ON KENMOTSU MANIFOLDS WITH A SEMI-SYMMETRIC METRIC CONNECTION

Sunil Yadav, Sudhakar Kr Chaubey and Rajendra Prasad

Abstract. The aim of the present paper is to study the properties of locally and globally ϕ-concircularly symmetric Kenmotsu manifolds endowed with a semi-symmetric metric connection. First, we will prove that the locally ϕ-symmetric and the globally ϕ-concircularly symmetric Kenmotsu manifolds are equivalent. Next, we will study three dimensional locally ϕ-symmetric, locally ϕ-concircularly symmetric and locally ϕ-concircularly recurrent Kenmotsu manifolds with respect to such connection and will obtain some geometrical results. In the end, we will construct a non-trivial example of Kenmotsu manifold admitting a semi-symmetric metric connection and validate our results.

Keywords: Kenmotsu manifolds, ϕ-symmetric manifolds, η-parallel Ricci tensor, semi-symmetric metric connection, concircular curvature tensor.

1. Introduction

The product of an almost contact manifold M and the real line \mathbb{R} carries a natural almost complex structure. However, if one takes M to be an almost contact metric manifold and suppose that the product metric G on $M \times \mathbb{R}$ is Kähler, then the structure on M is cosymplectic [19] and not Sasakian. On the other hand, Oubina [25] pointed that if the conformally related metric $e^{2t}G$, t being the coordinates on \mathbb{R} is Kähler, then M is Sasakian and vice versa.

In [34], Tanno classified almost contact metric manifolds whose automorphism group possesses the maximum dimension. For such manifold M, the sectional curvature of the plane section containing ξ is constant, say c. If $c > =, and < 0$, then M is said be a homogeneous Sasakian manifold of constant sectional curvature, product of a line or a circle with Kähler manifold of constant holomorphic sectional curvature, and warped product space $\mathbb{R} \times_f C^n$, respectively. In 1972, Kenmotsu [23] characterized the geometrical properties of the manifold when $c < 0$, called Kenmotsu manifold. The geometrical properties of this manifold have been studied
by many geometers, for instance (see, [3], [7]-[11], [15], [16], [22], [26], [33], [36], [40], [41]).

In general, a geodesic circle (a curve whose first curvature is constant and second curvature is identically zero) does not transform into a geodesic circle by the conformal transformation

\[\tilde{g}^{ij} = \psi^2 g^{ij} \]

of the fundamental tensor \(g^{ij} \). A transformation which preserves the geodesic circle was first introduced by Yano [37]. The conformal transformation (1.1) satisfying the partial differential equation

\[\psi_{;ij} = \phi g_{ij} \]

change a geodesic circle into a geodesic circle. Such transformation is known as the concircular transformation and the geometry which leads with such transformation is known as the concircular geometry [37].

A (1, 3) type tensor \(C \) which remains invariant under the transformation (1.1), for an \(n \)-dimensional Riemannian manifold \(M \), given by

\[C(X,Y)Z = R(X,Y)Z - \frac{r}{n(n-1)} [g(Y,Z)X - g(X,Z)Y] \]

for all vector fields \(X, Y \) and \(Z \) on \(M \) is known as a concircular curvature tensor [37], where \(R, r, \) and \(\nabla \) are the Riemannian curvature tensor, the scalar curvature, and the Levi-Civita connection, respectively. In view of (1.2), it is obvious that

\[(\nabla_W C)(X,Y)Z = (\nabla_W R)(X,Y)Z - \frac{dW}{n(n-1)} [g(Y,Z)X - g(X,Z)Y] \]

The importance of the concircular transformation and the concircular curvature tensor are well known in the differential geometry of \(F \)-structures such as complex, almost complex, Kähler, almost Kähler, contact and almost contact structures ([37], [6], [35]). In a recent paper, Ahsan and Siddiqui [1] have studied the application of concircular curvature in general relativity and cosmology.

Let \((M,g) \) be a Riemannian manifold of dimension \(n \). A linear connection \(\tilde{\nabla} \) on \((M,g) \), whose torsion tensor \(\tilde{T} \) of type (1, 2) is defined by

\[\tilde{T}(X,Y) = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X,Y] \]

For arbitrary vector fields \(X \) and \(Y \) on \(M \) are said to be torsion free or symmetric if \(\tilde{T} \) vanishes, otherwise it is non-symmetric. If the connection \(\nabla \) satisfies \(\nabla g = 0 \) on \((M,g) \), then it is called metric connection, otherwise it is non-metric. In [17], Friedmann and Schouten introduced the notion of semi-symmetric linear connection on a differentiable manifold. Hayden [18] introduced the idea of semi-symmetric linear connection with non-zero torsion on a Riemannian manifold. The systematic study of the semi-symmetric metric connection on the Riemannian manifold was
introduced by Yano [38]. He proved that a Riemannian manifold endowed with a semi-symmetric metric connection has vanishing curvature tensor with respect to the semi-symmetric metric connection if and only if it is conformally flat. This result was generalized for vanishing Ricci tensor of the semi-symmetric metric connection by T. Imai ([20], [21]). Various geometrical and physical properties of this connection have been studied by many authors among whom are ([2]-[4], [12]-[14], [27]-[31], [39]). Motivated by the above studies, the authors will continue to study the properties of the Kenmotsu manifolds equipped with a semi-symmetric metric connection. The present paper is organized in the following manner:

After the introduction in Section 1, we will notify you on the basic results of the Kenmotsu manifolds and the semi-symmetric metric connection in Section 2 and Section 3, respectively. In section 4, we will start the study of globally ϕ-conicircularly symmetric Kenmotsu manifold and prove that the manifold is η-Einstein as well as locally ϕ-symmetric. The following sections deal with the study of locally ϕ-symmetric, locally ϕ-conicircularly symmetric, Ricci semisymmetric, η-parallel Ricci tensor and locally ϕ-conicircularly recurrent Kenmotsu manifolds equipped with a semi-symmetric metric connection. In the last section, we will construct an example of three dimensional Kenmotsu manifold admitting a semi-symmetric metric connection to verify some results of our paper.

