TOPOLOGICAL HOCHSCHILD HOMOLOGY OF TRUNCATED BROWN-PETTERSON SPECTRA I

GABRIEL ANGELINI-KNOLL, DOMINIC LEON CULVER, AND EVA HÖNING

ABSTRACT. We compute topological Hochschild homology of sufficiently structured forms of truncated Brown–Peterson spectra with coefficients. In particular, we compute $\text{THH}(B\langle n \rangle; \mathbb{H}_p)$ for all n and $\text{THH}(B\langle 2 \rangle; M)$ for $M \in \{k(1), k(2)\}$ where $B\langle n \rangle$ is an E_3 form of $BP\langle n \rangle$ for certain primes p. For example, this gives a computation of $\text{THH}(\text{taf}_D; M)$ for $M \in \{\mathbb{H}_3, k(1), k(1)\}$ where tafD is the E_∞ form of $BP\langle 2 \rangle$ constructed by Hill–Lawson.

1. Introduction

Topological Hochschild homology and cohomology are rich invariants of rings, or more generally ring spectra, with applications to such fields as string topology [16], deformation theory of A_∞ algebras [2], and integral p-adic Hodge theory [9]. Topological Hochschild homology is also a first order approximation to algebraic K-theory in a sense made precise using Goodwillie calculus by [17].

Algebraic K-theory of ring spectra that arise in chromatic stable homotopy theory are of particular interest because of the program of Ausoni–Rognes [7], which suggests that algebraic K-theory shifts chromatic complexity up by one, a higher chromatic height...
analogue of conjectures of Lichtenbaum [28] and Quillen [33]. A higher chromatic
height analogue of one of the Lichtenbaum–Quillen conjectures was recently proven for
collapsed Brown–Peterson spectra $BP(n)$ by [19]. However, it is still desirable to have
a more explicit computational understanding of algebraic K-theory of $BP(n)$ in order
to understand the étale cohomology of $BP(n)$ as suggested by Rognes [35, §5-6].

One of the most fundamental objects in chromatic stable homotopy theory is the
Brown–Peterson spectrum BP, which is a complex oriented cohomology theory that
carryes the universal Brown–Peterson spectrum BP, which is a complex oriented cohomology theory that
carries the universal p-typical formal group. The coefficients of BP are the symmetric
algebra over \mathbb{Z}_p on generators v_i for $i \geq 1$, and we may form truncated versions of BP,
denoted $BP(n)$ by coning off the regular sequence $(v_{n+1}, v_{n+2}, \ldots)$. More generally, we
consider forms of $BP(n)$, in the spirit of [32], which are constructed by coning off some
sequence $(v'_{n+1}, v'_{n+2}, \ldots)$ of indecomposable algebra generators in BP_* where $|v'_k| = |v_k|$
(see Definition 2.1 for a precise definition). We will be most interested in working with
forms of $BP(n)$ that are E_m ring spectra for sufficiently large m. We will refer to such
spectra as E_m forms of $BP(n)$. For example, the spectrum $HZ(p)$ is an E_∞ form of
$BP(0)$, and t is an E_∞ form of $BP(1)$ at all primes by [8].

In the last decade E_∞ forms of $BP(2)$ were constructed at the prime $p = 2$ by [26] and $p = 3$ by [21]. In [26], Lawson–Naumann use the the moduli stack of formal
groups with a $\Gamma_1(3)$-structure to construct an E_∞ form of $BP(2)$ at the prime 2 denoted
$tmf_1(3)$. In [21], Hill–Lawson use a quaternion algebra D of discriminant 14 and its
associated Shimura curve X^D to construct an E_∞ form of $BP(2)$ at the prime $p = 3$
denoted tm^D. Even more recently, Hahn–Wilson [20] construct an E_3 form of $BP(n)$
at all primes and for all n, which we denote $BP(n)$. This is especially interesting since
no $E_{2(p^2+2)}$ form of $BP(n)$ exists for $n \geq 4$ by Lawson [25] at the prime $p = 2$ and
Senger [37] at primes $p > 2$. Highly structured models for truncated Brown–Peterson
spectra make computations of invariants of these truncated Brown–Peterson spectra
more tractable, and therefore they will be important for our calculations.

For small values of n, the calculations of $THH_*(BP(n))$ are known and of fundamental
importance. The first known computations of topological Hochschild homology are Bökstedt’s calculations of $THH_*(H\mathbb{F}_p)$ and $THH_*(HZ(p))$ in [10]. To illustrate
how fundamental these computations are, we point out that the computation
$THH_*(H\mathbb{F}_p) \cong P(\mu_0)$ where $|\mu_0| = 2$ is the linchpin for a new proof of Bott periodicity
[24]. In [31], McClure and Staffeldt compute the Bockstein spectral sequence

$$THH_*(\ell; H\mathbb{F}_p)[v_1] \Rightarrow THH_*(\ell; k(1)).$$

This result is extended in [3] where Angeltveit, Hill, and Lawson compute the square of spectral sequences

$$THH_*(BP(1); H\mathbb{F}_p)[v_0, v_1] \Rightarrow THH_*(BP(1); HZ(p))_p[v_1]$$

$$THH_*(BP(1); k(1))[v_0] \Rightarrow THH_*(BP(1); BP(1))_p.$$

This gives a complete computation of $THH_*(BP(1))$.

Let $B\langle n \rangle$ denote an E_3 form of $BP\langle n \rangle$ (see Definition 2.1). We compute

$$\text{THH}_*(B\langle n \rangle; H\mathbb{F}_p) \cong E(\lambda_1, \ldots, \lambda_{n+1}) \otimes P(\mu_{n+1})$$

where $|\lambda_i| = 2p^i - 1$ and $|\mu_{n+1}| = 2^{n+1}$ in Proposition 2.9 as a consequence of work of [5]. In [19], Hahn and Wilson calculate the groups $\text{THH}_*(B\langle n \rangle/MU)$, but working over MU significantly simplifies the calculation. In [6], Ausoni and Richter compute $\text{THH}_*(E(2))$ under the assumption that $E(2) = BP\langle 2 \rangle[v_2^{-1}]$ has an E_∞ ring structure and give a conjectural answer for $\text{THH}_*(E(n))$, which is consistent with our calculations. These are currently the only known results for $n \geq 2$.

The main three results of this paper are computations of the Bockstein spectral sequences

(1.1) \[\text{THH}_*(B\langle n \rangle; H\mathbb{F}_p)[v_0] \Rightarrow \text{THH}_*(B\langle n \rangle; H\mathbb{Z}_{(p)}) \]

(1.2) \[\text{THH}_*(B\langle 2 \rangle; H\mathbb{F}_p)[v_1] \Rightarrow \text{THH}_*(B\langle 2 \rangle; k(1)) \]

(1.3) \[\text{THH}_*(B\langle 2 \rangle; H\mathbb{F}_p)[v_2] \Rightarrow \text{THH}_*(B\langle 2 \rangle; k(2)) \]

where $B\langle n \rangle$ is an E_3 form of $BP\langle n \rangle$ and we assume $p \geq 3$ for our computation of the spectral sequence (1.2). The Bockstein spectral sequences (1.2) and (1.3) are of similar computational complexity to the main result of McClure–Staffeldt [31] and we were inspired by their work.

We summarize our three main results as follows: First, we compute the topological Hochschild homology of an E_3 form of $BP\langle n \rangle$ with $HZ_{(p)}$ coefficients.

Theorem (Theorem 3.18). Let $B\langle n \rangle$ be an E_3 form of $BP\langle n \rangle$ and at $p > 2$ assume the error term (3.12) vanishes. Then there is an isomorphism of graded $\mathbb{Z}_{(p)}$-modules

$$\text{THH}_*(B\langle n \rangle; H\mathbb{Z}_{(p)}) \cong E_{\mathbb{Z}_{(p)}}(\lambda_1, \ldots, \lambda_n) \otimes (\mathbb{Z}_{(p)} \oplus T^n_0)$$

where T^n_0 is an explicit torsion $\mathbb{Z}_{(p)}$-module defined in (3.19).

In particular, the error term (3.12) vanishes for any E_4 form of $BP\langle n \rangle$ such as $B(2) = \text{taf}^P$. It is possible that the error term (3.12) also vanishes for $B(n) = BP\langle n \rangle'$ where $BP\langle n \rangle'$ is the E_3 form of $BP\langle n \rangle$ constructed by Hahn–Wilson [20] at odd primes, but it is not known to the authors. Theorem 3.18 also holds for $B(2) = \text{tmf}_1(3)$ and $B(n) = BP\langle n \rangle'$, where $BP\langle n \rangle'$ is the E_3 form of $BP\langle n \rangle$ at the prime 2 constructed by Hahn–Wilson [20].

Second, we compute the topological Hochschild homology of an E_3 form $B\langle 2 \rangle$ of $BP\langle 2 \rangle$ at $p \geq 3$ with $k(1)$ coefficients.

Theorem (Theorem 4.7). Let $B\langle 2 \rangle$ denote an E_3 form of $BP\langle 2 \rangle$ at an odd prime p. There is an isomorphism of $P(v_1)$-modules

$$\text{THH}_*(B\langle 2 \rangle; k(1)) \cong E(\lambda_1) \otimes (P(v_1) \oplus T^2_1)$$

where T^2_1 is an explicit v_1-torsion $P(v_1)$-module defined in (4.8).

\[1\] Note that there is a spectrum commonly denoted $B(n) = v_n^{-1}P(n)$ in other references (e.g. [34]) and our notation and meaning is distinct.
In particular, this result holds for $B(2) = \text{taf}^D$ and $BP(2)'$ at odd primes.

Finally, we compute topological Hochschild homology of any E_3 form of $BP(2)$ with $k(2)$ coefficients.

Theorem (Theorem 5.6). Let $B(2)$ be an E_3 form of $BP(2)$. There is an isomorphism of $P(v_2)$-modules

$$\text{THH}_*(B(2); k(2)) \cong P(v_2) \oplus T^2_2$$

where T^2_2 is an explicit v_2-torsion $P(v_2)$-module defined in (5.7).

In particular, this result holds for $B(2) = \text{taf}^D$, $B(2) = \text{tmf}_1(3)$, and $BP(2)'$ at any prime. We end with a conjectural answer (cf. Conjecture 5.8) for $\text{THH}_*(\text{taf}^D)$ for all integers $1 \leq m \leq n$ and any E_3 form of $B(n)$ at a prime p.

We now outline our approach to computing $\text{THH}_*(\text{taf}^D)$ in the sequels to this paper. There is a cube of Bockstein spectral sequences

\[
\begin{array}{ccc}
H\mathbb{F}_3 & \xrightarrow{H\mathbb{Z}_3} & B(2)/v_2 \\
\downarrow k(1) & & \downarrow B(2)/v_2 \\
\downarrow k(2) & & \downarrow B(2)/v_1 \\
\downarrow & & \downarrow B(2)/3 \\
B(2) & \xrightarrow{B(2)} & B(2)
\end{array}
\]

where we use the abbreviation $M/x \implies M$ for the Bockstein spectral sequence with signature

$$\text{THH}_*(\text{taf}^D; M/x)[x] \implies \text{THH}_*(\text{taf}^D; M)$$

where $M \in \{H\mathbb{Z}_3, k(1), k(2), \text{taf}^D/3, \text{taf}^D/v_1, \text{taf}^D/v_2, \text{taf}^D\}$. Here we write taf^D/x for the cofiber of a representative of an element $x \in \pi_2 \text{taf}^D$ regarded as a taf^D-module map $\Sigma^{2k} \text{taf}^D \to \text{taf}^D$. In the sequels to this paper, we plan to compute $\text{THH}_*(\text{taf}^D; M)$ for $M = \text{taf}^D/3$ and $M = \text{taf}^D/v_1$ by comparing the edges of the cube of Bockstein spectral sequences to the Hochschild–May spectral sequence [1] and the Brun spectral sequence [22], which compute the diagonals of the faces of the cube directly. Finally, we plan to compute $\text{THH}_*(\text{taf}^D)$ by again comparing the Hochschild–May spectral sequence to the relevant Bockstein spectral sequences in addition to cosimplicial descent techniques.

