RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense

Jacklyn Thomas¹, Ha Ram Kim¹, Yasir Rahmatallah², Grant Wiggins¹, Qinqing Yang¹, Raj Singh ID, Galina Glazko², Arijit Mukherjee ID*

¹ Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America, ² Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America

* amukherjee@uca.edu

Abstract

Major non-legume crops can form beneficial associations with nitrogen-fixing bacteria like Azospirillum brasilense. Our current understanding of the molecular aspects and signaling that occur between important crops like rice and these nitrogen-fixing bacteria is limited. In this study, we used an experimental system where the bacteria could colonize the plant roots and promote plant growth in wild type rice and symbiotic mutants (DMI3 and POLLUX) in rice. Our data suggest that plant growth promotion and root penetration is not dependent on these genes. We then used this colonization model to identify regulation of gene expression at two different time points during this interaction: at 1 day post inoculation (dpi), we identified 1622 differentially expressed genes (DEGs) in rice roots, and at 14 dpi, we identified 1995 DEGs. We performed a comprehensive data mining to classify the DEGs into the categories of transcription factors (TFs), protein kinases (PKs), and transporters (TRs). Several of these DEGs encode proteins that are involved in the flavonoid biosynthetic pathway, defense, and hormone signaling pathways. We identified genes that are involved in nitrate and sugar transport and are also implicated to play a role in other plant-microbe interactions. Overall, findings from this study will serve as an excellent resource to characterize the host genetic pathway controlling the interactions between non-legumes and beneficial bacteria which can have long-term implications towards sustainably improving agriculture.

Introduction

Plants can form beneficial mutualistic associations with a diverse array of microbes including soil bacteria rhizobia, arbuscular mycorrhizal fungi (AMF), plant-growth promoting bacteria (PGPB), etc. [1–3]. Among these associations, the legume-rhizobia symbiosis is the most studied and efficient symbiosis. It occurs between plants from the legume family (pea, soybean, beans, etc.) and rhizobia culminating in the development of root nodules inside which the
rhizobia fix atmospheric nitrogen for the host plant in exchange for carbohydrates [2, 3]. Decades of genetic and biochemical studies have identified the plant and microbial signals controlling the establishment of this symbiosis [2, 3]. Genetic studies in legumes also identified several plant genes involved at different stages (from initiation to regulation) of this symbiosis [2, 3]. Some of the genes required in the initial stages include a cation channel (DMI1/POLLUX and CASTOR), a nuclear calcium and calmodulin-dependent kinase (DMI3/CCaMK), a substrate of DMI3 (IPD3/CYCLOPS), and a receptor-like kinase (DMI2/SYMRK) among others [2, 3]. Later studies showed that some of these genes are also required for the establishment of symbiosis with arbuscular mycorrhizal fungi leading to the concept of the common symbiotic pathway (CSP) [2–4]. Some genes from the CSP have also been shown to be required in actinorhizal symbiosis and non-symbiotic interactions [4]. The large body of elegant genetic studies in legumes has significantly improved our understanding of the host genetic pathways controlling legume-rhizobia symbiosis. Unfortunately, the same depth of information does not exist for other beneficial plant-microbe interactions such as the ones occurring between non-legumes and plant-growth promoting bacteria.

Majority of non-legume crops benefit from interactions with plant-growth promoting bacteria. Several studies have shown that the biological nitrogen fixation (BNF) in non-legumes comes from diazotrophic (nitrogen-fixing) bacteria in several genera of alpha- and beta-proteobacteria including Azospirillum, Azorhizobium, Herbaspirillum, Burkholderia, etc. [1]. Unlike legume-rhizobia endosymbiosis, these bacteria induce no specialized root structures and are different in their colonization characteristics. *Azospirillum brasilense* represents the best-characterized genus of plant growth-promoting bacteria with a diverse host range including important cereals. These promote plant growth by several mechanisms including nitrogen fixation and phytohormone secretion [5]. *A. brasilense* has emerged as a great model for studying nitrogen-fixing bacteria with its sequenced genome and feasibility to genetic manipulation like transposon mutagenesis [5, 6]. However, unlike legume-rhizobia symbiosis, there are still only limited data available on the molecular aspects and signaling in the interactions between non-legumes like rice and diazotrophic bacteria [1, 7, 8].

In this study, we set up an experimental system in which the *A. brasilense* Sp245 strain could colonize rice roots and promote growth under controlled, sterile conditions. We also studied if *A. brasilense* could promote plant growth and penetrate the roots of symbiotic mutants in rice. To identify the plant genes and pathways involved during rice-*A. brasilense* interactions, we performed transcriptional profiling by RNA-seq. This study provides an excellent resource to further our understanding of the molecular mechanisms occurring in rice roots during its interaction with *A. brasilense*.

Results

Azospirillum brasilense promoted rice growth under controlled experimental conditions

We investigated if *A. brasilense* could promote rice growth under controlled experimental conditions. Our results show that the total plant mass was 1.26-fold higher in *A. brasilense*-inoculated wild-type (*Oryza sativa* cv. Nipponbare) rice plants than the uninoculated ones (Fig 1A). Root mass was 1.63-fold higher in the bacteria-inoculated plants than the controls (Fig 1B). Next, we were interested in determining if the bacteria could colonize the plant roots under the same conditions. We used plate count assays and recovered *A. brasilense* from surface sterilized rice roots indicating that bacteria could penetrate the roots under these conditions. As expected the number of colonies recovered from the surface sterilized roots was significantly lower (0.41-fold) than the non-surface sterilized roots (Fig 1C).
A. brasilense promoted plant growth in rice symbiotic mutants

We investigated if A. brasilense could promote plant growth in symbiotic rice mutants (Os-dmi3 and Os-pollux) under these controlled experimental conditions. Our results indicate that the total plant mass increased in A. brasilense-inoculated Os-pollux (1.16-fold) and Os-dmi3 (1.12-fold) plants compared to the uninoculated plants (Fig 1D and 1G). The root mass in Os-pollux (1.23-fold) and Os-dmi3 (1.27-fold) plants also increased upon A. brasilense inoculation (Fig 1E and 1H). Next, we performed plate count assays and recovered A. brasilense from surface sterilized roots of Os-pollux and Os-dmi3 indicating that bacteria could penetrate the roots of these rice symbiotic mutants. As observed in wild-type roots, the number of bacterial colonies recovered from the surface-sterilized pollux roots was 0.46-fold lower than the non-surface sterilized pollux roots (Fig 1F). Similarly, the number of bacterial colonies recovered from the surface-sterilized dmi3 roots was 0.41-fold lower than the non-surface sterilized dmi3 roots (Fig 1I).

