Supplementary Table 1. The sequences of oligonucleotide primers.

Genes	Sequence
rat actin forward	CGAGTACAACCTTCTTGCAG
rat actin reverse	GAGTCCTTCTGAACCATACC
tubulin (rat, mouse) forward	TAGCAGAGATCAACATGACC
tubulin (rat, mouse) reverse	GGCAGCAAGCATTGATTTA
PGC-1α (rat, mouse) forward	ACTGAGCTACCTTGGGAGATG
PGC-1α (rat, mouse) reverse	TAAGAATTTCCTGTTGGGAC
Cytochrome-C (rat, mouse) forward	GGAGGCAAGCATAAGACCT
Cytochrome-C (rat, mouse) reverse	TCCATCACGGATATTCTCCTCC
G6Pase (rat, mouse) forward	ACACCGACTACTACAGGAC
G6Pase (rat, mouse) reverse	CCTGAAGAGAGGCAAGGAT
PEPCK (rat, mouse) forward	CATATGCTGATCTGGGACCA
PEPCK (rat, mouse) reverse	CAAACTTCACAGGCAATGTG
ERRα (rat, mouse) forward	ATCTGCTGTGTTGGACACT
ERRα (rat, mouse) reverse	AGAAGCCTGGGATGCTCTTTG
mouse cox5b forward	GCTGCACTGTTGAAAGGAC
mouse cox5b reverse	CAGCGTAGGTGCTCCACAG
rat cox5b forward	GGAGATCATGATGAGAC
rat cox5b reverse	CTCTTCAGATGAGCCCAC
mouse glut4 forward	GTGAUGAGACACTTGTCCTG
mouse glut4 reverse	CCAGCAGGTGATGTGAATG
rat glut4 forward	CTCATGGCCTAGCATAATG
rat glut4 reverse	GGCGATTTTCTCCCACATAC
mouse AOX forward	GCTGCACTGTTGAAAGGAC
mouse AOX reverse	AATGAACTCTTGGTCTCAGG
rat AOX forward	CCAATCAAGCAATGTCTCGG
rat AOX reverse	CGCTGTAATGTCAGCTAG
mouse NRF1 forward	TGGAGGAGACAGGACTGGA
mouse NRF2 reverse	CAGCCAGATGGGAGAATG
rat NRF1 forward	GTATGCTAAGTGCTGAA
rat NRF2 reverse	GGTTTGGAGGATGATG
mouse UCP-3 forward	TGCCCTCTACGACTCTGTAAGGAC
mouse UCP-3 reverse	CTCTCTCTCTCTTTGGGAT
mouse ATPase-F1α forward	TCCATGCTCTCTTTACACT
mouse ATPase-F1α reverse	CCAAGTGTAAGAGAGAC
mouse CPT-1 forward	ATAGCACGCTATGTCGTCTCC
mouse CPT-1 reverse	TGCCATCATGCTGCTTC
mouse MCAD forward	AGCTGCTAGTGAGGGAGAC
mouse MCAD reverse	TCGCGATTCTGCGAGCA
mouse LCAD forward	TCACCAACAGCTGAGCTGCA
mouse LCAD reverse	CCAAAAAAGAGGTCAATGACCCATG
mouse 16S RNA mtDNA forward	CCGCAAGGGAAGAGAGGAGCAAG
mouse 16S RNA mtDNA reverse	TGGTTGTTTGGGAGTTT
mouse hexokinase 2 gene, intron 9 forward	GGCAAGCTCTCTGATTTTAGT
mouse hexokinase 2 gene, intron 9 reverse	GGGAAACACAAAAGACCTTTCTCGG
Supplementary Table 2. Body weight of SD rats gavaged with ZLN005 for 14 days. D: day.

