The incidence of coronary heart disease is linked to the prevalence of atherosclerosis in the general population. It has been reported that there is a tracking of serum lipid and lipoprotein concentrations from childhood to adulthood, and it is widely acknowledged that hyperlipidemia originates during youth.\(^1\)\(^-\)\(^4\) In autopsy studies, fatty arterial lesions have been found to develop in the early years of life.\(^5\)\(^,\)\(^6\) Furthermore, fatty streaks and clinically significant coronary lesions increase rapidly in both their prevalence and extent during adolescence and early adulthood.\(^7\)

The incidence of coronary heart disease is also related to the prevalence of obesity. An association between the presence of obesity in childhood and obesity in adulthood has been reported in longitudinal studies.\(^8\)\(^-\)\(^10\) Furthermore, childhood obesity is related to adult levels of lipids, lipoproteins, blood pressure, and insulin and to morbidity from coronary heart disease.\(^11\) Therefore, recent trends in risk factors for cardiovascular disease in children are important predictors of subsequent trends in adults.

Annual changes in anthropometric values such as height and weight in Japanese children can be referred to in the nationwide report of school health statistics conducted by the Ministry of Education, Culture, Sports, Science, and Technology of the Japanese government.\(^12\) In addition, an increase has been reported in the prevalence of obesity in Japanese children.\(^13\)\(^,\)\(^14\) Increases in serum cholesterol concentrations have also been reported during
the past 3 decades. However, these reports have not led to a clear determination of secular trends in serum cholesterol concentrations because of problems such as an absence of continuity in studies and the nonconformity of quality control and the precision of assessment in blood tests.

In the present study, we followed the whole city of Iwata in Japan from 1993 through 2001, and measured serum cholesterol levels in all school children aged 10-11 years, with consistency in the measurement protocol, and examined the regression analysis from the individual subject data to clarify the current trends of serum lipid concentrations among school-aged children. We also measured and examined the anthropometric values.

Population
The city of Iwata is located in Shizuoka prefecture, Japan, 230 km from Tokyo. It covers an area of 64 km² and in 2000 had a population of 86.7 thousand. Approximately 5% of the city’s residents work in primary industries (agriculture, forestry, and fishing), 45% work in secondary industries (mining, construction, and manufacturing), and 50% work in tertiary industries (transportation, public utilities, wholesale or retail trade, finance, insurance, real estate, and services), while the average workforce proportions in Japanese communities are 7% primary, 39% secondary, and 54% tertiary industries.

All fifth-graders (10-11 years of age) in all of the 11 elementary schools in Iwata were targeted for this study. We examined 99.9% of the initially eligible children. A total of 9,157 children (4,673 boys and 4,484 girls) were examined. The sample sizes for each calendar year are listed in Table 1.

Examinations
All examinations were conducted by the Iwata Board of Education during 3 months from April through June every year. Both the methodology and the instruments used remained unchanged throughout the study period, from 1993 through 2001. Measurements of height and body weight were made by teachers, who have a Japanese national educational license for health education and health care at the elementary school level. At each examination, height was measured to the closest 0.1 cm and weight to the closest 0.1 kg. Body mass index (BMI) was calculated by dividing weight (kg) by height (m) squared. The cutoff point of overweight and obesity was defined at 20.2 kg/m² and 24.6 kg/m² of BMI in boys, and 20.3 kg/m² and 24.8 kg/m² in girls, respectively. Blood samples were obtained by nurses and medical technologists. The serum total cholesterol (TC) was determined enzymatically (Pureauto CHO-N, Daiichi Pure Chemical Co., Ltd., Tokyo, Japan) using a Hitachi 7350 automatic chemistry analyzer. Accuracy and the precision of determination of serum TC were controlled by external quality assessment of the Japan Medical Association.

The present study was conducted with permission by the Iwata Board of Education. All the subjects received care in compliance with the ethical guidelines of the Declaration of Helsinki, and were protected from invasion of privacy.

Statistical analysis
Statistical analysis was performed using SPSS® Base 11.5J for Windows (SPSS Inc., Chicago, IL, USA). Simple regression analysis was used to evaluate the trends of each variable. The independent variable was the calendar year of the examination. The dependent variables were height, weight, BMI, and TC in each individual. For the relationships between the year and the prevalence of hyperlipidemia or the prevalence of obesity, Mann-Whitney’s U test was used. A p value less than 0.05 was considered statistically significant.

Both the heights of the girls and the body weights of the both sexes were significantly associated with the calendar year. The regression coefficient indicated that there was a height increase of 0.21 cm/year in girls, and a body-weight increase of 0.17 kg/year in both sexes (Table 1).

BMI in both girls and boys showed a significant relationship with the year. The regression coefficient indicated that there is a BMI increase of 0.07 kg/m²/year in boys and 0.03 kg/m²/year in girls. Furthermore, there were significant increases among prevalence of obesity (BMI≥20.2 kg/m² in boys, ≥20.3 kg/m² in girls) during the survey year in both sexes (Table 2).