Conventions. We write F, X for $\pi_*(F \wedge X)$ for any spectra F and X. We also use the shorthand $H_*(X)$ for $(H\mathbb{F}_p)_*X$ for any spectrum X. We write \doteq to mean that an equality holds up to multiplication by a unit. The dual Steenrod algebra $H_*(H\mathbb{F}_p)$ will be denoted \mathcal{A}_* with coproduct $\Delta : \mathcal{A}_* \to \mathcal{A}_* \otimes \mathcal{A}_*$. Given a left \mathcal{A}_*-comodule M, its left coaction will be denoted $\nu : \mathcal{A}_* \to \mathcal{A}_* \otimes M$ where the comodule M is understood from the context. The antipode $\chi : \mathcal{A}_* \to \mathcal{A}_*$ will not play a role except that we will write $\xi_i := \chi(\xi_i)$ and $\bar{\tau}_i := \chi(\tau_i)$.
When not otherwise specified, tensor products will be taken over \mathbb{F}_p and $\text{HH}_*(A)$ denotes the Hochschild homology of a graded \mathbb{F}_p-algebra relative to \mathbb{F}_p. We will let $P_R(x)$, $E_R(x)$ and $\Gamma_R(x)$ denote a polynomial algebra, exterior algebra, and divided power algebra over R on a generator x. When $R = \mathbb{F}_p$, we omit it from the notation. Let $P(x)$ denote the truncated polynomial algebra $P(x)/(x^i)$.

Acknowledgements. The authors would like to thank Tyler Lawson for helpful conversations. The authors would also like to thank John Rognes and an anonymous referee for their careful reading of the paper and useful suggestions for improvement. Parts of this paper were written while the second author was in residence at the Max Planck Institute for Mathematics. He would like to thank the Institute for their support. The third author was funded by the DFG priority program SPP 1786 Homotopy Theory and Algebraic Geometry and the Radboud Excellence Initiative. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 1010342555.

2. Topological Hochschild homology mod (p,\ldots,v_n)

We begin by giving a precise definition of an E_m form $B\langle n \rangle$ of $BP\langle n \rangle$. We then compute topological Hochschild homology of an E_3 form $B\langle n \rangle$ of $BP\langle n \rangle$ at an arbitrary prime p with coefficients in HF_p. First, recall that there is an isomorphism $BP_* \cong \mathbb{Z}(p)[v_i : i \geq 1]$ and an isomorphism

$$BP_*BP \cong \mathbb{Z}(p)[v_i : i \geq 1][t_i : i \geq 1]$$

where the degrees of the generators are $|v_i| = |t_i| = 2p^i - 2$ for $i \geq 1$. The generators t_i are determined by the canonical strict isomorphism f from the universal p-typical formal group law to itself given by the power series

$$f^{-1}(x) = \sum_{i \geq 0} t_i x^{p^i}$$

where F is the universal p-typical formal group law [34, Lemma A2.1.26]. We let v_i be the Araki generators. Note that the Araki generators agree with Hazewinkel generators mod p [34, Theorem A2.2.3].

2.1. Forms of $BP\langle n \rangle$. We fix a precise notion of a form of the truncated Brown–Peterson spectrum in the spirit of [32] below.

Definition 2.1 (cf. [27, Definition 4.1]). Fix integers $m \geq 1$ and $n \geq 0$. By an E_m form of $BP\langle n \rangle$ (at the prime p), we mean a p-local E_m ring spectrum R equipped with a complex orientation $MU_*(\mathbb{Z}(p)) \to R$ such that the composite

$$\mathbb{Z}(p)[v_1,\ldots,v_n] \to BP_* \to \pi_* MU_*(\mathbb{Z}(p)) \to \pi_* R$$

is an isomorphism.

Remark 2.2. Note that we do not assume that an E_m form of $BP\langle n \rangle$ at the prime p is an E_m-MU-algebra and therefore Definition 2.1 differs slightly from the definition of an E_m-MU-algebra form of $BP\langle n \rangle$ appearing in work of Hahn–Wilson [20, Definition
A E_m-MU-algebra form of $BP\langle n \rangle$ in the sense of [20, Definition 2.0.1] is a E_m form of $BP\langle n \rangle$ at the prime p in the sense of Definition 2.1. The distinction arises because for example taf^D is an E_∞ form of $BP(2)$, however it is not known, at least to the authors, whether the complex orientation $MU \to taf^D$ can be elevated to an E_∞-ring spectrum map. Nonetheless, we know that the map $MU \to taf^D$ is an E_2-ring spectrum map by [15, Theorem 1.2], which is sufficient for our purposes.

Notation. Throughout, we let $B\langle n \rangle$ denote an E_3 form of $BP\langle n \rangle$ at the prime p in the sense of Definition 2.1 for $n \geq 0$.

We collect some consequences of Definition 2.1.

Proposition 2.3. Since $B\langle n \rangle$ is an E_3 form of $BP\langle n \rangle$ at the prime p for $m \geq 3$, the following hold:

1. There are indecomposable algebra generators v'_i with $v'_i = v_i$ for $1 \leq i \leq n$ such that $BP_* / (v'_i : k \geq n + 1) \cong \pi_* B\langle n \rangle$.
2. The orientation $MU_*(p) \to B\langle n \rangle$ lifts to an E_2 ring spectrum map and consequently there is an E_2 ring spectrum map $BP \to B\langle n \rangle$ realizing the canonical quotient map $BP_* \to BP_* / (v'_i : k \geq n + 1)$ on homotopy groups.
3. There is an E_3 ring spectrum map $B\langle n \rangle \to H\mathbb{Z}_*(p)$ and the map induced by the composite

 \begin{equation}
 B\langle n \rangle \to H\mathbb{Z}_*(p) \to H\mathbb{F}_p
 \end{equation}

 in mod p homology provides an isomorphism

 \[H_*(B\langle n \rangle) \cong \mathcal{A} / / E_*(n) \subset \mathcal{A} \]

 of \mathcal{A}-comodule \mathbb{F}_p-algebras onto its image in the dual Steenrod algebra.
4. If $B\langle n \rangle$ is E_3 and x_1, \ldots, x_n is a regular sequence of elements in $B\langle n \rangle_*$, then one can construct the spectrum $B\langle n \rangle / (x_1, x_2, \ldots, x_n)$ as an $E_1 B\langle n \rangle$-algebra.
5. The p-completion of $B\langle n \rangle$ is weakly equivalent to the p-completion of any other E_m form of $BP\langle n \rangle$ at the prime p in the category of spectra.

Proof. For Part (1) set $v'_i := v_i - f_i(v_1, \ldots, v_n)$ for $i \geq n + 1$, where $f_i(v_1, \ldots, v_n)$ is the image of v_i under $BP_* \to BP\langle n \rangle_* \cong \mathbb{Z}[[v_1, \ldots, v_n]]$. Part (2) follows by applying [15, Theorem 1.2]. Part (3) is [27, Theorem 4.4]. Part (4) follows from [2, Section 3] (cf. [19, Theorem A]). Part (5) is [4, Theorem A].

Examples 2.5. The Eilenberg–MacLane spectrum $H\mathbb{Z}_*(p)$ is an E_∞ form of $BP\langle 0 \rangle$. The Adams summand ℓ is an E_∞ form of $BP\langle 1 \rangle$ by [8, Corollary 1.4].

Notation. Let $tmf_1(3)$ denote the E_∞ form of $BP\langle 2 \rangle$ constructed by Lawson–Naumann [26] at $p = 2$. Let taf^D denote the E_∞ form of $BP\langle 2 \rangle$ constructed by Hill–Lawson [21] at $p = 3$. Let $BP\langle n \rangle'$ denote the E_3 form of $BP\langle n \rangle$ constructed by Hahn–Wilson [20] at all primes.
2.2. Topological Hochschild homology mod (p, \ldots, v_n). The mod p homology of THH($BP\langle n \rangle$) has been calculated by Angeltveit–Rognes in [5, Theorem 5.12] assuming that $BP\langle n \rangle$ is an E_3 ring spectrum. Their argument also applies to topological Hochschild homology of any E_3 form $B\langle n \rangle$ of $BP\langle n \rangle$ at a prime p, as we now explain. By Proposition 2.3, the linearization map (2.4) induces an isomorphism

$$H_*(B\langle n \rangle) \cong \begin{cases} P(\xi_1, \xi_2, \ldots) \otimes E(\bar{\xi}_{n+1}, \bar{\xi}_{n+2}, \ldots) & \text{if } p \geq 3 \\ P(\xi_1^2, \ldots, \xi_{n+1}^2, \bar{\xi}_{n+2}, \ldots) & \text{if } p = 2 \end{cases}$$

with its image in \mathcal{A}_* as sub \mathcal{A}_*-comodule algebra of \mathcal{A}_*. By [12, Theorem 3.4], the spectrum THH($B\langle n \rangle; HF_p$) is an E_2 ring spectrum and the unit map

$$HF_p \to THH(B\langle n \rangle; HF_p)$$

is a map of E_2 ring spectra. Using [12, §3.3] the proof of [5, Proposition 4.3] carries over mutatis mutandis and implies that the Bökstedt spectral sequence with signature

$$E^2_{s,t} = HH_{s,t}(H_*(B\langle n \rangle); \mathcal{A}_*) \implies H_*(THH(B\langle n \rangle; HF_p))$$

is a spectral sequence of \mathcal{A}_*-comodule algebras. As in [5, §5.2], the spectral sequence collapses at the E^2-page if $p = 2$. If $p \geq 3$, one can use the map to the Bökstedt spectral sequence with signature

$$E^2_{s,t} = HH_{s,t}(\mathcal{A}_*) \implies H_*(THH(HF_p))$$

to determine the differentials (cf. [5, §5.4]). Since $B\langle n \rangle$ is an E_3 ring spectrum, Dyer–Lashof operations are defined on $H_*(B\langle n \rangle)$ and $H_*(THH(B\langle n \rangle; HF_p))$ in a range that is sufficient to resolve the multiplicative extensions (see [5, Proof of Theorem 5.12]). We get an isomorphism of \mathcal{A}_*-comodule \mathcal{A}_*-algebras

$$H_*(THH(B\langle n \rangle; HF_p)) \cong \begin{cases} \mathcal{A}_* \otimes E(\sigma \xi_1, \ldots, \sigma \xi_{n+1}) \otimes P(\sigma \bar{\xi}_{n+1}) & \text{if } p \geq 3 \\ \mathcal{A}_* \otimes E(\sigma \xi_1^2, \ldots, \sigma \xi_{n+1}^2) \otimes P(\sigma \bar{\xi}_{n+2}) & \text{if } p = 2. \end{cases}$$

Since $\sigma: H_*(B\langle n \rangle) \to H_{s+1}(THH(B\langle n \rangle)) \to H_{s+1}(THH(B\langle n \rangle; HF_p))$ is a comodule map and a derivation, the \mathcal{A}_*-coaction of

$$H_*(THH(B\langle n \rangle; HF_p))$$

can be deduced from that of $H_*(B\langle n \rangle) \subseteq \mathcal{A}_*$ (cf. [5, Proof of Theorem 5.12]): for $p \geq 3$ the classes $\sigma \xi_i$ for $1 \leq i \leq n + 1$ are \mathcal{A}_*-comodule primitives and we have

$$\nu(\sigma \bar{\xi}_{n+1}) = 1 \otimes \sigma \bar{\xi}_{n+1} + \bar{\xi}_0 \otimes \sigma \bar{\xi}_{n+1}.$$ \hspace{1cm} (2.7)

For $p = 2$ the classes $\sigma \xi_i^2$ for $1 \leq i \leq n + 1$ are \mathcal{A}_*-comodule primitives and we have

$$\nu(\sigma \xi_{n+2}^2) = 1 \otimes \sigma \xi_{n+2} + \bar{\xi}_1 \otimes \sigma \xi_{n+2}^2.$$ \hspace{1cm} (2.8)

