A native conjugative plasmid confers potential selective advantages to plant growth-promoting *Bacillus velezensis* strain GH1-13

Yunhee Choi1,4, Ha Pham1,4, Mai Phuong Nguyen1,4, Le Viet Ha Tran1, Jueun Kim2, Songhwa Kim3, Chul Won Lee2✉, Jaekyeong Song3✉ & Yong-Hak Kim1✉

The conjugative plasmid (pBV71) possibly confers a selective advantage to *Bacillus velezensis* strain GH1-13, although a selective marker gene is yet to be identified. Here we show that few non-mucoid wild-type GH1-13 cells are spontaneously converted to mucoid variants with or without the loss of pBV71. Mucoid phenotypes, which contain or lack the plasmid, become sensitive to bacitracin, gramicidin, selenite, and tellurite. Using the differences in antibiotic resistance and phenotype, we isolated a reverse complement (COM) and a transconjugant of strain FZB42 with the native pBV71. Transformed COM and FZB42p cells were similar to the wild-type strain GH1-13 with high antibiotic resistance and slow growth rates on lactose compared to those of mucoid phenotypes. RT-PCR analysis revealed that the expression of plasmid-encoded orphan aspartate phosphatase (pRapD) was coordinated with a new quorum-sensing (QS) cassette of RapF2–PhrF2 present in the chromosome of strain GH1-13, but not in strain FZB42. Multi-omics analysis on wild-type and plasmid-cured cells of strain GH1-13 suggested that the conjugative plasmid expression has a crucial role in induction of early envelope stress response that promotes cell morphogenesis, biofilm formation, catabolite repression, and biosynthesis of extracellular-matrix components and antibiotics for protection of host cell during exponential phase.
Several plant growth-promoting rhizobacteria (PGPR) act as biocontrol and plant growth-promoting agents. Recently, an increasing number of Bacillus velezensis strains have been reported to maintain a stable relationship with plant roots, promote plant growth, and suppress soil-borne plant pathogens by producing biofilms, lipopeptides, quorum-quenching enzymes, phytase, polyketides, indole-3-acetic acid (IAA), and 2,3-butanediol. The model strains, B. subtilis 168 (SubrWiki) and B. velezensis FZB42 (AmyloWiki), provide an annotation of genes with PGPR traits. However, the understanding behind promoting these traits is still evolving.

We isolated B. velezensis strain GH1-13 from rice paddy soil, and reported its ability to promote plant growth and suppress soil-borne pathogens. The B. velezensis strain GH1-13 chromosome, similar to that of FZB42 genome, encodes genes for biosynthesis of plant hormones such as IAA, 2,3-butanediol, and antibiotics such as lipopeptides, and polyketides. The strain GH1-13 harbors a Bacillus plasmid, here named pBV71. Heat curing of the plasmid showed a decrease in the production of IAA, but the plasmid did not carry this function. Plasmid pBV71 encodes an orphan Rap protein (pRapD), which is a known negative regulator of Bacillus competence, biofilm formation, and sporulation. Because the chromosome encodes multiple Rap-Phr systems, it is possible that the plasmid-chromosome crosstalk can modulate cell growth and quorum-sensing (QS) to confer an advantageous trait. A previous study showed that the plasmid-encoded rap gene of B. amyloliquefaciens subsp. plantarum strain S499 plays a role in controlling several traits such as protease secretion, lipopeptide production, and biofilm formation. Therefore, understanding the tight regulatory plasmid-chromosome crosstalk, which may regulate gene expression and cell differentiation is important in the PGPR Bacillus.

This study aimed to investigate the impact of pBV71 on the host cell by plasmid curing, complementation, and conjugation. We found that strain GH1-13 with non-mucoid phenotype was often converted to mucoid variants, with or without plasmid loss, during normal growth conditions in rich media. The non-mucoid to mucoid conversion was accompanied by decreased resistance to bacitracin, gramicidin, selenite, and tellurite. These findings were used in the experimental design of conjugation and complementation strategies as a selective marker gene in the large plasmid pBV71. Further, comparative analyses suggested that pBV71 is involved in crosstalk with the RapF2–PhrF2 QS system present in B. velezensis strain GH1-13, but not in strain FZB42, and controls cell morphogenesis, biofilm formation, catalobite repression, and antibiotic production for the host protection during the exponential phase of cell growth.

Results and discussion

Plasmid sequence and transcription. The sequence of pBV71 in B. velezensis strain GH1-13 encodes many proteins, which are hypothetical proteins in the genus Bacillus (Supplementary Data 1). Multiple genome sequence alignment shows a shared region of ~6 kb in pBV71 that is similar to parts of Antarctic B. safensis strain U14-5 unnamed plasmid and four draft genome sequences of Bacillus species (Supplementary Fig. 1). This ~6 kb region of pBV71 harbors putative tra and vir (trs) genes (Supplementary Data 2), presumably encoding the type IV pilus that participates in bacterial conjugation.

Using Illumina sequencing of transcripts from the plasmid, open-reading frames (ORFs) were quantified at different times (5, 8, 12, and 24 h) during the cultivation of strain GH1-13 in a tryptic soy broth (TSB) with aeration at 25 °C. To minimize sample bias resulting from different sampling times, the RNA-seq data were normalized using the Trimmed Mean of M-values (TMM). The normalized ORF transcript levels at different stages of cell growth were displayed in heat maps on a circular genome map, exhibiting dynamic patterns of expression over time during the host cell cycle (Supplementary Fig. 2). We noticed that several ORFs encoding putative conjugal proteins in a ~18 kb region between the plasmid segregation protein ParM gene and a type IV secretion system protein VirD4 (TrsK) gene were highly expressed during the early exponential phase (5 h culture) of the host cells. However, most hypothetical genes scattered on the plasmid make it difficult to specify their role in the conjugation process.

Loss of pBV71 during conversion from non-mucoid to mucoid phenotypes. During the cultivation of strain GH1-13 in TSB and R2A media at 25 °C, the non-mucoid phenotype of wild-type (WT) cells was often converted to the mucoid phenotype (Fig. 1a), as similar to that of a heat-cured strain. Using 300 randomly isolated colonies, including 282 non-mucoids and 18 mucoids, PCR was performed with four primer sets targeting three genes (rapD, traA, and tral) in the plasmid and 16S rRNA gene in the chromosome to estimate the rate of loss of the plasmid during the non-mucoid to mucoid conversion under standard culture conditions. In preliminary tests, 282 non-mucoids were positive for all three plasmid genes and 18 mucoids were negative for all three plasmid genes. All colonies were positive for the 16S rDNA segment amplified by PCR. However, PCR using genomic DNA extracts showed that 16 of the 18 mucoids were positive for all three plasmid genes. Of the other two, one was positive for rapD and traA but negative for tral, and one was negative for all three plasmid genes (Fig. 1b). It was unclear whether false-negative (colony) or false-positive (genomic DNA) groups of the mucoid phenotype were related to the low plasmid DNA content, possibly either owing to a partial loss of plasmid or a mixed state of non-mucoid upon conversion to mucoid.

To examine the presence or absence of intact plasmid in each mucoid, PCR for the full-length plasmid genome was conducted using 20 primer pairs with head-to-tail and tail-to-head arrangements (Fig. 1c and Supplementary Table 1). The results showed that 16 mucoids positive for all target genes had the same PCR fragments as those of the plasmid genome of WT cells. Compared to these, the mucoid positive for rapD and traA but negative for tral showed a partial loss of the plasmid DNA between 46,551–50,330 bp (#14), 54,181–62,090 bp (#16 and #17), and 65,913–69,790 bp (#19), which explained the negative PCR result for the tral segment. PCR analysis also proved that the mucoid negative for all three plasmid target genes had lost almost all of the plasmid genome, which gave an estimated curing rate of 0.3% of the total population. Thus, although the number of mucoids is lower than the number of non-mucoids, it may be likely that a deficiency of pBV71 in a sub-population of host cells will present a mucoid phenotype.

