Systematics, variation, and developmental instability: analysis of spine patterns in ancestrulae of a common bryozoan

PAULA J. RODGERS & ROBERT M. WOOLLACOTT

Museum of Comparative Zoology, Harvard University, Cambridge MA, USA

(Accepted 30 June 2006)

Abstract
Since the species was originally described in 1960, the cheilostomate bryozoan Bugula stolonifera is known to be widely distributed in temperate and sub-tropical regions. Evidence also exists that it is an invasive species that can spread rapidly. Yet there have been no studies of its variability at the level of individual populations. One of the taxonomic characters cited in the diagnoses of Bugula spp. is the spination pattern surrounding the frontal membrane of the ancestrula, the founding member of the colony that arises from the metamorphosis of a larva. Although some authorities have recognized that the number and distribution of ancestrular spines can vary, there has been no systematic study of the extent of this variation. We examined the spination patterns of 11,162 ancestrulae derived from larvae released from 54 colonies collected at Woods Hole, Massachusetts, USA. The formula cited in descriptions of the species was present in only 53% of the ancestrulae. In total, 34 distinct patterns were recorded. Two trends in spine appearance were statistically significant. First, those individuals possessing a spine in the proximal position were more likely to gain an additional spine. Second, those individuals lacking a proximal spine were more likely to lose an additional spine. The significance of these trends remains to be explored. Fourteen second-generation ancestrulae possessing five variant (other than the most common) spination patterns were placed in the field for 29 days. Colonies grown from these ancestrulae were returned to the laboratory and 225 larvae produced by these colonies were collected. The spine patterns of ancestrulae resulting from metamorphosis of these larvae were recorded. Twelve patterns not present among those of the second-generation parents were observed in addition to the five original ones. Although all colonies grown in the field were from variant ancestrulae, 51% of the second-generation ancestrulae possessed the basic pattern. Finally, there were no significant differences between left and right side asymmetries in either the first- or second-generation ancestrulae. From these studies we conclude that spine pattern of ancestrulae is not a reliable taxonomic character, at least in the Woods Hole population of B. stolonifera. Second, there exists considerable variation in spine patterns yet there is no bias to left or right asymmetry. Third, possession of a particular spine pattern is not a heritable feature in one-generation studies. The production of ancestrular spines appears to be strongly influenced by random events occurring in the developmental process.

Keywords: Anatomical variation, ancestrula, Bryozoa, Bugula stolonifera, developmental noise
Introduction

Knowledge of the reproductive biology and ecology of bryozoans has grown such that bryozoans provide increasingly important model systems for broad-based studies of the biology of sessile marine organisms (Woollacott 1999). Three features of bryozoans contribute to their choice as experimental subjects. First, some species are widely distributed, seasonally abundant, and easily accessible to investigators. Second, certain species are conspicuous components of fouling communities and/or are invasive species, giving them an increasingly recognized role in ecosystem dynamics, environmental quality, and economic damage. Third, most species retain their early developmental stages and release short-lived anenteric larvae. It is possible to manipulate larval eclosion in the laboratory to obtain large quantities of larvae of known age. As the larvae are non-feeding and settle in a matter of hours, bryozoans make a favourable choice for studies of many aspects of larval biology, induction of metamorphosis, and success and interactions of post-metamorphic stages. Species of the genus Bugula have received the most attention. One species in particular, B. neritina (Linneaus), has been studied extensively; however, a second species, B. stolonifera Ryland, is growing in importance in research with at present approximately 30 published investigations of its biology exclusive of taxonomic or faunistic studies (Appendix 1).

Bugula neritina and B. stolonifera are distributed worldwide in temperate and sub-tropical regions and are considered to be commonly introduced species. In the case of B. stolonifera, detailed accounts exist of its introduction to Auckland Harbour, North Island, New Zealand and subsequent spread to other locales on North and South Island (Hager 1964; Gordon 1967; Gordon and Mawatari 1992). Evidence also suggests that it is a recent arrival in Nagoya Harbour, Honshu, Japan (Scholz et al. 2003). Assessment of the taxonomic status and genetic structure at the population level is important for the knowledgeable integration of findings derived from studies conducted in different geographical locations or from populations collected at one locale but at different depths. In the case of B. neritina, such progress is now under way (Davidson and Haygood 1999; McGovern and Hellberg 2003; Lim 2004). Similar studies of B. stolonifera, however, have yet to appear. The present study was initiated to evaluate the utility of one commonly reported character in Bugula spp. taxonomy: spination pattern of the founding individual (ancestrula) of the colony.

Bugula stolonifera was described by Ryland (1960). In this classic monograph on British species of Bugula, Ryland discusses 11 anatomical features of importance in systematic analyses of species in this genus. Included in this list is the ancestrula, the individual produced on completion of metamorphosis. All bryozoans are colonial and colonies arise from asexual reproduction of the ancestrula and its descendants. Within the Class Gymnolaemata and Order Cheilostomata that include the genus Bugula, ancestrulae present varying morphologies (e.g. Ryland 1965, Figure 20). In general, ancestrulae have been accorded special significance historically. They can occur as solitary individuals, composite complexes involving multiple individuals derived from precocious budding, compound units derived from simultaneously produced and synchronously developed multiple individuals, or compound-composites (Zimmer and Woollacott 1977). Yet, in spite of numerous studies of ancestrulae across the phylum and the diverse forms they present, a commonly accepted synthesis derived from these investigations has yet to be achieved. As best summarized by Ryland (1976, p 288-289), “The phylogenetic significance of the ancestrular form is difficult to assess”. The utility of the ancestrula in systematic studies remains in doubt as well and as Cook (1985, p 50) concludes,
“(ancestrulae) ... seem to have no wide systematic significance, although specifically they may be important”. In the case of Bugula, it remains standard procedure to include a description of the ancestrula, when available, in the diagnosis of a new species.

One feature of the ancestrulae of Bugula spp. traditionally accorded importance in taxonomy is the absence or presence and, if present, the distribution of spines at the perimeter of the frontal membrane. It is known, however, that spination of autozooids can vary within a species (Ryland 1962) and, similarly, so can the spination of ancestrulae. The extent of this variability, however, has not been previously studied.

In his original description of B. stolonifera which was based on material from south Wales in the UK, Ryland (1960) noted that ancestrulae possess one basal (proximal) and three, or rarely two, spines at each distal angle. This pattern can be abbreviated as a spine formula of 3:3:1 (right distal angle, left distal angle, and proximal or basal position). The same spine formula for ancestrulae of eastern Atlantic specimens in general was recorded by Ryland (1965, Figure 20B), Ryland and Hayward (1977) and Hayward and Ryland (1998). In studies of B. stolonifera from the western Atlantic of the USA, Maturo (1957, 1966, 1968) reports spine formulae of 4-2:2:1. Ramalho et al. (2004) offer a revised diagnosis of the species based on material studied from the northern and southern hemispheres of the Atlantic in which they report a single spine formula of 2:2:1. Bugula stolonifera also occurs in the Pacific and Indian oceans and the Mediterranean and North Seas (see Appendix 2 for details on the distribution of this species). No information is apparently available, however, on spine formulae of ancestrulae from locales other than the Atlantic.