Proposition 2.9. Let $B\langle n \rangle$ be an E_3 form of $BP\langle n \rangle$. There is an isomorphism of graded \mathbb{F}_p-algebras

$$THH_*(B\langle n \rangle; HF_p) \cong E(\lambda_1, \ldots, \lambda_{n+1}) \otimes P(\mu_{n+1}),$$

where the degrees of the algebra generators are $|\lambda_i| = 2p^i - 1$ for $1 \leq i \leq n + 1$ and $|\mu_{n+1}| = 2p^{n+1}$. \hspace{1cm} (2.10)
Proof. Since \(\text{THH}(B\langle n \rangle; H\mathbb{F}_p) \) is an \(H\mathbb{F}_p \)-module, the Hurewicz homomorphism induces an isomorphism between \(\text{THH}_*(B\langle n \rangle; H\mathbb{F}_p) \) and the subalgebra of comodule primitives in \(H_*(\text{THH}(B\langle n \rangle; H\mathbb{F}_p)) \). For \(1 \leq i \leq n + 1 \) we write \(\lambda_i := \sigma \xi_i \) if \(p \geq 3 \) and \(\lambda_i := \sigma \xi^2_i \) if \(p = 2 \). We also define

\[
\mu_{n+1} := \begin{cases}
\sigma \overline{\tau}_{n+1} - \overline{\tau}_0 \sigma \xi_{n+1} & \text{if } p \geq 3 \\
\overline{\xi}_{n+2} - \bar{\xi}_1 \sigma \xi^2_{n+1} & \text{if } p = 2.
\end{cases}
\]

Then it is clear that the subalgebra of \(H_*(\text{THH}(B\langle n \rangle; H\mathbb{F}_p)) \) consisting of comodule primitives is as claimed. \(\square \)

3. Topological Hochschild homology mod \((v_1, \ldots, v_n) \)

We begin by setting up the Bockstein spectral sequence. In order to ensure that this spectral sequence is multiplicative, we compare it with the Adams spectral sequence.

3.1. Bockstein and Adams spectral sequences. Let \(B\langle n \rangle \) be an \(E_3 \) form of \(B\mathbb{P} \langle n \rangle \) at the prime \(p \) which is equipped with a choice of generators \(v_i \) in degrees \(|v_i| = 2p^i - 2 \) for \(0 < i \leq n \) such that \(B\langle n \rangle_* = \mathbb{Z}(p)[v_1, \ldots, v_n] \). Let \(v_0 = p \) by convention. Let \(k(i) = B\langle n \rangle/(p, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n) \) be the \(E_1 \) \(B\langle n \rangle \)-algebra constructed in Proposition 2.3 (4) where \(k(0) = H\mathbb{Z}(p) \). We regard \(k(i) \) as a right \(B\langle n \rangle \wedge B\langle n \rangle^{\text{op}} \)-module by restriction along the map

\[
B\langle n \rangle \wedge B\langle n \rangle^{\text{op}} \to B\langle n \rangle \to k(i).
\]

For \(0 \leq i \leq n \) we have cofiber sequences of right \(B\langle n \rangle \wedge B\langle n \rangle^{\text{op}} \)-modules

\[
\Sigma^{|v_i|} k(i) \xrightarrow{\cdot v_i} k(i) \to H\mathbb{F}_p.
\]

Applying the functor \(- \wedge_{B\langle n \rangle \wedge B\langle n \rangle^{\text{op}}} B\langle n \rangle \) produces the cofiber sequence

\[
\Sigma^{|v_i|} \text{THH}(B\langle n \rangle; k(i)) \to \text{THH}(B\langle n \rangle; k(i)) \to \text{THH}(B\langle n \rangle; H\mathbb{F}_p).
\]

Iterating this, we produce the following tower

\[
\cdots \to \Sigma^2|v_i| T(k(i)) \xrightarrow{\cdot v_i} \Sigma^{|v_i|} T(k(i)) \xrightarrow{\cdot v_i} T(k(i)) \to \cdots
\]

(3.1)

where \(T(k(i)) := \text{THH}(B\langle n \rangle; k(i)) \) and \(T(H\mathbb{F}_p) := \text{THH}(B\langle n \rangle; H\mathbb{F}_p) \).

This yields an exact couple after applying homotopy groups and it produces the \(v_i \)-Bockstein spectral sequence with \(E_1 \)-page

\[
E_1^{*,*} = \text{THH}(B\langle n \rangle; H\mathbb{F}_p)[v_i]
\]

(3.2)

Note that the fact that \(B\langle n \rangle \) and \(k(i) \) are connective and have homotopy groups that are degreewise finitely generated \(\mathbb{Z}(p) \)-modules implies that the homotopy groups of
THH(B⟨n⟩; k(i)) are degreewise finitely generated \(\mathbb{Z}(p)\)-modules, too. It follows that THH\(_s\)(B⟨n⟩; k(i)) has the form

\[
\text{THH}\(_s\)(B⟨n⟩; k(i)) \cong \bigoplus \mathbb{P}(v_i)\{\alpha_i\} \oplus \bigoplus P_{r_k}(v_i)\{\beta_k\}
\]

for some classes \(\alpha_i\) and \(\beta_k\). Here, for \(i = 0\), \(P(v_i)\) is defined to be \(\mathbb{Z}(p)\) and \(P_r(v_i)\) is \(\mathbb{Z}/p^r\). We get that

\[
\text{THH}\(_s\)(B⟨n⟩; H\mathbb{F}_p) \cong \bigoplus \mathbb{F}_p\{a_i\} \oplus \bigoplus \mathbb{F}_p\{b_k\} \oplus \bigoplus \mathbb{F}_p\{c_k\},
\]

where \(a_i\) and \(b_k\) are the images of \(\alpha_i\) and \(\beta_k\) under the map \(\text{THH}\(_s\)(B⟨n⟩; k(i)) \to \text{THH}\(_s\)(B⟨n⟩; H\mathbb{F}_p)\), and \(c_k\) is a preimage of \(v_i^{r_k-1}\beta_k\) under the map \(\text{THH}\(_s\)(B⟨n⟩; H\mathbb{F}_p) \to \Sigma^{[n]_i+1}THH\(_s\)(B⟨2⟩; k(i))\). The differentials in the spectral sequence are given as follows:

The classes \(a_i\) and \(b_k\) are infinite cycles. The class \(c_k\) survives to the \(E_{r_k}\)-page and we have

\[
d_{r_k}(c_k) = v_i^{r_k}b_k.
\]

The spectral sequence converges strongly to \(\text{THH}\(_s\)(B⟨n⟩; k(i))\) for \(0 < i \leq n\) and to \(\pi_\ast(\text{THH}(B⟨n⟩; H\mathbb{Z}(p))p)\) for \(i = 0\). The cofibers in the tower (3.1) are \(H\mathbb{F}_p\)-module spectra.

We now relate the Bockstein spectral sequence to the Adams spectral sequence. In order to do this, we show that the tower (3.1) is also an Adams resolution. For the definition of an Adams resolution, the reader is referred to [34, Definition 2.1.3]. In order to show that this tower is an Adams resolution, it must be shown that the vertical morphisms

\[
(3.3) \quad \Sigma^{m|v_i|} \text{THH}(B⟨n⟩; k(i)) \longrightarrow \Sigma^{m|v_i|} \text{THH}(B⟨n⟩; H\mathbb{F}_p)
\]

induce monomorphisms in mod \(p\) homology. We have equivalences of spectra

\[
\text{THH}(B⟨n⟩; M) \simeq M \wedge_{B⟨n⟩} \text{THH}(B⟨n⟩)
\]

for \(M \in \{H\mathbb{F}_p, k(i) : 0 \leq i \leq n\}\) by [20, Remark 6.1.4] and consequently there is an Eilenberg–Moore spectral sequence

\[
\text{Tor}^{H_{B⟨n⟩}}_{\ast\ast}(H_\ast(M), H_\ast(\text{THH}(B⟨n⟩))) \Longrightarrow H_\ast(\text{THH}(B⟨n⟩; M))
\]

for each \(M \in \{H\mathbb{F}_p, k(i) : 0 \leq i \leq n\}\). Since \(H_\ast(\text{THH}(B⟨n⟩))\) is a free \(H_\ast(B⟨n⟩)\)-module by [5, Theorem 5.12], the Eilenberg–Moore spectral sequence collapses at the \(E^2\)-page without room for differentials. Furthermore, the morphism (3.3) induces a morphism of Eilenberg–Moore spectral sequences. Thus, we observe that the morphism (3.3) induces the map

\[
(3.4) \quad H_\ast(k(i)) \otimes_{H_\ast(B⟨n⟩)} H_\ast(\text{THH}(B⟨n⟩)) \to \mathcal{A} \otimes_{H_\ast(B⟨n⟩)} H_\ast(\text{THH}(B⟨n⟩))
\]

in mod \(p\) homology where the map on the first factor is induced by the linearization map \(k(i) \to H\mathbb{F}_p\). The map (3.4) is an injection. Since \(H_\ast(\text{THH}(B⟨n⟩))\) is a free \(H_\ast(B⟨n⟩)\)-module, the map (3.3) induces an injection on mod \(p\) homology. Thus, we have shown the following proposition.

Proposition 3.5. The tower (3.1) is an Adams resolution.
Thus, the Adams spectral sequence for $\text{THH}(B\langle n \rangle; k(i))$ agrees with the Bockstein spectral sequence for $0 \leq i \leq n$. By [34, Theorem 2.3.3], we know that the Adams spectral sequence for $\text{THH}(B\langle n \rangle; k(i))$, and consequently the Bockstein spectral sequence, is multiplicative for $0 \leq i \leq n$ from the E_2-page onwards. To see that the Adams spectral sequence is in fact multiplicative from the E_1-page onwards, we prove explicitly in the case $i = 0$ that the d_1 differential satisfies the Leibniz rule in Lemma 3.10. In the case $i > 0$, we can apply a change of rings isomorphism and compute explicitly that the E_2-page is
\[
\text{Ext}_{E(Q_i), \langle \mathbb{F}_p, E(\lambda_1, \ldots, \lambda_{n+1}) \rangle}^* (\langle \mathbb{F}_p, E(\lambda_1, \ldots, \lambda_{n+1}) \rangle \otimes P(\mu_{n+1})) = P(v_i) \otimes E(\lambda_1, \ldots, \lambda_{n+1}) \otimes P(\mu_{n+1}).
\]
using the coactions discussed previously on λ_i and μ_{n+1}. Consequently, when $i > 0$ there are no non-trivial d_1 differentials. Altogether, this proves the following corollary.

Corollary 3.6. The v_i-Bockstein spectral sequence computing $\text{THH}_*(B\langle n \rangle; k(i))$ in the case $i \geq 1$ and $\pi_* \text{THH}(B\langle n \rangle; H\mathbb{Z}(p))_p$ in the case $i = 0$ is multiplicative from the E_1-page onwards.

