Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors

Jonathan Strosberg, Larry Kvols

Somatostatin analogs were initially developed for the control of hormonal syndromes associated with neuroendocrine tumors (NETs). In recent years, accumulating data has supported their role as antiproliferative agents, capable of stabilizing tumor growth in patients with metastatic neuroendocrine malignancies, including carcinoid and pancreatic endocrine tumors. A phase III, randomized, placebo-controlled trial has now demonstrated that octreotide long-acting repeatable (LAR) 30 mg can significantly prolong time to tumor progression among patients with metastatic midgut NETs regardless of functional status, chromogranin A level or age. In addition to significantly lengthening time to tumor progression in the overall study population, subset analysis suggests that patients with low tumor burden are most likely to experience disease stabilization with octreotide LAR 30 mg, supporting the early use of octreotide LAR in patients with metastatic disease. Further research efforts are underway to evaluate the use of somatostatin analogs as antiproliferative agents in other types of gastroenteropancreatic-NETs. Ongoing studies are also evaluating novel somatostatin analogs and somatostatin analogs in combination with other anti-tumor therapies.

Key words: Somatostatin analogues; Neuroendocrine tumors; Antiproliferative

INTRODUCTION

The human hormone somatostatin was first isolated in 1973 and identified as a hypothalamic inhibitor of growth hormone[1-4]. It was subsequently discovered in multiple tissues, including the central nervous system, endocrine system and gastrointestinal tract[3]. Somatostatin has been characterized as a universal endocrine “off-switch” due to its exocrine, endocrine, paracrine and autocrine inhibitory effects[5-7]. In the digestive tract, it reduces secretion and motility, decreases portal blood flow, inhibits gallbladder contraction and reduces the secretion of other gastrointestinal hormones[8]. The effects of somatostatin are mediated through interaction with five somatostatin receptors (sst1-5)[9], belonging to a family of G-protein coupled receptors with seven transmembrane domains.

The clinical utility of native human somatostatin is limited by its short half-life of approximately two minutes. Both bioactive forms of the hormone, the fourteen-peptide somatostatin-14 and a C-terminally extended form, somatostatin-28, contain multiple enzymatic cleavage sites resulting in rapid circulatory degradation[6]. In order to improve the pharmacokinetic profile, synthetic somatostatin analogs were developed for the treatment of various gastrointestinal and endocrine disorders.
analogs (SSAs) have been developed by shortening the polypeptide chain while retaining binding affinity to somatostatin receptors (Figure 1)\[10\]. The two commercially available analogs, octreotide and lanreotide, are octapeptides that bind with high affinity to somatostatin receptor subtype 2 (sst2) and with moderate affinity to sst3 (Table 1).

Octreotide has been used in clinical practice since data emerged in the 1980s confirming its ability to palliate carcinoid syndrome\[14\], as well as other hormonal syndromes caused by metastatic gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Octreotide was initially available in an immediate-release formulation suitable for deep subcutaneous or intravenous administration\[15\]. Octreotide subcutaneous (sc) has been tested primarily at doses ranging from 100 to 500 µg two to three times daily. During the past decade, a long-acting repeatable (LAR) depot formulation of octreotide (Sandostatin LAR\®) has been available, which allows monthly intramuscular dosing. Octreotide LAR has demonstrated similar efficacy to octreotide sc in the control of flushing and diarrhea associated with carcinoid syndrome\[16\]. The dose of octreotide sc and octreotide LAR should be titrated per symptom control for optimal patient care\[17\]. A second somatostatin analog, lanreotide, was licensed in Europe in 1998 for the treatment of symptoms associated with neuroendocrine (particularly carcinoid) tumors. A long-acting formulation of lanreotide (Somatuline Autogel\®)\[18\] has also been developed as a deep subcutaneous injection.

Early on, clinical trials of SSAs tested their ability to inhibit the release of neuroendocrine hormones such as serotonin, glucagon, insulin, gastrin and vasoactive intestinal peptide (VIP)\[19,20\]. These trials formed the basis for the approval of octreotide and lanreotide as antisecretory agents indicated for treatment of hormonally active GEP-NETs. It was not until several years after the approval of octreotide that evidence of antineoplastic activity emerged. Although objective radiographic responses associated with SSAs were rare, many cases of prolonged disease stability were documented in the literature, leading to the hypothesis that SSAs exert an inhibitory effect on tumor growth. Recently, this hypothesis was tested in a Phase III, randomized, placebo-controlled clinical trial evaluating octreotide LAR 30 mg. This review summarizes the preclinical and clinical evidence supporting the role of SSAs as antiproliferative agents in the treatment of patients with GEP-NETs. To date, most data (including the results from the only phase III randomized, placebo-controlled trial) have been generated in studies evaluating octreotide sc and LAR.

