Oncoytic adenovirus-expressed RNA interference of O\(^\delta\)-methylguanine DNA methyltransferase activity may enhance the antitumor effects of temozolomide

XIN-JUN CHEN\(^1\), KAI ZHANG\(^1\), YONG XIN\(^2,3\) and GUAN JIANG\(^3\)

\(^1\)Clinical Laboratory, The Second Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002; \(^2\)Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002; \(^3\)Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu 221000, P.R. China

Received November 6, 2013; Accepted July 8, 2014

DOI: 10.3892/ol.2014.2442

Abstract. Temozolomide (TMZ) is an example of an alkylating agent, which are known to be effective anticancer drugs for the treatment of various solid tumors, including glioma and melanoma. TMZ acts predominantly through the mutagenic product O\(^\delta\)-methylguanine, a cytotoxic DNA lesion. The DNA repair enzyme, O\(^\delta\)-methylguanine DNA methyltransferase (MGMT), which functions in the resistance of cancers to TMZ, can repair this damage. RNA interference (RNAi) has been previously shown to be a potent tool for the knockdown of genes, and has potential for use in cancer treatment. Oncolytic adenoviruses not only have the ability to destroy cancer cells, but may also be possible vectors for the expression of therapeutic genes. We therefore hypothesized that the oncolytic virus-mediated RNAi of MGMT activity may enhance the antitumor effect of TMZ and provide a promising method for cancer therapy.

Perspective

As a relatively recently identified alkylating (methylating) agent, temozolomide (TMZ) has become a focus of attention, most notably in malignant glioma and melanoma treatment (1,2). Resistance to TMZ occurs following prolonged treatment and therefore poses a major therapeutic challenge. A key mechanism of the resistance to TMZ is the overexpression of O\(^\delta\)-methylguanine-DNA methyltransferase (MGMT) (3). MGMT repairs the TMZ-induced DNA lesion, O\(^\delta\)MeG, by removing the methyl group from guanine to a cysteine residue (4). Suppressing MGMT activity, therefore, could enhance the cytotoxicity of TMZ against melanoma and glioblastoma multiforme (4).

In previous years, we have focused our research on oncolytic virotherapy. Oncolytic viruses exhibit selective replication and lysis in tumor cells, while also amplifying the expression and functions of therapeutic gene in the tumor microenvironment (5). Two main strategies are used for oncolytic adenovirus generation. One strategy is the deletion of the viral element that is required for replication of the virus in normal cells, but is dispensable in tumor cells, such as ONYX-015 or ZD55 with E1B-55K gene deletion (6,7). The other strategy is the use of a tumor-specific promoter to drive the gene that is required for viral replication (8). In clinical trials, the E1B 55-kDa-deleted oncolytic virus, ONYX-015, or the ONYX-015 derivative, H101, have exhibited encouraging anticancer activity when combined with chemotherapy (9).

RNA interference (RNAi) technology is able to downregulate target genes and has been evaluated as a potential therapeutic strategy in human cancer therapy (10). The knockdown of DNA repair genes by small interfering RNA (siRNA) and virally delivered short hairpin RNA (shRNA), can sensitize various cancer cells to chemotherapeutic agents in vitro (11). A previous study has shown that the use of siRNA to transiently transfect nasopharyngeal carcinoma cells and glioma cells results in the inhibition of MGMT gene expression and increased sensitivity to bis-chloroethylNitosourea (12). Similarly, a study by Kato et al (13) revealed that the transduction of TMZ-resistant glioma cells with a LipoTrust™ liposome, which contains siRNA to inhibit MGMT gene expression, enhanced the sensitivity of the glioma cells to TMZ.

Zheng et al (14,15) focused on the production of several shRNA constructs using an oncolytic virus for delivery. Examples of these constructs included siRNAs against Ki67 and hTERT, which were observed to act as antiproliferative and apoptotic inducers in cancer cells. shRNA delivery via armed oncolytic viruses has potential for enhancing antitumor efficacy as a consequence of synergism between viral replication and oncolysis and shRNA antitumor responses (11). When conveying shRNA, oncolytic viruses are expected to effect a marked reduction in the tumor MGMT level, which should result in an increase in the cytotoxicity of TMZ (Fig. 1).

