Immune system disruptions implicated in whole blood epigenome-wide association study of depression among Parkinson’s disease patients

Kimberly C. Paul a,⁎, Cynthia Kusters b, Melissa Furlong c, Keren Zhang d, Yu Yu e, Aline Duarte Folle d, Irish Del Rosario d, Adrienne Keener a, Jeff Bronstein a, Janet S. Sinsheimer b,⁎⁎, Steve Horvath b,⁎, Beate Ritz a,⁎

a Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
b Departments of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
c University of Arizona, Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
d Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
e Center for Health Policy Research, UCLA Fielding School of Public Health, Los Angeles, CA, USA
f Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, USA

⁎ Corresponding author. 73-320B CHS, CAMPUS-177220, UCLA, Los Angeles, CA, 90095, USA.
⁎⁎ E-mail address: kimberlp@ucla.edu (K.C. Paul).

ARTICLE INFO
Keywords:
Parkinson’s disease
Depression
DNA methylation
Inflammation
Methylation QTLs
Neutrophil-to-lymphocyte ratio

ABSTRACT
Although Parkinson’s Disease (PD) is typically described in terms of motor symptoms, depression is a common feature. We explored whether depression influences blood-based genome-wide DNA methylation (DNAm) in 692 subjects from a population-based PD case-control study, using both a history of clinically diagnosed depression and current depressive symptoms measured by the geriatric depression scale (GDS). While PD patients in general had more immune activation and more accelerated epigenetic immune system aging than controls, the patients experiencing current depressive symptoms (GDS<5) showed even higher levels of both markers than patients without current depressive symptoms (GDS=5). For PD patients with a history of clinical depression compared to those without, we found no differences in immune cell composition. However, a history of clinical depression among patients was associated with differentially methylated CpGs. Epigenome-wide association analysis (EWAS) revealed 35 CpGs associated at an FDR≤0.003 and cytokine-cytokine receptor interaction (p-adj=0.004). Based on functional genomics, 25 (71%) of the FDR<0.05 CpGs were associated with genetic variation at 45 different methylation quantitative trait loci (meQTL). Twenty-six of the meQTLs were also expression QTLs (eQTLs) associated with the abundance of 53 transcripts in blood and 22 transcripts in brain (substantia nigra, putamen basal ganglia, or frontal cortex). Notably, cg15199181 was strongly related to rs823114 (SNP-CpG p-value=3.27E-310), a SNP identified in a PD meta-GWAS and related to differential expression of RAB29, SLC41A1, and NUCKS1. The entire set of genes detected through functional genomics was most strongly overrepresented for interferon-gamma-mediated signaling pathway (enrichment ratio = 18.8, FDR = 4.4e-03) and T cell receptor signaling pathway (enrichment ratio=13.2, FDR=4.4e-03). Overall, the current study provides evidence of immune system involvement in depression among Parkinson’s patients.

1. Introduction
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by gradual loss of dopaminergic neurons in the substantia nigra region of the brain. While PD is typically described in terms of motor symptoms, neuropsychiatric symptoms and especially depression are common, both preceding and subsequent to motor symptom onset (Aarsland et al., 2012). Depression in PD is strongly related to diminished health-related quality of life, reduced function, and cognitive decline (Aarsland et al., 2012; Lieberman, 2006). Although often underdiagnosed, clinically relevant depressive symptoms occur in an estimated 35% of PD patients and epidemiologic evidence indicates a strong association between a history of major depression and subsequent development of PD(1).

⁎ Corresponding author. 73-320B CHS, CAMPUS-177220, UCLA, Los Angeles, CA, 90095, USA.
E-mail address: kimberlp@ucla.edu (K.C. Paul).

https://doi.org/10.1016/j.bbih.2022.100530
Received 27 September 2022; Accepted 1 October 2022
Available online 3 October 2022
2666-3546/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The question remains whether depression is a prodromal symptom of PD or a risk factor for PD incidence. However, whichever is the case, there is mounting evidence for biologic underpinnings of depression in PD, including structural changes in the brain of depressed PD patients relative to non-depressed patients (e.g. loss of striatal dopamine transporter availability (Weintraub et al., 2005); loss of white matter within the cortico-limbic network (Rostić et al., 2010)), alterations in neurotransmitter systems (e.g. dopaminergic and serotonergic circuits (Grosch et al., 2016; Lu et al., 2019; Mayberg et al., 1990)), and an involvement of inflammatory and neurotrophic factors (e.g. extended stress-induced activation of the brain via cytokines and glucocorticoids (Pace and Miller, 2009); downregulation of the MAPK–MEK pathway (Wang and Mao, 2019)).

Depression likely arises due to a combination of environmental and genetic factors (Aarsland et al., 2012). Currently, we have a limited understanding of etiologic mechanisms that contribute to depression in PD. Here we are concentrating on DNA methylation (DNAm) as it may offer a readout for biologic pathways that are impacted. DNAm also regulates gene expression/repression (Moore et al., 2013) and it also reflects both environmental and genetic determinants (Law and Holland, 2019). Specifically, DNAm alterations may reflect key mechanisms through which exposures interact with genetic predisposition to determine an individual’s susceptibility. Furthermore, depression has also long been linked to immune dysregulation (Maes, 1995). For instance, PD, depression, and related risk factors, such as psychosocial stressors, can induce proinflammatory cytokines and have been associated with sustained epigenetic changes (Slavich and Irwin, 2014; Reale et al., 2012). Data are available on Gene Expression Omnibus (GEO), accession numbers GSE72774 and GSE72776(18,19). PEG is a population-based study of Parkinson’s disease, which enrolled patients and controls from California’s Central Valley (2001–2007 & 2010–2016). Primary analysis was restricted to 465 PD patients of European ancestry (based on AImS ancestry markers) for whom we had DNAm data available and 227 controls of European ancestry. Given the limited sample size, we used the control population only to assess whether depression associations seen among the PD patients were also seen among the controls (i.e., related to depression in general, or related to depression in PD specifically). Characteristics of the study population can be found in Table 1.

We assessed two indicators related to depression, first, having a history of clinical depression based on self-reported physician diagnosis and, second, having current depressive symptoms measured by the geriatric depression scale (GDS) at the time of blood draw. We dichotomized the GDS into groups with no or low depressive symptoms (GDS<5) and with depressive symptoms (GDS≥5). We selected this GDS cut-point as we have previously validated the indicator (GDS≥5) as having high specificity and sensitivity in distinguishing minor and major depression in a subset of our patient population (Thompson et al., 2011). This validity has also been shown in other studies of PD(21). An overview of the analysis plan is shown in Supplemental Fig. 1.

Overall, 130 PD patients (28%) reported a history of clinical depression and 130 PD patients (28%) had current depressive symptoms at baseline. The two depression indicators were moderately correlated among the PD patients (Pearson’s R = 0.32, 95% CI = 0.25, 0.39), with 70 of the patients having both a history of clinical depression and experiencing current depressive symptoms at the time of blood draw.

2. Results

Our analysis of blood-based DNAm data from participants recruited as part of the Parkinson’s disease, Environment, and Genes (PEG) study (Ritz et al., 2016). Data are available on Gene Expression Omnibus (GEO), accession numbers GSE72774 and GSE72776(18,19). PEG is a population-based study of Parkinson’s disease, which enrolled patients and controls from California’s Central Valley (2001–2007 & 2010–2016). Primary analysis was restricted to 465 PD patients of European ancestry (based on AImS ancestry markers) for whom we had DNAm data available and 227 controls of European ancestry. Given the limited sample size, we used the control population only to assess whether depression associations seen among the PD patients were also seen among the controls (i.e., related to depression in general, or related to depression in PD specifically). Characteristics of the study population can be found in Table 1.

We assessed two indicators related to depression, first, having a history of clinical depression based on self-reported physician diagnosis and, second, having current depressive symptoms measured by the geriatric depression scale (GDS) at the time of blood draw. We dichotomized the GDS into groups with no or low depressive symptoms (GDS<5) and with depressive symptoms (GDS≥5). We selected this GDS cut-point as we have previously validated the indicator (GDS≥5) as having high specificity and sensitivity in distinguishing minor and major depression in a subset of our patient population (Thompson et al., 2011). This validity has also been shown in other studies of PD(21). An overview of the analysis plan is shown in Supplemental Fig. 1.

Overall, 130 PD patients (28%) reported a history of clinical depression and 130 PD patients (28%) had current depressive symptoms at baseline. The two depression indicators were moderately correlated among the PD patients (Pearson’s R = 0.32, 95% CI = 0.25, 0.39), with 70 of the patients having both a history of clinical depression and experiencing current depressive symptoms at the time of blood draw.

