Sterculia tragacantha Lindl Aqueous Leaf Extract Ameliorate Cardiomyopathy in Streptozotocin-induced Diabetic Rats via Urotensin II and FABP3 Expressions

Basiru Olaitan Ajiboye1,2,3*, Babatunji Emmanuel Oyinloye2,3,4, Sunday Amos Onikanni2, Olukemi Adetutu Osukoya2, Olaolu Ebenezer Lawal1, and Fisayo Abraham Bamisaye5

1 Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, PMB 373, Oye-Ekiti, 371104, NIGERIA
2 Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, P.M.B 5454, Ado-Ekiti, 360001, NIGERIA
3 Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, P.M.B 5454, Ado-Ekiti, 360001, NIGERIA
4 Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, SOUTH AFRICA
5 Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, NIGERIA

Abstract: Sterculia tragacantha (ST) Lindl leaf is commonly used locally in the management of diabetes mellitus (DM) and its complications. This study was aimed at assessing the valuable effects of ST leaf on streptozotocin-diabetic cardiomyopathy (DCM). Streptozotocin was administered intraperitoneally to the experimental animals to induce DM, and hence, placed on different doses of ST for 14 days. Thereafter, on the 15th day of the experiment, the animals were euthanized, and a number of cardiomyopathy indices were investigated. The diabetic rats exhibited a momentous increase in hyperlipidemia, lipid peroxidation as well as a significant (p < 0.05) decline in antioxidant enzyme activities. The serum creatine kinase MB (CK-MB), C-reactive protein (CRP), cardiac troponin I, tumour necrosis factor-alpha (TNF-α) and urotensin II expression revealed a significant (p < 0.05) upsurge in diabetic rats. Also, the expression of GLUT4 and fatty acid-binding protein 3 (FABP3) were significantly (p < 0.05) reduced in diabetic rats. However, at the conclusion of the experimental trial ST significantly (p < 0.05) attenuated hyperlipidemia, oxidative stress biomarkers by augmenting the antioxidant enzyme activities and decrease in lipid peroxidation, ameliorated CK-MB, CRP, cardiac troponin I, TNF-α, and urotensin-II levels, and improved GLUT4 and FABP3 expressions. Similarly, the administration of ST prevented histological alterations in the heart of diabetic animals. Therefore, the obtained results suggest that ST could mitigate DCM in streptozotocin-induced diabetic rats.

Key words: hyperglycaemia, oxidative stress, hyperlipidemia, diabetic, cardiomyopathy, gene expression

1 Introduction
Diabetes mellitus (DM) is a metabolic malady tagged with persistent hyperglycaemia resulting in instabilities of carbohydrate, protein, and lipid metabolisms because of flaws in insulin secretion, insulin action, or both1. This triggers a series of clinical signs such as polyuria, polydipsia, polyphagia, and abnormal weight loss, amongst others. Currently, more than 422 million people are suffering from this disease globally, with a death rate of over 4 million each year2.

Furthermore, diabetic cardiomyopathy (DCM) is one of the clinical complications of diabetes mellitus connected to cardiac irregularities3. This affects more than 12% of diabetic individuals worldwide, which could cause heart malfunction and later death. The main attributes of DCM include oxidative stress, fatigue, and cardiac hypertrophy amongst others4. Likewise, Bhattacharjee et al.5 reported that continuous hyperglycaemia in DM patients inflames the production of reactive oxygen species (ROS) as well as inflammation; these perform an important function in DCM. In addition, accumulation of ROS activates overexpression of urotensin...
II with downregulation of fatty acid-binding protein 3 (FABP3) which negatively regulates the cell cycle and inhibits proliferation of myocardial cells leading to heart disease (e.g. cardiomyopathy)\(^6\). Urotensin II is a vasoconstrictor and even more potent than endothelin-1 and is one of the several neuroendocrine systems activated in heart-related diseases. FABP3 is known as a 14 to 15 kDa protein mainly expressed in the heart and some other organs\(^8\). FABP3 has the ability to binds long-chain fatty acids and then transports them to specific cell organelles for lipid storage and metabolism as well as signaling transduction and transcriptional regulation\(^7\). These abnormalities encourage inflammation biomarkers (e.g. C-reactive protein) as well as the activities of other biomarkers that are paramount to the heart tissue (such as Creatin kinase MB, serum lipid profiles, etc.).

