Hepatic Stearoyl-CoA Desaturase (SCD)-1 Activity and Diacylglycerol but Not Ceramide Concentrations Are Increased in the Nonalcoholic Human Fatty Liver

Anna Kotronen,1,2 Tuulikki Seppänen-Laakso,3 Jukka Westerbacka,1 Tuula Kiviluoto,4 Johanna Arola,5 Anna-Liisa Ruskeepää,3 Matej Orešič,3 and Hannele Yki-Järvinen1

OBJECTIVE—To determine whether 1) hepatic ceramide and diacylglycerol concentrations, 2) SCD1 activity, and 3) hepatic lipogenic index are increased in the human nonalcoholic fatty liver.

RESEARCH DESIGN AND METHODS—We studied 16 subjects with (n = 8) and without (n = 8) histologically determined nonalcoholic fatty liver (NAFL+ and NAFL−) matched for age, sex, and BMI. Hepatic concentrations of lipids and fatty acids were quantitated using ultra-performance liquid chromatography coupled to mass spectrometry and gas chromatography.

RESULTS—The absolute (nmol/mg) hepatic concentrations of diacylglycerols but not ceramides were increased in the NAFL+ group compared with the NAFL− group. The livers of the NAFL+ group contained proportionally less long-chain polyunsaturated fatty acids as compared with the NAFL− group. Liver fat percent was positively related to hepatic stearoyl-CoA desaturase 1 (SCD1) activity index (r = 0.70, P = 0.003) and the hepatic lipogenic index (r = 0.54, P = 0.030). Hepatic SCD1 activity index was positively related to the concentrations of diacylglycerols (r = 0.71, P = 0.002) but not ceramides (r = 0.07, NS).

CONCLUSIONS—We conclude that diacylglycerols but not ceramides are increased in NAFL. The human fatty liver is also characterized by depletion of long polyunsaturated fatty acids in the liver and increases in hepatic SCD1 and lipogenic activities.

Diabetes 58:203–208, 2009

Nonalcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver (≥10% of liver weight), which cannot be attributed to alcohol consumption or any other liver disease (1). NAFLD covers a range from simple nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) and fibrosis (1). The fatty liver is resistant to the action of insulin to inhibit hepatic glucose (2,3) and VLDL (4) production, resulting in hyperglycemia and hypertriglyceridemia. The mechanisms underlying insulin resistance in human NAFLD are unclear. While triacylglycerols themselves are inert, lipid intermediates may act as important regulators of both oxidative stress (5) and insulin signaling (6). In vitro studies as well as studies in animals suggest that diacylglycerols, which are immediate precursors of triacylglycerols (7), can induce insulin resistance by activating specific isoforms of protein kinase C (PKC) (8,9). The concentrations of diacylglycerols have recently been shown to be increased in human NAFLD compared with subjects with normal liver histology (10). Ceramides are another class of reactive lipids that mediate saturated fat–induced insulin resistance (6). There are no data comparing ceramide and diacylglycerol concentrations in the human liver or relating them to hepatic fat content.

Sources of hepatic lipids include dietary chylomicron remnants, free fatty acids released from either adipose tissue triacylglycerols or chylomicrons hydrolyzed at a rate in excess of what can be taken up by tissues (spillover), and de novo lipogenesis (11). Increased lipolysis is a major contributor to hepatic fat accumulation (12–14). In addition, when estimated using tracer techniques, de novo lipogenesis has been found to be significantly increased in subjects with NAFLD compared with normal subjects (12,15,16). De novo lipogenesis produces saturated fatty acids (17,18). Stearoyl-CoA desaturase 1 (SCD1) converts saturated fatty acids to monounsaturated fatty acids, which are major substrates for synthesis of triacylglycerols and other lipids (19). SCD1 knockout mice are resistant to the development of obesity and hepatic steatosis (20,21), whereas the activity of SCD1 is significantly increased in the fatty livers of ob/ob mice (20,22). These data thus suggest that hepatic SCD1 activity may contribute to lipid accumulation in NAFLD. There are, however, no data on hepatic SCD1 activity in human NAFLD.

