Biview Learning for Human Posture Segmentation from 3D Points Cloud

Maoying Qiao1, Jun Cheng2,3, Wei Bian1, Dacheng Tao1

1 Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology, Sydney, New South Wales, Australia, 2 Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China, 3 The Chinese University of Hong Kong, Hong Kong, China

Abstract

Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

Introduction

Posture segmentation, i.e. partitioning a human body into semantic parts (such as, torso and limbs), is an indispensable step in human motion analysis [1], [2], among various practical applications, from security surveillance (abnormal detection, human activities analysis), interfaces to games (seen in EyeToy [3]), virtual reality and/or human-computer interfaces, and to video annotation. However, inferring the pose of a highly articulated object is considerably challenging due to its inherent complexity caused by the changing of body pose and the diversity of shape and appearance of individuals. Posture segmentation has been a highly active research area for decades. Early studies on human posture segmentation were mainly based on conventional intensity images. There are several hurdles to overcome in this direction of study, including (1) complex environment situation, such as varied textures, lighting conditions, scales, (2) ambiguity caused by missing depth information, such as self-occluding problems, and (3) highly computational cost. Many works run up against one or more of these difficulties. G. Mori et al. [4] match up the test image with the stored exemplars using the shape context descriptor. It falls into an embarrassment that more exemplars containing complete appearance are required to get a high accuracy while less exemplars are desired to achieve an efficient matching. L. Pishchulin et al. [5] develop a complete and controlled database to manage the appearance, shape and pose variations. P. Felzenszwalb et al. [6] utilize the pictorial structure models, which separately represent appearance of each part, to reduce the large variation in shape and photometric information in each object class. Z. Tu [7] proposes to learn the context information by a discriminative [8] probability maps on local image patches[9]. Combining the learned context information with the original image patches, it trains an integrated low-level context model to get the human body configuration. In the test stage, it typically takes about 30~70 seconds per image of size around 300×200, which is far from the requirement in real-time applications. In [10], C. Bregler and J. Malik take the problem of tracking humans as a differential motion estimation using the product of exponential maps and twist motions. Given a close initial pose, the algorithm would converge correctly and quickly. However, the performance of the algorithm depends heavily on the initialization.

The emerging of depth cameras stimulates new methodologies for human posture segmentation, which overcomes the above-mentioned first two weaknesses of intensity image based methods. D. Simon et al. [11] utilize both conventional range sensors and
CMU high speed VLSI range sensor to capture model and real-time range data of the rigid object respectively. Then, iterative closest point (ICP) algorithm, which tries to rigidly transform one points cloud to another by minimizing corresponding points’ distances, is performed for real-time pose tracking and estimation. The works [12, 13] also apply ICP algorithm to depth data to track an initialized skeleton. Besides, the point cloud library (PCL) [14] provides open source implementation of ICP algorithm. Although those pose tracking and estimation methods accomplished with ICP can satisfy the real-time requirement, they need to be re-initialized quickly because the tracking is not robust due to fast human motion and accumulated errors.

Along the launch of Kinect [15], 3D points cloud can be processed at consuming level [16]. J. Shotton et al. [17] introduce the core of points cloud handling component of Kinect gaming platform. They obtain the 3D locations of skeleton joints from human points clouds through three steps. First, high-dimensional features based on depth information for each pixel are extracted from the depth images. Second, randomized decision forests are trained to label each pixel which body part it belongs to. Finally, joint positions are proposed from the body part recognition result by local model-finding technique based on mean shift [18]. However, high dimensionality (2000-dimension features in experimental setting of [17]) is a severe deficiency. To handle this disadvantage, [17] proposes to use randomized decision forests to select effective dimensions preserving most useful group information. Even though the assumption that body joint locations are independent from each other which is only approximately true in practice [19], the algorithm achieves encouraging accuracy. Furthermore, M. Sun et al. [19] try to exploit the dependency relationships among body parts through global prior knowledge, i.e. torso orientation and/or person height, based on the work of regression forests [20]. More techniques to deal with points cloud are listed in PCL [14], such as min-cut based segmentation which makes a binary segmentation of the points cloud, as well as several features extracted from points cloud: Fast Point Feature Histograms (FPFH), normals based segmentation, surface normals estimation in points cloud. Our previous work [21], which is based on surface normals, attempts to solve posture segmentation from a different aspect. It constructs human body manifold space from 3D position features. In addition, it integrates surface normal features as constraints into the final spectral space to get more meaningful segmentation results. However, two eigen-decomposition operations on large matrix prevent the algorithm from real-time applications. All of these state-of-art features are less popular than the proposed feature in [17] in terms of highly computational efficiency as well as sufficient information for categorizing pixels into different body parts. However, high-dimensional features are not preferred [22] for most posture segmentation techniques. In this paper, we propose a novel biview learning algorithm for human posture segmentation from 3D points cloud provided by Kinect. Dimensionality reduction is a crucial way to deal with the “curse of dimensionality” [23]. Here, we apply the recently proposed discriminative locality alignment (DLA) algorithm [23–25] to transform the high-dimensional depth different features (DDF) to a low-dimensional representation which reveals the manifold distribution of depth pixels and owns more discriminative ability. To generalize the learned feature space from training set, we introduce unsupervised 3D relative position feature (RPF) for each depth pixel, which is another view independent of DDF, and employ biview canonical correlation analysis (CCA) [26–28] to unify those two views. Therefore, we can further reduce the dimensionality of the dimension reduced DDF by maintaining only the strongly correlated directions between the two views.