In order to mimic what happens in human beings, DM was induced by introducing a single dose of streptozotocin (diabeticogenic chemical) into the experimental animals. This triggers selective destruction of pancreatic beta cells which are insulin-producing cells\(^1\).

Currently, there are no perfect medications that can cure DM, and they are also associated with series of drawbacks such as fatty liver, anorexia, insulin resistance amongst others\(^9\). However, medicinal plants have been endowed with different phytochemicals which are useful as a remedy for human diseases. Locally, various herbs have been endorsed in the management of diabetes mellitus and its complications especially DCM. In this regard, an example is Sterculia tragacantha; the family of Malvaceae called Uhobo and Abalo among Eastern and Western people of Nigeria. Sterculia tragacantha has been documented in the treatment of boils, diarrhea, dyspepsia, gout, fever, gonorrhea, snake bite, syphilis, tapeworm, gout, whitlow, etc. especially in rural communities\(^10\). Added to this, without proper scientific barking, the leaf of this plant is used locally in some communities in the Western and without proper scientific barking, the leaf of this plant is used locally in some communities in the Western and Eastern parts of Nigeria in the management of diabetes mellitus and its complications. Hence, there is little/no information on the effectiveness of this plant in the treatment/management of diabetic cardiomyopathy which is the focus of this study.
rats were sacrificed by cervical dislocation as previously documented by Ajiboye et al. Blood was collected from rats into plain bottles and centrifuged at 1500 rpm for 30 minutes. Then the hearts were harvested and washed using 0.9% NaCl. The remaining parts of the heart were homogenized in phosphate buffer (pH 7.5) and centrifuged at 3000 rpm for ten minutes. The supernatants were collected and used for different analyses while the pellets were discarded.

2.6 Biochemical parameters studied

2.6.1 Biochemical parameters evaluated

The oxidative stress biomarkers such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione, Glutathione-S-transferase (GST), and malondialdehyde (MDA) were carried out on the rat heart homogenates, serum lipid profiles, serum cardiac troponin I, and creatine kinase MB were estimated in the rat heart homogenates, serum lipid profiles, serum cardiac troponin I, and creatine kinase MB were estimated using ELISA kits (Biosource, USA) at 450 nm.

2.6.2 Quantitative real-time PCR analysis

A known gram (0.5 μg) of the newly harvested heart was inserted into 20 μL of Trizol. Then, the total RNA of the organ was extracted through a cold solution of TRI reagent (Zymo Research, USA) by following the manufacturer’s protocol. A spectrophotometer (Jen-way UV-VIS spectrophotometer model 6305, UK) was used to estimate the concentration of RNA (at 260 nm). This was subsequently converted into cDNA via M-MuLV Reverse Transcriptase Kit by following manufacturer procedure. Hereafter, 25 μL of the solution comprising 2 μL cDNA, 2 μL primer, 12.5 μL Ready Mix Taq PCR master mix and 8.5 μL nuclease-free water were mixed.

The primer sequences used were indicated in Table 1.

Additionally, the quantification of the band images carried out using Image-J software.

2.6.3 Histological examination of the heart

A small portion (1 gram) of the heart tissue obtained from each group was stored in a 10% formalin buffer. The tissues were then washed overnight, dehydrated with graded alcohols, and embedded in paraffin wax. For histological evaluation, 5 μm thick sequential section was deparaffinized and stained with hematoxylin and eosin (H&E).

2.7 Data analysis

A graph pad prism 5 (GPP) software was employed in this study. This was done through One-way ANOVA as well as Tukey multiple range post-hoc test. The data were articulated as the means of ten (10) replicates ± standard deviation (SD), and a significant difference was fixed at p < 0.05.

