On the ramification of non-abelian Galois coverings of degree p^3

Qizhi Zhang

January 13, 2013

Abstract

The refined Swan conductor is defined by K. Kato [2], and generalized by T. Saito [5]. In this part, we consider some smooth l-adic étale sheaves of rank p such that we can be define the rsw following T. Saito, on some smooth dense open subscheme U of a smooth separated scheme X of finite type over a perfect fields κ of characteristic $p > 0$. We give an explicit expression of $rsw(F)$ in some situation. As a consequence, we show that it is integral.

1 Introduction

The classical Swan conductor is defined in the case where the extension of residue field is separable.

Kato in [2], gives a natural definition of the Swan conductor for a character of degree one, which works without the separability assumption of the extension of the residue field. In the same paper, he gives the definition of the refined Swan conductor rsw.

Kato in [3], redefines the refined Swan conductor as an element in the stalk of the sheaf $\omega^1_X(sw(\chi))$, where ω^1_X is the logarithmic cotangent sheaf, and extend it to a global section. We call the property of rsw that can extend to a global section “ integral ”. He defines a 0-cycle c_χ to generalize the Swan conductor, by using the refined Swan conductor.

Along with the generalization of the Swan conductor, Grothendieck-Ogg-Shafarevich formula is generated also.

Kato and Saito in [4], define the Swan class as a 0-cycle class supported on the ramification locus as a refinement of Swan conductor, and generalize the G-O-S formula to arbitrary rank. In the situation that the scheme have dimension ≤ 2 and the sheave have rank 1, the Swan class is consistent with the 0-cycle class c_χ defined in [3].

Abbes and Saito in [1], define a characteristic class of an l-adic sheaf as a refinement of the Euler-Poincaré characteristic, and get a refinement of the G-O-S formula for l-adic sheaf of rank 1, in term characteristic class and the 0-cycle class defined for rank 1 sheaves in [3], by explain the refine Swan conductor by a linear form on some vector bundle on D.

Saito in [5], by redefine rsw, defines the characteristic cycle of an l-adic sheaf, as a cycle on the logarithmic cotangent bundle. Under some condition ([5], p53, the condition (R) and (C)), he proves that the intersection of characteristic cycle with the 0-section computes the characteristic class defined in [1] for l-adic sheaf of arbitrary rank, and hence the Euler number. The property “ integral ” of rsw is a part of the condition.
In this paper, we consider some smooth l-adic étale sheaves of rank p, that can be defined the rsw follow [5], on some smooth dense open subscheme U of a smooth separated scheme X of finite type over a perfect fields κ of characteristic $p > 0$. We give a explicit expression of $rsw(F)$ in some situation. In fact, we would see, that it is integral, namely

$$rsw(F) \in \Gamma(D, i_D^* \Omega^1_{\Delta X}(\log D)(kD))$$

where $i_D : D \rightarrow X$ is the closed immersion.

In §2, we study the ramification of the Artin-Schreier covering. In §3, we study the ramification of some Galois coverings of degree p^3. In §4, we study the ramification of some l-adic sheaves.

\section{Artin-Schreier covering}

Let X be a separated smooth scheme of finite type over a perfect field κ of characteristic $p > 0$, $D = X \setminus U$ be a smooth divisor, $U = X \setminus D$.

Let $(X \times X)^\sim$ and $(X \times X)^{(kD)}$ be the log blow-up and the log diagram blow-up of $X \times X$ defined in [5] respectively, $E^0 := (X \times X)^\sim \setminus U \times U$, $E := ((X \times X)^{(kD)} \setminus U \times U)_{red}$. We denote the ideal sheaves of ΔX in $(X \times X)^\sim$ and $(X \times X)^{(kD)}$ by $I_{\Delta X}$ and $J_{\Delta X}$ respectively. Let ξ, η be the generic point of D and E respectively, then there exists only valuation v_E of $O((X \times X)^{(kD)}, \eta)$, such that $v_E(f \otimes 1) = v_D(f)$ for any $f \in O_{X, \xi}$.

\textbf{Lemma 2.1.} If $f \in \Gamma(X, O(nD))$, then $1 \otimes f - f \otimes 1 \in \Gamma((X \times X)^{(kD)}, J_{\Delta X}((n - k)E))$.

\textbf{Proof.} Let us consider the commutative diagram

\begin{center}
\begin{tikzcd}
E \ar[r] \ar[d] & (X \times X)^{(kD)} \ar[l] \ar[d] \ar[r] \ar[d] & \Delta X \cup kE \\
E^0 \ar[r] & (X \times X)^\sim \ar[l] \ar[r] & \Delta X \\
D \ar[r] & X
\end{tikzcd}
\end{center}

We have

$$I_{\Delta X} \rightarrow \phi^k_* J_{\Delta X}((-kE)), O_{(X \times X)^\sim}(nE^0) \rightarrow \phi^k_* O_{(X \times X)^{(kD)}}(nE)$$

hence

$$I_{\Delta X}(nE^0) \rightarrow \phi^k_* J_{\Delta X}((n - k)E)$$

Therefore

$$1 \otimes f - f \otimes 1 = f \otimes 1(f^{-1} \otimes f - 1) \in \Gamma((X \times X)^\sim, I_{\Delta X}(nE^0))$$

$$\rightarrow \Gamma((X \times X)^\sim, \phi^k_* J_{\Delta X}(n - k)E) \rightarrow \Gamma((X \times X)^{(kD)}, J_{\Delta X}(n - k)E)$$