Variations in antibiotic resistance between non-mucoid and mucoid phenotypes with or without pBV71. The effects of mucoid phenotypes, with or without pBV71, on antibiotic resistance were compared with non-mucoid phenotypes of WT strains GH1-13 and FZB42. Among the tested antibiotics and toxic metal ions (Supplementary Table 2), mucoid GH1-13 variants with or without the plasmid became more sensitive to bacitracin (minimum inhibitory concentration [MIC] of 1.25 μg/mL) and gramicidin (0.25 μg/mL), which target cell wall and cell membrane, respectively. They were also sensitive to selenite (2.5 μg/mL) and tellurite (8 μg/mL). Additionally, the MIC value of ampicillin was decreased in the mucoid variant (16 μg/mL) with an intact
plasmid when compared to that in the WT strain GH1-13 (128 μg/mL), while plasmid-cured (PC) cells reverted to ampicillin resistance. This indicates that ampicillin resistance varies between different variants of strain GH1-13 with or without pBV71. In contrast, a non-mucoid phenotype of strain FZB42 was moderately resistant to ampicillin (64 μg/mL) and similar bacitracin and selenite resistance as that of the non-mucoid phenotype of strain GH1-13 was observed. The strain FZB42 also showed a moderate resistance to gramicidin (32 μg/mL) and tellurite (8 μg/mL), which ranged between WT and mucoid GH1-13 variants.

Antibiotic sensitivities of strains GH1-13 and FZB42 with similar genetic backgrounds, but for the plasmid, appeared to vary depending on the phenotype conversion or plasmid presence. Using these characteristics, we developed strategies of complementation and conjugation with the native pBV71 since it had no selection marker. To investigate the potential selective effects of heat and ethanol that cause changes in cell membrane fluidity and membrane protein compositions, we analyzed growth rates of WT and PC cells of strain GH1-13 cultivated in various ethanol concentrations and at different temperatures (Fig. 1d, e and Supplementary Data 3). The two phenotypes showed similar growth rates under different conditions, indicating that neither the phenotype conversion nor the presence of pBV71 in strain GH1-13 directly influences cell membrane fluidity and permeability to heat and ethanol.

Reverse complementation of pBV71 into PC cells. To investigate the effect of pBV71 on the relationship between phenotype conversion and antibiotic resistance, supercoiled pBV71 was purified from WT cells of strain GH1-13 and used to transfect PC cells by electroporation. Complemented (COM) cells were then isolated by successive enrichment cultures of serial 10-fold dilutions with selenite-containing selective media (Fig. 2a). Stably transformed cells with intact plasmid caused the non-mucoid phenotype to form wrinkled colonies (Fig. 2c, d). The WT and COM cells exhibited similar resistance to selenite, tellurite, and bacitracin, and gramicidin (Fig. 2e, f and Supplementary Table 2). Under microscopy, both WT and COM cells, but not PC cells, were observed to have capsular pili in the extracellular matrix of pellicles (Fig. 3a, b). Transmission electron microscopy revealed high density of reduced tellurium metal deposited in both extracellular and intracellular compartments encapsulated in a thicker extracellular matrix in WT and COM cells when compared to PC cells (Fig. 3c). Therefore, it appeared that pBV71, in association with the formation of a non-mucoid phenotype, confers a selective advantage to the host cells, such as resistance to bacitracin and gramicidin and reduction of selenite and tellurite.

Variations in antibiotic resistance between non-mucoid and mucoid phenotypes may be related to the expression of the phage shock proteins LiaIH and the synthesis of lipopeptide surfactin in the cell envelope and extracellular layers, which have a direct role.
in the resistance to bacitracin and gramicidin. Additionally, the alterations in envelope sulfhydryl sites and thioredoxin disulfide reductase TrxR that control the adsorption and metabolism of selenite and tellurite, resulting in metal forms in the cells, may also contribute to the variation. Therefore, metabolism of selenite and tellurite, resulting in metal forms in the alterations in envelope sulfhydryl sites and thioredoxin active to WT, MU3, PC, and COM cells. The cell growth is accompanied by the reduction of selenite to red selenium compounds.

Conjugation of pBV71 into strain FZB42 with a non-mucoid phenotype. Strain FZB42 shows a non-mucoid phenotype with no plasmid, but it cannot create a mucoid phenotype observed in strain GH1-13. To measure the effect of pBV71 on antibiotic resistance of the non-mucoid phenotype, we used the strategy of conjugation to transfer pBV71 into strain FZB42 from a donor mucoid strain (MU3). MU3 is more sensitive to gramicidin and hence, can be removed by overnight washout with a high dose of gramicidin above the MIC (200 μg/mL) in the TSB medium. In another experiment, when a high dose of ampicillin (128 μg/mL) was used in the co-culture, it failed to remove the donor and select a transconjugant. After treatment of the co-culture with gramicidin, a lethal dose (10 μg/mL) of tellurite in R2A plates increased the stable transconjugant population of FZB42 cells with intact pBV71, similar to that by reverse complement COM after the enrichment culture with 2 g/L sodium selenite in tryptic soy broth with shaking at 37 °C. Smooth (mucous) and rough (umbonate) colony morphologies of PC and COM cells were observed after streaking the enriched culture repeatedly on R2A plates containing 10 μg/mL potassium tellurite at 25 °C, and complementation of the plasmid was verified by colony PCR for three loci (rapD, traA, and traL) of the plasmid and part of the 16S rRNA gene as a control for genomic DNA. Extraction and clean-up of supercoiled pBV71 plasmid used in the transformation into PC cells and the selection of COM cells, as described in the Methods section plasmid extraction and complementation.

Conjugation was validated by PCR for not only the full-length plasmid DNA, but also for three plasmid loci (rapD, traA, and traL) and three chromosomal loci of yxaL, Rap6 (BVH55_09210) and Rap12 (BVH55_14580), of which the tentatively assigned Rap6 and Rap12 loci were only present in the genome of strain GH1-13, but not in the genome of strain FZB42. Therefore, the PCR products confirmed the removal of the donor and isolation of a transconjugant of the non-mucoid phenotype of strain FZB42 with the full plasmid DNA (Fig. 4a–c). When cells were incubated in TSB medium on a silicon wafer for scanning electron microscopy analysis, the donor and recipient showed similar images of cells, which were encapsulated in the extracellular matrix; however, the co-culture produced much longer pilus-like structures that connected cells across the loose extracellular matrix, possibly as a conjugation bridge for the transfer of plasmid DNA (Fig. 4d). The conjugation of FZB42 cells encased in the extracellular matrix was accompanied by a decrease in cell length (1.7 ± 0.34 μm) compared to that of the recipient (WT) cells (2.97 ± 0.32 μm).

