Extrakorporale artifizielle Leberunterstützungssysteme bei akutem Leberversagen oder einer akuten Dekompensation eines chronischen Leberleidens

Extracorporeal hemodialysis with acute or decompensated chronic hepatic failure

Abstract

Background

Conventional diagnostic procedures and therapy of acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) focus on to identify triggering events of the acute deterioration of the liver function and to avoid them. Further objectives are to prevent the development respectively the progression of secondary organ dysfunctions or organ failure. Most of the times the endocrinological function of the liver can to a wide extent be compensated, but the removal of toxins can only marginally be substituted by conventional conservative therapy. To improve this component of the liver function is the main objective of extracorporeal liver support systems. The following principles of liver support systems can be differentiated: Artificial systems, bioartifical systems and extracorporal liver perfusion systems. This HTA report focuses on artificial systems (e.g. BioLogic-DT/-DTPF, MARS, Prometheus), because only these approaches currently are relevant in the German health care system. In 2004 a category "Extracorporal liver assist device" was introduced in the list of "additional payments" in the German DRG-system, which makes reimbursement for hospitals using the technology in inpatient care possible, based on an hospital's individual contract with statutory sickness funds.

Objectives

To report the present evidence and future research need on medical efficacy and economic effectiveness of extracorporal liver support devices for treatment of patients with ALF or ACLF based on published literature data. Are artificial liver support systems efficient and effective in the treatment of ALF or ACLF?

Methods

An extensive, systematic literature search in medical, economic, and HTA literature data bases was performed. Relevant data were extracted and synthesised.

Results

Relevant controlled trials were detected for BioLogic-DT and MARS. No randomised controlled trial on Prometheus was found. None of the included studies on BioLogic-DT showed advantages of the technology compared with standard conventional therapy concerning survival, clinical scores or clinical surrogate parameter like laboratory tests of liver function. Some studies reported complications and side effects of BioLogic-DT. All studies were methodologically insufficient. Concerning
the use of MARS overall five studies - three of them randomised - were identified. Two studies reported a significant higher 30d-survival after MARS compared to controls, one study showed a non-significant trend to a better survival probability after one year. The studies showed statistically significant advantages in severity of hepatic encephalopathy, routine lab tests and hemodynamic parameter of the MARS group. None of the studies reported relevant complications or side effects. Although the methodological quality of the studies is seen as slightly better than in the studies on BioLogic-DT, there are methodological limitations: The largest sample size of the randomised trials was twelve patients per group and the study population was highly selected. Because of the methodological limitations the results can hardly be generalised. Only two economic publications presenting analyses of MARS could be detected. One publication shows major methodological mistakes which make a further interpretation of the results impossible. The other publication presents an incremental cost-effectiveness of MARS of 29,719 EUR per life year gained after one year from a payer's perspective (German statutory sickness fund, neglecting the intervention costs because of lacking reimbursement at this time), respectively 79,075 EUR per life year gained from a societal perspective. Including health related quality of life aspects the incremental costs per QALY (Quality adjusted life years) gained were calculated to be 44,784 EUR from a payer's perspective respectively 119,162 EUR from a societal perspective. The authors state that prolonging the time horizon of the calculations would improve cost-effectiveness ratios. The limitations of the study design also limit the scientific evidence of the results.

Conclusion

The results of the detected publications do not give any evidence for a positive medical efficacy of BioLogic-DT. Concerning MARS there is some evidence for positive effects on 30d-survival, clinical parameter, and some lab tests, although the evidence is limited by the small number of studies and their methodological weakness. The currently strongly limited evidence shows a trend to an acceptable cost-effectiveness of MARS, although the results are based on only one non-randomised trial. To give valid recommendations concerning the medical efficacy as well as the cost-effectiveness of artificial liver support systems further studies are necessary.

Keywords: extracorporeal liver perfusion, hemodialysis, liver insufficiency, liver injury, hepatic injury

