Association Between Bone Mineral Density, Bone Turnover Markers, and Serum Cholesterol Levels in Type 2 Diabetes

Yinqiu Yang1†, Guangwang Liu2†, Yao Zhang3, Guiping Xu4,5, Xilu Yi6, Jing Liang1, Chenhe Zhao1, Jun Liang7, Chao Ma2, Yangli Ye1, Mingxiang Yu1* and Xinhua Qu8*

1 Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China, 2 Department of Orthopaedics, Xuzhou Central Hospital, Xuzhou Medical University, Xuzhou Clinical Medical College of Nanjing University of Chinese Medicine, Xuzhou, China, 3 Department of Endocrinology, Department of Infectious Disease, Zhongshan Hospital, Fudan University, Shanghai, China, 4 Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China, 5 VIP Clinical Department, Fujian Provincial Hospital, Fuzhou, China, 6 Department of Endocrinology, Zhongshan Hospital, Songoiang Central Hospital, Fudan University, Shanghai, China, 7 Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, China, 8 Department of Bone and Joint Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Purpose: The association between bone mineral density (BMD), bone turnover markers, and serum cholesterol in healthy population has already been proved. However, in patients with type 2 diabetes mellitus (T2D), it has not been adequately analyzed. In this study, we investigated the correlation between BMD, bone turnover markers, and serum cholesterol levels in people with T2D.

Methods: We enrolled 1,040 men and 735 women with T2D from Zhongshan Hospital between October 2009 and January 2013. Their general condition, history of diseases and medication, serum markers, and BMD data were collected. We used logistic regression analysis to identify the association between serum cholesterol levels and BMD as well as bone turnover markers.

Results: In multivariate regression analysis, we observed that in men with T2D, high high-density lipoprotein-cholesterol and total cholesterol levels were significantly associated with low total lumbar, femur neck, and total hip BMD, while low-density lipoprotein-cholesterol level was only inversely associated with total lumbar and femur neck BMD. Total cholesterol and low-density lipoprotein-cholesterol levels were also negatively associated with osteocalcin, procollagen type I N-terminal propeptide, and β-crosslaps. In women with T2D, high-density lipoprotein-cholesterol level was observed to be negatively correlated with total lumbar, femur neck, and total hip BMD, while total cholesterol and low-density lipoprotein-cholesterol levels were also negatively associated with osteocalcin, procollagen type I N-terminal propeptide, and β-crosslaps; high-density lipoprotein-cholesterol was only related to osteocalcin and parathyroid hormone, while low-density lipoprotein-cholesterol was only related to β-crosslaps in women.
INTRODUCTION

The prevalence of osteoporosis and low-energy fractures in the aging population is increasing, which may lead to disability, poor living quality, and even death (1). In patients with type 2 diabetes mellitus (T2D), the fracture risk is usually higher than that in the general population (2–4) and varies even after adjusting for age, duration of diabetes, antidiabetic drug usage, and body mass index (BMI) (5, 6). The risk factors for osteoporosis in the general population have been reported and analyzed in previous studies (7). However, because of metabolic disorders, the risk factors for osteoporosis in people with T2D may be different, and it is important to discuss them. According to current studies, several factors are regarded as risk factors for osteoporosis in people with diabetes. Ashbinia et al. (8) reported that in patients with diabetes, old age, low body weight, low serum calcium, and low-density lipoprotein cholesterol (LDL-C) levels were independently associated with lumbar spine osteoporosis (8). Chen et al. (9) observed that abnormal blood lipid, abnormal adipokine levels, and elevated inflammatory factor levels were independent risk factors for osteoporosis in patients with T2D (9).

In recent years, the association between serum lipid and bone metabolism has gained considerable interest; however, there is no general agreement regarding this subject yet. Retrospective studies conducted in postmenopausal women have reported a negative correlation between serum total cholesterol (TC), LDL-C levels, and bone mineral density (BMD) (10–12), while high-density lipoprotein-cholesterol (HDL-C) level was inversely associated with BMD in both men and women (11, 13–16). In addition, cholesterol-reducing medication, such as statins, was reported to have beneficial effects on BMD in most previous studies (17–19); this also suggests the negative association between serum cholesterol levels and BMD. However, positive association (20–22) as well as no correlation (23–27) has been reported in several studies. No study has analyzed the association between serum cholesterol level and BMD in a population with T2D. Only one study evaluating 229 American individuals that discussed the correlation between serum cholesterol levels and osteoporosis in people with diabetes discovered a direct correlation between LDL and lumbar spine osteoporosis (8).

The associations between serum cholesterol and bone turnover markers were also widely studied. Most studies found that TC, HDL-C, and LDL-C levels were negatively correlated with osteocalcin (OCN) in the general population (28, 29), while in patients with T2D, no association was reported (30, 31). Both procollagen type I N-terminal propeptide (PINP) and β-crosslaps (β-cTX) showed no relationship with serum cholesterol in healthy postmenopausal women as well as in T2D patients (12, 30). According to Ponda et al. in vitamin D repletion group, LDL-C was inversely correlated with serum parathyroid hormone (PTH) (32). However, another study found no association between PTH and serum cholesterol (33).

From the above, the association between BMD, bone turnover markers, and serum cholesterol remain controversial, and little research in T2D patients has been conducted. Therefore, we investigated the Chinese population with T2D, and aimed to clarify the association between serum cholesterol levels, including TC, HDL-C, and LDL-C, and BMD, at total lumbar, femur neck, and total hip. We analyzed men and women with T2D separately, as well as the linear and non-linear correlation.

MATERIALS AND METHODS

Study Population

We conducted a hospital-based cross-sectional study. All participants were selected consecutively from the endocrinology department of Zhongshan Hospital between October 2009 and January 2013. All selected participants were ≥18 years old with T2D. T2D was diagnosed based on the Standards of Medical Care in Diabetes by the American Diabetes Association as follows: (a) hemoglobin A1c (HbA1c) ≥6.5%; or (b) fasting blood glucose (FBG) ≥7.0 mmol/L (no caloric intake for 8 h at least); or (c) 2-h blood glucose ≥11.1 mmol/L by oral glucose tolerance test (which uses glucose load containing the equivalent of 75 g anhydrous glucose dissolved in water); or (d) random blood glucose ≥11.1 mmol/L in patients with typical hyperglycemia symptoms or hyperglycemia crisis, which occurs in the absence of unequivocal hyperglycemia, results should be confirmed by repeat testing) (34). The exclusion criteria included (a) diagnosis of malignant tumor and severe heart, liver, or kidney diseases; (b) diagnosis of pituitary, thyroid, parathyroid, adrenal, and gonadal diseases; (c) long-term bedridden patients;
Trained doctors conducted overall physical examinations for Clinical Assessment and Health History in informed consent.

