ON NATURAL DEFORMATIONS OF SYMPLECTIC AUTOMORPHISMS OF MANIFOLDS OF $K3^{[n]}$ type

GIOVANNI MONGARDI

Abstract. In the present paper we prove that finite symplectic groups of automorphisms of manifolds of $K3^{[n]}$ type can be obtained by deforming natural morphisms arising from $K3$ surfaces if and only if they satisfy a certain numerical condition.

Keywords: Symplectic Automorphisms, $K3^{[n]}$ type, Natural morphism

MSC 2010 classification: 14J50

1. Introduction

The present paper is devoted to a natural question concerning deformations of automorphisms of hyperkähler manifolds. Roughly speaking, given a $K3$ surface S the group $\text{Aut}(S)$ induces automorphisms of the Hilbert scheme $S^{[n]}$ of n points of S. These automorphisms are called natural. Let X be a hyperkähler manifold deformation equivalent to some $S^{[n]}$ and let G be a group of automorphisms of X. One can ask whether it is possible to deform X together with G to some $(S^{[n]},G)$, where G is a group of natural automorphisms. In the following we give a positive answer for all finite symplectic automorphism groups whose action on $H^2(X)$ is the natural one and for several different dimensions (cf. Theorem 2.5). We remark that having the natural action on $H^2(X)$ is a necessary condition, since this action is constant under smooth deformations.

There have been several works concerning automorphisms of $K3$ surfaces, we will refer to the foundational work of Nikulin [11], later improved by Mukai [10] in the nonabelian case. By the work of Mukai [10] there are 79 possible finite groups of symplectic automorphisms on $K3$ surfaces and, by a recent classification due to Hashimoto [5], there are 84 different possibilities for their action on H^2. Our result holds for all these 84 cases as long as the hypothesis of the global Torelli theorem are satisfied.

In the case of manifolds of $K3^{[n]}$ type the notion of natural morphisms was introduced by Boissière [3] and further analyzed by him and Sarti [4]. In the particular case of symplectic involutions on manifolds of $K3^{[2]}$ type our result is proven in [9].

Notations. If L is a lattice and $G \subset O(L)$ we denote by $T_G(L) := L^G$ the invariant sublattice and by $S_G(L) := T_G(L)^\perp$ the coinvariant sublattice. For $G \subset \text{Aut}(X)$ and $H^2(X,\mathbb{Z})$ endowed with a quadratic form, we denote $T_G(X) := T_G(H^2(X,\mathbb{Z}))$ the invariant sublattice and $S_G(X) := S_G(H^2(X,\mathbb{Z}))$ the coinvariant sublattice. Let X be a hyperkähler manifold and let $G \subset \text{Aut}(X)$. The group G is called symplectic if it acts trivially on $H^{2,0}(X)$, i.e. it preserves the symplectic form. We denote by $\text{Aut}_s(X)$ the subgroup of automorphisms of X preserving the symplectic form. We will call manifolds of $K3^{[n]}$ type all manifold deformation equivalent to the Hilbert scheme of n points on a $K3$ surface.
Preliminaries. In this section we gather some useful results for ease of reference. The reader interested in hyperkähler manifolds can consult [7] and [8] for further references and for a broader treatment of the subject.

A hyperkähler manifold is a simply connected compact Kähler manifold whose $H^{2,0}$ is generated by a symplectic form.

Theorem 1.1. Let X be a hyperkähler manifold of dimension $2n$. Then there exists a canonically defined pairing $(,)_X$ on $H^2(X, \mathbb{C})$, the Beauville-Bogomolov pairing, which is a deformation and birational invariant. This form makes $H^2(X, \mathbb{Z})$ a lattice of signature $(3, b_2(X) - 3)$.

For every hyperkähler manifold X and every Kähler class ω there exists a family of smooth deformations of X over the base \mathbb{P}^1. This family is called *twistor family* and denoted $TW_\omega(X)$.

Example 1. Let X be a hyperkähler manifold of $K3^{[n]}$ type. Then $H^2(X, \mathbb{Z})$ endowed with its Beauville-Bogomolov pairing is isomorphic to the lattice $L_n := H^2(K3, \mathbb{Z}) \oplus (2 - 2n)$.

If X is hyperkähler we call a marking of X any isometry between $H^2(X, \mathbb{Z})$ and a lattice M. There exists a moduli space of marked hyperkähler manifolds with $H^2(X, \mathbb{Z}) \cong M$ and we denote it by M_M.