2. Preliminaries

Let M be an $n(=2m+1)$-dimensional connected almost contact metric manifold with an almost contact structure (ϕ, ξ, η, g), that is, M admits a $(1, 1)$-type tensor field ϕ, a $(1, 0)$-type vector field ξ, a 1-form η, and a compatible Riemannian metric g satisfies

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta(\phi X) = 0,$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad g(X, \xi) = \eta(X)$$

for all $X, Y \in T(M)$, where $T(M)$ denotes the tangent space of M [5]. If an almost contact metric manifold M satisfies

$$\nabla_X \phi)(Y) = g(\phi X, Y)\xi - \eta(Y)\phi X$$

for all $X, Y \in T(M)$, then M is called a Kenmotsu manifold [23]. From (2.1)-(2.3), it can be easily prove that

$$\nabla_X \xi = X - \eta(X)\xi$$

and

$$\nabla_X \eta)(Y) = g(X, Y) - \eta(X)\eta(Y)$$

for all $X, Y \in T(M)$. Let S denote the Ricci tensor of M. It is noticed that M satisfies the following relations.

$$R(X, Y)\xi = \eta(X)Y - \eta(Y)X,$$
S. Yadav, S. K. Chaubey and R. Prasad

\[(2.7)\] \[R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi\]

and

\[(2.8)\] \[S(X, \xi) = -(n - 1)\eta(X)\]

for all \(X, Y \in T(M)\). The curvature tensor \(R\) in a 3-dimensional Kenmotsu manifold \(M\) assumes the form

\[R(X, Y)Z = \left(\frac{r + 4}{2}\right) [g(Y, Z)X - g(X, Z)Y] - \left(\frac{r + 6}{2}\right) [g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi]\]

After contracting \(X\) it becomes

\[S(Y, Z) = \frac{1}{2} [(r + 2)g(Y, Z) - (r + 6)\eta(X)\eta(Y)]\]

for all \(X, Y \in T(M)\).

An \(n\)-dimensional Kenmotsu manifold \((M, g)\) is said to be an \(\eta\)-Einstein manifold if its non-vanishing Ricci-tensor \(S\) takes the form

\[(2.11)\] \[S(X, Y) = ag(X, Y) + b\eta(X)\eta(Y)\]

for all \(X, Y \in T(M)\), where \(a\) and \(b\) are smooth functions on \((M, g)\). If \(b = 0\) and \(a\) is constant, then \(\eta\)-Einstein manifold becomes Einstein manifold. Kenmotsu [23] proved that if \((M, g)\) is an \(n\)-dimensional \(\eta\)-Einstein manifold, then \(a + b = -(n - 1)\).

3. Semi-symmetric metric connection on Kenmotsu manifold

Let \(M\) be an \(n\)-dimensional Kenmotsu manifold endowed with a Riemannian metric \(g\). A linear connection \(\tilde{\nabla}\) on \((M, g)\) is said to be a semi-symmetric metric connection [38] if the torsion tensor \(\tilde{T}\) of the connection \(\tilde{\nabla}\) and the Riemannian metric \(g\) satisfies

\[(3.1)\] \[\tilde{T}(X, Y) = \eta(Y)X - \eta(X)Y\]

and

\[(3.2)\] \[\tilde{\nabla}g = 0\]

for all \(X, Y \in T(M)\). The Levi-Civita connection \(\nabla\) and the semi-symmetric metric connection \(\tilde{\nabla}\) on \((M, g)\) are connected by

\[(3.3)\] \[\tilde{\nabla}_X Y = \nabla_X Y + \eta(Y)X - g(X, Y)\xi\]

for all \(X, Y \in T(M)\) [38]. From (2.1), (2.2) and (3.3), it follows that

\[(3.4)\] \[(\tilde{\nabla}_X \eta)(Y) = (\nabla_X \eta)(Y) - \eta(X)\eta(Y) + g(X, Y).\]
On Kenmotsu Manifolds with a Semi-Symmetric Metric Connection

The curvature tensors R and \tilde{R} with respect to ∇ and $\tilde{\nabla}$, respectively, are connected by

$$\tilde{R}(X,Y)Z = R(X,Y)Z + \alpha(X,Z)Y - \alpha(Y,Z)X + g(X,Z)AY - g(Y,Z)AX,$$

where α is a tensor field of type $(0,2)$ and A, a tensor field of type $(1,1)$, are related by

$$\alpha(Y,Z) = g(AY,Z) = (\nabla_Y \eta)(Z) - \eta(Y)\eta(Z) + \frac{1}{2}g(Y,Z),$$

for all $X, Y, Z \in T(M)$ [38]. From (2.1), (2.5), (3.5) and (3.6), it follows that

$$\tilde{R}(X,Y)Z = R(X,Y)Z - 3g(Y,Z)X + 3g(X,Z)Y + 2\eta(Y)\eta(Z)X - 2\eta(X)g(Y,Z)\xi - 2\eta(Y)g(X,Z)\xi.$$

Contracting (3.7) along X, we get

$$\tilde{S}(Y,Z) = S(Y,Z) - (3n - 5)g(Y,Z) + 2(n - 2)\eta(Y)\eta(Z),$$

which becomes

$$\tilde{r} = r - n(3n - 7) - 4.$$

Here \tilde{S} and \tilde{r} denote the Ricci tensor and the scalar curvature with respect to the connection $\tilde{\nabla}$. Replacing Z by ξ in (3.8) and using (2.8), we have

$$\tilde{S}(Y,\xi) = -2(n - 1)g(Y,\xi).$$

Thus we can state:

Proposition 3.1. Let M be an n-dimensional, $n \geq 3$, Kenmotsu manifold equipped with a semi-symmetric metric connection $\tilde{\nabla}$. Then ξ is an eigen vector of \tilde{S} corresponding to the eigenvalue $-2(n - 1)$.

4. **Globally ϕ-concircularly symmetric Kenmotsu manifold with a semi-symmetric metric connection**

In this section, we will study the properties of the globally ϕ-concircularly symmetric Kenmotsu manifold equipped with a semi-symmetric metric connection ∇ and prove our result in the form of theorems.

Definition 4.1. A Kenmotsu manifold M of dimension n is said to be locally ϕ-symmetric with respect to the semi-symmetric metric connection $\tilde{\nabla}$ if the non-vanishing curvature tensor \tilde{R} satisfies the relation

$$\phi^2(\tilde{\nabla}_W \tilde{R})(X,Y)Z = 0$$

for all vector fields X, Y, Z and W orthogonal to ξ.
This notion was introduced by Takahashi [32] for Sasakian manifold.

Definition 4.2. An n-dimensional Kenmotsu manifold M is said to be a globally ϕ-concircularly symmetric manifold with respect to ∇ if the non-zero concircular curvature tensor C satisfies

(4.1) $\phi^2((\nabla_W C)(X,Y)Z) = 0$

for all vector fields $X, Y, Z, W \in T(M)$.

Definition 4.3. An n-dimensional Kenmotsu manifold M equipped with the semi-symmetric metric connection $\tilde{\nabla}$ is said to be a globally ϕ-concircularly symmetric Kenmotsu manifold with respect to $\tilde{\nabla}$ if the non-vanishing concircular curvature tensor \tilde{C} with respect to $\tilde{\nabla}$ satisfies

(4.2) $\phi^2((\tilde{\nabla}_W \tilde{C})(X,Y)Z) = 0$

for arbitrary vector fields X, Y, Z and W. Here \tilde{C} is a concircular curvature tensor [37] with respect to $\tilde{\nabla}$ and is defined by

(4.3) $\tilde{C}(X,Y)Z = \tilde{R}(X,Y)Z - \frac{\tilde{r}}{n(n-1)} [g(Y,Z)X - g(X,Z)Y]$.