We calculated the regression coefficient and corresponding 95% confidence intervals (CI) using unadjusted and multivariate adjusted logistic regression analyses for the associations between per SD in serum cholesterol level and BMD. The crude model was adjusted for no variables. The multivariate-adjusted model 2 was further adjusted for age; diabetes duration (y); treatment of DM; smoking; drinking; BMI; cerebrovascular disease; kidney disease; family history of DM; diastolic blood pressure; FBG, mmol/L; Cr, µmol/L; BUN, mmol/L; Ca, mmol/L; ALT, U/L; AST, U/L; and ALP, U/L. The multivariate-adjusted model 3 was adjusted for age; diabetes duration (y); treatment of DM; smoking; drinking; BMI; cerebrovascular disease; kidney disease; family history of DM; diastolic blood pressure; FBG, mmol/L; Cr, µmol/L; BUN, mmol/L; Ca, mmol/L; ALT, U/L; AST, U/L; ALP, U/L; HbA1c, %; and hsCRP, mg/L. A two-sided P-value of <0.05 was considered to be statistically significant.

To examine the non-linear association between serum cholesterol level and osteoporotic fracture (logOR), we further applied a two-piecewise linear regression model using a smoothing function after adjusting for age; diabetes duration (y); treatment of DM; smoking; drinking; BMI; cerebrovascular disease; kidney disease; family history of DM; diastolic blood pressure; FBG, mmol/L; Cr, µmol/L; BUN, mmol/L; Ca, mmol/L; ALT, U/L; AST, U/L; ALP, U/L; PTH, pg/mL; OCN, ng/mL; PINP, ng/mL; β-cTX, pg/mL; and 25(OH)D, nmol/L. In addition, we conducted a log likelihood ratio test comparing the one-line linear regression model with the two-piecewise linear model.

To analyze the association between serum cholesterol levels and bone turnover markers, we used multivariate-adjusted model, adjusted for age; treatment of DM; diabetic duration; smoking; drinking; family history of DM; BMI; systolic blood pressure; diastolic blood pressure, FBG, mmol/L, Cr, umol/l, BUN, mmol/L, Ca, mmol/L; ALT, U/L; AST, U/L; and ALP, U/L.

Statistical analyses were performed using R packages (http://www.r-project.org) and Empower (R) (www.empowerstats.com, X&Y solutions Inc., Boston, MA).

RESULTS

Basic Characteristics

The patient characteristics are presented in Table 1. This retrospective study included 1776 patients with T2D with the mean age of 58.4 ± 13.3 years and BMI of 24.9 ± 3.7 kg/m². The mean diabetic duration was 7.6 ± 7.0 years and mean FBG was 8.6 ± 3.1 mmol/L. The mean serum TC, HDL-C, and LDL-C levels of all participants were 4.6 ± 1.1, 1.1 ± 0.3, and 2.6 ± 0.9 mmol/L, respectively. The mean BMD at total lumbar, femur neck, and total hip were 1.0 ± 0.2, 0.8 ± 0.1, and 0.9 ± 0.1 g/cm², respectively. Men were significantly younger than women (56.2 vs. 61.4 years, $P < 0.001$) and the diabetes duration was shorter (6.6 vs. 8.9, $P < 0.001$). The mean HbA1c was higher in men (9.5 vs. 9.1, $P < 0.001$), while mean β-cTX was higher in women (0.4 vs. 0.5, $P = 0.012$). The proportion of smoking or drinking history was significantly higher in men than in women (smoking: 42.4 vs. 22.2%; drinking: 20.9% vs. 12.2%, both $P < 0.001$).
TABLE 1 | Patient characteristics, stratified by sex. Values are mean ± SD or n (%) unless otherwise specified.

	Total patients	Male patients	Female patients	P-value
	(n = 1,776)	(n = 1,040)	(n = 736)	
Age	58.355 ± 13.254	56.176 ± 13.611	61.433 ± 12.090	<0.001
Diabetic duration(y)	7.562 ± 6.997	6.612 ± 6.591	8.906 ± 7.330	<0.001
Systolic blood pressure	132.024 ± 16.814	130.835 ± 16.180	133.705 ± 17.545	<0.001
Diastolic blood pressure	81.042 ± 9.549	81.269 ± 9.473	80.720 ± 9.653	0.233
BMI	24.929 ± 3.720	24.883 ± 3.638	24.994 ± 3.585	0.542
Laboratory findings				
FBG, mmol/l	8.642 ± 3.053	8.705 ± 2.965	8.554 ± 3.174	0.306
HbA1C, %	9.310 ± 2.349	9.488 ± 2.375	9.059 ± 2.289	<0.001
hsCRP, mg/l	4.831 ± 10.824	4.582 ± 10.089	4.575 ± 1.069	0.891
TC, mmol/l	4.579 ± 1.081	4.582 ± 1.089	4.575 ± 1.069	0.891
HDL-C, mmol/l	1.113 ± 0.325	1.116 ± 0.329	1.110 ± 0.320	0.728
LDL-C, mmol/l	2.639 ± 0.914	2.643 ± 0.926	2.634 ± 0.896	0.842
Cr, umol/l	69.556 ± 26.392	69.642 ± 27.571	69.433 ± 24.651	0.870
BUN, mmol/l	5.899 ± 2.295	5.900 ± 2.283	5.896 ± 2.313	0.969
PTH, pg/ml	36.214 ± 14.546	36.193 ± 14.522	36.243 ± 14.522	0.945
OCN, mg/ml	13.942 ± 6.241	13.824 ± 6.039	14.113 ± 6.523	0.353
PINP, pg/ml	39.739 ± 19.623	39.196 ± 18.653	40.530 ± 20.945	0.178
β-cTX, pg/ml	0.447 ± 0.287	0.432 ± 0.268	0.469 ± 0.310	0.012
25(OH)D, nmol/l	35.130 ± 17.305	35.459 ± 17.248	35.974 ± 17.365	0.096
Ca, mmol/l	2.224 ± 0.114	2.224 ± 0.119	2.224 ± 0.108	0.977
ALT, U/L	26.929 ± 12.255	27.206 ± 12.079	26.539 ± 10.817	0.637
AST, U/L	23.451 ± 19.895	23.766 ± 20.996	23.007 ± 18.235	0.430
BMD, g/cm²				
Total lumbar	0.963 ± 0.160	0.963 ± 0.157	0.964 ± 0.164	0.902
Femur neck	0.756 ± 0.133	0.755 ± 0.134	0.756 ± 0.133	0.972
Total Hip	0.899 ± 0.141	0.899 ± 0.140	0.900 ± 0.142	0.923
Treatment of diabetes				0.043
No treatment	263 (14.809%)	175 (16.827%)	88 (11.967%)	<0.001
Insulin	464 (26.126%)	267 (25.673%)	197 (26.766%)	<0.001
Oral medicine	704 (39.640%)	401 (38.558%)	303 (41.168%)	0.178
Insulin and OM	345 (19.426%)	197 (18.942%)	148 (20.109%)	0.178
Smoking				<0.001
Never	1319 (74.268%)	599 (57.596%)	720 (97.826%)	<0.001
Current or ever	457 (25.732%)	441 (42.404%)	16 (2.174%)	<0.001
Drinking				<0.001
Never	1550 (87.275%)	823 (79.135%)	727 (98.777%)	<0.001
Current or ever	226 (12.725%)	217 (20.865%)	9 (1.223%)	<0.001
Cerebrovascular disease				0.710
No	1604 (90.315%)	937 (90.096%)	667 (90.625%)	<0.001
Yes	172 (9.685%)	103 (9.904%)	69 (9.375%)	0.069
Kidney disease				
No	1614 (90.878%)	956 (91.923%)	658 (89.402%)	<0.001
Yes	162 (9.122%)	84 (8.077%)	78 (10.598%)	0.052
Family history of diabetes				
No	1072 (80.360%)	608 (58.462%)	464 (63.043%)	<0.001
Yes	704 (39.640%)	432 (41.538%)	272 (36.957%)	<0.001