\Box
We have an exact sequence
\[
H^0(U, \mathcal{O}_U) \rightarrow H^0(U, \mathcal{O}_U) \rightarrow H^1(U, \mathbb{Z}/p\mathbb{Z}) \rightarrow 0
\]
Therefore any Galois covering of \(U \) with Galois group \(\mathbb{Z}/p\mathbb{Z} \) can be defined by equation \(T^p - T - f \), where \(f \in H^0(U, \mathcal{O}_U) \). \(T^p - T - f \) and \(T^p - T - f_0 \) define same covering if and only if \(f = f_0 + f_1 - f_1^p \) for some \(f_1 \in H^0(U, \mathcal{O}_U) \). It easy to see, for any Galois covering \(\tilde{V} \) of \(U \) with Galois group \(\mathbb{Z}/p\mathbb{Z} \), that wild ramified on \(D \), there exists a \(n \in \mathbb{N} \) such, that \(\tilde{V} \) can be defined by equation \(T^p - T - f \) for some \(f \in \Gamma(X, \mathcal{O}_X(nD)) \) and \(df \in \Omega^1_{\Delta_X}((\log D)(nD))\xi \setminus \Omega^1_{\Delta_N}((\log D)(nD^-))\xi \).

Proposition 2.2. If \(f \in \Gamma(X, \mathcal{O}_X(nD)) \) and \(df \in \Omega^1_{\Delta_X}((\log D)(nD))\xi \setminus \Omega^1_{\Delta_N}((\log D)(nD^-))\xi \), then as the element of \(K((X \times X)_{(R)}), v_E(1 \otimes f - f \otimes 1) = k - n \).

Proof. Consider the commutative diagram
\[
\begin{array}{ccc}
(X \times X)^{(kD)} & \xrightarrow{\delta} & \Delta X \\
\downarrow i & & \downarrow i_D & \downarrow \delta \\
E & \xrightarrow{i_D} & D \\
\downarrow \xi & & \downarrow \xi & \downarrow \xi
\end{array}
\]
Then we have a commutative diagram
\[
\begin{array}{ccc}
\Gamma((X \times X)^{(kD)}, J_{\Delta X}((n-k)E)) & \rightarrow & \Gamma(\Delta X, \delta^* J_{\Delta X}((n-k)E)) \\
\downarrow & & \downarrow \\
\Gamma(E, i^* J_{\Delta X}((n-k)E)) & \rightarrow & \Gamma(D, i_D^* \delta^* J_{\Delta X}((n-k)E))
\end{array}
\]
but
\[
\delta^* J_{\Delta X}((n-k)E) = \delta^* J_{\Delta X} \cdot \delta^* O_{(X \times X)^{(kD)}}((n-k)E) = \delta^* J_{\Delta X} \cdot O_{\Delta X}((n-k)D) \\
\rightarrow \Omega^1_{\Delta X}((\log D)(kD)) \cdot O_{\Delta X}((n-k)D) = \Omega^1_{\Delta X}((\log D)(nD))
\]
and
\[
i^* J_{\Delta X}((n-k)E) = \mathcal{I}_D((n-k)E)
\]
Therefore we have
\[
\begin{array}{ccc}
\Gamma((X \times X)^{(kD)}, J_{\Delta X}((n-k)E)) & \rightarrow & \Gamma(\Delta X, \delta^* J_{\Delta X}((n-k)E)) \\
\downarrow & & \downarrow \\
\Gamma(E, \mathcal{I}_D((n-k)E)) & \rightarrow & \Gamma(D, i_D^* \delta^* J_{\Delta X}((n-k)E)) \\
\downarrow & & \downarrow \\
\Gamma(D, i_D^* \Omega^1_{\Delta X}((\log D)(nD))) & \rightarrow & \Gamma(D, i_D^* \Omega^1_{\Delta X}((\log D)(nD)))
\end{array}
\]
The image of \(1 \otimes f - f \otimes 1 \) in \(\Gamma(D, i_D^* \Omega^1_{\Delta X}((\log D)(nD))) \) is \(df \).

However
\[
\begin{align*}
i_D^* \Omega^1_{\Delta X}((\log D)(kD)) &= i_D^* \Omega^1_{\Delta X}((\log D)(kD)) \otimes i_D^* O_{\Delta X} O_D \\
&= i_D^* \Omega^1_{\Delta X}((\log D)(kD)) \otimes i_D^* O_{\Delta X} i_D^* \Omega^1_{\Delta X} \\
&= i_D^* \Omega^1_{\Delta X}((\log D)(kD)) \otimes i_D^* O_{\Delta X} i_D^* \Omega^1_{\Delta X} \\
&= i_D^* \Omega^1_{\Delta X}((\log D)(kD)) \\
&= i_D^* \Omega^1_{\Delta X}((\log D)(kD^-))
\end{align*}
\]
hence

\[
\begin{align*}
(i_D^* \Omega^1_{\Delta_X}(log D)(kD))_{\xi} & = (i_D^* \Omega^1_{\Delta_X}(log D)(kD^\prime))_{\xi} \\
(i_D^* \Omega^1_{\Delta_X}(log D)(kD))_{\xi} & = (i_D^* \Omega^1_{\Delta_X}(log D)(kD^\prime))_{\xi}
\end{align*}
\]

\(df\) is not 0 in \((i_D^* \Omega^1_{\Delta_X}(log D)(kD))_{\xi}\), so is not 0 in \(\Gamma(D, i_D^* \Omega^1_{\Delta_X}(log D)(nD))\). Hence \(1 \otimes f - f \otimes 1\) is not 0 in \(\Gamma(E, D_U((n-k)E))\). Therefore \(v_E(1 \otimes f - f \otimes 1) = k - n\).

3 Galois coverings of degree \(p^3\)

Now, let us consider the Galois covering \(V\) defined by equations \(T^p - T - f, S^p - S - g, U^p - U - fS - h\) on \(U\), where \(f, g, h\in \Gamma(U, O_U)\). The Galois group \(G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{Z}/p\mathbb{Z} \right\}\).

