Research: Care Delivery

Who gains clinical benefit from using insulin pump therapy? A qualitative study of the perceptions and views of health professionals involved in the Relative Effectiveness of Pumps over MDI and Structured Education (REPOSE) trial

J. Lawton1, J. Kirkham1, D. Rankin1, D. A. White2, J. Elliott3, A. Jaap4, W. H. Smithson5 and S. Heller6 on behalf of the REPOSE Group

1Centre for Population Health Sciences, University of Edinburgh, Edinburgh, 2Clinical Trials Research Unit, University of Sheffield, Sheffield, 3The Sheffield Diabetes and Endocrine Centre, Northern General Hospital, Sheffield, 4Department of Diabetes, Royal Infirmary of Edinburgh, Edinburgh, UK, 5Department of General Practice, University College Cork, Ireland and 6Unit of Diabetes, Endocrinology and Metabolism, University of Sheffield, Sheffield, UK

Accepted 29 July 2015

Abstract

Aims To explore health professionals’ views about insulin pump therapy [continuous subcutaneous insulin infusion (CSII)] and the types of individuals they thought would gain greatest clinical benefit from using this treatment.

Methods In-depth interviews with staff (n = 18) who delivered the Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE) trial. Data were analysed thematically.

Results Staff perceived insulin pumps as offering a better self-management tool to some individuals due to the drip feed of insulin, the ability to alter basal rates and other advanced features. However, staff also noted that, because of the diversity of features on offer, CSII is a more technically complex therapy to execute than multiple daily injections. For this reason, staff described how, alongside clinical criteria, they had tended to select individuals for CSII in routine clinical practice based on their perceptions about whether they possessed the personal and psychological attributes needed to make optimal use of pump technology. Staff also described how their assumptions about personal and psychological suitability had been challenged by working on the REPOSE trial and observing individuals make effective use of CSII who they would not have recommended for this type of therapy in routine clinical practice.

Conclusions Our findings add to those studies that highlight the difficulties of using patient characteristics and variables to predict clinical success using CSII. To promote equitable access to CSII, attitudinal barriers and prejudicial assumptions amongst staff about who is able to make effective use of CSII may need to be addressed.

Diabet. Med. 33, 243–251 (2016)

Introduction

Type 1 diabetes mellitus develops when the body’s insulin-producing cells have been destroyed; hence, lifelong treatment with insulin is essential. Insulin is normally administered by means of multiple daily injections (MDI). This regimen comprises quick-acting insulin injected before eating (with doses adjusted to carbohydrate content) and long-acting basal insulin (normally injected once/twice daily) to control blood glucose between meals. Although MDI can lead to improvements in glycaemic control [1–3], this therapeutic regimen cannot fully reproduce the physiological insulin profiles of individuals without diabetes due to limitations of insulin formulations and the site of insulin delivery. The inability of intermittent injection therapy to control blood glucose levels tightly without an attendant risk of hypoglycaemia may also result in individuals keeping their blood glucose at higher than clinically recommended levels [4]. Hence, insulin pumps [continuous subcutaneous insulin infusion (CSII)], which deliver insulin subcutaneously via a small plastic tube and cannula, are recommended in some cases. These devices infuse quick-acting insulin at a slow rate over 24 h, with patient-activated boluses given to cover the carbohydrate content of meals/snacks. The pump also allows...
basal rates to be adjusted on an hourly and daily basis to accommodate situations such as the dawn phenomenon, sickness, physical activity and shift working [5]. Advanced features, such as dual and extended wave boluses, can be used to minimize postprandial hypoglycaemia; for instance, after a fatty meal is consumed [4,5].

