Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko

Hans Balsiger,1,* Kathrin Altwegg,1,2 Akiva Bar-Nun,3 Jean-Jacques Berthelier,4 Andre Bieler,1,5 Peter Bochsler,1 Christelle Bruois,6 Ursina Calmonte,1 Michael Combi,5 Johan De Keyser,5 Peter Eberhardt,17 Björn Fiethe,8 Stephen A. Fuselier,9 Sébastien Gasc,1 Tamás I. Gombosi,5 Kenneth C. Hansen,5 Myrtha Hässig,1,8 Annette Jäckel,1 Ernest Kopp,1 Axel Korth,10 Lena Le Roy,2 Urs Mall,10 Bernard Marty,11 Olivier Mousis,12 Tobias Owen,13 Henri Rème,14 Martin Rubin,1 Thierry Sémon,1 Chia-Yu Tzou,1 J. Hunter Waite,9 Peter Wurz1

Comets have been considered to be representative of icy planetesimals that may have contributed a significant fraction of the volatile inventory of the terrestrial planets. For example, comets must have brought some water to Earth. However, the magnitude of their contribution is still debated. We report the detection of argon and its relation to the water abundance in the Jupiter family comet 67P/Churyumov-Gerasimenko by in situ measurement of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) mass spectrometer aboard the Rosetta spacecraft. Despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope ^{36}Ar and by the $^{36}\text{Ar}/^{38}\text{Ar}$ ratio. Because of time variability and spatial heterogeneity of the coma, only a range of the relative abundance of argon to water can be given. Nevertheless, this range confirms that comets of the type 67P/Churyumov-Gerasimenko cannot be the major source of Earth's major volatiles.

The role of comets in the formation of the solar system has been the subject of numerous models and speculations. In particular, contributions to the volatiles of the inner planets, to Earth's water reservoir, and even to life have been advocated [for example, (1) and references therein]. In any case, comets are thought to be among the most primitive objects in the solar system, having kept at least partially the volatile constituents of the solar nebula. Of the two identified families, the Oort Cloud Comets (OCCs) and the Kuiper Belt (also known as Jupiter Family Comets or distant Kuiper Belt Objects) are the most remote from the Sun. The two families differ significantly in terms of age, composition, and evolution.

One of the prime goals of the Rosetta mission (2) to comet 67P/Churyumov-Gerasimenko (hereafter 67P/CG), a Jupiter family comet, is the in situ measurement of the volatile inventory of 67P/CG with high sensitivity and high mass resolution. This allows comparisons to remote sensing measurements and to the only previous in situ measurement of a comet, Halley, an OCC. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA (3)) includes two mass spectrometers for this purpose, RTOF (reflectron time of flight) and DFMS (double focusing mass spectrometer).

The determination of noble gases plays a key role in that volatile inventory. The abundance patterns and the isotope composition of the heavy noble gases, especially Xe, in the atmospheres of Earth and Mars do not fit the solar wind or the chondritic meteorites [for example, (1) and references therein]. To begin its study of noble gases, ROSINA detected argon in the coma of 67P/CG.

DFMS is a mass spectrometer that measures the neutral composition of the coma at the position of the spacecraft with unprecedented mass resolution. The DFMS capability to measure argon at 67P/CG has been demonstrated using the DFMS laboratory model and adapted to the expected signal at the comet (4). However, the measured spectrum (Fig. 1) shows other mass peaks near m/z (mass/charge ratio) = 36 ($m/z = 35.9670$, electron subtracted) that must be considered. ^{35}Cl ($m/z = 35.9761$) is present in the background because of spacecraft outgassing (5). The spacecraft background shown in Fig. 1 was measured on 2 August 2014, when Rosetta was at a heliocentric distance of 3.6 AU, almost 800 km from the nucleus and clearly before the cometary signal became apparent. In the mass spectrum near m/z 38, the only signal close enough to interfere with ^{38}Ar ($m/z = 37.9622$) was assumed to be ^{35}Cl ($m/z = 37.9732$). Its amount, evaluated from ^{35}Cl assuming a solar isotopic ratio for chlorine, was found to be small due to higher mass separation at $m/z = 38$ (see overlap in Fig. 1). Not foreseen by Hässig et al. (4) was the interference by C$_{32}$S$_{2}^{++}$ ($m/z = 37.9715$) on m/z 38. Together with ^{35}Cl, it led to corrections in the identification of the C$_{32}$S$_{2}^{++}$ ion at m/z 76. The cross section for electron-impact ionization for C$_{32}$S$_{2}^{++}$ is 3 to 6% of C$_{32}$S$_{2}^{+}$ (6), which agrees with our finding.