\(V\) has two quotient coverings \(V_T\) and \(V_S\), which are defined on \(U\) by equation \(T^p - T - f\) and \(S^p - S - g\) respectively. In the following part of this paper, we always suppose

\[
\begin{align*}
df & \in \Omega^1_X(log D)(nD)_{\xi} \setminus \Omega^1_X(log D)(nD^-)_{\xi} \\
dg & \in \Omega^1_X(log D)(mD)_{\xi} \setminus \Omega^1_X(log D)(mD^-)_{\xi} \\
dh & \in \Omega^1_X(log D)(rD)_{\xi} \setminus \Omega^1_X(log D)(rD^-)_{\xi}
\end{align*}
\]

where \(n = -v_D(f), m = -v_D(g), r = -v_D(h)\).

We have a filter of subgroups of \(G \times G\) as follows:

\[
G \times G \supset N \supset \Delta G \supset 1
\]

where \(N = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & a & c' \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} | a, b, c, c' \in \mathbb{F}_p \right\}, \Delta G = \{(g, g) | g \in G\} \).

Let \(Z_1 := (V \times V)_{\Delta G}, W_1 := (V \times V)_N\) be the quotient of \(V \times V\) under the action of \(\Delta G\) and \(N\) respectively; \(Z_0, W_0\) be the normalization of \(Z_1, W_1\) over \((X \times X)^{(kD)}\) respectively.

Lemma 3.1. (1). If \(k \geq \max\{m, n\}\), then \(W_0 \to (X \times X)^{(kD)}\) is Galois with Galois group isomorphic to \(\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}\).

(2). If \(k > \max\{m, n\}\), then \(Z_0\) and \(W_0\) is splitting to \(p^2\)’s connected components over \(E \cup \Delta X\).

Proof.

(1).

\[
V \times V = \text{Spec}\frac{O_{U} \otimes O_{U}[T, S, U, T', S', U']}{T^p - T - f \otimes 1, S^p - S - g \otimes 1, U^p - U - (f \otimes 1S + h \otimes 1), T^p - T' - 1 \otimes f, S^p - S' - 1 \otimes g, U^p - U' - (1 \otimes fS' + 1 \otimes h)}
\]

\[
= \text{Spec}\frac{O_{U} \otimes O_{U}[T, S, U, T', S', U']}{T^p - T - f \otimes 1, S^p - S - g \otimes 1, U^p - U - (f \otimes 1S + h), T' - T' - K_1, S^p - S - K_2, U^p - U' - (1 \otimes fS' - f \otimes 1S + K_4)}
\]

Where \(K_1 = 1 \otimes f - f \otimes 1, K_2 = 1 \otimes g - g \otimes 1, K_4 = 1 \otimes h - h \otimes 1 \in O_{U \times U}\).
Therefore

\[W_1 = \text{Spec} \frac{\mathcal{O}_U \otimes \mathcal{O}_U[\check{T}, \check{S}]}{(T^p - \check{T} - K_1, S^p - \check{S} - K_2)} \]

If \(k \geq \max(m, n) \), then by lemma (2.2), we know \(K_1, K_2 \in \Gamma((X \times X)^{(kD)}, \mathcal{O}_{(X \times X)^{(kD)}}) \).
Then

\[W_0 = \text{Spec} \frac{\mathcal{O}_{(X \times X)^{(R)}}[\check{T}, \check{S}]}{(T^p - \check{T} - K_1, S^p - \check{S} - K_2)} \]

(2). If \(k > \max(m, n) \), then by lemma (2.2), we know \(v_E(K_1) > 0, v_E(K_2) > 0 \). On the other hand, we know \(K_1\Delta = 0, K_2\Delta = 0 \) because \(K_1\Delta = 0, K_2\Delta = 0 \). Then

\[
W_0 \times_{(X \times X)^{(kD)}} (E \cup \Delta X) = \text{Spec} \frac{\mathcal{O}_{(X \times X)^{(R)}}[\check{T}, \check{S}] \otimes \mathcal{O}_{(E \cup \Delta X)}}{(T^p - \check{T} - K_1, S^p - \check{S} - K_2)} \]

\[
= \text{Spec} \frac{\mathcal{O}_{(E \cup \Delta X)}[\check{T}, \check{S}]}{(T^p - \check{T} - K_1, S^p - \check{S} - K_2)}
\]

\[
= \prod_{\check{t}, \check{s}} (E \cup \Delta X)_{\check{t}, \check{s}}
\]

Therefore

\[Z_0 \times_{(X \times X)^{(kD)}} (E \cup \Delta X) = Z_0 \times W_0 \prod_{\check{t}, \check{s}} (E \cup \Delta X)_{\check{t}, \check{s}} = \prod_{\check{t}, \check{s}} \tilde{F}_{\check{t}, \check{s}} \]

\[\square \]

Theorem 3.2. Take a suitable \(k \), then we have

(1). Over \(E_{0,0} \), \(\tilde{F} \) is a Galois covering defined by an Artin-Schreier equation, or splits to \(p \)'s connected components; over \(\Delta X_{0,0} \), it splits \(p \)'s connected components.

(2). In the commutative diagram

\[
\begin{array}{ccc}
Z_1 & \longrightarrow & Z_0 \\
\downarrow & & \downarrow \\
W_1 & \longleftarrow & W_0 \\
\phi_1 & & \phi_0 \\
U \times U & \xrightarrow{j} & (X \times X)^{(R)} \quad i^+ \quad E \cup \Delta X \quad \leftarrow (E \cup \Delta X)
\end{array}
\]

the base change map \(\psi_{31}^{32*} \psi_{11}^{31*} \psi_{11}^{01*} \longrightarrow \psi_{12}^{02*} \psi_{12}^{01*} \) is a isomorphism for constructible sheaf. Where we use \(\psi_{k_1}^{i_1} \) to denote the unique morphism from the object at site \((i, j) \) to the object at site \((k, l) \) (if it exists). For example \(\psi_{10}^{00} = j, \psi_{10}^{20} = i^+ \).