2.1. Immune cell composition and current depression

Using methylation levels as a surrogate for leukocyte composition (Houseman method (Houseman et al., 2012; Houseman et al., 2014)), we observed that current depressive symptoms were strongly related to differential levels of several epigenetic immune markers (Fig. 1). PD patients with current depressive symptoms (GDS≥5) on average had the highest proportion of neutrophils (69%, SD = 7%; Fig. 1A), followed by PD patients without depressive symptoms (67%, SD = 9%; Wilcoxon p = 0.008 comparing PD patients with and without depressive symptoms),

Table 1

Study characteristics (n = 692).
PD Patients (n = 465)
Controls (n = 227)
No
Depression History
Lower Depressive Symptoms
Higher Depressive Symptoms
GDS 1–4
GDS 5+
n (%) or Mean (SD)
n = 335
n = 130
n = 334
n = 130
n = 167
n = 49
n = 23
Age at blood draw
71.8 (9.4)
68.8 (10.0)
71.2 (9.43)
70.2 (10.3)
69.4 (12.0)
62.1 (13.0)
Age at diagnosis
69.4 (9.5)
66.0 (10.1)
68.9 (9.5)
67.3 (10.4)
Male
211 (63)
71 (55)
195 (58)
86 (66)
102 (61)
35 (51)
11 (48)
PD duration at baseline
2.6 (2.0)
3.1 (2.5)
2.5 (2.0)
3.4 (2.5)
Erect Smoker
148 (44)
67 (52)
150 (45)
65 (50)
95 (57)
29 (59)
20 (87)

Baseline Motor Scores

| HY3+ (yes) |
| **58 (18)** |
| **23 (19)** |
| **45 (14)** |
| **35 (28)** |
| **UPDRS-III** |
| **21.0 (10.8)** |
| **23.2 (12.0)** |
| **19.2 (9.3)** |
| **27.9 (13.0)** |
| **Bradykinesia** |
| **1.1 (0.9)** |
| **1.3 (0.9)** |
| **1.0 (0.8)** |
| **1.5 (1.0)** |
| **Rigidity** |
| **3.4 (2.3)** |
| **3.9 (2.6)** |
| **3.2 (2.1)** |
| **4.4 (2.9)** |
| **Tremor** |
| **3.1 (2.6)** |
| **3.1 (2.8)** |
| **2.9 (2.4)** |
| **3.6 (3.2)** |
| **Gait/Balance** |
| **1.6 (1.4)** |
| **2.0 (1.9)** |
| **1.4 (1.3)** |
| **3.4 (1.9)** |
| **Axial Score** |
| **4.3 (3.1)** |
| **4.9 (3.5)** |
| **3.9 (2.7)** |
| **6.1 (3.8)** |
| **Leverdage Use (yes)** |
| **243 (73)** |
| **92 (72)** |
| **237 (71)** |
| **97 (76)** |
| **LED (mg/day)** |
| **300 (268)** |
| **336 (294)** |
| **292 (271)** |
| **356 (282)** |
and controls without depressive symptoms (61%, SD = 8%; p = 6.1e-14 comparing PD patients with depressive symptoms to controls). The controls without depressive symptoms had the highest proportion of CD4T cells (15%, SD = 5%), followed by PD patients without depressive symptoms (12%, SD = 5%), and PD patients with depressive symptoms (10%, SD = 4%). Similar trends were also seen for other lymphocytes, notably CD8T, NK, and B cells. When combining cell composition markers into a neutrophil-to-lymphocyte (NLR) ratio, the PD patients with depressive symptoms had a significantly higher ratio (mean = 3.38, SD = 1.9) than both PD patients without depressive symptoms (mean = 2.78, SD = 1.4; p = 0.0098) and the controls (mean = 2.16, SD = 1.2; p7.2e-13; Fig. 1 B).

Given the differences we observed in immune cell composition, we assessed immune system epigenetic age acceleration as measured by the extrinsic epigenetic aging clock (Horvath and Levine, 2015). PD patients with depressive symptoms had significantly more immune system age acceleration (mean = 2.43 years, SD = 1.9) than both PD patients without depressive symptoms (mean = 2.78, SD = 1.4; p = 0.0098) and the controls (mean = 2.16, SD = 1.2; p7.2e-13; Fig. 1B).

However, when examining patients by a history of clinical depression instead of based on current depressive symptoms (GDS≥5), we found these differences were limited to current symptoms. Immune cell composition was similar among PD patients with and without a history of clinical depression (Supplemental Fig. 2). Furthermore, the observed differences were also specific to PD patients. Non-PD controls with higher levels of depressive symptoms (GDS≥5) and a history of clinical depression had a similar cell composition and immune system age acceleration as controls without depressive symptoms or a history of clinical depression (Supplemental Fig. 3).
On the other hand, having a history of clinical depression prior to PD onset was associated with differentially methylated positions (DMP). An overview of the results is displayed in a Manhattan plot (Supplemental Fig. 4). Overall, having a history of clinical depression was associated with 35 CpGs at an FDR <0.05, 569 CpGs at an FDR <0.10, 1718 CpGs at an FDR <0.15, and 5270 CpGs at an FDR <0.25 (Supplemental Table 1). The top CpGs based on FDR are detailed in Table 2. The most significantly associated CpG was cg18774195 (FDR = 0.007) in the 5’UTR region of the SLC7A14 gene. Other notable CpGs included cg23426156 and cg11042505, linked to schizophrenia in EWAS (25,26), 32 CpGs linked to aging, and 6 CpGs linked to smoking. These CpGs are listed in the supplemental materials and were determined via query of the MRC-IEU catalog of epigenome-wide association studies (Batram et al., 2022). In sensitivity analysis, we assessed whether the CpGs associated with clinical depression among PD patients were also associated with a history of clinical depression among controls (Supplemental Table 1). From the 35 CpGs associated at FDR <0.05 among the PD patients, three CpGs, cg22801913, cg21276379, and cg25290938 were also associated with depression among controls at p < 0.05. The three CpGs were located in body of gene C11orf49, the transcription start site of EPAS1, and the transcription start site of ARHGAP22, respectively, and all three were also associated with aging in a prior EWAS (27). Otherwise, of the 5270 CpGs associated at FDR <0.25 among the patients, 242 in total were also associated with depression among controls (p < 0.05), indicating that among our population most of the depression CpGs were specific to depression among PD.

Among the patients, having a history of clinical depression prior to PD onset was also associated with differentially methylation regions (DMR) identified via Bumphunter in the ChAMP R package. Supplemental Table 2 details the DMR results. The most significant DMR was Chr1:205818668-205819609 (p = 2.0e-5, FWER = 0.007), a 941 base pair region with 9 CpGs. This region is part of the PM20D1 gene. PM20D1 has been associated with both PD and Alzheimer’s via meta-GWAS (top PD SNP in gene has GWAS meta p-value = 6.45e-08 (28,29)) and is near NUCKS1, another PD gene identified in the meta-GWAS (top SNP in gene meta p-value = 1.96e-16(28,29)), which we identified as important in the quantitative trait loci (QTL) analysis described below. Chr6:32145470-32146232 DMR was also suggestively associated with having a history of clinical depression prior to PD onset after multiple-testing correction (p = 2.7e-4, FWER = 0.09). This is a 762 base pair region with 28 CpGs in the AGPAT1 gene of the major histone compatibility (MHC) class III region, which per NCBI is involved in phospholipid metabolism and metabolism gene pathways. Differential expression of the AGPAT1 gene has previously been linked to major depression (Scifo et al., 2018).

As the PD patient population used here is unique in that they all live in a highly agricultural region on California with high levels of pesticide use, we also conducted a sensitivity analysis controlling for pesticide exposure which we have previously linked to methylation levels (Paul et al., 2018a; Purlong et al., 2020). The results were very similar with a correlation coefficient between model predicted betas at R = 0.9 (p < 2.2e-16; Supplemental Fig. 5). CpG associations for different sensitivity models can be found in Supplemental Table 1.

2.3. Gene set enrichment analysis

Using gene set enrichment analysis designed for methylation arrays (methylGSEA R package), we next assessed enrichment of KEGG, Reactome, and Panther pathways based on CpG associations with a history of clinical depression among the PD patients. Several pathways were enriched and are shown Table 3. These included multiple pathways related to immune function, KEGG pathways: Cytokine-cytokine receptor interaction (enrichment p = 8.5e-5), Osteoclast differentiation (enrichment p = 7.0e-4), Leukocyte transendothelial migration (p = 0.003); Reactome pathways: Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell (p = 3.8e-4), Neutrophil degranulation (p = 1.7e-3), Interleukin-4 and Interleukin-13 signaling (p = 0.003); Panther pathways: FAS signaling pathway (p = 0.003), Integrin signaling pathway (p = 0.006). As well as pathways related to neural function, Reactome pathways: G alpha (q) signaling events (enrichment p = 0.003); Panther pathways: Axon guidance mediated by Slit/Robo (p = 0.002), and Alzheimer disease-presenilin pathway (p = 0.02).