We will often consider the induced action of $\text{Aut}(X)$ on $O(H^2(X, \mathbb{Z}))$ for a manifold X of $K3^{[n]}$ type. For a general hyperkähler manifold this map might not be injective but in our case it is:

Lemma 1.2. Let X be a manifold of $K3^{[n]}$ type. Then the map
\[
\nu(X) : \text{Aut}(X) \to O(H^2(X, \mathbb{Z}))
\]
is injective.

Proof. By [6, Theorem 2.1] the kernel of $\nu(X)$ is invariant under smooth deformations. Beauville [1, Lemma 3] proved that, if S is a $K3$ surface with no non-trivial automorphisms, then $\text{Aut}(S^{[n]}) = \{Id\}$, therefore $\{Id\} = \text{Ker}(\nu(S^{[n]})) = \text{Ker}(\nu(X))$. □

The following is a very important theorem which is essential in the proof of our main result. The only truly restrictive hypothesis of Theorem 2.3 is one of the hypotheses of the following:

Theorem 1.3 (Global Torelli, Verbitsky, Markman and Huybrechts). Let X and Y be two hyperkähler manifolds of $K3^{[n]}$ type and let $n - 1$ be a prime power. Suppose $\psi : H^2(X, \mathbb{Z}) \to H^2(Y, \mathbb{Z})$ is an isometry preserving the Hodge structure. Then there exists a birational map $\phi : X \dasharrow Y$.

Let M be a lattice of signature $(3, r)$. We define $\Omega_M = \mathbb{P}(\{x \in M \otimes \mathbb{C} \mid x^2 = 0, (x, \mathcal{T}) > 0\})$ as the period domain for the lattice M. It is an open subset of a quadric hypersurface inside $\mathbb{P}(M \otimes \mathbb{C})$.

In the particular case where $M \cong H^2(X, \mathbb{Z})$ for some hyperkähler manifold X, there exists a natural map, the period map \mathcal{P}, between the moduli space \mathcal{M}_M and the period domain Ω_M.

Moreover, when Theorem 1.3 holds, two marked manifolds having the same period are birational.
The images of twistor families in \(\mathcal{M}_M \) through the period map are called twistor lines. A fundamental property of period domains is that they are connected by twistor lines (see [8, Proposition 3.7] or [2]).

2. DEFORMATIONS OF PAIRS

Definition 2.1. Let \(X \) be a manifold and let \(G \subset Aut(X) \). A \(G \) deformation of \(X \) (or a deformation of the pair \((X,G)\)) consists of the following data:

- A flat family \(\mathcal{X} \to B \), \(B \) connected and \(\mathcal{X} \) smooth, and a distinguished point \(0 \in B \) such that \(\mathcal{X}_0 \cong X \).
- A faithful action of the group \(G \) on \(\mathcal{X} \) inducing fibrewise faithful actions of \(G \).

Two pairs \((X,G)\) and \((Y,H)\) are deformation equivalent if \((Y,H)\) lies in a \(G \) deformation of \(X \).

The first interesting remark is that, to some extent, all symplectic automorphism groups of a hyperkähler manifold can be deformed:

Remark 1. Let \(X \) be a hyperkähler manifold such that \(G \subset Aut_s(X) \) and \(|G| < \infty \). Let \(\omega \) be a \(G \) invariant Kähler class. Then \(TW_\omega(X) \) is a \(G \) deformation of \(X \) over \(\mathbb{P}^1 \).

There is also a notion of local universal \(G \) deformation, for a proof of its existence we refer to [9].

Lemma 2.2. Let \(X \) be a manifold of \(K3^{[n]} \) type and let \(G \subset Aut_s(X) \). Then there exists a universal local \(G \) deformation of \(X \) sitting inside \(Def(X) \). It is locally given by the \(G \)-invariant part of \(H^1(T_X) \) and it is of dimension \(\text{rank}(T_G(X)) - 2 \). Moreover two birational manifolds with isomorphic actions of \(G \) on cohomology have intersecting local \(G \)-deformations.

