Hepatitis C virus infection and prisoners: Epidemiology, outcome and treatment

Rosa Zampino, Nicola Coppola, Caterina Sagnelli, Giovanni Di Caprio, Evangelista Sagnelli

Abstract
The studies on hepatitis C virus (HCV) infection in prison populations are few and mostly cross-sectional. We analyzed prevalently the articles appearing on PubMed in the last ten years. HCV infection is frequent in prisoners, prevalences ranging from 3.1% to 38% according to the HCV endemicity in the geographical location of the prison and in the countries of origin of the foreign prisoners and to the prevalence of intravenous drug use, which is the most important risk factor for HCV infection, followed by an older age of prisoners and previous prison terms. HCV replication in anti-HCV-positive cases varies from 45% to 90% in different studies, and the most common HCV genotypes are generally 1 and 3. The response to antiviral treatment is similar in prisoners to that of the general population. Unfortunately, treatment is administered less frequently to prisoners because of the difficulties in management and follow-up. The new directly acting antivirals offer a good therapy option for inmates because of their good efficacy, short duration of treatment and low incidence of side effects. The efforts of the prison authorities and medical staff should be focused on reducing the spread of HCV infection in prisons by extending the possibility of follow-up and treatment to more prisoners with chronic hepatitis C.

Key words: Prisoners; Management; Treatment; Care; Chronic hepatitis C

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Hepatitis C virus (HCV) infection in prisoners is
Hepatitis C virus (HCV) infection is more frequently detected in inmates than in the general population\cite{7,8}, the highest prevalence being reported in Central Asia (38\%) and Australasia (35\%)\cite{7,8}. These high prevalences are due mostly to unsafe lifestyles and family, psychiatric and social problems, conditions often experienced by prisoners before incarceration. Intravenous drug use (IVDU), tattooing and promiscuous sexual contact\cite{5} are the main risk factors for acquiring HCV infection. Once in prison, overcrowding, violence, separation from family and emotional problems are additional reasons\cite{9} that may induce inmates to start or continue unsafe habits. An estimate of the incidence of new HCV infections in prisons exceeds 30 per 100 persons per year\cite{7,8,9,10}.

Proper treatment of chronic hepatitis C in prison is rare for social and educational reasons\cite{9,26} and, not least, because most inmates with HCV infection remain unaware of their virological condition. Several other barriers may prevent HCV inmates from being admitted for treatment: Individual problems (drug abuse, stress, fear, lack of confidence) and social problems (stigma, discrimination, difficulty to relate to the health personnel)\cite{9,26}. Another obstacle may be the lack in a prison of a liver disease specialist, a problem that can be overcome with the use of telemedicine\cite{26}.

Although many prisoners are incarcerated for long periods, the average length of stay in the same prison can be weeks or months in several cases\cite{13,14}, which makes it difficult to complete the clinical itinerary from screening to post-treatment follow-up.

The prison authorities and physicians should implement strategies to improve the diagnostic and therapeutic approach to HCV in prisoners, general screening for the anti-HCV antibody being the first step in this approach. Prisoners with chronic HCV infection should undergo a full diagnostic procedure and clinical staging before being considered for treatment, since inmates with HCV-related chronic hepatitis can achieve a sustained virological response with the same frequency as free patients\cite{15}.

Because of the numerous obstacles mentioned above, only a few studies on HCV infection in prisons have been carried out to date, and directives issued by experts\cite{26} are often not properly followed. Because of complexity of the subject and in order to analyze more recent aspects of the problem, we evaluated prevalently the articles appearing on PubMed in the last ten years. We used a combination of the following keywords: "prison", "inmates", "HCV infection", "HCV screening", "treatment", "interferon", "ribavirin", "telaprevir", "boceprevir", "direct acting antivirals (DAA)", "sofosbuvir", to find articles focusing on the epidemiology, clinical outcome and treatment of HCV infection in prisons.

EPIDEMIOLOGY OF HCV INFECTION IN PRISONS

Table 1 shows the results of the majority of the studies performed worldwide on the anti-HCV prevalence in prisoners\cite{17-42}. These rates ranged over the years from 3.1\% to 38\%, in relation to the endemicity of HCV infection in the geographical location of the prison and in the countries of origin of foreign prisoners as well as the prevalence of IVDU in the different studies. The lowest anti-HCV prevalence (3.1\%) was reported by Santos et al\cite{16} in 422 inmates held in two prisons, one for males and one for females in the State of Sergipe in Brazil, where only 10\% of the detainees stated IVDU. In contrast, the highest prevalence of HCV infection was reported by Reekie et al\cite{28} in prisoners in Australia investigated in 2004. The same author found lower rates in subsequent studies evaluating HCV infection in the inmates of all Australian prisons, 33.3\% in 2007 and 23.1\% in 2010, regardless of IVDU.