Finally, we train a multi-class SVM [29–32] to accomplish the task of posture segmentation.

We specifically represent our proposed framework step by step in Section 2. In Section 3, first, we verify the performance of the DLA with our dataset, in terms of effectiveness of both recognition rate and dimensionality reduction, in comparison with other popular dimension reduction algorithms, such as PCA, LDA, etc. Then, we validate the effectiveness of our two-stage dimension reduction scheme for posture segmentation. Conclusions and discussions are given in Section 4.

Method Overview

(We received the formal written waiver for the ethic issues of the collected data. The ethics committees of Shenzhen Institutes of Advanced Technology approve this consent procedure. There is no problem to make the data used in the paper publicly available. We didn’t conduct research outside of our country of residence. All participants provide their written informed consent to participate in this study.)

Given N 3D human points $P=(p_1,p_2,\ldots,p_N)$ appearing both in the 2D depth images I and 3D points cloud, and their corresponding labels $L=(l_1,l_2,\ldots,l_N)$, where N is the total number of human points and each label $l_i\in\{\text{Head}, \text{Torso}, \text{LU}\text{A}, \text{LLL}, \text{RLA}, \text{LUL}, \text{LLL}, \text{RUL}, \text{RLL}\}$. (LU stands for Left Upper Arm, LLA for Left Lower Arm, RUA for Right Upper Arm, RLA for Right Lower Arm, LUL for Left Upper Leg, LLL for Left Lower Leg, RUL for Right Upper Leg, and RLL for Right Lower Leg.) In this paper, through biview learning, we aim to find a low-dimensional representation $Z=(z_1,z_2,\ldots,z_K)$ from two different views, i.e., globally discriminative structure of points expressed as high-dimensional depth difference features (DDF) $X_1=(x_{11},x_{12},\ldots,x_{1K})$ and local 3D geometric manifold coordinates of point represented by the relative position features (RPF) $X_2=(x_{21},x_{22},\ldots,x_{2K})$, for posture segmentation, where $K<N_1+N_2$. The dimensions of DDF and RPF are N_1 and N_2 respectively, and here $N_2=3$. Fig. 1 illustrates the proposed biview learning framework of the two-stage dimension reduction scheme for posture segmentation. First, we extract DDF and RPF from depth images. Second, DLA is applied in Stage 1 for dimension reduction. Then, the learned low-dimensional DDF feature space is regularized by unsupervised 3D RPF via CCA, which is considered as Stage 2 for dimension reduction. Finally, SVM is trained to complete the task of human posture segmentation. Before we explain each step in detail in the following subsections, we list all of notions throughout the paper in Table 1.

Stage 1 for dimension reduction using DLA

Depth difference features (DDF). We adapt the depth difference feature (DDF) [10] for each human point, which is defined as below

$$X^1_i(I,P_i)=d_i\left(P_i+\frac{u}{d_i(P_i)}\right)-d_i\left(P_i+\frac{v}{d_i(P_i)}\right)$$

where P_i is one point in depth image I, $d_i(P_i)$ describes the depth of point P_i, and parameter $\theta=(u,v)$ containing offsets u and v demonstrates two point P_i-centered locations in the depth image. The normalization of the offsets by $1/d_i(P_i)$ ensures that the features are 3D translation invariant, which overcomes the scale-variant problem in the traditional images. As defined, the DDF for each point can be computed by five simple operations (two
Figure 1. Biview learning framework for human posture segmentation. The first row demonstrates extracted original high-dimensional depth features (DDF), and then using the training data, we apply DLA as our first stage for dimension reduction to obtain more discriminative features. From the training sample, apparently, the points on different body parts are separated with high margins. The second row demonstrates the extracted unsupervised relative position features. By CCA, it tries to explore complement information, namely, using the unsupervised RPF adjuststhe features. From the training sample, apparently, the points on different body parts are separated with high margins. The second row demonstrates the depth features (DDF), and then using the training data, we apply DLA as our first stage for dimension reduction to obtain more discriminative features. From the training sample, apparently, the points on different body parts are separated with high margins. The second row demonstrates the extracted unsupervised relative position features. By CCA, it tries to explore complement information, namely, using the unsupervised RPF adjuststhe features. From the training sample, apparently, the points on different body parts are separated with high margins.