BIological BASIS FOR THE ANTIPROLIFERATIVE EFFECTS OF SSAS

Over the past two decades there has been significant progress in our understanding of the molecular basis for the antiproliferative effects of somatostatin and its analogs. Antitumoral activity appears to be mediated via direct and indirect mechanisms. Direct mechanisms involve the activation of somatostatin receptors on tumor cells leading to modulation of intracellular signaling transduction pathways. Multiple *in vitro* studies using cell lines transfected with somatostatin receptors indicate that all receptor subtypes (sst1-5) may mediate inhibition of cell proliferation\[21\], whereas specific receptor subtypes (sst2-4) may mediate apoptosis (Table 2)\[21,22\]. These actions appear to be regulated primarily via the MAP-kinase signaling pathway and through activation of phosphotyrosine phosphatases (Figure 2)\[22-24\]. Indirect antiproliferative mechanisms include inhibition of mitogenic growth factors such as insulin-like growth factor (IGF), as well as inhibition of tumor angiogenesis through interaction with somatostatin receptors on endothelial cells and monocytes\[25\].

Activation of phosphotyrosine phosphatases

Several phosphotyrosine phosphatases (PTPs), including SHP-1 and SHP-2, have emerged as important regulators of intracellular signaling pathways\[25\]. Somatostatin receptor-mediated activation of SHP-1 results in arrest of cell proliferation in various cell lines, including cells derived from pancreatic, breast and prostate carcinomas\[21,22\]. In pituitary adenoma cells, activation of sst2 inhibits PI3 kinase activity and causes cell growth arrest via stimulation of SHP-1\[21\]. The enzymatic activity of SHP-1 has also been implicated in sst1-dependent apoptosis in transfected Chinese Hamster Ovary (CHO) cells\[14\]. Stimulation of SHP-1 in sst1-expressing CHO cells has led to G1 cell cycle arrest via induction of the cyclin-dependent kinase inhibitor p27\[26\]. SHP-2 has also been identified as a mediator of the antiproliferative effects of somatostatin receptors,
primarily through inactivation of tyrosine kinase receptors for insulin and epidermal growth factors. Moreover, activation of PTPs has been shown to down-regulate Raf-1 and block the MAP-kinase pathway.

Modulation of the mitogen activated protein-kinase pathway

Both inhibition and stimulation of the mitogen activated protein (MAP)-kinase pathway have been linked to the antiproliferative effects of somatostatin and its analogs. In a glioma cell line, the receptor-like PTP, PTPeta, mediated the antiproliferative effects of somatostatin through inhibition of ERK1/2. Conversely, another study of sst1-expressing CHO cells demonstrated that somatostatin robustly activated MAP-kinase, which in turn enhanced the expression of the cyclin-dependent kinase inhibitor p21, thereby inhibiting cell proliferation. Another study in CHO cells demonstrated that activation of p38 MAP-kinase via sst2 and sst3 mediated the inhibitory effects of somatostatin on fibroblast growth factor induced proliferation.

Indirect antiproliferative mechanisms

Suppression of tumor growth may occur via inhibition of various circulating growth factors, including insulin-like growth factor (IGF), epidermal growth factor (EGF) and growth hormone (GH). Inhibition of GH is thought to be mediated primarily via sst2 and sst3, which are strongly expressed in the anterior pituitary. Octreotide has been shown to suppress circulating levels of IGF-1, both via suppression of pituitary secretion of GH as well as through direct inhibition of IGF-1 production in the liver.

The antiangiogenic effects of octreotide have been demonstrated in multiple in vitro tumor models. Octreotide has been shown to inhibit proliferating endothelial cells that over-express sst2 and sst5. The primary mechanism of angiogenesis inhibition may be suppression of endothelial nitric oxide release. Inhibition of circulating vascular-endothelial growth factor (VEGF) appears to also play a role in suppression of peritumoral vessel growth.

