Open questions with ultra-high energy cosmic rays

Pasquale Blasi
INAF/Osservatorio Astrofisico di Arcetri, Firenze, Italy
E-mail: blasi@arcetri.astro.it

Abstract. We briefly discuss three aspects related to the origin of ultra-high energy cosmic rays (UHECRs) namely: 1) particle acceleration in astrophysical sources; 2) transition to an extragalactic origin; 3) spectrum and anisotropies at the highest energies.

1. Introduction
Astrophysical acceleration processes for cosmic rays need to be pushed to the extreme in order to account for energies as high as the observed ones, of the order of $\sim 10^{20}$ eV. This does not imply that no class of sources can explain what we observe. On the contrary the detection of such high energy particles is a unique opportunity to learn about how particle acceleration works in extreme conditions. On the other hand, even if a class of sources is found that are, at least in principle, able to accelerate cosmic rays up to energies in excess of 10^{20} eV, the attenuation of the flux due to the process of photopion production induces a flux suppression at $\sim 10^{20}$ eV, the so-called GZK feature [1, 2]. The details of such suppression depend however on numerous astrophysical factors (e.g. injection spectrum, intrinsic maximum energies at the accelerators, redshift evolution of the source luminosity, spatial inhomogeneity in the source distribution and strength and topology of the intergalactic magnetic field).

In order to understand the origin of extragalactic cosmic rays and more specifically of UHECRs, it is crucial to understand which cosmic rays are in fact extragalactic. The two main lines of thought in this respect will be summarized and discussed: in the so-called ankle scenario [4, 3] the transition takes place around 10^{19} eV where a steep galactic spectrum encounters the flat spectrum of extragalactic cosmic rays. In the dip scenario [5, 6] the transition takes place at energies roughly one order of magnitude lower. The case of a mixed chemical composition of extragalactic cosmic rays [7, 8] will also be discussed.

The paper is structured as follows: in §2 we discuss the problem of acceleration and some recent findings on magnetic field amplification in the acceleration region. In §3 we discuss the current ideas on the transition between galactic and extragalactic cosmic rays. In §4 we describe the current status of the observations of the end of the cosmic ray spectrum and of the anisotropies in such energy range. We conclude in §5.

2. How does Cosmic Ray Acceleration work?
In this section we illustrate some recent developments of studies of particle acceleration at shock waves that may have important consequences for our understanding of the origin of UHECRs, although at the present stage most of these investigations are aimed at supernova remnants (SNRs), the possible sources of lower energy galactic cosmic rays.
In the case of SNRs, acceleration in assumed to take place at the shock front associated with the supersonic motion of the expanding shell. Particles are energized through diffusive acceleration \textit{a la Fermi}.

It is well known that the mechanism of diffusive particle acceleration at supernova shocks is efficient only if the level of scattering in the shock vicinity is much larger than that warranted by the interstellar medium turbulence. This condition may be fulfilled either because the circumstellar material provides the scattering, or because the accelerated particles generate a larger magnetic field δB from the background field B, through streaming instability. The possibility of magnetic field amplification was already discussed in Refs. [9, 10, 11], where the maximum achievable energy was evaluated. The conclusion of [10, 11] was that shocks in SNRs could accelerate cosmic rays up to $\sim 10^4$ GeV, below the knee, if the amplification results in $\delta B/B \sim 1$ (on all spatial scales) and the diffusion coefficient has the form of the Bohm diffusion.

The maximum value of the amplified magnetic field δB is however not limited by the value of the background field, but rather by $\delta B = B \left[2M_A \frac{P_{CR}}{\rho u^2} \right]^{1/2}$, where ρu^2 is the ram pressure of the inflowing fluid in the upstream region, P_{CR} is the pressure in the form of accelerated particles, and $M_A = u \sqrt{4\pi \rho}/B$ is the Alfvénic Mach number of the upstream fluid. All these results are obtained in the context of the quasi-linear theory and should in principle be used only for $\delta B/B \ll 1$, while they predict $\delta B/B \gg 1$, therefore these conclusions should be taken with much care. The waves that turn nonlinear within this approach are Alfvén waves.

