Tropism of engineered and evolved recombinant AAV serotypes in the rdl mouse and ex vivo primate retina

DG Hickey1, TL Edwards1, AR Barnard1, MS Singh1,2, SR de Silva1, ME McClements1, JG Flannery3, MW Hankins1,4 and RE MacLaren1,2,5

INTRODUCTION

Inherited retinal degenerations are a leading cause of blindness in the working-age population of industrialised countries. Gene therapy is a therapeutic approach that has great potential to slow or reverse blinding retinal degeneration by delivering a normal copy of a mutated gene (gene supplementation), editing the mutated gene (for example, using CRISPR/Cas9), knocking down the expression of a mutant allele using RNA interference or expressing neuroprotective factors.

Adeno-associated virus (AAV) is the vector of choice for most retinal gene therapy applications where the transgene is relatively small because of its established record of safety and efficacy in preclinical studies and clinical trials. The efficacy of a vector is measured by both the efficiency with which the genetic cargo is delivered and its specificity for the target cell type (its tropism). A greater understanding of AAV biology has led to the generation of rationally designed recombinant AAV serotypes. Mutation of surface tyrosine (Y) residues to phenylalanine (F) was found to reduce the rate of proteasome-mediated degradation and to significantly increase transgene expression in vitro and in vivo, allowing a comparable transgene expression level to be achieved with an ~10-fold lower AAV dose. Subsequent work showed increased transduction efficiency and a wider tropism by mutating two to seven surface tyrosine residues of AAV2/2.

AAV2/8, a serotype originally isolated from rhesus monkeys, is effective at transducing photoreceptors and retinal pigment epithelium more efficiently than AAV2/2 and AAV2/5 following subretinal injection into nondegenerate mouse eyes. In addition, AAV2/8 transduced photoreceptors of cynomolgus monkeys more efficiently than AAV2/2 following subretinal injection. Building on the findings from AAV2/2 site-directed tyrosine to phenylalanine mutations, a capsid-mutant AAV2/8 serotype termed AAV2/8(Y733F) was developed that transduced more cells and demonstrated significantly higher transgene expression compared with wild-type AAV2/8. Subretinal injections of AAV2/8(Y733F) into nondegenerate mouse eyes led to stronger and more widespread green fluorescent protein (GFP) signal, compared with wild-type and mutant AAV2/2, AAV2/8 and AAV2/9 variants.

In contrast to the targeted mutation approach, an in vivo directed evolution strategy was used in mice to create novel AAV serotypes that are more efficient at transducing murine photoreceptors after being injected intravitreally. An evolved variant that features a 7-amino-acid sequence inserted after position 587 of capsid protein VP1 was selected for in vivo studies in mice and macaque and showed strong expression across the retina and in all major classes of retinal cells.

The three serotypes selected for this study were: AAV2/8(Y733F), AAV2/2(Y272, 444, 500, 730F) (abbreviated to ‘quad Y-F’) and AAV2/2(7m8). Data directly comparing these leading AAV vectors in degenerate retina are lacking. AAV2/2(Y733F) was selected as a previous comparative study showed this to have the greatest transgene expression intensity and transduction area following subretinal delivery to nondegenerate mouse retina compared with other AAV2/2, AAV2/8 and AAV2/9 serotypes. AAV2/8(Y733F) in conjunction with a ubiquitous promoter has also
been demonstrated to transduce bipolar cells in the rd1 mouse.17 Of the AAV2/2 capsid mutants, AAV2/2(quad Y-F) was chosen for further assessment as, when tested in nondegenerate mouse retina, it has been found to transduce photoreceptors following intravitreal injection, to occasionally transduce retinal bipolar cells when delivered into the subretinal space and, overall, to demonstrate a combination of high levels of transgene expression and a diversity of transduced cell types that was not matched by other AAV2/2 capsid mutants.18 Finally, AAV2/2(7m8) was selected as it represents a contrasting approach to AAV development, has demonstrated potent transduction across the retina in nondegenerate retina22 and has also been shown to effectively transduce bipolar cells—a particularly challenging cell target to transduce.18

This research aimed to test these three AAV serotypes in a mouse model of retinal degeneration together with macaque and human explants in vitro to inform AAV serotype selection for basic and translational retinal research. As the end-stage degenerate retina is the target tissue for a number of gene therapy strategies, including optogenetic vision restoration,15 we compared the transduction profile of the three recombinant AAV serotypes in a model of retinal degeneration, the rd1 mouse, that has a naturally occurring nonsense mutation of the rod-specific phosphodiesterase 6B (Pde6b) gene.20,21 In addition to the loss of photoreceptors, the degenerate retina undergoes many structural, physiological and gene expression changes that makes it distinct from the nondegenerate retina22–25 and can cause changes in AAV spread and transduction efficiency.26 This in vivo model enabled the comparison of the area, intensity and cells types transduced by the three AAV vectors following both intravitreal and subretinal injections. Clinical data directly comparing intravitreal and subretinal injections are lacking. We additionally tested the three AAV serotypes in macaque and human explants to see whether species-specific tropism differences that have been demonstrated by in vivo studies27 were evident. The use of retinal tissue from healthy macaque retina and degenerate human retina provided some insight into disease-specific tropism differences. Comparison with in vivo studies enabled an assessment of the utility of retinal explants as models of in vivo transduction.

This study found that intravitreal and subretinal injections were similarly effective for AAV2/2(quad Y-F) and AAV2/2(7m8), but the subretinal route was more effective for AAV2/8(Y733F). All major retinal cell types of the rd1 mouse retina were transduced, with ganglion cells, horizontal cells and retinal pigment epithelium well transduced, whereas bipolar cells were sparsely transduced. In macaque and human retinal explants, AAV2/2(7m8) transduced the greatest number of cells. These data support the use of AAV2/2(7m8) in mouse models as well as primate retina.

RESULTS
AAV tropism in rd1 mice, a model of retinal degeneration

Intravitreal AAV2/2(7m8) transduces the greatest area of mouse retina. Three recombinant AAV vectors were produced by packaging the same expression cassette, consisting of GFP driven by a ubiquitous CAG synthetic promoter with an SV40 poly(A) sequence, into three different AAV capsids: AAV2/8(Y733F), AAV2/2(quad Y-F) and AAV2/2(7m8). At 3 weeks after injection with one of the three AAV-GFP test vectors, rd1 mice underwent in vivo confocal scanning laser ophthalmoscopy to quantify the distribution and intensity of GFP expression in the retina.

In all three intravitreally injected AAV vector groups the area around the optic disc showed the most fluorescence...
In eyes injected with AAV2/2(quad Y-F) or AAV2/2(7m8) the fluorescence extended beyond the central 55° to the peripheral retina where it was strongest adjacent to blood vessels. Fluorescence was mostly speckled, with small, highly fluorescent foci. GFP fluorescence did not appear to be limited to the boundary of the bleb that was created to deliver AAV vector to the subretinal space between the neuroretina and the retinal pigment epithelium. In most eyes the subretinal bleb was limited to two quadrants, but fluorescence was seen at all angles around the optic disc (Figures 1a–c). Despite the AAV vector being delivered...
by a transchoroidal approach to the subretinal space in this group of eyes, lines of fluorescence from the periphery to the optic disc were notable in some eyes, consistent with GFP expression in ganglion cell axons, indicating that AAV had traversed the retina and transduced retinal ganglion cells in the innermost retinal layer (Supplementary Figure 1).