EARLY CLINICAL EVIDENCE FOR THE ANTIPROLIFERATIVE EFFECTS OF SSAS

Since the introduction of SSAs, multiple phase II trials and retrospective series have demonstrated that SSA treatment is associated with prolonged survival and disease stabilization in a large proportion of patients. For example, a single-institution retrospective study of 146 patients with metastatic mid-gut NETs, 91% of whom received long term octreotide treatment, demonstrated a 5-year survival rate of 75% (compared to 19% historically). Additionally, an analysis of the US-based Surveillance, Epidemiology and End Results (SEER) database found a significant increase in survival from 1988 to 2004 compared with 1973 to 1987, coinciding with the introduction of octreotide.

In general, early clinical studies evaluating the dis-
Ease-stabilizing effect of SSAs in patients with GEP-NETs are characterized by their lack of randomized design and enrollment of heterogeneous populations of patients with GEP-NETs. Although objective radiographic response rates have been rare (generally < 5%), the rate of tumor stabilization observed in most studies has ranged from 40%–60%, with higher rates observed in patients without documented disease progression at onset of treatment[58].

Among the first prospective studies documenting the antiproliferative effects of SSAs in GEP-NETs was one conducted by the German Sandostatin Study Group[55]. In this study, 103 patients with metastatic carcinoid and pancreatic endocrine tumors were treated with octreotide 200 µg thrice daily until evidence of radiographic progression. Among patients who had disease progression documented at treatment outset, the rate of disease stability lasting at least 3 mo was 37%, whereas among patients with documented stable disease at treatment outset, disease stability lasting at least 12 mo was documented in 54% of patients[55]. No objective tumor responses were observed. Another phase II clinical trial testing octreotide as an antiproliferative agent in 34 patients with progressive metastatic NETs demonstrated a disease stabilization rate of 50% lasting a median of 5 mo[59].

The antiproliferative effect of intramuscular lanreotide SR 30 mg every 10 or 14 d was evaluated in a phase II trial of 46 patients with carcinoid and pancreatic endocrine tumors. Two patients (4%) achieved an objective radiographic response while 19 patients (41%) experienced stable disease for a mean duration of 9.5 mo[60]. In another phase II study of lanreotide SR 30 mg in 55 patients with GEP-NETs (48 with carcinoid tumors, six with gastrinomas and one with a VIPoma), 7% of 31 assessable patients achieved a partial response and 81% experienced disease stability[61]. In one study of patients with progressive tumors, participants received either octreotide LAR 30 mg or lanreotide SR 60 mg (this study considered all arm patients). In the octreotide LAR 30 mg group, 14 (45%) achieved disease stability vs 55% who continued to progress radiographically[62]. Overall survival was considerably prolonged among patients with stable vs progressive disease. In multivariate analysis, pancreatic endocrine tumors appeared significantly less likely to achieve disease stabilization compared to intestinal carcinoid tumors. Extra-hepatic metastases were also associated with a poor prognosis. Table 3 summarizes the results of multiple non-randomized clinical trials evaluating the antineoplastic effects of octreotide and lanreotide in GEP-NETs.

THE PROMID TRIAL

Although providing initial evidence for the antitumor effects of SSAs, studies described in the previous section have a number of features that prevent them from providing conclusive evidence. Examples of these features include relatively small patient cohorts, lack of a randomized placebo control group, and analysis of heterogeneous populations. As such, to prove or to disprove an antiproliferative effect of octreotide LAR 30 mg, the PROMID (Placebo-controlled, Prospective, Randomized study in patients with metastatic neuroendocrine midgut tumors) study was initiated. This randomized, double-blind, placebo-controlled, phase III trial, was among the very few randomized trials performed in patients with this rare tumor type. To avoid confounding variables, only patients with well-differentiated inoperable or metastatic midgut tumors were included. Additionally, octreotide LAR 30 mg was the only dose of octreotide LAR evaluated.

High-level evidence of the antiproliferative effects of octreotide emerged after publication of the PROMID trial[63]. Eighty-five participants with well-differentiated carcinoid tumors originating in the distal intestine and proximal colon were randomized to receive either octreotide LAR 30 mg or placebo until radiographic evidence of progression or death. The primary endpoint was time to tumor progression. Most patients (75%) had evidence of somatostatin receptor expression as evidenced by radiotracer uptake on Octreoscan. Nearly half of patients (38%) manifested the carcinoid syndrome (flushing and/or diarrhea associated with elevation in urine 5-HIAA). Only patients with mild carcinoid syndrome who tolerated flushing without intervention or responded to treatment with loperamide and/or cholestyramine in cases of diarrhea were included.

