Multifunctional graphene heterogeneous nanochannel with voltage-tunable ion selectivity

Shihao Su1,2,6, Yifan Zhang1,2,6, Shengyuan Peng1,2, Linxin Guo1,2, Yong Liu1,2, Engang Fu1, Huijun Yao3,4, Jinlong Du5, Guanghua Du3,4 & Jianming Xue1,2

Ion-selective nanoporous two-dimensional (2D) materials have shown extraordinary potential in energy conversion, ion separation, and nanofluidic devices; however, different applications require diverse nanochannel devices with different ion selectivity, which is limited by sample preparation and experimental techniques. Herein, we develop a heterogeneous graphene-based polyethylene terephthalate nanochannel (GPETNC) with controllable ion sieving to overcome those difficulties. Simply by adjusting the applied voltage, ion selectivity among K+, Na+, Li+, Ca2+, and Mg2+ of the GPETNC can be immediately tuned. At negative voltages, the GPETNC serves as a mono/divalent ion selective device by impeding most divalent cations to transport through; at positive voltages, it mimics a biological K+ nanochannel, which conducts K+ much more rapidly than the other ions with K+/ions selectivity up to about 4.6. Besides, the GPETNC also exhibits the promise as a cation-responsive nanofluidic diode with the ability to rectify ion currents. Theoretical calculations indicate that the voltage-dependent ion enrichment/depletion inside the GPETNC affects the effective surface charge density of the utilized graphene subnanopores and thus leads to the electrically controllable ion sieving. This work provides ways to develop heterogeneous nanochannels with tunable ion selectivity toward broad applications.

Received: 24 January 2022
Accepted: 8 August 2022
Published online: 19 August 2022

1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China. 2CAPT, HEDPS and IFSA, College of Engineering, Peking University, Beijing 100871, PR China. 3Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China. 4University of Chinese Academy of Sciences, Beijing 100049, PR China. 5Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, PR China.
6These authors contributed equally: Shihao Su, Yifan Zhang. E-mail: gh_du@impcas.ac.cn; jmxue@pku.edu.cn
NATMs with tunable ion selectivity are desirable to overcome those difficulties and have gained widespread attention in the last few years20,22,23. For example, Abraham et al.15 prepared graphene oxide (GO) membranes with different interlayer spacing by adjusting the relative humidities of the sealed storage containers, and those GO sheets exhibited different relative cation permeation rates. Using a time-dependent nitrogen-doping technique, Song et al.24 created several nitrogen-doped nanoporous graphene with different ion sieving abilities. Zhang et al.17 reported that the GO membranes with controllable surface charges introduced by polyelectrolyte modification exhibited various ion selectivity and charge-guided ion transport. Also, electrical-tunable ion selectivity could be promising20,22. Channels could be realized by electrically gating24. Although controllable water permeation and ion flow through nanochannels could be realized by electrically gating24,28, experimental research on ion selectivity is rare and the mechanism remains elusive (e.g., determined by nanobubbles35 or membrane surface charges20).

Ion flow can also be tuned by applied voltage in a nanochannel with ion rectification, which is the directional transport of the ions through the channel at different voltages25,26. In a rectifying nanochannel, such as a conically shaped polyethylene terephthalate nanochannel (PETNC), which is promising as a biomimetic nanochannel due to its flexibility and ease of chemical modification, the cation/anion selectivity can be achieved12,13; but it is difficult for a conical PETNC with entrance diameters larger than several nanometers to sieve metal ions31–33, because such sizes are much larger than the ion hydrated diameters (a few angstroms27,28) in electrolyte solutions and therefore the factors leading to ion separation (e.g., steric hindrance, electrostatic repulsion, and dielectric effects such as dehydration)33,34 hardly work. Nevertheless, the voltage-dependent ion transport in a rectifying nanochannel suggests that a nanochannel device with heterogeneous structure consisting of the pristine 2D nanopores with unchangeable ion selectivity along with the rectifying nanochannel might achieve voltage-tunable ion sieving. Such studies are few because NATMs are usually supported by non-selective and non-rectifying nanoporous materials such as SiN, and anodized aluminum with μm-sized cylindrical nanochannels, which are merely supports with negligible influence on the ion sieving32,33.

Here, we design a heterogeneous GPETNC with graphene sub-nanopores on the base side of a conical PETNC. By taking the best of both the components, it exhibits excellent voltage-controlled ion selectivity among K+, Na+, Li+, Ca2+, and Mg2+, which is capable of quickly meeting different demands for complex and variable scenarios in practice. The GPETNC is also able to rectify ion currents with opposite rectification for mono- and divalent ions. Finite element calculations indicate that the tunable ion selectivity arises from the different effective surface charges of graphene subnanopores influenced by the voltage-dependent enrichment/depletion of ions inside the GPETNC. The opposite preferential transport directions of the mono- and divalent cations arise from the differences in the diffusion currents, which are generated by the ion concentration gradients. The multifunctional GPETNC exhibits its promise as not only a mono/ divalent ion selective device but also a biomimetic ion channel, as well as a cation-sensitive diode, which indicates the great potential of such intriguing heterogeneous nanochannels for diverse applications.