Frontiers in Endocrinology | www.frontiersin.org 4 November 2018 | Volume 9 | Article 646
Association Between Serum Cholesterol Levels and Total Lumbar BMD

In the univariate logistic regression model, serum cholesterol levels were significantly negatively associated with total lumbar BMD in both men and women with T2D. In men, a 1-SD increases in TC, HDL-C, and LDL-C levels were associated with 0.019 g/cm² (P = 0.0003, 95% CI = 0.009–0.029), 0.031 g/cm² (P < 0.0001, 95% CI = 0.021–0.042), and 0.017 g/cm² (P = 0.0010, 95% CI = 0.007–0.028) decreases in total lumbar BMD, respectively. In women, a 1-SD increases in TC, HDL-C, and LDL-C levels correlated with total lumbar BMD decreases of 0.015 g/cm² (P = 0.0336, 95% CI = 0.001–0.028), 0.027 g/cm² (P = 0.0001, 95% CI = 0.014–0.040), and 0.014 g/cm² (P = 0.0375, 95% CI = 0.001–0.028), respectively.

In addition, a similar negative association was observed in multivariate logistic regression analysis results (multivariate-adjusted model 3). In men, after multivariate adjustment, a 1-SD increases in TC, HDL-C, and LDL-C levels in men with T2D; total lumbar BMD decreases of 0.016 g/cm² (P = 0.014 g/cm² (P = 0.0104, 95% CI = 0.005–0.035), and 0.018-g/cm² (P = 0.0190, 95% CI = 0.003–0.032), respectively (Table 2 and Figure 1).

In addition, as shown in Table S1, on comparing the highest quartile with the lowest quartile of serum TC, HDL-C, and LDL-C levels in men with T2D; total lumbar BMD decreases of 0.046 g/cm² (P = 0.00347, 95% CI = 0.017–0.078), we observed.

Association Between Serum Cholesterol Levels and Femur Neck BMD

As shown in Table 3, univariate logistic regression analysis suggested that with a 1-SD increases in TC, HDL-C, and LDL-C levels in men, femur neck BMD decrease of 0.012 g/cm² (P = 0.0074, 95% CI = 0.003–0.021), 0.027 g/cm² (P < 0.0001, 95% CI = 0.018–0.036), and 0.011 g/cm² (P = 0.0126, 95% CI = 0.002–0.020), respectively were observed. However, in women, a 1-SD increase in HDL-C level was associated with 0.022-g/cm² decrease in femur neck BMD (P < 0.0001, 95% CI = 0.012–0.033).

In multivariate regression analyses with 1-SD increases in TC, HDL-C, and LDL-C levels in men, femur neck BMD decreases of 0.014 g/cm² (P = 0.0039, 95% CI = 0.005–0.024), 0.025 g/cm² (P < 0.0001, 95% CI = 0.016–0.035), and 0.012 g/cm² (P = 0.0160, 95% CI = 0.002–0.022), respectively were observed. In women, a 1-SD increase in only HDL-C level was associated with a 0.018-g/cm² (P = 0.0033, 95% CI = 0.006–0.030) decrease in femur neck BMD, and no association between TC and LDL-C levels and femur neck BMD was observed in our study (Table 3 and Figure 2).

Association Between Serum Cholesterol Levels and Total Hip BMD

Table 4 and Figure 3 present the association between serum cholesterol levels and total hip BMD by the logistic regression model and two-piecewise linear regression model. In the crude model with a 1-SD increase in HDL-C and LDL-C levels, total hip BMD decreases of 0.033 g/cm² (P = 0.0001, 95% CI = 0.023–0.042) in men and 0.030 g/cm² (P = 0.0001, 95% CI = 0.04–0.019) in women were observed, while a 1-SD increase in LDL-C level was only found to be associated with 0.011-g/cm² total hip BMD decrease in men (P = 0.0271, 95% CI = 0.001–0.020).

After multivariate adjustment, a 1-SD increase in LDL-C level was found to decrease total hip BMD by 0.029 g/cm² (P < 0.0001, 95% CI = 0.019–0.039) in men and 0.028 g/cm² (P < 0.0001, 95% CI = 0.015–0.041) in women. The association between TC level and total hip BMD was observed only in men (β = -0.011, 95% CI = -0.000 to -0.021, P = 0.0403); and LDL-C level was not associated with total hip BMD in both sexes.

In Table S3, on comparing the highest HDL-C level group to the lowest, total hip BMD in men with T2D decreased by 0.069 g/cm² (P < 0.0001, 95% CI = 0.041–0.096) while that in women with T2D decreased by 0.062 g/cm² (P = 0.00064, 95% CI = 0.027–0.097).

For comparison, a longitudinal cohort study reported that in the late perimenopausal women, BMD declined substantially with an average loss of 0.018 and 0.010 g/cm²/yr from the spine and hip, respectively, and in the postmenopausal women, rates of loss from the spine and hip were 0.022 and 0.013 g/cm²/yr, respectively (P < 0.001 for all) (35). Therefore, there are clinical implications to the effects of serum cholesterol levels on BMD in our study.

Association Between Serum Cholesterol Levels and Bone Turnover Markers

OCN

In men with T2D, multivariate regression analysis showed that with values above the inflection point (TC > 0.79 mmol/L; HDL-C > 0.71 mmol/L), a 1-SD increase in TC was associated with 1.59 ng/mL (P = 0.0060, 95% CI = 0.46–2.72) decrease in OCN, while per mmol/L increase in HDL-C was associated with 1.95 ng/mL increase in OCN (P = 0.0034, 95% CI = 0.65–3.24). Moreover, when LDL-C was no more than 3.00 mmol/L, with per mmol/L increase in LDL-C, OCN increased 0.98 ng/mL (P = 0.0088, 95% CI = 0.25–1.17), whereas when and LDL-C increased above 3.00 mmol/L, with per mmol/L increase in LDL-C, OCN decreased 1.20 ng/mL (P = 0.0158, 95% CI = 0.23–2.17).
TABLE 2 | Multivariate regression for effect of TC, HDL-C, and LDL-C on total lumbar BMD.