Theorem 4.1. An n-dimensional, $n \geq 3$, globally ϕ-concircularly symmetric Kenmotsu manifold M equipped with a semi-symmetric metric connection $\tilde{\nabla}$ is an η-Einstein manifold.

Proof. We suppose that M is a globally ϕ-concircularly symmetric Kenmotsu manifold with respect to a semi-symmetric metric connection $\tilde{\nabla}$. Then we have

$\phi^2((\tilde{\nabla}_W \tilde{C})(X,Y)Z) = 0$.

In view of (2.1), the above equation becomes

$-(\tilde{\nabla}_W \tilde{C})(X,Y)Z + \eta((\tilde{\nabla}_W \tilde{C})(X,Y)Z)\xi = 0$.

Equation (1.3) along with above equation give

$-g((\tilde{\nabla}_W \tilde{R})(X,Y)Z, U) + \frac{d\tilde{r}(W)}{n(n-1)} [g(Y,Z)g(X,U) - g(X,Z)g(Y,U)]$

$+ \eta((\tilde{\nabla}_W \tilde{R})(X,Y)Z)\eta(U) - \frac{d\tilde{r}(W)}{n(n-1)} [g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\eta(U) = 0$.

Replacing $X = U = e_i$, where $\{e_i, i = 1, 2, 3, ..., n\}$, be an orthonormal basis of the tangent space at each point of the manifold M and then summing over $i, 1 \leq i \leq n$, we get

$-(\tilde{\nabla}_W \tilde{S})(Y,Z) + \frac{d\tilde{r}(W)}{n} g(Y,Z) + \eta((\tilde{\nabla}_W \tilde{R})(\xi,Y)Z)$

$- \frac{d\tilde{r}(W)}{n(n-1)} [g(Y,Z) - \eta(Y)\eta(Z)] = 0$.
Putting $Z = \xi$ in the above equation and using (2.1), we get

\[(4.4) \quad -(\tilde{\nabla}_W \tilde{S})(Y, \xi) + \frac{d\tilde{r}(W)}{n} \eta(Y) + \eta((\tilde{\nabla}_W \tilde{R})(\xi, Y)\xi) = 0.\]

In view of (2.1), (2.2), (2.4), (2.6), (2.7), (3.3) and (3.7), we conclude that

\[\eta((\tilde{\nabla}_W \tilde{R})(\xi, Y)\xi) = 0\]

and hence the equation (4.4) becomes

\[(4.5) \quad (\tilde{\nabla}_W \tilde{S})(Y, \xi) = \frac{d\tilde{r}(W)}{n} \eta(Y).\]

Substituting $Y = \xi$ in (4.5) and using (2.1) and (2.8), we get $d\tilde{r}(W) = 0$. This implies that \tilde{r} is a constant. So from (4.5), we obtain

\[(4.6) \quad (\tilde{\nabla}_W \tilde{S})(Y, \xi) = 0.\]

It is well known that

\[(\tilde{\nabla}_W \tilde{S})(Y, \xi) = \tilde{\nabla}_W \tilde{S}(Y, \xi) - \tilde{S}(\tilde{\nabla}_W Y, \xi) - \tilde{S}(Y, \tilde{\nabla}_W \xi).\]

In view of (2.1), (2.2), (2.4), (2.5), (2.8), (3.3), (3.4), (3.10) and (4.6), above equation takes the form

\[S(Y, W) = (n - 3)g(Y, W) - 2(n - 2)\eta(Y)\eta(W).\]

Hence the statement of the Theorem 4.1 is proved. \(\square\)

From the above equation, it is clear that $r = (n - 1)(n - 4)$. Hence the scalar curvature under consideration is constant. Thus we have

Corollary 4.1. An n-dimensional, $n > 3$, globally ϕ-concircularly symmetric Kenmotsu manifold M equipped with a semi-symmetric metric connection $\tilde{\nabla}$ possesses a constant scalar curvature.

Theorem 4.2. Let M be an n-dimensional, $n \geq 3$, Kenmotsu manifold admits a semi-symmetric metric connection $\tilde{\nabla}$. Then the globally ϕ-concircularly symmetric manifold and the locally ϕ-symmetric manifold with respect to $\tilde{\nabla}$ coincide.

Proof. We suppose that the manifold M is globally ϕ-concircularly symmetric with respect to a semi-symmetric metric connection $\tilde{\nabla}$. Since r is constant on M and therefore \tilde{r} is also constant. The covariant derivative of (4.3) gives

\[(4.7) \quad (\tilde{\nabla}_W \tilde{C})(X, Y)Z = (\tilde{\nabla}_W \tilde{R})(X, Y)Z.\]
In view of (3.3), (3.4) and (3.7), we get

\[
(\tilde{\nabla}_W \tilde{R})(X,Y)Z = (\tilde{\nabla}_W R)(X,Y)Z + 4\{\nabla W \eta(Y) - \eta(Y)\eta(W) + g(Y,W)\} \eta(Z)X
\]
\[+ 2\{\nabla W \eta(X) - \eta(X)\eta(W) + g(X,W)\} \eta(Y)Z \]
\[+ 2\{\nabla W \eta(Z) - \eta(Z)\eta(W) + g(Z,W)\} \eta(X)Y\]
\[+ 2\{\nabla W \eta(X) - \eta(X)\eta(W) + g(X,W)\} \eta(Y)X \]
\[+ 2\{\nabla W \eta(Z) - \eta(Z)\eta(W) + g(Z,W)\} \eta(X)Y\]
\[+ 2\{\nabla W \eta(Z) - \eta(Z)\eta(W) + g(Z,W)\} \eta(Y)X\]
\[+ 2\{\nabla W \eta(X) - \eta(X)\eta(W) + g(X,W)\} \eta(Y)Z\]
\[+ 2\{\nabla W \eta(W) - \eta(W)\eta(X) + \eta(Y)g(X,Z)\}\]
\[+ 4\{\nabla W \eta(Y) + \eta(Y)\eta(W) - g(Y,W)\}\xi.
\]

(4.8)