3.2. Rational topological Hochschild homology

We use the HQ-based Bökstedt spectral sequence to compute
\[
\pi_*(L_0 \text{THH}(B\langle n \rangle)) = HQ_* \text{THH}(B\langle n \rangle) = \pi_* \text{THH}(B\langle n \rangle) \otimes \mathbb{Q}
\]
for $0 \leq n \leq \infty$ where $B\langle \infty \rangle = BP$ and $L_0 = L_{H\mathbb{Q}}$ is the Bousfield localization at HQ. Since BP and $B\langle n \rangle$ are E_2 ring spectra, the HQ-based Bökstedt spectral sequences are strongly convergent multiplicative spectral sequence with signature
\[
E^2_{**} = \text{HH}_{**}^Q(H\mathbb{Q}, B\langle n \rangle) \Rightarrow HQ_* \text{THH}(B\langle n \rangle)
\]
for $0 \leq n \leq \infty$. Recall that the rational homology of $B\langle n \rangle$ is
\[
HQ_* B\langle n \rangle \cong P_Q(v_1, \ldots, v_n)
\]
with $|v_i| = 2p^i - 2$ for $1 \leq i \leq n \leq \infty$. Thus, the E^2-term of the Bökstedt spectral sequence is
\[
E^2_{**, *'} = P_Q(v_1, \ldots, v_n) \otimes Q E_Q(\sigma v_1, \ldots, \sigma v_n)
\]
where the bidegree of σv_i is $(1, 2(p^i - 1))$ for $1 \leq i \leq n \leq \infty$. Since the E^2-page is generated as a Q-algebra by classes in Bökstedt filtration degree 0 and 1, the first quadrant spectral sequence collapses at the E^2-page and $E^2_{**, *'} = E^\infty_{**, *'}$. There are no multiplicative extensions, because the E^∞-pages are free graded-commutative Q-algebras. Therefore, we produce isomorphisms of graded Q-algebras
\[
\text{THH}_*(B\langle n \rangle) \otimes Q \cong P_Q(v_1, \ldots, v_n) \otimes Q E_Q(\sigma v_1, \ldots, \sigma v_n)
\]
with $|\sigma v_i| = 2p^i - 1$ for $1 \leq i \leq n \leq \infty$. It follows that there is an equivalence
\[
L_0 \text{THH}(B\langle n \rangle) \simeq \bigvee_{x \in B_n} \Sigma^{|x|} L_0 B\langle n \rangle,
\]
where B_n is a graded basis for $E_Q(\sigma v_1, \ldots, \sigma v_n)$ as a graded Q-vector space, since L_0 is a smashing localization. We may also let $n = \infty$ and in this case $B\langle \infty \rangle = BP$ and B_∞ is a graded basis for $E_Q(\sigma v_1, \sigma v_2, \ldots)$ as a graded Q-vector space.
By Proposition 2.3, the linearization map $BP(n) \to HZ(p)$ is an E_3 ring spectrum map. Since the localization map $HZ(p) \to HQ$ is an E_∞ ring spectrum map, we may infer that the Bökstedt spectral sequence

$$E^2_{**} = \text{HH}_{**}^Q(HQ_*B\langle n \rangle; HQ) \implies \text{THH}(B\langle n \rangle; HQ)$$

is a spectral sequence of Q-algebras by adapting the proof of [5, Proposition 4.3] using [12, §3.3]. This spectral sequence collapses without extensions by the same argument as before. All of these computations are functorial with respect to the map of E_2-ring spectra $BP \to B\langle n \rangle$ from Proposition 2.3. This proves the following result.

Proposition 3.7. There is an isomorphism of graded Q-algebras

$$(3.8) \quad \text{THH}_*(B\langle n \rangle; HQ) \cong E_\infty^*(\sigma v_1, \ldots, \sigma v_n)$$

for all $0 \leq n \leq \infty$. The map

$$\text{THH}_*(BP; HQ) \to \text{THH}_*(B\langle n \rangle; HQ)$$

sends σv_i to σv_i for $0 \leq i \leq n$.

3.3. The v_0-Bockstein spectral sequence.

In this section, we compute the v_0-Bockstein spectral sequence with signature

$$(3.9) \quad E_1^{i,*} = \text{THH}_*(B\langle n \rangle; HF_p)[v_0] \implies \text{THH}_*(B\langle n \rangle; HZ(p))_p$$

where $B\langle n \rangle$ is an E_3 form of $BP\langle n \rangle$. At odd primes, we must assume that a certain error term (3.12) vanishes. This error term vanishes for any E_4 form of $BP\langle n \rangle$ at odd primes, for example taf^D.

Lemma 3.10. There is a differential

$$d_1(\mu_{n+1}) = v_0 \lambda_{n+1}$$

in the v_0-Bockstein spectral sequence (3.9) and the d_1 differential satisfies the Leibniz rule.

Proof. We just give the argument for $p \geq 3$ to simplify the discussion since the argument for $p = 2$ is the same up to a change of symbols. Recall that the classes μ_{n+1} and λ_{n+1} in $\text{THH}_*(B\langle n \rangle; HF_p)$ correspond to the comodule primitives $\sigma \tau_{n+1} - \tau_0 \sigma \xi_{n+1}$ and $\sigma \xi_{n+1}$ in $H_*(\text{THH}(B\langle n \rangle; HF_p))$. We therefore have to show that $\sigma \tau_{n+1} - \tau_0 \sigma \xi_{n+1}$ maps to $\sigma \xi_{n+1}$ under the map β_1 that is given by applying $H_*(-)$ to

$$\Sigma^{-1} \text{THH}(B\langle n \rangle; HF_p) \to \text{THH}(B\langle n \rangle; HZ(p)) \to \text{THH}(B\langle n \rangle; HF_p).$$

As above, one sees that

$$H_*(\text{THH}(B\langle n \rangle; HZ(p))) \cong H_*(HZ(p)) \otimes E(\sigma \xi_1, \ldots, \sigma \xi_{n+1}) \otimes P(\sigma \tau_{n+1}).$$

The map

$$H_*(\text{THH}(B\langle n \rangle; HZ(p))) \to H_*(\text{THH}(B\langle n \rangle; HF_p))$$

is induced by the inclusion $H_*(HZ(p)) \to H_*(HF_p)$. Since the elements $\sigma \xi_{n+1}$ and $\sigma \tau_{n+1}$ are in the image of this map, they map to zero under β_1. Since τ_0 is not in the image, it maps to 1 under β_1 (up to a unit). Since β_1 is a derivation, we get
Finally, we observe that the d_1-differential satisfies the Leibniz rule because the Hurewicz map is a ring map and the Bockstein operator β_1 is a derivation. \hfill \ensuremath{\square}

To compute the differentials d_r for $r > 1$ we use [30, Proposition 6.8].

Lemma 3.11 (Proposition 6.8 [30]). If $d_{r-1}(x) \neq 0$ in the v_0-Bockstein spectral sequence (3.9) and $|x| = 2q$, then

$$d_r(x^p) = v_0 x^{p-1} d_{r-1}(x)$$

if $r > 2$. If $r = 2$ and $p = 2$, then

$$d_r(x^p) = v_0 x^{p-1} d_{r-1}(x) + Q^{|x|}(d_1(x)).$$

If $r = 2$ and $p > 2$, then

$$d_r(x^p) = v_0 x^{p-1} d_{r-1}(x) + E$$

where

$$E = \sum_{j=1}^{(p-1)/2} [d_1(x) x^{j-1}, d_1(x) x^{p-j-1}]_1$$

(3.12)

and $[\cdot, \cdot]_1$ denotes the Browder bracket.

Remark 3.13. The result above also appears in [14] in the context of the Adams spectral sequence for an H_∞ ring spectrum (cf. [13, Chapter VI Theorem 1.1,1.2]).

We note that in order to apply [30, Proposition 6.8], we need the \cup_1-product on $\text{THH}(B\langle n \rangle; H\mathbb{Z}(p))$ to satisfy the Hirsch formula, which states that $-\cup_1 c$ is a derivation. We observe that the \cup_1-product is a chain homotopy from $x \cdot y$ to $y \text{cof} x$, which corresponds to a braiding in a braided monoidal category. From this perspective, the Hirsch formula corresponds to the first Hexagon axiom in the definition of a braided monoidal category [23, §1 B1]. It is well documented that there is an E_2-operad in small categories with the property that algebras over this operad are braided monoidal categories [18]. The n-th category in this operad is the translation groupoid $Br_n \int \Sigma_n$ of the action of the pure Artin braid group Br_n on Σ_n via the canonical inclusion $Br_n \rightarrow \Sigma_n$. We consider the corresponding operad B_2 in $H\mathbb{Z}$-modules by applying the nerve of the category $Br_n \int \Sigma_n$ and then applying the functor $H\mathbb{Z}(p) \wedge -$. In other words, the n-th chain complex in the operad in chain complexes is $B_2(n) = H\mathbb{Z}(p) \wedge N(Br_n \int \Sigma_n)_+$. The fact that $\text{THH}(B\langle n \rangle; H\mathbb{Z}(p))$ satisfies the Hirsch formula now follows from two facts:

1. algebras over the operad B_2 in chain complexes satisfy the Hirsch formula (cf. [18, Theorem 1.6]), and
2. using [29, Construction 9.6], we replace the E_2-$H\mathbb{Z}(p)$-algebra $\text{THH}(B\langle n \rangle; \mathbb{Z}(p))$ with an B_2 algebra without changing the underlying spectrum.

Note that the Bockstein operator β_1 is defined for any $H\mathbb{Z}$-algebra R and it is a derivation at this level of generality by [11,38].
We therefore tacitly replace our E_2 ring spectrum $\text{THH}(B\langle n \rangle; H\mathbb{Z}(p))$ in $H\mathbb{Z}(p)$-modules with an algebra over the operad \mathcal{B}_2 throughout the remainder of the section. The authors thank T. Lawson for suggesting this argument.

We can consequently prove the following differential pattern.

Corollary 3.14. In the spectral sequence (3.9), there are differentials

\[
d_{r+1}(\mu^p_{n+1}) = v_0^{r+1} \mu^p_{n+1}^{-1} \lambda_{n+1}
\]

when $p = 2$ under the assumption that $B\langle n \rangle$ is an E_3 form. Consequently, there are differentials

\[
d_{\nu_p(k)+1}(\mu^k_{n+1}) = v_0^{\nu_p(k)+1} \mu^k_{n+1}^{-1} \lambda_{n+1}
\]

where $\nu_p(k)$ denotes the p-adic valuation of k. The same formulas hold for $p \geq 3$ when the error term (3.12) vanishes, for example when $B\langle n \rangle$ is an E_4 form of $BP\langle n \rangle$.

Proof. There is a differential

\[
d_1(\mu_{n+1}) = v_0 \lambda_{n+1}
\]

by Lemma 3.10 for any prime p. We will argue that this differential implies the differentials (3.15) for $r \geq 1$ by applying Lemma 3.11 and observing that the obstructions vanish.

When $r = 1$ and $p > 2$ the the formula (3.15) holds whenever the error term (3.12) vanishes by Lemma 3.11. The Browder bracket $[-, -]_1$ vanishes by [30, Proposition 6.3 (iii)] when $B\langle n \rangle$ is an E_3 form of $BP\langle n \rangle$ since in that case $\text{THH}(B\langle n \rangle; H\mathbb{Z}(p))$ is an E_3 ring spectrum. This completes the base step in the induction for $p > 2$.

In the case $p = 2$ and $r = 1$, Lemma 3.10 implies that the error term for $d_2(\mu^2_{n+1})$ is $Q^{2n+2} \lambda_{n+1}$. At $p = 2$, we have that

\[
Q^{2n+2} \lambda_{n+1} = Q^{2n+2}(\sigma^2_{n+1}) = \sigma(Q^{2n+2}(\bar{c}^2_{n+1})) = \sigma((Q^{2n+1} \bar{c}_{n+1}))(2) = \sigma(\bar{c}^2_{n+2}) = 0
\]

as we now explain. First, the operation Q^{2n+2} is defined on λ_{n+1} because $2^{n+2} = |\lambda_{n+1}| + 1$ and $B\langle n \rangle$ is an E_3 form of $BP\langle n \rangle$ by assumption. The first equality in (3.16) holds by definition of λ_3, the second equality holds because σ commutes with Dyer–Lashof operations by [5, Proposition 5.9], the third equality holds by [13, Chapter III Theorem 2.2], and the last equality holds because σ is a derivation in mod p homology, by [5, Proposition 5.10]. This completes the base step in the induction at $p = 2$.

Now let $\alpha = \nu_p(k)$ and let p be any prime. We have that $k = p^j\alpha$ where p does not divide j. So by the Leibniz rule

\[
d_{\alpha+1}(\mu^k_{n+1}) = d_{\alpha+1}(\mu^p_{n+1}) \mu^p_{n+1} = j v_0^{\alpha}(\mu^p_{n+1}) \mu^p_{n+1} = j v_0^{\alpha+1} \mu^p_{n+1}(\mu^p_{n+1}) = j v_0^{\alpha+1} \mu^p_{n+1} \lambda_{n+1} = v_0^{\alpha+1} \mu^p_{n+1} \lambda_{n+1}
\]

since j is not divisible by p and therefore is a unit in F_p. □
We now argue that the classes \(\lambda_i \) for \(1 \leq i \leq n \) are non-p-torsion in \(\text{THH}(B\langle n \rangle; \mathbb{H}(\mathbb{Z}))[p] \).