Results

Fabrication of the GPETNC

The GPETNC consisted of graphene subnanopores and a single conical PETNC, of which the base side was in contact with the graphene (Fig. 1a, b). The GPETNC was designed to take the advantage of both 2D nanopores and rectifying nanochannels, with their primary functional areas (graphene subnanopores and the tip entrance of the conical PETNC) spatially separated for better performances. Such structure was different from the previous structures of nanoporous 2D materials on ordinary supports (which hardly have influences on ion selectivity) with only a single confined functional area (i.e., 2D nanopores35). An asymmetric track-etching technique39,40 was used to fabricate the conical nanochannel in a 12-μm-thick PET membrane. Briefly, a pristine PET membrane was first irradiated by a single swift heavy ion, which could create a nanometer-sized damage track in the membrane, and then asymmetrically etched with one side of the membrane contacting the etchant and the other contacting the stop medium. The fabricated conical PETNC had the base entrance diameter of ∼840 nm estimated from the etching time and the tip diameter of ∼140 nm obtained by fitting the size of a theoretical model to experimental data (Supplementary Fig. 1). Monolayer graphene grown by a chemical vapor deposition method41,42 with negligible defects (Supplementary Fig. 2) was transferred on the prepared PET membrane (making graphene on the base side of the PETNC) using a wet transfer procedure with polymethyl methacrylate as the mediator43,44. Ultimately, irradiation of energetic ions45 was utilized to introduce subnanopores in the transferred graphene suspended on the PETNC. More details about the fabrication procedures of the GPETNC are presented in ‘Methods’. Aberration-corrected scanning transmission electron microscope (STEM) was used to characterize the graphene subnanopores created under the ion irradiation, and the pores had the average diameter of ∼0.5 nm and density of ∼5.47 × 108 cm2 (Supplementary Fig. 3), which
the graphene subnanopores and therefore be capable of preventing
Hence, the GPETNC was likewise supposed to have negative charges on
charges on nanoporous graphene surface due to hydroxide adsorption
fabrication in experiments, despite the debate of the nature of electric
the negative charges on graphene nanopores during its transfer or
pores compared to cations. The cation/anion selectivity arises from
means that most anions are impeded when transporting through the
selectivity of graphene nanopores9,22,43. The high selectivity ratio con-

duced (gray), permeation (yellow), and mobility (blue), which indicated
that they were obtained by comparing the normalized ion conductance22,43,54, the
ion permeation rate22,34,35, and the mobility ratio of cation against chloridion43,57,
respectively. The light blue region is the range of tunable selectivity of the
GPETNC at different voltages in this work (see Supplementary Fig. 5 for the
original data). The NATMs in references include graphene9,22,43,44, graphene
oxide with various modifications22,34,35, molybdenum disulfide (MoS2)44, and
composite structures of graphene, MoS2, and hexagonal boron nitride (hBN)46.

are consistent with the results of our recent molecular dynamics simulations44. Figure 1c shows four representative subnanopores with
the corresponding atomic structures, and the observed pores (see all
of them in Supplementary Fig. 3) had structures in agreement with the
theoretical predictions made by Rajan et al.45 when solving the isomer
cataloging problem of nanopores in monolayer graphene.

Tunable ion sieving in the GPETNC
To measure the ion selectivity, the GPETNC was characterized by
recording the current-voltage (I-V) curves in a custom-designed system
with two cells filled with chloride salt solutions using Ag/AgCl elec-
trodes (Fig. 1b). We first considered the cation/anion selectivity of the
GPETNC. Graphene nanopores created under ion irradiation have been
reported to exhibit extremely high cation/anion selectivity9,43, which means
that most anions are impeded when transporting through the
pores compared to cations. The cation/anion selectivity arises from
the negative charges on graphene nanopores during its transfer or
fabrication in experiments, despite the debate of the nature of electric
charges on nanoporous graphene surface due to hydroxide adsorption
or pore edge due to functional groups in electrolyte solutions22,34,45. Hence,
the GPETNC was likewise supposed to have negative charges on
the graphene subnanopores and therefore be capable of preventing
the transport of anions. We further identified the K+/Cl− selectivity of
the GPETNC to be 46 using the Goldman–Hodgkin–Katz model44 (see
details in “Methods”), which does not explicitly depend on the channel
size and has been successfully applied in studying the cation/anion
selectivity of graphene nanopores22,43,44. The high selectivity ratio con-
firmed that the transport of Cl− through the GPETNC could be neglected compared to that of cations.

Inter-cation selectivity of the GPETNC was obtained by directly
comparing the normalized conductance g_i of cation i (compared to
that of K+), which was the measured ion conductance in 0.1 M cation-
chloride solutions (KCl, NaCl, LiCl, MgCl2, and CaCl2) adjusted to
consider the differences in electric mobilities and charges of the
cations (as shown in “Methods”). The selectivity S_i defined using this method is effective to describe the ability of the GPETNC to sieve
different ions (a larger S_i indicates that cation i can transport more easily) when the ion current caused by Cl− is negligible22,34. Figure 2a shows the I-V curves of the GPETNC in different chloride salt solutions,
which are nonlinear and different from the results of pristine graphene
nanopores22,43. Therefore, the normalized conductance g_i was calculated
at different voltages (Fig. 2b), and the number was found to be
voltage-dependent and varied with different ions, which indicates the
diverse abilities to transport through the GPETNC.

The ion selectivity of the GPETNC is presented in Fig. 2c. At
negative voltages, $S_{K^+} < S_{Na^+} < S_{Li^+} < S_{Ca^{2+}} < S_{Mg^{2+}}$, which is similar to the order of the ion selectivity of pristine graphene nanopores22,43. In
this case, the GPETNC exhibited the ability to sieve the mono-
and divalent ions with mono/divalent ion selectivity up to ~3.3 (the average
selectivity of monovalent ions against that of divalent ions at ~1 V). In
addition, the ion selectivity was voltage-dependent, especially for
monovalent ions (Na+ and Li+), whose selectivity decreased with the
increase of applied voltage.

However, at positive voltages, we surprisingly found that the
GPETNC exhibited $S_{K^+} > S_{Na^+} > S_{Li^+} > S_{Ca^{2+}} > S_{Mg^{2+}}$, with the
maximum K+/ions selectivity of about 4.6 at 0.2 V (Fig. 2c), which is dif-
ferent from the results at negative voltages. Under this circumstance, the
GPETNC conducted K+ up to ~4.6 times more rapidly than the other
ions, which well resembles a biological potassium-selective ion channel, where the ion transport tends to be affected by the transmembrane voltage\(^{22,33}\). Therefore, the results suggest fresh ways to mimic biological ion channels and study the in-channel ion transport mechanism using artificial nanochannels with similar heterogeneous structures. The above findings indicated that the ion selectivity of the GPETNC could be facilely tuned by simply adjusting the applied voltage, and the GPETNC is a promising multifunctional nanochannel as a mono/divalent ion selective device at negative voltages and a biomimetic K\(^+\) channel at positive voltages.

