On a stronger form of hereditary compactness in product spaces

Julian Dontchev
Department of Mathematics
University of Helsinki
PL 4, Yliopistonkatu 15
00014 Helsinki 10
Finland

Maximilian Ganster
Department of Mathematics
Graz University of Technology
Steyrergasse 30
A-8010 Graz
Austria

Abstract
The aim of this paper is to continue the study of sg-compact spaces. The class of sg-compact spaces is a proper subclass of the class of hereditarily compact spaces. In our paper we shall consider sg-compactness in product spaces. Our main result says that if a product space is sg-compact, then either all factor spaces are finite, or exactly one factor space is infinite and sg-compact and the remaining ones are finite and locally indiscrete.

1 Introduction
If a topological space \((X, \tau)\) is hereditarily compact, then under some additional assumptions either \(X\) or \(\tau\) might become finite (or countable). For example, if \((X, \tau)\) is a second countable hereditarily compact space, then \(\tau\) is finite. Hence, if \((X, \tau)\) is a second countable hereditarily compact \(T_0\)-space, then \(X\) must be countable. Moreover, it is well-known that every maximally hereditarily compact space and every hereditarily compact Hausdorff (even \(k\sigma\)-) space is finite. For more information about hereditarily compact spaces we refer the reader to A.H. Stone’s paper [15].

*1991 Math. Subject Classification — Primary: 54B10, 54D30; Secondary: 54A05, 54G99.
Key words and phrases — sg-compact, hereditarily compact, \(C_2\)-space, semi-open, sg-open, sg-closed, hsg-closed.
In 1995 and in 1996, a stronger form of hereditary compactness was introduced independently in three different papers. Caldas [3], Devi, Balachandran and Maki [3] and Tapi, Thakur and Sonwalkar [17] considered topological spaces in which every cover by sg-open sets has a finite subcover. These spaces have been called \textit{sg-compact} and were further studied by the present authors in [7].

As the property sg-compactness is much stronger than hereditary compactness (for even spaces with finite topologies need not be sg-compact), the general behavior of sg-compactness becomes more ‘unusual’ than the one of hereditarily compact spaces. This will be especially the case in product spaces.

It is well-known that the finite product of hereditarily compact spaces is hereditarily compact, and that if a product space is hereditarily compact, then every factor space is hereditarily compact. What we want to show here is the following: If the product space of an arbitrary family of spaces is sg-compact, then all but one factor spaces must be finite and the remaining one must be (at most) sg-compact. Maki, Balachandran and Devi [14, Theorem 3.7] showed (under the additional assumption that the product space satisfies the weak separation axiom \(T_{gs}\)) that if the product of two spaces is sg-compact, then every factor space is sg-compact. Tapi, Thakur and Sonwalkar [17, Theorem 2.7] stated the result for two spaces but their proof is wrong as they claimed that the projection mapping is sg-irresolute. They used a wrong lemma from [16] saying that the product of sg-closed sets is sg-closed (we will show that this is not true even for two sets).

We recall some definitions. A set \(A\) is called \textit{semi-open} if \(A \subseteq \text{cl}(\text{int}(A))\) and \textit{semi-closed} if \(\text{int}(\text{cl}(A)) \subseteq A\). The \textit{semi-interior} (resp. \textit{semi-kernel}) of \(A\), denoted by \(\text{sint}(A)\) (resp. \(\text{sker}(A)\)), is the union (resp. intersection) of all semi-open subsets (resp. supersets) of \(A\). The \textit{semi-closure} of \(A\), denoted by \(\text{scl}(A)\), is the intersection of all semi-closed supersets of \(A\). A subset \(A\) of a topological space \((X, \tau)\) is called \textit{sg-open} [2] (resp. \textit{g-open} [12]) if every semi-closed (resp. closed) subset of \(A\) is included in the semi-interior (resp. interior) of \(A\). A topological space \((X, \tau)\) is called \textit{sg-compact} [3, 6, 17] (resp. \textit{go-compact} [1]) if every cover of \(X\) by sg-open (resp. g-open) sets has a finite subcover.

