Influence of Co and Mn on Electronic and Magnetic properties of Ni$_2$MnGa Heusler alloy

Karunakaran M and Rudra Banerjee

Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India, 603203

June 27, 2022

Abstract

The ferromagnetic Heusler alloy Ni$_2$MnGa had been of major interest in past few years because of its magnetic properties which can be easily tuned. Ni$_2$MnGa Heusler alloys are intermetallic alloy with L2$_1$ structure. Here we report a detailed investigation of effect of doping of Co and Mn in Ni$_2$MnGa. Magnetic properties and electronic structure of Ni$_2$$_{x}Co_x$MnGa$_1$$_{x}Mn_z$ Heusler alloys have been studied by using Green’s function based KKR-CPA method based DFT calculations. We will show the magnetization can be tuned depending on the site Mn occupies. We will also discuss the magnetic interactions and magnetic stability of the systems.

1 Introduction

Heusler alloys (HAs) has gained a lot of attention from the community due to their possible usage in magnetocaloric(MC) [1], magnetic shape memory [2], spintronics [3] and GMR devices [4, 5, 6]. These ternary alloys, with generic symbol X$_2$YZ, where X and Y are d-block and Z is main group elements, shows various structures [7]. The completely ordered phase demonstrates L2$_1$ structure, Y-Z disordered phase demonstrates B$_2$ phase and the complete X - Y - Z disorder demonstrates A$_2$ structure. Wyckoff positions 4a(0, 0, 0), 4b(1/2, 1/2, 1/2) and 8c(1/4, 1/4, 1/4) are occupied by Z, Y and X respectively [8, 9, 10]. As we are having more lab-scale results, both theoretical and experimental, the commercial implementation is getting nearer. The downsized of the material with various applications like topological insulators, magnetic cooling and spintronics becomes imperative [11, 12].

Among the HAs, Ni-Mn-Ga system has got much attention due to their demonstration of both magnetic and structural phase transition [13, 14]. Ni-Mn-Ga systems also show properties like shape memory effect (SME) and magnetic field induced strain (MFIS) favourable to be used as actuators and sensors [15, 16]. They have also shown very favourable MC properties, suitable to replace the century old Joule-Thomson cooling [17, 18]. Ni-Mn-Ga system has a magneto structural phase transition with huge change in isothermal magnetic entropy (ΔS_m), but relatively narrow range of working temperature (T_{fwhm}), typical to the materials with first order phase transition(FOPT) [19]. However, the thermal hysteresis of FOPT and the Curie temperature is detrimental for magnetic refrigeration.

One of the best characteristics of HAs are the extreme tunability of their various properties due to doping. After Groot’s [20] theoretical observation of half-metallicity in half-heusler NiMnSb alloy, the same
was demonstrated soon in full-heusler $L2_1$ structure [21, 22, 23] as well. Electronic structure and magnetic properties has also been proposed in Ni doped Co$_2$Ga$_{1-x}$Ni$_x$MnAl [21] and Co doped Ni$_2$MnAl [23] systems in the X position only. Off-stoichiometric Ni$_{2-x}$Q$_x$MnGa and Ni$_{2-x}$Q$_x$MnGa$_{1-z}$R$_z$, where Q and R is any suitable elements has used to improve the various properties of Ni$_2$MnGa. Ni$_{2-x}$Q$_x$MnGa/Al is under study for long time for their martensite phase transition (M_s) and magnetic critical temperature (T_C). It is observed that MC effect is the highest around 0.18 $\leq x \leq$ 0.27 as magnetic and structural phase change occurs in this range [6, 26]. Partially substituting Ni with Co is known to enhance the ferromagnetic coupling and hence the T_C, and decreases the martensitic temperature, T_M. This increases the possibility of that the quaternary system undergoes a martensitic transition together with a meta magnetic phase transition [27].

In General, both structural and magnetic properties are highly depends on off-stoichiometric combination of Z. There are also a few studies to observe the effect of Y replacing Z, mostly Ni$_2$MnZ$_{1-y}$Mn, $Z =$ Ga, In etc. [28, 27, 5, 29]. Substituting the Mn element in Z position, can stabilize the ferromagnetic cubic state [14] and these Mn$_Z$ atom interact antiferromagnetically between the surrounding Mn$_Y$ and normal Mn$_Y$ because the distance between the Mn$_Y$-Mn$_Z$ is less compared to the Mn$_Y$-Mn$_Y$ and Mn$_Z$-Mn$_Z$ [30]. Here, Mn$_Z$ is denoting the Mn atom in Ga site (Z), and Mn$_Y$ is the Mn’s normal position (Y). We expected to enhance the magnetic moments of the material for doping of Mn in Ga site.