Analysis of rice root transcriptome upon inoculation with A. brasilense

We used high-throughput RNA-sequencing to identify differentially expressed genes (DEGs) in rice roots upon inoculation with A. brasilense. We analyzed the expression profile of wild-type rice (Oryza sativa cv. Nipponbare) in the following experimental groups: (1) 1 day post inoculation (dpi): wild-type roots + mock treatment (water only) vs. wild-type roots + A. brasilense.
brasilense, and (2) 14dpi: wild-type roots + mock treatment (water only) vs. wild-type roots + A. brasilense. Each treatment group had three biological replicates. Sequencing libraries were prepared from these RNA samples. The completed libraries were quality checked and quantified before sequencing in a 2×150bp paired-end format using HiSeq 4000. An average of 36 million reads was obtained per sample with an average mapping rate of 85% to the rice genome (MSU, version 7) (S1 Table). A good degree of correlation was observed between the biological replicates of each sample (Fig 2A and 2B). To identify the differentially expressed genes (DEGs) from the dataset, an FDR adjusted P-value of <0.05 was set and a fold change of >2 (|Log2FC| >1) was assigned. At 1dpi and 14dpi, we identified 1622 and 1995 DEGs in rice roots, respectively (Fig 2C and 2D; S2 and S3 Tables). Among these, 300 genes were
differentially expressed at both time points. At 1dpi, 490 genes were upregulated in expression, and at 14dpi, 619 genes were upregulated in expression (S2 and S3 Tables).

We performed a gene ontology (GO) analysis to determine the biological significance of the DEGs with respect to biological processes (BP), molecular functions (MF), and cellular localization (CC) of their proteins. We used singular enrichment analysis (SEA) with agrigo [9] and identified 16 GO terms that were significantly enriched at 1dpi. These included 8 in biological processes (e.g., response to stimulus, response to biotic stimulus, metabolic process, etc.), 5 in molecular functions (e.g., transcription factor activity, catalytic activity, etc.) and 3 in the cellular component (e.g., cell wall, extracellular region, etc.) (Fig 3A). At 14dpi, we identified 43 GO terms that were significantly enriched. These included 13 in biological processes (e.g., response to stimulus, gene expression, etc.), 1 in molecular function (structural molecule activity), and 29 in cellular components (e.g., membrane, cytosol, etc.) (Fig 3B). In the 300 genes that were differentially expressed at both time points, we identified 12 significantly enriched GO terms including 7 in biological processes (e.g., response to stimulus, response to endogenous stimulus, etc.) and 5 in cellular components (e.g., extracellular region, cell wall, etc.) (Fig 3C).

Comprehensive data mining of the transcriptome dataset

Several studies have shown that transcription factors (TFs), protein kinases (PKs), and transporters (TRs) play critical roles in signal transduction pathways involved in important biological processes including plant-microbe interactions [10–15]. Genes belonging to the flavonoid synthetic pathway, hormone signaling and plant defense have also been shown to be involved in plant-microbe interactions [16–23]. As such the next logical step was to perform a
comprehensive data mining and identify the genes in these different categories. We report selected DEGs from these gene classes identified in our dataset in the next sections.

We identified 146 and 85 differentially expressed transcription factors at 1 and 14dpi, respectively (S4 Table). Many of these belong to major plant TF families such as AP2/ERF (APETALA 2/Ethylene response factor) family, MYB (myeloblastosis oncogene) family, WRKY family, NAC (NAM, ATAF1/2, and CUC) domain, and the GRAS (GAI, RGA, and SCR) family. At both time points, the major TFs that were upregulated in expression were NAC domain-containing proteins, AP2/ERFs, and MYB family of TFs among others. For instance, six TFs belonging to the AP2/ERF family were differentially expressed across both time points (S4 Table).

We identified 110 protein kinases that were differentially expressed at 1dpi and 109 PKs that were differentially expressed at 14dpi (S5 Table). Some of the major PKs well represented in our dataset included the CAMK (calcium/calmodulin-dependent kinases), SHR5 receptor-like kinases, and OsWAK receptor-like kinases among others. We also identified two peptidoglycan-binding LysM domain-containing protein at each time point. Additionally, we identified 16 PKs that were differentially expressed at both time points (S5 Table).

We identified 106 differentially expressed transporters at 1dpi, and 124 differentially expressed transporters at 14dpi (S6 Table). Major transporters identified were nitrate transporters, ammonium transporters, sugar transporters, peptide transporters, ABC-2 type transporters, and several nodulins (MtN3, Major facilitator superfamily, etc.). We also identified three differentially expressed auxin efflux carriers: one at 1dpi and two at 14dpi. Nineteen transporters were differentially expressed at both time points including two nitrate transporters, a sugar transporter, and some nodulin genes (S6 Table).

In our dataset, we identified several genes belonging to the flavonoid biosynthetic pathway that were differentially expressed. These included chalcone synthase genes, chalcone-flavonone isomerase genes, flavonol synthase genes, and naringenin synthesis genes (S2 and S3 Tables). Many hormone-related genes were differentially expressed in the dataset. These were auxin efflux carriers, auxin-responsive genes, auxin response factors, 1-aminocyclopropane-1-carboxylate (ACC) oxidase genes, ethylene insensitive 2 (EIN2) gene, cytokinin-O-glucosyltransferases, and cytokinin dehydrogenase precursors among others (S2 and S3 Tables). Several defense-related genes were also differentially regulated in expression. Some of these were pathogenesis-related genes, chitinases, thionin genes, and cinnamoyl-CoA-reductases (S2 and S3 Tables).

Gene expression validation
To validate the gene expression patterns identified in our RNA-Seq dataset, we performed reverse transcription polymerase chain reaction (RT-PCR) for six genes (Fig 4). Primers designed for RT-PCR were based on the Rice Genome Annotation Project database annotations, and the primer sequences are listed in S7 Table. Overall, the RT-PCR results confirm the expression pattern of these genes identified in the RNA-seq experiment (Fig 4).

Discussion
Non-legume crops such as rice, maize, and wheat can benefit from associations with plant-growth promoting bacteria. These bacteria promote plant growth by several mechanisms including nitrogen fixation and phytohormone secretion [5]. Although several studies have looked into the colonization mechanisms by which different nitrogen-fixing bacteria penetrate plant roots, not much is known about the molecular mechanisms controlling these associations. In this study, we established an experimental system in which Azospirillum brasilense...
could colonize rice roots under sterile, controlled conditions and promote plant growth. Interestingly, \textit{A. brasilense} promoted growth in two rice symbiotic mutants (\textit{pollux} and \textit{dmi3}). The \textit{POLLUX} and \textit{DMI3} genes belong to a very well-characterized pathway in plant-microbe symbioses known as the common symbiotic pathway (CSP) [4]. Genes belonging to the CSP are required for the establishment of the two major plant-microbe endosymbioses: legume-rhizobia symbiosis and arbuscular mycorrhizal symbiosis. Besides these symbioses, the actinorhizal symbiosis also requires genes from the CSP [4]. To the best of our knowledge, not much is known about this pathway's role in interactions between nitrogen-fixing bacteria and their host plants. Here we show that \textit{A. brasilense} can promote plant growth independent of the CSP and can penetrate the roots of these symbiotic mutants. However, further studies need to be conducted to understand the role of this pathway during interactions between nitrogen-fixing bacteria and their host plants. Our results also suggest that the host plant probably uses other genetic pathway(s) to accommodate the microbe.