In the UK, the clinical and other benefits of CSII have been the subject of appraisals by the National Institute for Health and Care Excellence (NICE). The most recent appraisal recommended that CSII be extended to adults with Type 1 diabetes mellitus who are at risk of disabling hypoglycaemia when attempting to achieve target HbA1c levels with MDI, as well as to those whose HbA1c levels have remained high [69 mmol/mol (≤ 8.5%)] despite a high level of care [6]. To date, these relatively broad recommendations have not resulted in a wide uptake in the UK, where only 6% of people with Type 1 diabetes mellitus currently use CSII [5]. This figure is lower than in some other European countries [5] and America where around 40% of people with Type 1 diabetes mellitus use insulin pumps, albeit in America this figure may be partly explained by high usage among children and adolescents [5,7]. These global variations have raised questions about whether some policies and guidelines are depriving individuals from the benefits of CSII [8]. At the same time, and due to the high costs of CSII, there have also been calls to restrict referrals to individuals who demonstrate the motivation and competence needed to use the technology effectively [6].

To inform guidance on the use of CSII, and to complement clinical research, there has been a growing interest in exploring the perspectives of those who use insulin pumps. To date, this work has overwhelmingly focused on adults and adolescents [9-14], including those who chose to discontinue CSII therapy [15], as well as parents who care for a child on CSII [16-18]. By contrast, the perspectives of health professionals remain an underexplored area, despite the crucial role these individuals play in advocating new treatments, educating and starting patients on CSII and providing on-going clinical support.

To address this imbalance, we report findings from a qualitative evaluation of the Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE) trial. This trial was conducted to determine whether CSII provides added benefit compared with optimized MDI therapy after individuals with Type 1 diabetes mellitus have received high-quality structured education [19]. The trial also included a wider population than would normally be considered for CSII under current NICE guidelines [19]. Full trial details are provided elsewhere [19] and information relevant to this paper is summarized in Fig. 1. As part of the evaluation, we interviewed health professionals – diabetes specialist nurses and dietitians – who shared day-to-day responsibility for the trial, including recruitment, delivery of the structured and education, commencement of pump therapy and the collection of follow-up, clinical data for the trial. Key aims were to explore staff members’ perceptions of, and views about, the potential benefits (if any) of CSII over MDI; and which types of individuals they thought would gain the most clinical benefit from using a pump, and why. The objectives were to aid interpretation of trial outcomes (forthcoming) and inform guidance for, and debates about, who should be referred for CSII therapy.

Methods

Qualitative methods are recommended when little is known about the area of investigation because they allow findings to emerge from the data rather than testing predetermined hypotheses [20,21]. In this study, interviews, informed by topic guides, were used to enable the discussion to stay relevant to the study aims, while allowing participants to share their own understandings of the issues under investigation and to raise issues they perceived as salient, including those unforeseen at the study’s outset. The study entailed concurrent data collection and analysis in line with the principles of grounded theory research [22], enabling issues identified in the early interviews to inform areas explored in later ones.

Recruitment

Staff were recruited from seven of the eight REPOSE centres via written invitations accompanied by opt-in forms; the eighth site was not included as it was brought on board at the end of the trial and only recruited a small number of trial participants. All the staff approached agreed to take part. Recruitment and data collection continued until data saturation occurred; that is, until no new findings or themes were identified in an analysis of new data collected. Three
additional interviews were undertaken after data saturation was first observed to ensure it had occurred.

Data collection and analysis

Interviews were conducted between December 2012 and April 2013 by which time staff had gained experience in recruiting participants, delivering structured education courses and following up participants as part of the trial. The interviews were informed by a topic guide developed in light of literature reviews and revised in light of emergent findings (see above). Topics relevant to this paper are outlined in Fig. 2. All staff chose to be interviewed at their workplace. Interviews averaged an hour, were digitally recorded (with consent) and transcribed in full.

Data were analysed thematically by JL, JK and DR who are experienced qualitative researchers, using the method of constant comparison [23]. After data collection had concluded, each team member performed their own independent analyses, reading each participant’s interview in full and repeatedly before cross-comparing all interviews to identify common issues and experiences. Team members wrote separate reports before meeting during and after data collection to discuss and reach agreement on key themes and develop a coding frame. The qualitative analysis software package NVivo9 (QSR International, Doncaster, Australia) was used to facilitate data coding and retrieval. Coded datasets were subjected to further, in-depth analyses to identify sub-themes and illustrative quotations.

