\(H^\pm W^{\mp}\) production in the MSSM at the LHC

David Eriksson\(^1\), Stefan Hesselbach\(^{2,3}\) and Johan Rathsman\(^1\)

\(^1\) High Energy Physics, Uppsala University, Box 535, S-75121 Uppsala, Sweden

\(^2\) School of Physics \& Astronomy, University of Southampton, Southampton SO17 1BJ, UK

E-mail: s.hesselbach@phys.soton.ac.uk

Abstract. We investigate the viability of observing charged Higgs bosons (\(H^\pm\)) produced in association with \(W\) bosons at the CERN Large Hadron Collider, using the leptonic decay \(H^+ \rightarrow \tau^+ \nu_\tau\) and hadronic \(W\) decay, within the Minimal Supersymmetric Standard Model. Performing a parton level study we show how the irreducible Standard Model background from \(W + 2\) jets can be controlled by applying appropriate cuts. In the standard \(m^\text{max}_h\) scenario we find a viable signal for large \(\tan \beta\) and intermediate \(H^\pm\) masses (\(\sim m_t\)).

The quest for understanding electroweak symmetry breaking and mass generation is one of the driving forces behind the upcoming experiments at the CERN Large Hadron Collider (LHC). In the Minimal Supersymmetric Standard Model (MSSM), which is a two Higgs Doublet Model (2HDM) of type II, the Higgs sector consists of three neutral and one charged Higgs bosons after electroweak symmetry breaking. The charged Higgs boson (\(H^\pm\)) is of special interest since its discovery would constitute an indisputable proof of physics beyond the Standard Model.

The main production mode of charged Higgs bosons at hadron colliders is in association with top quarks through the \(g b \rightarrow H^- t\) and \(gg \rightarrow H^- \bar{t}b\) processes \([1–4]\) with the former one being dominant for heavy charged Higgs bosons \(m_{H^\pm} \gtrsim m_t\) and the latter one for light ones \(m_{H^\pm} \lesssim m_t - m_b\). Recently a new method for matching the differential cross-sections for the two production modes has been developed \([5]\) resulting in a significantly improved discovery potential in the transition region \(m_{H^\pm} \sim m_t\) \([6]\).

A complementary production mode of charged Higgs bosons is in association with \(W\)-bosons. Although the production cross-section \([7, 8]\) is large, an earlier study \([9]\) using the hadronic charged Higgs decay, \(H^+ \rightarrow t\bar{b}\), came to the conclusion that the signal is overwhelmed by the \(t\bar{t}\) background. Here we report results of our study \([10]\) of the prospects of using instead the \(H^+ \rightarrow \tau^+ \nu_\tau\) decay together with \(W + 2\) jets.

The dominant production mechanisms for \(H^\pm W^{\mp}\) at hadron colliders are \(b\bar{b}\) annihilation at tree-level and gluon fusion at one-loop-level. In this study we focus on the parameter region with intermediate \(H^\pm\) masses (\(\sim m_t\)) and large \(\tan \beta\), where the decay \(H^\pm \rightarrow \tau^+ \nu_\tau\) has a large branching ratio and where the \(b\bar{b}\) annihilation dominates.

We have implemented \([11]\) the two processes \(b\bar{b} \rightarrow H^+ W^-\) and \(b\bar{b} \rightarrow H^- W^+\) as separate external processes to \textsc{Pythia} \([12]\). In principle, the implementation in \textsc{Pythia} makes a generation of the complete final state possible, but for this first study we have chosen to stay on leading order parton level. For the calculation of the MSSM scenario and the corresponding Higgs masses and the branching ratios of \(H^\pm\) we use \textsc{FeynHiggs 2.2.10} \([13]\). For simplicity we
The effect of the different cuts on the integrated cross-section for background (σ_b) and signal (σ_s) in the m_h^{max} scenario with m_{H^\pm} = 175 and 400 GeV for tanβ = 50.

Cut [all in GeV]	m_{H^\pm} = 175 GeV	m_{H^\pm} = 400 GeV					
Basic cuts	σ_b (fb)	σ_s (fb)	S	S/\sqrt{B}	σ_s (fb)	S	S/\sqrt{B}
p_{⊥τ_{jet}} > 50, p_{⊥} > 50	560000	35	4900	0.7	3.3	300	0.04
70 < m_{jj} < 90	22000	25	2200	1.6	2.7	240	0.2
m_{⊥} > 100	1700	21	1900	5	2.2	200	0.5
p_{⊥hj} > 50, p_{⊥s} > 25	77	15	1400	16	2.1	190	2.3

only consider hadronic decays of the τ-lepton, τ → ν_τ + τ_{jet} and these decays are performed using the program TAUOLA [14] in order to properly take into account the spin effects. The resulting signature of the signal is thus: 2j + τ_{jet} + \not{p}_T. The dominant irreducible SM background arises from W + 2 jets production which we have simulated with help of the package ALPGEN [15] again complemented with TAUOLA to perform the τ decay.

Our study is performed at parton level, without any parton showering or hadronisation. Instead the momenta of the jets are smeared as a first approximation to take these, as well as detector effects, into account. After smearing the following basic cuts are applied: |η_{jet}| < 2.5, |η_j| < 2.5, ΔR_{jj} > 0.4, ΔR_{τ_{jet},j} > 0.5, and p_{⊥jet} > 20 GeV. We then apply the further cuts given in table 1 in order to suppress the background. Here m_⊥ = \sqrt{2p_{⊥τ_{jet}} \not{p}_⊥[1 - \cos(\Deltaφ)]}, with Δφ being the azimuthal angle between p_{⊥τ_{jet}} and \not{p}_⊥, is the transverse mass and p_{⊥hj} (p_{⊥s}) is the harder (softer) of the two jets. Although we have not simulated the reducible QCD background explicitly, the cuts \not{p}_⊥, p_{⊥τ_{jet}} > 50 GeV are primarily included to take this into account. In order to get an estimate of the sensitivity due to this choice we have also used an alternative set of harder cuts, \not{p}_⊥, p_{⊥τ_{jet}} > 100 GeV.

