THE SPECTRAL FLOW OF A FAMILY OF TOEPLITZ OPERATORS

MAXIM BRAVERMAN

(WITH AN APPENDIX BY KOEN VAN DEN DUNGEN)

Abstract. We show that the (graded) spectral flow of a family of Toeplitz operators on a complete Riemannian manifold is equal to the index of a certain Callias-type operator. When the dimension of the manifold is even this leads to a cohomological formula for the spectral flow. As an application, we compute the spectral flow of a family of Toeplitz operators on a strongly pseudoconvex domain in \mathbb{C}^n. This result is similar to the Boutet de Monvel's computation of the index of a single Toeplitz operator on a strongly pseudoconvex domain. Finally, we show that the bulk-boundary correspondence in the tight-binding model of topological insulators is a special case of our result.

In the appendix, Koen van den Dungen reviewed the main result in the context of (unbounded) KK-theory.

1. Introduction

In the study of topological insulators the edge index is often defined as the spectral flow of a certain family of Toeplitz operators on a circle [15,16,18,20,22,25]. The bulk-edge correspondence establishes the equality of the edge index and the bulk index, which can be interpreted as the index of a certain Dirac-type operator. Thus we obtain the equality between the spectral flow of a family of Toeplitz operators and the index of a Dirac-type operator. This is similar but different from the classical “desuspension” result of Baum-Douglas [3] and Booss-Wojciechowski [5] (see also [6, §17]) which establishes an equality between the spectral flow of a family of Dirac-type operators and the index of a Toeplitz operator. The goal of this note is to generalize the bulk-edge correspondence to a formula for the spectral flow of a quite general family of Toeplitz operators.

We note that the result of [3,5] were extended to a family case by Dai and Zhang [13]. It would be interesting to obtain a similar extension of our results.

1.1. A family of Toeplitz operators. Suppose $E = E^+ \oplus E^-$ is a Dirac bundle over a complete Riemannian manifold M and let D be the corresponding Dirac operator on the space $L^2(M, E \otimes \mathbb{C}^k)$. We denote by $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ the kernel of D and by $P : L^2(M, E \otimes \mathbb{C}^k) \to \mathcal{H}$ the orthogonal projection. Let $f = \{f_t\}_{t \in S^1}$ be a periodic family of smooth functions on M with values in the space of Hermitian $k \times k$-matrices. For $t \in S^1$, we denote by $M_{f_t} : L^2(M, E \otimes \mathbb{C}^k) \to L^2(M, E \otimes \mathbb{C}^k)$ the multiplication by f_t. The Toeplitz operator is the composition $T_{f_t} := P \circ M_{f_t} : \mathcal{H} \to \mathcal{H} (t \in S^1)$.

Under the assumption that

(i) 0 is an isolated point of the spectrum of D;

2010 Mathematics Subject Classification. 58J30, 32T15, 19K56, 58J32, 58Z05.

Key words and phrases. spectral flow, Toeplitz, Atiyah-Patodi-Singer, index, pseudoconvex, topological insulators, bulk-boundary correspondence.

Partially supported by the Simons Foundation collaboration grant #G00005104.
we show that T_{f_t} is a family of Fredholm operators. Let $T_{f_t}^±$ denote the restriction of T_{f_t} to $\mathcal{H}^±$ and let $\text{sf}(T_{f_t}^±)$ denote the spectral flow of T_{f_t}. In many applications, including the Toeplitz operator on a strongly pseudoconvex domain, $\mathcal{H}^− = \{0\}$ and, hence, $\text{sf}(T_{f_t}^-) = 0$. Thus in those cases we compute $\text{sf}(T_{f_t}^0)$.

1.2. A Callias-type operator. Let $\mathcal{M} = S^1 \times M$ and let $\mathcal{E} = \mathcal{E}^+ \oplus \mathcal{E}^−$ be the lift of E to \mathcal{M}. It is naturally an ungraded Dirac bundle and we denote the corresponding Dirac operator by \not{D}. Let $\mathcal{M}_f : L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k) \to L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k)$ denote the multiplication by f and consider the Callias-type operator $\mathcal{B}_{cf} := \not{D} + ic\mathcal{M}_f$, where $c > 0$ is a large constant. Our assumptions guarantee that this operator is Fredholm and our main result (Theorem 2.10) states that

$$ \text{sf}(T_{f_t}^+) − \text{sf}(T_{f_t}^-) = \text{ind} \mathcal{B}_{cf}. \tag{1.1} $$

In the appendix Koen van den Dungen presented a KK-theoretical interpretation of this equality.

1.3. The even dimensional case: a cohomological formula. Suppose now that the dimension of M is even. Then the dimension of \mathcal{M} is odd and by the Callias-type index theorem [10] the index of \mathcal{B}_{cf} is equal to the index of a certain Dirac operator on a compact hypersurface $\mathcal{N} \subset \mathcal{M}$. Applying the Atiyah-Singer index theorem we thus obtain a cohomological formula for $\text{ind} \mathcal{B}_{cf}$ and, hence, for $\text{sf}(T_{f_t}^+) − \text{sf}(T_{f_t}^-)$, cf. Corollary 2.14.

1.4. A family of Toeplitz operators on a strongly pseudoconvex domain. Consider a strongly pseudoconvex domain $\overline{M} \subset \mathbb{C}^n$ with smooth boundary. We denote its boundary by $N := \partial \overline{M}$ and consider its interior M as a complete Riemannian manifold endowed with the Bergman metric, cf. [24 §7]. Let $D = \partial + \partial^*$ be the Dolbeault-Dirac operator on the space $\Omega^{n,*}(M, \mathbb{C}^k)$ of (n, \bullet)-forms on M with values in the trivial bundle \mathbb{C}^n. Let $f = \{f_t\}_{t \in S^1}$ be a periodic family of smooth functions on \overline{M} with values in the space of Hermitian $k \times k$-matrices. We assume that the restriction of f to $N := \partial \overline{M}$ is invertible. Then it follows from [14] §5 that D and f satisfy our assumptions (i)–(iv). Moreover, in this case the space $\mathcal{H}^− = \{0\}$. Thus (1.1) computes $\text{sf}(T_{f_t}^+) = \text{sf}(T_{f_t}^-)$.

Let $\mathcal{N} := S^1 \times N$ denote the boundary of $\overline{M} := S^1 \times M$. Since the restriction of f to \mathcal{N} is invertible, we obtain a direct sum decomposition $\mathcal{N} \times \mathbb{C}^k = \mathcal{F}_{\mathcal{N}^+} \oplus \mathcal{F}_{\mathcal{N}^-}$ of the trivial bundle $\mathcal{N} \times \mathbb{C}^k$ into the positive and negative eigenspaces of f. Our Theorem 3.3 states that

$$ \text{sf}(T_{f_t}) = \int_{\mathcal{N}} \text{ch}(\mathcal{F}_{\mathcal{N}^+}), \tag{1.2} $$

where $\text{ch}(\mathcal{F}_{\mathcal{N}^+})$ denotes the Chern character of the bundle $\mathcal{F}_{\mathcal{N}^+}$.

1.5. A tight-binding model of topological insulators and the bulk-boundary correspondence. We consider a tight binding model on the lattice $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$. Note that this model covers not only crystals with square lattice, but many other materials, including the hexagon lattice of graphene, cf. Section 3 of [16].

In the bulk (i.e. far from the boundary) the lattice looks like $\mathbb{Z} \times \mathbb{Z}$. The bulk Hamiltonian is a bounded map $H : l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k) \to l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k)$ which is periodic with period one in both directions of the lattice. By performing the Fourier transform of H (the Bloch decomposition) we obtain a family of self-adjoint $k \times k$-matrices $H(s, t) \ ((s, t) \in S^1 \times S^1)$.

