The use of inflatable structures for the removal of spacecraft from orbit

V V Koryanov\(^1\), A G Toporkov\(^1\), V P Kazakovtsev\(^1\), A A Nedogarok\(^1\) and E K Gnezdova\(^1\)

\(^1\) Dynamics and flight control of motion of rockets and spacecraft, Bauman Moscow State Technical University, 2-nd Baumanskaya, 5, b.1, 105005, Moscow, Russia

E-mail: vkoryanov@bmstu.ru

Abstract. Every year the concentration of objects of space debris is steadily growing, which significantly complicates the conduct of both modern and future space missions using automatic, and especially manned space vehicles. To date, over 15,000 artificial objects and fragments larger than 5 cm have been recorded in near-Earth space. Therefore, the issues of cleansing outer space from objects of space debris of various sizes are quite relevant. In this paper, are considered questions use inflatable structures for deorbiting spacecraft, in order to avoid the formation of new space debris. At the end of the work, conclusions are drawn about the effectiveness using of such inflatable structures.

1. Introduction

Due to the intensive development of the direction for the creation of small space vehicles and in particular on the basis of CubeSat, the issue de-orbiting of spacecraft after the end of their active existence in order to reduce the number of orbital debris in orbit is becoming very topical. From 2000 to 2017 years, were launched into the low earth orbit (using standard launch vehicles) more than 800 spacecrafts of various types, and more than 200 spacecrafts only in 2017 year. The majority of spacecraft are concentrated in orbits from 400 km to 700 km. At the same time at an altitude of about 400 km is the International Space Station, which since 2012 year is the platform for the mass launch of CubeSat.

Currently, the international community of scientists and engineers is in the active phase of working out space missions to clean up of space from objects of space debris. At the same time, various technologies for the reduction orbital lifetime and disposal of space debris are being developed. As the main technologies for the deorbiting of space debris, most popular ones can be distinguished: Installation of additional devices (Thruster de-orbiting kit, TDK) in the nozzle space debris (see in Figure 1 [1]). Functionality of such devices will allow to transfer the space debris to the disposal orbit. Capture of space debris with the help of an active spacecraft. It is assumed that the active spacecraft will capture the space debris, transfer it to a given orbit, undock from the space debris, and continue to carry out scheduled flight operations. Within the framework of this concept, a lot of methods for capturing space debris are considered, which are subdivided into active and passive [2]. Deorbiting of a spacecraft by using a solar sail [3]. But for different shapes [4, 5] and different materials there are problem questions [6, 7].
Deorbiting of a spacecraft by increasing the aerodynamic resistance of the atmosphere after the deployment of braking devices. In the last two years only two projects have been proposed in Russia that are based on the principle of deploying braking devices [8, 9].

Figure 1. Installation of the TDK device in the nozzle space debris: 1- space debris, 2-nozzle space debris, 3-element fastening, 4-TDK, 5-docking manipulator, 6-manipulator.

The principle of operation of this technology is to increase the ballistic coefficient by creating a larger cross-sectional area of the space vehicle (compared to the original one) due to the deployment of braking devices. The final form of the disclosed braking device may be different. In this case, the spacecraft can initially be equipped with brake devices during design and assembly on Earth. Another option is when the braking device is install on the object after it has been classification like the space debris. In this case, will first need to capture the space debris and install the device. But space debris should have standardized interface for docking.

2. De-orbiting device configurations

De-orbiting devices can be designed in shapes of sphere, thorus, cone, pyramid, either dome, plane etc. The development of inflatable structures is covered in other articles [10, 11, 12]. According to the newthonian model for low-density high-velocity flow gas particles impact surface of de-orbiting device. Body get the momentum component normal to it’s surface.

The result force applied to area \(S \) is equal

\[
\vec{R}_a = -\vec{n}\vec{V}_\infty^2 \rho \cdot \sin^2 \alpha = -\vec{n}(\vec{V}_\infty \cdot \vec{n})^2 \rho \cdot S, \quad (1)
\]

\(\vec{n} \) – unit vector normal to surface \(S \).