The resulting transconjugant, FZB42p, possesses a similar non-mucoid phenotype as the WT strains GH1-13 and FZB42, which form wrinkled colonies on hydrophobic surfaces (Fig. 4e). However, its resistance to gramicidin (MIC > 128 μg/mL) and tellurite (MIC = 31 μg/mL), but not that to ampicillin (MIC = 16 μg/mL), is superior to that of the WT strain FZB42 and similar to that of another WT strain GH1-13 (Supplementary Table 2). These results reveal that the stable non-mucoid phenotype acquired by *B. velezensis via* conjugation of the pBV71 has an additional selective advantage over the non-mucoid phenotype of WT strain FZB42, whose antibiotic susceptibilities to gramicidin and tellurite range between that of the non-mucoid and mucoid phenotypes of strain GH1-13.
Alterations in growth, fermentation, and gene expression profiles of non-mucoid and mucoid phenotypes with or without pBV71. Both non-mucoid and mucoid phenotypes of WT and mutant strains GH1-13 and FZB42 exhibited similar growth and fermentation profiles, except that the profiles of the mucoid phenotypes on lactose grew faster than that did the non-mucoid phenotypes, with or without pBV71 (Fig. 5a, b and Supplementary Fig. 3) and the PC cells that fermented D-tagatose under anaerobic conditions of API 50 CHB/E medium (Supplementary Table 3). Increased rates of lactose utilization by altering the substrate preference of mucoid phenotypes appeared independent of tagatose fermentation by the PC cells, as similarly observed in B. licheniformis24. These results indicated that the presence of pBV71 in strain GH1-13, which preferentially shows a non-mucoid phenotype, may cause catabolite repression of the lactose and tagatose utilization genes25,26, although these genes have not yet been functionally defined in B. velezensis.

To explore the potential role of pBV71 in the linkage between phenotype change and catabolite control in the host, expression levels of 14 aspartate phosphatase Rap homologs, including the plasmid-encoded propD, were comparatively analyzed at early (5 h culture) and late (8 h culture) exponential phases of WT, PC, and COM cells using semi-quantitative RT-PCR (Supplementary Table 4). Among the analyzed Rap homologs, 13 genes were expressed in strain GH1-13, but the expression of a rapC ortholog (BVH55_02490) in the chromosome of strain GH1-13 was not detected (Supplementary Fig. 4). Expression levels of propD were high in the early exponential phase of WT and COM cells, but not in PC cells compared to those in the late-exponential phase. The propD expression, predicted to be regulated by cognate sigma factors SigA and SigH, was altered with six chromosomal Rap homologs located in BVH55_02505 (thrD), BVH55_09210 (rapF2), BVH55_14245 (lysC), BVH55_14580 (rapC1), BVH55_18385 (rapD), and BVH55_18535 (rapB).

Moreover, RT-PCR results for QS systems (ComQXAP and Rap–Phr pairs) showed positive relationships between the expression of propD and chromosomal rapF2–phrF2 genes in the early exponential phase of strain GH1-13 (Fig. 5c). In contrast, the early induction of propD expression in transconjugant FZB42p cells was accompanied by an upregulated rapF expression. During the exponential phase of cell growth, expression of comA that is transcriptionally regulated by a distinct Rap-Phr system27 was not detected in any variant of strains GH1-13 an FZB42. Overall, these expression patterns appear to play a role in the QS-regulated expression of rap and phr genes involved in multiple and overlapping directions for cell specialization28. In the genome of strain GH1-3, the PhrF2 sequence was not previously found owing to the usage of the alternative translation initiation site in the rapF2 cassette and a lack of similarity between the propeptide sequence and any known sequences in gram-positive bacteria29. Manual curation of rap–phr genes showed that PhrF2 shares conserved N-terminal initiation sites and C-terminal peptide signal regions with a family of the other Rap–Phr pairs in strains GH1-13 and FZB42 (Fig. 5d). Although details of the mechanism remain to be determined, this analysis supports the hypothesis that a unique

Fig. 3 Morphologies of wild-type (WT), plasmid-cured (PC), and complemented (COM) cells of strain GH1-13. a Microscopic images (1000-fold magnification) of WT, PC, and COM cells stained with Alcian blue for polysaccharide and Safranin O for cellular DNA. b Scanning electron microscopy (AURIGA) images of platinum-coated WT, PC, and COM cells at 20,000-fold magnification and 70,000-fold magnification (insets). c Bio-transmission electron microscopy images (Talos L120C, 120 kV) of the dissected WT, PC, and COM cells. The cells were treated with 10 mg/L potassium tellurite for 1 h during cultivation in tryptic soy broth at 25 °C with shaking (180 rpm). The head of the arrow shows a pilus-like structure that connects cells across the space.
Fig. 4 Conjugation of pBV71 into strain FZB42 from a mucoid variant (MU3) of strain GH1-13. a Morphologies of MU3 (donor), FZB42 (recipient), and a transconjugant FZB42p with pBV71 on R2A plate. b, c PCR results for WT, MU3, and COM cells using plasmid and chromosome-specific primer pairs (b) and plasmid genome primer sets (c) as described in the Methods section. d Scanning electron microscopy (AURIGA) images of platinum-coated MU3 (donor), FZB42 (recipient), co-culture of donor and recipient, and a transconjugant FZB42p. Cells were pre-cultivated on a silicon wafer with TSB medium at 37 °C and fixed cell images were captured at 10,000-fold magnification and 30,000-fold magnification (insets). e Hydrophobicity tests for colony surfaces of WT, MU3, PC, COM, FZB42, and FZB42p cells grown on R2A plates. Hydrophobicity was detected on colony surfaces by the degree of absorption of 5 µL drops of water and hexadecane containing Ponceau S and Coomassie Brilliant Blue (CBB) R250 indicator dyes.
RapF2–PhrF2 system may evolve incrementally into a QS system to manage the impact of pBV71 in strain GH1-13, but not in strain FZB42 and others.

Assessment of early response to transcription of plasmid DNA in strain GH1-13. Most Rap proteins have conserved roles in the inhibition of biofilm formation by preventing the phosphorylation of essential regulators, ComA, Spo0F, or DegU. These inhibitory activities are blocked by the binding of cognate Phr peptides. Plasmid-encoded Rap proteins in Bacillus species are believed to diversify the Rap–Phr systems that strictly control biofilm formation and sporulation and improve the adaptation capacities of the bacteria to environmental changes. We observed that WT and COM cells containing the pBV71 began to form spores earlier than that did the PC cells at 40 h during aerobic starvation conditions in TSB medium, with no apparent changes in growth rates of the cells (Fig. 6a). The sheathed WT cells were more efficient in increasing cell densities in air–liquid and water-sediment interfaces in static culture conditions than that were the PC cells (Fig. 6b). To assess the impact of pBV71 on early response regulators in strain GH-13, RT-PCR was performed using primer sets targeting p_rapD and plasmid conjugative transfer genes (traA and traL), as well as Rap target phosphorelay-associated genes during early and late-exponential phases in WT, PC, and COM cells (Supplementary Fig. 5). The results showed that the expression of the plasmid genes was accompanied by an upregulated expression of several Rap target genes, including spo0F and degU, in the early exponential phase of WT and COM cells but not in PC cells (Fig. 6c). These regulators appeared to associate with the early response to increased expression of pRapD.