In order to understand more fully any systematic significance of spine patterns in ancestrulae of B. stolonifera, we initiated a study in the summer of 2003 based on material collected over a 7-week period in Eel Pond at Woods Hole, Massachusetts. The results presented here document extensive variation in spine patterns within this single population. We also report two statistically significant trends in these patterns. Finally, preliminary genetic studies indicate that spine pattern may be loosely constrained and that this system may be useful for more general investigations of developmental stability and instability.

Materials and methods
Parent colonies of Bugula stolonifera were collected from the sides of floating docks at Eel Pond, Woods Hole, MA, USA. A total of seven collections were made, one collection for each week extending from 14 July to 25 August 2003, at which point the population density of B. stolonifera drastically decreased along the docks. Each week parent colonies were brought back to the laboratory in Cambridge and maintained in 38-litre recycling tanks containing Eel Pond water. All experiments were conducted at 19°C in a constant temperature room. The release of larvae in this species is triggered by the onset of illumination after a period of dark adaptation (Wendt and Woollacott 1999). Accordingly, tanks were covered with opaque black plastic for approximately 16 h. The following morning each colony was placed in a separate glass dish ~2 cm in front of a sealed light fixture containing two F20T12 Cool White fluorescent bulbs. Irradiance values at the leading edge of the vessels were 77 μmol photons s⁻¹ m⁻². Because small crustaceans and other photosensitive, fast-swimming organisms are also found in amongst the colonies, organisms that accumulated at the lighted edge of the vessel during the first 15 min were discarded. Generally very few B. stolonifera larvae emerged during this interval. Over the next 30 min, larvae were pipetted into separate polystyrene weigh boats, one for each colony. Each container was filled with 2.5 ml of Eel Pond water. These larvae are referred
to as members of Release no. 1 (15–45 min after onset of illumination). A second collection was made in the same manner during the following 30 min and these larvae constitute Release no. 2 (45–75 min after onset of illumination). Percentage larval settlement in each dish was assessed after 4 h. Water was decanted and then each dish was rinsed in Eel Pond water to remove all unsettled larvae from the weigh boats. A triangular, plastic clip was attached to the side of each weigh boat and the weigh boats were clipped into a plastic binder and hung inside a 38 litre recycling tank and maintained for 2 days under a 12 h light–12 h dark regime.

Parent colonies were returned to a 38-litre tank, the colonies kept separate by wrapping each in labelled, fine-mesh nylon bags. The tank was again covered with opaque black plastic to dark-adapt the colonies for use the next day. Following the same procedure described for the first day, Release no. 3 and Release no. 4 were collected on the second day. Hence, by the end of the two days there were a total of four batches of first-generation larvae collected from each parent colony.

First-generation spine counts

Most *B. stolonifera* larvae completed metamorphosis at 19°C within 48 h after settlement. The completion of metamorphosis was defined as that time at which the ancestrula developed an extendable polypide and began feeding. The number of successful metamorphs was counted and % success of metamorphosis calculated. Only colonies that resulted in ≥100 ancestrulae were included in the final data set. The spine pattern for each ancestrula from these colonies was recorded and the data for each colony were compiled over the four separate releases. There were no significant differences between Release no. 1 + no. 2 and Release no. 3 + no. 4 (paired t test $P=0.086$) or Release no. 1 + no. 3 and Release no. 2 + no. 4 (paired t test $P=0.222$). For the week of 11 August, no ancestrular spine counts were recorded for Release no. 3 or no. 4 as a mishap occurred in sample handling. Nine colonies, however, of the 11 August collection resulted in ≥100 ancestrulae for Release no. 1 and no. 2 and these data were included in our analysis.

Second-generation spine counts

In order to determine if there exists a genetic tendency towards variation in spine numbers, first-generation ancestrulae derived from 14 different parent colonies were returned to the field and permitted to grow until larvae were produced whose metamorphs could be examined for their spination pattern. First-generation ancestrulae containing variant spination patterns were selected for analysis and those lacking the target spination pattern were removed from the weigh boat. Thus, ancestrulae remaining on the weigh boat all possessed the same spine pattern and were marked by circling their position in the container. The selected weigh boats were then glued on opposite sides to plastic binders cut approximately 5 cm in length. String was then threaded through the binders on each side and these were attached into a rectangular 0.31 m × 0.15 m plastic crate. An anchor was attached to the bottom of the crate and a line to the top and the open side of the crate was covered with a fine black mesh that was used to keep out potential predators in the field. New weigh boats were added to the crate each week with a total of 14 weigh boats containing first-generation colonies that successfully grew in the field.

After 29 days in the field for each sample, first-generation colonies were removed and returned to the laboratory. While in the field, wild *B. stolonifera* larvae settled on the dishes.
Hence, colonies not marked at their base were removed so that only the original marked colonies remained. These colonies were dark-adapted overnight and second-generation larvae were obtained the next day following the same procedures used for collecting first-generation larvae from the parent colonies. Again, % induction, % success of metamorphosis, and the spine patterns of ancestrulae were recorded. All data were included for this experiment on the second-generation because <100 larvae were collected from each colony.

Results

A total of 12,809 first-generation larvae were obtained from 54 parent colonies over the course of 7 weeks. The success rates for induction of metamorphosis and for completion of metamorphosis were 96% and 91%, respectively (Table I). The spine pattern for each of the 11,162 successful metamorphs was assessed. Our observations of spine patterns were based on anatomical presence or absence of spines and not on the developmental patterns

Table I. *Bugula stolonifera* larvae and ancestrulae pooled from field-collected parent colonies producing first-generation larvae that gave rise to ≥100 ancestrulae per colony; chi-square tests ($P<0.05$) were conducted to determine if significant differences existed in comparisons. (A) Success of reproduction in first-generation colonies.

Category	Number	%
Colonies	54	–
Larvae released	12,809	–
Larvae initiating metamorphosis	12,269	96
Larvae completing metamorphosis	11,162	91

(B) Spination patterns of ancestrulae given as number of spines on the left:right:proximal sides of the frontal membrane.

Category	Number	%
3:3:1	5954	53
Sum of all variants from 3:3:1 pattern	5208	47
Sum of dominant three patterns (3:3:1, 3:3:0, 4:4:1)	9098	82

(C) Occurrence of dominant variant pattern (3:3:0) and its association with gain or loss of spine in another position.