	Male patients		Female patients	
	β (95% CI)	P	β (95% CI)	P
CRUDE MODEL				
TC, mmol/l per SD	-0.019 (-0.029, -0.009)	0.0003	-0.015 (-0.028, -0.001)	0.0336
HDL-C, mmol/l per SD	-0.031 (-0.042, -0.021)	<0.0001	-0.027 (-0.040, -0.014)	0.0001
LDL-C, mmol/l per SD	-0.017 (-0.028, -0.007)	0.0010	-0.014 (-0.028, -0.001)	0.0375
MULTIVARIATE-ADJUSTED MODEL 1				
TC, mmol/l per SD	-0.021 (-0.031, -0.010)	0.0001	-0.015 (-0.029, -0.001)	0.0347
HDL-C, mmol/l per SD	-0.031 (-0.042, -0.021)	<0.0001	-0.028 (-0.042, -0.015)	0.0001
LDL-C, mmol/l per SD	-0.019 (-0.030, -0.008)	0.0004	-0.014 (-0.028, 0.000)	0.0565
MULTIVARIATE-ADJUSTED MODEL 2				
TC, mmol/l per SD	-0.021 (-0.032, -0.010)	0.0002	-0.013 (-0.028, 0.001)	0.0649
HDL-C, mmol/l per SD	-0.028 (-0.039, -0.017)	<0.0001	-0.020 (-0.035, -0.006)	0.0057
LDL-C, mmol/l per SD	-0.019 (-0.030, -0.008)	0.0006	-0.014 (-0.028, 0.001)	0.0616
MULTIVARIATE-ADJUSTED MODEL 3				
TC, mmol/l per SD	-0.022 (-0.034, -0.011)	0.0001	-0.016 (-0.031, -0.001)	0.0326
HDL-C, mmol/l per SD	-0.025 (-0.040, -0.017)	<0.0001	-0.020 (-0.035, -0.005)	0.0104
LDL-C, mmol/l per SD	-0.020 (-0.032, -0.009)	0.0007	-0.018 (-0.032, -0.003)	0.0190

Crude Model adjust for: None Multivariate-Adjusted Model 1 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI.
Multivariate-Adjusted Model 2 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI; Cerebrovascular disease; Kidney disease; Family history of DM; Diastolic blood pressure; FBG, unit; Cr, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L.
Multivariate-Adjusted Model 3 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI; Cerebrovascular disease; Kidney disease; Family history of DM; Diastolic blood pressure; FBG, unit; Cr, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L; HbA1C, %; hsCRP, mg/l.

![Figure 1](https://www.frontiersin.org/articles/646/0466/)

FIGURE 1 | Multivariate adjusted smoothing spline plots of total lumbar BMD by TC, HDL-C, and LDL-C. Red dotted lines represent the spline plots of TC, HDL-C, and LDL-C and blue dotted lines represent the 95% CIs of the spline plots. Adjusted for age; diabetic duration(y); treatment of DM; smoking; drinking; BMI; cerebrovascular disease; kidney disease; family history of DM; diastolic blood pressure; FBG, unit; Cr, umol/l; BUN, mmol/l; Ca, unit; ALT, U/L; AST, U/L; ALP, U/L.
TABLE 3 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on femur neck BMD.

	Male patients	Female patients		
	\(\beta \) (95% CI)	\(P \)	\(\beta \) (95% CI)	\(P \)
CRUDE MODEL				
TC, mmol/l per SD	-0.012 (-0.021, -0.003)	0.0074	-0.005 (-0.016, 0.006)	0.4042
HDL-C, mmol/l per SD	-0.027 (-0.036, -0.018)	<0.0001	-0.022 (-0.033, -0.012)	<0.0001
LDL-C, mmol/l per SD	-0.011 (-0.020, -0.002)	0.0126	-0.006 (-0.017, 0.005)	0.2653
MULTIVARIATE-ADJUSTED MODEL 1				
TC, mmol/l per SD	-0.013 (-0.022, -0.004)	0.0049	-0.006 (-0.017, 0.005)	0.2816
HDL-C, mmol/l per SD	-0.028 (-0.037, -0.019)	<0.0001	-0.024 (-0.035, -0.013)	<0.0001
LDL-C, mmol/l per SD	-0.012 (-0.020, -0.003)	0.0122	-0.008 (-0.019, 0.004)	0.1909
MULTIVARIATE-ADJUSTED MODEL 2				
TC, mmol/l per SD	-0.012 (-0.022, -0.003)	0.0086	-0.007 (-0.018, 0.004)	0.2283
HDL-C, mmol/l per SD	-0.026 (-0.035, -0.016)	<0.0001	-0.017 (-0.029, -0.006)	0.0037
LDL-C, mmol/l per SD	-0.011 (-0.021, -0.002)	0.0150	-0.008 (-0.020, 0.003)	0.1470
MULTIVARIATE-ADJUSTED MODEL 3				
TC, mmol/l per SD	-0.014 (-0.024, -0.005)	0.0039	-0.006 (-0.020, 0.004)	0.1782
HDL-C, mmol/l per SD	-0.025 (-0.035, -0.016)	<0.0001	-0.018 (-0.030, -0.006)	0.0033
LDL-C, mmol/l per SD	-0.012 (-0.022, -0.002)	0.0160	-0.011 (-0.023, 0.001)	0.0624

Crude Model adjust for: None Multivariate-Adjusted Model 1 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI. Multivariate-Adjusted Model 2 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI; Cerebrovascular disease; Kidney disease; Family history of DM; Diastolic blood pressure; FBG, mmol/l; C, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L. Multivariate-Adjusted Model 3 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI; Cerebrovascular disease; Kidney disease; Family history of DM; Diastolic blood pressure; FBG, mmol/l; C, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L; HbA1C, %; hsCRP, mg/l.

FIGURE 2 | Multivariate adjusted smoothing spline plots of femur neck BMD by TC, HDL-C, and LDL-C. Red dotted lines represent the spline plots of TC, HDL-C, and LDL-C and blue dotted lines represent the 95% CIs of the spline plots. Adjusted for age; diabetic duration(y); treatment of DM; smoking; drinking; BMI; cerebrovascular disease; kidney disease; family history of DM; diastolic blood pressure; FBG, unit; C, umol/l; BUN, mmol/l; Ca, unit; ALT, U/L; AST, U/L; ALP, U/L.
TABLE 4 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on total hip BMD.

	Male patients	Female patients		
	β (95% CI)	P	β (95% CI)	P
CRUDE MODEL				
TC, mmol/l per SD	−0.009 (−0.018, 0.000)	0.0581	−0.005 (−0.016, 0.006)	0.3827
HDL-C, mmol/l per SD	−0.033 (−0.042, −0.023)	<0.0001	−0.030 (−0.041, −0.019)	<0.0001
LDL-C, mmol/l per SD	−0.011 (−0.020, −0.001)	0.0271	−0.007 (−0.019, 0.004)	0.2180
MULTIVARIATE-ADJUSTED MODEL 1				
TC, mmol/l per SD	−0.010 (−0.020, −0.001)	0.0375	−0.007 (−0.019, 0.005)	0.2859
HDL-C, mmol/l per SD	−0.034 (−0.043, −0.025)	<0.0001	−0.032 (−0.043, −0.020)	<0.0001
LDL-C, mmol/l per SD	−0.011 (−0.021, −0.002)	0.0218	−0.009 (−0.021, 0.004)	0.1640
MULTIVARIATE-ADJUSTED MODEL 2				
TC, mmol/l per SD	−0.010 (−0.020, 0.000)	0.0486	−0.007 (−0.019, 0.005)	0.2749
HDL-C, mmol/l per SD	−0.031 (−0.040, −0.021)	<0.0001	−0.025 (−0.037, −0.013)	0.0001
LDL-C, mmol/l per SD	−0.011 (−0.020, −0.001)	0.0286	−0.009 (−0.022, 0.003)	0.1310
MULTIVARIATE-ADJUSTED MODEL 3				
TC, mmol/l per SD	−0.011 (−0.021, 0.000)	0.0403	−0.008 (−0.021, 0.004)	0.1914
HDL-C, mmol/l per SD	−0.029 (−0.039, −0.019)	<0.0001	−0.028 (−0.041, −0.015)	<0.0001
LDL-C, mmol/l per SD	−0.010 (−0.020, 0.000)	0.0575	−0.013 (−0.026, 0.000)	0.0494

