In this paper, we study parametric nonlinear regression under the Harris recurrent Markov chain framework. We first consider the nonlinear least squares estimators of the parameters in the homoskedastic case, and establish asymptotic theory for the proposed estimators. Our results show that the convergence rates for the estimators rely not only on the properties of the nonlinear regression function, but also on the number of regenerations for the Harris recurrent Markov chain. Furthermore, we discuss the estimation of the parameter vector in a conditional volatility function, and apply our results to the nonlinear regression with $I(1)$ processes and derive an asymptotic distribution theory which is comparable to that obtained by Park and

Tribute: While this paper was in the process of being published, we heard that Professor Peter Hall, one of the most significant contributors to the areas of nonlinear regression and time series analysis, sadly passed away. The fundamental work done by Professor Peter Hall in the area of martingale theory, represented by the book (with Christopher C. Heyde): Hall, P. and Heyde, C. [Martingale Limit Theory and Its Applications (1980) Academic Press], enables the authors of this paper in using martingale theory as an important tool in dealing with all different types of estimation and testing issues in econometrics and statistics. In a related Annals paper by Gao, King, Lu and Tjøstheim [Ann. Statist. 37 (2009) 3893–3928], Theorem 3.4 of Hall and Heyde (1980) plays an essential role in the establishment of an important theorem. In short, we would like to thank the Co-Editors for including our paper in this dedicated issue in honour of Professor Peter Hall’s fundamental contributions to statistics and theoretical econometrics.

Received January 2014; revised August 2015.

1Supported by the Norwegian Research Council.
2Supported in part by an Australian Research Council Discovery Early Career Researcher Award (DE120101130).
3Supported by two Australian Research Council Discovery Grants under Grant Numbers: DP130104229 and DP150101012.

AMS 2000 subject classifications. Primary 62F12; secondary 62M05.

Key words and phrases. Asymptotic distribution, asymptotically homogeneous function, $\beta$-null recurrent Markov chain, Harris recurrence, integrable function, least squares estimation, nonlinear regression.
Phillips [Econometrica 69 (2001) 117–161]. Some numerical studies including simulation and empirical application are provided to examine the finite sample performance of the proposed approaches and results.

1. Introduction. In this paper, we consider a parametric nonlinear regression model defined by

\[ Y_t = g(X_t, \theta_{01}, \theta_{02}, \ldots, \theta_{0d}) + e_t \]

(1.1)

\[ = g(X_t, \theta_0) + e_t, \quad t = 1, 2, \ldots, n, \]

where \( \theta_0 \) is the true value of the \( d \)-dimensional parameter vector such that

\[ \theta_0 = (\theta_{01}, \theta_{02}, \ldots, \theta_{0d})^\top \in \Theta \subset \mathbb{R}^d \]

and \( g(\cdot, \cdot) : \mathbb{R}^{d+1} \to \mathbb{R} \) is assumed to be known. Throughout this paper, we assume that \( \Theta \) is a compact set and \( \theta_0 \) lies in the interior of \( \Theta \), which is a standard assumption in the literature. How to construct a consistent estimator for the parameter vector \( \theta_0 \) and derive an asymptotic theory are important issues in modern statistics and econometrics. When the observations \( (Y_t, X_t) \) satisfy stationarity and weak dependence conditions, there is an extensive literature on the theoretical analysis and empirical application of the above parametric nonlinear model and its extension; see, for example, Jennrich (1969), Malinvaud (1970) and Wu (1981) for some early references, and Severini and Wong (1992), Lai (1994), Skouras (2000) and Li and Nie (2008) for recent relevant works.

As pointed out in the literature, assuming stationarity is too restrictive and unrealistic in many practical applications. When tackling economic and financial issues from a time perspective, we often deal with nonstationary components. For instance, neither the consumer price index nor the share price index, nor the exchange rates constitute a stationary process. A traditional method to handle such data is to take the first-order difference to eliminate possible stochastic or deterministic trends involved in the data, and then do the estimation for a stationary model. However, such differencing may lead to loss of useful information. Thus, the development of a modeling technique that takes both nonstationary and nonlinear phenomena into account in time series analysis is crucial. Without taking differences, Park and Phillips (2001) (hereafter PP) study the nonlinear regression (1.1) with the regressor \( \{X_t\} \) satisfying a unit root [or \( I(1) \)] structure, and prove that the rates of convergence of the nonlinear least squares (NLS) estimator of \( \theta_0 \) depend on the properties of \( g(\cdot, \cdot) \). For an integrable \( g(\cdot, \cdot) \), the rate of convergence is as slow as \( n^{1/4} \), and for an asymptotically homogeneous \( g(\cdot, \cdot) \), the rate of convergence can achieve the \( \sqrt{n} \)-rate and even \( n \)-rate of convergence. More recently, Chan and Wang (2012) consider the same model
structure as proposed in the PP paper and then establish some corresponding results under certain technical conditions which are weaker than those used in the PP paper.

As also pointed out in a recent paper by Myklebust, Karlsen and Tjøstheim (2012), the null recurrent Markov process is a nonlinear generalization of the linear unit root process, and thus provides a more flexible framework in data analysis. For example, Gao, Tjøstheim and Yin (2013) show that the exchange rates between British pound and US dollar over the time period between January 1988 and February 2011 are nonstationary but do not necessarily follow a linear unit root process [see also Bec, Rahbek and Shephard (2008) for a similar discussion of the exchange rates between French franc and German mark over the time period between December 1972 and April 1988]. Hence, Gao, Tjøstheim and Yin (2013) suggest using the nonlinear threshold autoregressive (TAR) with stationary and unit root regimes, which can be proved as a 1/2-null recurrent Markov process; see, for example, Example 2.1 in Section 2.2 and Example 6.1 in the empirical application (Section 6).

Under the framework of null recurrent Markov chains, there has been an extensive literature on nonparametric and semiparametric estimation [Karlsen and Tjøstheim (2001), Karlsen, Myklebust and Tjostheim (2007, 2010), Lin, Li and Chen (2009), Schienle (2011), Chen, Gao and Li (2012), Gao et al. (2015)], by using the technique of the split chain [Nummelin (1984), Meyn and Tweedie (2009)], and the generalized ergodic theorem and functional limit theorem developed in Karlsen and Tjøstheim (2001).

As far as we know, however, there is virtually no work on the parametric estimation of the nonlinear regression model (1.1) when the regressor \( \{X_t\} \) is generated by a class of Harris recurrent Markov processes that includes both stationary and nonstationary cases. This paper aims to fill this gap. If the function \( g(\cdot,\cdot) \) is integrable, we can directly use some existing results for functions of Harris recurrent Markov processes to develop an asymptotic theory for the estimator of \( \theta_0 \). The case that \( g(\cdot,\cdot) \) belongs to a class of asymptotically homogeneous functions is much more challenging, as in this case the function \( g(\cdot,\cdot) \) is no longer bounded. In nonparametric or semiparametric estimation theory, we do not have such problems because the kernel function is usually assumed to be bounded and has a compact support. Unfortunately, most of the existing results for the asymptotic theory of the null recurrent Markov process focus on the case where \( g(\cdot,\cdot) \) is bounded and integrable [c.f., Chen (1999, 2000)]. Hence, in this paper, we first modify the conventional NLS estimator for the asymptotically homogeneous \( g(\cdot,\cdot) \), and then use a novel method to establish asymptotic distribution as well as rates of convergence for the modified parametric estimator. Our results show that the rates of convergence for the parameter vector in nonlinear cointegrating
models rely not only on the properties of the function $g(\cdot, \cdot)$, but also on the magnitude of the regeneration number for the null recurrent Markov chain.

In addition, we also study two important issues, which are closely related to nonlinear mean regression with Harris recurrent Markov chains. The first one is to study the estimation of the parameter vector in a conditional volatility function and its asymptotic theory. As the estimation method is based on the log-transformation, the rates of convergence for the proposed estimator would depend on the property of the log-transformed volatility function and its derivatives. Meanwhile, we also discuss the nonlinear regression with $I(1)$ processes when $g(\cdot, \cdot)$ is asymptotically homogeneous. By using Theorem 3.2 in Section 3, we obtain asymptotic normality for the parametric estimator with a stochastic normalized rate, which is comparable to Theorem 5.2 in PP. However, our derivation is done under Markov perspective, which carries with it the potential of extending the theory to nonlinear and nonstationary autoregressive processes, which seems to be hard to do with the approach of PP.

The rest of this paper is organized as follows. Some preliminary results about Markov theory (especially Harris recurrent Markov chain) and function classes are introduced in Section 2. The main results of this paper and their extensions are given in Sections 3 and 4, respectively. Some simulation studies are carried out in Section 5 and the empirical application is given in Section 6. Section 7 concludes the paper. The outline of the proofs of the main results is given in an Appendix. The supplemental document [Li, Tjøstheim and Gao (2015)] includes some additional simulated examples, the detailed proofs of the main results and the proofs of some auxiliary results.

2. Preliminary results. To make the paper self-contained, in this section, we first provide some basic definitions and preliminary results for a Harris recurrent Markov process $\{X_t\}$, and then define function classes in a way similar to those introduced in PP.

2.1. Markov theory. Let $\{X_t, t \geq 0\}$ be a $\phi$-irreducible Markov chain on the state space $(E, \mathcal{E})$ with transition probability $P$. This means that for any set $A \in \mathcal{E}$ with $\phi(A) > 0$, we have $\sum_{i=1}^{\infty} P^i(x, A) > 0$ for $x \in E$. We further assume that the $\phi$-irreducible Markov chain $\{X_t\}$ is Harris recurrent.

Definition 2.1. A Markov chain $\{X_t\}$ is Harris recurrent if, for any set $B \in \varepsilon^+$ and given $X_0 = x$ for all $x \in E$, $\{X_t\}$ returns to $B$ infinitely often with probability one, where $\varepsilon^+$ is defined as in Karlsen and Tjøstheim (2001).
The Harris recurrence allows one to construct a split chain, which decomposes the partial sum of functions of \( \{X_t\} \) into blocks of independent and identically distributed (i.i.d.) parts and two asymptotically negligible remaining parts. Let \( \tau_k \) be the regeneration times, \( n \) the number of observations and \( N(n) \) the number of regenerations as in Karlsen and Tjøstheim (2001), where they use the notation \( T(n) \) instead of \( N(n) \). For the process \( \{G(X_t) : t \geq 0\} \), defining

\[
Z_k = \begin{cases} 
\sum_{t=0}^{\tau_0} G(X_t), & k = 0, \\
\sum_{t=\tau_{k-1}+1}^{\tau_k} G(X_t), & 1 \leq k \leq N(n), \\
\sum_{t=\tau_{N(n)}+1}^{n} G(X_t), & k = N(n) + 1,
\end{cases}
\]

where \( G(\cdot) \) is a real function defined on \( \mathbb{R} \), then we have

\[
S_n(G) = \sum_{t=0}^{n} G(X_t) = Z_0 + \sum_{k=1}^{N(n)} Z_k + Z_{N(n)+1}.
\]

From Nummelin (1984), we know that \( \{Z_k, k \geq 1\} \) is a sequence of i.i.d. random variables, and \( Z_0 \) and \( Z_{N(n)+1} \) converge to zero almost surely (a.s.) when they are divided by the number of regenerations \( N(n) \) [using Lemma 3.2 in Karlsen and Tjøstheim (2001)].