Here we only report results in the m_h^{max} scenario, for which we have used μ = 200 GeV, M_{SUSY} = 1 TeV, A_t = A_b = A_τ = 2 TeV, M_2 = 200 GeV, and m_0 = 800 GeV. The resulting signal cross-sections for tanβ = 50 and the two masses m_{H^±} = 175 and 400 GeV are given in table 1 together with the irreducible SM background. The resulting number of events and the significance S/\sqrt{B} have been calculated using an integrated luminosity of 300 fb^{-1} and a τ detection efficiency of 30%.

The m_{H^±} and tanβ dependence of the cross-section after all cuts of table 1 are shown in figure 1 as solid curves whereas dashed curves denote the cross-section for the harder cuts p_{⊥τ_{jet}}, \not{p}_⊥ > 100 GeV. The left plot is for tanβ = 50 whereas in the right plot we have used m_{H^±} = 175 GeV (400 GeV) for the solid (dashed) line. The horizontal lines indicate the cross-section needed for \sqrt{B} = 5, corresponding to tanβ ≥ 30 if m_{H^±} = 175 GeV and 150 GeV ≤ m_{H^±} ≤ 300 GeV if tanβ = 50 with the softer cuts p_{⊥τ_{jet}}, \not{p}_⊥ > 50 GeV, whereas with the harder cuts tanβ has to be larger than at least 50.

Figure 2 shows the resulting m_⊥ distribution for m_{H^±} = 175 GeV as well as m_{H^±} = 400 GeV in the case tanβ = 50 compared to the background after all cuts in table 1 have been applied. In the high mass case the harder cuts p_{⊥τ_{jet}}, \not{p}_⊥ > 100 GeV are used giving S/\sqrt{B} = 3.2. Applying an upper cut m_⊥ < 200 GeV (m_⊥ < 500 GeV) for m_{H^±} = 175 GeV (m_{H^±} = 400 GeV) only marginally improves S/\sqrt{B} from 17 (3.2) to 19 (3.3). In the same figure we also see that the harder cuts create a fake peak in the background. Finally, using the harder cuts p_{⊥τ_{jet}}, \not{p}_⊥ > 100 GeV the significance for m_{H^±} = 175 GeV and tanβ = 50 is reduced to S/\sqrt{B} = 3.1. However, in this case using an upper cut m_⊥ < 200 GeV is beneficial leading to a significance of S/\sqrt{B} = 6.4. For more details we refer to [10].
Figure 1. H^\pm mass and $\tan \beta$ dependence of the integrated cross-section in the $m_{h^\pm}^\text{max}$ scenario. Solid curves are with all cuts of table 1, and dashed curves are with the harder cuts $p_{\perp}^{\tau_{\text{jet}}, \phi^b} > 100$ GeV. The horizontal lines correspond to $S_B / \sqrt{B} = 5$.

Figure 2. The m_{\perp} distribution for the signal (dashed) in the $m_{h^\pm}^\text{max}$ scenario with $\tan \beta = 50$ and $m_{H^\pm} = 175$ GeV (left) as well as $m_{H^\pm} = 400$ GeV (right) together with the background (dotted) with all cuts of table 1 (for $m_{H^\pm} = 400$ GeV the cuts $p_{\perp}^{\tau_{\text{jet}}, \phi^b} > 100$ GeV are used).

Acknowledgments
This work has been supported by the Göran Gustafsson Foundation.

References
[1] Barnett R M, Haber H E and Soper D E 1988 Nucl. Phys. B306 697
[2] Bawa A C, Kim C S and Martin A D 1990 Z. Phys. C47 75–82
[3] Borzumati F, Kneur J L and Polonsky N 1999 Phys. Rev. D60 115011 (Preprint hep-ph/9905443)
[4] Miller D J, Moretti S, Roy D P and Stirling W J 2000 Phys. Rev. D61 055011 (Preprint hep-ph/9906230)
[5] Alwall J and Rathsman J 2004 JHEP 12 050 (Preprint hep-ph/0409094)
[6] Mohn B, Flechl M and Alwall J 2007 ATL-PHYS-PUB-2007-006
[7] Dicus D A, Hewett J L, Kao C and Rizzo T G 1989 Phys. Rev. D40 787
[8] Barrientos Bendezu A A and Kniehl B A 1999 Phys. Rev. D59 015000 (Preprint hep-ph/9807480)
[9] Moretti S and Odagiri K 1999 Phys. Rev. D59 055008 (Preprint hep-ph/9809244)
[10] Eriksson D, Hesselbach S and Rathsman J 2006 Preprint hep-ph/0612198
[11] Eriksson D The fortran code is available from http://www.isv.uu.se/thepp/MC/pybbwh/, including a manual
[12] Sjostrand T et al. 2001 Comput. Phys. Commun. 135 238–250 (Preprint hep-ph/0010017)
[13] Hahn T, Hollik W, Heinemeyer S and Weiglein G 2005 Preprint hep-ph/0507009
[14] Golonka P et al. 2006 Comput. Phys. Commun. 174 818–835 (Preprint hep-ph/0312240)
[15] Mangano M L, Moretti M, Piccinini F, Pittau R and Polosa A D 2003 JHEP 07 001