INTRODUCTION

Reactive fibrous growths with the histopathological presence of calcifications, called peripheral ossifying fibromas (POFs), are a common occurrence in the oral cavity. Here, we report the case of an unusually large POF (48 × 35 × 30 mm) in the mandible to mouth floor of a 41-year-old Japanese man. Large POFs have often presented heterogeneous clinical characteristics, leading to their misdiagnosis as malignant disease. A biopsy is the gold standard for the diagnosis of such lesions. For our patient, we conducted a biopsy before resecting the mass. Tracheal intubation for general anesthesia can sometimes be difficult in patients with a large mass in the mouth floor. Preoperative evaluation of the patient's airway is most important when treating large oral disease.

CASE PRESENTATION

A 41-year-old Japanese man presented to Department of Oral and Maxillofacial Surgery at Okayama University Hospital with the complaint of a slowly growing exophytic mass in the mouth floor. A pedunculated, smooth, rubbery, gingival tissue-like mass was seen extending from the mouth floor to the lower labial alveolar ridge (Figure 1A,B). The mass was 48 × 35 × 30 mm. Indentation due to an upper lateral incisor and canine was seen in the surface of the mass. The upper lateral incisor and canine were flared out by the mass. Panoramic x-rays indicated displacement of a lower lateral incisor and alveolar bone resorption (Figure 1C). The mass was 48 × 35 × 30 mm. Indentation due to an upper lateral incisor and canine was seen in the surface of the mass. The upper lateral incisor and canine were flared out by the mass. Panoramic x-rays indicated displacement of a lower lateral incisor and alveolar bone resorption (Figure 1C). Traditional computed tomography (CT) imaging revealed a small amount of calcified tissue in the mass (Figure 1D).
Contrast-enhanced CT images displayed a homogeneously enhanced margin of the mass (Figure 1E).

A biopsy and histological examination were performed; malignant disorder was denied. He does not have any medical history. We planned a resection of the mass with the patient under general anesthesia. The large mass located at the mouth floor complicated the insertion of a laryngoscope blade. The Mallampati score is used to predict the ease of intubation, and our patient’s Mallampati score was IV. We therefore performed nasotracheal intubation using a McGrath™ video laryngoscope and fiberscope. With the patient under general anesthesia, the mass was excised completely along with adjacent mucosa and periosteum (Figure 2A). Floating lower lateral incisor was extracted. The bone surface was covered with collagen sheet and a tie-over. The cut section of a resected specimen showed marked pseudo-epitheliomatous hyperplasia of stratified squamous epithelium with a calcified area in the subepithelial connective tissue (Figure 2B,C). The lesion included fibrous tissue with calcification, and it was surrounded by a cellular mass of proliferating fibroblastic cells (Figure 2D). There was no finding of inflammation or recurrence 1 year after surgery.

3 | DISCUSSION

A POF is a benign osteogenic tumor with membranous ossification. It therefore involves exclusively the maxillofacial bones. It comprises fibrous tissue containing a variable quantity of mineralized material resembling bone.1 A POF
generally occurs between the second and fourth decade of life, with no gender difference. The most frequent locations are the mandible and maxilla, involving the premolar and molar region.\(^3\)\(^-\)\(^5\)

Peripheral ossifying fibromas have also been referred to by various names such as fibrous epulis with calcification, peripheral cemento-ossifying fibroma, peripheral odontogenic fibroma, peripheral fibroma with calcification, and calcifying fibroblastic granuloma.\(^6\) A POF is inherently considered to be reactive lesion. In 1982, Gardner described the term “peripheral ossifying fibroma” for a lesion that is reactive in nature and is different from the extraosseous counterpart of a central ossifying fibroma.\(^1\) A central ossifying fibroma arises from the endosteum or the alveolar periosteum adjacent to the tooth root; this causes the expansion of the marrow cavity. In contrast, a POF occurs from soft tissues covering the tooth-bearing areas of the jaws. Compared to POFs, central ossifying fibromas tend to grow more quickly.\(^7\) In vast majority of POFs, there is no apparent underlying bone involvement visible on the x-ray image. However, superficial erosion of bone is noted occasionally.\(^5\) In such case, bone removal must be needed.

