O2 is essential for aerobic life, and the classic view is that it diffuses freely across the plasma membrane. However, measurements of O2 permeability of lipid bilayers have indicated that it is much lower than previously thought, and therefore, the existence of membrane O2 channels has been suggested. We hypothesized that, besides its role as a water channel, aquaporin-1 (AQP-1) could also work as an O2 transporter, because this transmembrane protein appears to be CO2-permeable and is highly expressed in cells with rapid O2 turnover (erythrocytes and microvessel endothelium). Here we show that in mammalian cells overexpressing AQP-1 and exposed to hypoxia, the loss of cytosolic O2, as well as stabilization of the O2-dependent hypoxia-inducible transcription factor and expression of its target genes, is accelerated. In normoxic endothelial cells, knocking down AQP-1 produces induction of hypoxia-inducible genes. Moreover, lung AQP-1 is markedly up-regulated in animals exposed to hypoxia. These data suggest that AQP-1 has O2 permeability and thus could facilitate O2 diffusion across the cell membrane.

Oxygen (O2) is necessary for aerobic life because of its central role in mitochondrial ATP synthesis by oxidative phosphorylation. Traditionally, O2 is considered to diffuse freely across the plasma membrane (1, 2); however, recent studies have shown that O2 permeability of lipid bilayers is some orders of magnitude lower than previously thought (3). Therefore, it has been suggested that there exist yet unknown plasmalemmal O2 channels to ensure the fluxes required for O2 uptake in conditions of high demand or limited O2 availability. Good candidates are aquaporins, widely distributed intrinsic membrane proteins that form water-permeable complexes (3, 4). Mammalian aquaporin-1 (AQP-1) is highly expressed in cells with rapid gas (O2/CO2) turnover such as erythrocytes (5) and microvessel endothelium (6, 7), and experiments performed with recombinant AQP-1 expressed in Xenopus oocytes have suggested that it confers upon the cells increased membrane CO2 permeability (8–10). In addition, it has been shown that the AQP-1 tobacco plant homolog Nt-AQP-1 facilitates CO2 transport, particularly in conditions of small transmembrane CO2 gradient, and has a significant function in photosynthesis and in stomatal opening (11). Against a possible role of AQP-1 as a gas channel is that AQP-1 null mice do not show any obvious sign of respiratory distress or alteration of lung or erythrocyte CO2 transport (12, 13). This observation could, however, be explained if other aquaporins can compensate, at least partially, for the lack of AQP-1. In fact, AQP-1 functions as a well-established water channel, but AQP-1 null humans (Colton-null blood group) (14) and AQP-1-deficient mice (12) have only subtle changes of erythrocyte water diffusion or renal urine concentration. A recent study shows that after subcutaneous or intracranial malignant cell implantation, AQP-1 null animals present impaired tumor growth and vascularity (15), alterations that are compatible with reduced O2 uptake in extreme conditions by tumor cells. We performed experiments designed to test the hypothesis that AQP-1 regulates transmembrane O2 transport. Here, we show that in mammalian cells stably transfected with AQP-1 and exposed to hypoxia, the loss of intracellular O2 is accelerated, thus leading to faster stabilization of the hypoxia-inducible transcription factor (HIF) and up-regulation of HIF-dependent genes. Redistribution of intracellular O2 in hypoxia by mitochondrial inhibitors (16) is blunted in cells with high AQP-1 content. Moreover, inhibition of native AQP-1 expression with a small interfering RNA (siRNA) leads to up-regulation of hypoxia-inducible genes. Finally, we report that AQP-1 gene expression in lung in vivo is markedly induced by hypoxia. These data indicate that AQP-1 might have a role in O2 homeostasis by facilitating O2 diffusion across the cell membrane.

EXPERIMENTAL PROCEDURES

Cell Culture, Transfections, siRNA, and in Vitro Hypoxic Treatments—Rat cDNAs for AQP-1 and AQP-3 were cloned into pcDNA3 (Invitrogen). PC12 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 10 mM HEPES, 2 mM L-glutamate, 10% fetal bovine serum, 100 IU/ml penicillin, and 100 μg/ml streptomycin at 37 °C in a humidified incubator under 5% CO2 atmosphere. A few days after confluence, cells were transfected with pcDNA3 or pcDNA3-AQP-1 using FuGENE 6 transfection reagent (Roche Applied Science). For siRNA experiments, the cDNA constructs were subcloned into the vector pSilencer2.1-HA (Ambion) and pcDNA3. PC12 cells were transfected with the pSilencer2.1-HA-AQP-1 constructs using FuGENE 6 (Roche Applied Science) transfection reagent, and the incorporation of siRNA into the cytoplasm was analyzed 48 h after transfection by confocal microscopy.