3 Results

3.1 Aqueous extract of Sterculia tragacantha leaf suppresses oxidative stress biomarkers in the diabetic rats

Diabetic control animals exhibited a remarkable decrease in SOD, CAT, GPx, GST and GSH levels when compared to other groups. However, diabetic rats placed on the two doses (LDST and HDST) of aqueous extract of Sterculia tragacantha leaf as well as MET revealed a significant (p < 0.05) upsurge in SOD, CAT, GPx, GST and GSH levels. Also, there was no significant (p > 0.05) difference in SOD, CAT, GPx, GST and GSH levels in normal control and diabetic rats administered HDST. In addition, diabetic control rats demonstrated a significant (p < 0.05) increase in MDA levels when compared to other groups, but at the end of the experimental trial, diabetic rats administered LDST, HDST, and MET exhibited no momentous difference compared to normal control (Fig. 1). Moreover, there was a substantial increase in activities of CAT, SOD, GPx, GST and GSH in diabetic rats administered HDST when compared to diabetic rats administered LDST.

3.2 Aqueous extract of Sterculia tragacantha leaf ameliorates hyperlipidemia in diabetic rats

Diabetic control rats exhibited a significant (p < 0.05) rise in serum total cholesterol, triacylglycerols, and low-density lipoproteins (LDL) compared to other groups. There was no significant (p > 0.05) difference in total cholesterol, triacylglycerols, and low-density lipoproteins (LDL) of normal control and diabetic rats placed on HDST and MET. Diabetic control rats demonstrated a significant (p < 0.05) decline in

Table 1: Primers list.

S/No	Primer names	Forward primers (5' - 3')	Reversed primers (5' - 3')
1	GLUT 4	TCTCCGGTTCCCTTGAGTTGT	TTCCCCATCTTCAGAGGCCGAT
2	Fatty acid-binding protein 3 (FABP3)	ACCAAGGCGGCCACAAATCAT	CGACCAGCTGTAGCCCTGT
3	Urotensin II	CTCTGGAGGAGCTGGAGAGG	CTTGCCAGTTAGAGGCCTTC
4	Actin, beta (Actb)	CGTGCCCTCTAGCACC	ATGAACGCGCTCAGTACAGTCCG
Fig. 1 Aqueous extract of *Sterculia tragacantha* leaf suppresses oxidative stress biomarkers in the heart of STZ-induced diabetic rats.
Data expressed as mean ± SD, n = 10. * Mean is significantly different compared to Diabetic Control at \(p < 0.05 \);
Mean is significantly different compared to Normal Control
Legend: DR: Diabetic rats; LDST: Low dose of *Sterculia tragacantha* leaves (150 mg/kg); HDST: High dose of *Sterculia tragacantha* leaves (300 mg/kg); MET: metformin (200 mg/kg); SOD: Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase; GST: Glutathione S-transferase; GSH: Reduced Glutathione; and MDA: Malondialdehyde

Fig. 2 Aqueous extract of *Sterculia tragacantha* leaf ameliorates hyperlipidemia in STZ-induced diabetic rats.
Data expressed as mean ± SD, n = 10. * Mean is significantly different compared to Diabetic Control at \(p < 0.05 \);
Mean is significantly different compared to Normal Control
Legend: DR: Diabetic rats; LDST: Low dose of *Sterculia tragacantha* leaves (150 mg/kg); HDST: High dose of *Sterculia tragacantha* leaves (300 mg/kg); MET: metformin (200 mg/kg); HDL-C: High density lipoprotein-cholesterol; Trig: Triacylglycerols; and LDL: Low density lipoprotein
HDL levels compared to both normal control and diabetic treated groups. But diabetic rats placed on LDST, HDST and MET exhibited no significant ($p > 0.05$) difference in HDL levels compared to the normal control group (Fig. 2).

3.3 Aqueous extract of *Sterculia tragacantha* leaf inhibits inflammation and apoptosis in diabetic rats

Diabetic control rats demonstrated a significant ($p < 0.05$) rise in the level of cardiac troponin I and CKMB levels compared to other groups. Hence, diabetic rats treated with LDST, HDST, and MET revealed a significant ($p < 0.05$) reduction in cardiac troponin I and CKMB levels. Although diabetic rats treated with HDST and MET presented no significant ($p > 0.05$) difference with normal control rats as indicated in Fig. 3. Also, in diabetic control animals, there was a significant ($p < 0.05$) increase in the levels of C-reactive protein when compared to other groups. Whereas, diabetic rats that received HDST indicate no significant ($p > 0.05$) difference compared with normal control rats. Furthermore, diabetic control rats show a significant ($p < 0.05$) increase in the level of TNF-alpha compared to other groups. This was drastically reduced in all the treated groups with no significant ($p > 0.05$) difference in diabetic rats given LDST, HDST and MET when linked to normal control rats.