Recall from Proposition 3.7 that there is an isomorphism

\[
\text{THH}^*(B\langle n \rangle; \mathbb{H}(\mathbb{Z})) \cong E_\mathbb{Q}(\sigma v_1, \ldots, \sigma v_n).
\]

We claim that the map

\[
\text{THH}^*(B\langle n \rangle; \mathbb{H}(\mathbb{Z})) \rightarrow \text{THH}^*(B\langle n \rangle; \mathbb{H}(\mathbb{Q}))
\]

sends \(\lambda_i \) to \(p^{-1}\sigma v_i \) for \(1 \leq i \leq n \). To see this, we note that there is a map of \(E_2 \) ring spectra \(BP \rightarrow B\langle n \rangle \) by Proposition 2.3 and this produces a commutative diagram

\[
\begin{array}{ccc}
\text{THH}(BP) & \longrightarrow & \text{THH}(BP; \mathbb{H}(\mathbb{Q})) \\
\downarrow & & \downarrow \\
\text{THH}(B\langle n \rangle; \mathbb{H}(\mathbb{Z})) & \longrightarrow & \text{THH}(B\langle n \rangle; \mathbb{H}(\mathbb{Q}))
\end{array}
\]

of \(E_1 \) ring spectra by [12]. By Proposition 3.7, we know \(\sigma v_i \) maps to \(\sigma v_i \) for \(1 \leq i \leq n \) under the left vertical map. By [36, Theorem 1.1], we know that \(\sigma v_i \equiv p^\lambda i \mod (v_i : i \geq 1) \) up to a unit for some classes \(\lambda_i = \sigma t_i \). Note that the choice of generators \(v_i \) in [36, Theorem 1.1] differ from ours, but they are the same up to a unit and modulo decomposables. Therefore there isn’t a difference up to a unit modulo \((v_i : i \geq 1) \) after applying the derivation \(\sigma \). There is an isomorphism

\[
\text{THH}^*(BP) \cong E_\mathbb{Q}(\lambda_k : k \geq 1).
\]

and we know that \(\lambda_i \) maps to \(\lambda_i \) under the map

\[
\text{THH}^*(BP) \rightarrow \text{THH}^*(B\langle n \rangle; \mathbb{Z}(p))
\]

for \(1 \leq i \leq n \) by Zahler [40] and this does not depend on our choice of \(E_3 \) form of \(BP\langle n \rangle \). Therefore, the elements \(\lambda_1, \ldots, \lambda_n \) are non-p-torsion and there are no further differentials in the \(v_0 \)-Bockstein spectral sequence (3.9). We define

\[
\lambda_s := \begin{cases}
\lambda_s & \text{if } 1 \leq s \leq n + 1 \\
\lambda_{s-1} \mu_{n+1} & \text{if } s > n + 1
\end{cases}
\]

(3.17)

Note that \(\text{THH}^*(B\langle n \rangle; \mathbb{Z}(p)) \) is finite type so we can compute \(\text{THH}^*(B\langle n \rangle; \mathbb{Z}(p)) \) from \(\text{THH}^*(B\langle n \rangle; \mathbb{Q}) \) and \(\text{THH}^*(B\langle n \rangle; \mathbb{Q}_p) \) using the arithmetic fracture square

\[
\begin{array}{ccc}
\text{THH}^*(B\langle n \rangle; \mathbb{Z}(p)) & \longrightarrow & \prod_p \text{THH}^*(B\langle n \rangle; \mathbb{Z}_p) \\
\downarrow & & \downarrow \\
\text{THH}^*(B\langle n \rangle; \mathbb{Q}) & \longrightarrow & \prod_p \text{THH}^*(B\langle n \rangle; \mathbb{Q}_p).
\end{array}
\]

This proves the following theorem.
Theorem 3.18. Let $B(n)$ be an arbitrary E_3 form of $BP(n)$ and at $p > 2$ assume the error term (3.12) vanishes. Then there is an isomorphism of graded $\mathbb{Z}(p)$-modules

$$\text{THH}_*(B(n); H\mathbb{Z}(p)) \cong E_{\mathbb{Z}(p)}(\lambda_1, \ldots, \lambda_n) \otimes (\mathbb{Z}(p) \oplus T^n_0)$$

where T^n_0 is atorsion $\mathbb{Z}(p)$-module defined by

$$T^n_0 = \bigoplus_{s \geq 1} \mathbb{Z}/p^s \otimes P_{\mathbb{Z}(p)}(\mu_{n+1}^{p^s-1}) \otimes \mathbb{Z}(p) \{\lambda_{n+s}\mu_{n+1}^{p^s-1} : 0 \leq j \leq p-2\}$$

4. Topological Hochschild homology mod (p, v_2)

In this section, we compute topological Hochschild homology of $B(2)$ with coefficients in $k(1)$. First we compute topological Hochschild homology with coefficients in $K(1)$.

4.1. $K(1)$-local topological Hochschild homology. In this section we assume that $p \geq 3$ and we write $B(2)$ for an E_3 form of $BP(2)$. Write $k(1) = B(2)/(p, v_2)$ for the $E_1 B(2)$-algebra constructed as in Proposition 2.3 and let $K(1) = k(1)[v_1^{-1}].$ In order to determine the topological Hochschild homology of $B(2)$ with coefficients in $k(1)$, we first determine

$$\text{THH}(B(2); K(1)) = \text{THH}(B(2); K(1)).$$

To compute the multiplicative Bökstedt spectral sequence

$$E_{*,*}^2 = HH_{*,*}^K(k(1), B(2)) \Rightarrow K(1), \text{THH}(B(2))$$

we first need to compute $K(1)_* B(2)$. To compute $K(1)_* B(2)$ we first relate it to $BP_* BP$. Recall that we have

$$BP_* BP = BP_* [t_1, t_2, \ldots]$$

with $|t_i| = 2p^i - 2$. By [34, Theorem A2.2.6] the right unit η_R is determined by

$$\sum_{i,j \geq 0}^F t_i \eta_R(v_j) p^i = \sum_{i,j \geq 0}^F v_i t_j p^i,$$

where $t_0 = 1$ and $v_0 = p$.

Lemma 4.2. The composite map

$$K(1)_* \otimes_{BP_*} BP_* BP \otimes_{BP_*} B(2)_* \rightarrow \pi_*(K(1) \wedge_{BP_*} (BP \wedge BP) \wedge_{BP_*} B(2)) \cong K(1)_* B(2)$$

is an isomorphism.

Proof. Consider the commutative diagram

$$
\begin{array}{c}
\pi_*(K(1) \wedge B(2)) \\
\cong \\
\pi_*(K(1) \wedge_{BP_*} (BP \wedge BP) \wedge_{BP_*} B(2)) \\
\cong \\
K(1)_* \otimes_{BP_*} BP_* BP \otimes_{BP_*} B(2)_*
\end{array}
\Rightarrow
\begin{array}{c}
\pi_*(K(1) \wedge B(2)[v_1^{-1}]) \\
\cong \\
\pi_*(K(1) \wedge_{BP_*} (BP \wedge BP) \wedge_{BP_*} B(2)[v_1^{-1}]) \\
\cong \\
\pi_*(K(1)) \otimes_{BP_*} BP_* BP \otimes_{BP_*} B(2)_*[v_1^{-1}].
\end{array}
$$
Since $B(2)[v_1^{-1}]$ is Landweber exact, the right-hand vertical map is an isomorphism. In (4.1) the F-summands in degree $\leq 2p - 2$ are $\eta_R(v_0)$, $t_1\eta_R(v_0)^p$, $\eta_R(v_1)$, v_0, v_1 and $v_0 t_1$. Thus, we have $\eta_R(v_1) = v_1$ in $K(1)_* \otimes_{BP_*} BP_* BP = K(1)_*[t_i \mid i \geq 1]$, because we have $p = 0$ in this ring. We get that in $K(1)_* \otimes_{BP_*} BP_* BP \otimes_{BP_*} B(2)_*$

$$v_1 \otimes 1 \otimes 1 = 1 \otimes v_1 \otimes 1 = 1 \otimes \eta_R(v_1) \otimes 1 = 1 \otimes 1 \otimes v_1$$

holds. This implies that the upper and lower horizontal map in the diagram are isomorphisms. It follows that the left vertical map is an isomorphism too. \hfill \qed

Notation. Let $f_i(v_1, v_2) \in B(2)_* = \mathbb{Z}_{(p)}[v_1, v_2]$ be the image of v_i under $BP_* \to B(2)_*$. Define

$$v'_i := v_i - f_i(v_1, v_2) \in BP_*.$$

Then, v'_i is in the kernel of $BP_* \to B(2)_*$ and $BP_* = \mathbb{Z}_{(p)}[v_1, v_2, v'_3, \ldots]$. By Lemma 4.2 we get

$$K(1)_* B(2) = (K(1)_* \otimes_{BP_*} BP_*[t_1, \ldots]) \otimes_{\mathbb{Z}_{(p)}[v_1, v_2, v'_3, \ldots]} \mathbb{Z}_{(p)}[v_1, v_2] = K(1)_*[t_i \mid i \geq 1]/(\eta_R(v'_i), \ldots).$$

Lemma 4.4. For $i \geq 0$ the element $\eta_R(v_{i+1}) \in K(1)_*[t_i \mid i \geq 1]$ actually lies in $K(1)_*[t_1, \ldots, t_i]$. In fact, we have

$$\eta_R(v_{i+1}) = v_{i+1} + v_1 t_i^p - v_1^p t_i + g_i$$

where $g_i \in K(1)_*[t_1, \ldots, t_{i-1}]$.

Proof. We will prove the claim in $k(1)_*[t_i \mid i \geq 1]$, from this the result will follow. The reason we do this is because we will want to make degree arguments, and hence will want to avoid negative gradings.

In $BP_*/BP(p)$, we have $\eta_R(v_1) = v_1$. It also follows from (4.1) that for $i \geq 0$

$$\eta_R(v_{i+1}) \equiv v_{i+1} + v_1 t_i^p - v_1^p t_i \mod (t_1, t_2, \ldots, t_{i-1})$$

in $BP_* BP(p)$. Thus, this congruence also holds in $k(1)_*[t_i \mid i \geq 1]$. Since $\eta_R(v_{i+1})$ lifts to $BP_* BP(p)$ we may make our degree arguments in $k(1)_*[t_i \mid i \geq 1]$. In the ring $k(1)_*[t_i \mid i \geq 1]$, we therefore have that

$$\eta_R(v_{i+1}) = v_{i+1} + v_1 t_i^p - v_1^p t_i + g_i$$

where g_i is a polynomial in the ideal generated by $t_1, t_2, \ldots, t_{i-1}$. Thus far we have not excluded the possibility that a monomial divisible by t_j with $j \geq i$ occurs as a summand of g_i. For $j > i + 1$, we can exclude this possibility for degree reasons. Indeed, $\eta_R(v_{i+1})$ is homogenous of degree $2(p^{j+1} - 1)$, and when $j > i + 1$ the element t_j has degree greater than $2(p^{j+1} - 1)$. Consider the case when $j = i + 1$. To exclude this case, suppose there exists a monomial m in $k(1)_*[t_1, \ldots, t_i]$ which is a summand of g_i and is divisible by t_{i+1}. Then as the degrees of t_{i+1} and $\eta_R(v_{i+1})$ are the same, it follows that $m = at_{i+1}$ for some $a \in \mathbb{F}_p$. If $a \neq 0$, then this contradicts the assumption that g_i is in the ideal (t_1, \ldots, t_{i-1}). This shows that $g_i \in k(1)_*[t_1, \ldots, t_i]$.
We now exclude the possibility that a monomial divisible by t_i occurs as a summand of g_i. Note that the summands $t_k \eta_R(v_j)p^k$ and $v_k t_j^p$ in (4.1) both have degree $2(p^{j+1} - 1)$. Cross terms in (4.1) from those summands with degree less than or equal than $2(p^{j+1} - 1)$ could potentially produce a t_i divisible monomial as a summand of g_i. On the right-hand side of (4.1), the possible summands are those of the form $v_j t_i^p$. As this must have degree at most $2(p^{j+1} - 1)$, we must have $j = 0, 1$. These correspond, respectively, to $v_0 t_i = p t_i$ and $v_1 t_i^p$. But $p = 0$ in $k(1)_*$, so the only one to consider is $v_1 t_i^p$. This has degree exactly $2(p^{j+1} - 1)$, and so a monomial divisible by this element does not occur in g_i. In fact, it has already been accounted for.