Table 1. Important notations used in the paper.
Notation
$X^1 = (x_{i1}, x_{i2}, ..., x_{in})$
$X^2 = (x_{i1}^0, x_{i2}^0, ..., x_{in}^0)$
$Z = (z_1, z_2, ..., z_H)$
$P_i = (x_{i1}, x_{i2}, ..., x_{in})$
$I = (1, 2, ..., n_{id})$
$P_i^1, P_i^2, ..., P_i^k$
$P_i^1, P_i^2, ..., P_i^k$
$P_i^1 = (P_1^1, P_2^1, ..., P_{n_1})^T$
$P_i^2 = (I_{11}, I_{12}, ..., I_{1n_1})^T$

Notations P, X, Z, P_i, I, P_i^1, and P_i^2 are randomly predefined for each human body point. Demonstrated by dark red squares [dark blue squares] in Fig. 2, the high-dimensional DDF features uniquely determine the depth characteristic of P_i on the whole depth image, which is crucial information for labeling P_i.

At last, we complete our DDF introduction by explaining lower and upper limits for the depth difference. The depth difference for pairwise offsets (u, v) ranging from 0, which indicates two points locate in the same plane, to $+\infty$, which expresses the depth difference between background points or between body points and background points. Usually, the maximum depth difference between two body points is around 1 m. However, the high-dimensional features are hard to deal with for most algorithms. This motivates us to employ DLA, a state-of-the-art dimension reduction algorithm, to transform the DDF features to low-dimensional representations. This reveals the intrinsic structure of data distribution meanwhile preserves discriminative information. **Review of DLA.** Discriminative Locality Alignment (DLA) is a dimension reduction technique, designed in particular to preserve the local discriminative information of data distribution. In the context of posture segmentation, suppose we have a set of labeled training data, e.g., 24 samples are shown in Fig. 3, we
apply DLA to obtain a low-dimensional representation of the DDF feature. Specifically, given a point \(P_i \) from the training set, whose DDF feature is \(P_i = (x_i^1, x_i^2, \ldots, x_i^q) \), we find its \(k_1 \) nearest neighbors from the training data points with the same class label, i.e., \(P_{i_1}', P_{i_2}', \ldots, P_{i_{k_1}}' \), as well as its \(k_2 \) nearest neighbors with different class labels, i.e., \(P_{i_1}^{\#,}, P_{i_2}^{\#,}, \ldots, P_{i_{k_2}}^{\#} \). We use these nearest neighbors to construct a local patch for each point \(P_i \), \(P_i = (P_{i_1}', P_{i_2}', \ldots, P_{i_{k_1}}', P_{i_1}^{\#,}, P_{i_2}^{\#,}, \ldots, P_{i_{k_2}}^{\#})^T \). The point \(P_i \) in the low-dimensional space is presented as \(\tilde{P}_i = (\tilde{x}_i^1, \tilde{x}_i^2, \ldots, \tilde{x}_i^q) \), and correspondingly, the local patch of \(P_i \) is: \(\tilde{P}_i = (\tilde{P}_{i_1}', \tilde{P}_{i_2}', \ldots, \tilde{P}_{i_{k_1}}', \tilde{P}_{i_1}^{\#,}, \tilde{P}_{i_2}^{\#,}, \ldots, \tilde{P}_{i_{k_2}}^{\#})^T \). We emphasize that \(M_1 \) is the dimensions of the low-dimensional representation and \(M_1 << N_1 \).

The core idea of DLA is that it tries to find a low-dimensional representation to make the points from the same body part closer while to keep the points from different parts further [20], by exploiting both local geometry and discriminative information. DLA is modeled as the following objective functions respectively for the given point \(P_i \)

\[
\arg \min_{\tilde{P}_i} \sum_{p=1}^{k_1} \| \tilde{P}_i - \tilde{P}_{i_p}' \|^2, \tag{2}
\]

\[
\arg \max_{\tilde{P}_i} \sum_{q=1}^{k_2} \| \tilde{P}_i - \tilde{P}_{i_q}^{\#} \|^2. \tag{3}
\]

Combining within-class measures Eq.(2) with between-class measures Eq.(3) by a scaling factor \(\beta \in [0, 1] \), we get

\[
\arg \min_{\tilde{P}_i} \left(\sum_{p=1}^{k_1} \| \tilde{P}_i - \tilde{P}_{i_p}' \|^2 - \beta \sum_{q=1}^{k_2} \| \tilde{P}_i - \tilde{P}_{i_q}^{\#} \|^2 \right). \tag{4}
\]

Here, \(\beta \) tries to keep the two measurements in balance. There are two factors that can cause the imbalance. First, the numbers \(k_1 \) and \(k_2 \) of the same-class and different-class nearest neighbors are unequal, and usually it holds \(k_2 > k_1 \) in the training set. Second, for most of the points scattered in the human body, the distance from point \(P_i \) to the same-class nearest neighbors are usually much smaller than the distance to the different-class nearest neighbors. We use the scaling factor \(\beta \) ranging in \([0, 1]\), to adjust the tradeoff between the two measurements. For experiments, we simply set \(\beta = 0.5 \). Then we select values of \(k_1 \) and \(k_2 \) by adopting the same procedure used in [23]. \(k_1 = 4 \) and \(k_2 = 5 \) are finally settings for our experiments.