We further compared the ion selectivity of the GPETNC with that of some NATMs reported before\(^{22,23,36,38,42,45-47}\) as shown in Fig. 2d. The light blue region is the range of the tunable ion selectivity of the GPETNC in this work, in contrast with other NATMs with fixed ion selectivity (patches), and the sieving of K\(^+\)/Na\(^+\) could be accomplished by the GPETNC while many devices fail in this. The results indicate that the great promise of the GPETNC as a versatile ion selective nanochannel because its ion selectivity can be quickly adjusted by adjusting the applied voltage, with no need in additional modifications to the sample itself. Furthermore, the GPETNC suggests such a heterogeneous nanochannel, in which, for example, nanoporous 2D materials such as MoS\(_2\), hBN, GO, and early transition-metal carbides and carbonitrides (MXenes) combined with the conical PETNC, might also exhibit a facilely tunable ion sieving ability.

The ion selectivity of the GPETNC was demonstrated based on the experiments in single electrolyte solutions. We noticed that ion selective nanochannels and membranes are designed and fabricated in order to function in mixed solutions, i.e., to separate a single (or more) ion from a mixture of ions. Therefore, such research is valuable for each emerging ion selective nanochannel. However, for nanochannels with selectivities based on the experiments of ion conductance\(^{22,23,36,38}\) or mobility\(^{45-47}\), which is characterized by the measured ion current, it is difficult to study their performance in mixed solutions, because all ions contribute to the total current and their portions are hard to be distinguished. Taking K\(^+\) and Na\(^+\) as an example, we fabricated a GPETNC with ion selectivity shown in Supplementary Fig. 6a, and the \(I-V\) curve in the mixed solution containing both K\(^+\) and Na\(^+\) was complicated and indicated the elusive effect of the interaction between K\(^+\) and Na\(^+\) on the ion transport (Supplementary Fig. 6b). Considering that the experiments in single solutions focusing on the differences in ion conductance/mobility are effective to characterize the ion selectivity of nanochannels and that the selectivity is suggested to be valid in mixed solutions\(^{22,23,36,45-47}\), detailed studies of the interaction between different ions in mixed solutions are beyond the scope of this work, and future research could focus on this.

In addition to the voltage-tunable ion sieving, the GPETNC also exhibited the ability to rectify ion currents as indicated by the nonlinear \(I-V\) curves of the GPETNC in different chloride salt solutions (Fig. 2a). The extent of the ion rectification is generally characterized by the rectification ratio (i.e., the ratio of the absolute ion currents at opposite voltages according to the \(I-V\) curves, which was defined as \(|I_{+V}|/|I_{-V}|\) here), and its value also reflects the preferential direction of ion transport in rectifying nanochannels well\(^{22,32,35}\). Figure 3a shows the rectification ratios of different ions of the GPETNC. For monovalent ions (K\(^+\), Na\(^+\), and Li\(^+\)), their rectification ratios were smaller than 1, which indicated that the transport of these ions in the GPETNC had a preferential direction from the tip side to the base side. However, for divalent ions (Ca\(^{2+}\) and Mg\(^{2+}\)), the preferential direction of transport reversed as base-to-tip, as the rectification ratios were found to be larger than 1. Although ion rectification phenomenon exists in a pristine conical PETNC in different chloride salt solutions at the same concentration\(^{35,37}\), the rectification ratios are always smaller than 1 for not only monovalent ions but also divalent ones, which indicates that the preferential direction of all of them keeps from the tip to the base entrance. Besides, the preferential direction does not reverse in electrolyte solutions with different concentrations for a pristine conical PETNC\(^{35,37}\), and neither did the GPETNC (see Fig. 3b, c). Hence, the opposite rectification of mono- and divalent ion transport was peculiar to the GPETNC, and thus it could serve as a cation-responsive non-fluidic diode.

Heterogeneous structure of the GPETNC determines its tunable ion selectivity

The performance of a nanochannel can be attributed to its structure\(^{38}\), and the same also applies for the GPETNC with the heterogeneous structure of graphene subnanopores on the base side of a conical PETNC (Fig. 1). The ion selectivity of the GPETNC is attributed to the existence of the graphene subnanopores, because a pristine conical PETNC has entrance diameters much larger than the ion hydrated diameters and therefore it can hardly sieve metal ions\(^{38-37}\). However, it is reported that the inter-cation selectivity of pristine graphene nanopores is independent on the applied voltage\(^{33,35}\), even for a cylindrical PETNC support\(^{31}\), which indicates that the voltage-tunable property of the ion selectivity of the GPETNC arises from the use of the conical PETNC (Fig. 1). The main difference between the conical and cylindrical PETNCs is that the former has voltage-dependent ion enrichment/depletion effects inside the channel while the latter does not\(^{38-32}\). Hence, the ion sieving of the GPETNC originates from the graphene subnanopores, and it is determined by certain factors (such as the diameter, structure, charge density, and functional groups of the pores)\(^{34,32,8}\), which we speculated to be affected by the voltage-dependent enrichment/depletion of ions inside the GPETNC to some extent.
Fig. 4 | Numerical calculations of distributions of ion concentration and electric potential in graphene-based polyethylene terephthalate nanochannel (GPETNC). a Concentration of potassium ion \(c_{K^+} \) along the center symmetry axis \(z \) of the GPETNC in 0.1 M KCl solution at different voltages. \(z = 0 \) and 12 \(\mu \)m represent the tip and base side of the GPETNC, respectively. b Distributions of \(c_{K^+} \) nearby a graphene subnanopore of the GPETNC in 0.1 M KCl solution at −1 and 1 V. Scale bars are 0.5 nm. c Electric potential \(\psi \) at different distances away from the graphene center along a perpendicular path nearby a graphene subnanopore of the GPETNC in 0.1 M KCl solution at −1 and 1 V. The path is 0.75 nm away from the pore center (Supplementary Fig. 8e). The gray dashed lines represent the graphene surfaces in the inner (left) and outer (right) sides of the GPETNC. \(\Delta \psi \) indicates the drop between the potential far away from the graphene surface (where \(\psi \) hardly changes) and the one on it. d \(\Delta \psi \) inner and outer the graphene surface in 0.1 M KCl and CaCl₂ solutions at different voltages.