For the left-hand side, we similarly find that the only summand which could potentially produce a t_i divisible monomial as a summand of $\eta_R(v_{i+1})$ is

$$ t_i \eta_R(v_1)p^i = t_i v_1^p. $$

As this has exactly degree $2(p^{i+1} - 1)$, it does not occur in g_i because it cannot be written as an element in the ideal (t_1, \ldots, t_{i-1}) for degree reasons. In fact, this element has already been accounted for. Thus there are no t_i divisible monomials appearing as summands of g_i. Consequently, we have shown that $g_i \in k(1)_*[t_1, \ldots, t_{i-1}]$ as desired. \hfill \qed

Recall from the proof of Proposition 2.3 that we have

$$ v'_i = v_i - f_i(v_1, v_2) $$

for some $f_i \in \mathbb{Z}(p)[x, y]$. In light of the previous lemma, we conclude that the class

$$ \eta_R(v'_i) = \eta_R(v_i) - f_i(\eta_R(v_1), \eta_R(v_2)) \in K(1)_*[t_i \mid i \geq 1] $$

also lies in $K(1)_*[t_1, \ldots, t_{i-1}]$ for each $i \geq 3$.

Lemma 4.5. The maps of commutative $K(1)_*$-algebras

$$ K(1)_*[t_1, \ldots, t_{i-1}]/(\eta_R(v'_i), \ldots, \eta_R(v_i)) \to K(1)_*[t_1, \ldots, t_i]/(\eta_R(v'_3), \ldots, \eta_R(v'_i)) $$

induced by precomposing the canonical quotient map with the canonical inclusion map are étale for $i \geq 2$.

Proof. For ease of notation, set

$$ A_i := K(1)_*[t_1, \ldots, t_{i-1}]/(\eta_R(v'_3), \ldots, \eta_R(v'_i)) $$

for $i \geq 2$. Note that Lemma 4.4 allows us to make this definition. Note also that the $A_{i+1} = A_i[t_i]/(\eta_R(v'_{i+1}))$. We wish to show that the map

$$ A_i \to A_{i+1} $$

is an étale morphism. To do this, it is enough to show that the partial derivative of $\eta_R(v'_{i+1})$ with respect to t_i is a unit in A_i. Write ∂_i for the partial derivative with respect to t_i. Since

$$ v'_{i+1} = v_{i+1} - f_{i+1}(v_1, v_2) $$

for some $f_{i+1} \in \mathbb{Z}(p)[x, y]$, we can infer that

$$ \eta_R(v'_{i+1}) = \eta_R(v_{i+1}) - f_{i+1}(\eta_R(v_1), \eta_R(v_2)). $$
In $K(1)_{*}[t_1, t_2, \ldots]$, we know $\eta_R(v_1) = v_1$ since $p = 0$ in $K(1)_{*}$, and we have
$$\eta_R(v_2) = v_1 t_1^p - v_1^p t_1.$$ Thus,
$$\partial_i \eta_R(v_{i+1}) = \partial_i \eta_R(v_{i+1}),$$
for $i \geq 2$ and it suffices to show that $\partial_i \eta_R(v_{i+1})$ is a unit in A_i.

By Lemma 4.4, we have the formula
$$\eta_R(v_{i+1}) = v_{i+1} + v_1 t_1^p - v_1^p t_1 + g_i$$
where $g_i \in K(1)_{*}[t_1, \ldots, t_{i-1}]$. Thus, we conclude that
$$\partial_i \eta_R(v_{i+1}) = -v_1^p \in K(1)_{*}[t_1, \ldots, t_{i-1}].$$ Since v_1^p is a unit in $K(1)_{*}$, this shows that $\partial_i \eta_R(v_{i+1})$ is a unit in A_i. \qed

We continue to use the notation from the proof of the previous lemma. Since each map $A_i \to A_{i+1}$ is étale, we may apply [39, Theorem 0.1] to conclude that
$$\text{HH}^{K(1)_{*}}_{*}(K(1)_{*} B(2)) = \text{colim} \text{HH}^{K(1)_{*}}_{*}(A_i)$$
$$= \text{colim} \text{HH}^{K(1)_{*}}_{*}(A_2) \otimes_{A_2} A_i$$
$$= \text{HH}^{K(1)_{*}}_{*}(A_2) \otimes_{A_2} K(1)_{*} B(2)$$
$$= E(\sigma t_1) \otimes K(1)_{*} B(2).$$ Since this is concentrated in Bökstedt filtration 0 and 1, the Bökstedt spectral sequence collapses yielding
$$E(\sigma t_1) \otimes K(1)_{*} B(2) \cong K(1)_{*} \text{THH}(B(2)).$$

In the Hopf algebroid $(BP_{*}, BP_{*} BP)$, we have the formula
$$\sum_{i \geq 0} F \Delta(t_i) = \sum_{i, j \geq 0} t_i \otimes t_j^p$$
by [34, Theorem A2.1.27]. Since the $BP_{*} BP$-coaction on t_i agrees with the coproduct, it is determined by the formula
$$\Delta(t_1) = 1 \otimes t_1 + t_1 \otimes 1.$$ Note that $(K(1)_{*}, K(1)_{*} K(1))$ is a flat Hopf algebroid and $K(1)_{*} X$ is a left $K(1)_{*} K(1)$-comodule for every spectrum X. By naturality, we observe that $t_1 \in K(1)_{*} B(2)$ has the $K(1)_{*} K(1)$-coaction $1 \otimes t_1 + t_1 \otimes 1$. Let
$$\sigma: K(1)_{*} B(2) \to K(1)_{*}^{*+1} \text{THH}(B(2))$$
be the usual σ operator analogous to the one defined in [31]. By [5, Proposition 5.10], which also applies to our setting because the Hopf element $\eta = 0 \in K(1)_{*}$, the operator σ is a derivation. It is also clear that σ is compatible with the $K(1)_{*} K(1)$-comodule action in the sense that
$$\psi(\sigma x) = (1 \otimes \sigma)(\psi(x))$$
where
$$\psi: K(1)_{*} \text{THH}(B(2)) \to K(1)_{*} K(1) \otimes K(1)_{*} \text{THH}(B(2)).$$
It follows that $\sigma t_1 \in K_1 \ast THH(B\langle 2 \rangle)$ is a comodule primitive. Since there is a weak equivalence $THH(B\langle 2 \rangle, K(1)) \simeq K(1) \wedge_{B\langle 2 \rangle} THH(B\langle 2 \rangle)$ by [20, Remark 6.1.4], we may infer from the Künneth isomorphism that there is an isomorphism of K_1-modules

$$K(1) \ast THH(B\langle 2 \rangle; K(1)) \cong K(1) \ast k(1) \otimes E(\sigma t_1),$$

where σt_1 is a comodule primitive. Since $THH(B\langle 2 \rangle; K(1))$ is a $K(1)$-module spectrum and $K(1)$ is a graded field, we have that it splits as a sum of suspensions of $K(1)$ and that its homotopy is isomorphic to the comodule primitives in $K_1 \ast THH(B\langle 2 \rangle; K(1))$. Thus, there is an isomorphism of K_1-modules

$$THH_*(B\langle 2 \rangle; K(1)) = K_1 \ast E(\sigma t_1).$$

Since σt_1 lifts to a class in $\tilde{\lambda}_1 \in THH_*(B\langle 2 \rangle; k(1))$ which projects onto λ_1 via the map $THH_*(B\langle 2 \rangle; k(1)) \to THH_*(B\langle 2 \rangle; HF_p)$ induced by the linearization map $k(1) \to HF_p$ by [40], we simply rename this class λ_1.

In summary, we have proven the following theorem.

Theorem 4.6. For $B\langle 2 \rangle$ an E_3 form of $BP\langle 2 \rangle$ and $p \geq 3$, the following hold:

1. There is a weak equivalence

$$K(1) \vee \Sigma^{2p-1}K(1) \simeq THH(B\langle 2 \rangle; K(1)).$$

2. The $P(v_1)$-module $THH_*(B\langle 2 \rangle; k(1))$, modulo v_1-torsion, is freely generated by 1 and λ_1.

4.2. The v_1-Bockstein spectral sequence. We compute $THH_*(B\langle 2 \rangle; k(1))$ using the spectral sequence (3.2) for $n = 2$ and $i = 1$. For $s \geq 4$, we recursively define

$$\lambda_s := \lambda_{s-2}p^{s-4(p-1)}.$$

For $s \geq 1$, we define

$$r(s, 1) := \begin{cases} p^{s+1} + p^{s-1} + \cdots + p^2 & s \equiv 1 \text{ mod } 2 \\ p^{s+1} + p^{s-1} + \cdots + p^3 & s \equiv 0 \text{ mod } 2. \end{cases}$$

Theorem 4.7. Let $B\langle 2 \rangle$ be an E_3 form of $BP\langle 2 \rangle$ and let $p \geq 3$. There is an isomorphism of $P(v_1)$-modules

$$THH_*(B\langle 2 \rangle; k(1)) \cong E(\lambda_1) \otimes (P(v_1) \otimes T_1^2),$$

where

$$T_1^2 = \bigoplus_{s \geq 1} P_{r(s, 1)}(v_1) \otimes E(\lambda_{s+2}) \otimes P(\mu_3^{p^s}) \otimes \mathbb{F}_p\{\lambda_{s+1}\mu_3^{jp^{s-1}} : 0 \leq j \leq p-2\}. \tag{4.8}$$

Proof. We prove by induction on $s \geq 1$ that

$$E_{r(s, 1)}^{s,s} = E(\lambda_1) \otimes (P(v_1) \otimes E(\lambda_{s+1}, \lambda_{s+2}) \otimes P(\mu_3^{p^s}) \oplus M_s)$$

with

$$M_s = \bigoplus_{t=1}^{s-1} P_{r(t, 1)}(v_1) \otimes E(\lambda_{t+2}) \otimes P(\mu_3^{p^t}) \otimes \mathbb{F}_p\{\lambda_{t+1}\mu_3^{jp^{t-1}} : 0 \leq j \leq p-2\},$$
that we have a differential $d_{r(s,1)}(\mu_3^{p^{s-1}}) \simeq v_1^{r(s,1)}\lambda_{s+1}$, and that the classes λ_{s+1} and λ_{s+2} are infinite cycles. This implies the statement.