Zusammenfassung

Hintergrund

Die konventionelle Diagnostik und Therapie des akuten Leberversagens (Acute Liver Failure = ALF) sowie der akuten Dekompensation einer chronischen Lebererkrankung (Acute-On-Chronic Liver Failure = ACLF) ist fokussiert auf die Identifikation und Behebung der auslösenden Er- eignisse des Leberversagens. Ferner gehören die Vermeidung der Ent- stehung bzw. die Therapie bereits vorhandener sekundärer Organdys- funktionen bzw. -versagen zu ihren primären Aufgaben. Die Funktionen der versagenden Leber sind dabei für den Bereich Synthese und Stoff- wechselregulation zeitweilig meist gut zu substituieren. Die Leberentgif- tungsfunktion ist allerdings mit konservativen Mitteln kaum zu ersetzen. Hier liegt der primäre Ansatzpunkt der extrakorporalen Leberunterstüt- zungsverfahren.
Unterscheiden lassen sich artifizielle Verfahren, bioartifizielle Verfahren sowie Ansätze zur extrakorporalen Leberperfusion (ECLP). Der vorliegende HTA untersucht schwerpunktmäßig die artifiziiellen Verfahren (insbesondere: BioLogic-DT/-DTPF, MARS, Prometheus), da allein diese in Deutschland gegenwärtig und auf absehbare Zeit Relevanz haben. Seit 2004 wurde erstmals in diesem Land über die Definition der Zusatzleistung "Extrakorporale Leberersatztherapie (Leberdialyse)" eine krankenhausindividuelle Vergütung im System der gesetzlichen Krankenversicherung (GKV) möglich.

Ziele

Der HTA-Bericht legt die Datenlage und den Forschungsbedarf zur medizinischen Wirksamkeit und zur Wirtschaftlichkeit der extrakorporalen Leberunterstützungsverfahren bei ALF oder einer ACLF dar. Sind die extrakorporalen Leberunterstützungsverfahren von leberpflichtigen Stoffwechselprodukten wirksame Verfahren zur Therapie eines ALF oder einer ACLF?

Methoden

Zur Erschließung des Datenmaterials wurde eine systematische, breit angelegte Literaturrecherche in den gängigen medizinischen, ökonomischen und HTA-Datenbanken sowie in weiteren Medien durchgeführt.

Ergebnisse

Lediglich zu den Verfahren BioLogic-DT und Molecular Adsorbent Recirculating System (MARS) wurden aussagekräftige kontrollierte Studien identifiziert.

In keiner der vier identifizierten randomisierten, kontrollierten Studien (RCT) zum Einsatz von BioLogic-DT zeigten sich Überlebensvorteile gegenüber Patienten, die eine Standardtherapie erhielten. Auch in Bezug auf klinische Scores und untersuchte Laborparameter ergaben sich keine Vorteile. Dagegen werden durchaus einzelne Komplikationen und Nebenwirkungen berichtet. Die Untersuchungen wiesen alle methodische Schwächen auf.

Zum Einsatz von MARS wurden insgesamt fünf kontrollierte Studien identifiziert, von denen drei randomisiert waren. Zwei Arbeiten berichteten über signifikante Vorteile der mit MARS behandelten Patienten bzgl. der 30d-Überlebensrate; eine weitere Studie beobachtete einen, allerdings nicht signifikanten, positiven Trend der Interventionsgruppe hinsichtlich der Überlebenswahrscheinlichkeit nach einem Jahr. In einzelnen Studien wurden statistisch signifikante Vorteile klinischer Parameter für die MARS-Gruppe gezeigt: Verbesserung in Bezug auf den Verlauf der hepatischen Encephalopathie (HE), signifikante Verbesserungen spezifischer Routinelaborparameter, Verbesserung hämodynamischer Parameter. Relevanten Nebenwirkungen oder Komplikationen der MARS-Behandlung wurden nirgendwo mitgeteilt. Insgesamt erscheint die methodische Qualität der identifizierten Studien zum Einsatz von MARS etwas besser als die der zu BioLogic-DT. Allerdings sind auch hier die Fallzahlen mit maximal zwölf Patienten pro Arm in den randomisierten Studien klein und die Auswahl der Studienpopulationen so selektiv, dass eine Verallgemeinerung der Resultate nicht möglich erscheint.

Lediglich zu MARS konnten zwei Studien zu gesundheitsökonomischen Aspekten identifiziert werden, von denen eine aufgrund erheblicher methodischer Mängel keine validen Schlussfolgerungen zulässt. Die andere Arbeit ermittelt für einen Ein-Jahres-Beobachtungszeitraum eine...
inkrementelle Kosteneffektivität von 29.719 EUR je gewonnenem Lebensjahr aus GKV-Perspektive (wobei die Kosten der MARS-Behandlung, die zu diesem Zeitpunkt von den Krankenkassen nicht erstattet wurden, nicht einberechnet waren) bzw. 79.075 EUR aus Sicht des Gesundheitswesens (unter Einschluss der Kosten von MARS, die mit rd. 15.500 Euro je Patient ermittelt wurden). Unter Berücksichtigung der gesundheitsbezogenen Lebensqualität ergab sich eine inkrementelle Kosteneffektivität von 44.784 EUR pro gewonnenem QALY aus GKV-Perspektive (ohne Kosten von MARS) bzw. 119.162 EUR/QALY aus Perspektive des Gesundheitswesens (einschl. Kosten von MARS). Die Autoren weisen darauf hin, dass bei einer Verlängerung des Beobachtungszeitraums vermutlich von einer Verbesserung der Kosteneffektivität ausgegangen werden kann. Limitationen des Studiendesigns schränken die Verallgemeinerung der Ergebnisse deutlich ein.