Recently the authors of Ref. [12] have presented an approach that would lead to magnetic fields much larger than those discussed above. In [13] the appearance of a new non-alfvenic purely growing mode was discussed and was found to saturate at

$$\delta B = B M_A \sqrt{\frac{u}{c} \frac{P_{CR}}{\rho u^2}}, \quad (1)$$

where the symbols have the same meaning as above. This saturation level, determined in the context of quasi-linear limit, seems to be confirmed by hybrid simulations [13]. For typical parameters of a SNR and an accelerating fraction of the kinetic pressure, one can predict $\delta B/B \sim 500$ (versus $\delta B/B \sim 20$ in the previous case). If one assumes Bohm diffusion, this translates to higher values of the maximum energy of accelerated particles: for $\delta B/B \sim 500$ one has $E_{\text{max}} \sim (0.5 - 2) \times 10^7$ GeV (assuming Bohm diffusion).

The condition $\rho u^2 \approx P_{CR}$ is typically found to be a consequence of the dynamical reaction of the accelerated particles (see [14] for a review of non-linear diffusive particle acceleration). This reaction, which leads to the so-called \textit{cosmic ray modification} of shocks, has three important phenomenological consequences: 1) creation of a cosmic ray precursor which is also responsible for a concave energy spectrum (non power law); 2) large efficiency for particle acceleration; 3) suppression of the plasma heating in cosmic ray modified shocks.

A unified picture of nonlinear particle acceleration at shocks with self-generation of scattering has recently been presented in [15, 16, 17]. An important effect of the shock modification is that while the amplification of the magnetic field leads to an increase of the maximum achievable energy, the precursor (slowing down of the upstream fluid and spatial variation of the magnetic field) leads to a somewhat lower value of the maximum energy [18].

It is worth stressing that the KASCADE data (see [19] for a review) show that the proton spectrum extends to $\sim 10^7 GeV$. The spectrum of helium nuclei appears to extend to slightly higher energies, as it could be expected in a rigidity dependent model of acceleration. In this picture the knee in the iron component would be expected to be at energy $E_{Fe}^{k} = Z E_{p}^{k} \approx 8 \times 10^{16}$ eV, while the spectrum would probably extend up to $E_{Fe}^{\text{max}} = Z E_{p}^{\text{max}} \approx 2 \times 10^{17}$ eV. The spectrum of iron nuclei is however not observed in a reliable way at the present time, therefore
this should be considered as a phenomenological conclusion, which however, combined with theoretical insights, hints to the fact that the galactic component of cosmic rays should end around $\sim 2 \times 10^{17}$ eV.

Independent evidences for the magnetic field amplification discussed above comes from Chandra X-ray observations of the X-ray rim of several SNRs, resulting from synchrotron emission of relativistic electrons accelerated at the shock front. It has been pointed out that the spatial extension of these regions is compatible with magnetic fields of the order of $\sim 100-300 \mu G$ and not with the typical fields in the interstellar medium [20].

After learning all these pieces of information from studying the accelerators of galactic cosmic rays it would be desirable to use them for a better understanding of the sources and acceleration processes involved in the production of extra-galactic cosmic rays, most of which involve relativistic shocks. In order to reach this goal two important steps need to be pursued: 1) a mathematical description of shock modification for relativistic shocks and 2) a theory of magnetic field amplification that applies to plasmas in relativistic motion. It is worth keeping in mind that this aspects of particle acceleration are not just corrections to a well established picture, but the basic reasons why the process works, at least in galactic sources. In addition to these purely theoretical problems, it is crucial that the search for the sources of the highest energy cosmic rays take place in the context of multifrequency and multimessenger astronomy.

3. Where does the transition from galactic to extragalactic cosmic rays occur?

As pointed out in Sect. 2, there are phenomenological arguments that suggest that the galactic component of cosmic rays may end around $\sim 2 \times 10^{17}$ eV. This conclusion, which still needs to be confirmed by solid measurements, would lead to the following conclusions: 1) the extragalactic component starts around this same energy and 2) the ankle, traditionally interpreted as a feature that results from the intersection of the two components, would require an alternative explanation.

A dip appears in the spectrum of extragalactic cosmic rays at energy $\sim 3 \times 10^{18}$ eV [5, 6, 23] (the position of the ankle), as due to the combination of adiabatic losses (expansion of the universe) and e^\pm pair production. When calibrated by the position of the dip, the spectra of UHECRs determined by all experiments agree very well with each other.