To address the above questions, we quantified the full range of lipids and fatty acids using ultra-performance liquid chromatography (UPLC) coupled to mass spectrometry (MS) and gas chromatography in the human liver. These analyses were performed in two groups of subjects matched for age, sex, and BMI but with either a normal liver fat content (<10% macrovesicular steatosis) or a nonalcoholic fatty liver (NAFL) (≥20% macrovesicular steatosis [1]).

RESEARCH DESIGN AND METHODS

The subjects (all Caucasians and Finns) were recruited from patients undergoing laparoscopic gastric bypass surgery based on the following inclusion criteria: 1) age 18–65 years; 2) no known acute or chronic disease except for obesity or type 2 diabetes based on history, physical examination, and standard laboratory tests (blood counts, serum creatinine, thyroid-stimulating hormone, and electrolyte concentrations), and electrocardiogram; and 3) alcohol consumption <20 g/day. The nature and potential risks of the study were explained to all subjects before obtaining their written informed consent.

M.O. and H.Y.-J. share senior authorship of this study.

© 2008 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
LIPIDOMIC CHARACTERIZATION OF HUMAN FATTY LIVER

consent. The patients had not lost weight before surgery (mean weight change over 10 months was −1.1 kg). The study protocol was approved by the ethics committee of the Helsinki University Central Hospital.

On the morning before surgery, blood samples were taken after an overnight fast for measurement of A1C, fasting serum insulin and C-peptide, liver enzymes, serum triglyceride, and LDL and HDL cholesterol concentrations. Body weight was recorded to the nearest kilogram using a calibrated weighing scale with subjects barefoot and wearing light indoor clothing. Wedge biopsies of the liver were taken at surgery. Approximately one-half of the liver sample was sent to the pathologist for routine histopathological assessment, while the rest was immediately frozen and stored in liquid nitrogen. The fat content of the liver biopsy specimens (percent of hepatocytes with macrovesicular steatosis) was determined by an experienced liver pathologist (J.A.) in a blinded fashion (23). The percent of macrovesicular steatosis was used as the liver fat percent. One of the patients had mild (grade 1) necroinflammatory and fibrotic changes, and two of the patients had mild (grades 1 and 2) fibrotic changes.

Lipidic analysis. Before analyzing the lipid composition of the liver, frozen samples (5 mg) were mixed with an IS mixture containing 0.5–1 μg/sample of phosphatidylcholine (PC) (17:0/0:0), ceramide (Cer) (d18:1/17:0), PC (17:0/17:0), phosphatidylethanolamine (PE) (17:0/17:0), triglycerides (TGs) (17:0/17:0, 17:0/17:0, and 20:0) and chloroform:methanol (2:1). The tissues were homogenized with grinding balls in a mixer mill at 25 Hz for 5 min. A total of 100–150 μl NaCl (0.9%) was added. The samples were vortexed for 2 min, and after 30 min standing, they were centrifuged at 10,000 rpm for 3 min. The labeled lipid extracts were analyzed on a Waters Q-Tof Premier mass spectrometer combined with an Acquity UPLC. The column (at 50°C) was an Acquity UPLC bridged ethyl hybrid C18 1 × 50 mm with 1.7-μm particles. The solvent system included 1) water (1% 1 mol/l NH4Ac, 0.1% HCOOH) and 2) acetonitrile/isopropanol (5:2, 1% 1 mol/l NH4Ac, 0.1% HCOOH). The gradient started from 65% A/35% B, reached 100% B in 6 min, and remained there for the next 7 min. There was a 5-min reequilibration step before the next run. The flow rate was 0.200 ml/min, and the injected amount was 1.0 μl. Reserpine was used as the lock spray reference compound. Lipid profiling was carried out using ESI+ mode, and the data were collected at a mass range of 300–1,200 m/z, with a scan duration of 0.2 s. The data were processed by using MZmine spectral library (25). The relative amounts of all the identified lipids were calculated using the Friedman formula (30). Serum aspartate transaminase (AST), alanine transaminase (ALT), and γ-glutamyltransferase (γGT) activities were determined, as recommended by the European Committee for Clinical Laboratory Standards.

