Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk

Citation for published version:
Ehret, GB, Munroe, PB, Rice, KM, Bochud, M, Johnson, AD, Chasman, DI, Smith, AV, Tobin, MD, Verwoert, GC, Hwang, S-J, Pihur, V, Vollenweider, P, O'Reilly, PF, Amin, N, Bragg-Gresham, JL, Teumer, A, Glazer, NL, Launer, L, Zhao, JH, Aulchenko, Y, Heath, S, Söber, S, Parsa, A, Luan, J, Arora, P, Dehghan, A, Zhang, F, Lucas, G, Hicks, AA, Jackson, AU, Peden, JF, Tanaka, T, Wild, SH, Rudan, I, Igl, W, Milaneschi, Y, Parker, AN, Fava, C, Chambers, JC, Fox, ER, Kumari, M, Go, MJ, van der Harst, P, Kao, WHL, Sjögren, M, Vitart, V, Campbell, H, Hayward, C, Wright, AF, Wilson, JF & International Consortium for Blood Pressure Genome-Wide Association Studies 2011, 'Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk', Nature, vol. 478, no. 7367, pp. 103-109.
https://doi.org/10.1038/nature10405

Digital Object Identifier (DOI):
10.1038/nature10405

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature

Publisher Rights Statement:
© 2011 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Genetic Variants in Novel Pathways Influence Blood Pressure and Cardiovascular Disease Risk

The International Consortium for Blood Pressure Genome-Wide Association Studies

Abstract

Blood pressure (BP) is a heritable trait\(^1\) influenced by multiple biological pathways and is responsive to environmental stimuli. Over one billion people worldwide have hypertension (BP ≥140 mm Hg systolic [SBP] or ≥90 mm Hg diastolic [DBP])\(^2\). Even small increments in BP are associated with increased risk of cardiovascular events\(^3\). This genome-wide association study of SBP and DBP, which used a multi-stage design in 200,000 individuals of European descent, identified 16 novel loci: six of these loci contain genes previously known or suspected to regulate BP (GUCY1A3-GUCY1B3; NPR3-C5orf23; ADM; FURIN-FES; GOSR2; GNAS-EDN3); the other 10 provide new clues to BP physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke, and coronary artery disease, but not kidney disease or kidney function. We also observed associations with BP in East Asian, South Asian, and African ancestry individuals. Our findings provide new insights into the genetics and biology of BP, and suggest novel potential therapeutic pathways for cardiovascular disease prevention.

Genetic approaches have advanced the understanding of biological pathways underlying inter-individual variation in BP. For example, studies of rare Mendelian BP disorders have identified multiple defects in renal sodium handling pathways\(^4\). More recently two genome-wide association studies (GWAS), each of >25,000 individuals of European-ancestry, identified 13 loci associated with SBP, DBP, and hypertension\(^5,6\). We now report results of a new meta-analysis of GWAS data that includes staged follow-up genotyping to identify additional BP loci.

Primary analyses evaluated associations between 2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and SBP and DBP in 69,395 individuals of European ancestry from 29 studies (Supplementary Materials Sections 1–3, Supplementary Tables 1–2). Following GWAS meta-analysis, we conducted a three-stage validation experiment that made efficient use of available genotyping resources, to follow up top signals in up to 133,661 additional individuals of European descent (Supplementary Fig. 1 and Supplementary Materials Section 4). Twenty-nine independent SNPs at 28 loci were significantly associated with SBP, DBP, or both in the meta-analysis combining discovery and follow up data (Fig. 1, Table 1, Supplementary Figs 2–3, Supplementary Tables 3–5). All 29 SNPs attained association \(P < 5 \times 10^{-9}\), an order of magnitude beyond the standard genome-wide significance level for a single stage experiment (Table 1).

Sixteen of these 29 associations were novel (Table 1). Two associations were near the FURIN and GOSR2 genes; prior targeted analyses of variants in these genes suggested they

Note added in proof: Since this manuscript was submitted, Kato et al published a BP GWAS in East Asians that identified a SNP highly correlated to the SNP we report at the NPR3-c5orf23 locus\(^8\).

Author contributions

Full author contributions and roles are listed in the Supplementary Materials Section 19.
may be BP loci7,8. At the \textit{CACNB2} locus we validated association for a previously reported6 SNP rs4373814 and detected a novel independent association for rs1813353 (pairwise r^2 =0.015 in HapMap CEU). Of our 13 previously reported associations5,6, only the association at \textit{PLCD3} was not supported by the current results (Supplementary Table 4). Some of the associations are in or near genes involved in pathways known to influence BP (\textit{NPR3, GUCY1A3-GUCY1B3, ADM, GNAS-EDN3, NPPA-NPPB,} and \textit{CYP17A1}; Supplementary Fig. 4). Twenty-two of the 28 loci did not contain genes that were \textit{a priori} strong biological candidates.

As expected from prior BP GWAS results, the effects of the novel variants on SBP and DBP were small (Fig. 1 and Table 1). For all variants, the observed directions of effects were concordant for SBP, DBP, and hypertension (Fig. 1, Table 1, Supplementary Fig. 3). Among the genes at the genome-wide significant loci, only \textit{CYP17A1}, previously implicated in Mendelian congenital adrenal hyperplasia and hypertension, is known to harbour rare variants that have large effects on BP9.

We performed several analyses to identify potential causal alleles and mechanisms. First, we looked up the 29 genome-wide significant index SNPs and their close proxies (r^2>0.8) among \textit{cis}-acting expression SNP (eSNP) results from multiple tissues (Supplementary Materials Section 5). For 13/29 index SNPs, we found association between nearby eSNP variants and expression level of at least one gene transcript (10^{-4} > p > 10^{-51}, Supplementary Table 6). In 5 cases, the index BP SNP and the best eSNP from a genome-wide survey were identical, highlighting potential mediators of the SNP-BP associations.

Second, because changes in protein sequence are strong \textit{a priori} candidates to be functional, we sought non-synonymous coding SNPs that were in high LD (r^2 >0.8) with the 29 index SNPs. We identified such SNPs at 8 loci (Table 1, Supplementary Materials Section 6, Supplementary Table 7). In addition we performed analyses testing for differences in genetic effect according to body mass index (BMI) or sex, and analyses of copy number variants, pathway enrichment, and metabolomic data, but we did not find any statistically significant results (Supplementary Materials Sections 7–9, Supplementary Tables 8–10).

