Chiral Quaternary Ammonium Salt Derived from Dehydroabietylamine: Synthesis and Application to Alkynylation of Isatin Derivatives Catalyzed by Silver

Guanyu Jiang 1, Xinduo Sun 1, Fanrui Zhou 1, Kun Liang 1 and Qian Chen 1,2,*

1 Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China; jgy960322@163.com (G.J.); duo38126@163.com (X.S.); frzhou@swfu.edu.cn (F.Z.); kliang@swfu.edu.cn (K.L.)
2 Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
* Correspondence: chenqian@swfu.edu.cn

Abstract: Abietic acid and its derivatives have broadly been used in fine chemicals and are renewable resources. Its inherent chiral rigid tricyclic phenanthrene skeleton is unique. Its utilities in asymmetric catalysis remain to be explored. A series of new amide-type chiral quaternary ammoniums bearing dehydroabietylamine were designed, and prepared by two convenient steps. Acylation of dehydroabietylamine with bromoacetyl chloride afforded amide holding bromoacetyl group in higher yields using triethyl amine as base. Subsequent quaternization reaction gave the desired amide-type chiral quaternary ammoniums. The new chiral quaternary ammoniums can be used as phase-transfer catalyst (PTC) for the transition metal-catalysed alkynylation of isatin derivatives.

Keywords: dehydroabietylamine; chiral quaternary ammonium salt; alkynylation; isatin derivatives; phase-transfer catalyst (PTC)

1. Introduction

Rosin can be abundantly obtained from pine trees as a kind of unique sustainable and renewable biomass resource. Abietic acid is an essential component of rosin, which has an inherent rigid tricyclic diterpene structure with favorable biocompatibility [1]. Abietic acid and its derivatives are therefore used as raw materials for the preparation of many kinds of fine chemicals due to their rigid hydrophobic structure (Figure 1), such as a monomer of polymer or cross-linking agent [2–14], surfactants [15–21], and bioactive compounds [22–27]. As one of the important commercially available derivatives of abietic acid, dehydroabietylamine has been broadly used in the preparation of antitumor therapies [28–31], epoxy resin [32], and quaternary ammonium surfactants [33–35]. However, its potential application has still not been well developed as an optical active amine with a rigid tricyclic phenanthrene skeleton. Chiral thioureas and thiouronium salts containing dehydroabietylamine group are prepared and used for the physical separation of racemic mixtures [36,37]. Wang’s group developed a class of a chiral thioureas holding dehydroabietylamine group, which can be used as powerful enantioselective catalysts for many reactions [38–44], such as Michael addition, aza-Henry reaction, Mannich reaction, and Friedel–Crafts alkylation. A bifunctional squaramide catalyst was designed and utilized for efficient asymmetric Michael/cyclization cascade reaction [45].

Alkynes and their derivatives are important structural motifs in biologically significant pharmaceuticals and potential intermediates for many kinds of transformations. Alkynylation of aldehydes is one of the most efficient approaches for the preparation of optically active secondary propargylic alcohols [46–48]. In the early stages of this transformation,
stoichiometric amounts of metal reagents such as organolithium, organomagnesium, and diorganozinc compounds were needed to increase the nucleophilicity of the alkyne. An efficient method for the catalytic asymmetric alkynylation of aldehydes was developed by Carreira’s pioneering work and carried forward by other groups [49–67]. Then, the formation of chiral tertiary alcohols was realized by enantioselective alkynylation of ketones, isatin derivatives and α-ketoesters [68–82]. Maruoka reported an interesting work on enantioselective alkynylation of isatin derivatives using a hybrid catalyst system consisting of chiral phase-transfer catalyst (PTC) and transition-metal catalyst [76]. Much great progress has been made in the counterion-mediated (chiral anion) enantioselective metal catalysis [83–96]. It should be noted that the example of transition metal catalysis on the condition of phase-transfer (chiral cation/ammonium) is very rare [97,98]. Following our interests to the addition of terminal alkyne and utility of chiral natural product [99,100], we had an interest to probe the possibility of quaternary ammonium containing dehydroabietylamine as chiral phase-transfer catalyst. Although the dehydroabietylamine has been broadly used for preparation of quaternary ammonium surfactants, the application of quaternary ammonium bearing dehydroabietylamine as chiral phase-transfer catalyst has been scarcely explored [33–35]. Herein, we report a practical synthesis of new chiral quaternary ammonium bearing dehydroabietylamine, using it as a phase-transfer catalyst for the transition-metal catalytic alkynylation of isatin derivatives.

Figure 1. Structure of natural abietic acid and commercially available dehydroabietylamine.

2. Results and Discussion

2.1. Design and Synthesis of Chiral Dehydroabietylamine Quaternary Ammoniums

We envisaged that new chiral dehydroabietylamine quaternary ammonium derivatives should be conveniently prepared by short steps. Thus, five dehydroabietylamine quaternary ammonium salts were derived from chain or cyclic tertiary amines (Figure 2). The synthesis of dehydroabietylamine quaternary ammonium derivatives is shown in Scheme 1. Amidation reaction between bromoacetyl chloride 3 and commercially available dehydroabietylamine 2 produces bromide 4 in 85% yields using triethyl amine as base in CH₂Cl₂. The quaternization reaction bromide 4 with triethyl amine, 1-methylpiperidine, 1-methylpyrrolidine, N,N,N',N'-tetramethyl-1,3-propanediamine, triethylene diamine (DABCO) gave the corresponding quaternary ammonium derivatives in high yields, respectively.
Figure 2. Structure of quaternary ammonium salt derived from commercially available dehydroabietylamine.

Scheme 1. Synthesis of chiral dehydroabietylamine quaternary ammonium derivatives.

2.2. Metal-Catalysed Alkynylation of Isatin Derivatives in the Presence of Chiral Quaternary Ammoniums

Our investigation began with the addition of phenylacetylene 6a to isatin derivative 5a (Table 1). Initially, the reaction was carried out by using 5 mol% of AgOAc and 5.5 mol% 1a as catalyst and K₂CO₃ as base in THF. The desired product can be obtained in a 68% yield without enantioselectivity at 50 °C (Table 1, entry 1). Investigations into the effects of dehydroabietylamine quaternary ammonium derivatives suggested that marginal enantioselectivities were observed when 1d and 1e were used (Table 1, entries 2–5). The same enantioselectivity was obtained but the yield was slightly reduced when toluene was used as a solvent (Table 1, entry 6). Examination into the effects of metal catalyst precursors suggested that AgOAc was the best choice, although AgOTf, CuOTf and CuI were suitable catalysts for the present reaction (Table 1, entries 7–10). The reaction was very sluggish at room temperature (Table 1, entry 11). When 5b was used as substrate, the enantioselectivity was increased to 6%ee (Table 1, entries 12–13). When 5c was used as substrate, the screening of solvents suggested that the solvents have a distinct influence on catalytic activity (Table 1, entries 14–22). Mesitylene gave best result with respect to the enantioselectivity, whereas, THF, toluene, DMSO, and MeOH gave worse results (entries 14–16, 17–21). Investigations into the effects of bases suggested that all of the examined inorganic base carbonates were suitable bases for the present reaction (Table 1, entries 22–26). Finally, in the absence of AgOAc, no desired compound was observed, suggesting that metal catalyst played an important role in the transformation [101] (Table 1, entry 26).
suggesting that metal catalyst played an important role in the transformation (10 entries 22–26). Aminated inorganic base carbonates were suitable bases for the present reaction (Table 1, (a) of metal catalyst, 5.5 mol% PTC, solvent (2 mL) at given temperature for 12 h).

6a with phenylacetylene

Table 1. Optimization of the reaction conditions (a).