2.4. Blood-brain CpG level correlation

Given the neurologic pathogenesis of PD and depression as well as the enrichment of neural function pathways, we next assessed the correlation of methylation levels in blood and brain for the depression EWAS CpGs using the Iowa Methylation Array Graphing Experiment for Comparison of Peripheral Tissue and Grey matter (IMAGE-Cpg) data (n = 37; two studies) (Braun et al., 2019). Limiting this analysis to the 35 CpGs at FDR <0.05, multiple CpGs showed both relatively high positive and negative correlations for methylation in blood and brain (Fig. 2A). Due to the small sample size of the two studies included in IMAGE-Cpg (n = 12 and n = 25), the correlation estimates across CpGs varied considerably between the two studies. Nevertheless, cg00412337 (CLC5), cg24092282 (intergenic), cg07328796 (intergenic), cg90047573 (NMES), and cg13143349 (intergenic) showed consistent correlations at R > 0.30.

2.5. Methylation and expression quantitative trait loci

Finally, we assessed how the EWAS-associated CpGs were related to other omic layers. First, using BIOS and our study data, we determined methylation quantitative trait loci (meQTLs, e.g. SNPs which are significantly associated with CpG levels). Second, using GTEx, we determined whether the meQTLs were also related to transcript abundance measured in both whole blood and brain. BIOS is a public database of meQTLs based on whole blood methylation, determined in 3,841 samples from five Dutch biobanks (generally age:<45 years, including one longevity study with n = 2,600 participants >89 years of age) (Bonder et al., 2017). GTEx provides characterization of genetic associations with gene expression based on 838 individuals (mean age 53.4 (range 21–70)), 52 tissues, and two cell lines (Aguet et al., 2017; Lonsdale et al., 2013).

We determined that amongst the 35 CpGs at FDR <0.05, 25 were associated with 45 different meQTLs (Supplemental Table 3 and Table 4). This indicates that 45 SNPs (i.e. meQTLs) predicted the levels of 25 of the depression EWAS CpGs. Using GTEx, we determined 26 of these meQTLs were also expression QTLs (eQTLs), as the SNP was also associated with blood-based transcript abundance of 53 different gene transcripts (Table 4). For instance, methylation levels of cg26297819 in the transcription start site (TSS200) of the TEF gene was significantly associated with rs202637, a nearby intergenic SNP, based on both BIOS and PEG data (SNP-CpG p-value of 7.9e-7). rs202637 was also significantly related to the transcript abundance of TEF measured in blood (SNP-transcript p-value = 7.98e-28), as well as three other transcripts (MEI1, DESI1, and PMM1; Table 4). Interestingly, rs202637 is associated with rs202637, a nearby intergenic SNP, based on both BIOS and PEG data (SNP-CpG p-value of 7.9e-7). rs202637 was also significantly associated with CpG levels). Second, using GTEx, we determined whether the meQTLs were also related to transcript abundance in both whole blood and brain. BIOS is a public database of meQTLs based on whole blood methylation, determined in 3,841 samples from five Dutch biobanks (generally age:<45 years, including one longevity study with n = 2,600 participants >89 years of age) (Bonder et al., 2017). GTEx provides characterization of genetic associations with gene expression based on 838 individuals (mean age 53.4 (range 21–70)), 52 tissues, and two cell lines (Aguet et al., 2017; Lonsdale et al., 2013).

We determined that amongst the 35 CpGs at FDR <0.05, 25 were associated with 45 different meQTLs (Supplemental Table 3 and Table 4). This indicates that 45 SNPs (i.e. meQTLs) predicted the levels of 25 of the depression EWAS CpGs. Using GTEx, we determined 26 of these meQTLs were also expression QTLs (eQTLs), as the SNP was also associated with blood-based transcript abundance of 53 different gene transcripts (Table 4). For instance, methylation levels of cg26297819 in the transcription start site (TSS200) of the TEF gene was significantly associated with rs202637, a nearby intergenic SNP, based on both BIOS and PEG data (SNP-CpG p-value of 7.9e-7). rs202637 was also significantly related to the transcript abundance of TEF measured in blood (SNP-transcript p-value = 7.98e-28), as well as three other transcripts (MEI1, DESI1, and PMM1; Table 4). Interestingly, rs202637 is associated with PD (meta-GWAS p-value < 0.05 (Lill et al., 2012; Nalls et al., 2014)) and TEF polymorphisms have been linked with depression and depression in PD specifically (Kripke et al., 2009; Hua et al., 2012). cg15199181, an intergenic CpG, was associated with four meQTLs, most strongly rs823114 (SNP-CpG p-value = 3.27e-310). Not only was rs823114 also picked up in the PD meta-GWAS (p = 1.78e-13 (Lill et al., 2012; Nalls et al., 2014)), but this SNP was also related to blood-based transcript levels of four different genes, PM20D1, RAB29, SLC41A1, and NUCKS1 based on GTEx. One final notable CpG was cg21769117 in the CLC5 gene transcription start site (TSS1500), which is located in the MHC class III region. This CpG was significantly associated with three meQTLs, SNPs which were also eQTLs associated with the abundance of 18 different transcripts from genes in the region, many immune system
Table 2
EWAS top hits: Associating a history of clinical depression to genome-wide methylation levels among PD patients with depression relative to PD patients without depression.

CpG	chr	UCSC RefGene Name	P-value	FDR	β	95% CI	Relation to Island	UCSC RefGene Group	DMR	Enhancer	DHS
cg18774195	chr3	SLC7A14	2.07E-08	0.007	0.020	0.03, 0.01	S_Shore	5’UTR; 1stExon			
cg26297819	chr22	TEF	1.14E-07	0.012	0.021	0.03, 0.01	OpenSea	TSS200			
cg09047573	chr5	NME5	1.18E-07	0.012	0.033	0.05, 0.02	OpenSea	TSS200			TRUE
cg16664909	chr19	ZNF790	1.36E-07	0.012	0.009	0.01, 0.01	Island	TSS1500			TRUE
cg01949993	chr1	LAMC2	1.71E-07	0.012	0.026	0.04, 0.02	OpenSea	TSS200			TRUE
cg21769117	chr6	CLIC1	2.12E-07	0.012	0.021	0.03, 0.01	N_Shelf	TSS1500			
cg20476159	chr18	CTDPI	2.71E-07	0.014	0.022	0.03, 0.01	N_Shelf	Body			
cg13209762	chr1		4.17E-07	0.016	0.020	0.03, 0.01	OpenSea			TRUE	
cg24092282	chr14		4.27E-07	0.016	0.032	0.04, 0.02	Island				
cg06040872	chr17	CCL18	4.75E-07	0.016	-0.022	-0.01, -0.03	OpenSea	Body			
cg09901574	chr16		5.18E-07	0.016	-0.006	0.00, -0.01	N_Shelf				TRUE
cg09554876	chr1	BEND5; AGBL4	5.61E-07	0.016	-0.012	-0.01, -0.02	OpenSea	Body			
cg23426156	chr8		6.13E-07	0.017	-0.028	-0.02, -0.04	OpenSea				TRUE
cg21811896	chr1	MEGF6	6.81E-07	0.017	-0.012	-0.01, -0.02	OpenSea	Body			
cg22668767	chr5		7.32E-07	0.017	0.031	0.04, 0.02	S_Shore	RDMR			
cg15199181	chr1		7.92E-07	0.017	0.024	0.03, 0.01	OpenSea			TRUE	
cg06586775	chr20	SPAG4	8.01E-07	0.017	0.006	0.01, 0.00	Island	Body			
cg05124308	chr1	TMEEM200B	1.24E-06	0.024	0.010	0.01, 0.01	Island	TSS200			
cg05886564	chr11		1.38E-06	0.026	0.021	0.03, 0.01	OpenSea			TRUE	
cg22801913	chr11	C11orf49	1.65E-06	0.029	0.010	0.01, 0.01	OpenSea	Body			
cg24389488	chr17	WNT3	1.74E-06	0.029	0.015	0.02, 0.01	Island	Body			
cg21276379	chr2	EPAS1	2.01E-06	0.032	0.011	0.02, 0.01	Island	TSS1500			TRUE
cg07328796	chr2		2.14E-06	0.033	-0.020	-0.01, -0.03	OpenSea				TRUE
cg18696495	chr13	CLYBL	2.57E-06	0.038	-0.021	-0.01, -0.03	OpenSea	Body			TRUE
cg04239375	chr9	NIPSNAP3B	2.67E-06	0.038	0.008	0.01, 0.00	Island	Body			
cg08273640	chr4	TBC1D14	2.91E-06	0.039	0.024	0.03, 0.01	N_Shore	TSS1500			TRUE
cg19657351	chr6	GCNT2	3.01E-06	0.039	0.015	0.02, 0.01	OpenSea	TSS200			TRUE
cg00412337	chr6	CLIC5	3.07E-06	0.039	0.019	0.03, 0.01	N_Shore	Body			TRUE
cg11124080	chr10	EMX2OS	3.63E-06	0.044	0.010	0.01, 0.01	Island	Body			TRUE
cg01816936	chr12	PITPNM2	4.05E-06	0.045	0.024	0.03, 0.01	Island	Body			
cg07893584	chr9	PTPRD	4.13E-06	0.045	0.013	0.02, 0.01	Island	5’UTR; 1stExon;	DMR		
cg11042505	chr2		4.25E-06	0.045	-0.018	-0.01, -0.03	OpenSea				TRUE
cg13134349	chr5		4.44E-06	0.045	0.009	0.01, 0.01	Island	DMR			
cg08463297	chr17		4.50E-06	0.045	0.025	0.04, 0.01	OpenSea				TRUE
cg25290938	chr10	ARHGAP22	4.51E-06	0.045	0.014	0.02, 0.01	Island	TSS200		TRUE	TRUE
related, including HLA genes and complement system protein genes. cg21769117 and its associated SNP and transcript network are mapped onto the chromosome in Fig. 2B. Supplemental Fig. 6 shows all genes in the dense chromosomal region where cg21769117 and the me/eQTLs are located. This figure demonstrates that the me/eQTLs were not associated with transcript abundance of every gene in the region surrounding cg21769117, but instead selectively associated with the 18 specific transcripts.

