Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation

N El-Mahdani1, J-C Vaillant2, M Guiguet3, S Prévot4, V Bertrand2, C Bernard4, R Parc2, G Béréziat1,5 and B Hermelin5

1URA CNRS 1283, 2Service de Chirurgie Digestive, 3INSERM U263, 4Service d’Anatomie Pathologique and 5Service Commun de Biologie Moléculaire, Hôpital Saint-Antoine, 184, rue du Faubourg Saint-Antoine, 75871 Paris Cedex 12, France

Summary We analysed the frequency of p53 mRNA overexpression in a series of 109 primary colorectal carcinomas and its association with p53 gene mutation, which has been correlated with short survival. Sixty-nine of the 109 cases (63%) demonstrated p53 mRNA overexpression, without any correlation with stage or site of disease. Comparison with p53 gene mutation indicated that, besides cases in which p53 gene mutation and p53 mRNA overexpression were either both present (40 cases) or both absent (36 cases), there were also cases in which p53 mRNA was overexpressed in the absence of any mutation (29 cases) and those with a mutant gene in which the mRNA was not overexpressed (four cases). Moreover, the mutant p53 tumours exhibited an increase of p53 mRNA expression, which was significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. These data (1) show that p53 mRNA overexpression is a frequent event in colorectal tumours and is not predictive of the status of the gene, i.e. whether or not a mutation is present; (2) provide further evidence that p53 protein overexpression does not only result from an increase in the half-life of mutated p53 and suggest that inactivation of the p53 function in colorectal cancers involves at least two distinct mechanisms, including p53 overexpression and/or mutation; and (3) suggest that p53 mRNA overexpression is an early event, since it is not correlated with Dukes’ stage.

Keywords: colorectal cancer; p53; mRNA overexpression; inactivation; mutation

p53 gene mutation with or without allelic loss has been considered to be the commonest alteration found in sporadic non-familial cancer (Vogelstein, 1990). This alteration occurs in a wide variety of tumour types, including solid and haematopoietic tumours (Hollstein et al, 1991). Furthermore, humans who inherit germline p53 mutations are prone to the development of cancer (Marklin et al, 1990; Srivastava et al, 1990).

The wild-type p53 appears to function as a cell-growth suppressor and may play an important role in genomic stability and DNA repair (Zambetti et al, 1993). Wild-type p53 transactivates the WAF1/p21 gene (El-Deiry et al, 1993; Harper et al, 1993), whose protein product prevents exit from the G1-phase by inhibiting cyclin/Cdk complexes and, in parallel, blocks replicative DNA synthesis by binding to proliferating cell nuclear antigen (PCNA) (Dulic et al, 1994; Waga et al, 1994). When DNA is altered, the cell cycle is blocked in G1-phase, allowing time for repair (Kastan et al, 1991, 1992). If the DNA damage is too great, the cell is engaged in the apoptosis pathway and is subsequently deleted from the tissue (Clarke et al, 1993; Lowe et al, 1993). p53, therefore, acts as ‘the guardian of the genome’ (Lane, 1992).

However, the molecular mechanism of wild-type p53 action is not fully understood. The p53 protein has been shown to activate several genes by interacting with specific DNA sequences, such as the promoter of muscle specific creatine kinase (Weintraub et al, 1991) and the third intron of the GADD45 gene, which is induced after gamma irradiation (Papathanasiou et al, 1991). A consensus p53 DNA-binding site has been derived from these studies (Kern et al, 1991; El-Deiry et al, 1992; Funke et al, 1992). Wild-type p53 has also been implicated in the transcriptional inhibition of several genes involved in cell growth: c-myc (Moberg et al, 1992), retinoblastoma susceptibility gene (Shioi et al, 1992), multidrug resistance gene-1 (Chin et al, 1992), proliferating cell nuclear antigen (Subler et al, 1992), c-fos, interleukin6, c-jun and hsc70, a member of the heat shock family (Ginsberg et al, 1991; Santhanam et al, 1991; Agoff et al, 1993). This inhibitory effect might be caused by a direct action on the TATA box machinery (Liu et al, 1993; That et al, 1995). p53 was also found to be able to stimulate its own transcription, but was unable to bind directly the specific sequences, which have been identified in the p53 promoter (Deffie et al, 1993).