Taylor et al\cite{29}, in a national cross-sectional study conducted in Scotland, showed an overall prevalence of HCV infection of 19\% in a population of 4904 inmates, 53\% in prisoners with a history of IVDU and 3\% in those without. Another national cross-sectional study evaluated 1876 inmates randomly selected among imprisoned individuals aged over 18 in France and in French overseas departments\cite{26} and reported an anti-HCV prevalence of 4.8\%. Alvarez et al\cite{28} documented a 10.1\% prevalence of anti-HCV- positive cases among 2788 inmates held in two prisons in New York State,
Table 1 Hepatitis C virus prevalence in different studies on prisoners

Ref.	Year of screening	Country	Type of study	Number screened/total	Type of screening	HCV prevalence
Adjei et al[20]	2004/5	Ghana	C-S 8 prisons; inmates vs staff	1336/7652 vs 445/2139	C + Q	18.7%
Almasio et al[24]	2009/13	Italy	C-S	2788	C + Q + Clinical records	38%
Alvarez et al[24]	2006/06	United States	C-S 8 prisons	973	C + I	38%
Babudieri et al[44]	2007/8	Italy	C-S	148/150	C + I	6.1%
Barros et al[48][60]	2007/8	Brazil	C-S	605/965	HCV History + C	22.4%
Brandolini et al[24]	1999/2000	United States	C-S 1292 HIV-positive	3.1%	Stored blood + medical records	13%
Hennessey et al[35]	2007/8	Pakistan	C-S	357	C + Q	15.2%
Kazi et al[39]	2005/9	Australia	Prospective cohort study	210 HCV Ab -	C + Q + payment + follow-up	Incidence 14.8 per 100/yr
Macalino et al[32]	1998/2000	United States	C-S 4269/5390	Random + C + Q	3.43%	
Mejia et al[43]	2007/8	Lebanon	C-S	580/35500	Random + C + Q	3.43%
Marco et al[32]		Spain	Observational and C-S 18 prisons	371	Q	22.7%
Meyer et al[43]	2002	Germany	C-S	1125/1176	C + I post screening	8.6%
Mohamed et al[36]	2007	Egypt	C-S	500/1200	Random sampling + C + Q	15.8%
Nokholian et al[44]	2008	Iran	C-S	160	C + I	4.4%
Pratap et al[35][60]	2009	Indonesia	C-S 4 prisons	375/375	C + Q	31.3%
Reekie et al[24]	2004	Australia	C-S	588	C + Q	31.6%
	2007		C-S	536	C + Q	31.6%
	2010		C-S	618	C + Q	23.2%
Rosa et al[27]	2010/11	Brazil	Descriptive study	195/386	Random + C + Q	9.7%
Sagnelli et al[24]	2008	Spain	C-S 9 prisons	2241/3468	Peer-to-peer education + C	22.8%
Saiz de la Hoy et al[40]	2009/10	Sweden	C-S 18 prisons	357	Peer-to-peer education + C	22.7%
Santos et al[44]	2010	Brazil	C-S 2 prisons	422/519	C + Q	3.1%
Semallie et al[38]	2010	France	C-S 27 prisons	1876	Q + medical records	4.8%
Solomon et al[24]	2002	United States	C-S 3914	Educational information, C + counseling	29.7%	
Taylor et al[24]	2010/11	Scotland	C-S 14 prisons	4904/6565	C + Q	19%
Tresó et al[24]	2007/9	Hungary	C-S 20 prisons inmates vs staff	4894/14331	C + Q	4.9%

C-S: Cross-sectional; C: Consent; Q: Questionnaire; I: Interview; HCV: Hepatitis C virus.

while Macalino et al[32] found a prevalence of 32.1% in a cross-sectional study involving 4260 prisoners incarcerated in Rhode Island correctional facilities. In this study the authors investigated only the inmates detained in the same prison for more than 12 mo and registered an incidence rate of 0.4 per 100 persons per year.

Cross-sectional studies in different Italian prisons published 5 years apart showed anti-HCV positivity of 38%[24] and 22.8%[38] in the inmates investigated. Most of the studies listed in Table 1 were cross-sectional, performed with different aims, enrolment criteria and statistical analysis. In most studies the information on the prisoners was obtained using a pre-coded questionnaire, less frequently by oral interview[20,34,37,40] and in only one case by doctor-to-patient interview[35]. Some questionnaires gave no information on important socioeconomic factors, which are indicators of the level of awareness of HCV infection[30]. In addition, it cannot be excluded that some inmates may have lied regarding certain questions, in particular those concerning IVDU and sexual behavior, probably because these behaviors are illegal or considered immoral from a social perspective. To have more reliable information from the prisoners, educational programs or peer-to-peer communication[30] could be organized to improve the trust relationship between the patients and medical personnel. In some studies the information was obtained from medical records, with a consequent lack of some important data[26,27,36].