(ii) for each $t \in S^1$ the differential df_t vanishes at infinity on M;

(iii) f is invertible at infinity (cf. Definition 2.8);

(iv) $\frac{2\pi}{L} f_t$ is bounded;

we obtain a family of self-adjoint $k \times k$-matrices $H(s, t) \ ((s, t) \in S^1 \times S^1)$.

By performing the Fourier transform of H (the Bloch decomposition) we obtain a family of self-adjoint $k \times k$-matrices $H(s, t) \ ((s, t) \in S^1 \times S^1)$.

We assume that the restriction of f to $\partial \mathcal{M}$ is invertible. Then it follows from [14] §5 that D and f satisfy our assumptions (i)–(iv). Moreover, in this case the space $\mathcal{H}^− = \{0\}$. Thus (1.1) computes $\text{sf}(T_{f_t}^+) = \text{sf}(T_{f_t}^-)$.

Let $\mathcal{N} := S^1 \times N$ denote the boundary of $\overline{M} := S^1 \times M$. Since the restriction of f to \mathcal{N} is invertible, we obtain a direct sum decomposition $\mathcal{N} \times \mathbb{C}^k = \mathcal{F}_{\mathcal{N}^+} \oplus \mathcal{F}_{\mathcal{N}^-}$ of the trivial bundle $\mathcal{N} \times \mathbb{C}^k$ into the positive and negative eigenspaces of f. Our Theorem 3.3 states that

$$ \text{sf}(T_{f_t}) = \int_{\mathcal{N}} \text{ch}(\mathcal{F}_{\mathcal{N}^+}), \tag{1.2} $$

where $\text{ch}(\mathcal{F}_{\mathcal{N}^+})$ denotes the Chern character of the bundle $\mathcal{F}_{\mathcal{N}^+}$.

We consider a tight binding model on the lattice $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$. Note that this model covers not only crystals with square lattice, but many other materials, including the hexagon lattice of graphene, cf. Section 3 of [16].

In the bulk (i.e. far from the boundary) the lattice looks like $\mathbb{Z} \times \mathbb{Z}$. The bulk Hamiltonian is a bounded map $H : l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k) \to l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k)$ which is periodic with period one in both directions of the lattice. By performing the Fourier transform of H (the Bloch decomposition) we obtain a family of self-adjoint $k \times k$-matrices $H(s, t) \ ((s, t) \in S^1 \times S^1)$.

By performing the Fourier transform of H (the Bloch decomposition) we obtain a family of self-adjoint $k \times k$-matrices $H(s, t) \ ((s, t) \in S^1 \times S^1)$.

We assume that the restriction of f to $\partial \mathcal{M}$ is invertible. Then it follows from [14] §5 that D and f satisfy our assumptions (i)–(iv). Moreover, in this case the space $\mathcal{H}^− = \{0\}$. Thus (1.1) computes $\text{sf}(T_{f_t}^+) = \text{sf}(T_{f_t}^-)$.

Let $\mathcal{N} := S^1 \times N$ denote the boundary of $\overline{M} := S^1 \times M$. Since the restriction of f to \mathcal{N} is invertible, we obtain a direct sum decomposition $\mathcal{N} \times \mathbb{C}^k = \mathcal{F}_{\mathcal{N}^+} \oplus \mathcal{F}_{\mathcal{N}^-}$ of the trivial bundle $\mathcal{N} \times \mathbb{C}^k$ into the positive and negative eigenspaces of f. Our Theorem 3.3 states that

$$ \text{sf}(T_{f_t}) = \int_{\mathcal{N}} \text{ch}(\mathcal{F}_{\mathcal{N}^+}), \tag{1.2} $$

where $\text{ch}(\mathcal{F}_{\mathcal{N}^+})$ denotes the Chern character of the bundle $\mathcal{F}_{\mathcal{N}^+}$.
We assume that the bulk Hamiltonian has a spectral gap at Fermi level $\mu \in \mathbb{R}$. In particular, the operator $H(s, t) - \mu$ is invertible for all $(s, t) \in S^1 \times S^1$. Thus the trivial bundle $(S^1 \times S^1) \times \mathbb{C}^k$ over the torus $S^1 \times S^1$ decomposes into the direct sum $(S^1 \times S^1) \times \mathbb{C}^k = \mathcal{F}_+ \oplus \mathcal{F}_-$ of positive and negative eigenbundles of $H(s, t) - \mu$. The bundle \mathcal{F}_+ is referred to as the Bloch bundle. The bulk index is defined by

$$I_{\text{Bulk}} := \int_{S^1 \times S^1} \text{ch}(\mathcal{F}_+).$$

We now take the edge into account, i.e. restrict to the half-lattice $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$. The Fourier transform of the bulk Hamiltonian H in the direction “along the edge” transforms H into a family of self-adjoint translationally invariant operators $H(t) : l^2(\mathbb{Z}, \mathbb{C}^k) \to l^2(\mathbb{Z}, \mathbb{C}^k)$. Let $\Pi : l^2(\mathbb{Z}, \mathbb{C}^k) \to l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k)$ denote the projection. The edge Hamiltonian is the family of Toeplitz operators $H^\#(t) := \Pi \circ H(t) \circ \Pi : l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k) \to l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k)$.

The edge index I_{Edge} of the Hamiltonian H is the spectral flow of the edge Hamiltonian

$$I_{\text{Edge}} := \text{sf}(H^\#(t)).$$

Both the bulk and the edge Hamiltonians extend to operators on the unit disc $B \subset \mathbb{C}$. The disc is the simplest example of a strongly pseudoconvex domain. Applying (1.2) to this situation we obtain the following bulk-boundary correspondence equality

$$I_{\text{Bulk}} = I_{\text{Edge}}.$$

Thus (1.2) is an extension of (1.3) to general strongly pseudoconvex domains. For this reason we refer to the equality (1.2) as the generalized bulk-boundary correspondence.

Acknowledgements. I would like to thank Jacob Shapiro for interesting discussion and bringing some references to my attention.

2. The main result

In this section we formulate our main result – the equality between the spectral flow of a family of Toeplitz operators on a complete Riemannian manifold M and the index of a Callias-type operator on M.

2.1. The Dirac operator. Let M be a complete Riemannian manifold and let $E = E^+ \oplus E^-$ be a graded Dirac bundle over M, cf. [21] [II.5], i.e. a Hermitian vector bundle endowed with the Clifford action

$$c : T^*M \to \text{End}(E), \quad (c(v)) : E^\pm \to E^\mp, \quad c(v)^2 = -|v|^2, \quad c(v)^* = -c(v),$$

and a Hermitian connection $\nabla^E = \nabla^{E^+} \oplus \nabla^{E^-}$, which is compatible with the Clifford action in the sense that

$$[\nabla^E_u, c(v)] = c(\nabla^{LC}_u v), \quad \text{for all} \quad u \in TM,$$

where ∇^{LC} is the Levi-Civita connection on T^*M.

We extend the Clifford action to the product $E \otimes \mathbb{C}^k$ and we denote by D the associated Dirac operator. In local coordinates it can be written as $D = \sum_j c(dx^j) \nabla^E_{\partial_j}$. We view D as an unbounded self-adjoint operator $D : L^2(M, E \otimes \mathbb{C}^k) \to L^2(M, E \otimes \mathbb{C}^k)$.

Throughout the paper we make the following

Assumption 2.2. Zero is an isolated point of the spectrum of D.
Let $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^- \subset L^2(M, E \otimes \mathbb{C}^k)$ denote the kernel of D and let $P : L^2(M, E \otimes \mathbb{C}^k) \to \mathcal{H}$ be the orthogonal projection. Here \mathcal{H}^\pm is the restriction of \mathcal{H} to $L^2(M, E^\pm \otimes \mathbb{C}^k)$. We denote by $P^\pm : L^2(M, E^\pm \otimes \mathbb{C}^k) \to \mathcal{H}^\pm$ the restriction of P to $L^2(M, E^\pm \otimes \mathbb{C}^k)$.