RESULTS

Subject characteristics. NAFL+ and NAFL− groups were comparable with respect to age, sex, body weight, BMI, fasting serum insulin, fasting serum C-peptide, A1C, fasting serum triacylglycerols, fasting serum LDL cholesterol, and serum γGT concentrations. Fasting serum HDL cholesterol concentrations were lower and serum ALT and serum AST concentrations were higher in the NAFL+ than in the NAFL− group (Table 1).

Lipids, fatty acids, and free fatty acids in the NAFL+ versus the NAFL− group. The concentrations (nmol/mg liver tissue) of glycerophosphatidic acid, ether-linked phosphatidylcholines, lysophosphatidyl ethanolamine, ether-linked lysophosphatidylethanolamine, and di- and triacylglycerols were higher in the NAFL+ than in the NAFL− group (Table 2). The concentrations of ceramides, sphingomyelins, phosphatidycholines, phosphatidylethanolamine, and diacylglycerol were lower in the NAFL+ than in the NAFL− group (Table 2). The concentrations of ceramides, sphingomyelins, phosphatidycholines, phosphatidylethanolamine, and diacylglycerol were lower in the NAFL+ than in the NAFL− group (Table 2).
TABLE 2
Absolute (nmol/mg tissue) lipid concentrations of the livers of the NAFL− and NAFL+ groups

Lipid Type	NAFL−	NAFL+
Ceramides	0.089 ± 0.007	0.104 ± 0.009
SM	0.725 ± 0.043	0.889 ± 0.091
GPA	0.158 ± 0.020	0.297 ± 0.037*
PC	11.47 ± 1.14	14.57 ± 1.77
PC(e)	0.087 ± 0.011	0.163 ± 0.032†
PE	2.439 ± 0.227	2.543 ± 0.259
PE(e)	0.766 ± 0.049	1.046 ± 0.211
lyso(tot)	0.069 ± 0.005	0.189 ± 0.046†
lysoPC	0.032 ± 0.003	0.034 ± 0.004
lysoPE	0.033 ± 0.004	0.139 ± 0.041†
lysoPE(e)	0.004 ± 0.0006	0.016 ± 0.004†
Diacylglycerol	0.014 ± 0.003	0.055 ± 0.015†
TGS	49.07 ± 8.57	92.65 ± 14.99†

Data are means ± SE. *P < 0.01, †P < 0.05. GPA, glycerophosphatic acid; lysoPE(e), ether-linked lysoPE; lyso(tot), lysoPC and lysoPE, PC(e), ether-linked PC; PE(e), ether-linked PE; SM, sphingomyelin.

anolamines, and ether-linked phosphatidylethanolamines were comparable between the groups. The results remained unchanged if the lipid data were normalized to total phospholipid concentrations (data not shown). Total hepatic lipid concentration was positively related to liver fat content (r = 0.53, P = 0.036). The livers of the NAFL+ group contained proportionally more esterified and free oleate (18:1n-9) and less esterified and free stearate (18:0) and long polyunsaturated fatty acids (Table 3) than the NAFL− group. The concentration of oleic (18:1n-9) fatty acid was higher in the NAFL+ group than in the NAFL− group (0.32 ± 0.04 vs. 0.18 ± 0.03 nmol/mg tissue, P = 0.007).