Schlussfolgerungen

Nach der gegenwärtig vorliegenden Studienlage gibt es keine Belege für die Wirksamkeit von BioLogic-DT. In Bezug auf MARS gibt es eine gewisse, jedoch durch die geringe Zahl aussagekräftiger Untersuchungen und die studientechnisch-methodischen Limitationen, deutlich eingeschränkte Evidenz eines positiven Effekts der Behandlung auf die kurzfristige Überlebenswahrscheinlichkeit (30 Tage) sowie die klinische Symptomatik und einige Laborverlaufsparameter bei Patienten mit ACLF. Die vorliegende eingeschränkte Evidenz deutet auch auf eine akzeptable Kosteneffektivität von MARS hin. Diese ökonomischen Annahmen beruhen jedoch auf den Daten einer einzigen nicht randomisierten Studie. Erforderlich sind sowohl für die Erhärtung der medizinischen Wirksamkeit als auch der Wirtschaftlichkeit weitere Untersuchungen. Es besteht nach wie vor ein großer Forschungsbedarf, sowohl bezüglich der medizinischen Wirksamkeit als auch bezüglich ökonomischer Konsequenzen des Einsatzes der Technologie.

Schlüsselwörter: Leberdialyse, Haemodialyse, Leberversagen, hepatitisesches Koma, Leberinsuffizienz
Executive Summary

Background

Acute liver failure (ALF) and acute-on-chronic liver failure are severe deteriorations of the liver function with relatively bad prognosis. About 20,000 persons are dying from these diseases per year in Germany. Characteristic complications are development of multiorgan failure, arterial hypotension, disseminated intravascular coagulation (DIC) and disorders of microcirculation leading to damage of extrahepatic organs.

Focus of the therapy of ALF and ACLF is the stabilisation of the liver function until an improvement of the symptoms by the self-regeneration of the liver has been achieved or until a suitable organ for liver transplantation is available (bridging to transplantation).

Conventional diagnostic procedures and therapy of ALF and ACLF focus on to identify triggering events and reasons of liver failure like virus infection, alcohol abuse or acute intoxication, and to avoid them. Further objectives are to prevent the development respectively the progression of secondary organ dysfunctions or organ failure (like heart or renal failure or cerebral complications).

Under certain circumstances a liver transplantation is an option for therapy of liver failure, but the main limiting factor is the availability of organs. In combination with the scarcity of organs, possibly leading to waiting times up to years, the initial health state and the progression of the disease are prognostic factors concerning a successful transplantation.

Most of the times the endocrinological function of the liver can at least partly be compensated, but the removal of toxins can only marginally be substituted by conventional conservative therapy. To improve this component of the liver function is the main objective of extracorporeal liver support systems.

The following principles of liver support systems can be differentiated:

1. Artificial, cell-free systems: classic dialysis, Biologic-DT/-DTPF, SPAD, MARS, FPSA and Prometheus
2. Bioartificial systems based on liver cells: ELAD, HepatAssist, BAL, BLSS and MELD
3. Extracorporeal liver perfusion systems: ECPL

This HTA report focuses on the first category, the artificial systems, because only these approaches currently are relevant in the German health care system. Until 2003 there was no regular reimbursement of artificial liver support technologies and the use of the systems was paid by industry financed studies or by the hospitals as part of their individual budgets. In 2004 a category "Extracorporeal liver assist device" was introduced in the list of "additional payments" in the German DRG-system, which makes reimbursement for hospitals using the technology in inpatient care possible, based on an hospital's individual contract with by German statutory sickness.

Objectives

To report the present published evidence and future research need on medical efficacy and economic effectiveness of extracorporeal liver support devices for treatment of patients with ALF or ACLF.

The evidence on medical efficacy is differentiated into the following questions:

1. Number and quality of systematic reviews and original primary studies?
2. Is it possible to demonstrate the medical efficacy of extracorporeal liver assist systems by results of randomized clinical trials?
3. Are there subgroups differences in efficacy of the technology?
4. What could be the objectives to use the technology?
5. Are there relevant side effects or complications?
6. What could be the indication for the use of the technology?
7. Is there a need for further research?