1. **This work was funded in part by Ayuda a la Investigación 2000 of the Juan March Foundation and by grants from the Instituto de Salud Carlos III PI 030296 and Consejería de Salud, Junta de Andalucía, 22/02. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.**

2. The on-line version of this article (available at http://www.jbc.org) contains supplemental Fig. 1.

3. Both authors contributed equally to this work.

4. **To whom correspondence should be addressed: Laboratorio de Investigaciones Biomédicas, Edificio de Laboratorios, 2 planta, Hospital Universitario Virgen del Rocío, Avenida Manuel Siurot s/n, 41013 Sevilla, Spain. Tel.: 34-955-012648; Fax: 34-954-617301; E-mail: lbarea@us.es.**

5. The abbreviations used are: AQP, aquaporin; HIF, hypoxia inducible factor; siRNA, small interfering RNA; TH, tyrosine hydroxylase; PGK1, phosphoglycerate kinase 1; VEGF, vascular endothelial growth factor; DETA-NO, (Z)-1-[N-2-aminoethyl]-N-[2-ammonioethyl]amino)diazen-1-ium-1,2-dioxide; HAQP, high AQP-1 expression PC12 clone; LAQP, low AQP-1 expression PC12 clone.
Aquaporin-1 and Membrane O₂ Transport

becco’s modified Eagle’s medium (Invitrogen) supplemented with 5% fetal bovine serum, 10% horse serum, and 1% penicillin/streptomycin (Invitrogen) in a CO₂ (10%) incubator at 37 °C. To obtain stable subclones, PC12 cells were transfected with 20 μg of pcDNA3-AQP1 or pcDNA3-AQP3. Screening of positive clones was done by Northern blot and in situ hybridization analysis. From 40 clones analyzed, 20 were positive for either AQP-1 or AQP-3 with variable levels of expression.

siRNA experiments were done in an endothelial murine cell line derived from a mixed hemangiendothelioma (EOMA cells, ATCC catalog No. CRL-2586). Transfections were performed using Lipofectamine 2000 and an AQP-I–designed oligonucleotide (100 nM; ID 48361, Ambion, Austin, TX), with a scrambled oligonucleotide as a negative control. After 48 h of inhibition, levels of distinct mRNAs were analyzed by real-time reverse transcription and polymerase chain reaction.

Hyoxia experiments performed to analyze mRNA levels of tyrosine hydroxylase (TH), phosphoglycerate kinase 1 (PGK1), or vascular endothelial growth factor (VEGF) were done on a cell incubator with 1–10% O₂ (CO₂ 10%) (17). Experiments designed to measure stabilization of HIF-2α protein were done in a sealed glove box anaerobic workstation (Coy Laboratory Products Inc., Grass Lake, MI) with O₂ maintained at 1–2%. Mitochondrial respiratory inhibitor myxothiazol (Sigma-Aldrich) was added to the culture medium.

In Vivo Hypoxic Treatments—Rats were maintained either in normal conditions or in a hypoxia incubator (Coy Laboratory Products) for 24–48 h at 10% O₂. Animals were anesthetized by injection of 350 mg/kg chloral hydrate and then sacrificed following the animal care protocols approved by our institution. Tissues were removed either to extract RNA or for immunohistochemistry studies.

Pimonidazole Staining of Hypoxic PC12 Clones—PC12 cells were grown on coverslips 24 h prior to the hypoxia treatment. Cells were then transferred to hypoxia (3% O₂) for 0.5, 1, or 2 h, or let in normoxia, and 200 μM pimonidazole was added to the medium for 30 min. After washing with PBS, cells were fixed with paraformaldehyde (3%) for 10 min at room temperature and subsequently washed again overnight with PBS. After blocking with bovine serum albumin, coverslips were incubated for 30 min with the fluorescein isothiocyanate–labeled Hypoxyprobe™-1 monoclonal antibody 1 (mAb1, 1:100 dilution) from the Hypoxyprobe™-1 Plus kit (Chemicon International, Temecula, CA). As a secondary antibody, the anti–fluorescein isothiocyanate monoclonal antibody conjugated with horseradish peroxidase provided with the kit was used. Coverslips were mounted and immunostained cells were examined on an Olympus Provis (Tokyo) microscope. Densitometric measurements of photographs taken under Normaski optics were performed using the NIH Image software.

Immunohistochemistry—After removal from the animal, tissues were kept overnight in 10% phormoll and included on paraffin. Five-μm slices were cut with a microtome and mounted on microscope slides (Superfrost/plus, Fisher Scientific). Rabbit polyclonal anti-AQP-1 (1:500 dilution, Abcam, Cambridge, UK) and biotin peroxidase-conjugated secondary antibody (1:200, Pierce) were used. Sections were developed in dianinobenzidine and photographed using a BX61-Olympus microscope. For cytochemistry, cells were fixed for 10 min with 3% paraformaldehyde at room temperature. A rabbit polyclonal anti-AQP-1 antibody (1:100 dilution, Chemicon) and a fluorescent polyclonal goat anti-rabbit antibody (Alexa Fluor 568, Molecular Probes, Invitrogen) were used. Immunofluorescence was then analyzed with a Leica DM IRBE confocal microscope.