Proof. Let \(X \) be birational to \(Y \) and let the action of \(G \) on \(H^2(Y) \) coincide with the action of \(G \) on \(H^2(X) \) induced by the birational transformation between \(X \) and \(Y \). Let us take a representative \(U \) of \(Def(X) \) and let \(x \) be a very general point inside \(U^G \), which is a representative of the local \(G \) deformations of \(X \) and \(Y \). Let \(\mathcal{Y}_x \) and \(\mathcal{X}_x \) be the two hyperkähler manifolds corresponding to \(x \) on \(U^G \). We have \(Pic(\mathcal{Y}_x) = Pic(\mathcal{X}_x) = S_G(X) \) and \(\mathcal{Y}_x \) is birational to \(\mathcal{X}_x \). However any \(G \) invariant Kähler class on \(\mathcal{Y}_x \) is orthogonal to \(Pic(\mathcal{Y}_x) \) and therefore also to the set of effective curves on \(\mathcal{Y}_x \), which is therefore empty. Thus the Kähler cone of \(\mathcal{Y}_x \) coincides with the positive cone and \(\mathcal{Y}_x = \mathcal{X}_x \).

We remark that the local \(G \) deformations around two birational manifolds might not meet for a nonsymplectic group \(G \).

Definition 2.3. Let \(S \) be a K3 surface and let \(G \subset Aut_s(S) \) be a group of symplectic automorphisms on \(S \). \(G \) induces a group of symplectic morphisms on \(S^{[n]} \) which we still denote as \(G \). We call the pair \((S^{[n]},G)\) a natural pair, following [3]. We call standard any pair \((X,H)\) deformation equivalent to a natural pair.

A natural question is asking under which condition a pair \((X,G)\) is standard. In the rest of the paper we make the following assumption and we prove that it is equivalent to \((X,G)\) being standard.
Definition 2.4. Let X be a manifold of $K3^{[n]}$ type and let $G \subset \text{Aut}_s(X)$. The group G is numerically standard if the following holds

- $S_G(X) \cong S_H(S)$,
- $T_G(X) \cong T_H(S) \oplus (t)$,
- $t^2 = -2(n-1)$, $(t, H^2(X, \mathbb{Z})) = 2(n-1)\mathbb{Z}.$

For some $K3$ surface S and some $H \subset \text{Aut}_s(S)$ such that $H \cong G$.

Notice that for a standard pair (X, G) the group G is numerically standard, since by [4] a natural pair is numerically standard. Now the main result of the paper can be explicitly stated:

Theorem 2.5. Let X be a manifold of $K3^{[n]}$ type and let $n-1$ be a prime power. Let $G \subset \text{Aut}_s(X)$ be a finite group of numerically standard automorphisms. Then (X, G) is a standard pair.

In this section we prove Theorem 2.5 using some properties of a particular period domain defined by the action of a finite group G of symplectic automorphisms of a manifold X of $K3^{[n]}$ type.

Definition 2.6. Let M be a lattice of signature $(3, r)$ and let $G \subset \text{O}(M)$. We call $\Omega_{G,M}$ the set of points ω in the period domain Ω_M such that $\omega \in T_G(M) \otimes \mathbb{C}$.

Definition 2.7. Let $\mathcal{M}_n := \mathcal{M}_{L_n}$ be the moduli space of marked manifolds of $K3^{[n]}$ type and let $G \subset \text{Aut}_s(X)$ for some marked $(X, f) \in \mathcal{M}_n$. Let us denote with G the group of symmetries induced by G on the lattice L_n and let $\Omega_{G,n} := \Omega_{G,L_n}$ be as above. Then we define $\mathcal{M}_{G,n} \subset \mathcal{M}_n$ as the counterimage through the period map of $\Omega_{G,n}$.

By the following remark the set $\mathcal{M}_{G,n}$ is the set of marked pairs (X, f) such that $f^{-1}(S_G(L_n)) \subset \text{Pic}(X)$ for an appropriate marking f and $\Omega_{G,n}$ is just the period domain $\Omega_{T_G(L_n)}$.

Remark 2. Let X be a hyperkähler manifold and let $G \subset \text{Aut}_s(X)$ be a finite group. Then $T_G(X)$ contains $T(X)$ and $S_G(X) \subset \text{Pic}(X)$. Moreover $T_G(X)$ has signature $(3, r)$ for some $r \geq 0$. A proof of this fact can be found in [1, Proposition 6].