Proof.

(1). We can see

\[Z_1 = \text{Spec} \frac{\mathcal{O}_{W_1}[\check{U} - \check{ST}]}{((U - ST)^p - (U - ST)^q - K_3)} \]

where \(K_3 = (K_1 + f \otimes 1)\check{S} - g \otimes 1(\check{T} + K_1) + K_4 \).

Let \(\check{W}_0 = W_0 \setminus \prod_{\check{t}, \check{s} \neq (0, 0)} (E \cup \Delta X)_{\check{t}, \check{s}} \). Then \(\check{W}_0 = Z_0 \times W_0 = Z_0 \setminus \prod_{\check{t}, \check{s} \neq (0, 0)} \tilde{F}_{\check{t}, \check{s}} \). Then \(\check{Z}_0 \) is the normalization of \(Z_1 \) over \(\check{W}_0 \). Let \(\eta \) and \(\eta_{0,0} \) be the generic point of \(E \) and \(E_{0,0} \)
respectively, then there is a unique extension $v_{E_0,0}$ on the stalk $\mathcal{O}_{\tilde{W}_0,\eta}$ of valuation v_E, such that the restriction of $v_{E_0,0}$ on $\mathcal{O}_{(X \times X)(\mathcal{O}),\eta}$ is just v_E.

We have

$$K_3 = (K_1 + f \otimes 1)(\hat{S}^p - K_2) - g \otimes 1(\hat{T} + K_1) + K_4$$

$$= K_1\hat{S}^p + f \otimes 1\hat{S}^p - K_1K_2 - g \otimes 1\hat{T}^p + K_4 - f \otimes 1K_2$$

where $v_{E_0,0}(f \otimes 1) = -n$, $v_{E_0,0}(g \otimes 1) = -m$, $v_{E_0,0}(K_4) \geq k - r$ by lemma 2.2, and $v_{E_0,0}(K_1) = k - n$, $v_{E_0,0}(K_2) = k - m$ by proposition 2.2. Moreover, we have $v_{E_0,0}(\hat{T}) = k - n$, and $v_{E_0,0}(\hat{S}) = k - m$, because $\hat{T}^p - \hat{T} - K_1 = 0$ and $\hat{S}^p - \hat{S} - K_2 = 0$. Therefore we can take enough big k such, that $v_{E_0,0}(K_3) \geq 0$, then $K_3 \in \Gamma(\tilde{W}_0,\mathcal{O}_{\tilde{W}_0})$. Therefore

$$\tilde{Z}_0 = \text{Spec } \mathcal{O}_{\tilde{W}_0}[\hat{U} - \hat{ST}] / ((\hat{U} - \hat{ST})^p - (U - ST) - K_3)$$

We can see \tilde{Z}_0 is a Galois covering of \tilde{W}_0 and

$$F_{0,0} = \tilde{Z}_0 \times \tilde{W}_0 E_{0,0} = \text{Spec } \mathcal{O}_{E_{0,0}}[R] / (R^p - R - K_3)$$

is a Galois covering of $E_{0,0}$.

On the other hands, it easy to see K_3 vanish on $\Delta U_{0,0}$, then on $\Delta X_{0,0}$. Therefore

$$\tilde{Z}_0 \times \tilde{W}_0 \Delta X_{0,0} = \text{Spec } \mathcal{O}_{\Delta X_{0,0}}[R] / (R^p - R) = \prod_r \Delta X_{0,0,r}$$

(2). We have

$$\psi_{31}^{32} \psi_{11}^{31} \psi_{11}^{01} = \psi_{31}^{32} \psi_{11}^* \psi_{11}^* \psi_{11}^*$$

$$= \psi_{31}^{32} \psi_{11}^* \psi_{11}^* \psi_{11}^* \quad (\psi_c \text{ is a open immersion})$$

$$= \psi_{12}^{32} \psi_{12}^{02} \psi_{01}^{02} \quad \text{(smooth base change)}$$

$$= \psi_{12}^{32} \psi_{12}^{02} \psi_{01}^{02} \quad (\psi_c \text{ is a open immersion})$$
Corollary 3.3. For constructible sheaf, The base change map $\phi_{51}^{\psi_{11}^*} \phi_{11}^{\psi_{111}^*} \phi_{111}^{\psi_{1111}^*} \rightarrow \phi_{12}^{\psi_{12}^*} \phi_{12}^{\psi_{1212}^*}$ $\phi_{1212}^{\psi_{121212}^*}$ is an isomorphism.

\[(1) \]

Corollary 3.4. Take a suitable k, we have a commutative diagram
Denote. Let \(\phi_{i,j,k}^{p,q,r} \) denote the unique map from the object at site \((i,j,k)\) to the object at site \((p,q,r)\) (if it exists) of the diagram \(\mathcal{D} \). For example \(\phi_{000}^{000} = i^*, \phi_{000}^{010} = j, \phi_{000}^{011} = \phi_1, \) and \(\phi_{000}^{410} = j_U. \)

4 \text{ } l\text{-adic sheaves of rank } p

\(G \) have a normal subgroup \(H = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{Z}/p\mathbb{Z} \right\} \). For any character \(\chi : \mathbb{Z}/p\mathbb{Z} \rightarrow \mathbb{Q}_l^* \), we define a character

\[
\tilde{\chi} : H \rightarrow \mathbb{Q}_l^* \quad \mapsto \quad \chi(c)
\]

We denote the induced representation \(\text{Ind}_H^G \tilde{\chi} \) by \(\rho \). In fact, we can see

\[
\rho : G \rightarrow GL(\mathbb{Q}_l^p) \quad \text{ maps } \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} \chi(c) & & & \\ & \chi((p-b)a+c) & & \\ & & \ddots & \\ & & & \chi((p-1)a+c) \end{pmatrix}
\]

This defines a locally constant \(\mathbb{Q}_l \)-sheaf \(\mathcal{F} \) of rank \(p \) on \(U \).