Different results were reported in two interesting studies comparing the prevalences of anti-HCV-positive cases between prisoners and members of the staff. Tresó et al[24] performed a multicenter cross-sectional study in Hungary and found a significant difference in the anti-HCV rate between the prisoners (4.9%) and the wardens (0.47%), whereas Adjei et al[20] found the same anti-HCV prevalence (18.7%) in prison officers and prisoners in nine prisons in Ghana, possibly reflecting an occupation-related transmission or simply the high prevalence of HCV infection in this country.

RISK FACTORS FOR THE ACQUISITION OF HCV INFECTION IN PRISONERS

The epidemiological impact of various risk factors for acquiring HCV infection has been investigated in...
several studies on prison populations and the results are summarized in Table 2. The main risk factor associated with HCV infection in the prison populations is IVDU. Although this risky behavior is strictly forbidden in prisons worldwide, nearly half of illicit drug users continue to use these drugs after their imprisonment. In addition, the difficulty to get sterile injecting equipment in prison results in widespread sharing of infected equipment and an increased risk of HCV transmission.

A prospective Australian study conducted between 2005 and 2009(20) on 210 anti-HCV-negative subjects with a life-time history of injection drug use observed every 6/12 mo for up to 4 years showed an incidence of HCV infection of 14.8 per 100 persons per year and that imprisonment was associated with high rates of HCV transmission.

In a cross-sectional study including four prisons in Indonesia(21), the general prevalence of inmates with HCV infection was 34.1% (92 in IVDU and 36 in non-IVDU). A cross-sectional study(27) in a rehabilitation center for IVDU in Iran showed that the anti-HCV prevalence reached 80%. Other forms of blood-to-blood contact such as tattooing, sharing toiletries and dental procedures were involved to a lesser extent in the transmission of HCV among prisoners.

Meyer et al.(28) found an anti-HCV and/or HCV-RNA prevalence of 8.6% in 1125 young prisoners, but 94% of the anti-HCV-positive were intravenous drug users.

In some studies, HCV infection was observed more frequently in female inmates than in males, reflecting the higher rates of females incarcerated for drug-related offences. Solomon et al.(30) investigated for the anti-HCV

Table 2: Risk factors associated with hepatitis C virus, hepatitis C virus genotype and human immunodeficiency virus and/or hepatitis B virus co-infection

Ref.	HCV prevalence	Risk factors (odds ratio)	HCV genotypes (No. of patients)	Co-infection
Adjei et al.(29)	18.7% vs 18.7%	IVDU (64.8); sex with IVDU (80.3); HIV (4.3); STD (3.2); tattoo (2.9); non-Hispanic black (2.3)	1a (3) 1b (1) 3a (1)	HIV/HCV
Alvarez et al.(29)	10.1%	IVDU (10.5); tattoo (2.9)	1a (5) 1b (1) 3a (1)	HIV/HCV
Babudieri et al.(29)	38%	IVDU (5.9); > 6 in prison(4.2); sex with IVDU(14.4); age > 40 (4.4)	1a (3) 1b (1) 3a (1)	HIV/HCV
Barros et al.(29)	6.1%	IVDU; previous imprisonment; surgery (4.4)	1a (3) 1b (1) 3a (1)	HIV/HCV
Brandolini et al.(29)	22.4%	HIV +; origin; age 35-52	HIV/HCV	
Hennessey et al.(29)	13%	HBV (4.4); HIV (2.5); previous imprisonment (2.9)	HIV/HCV	
Kazi et al.(29)	15.2%	IVDU (24.32); surgery (2.41)	HIV/HCV	
Kheirandish et al.(29)	80%	History of incarceration (4.35); tattoo (2.33); first injection	HIV/HCV	
Luciani et al.(29)	Incidence 14.8 per 100/yr	IVDU-related behaviors; origin (2.63)	HIV/HCV	
Macalino et al.(29)	23.1% 0.4%/yr	IVDU (32.44); increasing age > 30	HIV/HCV	
Mahfoud et al.(29)	3.43%	IVDU; previous imprisonment; tattoo	HIV/HCV	
Marco et al.(29)	22.7%	IVDU; tattoo	HIV/HCV	
Meyer et al.(29)	8.6%	IVDU; tattoo	HIV/HCV	
Mohamed et al.(29)	15.8%	IVDU (4.1); > 10 in prison (3.4); shared toiletries (3.9); tattoo (2.8); dental procedure (4.7); age > 45 (1.5); DM (3.9)	HIV/HCV	
Nokhodian et al.(29)	4.4%	IVDU (13.44)	HIV/HCV	
Prasetyo et al.(29)	34.1%	IVDU (2.5); tattoo (3.2); piercing (3.6)	1a (14) 1c (5) 1b (1) 3a (4)	B/C
Reekie et al.(29)	33.3% (94)	IVDU; women (1.33); Age ≥ 25 (1.56)	HIV/HCV 1	
	31.6% (97)	Previous imprisonment (2.15)	HIV/HCV 6	
	23.2% (10)	Age ≥ 25 (1.56)	HIV/HCV 5	
		Previous imprisonment (2.15)	HIV/HCV 2	
Rosa et al(29)	9.7%	IVDU (8.75); tattoo (0.35)	HIV/HCV 8.5%	
		IVDU (2.5); HIV (8.4); Spanish (7.5)	HIV/HCV 0.3%	
Saiz de la Hoyta et al.(29)	22.7%	IVDU (24.5); HIV (8.4); Spanish (7.5)	1a (23) 1b (12)	HIV/HCV
			3 (12) 4 (16)	HIV/HCV/
Santos et al.(29)	3.1%	IVDU (23.3); household contact (14.1); syphilis (9.8); age > 30 (5.5)	1a (6) 1b (1)	HIV/HCV
			1 (5) 3 (1)	HIV/0.08%
Semaille et al.(29)	4.8%	IVDU; women; age; origin	HIV/HCV	
Solomon et al.(29)	29.7%	Increasing age, max > 45 (13.51); women (1.32); HIV (4.9); HBV (2.69)	HIV/HCV	
Tresó et al.(29)	4.9%	IVDU	HIV/HCV	