Complements of sg-open sets are called \textit{sg-closed}. Alternatively, a subset \(A\) of a topological space \((X, \tau)\) is called sg-closed if \(\text{scl}(A) \subseteq \text{sker}(A)\). If every subset of \(A\) is also sg-closed
in \((X, \tau)\), then \(A\) is called *hereditarily sg-closed* (= hsg-closed) \([7]\). Every nowhere dense subset is hsg-closed but not conversely.

Janković and Reilly \([11, \text{Lemma } 2]\) pointed out that in an arbitrary topological space every singleton is either nowhere dense or locally dense. Recall that a set \(A\) is said to be *locally dense* \([5]\) (= preopen) if \(A \subseteq \text{int}(\text{cl}(A))\). We will make significant use of their result throughout this paper.

Lemma 1.1 For a topological space \((X, \tau)\) the following conditions are equivalent:

(i) \(X\) is locally indiscrete.

(ii) Every singleton is locally dense.

(ii) Every subset is sg-open.

Lemma 1.2

(i) Every open continuous surjective function is pre-semi-open, i.e., it preserves semi-open sets.

(ii) Let \((X_i)_{i \in I}\) be a family of spaces and \(\emptyset \neq A_i \subseteq X_i\) for each \(i \in I\). Then, \(\prod_{i \in I} A_i\) is preopen (resp. semi-open) in \(\prod_{i \in I} X_i\) if and only if \(A_i\) is preopen (resp. semi-open) in \(X_i\) for each \(i \in I\) and \(A_i\) is non-dense (resp. \(A_i \neq X_i\)) for only finitely many \(i \in I\).

(iii) If \(f: (X, \tau) \to (Y, \sigma)\) is open and continuous, then the preimage of every nowhere dense subset of \(Y\) is nowhere dense in \(X\), i.e., \(f\) is \(\delta\)-open.

Lemma 1.3 \([7, \text{Theorem } 2.6]\) For a topological space \((X, \tau)\) the following conditions are equivalent:

(1) \(X\) is sg-compact.

(2) \(X\) is a \(C_3\)-space, i.e., every hsg-closed set is finite.

Lemma 1.4 \([7, \text{Proposition } 2.1]\) For a subset \(A\) of a topological space \((X, \tau)\) the following conditions are equivalent:

(1) \(A\) is hsg-closed.

(2) \(N(X) \cap \text{int}(\text{cl}(A)) = \emptyset\), where \(N(X)\) denotes the set of nowhere dense singletons in \(X\).
2 Sg-compactness in product spaces

We will start with an example showing that Theorem 2.1 of [17] is not true. There, the authors stated (without proof) that every sg-compact space is go-compact (it is our guess that they assumed that g-open sets are sg-open).

Example 2.1 Let \(\mathbb{N} \) be set of all positive integers. We consider the following topology \(\tau \) on \(\mathbb{N} \) given by \(\tau = \{ \emptyset, \mathbb{N} \} \cup \{ U_n = \{ n, n + 1, n + 2, \ldots \} : n \geq 3 \} \).

We first show that \((\mathbb{N}, \tau)\) is sg-compact. Observe that every singleton of \((\mathbb{N}, \tau)\) is nowhere dense. Since every nonempty semi-open set has finite complement, \((\mathbb{N}, \tau)\) is semi-compact. By [7, Remark 2.7 (i)], \((\mathbb{N}, \tau)\) is sg-compact.

However, every singleton of \((\mathbb{N}, \tau)\) is g-open, and so \((\mathbb{N}, \tau)\) fails to be go-compact.

Lemma 2.2 Let \(X = \prod_{i \in I} X_i \) be a product space. If infinitely many \(X_i \) are not indiscrete, then \(X \) contains an infinite nowhere dense subset.

