Supporting data
Polysciosides J and K, two new oleanane-type triterpenoid saponins from the leaves of *Polyscias fruticosa* (L.) Harms. cultivating in An Giang Province, Viet Nam.

Van Mai Doa,b, Cong Luan Trana, Tan Phat Nguyenc,d,*

aTay Do University, 68 Lo Hau Thanh My, Can Tho city, Viet Nam
bUniversity of Medicine and Pharmacy, 41 Dinh Tien Hoang, Ho Chi Minh City, Viet Nam
cGraduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
dInstitute of Chemical Technology, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi, Ho Chi Minh city, Viet Nam

Corresponding author. Tel.: +84 916.360.751 Email: ntphat@ict.vast.vn

ABSTRACT

For the first time, the phytochemical constituents of the leaves of *Polyscias fruticosa* (L.) Harms. cultivating in An Giang Province, Viet Nam were investigated and led to purify two new oleanane-type triterpenoid saponins, named polyscioside J (1) and polyscioside K (2) together with two known saponins, ladyginoside A (3) and chikusetsusaponin IVa (4) using variously chromatographic methods. Saponin (4) was reported for the first time from this species. Their structures were verified by IR, UV, HR-ESI-MS, NMR 1D and 2D experiments and compared with previous literatures.

Keywords: Polyscias fruticosa; Araliaceae; Polyscioside J; Polyscioside K
List of supporting information

Figure S1. Chemical structures and selected COSY and HMBC correlations of 1 and 2.
Table S1. 1H (500 Hz) and 13C (125 Hz) NMR spectral data for compounds 1 and 2 in pyridine-d_5.
Figure S2. 1H-NMR spectrum (500 MHz) of compound 1 in C$_5$D$_5$N.
Figure S3. 13C-NMR spectrum (125 MHz) of compound 1 in C$_5$D$_5$N.
Figure S4. DEPT spectrum of compound 1 in C$_5$D$_5$N.
Figure S5. COSY spectrum of compound 1 in C$_5$D$_5$N.
Figure S6. HSQC spectrum of compound 1 in C$_5$D$_5$N.
Figure S7. HMBC spectrum of compound 1 in C$_5$D$_5$N.
Figure S8. HR-ESI-MS spectrum of compound 1.
Figure S9. IR spectrum of compound 1.
Figure S10. UV-VIS spectrum of compound 1.
Figure S11. 1H-NMR spectrum (500 MHz) of compound 2 in C$_5$D$_5$N.
Figure S12. 13C-NMR spectrum (125 MHz) of compound 2 in C$_5$D$_5$N.
Figure S13. DEPT spectrum of compound 2 in C$_5$D$_5$N.
Figure S14. COSY spectrum of compound 2 in C$_5$D$_5$N.
Figure S15. HSQC spectrum of compound 2 in C$_5$D$_5$N.
Figure S16. HMBC spectrum of compound 2 in C$_5$D$_5$N.
Figure S17. HR-ESI-MS spectrum of compound 2.
Figure S18. IR spectrum of compound 2.
Figure S19. UV-VIS spectrum of compound 2.
Figure S1. Chemical structures and selected COSY and HMBC correlations of 1 and 2.
Table S1. 1H (500 Hz) and 13C (125 Hz) NMR spectral data for compounds 1 and 2 in pyridine-d_5.