The trial, including the interview study, was granted NHS ethics approval by the North-West Research Ethics Committee (Liverpool East), approval number 11/H1002/10. To protect participants’ identities, identifiers are used below, with N referring to a diabetes specialist nurse and D to a dietitian.

Results

The final sample comprised 12 diabetes specialist nurses and six dietitians who had been working in diabetes care for 5–29 years and who comprised 72% (18/25) of the educators who worked in the seven main trial sites. Although some staff had considerable experience of working with insulin pumps, others did not and the latter received pump training prior to the trial commencing. All staff were trained educators who delivered the Dose Adjustment for Normal Eating (DAFNE) programme (see Table 1 for full details about the sample). Irrespective of their prior experiences of using insulin pumps, and their training and work role, all staff provided similar accounts of what they considered the potential benefits of CSII over MDI to be, together with the types of individuals they thought would gain greatest clinical benefit from CSII. All staff, likewise, described how their opinions about individuals’ suitability for CSII had been challenged and revised in light of working on the REPOSE trial and exposure to individuals using CSII who they would not have recommended for this therapy in routine clinical practice. Below, we explore these key findings in more detail before considering their implications.

Perceived clinical benefits of insulin pump over MDI and pre-trial notions of pump candidacy

All staff emphasized that a MDI regimen, taught in conjunction with a DAFNE or similar educational approach, offered a very good toolkit for diabetes self-management and
that most patients using MDI effectively neither needed nor would achieve additional clinical benefit from CSII:

I think we can maximize most people on DAFNE and it’s wonderful, we really are DAFNE advocates and we’ve had a lot of improvements and reductions in hypos (D4).

Hence, staff described how, in routine clinical practice, they would not usually refer people for CSII therapy until they had been given opportunity and support to optimize their glycaemic control using MDI:

...there are some people [using MDI] who probably still haven’t really optimized their control because they’re not really putting everything into practice. So they might have slipped a bit with their monitoring or keeping a diary and really reflecting on what their blood sugars are doing and making adjustments. And a lot of people just need some extra reminders and support with doing that rather than a pump. (N10)

Clinical candidacy

In their accounts, staff also suggested that, by virtue of the constant drip feed of insulin, the ability to adjust and manipulate basal rates and other advanced features on offer, pumps could potentially help some individuals achieve better and more fine-tuned control than would be possible using MDI:

...clearly some of those delivery features have to be more physiologically like, I mean it’s never going to be a pancreas, but some of those ways it can deliver insulin have the potential, for some people, to be very beneficial. (N5)

Specifically, all staff highlighted the potential clinical benefits of CSII to individuals ‘whose background insulin cannot meet their changing insulin needs, particularly for the dawn phenomenon’ (N9), those who ‘have severe hypos during the night and they’re on one unit of Levemir twice a day and you’re really not going to make too much difference with that’ (D6), and ‘people who are extremely insulin sensitive, you know, even a half unit adjustment will make the difference between being profoundly hypo or really high’ (N2). Relatedly, most staff also pointed to potential benefits for those ‘with really unpredictable lifestyles where things are constantly changing at the drop of a hat’ (N11) and ‘sporty patients, long distance cyclists, hill climbers … they love the temporary basal feature because these guys are either eating constantly to stop having hypos, which is making them feel rotten, or they are just having so many hypos that they are feeling rotten.’ (N1)

However, staff also emphasized that, to gain clinical benefit from a pump, people had to be able to use its features, otherwise, as D4 observed, ‘they will only use the pump as another method of injecting, so they’ll be just the same as the
ordinary MDI patients’ (D4). Hence, staff emphasized the importance of education, with some citing examples where, in routine clinical practice, they had encountered individuals who had:

... got a pump, and often they started abroad or in another centre and never received any training, and actually their control isn’t good ... they’ve been sitting with one or two basals and they’ve made hardly any changes to those. (D2)

Staff also suggested that, due to the variety of features on offer, such as those that allowed basal rates to be varied during the day, optimal use of CSII required more skill and effort than MDI:

It’s a lot harder to use a pump and, although they’ve got the potential to make those really fine adjustments to basal rates, in practice, whether people are able to do [so] is another matter. (N7)

Hence, staff, including N7 above, described having questioned whether some individuals had the aptitude and ability to make full and effective use of pump technology.