Proof. Let \(J \) be an infinite subset of \(I \) such that \(X_i \) is not indiscrete for each \(i \in J \). We may choose \(J \) in such a way that \(I \setminus J \) is also infinite. Then, for each \(i \in J \), there exists a closed set \(A_i \subseteq X_i \) distinct from the empty set and from \(X_i \). Now form the product of all \(A_i, i \in J \), and of all \(X_i, i \notin J \), and call it \(A \). Then \(A \) is closed in \(X \), infinite and clearly nowhere dense. \(\square \)

As a consequence of Lemma 2.2 we therefore have:

Corollary 2.3 If a product space \(X = \prod_{i \in I} X_i \) is sg-compact, then only finitely many \(X_i \) are not indiscrete. \(\square \)

Theorem 2.4 Let \((X_i, \tau_i)_{i \in I}\) be a family of topological spaces. If the product space \(X = \prod_{i \in I} X_i \) is sg-compact, then either all factor spaces are finite or exactly one of them is infinite and sg-compact and the rest are finite and locally indiscrete.
Proof. Suppose that two factor spaces, say \(X_i \) and \(X_j \), are infinite. Let \(p_i \) denotes the projection from \(X \) onto \(X_i \) for any \(i \in I \). Let \(k \in I \). If \(x_k \in X_k \), then \(p_k^{-1}(\{x_k\}) \) is infinite, hence cannot be nowhere dense since \(X \) is sg-compact. Thus \(\{x_k\} \) is not nowhere dense in \(X_k \). Consequently, each factor space \(X_k \) must be locally indiscrete. By Corollary 2.3 and Lemma 1.2, each singleton in \(X \) is locally dense and so every subset of \(X \) is sg-open. Since \(X \) is sg-compact, \(X \) must be finite, a contradiction. Hence, at most one factor space can be infinite.

Now suppose that \(X_j \) is infinite and that \(X_i \) is finite for \(i \neq j \). For each \(x_i \in X_i \), where \(i \neq j \), \(p_i^{-1}(\{x_i\}) \) is infinite, therefore \(\{x_i\} \) cannot be nowhere dense in \(X_i \). So \(X_i \) is locally indiscrete for \(i \neq j \). By Corollary 2.3 and Lemma 1.2 it follows that for each \(x \in X \), \(\{x\} \) is nowhere dense in \(X \) if and only if \(\{x_j\} \) is nowhere dense in \(X_j \).

Assume now that \(X_j \) is not sg-compact. Then \(X_j \) contains an infinite hsg-closed subset, say \(A_j \). Let \(A = p_j^{-1}(A_j) \). We want to show that \(N(X) \cap \text{int}(\text{cl}(A)) = \emptyset \), where \(N(X) \) denotes the set of nowhere dense singletons in \(X \). If there exists a point \(x \in N(X) \cap \text{int}(\text{cl}(A)) \), then \(x \) has an open neighbourhood \(W \) contained in \(\text{cl}(A) \). Also, \(\{x_j\} \) is nowhere dense in \(X_j \) and \(x_j \in p_j(W) \subseteq p_j(\text{cl}(A)) \subseteq \text{cl}(A_j) \). So \(x_j \in \text{int}(\text{cl}(A_j)) \), a contradiction to the hsg-closedness of \(A_j \). Hence, by Lemma 1.4, \(A \) is hsg-closed and infinite, a contradiction. Therefore, \(X_j \) is sg-compact. \(\square \)

Tapi, Thakur and Sonwalkar [17, Theorem 2.7] stated our result for two topological spaces but their proof is wrong as they claimed the projection mapping being sg-irresolute. They used the wrong lemma from [16] that the product of sg-closed sets is sg-closed. The following example will correct their claims.

Example 2.5 Let \(X = \{a, b, c\} \) and let \(\tau = \{\emptyset, \{a, b\}, X\} \). Set \(A = \{b, c\} \).

(i) First observe that \(A \) is sg-closed in \((X, \tau) \) but \(A \times A \) is not sg-closed in \(X \times X \), since \(A \times A \subseteq X \times X \setminus \{(a, c)\} \) and \(\text{scl}(A \times A) = X \times X \).