1Adjusted odds ratio; 2Hazard ratio; 3IRR. IVDU: Intravenous drug use; HCV: Hepatitis C virus; HBV: Hepatitis B virus; HIV: Human immunodeficiency virus; STD: Sexually transmitted diseases; DM: Diabetes mellitus; IRR: Incidence rate ratio.
in the anti-HIV-negative (65.5% vs 28.3%). Semaillie et al.[28] also described a significantly higher anti-HCV prevalence in women than in men (11.8% vs 4.5%) in French prisons.

Other risk factors related to HCV infection in prison were an older age and previous imprisonments, factors probably related to an increased exposure over time to the main risk factors. Solomon et al.[35] found that the HCV prevalence progressively increased with the increase in age, from 7.9% in the age group younger than 25% to 58.5% in that over 45 years. Macalino et al.[32] and Santos et al.[18] found a significant association between the presence of HCV infection and an age over 30, and Mohamed et al.[19] found that an age over 45 and a previous prison term were factors associated with anti-HCV positivity in inmates. A previous imprisonment was registered in the life history of the majority (89%) of anti-HCV-positive inmates in the main prison facility in Lebanon[30].

Prisoners with HIV and/or HBV infection were more likely to be infected with HCV, probably because of the similarity in the routes of transmission of these blood-borne infections. In an Italian prison, the anti-HCV prevalence reached 89.6% in the HCV-human immunodeficiency virus (HIV) co-infected inmates and 15.5% in those without HIV infection[17]. Similar data come from another study showing a higher prevalence of anti-HCV positivity in anti-HIV-positive patients than in the anti-HIV-negative (65.5% vs 27.5%), and in those with a present or past HBV infection (47.1%) than in those without any HBV contact (20.2%).[35]

Virological status and clinical outcome
HCV replication in anti-HCV positive cases, as detected by the presence of HCV RNA in serum, has been reported with a rate ranging from 45% to 90% in different studies[17,19-22,25,34].

The HCV genotype distribution varied according to the distribution in the geographical areas of the prisons and to that of the country of origin of the foreign prisoners. Meyer et al.[24] performed HCV genotyping in 68 young prisoners and found genotype 1 in 50% of cases and genotype 3 in 35%; in this study genotype 1 prevailed in German inmates and genotype 3 in the prisoners from the independent states formerly part of the Soviet Union. HCV-genotype 1 predominated in Indonesian (66%)[21] and Spanish (55%) prisons[25]. Tuczyno et al.[26] compared the HCV genotyping performed on prisoners in Poland with that of hospital patients in the same country and found that HCV genotype 3 prevailed in the prisoners (60.1%) and genotype 1 in the free patients (79.6%), most probably because genotype 3 is frequent in IVDU.

The severity of the disease associated with HCV infection and the disease progression have been evaluated only in a few studies. Prisoners frequently showed a mild disease[25,34] and liver cirrhosis and progression to cirrhosis were detected with a low frequency[39]. However, most of the patients in the published studies were young and the disease progression was mostly evaluated with surrogate tests (APRI, fibroscan) and infrequently with liver biopsy[25,34]. The mortality risks were estimated to be higher in HCV-infected than in non-infected subjects in the general population[43], a difference that was more evident in prisoners[54].

Treatment
Few studies have been performed to date on the treatment of chronic hepatitis C in prisoners and a sustained viral response (SVR) with standard or pegylated interferon (Peg-IFN) plus ribavirin treatments ranged from 28% to 69%.[12,45,46,52] Encouraging results were observed in an old series in Canadian penitentiaries using standard interferon plus ribavirin, with an overall SVR of 55.9% (31.6% for genotype 1, 100% for genotype 2 and 71.4% for genotype 3)[47]. Maru et al.[25] showed an overall SVR to Peg-IFN plus ribavirin of 47.1% (43.1% for HCV-genotype 1 and 58.8% for HCV-genotypes 2 and 3), HCV-genotype 1 and liver cirrhosis being identified as predictive factors of a non-response.