Category	Number	%
Occurrence of 3:3:0 spination pattern		
3:3:0 of total ancestrulae (11,162)	2805	25
3:3:0 of variant ancestrulae (5208)	2805	54
Consequences of loss or retention of proximal spine on spine pattern		
If lose proximal spine, then gain spine in another position | 323 | 45 |
If lose proximal spine, then lose spine in another position | 392 | 55 |
If retain proximal spine, then gain spine in another position | 1003 | 59 |
If retain proximal spine, then lose spine in another position | 708 | 41 |

If lose proximal spine, then significantly more likely to lose spine in another position ($\chi^2=6.659; P<0.0001$). If retain proximal spine, then significantly more likely to lose spine in another position ($\chi^2=50.862; P<0.0001$).
of spine production (Figures 1 and 2). It is possible that a spine pattern of 3:2:1 was a result of two left distal spine losses and one spine gain. Because the individual spine positions on each distal margin cannot be distinguished, a pattern of 3:2:1 was assumed to be the result of one spine loss on the left distal margin.

Of these 11,162 ancestrulae, 5954 (53%) had a spine formula of 3:3:1 that has been described earlier and 5208 (47%) were some variant of this pattern. Over the 7-week period, the variants ranged from 37% to 56% with a mean of 45%±6.5 (Figure 3). There was a significant difference in the number of variants to the number of 3:3:1 spine patterns over the 7-week period (χ² = 209.860, P<0.0001). However, the change in percentage of variants did not follow a seasonal trend (Figure 3) nor was the percentage of variants related to the number of ancestrulae produced each week. The 54 colonies were divided into two categories: those collected early in the season (weeks 1–3) and those collected late in the season (weeks 5–7). Since week 4 fell precisely in the middle of the sampling period, the number of colonies for this week, nine, was divided and distributed equally into the early and late categories. Of the 22 colonies that had percentage variants below the mean of 45%, 12 came from early in the season and 10 were from late in the season. There were 30 colonies that contained percentage variants above the mean variants of 45% and 14.5 came from early in the season and 15.5 came from late in the season (the 0.5 is a result of the seven colonies in week 4 that had percentage variants above the mean being divided between the two categories). Two colonies had 45% variants, thus the total equalled 54 colonies. There was no significant difference between the number of colonies above and below the mean collected either early or late in the season (χ² = 1.42, P=0.700). Hence, the change in percentage variants observed was apparently randomly distributed over the 7-week period.

Figure 1. (A) SEM of an ancestrula of *Bugula stolonifera*: this ancestrula has a spine pattern of 4:3:1 (see Figure 2); (B) diagram of the position of left and right distal margins and position of the proximal spine.
The most common variant spine pattern was 3:3:0, lacking the proximal spine, accounting for 54% of the total variants (Table I). A loss of the proximal spine, regardless of distal spine numbers, occurred in 3516 of the ancestrulae or 68% of the total variants. If

![Image of spine patterns](image)

Figure 2. Some common spine pattern formulae and views of the frontal membrane of ancestrulae of *Bugula stolonifera*. All spine patterns are recorded from the viewpoint of the ancestrula right:left:proximal. (A) Diagram of an ancestrula with the typical 3:3:1 spine pattern cited in the text; (B) 3:3:0 variant spine pattern resulting from a loss of the proximal spine; this spine pattern was the most abundant variant spine pattern accounting for 54% of the variant spine patterns; (C) 3:2:1 variant spine pattern resulting from a loss on the left distal margin; (D) 4:3:1 variant spine pattern resulting from a spine gain on the right distal margin.

The most common variant spine pattern was 3:3:0, lacking the proximal spine, accounting for 54% of the total variants (Table I). A loss of the proximal spine, regardless of distal spine numbers, occurred in 3516 of the ancestrulae or 68% of the total variants. If

![Graph of seasonal trends](image)

Figure 3. Seasonal trends in frequencies of 3:3:1 (black) and variant (grey) spine patterns for the first-generation ancestrulae over the course of the 7-week sampling period from 14 July to 25 August. The ratio of variants to 3:3:1 and % variants are included.
an ancestrula lost the proximal spine, then it was more likely to lose a spine on either the left or right distal margin. However, if the ancestrula retained the proximal spine, then it was more likely to gain a spine on one of the distal margins. Both of these relationships were statistically significant (Table I).

Changes in spine pattern between the left and right distal margins of the ancestrulae occurred with approximately equal frequency: 31% left, 33% right. There was no significant difference between changes on the left or on the right side (Table II). Changes involving one position occurred 74% of the time with significantly fewer changes involving more than one position (Table II). Of the 3516 ancestrulae that lost their proximal spine, 235 (7%) of these gained one spine on either the left or right distal margin, retaining a total of seven spines. Similarly, 23 (1%) ancestrulae lost a spine on either the left or right margin but gained a spine on the opposite margin to maintain a total of six distal margin spines regardless of presence or absence of the proximal spine. No distal margin contained more than four spines and the proximal spine position was never occupied by more than one spine. Hence, no ancestrula had a total of more than nine spines.

Colonies derived from 14 first-generation ancestrulae with variant spination patterns were grown in the field for 29 days (Table III). These colonies were then returned to the laboratory. In sum, they released 262 second-generation larvae and had a 90% success rate for induction of metamorphosis and a 95% success rate for completion of metamorphosis.

Table II. Changes from 3:3:1 pattern in spination of first-generation Bugula stolonifera ancestrulae and comparisons of changes between sides and loss and gain of spines; chi-square tests ($\alpha=0.05$) were conducted to determine if significant differences existed in comparisons. (A) Number of positions in which changes (additions or subtractions) occurred.

Category	Number	%
One position change	3849	74
Two position change	1047	20
Three position change	260	5
Four position change	9	0.2
Five position change	4	0.1
Six position change	39	0.7

(B) Right versus left side changes.

Category	Number	%
Simultaneous left and right side changes	892	27
Total left side change	1616	31
Total right side change	1679	32

No significant difference between changes on right and left sides ($\chi^2=1.205; P=0.272$).

(C) Gain versus loss changes.

Category	Number	%
Right loss	790	15
Left loss	804	15
Right gain	889	17
Left gain	860	17

No significant difference between loss on right or left side ($\chi^2=0.123; P=0.726$). No significant difference between gain on right or left side ($\chi^2=0.481; P=0.488$).
Table III. Ancestrulae of *Bugula stolonifera* derived from the larvae produced by first-generation colonies grown in the field from variant ancestrulae; these data are grouped as second-generation ancestrulae being similar or dissimilar in spination pattern to the first-generation ancestrulae from which they were derived. (A) Success of second-generation colonies transplanted back to the field.

Category	Number	%
Second-generation colonies grown in the field	14	
Larvae released	262	
Larvae initiating metamorphosis	235	90
Larvae completing metamorphosis of those initiated	225	95

(B) Spination pattern of ancestrulae derived from larvae produced by second-generation colonies that were grown from ancestrulae with variant spination patterns.

Category	Number	%
3:3:1	114	51
Variants	109	49

(C) Similarity of second-generation ancestrulae in spine pattern to that of parent first-generation ancestrulae.

Parent	Like parent	%	Not like parent	%
Total	51	23	172	77
3:3:0	49	45	61	55
>6L & R	2	2	85	98
<6L & R	0	0	26	100

>6L & R, ancestrulae with more than six spines on the left and right sides; <6L & R, ancestrulae with less than six spines on left and right sides.