In this case, increased pRapD that binds to a target protein or a cognate Phr peptide can jointly control a complex colony
Fig. 6 Growth characteristics and plasmid-associated gene expression patterns in non-mucoid and mucoid phenotypes of strain GH1-13 with or without pBV71.

a Growth curves (solid lines) and percentage of spores (red dotted lines) of WT and PC cells during cultivation in tryptic soy broth at 25 °C with shaking (180 rpm).

b Variation in cell density and morphology in air–liquid interface, floating, and sinking cells during static culture of WT and PC cells in acryl cuvettes (10 × 10 × 40 mm) installed with transparency polypropylene slips. The variation in crystal violet-stained cell densities with depth along the slips is shown in the left photos. Statistically significant differences between sedimentation rates of cells were tested by two-tailed t-tests with P-values of <0.05. n = 4 independent experiments (Supplementary Data 3). The mean and standard deviation (error bar) are plotted for all graphs.

b Schematic illustration showing the impact of pBV71 on conjugation and biofilm formation of host cells in a quorum-sensing manner via a crosstalk between pRapD and chromosomal Rap-Phr systems.
Effects of pBV71 on antibiotic synthesis. Non-mucoid and mucoid phenotypes of strain GH1-13 showed different effects on the antagonism of *Fusarium solani* among tested plant pathogens (Fig. 7a-b and Supplementary Fig. 6). Analysis of antibiotics in the filtered culture fluids showed that WT and COM cells were able to produce higher amounts of macrolactins than did the PC cells, whereas late-exponential-phase PC cells produced higher amounts of surfactin compounds antagonistic to *F. solani* than that did the WT and COM cells (Fig. 7c). The chromatographic peaks of macrolactins and surfactins detected in each sample by UV spectroscopy and mass spectrometry were assigned to mass data using chemical databases and normalized to the total peak area of the base peak chromatogram (Supplementary Fig. 7). Taken together, differential regulation of antibiotic synthesis in *Bacillus* may be attributable to the increased expression of Rap proteins along with the conjugative plasmid expression, which can prevent the phosphorylation of a transcriptional activator, such as ComA, of the surfactin (srfJ) genes. However, the method used here cannot detect any other antibiotics synthesized by the rest of the orthologous gene clusters that encode lipopeptide synthetases and polyketide synthetases in the strain GH1-13.

Effects of pBV71 on protein secretion. To investigate a potential change in protein secretion from the host cells by the conjugative plasmid expression, we compared secreted proteins from WT, PC, and COM cells at different growth phases: 5 h (early exponential), 8 h (late exponential), 12 h (early stationary), and 24 h (late stationary). WT and COM cells showed a similar increase in the levels of secreted proteins during late-exponential phase, compared to that by the PC cells (Fig. 8a). The chromatographic peaks of surfactin compounds and macrolactins detected in each sample by UV spectroscopy and mass spectrometry were assigned to mass data using chemical databases and normalized to the total peak area of the base peak chromatogram (Supplementary Fig. 7). Taken together, differential regulation of antibiotic synthesis in *Bacillus* may be attributable to the increased expression of Rap proteins along with the conjugative plasmid expression, which can prevent the phosphorylation of a transcriptional activator, such as ComA, of the surfactin (srfJ) genes. However, the method used here cannot detect any other antibiotics synthesized by the rest of the orthologous gene clusters that encode lipopeptide synthetases and polyketide synthetases in the strain GH1-13.

Integrative multi-omics analysis of wild-type and plasmid-cured cells of strain GH1-13. Here, we analyzed transcriptome and proteome to access the role of pBV17 in the host cell. When examining transcriptome, all statistical analyses were performed using the TMM values (Supplementary Fig. 8). We estimated the variance of each gene in different phases of WT and PC cells and found that WT cells markedly increased the envelope stress-responsive *liaIH* expression with 99% confidence by more than 6.5log2-fold during the transition from early (5 h) to late (8 h) exponential phases, with a significant decrease in the expression of the pyrimidine metabolism *pyr* operon (Fig. 9a). A Yates-corrected chi-square test on different phases of WT and PC cells also showed that the presence of pBV71 in strain GH1-13 was associated with the *liaIH* expression (χ²-test, *P* = 0.0011–0.0002) rather than the *liaGFSR* expression (χ²-test, *P* = 0.053–0.523). These results concurred partly with the different expression patterns of *liaSR* and *liaIH* as shown by semi-quantitative RT-PCR (Supplementary Fig. 5), indicating a differential effect of pBV71 on early *liaGFSR* and late *liaIH* responses. These responses are possibly mediated by a heterogeneous gene expression or antibiotics produced by the bacterium itself. Post hoc Pearson’s correlation analysis on different phases of WT cells showed that the *liaIH* response positively correlated with additional 89 genes and three major sigma factors, *sigA*, *sigH*, and *sigW*, of which many genes were differentially expressed by more than 6.5log2-fold in late-exponential phase (Supplementary Data 5). This rigorous change was different from that of PC cells in the exponential phase, but similar to them in the stationary phase.

Time-coursed proteome analysis showed that LiaH levels were higher in WT cells than those in PC cells, and its levels were positively correlated (*r* > 0.99) over time with the levels of development with co-expressed Rap-Phr systems, which reversely correlate with the expression of phosphate metabolism regulator PhoR, as schematically shown in Fig. 6d. The transcripts of pRapD and other types of Rap proteins sharply decrease with the down-regulation of *Spo0F* in the late-exponential phase of WT and COM cells, compared to that in the PC cells, whereas the PhrF2 expression increases in all non-mucoid and mucoid phenotypes (Fig. 5c). Moreover, this crosstalk between the plasmid and chromosome to form a bistable loop that controls conjugation in a quorum-sensing manner with respect to the plasmid conjugative transfer mucoid phenotype (MU3), which does not induce high levels of PhrF2 to pRapD in the early exponential phase.

Effects of pBV71 on protein secretion. To investigate a potential change in protein secretion from the host cells by the conjugative plasmid expression, we compared secreted proteins from WT, PC, and COM cells at different growth phases: 5 h (early exponential), 8 h (late exponential), 12 h (early stationary), and 24 h (late stationary). WT and COM cells showed a similar increase in the levels of secreted proteins during late-exponential phase, compared to that by the PC cells (Fig. 8a). Tandem mass spectrometry analysis of secretome samples from 5 and 8 h cultured WT and PC cells was conducted in order to identify secreted proteins, focusing on the effect of pBV71 on the early response in the host. In this study, a total of 310 proteins were identified after filtering for more than two unique peptides and a false-discovery rate of <0.01 (Supplementary Data 4). Among them, 165 pairwise identified proteins were used to calculate fold changes using the normalized spectral abundance frequency (NSAF) scores, to be able to determine the differentially secreted proteins along with differences in the conjugative plasmid expression between early and late-exponential phases of the two phenotypes (Fig. 8b). The result shows that WT cells released higher levels (>3 on the log2-scale) of signal recognition particle-docking protein FtsY and an autolytic endopeptidase LytE in the early exponential phase, compared to those by the WT cells in the late-exponential phase and PC cells in early and late-exponential phases (Fig. 8c). The WT cells appeared to enhance the secretion of cell envelope proteins and phase proteins related to the interconnection between conjugation and biofilm formation with horizontal gene transfer. Compared to that in WT cells, PC cells increased the secretion of cellular and membrane proteins by more than 8-fold higher in the early exponential phase than that in the late-exponential phase, of which several proteins including phosphatase acetyltransferase Pta, cold shock protein CspC, and cell division protein PtsZ are categorized as plant interaction proteins. Although many differentially secreted proteins do not require a specific explanation of the protein functions and interactions, these changes explain that the conjugative plasmid expression in strain GH1-13 affects cell wall integrity and protein secretion during the early exponential phase of cell growth.