GFP expression was quantified by assessing the area of GFP expression above the background signal threshold and intensity was compared using mean pixel values (Figures 1d and e). Examining the effect of delivery route (intravitreal or subretinal) and AAV serotype on transduced area showed a statistically significant interaction between AAV serotype and area, F(2, 17) = 5.1, P = 0.019 (Figure 1d; n = 4, all groups except intravitreal AAV2/2(7m8) (n = 3)). Simple effects analysis with Bonferroni correction showed that the area of GFP expression from an intravitreal injection with AAV2/2(7m8) (3.4 ± 1.9%), was significantly lower than each of subretinal AAV2/8(Y733F) (80.8 ± 10.2%; P < 0.01), intravitreal AAV2/2(7m8) (91.1 ± 2.2%; P < 0.01) and subretinal AAV2/2(7m8) (75.0 ± 13.5%; P < 0.05). An ordinary two-way analysis of variance examining the effect of delivery route and AAV serotype on pixel value showed no statistically significant interactions (Figure 1e).

Hence, intravitreal injection with AAV2/8(Y733F) led to the smallest area of transduced retina, but statistically significant differences between other vector/delivery routes were not detected.

Injection route determines relative transduction of retinal layers. To compare the level of GFP expression across retinal layers, vertical sections of the rd1 mouse eyes that had received injections of three serotypes of AAV-GFP were prepared. To quantify penetration and transgene expression efficiency the retina was divided into the three remaining layers (inner nuclear layer, inner plexiform layer and ganglion cell layer) and the percentage area above the background signal and the mean pixel value within the area above threshold was calculated (Figure 2).

Of those eyes that received an intravitreal injection, AAV2/2 (7m8) produced the greatest area above threshold in all three layers of the degenerate retina, with 10.1 ± 5.7, 29.8 ± 7.6 and 38.7 ± 4.1% of the inner nuclear layer, inner plexiform layer and ganglion cell layer, respectively, above the threshold (Figure 2a). The area transduced by AAV2/2(7m8) in the inner plexiform layer and ganglion cell layer was notably higher than the transduced areas from AAV2/8(Y733F) (3.9 ± 3.2 and 11.2 ± 5.7%, respectively) and AAV2/2(quad Y-F) (12.0 ± 6.2 and 20.9 ± 8.4%, respectively) intravitreal injections. In the inner nuclear layer, AAV2/2(quad Y-F) and AAV2/2(7m8) groups had comparable areas transduced with 8.0 ± 4.1 and 10.1 ± 5.7%, respectively. The AAV2/8(Y733F) group in contrast had 1.1 ± 11% of its inner nuclear layer above threshold. Consistent with the confocal scanning laser ophthalmoscopy results, an intravitreal injection with AAV2/8 (Y733F) was not as effective as the other two serotypes, with the least area transduced in all layers of the degenerate retina.

A different pattern of GFP expression in the retinal layers was evident following subretinal delivery of AAV vector. Generally, subretinal injections resulted in more of the inner nuclear layer and a smaller area of the ganglion cell and inner plexiform layers being above threshold compared with retinas that had received the same AAV by the intravitreal route (Figure 2a). A notable exception to this pattern was with the use of AAV2/2(quad Y-F) where the area of the ganglion cell layer above threshold was higher following subretinal (25.1 ± 6.6%) versus intravitreal (20.9 ± 8.4%) vector delivery (Figure 2a).

There was a statistically significant interaction between delivery route and area above threshold in the inner plexiform layer, F(1, 11) = 5.2, P = 0.043 (n = 3, all groups except intravitreal AAV2/2 (7m8) (n = 2); Figure 2a). Simple effects analysis showed that the area in the inner plexiform layer from a subretinal injection with AAV2/8(Y733F) (1.7 ± 1.5%) was significantly (P < 0.05, Bonferroni correction) lower than the area above threshold because of an intravitreal injection with AAV2/2(7m8) (29.8 ± 7.6%). Ordinary two-way analysis of variance tests examining the effect of delivery route and AAV serotype on the pixel value in each of the three layers of the retina showed no statistically significant interactions (Figure 2b).

Horizontal cells, ganglion cells and retinal pigment epithelium are strongly transduced by all three serotypes. To determine which cell types of rd1 degenerate mouse retinas were transduced by intravitreal or subretinal injection of three serotypes of AAV-GFP, vertical sections were co-labelled with a range of antibodies to retinal cell markers (Figure 3). The relative transduction efficiency of the different serotypes did not differ greatly — the same cell types were transduced in all cases (Table 1). The route of delivery also did not influence which cell types were transduced; however, there were differences in the level of expression of GFP in the transduced cells depending on the delivery route.

The cell type most strongly transduced in the inner nuclear layer following intravitreal or subretinal AAV vector delivery was the horizontal cell, as identified by their position in the outer part of the inner nuclear layer and positive staining with an anti-calbindin antibody (Figure 3a). In retinas injected intravitreally or subretinally, transduction of rod bipolar cells, identified by protein kinase-α Ca (PKCa) immunolabelling, was sparse (Figure 3b). When transduced PKCa-positive cells were identified, their level of GFP expression was very low compared with horizontal cells. A population of amacrine cells were identified by immunolabelling with antibodies against calbindin, glutamate decarboxylase 67 (GAD67) and glycine transporter 1 (GlyT1) (Figures 3a, c and d). Retinas from each of the viral serotypes and delivery routes had

![Figure 3](https://via.placeholder.com/150)

Figure 3. Confocal fluorescence micrographs of degenerate mouse retinas injected with three serotypes of AAV-GFP and double labelled for GFP and retinal cell markers. Degenerate rd1 mouse retinas were injected either intravitreally or subretinally with an AAV vector expressing GFP driven by a ubiquitous promoter, with one of three AAV serotypes: AAV2/8(Y733F), AAV2/2(quad Y-F) or AAV2/2(7m8). Vertical sections were double immunolabelled for GFP and retinal cell markers: (a) calbindin; (b) protein kinase-α Ca (PKCa); (c) glutamate decarboxylase 67 (GAD67); (d) glycine transporter 1 (GlyT1) or (e) brain-specific homeobox/POU domain protein 3a (Bm3a). Cell bodies that were immunopositive for both GFP and the cell marker are encircled. Arrowheads indicate GFP-expressing retinal pigment epithelium (RPE). The RPE cannot be identified in the majority of the panels because of it detaching during sample preparation. See Table 1 for a summary of the colocalisation results. GCL, ganglion cell layer; INL, inner nuclear layer. Scale bar, 20 μm.
Table 1. Semiquantitative summary of transduction patterns of three AAV serotypes delivered intravitreally and subretinally to degenerate mouse retinas and to macaque and human retinal explants

