An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens *Aspergillus niger* and *Penicillium italicum*

Liu-Hui Fu1*, Kang-Di Hu1,3, Lan-Ying Hu1,3, Yan-Hong Li1, Liang-Bin Hu2, Hong Yan3, Yong-Sheng Liu1, Hua Zhang1*

1 School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China, 2 School of Food Science, Henan Institute of Science and Technology, Xinxiang, China, 3 College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Key Laboratory of Green Chemical Technology of College of Heilongjiang Province, Harbin, China

Abstract

In this research, the antifungal role of hydrogen sulfide (H$_2$S) on the postharvest pathogen *Aspergillus niger* and *Penicillium italicum* growing on fruits and under culture conditions on defined media was investigated. Our results show that H$_2$S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by *A. niger* and *P. italicum*. Furthermore, H$_2$S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H$_2$S could cause an increase in intracellular reactive oxygen species (ROS) in *A. niger*. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in *A. niger* treated with H$_2$S were lower than those in control. Moreover, H$_2$S also significantly inhibited the growth of *Saccharomyces cerevisiae*, *Rhizopus oryzae*, the human pathogen *Candida albicans*, and several food-borne bacteria. We also found that short time exposure of H$_2$S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H$_2$S in reducing postharvest loss and food spoilage caused by microbe propagation.

Introduction

Generally, about 20% of harvested fruits and vegetables undergo decay during postharvest storage [1]. Considerable postharvest decay is caused by plant fungal pathogens [2]. It has been reported that *Aspergillus niger* can induce the spoilage of fruits such as cherry tomatoes and grapes, and *Penicillium italicum* can cause postharvest blue mold of citrus fruit [3,4,5]. Decay caused by food-borne bacterial pathogens AR also a major concern due to the increasing demands for food safety [6]. For instance, both *Salmonella typhimurium* and *Staphylococcus aureus* in contaminated food are leading causes of gastroenteritis [7,8]. The application of synthetic chemical as germicides is a primary method to control postharvest decay [9]. However, chemical control faces two intractable problems: first, the inevitable development of pathogen resistance; and second, a range of generally used germicides are under review in many countries due to health safety issues [10]. Thus, there is a growing need to develop alternative treatments of postharvest disease that are more enduring and safe.

Hydrogen sulfide (H$_2$S), traditionally thought as a toxic gas, has proved to be a gaseous signaling molecule after nitric oxide and carbon monoxide in animals [11]. Accumulating evidence shows multiple roles of H$_2$S in plant development, abiotic stresses, and postharvest senescence [12,13,14,15,16]. Nitric oxide has also been shown to extend postharvest storage of fruits and to inhibit the growth of postharvest pathogens [17,18]. Lai et al. [19] found that the inhibitory effect of NO on the spores of *Penicillium expansum* was associated with oxidative damage. Similarly, it has been found that exogenous H$_2$S application can prolong postharvest storage of strawberry, fresh-cut kiwifruit, broccoli and mulberry fruit by modulating the antioxidant system [15,20,21,22]. The concentration of the applied H$_2$S required to delay senescence in strawberry is quite low, indicating that fumigation of fruits with H$_2$S gas could be safe and practical [15]. However, there is limited data on the relations between H$_2$S and postharvest pathogens. The earliest related research on this topic was reported by Marsh [23] who found that H$_2$S was toxic to germinating spores of *Sclerotinia fructicola*. Recently, Hu et al. [24] showed that H$_2$S could prolong postharvest storage of fresh-
cut pears and inhibit fungal growth, although the underlining mechanism of the antifungal role of H$_2$S is unknown.

In this work, we investigated the antifungal effect of H$_2$S on the postharvest pathogens A. niger and P. italicum inoculated on fruits, as well as on the growth of these fungi on Petri dishes with defined media. We also examined the effect of H$_2$S on baker’s yeast (Saccharomyces cerevisiae), Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria, including Staphylococcus aureus, Salmonella typhimurium, Listeria monocytogenes, Bacillus subtilis, Bacillus thuringiensis, Escherichia coli and Enterobacter aerogenes.

Materials and methods

Materials

Six different fruits, apple (Malus domestica), kiwifruit (Actinidia delicosa), pear (Pyrus pyrifolia Rehd.), sweet orange (Citrus sinensis), mandarin (Citrus reticulata) and tomato (Lycopersicon esculentum), used in this work were supplied by a fruit market in Hefei, Anhui province, China. Unwounded and healthy fruits, all of a similar size and maturity, were selected for experimentation. Pure fungal and bacterial isolates used in this research were kindly supplied by School of Biotechnology and Food Engineering, Hefei University of Technology, Anhui, People’s Republic of China, except Candida albicans (SC5314) which was kindly bestowed by Prof. Jianli Sang at College of Life Science, Beijing Normal University. Three molds (Aspergillus niger, Penicillium italicum, Rhizopus oryzae), two yeasts (Saccharomyces cerevisiae, Candida albicans) and seven bacteria (Staphylococcus aureus, Salmonella typhimurium, Listeria monocytogenes, Bacillus subtilis, Bacillus thuringiensis, Escherichia coli and Enterobacter aerogenes) were used in this study. Molds, yeasts and bacteria were cultured on potato dextrose agar (PDA), yeast peptone dextrose (YPD) agar and nutrient agar in Petri dishes, respectively. Sodium hydro-sulfide (NaHS) was purchased from Sigma and used as exogenous H$_2$S donor [24]. Aqueous NaHS solutions (150 mL) at different concentrations were placed in the bottom of sealed containers (volume 3 L) to release H$_2$S to fumigate fruits or pathogens. Aqueous NaHS solutions could steadily release H$_2$S gas since 30 min, and almost keep at the same level till 24 h. Thus NaHS solutions are renewed daily.