The general Harris recurrence only yields stochastic rates of convergence in asymptotic theory of the parametric and nonparametric estimators (see, e.g., Theorems 3.1 and 3.2 below), where distribution and size of the number of regenerations \( N(n) \) have no a priori known structure but fully depend on the underlying process \( \{X_t\} \). To obtain a specific rate of \( N(n) \) in our asymptotic theory for the null recurrent process, we next impose some restrictions on the tail behavior of the distribution of the recurrence times of the Markov chain.

**Definition 2.2.** A Markov chain \( \{X_t\} \) is \( \beta \)-null recurrent if there exist a small nonnegative function \( f \), an initial measure \( \lambda \), a constant \( \beta \in (0,1) \), and a slowly varying function \( L_f(\cdot) \) such that

\[
\lambda \left( \sum_{t=1}^{n} f(X_t) \right) \sim \frac{1}{\Gamma(1 + \beta)} n^\beta L_f(n),
\]

where \( \lambda \) stands for the expectation with initial distribution \( \lambda \) and \( \Gamma(1 + \beta) \) is the Gamma function with parameter \( 1 + \beta \).
The definition of a small function \( f \) in the above definition can be found in some existing literature [c.f., page 15 in Nummelin (1984)]. Assuming \( \beta \)-null recurrence restricts the tail behavior of the recurrence time of the process to be a regularly varying function. In fact, for all small functions \( f \), by Lemma 3.1 in Karlsen and Tjøstheim (2001), we can find an \( L_s(\cdot) \) such that (2.2) holds for the \( \beta \)-null recurrent Markov chain with \( L_f(\cdot) = \pi_s(f)L_s(\cdot) \), where \( \pi_s(\cdot) \) is an invariant measure of the Markov chain \( \{X_t\} \), \( \pi_s(f) = \int f(x)\pi_s(dx) \) and \( s \) is the small function in the minorization inequality (3.4) of Karlsen and Tjøstheim (2001). Letting \( L_s(n) = L_f(n)/(\pi_s(f)) \) and following the argument in Karlsen and Tjøstheim (2001), we may show that the regeneration number \( N(n) \) of the \( \beta \)-null recurrent Markov chain \( \{X_t\} \) has the following asymptotic distribution:

\[
\frac{N(n)}{n^\beta L_s(n)} \xrightarrow{d} M_\beta(1),
\]

where \( M_\beta(t), t \geq 0 \) is the Mittag–Leffler process with parameter \( \beta \) [c.f., Kasahara (1984)]. Since \( N(n) < n \) a.s. for the null recurrent case by (2.3), the rates of convergence for the nonparametric kernel estimators are slower than those for the stationary time series case [c.f., Karlsen, Myklebust and Tjøstheim (2007), Gao et al. (2015)]. However, this is not necessarily the case for the parametric estimator in our model (1.1). In Section 3 below, we will show that our rate of convergence in the null recurrent case is slower than that for the stationary time series for integrable \( g(\cdot, \cdot) \) and may be faster than that for the stationary time series case for asymptotically homogeneous \( g(\cdot, \cdot) \). In addition, our rates of convergence also depend on the magnitude of \( \beta \), which measures the recurrence times of the Markov chain \( \{X_t\} \).

2.2. Examples of \( \beta \)-null recurrent Markov chains. For a stationary or positive recurrent process, \( \beta = 1 \). We next give several examples of \( \beta \)-null recurrent Markov chains with \( 0 < \beta < 1 \).

Example 2.1 (1/2-null recurrent Markov chain). (i) Let a random walk process be defined as

\[
X_t = X_{t-1} + x_t, \quad t = 1, 2, \ldots, X_0 = 0,
\]

where \( \{x_t\} \) is a sequence of i.i.d. random variables with \( E[x_1] = 0, 0 < E[x_1^2] < \infty \) and \( E[|x_1|^4] < \infty \), and the distribution of \( x_t \) is absolutely continuous (with respect to the Lebesgue measure) with the density function \( f_0(\cdot) \) satisfying \( \inf_{x \in C_0} f_0(x) > 0 \) for all compact sets \( C_0 \). Some existing papers including Kallianpur and Robbins (1954) have shown that \( \{X_t\} \) defined by (2.4) is a 1/2-null recurrent Markov chain.

(ii) Consider a parametric TAR model of the form:

\[
X_t = \alpha_1 X_{t-1} I(X_{t-1} \in S) + \alpha_2 X_{t-1} I(X_{t-1} \in S^c) + x_t, \quad X_0 = 0,
\]
where $S$ is a compact subset of $\mathbb{R}$, $S^c$ is the complement of $S$, $\alpha_2 = 1$, $-\infty < \alpha_1 < \infty$, $\{x_t\}$ satisfies the corresponding conditions in Example 2.1(i) above. Recently, Gao, Tjøstheim and Yin (2013) have shown that such a TAR process $\{X_t\}$ is a 1/2-null recurrent Markov chain. Furthermore, we may generalize the TAR model (2.5) to

$$X_t = H(X_{t-1}, \zeta)I(X_{t-1} \in S) + X_{t-1}I(X_{t-1} \in S^c) + x_t,$$

where $X_0 = 0$, $\sup_{x \in S} |H(x, \zeta)| < \infty$ and $\zeta$ is a parameter vector. According to Teräsvirta, Tjøstheim and Granger (2010), the above autoregressive process is also a 1/2-null recurrent Markov chain.

**Example 2.2** ($\beta$-null recurrent Markov chain with $\beta \neq 1/2$). Let $\{x_t\}$ be a sequence of i.i.d. random variables taking positive values, and $\{X_t\}$ be defined as

$$X_t = \begin{cases} X_{t-1} - 1, & X_{t-1} > 1, \\ x_t, & X_{t-1} \in [0, 1], \end{cases}$$

for $t \geq 1$, and $X_0 = C_0$ for some positive constant $C_0$. Myklebust, Karlsen and Tjøstheim (2012) prove that $\{X_t\}$ is $\beta$-null recurrent if and only if

$$P([x_1] > n) \sim n^{-\beta l^{-1}(n)}, \quad 0 < \beta < 1,$$

where $[\cdot]$ is the integer function and $l(\cdot)$ is a slowly varying positive function.

From the above examples, the $\beta$-null recurrent Markov chain framework is not restricted to linear processes [see Example 2.1(ii)]. Furthermore, such a null recurrent class has the invariance property that if $\{X_t\}$ is $\beta$-null recurrent, then for a one-to-one transformation $T(\cdot)$, $\{T(X_t)\}$ is also $\beta$-null recurrent [c.f., Teräsvirta, Tjøstheim and Granger (2010)]. Such invariance property does not hold for the $I(1)$ processes. For other examples of the $\beta$-null recurrent Markov chain, we refer to Example 1 in Schienle (2011). For some general conditions on diffusion processes to ensure the Harris recurrence is satisfied, we refer to Höpfner and Löcherbach (2003) and Bandi and Phillips (2009).

2.3. **Function classes.** Similar to Park and Phillips (1999, 2001), we consider two classes of parametric nonlinear functions: integrable functions and asymptotically homogeneous functions, which include many commonly-used functions in nonlinear regression. Let $\|A\| = \sqrt{\sum_{i=1}^q \sum_{j=1}^q a_{ij}^2}$ for $A = (a_{ij})_{q \times q}$, and $\|a\|$ be the Euclidean norm of vector $a$. A function $h(x) : \mathbb{R} \to \mathbb{R}^d$ is $\pi_s$-integrable if

$$\int_{\mathbb{R}} \|h(x)\| \pi_s(dx) < \infty,$$
where $\pi_s(\cdot)$ is the invariant measure of the Harris recurrent Markov chain $\{X_t\}$. When $\pi_s(\cdot)$ is differentiable such that $\pi_s(dx) = p_s(x) \, dx$, $h(x)$ is $\pi_s$-integrable if and only if $h(x)p_s(x)$ is integrable, where $p_s(\cdot)$ is the invariant density function for $\{X_t\}$. For the random walk case as in Example 2.1(i), the $\pi_s$-integrability reduces to the conventional integrability as $\pi_s(dx) = dx$.

**Definition 2.3.** A $d$-dimensional vector function $h(x, \theta)$ is said to be integrable on $\Theta$ if for each $\theta \in \Theta$, $h(x, \theta)$ is $\pi_{s}$-integrable and there exist a neighborhood $B_{\theta}$ of $\theta$ and $M : \mathbb{R} \to \mathbb{R}$ bounded and $\pi_{s}$-integrable such that $\|h(x, \theta') - h(x, \theta)\| \leq \|\theta' - \theta\|M(x)$ for any $\theta' \in B_{\theta}$.

The above definition is comparable to Definition 3.3 in PP. However, in our definition, we do not need condition (b) in Definition 3.3 of their paper, which makes the integrable function family in this paper slightly more general. We next introduce a class of asymptotically homogeneous functions.

**Definition 2.4.** For a $d$-dimensional vector function $h(x, \theta)$, let $h(\lambda x, \theta) = \kappa(\lambda, \theta)H(x, \theta) + R(x, \lambda, \theta)$, where $\kappa(\cdot, \cdot)$ is nonzero. $h(\lambda x, \theta)$ is said to be asymptotically homogeneous on $\Theta$ if the following two conditions are satisfied: (i) $H(\cdot, \theta)$ is locally bounded uniformly for any $\theta \in \Theta$ and continuous with respect to $\theta$; (ii) the remainder term $R(x, \lambda, \theta)$ is of order smaller than $\kappa(\lambda, \theta)$ as $\lambda \to \infty$ for any $\theta \in \Theta$. As in PP, $\kappa(\cdot, \cdot)$ is the asymptotic order of $h(\cdot, \cdot)$ and $H(\cdot, \cdot)$ is the limit homogeneous function.

The above definition is quite similar to that of an $H$-regular function in PP except that the regularity condition (a) in Definition 3.5 of PP is replaced by the local boundness condition (i) in Definition 2.4. Following Definition 3.4 in PP, as $R(x, \lambda, \theta)$ is of order smaller than $\kappa(\cdot, \cdot)$, we have either

\begin{equation}
R(x, \lambda, \theta) = a(\lambda, \theta)A_R(x, \theta)
\end{equation}

or

\begin{equation}
R(x, \lambda, \theta) = b(\lambda, \theta)A_R(x, \theta)B_R(\lambda x, \theta),
\end{equation}

where $a(\lambda, \theta) = o(\kappa(\lambda, \theta))$, $b(\lambda, \theta) = O(\kappa(\lambda, \theta))$ as $\lambda \to \infty$, sup$_{\theta \in \Theta} A_R(\cdot, \theta)$ is locally bounded, and sup$_{\theta \in \Theta} B_R(\cdot, \theta)$ is bounded and vanishes at infinity.

Note that the above two definitions can be similarly generalized to the case that $h(\cdot, \cdot)$ is a $d \times d$ matrix of functions. Details are omitted here to save space. Furthermore, when the process $\{X_t\}$ is positive recurrent, an asymptotically homogeneous function $h(x, \theta)$ might be also integrable on $\Theta$ as long as the density function of the process $p_s(x)$ is integrable and decreases to zero sufficiently fast when $x$ diverges to infinity.
3. Main results. In this section, we establish some asymptotic results for the parametric estimators of $\theta_0$ when $g(\cdot, \cdot)$ and its derivatives belong to the two classes of functions introduced in Section 2.3.