Chew et al.[53] obtained an overall SVR of 28% (18% for genotype 1, 60% for genotype 2 and 50% for genotype 3) with Peg-IFN plus ribavirin.

The use of second generation DAAs to treat HCV chronic infection has substantially reduced the period of treatment and of post-treatment follow-up, thus greatly improving the chances of completing treatment in prisons. A recent study comparing the cost-benefit of treatment with peg-IFN, ribavirin and boceprevir or sofosbuvir found treatment including sofosbuvir cost-effective[54]. However, the rate of HCV re-infection after successful treatment in inmates is high, particularly in IVDU[54,55], a priority situation warranting serious consideration. The high costs of the new DAA treatments are an important issue to be evaluated in order to extend these therapies to prison inmates[56].

Conclusive statements
In most countries, the National Justice and Healthcare Authorities should strive to remove the enormous institutional, bureaucratic and economic barriers hampering an appropriate approach to the management of HCV infection in prisons. These institutions have a great responsibility and a fundamental role in organizing the life of prisoners, particularly of those with chronic diseases who need new costly treatments. More resources should be allocated in each country to reduce the prevalence and incidence of HCV infection in prisons and to treat all inmates already infected. The basic principle underlying this difficult issue is that prisoners in every country deserve the same healthcare treatment as the general population and to deny them this is unjust and immoral. This principle of equivalence is fundamental and is supported by the international...
guidelines on prison health and prisoners' rights and the national policies in many countries\(^57\).

Practical advice

Reduce the spread of HCV in prisons by: (1) performing screening for anti-HCV as it is cost-effective, which is particularly valid for prisoners with risk factors for HCV infection\(^58\); (2) defining the prevalence and incidence in prisons of HCV infection; (3) performing educational programs for prisoners and prison personnel on the routes of HCV transmission, prevention measures and management of infected subjects. A successful approach based on peer-to-peer communication\(^36,60,63\) may improve the compliance of inmates and favor their access to screening, clinical evaluation and treatment; (4) performing regular educational programs for prisoners and staff against the discrimination of HCV-infected inmates\(^62\); (5) improving the conditions of hygiene; (6) supplying the inmates with personal toiletries; (7) heightening vigilance to prevent tattooing and IVDU; and (8) providing opiate replacement therapy for drug users\(^23\). Improve the access to follow-up and treatment of prisoners with chronic hepatitis C by: (1) defining the clinical condition of all anti-HCV-positive prisoners; (2) avoiding frequent transfers of inmates under treatment from one prison to another to allow the completion of therapy and post-treatment follow-up or permitting continuation treatment in another facility or outside if no longer detained\(^56\); this is now easier with the introduction of the second generation DAAs, which reduce the duration of treatment and follow-up period; and (3) organizing telematic assistance to benefit from specialist's support in the management of treated patients\(^86\).

Sensitivity, goodwill and a willingness to cooperate by the Healthcare authorities, prison authorities and personnel are necessary.