Median time to tumor progression was 14.3 mo in the octreotide LAR 30 mg group vs 6.0 mo in the placebo group ($P = 0.000072$, Figure 3). This significantly lengthened time-to-tumor progression was seen in the overall study population, regardless of tumor functionality, chromogranin A level or age. At 6 mo, tumor progression was observed in 24% of patients on the octreotide LAR 30 mg arm vs 66% of patients receiving placebo ($P = 0.0079$). Serious adverse events were nearly evenly balanced (11 patients in the octreotide LAR 30 mg arm and 10 patients in the placebo arm). On multivariate analysis, the highest rates of disease stabilization were observed in patients

| Table 3 Summary of non-randomized clinical trials evaluating the antiproliferative effect of somatostatin analogs n (%) |
|-----------------|-----------------|-------|-------|-------|
Analog	**Author**	**n**	**CR/PR**	**SD**	**PD**
Patients with documented tumor progression					
Lanreotide	Fais et al[60], 2003	22	1 (4)	7 (32)	14 (64)
Lanreotide	Aparicio et al[61], 2001	35	1 (3)	20 (57)	14 (40)
Octreotide	Arnold et al[62], 1993	52	0 (0)	19 (36)	33 (63)
Octreotide	Saltz et al[63], 1993	34	0 (0)	17 (50)	17 (50)
Octreotide	di Bartolomeo et al[64], 1996	58	2 (3)	27 (46)	29 (50)
Octreotide	Ricci et al[65], 2000	15	1 (6)	6 (40)	8 (53)
CR: Complete response; PR: Partial response; SD: Stable disease; PD: Progression disease.					
with low hepatic tumor load (< 10%) and resected primary tumor, however both of these subgroups contained the majority of study patients. Even patients with higher hepatic tumor burden (> 10%) experienced a near doubling in time to progression on the octreotide LAR arm of the study. The small number of deaths in both treatment arms (seven in the octreotide LAR 30 mg arm; nine in the placebo arm) precluded any analysis of differences in survival.

FUTURE DIRECTIONS

Novel somatostatin analogs

NETs generally express multiple somatostatin receptors, all of which may mediate the antiproliferative effects of SSAs. These receptor subtypes can undergo heterodimerization with each other and with other receptor families (such as the dopamine receptor family), enhancing their binding affinities and internalization. Thus, novel SSAs that bind to multiple receptor subtypes as well as analogs capable of binding to different families of receptors may prove to be effective antisecretory and antiproliferative agents in patients refractory to octreotide or lanreotide.

Pasireotide is one such novel somatostatin analog; it binds avidly to four of the five somatostatin receptors (sst1,2,3 and sst5). Compared with octreotide, pasireotide has a 40-, 30- and 5-fold higher binding affinity for sst1, sst3 and sst5, and a slightly lower affinity for sst2. Pasireotide also has a 2-times higher binding affinity for sst4 than endogenous somatostatin. In an *in vitro* study evaluating the use of octreotide and pasireotide on HEK293 cells expressing somatostatin receptor subtype sst1 on the cell membrane, treatment with pasireotide resulted in an internalization of sst1 receptors at 30 min whereas treatment with pasireotide did not lead to sst1 internalization. Such findings may suggest that a persistent and more durable efficacy could be obtained with pasireotide.

An open-label trial evaluated the activity of pasireotide sc in patients with carcinoid syndrome whose symptoms (flushing and diarrhea) were inadequately controlled with octreotide LAR. Preliminary data indicated activity in this refractory population. Future clinical trials are being designed to test the antiproliferative effects of pasireotide in neuroendocrine carcinomas. Other compounds capable of interacting with sst2 as well as with the dopamine D2 receptor (DA2D2) are in clinical development.

Radioactive labeling of SSAs is another promising approach to treatment of neuroendocrine malignancies which express high levels of somatostatin receptors. Early clinical trials employing In-pentetreotide produced limited objective responses, probably due to the small particle range and short tissue penetration of Auger electrons emitted by the In isotope. The next generation of radiolabeled SSAs used Y-DOTATOC, a β-particle emitter with a tissue range of approximately 12 mm. Objective response rates of 10%-30% were reported in phase I and II clinical trials. Dose-limiting side effects included bone marrow and renal toxicity.

The latest research efforts in radiolabeled SSAs have focused on Lu octreotate, a β- and γ-emitting radionuclide with a shorter range of tissue penetration (2 mm) than Y. A recent phase II clinical trial reported an objective radiographic response rate of 30% among 310 patients with GEP-NETs, and a median progression-free survival duration of 40 mo.