By introducing the coefficients vector \(w_i = (1, \ldots, 1 - \beta, \ldots, -\beta) / t \), we integrate the two parts into a uniform format

\[
\arg \min_{\tilde{P}_i} \left(\sum_{p=1}^{k_1} \| \tilde{P}_i - \tilde{P}_{i_p}' \|^2 w_i + \sum_{q=1}^{k_2} \| \tilde{P}_i - \tilde{P}_{i_q}^{\#} \|^2 (1-w_i) \right). \tag{5}
\]

Finally, by organizing the elements of the \(i \)th local patch into a matrix, we get the objective function

\[
\arg \min_{\tilde{P}_i} \text{tr}(\tilde{P}_i L \tilde{P}_i^T), \tag{6}
\]

where

\[
L_i = \begin{bmatrix}
\sum w_i & -w_i I_{k_2} \\
-w_i I_{k_2} & -w_i \text{diag}(w_i)
\end{bmatrix}.
\tag{7}
\]

Assuming the local patch of \(P_i \): \(\tilde{P}_i \) is selected from a global coordinate, i.e., \(\tilde{P}_i = (P_{i_1}', P_{i_2}', \ldots, P_{i_{k_1}}', P_{i_1}^{\#,}, P_{i_2}^{\#,}, \ldots, P_{i_{k_2}}^{\#})^T \), where \(N \) is the total number of training points, namely,

\[
\tilde{P}_i = \tilde{P}_i S_i, \tag{8}
\]

where \(S_i \in \mathbb{R}^{N \times (k_1 + k_2 + 1)} \) is the index matrix of \(i \)th local patch. Then, the whole DLA model is given by

\[
\arg \min_{\tilde{P}_i} \sum_{i=1}^{N} \text{tr}(\tilde{P}_i S_i L S_i^T \tilde{P}_i^T) = \arg \min_{\tilde{P}_i} \left(\sum_{i=1}^{N} S_i L S_i^T \right) \text{tr}(\tilde{P}_i^T). \tag{9}
\]

We assume that the matrix \(U \) projecting the dataset from the original high-dimensional space to the low-dimensional representation is linear and orthogonal; then, the optimization problem is transformed as
where N whose size is computers efficiently. Besides, we can also implement it in distributed manner, we just trade more training time for less memory training point, then iteratively do the sum operator. In this section so as to obtain better generalization ability.

This makes the low-dimensional representation not well-generalized for the test data. We need to explore more generic information to regulate the learned low-dimensional representation which preserves both discrimination information and intrinsic local geometry for the training data. However, the representation ability provided by RPF – should be combined by an effective strategy.

We ultimately try to get a representation with both strong discriminative power and better generalization ability. In particular, the unsupervised manifold information, i.e., RPF, improves the generalization ability, meanwhile the supervised characteristic of DDF helps to extract discriminative information from RPF. Two views – the globally discriminative view provided by DLA-reduced DDF and the local manifold view with more generalization ability provided by RPF – should be combined by an effective strategy.

Both canonical correlation analysis (CCA) and partial least squares (PLS) [33] try to find the most correlated directions between two different spaces. However, PLS performs well in the situation that one feature representation is treated as regressor and the other is as response. It does not fit to our situation well. In contrast, CCA is preferable since it can retain multiple projections of DDF helps to extract discriminative information from RPF.

Review of CCA. Canonical Correlation Analysis (CCA) tries to linearly project the two different views from their individual spaces to their most correlated lower-dimensional subspace, which is a special case of popular multiview analysis [34–42]. Let $\mathbf{x} \in \mathbb{R}^{M_1 \times N_1}$ and $\mathbf{y} \in \mathbb{R}^{N_2 \times N_2}$ be the projection matrices for the learned DDF $\hat{\mathbf{P}}^{1}$ and unsupervised RPF \mathbf{P}^{2} respectively, M_1 and N_2 are maximum correlated dimensions. The correlation coefficient between the two projected variables is defined as:

$$\text{arg min}_U \text{tr} \left(U^T \mathbf{P}^{1} \left(\sum_{i=1}^{N} S_i L_i S_i^T \right) \mathbf{P}^{1T} U \right) \text{ s.t. } U^T U = I. \quad (10)$$

where $\mathbf{P}^{1} = (P_1, P_2, \ldots, P_N)^T$ is a global coordinate of the original high-dimensional space.