To synthesize the network of associated CpG, SNP, and transcripts, we further took the entire set of implicated genes (79 genes with an associated CpG from the EWAS, SNP via meQTL, or transcript associated with the me/eQTLs in blood) and performed gene set overrepresentation analysis to test for overrepresentation of biologic processes. The overrepresented (FDR < 0.05) gene ontology (GO Biologic Processes) terms (GO Biologic Processes) based on all implicated genes (CpGs, SNPs, and blood-based transcripts) versus the genome gene set.

Table 3

ID	Description	Size	p-value	padj
KEGG PATHWAYS				
4060	Cytokine-cytokine receptor interaction	265	0.0001	0.004
4380	Osteoclast differentation	128	0.0007	0.015
5146	Amoebiasis	106	0.0020	0.029
4670	Leukocyte transendothelial migration	116	0.0033	0.036
4514	Cell adhesion molecules	133	0.0057	0.050
4510	Focal adhesion	200	0.0128	0.094

REACTOME PATHWAYS

- R-HSA-1500931 Cell-Cell communication 116 2.38E-05 0.003
- R-HSA-198933 Immunoregulatory interactions between a lymphoid and a non-Lymphoid cell 113 3.83E-05 0.003
- R-HSA-1474244 Extracellular matrix organization 277 8.07E-04 0.047
- R-HSA-6798695 Neutrophil degranulation 433 1.66E-03 0.074
- R-HSA-416476 G alpha (q) signalling events 200 0.0025 0.089
- R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 101 0.0030 0.089
- R-HSA-202733 Cell surface interactions at the vascular wall 127 0.0041 0.093
- R-HSA-194138 Signaling by VEGF 103 0.0045 0.093
- R-HSA-449147 Signaling by Interleukins 422 0.0048 0.093

PANTHER PATHWAYS

- P00008 Axon guidance mediated by Slit/Robo 25 0.0022 0.115
- P00041 Metabotropic glutamate receptor group I pathway 25 0.0061 0.115
- P00020 FAS signaling pathway 34 0.0031 0.115
- P00034 Integrin signalling pathway 190 0.0059 0.115
- P00004 Alzheimer disease presenilin pathway 124 0.0193 0.289

Fig. 2. (A) Correlation between blood and brain methylation levels for depression EWAS CpGs. Mean correlation (absolute value to allow both positive and negative correlations to be meaningful) = 0.16, SD = 0.13. (B) Mapping cg21769117 (annotated as “CpG”) to its three associated me/eQTLs and the transcripts associated with the eQTLs based on GTEx expression in whole blood. (C) Gene Ontology (GO Biologic Processes) Gene Set Overrepresentation using all implicated genes from EWAS and QTL mapping (CpGs, SNPs, and transcripts). All biologic processes with an FDR < 0.05 are shown. (D) Network view of overrepresented gene ontology terms (GO Biologic Processes) based on all implicated genes (CpGs, SNPs, and blood-based transcripts) versus the genome gene set.
Cpg	EWAS p-value	Cpg Gene	Cpg Chr	Cpg Group	Type	SNP	SNP Cpg P-value	SNP Chr	SNP Chr Position	SNP Gene	Type	SNP-Transcript P-value	SNP to TSS Distance	Transcript Gene	HGNC Name
cg18774195	2.07E-08	SLC7A14	3	5'UTR; 1stExon	NA	rs202637	7.93E-07	22	41853928	cg18774195	eQTL	2.11E-46	-241575	MEI1	
cg26297819	1.14E-07	TEF	22	TSS200	cis-mQTL	rs7734861	3.31E-13	5	137507979	rs7734861	eQTL	7.98E-28	90591	TEF	
cg09047573	1.18E-07	NME5	5	5'UTR	cis-mQTL	rs2445878	5.23E-34	19	37318357	rs2445878	eQTL	3.21E-19	-163172	DESH	
cg16646909	1.36E-07	ZNF790	19	TSS1500	cis-mQTL	rs1227799	1.66E-16	19	37289551	ZNF790	eQTL	6.03E-04	1593153	NA	
cg01949993	1.71E-07	LAMC2	1	TSS200	cis-mQTL	rs6678888	9.05E-70	1	183155700	LAMC2	eQTL	8.51E-34	163105	LAMC1	
cg21769117	2.12E-07	CLIC1	6	TSS1500	trans-mQTL	rs548987	3.25E-08	6	25869371	SLC17A3	eQTL	8.42E-119	-496016	BDN3A	
					cis-mQTL	rs1794282	6.21E-06	6	32666526						
(continued on next page)															
CpG	EWAS p-value	CpG Gene	CpG Chr	CpG Group	Type	SNP	SNP-CpG P-value	SNP Chr	SNP Chr. Position	SNP Gene	Type	SNP-transcript P-value (GTEx)	SNP to TSS Distance	Transcript Gene	HGNC Name
-----------	--------------	----------	---------	-----------	--------	-----	-----------------	---------	-------------------	----------	--------------------	--------------------------	---------------------	------------------	-------------------------
cg20476159	2.71E-07	CTDPI	18	Body	cis-meQTL	rs111832832	3.6E-15	18	77454511	CTDPI	eQTL 2.35E-111	170882	HLA-DRB5	major histocompatibility complex, class II, DQ beta 2	
cg13209762	4.17E-07		1	Body	cis-meQTL	rs11660714	9.33E-05	18	77494911	CTDPI	eQTL 3.50E-56	72990	PSMB9	major histocompatibility complex, class II, DR beta 5	
cg24092282	4.27E-07		14	Body	cis-meQTL	rs7238206	3.27E-310	18	77444285	CTDPI	eQTL 7.37E-66	-152992	HLA-DQA1	major histocompatibility complex, class II, DQ alpha 1	
cg06040872	4.75E-07	CCL18	17	Body	NA	rs2000239	2.31E-53	1	53883126	SLC25A3P1	eQTL 3.74E-51	40814	HLA-DQB1-AS1	major histocompatibility complex, class II, DQ beta 5	
cg09901574	5.18E-07		16	NA		rs1137724	1.00E-08	14	54408633	NA	eQTL 1.17E-48	742058	SKIV2L	proteasome subunit beta 9	
cg09554876	5.61E-07	BEND5; AGBL4	1	Body; Body	NA	rs2000239	2.31E-53	1	53883126	SLC25A3P1	eQTL 1.29E-56	72990	PSMB9	major histocompatibility complex, class II, Dr alpha 1	
cg23426156	6.13E-07		8	NA		rs1137724	1.00E-08	14	54408633	NA	eQTL 1.29E-51	72990	HLA-DQA1	major histocompatibility complex, class II, DQ alpha 1	
cg21811896	6.81E-07	MEGF6	1	Body	NA	rs334881	4.71E-66	5	54520702	MCIDAS	eQTL 4.43E-04	267925	HLA-DMA	major histocompatibility complex, class II, DM alpha	
cg22668767	7.32E-07		5	Body	cis-meQTL	rs76925544	4.83E-05	5	54767838	PPLP1	cis-meQTL	3.87E-18	PSMB9	major histocompatibility complex, class II, DR beta 1	
													151622	HLA-DQA1	major histocompatibility complex, class II, DQ beta 5
													40814	C4B	complement C4B (Chido blood group)
													11321	HLA-DRB1	major histocompatibility complex, class II, DR beta 1
													605480	CYP21A1P	cytochrome P450 family 21 subfamily A member 1, pseudogene
													662904	CYP21A2	cytochrome P450 family 21 subfamily A member 2
													267925	HLA-DMA	14170
													267925	HLA-DMA	major histocompatibility complex, class II, DM alpha
													267925	HLA-DMA	cytochrome P450 family 21 subfamily A member 1
													54520702	MCIDAS	cytochrome P450 family 21 subfamily A member 2