TABLE 3
Proportional hepatic fatty acid composition of the NAFL− and NAFL+ groups

Fatty Acid	NAFL−	NAFL+
14:0	1.54 ± 0.19	1.87 ± 0.26
14:1n-9	0.28 ± 0.04	0.21 ± 0.02
16:0	27.6 ± 0.68	29.6 ± 1.11
16:1n-7	3.57 ± 0.32	3.89 ± 0.25
18:0	8.91 ± 0.50	6.86 ± 0.37*
18:1n-9	31.7 ± 1.53	38.5 ± 1.20*
18:1n-7	2.68 ± 0.14	2.771 ± 0.18
18:2n-6	12.9 ± 0.85	10.8 ± 0.94
18:3n-6	0.15 ± 0.03	0.12 ± 0.02
18:3n-3	0.90 ± 0.07	1.00 ± 0.07
20:3n-6	0.95 ± 0.10	0.45 ± 0.08*
20:4n-6	4.56 ± 0.47	2.15 ± 0.35†
20:5n-3	0.56 ± 0.07	0.20 ± 0.03†
22:5n-3	0.66 ± 0.10	0.28 ± 0.05*
22:6n-3	3.19 ± 0.44	1.37 ± 0.25*
16:0 FFA	41.3 ± 1.22	39.5 ± 0.63
18:0 FFA	37.9 ± 1.96	30.7 ± 1.79‡
18:1 FFA	14.1 ± 1.88	22.1 ± 1.66*
18:2 FFA	6.73 ± 0.94	7.78 ± 0.27
16:0 FFA (µg/mg)	0.55 ± 0.08	0.58 ± 0.05
18:0 FFA (µg/mg)	0.49 ± 0.07	0.45 ± 0.05
18:1 FFA (µg/mg)	0.18 ± 0.03	0.32 ± 0.04*
18:2 FFA (µg/mg)	0.08 ± 0.01	0.11 ± 0.01‡

Data are means ± SE. *P < 0.01, †P < 0.05, ‡P < 0.001.

Fatty acid composition of hepatic TGs in relation to liver fat content. Correlation coefficients between each of the 136 individual TGs (expressed relative to total hepatic TG) and histological liver fat contents were calculated. These correlation coefficients were then plotted against the number of double bonds in the respective TGs. An inverse relationship was observed, implying that the TGs that were positively associated with liver fat content had only a few double bonds, whereas those TGs negatively related to liver fat content had many double bonds.

Hepatic desaturase and elongase activities in relation to liver fat content. The SCD1 activity index, as estimated from the 18:1n-9 to 18:0 fatty acid ratio in the liver was 1.6-fold higher in the NAFL+ (5.7 ± 0.4) than in the NAFL− (3.7 ± 0.4) group. Liver fat percent was positively related to hepatic SCD1 activity index (r = 0.70, P = 0.003, Fig. 2). The activities of Δ5 and Δ6 desaturases in the liver were comparable between the groups (data not shown). The elongase activity index (18:0/16:0) was lower in the NAFL+ (0.23 ± 0.02) than in the NAFL− (0.33 ± 0.02, P = 0.005) group and was inversely related to the percent liver fat (r = −0.78, P = 0.0004, Fig. 2). The hepatic lipogenic index (16:0/18:2n-6) was positively related to liver fat content (r = 0.54, P = 0.030, Fig. 2) but unrelated to hepatic SCD1 activity index (r = 0.28, NS).

The proportional amounts of long polyunsaturated fatty acids, such as 20:3n-6 and 22:6n-3, were strongly inversely related to SCD1 (r = −0.94, P < 0.0001, and r = −0.82, P < 0.0001) and positively to elongase (r = 0.83, P < 0.0001, and r = 0.86, P < 0.0001) activity indexes in the liver.