We evaluated whether the BP variants we identified in Europeans were associated with BP in individuals of East Asian (N=29,719), South Asian (N=23,977), and African (N=19,775) ancestries (Table 1, Supplementary Tables 11–13). We found significant associations in individuals of East Asian ancestry for SNPs at 9 loci and in individuals of South Asian ancestry for SNPs at 6 loci; some have been reported previously (Supplementary Tables 12 and 15). The lack of significant association for individual SNPs may reflect small sample sizes, differences in allele frequencies or LD patterns, imprecise imputation for some ancestries using existing reference samples, or a genuinely different underlying genetic architecture. Because of limited power to detect effects of individual variants in the smaller non-European samples, we created genetic risk scores for SBP and DBP incorporating all 29 BP variants weighted according to effect sizes observed in the European samples. In each non-European ancestry group, risk scores were strongly associated with SBP ($P=1.1\times10^{-40}$ in East Asian, $P=2.9\times10^{-13}$ in South Asian, $P=9.8\times10^{-14}$ in African ancestry individuals) and DBP ($P=2.9\times10^{-48}$, $P=9.5\times10^{-15}$, and $P=5.3\times10^{-5}$, respectively; Supplementary Table 13).

We also created a genetic risk score to assess association of the variants in aggregate with hypertension and with clinical measures of hypertensive complications including left ventricular mass, left ventricular wall thickness, incident heart failure, incident and prevalent stroke, prevalent coronary artery disease (CAD), kidney disease, and measures of kidney function, using results from other GWAS consortia (Table 2, Supplementary Materials Sections 10–11, Supplementary Table 14). The risk score was weighted using the average of

\textit{Nature}. Author manuscript; available in PMC 2012 May 01.
SBP and DBP effects for the 29 SNPs. In an independent sample of 23,294 women10, an increase of 1 standard deviation in the genetic risk score was associated with a 21% increase in the odds of hypertension (95% CI 19\%–28\%; Table 2, Supplementary Table 14). Among individuals in the top decile of the risk score, the prevalence of hypertension was 29\% compared with 16\% in the bottom decile (odds ratio 2.09, 95\% CI 1.86–2.36). Similar results were observed in an independent hypertension case-control sample (Table 2). In our study, individuals in the top compared to bottom quintiles of genetic risk score differed by 4.6 mm Hg SBP and 3.0 mm Hg DBP, differences that approach population-averaged BP treatment effects for a single antihypertensive agent11. Epidemiologic data have shown that differences in SBP and DBP of this magnitude, across the population range of BP, are associated with an increase in cardiovascular disease risk3. Consistent with this and in line with findings from randomized trials of BP-lowering medication in hypertensive patients12,13, the genetic risk score was positively associated with left ventricular wall thickness ($P=6.0\times10^{-6}$), occurrence of stroke ($P=3.3\times10^{-5}$) and CAD ($P=8.1\times10^{-29}$). The same genetic risk score was not, however, significantly associated with chronic kidney disease or measures of kidney function, even though these renal outcomes were available in a similar sample size as for the other outcomes (Table 2). The absence of association with kidney phenotypes could be explained by a weaker causal relation of BP with kidney phenotypes than with CAD and stroke. This finding is consistent with the mismatch between observational data that show a positive association of BP with kidney disease, and clinical trial data that show inconsistent evidence of benefit of BP lowering on kidney disease prevention in patients with hypertension14. Thus, several lines of evidence converge to suggest that BP elevation may in part be a consequence rather than a cause of sub-clinical kidney disease.

Our discovery meta-analysis (Supplementary Fig. 2) suggests an excess of modestly significant ($10^{-5} <P <10^{-2}$) associations likely arising from common BP variants of small effect. By dividing our principal GWAS dataset into non-overlapping discovery (N≈56,000) and validation (N≈14,000) subsets, we found robust evidence for the existence of such undetected common variants (Supplementary Fig. 5, Supplementary Materials Section 12). We estimate15 that there are 116 (95\% CI 57–174) independent BP variants with effect sizes similar to those reported here, which collectively explain ≈2.2\% of the phenotypic variance for SBP and DBP, compared with 0.9\% explained by the 29 associations discovered thus far (Supplementary Fig. 6, Supplementary Materials Section 13).

Most of the 28 BP loci harbour multiple genes (Supplementary Table 15, Supplementary Fig. 4), and although substantial research is required to identify the specific genes and variants responsible for these associations, several loci contain highly plausible biological candidates. The NPPA and NPPB genes at the MTHFR-NPPB locus encode precursors for atrial- and B-type natriuretic peptides (ANP, BNP), and previous work has identified SNPs, modestly correlated with our index SNP at this locus, that are associated with plasma ANP, BNP, and BP16. We found the index SNP at this locus was associated with opposite effects on BP and on ANP/BNP levels, consistent with a model in which the variants act through increased ANP/BNP production to lower BP16 (Supplementary Materials Section 14).

Two other loci identified in the current study harbour genes involved in natriuretic peptide and related nitric oxide signalling pathways,17,18 both of which act to regulate cyclic guanosine monophosphate (cGMP). The first locus contains NPR3, which encodes the natriuretic peptide clearance receptor (NPR-C). NPR3 knockout mice exhibit reduced clearance of circulating natriuretic peptides and lower BP19. The second locus includes GUCY1A3 and GUCY1B3, encoding the alpha and beta subunits of soluble guanylate cyclase (sGC); knockout of either gene in murine models results in hypertension20.

\textit{Nature}. Author manuscript; available in PMC 2012 May 01.
Another locus contains *ADM*, encoding adrenomedullin, which has natriuretic, vasodilatory, and BP-lowering properties\(^\text{21}\). At the *GNAS-EDN3* locus, *ZNF831* is closest to the index SNP, but *GNAS* and *EDN3* are two nearby compelling biological candidates (Supplementary Fig. 4, Supplementary Table 15).

We identified two loci with plausible connections to BP via genes implicated in renal physiology or kidney disease. At the first locus, *SLC4A7* is an electro-neutral sodium bicarbonate co-transporter expressed in the nephron and in vascular smooth muscle\(^\text{22}\). At the second locus, *PLCE1* (phospholipase-C-epsilon-1 isoform) is important for normal podocyte development in the glomerulus; sequence variation in *PLCE1* has been implicated in familial nephrotic syndromes and end-stage kidney disease\(^\text{23}\).