Correspondence to: Dr Yong Xin, Department of Radiotherapy, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-hai Road, Xuzhou, Jiangsu 221002, P.R. China. E-mail: 5721268@163.com

Key words: cancer therapy, oncolytic adenoviruses, alkylating agents, RNA interference, short hairpin RNA, O\(^\delta\)-methylguanine DNA methyltransferase
We hypothesize that the effects of the oncolytic virus-mediated RNAi of MGMT activity may enhance the cytotoxicity of TMZ in tumors for the following reasons: Firstly, the use of armed oncolytic viruses to deliver shRNA combines the advantages of gene therapy and virotherapy. The inserted shRNA can target the DNA repair protein, MGMT, in tumor cells and multiply from several 100-fold to several 1,000-fold, in parallel with viral replication. The oncolytic adenosivirus-armed shRNA targeting MGMT offers the advantage of an enhanced shRNA-mediated antitumor response through its intrinsic oncolytic activity. MGMT, O6-methylguanine DNA methyltransferase; shRNA, short hairpin RNA.

The combination of these advantages and possibilities suggest that using oncolytic adenoviruses to deliver therapeutic shRNA targeting MGMT protein may be a powerful technique for overcoming resistance to TMZ in human cancers. This may result in a significantly enhanced antitumor outcome through MGMT-knockdown and viral oncolysis.

Acknowledgements

This study was supported by a grant from the National Natural Science Foundation of China (grant no. 81372916).

References

1. O'Reilly SM, Newlands ES, Glaser MG, et al: Temozolomide: a new oral cytotoxic chemotherapeutic agent with promising activity against primary brain tumours. Eur J Cancer 29A: 940-942, 1993.
2. Bleehen NM, Newlands ES, Lee SM, et al: Cancer Research Campaign phase II trial of temozolomide in metastatic melanoma. J Clin Oncol 13: 910-913, 1995.
3. Plummer ER, Middleton MR, Jones C, et al: Temozolomide pharmacodynamics in patients with metastatic melanoma: DNA damage and activity of repair enzymes O6-alkylguanine alkyltrans-ferase and poly(ADP-ribose) polymerase-I. Clin Cancer Res 11: 3402-3409, 2005.
4. Fan CH, Liu WL, Cao H, et al: O6-methylguanine DNA methyltransferase as a promising target for the treatment of temozolomide-resistant gliomas. Cell Death Dis, 4: e876, 2013.
5. Jiang G, Xin Y, Zheng JN, Liu YQ: Combining conditionally replicating adenovirus-mediated gene therapy with chemo-therapy: a novel antitumor approach. Int J Cancer 129: 263-274, 2011.
6. Bischoff JR, Kinn DH, Williams A, et al: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373-376, 1996.
7. Heise C, Hermiston T, Johnson L, et al: An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumor efficacy. Nat Med 6: 1134-1139, 2000.
8. Rodriguez R, Schuur ER, Lim HY, et al: Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 57: 2559-2563, 1997.
9. Garber K: China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 98: 298-300, 2006.
10. Chu L, Gu J, Sun L, et al: Oncolytic adenosivirus-mediated shRNA against Apollon inhibits tumor cell growth and enhances antitumor effect of 5-fluorouracil. Gene Ther 15: 484-494, 2008.
11. Jiang G, Li LT, Xin Y, et al: Strategies to improve the killing of tumors using temozolomide: targeting the DNA repair protein MGMT. Curr Med Chem 19: 3886-3892.
12. Kuo CC, Liu JF and Chang JY: DNA repair enzyme, O6-methylguanine DNA methyltransferase, modulates cytotoxicity of camptothecin-derived topoisomerase I inhibitors. J Pharmacol Exp Ther 316: 946-954, 2006.
13. Kato T, Natsume A, Toda H, et al: Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxicity of temozolomide in GBM-initiating cells. Gene Ther 17: 1363-1371, 2010.
14. Zheng JN, Pei DS, Mao LJ, et al: Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther 16: 20-32, 2009.
15. Zheng JN, Pei DS, Sun FH, et al: Inhibition of renal cancer cell growth by oncolytic adenovirus armed short hairpin RNA targeting hTERT gene. Cancer Biol Ther 8: 84-91, 2009.