In the present article, we have reported our systematic study of Ni$_{2-x}$Co$_x$MnGa$_{1-z}$Mn$_z$ (which will be referred as NiMnGa(x,z), where, x, z is the concentration of Co and Mn in Ga site, respectively, for brevity. For example, Ni$_{1.88}$Co$_{0.12}$MnGa$_{0.74}$Mn$_{0.26}$ will be denoted as NiMnGa(0.12, 0.26). We have studied the variation of electronic structure, magnetic exchange and magnetic critical temperature of NiMnGa(x,z) with z ranging from 0 to 0.24 (up to 24%) and z ranging from 0 to 0.5 (up to 50%) for cubic phase only.

This is technologically relevant as the T_C is one of the detrimental factor of working temperature range.

2 Methods

The off-stoichiometric composition are best handled like Ni$_{2-x}$Q$_x$MnGa$_{1-z}$R$_z$ are using greens function based formalism [31]. We have performed ab-initio calculations using multiple scattering greens function formalism as implemented in SPRKKR code [32, 33, 34]. We have used the Perdew-Burke-Ernzerhof(PBE) [35] method is used as GGA functional. First Brillouin zone integrations were performed on the 2500 grid of k-points and energy convergence criteria was set at the calculation in the range 10^{-5}Ry. We have implemented full potential spin polarized scalar relativistic implementation of SPRKKR with angular momentum cut-off $\ell_{max} = 2$ as suitable for our system.

The Lattice parameter with minimum energy of Ni$_2$MnGa(NiMnGa(0, 0)) is calculated using the following procedure: (i) Obtained the lattice parameter from materials project database [36]; (ii) Calculate the SCF of the system, with varying lattice parameter ranging from 94% to 106%, with identical calculation for each lattice parameters. (iii) Fit the lattice parameter vs energy plot obtained in last step using a 4th order polynomial. The minima of the curve is the optimized lattice parameter. For NiMnGa(x,z), we have taken the optimized lattice parameter of previous calculations that has a minimum x, z change as the starting point and followed the steps above. We have shown the optimization curve of Ni$_2$MnGa in Figure 1(a). Other minimization energy curves are not shown here due to brevity.

The magnetic exchange energy ($J_{ij}^{\nu\mu}$) was calculated to understand the properties of magnetic interactions. The Heisenberg model, defined as

$$H = \sum_{\nu,\mu} \sum_{i,j} J_{ij}^{\nu\mu} \mathbf{e}_i^{\nu} \cdot \mathbf{e}_j^{\mu}$$

(1)
where ν, μ represent atoms in different sublattices, i, j is different lattice point, \mathbf{e}_i^ν is the magnetic orientation of ith atom at ν sublattices. The $J_{ij}^{\nu\mu}$ is calculated via the energy difference due to infinitesimal change of magnetic direction, as formulated by Lichtenstein [37].

Finally, the T_C is estimated using mean field theory, yielding

$$k_B T_C = \frac{3}{2} J_l$$

where J_l is the largest eigenvalue of the determinant, as described in [30]. It must be remembered that mean field calculations generally overestimate the T_C, which is true for our calculations, as well.

3 Results

The Ni$_2$MnGa ground state structure in $FM\bar{3}M$ (space group 225). The Ni atom occupies 4c (.25, .25, .25) and 4d (.75, .75, .75) Wyckoff positions, Mn occupies 4b (.5, .5, .5) and Ga occupies 4a (0, 0, 0) Wyckoff positions. We have calculated the electronic and magnetic properties of NiMnGa(x, z) for (x = 0.0, 0.12 and 0.24) and (z = 0.0, 0.15, 0.26, 0.35 and 0.5). The optimized lattice parameter of each sample calculated using the method described in the sec. (2) are tabulated in Table (1, 2, 3). The Figure (1b) shows the variation of lattice parameters with x and z, which is mostly linear.

