FUNCTIONAL EQUATION FOR THETA SERIES

JAEHYUN YANG

ABSTRACT. In this short paper, we find the transformation formula for the theta series under the action of the Jacobi modular group on the Siegel-Jacobi space. This formula generalizes the formula (5.1) obtained by Mumford in [3, p. 189].

1. Introduction

For a given fixed positive integer g, we let

$$
\mathbb{H}_g = \{ \Omega \in \mathbb{C}^{(g,g)} \mid \Omega = \Omega^t, \ \text{Im} \Omega > 0 \}
$$

be the Siegel upper half plane of degree g and let

$$
\Gamma_g = \{ \gamma \in \mathbb{Z}^{(2g,2g)} \mid \gamma J_g \gamma = J_g \}
$$

be the Siegel modular group of degree g, where $F^{(k,l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F, $\text{Im} \Omega$ denotes the imaginary part of Ω and $J_g = \begin{pmatrix} 0 & I_g \\ -I_g & 0 \end{pmatrix}$.

For two positive integers g and m, we consider the Heisenberg group

$$
H_{Z}^{(g,m)} := \{ (\lambda, \mu; \kappa) \mid \lambda, \mu \in \mathbb{Z}^{(m,g)}, \ \kappa \in \mathbb{Z}^{(m,m)}, \ \kappa + \mu \lambda \text{ symmetric} \}
$$

endowed with the following multiplication law

$$(\lambda, \mu; \kappa) \circ (\lambda', \mu'; \kappa') := (\lambda + \lambda', \mu + \mu'; \kappa + \kappa' + \lambda' \mu' - \mu' \lambda').$$

We let

$$
\Gamma_{g,m} := \Gamma_g \rtimes H_{Z}^{(g,m)} \quad \text{(semi-direct product)}
$$

be the Jacobi modular group endowed with the following multiplication law

$$(\gamma, (\lambda, \mu; \kappa)) \cdot (\gamma', (\lambda', \mu'; \kappa')) = (\gamma \gamma', (\lambda + \lambda', \mu + \mu'; \kappa + \kappa' + \lambda' \mu' - \mu' \lambda')).$$

with $\gamma, \gamma' \in \Gamma_g$, $\lambda, \lambda', \mu, \mu' \in \mathbb{Z}^{(m,g)}$, $\kappa, \kappa' \in \mathbb{Z}^{(m,m)}$ and $(\tilde{\lambda}, \tilde{\mu}) = (\lambda, \mu) \gamma'$. Then $\Gamma_{g,m}$ acts on the Siegel-Jacobi space $\mathbb{H}_{g,m} := \mathbb{H}_g \times \mathbb{C}^{(m,g)}$ properly discontinuously by

$$(\gamma, (\lambda, \mu; \kappa)) \cdot (\Omega, Z) = ((A \Omega + B)(C \Omega + D)^{-1}, (Z + \lambda \Omega + \mu)(C \Omega + D)^{-1}),$$

where $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g$, $\lambda, \mu \in \mathbb{Z}^{(m,g)}$, $\kappa \in \mathbb{Z}^{(m,m)}$ and $(\Omega, Z) \in \mathbb{H}_{g,m}$ (cf. [8], [9], [11], [12]).

A fundamental domain for $\Gamma_{g,m} \backslash \mathbb{H}_{g,m}$ was found by the author in [10]. Let $\vartheta_{g} \bar{\vartheta}_g$ be the theta

Subject Classification: Primary 11F27, 11F37, 11F50

Keywords and phrases: theta series, modular forms of half integral weight, Jacobi forms.
group consisting of all elements $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g$ such that the diagonal entries of matrices t^AC and t^BD are even integers. We set
$$\Gamma_{\vartheta,g,m} := \Gamma_{\vartheta,g} \ltimes H_{Z}^{(g,m)}.$$

We consider the theta series
\begin{align*}
\Theta(\Omega, Z) := \sum_{A \in \mathbb{Z}^{(m,g)}} e^{\pi i \sigma(A \Omega + 2 A^t Z)}, \quad (\Omega, Z) \in \mathbb{H}_{g,m}.
\end{align*}

Here $\sigma(T)$ denotes the trace of a square matrix T.

