KOMUNIKÁCIE / COMMUNICATIONS 1–2/2002

1. Úvod

Každý návrh zmény územnosprávneho členenia štátu a najmä umiestnenia sídelných miest obsahuje v sebe mnoho faktorov politických, sociálnych a ekonomických. Príslušný rozhodovací a schválovací proces navyše podlieha protichodným záujmom rôznych skupín obyvateľstva, a to na miestnej, ako aj na celoštátnej úrovni a každé rozhodnutie, ktoré jednej skupine obyvateľstva subjektívne prospeje, inú skupinu poškodí. Preto je všetky faktory, ktoré majú vplyv na kvalitu návrhu, možno kvantifikovať. Rovnako tu nehodláme analyzovať problém počtu vyšších územných celkov, pretože sériezná analýza by predpokladala – ako ukážeme dalej – vyčíslenie nákladov, ktoré by vznikli umiestnením sídla vyššieho územného celku v danom mieste. Pri našich úvahach máme optimálny návrh členenia s návrhami, kedy je sídlo niektorého kraja pevne stanovené.

The paper deals with administration partition of Slovakia in terms of transportation accessibility of higher territorial unit centers. Transportation accessibility is defined as an average distance, which has to be traveled by an inhabitant from his place of residence to the nearest higher territorial unit center. Transport-optimal partition is compared to designs, in which the place of residence of some higher territorial unit center is set beforehand.

1. Introduction

Every change in an administration partition of the state territory and location of higher territorial unit centers has a lot of political, social and economic consequences. The corresponding process of decision and ratification is subjected to opposing priorities of various groups of citizens on local as well as country-wide level. Every decision, which is profitable for one group of citizens, is injurious for another one. That is why the mentioned process is a sequence of negotiations and compromises among public administration, self-administration and other groups of citizens. Citizen’s priorities are often omitted in this argumentation in spite of that the impact of the form of higher territorial units and center locations can be easily evaluated. Our goal in this paper is not to design an ideal partition satisfying all concerned people and we are aware of that not all factors influencing partition quality can be evaluated. We are not going to analyze the number of higher territorial units either, because a serious analysis would suppose that we are able to calculate costs caused by location a higher territorial unit center at a given place. We come from the initial governmental design of twelve higher territorial units in our considerations, one of which corresponds to Bratislava with its urban parts. We just want here to highlight that some factors playing role in partition quality can be evaluated and mathematics and computers can help in finding answers of question, what decisions should be made to accomplish the best results. In this paper, we take into account that the execution of the particular design of higher territorial units and center locations impacts the distance, which an inhabitant has to travel to access services that are usually located at a regional center [6]. This transportation aspect of administration partition is called transportation

* Prof. RNDr. Jaroslav Janáček, CSc., Ing. Ľudmila Jánošíková, CSc.
University of Žilina, Faculty of Management Science and Informatics, Department of Transport Networks
E-mail: jardo@frdsa.fri.utc.sk, janosik@frdsa.fri.utc.sk
meste vyššieho územného celku [6]. Tento dopravný aspekt územnosprávneho členenia budeme nazývať dopravou dostupnostou. Dopravná dostupnosť môžeme považovať za miuru kvality územnosprávneho členenia. Definujeme ju ako priemernú vzdialenosť, ktorú musí obyvateľ prekonáť pri cestovaní z miesta svojho bydliska do najbližšieho sídelného mesta vyššieho územného celku. Takto ich kritérium kvality možno vynotitť pre lubovoľný návrh územnosprávneho členenia charakterizovaného umiestnením sídelných miest vyšších územných celkov za rozumného predpokladu, že vyššie územné celery sa vytvárajú pripradením obcí najmenej sídelnému mestu. Samotné kritéria dostupnosti však nepokrýva úplné ekonomický aspekt tvorby vyšších územných celkov. Štúdovanie ekonomického hľadiska neumožňuje výber niekoľkých obcí, ktoré ho tvoria, a tým i počtu úradov a rovnako nedovoluje umiestniť sídlo v ľubovoľnej obci. Preto v nasledujúcej študovali užívali počet vyšších územných celkov za daný. Budeme študovať prípad územnosprávneho členenia budeme nazývať dopravou dostupnosťou.