(continued on next page)
Cpg	EWAS p-value	Cpg Gene	Cpg Chr	Cpg Group	Type	SNP	SNP- Cpg P-value	SNP Chr	SNP Chr. Position	SNP Gene	SNP Gene Type	SNP- transcript P-value (GTEx)	SNP to TSS Distance	Transcript Gene	HGNC Name
cg15199181	7.92E-07				cis-mQTL	rs823114	3.27E-310	1	205719532	SPAG4	20	Body			
					cis-mQTL	rs73080333	1.96E-44	1	205717676	NUCKS1	eQTL	1.50E-79	-101584	PM20D1	
					cis-mQTL	rs1772145	1.22E-08	1	205695695	NUCKS1	eQTL	1.50E-79	-123565	PM20D1	
					cis-mQTL	rs16656462	8.27E-07	1	205887981	SLC26A9	NA				
cg06586775	8.01E-07	SPAG4	20	Body		rs2425151	3.24E-38	20	34394541	PHF20	eQTL	1.36E-190	141860	CPNE1	
											eQTL	1.20E-52	261872	EPB41	
											eQTL	1.31E-16	394478	UQCC1	
cg05124308	1.24E-06	TMEM200B	1	TSS200	cis-mQTL	rs12097553	4.70E-05	1	29571222	PTPRU	eQTL	3.46E-05	357619	EPB41	
cg05868564	1.38E-06				cis-mQTL	NA					NA				
cg22801913	1.65E-06	C11orf49	11	Body		rs3740694	1.22E-11	11	47182926	C11orf49	eQTL	1.62E-22	-191327	MYBPC3	
						rs326224	3.26E-06	11	47255598	DDB2	eQTL	5.88E-26	-14859	ACP2	
cg24389488	1.74E-06	WNT3	17	Body		rs13428739	9.18E-99	2	46523934	EPAS1	NA				
cg21276379	2.01E-06	EPAS1	2	TSS1500	cis-mQTL	rs12617123	4.76E-07	2	46504962	NA	NA				
cg07328796	2.14E-06				cis-mQTL	rs11888416	1.41E-05	2	227335605	NA	NA				
cg18606495	2.57E-06	CLYBL	13	Body		rs2761154	6.58E-43	13	100443424	CLYBL	NA				
						rs8000435	1.25E-16	13	100310215	CLYBL	eQTL	1.87E-08	51292	CLYBL	
						rs12323058	2.61E-05	13	100360104	CLYBL	NA				
cg04239375	2.67E-06	NIPSAP3B	9	Body		rs62565987	5.62E-104	9	107525011	NA	cQTL	9.20E-19	15042	NIPSAP3A	
						rs4149341	2.21E-22	9	107544285	ABCA1	cQTL	9.20E-19	34316	NIPSAP3A	
						rs7027419	2.72E-05	9	107485577	LOC107987105	cQTL	9.20E-19	-24392	NIPSAP3A	
cg08273640	2.91E-06	TBC1D14	4	TSS1500		rs7682697	8.47E-27	4	6906099	NA	NA				
						rs4689053	1.10E-06	4	6909777	NA	NA				
						rs10020189	3.54E-06	4	6907052	NA	NA				

(continued on next page)
CpG	EWAS p-value	CpG Gene	CpG Chr	CpG Group	Type	SNP	SNP Chr. Position	SNP Chrs	SNP- CpG P-value	SNP to TSS Distance	Transcript Gene	HGNC Name*
cg19657351	3.01E-06	GCNT2	6	TSS200	cis-meQTL	rs9393357	9.26E-18	6	10521054	28598	GCNT2	glueosaminyl (N-acetyl) transferase 2 (I blood group)
cg00412337	3.07E-06	CLIC5	6	Body	meQTL	rs9266629	2.30E-07	6	31346822			
cg11124080	3.63E-06	EMX2OS	10	Body	meQTL	rs641760	1.46E-07	12	123518866		PITPM2	
cg01816936	4.05E-06	PITPM2	12	Body	meQTL	rs5013501	2.83E-05	9	10665525		NA	
cg07893584	4.13E-06	PTPRD	9	S'UTR; 1stExon; TSS200	meQTL	rs11959614	3.25E-08	5	1930990		NA	
cg11042505	4.35E-06		2	NA								
cg13143349	4.44E-06		5	cis-meQTL		rs56287698	2.84E-05	5	1958907		ENSG00000248994	NA
cg08463297	4.50E-06		17	NA								
cg25200958	4.51E-06	ARHGAP22	10	TSS200	cis-meQTL	rs17010948	5.48E-07	10	49812917		ARHGAP22	

Table 4 (continued)

CpG	EWAS p-value	CpG Gene	CpG Chr	CpG Group	Type	SNP	SNP Chr. Position	SNP Chrs	SNP- CpG P-value	SNP to TSS Distance	Transcript Gene	HGNC Name*
cg19657351	3.01E-06	GCNT2	6	TSS200	cis-meQTL	rs9393357	9.26E-18	6	10521054	28598	GCNT2	glueosaminyl (N-acetyl) transferase 2 (I blood group)
cg00412337	3.07E-06	CLIC5	6	Body	meQTL	rs9266629	2.30E-07	6	31346822			
cg11124080	3.63E-06	EMX2OS	10	Body	meQTL	rs641760	1.46E-07	12	123518866		PITPM2	
cg01816936	4.05E-06	PITPM2	12	Body	meQTL	rs5013501	2.83E-05	9	10665525		NA	
cg07893584	4.13E-06	PTPRD	9	S'UTR; 1stExon; TSS200	meQTL	rs11959614	3.25E-08	5	1930990		NA	
cg11042505	4.35E-06		2	NA								
cg13143349	4.44E-06		5	cis-meQTL		rs56287698	2.84E-05	5	1958907		ENSG00000248994	NA
cg08463297	4.50E-06		17	NA								
cg25200958	4.51E-06	ARHGAP22	10	TSS200	cis-meQTL	rs17010948	5.48E-07	10	49812917		ARHGAP22	

NA: Not a applicable (CpG not associated to meQTL, or meQTL is not associated with transcript abundance and not also an eQTL.
PDGene (meta-GWAS): 1 meta p < 0.05; 8 meta p = 1.78E-13.

* Ensembl_id when HGNC unavailable.
processes, shown in a graph of enriched GO terms that displays the connections between the GO terms (Fig. 2D).

Interestingly, of 45 me/eQTLs that were associated with abundance of 53 different transcripts in blood, 14 were also associated with the abundance of 22 different transcripts in one of three brain regions of interest: the substantia nigra, putamen basal ganglia, and frontal cortex (Table 5). Notably, fewer transcripts in the MHC class III region were related to the eQTLs (8 in the brain versus 18 in blood). There was also differential abundance of three transcripts, CYP21A1P, RAB29, and CPNE1, in the substantia nigra specifically related to three eQTLs. The PD GWAS SNP rs823114, which was associated with cg15199181, was also linked to expression of RAB29 in all three regions (substantia nigra, putamen basal ganglia, and frontal cortex) and PM20D1 in the frontal cortex.