To test the hypothesis, we calculated the distributions of the ion concentration and electric potential in the GPETNC in chloride salt solutions at different applied voltages by numerically solving the Poisson-Nernst-Planck equations (Eqs. (4)–(6) in "Methods") using COMSOL Multiphysics 5.3a Software (COMSOL, Inc.), and the details of the model and boundary conditions are shown in Supplementary Fig. 7. It is difficult to obtain analytical solutions in nanochannels with complex structures, and thus numerical simulations with the finite element method were used here, which have also been successfully utilized in studying the ion transport in nanofluidics\(^9\). Our theoretical calculations indicated that indeed there were the voltage-dependent enrichment and depletion of ions inside the GPETNC, and the distribution of the potassium ion concentration \(c_{K^+} \) in 0.1 M KCl solution is presented in Fig. 4a as an example. At negative voltages, \(c_{K^+} \) near the tip of the GPETNC was larger than the bulk value (dashed line), indicating the enrichment of the potassium ions, while they were depleted near the base side. In contrast, at positive voltages, the ion depletion occurred near the tip side of the GPETNC, and the enrichment occurred near the base. The degrees of the ion enrichment/depletion both increased with the increase of the absolute value of the electric potential \(\psi \), which indicates the absolute value of \(\psi \) far away from the graphene is close to the applied voltage, and it decreases as the location approaches the graphene surface because of the negative charges. For the same electrolyte solution, the effective charge density of graphene surface \(\sigma_{\text{gra}} \) can be qualitatively reflected by the potential drop \(\Delta \psi \) between the value of \(\psi \) far away from the graphene surface and the value on the surface; a larger \(\Delta \psi \) indicates a higher \(\sigma_{\text{gra}} \)\(^2\). Figure 4d shows that \(\Delta \psi \) in the outer side of the graphene surface barely changed at different voltages, because of the nearly unchanged degree of cation enrichment there (see Fig. 4b and Supplementary Fig. 8d). However, \(\Delta \psi \) in the inner side decreased with the increment of applied voltage from −1 V to 1 V, especially for monovalent cations, which was caused by the higher degree of the cation accumulation near the graphene surface inner side at a larger voltage (Fig. 4b). The results indicated that the applied voltage affected the cation enrichment near the graphene subnanopores inside the GPETNC, and thus changed the effective surface charge density, making it rely on the voltage (as schematically illustrated in Fig. 5).

The ion selectivity of the GPETNC arose from its graphene subnanopores as discussed before. It has been reported that the value of charge density of graphene nanopores influences the ion selectivity\(^3\). Our previous molecular dynamics simulations demonstrated that a graphene subnanopore with negative charges had a higher ion selectivity than a pore with no charge\(^3\), and things are similar for other subnanometer-sized channels (e.g., a single carbon nanotube with more negative charges has a higher ion selectivity\(^3\)).
Therefore, the inter-cation selectivity of the GPETNC relied on the applied voltage due to the voltage-dependent σ_{gra} demonstrated in the theoretical calculations. For monovalent cation-chloride solutions, the inner $\Delta \psi$ of the GPETNC at -1 V was much higher than that at 1 V (see Fig. 4d for KCl as an example), indicating a higher $|\sigma_{\text{gra}}|$ and thus it made the Na$^+$ and Li$^+$ selectivities of the GPETNC at -1 V higher than those at 1 V, as observed in the experiments (Fig. 2c). Nevertheless, for divalent cation-chloride solutions (e.g., CaCl$_2$ in Fig. 4d), the change of $\Delta \psi$ between -1 V and 1 V was much smaller than that in the KCl solution, which indicates a weaker influence of the ion enrichment at different voltages on σ_{gra}, as compared to the situations for monovalent ions (Fig. 5). Hence, the selectivities of Ca$^{2+}$ and Mg$^{2+}$ of the GPETNC slightly changed at different voltages. With the increase of applied voltage from -1 to 1 V, the selectivities of Na$^+$ and Li$^+$ decreased, and those of Ca$^{2+}$ and Mg$^{2+}$ kept in low values, eventually resulting in the high K$^+$/ions selectivity of the GPETNC at positive voltages as shown in the experiments (Fig. 2c). It is worth noting that studies on the influences of graphene nanopore charges on the inter-cation selectivity were rare$^{[4,7]}$, and the mechanism of the charges influencing the ion transport was unclear (e.g., affecting the electrostatic repulsion or dehydration degree of ions)$^{[4,7]}$. Such investigations are beyond the scope of this work, and thus future research can, for example, focus on the reasons why the experimentally measured ion selectivity of the GPETNC did not monotonously rely on the voltage, as departed from $\Delta \psi$ in theoretical calculations.

As for the opposite rectification of mono- and divalent ions of the GPETNC, it also arose from its heterogeneous structure. The GPETNC had a high K$^+$/Cl$^-$ selectivity of 46 as demonstrated before, which indicates that the transport of cations mainly contributes to the ion current. Theoretical calculations indicated the existence of the voltage-dependent cation enrichment/depletion inside the GPETNC (Fig. 4 and Supplementary Fig. 8), and the direction of the cation concentration gradient is the same as that of the applied electric field, i.e., tip-to-base at negative voltages and base-to-tip at positive voltages, enhancing the ion current, as shown in Fig. 5. For monovalent cations, the absolute concentration gradient between the tip and base sides at negative voltages was higher than that at positive voltages (Fig. 4a), thus resulting in a larger diffusion current. In this case, the preferential transport direction of monovalent cations was tip-to-base, as the rectification ratios were characterized to be smaller than 1 (Fig. 2a). However, the situation for the divalent cations was different, i.e., the absolute concentration gradient between the tip and base sides at negative voltages was lower than that at positive voltages (Supplementary Fig. 8b). Thus, divalent cations had the preferential transport in the base-to-tip direction (rectification ratios larger than 1 as shown in Fig. 2a), which was opposite to that of monovalent cations (Fig. 5).