\(V_\infty \) – gas partickles velocity, equal to spacecraft velocity relative to moving atmosphere \(V_{atm} \), with minus sign,

\(\rho \) – atmosphere density,

\(\alpha \) – angle between flow velocity vector and surface.

Drag force \(\vec{X}_a \) respectively is equal

\[
\vec{X}_a = -\frac{\vec{V}_\infty}{\vec{V}_\infty^2}(\vec{n} \cdot \vec{V}_\infty)^3 \rho \cdot S, \quad (2)
\]

or

\[
X_a = \frac{1}{V_\infty^2}(|\vec{V}_\infty\cdot\vec{n}|)^3 \rho \cdot S, \quad (3)
\]

Spacecraft velocity relative to atmosphere, rotating with Earth (airspeed)

\[
\vec{V}_{atm} = -\vec{V}_\infty = \vec{V} + [\vec{r} \times \vec{\omega}_e], \quad (4)
\]

\(\vec{V} \) – spacecraft velocity in ECSF reference frame,

\(\vec{r} \) – spacecraft position vector in ECSF reference frame,
\(\vec{\omega}_e \) – Earth rotation angular velocity vector.

Drag force is usually expressed through dynamic pressure \(q_\infty \) and drag coefficient \(c_{xa} \), or through ballistic coefficient \(\sigma \), respectively

\[
X_a = c_{xa} \cdot q_\infty \cdot S, \quad (5)
\]

where \(q_\infty = \frac{\rho V_\infty^2}{2} \), or

\[
X_a = m \cdot \sigma \cdot V_\infty^2 \cdot \rho. \quad (6)
\]

From (5) and (6)

\[
\sigma = \frac{c_{xa} S}{2m}, \quad (7)
\]

\(m \) – spacecraft mass.

From (3) and (5) \(c_{xa} \) for plane surface

\[
c_{xa} = \frac{2}{V_\infty} \left(\frac{V_\infty \vec{n}}{V_\infty} \right)^3 = 2 \cos^3 \left(\frac{\vec{V} \cdot \vec{n}}{V_\infty} \right), \quad (8)
\]

and (7) ballistic coefficient

\[
\sigma = \frac{1}{m} \cos^3 \left(\frac{\vec{V} \cdot \vec{n}}{V_\infty} \right) \cdot S. \quad (9)
\]

Calculational software was developed in appliance with newthonian flow theory, which used for estimation of drag and ballistic coefficients for different configurations of deorbiting device and their orientation in the flow. The data are listed below.

For example, the cone design is compact in the folded form and provides a large area in the expanded form. The conical shape facilitates the angular stabilization of the spacecraft near the zero angle of attack.

An example of the polar diagram of the dependence of \(c_{xa} \) on the direction of blowing for a cone with an half angle of 30° is shown in Figure 2.

![Figure 2. Polar diagram of the dependence of the drag coefficient of the cone on the direction of the speed of the oncoming flow.](image)

The maximum drag coefficient in the front hemisphere \(c_{xa} = 1.05 \) is achieved with the direction of motion perpendicular to the cone generator, the minimum \(c_{xa} = 0.505 \), when moving with the toe in the direction of the velocity vector.

The tetrahedral shape of the braking device can be supported by deployable reinforcing elements, for example, wire or strip ribs unwound from the coil. This design does not need a pressure generator and can not be subject to leakage if the film sheath is damaged, but has less stability and requires the presence of drives for mechanical deployment. The tetrahedral shape contributes to the angular stabilization of the spacecraft near the zero angle of attack.
An example of the polar diagram of the dependence of c_{xa} on the direction of blowing for a cone with an half angle of 30° is shown in Figure 3.

![Polar diagram](image)

Figure 3. Polar diagram of the dependence of the coefficient of drag of a tetrahedron on the direction of the speed of the oncoming flow.