It was obscure that the absence of the plasmid in strain GH1-13 led to increased secretion (release) of various membrane and cytoplasmic proteins owing to a change in the membrane permeability caused by the conversion to mucoid phenotype. To evaluate the effect of pBV71 on the secretion pattern of known plant-interacting proteins, we performed western blotting for two extracellular beta-propeller proteins, 3-phytase Phy4, and lateral root growth-promoting protein YxaL (Fig. 8d). PC cells increased the secretion of Phy compared to that did the WT and COM cells in all four phases (two-tailed *Z*-test, *P* < 0.05), but there were no significant differences in the secretion pattern of YxaL among the three strains. These results are consistent with the constitutive expression of *yxaL* and the phosphate starvation-inducible expression of *phyC* under the control of PhoPR. Because the *phyC* expression is up- or downregulated by altering the level of phosphorylated PhoP~P through the regulation of PhoP-PhoR two-component system in *B. velezensis* FZB42, increased secretion of PhyC is strongly related to the upregulation of *phoR* expression in PC cells compared to that in the WT and COM cells in early exponential phase (Fig. 8c). This suggests that the conjugative plasmid expression affects the expression pattern of some PGPR traits as well as the physiological and morphological traits of the host.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02107-z | www.nature.com/commsbio
polyketide synthases, BaeM, BaeR, and MlnI (Fig. 9b and Supplementary Data 6). The analyzed proteome moderately correlated with the corresponding secretome, but the dynamic changes of protein levels both in proteome and secretome little correlated with the corresponding gene expression changes (Supplementary Fig. 9). Although mRNAs and proteins have many different types of regulation of half-lives as they vary from time to time, a combined analysis was conducted using STRING16 to obtain insight into the functional association networks of pBV71 in host cells (Supplementary Fig. 10). The plasmid-induced liaIH expression was highly associated (χ^2-test, $P < 0.0001$) with the activation of maltose metabolism glv operon (malA-glvR-malP) and various sugar transport PTS systems (galK1, lacEI, licBCA, manP, mtlAF, treP, and ywbA) under

Fig. 7 Antagonistic test and analysis of antibiotics released from strain GH1-13. a In vitro inhibition of plant pathogens tested as shown in Supplementary Fig. 6. b A typical photo of Fusarium solani tested in vitro by bacterial disk assays of wild-type (WT or W), plasmid-cured (PC or P), and complemented (COM or C) cells on a potato dextrose agar (PDA) plate. c Levels of macrolactins (H and M) and surfactins (C12 to C15) in the filtered culture fluids when cells were grown in tryptic soy broth at 25 °C and 180 rpm. The chemical properties and structures determined by HPLC with UV spectroscopy and mass spectrometry are shown in Supplementary Fig. 7. Statistically significant differences in the percentage of each peak area between strains at the incubation times of 5, 8, 12, and 24 h were determined by two-tailed t-tests with P-values of less than 0.05. $n = 3$ independent experiments (Supplementary Data 3). The mean and standard deviation (error bar) are plotted for all graphs.
Fig. 8 Comparison of proteins released from wild-type and plasmid-cured cells of strain GH1-13.

a. Protein levels released at different growth phases. P-values at the time of 8 h were determined by two-tailed t-tests. n = 3 independent experiments (Supplementary Data 3). The mean and standard deviation (error bar) are plotted for all graphs.
b. SDS PAGE and tandem mass spectrometry data analysis of proteins in filtered (concentrated) 0.5 mL culture fluid per lane. Bar graphs show an inverse relationship of log₂-fold changes in the relative protein levels from the two different phases (5 h vs 8 h) of wild-type (WT) and plasmid-cured (PC) cells, when 165 protein entities were determined by the non-zero normalized spectral abundance frequency (NSAF) values from the pooled tandem mass spectrometry data in Supplementary Data 4. Significant differences in the log₂-fold changes between the two phases of WT and PC cells are shown by differential fold change cutoff to 3log₂-fold on both sides.
c. Venn diagram of differentially released proteins by >3log₂-fold among 165 proteins (Supplementary Data 4) detected in early (5 h) and late (8 h) exponential phases of WT and PC cells.
d. SDS PAGE of extracellular proteins and western blots for extracellular beta-propeller proteins Phy and YxaL in concentrated 0.5 mL culture fluids over time. Significantly high levels of Phy from PC cells were determined by a two-tailed Z-test on average intensity µ = 1. Full images of the western blots and Coomassie blue-stained membranes are shown in Supplementary Fig. 12.

Fig. 9 Differential gene expression in the exponential phase of Bacillus velezensis strain GH1-13.

a. Plots of log₂ normalized RNA-Seq data for the early (5 h) and late (8 h) exponential phases of wild-type (WT) pBV71 plasmid-containing and plasmid-cured (PC) cells, showing the significant increase of liaIH transcripts with 99% confidence by >6.5log₂-fold in the late-exponential phase of WT cells, with a significant decrease of pyr operon transcripts.
b. Normalized spectral abundance frequency (NSAF) ratios of proteins in whole-cell lysates from the different incubation times of WT and PC cells in Supplementary Data 6, showing significantly high levels of the pBV71 plasmid-induced LiaH protein compared to that of PC cells (two-tailed Z-test, P < 10⁻⁶) with strong correlation to the levels of polyketide synthases BaeM, BaeR, and MlnI determined by post hoc tests (Pearson’s coefficient, r > 0.99).
toward glucose-6-phosphate (Zwf), 6-phophogluconate (YqjI), 2,3-butanediol (BdhA), and L-threonine (Tdh) in whole-cell extracts (20 μg protein per lane) obtained from early (5 h) and late (8 h) exponential phases of WT and PC cells by non-denaturing blue native polyacrylamide gel electrophoresis. Full images of the blue native gels are shown in Supplementary Fig. 12. Lane images of the blue native gels are shown in Supplementary Fig. 12.

Finally, based on the results of combined transcriptome and proteome analysis, we measured in-gel activities of NAD(P)-dependent dehydrogenases to show that the metabolic pathways of 2,3-butanediol and L-threonine play a central role in the host cell in accordance with upregulated expression of the corresponding genes in the late-exponential phase.

Catabolite control. The plasmid-induced PTS expression was opposed to the main PTS systems (ptsG, ptsHI, and fruA) for sucrose utilization, affecting levan synthesis in capsule or biofilm matrix. This control facilitates extracellular polysaccharide biosynthesis with upregulation of the eps operon and amyloid biofilm protein TasA, and hydrophobic surface protein BslA (which allows it to form a more wrinkled colony with an increased surface and water-repellent properties), as well as antimicrobial gene expression including the upregulation of bacillaein (bae), bacillomycin (bmy), difucidin (dfn), fenugycin (fen), and macrolactin (mhn) genes, but not of surfactin (srf) genes. The proposed pathways reflect that the conjugative plasmid affects metabolic and protective functions of the host cell in the exponential phase.

Fig. 10 In-gel activities and gene expression levels of NAD(P)-dependent dehydrogenases. a In-gel activity assays for NAD(P)^+ dependent enzymes toward glucose-6-phosphate (Zwf), 6-phosphogluconate (YqjI), 2,3-butanediol (BdhA), and L-threonine (Tdh) in whole-cell extracts (20 μg protein per lane) obtained from early (5 h) and late (8 h) exponential phases of WT and PC cells by non-denaturing blue native polyacrylamide gel electrophoresis. Full images of the blue native gels are shown in Supplementary Fig. 12. b Log_{2} transformed mRNA levels show the upregulation of bdhA and tdh expression in the late (8 h) exponential phase of WT cells as highlighted in a red dotted line box (Supplementary Fig. 11).