2. Dopravná dostupnosť sídelných miest vyšších územných celkov

Pri výpočte dopravnej dostupnosti vychádzame z existujúcej cestnej siete SR popísanej v [1] a [2]. Táto siet obsahuje dvojice obcí, ktoré ho tvoria, a jednak sídelný mestom za daný. Budeme študovať prípad územnosprávneho členenia s optimalizáciou dostupnosti a porovnávať ho s rôznymi politicky inštitucióňami.

Ak vyjadríme dostupnosť danú vžahom (1) pomocou koeficientov cij, dostaneme

\[
\mathbf{c}_{ij} = (b_{ij}) = \left(\frac{\sum b_i}{n} \right) .
\]

(2)

Ak vyjadríme dostupnosť danú vžahom (1) pomocou koeficientov cij, dostaneme

\[
\sum_{k=1}^{n} \sum_{\mu \in S_k} b_i c_{ij} .
\]

(3)

Čím bude hodnota výrazov (1) alebo (3) menšia, tým lepšia bude dostupnosť služieb pre obyvateľov Slovenska.

accessibility. Transportation accessibility can be regarded as a measure of the quality of administration partition. It is defined as an average distance, which has to be traveled by an inhabitant from his place of residence to the nearest higher territorial unit center. This quality criterion is possible to evaluate for any partition design given by higher territorial unit center locations under consideration that higher territorial units are formed by assigning villages to the nearest higher territorial unit center. The criterion of accessibility itself does not include the economic aspect of higher territorial unit creation. To respect the economic point of view, any number of higher territorial unit centers and thereby any number of offices cannot be selected and the center cannot be located at any place, as well. That is why in the next study and analysis we will consider the number of higher territorial units to be given. We will study a partition instance with optimal accessibility and compare it with modifications motivated politically or in a different way.

2. Transportation accessibility of higher territorial unit centers

Transportation accessibility calculation is based on the existing road network in the Slovak Republic described in [1] and [2]. This network includes n dwelling places with known number of inhabitants b at each place j = 1, ..., n. The distance between each pair of places i and j is given by cell d of matrix of distances. Let us suppose that p higher territorial units was created and that each higher territorial unit k = 1, ..., p is formed by set Si of dwelling places and by higher territorial unit center ik. Then we can formulate accessibility for the whole Slovak Republic using the above-mentioned data:

\[
\left(\sum_{k=1}^{p} \sum_{\mu \in S_k} b_i d_{ij} \right) \left(\sum_{i=1}^{n} b_i \right) .
\]

(1)

Term (1) expresses the average distance, which has to be traveled by an inhabitant of Slovak Republic to the center of his higher territorial unit.

The allocation of place j to higher territorial unit center i contributes to the value of term (1) by increment cij, where

\[
c_{ij} = (b_{ij}) = \left(\frac{\sum b_i}{n} \right) .
\]

(2)

When we express the accessibility given by term (1) using coefficients cij, we get

\[
\sum_{k=1}^{p} \sum_{\mu \in S_k} b_i c_{ij} .
\]

(3)

The less is the value of terms (1) or (3), the better is accessibility of services for inhabitants of Slovakia.
3. Model úlohy dopravne optimálnych
vyšších územných celkov

Tu predpokladáme, že množina miest, ktoré v obciach prichádzajú
do úvahy ako sídlenské mesto vyššieho územného celku, je konečná
a dopredu známa. V podmienkach SR sútaží možno predpokladať
umiestnenie sídlenského mesta do obce, ktorá v súčasnom usporiada-
dani nie je aspoň okresným mestom. V iných úvahách budeme
vychádzať z toho, že je daných m kandidátov na sídlenská mesta a že
je stanovený počet p sídlenských miest, ktorý z nich majú byť vybrané.