3.1 Pure Ni$_2$MnGa system

Figure (2) shows the density of states (DOS) (Figure (2a)) and magnetic exchange interactions (J_{ij}) (Figure (2b)) with Mn atom at the center for Ni$_2$MnGa. The J_{ij} is highest for Mn-Ni interactions, with the value ≈ 5meV. All the interactions are predominantly ferromagnetic in this case. The complete table of optimized lattice parameter, total and individual magnetic moment per atom and Curie temperature of pure system is tabulated in Table (1).
3.2 NiMnGa(\(x, 0\)) systems

The NiMnGa(\(x, 0\)) system, i.e., doping in Ni site only, though heavily studied within the austenite phase, we have included them for completeness. Doping of Co in \(X\) position will decrease the lattice parameter of the material shown in Figure 1b and Table 1. The electronic and magnetic structures of NiMnGa(\(x, 0\)) is shown in Figure 3 as representative of the series. The Co atom has much higher magnetic moment (\(\approx 1\mu B\)) compared to Ni (\(\approx 0.3\mu B\)), and the \(J_{ij}\) is much higher compared to Ni\(_2\)MnGa. Due to very fragile magnetic moment of Ni, it is seen that moment of Ni increases rapidly with increase of doping concentrations of Co, as shown in Table 1. Of course, in current case, Mn\(_Z\) =0.

3.3 NiMnGa(0, \(z\)) systems

The opposite systems of the one shown in the previous section (3.2) is NiMnGa(0, \(z\)) system, where \(X\) site is fully ordered, but Ga is replaced by Mn, yielding Ni\(_2\)MnGa\(_{1-x}\)Mn\(_x\) system. Doping of Mn in \(Z\) position will increase the lattice parameter of the material shown in Figure 1b and Table 2. The electronic structure
Table 1: Optimized lattice parameter and magnetic moments on individual atoms for NiMnGa(0, 0) and NiMnGa(x, 0) system.

Concentrations	Lattice Parameter (au)	Magnetic Moment(µB)	T_C (K)
	x z	Total Ni Co MnZ Ga Mny	
0 0	11.061	4.08 0.29 0 - -0.08	3.56 392.975
0.12 0	11.047	4.21 0.31 1.07 - -0.08	3.50 1138.093
0.24 0	11.032	4.34 0.33 0.95 - -0.09	3.45 1147.953

doesn’t change much due to doping (Figure 4a.1), but the absence of Co in Ni site decreases the magnetic interactions of Mn-Ni by half w.r.t. the case of NiMnGa(x, 0) (Figure 4b.2).

The most dominant interaction is Mn$_Y$-Mn$_Z$ interaction, which are antiferromagnetically coupled as shown in Figure (4b.1-4b.4) for each concentration.

Figure 4: The (a) DOS and (b) exchange interaction of NiMnGa(0, z) (z = 0.15, 0.26, 0.35 and 0.50).

Table 2: Optimized lattice parameter and magnetic moments on individual atoms for NiMnGa(0, z) system.

Concentrations	Lattice Parameter (au)	Magnetic Moment(µB)	T_C (K)
	x z	Total Ni Co MnZ Ga Mny	
0.15	11.074	4.76 0.35 - 3.65 -0.08	3.57 741.170
0.26	11.084	5.27 0.40 - 3.65 -0.08	3.58 690.785
0.35	11.091	5.69 0.44 - 3.65 -0.09	3.59 664.351
0.50	11.101	6.39 0.51 - 3.65 -0.10	3.60 622.667
3.4 Complete disorder: NiMnGa(x, z) systems

Finally, we study the systems with disorder both at X and Z site, i.e., $\text{Ni}_{2-x}\text{Co}_x\text{MnGa}_{1-z}\text{Mn}_z$. Figure 5 and Figure 6 represents the electronic and magnetic structures of NiMnGa(x, z) for ($x = 0.0$, 0.12 and 0.24) and ($z = 0.0$, 0.15, 0.26, 0.35 and 0.5).

![DOS plots](image1)

Figure 5: The DOS for completely disordered NiMnGa(x, z). Figure 5(a) shows the DOS of $x = 0.12$ Figure 5(c-d) shows the DOS of $x = 0.24$ respectively with ($z = 0.15$, and 0.35). $z=0.26$ and 0.5 has not been plotted for brevity.