Proposition 4.1. Under the setting of the diagram

\[
\begin{align*}
U \times U & \xrightarrow{j} E \\
E & \xrightarrow{j_u} \Delta U
\end{align*}
\]

There exists a sheaf \(\mathcal{L} \) satisfying the following conditions

1. \(\mathcal{L} \) is embedding in \(i^* \circ j_* \mathcal{H} \).
2. \(\mathcal{L}|_E \) is a constant sheaf or a locally constant sheaf defined by an Artin-Schreier equation which constant term a linear form on \(E \).
3. \(\mathcal{L}|_{\Delta X} = j_U \circ \mathbb{Q}_l \text{id}. \)

Proof.
(1). \(\mathcal{H} \) is determined by the action of \(\pi_1(U \times U) \) on \(\text{Hom}(\overline{\mathbb{Q}}_l, \overline{\mathbb{Q}}'_l) \) as follow:

\[
\pi_1(U \times U) \quad \rightarrow \quad \text{Gal}(V \times V/U \times U) \quad \rightarrow \quad \text{GL}(\text{Hom}(\overline{\mathbb{Q}}_l, \overline{\mathbb{Q}}'_l)) \quad \rightarrow \quad P' \times \times P^{-1}
\]

where

\[
P = \left[\begin{array}{ccc}
\chi((p-b)a+c) \\
\chi(c) \\
\vdots \\
\chi((p-b-1)a+c)
\end{array} \right], \\
P' = \left[\begin{array}{ccc}
\chi((p-b')a'+c') \\
\chi(c') \\
\vdots \\
\chi((p-b'-1)a'+c')
\end{array} \right]
\]

For any \(\sigma \in \pi_1(W_1) \), the image of \(\sigma \) in \(\text{Gal}(V \times V/U \times U) \) is in fact contained in \(\text{Gal}(V \times V/W_1) \). Therefore we can write the image by \(\left(\begin{array}{ccc} 1 & a & c \\
0 & 1 & b \\
0 & 0 & 1 \end{array} \right), \quad \left(\begin{array}{ccc} 1 & a' & c' \\
0 & 1 & b' \\
0 & 0 & 1 \end{array} \right) \).

We can see the image of the identity element \(I \in \text{Hom}(\overline{\mathbb{Q}}_l, \overline{\mathbb{Q}}'_l) \) under the action of \(\sigma \) is \(\chi(c - c)I \). It follow that \(\overline{\mathbb{Q}}_lI \) is a \(\overline{\mathbb{Q}}_l[\pi_1(W_1)] \)-submodule of \(\text{Hom}(\overline{\mathbb{Q}}_l, \overline{\mathbb{Q}}'_l) \). Therefore we got a smooth subsheaf \(D \) of \(\phi_1^* \mathcal{H} \) which is trivialized by \(Z_1 \).

Let functor \(\phi_{01}^{201*} \phi_{001*}^{011} \) act on \(0 \rightarrow D \rightarrow \phi_1^* \mathcal{H} \), we get

\[
0 \rightarrow \phi_{001}^{201*} \phi_{001}^{011} D \rightarrow \phi_{001}^{201*} \phi_{001}^{011} \phi_1^* \mathcal{H}
\]

But we know the base change map \(\phi_{000}^{011} j, \mathcal{H} \rightarrow \phi_{001}^{011} \phi_1^* \mathcal{H} \) is a isomorphism, because \(\phi_{000}^{011} \) is Galois, so is smooth. Therefore we have

\[
\phi_{001}^{201*} \phi_{001}^{011} \phi_1^* \mathcal{H} = \phi_{001}^{201*} \phi_{001}^{011} \phi_{000}^{011} j, \mathcal{H} = \phi_{000}^{201*} \phi_{000}^{011} j, \mathcal{H} = i^{++} j, \mathcal{H}
\]

Let \(\mathcal{L} = \phi_{001}^{201*} \phi_{001}^{011} \mathcal{D} \), then \(\mathcal{L} \) is embedded to \(i^{++} j, \mathcal{H} \).

(2). Consider the diagram \((1) \). We have

\[
\mathcal{L}_{|E_{0,0}|F_{0,0}} = (\psi_{11}^{34*} \psi_{11}^{01*} \mathcal{D})_{|E_{0,0}|F_{0,0}} = (\psi_{11}^{34*} \psi_{11}^{01*} \mathcal{D})_{|F_{0,0}} = (\psi_{12}^{32*} \psi_{12}^{02*} \mathcal{D})_{|F_{0,0}} \quad \text{(by theorem \((2) \))}
\]

But \(\psi_{01}^{02*} \mathcal{D} \) is a constant sheaf, then \(\mathcal{L}_{|E_{0,0}|F_{0,0}} \) is a constant sheaf also.