In this study, we performed an RNA-sequencing experiment to identify the regulation of gene expression occurring in rice roots during interactions with \textit{A. brasilense} at two different time points (1- and 14dpi). We identified hundreds of differentially expressed genes in rice roots at both time points. We hypothesize that transcription factors, protein kinases, and transporters are likely going to be involved in the host genetic pathway controlling the interaction between rice and \textit{A. brasilense}. We also hypothesized that hormone-related genes and defense genes would be differentially regulated during this interaction. So, we performed a comprehensive data mining of the RNA-seq dataset and identified these classes of genes which would be excellent targets to characterize the host genetic pathway controlling this important plant-microbe association. Below we discuss some selected genes from our dataset based on their role in other plant-microbe associations such as the legume-rhizobia symbiosis (LRS) and arbuscular mycorrhizal (AM) symbiosis.

Flavonoid biosynthetic pathway

Flavonoids are essential signals required for the initiation and establishment of legume-rhizobia symbiosis. They are also key regulators of other root endosymbioses such as AM and actinorhizal symbioses [16, 24]. Several studies have also reported that flavonoids may be involved...
in other plant-microbe interactions [16]. For instance, some flavonoids were found to stimulate colonization of wheat by *A. brasilense* and *Azorhizobium caulinodans* [25]. In our study, several genes involved in the flavonoid biosynthetic pathway were differentially expressed in rice roots. At 1dpi, one chalcone synthase gene (LOC_Os10g08670) was upregulated in expression while another (LOC_Os07g34260) was downregulated in expression in rice roots. At 14dpi, we identified three chalcone synthase genes (LOC_Os07g34260, LOC_Os11g32650, and LOC_Os07g31770) and two chalcone-flavonone isomerase genes (LOC_Os11g02440 and LOC_Os12g02370) that were downregulated in expression. Also, at 1dpi we identified three flavonol synthase genes (LOC_Os01g61610, LOC_Os03g03034, and LOC_Os02g52840) and two naringenin synthesis genes (LOC_Os04g49194 and LOC_Os04g56700) that were differentially expressed. Interestingly, none of these genes were differentially expressed at 14dpi suggesting a different role of these genes and subsequently these flavonoids at the later time point. It will be interesting to determine if the expression pattern of these plant genes is correlated with communication with its microbial partner and eventual accommodation of the microbe.

Defense-related genes

During interactions with beneficial microbes, the host plant adjusts its defense mechanisms accordingly to facilitate the interaction. Several articles on symbioses have reported suppression of defense-related gene expression in the host plant [17–19, 26]. In our dataset, we observed several well-characterized plant defense-related genes to be downregulated in expression. In general, accumulation of chitinases has been associated with defense against pathogens [27, 28]. Here we identified five chitinase genes (LOC_Os02g39330, LOC_Os03g30470, LOC_Os04g41680, LOC_Os05g33140, and LOC_Os04g41620) at 1dpi and four chitinase genes (LOC_Os09g32080, LOC_Os10g39680, LOC_Os03g04060, and LOC_Os05g33140) at 14dpi that were downregulated in expression. Chitinases have been implicated with root nodulation and even protect nodules against pathogens [29–33]. Another set of genes, the pathogenesis-related (PR) genes, associated with plant defense was observed to be downregulated in expression in rice roots. The PR genes (LOC_Os12g36830, LOC_Os12g36840, LOC_Os12g36880, LOC_Os04g50700, and LOC_Os04g50700) were all downregulated in expression at 14dpi. Interestingly, only one of these genes (LOC_Os12g36880) was downregulated in expression at 1dpi. Several of these PR genes are strongly induced in rice upon inoculation with the pathogen, *Magnaporthe oryzae*, and are considered to be excellent markers for plant defense reactions [34]. Another study reported that the PR gene (LOC_Os12g36840) was suppressed in expression in rice during interactions with the plant-growth promoting bacteria, *Herbaspirillum seropedicae* [8]. We also observed several thionin genes to be downregulated in expression at 1dpi (e.g., LOC_Os03g14300, LOC_Os06g31280, LOC_Os06g31800) and 14dpi (e.g., LOC_Os06g32020, LOC_Os06g31280, LOC_Os06g31890, LOC_Os11g15250). Interestingly, some thionin genes were upregulated in expression at both time points. A thionin gene was also found to be differentially expressed in rice roots during interactions with *Herbaspirillum* [8]. Several studies have shown that cinnamoyl-CoA-reductase, a key enzyme in lignin biosynthesis, plays a role in defense-related processes in rice [35–37]. One study showed that expression of a cinnamoyl-CoA-reductase (LOC_Os08g34280) was induced during interactions with a pathogenic microbe but repressed during interactions with a mutualistic microbe [36]. In our study, the expression of this gene was downregulated at 14dpi. Also, we identified another cinnamoyl-CoA-reductase gene (LOC_Os02g56700) that was downregulated in expression at both time points. Collectively these expression data suggest that during rice-*A. brasilense* interactions, the plant is reprogramming its defense-related genes similar to other interactions between plants and beneficial microbes.
Transporters
Nitrate transporters have been shown to transport not only nitrate but other substrates, including peptides, amino acids, and plant hormones such as auxin and have been involved in processes from nitrogen sensing to nitrogen use efficiency [13]. Studies in *L. japonicus* and *M. truncatula* have shown that nitrate transporters play key roles in nitrate signaling, root growth, and nodulation [12]. Since *A. brasilense* can stimulate plant growth via improved nitrogen uptake [38], this class of transporters is likely to play essential roles in this plant-microbe interaction. Plants have evolved two nitrate uptake systems to adapt to nitrate availability: a low-affinity transporter system and a high-affinity transporter system [13, 39]. In our study, we identified both high-affinity transporters and low-affinity nitrate transporters (e.g., peptide transporter family). The high-affinity nitrate transporters (LOC_Os02g38230, LOC_Os01g50820) were upregulated in expression at both time points suggesting that these are likely involved at all stages of this interaction. We identified several low-affinity nitrate transporters like the peptide transporters (e.g., LOC_Os10g02080, LOC_Os03g04570, LOC_Os01g65130, LOC_Os01g65140) to be differentially expressed in rice roots. A recent study showed that a peptide transporter contributed to nitrogen allocation and increased grain yield in rice [40]. Besides nitrate, another form of nitrogen available to plants is ammonium. Ammonium transporters are important for high-affinity primary uptake and translocation of ammonium in plants. These transporters have been shown to play crucial roles in beneficial plant-microbe symbioses: legume-rhizobia symbiosis and AM symbiosis [41]. In this study, we identified three differentially expressed ammonium transporters (LOC_Os02g40710, LOC_Os02g40730, and LOC_Os04g43070) in rice roots. In plant-microbe symbioses, the host plant benefits from improved nutrient uptake in exchange for carbohydrates to its symbiotic partner. Studies in legume-rhizobia symbiosis have shown that sucrose transport is essential for symbiotic nitrogen fixation because of the expensive nature of the process. Sucrose transporters were shown to play an active role in the loading and unloading of sugar in the phloem, transfer of sugar to the nodules and subsequently to bacteria within nodules [42]. Additionally, these transporters were also induced during mycorrhization, which suggests that they may also play an important role in sugar efflux to fungal symbionts [43, 44]. We identified several sugar transporters that were differentially expressed in rice roots. One sugar transporter (LOC_Os04g37970) was upregulated in expression at both time points suggesting a possible role in this rice-*A. brasilense* interaction. Another major group of transporters identified in our dataset includes the nodulin (MtN3, Major facilitator superfamily, etc.) genes. Interestingly, nodulin genes were first characterized in the initial response during the development of symbiotic root nodules and considered legume-specific. Recent studies have identified these genes to be present in non-legumes and have been suggested to play key roles in hormone and solute transport during other processes [45]. Future studies can investigate the role(s) of these genes in other plant-microbe associations in non-legumes.

