Effect of land-use types on edaphic properties and plant species diversity in Mediterranean agroecosystem

Vassilios Triantafyllidis a,⇑, Anastasios Zotos a, Chariklia Kosma b, Efthimios Kokkotos a

a Department of Business Administration of Food & Agricultural Enterprises, University of Patras, Greece
b Department of Biosystems & Agricultural Engineering, University of Patras, Greece

A R T I C L E I N F O

Article history:
Received 3 January 2020
Revised 6 August 2020
Accepted 7 August 2020
Available online 13 August 2020

Keywords:
Olive
Maize
Abandoned land
Species diversity
Soil properties
Copper accumulation

A B S T R A C T

Land-use intensification, contrary to sustainable land management, has an impact on the healthiness of the environmental agroecosystem. To assess the environmental implications in abandoned land, olive groves and maize crops, the most sensitive and reliable edaphic indicators were measured to estimate plant species diversity and potentially toxic elements in soil, among different types of land-use. Species diversity presents a decrease in maize crops and olive groves compared to abandoned land. The families with the greatest species diversity were Poaceae, Asteraceae and Fabaceae in each land-use. From the results of the canonical correspondence analysis among species, sampling sites and selected environmental variables, a clear separation between species and sampling sites belonging to different types of land-use was found, presenting strong correlation with specific edaphic parameters (pH, Soil Organic Matter, Silt, Electrical Conductivity, Total Nitrogen, NO₃, P, K, Zn and Cu). Species diversity was reduced in maize crops due to anthropogenic interventions such as the excessive use of nitrogen and phosphate fertilizers and herbicides. Despite the fact that the lowest richness of plant species was found in olive groves, non-removal of crop residue preserves soil organic matter. In 7.4% of soil samples in olive groves, Cu total concentrations were over 100 mg kg⁻¹ denoting polluted soils, while the potentially toxic concentrations of bioavailable copper fraction (CuDTPA) probably lead to a decrease of species diversity. Future researches should therefore focus on the accumulation of toxic elements in agricultural land to preserve species diversity and a healthy environment.

© 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A key issue in the debate on the contribution of agricultural land to an environmentally sustainable “green” growth model is whether management practices of cultivated land can preserve and protect our environment for future generations, considering the need to feed the growing population with the same land. In the Mediterranean basin the prevailing soil groups (Cambisols, Fluvisols, Luvisols, Leptosols) which exhibit high spatial variability of their properties, the ecological factors (vegetation, fauna, etc.) and the anthropogenic interventions such as tillage, fertilization, pesticide application, land-use intensification and the mismanagement of irrigation schemes, have an impact on agro environmental healthiness (Rodeghiero et al., 2011; Médail and Quézel, 1999; Cowling et al., 1996; Vasu et al., 2017; Gerakis and Kalburtji, 1998). In agriculture, diversity of naturally occurring plant species generally depends on factors acting in various spatial scales (Concepción et al., 2012), while locally it is also affected by the variability of landscape traits within the fields (Armengot et al., 2011). It is well documented that the agro-environment schemes (AES) applied in fields as well as the increased proportion of land under agro-environmental management in the surrounding landscape, enhance local diversity. (Gaba et al., 2010). Sustainable agriculture supports plant diversity, avoiding the accumulation of toxic elements, and preserving long-term soil fertility, aiming to achieve “green” agricultural growth and food security (Alston et al., 2009).

However, the long-lasting use of agrochemicals (fertilizers and pesticides) and land-use intensification (agricultural and livestock activities) have a negative impact on the dynamic parts of
agroecosystems such as soil properties and plant species occurrence/abundance, causing uniformity of native flora across the European cultivated lands. Over the years the above interventions have overlapped the underlying natural patterns, have masked the contribution of parent material and have reduced floristic diversity (Alloway, 2013; Ferrero et al., 2017).

As it is already known, not only do plants respond to soil conditions but they also affect them, while changes in land-use affect input and output fluxes of nutrients and carbon in agro-soils (Dupouey et al., 2002). This can lead to changes of land quality and soil fertility, which in turn will affect crop productivity, plant species diversity and the decisions for management practices (Bakhshandeh et al., 2019; Ahmad et al., 2016; Benton et al., 2003). The effects of land-use on land quality may be either positive or negative mainly depending on the soils and climatic conditions of the area. Kosmas et al. (2000) report that soil properties and plant species diversity differ between abandoned and cultivated lands, estimating that the increase of organic matter (SOM) in topsoils of abandoned land is the most significant soil improvement factor. Allen et al. (2006) point out that 60% of interrelationships among plants and environmental variables in olive groves, could be explained through the interpretation of soil properties, slope gradient and slope aspect, and that the existing variation of plant species composition is the result of different management practices. However, sustainable practices in olive groves and no use of herbicides improve soil fertility (Vignozzi et al., 2019; Massaccesi et al., 2018; Bilalis et al., 2011). The use of fungicides on the other hand, generates secondary pollutants to the soil, which contribute to the increase of the concentration of heavy metals and therefore they should not be ignored (Ballabio et al., 2018). Triantafyllidis et al. (2020) have recently demonstrated that the wide use of Cu-fungicides in long term orchard cultivations causes important environmental implications. Tsiafouli et al. (2015) point out that land-use intensification in Greece and across Europe reduces soil biodiversity and may threaten the functioning of soil in agricultural production systems. Maize is a dominant and productive crop, both in local communities and the global food system. However, intensive tillage practices and weed chemical control in maize monocultures, reduce soil organic matter, which is a crucial for soil quality and species diversity (Ferrero et al., 2017; McDaniel et al., 2014). A crucial point related with plant species diversity in cultivated land with land-use intensification is whether anthropogenic interventions have led to the extinction of native species. Only a few studies look at the effect of land-use on the edaphic properties and plant species diversity, under particular soil and climatic conditions at a field level, which must always be taken into consideration in the selection of a suitable and sustainable land management (Buhk et al., 2017; Knudsen et al., 2017; Honnay et al., 2003). In the Mediterranean basin, Balzan et al., (2020) reported that agricultural intensification in arable systems was associated with the reduced of plant species and functional diversity. Plieninger et al. (2014) in a meta-analysis of the Mediterranean basin data, including Greece (Papanastassi 2007), mention that the responses of vascular plant richness were heterogeneous in different land-use types.

An attempt has been made in this study to evaluate the effect of land-use on edaphic parameters, the soil toxic element accumulation and the species diversity in fields under loamy soils near the city of Agrinio (Aitolokarnania, Western Greece). Specifically, the aim of the present study is: (a) to evaluate the effect of three different land management practices on physicochemical soil characteristics and (b) to reveal which edaphic parameters are the most sensitive and reliable indicators of the correlation that exists among plant distribution, soil quality and land-use type under given soil and climatic conditions.