3.4 Aqueous extract of *Sterculia tragacantha* leaf on relative gene expression of glucose transport 4 (GLUT-4), fatty acid-binding protein 3 (FABP 3), and urotensin II in diabetic rats

There was a substantial reduction in GLUT-4 relative gene expression in the diabetic control group when linked to other groups. There was no significant ($p > 0.05$) difference in GLUT-4 relative gene expression of diabetic animals treated with HDST and MET when related to normal control rats (Fig. 4).

In Fig. 4, there was a noticeable reduction in relative gene expression of FABP3 in diabetic control animals when related to other groups. Also, there was a substantial difference in relative gene expression of FABP3 in diabetic rats treated with LDST, HDST and MET linked with both normal and diabetic control groups.

There was a noticeable upsurge in the relative gene expression of urotensin II in diabetic control rats over other groups. Also, the diabetic rats treated with LDST and HDST exhibited a significant ($p < 0.05$) difference when related to both normal and diabetic control rats (Fig. 4).

3.5 Aqueous extract of *Sterculia tragacantha* leaf on heart histopathology examination in diabetic rats

Figure 5 shows the histological examinations in the heart of diabetic rats administered aqueous extract of *S. tragacantha* leaves. There were severe degradation, congestion,
necrosis and inflammation in diabetic control heart tissues linked to other groups. However, at the end of the experimental trial, this was ameliorated in diabetic rats especially in those that received HDST with normal degradation, congestion, necrosis and inflammation like the normal control group.
4 Discussion

The major approach of controlling diabetes mellitus is by lowering fasting blood glucose levels as well as all the associated complications. In this study, streptozotocin (STZ) was employed to mimic diabetes mellitus in experimental animals. A low dose of STZ was used to cause partial beta cell destruction, resulting in mild insulin deficiency. This exhibited hyperglycemia in the animals, probably linked to the partial destruction of pancreatic beta-cell due to abnormal production of reactive oxygen species (ROS) by the diabetogenic agent used. Hence, the administration of aqueous extract of Sterculia tragacantha (ST) leaf possibly demonstrated normoglycemic potential on those diabetic animals as demonstrated in Figs. 1 to 5. This could be attributed to the antioxidant properties of ST leaf in protecting pancreatic β-cells against ROS, which encourages an upsurge in insulin secretion.

One of the proposed mechanisms of action of this plant extract as anti-diabetic cardiomyopathy was its ability to counteract oxidative stress as indicated in Fig. 1. Persistent hyperglycemia stimulates the generation of ROS and reactive nitrogen species (RNS) in the heart mitochondria. Surplus ROS support rises in lipid peroxidation (MDA) and subsequently changes membrane structure and enzyme activities. In this study, diabetic rats presented momentarily raised in MDA probably due to accumulation of free radicals which might lead to DNA fragmentation and protein damage of the heart tissue. This is in accordance with the previous study carried out by Alabi et al. However, this was ameliorated in diabetic rats that received ST leaf (LDST and HDST) probably due to its antioxidant ability. In another word, diabetic animals showed a reduction in cardiac GSH, designating its excessive usage in the redox-tackled cellular vicinity. SOD, an enzyme involved in the dismutation of superoxide, CAT and GPx are enzymes that catalyze the breakdown of hydrogen peroxide (free radical) to water and oxygen, and GST is a detoxification enzyme that functions in safeguarding cellular macromolecules from attack by reactive electrophiles.

The levels of all these (enzymatic and non-enzymatic) were noticeably increased in diabetic animals treated with the two doses of ST leaf, which were drastically reduced in diabetic rats, supporting their roles in scavenging the generated ROS due to STZ. This may be associated with ROS mopping up the ability of the extract. Thus, this is in accordance with the previous report by Al-Rasheed et al.

In addition, hyperlipidemia is an additional element of cardiac dysfunctions that can cause death in individuals with diabetes mellitus. The findings obtained showed that diabetic rats developed hyperlipidemia because of elevated levels of their lipid profiles with a reduction in HDL-C, presumably because of increment in the activation of free unsaturated fats from the fringe terminals. Hence, diabetic rats placed on LDST and HDST ameliorate hyperlipidemia by increasing HDL-C, which makes it beneficial in the management of diabetic cardiomyopathy.