![Exchange interaction plots](image2)

Figure 6: The Exchange interaction for completely disordered NiMnGa(x, z) system. Figure 6(a-c) shows the J_{ij} of $x = 0.12$ Figure 6(c-d) shows the J_{ij} of $x = 0.24$ respectively with ($z = 0.15$, and 0.35). $z=0.26$ and 0.5 has not been plotted for brevity.

The variation of magnetic moments of NiMnGa(x, z) are tabulated in Table 3. This shows the presence of Co at Ni induces magnetism in a negative way to all other atoms except the Ni, and their total magnetic moment is changed accordingly.

Replacing Ga with MnZ on the other hand has a positive effect on magnetic moment. Specially, Mn$Z = 50\%$ gives a comparatively large magnetic moment compare to others.

The variation of magnetic moment of NiMnGa(x, z) as a function of doping concentration is shown in Figure 7(a). The change in magnetic moment in the system changes very linearly within the doping range. This well-behaved nature is good for tuning and applicability of this system.

Finally, we have done mean field based calculations to find the T_C of the systems. Our result shows that doping both X and Z sites increases the T_C. But, for NiMnGa(0, z), T_C is the highest around $z = 0.12$, then it starts decreasing. On the other hand, doping a little in X site, increases the T_C and increases steadily. Our T_C for NiMnGa(0,0) commensurate with 59. Unfortunately we are unable to find any literature on variation of T_C with doping. The variation of T_C is shown in Figure 7(b) and tabulated in Table 1 for NiMnGa(0 and x, 0), NiMnGa(0, z) and NiMnGa(x, z) respectively.
Table 3: Optimized lattice parameter and magnetic moments on individual atoms for NiMnGa(0, z) system.

Concentrations	Lattice Parameter (au)	Magnetic Moment(µB)	T_C (K)
x , z	Total Ni Co Mn$_Z$ Ga Mn$_Y$		
0.12	0.15 11.062 4.90 0.37 1.08 3.60 -0.09 3.51	1374.932	
	0.26 11.066 5.41 0.42 1.14 3.60 -0.09 3.52	1464.969	
	0.35 11.073 5.82 0.46 1.18 3.59 -0.09 3.52	1538.180	
	0.50 11.082 6.52 0.52 1.26 3.59 -0.10 3.54	1653.155	
0.24	0.15 11.042 5.03 0.39 1.08 3.54 -0.09 3.46	1388.860	
	0.26 11.048 5.54 0.44 1.13 3.54 -0.09 3.47	1476.459	
	0.35 11.054 5.95 0.48 1.18 3.54 -0.10 3.47	1548.840	
	0.50 11.063 6.63 0.54 1.25 3.54 -0.10 3.48	1661.804	

(a) Variation of magnetic moment with doping concentration.

(b) Variation of T_C with doping concentration.

Figure 7: Variation of magnetic moment and T_C of NiMnGa(x, z).

4 Discussions

In the pristine Ni$_2$MnGa, there is a pseudogap in minority channel \approx 1ev below the Fermi-level. This pseudogap is originated due to the hybridization between d orbitals of Ni and 3p states of Ga. The gap is terminated by a peak just below the Fermi-level originated from the hybridization of same orbitals and drives the system to Jahn-Teller instability. In NiMnGa(x, 0) and NiMnGa(x, z) sytems, with the doping at Ni site stabilize the Jahn-Teller instability as the peak smears out and the pseudogap becomes narrower with higher x value, as shown in Figure 4 for NiMnGa(x, 0) and Figure 5 for NiMnGa(x, z). In NiMnGa(0, z) systems the pseudogap almost remains same throughout the doping range as shown in Figure 6.

The magnetic moments are of NiMnGa(x, 0), NiMnGa(0, z) and NiMnGa(x, z) are shown in Table 1, Table 2 and in Table 3, respectively. From the tables and Figure 7a, which shows the variation of total magnetic moment as a function of x and z concentrations, we see the general features: (i) Magnetic moment is increasing linearly with doping. (ii) Magnetic moments increase faster in doping in Z site than doping in X site. This is due to the overall magnetic moments of X site occupants, i.e., Ni and Co has less magnetic moment that of Mn$_Z$. (iii) Mn$_Z$ has higher magnetic moment that Mn$_Y$ site. The variation in x and z affects the atomic moments in various sites and in turn, affects the total magnetic moments. General observations are (i) Atomistic moments of X site is most susceptible to x and z concentrations, while Y and Z sites moment remains almost unchanged. (ii) Both Ni and Co moment increases with x, z concentration
but more with z concentrations.