2. Materials and methods

2.1. Study area

The study area is located in the municipality of Agrinio in the prefecture of Aitolokarnania in Western Greece (Fig. 1). Aitolokarnania is the largest prefecture in Greece (38°37’ N, 21°22’ E) and it occupies an area of 5448 km², representing the 4% of the total area in Greece. The prefecture of Aitolokarnania is one of the most agriculturally productive Greek areas, with tobacco being the main cultivated crop from 1883 until 2005. However, according to the Common Agriculture Policy (CAP) and the farm restructure in 2006, the majority of tobacco cultivated lands were abandoned and most of them were transformed into pasture land. According to recent data (Authority of Western Greece, Dept. of Agricultural Development, 2015), about half (13,020 ha) of the total cultivated land (28,910 ha) was abandoned or used as pasture land followed by olive trees (7114 ha) and corn (2072 ha). These three land-use types occupy the 76.8% of the total cultivated land in the municipality of Agrinio and that is the reason why they were chosen to be studied. Table 1 presents the usual management practices from each land-use type. The location of each of the eighty-one (81) fields which were selected to be studied is shown in Fig. 1. In this area, the dominant soil unit type is Calcaric Fluvisol (Yassoglou, 2004), while the land slope ranges from 0 to 3% (Directorate of Geospatial Information of the Ministry of Environment and Energy, 2019) reducing in this way the risk of soil erosion. The climate of Aitolokarnania is suitable for many crops, due to the fact that the mean annual temperature is 17.5 °C and the mean annual rainfall ranges from 800 mm to 1000 mm. Nevertheless, the uneven seasonal distribution of rain makes irrigation an obvious and necessary option to increase and stabilize crop production. Olea europaea var. rotunda ‘Konservolia’ is usually cultivated in rainfed fields, and occupies the largest area compared to other cultivated olive varieties, in the municipality of Agrinio.

2.2. Data collection

Data collection took place during two successive years 2017 and 2018. The selected fields (81) were located in the agricultural area of Agrinio in Western Greece (Fig. 1). Twenty-seven (27) replications for each land-use (treatments) took place: (i) abandoned land, (ii) maize crop and (iii) olive groves were chosen based on the approximately same soil type (loamy soils), slope gradient (0–3%), and climatic conditions. Each of the selected fields had an area of approximately 1 ha; olive fields included approximately 200 trees, maize crops 80–88 thousand plants while abandoned fields of approximately the same size were chosen, in which no history of pesticide use has been recorded for the last 10 years. Short description of land-use, management practices and soil-climatic conditions of the study area are shown in Table 1.

2.2.1. Soil and plant species sampling

Soil sampling took place in the winter season for two years (2017–2018), when soils are inherently variable in their distribution of plant nutrients (Sabbé and Marx, 1987). A total number of 81 soil samples (27 from each land-use type, labeled through a GPS device) were collected (Fig. 1), according to a composite sample. In order to compose a soil sample from olive groves, one central sub-sample was collected and then four other sub-samples, within a distance of 2 m from the central sub-sample — all beneath tree canopy— were mixed, as proposed by LUCAS topsoil sampling methodology (Toth et al., 2013). Each of the samples which was
Fig. 1. Location of experimental fields from three different land use of Agrinion in Western Greece.

Table 1

Land use types	Abandoned land	Olive groves	Maize crops
Abandoned land		Olea europaea var. rotunda ‘Konservolia’. Mean	Zea mays L., mean maize yield: 10–12 tonnes ha⁻¹
Description		yield: 50–70 Kg per tree. Cold tolerant	
Fertilization	No inorganic fertilizers	February: 3 Kg/tree/NPK mineral fertilizers (11:15:15); April-May: 1 Kg/tree/simple-nitrogen (34.5:0:0)	Before sowing, early to mid-April: 700 Kg/ha/NPK mineral fertilizers (20:10:10); June-July: 400 Kg/ha/simple-nitrogen (34.5:0:0)
Plant protection	No pesticides	Herb: no herbicides were used, only grass shredder	Herb: (a) Before sowing: mechanical manipulation of soil.
		was used to control weeds.	(b) After sowing: One herbicide spray per year was applied with mixed or simple a.i: nicosulfuron, rimsulfuron, dicamba at dose 50–60 g a.i. ha⁻¹, 10–15 g a.i. ha⁻¹ and 240–280 g a.i. ha⁻¹ respectively, took place approximately 30–35 days after sowing (DAS)
Tillage	No tillage	Planting density: Approximately 200 trees/ha (7 m x 7m). Age of groves: over 30 years old	Mouldboard ploughing at a depth of 20–25 cm on March, followed by one rotary hoeing before early to mid-April. Sowing dates were from early to mid-April for each year. Maize was planted at an approximate density of 80–88 thousand plants ha⁻¹
Irrigation	No irrigation	No irrigation	Gun sprinklers from early-June until early September, 6–8 times. Irrigation dose: 900–1200 m³/ha/year
Residue treatment	Natural intervention, grazing	Grass shredder was used, the grass biomass is left in place to decompose and by using mulcher shredder for pruning-derived woody residues	Roots and part of straws buried in soil
Soil	Parent material: Holocene alluvium, Quaternary terraces; Dominant STU (Soil Unit Type): Calcaric Fluvisol (FLca); Associated STU: Calcaric Cambisol, Haplic Calcisol, Rhodic Luvisol; Slope gradient: 0–3%	Mediterranean, characterized by hot dry summers and cold humid winters. Mean annual precipitation: 890 mm, with 70% falling over the period November to March, and mean annual temperature: 17.5 °C	

* Data is coming from the processing of questionnaires which completed by producers and agronomists of the study area.

** Meteorological data were obtained by a network of meteorological stations of our laboratory (PlantLab) in the study area. (http://150.140.205.52:8080/livedata/map.jsf).
received in maize fields and in abandoned lands, consisted of 10 cores, well mixed on site, and was collected from different points in the field with a zigzag soil sampling method (Sabbe and Marx, 1987). Sampling was conducted by using a Dutch auger to a depth of 0–30 cm for all soil samples. Undisturbed soil cores for each field were received from 0 to 30 cm depth using 100 cm³-cylinders (5 cm height and 5.04 cm diameter) for the assessment of soil bulk density (BD) according to Lutz (1947).