Methods

An extensive, systematic literature search in the following medical, economic, and HTA literature data bases was performed: MEDLINE, EMBASE, BIOSIS Previews, SCISEARCH, CATLINE, SOMED, AMED, Elsevier Biobase, IPA, Global Health, CAB, Biotechnobase and GEROLIT. Randomised and non-randomised controlled trials, systematic reviews including meta-analysis were identified and included in the further analysis. Further documents could be detected by systematically searching HTA databases like the Cochrane Library, as well as by systematically comparing the references of the identified publications, non-systematic review and relevant scientific books.

The literature search was limited to publications edited between 1990 and the beginning of 2004.

Results

Overall 15 publications on the medical efficacy of extracorporeal liver assist devices were detected and included in the further analysis: Two short and one long HTA reports plus one update, two publications presenting the results of one systematic review and eleven publications presenting the results of controlled clinical trials on the use of MARS or Biologic-DT. No randomised controlled trial on the use of Prometheus could be identified and the technology was not included in one of the systematic reviews.

Six publications presented the results of four randomised controlled trials investigating the use of Biologic-DT/DTPF. All four studies included patients with hepatic encephalopathy, but the study populations differed concerning the underlying aetiology of liver failure. In all four studies patients were randomised to an intervention group and a control group with standard therapy. There was no information on concealment, type of randomisa-
dition or a discussion of the possibility of a sham control or blinding. No study chose survival rate or survival probability as outcome parameter, although in three studies the survival rates could be extracted. All four studies included clinical scores as outcome parameter, but no study could demonstrate a significant change of the grade of hepatic encephalopathy or the neurological status. Concerning routine lab tests like blood counts or liver specific tests no significant advantage of the intervention group could be demonstrated. In contrast to this lack of significant results on efficacy some complications and side effects were described, although in these cases the question of causality has to remain unanswered. All studies were monocentric and were performed at highly specialised university hospitals. The methodological limitations of all of the studies (e.g. small sample size, high drop-out rates, heterogeneous study population, short or no follow-up) strongly limit the scientific evidence and make it difficult to interpret the results at all.

Investigating the use of MARS five publications were identified presenting the results of five studies. Additionally the systematic reviews of the Swedish and French HTA agencies and two publications presenting the results of a Cochrane report were included. One of the studies included patients with ACL and a hepatic encephalopathy grade III - IV, the other four studies chose a population of ACLF patients differing aetiologies. Three of the five studies were randomised; the other two had a non-randomised controlled design. All studies compared standard treatment with respectively without additional MARS treatment. Three studies present results on survival: In two randomised trials a significant improvement in 30d survival after MARS treatment could be demonstrated; one study presented a clear but non-significant trend to a higher survival probability one year after treatment with MARS. One study showed a significantly better grade of hepatic encephalopathy in the MARS group compared to a worsening in the control group. All other publications do not present results on clinical scores. In two studies significant improvements of specific lab tests (creatinin and bilirubin) and in three studies of hemodynamic parameter (e.g. mean arterial pressure) are presented. Relevant side effects or complication were not reported. Two studies were bicentric, the other three studies were monocenter studies. All studies were conducted at highly specialized university hospitals. It has to be doubted that these results could be transferred to a broader routine use. Although the methodological quality of the studies was slightly better compared to the studies on BioLogic-DT/-DTPF the scientific evidence of the results is limited by small sample sizes (Max. twelve per group), highly selected study populations and short follow-up periods of maximum one year.

Concerning economic aspects only two publications on MARS could be detected at all. No publications on Prometheus or BioLogic-DT/-DTPF were identified. One publication presents a calculation of the possible effect of MARS on hospitalisation costs and calculates savings of 4,000 EUR per patient treated with MARS. The study shows major methodological mistakes that make it impossible to further interpret the results. The other study presents one-year results of a non-randomised clinical cohort-trial on survival, costs and cost-effectiveness of MARS treatment in patients with ACLF due to alcoholic liver disease. The study shows an incremental cost-effectiveness of 29,719 EUR per life year gained after one year from a payer's perspective (German statutory sickness fund, neglecting the intervention costs because of lacking reimbursement at this time), respectively 79,075 EUR per life year gained from a societal perspective. Including health related quality of life aspects the incremental costs per quality adjusted life year (QALY) gained were calculated to be 44,784 EUR from a payer's perspective respectively 119,162 EUR from a societal perspective. The authors state that prolonging the time horizon of the calculations would improve cost-effectiveness ratios. The limitations of the study design also create doubts concerning the scientific evidence of the results.