Antifungal Assay of H$_2$S on Postharvest Fruits Infected with A. niger and P. italicum

A. niger and P. italicum spores were harvested from isolates after 6 d growth at 25°C, and suspended in sterile physiological saline. The suspensions were then filtered through sterile gauze to remove mycelium and adjusted to 1 × 106 spores per mL. Apples, kiwifruits, pears, sweet oranges, mandarins and tomatoes were washed with tap water and sterilized with 75% ethanol. The surfaces of these fruits were wounded at five different sites and each of the wounds (2 mm diameter and 4 mm deep) was injected with 5 mL of spore suspension [25]. After air-drying, three replicates of plant samples were fumigated with 0.5 mM NaHS solution (150 mL) or H$_2$O [as control] in sealed containers at 25°C. NaHS solutions were changed daily.

Antifungal Effects of H$_2$S on A. niger and P. italicum

A 2 mL spore suspension (1 × 106 spores per mL) was inoculated in the centre of a 9-cm diameter Petri dish and NaHS solutions at different concentrations (0.00, 0.01, 0.05, 0.10, 0.50 and 2.5 mM) were added in the bottom of sealed containers to fumigate the pathogens at 25°C and the NaHS solutions were renewed daily. The colony diameters (mm) of A. niger and P. italicum were recorded for 8 d. The lowest NaHS concentration that resulted in failure of colony formation after 4 d incubation was regarded as the minimal inhibitory concentration (MIC) [26]. To investigate whether H$_2$S treatment could kill the pathogens or just inhibit their growth, A. niger and P. italicum were first treated with 2.5 mM NaHS solution for 1 d and allowed to recover with water fumigation for another 8 d at 25°C.

Determination of Spore Germination and Germ Tube Elongation

Spore germination and germ tube elongation was measured according to Lazar et al. [18] and Liu et al. [26] with minor modifications. 20 µL of spore suspension (1 × 106 spores per mL) was placed on a 7-mm diameter plug of PDA which was then placed on a glass slide. Each plug-slide was held in a Petri dish with moistened filter paper, and then placed in sealed container at 25°C. Spore germination (germ tube longer than two times the diameter of the corresponding spore) was assessed under a microscope on three occasions (6, 12 and 24 h) and the length of germ tube was recorded at 12 h for A. niger and 24 h for P. italicum.

Examination of Mycelial Growth and Micro-Morphology

To test the effect of H$_2$S on mycelial growth and hyphal micro-morphology, three different sites on a Petri plate were spot-inoculated with 2 µL of spore suspension (1 × 106 spores per mL). After 3 d of water fumigation, plates were treated with NaHS solutions at MIC i.e. 0.5 mM, 2.5 mM or water as control for 1 d at 25°C and mycelial growth and morphological change were recorded as described by Liu et al [26].

Detection of ROS with Fluorescence Probe in A. niger

A redox-sensitive fluorescent probe 2’,7’-dichlorofluorescein diacetate (DCFH-DA) was used for the analysis of intracellular ROS level according to Savi et al. [27]. A. niger mycelia grown on PDA plates were incubated with 10 µM DCFH-DA at 37°C for 20 min in the dark. After washing the fungi with double-distilled water for three times, the fluorescence of dichlorofluorescein DCF (the oxidation product of DCFH-DA; excitation at 485 nm, emission at 530 nm) were observed using a Nikon Eclipse 80i fluorescence microscope (Nikon, Japan). Non-stained A. niger was used as negative control.

Determination of SOD and CAT Activity in A. niger

A. niger mycelium grown on PDA media were suspended in 50 mM ice-cold phosphate buffer (pH 7.8, 1 mM EDTA and 1 mM PMSF) and an equal volume acid-washed glass beads (0.4–0.6 mm diameter, Sigma) were added to 1 mL of A. niger suspension in an Eppendorf tube. The cells were broken in a FastPrep-24 Tissue Homogenizer (MP Biomedicals, USA) for 40 s at 5500 rpm, repeated four times with 2 min on ice between intervals. The mixture was centrifuged at 12,000 rpm at 4°C for 10 min to obtain the supernatant. Activities of SOD and CAT were determined by procedures described by Giannopolitis and Ries [28] with minor modifications. The protein content was measured according to Bradford [30] using bovine serum albumin as standard.

Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR)

A. niger mycelium grown on PDA medium and an equal weight of acid-washed glass beads were added in RNAiso plus (TaKaRa,
Japan) solution. The cells were bead-beaten (5500 rpm) for four rounds of 40 s with 2 min on ice between intervals. Total RNA and cDNA were obtained according to the manufacturer’s instructions of RNAiso plus (TaKaRa, Japan) and PrimeScript RT Master Mix (TaKaRa, Japan), respectively. PCR conditions were as follows: initial denaturation at 94°C for 5 min, followed by cycles of 94°C for 30 s, 50°C for 30 s, and 72°C for 30 s. Actin-encoding gene (ANI_1_106134) expression was used as a control for SOD-encoding genes (ANI_1_840184, ANI_1_470064 and ANI_1_1170064) and CAT-encoding gene (ANI_1_2390104) [31]. Primers used for RT-PCR and corresponding PCR product sizes are shown as following: ANI_1_106134-For/Rev, 5'-AAATGCCTGCTGCGAATG-3'/5'-GCGGATAGCTGAACGAT-3', 238 bp; ANI_1_840184-For/Rev, 5'-CGCTGCTCCTGTGCTAT-3'/5'-GTCCTGGTTCTGTGAAATCG-3', 153 bp; ANI_1_470064-For/Rev, 5'-CACGGATAAACGCGACT-3'/5'-TGAGCAGATTTGAGCACCTT-3', 269 bp; ANI_1_1170064-For/Rev, 5'-GCTAATGCTGGACGGAACT-3'/5'-TGGTCTGTGAAGGGAAAGG-3', 164 bp; ANI_1_2390104-For/Rev, 5'-GAATCGGCATCAACCTCC-3'/5'-CACGCTCATCCT-3', 285 bp. The band densities of RT-PCR results were quantified with Image J software (NIH, USA).

Antimicrobial Activity of H2S on Baker’s Yeast, C. albicans, R. oryzae, and some Food-Borne Bacteria

S. cerevisiae, C. albicans, S. aureus, S. typhimurium, L. monocytogenes, B. subtilis, B. thuringiensis, E. coli and E. aerogenes suspensions were harvested from medium cultured for 24 h, and diluted to about 2×10^7 cells per mL. Suspensions (100 µL) were evenly spread on YPD or nutrient agar in a Petri dish and each plate was placed in a sealed container and fumigated with H2S released from NaHS solutions (150 mL) at 25°C. Colony formation (CFU; Colony-Forming Units) of three replicates was recorded daily for 4 d. The lowest NaHS concentration that resulted in failure to form colonies after 2 d

![Figure 1. Effect of H2S on *A. niger* and *P. italicum* growth in inoculated fruits and on defined media.](image-url)
incubation was regarded as the minimal inhibitory concentration (MIC). For R. oryzae, a 2 µL spore suspension (1 × 10^6 spores per mL) harvested from a 7-d culture on plate was inoculated 4 sites on a 9-cm diameter Petri dish and NaHS solutions at different concentrations (0.00, 0.05, 0.10, 0.50, 3.00 and 10.00 mM) were added in the bottom of sealed containers to fumigate R. oryzae at 25°C and the NaHS solutions were renewed daily. To investigate whether H2S treatment could kill these strains or just inhibit their growth, strains were first treated with 2.5 mM NaHS solution for 1 d and then recovered in a water atmosphere for another 6 d at 25°C.

Statistical Analysis

Each experiment was repeated three times. Statistical significance was tested by one-way analysis of variance (ANOVA) using IBM SPSS Statistics (SPSS version 20.0), and the results were expressed as the means ± standard deviation (SD). Least significant difference test (LSD) was performed on all data following ANOVA tests to test for significant (P < 0.05 or P < 0.01) differences between treatments.

Table 1. Colony diameter of A. niger and P. italicum after exposure to H2S at 25°C.

Strains	Treatment (mM NaHS)	Treatment time				
		2 d	4 d	6 d	8 d	
		Diameter (mm)	Diameter (mm)	Diameter (mm)	Diameter (mm)	
A. niger	0.00	27.1±0.9 a	41.5±3.1 a	51.4±2.8 a	58.6±2.8 a	
	0.01	24.2±1.0 b	39.6±1.7 b	47.0±0.7 b	54.7±0.7 b	
	0.05	17.8±0.3 c	39.5±1.5 b	48.3±0.5 b	54.9±2.0 b	
	0.10	4.2±0.5 d	32.8±1.0 c	43.3±1.5 c	52.9±1.3 b	
	0.50	0 e	0 d	0 d	0 c	
	2.50	0 e	0 d	0 d	0 c	
P. italicum	0.00	9.2±0.3 a	17.3±1.1 a	22.2±1.3 a	25.3±1.3 a	
	0.01	8.5±0.7 b	16.7±0.5 a	21.2±1.0 a	24.0±1.4 a	
	0.05	3.8±0.5 c	12.4±0.1 b	18.3±0.7 b	21.0±1.0 b	
	0.10	0 d	10.0±0.2 c	16.5±0.6 c	20.4±1.3 b	
	0.50	0 d	0 d	0 d	0 c	
	2.50	0 d	0 d	0 d	0 c	

Different letters mean significance of difference between the treatments (P < 0.05, ANOVA, LSD). Diameter: colony diameter.