The Curie temperature T_C has been calculated using mean field approximations (MFA). As expected, MFA overestimates the T_C. For pure Ni$_2$MnGa, our calculated $T_C \approx 392K$ is in good agreement with experimental finding 365K [39]. For NiMnGa(x, z), the qualitative variation of T_C increases monotonously, with the quantitative value matching the previous findings [24]. T_C for NiMnGa(0, z) first increase from 392K to 741K for $z = 0.15$. Higher doping of Mn$_Z$ decrease the T_C monotonously. For Co-doped systems, both NiMnGa(x, 0) and NiMnGa(x, z) increases monotonously and gives approximately same T_C irrespective of Mn$_Z$ concentrations. To get an understanding of the variation of T_C, we have calculated the magnetic pair interaction J_{ij} as shown in Figure (2b), (3b.1b.2), (4b.1b.4) and (6a-3b) for Ni$_2$MnGa, NiMnGa(x, 0), NiMnGa(0, z) and NiMnGa(x, z) respectively with Mn$_Y$ at the center. When Co atom is present, i.e., $x \neq 0$ (as in NiMnGa(x, 0) and NiMnGa(x, z) case), Mn$_Y$-Co is the dominant interaction. The difference is for NiMnGa(x, 0) the maximum interaction is almost constant (3b.1b.2) but for NiMnGa(x, z) the interaction keeps increasing. The same variation is evident from Figure (7b) for $x = 0.15, 0.24$. For NiMnGa(0, z), the there is a ferro-antiferro competition between Mn$_Y$-Ni and Mn$_Y$-Mn$_Z$. This brings the T_C down after initial increase from pure Ni$_2$MnGa.

5 Conclusion

We have investigated the electronic and magnetic properties of Ni$_{2-x}$Co$_x$MnGa$_{1-z}$Mn$_z$, with $0 \leq x \leq 0.24$, $0 \leq z \leq 0.5$. The study of replacing both X and Z is significantly sparse compared to any one of them. We have used DFT and Mean Field approximations to study the compound effect of dual-doping. Electronic structures, DOS and magnetic properties including magnetic exchange and moments are calculated using DFT as implemented in SPRKKR package. The critical temperature, T_C is calculated using MFA. Our calculation shows the existence of strong Mn-Mn antiferromagnetic interaction between Mn at Ga and Mn at its own sub-lattice. It is also noticed that changing concentration at Mn$_Z$ does not change the magnetic exchange significantly. This is an interesting result, as opposed to the findings in the case of Ni$_2$Mn$_{1+x}$Sn$_{1-x}$ [30].

The T_C’s are obtained using MFA simulations using the magnetic exchange values obtained from ab-initio calculations. The numerical results for pure system are very close to that reported by experiments.

We would like to point out the calculations are done in cubic($c/a = 1$) phases only. Nevertheless, the dual-doping case, we have shown the variation of magnetic exchange parameters and magnetic critical temperatures. We believe, these findings will be helpful for designing the functional properties like MCE and shape memory alloys by alloying Ni$_2$MnGa suitably.

6 Acknowledgement

We acknowledge the High Performance Computing Center (HPCC), SRM IST for providing the computational facility to carry out this research work effectively.

References

[1] Thorsten Krenke, Eyüp Duman, Mehmet Acet, Eberhard F. Wassermann, Xavier Moya, Lluis Mañosa, and Antoni Planes. Inverse magnetocaloric effect in ferromagnetic ni–mn–sn alloys. *Nature Materials*, 4(6):450–454, may 2005.
[2] A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko. Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. *Applied Physics Letters*, 80(10):1746–1748, mar 2002.

[3] Lakhan Bainsla, A. I. Mallick, M. Manivel Raja, A. A. Coelho, A. K. Nigam, D. D. Johnson, Aftab Alam, and K. G. Suresh. Origin of spin gapless semiconductor behavior in CoFeCrGa: Theory and experiment. *Physical Review B*, 92(4), jul 2015.

[4] Ashis Kundu, Srikrishna Ghosh, Rudra Banerjee, Subhradip Ghosh, and Biplab Sanyal. New quaternary half-metallic ferromagnets with large curie temperatures. *Scientific Reports*, 7(1), may 2017.