2.3. The Toeplitz operator. Let $BC(M; k)$ denote the Banach space of bounded continuous functions on M with values in the space Herm(k) of Hermitian complex-valued $k \times k$-matrices. We denote by $C^\infty_g(M; k) \subset BC(M; k)$ the subspace of bounded C^∞-functions such that df vanishes at infinity of M.

For $f \in C^\infty_g(M; k)$ we denote by $M_f : L^2(M, E \otimes \mathbb{C}^k) \to L^2(M, E \otimes \mathbb{C}^k)$ the multiplication by $1 \otimes f$ and by M^\pm_f the restriction of M_f to $L^2(M, E^\pm \otimes \mathbb{C}^k)$.

Definition 2.4. The operator

$$T_f := P \circ M_f : \mathcal{H} \to \mathcal{H}$$

(2.1)
is called the Toeplitz operator defined by f. We denote by T^\pm_f the restriction of T_f to \mathcal{H}^\pm.

Definition 2.5. We say that a matrix-valued function $f \in C^\infty_g(M; k)$ is invertible at infinity if there exists a compact set $K \subset M$ and $C_1 > 0$ such that $f(x)$ is an invertible matrix for all $x \notin K$ and $\|f(x)^{-1}\| < C_1$ for all $x \notin K$.

The following result is proven in [11, Lemma 2.6]

Proposition 2.6. If D satisfies Assumption 2.2 and $f \in C^\infty_g(M; k)$ is invertible at infinity then the Toeplitz operator T_f is Fredholm.

2.7. A family of self-adjoint Toeplitz operators. Let now $S^1 = \{e^{it} : t \in [0, 2\pi]\}$ be the unit circle. Consider a smooth family $f : S^1 \to C^\infty_g(M; k)$, $t \mapsto f_t$, of matrix valued functions. Assume that f_t is invertible at infinity for all $t \in [0, 2\pi]$. Then T_{f_t} ($t \in S^1$) is a periodic family of self-adjoint Fredholm operators. Our goal is to compute the spectral flow of this family. We make the following

Assumption 2.8. There exists a constant $C_2 > 0$ such that $\|\frac{\partial}{\partial t} f_t(x)\| < C_2$ for all $t \in S^1$, $x \in M$.

If f_t is invertible at infinity for all $t \in S^1$ and satisfies Assumption 2.8, then there exists a compact set $K \subset M$ and a large enough constant $\alpha > 0$ such that

$$\frac{\partial}{\partial t} f_t(x) < \frac{\alpha}{2} f_t(x)^2,$$

for all $x \notin K$. (2.2)

Here the inequality $A < B$ between two self-adjoint matrices means that for any vector $v \neq 0$, we have $\langle Av, v \rangle < \langle Bv, v \rangle$.

2.9. A Callias-type operator on $S^1 \times M$. Set $\mathcal{M} = S^1 \times M$. We write points of \mathcal{M} as (t, x), $t \in S^1$, $x \in M$. Denote by $\pi_1 : S^1 \times M \to S^1$ and $\pi_2 : S^1 \times M \to M$ the natural projections. By a slight abuse of notation we denote the pull-backs $\pi_1^* dt$, $\pi_2^* dx \in T^* \mathcal{M}$ by dt and dx respectively. Set

$$\mathcal{E} := \pi_2^* E.$$

Then \mathcal{E} is naturally an ungraded Dirac bundle with Clifford action $c : T^* \mathcal{M} \to \text{End}(\mathcal{E})$ such that $c(dx) = c(dx)$ and $c(dt)$ is given with respect to the decomposition $\mathcal{E} = \pi_2^* E^+ \oplus \pi_2^* E^-$ by the matrix

$$c(dt) = \begin{pmatrix} i \cdot \text{Id} & 0 \\ 0 & -i \cdot \text{Id} \end{pmatrix}.$$
Let \mathcal{D} be the corresponding Dirac operator. With respect to the decomposition
\[L^2(M, E \otimes \mathbb{C}^k) = L^2(S^1) \otimes L^2(M, E \otimes \mathbb{C}^k), \tag{2.3} \]
it takes the form
\[\mathcal{D} = c(dt) \frac{\partial}{\partial t} \otimes 1 + 1 \otimes D. \tag{2.4} \]

We remark that, as opposed to D, the operator \mathcal{D} is not graded.

Let now $f_t \in C^\infty(M; k)$ ($t \in S^1$) be a smooth periodic family of invertible at infinity matrix-valued functions satisfying Assumption 2.2. We consider the family f_t as a smooth function on M and denote it by f_t. Let $\mathcal{M}_f : L^2(M, E \otimes \mathbb{C}^k) \to L^2(M, E \otimes \mathbb{C}^k)$ denote the multiplication by f_t. Then the commutator
\[[\mathcal{D}, \mathcal{M}_f] := \mathcal{D} \circ \mathcal{M}_f - \mathcal{M}_f \circ \mathcal{D} \]
is a zero-order differential operator, i.e., a bundle map $E \otimes \mathbb{C}^k \to E \otimes \mathbb{C}^k$.

From (2.2) and our assumption that df_t vanishes at infinity, we now conclude that there exist constants $c, d > 0$ and a compact set $K \subset M$, called an essential support of \mathcal{B}_{cf}, such that
\[[\mathcal{D}, c \mathcal{M}_f](t, x) < c^2 \mathcal{M}_f(t, x)^2 - d, \quad \text{for all } (t, x) \notin K. \tag{2.5} \]

It follows that
\[\mathcal{B}_{cf} := \mathcal{D} + ic \mathcal{M}_f \tag{2.6} \]
is a Callias-type operator in the sense of \[1, 10\] (see also \[8, \S 2.5\]). In particular, it is Fredholm.

Our main result is the following

Theorem 2.10. Let $E = E^+ \oplus E^-$ be a Dirac bundle over a complete Riemannian manifold M and let $f_t \in C^\infty(M; k)$ ($t \in S^1$) be a smooth periodic family of invertible at infinity matrix-valued functions. Suppose that Assumptions 2.2 and 2.8 are satisfied. Then
\[sf(T_{f_t}^+) - sf(T_{f_t}^-) = \text{ind} \mathcal{B}_{cf}. \tag{2.7} \]

Remark 2.11. Note that, as opposed to df, the differential $d f_t$ does not vanish at infinity. Because of this \mathcal{B}_{cf} does not satisfy the conditions of Corollary 2.7 of \[11\] and its index does not vanish in general.

Remark 2.12. In our main applications $H^- = \{0\}$. Hence, $sf(T_{f_t}^-) = 0$ and (2.7) computes $sf(T_{f_t}^+)$.

The proof of Theorem 2.10 is given in Section 5.

2.13. The even dimensional case: a cohomological formula.

Suppose now that the dimension of M is even. Then the dimension of M is odd and by the Callias-type index theorem \[1, 10\] the index of \mathcal{B}_{cf} is equal to the index of a certain Dirac operator on a compact hypersurface $N \subset M$. Applying the Atiyah-Singer index theorem we thus obtain a cohomological formula for $\text{ind} \mathcal{B}_{cf}$. We now provide the details of this computation.

Let $N \subset M$ be a hypersurface such that there is an essential support $K \subset M$ of \mathcal{B}_{cf} whose boundary $\partial K = N := S^1 \times N$. In particular, the restriction of f_t to N is invertible and satisfies (2.5). Then there are vector bundles \mathcal{F}_{N^\pm} over N such that
\[\mathcal{M} \times \mathbb{C}^k = \mathcal{F}_{N^+} \oplus \mathcal{F}_{N^-}, \]
and the restriction of f_t to \mathcal{F}_{N^+} (respectively, \mathcal{F}_{N^-}) is positive definite (respectively, negative definite).
Corollary 2.14. Under the conditions of Theorem 2.10 assume that \(\dim M \) is even. Let \(j : N \hookrightarrow M \) be a hypersurface such that there is an essential support \(K \subset M \) of \(\mathcal{B}_c \) whose boundary \(\partial K = N := S^1 \times N \). Then
\[
\text{sf}(T_{f_t}^+) - \text{sf}(T_{f_t}^-) = \int_N \left[j^* \hat{A}(M) j^* \text{ch}(E/S) \pi_{2*} \text{ch}(\mathcal{F}_{N+}) \right].
\]
(2.8)

Here \(\hat{A}(M) \) is the differential form representing \(\hat{A} \)-class of \(M \), \(\text{ch}(E/N) \) is the differential form representing the graded relative Chern character of \(E \), cf. [4] p. 146, and
\[
\pi_{2*} \text{ch}(\mathcal{F}_{N+}) = \int_{S^1} \text{ch}(\mathcal{F}_{N+}) \in \Omega^*(N)
\]
is the push-forward of \(\text{ch}(\mathcal{F}_{N+}) \) under the map \(\pi_2 : N \to N \).