The relationships between hepatic concentrations of diacylglycerols, TGs, ceramides, and SCD1 activity index. The hepatic concentrations of diacylglycerols were positively related to those of TGs (r = 0.58, P = 0.018) and to liver fat percent (r = 0.62, P = 0.0097, Fig. 3). Hepatic SCD1 activity index was positively related to the concentration of diacylglycerols (r = 0.71, P = 0.002) and TGs (r = 0.66, P = 0.005) but unrelated to those of ceramides (r = 0.07, NS) in the liver. The subjects (n = 3) with mild inflammatory or fibrotic changes fell on the same regression lines as others (data not shown).
DISCUSSION

Studies characterizing the human fatty liver are few because of methodological and ethical limitations to sample human liver tissue. In the present study, we analyzed the lipidome of the human liver of subjects with either normal or increased liver fat content due to nonalcoholic causes. We found that hepatic concentrations of diacylglycerols but not ceramides increase with increasing liver fat content. In addition, SCD1 activity index, as estimated from the product-to-precursor ratio, and lipogenic activities were increased, whereas long polyunsaturated fatty acids were depleted in fatty livers.

The final step in triacylglycerol synthesis is catalyzed by diacylglycerol acyltransferases (DGATs), which produce triacylglycerols from diacylglycerols (7). By definition, the concentrations of triacylglycerols in the human fatty liver are increased (1,10,33,34), which may explain the increase in their direct precursors, diacylglycerols (35). Consistent with this, the hepatic concentrations of diacylglycerols were positively related to those of triacylglycerols. In addition, we found hepatic diacylglycerol concentrations to be directly related to liver fat content, as determined by histology. Diacylglycerols are well-known allosteric activators of PKC, an enzyme which has been linked to insulin resistance in a variety of rodent models (36,37) as well as in the human liver (36). In mice, liver-specific overexpression of DGATs results in accumulation of triacylglycerols in the liver, whereas the concentrations of diacylglycerols and the activity of PKC remain unchanged (38). These mice do not exhibit any signs of hepatic insulin resistance (38). On the other hand, suppression of DGAT2 in mice decreases diacylglycerol concentrations and PKC activation and increases hepatic insulin sensitivity (39). These data together with the present findings would imply that diacylglycerols may contribute to hepatic insulin resistance, which is tightly related to liver fat content in humans (2,3,14).

Ceramides are sphingolipids that appear to mediate saturated fat–induced insulin resistance (6). Lipidomic analyses of livers of ob/ob mice have shown a strong association between hepatic ceramide content and the degree of steatosis (25). The relationships between hepatic ceramide concentrations and inflammatory changes were not analyzed in the latter study (25). In humans, we have previously found adipose tissue to be inflamed and contain more ceramides in subjects with high liver fat content compared with weight-matched subjects with low liver fat content without inflammation in adipose tissue (40). In the present study, we did not find hepatic ceramide

![FIG. 2. The relationships between liver fat content and hepatic SCD1 activity index (A), hepatic elongase activity index (B), and hepatic lipogenic index (C).](image)

![FIG. 3. The relationships between liver fat content and the hepatic concentrations of diacylglycerols (DG) (A) and ceramides (B).](image)
concentrations to be related to liver fat content in human livers lacking significant inflammatory and fibrotic changes. These data do not exclude the possibility that ceramides contribute to hepatic insulin resistance in non-alcoholic steatohepatitis. Also, the present negative findings regarding ceramides need to be confirmed in larger groups of patients.

The concentrations of both diacylglycerols and ceramides in myocytes have been shown to increase as a consequence of silencing of SCD1 by siRNA (41). This raises the possibility that metabolism of these bioactive lipids may be regulated by SCD1. In the present study, we found the SCD1 activity index to be positively related to diacylglycerol but not ceramide concentrations. This is consistent with monounsaturated fatty acids, products of SCD1, being necessary for normal rates of synthesis of triacylglycerols (42,43). Hepatic RNA levels and activity of SCD1 are increased in obese (22) and lipatrophic (44) mice with hepatic steatosis. In humans, SCD1 activity is considerably higher in skeletal muscle of obese compared with lean subjects (45). The present data suggest that, in the human liver, SCD1 activity increases with increasing liver fat content. Direct measurements of SCD1 activity would be helpful in this respect but could not be performed because of limited sample size.