Retinal pigment epithelium	Horizontal cells (calbindin)	Rod bipolar cells (PKCa)	Amacrine cells (calbindin, GAD67, GlyT1)	Retinal ganglion cells (Brn3a)	Photosensitive retinal ganglion cells (mOPN4)
Degenerate mouse retinas					
AAV2/8(Y733F) Intravitreal	+	+	+/-	+	+
AAV2/8(Y733F) Subretinal	++	+++	+/-	+	++
AAV2/2(quad Y-F) Intravitreal	++	++	+/-	+	++
AAV2/2(quad Y-F) Subretinal	++	+++	+/-	+	++
AAV2/2(7m8) Intravitreal	++	+	+/-	+	+++
AAV2/2(7m8) Subretinal	++	+++	+/-	+	++

Nondegenerate macaque retinal explants					
AAV2/8(Y733F)	+/-	+	+/-	+	+
AAV2/2(quad Y-F)	+/-	++	+/-	+	+
AAV2/2(7m8)	+/-	+++	+/-	+	++

Human retinal explants					
AAV2/8(Y733F)	-	-	-	-	
AAV2/2(quad Y-F)	+	-	-	-	++
AAV2/2(7m8)	+	-	-	-	++

Abbreviations: AAV, adeno-associated virus; GAD67, glutamate decarboxylase 67; GFAP, glial fibrillary acidic protein; GlyT1, glycine transporter 1; PKCa, protein kinase-C-α. The cell marker antibody used to identify the cell type is indicated in parentheses. +/-, occasional transduction; +, consistent, weak transduction; ++, strong, consistent transduction; ++++, very strong transduction.
amacrine cell marker-positive GFP-expressing cells in the inner half of the inner nuclear layer. Generally, cells that were immunolabelled with an amacrine cell marker were weakly GFP positive as compared with the GFP levels expressed in horizontal and ganglion cells.

Transduced cells in the ganglion cell layer included photosensitive retinal ganglion cells, Bm3a-positive retinal ganglion cells and amacrine cells. The majority of the GFP-positive cells in the ganglion cell layer were Bm3a-positive retinal ganglion cells that generally had a high level of GFP expression compared with other cell types (Figure 3e). Bm3a-positive retinal ganglion cells were observed irrespective of whether the AAV-GFP was injected subretinally or intravitreally. A small number of GFP-positive cells that co-labelled for calbindin or GAD67 were present in the ganglion cell layer, suggesting that some displaced amacrine cells were transduced (Figure 3c).

Sections from a retina that had received an intravitreal injection of AAV2/2(7m8)-GFP were immunolabelled with an anti-mouse melanopsin antibody, demonstrating that AAV2/2(7m8) transduced melanopsin-positive photosensitive retinal ganglion cells (Supplementary Figure 2).

All AAV-GFP vectors studied, regardless of serotype and delivery route, showed high levels of GFP expression in retinal pigment epithelial cells (data not shown).

AAV tropism in nondegenerate macaque retina

To compare the transduction pattern in mice to that of a primate, the three serotypes of AAV-GFP were applied to explants of foveal and peripheral retina from rhesus macaques (Macaca mulatta) ex vivo. At 8 days after adding \(10^{10}\) vector genomes (vg) to each explant, GFP expression was evident in immunolabelled explants. GFP expression was strongest in the periphery of the foveal explants, adjacent the cut edge (Figure 4). The AAV2/2(7m8) transduced foveal explant featured higher levels of GFP expression that extended more centrally towards the foveola.

The pattern of cell types transduced was similar across the three AAV serotypes, but AAV2/2(7m8) transduced explants had higher levels of GFP expression spread over a larger area of retina (Table 1). Vertical sections of foveal and peripheral retina explants were immunolabelled for GFP and rhodopsin (anti-1D4 antibody). Foveal explants were found to have significantly more widespread and higher levels of GFP expression than peripheral retina explants transduced with the same AAV serotype (Figure 5; peripheral explant data not shown). The outer nuclear layer contained the highest number of GFP-positive cells for all three serotypes. Some explants had a cluster of GFP-positive cells in the ganglion cell layer, but only towards an edge of the section (Figure 5). Colocalisation studies showed that a large majority of GFP-positive cells were cones—regardless of the serotype of the AAV-GFP vector, calbindin colocalised with almost all of the GFP-positive cells in the outer nuclear layer (Figure 6a). Only a small number of GFP-positive, calbindin-negative cell rods were identified in the inner part of the outer nuclear layer (Figure 6b).

GFP-positive cells in the ganglion cell layer were restricted to the edge of the explants, where tissue damage was caused when the explant disc was cut from the retina. Some of the GFP-positive cells in the ganglion cell layer were noted to be Bm3a positive (data not shown), whereas others were calbindin positive (Figure 6b). In addition, at the periphery of a foveal section, a GFP-positive cell in the inner nuclear layer was found to co-label for PKCa (Figure 6c).

AAV tropism in human retinal explants

Explants of human retina fragments were also transduced with the three different AAV-GFP serotypes. Human retina was acquired from patients who required retinectomy during retinal detachment surgery (Supplementary Figure 3). Hence, apart from species differences, the human tissue was degenerate, providing additional information relevant to the clinical scenario. At 7 days after immersing the explants in media containing \(1.67 \times 10^{10}\) vg per ml of the AAV serotypes, the human retina samples were fixed and immunolabelled for GFP and retinal cell markers.

Immunolabelling of transduced human retina samples showed GFP expression across the width of each of the samples transduced with an AAV-GFP vector (Figure 7). Whereas the human retinal explant transduced with AAV2/2(8(Y733F)) showed GFP expression limited to cells largely in the inner nuclear layer (Figure 7a), explants transduced with AAV2/2(quad Y-F) and AAV2/2(7m8) showed extensive GFP expression in all layers of the retina (Figures 7b and c). Rod bipolar cells were identified by immunolabelling PKCa (Figure 8a). No GFP-positive cells were found to be PKCa positive, suggesting very few rod bipolar cells were transduced in these human retinal explants. Rod photoreceptors were transduced, as shown by co-labelling with an anti-1D4 antibody that binds to rhodopsin (Figure 8b). Transduced cones were not identified (red/green opsin and cone arrestin staining; data not shown), but this may be because of the low number of cones in the peripheral retina where these samples were taken from and/or compromised tissue health.
The extensive GFP expression in human retinal explants transduced with AAV2/2(quad Y-F) and AAV2/2(7m8) had an unusual pattern that was not stereotypical of a particular cell type in a normal retina. However, some of the areas of GFP expression that spanned the full thickness of the retina colocalised with glial fibrillary acidic protein (and calbindin), suggesting some of these cells were Müller cells (Figures 8c and d). A control human retinal explant that was not transduced with an AAV-GFP vector did not show any signal in the GFP channel (Figure 8e).