Rozhodnutie, či ktorý kandidát z množiny \{1, ..., m\} bude alebo nebude
vybratý, modelujeme bivalentnou premennou \(y_j \in \{0, 1\}\), ktorá nado-
budne hodnotu 1 v prípade krátkodobého rozhodnutia a hodnotu 0
v opačnom prípade. Na modelovanie rozhodnutia o tom, či obec
bude patríť k územnému celku výberového kandidátom \(j\) použi-
jeme bivalentnú premennú \(x_{ij} \in \{0, 1\}\) majúce jednotkové hodnoty
v prípade priradenia \(j\) a nulové hodnoty v opačnom prípade.

Teraz môžeme matematicky model úlohy dopravne optimálnych
vyšších územných celkov formulovalo takto:

\[
\text{minimizujte } \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \quad (4)
\]

za podmienok

\[
\sum_{j=1}^{n} x_{ij} = 1 \quad \text{pre } j = 1, ..., n \quad (5)
\]

\[
x_{ij} \leq y_j \quad \text{pre } i = 1, ..., m, j = 1, ..., n \quad (6)
\]

\[
\sum_{i=1}^{m} x_{ij} \leq p \quad (7)
\]

\[
x_{ij}, y_j \in \{0, 1\} \quad \text{pre } i = 1, ..., m, j = 1, ..., n \quad (8)
\]

Toto je známa úloha o \(p\)-mediáne siete s kladnou hmotnosťou
úsekm. V modeli podmienky (5) zabezpečujú, aby každá obec patrila
práve jednému kandidátovi na sídlenská mesta. Podmienky (6) spô-
sobia, že keď bude aspoň jedna obec priradená kandidátovi \(j\), potom
kandidát bude vybratý ako sídlenské mesto vyššieho územného celku.

A napokon podmienku (7) zabráni tomu, aby bol vybratý všeč
počet sídlenských miest, nie je stanovený počet vyšších územných
celkových.

Túto úlohu možno ďalej upraviť na šacie riešiteľný tvar. Ak
zavedieme Lagrangeov multiplikátor \(f\) pre relaxáciu podmienky
(7), môžeme úlohu (4)-(8) formulovať takto:

Najdite \(f \geq 0\) tak, aby hodnoty premenných \(y_j, i = 1, ..., m\)
optimálneho riešenia úlohy (9), (5), (6), (8) spôsobovali podmienku
(7) ako rovnosť, pričom účelová funkcia úlohy je

\[
\sum_{i=1}^{m} f y_i + \sum_{j=1}^{n} c_{ij} x_{ij} \quad (9)
\]

Pre pevne zadané \(f\) všetky úlohy (9), (5), (6), (8) kapacitnú
neobmedzenú lokačnú úlohu (uncapacitated location problem).

Exaktným riešením úlohy (4)-(8), resp. (9), (5), (6), (8) získame
návrh \((x^*, y^*)\) dopravne optimálneho členenia SR na vyššie
územné celky s umiestnením ich sídlenských miest. Tento návrh bude popi-

3. Model of the problem of transport-optimal
higher territorial units

We suppose the set of cities, which can be taken into account
as higher territorial unit centers, is finite and known in advance.
In the Slovak Republic, the higher territorial unit center location
is hardly supposed to be at a dwelling place, which is not at least
a district center in the present public administration system. In our
next considerations, we will come out from the fact that \(m\) candi-
dates for higher territorial unit centers are given and the number
\(p\) of centers, which should be selected from candidates, is stated.

Bivalent variable \(y_j \in \{0, 1\}\) models the decision if candidate
\(i\) from the set \(\{1, ..., m\}\) is or is not selected, where value 1 implies
the positive decision and value 0 the negative one. To model the
decision if place \(j\) belongs to the unit, which is defined by can-
didate \(i\), we use bivalent variable \(x_{ij} \in \{0, 1\}\) having value 1 in the
case of assignment \(j\) to \(i\) and value 0 in the opposite case.

Now a mathematical model of transport-optimal higher
territorial units forming can be completed in the following way:

\[
\text{minimizujte } \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \quad (4)
\]

subject to

\[
\sum_{j=1}^{n} x_{ij} = 1 \quad \text{for } j = 1, ..., n \quad (5)
\]

\[
x_{ij} \leq y_j \quad \text{for } i = 1, ..., m, j = 1, ..., n \quad (6)
\]

\[
\sum_{i=1}^{m} y_j \leq p \quad (7)
\]

\[
x_{ij}, y_j \in \{0, 1\} \quad \text{for } i = 1, ..., m, j = 1, ..., n \quad (8)
\]

This is the well-known \(p\)-median problem in a network with
positive edge weights.

