Teleoperated Visual Inspection and Surveillance with Unmanned Ground and Aerial Vehicles

Sebastian Blumenthal1, Dirk Holz1, Thorsten Linder1, Peter Molitor2, \textit{Hartmut Surmann}2 and Viatcheslav Tretyakov1
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
- Vision System
 - Human visual attention
- Quadrotor
- Conclusion
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
- Vision System
 - Human visual attention
- Quadrotor
- Conclusion
Research Questions

Finding a principle approach to building up and maintaining situation awareness including attention
(Spatio-temporal models, observation models)

Mobile Robots
- Computer Vision
- 6DoF (P)SLAM
- Robot Cognition
-
Applications benefiting from the research questions

- USAR (Urban Search and Rescue)
- Education
- Service Robots
- Entertainment
- Production
- …
Google street view
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
- Vision System
 - Human visual attention
- Quadrotor
- Conclusion
Plattform (VolksBot® RT, ground vehicle)

- VolksBot is a robust construction-kit
- Scalable variants by use of common components (hardware and software)
- High payload (40kg)
- Extendable
- Several variants e.g. with a fuel cell or under water
- 2x150 W motors, VMC, 2 x MacMinis (2GHz)
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
 - Vision System
 - Human visual attention
 - Quadroto
 - Conclusion
Tele-operated Robot Control (OCU)

- general purpose computer
- Always available
- High social acceptance and limited teaching
- Man pack able, light weight, small
- long runtime / operation time
- robust and substitutable

New: Configuration / and or control client loaded directly from the robot (Business Card)
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
- **Vision System**
 - Human visual attention
- Quadrotor
- Conclusion
Vision system, add on Sensors

- OmniVision, SphereCam
 - firewire: 1300x1000
 - 11xUSB 2.0: 1600x1200

- 3D laser scanner

- Control computer (MacMini)

- Motor Controller

- Docking Station

- Bumper, IR, Ultrasonic
Vision System

Alternative (real-time questionable):
- Sift
- Surf
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
- Vision System
 - Human visual attention
- Quadrotertor
- Conclusion
Simulation of human visual attention

Computermodell:

Research:

[Koch, Ullman: Human Neurobiology 1985]
[Tsotsos: Early Vision and Beyond, 1995]
[Itti, Koch, Niebur: PAMI 1998]
[Backer, Mertsching: PAMI 2001]
[Sun, Fisher: AI 2003]
[Navalpakkam, Rebesco, Itti: Vision Research 2005]
[Hamker: CVIU 2005]
Example: Vocus (Visual Object detection with a Computational attention System)

VOCUS
(New: separate Feature Maps, real-time implementation)

NVT combined Feature Maps)

Details in: Frintrop, Nüchter, Surmann: „Visual Attention for Object Recognition in Spatial 3D data“, in WAPCV' 04

Fraunhofer Institut Intelligente Analyse- und Informationssysteme
Outline

- Motivation
- Plattform
- Teleoperated Robot Control
- Vision System
 - Human visual attention
- Quadrotor
- Conclusion
Mikrokopter (Aerial Vehicle)

VTOL construction kit: Size: 650x650x220mm
Weight: 590g
Architecture of the Quadrotor

- 20MHz Atmel
- Payload 350g
- op.time 20 min.
- 2100 mAh battery
- WiFi, bluetooth radio link
- I²C bus
Saliency based Visual Attention for Tracking Unmaned Aerial Vehicles

D. Holz, S. May, H. Surmann, T. Linder, S. Blumenthal, P. Molitor and V. Tretyakov

© 2008

Most attentive object is marked with a red square.
Conclusion

- Ground Vehicle (VolksBot)
- Aerial Vehicle (Mikrokopter)
- Teleoperation
- Vision system (Vocus)
- Quadroter
www.volksbot.de

Thank you for your attention!

Fraunhofer IAIS
Institut Intelligente Analyse- und Informationssysteme
Simulation of visual attention

VOCUS: Bottom-up Mode

Saliency map

Find max

Focus of Attention

Compute next focus

Input image

Intensity Color Orientation

Saliency based Visual Attention for Tracking Unmanned Aerial Vehicles

D. Holz, S. May, H. Surmann, T. Linder, S. Blumenthal, P. Molitor and V. Tretyakov

Extended the work from om Itti et al:

Itti, Koch, Niebur: „A model of saliency-based visual attention for rapid scene analysis“, in PAMI ’98

Fraunhofer Institut Intelligente Analyse- und Informationssysteme
Top-down Attention

Goal object is marked with a red square.