Table 2. Spore germination and germ tube elongation of A. niger and P. italicum after exposure to H2S at 25°C.

Strains	Treatment (mM NaHS)	Treatment time				
		6 h	12 h	24 h		
		Germ (%)	Germ (%)	El (µm)	Germ (%)	El (µm)
A. niger	0.00	0 a	73.3±1.8 a	37.3±5.0 a	100±0.0 a	–
	0.01	0 a	62.9±2.9 b	12.6±1.5 b	100±0.0 a	–
	0.05	0 a	3.3±0.5 c	2.7±0.9 c	100±0.0 a	–
	0.10	0 a	0 d	0 c	77.8±2.5 b	–
	0.50	0 a	0 d	0 c	0 c	–
	2.50	0 a	0 d	0 c	0 c	–
P. italicum	0.00	0 a	53.0±2.1 a	–	100±0.0 a	155.6±14.1 a
	0.01	0 a	0 b	–	100±0.0 a	116.4±12.5 b
	0.05	0 a	0 b	–	84.5±2.2 b	10.7±2.1 c
	0.10	0 a	0 b	–	10.1±2.6 c	4.5±0.7 cd
	0.50	0 a	0 b	–	0 d	0 d
	2.50	0 a	0 b	–	0 d	0 d

Different letters mean significance of difference between the treatments (P < 0.05, ANOVA, LSD). Germ: spore germination percentage; El: germ tube elongation. The symbol “–” stands for not determined at this time point.

DOI:10.1371/journal.pone.0104206.t001

DOI:10.1371/journal.pone.0104206.t002
Figure 2. Effect of H₂S fumigation on mycelial growth and micro-morphology of *A. niger* and *P. italicum* grown on defined media. Colonies were cultured for 3 d of water fumigation at 25°C, and then exposed to H₂S released from 0.5 mM and 2.5 mM NaHS for 1 d. A and B, mycelial growth and micro-morphology of *A. niger*; C and D, mycelial growth and micro-morphology of *P. italicum*.

doi:10.1371/journal.pone.0104206.g002

Figure 3. Effect of H₂S fumigation on ROS level in *A. niger*. *A. niger* cells in Figure 2 were used for ROS detection. A, ROS staining in sporangia and sporangiophores; B, ROS staining in *A. niger* spores. Left parts of A and B shows the bright field images, and right parts fluorescence images.

doi:10.1371/journal.pone.0104206.g003
Results

Effect of H₂S on Postharvest Condition of Fruits Inoculated with A. niger and P. italicum

As shown in Figure 1A, H₂S released by 0.5 mM NaHS solution effectively controlled fruit decay caused by A. niger and P. italicum. After infection with A. niger or P. italicum, apples, pears and tomatoes from control condition began to decay at day 3, and kiwifruits, sweet oranges and mandarins at day 5, while fruits from H₂S treatment remained decay-free (data not shown). When stored for 9 d, obvious signs of decay were found in control fruits, whereas lesion diameters of fruits from H₂S treatment remained basically unchanged (Figure 1A).

Effect of H₂S on Growth of Cultured A. niger and P. italicum

As shown in Figure 1B and Table 1, H₂S significantly (P<0.05) inhibited colony growth of A. niger or P. italicum when grown on YPD plates in a dose-dependent manner. For A. niger at day 2, colony diameter with 0.1 mM NaHS was approximately 16% of that in control. In contrast, colony formation of P. italicum was not observed when NaHS solution was increased to 0.1 mM at day 2 (Figure 1B and Table 1). The data in Table 1 show that MIC, the minimum concentration of NaHS that resulted in failure of colony formation after 4 d of incubation, for both A. niger or P. italicum was 0.5 mM. In addition, when A. niger or P. italicum were treated with 2.5 mM NaHS for 1 day and recovered in a water atmosphere for another 8 d, growth of both fungi was completely suppressed (Figure 1C).

Effect of H₂S on Spore Germination and Germ Tube Elongation

The data in Table 2 show that exposure to H₂S significantly (P<0.05) inhibited spore germination and germ tube elongation in A. niger and P. italicum in a dose-dependent manner. At 12 h, germination percentages of A. niger spores in 0.01 mM and 0.05 mM NaHS were approximately 86% and 4.5% of control, respectively, while no germination of P. italicum spores occurred in 0.1 mM NaHS. At 24 h, more spores of both fungi germinated at H₂S concentrations below 0.1 mM NaHS. However, 0.5 mM and 2.5 mM NaHS totally inhibited spore germination in A. niger and P. italicum. The length of germ tubes decreased by 93% at 12 h for both A. niger and P. italicum at 24 h in 0.05 mM NaHS treatment compared with that of water control. Complete inhibition of spore germination and germ tube elongation occurred in the presence of NaHS concentrations higher than 0.5 mM.
Effect of H$_2$S on Mycelial Growth and Hyphal Morphology

Mycelial growth and hyphal morphology of A. niger and P. italicum are presented in Figure 2. As shown in Figure 2A and C, H$_2$S treatment reduced mycelial diameter compared with control. To further test the effect of H$_2$S on mycelial micro-morphology, mycelia were examined by light microscopy and morphological deformities (Figure 2B and D) were found. Abnormal contraction of mycelial cytoplasm appeared in A. niger and P. italicum when fumigated with 0.5 mM or 2.5 mM NaHS for as long as 1 d. For A. niger, 2.5 mM treatment even led to the fragmentation of mycelial cytoplasm (Figure 2B).