Conclusion

The results of the detected publications do not give any evidence for a positive medical efficacy of BioLogic-DT. Concerning MARS there is some evidence for positive effects on 30d-survival, clinical parameter, and some lab tests, although the evidence is limited by the small number of studies and their methodological weakness. Clearly there is further need for randomised controlled trials with sufficient sample sizes and longer follow-up periods. Also the efficacy of artificial liver support systems for patients with ALF and for bridging to transplantation has to be demonstrated.

The currently strongly limited evidence shows a trend to an acceptable cost-effectiveness of MARS, although the results are based on only one non-randomised trial. To give valid recommendations concerning the medical efficacy as well as the cost-effectiveness of artificial liver support systems further studies are necessary to demonstrate the value of the technologies for clearly defined indications over a longer time horizon concerning health-related quality of life, defined subgroups, complications and economic consequences.
Wissenschaftliche Kurzfassung

Hintergrund

Das ALF und die ACLF sind schwere Leberfunktionsstörungen mit oft tödlichem Ausgang. In Deutschland sterben jährlich rd. 20.000 Menschen an diesen Krankheitsbildern. Charakteristische Gefahren und Komplikationen des Leberversagens sind die schnelle Entwicklung eines Multiorganversagens mit hyperdynamem Kreislaufversagen, arterieller Hypotension und Schock, Verbrauchscoagulopathie und Störungen der Mikrozirkulation mit sekundären Schäden an extrahepatischen Organen.

Sowohl bei ALF als auch ACLF ist das primäre Ziel der Therapie, die Funktion der Leber so lange zu stabilisieren, bis die natürliche Regeneration der Leber zur Zustandsverbesserung führt oder ein Spenderorgan für eine Lebertransplantation zur Verfügung steht (Bridging To Transplantation).

Die konventionelle Diagnostik und Therapie des ALF und der ACLF ist fokussiert auf die Identifikation und Behebung der auslösenden Ereignisse des Leberversagens (z.B. Viruserkrankungen, Vergiftungen, Infektionen, Blutungen u.a.m.). Ferner gehört die Vermeidung der Entstehung bzw. die Therapie bereits vorhandener sekundärer Organfunktionen bzw. -versagen (z.B. Herz-Kreislauf-system, Nieren, Hirn, Stoffwechsel) zu ihren primären Aufgaben. Die Funktionen der versagenden Leber sind dabei für den Bereich Synthese und Stoffwechselregulation zeitweilig meist gut zu substituieren. Die Leberentgiftungsfunktion ist allerdings mit konservativen Mitteln kaum zu ersetzen. Hier liegt der primäre Ansatzpunkt der extrakorporalen Leberunterstützungsverfahren. Unter bestimmten Voraussetzungen steht als Therapieoption eine Lebertransplantation zur Verfügung. Limitierender Faktor ist u.a. die Anzahl der verfügbaren Spenderorgane. In Kombination mit der Organknappheit, die zu langen Wartezeiten von Monaten bis hin zu Jahren führt, sind auch der initiale Gesundheitszustand der zu transplantierenden Patienten und die Progression der Erkrankung zu sehen.

Verschiedene Funktionen der Leber (z.B. Stoffwechselregulation, Proteinsynthese) lassen sich in gewissem Maß kompensieren. Ansätze, die Entgiftungsfunktion der Leber zu ersetzen, sind limitiert. Hier liegt der primäre Ansatzpunkt der extrakorporalen Leberunterstützungsverfahren. Unterschieden lassen sich hierbei:

1. rein maschinelle, zellfreie, artifizielle Verfahren, wie klassische Dialyseverfahren, BioLogic-DT/-DTPF, SPAD, MARS, FPSA, Prometheus
2. Bioreaktoren auf der Basis von Leberzellen (bioartifizielle Verfahren), wie ELAD, HepatAssist, BAL, BLSS, MELS, sowie
3. Verfahren zur ECLP

Im Mittelpunkt des vorliegenden HTA-Berichts stehen die artifiziellen Verfahren, da allein diese in Deutschland gegenwärtig und auf absehbare Zeit eine gewisse Relevanz haben. Die artifiziellen Leberunterstützungsverfahr- ren kombinieren auf unterschiedliche Weise die verschiedenen Entgiftungstechniken Hämodialyse, Hämodfiltration, Plasmapherese und Adsorption. Bis 2003 gab es noch keine regelmäßige Erstattung und die Finanzierung des Einsatzes der Technologie musste aus den individuellen Krankenhausbudgets oder im Rahmen von Studien erfolgen. Seit 2004 ist in Deutschland über die neu implementierte Zusatzleistung zu Diagnosis Related Groups (DRG) "Extrakorporale Leberersatztherapie (Leberdialyse)", unter die die artifiziellen Leberunterstützungsverfahren fallen, eine krankenhausindividuelle Vergütung im System der GKV möglich.