DISCUSSION

Engineered AAV serotypes have the potential to expand the potency and cell targets of naturally occurring serotypes, thereby facilitating the targeted delivery of gene therapies to previously untreatable cell types and a reduction of therapeutic dose. This study aimed to characterise three potent AAV serotypes as tools for basic and translational research by comparing the cell types transduced and the levels of transduction achieved by intravitreal and subretinal injection of the degenerate mouse eye and in explant cultures. The predominant cell type transduced in the macaque retinal explants was the cone photoreceptor (Table 1). GFP expression was high in cones across the retina in samples that received AAV2/2(7m8)-GFP, whereas GFP expression was greatest at the outer edges of foveal explants that received AAV2/8(Y733F)-GFP or AAV2/2(quad Y-F)-GFP. The lower density of cones in peripheral retinal explants is thought to explain the overall lower level of GFP expression in these samples. Previous studies have reported that wild-type AAV2, AAV2/2(quad Y-F) and AAV2/2(7m8) intravitreally injected into macaque eyes leads to a ring of fluorescence, centred on the fovea—suggesting a common mechanism leading to poor transduction of the central fovea. The thickness of the inner limiting membrane (ILM) may be a significant factor in limiting foveal transduction in vivo and in explant cultures. The ILM forms the interface between the retina and the vitreous and consists of the plasma membrane of Müller cells, a dense basal membrane and loose collagen fibrils extending into the vitreous cortex. The ILM is much thicker (~400 nm) at the fovea compared with the equatorial region of the retina and surrounding the optic disc, where it is ~70 nm thick, creating a greater
physical barrier to AAV penetration. The ILM role in limiting AAV retinal transduction is supported by data demonstrating that degrading the ILM using proteases or injection to the sub-ILM space leads to enhanced retinal transduction.

GFP expression was also seen in the ganglion cell layer, but this was often at the extreme periphery of the macaque explants. It was unclear as to whether this peripheral transduction was facilitated by the absence of the ILM as a barrier to diffusion, or whether the trauma of creating the explant’s cut edge may have enhanced transduction. It is possible that the periphery of each explant effectively mimics the degenerate retina that has a more permeable ILM or the thinner ILM of a rodent.

The results of this study compare well with those reported by Dalkara et al. In their study, AAV2/2(quad Y-F)-GFP (referred to as AAV2-4YF-CMV-GFP by the authors) and AAV2/2(7m8)-GFP (referred to as 7m8-CMV-GFP by the authors) were injected intravitreally into one eye each of a Macaca fascicularis monkey. By 3 weeks after the injection, GFP expression was evident at the fovea, with the AAV2/2(7m8)-GFP eye showing higher levels of GFP expression. Although the current study used ex vivo explants rather than in vivo injections into a different species (M. mullota), and used a CAG promoter rather than the cytomegalovirus promoter used by Dalkara et al., it is interesting to note the consistent finding of greater GFP transduction by AAV2/2(7m8) compared with AAV2/2(quad Y-F).

Ramachandran et al. injected AAV2/2(7m8) (referred to as AAV7m8 by the authors) by the intravitreal and subretinal routes into the eyes of M. fascicularis. At the lowest dose (1 × 10^10 vg) they observed rods and few cones to be transduced, whereas at higher doses (1 × 10^11 and 1 × 10^12 vg) cones were efficiently transduced. These high-dose results are similar to the ex vivo retinal explant results of the current study, despite a lower dose (only 10^10 vg per explant) of AAV. This result may be explained by the fact that AAV is contained in a fixed volume in an explant culture, whereas in vivo AAV is effectively diluted by diffusion out of the subretinal bleb and removal via the vasculature. Furthermore, the retinal pigment epithelium removes AAV particles in vivo.

The qualitative results obtained from transduction of human retina samples shows that all three AAV serotypes transduced human retinal cells relatively efficiently and that these serotypes are likely to prove effective in targeting retinal neurons in vivo (Table 1). Given that these retina samples typically came from patients who had chronic retinal detachments, the transduced

Figure 6. Confocal fluorescence micrographs of macaque foveal explants transduced with AAV2/8(Y733F)-GFP, co-labelled for retinal cell markers. (a) The majority of GFP-positive cells in macaque foveal explants were calbindin positive, indicating they were cones. (b) However, a small number of GFP-positive photoreceptors were calbindin negative (arrowheads) that, combined with the slender inner segment morphology of these cells and the more inner location of the cell bodies, suggests these are rods. Calbindin- and GFP-positive cells were also identified in the ganglion cell layer (*). (c) At the very periphery of a flat-mounted explant, a PKCα-positive bipolar cell was co-labelled (arrowhead). GCL, ganglion cell layer; INL, inner nuclear layer; ONL, outer nuclear layer. Scale bar, 20 μm.
Maçé et al.\(^{18}\) achieved widespread bipolar cell transduction by intravitreally injecting a high-concentration GFP-expressing AAV2/2(7m8) vector into rd1 mice. The number of vector particles injected by Maçé et al.\(^{18}\) was $\sim 60 \times$ greater (1.8 x 10\(^{11}\) vector particles injected/eye; vg concentration unknown) than the number of viral genomes delivered in the current study (3 x 10\(^{10}\) vg/eye). This highlights the requirement for highly concentrated AAV to achieve effective bipolar cell transduction. The use of a bipolar cell-specific—rather than ubiquitous—promoter may also be critical to increasing bipolar cell transduction efficiency, as has been demonstrated in mice.\(^{37}\)

Transduction of primate bipolar cells has proved more challenging than transducing mouse bipolar cells. Subretinal injection of a high concentration (1 x 10\(^{10}\) vg) of AAV8B8P2, a capsid customised to bipolar cell transduction in mice, did not efficiently transduce bipolar cells in nondegenerate retina of M. fascicularis.\(^{27}\) In this study by Ramachandran et al.,\(^{27}\) minimal bipolar cell transduction was achieved in M. fascicularis retina following injection of high doses of AAV2/2(7m8) (1 x 10\(^{11}\) and 1 x 10\(^{12}\) vg), the higher of which resulted in severe, chronic inflammation.

The discrepancies between the cellular transduction patterns between mice and macaques led Ramachandran et al.\(^{27}\) to suggest that retinal explants from non-human primates or post-mortem human samples may be more suitable for directed evolution experiments to isolate serotypes suited for human clinical applications. Given the similarity in appearance of the current study's explant sections and those from in vivo injections reported by Ramachandran et al.,\(^{27}\) this study supports the use of non-human primate explants as a model for directed evolution of primate-optimised AAV serotypes. This approach has the advantages of removing surgical variability and enabling multiple variables to be tested in parallel using tissue from a single animal.

A direct comparison of the intravitreal and subretinal routes of delivery was completed as part of the studies in rd1 mice. AAV2/2 (7m8) and AAV2/2(quad Y-F) both transduced a similar area of the retina regardless of their route of delivery. An important consideration when deciding on a delivery route is the differences in anatomy between the mouse and human eye. The human eye has a vitreous cavity of much greater volume relative to the retinal area, compared with that of a mouse eye. Therefore, the potential for dilution throughout the vitreous cavity following an intravitreal injection is much greater in the human eye. Intravitreal injections additionally expose virions to cellular and extracellular off-target receptors that may capture virions (effectively diluting the dose) and/or initiate adverse effects by binding to elements involved in immune responses. In contrast, a subretinal injection controls the volume through which virions are distributed and limits the range of receptors that the virions are exposed to. Other studies that have injected the same AAV serotype intravitreally into mouse and primate eyes have observed a much lower rate of transduction in the primate eye.\(^{15}\)

A limitation of this study was that all of the data were gathered at a single time point—3 weeks after injection for the mouse studies and ~1 week for macaque and human explant studies. Different serotypes can have different rates of expression because of the different ways in which AAV capsids interact with cell surface receptors and the rate at which the vector genome is uncoated.\(^{38}\) AAV tropism outcomes have been assessed at 3 weeks post injection in other studies,\(^{17}\) whereas others have assessed outcomes in nondegenerate mice at 4 weeks.\(^{10}\) Natkunarajah et al.\(^{12}\) found that in vivo fluorescence from AAV2/8 (no capsid mutations) did not reach a plateau until 7 weeks post injection. Longer-term data would be helpful to contrast with this data set and to ensure that expression is sustained long enough to justify clinical applications.