RNA Analysis—Extraction of RNA from PC12 cells was done following the method described by Cathala et al. (18). To extract RNA from tissues, the TRIzol reagent (Invitrogen) was used as indicated by the manufacturer. For Northern analysis, 10 μg of total RNA were resolved in agarose/formaldehyde gel and transferred to Hybond-N+ nylon membrane. The Ultahyb solution (Ambion) was used for hybridization with the specific 32P probes (19, 20). Results were visualized using a PhosphorImager (Typhoon 9400, Amersham Biosciences). The reverse transcription reaction was performed immediately after the mRNA isolation using SuperScript II RNase H– reverse transcriptase (Invitrogen).

Real-time PCR analysis was performed in an ABI Prism 7500 Sequence Detection System (Applied Biosystems, Warrington, UK) using SYBR Green PCR Master mix (Applied Biosystems) and the thermocycler conditions recommended by the manufacturer. Amplification of 18 S ribosomal or cyclophilin RNA was done to normalize for RNA input amounts. Primers were designed using the Primer Express software (Applied Biosystems). For AQP-1, the primers were: forward (F), 5′-CACA TTG ACC ACT GCC ATA GTA CA-3′ and reverse (R), 5′-AGT GTC CTT GAC GAA GTA AGT A-3′; for TH, F, 5′-TGG GAA GCT GAT TGC AGA GA-3′ and R, 5′-TTC CGT GAA GCT TGC TGT GTA TTT CAC ATG-3′; for VEGF, F, 5′-CCC AAG AAA TCC CGG TTT AA-3′ and R, 5′-CAA ATG CTT TTG TTC CGC TCT TGA-3′; for 18 S ribosomal RNA, F, 5′-AAC GAG GAT CTG GCA TGC TAA CTA-3′ and R, 5′-GCC GCC ACC ACC AGT TCC AAT T-3′; for PGK1, F, 5′-AGA GCC CAC AGT AGT ATG GT-3′ and R, 5′-GCC GAA TAG TTG ATC GGC CAC GAA-3′; and for cyclophilin, F, 5′-GCA CTT GAG GTC AGC ATC CCA TAT-3′ and R, 5′-GGC AGG ACC TGT ATG CTT CAG-3′. Melting curve analysis showed a single sharp peak with the expected Tm for all samples.

Western Blotting—Cells were washed with cold PBS, scraped in 1 ml of cold PBS, and centrifuged at 165 × g for 5 min at 4 °C. For whole-cell protein extract, the pellet was lysed in 150–300 μl of homogenization buffer: 50 mM Heps (pH 7.3), 5 mM EDTA, 250 mM NaCl, 5 mM dithiothreitol, 0.2% (v/v) Nonidet P-40 (Sigma-Aldrich), and 1% (v/v) of complete protease inhibitors mixture (Sigma-Aldrich). The resuspended pellet was left on ice for 5 min, vortexed, and then centrifuged at 16,000 × g for 15 min at 4 °C. For cell-membrane protein extract, cells were scraped and collected in 1 ml of homogenization buffer containing 320 mM sucrose, 5 mM Hepes, and 1% (v/v) of complete protease inhibitors mixture. Samples were
Aquaporin-1 and Membrane O_2 Transport

AQP-1, 40 μg of cell membrane proteins were resolved in 10% SDS-PAGE. After electrophoresis, proteins were transferred into polyvinylidene difluoride membranes (Hybond-P, Amersham Biosciences) using a Novex apparatus (Novel Experimental Technology, San Diego, CA). Membranes were probed with 1:1000 anti-HIF2α (Abcam), 1:2000 anti-HIF1β (Abcam), 1:1000 anti-AQP-1 (Chemicon), and 1:10,000 anti-β-tubulin (Sigma). Immunoreactive bands were developed with the ECL system (Amersham Biosciences) and visualized using a PhosphorImager (Typhoon 9400, Amersham Biosciences).

Water Permeability Measurements—Cells grown on coverslips were loaded for 5 min with 1 μM calcein acetoxymethyl ester (Molecular Probes) and mounted in a small (~250 μl) perfusion chamber that allowed rapid exchange of a solution with 300 (isomotic) to another with 150 (hyposmotic) mmol/kg. The rate of change in calcein fluorescence was monitored as described (22). The isosmotic solution used for these experiments contained in mM: 140 NaCl, 4.5 KCl, 2.5 CaCl$_2$, 1 MgCl$_2$, 10 Hepes, and 10 glucose (pH: 7.4). The hyposmotic solution was obtained by water dilution.