This means that, through a chain of twistor families, we can connect any marked point $(X, f) \in \mathcal{M}_{G,n}$ with $G \subset \text{Aut}_s(X)$ numerically standard to a marked point (Y, g) that has the same period of a natural pair $(S^{[n]}, G)$ for an appropriate marking f' of $S^{[n]}$. Since by Remark 1 twistor families are G deformations, we have that (X, G) and (Y, G) are deformation equivalent.

Proof of Theorem 2.5. Let X be a manifold of $K3^{[n]}$ type and let $n-1$ be a prime power. Let $G \subset \text{Aut}_s(X)$ be a finite numerically standard group of symplectic automorphisms. Since $\Omega_{G,n}$ is connected by twistor lines, (X, G) is deformation equivalent to (Y, G) and $\mathcal{P}(Y, f) = \mathcal{P}(S^{[n]}, f') \in \Omega_{G,n}$. Here S is a $K3$ surface with $G \subset \text{Aut}_s(S)$ and $\text{Pic}(S) = S_G(S)$, i.e. the very general $K3$ surface with $G \subset \text{Aut}_s(S)$. By Theorem 1.3 there is a birational map ϕ between Y and $S^{[n]}$ which gives an induced action of G on $S^{[n]}$ (possibly nonregular). Let us denote by H the group induced on $S^{[n]}$ by ϕ and let us keep calling G the group induced by the automorphisms of S. We obtain our claim by proving that $H = G$ (as actions on $S^{[n]}$), since in that case (Y, G) and $(S^{[n]}, H)$ would be deformation equivalent through their local universal G-deformations.
ON NATURAL DEFORMATIONS OF SYMPLECTIC AUTOMORPHISMS OF MANIFOLDS OF $K3^{[n]}$

Notice that, by the assumption on the numerical standardness, the actions of G and H already coincide on $H^2(S^{[n]}, \mathbb{Z})$. Let now $g \in G$ and let h be the element of H such that $g^* = h^* in H^2(S^{[n]}, \mathbb{Z})$. Let r be the order of g. Then $g \circ h^{r-1}$ induces the identity on $H^2(S^{[n]}, \mathbb{Z})$. Therefore, by Lemma 1.2, $g^{-1}h^{r-1}$, which implies $G = H$ as group of automorphisms of $S^{[n]}$.

ACKNOWLEDGEMENTS

The present paper is an improvement of a result contained in my PhD thesis. I am very grateful to my former advisor, Prof. K. G. O’Grady for his support and to Prof. D. Huybrechts for his advice.
Partially supported by the Research Network Program GDRE-GRIFGA.

REFERENCES

[1] A. Beauville, Some remarks on Kähler manifolds with $c_1 = 0$: Prog. Math. vol. 39 (1983), 1–26
[2] A. Beauville et al., Géométrie des surfaces K3: modules et Périodes, Astérisque vol. 126 (1985), 1–193
[3] S. Boissière, Automorphismes naturels de l’espace de Douady de points sur une surface: Canad. J. Math. vol. 64 no. 1 (2012), 3–23
[4] S. Boissière and A. Sarti, A note on automorphisms and birational transformations of holomorphic symplectic manifolds: Proc. Amer. Math. Soc. vol. 140 no. 12 (2012) 4053–4062
[5] K. Hashimoto, Finite symplectic actions on the $K3$ lattice: Nagoya Math. J. vol. 206 (2012), 99–153
[6] B. Hassett and Y. Tschinkel, Hodge theory and Lagrangian planes on generalized Kummer fourfolds: Preprint arXiv:1004.0046v1 [Math.AG]
[7] D. Huybrechts, Compact Hyperkähler manifolds, Calabi-Yau manifolds and related geometries (Nordfjordeid, 2001) Universitext
[8] D. Huybrechts, A global Torelli theorem for Hyperkähler manifolds (after Verbitsky), Semin. Bourbaki n. 1040 (2010-2011)
[9] G. Mongardi, Symplectic involutions on deformations of $K3^{[2]}$, Centr. Eur. J. Math. vol. 10 no. 4 (2012) 1472–1485
[10] S. Mukai, Finite groups of automorphisms of $K3$ surfaces and the Mathieu group, Invent. Math. vol. 94 (1988), 183–221
[11] V.V. Nikulin, Finite automorphism groups of Kahlerian K3 surfaces (Russian): Trudy Moscov Math. Obsch. vol. 38 (1979), 75–137

Mathematisches Institut der Universität Bonn, Endenicher Allee, 60, 53115 Bonn, Germany