Ziele

Ziele dieses HTA-Berichts sind die Untersuchung der medizinischen Effektivität und der Wirtschaftlichkeit der extrakorporalen Leberunterstützungsverfahren bei ALF oder ACLF. Im Einzelnen werden in der medizinischen Evaluation die folgenden Forschungsfragen hinsichtlich der Effektivität untersucht:

• Wie groß sind die Anzahl und die Qualität der systematischen Übersichtsarbeiten und Primärstudien zur Anwendung der extrakorporalen Leberdialyseverfahren bei ALF bzw. ACLF?
• Lässt sich anhand von kontrollierten Studien die medizinische Wirksamkeit (Efficacy) der extrakorporalen Leberunterstützungsverfahren belegen?
• Lassen sich Unterschiede der Wirksamkeit bei verschiedenen Personengruppen aufzeigen?
• Mit welcher Zielsetzung kann die Technologie eingesetzt werden?
• Sind relevante Nebenwirkungen in kontrollierten Studien nachgewiesen worden?
• Lassen sich aus der Beantwortung oben aufgeführter Forschungsfragen klare Indikationsstellungen für den Einsatz der extrakorporalen Leberunterstützungsverfahren ableiten?
• Kann weiterer Forschungsbedarf identifiziert werden?

In der ökonomischen Evaluation werden die folgenden Forschungsfragen hinsichtlich der Wirtschaftlichkeit untersucht:

1. Wie ist die Datenlage für eine ökonomische Beurteilung der extrakorporalen Leberunterstützungsverfahren?
2. Was kostet die Durchführung dieser Behandlung?
3. Wie hoch sind die Krankheitskosten bei klassischer konservativer Therapie sowie bei Einsatz der maschinellen extrakorporalen Leberunterstützungsverfahren?
4. Welche ökonomischen Konsequenzen hat der Einsatz der neuen Technologie?
5. Wie ist die Wirtschaftlichkeit der Technologie zu bewerten?
6. In welchen Bereichen besteht weiterer Forschungsbedarf?
Methoden
Zur Erschließung des Datenmaterials wurde eine systematische, breit angelegte Literaturrecherche in den gängigen medizinischen, ökonomischen und HTA-Datenbanken durchgeführt. Es wurden in den Datenbanken MEDLINE, EMBASE, BIOSIS Previews, SciSearch, CATLINE, SOMED, AMED, Elsevier BIOBASE, IPA, GLOBAL Health, CAB, Biotechnobase und GEROLIT Primärstudien, kontrollierte Studien, systematische und nicht systematische Übersichtsarbeiten sowie Metaanalysen identifiziert. Weitere Dokumente konnten durch die Recherche in den Datenbanken IHTA sowie der Cochrane Library ausgemacht werden. Referenzlisten der zunächst identifizierten Artikel, von Übersichtsartikeln und Fachbüchern wurden ausgewertet. Die Literaturrecherche wurde auf den Zeitraum von 1990 bis Anfang 2004 eingeschränkt.

Ergebnisse
Zur medizinischen Wirksamkeit von extrakorporalen Leberunterstützungsverfahren zur Behandlung von ALF und ACLF wurden insgesamt 15 Literaturstellen identifiziert. Berücksichtigt wurden zwei Kurz-HTA-Berichte, ein ausführlicher HTA-Bericht inkl. Update, zwei Publikationen zu einem Übersichtsarbeit und elf Veröffentlichungen zu kontrollierten Studien zum Einsatz von MARS und/oder BioLogic-DT/-DTPF bei Leverberversagen. Zum Leberunterstützungsverfahren Prometheus wurden keine Publikationen kontrollierter Studien gefunden und die Methode wird auch in keiner der identifizierten systematischen Überblicksarbten berücksichtigt.