Entry	5	M Cat. (5 mol%)	PTC (5.5%)	Base	Solvent	Time (h)	T (°C)	Yield (%)	Ee (%)	
1	5a	AgOAc	1a	K₂CO₃	THF	12	50	68	0	
2	5a	AgOAc	1b	K₂CO₃	THF	12	50	62	0	
3	5a	AgOAc	1c	K₂CO₃	THF	12	50	48	0	
4	5a	AgOAc	1d	K₂CO₃	THF	12	50	73	2	
5	5a	AgOAc	1e	K₂CO₃	THF	12	50	79	3	
6	5a	AgOAc	1f	K₂CO₃	toluene	12	50	65	4	
7	5a	AgTFA	1g	K₂CO₃	THF	12	50	70	2	
8	5a	AgOTf	1h	K₂CO₃	THF	12	50	68	4	
9	5a	CuOTf	1i	K₂CO₃	THF	12	50	65	2	
10	5a	CuI	1j	K₂CO₃	THF	12	50	56	1	
11	5a	AgOAc	1k	K₂CO₃	THF	12	rt	trace		
12	5b	AgOAc	1l	K₂CO₃	THF	12	50	71	2	
13	5b	AgOAc	1m	K₂CO₃	toluene	12	50	68	6	
14	5c	AgOAc	1n	K₂CO₃	THF	12	50	trace		
15	5c	AgOAc	1o	K₂CO₃	toluene	12	50	trace		
16	5c	AgOAc	1p	K₂CO₃	DMSO	12	50	trace		
17	5c	AgOAc	1q	K₂CO₃	CH₃CN	12	50	70	5	
18	5c	AgOAc	1r	K₂CO₃	DMF	12	50	38	3	
19	5c	AgOAc	1s	K₂CO₃	CH₂Cl₂	12	35	28	2	
20	5c	AgOAc	1t	K₂CO₃	dioxane	12	50	23	1	
21	5c	AgOAc	1u	K₂CO₃	MeOH	12	50	trace		
22	5c	AgOAc	1v	K₂CO₃	Mesityl	12	60	68	9	
23	5c	AgOAc	1w	NE₃	Mesityl	12	60	41	3	
24	5c	AgOAc	1x	Na₂CO₃	Mesityl	12	60	65	8	
25	5c	AgOAc	1y	Li₂CO₃	Mesityl	12	60	62	6	
26	5c	AgOAc	1z	Cs₂CO₃	Mesityl	12	60	58	3	
27	5c	AgOAc	1{		Cs₂CO₃	Mesityl	12	60	trace	

(a) Reaction condition: Isatin 5 (0.2 mmol), phenylacetylene 6a (0.4 mmol), base (0.4 mmol), 5 mol % of metal catalyst, 5.5 mol% PTC, solvent (2 mL) at given temperature for 12 h. (b) Isolated yield. (c) The ee was determined by chiral HPLC analysis.

2.3. Scope for Addition of Alkynes to Isatin Derivatives

Next, studies on the expansion of the substrate scopes were then carried out using the relative optimal reaction conditions (Table 1, entry 21). As shown in Scheme 2, the different substituents and substitution patterns of the isatin and aryl acetylene were all tolerated. The 1-n-Butyl-4-ethynylbenzene was successfully added to 5c to give the corresponding product 7cb in a moderate yield and 6%ee. The reaction of 5c with 1-ethynyl-1-methoxybenzene and 1-ethynyl-4-ethoxybenzene, holding a strong electron-donating substituent, gave the desired products 7ce and 7cd in good yield with 3%ee and 9%ee, respectively. Aryl acetylene-bearing, electron-withdrawing substituents, including fluoro- and chloro-groups, were tested for the present reaction, and the desired products (7ce and 7cf) were obtained in good to high yields with 2%ee and 3%ee. The reaction of isatin derivative 5d holding methyl with phenylacetylene 6a and 1-ethyl-3-fluorobenzene 6f gave the desired products, 7da and 7df, in good yields with 3%ee. The alkyynylation of isatin derivative 5e tolerating electron-donating substituents with phenylacetylene 6a, 1-ethyl-4-ethynylbenzene 6g, and
1-ethyl-3-fluorobenzene 6f gave the desired products, 7ea, 7eg, and 7df, in moderate to good yields, respectively. Isatin derivatives (5f, 5g, and 5h) with electron-withdrawing substituents, including fluoro-, bromo-, and chloro-groups, smoothly reacted with aromatic alkynes containing a wide range of functionalities to give the corresponding products 7 in good to high yields. The results indicated that the electronic property and steric hindrance on the isatins or aromatic alkynes had a slight effect on the reaction.

Scheme 2. Substrate scope of the alkynylation reaction (a–c). (a) Reaction condition: Isatin 5 (0.2 mmol), arylacetylene 6 (0.4 mmol), base (0.4 mmol), 5 mol % of AgOAe, 5.5 mol % 1e, solvent (2 mL) at given temperature for 12 h. (b) Isolated yield. (c) The ee was determined by chiral HPLC analysis.
2.4. Mechanism for Ag-Catalysed Alkynylation of Isatin Derivatives

On the basis of the experimental results as well as literature’s working hypothesis [47,77], we propose the mechanism of the present Ag catalysed alkynylation of isatin derivatives, as shown in Scheme 3. We speculated that a silver alkynilide is formed by the coordination of terminal alkyne 6 with Ag(I) and deprotonation, which can produce a silver alkynilide ion pair intermediate A with chiral quaternary ammonium catalyst (Q+Br-). The nucleophilic addition of the silver alkynilide intermediate A to isatin 5 affords the desired product 7. Comparison with Maruoka’s chiral quaternary ammoniums catalyst holding binaphthyl framework, a lower enantioselectivity was observed, which may be caused by the asymmetric center of the catalyst being far away from the nitrogen atom. The future focus will be to further modify the structure of the chiral quaternary ammonium salt containing dehydroabietylamine to improve the enantioselectivity.

![Scheme 3. Proposed mechanism for Ag–catalysed alkynylation in the presence of chiral quaternary ammoniums.](image)

3. Materials and Methods

3.1. General Information

The 1H and 13C NMR data were acquired on a Bruker AV-400 and/or AV-600 MHz spectrometer (Billerica, MA, USA). HRMS data were obtained from Agilent 6520 Q-TOF LC/MS (Santa Clara, CA, USA). Commercial reagents were purchased and used without further purification. THF and toluene were distilled over CaH\textsubscript{2} under nitrogen. DMF and MeOH were distilled over CaH\textsubscript{2} under nitrogen. Dioxane was distilled over LiAlH\textsubscript{4} under nitrogen.

3.2. General Procedure for the Synthesis of 2-Bromo-N-(((1R,4aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl) methyl) acetamide 4

To a solution of dehydroabietylamine (2.850 g, 10.0 mmol) and triethylamine (1.525 g, 15.0 mmol) in dry dichloromethane (20 mL) at 0 °C under nitrogen atmosphere, was added dropwise a solution of bromoacetyl chloride (2.340 g, 15.0 mmol) in dry dichloromethane (20 mL). After the completion of addition, the reaction mixture was stirred at room temperature overnight and poured into saturated NaHCO\textsubscript{3} solution. The aqueous layer was extracted with dichloromethane (2 × 25 mL) and the combined organic phases were washed with brine solution, dried over anhydrous Na\textsubscript{2}SO\textsubscript{4} and filtered. The solvent was removed under reduced pressure, and the residue was purified through silica gel column chromatography to give the product 4, 3.440 g, 85%. 1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.17 (d, J = 8.0 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.89 (s, 1H), 6.63–6.55 (s, amide rotomer,1H), 4.05 (s, 1H), 3.89 (s, 1H), 3.26–3.20 (m, 1H), 3.17–3.15 (m, 1H), 2.92–2.89 (m, 1H), 2.85–2.81 (m, 2H), 2.30 (d, J = 8.0 Hz, 1H), 1.76–1.70 (m, 5H), 1.45–1.40 (m, 1H), 1.28–1.22 (m, 9H), 0.96 (s, 3H). 13C NMR (101 MHz, CDCl\textsubscript{3}) δ 165.8, 165.2, 146.9, 145.7, 134.7, 127.0, 124.2, 123.9, 50.7, 50.2, 45.7, 45.6, 42.9, 38.3, 37.53, 37.47, 36.2, 33.4, 30.4, 29.8, 25.4, 24.0, 23.97, 19.1, 18.63, 18.59,
1.86–1.92 (m, 6H), 1.46–1.45 (m, 6H), 1.29–1.18 (m, 12H), 0.97–0.94 (m, 10H). The 1H NMR (400 MHz, CDCl3) δ 9.16 (s, 1H), 7.15 (d, J = 8.1 Hz, 1H), 6.97 (d, J = 8.1 Hz, 1H), 6.86 (s, 1H), 4.63 (d, J = 15.2 Hz, 1H), 4.55 (d, J = 15.2 Hz, 1H), 3.54 (q, J = 7.1 Hz, 6H), 3.30 (dd, J = 13.2 and 7.1 Hz, 1H), 3.08 (dd, J = 13.4 and 5.5 Hz, 1H), 2.91–2.79 (m, 3H), 2.26 (d, J = 12.7 Hz, 1H), 1.97 (s, 3H), 1.93–1.91 (m, 1H), 1.74–1.69 (m, 3H), 1.55–1.41 (m, 4H), 1.37 (t, J = 13.4 Hz, 1H), 1.20 (d, J = 6.9 Hz, 6H), 0.97 (s, 3H). The 13C NMR (101 MHz, CDCl3) δ 163.4, 147.3, 145.5, 134.8, 129.6, 124.1, 123.8, 123.7, 27.2, 54.8, 50.4, 45.4, 38.3, 37.8, 37.4, 36.4, 35.4, 30.0, 25.3, 24.1, 19.1, 18.6, and 13.2 Hz. HRMS-ESI (m/z): Calcd for C28H47N2O3^+ [M+Br]^+: 425.3526, Found: 425.3536.