During the sampling period (April to October 2017–2018) the native plant species that occur in the selected fields of the three different land-use types were also collected (Fig. 1). In particular, data concerning the plant species presence/absence were recorded in a total of 81 fields (27-olive groves, 27-maize crops and 27 fields of abandoned land).

2.3. Data analysis

Soil samples were air dried, then crushed and sieved through a 2-mm sieve. Particle size distribution was carried out using Bouyoucos’s method (1962). Soil textural classes were determined based on the USDA particle-size classification (Soil Science Division Staff, 2017). Electrical conductivity (EC) and pH of saturated pastes were measured for each sample by using conductivity meters (HandyLab LF1) and pH meters (Criso GLP21) respectively (Rhoades, 1982; McLean, 1982). Total CaCO₃ equivalent was determined by using calcimeter (Bernard). Soil organic matter (SOM) was determined by the method Walkley–Black (Nelson and Sommers, 1982), while SOM concentrations were converted to SOC as follows: SOC = SOM × 0.58 (Mann, 1986). Available P (P₀₆₅₀) was measured according to Olsen (1954). Exchangeable K, Na, Ca and Mg were extracted with 1 N (NH₄OAc at pH 7.0) ammonium acetate (Thomas, 1982). K and Na concentrations were determined using Jenway PFP7 flame photometer while those of Mg and Ca by an AAS analyzer. Exchangeable sodium percentage (ESP) was calculated as follows: ESP = \left(\frac{\text{Na}_{\text{exch}}}{\text{Ca}_{\text{exch}} + \text{Mg}_{\text{exch}} + \text{Na}_{\text{exch}}}\right) × 100. Also, analysis was carried out for aqua regia (ISO/DIS11466) and DTPA-extractable (Norvell and Lindsay, 1982) from Cu, Fe, Mn, and Zn. The relevant concentrations were calculated through flame atomic absorption spectrometry (AAS, model: Analyst 700 by Perkin Elmer). The determination of NO₃ was performed in 1:10 water-extracts using Dionex-1500 Ionic (Kosma et al., 2009). The total nitrogen (Total N) was estimated by using the Kjeldahl method (Bremmer and Keeney, 1966) according to Velp Scientifica model UDK 130D. The presence of sufficient amounts of nitrogen was checked by the ratio of the total amount of carbon to the total amount of nitrogen (C/N) in each soil sample.

Plant specimens were identified mainly according to Tutin et al. (1968–80, 1993). Plant nomenclature follows Dimopoulos et al. (2013); (2016).

2.3.1. Statistical analysis

In this study twenty three (23) soil physicochemical properties (pH, EC, SOC, Total CaCO₃, BD, Total N, NO₃, PO₅₆₅₀, Kexch, Mgexch, Caexch, Naexch, FeDTPA, ZnDTPA, CdDTPA, MnDTPA and CuDTPA; Zn_total, Mg_total, Mn_total and the texture indicators sand/silt/clay) were used in order to estimate the effect of land-use types on edaphic properties and plant species diversity in cultivated land. Descriptive statistics was used to quantify soil properties. Kruskal Wallis test (non-normal distributed sample) was used to identify significant differences among the different land-use types. Statistical analysis was carried out using SPSS statistical package version 20.

Principal component analysis (PCA) was used to assess how many and which of the above (23) mentioned parameters can be considered as representative edaphic indicators (Triantafyllidis et al., 2018) correlated both to native plant species presence/absence in arable land and the environmental changes arising from the chosen land management practices. Under each of the principal component (PC), only the variables with high factor loading were retained as selected environmental variables. Therefore, the PCs with eigenvalues >1 and those that explained at least 5% of the variation in the data were selected and subjected to varimax rotation to maximize the correlation between PCs and the measured attributes (Singh et al., 2014).

The sum of the data concerning the plant species and the selected environmental variables were input to CANOCO software version 4.5 (ter Braak and Smilauer, 1998) in order to assess the effect of multivariate edaphic factors on plant species distribution pattern as well as on that of sampling fields where was recorded the presence/absence of them.

3. Results

3.1. Soil properties per land-use type

Topsoil properties resulting from the laboratory analysis are included in Table 2. In all land-use types, soil texture was loamy, and no statistically significant difference occurred among all treat-
ments. Slightly alkaline mean soil pH values were observed in olive groves and maize crops while neutral in abandoned land. The rich detectable amount of mean total CaCO₃ in olive groves was higher compared to maize crops while lower values were observed in abandoned land. Low mean soil EC values were observed in all studied samples, with significantly mean higher and mean lower EC values detected in those collected from maize crops and abandoned land, respectively (Table 2). In detail, the EC was moderate in 41% of soil samples collected in maize crops (maximum values up to 2.73 dS m⁻¹), and in 26% of soil samples taken from aban-

Table 3

Least square means with Standard Deviation (SD) of heavy metal fractions in agricultural soils. Significant differences of potentially toxic elements among different land-use types. * Number of analyzed soil samples for each land cover (n = 27), ** Indicates significant differences at significance level P < 0.05 (Kruskal Wallis test) for each parameter ns: not significant.

Land use	Extractable (DTPA method)	Total (Aqua Regia method)
	Zn_total (mg kg⁻¹)	Zn_total (mg kg⁻¹)
Abandoned land	7.87 ± 2.16	20.0 ± 3.01
Olive groves	4.97 ± 1.99	52.8 ± 5.92
Maize crops	8.44 ± 4.57	42.2 ± 4.87

Land use	Mn_total (mg kg⁻¹)	Mn_total (mg kg⁻¹)
	2.26 ± 1.11	15.6 ± 3.38
Olive groves	3.16 ± 1.12	15.6 ± 3.38
Maize crops	46.9 ± 2.43	15.6 ± 3.38

Land use	Fe_total (mg kg⁻¹)
Abandoned land	0.06 ± 0.04
Olive groves	0.39 ± 0.02
Maize crops	0.84 ± 0.08

Table 4

Percentage distribution of heavy metal concentration in soil samples (total number of samples = 81) from fields of three different land use types (number of samples per land use type = 27). * a or A: Very low, b: Low, c: Sufficient, d: High, e: Very high.

Concentration	Zn_total	Mn_total	Fe_total
Abandoned land (n = 27)	52% 37% 11%	44% 41% 15%	78% 22%
Olive crops (n = 27)	41% 15%	41% 15%	41% 15%
Maize crops (n = 27)	78% 22%	78% 22%	78% 22%
Total (n = 81)	58% 32% 10%	58% 32% 10%	58% 32% 10%

Table 5

Matrix of principal component analysis of normalized physicochemical properties and elemental concentrations of the selected agricultural soils in study area (significant loading factors are marked in bold).

