or food consumption (Tables 5–8). Thus, our data are inconsistent with the extension of lifespan through inhibition of oxidative phosphorylation.

Funding
This work was supported by gifts from anonymous donors. The funders had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript. The authors have no competing financial interests to declare.

Acknowledgments
The authors thank Ms Carol Boyd for her help feeding and monitoring the mice, and Ms Amber Graham, Karla Mabida, Sheena Tran, Tracy Nguyen, and Bianca Mabida for their technical help.

References
1. Tyler VE. The Honest Herbal, a Sensible Guide to the Use of Herbs and Related Remedies. Binghamton, NY: Pharmaceutical Products Press; 1994; 5, pp. 375.
2. Obermeyer WR, Musser SM, Betz JM, Casey RE, Pohland AE, Page SW. Chemical studies of phytoestrogens and related compounds in dietary supplements: flax and chaparral. Proc Soc Exp Biol Med. 1995;208:6–12.
Table 6. NDGA Does Not Alter Food Consumption in Drosophila as Measured Using FPAs

Treatment*	Plaque Number/cm²/fly (mean ± SEM)	n†	Significance‡	Plaque Diameter (mm²) (mean ± SEM)	n‡	Significance
DMSO	0.133 ± 0.006	4		0.137 ± 0.021	40	p = 0.9346
NDGA	0.134 ± 0.009	4	p = 0.9346	0.135 ± 0.020	40	p = 0.9349

Notes. NDGA = Meso-nordihydroguaiaretic acid.
*Two day old flies were starved for 2 hours and exposed to capillary tubes containing a solution of 5% sucrose and 5% yeast extract with the addition 1% by volume of either 3 mM NDGA dissolved in DMSO, or DMSO alone. A small volume of red food coloring was added to the food to aid in the visualization of the fecal plaques.
†Fecal plaques were counted on five 4 × 4 cm² sections of each fly bottle.
‡Number of bottles per condition with 50 flies per bottle utilized.
§The significance of the differences between the treated and control groups was determined using an unpaired two-sample t test.
¶Plate sizes were determined as described (22).
||

Table 7. Effects of NDGA on the Body Weight of Drosophila

Treatment*	n†	Mean weight (mg/fly) ± SEM‡	p value§
DMSO	7	0.7509 ± 0.007	
NDGA	7	0.7354 ± 0.006	p = 0.1089

Notes. NDGA = Meso-nordihydroguaiaretic acid.
*One day old flies were fed for 7 days with food containing either 3 mM NDGA or an equal volume of vehicle (DMSO). Flies were euthanized with CO₂ and frozen at −20 °C. After thawing, the flies were immediately weighed in 7 groups of 25 flies each.
†A total of 7 groups (n) of 25 flies were weighed for each treatment condition.
‡Mean weight ± SEM was calculated by dividing the total weight in milligrams of each group of flies by the number of individuals in the group.
§The significance of the differences was determined using unpaired two-sample t tests.

Table 8. NDGA Does Not Alter the Locomotor Activity of Drosophila

Treatment*	n†	Mean ± SEM‡	Significance§
DMSO	10	1,605.9 ± 333.1	
NDGA	10	1,428.5 ± 243.7	p = .6559

Notes. NDGA = Meso-nordihydroguaiaretic acid.
*Flies were treated with either 3 mM NDGA dissolved in DMSO, or medium containing an equal volume of DMSO alone for 3 days, followed by 72 hours of monitoring at 25 °C in a LAM 32 Activity Monitor (Trikinetics).
†Ten flies in each of 10 vials were monitored simultaneously for each condition.
‡The average number of infrared beam disruptions per 72-hour period by the groups of 10 flies.
§The significance of the differences in mean number of beam breaks for treated and control flies determined using unpaired two-sample t tests.