3.3.3. 1-(2-(((1R,4aS)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)amino)-2-oxoethyl-1-methylpyrrolidin-1-ium bromide (1c)

A colorless powder, m.p. 215–217 °C. The 1H NMR (600 MHz, CDCl3) δ 8.95 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.87 (s, 1H), 4.77 (d, J = 15.2 Hz, 1H), 4.76 (d, J = 15.2 Hz, 1H), 3.99–3.94 (m, 2H), 3.67–3.66 (m, 1H), 3.56–3.54 (m, 1H), 3.30 (s, 3H), 3.26 (dd, J = 12.6 and 4.8 Hz, 1H), 3.17 (dd, J = 13.2 and 5.4 Hz, 1H), 2.91–2.90 (m, 2H), 2.81–2.79 (m, 1H), 2.29–2.26 (m, 3H), 2.13–2.09 (m, 2H), 1.85 (s, 3H), 1.64–1.61 (m, 3H), 1.55 (d, J = 11.4 Hz, 1H), 1.41–1.25 (m, 3H), 1.20 (d, J = 7.2 Hz, 6H), 0.97 (s, 3H). The 13C NMR (151 MHz, CDCl3) δ 163.7, 147.3, 145.5, 134.9, 126.8, 124.2, 123.8, 65.4, 63.5, 50.4, 49.9, 45.5, 38.3, 37.9, 37.4, 36.4, 33.4, 30.1, 25.3, 24.0, 21.5, 19.1, 18.6, and 18.5. HRMS-ESI (m/z): Calcd for C27H43N2O3^+ [M+Br]^+: 411.3370, Found: 411.3380.

3.3.4. N,N,N-Triethyl-2-(((1R,4aS)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methyl)amino)-2-oxoethyl-1-methylpiperidin-1-ium bromide (1d)

A colorless powder, m.p. 215–217 °C. The 1H NMR (600 MHz, CDCl3) δ 8.43 (s, 2H), 7.15 (d, J = 7.8 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 6.88 (s, 2H), 4.61 (d, J = 14.4 Hz, 2H), 4.31 (t, J = 7.2 Hz, 1H), 3.96–3.94 (m, 2H), 3.76–3.74 (m, 2H), 3.54–3.43 (m, 18H), 3.06–3.05 (m, 2H), 2.91–2.90 (m, 3H), 2.83–2.77 (m, 6H), 2.26 (d, J = 12.3 Hz, 2H), 2.04 (d, J = 5.4 Hz, 2H), 1.96–1.92 (m, 6H), 1.46–1.45 (m, 1H), 1.29–1.18 (m, 12H), 0.97–0.94 (m, 10H). The 13C NMR (151 MHz, CDCl3) δ 162.7, 147.2, 145.8, 134.7, 131.0, 128.9, 127.0, 124.3, 124.1, 65.6, 62.8, 57.5, 53.5, 52.7, 50.5, 45.5, 38.3, 37.8, 37.5, 33.4, 30.5, 30.4, 29.7, 25.5, 24.1, 23.9, 19.1, 18.7, and 18.4. HRMS-ESI (m/z): Calcd for C31H52N2O2Br^2+: 782.6427, Found: 782.6427.
3.3.5. 1,4-Bis(2-(((1R,4aS)-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophanthen-1-yl)methyl)amino)-2-oxoethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium bromide (1e)

A colorless powder, m.p. 327–329 °C. The 1H NMR (400 MHz, DMSO-d$_6$) δ 8.51 (s, 2H), 7.15 (d, $J = 8.0$ Hz, 2H), 6.95 (d, $J = 8.0$ Hz, 2H), 6.85 (s, 2H), 4.44 (dd, $J = 24.4$ and 15.6 Hz, 4H), 4.14 (s, 12H), 3.20–3.16 (m, 2H), 2.98–2.93 (m, 2H), 2.80–2.75 (m, 6H), 2.27 (d, $J = 8.0$ Hz, 2H), 1.76–1.59 (m, 8H), 1.38–1.33 (m, 8H), 1.16–1.13 (m, 18H), 0.89 (s, 6H). The 13C NMR (101 MHz, DMSO-d$_6$) δ 163.2, 147.4, 145.4, 134.9, 126.9, 124.6, 124.0, 62.2, 51.6, 49.3, 44.6, 38.3, 37.7, 37.5, 36.0, 33.4, 30.0, 25.7, 24.4, 19.2, 18.8, and 18.7. HRMS-ESI(m/z): Calcd for C$_{50}$H$_{76}$N$_2$O$_2^{2+}$ [M-2Br]$^{2+}$: 764.5957, Found: 764.5955.

3.4. General Procedure for Addition of Alkynes to Isatin Derivatives

Under an atmosphere of N$_2$, a reaction tube was charged with isatin (0.20 mmol), AgOAc (0.01 mmol), quaternary ammonium salt (0.011 mmol), base (0.40 mmol). Then, mesitylene (2.0 mL) and alkyne (0.40 mmol) were added successively to the tube. The mixture was stirred at given temperature for 12 h. The mixture was directly purified through silica gel column chromatography to give the product 7.

3.4.1. (S)-1-Benzyl-3-hydroxy-3-(phenylethynyl)indolin-2-one 7aa

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7aa as a colorless solid, m.p. 179–181 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.63 (d, $J =$ 8.0 Hz, 1H), 7.47 (d, $J =$ 8.0 Hz, 2H), 7.32–7.23 (m, 9H), 7.14 (d, $J =$ 8.0 Hz, 1H), 6.73 (d, $J =$ 8.0 Hz, 1H), 4.94 (s, 2H), 3.49 (s, 1H). The 13C NMR (101 MHz, CDCl$_3$) δ 174.04, 142.20, 134.99, 132.11, 130.47, 129.10, 128.93, 128.77, 128.27, 127.84, 127.18, 124.82, 123.80, 121.57, 109.96, 86.62, 85.39, 69.62, and 44.12. HRMS-ESI(m/z): Calcd for C$_{23}$H$_{18}$NO$_2^{-}$ [M+H]$^+$: 340.1933, Found: 340.1937.