In colorectal cancer, p53 mutations and allelic losses on 17p are genomic alterations that occur as late events in tumour progression (Baker et al, 1990; Fearon et al, 1990). p53 gene mutations have been associated with poor prognosis in human breast carcinomas (Thorlacius et al, 1993) and in non-small-cell lung cancer (Horio et al, 1994). In contrast to previous findings (Kern et al, 1989), when tumours were classified according to their histological stage, a multivariate Cox model analysis showed that p53 mutation, rather than 17p allelic losses, was the only independent prognostic factor (Hamelin et al, 1994). Immunohistochemistry (IHC) studies have indicated that mutated p53 is overexpressed in premalignant head and neck lesions (Shin et al, 1994), oesophageal squamous cell carcinomas (Wagata et al, 1993), ovarian cancer (Kupryjanczyk et al, 1993), breast cancer (Faillie et al, 1994) and hepatocellular carcinoma (Wolkman et al, 1994). In colorectal cancer, overexpression of p53 protein has been correlated with poor short-term prognosis (Yamaguchi et al, 1992;...
Most authors attributed p53 protein overexpression to an increase in its half-life owing to the conformational changes induced by mutations (Zambetti et al., 1993), but this mechanism is not relevant in the case of wild-type overexpression. In order to define more clearly p53 gene expression, we analysed in this study p53 mRNA expression in 109 colorectal carcinomas by the use of a semi-quantitative reverse transcription—polymerase chain reaction (RT–PCR) technique and examined its relationship to p53 mutation.

MATERIALS AND METHODS

Materials

This study was performed on a series of 109 specimens obtained from patients undergoing resection of colorectal adenocarcinoma between January 1992 and November 1994. Tumour and adjacent normal mucosa samples from the same patient were immediately collected for analysis in the pathology department, frozen in liquid nitrogen and stored at −80°C. Before DNA and RNA isolation, the quality of tumours and normal samples in each case was evaluated by examination of cryostat sections stained with haemalum.

Patients with familial adenomatosis or hereditary non-polyposis colorectal cancer with a highly penetrant genetic predisposition to colorectal cancer were excluded from this study. This series included 63 men and 46 women (mean age 64.5 ± 14.5 years). Twenty-six tumours out of the 109 studied were right-sided (caecum, ascending and transverse colon), 49 were left-sided (descending colon and sigmoid) and 34 were located in the rectum.

According to the modified Dukes’ staging system, 15 were Dukes’ stage A (13.8%), 36 were Dukes’ stage B (33%), 34 were Dukes’ stage C (31.2%) and 24 were Dukes’ stage D (22%).

Clinical stage and tumour site

Of the 109 tumours studied, 60 (55%) were associated with nodal involvement or distant metastasis. A significant association was observed between tumour staging and location (P=0.01). Tumours of the rectum exhibited a higher proportion of advanced Dukes’ stage (C+D = 71%) than those located in the distal (45%) or proximal colon (46%).

Preparation of DNA and RNA

DNA was extracted from each tumour and normal mucosa sample by treatment with sodium dodecyl sulphate (SDS), proteinase K and phenol–chloroform according to Fritsch et al (1989). RNA was isolated, using 50 mg of frozen powdered sample, with RNAzol (Biorad, France), according to the manufacturer’s recommendations. RNA and DNA concentrations were quantified by spectrophotometry and determined to be intact by migration on 1% agarose gels and staining with ethidium bromide.

Reverse transcription

This was carried out in a 20-μl reaction volume containing 500 μM dNTP, 10 mM DTT, 0.5 U μl−1 RNASasin (Promega Corporation); 5 μM random hexamers and 10 μg μl−1 reverse transcriptase (Gibco BRL, Bethesda, MD, USA). RNA extracts were heated for 5 min at 70°C and cooled on ice before being added (1 μg) to the reaction mixture.
Table 1 Primer sequences for p53 analysis