According to Frati et al., oxidative stress and inflammation are acknowledged in promoting diabetic cardiomyopathy via cardiac hypertrophy. In this study, persistent of hyperglycemia motivate cardiomyocyte damage as evidence in elevated serum CK-MB and cardiac troponin I (Fig. 3). Creatine kinase-MB (CK-MB) is an enzyme present mainly in the heart muscle cells, as one of the isoenzymes of creatine-kinase-CK. On the other hand, cardiac troponin I play an important role in the binding of actin in thin myofilaments to hold the actin-tropomyosin complex in order, it also averts myosin from binding to actin in the relaxed muscle. One of the ways of detecting myofibrillar degeneration is by increased circulating CK-MB and cardiac troponin I as noticed in this study. This may be linked to an increase in the level of inflammation as indicated in Fig. 1. However, diabetic rats administered LDST and HDST revealed a significant decline in the levels of these biomarkers probably connected to the anti-inflammatory ability of the extract as illustrated in Fig. 1. This is in line with the previous report by Safi et al.

Suzuki et al. stated that cardiac inflammation, apoptosis, and fibrosis are all important factors in DCM. The persistent increase in ROS generation in STZ-induced diabetes animals may be responsible for an increase in the level of circulating CRP and TNF-α. Remarkably, diabetic rats maintained on LDST and HDST showed a significant reduction in serum CRP and TNF-α levels. Therefore, this corroborates the anti-inflammatory ability of the plant extract used as previously reported in Fig. 1.

Thorens and Mueckler reported that mammalian cells consume glucose, mainly for energy generation, via glucose transporter proteins. GLUT-4 is a glucose transporter responsible for glucose uptake into the cardiac muscles. In the diabetes mellitus condition, the level of GLUT-4 is always hindered in cardiac muscles which encourages hyperglycemia in the bloodstream. This was witnessed in this study (Fig. 4), however, the administration of LDST and HDST into the diabetic animals was able the increase the level of GLUT-4 gene expression and possibly promote glucose assimilation into the cardiac muscles.

Urotensin–II gene (U–II) is a well-known factor in vascular contraction in mammals, especially in the heart. The U–II plays an important role in insulin resistance, impaired glucose tolerance, impaired glucose transport to muscles through GLUT-4, etc. Therefore, over-expression of the...
cardiac U-II gene is an indicator of DCM as shown in Fig. 4, also, its over-expression can be linked to its noticeable decreased in GLUT-4 levels as indicated in Fig. 4. Interestingly, diabetic animals maintained on LDST and HDST were able to normalize the level of U-II, probably due to an increase in GLUT-4 relative gene expression as demonstrated by this extract. This is in accordance with the report of Jafria et al.\(^3\) According to Kusudo et al., fatty acid-binding proteins 3 (FABP3) are known as small cytosolic proteins, belonging to a superfamily of lipid-binding proteins. FABP3 expressions are present in series of cells, particularly the heart cells. FABP3 is involved in fatty acid (FA) uptake, transport, esterification, and β-oxidation for energy generation, particularly in the heart muscles\(^3\). Hence, in this study, the significant decrease in FABP3 expression in diabetic control animals may be associated with over usage of this protein in FA uptake due to non-useful of the available glucose for the body system. But at the end of the experimental trial, the LDST and HDST were able to boost the expression of this protein, which may be associated with their ability to make glucose available into the cells and render a decrease in FA uptake (Fig. 4).

Moreover, the histological examination of the diabetic control heart (Fig. 5) showed myocardium degeneration as well as improved collagen deposition. This may be linked to oxidative stress, due to persistent hyperglycaemia experienced in this study. This is in line with the early work described by Al-Rasheed et al.\(^1\). In another vein, cardiomyocytes, as well as inflammatory cells, encourage fibrosis in the animal’s diabetic control heart due to the release of cytokines and profibrotic factors\(^2\). However, administration of LDST and HDST noticeably reduced the synthesis of collagen and fibrosis, presumably via its antioxidant booster ability which led to a reduction in heart inflammation in diabetic animals. Therefore, the administration of ST inhibited histological alterations and deposition of collagen in the heart of diabetic animals. Added to this, the proposed mechanism of action of ST is illustrated in Fig. 6.