3. Discussion

Depression is highly prevalent in Parkinson’s disease (PD) (Kasten et al., 2010). Yet, the etiology of this important non-motor feature, while likely multifactorial, is not well understood (Simuni and Sethi, 2008). To assess biologic disruptions associated with depression in PD, we used a population-based study of patients early in disease course and employed blood-based methylation to relate leukocyte composition and genome-wide white blood cell methylation levels to two indicators of depression: having a history of clinical depression and current depressive symptoms. Although the two depression measures were moderately correlated (R = 0.32), indicating some patients had both a history of clinical depression and current depressive symptoms, each indicator was associated with different methylation patterns. Nevertheless, both implicated immune system function involvement.

We first characterized PD patient immune cell profiles via immunomethyomics and methylation profiling (Kelsey and Wiencke, 2018). Levels of several leukocyte indicators suggested more immune activation in patients with current depressive symptoms than in either PD patients or controls without current depressive symptoms. This was perhaps most comprehensively shown by the neutrophil-to-lymphocyte ratio (NLR). The NLR, which is simply a ratio of lymphocyte to neutrophil counts, here measured with epigenetic surrogates as leukocyte markers, is often assessed as a measure of systemic inflammation and immune activation (Song et al., 2021). It reflects the balance between inflammation (acute or chronic), as measured by neutrophil levels, and adaptive immunity, measured by lymphocyte levels (Song et al., 2021). Interestingly, even our controls were showing an average NLR of 2.1, which is just below the “grey zone” of 2.3–3.0 that indicates immune activation and perhaps early signs of pathologic states (Zahorec, 2021). This likely reflects our aged study population, as age strongly predicts decreased immune function, increased immune activation, and a higher NLR (44, 45). Yet, the PD patients experiencing current depressive symptoms showed a markedly higher NLR on average (3.4) than either controls (2.1) or PD patients without depressive symptoms (2.8). Furthermore, the patients with current depressive symptoms also showed more accelerated epigenetic immune system aging, which is an indicator of biologic aging and inflamming aging. We have previously linked other immune system aging markers to PD as well (Paul et al., 2021). However, the current study demonstrates even more pronounced increases for PD patients experiencing current depressive symptoms. Interestingly, PD patients with a history of clinical depression prior to PD diagnosis had immune cell profiles similar to PD patients without a history of clinical depression. This result seems to indicate that the differences in leukocyte composition of the blood are related to current depressive symptoms and health states rather than reflecting a lasting pathology of clinical depression without current symptoms.

Although current depressive symptoms were necessary to see activated immune cell composition profiles, PD patients with a history of clinical depression showed differences in CpG levels across the genome that were unrelated to blood cell composition. We identified 35 specific CpGs associated at an FDR < 0.05 and 569 at a relaxed significance threshold for discovery (FDR < 0.10). Several of the CpGs are noteworthy, including cg23426156, cg11042505, and cg21769117. Two, cg23426156 and cg11042505, have been linked to the important neuropsychiatric disorder schizophrenia in three different study populations (Hannon et al., 2016, 2021). While cg23426156 is intergenic, it is in the transcription factor binding site for several factors (i.e., CEBPB, STAT3, JunD, GR, RFX5 (N-494), Rad21, p300 (N-15), SMC3 (a9263), Pol2-418b, c-Fos). The CpG cg21769117 on the other hand is in the transcription start site region of the gene CLIC1. CLIC1 and the chloride intracellular channel 1 (CLIC1) protein have been compellingly linked to neurodegeneration. For instance, during chronic inflammatory states in the central nervous system, CLIC1 increasingly accumulates in peripheral blood mononuclear cells, as shown in Alzheimer’s patients (Carlini et al., 2020). Proteomics analysis of plasma from PD patients and controls also found higher levels of CLIC1 in PD patients (Dong et al., 2019). CLIC1 has also been implicated in microglia-mediated β-amyloid peptide neurotoxicity (Skaper et al., 2013) and IL-1β biology (Domingo-Fernández et al., 2017), connecting the gene and its protein with inflammatory neurodegenerative processes. Our pathway and enrichment analyses further implicated several immune function pathways with a history of clinical depression among the patients, including among KEGG pathways, cytokine-cytokine receptor interaction and leukocyte transendothelial migration, according to Reactome pathways, immunoregulatory interactions between a lymphoid and a non-lymphoid cell, interleukin-4 and interleukin-13 signaling, and neutrophil granulization, and from Panther pathways, FAS (death receptor signaling on cytotoxic T cells and NK cells) and Integrin (principal cell adhesion receptors that mediate leukocyte migration and activation) signaling pathways.

To assess how these CpGs identified as associated with a history of depression in PD may be related to other biologic layers, we further linked CpGs to quantitative trait loci and determined whether meQTLs were eQTLs based on GTEx. We found that 45 single nucleotide polymorphisms (SNPs) were associated with 25 of the 35 CpGs associated at FDR < 0.05. Furthermore, many of these methylation QTLs were also eQTLs such that the SNP variant was related to both methylation levels of one of the EWAS CpGs and expression-based abundance of different transcripts measured in both blood and brain regions. This is expected, as many if not most cis-eQTLs occur at the same genomic location as a cis-meQTL (50). One of the best described functions of methylation is regulating gene expression (Moore et al., 2013) and our QTL analysis seems to support this, closely linking genetic variation, methylation, and expression. For instance, one of the top hits, cg26297819, is in the transcription start site region of TEF. One meQTL was associated with the CpG, rs202637. Not only has this SNP previously been associated with depression in PD as well (Paul et al., 2021). However, the current study demonstrates even more pronounced increases for PD patients experiencing current depressive symptoms. Interestingly, PD patients with a history of clinical depression prior to PD diagnosis had immune cell profiles similar to PD patients without a history of clinical depression. This result seems to indicate that the differences in leukocyte composition of the blood are related to current depressive symptoms and health states rather than reflecting a lasting pathology of clinical depression without current symptoms.

Although current depressive symptoms were necessary to see activated immune cell composition profiles, PD patients with a history of clinical depression showed differences in CpG levels across the genome.
Table 5
History of clinical depression EWAS CpGs and Functional Genetics. QTL analysis, methylation QTLs (cis-meQTL) SNPs → CpGs (Dutch Biobank) and SNPs → expression (GTEx). Expression based on transcripts in samples from three brain regions (putamen basal ganglia, frontal cortex, and substantia nigra) from GTEx.

CpG	EWAS p-value	Cpg Gene	Cpg Chr	Cpg Type	SNP SNP	SNP meQTL CpG p-value	SNP Chr	SNP Gene	SNP Chr	Dir. of SNP- expression beta	SNP to TSS Distance	Direct. of SNP-expression beta	Putamen Basal Ganglia eQTL P-value	Frontal Cortex eQTL P-value	Substantia Nigra eQTL P-value	Symbol	Name
cg26297819	1.14E-07	TEF	22	cis	rs202637	7.93E-07	+	22	-102819	–	3.84E-09	2.96E-18	5.87E-11	3.80E-06	CSDC2	cold shock domain containing C2	
cg16646909	1.36E-07	ZNF790	19	cis	rs2445878	5.23E-34	–	ZNF790	19	254385	+	1.15E-23	3.65E-16	ZNF529-AS1	1	long intergenic non-protein coding RNA 1535	
cg01949993	1.71E-07	LAMC2	1	cis	rs6678888	9.05E-70	–	LAMC2	1	327	+	3.94E-09	4.71E-10	LAMC2	laminin subunit gamma 2		
cg21769117	2.12E-07	CLIC1	6	trans	rs548987	3.25E-08	–	SLC17A3	6	-496016	–	3.17E-19	3.36E-19	BTN3A2	butyrophilin subfamily B member 1A		
cg22668767	7.32E-07	5	cis	rs334881	4.71E-66	–	MCIDAS	5	-8806	–	8.13E-20	3.59E-12	CCNO	cyclin O			

(continue on next page)
Table 5 (continued)

CpG	Gene	Type	Chr	Dist to SNP	Beta	P-value	Chr	Dist to SNP	Beta	P-value
cg15199181	PM20D1 peptidase M20 domain containing 1	cis	7	3.27E−10	0.05	1.95E−05	20	3.06E−04	0.05	6.90E−10
cg06387675	SPAA4	cis	6	3.26E−06	0.05	6.90E−10	22	3.06E−04	0.05	6.90E−10
cg00412337	DDB2	cis	11	3.26E−16	0.05	6.90E−10	9	3.06E−04	0.05	6.90E−10
cg00412337	DDB2	cis	12	3.26E−16	0.05	6.90E−10	10	3.06E−04	0.05	6.90E−10

Overall, the current study maps methylation signals associated with depression among Parkinson’s disease. The findings provide evidence of immune system involvement in depression among Parkinson’s patients, both for those experiencing current depressive symptoms and those with a history of clinical depression. The first expressed in leukocyte dopamine signaling. Several of these factors have been linked to PD experimentally. For instance, Rab29 has been shown to activate the Parkinson’s-associated LRRK2 kinase (Bonet-Ponce and Cookson, 2019; Purlyte et al., 2018). This association supports the notion that PD genetic risk loci may also influence symptom profiles among patients, which we have previously reported (Paul et al., 2018b) and also observe here with the PD GWAS SNP rs823114 influencing the methylation levels of cg15199181. Importantly, our findings suggest that part of the genetic risk may be conferred through an influence on mechanisms involving methylation and expression levels.