The causes of POFs include irritation factors such as plaque, calculus, improper restorations, and trapped food. POFs are thus considered non-neoplastic; rather, they are suspected to be a hyperplastic reaction due to inflammation. The mouth floor is a rare location for a POF.\(^8\) In addition, most reports of POFs have described the size of the lesion as \(<2\) cm. Some reports indicated larger atypical presentations of POF; for example, huge atypical POFs were mentioned as giant, large, atypical, or huge POFs. Childers reported a POF case and reviewed another 10 cases of POF, and he proposed the usage of the term “giant POF (GPOF)” for atypical POFs.\(^3\)\(^-\)\(^5\)\(^,\)\(^9\)\(^-\)\(^16\) We identified another 11 reports of GPOF that were published after Childers' review \(^2\)\(^,\)\(^5\)\(^,\)\(^9\)\(^-\)\(^16\) (Table 1). The lesions ranged in size from 2.0 to 10.0 cm in greatest dimension. The patient age ranged from 11 to 62 years. All POFs are pedunculated. Although the POFs generally did not cause tooth displacement, in our patient the giant POF did result in tooth dislocation, and the tooth dislocation occurred on the maxilla. When a giant POF is encountered, the surgeon must be careful to avoid misdiagnosis, and the difficulty of tracheal intubation under general anesthesia must be considered. In our patient's case, the atypical presentation led to the impression of an aggressive or malignant lesion, and we thus conducted a biopsy before the surgery. The Mallampati score is used to predict the ease of endotracheal intubation,\(^17\) and fiberoptic intubation must be considered in cases with the Mallampati score of III or IV. Some reports indicated that a video laryngoscope and fiberoptic-assisted nasal intubation are suitable tools for managing difficult airways in oral disease.\(^18\) In any case, the preoperative evaluation of the patient's airway is most important when treating large oral disease such as a giant POF.

ACKNOWLEDGMENTS

None. Published with written consent of the patient.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

TO participated in the case study, wrote the original manuscript, and edited and reviewed the final manuscript. KO and
	Review by Childers et al²	Franco-Barrera et al⁵	Ogbureke et al¹⁰	John. et al¹¹	Reddy. et al¹²	Chaudhari. et al¹³	Ashok et al¹⁴	Gulati et al¹⁵	Mariano et al¹⁶	
Greatest dimension (cm)	5.6 ± 2.7 (2.5-10.5)	4	2	4.5	10	5	5.9	4	4	3.5
Base		Pedunculated	Pedunculated	Pedunculated	Pedunculated	Pedunculated	Pedunculated	Pedunculated	Pedunculated	
		Gingival 1	Well demarcated 1							
Tooth displacement	Yes	Yes	No (Implant)	Yes	Yes	Yes	Edentulous	Yes	Yes	
	11	30	44	62	55	55	60	56	38	
Patient age (years)	35.8 ± 24.1 (7.6-70)	11	30	44	62	55	55	60	56	38
Location	Maxillary anterior 1	Maxillary anterior	Mandible anterior	Mandible	Mandible	Mandible posterior	Mandible	Mandible	Mandible anterior	
	Maxillary posterior 3			posterior	posterior		posterior	anterior		
	Mandible anterior 1									
	Mandible posterior 5									
	Mandible 1									
KH: helped write the original manuscript. IS and AS: participated in the case study, and edited and reviewed the final manuscript.

ETHICAL APPROVAL

Informed consent for his case to be published was obtained from the patient. All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

DATA AVAILABILITY STATEMENT

The data used and/or analyzed in this report are available for the corresponding author Dr Tatsuo Okui on responsible request.