Missense variants in two genes involved in metal ion transport were associated with BP in our study. The first encodes a His/Asp change at amino acid 63 (*H63D*) in *HFE* and is a low penetrance allele for hereditary hemochromatosis\(^\text{24}\). The second is an Ala/Thr polymorphism located in exon 7 of *SLC39A8*, which encodes a zinc transporter that also transports cadmium and manganese\(^\text{25}\). The same allele of *SLC39A8* associated with BP in our study has recently been associated with high-density lipoprotein (HDL) cholesterol levels\(^\text{26}\) and BMI\(^\text{27}\) (Supplementary Table 15).

In conclusion, we have shown that 29 independent genetic variants influence BP in people of European ancestry. The variants reside in 28 loci, 16 of which were novel, and we confirmed association of several of them in individuals of non-European ancestry. A risk score derived from the 29 variants was significantly associated with BP-related organ damage and clinical cardiovascular disease, but not kidney disease. These loci improve our understanding of the genetic architecture of BP, provide new biological insights into BP control and may identify novel targets for the treatment of hypertension and the prevention of cardiovascular disease.

Methods summary

Supplementary Materials provide complete methods and include the following sections: study recruitment and phenotyping, adjustment for antihypertensive medications, genotyping, data quality control, genotype imputation, within-cohort association analyses, meta-analyses of discovery and validation stages, stratified analyses by sex and BMI, identification of eSNPs and nsSNPs, metabolomic and lipidomic analyses, CNV analyses, pathway analyses, analyses for non-European ancestries, association of a risk score with hypertension and cardiovascular disease, estimation of numbers of undiscovered variants, measurement of natriuretic peptides, and brief literature reviews and GWAS database lookups of all validated BP loci.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

A number of the participating studies and authors are members of the CHARGE and Global BPgen consortia. Many funding mechanisms by NIH/NHLBI, European, and private funding agencies contributed to this work and a full list is provided in Section 21 of the Supplementary Materials.
References

1. Levy D, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension. 2000; 36:477–483. [PubMed: 11040222]

2. Kearney PM, et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005; 365:217–223. [PubMed: 15652604]

3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002; 360:1903–1913. [PubMed: 12493255]

4. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001; 104:545–556. [PubMed: 11239411]

5. Newton-Cheh C, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009; 41:666–676. [PubMed: 19430483]

6. Levy D, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009; 41:677–687. [PubMed: 19430479]

7. Meyer TE, et al. GOSR2 Lys67Arg is associated with hypertension in whites. Am J Hypertens. 2009; 22:163–168. [PubMed: 19057520]

8. Li N, et al. Associations between genetic variations in the FURIN gene and hypertension. BMC Med Genet. 2010; 11:124. [PubMed: 20707915]

9. Mussig K, et al. 17alpha-hydroxylase/17,20-lyase deficiency caused by a novel homozygous mutation (Y27Stop) in the cytochrome CYP17 gene. J Clin Endocrinol Metab. 2005; 90:4362–4365. [PubMed: 15811924]

10. Ridker PM, et al. Rationale, design, and methodology of the Women’s Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women. Clin Chem. 2008; 54:249–255. [PubMed: 18070814]

11. Burt VL, et al. Trends in the prevalence, awareness, treatment, and control of hypertension in the adult US population. Data from the health examination surveys, 1960 to 1991. Hypertension. 1995; 26:60–69. [PubMed: 7607734]

12. Turnbull F, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ. 2008; 336:1121–1123. [PubMed: 18480116]

13. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009; 338:b1665. [PubMed: 19454737]

14. Lewis JB. Blood pressure control in chronic kidney disease: is less really more? J Am Soc Nephrol. 2010; 21:1086–1092. [PubMed: 20576804]

15. Park JH, et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet. 2010; 42:570–575. [PubMed: 20562874]

16. Newton-Cheh C, et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet. 2009; 41:348–353. [PubMed: 19219041]

17. Schenk DB, et al. Purification and subunit composition of atrial natriuretic peptide receptor. Proc Natl Acad Sci U S A. 1987; 84:1521–1525. [PubMed: 2882506]

18. Schmidt HH, Walter U. NO at work. Cell. 1994; 78:919–925. [PubMed: 7923361]

19. Matsukawa N, et al. The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system. Proc Natl Acad Sci U S A. 1999; 96:7403–7408. [PubMed: 10377427]

20. Friebel A, Mergia E, Dangel O, Lange A, Koesling D. Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci U S A. 2007; 104:7699–7704. [PubMed: 17452643]

21. Ishimitsu T, Ono H, Minami J, Matsuoka H. Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther. 2006; 111:909–927. [PubMed: 16616959]
22. Pushkin A, et al. Cloning, tissue distribution, genomic organization, and functional characterization of NBC3, a new member of the sodium bicarbonate cotransporter family. J Biol Chem. 1999; 274:16569–16575. [PubMed: 10347222]
23. Hinkes B, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006; 38:1397–1405. [PubMed: 17086182]
24. Feder JN, et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet. 1996; 13:399–408. [PubMed: 8696333]
25. He L, Wang B, Hay EB, Nebert DW. Discovery of ZIP transporters that participate in cadmium damage to testis and kidney. Toxicology and applied pharmacology. 2009; 238:250–257. [PubMed: 19265717]
26. Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010; 466:707–713. [PubMed: 20686565]
27. Speliotes EK, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010; 42:937–948. [PubMed: 20935630]
28. Kato N, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011; 43:531–538. [PubMed: 21572416]

Authors

Georg B. Ehret1, 2, 3*, Patricia B. Munroe4*#, Kenneth M. Rice5*, Murielle Bochud2*, Andrew D. Johnson6, 7*, Daniel I. Chasman8, 9*, Albert V. Smith10, 11*, Martin D. Tobin12, Germaine C. Verwoert13, 14, 15, Shih-Jen Hwang6, 16, 17, Vasyi Pihur1, Peter Vollenweider17, Paul F. O’Reilly18, Najaf Amin13, Jennifer L. Bragg-Gresham19, Alexander Teumer20, Nicole L. Glazer21, Lenore Launer22, Jing Hua Zhao23, Yuri Aulchenko13, Simon

1Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 17, 1005 Lausanne, Switzerland
3Cardiology, Department of Specialties of Internal Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
4contributed equally
5Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
6to whom correspondence should be addressed: aravinda@jhmi.edu; m.j.caulfield@qmul.ac.uk; levyd@nhlbi.nih.gov;
p.b.munroe@qmul.ac.uk; cnewtoncheh@partners.org
7Department of Biostatistics, University of Washington, Seattle, WA, USA
8Framingham Heart Study, Framingham, MA, USA
9National Heart Lung, and Blood Institute, Bethesda, MD, USA
10Division of Preventive Medicine, Brigham and Women’s Hospital, 900 Commonwealth Avenue East, Boston MA 02215, USA
11Harvard Medical School, Boston, MA, USA
12Icelandic Heart Association, Kopavogur, Iceland
13University of Iceland, Reykjavik, Iceland
14Department of Health Sciences, University of Leicester, University Rd, Leicester LE1 7RH, UK
15Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
16Center for Population Studies, National Heart Lung, and Blood Institute, Bethesda, MD, USA
17Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
18Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
19Center forStatistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48103, USA
20Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University Greifswald, 17487 Greifswald, Germany
21Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, USA
22Laboratory of Epidemiology, Demography, Biometry, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
23MRC Epidemiology Unit, Institute of Metabolic Science, Cambridge CB2 0QQ, UK

Nature. Author manuscript; available in PMC 2012 May 01.
Heath24, Siim Sõber25, Afshin Parsa26, Jian’an Luan23, Pankaj Arora27, Abbas Dehghan13, 14, 15, Feng Zhang28, Gavin Lucas29, Andrew A. Hicks30, Anne U. Jackson31, John F Peden32, Toshiko Tanaka33, Sarah H. Wild34, Igor Rudan35, 36, Wilmar IgI37, Yuri Milaneschi33, Alex N. Parker38, Cristiano Fava39, 40, John C. Chambers18, 41, Ervin R. Fox42, Meena Kumari43, Min Jin Ge44, Pim van der Harst45, Wen Hong Linda Kao46, Marketa Sjögren39, D. G. Vinay47, Myriam Alexander48, Yasuharu Tabara49, Sue Shaw-Hawkins4, Peter H. Whincup50, Yongmei Liu51, Gang Shi52, Johanna Kuusisto53, Bamidele Tayo54, Mark Seielstad55, 56, Xueling Sim57, Khanh-Dung Hoang Nguyen1, Terho Lehtimäki58, Giuseppe Matullo59, 60, Ying Wu61, Tom R. Gaunt62, N. Charlotte Onland-Moret63, 64, Matthew N. Cooper65, Carl G.P. Platou66, Elin Org25, Rebecca

24Centre National de Génotyping, Commissariat à L’Energie Atomique, Institut de Génomique, Evry, France
25Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
26University of Maryland School of Medicine, Baltimore, MD, USA, 21201, USA
27Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
28Department of Twin Research & Genetic Epidemiology, King’s College London, UK
29Cardiovascular Epidemiology and Genetics, Institut Municipal d’Investigacio Medica, Barcelona Biomedical Research Park, 88 Doctor Aiguader, 08033 Barcelona, Spain
30Institute of Genetic Medicine, European Academy Bozen/Bolzano (EURAC), Viale Druso 1, 39100 Bolzano, Italy - Affiliated Institute of the University of Lübeck, Germany
31Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, 48109, USA
32Department of Cardiovascular Medicine, The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
33Clinical Research Branch, National Institute on Aging, Baltimore MD 21250, USA
34Centre for Population Health Sciences, University of Edinburgh, EH89AG, UK
35Centre for Population Health Sciences and Institute of Genetics and Molecular Medicine, College of Medicine and Vet Medicine, University of Edinburgh, EH9 9AG, UK
36Croatian Centre for Global Health, University of Split, Croatia
37Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
38Amgen, 1 Kendall Square, Building 100, Cambridge, MA 02139, USA
39Department of Clinical Sciences, Lund University, Malmö, Sweden
40Department of Medicine, University of Verona, Italy
41Ealing Hospital, London, UB1 3HJ, UK
42Department of Medicine, University of Mississippi Medical Center, USA
43Genetic Epidemiology Group, Epidemiology and Public Health, UCL, London, WC1E 6BT, UK
44Centre for Genome Science, National Institute of Health, Seoul, Korea
45Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands
46Departments of Epidemiology and Medicine, Johns Hopkins University, Baltimore MD, USA
47Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad 500 007, India
48Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, UK
49Department of Basic Medical Research and Education, and Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
50Division of Community Health Sciences, St George’s University of London, London, SW17 0RE, UK
51Epidemiology & Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
52Division of Biostatistics and Department of Genetics, School of Medicine, Washington University in St. Louis, Saint Louis, Missouri 63110, USA
53Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
54Department of Preventive Medicine and Epidemiology, Loyola University Medical School, Maywood, IL, USA
55Department of Laboratory Medicine & Institute of Human Genetics, University of California San Francisco, 513 Parnassus Ave. San Francisco CA 94143, USA
56Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 138672, Singapore
57Centre for Molecular Epidemiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
58Department of Clinical Chemistry, University of Tampere and Tampere University Hospital, Tampere, 33521, Finland
59Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena 19, 10126, Turin, Italy
60Human Genetics Foundation (HUGFE), Via Nizza 52, 10126, Turin, Italy
61Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
62MRC Centre for Causal Analyses in Translational Epidemiology, School of Social & Community Medicine, University of Bristol, Bristol BS8 2BN, UK
63Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
64Complex Genetics Section, Department of Medical Genetics -DBG, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands

Nature. Author manuscript; available in PMC 2012 May 01.
Hardy, Santosh Dahgam, Jutta Palmen, Veronique Vitart, Peter S. Braund, Tatiana Kuznetsova, Cuno S.P.M. Uitterwaal, Adebowale Adeyemo, Walter Palmas, Harry Campbell, Barbara Ludwig, Ioanna Tzoulaki, Nicholette D. Palmer, CARDIoGRAM consortium, CKDGen Consortium, KidneyGen Consortium, CHARGE-HF consortium, Thor Aspelund, Melissa Garcia, Yen-Pei C. Chang, Jeffrey R. O’Connell, Nanette I. Steinle, Diederick E. Grobbee, Dan E. Arking, Sharon L. Kardia, Alanna C. Morrison, Samer Najjar, Wendy L. Mc Ardle, David Hadley, Morris J. Brown, John M. Connell, Aroon D. Hingorani, Ian N.M. Day, Debbie A. Lawlor, John P. B elly, Robert W. Lawrence, Robert Clarke, Rory Collins, Jemma C Hopewell, Halit Ongen, Albert W. Dreisbach, Yali Li, J. H. Young, Joshua C. Bis, Mika Kähönen, Jorma Vilkan, Linda S. Adair, Nanette R. Lee, Ming-Huei Chen, Matthias Olden, Cristian Pattaro, Judith A. Hoffman Bolton, Anna Köttgen, Sven Bergmann, Vincent Mooser, Nish Chaturvedi, Timothy M. Frayling.