A history of clinical depression in PD was also related to a second DMR in chromosome 6 in the MHC class III region, near cg21769117, the CpG in the CLIC1 gene. The CpG was associated with four meQTLs that are also eQTLs associated with expression levels of 18 different transcripts in blood and 9 different transcripts in the brain (basal ganglia, frontal cortex, or substantia nigra). These transcripts include CLIC1, many other immune related proteins (HLAs, complement proteins), and notably CYP21A1P expression in the substantia nigra, which we determined based on our eQTL analysis with GTEx. cg00412337 in the nearby CLIC5 gene was also positively associated with depression. While these results are interesting, the complexity of the MHC class III region with hundreds of genes, requires additional evidence before drawing conclusions about its effects on depression in PD.

When we considered the complete gene set from all implicated CpGs, QTLs, and blood-based transcripts, all enriched biologic processes were related to immune function (e.g., interferon-gamma-mediated signaling pathway, antigen processing and presentation pathways, and immune response-activating pathways). Many of the 21 transcripts expressed in the brain regions were also related to lymphocyte mediated immunity and adaptive immune response, along with biosynthesis of mineralocorticoids and glucocorticoids via CYP21A2 and its pseudogene CYP21A1P. Glucocorticoids are immunoregulatory hormones generally synthesized in the adrenal cortex, where most CYP21A2/CYP21A1P expression occurs (Ahmed et al., 2019). However, glucocorticoid synthesis has been observed in the brain (Ahmed et al., 2019), seemingly allowing local regulation of immunologic response, and the GTEx analysis indicates both CYP21A2 and CYP21A1P are expressed in the basal ganglia, frontal cortex, and substantia nigra, with some variation in expression determined by eQTLs of interest. Furthermore, CYP21A1P is a transcribed pseudogene, or ancestral copy of the protein-coding gene that are thought to have lost the functional product of their parental gene due to accumulation of mutations (Milligan and Lipovich, 2015). While not all pseudogenes are transcribed, for those that are, they can provide a key mechanism for regulating the parental gene’s expression (Milligan and Lipovich, 2015; Li et al., 2013). Overall, this differentially methylated region associated with clinical depression in PD seems to have genetic contributors (meQTLs/eQTLs) related to expression of important immune genes both peripherally and centrally.

Ultimately, our analysis demonstrates the dynamic and interdependent nature of biologic systems. Our EWAS linked distinct CpGs to depression among PD patients, functional genomics and QTL mapping broadened the scope of our investigation and strongly implicated the immune system in neurodegeneration and depression in PD. In the future, multi-omics measurements from the same study participants may allow us to link these QTLs and methylation levels to measured transcripts specifically in PD patients. This analysis also suggests that blood is an important tissue that provides clues into mechanisms that contribute to depression and neurodegenerative disease. Our analysis strongly implicated immune system function as being disrupted among PD patients with a history of clinical depression as suggested by differential leukocyte methylation.

Overall, the current study maps methylation signals associated with depression among Parkinson’s disease. The findings provide evidence of immune system involvement in depression among Parkinson’s patients, both for those experiencing current depressive symptoms and those with a history of clinical depression. The first expressed in leukocyte
composition and the second in methylation level differences in specific immune system related chromosomal areas. These may be both a consequence of disease pathogenesis and a contributor to its progression. Future research should investigate whether such signals are specific to PD or also related to depression in other neurodegenerative disorders, such as Alzheimer’s.

PD is a highly heterogeneous disorder with patients experiencing different symptom profiles, often including depression. Comprehensively mapping biologic pathways and perturbations associated with distinct symptoms may shed light onto PD’s complex clinical heterogeneity and etiology.

4. Methods

4.1. Study population

This study was based on participants of the Parkinson’s disease, Environment, and Genes (PEG) study (Narayan et al., 2013), a population-based PD study from three counties in California’s Central Valley (Kern, Fresno, and Tulare). PEG was designed as a case-control study to investigate PD etiology (2001–2007 & 2010–2016; n = 849 PD patients early in disease; n = 1021 population-based controls). Further information on the patient population has been published (Duarte Folle et al., 2019). Informed consent was obtained from all subjects and the study was approved by the UCLA institutional review board. For this analysis, data were restricted to 465 PD patients and 227 controls of European ancestry with methylation data. All patients in the study were examined by movement disorder specialists (lead by J.B.) at least once and confirmed as having probable idiopathic PD based on published criteria (Hughes et al., 1992a, 1992b). Demographic characteristics for PD patients with and without methylation data were similar, including average age 70.4 (SD = 11.7) vs 70.5 (SD = 9.8) and 62% vs 65% male. We assessed two indicators of depression, first, having a history of clinical depression. This indicator was based on self-reported physician diagnosis during interviews conducted by trained study staff. Second, we assessed current depressive symptoms at the time of blood draw, measured by a self-administered 15-item geriatric depression scale (GDS).

4.2. Methylation and QTL analysis

For methylation, DNA was extracted from peripheral whole blood at the baseline visit for all study participants. We profiled and processed DNA samples using the Illumina Infinium 450k platform (486k CpGs) with standard settings. We used k nearest neighbors for imputation from the Impute R package, the background normalization method from the Genome Studio software to process DNA methylation β values, and corrected for type I/type II probe bias with BMIQ using the champ. tide extension (SBE_rs) (104,206 CpGs), and CpGs that were in the X or Y Genome Studio software to process DNA methylation including average age 70.4 (SD = 9.8) vs 70.5 (SD = 11.7) vs 70.5 (SD = 9.8) and 62% vs 65% male. We assessed two indicators of depression, first, having a history of clinical depression. This indicator was based on self-reported physician diagnosis during interviews conducted by trained study staff. Second, we assessed current depressive symptoms at the time of blood draw, measured by a self-administered 15-item geriatric depression scale (GDS).

Mean differences in cell composition markers between groups (PD patients with depression versus PD patients without depression and controls without depression) were compared with a Wilcoxon test. Using logistic regression models controlling for covariates listed below, we confirmed the mean comparisons, i.e., associations remained after confounder adjustment. For the epigenome-wide association analysis (differentially methylation positions, DMP), we used the meffil R package to test for association between the binary depression indicators and each CpG site using linear regression models fit with limma (Ritchie et al., 2015). To control for potential confounding, we included the following covariates: age at blood draw, sex, smoking, number of years with PD at blood draw, AIMS-based Caucasian fractional ancestry, an indicator for PEG study wave, and blood cell composition (CD4T and neutrophil proportions). We also included an indicator for pesticide exposure in sensitivity analysis. With the EWAS DMP associations, we next performed gene set enrichment analysis using the methylGSA R package, which accounts for the number of CpGs per gene included the Illumina 450k array. We assessed enrichment of KEGG pathways, Reactome pathways, and Panther pathways. Multiple testing for both the DMP EWAS and GSEA was adjusted for with a false discovery rate (FDR). To assess differentially methylated regions (DMR), we used the ChAMP R package, applying bumphunter and 1000 bootstraps to estimate regions for which the methylation genomic profile deviates between groups. The DMR function detects differentially methylation regions between two populations (i.e., patients with and without depression), and returns the DMRs and estimated p-values. Multiple testing was adjusted for with a family-wise error rate (FWER). For gene set enrichment based on all genes implicated by the EWAS and QTL analysis, we used WebGestalt (WEB-based Gene Set Analysis Toolkit), implemented via R. We assessed over-representation of the gene set for gene ontology terms and network topology-based analysis.

Ethics approval and consent to participate

The PEG study was approved by the UCLA Institutional Review Board (IRB# 11–001530) and informed consent was obtained from all individuals. Our research conformed to the Declaration of Helsinki.
Availability of data and materials

The DNA methylation data is available in the GEO repository, accession numbers GSE72774 and GSE72776.

Funding

National Institute on Aging (R01AG07204401, F32AG063442), National Institute of Environmental Health Sciences (grant number R21ES032593, 2R01ES010544, R21ES024356, R00ES028743).