Effect of H$_2$S on ROS Level in A. niger

The oxidant sensitive probe 2',7'-dichlorofluorescein diacetate (DCHF-DA) was used to assess the ROS level in A. niger. Treatment with 0.5 mM or 2.5 mM NaHS solution significantly increased ROS level in the sporangia and sporangiophores (Figure 3A) compared with water control. However, not all spores from H$_2$S treatments showed a higher level of ROS (Figure 3B), which might be due to the fact that only peripheral spores in sporangia were exposed to H$_2$S.

Effect of H$_2$S on Enzyme Activities and Expression of SOD and CAT Genes in A. niger

As shown in Figure 4A and B, H$_2$S treatments significantly (P< 0.01) decreased both SOD and CAT activities in A. niger compared with the control. SOD activity in H$_2$S treatment was reduced by 69% (0.5 mM NaHS) and 78% (2.5 mM NaHS) compared with control, respectively. Similarly, CAT activity in H$_2$S treatments was only 35% (0.5 mM NaHS) and 30% (2.5 mM NaHS) of that in control, respectively. The expression of SOD and CAT genes was examined by RT-PCR and the data shown in Figure 4C and D. Compared with controls, exposure of A. niger to H$_2$S significantly decreased the expression of the SOD-
encoding genes ANI_1_840184 and ANI_1_470064, and the CAT-encoding gene ANI_1_2390104, while no obvious change appeared in the transcript of the SOD-encoding gene ANI_1_1170064. The enzyme activity and gene expression assays of SOD and CAT indicated that H2S negatively regulated antioxidant system in A. niger.

Effect of H2S on Baker’s Yeast, C. albicans, R. oryzae and some Food-Borne Bacteria

To study possible effect of H2S on baker’s yeast, C. albicans, R. oryzae and some food-borne bacteria, we examined the growth of S. cerevisiae, C. albicans, R. oryzae, S. aureus, S. typhimurium, L. monocytogenes, B. subtilis, B. thuringiensis, E. coli and E. aerogenes grown on culture media. The data in Figure 5 and Table 3 show that H2S had a significant (P<0.05) antimicrobial effect on S. cerevisiae, C. albicans and on bacteria in a dose-dependent manner. S. aureus was the most sensitive to H2S treatment. The MIC was determined to be 0.01 mM for S. aureus, 0.05 mM for S. cerevisiae, S. typhimurium, L. monocytogenes and B. subtilis, 0.1 mM for B. thuringiensis, 0.25 mM for E. aerogenes, 0.5 mM for C. albicans and 2.5 mM for E. coli. In contrast, R. oryzae showed high resistance to H2S fumigation though H2S did inhibit the colony growth of R. oryzae, and the MIC might be very high (Figure 5). Moreover, after 1 d exposure to 2.5 mM NaHS, no colony formation was observed in any strains after recovery in a water atmosphere for a further 6 d (Figure 6) except R. oryzae, suggesting that high concentrations of H2S exhibited a microbicidal role rather than just inhibiting the growth of microbes.

Discussion

The results reported in this work show the possibility of an alternative strategy for postharvest fruit storage, based on exposure of infected fruit to H2S released by NaHS. Our previous work found that exogenous H2S could extend the postharvest life of strawberry, fresh-cut kiwifruit, broccoli and pear [13,20,21,24], while there are fewer data on an antifungal role of H2S against postharvest pathogens. Haneklaus et al. [32] reported that uptake
Table 3. Colony formation of yeasts and bacteria after exposure to H$_2$S at 25°C.

