SPECIAL SERIES: INFORMATICS TOOLS FOR CANCER RESEARCH AND CARE

Enhancing the Quality of Hierarchic Relations in the National Cancer Institute Thesaurus to Enable Faceted Query of Cancer Registry Data

Licong Cui, PhD1; Rashmie Abeyesinghe, PhD1,2; Fengbo Zheng, MS1,2; Shiqiang Tao, PhD1; Ningzhou Zeng, PhD2; Isaac Hands, MPH4; Eric B. Durbin, PhD4,5; Lori Whiteman, MSN6; Lyubov Remennik, MD, PhD6; Nicholas Sioutos, MD6; and Guo-Qiang Zhang, PhD1,3

abstract

PURPOSE
To audit and improve the completeness of the hierarchic (or is-a) relations of the National Cancer Institute (NCI) Thesaurus to support its role as a faceted system for querying cancer registry data.

METHODS
We performed quality auditing of the 19.01d version of the NCI Thesaurus. Our hybrid auditing method consisted of three main steps: computing nonlattice subgraphs, constructing lexical features for concepts in each subgraph, and performing subsumption reasoning with each subgraph to automatically suggest potentially missing is-a relations.

RESULTS
A total of 9,512 nonlattice subgraphs were obtained. Our method identified 925 potentially missing is-a relations in 441 nonlattice subgraphs; 72 of 176 reviewed samples were confirmed as valid missing is-a relations and have been incorporated in the newer versions of the NCI Thesaurus.

CONCLUSION
Autosuggested changes resulting from our auditing method can improve the structural organization of the NCI Thesaurus in supporting its new role for faceted query.

JCO Clin Cancer Inform 4:392-398. © 2020 by American Society of Clinical Oncology
Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION
The Kentucky Cancer Registry (KCR)1 was established in 1991 at the University of Kentucky Markey Cancer Center (MCC). It is a central cancer registry receiving data about new cancer cases from all health care facilities and physicians in Kentucky within 4 months of diagnosis, as required by state law. Despite advances in cancer research over the last several decades, the cancer burden in Kentucky remains severe. According to State Cancer Profiles statistics provided by the National Cancer Institute (NCI) and the Centers for Disease Control and Prevention, Kentucky is the state that has the nation’s highest cancer burden.2,3 In 2000, KCR became a part of the NCI SEER program.4,5 The SEER registries are considered to be among the most accurate and complete population-based cancer registries in the world that include stage of cancer at the time of diagnosis and patient survival data.

Such cancer registry data have enabled Web-based access to the data and analytic tools for cancer research. For example, State Cancer Profiles provide a user-friendly interface for finding cancer statistics for specific states and counties for public health officials and policymakers. KCR has also developed an NCI-funded Apple iOS app called Cancer Rates6 to make incidence and mortality information available on mobile devices. However, the interfaces of such query engines do not support sophisticated data exploration, such as identifying patient cohorts for the feasibility of clinical trials, and have not achieved usability levels approaching those of consumer Web sites, in critical part because of the lack of faceted capabilities.7-9 Faceted organization and presentation of metadata are the key mechanisms that allow consumers of Web sites such as Amazon to quickly narrow down from millions of products to items of interest using dimensions of attributes (eg, simple facets such as size, color, maker, price range). Faceted systems for querying clinical data are not widely available because of the complexity of data and the mismatch between the ontologies used for organizing and annotating clinical data (eg, NCI Thesaurus10,11) and the desired facet structures and properties. Therefore, in this NCI-funded project, we aimed to overcome these challenges and develop OncoSphere, a faceted query engine using the NCI Thesaurus as a nested facet system (NFS)12 to provide Web-based exploration of the KCR data.