(ii) If \(p \) is the projection mapping from \(X \times X \) onto \(X \), then \(p^{-1}(A) \) is not sg-closed in \(X \times X \), i.e., the projection map need not be always sg-irresolute.

(iii) We already noted that if \(f : (X, \tau) \to (Y, \sigma) \) is open and continuous, then the preimage of every nowhere dense subset of \(Y \) is nowhere dense in \(X \). There is no similar result for
hsg-closed sets. If \(\sigma \) denotes the indiscrete topology on \(X \), then \(S = \{a, b\} \) is hsg-closed in \((X, \sigma)\) but \(q^{-1}(S) \) is not hsg-closed in \((X, \sigma) \times (X, \tau)\), where \(q \) denotes the projection mapping from \((X, \sigma) \times (X, \tau)\) onto \((X, \sigma)\).

The following result shows when the inverse image of a hsg-closed set is also hsg-closed. Recall that a function \(f: (X, \tau) \to (Y, \sigma) \) is called \textit{almost open} if the image of every regular open set is open. We say that \(f: (X, \tau) \to (Y, \sigma) \) is \textit{anti-\(\delta \)-open} if the image of every nowhere dense singleton is nowhere dense. Observe that if \(Y \) is dense-in-itself and \(T_D \) (= singletons are locally dense), then \(f: (X, \tau) \to (Y, \sigma) \) is always anti-\(\delta \)-open; in particular every real-valued function is anti-\(\delta \)-open.

Proposition 2.6 If \(f: (X, \tau) \to (Y, \sigma) \) is an almost open, continuous, anti-\(\delta \)-open surjection, then the inverse image of every hsg-closed set is hsg-closed.

Proof. Let \(B \) be hsg-closed in \(Y \) and set \(A = f^{-1}(B) \). If for some nowhere dense singleton \(x \) of \(X \) we have \(x \in \text{int}(\text{cl}(A)) \), then \(f(x) \in f(\text{int}(\text{cl}(A))) \subseteq \text{int}(f(\text{cl}(A))) \subseteq \text{int}(\text{cl}(f(A))) = \text{int}(\text{cl}(B)) \). Since \(f(x) \) is nowhere dense in \(Y \), \(B \) is not hsg-closed. By contradiction, \(A \) is hsg-closed. \(\square \)

Remark 2.7 (i) Let \(A \) be an infinite set with \(p \notin A \). Let \(X = A \cup \{p\} \) and \(\tau = \{\emptyset, A, X\} \). We observed in [7] that \(X \times X \) contains an infinite nowhere dense subset, so even the finite product of sg-compact spaces need not be sg-compact.

(ii) It is rather unexpected that the projection map fails to be sg-irresolute in general, since it is always irresolute and gs-irresolute.

The two examples of infinite sg-compact spaces in [7] and the infinite sg-compact space from Example 2.1 are not even weakly Hausdorff (however one of them is \(T_1 \)). As every hereditarily compact kc-space must be finite, it is natural to ask whether there are any infinite sg-compact semi-Hausdorff spaces (there do exist infinite hereditarily compact semi-Hausdorff spaces). Recall here that a topological space \((X, \tau)\) is called \textit{semi-Hausdorff} [13] if every two distinct points of \(X \) can be separated by disjoint semi-open sets.
Recall additionally that a space \((X, \tau)\) is called \textit{hyperconnected} if every open subset of \(X\) is dense, or equivalently, every pair of nonempty open sets has nonempty intersection. In the opposite case \(X\) is called \textit{hyperdisconnected}. If every infinite open subspace of \(X\) is hyperdisconnected, then we will say that \(X\) is \textit{quasi-hyperdisconnected}. Note that not only Hausdorff spaces but also semi-Hausdorff spaces are quasi-hyperdisconnected (but not vice versa).

Proposition 2.8 Every quasi-hyperdisconnected sg-compact space \((X, \tau)\) is finite.