Areas of retina are likely to have abnormal physiology, and this may explain the unusual patterns of GFP expression in some of the samples. Activated Müller cells, for example, appeared to be strongly transduced by AAV2/2(7m8) and AAV2/2(quad Y-F). Müller cell activation is known to be a feature of proliferative vitreoretinopathy seen in chronic retinal detachment.\(^{35}\) Consistent with this explanation, such a pattern of GFP expression was not identified in degenerate mouse or nondegenerate macaque transduced retinal samples.

Consistent with previous studies, it was found that bipolar cells had very low rates of transduction.\(^{36}\) Given that retinal bipolar cells are an ideal target for optogenetic gene therapy,\(^{19}\) these low rates of bipolar cell transduction are significant. It is likely that the concentration of AAV required to effectively transduce retinal bipolar and amacrine cells is relatively high. Effective bipolar cell transduction using these AAV serotypes may therefore require higher AAV concentrations than tested in this set of experiments.
A further limitation of this study was that only one concentration of AAV vector was investigated. Studies have shown that the number of vector genomes injected can have an important influence on the transduction efficiency and pattern. 14,39 The number of vector genomes injected was limited by the lowest concentration of the AAV preparations that were produced. Variability in the size of human retinal explants also meant that the multiplicity of infection could not be standardised. The use of uniform sized discs of macaque retinas minimised multiplicity of infection variability in macaque explants.

In summary, we report that an AAV variant developed by a process of directed evolution, AAV2/2(7m8), effectively transduces a range of cell types when delivered to the degenerate mouse retina by intravitreal or subretinal injection as well as macaque and human retinal explants. The rationally engineered serotypes AAV2/8(Y733F) and AAV2/2(quad Y-F) also transduce multiple retinal cell types across the three species, but to a lesser extent. Differences in the pattern of transduction between mouse and macaque suggest the thickness of the ILM may present a significant barrier to effective retinal transduction following intravitreal injection. These data demonstrate that AAV2/2(7m8) should be considered a valuable vector for developing effective clinical gene therapy strategies.

MATERIALS AND METHODS

Plasmids
A plasmid containing humanised GFP (GenBank accession number US0963.1) driven by a ubiquitous CAG (CMV enhancer, chicken β-actin, rabbit β-globin) promoter was a gift from Bill Hauswirth, University of Florida (Gainesville, FL, USA). 40 Plasmids containing the rep-cap genes to make AAV2/8(Y733F) and AAV2/2(quad Y-F) AAV serotypes were created by site-directed mutagenesis, based on published mutation sites. 9,41 The rep-cap plasmid to produce AAV2/2(7m8) was a gift from John Flannery, University of California, Berkeley. 15 The 3.23 kb single-stranded sequence was packaged into three different AAV capsids: AAV2/8(Y733F), AAV2/2(quad Y-F) and AAV2/2(7m8).

AAV production and titration
Recombinant AAV was produced using a triple transfection of 293T cells using polyethylenimine followed by density separation by an iodixanol gradient and buffer exchange using phosphate-buffered saline (PBS). Vector genome concentration was determined by quantitative PCR comparison with plasmid standards following DNase I (New England Biolabs, Ipswich, MA, USA) digest and heat denaturation of AAV. For further details see Supplementary Methods.

Ethical review
Animal experiments were performed in accordance with the United Kingdom’s Animals (Scientific Procedures) Act 1986. Experiments were...
performed at a Home Office-approved site (code: 30/2306) and under the
purview of a project licence (30/2808) that was approved and periodically
reviewed by the University of Oxford’s Clinical Medicine Animal Welfare
and Ethical Review Body and the Home Office.

The acquisition of human retina tissue from patients with retinal
detachment was approved by the Berkshire Research Ethics Committee,
part of the National Health Service’s National Research Ethics Service (REC
Code 10/H0505/8).

Animals

C3H/HeNCrl female mice (referred to as ‘rd1 mice’) were purchased from
Charles River (Wilmington, MA, USA). Mice were housed in individually
ventilated cages under a 12 h light (< 100 lux)/dark cycle with the cage
temperature set to 21 ± 3 °C and 55 ± 10% relative humidity. Pellets of RM3
diet (Special Diets Services, Witham, UK) and water were available ad
libitum.

General anaesthesia

Mice were anaesthetised using 80 μg g⁻¹ of body mass of ketamine
(Vetalar, Zoetis, Florham Park, NJ, USA) and 10 μg g⁻¹ xylazine (Rompun,
Bayer AG, Leverkusen, Germany) administered via intraperitoneal injection
using a 1 ml insulin syringe and 29-G needle (Terumo, Tokyo, Japan).

Ketamine and xylazine were mixed together with the appropriate volume
of sterile water.

Anaesthetic reversal was achieved by intraperitoneal injection of 2 μg g⁻¹
of body mass of atipamezole (Antisedan, Orion Corporation, Espoo, Finland), made up with sterile water.

Intraocular injections

Under general anaesthesia, each eye of female 13–14-week-old C3H/
HeNCrl mice was injected with −3×10⁹ vg of one of three different
serotypes of AAV-GFP. One eye received an intravitreal injection, the other
a subretinal injection. Leakage of AAV from one eye to the contralateral
eye has not been demonstrated, and hence each eye was treated
independent. Four eyes were injected for each combination of AAV
serotype and delivery route. In the absence of data quantifying the effect
size, the sample size was chosen based on the sample size of comparable
studies. Mice were selected randomly for injection with a given
serotype. To minimise the risk of contamination, mice were injected with
the same serotype. The surgeon was masked to the AAV serotype injected.

Further analysis was done in an unmasked manner.

After the induction of general anaesthesia, 1% (w/v) tropicamide and
tropicin hydrochloride (Bausch & Lomb, Bridgewater, NJ, USA) were
applied to dilate the pupils. Carbomer gel (Viscotears; Alcon, Hünenberg,
Switzerland) was applied to both eyes and a 6 mm diameter cover glass
placed on the gel to enable visualisation of the fundus.

AAV solution was thawed on ice and diluted to the appropriate
concentration with PBS, when necessary. Using a 5 μl syringe (65 RN,
Hamilton Company), a 34 G, 10 mm long, point style 2 needle (Hamilton Company), 1–1.5 μl of AAV solution was aspirated with a
0.5 μl air bubble between the solution and the distal tip of the plunger.
The air bubble aided visualisation of the injection site.

An anterior chamber paracentesis was performed using a 1 ml insulin
syringe with a 29 G needle before subretinal injections to reduce ocular
pressure to aid globe manipulation and intraocular injection. Subretinal
vector delivery was performed under direct visualisation using an
operating microscope (Leica Microsystems, Wetzlar, Germany). The needle
was advanced through the sclera, choroid and retinal pigment epithelium
into the subretinal space. The injection site was posterior to the equator
and typically superotemporal in the left eye and superonasal in the right
eye. When the needle tip was visualised as being subretinal, the AAV
solution was injected. The appearance of air bubbles under the retina
confirmed a subretinal injection. Any mixed subretinal/intravitreal injec-
tions were excluded. The area of each retina exposed to a subretinal
injection was documented by manual drawings.