A nested facet is a facet that includes a collection of other facets (or subfacets) as its components.12 An NFS is a set of nested facets with a hierarchic (or subtype or is-a) relation among them. The efficacy of an NFS requires the properties of soundness and completeness.12 Soundness means that all items
within each facet are relevant to the facet; that is, for each facet, all the subfacets listed within that facet are indeed its subtypes. Completeness means that any subfacets relevant to a specific facet are already contained in and accessible through the facet; that is, there are no missing subtypes for the facet. The soundness and completeness properties of facets directly affect the performance of the query engine in terms of precision and recall. Incomplete facets will reduce recall, and unsound facets will reduce precision. For instance, “anaplastic T-lymphocyte” is currently not listed as one of the subtypes of “neoplastic large T-lymphocyte” (ie, incomplete facet) in the NCI Thesaurus and would thus be a missing choice in the corresponding facet for “neoplastic large T-lymphocyte.” As a consequence, patients with anaplastic T-lymphocytes would not be included in a cohort of patients with neoplastic large T-lymphocytes, reducing the query recall. Because OncoSphere relies on the hierarchic structure of the NCI Thesaurus for its faceted query interface, it is essential to ensure the quality of the NCI Thesaurus.

In this report, we focus on a quality auditing of the hierarchic structure of the NCI Thesaurus. We developed a hybrid method leveraging a specific substructure called nonlattice subgraph and lexical features of concepts in the nonlattice subgraph to automatically detect missing hierarchic relations in the NCI Thesaurus. The key idea of our method is that nonlattice subgraphs pinpoint problematic areas that are likely to contain hierarchic quality issues, and lexical features facilitate the identification of potentially missing hierarchic relations in the nonlattice subgraphs through subsumption reasoning.

METHODS

We used the 19.01d version of the NCI Thesaurus. Our hybrid method consisted of the following steps: computing nonlattice subgraphs, constructing lexical features, and performing subsumption reasoning.

Computing Nonlattice Subgraphs

Concepts in the NCI Thesaurus are hierarchically organized as a direct acyclic graph (DAG), where a node (or concept) may have multiple parents. A pair of concepts is called a nonlattice pair, if the two concepts share more than one maximal common descendant (or one minimal common ancestor). Here the maximal common descendant of two concepts in a DAG is the highest node that has both concepts as ancestors, and the minimal common ancestor of two concepts in a DAG is the lowest node that has both concepts as descendants. For instance, in Figure 1, concept 1 and concept 2 have two maximal common descendants, 5 and 6; therefore, concept 1 and 2 form a nonlattice pair. Similarly, concept 2 and concept 3 have two maximal common descendants, 5 and 6, and form a nonlattice pair.

A nonlattice pair \(P \) determines a nonlattice subgraph, which can be obtained by first computing the maximal common descendants of the nonlattice pair, denoted as \(mcd(P) \); reversely computing \(mcd(P) \)’s minimal common ancestors, denoted as \(mca(mcd(P)) \); and then aggregating the concepts and relations between (and including) any concept in \(mca(mcd(P)) \) and any concept in \(mcd(P) \). For instance, given the nonlattice pair \(P = (1, 2) \) in Figure 1, \(P \)’s maximal common descendants \(mcd(P) \) are 5 and 6; computing \(mcd(P) \)’s minimal common ancestors obtains 1,

FIG 1. Example of a nonlattice subgraph.

123
2, and 3; by aggregating concepts between \{1, 2, 3\} and \{5, 6\}, we have the nonlattice subgraph containing six concepts \{1, 2, 3, 4, 5, 6\}.

Figure 2 shows an example of nonlattice subgraph in the NCI Thesaurus determined by the nonlattice pair \(P = (C_6, C_6)\). Ps maximal common descendants \(\text{mcd}(P)\) are \(C_1\) and \(C_2\); computing \(\text{mcd}(P)\)'s minimal common ancestors still obtains \(C_2\) and \(C_6\), that is, \(P\) itself; and aggregating concepts in between results in the nonlattice subgraph consisting of six concepts \(\{C_1, C_2, C_3, C_4, C_5, C_6\}\).

We used an efficient algorithm developed in our previous work\(^{15}\) to exhaustively compute all the nonlattice subgraphs in the NCI Thesaurus. This algorithm has been tested on large biomedical terminologies in a DAG, including SNOMED CT, Gene Ontology, and NCI Thesaurus.