CONCLUSION

SSAs were initially developed as antisecretory agents used primarily for the control of hormonal syndromes associated with NETs. In recent years, accumulating laboratory and clinical data has supported their role as antiproliferative agents, capable of stabilizing tumor growth in a large proportion of patients with metastatic carcinoid and pancreatic endocrine tumors. The recently-published PROMID study provides high-level evidence validating the role of octreotide LAR 30 mg as an antiproliferative agent in patients with metastatic carcinoid tumors of the midgut. Subset analysis suggests that patients with low tumor burden are most likely to experience disease stabilization, supporting the early use of octreotide LAR 30 mg in patients with metastatic disease. Further research efforts are underway to evaluate the use of novel SSAs, SSAs as antiproliferative agents in other types of GEP-NETs, and SSAs in combination with other anti-tumor agents.

REFERENCES

1. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973; 179: 77-79

2. Brazeau P, Guillemin R. Editorial: Somatostatin: newcomer from the hypothalamus. N Engl J Med 1974; 290: 963-964

3. Reichlin S. Somatostatin. N Engl J Med 1983; 309: 1495-1501

4. Reichlin S. Somatostatin (second of two parts). N Engl J Med 1983; 309: 1556-1563

5. Evers BM, Parekh D, Townsend CM Jr, Thompson JC. Somatostatin and analogues in the treatment of cancer. A review.
Strosberg J et al. Antiproliferative effects of SSAs in GEP-NETs