Statistical Analysis—Data were presented as mean ± S.E. and were analyzed with either paired Student's t test or the one-way analysis of variance followed by Tukey's test.

RESULTS

Responsiveness to Hypoxia Is Accelerated in Cells with High Levels of AQP-1—To investigate the role of AQP-1 in plasmalemmal O_2 transport, we generated several subclones of PC12 cells stably transfected with either AQP-1 or AQP-3, representative members of the two major classes of aquaporins (23, 24). Because direct measurement of O_2 fluxes at the cellular level is not technically feasible, in our initial experiments the expression of HIF-dependent genes was monitored as a readout of cytosolic O_2 concentration (Fig. 1A). HIF, a master regulator of the responses to hypoxia, is composed of α- and β-subunits; the stability of the α-subunit is regulated by a family of O_2-dependent prolyl hydroxylases (26, 28).

For these experiments contained in mM: 140 NaCl, 4.5 KCl, 2.5 CaCl$_2$, 1 MgCl$_2$, 10 Hepes, and 10 glucose (pH: 7.4). The hyposmotic solution was obtained by water dilution.
Aquaporin-1 and Membrane O₂ Transport

cellular hydroxylase activity is inhibited, and HIFα accumulates to heterodimerize with HIFβ. The heterodimeric HIF activates the expression of numerous genes. In AQP-1 or AQP-3-transfected clones we tested the hypoxic induction of TH, an O₂-dependent gene up-regulated by even mild hypoxia in PC12 cells (29). The rationale behind these experiments was that if AQP-1 is O₂-permeant, development of cytosolic hypoxia and subsequent cumulative induction of TH mRNA should be faster in cells expressing high levels of AQP-1 than in wild type PC12 cells. Hypoxic TH mRNA induction in the seven clones studied besides wild type PC12 cells is shown in Fig. 1B (top). Although the basal TH mRNA levels varied among the different clones and in separate experiments on a given cell clone, we compared for each cell type the relation of TH mRNA in hypoxia versus the values in normoxia. A quantitative summary of TH mRNA induction after 12 h of hypoxic (6% O₂) exposure in several clones of AQP-1- and AQP-3-transfected cells is shown in Fig. 1B (bottom) and C. Although for AQP-1-expressing clones there was a correlation between hypoxic TH mRNA induction and the level of AQP-1 expression, the response of AQP-3 clones (either with high or low expression levels) was indistinguishable from that of wild type PC12 cells. Differences between AQP-1-expressing clones were also seen with shorter (6 h) hypoxic (6%) exposure (supplemental Fig. 1A). In the case of AQP-1 clones there was a linear correlation between TH mRNA expression and the level of AQP-1 in the various cell types as determined by Western blot (Fig. 1D). As result of this initial screening, two AQP-1-transfected clones, one with high level of AQP-1 and highly responsive to hypoxia (clone HAQP) and another with low level of AQP-1 and low responsiveness to hypoxia (clone LAQP) similar to wild type cells (Fig. 1D), were selected for further analysis. The high expression of AQP-1 in HAQP in comparison with LAQP or wild type cells was further confirmed by immunocytochemistry (Fig. 2A). In addition, we showed that HAQP cells responded more rapidly to an hypomotic challenge than LAQP cells (Fig. 2B), thus indicating that recombinant AQP-1 expressed in the PC12 cell membrane was functional as a water-permeable channel. We also used in some experiments a highly expressing AQP-3 clone (clone 3.3 in Fig. 1, B and C), which behaves similar to the wild type PC12 cells (supplemental Fig. 1, B–D), to make comparisons with the highly expressing AQP-1 cells.

The differential behavior of HAQP and LAQP cells that was clear when they were assayed in mild hypoxia (6% O₂) (Fig. 3A, left) became even more apparent in conditions of extreme hypoxia. After 12 h in 1% O₂, TH mRNA accumulation in HAQP was ~3–4-fold higher than in LAQP cells (Fig. 3A, right), indicating that the loss of cytosolic O₂ was accelerated by AQP-1. Contrarily, TH mRNA induction by cobalt, an agent that stabilizes HIF independent of O₂ tension (25, 27), was the same in the two cell clones (Fig. 3B). Similar to TH, the hypoxic mRNA up-regulation of phosphoglycerate kinase 1 (PGK1) and vascular endothelial growth factor (VEGF), two other O₂-sensitive genes (25, 27), was higher in HAQP than in LAQP or wild type cells (Fig. 3, C and D). Cobalt TH induction and hypoxic induction of PGK1 in the AQP-3 clone was similar to the values obtained in PC12 cells (supplemental Fig. 1, C and D). Altogether these data supported the hypothesis that AQP-1 expression confers increased O₂ permeability upon PC12 cell membrane.