The maximum drag coefficient in the front hemisphere $c_{xa} = 2$ is achieved with the direction of the incident stream vector perpendicular to the lateral face of the tetrahedron, the minimum $c_{xa} = 0.213$ - when moving with the toe in the direction of the velocity vector.

The brake device is a flat frame of various shapes, on which the film is stretched. Has the greatest drag coefficient $c_{xa} = 2$ (see Figure 4).

The maximum drag coefficient in the front hemisphere $c_{xa} = 2$ is achieved with the direction of the vector of the incident flow perpendicular to the plane of the brake.

The cupola device is a parachute. The film canvas is stretched by means of unfold able wire "slings" to maintain the maximum area and radius of curvature. Unlike a flat device, does not have a reinforcing frame around the perimeter, so under the influence of the oncoming flow the shape can differ substantially from the flat one and have a radius of curvature. However, in comparison with a flat device, the structure and the deployment scheme are simplified, and the pressure of the oncoming flow naturally contributes to maintaining the shape of the cupola and stabilizing the objects.
Figure 4. Polar diagram of the dependence of the coefficient of the drag of the plane on the direction of the speed of the oncoming flow.

Spherical braking device is structurally the simplest and does not require reinforcing elements. It can be a thin-film ball, supercharged by a gas generator. Has the same drag coefficient $c_{x\alpha} = 1$ for any orientation of the objects.

3. Estimating the lifetime of a spacecraft on orbit
To estimate the spacecraft's orbital lifetime, a software complex for predicting the motion of the center of mass of the spacecraft was developed, which makes it possible to evaluate the possibilities of using braking devices of various configurations.
For an altitude of 200 km, the disturbing effect of atmospheric inhibition is 10^{-4} m/s². For an altitude of 400 km, the order of the perturbing acceleration decreases and is 10^{-6} m/s².
For altitudes from 800 km to 1500 km, the order of acceleration varies from 10^{-9} m/s² to 10^{-12} m/s².
However, even a slight perturbing acceleration from the atmosphere on will make a significant contribution to deceleration, since the drag force acts constantly and the direction of action is always opposite to the direction of motion of the space vehicle.
This fact makes it possible to use inflatable, unfolding and other braking devices quite efficiently for the purpose of reducing spacecraft from orbit.

4. Calculation results
As part of the research:
- calculation of the rate of fall of the orbit altitude of the spacecraft was carried out for nominal estimates of the forecast of the values of the indices $F10.7$ and ap;
- the mass of satellite varied from 5 kg to 600 kg;
- the initial cross-sectional area of the satellite (S_0) varied from 0.05 m² to 1 m²;
- considered two values of the cross-sectional area of the braking device after opening: $S_1 = 4$ m² and $S_2 = 10$ m²;
- the shape of the disclosed braking device was selected as a tetrahedron.
Mass and geometric parameters of satellites with shown in table 1.
Table 1. Mass and geometric parameters of satellites

Number	Mass, kg	S₀, m²
1	5	0.05
2	10	0.10
3	20	0.20
4	30	0.30
5	40	0.40
6	50	0.50
7	100	0.65
8	150	0.75
9	200	0.80
10	300	0.85
11	400	0.95
12	500	0.95
13	600	1.00

The results of calculating the lifetime of satellite on a circular orbit of 600 km shown in Figure 5.

Figure 5. Changes in the height of spacecraft of various configurations for the initial altitude $H₀ = 600$ km.

The results of calculating the lifetime of satellite on a circular orbit of 700 km shown in Figure 6.

Figure 6. Changes in the height of spacecraft of various configurations for the initial altitude $H₀ = 700$ km.

As can be seen from the obtained results Figures 5-6, the disclosure of the inflatable braking device allows to significantly reduce the duration of passive ballistic spacecraft existence in orbit. And in most
cases, the existence time does not exceed 25 years, which meets one of the requirements of the provisions of the Inter-Agency Committee on Space Debris [13].