The low energy part of the dip fits what is currently named the second knee. Below the second knee the predicted spectrum flattens and drops below the flux of galactic cosmic rays. This low energy part depends to some extent on the mean distance between sources and on the magnetic field value and topology in the intergalactic medium [21, 22]. In this scenario the transition between galactic and extragalactic cosmic rays takes place somewhere between 10^{17} eV and 10^{18} eV, but it remains true that in the transition region a steep galactic spectrum encounters a flatter extragalactic spectrum [23], as in the ankle scenario.

Both possibilities are currently viable and have positive and negative aspects. The injection spectrum required to fit the data in the ankle scenario is as flat as $E^{-\alpha}$, with $\alpha \sim 2-2.4$, which is tantalizingly close to the results expected for shock acceleration, while in the dip scenario the injection spectrum has $\alpha = 2.6 - 2.7$. However, it was pointed out in Ref. [24, 23] that the superposition of flat spectra with different maximum energies naturally provides a good fit to the data without requiring a steep injection spectrum. In any case one should always keep in mind that several pieces of physics lead to a steepening of the spectra with respect to the canonical case $\alpha \sim 2$ [23].

From the point of view of the chemical composition the two models differ the most: in the ankle scenario [4], galactic cosmic rays extend to $> 10^{19}$ eV and are mainly iron nuclei, while the dip scenario requires that CRs with energy above $\sim 10^{19}$ eV are mostly protons (with no more than $\sim 15\%$ contamination of helium) and that the proton dominated extragalactic component is important down to energies around $\sim 10^{18}$ eV. The differences in the prediction of the chemical
composition of CRs also represent the tool to possibly discriminate between them.

An important aspect of the dip scenario is that it provides a description of the transition from galactic to extragalactic cosmic rays which is consistent with the KASCADE observations. For comparison, the ankle scenario requires that galactic sources should be able to accelerate cosmic rays up to $\sim 10^{19}$ eV, which appears rather challenging on the basis of current knowledge of acceleration processes in galactic sources (see Sect. 2).

In addition to the two scenarios discussed above, there is a third one, based on the possibility that the chemical composition at the source is contaminated by nuclei heavier than hydrogen [7, 8]. The propagation of these elements and their fragmentation in the cosmic photon background determine a rather complex energy dependent chemical composition at the Earth, which depends somewhat on the assumptions on the injection spectra and relative abundancies in the sources. In this model the transition between galactic and extragalactic cosmic rays takes place at $\sim 2 \times 10^{18}$ eV and is much smoother than for the dip scenario. The mixed composition model also appears to agree with the fact that the galactic spectrum should end at energies $10^{17} - 10^{18}$ eV. However, it requires a rather flat injection spectrum ($\alpha \sim 2.4$) and predicts that the chemical composition in the transition region has a strong iron and helium contamination.

4. What are the spectrum and anisotropies of UHECRs?
The spectrum of UHECRs is expected to be characterized by the GZK feature, a flux suppression at energies around $\sim 10^{20}$ eV, due to photopion production during the propagation of protons on cosmological scales.

The theoretical predictions of this part of the spectrum are extremely uncertain, being dependent on the injection spectrum, the distribution and spatial density of the sources and the strength and topology of the intergalactic magnetic field. The search for this feature has given inconclusive results so far, mainly due to the very low statistics of detected events. From the statistical point of view, the most significant data are those collected by AGASA, HiRes and the Pierre Auger Observatory. AGASA and HiRes, with comparable exposures, have results which are discrepant in the highest energy part: the spectrum of AGASA [27] does not show the GZK suppression, while HiRes spectrum [28] has a pronounced GZK feature. The numerical simulations of Ref. [25] showed however that, given the small number of collected events, the discrepancy is in fact at $\sim 2 - 3\sigma$ level, being further reduced if the offset in the overall normalization of the spectra is attributed to a systematic error in the energy determination. A systematic error of $\sim 30\%$ would in fact make the experiments to reasonably agree with each other. It is important to stress that the simulation of the propagation of UHECRs was carried out in [25] in the case of a truly continuous distribution of the sources (no point sources with finite density). It is also worth pointing out that a recent re-analysis of the AGASA data resulted in a reduction of the number of events above 10^{20} eV (Teshima, this meeting), which decreases even further the significance of the alleged AGASA-HiRes discrepancy.