Author contributions

KCP performed statistical analysis. All authors contributed to data interpretation and writing/editing the manuscript. All authors read and approved the final manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Data availability

The DNA methylation data is available in the GEO repository, accession numbers GSE72774 and GSE72776.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bbih.2022.100530.

References

Aarsland, D., Pilhagen, S., Ballard, C.G., Eht, U., Svenningsson, P., 2012. Depression in Parkinson disease - epidemiology, mechanisms and management. Nat. Rev. Neurol. 8 (1), 35–47.

Aguet, F., Brown, A.A., Castel, S.E., Davis, J.R., He, Y., Jo, B., et al., 2017. Genetic effects on gene expression across human tissues. Nature 550 (7675), 643–649.

Ahmed, A., Schmidt, C., Brunner, T., 2019. Extra-adrenal glucocorticoid synthesis in the peripheral tissues within individuals. Transl. Psychiatry 9 (1), 1–10.

Alvarez-Mateo, J., Cordero, M., de la Hoz, F., et al., 2019. The DNA methylation data is available in the GEO repository, accession numbers GSE72774 and GSE72776.

Grosch, J., Winkler, J., Kohl, Z., 2016. Early degeneration of both dopaminergic and serotonergic axons – a common mechanism in Parkinson’s disease. Front. Neurol. 7 (DEC2016), 1573–1583.

Hannan, E., Dempster, E., Viana, J., Burrage, J., Smith, A.R., Macdonald, R., et al., 2016. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 17 (1), 1–16.

Hannan, E., Dempster, E.L., Mansell, G., Burrage, J., Bass, N., Bohlken, M.M., et al., 2021. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. Elife 10.

Hannum, G., Guinney, J., Zhao, L., Zhang, I., Hughes, G., Sadda, S.V., et al., 2013. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49 (2), 359–367.

Hong, S., Prokopchenko, D., Debecic, V., Kilpert, F., Bos, I., B Vos, S.J., et al., 2020. Genome-wide Association Study of Alzheimer’s Disease CSF Biomarkers in the EMIF-AD Multimodal Biomarker Discovery Dataset. bioRxiv.

Horvath, S., Levine, A.J., 2015. HIV-1 infection accelerates age according to the epigenetic clock. JID (J. Infect. Dis.) 212 (10), 1563–1573.

Houseman, E.A., 2014. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics 30 (10), 1573–1581.

Hua, P., Liu, W., Kuo, S.H., Zhao, Y., Chen, L., Zhang, N., et al., 2012. Association of Tef polymorphism with depression in Parkinson disease. Mov. Disord. 27 (13).

Hughes, A.J., Ben-Shlomo, Y., Daniel, S.E., Lees, A., 1992a. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184.

Kasten, M., Kertelge, L., Brüggemann, N., van der Vegt, J., Schmidt, A., Tadic, V., et al., 2010. Nonmotor Symptoms in Genetic Parkinson Disease. Archives of Neurology. Kelsey, K.T., Wiencek, J.K., 2018. Immunomethyllation: a novel cancer risk prediction tool. In: The American Thoracic Sociaty.

Kostic, V.S., Agosta, F., Petrovic, I., Galantucci, S., Spica, V., Jecmenica-Lukic, M., et al., 2010. Regional patterns of brain tissue loss associated with depression in Parkinson disease. Neurology 75 (10).

Krieger, D.F., Nierengelt, C.M., Joo, E.J., Shekhtman, T., Kelsoe, J.R., 2009. Circadian polymorphisms associated with affective disorders. J. Circadian Rhythms 7.

Law, P.F., Holland, M.L., 2019. DNA methylation at the crossroads of gene and environment interactions. Essays Biochem. 63.

Li, W., Yang, W., Wang, X.J., 2013. Pseudogenes: pseudo or real functional elements. J. Genetics Genomics 40.

Lieberman, A., 2006. Depression in Parkinson’s disease - A Review, vol. 13. Acta Neurologica Scandinavica.

Lill, C.M., Roehr, J.T., McQueen, M.B., Kavvoura, F.K., Bagade, S., Schjeide, B.M.M., et al., 2012. Comprehensive review synthesis and systematic meta-analyses in Parkinson’s disease genetics: the PDgene database. PLoS Genet. 8 (3).

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., et al., 2013. The 1000 Genomes Project Consortium. The 1000 Genomes Project. Nature 491 (7421), 56–61.

Maes, M., 1995. Evidence for an immune response in major depression: a review and critical analysis. In: Progress in Neuropsychopharmacology and Biological Psychiatry, 19.

Mann, T., 2005. Serotonin, α-synuclein, and SHANK: a common mechanism in Parkinson’s disease. Front. Neurosci. 10 (DEC2016), 1573–1583.

Nalls, M.A., Pankratz, N., Lill, C.M., Do, C.B., Hernandez, D.G., Saad, M., Singleton, A.B., et al., 2014. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson disease. Nat. Genet. 46 (9), 989–993.

Narayan, S., Liew, Z., Paul, K., Lee, P.C., Sinheimer, J.S., Bronstein, J.M., et al., 2013. Household organophosphate pesticide use and Parkinson’s disease. Int. J. Epidemiol. 42 (3), 813–824.

Pace, T.W.W., Miller, A.H., 2009. Cytokines and glucocorticoid receptor signaling: relevance to major depression. In: Annals of the New York Academy of Sciences.

Paul, K.C., Chung, V.H., Cockburn, M., Bronstein, J.M., Horvath, S., 2018a. Organophosphate Pesticides, α-synuclein and Genomic-wide DNA Methylation. Science of the Total Environment.

Paul, K.C., Schulz, J., Bronstein, J.M., Lill, C.M., Ritz, B.R., 2018b. Association of polygenic risk score with cognitive decline and motor progression in Parkinson disease. JAMA Neurology 75 (10).

Paul, K.C., Binder, A.M., Horvath, S., Kasten, M., Ritz, B., et al., 2020. Accelerated hematopoietic mitotic aging measured by DNA methylation, blood cell lineage, and Parkinson’s disease. BMC Genom. 22 (1).
Purlyte, E., Dhekne, H.S., Sarhan, A.R., Gomez, R., Lis, P., Wightman, M., et al., 2018. Rab29 activation of the Parkinson’s disease-associated LRRK2 kinase. EMBO J. 37 (3).

Reale, M., Iarlori, C., Thomas, A., Gambi, D., Perfetti, B., di Nicola, M., et al., 2009. Peripheral cytokines profile in Parkinson’s disease. Brain Behav. Immun. 23 (1).

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., et al., 2015. Limma powers differential expression analyses for RNA sequencing and microarray studies. Nucleic Acids Res. 43 (7).

Ritz, B.R., Paul, K.C., Bronstein, J.M., 2016. Of pesticides and men: a California story of genes and environment in Parkinson’s disease. Curr. Environ. Health Rep. 3 (1).

Scifo, E., Pabba, M., Kapadia, F., Ma, T., Lewis, D.A., Tseng, G.C., et al., 2018. Sustained molecular pathology across episodes and remission in major depressive disorder. Biol. Psychiatr. 83 (1).

Simuni, T., Sethi, K., 2008. Nonmotor manifestations of Parkinson’s disease. Ann. Neurol. 64 (2), S65–S80. Dec.

Skaper, S.D., Facci, L., Giusti, P., 2013. Intracellular ion channel CLIC1: involvement in microglia-mediated β-amyloid peptide(1-42) neurotoxicity. Neurochem. Res. 38 (9).

Slavich, G.M., Irwin, M.R., 2014. From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull. 140 (3).

Song, M., Graubard, B.I., Rabkin, C.S., Engels, E.A., 2021. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci. Rep. 11 (1).

Thompson, A.W., Liu, H., Hays, R.D., Katon, W.J., Rausch, R., Díaz, N., et al., 2011. Diagnostic accuracy and agreement across three depression assessment measures for Parkinson’s disease. Park. Relat. Disord. 17 (1), 40–45.

Wang, J.Q., Mao, L., 2019. The ERK Pathway: Molecular Mechanisms and Treatment of Depression, vol. 56. Molecular Neurobiology.

Weintraub, D., Newberg, A.B., Cary, M.S., Siderowf, A.D., Moberg, P.J., Kleinman-Plisner, G., et al., 2005. Striatal dopamine transporter imaging correlates with anxiety and depression symptoms in Parkinson’s disease. J. Nucl. Med. 46 (2).

Zahorec, R., 2021. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratislava Med. J. 122 (7).

Zannas, A.S., 2019. Epigenetics as a key link between psychosocial stress and aging: concepts, evidence, mechanisms. Dialogues Clin. Neurosci. 21 (4).