Proof. Let \(E_N \) denote the restriction of the bundle \(E \) to \(N \). Then \(\mathcal{E}_N := \pi_2^* E_N \) is the restriction of \(\mathcal{E} \) to \(N \). It is naturally a Dirac bundle over \(N \). We denote by \(\mathcal{D}_N \) the induced Dirac-type operator on \(\mathcal{E}_N \otimes \mathcal{F}_{N+} \).

Let \(v \) denote the unit normal vector to \(N \) pointing towards \(K \). Then \(ic(v) : \mathcal{E}_N \to \mathcal{E}_N \) is an involution. We denote by \(\mathcal{E}_N^{\pm 1} \) the eigenspace of \(ic(v) \) with eigenvalue \(\pm 1 \). This defines a grading \(\mathcal{E}_N = \mathcal{E}_N^{+1} \oplus \mathcal{E}_N^{-1} \) on the Dirac bundle \(\mathcal{E}_N \). The operator \(\mathcal{D}_N \) is odd with respect to the induced grading on \(\mathcal{E}_N \otimes \mathcal{F}_{N+} \). (This grading is different from the one induced by the grading on \(E \). Note that the operator \(\mathcal{D}_N \) is not an odd operator with respect to the grading induced by the grading on \(E \)).

By the Callias-type index theorem [1][10] (see also [8] §2.6] where more details are provided)
\[
\text{ind} \mathcal{B}_c = \text{ind} \mathcal{D}_N.
\]
(2.9)

Since \(\mathcal{D}_N \) is an operator on compact manifold \(N \) its index is given by the Atiyah-Singer index theorem. Combining it with (2.4) we obtain
\[
\text{ind} \mathcal{B}_c = \int_N \hat{A}(N) \text{ch}(\mathcal{F}_{N+}) \text{ch}(\mathcal{E}_N/S_N),
\]
(2.10)

where \(\hat{A}(N) \) is the \(\hat{A} \)-genus of \(N \), \(\text{ch}(\mathcal{F}_{N+}) \) is the Chern character of \(\mathcal{F}_{N+} \), and \(\text{ch}(\mathcal{E}_N/S_N) \) is the relative Chern character of the graded bundle \(\mathcal{E}_N \), cf. [4] p. 146.

Since all the structures are trivial along \(S^1 \),
\[
\hat{A}(N) = \pi_2^* \hat{A}(N), \quad \text{ch}(\mathcal{E}_N/S) = \pi_2^* \text{ch}(E_N/S_N)
\]
(2.11)

where \(\hat{A}(N) \) is the \(\hat{A} \)-genus of \(N \) and \(\text{ch}(E_N/S_N) \) is the relative Chern character of the graded bundle \(E_N = E_N^{+1} \oplus E_N^{-1} \).

Since \(\hat{A}(N) \) is a characteristic class it behaves naturally with respect to the pull-backs, i.e.,
\[
\hat{A}(N) = j^* \hat{A}(M).
\]
(2.12)

As for \(\mathcal{E}_N \), the grading \(E_N = E_N^{+1} \oplus E_N^{-1} \) is different from the grading \(E_N = E_N^{+1} \oplus E_N^{-1} \) inherited from the grading on \(E \). However, since \(ic(v) \) is odd with respect to the grading \(E_N = E_N^{+1} \oplus E_N^{-1} \) and \(c(v)^2 = -1 \), we have
\[
E_N^{+1} = \{ e \pm ic(v)e : e \in E_N^+ \}.
\]

It follows that \(E_N^+ \oplus E_N^- \) and \(E_N^{+1} \oplus E_N^{-1} \) are isomorphic as graded Dirac bundles. Hence, we can compute \(\text{ch}(E_N/S_N) \) using the grading \(E_N = E_N^+ \oplus E_N^- \). Even though the relative Chern character is not quite a characteristic class (it depends not only on the connection but also on
the Clifford action and the Riemannian metric) it is well known that it behaves naturally under restrictions to a submanifold
\[
\text{ch}(E_N/S_N) = j^* \text{ch}(E/S),
\]
see, for example, [2] Lemma 7.1. Thus, using (2.11) we now obtain
\[
\text{ch}(E_N/S) = \pi_0^* j^* \text{ch}(E/S).
\]
(2.13)
The equality (2.8) follows now from (2.7), (2.10), (2.12), and (2.13).

\section{A family of Toeplitz operators on a strongly pseudoconvex domain}

In this section we apply Theorem 2.10 to the case when \(M \) is a strongly pseudoconvex domain in \(\mathbb{C}^k \). Our computation of the spectral flow in this case is similar to the computation of index in [17] and [17].

\subsection{A Dirac operator on a strongly pseudoconvex domain}

Let \(M \) be a strongly pseudoconvex domain in \(\mathbb{C}^n \). We denote its boundary by \(N := \partial M \). Let \(g^M \) be the Bergman metric on \(M \), cf. [21, §7]. Then \((M, g^M) \) is a complete Kähler manifold. We define \(E = \Lambda^{n,*}(T^*M) \) and set \(E^+ = \Lambda^{n,\text{even}}(T^*M), E^- = \Lambda^{n,\text{odd}}(T^*M) \). Then \(E \) is naturally a Dirac bundle over \(M \) whose space of smooth section coincides with the Dolbeault complex \(\Omega^{n,*}(M) \) of \(M \) with coefficients in the canonical bundle \(K = \Lambda^{n,0}(T^*M) \). Moreover, the corresponding Dirac operator is given by
\[
D = \tilde{\partial} + \tilde{\partial}^*,
\]
where \(\tilde{\partial} \) is the Dolbeault differential and \(\tilde{\partial}^* \) its adjoint with respect to the \(L^2 \)-metric induced by the Bergman metric on \(M \).

By [14, §5] zero is an isolated point of the spectrum of \(D \) and \(\mathcal{H} := \ker D \) is a subset of the space \((n,0) \)
\[
\mathcal{H} := \ker D \subset \Omega^{n,0}(M).
\]
(3.1)
In particular, Assumption 2.2 is satisfied and \(\mathcal{H}^- = \{0\} \).

\subsection{A family of Toeplitz operators}

Let \(C^\infty(M; k) \) denote the space of smooth functions on \(M \) with values in the space of complex-valued self-adjoint \(k \times k \)-matrices. Each \(f \in C^\infty(M; k) \) induces a function on \((M, g^M) \) which we also denote by \(f \). One readily sees that \(f \in C^\infty_g(M, k) \), cf. [17, §1, Lemma 2]. Then \(f \) is invertible at infinity iff \(f|_{\partial M} \) is invertible.

We now consider the product \(\overline{M} := S^1 \times M \). This is a compact manifold with boundary \(N := S^1 \times N \). We endow the interior \(M := S^1 \times M \) of \(\overline{M} \) with the product of the standard metric on \(S^1 \) and the Bergman metric on \(M \). Let \(C^\infty(M; k) \) denote the space of smooth functions on \(\overline{M} \) with values in the space of self-adjoint \(k \times k \)-matrices. For \(f \in C^\infty(M; k) \), set \(f_t(x) := f(t, x) \) \((t \in S^1, x \in \overline{M}) \). Then the restriction of \(f_t \) to \(M \) (which is also denoted by \(f_t \)) is a smooth family of functions in \(C^\infty(M, k) \). Let \(T_{f_t} \) be the corresponding family of Toeplitz operators on \(M \). By (3.1), the space \(\mathcal{H}^- = \{0\} \). Hence, \(T_{f_t} = T_{f_t}^+ \), while \(T_{f_t}^- = 0 \).