The procedure for an intravitreal injection did not include anterior
chamber paracentesis. The needle was passed through the sclera, choroid
and retina and into the vitreous cavity, where the solution was injected.

Seeing an air bubble against the posterior surface of the lens confirmed
the injection was intravitreal. The needle was left in situ for at least 30 s to
allow the intraocular pressure to normalise.

Table 2. Details of primary antibodies

Staining	Immunogen	Host species	Source (product code)	Clonality	Dilution	
Brn3a	Epitope mapping near the N terminus of Brn3a of human origin	Goat	Santa Cruz (sc-31984)	Polyclonal	1:1000	
fi			Abcam (ab11426)	Polyclonal	1:5000	
GAD67	[1G10.2]. Recombinant GAD67 protein	Mouse	Millipore (MAB5406)	Monoclonal	1:500GFAP GFAP isolated from cow spinal	
fi			Advanced Targeting Systems (AB-408)	Polyclonal	1:2500	
GlyT1	Synthetic peptide from the carboxy-terminus as predicted from the cloned rat GLYT1	Goat	Millipore (AB1770)	Polyclonal	1:1000	
fi			Advanced Targeting Systems (AB-N38)	Polyclonal	1:2500	
α[Y124]	Synthetic peptide corresponding to residues in C terminus of human PKC	Rabbit	Abcam (ab32376)	Monoclonal	1:1000	
fi			Advanced Targeting Systems (AB-N38)	Polyclonal	1:2500	
fi			Gift from Dr Jill Cowing			

Abbreviations: GAD67, glutamate decarboxylase 67; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; PKC, protein kinase C.
All injection wounds were allowed to self-seal. Following intraocular injection, drops of 0.5% (w/v) chloramphenicol and 0.5% (w/v) proxmetyacaine hydrochloride (Bausch & Lomb) were applied to both eyes. Mice were placed in a chamber warmed to ~ 35 °C for the duration of their recovery from anaesthesia. Mice were monitored for signs of ocular or systemic health issues in the hours and days after an injection. Between injections with the same AAV solution the needle and syringe were flushed at least 10 times with sterile saline solution. Between different AAV solutions the needles and syringe were flushed at least 20 times.

Confocal scanning laser ophthalmoscopy
Mice were imaged using a Spectralis HRA (Heidelberg Engineering, Heidelberg, Germany) with general anaesthesia. Pupillary dilation was achieved by the application of a 1:1 mixture of 1% (w/v) tropicamide and 2.5% (w/v) phenylephrine (Bausch & Lomb) at least 5 min before imaging. A drop of hypromellose BPC 0.3% (w/v) (Martindale Pharma, Romford, UK) followed by a custom-made contact lens was applied to each cornea to prevent dehydration and cataract formation.44

In near-infrared mode (820 nm laser) with a 55° lens, the focal plane was adjusted to the layer of maximum reflectance and an image acquired. Changing to autofluorescence mode (488 nm excitation laser, 500–700 nm emission detection), a series of images were acquired at sensitivity settings 40, 50, 60, 70, 80 and 90. The automated real-time feature, without normalisation, was used to improve image quality. In near-infrared mode the focal plane was moved to the inner retina to acquire images of the ganglion cell layer in near-infrared and autofluorescence modes. Images of other areas of interest were acquired, but not using standardised settings.

Immunohistochemistry: flat mounts
Visualised through a dissecting microscope the retina was removed from the eyecup and transferred to 30% sucrose in a microcannula. To facilitate antibody penetration, the retina was freeze-fractured using liquid nitrogen. The sample was placed in liquid nitrogen and left to freeze. The tube was removed and thawed at room temperature. Degenerate retinas underwent one freeze–thaw cycle, whereas nondegenerate retinas had two cycles.

Retinas were permeabilised by immersion in 1% Triton X-100 for 10 min, repeated three times. Retinas were blocked by immersion in 10% donkey serum for at least 2 h (typically overnight). Primary antibodies were diluted in 2.5% donkey serum and 1% Triton X-100 in PBS. Retinas were incubated in primary antibody solution for up to 3 days at 4 °C.

Retinas were washed with 0.2% Triton X-100 in PBS three times, with each step lasting at least 30 min on an orbital shaker. Secondary antibodies were diluted 1 in 200 with 2.5% donkey serum and 1% Triton X-100 in PBS and incubated in the dark overnight at 4 °C.

Retinas were washed with 0.2% Triton X-100 in PBS for four times, each step lasting at least 40 min on an orbital shaker. During the fourth wash step Hoechst 33342, diluted 1 in 5000 in PBS, was added. A final wash was done with water. Visualised under a dissecting microscope the retina was cleaned of debris and cuts were made to enable it to be flattened. The retina was transferred to a Polysine slide, with the ganglion cell layer facing up. The retina was dried before applying ProLong Gold mountant. A coverslip was lowered onto the retina and bubbles displaced. The slide was left in the dark at room temperature overnight for the mountant to set before being stored in the dark at 4 °C.

Image acquisition
Micrograph images were acquired using an inverted epifluorescence (Leica Microsystems) or an inverted confocal (Carl Zeiss, Oberkochen, Germany) microscope. Settings were optimised to minimise signal interference and avoid image saturation. Where quantitative or semi-quantitative comparisons between samples were to be made, the acquisition settings were kept constant.

Using ImageJ, minimum and maximum pixel values of the whole image were adjusted to aid visualisation of relevant features in figures.

Confocal imaging
Slides that had undergone the slide immunohistochemistry protocol in parallel were imaged on an inverted confocal microscope under standardised conditions. Using a 40× oil immersion lens, two sections from each slide were imaged. Two slides per eye were imaged, providing representative coverage across the eye. Images were acquired from areas of high fluorescence that were not at the extreme periphery of the retina, adjacent to optic nerve or at an obvious injection site. Within the section the imaging plane was set to that what gave the greatest total fluorescence, as judged subjectively. The pinhole was set to 1 Airy unit for the green channel. For image snaps that were to be compared, laser power, gain, speed, averaging and image resolution were kept constant after being set to minimise pixel saturation.

Using ImageJ, each image was manually segmented into the inner nuclear layer, inner plexiform layer and ganglion cell layer using the polygon selection tool. A threshold minimum pixel value was set and the measure tool used to calculate the percentage area and mean pixel value of each of the three regions of interest of each image, as previously described.17 This objective technique is less susceptible to subjective cell counting errors and has comparable outcomes.46 These data were copied.
into Excel. The mean of the percentage area and pixel value from the multiple images of a given eye (technical replicates) was used as the value to compare between eyes of different animals (biological replicates).