In the model, constraints (5) ensure that each dwelling place
must be assigned to exactly one candidate for higher territorial unit
center. Constraints (6) cause a higher territorial unit center to be
placed at candidate \(i\) whenever at least one dwelling place is assigned
to the candidate. Finally, constraint (7) inhibits selecting more can-
didates than the given number of higher territorial units.

This program can be further transformed to a simpler form.
Introducing Lagrangean multiplier \(f\), to relax constraint (7), problem
(4)-(8) can be formulated in this way:

\[
\text{Find } f \geq 0, \text{ so that values of variables } y_j, i = 1, ..., m \text{ of the}
onimal solution of the problem (9), (5), (6), (8) meet constraint
(7) as equality, where the objective function of the problem is

\[
\sum_{i=1}^{m} y_i + \sum_{j=1}^{n} c_{ij} x_{ij} \quad (9)
\]

For fixed \(f\), problem (9), (5), (6), (8) is the uncapacitated location
problem.
Solving problem (4)-(8) or (9), (5), (6), (8) respectively to
optimality, we get design \((x^*, y^*)\) of transport-optimal partition of
the Slovak Republic to higher territorial units including location of
their centers. This design will be determined by resulting values
saný výslednými hodnotami premenných y^*_i a x^*_ij nasledujúcim spôsobom: Ti kandidáti $i \in \{1, \ldots, m\}$, pre ktorých $y^*_i = 1$, budú sídelnými mestami. Obec j bude patriť do vyššieho územného celku toho sídelného mesta i, pre ktoré platí $x^*_ij = 1$.

4. Návrh dopravne optimálnych vyšších územných celkov v SR

Na riešenie úlohy (9), (5), (6), (8) sme už skôr implementovali a testovali algoritmus BBdual [3, 4] založený na metóde vetiev a hraníc a metodou úpravy dualnych premenných. Na určenie vhodného parametra f sme použili postup z [3], ktorý bol implementovaný ako procedúra. Vzdialenosti sme získali z popisu cestnej siete SR z [1] a [2], ktoré vlastnosti boli overené v [5].

Z množiny obcí sme vyňali Bratislavu s jej mestskými časťami. Po tejto operácii sme dostali úlohový problém s $n = 2889$ obcami. V dôsledku vyňatia Bratislavy poklesol počet plánovaných územných celkov z 12 na $p = 11$. Za množinu kandidátov $\{1, \ldots, m\}$ sídelných mest bola pre potreby tejto štúdie považovaná množina všetkých sedemdesiatich súčasných sídiel okresov okrem Bratislavy a niektorých mestských častí Košíc.

Po výpočte vykonanom na počítači Pentium 100 MHz v čase 474 sekúnd sme získali optimálnu členenie s hodnotou dostupnosti $d = 28.85$ km, so sídelnými mestami (Bratislava), Trnava, Nové Zámky, Zvolen, Bánovce nad Bebravou, Žilina, Rimavská Sobota, Poprad, Košice, Prešov, Michalovce, Dolný Kubín a s členením územia ukázaným na obr. 1.

4. Design of transport-optimal higher territorial units in the Slovak Republic

To solve problem (9), (5), (6), (8), we have implemented and tested procedure BBdual [3, 4] based on a branch-and-bound approach using a dual ascending method and a dual variables adjusting method to compute a lower bound. To find an appropriate parameter f, we used an approach from [3] implemented as a procedure. Distances were drawn from the road network of the Slovak Republic described in [1] and [2], properties of which were proved in [5].

Bratislava and its urban parts as a capital with special status were excluded from the set of dwelling places. After this operation, $n = 2889$ dwelling places were taken into consideration. As a result of excluding Bratislava the number of planned higher territorial units decreases from 12 to $p = 11$. The set of all 70 present district centers without Bratislava and urban parts of Košice was regarded as set $\{1, \ldots, m\}$ of candidates for higher territorial unit centers in this study.