Receptor kinases
Plant receptor-like kinases (RLKs) play vital roles in diverse signaling pathways that are involved in plant growth and development, plant defense responses, and plant-microbe symbiosis. Some are also involved in the perception of microbial signaling molecules which is vital to both disease resistance and symbiosis. For instance, the Lysin motif receptor-like kinases (LysM-RLKs) can control the establishment of AM symbiosis and legume-rhizobia symbiosis by recognizing the fungal and bacterial signaling molecules [46, 47]. While most studies on these genes have been performed on legumes, recent studies show that LysM-RLK proteins with an active kinase domain (LYKs) regulate symbiosis in non-legume plants as well [46, 48, 49].
However, not much is known about the role of these genes beyond legume-rhizobia symbiosis and AM symbiosis. In this study, the rice ortholog of *LjNFR5/MtNFP* gene (LOC_Os03g13080) was upregulated in expression at 1dpi. We also identified the *LYK8* gene (LOC_Os02g09960) to be upregulated in expression at 14dpi. Future studies should clarify the role of these genes in *rice-A. brasilense* interactions. In our study, we identified several SHR5 RLKs that were differentially expressed at both time points. This class of RLKs is present in a wide range of plant species. One study showed that expression of SHR5 gene was down-regulated in sugarcane plants associated exclusively with beneficial endophytic bacteria [50]. In our study, we identified both upregulated and downregulated SHR5 genes at both time points. For instance, the SHR5 gene (LOC_Os05g16430) was upregulated in expression at both time points whereas, the SHR5 gene (LOC_Os08g10310) was downregulated in expression at both time points. AGC protein kinases are another important family of proteins that seem to regulate the interaction with diverse microbes including both pathogenic and symbiotic microbes [51–53]. In our dataset, we identified one AGC kinase (LOC_Os09g31210) that was up-regulated in expression at 1dpi but down-regulated in expression at 14dpi. Another AGC kinase (LOC_Os12g01140) was upregulated in expression in rice roots at 14dpi. The role of these genes in *rice-A. brasilense* interactions needs additional investigation.

Transcription factors

Transcription factors are important regulators of various plant processes from growth and development to beneficial plant-microbe interactions [10, 11]. Genetic studies have identified several transcription factors that are involved in legume-rhizobia symbiosis and AM symbiosis. One example is the AP2/ERF class of TFs which is one of the largest families of plant transcription factors [54]. Multiple studies in *M. truncatula* and *L. japonicus* have identified different AP2/ERFs that are required at various stages of root nodulation [55–57]. In this study, we identified several genes in this category that were differentially expressed in rice roots. Some of these AP2/ERFs (e.g., LOC_Os4g57340, LOC_Os05g29810, LOC_Os04g52090, and LOC_Os02g42585) were differentially expressed at both time points. Functional characterization of these genes will provide more insights into their role during interactions between rice and *A. brasilense*. Another important class of TFs that is exclusive to plants and have been involved in diverse processes including the GRAS family of TFs. Genetic studies have shown that these TFs are required during beneficial plant-microbe symbioses [11, 58, 59]. We identified one GRAS TF (LOC_Os11g47920) that was upregulated in expression at 14dpi and two genes (LOC_Os12g04200 and LOC_Os11g47890) that were downregulated in expression at 1dpi. NAC transcription factors are one of the largest families of plant TFs that have been shown to play important roles in plant-biotic interactions [60]. We identified several genes belonging to the NAC TF family to be differentially expressed at both time points. Interestingly, several of these genes (e.g., LOC_Os10g42130, LOC_Os04g52810, and LOC_Os10g33760) were upregulated at 1dpi suggesting a role at earlier stages. This group of TFs is essential for hormone signaling and plant development including lateral root formation and root development [61–63]. One study showed that a NAC TF was upregulated in expression in central symbiotic nodule tissues in *M. truncatula* [62]. Studies have shown that hormone-related TFs are involved in plant-microbe interactions. In addition to the different ethylene response factors, we identified auxin response factors (ARF) to be differentially expressed in our dataset. These ARFs are likely to bind to target genes and regulate them transcriptionally which will induce appropriate physiological responses in a tissue-specific manner. In this study, *ARF11* (LOC_Os04g56850) and *ARF5* (LOC_Os02g04810) were downregulated in expression in rice roots 1dpi with *A. brasilense*. One recent study in *M. truncatula* showed
that changes in expression of auxin response factors occurred during the response to \textit{Sinorhizobium meliloti} infection suggesting a possible role of this family of TFs in nodulation [64]. Interestingly, \textit{MtARF5} and \textit{MtARF11} expression were reduced in \textit{Medicago} roots, similar to what we observed in this study. Future studies can focus on profiling the expression patterns of the ARFs in different plant tissues during \textit{A. brasilense} infection.