3.4.2. (S)-1-Benzhydryl-3-hydroxy-3-(phenylethynyl)indolin-2-one 7ba

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7ba as a colorless solid, m.p. 189–191 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.61 (d, $J =$ 4.0 Hz, 1H), 7.48 (d, $J =$ 8.0 Hz, 2H), 7.37-7.28 (m, 13H), 7.11 (t, $J =$ 4.0 Hz, 2H), 6.98 (s, 1H), 6.51 (d, $J =$ 4.0 Hz, 1H), 3.09 (s, 1H). The 13C NMR (101 MHz, CDCl$_3$) δ 174.32, 141.87, 137.10, 136.97, 132.14, 129.91, 129.02, 128.71, 128.67, 128.51, 128.36, 128.24, 127.97, 127.49, 127.30, 121.66, 112.03, 86.57, 86.51, 69.33, and 58.50. HRMS-ESI(m/z): Calcd for C$_{25}$H$_{22}$NO$_2^{+}$ [M+Na]$^+$: 438.1465, Found: 438.1469.

3.4.3. (S)-3-Hydroxy-(phenylethynyl)-1-tritylindolin-2-one 7ca

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7ca as a yellow solid, m.p. 219–222 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.54 (d, $J =$ 4.0 Hz, 1H), 7.48 (d, $J =$ 4.0 Hz, 8H), 7.32–7.28 (m, 3H), 7.26 (t, $J =$ 8.0 Hz, 1H), 7.20 (t, $J =$ 4.0 Hz, 3H), 7.00 (d, $J =$ 8.0 Hz, 1H), 6.98 (dd, $J =$ 4.0 Hz and 16.0 Hz, 1H), 6.29 (d, $J =$ 4.0 Hz, 1H), 3.61 (s, 1H). The 13C NMR (101 MHz, CDCl$_3$) δ 174.57, 141.54, 140.52, 131.02, 132.14, 127.97, 127.95, 127.72, 127.27, 126.77, 126.02, 122.84, 122.05, 115.16, 85.13, 84.86, 73.27, and 68.68. HRMS-ESI(m/z): Calcd for C$_{35}$H$_{25}$NO$_2^{-}$ [M+Na]$^+$: 514.1778, Found: 514.1747.

3.4.4. (S)-3-(4-Butylphenyl)ethynyl)-3-hydroxy-1-tritylindolin-2-one 7cb

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7cb as a yellow solid, m.p. 225–227 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.57 (d, $J =$ 4.0 Hz, 1H), 7.51 (d, $J =$ 8.0 Hz, 6H), 7.43 (d, $J =$ 8.0 Hz, 2H), 7.31–7.22 (m, 12H), 7.18 (d, $J =$ 12.0 Hz, 2H), 7.03 (t, $J =$ 4.0 Hz, 1H), 6.32 (d, $J =$ 8.0 Hz, 1H), 3.29 (s, 1H), 2.65 (t, $J =$ 8.0 Hz, 3H), 1.62 (m, $J =$ 8.0 Hz, 2H), 1.39 (q, $J =$ 8.0 Hz, 2H), 0.96 (t, $J =$ 4.0 Hz, 3H). The 13C NMR (101 MHz, CDCl$_3$) δ 175.64, 144.31, 1442.58, 141.58, 132.00, 129.19, 129.00, 128.73, 128.45, 127.81, 127.06, 123.82, 123.07, 118.84, 116.19, 86.19, 85.44, 74.27, 69.73, 35.61, 33.34, 22.28, and 13.92. HRMS-ESI(m/z): Calcd for C$_{39}$H$_{33}$NO$_2^{-}$ [M+Na]$^+$: 570.2404, Found: 570.2428.
3.4.5. (S)-3-Hydroxy-3-((4-methoxyphenyl)ethynyl)-1-tritylindolin-2-one 7ce

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7ce as a light yellow solid, m.p. 205–208 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.49 (d, $J = 4.0$ Hz, 2H), 7.47-7.27 (m, 8H), 7.26-7.21 (m, 12H), 7.01 (s, 1H), 6.86 (d, $J = 8.0$ Hz, 2H), 6.29 (d, $J = 8.0$ Hz, 1H), 3.82 (s, 3H), 3.26 (s, 1H). The 13C NMR (101 MHz, CDCl$_3$) δ 175.01, 160.16, 142.59, 141.59, 133.64, 129.20, 128.71, 127.81, 127.07, 123.81, 123.20, 123.06, 116.19, 113.95, 113.76, 86.05, 84.80, 74.28, 69.75, and 55.32. HRMS-ESI(m/z): Calcd for C$_{36}$H$_{27}$NNaO$_5$ $^+$ [M+Na]$^+$: 544.1883, Found: 544.1875.

3.4.6. (S)-3-((4-Ethoxyphenyl)ethynyl)-3-hydroxy-1-tritylindolin-2-one 7cd

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7cd as a yellow solid, m.p. 210–213 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.55-7.40 (m, 10H), 7.29-7.20 (m, 9H), 7.01 (q, $J = 4.0$ Hz, 2H), 6.84 (d, $J = 8.0$ Hz, 1H), 6.29 (d, $J = 8.0$ Hz, 1H), 6.05 (q, $J = 8.0$ Hz, 2H), 3.26 (s, 1H), 1.57 (t, $J = 5.2$ Hz, 3H). The 13C NMR (101 MHz, CDCl$_3$) δ 170.43, 154.33, 137.34, 136.36, 128.40, 123.97, 123.85, 123.46, 122.57, 121.83, 118.57, 117.82, 110.95, 109.19, 108.31, 80.91, 79.49, 69.04, 64.52, 58.30, and 9.46. HRMS-ESI(m/z): Calcd for C$_{37}$H$_{29}$NNaO$_5$ $^+$ [M+Na]$^+$: 558.2040, Found: 558.2047.

3.4.7. (S)-3-((3-Chlorophenyl)ethynyl)-3-hydroxy-1-tritylindolin-2-one 7ce

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7ce as a light yellow solid, m.p. 214–217 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.54 (d, $J = 8.0$ Hz, 1H), 7.47-7.45 (m, 7H), 7.35 (t, $J = 8.0$ Hz, 2H), 7.40-7.23 (m, 10H), 7.02 (t, $J = 8.0$ Hz, 1H), 6.96 (t, $J = 8.0$ Hz, 1H), 6.34 (d, $J = 8.0$ Hz, 1H), 3.33 (s, 1H). The 13C NMR (101 MHz, CDCl$_3$) δ175.39, 141.50, 134.21, 131.21, 129.60, 129.38, 129.21, 129.85, 123.92, 123.21, 116.16, 90.47, 84.43, 74.48, and 69.65. HRMS-ESI(m/z): Calcd for C$_{37}$H$_{29}$NNaO$_5$ $^+$ [M+Na]$^+$: 548.1388, Found: 548.1381.

3.4.8. (S)-3-((3-Fluorophenyl)ethynyl)-3-hydroxy-1-tritylindolin-2-one 7cf

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7cf as a light yellow solid, m.p. 214–217 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.55 (d, $J = 8.0$ Hz, 1H), 7.47 (d, $J = 4.0$ Hz, 6H), 7.29-7.17 (m, 12H), 7.07-6.96 (m, 3H), 6.31 (d, $J = 8.0$ Hz, 1H), 3.30 (s, 1H). The 13C NMR (101 MHz, CDCl$_3$) δ175.32, 142.67, 141.47, 129.95, 129.19, 128.96, 128.56, 127.98, 127.84, 127.14, 123.90, 123.19, 118.95, 118.80, 116.56, 116.41, 116.34, 86.98, 84.57, 74.43, and 69.65. HRMS-ESI(m/z): Calcd for C$_{35}$H$_{24}$NNaO$_2$ $^+$ [M+Na]$^+$: 548.1388, Found: 548.1381.

3.4.9. (S)-3-Hydroxy-5-methyl-3-(phenylethynyl)-1-tritylindolin-2-one 7da

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7da as a yellow solid, m.p. 213–215 °C. The 1H NMR (400 MHz, CDCl$_3$), δ 7.48-7.46 (m, 7H), 7.37-7.33 (m, 3H), 7.28-7.24 (m, 8H), 7.23-7.20 (m, 3H), 6.75 (d, $J = 8.0$ Hz, 1H), 6.16 (d, $J = 8.0$ Hz, 1H), 3.29 (s, 1H), 2.26 (s, 3H). The 13C NMR (101 MHz, CDCl$_3$) δ175.55, 141.65, 140.17, 132.86, 132.10, 129.32, 129.23, 129.03, 128.80, 128.34, 127.81, 127.08, 124.51, 118.97, 116.53, 116.14, 88.45, 87.17, 74.38, 69.71, and 20.81. HRMS-ESI(m/z): Calcd for C$_{36}$H$_{26}$NNaO$_2$ $^+$ [M+Na]$^+$: 528.1734, Found: 528.1738.