Methods

Strains and cultivation. A frozen stock of B. velezensis strain GH1-13 was thawed and cultivated in TSB medium or on TSA or R2A plates (BD, Sparks, USA). WT strain GH1-13 was repeatedly cultured for 5 cycles of exponential growth (5 h cultures) with aeration (180 rpm) in TSB medium at 25 °C, and serial 10-fold dilutions of the culture medium were plated on R2A plates. After 24 h incubation of the plates at 25 °C, 300 single colonies were randomly selected in order to determine their phenotypes, and were inoculated into 200 μL TSB medium and cultivated for 5 h at 25 °C to extract genomic DNA for PCR analysis. Mucoid variants with or without a full plasmid were isolated for complementation and conjugation experiments. For conjugation, B. velezensis strain FZB42 was obtained from the Korean Agricultural Culture Collection (KACC). All strains were grown in TSA with aeration (180 rpm) at 25 °C and synchronous growth was maintained by repeated 5 h culture at the initial optical density at 600 nm (OD600) of 0.01. Percentages of endospores at different incubation times were determined before and after heat treatment at 80 °C for 15 min by a serial 10-fold dilution method to determine colony-forming units (cfu) on TSA plates.
Analysis of cell morphology. When OD600 values of wild-type, plasmid-cured, and complemented strains reached ~1.0 (at 6 h incubation time) in normal TSB with aeration (180 rpm) at 25 °C, cell smears on glass slides were made, fixed with methanol, and heated at 60 °C heat for 15 min. The fixed cells were counterstained with Alcian blue and Safranin O which bind to extracellular polysaccharides and cellular DNA, respectively, and observed under an Olympus BX51 microscope installed with an IMTcam3-PLUS camera. At the end of the exponential cell growth at OD600 of ~1.0, 3 mL culture medium was transferred into sterile acrylic cuvettes (10 × 10 × 40 mm) installed with sterile 3 M PP2900 polypropylene films (9 × 40 mm) at 5° slant from vertical to bottom in a static environment, and incubated at 25 °C for 12 h to observe the morphology of attached cells in the depth of air–water interface, floating, and sediment areas. The wet sample on coverslip was fixed with 2.5% (v/v) formaldehyde in 1×PBS (8 g NaCl, 0.2 g KCl, 1.4 g NaHPO4, 0.24 g KH2PO4 in 1 L water) for 1 h, rinsed twice with 1×PBS, and dried with a drop of mounting medium (Dako North America, Carpenteria CA, USA) on glass slides. To conduct electronic microscopy in on and on cells with reduced tellurite particles, exponentially growing cells in TSB at 25 °C were treated with 10 μg/mL potassium tellurite hydrate (purity >97%, Daejung Chemicals and Metals, South Korea) for 1 h and fixed with 2.5% glutaraldehyde for 24 h at 4 °C. The cells were post-fixed with 1% osmium tetroxide (Electron Microscopy Sciences, Hatfield PA, USA) in 50 mM sodium cacodylate and subjected to en bloc staining with 0.5% uranyl acetate and polymerization using Spurr’s resin kit (Electron Microscopy Sciences, Hatfield PA, USA) followed by ultramicrotome sectioning of 70 nm thickness and bio-transmission electron microscopy using a Talos L120IC instrument at 120 kV. For 3D analysis of encapsulated cells using a Carl Zeiss field-emission scanning electronic microscope (AURIGA), post-fixed cells were dehydrated gradually with ethanol, dried with hexamethyldisilazane, and coated with platinum in a Leica EM ACE 600 low vacuum coater. All of the raw data of the microscopy images were deposited in the BioStudies database under the accession number S-BST608.

In vitro antibacterial susceptibility tests and effects of temperature and ethanol. The minimum inhibitory concentration (MIC) was determined by inoculation of about 10^4 CFUs of exponentially growing cells into 100 μL TSB in each well of 96-well microplates containing serial 2-fold dilutions of antibiotics and toxic metal ions given in Supplementary Table 2. Tightly closed microplates were sealed with parafilm (180 rpm) at 25 °C for 24 h after which the lowest concentration of each antibiotic that inhibited growth of bacteria was determined as the MIC. Spot dilution assays for resistance to selenite and tellurite were performed on R2A plates containing 500 μg/mL sodium selenite (purity ~98%, Sigma-Aldrich) or 20 μg/mL potassium tellurite hydrate (purity >97%, Daejung Chemicals and Metals, South Korea). The c. post-selenite and tellurite growth rate of cells was measured by determining OD600 with a DeNovix DS-11FX Spectrophotometer, by electrophoresis using a 0.5 % SeaKem GTG agarose (Lonza, Rockland MD, USA) gel in 1× TAE buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA, pH 8) at 25 V at 15 °C, followed by staining with ethidium bromide.

Plasmid extraction. Supercoiled pbV71 was extracted from the original strain GH-13 by a method modified from a previous procedure. Briefly, cells were harvested after repeated 5 h culture corresponding to early exponential phase in 1 L of aerated TSB (180 rpm) at 25 °C and mixed with 10 mM Tris and 50 mM EDTA with ice-cold 1× TE buffer (10 mM Tris and 1 mM EDTA, pH 8), and twice with ice-cold D.W. Approximately 10^9 cells (1 mL of OD600 ~0.5) were suspended in 50 μL of 10% glycerol, mixed with 100 ng plasmid DNA, and incubated on ice for 30 min. Electroporation was performed using a BioRad MicroPulser at 1.8 kV for 2.5 ms. Electrophoresed cells were suspended in a pre-warmed 1 mL SOC medium and incubated according to the laboratory manual. Then, cells were aerobically cultured at 37 °C for 5 h in 2 × 10^9 cells/mL with 10 g yeast extract and 10 g tryptone in 1 L D.W. supplemented with 40 μM glucose and 2 mg/mL sodium selenite. During successive cultures of the transformant, the culture containing selective medium. 10 μL portions were streaked on R2A plates containing 10 μg/mL potassium tellurite hydrate. The reverse complement was clearly distinguished by the wrinkled colony morphology, showing black crystals of the reduced tellurium or amorphous regions of the red selenium compounds. Complementation was confirmed by PCR analysis.

Conjugation of the native pbV71. A mucoid variant (MUD) of strain GH-13 was obtained from a previous procedure68. Briefly, the SM strain FZB42 with no plasmid was used as recipient of pbV71. Cells were exponentially grown in TSB medium at 37 °C and 180 rpm for 3 h, harvested by centrifugation at 3500 × g and 4 °C for 5 min, and washed twice with ice-cold 1× TE buffer (10 mM Tris and 1 mM EDTA, pH 8), and twice with ice-cold D.W. Approximately 10^9 cells (1 mL of OD600 ~0.5) were suspended in 50 μL of 10% glycerol, mixed with 100 ng plasmid DNA, and incubated on ice for 30 min. Electroporation was performed using a BioRad MicroPulser at 1.8 kV for 2.5 ms. Electrophoresed cells were suspended in a pre-warmed 1 mL SOC medium and incubated according to the laboratory manual. Then, cells were aerobically cultured at 37 °C for 5 h in 2 × 10^9 cells/mL with 10 g yeast extract and 10 g tryptone in 1 L D.W. supplemented with 40 μM glucose and 2 mg/mL sodium selenite. During successive cultures of the transformant, the culture containing selective medium. 10 μL portions were streaked on R2A plates containing 10 μg/mL potassium tellurite hydrate. The reverse complement was clearly distinguished by the wrinkled colony morphology, showing black crystals of the reduced tellurium or amorphous regions of the red selenium compounds. Complementation was confirmed by PCR analysis.

Validation of differential gene expression. Differential gene expression patterns in wild-type, plasmid-cured, and complemented cells were validated by reverse transcription-PCR (R-PCR) and semi-quantitative PCR using the cDNA libraries prepared from the total RNA extracts at different times. In order to avoid contaminated or invalid samples, the quality of total RNA was checked by agarose gel electrophoresis to detect 16S and 23S rRNA bands and by reamplification using primers directly on RNA and cDNA. In this study, a beta-propeller protein YaxL-coding gene was used as a constitutively expressed reference gene. The list of

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-02107-z | www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY (2021) 4:582 | https://doi.org/10.1038/s42003-021-02107-z | www.nature.com/commsbio
gene-specific primer pairs used for the analysis of the relative gene expression normalized by the ysaL gene is given in Supplementary Table 4. Sigma factors for the transcriptional expression mean of the rapd (BVEH55_00015) orthogonal gene and the stringent Shine–Dalgarno sequence in the B. subtilis genome were searched by the previous methods.

