Successful Treatment of Pregnant and Postpartum Women With Severe COVID-19 Associated Acute Respiratory Distress Syndrome With Extracorporeal Membrane Oxygenation

Jairo H. Barrantes,† Jamel Ortolova,‡ Erika R. O’Neil,† Erik E. Suarez,§ Sharon Beth Larson,¶ Aniket S. Rali,* Cara Agerstrand,|| Lorenzo Grazioni,**, Subhasis Chatterjee,†† Aniket S. Rali,* and Marc Anders**

Abstract: There are limited data on the use of extracorporeal membrane oxygenation (ECMO) for pregnant and peripartum women with COVID-19 associated acute respiratory distress syndrome (ARDS). Pregnant women may exhibit more severe infections with COVID-19, requiring intensive care. We supported nine pregnant or peripartum women with COVID-19 ARDS with ECMO, all surviving and suffering no major complications from ECMO. Our case series demonstrates high-maternal survival rates with ECMO support in the management of COVID-19 associated severe ARDS, highlighting that these pregnant and postpartum patients should be supported with ECMO during this pandemic. ASAIO Journal 2021; 67;132–136

Key Words: ECMO, extracorporeal membrane oxygenation, COVID, COVID-19, ARDS, pregnancy, peripartum

The pandemic associated with coronavirus SARS-CoV-2 and related clinical disease, COVID-19, has affected over 38 million people worldwide with over one million deaths.1 The hormonal, cardiovascular physiology, and immunomodulatory changes during pregnancy increase susceptibility to respiratory infections and may predispose to severe presentations of the disease.2,3 Additionally, reports of severe COVID-19 infections in pregnant and peripartum women and the fetal effects are emerging.2,4-7

Extracorporeal membrane oxygenation (ECMO) is an invasive support strategy for cardiac, respiratory, or combined cardiorespiratory failure when conventional treatment options have failed. ECMO has been successfully deployed for the management of critical illness in pregnant and postpartum patients, including during the previous pandemic.5-10 The use of ECMO for acute respiratory distress syndrome (ARDS) during the H1N1 pandemic saved many maternal and fetal lives, however, few studies report the use of pregnant and postpartum ECMO during this pandemic.1-8,11

Against this background, we present an international case series of pregnant and peripartum patients managed with ECMO for COVID-19 induced ARDS, with maternal data and data on fetuses and neonates as relevant.

Methods

Pregnant and postpartum patients with a polymerase chain reaction confirmed for SARS-CoV-2 infection supported with ECMO were identified by the collaborating institutions from February until September 2020. Descriptive statistical methods included median (minimum-maximum range) and frequency, n (%). Demographics, maternal pre-ECMO, ECMO characteristics, and neonatal outcomes were described. Adverse events during the ECMO course were also identified. Individual IRB approval was obtained by the collaborating institutions.

Results

Our cohort includes nine patients with median age 30 years (range 22–43 years), five of whom were within 48 hours postpartum, two peripartum, and two pregnant at the time of ECMO initiation. All but two patients reported respiratory symptoms of COVID-19 during the third trimester. All patients had severe ARDS with a median PaO2/FiO2 (PF ratio) of 62 mm Hg (54–100 mm Hg) managed with invasive mechanical ventilation, 5 (56%) with inhaled epoprostenol, and 6 (67%) with prone positioning. Specific COVID-19 therapies before ECMO included remdesivir 4 (44%), ribavirin/lopinavir 2 (22%), convalescent plasma therapy 4 (44%), hydroxychloroquine 4 (44%), azithromycin 6 (67%), anticytokine 2 (22%), and glucocorticoids 5 (56%). Table 1 summarizes maternal characteristics, including comorbidities and COVID-19-related symptoms and therapies.