Bottom-up saliency map

Most salient region in rectangle

Weights

Training image

Intensity Color Orientation

Int on-off: 0.0
Int off-on: 6.9

Ori 0°: 1.9
Ori 45°: 2.9
Ori 90°: 2.6
Ori 135°: 3.3

Col green: 0.6
Col blue: 8.0
Col red: 1.8
Col yellow: 0.1
Simulation of visual attention

Top down search

- **Compute next region**
- **Find max**
- **Global Saliency map S**

- **Excitation map E**
- **Inhibition map I**

- **Uniqueness weight w**

- **Intensity**
- **Color**
- **Orientation**

- **Bottom-up saliency map**
- **Top-down saliency map**

- **E: if ($w_i > 1$): Map * w_i**
- **I: if ($w_i < 1$): Map * ($1/w_i$)**

- **Focus of Attention**

- **Weights**

- **Test image**

- **Fraunhofer**
Simulation visueller Aufmerksamkeit

Bottom-up Mode

Top-down Mode:
Suche Schlüsselanhänger
Multisensorielle und multimodale Objekterkennung

- **Redundanz** durch Verwendung von 2D- und 3D-Daten: Kamerabild, Remissionsbild oder Tiefenbild
- **Komplementarität** durch Ausnutzung von Sensormodalitäten
- **Sehr schnelle** (20 ms) **Erkennung** mit adaptiertem Viola-Jones-Klassifikator (auch andere Klassifikatoren möglich, z.B. SIFT)
Docking station

• Infinit operation time

• Navigation based on leading light (2 LEDs and a camera)
More Sensors

- **Mini-3D-Scanner (Hokuyo) (CSEM)**
- **3D-Kamera Swiss Ranger**

- **Infrared camera (FLIR)**

Institute for the Analysis and Decision Support Systems (IAIS)
A module library for mobile robotics

- CAN Module
- ODE Simulator Module
- Generic Joystick Module
- Matlab Module
- Color-Vision Modules
- OpenCV Modules
- Tracking Modules
- DD-Behavior Modules
- CORBA Server Module
- Neuro-Controller Module
- RoboCup MSL Modules
- …
ProfiBot-Basismodell
ProfiBot-Module
Application of 3D sensor systems

- Environment recognition and Obstacle avoidance
- Mapping (2D, 3D)
- Surveying
- Object detection

Outlook:
- Recognition of Object function
- Mobile object manipulation
3D-Laserscanner

Voxel colored with Laser remission values
Publication (partly)

- S. Frintrop, E. Rome, A. Nüchter, & H. Surmann: A Bimodal Laser-Based Attention System. Computer Vision and Image Understanding (CVIU), vol. 100, no. 1-2, pp. 124–151. Special Issue on Attention and Performance in Computer Vision.
- K. Lingemann, H. Surmann, A. Nüchter, & J. Hertzberg. High-Speed Laser Localization for Mobile Robots, Robotics and Autonomous Systems, 4(51), pp. 229–316, June 2005
- A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. Accurate Object Localization in 3D Laser Range Scans, in Proc. 12th International Conference on Advanced Robotics (ICAR '05), pp. 665–672
- S. Mitri, S. Frintrop, K. Pervölz, H. Surmann, & A. Nüchter. Robust Object Detection at Regions of Interest with an Application in Ball Recognition, in Proc. IEEE 2005 Int'l Conf. Robotics and Automation (ICRA '05), pp. 126–131
- L. Paletta, E. Rome & H. Buxton. Attention Architectures for Machine Vision and Mobile Robots, In: Neurobiology of Attention (Encyclopedic Volume), L. Itti, G. Rees and J.K. Tsotsos (Eds), Academic Press/Elsevier, pp. 642–648, 2004
- A. Nüchter, K. Lingemann, J. Hertzberg, H. Surmann, K. Pervölz, M. Hennig, K. R. Tiruchinapalli, R. Worst, & Th. Christaller. Mapping of Rescue Environments with Kurt3D, in Proc. SSRR '05, pp. 158–163
- I. Stratmann & E. Solda. Omnidirectional Vision and Inertial Clues for Robot Navigation, Journal Robotic Systems, 1(21), January 2004, pp. 33–39
- S. Frintrop, Andreas Nüchter, H. Surmann, & J. Hertzberg. Saliency-based Object Recognition in 3D Data, in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'04), pp. 2167–2172
- S. Frintrop, A. Nüchter & H. Surmann. Visual Attention for Object Recognition in Spatial 3D Data, in Proc. 2nd Int'l WS on Attention and Performance in Computational Vision (WAPCV 2004), Paletta, L., Tsotsos, J.K., Rome, E., & Humphreys, G. (Eds), Joanneum Research, Graz, pp. 75–82
- V. Becanovic, T. Günther and A. Bredenfeld, Modelling of Neuromorphic Vision Sensors in ODE, IEEE ICRA '05