A Framework for Phasor Measurement Placement in Hybrid State Estimation via Gauss-Newton

Xiao Li, Anna Scaglione and Tsung-Hui Chang

Abstract—In this paper, we study the placement of Phasor Measurement Units (PMU) for enhancing hybrid state estimation via the traditional Gauss-Newton method, which uses measurements from both PMU devices and Supervisory Control and Data Acquisition (SCADA) systems. To compare the impact of PMU placements, we introduce a useful metric which accounts for three important requirements in power system state estimation: convergence, observability and performance (COP). Our COP metric can be used to evaluate the estimation performance and numerical stability of the state estimator, which is later used to optimize the PMU locations. In particular, we cast the optimal placement problem in a unified formulation as a semi-definite program (SDP) with integer variables and constraints that guarantee observability in case of measurements loss. Last but not least, we propose a relaxation scheme of the original integer-constrained SDP with randomization techniques, which closely approximates the optimum deployment. Simulations of the IEEE-30 and 118 systems corroborate our analysis, showing that the proposed scheme improves the convergence of the state estimator, while maintaining optimal asymptotic performance.

Index Terms—Optimal placement, convergence, estimation

I. INTRODUCTION

Power system state estimation (PSSE), using non-linear power measurements from the Supervisory Control and Data Acquisition (SCADA) systems, is plagued by ambiguities and convergence issues. Today, the more advanced Phasor Measurement Units (PMU) deployed in Wide-Area Measurement Systems (WAMS), provide synchronized voltage and current phasor readings at each instrumented bus, by leveraging the GPS timing information. PMUs data benefit greatly state estimation because, if one were to use only PMUs, the state can be obtained as a simple linear least squares solution, in one shot. However, the estimation error can be quite high, and the system can loose even observability, due to the limited deployment of PMUs. For this reason, researchers have proposed hybrid state estimation schemes, integrating both PMU and SCADA data. Some of these methods incorporate the PMU measurements into the iterative state estimation updates, while others use PMU data to refine the estimates obtained from SCADA data. The estimation procedure becomes, again, iterative and, therefore, a rapid convergence to an estimation error that is lower than what PMUs alone can provide, is crucial to render these hybrid systems useful. The goal of our paper is to provide a criterion to ensure the best of both worlds: greater accuracy and faster convergence for the hybrid system. Before describing our contribution we briefly review the criteria that have been used thus far to select PMUs placements.

This work was supported by DOE under the TCIPG project. Part of this work was presented at the ICASSP conference.

1) Related Works: The primary concern of measurement system design for PSSE is to guarantee the observability of the grid so that the state can be solved without ambiguities, which typically depends on the number of measurements available. Furthermore, it is also essential that the device locations are chosen such that they do not result in the formation of critical measurements, whose existence makes the system susceptible to inobservability due to measurements loss.

Therefore, conventional placement designs typically aim at minimizing the number and/or the cost of the sensors under various observability constraints, see e.g. [10]–[15]. More specifically, [10], [11] ensure observability by enforcing the algebraic invertibility of the linearized load-flow models or enhancing the numerical condition of the linear model. [12] By treating the grid as a graph, the schemes in [13]–[15] guarantee topological observability, corresponding to the requirement that all the buses have a path connected to at least one device. In general, algebraic observability implies topological observability for linear load-flow models but not vice versa. To suppress or eliminate critical measurements, [17]–[21] propose placements that guarantee system observability even in case of device/branch outages, or bad data injections. These methods usually take a divide-and-conquer approach and include multiple stages. Specifically, the first stage determines a measurement set with fixed candidates (or size) by cost minimization, and then reduces (or selects) measurements within this set to ensure the topological observability. Numerical techniques such as genetic algorithms, simulated-annealing and integer linear programming have also been applied in similar placement problems.

In addition to observability, authors have also targeted improvements in the estimation performance. For example, [22] minimizes a linear cost of individual devices subject to a total error constraint, while [23] uses a two-stage approach that first guarantees topological observability and then refines the placement to improve estimation accuracy. In [27], [28], instead, PMUs are placed iteratively on buses with the highest error (individual or sum), until a budget is met. A greedy method was proposed in [29] for PMU placement by minimizing the estimation errors of the augmented PSSE using voltage and linearized power injection measurements. A similar problem is solved in [30] via convex relaxation and in [31] by maximizing the mutual information between sensor measurements and state vector.

2) Motivation and Contributions: The PMU placements algorithms in the literature target typically a single specific criterion, observability or accuracy (see the reviews [32], [33]). It was pointed out recently in [32] that these objectives should...
be considered jointly, because designs for pure observability often have multiple solutions (e.g., [18]) and they are insufficient to provide accurate estimates. In this paper, we revisit this problem from a unified perspective. Specifically we jointly consider observability, critical measurements, device outages and failures, estimation performance together with another important criterion that is oftentimes neglected, which is the convergence of the Gauss-Newton (GN) algorithm typically used in state estimation solvers. Our contribution is: 1) the derivation of the Convergence-Observability-Performance (COP) metric to evaluate the numerical properties, estimation performance and reliability for a given placement and 2) the solution of the optimum COP metric placement as a semidefinite program (SDP) with integer constraints. We also show that the optimization can be solved through a convex transformation, relaxing the integer constraints. The performance of our design framework is compared successfully with alternatives in simulations.

3) Notations: We used the following notations:
- $i$: imaginary unit and $\mathbb{R}$ and $\mathbb{C}$: real and complex numbers.
- $\mathbb{R}\{\} \text{ and } 3\{\}$: the real and imaginary part of a number.
- $I_N$: an $N \times N$ identity matrix.
- $\|A\|$ and $\|A\|_F$ are the 2-norm$^1$ and F-norm of a matrix.
- $\text{vec}(A)$ is the vectorization of a matrix $A$.
- $A^T, \text{Tr}(A)$, $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$: transpose, trace, minimum and maximum eigenvalues of matrix $A$.
- $\otimes$ is the Kronecker product and $\mathbb{E}[\cdot]$ means expectation.
- Given two symmetric matrices $A$ and $B$, expressions $A \succeq B$ and $A \succ B$ represent that the matrix $(A-B)$ is positive semidefinite and positive definite respectively (i.e., its eigenvalues are all non-negative or positive).

II. Measurement Model and State Estimation

We consider a power grid with $N$ buses (i.e., substations), representing interconnections, generators or loads. They are denoted by the set $\mathcal{N} \triangleq \{1, \ldots, N\}$, which form the edge set $\mathcal{E} \triangleq \{(n, m)\}$ of cardinality $|\mathcal{E}| = L$, with $\{n, m\}$ denoting the transmission line between $n$ and $m$. Furthermore, we define $\mathcal{N}(n) \triangleq \{m : \{n, m\} \in \mathcal{E}\}$ as the neighbor of bus $n$ and let $L_n = |\mathcal{N}(n)|$. Control centers collect measurements on certain buses and transmission lines to estimate the state of the power system, i.e., the voltage phasor $V_n \in \mathbb{C}$ at each bus $n \in \mathcal{N}$. In this paper, we consider the Cartesian coordinate representation using the real and imaginary components of the complex voltage phasors $v = [\mathbb{R}\{V_1\}, \ldots, \mathbb{R}\{V_N\}, \mathbb{I}\{V_1\}, \ldots, \mathbb{I}\{V_N\}]^T$. This representation facilitates our derivations because it expresses PMU measurements as a linear mapping and SCADA measurements as quadratic forms of the state $v$ (see [34]).