ORCID

Tatsuo Okui https://orcid.org/0000-0002-7640-3274

Kisho Ono https://orcid.org/0000-0002-0199-9907

REFERENCES

1. Gardner DG. The peripheral odontogenic fibroma: an attempt at clarification. *Oral Surg Oral Med Oral Pathol*. 1982;54(1):40-48.
2. Childers EL, Morton I, Fryer CE, Shokrani B. Giant peripheral ossifying fibroma: a case report and clinicopathologic review of 10 cases from the literature. *Head Neck pathol*. 2013;7(4):356-360.
3. Babu B, Hallikeri K. Reactive lesions of oral cavity: a retrospective study of 659 cases. *J Indian Soc Periodontol*. 2017;21(4):258-263.
4. Sangle VA, Pooja VK, Holani A, Shah N, Chaudhary M, Khanapure S. Reactive hyperplastic lesions of the oral cavity: a retrospective survey study and literature review. *Indian J Dent Res*. 2018;29(1):61-66.
5. Franco-Barrera MJ, Zavala-Cerna MG, Fernandez-Tamayo R, Vivanco-Perez I, Fernandez-Tamayo NM, Torres-Bugarin O. An update on peripheral ossifying fibroma: case report and literature review. *Oral Maxillofac Surg*. 2016;20(1):1-7.
6. Mohiuddin K, Priya NS, Ravindra S, Murthy S. Peripheral ossifying fibroma. *J Indian Soc Periodontol*. 2013;17(4):507-509.
7. Hunasgi S, Raghunath V. A clinicopathological study of ossifying fibromas and comparison between central and peripheral ossifying fibromas. *J Contemp Dent Pract*. 2012;13(4):509-514.
8. Mergoni G, Meleti M, Magnolo S, Giovannacci I, Corcione L, Vescovi P. Peripheral ossifying fibroma: a clinicopathologic study of 27 cases and review of the literature with emphasis on histomorphologic features. *J Indian Soc Periodontol*. 2015;19(1):83-87.
9. Barot VJ, Chandran S, Vishnoi SL. Peripheral ossifying fibroma: a case report. *J Indian Soc Periodontol*. 2013;17(6):819-822.
10. Ogbureke EI, Vigneswaran N, Seals M, Frey G, Johnson CD, Ogbureke KU. A peripheral giant cell granuloma with extensive osseous metaplasia or a hybrid peripheral giant cell granuloma-peripheral ossifying fibroma: a case report. *J Med Case Rep*. 2015;9:14.
11. John RR, Kangasamy S, Achuthan N. Unusually large-sized peripheral ossifying fibroma. *Ann Maxillofac Surg*. 2016;6(2):300-303.
12. Reddy V, K V A, Wadhvan V, Venkatesh A. Giant peripheral ossifying fibroma of the posterior mandible—a rare case report. *Iran J Pathol*. 2017;12(4):397-401.
13. Chaudhari S, Umarji HR. Peripheral ossifying fibroma in the oral cavity: MRI findings. *Case Rep Dent*. 2011;2011:190592.
14. Ashok S, Gupta AA, Ashok KP, Mhaske SA. Peripheral ossifying fibroma: a rare case affecting maxillary region. *Indian J Dent*. 2016;7(3):141-143.
15. Gulati R, Khetarpal S, Ratre MS, Solanki M. Management of massive peripheral ossifying fibroma using diode laser. *J Indian Soc Periodontol*. 2019;23(2):177-180.
16. Mariano RC, Oliveira MR, Silva AC, Almeidac OP. Large peripheral ossifying fibroma: clinical, histological, and immunohistochemistry aspects. A case report. *Revista Española de Cirugía Oral y Maxilofacial*. 2017;39(1):28-49.
17. Adamus M, Fritscherova S, Hrabalek L, Gabrhelik T, Zapletalova J, Janout V. Mallampati test as a predictor of laryngoscopic view. *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub*. 2010;154(4):339-343.
18. Rosenstock CV, Thogersen B, Afshari A, Christensen AL, Eriksen C, Gatke MR. Awake fiberoptic or awake video laryngoscopic tracheal intubation in patients with anticipated difficult airway management: a randomized clinical trial. *Anesthesiology*. 2012;116(6):1210-1216.

How to cite this article: Okui T, Ibaragi S, Ono K, Hassegawa K, Sasaki A. Surgical resection of a giant peripheral ossifying fibroma in mouth floor managed with fiberoscopic intubation. *Clin Case Rep*. 2020;00:1–5. https://doi.org/10.1002/ccr3.3494