3.4.10. (S)-3-((3-Fluorophenyl)ethynyl)-3-hydroxy-5-methyl-1-tritylindolin-2-one 7df

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7df as a yellow solid, m.p. 223–225 °C. 1H NMR (400.0 MHz, CDCl$_3$), δ 7.46-7.43 (m, 7H), 7.28-7.10 (m, 12H), 7.07 (s, 1H), 6.76 (d, $J = 8.0$ Hz, 1H), 6.17 (d, $J = 8.0$ Hz, 1H), 3.30 (s, 1H), 2.26 (s, 3H). The 13C NMR (101 MHz, CDCl$_3$) δ175.32, 141.57, 140.22, 129.47, 129.25, 129.22, 17.92, 127.82, 127.30, 127.12, 124.54, 118.97, 116.53, 116.14, 88.45, 87.17, 74.38, 69.71, and 20.79. HRMS-ESI(m/z): Calcd for C$_{36}$H$_{26}$NNaO$_2$ $^+$ [M+Na]$^+$: 546.1840, Found: 546.1840.
3.4.11. (S)-3-Hydroxy-5-methoxy-3-(phenylethynyl)-1-tritylindolin-2-one 7ea

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7ea as a yellow solid, m.p. 223–225°C. The 1H NMR (400 MHz, CDCl3), δ 7.50-7.45 (m, 8H), 7.35-7.28 (m, 3H), 7.28-7.20 (m, 9H), 7.14 (d, J = 4.0 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 6.18 (d, J = 8.0 Hz, 1H), 3.74 (s, 3H), 3.34 (s, 1H). The 13C NMR (101 MHz, CDCl3) δ 174.36, 157.81, 141.63, 135.72, 132.09, 131.46, 129.96, 129.24, 128.33, 127.81, 127.61, 127.09, 126.43, 109.72, 108.17, 88.57, 84.94, 69.97, 69.76, and 55.62. HRMS-ESI(m/z): Calcd for C36H27NNaO3+ [M+Na]+: 544.1883, Found: 544.1879.

3.4.12. (S)-3-((4-Ethylphenyl)ethyl)ynyl)-3-hydroxy-5-methoxy-1-tritylindolin-2-one 7eg

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7eg as a yellow solid, m.p. 198–200 °C. The 1H NMR (400 MHz, CDCl3), δ 7.47-7.45 (m, 6H), 7.41 (d, J = 8.0 Hz, 2H), 7.28-7.25 (m, 6H), 7.23-7.20 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), 7.13 (d, J = 4.0 Hz, 1H), 6.48 (dd, J = 8.0 Hz and 4.0 Hz, 1H), 6.17 (d, J = 4.0 Hz, 1H), 3.74 (s, 3H), 3.30 (s, 1H), 2.66 (q, J = 4.0 Hz, 2H), 1.25 (t, J = 4.0 Hz, 3H). The 13C NMR (101 MHz, CDCl3) δ 179.45, 147.86, 141.65, 134.70, 132.11, 130.05, 129.23, 127.91, 127.80, 127.06, 116.98, 114.30, 109.67, 86.52, 83.97, 74.27, 69.99, 55.62, 28.86, and 15.30. HRMS-ESI(m/z): Calcd for C38H32NNaO3+ [M+Na]+: 572.2196, Found: 572.2199.

3.4.13. (S)-3-((3-Fluorophenyl)ethyl)ynyl)-3-hydroxy-5-methoxy-1-tritylindolin-2-one 7ef

Silica gel column chromatography (hexane/AcOEt = 4/1) gave 7ef as a yellow solid, m.p. 215–217 °C. The 1H NMR (400 MHz, CDCl3), δ 7.46 (d, J = 4.0 Hz, 7H), 7.31-7.07 (m, 18H), 6.51 (d, J = 8.0 Hz, 1H), 6.20 (d, J = 8.0 Hz, 1H), 3.74 (s, 3H), 3.36 (s, 1H). The 13C NMR (101 MHz, CDCl3) δ 175.11, 155.96, 141.54, 135.72, 129.97, 129.63, 129.22, 128.01, 127.84, 127.15, 118.97, 118.82, 117.15, 114.48, 109.73, 87.05, 74.41, 69.89, and 55.63. HRMS-ESI(m/z): Calcd for C39H29FNaO3+ [M+Na]+: 562.1789, Found: 562.1779.

3.4.14. (S)-5-Fluoro-3-hydroxy-3-(phenylethynyl)-1-tritylindolin-2-one 7fa

Silica gel column chromatography (hexane/AcOEt = 4/1) gave 7fa as a yellow solid, m.p. 240–242 °C. The 1H NMR (400 MHz, CDCl3), δ 7.70-7.44 (m, 8H), 7.37-7.21(m, 13H), 6.65 (d, J = 8.0 Hz, 1H), 6.23 (d, J = 8.0 Hz, 1H), 3.41 (s, 1H). The 13C NMR (101 MHz, CDCl3) δ 175.32, 142.67, 141.47, 129.59, 129.19, 128.96, 128.56, 127.98, 127.84, 127.14, 123.90, 123.19, 118.95, 118.80, 116.56, 116.41, 116.34, 86.98, 84.57, 74.43, and 69.63. HRMS-ESI(m/z): Calcd for C35H22FN3NaO2+ [M+Na]+: 532.1683, Found: 532.1685.

3.4.15. (S)-3-((4-Ethylphenyl)ethyl)ynyl)-5-fluoro-3-hydroxy-1-tritylindolin-2-one 7fg

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7fg as a deep yellow solid, m.p. 215–217 °C. The 1H NMR (400 MHz, CDCl3), δ 7.49-7.44 (m, 8H), 7.32-7.24 (m, 10H), 7.20 (d, J = 8.0 Hz, 2H), 6.70-6.66 (m, 1H), 6.23 (dd, J = 8.0 Hz and 4.0 Hz, 1H), 3.40 (s, 1H), 2.68 (q, J = 4.0 Hz, 2H), 1.24 (t, J = 4.0 Hz, 3H). The 13C NMR (101 MHz, CDCl3) δ 175.43, 158.04, 145.81, 141.39, 138.40, 135.28, 132.13, 129.19, 127.89, 127.84, 127.21, 120.95, 118.67, 117.05, 111.58, 86.62, 84.93, 74.46, 69.71, 28.88, and 15.30. HRMS-ESI(m/z): Calcd for C37H26FN3NaO2+ [M+Na]+: 560.1992, Found: 560.1992.