A. Hybrid State Estimation

The measurement set used in PSSE contains SCADA measurements and PMU measurements from the WAMS. Since there are 2 complex nodal variables at each bus (i.e., power injection and voltage), and 4 complex line measurements (i.e., power flow and current), the total number of variables is $2M$, considering real and imaginary parts, where $M = 2N + 4L$ is the total number of either the PMU (i.e., voltage and current) or SCADA (i.e., power injection and flow) variables in the ensemble. Thus, the ensemble of variables can be partitioned into four vectors $z = [z_v^T, z_c^T, z_f^T, z_{lf}^T]^T$, containing the 2N voltage phasor $z_v$ and power injection vector $z_f$ at bus $n \in \mathcal{N}$, the 4L current phasor $z_c$ and power flow vector $z_{lf}$ on line $\{n, m\} \in \mathcal{E}$ at bus $n$. Note that the subscripts $V$, $C$, $I$ and $F$ are chosen to indicate “voltage”, “current”, “injection” and “flow” respectively. The power flow equations $f_p(v)$, $f_c(v)$, $f_f(v)$, $f_{lf}(v)$ are specified in Appendix A1 for different types of measurements. Letting $v_{es}^n$ be the true state system, we have

$$z = f(v_{es}) + r,$$

where $r = [r_v^T, r_c^T, r_f^T, r_{lf}^T]^T$ is the aggregate measurement noise vector, with $\mathbb{E}\{r\} = 0$ and a covariance matrix $\mathbf{R} \triangleq \mathbb{E}\{rr^T\}$, and $f(v) = [f_p(v), f_c(v), f_f(v), f_{lf}(v)]^T$ refer to the aggregate power flow equations.

The actual measurements set used in PSSE is a subset of $z$ in (1), depending on the SCADA and WAMS sensors deployment. Specifically, we introduce a $2M \times 2M$ mask

$$J_A \triangleq \text{diag}(J_Y, J_C, J_T, J_F),$$

where $J_Y$, $J_C$, $J_T$ and $J_F$ are the diagonal masks for each measurement type, having 1 on its diagonal if that measurement is chosen. Applying this mask on the ensemble $z$ gives

$$J_A z = J_A f(v_{es}) + J_A r.$$

The vector $J_A z$ are the measurements used in estimation, having non-zero entries selected by $J_A$ and zero otherwise.

Assuming the noise is uncorrelated with constant variances for each type, $\mathbf{R} = \text{diag} [\sigma^2_v I, \sigma^2_c I, \sigma^2_f I, \sigma^2_{lf} I]$. The state is:

$$v_{es} = \arg\min_{v \in \mathcal{V}} \|z_A - f_A(v)\|^2,$$

where $z_A = \mathbf{R}^{-\frac{1}{2}}J_A z$ and $f_A(v) = \mathbf{R}^{-\frac{1}{2}}J_A f(v)$ are the re-weighted versions of $z$ and $f(v)$ by the covariance $\mathbf{R}$, and $\mathcal{V} \triangleq [0, V_{\text{max}}]^{2N}$ is the state space. Without loss of generality, the GN algorithm is usually used to solve (4) for the state. Although there are variants of the GN algorithm, we study the most basic form of GN updates

$$v^{k+1} = v^k + d^k, \quad k = 1, 2, \ldots$$

with a chosen initializer $v^0$ and the iterative descent

$$d^k = \left[F_A^T(v^k) F_A(v^k)\right]^{-1} F_A^T(v^k) [z_A - f_A(v^k)],$$

where $F_A^T(v) F_A(v)$ is called the gain matrix and $F_A(v) = \mathbf{R}^{-\frac{1}{2}}J_A df(v)/dv^T$ is the Jacobian corresponding to the selected measurements. The full Jacobian $F(v) \triangleq df(v)/dv^T$ is computed in Appendix A.

B. Gain Matrix and the PMU Placement

The design of $J_A$ is crucial for the success of PSSE because $J_A$ affects the condition number of the gain matrix in (5), which determines the observability of the grid, the stability of the update of state estimates and the ultimate accuracy of the estimates (see the corresponding connections between

$^1$The 2-norm of a matrix is the maximum of the absolute value of the eigenvalues and the 2-norm of a vector $x \in \mathbb{R}^N$ is $\|x\| = \sqrt{\sum_{n=1}^{N} x_n^2}$. 
the gain matrix and these issues in Section II-A, II-B, and II-C. The goal of this subsection is to express explicitly the dependency of the gain matrix on the PMU placement. Since SCADA systems have been deployed for decades, we assume that SCADA measurements are given so that Jacobians \( J_T, J_F \) are fixed, and focus on designing the PMU placement \( J_V, J_C \). We consider the case where each installed PMU captures the voltage and all incident current measurements on that bus as in [14], [30], so that the current selections \( J_C \) depend entirely on \( J_V \). Therefore, we define the PMU placement vector as

\[
\mathbf{V} \triangleq [V_1, \ldots, V_N]^T, \quad V_n \in \{0, 1\},
\]

indicating if the \( n \)-th bus has a PMU and \( J_V = I_2 \otimes \text{diag}(\mathbf{V}) \), while the the power injection and power flow measurement placements are given by \( I \triangleq [I_n]_{N \times 1} \) and \( F \triangleq [F_{nm}]_{N \times N} \) with \( I_n \) and \( F_{nm} \in \{0, 1\} \) to indicate whether the injection at bus \( n \) and power flow on line \( \{n, m\} \) measured at bus \( n \) are present in the PSSE. Similarly we have \( J_T = I_2 \otimes \text{diag}(I) \) and \( J_F = I_2 \otimes \text{diag}(\text{vec}(F)) \). Finally, given an arbitrary state \( v \), the gain matrix in (6) can be decomposed into two components

\[
F_A^T(v)F_A(v) = \mathcal{P}(\mathbf{V}) + S(vv^T, I, F),
\]

using matrices \( H_{I,n} \), \( H_{F,n} \), \( N_{P,n} \), \( N_{Q,n} \), \( E_{P,nm} \) and \( E_{Q,nm} \) given explicitly by (36) in Appendix A. The exact expression for each component can be analytically written as:

1. **PMU data** \( \mathcal{P}(\mathbf{V}): \mathbb{R}^{2N} \rightarrow \mathbb{R}^{2N \times 2N} \)

\[
\mathcal{P}(\mathbf{V}) = \sum_{n=1}^{N} v_n \left( I_2 \otimes e_n e_n^T + \frac{H_{I,n} H_{I,n} + H_{F,n} H_{F,n}}{\sigma^2} \right)
\]

2. **SCADA data** \( S(V,I,F): \mathbb{R}^{2N \times 2N} \rightarrow \mathbb{R}^{2N \times 2N} \)

\[
S(V,I,F) = \sum_{n=1}^{N} \frac{I_n}{\sigma^2} (N_{P,n} + N_{P,n}^T)^T V (N_{P,n} + N_{P,n}^T) + \sum_{n=1}^{N} \frac{F_{nm}}{\sigma^2} (E_{P,nm} + E_{P,nm}^T)^T V (E_{P,nm} + E_{P,nm}^T) + \sum_{n,l} F_{nm} \left( E_{Q,nm} + E_{Q,nm}^T \right)^T V (E_{Q,nm} + E_{Q,nm}^T),
\]

where \( V = vv^T \). The derivations are tedious but straightforward from (8) and (36) and thus omitted due to limited space.