The most recent measurement of the spectrum by the Pierre Auger Observatory [26] is in closer agreement with the HiRes results, although again no conclusive evidence for the absence of the GZK feature can be claimed so far.

If the sources of UHECRs are not diffuse, namely if they are astrophysical sources (and not topological defects or cosmological relics) the directions of arrival of UHECRs are expected to cluster on small angular scales. These small scale anisotropies (SSA) contain a large amount of information on the sources, and can be measured by using the tool of the two point correlation function of the arrival directions of the detected events [29]. The two point correlation function of the AGASA data [30], when compared with the simulated events provides an estimate of the source number density of $\sim 10^{-5}$Mpc$^{-3}$ [29], with a very large uncertainty (about one order of magnitude on both sides) that results from the limited statistics of events above 4×10^{19} eV, where the analysis should be carried out in order to avoid (or limit) the effects of the galactic
magnetic field.

If one uses the best fit for the source density \(n_s \sim 10^{-5} \text{Mpc}^{-3} \) [29] and determines the simulated spectrum of UHECRs at the Earth, the AGASA small scale anisotropies appear to be inconsistent with the spectrum measured by the same experiment at the level of \(\sim 5\sigma \) [31]. Given the large error in the determination of \(n_s \) this result cannot be taken too seriously, but it certainly hints to the possibility that the SSA observed by AGASA may be a statistical fluctuation (the HiRes experiment does not find evidence for SSA [33]). Its statistical significance has in fact been shown to be rather weak [32] and dependent upon the choice of the binning angle for the arrival directions [32, 31]. The HiRes experiment does not find evidence for SSA [33].

The combined analysis of the spectrum and SSA is likely to provide us with precious informations when the full scale Auger data will be available, although the analysis will be difficult even with Auger South. In [34] the simulations of propagation from point sources were repeated for the expected Auger South statistics of events: the results suggest that it will be easy to distinguish the case of point sources from the case of a purely homogeneous distribution, but it will not be easy to achieve a good resolving power between different values of the source density \(n_s \). The galactic magnetic field and the luminosity function of the sources contribute to emphasize this difficulty. On the other hand, the SSA should also result in the appearance of hot spots in the UHECR sky, so that the search for the sources can proceed though alternative and probably more efficient routes, such as the identification of counterparts or the cross-correlation of arrival directions with the positions of sources in given catalogs. The power of these analyses is expected to be outstanding when both Auger South and Auger North will be available.

5. Conclusions
We discussed three of the open questions in the investigation of the origin of ultra-high energy cosmic rays: 1) How does cosmic ray acceleration work? 2) Where does the transition from galactic to extragalactic cosmic rays occur? 3) what are the spectrum and anisotropies of UHECRs?

In the field of particle acceleration, some of the most impressive developments are taking place in the investigation of particle acceleration at shock waves. In particular the theoretical framework in which the reaction of the accelerated particles on the shocked plasma is taken into account is getting better defined, and the amplification of the magnetic field as due to streaming instability is receiving increasing attention. These studies, together with an exciting observational situation in which cosmic ray observations join with X-ray and gamma ray observations in providing us with a more consistent picture of particle acceleration at supernova shocks, is helping us to extend the applicability of the physical principles involved to other classes of sources, possibly of relevance for UHECRs.

These observations suggest that the galactic component of cosmic rays ends at energies \(\sim 2 \times 10^{17} \text{eV} \), therefore hinting to the fact that the ankle may not be the feature signalling for the transition from galactic to extragalactic cosmic rays. On the other hand, observations seem compatible with the dip scenario and with the so-called mixed composition scenario. An accurate measurement of the chemical composition between \(10^{17} \text{eV} \) and \(10^{19} \text{eV} \) seems to be the most efficient way to discriminate between these two scenarios of the transition.

At larger energies, a crucial issue is represented by the measurement of the spectrum at energies around \(10^{20} \text{eV} \), where the GZK suppression has long been searched and missed. AGASA and HiRes spectra are in a mild contradiction with each other which may well be due to statistical fluctuations and a systematic error in the energy determination with the two different techniques used for the measurement. The Pierre Auger Observatory should soon settle this issue.