Constructing Lexical Features

We created a set of lexical features (or lexical set) for each concept in the nonlattice subgraph. Given a concept \(C\) in a nonlattice subgraph \(G\), we modeled its lexical set as the words (unordered) appearing in the name of the concept \(C\) and inherited from the names of \(C\)’s ancestors in \(G\). That is, the concept \(C\)’s lexical features consist of two parts, where the first part contains the words appearing in the concept \(C\)’s own name, and the second part contains the words inherited from the names of the concept \(C\)’s ancestors within the nonlattice subgraph \(G\). For example, for concept \(C_1\) = “duodenal extraskeletal osteosarcoma” in Figure 2, the first part of the lexical features contains the words in its own name (ie, “duodenal, extraskeletal, osteosarcoma”). The second part contains the words inherited from \(C_1\)’s ancestors \(\{C_3, C_4, C_5, C_6\}\); ie, “malignant, duodenal, neoplasm, extraskeletal, osteosarcoma, malignant, small, intestinal, neoplasm, soft, tissue, sarcoma”). Because we modeled the lexical features of a concept as a set of words, removing duplicated words in both parts obtains \{duodenal, extraskeletal, osteosarcoma, malignant, neoplasm, small, intestinal, soft, tissue, sarcoma\}, where “duodenal,” “extraskeletal,” and “osteosarcoma” appear in the name of the concept \(C_1\) itself; “malignant” and “neoplasm” are from its ancestors \(C_3\) and \(C_5\); “small” and “intestinal” are from its ancestor \(C_6\); and “soft,” “tissue,” and “sarcoma” are from its ancestor \(C_5\). Table 1 lists the lexical sets of all concepts in the nonlattice subgraph, shown in Figure 2.

Performing Subsumption Reasoning

We performed subsumption reasoning to detect potentially missing is-a relations among the pairs of concepts currently not hierarchically related. For each nonlattice subgraph, we first identified pairs of concepts currently not hierarchically related; then, for each pair of concepts (eg, \(C_1\) and \(C_2\)), we checked whether their lexical sets had an inclusion relation as follows: if \(C_2\)’s lexical set is a proper subset of \(C_1\)’s lexical set, we suggest a potentially missing is-a relation between \(C_1\) and \(C_2\) (ie, \(C_1\) is-a \(C_2\)); if \(C_1\)’s lexical set is a proper subset of \(C_2\)’s lexical set, we suggest a potentially missing is-a relation between \(C_2\) and \(C_1\) (ie, \(C_2\) is-a \(C_1\)); otherwise, no suggestion will be made.

For instance, for concepts \(C_1\) (duodenal extraskeletal osteosarcoma) and \(C_2\) (small intestinal sarcoma) in Figure 2, because \(C_2\)’s lexical set (small, intestinal, sarcoma, malignant, neoplasm, soft, tissue) is a proper subset of \(C_1\)’s lexical set (duodenal, extraskeletal, osteosarcoma, malignant, neoplasm, small, intestinal, soft, tissue, sarcoma), we suggest \(C_1\) is-a \(C_2\); that is, “duodenal extraskeletal osteosarcoma” is a subtype of “small intestinal sarcoma” (dashed red arrow in Fig 2). For concepts \(C_5\) (malignant small intestinal neoplasm) and \(C_6\) (soft tissue sarcoma) in Figure 2, there is no inclusion between their lexical sets, and therefore, no suggestion will be made for this pair of concepts.

When performing such subsumption reasoning, we did not make suggestions for certain scenarios prone to generate incorrect suggestions, such as concepts containing stop words (eg, “and/or,” “no,” “not,” “without,” “except,” “by”) and lexical sets containing antonyms (eg, “small,” “large”). In addition, after obtaining all the potential missing is-a relations in nonlattice subgraphs, we further removed redundant is-a relations that could be inferred by other is-a relations.