Sex	Time(day)	vehicle (g)	75 mg/kg (g)
Female	D1	201.00±7.75	203.50±8.35
(n=4)	D7	222.25±12.69	219.75±10.78
	D14	234.50±18.59	231.75±16.38
	△D7	21.25±8.81	16.25±2.99
	△D14	33.50±14.06	28.25±8.73
Male	D1	257.00±12.11	256.00±9.83
(n=4)	D7	300.75±17.65	292.25±15.26
	D14	323.25±19.03	318.75±25.91
	△D7	43.75±8.06	36.25±8.18
	△D14	66.25±8.54	62.75±18.82
Supplementary Table 3. Blood routine examination of SD rats gavaged with ZLN005 for 14 days.

Sex	Variable	Vehicle	75 mg/kg
Female (n=4)	WBC(10^9/L)	4.860±0.87	4.46±0.72
	RBC(10^12/L)	6.91±0.31	6.68±0.19
	HGB (g/L)	12.93±0.46	12.55±0.31
	HCT(%)	38.18±1.53	37.25±0.93
	MCV(μL)	55.25±1.32	55.83±1.79
	MCH(pg)	18.75±0.31	18.83±0.48
	MCHC (g/L)	33.90±0.37	33.68±0.29
	RDW(μL)	11.70±0.51	13.53±1.13**
	PLT(10^3/μL)	1188.50±73.84	1246.75±84.65
	MPV (μL)	8.10±0.14	8.00±0.29
	%NEUT	16.15±8.80	14.90±6.22
	%LYM	79.35±9.47	81.38±7.22
	%MONO	1.68±0.29	1.75±0.75
	%EOS	1.78±0.68	1.05±0.17
	%BASO	0.18±0.10	0.18±0.13
	%LUC	0.85±0.21	0.78±0.13
	PT(sec)	8.43±0.12	8.50±0.14
Male (n=4)	WBC(10^9/L)	5.28±1.58	6.44±1.62
	RBC(10^12/L)	7.68±0.26	7.28±0.29
	HGB (g/L)	14.48±0.39	13.88±0.51
	HCT(%)	43.10±1.10	41.68±1.64
	MCV(μL)	56.13±0.50	57.28±1.33
	MCH(pg)	18.85±0.17	19.03±0.48
	MCHC (g/L)	33.60±0.22	33.28±0.21
	RDW(μL)	11.75±0.65	12.35±0.58
	PLT(10^3/μL)	1253.00±87.48	1269.50±69.81
	MPV (μL)	7.78±0.15	7.58±0.17
	%NEUT	15.18±4.99	21.65±6.46
	%LYM	81.45±4.85	74.48±7.53
	%MONO	1.65±0.26	2.00±0.87
	%EOS	0.90±0.22	0.78±0.22
	%BASO	0.15±0.10	0.20±0.08
	%LUC	0.70±0.34	0.88±0.49
	PT(sec)	8.90±0.29	8.95±0.13

*, p < 0.05, **, p < 0.01 compared with vehicle group. WBC: white blood cell; RBC: red blood cell; HGB: hemoglobin; HCT: hematocrit; MCV: mean corpuscular volume; MCH: mean cell haemoglobin; MCHC: mean cell haemoglobin concentration; RDW: blood cell distribution width; HDW: hemoglobin distribution width; PLT: platelets; MPV: mean platelet volume; NEUT: neutrophilic granulocyte; LYM: lymphocyte; MONO: monocyte; EOS: eosinophilic granulocyte; BASO: basophile granulocyte; LUC: large unstained cells; PT: prothrombin time.
Supplementary Table 4. Plasma metabolites of SD rats gavaged with ZLN005 for 14 days.

