Direct Optical Excitation of a Fullerene-Incarcerated Metal Ion

Mark A G Jones, K Porfyrakis, and G A D Briggs
QIPIRC, Department of Materials, University of Oxford,
Parks Road, Oxford, Oxon OX1 3PH, United Kingdom

R A Taylor and A Ardavan
Clarendon Laboratory, Department of Physics, University of Oxford,
Parks Road, Oxford, Oxon OX1 3PU, United Kingdom
(Dated: April 1, 2022)

The endohedral fullerene Er$_3$N@C$_{80}$ shows characteristic 1.5 μm photoluminescence at cryogenic temperatures associated with radiative relaxation from the crystal-field split Er$^{3+}$ 4I$_{13/2}$ manifold. Previous observations of this luminescence were carried out by photoexcitation of the fullerene cage states leading to relaxation via the ionic states. We present direct non-cage-mediated optical interaction with the erbium ion. We have used this interaction to complete a photoluminescence-excitation map of the Er$^{3+}$ 4I$_{15/2}$ manifold. This ability to interact directly with the states of an incarcerated ion suggests the possibility of coherently manipulating fullerene qubit states with light.

PACS numbers:

The endohedral environment of atoms and ions incarcerated in fullerene cages screens the guest species from external physical and chemical influences [1]. This screening interferes with the ability to study and control the endohedral species. Spectroscopic data can be used in conjunction with parametric modelling to elucidate the local electronic environment [2], but strong optical absorption in the visible and near infrared region associated with the fullerene cage [3] constrains the use of optical emission and absorption techniques.

Fluorescent emission has been measured from Er$^{3+}$ ions in both Er$_2@C_{82}$ [4] and the tri-nitride-template fullerenes Er$_x$Sc$_{3-x}$N@C$_{80}$ [$x = 1, 2, 3$] [5]. In both cases, excitation is induced in the fullerene cage electronic states by laser pumping at a wavelength that is absorbed by the fullerene cage. The excited states relax nonradiatively and incoherently to the ionic states with subsequent luminescent relaxation between the Er$^{3+}$ ion 4I$_{13/2}$ and 4I$_{15/2}$ manifolds at a wavelength longer than the cage absorption edge. At cryogenic temperatures, the luminescence is resolved into discrete peaks corresponding to transitions between the crystal-field-split components of each of these manifolds. In both materials, the only transitions visible in these experiments have been from the lowest two sublevels of the upper manifold to the 8 sublevels of the lower manifold (Figure 2). Rapid nonradiative relaxation within the upper manifold precludes the observation of radiative transitions from other levels within the upper manifold, preventing the full level structure of the upper manifold being observed in the emission spectrum.

In this Letter, we report the full level structure of the upper manifold measured by using photoluminescence-excitation (PLE) spectroscopy to directly excite the individual ground-state to upper-manifold transitions. The energies and linewidths of these transitions corroborate the narrow linewidths observed in this system and provide further evidence for the highly ionic character of the endohedral erbium. More importantly, this technique demonstrates direct coherent optical interaction with an endohedral ion. Fullerene-based quantum computing schemes [6] which employ an endohedral spin

![FIG. 1: Er$_3$N@C$_{80}$ structural model. The enclosed tri-erbium nitride template aligns with a cage threefold axis.](image1)

![FIG. 2: Level scheme of the Er$^{3+}$ ion in Er$_3$N@C$_{80}$, showing excitation and relaxation processes for 532 nm excitation and for 1.5 μm excitation.](image2)
qubit will require single-spin readout. Optical readout methods show promise and have been implemented in the diamond N-V system \(^2\). Direct optical excitation resulting in luminescence may provide a pathway to efficient and effective readout of such schemes \(^3\).

As the cage exhibits transparency for wavelengths longer than 1 \(\mu m\) \(^1\), it is in principle possible to coherently excite the upper manifold levels of the endohedral ion directly, using a tunable laser (Figure 2). When the excitation laser is resonant with one of the \(^{4}I_{15/2}(1) \rightarrow ^4I_{13/2}(1 \ldots 7)\) transitions, excitation into the upper manifold will occur. When the excitation laser is off-resonance, no such process is allowed. By observing the luminescence as a function of excitation wavelength, the transitions from the ground state of the ion to the upper manifold levels may be identified and their relative transition strengths recorded.