RESULTS

Using the 19.01d version of the NCI Thesaurus, a total of 9,512 nonlattice subgraphs were obtained. The sizes of the nonlattice subgraphs ranged from four to 644. Our hybrid method detected 925 potentially missing is-a relations in 441 nonlattice subgraphs. Figure 3 shows two examples of the identified missing is-a relations in two nonlattice subgraphs sized four and five, respectively.
TABLE 1. Lexical Sets of Concepts in Nonlattice Subgraph

Concept	Lexical Set
C₁	(duodenal, extraskeletal, osteosarcoma, malignant, neoplasm, small, intestinal, soft, tissue, sarcoma)
C₂	(small, intestinal, sarcoma, malignant, neoplasm, soft, tissue)
C₃	(malignant, duodenal, neoplasm, small, intestinal)
C₄	(extraskeletal, osteosarcoma, soft, tissue, sarcoma)
C₅	(malignant, small, intestinal, neoplasm)
C₆	(soft, tissue, sarcoma)

NOTE. Based on nonlattice subgraph in Figure 2.

For evaluation, we provided the NCI Enterprise Vocabulary Services (EVS), which manages the NCI Thesaurus, with 253 potentially missing is-a relations in nonlattice subgraphs of ≤ 15 in size. These nonlattice subgraphs were visualized in PDFs and organized in terms of the subhierarchies to facilitate the EVS experts’ review and evaluation. Table 2 lists the number of potentially missing is-a relations identified by our method according to the subhierarchies. The EVS experts reviewed four subhierarchies: “disease, disorder or finding,” “activity,” “abnormal cell,” and “anatomic structure, system, or substance.” The subhierarchy “disease, disorder or finding” contained 136 potentially missing is-a relations, among which 50 were verified as valid by EVS experts. In total, 72 of 176 reviewed samples were confirmed as valid missing is-a relations and have been incorporated into the newer versions of the NCI Thesaurus. Table 3 lists 10 examples of valid missing is-a relations verified by EVS experts (Data Supplement provides a comprehensive list).

DISCUSSION

Although our hybrid method was able to suggest valid missing is-a relations, it sometimes made erroneous suggestions for ambiguous cases. For instance, our method suggested “metastatic malignant neoplasm in the pancreas” was a subtype of “metastatic malignant pancreatic neoplasm.” This suggestion was invalid, because the latter concept refers to metastatic malignant neoplasms that originate from the pancreas and spread to other anatomic sites. This was an erroneous pattern of “malignant neoplasm in x site” versus “malignant x site neoplasm” that our lexical set–based method was not able to differentiate. A potential solution to avoid such erroneous suggestions would be to add “in” as a stop word. However, adding it as a stop word would miss valid suggestions, such as “metastatic malignant neoplasm in the sellar region” is a “metastatic malignant neoplasm in the central nervous system.” This illustrates the challenge of the varying degrees to which different stop words generate erroneous suggestions. For future improvement, we plan to explore machine learning–based approaches to train the model on positive and negative samples for different stop words and test whether the model can differentiate the degrees or even automatically learn new stop words in addition to what we have used. Another potential solution would be to leverage the roles defining the concepts, thus automatically facilitating the subsumption reasoning and differentiating the ambiguous concepts.

For certain scenarios, erroneous suggestions made by our method further reveal problematic relations existing in the NCI Thesaurus. For example, our method suggested the following invalid relation: “nerve plexus” is-a “peripheral nerve.” However, the existing relations leveraged by our method to generate the suggestion were: “nerve plexus” is-a “peripheral nervous system part” and “nerve plexus” is-a “nerve” (as shown in the nonlattice subgraph in Fig 4). Because nerve plexus has peripheral nerves as parts but is not itself a nerve, this invalid suggestion revealed an incorrect existing relation in the NCI Thesaurus: “nerve plexus” is-a “nerve” the link with an X in Fig 4). This

FIG 3. (A) Nonlattice subgraph of size four suggesting a missing is-a relation: “micropapillary serous carcinoma” is-a “serous adenocarcinoma.” (B) Nonlattice subgraph of size five suggesting a missing is-a relation: “adrenal gland lymphoma” is-a “retroperitoneal lymphoma.”
indicates that our method may help with further identification of problematic is-a relations in the NCI Thesaurus in addition to missing is-a relations.