Sex	Variable	Vehicle	75 mg/kg
	ALT (U/L)	39.50±5.00	43.25±5.56
Female	AST (U/L)	98.50±14.11	118.00±4.24*
(n=4)	ALP (U/L)	112.25±13.72	119.50±34.22
	BUN (mmol/L)	7.04±1.50	7.69±1.00
	CREA (µmol/L)	27.75±1.26	25.50±1.29*
	GLU (mmol/L)	7.14±0.24	7.15±0.32
	TBIL (µmol/L)	2.08±0.60	2.09±0.50
	CHOL (mmol/L)	1.64±0.30	2.12±0.19
	TP (g/L)	54.50±1.73	55.00±2.83
	ALB (g/L)	41.50±3.11	41.50±1.00
	CK (U/L)	523.00±84.19	781.25±81.06**
	TG (mmol/L)	0.31±0.06	0.31±0.06
	GGT (U/L)	0.94±0.15	1.12±0.11
	DBIL (µmol/L)	1.31±0.33	1.38±0.34
	A/G	3.26±0.67	3.11±0.36
	GLO (g/L)	13.00±1.83	13.50±1.91
	Na (mmol/L)	137.18±1.32	137.08±0.88
	K (mmol/L)	4.65±0.31	4.88±0.08
	Cl (mmol/L)	108.05±1.70	107.28±1.41
Male	ALT (U/L)	41.50±4.93	59.75±23.08
(n=4)	AST (U/L)	93.75±12.69	107.00±24.23
	ALP (U/L)	213.50±57.67	250.25±19.72
	BUN (mmol/L)	6.43±0.46	6.42±0.77
	CREA (µmol/L)	23.25±0.96	23.75±1.26
	GLU (mmol/L)	7.52±0.25	7.32±0.56
	TBIL (µmol/L)	1.27±0.52	1.61±0.56
	CHOL (mmol/L)	0.91±0.27	1.40±0.18
	TP (g/L)	56.25±1.26	53.50±1.91
	ALB (g/L)	41.25±0.50	40.25±1.50
	CK (U/L)	465.00±176.92	299.50±73.76
	TG (mmol/L)	0.31±0.08	0.33±0.07
	GGT (U/L)	0.69±0.17	0.60±0.10
	DBIL (µmol/L)	0.99±0.43	1.15±0.51
	A/G	2.76±0.13	3.05±0.24
	GLO (g/L)	15.00±0.82	13.25±0.96*
	Na (mmol/L)	140.00±0.70	139.65±0.99
	K (mmol/L)	4.40±0.15	4.42±0.19
	Cl (mmol/L)	107.63±1.70	106.60±2.81

*, p < 0.05, **, p < 0.01 compared with vehicle group. ALT: alanine aminotransferase; AST: aspartate aminotransferase; ALP: alkaline phosphatase; BUN: blood urea nitrogen; CREA: creatinine; GLU: glucose; TBIL: total bilirubin; CHOL: total cholesterol; TP: total protein; ALB: albumin; CK: creatine phosphokinase; TG: triglycerides; GGT: gamma-glutamyl transpeptidase; DBIL: direct bilirubin; A/G: albumin-globulin ratio; GLO: globulin.
Supplementary Figure 1. Identification of ZLN027 and ZLN005 by HTS in HEK293 cells. A: Compound structure of ZLN027. B: Effect of ZLN027 and ZLN005 in HEK293 PGC-1α-luc stable cells. FSK (5 μM) and DEX (100 nM) as positive control. Luciferin signal was normalized by cell survival of the cells. C: Effect of ZLN027 and ZLN005 in luciferase enzyme, black circles, = ZLN005, white squares, = ZLN027. D-E: 24 h SRB results of ZLN027 and ZLN005 on HEK293 PGC-1α-luc stable cells and L6 myotubes.*, p < 0.05, **, p < 0.01 compared with DMSO.
Supplementary Figure 2. ZLN005 has no effect on AMPK pathway in primary hepatocytes. A: Effect of ZLN005 on the AMPK, CREB and p38 phosphorylation by western blots for 24 h. B: Effect of ZLN005 on the AMPK and ACC phosphorylation by western blots for 3 h. C: Effect of ZLN005 and CCCP on the rat liver tissue mitochondria respiration. D: Effect of ZLN005 and CCCP on ADP/ATP ratio AMPK in rat primary hepatocytes for 3 h.

©2012 American Diabetes Association. Published online at http://diabetes.diabetesjournals.org/lookup/suppl/doi:10.2337/db12-0703/-/DC1
Supplementary Figure 3. AMPK and ACC phosphorylation from the abdominal muscle (A) and liver tissue (B) of lean mice. The ratio of the phosphorylation level to the protein level of AMPK and ACC was determined.