By Theorem 4.6, the elements v_1^s are permanent cycles for every s, so the classes λ_2 and λ_3 cannot support differentials and thus are infinite cycles. Note that we use $p \geq 3$ here; for $p = 2$ we would have a possible differential $d_2(\lambda_3) = v_1^2\lambda_1\lambda_2$. Since the classes $v_1^s\lambda_1$ survive by Theorem 4.6, the only possible differential on μ_3 is

$$d_{p^2}(\mu_3) \simeq v_1^{p^2}\lambda_2$$

for bidegree reasons. This differential must exist because otherwise the spectral sequence would collapse at the E_2-page by multiplicativity which would contradict Theorem 4.6. This proves the base step $s = 1$ of the induction. Now, assume that the statement holds for some $s \geq 1$. We then get

$$E_{r(s,1)+1}^{s,s} = E(\lambda_1) \otimes (P(v_1) \otimes E(\lambda_{s+2}, \lambda_{s+1}\mu_3^{p^{s-1}(p-1)}) \otimes P(\mu_3^{s+1}) \oplus M_{s+1},$$

and it suffices to show that $\lambda_{s+3} = \lambda_{s+1}\mu_3^{p^{s-1}(p-1)}$ is an infinite cycle and that

$$d_{r(s+1,1)}(\mu_3^{p^s}) \simeq v_1^{r(s+1,1)}\lambda_{s+2}.$$

Note that the class λ_{s+2} is an infinite cycle by the induction hypothesis. The class λ_{s+3} is an infinite cycle for bidegree reasons and because the classes v_1^s are permanent cycles. Note that we use $p \geq 3$ here; for $p = 2$ and s even we would have a possible differential $d_{r(s,1)+p}(\lambda_{s+3}) \simeq v_1^{r(s,1)+p}\lambda_1\lambda_{s+2}$. The class $\mu_3^{p^s}$ must support a differential because otherwise the spectral sequence would collapse at this stage which would contradict Theorem 4.6. Since the classes $v_1^s\lambda_1$ are permanent cycles, we get

$$d_{r(s+1,1)}(\mu_3^{p^s}) \simeq v_1^{r(s+1,1)}\lambda_{s+2}$$

for bidegree reasons. Here note that $v_1^{r(s,1)}\lambda_{s+3}$ has the right topological degree, but the filtration degree is too low for it to be the target of a differential on $\mu_3^{p^s}$ at the E_ℓ-page for $\ell > r(s, 1)$. This completes the induction step. \(\square\)

5. Topological Hochschild homology mod (p, v_1)

In this section $B(2)$ is again an E_3 form of $BP(2)$, e.g. $\text{tmf}_1(3)$ at $p = 2$, taf^D at $p = 3$, or $BP(n)'$ at an arbitrary prime p. We let $k(2) := B(2)/(p, v_1)$ be the E_1-$B(2)$-algebra constructed in Proposition 2.3 and let $K(2) = k(2)[v_2^{-1}]$. The goal of this section is to compute the homotopy groups of $\text{THH}(B(2); K(2))$. In Subsection 5.1, we first show that the unit map

$$K(2) \longrightarrow \text{THH}_*(B(2); K(2))$$

is an equivalence. This implies that in the abutment of the v_2-Bockstein spectral sequence

$$\text{THH}_*(B(2); H\mathbb{F}_p)[v_2] \longrightarrow \text{THH}_*(B(2); k(2))$$

all classes are v_2-torsion besides the powers of v_2. This allows us to compute this spectral sequence in Subsection 5.2.
5.1. $K(2)$-local topological Hochschild homology. Considering a diagram analogous to (4.3), one sees that we have an isomorphism

$$K(2) \otimes_{BP_*} BP_*BP \otimes_{BP_*} B\langle 2 \rangle_* \longrightarrow \pi_*(K(2) \land B(2)).$$

For this, note that

$$\eta_R(v_1) = v_1 = 0 \in K(2) \otimes_{BP_*} BP_*BP = K(2)[t_i \mid i \geq 1]$$

and therefore

$$\eta_R(v_2) = v_2.$$ This implies that the equality

$$v_2 \otimes 1 \otimes 1 = 1 \otimes 1 \otimes v_2$$

holds in the tensor product

$$K(2) \otimes_{BP_*} BP_*BP \otimes_{BP_*} B\langle 2 \rangle_*.$$ From this, we determine that

$$K(2), B\langle 2 \rangle = K(2)[t_i \mid i \geq 1]/(\eta_R(v_i'), \ldots).$$

In particular, this is a graded commutative $K(2)_*$-algebra even at $p = 2$ where $K(2)$ is not homotopy commutative (cf. [5, Lemma 8.9]).

Lemma 5.1. In $K(2)_*[t_1 \mid i \geq 1]$ we have that

$$\eta_R(v_{i+2}) = v_{i+2} + v_2 t_i^p - v_2^{i'} t_i + g_i$$

where $g_i \in K(2)_*[t_1, \ldots, t_{i-1}]$.

Proof. We argue similarly to Lemma 4.4 and make our arguments in the ring $k(2)_*[t_i \mid i \geq 1]$. The result will follow from this. We have that

$$\eta_R(v_{i+2}) \equiv v_{i+2} + v_2 t_i^p - v_2^{i'} t_i \text{ mod } (t_1, t_2, \ldots, t_{i-1}),$$

in $BP_*BP/(p, v_1)$ (c.f. [34, Proof of Theorem 4.3.2]). Consequently, this formula also holds in $k(2)_*[t_i \mid i \geq 1]$. This shows that in $k(2)_*[t_i \mid i \geq 1]$ we have

$$\eta_R(v_{i+2}) = v_{i+2} + v_2 t_i^p - v_2^{i'} t_i + g_i$$

for some g_i in the ideal $(t_1, t_2, \ldots, t_{i-1})$. Since $\eta_R(v_{i+2})$ lifts to the graded abelian group $BP_*BP/(p, v_1)$, we may also make degree arguments in $k(2)_*[t_i \mid i \geq 1]$.

Note that for degree reasons, there can be no instance of a t_j with $j > i + 2$ dividing a monomial summand of g_i. We can also exclude the possibility of t_{i+2} dividing a monomial in g_i. Indeed, a monomial in g_i divisible by t_{i+2} would necessarily be just t_{i+2} itself, contradicting that g_i is in the ideal (t_1, \ldots, t_{i-1}). This shows that we have

$$\eta_R(v_{i+2}) \in k(2)_*[t_1, \ldots, t_{i+1}]$$

for all $i \geq 0$.

We now exclude the possibility that t_{i+1} divides a monomial in $\eta_R(v_{i+2})$. To do this, we note that a t_{i+1} divisible monomial in g_i could arise from cross terms involving the universal p-typical formal group law and the formula (4.1). Note that the only terms to consider on the right hand side are $v_0 t_{i+1}$ and $v_1 t_i^p$, which are 0 since $p = v_1 = 0 \in k(2)_*$. On the left hand side, we only need to consider the terms $t_k \eta_R(v_{i+2})^p$ of degree less than or equal to $2(p^{i+2} - 1)$. This immediately implies that $j \leq i$. For $k = i + 1$,?
the term of smallest degree is $t_{i+1} \eta_R(v_2)^{p^{i+1}}$. The degree of this term is $2(p^{i+3} - 1)$, which is too large. Thus we can exclude the possibility that $k = i + 1$. Now as $j \leq i$ and since we have shown that $\eta_R(v_{i+2}) \in k(2)_*[t_1, \ldots, t_{j+1}]$, we see that none of the relevant terms on the left hand side can contribute a t_{i+1} divisible monomial summand to $\eta_R(v_{i+2})$. Thus we have that $g_i \in K(2)_*[t_1, \ldots, t_i]$.

We are left to consider whether a t_i divisible monomial could occur as a summand of g_i via the cross terms coming from the formal group law F in (4.1). On the right hand side, we only need to consider the term $v_2 t_i^{p^2}$. Here we use the fact that $v_1 = 0 \in k(2)_*$. This term has already been accounted for and is not in g_i. On the left hand side, since we have shown that $\eta_R(v_{j+2}) \in k(2)_*[t_1, \ldots, t_j]$, the only term we need to consider is $t_i v_2^p$. Again, we have already considered this term. We can therefore conclude that $g_i \in k(2)_*[t_1, \ldots, t_{i-1}]$. □

Definition 5.2. We define commutative $K(2)_*$-algebras

$$C_i := \frac{K(2)_*}{C_{i-1}[t_i]/(\eta_R(v_{i+2})^{p^2})}, \quad i \geq 1$$

and write $h_i : C_{i-1} \to C_i$ for the map of commutative $K(2)_*$-algebras defined as the composite of the canonical inclusion map $C_{i-1} \to C_{i-1}[t_i]$ with the canonical quotient map $C_{i-1}[t_i] \to C_{i-1}[t_i]/(\eta_R(v_{i+2})^{p^2})$.

Thus we have

$$C_i = K(2)_*[t_1, \ldots, t_i]/(\eta_R(v_3^p), \ldots, \eta_R(v_{i+2}^p))$$

for $i \geq 1$ and

$$\frac{K(2)_*}{B(2)} = \lim_{\longrightarrow} C_i.$$

We proceed in the same fashion as in Section 4.1 and argue that $h_i : C_{i-1} \to C_i$ is étale by examining the derivative of $\eta_R(v_{i+2}^p)$ with respect to t_i.

Lemma 5.3. The map of commutative rings $h_i : C_{i-1} \to C_i$ from Definition 5.2 is étale.

Proof. We have that

$$v_{i+2}' = v_{i+2} - f_{i+2}(v_1, v_2) = v_{i+2} - f_{i+2}(0, v_2).$$

Hence we have that

$$\eta_R(v_{i+2}^p) = \eta_R(v_{i+2}) - \eta_R(f_{i+2}(0, v_2)).$$

Let ∂_i denote the partial derivative with respect to t_i. Since $C_i = C_{i-1}[t_i]/(\eta_R(v_{i+2}^p))$, to show the morphism $C_{i-1} \to C_i$ is étale, it is enough to show that $\partial_i \eta_R(v_{i+2}^p)$ is a unit. We have

$$\partial_i \eta_R(v_{i+2}^p) = \partial_i \eta_R(v_{i+2}) - \partial_i f_{i+2}(0, v_2) = \partial_i \eta_R(v_{i+2}).$$

From Lemma 5.1, we find that $\partial_i g_i = 0$, and hence

$$\partial_i \eta_R(v_{i+2}) = \partial_i \left(v_{i+2} + v_2 t_i^{p^2} - v_2^{p^2} t_i + g_i \right) = -v_2^{p^2}$$

which is a unit. This completes the proof. □
Since each map $C_i \to C_{i+1}$ is étale, we may apply [39, Theorem 0.1] to conclude that the unit map
\[
K(2)_* B\langle 2 \rangle \to \text{HH}^{K(2)_*}(K(2)_* B\langle 2 \rangle)
\]
is an isomorphism of graded commutative \mathbb{F}_p-algebras (even at $p = 2$). The unit map $K(2)_* B\langle 2 \rangle \to K(2)_* \text{THH}(B\langle 2 \rangle)$ is the edge homomorphism in the Bökstedt spectral sequence
\[
E^2_{s,*} = \text{HH}^{K(2)_*}(K(2)_* B\langle 2 \rangle) \Rightarrow K(2)_* \text{THH}(B\langle 2 \rangle)
\]
and the input is concentrated in Bökstedt filtration zero by (5.4), so the spectral sequence collapses without extensions yielding an isomorphism
\[
K(2)_* B\langle 2 \rangle \cong K(2)_* \text{THH}(B\langle 2 \rangle)
\]
of graded commutative \mathbb{F}_p-algebras (even at the prime $p = 2$).

By the Künneth isomorphism, the map
\[
K(2)_* K(2) \to K(2)_* \text{THH}(B\langle 2 \rangle, K(2))
\]
is an isomorphism as well. Since both $K(2)$ and $\text{THH}(B\langle 2 \rangle; K(2))$ are $K(2)$-local, we obtain the following result.

Corollary 5.5. The unit map
\[
\eta: K(2) \to \text{THH}(B\langle 2 \rangle; K(2))
\]
is an equivalence. Consequently, the $P(v_2)$-module $\text{THH}_*(B\langle 2 \rangle; k(2))$ modulo v_2-torsion is freely generated by 1.

5.2. The v_2-Bockstein spectral sequence.

Recall from Section 3.1 that the tower of spectra used to build the Bockstein spectral sequence (3.1) can be identified as an Adams tower and therefore the Bockstein spectral sequence is multiplicative.