(3). Refer to the diagram \((2) \), we have

\[
\phi_{01}^{402*} \phi_{001}^{011} \mathcal{D} = \phi_{002}^{402*} \phi_{002}^{012*} \phi_{011}^{012*} \mathcal{D}
\]
by corollary 3.3. On the other hand, it easy to see,
\[\phi_{401}^* \phi_{401}^* \phi_{011}^* D = \phi_{402}^* \phi_{012}^* \phi_{011}^* D \]

But \(\phi_{011}^* D \) is a constant sheaf, then
\[\phi_{402}^* \phi_{002}^* \phi_{012}^* \phi_{011}^* D = \phi_{402}^* \phi_{012}^* \phi_{011}^* D \]

Therefore
\[\phi_{402}^* \phi_{401}^* \phi_{001}^* \phi_{011}^* D = \phi_{402}^* \phi_{401}^* \phi_{011}^* D \]

i.e
\[L_{|\Delta X} = j_{U!} \overline{\mathbb{Q}_l} \text{id} \]

\[\square \]

Remark 4.2. In [9], the rsw is defined to a injective ([9], Corollary 1.3.4):
\[rsw : \text{Hom}(G_{r, K}^a G_K, \mathbb{F}_p) \rightarrow \Omega^1_F(\log) \otimes F \text{m}_K^{(-k)}/\text{m}_K^{(-k)+} \]

where \(K \) is the henselization of the stalk of \(\mathcal{O}_X \) at the generic point of \(D \). \(F \) is its residue fields, \(\overline{K} \) is a separable closure of \(K \). \(\text{m}_K^{(-k)} = \{ a \in \overline{K} | v_K(a) \geq -k \} \) and \(\text{m}_K^{(-k)+} = \{ a \in \overline{K} | v_K(a) > -k \} \). There is a filtration \((G_{r, K}^a)_{a \in \mathbb{Q}_{\geq 0}} \) of \(G_K = \text{Gal}(\overline{K}/K) \), and \(Gr_{r, K}^a G_K \) is the graded pieces \((G_{K, \log}^a/G_{K, \log}^{a+}). \)

In our case, we have a morphism of filter
\[
\begin{align*}
G_{r, K, \log}^0 & \supset G_{r, K, \log}^k & \supset G_{r, K, \log}^{k+} \\
G & \supset G^k & \supset 1
\end{align*}
\]

and \(Gr_{r, K, \log}^k G_K = G^k \), where
\[
G^k = \left\{ \begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \bigg| c \in \mathbb{Z}/p\mathbb{Z} \right\} \simeq \mathbb{Z}/p\mathbb{Z}
\]

\(\rho \) is a Galois representation of dimension \(p \), whose unramified on \(U \). Its restriction on \(Gr_{r, K, \log}^k G_K \) factors by
\[
\begin{align*}
Gr_{r, K, \log}^k G_K & \rightarrow GL(\mathbb{Q}_l^p) \\
\begin{pmatrix} 1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} & \mapsto \chi(c)I_p
\end{align*}
\]

This is a direct sum of \(p \)'s character \(\chi : Gr_{r, K, \log}^r G_K \rightarrow \mathbb{Q}_l^p \). \(\chi \) can be regarded as a element of \(\text{Hom}(Gr_{r, K, \log}^r G_K, \mathbb{F}_p) \), therefore we can define the refined Swan conductor of \(\mathcal{F} \) by \(rsw(\chi) \).
Now, let us consider the commutative diagram following:

\[\tilde{W}_0 \] \quad \tilde{\psi} \quad \delta \\
\tilde{i} \quad (X \times X)^{(kD)} \quad \delta \\
\tilde{i} \quad \Delta X \\
E \quad \theta \quad D

where \(\tilde{W}_0 = W_0 \setminus \bigsqcup_{(i,s) \neq (0,0)} (E \cup \Delta X)_{(i,s)} \), and \(\tilde{i}, \tilde{\delta} \) are the only liftings of \(i, \delta \) respectively.

Let the ideal sheaf of \(\Delta X \) in \(\tilde{W}_0 \) is \(\tilde{J}_{\Delta X} \), then we have a commutative diagram

\[\Gamma(\tilde{W}, \tilde{J}_{\Delta X}) \rightarrow \Gamma(\Delta X, \delta^* \tilde{J}_{\Delta X}) \]
\[\Gamma(E, i^* \tilde{J}_{\Delta X}) \rightarrow \Gamma(D, i^*_D \delta^* \tilde{J}_{\Delta X}) \]

However, \(\tilde{J}_{\Delta X} = \tilde{\psi}^* J_{\Delta X} \). Hence

\[\tilde{i}^* J_{\Delta X} = i^* J_{\Delta X}, \quad \tilde{\delta}^* J_{\Delta X} = \delta^* J_{\Delta X} \]

Therefore, we have a commutative diagram

\[\Gamma(\tilde{W}, \tilde{J}_{\Delta X}) \rightarrow \Gamma(\Delta X, \delta^* J_{\Delta X}) \rightarrow \Gamma(\Delta X, \Omega^1_{\Delta X}(logD)(kD)) \]
\[\Gamma(E, I_D) \rightarrow \Gamma(D, i^*_D \delta^* J_{\Delta X}) \rightarrow \Gamma(D, i^*_D \Omega^1_{\Delta X}(logD)(kD)) \]

By Corollary 1.3.4 and the proof of Theorem 1.3.3 in [5], when \(\mathcal{L}|_E \) is a locally constant sheaf defined by an Artin-Schreier equation \(R^n - R - K_3 \), the image of \(K_3 \) in \(\Gamma(D, i^*_D \Omega^1_{\Delta X}(logD)(kD)) \) is the \(rs \mathcal{W}(F) \).