Note that although the PMU placement design is the focus of this paper, we also consider its complementary benefits on the overall reliability of the PSSE mostly based on SCADA data, by showing how PMUs can eliminate critical measurements issues, as explained in Section IV.

### III. Measurement Placement Design

In this section, we address three important aspects of the placement design as a prequel to the comprehensive metric for PMU placement proposed in Section IV, including observability, convergence, and accuracy, which are all derived with respect to the task of performing state estimation. We call this comprehensive metric the **COP metric**, which is an abbreviation for Convergence, Observability and Performance. In Section IV we further derive how the PMU placement \( \mathbf{V} \) affects this metric analytically. Later in Section IV we optimize the placement using this metric under observability constraints in case of measurement loss or device malfunction.

#### A. Observability

As mentioned previously, observability analysis is the foundation for all PSSE because it guarantees that the selected measurements are sufficient to solve for the state without ambiguity. There are two concepts associated with this issue, which are the **topological observability** and the numerical (algebraic) observability. Topological observability, in essence, studies the measurement system as a graph and determines whether the set of nodes corresponding to the measurement set in PSSE constitute a dominating set of the grid (i.e., each node is a direct neighbor of the nodes that provide the measurement set). Numerical observability, instead, is typically based on the linearized decoupled load flow model [35], and recently the PMU model [10], [13], [15], [18], [19], [22]–[24], [30], [36], [37], focused on the algebraic invertibility of the PSSE problem. Although the topological observability bears different mathematical interpretations than numerical observability, oftentimes they are both valid measures if the admittance matrix does not suffer from singularity [14], [16].

**Remark 1. (observability)** Using the gain matrix expression in (6), the observability can be guaranteed by having

\[
\beta(\mathbf{V}) = \inf_{v \in \mathcal{V}} \lambda_{\min}\left[\mathcal{P}(\mathbf{V}) + S(vv^T, I, F)\right] > 0.
\]

Given a fixed SCADA placement \( I \) and \( F \), the value of \( \beta(\mathbf{V}) \) depends on the PMU placement \( \mathbf{V} \) which should, therefore, be designed so that \( \beta(\mathbf{V}) > 0 \). Although observability guarantees the existence and uniqueness of the PSSE solution, it does not imply that the state estimate obtained from the GN algorithm (5) is the correct state estimate, since the solution could be a local minimum. This is especially the case when the initializer \( v^0 \) is not chosen properly. Thus, observability is a meaningful criterion only if one assumes successful convergence, as discussed next.

#### B. Convergence

The convergence of state estimation to the correct estimate \( v_{est} \) using the AC power flow models in (2) has been a critical issue in PSSE. With SCADA measurements, state estimation based on the AC power flow model in (2) is in general non-convex and there might be multiple fixed points \( v^* \) of the update in (5) that stop the iterate \( v^k \) from progressing towards the correct estimate \( v_{est} \). Let the set of fixed points \( v^* \) be

\[
\mathcal{V}^* = \{ v \in \mathbb{R}^{2N} : F_A^T(v)[z_A - f_A(v)] = 0 \}.
\]

Clearly, the correct estimate \( v_{est} \) of (4) is in this set \( v_{est} \in \mathcal{V}^* \). As a result, there are two convergence issues to address, including a proper initialization \( v^0 \) and the stabilization of the error \( ||v^* - v_{est}|| \) made relative the global estimate \( v_{est} \) instead of other fixed points \( v^* \in \mathcal{V}^* \). Because an accurate measurement of the state can be directly obtained by the PMU
device, it is natural to exploit such measurements as a good
initializer to start the GN algorithm. In the following, we
first explain the PMU-assisted initialization scheme, and then
present the error dynamics analysis.

We propose to choose the initializer \( v^0 \) to match PMU
measurements on PMU-instrumented buses, with the rest provided
by an arbitrary initializer \( v_{\text{prior}} \). The initializer is expressed as
\[
v^0 = J_Y z_{\text{est}} + (I_{2N} - J_Y) v_{\text{prior}},
\]
where \( v_{\text{prior}} \) is a stale estimate or nominal profile, and
\( J_Y = I_2 \otimes \text{diag}(V) \). Given a placement \( V \), we analyze the
error dynamics of the update in (5), which examines the iterative
error progression over iterations as a result of the placement.

**Lemma 1.** Defining the iterative error at the \( k \)-th update as
\[ \rho_k = \| v^k - v_{\text{true}} \|, \]
we have the following error dynamics
\[
\rho_{k+1} \leq \frac{1}{2} \sqrt{\frac{\phi_k}{\beta(V)}} + \frac{\sqrt{2} \rho_k}{\beta(V)}. \tag{12}
\]
\[ \epsilon = \| z_A - \Lambda_A(v_{\text{true}}) \| \text{ is the optimal reconstruction error and } \]
\[ \phi_k = \begin{pmatrix} v^k - v_{\text{true}} \\ (v^k - v_{\text{true}})^T (v^k - v_{\text{true}}) \end{pmatrix} \text{ is a Rayleigh quotient of the matrix } M \triangleq S(I_{2N}, \{I, F\}, \text{S}), \text{ equal to } S(V, \{I, F\}, \text{S}) \text{ in (8) with } V = I_{2N}. \]

**Proof:** See Appendix B.

Lemma 1 describes the coupled dynamics of the error \( \rho_k \) and the
quantity \( \phi_k \) which govern how fast the state estimate
reaches the ultimate accuracy. Let us denote an upper bound
\( \beta(V) \) for all \( \phi_k \) that depends on \( V \). From Lemma 1 it follows:

**Theorem 1.** [38, Theorem 1] Given an upper bound \( \beta(V) \geq \phi_k \) for all \( k \) and suppose \( \sqrt{2} \rho_k/\beta(V) < \beta(V) \), then
the algorithm converges \( \lim_{k \to \infty} \rho_k = 0 \) if the initialization satisfies
\[ \rho_0 \leq 2 \sqrt{\frac{\beta(V)}{\phi(V)}} - \frac{\sqrt{2} \epsilon}{\beta(V)}. \tag{14} \]

**Remark 2. (convergence)** With a low optimal reconstruction
error \( \epsilon \approx 0 \), the implications of Lemma 1 and Theorem 1 are:

- the sensitivity to initialization is determined by the radius
  \[ \rho_0 \leq 2 \sqrt{\frac{\beta(V)}{\phi(V)}} \tag{15} \]

- the error converges quadratically at an asymptotic rate
  \[ \lim_{k \to \infty} \frac{\rho_{k+1}}{\rho_k} \leq \frac{1}{2} \sqrt{\frac{\phi(V)}{\beta(V)}}. \tag{16} \]

In other words, the larger is the ratio \( \beta(V)/\phi(V) \), the larger is the radius of convergence and the faster the algorithm
converges. Similar to the observability metric in Remark 1, the convergence is determined by the PMU placement \( V \).
This is confirmed by simulations in Section 7 when \( v^0 \) is

\[ \text{mildly perturbed. The state estimate diverges drastically to a}
\text{wrong point if the PMU placement is not chosen carefully and}
\text{furthermore, in cases where the algorithm converges, the PMU}
\text{placement significantly affects the rate of convergence.}

What remains to be determined is the bound \( \phi(V) \). One
simple option is to bound the Rayleigh quotient \( \phi_k \) for each
iteration \( k \) with the largest eigenvalue \( \lambda_{\text{max}}(M) \). However,
this is a pessimistic bound that ignores the dependency of \( \phi_k \)
on \( v^k \), due to the initialization \( v^0 \) in (11). In the proposition below, we motivate the following choice of the upper bound.