Ancestrulae founding the second-generation colonies had one of five variant spine formulae: 3:3:0, 3:2:1, 4:3:1, 3:4:1, 2:2:1. Larvae derived from these colonies, however, produced ancestrulae of 17 distinct spine patterns, the five original spine patterns represented in the second-generation ancestrulae and an additional 12 patterns. Although no colonies were grown from 3:3:1 ancestrulae, 114 (51%) of the second-generation ancestrulae resulted in the 3:3:1 pattern and 109 (49%) resulted in a variant of this pattern. Whereas variants in the first generation occurred in 46% of the ancestrulae, in the second generation, which was derived exclusively from variant ancestrulae, variants increased over those in the first generation by only 3%. There was no significant difference in the ratio of 3:3:1 to variant spine patterns between the first and second generations ($\chi^2 = 0.433; P = 0.510$) even though the first generation was derived from a random sample of the wild population and the second generation was derived solely from variant colonies of the first generation. The second-generation ancestrulae were grouped into three categories: >6 spines left and right (110 ancestrulae), <6 spines left and right (87 ancestrulae) and 3:3:0 (26 ancestrulae). Of the total 223 ancestrulae, only 51 (23%) were in the same category as their parent colony ancestrula (Table IV). Hence, an overwhelming number of second-generation ancestrulae did not match the spination pattern of the first-generation ancestrula from which they were derived.

We examined for symmetry versus asymmetry in the spine patterns of the right versus left distal margins (Table IV). In the case of the first-generation ancestrulae (Table IV(A)),...
symmetrical spine patterns occurred in 9617 ancestrulae (86%). Of these, 858 (9%) were symmetrical but possessed a spine pattern other than 3:3:1 or 3:3:0 (i.e. 2:2:1, 4:4:1, 4:4:0, 2:2:0, 1:1:1, 1:1:0, 0:0:1). Asymmetry was found in 1545 of the first-generation ancestrulae (14%). Of these, 53% resulted from changes on the left distal margin and 49% from changes on the right distal margin. There was no significant difference between these numbers. Asymmetry resulting from simultaneous changes on the left and right sides occurred for 2% of the ancestrulae.

In the case of second-generation ancestrulae, 26 of the 223 ancestrulae possessed asymmetrical spine patterns. Of the 197 that were symmetrical, only nine (5%) had a pattern other than 3:3:1 or 3:3:0 (i.e. 2:2:1, 4:4:1, 4:4:0, 2:2:0, 1:1:1, 1:1:0, 0:0:1). Asymmetry was found in 26 of the first-generation ancestrulae (14%). Of these, 53% resulted from changes on the left distal margin and 49% from changes on the right distal margin. There was no significant difference between these numbers. Asymmetry resulting from simultaneous changes on the left and right sides occurred for 2% of the ancestrulae.

Discussion

We observed in a sample of 11,162 ancestrulae of *Bugula stolonifera* that the most frequently cited spine formula of 3:3:1 occurred in only 53% of ancestrulae. The remaining 47% were distributed among 33 distinct patterns. Eighty-two per cent of the total variability, however, was accounted for by the three most common patterns (3:3:1, 3:3:0, 4:4:1). The total number of patterns is likely greater than the 34 we report as our observations were based exclusively on the presence or absence of spines and not on development of the complement of spines.
The underlying sources of this phenotypic variability are unknown at present. A convenient point of departure, however, is to break down the determinants of spine pattern into three components: genetic, environmental, and historical. Other studies of bryozoans point the way to directions of future work. First, Maturo (1973) studied offspring from known maternal colonies of two morphotypes of *Parasmittina nitida* (Verrill) and documented fidelity of anatomical features between offspring and mother. Second, the size of individual zooids is also considered a character of taxonomic importance (e.g. Jackson and Cheetham 1990). In studies notably by Okamura (1987) and Hunter and Hughes (1994), variation observed in zooid size within natural populations was resolved in laboratory studies into mostly environmental and to a lesser extent genetic causes. Third, Cheetham et al. (1993, 1994, 1995) provide an elegant series of quantitative investigations on the genetics of phenotypic evolution. Finally, Hageman et al. (1999) studied skeletal morphology by partitioning variance between genetic, environmental, and interactions between genetic and environmental factors. Their findings supported a strong correlation between genotype and morphology. These findings also document that a large percentage of the variation could not be accounted for within parameters of their model, however, suggesting that additional refinements are needed to describe the overall variability they observed.

We studied inheritance of spine pattern by growing an F2 generation in the field from F1 colonies with ancestrulae of known spination. Our findings document that a tight coupling in spine distribution does not occur between mother and offspring. Second, we found a linkage between presence or absence of the proximal spine and addition or loss of spines at the distal margins in the F1 generation set of ancestrulae. Larvae and metamorphs were cultured under laboratory conditions designed so that all developed at the same temperature and light regime. Obvious sources of environmentally induced change were consequently reduced to a minimum. Our results indicate that presence or absence of an individual spine may not be autonomously determined, but that higher-order organization may exist that governs the development of the overall complement of spines.

Though our experiments growing the F1 generation were designed to reduce environmental variation, we cannot exclude the possibility that some unidentified environmental parameter existed in such a fashion as to affect spination, as is known to occur in some other bryozoans. For example, Hageman et al. (1999) identified a “tank effect” among what seemed to be identical environments in their laboratory study of phenotypic variation in growth of *Electra pilosa* (Linnaeus). In *Conopeum reticulum* (Linnaeus) (Hutchins 1941), spination of zooids is known to vary with the salinity of water in which they occur. Third, Stebbing (1973a, 1973b) documented in a quantitative analysis that zooids in a single colony of *Electra pilosa* (Linnaeus) can possess different spination patterns. Those at the margin of a colony where that colony was adjacent to a competitor for space possessed long-spined zooids whereas others did not, thus supporting the earlier conclusion by Marcus (1926) based on qualitative observation that such spines may prevent overgrowth by a dominant competitor. Fourth, evidence is clear that in the case of *Membranipora membranacea* (Linnaeus) spination of autozooids can be phenotypically plastic. Yoshioka (1982) first demonstrated that spine production is induced in this species by the presence of a predatory nudibranch. Harvall (1984, 1986, 1991, 1998) and Harvall and Padilla (1990) have revealed in detail the complex nature of this association, its ecological underpinnings, and taxonomic implications. The studies cited above point clearly to the phenotypically variable expression of spination in adult zooids of other
anascan cheilostomates. It is tempting to extend these findings to the process of spine development in ancestrulae. Although the ancestrular spines become obscured as colony development progresses, the potential for spines to have a protective role in ancestrular and early colony life seems apparent. Little is known, however, about the dynamics of interspecific competition or predation on ancestrulae and newly established colonies. Analysis of the extent of phenotypic plasticity in ancestrular spination gained from laboratory studies by varying known stressors would be an important direction in future studies.