It has recently been shown that short-term high-carbohydrate compared with high-fat feeding activates hepatic SCD1, as estimated from the composition of VLDL-TG fatty acids and de novo lipogenesis in healthy subjects with normal serum ALT concentrations (46). De novo lipogenesis is significantly increased in subjects with NAFLD compared with healthy controls (12,15,16), possibly as a consequence of an increase in sterol regulatory element–binding protein 1c (47–49), a key transcriptional activator of lipogenic genes, including SCD1 (50). In the present study, hepatic lipogenic index, estimated from the 16:0/18:2n-6 ratio (32), was positively related to liver fat content but not to SCD1 activity index. In contrast, the proportional amounts of long polyunsaturated fatty acids in the liver were strongly inversely related to hepatic SCD1 activity index and liver fat content. This is consistent with the ability of polyunsaturated fatty acids to suppress expression of both sterol regulatory element–binding protein 1c (51,52) and SCD1 (53) and activate genes involved in hepatic fatty acid oxidation (31). Subjects with NAFLD have been shown to consume less polyunsaturated fat than normal control subjects in some (54,55) but not all (56) cross-sectional studies.

Taken together, these data would suggest that depletion of long polyunsaturated fatty acids derived from essential fatty acids characterizes hepatic fat accumulation. These changes are associated with increases in both the hepatic lipogenic and SCD1 activity indexes. A recent pilot study suggested that prolonged supplementation of n-3 polyunsaturated fatty acids reduces liver fat in subjects with NAFLD (57), suggesting that polyunsaturated fatty acids could be beneficial in treating NAFLD.

ACKNOWLEDGMENTS

This study was supported by research grants from the Academy of Finland (to H.Y.-J.), the Sigrid Juselius Foundation (to A.K.), the Finnish Diabetes Research Foundation (to A.K.), and the Biomedicum Helsinki Foundation (to A.K.). This work is part of the project “Hepatic and adipose tissue insulin resistance and function in the metabolic syndrome” (www.hepadip.org), which is supported by the European Commission as an Integrated Project under the 6th Framework Programme (contract LSHM-CT-2005-018734) (to H.Y.-J. and M.O.).

This study also received grant support from Novo Nordisk Foundation (to H.Y.-J.). No other potential conflicts of interest relevant to this article were reported.

We gratefully acknowledge Mia Urjansson, Katja Tuominen, and Laxman Yetukuri for excellent technical assistance and the volunteers for their help.