1. Ann Surg 1991; 213: 190-198
2. Bouquet C, Puente E, Buscali L, Vaysses N, Susini C. Antiproliferative effect of somatostatin and analogs. *Chemotherapy* 2001; 47 (1 suppl): 19-27
3. Weckbecker G, Rauff F, Stolz B, Bruns C. Somatostatin analogs for diagnosis and treatment of cancer. *Pharmacol Ther* 1993; 60: 245-264
4. Lamberts SW, van der Lely AJ, de Herder WW, Hofland LJ. Octreotide. *N Engl J Med* 1996; 334: 246-254
5. Maurer R, Reubi JC. Somatostatin receptors. *JAMA* 1985; 253: 2741
6. Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Patcher TJ, Pless. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. *Life Sci* 1982; 31: 1113-1140
7. Susini C, Buscali L. Rational for the use of somatostatin analogs as antitumor agents. *Ann Oncol* 2006; 17: 1733-1742
8. Bruns C, Lewis I, Briner U, Mena-Tetang G, Weckbecker G. SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. *Eur J Endocrinol* 2002; 146: 707-716
9. Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. *Endocr Rev* 2003; 24: 28-47
10. Kvol LK, Moertel CG, O'Connell MJ, Schutt AJ, Rubin J, Hahn RG. Treatment of the malignant carcinoid syndrome. Evaluation of a long-acting somatostatin analogue. *N Engl J Med* 1986; 315: 663-666
11. Sandostatin® Injection [prescribing information]. East Hanover, NJ: Novartis Pharmaceuticals Corporation, 2005
12. Rubin J, Ajani J, Schirmer W, Venook AP, Bukowski R, Pomnier R, Saltz L, Dandona P, Anthony L. Octreotide acetate long-acting formulation versus open-label subcutaneous octreotide acetate in malignant carcinoid syndrome. *J Clin Oncol* 1999; 17: 600-606
13. Oberg K, Kvol L, Caplin M, Delle Fave G, de Herder W, Rindi G, Ruszniewski P, Woltering EA, Wiedenmann B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. *Ann Oncol* 2004; 15: 966-973
14. Ruszniewski P, Ish-Shalom S, Wymenga M, O'Toole D, Arnold R, Tomassetti P, Bax N, Caplin M, Eriksson B, Glaser B, Ducrues M, Lombard-Bohas C, de Herder WW, Delle Fave G, Reed N, Seitz JP, Van Cutsem E, Grossman A, Rougier P, Schmidt W, Wiedenmann B. Rapid and sustained relief from the symptoms of carcinoid syndrome: results from an open 6-month study of the 28-day prolonged-release formulation of lanreotide. *Neuroendocrinology* 2004; 80: 244-251
15. di Bartolomeo M, Bajetta E, Buzzoni R, Mariani L, Carnaghi C, Somma L, Zilembo N, di Leo A. Clinical efficacy of octreotide in the treatment of metastatic neuroendocrine tumors. A study by the Italian Trials in Medical Oncology Group. *Cancer* 1996; 77: 402-408
16. Vezzosi D, Benetti A, Roachia P, Courbon F, Selvaj J, Pradere DJ, Buscali L, Susini C, Caron P. Octreotide in insulinoma patients: efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. *Eur J Endocrinol* 2005; 152: 757-761
17. O'Dorisio TM, Gigantella TS, Melkhian HS, Rao B, O'Dorisio MS. Somatostatin and analogues in the treatment of VIPoma. *Ann N Y Acad Sci* 1988; 527: 528-535
18. Boden G, Ryan KG, Eisenschmid BL, Shelmet JJ, Owen OE. Treatment of inoperable glucagonoma with the long-acting somatostatin analogue SMS 201-995. *N Engl J Med* 1986; 314: 1686-1689
19. Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. *Nat Rev Drug Discov* 2003; 2: 999-1017
20. Sharma K, Srikant CB. G protein coupled receptor signaled apoptosis is associated with activation of a cation insensitive acidic endonuclease and intracellular acidification. *Biochem Biophys Res Commun* 1996; 242: 134-140
21. Sharma K, Srikant CB. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. *Int J Cancer* 1998; 76: 259-266
22. Lattuada D, Casnici C, Venuzo A, Marelli O. The apoptotic effect of somatostatin analogue SMS 201-995 on human lymphocytes. *J Neuroimmunol* 2002; 133: 211-216
23. Florio T. Somatostatin/somatostatin receptor signalling: phosphotyrosine phosphatases. *Mol Cell Endocrinol* 2008; 286: 40-48
24. Florio T, Thellung S, Arena S, Corsaro A, Bajetto A, Schettini G, Stork PJ. Somatostatin receptor 1 (SSTR1)-mediated inhibition of cell proliferation correlates with the activation of the MAP kinase cascade: role of the phosphotyrosine phosphatase SHP-2. *J Physiol Paris* 2000; 94: 239-250
25. Barbieri F, Patatarozi A, Gatti M, Aiello C, Quintero A, Lunardi G, Bajetto A, Ferrari A, Culler MD, Florio T. Differential efficacy of SSTR1, 2 and 5 agonists in the inhibition of C6 glioma growth in nude mice. *Am J Physiol Endocrinol Metab* 2009; Epub ahead of print
26. Florio T, Morini M, Villa V, Arena S, Corsaro A, Thellung S, Culler MD, Pfeffer U, Noonan DM, Schettini G, Albini A. Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. *Endocrinology* 2003; 144: 1574-1584
27. Zapata PD, Ropero RM, Valencia AM, Buscali L, Lopez JL, Martin-Orozco RM, Prieto JC, Angulo J, Susini C, Lopez-Ruiz P, Colás B. Autocrine regulation of human prostate carcinoma cell proliferation by somatostatin through the modulation of the SH2 domain containing protein tyrosine phosphatase (SHP)-1. *J Physiol Endocrinol Metab* 2002; 87: 915-926
28. Thangaraju M, Sharma K, Liu D, Shen SH, Srikant CB. Interdependent regulation of intracellular acidification and SHP-1 in apoptosis. *Cancer Res* 1999; 59: 1649-1654
29. Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, Pagotto U, Stall A. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zax expression. *Cancer Res* 2006; 66: 1576-1582
30. Sharma K, Patel YC, Srikant CB. Subtype-selective inducers of wild-type p53 and apoptosis, but not cell cycle arrest, by human somatostatin receptor 3. *Mol Endocrinol* 1996; 10: 1688-1696
31. Pagés P, Benali N, Saint-Laurent N, Estève JP, Schally AV, Tkaczuk J, Vaysses N, Susini C, Buscali L. Sst2 somatostatin receptor mediates cell cycle arrest and induction of p27(Kip1). Evidence for the role of SHP-1. *J Biol Chem* 1999; 274: 15186-15193
32. Held-Feindt J, Forstreuter F, Fue F, Mentlein R. Influence of the somatostatin receptor sst2 on growth factor signal cascades in human glioma cells. *Brain Res Mol Brain Res* 2001; 87: 12-21
33. Dent P, Wang Y, Gu YZ, Wood SL, Reid DB, Mangues R, Pellicer A, Schonbrunn A, Sturgill TW. S49 cells endogenous c-Myc and down-regulate Raf-1 activity in situ. *Cell Signal* 1997; 9: 539-549
34. Reardon DB, Dent P, Wood SL, Kong T, Sturgill TW. Activation in vitro of somatostatin receptor subtypes 2, 3, or 4 stimulates protein tyrosine phosphorylation activity in membranes from transfected Ras-transformed NIH 3T3 cells: coexpression with catalytically inactive SHP-2 blocks responsiveness. *Mol Endocrinol* 1997; 11: 1062-1069
Humphrey PP, Sellers LA. High-intensity p38