Hormone-related genes

Phytohormones play critical regulatory roles in plant growth and development and plant-microbe interactions [2, 20–23]. Plant hormones have their intricate systems requiring protein kinases, transporters, and transcription factors, some of which we discussed in the earlier sections. In this section, we focus on a few hormone-related genes that were identified in our dataset. Auxin is probably the most-studied plant hormone because of its central role in several plant developmental processes. It also plays a crucial role during beneficial plant-microbe symbioses [65–67]. In our dataset, we identified several auxin-related genes including the auxin efflux carriers and auxin-responsive genes among others. Auxin efflux carriers are involved during root nodulation [68]. Here at 1dpi, we identified one auxin efflux carrier gene (LOC_Os01g45550) that was downregulated in expression. At 14dpi, we identified two auxin efflux carriers (LOC_Os01g58860, LOC_Os09g38210) which were also downregulated in expression. Some auxin-responsive genes were downregulated in expression at 1dpi (LOC_Os03g58350, LOC_Os09g35870) and 14dpi (LOC_Os05g48270, LOC_01g67030, LOC_Os01g48850). Among early auxin response genes, the \textit{SAUR} gene family is the largest and has been implicated in the regulation of a wide range of plant physiological and developmental processes [69]. At 1dpi, we identified the \textit{SAUR} genes (e.g., LOC_Os01g56240, LOC_Os09g37460, LOC_Os06g50040, LOC_Os02g24700) to be differentially expressed in rice roots. Only one \textit{SAUR} gene (LOC_Os06g50040) was induced in expression at 1dpi. The others were all downregulated in expression. Similarly, at 14dpi all the \textit{SAUR} genes (e.g., LOC_Os06g04590, LOC_Os08g35110, LOC_Os02g05060, LOC_Os06g50040) were downregulated in expression. Another study reported that auxin-responsive genes were downregulated in expression during rice-\textit{Herbaspirillum} interactions [8]. Therefore, it is tempting to speculate that the repression of plant-derived auxin pathways might be important for rice-\textit{A. brasilense} interactions. Ethylene is another important plant hormone that plays vital roles in different aspects of plant biology including plant-microbe symbioses [2, 22]. The plant enzyme 1-aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes essential steps in the ethylene biosynthetic pathway. We identified several ACC oxidase genes that were differentially expressed at both time points. At 1dpi, one ACC oxidase gene (LOC_Os09g27750) was upregulated in expression, while other ACC oxidase genes (LOC_Os08g30080, LOC_Os05g05670, LOC_Os09g27820, LOC_Os02g53180) were downregulated in expression. Similarly, at 14dpi we identified one ACC oxidase gene (LOC_Os08g30100) to be upregulated in expression while other ACC oxidase genes (LOC_Os05g05670, LOC_03g64280, LOC_Os05g05680) were downregulated in expression. The general expression pattern of these genes suggests that ethylene synthesis might be repressed during rice-\textit{A. brasilense} interactions. A positive regulator of the ethylene signaling pathway is the \textit{Ethylene Insensitive 2} (\textit{EIN2}) gene. Genetic studies have shown that the \textit{Medicago} ortholog of Arabidopsis \textit{EIN2} is a negative regulator of symbiotic and pathogenic microbial associations [70]. At 14dpi, we identified an \textit{EIN2} gene (LOC_Os07g06130) that was differentially expressed. One study reported that \textit{ein2 (skl)} mutant in \textit{Medicago truncatula} was hyper colonized by nitrogen-fixing endophyte \textit{Klebsiella pneumoniae} 342, suggesting that ethylene
acts as an inhibitor of the endophytic colonization process [71]. Whether this rice EIN2 gene is required for associations with *A. brasilense* will require more studies.

To summarize, in this study we established an experimental system in which *A. brasilense* could colonize rice roots and promote plant growth. We observed similar effects in rice symbiotic mutants, *pollux* and *dmi3*, suggesting that these genes might not be required by the host plant to accommodate *A. brasilense*. Future studies should clarify the precise role of the common symbiotic pathway in these interactions. Using RNA-seq, we identified several excellent candidate genes which might be required for the rice-*A. brasilense* association. Our results suggest that the bacteria trigger a signaling pathway in the host plant roots that comprise a variety of protein kinases, transcription factors, and transporters culminating in plant growth promotion. Our data suggest the host defense responses are suppressed, as observed in other beneficial plant-microbe interactions (Fig 5; [17, 18, 26]). We also suggest that flavonoids might be involved in the initiation of this interaction. This dataset will serve as an excellent resource for improving our understanding of the interactions between non-legumes and beneficial bacteria. Most genetic studies on the host plant have been limited to legume-rhizobia and AM symbioses, but with advances in next-generation sequencing and genome-editing tools, we can now characterize other significant associations between non-legumes and beneficial bacteria. Identifying the genetic pathway(s) controlling these associations can have important implications for improving nitrogen fixation in non-legumes.
Materials and methods

Plant material and growth conditions

We used wild-type rice (*Oryza sativa* cv. Nipponbare) and Tos17 insertion lines in *DMI3* (line NF8513) and in *POLLUX* (line NC6423) for the different experiments in this study [72, 73]. Seeds were surface sterilized and germinated as described in our previous study [74]. Germinated seedlings were transferred to 15-cm petri plates (#639102, Greiner bio-one, North Carolina, USA) containing low-N$_2$ Fahraeus medium and allowed to grow for approximately 5–7 days in Percival growth chamber (#CU-22L, Iowa, USA) with 150 to 200 μmol m$^{-2}$ s$^{-1}$ light intensity, and relative humidity of 65% before bacterial inoculation.

Bacterial inoculation and bacterial counts

The bacterial inoculation of the rice roots was performed as described by Hiltenbrand et al [74]. Bacteria were grown on Tryptone Yeast-Extract (TY) media at 30˚C to an optical density (600 nm) of 0.6 [75–77]. The cells were then resuspended in sterile water and used for inoculation. The control seedlings were treated with sterile water and the bacteria-treated seedlings were inoculated with 10^8 cells/ml of *A. brasilense* and allowed to grow in the plant growth chamber as mentioned earlier. The root colonization was quantified as described by Hiltenbrand et al. (2016) with one minor modification. Here the seedlings were sampled six days post-inoculation with *A. brasilense*. The last wash was performed as mentioned in Hiltenbrand et al. (2016) to determine the efficiency of surface sterilization.

RNA extraction and RNA sequencing

We extracted total RNA from the plant roots 1 and 14 days post bacterial inoculation using Qiagen RNeasy® Plant Mini Kit (Cat #74904, California, USA) as described in Hiltenbrand et al [74]. We included three biological replicates for each sample. RNA quantification, library preparation, and sequencing were performed at the Research Technology Support Facility (RTSF), Michigan State University, East Lansing, MI, USA. Following RNA integrity check using a Bioanalyzer (Agilent Technologies), the sequencing libraries were prepared using the Illumina TruSeq Stranded mRNA Library Preparation Kit. Completed libraries were QC’d and quantified using a combination of Qubit dsDNA HS, Caliper LabChipGX HS DNA, and Kapa Illumina Library Quantification qPCR assays. All libraries were pooled in equimolar quantities and this pool was loaded on one lane of a HiSeq 4000 flow cell and sequenced in a 2×150bp paired-end format using HiSeq 4000 SBS reagents. Base calling was done by Illumina Real Time Analysis (RTA) v2.7.6 and output of RTA were demultiplexed and converted to FastQ format with Illumina Bcl2fastq v2.18.