REFERENCES

1. Neuschwander-Tetri BA, Caldwell SH: Nonalcoholic steatohepatitis: summary of an AASLD single topic conference. Hepatology 37:1202–1219, 2003
2. Ryysy I, Hakkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J, Yki-Jarvinen H: Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 49:749–758, 2000
3. Seppala-Lindoos A, Vehkavaara S, Hakkinen AM, Goto T, Westerbacka J, Sovijarvi A, Halavaara J, Yki-Jarvinen H: Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 87:3023–3028, 2002
4. Adiels M, Taskinen MR, Packard C, Calska MJ, Soro-Paavonen A, Westerbacka J, Vehkavaara S, Hakkinen A, Olofsson SO, Yki-Jarvinen H, Boren J: Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 49:755–760, 2006
5. Zoeller RA, Grazia TJ, LaCamera P, Park J, Gaposchkin DP, Farber HW: Increasing plasmalogen levels protects human endothelial cells during hypoxia. Am J Physiol Heart Circ Physiol 283:H671–H670, 2002
6. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Yu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA: Inhibition of ceramide synthesis ameliorates glucocteroid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab 5:167–179, 2007
7. Lehner R, Kuksis A: Biosynthesis of triacylglycerols. Prog Lipid Res 35:169–201, 1996
8. Shmueli E, Alberti KG, Record CO: Diacylglycerol/protein kinase C signaling: a mechanism for insulin resistance? J Intern Med 234:397–400, 1993
9. Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, Liu ZX, Souis TJ, Cline GW, O’Brien WR, Littman DR, Shulman GI: PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest 114:823–827, 2004
10. Puri P, Bailleil RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant JC, Fabbrini E, Mohammed BS, Klein S: Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134:1369–1375, 2008
11. Korenblat KM, Fabbrini E, Mohammed BS, Klein S: Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134:1369–1375, 2008
12. Kotronen A, Vehkavaara S, Seppala-Lindoos A, Bergholm R, Yki-Jarvinen H: Effect of liver fat on insulin clearance. Am J Physiol Endocrinol Metab 293:E1709–E1715, 2007
13. Diraison F, Moulin P, Beylot M: Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes 52:478–485, 2003
14. Timlin MT, Parks EJ: Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am J Clin Nutr 81:35–42, 2005
15. Aarsland A, Wolfe RR: Hepatic secretion of VLDL fatty acids during stimulation of lipogenesis in man. J Lipid Res 29:478–485, 1988
16. Timlin MT, Parks EJ: Temporal pattern of de novo lipogenesis in the postprandial state in healthy men. Am J Clin Nutr 81:35–42, 2005
17. Aarsland A, Wolfe RR: Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in man. J Lipid Res 29:1280–1286, 1988
18. Korchaik HM: Regulation of hepatic lipogenesis. Tuffs Folia Med 8:134–143, 1962
19. Namibi JM, Miyazaki M: Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43:91–104, 2004
20. Namibi JM, Miyazaki M, Stoehr JP, Lan H, Kendizcoski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD: Loss of stearoyl-CoA desatu-
LIPIDOMIC CHARACTERIZATION OF HUMAN FATTY LIVER

31. Nakamura MT, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM: Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279:35017–35024, 2004

30. Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502, 1972

27. Seppanen-Laakso T, Laakso I, Hiltunen R: Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta 465:39–62, 2002

26. Laaksonen R, Katajamaa M, Paiva H, Sysi-Aho M, Saarinen L, Junni P, Pink J, Naik P, Soini J, Oresic M: A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle. PLoS ONE 1:e67, 2006

25. Seppanen-Laakso T, Laakso I, Hiltunen R: Analysis of fatty acids by gas chromatography, and its relevance to research on health and nutrition. Anal Chim Acta 465:39–62, 2002

24. Katajamaa M, Miettinen J, Oresic M: MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636, 2006

23. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474, 1999

22. Kantajmaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

21. Nakamura MT, Nara TY: Structure, function, and dietary regulation of stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243, 2002

20. Britten EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474, 1999

19. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

18. Friedewald WT, Levy RI, Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502, 1972

17. Nakamura MT, Nara TY: Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Biochim Biophys Acta 1823:30132–30138, 2009

16. Nakamura MT, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM: Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279:35017–35024, 2004

15. Katajamaa M, Miettinen J, Oresic M: MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634–636, 2006

14. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

13. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474, 1999

12. Kantajmaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

11. Nakamura MT, Nara TY: Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Biochim Biophys Acta 1823:30132–30138, 2009

10. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

9. Nakamura MT, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM: Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279:35017–35024, 2004

8. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

7. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474, 1999

6. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

5. Nakamura MT, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM: Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279:35017–35024, 2004

4. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

3. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR: Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474, 1999

2. Kantajmaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007

1. Nakamura MT, Dobrzyn A, Sampath H, Lee SH, Man WC, Chu K, Peters JM, Gonzalez FJ, Ntambi JM: Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279:35017–35024, 2004

0. Katajamaa M, Miettinen J, Oresic M: Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst Biol 1:12, 2007