In conclusion, we fabricated a multifunctional heterogeneous GPETNC with facilely voltage-tunable ion sieving ability. The GPETNC exhibited the promise as an efficient mono/divalent ion selective device, an excellent biomimetic ion channel, and a cation-sensitive nanofluidic diode. Its ion selectivity is determined by the graphene subnanopores with negative charges, which are affected by the voltage-dependent enrichment/depletion of ions inside the GPETNC, and the opposite rectification of divalent ions compared to monovalent ones rely on the differences in the diffusion currents caused by the ion concentration gradients. The unique and fascinating performance of the GPETNC results from the interaction between the ion selective graphene subnanopores and the rectifying conical PETNC. Therefore, a device with similar heterogeneous structures (i.e., nanoporous 2D materials supported by rectifying nanochannels), suggested by our work, might also have a voltage-tunable ion selectivity even with a wider range and the cation-sensitive ion rectification with a more excellent rectification ratio. The creation of such composite can be facile and simple, because of the mature fabrication techniques of...
NATMc72–74 and ion rectifying nanochannels30–32. For example, a nanochannel with a much stronger rectifying ability, in which the degree of the ion enrichment/depletion is also heavier, could replace the original one of the GPETNC in this work, and thus this new nanochannel might have a much higher ion selectivity and rectification ratio. In addition, GO membranes with fixed interlayer spacing could be transferred onto a cylindrical PETNC with uneven surface charge. The channel might have a much higher ion selectivity and rectifying ability, in which the interior surface of the pocket76,77. In the graphene growth, the Cu open edges crimped to improve the quality of synthesized graphene in contaminants. After dried, the Cu foil was folded as a pocket with the water, acetone, and isopropyl alcohol (IPA) for 5 min to remove surface contaminants. The Cu foil was successively cleaned via sonication in deionized water, acetone, and isopropyl alcohol (IPA) for 5 min to remove surface contaminants. After dried, the Cu foil was folded as a pocket with the open edges crimped to improve the quality of synthesized graphene in the interior surface of the pocket. In the growth curve, the Cu pocket was placed in a tube furnace and heated to 1030 °C for 30 min and maintained the temperature for 5 min in a mixture of 10 sccm H\textsubscript{2} and 10 sccm Ar. Then, 10 sccm CH\textsubscript{4} was additionally introduced for 20 min under a total pressure of ~0.30 Torr. The furnace was subsequently cooled down to ambient temperature in the mixture of 10 sccm H\textsubscript{2} and 10 sccm Ar for 40 min. Raman spectroscopy was utilized to evaluate the quality of the synthesized graphene, which was confirmed to be monolayer with negligible defects (Supplementary Fig. 2).

Transfer of graphene

For characterizing graphene subnanopores, the CVD grown graphene was transferred onto a Quantifoil TEM grid (R 1.2/L3, Au G200F1, Ted Pella, Inc.) using a similar direct transfer procedure reported in our previous work7 before ion irradiation experiments. The TEM grid with the carbon side was placed onto the graphene grown on Cu foil, which was carefully pressed to make the graphene tightly contact the TEM grid. Two drops of IPA were gently dropped on the sample to further increase the adhesion between the graphene and TEM grid after the IPA evaporated. Subsequently, 1 M ammonium persulfate aqueous solutions were used to etch the Cu foil for approximately 50 min. The graphene on TEM grid was then rinsed in deionized water for 5 min by three times to remove residual etchants. After the cleanout, it was dried under an infrared baking lamp at temperature of ~60 °C for 10 min.

For measuring ion currents of the GPETNC, the CVD grown graphene was transferred onto a prepared PET membrane with a conically shaped nanochannel using a similar wet transfer procedure reported in our previous works39,40 before ion irradiation experiments. Poly(methyl methacrylate) (PMMA, 950K A4, MicroChem Corp.) was spincoated onto the graphene grown on Cu foil with the first rotate speed of 500 rpm for 20 s and then 3000 rpm for 40 s. The sample was then placed on a heating plate (C-MAG HS 4, IKA Works Guangzhou Co., Ltd.) at temperature of 150 °C for 5 min to cure the PMMA layer. Similar to the transfer procedure of the graphene on TEM grid, 1 M ammonium persulfate aqueous solutions were used to etch the Cu foil for about 50 min, and the sample was rinsed in deionized water for 5 min by three times to remove residual etchants. Subsequently, the PMMA/graphene composite was transferred onto the prepared PET membrane, and it was dried in ambient conditions for 30 min followed by desiccation under an infrared baking lamp at temperature of ~60 °C for 30 min. Trichloromethane was used to dissolve the PMMA of the sample for 18 h, which was then rinsed in IPA for 5 min to remove residuals. At last, the graphene supported on PET membrane was dried under an infrared baking lamp at temperature of ~60 °C for 30 min.

Ion irradiation

To introduce subnanopores in graphene, the transferred graphene on TEM grid or PET membrane was perpendicularly irradiated by Au ions with energy of 500 keV and fluence of 1 × 1016 cm-2 (with current of ~30 nA) at room temperature and pressure of ~2.2 × 10-5 Torr using the 2 × 1.7 MV electrostatic accelerator of State Key Laboratory of Nuclear Physics and Technology, Peking University, China. To create a nanometric track (narrow damage trail) in PET membrane for subsequent track-etching procedure, a pristine PET membrane (12 μm thickness, Weifang Kaili Packing Materials Co., Ltd) was perpendicularly irradiated by a single 86Kr+ ion with energy of 2.15 GeV at room temperature using the sing-ion-hit system at the Lanzhou Interdisciplinary Heavy Ion Microbeam of Heavy Ion Research Facility in Lanzhou, Institute of Modern Physics, Chinese Academy of Sciences, China.

Fabrication of PETNC

The PET membrane with a single conical nanochannel was fabricated by the asymmetric track-etching technique using a similar procedure reported in our previous works39,40. The prepared PET membrane with a nanometric track irradiated by a single swift heavy ion was chemically etched in a custom-designed system with one conductivity cell containing the etchant of 2 M NaOH and the other of the stop medium of 1 M HCOOH as well as 1 M KCl, which was heating in a water bath at temperature of 60 °C. A Keithley picocammeter (Keithley 6457, Keithley Instruments, Inc.) using gold electrodes was applied to monitor the ion current through the PET membrane in the etching procedure under the applied voltage of 1 V at the side of the etchant. When the ion current reached ~0.5 nA in ~10 min, which indicated the birth of a conical nanochannel, the etchant was replaced by the stop medium to terminate the etching process, and the sample was subsequently rinsed in deionized water to remove residuals.