The median RESP score was 4 [1–6] before ECMO cannulation.12 All patients received venovenous ECMO support, one concurrently with an intra-aortic balloon pump due to elevated left ventricular end-diastolic pressure and signs of biventricular dysfunction. ECMO cannulation strategies varied with three patients undergoing femoral-femoral, three with femoral-internal jugular configuration, and three with
Table 1. Maternal Characteristics

Center	patient 1	patient 2	patient 3	patient 4	patient 5	patient 6	patient 7	patient 8	patient 9	
Maternal factors										
Age (years)	28	30	22	27	34	30	30	36	43	
Race	Hispanic	Hispanic	Caucasian	African-American	Patient	Declined	Hispanic	Indian	African-American	Caucasian
Weight (kg)	90.7	100.0	70.0	63.2	72.0	88.5	70.0	94.5	117.1	
Comorbidities	Obesity	Obesity	None	None	Obesity	None	Obesity	None	Obesity	
Pregnancy-related comorbidities	None	Hypothyroidism	None	None	Tonic-clonic seizures	None	None	None	Placenta previa Succenturate placental lobe	
Maternal COVID-19										
Symptom onset (days)	7	6	8	4	4	7	#	17	6	
COVID-19 diagnosis	PCR									
CRP (mg/mL)	12.1	15.5	6.7	#	28.94	69.1	20.9	169.5	#	
White-cell count	7.45	7.8	8.16	4.96	41.0	7.4	16.6	26.8	12.9	
LDH (U/L)	221	486	1,100	444	664	296	459	834	#	
Troponin (ng/mL)	<0.006	<0.006	6.5	<0.03	0.059	#	0.021	0.083	#	
Ferritin (ng/mL)	77	429	72	77.7	588	72	#	#	#	
D-Dimer (mcg/mL)	1.34	4.63	15.25	2.20	2.38	0.502	#	3.91	12.1	
Fibrinogen (mg/dL)	586	537	447	540	765	#	596	1,266	640	
Echo ejection	60%	60%, RV enlarged	40-45%	Normal EF						
Invasive ventilation	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
PEEP/plateau (cm H2O)	12 / 30	14 / 30	14 / 31	16 / 29	10 / 28	19 / 28	15 / 34	16/30	16/30	
PF ratio prior cannulation	56	55	69	66	100	66	60	54	62	
Inhaled nitric oxide	No									
Inhaled prostacyclin	Yes	Yes	Yes	No	No	No	Yes	No	Yes	
Prone positioning	Yes	Yes	Yes	No	No	Yes	No	Yes	No	
COVID-19 targeted therapy before ECMO	1. HCL	1. HCL	1. HCL	Convalescent plasma	1. Azithromycin	1. Remdesivir	1. HCL	1. Remdesivir	Dexamethasone	
2. Azithromycin	2. Azithromycin	2. Azithromycin	3. Convalescent plasma	2. Remdesivir	2. Lopinavir	2. Azithromycin	3. Dexamethasone			
3. Tocilizumab	3. Tocilizumab	3. Tocilizumab	4. Convalescent plasma	Remdesivir	3. Remdesivir					
4. Convalescent plasma	4. Convalescent plasma	4. Tocilizumab								
Systemic steroids	Yes	Yes	Yes	No	No	No	Yes	Yes		
Gravida/Para	4/2	2/1	1/1	3/1	1/0	4/3	1/0	5/4	1/0	
Gestational age	30 + 3	35 + 2	29	33	30	37 + 3	25 + 2	32 + 6	32 + 6	
Delivery	CS	CS	CS	#	CS	CS	CS	CS	CS	

Data not available.