In [3, p. 189], Mumford considered the case $m = 1$ and proved the following functional equation
\begin{align*}
\Theta \left((A \Omega + B)(C \Omega + D)^{-1}, Z(C \Omega + D)^{-1} \right) &= \zeta(\gamma) e^{\pi i \{Z(C\Omega + D)^{-1}C^t Z\}} \det(C \Omega + D)^{1/2} \Theta(\Omega, Z),
\end{align*}
where $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_{\vartheta,g}$ and $\zeta(\gamma)$ is an eighth root of 1. In this short article, we consider the case of an arbitrary positive integer m and then prove the following functional equation.

Theorem 1.1. For any $\tilde{\gamma} = (\gamma, (\lambda, \mu, \kappa)) \in \Gamma_{\vartheta,g,m}$ with $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_{\vartheta,g}$, we obtain the following functional equation
\begin{align*}
\Theta \left((A \Omega + B)(C \Omega + D)^{-1}, (Z + \lambda \Omega + \mu)(C \Omega + D)^{-1} \right) &= \zeta(\tilde{\gamma}) e^{\pi i \sigma \left((Z + \lambda \Omega + \mu)(C \Omega + D)^{-1}C^t \left(Z + \lambda \Omega + \mu - \lambda \Omega^t - 2 \lambda^t Z \right) \right)} \det(C \Omega + D)^{m/2} \Theta(\Omega, Z),
\end{align*}
where $\zeta(\tilde{\gamma})$ is an eighth root of 1.

We observe that the formula (1.4) generalizes the formula (1.3) with $m = 1$ and $\lambda = \mu = 0$. For a positive integer N, we put
$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) \mid c \equiv 0 \pmod{N} \right\}$$
and
$$\theta(\tau) = \sum_{r=\infty}^{-\infty} e^{2\pi i r^2 \tau}, \quad \tau \in \mathbb{H}_1.$$

In [2] (Werke pp. 939–940], Hecke showed that
\begin{align*}
\theta((a \tau + b)(c \tau + d)^{-1}) &= \epsilon_d^{-1} \left(\frac{c}{d} \right) (c \tau + d)^{1/2} \theta(\tau), \quad \left(\begin{array}{ll} a & b \\ c & d \end{array} \right) \in \Gamma_0(4),
\end{align*}
where $\epsilon_d = 1$ or i according to $d \equiv 1$ or $3 \pmod{4}$ and $\left(\frac{c}{d} \right)$ denotes the quadratic residue symbol (cf. [6, p. 442]).

Notations: We denote by \mathbb{Z} and \mathbb{C} the ring of integers, and the field of complex numbers respectively. \mathbb{C}^\times denotes the multiplicative group of nonzero complex numbers. The symbol “$:=”$ means that the expression on the right is the definition of that on the left. For two positive integers k and l, $F^{(k,l)}$ denotes the set of all $k \times l$ matrices with entries in
a commutative ring F. For a square matrix $A \in F^{(k,k)}$ of degree k, $\sigma(A)$ denotes the trace of A. For any $M \in F^{(k,l)}$, tM denotes the transpose matrix of M. I_n denotes the identity matrix of degree n. We put $i = \sqrt{-1}$. For $z \in \mathbb{C}$, we define $z^{1/2} = \sqrt{z}$ so that $-\pi/2 < \text{arg}(z^{1/2}) \leq \pi/2$. Further we put $z^\kappa/2 = (z^{1/2})^\kappa$ for every $\kappa \in \mathbb{Z}$.