Characterization of graphene subnanopores

A dry-cleaning method with activated carbon powders79–82 was utilized to reduce surface contaminations of graphene after ion irradiation experiments. Nanoporous graphene on TEM grid was embedded in activated carbon powders in a glass vial and heated on a heating plate (C-MAG HS 4, IKA Works Guangzhou Co., Ltd). The temperature of the sample was increased from room temperature to 200 °C with rate of 2.5 °C/min, and this temperature was held for 30 min. The sample was subsequently let to cool down to room temperature and carefully taken out of the glass vial, followed by being gently purged with a nitrogen stream to remove the residual activated carbon powders.

Before imaging, the dry-cleaned graphene on TEM grid was baked at temperature of 160 °C and pressure of ~<10-5 Torr for at least 12 h to further reduce surface contaminations, allowed to cool down to about 60 °C under the vacuum, and then immediately loaded into the microscope column. Room temperature HAADF-STEM imaging was performed on the Nion U-HERMES200 aberration-corrected STEM located in the Electron Microscopy Laboratory of Peking University. The microscope was operated at an accelerating voltage of 60 kV to avoid electron radiation induced damage to the graphene while imaging83–85. The convergence semi-angel was 35 mrad with an annular recording range of 80–210 mrad. The electron probe diameters were focused to ~60 pm, and the beam current was measured as 28 pA for the imaging. The STEM images were recorded with 4096 × 4096 pixels, and each pixel collection time was 128 ms. The images were filtered using a Gaussian function implemented in the microscope.
软件，和 s 曲线的图像被调整以增加图像对碳原子和亚纳米孔的对比。

测量电流电压曲线
电流电压曲线由 Keithley picoammeter（Keithley 6487，Keithley Instruments，Inc.）测量，Ag/AgCl 电极在根据设计的系统中，两个电导池中填充了氯化钠溶液。电压在两个侧面的基底中应用，并且扫描电压从 -1 到 +1 V 以 0.2 V 的步进。每个电流电压曲线记录了三次以获得平均值和标准差的电流对应电压。

电流选择性
Cation/anion（i.e., K+/Cl– in this work）选择性被识别使用了 Goldmann–Hodgkin–Katz (GHK) 模型[30,31]，这不明确地依赖于通道尺寸，并且已经成功地用于表征石墨烯 nanopores[9,22,43]。C/Cl 的选择性 $S_{\text{Selectivity}}$ 是根据 GHK 电压方程

$$V_{\text{rev}} = \frac{k_B T}{e} \ln \left(\frac{S_{\text{GHK/c high}} + c_{\text{low}}}{S_{\text{GHK/c low}} + c_{\text{high}}} \right)$$ \hspace{1cm} (1)$$

其中 k_B 是玻尔兹曼常数，T 是温度，e 是电荷，c_{high} 和 c_{low} 是 KCl 溶液中的浓度。V_{rev} 是反转电压，V_{rev} 是反转电压，随机的，是被应用的净电流。当 V_{rev} 是 GHK 电压的估计值为 254 mV 由单峰拟合过剩和不足的线性回归方程的测量电流电压曲线 $c_{\text{high}} = 1$ M 和 $c_{\text{low}} = 1$ M（Supplementary Fig. 4），它假设要被校准在考虑红色反应的电极上。Ag/AgCl 电极在盐溶液中，被报道为 158.6 mV 在一个浓度比 KCl 溶液的。因此，K/Cl 的选择性是 GHK 模型的计算结果，约 46 基于方程 (1)。

不同类型的电荷移动性和电荷的量，是被正常化导纳的 g_i 的 cation i（相对 K）定义 $g_i = \frac{G_i}{Q_i \mu_i / k_B}$ 作为

$$S_i = \frac{g_i}{g_{K^+}} \cdot$$ \hspace{1cm} (2)$$

其中 G_i 是测量的通道导纳，cation-i 在不同电压的氯化物溶液，Q_i 是电荷的，和 μ_i 是电荷的移动性。因此，不同电荷的移动性和电荷的量的导纳，S_i 是相对 K 的选择性。因此，S_i 是 $S_{\text{Selectivity}}$ 的导纳的 g_{K^+} 作为

$$\nabla^2 \psi = -\frac{F}{e} \sum_i z_i c_i$$ \hspace{1cm} (3)$$

数值模型
离子在纳米通道中的运输是通过求解 Poisson–Nernst–Planck (PNP) 方程 (Eqs. (4)–(6)) 使用 COMSOL Multiphysics 5.3a 软件（COMSOL，Inc.）计算的。其中 ψ 是电位，z_i 是电荷数，c_i 是 cation-i 的浓度。$\nabla^2 \psi = -\frac{F}{e} \sum_i z_i c_i$ 作为

$$J_i = -D_i \left(\nabla c_i + \frac{z_i F}{RT} c_i \psi \right)$$ \hspace{1cm} (4)$$

$$\nabla \cdot J_i = 0$$ \hspace{1cm} (5)$$

其中 ψ, F, e, P, 和 T 是相应的电位，Faraday 常数，电荷的浓度，温度，和 z_i, J_i, D_i 是电荷的，浓度， flux, and diffusion coefficient of ion i. The region to be solved and corresponding boundary conditions are shown in the schematic diagram of the model of GPETNC in Supplementary Fig. 7.

理论模型基于数值求解的 PNP 方程描述上的优势是更有力的用于运输的电荷在离子通道。是很有见地注意到存在的一些限制用于这样一个模型，包括，例如，电荷的静电和弱 van der Waals 力。然而，这些被忽略的效应只定量地影响计算的结果，例如离子浓度和电压的电静力，但是他们不改变选择性的结论，因为静电和电荷的相互作用。这些模型是考虑在内的。