Soil properties	Rotated component matrix					
	PC1	PC2	PC3	PC4	PC5	PC6
Soil Organic C	0.820	0.575	0.449	0.740	0.102	0.116
Total N	0.782	0.064	0.111	0.015	0.179	0.104
ZnDTPA	0.768	0.142	0.182	0.015	0.179	0.104
MnDTPA	0.755	0.064	0.111	0.015	0.179	0.104
BD	-0.687	0.064	0.111	0.015	0.179	0.104
MnRegia	0.684	0.102	0.508	-0.001	0.001	0.197
FeDTPA	0.653	0.176	-0.083	-0.001	-0.001	-0.001
FeRegia	0.645	0.077	0.472	-0.020	-0.025	0.427
Abandoned land	0.044	-0.073	-0.073	-0.017	-0.162	-0.149
Olive crops	0.385	0.385	0.385	0.385	0.385	0.385
Maize crops	0.169	0.729	0.250	0.179	0.302	0.066
Total (n = 81)	0.806	0.033	0.849	-0.148	-0.103	-0.024
pH	0.334	-0.104	-0.810	0.021	-0.090	0.141
Log CaCO₃	0.494	-0.011	-0.675	0.103	-0.062	-0.254
C Fitness	0.573	0.049	0.591	0.123	0.038	0.327
Mn Fitness	-0.398	0.320	-0.553	-0.117	-0.065	-0.476
Cu Fitness	0.084	0.033	-0.087	0.938	-0.050	0.011
CuRegia	0.168	0.015	-0.069	0.917	-0.035	0.080
Silt	0.061	-0.002	-0.060	-0.098	0.039	0.049
Sand	0.040	-0.378	-0.082	-0.015	0.501	-0.073
Kdiss	-0.061	0.442	-0.004	0.125	0.181	0.695
Eigenvalue	5.426	3.599	3.295	2.130	2.007	1.489
% of Variance explained	23.590	16.466	14.326	9.262	8.726	6.472
Cumulative % variance	23.590	41.050	55.376	64.638	73.364	79.822
Table 6
Taxa collected in different cultivation fields (maize crops, olive groves and abandoned land) during April to October 2017 and 2018 (×) = presence and (−) = absence.

Species	Maize crops	Olive groves	Abandoned land
Abutilon theophrasti Medik	−	−	−
Agrostis stolonifera L.	−	−	−
Aloepecurus myosuroides Hudson	−	−	−
Aloepecurus rendlei Eig	−	−	−
Amaranthus deflexus L.	×	×	−
Amaranthus hybridus L.	×	×	−
Anagallis arvensis L.	×	×	−
Anthemis arvensis L.	−	×	−
Anthemis chaî L.	×	−	×
Aster squamatus (Sprengel) Hieron.	×	−	×
Avena barbata Link	−	−	×
Avena sterilis L.	×	×	−
Briza minor L.	−	−	×
Bromus hordeaceus L.	−	−	−
Bromus madritensis L.	−	−	×
Carduus pycnocephalus L.	×	×	−
Capsella bursa-pastoris (L.) Medik	×	−	×
Carex distans L.	×	×	−
Carthamus lanatus L.	−	−	−
Cerastium glomeratum Thuill.	−	−	×
Chenopodium album L.	−	×	−
Cirsium arvense (L.) Scop.	−	×	×
Convolvulus arvensis L.	×	−	−
Conyza canadensis (L.) Cronquist.	×	−	×
Crepis foetida L.	−	−	×
Crepis sancta (L.) Bornm.	−	−	−
Cuscuta campestris Yunck.	−	−	×
Cynodondactylon (L.) Pers.	×	×	×
Cynosurus echinatus L.	×	−	−
Cyperus longus L.	×	×	−
Cyperus rotundus L.	×	×	−
Dasypyrum villosum (L.) P. Candargy	×	−	−
Datura stramonium L.	−	×	−
Daucus carota L.	−	×	×
Digitaria sanguinalis (L.) Scop.	−	×	−
Echinochloa crus-galli (L.) P. Beauv.	×	×	−
Echium plantagineum L.	×	×	×
Erodium chium (L.) Willd.	×	×	−
Erodium cicutarium (L.) L'Hér.	×	×	−
Erodium moschatum (L.) L'Hér.	×	×	−
Eryngium creticum Lam.	×	×	−
Euphorbia helioscopia L.	×	−	−
Euphorbia officinalis L.	×	−	−
Galium aparine L.	−	−	−
Gaudinia fragilis (L.) P. Beauv.	×	−	−
Geranium dissectum L.	×	−	−
Geranium molle L.	×	×	−
Heliotropium halacrys Riedl	×	×	−
Hirschfeldia incana (L.) Lagr.-Fossat	×	×	−
Hordeum murinum L.	×	×	×
Hypericum perforatum L.	×	×	−
Hypochaeris achryophorus L.	×	×	−
Knautia integrifolia (L.) Bertol.	×	×	−
Lamium amplexicaule L.	−	−	×
Leontodon tuberosus L.	×	−	−
Lolium perenne L.	−	−	×
Loliwmrigidum Gaudin	×	×	−
Lotus angustissimus L.	−	−	×
Lythrum hyssopifolia L.	×	×	−
Lythrum junceum Banks & Sol.	−	−	×
Malva sylvestris L.	−	−	−
Marrubium vulgare L.	×	×	−
Matricaria recutita L.	−	−	×
Medicago arabica (L.) Huds.	×	−	×
Medicago orbicularis (L.) Bartal.	×	−	−
Medicago polymorpha L.	×	−	×
Medicago sativa L.	−	−	×
Mentha longifolia (L.) Huds.	×	×	−
Mentha pulegium L.	×	×	−
Mentha spicata L.	×	−	−
Myosotis arvensis (L.) Hill	−	−	×
Myosotis ramosissimae Rachel	−	−	−

(continued on next page)
shows a similar trend since in the 85% of the collected soil samples it ranges at low levels (<1.5 g Kg⁻¹). The C/N calculated ratio showed statistically significant differences among land-use types. Specifically, in maize crops C/N was lower (9.59 ± 1.02) while the highest ratio (11.1 ± 1.65) was found in olive groves. The average soil NO₃⁻ content, was also significantly different among land-use types, with the lowest mean values recorded in maize crops.