Using (2.4) and (2.5) in (4.8), we obtain

\[
(\tilde{\nabla}_W \tilde{R})(X,Y)Z = (\tilde{\nabla}_W R)(X,Y)Z + 4\{\nabla W \eta(Y) - \eta(Y)\eta(W) + g(Y,W)\} \eta(Z)X
\]
\[+ 4\{\nabla W \eta(X) - \eta(X)\eta(W) + g(X,W)\} \eta(Y)Z \]
\[+ 4\{\nabla W \eta(Z) - \eta(Z)\eta(W) + g(Z,W)\} \eta(X)Y\]
\[+ 4g(Y,Z)\{\nabla W \eta(W) - \eta(W)\eta(X) + \eta(Y)g(X,Z)\}\]
\[+ 4\{\nabla W \eta(Y) + \eta(Y)\eta(W) - g(Y,W)\}\xi.
\]

(4.9)

If X, Y, Z and W are orthogonal to ξ then from above equation, we get

\[
(\tilde{\nabla}_W \tilde{R})(X,Y)Z = (\tilde{\nabla}_W R)(X,Y)Z + 4g(Y,Z)g(X,W)\xi.
\]

In view of (4.7) and (4.10), we have

\[
(\tilde{\nabla}_W \tilde{C})(X,Y)Z = (\tilde{\nabla}_W R)(X,Y)Z + 4g(Y,Z)g(X,W)\xi.
\]

Operating ϕ^2 on either sides of the above equation and then using (2.1) we get

\[
\phi^2(\tilde{\nabla}_W \tilde{C})(X,Y)Z = \phi^2(\tilde{\nabla}_W R)(X,Y)Z
\]

for all vector fields X, Y, Z and W orthogonal to ξ. From the equations (4.7) and (4.9), it is clear that the equation (4.11) satisfies for all vector fields X, Y, Z and W on \mathcal{M}. Hence the statement of the Theorem 4.2 is proved.

Remark 4.1. The last equation shows that a locally ϕ-symmetric Kenmotsu manifold with respect to the semi-symmetric metric connection $\tilde{\nabla}$ is always globally ϕ-concurrently symmetric manifold. Thus we conclude that on a Kenmotsu manifold locally ϕ-symmetric and globally ϕ-symmetric manifolds are equivalent corresponding to the connection $\tilde{\nabla}$.

5. Three dimensional locally ϕ-symmetric Kenmotsu manifolds with respect to the semi-symmetric metric connection

This section deals with the study of the locally ϕ-symmetric Kenmotsu manifold \mathcal{M} with respect to a semi-symmetric metric connection $\tilde{\nabla}$. Now, we will consider a 3-dimensional locally ϕ-symmetric Kenmotsu manifold equipped with a semi-symmetric metric connection $\tilde{\nabla}$ and prove the following:
Theorem 5.1. A 3-dimensional Kenmotsu manifold equipped with a semi-symmetric metric connection $\tilde{\nabla}$ is locally ∂-symmetric with respect to the connection $\tilde{\nabla}$ if and only if $dr(W) = 0$, W is an orthonormal vector field to ξ.

Proof. From (2.9) and (3.7), we get

$$R(X, Y)Z = \left(\frac{r-2}{2}\right)\{g(Y, Z)X - g(X, Z)Y\}$$

$$+ \left(\frac{r+2}{2}\right)\left[\eta(Y)g(X, Z)\xi + \eta(X)\eta(Z)Y\right] - \eta(X)g(Y, Z)\xi - \eta(Y)\eta(Z)X.$$ (5.1)

Taking covariant differentiation of (5.1) with respect to the semi-symmetric metric connection $\tilde{\nabla}$ along W, we have

$$(\tilde{\nabla}_W R)(X, Y)Z = \frac{dr(W)}{2}\left\{g(Y, Z)X - g(X, Z)Y - \eta(X)\eta(Z)Y\right\}$$

$$+ \left\{-g(X, Z)\eta(Y) + g(Y, Z)\eta(X)\right\}\xi + \left\{\eta(Y)\eta(Z)\right\}X$$

$$+ \left(\frac{r+2}{2}\right)\left\{g(X, Z)(\tilde{\nabla}_W \eta)(Y)\xi + g(X, Z)\eta(Y)(\tilde{\nabla}_W \eta)Y\right\} - g(Y, Z)(\tilde{\nabla}_W \eta)(X)\xi - g(Y, Z)\eta(X)\tilde{\nabla}_W \eta\xi$$

$$+ \eta(Z)(\tilde{\nabla}_W \eta)(X)Y + \eta(X)(\tilde{\nabla}_W \eta)(Z)Y$$

$$- \eta(Z)(\tilde{\nabla}_W \eta)(Y)X - \eta(Y)(\tilde{\nabla}_W \eta)(Z)X].$$ (5.2)

In consequence of (3.3) and (3.4), (5.2) becomes

$$(\tilde{\nabla}_W R)(X, Y)Z = \frac{dr(W)}{2}\left\{g(Y, Z)X - g(X, Z)Y - g(X, Z)\eta(Y)\xi\right\} - \eta(X)\eta(Z)Y + g(Y, Z)\eta(X)\xi + \eta(Y)\eta(Z)X$$

$$+ \left(\frac{r+2}{2}\right)\left\{-\eta(X)g(Y, Z)\{\nabla_W \xi + W - \eta(W)\xi\} - g(Y, Z)\{(\nabla_W \eta)(X) - \eta(X)\eta(W) + g(X, W)\}\xi$$

$$+ \eta(Z)\{(\nabla_W \eta)(X) - \eta(X)\eta(W) + g(X, W)\}Y + \eta(X)\{(\nabla_W \eta)(Z) - \eta(W)\eta(Z) + g(Z, W)\}Y$$

$$- \eta(Z)\{(\nabla_W \eta)(Y) - \eta(Y)\eta(W) + g(Y, W)\}X - \eta(Y)\{(\nabla_W \eta)(Z) - \eta(Z)\eta(W) + g(Z, W)\}X$$

$$+ g(X, Z)\{(\nabla_W \eta)(Y) - \eta(Y)\eta(W) + g(Y, W)\}\xi$$

$$+ g(X, Z)\eta(Y)\{(\nabla_W \xi + W - \eta(W)\xi\}].$$ (5.3)

Let us suppose that the vector fields X, Y, Z and W are orthogonal to ξ, therefore
$S. \text{ Yadav, S. K. Chaubey and R. Prasad}$

(5.3) becomes
\[
(\nabla_W \tilde{R})(X,Y)Z = \frac{dr(W)}{2} \{g(Y,Z)X - g(X,Z)Y\} \\
+ \left(\frac{r + 2}{2} \right) [g(X,Z) \{(\nabla_W \eta)(Y) + g(Y,W)\} \\
- g(Y,Z) \{(\nabla_W \eta)(X) + g(X,W)\}] \xi.
\]

Operating ϕ^2 on both sides of (5.4) and then using (2.1) and (2.2), we obtain
\[
(5.5) \quad \phi^2((\nabla_W \tilde{R})(X,Y)Z) = -\frac{dr(W)}{2} \{g(Y,Z)X - g(X,Z)Y\}.
\]

From the equation (5.5), it is obvious that the manifold M is locally ϕ-symmetric Kenmotsu manifold with respect to ∇ if and only if $dr(W) = 0$. Hence the statement of the Theorem 5.1 is proved.