3.4.16. (S)-3-((4-Butylphenyl)ethyl)ynyl)-5-fluoro-3-hydroxy-1-tritylindolin-2-one 7fb

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7fb as a deep yellow solid, m.p. 230–232 °C. The 1H NMR (400 MHz, CDCl3), δ 7.52 (d, J = 8.0 Hz, 6H), 7.46 (d, J = 4.0 Hz, 2H), 7.33-7.25 (m, 10H), 7.21 (d, J = 8.0 Hz, 2H), 6.70-6.67 (m, 1H), 6.28(dd, J = 8.0 Hz and 4Hz, 1H), 3.55 (s, 2H), 2.68 (t, J = 4.0 Hz, 2H), 1.68-1.61 (m, 2H), 1.42 (q, J = 4.0 Hz, 2H), 0.99 (t, J = 4.0 Hz, 3H). The 13C NMR (101 MHz, CDCl3) δ 175.48, 160.00, 158.06, 144.51, 141.43, 138.41, 132.09, 129.22, 128.52, 127.92, 127.22, 118.68, 117.07, 115.36, 115.18, 111.81, 111.61, 86.67, 85.01, 74.50, 69.75, 35.65, 33.36, 22.31, and 13.95. HRMS-ESI(m/z): Calcd for C39H32FN3NaO2+ [M+Na]+: 588.2309, Found: 588.2316.
3.4.17. (S)-3-((4-Ethoxyphenyl)(ethynyl))-5-fluoro-3-hydroxy-1-tritylindolin-2-one 7ff

Silica gel column chromatography (hexane/AcOEt = 5/1) gave 7ff as a yellow solid, m.p. 201–203 °C. The 1H NMR (400 MHz, CDCl3), δ 7.48 (s, 1H), 7.44-7.35 (m, 6H), 7.36 (t, J = 4.0 Hz, 2H), 7.29-7.22 (m, 11H), 6.68 (td, J = 4.0 Hz and 4.0 Hz, 1H), 6.24 (dd, J = 4.0 Hz and 4.0 Hz, 1H), 3.40 (s, 1H). The 13C NMR (101 MHz, CDCl3) δ 175.14, 163.08, 161.44, 159.84, 158.22, 141.27, 138.48, 135.42, 133.35, 130.18, 128.80, 128.78, 127.98, 127.28, 126.91, 119.96, 117.29, 115.60, 115.45, 111.83, 111.66, 86.48, 85.23, 74.59, and 69.59. HRMS-ESI(m/z): Calcd for C35H23FClNNaO2+ [M+Na]+: 566.1294, Found: 566.1283.
4. Conclusions

In summary, a series of new amide-type chiral quaternary ammoniums bearing dehydroabietylamine were prepared by acylation of dehydroabietylamine with bromoacetyl chloride in higher yields using triethyl amine as base and subsequent quaternization reaction with tertial amines and/or tertial dianimes. To some extent enantioselectivities were observed when using them as phase-transfer catalyst for the transition-metal catalytic alkynylation of isatin derivatives. Their chiral recognition ability or application in the others’ asymmetric transformation will be examined.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/catal11121479/s1, The 1H NMR and 13C NMR of compounds 1, 4, 7; HPLC chart of compounds 7.

Author Contributions: Conceptualization, Q.C.; methodology, K.L.; formal analysis, K.L.; F.Z.; investigation, G.J.; X.S.; writing—original draft preparation, Q.C.; writing—review and editing, Q.C.; F.Z.; supervision, Q.C.; project administration, Q.C.; funding acquisition, Q.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant number 32160351 and 31860241), the Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University (grant number 2019-KF08), and the Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education.

Acknowledgments: We thank Shiqing Dong for experimental assistant.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silvestre, A.J.D.; Gandini, A. Monomers, Polymers and Composites from Renewable Resources; Belgacem, M.N., Gandini, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Chapter 4; ISBN 978-0-08-045316-3.
2. Yang, X.; Li, Q.; Li, Z.; Xu, X.; Liu, H.; Shang, S.; Song, Z. Preparation and characterization of room-temperature vulcanized silicone rubber using acrylpimaric acid-modified aminopropyltriethoxysilane as a crosslinking agent. ACS Sustain. Chem. Eng. 2019, 7, 4964–4974. [CrossRef] [PubMed]
3. Liu, S.; Li, Z.; Diao, K.; Huang, W.; Wang, J.; Deng, W.; Lei, F.; Goodman, B.A. Direct identification of Cu(II) species adsorbed on rosin-derived resins using electron paramagnetic resonance (EPR) spectroscopy. Chemosphere 2018, 210, 789–794. [CrossRef]
4. Liu, S.; Wang, J.; Huang, W.; Tan, X.; Dong, H.; Goodman, B.A.; Du, H.; Lei, F.; Diao, K. Adsorption of phenolic compounds from water by a novel ethylenediamine rosin-based resin: Interaction models and adsorption mechanisms. Chemosphere 2019, 214, 821–829. [CrossRef]
5. Liu, X.; Zhang, R.; Li, T.; Zhu, P.; Zhuang, Q. Novel Fully Biobased Benzoxazines from Rosin: Synthesis and Properties. ACS Sustain. Chem. Eng. 2017, 5, 10682–10692. [CrossRef]
6. Mantzaridis, C.; Brocas, A.-L.; Llevot, A.; Cendejas, G.; Auvergne, R.; Caillol, S.; Carlotti, S.; Cramail, H. Rosin acid oligomers as precursors of DGEBA-free epoxy resins. Green Chem. 2013, 15, 3091–3098. [CrossRef]
7. Wilbon, P.A.; Zheng, Y.; Yao, K.; Tang, C. Renewable Rosin Acid-Degradable Caprolactone Block Copolymers by Atom Transfer Radical Polymerization and Ring-Opening Polymerization. Macromolecules 2010, 43, 8747–8754. [CrossRef]
8. Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A 2013, 1, 3263–3267. [CrossRef]
9. Li, Q.; Huang, X.; Liu, H.; Shang, S.; Song, Z.; Song, J. Properties Enhancement of Room Temperature Vulcanized Silicone Rubber by Rosin Modified Aminopropyltriethoxysilane as a Cross-linking Agent. ACS Sustain. Chem. Eng. 2017, 5, 10002–10010. [CrossRef]
10. Sacripante, G.G.; Zhou, K.; Farooque, M. Sustainable Polyester Resins Derived from Rosins. Macromolecules 2015, 48, 6876–6881. [CrossRef]
11. Li, R.; Zhang, P.; Liu, T.; Muhunthan, B.; Xin, J.; Zhang, J. Use of Hempseed-Oil-Derived Polycarboxylic Acid and Rosin-Derived Anhydride Acid as Coating Agents for Epoxy Materials. ACS Sustain. Chem. Eng. 2016, 6, 4016–4025. [CrossRef]
12. Zheng, Y.; Yao, K.; Lee, J.; Chandler, D.; Wang, J.; Wang, C.; Chu, F.; Tang, C. Well-Defined Renewable Polymers Derived from Gum Rosin. Macromolecules 2010, 43, 5922–5924. [CrossRef]
13. Yan, X.; Zhai, Z.; Song, Z.; Shang, S.; Rao, X. Synthesis and properties of polyester-based polymeric surfactants from diterpenic rosin. Ind. Crop. Prod. 2017, 108, 371–378. [CrossRef]
Catalysts 2021, 11, 1479

14. Ding, W.; Wang, S.; Yao, K.; Ganewatta, M.S.; Tang, C.; Robertson, M.L. Physical Behavior of Triblock Copolymer Thermoplastic Elastomers Containing Sustainable Rosin-Derived Polymethacrylate End Blocks. *ACS Sustain. Chem. Eng.* 2017, 5, 11470–11480. [CrossRef]

15. Zhai, Z.; Ye, S.; Yan, X.; Song, Z.; Shang, S.; Rao, X.; Song, J. pH-Responsive Wormlike Micelles Formed by an Anionic Surfactant Derived from Rosin. *J. Agric. Food Chem.* 2020, 68, 10063–10070. [CrossRef] [PubMed]

16. Yan, X.; Zhai, Z.; Xu, J.; Song, Z.; Shang, S.; Rao, X. CO2-Responsive Pickering Emulsions Stabilized by a Bio-based Rigid Surfactant with Nanosilica. *J. Agric. Food Chem.* 2018, 66, 10769–10776. [CrossRef]

17. Zhai, Z.; Xu, J.; Yan, X.; Song, Z.; Shang, S.; Rao, X. pH-responsive foams based on a transition between a bola surfactant and a traditional surfactant. *J. Mol. Liq.* 2020, 298, 111968. [CrossRef]

18. Wang, D.; Chen, H.; Song, B.; Yan, T.; Zhai, Z.; Pei, X.; Cui, Z. Supramolecular Hydrogels with Chiral Nanofibril Structures Formed from β-Cyclodextrin and a Rosin-Based Amino Acid Surfactant. *J. Agric. Food Chem.* 2020, 68, 10056–10062. [CrossRef] [PubMed]

19. Yan, T.; Song, B.; Du, D.; Cui, Z.; Pei, X. Rosin-based chiral wormlike Micelles: Rheological behavior and its application in preparing ultrasmall gold nanoparticles. *J. Colloid Interface Sci.* 2020, 579, 61–70. [CrossRef] [PubMed]