3. Arteaga S, Andrade-Cetto A, Cárdenas R, Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J Ethnopharmacol. 2005;98:231–239.
4. Liu JM, Nurko J, Weakley SM, et al. Molecular mechanisms and clinical applications of nordihydroguaiaretic acid (NDGA) and its derivatives: an update. Med Sci Monit. 2010;16:RA93–R100.
5. Grice HC, Becking G, Goodman T. Toxic properties of nordihydroguaiaretic acid. Food Cosmet Toxicol. 1968;6:155–61.
6. Lehman AJ, Fitzhugh OG, Nelson AA, Woodard G. The pharmacological evaluation of antioxidants. Adv Food Res. 1951;3:197–208.
7. Alderman S, Kasius S, Goldfarb S, Singaram C, Malone DG. Cholestatic hepatitis after ingestion of chaparral leaf: confirmation by endoscopic retrograde cholangiopancreatography and liver biopsy. J Clin Gastroenterol. 1994;19:242–47.
8. Rios JM, Mangione AM, Gianello JC. Effects of natural phenolic compounds from a desert dominant shrub Larrea divaricata Cav. on toxicity and survival in mice. Rivista Chilena de Historia Natural. 2008;81:293–302.
9. Pardini RS, Heidker JC, Fletcher DC. Inhibition of mitochondrial electron transport by nor-dihydroguaiaretic acid (NDGA). Biochim Pharmacol. 1970;19:2695–2699.
10. Harrison DE, Strong R, Allison DB, et al. Alizarone, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13:273–282.
11. Flurkey K, Astle CM, Harrison DE. Life extension by diet restriction and N-acetyl-L-cysteine in genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2010;65:1275–84.
12. Strong R, Miller RA, Astle CM, et al. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7:641–650.
13. Miquel J, Fleming J, Economos AC. Antioxidants, metabolic rate and aging in Drosophila. Arch Gerontol Geriatr. 1982;1:159–165.
14. Spindler SR. Review of the literature and suggestions for the design of rodent survival studies for the identification of compounds that increase health and life span. Age (Dordr). 2012;34:111–120.
15. Spindler SR, Mote PL, Flegel JM, Teter B. Influence on longevity of blueberry, cinnamon, green and black tea, pomegranate, sesame, curcumin, morin, pycnogenol, quercetin, and taxifolin fed iso-calorically to long-lived, F1 hybrid mice. Rejuvenation Res. 2013;16:143–151.
16. National Research Council. Infectious Diseases of Mice and Rats. Washington, DC: National Academy Press; 1991:155–157.
17. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Center for Research Resources.
40. Friedlander TW, Ween berg VK, Huang Y, et al. A phase II study of insulin-like growth factor receptor inhibition with nordihydroguaiaretic acid in men with non-metastatic hormone-sensitive prostate cancer. Oncol Rep. 2012;27:3–9.
41. Ryan CJ, Harzstark AH, Rosenberg J, et al. et al. A pilot dose-escalation study of the effects of nordihydroguaiaretic acid on hormone and prostate specific antigen levels in patients with relapsed prostate cancer. BJU Int. 2008;101:436–439.
42. Meyers RO, Lambert JD, Hajicek N, Pourpak A, Kalaitzis JA, Dorr RT. Synthesis, characterization, and anti-melanoma activity of tetra-O-substituted analogs of nordihydroguaiaretic acid. Bioorg Med Chem Lett. 2009;19:4732–4735.
43. Castro-Gamero AM, Borges KS, Moreno DA, et al. et al. Tetra-O- methyl nordihydroguaiaretic acid, an inhibitor of Sp1-mediated survivin transcription, induces apoptosis and acts synergistically with chemo-radiotherapy in glioblastoma cells. Invest New Drugs. 2013;31:858–870.
44. Zhang Y, Xu S, Lin J, et al. et al. mTORC1 is a target of nordihydroguaiaretic acid to prevent breast tumor growth in vitro and in vivo. Breast Cancer Res Treat. 2012;136:379–388.
45. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol. 2004;14:885–890.
46. Harrison DE, Strong R, Sharp ZD, et al. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–395.
47. Bjedov I, Toivonen JM, Kerr F, et al. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 2010;11:35–46.
48. Miller RA, Harrison DE, Astle CM, et al. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66:191–201.
49. Ehringer D, Neff F, Xie K. Longevity, aging and rapamycin. Cell Mol Life Sci. 2014.
50. Avis IM, Jett M, Boyle T, et al. et al. Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. J Clin Invest. 1996;97:806–813.
51. Moody TW, Leyton J, Martinez A, Hong S, Malkinson A, Mulshine JL. Lipoxigenase inhibitors prevent lung carcinogenesis and inhibit non-small cell lung cancer growth. Exp Lung Res. 1998;24:617–628.
52. Seufertlein T, Seckl MJ, Schwarz E, et al. et al. Mechanisms of nordihydroguaiaretic acid-induced growth inhibition and apoptosis in human cancer cells. Br J Cancer. 2002;86:1188–1196.
53. Chen X, Li N, Wang S, et al. et al. Aberrant arachidonic acid metabolism in esophageal adenocarcinogenesis, and the effects of sulindac, nordihydroguaiaretic acid, and alpha-difluoromethylornithine on tumorigenesis in a rat surgical model. Carcinogenesis. 2002;23:2095–2102.
54. Lorenzini A, Salmon AB, Lerner C, et al. et al. Mice producing reduced levels of insulin-like growth factor type 1 display an increase in maximum, but not mean, life span. Mol Genet Metab. 2014;111:141–149.
64. Spindler SR, Mote PL, Flegal JM. Dietary supplementation with Lovaza and krill oil shortens the lifespan of long-lived F1 mice. *Age (Dordr).* 2014;36:1345–1352.

65. Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. *Free Radic Biol Med.* 2011;51:327–336.

66. Salari H, Braquet P, Borgeat P. Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets. *Prostaglandins Leukot Med.* 1984;13:53–60.

67. Bhattacherjee P, Boughton-Smith NK, Follenfant RL, et al. The effects of a novel series of selective inhibitors of arachidonate 5-lipoxygenase on anaphylactic and inflammatory responses. *Ann N Y Acad Sci.* 1988;524:307–320.

68. Goto M. Inflammaging (inflammation + aging): A driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? *Biosci Trends.* 2008;2:218–230.

69. Dani D, Shimokawa I, Komatsu T, et al. Modulation of oxidative phosphorylation machinery signifies a prime mode of anti-ageing mechanism of calorie restriction in male rat liver mitochondria. *Biogerontology.* 2010;11:321–334.

70. Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. *Science.* 2005;308:518.