REFERENCES

1. United Nations. 45/111 Basic principles for the treatment of prisoners, 1990. [Accessed 2015 Jan 10]. Available from: URL: http://www.un.org/documents/ga/res/45/a45r111.htm
2. Bretschneider W, Elger BS. Expert perspectives on Western European prison health services: do ageing prisoners receive equivalent care? J Bioeth Inq 2014; 11: 319-332 [PMID: 24965437 DOI: 10.1007/s11673-014-9547-y]
3. Larney S, Kopinski H, Beckwith CG, Zaller ND, Jarlais DD, Hagan H, Rich JD, van den Bergh BJ, Degenhardt L. Incidence and prevalence of hepatitis C in prisons and other closed settings: results of a systematic review and meta-analysis. Hepatology 2013; 58: 1215-1224 [PMID: 23504650 DOI: 10.1002/hep.26387]
4. Weinbaum CM, Sabin KM, Santibanez SS. Hepatitis B, hepatitis C, and HIV in correctional populations: a review of epidemiology and prevention. AIDS 2003; 19 Suppl 3: S41-S46 [PMID: 16251827]
5. Vesco MF, Longo B, Babudieri S, Starnini G, Carbonara S, Rezza G, Monarca R. Correlates of hepatitis C virus seropositivity in prison inmates: a meta-analysis. J Epidemiol Community Health 2008; 62: 305-313 [PMID: 18339822 DOI: 10.1136/jech.2006.051599]
6. de Viggiani N. Unhealthy prisons: exploring structural determinants of prisoner health. Socio卫生al Health Illus 2007; 29: 115-135 [PMID: 17286709 DOI: 10.1111/j.1467-9566.2007.00474.x]
7. Teutsch S, Luciani F, Scheuer N, McCredie L, Hosseiny P, Rawlinson W, Kaldor J, Dore GJ, Dolan K, Dfrench R, Lloyd A, Haber P, Levy M. Incidence of primary hepatitis C infection and risk factors for transmission in an Australian prisoner cohort. BMC Public Health 2010; 10: 633 [PMID: 20964864 DOI: 10.1186/1471-2458-10-633]
8. Dolan K, Teutsch S, Scheuer N, Levy M, Rawlinson W, Kaldor J, Lloyd A, Haber P. Incidence and risk for acute hepatitis C infection during imprisonment in Australia. Eur J Epidemiol 2010; 25: 143-148 [PMID: 20084429 DOI: 10.1007/s10654-009-9421-0]
9. Skipper C, Guy JM, Parkes J, Roderick P, Rosenberg WM. Evaluation of a prison outreach clinic for the diagnosis and prevention of hepatitis C: implications for the national strategy. Gut 2003; 52: 1500-1504 [PMID: 12970145 DOI: 10.1136/gut.52.10.1500]
10. Spaulding AC, Weinbaum CM, Lau DT, Sterling R, Seeff LB, Margolis HS, Hoofnagle JH. A framework for management of hepatitis C in prisons. Ann Intern Med 2006; 144: 762-769 [PMID: 16702592 DOI: 10.7326/0003-4819-144-10-200605160-00010]
11. Yap L, Carruthers S, Thompson S, Cheng W, Jones J, Simpson P, Richards A, Thein HH, Haber P, Lloyd A, Butler T. A descriptive model of patient readiness, motivators, and hepatitis C treatment uptake among Australian prisoners. PLoS One 2014; 9: e87564 [PMID: 2458021 DOI: 10.1371/journal.pone.0087564]
12. Lloyd AR, Clegg J, Lange J, Stevenson A, Post JJ, Lloyd D, Rudge G, Boonwaart L, Forrest G, Douglas J, Monksly D. Safety and effectiveness of a nurse-led outreach program for assessment and treatment of chronic hepatitis C in the custodial setting. Clin Infect Dis 2013; 56: 1078-1084 [PMID: 23362288 DOI: 10.1093/cid/cis120]
13. Fazel S, Baillargeon W. The health of prisoners. Lancet 2011; 377: 956-965 [PMID: 21093904 DOI: 10.1016/S0140-6736(10)60153-7]
14. Spaulding AC, Perez SD, Seals RM, Hallman MA, Kavasery R, Weiss PS. Diversity of release patterns for jail detainees: implications for public health interventions. Am J Public Health 2011; 101 Suppl 1: S347-S352 [PMID: 22039042 DOI: 10.2105/AJPH.2010.300004]
15. Rice JP, Burnett D, Tsotsis H, Lindstrom MJ, Cornett DD, Voermans P, Sawyer J, Striker R, Lucey MR. Comparison of hepatitis C virus treatment between incarcerated and community patients. Hepatology 2012; 56: 1252-1260 [PMID: 22505121 DOI: 10.1002/hep.25770]
16. Almasio PL, Babudieri S, Barbarini G, Brunetto M, Conte D, Denti P, Gaeta GB, Leonardi C, Levero M, Mazzotta F, Morrone A, Nosotti L, Prati D, Rapisetta M, Sagnelli E, Scotto G, Starnini G. Recommendations for the prevention, diagnosis, and treatment of chronic hepatitis B and C in special population groups (migrants, intravenous drug users and prison inmates). Dig Liver Dis 2011; 43: 589-595 [PMID: 21256097 DOI: 10.1016/j.dld.2010.12.004]
17. Brandolini M, Novati S, De Silvestri A, Tinelli C, Patruno SF, Ranieri R, Seminari E. Prevalence and epidemiological correlates and treatment outcome of HCV infection in an Italian prison setting. BMC Public Health 2013; 13: 981 [PMID: 24139133 DOI: 10.1186/1471-2458-13-981]
18. Santos BF, de Santana NO, Franca AV. Prevalence, genotypes and factors associated with HCV infection among prisoners in Northeastern Brazil. World J Gastroenterol 2011; 17: 3027-3034 [PMID: 21799649 DOI: 10.3748/wjg.v17.i25.3027]
19. Mohamed HI, Saad ZM, Abd-Elreheem EM, Abd-ElGhany WM, Mohamed MS, Abd Elnaeem EA, Seedhom AE. Hepatitis C, hepatitis B and HIV infection among Egyptian prisoners: seroprevalence, risk factors and related chronic liver diseases. J Infect Public Health 2013; 6: 186-195 [PMID: 23688463 DOI: 10.1016/j.jiph.2012.12.003]
20. Barros LA, Pessoni GC, Teles SA, Souza SM, Matos MA, Martins RM, Del-Rios NH, Matos MA, Carneiro MA. Epidemiology of
the viral hepatitis B and C in female prisoners of Metropolitan Regional Prison Complex in the State of Goiás, Central Brazil. Rev Soc Bras Med Trop 2013; 46: 24-29 [PMID: 23563821 DOI: 10.1590/S0080-42052013000100004]