3.1. Integrable function on $\Theta$. We first consider estimating model (1.1) by the NLS approach, which is also used by PP in the unit root framework. Define the loss function by

$$L_{n,g}(\theta) = \sum_{t=1}^{n} (Y_t - g(X_t, \theta))^2.$$  \hspace{1cm} (3.1)

We can obtain the resulting estimator $\hat{\theta}_n$ by minimizing $L_{n,g}(\theta)$ over $\theta \in \Theta$, that is,

$$\hat{\theta}_n = \arg \min_{\theta \in \Theta} L_{n,g}(\theta).$$  \hspace{1cm} (3.2)

For $\theta = (\theta_1, \ldots, \theta_d)^\tau$, let

$$\dot{g}(x, \theta) = \left( \frac{\partial g(x, \theta)}{\partial \theta_j} \right)_{d \times 1}, \quad \ddot{g}(x, \theta) = \left( \frac{\partial^2 g(x, \theta)}{\partial \theta_i \partial \theta_j} \right)_{d \times d}.$$

Before deriving the asymptotic properties of $\hat{\theta}_n$ when $g(\cdot, \cdot)$ and its derivatives are integrable on $\Theta$, we give some regularity conditions.

Assumption 3.1. (i) $\{X_t\}$ is a Harris recurrent Markov chain with invariant measure $\pi_s(\cdot)$.

(ii) $\{e_t\}$ is a sequence of i.i.d. random variables with mean zero and finite variance $\sigma^2$, and is independent of $\{X_t\}$.

Assumption 3.2. (i) $g(x, \theta)$ is integrable on $\Theta$, and for all $\theta \neq \theta_0$, $\int [g(x, \theta) - g(x, \theta_0)]^2 \pi_s(dx) > 0$.

(ii) Both $\dot{g}(x, \theta)$ and $\ddot{g}(x, \theta)$ are integrable on $\Theta$, and the matrix

$$\bar{L}(\theta) := \int \dot{g}(x, \theta) \dot{g}^\tau(x, \theta) \pi_s(dx)$$

is positive definite when $\theta$ is in a neighborhood of $\theta_0$.

Remark 3.1. In Assumption 3.1(i), $\{X_t\}$ is assumed to be Harris recurrent, which includes both the positive and null recurrent Markov chains. The i.i.d. restriction on $\{e_t\}$ in Assumption 3.1(ii) may be replaced by the condition that $\{e_t\}$ is an irreducible, ergodic and strongly mixing process with mean zero and certain restriction on the mixing coefficient and moment conditions [c.f., Theorem 3.4 in Karlsen, Myklebust and Tjøstheim (2007)]. Hence, under some mild conditions, $\{e_t\}$ can include the well-known AR and
ARCH processes as special examples. However, for this case, the techniques used in the proofs of Theorems 3.1 and 3.2 below need to be modified by noting that the compound process \( \{ X_t, e_t \} \) is Harris recurrent. Furthermore, the homoskedasticity on the error term can also be relaxed, and we may allow the existence of certain heteroskedasticity structure, that is, \( e_t = \sigma(X_t)\eta_t \), where \( \sigma^2(\cdot) \) is the conditional variance function and \( \{ \eta_t \} \) satisfies Assumption 3.1(ii) with a unit variance. However, the property of the function \( \sigma^2(\cdot) \) would affect the convergence rates given in the following asymptotic results. For example, to ensure the validity of Theorem 3.1, we need to further assume that \( \sigma^2(\cdot) \) is \( \pi_s \)-integrable, which indicates that \( \| g(x, \theta) \|^2 \sigma^2(x) \) is integrable on \( \Theta \). As in the literature [c.f., Karlsen, Myklebust and Tjøstheim (2007)], we need to assume the independence between \( \{ X_t \} \) and \( \{ \eta_t \} \).

Assumption 3.2 is quite standard and similar to the corresponding conditions in PP. In particular, Assumption 3.2(i) is a key condition to derive the global consistency of the NLS estimator \( \hat{\theta}_n \).

We next give the asymptotic properties of \( \hat{\theta}_n \). The following theorem is applicable for both stationary (positive recurrent) and nonstationary (null recurrent) time series.

**Theorem 3.1.** Let Assumptions 3.1 and 3.2 hold.

(a) The solution \( \hat{\theta}_n \) which minimizes the loss function \( L_{n,g}(\theta) \) over \( \Theta \) is consistent, that is,

\[
\hat{\theta}_n - \theta_0 = o_P(1).
\]

(b) The estimator \( \hat{\theta}_n \) has an asymptotically normal distribution of the form:

\[
\sqrt{N(n)}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0_d, \sigma^2 \bar{L}^{-1}(\theta_0)),
\]

where \( 0_d \) is a \( d \)-dimensional null vector.

**Remark 3.2.** Theorem 3.1 shows that \( \hat{\theta}_n \) is asymptotically normal with a stochastic convergence rate \( \sqrt{N(n)} \) for both the stationary and nonstationary cases. However, \( N(n) \) is usually unobservable and its specific rate depends on \( \beta \) and \( L_s(\cdot) \) if \( \{ X_t \} \) is \( \beta \)-null recurrent (see Corollary 3.2 below). We next discuss how to link \( N(n) \) with a directly observable hitting time. Indeed, if \( C \in \mathcal{E} \) and \( I_C \) has a \( \phi \)-positive support, the number of times that the process visits \( C \) up to the time \( n \) is defined by \( N_C(n) = \sum_{t=1}^{n} I_C(X_t) \).

By Lemma 3.2 in Karlsen and Tjøstheim (2001), we have

\[
\frac{N_C(n)}{N(n)} \xrightarrow{a.s.} \pi_s(C)
\]
if \( \pi_s(C) = \pi_s I_C = \int_C \pi_s(dx) < \infty \). A possible estimator of \( \beta \) is

\[
\hat{\beta} = \frac{\ln N_C(n)}{\ln n},
\]

(3.6)

which is strongly consistent as shown by Karlsen and Tjøstheim (2001). However, it is usually of somewhat limited practical use due to the slow convergence rate [c.f., Remark 3.7 of Karlsen and Tjøstheim (2001)]. A simulated example is given in Appendix B of the supplemental document to discuss the finite sample performance of the estimation method in (3.6).

By (3.5) and Theorem 3.1, we can obtain the following corollary directly.

**Corollary 3.1.** Suppose that the conditions of Theorem 3.1 are satisfied, and let \( C \in \mathcal{C} \) such that \( I_C \) has a \( \phi \)-positive support and \( \pi_s(C) < \infty \). Then the estimator \( \hat{\theta}_n \) has an asymptotically normal distribution of the form:

\[
\sqrt{N_C(n)}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, \sigma^2 \tilde{L}^{-1}_C(\theta_0)),
\]

where \( \tilde{L}_C(\theta_0) = \pi_s^{-1}(C)\tilde{L}(\theta_0) \).

**Remark 3.3.** In practice, we may choose \( C \) as a compact set such that \( \phi(C) > 0 \) and \( \pi_s(C) < \infty \). In the additional simulation study (Example B.1) given in the supplemental document, for two types of 1/2-null recurrent Markov processes, we choose \( C = [-A, A] \) with the positive constant \( A \) carefully chosen, which works well in our setting. If \( \pi_s(\cdot) \) has a continuous derivative function \( p_s(\cdot) \), we can show that

\[
\tilde{L}_C(\theta_0) = \int \hat{g}(x, \theta_0)\hat{g}^\top(x, \theta_0)p_C(x) \, dx \quad \text{with} \quad p_C(x) = p_s(x)/\pi_s(C).
\]

The density function \( p_C(x) \) can be estimated by the kernel method. Then, replacing \( \theta_0 \) by the NLS estimated value, we can obtain a consistent estimate for \( \tilde{L}_C(\theta_0) \). Note that \( N_C(n) \) is observable and \( \sigma^2 \) can be estimated by calculating the variance of the residuals \( \hat{e}_t = Y_t - g(X_t, \hat{\theta}_n) \). Hence, for inference purposes, one may not need to estimate \( \beta \) and \( L_s(\cdot) \) when \( \{X_t\} \) is \( \beta \)-null recurrent, as \( \tilde{L}_C(\theta_0) \), \( \sigma^2 \) and \( N_C(n) \) in (3.7) can be explicitly computed without knowing any information about \( \beta \) and \( L_s(\cdot) \).

From (3.4) in Theorem 3.1 and (2.3) in Section 2.1 above, we have the following corollary.

**Corollary 3.2.** Suppose that the conditions of Theorem 3.1 are satisfied. Furthermore, \( \{X_t\} \) is a \( \beta \)-null recurrent Markov chain with \( 0 < \beta < 1 \). Then we have

\[
\hat{\theta}_n - \theta_0 = O_P\left(\frac{1}{\sqrt{n^3 L_s(n)}}\right),
\]

(3.8)
where $L_s(n)$ is defined in Section 2.1.

**Remark 3.4.** As $\beta < 1$ and $L_s(n)$ is a slowly varying positive function, for the integrable case, the rate of convergence of $\hat{\theta}_n$ is slower than $\sqrt{n}$, the rate of convergence of the parametric NLS estimator in the stationary time series case. Combining (2.3) and Theorem 3.1, the result (3.8) can be strengthened to

$$
\sqrt{n^\beta L_s(n)}(\hat{\theta}_n - \theta_0) \xrightarrow{d} [M_\beta^{-1}(1)\sigma^2 \tilde{L}^{-1}(\theta_0)]^{1/2} \cdot N_d,
$$

where $N_d$ is a $d$-dimensional normal distribution with mean zero and covariance matrix being the identity matrix, which is independent of $M_\beta(1)$. A similar result is also obtained by Chan and Wang (2012). Corollary 3.2 and (3.9) complement the existing results on the rates of convergence of non-parametric estimators in $\beta$-null recurrent Markov processes [c.f., Karlsen, Myklebust and Tjøstheim (2007), Gao et al. (2015)]. For the random walk case, which corresponds to 1/2-null recurrent Markov chain, the rate of convergence is $n^{1/4}$, which is similar to a result obtained by PP for the processes that are of $I(1)$ type.