HIF-2α Stabilization in Hypoxia Depends on the Level of AQP-1 Expression—Because the expression of the O₂-sensitive genes depends on the stabilization of HIF, we investigated whether the regulation of the two components of this heterodimeric transcription factor (HIFα and HIFβ) was influenced by the presence of functional AQP-1. In fair agreement with the results on the O₂-dependent genes studied (TH, PGK1, and VEGF), the accumulation of HIF-2α (the most abundant O₂-dependent isofrom in PC12 cells (21, 30)) during the first few hours after exposure to hypoxia was significantly greater in HAQP than in LAQP or wild type cells. As an internal control, the levels of HIF-1B (a constitutive protein that dimerizes with all HIF isoforms (25)) were unaltered by hypoxia (Fig. 4, A and B). To check whether the presence of AQP-1 has a bidirectional impact on transmembrane O₂ transport (i.e. it also facilitates O₂ influx), we induced HIF-2α accumulation in hypoxia, and after rapidly switching to normoxia, HIF-2α degradation time course was monitored. As proteasomal degradation of accumulated HIF-2α could be nonspecifically influenced by the amount of proteins existing in the cells, we compared in these experiments clones with high levels of aquaporin expression (clones 1.22 and 3.3, Fig. 1 and supplemental Fig. 1B). Degradation of HIF-2α in normoxia was clearly faster in cells expressing AQP-1 (HAQP1) than in cells with AQP-3 (HAQP3), thus supporting the view that AQP-1 increases transmembrane O₂ transport (Fig. 4, C and D).

To further analyze the alterations in membrane O₂ transport caused by AQP-1 expression, we studied the differential response of HAQP and LAQP cells to redistribution of intra-

FIGURE 2. A (top), confocal images illustrating the immunocytochemical localization of AQP-1 in the indicated cell types. Bottom, Western blot analysis of AQP-1 protein expression in the cells studied in comparison with kidney homogenates. Note the high level of AQP-1 expression in HAQP cells. α-Tubulin is used as a load control. B, change of volume of individual HAQP and LAQP cells in response to a hypsomotic shock measured by calcein fluorescent (a.u., arbitrary units). Switching to solutions of different osmolality is indicated by downward (150 mmol/kg) and upward (300 mmol/kg) arrows. wt, wild type.
cellular O₂ by mitochondrial inhibition. As reported before (16, 31), inhibition of mitochondrial electron transport in wild type cells with myxothiazol (a complex III blocker) or DETA-NO (an NO donor that inhibits cytochrome c oxidase) lead to destabilization of HIF-2α/H9251 in hypoxic (1% O₂) cells (Fig. 5). It has been proposed that HIF destabilization upon inhibition of mitochondrial respiration in hypoxic cells (16, 31) is caused, among other mechanisms (32, 33), by intracellular O₂ redistribution toward nonrespiratory O₂-dependent targets such as prolyl hydroxylases, so that they do not register hypoxia (16). Quite interestingly, HIF-2α destabilization produced by myxothiazol and by DETA-NO was less pronounced in HAQP in comparison with LAQP or wild type cells (Fig. 5). These observations further support the view that AQP-1 increases O₂ permeability in HAQP cells, thereby facilitating the transmembrane efflux of intracellular O₂ spared by inhibition of respiration. Thus, upon mitochondrial inhibition hypoxic HAQP cells can maintain a more severe cytosolic hypoxia and higher HIF-2α content than LAQP or wild type cells.

Cytosolic Loss of O₂ in Hypoxia Is Facilitated by AQP-1 Expression—To obtain more direct evidence that AQP-1 facilitates the development of cytosolic hypoxia, and to rule out that overexpression of AQP-1 activates HIF through an oxygen-independent signal transduction pathway, we studied the transmembrane fluxes of O₂ in HAQP and LAQP cells using pimonidazole staining, a broadly used hypoxia marker that forms intracellular protein adducts at low O₂ tension (31, 34, 35). With this technique, the loss of cytosolic O₂ upon exposure to hypoxia was clearly faster in HAQP than in LAQP cells (Fig. 6). These differences estimated with the Hypoxyprobe method were similar to those inferred from the HIF-2α experiments (Fig. 4B), thus suggesting that the distinct time courses of HIF-2α stabilization observed in HAQP and LAQP cells reflect, indeed, differences in membrane O₂ transport between the two cell types.