2. Proof of Theorem 1.1

Let $\tilde{\gamma} = (\gamma, (\lambda, \mu; \kappa))$ be an element of $\Gamma_{g,m}$ with $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g$ and $(\Omega, Z) \in \mathbb{H}_{g,m}$ with $\Omega \in \mathbb{H}_g$ and $Z \in \mathbb{C}^{(m,g)}$. If we put $(\Omega_*, Z_*) := \tilde{\gamma} \cdot (\Omega, Z)$, then we have

\[
\begin{align*}
\Omega_* &= \gamma \cdot \Omega = (A\Omega + B)(C\Omega + D)^{-1}, \\
Z_* &= (Z + \lambda \Omega + \mu)(C\Omega + D)^{-1}.
\end{align*}
\]

First of all we shall show that if the formula (1.4) holds for $\tilde{\gamma}_1, \tilde{\gamma}_2 \in \Gamma_{g,m}$, then it hold for $\tilde{\gamma}_1 \tilde{\gamma}_2$. To prove this fact, we consider the function $J : \Gamma_{g,m} \times \mathbb{H}_{g,m} \rightarrow \mathbb{C}^\times$ defined by

\[
J(\tilde{\gamma}, (\Omega, Z)) := e^{\pi i \sigma \{ (Z + \lambda \Omega + \mu)(C\Omega + D)^{-1}C'\Omega + \lambda \Omega \lambda - 2 \lambda^*Z - \kappa - \mu \lambda \}},
\]

where $\tilde{\gamma} = (\gamma, (\lambda, \mu; \kappa)) \in \Gamma_{g,m}$ with $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g$, $\lambda, \mu \in \mathbb{Z}^{(m,g)}$, $\kappa \in \mathbb{Z}^{(m,m)}$ and $(\Omega, Z) \in \mathbb{H}_{g,m}$. By a direct computation or a geometrical method (cf. [9, p. 1332]), we can show that J is an automorphic factor for $\Gamma_{g,m}$ on $\mathbb{H}_{g,m}$, that is, it satisfies the following relation

\[
J(\tilde{\gamma}_1 \tilde{\gamma}_2, (\Omega, Z)) = J(\tilde{\gamma}_1, (\Omega, Z)) J(\tilde{\gamma}_2, (\Omega, Z))
\]

for any $\tilde{\gamma}_1, \tilde{\gamma}_2 \in \Gamma_{g,m}$ and $(\Omega, Z) \in \mathbb{H}_{g,m}$. It is easy to see that the map $J_* : \Gamma_{g,m} \times \mathbb{H}_{g,m} \rightarrow \mathbb{C}^\times$ defined by

\[
J_*(\tilde{\gamma}, (\Omega, Z)) := J(\tilde{\gamma}, (\Omega, Z)) \cdot \det(C\Omega + D)^m
\]

is an automorphic factor for $\Gamma_{g,m}$ on $\mathbb{H}_{g,m}$, where $\tilde{\gamma} = (\gamma, (\lambda, \mu; \kappa)) \in \Gamma_{g,m}$ with $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g$ and $(\Omega, Z) \in \mathbb{H}_{g,m}$. It is easily seen that $J_*(\tilde{\gamma}, (\Omega, Z))$ can be written as

\[
J_*(\tilde{\gamma}, (\Omega, Z)) = e^{-\pi i \sigma(\kappa + \mu \lambda)} \cdot e^{\pi i \sigma(\lambda \Omega + \mu) \cdot \Omega \lambda - \lambda \Omega \lambda - 2 \lambda^*Z} \cdot \det(C\Omega + D)^m.
\]

We observe that $e^{-\pi i \sigma(\kappa + \mu \lambda)} = \pm 1$ because $\sigma(\kappa + \mu \lambda)$ is an integer. Thus we see that if the formula (1.4) holds for $\tilde{\gamma}_1, \tilde{\gamma}_2 \in \Gamma_{g,m}$, then it hold for $\tilde{\gamma}_1 \tilde{\gamma}_2$.