Stridsberg M, Strosberg J, Su PH, Livingston S, Müller HH, Schade-Brittinger C, Klose KJ, Barth et al. The somatostatin receptor is di

Koch BD, Schonbrunn A. The somatostatin receptor is di-

Koch BD, Dorflinger LJ, Koch BD. Mechanisms of so-

Schettini G, Florio T, Meucci O, Landolfi E, Lombardi G, Marino A. Somatostatin inhibition of anterior pituitary adenyl-

Alderton F, Humphrey PP, Sellers LA. High-intensity p38 kinase activity is critical for p21cip1 induction and the anti-

Koch BD, Schonbrunn A. The somatostatin receptor is di-

Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL. So-

Serri O, Brazeau P, Kachra Z, Posner B. Octreotide inhibits insulin-like growth factor-1 hepatic gene expression in the hypothesesectionalized rat: evidence for a direct and indirect mechanism of action. Endocrinology 1992; 130: 1816-1821

Woltering EA, Watson JC, Alperin-Lea RC, Sharma C, Keenan E, Kurozawa D, Barrie R. Somatostatin analogs: angiogen-

Danesi R, Agen C, Benelli U, Paolo AD, Nardini D, Bocci G, Basolo F, Campagni A, Tacca MD. Inhibition of experimental

Adams RL, Adams IP, Lindow SW, Zhong W, Atkin SL. Somatostatin receptors 2 and 5 are preferentially expressed in

Kumar M, Liu ZR, Thapa L, Chang Q, Wang DY, Qin RY. Octreotide as an antineoplastic

Kumar M, Liu ZR, Thapa L, Chang Q, Wang DY, Qin RY. Anti-angiogenic effects of somatostatin receptor subtype 2 on human pancreatic cancer xenografts. Carcinogenesis 2004; 25: 2075-2081

Kumar M, Liu ZR, Thapa L, Chang Q, Wang DY, Qin RY. Anti-angiogenic effect of somatostatin receptor subtype 2 on pancreatic cancer cell line: Inhibition of vascular endothelial growth factor and matrix metalloproteinase-2 expression in vitro. World J Gastroenterol 2004; 10: 393-399

Plückinger U, Wiedenmann B. Treatment of gastroentero-

Arnold C, Gress T, Arnold R. Placebo-controlled,

Gottfried MD, Daffner RD, Novosel D. Octreotide as an antineoplastic agent in the treatment of functional and nonfunctional neuroendocrine tumors. Cancer 1993; 72: 244-248

Ducreux M, Ruszniewski P, Chayvialle JA, Blumberg J, Cloarec D, Michel H, Raymond JM, Dupas JL, Gouerou H, Jian R, Genestin E, Hammel P, Rougier P. The antitumoral effect of the long-acting somatostatin analog lanreotide in neuroendocrine tumors. Am J Gastroenterol 2000; 95: 3276-3281

Wyแถมnga AN, Eriksen B, Salmela PI, Jacobsen MB, Van Cutsem EJ, Fiasse RH, Vållåmå M, Renstrup J, de Vries EG, Oberg KE. Efficacy and safety of prolonged-release lanreotide in patients with gastrointestinal neuroendocrine tumors and hormone-related symptoms. J Clin Oncol 1999; 17: 1111

Panzuto F, Nasoni S, Falconi M, Corleto VD, Capurso G, Cassetta S, Di Forzo M, Tomatore V, Milione M, Angelletti S, Cattaruzza MS, Ziparo V, Bordi C, Pederzoli P, Delle Fave G. Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization. Endocr Relat Cancer 2005; 12: 1083-1092

Fais S, Pape UF, Böhmig M, Dörfl Y, Mansmann U, Golder W, Riecken EO, Wiedenmann B. Prospective, randomized, multicenter trial on the antiangiogenic potential of somatostatin analogues in progressive metastatic neuroendocrine tumors. Eur J Cancer 2001; 37: 1014-1019