RNA sequencing data analysis

Raw paired-end reads were examined for a possible low base score, Illumina adapter and PCR contaminations using fastQC. Illumina TruSeq adapter sequences were detected in forward reads and Illumina Single End PCR Primer sequences were detected in reverse reads. We used Trimmomatic [78] to (1) remove Illumina TruSeq adapter and PCR primer sequences, (2) remove leading and trailing bases with low quality, (3) scan the read with a 4-base wide sliding window and cut when the average quality per base drops below 15, and (4) drop reads shorter than 36 bases long. S1 Table shows the summary of reads surviving these quality filtering criteria for day 1 and day 14 samples, respectively. Paired-end reads surviving the quality control criteria were processed using the Tophat-Cufflinks pipeline [79] to obtain normalized gene expression profiles. Paired-end reads were mapped to the rice genome (*Oryza sativa*) using
Tophat (v2.0.12) [80], allowing two mismatches. The genome contigs (file all.chrs.con), gene annotations (file all.gff3) for 55986 loci, and short descriptions (file all.locus_brief_info.7.man) were downloaded from the Rice Genome Annotation Project [81]. Reads that align to annotated loci were quantified and normalized (FPKM normalized values) using cufflinks (v2.2.1) [82]. Differential expression (DE) analysis was performed using cuffdiff (part of the Cufflinks suite) and significant DE genes were defined as those with false discovery rate (FDR) < 0.05 and absolute fold-change (FC) > 2.

Reverse-transcriptase PCR
The RNA-seq results were validated with select genes via reverse transcriptase PCR (RT-PCR) as described in [83]. Prior to cDNA synthesis, RNA samples were treated with the Ambion® DNA-free™ DNase Treatment and Removal kit (Cat #AM1906, California, USA). We synthesized first strand cDNA from 300 ng of RNA using Thermo Scientific RevertAid RT Kit (Cat #K1691, Delaware, USA) using Oligo(dT)₁₈ primers per manufacturer’s instructions. For the internal reference gene, we used Cyclophilin in our RT-PCR analysis [74, 84]. The table of genes and their corresponding primer sequences are listed in S7 Table.

Supporting information
S1 Table. Sequence data summary. (XLSX)
S2 Table. List of differentially expressed genes in rice roots at 1dpi with A. brasilense. (XLSX)
S3 Table. List of differentially expressed genes in rice roots at 14dpi with A. brasilense. (XLSX)
S4 Table. List of differentially expressed transcription factors. (XLSX)
S5 Table. List of differentially expressed protein kinases. (XLSX)
S6 Table. List of differentially expressed transporters. (XLSX)
S7 Table. List of primers used in RT-PCR. (XLSX)

Acknowledgments
The authors would like to thank the support of the University Research Council, University of Central Arkansas, AR. The authors wish to thank USDA Dale Bumpers National Rice Research Center, Stuttgart, Arkansas, for providing rice seeds Oryza sativa (cv. Nipponbare).

Author Contributions
Conceptualization: Arijit Mukherjee.
Data curation: Jacklyn Thomas, Ha Ram Kim, Grant Wiggins, Qinqing Yang, Raj Singh.
Formal analysis: Ha Ram Kim, Yasir Rahmatallah, Galina Glazko.
Investigation: Jacklyn Thomas, Ha Ram Kim.
Methodology: Jacklyn Thomas, Ha Ram Kim, Grant Wiggins, Qinqing Yang, Galina Glazko.

Project administration: Arijit Mukherjee.

Resources: Arijit Mukherjee.

Supervision: Arijit Mukherjee.

Validation: Jacklyn Thomas.

Visualization: Yasir Rahmatallah, Galina Glazko.

Writing – original draft: Ha Ram Kim, Arijit Mukherjee.

Writing – review & editing: Jacklyn Thomas, Ha Ram Kim, Yasir Rahmatallah.

References
1. Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. Annals of Botany 2013: https://doi.org/10.1093/aob/mct048 PMID: 23478942
2. Mukherjee A, Ané JM. Plant Hormones and Initiation of Legume Nodulation and Arbuscular Mycorrhiza. In: Polacco JC, Todd CD, editors. Ecological Aspects of Nitrogen Metabolism in Plants Hoboken, NJ: John Wiley and Sons; 2011. p. 354–96.
3. Venkateshwaran M, Volkening JD, Sussman MR, Ané JM. Symbiosis and the Social Network of Higher Plants. Current Opinion in Plant Biology. 2012.
4. Genre A, Russo G. Does a common pathway transduce symbiotic signals in plant-microbe interactions? Frontiers in Plant Science. 2016. https://doi.org/10.3389/fpls.2016.00096.
5. Steenhout O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews. 2000; 24:487–506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x PMID: 10978548
6. Wisniewski-Dye F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukhamikov LO, Wuichet K, et al. Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLOS Genetics. 2011; 12:e1002430.
7. Drogue B, Sanguin H, Chamam A, Mozar M, Llauro C, Panaud O, et al. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation. Frontiers in Plant Science. 2014; 5: https://doi.org/10.3389/fpls.2014.00607 PMID: 25414716
8. Brusamarello-Santos LCC, Pacheco F, Aljanabi SMM, Monteiro RA, Cruz LM, Baura VA, et al. Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant and Soil. 2012; 356:113–25.
9. Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research. 2010. https://doi.org/10.1093/nar/gkq310 PMID: 20435677
10. Diedhiou I, Diouf D. Transcription factors network in root endosymbiosis establishment and development World Journal of Microbiology and Biotechnology 2018; 34:37: https://doi.org/10.1007/s11274-018-2418-7
11. Ripodas C, Clua J, Battaglia M, Baudin M, Niebel A, Zanetti ME, et al. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango. Plant Signaling & Behavior. 2014; 9:e28847.
12. Pellizzaro A, Albright B, Planchet E, Limami AM, Morere-Le Paven MC. Nitrate transporters: an overview in legumes. Planta. 2017; 246:585–95. https://doi.org/10.1007/s00425-017-2724-6 PMID: 28653185
13. Fan X, Naz M, Fan X, Xuan W, Miller AJ, Xu G. Plant nitrate transporters: from gene function to application Journal of Experimental Botany. 2017; 68:2463–75. https://doi.org/10.1093/jxb/erx011
14. Stahl Y, Simon R. Peptides and receptors controlling root development. Philosophical transactions of the Royal Society B. 2012; 367:1453–60.
15. Yamada M, Sawa S. The roles of peptide hormones during plant root development. Current Opinion in Plant Biology. 2013; 16:56–61. https://doi.org/10.1016/j.pbi.2012.11.004 PMID: 23219865
16. Hasson S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for improving plant-microbe interactions Journal of Experimental Botany. 2012; 63:3429–44. https://doi.org/10.1093/jxb/err430
17. Chen T, Duan L, Zhou B, Yu H, Zhu H, Cao Y, et al. Interplay of pathogen-induced defense responses and symbiotic establishment in *Medicago truncatula*. Frontiers in Microbiology. 2017; 8:973. https://doi.org/10.3389/fmicb.2017.00973 PMID: 28611764

18. Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J, Choi J, et al. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science. 2013; 341:1384–7. https://doi.org/10.1126/science.1242736 PMID: 24009356

19. Toth K, Stacey G. Does plant immunity play a critical role during initiation of the legume-rhizobium symbiosis? Frontiers in Plant Science. 2015; 6:401. https://doi.org/10.3389/fpls.2015.00401 PMID: 26082790

20. Bensmihen S. Hormonal control of lateral root and nodule development in legumes Plants. 2015; 4:523–47. https://doi.org/10.3390/plants4030523 PMID: 27135340

21. Ding Y, Oldroyd G. Positioning the nodule, the hormone dictum. Plant Signaling & Behavior. 2009; 4:89–93.

22. Ferguson BJ, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. Journal of Chemical Ecology. 2014; 40:770–90. https://doi.org/10.1007/s10886-014-0472-7 PMID: 25052910

23. Ryu H, Cho H, Choi D, Hwang I. Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Molecules and Cells. 2012; 34:117–26. https://doi.org/10.1007/s10059-012-0131-1 PMID: 22820920

24. Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signaling & Behavior. 2012; 7:636–41.

25. Webster G, Jain V, Davey MR, Gough C, Vasse J, Denarie J, et al. The flavonoid naringenin stimulates the intercellular colonization of wheat roots by *Azorhizobium caulinodans*. Plant, Cell & Environment 2002; 21:373–83.

26. Soto MJ, Dominguez-Ferreras A, Perez-mendoza D, Sanjuan J, O’livares J. Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiology. 2009; 11:381–8.

27. Samac DA, Shah DM. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter The Plant Cell. 1991; 3:1063–72. https://doi.org/10.1105/tpc.3.10.1063 PMID: 12324582

28. de A Gerhardt LB, Sachetto-Martins G, Contarini MG, Sandroni M, de P Ferreira R, de Lima VM, et al. *Arabidopsis thaliana* class IV chitinase is early induced during the interaction with *Xanthomonas campestris*. FEBS Letters. 1997; 419:69–75. PMID: 9426222

29. Goormachtig S, Lievens S, Van de Velde W, Van Montagu M, Holsters M. Srchi13, a novel early nodulin from *Sesbania rostrata*, is related to acidic class III chitinases. The Plant Cell. 1998; 10:905–15. https://doi.org/10.1105/tpc.10.6.905 PMID: 9634579

30. Grover A. Plant Chitinases: Genetic Diversity and Physiological Roles Critical Reviews in Plant Sciences. 2012; 31:57–73.

31. Fortunato A, Santos P, Graca I, Goveia MM, Martins SM, Pinto R, et al. Isolation and characterization of cgch3, a nodule specific gene from *Casuarina glauca* encoding a class III chitinase. Plant Physiology. 2007; 130:418–26.

32. Kim HB, An CS. Differential expression patterns of an acidic chitinase and a basic chitinase in the root nodule of *Elaeagnus umbellate*. Molecular Plant Microbe Interactions. 2002; 15:209–15. https://doi.org/10.1094/MPMI.2002.15.3.209

33. Santos P, Fortunato A, Ribeiro A, Pawlowski K. Chitinases in root nodules. Plant Biotechnology Journal. 2008; 25:299–307.

34. Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E. Simultaneous RNA-Seq analysis of a mixed transcriptome of rice and blast fungus interaction. Plos One. 2012; 7:e49423. https://doi.org/10.1371/journal.pone.0049423 PMID: 23139845

35. Park HL, Bhoo SH, Kwon M, Lee SW, Cho MH. Biochemical and expression analyses of the rice cinnamoyl-CoA reductase gene family Frontiers in Plant Science. 2017; 8: https://doi.org/10.3389/fpls.2017.02098 PMID: 28312373

36. Xi-Hui X, Wang C, Shu-Xian L, Zhen-Zhu S, Hui-Na Z, Li-Juan M, et al. Friend or Foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling. Scientific Reports. 2015; 5: https://doi.org/10.1038/srep13624 PMID: 26346310

37. Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, et al. Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signalling in rice. Proceedings of the National Academy of Sciences. 2006; 103:230–5.

38. Carvalho TL, Balsemao-Pires E, Saravia RM, Ferreira PC, Hemery AS. Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. Journal of Experimental Botany. 2014; 65:5631–42. https://doi.org/10.1093/jxb/eru319 PMID: 25114015
39. Wang YY, Hsu PK, Tsay YF. Uptake, allocation and signaling of nitrate Trends in Plant Science. 2012; 17:458–67. https://doi.org/10.1016/j.tplants.2012.04.006 PMID: 22658680

40. Fang Z, Bai G, Huang W, Wang Z, Wang X, Zhang M. The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield. Frontiers in Plant Science. 2017; 8:1338. https://doi.org/10.3389/fpls.2017.01338 PMID: 28824674

41. Courty PE, Smith P, Koegel S, Redeker D, Wipf D. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Critical Reviews in Plant Sciences. 2015; 34:4–16.

42. Sugiyama A, Saida Y, Yoshimizu M, Takanashi K, Sosso D, Frommer WB, et al. Molecular characterization of LiSWEET3, a sugar transporter in nodules of Lotus japonicus. Plant & Cell Physiology. 2017; 58:298–306.

43. Bezrutczyk M, Yang J, Eorn JS, Prior M, Sosso D, Hartwig T, et al. Sugar flux and signaling in plant-microbe interactions. The Plant Journal. 2018; 93:675–85. https://doi.org/10.1111/tpj.13775 PMID: 29160592

44. Manck-Gotzenberger J, Requena N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family. Frontiers in Plant Science. 2016; 7:487. https://doi.org/10.3389/fpls.2016.00487 PMID: 27148312

45. Denance N, Szurek B, Noel LD. Emerging functions of nodulin-like proteins in non-nodulating plant species. Plant & Cell Physiology 2014; https://doi.org/10.1093/pcc/pct198 PMID: 24470637

46. Gough C, Cottret L, Lefebvre B, Bono JJ. Evolutionary history of plant LysM receptor proteins related to root endosymbiosis. Frontiers in Plant Science. 2018; 9:923. https://doi.org/10.3389/fpls.2018.00923 PMID: 30029866

47. Buendia L, Girardin A, Wang TL, Cottret L, Lefebvre B. LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization Frontiers in Plant Science. 2018; 9:1531. https://doi.org/10.3389/fpls.2018.01531 PMID: 30405668

48. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, et al. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice Plant & Cell Physiology. 2014; 55:1864–72.

49. Zhang XS, Dong W, Sun J, Feng F, Deng Y, He Z, et al. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling The Plant Journal. 2015; 81:258–67. https://doi.org/10.1111/tpj.12723 PMID: 25399831

50. Vinagre F, Vargas C, Schwarcz K, Cavalcante J, Nogueira EM, Baldani JI, et al. SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association Journal of Expnimental Botany. 2005; 57:559–69.