数据可用性
数据支持这个研究的结果可用从相应的作者在申请。

参考文献

1. Di Vincenzo, M. et al. Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotechnol. 16, 190–196 (2021).
2. Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).
3. Ezpeleta, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).
4. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).
5. Xue, Y. et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 372, 501–503 (2021).
6. Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).
7. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).
8. Prozorovska, L. & Kidambi, P. R. State-of-the-art and future prospects for atomically thin membranes from 2D materials. Adv. Mater. 30, 1801179 (2018).
9. Fu, Y., Guo, X., Wang, Y., Wang, X. & Xue, J. An atomically-thin graphene reverse electrodeposition system for efficient energy harvesting from salinity gradient. Nano Energy 57, 783 – 790 (2019).
10. Graf, M. et al. Light-enhanced positive energy generation using mos2 nanopores. Joule 3, 1549 – 1564 (2019).
11. Zhang, M. et al. Designing biomimetic two-dimensional ionic transport channels for efficient ion sieving. ACS Nano 15, 5209–5220 (2021).
12. Xi, Y.-H. et al. Graphene-based membranes with uniform 2d nano-channels for precise sieving of mono-/multi-valent metal ions. J. Membr. Sci. 550, 208–218 (2018).
13. Razmjou, A., Asadnia, M., Hosseini, E., Habibnejad Korayem, A. & Chen, V. Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nat. Commun. 10, 5793 (2019).
14. Li, Y. et al. Li⁺ selectivity of carboxylate graphene nanopores inspired by electric field and nanoconfined. Small 17, 2006704 (2021).
15. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).
16. Song, J.-h, Yu, H.-W., Ham, M.-H. & Kim, I. S. Tunable ion sieving of graphene nanopores through the control of nitrogen-bonding configuration. Nano Lett. 18, 5506–5513 (2018).
17. Zhang, M. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).
18. Sun, P. et al. Highly selective charge-guided ion transport through a hybrid membrane consisting of anionic graphene oxide and cationic hydroxide nanosheet superlattice units. NPG Asia Mater. 8, e259–e259 (2016).
19. Jang, D., Idrobo, J.-C., Laoui, T. & Karnik, R. Water and solute transport governed by tunable pore size distributions in nanoscopic graphene membranes. ACS Nano 11, 10042–10052 (2017).
20. Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).
21. Chen, X. et al. Tunable pore size from sub-nanometer to a few nanometers in large-area graphene nanoporous atomically thin membranes. ACS Appl. Mater. Interfaces 13, 29926–29933 (2021).
22. Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11406 (2016).
23. Liu, H. et al. Thermo- and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules. J. Membr. Sci. 587, 117163 (2019).
24. Zhou, K.-G. et al. Thermo- and pH-responsive graphene oxide membranes in graphene-based nanochannels for facilitated transport of small molecules. J. Phys. Chem. C. 122, 29380–29385 (2018).
25. Xue, Y. et al. Atomic-scale ion transistor with ultrahigh diffusivity. Science 372, 501–503 (2021).
26. Cheng, C., Jiang, G., Simon, G. P., Liu, J. Z. & Li, D. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat. Nanotechnol. 13, 685–690 (2018).
27. Wyss, R. M., Tian, T., Yazda, K., Park, H. G. & Shih, C.-J. Macrosopic salt rejection through electrostatically gated nanoporous graphene. Nano Lett. 19, 6400–6409 (2019).
28. Cantley, L. et al. Voltage gated inter-connection selective ion channels from graphene nanopores. Nanoscale 11, 9856–9861 (2019).
29. Ni, Z., Qiu, H. & Guo, W. Electrically tunable ion selectivity of charged nanopores. J. Phys. Chem. C. 122, 29380–29385 (2018).
30. Zhang, Z., Wen, L. & Jiang, L. Biomimicry: small symmetric nanochannel membranes. Chem. Soc. Rev. 47, 322–356 (2018).
31. Siwy, Z. S. & Howorka, S. Engineered voltage-responsive nanopores. Chem. Soc. Rev. 39, 1115–1132 (2010).
32. Cheng, L.-J. & Guo, L. J. Nanofluidic diodes. Chem. Soc. Rev. 39, 923–938 (2010).
33. Li, Y. et al. Electrical field regulation of ion transport in polyethylene terephthalate nanochannels. ACS Appl. Mater. Interfaces 11, 38055–38060 (2019).
34. He, Y. et al. Tuning transport properties of nano-fluidic devices with local charge inversion. J. Am. Chem. Soc. 131, 5194–5202 (2009).
35. Wei, J. et al. The rectification of mono- and bivalent ions in single conical nanopores. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. At. 404, 219–223 (2017).
36. Ali, M. et al. Lithium ion recognition with nano-fluidic diodes through host-guest complexation in confined geometries. Anal. Chem. 90, 6820–6826 (2018).
37. Ali, M. et al. Cesium-induced ionic conduction through a single nano-fluidic pore modified with calixcrown moieties. Langmuir 33, 9170–9177 (2017).
38. Nightingale, E. R. Phenomenological theory of ion solvation. effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).
39. Sheng, Q., Wang, X., Xie, Y., Wang, C. & Xue, J. A capacitive-pulse model for nanoparticle sensing by single conical nanochannels. Nanoscale 8, 1565–1571 (2016).
40. Su, S. et al. Origin of nonequilibrium 1/f noise in solid-state nanopores. Nanoscale 12, 8975–8981 (2020).
41. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foil. Science 324, 1312–1314 (2009).
42. Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).
43. Fu, Y. et al. Dehydration-determined ion selectivity of graphene subnanopores. ACS Appl. Mater. Interfaces 12, 24281–24288 (2020).
44. Su, S. & Xue, J. Facile fabrication of subnanopores in graphene under ion irradiation: molecular dynamics simulations. ACS Appl. Mater. Interfaces 13, 12366–12374 (2021).
45. Govind Rajan, A. et al. Addressing the isomer cataloguing problem for nanopores in two-dimensional materials. Nat. Mater. 18, 129–135 (2019).
46. Ghosh, M. et al. Understanding mono- and bivalent ion selectivities of nanoscopic graphene using ionic and bi-ionic potentials. Langmuir 36, 7400–7407 (2020).
47. Caglar, M. et al. Tunable anion-selective transport through monolayer graphene and hexagonal boron nitride. ACS Nano 14, 2729–2738 (2020).
48. O’Hern, S. C. et al. Selective ion transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14, 1234–1241 (2014).
49. Shan, Y. P. et al. Surface modification of graphene nanopores for protein translocation. Nanotechnology 24, 495102 (2013).
50. Schultz, S. G. Basic Principles of Membrane Transport (Cambridge University Press, 1980).
51. Hille, B. Ionic Channels of Excitable Membranes (Sinauer Associates, 1984).
52. Wie, J. et al. A growth-factor-activated lysosomal K⁺ channel regulates parkinson’s pathology. Nature 591, 431–437 (2021).
53. Paggio, A. et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature 572, 609–613 (2019).
54. Jain, T. et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 10, 1053–1057 (2015).
55. Hu, J.-Q. et al. A novel membrane with ion-recognizable copolymers in graphene-based nanochannels for facilitated transport of potassium ions. J. Membr. Sci. 591, 117345 (2019).
56. Hirunpinyopas, W., Prestat, E., Lamprasertkon, P., Bissett, M. A. & Dryfe, R. A. W. Potential dependent ion sieving through functionalized laminar MoS2 membranes. 2D Mater. 7, 015030 (2019).
57. Esfandiar, A. et al. Size effect in ion transport through anstrom-scale slits. Science 358, 511–513 (2017).
58. Wang, X. et al. How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. J. Phys. D Appl. Phys. 40, 7077–7084 (2007).
59. Wang, L. et al. A method to tune the ionic current rectification of track-etched nanopores by using surfactant. Phys. Chem. Chem. Phys. 13, 576–581 (2011).
60. Wang, X. et al. How the geometric configuration and the surface charge distribution influence the ionic current rectification in nanopores. J. Phys. D Appl. Phys. 40, 7077–7084 (2007).
61. Vlassiouk, I., Smirnov, S. & Siwy, Z. Nanofluidic ionic diodes. comparison of analytical and numerical solutions. ACS Nano 2, 1589–1602 (2008).
62. Lucas, R. A., Lin, C.-Y., Baker, L. A. & Siwy, Z. S. Ionic amplifying circuits inspired by electronics and biology. Nat. Commun. 11, 1568 (2020).
63. Wen, C., Zeng, S., Li, S., Zhang, Z. & Zhang, S.-L. On rectification of ionic current in nanopores. Anal. Chem. 91, 14597–14604 (2019).
64. Qiu, Y., Vlassiouk, I., Chen, Y. & Siwy, Z. S. Direction dependence of resistive-pulse amplitude in conically shaped mesopores. Anal. Chem. **88**, 4917–4925 (2016).