Crude Model adjust for: None Multivariate-Adjusted Model 1 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI. Multivariate-Adjusted Model 2 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI; Cerebrovascular disease; Kidney disease; Family history of DM; Diastolic blood pressure; FBG, mmol/l; Cr, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L. Multivariate-Adjusted Model 3 adjust for: Age; Diabetic duration(y); Treatment of DM; Smoking; Drinking; BMI; Cerebrovascular disease; Kidney disease; Family history of DM; Diastolic blood pressure; FBG, mmol/l; Cr, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L; HbA1C, %; hsCRP, mg/l.

FIGURE 3 | Multivariate adjusted smoothing spline plots of total hip BMD by TC, HDL-C, and LDL-C. Red dotted lines represent the spline plots of TC, HDL-C, and LDL-C and blue dotted lines represent the 95% CIs of the spline plots. Adjusted for age; diabetic duration(y); treatment of DM; smoking; drinking; BMI; cerebrovascular disease; kidney disease; family history of DM; diastolic blood pressure; FBG, unit; Cr; umol/l; BUN, mmol/l; Ca, unit; ALT; U/L; AST, U/L; ALP, U/L; HbA1C, %; hsCRP, mg/l.
In women with T2D, when HDL-C was more than 1.18 mmol/L, with 1 mmol/L increase in HDL-C, OCN increased by 5.49 ng/ml (P = 0.008, 95% CI = 2.30–8.68). While TC and LDL-C was not associated with OCN (Table 5).

PINF

As shown in Table 6, in multivariate regression analysis, we found that when TC was above 0.72 mmol/L, a 1-SD increase in TC in men was related with 4.62 ng/ml decrease in PINF (P = 0.0061, 95% CI = 1.33–7.92). Only when LDL-C was > 2.77 mmol/L, with per mmol/L increase in LDL-C, PINP decreased by 4.02 ng/ml in men with T2D (P = 0.0023, 95% CI = 1.45–6.59).

However, in women with T2D, only TC level was found to be related with PINP. When TC was > 1.21 mmol/L, 1-SD increase in TC was correlated with 6.60 ng/ml decrease in PINP (P = 0.0241, 95% CI = 0.88–12.31).

β-CTX

Table 7 shows the correlation between serum cholesterol levels and β-CTX after multivariate regression analysis. In men with T2D, when TC was > 0.76 mmol/L, a 1-SD increase in TC was correlated with 0.06 pg/ml decrease in β-CTX (P = 0.0028, 95% CI = 0.02–0.10), while 1 mmol/L increase in LDL-C was correlated with 0.09 pg/ml decrease in β-CTX (P = 0.0020, 95% CI = 0.03–0.115) only if LDL-C was > 3.47 mmol/L. When LDL-C was < 3.47 mmol/L, with per mmol/L increase in LDL-C, β-CTX increased by 0.04 ng/ml (P = 0.0072, 95% CI = 0.01–0.06).

In women with T2D, with values above the inflection point (TC > 1.19 mmol/L; LDL-C > 3.94 mmol/L and HDL-C > 1.42 mmol/L), with 1-SD increase in TC, β-CTX decreased by 0.09 pg/ml (P = 0.0210, 95% CI = 0.01–0.17); with per mmol/L increase in LDL-C, β-CTX decreased by 0.13 pg/mL (P = 0.0481, 95% CI = 0.00–0.26) and with per mmol/L increase in HDL-C, β-CTX increased by 0.26 pg/mL (P = 0.0433, 95% CI = 0.01–0.51).

PTH

In Table 8, in multivariate regression analysis, we found positive association between TC, HDL-C level and PTH in men with T2D. When TC was < 0.45 mmol/L, a 1-SD increase in TC was associated with 1.80 pg/mL (P = 0.0385, 95% CI = 0.10–3.50) decrease in PTH, and when HDL-C was > 0.77 mmol/L, per mmol/L increase in HDL-C was associated with 3.71 pg/mL (P = 0.0348, 95% CI = 0.27–7.15) decrease in PTH.

In women group, when HDL-C was < 1.72 mmol/L, with 1 mmol/L increase in HDL-C, PTH increased by 8.72 pg/ml (P = 0.0002, 95% CI = 4.15–13.29) whereas, when HDL-C was > 1.72 mmol/L, 1 mmol/L increase in HDL-C was associated with 32.47 pg/ml decrease in PTH (P = 0.0047, 95% CI = 6.48–58.47). While a 1-SD increase in TC was associated with 2.74 pg/ml (P = 0.0027, 95% CI = 0.96–4.53) decrease in PTH only if TC was < 0.98 mmol/L.

DISCUSSION

To the best of our knowledge, our study was the first to report an inverse correlation between serum cholesterol levels and BMD in an Asian population with T2D. After multivariate-adjusted analyses, we observed a significantly negative association between HDL-C level and BMD at the total lumbar, femur neck, and total hip in both male and female patients with T2D. Moreover, in men with T2D, TC level was significantly negatively correlated with total lumbar BMD, femur neck BMD, and total hip BMD, while LDL-C level was only inversely related to the total lumbar BMD and the femur neck BMD. In women with T2D, TC, and LDL-C levels were found to be negatively related to the total lumbar BMD only.

Although controversial, the association between serum cholesterol and BMD has been widely studied in the general population; however, no such studies have been conducted on people with T2D. Only one study conducted in the American population with T2D reported that low LDL level was independently associated with lumbar spine osteoporosis, after adjusting for sex; race; ethnicity; and use of statins, plasma glucose, and other lipoproteins. Several studies have reported that the correlation between serum cholesterol and BMD may be affected by race. Therefore, our analysis of the effect of serum cholesterol on BMD in Asian T2D patients is of great significance.

Our study observed a significantly negative association between HDL-C level and BMD in patients with T2D. Makovey et al. (11) reported that BMD values were significantly lower in postmenopausal women with higher HDL-C levels in the general population, while Kuipers et al. (16) and Choi et al. (36) reported that a higher HDL-C level was associated with lower BMD in men. Adami et al. (13) and Buizert et al. (15) reported a negative relationship between HDL-C level and BMD in both healthy men and women. However, in studies conducted in both men (36) and women (26), HDL-C level was reported to be positively correlated with BMD, and several studies have reported no association between HDL-C level and BMD in postmenopausal women (27).