Macaque retinal explants
Rhesus macaque (M. mullata) eyes were obtained from the MRC Centre for Macaques (Porton Down, UK). Tissue was collected post mortem from male and female macaques ranging in age from 5 to 19 years (mean: 14.8 years old) undergoing planned killing for other purposes. After sedimentation with 10 mg kg\(^{-1}\) intramuscular ketamine and a lethal overdose of 200–300 mg kg\(^{-1}\) intravenous pentobarbitone, the eyes were immediately enucleated. In a dish of complete neurobasal A (see below) the cornea and lens were removed and radial incisions made to flatten the retina. A 3 mm diameter biopsy tool was used to take discs of neuroretina from the fovea and from around the vascular arcades (referred to as peripheral samples). Retinal pigment epithelium separated from the neuroretina and hence was not transferred. Using a transfer pipette (Sarstedt, Nümbrecht, Germany) each retinal disc explant was transferred to a tube containing chilled complete neurobasal A that was stored in a cooled polystyrene box for transport to the laboratory (a period of 2–6 h).

In the laboratory, each retinal disc was placed in a tissue culture insert (0.4 µm pore size, VWR International) in a well of a 24-well plate. Then, 500 µl of complete neurobasal A was placed in each well below the insert and 200 µl in the insert. Explants were cultured at 34 °C, 5% CO\(_2\). Media were replaced every 2 days. The porosity of the membrane on which the explants rested meant that it was assumed that explants were surrounded by AAV on all surfaces.

Fixation of retinal explants
Explants were incubated at 34 °C, 5% CO\(_2\). Media were replaced every 10 mg kg\(^{-1}\) intravenous pentobarbitone and a lethal overdose of 200–300 mg kg\(^{-1}\) intravenous pentobarbitone, the eyes were immediately enucleated. In a dish of complete neurobasal A (see below) the cornea and lens were removed and radial incisions made to flatten the retina. A 3 mm diameter biopsy tool was used to take discs of neuroretina from the fovea and from around the vascular arcades (referred to as peripheral samples). Retinal pigment epithelium separated from the neuroretina and hence was not transferred. Using a transfer pipette (Sarstedt, Nümbrecht, Germany) each retinal disc explant was transferred to a tube containing chilled complete neurobasal A that was stored in a cooled polystyrene box for transport to the laboratory (a period of 2–6 h).

In the laboratory, each retinal disc was placed in a tissue culture insert (0.4 µm pore size, VWR International) in a well of a 24-well plate. Then, 500 µl of complete neurobasal A was placed in each well below the insert and 200 µl in the insert. Explants were cultured at 34 °C, 5% CO\(_2\). Complete neurobasal A was made of penicillin (final concentration: 100 units per ml), streptomycin (100 µg ml\(^{-1}\), Sigma-Aldrich), L-glutamine (800 µM Sigma-Aldrich), B-27 supplement (2%; Gibco, Waltham, MA, USA) and N-2 supplement (1%; Gibco) in neurobasal A (Gibco).

Two biological replicates were used for each AAV serotype and for both foveal and peripheral samples.

Human retinal explants
Human retina samples were obtained from consented patients in an ethics approved clinical study, in which retinal tissue was being removed as part of their standard care. The surgery involved a limited retinectomy for retinal detachment at the Oxford Eye Hospital. Patients were aged 39, 60 and 83 years. Depending on the surgical requirements the retinectomy was performed by the vitreoretinal surgeons with ophthalmic surgical scissors or with a 20 G or 23 G vitrector. Samples were removed from the eye using a backflush flute needle and ejected into a sterile sample bottle containing balanced salt solution.

Within 1 h, samples were placed into a tissue culture insert (0.4 µm pore size) placed in a well of a 24-well plate. Then, 400 µl of complete neurobasal A was placed in each well below the insert and 300 µl placed in the insert. Explants were cultured at 34 °C, 5% CO\(_2\).

Two biological replicates were used for each AAV serotype. Technical replicates were not possible because of the limited amount of tissue available.

AAV transduction of primate retinal explants
Approximately 24 h after retina explant cultures began, the media were replaced with complete neurobasal A and a volume of AAV containing 10\(^{10}\) vg to a total volume of 600 µl (final concentration 1.67 × 10\(^{10}\) vg per ml). Explants were incubated at 34 °C, 5% CO\(_2\). Media were replaced every 2 days. The porosity of the membrane on which the explants rested meant that it was assumed that explants were surrounded by AAV on all surfaces. Investigators were not masked to which AAV serotype was applied.

Fixation of retinal explants
At 7 days after AAV was applied, explants were fixed. Explants were washed in PBS and fixed in 4% formaldehyde (Thermo Fisher Scientific, Waltham, MA, USA) in PBS for 2 h at room temperature. Following another wash in PBS, explants were placed in 30% sucrose (w/v in PBS; Sigma-Aldrich) and stored at 4 °C.

Statistical analysis and graphing
Statistical analysis and chart preparation was completed using Prism (GraphPad, San Diego, CA, USA).

When comparing two independent variables, with at least two conditions and a single dependent variable, an ordinary two-way ANOVA was used. The post hoc tests were conducted with Bonferroni’s multiple comparison tests. When available, sample groups were all compared with a single control group. When not available, all groups were compared with each other. The significance level was α = 0.05 for all tests.

CONFLICT OF INTEREST
JGF is an inventor of a patent relating to AAV2/2(7m8). The other authors declare no conflict of interest.

ACKNOWLEDGEMENTS
DGH, MWH and REM conceived and designed the experiments. TLE and DGH performed human retinal explant cultures. DGH and ARB performed in vivo imaging. DGH generated the AAV vectors, performed immunohistochemistry, completed the data analysis and wrote the manuscript. MSS performed the intraocular injections in the rd1 mice. SRS generated the AAV2/2(quad Y-F) rep-cap plasmid. MEM generated the AAVV2(8IY733F) rep-cap plasmid. JGF provided the AAVV2(2IY78m8) rep-cap plasmid. All authors reviewed and approved the manuscript.

AUTHOR CONTRIBUTIONS
DGH, MWH and REM conceived and designed the experiments. TLE and DGH performed human retinal explant cultures. DGH and ARB performed in vivo imaging. DGH generated the AAV vectors, performed immunohistochemistry, completed the data analysis and wrote the manuscript. MSS performed the intraocular injections in the rd1 mice. SRS generated the AAV2/2(quad Y-F) rep-cap plasmid. MEM generated the AAVV2(8IY733F) rep-cap plasmid. JGF provided the AAVV2(2IY78m8) rep-cap plasmid. All authors reviewed and approved the manuscript.