We recall (cf. [11, p. 326], [3, p. 210]) that Γ_g is generated by the following elements

\[
t_0(B) := \begin{pmatrix} I_g & B \\ 0 & I_g \end{pmatrix} \text{ with any } B = \begin{pmatrix} B \end{pmatrix} \in \mathbb{Z}^{(g,g)},
\]

\[
g_0(\alpha) := \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix} \text{ with any } \alpha \in GL(g, \mathbb{Z}),
\]

\[
-J_g := \begin{pmatrix} 0 & -I_g \\ I_g & 0 \end{pmatrix}.
\]
Obviously the following matrices

\[t_e(B) : = \begin{pmatrix} I_g & B \\ 0 & I_g \end{pmatrix} \]

with any \(B = t^t B \in \mathbb{Z}^{(g,g)} \) even diagonals,

\[g_0(\alpha) : = \begin{pmatrix} t^t \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix} \]

with any \(\alpha \in GL(g, \mathbb{Z}) \),

\[-J_g : = \begin{pmatrix} 0 & -I_g \\ I_g & 0 \end{pmatrix} \]

generate the theta group \(\Gamma_{\vartheta,g} \). Therefore the following elements \(s(\lambda, \mu; \kappa) \), \(t(B) \), \(g(\alpha) \) and \(\sigma_g \) of \(\Gamma_{\vartheta,g,m} \) defined by

\[s(\lambda, \mu; \kappa) = (I_{2g}, (\lambda, \mu; \kappa)) \]

with \(\lambda, \mu \in \mathbb{Z}^{(m,g)} \) and \(\kappa \in \mathbb{Z}^{(m,m)} \),

\[t(B) = \left(\begin{pmatrix} I_g & B \\ 0 & I_g \end{pmatrix}, (0, 0; 0) \right) \]

with any \(B = t^t B \in \mathbb{Z}^{(g,g)} \) even diagonals,

\[g(\alpha) = \left(\begin{pmatrix} t^t \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}, (0, 0; 0) \right) \]

with \(\alpha \in GL(g, \mathbb{Z}) \),

\[\sigma_g = \left(\begin{pmatrix} 0 & -I_g \\ I_g & 0 \end{pmatrix}, (0, 0; 0) \right) \]

generate the group \(\Gamma_{\vartheta,g,m} \).

Case I. \(\tilde{\gamma} = s(\lambda, \mu; \kappa) \) with \(\lambda, \mu \in \mathbb{Z}^{(m,g)} \) and \(\kappa \in \mathbb{Z}^{(m,m)} \).

In this case, we have

\[\Omega_* = \Omega \quad \text{and} \quad Z_* = Z + \lambda \Omega + \mu. \]

Then we have

\[
\Theta(\Omega, Z + \lambda \Omega + \mu) = \sum_{A \in \mathbb{Z}^{(m,g)}} e^{\pi i \sigma \{ A \Omega^t A + 2 A^t (Z + \lambda \Omega + \mu) \}} \\
= e^{-\pi i \sigma (\lambda \Omega^t \lambda + 2 \lambda^t Z)} \sum_{A \in \mathbb{Z}^{(m,g)}} e^{\pi i \sigma \{ (A + \lambda) \Omega^t (A + \lambda) + 2 (A + \lambda)^t Z \}} \\
= e^{-\pi i \sigma (\lambda \Omega^t \lambda + 2 \lambda^t Z)} \Theta(\Omega, Z).
\]

Here we may take \(\zeta(\tilde{\gamma}) = 1 \). Therefore this proves the formula (1.4) in the case \(\tilde{\gamma} = s(\lambda, \mu; \kappa) \).

Case II. \(\tilde{\gamma} = t(B) \) with \(B = t^t B \in \mathbb{Z}^{(g,g)} \) even diagonal.

In this case, we have

\[\Omega_* = \Omega + B \quad \text{and} \quad Z_* = Z. \]
Then we have
\[
\Theta(\Omega + B, Z) = \sum_{A \in \mathbb{Z}^{m,g}} e^{\pi i \sigma \{ A(\Omega + B)^t A + 2A^t Z \}}
\]
\[
= \sum_{A \in \mathbb{Z}^{m,g}} e^{\pi i \sigma (A t A^t Z)} \cdot e^{\pi i \sigma (A B^t A)}
\]
\[
= \sum_{A \in \mathbb{Z}^{m,g}} e^{\pi i \sigma (A t A^t Z)} \quad \text{(because } \sigma (A B^t A) \in 2 \mathbb{Z})
\]
\[
= \Theta(\Omega, Z)
\]

Here we note that \(\sigma (A B^t A) \in 2 \mathbb{Z} \) because the diagonal entries of \(B \) is even integers. Now we may take \(\zeta(\bar{\gamma}) = 1 \). Therefore this proves the formula (1.4) in the case \(\bar{\gamma} = t(B) \).