Personal/psychological candidacy

For the above reasons, staff reflected on how, alongside clinical criteria, they had tended to employ tacit and informal criteria when selecting individuals for CSII in routine clinical practice. This second set of criteria, as staff went on to describe, cohered around their perceptions about whether particular individuals had the right personal and psychological attributes to use a pump effectively. Specifically, staff indicated how they had not generally recommended CSII to those who they described as ‘troublesome and heart sink patients’ (D1), even when such individuals had met the clinical criteria. This included those who ‘have always had poor control, poor compliance, you know, had some education around how to adjust their insulin, but have never achieved anything’ (D1), and individuals who disliked putting effort into their diabetes management and, hence, who might expect a pump ‘to do all of the work’ (N8). Staff also described having perceived people as poor candidates for a pump if they belonged to the ‘older generation’ (D2) and/or were ‘not technical’ (D3). Conversely, patients were seen as good candidates if, alongside demonstrating a clinical need, they were ‘more technically able, possibly that means younger’ (N8); and ‘more intelligent, you know, sort of educationally able to take on board all of the information needed to use the pump properly’ (D3).

Lessons learned from taking part in the trial: revising pre-trial preconceptions

During the trial, participant allocation to CSII was determined by a randomization process rather than being informed by staff’s own judgements about an individual’s personal and psychological suitability. As a consequence, as various staff members noted, they were exposed to people using CSII during the trial whom they would not have put forward for this type of therapy in routine clinical practice:

What I’ve also noticed, and this is a new thing for me, is that I’ve had patients that I thought previously I would never give a chance on a pump but, because the way the trial’s worked, we’ve given that person a chance. (N1)

As N1 and others went on to describe, their participation in the trial, which had presented opportunities to observe participants engage with their pumps during the structured education courses and when they attended follow-up sessions, had forced them to take their ‘blinkers off’ (N1) and ‘open our minds a bit more’ as D1 put it. As N2 elaborated, this was by virtue of witnessing individuals ‘doing really, really well on pump therapy who we would have predicted would have really struggled, you know, “oh my god, no way!”’ (N2). This included some elderly participants, as well as other individuals who staff had initially assumed would have struggled to assimilate and execute information relating to the use of the pump’s features:

I have a lady, she’s 72, she came and her first comment to me bless her was, you know, ‘I can’t text. Can’t text.’ And she’s doing really well . . . So I I’ve stopped having preconceptions about who it will suit. (N8)

Some of them, we were worried that they didn’t have the capability to use the equipment to be honest, and they were worried as well. But I’ve found that when you actually sit down and show them it, work your way through it, actually they become more efficient. So in a way I don’t think there’s anyone who couldn’t do well on a pump. (D4)

Relatedly, staff also described how working on the trial had forced them to question the criteria they had used to predict potential success, by virtue of observing some individuals who were highly educated or technologically savvy using their pump less effectively than others whom they had expected to struggle:

Some of the ones who you are, you think are very good with the mechanics of the pump and everything, you think ‘oh they will pick it up very quick’, but, actually, it’s too quick, they go off and do all their own thing, whereas the ones who I’m thinking ‘ooh, I don’t know if they’d manage the pump’ you know, that kind of way, in actual fact are perfect, because they do it by the book. (D4)

As a consequence, staff described how they had revised their views about who should be referred for CSII in routine clinical practice:
I’ve stopped having pre-conceptions about who it suits. They just have to be engaged and motivated … and we’d only know if we ask them, in terms of how much maybe their diabetes is debilitating them or affecting their daily routine to whether they really felt they needed something different to manage it. (N8)