**Proposition 1.** The bound \( \phi(V) \) can be approximated by
\[ \phi(V) \approx \lambda_{\text{max}} \left[ (I_{2N} - J_Y)^T M (I_{2N} - J_Y) \right]. \tag{17} \]

**Proof:** See Appendix C.

**C. Performance (Accuracy)**

Given Remark 1 and 2 for observability and convergence, we proceed to discuss the accuracy of the state estimator. This
is evaluated by the error between the iterate \( v^k \) and the true
state \( v_{\text{true}} \), which can be bounded by the triangular inequality
\[ \| v^k - v_{\text{true}} \| \leq \| v^k - v_{\text{true}} \| + \| v_{\text{true}} - v_{\text{true}} \|. \tag{18} \]

If the iterate \( v^k \) converges stably to the correct estimate
\[ \lim_{k \to \infty} v^k = v_{\text{true}}, \]
the error can be bounded accordingly by
\[ \lim_{k \to \infty} \| v^{k+1} - v_{\text{true}} \| \leq \| v_{\text{true}} - v_{\text{true}} \|. \tag{19} \]

If the noise \( r \) in (1) is Gaussian, the estimate \( v_{\text{true}} \) given by
(4) is the Maximum Likelihood (ML) estimate. According to
classical estimation theory [39], the mean square error (MSE)
of the ML estimates reaches the Cramér-Rao Bound (CRB)
asymptotically given sufficient measurements
\[ \mathbb{E} \| v_{\text{true}} - v_{\text{true}} \|^2 = \text{Tr} \left[ (F_A(v_{\text{true}})F_A(v_{\text{true}}))^{-1} \right] \tag{20} \]
where the expectation is with respect to the noise distribution
\( r \) and the gain matrix \( F_A(v_{\text{true}})F_A(v_{\text{true}}) \) evaluated at the true
state \( v_{\text{true}} \) is the Fisher Information Matrix (FIM).

Many placement designs focus on lowering the CRB in
different ways. Specifically, the A-, M- and accuracy designs
in [29, 30] focus on maximizing the trace, the minimum diagonal element, and the minimum eigenvalue of the FIM in
(20) respectively. Other existing works considering estimation
accuracy optimize their designs with respect to the FIM in an
ad-hoc manner. For example, [25] minimizes the cost of
PMU deployment under a total error constraint on the trace
of the FIM, while [26, 27] are similar to the M-optimal
design in picking heuristically the locations by pinpointing
the maximum entry in the FIM.

**Remark 3. (performance)** Given a specific PMU placement
\( V \), the MSE of the state estimation is upper bounded as
\[ \mathbb{E} \| v_{\text{true}} - v_{\text{true}} \|^2 = \text{Tr} \left[ (F_A(v)F_A(v))^{-1} \right] \leq \frac{2N}{\beta(V)}, \tag{20} \]
\[ 3 \text{Note that the worst case of this upper bound is clearly } \phi(V) \leq \lambda_{\text{max}}(M). \]
therefore $\beta(V)$ is an important metric for PMU placements from the observability and performance perspective.

Proof: See Appendix 1.

IV. OPTIMAL PMU PLACEMENT VIA THE COP METRIC

Based on Remark 1, 2, and 3, we are ready to introduce our Convergence-observability-performance (COP) metric

$$\rho(V) = \frac{\beta(V)}{\phi(V)}, \quad \text{(COP metric)}$$

where $\beta(V)$ is defined in (17) and $\phi(V)$ is the upper bound (used in Theorem 1) of the Rayleigh quotient $\phi_k$ in Lemma 1. In fact, it is seen from Remark 1, 2, and 3 that the greater the value of $\rho(V)$: 1) the less sensitive PSSE is to initialization; 2) the faster the algorithm converges asymptotically; 3) the observability and performance metric $\beta(V)$ scales linearly given $\phi(V)$. Therefore, we propose to have the PMUs stabilize the observability and potentially lowering the estimation error. Next, we exploit the dependency of $\beta(V)$ and $\phi(V)$ on $V$ to formulate the placement problem.

We have established the expression of $\beta(V)$ in (8), which however requires an exhaustive search $v \in V$. For simplicity, the common practice is to replace the search by substituting the nominal initializer $v_{pri}\in(1)$, where the flat profile is often chosen $v_{pri} = [1_T, 0_N]^T$ as in (30). This leads to

$$\beta(V) \approx \min_{\phi} \left[ \frac{P(V) + S(v_{pri}^T v_{pri}, I, F)}{\lambda_{max}[(I_{2N} - J_Y)^T M_1(I_{2N} - J_Y)]} \right].$$

(22)

Thus, given a budget on the number of PMUs $n_{PMU}$ and a total cost constraint $C_{PMU}$, the optimal design aims at maximizing the COP metric using the expressions in (22) and (17)

$$\max_{V} \frac{\lambda_{min}[P(V) + S(v_{pri}^T v_{pri}, I, F)]}{\lambda_{max}[(I_{2N} - J_Y)^T M_1(I_{2N} - J_Y)]}$$

(23)

s.t. $J_Y = I_2 \otimes \text{diag}(I)$, $V_n \in \{0, 1\}$

$$1_N^{T} V \leq N_{PMU}, \ c^T V \leq C_{PMU},$$

where $c = [c_1, \ldots, c_N]^T$ contains the cost of each PMU.

Note that maximizing the COP metric alone does not necessarily maximize the observability and performance metric $\beta(V)$, but instead it is providing a sweet spot between having a good initialization and lowering the estimation error. To ensure that the value of $\beta(V)$ is sufficiently large, we further consider eliminating critical measurements with a tolerance parameter set by the designer $\beta_{min} > 0$ such that $\beta(V)$ is guaranteed to surpass an acceptable threshold. Another benefit of eliminating critical measurements is to improve bad data detection capability. Therefore in the next subsection, we formulate the PMU placement problem by considering reliability constraints on data redundancy and critical measurements.

A. Elimination of Critical Measurements

Let us denote by $J_n$ and $G_{nm}$ the failure patterns for power injection and flow measurements, where the $n$-th bus injection or the line flow on $\{n, m\}$ measured at bus $n$ is removed from the existing SCADA measurements $I$ and $F$. Then given a tolerance parameter $\beta_{min} > 0$ to ensure the numerical observability, the PMU placement optimization is

$$\max_{V} \frac{\lambda_{min}[P(V) + S(v_{pri}^T v_{pri}, I, F)]}{\lambda_{max}[(I_{2N} - J_Y)^T M_1(I_{2N} - J_Y)]},$$

(24)

s.t. $\lambda_{min}[P(V) + S(v_{pri}^T v_{pri}, J_n, F)] \geq \beta_{min}, \ \forall n \in N$

$$\lambda_{min}[P(V) + S(v_{pri}^T v_{pri}, I, G_{nm})] \geq \beta_{min}, \ \forall \{n, m\} \in \mathcal{E}$$

$$J_Y = I_2 \otimes \text{diag}(I), \ V_n \in \{0, 1\}$$

$$1_N^{T} V \leq N_{PMU}, \ c^T V \leq C_{PMU},$$

Remark 4. The constraints above can be easily extended to cover multiple failures by incorporating corresponding outage scenarios $J_n$ and $G_{nm}$, which will be necessary in eliminating critical measurement set (i.e., minimally dependent set). Furthermore, topological observability constraints can also be easily added because of their linearity with respect to the placement vector $V$ as in [13]–[15], [18], [19]. We omit the full formulation due to lack of space.