5 Conclusion

It can be presumed from this study that aqueous extract of Sterculia tragacantha leaf ameliorated hyperlipidemia, oxidative stress biomarkers by increasing the antioxidant enzyme activities and decrease in lipid peroxidation, enhanced CK-MB, CRP, cardiac troponin I, TNF-α, and uro-tensin-II levels, and improved GLUT4 and FABP3 expressions, supported by histological examination. However,
more research into the isolation of different phytochemicals from this plant is required to elucidate the proper mechanism of action as an anti-cardiomyopathy agent.

Declarations

Author Contributions

This research was designed by BOA, BEO, OAO, and FAB; BOA, BEO, OAO, FAB, SAO, and OEL performed the research; BOA, BEO, OAO, FAB, SAO, and OEL contributed to the analytic tools and analyzed the data; and the manuscript was written by BOA, BEO, OAO, FAB, SAO, and OEL.

Acknowledgment: The authors want to appreciate all the Technologists involved in this research work.

Ethical Approval: The experimental protocol of Afe Babalola University Animal Ethical Committee (ABUAD/2020/SCI/BCH/011).

Consent to Participate: Not applicable.

Consent to Publish: Not applicable.

Authors Contributions: All authors are involved in designing, carrying out the experiment, drafting and writing the original manuscript.

Funding: This manuscript was sponsored by all the authors.

Competing Interests: The authors declare no conflict of interest.

Availability of data and materials: Only on request from the corresponding author.

References

1) Al-Attar, A.M.; Alsalmi, F.A. Effect of Olea europaea leaves extract on streptozotocin-induced diabetes in male albino rats. Saudi J. Biol. Sci. 26, 118-128 (2019).

2) Ajiboye, B.O.; Oyinloye, B.E.; Agboinghale, P.E.; Onikanni, S.A.; Asogwa, E.; Kappo, A.P. Antihyperglycaemia and related gene expressions of aqueous extract of Gongronema latifolium leaf in alloxan-induced diabetic rats. Pharm. Biol. 57, 604-611 (2019).

3) Boudina, S.; Sena, S.; O’Neill, B.T.; Tathireddy, P.; Young, M.E.; Abel, E.D. Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112, 2686-2695 (2005).

4) Al-Rasheed, N.M.; Al-Rasheed, N.M.; Hasan, I.H.; Al-Amin, M.A.; Al-Ajmi, H.N. et al. Simvastatin ameliorates diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxid. Med. Cell. Longev. 2017, 1092015 (2017). doi: 10.1155/2017/1092015

5) Bhattacharjee, N.; Dua, T.K.; Khanra, R.; Joardar, S.; Nandy, A.; Saha, A.; De Feo, V.; Dewanjee, S. Protocatechuic acid, a phenolic from Sanseveria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front. Pharmacol. 8, 251 (2016). doi: 10.3389/fphar.2017.00251

6) Ong, K.L.; Lam, K.S.; Cheung, B.M. Urotensin II: its function in health and its role in disease. Cardiovasc. Drugs Ther. 19, 65-75 (2005). doi: 10.1007/s10557-005-6899-x

7) Zhuang, L.; Li, C.; Chen, Q.; Jin, Q.; Wu, L. et al. Fatty acid-binding protein 3 contributes to ischemic heart injury by regulating cardiac myocyte apoptosis and MAPK pathways. Am. J. Physiol. Heart Circ. Physiol. 316, H971-H984 (2019). doi: 10.1152/ajpheart.00360.2018

8) del Collado, M.; da Silveira, J.C.; Sangalli, J.R.; Andreade, G.M.; Sousa, L.R.S. et al. Fatty acid binding protein 3 and transzonal projections are involved in lipid accumulation during in vitro maturation of bovine oocytes. Sci. Rep. 7, 2645 (2017). doi: 10.1038/s41598-017-02467-9

9) Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes. Diabetes Care 27, 1047-1053 (2004).

10) Ijeoma, U.R.; Oyebuchi, N.C.; Ositadimma, U.S. Evaluation of the anti-arthritic effect of Sterculia tragacantha (lindl.) leaf extract in rats. Am. J. Pharmacol. Toxicol. 9, 107-113 (2014).