6. Three dimensional Locally ϕ-concircularly symmetric Kenmotsu manifold with a semi-symmetric metric connection

Definition 6.1. A Kenmotsu manifold M is said to be locally ϕ-concircularly symmetric with respect to the semi-symmetric metric connection ∇ if its concircular curvature tensor \tilde{C} satisfies
\[
\phi^2((\nabla_W \tilde{C})(X,Y)Z) = 0
\]
for all vector fields W, X, Y and Z orthogonal to ξ.

Theorem 6.1. A 3-dimensional Kenmotsu manifold M with respect to the semi-symmetric metric connection ∇ is locally ϕ-concircularly symmetric manifold with respect to the connection ∇ if and only if the scalar curvature r is constant.

Proof. From (2.9) and (3.7), it follows that
\[
\tilde{R}(X,Y)Z = \left(\frac{r - 2}{2} \right) \{g(Y,Z)X - g(X,Z)Y\} \\
+ \left(\frac{r + 2}{2} \right) [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X \\
+ \{g(X,Z)\eta(Y) - g(Y,Z)\eta(X)\} \xi].
\]

In view of (1.2) and (6.1), we get
\[
\tilde{C}(X,Y)Z = \left(\frac{r - 2}{2} \right) \{g(Y,Z)X - g(X,Z)Y\} \\
+ \left(\frac{r + 2}{2} \right) [\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X \\
+ \{g(X,Z)\eta(Y) - g(Y,Z)\eta(X)\} \xi] \\
+ \frac{r}{6} \{g(Y,Z)X - g(X,Z)Y\}.
\]
On Kenmotsu Manifolds with a Semi-Symmetric Metric Connection

Taking covariant derivative of (6.2) with respect to the semi-symmetric metric connection $\tilde{\nabla}$ along W, we have

\[
(\tilde{\nabla}_W \tilde{C})(X,Y)Z = \frac{dr(W)}{2} [g(Y,Z)X - g(X,Z)Y + \eta(X)\eta(Z)Y \\
+ \{\eta(Y)g(X,Z) - \eta(X)g(Y,Z)\} \xi - \eta(Y)\eta(Z)X] \\
+ \left(\frac{r+2}{2}\right) [g(X,Z)(\tilde{\nabla}_W \eta)(Y)\xi + g(X,Z)\eta(Y)\tilde{\nabla}_W \xi \\
- g(Y,Z)(\tilde{\nabla}_W \eta)(X)\xi - g(Y,Z)\eta(X)\tilde{\nabla}_W \xi + \eta(X)(\tilde{\nabla}_W \eta)(Z)Y \\
- \eta(Z)(\tilde{\nabla}_W \eta)(Y)X - \eta(Y)(\tilde{\nabla}_W \eta)(Z)X + \eta(Z)(\tilde{\nabla}_W \eta)(Y)Y] \\
+ \frac{dr(W)}{6} \{g(Y,Z)X - g(X,Z)Y\}. \tag{6.3}
\]

Let us consider that the vector fields X, Y and Z are orthonormal to ξ and therefore (6.3) converts into the form

\[
(\tilde{\nabla}_W \tilde{C})(X,Y)Z = \frac{dr(W)}{2} \{g(Y,Z)X - g(X,Z)Y] \\
+ \left(\frac{r+2}{2}\right) \{g(X,Z)(\tilde{\nabla}_W \eta)(Y) - g(Y,Z)(\tilde{\nabla}_W \eta)(X)\} \xi \\
+ \frac{dr(W)}{6} \{g(Y,Z)X - g(X,Z)Y\}. \tag{6.4}
\]

Using (3.4) in (6.4), we obtain

\[
(\tilde{\nabla}_W \tilde{C})(X,Y)Z = \frac{2dr(W)}{3} \{g(Y,Z)X - g(X,Z)Y\} + \left(\frac{r+2}{2}\right) [g(X,Z)(\tilde{\nabla}_W \eta)(Y) \\
- g(X,Z)\eta(Y)\eta(W) - g(Y,Z)(\tilde{\nabla}_W \eta)(X) + g(Y,W)g(X,Z) \\
- g(Y,Z)g(X,W) + g(Y,Z)\eta(X)\eta(W)] \xi. \tag{6.5}
\]

Applying ϕ^2 on both sides of (6.5) and using (2.1), we get

\[
\phi^2 \left(\tilde{\nabla}_W \tilde{C})(X,Y)Z\right) = \frac{2dr(W)}{3} \{g(Y,Z)X - g(X,Z)Y\}. \tag{6.6}
\]

This proved the statement of the Theorem 6.1. \qed

From the Theorem 5.1 and the Theorem 6.1, we can state the following:

Corollary 6.1. A 3-dimensional Kenmotsu manifold with respect to the semi-symmetric metric connection $\tilde{\nabla}$ is locally ϕ-concircularly symmetric with respect to the connection $\tilde{\nabla}$ if and only if it is locally ϕ-symmetric with respect to $\tilde{\nabla}$.

[7]
Theorem 7.1. A 3-dimensional Ricci semisymmetric Kenmotsu manifold with respect to a semi-symmetric metric connection $\tilde{\nabla}$ possesses a constant scalar curvature.

Proof. Let us consider a 3-dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection $\tilde{\nabla}$ which satisfies $\tilde{R}(X,Y) \cdot \tilde{S} = 0$, that is, M is Ricci semisymmetric with respect to $\tilde{\nabla}$ and then we have

$$\tilde{S}(\tilde{R}(X,Y)Z,W) + \tilde{S}(Z,\tilde{R}(X,Y)W) = 0.$$ \hfill (7.1)

Replacing X by ξ in (7.1), we get

$$\tilde{S}(\tilde{R}(\xi,Y)Z,W) + \tilde{S}(Z,\tilde{R}(\xi,Y)W) = 0.$$ \hfill (7.2)

From (5.1), it is obvious that

$$\tilde{R}(\xi,Y)Z = -2\{g(Y,Z)\xi - \eta(Z)Y\}.$$ \hfill (7.3)

By virtue of (3.10), (7.2) and (7.3), we obtain

$$\eta(Z)\tilde{S}(Y,W) + 4\eta(W)g(Y,Z) + \eta(W)\tilde{S}(Z,Y) + 4\eta(Z)g(Y,W) = 0.$$ \hfill (7.4)

Let $\{e_i\}, i = 1, 2, 3$, is an orthonormal basis of the tangent space at each point of the manifold M. Putting $Y = Z = e_i$ in (7.4) and taking summation over i, $1 \leq i \leq 3$, we get

$$\tilde{r} + 12\eta(W) = 0.$$ \hfill (\tilde{r} + 12)\eta(W) = 0.