### 3.2. Asymptotically homogeneous function on $\Theta$

We next establish an asymptotic theory for a parametric estimator of $\theta_0$ when $g(\cdot, \cdot)$ and its derivatives belong to a class of asymptotically homogeneous functions. For a unit root process $\{X_t\}$, PP establish the consistency and limit distribution of the NLS estimator $\hat{\theta}_n$ by using the local time technique. Their method relies on the linear framework of the unit root process, the functional limit theorem of the partial sum process and the continuous mapping theorem. The Harris recurrent Markov chain is a general process and allows for a possibly nonlinear framework, however. In particular, the null recurrent Markov chain can be seen as a nonlinear generalization of the linear unit root process. Hence, the techniques used by PP for establishing the asymptotic theory is not applicable in such a possibly nonlinear Markov chain framework. Meanwhile, as mentioned in Section 1, the methods used to prove Theorem 3.1 cannot be applied here directly because the asymptotically homogeneous functions usually are not bounded and integrable. This leads to the violation of the conditions in the ergodic theorem when the process is null recurrent. In fact, most of the existing limit theorems for the null recurrent Markov process $h(X_t)$ [c.f., Chen (1999, 2000)] only consider the case where $h(\cdot)$ is bounded and integrable. Hence, it is quite challenging to extend Theorem 3.3 in PP to the case of general null recurrent Markov chains and establish an asymptotic theory for the NLS estimator for the case of asymptotically homogeneous functions.
To address the above concerns, we have to modify the NLS estimator $\hat{\theta}_n$. Let $M_n$ be a positive and increasing sequence satisfying $M_n \to \infty$ as $n \to \infty$, but is dominated by a certain polynomial rate. We define the modified loss function by

$$Q_{n,g}(\theta) = \sum_{t=1}^{n} [Y_t - g(X_t, \theta)]^2 I(|X_t| \leq M_n).$$

(3.10)

The modified NLS (MNLS) estimator $\overline{\theta}_n$ can be obtained by minimizing $Q_{n,g}(\theta)$ over $\theta \in \Theta$,

$$\overline{\theta}_n = \arg \min_{\theta \in \Theta} Q_{n,g}(\theta).$$

(3.11)

The above truncation technique enables us to develop the limit theorems for the parametric estimate $\overline{\theta}_n$ even when the function $g(\cdot, \cdot)$ or its derivatives are unbounded. A similar truncation idea is also used by Ling (2007) to estimate the ARMA-GARCH model when the second moment may not exist [it is called as the self-weighted method by Ling (2007)]. However, Assumption 2.1 in Ling (2007) indicates the stationarity for the model. The Harris recurrence considered in the paper is more general and includes both the stationary and nonstationary cases. As $M_n \to \infty$, for the integrable case discussed in Section 3.1, we can easily show that $\overline{\theta}_n$ has the same asymptotic distribution as $\hat{\theta}_n$ under some regularity conditions. In Example 5.1 below, we compare the finite sample performance of these two estimators, and find that they are quite similar. Furthermore, when $\{X_t\}$ is positive recurrent, as mentioned in the last paragraph of Section 2.3, although the asymptotically homogeneous $g(x, \theta)$ and its derivatives are unbounded and not integrable on $\Theta$, it may be reasonable to assume that $g(x, \theta)p_x(x)$ and its derivatives (with respect to $\theta$) are integrable on $\Theta$. In this case, Theorem 3.1 and Corollary 3.1 in Section 3.1 still hold for the estimation $\overline{\theta}_n$ and the role of $N(n)$ [or $N_C(n)$] is the same as that of the sample size, which implies that the root-$n$ consistency in the stationary time series case can be derived. Hence, we only consider the null recurrent $\{X_t\}$ in the remaining subsection.

Let

$$B_i(1) = [i - 1, i), \quad i = 1, 2, \ldots, [M_n], \quad B_{[M_n]+1}(1) = [[M_n], M_n],$$

$$B_i(2) = [-i, -i + 1), \quad i = 1, 2, \ldots, [M_n], \quad B_{[M_n]+1}(2) = [-M_n, -[M_n]].$$

It is easy to check that $B_i(k), i = 1, 2, \ldots, [M_n] + 1, k = 1, 2$, are disjoint, and $[-M_n, M_n] = \bigcup_{k=1}^{2} \bigcup_{i=1}^{[M_n]+1} B_i(k)$. Define

$$\zeta_0(M_n) = \sum_{i=0}^{[M_n]} [\pi_s(B_{i+1}(1)) + \pi_s(B_{i+1}(2))],$$

where $\pi_s(B_k)$ denotes the number of elements in $B_k$ with respect to stationarity.
and

\[ \Lambda_n(\theta) = \sum_{i=0}^{[M_n]} h_g\left( \frac{i}{M_n}, \theta \right) h_g\left( \frac{i}{M_n}, \theta \right) \pi_s(B_{i+1}(1)) \\
+ \sum_{i=0}^{[M_n]} h_g\left( \frac{-i}{M_n}, \theta \right) h_g\left( \frac{-i}{M_n}, \theta \right) \pi_s(B_{i+1}(2)), \]

\[ \tilde{\Lambda}_n(\theta, \theta_0) = \sum_{i=0}^{[M_n]} \left[ h_g\left( \frac{i}{M_n}, \theta \right) - h_g\left( \frac{i}{M_n}, \theta_0 \right) \right]^2 \pi_s(B_{i+1}(1)) \\
+ \sum_{i=0}^{[M_n]} \left[ h_g\left( \frac{-i}{M_n}, \theta \right) - h_g\left( \frac{-i}{M_n}, \theta_0 \right) \right]^2 \pi_s(B_{i+1}(2)), \]

where \( h_g(\cdot, \cdot) \) and \( \dot{h}_g(\cdot, \cdot) \) will be defined in Assumption 3.3(i) below.

Some additional assumptions are introduced below to establish asymptotic properties for \( \tilde{\theta}_n \).

**Assumption 3.3.** (i) \( g(x, \theta) \), \( \dot{g}(x, \theta) \) and \( \ddot{g}(x, \theta) \) are asymptotically homogeneous on \( \Theta \) with asymptotic orders \( \kappa_g(\cdot) \), \( \dot{\kappa}_g(\cdot) \) and \( \ddot{\kappa}_g(\cdot) \), and limit homogeneous functions \( h_g(\cdot, \cdot) \), \( \dot{h}_g(\cdot, \cdot) \) and \( \ddot{h}_g(\cdot, \cdot) \), respectively. Furthermore, the asymptotic orders \( \kappa_g(\cdot) \), \( \dot{\kappa}_g(\cdot) \) and \( \ddot{\kappa}_g(\cdot) \) are independent of \( \theta \).

(ii) The function \( h_g(\cdot, \theta) \) is continuous on the interval \([-1, 1]\) for all \( \theta \in \Theta \). For all \( \theta \neq \theta_0 \), there exist a continuous \( \tilde{\Lambda}(\cdot, \theta_0) \) which achieves unique minimum at \( \theta = \theta_0 \) and a sequence of positive numbers \( \{\zeta(M_n)\} \) such that

\[ \lim_{n \to \infty} \frac{1}{\zeta(M_n)} \tilde{\Lambda}_n(\theta, \theta_0) = \tilde{\Lambda}(\theta, \theta_0). \]

For \( \theta \) in a neighborhood of \( \theta_0 \), both \( \dot{h}_g(\cdot, \theta) \) and \( \ddot{h}_g(\cdot, \theta) \) are continuous on the interval \([-1, 1]\) and there exist a continuous and positive definite matrix \( \Lambda(\theta) \) and a sequence of positive numbers \( \{\zeta(M_n)\} \) such that

\[ \lim_{n \to \infty} \frac{1}{\zeta(M_n)} \Lambda_n(\theta) = \Lambda(\theta). \]

Furthermore, both \( \zeta_0(M_n) / \tilde{\zeta}(M_n) \) and \( \zeta_0(M_n) / \zeta(M_n) \) are bounded, and \( \zeta_0(l_n) / \zeta_0(M_n) = o(1) \) for \( l_n \to \infty \) but \( l_n = O(M_n) \).

(iii) The asymptotic orders \( \kappa_g(\cdot) \), \( \dot{\kappa}_g(\cdot) \) and \( \ddot{\kappa}_g(\cdot) \) are positive and nondecreasing such that \( \kappa_g(n) + \dot{\kappa}_g(n) = O(\ddot{\kappa}_g(n)) \) as \( n \to \infty \).

(iv) For each \( x \in [-M_n, M_n] \), \( \mathcal{N}_x(1) := \{y : x - 1 < y < x + 1\} \) is a small set and the invariant density function \( p_s(x) \) is bounded away from zero and infinity.
Remark 3.5. Assumption 3.3(i) is quite standard; see, for example, condition (b) in Theorem 5.2 in PP. The restriction that the asymptotic orders are independent of $\theta$ can be relaxed at the cost of more complicated assumptions and more lengthy proofs. For example, to ensure the global consistency of $\bar{\theta}_n$ for any $\theta_1 \neq \theta_0$ such that

$$\inf_{|p-\bar{p}|<\epsilon, |q-\bar{q}|<\epsilon} \inf_{\theta \in B_{\theta_1}} |p\kappa_g(n, \theta) - q\kappa_g(n, \theta_0)| \rightarrow \infty$$

for $\bar{p}, \bar{q} > 0$. And to establish the asymptotic normality of $\bar{\theta}_n$, we need to impose additional technical conditions on the asymptotic orders and limit homogeneous functions, similar to condition (b) in Theorem 5.3 of PP. The explicit forms of $\Lambda(\theta), \zeta(M_n), \tilde{\Lambda}(\theta, \theta_0)$ and $\tilde{\zeta}(M_n)$ in Assumption 3.3(ii) can be derived for some special cases. For example, when $\{X_t\}$ is generated by a random walk process, we have

$$\pi_s(dx) = dx$$

and

$$\Lambda_n(\theta) = (1 + o(1)) \sum_{i=-[M_n]}^{[M_n]} \hat{h}_g \left( M_n, \theta \right) \hat{h}_g \left( M_n, \theta \right)$$

$$= (1 + o(1)) M_n \int_{-1}^{1} \hat{h}_g(x, \theta) \hat{h}_g(x, \theta) \, dx,$$

which implies that $\zeta(M_n) = M_n$ and $\Lambda(\theta) = \int_{-1}^{1} \hat{h}_g(x, \theta) \hat{h}_g(x, \theta) \, dx$ in (3.13). The explicit forms of $\tilde{\Lambda}(\theta, \theta_0)$ and $\tilde{\zeta}(M_n)$ can be derived similarly for the above two cases and details are thus omitted.

Define $J_g(n, \theta_0) = \kappa_g^2(M_n) \zeta(M_n) \Lambda(\theta_0)$. We next establish an asymptotic theory for $\bar{\theta}_n$ when $\{X_t\}$ is null recurrent.

Theorem 3.2. Let $\{X_t\}$ be a null recurrent Markov process, Assumptions 3.1(ii) and 3.3 hold.

(a) The solution $\bar{\theta}_n$ which minimizes the loss function $Q_{n,g}(\theta)$ over $\Theta$ is consistent, that is,

$$\bar{\theta}_n - \theta_0 = o_P(1).$$

(3.14)

(b) The estimator $\bar{\theta}_n$ has the asymptotically normal distribution,

$$N^{1/2}(n) J_g^{1/2}(n, \theta_0) (\bar{\theta}_n - \theta_0) \overset{d}{\rightarrow} N(0_d, \sigma^2 I_d),$$

where $I_d$ is a $d \times d$ identity matrix.
Remark 3.6. From Theorem 3.2, the asymptotic distribution of $\overline{\theta}_n$ for the asymptotically homogeneous regression function is quite different from that of $\hat{\theta}_n$ for the integrable regression function when the process is null recurrent. Such finding is comparable to those in PP. The choice of $M_n$ in the estimation method and asymptotic theory will be discussed in Corollaries 3.3 and 3.4 below.