CAD, coronary artery disease; CS, cesarean section; HCL, hydroxychloroquine; HTN, arterial hypertension; PCR, Polymerase chain reaction; PEEP, positive end expiratory pressure; PF ratio, PaO2/FiO2; RV, right ventricle; SLE, systemic lupus erythematosus.
Before hospital discharge. One newborn died among all but one were premature, less than 37 weeks gestation. All newborns were delivered via cesarean section and all but one were premature, less than 37 weeks gestation. Evaluation of the two fetuses for the two patients supported with ECMO for COVID-19 ARDS in peripartum patients remained bleeding. Two of our patients experienced minor bleeding but no major complications during ECMO, alike to the two cases reported. The most common complication reported in ECMO for COVID-19 ARDS was circuit change (15%), which mirrors our complication rate for circuit/oxygenator cloting (22%). Circuit thrombosis may be more common as a result of the combination of pathophysiological alterations of hemostasis during pregnancy, and the anticoagulation protocols, which were the standard practice of each institution and not modified for pregnancy nor COVID-19. Fortunately, vertical transmission of COVID-19 from mother to fetus is rarely reported. None of our infants contracted COVID-19. The majority of our infants were premature, similar to other reports. Not previously reported, the majority of these infants required admission to intensive care, 71% required mechanical ventilation, and one infant is still admitted, and receiving noninvasive positive pressure ventilation. Despite a perilous gestation, the majority of our infants survived.

We recognize that our data and interpretation are limited by the small sample size. However, during this unprecedented pandemic as management strategies and therapies are continually evolving, we felt it important to share the data to help physicians at the bedside.
Table 2. ECMO Characteristics

Patient/Center	1/A	2/A	3/B	4/C	5/D	6/E	7/F	8/B	9/C	
Cannulation timing	Postpartum	Postpartum	Postpartum	Pregnancy	Postpartum	At delivery	Postpartum	At delivery	Pregnancy	
Cannulation type	VV									
PF ratio prior & RESP score¹	56	55	69	66	100	66	60	62		
Cannulation location	Fem (25F)→Fem (21F)	Fem (19F)→Fem (21F)	Fem (25F)→RU-Dual Lumen (31F)	Fem (23F)→RU (20F)	Fem (25F)→RU (19F)	RU – Dual Lumen (31F)	Fem (29F)→RIJ (24F)	RIJ – Dual Lumen (31F)		
Anticoagulation on ECMO	Heparin, changed to Bivalirudin due circuit clothing with therapeutic heparin	Heparin, changed to Bivalirudin (suspicion of HIT)	Heparin	Heparin	Heparin	Heparin	Heparin	Heparin		
Anticoagulation parameters	PTT (60–90s)	PTT (60–90s)	PTT (60–90s)/ Anti-Xa (0.25–0.3)/TEG (R) 2–3 baseline	PTT (60–90s)/ Anti-Xa (0.25–0.3)/TEG (R) 2–3 baseline	Anti-Xa (0.2–0.4)	PTT/TEG (various aims)	PTT (60–90s)/ Anti-Xa (0.25–0.3)/TEG (R) 2–3 baseline	PTT (60–90s)/ Anti-Xa (0.25–0.3)/TEG (R) 2–3 baseline		
Complications on ECMO	1. Circuit clotted on Heparin	1. Inotropes used	1. Vasodilators used	1. Surgical site bleeding	1. Remdesivir continued from before ECMO	1. Remdesivir—continued from before ECMO	1. Remdesivir—continued from before ECMO	None		
	2. Transient AKI	Right subclavian nerve high-grade stretch injury with foot drop	SIADH	Bacterial pneumonia	Convalescent plasma	Convalescent plasma	Convalescent plasma	None		
	3. Oxygenator changed for fibrin deposition		CINMP	Oxygenator clotted				None		
ECMO duration (days)	9	11	7	9	10	6	13	57	14	
Weaned off ECMO	Yes									
COVID-19 targeted therapy on ECMO	Remdesivir (started pre-ECMO)	Ribavirin	Placebo arm—Remdesivir (Remdesivir after study unblinded started after decannulation)	Remdesivir—continued from before ECMO	Cytosorb	Systemic steroids				
	Ribavirin	Convalescent plasma RCT	Convalescent plasma	Systemic steroids	Convalescent plasma					
Post ECMO complications	Bilateral lower extremities DVT (former ECMO site)	Vaginal bleeding	None	None	None	None	None	1. Left common femoral vein DVT (former ECMO site)	GBS	None
Maternal survival to hospital discharge	Yes	Recannulation 15 days after decannulation, 2nd ECMO run 10 days in duration, vented via trach	Pending	Pending						

¹Data not available.