So, according to preliminary calculations, an inflatable braking device in the form of a tetrahedron with a cross-sectional area of 4 m² will weigh about 1.5 kg.

5. Conclusions
Taking into account the obtained results, we can say that the use of passive braking devices in the form of inflatable structures can significantly reduce the time of existence of spacecraft in orbit, so the demand for such systems in the future will be very high.

The main advantage of inflatable structures before rigid ones is a small mass and the possibility of compact stacking in the required volume when putting into orbit. However, to date, inflatable braking devices are not sufficiently tested in outer space conditions, although ground handling has been conducted for a long time.

At the same time, there is a probability of breakdown of the inflatable structure by the fragments of the space debris and the occurrence of leaks of the supercharged gas, which can significantly reduce the efficiency of such a system. It is assumed that such leaks can be compensated by the multiple actuation of the gas generator.

Acknowledgments
The research was performed at Bauman Moscow State Technical University with the financial support of the Ministry of Education and Science of the Russian Federation under the Federal Target Program "Research and development on priority directions of scientific and technological complex of Russia for 2014-2020". Agreement №14.577.21.0247 (unique identifier RFMEFI57717X0247)

References
[1] Marco M, Castronuovo 2011 Active space debris removal—A preliminary mission analysis and design. Acta Astronautica 69 848-59.
[2] Shan M, Guo J and Gill E 2015 Review and Comparison of Active Space Debris Capturing and Removal Methods. Progress in Aerospace Sciences 80 18–32.
[3] Trofimov S P 2015 The removal of small spacecraft from low Earth orbits. PhD dissertation. 125.
[4] Mayorova V I, Tenenbaum S M, Rachkin D A, Nerovnyy N A and Popov A S 2013 Space experiment "BMSTU-SAIL”. Proceedings of the international astronautical congress, IAC 64th pp 10157-65.
[5] Mayorova V I, Nerovnyy N A, Rachkin D A, Tenenbaum S M, Kotsur O S and Popov A S 2015 Current status of BMSTU-Sail space experiment. 66 International Astronautical Congress 14 pp 10679-83.
[6] Nerovny N A, Lapina I E and Grigorjev A S 2017 Light radiation pressure upon an optically orthotropic surface. J. Quant. Spectros. Radiat. Transf. 202 64-73 https://doi.org/10.1016/j.jqsrt.2017.07.016.
[7] Zarubin V S, Zimin V N and Kuvyrkin G N 2017 Temperature Distribution in the Spherical Shell of a Gauge-Alignment Spacecraft. J. Appl. Mech. Tech. Phys. 58. 1083-90. https://doi.org/10.1134/S0021894417060141.
[8] Scientific significance. [Electronic resource]: Project "Mayak". - Access mode: http://cosmomayak.ru/about/science.
[9] Lavochkin and MAI specialists came up with a way to clean up space debris from orbit. [Electronic resource]: Joint-stock company "Scientific and Production Association. S.A. Lavochkin" - Access mode: http://www.laspace.ru/press/news/events/20171018_kak_ubrat%27_musor_s_orbity/.
[10] Koryanov V V 2013 Research of the dynamics motion of landing vehicle with inflatable braking device in the planet atmosphere. *Proceedings of the International Astronautical Congress*, IAC 8, pp. 5831-36.

[11] Aleksashkin S N, Pichkhadze K M and Finchenko V S 2012 Design principles in planetary atmospheres reentry vehicles with inflatable braking systems. *Vestnik “NPO imeni Lavochkina”* 2, 4-11.

[12] Leonov V V 2016 The design features of inflatable large-scale mirror concentrators for space high-temperature solar power plant. *Proceedings of the international astronautical congress*, IAC 67, Making Space Accessible and Affordable to All Countries.

[13] Report of the Committee on the Peaceful Uses of Outer Space. General Assembly Official Records Sixty-second session Supplement No. 20 (A/62/20). p.50, 2007.