[5] T. Kihara, T. Roy, X. Xu, A. Miyake, M. Tsujikawa, H. Mitamura, M. Tokunaga, Y. Adachi, T. Eto, and T. Kanomata. Observation of inverse magnetocaloric effect in magnetic-field-induced austenite phase of heusler alloys Ni50-xCoxMn31.5Ga18.5(x=9 and 9.7). *Physical Review Materials*, 5(3), mar 2021.

[6] Jian Liu, Nils Scheerbaum, Sandra Kauffmann-Weiss, and Oliver Gutfleisch. NiMn-based alloys and composites for magnetically controlled dampers and actuators. *Advanced Engineering Materials*, 14(8):653–667, may 2012.

[7] Kaustuv Manna, Yan Sun, Lukas Muechler, Jürgen Kübler, and Claudia Felser. Heusler, weyl and berry. *Nature Reviews Materials*, 3, Jul 2018.

[8] Xiong Yang, Ying Wang, Mingrun Du, and Yanhong Xue. First-principles study of pt doping effects on ni2mnga and ni2fega ferromagnetic shape memory alloys. *J. Appl. Phys.*, 126, Aug 2019.

[9] F. Heusler. Ueber magnetische manganlegierungen. *Phys. Ges*, 5(219), 1903.

[10] F. Heusler, W. Starck, and E. Haupt. Magnetisch-chemische studien. *Phys. Ges*, 5(220), 1903.

[11] Changhai Wang, Judith Meyer, Niclas Teichert, Alexander Auge, Elisabeth Rausch, Benjamin Balke, Andreas Häf ten, Gerhard H. Fecher, and Claudia Felser. Heusler nanoparticles for spintronics and ferromagnetic shape memory alloys. *Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena*, 32(2):020802, mar 2014.

[12] Y.C. Zhang, F.X. Qin, D. Estevez, V. Franco, and H.X. Peng. Structure, magnetic and magnetocaloric properties of ni2mnga heusler alloy nanowires. *Journal of Magnetism and Magnetic Materials*, 513:167100, nov 2020.

[13] P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak. Magnetic order and phase transformation in ni2mnga. *Philosophical Magazine B*, 49, 1984.

[14] E. T. Dilmieva, Y. S. Koshkid’ko, V. V. Koledov, A. P. Kamantsev, A. V. Mashirov, J. Cwik, V. V. Khovaylo, and V. G. Shavrov. Formation of a martensitic twins structure in ni2.16mn0.84ga heusler alloy by high magnetic fields under adiabatic and isothermal conditions. *Bulletin of the Russian Academy of Sciences: Physics*, 81(11):1283–1288, nov 2017.

[15] Manfred Wuttig, Luohong Liu, Koichi Tsuchiya, and Richard D. James. Occurrence of ferromagnetic shape memory alloys (invited). *Journal of Applied Physics*, 87(9):4707–4711, may 2000.

[16] Yan Xin, Yan Li, Liang Chai, and Huibin Xu. Shape memory characteristics of dual-phase ni–mn–ga based high temperature shape memory alloys. *Scripta Materialia*, 57(7):599–601, oct 2007.
[17] Alexander P. Kamantsev, Victor V. Koledov, Alexey V. Mashirov, Elvina T. Dilmieva, Vladimir G. Shavrov, Jacek Cwik, Anton S. Los, Victor I. Nizhankovskii, Krzysztof Rogacki, Irina S. Tereshina, Yuriy S. Koshkid'ko, Maria V. Lyange, Vladimir V. Khovaylo, and Pnina Ari-Gur. Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe. Journal of Applied Physics, 117(16):163903, apr 2015.

[18] V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid'ko, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev. Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81GaAs as a case study. Physical Review B, 78(6), aug 2008.

[19] Rie Y. Umetsu, Xiao Xu, and Ryosuke Kainuma. NiMn-based metamagnetic shape memory alloys. Scripta Materialia, 116:1–6, apr 2016.

[20] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow. New class of materials: Half-metallic ferromagnets. Physical Review Letters, 50(25):2024–2027, jun 1983.

[21] S Ishida, S Akazawa, Y Kubo, and J Ishida. Band theory of Co2MnSn, Co2TiSn and Co2TiAl. Journal of Physics F: Metal Physics, 12(6):1111–1122, jun 1982.