The optimal solution of (10) is given by eigen-decomposition,

$$\mathbf{P}^{1} \left(\sum_{i=1}^{N} S_i L_i S_i^T \right) \mathbf{P}^{1T} \mu = \lambda \mu. \quad (11)$$

To get $L = \mathbf{P}^{1} \left(\sum_{i=1}^{N} S_i L_i S_i^T \right) \mathbf{P}^{1T}$, we can directly compute the summation $C = \sum_{i=1}^{N} S_i L_i S_i^T$, and then do matrix multiplication. However, it is really memory-consuming when the size of training set N is large, as the size of matrix C is $N \times N$. So, here, we put \mathbf{P}^{1} into the summation, and firstly compute $L = \mathbf{P}^{1} \sum_{i=1}^{N} S_i L_i S_i^T$, whose size is $N_1 \times N_1$ (the dimensions of DDF features) for each training point, then iteratively do the sum operator. In this manner, we just trade more training time for less memory requirement. Besides, we can also implement it in distributed computers efficiently.

After performing DLA, we learn a low-dimensional representation which preserves both discrimination information and intrinsic local geometry for the training data. However, the dimensionality reduced DDF features are learned from the training data, which are only a small fraction of the whole dataset. This makes the low-dimensional representation not well-generalized for the test data. We need to explore more generic information to regulate the learned low-dimensional representation so as to obtain better generalization ability.

Stage 2 for dimension reduction using CCA

Relative position features (RPF). In addition to the view of globally discriminative power provided by the DLA-reduced DDF, we try to hold the 2D human surface manifold embedding in the 3D real-world coordinates by simply employing the 3D coordinate values. We make use of the barycenter of human body points as the origin point of the 3D coordinates and translate human body points from real-world coordinates to the barycenter coordinate. We term the new coordinate values for each point $P_i^1(x_1, y_2, y_3)$ as relative position features (RPF). On the one hand, RPF is directly obtained from the original data and thus has no extra computational cost. On the other hand, RPF straightforwardly constructs the human surface manifold, an intrinsic view of human body, and thus is useful for partitioning the articulated human body parts.

Figure 3. Sample frames for different persons (columns) performing different activities (rows). Eight persons with variance of height, weight, gender are selected from our training dataset (from our labeled dataset) and three frames of different activities per person are shown. From these frames, we can see that our dataset contains a variety of daily activity frames. doi:10.1371/journal.pone.0085811.g003
\[
\rho(z^{2}p^{1}, z^{2}p^{2}) = \frac{\text{Cov}(z^{2}p^{1}, z^{2}p^{2})}{\sqrt{\text{Var}(z^{2}p^{1}) \text{Var}(z^{2}p^{2})}} = \frac{\alpha \text{Cov}(\mathbf{p}^{1}, \mathbf{p}^{2}) \gamma^{T}}{\sqrt{\text{Var}(\mathbf{p}^{1}) \gamma^{T} \text{Var}(\mathbf{p}^{2}) \gamma^{T}}},
\]

where \(\text{Cov}(\mathbf{p}^{1}, \mathbf{p}^{2})\) is the covariance between \(\mathbf{p}^{1}\) and \(\mathbf{p}^{2}\), \(\text{Var}(\mathbf{p}^{1})\) and \(\text{Var}(\mathbf{p}^{2})\) are variances of \(\mathbf{p}^{1}\) and \(\mathbf{p}^{2}\) respectively. Suppose \(\text{Var}(z^{2}p^{1}) = 1\) and \(\text{Var}(z^{2}p^{2}) = 1\), CCA can be solved by the optimization below

\[
\max_{\alpha} \alpha \text{Cov}(\mathbf{p}^{1}, \mathbf{p}^{2}) \gamma^{T} \text{ s.t. } \alpha \text{Var}(\mathbf{p}^{1}) \gamma^{T} = 1, \gamma \text{Var}(\mathbf{p}^{2}) \gamma^{T} = 1.
\]

The optimal solution of (13) is given by the Singular Value Decomposition (SVD) on \(\text{Cov}(\mathbf{Y}^{1}, \mathbf{Y}^{2}) [33]\)

\[
C = \text{Cov}(\mathbf{p}^{1}, \mathbf{p}^{2}) = z^{T} \Sigma z,
\]

where \(z\) is the left singular matrix of \(C\), the diagonal entries of \(\Sigma\) is the singular values, and \(\gamma\) is the right singular matrix. As the left and right singular vectors correspond to the maximum singular value project the original variables \(\mathbf{p}^{1}\) and \(\mathbf{p}^{2}\) into the most correlated subspace, we concatenate first \(d_{l}\) columns of \(z^{2}p^{1}\) and \(d_{r}\) columns of \(\gamma p^{2}\) as our final low-dimensional representation \(Z(z_{1}, z_{2}, \ldots, z_{K})\), where \(K = d_{l} + d_{r}\).