In our previous work,16 we used six predefined lexical patterns in nonlattice subgraphs to identify potentially missing is-a relations in the NCI Thesaurus. In this work, we directly used the lexical sets of concepts to perform subsumption reasoning, with no need to predefine lexical patterns. More importantly, our method in this work identified previously undiscovered missing is-a relations in the NCI Thesaurus. In another related work,17 we leveraged nonlattice subgraphs and concept names to perform subsumption reasoning for suggesting potentially missing is-a relations in SNOMED CT. In this work, we modeled the lexical features of a concept in the NCI Thesaurus using not only the name of the concept itself but also the names of the concept’s ancestors.

Although our hybrid method was capable of revealing valid missing is-a relations, it only touched upon a small portion of nonlattice subgraphs in the NCI Thesaurus (441 of 9,512), leaving the remaining nonlattice subgraphs untapped. New methods are needed to uncover the potential quality issues in the untapped nonlattice subgraphs. We will further leverage the roles defining the concepts to facilitate the quality auditing task. Regarding the use of stop words in our method, although it can avoid making erroneous suggestions, it may also miss valid suggestions. Additional research is needed to specifically handle concepts containing stop words.

TABLE 2. Potentially Missing Is-a Relations Detected in Nonlattice Subgraphs (size ≤ 15) in Terms of NCI Thesaurus (19.01d version) Subhierarchies and Valid Missing Is-a Relations Verified by EVS Experts

Subhierarchy	No. of Missing Is-a Relations	Potential	Valid
Disease, disorder, or finding	136	50	
Drug, food, chemical, or biomedical material	31	—	
Activity	20	16	
Experimental organism diagnosis	18	—	
Abnormal cell	16	6	
Manufactured object	14	—	
Anatomic structure, system, or substance	4	1	
Conceptual entity	4	—	
Property or attribute	3	—	
Gene product	3	—	
Molecular abnormality	2	—	
Biologic process	1	—	
Biochemical pathway	1	—	

NOTE. Dash indicates that samples in corresponding subhierarchy were not reviewed by EVS experts.

Abbreviations: EVS, Enterprise Vocabulary Services; NCI, National Cancer Institute.

TABLE 3. Ten Examples of Valid Missing Is-a Relations Verified by EVS Experts

Subhierarchy	Missing Is-a Relation
Disease, disorder, or finding	Micropapillary serous carcinoma is-a serous adenocarcinoma
Disease, disorder, or finding	Adrenal gland sarcoma is-a retroperitoneal sarcoma
Disease, disorder, or finding	Acoustic schwannoma is-a benign ear neoplasm
Disease, disorder, or finding	Penile Bowenoid papulosis is-a male reproductive system precancerous condition
Disease, disorder, or finding	Congenital pulmonary lymphangiectasia is-a pulmonary vascular disorder
Disease, disorder, or finding	Gingival ecchymosis is-a oral hemorrhage
Activity	Sigmoidoscopy with biopsy is-a diagnostic colonoscopy
Activity	Nucleic acid hybridization is-a genetic technique
Abnormal cell	Malignant clear cell oncocyte is-a adenocarcinoma clear cell
Abnormal cell	Neoplastic parathyroid gland clear cell is-a neoplastic endocrine clear cell

Abbreviation: EVS, Enterprise Vocabulary Services.
Another limitation is that our evaluation was preliminary in two aspects. First, the evaluation was based on nonlattice subgraphs ≤ 15 in size, because the EVS experts would be visually overwhelmed with large graphs to manually review. Second, the EVS experts did not review all the provided potentially missing is-a relations. We plan to provide EVS experts with a random sample of potentially missing is-a relations detected from a newer version of the NCI Thesaurus after improving the ability of our method to distinguish ambiguous concepts.

In conclusion, we developed a hybrid method to automatically suggest potentially missing is-a relations in the NCI Thesaurus. Autosuggested changes resulting from our auditing method can improve the structural organization of the NCI Thesaurus in supporting its new role for faceted query.