The argon data presented here were taken on 19, 20, 22, and 23 October 2014. Comet 67P/CG was at ~3.1 AU from the Sun, and the spacecraft was roughly 10 km away from the comet during this time period. To resolve the peaks at m/z 36 and the peaks at m/z 38 (Fig. 1), we used a fitting method corresponding to Hässig et al. (4). A possible interference from ^{36}S ($m/z = 35.9665$) is <2% based on the signal for ^{35}S. Because the signal for ^{39}Ar was close to the instrument background,
It was summed up over the full time period to reduce statistical uncertainties. The same method was applied to ^{36}Ar. Uncertainties of the measurements were estimated by error propagation and were due to the ion counting statistics, offset variation, and nonsynchronous measurements of the two isotopes (25%). The resulting average ratio $^{36}\text{Ar}/^{38}\text{Ar}$ was 5.4 ± 1.4 (Earth, 5.3; solar wind, 5.5). Hence, despite the very low intensity of the signal, argon is clearly identified by the exact determination of the mass of the isotope ^{36}Ar and by means of the $^{36}\text{Ar}/^{38}\text{Ar}$ isotopic ratio, which is compatible with solar system values.

To constrain a possible contribution of cometary argon to Earth’s atmosphere, the abundance of argon relative to water is important. ^{36}Ar and H_2O were measured during the abovementioned four periods in October 2014, with individual measurements covering 20 s (Fig. 2A). The spread of data, as given in Fig. 2A and Table 1, is due to temporal variability and spatial heterogeneity of the coma (7). Our values for $^{36}\text{Ar}/\text{H}_2\text{O}$, (0.1 to 2.3) × 10$^{-3}$ (molecular ratio), are compatible with (8), one to two orders of magnitude below their upper limits determined by remote sensing of three long-period comets.

Correlations with other molecules were also investigated. The good correlation between ^{36}Ar and N_2 (Fig. 2B) due to their very similar volatility is noteworthy. The relative abundance is $(9.1 \pm 0.3) \times 10^{-3}$ (molecular ratio). However, one has to be careful; carbon monoxide of similar volatility does not show such a strong correlation to molecular nitrogen and hence argon (9) as well. This indicates that other processes are involved, causing the observed temporal variability and spatial heterogeneity.

The argon we detected comes from inside the icy nucleus of the comet. The nature of that ice and how, when, and where it formed determined how it captured and released the gases we are measuring. The two simplest forms of ice are crystalline and amorphous. They form at different temperatures and pressures, capturing and releasing gases in different ways. Ar, N_2, CO, Kr, and Xe are particularly useful for distinguishing among these various possibilities; they lead us back to the manner of the comet’s origin. They also constrain possible cometary contributions to the inner planets. Thus, the detection of Ar is a major step forward in our investigation of the comet. Several models predict the inclusion of highly volatile gases into the icy grains that grew at low temperature in the protosolar nebula. The high abundance of argon as well as the good correlation with N_2 are both consistent with these ideas. For a discussion, we refer to Ruben et al. (9).

The high content of argon in comet 67P/CG, if typical of outer solar system bodies, has strong implications for the origin of volatile elements on Earth and the other terrestrial planets. The elevated deuterium/hydrogen (D/H) ratio of 67P/CG [three times the ocean value (10)] is not consistent with a comet like this supplying Earth’s oceans. However, the recent report of an ocean-like D/H value in the Jupiter family comet 103P/Hartley 2 (11) has revived the idea of a possible cometary contribution to Earth’s volatiles and suggested that, even within an established “family,” comets are isotopically heterogeneous. The present measurement offers an independent test for a possible link between a cometary reservoir and the terrestrial atmosphere and oceans, albeit in the same comet. The $^{36}\text{Ar}/\text{H}_2\text{O}$ ratio of Earth’s