Knocking Down Native AQP-1 with siRNA Results in Up-regulation of Hypoxia-inducible Genes—Besides the studies on PC12 cells overexpressing AQP-1, we also performed loss of function experiments using a nonmetastatic murine hemangiendothelioma cell line (EOMA cells), which behave in vitro in a manner similar to microvascular endothelial cells (36, 37). First, we investigated whether, as in microvessel endothelium (6, 7), EOMA cells also express AQP-1 as well as hypoxia-dependent
Aquaporin-1 and Membrane \(\text{O}_2 \) Transport

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Regulation of HIF in AQP-expressing cells. A, Western blot analysis of HIF2\(\alpha \) and HIF1\(\beta \) in the cell clones studied exposed to normoxia (N, 21\% \text{O}_2) or hypoxia (H, 1\% \text{O}_2) for the time indicated. B, summary of HIF2\(\alpha \) induction by hypoxia in HAQP (red), LAQP (blue), and wild type (black) cell clones. Data points are mean \pm S.E. values of 5–13 different experiments. After 2 h in hypoxia, HIF2\(\alpha \) value in HAQP cells is statistically different (\(p < 0.05 \)) with respect to that in normoxia. For LAQP or wild type cells, 4 h in hypoxia are needed to reach HIF2\(\alpha \) values statistically different from those in normoxia. C, representative Western blot analysis of HIF2\(\alpha \) in cell clones overexpressing AQP-1 (HAQP1) or AQP-3 (HAQP3) exposed to hypoxia (H, 1\% \text{O}_2) for 4 h and then transferred back to normoxia (N, 21 \text{O}_2\%) for the time indicated. D, time course of HIF2\(\alpha \) degradation during reoxygenation (21\% \text{O}_2). Levels of HIF2\(\alpha \) were normalized in each clone to the value obtained at the end of the hypoxic treatment. Data points are mean \pm S.E. values of 3 different experiments. Degradation of HIF2\(\alpha \) in HAQP1 expressing cells was significantly higher (***, \(p < 0.001 \)) than in high AQP-3 expression PC12 clone after 20 and 30 min of reoxygenation.}
\end{figure}

Indeed, AQP-1 was expressed in lung endothelial cells (inset in Fig. 8), and the AQP-1 gene was also highly \(\text{O}_2 \)-sensitive in comparison with the more classically studied PGK1 gene. In animals exposed to mild hypoxia (10\% \text{O}_2) for 24 h, the level of PGK1 mRNA was barely altered, but we observed a robust \(\sim \) 3-fold AQP-1 mRNA induction in lung tissue (Fig. 8).

DISCUSSION

The results in this study provide evidence that AQP-1 can accelerate the establishment of cytotoxic hypoxia possibly through facilitation of \(\text{O}_2 \) transport across the plasma membrane. We have also shown that AQP-1 gene expression is regulated exquisitely by \(\text{O}_2 \) tension. Although we did not directly measure transmembrane \(\text{O}_2 \) fluxes in PC12 cells because it is not technically feasible, our conclusions are supported by several independent observations. (i) In cells overexpressing AQP-1 (HAQP cells) and exposed to a hypoxic environment, the levels of HIF\(\alpha \) and O2-dependent genes (\(\text{TH}, \text{PGK1}, \text{and VEGF} \)) were higher than in LAQP cells, suggesting that the loss of cytotoxic \(\text{O}_2 \) was accelerated by the presence of AQP-1. It must be noted that this experimental protocol estimates the cumulative stabilization of HIF (and genes such as PGK1 or VEGF (Fig. 7A)). In these cells the level of PGK1 mRNA expression was quite insensitive to moderate hypoxia; however, VEGF mRNA induction was clearly modulated by moderate levels of hypoxia in an \(\text{O}_2 \) tension-dependent manner (Fig. 7A). In normoxic EOMA cells treated with specific AQP-1 siRNA, the level of AQP-1 expression decreased to \(\sim 50–60\% \) of the value in control. In parallel with the decrease of AQP-1 expression we observed an almost 2-fold increase of VEGF mRNA (Fig. 7B). Knocking down AQP-1 with siRNA had little effect on the levels of either \(\beta-\text{actin} \) (a gene independent of \(\text{O}_2 \) tension) or PGK1, a gene that, as shown above, is less sensitive to hypoxia than VEGF in EOMA cells (Fig. 7). These data further suggest that the decrease of AQP-1 expression in endothelial cells diminishes the transmembrane \(\text{O}_2 \) fluxes, which results in reduced cytotoxic \(\text{O}_2 \) tension and induction of HIF-dependent genes.

AQP-1 Gene Expression Is Up-regulated by Hypoxia in Vivo—Because AQP-1 is expressed in microvessels (6, 7), we searched its up-regulation in lungs of animals subjected to hypoxia. \textit{A priori}, we presumed that this could be an advantageous adaptive response if AQP-1 plays any role in membrane \(\text{O}_2 \) transport.
Our proposal that AQP-1 could function as an O$_2$ channel is in fair agreement with previous reports suggesting that AQP-1 increases membrane CO$_2$ permeability (8–11). Recently, it has been proposed that AQP-1 also transports NO across endothelial cells and contributes to the regulation of vascular tone (38, 39). Although our experiments suggest that AQP-3 is not O$_2$-permeable, there are several other aquaporins that overlap AQP-1 distribution and could partially compensate for the AQP-1 deficiency (24). For example, in alveolar epithelial type I...
Aquaporin-1 and Membrane O_2 Transport