Strains	Treatment (mM NaHS)	Treatment time	Number (CFU)	Number (CFU)	Number (CFU)	Number (CFU)
		1 d	2 d	3 d	4 d	
		Number (CFU)	Number (CFU)	Number (CFU)	Number (CFU)	
S. cerevisiae	0.00	0 a	81.0±7.2 a	81.0±7.2 a	81.0±7.2 a	
	0.01	0 a	85.7±9.0 a	85.7±9.0 a	85.7±9.0 a	
	0.05	0 a	20.5±2.1 b	20.5±2.1 b	20.5±2.1 b	
	0.10	0 a	0 c	0 c	0 c	
	0.50	0 a	0 c	0 c	0 c	
	2.50	0 a	0 c	0 c	0 c	
S. aureus	0.000	0 a	73.0±2.8 a	351.5±3.5 a	351.5±3.5 a	
	0.001	0 a	20.0±1.4 b	114.0±2.8 b	114.0±2.8 b	
	0.005	0 a	0.5±0.7 c	18.5±0.7 c	30.0±1.4 c	
	0.010	0 a	0 c	11.5±0.7 d	20.5±2.1 d	
	0.050	0 a	0 c	0 e	0 e	
	0.250	0 a	0 c	0 e	0 e	
S. typhimurium	0.00	357.0±24.0 a	368.5±19.1 a	368.5±19.1 a		
	0.01	0 b	8.0±2.8 b	26.5±2.1 b	42.5±0.7 b	
	0.05	0 b	0.5±0.7 c	3±4.2 c	0.5±0.7 c	
	0.10	0 b	0 b	0 c	0 c	
	0.50	0 b	0 b	0 c	0 c	
	2.50	0 b	0 b	0 c	0 c	
L. monocytogenes	0.00	316.5±20.5 a	316.5±20.5 a	316.5±20.5 a		
	0.01	0 a	40.0±9.9 b	62.5±14.8 b	72.5±12.0 b	
	0.05	0 a	0 c	2.0±1.4 c	2.5±2.1 c	
	0.10	0 a	0 c	0 c	0 c	
	0.50	0 a	0 c	0 c	0 c	
	2.50	0 a	0 c	0 c	0 c	
B. subtilis	0.00	78.3±8.7 a	78.3±8.7 a	78.3±8.7 a		
	0.01	0 a	47.0±18.3 b	48.7±18.0 b	56.3±9.7 b	
	0.05	0 a	0.7±0.6 c	0.7±0.6 c	0.7±0.6 c	
	0.10	0 a	0 c	0 c	0 c	
	0.50	0 a	0 c	0 c	0 c	
	2.50	0 a	0 c	0 c	0 c	
B. thuringiensis	0.00	8.3±3.5 a	21.0±2.0 a	21.7±1.2 a	23.0±2.0 a	
	0.01	6.0±1.0 a	16.7±4.2 b	19.3±3.1 a	21.0±1.0 b	
	0.05	0.7±0.6 b	0.7±0.6 c	0.7±0.6 b	0.7±0.6 c	
	0.10	0 b	0 c	0 b	0 c	
	0.50	0 b	0 c	0 b	0 c	
	2.50	0 b	0 c	0 b	0 c	
E. coli	0.00	143.7±11.6 a	193.0±24.8 a	193.0±24.8 a		
	0.01	102.7±16.0 b	152.0±14.7 b	152.0±14.7 b		
	0.05	61.3±8.6 c	128.3±8.3 c	128.3±8.3 c	128.3±8.3 c	
	0.10	38.0±8.5 d	94.0±11.3 d	127.7±8.1 c	127.7±8.1 c	
	0.50	0 e	43.0±23.9 e	83.0±22.9 d	97.7±10.1 d	
	2.50	0 e	0 f	0 e	0 e	
E. aerogenes	0.000	225.5±4.9 a	236.5±4.9 a	236.5±4.9 a	236.5±4.9 a	
	0.001	205.5±7.8 b	218.0±7.1 a	218.0±7.1 b	218.0±7.1 b	
	0.005	114.0±4.2 c	141.5±2.1 b	141.5±2.1 c	141.5±2.1 c	
of 10 μM/h H$_2$S by the pathogen would produce a fungicidal effect. It has also been shown that endogenous H$_2$S release showed a significant rise when agricultural crops suffered from fungal infection [33,34], suggesting an important role of H$_2$S in plant defense against fungal attack. In this study, we found an effective antifungal effect of H$_2$S to the postharvest pathogens _A. niger_ and _P. italicum_ inoculated on fruits and grown on defined medium (Figure 1 and Table 1). Consistent with these observations, we previously reported that H$_2$S plays as a role as a fungicide to the pear pathogens _P. expansum_ and _A. niger_ and prolongs postharvest storage of fresh-cut pears [24].

We also studied the toxicity of H$_2$S to baker’s yeast, the human pathogen _C. albicans_ and several bacteria, and find that H$_2$S released by 2.5 mM NaHS plays a microbicidal role rather than just inhibiting the growth of molds, yeasts and bacteria (Figure 1C, Figure 6 and Table 3), while _R. oryzae_ released by 2.5 mM NaHS plays a microbicidal role rather than affecting various aspects of fungal growth, including: 1) inhibiting spore germination and germ tube elongation (Table 2), 2) retarding mycelial growth (Figure 2A and C), and 3) causing abnormal contraction even fragmentation of mycelial cytoplasm (Figure 2B and D). Similar to the effect of H$_2$S towards mycelial cytoplasm that we observed, Senthilkumar et al. [35] also observed such deformities in the mycelia of _Paenibacillus_ sp. HKA-15 when exposed to antibiotics.