SVM for human posture segmentation

Based on the low-dimensional representation, we finally train a multi-class SVM classifier to partition the human body points into different semantic parts. SVM [29] is based on structural risk minimization inductive principle and tries to divide samples in separate categories by a clear margin as wide as possible in a high-dimensional space projected by a kernel function. There are two advantages for training SVM to predict the test set human points. First, SVM avoids the curse of dimensionality but keeps power of advantages for training SVM to predict the test set human points. Dimensionality reduction and LDA [45] for supervised dimension reduction. We implement a software modular to assist in blockily labeling points with the initialized joint position. Even so, labeling the points is still a labor intensive work and each frame takes 30 seconds to be labeled on average. Besides, we allow several outliers to exist to build the sense of robustness of our algorithm. We randomly choose 70% of frames as the training set and use the remaining 30% as the test set. Samples of human activities in training set are shown in Fig. 3. We extract 500-dimensional DDF for each human point by generating 500 pairs of offset parameters.

In this section, we carefully validate that DLA is applicable to our dataset for dimension reduction in comparison with other supervised or unsupervised[43] dimension reduction algorithms, e.g. LDA, PCA along with classifiers of SVM and decision tree (DT) in terms of recognition rate. We also perform random forest (RF) algorithm in terms of recognition rate, which is the state-of-the-art algorithm for human points classification and incorporates dimensionality reduction functionality and classifier functionality together to achieve the human pose segmentation task. Then, we show that our biview learning algorithm with the two-stage dimensionality reduction scheme outperforms other natural schemes, such as direct views concatenation scheme, single view scheme, etc.

DLA results

To validate the effectiveness of DLA for our application, we conduct experiments of comparing DLA with other two typical dimension reduction algorithms on DDF in terms of the recognition rates, i.e., PCA [44] for unsupervised dimension reduction and LDA [45] for supervised dimension reduction. We train two classifiers based on SVM and decision tree (DT) [46] for classification. In the experiment, each test frame contains around 2000 body points, and we take the average recognition rate over all test frames as final performance measurement. We select \(k\) dimensions (the number of the reduced dimensions) from the low-dimensional feature space randomly, and measure all of them in each splitting node in DT to make the comparison with SVM more reasonable. The result is shown in Fig. 4.

As shown by Fig. 4, the overall trends of DT and SVM are similar when using the same dimension reduction algorithms. However, SVM generally outperforms DT in the low-dimensional case at nearly 6% improvement in terms of recognition rate.

Concerning the dimension reduction algorithms, DLA performs better than PCA and LDA. In general, features learned by supervised information own more discriminative power than the unsupervised ones. This explains why DLA gets a higher recognition rate than unsupervised PCA. Further, both as supervised methods, DLA outperforms LDA. This is because LDA tries to construct the whole data distribution by considering the within class variance and the between classes mean and thus ignores the local discriminative information but emphasized by DLA, which is especially essential for constructing the boundary between different categories. In our application, as the dataset of
human points is really large and always varies greatly, the rough whole distribution is incapable of capturing enough discriminative information. This is verified by the result that LDA even performs badly than the unsupervised PCA. The smooth plateau part of LDA curve is caused by that the most reduced dimensions of LDA is C-1, where C is the number of classes and is 9 in our application. Comparing with Random forest (RF), we try to show the ability of our proposed schema in terms of selecting discriminative features. The result shows that the recognition rate of RF is even lower than DT with the low-dimensional features, e.g., supervised LDA features, DLA features and unsupervised PCA. And DLA performs better than RF in selecting discriminative features.

Biview learning results

To validate the effectiveness of our two-stage dimension reduction scheme (DLA+CCA+SVM), we compare it with other four feature-integrating schemes for training the SVM in terms of recognition rate: 1) only one view with 3D unsupervised RPF (3D+SVM), 2) only one view with the dimensionality reduced DDF by DLA (DLA+SVM), 3) biview representation learned by CCA from high-dimensional DDF and RPF (CCA+SVM), and 4) direct concatenation of the two views of dimensionality reduced DDF and RPF (DLA+3D+SVM). The statistical performances of all these schemes are shown in the boxplot Fig. 5. The median and variability are computed from all of the test frames.

In our method (DLA+CCA+SVM), we first transform the 500-d DDF into k-d low-dimensional representation, k is designed as 5, 10, 15, 20, 25. Then, by CCA, we project the k-d DDF and 3D RPF into d_1 and d_2 lower-dimensional representation respectively. As shown in the boxplot, our proposed biview feature learning scheme achieves the best recognition rate nearly 85%. It is also can be concluded that our proposed scheme is robust with respect to the reduced dimensions k, $d_1 = 1, d_2 = 2$ is the best setting for the highest recognition rate. Clearly, that only 3-d representation achieves highest accuracy proves the effectiveness of our dimension reduction scheme.