20. Chen, J.; Song, B.; Pei, X.; Cui, Z.; Xie, D. Rheological Behavior of Environmentally Friendly Viscoelastic Solutions Formed by a Rosin-Based Anionic Surfactant. *J. Agric. Food Chem.* 2019, 67, 2004–2011. [CrossRef]

21. Klejdzys, T.; Legosz, B.; Czuryszkiewicz, D.; Czernecki, K.; Pernak, J. Biobased Ionic Liquids with Abietane Anion. *ACS Sustain. Chem. Eng.* 2016, 4, 6543–6550. [CrossRef]

22. Gao, Y.; Li, L.; Chen, H.; Li, J.; Song, Z.; Shang, S.; Song, J.; Wang, Z.; Xiao, G. High value-added application of rosin as a potential renewable resource for the synthesis of a series of functionalized acyl-based biological herbicides. *Ind. Crop. Prod.* 2015, 78, 131–140. [CrossRef]

23. Gao, Y.; Li, J.; Song, J.; Shang, S.; Xiao, G.; Wang, Z.; Rao, X. Turning renewable resources into value-added products: Development of rosin-based insecticide candidates. *Ind. Crop. Prod.* 2015, 76, 660–671. [CrossRef]

24. Wang, H.; Nguyen, T.T.H.; Li, S.; Liang, T.; Zhang, Y.; Li, J. Quantitative structure–activity relationship of antifungal activity of rosin derivatives. *Bioorg. Med. Chem. Lett.* 2015, 25, 347–354. [CrossRef] [PubMed]

25. Yao, G.; Ye, M.; Huang, R.; Li, Y.; Zhu, Y.; Pan, Y.; Liao, Z.-X.; Wang, H. Synthesis and antitumor activity evaluation of maleopimaric acid N-aryl imide atropisomers. *Bioorg. Med. Chem. Lett.* 2013, 23, 6755–6758. [CrossRef]

26. Yang, Y.; Zhang, W.; Song, J.; Zhang, Y.; Jiang, X.; Wang, R. Anticancer effects of a novel class rosin-derivatives with different mechanisms. *Bioorg. Med. Chem. Lett.* 2013, 23, 3868–3872. [CrossRef] [PubMed]

27. Gu, W.; Qiao, C.; Wang, S.-F.; Hao, Y.; Miao, T.-T. Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents. *Bioorg. Med. Chem. Lett.* 2014, 24, 328–331. [CrossRef]

28. Gowda, R.; Madhunapantula, S.V.; Kuzu, O.F.; Sharma, A.; Robertson, G.P. Targeting Multiple Key Signaling Pathways in Melanoma Using Leelamine. *Mol. Cancer Ther.* 2014, 13, 1679–1689. [CrossRef] [PubMed]

29. Kuzu, O.F.; Gowda, R.; Sharma, A.; Robertson, G.P. Leelamine Mediates Cancer Cell Death through Inhibition of Intracellular Cholesterol Transport. *Mol. Cancer Ther.* 2014, 13, 1690–1703. [CrossRef]

30. Gowda, R.; Madhunapantula, S.V.; Sharma, A.; Kuzu, O.F.; Robertson, G.P. Nanolipolee-007, a Novel Nanoparticle-Based Drug Containing Leelamine for the Treatment of Melanoma. *Mol. Cancer Ther.* 2014, 13, 2328–2340. [CrossRef]

31. Singh, K.B.; Ji, X.; Singh, S.V. Therapeutic Potential of Leelamine, a Novel Inhibitor of Androgen Receptor and Castration-Resistant Prostate Cancer. *Mol. Cancer Ther.* 2018, 17, 2079–2090. [CrossRef]

32. Li, C.; Liu, X.; Zhu, J.; Zhang, C.; Guo, J. Synthesis, Characterization of a Rosin-based Epoxy Monomer and its Comparison with a Petroleum-based Counterpart. *J. Macromol. Sci. A* 2013, 50, 321–329. [CrossRef]

33. Wang, P.; Chen, S.X.; Zhao, Z.D.; Wang, Z.; Fan, G. Synthesis of ordered porous SiO2 with pores on the border between the micropore and mesopore regions using rosin-based quaternary ammonium salt. *RSC Adv.* 2015, 5, 11223–11228. [CrossRef]

34. Song, F.; Wang, P.; Chen, S.; Wang, Z.; Fan, G. Ordered lamellar supermicroporous titania templating by rosin-derived quaternary ammonium salt. *PloS ONE* 2017, 12, e0181078. [CrossRef]

35. Wang, P.; Zhao, Z.D.; He, L.Z.; Bi, L.W.; Chen, Y.X. Fabrication of Mesoporous ZrO2 by Using Rosin-Based Quaternary Ammonium Salt. *Adv. Mater. Res.* 2011, 239–242, 3257–3261. [CrossRef]

36. Foreiter, M.B.; Gunaratne, H.Q.N.; Nockemann, P.; Seddon, K.R.; Stevenson, P.J.; Wassell, D.F. Chiral thiouronium salts: Synthesis, characterisation and application in NMR enantio-discrimination of chiral oxoanions. *New J. Chem.* 2013, 37, 515–533. [CrossRef]

37. Narayananperumal, S.; Rivera, D.G.; Silva, R.C.; Paixão, M.W. Terpene-Derived Bipolar and Bipolar Phases in Asymmetric Organocatalysis. *ChemCatChem* 2013, 5, 2756–2773. [CrossRef]

38. Jiang, X.; Fu, D.; Zhang, G.; Cao, Y.; Liu, L.; Song, J.; Wang, R. Highly diastereo- and enantioselective Mannich reaction of lactones with N-Boc-aldimines catalyzed by bifunctional rosin-derived amine thiourea catalysts. *Chem. Commun.* 2010, 46, 4294–4296. [CrossRef]