Since $\eta(W) \neq 0$, in general, therefore $\tilde{r} = -12$ (constant). This proved the statement of the Theorem 7.1. \hfill \Box

In consequence of the Theorem 6.1 and Theorem 7.1, we state:

Corollary 7.1. If a 3-dimensional Kenmotsu manifold M with respect to a semi-symmetric metric connection $\tilde{\nabla}$ satisfies the condition $\tilde{R}(X,Y) \cdot \tilde{S} = 0$, then M is locally ϕ-symmetric as well as locally ϕ-concircularly symmetric with respect to $\tilde{\nabla}$, respectively.

8. η-parallel Ricci tensor with respect to the semi-symmetric metric connection
A Ricci tensor \tilde{S} of a Kenmotsu manifold M equipped with a semi-symmetric metric connection $\tilde{\nabla}$ is called η-parallel with respect to $\tilde{\nabla}$ if it is non-zero and satisfies

$$(\tilde{\nabla}_X \tilde{S})(\phi Y, \phi Z) = 0$$

for all vector fields X, Y and Z on M.

The notion of η-parallel Ricci tensor on a Sasakian manifold was introduced by M. Kon [24]. Since then, many authors studied the geometrical and physical properties of this tensor.

Theorem 8.1. If a 3-dimensional Kenmotsu manifold M with respect to the semi-symmetric metric connection $\tilde{\nabla}$ possesses an η-parallel Ricci tensor, then the scalar curvature of M is constant.

Proof. In view of (2.2), (2.9) and (3.8), we have

$$(\tilde{\nabla}_W \tilde{S})(\phi X, \phi Y) = \left(\tilde{\nabla}_W \eta\right)(X, \phi Y) - \tilde{\nabla}_W(\tilde{\nabla}_Y \eta)(X) - \tilde{\nabla}_Y(\tilde{\nabla}_W \eta)(X).$$

In view of (2.1), (2.3), (2.5), (3.3), (3.4), (8.1) and (8.3), it can be easily found that

$$d\tilde{\nabla}(W) \{g(X, Y) - \eta(X)\eta(Y)\} = 0,$$

which gives

$$d\tilde{\nabla}(W) = 0 \iff \tilde{\nabla} is constant.$$

Hence the statement of the Theorem 8.1 is proved.

In the light of the Theorem 6.1 and Theorem 8.1, we state the following corollary.

Corollary 8.1. If a 3-dimensional Kenmotsu manifold M equipped with a semi-symmetric metric connection $\tilde{\nabla}$ has η-parallel Ricci tensor, then the manifold is locally ϕ-symmetric as well as locally ϕ-concircularly symmetric with respect to $\tilde{\nabla}$, respectively.
9. Three dimensional locally ϕ-concircularly recurrent Kenmotsu manifold with respect to the semi-symmetric metric connection

Definition 9.1. A Kenmotsu manifold M equipped with a semi-symmetric metric connection $\tilde{\nabla}$ is said to be ϕ-concircularly recurrent with respect to $\tilde{\nabla}$ if there exists a non-zero 1-form A on M such that

$$(9.1) \quad \phi^2((\tilde{\nabla}_W \tilde{C})(X,Y)Z) = A(W)\tilde{C}(X,Y)Z$$

for arbitrary vector fields X, Y, Z and W, where \tilde{C} is the concircular curvature tensor with respect to the semi-symmetric metric connection $\tilde{\nabla}$. If the 1-form A vanishes identically on M, then the manifold M with $\tilde{\nabla}$ is reduced to a locally ϕ-concircularly symmetric manifold with respect to $\tilde{\nabla}$.

Theorem 9.1. If a 3-dimensional locally ϕ-concircularly recurrent Kenmotsu manifold admits a semi-symmetric metric connection $\tilde{\nabla}$, then the curvature tensor with respect to $\tilde{\nabla}$ assumes the form (9.7).

Proof. From (3.9) and (5.5), we have

$$(9.2) \quad \phi^2((\tilde{\nabla}_W \tilde{R})(X,Y)Z) = -\frac{d\tilde{r}(W)}{2} \{g(Y,Z)X - g(X,Z)Y\}.$$

On the other hand, from (1.3), it is seen that (for $n=3$)

$$(9.3) \quad (\tilde{\nabla}_W \tilde{C})(X,Y)Z = (\tilde{\nabla}_W \tilde{R})(X,Y)Z - \frac{d\tilde{r}(W)}{6} \{g(Y,Z)X - g(X,Z)Y\}.$$

Applying ϕ^2 on both sides of (9.3), we get

$$(9.4) \quad \phi^2((\tilde{\nabla}_W \tilde{C})(X,Y)Z) = \phi^2((\tilde{\nabla}_W \tilde{R})(X,Y)Z) - \frac{d\tilde{r}(W)}{6} \{g(Y,Z)\phi^2X - g(X,Z)\phi^2Y\}.$$

In consequence of (2.1), (9.1) and (9.2), it is obvious that

$$(9.5) \quad A(W)\tilde{C}(X,Y)Z = -\frac{d\tilde{r}(W)}{3} \{g(Y,Z)X - g(X,Z)Y\} - \frac{d\tilde{r}(W)}{6} \{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\} \xi.$$

Replacing W with ξ in (9.5), we get

$$(9.6) \quad \tilde{C}(X,Y)Z = -\frac{d\tilde{r}(\xi)}{3A(\xi)} \{g(Y,Z)X - g(X,Z)Y\} - \frac{d\tilde{r}(\xi)}{6A(\xi)} \{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\} \xi,$$

provided $A(\xi) \neq 0$. In view of (1.2) and (9.6), we have

$$(9.7) \quad \hat{\tilde{R}}(X,Y)Z = a \{g(Y,Z)X - g(X,Z)Y\} - b \{\eta(X)g(Y,Z) - \eta(Y)g(X,Z)\} \xi,$$

where $a = \left\{ \frac{\tilde{r}}{6} - \frac{d\tilde{r}(\xi)}{3A(\xi)} \right\}$, $b = \frac{d\tilde{r}(\xi)}{6A(\xi)}$ and A is a non-zero 1-form. □
10. Example of a Kenmotsu manifold admitting a semi-symmetric metric connection

In this section, we will construct a non-trivial example of a Kenmotsu manifold admitting the semi-symmetric metric connection and after that we will validate our results.