Comparing with the representation learned by DLA (DLA+SVM), our method raises the recognition rate by 5%. While comparing with RPF (3D+SVM), the recognition rate achieved by our method is nearly 3% higher. We conclude that the regularization of supervised low-dimensional DDF established from unsupervised 3D RPF via CCA improves the generalization and recognition rate accordingly.

Concerning the scheme of CCA+SVM, we directly try to learn correlation relationship between high-dimensional DDF and RPF. And the best setting for the highest recognition rate is $d_1 = 1, d_2 = 2$. On one hand, most of the originally high-dimensional DDF have no discriminative information for labeling each human point and may introduce unexpected noise. On the other hand, CCA actually is an unsupervised method and it can also bring down the recognition rate in comparison with our proposed biview learning method.

Finally, we analysis the scheme of (DLA+3D+SVM): directly concatenating the dimensionality reduced DDF and the 3D RPF. Concatenating simply joints the unsupervised and supervised information together. On one hand, the manifold information embraced by RPF is complementary to the discriminative learned DDF and the recognition rate is higher than the only dimensionality reduced DDF representation. On the other hand, the representation of DLA+3D is redundant as the uncorrelated dimensions are not removed, which leads to that the accuracy of this scheme is lower than our proposed one’s.

To Sum up, our proposed two-stage biview learning scheme achieves robustly highest recognition rate no matter how many dimensions are left comparing with other schemes. Besides, the final 3-d representation achieves as high mean value of recognition rate as other higher dimensions. This verifies the effectiveness of our proposed scheme for dimension reduction.

Conclusion

In this paper, we have proposed a two-stage biview-learning dimension reduction scheme for human posture segmentation. First, we extract DDF and RPF from two independent views. Then, we apply DLA to learning a discriminative and low-dimensional representation from the high-dimensional DDF and take this procedure as our stage 1 for dimension reduction. Thirdly, we employ CCA to combine the two views to generalize the learned low-dimensional DDF by unsupervised RPF as well as to shape boundary of human manifold by the supervised
low-dimensional DDF features. Experimental result validates the effectiveness of our proposed dimension reduction scheme. Not only our scheme achieves the highest recognition rate, but also our dimensionality reduction scheme gets an inspiring low-dimensional representation. In the future, we will capture more human activities with more persons to enlarge our dataset, on which we will measure the performance of our method to prepare it for human activity analysis applications.

Author Contributions
Conceived and designed the experiments: MQ JC WB DT. Performed the experiments: MQ WB. Analyzed the data: MQ JC WB DT. Contributed reagents/materials/analysis tools: WB DT. Wrote the paper: MQ JC WB DT.