21 Prasetyo AA, Dirghabuw P, Sari Y, Hudiyono H, Kageyama S. Molecular epidemiology of HIV, HBV, HCV, and HTLV-1/2 in drug abuser inmates in central Javan prisons, Indonesia. J Infect Dis 2013; 7: 453-467 [PMID: 23771289 DOI: 10.3855/jidc.2965]

22 Trésor B, Barcsay E, Tarján A, Horváth G, Dencs A, Hettmann A, Csepái M, Gyori Z, Rusvai E, Takács M. Prevalence and correlates of HCV, HBV, and HCV infection among prison inmates and staff, Hungary. J Urban Health 2012; 89: 108-116 [PMID: 22143408 DOI: 10.1111/j.1548-1795.2012.02426.x]

23 Taylor A, Munro A, Allen E, Dunleavy K, Cameron S, Miller L, Hickman M. Low incidence of hepatitis C virus among prisoners in Scotland. Addiction 2013; 108: 1296-1304 [PMID: 23297816 DOI: 10.1111/add.12107]

24 Luciani F, Bretaña NA, Teutsch S, Amin J, Topp L, Dore GJ, Halota W, Nowak W, Pawlowska M. Distribution of hepatitis C virus infection among male injection drug users in the United States. J Urban Health 2009; 86: 93-105 [PMID: 18622707 DOI: 10.1111/j.1548-1795.2008.00385.x]

25 Kheirandish P, SeyedAliAgha S, Jahani M, Shrizad H, Seyed Ahmadian M, Majidi A, Sharifii A, Hosseini M, Mohraz M, McFarland W. Prevalence and correlates of hepatitis C infection among male injection drug users in detention, Tehran, Iran. J Urban Health 2009; 86: 902-908 [PMID: 19844670 DOI: 10.1111/j.1548-1795.2009.00393.x]

26 Sagnelli E, Starnini G, Sagnelli C, Monara R, Zumbo G, Pontali E, Gabbatt A, Carbonara S, Iardino R, Armignacco O, Babudieri S. Blood born viral infections, sexually transmitted diseases and latent tuberculosis in Italian prisons: a preliminary report of a large multicenter study. Eur Rev Med Pharmacol Sci 2012; 16: 2142-2146 [PMID: 23280032]

27 Tyczyno M, Halota W, Nowak P, Pawlowska M. Distribution of HCV genotypes in the populations of inmates in polish prison potulice and patients hospitalised in bydgoszcz. Hepat Mon 2014; 14: e4559 [PMID: 24917003 DOI: 10.5812/hepatmon.4559]

28 Nokhodian Z, Ataei B, Kassaian N, Yaran M, Hassannejadi R, Adibi P. Seroprevalence and Risk Factors of Hepatitis C Virus among Juvenile in Correctional Center in Isfahan, Iran. Int J Prev Med 2012; 3: S113-S117 [PMID: 22826752]

29 Marco A, Saiz de la Hoya P, García-Guerrero J. [Multi-centre study of the prevalence of infection from HIV and associated factors in Spanish prisons]. Rev Esp Sanid Penit 2012; 14: 19-27 [PMID: 22437905 DOI: 10.1590/S0104-42302012000100004]

30 Babudieri S, Longo B, Sarmati L, Starnini G, Dori L, Suligoi B, Carbonara S, Monara R, Quercia G, Florenzano G, Novati S, Sardu A, Iovinella V, Casti A, Romano A, Uccella I, Maida I, Brunetti B, Mura M, Andreoni M, Rezza G. Correlates of HCV, HBV, and HCV infections in a prison inmate population: results from a multicentre study in Italy. J Med Virol 2005; 72: 311-317 [PMID: 15902712 DOI: 10.1002/jmv.20375]

31 El-Kamary SS, Juveri R, Sharolland MD. All-cause, liver-related, and non-liver-related mortality among HCV-infected individuals in the general US population. Clin Infect Dis 2011; 53: 150-157 [PMID: 21665867 DOI: 10.1093/cid/cir306]

32 Arias E. National Vital Statistics Reports. United States Life Table, 2009. Atlanta: GA Centers for Disease Control and Prevention, 2014. Available from: URL: http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_07.pdf

33 Boonwaat L, Haber PS, Levy MH, Lloyd AR. Establishment of a successful assessment and treatment service for Australian prison inmates with chronic hepatitis C. Med J Aust 2010; 192: 496-500 [PMID: 20438418]

34 Farley J, Vasev S, Fischer B, Haydon E, Rehm J, Farley TA. Feasibility and outcome of HCV treatment in a Canadian federal prison population. Am J Public Health 2005; 95: 1737-1739 [PMID: 16131642 DOI: 10.2105/AJPH.2004.056150]