The third component in analysis of variation is the influence of historical factors. Much of the early literature on ancestrulae derives from knowledge that the ancestrula is generally a solitary individual from which the colony is asexually derived. As such, the ancestrula was accorded special attention in the context of phylogeny and recapitulation. One morphotype of ancestrula termed the “tata” (resembling the anascan calloporids) appears multiple times in the complex grade referred to as the “ascophoran cheilostomates” (Ryland 1976). The tata is characterized by a nearly symmetrical array of spines arising from the edge of the frontal membrane. A similar-appearing frontal membrane–spine complex is present in the anascan buguloid Rhabdozoum wilsoni Hincks (Cook and Bock 1994). It is possible that the ancestrulae of Bugula spp. may evidence a tata pattern reflecting some shared evolutionary history. In contrast to the view that ancestrulae possess conserved properties is the fact that ancestrulae of differing types may co-occur within a single genus as documented in the case of Hippothoa (Celleporella) (Ryland and Gordon 1977). Moreover, in some species, ancestrulae form not as solitary individuals, but may develop as composite, compound, and composite–compound units (Zimmer and Woollacott, 1977). Finally, the ancestrula does not attach directly to a substrate in all species. Scrupocellarids, for example, form attachment by way of rhizoids, root-like highly modified non-feeding zooids (Silen 1980). These latter two examples, however, are presumably derived states. As indicated in the Introduction, the connection between ancestrula type and phylogeny is obscure at best. But one cannot discount the importance of historical factors in shaping ancestrula form regardless of whether they have useful phylogenetic content.

Two general conclusions arise from our study of variability of spine patterns. First, on average there exists no bias to left or right in spite of the fact that there is considerable variation in the population. Second, no heritability was documented of particular patterns in offspring of a given individual. Because of this lack of correlation between patterns, spine production in ancestrulae of B. stolonifera appears to be subject to random developmental noise as has been documented in other cases beginning with the classic work on the ocelli-bristle system in Drosophila subobscura Collin by Smith and Sondhi (1960).

Acknowledgements

R. Lewontin (Harvard University) and J. Winston (Virginia Museum of Natural History) generously provided important insights throughout the course of this study and suggested key improvements on several drafts of the manuscript. M. Sears (Harvard University) assisted with bibliographic research. C. Cohen (Harvard University) translated from Chinese sections needed from Xixing et al. (2001). E. Enos (Marine Biological Laboratory) permitted us to collect from MBL docks in Eel Pond. We are also grateful to H. Ferranti and M. Raila (Harvard University) for their technical and editorial help with preparation of this manuscript.
References

Alvarez JA, Saiz JJ, Rallo A. 1986. El genero Bugula Oken (Ectoprocta: Cheilostomata) en el Abra de Bilbao. Cuadernos de Investigación Biológica 9:23–40.

Bertrand J-F, Woollacott RM. 2003. G protein-linked receptors and induction of metamorphosis in Bugula stolonifera (Bryozoa). Invertebrate Biology 122:380–385.

Brancato MS, Woollacott RM. 1983. The effect of microbial films on larval settlement in three species of Bugula (Bryozoa). Marine Biology 71:51–56.

Brock BJ. 1985. South Australian fouling bryozoans. In: Nielsen C, Larwood GP, editors. Bryozoa: Ordovician to Recent. Fredensborg (Denmark): Olsen & Olsen. p 45–49.

Carrada GC, Occhipinti Ambrogi A. 1979. Contribution à la connaissance des Bryozoaires de la faune lagunaire de l’Italie continentale. Rapports et Procès-Verbaux des Réunions 25/26:123–126.

Carrada GC, Sacchi CF, Rigillo MT. 1965. Ricerche sulla valenza ecologica dei Brizooi salmastri I-significato della variazioni rítmiche dei fattori ambientali. Bollettino di Pesca, Piscicultura e Idrobiologia 20:153–208.

Cheetham AH, Jackson JBC, Hayek L-AC. 1993. Quantitative genetics of bryozoan phenotype evolution. I. Rate tests for random change versus selection in differentiation of living species. Evolution 47:1526–1538.

Cheetham AH, Jackson JBC, Hayek L-AC. 1994. Quantitative genetics of bryozoan phenotype evolution. II. Analysis of selection and random change in fossil species using reconstructed genetic parameters. Evolution 48:360–375.

Creary MM. 2003. A simplified field guide to the bryozoan species found on the roots of the red mangrove (Rhizophora mangle) in and around Kingston Harbour, Jamaica, W.I. Bulletin of Marine Science 73:521–526.

d’Hondt J-L, Cadée GC. 1994. Bugula stolonifera nieuw voor Nederland en enkele andere Bryozoën van Texel. Het Zeepaard 54:33–37.

d’Hondt J-L, Occhipinti Amrogi A, Goyffon M. 2003. Étude comparée du polymorphisme enzymatique chez deux familles de bryozoaires cellulaire: les Bugulidae et les Candidae. Bulletin de la Société Zoologique de France 128:161–183.

Davidson SK, Haygood MG. 1999. Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus Endobugula sertula”. Biological Bulletin (Woods Hole) 196:273–280.

Excoffon AC, Genzano GN, Zamponi MO. 1999. Macrobenitos asociado con una poblacíon de Anthothoe chilensis (Lesson, 1830) (Cnidaria, Actiniaria) en el Puerto de Mar del Plata, Argentina. Ciencias Marinas 25:177–191.

Fey A. 1971. Peuplements sessiles de l’Archipel de Glénan I.—Inventaire = Bryozoaires. Vie Milieu 17:193–226.

Fey A. 1971. Peuplements sessiles de l’Archipel de Glénan I.—Inventaire = Bryozoaires. Vie Milieu 17:193–226.

Ganapati PN, Rao KS. 1968. Fouling bryozoans in Visakhapatnam Harbour. Current Science 37:81–83.

Geraci S, Relini G. 1970. Fouling di zone inquinate. Osservazioni nel Porto di Genova I Briozoi. Pubblicazione della Stazione Zoologica di Napoli 38(Suppl 2):21–32.

Glacon R. 1971. Faune et flore du littoral Boulonnais. Wimereux (France): Editions de l’Institut de Biologie Marine et Regionale.

Glacon R. 1977. Faune et flore du littoral du Pas-de-Calais et de la Manche Orientale. Wimereux (France): Editions de l’Institut de Biologie Marine et Regionale.

Gordon DP. 1967. A report on the ectoproct Polyzoa of some Auckland shores. Tane (Journal of the Auckland University Field Club) 13:43–76.

Gordon DP, Mawatari SF. 1992. Atlas of marine-fouling Bryozoa of New Zealand ports and harbours. Miscellaneous Publications, New Zealand Oceanographic Institute 107:1–52.

Grosberg RK. 1981. Competitive ability influences habitat choice in marine invertebrates. Nature 290:700–702.
Hageman SJ, Bayer MM, Todd CD. 1999. Partitioning phenotypic variation: genotypic, environmental and residual components from bryozoan skeletal morphology. Journal of Natural History 33:1713–1735.

