Decision Making Analysis for Free Internet Quota Assistance Online Learning during the Covid-19 Pandemic

E Budiman† and U Hairah†
†Department of Informatics, Engineering Faculty, Universitas Mulawarman, Samarinda, East-Kalimantan, Indonesia

E-mail: edy.budiman@fkti.unmul.ac.id

Abstract. One of the Indonesian government’s efforts to reduce the impact of the crisis due to the Covid-19 pandemic is through the distribution of social assistance through the distribution of free internet data for students to support online learning during the implementation of government policies regarding large-scale social restrictions. This social assistance involves 350 students as an alternative as a target for decision making. In an effort to support this policy, this study offers a multi-criteria decision-making analysis approach using the Moora and Vikor methods. The results of this study present the optimal performance of the accuracy, precision and error rate of the two methods.

1. Introduction

In order to reduce the spread of the Covid-19. In Indonesia, not through quarantine or regional lockdowns, but through large-scale social restrictions. Large-scale social restrictions are restrictions on activities to prevent the spread of disease in areas suspected of being infected or contaminated with the disease. This policy covers a number of points, including school and work holidays, to limiting activities in public places. Government Regulation on Large-Scale Social Restrictions[1] for the handling of the Covid-19 pandemic.

In supporting government policies to implement social restrictions, the role of information and communication technology (ICT) is very large to support the use of learning media platforms such as teleconferencing, telemedicine and e-learning. The use of this ICT-based platform eases the need to work, learn and even pray without having to leave the house. However, some groups still face challenges such as network availability and affordability of internet data usage, particularly for students in accessing distance learning facilities with limited budgets(cost). For this reason, the Indonesian Government's policy is to re-implement a Regulation through the Secretary of the Ministry of Education and Culture concerning Technical Guidelines for Internet Data Quota Assistance in 2020[2]. These technical guidelines serve as guidelines in distributing internet data quota assistance for educators and students so that they can support the implementation of distance learning during the COVID-19 pandemic. Internet data quota assistance is provided to students and teachers or lecturers. The technical guidelines explained that the form of assistance provided was in the form of internet data quota with details divided into general quota and learning quota.

The internet quota package for students in early childhood education (PAUD) gets 20 GB per month with details of 5 GB for general quota and 15 GB for learning quota. Elementary, Junior and
Senior High School students get 35 GB per month, with details of 5 GB for general quota and 30 GB for learning quota[2].

The policy of free internet assistance to higher education institutions (lecturers and students) is considered less proportional and right on target to users according to their learning needs, due to several factors such as the amount of learning load; courses and academic credit, and students’ economic ability problems. For this reason, this research is expected to be able to become the basis of policy for decision makers in managing free internet assistance based on the need for internet data consumption to users in the use of internet access for the integrity of online learning.

This study aims to apply a multi-criteria decision-making method in supporting the management of distribution of free internet assistance to students, in particular, to determine the performance of the Multi Objective Optimization method on the Basic of Ratio Analyzer (MOORA) and Visekriterijumsko Kompromisno Rangiranje (VIKOR) for decision making for prospective beneficiaries based on five criteria; internet quota, academic credit, number of courses, ability purchase quota and student monthly costs. To measure the performance method, the confusion matrix testing is used. The result of method preference is the actual data of beneficiaries.

The research contribution is expected to be a reference for decision support analysis approaches in the management of internet data package assistance for online learning needs during the Covid-19 pandemic in education.

2. Testing Methodology and Analysis
An overview of the analytical methodology of decision making and performance testing of multi-criteria methods is presented in Figure 1.

2.1. Data Collection Methods
Data collection through observation and measurement of internet data usage during online learning, data is taken from the undergraduate program in informatics department Mulawarman University, East Kalimantan, Indonesia, where the population is all students who are currently carrying out online learning from home during the Covid-19. From the results of observations, a total sample of 350 students filled out the questionnaire. Questionnaire techniques are used to obtain data criteria; the number of courses, academic credits and the student's economic ability[3], while the measurement is used to find out how much internet data package usage in each meeting (duration 45 minutes).
2.2. Criteria and Attribute Set

Determination of the criteria for decision making originates from observation and measurement of data consumption, and the criteria data are obtained along with the weights of importance, including the benefit or cost attributes. The criteria and attributes are shown in Table 1.

Table 1. Criteria, weighting and attributes.