B. Semi-Definite Programming (SDP) and Relaxation

The eigenvalue problem in (24) can be reformulated via linear matrix inequalities using two dummy variables $\phi$ and $\beta$

$$\max_{V, \phi, \beta} \frac{\beta}{\phi}, \ s.t. \ \mathcal{P}(V) + S(v_{pri}^T v_{pri}, I, F) \geq \beta I$$

(25)

$$\left[ \frac{\phi I_{2N}}{I_{2N} - J_Y} \right] \geq 0$$

$$\mathcal{P}(V) + S(v_{pri}^T v_{pri}, J_n, F) \geq \beta_{min} I_{2N}, \ \forall n \in N$$

$$\mathcal{P}(V) + S(v_{pri}^T v_{pri}, I, G_{nm}) \geq \beta_{min} I_{2N}, \ \forall \{n, m\} \in \mathcal{E}$$

$$J_Y = I_2 \otimes \text{diag}(I), \ V_n \in \{0, 1\}$$

$$1_N^{T} V \leq N_{PMU}, \ c^T V \leq C_{PMU},$$

To avoid solving this complicated eigenvalue problem with integer constraints, we relax (25) by converting the integer constraint $V_n \in \{0, 1\}$ to a convex constraint $0 \leq V_n \leq 1$. Then, the optimization becomes a quasi-convex problem that needs to be solved in an iterative fashion via the classical bisection method by performing a sequence of semi-definite programs (SDP) feasibility problems [40]. Clearly this consumes considerable computations and less desirable. Fortunately, since the objective (25) is a linear fractional function, the Charnes-Cooper transformation [41] can be used to re-formulate the problem in (25) as a convex SDP, whose global optimum can be obtained in one pass.

Proposition 2. By letting $\gamma = 1/\phi$, $\tau = \beta/\phi$ and $\xi = V/\phi$, the global optimum solution to (25) can be determined by

$$\max_{\xi, \tau, \gamma} \mathcal{P}(\xi) + \gamma S(v_{pri}^T v_{pri}, I, F) \geq \tau I$$

(26)

$$\left[ \frac{I}{(\gamma I - I_{\xi})^T M_{H}^2} \right] \geq 0$$

$$\mathcal{P}(\xi) + \gamma S(v_{pri}^T v_{pri}, J_n, F) > 0, \ \forall n$$

$$\mathcal{P}(\xi) + \gamma S(v_{pri}^T v_{pri}, I, G_{nm}) > 0, \ \forall \{n, m\}$$

$$I_{\xi} = I_2 \otimes \text{diag}(\xi), \ \xi_n \in [0, \gamma]$$

$$1_N^{T} \xi \leq N_{PMU}, \ c^T \xi \leq C_{PMU},$$

The value of $\beta_{min}$ is set to be 0.01 in simulations for all cases.
whose solution is mapped to the solution of (25) as

\[ \psi^* = \xi^*/\gamma^*. \] (27)

The solution \( \psi^* \) has real values but not the original binary values. Here we use a randomization technique \[42\] to choose the solution by drawing a group of \( \ell \) binary vectors \( \psi_i \) from a Bernoulli distribution on each entry with probabilities obtained from the solution \( \psi^* \). Then we compare the COP metric evaluated at the group of candidates \( \{ \psi_i \}^\ell_{i=1} \) and choose the one that has the maximum as the optimal placement vector. This scheme approximates closely to the optimal solution of the original integer problem as shown in simulations.

V. SIMULATIONS

In this section, we compare our proposed design in different systems mainly against the accuracy placement that optimizes estimation accuracy (i.e., \( E\text{-optimal in} \[29\], \[30\]) and an observability placement that satisfies system observability \[14\] jointly with SCADA measurements. The measurements are generated with independent errors \( \mathbf{R} = \sigma^2 \mathbf{I} \) and \( \sigma^2 = 10^{-4} \). We demonstrate the optimality of our formulation in the IEEE-14 system, and extend the comparison on the convergence and estimation performance for IEEE 30 and 118 systems, using 15% of all SCADA measurements provided at random.\(^5\)

A. IEEE 14 bus System (Fig. 1 and Fig. 2)

We show the optimality of the proposed placement in Fig. 1 by comparing \( \rho \), \( \beta \) and \( \phi \) against the accuracy, the observability and most importantly the exact optimal PMU placement in the IEEE-14 system for \( N_{\text{PMU}} = 1, \ldots, 13 \), where the exact optimal solution is obtained by an exhaustive search in the non-relaxed problem (24). It is seen from \( \beta \) that under 15% SCADA measurements, the system remains unobservable until \( N_{\text{PMU}} = 3 \) since \( \beta = 0 \) is not shown on the curve.

A significant gap can be seen in Fig. 1 between the proposed, the optimal and the accuracy schemes. It is clear that the proposed scheme gives a uniformly greater \( \rho \) than the accuracy scheme, and closely touches the optimal solution. Clearly, the accuracy design achieves a larger \( \beta \) than the proposed scheme, but this quantity is less sensitive to the PMU placement than \( \phi \) for all \( N_{\text{PMU}} \). This implies that the estimation accuracy of the hybrid state estimation is not very sensitive to the placement, because of the presence of SCADA measurements. In fact, convergence is a more critical issue. In particular, when the PMU budget is low (i.e. \( N_{\text{PMU}} \) is small), the accuracy does not provide discernible improvement on \( \phi \) (thus \( \rho \)) while the optimal and proposed schemes considerably lower \( \phi \) and increase \( \rho \), which stabilizes and accelerates the algorithm convergence without affecting greatly accuracy.

In Fig. 2 we show an example of the proposed placement with \( N_{\text{PMU}} = 6 \) in one experiment where there are 19 SCADA measurements (15% of total) marked in “blue” while there are PMU measurements marked in “red”. It can be seen that the system is always observable even with single failure because each node is metered by the measurements at least twice so there is enough redundancy to avoid critical measurements.

B. IEEE 30-bus and 118-bus Systems

We illustrate the estimation convergence and performance of our proposed placement against the alternatives above and the case with no PMUs, in terms of the total vector error (TVE) in \[43\] for evaluating the accuracy of PMU-related state estimates

\[ \text{TVE}_k = \| \mathbf{v}^k - \mathbf{v}_{\text{opt}} \| / \| \mathbf{v}_{\text{opt}} \| \times 100\% \] (28)

for each iteration \( k \). This shows the decrease of TVE as the Gauss-Newton proceeds iteratively, which is a typical way to illustrate convergence behavior and the asymptotic accuracy upon convergence. With 17% PMU deployment, we compare the TVE curves for the IEEE-30 system with \( N_{\text{PMU}} = 5 \) in Fig. 3(a) and the IEEE-118 system with \( N_{\text{PMU}} = 20 \) in Fig. 3(b) To verify the robustness to initialization (numerical stability) and the convergence rate, the TVE curves are averaged over 200 experiments. For each experiment, we generate a placement guaranteeing observability for the observability placement according to \[14\], and use a non-informative initializer \( \mathbf{v}_{\text{prior}} = [I_N^T + 0.1 \mathbf{e}^T, 0_N^T]^T \) perturbed by a zero mean Gaussian error vector \( \mathbf{e} \) with \( \mathbb{E}[\mathbf{e}\mathbf{e}^T] = \mathbf{I} \). We leave the imaginary part unperturbed because phases are usually small.