Proof. Assume that \(X\) is infinite. Let \(U\) and \(V\) be disjoint non-empty open subsets of \(X\). Note that either \(X \setminus U\) or \(X \setminus V\) is infinite. Assume that \(X \setminus U\) is infinite. Since \(\text{cl}(U) \setminus U\) is hsg-closed (in fact even nowhere dense), by Lemma [3], \(\text{cl}(U) \setminus U\) is finite and hence \(X \setminus \text{cl}(U)\) is infinite and open. Set \(A_1 = U\). Since \(X\) is quasi-hyperdisconnected, proceeding as above, we can construct an open subset of \(X \setminus \text{cl}(U)\) and hence of \(X\), say \(U_2\), such that the complement of the closure of \(U_2\) in \(X \setminus \text{cl}(A_1)\) is infinite. Using the method above, we can construct an infinite pairwise disjoint family \(A_1, A_2, \ldots\) of non-empty open subsets of \((X, \tau)\). Since sg-compact spaces are semi-compact and thus satisfy the finite chain condition, \(X\) must be finite. ✷

Corollary 2.9 Every sg-compact, semi-Hausdorff space is finite.

We have just seen that under some very low separation axioms, sg-compact spaces very easily become finite. If we replace the weak separation axiom with a weaker form of strong irresolvability, we again have finiteness. By definition, a nonempty topological space \((X, \tau)\) is called \textit{resolvable} [10] if \(X\) is the disjoint union of two dense (or equivalently codense) subsets. In the opposite case \(X\) is called \textit{irresolvable}. A topological space \((X, \tau)\) is \textit{strongly irresolvable} [8] if no nonempty open set is resolvable.

Proposition 2.10 Every sg-compact space \((X, \tau)\) which is the topological sum of a locally indiscrete space and a strongly irresolvable space is finite.
Proof. We will use a result in [3] which states that a space is finite if and only if every cover by \(\beta\)-open sets (i.e., sets which are dense in some regular closed subspace) has a finite subcover. If \(U\) is a cover of \(X\) by \(\beta\)-open sets, then by [3, Theorem 2.1] every element of \(U\) is sg-open. Since \(X\) is sg-compact, \(U\) has a finite subcover. This shows that \(X\) is finite. \(\square\)

We already mentioned in Remark 2.7 that the product of two sg-compact spaces need not be sg-compact. Thus we have the natural question: When is the product of two sg-compact spaces also sg-compact? What turns out is that only in one very special case the product of a sg-compact space with another sg-compact space is also sg-compact. First we note a result whose proof is easy and hence omitted.

Proposition 2.11 Let \((X_\alpha, \tau_\alpha)_{\alpha \in \Omega}\) be a family of topological spaces. For the topological sum \(X = \sum_{\alpha \in \Omega} X_\alpha\) the following conditions are equivalent:

1. \(X\) is a sg-compact space.
2. Each \(X_\alpha\) is a sg-compact space and \(|\Omega| < \aleph_0\).

Lemma 2.12 Let \((X, \tau)\) be any space and let \((Y, \sigma)\) be indiscrete. Let \(A \subseteq X \times Y\) and let \(p : X \times Y \to X\) denote the projection. Then \(\text{int}(\text{cl}(A)) = \text{int}(\text{cl}(p(A))) \times Y\).

Proof. If \((x, y) \in \text{int}(\text{cl}(A))\), there exists an open neighbourhood \(U_x\) of \(x\) such that \(U_x \times Y \subseteq \text{cl}(A)\). Then \(x \in p(U_x) \subseteq \text{cl}(p(A))\) and so \((x, y) \in \text{int}(\text{cl}(p(A))) \times Y\).