Assume now that the restriction of \(f \) to \(N = S^1 \times \partial M \) is invertible. Then \(f_t \) are invertible at infinity for all \(t \in S^1 \). Assumption 2.8 is automatically satisfied in this case, since \(\frac{d}{dt} f_t \) is a continuous function on \(\overline{M} \).

As we will see in the next section the following theorem generalizes the bulk-edge correspondence in the theory of topological insulators. More precisely, in the case when \(M \) is the unit
disc in \mathbb{C}, the left hand side of (3.2) is equal to the edge index, while its the right hand side is the bulk index.

Theorem 3.3 (Generalized bulk-edge correspondence). Let $M \subset \mathbb{C}^k$ be a strongly pseudoconvex domain with smooth boundary $N := \partial M$. Set $\overline{M} := S^1 \times \overline{M}$ and let $f \in C^\infty_c(\overline{M}; k)$ be a smooth function with values in the space of self-adjoint $k \times k$-matrices. Assume that $f_t(x) := f(t, x)$ is invertible for all $t \in S^1$, $x \in \partial M$. Then

$$sf(T_{f_t}) = \int_N \text{ch}(\mathcal{F}_{N^+}),$$

where $N := S^1 \times N$ and $\mathcal{F}_{N^+} \subset N \times \mathbb{C}^k$ is a subbundle spanned by eigenvectors of $f|_N$ with positive eigenvalues.

Proof. By (3.1), the space $\mathcal{H}^- = \{0\}$. Hence, $T_{f_t} = T_{f_t}^+$, while $T_{f_t}^- = 0$. In particular,

$$sf(T_{f_t}^-) = 0.$$

(3.3)

Since M is a domain in a flat space \mathbb{C}^k, both $\hat{A}(M) = 1$ and $\text{ch}(E/S) = 1$. Hence, by (2.8) and (3.3) we obtain

$$sf(T_{f_t}) = \int_N \pi_{2*} \text{ch}(\mathcal{F}_{N^+}) = \int_N \text{ch}(\mathcal{F}_{N^+}).$$

□

4. A tight-binding model of topological insulators and the bulk-edge correspondence

In this section we briefly review a standard tight-binding model for two-dimensional topological insulators, following the description in [19] (see also [16]) and show that the bulk-edge correspondence for this model follows immediately from our Theorem 3.3.

4.1. The bulk Hamiltonian. We consider a tight binding model on the lattice $\mathbb{Z}_{\geq 0} \times \mathbb{Z}$. Basically, this means that the electrons can only stay on the lattice sites and the kinetic energy is included by allowing electrons to hop from one site to a neighboring one. Surprisingly, this model covers not only crystals with square lattice, but many other materials, including the hexagon lattice of graphene, cf. Section 3 of [16].

The mathematical formulation of the model is as follows (we present the version suggested in [19]): The “bulk” state space is the space $l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k)$ of square integrable sequences

$$\phi = \{\phi_{ij}\}_{(i,j) \in \mathbb{Z} \times \mathbb{Z}}, \quad \phi_{ij} \in \mathbb{C}^k.$$

The bulk Hamiltonian $H : l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k) \to l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k)$ is periodic with period one in both directions of the lattice. By performing a Fourier transform of H (the Bloch decomposition in physics terminology) we obtain a family of self-adjoint $k \times k$-matrices $H(s, t) ((s, t) \in S^1 \times S^1)$. We assume that $H(s, t)$ depend smoothly on s and t.

We assume that the bulk Hamiltonian has a spectral gap at Fermi level $\mu \in \mathbb{R}$, i.e. there exists $\epsilon > 0$ such that the spectrum of $H(s, t)$ does not intersect the interval $(\mu - \epsilon, \mu + \epsilon)$ for all $(s, t) \in S^1 \times S^1$. In particular, the operator $H(s, t) - \mu$ is invertible for all $(s, t) \in S^1 \times S^1$. Thus the trivial bundle $(S^1 \times S^1) \times \mathbb{C}^k$ over the torus $S^1 \times S^1$ decomposes into the direct sum of subbundles

$$(S^1 \times S^1) \times \mathbb{C}^k = \mathcal{F}_+ \oplus \mathcal{F}_-.$$
such that the restriction of \(H(s, t) - \mu \) to \(\mathcal{F}_+ \) is positive definite and the restriction of \(H(s, t) - \mu \) to \(\mathcal{F}_- \) is negative definite. The bundle \(\mathcal{F}_+ \) is referred to as the Bloch bundle.

Definition 4.2. The bulk index of the Hamiltonian \(H \) is

\[
I_{\text{Bulk}} := \int_{S^1 \times S^1} \text{ch}(\mathcal{F}_+).
\]

(4.1)

4.3. The edge Hamiltonian. We now take the boundary into account. The “edge” state space is the space \(l^2(\mathbb{Z}_{\geq 0} \times \mathbb{Z}, \mathbb{C}^k) \) of square integrable sequences of vectors in \(\mathbb{C}^k \) on the half-lattice \(\mathbb{Z}_{\geq 0} \times \mathbb{Z} \).

The Fourier transform of the bulk Hamiltonian \(H : l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k) \rightarrow l^2(\mathbb{Z} \times \mathbb{Z}, \mathbb{C}^k) \) in the direction “along the edge” transforms \(H \) into a family of self-adjoint translationally invariant operators

\[
H(t) : l^2(\mathbb{Z}, \mathbb{C}^k) \rightarrow l^2(\mathbb{Z}, \mathbb{C}^k).
\]

(4.2)

Then \(H(t) \) depends smoothly on \(t \in S^1 \). Let \(\Pi : l^2(\mathbb{Z}, \mathbb{C}^k) \rightarrow l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k) \) denote the projection.

Definition 4.4. The edge Hamiltonian is the family of Toeplitz operators

\[
H^\#(t) := \Pi \circ H(t) \circ \Pi : l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k) \rightarrow l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k), \quad t \in S^1.
\]

(4.3)

Definition 4.5. The edge index \(I_{\text{Edge}} \) of the Hamiltonian \(H \) is the spectral flow of the edge Hamiltonian

\[
I_{\text{Edge}} := \text{sf}(H^\#(t)).
\]

(4.4)

Theorem 4.6 (Bulk-edge correspondence). \(I_{\text{Bulk}} = I_{\text{Edge}} \).

Proof. Consider the unit disc \(B := \{ z \in \mathbb{C} : |z| \leq 1 \} \). This is a strongly pseudoconvex domain in \(\mathbb{C} \). We view the bulk Hamiltonian \(H(s, t) \) as a function on \(\partial B \times S^1 \) with values in the set \(\text{Herm}(k) \) of invertible Hermitian \(k \times k \)-matrices.

We endow \(B \) with the Bergman metric and consider the Dolbeault-Dirac operator \(D = \partial + \bar{\partial}^* \) on the space \(L^2\Omega^1\bullet(B, \mathbb{C}^k) = L^2\Omega^{1,0}(B, \mathbb{C}^k) \oplus L^2\Omega^{1,1}(B, \mathbb{C}^k) \) of square-integrable \((1, \bullet)\)-forms on \(B \). Let \(\mathcal{H} := \ker D \). Then \(\mathcal{H} \subset L^2\Omega^{1,0}(B, \mathbb{C}^k) \). Let \(P : L^2\Omega^{1,\bullet}(B, \mathbb{C}^k) \rightarrow \mathcal{H} \) denote the orthogonal projection. As usual, for \(f \in C_b^\infty(B, k) \) we denote by \(T_f := P \circ M_f : \mathcal{H} \rightarrow \mathcal{H} \) the Toeplitz operator.