In our study, TC level was inversely associated with BMD at three sites in men with T2D, and in women, TC level was also inversely associated with total lumbar and femur neck BMD. According to Cui et al. (10), Makovey et al. (11), and Choi et al. (36), serum TC levels were inversely correlated with BMD in both pre- and postmenopausal women in the general population, and Garg et al. (37) observed that TC was weakly negatively associated with BMD in the Indian population in both sexes. In addition, TC was considered an independent risk factor for osteoporosis in some studies (38), which also suggested negative correlation with BMD. However, there are some controversies. Adami et al. (13) revealed that the relationship between TC and BMD was positive in healthy men and women. In addition, some studies reported no association between TC and BMD in postmenopausal women (26, 27) and the general population in both sexes (15, 23, 24).

Furthermore, our study demonstrated that LDL-C level was inversely correlated with BMD at total lumbar and femur neck in men with T2D, and in women, it was negatively associated with total lumbar BMD. Similar inverse correlation between LDL-C level and BMD was reported in postmenopausal women (10–12), as well as in the general Asian population (36, 37) without T2D. However, in postmenopausal women, some studies observed no relationship between LDL-C level and BMD (26, 27). Moreover, Kuipers et al. (16) and Hernandez et al. (21) reported that LDL-C
TABLE 5 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on OCN.

Break point (K)	Linear regression	OCN(MALE)	< K	> K			
TC, mmol/l per SD	0.05 (−0.36, 0.46)	0.8068	0.79	0.71 (0.12, 1.29)	0.0185	−1.59 (−2.72, −0.46)	0.0060
LDL-C, mmol/l	0.10 (−0.34, 0.55)	0.6481	3.00	0.98 (0.25, 1.71)	0.0088	−1.20 (−2.17, −0.23)	0.0158
HDL-C, mmol/l	1.70 (0.46, 2.93)	0.0075	0.71	−8.23 (−23.83, 7.37)	0.3013	1.95 (0.66, 3.24)	0.0034

TABLE 6 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on PINP.

Break point (K)	Linear regression	PINP(MALE)	< K	> K			
TC, mmol/l per SD	−1.09 (−2.34, 0.18)	0.0884	0.72	0.49 (−1.36, 2.35)	0.6024	−4.62 (−7.92, −1.33)	0.0061
LDL-C, mmol/l	−0.75 (−2.11, 0.61)	0.2784	2.77	2.52 (−0.05, 5.10)	0.0554	−4.02 (−6.59, −1.45)	0.0023
HDL-C, mmol/l	2.74 (1.09, 4.49)	0.0013	1.18	−3.18 (−18.47, 12.10)	0.6833	3.84 (−0.87, 8.55)	0.1103

TABLE 6 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on PINP.

Break point (K)	Linear regression	PINP(FEMALE)	< K	> K			
TC, mmol/l per SD	0.06 (−1.73, 1.84)	0.9499	1.21	2.00 (−0.38, 4.37)	0.1008	−6.60 (−12.31, −0.88)	0.0241
LDL-C, mmol/l	−0.41 (−1.58, 2.40)	0.6866	4.23	1.58 (−0.75, 3.91)	0.1852	−9.17 (−19.39, 1.06)	0.0796
HDL-C, mmol/l	3.05 (−2.64, 8.74)	0.2945	1.71	5.21 (−1.28, 11.69)	0.1164	−23.82 (−70.50, 12.85)	0.1759

level was positively associated with BMD in African and Spanish men. Adami et al. (13) reported a positive relationship between LDL-C level and BMD in both healthy men and women.

An association was also found between serum cholesterol and bone turnover markers in T2D patients in our study. In men with T2D, when above the inflection point, TC and LDL-C were negatively associated with OCN, PINP, and β-CTX, and HDL level was positively associated with OCN and PTH. In women with T2D, hen above the inflection point, TC was negatively associated with OCN and β-CTX; LDL-C was inversely related to β-CTX only, while HDL-C was positively related to OCN and negatively related to PTH.

Similar findings of serum cholesterol and bone turnover markers were also reported in previous studies. Zhou et al. (28) and Chen et al. (29) found negative relationships between TC, HDL-C, LDL-C levels and OCN (28, 29). Ponda et al. reported that LDL-C was inversely correlated with serum PTH in a vitamin D repletion group (32). However, other studies found no association between serum cholesterol and bone turnover markers (12, 30, 31, 33).

The potential mechanisms through which serum cholesterol may affect bone metabolism is illustrated in Figure 4. Adipocytes and osteoblasts were reported to share a common progenitor, mesenchymal stem cells (MSCs) (39, 40), and the expansion of adipose tissue in the marrow was associated with bone loss (41–43). Kha et al. (40) reported that the osteogenic differentiation of MSCs could be stimulated by specific oxysterols. Therefore, a high HDL-C level, which is able to remove oxysterols from peripheral tissues, demonstrates negative effects on osteogenic differentiation (40). Not only HDL-C level but also LDL oxidation products were reported to inhibit the differentiation of osteoblasts and direct progenitor MSCs to undergo adipogenic differentiation instead of osteogenic differentiation; thus, this reduced bone formation (44). Moreover, oxidized LDL was reported to induce receptor-activated NFκB ligand (RANKL)-dependent osteoclastic differentiation of mouse marrow preosteoclasts (45). The formation and survival of osteoclast and osteoclast activity were highly dependent on cholesterol (46, 47). LDL receptor-related protein 5 (LRP5) exerts an anabolic action on bone through the Wnt-signal pathway (48), and LRP5-deficient mice were observed to have both high cholesterol levels and low bone mass (49). In humans, LDL receptor-related protein 6 (LRP6) mutation was related to high serum LDL-C levels complicated by severe osteoporosis (50).

The effect of serum cholesterol levels on BMD may differ between cortical and trabecular bones. Experiments in
TABLE 7 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on \(\beta \)-CTX.

Linear regression	Break point (K)	\(< K\)	\(> K\)					
\(\beta \) (95%CI)	\(p\)	\(\beta \) (95%CI)	\(p\)	\(\beta \) (95%CI)	\(p\)			
\(\beta \)-CTX(male)								
TC, mmol/l per SD	\(-0.01 \text{ (}-0.02, 0.01\)	0.4646	0.52	0.03 \text{ (}-0.00, 0.06\)	0.0637	\(-0.06 \text{ (}-0.10, -0.02\)	0.0028	
LDL-C, mmol/l	0.00 \text{ (}-0.01, 0.02\)	0.6381	3.47	0.04 \text{ (}0.01, 0.06\)	0.0072	\(-0.09 \text{ (}-0.15, -0.03\)	0.0020	
HDL-C, mmol/l	0.04 \text{ (}-0.02, 0.09\)	0.1878	0.70	\(-0.61 \text{ (}-1.34, 0.12\)	0.1099	0.05 \text{ (}-0.01, 0.11\)	0.0769	
\(\beta \)-CTX(female)								
TC, mmol/l per SD	0.00 \text{ (}-0.02, 0.03\)	0.7921	1.16	0.03 \text{ (}-0.00, 0.07\)	0.0637	\(-0.09 \text{ (}-0.17, -0.01\)	0.0210	
LDL-C, mmol/l	0.01 \text{ (}-0.02, 0.04\)	0.5091	4.12	0.03 \text{ (}-0.00, 0.06\)	0.0814	\(-0.13 \text{ (}-0.26, -0.00\)	0.0481	
HDL-C, mmol/l	0.06 \text{ (}-0.02, 0.14\)	0.1350	1.42	\(-0.01 \text{ (}-0.12, 0.11\)	0.9224	0.26 \text{ (}0.01, 0.51\)	0.0433	

Multivariate-Adjusted Model adjust for: Age; Treatment of DM; Diabetic duration(y); Smoking; Drinking; Family history of DM; BMI; Systolic blood pressure; Diastolic blood pressure; FBG, mmol/l; Cr, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L.