FIGURE 8. Hypoxic up-regulation of the AQP-1 gene in vivo. Real-time PCR analysis showing induction of AQP-1 and PGK1 mRNA in lung homogenates of rats exposed to hypoxia (10% O_2) for 24 h. Mean ± S.E. of 7 experiments. *, $p < 0.05$. The inset is a microphotograph illustrating the AQP-1 protein expression in rat lungs after 48 h in hypoxia (10% O_2). Immunostaining of AQP-1 appears as brown deposits preferentially located at the microvessel endothelium.

cells the AQP-5 gene is up-regulated by HIF through interaction with hypoxia-responsive elements in the promoter (40), and AQP-4 mRNA has also been shown to be up-regulated by hypoxia in astrocytes (41). This could explain why humans (14) and mice (12, 13) lacking AQP-1 do not exhibit major gross physiological alterations related with either water or O_2 metabolism. In addition, besides aquaporins, other membrane proteins could also contribute to membrane O_2 transport (3, 10).

The novel role of AQP-1 in O_2 homeostasis proposed here is compatible with its expression in erythrocytes (5) or vascular endothelium (6, 7). AQP-1 is also overexpressed in cells of proliferating microvessels (8), as well as in aberrant cells of human and rat tumors (42–44), situations in which a limited O_2 availability could have induced AQP-1 expression to facilitate O_2 uptake by the cells. In fact, AQP-1 null mice present impaired tumor growth after subcutaneous or intracranial malignant cell implantation, with reduced tumor vascularity and extensive necrosis (15). Migration of AQP-1-deficient aortic endothelial cells in vitro is greatly decreased, and it has been suggested that the lack of AQP-1 alters water fluxes required for rapid turnover of cell membrane protrusions at the leading edge of migrating cells (15). The presence of AQP-1 could also be critical for aerobic ATP synthesis, particularly in membranes of low gas permeability (4) or when transmembrane O_2 gradients are small, as it occurs in cells exposed to environments with extremely low O_2 concentrations or in multilayered diffusion barriers such as that existing between the lung alveoli and blood. In conclusion, our observations support a new physiological role for aquaporins as O_2 transporters (4) besides their canonical function as water-permeable channels. AQP-1 pharmacology could be of potential use in conditions of altered O_2 exchange or to control O_2-dependent angiogenesis and tumor cell growth.

Acknowledgments—We thank Dr. Carmen Sáez and Javier Villadiego for their technical help with immunohistochemistry studies.