To each \(u = \{u_j\}_{j \geq 0} \in l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k) \) we associate a 1-form

\[
\phi(f) := \sum_{j \geq 0} u_j z^j \, dz \in \mathcal{H}.
\]

If \(A : l^2(\mathbb{Z}, \mathbb{C}^k) \rightarrow l^2(\mathbb{Z}, \mathbb{C}^k) \) is a translationally invariant operator, then \(\phi \circ A \circ \phi^{-1} \) is the multiplication operator by the Fourier transform \(A(s) \) of \(A \). Let \(a : \bar{B} \rightarrow \text{Herm}(k) \) be a continuous extension of \(A(s) \) to \(\bar{B} \) (i.e., we assume that \(a|_{\partial B} = A(s) \)) and let

\[
T_a := P \circ M_a(s) : \mathcal{H} \rightarrow \mathcal{H}
\]

be the corresponding Toeplitz operator.

We also define a different Toeplitz operator

\[
A^\# := \Pi \circ H(t) \circ \Pi : l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k) \rightarrow l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k)
\]

associated with \(A \) (notice that (4.3) is a special case of this construction). Those two Toeplitz operators are closely related. In particular, it is proven in [12] that the difference

\[
T_a - \phi \circ A^\# \circ \phi^{-1}
\]
is compact. We now apply this result to the family of operators $H(t) : l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k) \to l^2(\mathbb{Z}_{\geq 0}, \mathbb{C}^k)$. Let $h : \bar{B} \times S^1 \to \text{Herm}(k)$ be a continuous extension of $H(s,t)$ and set $h_t(s) := h(s,t)$. Then

$$T_{ht} - \phi \circ H^\#(t) \circ \phi^{-1} : \mathcal{H} \to \mathcal{H}, \quad t \in S^1,$$

is a continuous family of compact operators. It follows, [5, Proposition 1.12] (see also [6, Proposition 17.6]), that

$$\text{sf}(T_{ht}) = \text{sf} \left(\phi \circ H^\#(t) \circ \phi^{-1} \right) = \text{sf} \left(H^\#(t) \right).$$

The theorem follows now from definitions of bulk and edge indexes, (4.1), (4.4), and Theorem 3.3.

\[\square\]

5. Proof of Theorem 2.10

The proof of Theorem 2.10 consists of two steps. First (Lemma 5.3) we apply a result of Atiyah, Patodi and Singer [2, Th. 7.4] (see also [23]) to conclude that the spectral flow $\text{sf}(T_{ht})$ is equal to the index of a certain operator on \mathcal{M}. Then, using the argument similar to [11] we show that the latter index is equal to the index of \mathcal{B}_{sf}.

5.1. Functions with value in \mathcal{H}. We view the space $L^2(S^1, \mathcal{H})$ of square integrable functions with values in \mathcal{H} as a subspace of $L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k)$. Then the family T_{ht} naturally induces an operator $L^2(S^1, \mathcal{H}) \to L^2(S^1, \mathcal{H})$ which we still denote by T_{ht}. Let T_{ht}^\pm denote the restriction of T_{ht} to $L^2(S^1, \mathcal{H}^\pm)$.

5.2. The spectral flow as an index. Atiyah, Patodi and Singer, [2, Th. 7.4], proved that the spectral flow of a periodic family of elliptic differential operators $A(t)$ ($t \in S^1$) is equal to the index of the operator $\partial_t - A$ on S^1. Robbin and Salomon [23] extended this equality to a much more general family of operators. Applying this result to our situation we immediately obtain

Lemma 5.3. Under the assumptions of Theorem 2.10 we have

$$\text{sf}(T_{ht}^\pm) = \text{ind} \left(\frac{\partial}{\partial t} - T_{ht}^\pm \right) \bigg|_{L^2(S^1, \mathcal{H}^\pm)}.$$ \hspace{1cm} (5.1)

Notice that, since $\text{sf}(T_{ht}^\pm) = -\text{sf}(-T_{ht}^\pm)$, equality (5.1) is equivalent to

$$\text{sf}(T_{ht}^\pm) = -\text{ind} \left(\frac{\partial}{\partial t} + T_{ht}^\pm \right) \bigg|_{L^2(S^1, \mathcal{H}^\pm)}.$$ \hspace{1cm} (5.2)

5.4. Harmonic sections on \mathcal{M}. Let $\mathcal{H} \subset L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k)$ denote the kernel of \mathcal{P} and let $\mathcal{P} : L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k) \to \mathcal{H}$ be the orthogonal projection.

We denote by $P_0 : L^2(S^1) \to L^2(S^1)$ the orthogonal projection onto the subspace of constant functions. Then with respect to decomposition (2.24) we have $\mathcal{P} = P_0 \otimes P$.

To simplify the notation in the computations below we write P_0 for $P_0 \otimes 1$, Q_0 for $(1 - P_0) \otimes 1$, and P for $1 \otimes P$. Then the space $L^2(S^1, \mathcal{H})$ coincides with the image of the projection

$$P : L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k) \to L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k).$$

It follows that the projections \mathcal{P} and $Q := 1 - \mathcal{P}$ preserve the space $L^2(S^1, \mathcal{H})$ and their restrictions this space are given by

$$\mathcal{P}|_{L^2(S^1, \mathcal{H})} = P_0, \quad Q|_{L^2(S^1, \mathcal{H})} = Q_0.$$ \hspace{1cm} (5.3)
Lemma 5.5. The operator
\[[P, \mathcal{M}_f] := P \circ \mathcal{M}_f - \mathcal{M}_f \circ P : L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k) \to L^2(\mathcal{M}, \mathcal{E} \otimes \mathbb{C}^k) \] (5.4)
is compact.

Proof. The proof of Lemma 2.4 of [11] extends to our situation almost without any changes. We present it here for completeness.

By Assumption 2.2 there exists a small ball \(B \subset \mathbb{C} \) about 0 which does not contain non-zero points of the spectrum of \(1 \otimes D \). To simplify the notation we write \(D \) for \(1 \otimes D \).

For \(\lambda \) not in the spectrum of \(D \), let \(R_D(\lambda) := (\lambda - D)^{-1} \) denote the resolvent. By functional calculus we have
\[P = \frac{1}{2\pi i} \int_{\partial B} R_D(\lambda) d\lambda. \]

Let \(d_x f := df_t(x) \) be the differential of \(f \) along \(M \) (so that \(df = d_x f + \frac{\partial}{\partial t} dt \)). Then we have
\[[R_D(\lambda), \mathcal{M}_f] = R_D(\lambda) [D, \mathcal{M}_f] R_D(\lambda) = R_D(\lambda) c(d_x f) R_D(\lambda). \]

From Rellich’s Lemma and the fact that \(d_x f \) vanishes at infinity we conclude that \(c(d_x f) R_D(\lambda) \) is compact. Hence \([R_D(\lambda), \mathcal{M}_f]\) is also compact. It follows that
\[[P, \mathcal{M}_f] = \frac{1}{2\pi i} \int_{\partial B} [R_D(\lambda), \mathcal{M}_f] d\lambda \]
is compact. \(\square \)

Corollary 5.6. The operators \(P \circ \mathcal{M}_f \circ Q \) and \(Q \circ \mathcal{M}_f \circ P \) are compact.