Remark 3.7. As in Corollary 3.1, we can modify (3.15) for inference purposes. Define $J_{g,\mathbb{C}}(n, \theta_0) = \kappa_g^2(M_n) \Lambda_{n,\mathbb{C}}(\theta_0)$, where

$$\Lambda_{n,\mathbb{C}}(\theta) = \sum_{i=0}^{[M_n]} \hat{h}_g \left( \frac{i}{M_n}, \theta \right) \hat{h}_g^\top \left( \frac{i}{M_n}, \theta \right) \frac{\pi_s(B_{i+1}(1))}{\pi_s(\mathbb{C})} + \sum_{i=0}^{[M_n]} \hat{h}_g \left( \frac{-i}{M_n}, \theta \right) \hat{h}_g^\top \left( \frac{-i}{M_n}, \theta \right) \frac{\pi_s(B_{i+1}(2))}{\pi_s(\mathbb{C})},$$

where $\mathbb{C}$ satisfies the conditions in Corollary 3.1. Then, by (3.5) and (3.15), we can show that

$$N_1^{1/2}(n) J_{g,\mathbb{C}}^{1/2}(n, \theta_0) \overline{\theta}_n \xrightarrow{d} N(0, \sigma^2 I_d).$$

When $\{X_t\}$ is $\beta$-null recurrent, we can use the asymptotically normal distribution theory (3.16) to conduct statistical inference without knowing any information of $\beta$ as $N_{\mathbb{C}}(n)$ is observable and $J_{g,\mathbb{C}}(n, \theta_0)$ can be explicitly computed through replacing $\Lambda_{n,\mathbb{C}}(\theta_0)$ by the plug-in estimated value.

From (3.15) in Theorem 3.2 and (2.3) in Section 2 above, we have the following two corollaries. The rate of convergence in (3.17) below is quite general for $\beta$-null recurrent Markov processes. When $\beta = 1/2$, it is the same as the convergence rate in Theorem 5.2 of PP.

**Corollary 3.3.** Suppose that the conditions of Theorem 3.2 are satisfied. Furthermore, let $\{X_t\}$ be a $\beta$-null recurrent Markov chain with $0 < \beta < 1$. Taking $M_n = M_0 n^{1-\beta} L_s^{-1}(n)$ for some positive constant $M_0$, we have

$$\overline{\theta}_n - \theta_0 = O_P((n \kappa_g^2(M_n))^{-1/2}).$$

**Corollary 3.4.** Suppose that the conditions of Theorem 3.2 are satisfied. Let $g(x, \theta_0) = x \theta_0$, $\{X_t\}$ be a random walk process and $M_n = M_0 n^{1/2}$ for some positive constant $M_0$. Then we have

$$\overline{\theta}_n - \theta_0 = O_P(n^{-1}),$$

where $\overline{\theta}_n$ is the MNLS estimator of $\theta_0$. Furthermore,

$$\sqrt{M_0^3 N(n)n^{3/2}}(\overline{\theta}_n - \theta_0) \xrightarrow{d} N(0, 3\sigma^2/2).$$
Remark 3.8. For the simple linear regression model with regressors generated by a random walk process, (3.18) and (3.19) imply the existence of super consistency. Corollaries 3.3 and 3.4 show that the rates of convergence for the parametric estimator in nonlinear cointegrating models rely not only on the properties of the function $g(\cdot, \cdot)$, but also on the magnitude of $\beta$.

In the above two corollaries, we give the choice of $M_n$ for some special cases. In fact, for the random walk process $\{X_t\}$ defined as in Example 2.1(i) with $E[x_{1t}^2] = 1$, we have

$$\frac{1}{\sqrt{n}} X_{[nr]} = \frac{1}{\sqrt{n}} \sum_{i=1}^{[nr]} x_i \Rightarrow B(r),$$

where $B(r)$ is a standard Brownian motion and “$\Rightarrow$” denotes the weak convergence. Furthermore, by the continuous mapping theorem [c.f., Billingsley (1968)],

$$\sup_{0 \leq r \leq 1} \frac{1}{\sqrt{n}} X_{[nr]} \Rightarrow \sup_{0 \leq r \leq 1} B(r),$$

which implies that it is reasonable to let $M_n = C_\alpha n^{1/2}$, where $C_\alpha$ may be chosen such that

$$\alpha = P(\sup_{0 \leq r \leq 1} B(r) \geq C_\alpha) = P(|B(1)| \geq C_\alpha) = 2(1 - \Phi(C_\alpha)),$$

where the second equality is due to the reflection principle and $\Phi(x) = \int_{-\infty}^{x} (e^{-u^2/2}/\sqrt{2\pi}) \, du$. This implies that $C_\alpha$ can be obtained when $\alpha$ is given, such as $\alpha = 0.05$. For the general $\beta$-null recurrent Markov process, the choice of the optimal $M_n$ remains as an open problem. We conjecture that it may be an option to take $M_n = \tilde{M} n^{1-\tilde{\beta}}$ with $\tilde{\beta}$ defined in (3.6) and $\tilde{M}$ chosen by a data-driven method, and will further study this issue in future research.

4. Discussions and extensions. In this section, we discuss the applications of our asymptotic results in estimating the nonlinear heteroskedastic regression and nonlinear regression with $I(1)$ processes. Furthermore, we also discuss possible extensions of our model to the cases of multivariate regressors and nonlinear autoregression.

4.1. Nonlinear heteroskedastic regression. We introduce an estimation method for a parameter vector involved in the conditional variance function. For simplicity, we consider the model defined by

$$Y_t = \sigma(X_t, \gamma_0) e_t \quad \text{for} \quad \gamma_0 \in \Upsilon \subset \mathbb{R}^p,$$

where $\{e_t\}$ satisfies Assumption 3.1(ii) with a unit variance, $\sigma^2(\cdot, \cdot) : \mathbb{R}^{p+1} \to \mathbb{R}$ is positive, and $\gamma_0$ is the true value of the $p$-dimensional parameter vector.
involved in the conditional variance function. Estimation of the parametric nonlinear variance function defined in (4.1) is important in empirical applications as many scientific studies depend on understanding the variability of the data. When the covariates are integrated, Han and Park (2012) study the maximum likelihood estimation of the parameters in the ARCH and GARCH models. A recent paper by Han and Kristensen (2014) further considers the quasi maximum likelihood estimation in the GARCH-X models with stationary and nonstationary covariates. We next consider the general Harris recurrent Markov process \( \{X_t\} \) and use a robust estimation method for model (4.1).

Letting \( \varpi_0 \) be a positive number such that \( E[\log(e_{t^*}^2)] = \log(\varpi_0) \), we have

\[
\log(Y_t^2) = \log(\sigma^2(X_t, \gamma_0)) + \log(e_{t^*}^2) \\
= \log(\sigma^2(X_t, \gamma_0)) + \log(\varpi_0) + \log(e_{t^*}^2) - \log(\varpi_0) \\
= : \log(\varpi_0 \sigma^2(X_t, \gamma_0)) + \zeta_t,
\]

(4.2)

where \( E(\zeta_t) = 0 \). Since our main interest lies in the discussion of the asymptotic theory for the estimator of \( \gamma_0 \), we first assume that \( \varpi_0 \) is known to simplify our discussion. Model (4.2) can be seen as another nonlinear mean regression model with parameter vector \( \gamma_0 \) to be estimated. The log-transformation would make data less skewed, and thus the resulting volatility estimator may be more robust in terms of dealing with heavy-tailed \( \{e_{t^*}\} \).

Such transformation has been commonly used to estimate the variability of the data in the stationary time series case [c.f., Peng and Yao (2003), Gao (2007), Chen, Cheng and Peng (2009)]. However, any extension to Harris recurrent Markov chains which may be nonstationary has not been done in the literature.

Our estimation method will be constructed based on (4.2). Noting that \( \varpi_0 \) is assumed to be known, define

\[
\sigma^2_*(X_t, \gamma_0) = \varpi_0 \sigma^2(X_t, \gamma_0) \quad \text{and} \quad g_*(X_t, \gamma_0) = \log(\sigma^2_*(X_t, \gamma_0)).
\]

(4.3)

Case (I). If \( g_*(X_t, \gamma) \) and its derivatives are integrable on \( \Upsilon \), the log-transformed nonlinear least squares (NLNS) estimator \( \hat{\gamma}_n \) can be obtained by minimizing \( L_{n,\sigma}(\gamma) \) over \( \gamma \in \Upsilon \), where

\[
L_{n,\sigma}(\gamma) = \sum_{t=1}^{n} \left[ \log(Y_t^2) - g_*(X_t, \gamma) \right]^2.
\]

(4.4)

Letting Assumptions 3.1 and 3.2 be satisfied with \( e_t \) and \( g(\cdot, \cdot) \) replaced by \( \zeta_t \) and \( g_*(\cdot, \cdot) \), respectively, then the asymptotic results developed in Section 3.1 still hold for \( \hat{\gamma}_n \).
Case (II). If $g^*(X_t, \gamma)$ and its derivatives are asymptotically homogeneous on $\mathcal{Y}$, the log-transformed modified nonlinear least squares (LMNLS) estimator $\gamma_n$ can be obtained by minimizing $Q_{n,\sigma}(\gamma)$ over $\gamma \in \mathcal{Y}$, where

$$Q_{n,\sigma}(\gamma) = \sum_{t=1}^{n} \left[ \log(Y_t^2) - g^*(X_t, \gamma) \right]^2 I(|X_t| \leq M_n),$$

where $M_n$ is defined as in Section 3.2. Then the asymptotic results developed in Section 3.2 still hold for $\gamma_n$ under some regularity conditions such as a slightly modified version of Assumptions 3.1 and 3.3. Hence, it is possible to achieve the super-consistency result for $\gamma_n$ when $\{X_t\}$ is null recurrent.

In practice, however, $\varpi_0$ is usually unknown and needs to be estimated. We next briefly discuss this issue for case (ii). We may define the loss function by

$$Q_n(\gamma, \varpi) = \sum_{t=1}^{n} \left[ \log(Y_t^2) - \log(\varpi\sigma^2(X_t, \gamma)) \right]^2 I(|X_t| \leq M_n).$$

Then the estimators $\gamma_n$ and $\varpi_n$ can be obtained by minimizing $Q_n(\gamma, \varpi)$ over $\gamma \in \mathcal{Y}$ and $\varpi \in \mathbb{R}^+$. A simulated example (Example B.2) is given in Appendix B of the supplemental document to examine the finite sample performance of the LNLS and LMNLS estimations considered in cases (i) and (ii), respectively.

4.2. Nonlinear regression with $I(1)$ processes. As mentioned before, PP consider the nonlinear regression (1.1) with the regressors $\{X_t\}$ generated by

$$X_t = X_{t-1} + x_t, \quad x_t = \sum_{j=0}^{\infty} \phi_j \varepsilon_{t-j},$$

where $\{\varepsilon_j\}$ is a sequence of i.i.d. random variables and $\{\phi_j\}$ satisfies some summability conditions. For simplicity, we assume that $X_0 = 0$ throughout this subsection. PP establish a suite of asymptotic results for the NLS estimator of the parameter $\theta_0$ involved in (1.1) when $\{X_t\}$ is defined by (4.6). An open problem is how to establish such results by using the $\beta$-null recurrent Markov chain framework. This is quite challenging as $\{X_t\}$ defined by (4.6) is no longer a Markov process except for some special cases (for example, $\phi_j = 0$ for $j \geq 1$).