The detected concentrations of heavy metals are shown in Table 3. Zinc mean concentration extractable with DTPA method (ZnDTPA) in olive groves was significantly higher than that of the other two land-use types, possibly due to Zn fertilizers and/or organometallic fungicides that may have been used in the past. The percentage distribution of soil heavy metals concentration (Table 4), shows that very high and very low plant-available fractions of analyzed metals, particularly of Cu and Zn, were detected. Except for Cu, the other total or pseudo-total (aqua regia) metals studied, did not present an abnormal content. Cu mean concentrations obtained either with DTPA method (CuDTPA) or with aqua regia

doned fields, (maximum values not higher than 1.22 dS m⁻¹). Thus, an increasing trend of soil EC values in maize cultivations versus those of abandoned land is observed. In addition, the results of exchangeable sodium percentage (ESP) showed that the mean value with S.D. in all study area was 1.32% ± 0.83 with min and max values, 0.38% and 4.89%, respectively. Among land-use types, significantly higher mean values were observed in maize crops (1.76% ± 1.09) while, lower in abandoned land (1.04% ± 0.44).

Significantly higher mean P Olsen soil concentration was observed in annual crops and olive groves compared to abandoned land. K_stock values show similar tendency without however any significant difference among the land-use types under study (Table 2). The average values of soil organic C (SOC) were generally moderate but varied significantly among the land-use types, since the olive groves and the abandoned lands exhibit higher values than that recorded in maize fields (Table 2). Concentration of total nitrogen shows a similar trend since in the 85% of the collected soil samples
extraction (Cu_{total}) were significantly higher in the topsoil of olive groves in relation to the topsoil of the other two land-use types. Especially in olive groves, the detected Cu_{DTPA} concentrations ranged from 0.82 to 39.2 mg Kg\(^{-1}\) and as for Cu_{total}, it ranged from 15.6 to 120 mg Kg\(^{-1}\), while the Cu_{total} concentrations in the other two types ranged from 11.7 to 29.6 mg Kg\(^{-1}\) and from 13.1 to

Table 7

Families	Abandoned land	% presence of species	Olive groves	% presence of species	Maize crops	% presence of species
	No of species		No of species		No of species	
Amaranthaceae	1	1.06	1	2.78	2	2.82
Apiaceae	2	2.13	1	2.78	2	2.82
Asteraceae	17	18.09	6	16.67	17	23.94
Boraginaceae	4	4.26	1	2.78	2	2.82
Brassicaceae	2	2.13	2	5.56	4	5.63
Caryophyllaceae	4	4.26	0	0.00	2	2.82
Chenopodiaceae	1	1.06	1	2.78	0	0.00
Convolvulaceae	1	1.06	1	2.78	1	1.41
Cyperaceae	3	3.19	2	5.56	3	4.23
Dipsacaceae	1	1.06	1	2.78	0	0.00
Euphorbiaceae	1	1.06	0	0.00	0	0.00
Fabaceae	11	11.70	2	5.56	8	11.27
Geraniaceae	4	4.26	0	0.00	5	7.04
Hypericaceae	1	1.06	0	0.00	0	0.00
Lamiaceae	2	2.13	1	2.78	4	5.63
Lythraceae	2	2.13	0	0.00	1	1.41
Malvaceae	2	2.13	1	2.78	0	0.00
Oxalidaceae	0	0.00	1	2.78	0	0.00
Papaveraceae	1	1.06	0	0.00	0	0.00
Plantaginaceae	2	2.13	0	0.00	0	0.00
Poaceae	18	19.15	10	27.78	13	18.31
Polygonaceae	5	5.32	1	2.78	2	2.82
Portulacaceae	1	1.06	1	2.78	1	1.41
Primulaceae	1	1.06	1	2.78	1	1.41
Ranunculaceae	1	1.06	0	0.00	1	1.41
Rubiaceae	1	1.06	0	0.00	0	0.00
Scrophulariaceae	2	2.13	0	0.00	2	2.82
Solanaceae	2	2.13	2	5.56	0	0.00
Verbenaceae	1	1.06	0	0.00	0	0.00

Fig. 2. Numbers of species from each family which were collected in cultivation fields of three different land use types.
46.5 mg Kg⁻¹ for the maize crops and the abandoned fields, respectively (Table 3).

From the data presented in Tables 2 and 3, it is obvious that in the three different land-use types (maize crops – olive groves – abandoned land), in 9 out of 23 edaphic parameters (pH, EC, SOC, Total N, NO₃, PŒlson, and CuDP₅A, ZnDP₅A, and Cu-total) statistically significant differences were observed.

3.2. Edaphic indicators assessment in the selected land-use types

Principal component analysis (PCA) was used to assess how many and which of the above (23) mentioned parameters can be considered as representative edaphic indicators correlated both to native plant species presence/absence in arable land and the environmental changes arising from the chosen land management practices. After applying varimax rotation factor analysis six principal components were revealed (PC1, PC2, PC3, PC4, PC5, PC6, Eigenvalue >1). Those components represent 78.022% of cumulative variance (Table 5). PC1 is defined by soil fertility, PC2 by soil electrical conductivity, PC3 is defined by soil reaction and PC4 by the use of agrochemicals, that are mainly based on Cu. PC5 is defined by soil texture, while PC6 is attributed to nutrients “pseudocorrelation” and its effect on Kₑₑₑᵉ hashMap Name 1,2 with cultivation fields (+) in maize crops, (■) in abandoned land, and (▲) in olive groves and environmental variables (arrows).

Table 8

Land use	Sørensen similarity index
Abandoned land/maize crops	0.3529
Olive groves/abandoned	0.2696
Olive groves/maize crops	0.2621

3.3. Comparison of species richness in different land-use

During the field work 126 taxa that belong to 29 families were recorded in total. The number of taxa per land-use type is given in Table 6, while in Table 7 the families and number of taxa per family, are presented Fig. 2. From a floristic point of view, the abandoned land is the richest land-use type since it includes 94 taxa, while the olive groves with only 36 recorded taxa represent the poorest category. Twenty taxa were recorded only in maize crops, thirty-eight only in abandoned land and six only in olive crops. In
addition, 13 taxa are common to all 3 different types of land-use. The Sørensen similarity index was used in order to find the floristic similarity between the fields of different cultivation use. This particular index was selected due to the fact that it gives greater weight to taxa that are common in all three investigated cultivation types rather than to taxa found in only one land-use category (Bobo et al., 2006). The greatest similarity was found between abandoned land/maize crops followed by olive groves/abandoned land. The least similarity was found between olive groves/maize crops (Table 8).