Case III. \(\bar{\gamma} = g(\alpha) = \left(\begin{array}{cc} t \alpha & 0 \\ 0 & \alpha^{-1} \end{array} \right) \) with \(\alpha \in GL(g, \mathbb{Z}) \).

In this case, we have
\[
\Omega_* = t \alpha \Omega \alpha \quad \text{and} \quad Z_* = Z \alpha.
\]
Then we obtain
\[
\Theta(t \alpha \Omega \alpha, Z \alpha) = \sum_{A \in \mathbb{Z}^{m,g}} e^{\pi i \sigma \{ A(t \alpha \Omega \alpha)^t A + 2A^t (Z \alpha) \}}
\]
\[
= \sum_{A \in \mathbb{Z}^{m,g}} e^{\pi i \sigma (A^t A \Omega t A + 2(A^t \alpha) Z)}
\]
\[
= \Theta(\Omega, Z).
\]

We observe that the formula (1.4) reduces to the formula
\[
(2.1) \quad \Theta(t \alpha \Omega \alpha, Z \alpha) = \zeta(\bar{\gamma}) \left(\det \alpha^{-1} \right)^{m/2} \Theta(\Omega, Z).
\]
If we take \(\zeta(\bar{\gamma}) = (\det \alpha)^{m/2} \), the formula (2.1) coincides with \(\Theta(\Omega, Z) \). Since \(\det \alpha = \pm 1 \), \(\zeta(\bar{\gamma}) \) is a fourth root of 1. Therefore this proves the formula (1.4) in the case \(\bar{\gamma} = g(\alpha) \) with \(\alpha \in GL(g, \mathbb{Z}) \).

Case IV. \(\bar{\gamma} = \sigma_g = \left(\begin{array}{cc} 0 & -I_g \\ I_g & 0 \end{array} \right) \).

In this case, we have
\[
\Omega_* = -\Omega^{-1} \quad \text{and} \quad Z_* = Z \Omega^{-1}.
\]
We can prove the formula (1.4) using the Poisson Summation Formula.

Lemma 2.1. For a fixed element \((\Omega, Z) \in H_{g,m} \), we obtain the following
\[
\int_{\mathbb{R}^{m,g}} e^{\pi i \sigma (x \Omega t x + 2x^t Z)} dx_{11} \cdots dx_{mg} = \left(\det \left(\frac{\Omega}{2} \right) \right)^{-m} e^{-\pi i \sigma (Z \Omega^{-1} t Z)},
\]
where \(x = (x_{ij}) \in \mathbb{R}^{m,g} \).
Proof. By a simple computation, we see that
\[e^{\pi i (x^t x + 2x^t Z)} = e^{-\pi i (Z\Omega^{-1} x^t)} \cdot e^{\pi i \sigma\{(x+Z\Omega^{-1})x + Z\Omega^{-1}\}}. \]

Since the real Jacobi group \(SP_g \times H^R_{g,m} \) acts on \(\mathbb{H}_{g,m} \) holomorphically, we may put
\[\Omega = i A^t A, \quad Z = iV, \quad A \in \mathbb{R}^{(g,g)}, \quad V = (v_{ij}) \in \mathbb{R}^{(m,g)}. \]