References
1. Moeslund TB, Hilton A, Kruger V (2006) A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104: 90–126.
2. Poppe R (2007) Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108: 4–18.
3. EyeToy. Available: http://www.eyetoy.com. Accessed 2011 Dec 12.
4. Mori G, Malik J (2002) Estimating human body configurations using shape context matching. European Conference on Computer Vision (ECCV). LNCS. pp. 150–160.
5. Pishchulin L, Jain A, Andriluka M, Thormahlen T, Schiele B (2012) Articulated people detection and pose estimation: Reshaping the future. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE. pp. 3178–3185.
6. Felzenszwalb PF, Huttenlocher DP (2005) Pictorial structures for object recognition. International Journal of Computer Vision 61: 55–79.
7. Tu Z (2008) Auto-context and its application to high-level vision tasks. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, AK: IEEE. pp. 1–8.
8. Wen J, Gao X, Yuan Y, Tao D, Li J (2010) Incremental tensor biased discriminant analysis: A new color-based visual tracking method. Neurocomputing 73: 827–839.
9. Gao X, Zheng J, Tao D, Li X (2008) Local face sketch synthesis learning. Neurocomputing 71: 1921–1930.
10. Bregler C, Malik J, Bregler C, Malik J (1998) Tracking people with twists and exponential maps. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Santa Barbara, CA: IEEE, pp. 8–15.
11. Simon DA, Hebert M, Kanade T (1994) Real-time 3-D pose estimation using a high-speed range sensor. IEEE International Conference on Robotics and Automation (ICRA). San Diego, CA: IEEE, pp. 2235–2241.
12. Grest D, Woetzel J, Koch R (2005) Nonlinear body pose estimation from depth images. Pattern Recognition 36(6): 283–292.
13. Moschini D, Fusiello A (2008) Tracking stick figures with hierarchical articulated ICP. Proceedings THEMIS: 61–68.
14. pcl. Available: http://www.pointclouds.org. Accessed 2013 Dec 12.
15. Microsoft (2010) Kinect for Xbox 360. In: M Corp, editor editors.
16. Tao D, Jin L, Yang Z, Li X (2013) Rank Preserving Sparse Learning for Kinect Based Scene Classification. IEEE Transactions on Cybernetics 43: 1406–1417.
17. Shotton J, Fitzgibbon A, Coots T, Sharp T, Finochio M, et al. (2011) Real-time human pose recognition in parts from single depth images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE.
18. Comaniciu D, Meer P (2002) Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24: 603–619.
19. Sun M, Kohli P, Shotton J (2012) Conditional regression forests for human pose estimation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI: IEEE, pp. 3394–3401.
20. Girshick R, Shotton J, Kohli P, Criminisi A, Fitzgibbon A (2011) Efficient regression of general-activity human poses from depth images. IEEE International Conference on Computer Vision (ICCV), Barcelona, IEEE, pp. 415–422.
21. Balla-Arabe S, Gao X (2012) Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm. Neurocomputing 93: 106–114.
22. Cheng J, Qiao MY, Bian W, Tao DC (2011) 3D human posture segmentation by spectral clustering with surface normal constraint. Signal Processing 91: 2204–2212.
23. Elhamifar E, Vidal R, Tao DC, Yang J (2008) Discriminative locality alignment. Proceedings of the 10th European Conference on Computer Vision (ECCV). Springer-Verlag Berlin, Heidelberg pp. 725–738.
24. Tao D, Jin L (2012) Discriminative information preservation for face recognition. Neurocomputing 91: 15–20.
25. Tao D, Liang L, Jin L, Gao Y (2014) Similar Handwritten Chinese Character Recognition by Kernel Discriminative Locality Alignment. Pattern Recognition Letters 35: 186–194.
26. Chaudhuri K, Kakade SM, Livescu K, Sridharan K (2009) Multi-view clustering via canonical correlation analysis. Proceedings of the 26th Annual International Conference on Machine Learning. ACM, pp. 129–136.
27. Foster DP, Kakade SM, Zhang T (2008) Multi-view dimensionality reduction via canonical correlation analysis. Technical Report TR-2008-4, TTI-Chicago.
28. Rupnik J, Shawe-Taylor J (2010) Multi-view canonical correlation analysis. Conference on Data Mining and Data Warehouses. Ljubljana, Slovenia.
29. Hearst MA, Dumais S, Osman E, Platt J, Scholkopf B (1998) Support vector machines. Intelligent Systems and their Applications 13: 18–28.
30. Chang CC, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2: 1–27.
31. Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Department of Computer Science and Information Engineering, National Taiwan University, Taipei.
32. Tao D, Jin L, Liu W, Li X (2013) Hessian regularized support vector machines for mobile image annotation on the cloud. IEEE Transactions on Multimedia 15: 833–844.
33. Vinzi VE (2010) Handbook of partial least squares: Concepts, methods and applications. Springer.
34. Tao D, Wang X, Bian W (2013) Grassmannian Regularized Structured Multi-view Embedding for Image Classification. IEEE Transactions on Image Processing 22: 2646–2660.
35. Tao D, Liu W (2013) Multi-view Hessian regularization for image annotation. IEEE Transactions on Image Processing 22: 2676–2687.
36. Li X, Tao D, Jin L, Wang Y, Yuan Y (2013) Person Re-Identification by Regularized Smoothing KISS Metric Learning. IEEE Trans Circuits Syst Video Techn 23: 1673–1685.
37. Tao Y, Tao D, Xu C, Liu H, Wen Y (2013) Multiview Vector-Valued Manifold Regularization for Multilabel Image Classification. IEEE Trans Neural Netw Learning Syst 24: 709–722.
38. Lao Y, Tao D, Xu C, Li D, Xu C (2013) Vector-Valued Multi-View Semi-Supervised Learning for Multi-Label Image Classification. Twenty-Seventh AAAI Conference on Artificial Intelligence.
39. Xu C, Tao D, Xu C (2013) A Survey on Multi-view Learning. arXiv preprint arXiv:1304.5634.
40. Yu J, Wang M, Tao D (2012) Semi-supervised multiview distance metric learning for cartoon synthesis. IEEE Transactions on Image Processing 21: 4636–4648.
41. Xie B, Mu Y, Tao D, Huang K (2011) m-SNE: Multiview stochastic neighbor embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41: 1088–1096.
42. Xia T, Tao D, Mei T, Zhang Y (2010) Multiview spectral embedding. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40: 1438–1446.
43. Wang X, Gao X, Yuan Y, Tao D, Li J (2010) Semi-supervised Gaussian process latent variable model with pairwise constraints. Neurocomputing 73: 2106–2115.
44. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Maui, HI: IEEE, pp. 349–356.
45. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recognition by class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19: 711–720.
46. Quinlan JR (1986) Induction of decision trees. Machine learning 1: 81–106.
47. Amit Y, Geman D (1997) Shape quantization and recognition with randomized K-Means. J Math Imag Vis 23: 15–41.