In some cases, as N8’s comment highlights, staff suggested that they now saw motivation as being a key criterion for success on CSII and, hence, that motivational issues should be explored with individuals to help determine whether they should be referred for pump therapy. However, other staff noted observing individuals during the trial who had initially been unmotivated and uninterested in their diabetes, and for whom transitioning to CSII had acted as a tipping point for increased engagement with disease self-management:

… like this girl, we probably would have never given her a chance to go on a pump, I don’t think anybody would ever have suggested that she went on a pump … She really was struggling, went through a phase of not caring about her diabetes, always put herself down, you know, she was thick, she couldn’t do anything. But actually she can and she’s done really well [on a pump]. She could see the flexibility really worked for her and actually was able to get better control… Really boosted her, really boosted her more and it gave her confidence to think ‘oh I can do this.’ (D1)

… there’s that sort of psychosocial aspect of the pump where they really get more motivated with having this tool that can give them more flexibility. (N1)

In light of their experiences, these staff concluded that insulin pumps should be made available to all patients who met clinical criteria, because, as N7 summed up:

… you simply can’t predict … like I say you get a feel for something and you think ‘oh they’ll be fine’ and then they surprise you. And it works both ways … so [how] are we ever going to know unless we give them all a chance? (N7)

Discussion

This is the first study to explore, in-depth, health professionals’ perceptions of, and views about, the types of individuals who would be most likely to gain clinical benefit from using an insulin pump. Staff described the pump as having the potential to provide some individuals with a better self-management tool than MDI, principally those meeting clinical criteria [6]. However, it was also noted that, due to the diversity of features on offer, CSII is a more complex regimen to execute than MDI. For this reason, staff emphasized the importance of providing comprehensive education and skills training to help ensure that individuals use the technology to optimal effect. They also described how, alongside following clinical criteria, they had tended to use a second, more informal set of criteria when recommending or referring particular individuals for CSII therapy in their routine clinical practice. This second set of criteria cohered around staff members’ assumptions about whether particular individuals possessed the personal, psychological and technological attributes needed to assimilate pump education and training and apply this to make optimal use of the technology. Staff also described how their preconceptions and assumptions had been challenged as a result of working on the REPOSE trial where a randomization process, rather than their own judgement, had determined who received CSII therapy, and observing individuals using insulin pumps in ways which they had not anticipated and predicted.

The difficulties staff encountered predicting which individuals would make active and effective use of CSII during the trial find resonance in research undertaken directly with pump users. This includes an interview study by Garmo et al. [9] in which the authors highlighted the challenges of using individuals’ own attitudes towards, and experiences of using, insulin pumps to determine which of their study participants (insulin pump users for ≥ 5 years) had been able to achieve optimal glycaemic control. Ritholtz et al., who also conducted qualitative research with veteran pump users, did find that individuals who had an active approach to their diabetes self-management tended to have better glycaemic control than those with a more passive approach [14]. However, Ritholtz et al., were unable to explain why some individuals had an ‘active’ and others a ‘passive’ approach [14]. Hence, these authors recommended that quantitative research be undertaken with people using CSII to identify and understand factors associated with active engagement [14]. To date, only a limited number of quantitative studies have been conducted which have sought to explore factors influencing clinical outcomes using CSII, and these have shown both psychological and other variables to have limited predictive value [24,25]. Similar issues and challenges have also been reported in work undertaken with people who use MDI. This includes a longitudinal questionnaire study conducted with people with Type 1 diabetes mellitus who attended DAFNE courses in the UK and which found that baseline demographic and psychosocial variables had minimal value in explaining improvements in HbA1c at 6- and 12-month follow-up [26].

There is growing impetus in diabetes care to identify predictors of clinical success; that is, the characteristics of individuals who, if given access to CSII (or another regimen), would be most likely to use it to optimal clinical effect [6]. While this type of agenda is being promoted to help ensure individuals are matched to the most appropriate treatments [25], it is also being done because CSII is a much more expensive option than MDI [6,27]. Hence, it has been recommended that CSII should only be made available to
those individuals who demonstrate a motivation and ability to make full use of the technology [6]. However, a key point arising from this study, particularly when the findings are set alongside those of the studies described above [9,14,24,26], is that identifying patient characteristics that can be used to predict clinical success using an insulin pump is not an easy or straightforward task. Although only preliminary conclusions can be drawn from staff members’ own accounts, such a task might be further complicated by the possibility that, in some cases at least, the pump might itself create the tipping point for an increased engagement in diabetes self-management [5].