\[
\begin{align*}
\int_{\mathbb{R}^{(m,g)}} e^{\pi i \sigma(x^t x + 2x^t Z)} dx_{11} \cdots dx_{mg} \\
= e^{-\pi i (Z\Omega^{-1} x^t)} \int_{\mathbb{R}^{(m,g)}} e^{\pi i \sigma\{(x+V(iA^t A)^{-1})(iA^t A)^{-1}\}} dx_{11} \cdots dx_{mg} \\
= e^{-\pi i (Z\Omega^{-1} x^t)} \int_{\mathbb{R}^{(m,g)}} e^{-\pi \sigma\{(uA)^t\}} du_{11} \cdots du_{mg} \quad (\text{Put } u = x + V(A^t A)^{-1} = (u_{ij})) \\
= e^{-\pi i (Z\Omega^{-1} x^t)} \int_{\mathbb{R}^{(m,g)}} e^{-\pi \sigma\{w^t w\}} (\det A)^{-m} \ dw_{11} \cdots dw_{mg} \quad (\text{Put } w = uA = (w_{ij})) \\
= e^{-\pi i (Z\Omega^{-1} x^t)} (\det A)^{-m} \cdot \left(\prod_{i=1}^{m} \prod_{j=1}^{g} \int_{\mathbb{R}} e^{-\pi w_{ij}^2} dw_{ij} \right) \\
= e^{-\pi i (Z\Omega^{-1} x^t)} (\det A)^{-m} \quad (\text{because } \int_{\mathbb{R}} e^{-\pi w_{ij}^2} dw_{ij} = 1 \quad \text{for all } i, j) \\
= e^{-\pi i (Z\Omega^{-1} x^t)} \left(\frac{\det (A^t A)}{\pi} \right)^{-\frac{m}{2}} \\
= e^{-\pi i (Z\Omega^{-1} x^t)} \left(\frac{\Omega}{i} \right)^{-\frac{m}{2}}.
\end{align*}
\]

This completes the proof of Lemma 2.1.

For an element \((\Omega, Z) \in \mathbb{H}_{g,m}\), we define the function \(f_{\Omega,Z} \) on \(\mathbb{R}^{(m,g)} \) by
\[
(2.2) \quad f_{\Omega,Z}(x) := e^{\pi i \sigma(x^t x + 2x^t Z)}, \quad x = (x_{ij}) \in \mathbb{R}^{(m,g)}.
\]

By the Poisson summation formula, we obtain
\[
\sum_{A \in \mathbb{Z}^{(m,g)}} f_{\Omega,Z}(A) = \sum_{A \in \mathbb{Z}^{(m,g)}} \hat{f}_{\Omega,Z}(A),
\]

where \(\hat{f}_{\Omega,Z} \) is the Fourier transform of \(f_{\Omega,Z} \) given by
\[
\hat{f}_{\Omega,Z}(y) = \int_{\mathbb{R}^{(m,g)}} f_{\Omega,Z}(x) e^{2\pi i \sigma(xy)} dx_{11} \cdots dx_{mg}.
\]

Then we have
\[\Theta(\Omega, Z) = \sum_{A \in \mathbb{Z}^{(m, g)}} \hat{f}_{\Omega, Z}(A) \]
\[= \sum_{A \in \mathbb{Z}^{(m, g)}} \int_{\mathbb{R}^{(m, g)}} f_{\Omega, Z}(x) e^{2\pi i \sigma(\cdot^t x A)} \, dx_{11} \cdots dx_{mg} \]
\[= \sum_{A \in \mathbb{Z}^{(m, g)}} \int_{\mathbb{R}^{(m, g)}} e^{\pi i \sigma(x_{1}^t x + 2x_{1}^t Z)} e^{2\pi i \sigma(\cdot^t x A)} \, dx_{11} \cdots dx_{mg} \]
\[= \sum_{A \in \mathbb{Z}^{(m, g)}} \left(\det \left(\frac{\Omega}{i} \right) \right)^{-m} e^{-\pi i \sigma((Z+A)\Omega^{-1}(Z+A))} \] (by Lemma 2.1)
\[= \left(\det \left(\frac{\Omega}{i} \right) \right)^{-m} \sum_{A \in \mathbb{Z}^{(m, g)}} e^{-\pi i \sigma(Z\Omega^{-1} Z + A\Omega^{-1} A + 2A\Omega^{-1} Z)} \]
\[= \left(\det \left(\frac{\Omega}{i} \right) \right)^{-m} e^{-\pi i \sigma(Z\Omega^{-1} Z)} \sum_{A \in \mathbb{Z}^{(m, g)}} e^{\pi i \sigma(-A(-\Omega^{-1})^t(-A)+2(-A)^t Z \Omega^{-1})} \]
\[= \left(\det \left(\frac{\Omega}{i} \right) \right)^{-m} e^{-\pi i \sigma(Z\Omega^{-1} Z)} \Theta(-\Omega^{-1}, Z\Omega^{-1}). \]