Now, let \(x \in \text{int}(\text{cl}(p(A)))\) and \(y \in Y\). Choose an open set \(U_x \subseteq X\) containing \(x\) such that \(U_x \subseteq \text{cl}(p(A))\). We claim that \(U_x \times Y \subseteq \text{cl}(A)\). Suppose there is a point \((x', y') \in U_x \times Y\) not in \(\text{cl}(A)\). Then there exists an open set \(W_{x'} \subseteq U_x\) containing \(x'\) such that \((W_{x'} \times Y) \cap A = \emptyset\). Consequently, \(W_{x'} \cap p(A) = \emptyset\), a contradiction. Hence, \((x, y) \in \text{int}(\text{cl}(A))\). \(\square\)

Theorem 2.13 If \((X, \tau)\) is sg-compact and \((Y, \sigma)\) is finite and locally indiscrete, then \(X \times Y\) is sg-compact.
Proof. Since Y is a finite topological sum of indiscrete spaces, by Proposition [2.11] it suffices to assume that Y is indiscrete. Suppose that $A \subseteq X \times Y$ is infinite and hsg-closed. Then, $p(A)$ is infinite and hence, by Lemma [1.3] and Lemma [1.4], we have $N(X) \cap \text{int}(\text{cl}(p(A))) \neq \emptyset$. Pick $x \in N(X) \cap \text{int}(\text{cl}(p(A)))$ and $y \in Y$. Then, $\{(x, y)\}$ is nowhere dense in $X \times Y$ and, by Lemma [2.12], we have $(x, y) \in \text{int}(\text{cl}(A))$, a contradiction to the hsg-closedness of A. Thus $X \times Y$ is sg-compact. \square

References

[1] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ. Ser. A, Math.*, 12 (1991), 5–13.

[2] P. Bhattacharyya and B.K. Lahiri, Semi-generalized closed sets in topology, *Indian J. Math.*, 29 (3) (1987), 375–382.

[3] M.C. Caldas, Semi-generalized continuous maps in topological spaces, *Portugal. Math.*, 52 (4) (1995), 399–407.

[4] J. Cao, M. Ganster and I. Reilly, On sg-closed sets and gα-closed sets, *Mem. Fac. Sci. Kochi Univ. Ser. A, Math.*, 20 (1999), to appear.

[5] H.H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.*, 8 (1964), 351–360.

[6] R. Devi, K. Balachandran and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, *Indian J. Pure Appl. Math.*, 26 (3) (1995), 271–284.

[7] J. Dontchev and M. Ganster, More on sg-compact spaces, *Portugal. Math.*, 55 (1998), to appear.

[8] J. Foran and P. Liebnitz, A characterization of almost resolvable spaces, *Rend. Circ. Mat. Palermo*, Serie II, 40 (1991), 136–141.

[9] M. Ganster, Every β-compact space is finite, *Bull. Calcutta Math. Soc.*, 84 (1992), 287–288.

[10] E. Hewitt, A problem of set-theoretic topology, *Duke Math. J.*, 10 (1943), 309–333.

[11] D. Janković and I. Reilly, On semiseparation properties, *Indian J. Pure Appl. Math.*, 16 (9) (1985), 957–964.

[12] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, 19 (2) (1970), 89–96.
[13] S.N. Maheshwari and R. Prasad, Some new separation axioms, *Ann. Soc. Sci. Bruxelles*, 89 (3) (1975), 395–407.

[14] H. Maki, K. Balachandran and R. Devi, Remarks on semi-generalized closed sets and generalized semi-closed sets, *Kyungpook Math. J.*, 36 (1996), 155-163.

[15] A.H. Stone, Hereditarily compact spaces, *Amer. J. Math.*, 82 (1960), 900–916.

[16] U.D. Tapi, S.S. Thakur and A. Sonwalkar, A note on semi-generalized closed sets, *Qatar Univ. Sci. J.*, 14 (2) (1994), 217–218.

[17] U.D. Tapi, S.S. Thakur and A. Sonwalkar, S.g. compact spaces, *J. Indian Acad. Math.*, 18 (2) (1996), 255–258.

E-mail: dontchev@cc.helsinki.fi, ganster@weyl.math.tu-graz.ac.at