It is seen in Fig. 3(a) that if there are no PMU installed, it

---

\(^5\)The number of SCADA measurements in each experiment is \( 15\% \times (4N + 8L) \), where \( N \) is the number of buses and \( L \) is the number of lines.
is possible that the algorithm does not converge while the proposed placement scheme converges stably. The performance of the observability placement is not stably guaranteed even if it satisfies observability because it diverges under perturbations for the 118 system in Fig. 3(a). A similar divergent trend can be observed if the initialization is very inaccurate, regardless of how it is set. Consistent with Theorem 1, since the noise σ² is small, the algorithm converges quadratically for the proposed and the accuracy placement, but the convergence rates vary greatly. Although the asymptotic TVE remains comparable, the proposed placement considerably accelerates the convergence compared to the observability and accuracy placement.

VI. CONCLUSIONS

In this paper, we propose a useful metric, referred to as COP, to evaluate the convergence and accuracy of hybrid PSSE for a given sensor deployment, where PMUs are used to initialize the Gauss-Newton iterative estimation. The COP metric is derived from the convergence analysis of the Gauss-

Newton state estimation procedures, which is a joint measure for convergence ϕ(⃗{V}) and the FIM as a measure for accuracy and observability β(⃗{V}). We optimize our placement strategy by maximizing the COP metric β(⃗{V})/ϕ(⃗{V}) via a simple SDP, and the critical measurement constraints in the SDP formulation further ensure that the numerical observability β(⃗{V}) is bounded away from zero up to a tolerable point. Finally, the simulations confirm numerically the convergence and estimation performance of the proposed scheme.

APPENDIX A

POWER FLOW EQUATIONS AND JACOBIAN MATRIX

The admittance matrix Y = [−Ynm]NxN, includes line admittances Ynm = Gnm + jBnm, \( \{n,m\} \in \mathcal{E} \) and bus admittance-to-ground Ynm = Gnm + jBnm in the II-model of line \( \{n,m\} \in \mathcal{E} \), and self-admittance Ynn = − \( \sum_{m \neq n} (Y_{nm} + Y_{nm}) \). Using the canonical basis \( e_n = [0, \ldots, 1, \ldots, 0]^T \) and the matrix Y, we define the following matrices

\[
Y_n \triangleq e_n^T e_n Y, \quad Y_{nm} \triangleq (Y_{nm} + Y_{nm}) e_n e_n^T - Y_{nm} e_n e_n^T.
\]

Letting \( G_n = \Re\{Y_n\} \), \( B_n = \Im\{Y_n\} \), \( G_{nm} = \Re\{Y_{nm}\} \) and \( B_{nm} = \Im\{Y_{nm}\} \), we define the following matrices

\[
\begin{align*}
N_{P,n} & \triangleq \begin{bmatrix} G_n - B_n & -B_n \\ B_n & G_n \end{bmatrix}, & N_{Q,n} & \triangleq \begin{bmatrix} B_n & G_n \\ -G_n & B_n \end{bmatrix}, \\
E_{P,nm} & \triangleq \begin{bmatrix} G_{nm} - B_{nm} & -B_{nm} \\ B_{nm} & G_{nm} \end{bmatrix}, & E_{Q,nm} & \triangleq \begin{bmatrix} B_{nm} & G_{nm} \\ -G_{nm} & B_{nm} \end{bmatrix}, \\
C_{I,nm} & \triangleq \begin{bmatrix} G_{nm} & 0 \\ 0 & -B_{nm} \end{bmatrix}, & C_{J,nm} & \triangleq \begin{bmatrix} B_{nm} & 0 \\ 0 & G_{nm} \end{bmatrix}.
\end{align*}
\]

The SCADA system collects active/reactive injection \( (P_n, Q_n) \) at bus n and flow \( (P_{nm}, Q_{nm}) \) at bus n on line \( \{n,m\} \)

\[
P_n = v^T N_{P,n} v, \quad Q_n = v^T N_{Q,n} v, \quad P_{nm} = v^T E_{P,nm} v, \quad Q_{nm} = v^T E_{Q,nm} v,
\]

and stack them in the power flow equations

\[
f_P(v) = \begin{bmatrix} \cdots, P_n, \cdots, Q_n, \cdots \end{bmatrix}^T, \quad f_Q(v) = \begin{bmatrix} \cdots, P_{nm}, \cdots, Q_{nm}, \cdots \end{bmatrix}^T.
\]

The WAMS collects the voltage \( (\Re\{V_n\}, \Im\{V_n\}) \) at bus n and the current \( (I_{nm}, J_{nm}) \) on line \( \{n,m\} \) measured at bus n

\[
I_{nm} = (1_2 \otimes e_n)^T C_{I,nm} v, \quad J_{nm} = (1_2 \otimes e_n)^T C_{J,nm} v,
\]

where \( \otimes \) is the Kronecker product, and stacks them as

\[
f_V(v) = v, \quad f_C(v) = \begin{bmatrix} \cdots, I_{nm}, \cdots, J_{nm}, \cdots \end{bmatrix}^T.
\]

The Jacobian F(v) can be derived from \( (33), (29) \) and \( (30) \)

\[
F(v) = \begin{bmatrix} H_C, H_T^T, H_T^T(I_{2N} \otimes v), H_T^T(I_{2L} \otimes v) \end{bmatrix}
\]

where

\[
H_C \triangleq \begin{bmatrix} \cdots, H_{I,nm}^T, \cdots, H_{J,nm}^T \end{bmatrix}^T, \quad H_T \triangleq \begin{bmatrix} \cdots, N_{P,n} + N_{P,n}^T, \cdots, N_{Q,n} + N_{Q,n}^T \end{bmatrix}^T, \quad H_F \triangleq \begin{bmatrix} \cdots, E_{P,nm} + E_{P,nm}^T, \cdots, E_{Q,nm} + E_{Q,nm}^T \end{bmatrix}^T.
\]
using $S_n \triangleq I_{L_n} \otimes (1_2 \otimes e_n)^T$ and
\[ H_{I,n} \triangleq S_n C_{I,n}, \quad C_{I,n} \triangleq [\cdots, C_{I,n,m}, \cdots]^T, \]
\[ H_{J,n} \triangleq S_n C_{J,n}, \quad C_{J,n} \triangleq [\cdots, C_{J,n,m}, \cdots]^T. \tag{37} \]

**APPENDIX B**

**Proof of Lemma 1**

A. Proof of Jacobian properties

We first prove that $F_A(v)$ satisfies the following
\[ \|F_A(v) - F_A(v')\|_F^2 = \text{Tr} \left[ (v - v')(v - v')^T M \right], \tag{39} \]
where $M$ is a constant matrix defined in (42) once the SCADA measurement placements are fixed.

