Abstract

Artificial Bee Colony (ABC) is a distinguished optimization strategy that can resolve nonlinear and multifaceted problems. It is comparatively a straightforward and modern population based probabilistic approach for comprehensive optimization. In the vein of the other population based algorithms, ABC is moreover computationally classy due to its slow nature of search procedure. The solution exploration equation of ABC is extensively influenced by a arbitrary quantity which helps in exploration at the cost of exploitation of the better search space. In the solution exploration equation of ABC due to the outsized step size the chance of skipping the factual solution is high. Therefore, here this paper improve onlooker bee phase with help of a local search strategy inspired by memetic algorithm to balance the diversity and convergence capability of the ABC. The proposed algorithm is named as Improved Onlooker Bee Phase in ABC (IoABC). It is tested over 12 well known un-biased test problems of diverse complexities and two engineering optimization problems; results show that the anticipated algorithm go one better than the basic ABC and its recent deviations in a good number of the experiments.
references

- M Dorigo, G Di Caro (1999) Ant colony optimization: a new metaheuristic. In: Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 congress on, 2. IEEE
- J Kennedy, R Eberhart (1995) Particle swarm optimization. In: Neural networks, 1995. Proceedings., IEEE international conference on, 4, pp 1942–1948. IEEE
- KV Price, RM Storn, JA Lampinen (2005) Differential evolution: a practical approach to global optimization. Springer, Berlin
- J Vesterstrom, R Thomsen (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Evolutionary computation, 2004. CEC2004. Congress on, 2, pp 1980–1987. IEEE
- KM Passino (2002) Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control SystMag 22(3):52–67
- D Karaboga (2005) An idea based on honey bee swarm for numerical optimization. Techn. Rep. TR06, Erciyes University Press, Erciyes
- D Karaboga, B Akay (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132
- G Zhu, S Kwong (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217(7):3166–3173
- F Kang, J Li, Z Ma, H Li (2011) Artificial bee colony algorithm with local search for numerical optimization. J Softw 6(3):490–497
- R Hooke, TA Jeeves (1961) "Direct search" solution of numerical and statistical problems. J ACM (JACM) 8(2):212–229
- S Kumar, VK Sharma and R Kumari (2013) A Novel Hybrid Crossover based Artificial Bee Colony Algorithm for Optimization Problem, International Journal of Computer Application 82(8):18-25
- S Kumar and VK Sharma (2014), Enhanced Local Search in Artificial Bee Colony Algorithm. International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS). In Print.
- S Kumar, VK Sharma and R Kumari (2014) Randomized Memetic Artificial Bee Colony Algorithm. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS). In Print.
- S Kumar and VK Sharma (2014) Modified Artificial Bee Colony Algorithm. International Journal of Information, Communication and Computing Technology. In Print.
- S Kumar, VK Sharma, A Kumar and H Sharma (2014) Fitness Based Position Update in Artificial Bee Colony Algorithm. Unpublished.
- DE Goldberg (1989) Genetic algorithms in search, optimization, and machine learning.
- R Storn and K Price (1997) Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Journal of Global Optimization, 11:341–359.
- PA Moscato, "On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. " Tech. Rep. Caltech Concurrent Computation Program, Report. 826, California Inst. of Tech. , Pasadena, California, USA (1989).
- E Burke, J Newall, R Weare. : A memetic algorithm for university exam timetabling. In: E. Burke, P. Ross (eds.) The Practice and Theory of Automated Timetabling, Lecture Notes in Computer Science, vol. 1153, pp. 241–250. Springer Verlag (1996).
- R Carr, W Hart, N Krasnogor, E Burke, J Hirst, J Smith, "Alignment of protein
structures with a memetic evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference. Morgan Kaufman (2002).
- R Cheng, M Gen, Parallel machine scheduling problems using memetic algorithms. Computers & Industrial Engineering 33(3–4), 761–764 (1997).
- C Fleurent, J Ferland, Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63, 437–461 (1997).
- G Gutin, D Karapetyan, N Krasnogor, Memetic algorithm for the generalized asymmetric traveling salesman problem. In: M. Pavone, G. Nicosia, D. Pelta, N. Krasnogor (eds.) Proceedings of the 2007 Workshop On Nature Inspired Cooperative Strategies for Optimisation. Lecture Notes in Computer Science (LNCS), vol. to appear. Springer (2007).
- L He, N Mort, Hybrid genetic algorithms for telecommunications network back-up routing. BT Technology Journal 18(4) (2000).
- C Reeves, Hybrid genetic algorithms for bin-packing and related problems. Annals of Operations Research 63, 371–396 (1996).
- M Tang, X Yao, A memetic algorithm for VLSI floorplanning. Systems, Man, and Cybernetics, Part B, IEEE Transactions on 37(1), 62–69 (2007). DOI 10.1109/TSMCB.2006.883268.
- WE Hart, Adaptive Global Optimization with Local Search. Ph. D. Thesis, University of California, San Diego (1994).
- GM Morris, DS Goodsell, RS Halliday, R Huey, WE Hart, RK Belew, AJ Olson, Automated docking using a lamarkian genetic algorithm and an empirical binding free energy function. J Comp Chem 14, 1639–1662 (1998).
- H Wang, D Wang, and S Yang. A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems. Soft Computing 13. 8-9 (2009): 763-780.
- D Liu, KC Tan, CK Goh, WK Ho, A multi-objective memetic algorithm based on particle swarm optimization. Systems, Man, and Cybernetics, Part B, IEEE Transactions on 37(1), 42–50 (2007).
- Y Wang, JK Hao, F Glover, Z Lü, A tabu search based memetic algorithm for the maximum diversity problem. Engineering Applications of Artificial Intelligence 27 (2014): 103-114.
- X Xue, Y Wang, and A Ren. Optimizing ontology alignment through Memetic Algorithm based on Partial Reference Alignment. Expert Systems with Applications 41. 7 (2014): 3213-3222.
- O Chertov and D Tavrov. Memetic Algorithm for Solving the Task of Providing Group Anonymity. Advance Trends in Soft Computing. Springer International Publishing, 2014. 281-292.
- JC Bansal, H Sharma, KV Arya and A Nagar, Memetic search in artificial bee colony algorithm. Soft Computing (2013): 1-18.
- I Fister, I Fister Jr, J Bres, V Zumer. Memetic artificial bee colony algorithm for large-scale global optimization. Evolutionary Computation (CEC), 2012 IEEE Congress on. IEEE, 2012.
- J Kiefer (1953) Sequential minimax search for a maximum. In: Proceedings of American Mathematical Society, vol. 4, pp 502–506.
- H Sharma, JC Bansal, and KV Arya. Opposition based lévy flight artificial bee colony. Memetic Computing (2012): 1-15.
- MM Ali, C Khompatraporn, and ZB Zabinsky. "A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. " Journal of Global Optimization, 31(4):635–672, 2005.
- PN Suganthan, N Hansen, JJ Liang, K Deb, YP Chen, A. Auger, and S. Tiwari. "Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. " In CEC 2005, 2005.

Index Terms

Computer Science
Artificial Intelligence

Keywords

Artificial bee colony algorithm Swarm intelligence Evolutionary computation Memetic algorithm