REFERENCES

1. Fischkoff, S., and Vanderkooi, J. M. (1975) *J. Gen. Physiol.* 65, 663–676
2. Subczynski, W. K., Hopwood, L. E., and Hyde, J. S. (1992) *J. Gen. Physiol.* 100, 69–87
3. Ivanov, I. I., Fedorov, G. E., Gus’kova, R. A., Ivanov, K. I., and Rubin, A. B. (2004) *Biochem. Biophys. Res. Commun.* 322, 746–750
4. Wang, Y., Cohen, J., Boron, W. F., Schulten, K., and Tajkhorshid, E. (2007) *J. Struct. Biol.* 157, 534–544
5. Preston, G. M., Carrol, T. P., Guggino, W. B., and Agre, P. (1992) *Science* 256, 385–387
6. Nielsen, S., Smith, B. L., Christensen, E. I., and Verkman, A. S. (1998) *Biophys. J.* 74, 2121–2128
7. Carter, E. P., Olvezczky, B. P., Matthay, M. A., and Verkman, A. S. (1998) *Am. J. Physiol.* 274, C543–C548
8. Cooper, G. J., and Boron, W. F. (1998) *Am. J. Physiol.* 275, C1481–C1486
9. Blank, M. E., and Ehmke, H. (2003) *J. Physiol. (Lond.)* 550, 419–429
10. Uehlein, N., Lovisolo, C., Sieffritz, F., and Kaldenhoff, R. (2003) *Nature* 425, 734–737
11. Ma, T., Yang, B., Gillespie, A., Carlson, E. J., Epstein, C. J., and Verkman, A. S. (1998) *J. Biol. Chem.* 273, 4296–4299
12. Solenov, E., Watanabe, H., Manley, G. T., and Verkman, A. S. (2004) *J. Biol. Chem.* 279, 26507–26514
13. Yang, B., Fukuda, N., van Hoek, A., Matthay, M. A., Ma, T., and Verkman, A. S. (2000) *J. Biol. Chem.* 275, 2686–2692
14. Mathai, J. C., Mori, S., Smith, B. L., Preston, G. M., Mohandas, N., Collins, M., van Zijl, P. C., Zeidell, M. L., and Agre, P. (1996) *J. Biol. Chem.* 271, 1309–1313
15. Saadoun, S., Papadopoulos, M. C., Hara-Chikuma, M., and Verkman, A. S. (2005) *Nature* 434, 786–792
16. Hagen, T., Taylor, C. T., Lam, F., and Moncada, S. (2003) *Science* 302, 1975–1978
17. Piriat, J. I., and Lopez-Barneo, J. (2005). *J. Biol. Chem.* 280, 42676–42684
18. Cathala, G., Savouret, J. F., Mendez, B., West, B. L., Karin, M., Martial, J. A., and Baxter, J. D. (1983) *DNA (N. Y.)* 2, 329–335
19. Murillo-Carretero, M. I., Ilundain, A. A., and Echevarria, M. (1999) *Am. Soc. Nephrol.* 10, 696–703
20. Gao, L., Mejias, R., Echevarria, M., and Lopez-Barneo, J. (2004) *FEBS Lett.* 569, 256–260
21. Del Toro, R., Levitsky, K. L., Lopez-Barneo, J., and Chiara, M. D. (2003) *J. Biol. Chem.* 278, 22316–22324
22. Solenov, E., Watanabe, H., Manley, G. T., and Verkman, A. S. (2004) *Am. J. Physiol.* 286, C426–C432
23. Echevarria, M., Windhager, E. E., Tate, S. S., and Frindt, G. (1994) *Proc. Natl. Acad. Sci. U. S. A.* 91, 10977–11001
24. Takata, K., Matsuzaki, T., and Tajika, Y. (2004) *Prog. Histochem. Cytochem.* 39, 1–83
25. Semenza, G. L. (1999) *Annu. Rev. Cell Dev. Biol.* 15, 551–578
26. Wengner, R. H. (2002) *FASEB J.* 16, 1151–1162
27. Lopez-Barneo, J., Pardal, R., and Ortega-Saenz, P. (2001) *Annu. Rev. Physiol.* 63, 259–287
28. Schofield, C. J., and Ratcliffe, P. J. (2005) *Biochem. Biophys. Res. Commun.* 338, 617–626
29. Czyzyn-Krzeska, M. F., Furnari, B. A., Lawson, E. E., and Millhorn, D. E. (1994) *J. Biol. Chem.* 269, 760–764
30. Conrad, P. W., Freeman, T. L., Beitner-Johnson, D., and Millhorn, D. E. (1999) *J. Biol. Chem.* **274**, 33709–33713
31. Doege, K., Heine, S., Jensen, I., Jelkmann, W., and Metzen, E. (2005) *Blood* **106**, 2311–2317
32. Brunelle, J. K., Bell, E. L., Quesada, N. M., Vercauteren, K., Tiranti, V., Zeviani, M., Scarpulla, R. C., and Chandel, N. S. (2005) *Cell Metab.* **1**, 409–414
33. Mansfield, K. D., Guzy, R. D., Pan, Y., Young, R. M., Cash, T. P., Schumacker, P. T., and Simon, M. C. (2005) *Cell Metab.* **1**, 393–399
34. Chapman, J. D., Franko, A. J., and Sharplin, J. A. (1981) *Br. J. Cancer* **43**, 546–550
35. Raleigh, J. A., Miller, G. G., Franko, A. J., Koch, C. J., Fuciarelli, A. F., and Kelly, D. A. (1987) *Br. J. Cancer* **56**, 395–400
36. Obeso, J., Weber, J., and Auerbach, R. (1990) *Lab. Invest.* **63**, 259–269
37. Felbor, U., Dreier, L., Bryant, R. A., Ploegh, H. L., Olsen, B. R., and Mothes, W. (2000) *EMBO J.* **19**, 1187–1194
38. Herrera, M., Hong, N. J., and Garvin, J. L. (2006) *Hypertension* **48**, 157–164
39. Herrera, M., and Garvin, J. L. (2007) *Am. J. Physiol.* **292**, F1443–F1451
40. Zhou, B., Ann, D. K., Li, X., Kim, K. J., Lin, H., Minoo, P., Crandall, E. D., and Borok, Z. (2007) *Am. J. Physiol.* **292**, C1280–C1290
41. Kaur, C., Sivakumar, V., Zhang, Y., and Ling, E. A. (2006) *Glia* **54**, 826–839
42. Saadoun, S., Papadopoulos, M. C., Davies, D. C., Bell, B. A., and Krishna, S. (2002) *Br. J. Cancer* **87**, 621–623
43. Vacca, A., Frigeri, A., Ribatti, D., Nicchia, G. P., Nico, B., Ria, R., Svelto, M., and Dammacco, F. (2001) *Br. J. Haematol.* **113**, 415–421
44. Moon, C., Soria, J. C., Jang, S. J., Lee, J., Obaidul Hoque, M., Sibony, M., Trink, B., Chang, Y. S., Sidransky, D., and Mao, L. (2003) *Oncogene* **22**, 6699–6703