3.4. Ordination

In the selected cultivation types the interrelation between floristic composition and environmental parameters was also studied. The results of the Canonical Correspondence Analysis between taxa, sampling fields and environmental variables are shown in two CCA biplot graphs (Figs. 3, 4). CCA analysis of experimental fields, plant species and environmental variables based on the first two axis, explains the 14.1% of the variance (inertia) of data concerning taxa, and the 72.7% of the variance in the weighed averages of taxa in relation to the environmental variables (Table 9).

The environmental variables on the biplots diagrams are represented by arrows (Figs. 3 and 4). The arrow for each environmental variable points to the direction of the maximum change of that environmental variable across the diagram and its length is proportional to the rate of change in this direction (ter Braak, 1987). Among the examined environmental variables, the soil organic carbon, pH, EC, Total N, CuDTPA and ZnDTPA (axis 1: pH and CuDTPA, axis 2: SOC, electrical conductivity, Total N and ZnDTPA) are represented by the longest arrows. These environmental variables with long arrows are mostly correlated both to ordination axes and the variation patterns of species or sampling fields shown in the ordination diagrams (Fig. 3).

Along axis 1, the 31% and the 30% of species composition are explained by the pH and CuDTPA respectively, whilst along axis 2,
species composition could be attributed to the soil organic carbon, electrical conductivity, Total N and \(\text{Zn}_{\text{DTPA}} \) in percentages 50%, 33%, 31% and 31% respectively (Table 9).

According to the CCA biplots ordination diagrams it is evident that the sampling fields deriving from different land-use are well segregated. Plots with medium to high positive score on Axis 1 are strongly correlated with the \(\text{Cu}_{\text{DTPA}} \), and are those from the olive groves. The plots from maize crops show medium to high score in Axis 2 and have a strong correlation with EC, \(\text{P}_{\text{Olsen}} \) and \(\text{K}_{\text{exch}} \). The rest sample plots which took place at abandoned land are grouped on the negative side of Axis 1 and Axis 2 in the lower left part of the diagram and are strongly correlated with nitrate (\(\text{NO}_3^- \)).

From the second CCA biplots ordination diagrams that concern plants and environmental variables a clear distinction between the taxa which were found in the three different land-use types (Fig. 4) was observed. Taxa which were found in abandoned land were grouped on the lower left part of the diagram and their occurrence is strongly correlated with \(\text{NO}_3^- \). A much smaller number of taxa is dispersed in the upper and lower right part of the ordination diagram, including mainly those recorded in maize crops and olive groves. The first group on the upper right side presents strong correlation with \(\text{P}_{\text{Olsen}}, \text{K}_{\text{exch}} \) and electrical conductivity (EC) while the second one with \(\text{Cu}_{\text{DTPA}}, \text{Total N}, \text{Zn}_{\text{DTPA}} \) and soil organic carbon (SOC). Both groups present a positive correlation with pH.

Table 9
Correlations of environmental factors (pH, electrical conductivity (EC), silt, soil organic carbon (SOC), Total N, \(\text{NO}_3^- \), \(\text{P}_{\text{Olsen}}, \text{K}_{\text{exch}}, \text{Cu}_{\text{DTPA}}, \text{Zn}_{\text{DTPA}} \)) with the first two CCA axes. Eigenvalues of the ordination axes and sum of all unconstrained Eigenvalues (total inertia) for CCA analysis.

Environmental variables	Axis 1	Axis 2
pH	0.31	0.02
EC	0.01	0.33
Silt	-0.13	-0.03
SOC	0.25	-0.50
Total N	0.18	-0.31
\(\text{NO}_3^- \)	-0.25	-0.21
\(\text{P}_{\text{Olsen}} \)	0.11	0.29
\(\text{K}_{\text{exch}} \)	0.04	0.22
\(\text{Cu}_{\text{DTPA}} \)	0.30	-0.30
\(\text{Zn}_{\text{DTPA}} \)	0.07	-0.31
Species-environment correlation	0.79	0.82
Cumulative percentage variance:		
(i) of species data	8.4	14.1
(ii) of species-environment relation	43.5	72.7
Total inertia:	0.72	
Sum of all eigenvalues:	3.73	

4. Discussion

In the Mediterranean countries, intensive agriculture and the wide use of agrochemicals are usually associated with the decrease of soil content in organic substances, the presence of potentially toxic elements such as heavy metals, and the reduction of species richness in the agricultural land. This degradation and soil pollution, in connection with the depletion of species diversity, causes many environmental problems (Newbold et al., 2014). Similar results were observed by Chen et al. (2011) among orchards, vegetable fields and croplands, in which different management practices were applied. Yan et al. (2013) report that the intensive and consecutive applying of fertilizers can alter soil pH, organic matter, and some properties of soil biology, which affect both the absorption and the desorption of Phosphorus (P) in soils. Other studies report that soil P fractions are influenced by the vegetation and its nutrient demands in phosphates (Yang et al., 2019).
It is obvious that the type of land-use significantly affects the soil EC values, with higher values being observed in maize crops (Table 2), a result that is in accordance with previous studies (Tsadila et al., 2012; Willy et al., 2019). This variation of EC values within the selected land-use types could be mostly attributed to input fluxes of nutrients in agro-soils and less to the quality of irrigation water (low concentration of Na⁺) which leads to permanent high soil EC changes (Bünemann et al., 2018). As shown in Table 5, soil EC is mainly related to the nitrate content of soil, the clay content, and the exchangeable Mg and Na and less with the Kₑₑ𝚎ₑₑᵉₑₑₑₑₑₑₑₑₑₑₑₑₑₑₑₑₑₑ对人体的健康具有显著影响。此外，土壤有机碳和总氮含量的不同也会影响土壤的物理性质，例如土壤的结构、孔隙度和渗透性。这些因素在土壤的可持续管理中起着重要作用。虽然在不同使用类型的土地中，有机碳和总氮浓度的差异可能不是很大，但是这些因素是影响土壤质量的关键因素。

The potential toxic element accumulation in cultivation lands, due to long-term application of unsustainable management practices, has a significant impact on soil healthiness and on the functionality of agroecosystems (Triantafyllidis et al., 2020). Although fertilizers are essential in order to provide adequate nutrients and ensure successful harvest, they contribute to the increment of some toxic heavy metals content in agricultural soils (Kabata-Pendias and Mukherjee, 2007). Rezapour et al. (2020) report that the successive anthropogenic interventions such as the wide use of agrochemicals (synthetic chemical fertilizers, fungicides, insecticides, herbicides) can overlap the parent material's contribution to the soil agro-environment. In the study area and specifically in olive groves the successive inputs of Cu amount up to 3500 gr ha⁻¹ each year, due to the broad use of Cu-fungicides. On the other hand, “hidden” impurities of Cu that are integrated in inorganic fertilizers were approximately 8.2 gr ha⁻¹ Cu. This percentage was indirectly assessed by multiplying the inputs of inorganic fertilizers applied recently in the olive groves of the study area (Table 1), taking into consideration their Cu-impurity content, as it is described in Milinovic et al. (2015) and Gimeno-García et al. (1996). From the above it is evident that the land-use and the usual management practices play an important role in the healthiness and the sustainability of agroecosystem environment.