Example 10.1. Let
\[M = \{(x, y, z) \in \mathbb{R}^3 : x, y, z(\neq 0) \in \mathbb{R}\}, \]
be a three dimensional Riemannian manifold, where \((x, y, z)\) denotes the standard coordinates of a point in \(\mathbb{R}^3\). Let us suppose that
\[e_1 = z \frac{\partial}{\partial x}, \quad e_2 = z \frac{\partial}{\partial y}, \quad e_3 = -z \frac{\partial}{\partial z} \]
be a set of linearly independent vector fields at each point of the manifold \(M\) and therefore it forms a basis for the tangent space \(T(M)\). We also define the Riemannian metric \(g\) of the manifold by
\[g(e_i, e_j) = \delta_{ij}, \quad \text{where} \quad \delta_{ij} = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases} \]

Let us consider a 1-form \(\eta\) defined by
\[\eta(Z) = g(Z, e_3) \]
for any \(Z \in T(M)\) and a tensor field \(\phi\) of type \((1,1)\) defined by
\[\phi(e_1) = -e_2, \quad \phi(e_2) = e_1, \quad \phi(e_3) = 0. \]

By the linearity properties of \(\phi\) and \(g\), we can easily verify the following relations
\[\phi^2 X = -X + \eta(X)e_3, \quad \eta(e_3) = 1, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \]
for arbitrary vector fields \(X, Y \in T(M)\). This shows that for \(\xi = e_3\), the structure \((\phi, \xi, \eta, g)\) defines an almost contact metric structure on \(M\).

If \(\nabla\) represents the Levi-Civita connection with respect to the Riemannian metric \(g\), then with the help of above relations, we can easily calculate the non-vanishing components of Lie bracket as:
\[[e_1, e_2] = 0, \quad [e_1, e_3] = e_1, \quad [e_2, e_3] = e_2. \]

We recall the Koszul’s formula
\[2g(\nabla_X Y, Z) = X g(Y, Z) + Y g(X, Z) - Z g(X, Y) - g([X, Y], Z) \]
for all vector fields \(X, Y, Z \in T(M)\). It is obvious from Koszul’s formula that
\[\nabla_{e_1} e_1 = -e_3, \quad \nabla_{e_1} e_2 = 0, \quad \nabla_{e_1} e_3 = e_1, \quad \nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = -e_3, \quad \nabla_{e_2} e_3 = e_2, \quad \nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0, \quad \nabla_{e_3} e_3 = 0. \]

From the above calculations, we can observe that \(\nabla_X \xi = X - \eta(X)\xi\) for \(\xi = e_3\). Thus the manifold \((M, g)\) is a Kenmotsu manifold of dimension 3 and the structure \((\phi, \eta, \xi, g)\) denotes the Kenmotsu structure on the manifold \(M\) [16].
In consequence of (3.3) and the above results, we can find that
\[
\nabla_{e_1} e_1 = -2e_3, \quad \nabla_{e_2} e_1 = 0, \quad \nabla_{e_3} e_1 = 2e_1,
\]
\[
\nabla_{e_1} e_2 = 0, \quad \nabla_{e_2} e_2 = -2e_3, \quad \nabla_{e_3} e_2 = 2e_2,
\]
\[
\nabla_{e_1} e_3 = 0, \quad \nabla_{e_2} e_3 = 0, \quad \nabla_{e_3} e_3 = 0
\]
and also the components of torsion tensor \(\hat{T}\) are
\[
\hat{T}(e_i, e_i) = \nabla_{e_i} e_i - \nabla_{e_i} e_i - [e_i, e_i] = 0, \quad \text{for } i = 1, 2, 3
\]
\[
\hat{T}(e_1, e_2) = 0, \quad \hat{T}(e_1, e_3) = e_1, \quad \hat{T}(e_2, e_3) = e_2.
\]
This shows that \(\hat{T} \neq 0\) and, therefore, by the equation (3.1), we can say that the linear connection defined in (3.3) is a semi-symmetric connection on \((M, g)\). By straightforward calculation, we can also find
\[
(\nabla_{e_2} g)(e_2, e_3) = 0, \quad (\nabla_{e_2} g)(e_3, e_1) = 0, \quad (\nabla_{e_2} g)(e_1, e_2) = 0
\]
and other components by symmetric properties. This demonstrates that the equation (3.2) is satisfied and hence the linear connection defined by (3.3) is a semi-symmetric metric connection on \(M\). Thus, we can say that the manifold \((M, g)\) is a 3-dimensional Kenmotsu manifold equipped with a semi-symmetric metric connection defined by (3.3).

With the help of the above discussions, we can calculate the curvature and Ricci tensors of \(M\) with respect to the semi-symmetric metric connection \(\nabla\) as
\[
\widehat{R}(e_1, e_2)e_3 = 0, \quad \widehat{R}(e_1, e_3)e_3 = -2e_1, \quad \widehat{R}(e_3, e_2)e_3 = -2e_3,
\]
\[
\widehat{R}(e_3, e_1)e_1 = -2e_3, \quad \widehat{R}(e_2, e_1)e_1 = -4e_2, \quad \widehat{R}(e_2, e_3)e_3 = -2e_2,
\]
\[
\widehat{R}(e_1, e_2)e_2 = 0, \quad \widehat{S}(e_1, e_1) = -6, \quad \widehat{S}(e_2, e_2) = -2, \quad \widehat{S}(e_3, e_3) = -4
\]
and other components can be calculated by skew-symmetric properties. We can easily observe that the equation (3.10) is verified.

Next, we have to prove that the manifold \((M, g)\) is a Ricci semisymmetric with respect to the connection \(\nabla\), i.e., \(\widehat{R} \cdot \widehat{S} = 0\). For instance,
\[
(\widehat{R}(e_2, e_1) \cdot \widehat{S})(e_1, e_1) = 0, \quad (\widehat{R}(e_3, e_2) \cdot \widehat{S})(e_1, e_1) = 0, \quad (\widehat{R}(e_3, e_3) \cdot \widehat{S})(e_1, e_1) = 0
\]
In a similar way, we can verify other components. Also, we can prove that \(\tilde{r} = -12\) (constant) and hence the Theorem 7.1 is verified. Moreover, it can be easily seen that the Theorem 5.1, Theorem 6.1 and the Theorem 8.1 have been verified.

Acknowledgments. The authors express their thanks and gratitude to the Editor and the anonymous referees for their suggestions.

REFERENCES

1. Z. Ahsan and M. A. Siddiqui: *Concircular curvature tensor and fluid spacetimes*. Int J Theor Phys 48 (2009), 3202–3212.
2. K. Amur and S. S. Purjar: *On submanifolds of a Riemannian manifold admitting a semi-symmetric metric connection*. Tensor N. S. 32 (1978), 35–38.
3. A. Barman, U. C. De and P. Majhi: *On Kenmotsu manifolds admitting a special type of semi-symmetric non-metric φ-connection*. Novi Sad J. Math. 48 (1) (2018), 47–60.