Criteria	Crisp	Weights	Attribute
C1: Internet Quota	Internet data usage (MB)	5→(0.333)	Benefit
C2: Academic Credit	14 to 24	4→(0.267)	Benefit
C3: Amount Course	5; 6; 7; 8; 9	3→(0.2)	Benefit
C4: Quota Purchase Ability	IDR 100.000 up to IDR 400.000	2→(0.133)	Cost
C5: Monthly Cost	IDR 500.000 up to IDR 2.000.000	1→(0.067)	Cost

The weighting importance method in Table 1 criteria used the Rank Sum (RS) ranking technique which refers to Mats D and L Ekenberg[4],[5] where the weights for the 5 criteria for each straight rank (rj) value are C1 =0.333, C2 =0.267, C3 =0.2, C4 = 0.133 and C5 =0.067.

2.3. Decision Analysis Methods

Moora method, for the analysis of work stages this method refers to W Brauers et al [6],[7] with a calculation analysis such as in the following equation:

\[
x_{ij} = \frac{x_{ij}}{\sqrt{\sum_{j=1}^{n} x_{ij}^2}}, \quad y_j^* = \sum_{i=1}^{g} x_{ij}^* - \sum_{i=g+1}^{n} x_{ij}^*,
\]

(1)

Vikor method, the analysis stage this method according to A Mardani et al[8], analysis calculation as in the following equation:

\[
Q_k = \nu \left[\frac{(s_k-s_{max})}{(s_{max}-s_{min})} \right] + (1 - \nu) \left[\frac{(r_k-r_{max})}{(r_{max}-r_{min})} \right]
\]

(2)

2.4. Performance Decision Analysis Methods

The confusion matrix represents the performance and actual conditions of the data for each preference methods. will test the method; accuracy, precision, and error rate. The calculation for each test following equation[9],[10] in table 2.

3. Results

The analysis results of the Moora method use equation (1) through several process; weighting calculation, normalized data and preferences. Briefly, the calculation results of the preference value of 350 alternatives along with their attributes (benefit-cost) and criteria are presented in Table 4 and Figure 2 and 3.
Furthermore, the preference value of each alternative is sorted from largest to smallest (descending), so that the result of the ranking of preference values is the alternative ranking order. The results of sorting preference values are presented in the Table 5.

Table 5. Ranking result of Moora analysis method

Alt.	Preference	Sorting	Alt.	Ranking
A1	0.0383		A136	0.0516
A2	0.0401		A37	0.0512
A3	0.0289		A124	0.0496
A4	0.0431		A75	0.0484
A5	0.0343		A110	0.0481
A6	0.0343		A67	0.0479
A346	0.0349		A54	0.0478
A347	0.0336		A114	0.0478
A348	0.0311		A42	0.0477
A349	0.0359		A41	0.0469
A350	0.0312		A142	0.0463

Figure 2. Alternative rank of the Moora method
Figure 3. Scatter of the Moora references

Figure 4. Alternative Rank of the Moora method
3.1. Result: Vikor analysis method

The analysis Vikor results method using equation (2) are presented in Table 6 and Figure 5 and 6.

![Figure 5. Alternative rank of the Vikor](image)

![Figure 6. Scatter of the Vikor references](image)

Table 6. Reference result of Vikor analysis methods

Alt.	Internet Quota	Academic Credit	Courses	Quota Ability	Monthly Cost	Q1	Q2	Q
A1	456.640	24	9	100000	700000	0.4245	0.4386	0.8631
A2	582.180	24	9	200000	800000	0.4296	0.4225	0.852
A3	530.510	24	9	400000	2000000	0.3766	0.3472	0.7237
A4								
A5								
A6								
A7								
A8								
A9								
A10								
A11								
A12								
A13								
A14								
A15								
A16								
A17								
A18								
A19								
A20								
A21								
A22								
A23								
A24								
A25								
A26								
A27								
A28								
A29								
A30								
A31								
A32								
A33								
A34								
A35								
A36								
A37								
A38								
A39								
A40								
A41								
A42								
A43								
A44								
A45								
A46								
A47								
A48								
A49								
A50								

Furthermore, the preference value of each alternative is sorted from largest to smallest (descending), so that the result of the ranking of preference values is the alternative ranking order. The results of sorting preference values are presented in the Table 7.

Table 7. Ranking result of Vikor analysis method

Alt.	Preference	Sort	Alt.	Ranking
A1	0.8631	1	A124	
A2	0.852	37	A37	0.9929
A3	0.7237	136	A136	0.9728
A4	0.9117	110	A110	0.967
A5	0.7505	42	A42	0.9648
A6		42		
A7				
A8				
A9				
A10				
A11				
A12				
A13				
A14				
A15				
A16				
A17				
A18				
A19				
A20				
A21				
A22				
A23				
A24				
A25				
A26				
A27				
A28				
A29				
A30				
A31				
A32				
A33				
A34				
A35				
A36				
A37				
A38				
A39				
A40				
A41				
A42				
A43				
A44				
A45				
A46				
A47				
A48				
A49				
A50				

![Figure 7. Alternative Rank of the Vikor method](image)
3.2. Performance analysis methods

Performance testing uses a confusion matrix that compares/matches the ranking results of the Moora and Vikor methods toward actual data shown in Table 8.