Recently, Lai et al. [19] reported that NO could inhibit the germination of _P. expansum_ spores and induce an increase of intracellular ROS which might result from increased ROS formation and decreased ROS detoxification. In the present study, we found that H$_2$S could increase intracellular ROS in sporangia and sporangioles as well as in spores of _A. niger_ (Figure 3A and B). It is unclear that whether H$_2$S directly induces the formation of ROS in _A. niger_. However, Eghbal et al. [36] have reported that H$_2$S exerts its cytotoxic effect against hepatocytes via inducing ROS formation and the overall reaction could be written as: nS$^-_2$ + 2NO$_2$ \rightarrow Sn + 2nO$_2$$. In addition, H$_2$S also has been found to induce oxidative damage in _Glycera dibranchiata_ and mammalian cells [37,38]. Therefore, we speculate that H$_2$S might directly induce ROS generation in _A. niger_ and excessive ROS subsequently causes oxidative damage to molecules crucial for mycelial growth and spore germination.

**Antioxidant enzymes such as SOD and CAT also play important roles in ROS elimination in response to oxidative stress [39]. Our results also show that H$_2$S could inhibit gene expression (Figure 4C and D) and decrease enzyme activities of SOD and CAT (Figure 4A and B), which might contribute to the increased ROS level observed in H$_2$S-treated _A. niger_. In contrast, the studies in postharvest storage of fruits and vegetables reveal that H$_2$S can eliminate ROS accumulation by improving the endogenous antioxidant system [15,20,21,22,24]. Thus H$_2$S exhibits different effects on microbes and plants which might be due to different tolerance to H$_2$S. Besides, the phenomenon that endogenous H$_2$S released when agricultural crops suffered from fungal infection [33,34] also supports our hypothesis. Endogenous H$_2$S in Gram-negative and Gram-positive bacteria is also required for antibiotic tolerance by elevating their antioxidant capacity [40]. In our study, we find that exogenous H$_2$S application effectively inhibits the growth of a series of bacteria (Figure 5), which can be attributed to the relatively higher level of applied H$_2$S than lower level in endogenous production.

The evaluation of postharvest fungi _A. niger_, _P. italicum_ and _R. oryzae_, yeasts and several food-borne bacteria strongly suggests the possible commercial value of H$_2$S fumigation to reduce postharvest spoilage and food storage. In this work, we also show that a fungicidal role of H$_2$S might be associated with increased ROS accumulation in _A. niger_. Further studies involving oxidative damage will help to better understand the ROS-related mechanism by which H$_2$S inhibits the growth of postharvest pathogens.

Acknowledgments

We are grateful to Russell Jones, University of California at Berkeley for critical reading the manuscript and Jianli Sang at Beijing Normal University for providing the strain _Candida albicans_ (SC5314).

Author Contributions

Conceived and designed the experiments: LHF KDH HZ. Performed the experiments: LHF KDH HZ. Analyzed the data: LHF LBH HY YSL HZ. Contributed reagents/materials/analysis tools: YHL LBH HY YSL. Contributed to the writing of the manuscript: LHF KDH LYH HZ.
References

1. Hodges RJ, Busby JC, Bennett B (2011) Postharvest losses and waste in developed and less developed countries: opportunities to improve resource use. J Agric Sci 149: 57–45.

2. Heydari A, Pesararak M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10: 273–290.

3. Tian J, Ban X, Zeng H, Huang B, He J, et al. (2011) In vitro and in vivo activity of essential oil from dill (Anethum graecum L.) against fungal spoilage of cherry tomatoes. Food Control 22: 1992–1999.

4. García-Cela E, Crespo-Sempere A, Ramos AJ, Sanchis V, Marin S (2014) Ecophysiological characterization of Aspergillus carbonarius, Aspergillus tubingenensis and Aspergillus niger isolated from grapes in Spanish vineyards. Int J Food Microbiol 160: 173–98.

5. Hernández-Montiel LG, Ochoa JL, Troyo-Díezeg E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Deharyomyces hansenii isolates. Postharvest Biol Technol 56: 101–107.

6. Strawn LK, Fortes ED, Bihn EA, Nightingale KK, Grohn YT, et al. (2013) Landscape and meteorological factors affecting the growth of three food-borne pathogens in fruit and vegetable farms. Appl Environ Microbiol 79: 580–589.

7. Reynolds A, Moffatt CR, Dyda A, Hundy R, Kaye AL, et al. (2010) An outbreak of gastroenteritis due to Salmonella typhimurium plasmid type 170 associated with consumption of a dessert containing raw egg. Commun Dis Intell Q Rep 34: 329–333.

8. Majumdar T, Chakraborty R, Raychaudhuri U (2013) Rapid electrophrochemical quantification of food borne pathogen Staphylococcus aureus based on hydrogen peroxide degradation by catalase. J Electrochem Soc 160: G75–G78.

9. Tripathi P, Dubey NK (2008) Evolution of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32: 235–245.

10. Deng J, Li W, Peng XL, Hao XH (2013) Study on the potential of antifungal activity of essential oils against fungal pathogens of fruits. J Chem Pharm Res 5: 443–446.

11. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92: 791–896.

12. Yang H, Hu LY, Hu KD, He YD, Wang SH, et al. (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50: 1518–1529.

13. Jin Z, Shen J, Qiao Z, Yang G, Wang R, et al. (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414: 481–486.

14. Jin Z, Xue S, Luo Y, Tian B, Fang H, et al. (2013) Hydrogen sulfide interacting with ascorbic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62: 41–46.