We next consider solving this open problem for the case where $g(\cdot, \cdot)$ is asymptotically homogeneous on $\Theta$ and derive an asymptotic theory for $\bar{\theta}_n$ by using Theorem 3.2 (the discussion for the integrable case is more
complicated, and will be considered in a future study. Our main idea is to approximate $X_t$ by $X^*_t$ which is defined by

$$X^*_t = \phi \sum_{s=1}^{t} \varepsilon_s, \quad \phi := \sum_{j=0}^{\infty} \phi_j \neq 0,$$

and then show that the asymptotically homogeneous function of $X_t$ is asymptotically equivalent to the same function of $X^*_t$. As $\{X^*_t\}$ is a random walk process under the Assumption E.1 (see Appendix E of the supplemental document), we can then make use of Theorem 3.2. Define

$$J_{g^*}(n, \theta_0) = \hat{\kappa}_g(M_n)M_n \left( \int_{-1}^{1} \hat{h}_g(x, \theta_0) \hat{h}_g(x, \theta_0) \, dx \right).$$

We next give some asymptotic results for $\overline{\theta}_n$ for the case where $\{X_t\}$ is a unit root process (4.6), and the proof is provided in Appendix E of the supplemental document.

**Theorem 4.1.** Let Assumptions E.1 and E.2 in Appendix E of the supplemental document hold, and $n^{-1/(2(2+\delta))}M_n \to \infty$, where $\delta > 0$ is defined in Assumption E.1(i).

(a) The solution $\overline{\theta}_n$ which minimizes the loss function $Q_{n,g}(\theta)$ over $\Theta$ is consistent, that is,

$$\overline{\theta}_n - \theta_0 = o_P(1).$$

(b) The estimator $\overline{\theta}_n$ has the asymptotically normal distribution,

$$N_{1/2}(n)J_{g^*}^{1/2}(n, \theta_0)(\overline{\theta}_n - \theta_0) \overset{d}{\to} N(0_d, \sigma^2 I_d),$$

where $N_{1/2}(n)$ is the number of regenerations for the random walk $\{X^*_t\}$.

**Remark 4.1.** Theorem 4.1 establishes an asymptotic theory for $\overline{\theta}_n$ when $\{X_t\}$ is a unit root process (4.6). Our results are comparable with Theorems 5.2 and 5.3 in PP. However, we establish asymptotic normality in (4.9) with stochastic rate $N_{1/2}(n)J_{g^*}^{1/2}(n, \theta_0)$, and PP establish their asymptotic mixed normal distribution theory with a deterministic rate. As $N_{1/2}(n)J_{g^*}^{1/2}(n, \theta_0) \propto n^{1/4}J_{g^*}^{1/2}(n, \theta_0)$ in probability, if we take $M_n = M_0 \sqrt{n}$ as in Corollary 3.4, we will find that our rate of convergence of $\overline{\theta}_n$ is the same as that derived by PP.
4.3. Extensions to multivariate regression and nonlinear autoregression. The theoretical results developed in Section 3 are limited to nonlinear regression with a univariate Markov process. A natural question is whether it is possible to extend them to the more general case with multivariate covariates. In the unit root framework, it is well known that it is difficult to derive the limit theory for the case of multivariate unit root processes, as the vector Brownian motion is transient when the dimension is larger than (or equal to) 3. In contrast, under the framework of the Harris recurrent Markov chains, it is possible for us to generalize the theoretical theory to the multivariate case (with certain restrictions). For example, it is possible to extend the theoretical results to the case with one nonstationary regressor and several other stationary regressors. We next give an example of vector autoregressive (VAR) process which may be included in our framework under certain conditions.

**Example 4.1.** Consider a $q$-dimensional VAR(1) process $\{X_t\}$ which is defined by

\[ X_t = AX_{t-1} + b + x_t, \quad t = 1, 2, \ldots, \tag{4.10} \]

where $X_0 = 0$, $A$ is a $q \times q$ matrix, $b$ is a $q$-dimensional vector and $\{x_t\}$ is a sequence of i.i.d. $q$-dimensional random vectors with mean zero. If all the eigenvalues of the matrix $A$ are inside the unit circle, under some mild conditions on $\{x_t\}$, Theorem 3 in Myklebust, Karlsen and Tjøstheim (2012) shows that the VAR(1) process $\{X_t\}$ in (4.10) is geometric ergodic, which belongs to the category of positive recurrence. On the other hand, if the matrix $A$ has exactly one eigenvalue on the unit circle, under some mild conditions on $\{x_t\}$ and $b$, Theorem 4 in Myklebust, Karlsen and Tjøstheim (2012) shows that the VAR(1) process $\{X_t\}$ in (4.10) is $\beta$-null recurrent with $\beta = 1/2$. For this case, the asymptotic theory developed in Section 3 is applicable. However, when $A$ has two eigenvalues on the unit circle, under different restrictions, $\{X_t\}$ might be null recurrent (but not $\beta$-null recurrent) or transient. If $A$ has three or more eigenvalues on the unit circle, the VAR(1) process $\{X_t\}$ would be transient, which indicates that the limit theory developed in this paper would be not applicable.

We next briefly discuss a nonlinear autoregressive model of the form:

\[ X_{t+1} = g(X_t, \theta_0) + e_{t+1}, \quad t = 1, 2, \ldots, n. \tag{4.11} \]

For this autoregression case, $\{e_t\}$ is not independent of $\{X_t\}$, and thus the proof strategy developed in this paper needs to be modified. Following the argument in Karlsen and Tjøstheim (2001), in order to develop
an asymptotic theory for the parameter estimation in the nonlinear autoregression (4.11), we may need that the process \( \{X_t\} \) is Harris recurrent but not that the compound process \( \{(X_t, e_{t+1})\} \) is also Harris recurrent. This is because we essentially have to consider sums of products like \( \dot{g}(X_t, \theta_0)e_{t+1} = \dot{g}(X_t, \theta_0)(X_{t+1} - g(X_t, \theta_0)) \), which are of the general form treated in Karlsen and Tjøstheim (2001). The verification of the Harris recurrence of \( \{X_t\} \) has been discussed by Lu (1998) and Example 2.1 given in Section 2.2 above. How to establish an asymptotic theory for the parameter estimation of \( \theta_0 \) in model (4.11) will be studied in our future research.

5. Simulated examples. In this section, we provide some simulation studies to compare the finite sample performance of the proposed parametric estimation methods and to illustrate the developed asymptotic theory.

Example 5.1. Consider the generalized linear model defined by

\[
Y_t = \exp\{-\theta_0 X_t^2\} + e_t, \quad \theta_0 = 1, \ t = 1, 2, \ldots, n,
\]

where \( \{X_t\} \) is generated by one of the three Markov processes:

(i) AR(1) process: \( X_t = 0.5X_{t-1} + x_t, \)

(ii) Random walk process: \( X_t = X_{t-1} + x_t, \)

(iii) TAR(1) process: \( X_t = 0.5X_{t-1}I(|X_{t-1}| \leq 1) + X_{t-1}I(|X_{t-1}| > 1) + x_t, \)

where \( X_0 = 0 \) and \( \{x_t\} \) is a sequence of i.i.d. standard normal random variables for the above three processes. The error process \( \{e_t\} \) is a sequence of i.i.d. \( N(0, 0.5^2) \) random variables and independent of \( \{x_t\} \). In this simulation study, we compare the finite sample behavior of the NLS estimator \( \hat{\theta}_n \) with that of the MNLS estimator \( \bar{\theta}_n \), and the sample size \( n \) is chosen to be 500, 1000 and 2000. The aim of this example is to illustrate the asymptotic theory developed in Section 3.1 as the regression function in (5.1) is integrable when \( \theta_0 > 0 \). Following the discussion in Section 2.2, the AR(1) process defined in (i) is positive recurrent, and the random process defined in (ii) and the TAR(1) process defined in (iii) are 1/2-null recurrent.

We generate 500 replicated samples for this simulation study, and calculate the means and standard errors for both of the parametric estimators in 500 simulations. In the MNLS estimation procedure, we choose \( M_n = C_\alpha n^{1-\beta} \) with \( \alpha = 0.01 \), where \( C_\alpha \) is defined in (3.20), \( \beta = 1 \) for case (i), and \( \beta = 1/2 \) for cases (ii) and (iii). It is easy to find that \( C_{0.01} = 2.58 \).

The simulation results are reported in Table 1, where the numbers in the parentheses are the standard errors of the NLS (or MNLS) estimator in the 500 replications. From Table 1, we have the following interesting findings. (a) The parametric estimators perform better in the stationary case (i) than in the nonstationary cases (ii) and (iii). This is consistent with the asymptotic
Table 1
Means and standard errors for the estimators in Example 5.1

| Sample size | 500   | 1000  | 2000  |
|-------------|-------|-------|-------|
| NLS         | 1.0036 (0.0481) | 1.0002 (0.0339) | 1.0000 (0.0245) |
| MNLS        | 1.0036 (0.0481) | 1.0002 (0.0339) | 1.0000 (0.0245) |
| NLS         | 0.9881 (0.1783) | 0.9987 (0.1495) | 0.9926 (0.1393) |
| MNLS        | 0.9881 (0.1783) | 0.9987 (0.1495) | 0.9926 (0.1393) |
| NLS         | 0.9975 (0.1692) | 1.0028 (0.1463) | 0.9940 (0.1301) |
| MNLS        | 0.9975 (0.1692) | 1.0028 (0.1463) | 0.9940 (0.1301) |

results obtained in Section 3.1 such as Theorem 3.1 and Corollaries 3.1 and 3.2, which indicate that the convergence rates of the parametric estimators can achieve $O_p(n^{-1/2})$ in the stationary case, but only $O_p(n^{-1/4})$ in the 1/2-null recurrent case. (b) The finite sample behavior of the MNLS estimator is the same as that of NLS estimator since $\alpha = 0.01$ means little sample information is lost. (c) Both of the two parametric estimators improve as the sample size increases. (d) In addition, for case (i), the ratio of the standard errors between 500 and 2000 is 1.9633 (close to the theoretical ratio $\sqrt{4} = 2$); for case (iii), the ratio of the standard errors between 500 and 2000 is 1.3005 (close to the theoretical ratio $4^{1/4} = 1.4142$). Hence, this again confirms that our asymptotic theory is valid.

