Label Assistant: A Workflow for Assisted Data Annotation in Image Segmentation Tasks

31st Workshop Computational Intelligence, Berlin

M. P. Schilling, L. Rettenberger, F. Münke, H. Cui, A. A. Popova, P. A. Levkin, R. Mikut, M. Reischl | 26th November 2021
Outline

1 Introduction

2 Workflow
 • Selector
 • Pre-Assistance
 • Post-Assistance

3 Implementation

4 Datasets

5 Results

6 Conclusion and Outlook
Introduction - Labeling

Input images x

Deep Neural Network

Objective

Labels y

Human annotator

Introduction

Workflow

Implementation

Datasets

Results

Conclusion and Outlook
Introduction - Labeling

Deep Neural Network

Objective

Input images x

Labeling

Human annotator

Labels y
Introduction - Challenges

→ **Objective:** Workflow for assistance to enhance labeling process [1, 2]
Workflow

Unlabeled dataset D^u
Selector
Pre-Assistance
Human annotator
Post-Assistance
Labeled dataset D^l
Selector

Status Quo

Labeling Order

→ Sequential sampling can be sub-optimal

Selector (Deep Active Learning)

Feature 2

Uncertainty

Feature 1

→ Use selection strategy (uncertainty, heterogeneity, ...)

Introduction
Workflow
Implementation
Datasets
Results
Conclusion and Outlook

M. P. Schilling et al.: Label Assistant, 31st Workshop Computational Intelligence

Institute for Automation and Applied Informatics
Pre-Assistance

Image Pre-Processing

Pre-Labeling

→ Prepare image to simply labeling for annotators

→ Pre-Labels to reduce labeling effort

Wrong segments

Introduction
Workflow
Implementation
Datasets
Results
Conclusion and Outlook

7/14 2021-11-26
M. P. Schilling et al.: Label Assistant, 31st Workshop Computational Intelligence

Institute for Automation and Applied Informatics
Post-Assistance

Post-Processing to improve label quality

Label Inspection

User warning based on defined criteria to enhance label quality
Implementation

Available soon (Git repository https://git.scc.kit.edu/sc1357/kaida)

Support of different devices (tablet, laptop)/operating systems
Datasets

Sample

Mask

Medaka [4]

Sample

Mask

DMA Spheroid [5]
- Performance comparison: Different selection strategies to obtain labeled subset in contrast to labeling complete dataset (baseline)

Configurations
Sequential
$
DSC_{test} in %

- Pre-Labeling via trained U-Net [6] on small dataset

1 Selection of one random sample per sequence
Result excerpts - DMA Spheroid

- Image Pre-Processing

- Pre-Labeling via Otsu thresholding

80.18 %

Introduction	Workflow	Implementation	Datasets	Results	Conclusion and Outlook
12/14	2021-11-26	M. P. Schilling et al.: Label Assistant, 31st Workshop Computational Intelligence	Institute for Automation and Applied Informatics		
Conclusion and Outlook

Conclusion

- Presentation of a generic workflow combing and extending various ideas of labeling enhancement
- Template for community usage in deep learning projects
- Software prototype which implements proposed workflow

Outlook

- Extension of methods depicted in each assistance module
- Integration of other tasks (e.g. classification) in Label Assistant
- Open-source deployment of software prototype as pip package for community usage

2 Git repository https://git.scc.kit.edu/sc1357/kaida
Many thanks for your attention!
References

[1] Davood Karimi et al. “Deep Learning with Noisy Labels: Exploring Techniques and Remedies in Medical Image Analysis”. In: *Medical Image Analysis* 65.5 (2020), p. 101759.

[2] Niall O’ Mahony et al. “Deep Learning vs. Traditional Computer Vision”. In: *Advances in Computer Vision*. 2019, pp. 128–144.

[3] Andreas Bartschat. *Image Labeling Tool*. Accessed: 2021-05-31, Available: https://bitbucket.org/abartschat/imagelabelingtool. 2019.

[4] Mark Schutera et al. “Machine Learning Methods for Automated Quantification of Ventricular Dimensions”. In: *Zebrafish* 16.6 (2019), pp. 542–545.

[5] Anna A. Popova et al. “Facile One Step Formation and Screening of Tumor Spheroids Using Droplet-Microarray Platform”. In: *Small* 15.25 (2019), p. 1901299.

[6] O. Ronneberger, P. Fischer, and T. Brox. “U-Net: Convolutional Networks for Biomedical Image Segmentation”. In: *Medical Image Computing and Computer-Assisted Intervention (MICCAI)*. 2015, pp. 234–241.