Fig. 1. DFMS mass spectra in the m/z ranges of 36 and 38. The spectra demonstrate the clear identification of the two isotopes ^{36}Ar and ^{38}Ar and of the interfering molecules. The exact m/z locations are given in the text. The spacecraft background spectra were obtained before the cometary signal became apparent (2 August 2014, heliocentric distance of 3.6 AU, almost 800 km from the nucleus).
surface (hydrosphere plus atmosphere) is 6.5×10^{-8} \((12, 13) \), that is, more than one to two orders of magnitude lower than the range of values \([0.1 \text{ to } 2.3] \times 10^{-5} \) measured in 67P/CG gases. Thus, adding 67P/CG-like water to a dry Earth would result in several orders of magnitude more argon in the atmosphere than is observed. Unfortunately, there is no measurement of argon from comet 103P/Hartley 2. It is possible that atmospheric gases could have been lost preferentially relative to the ocean water during giant impacts characterizing the end of the terrestrial accretion \((14, 15) \) and/or irradiation of the early atmosphere from the young active sun \((16, 17) \). However, the efficiency of such a process is unlikely to have resulted in the loss of >99% Ar while essentially preserving liquid water on Earth’s surface.

Combining the D/H and \(36\text{Ar}/\text{H}_2\text{O} \) ratios measured in the coma of 67P/CG provides a means of quantification of a possible cometary contribution to Earth from a body with volatile content, such as 67P/CG \((17) \). Earth is represented by the surface inventory (hydrosphere plus atmosphere) and by bulk Earth (surface plus deep Earth) estimates \((17) \) and \((18) \), respectively. Clearly, an asteroidal component, represented by carbonaceous chondrites CI and CM in Fig. 3, makes a better potential contributor to terrestrial water [and other major volatiles such as C and N \((17) \)] than comets. Mixing curves between the two components allow the definition of potential cometary contributions, assuming no fractionation of the \(36\text{Ar}/\text{H}_2\text{O} \) ratio during delivery. Depending on the \(36\text{Ar}/\text{H}_2\text{O} \) values adopted for bulk Earth, a contribution of cometary argon to the atmosphere is possible, but a contribution of 67P/CG-like material to terrestrial water is negligible in all cases. If one considers bulk Earth composition as defined by Marty \((17) \) (lower limit of the \(36\text{Ar}/\text{H}_2\text{O} \) in Fig. 3), a bulk terrestrial \(36\text{Ar}/\text{H}_2\text{O} \) ratio close to chondritic leaves no room for significant contribution of 67P/CG-like material to the major volatiles on Earth.

Have comets left any traces of their undeniable impacts on the inner planets? Later in the mission, when the density in the coma has decreased to a level below the detection limit of the onboard instruments, Rosetta’s “southern descent” will bring it closer to the surface of 67P/CG. (To do this, Rosetta has to pass through a region of the plane of the solar system where its orbit is tilted by about 55°, a region known as the “Lagrange point.”) Rosetta will make its closest approach to the comet’s surface on November 13, 2014, at a distance of only 25 km, and on November 14, 2014, it will fly to within 13 km of the surface. This will be the closest that any spacecraft has come to a comet and is a unique opportunity to study a comet up close. The data gathered by Rosetta will be analyzed to determine the properties of the comet’s surface and to understand the processes that have shaped it. The mission’s goals include answering fundamental questions about the origin of the solar system and the formation of the planets and their moons, as well as the role that comets play in the evolution of the solar system and the origins of life on Earth.

Table 1. Argon isotopic ratio and relative abundances to H$_2$O and N$_2$. The isotopic ratio of the comet’s argon is in agreement with the solar system values.

| \(\frac{36\text{Ar}}{38\text{Ar}} \), \(36\text{Ar}/\text{H}_2\text{O} \), \(36\text{Ar}/\text{N}_2 \) | \(36\text{Ar}/38\text{Ar} \) | \(5.4 \pm 1.4 \) | \(36\text{Ar}/\text{H}_2\text{O} \) | \((0.1 \text{ to } 2.3) \times 10^{-5} \) | \(36\text{Ar}/\text{N}_2 \) | \((9.1 \pm 0.3) \times 10^{-3} \) |
|---|---|---|---|---|---|
| The ratio of argon to water is given as a range because of heterogeneity in the coma \((2A) \). \(36\text{Ar} \) and \(N_2 \) are closely correlated owing to their similar volatility; an average ratio of \((9.1 \pm 0.3) \times 10^{-3} \) has been determined for the investigated periods \((2B) \). |
increased, ROSINA will seek to add the abundances of krypton and xenon in 67P/CG to the argon we now know is present, as one more test of this possibility. In conclusion, the high argon content of Comet 67P/CG argues against a cometary origin for terrestrial water, as does the Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).