Concerning TC concentrations, there were significant relationships with the year, with regression coefficients indicating increases of 0.02 mmol/L/year for TC values in both sexes. Furthermore, there were significant increases among prevalences of hyperlipidemia (TC≥5.17 mmol/L) during the survey year in both sexes (Table 3).

In the present study, trends in hyperlipidemia were investigated in all fifth-graders throughout the city of Iwata under a consistent protocol, with an increase in serum TC concentrations being found in both girls and boys. In the United States and European countries, there are established guidelines for reducing the risk of coronary heart disease by initiating intervention during childhood. It has been reported that fat intake in American children has decreased since the mid-1970s, and that serum cholesterol concentrations in American children have remained relatively stable over the past 2 or 3 decades. Among adults in the United States, mortality from coronary heart disease has declined since the mid-1960s. In Japan, on the other hand, there are no guidelines for interventions to reduce the risk of coronary heart disease in childhood. Previous studies of Japanese children have found that serum cholesterol concentrations have increased during the past 3 decades. As a result, Japanese children have higher
Table 1. Anthropometric variables in 10- to 11-year-old children, Iwata city, Japan.

Survey year	1993	1994	1995	1996	1997	1998	1999	2000	2001
Boys									
n	513	568	527	552	506	527	468	490	522
Height (cm)									
Mean	138.4	138.1	138.2	138.0	137.9	138.5	138.1	138.5	138.8
Standard deviation	6.0	6.0	6.2	5.6	5.8	6.3	6.5	6.7	6.8
Body weight (kg)									
Mean	33.7	33.2	33.3	33.5	33.4	34.0	34.0	34.4	34.9
Standard deviation	7.0	6.5	6.4	6.1	6.7	6.8	7.6	8.4	7.9
Girls									
n	485	567	568	480	537	464	463	451	469
Height (cm)									
Mean	138.8	138.7	139.0	139.1	139.8	140.0	139.8	140.2	140.2
Standard deviation	6.4	6.4	6.6	6.7	6.5	6.5	6.7	7.0	7.1
Body weight (kg)									
Mean	33.3	33.4	33.5	33.5	33.9	34.2	34.4	34.4	34.4
Standard deviation	6.3	6.5	6.4	6.3	6.7	6.8	6.9	7.1	7.0

CI: confidence interval

*: Simple regression analysis was used to evaluate trends. The independent variable was the year of the examination, and the dependent variables were the anthropometric values in each individual.

Table 2. Body mass index (BMI) in 10- to 11-year-old children, Iwata city, Japan.

Survey year	1993	1994	1995	1996	1997	1998	1999	2000	2001
Boys									
Mean BMI (kg/m²)	17.5	17.3	17.4	17.5	17.5	17.6	17.7	17.8	18.0
Standard deviation	2.6	2.5	2.4	2.5	2.5	2.6	2.9	3.0	2.9
Number (%) of obesity									
Total	513	568	527	552	506	527	468	490	522
BMI ≥ 20.2 kg/m²	69(13.5)	68(12.0)	61(11.6)	77(13.9)	59(11.7)	59(11.2)	67(14.3)	77(15.7)	77(14.8)
BMI ≥ 24.6 kg/m²	10(1.9)	12(2.1)	9(1.7)	8(1.4)	13(2.6)	11(2.1)	15(3.2)	17(3.5)	21(4.0)
Girls									
Mean BMI (kg/m²)	17.2	17.3	17.2	17.2	17.2	17.3	17.5	17.4	17.4
Standard deviation	2.3	2.4	2.3	2.2	2.4	2.5	2.5	2.5	2.6
Number (%) of obesity									
Total	485	567	568	480	537	464	463	451	469
BMI ≥ 20.3 kg/m²	48(9.9)	59(10.4)	49(8.6)	39(8.1)	52(9.7)	51(11.0)	61(13.2)	54(12.0)	57(12.2)
BMI ≥ 24.8 kg/m²	4(0.8)	7(1.2)	6(1.1)	4(0.8)	8(1.5)	7(1.5)	7(1.5)	5(1.1)	10(2.1)

CI: confidence interval

*: For evaluation of trends, simple regression analysis was used. The independent variable was the year of the examination, and the dependent variable was BMI in each individual.

There were significant increases among prevalence of obesity (BMI ≥ 20.2 kg/m² in boys, ≥ 20.3 kg/m² in girls) during the survey year in both sexes by Mann-Whitney’s U test.
Although the change in the BMI can be analyzed using the mean value of anthropometrics described in the school of health statistics, we conducted the regression analyses by using individual subject data from the present study. The independent variable was the calendar year of the examination, and the dependent variable was the BMI. We found that the BMI showed a positive relationship with the examination year in both girls and boys. These results indicate that BMI has been increasing for the last decade. It has previously been reported that the prevalence of obesity in Japan in 1996 was more than twice that in 1970.13,14 These studies have hypothesized that the recent increases in the incidence of childhood obesity and hyperlipidemia in Japan are due to increased intake of fat and an increasingly sedentary lifestyle, including decreases in physical exercise and activity.14,25 Our result for BMI is consistent with these previous reports.