Having done computation run on a PC Pentium 100MHz in the time of 474 seconds we got the optimal solution with accessibility value $d = 28.85$ km, with higher territorial unit centers (Bratislava), Trnava, Nové Zámky, Zvolen, Bánovce nad Bebravou, Žilina, Rimavská Sobota, Poprad, Košice, Prešov, Michalovce, Dolný Kubín with territory partition shown in Fig. 1.
5. Analysis of some politically motivated designs

The transport-optimal design of higher territorial units from the previous section does not include any traditional county centers or cities preferred by some political groups. The problem model and solution method allow to perform an analysis in terms of accessibility what the cost of, for example, a higher territorial unit center location in Komárno would be (creation of Komárno higher territorial unit), or what the cost of keeping a county center in Banská Bystrica or Trenčín as a territorial unit center would be.

This analysis can be performed in such a way that one of the desired higher territorial unit center location is fixed and after then a transport-optimal location of the remaining ten centers including assignment of dwelling places to all eleven higher territorial units is computed. The difference between the computed accessibility and the optimal accessibility represents the lower bound of the accessibility increase caused by performing a politically motivated decision. If this decision were performed without a change in location of the other higher territorial unit centers, the accessibility would be even worse than the computed lower bound.

Accessibility with fixed higher territorial unit center

Design	Fixed city	d [km]	dd [km]	dd [%]	t [s]
1	Komárno	29.80	0.95	3.29	621
2	Banská Bystrica	29.05	0.20	0.69	227
3	Trenčín	29.15	0.30	1.04	416
4	Lučenec	29.00	0.15	0.52	281

Higher territorial unit centers in designs 1-4

Higher territorial unit center	Design 1	Design 2	Design 3	Design 4
Trnava	*	*	*	*
Nové Zamky	*	*	*	*
Komárno	*			
Zvolen	*			
Banská Bystrica	*			
Trenčín				
Bánovce nad Bebravou	*	*	*	*
Žilina	*	*	*	*
Rimavská Sobota	*	*		
Nitra	*			
Lučenec	*	*		
Poprad	*	*	*	
Košice	*	*	*	*
Prešov	*	*	*	*
Michalovce	*	*	*	*
Dolný Kubín	*	*	*	*

The analysis was performed for the following cities not being a part of the optimal design: Komárno, Banská Bystrica, Trenčín.
a Lučenec. Výsledky sú zhrnuté v tabuľke 1, kde každému prípadu zodpoveda jeden riadok. Prvý stĺpec obsahuje číslo analýzy, druhý názov fixovaného mesta. Stĺpec d obsahuje hodnotu dostupnosti pre jednotlivé prípady. Stĺpec dd obsahuje rozdiel dostupnosti vypočítanej pre analyzovaný prípad a optimálnej dostupnosti. Stĺpec dd% udáva zhoršenie dostupnosti v percentách oproti optimálnej dostupnosti z kapitoly 4. V stĺpcit t je pre zaujímavosť uvedený v sekundách čas výpočtu vlastného optimalizačného algoritmu na osobnom počítači Pentium 100 MHz.

Tabuľka 2 obsahuje zoznamy sídelných miest pre jednotlivé analýzované prípady. V prvom stĺpco tabuľky je uvedený zoznam všetkých miest, ktoré sa vyskytli aspoň v jednom návrhu. Ďalšie stĺpce tabuľky zodpovedajú návrhom 1 až 4. V týchto stĺpcoch je znakom * vyznačené, či príslušné mesto patrí do daného návrhu.

Priradenie obcí vyšším územným celkom pre návrhy 1 a 2 je ukázané na obrázkoch 2 a 3.

6. Záver

Ako sme uviedli už v úvode, určenie dobrého územnosprávneho členenia štátu je príliš zložitý problém na to, aby ho bolo možné redukovať len na otázku dopravnej dostupnosti. Už len z hľadiska nákladov, ktoré si vyžiada zriadenie sídla vyššieho územného celku v danom meste, sú veľké rozdiely medzi jednotlivými kandidujúcimi mestami, a to tak v ich súčasnej infraštruktúre, ako aj v disponibilných ľudských zdrojoch potrebných pre zabezpečenie chodu sídelného mesta vyššieho územného celku.