Alongside cost considerations, various commentators have raised concerns that, despite the existence of clinical guidelines to help ensure equitable access to CSII, barriers to access continue to exist [7,8,28]. In the UK, it has been noted that fewer than half the individuals with Type 1 diabetes mellitus who meet clinical criteria are currently accessing CSII, although this could be partly due to some individuals not wanting to use an insulin pump [5]. To help explain poor and inequitable access to CSII the existence of a ‘postcode lottery’ has been highlighted [29]. In particular, it has been argued that organizational and resource-related barriers, such as lack of funding for the pump/consumables, lack of availability of experienced teams to offer clinical support and the absence of clear referral pathways are leading to differential access to CSII therapy [5,7,28]. Hence, calls have been made for these barriers to be addressed through increased funding and staff provisioning [28]. What our findings suggest is that, alongside these structural/financial barriers, attitudinal barriers among staff may also exist and may further inhibit some individuals from accessing CSII. Hence, to promote equitable access, we would recommend that attitudinal barriers may need to be explored with staff involved in pump referrals, including any stereotypical assumptions they may have about the types of people who would be most likely to use an insulin pump effectively.

A key study strength is the use of a qualitative design, which enabled identification of issues that were not anticipated at the study’s outset, such as health professionals’ use of formal (clinical) and informal (personal/psychological) criteria when recommending individuals for CSII. However, to avoid potential problems with recall bias, the study would have been strengthened through use of pre- as well as post-trial interviews. The study benefitted from being incorporated within the REPOSE trial because this resulted in staff being exposed to individuals using insulin pumps who they would not have recommended for CSII in routine clinical practice. However, the study’s integration within the REPOSE trial also meant that staff exposure was to individuals who were willing to take part in a trial and be randomized and who had no (stated) preference for a pump over MDI; hence these individuals may have comprised unrepresentative patient groups. This study was only able to draw upon the perspectives of dietitians and diabetes specialist nurses. Hence, future research could be conducted with other health professionals involved in pump referrals, such as general practitioners and diabetes consultants. Given the large global variations in pump usage [5,7,8], future work undertaken with staff in different countries is also recommended. This could include comparison between countries with particularly high and low use of insulin pumps.

Funding sources

This project was funded by the National Institute for Health Research Health Technology Assessment (HTA) programme (project number 08/107/01).

Competing interests

None declared.

Acknowledgements

The authors would like to thank the staff who kindly took part in this study. This project was funded by the National Institute for Health Research Health Technology Assessment (HTA) programme (project number 08/107/01). The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the HTA, the National Institute for Health Research, the NHS or the Department of Health.

The REPOSE group comprises

Clinical sites

Sheffield Teaching Hospitals NHS Foundation Trust
Jackie Elliott, Carla Gianfrancesco, Valerie Gordon, Linda Greaves, Simon Heller (Chief Investigator), Susan Hudson, Valerie Naylor, Chloé Nisbet, Carolin Taylor, Karen Towe

Cambridge University Hospitals NHS Foundation Trust
Jane Baillie, Helen Brown, Karen Callaby, Katy Davenport, Sarah Donald, Mark Evans (Principal Investigator), Leila Faghabati, Sara Hartnell, Allison Housden, Kalbir Kaur Pabla, Candice Ward, Nicola Croxon

NHS Dumfries and Galloway
Fiona Green (Principal Investigator), Sheena Macdonald, Muna Mohammed, Vicky Steel, Katy Valentine, Pamela Young

NHS Greater Glasgow and Clyde
Ann Boal, Patsy Clerkin, Lynn Doran, Joanne Flynn, Emma Gibb, Brian Kennon (Co-Principal Investigator), Robert Lindsay (Co-Principal Investigator), Hilary Peddie, Bernie Quinn, Janice Shepherd
Harrogate and District NHS Foundation Trust
Janet Carling, Ann Collins, Laura Diming, Peter Hammond (Principal Investigator), Christine Hare, Joyce Lodge, Sutapa Ray, Debra Brown, Jenny Farmer