AFFILIATIONS

1. School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
2. Department of Computer Science, University of Kentucky, Lexington, KY
3. Department of Neurology, McGovern School of Medicine, University of Texas Health Science Center at Houston, Houston, TX
4. Kentucky Cancer Registry, Lexington, KY
5. Division of Biomedical Informatics, Department of Internal Medicine, University of Kentucky, Lexington, KY
6. Enterprise Vocabulary Services, Center for Biomedical Informatics & Information Technology, National Cancer Institute, Bethesda, MD

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Science Foundation or National Institutes of Health.

CORRESPONDING AUTHOR

Licong Cui, PhD, 7000 Fannin St, Suite 600, Houston, TX 77030; e-mail: licong.cui@uth.tmc.edu.

SUPPORT

Supported by the National Science Foundation through Grant No. IIS-1931134 and the National Cancer Institute, National Institutes of Health, through Grant No. R21CA231904.

AUTHOR CONTRIBUTIONS

Conception and design: Licong Cui, Isaac Hands, Guo-Qiang Zhang

Financial support: Licong Cui, Guo-Qiang Zhang

Administrative support: Shiqiang Tao

Provision of study material or patients: Eric B. Durbin

Collection and assembly of data: Licong Cui, Rashmie Abyesinghe, Fengbo Zheng, Shiqiang Tao, Ningzhou Zeng, Isaac Hands, Eric B. Durbin, Nicholas Sioutos

Data analysis and interpretation: Licong Cui, Rashmie Abyesinghe, Ningzhou Zeng, Isaac Hands, Lori Whiteman, Lyubov Remennik, Nicholas Sioutos, Guo-Qiang Zhang

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

REFERENCES

1. Kentucky Cancer Registry: Population-based central cancer registry for Kentucky. https://www.kcr.uky.edu/
2. Cahn L: The 20 states with the highest cancer rates. https://www.thehealthy.com/cancer/states-with-the-highest-cancer-rates/
3. Centers for Disease Control and Prevention: US cancer statistics: Data visualizations. https://gis.cdc.gov/Cancer/USCS/DataViz.html
4. National Cancer Institute: Surveillance Epidemiology and End Results program. https://seer.cancer.gov/
5. Hayat MJ, Howlader N, Reichman ME, et al: Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) program. Oncologist 12:20-37, 2007
6. University of Kentucky: Cancer Rates app. https://itunes.apple.com/us/app/cancer-rates/id1049312556?mt=8
7. Tunkelang D: Faceted Search (synthesis lectures on information concepts, retrieval, and services). San Rafael, CA, Morgan and Claypool Publishers, 2009
8. Hearst MA: Clustering versus faceted categories for information exploration. Commun ACM 49(4):59-61, 2006
9. Hearst MA: Design recommendations for hierarchical faceted search interfaces. http://flamenco.berkeley.edu/papers/faceted-workshop06.pdf
10. de Coronado S, Haber MW, Sioutus N, et al: NCI Thesaurus: Using science-based terminology to integrate cancer research results. Stud Health Technol Inform 107:33-37, 2004
11. Sioutus N, de Coronado S, Haber MW, et al: NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information. J Biomed Inform 40:30-43, 2007
12. Zhang GQ, Tao S, Zeng N, et al: Ontologies as nested facet systems for human–data interaction. Semant Web 11(1):79-86, 2020
13. Cui L, Zhu W, Tao S, et al: Mining non-lattice subgraphs for detecting missing hierarchical relations and concepts in SNOMED CT. J Am Med Inform Assoc 24:788-798, 2017
14. Zhang GQ, Bodenreider O: Large-scale, exhaustive lattice-based structural auditing of SNOMED CT. AMIA Annu Symp Proc 2010:922-926, 2010
15. Zhang GQ, Xing G, Cui L: An efficient, large-scale, non-lattice-detection algorithm for exhaustive structural auditing of biomedical ontologies. J Biomed Inform 80:106-119, 2018

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/cci/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.
16. Abeysinghe R, Brooks MA, Talbert J, et al: Quality assurance of NCI Thesaurus by mining structural-lexical patterns. AMIA Annu Symp Proc 2017:364-373, 2018

17. Cui L, Bodenreider O, Shi J, et al: Auditing SNOMED CT hierarchical relations based on lexical features of concepts in non-lattice subgraphs. J Biomed Inform 78:177-184, 2018