TABLE 8 | Multivariate Regression for Effect of TC, HDL-C, and LDL-C on PTH.

Linear regression	Break point (K)	\(< K\)	\(> K\)					
\(\beta \) (95%CI)	\(p\)	\(\beta \) (95%CI)	\(p\)	\(\beta \) (95%CI)	\(p\)			
PTH(male)								
TC, mmol/l per SD	1.07 \text{ (}0.03, 2.10\)	0.0439	0.45	1.80 \text{ (}0.10,3.50\)	0.0385	\(-0.04 \text{ (}-2.33,2.25\)	0.9725	
LDL-C, mmol/l	\(-0.68 \text{ (}-0.45, 1.80\)	0.2404	4.13	0.50 \text{ (}0.79, 1.78\)	0.4484	2.28 \text{ (}3.36, 7.92\)	0.4285	
HDL-C, mmol/l	2.90 \text{ (}-0.29, 6.09\)	0.0751	0.77	\(-14.77 \text{ (}-42.97, 13.43\)	0.3049	3.71 \text{ (}0.27, 7.15\)	0.0348	
PTH(female)								
TC, mmol/l per SD	1.41 \text{ (}0.14, 2.67\)	0.0297	0.98	2.74 \text{ (}0.96,4.53\)	0.0027	\(-2.08 \text{ (}5.16,1.46\)	0.2499	
LDL-C, mmol/l	0.61 \text{ (}-0.81, 2.02\)	0.4022	4.23	1.57 \text{ (}-0.09, 3.24\)	0.0643	\(-7.24 \text{ (}14.55, 0.06\)	0.0524	
HDL-C, mmol/l	5.43 \text{ (}4.12, 9.44\)	0.0084	1.72	8.72 \text{ (}4.15, 13.29\)	0.0002	\(-32.47 \text{ (}58.47, -6.48\)	0.0147	

Multivariate-Adjusted Model adjust for: Age; Treatment of DM; Diabetic duration(y); Smoking; Drinking; Family history of DM; BMI; Systolic blood pressure; Diastolic blood pressure; FBG, mmol/l; Cr, umol/l; BUN, mmol/l; Ca, mmol/l; ALT, U/L; AST, U/L; ALP, U/L.

FIGURE 4 | Potential mechanisms of serum cholesterol on bone metabolism. (1) HDL-C removes oxysterols from peripheral tissues and shows negative effects on osteogenic differentiation. (2) LDL oxidation products inhibit osteoblasts’ differentiation, direct progenitor MSCs to undergo adipogenic instead of osteogenic differentiation and induce RANKL-dependent osteoclastic differentiation. (3) LRP5 exerts an anabolic action on bone through Wnt-signal pathway and causes low bone mass. (4) Mutation of LRP6 were related to severe osteoporosis (HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MSC, mesenchymal stem cells; RANKL, receptor activator of nuclear factor-k B ligand; LRP, low-density lipoprotein cholesterol receptor-related protein).

mice have indicated that hyperlipidemia more prominently blunted the anabolic action of PTH in the cortical bone than in the trabecular bone (51, 52); however, Kuipers et al. (16) observed a cross-sectional association between HDL-C level and trabecular BMD but not between HDL-C level and cortical BMD or integral BMD at the hip or
whole body measured by dual-energy X-ray absorptiometry (16).

According to our study, the associations between serum cholesterol and bone metabolism differed between men and women groups. We considered that these differences in results might be due to the following reasons. Firstly, the basic characteristics of the men and women groups differ. According to Table 1, men were significantly younger than women were and the diabetes durations were shorter. The mean HbA1c was higher in men, whereas, the mean β-CTX was higher in women. The proportion of smoking or drinking history was significantly higher in men than in women; and the treatment of T2D was different. These differences in characteristics between men and women groups might have led to the different BMD losses associated with increases in lipids. Secondly, in the women group, we did not consider the menopausal status or estrogen level, which might also have some effects on our study results.

Our study has several strengths. Firstly, this is the first study to report an inverse association between serum cholesterol levels and BMD in an Asian population with T2D. Secondly, our sample size was large. Thirdly, we collected complete data and adjusted for various possible confounding factors. However, our study also has several limitations. Firstly, the causal relationship between serum cholesterol levels and BMD is difficult to assess in this cross-sectional study, and our retrospective study relied on previous data. Some key statistics could not be further measured, which may affect the selection of controls. Secondly, we only collected the serum samples once from all participants, and BMD at each anatomical site was detected once; this may cause deviations in cholesterol levels and BMD values. In addition, our study used dual-energy X-ray absorptiometry to measure BMD, which may cause measurement errors and cannot distinguish between BMD of the trabecular bone and of cortical bone. Thirdly, we might have omitted some confounding variables, which might also have had some effects on our study results, such as the menopausal status, estrogen level, dietary habits, physical activity, antilipemic medication, and previous fractures.

CONCLUSION
Our study suggests a significantly negative correlation between serum cholesterol levels and BMD in patients with T2D in multivariate regression analysis. The associations between serum cholesterol levels and bone turnover markers were also observed. However, further studies are required to confirm these findings.

AUTHOR CONTRIBUTIONS
XQ and MY: designed the research. YiY, Jil, CZ, and XQ: conducted the research. GX, XY, YZ, YaY, Jil, CZ, and MY: provided the essential reagents or the essential materials. YiY, GL, and XQ: analyzed the data or performed the statistical analyses. YiY and GL: wrote the manuscript. GL, JuL, CM, XQ and MY: critical revised the manuscript.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation for Youths (Grant Nos. 81408152), Chen Guang Project of the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (No. 14CG14), Key Research & Development Plan of Jiangsu Province (Grant no. BE2016640), Jiangsu Provincial Commission of Health and Family Planning (Grant no. H201673, QNRC2016392), Xuzhou Commission of Health and Family Planning (Grant no. 2014006, Grant no. XWCX201601), Jiangsu Six Talent Peaks Program (2013-WSN-013), and the Xuzhou Outstanding Medical Academic Leader project.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fendo.2018.00646/full#supplementary-material