Proof. The operator
\[P \circ \mathcal{M}_f \circ Q - Q \circ \mathcal{M}_f \circ P = P \circ \mathcal{M}_f - \mathcal{M}_f \circ P \]
is compact by Lemma 5.5. Since the range of \(P \) is orthogonal to the range of \(Q \), it follows that the operators \(P \circ \mathcal{M}_f \circ Q \) and \(Q \circ \mathcal{M}_f \circ P \) are compact. \(\square \)

Lemma 5.7. Under the assumptions of Theorem 2.10 we have
\[\text{ind} \mathcal{B}_{cf} = \text{ind} \left(\frac{\partial}{\partial t} - T_f^+ \right)_{L^2(S^1, \mathcal{H}^+)} + \text{ind} \left(\frac{\partial}{\partial t} + T_f^- \right)_{L^2(S^1, \mathcal{H}^-)}. \] (5.5)

Proof. Set
\[A := c(dt) \frac{\partial}{\partial t} + i c.\mathcal{M}_f. \]

Then \(\mathcal{B}_{cf} = 1 \otimes D + A \). Consider a one parameter family of operators
\[\mathcal{B}_{cf,u} := 1 \otimes D + u A, \quad 0 \leq u \leq 1. \]

It follows from \(2.8 \) and the vanishing of \(d_x f \) at infinity that for all \(u > 0 \) the operator \(\mathcal{B}_{cf,u} \) satisfies the Callias-condition \(2.5 \) and, hence, is Fredholm.

Since \(D \) and \(\frac{\partial}{\partial t} \) commute with \(P \) and \(Q \)
\[P \circ \mathcal{B}_{cf,u} \circ Q = u c P \circ \mathcal{M}_f \circ Q, \quad Q \circ \mathcal{B}_{cf,u} \circ P = u c Q \circ \mathcal{M}_f \circ P. \]

Thus these operators are compact by Corollary 5.6. It follows that
\[\text{ind} \mathcal{B}_{cf,u} = \text{ind} P \circ \mathcal{B}_{cf,u} \circ P|_{\text{im} P} + \text{ind} Q \circ \mathcal{B}_{cf,u} \circ Q|_{\text{im} Q}. \] (5.6)
The operator $Q \circ B_{c,f} \circ Q|_{\text{Im}Q} = Q \circ D \circ Q|_{\text{Im}Q}$ is invertible. Hence, it is Fredholm and its index is equal to 0. We conclude that $Q \circ B_{c,f,u} \circ Q|_{\text{Im}Q}$ $(0 \leq u \leq 1)$ is a continuous family of Fredholm operators with

$$\text{ind} Q \circ B_{c,f,u} \circ Q|_{\text{Im}Q} = 0.$$

From (5.6) we now obtain

$$\text{ind} B_{c,f} = \text{ind} B_{c,f,1} = \text{ind} P \circ B_{c,f,1} \circ P|_{\text{Im}P}$$

$$= \text{ind} P^+ \circ \left(\frac{\partial}{\partial t} - icM_f \right) \circ P^+|_{\text{Im}P^+} + \text{ind} P^- \circ \left(- \frac{\partial}{\partial t} - icM_f \right) \circ P^-|_{\text{Im}P^-}$$

$$= \text{ind} \left(\frac{\partial}{\partial t} - T_{f_1}^+ \right)|_{L^2(S^1,\mathcal{H}^+)} + \text{ind} \left(\frac{\partial}{\partial t} + T_{f_1}^- \right)|_{L^2(S^1,\mathcal{H}^-)}.$$

5.8. **Proof of Theorem 2.10.** Theorem 2.10 follows now from (5.1), (5.2), and (5.5). □

REFERENCES

[1] N. Anghel, *On the index of Callias-type operators*, Geom. Funct. Anal. 3 (1993), no. 5, 431–438.
[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, *Spectral asymmetry and Riemannian geometry. III*, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71–99.
[3] P. Baum and R. G. Douglas, *K homology and index theory*, Operator algebras and applications, Part I (Kingston, Ont., 1980), 1982, pp. 117–173. MR679098
[4] N. Berline, E. Getzler, and M. Vergne, *Heat kernels and Dirac operators*, Springer-Verlag, 1992.
[5] B. Booss and K. Wojciechowski, *Desuspension of splitting elliptic symbols. I*, Ann. Global Anal. Geom. 3 (1985), no. 3, 337–383. MR813137
[6] B. Boos-Bavnbek and K. P. Wojciechowski, *Elliptic boundary problems for Dirac operators*, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1993.
[7] L. Boutet de Monvel, *On the index of Toeplitz operators of several complex variables*, Invent. Math. 50 (1978/79), no. 3, 249–272. MR520928
[8] M. Braverman and S. Cecchini, *Callias-type operators in von Neumann algebras*, The Journal of Geometric Analysis 28 (2018), no. 1, 546–586.
[9] M. Braverman and G. Maschler, *Equivariant APS index for dirac operators of non-product type near the boundary*, arXiv preprint [arXiv:1702.08105], to appear in Indiana University Mathematics Journal (201702).
[10] U. Bunke, *A K-theoretic relative index theorem and Callias-type Dirac operators*, Math. Ann. 303 (1995), no. 2, 241–279. MR1348799 (96e:58148)
[11] U. Bunke, *On the index of equivariant Toeplitz operators*, Lie theory and its applications in physics, III (Clausthal, 1999), 2000, pp. 176–184. MR1888382
[12] L. A. Coburn, *Singular integral operators and Toeplitz operators on odd spheres*, Indiana Univ. Math. J. 23 (1973/74), 433–439. MR0322595
[13] X. Dai and W. Zhang, *Higher spectral flow*, J. Funct. Anal. 157 (1998), no. 2, 432–469. MR1638328
[14] H. Donnelly and C. Fefferman, *L²-cohomology and index theorem for the Bergman metric*, Ann. of Math. (2) 118 (1983), no. 3, 593–618.
[15] P. Elbau and G. M. Graf, *Equivalence of bulk and edge Hall conductance revisited*, Comm. Math. Phys. 229 (2002), no. 3, 415–432. MR1924362
[16] G. M. Graf and M. Porta, *Bulk-edge correspondence for two-dimensional topological insulators*, Comm. Math. Phys. 324 (2013), no. 3, 851–895. MR3132359
[17] E. Guentner and N. Higson, *A note on Toeplitz operators*, Internat. J. Math. 7 (1996), no. 4, 501–513. MR1408836
[18] Yasuhiro Hatsugai, *Chern number and edge states in the integer quantum Hall effect*, Phys. Rev. Lett. 71 (1993), no. 22, 3697–3700. MR1246070
[19] S. Hayashi, *Bulk-edge correspondence and the cobordism invariance of the index* (201611), available at 1511.08073.
THE SPECTRAL FLOW OF A FAMILY OF TOEPLITZ OPERATORS

[20] J. Kellendonk, T. Richter, and H. Schulz-Baldes, Edge current channels and Chern numbers in the integer quantum Hall effect, Rev. Math. Phys. 14 (2002), no. 1, 87–119. MR1877916

[21] H. B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton University Press, Princeton, New Jersey, 1989.

[22] E. Prodan and H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, Mathematical Physics Studies, Springer, [Cham], 2016. From K-theory to physics.

[23] J. Robbin and D. Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995), no. 1, 1–33.

[24] E. M. Stein, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Mathematical Notes, No. 11. MR0473215

[25] Y. Yu, Y.-S. Wu, and X. Xie, Bulk-edge correspondence, spectral flow and Atiyah-Patodi-Singer theorem for the Z_2-invariant in topological insulators, Nuclear Phys. B 916 (2017), 550–566. MR3611419

Department of Mathematics, Northeastern University, Boston, MA 02115, USA
E-mail address: maximbraverman@neu.edu
URL: https://web.northeastern.edu/braverman/

Appendix:
A perspective from (unbounded) KK-theory
by Koen van den Dungen
Mathematisches Institut der Universität Bonn, Endenicher Allee 60 D-53115 Bonn
E-mail address: kdungen@uni-bonn.de

We consider the assumptions and notation of Section 2. The aim of this short appendix is to review Theorem 2.10 from the perspective of (unbounded) KK-theory. For simplicity, we will assume that $f = \{f_t\}_{t \in S^1}$, viewed as an $M_k(\mathbb{C})$-valued function on $S^1 \times M$, is chosen such that $(1 + f^2)^{-1}$ vanishes at infinity. This assumption ensures that the operator M_f (multiplication by f), acting on the Hilbert $C_0(S^1 \times M)$-module $\Gamma_0(S^1 \times M, E \otimes \mathbb{C}^k)$, has compact resolvents, so that $(C, \Gamma_0(S^1 \times M, E^+ \oplus E^-), M_f)$ is an unbounded Kasparov C^*-module. It also means we do not need the (sufficiently large) constant $c > 0$, and we simply set $c = 1$.