This technique not only allows the probing and mapping of states whose luminescence is inhibited by nonradiative decay, but also permits the selective excitation of individual ionic states. This is not possible by excitation via the cage, as the nonradiative relaxation process populates multiple ionic states statistically and incoherently. Such control is a prerequisite for fullerene quantum optics or optical fullerene qubit manipulation.

\(\text{Er}_3\text{N}@\text{C}_{80}\) powder manufactured by Luna Innovations Inc. using the arc-discharge method \(^9\) was passed through high-performance liquid chromatography (HPLC) apparatus to ensure its purity before use. UV-Vis-NIR absorption spectra were acquired to confirm that the collected fraction \(^10\).

A saturated solution sample of \(\text{Er}_3\text{N}@\text{C}_{80}\) dissolved in carbon disulphide (CS\(_2\)) was sealed under vacuum in a 4mm OD quartz tube and suspended in an Oxford Instruments CF442 cryostat arranged for fluorescence measurement. Fluorescence spectra perpendicular to the excitation beam path were acquired with a Princeton Instruments OMA-V-1024LN InGaAs array detector. Dispersion of the fluorescence was achieved by imaging the sample onto the entrance slit of a Spex 881 triple monochromator. For all experiments, the sample was cooled to 5 K with continuous helium flow.

Initial alignment of the system was performed using 532 nm green emission from a CW DPSS laser (5 mW), a wavelength at which the cage absorbs strongly \(^10\). The green laser was applied to the sample to observe the 8-line spectrum around 1.55 \(\mu m\) \(^5\) (Figure 3).

Infrared excitation was provided by a Santec TSL-210V tunable laser diode operating between 1.420 \(\mu m\) and 1.520 \(\mu m\) with maximum operating power of 18 mW and a linewidth of <1 MHz. To demonstrate the principle of direct excitation of the ionic energy levels, laser excitation was applied at the wavelength of the strongest emission line in the luminescence spectrum \(^{4}I_{13/2}(1) \leftrightarrow ^4I_{15/2}(1), 1519\text{nm}\) and the luminescence of the second-strongest line \(^{4}I_{13/2}(1) \rightarrow ^4I_{15/2}(4), 1546\text{nm}\) was observed (Figure 3). The laser was tuned until the scattered laser light was observed at the same detector pixel as the centre of the strongest emission line. As the excitation and observed light are close in wavelength, and the luminescence is weak compared to the scattered laser light, the monochromator filter stage was introduced and adjusted in both centre wavelength and bandpass until only a small range of wavelengths surrounding the region of interest were passed to the dispersive stage for recording.

Figure 3 shows the peak observed in the region of interest when exciting with 10 mW of light at this wavelength. The integration time was 1 minute. The background observed was attributed to a combination of laser spontaneous background emission and residual laser scatter. When the experiment was repeated with the laser detuned by 2 nm, this peak was no longer observed, while the background remained.

Having demonstrated that optical direct interaction is indeed possible with this ion, an attempt was made to excite into the higher components of the \(^4I_{13/2}\) manifold. Each principal emission line was in turn observed through the filter passband and the experiment repeated, stepping the laser over an appropriate range in 0.1 nm steps. The spectral region of interest was integrated and the background subtracted to produce an excitation spectrum of the \(^4I_{13/2}\) manifold.

At 5 K, only the lowest level of the ground manifold is
significantly populated, so all excitation peaks visible in
the excitation spectrum of the second-strongest photoluminescence peak arise from the $7 \, ^4\!I_{15/2}(1) \rightarrow ^4\!I_{13/2}(n)$ transitions. This spectrum was then transformed into
energy space for peak fitting (Figure 4).

The well-resolved and sharp nature of the excitation
lines observed indicate that the luminescent centre re-
tains its Er^{3+} ionic character across the $^4\!I_{13/2}$ manifold.

The peak energies and their linewidths and intensities are
listed in Table I. Since the laser linewidth is much smaller
than that of the peak, the excitation spectrum gives an
accurate spectral profile for the transition. The com-
parable linewidth and wavelength of the excitation and
emission of the $^4\!I_{15/2}(1) \leftrightarrow ^4\!I_{13/2}(1)$ line confirm that the
interaction is directly with the ionic state, rather than
via a molecular or cage orbital. The lines of the exci-
tation spectrum are of Gaussian, rather than Lorentzian
or Voigt, profile, indicating that the transitions are inho-
mogeneously broadened. This suggests that although the
ion is screened inside the fullerene cage, local crystalline
variation in the polycrystalline CS$_2$ solvent distorts the
cage, causes variations in the local crystal field and leads
to site-to-site variation in the fullerene spectral profile.