39. Jiang, X.; Zhang, Y.; Chan, A.S.C.; Wang, R. Highly Enantioselective Synthesis of γ-Nitro Heteroaromatic Ketones in a Doubly Stereocontrolled Manner Catalyzed by Bifunctional Thiourea Catalysts Based on Dehydroabietic Amine: A Doubly Stereocontrolled Approach to Pyrrolidine Carboxylic Acids. *Org. Lett.* 2009, 11, 153–156. [CrossRef] [PubMed]
66. Takita, R.; Yakura, K.; Ohshima, T.; Shibasaki, M. Asymmetric Alkynylation of Aldehydes Catalyzed by an In(III)/BINOL Complex. J. Am. Chem. Soc. 2005, 127, 13760–13761. [CrossRef]
67. Li, Z.; Pu, L. BINOL–Salen-Catalyzed Highly Enantioselective Alkyne Additions to Aromatic Aldehydes. Org. Lett. 2004, 6, 1065–1068. [CrossRef]
68. FPark, D.; Jette, C.I.; Kim, J.; Jung, W.-O.; Lee, Y.; Park, J.; Kang, S.; Han, M.S.; Stoltz, B.M.; Hong, S. Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation-Binding Salen Nickel Complexes. Angew. Chem. Int. Ed. 2020, 59, 775–779. [CrossRef]
69. Chinkov, N.; Warm, A.; Carreira, E.M. Asymmetric Autocatalysis Enables an Improved Synthesis of Efavirenz. Angew. Chem. Int. Ed. 2011, 50, 2957–2961. [CrossRef]
70. Zhou, Y.; Wang, R.; Xu, Z.; Yan, W.; Liu, L.; Kang, Y.; Han, Z. Highly Enantioselective Phenylacetylene Additions to Ketones Catalyzed by (S)-BINOL–Ti Complex. Org. Lett. 2004, 6, 4147–4149. [CrossRef] [PubMed]
71. Cozzi, P.G. Enantioselective Alkynylation of Ketones Catalyzed by Zn(Salen) Complexes. Angew. Chem. Int. Ed. 2003, 42, 2895–2898. [CrossRef] [PubMed]
72. Chen, C.; Hong, L.; Xu, Z.-Q.; Liu, L.; Wang, R. Low Ligand Loading, Highly Enantioselective Addition of Phenylacetylene to Aromatic Ketones Catalyzed by Schiff-Base Amino Alcohols. Org. Lett. 2006, 8, 2277–2280. [CrossRef]
73. Motoki, R.; Kanai, M.; Shibasaki, M. Copper(I) Alkoxide-Catalyzed Alkynylation of Trifluoromethyl Ketones. Org. Lett. 2007, 9, 2997–3000. [CrossRef]
74. Liu, L.; Wang, R.; Kang, Y.-F.; Chen, C.; Xu, Z.-Q.; Zhou, Y.-F.; Ni, M.; Cai, H.-Q.; Gong, M.-Z. Highly Enantioselective Phenylacetylene Addition to Aromatic Ketones Catalyzed by Cinchona Alkaloid–Aluminum Complexes. J. Org. Chem. 2005, 70, 1084–1086. [CrossRef]
75. Lu, G.; Li, X.; Jia, X.; Chan, W.L.; Chan, A.S.C. Enantioselective Alkynylation of Aromatic Ketones Catalyzed by Chiral Camphorsulfonamide Ligands. Angew. Chem. Int. Ed. 2003, 42, 5057–5058. [CrossRef] [PubMed]
76. Paria, S.; Lee, H.-J.; Maruoka, K. Enantioselective Alkynylation of Isatin Derivatives Using a Chiral Phase-Transfer/Transition-Metal Hybrid Catalyst System. ACS Catal. 2019, 9, 2395–2399. [CrossRef]
77. Chen, Q.; Tang, Y.; Huang, T.; Liu, X.; Lin, L.; Feng, X. Copper/Guanidine-Catalyzed Asymmetric Alkynylation of Isatins. Angew. Chem. Int. Ed. 2016, 55, 5286–5289. [CrossRef]
78. Xu, N.; Gu, D.-W.; Zi, J.; Wu, X.-Y.; Guo, X.-X. Enantioselective synthesis of 3-Alkynyl-3-hydroxyindolin-2-ones by Copper-Catalyzed Asymmetric Addition of Terminal Alkynes to Isatins. Org. Lett. 2016, 18, 2439–2442. [CrossRef] [PubMed]
79. Zavesky, B.P.; Johnson, J.S. Direct Zinc(II)-Catalyzed Enantioconvergent Additions of Terminal Alkynes to α-Keto Esters. Angew. Chem. Int. Ed. 2017, 56, 8805–8808. [CrossRef]
80. Jiang, B.; Chen, Z.; Tang, X. Highly Enantioselective Alkynylation of α-Keto Ester: An Efficient Method for Constructing a Chiral Tertiary Carbon Center. Org. Lett. 2002, 4, 3451–3453. [CrossRef]
81. Lu, J.; Luo, L.-S.; Sha, F.; Li, Q.; Wu, X.-Y. Copper-catalyzed enantioselective alkyne alkylation of pyrazole-4,5-diones with terminal alkynes. Chem. Commun. 2019, 55, 11603–11606. [CrossRef]
82. Ohshima, T.; Kawabata, T.; Takeuchi, Y.; Kakinuma, T.; Iwasaki, T.; Yonezawa, T.; Murakami, H.; Nishiyama, H.; Mashima, K. C1-Symmetric Rh/Phebox-Catalyzed Asymmetric Alkynylation of α-Ketoesters. Angew. Chem. Int. Ed. 2011, 50, 6296–6300. [CrossRef]
83. Parmar, D.; Sugiono, E.; Raja, S.; Rupeing, M. Complete Field Guide to Asymmetric BINOL-Phosphate Derived Brønsted Acid and Metal Catalysis: History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen Bonding, Ion Pairing, and Metal Phosphates. Chem. Rev. 2014, 114, 9047–9153. [CrossRef]
84. Mahlau, M.; List, B. Asymmetric counteranion-directed catalysis: Concept, definition, and applications. Angew. Chem. Int. Ed. 2013, 52, 518–533. [CrossRef]
85. Braik, K.; Jacobsen, E.N. Asymmetric Ion-Pairing Catalysis. Angew. Chem. Int. Ed. 2013, 52, 534–561. [CrossRef]
86. Hashmi, A.S.K. Raising the gold standard. Nature 2007, 449, 292–293. [CrossRef]
87. Dorta, R.; Shimon, L.; David Milstein, D. Rhodium complexes with chiral counterions: Achiral catalysts in chiral matrices. J. Organomet. Chem. 2004, 691, 751–758. [CrossRef]
88. Hamilton, G.L.; Kang, E.J.; Mba, M.; Toste, F.D. A Powerful Chiral Counterion Strategy for Asymmetric Transition Metal Catalysis. Science 2007, 317, 496–499. [CrossRef] [PubMed]
89. Rauniar, V.; Lackner, A.D.; Hamilton, G.L.; Toste, F.D. Asymmetric Electrophilic Fluorination Using an Anionic Chiral Phase-Transfer Catalyst. Science 2011, 334, 1681–1684. [CrossRef] [PubMed]
90. Hamilton, G.L.; Kanai, T.; Toste, F.D. Chiral Anion-Mediated Asymmetric Ring Opening of meso-Aziridinium and Epsisulfonium Ions. J. Am. Chem. Soc. 2008, 130, 14984–14986. [CrossRef]
91. Li, C.; Wang, C.; Villa-Marcos, B.; Xiao, J. Chiral Counteranion-Aided Asymmetric Hydrogenation of Acyclic Imines. J. Am. Chem. Soc. 2008, 130, 14450–14451. [CrossRef]
92. Aikawa, K.; Kojima, M.; Mikami, K. Axial Chirality Control of Gold(biphep) Complexes by Chiral Anions: Application to Asymmetric Catalysis. Angew. Chem. Int. Ed. 2009, 48, 6073–6077. [CrossRef]
94. Li, C.; Villa-Marcos, B.; Xiao, J. Metal–Brønsted Acid Cooperative Catalysis for Asymmetric Reductive Amination. J. Am. Chem. Soc. 2009, 131, 6967–6969. [CrossRef] [PubMed]

95. Lu, Y.; Johnstone, T.C.; ArndtSEN, B.A. Hydrogen-Bonding Asymmetric Metal Catalysis with α-Amino Acids: A Simple and Tunable Approach to High Enantioinduction. J. Am. Chem. Soc. 2009, 131, 11284–11285. [CrossRef] [PubMed]

96. Zhu, Y.; He, W.; Wang, W.; Pitsch, C.E.; Wang, X.; Wang, X. Enantioselective Tandem Cyclization of Alkyne-Tethered Indoles Using Cooperative Silver(I)/Chiral Phosphoric Acid Catalysis. Angew. Chem. Int. Ed. 2017, 56, 12206–12209. [CrossRef] [PubMed]

97. Ye, X.; Tan, C.-H. Enantioselective transition metal catalysis directed by chiral cations. Chem. Sci. 2021, 12, 533–539. [CrossRef]

98. Genov, G.R.; James, L.; Douthwaite, J.L.; Lahdenperä, A.S.K.; Gibson, D.C.; Phipps, R.J. Enantioselective remote C–H activation directed by a chiral cation. Science 2020, 367, 1246–1251. [CrossRef]

99. Chen, Q.; Luo, M.; Guo, F.; Liang, K.; Gao, G. An Addition of Terminal Alkynes to Phthalazin-2-Ium Bromide Catalyzed by Copper. Adv. Synth. Catal. 2020, 362, 2332–2336. [CrossRef]

100. Chen, Q.; Li, L.; Zhou, G.; Ma, X.; Zhang, L.; Guo, F.; Luo, Y.; Xia, W. Chiral Phosphorus–Olefin Ligands for the RhI-Catalyzed Asymmetric Addition of Aryl Boronic Acids to Electron-Deficient Olefins. Chem. Asian J. 2016, 11, 1518–1522. [CrossRef]

101. Hashmi, A.S.K. Silver in Organic Chemistry; Harmata, M., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 357–379, Chapter 12; ISBN 9780470466117.