65Centre for Genetic Epidemiology and Biostatistics, University of Western Australia, Crawley, WA, Australia
66HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, 7600 Levanger, Norway
67MRC Unit for Lifelong Health & Ageing, London, WC1B 5JU, UK
68Occupational and Environmental Medicine, Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
69Centre for Cardiovascular Genetics, University College London, London WC1E 6JF, UK
70MRC Human Genetics Unit and Institute of Genetics and Molecular Medicine, Edinburgh, EH2, UK
71Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK
72Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, LE3 9QP, UK
73Studies Coordinating Centre, Division of Hypertension and Cardiac Rehabilitation, Department of Cardiovascular Diseases, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Block D, Box 7001, 3000 Leuven, Belgium
74Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD 20892, USA
75Columbia University, NY, USA
76Department of Medicine III, Medical Faculty Carl Gustav Carus at the Technical University of Dresden, 01307 Dresden, Germany
77Epidemiology and Biostatistics, School of Public Health, Imperial College, London, W2 1PG, UK
78Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
79Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
80A list of consortium members is supplied in the Supplementary Materials
81Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
82Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas at Houston Health Science Center, 12 Herman Pressler, Suite 453E, Houston, TX 77030, USA
83Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA
84Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
85Washington Hospital Center, Division of Cardiology, Washington DC, USA
86ALSPAC Laboratory, University of Bristol, Bristol, BS8 2BN, UK
87Pediatric Epidemiology Laboratory Center, University of South Florida, Tampa, FL, USA
88Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
89University of Dundee, Ninewells Hospital & Medical School, Dundee, DD1 9SY, UK
90Genetic Epidemiology Group, Department of Epidemiology and Public Health, UCL, London WC1E 6BT, UK
91Pathology and Laboratory Medicine, University of Western Australia, Crawley, WA, Australia
92Molecular Genetics, PathWest Laboratory Medicine, Nedlands, WA, Australia
93Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, Oxford, OX3 7LF, UK
94Department of Epidemiology and Biostatistics, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
95Department of Medicine, Johns Hopkins University, Baltimore, USA
96Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, 33521, Finland
97Department of Medicine, University of Turku and Turku University Hospital, Turku, 20521, Finland
98Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
99Office of Population Studies Foundation, University of San Carlos, Talamban, Cebu City 6000, Philippines
100Department of Neurology and Framingham Heart Study, Boston University School of Medicine, Boston, MA, 02118, USA
101Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
102Department of Epidemiology and Preventive Medicine, University Medical Center Regensburg, 93053 Regensburg, Germany
103Department of Epidemiology, Johns Hopkins University, Baltimore MD, USA
104Renal Division, University Hospital Freiburg, Germany
105Department de Genétique Médicale, Université de Lausanne, 1015 Lausanne, Switzerland
106Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
107Division of Genetics, GlaxoSmithKline, Philadelphia, Pennsylvania 19101, USA
Tunde Salako147, Naoharu Iwai148, Yoshikuni Kita149, Toshio Ogihara150, Takayoshi Okubo149,151, Tomonori Okamura148, Hirotugu Ueshima152, Satoshi Umemura153, Susana Eyheramendy154, Thomas Meitinger155,156, H.-Erich Wichmann157,158,159, Yoon Shin Cho144, Hyung-Lae Kim145, Jong-Young Lee144, James Scott160, Joban S. Sehmi160,41, Weihua Zhang18, Bo Hedblad39, Peter Nilsson39, George Davey Smith62, Andrew Wong67, Narisu Narisu124, Alena Stančáková53, Leslie J. Raffel161, Jie Yao161, Sekar Kathiresan162,27, Chris O'Donnell163,27,9, Stephen M. Schwartz134, M. Arfan Ikram13,15, W. T. Longstreth Jr.164, Thomas H. Mosley165, Sudha Seshadri166, Nick R.G. Shrine12, Louise V. Wain12, Mario A. Morken124, Amy J. Swift124, Jaana Laitinen167, Paavo Zitting169, Jackie A. Cooper69, Steve E. Humphries69, John Danesh48, Asif Rasheed60, Anuj Goel32, Anders Hamsten171, Hugh Watkins32,27, Stephan J.L. Bakker172, Wiek H. van Gilst45, Charles S. Janipalli47, K. Radha Mani47, Chittaranjan S. Yajnik112, Albert Hofman13, Francesco U.S. Mattace-Raso13,14, Ben A. Oostra173, Ayse Demirkan13, Aaron Isaacs13, Fernando Rivadeneira13,14, Edward G Lakatta174, Marco Ortu175,176, Angelo Scuteri174, Mika Ala-Korpela177,178,179, Antti J Kangas177, Leon-Pekka Lyytikäinen58, Pasi Soiminen177,178, Taru Tukiainen180,181,177, Peter Würtz177,18,180, Rick Twee-Hee Ong56,57,182, Marcus Dör183, Heyo K. Kroemer184,

146Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston, Jamaica
147University of Ibadan, Ibadan, Nigeria
148Department of Genomic Medicine, and Department of Preventive Cardiology, National Cerebral and Cardiovascular Research Center, Saitama, 338-8585, Japan
149Department of Health Science, Shiga University of Medical Science, Otsu, 520-2192, Japan
150Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
151Tohoku University Graduate School of Pharmaceutical Sciences and Medicine, Sendai, 980-8578, Japan
152Lifestyle-related Disease Prevention Center, Shiga University of Medical Science, Otsu, 520-2192, Japan
153Department of Medical Science and Cardiological Medicine, Yokohama City University School of Medicine, Yokohama, 236-0004, Japan
154Department of Statistics, Pontificia Universidad Catolica de Chile, Vicuña Mackena 4860, Santiago, Chile
155Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
156Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
157Institute of Epidemiology, Helmholtz Zentrum Munich, German Research Centre for Environmental Health, 85764 Neuherberg, Germany
158Chair of Epidemiology, Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
159Klinikum Grosshadern, 81377 Munich, Germany
160National Heart and Lung Institute, Imperial College London, London, UK, W12 0HS, UK
161Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
162Medical Population Genetics, Broad Institute of Harvard and MIT, 5 Cambridge Center, Cambridge MA 02142, USA
163National Heart, Lung and Blood Institute and its Framingham Heart Study, 73 Mount Wayte Ave., Suite #2, Framingham, MA 01702, USA
164Department of Neurology and Medicine, University of Washington, Seattle, USA
165Department of Medicine (Geriatrics), University of Mississippi Medical Center, Jackson, MS, USA
166Department of Neurology, Boston University School of Medicine, USA
167Finnish Institute of Occupational Health, Finnish Institute of Occupational Health, Aapistie 1, 90220 Oulu, Finland
168Wellcome Trust Centre for Human Genetics, University of Oxford, UK
169Lapland Central Hospital, Department of Pathistics, Box 8041, 96101 Rovaniemi, Finland
170Center for Non-Communicable Diseases Karachi, Pakistan
171Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
172Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
173Department of Medical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
174Gerontology Research Center, National Institute on Aging, Baltimore, MD 21224, USA
175Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
176Unità Operativa Semplice Cardiologia, Divisione di Medicina, Presidio Ospedaliero Santa Barbara, Iglesias, Italy
177Computational Medicine Research Group, Institute of Clinical Medicine, University of Oulu and Biocenter Oulu, 90014 University of Oulu, Oulu, Finland
178NMR Metabonomics Laboratory, Department of Biosciences, University of Eastern Finland, 70211 Kuopio, Finland
179Department of Internal Medicine and Biocenter Oulu, Clinical Research Center, 90014 University of Oulu, Oulu, Finland
180Institute for Molecular Medicine Finland FIMM, 00014 University of Helsinki, Helsinki, Finland
181Department of Biomedical Engineering and Computational Science, School of Science and Technology, Aalto University, 00076 Aalto, Espoo, Finland

Nature. Author manuscript; available in PMC 2012 May 01.
Uwe Völker20, Henry Völcke185, Pilar Galan186, Serge Hercberg186, Mark Lathrop24, Diana Zelenika24, Panos Deloukas119, Massimo Mangino28, Tim D. Spector28, Guangju Zhai28, James F. Mescia187, Michael A. Nalls83, Pankaj Sharma188, Janos Terzic189, M. J. Kranthi Kumar47, Matthew Denniff71, Ewa Zukowska-Szczebonska190, Lynne E. Wagenknecht79, F. Gerald R. Fowkes191, Fadi J. Charchar192, Peter E.H. Schwarz193, Caroline Hayworth70, Xioping Guo161, Charles Rotimi74, Michiel L. Bots63, Eva Brand194, Nilesh J. Samani71, 72, Ozren Polasek195, Philippa J. Talmud69, Fredrik Nyberg68, 196, Diana Kuh67, Maris Laan25, Kristian Hveem66, Lyle J. Palmer197, 199, Yvonne T. van der Schouw63, Juan P. Casas199, Karen L. Mohlke61, Paolo Vineis200, 60, Olli Raitakari201, Santhi K. Ganesh202, Tien Y. Wong203, 204, E Shyong Tai205, 57, 206, Richard S. Cooper54, Markku Laakso35, Dabeeru C. Rao207, Tamara B. Harris32, Richard W. Morris208, Anna F. Dominiczak209, Mika Kivimaki210, Michael G. Marmot210, Tetsuro Miki49, Danish Saleheen170, 48, Giriraj R. Chandak47, Josef Coresh211, Gerjan Navis212, Veikko Salomaa125, Bok-Ghee Han44, Xiaofeng Zhu94, Jaspal S. Kooner61, 40, Olle Melander39, Paul M. Ridker2, 203, 204, 210, 211, Stefania Bandinelli214, Ulf B. Gyllensten37, Alan F. Wright70, James F. Wilson34, Luigi Ferrucci33, Martin Farrall32, Jaakko Tuomilehto215, 216, 217, 218, Peter P. Pramstaller30, 219, Roberto Elosoa29, 220, Nicole Soranzo119, 28, Eric J.G. Sijbrands13, 14.
David Altshuler,221,115, Ruth J.F. Loos,23, Alan R. Shuldiner,26,222, Christian Gieger,157, Pierre Meneton,223, Andre G. Uitterlinden,13,14,15, Nicholas J. Wareham,23, Vilmundur Gudnason,10,11, Jerome I. Rotter,161, Rainer Retting,224, Manuela Uda,175, David P. Strachan,50, Jacqueline C.M. Witteman,13,15, Anna-Liisa Hartikainen,225, Jacques S. Beckmann,105,226, Eric Boerwinkle,227, Ramachandran S. Vasan,6,228, Michael Boehnke,31, Martin G. Larson,6,229, Marjo-Riitta Järvelin,18,230,231,232,233, Bruce M. Psaty,21,135*, Gonçalo R Abecasis,19*, Aravinda Chakravarti,1*,#, Paul Elliott,18,233*, Cornelia M. van Duijn,13,234*, Christopher Newton-Cheh,27,115*,#, Daniel Levy,6,16,7*,#*, Mark J. Caulfield,4*,#*, Toby Johnson,4*
Fig. 1.
Genome-wide $-\log_{10}$ P-value plots and effects for significant loci.
Genome-wide $-\log_{10}$ P-value plots are shown for systolic (SBP; panel a) and diastolic (DBP; panel b). SNPs within loci reaching genome-wide significance are labeled in red for SBP and blue for DBP (± 2.5Mb of lowest P-value) and lowest P-values in the initial genome-wide analysis as well as the results of analysis including validation data are labeled separately. The lowest P-values in the initial GWAS are denoted as an X. The range of different sample sizes in the final meta-analysis including the validation data are indicated as: circle (96–140k), triangle (>140–180k), and diamond (>180–220k). SNPs near unconfirmed loci are in black. The horizontal dotted line is $P=2.5 \times 10^{-8}$. Panel c shows the effect size estimates and 95% confidence bars per BP-increasing allele of the 29 significant variants for SBP (red) and DBP (blue). Effect sizes are expressed in mmHg/allele. GUCY = GUCY1A3-GUCY1B3.
Table 1

Summary association results for 29 BP SNPs

Summary association statistics, based on combined discovery and follow-up data, for 29 independent SNPs in individuals of European ancestry are shown. New genome-wide significant findings (17 SNPs) are presented in the top half of the table, data on 12 previously published signals are presented in the lower half.