However, for the evaluation of the agrochemical effreet on crucial environmental properties, the total fraction of heavy metals and DTPA-extractable in agricultural soil, was determined. The interpretation of the results showed that only Cu concentration is a threat of contamination of agro environment, according to the threshold and guideline values for metals in soils (Ministry of the Environment—MEF, Finland, 2007). The threshold Cu₅₀ (100 mg kg⁻¹) is the lowest possible value for further assessment in the area, while a value over 150 mg kg⁻¹ in an area, is considered to be an ecologic or health risk (Tóth et al., 2016). Although in the European Union, there is no common agreement on copper threshold values for the definition of risk. Adrees et al. (2015) proposed 5–30 mg kg⁻¹ as the optimal range in croplands, since lower Cu concentration leads to plant deficiency, while higher values may lead to a toxic effect. Our results showed that in 7.4% of analyzed soil samples, more than 100 mg kg⁻¹ of Cu₅₀Concentration was detected. All these soil samples with high Cu accumulation were observed in olive groves. The max Cu₅₀ concentration in olive groves was 120 mg kg⁻¹, while in the other two land-uses, abandoned land and maize crops, was 46.5 and 29.6 mg kg⁻¹, respectively. According to the optimal range of Cu in croplands, proposed by Adrees et al. (2015), the interpretation of our results showed that abnormal Cu₅₀ concentration (>30 mg kg⁻¹) was observed in 26% of olive grove soils. Furthermore, in cropland the mobility and availability of Cu depend on complex interactions between parent material, on soil characteristics (organic carbon content, texture, pH) and possible exogenous inputs (Cu-fungicides, “hidden” Cu-impurities of fertilizers), while the bioavailability of these elements may lead to toxic effects on soil organisms and susceptible plants (Rezapour et al., 2020). For instance, copper availability decreases with high pH, high soil
organic carbon and high clay content (Baker and Senft, 1995). Our findings showed that CuDTPA concentration (Cu bioavailable) was increased in olive groves compared to other land-use types (Tables 3 and 4), despite the simultaneous increase in soil organic carbon (Table 2). The same pattern between SOC and Cu bioavailability was observed in vineyard soil (Klepeprtzis et al., 2018) which is indicative of Cu-humic complexes as a result of the long-term use of Cu-containing compounds and the processes of humification. Therefore, this approximately tripling of the bioavailable fraction of Cu in olive groves (Table 3) is obvious due to the management practices as it is described in Table 1. Moreover, high significant Spearman’s correlation (0.693 for P ≤ 0.01) was observed between CuEa and CuDTPA (data not shown) while the interpretation of results showed good linear relationships (R² = 0.8295) which are described by the following equation: CuDTPA = 0.2937CuEa – 4.0235. From the above it is evident that a continuous interaction is observed between Cu fractions in soil environment. This continuous interaction proves the major role of copper exogenous inputs. These Cu inputs increase the bioavailable copper fraction and can lead to a decrease of species diversity due to the potentially toxic concentrations (Table 5) which are described in Table 1. Moreover, previous studies (Soons et al., 2017; Suding et al., 2005; Clark et al., 2007; De Schrijver et al., 2011) demonstrate that the anthropogenic N, P enrichment and other management practices, have negative effects on species diversity, reducing the richness of plant species which is in accordance with our results in olive groves and maize crops in comparison with abandoned land. Therefore, different relationships were observed in olive, maize and abandoned land indicating that the land-use affects the above interaction (Tables 3, 4 and 6). Consequently, limiting the application of Cu-fungicides to reduce the contamination risk in specific land-use, will have beneficial effects on environmental health (e.g. in soil organisms and susceptible plants and thus, on the functions that they support). Taking all the above into consideration, we are led to the following interpretation: different agronomic practices influence soil nutrient content, soil salt content and the accumulation of heavy metals (Cu), which are likely to affect species diversity and the environmental implications among different land uses.