Theorem 2.10 states that we have the equality

$$ sf(T^+_{f_t}) - sf(T^-_{f_t}) = \text{ind} \mathcal{B}_f \in \mathbb{Z}. \quad (A.1) $$

In the context of KK-theory, the right-hand-side of this equality should be viewed as an element in $KK^0(C, \mathbb{C})$. The left-hand-side naturally defines an element in $KK^1(C, C(S^1))$ (cf. §2.3), given as the (odd!) class of the regular self-adjoint Fredholm operator

$$ T_f := \begin{pmatrix} T^+_{f_t} & 0 \\ 0 & -T^-_{f_t} \end{pmatrix} $$

on the Hilbert $C(S^1)$-module $C(S^1, (\mathcal{H}^+ \oplus \mathcal{H}^-) \otimes \mathbb{C}^k)$, where $T^\pm_{f_t} = \{T^\pm_{f_t}(t)\}_{t \in S^1}$ is given by $T^\pm_{f_t}(t) := T^\pm_{f_t}$, and $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$ denotes the kernel of D. Of course, these KK-groups are both isomorphic to \mathbb{Z}, and we have a natural isomorphism $\cdot \otimes_{C(S^1)} [-i\partial_t] : KK^1(C, C(S^1)) \to KK^0(C, \mathbb{C})$ (which sends the spectral flow of a family $A(t)$ to the index of $\partial_t - A$, as described
in \cite{2}. Thus we rewrite Eq. (A.1) as (cf. Eq. (5.7))

\[\mathcal{T}_t \otimes_{C(S^1)} [-i\partial_t] = \text{ind} \mathcal{B}_t \in KK^0(\mathbb{C}, \mathbb{C}). \]

Now let us consider the right-hand-side of this equality. It is well understood that the index class of the Callias-type operator \(\mathcal{B}_t = \mathcal{D} + i\mathcal{M}_t \) is given by the Kasparov product \(\mathcal{B}_t = [\mathcal{M}_t] \otimes_{C_0(S^1 \times M)} [\mathcal{D}] \), cf. \cite{3}. The class of \(\mathcal{D} \) is simply given as the exterior Kasparov product \(\mathcal{D} = [D] \otimes [-i\partial_t] \) of the Dirac operator \(D \) on \(M \) with \(-i\partial_t\) on \(S^1 \). Using the properties of the Kasparov product, we then obtain

\[\text{ind} \mathcal{B}_t = [\mathcal{B}_t] = [\mathcal{M}_t] \otimes_{C_0(S^1 \times M)} ([D] \otimes [-i\partial_t]) = ([\mathcal{M}_t] \otimes_{C_0(M)} [D]) \otimes_{C(S^1)} [-i\partial_t]. \]

Since the Kasparov product with \([-i\partial_t]\) gives an isomorphism, Eq. (A.1) can be rewritten as

\[[\mathcal{T}_t] = [\mathcal{M}_t] \otimes_{C_0(M)} [D] \in KK^1(\mathbb{C}, C(S^1)). \]

The Kasparov product on the right-hand-side can be computed \cite{2} Example 2.38, and is represented by the regular self-adjoint operator (with compact resolvents)

\[a_t := \begin{pmatrix} \mathcal{M}_t^+ & D^- \\ D^+ & -\mathcal{M}_t^- \end{pmatrix} \]

on the Hilbert \(C(S^1) \)-module \(C(S^1, L^2(M, E^+ \oplus E^-)) \). Theorem \ref{2.10} can then be reproven by showing the equality \([\mathcal{T}_t] = [a_t] \) in \(KK^1(\mathbb{C}, C(S^1)) \).

Proposition A.1. We have the equality

\[[\mathcal{T}_t] = [a_t] \in KK^1(\mathbb{C}, C(S^1)). \]

Proof. The proof is closely analogous to the proof of Lemma \ref{5.4}. Let \(P = P^+ \oplus P^- \) denote the projection onto the kernel of \(D \), and write \(Q = 1 - P \). Since \(PDP = 0 \), we have the equality \(\mathcal{T}_t = P a_t P \) (where we used the definition of the Toeplitz operators \(T_{f_t} := PM_{f_t}P \)). Hence we need to show that \(P a_t P \) and \(a_t \) define the same class in \(KK^1(\mathbb{C}, C(S^1)) \). By Corollary \ref{5.6} we know that

\[P a_t Q = \begin{pmatrix} P^+ & \mathcal{M}_t^+ Q^+ \\ 0 & -P^- \mathcal{M}_t^- Q^- \end{pmatrix} \]

is compact, and similarly for \(Q a_t \). This implies that \(P a_t P \) and \(Q a_t Q \) are both Fredholm, and that \([a_t] = [P a_t P] + [Q a_t Q]\). Rescaling the function \(f \) by \(c > 0 \), we see that the operator \(Q a_t Q \) is Fredholm for any \(c > 0 \). Furthermore, since \(D \) is invertible on \(\text{Ran} Q \), we find for \(c = 0 \) that \(Q a_0 Q = QDQ \) is invertible, and therefore its class in \(KK^1(\mathbb{C}, C(S^1)) \) is trivial. Since we have a continuous path of Fredholm operators for \(0 \leq c \leq 1 \), we conclude that the class of \(Q a_t Q \) is also trivial. Thus we obtain

\[[a_t] = [P a_t P] + [Q a_t Q] = [P a_t P]. \]

The statement and proof of Proposition A.1 do not rely on the notion of spectral flow, but merely consider the Fredholm operator \(\mathcal{T}_t \) and its odd \(KK \)-class. Hence Proposition A.1 can straightforwardly be generalised to the case where we replace \(S^1 \) by an arbitrary compact space. We thus obtain the following:

Theorem A.2. Let \(E = E^+ \oplus E^- \) be a graded Dirac bundle over a complete Riemannian manifold \(M \), and let \(D \) be the associated Dirac operator. Assume that zero is an isolated point of the spectrum of \(D \), and let \(P \) denote the projection onto the kernel of \(D \). Let \(S \) be a compact
topological space, and let $f = \{f_t\}_{t \in S} \in C(S \times M, M_k(\mathbb{C}))$ be given by a continuous family of smooth $M_k(\mathbb{C})$-valued functions f_t on M such that $(1 + f^2)^{-1}$ vanishes at infinity. We consider the Toeplitz operator $T_f = (P \otimes 1) \, M_f (P \otimes 1)$ on the Hilbert $C(S)$-module $C(S, H \otimes \mathbb{C}^k)$. Then we have the equality

$$[T_f] = [\mathcal{M}_f] \otimes_{C_0(M)} [D] \in KK^1(C, C(S)).$$

Acknowledgements. I would like to thank Maxim Braverman, Matthias Lesch, and Bram Mesland for an interesting discussion.

References

[1] S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les C^*-modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 875–878.
[2] Simon Brain, Bram Mesland, and Walter D. van Suijlekom, Gauge theory for spectral triples and the unbounded Kasparov product, J. Noncommut. Geom. 10 (2016), 135–206.
[3] Ulrich Bunke, A K-theoretic relative index theorem and Callias-type Dirac operators, Math. Ann. 303 (1995), no. 1, 241–279.
[4] G. G. Kasparov, The operator K-functor and extensions of C^*-algebras, Izv. Akad. Nauk SSSR 44 (1980), 571–636.
[5] K. van den Dungen, The index of generalised Dirac-Schrödinger operators, 2017. arXiv:1710.09206.