Vykonaná analýza sa týka výhradne otázok dopravnej dostupnosti možných sídel dvánastich vyšších územných celkov a vyčísľuje len túto dopravnú dostupnosť pre politickým rozhodnutím určený počet územných celkov.

and Lučenec. The results are summarized in table 1, where each row corresponds to one instance. The first column contains the analysis number, the second one the fixed city name. The column labeled d refers to the accessibility value for the particular instances. The column labeled dd indicates the difference between the accessibility computed for the analyzed instance and the optimal accessibility. The column labeled dd% reports the percentage increase of accessibility against the optimal accessibility from section 4. In the column t, there are reported algorithmic running times in seconds obtained on a Pentium 100MHz PC.

Table 2 lists the higher territorial unit centers for the particular instances. The first column lists all cities occurred in, at least, one design. The subsequent columns refer to designs 1 to 4. In these columns, sign * indicates if the corresponding city belongs to the given design.

Assignment of dwelling places to the higher territorial units for designs 1 and 2 is shown in figures 2 and 3.

6. Conclusion

As we have mentioned in the introduction, to design a good administration partition of the state territory is a complex problem and it cannot be reduced to the only problem of transport accessibility. From point of view of costs required to establish the higher territorial unit residence, there are substantial differences among candidate cities in their current infrastructure, as well as in human resources needed for higher territorial unit center function.

The performed analysis refers exclusively to transport accessibility of possible centers of twelve higher territorial units and evaluates just this transport accessibility for a politically stated number of higher territorial units.
Je možné, že rozdiely medzi analyzovanými návrhmi (pozri tab. 2) sa môžu niekomu zdajať prevelice malé, zvlášť keď najväčší uvedený rozdiel je 3,3 % oproti optimálnemu rozdeleniu. Tento pohľad na analýzu môže byť značne klamný, pretože si treba uvedomiť, že zhoršenie dostupnosti treba len o 1 % postihne každého zo 4 925 751 obyvateľov uvažovaných jedenástich územných celkov, a to nielen na jeden alebo dva roky, ale po dobu trvania jednej generácie alebo aj dlhšie.

Preto si myšľime, že vypracovaný spôsob analýzy rôznych návrhov a ich porovnávanie s dopravne optimálnym územnosprávnym členením predstavuje cenný nástroj pre podporu rozhodovania, ktorý umožňuje číselne vyhodnotiť aspoň tie parametre, ktoré sa dajú kvantifikovať.

Oznámenie

Príspevok bol podporovaný grantom VEGA 1/7211/20.

Acknowledgement

This paper was supported by grant VEGA 1/7211/20.

Literatúra – References

[1] CENEK, P., JANÁČEK, J., JÁNOŠÍKOVÁ, Ľ.: Optimalizácie státní správy a územnosprávné členeni. Scientific Papers of the University of Pardubice. Series D. Faculty of Economics and Administration 4 (1999). Univerzita Pardubice. s. 49–54
[2] CENEK, P., JÁNOŠÍKOVÁ, Ľ.: Model dopravnej obsluhy regiónu. Horizonty dopravy. No. 1. 2000. s. 10–12
[3] JANÁČEK, J.: Tvorba dopravne optimálnich regionov. In: Zborník referátov medzinárodnej vedeckej konferencie „Riadenie a infor-matika v novom tisícročí“ MI 2000, 12.-13. 9. 2000, Žilina, s. 301–307
[4] JANÁČEK, J.: Tvorba regionov a výběr regionálních center. In: Sborník příspěvků z mezinárodní konference „Public Administration 2000“, Lázně Bohdaňec, 23.-25. 10. 2000, s. 81–85
[5] JANÁČKOVÁ, M.: Problemy adekvátnosti a dekompozice semieuklidovskej siete. Horizonty dopravy, No. 4, 1991, s. 1–10
[6] LINDA, B.: Netradiční systémy dopravy jako součást integrovaných dopravních systémů. In: Sborník příspěvků z mezinárodní konfe-rence „Public Administration 2000“, Lázně Bohdaňec, 23.-25. 10. 2000, s. 159–160