15. Hu LY, Hu SL, Wu J, Li YH, Zheng JF, et al. (2012) Hydrogen sulfide prolongs postharvest shelf-life of strawberry and plays an antioxidative role in fruits. J Agric Food Chem 60: 6804–6809.

16. Lajik M, Télöke T, Wilson ID, Whitman M, Hancock JT (2013) Hydrogen sulfide: environmental factor or signalling molecule? Plant Cell Environ 36: 1607–1616.

17. Manjunatha G, Lokesh V, Neelwarne B (2010) Nitric oxide in fruit ripening: trends and opportunities. Biotechnol Adv 28: 489–499.

18. Lazar EE, Wills RBH, Ho BT, Harris AM, Sporle LJ (2008) Antifungal effect of gaseous nitric oxide on mycotoxin growth, sporulation and spore germination of the postharvest horticulture pathogens, Aspergillus niger, Mucorius fructicola and Penicillium italicum. Lett Appl Microbiol 46: 688–692.

19. Lai T, Li B, Qin G, Tian S (2011) Oxidative damage involves in the inhibitory effect of nitric oxide on spore germination of Penicillium expansum. Curr Microbiol 62: 229–234.

20. Gao SP, Hu KD, Hu LY, Li YH, Han Y, et al. (2015) Hydrogen sulfide delays postharvest senescence and plays an antioxidative role in fresh-cut kiwifruit. HortScience 40: 1385–1392.

21. Li SP, Hu KD, Hu LY, Li YH, Jiang AM, et al. (2014) Hydrogen sulfide alleviates postharvest senescence of broccoli by modulating antioxidant defense and senescence-related gene expression. J Agric Food Chem 62: 1119–1129.

22. Hu H, Shen W, Li P (2014) Effects of hydrogen sulphide on quality and antioxidant capacity of mulberry fruit. Int J Food Sci Technol 49: 399–409.

23. Marsh RW (1929) Investigations on the fungicidal action of sulphur. III. Studies on the toxicity of sulphurated hydrogen and on the interaction of sulphur with fungi. J Horrisc Sci 7: 237–250.

24. Hu KD, Wang Q, Hu LY, Gao SP, Wu J, et al. (2014) Hydrogen sulfide prolongs postharvest storage of fresh-cut pears (Pyrus pyrifolia) by alleviation of oxidative damage and inhibition of fungal growth. PLoS One 9: e55294.

25. Yu T, Chen J, Lu H, Zheng X (2009) Indole-3-acetic acid improves postharvest biological control of blue mold rot of apple by Cryptosporoccus laeviuscens. Phytopathology 99: 258–264.

26. Liu X, Wang J, Gou P, Mao C, Zhu ZR, et al. (2007) In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int J Food Microbiol 119: 225–229.

27. Savi GD, Bortoluzzi AJ, Scussel VM (2013) Antifungal properties of Zinc-compounds against toxogenic fungi and myco toxin. Int J Food Sci Technol 48: 1854–1860.

28. Giannopolitis CN, Ries SK (1977) Superoxide dismutases I. Occurrence in higher plants. Plant Physiol 59: 309–314.

29. Beers TF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195: 133–140.

30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

31. Thellin O, Zocci W, Lakaye B, De Boeck M, Coumans B, et al. (1999) Housekeeping genes as internal standards: use and limits. J Bacteriol 75: 291–295.

32. Haneklaus S, Bloem E, Schug M (2007) Sulfur and plant disease. In: Datnoff L, Elmer W, Huber D, editors. Mineral nutrition and plant diseases. St Paul, MN: APS Press. pp.101–118.

33. Bloem E, Kiemenschenneider A, Volker J, Papenbrock J, Schmidt A, et al. (2004) Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphhydrase activity in Brassica napus. J Exp Bot 55: 2305–2312.

34. Bloem E, Haneklaus S, Kesselmeier J, Schnug E (2004) Sulfur and plant disease. In: Datnoff L, Elmer W, Huber D, editors. Mineral nutrition and plant diseases. St Paul, MN: APS Press. pp.101–118.

35. Senthilkumar M, Govindasamy V, Annapurna K (2007) Role of antibiosis in Aspergillus carbonarius, Aspergillus tubingenensis and Aspergillus niger isolates. Postharvest Biol Technol 46: 223–229.

36. Eghbal MA, Pennefather PS, O’Brien PJ (2004) H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 203: 69–76.

37. Joyner-Matos J, Piremole BL, Stein JR, Leeuwenburgh C, Julian D (2010) Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfate-tolerant marine invertebrate. Physiol Biochem Zool 83: 356–363.

38. Attene-Ramos MS, Wagner ED, Gaskins HR, Plewa MJ (2007) Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 5: 455–461.

39. Kreiner M, Harvey LM, McNel B (2002) Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzyme Microb Technol 30: 346–353.

40. Shatalin K, Shatalina E, Mironov A, Nudler E (2011) H2S: a universal defense against antibiotics in bacteria. Science 334: 986–990.