Arnold R, Neuhaus C, Benning R, Schwerk WB, Trautmann ME, Joseph K, Bruns C. Somatostatin analog sandostatin and inhibition of tumor growth in patients with metastatic endocrine gastroenteropancreatic tumors. World J Surg 1993; 17: 511-519

Eriksson B, Renstrup J, Imam H, Oberg K. High-dose treat-

Tomassetti P, Migliori M, Gullo L. Slow-release lanreotide treatment in endocrine gastrointestinal tumors. Am J Gastroenterol 1998; 93: 1468-1471

Tomassetti P, Migliori M, Corinaldesi R, Gullo L. Treatment of gastroenteropancreatic neuroendocrine tumours with octreotide LAR. Aliment Pharmacol Ther 2000; 14: 557-560

Ricci S, Antonuzzo A, Galli L, Ferdegghi M, Bodei L, Orlandini C, Conte PF. Octreotide acetate long-acting release in patients with metastatic neuroendocrine tumors pretreated with lanreotide. Ann Oncol 2000; 11: 1127-1130

Rinke A, Müller HI, Schade-Brittinger C, Klose KJ, Barth P, Wied M, Mayer C, Aminossadati B, Pape UF, Bläker M, Harder J, Arnold C, Gress T, Arnold R. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J Clin Oncol 2009; 27: 4656-4663

Nasir A, Stridsberg M, Strosberg J, Su PH, Livingston S, Malik HA, Kelley ST, Centeno BA, Coppola D, Malafa ME, Yeatman TJ, Kivoles LK. Somatostatin receptor profiling in hepatic metastases from small intestinal and pancreatic neuroendocrine neoplasms: immunohistochemical approach with potential clinical utility. Cancer Control 2006; 13: 52-60

Rocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 2000; 288: 154-157
Strosberg J et al. Antiproliferative effects of SSAs in GEP-NETs

72 Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC. Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 2000; 275: 7862-7869

73 Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Mol Cell Endocrinol 2008; 286: 69-74

74 Van Vugt HH, Schmid HA, Sailer AW. Ligand-dependent internalization of somatostatin receptors. Endocrine Abstracts 2008; 16: Pt59

75 Kvols L, Wiedenmann B, Oberg K, Glusman J, O’Dorisio T, de Herder WW, Gao B, Arnold R, Anthony L. The SOM230 Carcinoid Study Group. Safety and efficacy of pasireotide (SOM230) in patients with metastatic carcinoid tumors refractory or resistant to octreotide LAR: Results of a phase II study. ASCO GI Cancers Symposium 2006; abst 171

76 Jaquet P, Gunz G, Saveanu A, Dufour H, Taylor J, Dong J, Kim S, Moreau JP, Enjalbert A, Culler MD. Efficacy of chimeric molecules directed towards multiple somatostatin and dopamine receptors on inhibition of GH and prolactin secretion from GH-secreting pituitary adenomas classified as partially responsive to somatostatin analog therapy. Eur J Endocrinol 2005; 153: 135-141

77 Valkema R, De Jong M, Bakker WH, Breeman WA, Kooij PP, Lugtenburg PJ, De Jong FH, Christiansen A, Kam BL, De Herder WW, Stridsberg M, Lindemans J, Ensing G, Krenning EP. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med 2002; 32: 110-122

78 Valkema R, Pauwels S, Kvols LK, Barone R, Jamar F, Bakker WH, Kwekkeboom DJ, Bouterfa H, Krenning EP. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA]Tyr3octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med 2006; 36: 147-156

79 Waldherr C, Pless M, Mayrke HR, Schumacher T, Crazzolara A, Nitzsche EJ, Haldemann A, Mueller-Brand J. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med 2002; 43: 610-616

80 Paganelli G, Zoboli S, Cremonesi M, Bodei L, Ferrari M, Grana C, Bartolomei M, Orsi F, De Cicco C, Macke HR, Chiniol M, de Braud F. Receptor-mediated radiotherapy with 90Y-DOTA-D-Phe1-Tyr3-octreotide. Eur J Nucl Med 2001; 28: 426-434

81 Kwekkeboom DJ, de Herder WW, Kam BL, van Eijck CH, van Essen M, Kooij PP, Feelders RA, van Aken MO, Krenning EP. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol 2008; 26: 2124-2130

S-Editor Wang YR L-Editor O’Neill M E-Editor Wu PZ