5. Conclusion

Different land use types affect soil edaphic properties and plant species diversity. From the twenty three (23) edaphic parameters which were studied, significant differences were observed in six (6) physicochemical parameters (pH, EC, SOC, total N total, NO₃, Povan) among different land uses. Moreover, among the potential toxic elements, differences were observed for Cuhaiz, CuDTPA and ZnDTPA. The anthropogenic activities such as land-use intensification, fertilization and pesticide application have negative effects on species diversity reducing the richness of plant species in olive groves and maize crops in comparison with abandoned land. Notably in permanent crops “olive groves” higher Cu accumulation was observed in comparison with arable crops “maize” and abandoned land, due to long-term application of Cu-fungicides. This environmental variable (Cu) was found to deviate from normal limits having probably a crucial impact on plant species diversity in olive groves. However, a further research should be done with the aim to estimate the Cu toxicity in species diversity. In addition, among the examined environmental variables which were taken into account in the present study the SOC, total N, NO₃, Povan and Kcroad seem to play a particularly important role in the maintenance of the ecological balance in agroecosystems.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; et al., 2015. The effect of excess copper on growth and physiology of important food crops: a review. Environ. Sci. Pollut. Res. 22, 18165–18171.
Ahmad, Z.; Khan, S.M.; Abd Allah, S.E.F.; Alqarawi, A.A.; Hashem, A., 2016. Weed species composition and distribution pattern in the maize crop under the influence of edaphic factors and farming practices: A case study from Mardan, Pakistan. Saudi J. Biol. Sci. 23, 741–748.
Allen, H.D.; Randall, R.E.; Amable, G.S.; Devereux, B.J., 2006. The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece. Land Degrad. Dev. 17, 249–273.
Alloway, B.J., 2013. Sources of heavy metals and metalloids in soils. In: Heavy Metals in Soils. Springer, Dordrecht, pp. 11–50.
Alston, J.M.; Beddow, J.M.; Pardey, P.G., 2009. Agricultural research, productivity, and food prices in the long run. Science 325 (5945), 1209–1212.
Anagnostou, E.; Angelis, C.; Marangou, S., 2000. Soil N immobilization: a Crop Production. Agro Typos SA, Athens.
Armengot, L.; José-María, L.; Blanco-Moreno, J.M.; Romero-Puente, A., Sans, F.X., 2011. Landscape and land-use effects on weed flora in Mediterranean cereal fields. Agric. Ecosyst. Environ. 140, 313–317.
Authority of Western Greece, Dept. of Agricultural Development, 2015. Study of agricultural sector in Western Greece (PDE), full text 1-247, https://www.pde.gov.gr.
Baker, D.E.; Senft, J.P., 1995. Copper-heavy Metal in Soils 8, 224–243.
Bakshibehdeh, E.; Hossieni, M.; Zeraatpisheh, M.; Francaviglia, R., 2019. Land use change effects on soil quality and biological fertility: A case study in northern Iran. Eur. J. Soil Biol. 95, 103119.
Balabó, C.; Panagos, P.; Lugato, E.; Xing, J.H.; Orgiazzi, A.; Jones, A.; Montanarella, L., 2018. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 636, 282–298.
Balzarini, M.V.; Concepción, E.D.; Fernández-González, F.; Díaz, M., 2012. Plant diversity partitioning in Mediterranean-climate regions. Trends Ecol. Evol. 11, 362–366.
Balskus, E.; Waltert, M.; Moses Sainge, N.; Njokagbor, J.; Feron, H.; Mühlenberg, M., 2006. From forest to farmland: species richness patterns of trees and understory plants along a gradient of forest conversion in Southeastern Cameroon. Biodivers. Conserv. 15, 4097–4117.
Bouyoucos, C.J., 1962. Hydrometer method improved for making particle size analysis of soils 1. Agron. J. 54, 464–465.
Bremner, J.M.; Keeney, D.R., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils. 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Sci. Soc. Am. Pro. 30, 577–582.
Buhi, C.; Alt, M.; Steinbauer, M.J.; Beerthuelsen, C.; Warren, S.D.; Beths, A., 2017. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe—A call to adapt our conservation measures. Sci. Total Environ. 576, 225–233.
Bui, E.N.; Henderson, B.L., 2013. C: N: P stoichiometry in Australian soils with a focus on the main factors that influence N, P and K availability in Australian soils. J. Crop Sci. 5 (7), 858.
Bobo, K.S.; Waltert, M.; Moses Sainge, N.; Njokagbor, J.; Feron, H.; Mühlenberg, M., 2006. From forest to farmland: species richness patterns of trees and understory plants along a gradient of forest conversion in Southeastern Cameroon. Biodivers. Conserv. 15, 4097–4117.
Bouyoucos, C.J., 1962. Hydrometer method improved for making particle size analysis of soils 1. Agron. J. 54, 464–465.
Breckenridge, M.J.; Keeney, D.R., 1966. Determination and isotope-ratio analysis of different forms of nitrogen in soils. 3. Exchangeable ammonium, nitrate, and nitrite by extraction-distillation methods. Soil Sci. Soc. Am. Pro. 30, 577–582.
Buhi, C.; Alt, M.; Steinbauer, M.J.; Beerthuelsen, C.; Warren, S.D.; Beths, A., 2017. Homogenizing and diversifying effects of intensive agricultural land-use on plant species beta diversity in Central Europe—A call to adapt our conservation measures. Sci. Total Environ. 576, 225–233.
Bui, E.N.; Henderson, B.L., 2013. C: N: P stoichiometry in Australian soils with a focus on the main factors that influence N, P and K availability in Australian soils. J. Crop Sci. 5 (7), 858.
Tóth, G., Hermann, T., Da Silva, M.R., Montanarella, L., 2016. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 88, 299–309.

Toth, G., Jones, A., Montanarella, L., 2013. The LUCAS topsoil database and derived information on the regional variability of cropland topsoil properties in the European Union. Environ. Monit. Assess. 185, 7409–7425.

Triantafyllidis, V., Kontogeorgos, A., Kosma, X., Patakas, A., 2018. An assessment of the soil quality index in a Mediterranean agro ecosystem. Emir. J. Food Agric., 1042–1050

Triantafyllidis, V., Zotos, A., Kosma, C., Kokkotos, E., 2020. Environmental implications from long-term citrus cultivation and wide use of Cu fungicides in Mediterranean Soils. Water Air Soil Pollut. 231, 1–17.

Tsadila, E., Evangelou, L., Tsadilas, C., Giourga, C., Stamatiadis, S., 2012. Land-use effect on selected soil quality parameter. Commun. Soil Sci. Plan. 43, 595–604.

Tsiafouli, M.A., Thébault, E., Sgardelis, S.P., De Ruiter, P.C., Van Der Putten, W.H., Birkhofer, K., Bjornlund, L., 2015. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 21 (2), 973–985.

Tutin, T.G., Burges, N.A., Chater, A.O., Edmondson, J.R., Heywood, V.H., Moore, D.M., Webb, D.A., 1993. Flora Europaea 1–5. Cambridge University Press. Cambridge, UK.

Van den Berg, L.J.L., Dorland, E., Vergeer, P., Hart, M.A.C., Bobbink, R., Roelofs, J.G.M., 2005. Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytol. 166, 551–564.

Vasu, D., Singh, S.K., Sahu, N., Tiwary, P., Chandran, P., Duraisami, V.P., Kalaiselvi, B., 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil Tillage Res. 169, 25–34.

Vignozzi, N., Agnelli, A.E., Brandi, C., Gagnari, E., Goggioli, D., Lagomarsini, A., Caruso, G., 2019. Soil ecosystem functions in a high-density olive orchard managed by different soil conservation practices. Appl. Soil. Ec. 134, 64–76.

Weih, M., Hannér, K., Pouraam, F., 2018. Analyzing plant nutrient uptake and utilization efficiencies: comparison between crops and approaches. Plant Soil 430 (1–2), 7–21.

Willy, D.K., Muyanga, M., Mbuvi, J., Jayne, T., 2019. The effect of land use change on soil fertility parameters in densely populated areas of Kenya. Geoderma 343, 254–262.

Yan, X., Zhou, H., Zhu, Q.H., Wang, X.F., Zhang, Y.Z., Yu, X.C., Peng, X., 2013. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Till Res. 130, 42–51.

Yang, X., Chen, X., Yang, X., 2019. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Till Res. 187, 85–91.

Yassoglou, N., 2004. Soil Associations Map of Greece. Greek National Committee for Combating Desertification and Agricultural University of Athens.

Zhong, S.Z., Xiao, L.S., Xian, C.L., Zhen, S.X., 2013. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: influences of vegetation coverage, plant communities, geomorphology, and seashalls. J. Soil Sedim. 13, 1043–1051.