11) Mogbojuri, O.M.; Adedapo, A.A.; Abatan, M.O. Phytochemical screening, safety evaluation, anti-inflammatory and analgesic studies of the leaf extracts of Sterculia tragacantha. J. Complement. Integr. Med. 13, 221-228 (2016). doi: 10.1515/jcim-2015-0114

12) Ajiboye, B.O.; Shouibare, M.T.; Oyinloye, B.E. Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. J. Diabetes Metab. Disord. 19, 343-352 (2020). doi: 10.1007/s40200-020-00515-2

13) Ajiboye, B.O.; Oyinloye, B.E.; Essien, P.E.; Onikanni, S.A.; Ojo, O.A.; Kappo, A.P. Ameliorative potential of Sterculia tragacantha aqueous extract on renal gene expression and biochemical parameters in streptozotocin induced diabetic rats. J. Pharm. Investig. 51, 103-113 (2021).

14) Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

15) Asrafuzzaman, M.; Cao, Y.; Afroz, R.; Kamato, D.; Gray, S.; Little, P.J. Animal models for assessing the impact of natural products on the aetiology and metabolic pathophysiology of Type 2 diabetes. Biomed. Pharmacother. 89, 1242-1251 (2017). doi: 10.1016/j.biomedpharma...
24) Upaganlawar, A.; Balaraman, R. Protective effects of Lagenaria siceraria (Molina) fruit juice in isoproteenol-induced myocardial infarction. *Int. J. Pharmacol.* 6, 645-651 (2010).

25) Safi, M.M.; Anwer, T.; Khan, G.; Siddiqui, R.; Sivakumar, S.M.; Alam, M.F. The combination of canagliflozin and omega-3 fatty acid ameliorates insulin resistance and cardiac biomarkers via modulation of inflammatory cytokines in type 2 diabetic rats. *Korean J. Physiol. Pharmacol.* 22, 493-501 (2018).

26) Suzuki, H.; Kayama, Y.; Sakamoto, M.; Iuchi, H.; Shimagiri, I. *et al.* Arachidonate12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. *Diabetes* 64, 618-630 (2015).

27) Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. *Front. Immunol.* 9, 754 (2018). doi: 10.3389/fimmu.2018.00754

28) Kokolakis, G.; Sabat, R.; Kruger-Krasagakis, S.; Eberle, J. Ambivalent effects of tumor necrosis factor alpha on apoptosis of malignant and normal human keratinocytes. *Skin Pharmacol. Physiol.* 34, 94-102 (2021). doi: 10.1159/000513725

29) Thorens, B.; Mueckler, M. Glucose transporters in the 21st Century. *Am. J. Physiol. Endocrinol. Metab.* 298, 141-145 (2010).

30) Jafria, A.A.; Sharma, S.B.; Khurana, N.; Mehandiratta, M.; Singh, U.R.; Luthra, K. Herbal anti-hyperglycemic compound increases expression of glucose transporter molecules in diabetic rats. *J. Diabetes Metab.* 10, 824 (2019). doi: 10.35248/2155-6156.19.10.824

31) Khelifi, N.; Karimi, J.; Tavilani, L.; Khodadadi, L.; Goodarzi, M.T. The effect of silymarin on the expression of urotensin–II and urotensin–II receptor genes in the liver tissue of type 2 diabetic rats. *J. Babol. Univ. Med. Sci.* 21, 27-33 (2019).

32) Barrete, P.O.; Schwertani, A.G. A closer look at the role of urotensin II in the metabolic syndrome. *Front. Endocrinol.* 3, 165-175 (2012).

33) Kusudo, T.; Kontani, Y.; Katoaka, N.; Ando, F.; Shimokata, H.; Amashita, H. Fatty acid-binding protein 3 stimulates glucose uptake by facilitating AS160 phosphorylation in mouse muscle cells. *Genes Cells* 16, 681-691 (2011).

34) Zhang, L.; Zhou, H.; Peng, Q.; Jiang, W.; Qiao, W.; Wang, G. Fatty acid binding protein 3 is associated with skeletal muscle strength in polymyositis and dermatomyositis. *Int. J. Rheum. Dis.* 20, 252-260 (2017).