Locus	Index SNP	Chr	Position	CA/NCA	CAF	nsSNP	eSNP	SBP Beta	SBP P-value	SBP Effect in EA/SA/A	DBP Beta	DBP P-value	DBP Effect in EA/SA/A	HTN Beta	HTN P-value
MOV10	rs2932538	1	113,018,066	G/A	0.75	Y(p)	Y(p)	0.388	1.2×10^{-9}	$+/+/-$	0.24	9.9×10^{-10}	$+/+/-$	0.049	2.9×10^{-7}
SLC4A7	rs13082711	3	27,512,913	T/C	0.78	Y(p)	Y(p)	-0.315	1.5×10^{-6}	$-/-/+	-0.238	3.8×10^{-9}	$-/-/+	-0.035	3.6×10^{-4}
MECOM	rs419076	3	170,583,580	T/C	0.47	-	-	0.409	1.8×10^{-13}	$+/+/-$	0.241	2.1×10^{-12}	$+/+/-$	0.031	3.1×10^{-4}
SLC39A8	rs13107325	4	103,407,732	T/C	0.05	Y	Y(+)	-0.981	3.3×10^{-14}	$?/+/+$	-0.684	2.3×10^{-17}	$?/+/+$	-0.105	4.9×10^{-7}
GUCY1A3-GUCY1B3	rs13139571	4	156,864,963	C/A	0.76	-	-	0.321	1.2×10^{-6}	$+/-/+$	0.26	2.2×10^{-10}	$+/-/+$	0.042	2.5×10^{-5}
SPR3-C5orf23	rs1173771	5	32,850,785	G/A	0.6	-	-	0.504	1.8×10^{-16}	$+/+/+$	0.261	9.1×10^{-12}	$+/+/+$	0.062	3.2×10^{-10}
EIF1	rs11953630	5	157,777,980	T/C	0.37	-	-	-0.412	3.0×10^{-11}	$+/+/+$	-0.281	3.8×10^{-13}	$+/+/+$	-0.052	1.7×10^{-7}
HFE	rs1799945	6	26,199,158	G/C	0.14	Y	-	0.627	7.7×10^{-12}	$+/+/-$	0.457	1.5×10^{-15}	$+/+/-$	0.095	1.8×10^{-10}
BAT2-BAT5	rs805303	6	31,724,345	G/A	0.61	Y(p)	Y(+)	0.376	1.5×10^{-11}	$?-/+	0.228	3.0×10^{-11}	$?-/+	0.054	1.1×10^{-10}
CACNB2(5′)	rs4373814	10	18,449,978	G/C	0.55	-	-	-0.373	4.8×10^{-11}	$+/+/-$	-0.218	4.4×10^{-10}	$+/+/-$	-0.046	8.5×10^{-9}
PLCE1	rs932764	10	95,885,930	G/A	0.44	-	-	0.484	7.1×10^{-10}	$+/+/-$	0.185	8.1×10^{-7}	$+/+/-$	0.055	9.4×10^{-9}
ADM	rs7129220	11	10,307,114	G/A	0.89	-	-	-0.619	3.0×10^{-12}	$?-/+	-0.299	6.4×10^{-8}	$?-/+	-0.044	1.1×10^{-3}
FLJ32810-TMEM133	rs633185	11	100,098,748	G/C	0.28	-	-	-0.565	1.2×10^{-17}	$+/+/+$	-0.328	2.0×10^{-15}	$+/+/+$	-0.07	5.4×10^{-11}
FURIN-FES	rs2521501	15	89,238,392	T/A	0.31	Y(-)	-	0.65	5.2×10^{-19}	$+/+/-$	0.359	1.9×10^{-15}	$+/+/-$	0.059	7.0×10^{-7}
GOSR2	rs17608766	17	42,368,270	T/C	0.86	Y(+)	-	-0.556	1.1×10^{-10}	$+/+/-$	-0.129	0.017	$+/+/-$	-0.025	0.08
Locus	Index SNP	Chr	Position	CA/NCA	CAF	msSNP	eSNP	Beta	P-value	Effect in EA/SA/A	Beta	P-value	Effect in EA/SA/A	Beta	P-value
--------------	-----------	-----	----------	--------	---------	-------	----------	-------	---------	-------------------	-------	---------	-------------------	-------	---------
JAG1	rs1327235	20	10,917,030	G/A	0.46	-	-	0.34	1.9\(10^{-8}\)	+*/+/+	0.302	1.4\(10^{-15}\)	+*/+	0.034	4.6\(10^{-4}\)
GNAS-EDN3	rs6015450	20	57,184,512	G/A	0.12	Y(p)	-	0.896	3.9\(10^{-21}\)	?/+/?+	0.557	5.6\(10^{-21}\)	?/+/?+	0.11	4.2\(10^{-14}\)
MTHFR-NPPB	rs17367504	1	11,785,365	G/A	0.15	Y(−)	−0.903	8.7\(10^{-22}\)	+*/+	−0.547	3.5\(10^{-19}\)	+*/+	−0.103	2.3\(10^{-10}\)	
ULK4	rs3774372	3	41,832,418	T/C	0.83	Y	Y(+/−)	−0.067	0.39	−/+−/+	−0.367	9.0\(10^{-14}\)	+*/+	−0.017	0.18
FGF5	rs1458038	4	81,383,747	T/C	0.29	-	-	0.706	1.5\(10^{-21}\)	+?/+?+	0.457	8.5\(10^{-21}\)	+?/+?+	0.072	1.9\(10^{-7}\)
GACNB2(3')	rs1813353	10	18,747,454	T/C	0.68	Y	0.569	2.6\(10^{-12}\)	+?/??+	0.415	2.3\(10^{-15}\)	+?/??+	0.078	6.2\(10^{-10}\)	
C10orf107	rs4590817	10	63,137,559	G/C	0.84	Y(−)	0.646	4.0\(10^{-12}\)	−?/−?−	0.419	1.3\(10^{-12}\)	−?/−?−	0.096	9.8\(10^{-9}\)	
CYP17A1-NTRC	rs11191548	10	104,836,168	T/C	0.91	-	Y(−)	1.095	6.9\(10^{-30}\)	+?>+?+	0.464	9.4\(10^{-13}\)	+?>+?+	0.097	1.4\(10^{-5}\)
PLEKH7	rs381815	11	16,858,844	T/C	0.26	-	-	0.575	5.3\(10^{-11}\)	+?/+?+	0.348	5.3\(10^{-10}\)	+?/+?+	0.062	3.4\(10^{-6}\)
AQP2B1	rs17249754	12	88,584,717	G/A	0.84	-	-	0.928	1.8\(10^{-18}\)	+?+?−	0.522	1.2\(10^{-14}\)	+?+?−	0.126	1.1\(10^{-14}\}
G2B3	rs3184504	12	110,368,991	T/C	0.47	Y	Y(+)	0.598	3.8\(10^{-18}\)	−?/−+?−	0.448	3.6\(10^{-23}\)	−?/−+?−	0.056	2.6\(10^{-6}\}
DXS-TBX3	rs10850411	12	113,872,179	T/C	0.7	-	-	0.354	5.4\(10^{-8}\)	−?/−+?−	0.253	5.4\(10^{-10}\)	−?/−+?−	0.045	5.2\(10^{-6}\}
CYP1A1-ULK3	rs1378942	17	72,864,420	C/A	0.35	Y(+)	0.613	5.7\(10^{-21}\)	+?/+?+	0.416	2.7\(10^{-26}\)	+?/+?−	0.073	1.0\(10^{-8}\}	
ZNF652	rs12940887	17	44,757,806	T/C	0.38	Y(−)	0.362	1.8\(10^{-10}\)	−?/+?−	0.27	2.3\(10^{-14}\)	−?/+?−	0.046	1.2\(10^{-7}\}	