51. Garcia AV, Al-Yousif M, Hirt H. Role of AGC kinases in plant growth and stress responses. Cellular and Molecular Life Sciences. 2012; 69:3259–67. https://doi.org/10.1007/s00018-012-1093-3 PMID: 22847330

52. Hirt H, Garcia AV, Oelmuller R. AGC kinases in plant development and defense. Plant Signaling & Behavior. 2011; 6:1030–3.

53. Pislariu C, Dickstein R. An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula. Plant Physiolog y. 2007; 144:682–94. https://doi.org/10.1104/pp.106.092494 PMID: 17237187

54. Licausi F, Ohme-Takagi M, Perata P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs New Phytologist. 2013; 199:639–49. PMID: 24010138

55. Yano K, Aoki S, Liu M, Umehara Y, Suganuma N, Iwasaki W, et al. Function and evolution of a Lotus japonicus AP2/ERF family transcription factor that is required for development of infection threads. DNA Research. 2017; 24:193–203. https://doi.org/10.1093/dnares/dsw052 PMID: 28028038

56. Kawaharada Y, James EK, Kelly S, Sandal N, Stougaard J. The ethylene responsive factor required for nodulation 1 (ERN1) transcription factor is required for infection-thread formation in Lotus japonicus. Molecular Plant Microbe Interactions. 2017; 30:194–204. https://doi.org/10.1094/MPMI-11-16-0237-R PMID: 28068194

57. Vernio T, Moreau S, de Billy F, Piet J, Combier JP, Rogers C, et al. EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. The Plant Cell. 2008; 10:2696–713.

58. Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, et al. Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiology. 2006; 142:1739–50. https://doi.org/10.1104/pp.106.089508 PMID: 17071642
59. Kaio P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science. 2005; 308:1786–9. https://doi.org/10.1126/science.1110951 PMID: 15961668

60. Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology. 2013; 4:248. https://doi.org/10.3389/fmicb.2013.00248 PMID: 24058359

61. Xie Q, Frugis G, Colgan D, Chua N. Arabidopsis NAC transduces auxin signal downstream of TIR1 to promote lateral root development. Genes and Development. 2000; 14:3024–36. PMID: 11114891

62. de Zelicourt A, Diet A, Marion J, Laffont C, Ariel F, Moison M, et al. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. The Plant Journal. 2012; 70:220–30. https://doi.org/10.1111/j.1365-313X.2011.04859.x PMID: 22098255

63. Huang D, Wang S, Zhang B, Shang-Guan K, Shi Y, Zhang D, et al. A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. The Plant Cell. 2015; 27:1681–96. https://doi.org/10.1105/tpc.15.00015 PMID: 26002868

64. Shen C, Yue R, Sun T, Zhang L, Xu L, Tie S, et al. Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula. Frontiers in Plant Science. 2015; 6:73. https://doi.org/10.3389/fpls.2015.00073 PMID: 25759704

65. Benjamin R, Scheres B. Auxin: The looping star in plant development. Annual Review of Plant Biology. 2008; 59:443–65. https://doi.org/10.1146/annurev.arplant.58.032806.103805 PMID: 18444904

66. Mathiesius U. Auxin: at the root of nodule development? Functional Plant Biology. 2008; 35:651–68.

67. Dubrovskey JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, et al. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proceedings of the National Academy of Sciences. 2008; 105:8790–4.

68. Huo X, Schnabel E, Hughes K, Frugoli J. RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation Journal of Plant Growth Regulation. 2006; 25:156–65. https://doi.org/10.1007/s00344-005-0106-y PMID: 19444321

69. Ren H, Gray WM. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Molecular Plant. 2015; 8:1153–64. https://doi.org/10.1016/j.molp.2015.05.003 PMID: 25983207

70. Pennetova RV, Uribe P, Anderson J, Lichtenzeig J, Gish JC, Nam YW, et al. The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. The Plant Journal. 2008; 55:580–95. https://doi.org/10.1111/j.1365-313X.2008.03531.x PMID: 18435823

71. Iniguez AL, Dong Y, Carter HD, Ahmer BM, Stone JM, Tripplett EW. Regulation of enteric endophytic bacterial colonization by plant defenses. Molecular Plant Microbe Interactions. 2005; 18:169–78. https://doi.org/10.1094/MPMI-18-0169 PMID: 15720086

72. Chen C, Gao M, Liu J, Zhu H. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca2+/calmodulin-dependent protein kinase. Plant Physiology. 2007; 145:1619–28. https://doi.org/10.1104/pp.107.109876 PMID: 17965173

73. Chen C, Fan C, Gao M, Zhu H. Antiquity and function of CASTOR and POLLUX, the twin ion channel-encoding genes key to the evolution of root symbioses in plants. Plant Physiology. 2009; 149:306–17. https://doi.org/10.1104/pp.110.131540 PMID: 18978069

74. Hiltenbrand R, Thomas J, McCarthy H, Dykema KJ, Spurr A, Newhart H, et al. A developmental and molecular view of formation of auxin-induced nodule-like structures in land plants Frontiers in Plant Science. 2016; 7:1692. https://doi.org/10.1038/nprot.2012.016 PMID: 22383036

75. Bible AN, Khalsa-Moyers G, Mukherjee T, Green CS, Mishra P, Purcell A, et al. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation. Applied and Environmental Microbiology. 2015; 81:8346–57. https://doi.org/10.1128/AEM.02782-15 PMID: 26407887

76. Schnabel E, Mukherjee Á, Smith L, Kassaw T, Long S, Frugoli J. The lss supernodulation mutant of Medicago truncatula reduces expression of the SUNN gene. Plant Physiology. 2010; 154:390–402. https://doi.org/10.1104/pp.110.164889 PMID: 20861425

77. Mitra S, Mukherjee A, Wiley-Kall A, Das S, Owen H, Reddy PM, et al. A rhizosphere-deficient lipopolysaccharide mutant of rhizobium sp. IRBG74 is defective in root colonization and beneficial interactions with its flooding-tolerant hosts Sesbania cannabina and wetland rice. Journal of Experimental Botany. 2016; https://doi.org/10.1093/jxb/erw354 PMID: 27702995

78. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014; 30:2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404
80. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25:1105–11. https://doi.org/10.1093/bioinformatics/btp120 PMID: 19289445

81. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, et al. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice. 2013; 6:https://doi.org/10.1186/939-8433-6-4.

82. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech. 2010; 28:511–5.

83. Thomas J, Bowman MJ, Vega A, Kim HR, Mukherjee A. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Functional & Integrative Genomics. 2018:https://doi.org/10.1007/s10142-018-0594-z.

84. Mukherjee A, Ané JM. Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Molecular Plant-Microbe Interactions. 2011; 24:260–70. https://doi.org/10.1094/MPMI-06-10-0146 PMID: 21043574