Zum Einsatz von Biologic-DT wurden insgesamt sechs Veröffentlichungen zu vier kontrollierten Studien identifiziert. Jede der vier Arbeiten schloss Patienten mit einer HE unterschiedlicher klinischer Ausprägung ein, wobei sich jedoch die Studienpopulationen hinsichtlich der zugrunde liegenden Lebererkrankung unterschieden. Bei allen vier identifizierten Studien wurden die Patienten randomisiert in Interventions- und Kontrollgruppe einge teilt. Allerdings wurden nirgends nähere Angaben zum Verfahren der Randomisierung und einer möglichen Verblindung in Form einer Sham-Kontrolle gemacht. Die Kontrollgruppen erhielten jeweils eine Standardtherapie. In keiner der Arbeiten zu Biologic-DT wurde die Überlebensrate oder -wahrscheinlichkeit als Zielparameter gewählt. In drei Fällen konnten die Überlebensraten aus der Publikation eruiert werden, wobei sich kein Vorteil der Interventionsgruppe zeigte. Alle vier Untersuchungen schlossen in ihre Auswertung klinische Scores ein; es konnte jedoch in keine signifikante Verbesserung des Encephalopathiegrads oder des neurologischen Status beobachtet werden. Auch bei den untersuchten Laborparametern zeigte sich weder bei Parametern, die einen Hinweis auf das Ausmaß der HE geben, noch bei Routineparametern wie Blutfilm oder Leberwerten ein signifikanter Vorteil der Interventionsgruppe. Dagegen wird durchaus über einzelne Komplikationen und Nebenwirkungen berichtet, deren kausaler Zusammenhang mit der Intervention offen bleiben muss. Die identifizierten Studien waren alle monozentrische Arbeiten hoch spezialisierter Universitätskliniken, so dass fraglich ist, ob die Ergebnisse auf eine breitere Anwendung übertragbar sind. Zudem zeigten alle Studien methodische und studentechnische Schwächen, die die Evidenz der Ergebnisse stark einschränken.

Zum Einsatz von MARS wurden insgesamt fünf Publikationen zu fünf Studien identifiziert. Zudem wurden dabei auch die Übersichtsarbeiten der schwedischen und der französischen HTA-Agentur sowie zwei Publikationen zu einem Cochrane-Bericht herangezogen. Während eine Untersuchung Patienten mit ALF und einer ausgeprägten HE-Grad III bis IV untersuchte, schlossen die anderen vier Studien Patienten mit ACLF unterschiedlicher Ätiologie mit oder ohne HE ein. Bei drei der fünf identifizierten Veröffentlichungen handelt es sich um die Beschreibung randomisierter Studien, zwei Studien wählten einen kontrollierten, nicht randomisierten Vergleich von Interventions- und Kontrollgruppen. Die Kontrollgruppen erhielten jeweils die klinische Standardversorgung. Drei Studien berichteten Überlebensdaten: Zwei Studien berichteten signifikante Vorteile der mit MARS behandelten Patienten bezgl. der 30d-Überlebensrate; eine weitere Studie beobachtete einen, allerdings nicht signifikanten, positiven Trend der Interventionsgruppe bezgl. der Ein-Jahres-Überlebenswahrscheinlichkeit. In einer Studie wurde eine signifikante Verbesserung in der MARS-Gruppe in Bezug auf den Verlauf der HE gezeigt, bei einer Verschlechterung in der Kontrollgruppe. Alle anderen Arbeiten machten dazu, ebenso wie zu anderen klinischen Scores keine Angaben. Zwei Untersuchungen berichten über teilweise signifikante Verbesserungen spezifischer Routinelaborparameter wie Kreatinin und Bilirubin, die auf einen insgesamt positiven Effekt der Therapie hindeuten. Auch eine Verbesserung der hämodynamischen Parameter, wie des mittleren arteriellen Drucks, wurde in drei Studien gezeigt. Über relevante Nebenwirkungen oder Komplikationen der MARS-Behandlung wurde nirgends berichtet. Zwei der identifizierten Studien waren biventrisch, die anderen drei monozentrisch. Alle Behandlungen fanden in hochspezialisierten Universitätskliniken statt, so dass fraglich ist, ob die Ergebnisse auf eine breitere Anwendung übertragbar sind. Insgesamt erscheint die methodische Qualität der identifizierten Studien zum Einsatz von MARS etwas besser als die der Arbeiten zu BioLogic-DT, wobei auch hier nur eine geringe, deutlich eingeschränkte Evidenz der präsentierten Ergebnisse festzustellen ist, insbesondere da die Fallzahlen mit maximal zwölf Patienten pro Arm in den randomisier ten Studien klein, die Studienlaufzeiten kurz sind und stark selektierte Patientenpopulationen eingeschlossen wurden.