35 Farley JD, Wong VK, Chung HV, Lim E, Walters G, Farley TA, Yoshida EM. Treatment of chronic hepatitis C in Canadian prisons. Can J Gastroenterol 2005; 19: 153-156 [PMID: 15776135]

36 Sterling RK, Hofmann CM, Luketic VA, Sanyal AJ, Contos MJ, Mills AS, Shiffman ML. Treatment of chronic hepatitis C virus in the virginia department of corrections: can compliance overcome racial differences to response? Am J Gastroenterol 2004; 99: 866-872 [PMID: 15128352 DOI: 10.1111/j.1572-0241.2004.03010.x]

37 Allen SA, Spaulding AC, Osei AM, Taylor LE, Cabral AM, Rich JD. Treatment of chronic hepatitis C in a state correctional facility. Ann Intern Med 2003; 138: 187-190 [PMID: 12558357 DOI: 10.7326/0003-4819-138-3-200302040-00010]

38 Strock P, Mossong J, Hawottie K, Arend V. Access to treatment of hepatitis C in prison inmates. Dig Dis Sci 2009; 54: 1325-1330
Zampino R et al. HCV infection in prisoners

51 Martin CK, Hostetter JE, Hagan JJ. New opportunities for the management and therapy of hepatitis C in correctional settings. Am J Public Health 2010; 100: 13-17 [PMID: 20007626 DOI: 10.2105/AJPH.2008.147629]

52 Maru DS, Bruce RD, Basu S, Altice FL. Clinical outcomes of hepatitis C treatment in a prison setting: feasibility and effectiveness for challenging treatment populations. Clin Infect Dis 2008; 47: 952-961 [PMID: 18715156 DOI: 10.1086/591707]

53 Chew KW, Allen SA, Taylor LE, Rich JD, Feller E. Treatment outcomes with pegylated interferon and ribavirin for male prisoners with chronic hepatitis C. J Clin Gastroenterol 2009; 43: 686-691 [PMID: 19295448 DOI: 10.1097/MCG.0b013e31818dd94c]

54 Liu S, Watcha D, Holodny M, Goldhaber-Fiebert JD. Sofosbuvir-based treatment regimens for chronic, genotype 1 hepatitis C virus infection in U.S. incarcerated populations: a cost-effectiveness analysis. Ann Intern Med 2014; 161: 546-553 [PMID: 25329202 DOI: 10.7326/M14-0602]

55 Marco A, Esteban JI, Solé C, da Silva A, Ortiz J, Roget M, Sarriera C, Teixido N, Guerrero RA, Caylà JA. Hepatitis C virus reinfection among prisoners with sustained virological response after treatment for chronic hepatitis C. J Hepatol 2013; 59: 45-51 [PMID: 23523577 DOI: 10.1016/j.jhep.2013.03.008]

56 Spaulding AS, Kim AY, Harzke AJ, Sullivan JC, Linas BP, Brewer A, Dickert J, McGovern BH, Strick LB, Trestman R, Ferguson WJ. Impact of new therapeutics for hepatitis C virus infection in incarcerated populations. Top Antivir Med 2013; 21: 27-35 [PMID: 23596276]

57 WHO. Prison Health as Part of Public Health. Declaration: Moscow, 24 October 2003. Available from: URL: http://www.euro.who.int/data/assets/pdf_file/0007/98971/E94242.pdf

58 Weinbaum C, Lyerla R, Margolis HS. Prevention and control of infections with hepatitis viruses in correctional settings. Centers for Disease Control and Prevention. MMWR Recomm Rep 2003; 52: 1-36; quiz CE1-4 [PMID: 12562146]

59 Smith BD, Morgan RL, Beckett GA, Falk-Ytter Y, Holtzman D, Teo CG, Jewett A, Baack B, Rein DB, Patel N, Alter M, Yartel A, Ward JW. Recommendations for the identification of chronic hepatitis C virus infection among persons born during 1945-1965. MMWR Recomm Rep 2012; 61: 1-32 [PMID: 22895429]

60 Broadhead RS, Heckathorn DD, Altice FL, van Halst Y, Carbone M, Friedland GH, O’Connor PG, Selwyn PA. Increasing drug users’ adherence to HIV treatment: results of a peer-driven intervention feasibility study. Soc Sci Med 2002; 55: 235-246 [PMID: 12144138]

61 Edlin BR, Kresina TF, Raymond DB, Carden MR, Gourevitch MN, Rich JD, Cheever LW, Cargill VA. Overcoming barriers to prevention, care, and treatment of hepatitis C in illicit drug users. Clin Infect Dis 2005; 40 Suppl 5: S276-S285 [PMID: 15768335]

62 Arahn A, Robaey G, Stöver H. Hepatitis C in European prisons: a call for an evidence-informed response. BMC Infect Dis 2014; 14 Suppl 6: S17 [PMID: 25252822 DOI: 10.1186/1471-2334-14-S6-S 17]