REFERENCES
1. Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifi-
cations in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010. Br Med J 2014; 4: e004015.
2. Edwards TL, Jolly JK, Gropppe M, Barnard AR, Cottrill CL, Tolmachova T et al. Visual acuity after retinal gene therapy for choroideremia. N Engl J Med 2016; 374: 1996–1998.
3. Jacobson SG, Cideciyan AV, Ratnakararm R, Heon E, Schwartz SB, Romain AJ et al. Gene therapy for leber congenital amaurosis caused by RPE65 Mutations: safety and efficiency in 15 children and adults followed up to 3 years. Arch Ophthalmol 2012; 130: 9–24.
4. Wu Y, Liang D, Wang Y, Bai M, Tang W, Bao S et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013: 13; 659–662.
5. Millington-Ward S, Chadderton N, O’Reilly M, Palfi A, Goldmann T, Kilty C et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 2011; 19: 642–649.
6. Lipinski DM, Barnard AR, Singh MS, Martin C, Lee EJ, Davies WL et al. CNFT gene therapy confers lifelong neuroprotection in a mouse model of human retinitis pigmentosa. Mol Ther 2015; 23: 1308–1319.
7. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennett JC et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008; 358: 2260–2248.
8. Bennett J. Immune response following intraocular delivery of recombinant viral vectors. Gene Therapy 2003; 10: 977–982.
9. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M et al. Next generation of adenovirus associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 2008; 105: 7927–7932.
10. Petsis-Silva H, Dinculescu A, Li Q, Deng W-T, Pang J-J et al. Novel prop-
terties of tyrosine-mutant AA2V vectors in the mouse retina. Mol Ther 2011; 29: 1301–1309.
11. Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adenov-
avirus associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.
12. Natkunarajah M, Trittibach P, McIntosh J, Duran Y, Barker SE, Smith AJ et al. Assessment of ocular transduction using single-stranded and self-complementary recombinant adenovirus associated virus serotype 2/B. Gene Therapy 2008; 15: 463–467.
13. Vandenberge LH, Bell P, Maguire AM, Cearley CN, Xiao R, Calcedo R et al. Dosage thresholds for AA2V and AAVB photoreceptor gene therapy in monkey. Sci Transl Med 2011; 3: 88ra54.
14. Petsis-Silva H, Dinculescu A, Li Q, Min S-H, Chiodo V, Pang J-J et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17: 463–471.

Gene Therapy (2017) 787 – 800
AAV tropism in mouse and primate retina

DG Hickey et al

15 Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH et al. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 2013; 5: 189ra76.

16 Perabo L, Büning H, Koffer DM, Ried MU, Girod A, Wendtner CM et al. In vitro selection of viral vectors with modified tropism: The adeno-associated virus display. Mol Ther 2003; 8: 151–157.

17 De Silva SR, Charbel Issa P, Singh MS, Lipinski DM, Barnea-Cramer AO, Walker NJ et al. Single residue AAV capsid mutation improves transduction of photo-receptors in the Abca4−/− mouse and bipolar cells in the rd1 mouse and human retina ex-vivo. Gene Therapy 2016; 23: 767–774.

18 Macé E, Caplette R, Marre O, Sengupta A, Chaffiol A, Barbe P et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol Ther 2014; 23: 7–16.

19 Dalkara D, Duebel J, Sahel J-A. Gene therapy for the eye focus on mutation-independent approaches. Curr Opin Neurol 2015; 28: 51–60.

20 Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 1990; 347: 677–680.

21 Pittler SJ, Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci USA 1991; 88: 8322–8326.

22 Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lap X et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43: 1–59.

23 Hackam AS, Stroom R, Liu D, Qian J, Wang C, Ottesen D et al. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 2004; 45: 2929–2942.

24 Strettoi E, Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 2000; 97: 11020–11025.

25 Varela C, Iqaurta I, De La Rosa EJ, De La Villa P. Functional modifications in rod bipolar cells in a mouse model of retinitis pigmentosa. Vision Res 2003; 43: 879–885.

26 Kolstad KD, Dalkara D, Guerin K, Visel M, Hoffmann N, Schaffer DV et al. Changes in adeno-associated virus-mediated gene delivery in retinal degeneration. Hum Gene Ther 2010; 21: 571–578.

27 Ramachandran PS, Lee V, Wei Z, Song JY, Wei Z, Song JY, Casal G, Cronin T et al. Expression changes associated with the progression of retinal degeneration in the rd mouse. Invest Ophthalmol Vis Sci 1996; 37: 2096–2102.

28 van Wyk M, PieleckaFortuna J, Löwel S, Kleinlogel S. Restoring the ON switch in blind retinas: Opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLOS Biol 2015; 13: e1002143.

29 Cronin T, Vandenbergh LH, Hantz P, Juttner J, Reimann A, Kacsó A-E et al. Efficient transduction and optogentic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014; 6: 1–16.

30 Thomas CE, Storm TA, Huang Z, Kay MA. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

31 Ivanova E, Pan Z-H. Evaluation of the adeno-associated virus mediated long-term expression of channelrhodopsin-2 in the mouse retina. Mol Vis 2009; 15: 1680–1689.

32 Boye SE, Alexander JJ, Witherspoon CD, Boye SL, Peterson JJ, Clark ME et al. Highly efficient delivery of adeno-associated viral vectors to the primate retina. Hum Gene Ther 2016; 27: 580–597.

33 Brinckmann A, Pannicke T, Groche J, Francke M, Wiedemann P, Skatchkov SN et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006; 25: 397–424.

34 van Wyk M, Pielecka Fortuna J, Löwel S, Kleinlogel S. Restoring the ON switch in blind retinas: Opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLOS Biol 2015; 13: e1002143.

35 Dalkara D, Duebel J, Sahel J-A. Gene therapy for the eye focus on mutation-independent approaches. Curr Opin Neurol 2015; 28: 51–60.

36 Bowes C, Li T, Danciger M, Baxter LC, Applebury ML, Farber DB. Retinal degeneration in the rd mouse is caused by a defect in the beta subunit of rod cGMP-phosphodiesterase. Nature 1990; 347: 677–680.

37 Pittler SJ, Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci USA 1991; 88: 8322–8326.

38 Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, De la Villa P, Lap X et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014; 43: 1–59.

39 Hackam AS, Stroom R, Liu D, Qian J, Wang C, Ottesen D et al. Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse. Invest Ophthalmol Vis Sci 2004; 45: 2929–2942.

40 Strettoi E, Pignatelli V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc Natl Acad Sci USA 2000; 97: 11020–11025.

41 Varela C, Iqaurta I, De La Rosa EJ, De La Villa P. Functional modifications in rod bipolar cells in a mouse model of retinitis pigmentosa. Vision Res 2003; 43: 879–885.

42 Kolstad KD, Dalkara D, Guerin K, Visel M, Hoffmann N, Schaffer DV et al. Changes in adeno-associated virus-mediated gene delivery in retinal degeneration. Hum Gene Ther 2010; 21: 571–578.

43 Ramachandran PS, Lee V, Wei Z, Song JY, Casal G, Cronin T et al. Evaluation of dose and safety of AAV7m8 and AAV8BP2 in the non-human primate retina. Hum Gene Ther 2017; 28: 154–167.

44 MacLaren RE. Development and role of retinal gliosis in regeneration of ganglion cells following retinal injury. Br J Ophthalmol 1996; 80: 458–464.

45 Watanabe S, Sanuki R, Ueno S, Koyasu T, Hasegawa T, Furukawa T. Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders. PLoS ONE 2013; 8: e54146.

46 Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 2011; 52: 2775–2783.

47 Heegaard S, Jensen OA, Prause JU. Structure of the vitread face of the monkey optic disc (Macaca mulatta). SEM on frozen resin-cracked optic nerveheads supplemented by TEM and immunohistochemistry. Graefe's Arch Clin Exp Ophthalmol 1988; 226: 377–383.

48 Heegaard S, Jensen O, Prause J. Structure and composition of the inner limiting membrane of the retina. Graefe's Arch Clin Exp 1986; 224: 355–360.

49 Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 2009; 17: 2096–2102.

Supplementary Information accompanies this paper on Gene Therapy website (http://www.nature.com/gt)