No.	δ_H	δ_C	δ_H	δ_C	Sugar 1	δ_H	δ_C	2	δ_H	δ_C
1	0.80, 1.36	38.4	0.72, 1.32	38.4	GlcA	106.8	4.88 d (7.5)	104.7		
2	1.78, 2.04	26.3	1.76, 1.96	26.3	1’	4.94 d (8.0)	74.8	4.30 dd (8.0, 8.0)	80.2	
3	3.28 dd (4.0, 11.5)	89.3	3.16 dd (4.5, 11.5)	89.5	2’	4.06	76.1	4.27 dd (8.5, 9.0)	75.6	
4	-	39.4	-	39.4	3’	4.26 t (9.0)	82.7	4.32 dd (8.0, 9.0)	81.7	
5	0.72	55.7	0.64	55.6	4’	4.44 t (8.5)	75.1	4.49 brd (9.5)	74.6	
6	1.22, 1.43	18.3	1.23, 1.40	18.3	5’	4.61 brd (10.0)	170.0	169.6		
7	1.28, 1.42	32.7	1.24, 1.38	33.0	6’	5'	52.4	52.5		
8	-	39.9	-	39.6	OMe	3.85 s	52.4	3.84 s	52.5	
9	1.57	48.0	1.53	47.8	Glc-1					
10	-	36.9	-	36.8	1””	4.96*	105.0	104.8		
11	1.85	23.7	1.81 dd	23.5	2””	3.95 t (8.0)	74.5	74.2		
12	5.40 br s	122.0	5.42 br s	122.4	3””	4.12 t (8.5)	78.1	77.8		
13	-	144.5	-	144.7	4””	4.09	71.6	71.3		
14	-	42.1	-	42.0	5””	3.95 t (8.0)	78.5	78.2		
15	1.18, 2.31	28.2	1.13, 2.07	28.2	6””	4.50 brd (10.5)	62.5	62.1		
16	1.96, 2.06	23.3	1.91, 2.09	23.6	Glc-2	4.21 dd (5.0, 11.0)	4.18 dd (6.0,	104.9		
17	-	47.0	-	46.5	1”””	6.28 d (8.0)	95.7	104.9		
18	3.16 br d (10.0)	41.7	3.23 dd (4.0, 13.5)	41.8	2”””	4.16	74.1	76.5		
19	1.22, 1.74	46.3	1.21, 1.74	46.3	3”””	4.00	79.3	77.6		
20	-	30.7	-	30.8	4”””	4.33 t (8.5)	71.1	71.6		
21	1.03, 1.32	34.1	1.04, 1.28	34.1	5”””	4.26 t (9.0)	78.8	78.1		
22	1.71, 1.81	32.7	1.76, 2.01	33.0	6”””	4.43	4.45 dd (3.0, 11.5)	4.34 dd (5.5, 11.5)	62.6	
23	1.25 s	28.1	1.16 s	27.9						
24	0.94 s	16.9	0.99 s	16.5						
25	0.80 s	15.5	0.75 s	15.3						
26	1.06 s	17.4	0.92 s	17.2						
27	1.24 s	26.1	1.25 s	26.0						
28	-	176.5	-	*						
29	0.89 s	33.1	0.91 s	33.1						
30	0.86 s	23.6	0.96 s	23.6						

*not determined
Figure S2. 1H-NMR spectrum (500 MHz) of compound 1 in C$_5$D$_5$N.
Figure S3. 13C-NMR spectrum (125 MHz) of compound 1 in C$_5$D$_3$N.
Figure S4. DEPT spectrum of compound 1 in C_5D_5N.
Figure S5. COSY spectrum of compound 1 in C$_5$D$_5$N.
Figure S6. HSQC spectrum of compound 1 in C$_5$D$_5$N.
Figure S7. HMBC spectrum of compound 1 in C$_5$D$_5$N.
Figure S8. HR-ESI-MS spectrum of compound 1.

Figure S9. IR spectrum of compound 1.
Figure S10. UV-VIS spectrum of compound 1.
Figure S11. 1H-NMR spectrum (500 MHz) of compound 2 in C$_5$D$_3$N.
Figure S12. 13C-NMR spectrum (125 MHz) of compound 2 in C$_5$D$_3$N.
Figure S13. DEPT spectrum of compound 2 in C$_5$D$_5$N.
Figure S14. COSY spectrum of compound 2 in C$_5$D$_5$N.
Figure S15. HSQC spectrum of compound 2 in C$_5$D$_5$N.
Figure S16. HMBC spectrum of compound 2 in C$_5$D$_5$N.
Figure S17. HR-ESI-MS spectrum of compound 2.

Figure S18. IR spectrum of compound 2.
Figure S19. UV-VIS spectrum of compound 2.