Hager JRE. 1964. The settlement and development of fouling communities on vertical buoyant surfaces in the Auckland harbour with notes on adjacent wharfpile fauna [MSc thesis]. Auckland: University of Auckland. 99 p.

Harvall CD. 1984. Predator-induced defense in a marine bryozoan. Science 224:1357–1359.

Harvall CD. 1986. The ecology and evolution of induced defenses in a marine bryozoan: cues, costs and consequences. American Naturalist 128:810–823.

Harvall CD. 1991. Coloniality and inducible defenses. American Naturalist 138:1–14.

Harvall CD. 1998. Genetic interaction and polymorphism in the inducible spines of a marine bryozoan. Evolution 52:80–86.

Harvall CD, Padilla DK. 1990. Inducible morphology, heterochrony, and size hierarchies in a colonial invertebrate monocus. Proceedings of the National Academy of Sciences of the United States of America 87:508–512.

Hayward PJ. 1976. The marine fauna of Lundy. Bryozoa. Annual Report—Lundy Field Society 27:16–31.

Hayward PJ, Ryland JS. 1998. Cheilostomatous Bryozoa, Part 1, Aeteoidea—Cribrilinoidea. 2nd ed. Shrewsbury: The Linnean Society of London and The Estuarine and Coastal Sciences Association. 366 p. (Synopses of the British fauna (new series); 10).

Hughes RL Jr, Woollacott RM. 1980. Photo receptors of bryozoan larvae (Cheilostomata, Cellularioidea). Zoologica Scripta 9:129–138.

Hunter E, Hughes RN. 1994. The influence of temperature, food ration and genotype on zood size in Celleporella hyalina (L.). In: Hayward PJ, Ryland JS, Taylor PD, editors. Biology and paleontology of bryozoans. Fredensborg (Denmark): Olsen & Olsen. p 83–86.

Hutchins LW. 1941. The growth and distribution of salt-water Bryozoa in relation to salinity [dissertation]. New Haven (CT): Yale University. 101 p. Available from: University Microfilms, Ann Arbor, MI; AAT0143828.

Jackson JBC, Cheetham AH. 1990. Evolutionary significance of morphospecies: a test with cheilostome Bryozoa. Science 248:579–583.

Javed M, Tirmizi NM. 1993. Four species of Bugula (Bryozoa: Bugulidae) new to the Pakistan Coast (Northern Arabian Sea). Pakistan Journal of Zoology 26:93–97.

Jebram D. 1968. A cultivation method for saltwater Bryozoa and an example for experimental biology. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 108:119–128.

Jebram D. 1977. Experimental techniques and culture methods. In: Woollacott RM, Zimmer RL, editors. Biology of bryozoans. New York: Academic Press. p 273–306.

Karim SI. 1971. Bryozoa of the genus Bugula of Karachi coast. Records Zoological Survey of Pakistan 2:17–23.

Kaufmann KW Jr. 1968. The biological role of Bugula-type avicularia (Bryozoa) (preliminary report). Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 108:54–60.

Kaufmann KW. 1971. The form and functions of the avicularia of Bugula (Phylum Ectoprocta). Postilla 151:1–26.

Keough MJ, Raimondi PT. 1995. Responses of settling invertebrate larvae to bioorganic films: effects of different film types. Journal of Experimental Marine Biology and Ecology 185:235–253.

Keough MJ, Raimondi PT. 1996. Responses of settling invertebrate larvae to bioorganic films: effects of large-scale variation in films. Journal of Experimental Marine Biology and Ecology 207:59–78.

Kerckhof F. 2000. Waarnemingen van de mosdiertjes Cryptosula pallasiana (Moll, 1803), Bugula stolonifera Ryland, 1960 en Bugula neritina (Linnaeus, 1758), nieuw voor de Belgische fauna. De Strandvlo 20:114–126.

Kocak F, Kucuksezgin F. 2000. Sessile fouling organisms and environmental parameters in the marinas of the Turkish Aegean coast. Indian Journal of Marine Sciences 29:149–157.

Lim G. 2004. Bugula (Bryozoa) and their bacterial symbionts: a study in symbiosis, molecular phylogenetics and secondary metabolism [dissertation]. San Diego (CA): University of California, San Diego. 168 p. Available from: University Microfilms, Ann Arbor, MI; AAT3144348.

Marcus E. 1926. Beobachtungen und Versuche an Leben Meersbryozoen. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere 52:1–102.

Maturo FJS Jr. 1957. A study of the Bryozoa of Beaufort, North Carolina, and vicinity. Journal of the Elisha Mitchell Scientific Society 73:11–68.

Maturo FJS. 1966. Bryozoa of the southeast coast of the United States: Bugulidae and Beaniidae (Cheilostomata: Anasca). Bulletin of Marine Science 16:556–583.

Maturo FJS Jr. 1968. The distributional pattern of the Bryozoa of the east coast of the United States exclusive of New England. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 108:261–284.

Maturo FJS Jr. 1973. Offspring variation from known maternal stocks of Parasmittina nitida (Verrill). In: Larwood GP, editor. Living and fossil Bryozoa. London: Academic Press. p 577–584.
McGovern TM, Hellberg ME. 2003. Cryptic species, cryptic endosymbionts, and geographical variation in chemical defences in the bryozoan Bugula neritina. Molecular Ecology 12:1207–1215.

McKinney FK, Listokin MRA, Phifer CD. 1986. Flow and polypide distribution in the cheilostome bryozoan Bugula and their inference in Archimedes. Lethaia 19:81–93.

Naylor E. 1965. Biological effects of a heated effluent in the docks at Swansea, S. Wales. Proceedings of the Zoological Society of London 144:253–268.

Occhipinti Ambrogi A. 1980. Osservazioni sulle avicularie di alcune colonia di Bugula stolonifera Ryland e Cryptosula pallasiiana (Moll) in ambienti lagunari italiani. Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 121:382–388.

Occhipinti Ambrogi A. 1981. Briozoi lagunari. Rome: Consiglio Nazionale delle Ricerche. p 1–145.

Occhipinti Ambrogi A. 1982. Osservazioni sui Briozoi di ambienti lagunari Nord-Adriatici. In: Gruppo d’Ecologia di Base “G. Gadio”, editor. Atti del Convegno su Ecologia delle Acque Intene dell’Italia Settentrionale, Varese, 3–5 Maggio 1980. Milan: Universita Pavia, Civica Stazione Idrobiologica. p 171–183.

Occhipinti Ambrogi A. 1985. The zonation of bryozoans along salinity gradients in the Venice Lagoon (Northern Adriatic). In: Nielsen C, Larwood GP, editors. Bryozoa: Ordovician to Recent. Fredensborg (Denmark): Olsen & Olsen. p 221–231.

Occhipinto Ambrogi A, d’Hondt J-L. 1981. Distribution of bryozoans in brackish waters of Italy. In: Larwood GP, Nielsen C, editors. Recent and fossil Bryozoa. Fredensborg (Denmark): Olsen & Olsen. p 191–198.