Y indicates the BP index SNP is a msSNP. Y(p) indicates a proxy SNP is a nsSNP. Y(+): indicates BP index SNP is the strongest known eSNP for a transcript; Y(−): indicates BP index SNP is an eSNP but not the strongest known eSNP for any transcript. Y(−): indicates BP index SNP is strongest known eSNP in a regional SNP-RT-PCR experiment. Y(p): indicates a proxy SNP (r^2 > 0.8) to BP SNP is an eSNP but not the strongest known eSNP. Observed effect directions in East Asian (EA), South Asian (SA), and African (A) ancestry individuals are coded + or − if concordant or discordant with directions in European ancestry results.

* denotes significance controlling the FDR at 5% over 58 tests per ancestry (Supplementary Tables 5 and 12). Effect size estimates (beta) correspond to mmHg per coded allele for SBP and DBP and ln(odd) per coded allele for HTN.

CA = coded allele; NCA = non-coded allele; CAF = coded allele frequency; ? denotes missing data. Genomic positions use NCBI Build 36 coordinates.
Table 2
Genetic risk score and cardiovascular outcome association results
Association of genetic risk score (using all 29 SNPs at 28 loci, parameterised using the average of SBP and DBP effects \(\frac{(SBP \, \text{effect} + DBP \, \text{effect})}{2}\) from the discovery analysis), tested in results from other GWAS consortia.

Phenotype	Source	Effect	SE	P-value	# SNPs	Contrast top vs. bottom	N case/control or total		
Blood pressure phenotypes		(per SD of genetic risk score)				quintiles	deciles		
SBP [mmHg]	WGHS	1.645	0.098	\(6.5 \times 10^{-63}\)	29	4.61	5.77 \((a)\)	23,294	
DBP [mmHg]	WGHS	1.057	0.067	\(8.4 \times 10^{-57}\)	29	2.96	3.71 \((a)\)	23,294	
Prevalent hypertension	WGHS	0.211	0.018	\(3.1 \times 10^{-33}\)	29	1.80	2.09 \((b)\)	5,018/18,276	
Prevalent hypertension	BRIGHT	0.287	0.031	\(7.7 \times 10^{-21}\)	29	2.23	2.74 \((b)\)	2,406/1,990	
Dichotomous endpoints									
Incident heart failure	CHARGE-HF	0.035	0.021	\(0.1\)	29	1.10	1.13 \((c)\)	2,526/18,400	
Incident stroke	NEURO-CHARGE	0.103	0.028	\(0.0002\)	28	1.34	1.44 \((c)\)	1,544/18,058	
Prevalent stroke	UK-US Stroke Collaborative Group(SCG)	0.075	0.037	\(0.05\)	29	1.23	1.30 \((b)\)	1,473/1,482	
Stroke (combined, incident and prevalent)	CHARGE & SCG	NA	NA	3.3 \times 10^{-3}	NA	NA NA NA NA	3,017/19,540		
Prevalent CAD	CARDIoGRAM	0.092	0.010	\(1.6 \times 10^{-19}\)	28	1.29	1.38 \((b)\)	22,233/64,726	
Prevalent CAD	C4D ProCARDIS	0.132	0.022	\(2.2 \times 10^{-9}\)	29	1.45	1.59 \((b)\)	5,720/4,381	
Prevalent CAD	C4D HPS	0.083	0.027	\(0.002\)	29	1.26	1.34 \((b)\)	2,704/2,804	
Prevalent CAD (combined)	CARDIoGRAM & C4D	0.100	0.009	\(8.1 \times 10^{-29}\)	29	1.32	1.42 \((b)\)	30,657/71,911	
Prevalent chronic kidney disease	CKDGen	0.014	0.015	\(0.35\)	29	1.04	1.05 \((b)\)	5,807/61,286	
Prevalent microalbuminuria	CKDGen	0.008	0.019	\(0.68\)	29	1.02	1.03 \((b)\)	3,698/27,882	

Continuous measures of target organ damage
Phenotype	Source	Effect	SE	P-value	# SNPs	quintiles	deciles	N case/control or total	
Blood pressure phenotypes		(per SD of genetic risk score)							
Left ventricular mass [g]	EchoGen	0.822	0.317	(a)	0.01	29	2.30	2.89 (a)	12,612
Left ventricular wall thickness [cm]	EchoGen	0.009	0.002	(a)	6.0*10^{-6}	29	0.03	0.03 (a)	12,612
Serum creatinine	KidneyGen	-0.001	0.001	(d)	0.24	29	1.00	1.00 (d)	23,812
eGFR (4 parameter MDRD equation)	CKDGen	-0.0001	0.0009	(d)	0.93	29	1.00	1.00 (d)	67,093
Urinary albumin/creatinine ratio	CKDGen	0.005	0.007	(d)	0.43	29	1.01	1.02 (d)	31,580

(a) Units are the unit of phenotypic measurement, either per SD of genetic risk score, or as a difference between top/bottom quintiles or deciles.

(b) Units are ln(odds) per SD of genetic risk score, or odds ratio between top/bottom quintiles or deciles.

(c) Units are ln(hazard) per SD of genetic risk score, or hazard ratio between top/bottom quintiles or deciles.

(d) Units are ln(phenotype) per SD of genetic risk score, or phenotypic ratio between top/bottom quintiles or deciles.