[22] S Fujii, S Sugimura, Ishida, and S Asano. Hyperfine fields and electronic structures of the heusler alloys Co2MnX (X=Al, Ga, Si, Ge, Sn). Journal of Physics: Condensed Matter, 2(43):8583–8589, oct 1990.

[23] M. Jourdan, J. Minár, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Glökosvskii, M. Kolbe, H.J. Elmers, G. Schönhense, H. Ebert, C. Felser, and M. Kläui. Direct observation of half-metallicity in the heusler compound Co2MnSi. Nature Communications, 5(1), may 2014.

[24] A. Okubo, X. Xu, R. Y. Umetsu, T. Kanomata, K. Ishida, and R. Kainuma. Magnetic properties of Co50-xNixMn25Al25 alloys with b2 structure. Journal of Applied Physics, 109(7):07B114, apr 2011.

[25] T. Kanomata, Y. Kitsunai, K. Sano, Y. Furutani, H. Nishihara, R. Y. Umetsu, R. Kainuma, Y. Miura, and M. Shirai. Magnetic properties of quaternary heusler alloys Ni2-xCoMnGa. Physical Review B, 80(21), dec 2009.

[26] V. D. Buchelnikov and V. V. Sokolovskiy. Magnetocaloric effect in NiMn-x (x = Ga, In, Sn, Sb) heusler alloys. The Physics of Metals and Metallography, 112(7):633–665, dec 2011.

[27] R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, and T. Kanomata. Metamagnetic shape memory effect in a heusler-type Ni43Co7Mn39Sn11 polycrystalline alloy. Applied Physics Letters, 88(19):192513, may 2006.

[28] Fabio Orlandi, Ash Çakır, Pascal Manuel, Dmitry D. Khalyavin, Mehmet Acet, and Lara Righi. Neutron diffraction and symmetry analysis of the martensitic transformation in co-doped Ni2MnGa. Phys. Rev. B, 101(9), mar 2020.

[29] Vladimir Sokolovskiy, Anna Gränebohm, Vasilyy Buchelnikov, and Peter Entel. Ab initio and monte carlo approaches for the magnetocaloric effect in co- and indoped Ni-Mn-Ga heusler alloys. Entropy, 16(9):4992–5019, sep 2014.

[30] V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin, P. Entel, S. Sahoo, and M. Ogura. First-principles investigation of chemical and structural disorder in magnetic Ni2Mn1+XSn1-xHeusler alloys. Physical Review B, 86(13), oct 2012.
11

[31] Rudra Banerjee and Abhijit Mookerjee. Augmented space recursion code and application in simple binary metallic alloy. *International Journal of Modern Physics C*, 21(02):205–220, feb 2010.

[32] H Ebert, D K"odderitzsch, and J Minár. Calculating condensed matter properties using the KKR-green's function method—recent developments and applications. *Reports on Progress in Physics*, 74, aug 2011.

[33] H. Ebert. Fully relativistic band structure calculations for magnetic solids - formalism and application. In Hugues Dreyssé, editor, *Electronic Structure and Physical Properies of Solids*, pages 191–246, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[34] Papanikolaou Nikos Mavropoulos Phivos. The korringa-kohn-rostoker (kkr) green function method i. electronic structure of periodic systems. In D. Marx J. Grotendorst, S. Blügel, editor, *Computational Nanoscience: Do It Yourself!*, 2006.

[35] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. *Physical Review Letters*, 77(18):3865–3868, oct 1996.

[36] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson. Commentary: The materials project: A materials genome approach to accelerating materials innovation. *APL Materials*, 1(1):011002, jul 2013.

[37] A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, and V.A. Gubanov. Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. *Journal of Magnetism and Magnetic Materials*, 67, 1987.

[38] Munima B Sahariah, Subhradip Ghosh, Chabungbam S Singh, S Gowtham, and Ravindra Pandey. First-principles computation of structural, elastic and magnetic properties of Ni₂FeGa across the martensitic transformation. *Journal of Physics: Condensed Matter*, 25(2):025502, Nov 2012.

[39] P J Brown, J Crangle, T Kanomata, M Matsumoto, K-U Neumann, B Ouladdif, and K R A Ziebeck. The crystal structure and phase transitions of the magnetic shape memory compound Ni₂MnGa. *Journal of Physics: Condensed Matter*, 14(43):10159–10171, oct 2002.