Okamura B. 1984. The effects of ambient flow velocity, colony size and upstream colonies on the feeding success of Bryozoa 1. Bugula stolonifera an arborescent species. Journal of Experimental Marine Biology and Ecology 83:179–194.

Okamura B. 1987. Seasonal changes in zooid size and feeding activity in epifaunal colonies of Electra pilosa. In: Ross JRP, editor. Bryozoa: past and present. Bellingham: Western Washington University. p 197–203.

Okamura B. 1990. Particle size, flow velocity, and suspension-feeding by the erect bryozoans Bugula neritina and B. stolonifera. Marine Biology 105:33–38.

Patzkowsky ME. 1988. Differential response of settling larvae to resident colony density in two species of Bugula (Bryozoa: Cheilostomatida). Journal of Experimental Marine Biology and Ecology 124:57–63.

Pires A, Woollacott RM. 1983. A direct and active influence of gravity on the behavior of a marine invertebrate larva. Science 220:731–733.

Powell NA. 1971. The marine Bryozoa near the Panama Canal. Bulletin of Marine Science 21:766–778.

Prenant M, Bobin G. 1966. Bryozoaires 2° partie. Chilostomes Anasca. Faune de France 68:1–647.

Pulpeiro EF. 1983. Aportaciones al conocimiento de los briozoos marinos Ibericos: Queilostomados. Cahiers de Biologie Marine 24:469–487.

Ramalho LV, Muricy G. 2003a. Taxonomy and distribution of Bugula (Gymnolaemata: Anasca) in Rio de Janeiro State, Brazil. Boletin de la Sociedad de Biologia de Concepcion 74:121.

Ramalho LV, Muricy G. 2003b. Bryozoans from Sepetiba Harbour, Rio de Janeiro, Brazil. Boletin de la Sociedad de Biologia de Concepcion 74:122.

Ramalho LV, Muricy G, Taylor PD. 2004. Taxonomy and distribution of Bugula (Bryozoa: Cheilostomatida: Anasca) in Rio de Janeiro State, Brazil. In: Moyano HI, Cancino JM, Wyse Jackson PN, editors. Bryozoan studies 2004. Leiden: A. A. Balkema Publishers. p 231–243.

Reed CG, Ninos JM, Woollacott RM. 1988. Bryozoan larvae as mosaics of multifunctional ciliary fields: ultrastructure of the sensory organs of Bugula stolonifera (Cheilostomatida: Cellularioidea). Journal of Morphology 197:127–146.

Riisgård HU, Manriquez P. 1997. Filter-feeding in fifteen marine ectoprocts (Bryozoa): particle capture and water pumping. Marine Ecology Progress Series 154:223–239.

Ryland JS. 1960. The British species of Bugula (Polyzoa). Proceedings of the Zoological Society of London 134:65–105.

Ryland JS. 1962. Some species of Bugula (Polyzoa) from the Bay of Naples. Publicazioni della Stazione Zoologica di Napoli 33:20–31.

Ryland JS. 1965. Catalogue of main marine fouling organisms (found on ships coming into European Waters), 2: Polyzoa. Paris: Organization for Economic Co-operation and Development. p 1–83.

Ryland JS. 1976. Physiology and ecology of marine bryozoans. Advances in Marine Biology 14:285–443.

Ryland JS, Gordon DP. 1977. Some New Zealand and British species of Hippothoa (Bryozoa: Cheilostomatida). Journal of the Royal Society of New Zealand 7:17–49.

Ryland JS, Hayward PJ. 1977. British anascan bryozoans. Linnean Society Synopses of the British Fauna, New Series 10:1–188.
Ryland JS, Hayward PJ. 1991. Marine flora and fauna of the northeastern United States. Washington: US Department of Commerce, NOAA Technical Report NMFS 99.

Satyanarayana R, Ganapati PN. 1978. Ecology of fouling bryozoans at Visakhapatnam harbour. Proceedings of the Indian Academy of Sciences 3:63–75.

Scholz J, Nakajima K, Nishikawa T, Kaselowsky J, Mawatari SF. 2003. The first discovery of Bugula stolonifera Ryland 1960 (Phylum Bryozoa) in Japanese waters, as an alien species to the Port of Nagoya. Bulletin of the Nagoya University Museum 19:9–19.

Silén L. 1980. Colony–substratum relations in Scrupocellariidae (Bryozoa, Cheilostomata). Zoological Scripta 9:211–217.

Smith JM, Sondhi KC. 1960. The genetics of pattern. Genetics 45:1039–1050.

Soule DF, Soule JD, Chaney HW. 2001. The Bryozoa. In: Blake JA, Chaney HW, Scott PH, Lissner AL, editors. Taxonomic atlas of the benthic fauna of the Santa Maria Basin and Western Santa Barbara Channel. Volume 13. Santa Barbara (CA): Santa Barbara Museum of Natural History. p 1–344.

Soule JD, Soule DF, Chaney HW. 1987. Chapter IV. Phyla Entoprocta and Bryozoa (Ectoprocta). In: Devaney DM, Eldredge LG, editors. Reef and shore fauna of Hawaii. Section 2: Platyhelminthes through Phoronida and Section 3: Sipuncula through Annelida. Honolulu: Bishop Museum Press. p 83–170.

Stebbing ARD. 1973a. Observations on colony overgrowth and spatial competition. In: Larwood GP, editor. Living and fossil Bryozoa. London: Academic Press. p 173–183.

Stebbing ARD. 1973b. Competition for space between the epiphytes of Fucus serratus L. Journal of the Marine Biological Association of the United Kingdom 53:247–261.

Wendt DE. 2000. Energetics of larval swimming and metamorphosis in four species of Bugula (Bryozoa). Biological Bulletin (Woods Hole) 198:346–356.

Wendt DE, Woollacott RM. 1995. Induction of larval settlement by KCl in three species of Bugula (Bryozoa). Invertebrate Biology 114:345–351.

Wendt DE, Woollacott RM. 1999. Ontogenies of phototactic behavior and metamorphic competence in larvae of three species of Bugula (Bryozoa). Invertebrate Biology 118:75–84.

Winston JE. 1977. Distribution and ecology of estuarine ectoprocts: a critical review. Chesapeake Science 18:34–57.

Winston JE. 1982. Marine bryozoans (Ectoprocta) of the Indian River area (Florida). Bulletin of the American Museum of Natural History 173:99–176.

Winston JE. 1995. Ectoproct diversity of the Indian River coastal lagoon. Bulletin of Marine Science 57:84–93.

Woollacott RM. 1980. Bacteria associated with bryozoan larvae. Marine Biology 63:155–158.

Woollacott RM. 1999. Bryozoa (Ectoprocta). In: Knobil E, Neill J, editors. Encyclopedia of reproduction. New York: Academic Press. p 439–448.