Theorem 4.3. We can compute \(rs \mathcal{W}(F) \) as follow:

1. If \(r > m + n \), then \(rs \mathcal{W}(F) = dh \in \Gamma(D, i^*_D \Omega^1_{\Delta X}(logD)(kD)) \), where \(k = r \).
2. If \(r < m + n \), then \(rs \mathcal{W}(F) = -fdg \in \Gamma(D, i^*_D \Omega^1_{\Delta X}(logD)(kD)) \), where \(k = m + n \).
(3). If \(r = m + n, \) and \(n \geq m, \) and \(dh - f dg \in \Omega^1_X((\log D)(kD))_\xi \setminus \Omega^1_X((\log D)(kD^{-1}))_\xi \) for some \(k > n + \frac{p}{e} \), then \(rsw(\xi) = dh - f dg \in \Gamma(D, i_D^*\Omega^1_{\Delta X}(\log D)(kD)). \)

(4). If \(r = m + n, \) and \(m \geq n, \) and \(dh - f dg \in \Omega^1_X((\log D)(kD))_\xi \setminus \Omega^1_X((\log D)(kD^{-1}))_\xi \) for some \(k > m + \frac{p}{e} \), then \(rsw(\xi) = dh - f dg \in \Gamma(D, i_D^*\Omega^1_{\Delta X}(\log D)(kD)). \)

Proof. We have

\[
K_3 = (K_1 + f \otimes 1)(\check{S}^p - K_2) - g \otimes 1(\check{T} + K_1) + K_4
\]

\[
= K_1 \check{S}^p + f \otimes 1\check{S}^p - K_1 K_2 - g \otimes 1\check{T}^p + K_4 - f \otimes 1K_2
\]

where \(v_{E_0,0}(f \otimes 1) = -n, v_{E_0,0}(g \otimes 1) = -m, \) and \(v_{E_0,0}(K_1) = k - r, v_{E_0,0}(K_2) = k - n, v_{E_0,0}(K_3) = k - m \) by proposition (2.2). Moreover, we have \(v_{E_0,0}(\check{T}) = k - n, \) and \(v_{E_0,0}(\check{S}) = k - m, \) because \(\check{T}^p - \check{T} - K_1 = 0 \) and \(\check{S}^p - \check{S} - K_2 = 0. \) We can abuse \(v_{E_0,0} \) and \(v_E, \) and write the valuation of terms of \(K_3 \) in the following table

term \(v_E \)	\(K_1 \check{S}^p \)	\(f \otimes 1\check{S}^p \)	\(K_1 K_2 \)	\(g \otimes 1\check{T}^p \)	\(K_4 \)	\(f \otimes 1K_2 \)
\(k - n + p(k - m) \)	\(p(k - m) - n \)	\(2k - m - n \)	\(p(k - n) - m \)	\(k - r \)	\(k - m - n \)	

Therefore,

(1). In this situation, \(v_E(K_4) = 0, \) and \(v_E(K_1 \check{S}^p + f \otimes 1\check{S}^p - K_1 K_2 - g \otimes 1\check{T}^p - f \otimes 1K_2) > 0. \) Hence \(K_3 \in \Gamma(E, \mathcal{L}_D) \). The image of \(K_3 \) in \(\Gamma(D, i_D^*\Omega^1_{\Delta X}(\log D)(kD)) \) is \(dh \).

(2). In this situation, \(v_E(-f \otimes 1K_2) = 0, \) and \(v_E(K_1 \check{S}^p + f \otimes 1\check{S}^p - K_1 K_2 - g \otimes 1\check{T}^p + K_4) > 0. \) Hence \(K_3 = -f \otimes 1K_2 \in \Gamma(E, \mathcal{L}_D) \). The image of \(-f \otimes 1K_2 \) in \(\Gamma(D, i_D^*\Omega^1_{\Delta X}(\log D)(kD)) \) is \(-fdg \).

(3) By the following lemma, we know \(v_E(K_4 - f \otimes 1K_2) \geq 0. \) In other words, we know also

\[
v_E(K_1 \check{S}^p + f \otimes 1\check{S}^p - K_1 K_2 - g \otimes 1\check{T}^p) > 0
\]

Hence \(K_3 = K_4 - f \otimes 1K_2 \in \Gamma(E, \mathcal{L}_D) \). The image of \(K_4 - f \otimes 1K_2 \) in \(\Gamma(D, i_D^*\Omega^1_{\Delta X}(\log D)(kD)) \) is \(dh - f dg. \) \(dh - f dg \) is not 0 as an element in \(\Gamma(D, i_D^*\Omega^1_{\Delta X}(\log D)(kD)) \), because it is not in \(\Omega^1_X((\log D)(kD^{-1}))_\xi \). Therefore \(K_4 \) is not 0 in \(\Gamma(E, \mathcal{L}_D) \).

(4). It is similar to (3).

Lemma 4.4. Under the condition in (3) of previous theorem, we have \(v_E(K_4 - f \otimes 1K_2) \geq 0. \)

Proof. Let us consider the diagram

\[
\begin{array}{ccc}
(X \times X)^{(kD)} & \xleftarrow{(\Delta X \cup kE)} & kE \\
\phi^k & \downarrow & \delta^k \\
(X \times X)^{\Delta X} & \xleftarrow{\delta^k} & \Delta X
\end{array}
\]

Let \(i^k \) be the morphism from \(kE \) to \((X \times X)^{(kD)} \), then we have a commutative diagram

\[
\begin{array}{cccc}
0 & \xrightarrow{\mathcal{O}_{(X \times X)^{(kD)}}(-kE)} & \mathcal{O}_{(X \times X)^{(kD)}} & \xrightarrow{i^k_\mathcal{O}} \mathcal{O}_{kE} & 0 \\
0 & \xrightarrow{\mathcal{O}_{(X \times X)^{(kD)}}((r-2k)E)} & \mathcal{O}_{(X \times X)^{(kD)}} & \xrightarrow{i^k_\mathcal{O}} \mathcal{O}_{kE} & 0
\end{array}
\]
of sheaves of $\mathcal{O}_{(X \times X)^{(k, D)}}$ module, and a commutative diagram

$$
\begin{array}{ccccccc}
0 & \rightarrow & T_{\Delta X}^2(kE^0) & \rightarrow & T_{\Delta X}(kE^0) & \rightarrow & \delta^0_*(\Omega^1_{\Delta X}(\log D)(kD)) & \rightarrow & 0 \\
0 & \rightarrow & T_{\Delta X}^2(rE^0) & \rightarrow & T_{\Delta X}(rE^0) & \rightarrow & \delta^0_*(\Omega^1_{\Delta X}(\log D)(rD)) & \rightarrow & 0 \\
\end{array}
$$