Therefore we obtain the formula
\[(2.3) \quad \Theta(-\Omega^{-1}, Z\Omega^{-1}) = e^{\pi i \sigma(Z\Omega^{-1} Z)} \left(\det \left(\frac{\Omega}{i} \right) \right)^{m/2} \Theta(\Omega, Z). \]

The fact that \(\zeta(\tilde{\gamma})^8 = 1 \) follows from the formula (2.3). Indeed we may take \(\zeta(\tilde{\gamma}) = \det \left(\frac{\Omega}{i} \right)^{m/2} \). Therefore this proves the formula (1.4) in the case \(\tilde{\gamma} = \sigma_g \). Finally we complete the proof of Theorem 1.1.

Remark 2.1. Let \(m \) be an odd positive integer. According to the formula (1.4), we see that \(\Theta(\Omega, 0) \) is a modular form of half integral weight \(\frac{m}{2} \) with respect to \(\Gamma_{d, g} \) (cf. [8, p. 200], [6]). We may say that the theta series \(\Theta(\Omega, Z) \) is a Jacobi form of half integral weight \(\frac{m}{2} \) and index \(I_m \) with respect to \(\Gamma_{d, g} \) (cf. [8], [9]). This means that \(\Theta(\Omega, Z) \) may be regarded as an automorphic form on a two-fold covering of the Jacobi group (cf. [5]). Indeed the theta series \(\Theta(\Omega, Z) \) is closely related to the Weil representation of the Jacobi group (cf. [7], [13]). The function \(f_{\Omega, Z} \) is a covariant map for the Weil-Schrödinger representation (cf. [13]).

Remark 2.2. Olav K. Richter [4] obtained the transformation formula for theta functions that is more general than the formula (1.4). It is my pleasure to thank him for letting me know his paper [4]. But our proof is quite different from his. In fact, our formula (1.4) is a combination of the transformation laws (2) and (3) in [4].
REFERENCES

[1] E. Freitag, Siegelsche Modulfunktionen, Grundlehren de mathematischen Wissenschaften 55, Springer-Verlag, Berlin-Heidelberg-New York (1983).

[2] E. Hecke, Herleitung des Euler-Produktes der Zetafunktion und einiger L-Reihen aus ihrer Funktionalgleichung, Math. Ann. 119 (1944), 266-287 (=Werke, 919-940).

[3] D. Mumford, Tata Lectures on Theta I, Progress in Math. 28, Boston-Basel-Stuttgart (1983).

[4] O. K. Richter, On Transformation Laws for Theta Functions, Rocky Mountain J. of Math., Vol. 34, No. 4 (2004), 1473-1481.

[5] I. Satake, Fock representations and theta functions, Ann. Math. Study 66 (1969), 393–405.

[6] G. Shimura, On modular forms of half integral weight, Ann. of Math., 97 (1973), 440-481; Collected Papers, 1967-1977, Vol. II, Springer-Verlag (2002), 532-573.

[7] A. Weil, Sur certains groupes d’operateurs unitares, Acta Math., 111 (1964), 143–211; Collected Papers (1964-1979), Vol. III, Springer-Verlag (1979), 1-69.

[8] J.-H. Yang, Singular Jacobi forms, Trans. of American Math. Soc. 347, No. 6 (1995), 2041-2049.

[9] J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. of Math. 47 (6) (1995), 1329-1339.

[10] J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston Journal of Mathematics, Vol. 32, No. 3 (2006), 701-712.

[11] J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory, Vol. 127 (2007), 83-102.

[12] J.-H. Yang, A partial Cayley transform of Siegel-Jacobi disk, J. Korean Math. Soc. 45, No. 3 (2008), 781-794.

[13] J.-H. Yang, Theta series associated with the Weil-Schrödinger representation, arXiv:0709.007v1 [math.NT] (2007).

Department of Mathematics, Inha University, Incheon 402-751, Korea
E-mail address: jhyang@inha.ac.kr