Woollacott RM, McSorley KM, Pechenik JA. 1989. Effects of the duration of larval swimming period on early colony development in Bugula stolonifera (Bryozoa: Cheilostomata). Marine Biology 102:57–63.

Wyatt SSJ, Hewitt CL, Walker DJ, Ward TJ. 2005. Marine introductions in the Shark Bay World Heritage Property, Western Australia: a preliminary assessment. Diversity and Distributions 11:33–44.

Xixing L, Xueming Y, Jianghu M. 2001. Biology of marine-fouling bryozoans in the coastal waters of China. Beijing: Science Press. 860 p. (Chi with Eng summary).

Yoshioka PM. 1982. Predator-induced polymorphism in the bryozoan Membranipora membranacea (L.). Journal of Experimental Marine Biology and Ecology 61:233–242.

Young CM, Cameron JL. 1989. Differential predation by barnacles upon larvae of two bryozoans: spatial effects at small scales. Journal of Experimental Marine Biology and Ecology 128:283–294.

Zabala M, Maluquer P. 1988. Illustrated keys for the classification of Mediterranean Bryozoa. Treballs del Museu de Zoologia de Barcelona 4:3–294.

Zimmer RL, Woollacott RM. 1977. Metamorphosis, ancestrulae, and coloniality in bryozoan life cycles. In: Woollacott RM, Zimmer RL, editors. Biology of bryozoans. New York: Academic Press. p 91–142.
Appendix 1. Studies on the biology of Bugula stolonifera exclusive of taxonomic and faunistic reports

This appendix includes only studies published from 1960, the date of Ryland’s original description of the species, to the present. We have made no attempt to incorporate material from previous studies that are likely attributable to B. stolonifera.

Subject area	Geographical source of material	Reference
Biomechanics and functional morphology	UK, Wales	Riisgård and Manríquez (1997)
	USA, California	Okamura (1984, 1990)
	USA, North Carolina	McKinney et al. (1986)
	USA, Massachusetts	Kaufmann (1968, 1971)
Natural products chemistry and ecology	USA, Delaware	McGovern and Hellberg (2003)
	USA, New York	Colon-Urban et al. (1991)
	USA, Massachusetts	Lim (2004)
Molecular and biochemical systematics	North Sea, English Channel,	d’Hondt et al. (2003)
	Bay of Biscay	
	USA, Massachusetts	Lim (2004)
Larval anatomy	USA, Massachusetts	Hughes and Woollacott (1980)
	USA, Massachusetts	Reed et al. (1988)
Laboratory studies	Germany, Kiel	Jebram (1968, 1977)
	USA, Massachusetts	Bertrand and Woollacott (2003)
	USA, Massachusetts	Brancato and Woollacott (1983)
	USA, Massachusetts	Lim (2004)
	USA, Massachusetts	Pires and Woollacott (1983)
	USA, Massachusetts	Rodgers and Woollacott (this study)
	USA, Massachusetts	Wendt (2000)
	USA, Massachusetts	Wendt and Woollacott (1995, 1999)
	USA, Massachusetts	Woollacott (1980)
	USA, Massachusetts	Woollacott et al. (1989)
Field studies	UK, Wales	Naylor (1965)
	Mediterranean	Gautier (1962), Geraci and Relini (1970)
	Turkey	Kocak and Kucukşezgin (2000)
	USA, Florida	Young and Cameron (1989)
	USA, Massachusetts	Grosberg (1981)
	USA, Massachusetts	Patzkowsky (1988)
	USA, New Hampshire	Winston (1977)
	Australia	Keough and Raimondi (1995, 1996)
	China	Xixing et al. (2001)

Appendix 2. Geographical distribution of Bugula stolonifera

This appendix includes only studies published from 1960, the date of Ryland’s original description of the species, to the present. We have made no attempt to incorporate material from previous studies that are likely attributable to B. stolonifera.
Location	Reference
Indian Ocean	
Pakistan, Arabian Sea	Karim (1971), Javed and Tirmizi (1993)
India, Bay of Bengal	Ganapati and Rao (1968), Satyanarayana and Ganapati (1978)
Western Australia, Shark Bay	Wyatt et al. (2005)
Southern Ocean	
Australia, Adelaide	Brock (1985)
Pacific Ocean	
New Zealand	Hager (1964), Gordon (1967), Gordon and Mawatari (1992)
Australia, Southeastern	Keough and Raimondi (1995)
China, South China Sea	Xixing et al. (2001) and references therein
Japan, Inland Sea, Nagoya	Scholz et al. (2003)
USA, Hawaii	Soule et al. (1987)
USA, Berkeley, California	Okamura (1984)
USA, Southern California	Soule et al. (2001)
Panama	Powell (1971)
Atlantic Ocean	
Argentina, Mar del Plata	Excoffon et al. (1999)
Brazil, Rio de Janeiro State	Alvarez et al. (1986), Ramalho and Muricy (2003a, 2003b), Ramalho et al. (2004)
USA, Florida, Indian River Lagoon	Winston (1982, 1995), Young and Cameron (1989), Okamura (1990)
USA, N and S of Cape Hatteras	Maturo (1968)
USA, North Carolina, Bogue Sound	McKinney et al. (1986)
USA, Delaware	McGovern and Hellberg (2003)
USA, Brooklyn, New York	Colon-Urban et al. (1991)
USA, Woods Hole, Massachusetts	Kaufmann (1971) and numerous others
USA, Great Bay, New Hampshire	Winston (1977)
USA, Atlantic coast	Maturo (1966)
Netherlands, North Sea	d’Hondt and Cadée (1994), d’Hondt et al. (2003)
Belgium, North Sea	Kerckhof (2000) and references therein
Ireland, Côb, Cork	Ryland (1960)
British Isles, Southwest	Ryland (1960), Naylor (1965), Hayward (1976), Ryland and Hayward (1977), Hayward and Ryland (1998), Riisgård and Manriquez (1997)
France, English Channel and Strait of Dover	Fey (1971), d’Hondt et al. (2003)
France, Bay of Biscay	Prenant and Bobin (1966)
Spain, Abra de Bilbao	Alvarez et al. (1986)
Temperate North Atlantic	Ryland and Hayward (1991)
Liberia	Pulpeiro (1983)
Ghana	Cook (1985)
Caribbean Sea	
Jamaica, Kingston	Creary (2003)
Mediterranean Sea	
Italy, Ligurian Sea	Geraci and Relini (1970)
Italy, Tyrrhenian Sea	Ryland (1962), Carrada et al. (1965), Carrada and Occhioni Ambrogi (1979), Occhioni Ambrogi (1980)
Italy, Adriatic Sea	Carrada and Occhioni Ambrogi (1979), Occhioni Ambrogi (1980, 1982, 1985), Occhioni Ambrogi and d’Hondt (1981)
Italy and Sardinia	Occhioni Ambrogi (1981)
Turkey, Aegean Sea	Kocak and Kucuksezgin (2000)
Western Mediterranean	Gautier (1962), Zabala and Maluquer (1988)