At sufficiently high energies the magnetic field of the Galaxy is not expected to bend the trajectories of high energy particles by more than \(1\text{–}2 \) degrees, comparable with the angular
resolution of the operating cosmic ray experiments. This may lead to the identification of small scale anisotropies, flagging the presence of discrete sources of UHECRs. A signal of this type was found by AGASA, though its statistical significance was later questioned [32, 34]. The level of SSA detected by AGASA would correspond to a source density $\sim 10^{-5}\text{Mpc}^{-3}$ [29]. The combination of spectral analyses and SSA is expected to be fruitful in upcoming cosmic ray experiments such as the Pierre Auger Observatory, where additional tools can be adopted for the identification of the sources (e.g. cross correlation with source catalogs and multifrequency observations of potential cosmic ray sources). Besides trying to assess the nature of the sources from statistical analyses, it seems of the highest priority to attempt to measure the spectrum of a single source of UHECRs, a finding that would definitely open the era of UHECR astronomy (see [29] for statistical considerations on the feasibility of this measurement).

Acknowledgments

I am thankful to R. Aloisio, E. Amato, V. Berezinsky, D. De Marco and A.V. Olinto for numerous discussions and ongoing collaboration.

References

[1] Greisen K, 1966 *Phys Rev Lett* **16** 748
[2] Zatsepin G T and Kuzmin V A, 1966 *Sov Phys JETP Lett* **4** 78
[3] Hillas M A, 2005 *J Phys G* **31** 95
[4] Wibig T and Wolfendale A W, 2005 *J Phys G* **31** 255
[5] Berezinsky V S, Gazizov A and Grigorieva S, 2002 *Preprint hep-ph/0204357*
[6] Berezinsky V S, Gazizov A and Grigorieva S, 2005 *Phys. Lett* **B612** 147
[7] Allard D, Parizot E, Khan E, Goriely S and Olinto A V, 2005a *Preprint astro-ph/0505566.*
[8] Allard D, Parizot E and Olinto A V, 2005b, *Preprint astro-ph/0512345.*
[9] Bell A R, 1978 *MNRAS* **182** 443
[10] Lagage P O and Cesarsky C J, 1983a *A&A* **118** 223
[11] Lagage P O and Cesarsky C J, 1983b *A&A* **125** 249
[12] Lucek S G and Bell A R, 2000 *MNRAS* **314** 65
[13] Bell A R, 2004 *MNRAS* **353** 550
[14] Malkov M A and Drury L O'C, 2001 *Rep Prog Phys* **64** 429
[15] Amato E and Blasi P, 2005 *MNRAS Lett* **364** 76
[16] Amato E and Blasi P, 2006 *MNRAS* **371** 1251
[17] Vladimirov A, Ellison D C, Bykov A, *Preprint astro-ph/0606433*
[18] Blasi P, Amato E and Caprioli D, *submitted to MNRAS*
[19] Hörandel J R, *A review of experimental results at the knee, in the "Workshop on Physics of the End of the Galactic Cosmic Ray Spectrum",* Aspen, April 25 - 29, 2005 (*Preprint astro-ph/0508014*)
[20] Warren J S et al, 2005 *Ap J* **634** 376
[21] Aloisio R and Berezinsky V S, 2005 *Astrophys. J.* **625** 249
[22] Lemoine M, 2005 *Phys Rev* **D71** 3007
[23] Aloisio R, Berezinsky V S, Blasi P, Gazizov A, Grigorieva S and Hnatyk B, 2006 *Preprint astro-ph/0608219 (Astropart. Phys. in press)*
[24] Kachelriess M and Semikoz D V, 2006 *Phys Lett* **B634** 143
[25] De Marco D, Blasi P and Olinto A V, 2003 *Astropart.Phys* **20** 53
[26] Sommers P et al. (The Pierre Auger Collaboration), *Proceedings of the 29th International Cosmic Ray Conference,* Pune, India (2005)
[27] Hayashida M et al., 2000 *Astron J* **120** 2190
[28] Abbasi R U et al., 2004 *Phys Rev Lett* **92** 151101
[29] Blasi P and De Marco D, 2004 *Astropart.Phys* **20** 559
[30] Takeda M et al., 1999 *Astrophys J* **522** 225
[31] De Marco D, Blasi P and Olinto A V, 2006a *JCAP* **0601** 002
[32] Finley C B and Westerhoff S, 2004 *Astropart Phys* **21** 359
[33] Abbasi R U et al, 2004 *Astrophys J Lett* **610** 73
[34] De Marco D, Blasi P and Olinto A V, 2006b *JCAP* **0607** 015