Example 5.2. Consider the quadratic regression model defined by

\[ Y_t = \theta_0 X_t^2 + e_t, \quad \theta_0 = 0.5, t = 1, 2, \ldots, n, \tag{5.2} \]

where \( \{X_t\} \) is generated either by one of the three Markov processes introduced in Example 5.1, or by (iv) the unit root process:

\[ X_t = X_{t-1} + x_t, \quad x_t = 0.2x_{t-1} + v_t, \]

in which \( X_0 = x_0 = 0, \) \( \{v_t\} \) is a sequence of i.i.d. $\mathcal{N}(0, 0.75)$ random variables, and the error process \( \{e_t\} \) is defined as in Example 5.1. In this simulation study, we are interested in the finite sample behavior of the MNLS estimator to illustrate the asymptotic theory developed in Section 3.2 as the regression function in (5.2) is asymptotically homogeneous. For the comparison purpose, we also investigate the finite sample behavior of the NLS estimation, although we do not establish the related asymptotic theory under the framework of null recurrent Markov chains. The sample size \( n \) is chosen to be 500, 1000 and 2000 as in Example 5.1 and the replication number is \( R = 500 \). In the MNLS estimation procedure, as in the previous example, we choose \( M_n = 2.58n^{1-\beta} \), where \( \beta = 1 \) for case (i), and \( \beta = 1/2 \) for cases (ii)–(iv).
Table 2

Means and standard errors for the estimators in Example 5.2

| Sample size | 500        | 1000       | 2000       |
|-------------|------------|------------|------------|
|             | The regressor $X_t$ is generated in case (i) |
| NLS         | 0.5002 (0.0095) | 0.4997 (0.0068) | 0.4998 (0.0050) |
| MNLS        | 0.5003 (0.0126) | 0.4998 (0.0092) | 0.4997 (0.0064) |
|             | The regressor $X_t$ is generated in case (ii) |
| NLS         | 0.5000 ($2.4523 \times 10^{-4}$) | 0.5000 ($6.7110 \times 10^{-5}$) | 0.5000 ($2.7250 \times 10^{-5}$) |
| MNLS        | 0.5000 ($2.4523 \times 10^{-4}$) | 0.5000 ($6.7112 \times 10^{-5}$) | 0.5000 ($2.7251 \times 10^{-5}$) |
|             | The regressor $X_t$ is generated in case (iii) |
| NLS         | 0.5000 ($2.6095 \times 10^{-4}$) | 0.5000 ($8.4571 \times 10^{-5}$) | 0.5000 ($3.1268 \times 10^{-5}$) |
| MNLS        | 0.5000 ($2.6095 \times 10^{-4}$) | 0.5000 ($8.4572 \times 10^{-5}$) | 0.5000 ($3.1268 \times 10^{-5}$) |
|             | The regressor $X_t$ is generated in case (iv) |
| NLS         | 0.5000 ($2.1698 \times 10^{-4}$) | 0.5000 ($7.1500 \times 10^{-5}$) | 0.5000 ($2.6017 \times 10^{-5}$) |
| MNLS        | 0.5000 ($2.1699 \times 10^{-4}$) | 0.5000 ($7.1504 \times 10^{-5}$) | 0.5000 ($2.6017 \times 10^{-5}$) |

The simulation results are reported in Table 2, from which, we have the following conclusions. (a) For the regression model with asymptotically homogeneous regression function, the parametric estimators perform better in the nonstationary cases (ii)–(iv) than in the stationary case (i). This finding is consistent with the asymptotic results obtained in Sections 3.2 and 4.2. (b) The MNLS estimator performs as well as the NLS estimator (in particular for the nonstationary cases). Both the NLS and MNLS estimations improve as the sample size increases.

6. Empirical application. In this section, we give an empirical application of the proposed parametric model and estimation methodology.

Example 6.1. Consider the logarithm of the UK to US export and import data (in £). These data come from the website: https://www.uktradeinfo.com/, spanning from January 1996 to August 2013 monthly and with the sample size $n = 212$. Let $X_t$ be defined as $\log(E_t) + \log(p_{t}^{UK}) - \log(p_{t}^{US})$, where $\{E_t\}$ is the monthly average of the nominal exchange rate, and $\{p_{i}^{t}\}$ denotes the consumption price index of country $i$. In this example, we let $\{Y_t\}$ denote the logarithm of either the export or the import value.

The data $X_t$ and $Y_t$ are plotted in Figures 1 and 2, respectively. Meanwhile, the real data application considered by Gao, Tjøstheim and Yin (2013) suggests that $\{X_t\}$ may follow the threshold autoregressive model proposed in that paper, which is shown to be a 1/2-null recurrent Markov process. Furthermore, an application of the estimation method by (3.6) gives $\hat{\beta}_0 = 0.5044$. This further supports that $\{X_t\}$ roughly follows a $\beta$-null recurrent Markov chain with $\beta = 1/2$. 
To avoid possible confusion, let $Y_{ex,t}$ and $Y_{im,t}$ be the export and import data, respectively. We are interested in estimating the parametric relationship between $Y_{ex,t}$ (or $Y_{im,t}$) and $X_t$. In order to find a suitable parametric relationship, we first estimate the relationship nonparametrically based on $Y_{ex,t} = m_{ex}(X_t) + e_{t1}$ and $Y_{im,t} = m_{im}(X_t) + e_{t2}$ [c.f., Karlsen, Myklebust and
Tjøstheim (2007)], where $m_{\text{ex}}(\cdot)$ and $m_{\text{im}}(\cdot)$ are estimated by

$$
\hat{m}_{\text{ex}}(x) = \frac{\sum_{t=1}^{n} K((X_t - x)/h)Y_{\text{ex},t}}{\sum_{t=1}^{n} K((X_t - x)/h)}
$$

and

$$
\hat{m}_{\text{im}}(x) = \frac{\sum_{t=1}^{n} K((X_t - x)/h)Y_{\text{im},t}}{\sum_{t=1}^{n} K((X_t - x)/h)},
$$

where $K(\cdot)$ is the probability density function of the standard normal distribution and the bandwidth $h$ is chosen by the conventional leave-one-out cross-validation method. Then a parametric calibration procedure (based on the preliminary nonparametric estimation) suggests using a third-order polynomial relationship of the form

$$
Y_{\text{ex},t} = \theta_{\text{ex},0} + \theta_{\text{ex},1}X_t + \theta_{\text{ex},2}X_t^2 + \theta_{\text{ex},3}X_t^3 + e_{\text{ex},t}
$$

(6.2)

for the export data, where the estimated values (by using the method in Section 3.2) of $\theta_{\text{ex},0}, \theta_{\text{ex},1}, \theta_{\text{ex},2}$ and $\theta_{\text{ex},3}$ are 21.666, 5.9788, 60.231 and 139.36, respectively, and

$$
Y_{\text{im},t} = \theta_{\text{im},0} + \theta_{\text{im},1}X_t + \theta_{\text{im},2}X_t^2 + \theta_{\text{im},3}X_t^3 + e_{\text{im},t}
$$

(6.3)

for the import data, where the estimated values of $\theta_{\text{im},0}, \theta_{\text{im},1}, \theta_{\text{im},2}$ and $\theta_{\text{im},3}$ are 21.614, 3.5304, 37.789 and 87.172, respectively. Their plots are given in Figures 3 and 4, respectively.

While Figures 3 and 4 suggest some relationship between the exchange rate and either the export or the import variable, the true relationship may
also depend on some other macroeconomic variables, such as, the real interest rate in the UK during the period. As discussed in Section 4.3, we would like to extend the proposed models from the univariate case to the multivariate case. As a future application, we should be able to find a more accurate relationship among the export or the import variable with the exchange rate and some other macroeconomic variables.

7. Conclusions. In this paper, we have systematically studied the nonlinear regression under the general Harris recurrent Markov chain framework, which includes both the stationary and nonstationary cases. Note that the nonstationary null recurrent process considered in this paper is under Markov perspective, which, unlike PP, indicates that our methodology has the potential of being extended to the nonlinear autoregressive case. In this paper, we not only develop an asymptotic theory for the NLS estimator of $\theta_0$ when $g(\cdot, \cdot)$ is integrable, but also propose using a modified version of the conventional NLS estimator for the asymptotically homogeneous $g(\cdot, \cdot)$ and adopt a novel method to establish an asymptotic theory for the proposed modified parametric estimator. Furthermore, by using the log-transformation, we discuss the estimation of the parameter vector in a conditional volatility function. We also apply our results to the nonlinear regression with $I(1)$ processes which may be non-Markovian, and establish an asymptotic distribution theory, which is comparable to that obtained by PP. The simulation studies and empirical applications have been provided to illustrate our approaches and results.
APPENDIX A: OUTLINE OF THE MAIN PROOFS

In this Appendix, we outline the proofs of the main results in Section 3. The detailed proofs of these results are given in Appendix C of the supplemental document. The major difference between our proof strategy and that based on the unit root framework [c.f., PP and Kristensen and Rahbek (2013)] is that our proofs rely on the limit theorems for functions of the Harris recurrent Markov process (c.f., Lemmas A.1 and A.2 below) whereas PP and Kristensen and Rahbek (2013)’s proofs use the limit theorems for integrated time series. We start with two technical lemmas which are crucial for the proofs of Theorems 3.1 and 3.2. The proofs for these two lemmas are given in Appendix D of the supplemental document by Li, Tjøstheim and Gao (2015).

**Lemma A.1.** Let \( h_I(x, \theta) \) be a \( d \)-dimensional integrable function on \( \Theta \) and suppose that Assumption 3.1(i) is satisfied for \( \{X_t\} \).

(a) Uniformly for \( \theta \in \Theta \), we have

\[
\frac{1}{N(n)} \sum_{t=1}^{n} h_I(X_t, \theta) = \int h_I(x, \theta) \pi_s(dx) + o_P(1). \tag{A.1}
\]

(b) If \( \{e_t\} \) satisfies Assumption 3.1(ii), we have, uniformly for \( \theta \in \Theta \),

\[
\sum_{t=1}^{n} h_I(X_t, \theta) e_t = O_P(\sqrt{N(n)}). \tag{A.2}
\]

Furthermore, if \( \int h_I(x, \theta_0) h_I^T(x, \theta_0) \pi_s(dx) \) is positive definite, we have

\[
\frac{1}{\sqrt{N(n)}} \sum_{t=1}^{n} h_I(X_t, \theta_0) e_t \overset{d}{\rightarrow} N\left(0_d, \sigma^2 \int h_I(x, \theta_0) h_I^T(x, \theta_0) \pi_s(dx) \right). \tag{A.3}
\]

**Lemma A.2.** Let \( h_{AH}(x, \theta) \) be a \( d \)-dimensional asymptotically homogeneous function on \( \Theta \) with asymptotic order \( \kappa(\cdot) \) (independent of \( \theta \)) and limit homogeneous function \( \tilde{h}_{AH}(\cdot, \cdot) \). Suppose that \( \{X_t\} \) is a null recurrent Markov process with the invariant measure \( \pi_s(\cdot) \) and Assumption 3.3(iv) are satisfied, and \( \tilde{h}_{AH}(\cdot, \theta) \) is continuous on the interval \([-1, 1] \) for all \( \theta \in \Theta \). Furthermore, letting

\[
\Delta_{AH}(n, \theta) = \sum_{i=0}^{\lfloor M_n \rfloor} \tilde{h}_{AH}\left(\frac{i}{M_n}, \theta\right) \tilde{h}_{AH}^r\left(\frac{i}{M_n}, \theta\right) \pi_s(B_{i+1}(1)) + \sum_{i=0}^{\lfloor M_n \rfloor} \tilde{h}_{AH}\left(-\frac{i}{M_n}, \theta\right) \tilde{h}_{AH}^r\left(-\frac{i}{M_n}, \theta\right) \pi_s(B_{i+1}(2))
\]
with $B_1(1)$ and $B_1(2)$ defined in Section 3.2, there exist a continuous and positive definite matrix $\Delta_{AH}(\theta)$ and a sequence of positive numbers $\{\zeta_{AH}(M_n)\}$ such that $\zeta_0(M_n)/\zeta_{AH}(M_n)$ is bounded, $\zeta_0(l_n)/\zeta_0(M_n) = o(1)$ for $l_n \to \infty$ but $l_n = o(M_n)$, and

$$\lim_{n \to \infty} \frac{1}{{\zeta}_{AH}(M_n)} \Delta_{AH}(n, \theta) = \Delta_{AH}(\theta),$$

where $\zeta_0(\cdot)$ is defined in Section 3.2.