In conclusion, during the past decade there has been a significant increase in BMI and serum TC concentrations in children in Iwata city in Japan. Further study regarding the prevalence of obesity and hyperlipidemia in Japanese children is needed.
Cardiovascular Risk Factors in Children

The authors would like to thank the Board of Education of Iwata City for their help.

1. Porkka KV, Viikari JS, Åerblom HK. Tracking of serum HDL-cholesterol and other lipids in children and adolescents: the Cardiovascular Risk in Young Finns Study. Prev Med 1991;20:713-24.
2. Webber LS, Srinivasan SR, Wattigney WA, Berenson GS. Tracking of serum lipids and lipoproteins from childhood to adulthood. The Bogalusa Heart Study. Am J Epidemiol 1991;133:884-99.
3. Porkka KV, Viikari JS, Taimela S, Dahl M, Åerblom HK. Tracking and predictiveness of serum lipid and lipoprotein measurements in childhood: a 12-year follow-up. The Cardiovascular Risk in Young Finns study. Am J Epidemiol 1994;140:1096-110.
4. Tan F, Okamoto M, Suyama A, Miyamoto T. Tracking of cardiovascular risk factors and a cohort study on hyperlipidemia in rural schoolchildren in Japan. J Epidemiol 2000;10:255-61.
5. Tanaka K, Masuda J, Imamura T, Sueishi K, Nakashima T, Sakurai I, et al. A nation-wide study of atherosclerosis in infants, children and young adults in Japan. Atherosclerosis 1988;72:143-56.
6. Sakurai I, Miyakawa K, Komatsu A, Sawada T. Atherosclerosis in Japanese youth with reference to differences between each artery. Ann NY Acad Sci 1990;598:410-7.
7. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999;281:727-35.
8. Serdula MK, Ivey D, Coates RJ, Freedman DS, Williamson DF, Byers T. Do obese children become obese adults? A review of the literature. Prev Med 1993;22:167-77.
9. Power C, Lake JK, Cole TJ. Body mass index and height from childhood to adulthood in the 1958 British birth cohort. Am J Clin Nutr 1997;66:1094-101.
10. Guo SS, Chumlea WC. Tracking of body mass index in children in relation to overweight in adulthood. Am J Clin Nutr 1999;70:145S-85.
11. Freedman DS, Khan LK, Dietz WH, Srinivasan SR, Berenson GS. Relationship of childhood obesity to coronary heart disease risk factors in adulthood: The Bogalusa Heart Study. Pediatrics 2001;108:712-8.
12. Ministry of Education, Culture, Sports, Science and Technology. Annual report of school health statistics. Printing Bureau, Ministry of Finance, Tokyo, 2003. (in Japanese)
13. Shirai K, Shinomiya M, Saito Y, Umezono T, Takahashi K, Yoshida S. Incidence of childhood obesity over the last 10 years in Japan. Diabetes Res Clin Pract 1990;10(Suppl):S65-70.
14. Murata M. Secular trends in growth and changes in eating patterns of Japanese children. Am J Clin Nutr 2000;72(5 Suppl):1379S-83S.
15. Research Committee on Serum Lipid Level Survey 1990 in Japan. Current state of and recent trends in serum lipid levels in the general Japanese population. J Atheroscler Thromb 1996;2:122-32.
16. Couch SC, Cross AT, Kida K, Ros E, Plaza I, Shea S, et al. Rapid westernization of children's blood cholesterol in 3 countries: evidence for nutrient-gene interactions? Am J Clin Nutr 2000;72(5 Suppl):1266S-74S.
17. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000;320:1240-3.
18. Brook JG, Rifkind BM. Cholesterol and coronary heart disease prevention; a transatlantic consensus. Eur Heart J 1989;10:702-11.
19. Nicklas TA, Webber LS, Srinivasan SR, Berenson GS. Secular trends in dietary intakes and cardiovascular risk factors of 10-y-old children: the Bogalusa Heart Study (1973-1988). Am J Clin Nutr 1993;57:930-7.
20. Gidding SS, Bao W, Srinivasan SR, Berenson GS. Effects of secular trends in obesity on coronary risk factors in children: the Bogalusa Heart Study (1973-1988). JAMA 1999;320:1240-3.
21. Slattery ML, Randall DE. Trends in coronary heart disease mortality and food consumption in the United States between 1909 and 1980. Am J Clin Nutr 1988;47:1060-7.
22. Ragland KE, Selvin S, Merrill DW. The onset of decline in ischemic heart disease mortality in the United States. Am J Epidemiol 1988;127:516-31.
23. Statistics and Information Department, Ministry of Health, Labour and Welfare. Vital Statistics of Japan. Health and Welfare Statistics Association, Tokyo, 2001. (In Japanese)
24. Kobayashi S. Trends in national nutritional survey of Japan. Nutr Health 1992;8:91-6.