Alt.	Moora method	Vikor method				
	Accuracy	Precision	Error rate	Accuracy	Precision	Error rate
10	0.954	0.2857	0.040	0.951	0.2308	0.049
20	0.917	0.3548	0.083	0.906	0.2593	0.094
30	0.874	0.3478	0.126	0.863	0.2857	0.137

4. Discussion

From the research results that have been presented in the previous section, several important points were found i.e. 1). Both methods of decision-making analysis (Moora and Vikor) have their own preferred characteristics, where the accuracy, precision and error rate of the Moora method are better than the Vikor method (for the case of five criteria; 350 alts.). Another thing is that the weighting method also has an effect on the preference value, so it has a significant effect on performance results. 2). The performance results of the Moora and Vikor methods show a decrease in the level of accuracy, precision and error rate when the target beneficiary is increased, the more target beneficiaries, the lower the performance of the method. The importance of criteria in terms of how much weight is given to them in the decision-making process. In determining the decision-making method for the case of social assistance management according to the needs and targets, this affects the value of accuracy and performance accuracy. Free internet data assistance for students is a case study of how the performance of decision-making analysis methods is applied and the results of this study have provided interesting things in the future for further studies[11].

5. Conclusions

The importance of criteria in terms of how much weight is given to them in the decision-making process. In determining the decision-making method for the case of social assistance management according to the needs and targets, this affects the value of accuracy and performance accuracy. Free internet data assistance for students is an example of a case study on how the performance of decision-making methods is applied and the results of this study have provided interesting things in the future for further studies. This study offers a multi-criteria decision-making analysis approach using the Moora and Vikor methods. The research results of both methods produce the best alternative preference from a set of targeted alternatives. The results of this study still require better performance optimization through the development of criteria, weighting methods, data normalization and other decision-making methods, considering that this social assistance case study is very important because it is a concern for the welfare of the community[12].

References

[1] Peraturan Pemerintah Republik Indonesia 2020 Peraturan Pemerintah Nomor 21 Tahun 2020 tentang Pembatasan Sosial Berskala Besar Dalam Rangka Percepatan Penanganan Coronavirus Disease 2019
[2] Kemendikbud 2020 Peraturan Sekretaris Jenderal Nomor 14 Tahun 2020, tentang Petunjuk Teknis Bantuan Kuota Data Internet Tahun 2020 (Jakarta)
[3] Budiman E 2020 Mobile Data Usage on Online Learning during COVID-19 Pandemic in Higher Education International Journal of Interactive Mobile Technologies (iJIM) 14
[4] Danielson M and Ekenberg L 2017 Trade-offs for ordinal ranking methods in multi criteria
decisions Lecture Notes in Business Information Processing

[5] Budiman E 2020 Importance-weighted Ranking Methods for Preference the Covid-19 Pandemic Social Assistance International Journal of Engineering and Advanced Technology (IJEAT) 10 108–15

[6] Brauers W K M and Zavadskas E K 2012 Robustness of MULTIMOORA: A method for multi-objective optimization Informatica

[7] Pakpahan H S, Anandiya O, Hairah U and Wati M 2019 Decision support system for predicting increased data on objects of motor vehicle name transfer (BBNKB I) using trend moment method (Case study: Wheels 2 and wheels 4 in Samarinda) Journal of Physics: Conference Series

[8] Mardani A, Zavadskas E K, Govindan K, Senin A A and Jusoh A 2016 VIKOR technique: A systematic review of the state of the art literature on methodologies and applications Sustainability (Switzerland)

[9] Visa Sofia D 2011 Confusion Matrix-based Feature Selection Sofia Visa ConfusionMatrix-based Feature Selection Sofia

[10] Budiman E, Haviluddin, Dengan N, Kridalaksana A H, Wati M and Purnawansyah 2018 Performance of Decision Tree C4.5 Algorithm in Student Academic Evaluation Lecture Notes in Electrical Engineering (Springer Verlag.) pp 380–389

[11] Wati M, Novirasari N, Budiman E and Haeruddin 2018 Multi-Criteria Decision-Making for Evaluation of Student Academic Performance Based on Objective Weights 2018 Third International Conference on Informatics and Computing (ICIC) (Palembang: IEEE) pp 1–5

[12] Budiman E, Dengen N, Haviluddin and Indrawan W 2017 Integrated multi criteria decision making for a destitute problem 2017 3rd International Conference on Science in Information Technology (ICSITech) (Bandung: IEEE) pp 342–7