For $s \geq 4$ recursively define
\[
\lambda_s := \lambda_{s-3} \mu_3^{p^{s-4}(p-1)}.
\]
For $s \geq 1$ set
\[
r(s, 2) = \begin{cases}
p^s + p^{s-3} + \cdots + p^4 + p & s \equiv 1 \text{ mod } 3 \\
p^s + p^{s-3} + \cdots + p^5 + p^2 & s \equiv 2 \text{ mod } 3 \\
p^s + p^{s-3} + \cdots + p^6 + p^3 & s \equiv 0 \text{ mod } 3.
\end{cases}
\]

Theorem 5.6. Let $B\langle 2 \rangle$ be an E_3 form of $BP\langle 2 \rangle$. There is an isomorphism of $P(v_2)$-modules
\[
\text{THH}_*(B\langle 2 \rangle; k(2)) \cong P(v_2) \oplus T^2_2,
\]
where
\[
T^2_2 \cong \bigoplus_{s \geq 1} P_{r(s,2)}(v_2) \otimes E(\lambda_{s+1}, \lambda_{s+2}) \otimes P(\mu_3^p) \otimes \mathbb{F}_p \{ \lambda_s \mu_3^{j\mu_3^{p-1}} : 0 \leq j \leq p - 2 \}.
\]
Proof. We prove by induction on $s \geq 1$ that

$$E^{*,*}_r = P(v_2) \otimes E(\lambda_s, \lambda_{s+1}, \lambda_{s+2}) \otimes P(\mu_3^{p^{s-1}}) \oplus M_s$$

with

$$M_s = \bigoplus_{t=1}^{s-1} P_{r(t,2)}(v_2) \otimes E(\lambda_{t+1}, \lambda_{t+2}) \otimes P(\mu_3^{p^t}) \otimes F_p \{\lambda_1 \mu_3^{p^{t-1}} : 0 \leq j \leq p-2\},$$

that λ_s, λ_{s+1} and λ_{s+2} are infinite cycles, and that $d_r(s,2)(\mu_3^{p^{s-1}}) = v_2^{r(s,2)} \lambda_s$. This implies the statement.

Since the v_s^2 survive to the E_∞-page by Corollary 5.5, the classes λ_1, λ_2 and λ_3 are infinite cycles. The class μ_3 needs to support a differential, because otherwise the spectral sequence would collapse at this stage, which is a contradiction to Corollary 5.5. For bidegree reasons the only possibility is

$$d_p(\mu_3) = v_2^{p} \lambda_1.$$

This proves the base step $s = 1$ of the induction. We now assume that the statement holds for some $s \geq 1$. We then get

$$E^{*,*}_{r(s,2)+1} = P(v_2) \otimes E(\lambda_{s+1}, \lambda_{s+2}, \lambda_s \mu_3^{p^{s-1}(p-1)}) \otimes P(\mu_3^{p^s}) \oplus M_{s+1}.$$

It now suffices to show that $\lambda_{s+3} = \lambda_s \mu_3^{p^{s-1}(p-1)}$ is an infinite cycle and that we have a differential $d_r(s+1,2)(\mu_3^{p^s}) = v_2^{r(s+1,2)} \lambda_{s+1}$. We cannot have a differential of the form

$$d_r(\lambda_{s+3}) = v_2^{s} \lambda_1.$$

for degree reasons, so λ_{s+3} is an infinite cycle. The class $\mu_3^{p^s}$ must support a differential, because otherwise the spectral sequence would collapse at this stage, which is a contradiction to Corollary 5.5. For bidegree reasons the only possibility is

$$d_r(s+1,2)(\mu_3^{p^s}) = v_2^{r(s+1,2)} \lambda_{s+1}.$$

Note that $v_2^{r(s,2)} \lambda_{s+3}$ has the right topological degree, but a too small filtration degree to be the target of a differential on $\mu_3^{p^s}$. This completes the inductive step.

We end with a conjectural answer for $\text{THH}(BP(n); k(m))$ for all $1 \leq m \leq n$.

Conjecture 5.8. Suppose $1 \leq m \leq n$. Let $B\langle n \rangle$ be an E_3 form of $BP\langle n \rangle$. There is an isomorphism

$$\text{THH}_*(B\langle n \rangle; k(m)) \cong E(\lambda_1, \ldots, \lambda_{n-m}) \otimes (P(v_m) \oplus T_m^n),$$

where

$$T_m^n = \bigoplus_{s \geq 1} P_{r_n(s,m)}(v_m) \otimes E(\lambda_{n-m+s+1}, \ldots, \lambda_{n+s}) \otimes P(\mu_n^{p^{s-1}}) \otimes F_p \{\lambda_{n-m+s} \mu_n^{p^{s-1}} : 0 \leq \ell \leq p-2\}$$

and by convention $E(\lambda_1, \ldots, \lambda_{n-m}) = F_p$ when $m = 0$. The sequence of integers $r_n(s, m)$ is defined by

$$r_n(s, m) = p^{n-m+s} + p^{n-m+s-(m+1)} + \cdots + p^{n+j-m},$$

where j is the unique element in $\{1, \ldots, m+1\}$ such that $s \equiv j$ mod $m+1$.

Here the class λ_s is defined recursively by the formula

$$\lambda_s := \lambda_s - (m+1)p^{s-(n+2)(p-1)}$$

for $s \geq n + 2$ and we name the classes in the abutment that are not divisible by v_n by their projection to $\text{THH}_\ast(B\langle n \rangle; H^\mathbb{F}_p)$.

Remark 5.9. When $m = 1$ and $n = 2$, we observe that this is consistent with Theorem 4.7 where $r_2(s, 1) = r(s, 1)$. When $m = 2$ and $n = 2$, we observe that this is consistent with Theorem 5.6 where $r_2(s, 2) = r(s, 2)$.

References

[1] Gabe Angelini-Knoll and Andrew Salch, *A May-type spectral sequence for higher topological Hochschild homology*, Algebr. Geom. Topol. 18 (2018), no. 5, 2593–2660. MR3848395

[2] Vigleik Angeltveit, *Topological Hochschild homology and cohomology of A_∞ ring spectra*, Geom. Topol. 12 (2008), no. 2, 987–1032. MR2403804

[3] Vigleik Angeltveit, Michael A. Hill, and Tyler Lawson, *Topological Hochschild homology of ℓ and ko*, Amer. J. Math. 132 (2010), no. 2, 297–330. MR2654776

[4] Vigleik Angeltveit and John A. Lind, *Uniqueness of $BP(n)$*, J. Homotopy Relat. Struct. 12 (2017), no. 1, 17–30. MR3613020

[5] Vigleik Angeltveit and John Rognes, *Hopf algebra structure on topological Hochschild homology*, Algebr. Geom. Topol. 5 (2005), 1223–1290. available at math/0502195.

[6] Christian Ausoni and Birgit Richter, *Towards topological Hochschild homology of Johnson-Wilson spectra*, Algebr. Geom. Topol. 20 (2020), no. 1, 375–393. MR4071375

[7] Christian Ausoni and John Rognes, *Algebraic K-theory of topological K-theory*, Acta Math. 188 (2002), no. 1, 1–39. MR1947457

[8] Andrew Baker and Birgit Richter, *Uniqueness of E_∞ structures for connective covers*, Proc. Amer. Math. Soc. 136 (2008), no. 2, 707–714. MR2358512

[9] Bhargav Bhatt, Matthew Morrow, and Peter Scholze, *Topological Hochschild homology and integral p-adic Hodge theory*, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199–310. MR3949030

[10] Marcel Bökstedt, *The topological Hochschild homology of \mathbb{Z} and \mathbb{Z}/p*, Universität Bielefeld, Fakultät für Mathematik, 1985.

[11] William Browder, *Torsion in H-spaces*, Ann. of Math. (2) 74 (1961), 24–51. MR124891

[12] Morten Brun, Zbigniew Fiedorowicz, and Rainer M. Vogt, *On the multiplicative structure of topological Hochschild homology*, Algebr. Geom. Topol. 7 (2007), 1633–1650.

[13] R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, *H_∞ ring spectra and their applications*, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR836132

[14] Robert Ray Bruner, *The Adams spectral sequence of H_∞ ring spectra*, ProQuest LLC, Ann Arbor, MI, 1977. Thesis (Ph.D.)–The University of Chicago. MR2611760

[15] Steven Greg Chadwick and Michael A. Mandell, *E_n genera*, Geom. Topol. 19 (2015), no. 6, 3193–3232. MR3447102

[16] Ralph L. Cohen and John D. S. Jones, *A homotopy theoretic realization of string topology*, Math. Ann. 324 (2002), no. 4, 773–820. MR1942249

[17] Bjørn Ian Dundas and Randy McCarthy, *Stable K-theory and topological Hochschild homology*, Ann. of Math. (2) 140 (1994), no. 3, 685–701. MR1307900

[18] Gerald Dunn, *Lax operad actions and coherence for monoidal N-categories, A_∞ rings and modules*, Theory Appl. Categ. 3 (1997), No. 4, 50–84. MR1432192

[19] Jeremy Hahn and Dylan Wilson, *Quotients of even rings*, arXiv e-prints (September 2018), arXiv:1809.04723, available at 1809.04723.

[20] , *Redshift and multiplication for truncated Brown–Peterson spectra*, arXiv e-prints (December 2020), arXiv:2012.00864, available at 2012.00864.
[21] Michael Hill and Tyler Lawson, *Automorphic forms and cohomology theories on Shimura curves of small discriminant*, Adv. Math. 225 (2010), no. 2, 1013–1045. MR2671186

[22] Eva Höning, *On the Brun spectral sequence for topological Hochschild homology*, Algebr. Geom. Topol. 20 (2020), no. 2, 817–863. MR4093112

[23] André Joyal and Ross Street, *Braided monoidal categories*, Macquarie Math Reports 850067 (1986).

[24] Hesselholt Lars and Thomas Nikolaus, *Topological cyclic homology*, Handbook of homotopy theory, 2019.

[25] Tyler Lawson, *Secondary power operations and the Brown-Peterson spectrum at the prime 2*, Ann. of Math. (2) 188 (2018), no. 2, 513–576. MR3862946

[26] Tyler Lawson and Niko Naumann, *Commutativity conditions for truncated Brown-Peterson spectra of height 2*, J. Topol. 5 (2012), no. 1, 137–168. MR2897051

[27] Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2, Int. Math. Res. Not. IMRN 10 (2014), 2773–2813.

[28] Stephen Lichtenbaum, *Values of zeta-functions, étale cohomology, and algebraic K-theory*, Algebraic K-theory, II: “Classical” algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), 1973, pp. 489–501. Lecture Notes in Math., Vol. 342. MR0406981

[29] J. P. May, *The geometry of iterated loop spaces*, Lecture Notes in Mathematics, Vol. 271, Springer-Verlag, Berlin-New York, 1972. MR0420610

[30] J. Peter May, *A general algebraic approach to Steenrod operations*, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970), 1970, pp. 153–231. MR0281196

[31] J. E. McClure and R. E. Staffeldt, *On the topological Hochschild homology of bu, i*, American Journal of Mathematics 115 (1993), no. 1, 1–45.

[32] Jack Morava, *Forms of K-theory*, Math. Z. 201 (1989), no. 3, 401–428. MR999737

[33] Daniel Quillen, *Higher algebraic K-theory*, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, 1975, pp. 171–176. MR0422392

[34] Douglas C. Ravenel, *Complex cobordism and stable homotopy groups of spheres*, Pure and Applied Mathematics, vol. 121, Academic Press, Inc., Orlando, FL, 1986. MR860042

[35] John Rognes, *Algebraic K-theory of strict ring spectra*, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, 2014, pp. 1259–1283. MR3728661

[36] John Rognes, *The circle action on topological Hochschild homology of complex cobordism and the Brown-Peterson spectrum*, arXiv e-prints (May 2019), arXiv:1905.06698, available at 1905.06698.

[37] Andrew Senger, *The Brown-Peterson spectrum is not E2(p^2+2) at odd primes*, ArXiv e-prints (October 2017), arXiv:1710.09822, available at 1710.09822.

[38] Brooke Shipley, *HZ-algebra spectra are differential graded algebras*, Amer. J. Math. 129 (2007), no. 2, 351–379. MR2306038

[39] Charles A. Weibel and Susan C. Geller, *Étale descent for hochschild and cyclic homology*, Commentarii Mathematici Helvetici 66 (1991Dec), no. 1, 368–388.

[40] Raphael Zahler, *The Adam-Novikov spectral sequence for the spheres*, Bull. Amer. Math. Soc. 77 (1971), 169–174. MR300286
Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse, France
Email address: angelini-knoll@math.univ-paris13.fr

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Email address: dculver@mpim-bonn.mpg.de

Radboud University, Department of Mathematics, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
Email address: eva.hoening@ru.nl