Combining the PLE map with analysis of data from
fluorescence spectrum permits contruction of the ionic
level structure of the $Er_3N@gC_{80}$ system (Figure 5). The
splitting of the upper manifold is around 250 cm$^{-1}$, com-
parable to the splitting of the lower manifold (350 cm$^{-1}$),
and comparable to the splittings observed in ionic hosts.
This, together with the narrow inhomogeneous linewidth,
confirms that the Er^{3+} ion in this molecule retains sig-
nificant ionic character despite the incorporation into the
tri-nitride cluster and the fullerene cage.

We have thus optically interacted directly, selec-
tively and coherently with an ion encapsulated within
a fullerene cage. This direct excitation spectroscopy has enabled us to produce a map of the first excited mani-
fold of the encapsulated endohedral ion. The results of this technique may, through crystal-field analysis, shed
light on the local environment experienced by the endohe-
dral system, which, due to the presence of the lanthanide
electronic structure, is difficult to model via traditional
molecular modelling codes.

By exploiting transparent regions in the cage absorp-
tion to directly drive ionic transitions, this gives an
additional tool with which to manipulate and probe the
quantum state of endohedral species.

This research is part of the QIP IRC www.qipirc.org
(GR/S82176/01). This work also has been supported by
Hewlett-Packard Co. through the DARPA Slow Light
programme, contract FA9550-05-C-0017. GADB is sup-
ported by the Royal Society. $Er_3N@gC_{80}$ was supplied by Luna Innovations, Blacks-
burg, VA, USA. We thank Michael Reid, Robert Davies,
Ian Walmsley and Ray Beausoleil for stimulating discus-
sions.

* Electronic address: mark.jones@materials.ox.ac.uk

[1] Harneit W. Phys. Rev. A 65 032322 (2002)
[2] Reid M., Richardson F. S. J. Chem. Phys. 79 5735 (1983)
[3] Ajie H., Alvarez M. M., Anz S. J., Beck R. D., Diederich
F., Fostriopoulos K., Huffman D. R., Kraetschmer W.,
Rubin Y., Schriver K. E., Sensharma D., Whetten W.
J. Phys. Chem. 94 8630 (1990)
[4] Macfarlane R. M., Wittmann G., van Loosdrecht
P. H. M., de Vries M., Bethune D. S., Stevenson S., Dorn
H. C. Phys. Rev. Lett. 79:7 1397 (1997)
[5] Macfarlane R. M., Bethune D. S., Stevenson S., Dorn
H. C. Chem. Phys. Lett. 343 229 (2001)
[6] Ardavan A., Austwick M., Benjamin S. C., Briggs G. A. D., Dennis T. J. S., Ferguson A., Hasko D. G., Kanai M., Khlobystov A. N., Lovett B. W., Morley G. W., Oliver R. A., Pettifor D. G., Porfyrakis K., Reina J. H., Rice J. H., Smith J. D., Taylor R. A., Williams D. A., Adelmann C., Mariette H., Hamers R. J. Phil. Trans. R. Soc. Lond. A 361 1473 (2003)
[7] Jelezko F. and Wrachtrup J., J. Phys.: Condens. Matter 16 R1089R1104 (2004)
[8] Benjamin S. C., Ardavan A., Briggs G. A. D., Britz D. A., Gunlycke D., Jefferson J., Jones M. A. G., Leigh D. F., Lovett B. W., Khlobystov A. N., Lyon S. A., Morton J. J. L., Porfyrakis K., Sambrook M. R., Tyryshkin A. M. quant-ph/0511198, scheduled for publication in J. Phys. Cond. Mat.
[9] Stevenson S., Rice G., Glass T., Harich K., Cromer F., Jordan M. R., Craft J., Hadju E., Bible R., Olmstead M. M., Maitra K., Fisher A. J., Balch A. L., Dorn H. C., Nature 401 55 (1999)
[10] K. Kikuchi, Y. Nakao, S. Suzuki, Y. Achiba, T. Suzuki, and Y. Maruyama, J. Am. Chem. Soc. 116, 93679368 (1994).