Analysis of proteins and antibiotics released into media. Proteins and anti-biotics (lipopeptides and polyketides) released from pBV71 plasmid-containing and cured cells into the culture media were analyzed at different incubation times (5, 8, 12, and 24 h) during culture in TSB with aeration (180 rpm) at 25 °C. A total volume of 2 mL spent culture media was collected at each time point, filtered using 0.2-μm-membrane filters. Amicon Ultra Centrifugal filters with a cutoff of 3 kDa were used to concentrate 0.5 mL of this filtered culture fluid for analysis. The concentration methods (Supplementary Fig. 8). Differential gene expression analysis of the log2-transformed TMM data was performed at a 99% confidence level.

Analysis of proteome. Proteins in the filtered culture fluids (secretome) and whole-cell lysates (proteome) obtained at the different time points of cell growth were analyzed by tandem mass spectrometry. To obtain whole-cell lysates, harvests of TSB cultures were washed twice with Tris-HCl buffer solution (pH 8.0) at 4°C, suspended in 3 volumes of denaturant buffer (8 M urea, 2% CHAPS, and 1 mM DTT in 25 mM Tris/HCl, pH 8.0), mixed with 1 volume of 0.5 mm glass beads (Biospec, Bartlesville, USA), and disrupted by five 50 cycles in a Biorad bead beater with sample cooling on ice between cycles. After removing cell debris by centrifugation using a Beckman rotor at 100,000 g for 1 h at 4 °C, supernatants were subjected to ultracentrifugation at 160,000 × g for 1 h at 4 °C. Proteins and antigenic proteins concentrations in supernatants were determined using Bradford reagent and bovine serum albumin standard (BioRad, Hercules, USA). Protein samples, 10% of each (secretome and proteome) were treated with 100 °C DTT at 60 °C for 15 min to reduce disulfide bonds and cooled to room temperature before alkylolation of cysteine with 50 mM iodoacetamide for 2 h in the dark before protein digestion. The protein samples dissolved by the addition of 2 M TCA for 1 h, centrifuged at 16,000 × g for 15 min, and washed twice with 10% acetone at −20 °C. Air-dried proteins were treated with 0.5 μg of sequencing-grade trypsin (Promega, Madison, USA) in 25 mM ammonium bicarbonate buffer (pH 8.0) at 37 °C for 2 h and further digested for another 24 h with 0.5 μg of sequencing-grade trypsin. Protein digests were analyzed on a Thermo Velos Pro mass spectrometer equipped with a nanoflow liquid chromatography (nLC) systems and a reverse-phase Magic C18AQ column, 75 μm x 75 mm (Michrom Biosciences, Auburn, USA), operated at 0.3 μL/min. The chromatography condition was a linear gradient from 5% to 40% ACN in 0.1% formic acid solution for 50 min for secretome analysis and 90 min for proteome analysis, followed by a 20 min wash with 80% ACN and a 10 min re-equilibration to the initial condition. A full-scan survey was performed between m/z 300 and 2000, followed by data-dependent MS2 scans of the 7 most intense ions from the survey scan. The acquired tandem mass spectrometry data were analyzed by SEQUEST to identify proteins. Protein identification and quantification were performed using a protein database deduced from the chromosome and plasmid sequences of B. velezensis strain GH1-13 and the common protein contaminants in mass spectrometry. The SEQUEST search for tandem mass spectrum followed the options: average mass (m/z); maximum of 1 miscleavage site of trypsin digestion; precursor ion tolerance 10 ppm; fragment mass error 0.05 Da; data-dependent MS2 scans of the 7 most intense ions from the survey scan. The proteomeXchange Consortium via the PRIDE (Eyers PXD017305 and PXD008573, respectively.

In-gel activity assays. Non-denaturing blue native polyacrylamide gel electrophoresis was performed according to a previously described method. Briefly, whole-cell extracts (20 μg protein load per lane) were obtained by cell disruption under ultrasonication in an ice bath followed by centrifugation. After electrophoresis on 10% polyacrylamide gels with cooling at 4 °C, enzyme activity was recovered by washing the gel with 20 mM Tris-HCl buffer (pH 7.2) and stained with 0.2% Coomassie Brilliant Blue R250 for 10 min and transferred to the reaction solution composed of 10 μM phenazine methosulfate (PMS), 0.1 mM 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 1 mM NAD+ (~0.5 μM NADP+), and a fixed concentration of the substrate in the appropriate buffer: 10 mM glucose-6-phosphate for the NADP-dependent dehydrogenase (Zwf) in 100 mM sodium phosphate (pH 7.0), 10 mM 6-phosphogluconate for the NADP-dependent dehydrogenase (Ygi) in 100 mM sodium phosphate (pH 7.0), 10 mM glyceraldehyde-3-phosphate for the NAD-dependent dehydrogenase (GapB) in 100 mM sodium phosphate (pH 7.0), 20 mM sodium isocitrate for the NADP-dependent dehydrogenase (Icd) in 100 mM sodium phosphate (pH 7.0) containing 5 mM MgCl2, 3 mM 2-oxoglutarate for the NAD-dependent dehydrogenase (Odh) in 100 mM sodium phosphate (pH 7.2) containing 1 mM CoA, 84 mM sodium succinate for the NAD-dependent
dehydrogenase (Sdh) in 100 mM Tris/HCl (pH 7.5) containing 4.5 mM EDTA and 10 mM KCN, 20 mM l-malate for the NAD-dependent dehydrogenase (Mdh) in 100 mM Tris/HCl (pH 8.5), 10 mM 2,3-butanediol for the NAD-dependent dehydrogenase (BdhA) in 100 mM sodium phosphate (pH 7.0), and 10 mM l-threonine for the NAD-dependent dehydrogenase (Tdh) in 100 mM Tris/HCl (pH 8.0). While incubating the gels with 15 strokes per min at 25 °C in a dark chamber, in-gel enzyme activities were assayed by the formation of insoluble MTT formazan. The reaction was stopped by washing the gels with water, and the band intensity was calculated by determining the local average volume from the scan image with Molecular Dynamics ImageQuant software (version 5.2; GE Healthcare Life Science).

Statistics and reproducibility. Cell culture experiments were repeated at least three times independently, and results were reported as the mean and standard deviations of the means. The data of repeated measurements are shown in Supplementary Data 3. A statistically significant difference between the experimental data of pBV71 plasmid-containing and cured strains was determined by two-tailed t-tests with P-values < 0.05. Using TMM normalized RNA-Seq data, analysis of variance (F-test) and chi-square test (χ²-test) with Yates’ correction were performed to determine a significant change associated with the presence of pBV71. Post hoc comparisons of the pBV71 plasmid-associated genes were performed by Pearson’s correlation analysis of the gene expression levels at different growth phases of the wild-type pBV71 plasmid-containing cells.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. Microscopic data are available under EMBL-EBI BioStudies accession number S-BBST608. Transcriptome data are available under NCBI BioProject PRJNA445855. Secretome and proteome data have been deposited into PRIDE and are available via ProteomeXchange under the dataset identifiers PXD017305 and PXD008573, respectively.