(a) Uniformly for $\theta \in \Theta$, we have

$$[N(n){J}_{AH}(n, \theta)]^{-1} \sum_{t=1}^{n} h_{AH}(X_t, \theta) h_{AH}^\top(X_t, \theta) I(|X_t| \leq M_n)$$

$$= I_d + o_P(1),$$

where $J_{AH}(n, \theta) = \kappa^2(M_n) \zeta_{AH}(M_n) \Delta_{AH}(\theta)$.

(b) If $\{e_t\}$ satisfies Assumption 3.1(ii), we have, uniformly for $\theta \in \Theta$,

$$J_{AH}^{-1/2}(n, \theta) \sum_{t=1}^{n} h_{AH}(X_t, \theta) I(|X_t| \leq M_n) e_t = O_P(\sqrt{N(n)}),$$

and furthermore,

$$N^{-1/2}(n)J_{AH}^{-1/2}(n, \theta_0) \sum_{t=1}^{n} h_{AH}(X_t, \theta_0) I(|X_t| \leq M_n) e_t \frac{d}{d} \tilde{N}(0_d, \sigma^2 I_d).$$

PROOF OF THEOREM 3.1. For Theorem 3.1(a), we only need to verify the following sufficient condition for the weak consistency [Jennrich (1969)]:

for a sequence of positive numbers $\{\lambda_n\}$,

$$\frac{1}{\lambda_n}[L_{n,g}(\theta) - L_{n,g}(\theta_0)] = L^*(\theta, \theta_0) + o_P(1)$$

uniformly for $\theta \in \Theta$, where $L^*(\cdot, \theta_0)$ is continuous and achieves a unique minimum at $\theta_0$. This sufficient condition can be proved by using (A.1) and (A.2) in Lemma A.1, and (3.3) in Theorem 3.1(a) is thus proved. Combining the so-called Cramér–Wold device in Billingsley (1968) and (A.3) in Lemma A.1(b), we can complete the proof of the asymptotically normal distribution in (3.4). Details can be found in Appendix C of the supplementary material. □

PROOF OF COROLLARY 3.1. The asymptotic distribution (3.7) can be proved by using (3.5) and Theorem 3.1(b). □
Proof of Corollary 3.2. The convergence result (3.8) can be proved by using (2.3) and (3.4), and following the proof of Lemma A.2 in Gao et al. (2015). A detailed proof is given in Appendix C of the supplementary material. □

Proof of Theorem 3.2. The proof is similar to the proof of Theorem 3.1 above. To prove the weak consistency, similar to (A.7), we need to verify the sufficient condition: for a sequence of positive numbers \( \{\lambda^*_n\} \),

\[
\frac{1}{\lambda^*_n} [Q_{n,g}(\theta) - Q_{n,g}(\theta_0)] = Q^*(\theta, \theta_0) + o_P(1)
\]

uniformly for \( \theta \in \Theta \), where \( Q^*(\cdot, \theta_0) \) is continuous and achieves a unique minimum at \( \theta_0 \). Using Assumption 3.3(ii) and following the proofs of (A.4) and (A.5) in Lemma A.2 (see Appendix D in the supplementary material), we may prove (A.8) and thus the weak consistency result (3.14). Combining the Cramér–Wold device and (A.6) in Lemma A.2(b), we can complete the proof of the asymptotically normal distribution for \( \overline{\theta}_n \) in (3.15). More details are given in Appendix C of the supplementary material. □

Proof of Corollary 3.3. By using Theorem 3.2(b) and (2.3), and following the proof of Lemma A.2 in Gao et al. (2015), we can directly prove (3.17). □

Proof of Corollary 3.4. The convergence result (3.18) follows from (3.17) in Corollary 3.3 and (3.19) can be proved by using (3.15) in Theorem 3.2(b). □

Acknowledgments. The authors are grateful to the Co-Editor, Professor Runze Li, an Associate Editor and two referees for their valuable and constructive comments and suggestions that substantially improved an earlier version of the paper. Thanks also go to Professor Peter Phillips and other colleagues who commented on this paper and the participants of various conferences and seminars where earlier versions of this paper were presented. This work was started when the first and third authors visited the second author at Department of Mathematics, University of Bergen in 2011.

SUPPLEMENTARY MATERIAL

Supplement to “Estimation in nonlinear regression with Harris recurrent Markov chains” (DOI: 10.1214/15-AOS1379SUPP; .pdf). We provide some additional simulation studies, the detailed proofs of the main results in Section 3, the proofs of Lemmas A.1 and A.2 and Theorem 4.1.
REFERENCES

BANDI, F. and PHILLIPS, P. C. B. (2009). Nonstationary continuous-time processes. In Handbook of Financial Econometrics (Y. A˘ıt-Sahalia and L. P. HANSEN, eds.) 1 139–201.

BEC, F., RAHBEEK, A. and SHEPHARD, N. (2008). The ACR model: A multivariate dynamic mixture autoregression. Oxf. Bull. Econ. Stat. 70 583–618.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York. MR0233396

CHAN, N. and WANG, Q. (2012). Nonlinear cointegrating regressions with nonstationary time series. Working paper, School of Mathematics, Univ. Sydney.

CHEN, X. (1999). How often does a Harris recurrent Markov chain recur? Ann. Probab. 27 1324–1346. MR1733150

CHEN, X. (2000). On the limit laws of the second order for additive functionals of Harris recurrent Markov chains. Probab. Theory Related Fields 116 89–123. MR1736591

CHEN, L.-H., CHENG, M.-Y. and FENG, L. (2009). Conditional variance estimation in heteroscedastic regression models. J. Statist. Plann. Inference 139 236–245. MR2474001

CHEN, J., GAO, J. and LI, D. (2012). Estimation in semi-parametric regression with non-stationary regressors. Bernoulli 18 678–702. MR2922466

GAO, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods. Monographs on Statistics and Applied Probability 108. Chapman & Hall/CRC, Boca Raton, FL. MR2297190

GAO, J., TJØSTHEIM, D. and YIN, J. (2013). Estimation in threshold autoregressive models with a stationary and a unit root regime. J. Econom. 172 1–13. MR2909726

GAO, J., KANAYA, S., LI, D. and TJØSTHEIM, D. (2015). Uniform consistency for non-parametric estimators in null recurrent time series. Econometric Theory 31 911–952. MR3396235

HAN, H. and KRISTENSEN, D. (2014). Asymptotic theory for the QMLE in GARCH-X models with stationary and nonstationary covariates. J. Bus. Econom. Statist. 32 416–429. MR3238595

HAN, H. and PARK, J. Y. (2012). ARCH/GARCH with persistent covariate: Asymptotic theory of MLE. J. Econom. 167 95–112. MR2885441

HÖPFNER, R. and LÖCHERBACH, E. (2003). Limit theorems for null recurrent Markov processes. Mem. Amer. Math. Soc. 161 vi+92. MR1949295

JENNICH, R. I. (1969). Asymptotic properties of non-linear least squares estimators. Ann. Math. Statist. 40 633–643. MR0238419

KALLIANPUR, G. and ROBBINS, H. (1954). The sequence of sums of independent random variables. Duke Math. J. 21 285–307. MR0062976

KARLSEN, H. A., MYKLEBUST, T. and TJØSTHEIM, D. (2007). Nonparametric estimation in a nonlinear cointegration type model. Ann. Statist. 35 252–299. MR2332276

KARLSEN, H. A., MYKLEBUST, T. and TJØSTHEIM, D. (2010). Nonparametric regression estimation in a null recurrent time series. J. Statist. Plann. Inference 140 3619–3626. MR2674152

KARLSEN, H. A. and TJØSTHEIM, D. (2001). Nonparametric estimation in null recurrent time series. Ann. Statist. 29 372–416. MR1863963

KASAHARA, Y. (1984). Limit theorems for Lévy processes and Poisson point processes and their applications to Brownian excursions. J. Math. Kyoto Univ. 24 521–538. MR0766640

KRISTENSEN, D. and RAHBEEK, A. (2013). Testing and inference in nonlinear cointegrating vector error correction models. Econometric Theory 29 1238–1288. MR3148831
Lai, T. L. (1994). Asymptotic properties of nonlinear least squares estimates in stochastic regression models. *Ann. Statist.* **22** 1917–1930. MR1329175

Li, R. and Nie, L. (2008). Efficient statistical inference procedures for partially nonlinear models and their applications. *Biometrics* **64** 904–911. MR2526642

Li, D., Tjøstheim, D. and Gao, J. (2015). Supplement to “Estimation in nonlinear regression with Harris recurrent Markov chains.” DOI:10.1214/15-AOS1379SUPP.

Lin, Z., Li, D. and Chen, J. (2009). Local linear $M$-estimators in null recurrent time series. *Statist. Sinica* **19** 1683–1703. MR2589204

Ling, S. (2007). Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models. *J. Econometrics* **140** 849–873. MR2408929

Lu, Z. (1998). On the geometric ergodicity of a non-linear autoregressive model with an autoregressive conditional heteroscedastic term. *Statist. Sinica* **8** 1205–1217. MR1666249

Malinvaud, E. (1970). The consistency of nonlinear regressions. *Ann. Math. Statist.* **41** 956–969. MR0261754

Meyn, S. and Tweedie, R. L. (2009). *Markov Chains and Stochastic Stability*, 2nd ed. Cambridge Univ. Press, Cambridge. MR2509253

Myklebust, T., Karlsen, H. A. and Tjøstheim, D. (2012). Null recurrent unit root processes. *Econometric Theory* **28** 1–41. MR2899213

Nummelin, E. (1984). *General Irreducible Markov Chains and Nonnegative Operators*. Cambridge Tracts in Mathematics **83**. Cambridge Univ. Press, Cambridge. MR776608

Park, J. Y. and Phillips, P. C. B. (1999). Asymptotics for nonlinear transformations of integrated time series. *Econometric Theory* **15** 269–298. MR1704225

Park, J. Y. and Phillips, P. C. B. (2001). Nonlinear regressions with integrated time series. *Econometrica* **69** 117–161. MR1806536

Peng, L. and Yao, Q. (2003). Least absolute deviations estimation for ARCH and GARCH models. *Biometrika* **90** 967–975. MR2024770

Schienle, M. (2011). Nonparametric nonstationary regression with many covariates. Working paper, Humboldt–Univ. Berlin.

Severini, T. A. and Wong, W. H. (1992). Profile likelihood and conditionally parametric models. *Ann. Statist.* **20** 1768–1802. MR1193312

Skouras, K. (2000). Strong consistency in nonlinear stochastic regression models. *Ann. Statist.* **28** 871–879. MR1792791

Terasvirta, T., Tjøstheim, D. and Granger, C. W. J. (2010). *Modelling Nonlinear Economic Time Series*. Oxford Univ. Press, Oxford. MR3185399

Wu, C.-F. (1981). Asymptotic theory of nonlinear least squares estimation. *Ann. Statist.* **9** 501–513. MR0615427

D. Li
Department of Mathematics 
University of York
Heslington Campus
York, YO10 5DD
United Kingdom
E-mail: degui.li@york.ac.uk

D. Tjøstheim
Department of Mathematics 
University of Bergen
Post box 7800
5020 Bergen
Norway
E-mail: Dag.Tjostheim@math.uib.no

J. Gao
Department of Econometrics and Business Statistics
Monash University at Caulfield
Caulfield East, Victoria 3145
Australia
E-mail: jiti.gao@monash.edu