13. T. Owen, H. Rème, T. Séimon, C.-Y. Tzou, J. H. Waite, P. Wurz, Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348, 232–235 (2015).

14. K. Altwegg, H. Balsiger, A. Bar-Nun, J. J. Berthelier, A. Bieler, P. Bochsler, C. Briolü, U. Calmone, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T. I. Gombosi, K. C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoï, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Séimon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).

15. P. Hartogh, D. C. Lia, D. Bockele-Morvan, M. de Val-Borro, N. Biver, M. Küppers, M. Emprempheilinger, E. A. Bergin, J. Crovisier, M. Rengel, R. Moreno, S. Sztudtowicz, G. A. Blake, Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).

16. C. Lécuyer, P. Gillet, F. Robert, The hydrogen isotope composition of seawater and the glacial water cycle. Chem. Geol. 145, 249–261 (1998).

17. M. Ozima, F. A. Podeks, Noble Gas Geochemistry (Cambridge Univ. Press, Cambridge, 2001).

18. R. O. Pepin, Evolution of Earth’s noble gases: Consequences of assuming hydrodynamic loss driven by giant impact. Icarus 126, 148–156 (1997).

19. H. Genda, Y. Ahe, Enhanced atmospheric loss on proplanets at the great impact phase in the presence of oceans. Nature 433, 842–844 (2005).

20. R. O. Pepin, Atmospheres on the terrestrial planets: Clues to origin and evolution. Earth Planet. Sci. Lett. 252, 1–14 (2006).

21. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012).

22. A. N. Halliday, The origins of volatiles in the terrestrial planets. Geochim. Cosmochim. Acta 105, 146–171 (2013).

23. R. O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

24. E. Mazor, D. Heymann, E. Anders, Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).

25. D. D. Bogard, R. S. Clark, J. E. Keith, M. A. Reynolds, Noble gases and radionuclides in Lost City and other recently fallen meteorites. J. Geophys. Res. 76, 4076–4083 (1971).

26. J. F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985).

Acknowledgments: ROSINA would not give such outstanding results without the work of the many engineers and technicians involved in the mission, in the Rosetta spacecraft, and in the ROSINA instrument over the last 20 years, whose contributions are gratefully acknowledged. Rosetta is a European Space Agency (ESA) mission with contributions from its member states and NASA. We acknowledge herewith the work of the ESA Rosetta team. Funding: Work at the University of Bern was funded by the State of Bern, the Swiss National Science Foundation, and the ESA PRODEX (Programme de Développement d’Experiences scientifiques) Program. Work at Max-Planck-Institut für Sonnensystemforschung was funded by the Max Planck Society and Bundesministeriums für Wirtschaft und Energie under contract 50Q1302. Work at the Southwest Research Institute was supported by subcontract no. 1496541 and no. 1296001 from the Jet Propulsion Laboratory. Work at BIRA-IASB (Belgian Institute for Space Aeronomy) was supported by the Belgian Science Policy Program. Work at the University of Michigan was funded by NASA under contract JPL-1266313. Author contributions: H.B. wrote the manuscript with assistance by P.B., M.H., B.M., O.M., and T.O. K.A. manages the ROSINA project. A.B., U.C., S.G., M.H., A.J., E.K., L.L.R., M.R., T.S., C.-Y.T., and H. Waite, P. Wurz, Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 1, e1500377 (2015).

Balsiger et al. Sci. Adv. 2015;1:e1500377 25 September 2015 4 of 4
Detection of argon in the coma of comet 67P/Churyumov-Gerasimenko

Olivier Mousis, Tobias Owen, Henri Rème, Martin Rubin, Thierry Sémon, Chia-Yu Tzou, J. Hunter Waite and Peter Wurz

Sci Adv 1 (8), e1500377.
DOI: 10.1126/sciadv.1500377

ARTICLE TOOLS http://advances.sciencemag.org/content/1/8/e1500377

REFERENCES This article cites 21 articles, 3 of which you can access for free
http://advances.sciencemag.org/content/1/8/e1500377#BIBL

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.

Copyright © 2015, The Authors