4. T. Q. Binh: *On semi-symmetric connection*. Periodica Math Hungarica 21 (1990), 101–107.

5. D. E. Blair: *Riemannian geometry of contact and symplectic manifolds*. Progress in Mathematics 203 Birkhauser Boston Inc., Boston, 2002.

6. D. E. Blair, J. S. Kim, and M. M. Tripathi: *On the concircular curvature tensor of a contact metric manifold*. J Korean Math Soc 42 (2005), 883–892.

7. S. K. Chaubey and R. H. Ojha: *On the m-projective curvature tensor of a Kenmotsu manifold*. Differential Geometry-Dynamical Systems 12 (2010), 52–60.

8. S. K. Chaubey, S. Prakash and R. Nivas: *Some properties of m-projective curvature tensor in Kenmotsu manifolds*. Bulletin of Math. Analysis and Applications 4 (3) (2012), 48–56.

9. S. K. Chaubey and R. H. Ojha: *On a semi-symmetric non-metric connection*. Filomat 26 (2) (2012), 63–69.

10. S. K. Chaubey and C. S. Prasad: *On generalized φ-recurrent Kenmotsu manifolds*. TWMS J. App. Eng. Math. 5 (1) (2015), 1–9.

11. S. K. Chaubey and S. K. Yadav: *Study of Kenmotsu manifolds with semi-symmetric metric connection*. Universal Journal of Mathematics and Applications 1 (2) (2018), 89–97.

12. S. K. Chaubey, J. W. Lee and S. K. Yadav: *Riemannian manifolds with a semi-symmetric metric P-connection*. J. Korean Math. Soc. (2019) https://doi.org/10.4134/JKMS.j180642.

13. U. C. De and J. Sengupta: *On a type of semi-symmetric metric connection on an almost contact metric manifold*. Filomat 14 (2000), 33–42.

14. U. C. De and S. C. Biswas: *On a type of semi symmetric metric connection on a Riemannian manifold*. Publications de l’Institut Mathématique 61 (1997), 90–96.

15. U. C. De and G. Pathak: *On 3-dimensional Kenmotsu manifolds*. Indian J Pure and Appl Math 35 (2004), 159–165.

16. U. C. De: *On φ-symmetric Kenmotsu manifolds*. International Electronic Journal of Geometry 1 (2008), 33–38.

17. A. Friedmann and J. A. Schouten: *Über die Geometry der halbsymmetrischen Übertragung*. Math Zeitschr 21 (1924), 211–223.

18. H. A. Hayden *Subspace of space with torsion*. Proc London Math Soc 34 (1932), 27–50.

19. S. Ianus and D. Smaranda *Some remarkable structures on the products of an almost contact metric manifold with the real line*. Paper from the National Colloquium on Geometry and Topology, Univ Timisoara, 107-110, 1997.

20. T. Imai: *Notes on semi-symmetric metric connections*. Tensor N S 24 (1972), 293–296.

21. T. Imai: *Hypersurfaces of a Riemannian manifold with semi-symmetric metric connection*. Tensor N S 23 (1972), 300–306.

22. J. B. Jun, U. C. De and G. Pathak: *On Kenmotsu manifolds*. J Korean Math Soc 42 (2005), 435–445.
23. K. Kenmotsu: *A class of almost contact Riemannian manifolds*. Tohoku Math J 24 (1972), 93–103.
24. M. Kon: *Invariant submanifolds in Sasakian manifolds*. Math Annalen 219 (1976), 277–290.
25. J. A. Oubina: *New classes of almost contact metric structures*. Publ Math Debrecen 32 (1985), 187–193.
26. C. Özgür and U. C. De: *On the quasi-conformal curvature tensor of a Kenmotsu manifold*. Mathematica Pannonica 17 (2006), 221–228.
27. A. S. Pahan and B. A. Bhattacharyya: *Some properties of three dimensional trans-Sasakian manifolds with a semi-symmetric metric connection*. Lobachevskii Journal of Mathematics 37 (2016), 177–184.
28. M. Pravanović: *On pseudo metric semi-symmetric connections*. Publ. Inst. Math. (Beograd) (N.S.) 18 (32) (1975), 157–164.
29. A. Sharfuddin and S. I. Hussain: *Semi-symmetric metric connexions in almost contact manifolds*. Tensor N S 30 (1976), 133–139.
30. S. K. Chaubey and A. Kumar: *Semi-symmetric metric T-connection in an almost contact metric manifold*. International Mathematical Forum 5 (23) (2010), 1121-1129.
31. R. N. Singh, S. K. Pandey and G. Pandey: *On semi-symmetric metric connection in an SP-Sasakian manifold*. Proc of the Nat Academy of Sci 83 (2013), 39–47.
32. T. Takahashi: *Sasakian symmetric spaces*. Tohoku Math J 29 (1977), 91–113.
33. A. Taleshian and A. A. Hosseinzadeh: *Some curvature properties of Kenmotsu manifolds*. Proc of the Nat Academy of Sci 85 (2015), 407–413.
34. S. Tanno: *The automorphism groups of almost contact Riemannian manifolds*. Tohoku Math J 21 (1969), 221–228.
35. Y. Tashiro: *Complete Riemannian manifolds and some vector fields*. Trans Amer Math Soc 117 (1965), 251–275.
36. A. Yildiz, U. C. De and B. E. Acet: *On Kenmotsu manifold satisfying certain conditions*. SUT J Math 45 (2009), 89–101.
37. K. Yano: *Concircular geometry I, Concircular transformation*. Proc Imp Acad Tokyo 16 (1940), 195–200.
38. K. Yano: *On semi-symmetric metric connections*. Rev Roumaine Math Pures Appl 15 (1970), 1579–1586.
39. F. Ö. Zengin, U. S. Aynur and D. S. Altay: *On sectional curvature of a Riemannian manifold with semi-symmetric-metric connection*. Ann Polon Math 101 (2011), 131–138.
40. S. K. Yadav and S. K. Chaubey: *Study of Kenmotsu manifolds with semi-symmetric metric connection*. Universal Journal of Mathematics and Applications 1 (2) (2018), 89–97.
41. S. K. Yadav, S. K. Chaubey and D. L. Suthar: *Certain results on almost Kenmotsu (κ, μ, ν)-spaces*. Konuralp Journal of Mathematics 6 (1) (2018), 128–133.

Sunil Yadav,
Department of Mathematics,
Poornima College of Engineering, Jaipur-302022, Rajasthan, India. prof_sky16@yahoo.com

Sudhakar Kumar Chaubey (Corresponding author), Section of Mathematics, Department of Information Technology, Shinas College of Technology, Shinas P.O. Box 77, Postal Code 324, Sultanate of Oman. sk22_math@yahoo.co.in; sudhakar.chaubey@shct.edu.om

Rajendra Prasad, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India. rp.manpur@rediffmail.com