65. Powell, M. R., Vlassiouk, I., Martens, C. & Siwy, Z. S. Nonequilibrium I/F noise in rectifying nanopores. Phys. Rev. Lett. **103**, 248104 (2009).

66. Powell, M. R. et al. Noise properties of rectifying nanopores. J. Phys. Chem. **C. 115**, 8775–8783 (2011).

67. Ghosh, M. et al. Charge regulation at a nanoporous two-dimensional interface. ACS Omega **6**, 2487–2493 (2021).

68. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature **467**, 190–193 (2010).

69. Zhao, S., Xue, J. & Kang, W. Ion selection of charge-modified large nanopores in a graphene sheet. J. Chem. Phys. **139**, 114702 (2013).

70. Yang, L. & Garde, S. Modeling the selective partitioning of cations into negatively charged nanopores in water. J. Chem. Phys. **126**, 084706 (2007).

71. Shahbabaei, M. & Kim, D. Advances in nanofluidics for water purification and filtration: Molecular dynamics (md) perspective. Environ. Sci. Nano **8**, 2120–2151 (2021).

72. Su, S., Wang, X. & Xue, J. Nanopores in two-dimensional materials: accurate fabrication. Mater. Horiz. **8**, 1390–1408 (2021).

73. Macha, M., Marion, S., Nandigana, V. V. R. & Radenovic, A. 2d materials as an emerging platform for nanopore-based power generation. Nat. Rev. Mater. **4**, 588–605 (2019).

74. Pakulska, D., Czepe, W., Buffa, S. D., Ciesielski, A. & Samori, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. **30**, 1902394 (2020).

75. Karnik, R., Duan, C., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. **7**, 547–551 (2007).

76. Hao, Y. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. **11**, 426–431 (2016).

77. Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science **342**, 720–723 (2013).

78. Zhang, Y., Wang, Y., Gao, Y., Wang, X. & Xue, J. Surface characterization of low energy sii on im implanted graphene. Appl. Surf. Sci. **576**, 151816 (2022).

79. Algara-Siller, G., Lehtinen, O., Turchanin, A. & Kaiser, U. Dry-cleaning of graphene. Appl. Phys. Lett. **104**, 153115 (2014).

80. Gruber, E. et al. Ultrafast electronic response of graphene to a strong and localized electric field. Nat. Commun. **7**, 13948 (2016).

81. Yulaev, A. et al. Toward clean suspended cvd graphene. RSC Adv. **6**, 83954–83962 (2016).

82. Börner, P., Kaiser, U. & Lehtinen, O. Evidence against a universal electron-beam-induced virtual temperature in graphene. Phys. Rev. B **93**, 134104 (2016).

83. O’Hern, S. C. et al. Selective molecular transport through intrinsic defects in a single layer of cvd graphene. ACS Nano **6**, 10130–10138 (2012).

84. Yoon, K. et al. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation. ACS Nano **10**, 8376–8384 (2016).

85. Cheng, P. et al. Facile size-selective defect sealing in large-area atomically thin graphene membranes for sub-nanometer scale separations. Nano Lett. **20**, 5951–5959 (2020).

86. Guo, W. et al. Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source. Adv. Funct. Mater. **20**, 1339–1344 (2010).

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11775005 and 11975283), and the Science Challenge Project (No. TZ2018004). The authors thank the support from Heavy Ion Research Facility in Lanzhou. The authors acknowledge Electron Microscopy Laboratory of Peking University, China for the use of Co-corrected Nion Ultra-HRSEM200 scanning transmission electron microscopy. The authors are grateful for the computing resources provided by the High Performance Computing Platform of the Center for Life Science of Peking University, and the Weiming No. 1 and Life Science No. 1 High Performance Computing Platform at Peking University.

Author contributions

G.D. and J.X. conceived the research. S.S. performed the measurements of ion current and data analyses. Y.Z. performed the transfer of graphene and characterization using Raman spectroscopy. S.P. and Y.L. performed the numerical modeling and theoretical calculations. L.G. performed the ion irradiation of graphene and fabrication of PET nanochannels. E.F. performed the growth of graphene. H.Y. performed the ion irradiation of PET membranes. J.D. performed the cleaning and characterization of graphene subnanopores. All the authors discussed the results and prepared the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32590-9.

Correspondence and requests for materials should be addressed to Guanghua Du or Jianming Xue.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022