King’s College Hospital NHS Foundation Trust
Stephanie Aniel (Principal Investigator), Anita Beckwith, Alison Cox, Chris Cheyette, Pratik Choudhary, Linda East, June Ellul, Katharine Hunt, Helen Rogers, Kimberley Shaw, Ben Stothard, Lucy Diamond

NHS Lothian
Lindsay Aniello, Debbie Anderson, Kathy Cockerell, Alan Jaap (Principal Investigator), Vida Heaney, Alisson Hutchison, Nicola Zammit

Nottingham University Hospitals NHS Trust
Gayna Babington, Gail Bird, Janet Evans, Tasso Gazis, Nicola Maude, Peter Mansell (Principal Investigator), Karen Nunnick, Dawn Spick, Laura Fenn

Additional research team

University of Edinburgh
Jackie Kirkham, Julia Lawton, David Rankin

University of Sheffield
Hasan Basarir, Mike Bradburn, Alan Brennan, Michael Campbell, Lucy Carr, Tim Chater, Cindy Cooper, Munya Dimairo, Simon Dixon, Gemma Hackney, Ellen Lee, Diana Papaioannou, Kirsty Pemberton, Daniel Pollard, Praveen Thokala, Emma Whatley, David White

University of Southampton
Katharine Barnard

University of Warwick
Pamela Royle, Norman Waugh

University College, Cork
Henry Smithson

DAFNE programme
Gill Thompson, Sharon Walker, Pauline Cowling

References
1 DAFNE Study Group. Training in flexible, intensive insulin management to enable dietary freedom in people with type 1 diabetes: dose adjustment for normal eating (DAFNE) randomised controlled trial. BMJ 2002; 325: 746.
2 Mühlhauser I, Bruckner I, Berger M, Cheta D, Jörgens V, Ionescu-Tirgoviste C et al. Evaluation of an intensified insulin treatment and teaching programme as routine management of type 1 (insulin-dependent) diabetes. Diabetologia 1987; 30: 681–690.
3 Cooke D, Bond R, Lawton J, Rankin D, Heller S, Clark M et al. Structured Type 1 diabetes education delivered within routine care: impact on glycaemic control and diabetes-specific quality of life. Diabetes Care 2013; 36: 270–272.
4 Pickup JC. Insulin-pump therapy for type 1 diabetes mellitus. N Engl J Med 2012; 366: 1616–1624.
5 Wilmot EG, Choudhary P, Grant P, Hammond P. Insulin pump therapy: a practical guide to optimising glycaemic control. Pract Diabetes 2014; 31: 121–125A.
6 National Institute for Health and Care Excellence. Continuous subcutaneous insulin infusion for the treatment of diabetes mellitus. NICE technology appraisal guidance 151. July 2008, updated December 2014.
7 Pickup J. Insulin pumps. Int J Clin Pract (Suppl) 2011; 65: 16–19.
8 Pickup JC. Point: Are insulin pumps underutilized in type 1 diabetes? Yes. Diabetes Care 2006; 29: 1449–1452.
9 Garmo A, Hörnsten A, Leksell J. ‘The pump was a saviour for me.’ Patients’ experiences of insulin pump therapy. Diabet Med 2013; 30: 717–723.
10 Barnard KD, Skinner TC. Qualitative study into quality of life issues surrounding insulin pump use in type 1 diabetes. Pract Diabetes Int 2007; 24: 143–148.
11 Barnard K, Speight J, Skinner T. Quality of life and impact of continuous subcutaneous insulin infusion for children and their parents. Pract Diabetes Int 2008; 25: 278–283.
12 Todres L, Keen S, Kerr D. Continuous subcutaneous insulin infusion in Type 1 diabetes: patient experiences of ‘living with a machine’. Diabet Med 2010; 27: 1201–1204.
13 Low KG, Massa L, Lehman D, Olshans JS. Insulin pump use in young adolescents with type 1 diabetes: a descriptive study. Pediatr Diabetes 2005; 6: 22–31.
14 Ritholz MD, Smaldone A, Lee J, Castillo A, Wolpert H, Weinger K. Perceptions of psychosocial factors and the insulin pump. Diabetes Care 2007; 30: 549–554.
15 Hayes M, Fearson S, Keller C, Cartmale A, Lewis-Hayes S. A hermeneutic phenomenological study of why adults with type 1 diabetes choose to discontinue CSII. Eur Diabetes Nurs 2011; 8: 12–16.
16 Forsner M, Berggren J, Masaba J, Ekbladh A, Olinder AL. Parents’ experiences of caring for a child younger than two years of age treated with continuous subcutaneous insulin infusion. Eur Diabetes Nurs 2014; 11: 7–12.
17 Sullivan-Bolyai S, Knaff K, Tamborlane W, Grey M. Parents’ reflections on managing their children’s diabetes with insulin pumps. J Nurs Scholar 2004; 36: 316–323.
18 Rankin D, Harden J, Noyes K, Waugh N, Barnard K, Lawton J. Parents’ experiences of managing their child’s diabetes using an insulin pump: a qualitative study. Diabet Med 2015; 32: 627–634.
19 White D, Waugh N, Elliott J, Lawton J, Barnard K, Campbell MJ et al. The Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE): study protocol for a cluster randomised controlled trial. BMJ Open 2014; 4: e006204.
20 Britton N, Jones B, Murphy E, Stacy R. Qualitative research methods in general practice and primary care. Fam Pract 1995; 12: 104–114.
21 Pope C, Mays N. Reaching the parts other methods cannot reach: an introduction to qualitative methods in health and health services research. BMJ 1995; 311: 42.
22 Glaser B, Strauss A. The Discovery Grounded Theory: strategies for qualitative inquiry. Chicago: Aldin, 1967.
23 Strauss A, Corbin JM. Basics of Qualitative Research: Grounded theory procedures and techniques. Thousand Oaks, CA: Sage, 1990.