of sheaves of $\mathcal{O}_{(X \times X)^{\sim}}$ module. Where where E^0 is the complement of $U \times U$ in $(X \times X)^{\sim}$ as a reduced scheme, and $T_{\Delta X}$ is the ideal sheaf of ΔX in $(X \times X)^{\sim}$. Let $J_{\Delta X}$ be the ideal sheaf of ΔX in $(X \times X)^{(k, D)}$, then we have a morphism

$$
T_{\Delta X} \rightarrow \phi^*_{\Delta X}J_{\Delta X}(-kE) \rightarrow \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(k, D)}}(-kE)
$$

of sheaves of $\mathcal{O}_{(X \times X)^{\sim}}$ module. Therefore we have a commutative diagram

$$
\begin{array}{ccccccc}
0 & \rightarrow & T_{\Delta X}^2(kE^0) & \rightarrow & T_{\Delta X}(kE^0) & \rightarrow & \delta^0_*(\Omega^1_{\Delta X}(\log D)(kD)) & \rightarrow & 0 \\
0 & \rightarrow & \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(k, D)}}(-kE) & \rightarrow & \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(k, D)}}(-kE) & \rightarrow & \phi^*_{\Delta X}\mathcal{O}_{kE} \\
0 & \rightarrow & T_{\Delta X}^2(rE^0) & \rightarrow & T_{\Delta X}(rE^0) & \rightarrow & \delta^0_*(\Omega^1_{\Delta X}(\log D)(rD)) & \rightarrow & 0 \\
0 & \rightarrow & \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(r, D)}}((r - 2k)E) & \rightarrow & \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(r, D)}}((r - k)E) & \rightarrow & \phi^*_{\Delta X}\mathcal{O}_{kE}((r - k)E) \\
\end{array}
$$

of sheaves of $\mathcal{O}_{(X \times X)^{\sim}}$ module, where the morphisms

$$
\delta^0_*(\Omega^1_{\Delta X}(\log D)(kD)) \rightarrow \phi^*_{\Delta X}\mathcal{O}_{kE}, \quad \delta^0_*(\Omega^1_{\Delta X}(\log D)(rD)) \rightarrow \phi^*_{\Delta X}\mathcal{O}_{kE}((r - k)E)
$$

are induced by

$$
T_{\Delta X}(kE^0) \rightarrow \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(r)}}, \quad T_{\Delta X}(rE^0) \rightarrow \phi^*_{\Delta X}\mathcal{O}_{(X \times X)^{(r)}((r - k)E)}
$$

respectively.
Take the global sections, we have

\[\Gamma((X \times X)_{\Delta X}(kE^0)) \rightarrow \Gamma(\Delta X, \Omega^1_{\Delta X}(\log D)(kD))](\Delta X, \Omega^1_{\Delta X}(\log D)(rD)) \rightarrow \Gamma(kE, \mathcal{O}_{kE}) \\
\Gamma((X \times X)^{(kD)}_{(X \times X)^{(kD)}}) \rightarrow \Gamma(kE, \mathcal{O}_{kE}(rE_0)) \rightarrow \Gamma(kE, \mathcal{O}_{kE}((r - k)E)) \\
\Gamma((X \times X)^{(kD)}_{(X \times X)^{(kD)}}) \rightarrow \Gamma(kE, \mathcal{O}_{kE}((r - k)E)) \\
\Gamma((X \times X)\sim_{\Delta X}(rE_0)) \rightarrow \Gamma(\Delta X, \Omega^1_{\Delta X}(\log D)(rD)) \rightarrow \Gamma(kE, \mathcal{O}_{kE}(rE_0)) \\
\Gamma((X \times X)^{(kD)}_{(X \times X)^{(kD)}}) \rightarrow \Gamma(kE, \mathcal{O}_{kE}((r - k)E))

Now, \(K_4 \) and \(f \otimes 1K_2 \) is in \(\Gamma((X \times X)^\sim_{\Delta X}(rE_0)) \), the image \(dh - fdg \) of \(K_4 - f \otimes 1K_2 \) in \(\Gamma(\Delta X, \Omega^1_{\Delta X}(\log D)(rD)) \) is in fact inside \(\Gamma(\Delta X, \Omega^1_{\Delta X}(\log D)(kD)) \). Hence its image \(\overline{K}_4 - \overline{f} \otimes \overline{1K}_2 \) in \(\Gamma(kE, \mathcal{O}_{kE}(rE_0)) \) is in fact inside \(\Gamma(kE, \mathcal{O}_{kE}((r - k)E)) \). Therefore \(v_E(K_4 - f \otimes 1K_2) \geq 0 \).

Acknowledgement. I would like to show my highest respect and appreciation to my advisor professor Takeshi Saito for introducing this problem and giving some ideas of the proof to me. I have been learning so much from him and without his help, I could never have finished my master thesis.

References

[1] Ahmed Abbes, Takeshi Saito, The characteristic class and ramification of an l-adic étale sheaf. Inven. math. 168(2007), 567-612.

[2] Kazuya Kato, Swan conductors for characters of degree one in the imperfect residue field case. Contemp. Math. 83(1989), 101-132.

[3] Kazuya Kato, Class field theory, \(\mathcal{D} \)-modules, and ramification on higher dimensional schemes, part I. American Journal of Mathematics 116 (1994), 757-784.

[4] Kazuya Kato, Takeshi Saito, Ramification theory for varieties over a perfect field. [math.AG/0402010](http://arxiv.org/abs/math.AG/0402010) revised on 05/05/16 to appear at Annals of Mathematics.

[5] Takeshi Saito, Wild ramification and the characteristic cycle of an l-adic sheaf. [arXiv:0705.2799](http://arxiv.org/abs/0705.2799)