Received: 13 February 2020; Accepted: 13 April 2021; Published online: 14 May 2021

References
1. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking to the cell wall: characterizing Bacillus subtilis. Nat. Rev. Microbiol. 7, 157–168 (2013).
2. Ongen, M. & Jacques, P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16, 115–125 (2007).
3. Dong, Y. H., Gusti, A. R., Zhang, Q., Xu, J. L. & Zhan, L. H. Identification and characterization of extracellular phosphatase activity of Bacillus subtilis. J. Biotechnol. 1759, 663–674 (2002).
4. Idriss, E. E. et al. Extracellular phytase activity of Bacillus subtilis and Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148, 2097–2109 (2002).
5. Chen, X. H. et al. Structural and functional characterization of three polypeptide synthase gene clusters in Bacillus subtilis strain FZB42. J. Bacteriol. 188, 4024–4036 (2006).
6. Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).
7. Idriss, E. E., Iglesias, D. J., Talon, M. & Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus subtilis FZB42. Environ. Microbiol. 17, 619–630 (2015).
8. Nicholsom, W. J. The Bacillus subtilis ydjL (bdkA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase. Appl. Environ. Microbiol. 74, 6832–6838 (2008).
9. Zhu, B. & Stille, J. SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis. Nucleic Acids Res. 46, D743–D748 (2017).
10. Fan, B. et al. AmyloWiki: an integrated database for Bacillus velezensis FZB42, the model strain for plant growth-promoting Bacilli. Database 2019, baz071 (2019).
11. Kim, S. Y., Song, H., Song, M. K., Woo, H. Y. & Song, J. The complete genome sequence of Bacillus velezensis strain GH-13 reveals agriculturally beneficial properties and a unique plasmid. J. Biotechnol. 259, 221–227 (2017).
12. Kim, Y. H., Choi, Y., Oh, Y. Y., Ha, N. C. & Song, J. Plant growth-promoting activity of beta-propeller protein Yakl secreted from Bacillus velezensis strain GH-13. PLoS ONE 14, e0207981 (2019).
13. Fan, B. et al. Bacillus velezensis FZB42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9, 2491 (2018).
14. Kalaitzopoulou, M., Spacapan, M., Mandic-Mulec, I. & Stanley-Wall, N. R. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol. Microbiol. 110, 863–878 (2018).
15. Vial, L. & Hommais, F. Plasmid-chromosome cross-talks. Environ. Microbiol. 22, 540–556 (2020).
16. Molinao, G. et al. Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production. Front. Microbiol. 8, 17 (2017).
17. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
18. Yeh, M. E., Vigh, L. & Sánta, M. Alcohol stress, membranes, and chemotaxis. Cell Stress Chaperones 19, 299–309 (2014).
19. Nerandzic, M. M., Sunkelsela, V. C. K., C. T. S., Setlow, P. & Donskey, C. J. Unlocking the sporidical potential of ethanol: induced sporidical activity of ethanol against Clostridium difficile and Bacillus spores under altered physical and chemical conditions. PLoS ONE 10, e0132805 (2015).
20. Radeck, J. et al. Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol. Microbiol. 100, 607–620 (2016).
21. Rautenbach, M., Eyéghé-Bickong, H. A., Vlok, N. M., Stander, M. & De Beer, A. Direct surface-granicidin S antagonism supports detoxification in mixed producer cultures of Bacillus subtilis and Aneurinibacillus migulanus. Microbiology 158, 3072–3082 (2012).
22. Yu, J., Boyanov, M. L., Liu, J., Kemner, K. M. & Fein, J. B. Adsorption of selenite onto Bacillus subtilis: the overlooked role of cell envelope sulfhydryl sites in the microbial conversion of Se(IV). Environ. Sci. Technol. 52, 10440–10448 (2018).
23. Yang, Z., Zhang, Y., Xu, Z., Luo, M. & Wang, G. NAD(P)H-dependent thioredoxin-disulfide reductase TrxR is essential for tellurite and selenite reduction and resistance in Bacillus sp. Y3. FEMS Microbiol. Ecol. 96, siaa126 (2020).
24. Van der Heiden, E. et al. A pathway closely related to the D-tartogate pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis. Appl. Environ. Microbiol. 79, 3511–3515 (2013).
25. Fujita, Y. Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci. Biotechnol. Biochem. 73, 245–259 (2009).

Received: 13 February 2020; Accepted: 13 April 2021; Published online: 14 May 2021

References
Kobayashi, K. & Iwano, M. BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis. FEMS Microbiol. Rev. 34, 134–140 (2010).

Zhu, Y., Wu, Q. & Xu, Y. Genomic and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Sci. Rep. 7, 40977 (2017).

Madsen, J. S., Burmølle, M., Hanse, L. H. & Sørensen, S. J. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol. Med. Microbiol. 65, 183–195 (2012).

Makarewicz, O., Dubrac, S., Msadek, T. & Borriss, R. Dual role of the PhoP regulated P response regulator Bacillus amyloliquefaciens EZB452 phage gene transcription is directed by positive and negative interactions with the pxyC promoter. J. Bacteriol. 188, 6953–6965 (2006).

Butcher, B. G., Feldman, J. D. Identification of Bacillus subtilis 2578, a gene that provides intrinsic resistance to antimicrobial compounds produced by bacilli. Mol. Microbiol. 60, 765–782 (2006).

Butcher, B. G., Lin, Y. & Feldman, J. D. The yyDFGHII operon of Bacillus subtilis encodes a peptidase that induces the LiliA two-component system. J. Bacteriol. 189, 8616–8625 (2007).

Jordan, S. et al. LiliA-dependent gene expression is embedded in transition zone promoters. J. Bacteriol. 190, 3315–3326 (2008).

Kim, Y. H. et al. 2-Nitrobenzoate 2-nitroreductase (NbaA) switches its substrate specificity from 2-nitrobenzoic acid to 2,4-dinitrobenzoic acid under oxidizing conditions. J. Bacteriol. 195, 180–192 (2013).

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

Anders, S. et al. Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat. Protoc. 8, 1175–1186 (2013).

Powell, S. et al. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42, D231–D239 (2014).

Yamamoto, H., Serizawa, M., Thompson, J. & Sekiguchi, J. Regulation of the HprK two-component signaling system of Bacillus subtilis. Mol. Microbiol. 60, 982–992 (2006).

Feng, J. et al. Recruiting a new strategy to improve levan production in Bacillus subtilis. Microb. Cell Fact. 9, 5 (2010).

Aleti, G., Sessitsch, A. & Brader, G. Genome mining: prediction of novel functions that provide intrinsic resistance to antimicrobial compounds. Microb. Cell Fact. 149 (2010).

Firmicutes biofilm: a one stop shop for all data and fully calcium-loaded states. J. Bacteriol. 193, 5928–5932 (1998).

Kantor, H. et al. Sigma A-directed transcription of csgD in Bacillus subtilis. J. Bacteriol. 171, 9528–9532 (1999).

Kantar, H. et al. Sigma A recognition sites in the Bacillus subtilis genome. Microbiology 147, 2417–2424 (2001).

Vazquez, J. A. et al. 2016 update of the PRIDE database and related tools. Nucleic Acids Res. 44, D447–D456 (2016).

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIT) (Grant No. NRF-2019R1A1A1052989 and NRF-2018R1A5A1025077) and by a cooperative research program for Agricultural Science & Technology Development, Rural Development Administration (Grant No. PJ01246706 and PJ10497402).

Author contributions

The work was conceived by Y.H.K., C.W.L., J.S. and designed by Y.H.K. Y.C., H.P., M.P.N. and L.V.H.T. performed the culture experiments, planktonic culture, complementation, conjugation, and RNA and protein analyses under the supervision of Y.H. K. J.K. performed the chemical analysis under the supervision of C.W.L. S.K. performed implementation, conjugation, and RNA and protein analyses under the supervision of Y.H. S.G. and F.L. performed the FACS analysis under the supervision of Y.H. and C.W.L. Y.J. and S.K. performed the gene expression analysis under the supervision of Y.H. and C.W.L. J.K. and S.S. performed the experiment under the supervision of Y.H. and C.W.L. E.C. performed all the experiments under the supervision of Y.H. and C.W.L. E.C. and C.W.L. revised the manuscript and all authors discussed the results.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-02107-z.

Correspondence and requests for materials should be addressed to C.W.L. J.S. or Y.H.K.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access

This Article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021