24 Aberle I, Scholz U, Bach-Kliegel B, Fischer C, Gorny M, Langer K et al. Psychological aspects in continuous subcutaneous insulin infusion: a retrospective study. J Psychol 2009; 143: 147–160.

25 Shalitin S, Gil M, Nimri R, De Vries L, Gavan M, Phillip M. Predictors of glycaemic control in patients with Type 1 diabetes commencing continuous subcutaneous insulin infusion therapy. Diabet Med 2010; 27: 339–347.

26 Heller S, Lawton J, Amiel S, Cooke D, Mansell P, Brennan A et al. Improving management of type 1 diabetes in the UK: the Dose Adjustment For Normal Eating (DAFNE) programme as a research test-bed. A mixed-method analysis of the barriers to and facilitators of successful diabetes self-management, a health economic analysis, a cluster randomised controlled trial of different models of delivery of an educational intervention and the potential of insulin pumps and additional educator input to improve outcomes. Programme Grants Appl Res 2014; 2.

27 Cummins E, Royle P, Snaith A, Greene A, Robertson L, McIntyre I et al. Clinical effectiveness and cost-effectiveness of continuous subcutaneous insulin infusion for diabetes: systematic review and economic evaluation. Health Technol Assess 2010; 14: 1–208.

28 Diabetes UK. Insulin Pump Therapy. Also known as continuous subcutaneous insulin infusion (CSII). Position Statement September 2011. 2011. Available at http://www.diabetes.org.uk/About_us/What-we-say/Medication-medical-devices-monitoring/Insulin-pump-therapy/ Last accessed 1 March 2015.

29 Diabetes UK. The United Kingdom Insulin Pump Audit 2013 - Service Level Data. Available at http://www.diabetes.org.uk/Documents/News/The_United_Kingdom_Insulin_Pump_Audit_May_2013.pdf Last accessed 1 March 2015.