From the expression of the Jacobian in the Appendix of the manuscript, we have
\[ F_A(v) - F_A(v') = \begin{bmatrix} 0_{2N \times 2N} \\ 0_{1L \times 2N} \end{bmatrix} - \begin{bmatrix} R_{T}^{-\frac{1}{2}} J_T \otimes (v - v')^T H_T \\ R_{F}^{-\frac{1}{2}} J_F \otimes (v - v')^T H_F \end{bmatrix}. \tag{41} \]

Using the $F$-norm definition $\| \cdot \|_F^2 = \text{Tr} \left[ (\cdot)^T (\cdot) \right]$ together with the property of Kronecker products, we have
\[ \|F_A(v) - F_A(v')\|_F^2 = \text{Tr} \left[ H_T^T \left( J_T R_{T}^{-\frac{1}{2}} J_T \otimes (v - v')(v - v')^T \right) H_T \right] \\
+ \text{Tr} \left[ H_F^T \left( J_F R_{F}^{-\frac{1}{2}} J_F \otimes (v - v')(v - v')^T \right) H_F \right]. \]

Using the property of trace operators, the sub-matrices of $H_T$ and $H_F$, we can express the above norm by expanding the Kronecker product $\otimes$ and re-arrange the summation as (38), which leads to the result in (39), with the matrix $M$

\[ M = \sum_{n=1}^N \frac{T_n}{\sigma_T} \left( N_{P,n} + N_{P,T,n} \right)^T N_{P,n} + N_{P,T,n} \tag{42} \]
\[ + \sum_{n=1}^N \frac{T_n}{\sigma_T} \left( N_{Q,n} + N_{Q,T,n} \right)^T N_{Q,n} + N_{Q,T,n} \]
\[ + \sum_{n,m} \frac{F_{nm}}{\sigma_F} \left( E_{P,n,m} + E_{P,T,n,m} \right)^T \left( E_{P,n,m} + E_{P,T,n,m} \right) \]
\[ + \sum_{n,m} \frac{F_{nm}}{\sigma_F} \left( E_{Q,n,m} + E_{Q,T,n,m} \right)^T \left( E_{Q,n,m} + E_{Q,T,n,m} \right). \]

B. Proof of Error Recursion

Using this result we are now ready to prove Lemma 1. With the results we proved in [38 Lem. 2], we have the iterative error expressed as
\[ v^{k+1} - v_n = F_A(v^k) \left[ F_A(v^k) \left( v^k - v_n \right) + f_A(v_n) - f_A(v^k) \right] \\
+ \left[ F_A(v^k) - F_A(v_n) \right] \left[ z_A - f_A(v_n) \right], \tag{43} \]
whose norm can be bounded as
\[ \|v^{k+1} - v_n\| \leq \left\| F_A(v^k) \right\| \left\| F_A(v^k) \right\| \left( v^k - v_n + f_A(v_n) - f_A(v^k) \right) \]
\[ + \left\| \left[ F_A(v^k) - F_A(v_n) \right] \left[ z_A - f_A(v_n) \right] \right\|, \tag{44} \]
\[ \leq \left\| F_A(v^k) \right\| \left\| F_A(v^k) \right\| \left( v^k - v_n + f_A(v_n) - f_A(v^k) \right) \]
\[ + \left\| \left[ F_A(v^k) - F_A(v_n) \right] \left[ z_A - f_A(v_n) \right] \right\|, \tag{45} \]
\[ \leq \left\| F_A(v^k) \right\| \left\| F_A(v^k) \right\| \left( v^k - v_n + f_A(v_n) - f_A(v^k) \right) \]
\[ + \left\| \left[ F_A(v^k) - F_A(v_n) \right] \left[ z_A - f_A(v_n) \right] \right\|. \tag{46} \]

First of all, by the definition of matrix norm, we have
\[ \left\| F_A(v) \right\| \leq 1/\sqrt{\beta(\mathcal{V})}. \tag{47} \]
Then evidently, the norm of a matrix inverse corresponds to the reciprocal of the eigenvalue of that matrix with the smallest magnitude. By the definition
\[ \beta(\mathcal{V}) = \inf_{\mathcal{V} \in \mathcal{Y}} \lambda_{\min} \left( F_A^T(v) F_A(v) \right), \tag{48} \]
this quantity is bounded as $\beta(\mathcal{V})$, and therefore
\[ \left\| F_A(v) \right\| \leq 1/\sqrt{\beta(\mathcal{V})}. \tag{49} \]

1) The First Term: The first term can be written with the mean-value theorem as
\[ \left\| F_A(v^k) \right\| \left( v^k - v_n + f_A(v_n) - f_A(v^k) \right) \]
\[ = \int_0^1 \left[ F_A(v^k) - F_A(v_n) \right] \left( v^k - v_n + t(v^k - v_n) \right) dt \]
\[ = \frac{1}{2} \left[ F_A(v^k) - F_A(v_n) \right] \left( v^k - v_n \right), \tag{50} \]
where the second equality comes from the linearity of the Jacobian in (34) in terms of the argument. Then the first term in (43) can be bounded as
\[ \left\| F_A(v^k) \right\| \left( v^k - v_n + f_A(v_n) - f_A(v^k) \right) \]
\[ \leq \frac{1}{2} \left\| F_A(v^k) - F_A(v_n) \right\| \left\| v^k - v_n \right\|. \tag{51} \]

2) The Second Term: From (44 Lem. 1), the second term in (43) is bounded as
\[ \left\| \left[ F_A^T(v^k) - F_A^T(v_n) \right] \left[ z_A - f_A(v_n) \right] \right\| \]
\[ \leq \sqrt{2} \left\| F_A^T(v^k) \right\| \left\| F_A(v_n) \right\| \left\| F_A(v^k) - F_A(v_n) \right\| \left\| z_A - f_A(v_n) \right\|. \tag{52} \]
Using (48), we have
\[ \left\| \left[ F_A^T(v^k) - F_A^T(v_n) \right] \left[ z_A - f_A(v_n) \right] \right\| \]
\[ \leq \sqrt{2} \beta(\mathcal{V}) \left\| F_A(v^k) - F_A(v_n) \right\| \left\| z_A - f_A(v_n) \right\|. \tag{53} \]

Thus finally, the original recursion bounded in (44) can be simplified as
\[ \left\| v^{k+1} - v_n \right\| \leq \left\| v^k - v_n \right\| \left\| F_A(v) - F_A(v') \right\| \]
\[ + \sqrt{2} \beta(\mathcal{V}) \left\| z_A - f_A(v_n) \right\| \left\| F_A(v) - F_A(v') \right\|. \tag{54} \]

Using the norm inequality $\| \cdot \| \leq \| \cdot \|_F$ and the result we
\[
\|\mathbf{F}_A(v) - \mathbf{F}_A(v')\|_F^2 = \text{Tr} \left[ \sum_{n} \frac{T_n}{\sigma_n^2} (\mathbf{N}_{P,n} + \mathbf{N}_{P,n}^T) (v - v')^T (\mathbf{N}_{P,n} + \mathbf{N}_{P,n}^T) \right] \\
+ \text{Tr} \left[ \sum_{n} \frac{T_n}{\sigma_n^2} (\mathbf{N}_{Q,n} + \mathbf{N}_{Q,n}^T) (v - v')^T (\mathbf{N}_{Q,n} + \mathbf{N}_{Q,n}^T) \right] \\
+ \text{Tr} \left[ \sum_{n,m} \frac{F_{nm}}{\sigma_n^2} (\mathbf{E}_{P,n} + \mathbf{E}_{P,n}^T) (v - v')^T (\mathbf{E}_{P,n} + \mathbf{E}_{P,n}^T) \right] \\
+ \text{Tr} \left[ \sum_{n,m} \frac{F_{nm}}{\sigma_n^2} (\mathbf{E}_{Q,n} + \mathbf{E}_{Q,n}^T) (v - v')^T (\mathbf{E}_{Q,n} + \mathbf{E}_{Q,n}^T) \right]
\]