Lediglich zwei Studien konnten zu gesundheitsökonomischen Aspekten des MARS-Verfahrens identifiziert werden. Zu BioLogic-DT und Prometheus konnten keine gesundheitsökonomischen Studien gefunden werden. Eine
der beiden Arbeiten untersucht den möglichen Einfluss der Anwendung des MARS-Verfahrens bei Patienten mit ACLF auf die Kosten des Krankenhausaufenthalts und ermittelte Einsparungen je Patienten von knapp 4.000 Euro. Die Studie weist aber große methodische Schwächen auf und lässt keine validen Schlussfolgerungen zu. Die andere Untersuchung berichtet über die Ein-Jahres-Ergebnisse einer retrospektiven, nicht randomisierten, kontrollierten, klinischen Kohortenstudie zur Überlebenswahrscheinlichkeit, den Kosten und der Kosteneffektivität der Behandlung von Patienten mit ACLF auf der Basis einer alkoholinduzierten Lebererkrankung. Sie ermittelte für den Ein-Jahres-Beobachtungszeitraum eine inkrementelle Kosteneffektivität von 29.719 EUR je gewonnenem Lebensjahr aus GKV-Perspektive (wobei die Kosten der MARS-Behandlung, die zu diesem Zeitpunkt von den Krankenkassen nicht erstattet, nicht einberechnet waren) bzw. 79.075 EUR je gerettetem Lebensjahr aus Sicht des Gesundheitswesens (unter Einschluss der Kosten von MARS, die mit rd. 15.500 EUR je Patient ermittelt wurden). Unter Berücksichtigung der Ergebnisse der Erhebung der gesundheitsbezogenen Lebensqualität ergab sich eine inkrementelle Kosteneffektivität von 44.784 EUR pro gewonnenem QALY aus GKV-Perspektive (ohne Kosten von MARS) bzw. 119.162 EUR/QALY aus Perspektive des Gesundheitswesens (einschl. Kosten von MARS).

Die Autoren weisen darauf hin, dass bei einer Verlängerung des Beobachtungszeitraums vermutlich von einer Verbesserung der Kosteneffektivität ausgegangen werden kann. Die Limitationen des Studiendesigns, insbesondere die fehlende Randomisierung und der begrenzte Beobachtungszeitraum limitieren die Evidenz und schränken eine Verallgemeinerung der Ergebnisse stark ein.

Schlussfolgerungen

Nach der gegenwärtig vorliegenden Studienlage gibt es keine Belege für die Wirksamkeit von BioLogic-DT. In Bezug auf MARS gibt es eine gewisse, jedoch durch die geringe Zahl aussagekräftiger Studien und Studienergebnisse sowie die studentechnisch-methodischen Limitationen deutlich eingeschränkte, Evidenz eines positiven Effekts der Behandlung auf die kurzfristige Überlebenswahrscheinlichkeit (30d) sowie die klinische Symptomatik und einige Laborverlaufspanparameter bei Patienten mit ACLF. Es besteht ein klarer, weiterer Bedarf an randomisierten klinischen Studien mit ausreichenden Fallzahlen und Beobachtungszeiträumen, um die grundsätzliche medizinische Wirksamkeit aufzuzeigen.

Die vorliegende eingeschränkte Evidenz deutet auf eine akzeptable Kosteneffektivität von MARS hin; diese Annahmen beruhen jedoch auf den Daten einer einzig nicht randomisierten Studie, so dass die Evidenz bei weitem nicht als ausreichend betrachtet werden kann. Weiterer Forschungsbedarf besteht insbesondere in den Bereichen der klaren Indikationsstellung/Kontraindikationen, Langzeitergebnisse, Lebensqualität, Subgruppenefekte und des Komplikationsrisikos, sowie bezüglich gesundheitsökonomischer Aspekte.

Korrespondenzadresse:
Dr. Franz Hessel
Alfried Krupp von Bohlen und Halbach Stiftungslehrstuhl Medizinmanagement, Universität Duisburg-Essen, Campus Essen
franz.hessel@uni-due.de

Bitte zitieren als
Hessel F, Grabein K, Schnell-Inderst P, Siebert U, Caspary W, Wasem J. Extrakorporale artifizielle Leberunterstützungssysteme bei akutem Leberversagen oder einer akuten Dekompensation eines chronischen Leberleidens. GMS Health Technol Assess. 2006;2:Doc08.

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/hta/2006-2/hta000021.shtml

Veröffentlichung: 07.04.2006

Der vollständige HTA-Bericht in deutscher Sprache steht zum kostenlosen Download zur Verfügung unter:
http://portal.dimdi.de/de/hta/hta_berichte/hta119_bericht_de.pdf

Copyright
©2006 Hessel et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.