REFERENCES
1. Lin X, Xiong D, Peng YQ, Sheng ZF, Wu XY, Wu XP, et al. Epidemiology and management of osteoporosis in the People’s Republic of China: current perspectives. Clin Interv Aging. (2015) 10:1017–33. doi: 10.2147/CIA.S54613
2. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. (2007) 166:495–503. doi: 10.1093/aje/kwm106
3. Montagnani A, Gonnelli S, Alessandri M, Nuti R. Osteoporosis and risk fracture in patients with diabetes: an update. Aging Clin Exp Res. (2011) 23:84–90. doi: 10.1007/BF03351073
4. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type2 diabetes–a meta-analysis. Osteoporos Int. (2007) 18:427–44. doi: 10.1007/s00198-006-0253-4
5. Schacter GI, Leslie WD. DXA-based measurements in diabetes: can they predict fracture risk? Calcif Tissue Int. (2017) 100:150–64. doi: 10.1007/s00223-016-0191-x
6. Moayeri A, Mohammadpour M, Mousavi SF, Shirzadpour E, Mohammadpour S, Amraei M. Fracture risk in patients with type 2 diabetes mellitus and possible risk factors: a systematic review and meta-analysis. Ther Clin Risk Manag. (2017) 13:455–68. doi: 10.2147/TCRM.S131945
7. Holm JP, Hyldstrup L, Jensen JB. Time trends in osteoporosis risk factor profiles: a comparative analysis of risk factors, comorbidities, and medications over twelve years. Endocrine (2016) 54:241–55. doi: 10.1007/s12020-016-0987-5
8. Afshinnia F, Chacko S, Zahedi T. Association of lower serum cholesterol levels with higher risk of osteoporosis in type 2 diabetes. Endor Pract. (2007) 13:620–8. doi: 10.4158/EP.13.6.620
9. Chen Z, Zhao GH, Zhang YK, Shen GS, Xu YJ, Xu NW. Research on the correlation of diabetes mellitus complicated with osteoporosis with lipid metabolism, adipokines and inflammatory factors and its regression analysis. Eur Rev Med Pharmacol Sci. (2017) 21:3900–5.
10. Cui LH, Shin MH, Chung EK, Lee YH, Kweon SS, Park KS, et al. Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea. Osteoparos Int. (2005) 16:1973–81. doi: 10.1007/s00198-005-1977-2
11. Makovey J, Chen JS, Hayward C, Williams FM, Sambrook PN. Association between serum cholesterol and bone mineral density. *Bone* (2009) 44:208–13. doi: 10.1016/j.bone.2008.09.020

12. Yamauchi M, Yamauchi T, Nawata K, Tanaka KI, Takaoka S, Sugimoto T. Increased low-density lipoprotein cholesterol level is associated with non-vertebral fractures in postmenopausal women. *Endocrine* (2015) 48:279–86. doi: 10.1007/s12020-014-0929-0

13. Adami S, Braga V, Zamboni M, Gatti D, Rossini M, Bakri J, et al. Relationship between lipids and bone mass in 2 cohorts of healthy women and men. *Calcif Tissue Int.* (2004) 74:136–42. doi: 10.1007/s00223-003-0050-4

14. Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ, Cooper C. Lipid levels: a link between cardiovascular disease and osteoporosis? *J Bone Miner Res.* (2009) 24:1103–9. doi: 10.1359/jbmr.081263

15. Buijert PJ, van Schoor NM, Lips P, Deeg DJ, Eckhoff EM. Lipid levels: a link between cardiovascular disease and osteoporosis? *J Bone Miner Res.* (2009) 24:1103–9. doi: 10.1359/jbmr.081263

16. Kuipers AL, Miljkovic I, Evans R, Bunker CH, Patrick AL, Zmuda JM. Optimal serum cholesterol concentrations are associated with accelerated bone loss in African ancestry men. *Osteoporos Int.* (2016) 27:1577–84. doi: 10.1007/s00198-015-3416-3

17. Hernandez JL, Olmos JM, Roamina G, Martinez J, Castillo J, Yezerska I, et al. Bone mineral density in statin users: a population-based analysis from a Spanish cohort. *J Bone Miner Metab.* (2014) 32:184–91. doi: 10.1007/s00774-013-0481-6

18. Chuangparnarn S, Rattanamongkoul S, Suwanwalaikorn S, Wattanasirichagoon S, Kaufman R. Effects of statins vs. non-statin lipid-lowering therapy on bone formation and bone mineral density biomarkers in patients with hyperlipidemia. *Bone* (2010) 46:1011–5. doi: 10.1016/j.bone.2009.12.023

19. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Effects of statins on bone mineral density: a meta-analysis of clinical studies. *Bone* (2007) 40:1581–7. doi: 10.1016/j.bone.2007.02.019

20. Brownell R, Ilich J. Lipid profile and bone paradox: higher serum lipids are associated with higher bone mineral density in postmenopausal women. *J Women's Health* (2006) 15:261–70. doi: 10.1089/jwh.2006.15.261

21. Hernandez JL, Olmos JM, Ramos C, Martinez J, de Juan J, Valero C, et al. Serum lipids and bone metabolism in Spanish men: the Camargo cohort study. *Endocr J.* (2010) 57:51–60. doi: 10.1507/endocrj.K09E-228

22. Ackert-Bicknell CL. HDL cholesterol and bone mineral density: is there a genetic link? *Bone* (2012) 50:223–33. doi: 10.1016/j.bone.2011.07.002

23. Wu LY, Yang TC, Kuo SW, Hsiao CF, Hung YJ, Hsieh CH. Correlation analysis from a Spanish cohort. *Bone* (2010) 46:1011–5. doi: 10.1016/j.bone.2009.12.023

24. Tintut Y, Parhami F, Tsingotjidou A, Tetradis S, Territo M, Demer LL. Role of the cholesterol biosynthetic pathway in osteoblastic differentiation of marrow stromal cells. *J Bone Miner Res.* (2002) 17:1997–2003. doi: 10.1038/jbmr.2002.17.11.1997

25. Parhami F, Mody N, Gharaai N, Ballard AJ, Tintut Y, Demer LL. Relationship between visceral adiposity and bone mineral density in Korean adults. *Calcif Tissue Int.* (2010) 87:218–25. doi: 10.1007/s00223-010-9398-4

26. Garg MK, Marwaha RK, Tandon N, Bhadra K, Mahalle N. Relationship of lipid parameters with bone mineral density in Indian population. *Ind J Endocrinol Metab.* (2014) 18:325–32. doi: 10.4103/2230-8210.13165

27. Trimpou P, Oden A, Simonsson T, Wilhelmsen L, Landin-Wilhelmsen K. High serum total cholesterol is a long-term cause of osteoporotic fracture. *Osteoporos Int.* (2011) 22:1615–20. doi: 10.1007/s00198-010-1367-2

28. Parhami F, Morrow AD, Balucan J, Leitinger N, Watson AD, Tintut Y, et al. Osteocytes regulate differentiation of mesenchymal stem cells: pro-bone and anti-fat. *J Bone Miner Res.* (2004) 19:830–40. doi: 10.1002/jbmr.40115

29. Bergman RI, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age-related changes in osteogenic cell stems in mice. *J Bone Miner Res.* (1996) 11:568–77. doi: 10.1002/jbmr.2001.565010504

30. Egrise D, Martin D, Vienne A, Neve P, Schoutens A. The number of fibroblastic colonies formed from bone marrow is decreased and the in vitro proliferation rate of trabecular bone cells increased in aged rats. *Bone* (1992) 13:355–61. doi: 10.1016/0786-3758(92)90045-2

31. Luegmayr E, Glantschnig H, Wesolowski GA, Gentile MA, Fisher JE, Rodan GA, et al. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. *Cell Death Differ.* (2004) 11(Suppl. 1): S108–18. doi: 10.1038/sj.cdd.4401399
Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.