(38)

previously proved in [39], we have
\[
\left\| \mathbf{F}_A(v^k) - \mathbf{F}_A(v_{\text{est}}) \right\| \leq \sqrt{(v^k - v_{\text{est}})^T \mathbf{M} (v^k - v_{\text{est}})}.
\]

(52)

By denoting \( \epsilon = \| z_A - f_A(v_{\text{est}}) \| \) as the noise level and
\[
\phi_k = \frac{(v^k - v_{\text{est}})^T \mathbf{M} (v^k - v_{\text{est}})}{\|v^k - v_{\text{est}}\|^2}
\]
as the Rayleigh quotient of \( \mathbf{M} \) in the \( k \)-th iteration, we have
\[
\|v^{k+1} - v_{\text{est}}\| \leq \frac{1}{2} \sqrt{\frac{\phi_k}{\beta(\mathbf{V})}} \|v^k - v_{\text{est}}\|^2 + \frac{\sqrt{2\phi_k}}{\beta(\mathbf{V})} \|v^k - v_{\text{est}}\|.
\]

Then, the result in Lemma 1 is readily obtained by setting \( \rho_k = \|v^k - v_{\text{est}}\| \).

APPENDIX C

PROOF OF PROPOSITION [1]

To maintain tractability, the \( \phi(\mathbf{V}) \) in the COP metric is approximated by the first Rayleigh quotient \( \phi_0 \) resulting from initialization. Therefore, we upper bound \( \phi_0 \) assuming that the noise in the PMU is negligible, then \( v_0 = v_{\text{true}} \approx v_{\text{est}} \) and therefore \( v^0 - v_{\text{est}} \approx (I_{2N} - J_Y) (v_{\text{true}} - v_{\text{es}}) \), implying that
\[
\phi_0 \leq \frac{(v_{\text{true}} - v_{\text{es}})^T (I_{2N} - J_Y)^T \mathbf{M} (I_{2N} - J_Y) (v_{\text{true}} - v_{\text{es}})}{(v_{\text{true}} - v_{\text{es}})^T (I_{2N} - J_Y)^T (I_{2N} - J_Y) (v_{\text{true}} - v_{\text{es}})}.
\]

Considering the idempotence of \( (I_{2N} - J_Y) = (I_{2N} - J_Y)^2 \) in the numerator, the approximate bound is obtained as (17)

APPENDIX D

PROOF OF REMARK [3]

Denoting \( \lambda_n \) as the \( n \)-th eigenvalue of a matrix, the lower bound of the MSE is given by the trace of the FIM
\[
\mathbb{E} \left[ \|v_{\text{est}} - v_{\text{true}}\|^2 \right] = \text{Tr} \left[ \mathbf{F}_A^T (v_{\text{true}}) \mathbf{F}_A (v_{\text{true}}) \right]^{-1} \\
= \sum_{n=1}^{2N} \lambda_n^{-1} \left[ \mathbf{F}_A^T (v_{\text{true}}) \mathbf{F}_A (v_{\text{true}}) \right] \\
\leq 2N \lambda^{-1}_{2N} \left[ \mathbf{F}_A^T (v_{\text{true}}) \mathbf{F}_A (v_{\text{true}}) \right],
\]

where the last inequality is obtained by bounding the inverse of each eigenvalue by the inverse of the minimum eigenvalue.

From (47), \( \beta(\mathbf{V}) \) equivalently serves as a lower bound of the minimum eigenvalue of the FIM
\[
\beta(\mathbf{V}) \leq \lambda_{\min} \left[ \mathbf{F}_A^T (v_{\text{true}}) \mathbf{F}_A (v_{\text{true}}) \right]
\]

and therefore \( \lambda^{-1}_{2N} \left[ \mathbf{F}_A^T (v_{\text{true}}) \mathbf{F}_A (v_{\text{true}}) \right] \leq 1/\beta(\mathbf{V}) \). Thus, the result in the condition follows.

REFERENCES

[1] X. Li, A. Scaglione, and T.-H. Chang, “Optimal Sensor Placement for Hybrid State Estimation in Smart Grid,” Acoustics, Speech and Signal Processing, 2013. ICASSP 2013 Proceedings. 2013 IEEE International Conference on.
[2] J. Chow, P. Quinn, L. Beard, D. Sobajic, A. Silverstein, and L. Vanfretti, “Guidelines for Siting Phasor Measurement Units: Version 8, June 15, 2011 North American Synchrophasor Initiative (NASPI) Research Initiative Task Team (RITT) Report,” 2011.
[3] T. Yang, H. Sun, and A. Bose, “Transition to a Two-Level Linear State Estimator: Part i & ii,” IEEE Trans. Power Syst., no. 99, pp. 1–1, 2011.
[4] A. Phadke, J. Thorp, and K. Karimi, “State Estimation with Phasor Measurements,” Power Engineering Review, IEEE, no. 2, pp. 48–48, 1986.
[5] A. Meliopoulos, G. Kokkinides, C. Hedrington, and T. Conrad, “The Supercalibrator-A Fully Distributed State Estimator,” in Power and Energy Society General Meeting, 2010 IEEE. IEEE, 2010, pp. 1–8.
[6] X. Qin, T. Bi, and Q. Yang, “Hybrid Non-linear State Estimation with Voltage Phasor Measurements,” in Power Engineering Society General Meeting, 2007. IEEE. IEEE, 2007, pp. 1–6.
[7] R. Nuqui and A. Phadke, “Hybrid Linear State Estimation Utilizing Synchronized Phasor Measurements,” in Power Tech, 2007 IEEE Lausanne. IEEE, 2007, pp. 1665–1669.
[8] S. Chakraborti, E. Kyrilakides, G. Ledwich, and A. Ghosh, “A Comparative Study of the Methods of Inclusion of PMU Current Phasor Measurements in a Hybrid State Estimator,” in Power and Energy Society General Meeting, 2010 IEEE. IEEE, 2010, pp. 1–7.
[9] R. Avila-Rosales, M. rice, J. Giri, L. Beard, and F. Galvan, “Recent Experience with a Hybrid SCADA/PMU Online State Estimator,” in Power & Energy Society General Meeting, 2009. IEEE. IEEE, 2009, pp. 1–8.
[10] B. Gou, “Optimal Placement of PMUs by Integer Linear Programming,” Power Systems, IEEE Transactions on, vol. 23, no. 3, pp. 1525–1526, 2008.
[11] B. Gou and A. Abur, “An Improved Measurement Placement Algorithm for Network Observability,” Power Systems, IEEE Transactions on, vol. 16, no. 4, pp. 819–824, 2001.
[12] C. Madhurad, S. Premrudeepreechacharn, N. Watson, and D. Saenkr, “Measurement Placement Method for Power System State Estimation: Part I,” in Power Engineering Society General Meeting, 2003. IEEE, vol. 3., IEEE, 2003.
[13] R. Emami and A. Abur, “Robust Measurement Design by Placing Synchronized Phasor Measurements on Network Branches,” Power Systems, IEEE Transactions on, vol. 25, no. 1, pp. 38–43, 2010.
[14] T. Baldwin, L. Milli, M. Boisen Jr, and R. Adapa, “Power System Observability with Minimal Phasor Measurement Placement,” Power Systems, IEEE Transactions on, vol. 8, no. 2, pp. 707–715, 1993.