AKI, acute kidney injury; CINMP, critical illness polyneuropathy and myopathy; Fem, femoral vein; GBS, Guillain–Barré syndrome; HIT, heparin-Induced thrombocytopenia; RIJ, right internal jugular vein; SIADH, syndrome of inappropriate antidiuretic hormone.
Our case series demonstrates excellent maternal and neonatal survival rates and supports the successful use of respiratory ECMO in the management of COVID-19 associated severe ARDS in pregnant and postpartum patients at high volume ECMO centers. As COVID-19 continues to impact thousands of patients worldwide daily, and despite limited data and resources, pregnancy should not be considered a contraindication for ECMO support for COVID-19 ARDS.

References

1. World Health Organization (WHO): Coronavirus disease (COVID-19) dashboard. 2020. Available at https://covid19.who.int/. Accessed October 11, 2020.
2. Chen YH, Keller J, Wang IT, Lin CC, Herrng-Ching L: Pneumonia and pregnancy outcomes: A nationwide population-based study. *Am J Obstet Gynecol* 207: e1–e7, 2012.
3. Center for Disease Control and Prevention (CDC): Data on COVID-19 during pregnancy. 2020. Available at https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/special-populations/pregnancy-data-on-covid-19.html. Accessed October 11, 2020.
4. Kayem G, Lecarpentier E, Deruelle P, et al: Successful use of extracorporeal membrane oxygenation postpartum as rescue therapy in a woman with COVID-19. *J Cardiothorac Vasc Anesth* 1–4, 2020.
5. Fiore A, Piscitelli M, Adodo DK, et al: Successful use of extracorporeal membrane oxygenation postpartum for COVID-19. *Heart Lung* 30: 33–36, 2020.
6. Hou L, Li M, Guo K, et al: First successful treatment of a COVID-19 pregnant woman with severe ARDS by combining early mechanical ventilation and ECMO. *Heart Lung* 50: 33–36, 2020.
7. Knight M, Bunch K, Voukdon N, et al: UK Obstetric Surveillance System SARS-CoV-2 Infection in Pregnancy Collaborative Group: Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: National population based cohort study. *BMJ* 369: m2107, 2020.
8. Nair P, Davies AR, Beca J, et al: Extracorporeal membrane oxygenation for severe ARDS in pregnant and postpartum women during the 2009 H1N1 pandemic. *Intensive Care Med* 37: 648–654, 2011.
9. Naoum EE, Chalupka A, Haft J, et al: Extracorporeal life support in pregnancy: A systematic review. *J Am Heart Assoc* 9: e016072, 2020.
10. Ramanathan K, Tan CS, Rycus P, et al: Extracorporeal membrane oxygenation in pregnancy: An analysis of the extracorporeal life support organization registry. *Crit Care Med* 48: 696–703, 2020.
11. Barbaro RP, MacLaren G, Boonstra PS, et al: Extracorporeal Life Support Organization: Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the extracorporeal life support organization registry. *Lancet* 396: 1071–1078, 2020.
12. Schmidt M, Bailey M, Sheldrake J, et al: Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. *Am J Respir Crit Care Med* 189: 1374–1382, 2014.
13. Fan E, Beitler J, Broach L, et al: COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? *Lancet Respir Med* 8: 816–821, 2020.
14. Bikash RR, Trikha A: Prone position ventilation in pregnancy: Concerns and evidence. *J Obst Anaesth Crit Care* 8: 7–9, 2018.
15. Dumitriu D, Emeruwa UN, Hanit E, et al: Outcomes of neonates born to mothers with severe acute respiratory syndrome coronavirus 2 infection at a large medical center in New York City (published online ahead of print October 12, 2020). *JAMA Pediatr* e204298, 2020. doi:10.1001/jamapediatrics.2020.4298.