Name	Site	Sequences		
p53 (RT–PCR)		Nucleotide numbers		
Set 1	Primer 1	Sense	168–186	5′-ACA CGC TTC CCT GGA TTG G-3′
	Primer 2	Antisense	616–634	5′-GTT CTG GCC CAG TTC GCA A-3′
	Primer 3	Sense	548–571	5′-GTC TTC TTG CAT TCT GGG ACA GCC-3′
	Primer 4	Antisense	964–985	5′-CAG TGT GAT GGT GGT GAT G-3′
Set 3	Primer 5†	Sense	887–907	5′-GTT GCC TCT GAC TGT ACC CGG-3′
	Primer 6	Antisense	1223–1246	5′-CAG CTC TCG GAA CAT TTC GAA GCG-3′
	Primer 7	Sense	1087–1104	5′-GAA AGG GGA GCC TCA CCA-3′
	Primer 8	Antisense	1411–1427	5′-GCT GTC AGT GGG GAA CAA-3′
p53 (DNA)		Intron number		
Set 5	Primer 9	Sense	Intron 4	5′-TTT AAC TCT GTG TCC TTC CT-3′
	Primer 10	Antisense	Intron 6	5′-TTA ACC CCT CTC CCT CCC AGA AGA-3′
Set 6	Primer 11	Sense	Intron 9	5′-GTC TCC CCA AGG CGG ACT GG-3′
	Primer 12	Antisense	Intron 7	5′-GA TGT AGG AGG GGA GTG T-3′
Set 7	Primer 13	Sense	Intron 7	5′-GTT CCT ACT GCC TCT TGC TT-3′
	Primer 14	Antisense	Intron 9	5′-GCC AAG ACT TAG TAC CTG AA-3′
β-Actin (RT-PCR)		Exon number		
Set 8	Primer 15†	Sense	Exon 3	5′-CGT GGA TGC CAC AGG ACT CC-3′
	Primer 16	Antisense	Exon 4	5′-ATC ATG TTT GAG ACC TCC AA-3′

†Fluorescent primer when required.

PCR amplification

All primers and probes, used to optimize RT–PCR procedures, were synthesized using a 391 DNA synthesizer (Applied Biosystem, Foster City, CA, USA), followed by high-performance liquid chromatography. The fluorescent-labelled primers, used to measure mRNA levels and to sequence the PCR products, were purchased from Genset Corporation (France). The sequences of the various primers are given in Table 1. Reverse-transcribed cDNA (5 µl, 0.25 µg) was subjected to PCR amplification with two sets of p53 and β-actin (internal standard) primers. PCR reaction was performed in 25 µl of reaction medium containing 10 mM Tris-HCL, pH 8.3, 50 mM magnesium chloride, 0.001% gelatin, 0.05 U Taq DNA polymerase (Beckman, USA) and 0.5 µl of each primer. Each cycle consisted of 15 s denaturing at 94°C, 15 s annealing at 58°C and 30 s extension at 72°C. Negative controls were subjected to reverse transcriptase. Cycling was performed in a Perkin-Elmer 9600 thermocycler (Cetus).

Quantitation of PCR products

The optimal number of cycles of amplification to allow quantitation of p53 and β-actin gene PCR products was determined using primers 5 and 6 for p53 and 15 and 16 for β-actin. The primers 5 and 15 were chosen to produce a fragment within the linear range of the assay. The optimal number of cycles for each reaction was selected by amplifying a series of samples, each set of four (Table 1) in order to amplify overlapping fragments of the total cDNA. After 35 cycles of PCR, the primers and oligonucleotides were recovered from the reaction mixture using a centrifuge 100 microcentrifuge (Amicon, Beverly, MA, USA). Specific p53 amplification products were identified by electrophoresis on 2% agarose gels. The PCR products (100 ng) were subjected to sequencing reactions using the Prism reaction dye terminators kit according to the protocol supplied by the manufacturer (Applied Biosystem). Taq sequencing reactions were conducted in a Perkin-Elmer thermocycler 9600 as follows: 30 s at 96°C, 15 s at 50°C and 4 min at 60°C for 25 cycles. Extended fragments were purified from non-incorporated nucleotides and primers by using spin columns (Boehringer). The reaction mixtures were then dried, resuspended in 5 µl of dionized formamide: 50 mM EDTA, pH 8.0, heated for 2 min at 90°C, transferred to ice and loaded immediately onto a 6% denaturing polyacrylamide gel. Gels were run for 12 h at 30 W constant power on an ABI model 373 A automated DNA sequencer.

p53 genomic DNA sequencing

Samples without p53 mRNA overexpression were sequenced after amplification of genomic DNA. In these cases, the primers used for DNA amplification are summarized in Table 1. A total of three different polymerase chain reactions were used to screen the entire
Table 2 p53 mRNA levels among the 69 tumours showing overexpression

Number of tumours	p53 mRNA level*	
Without p53 mutation	29	0.56 ± 0.32
With p53 mutation	40	0.56 ± 0.31
Presence of wild transcript	21	0.56 ± 0.31
Absence of wild transcript	19	0.86 ± 0.47

*Ratio between the amount of p53 to β-actin RT–PCR products at 26 cycles, expressed in arbitrary units as described in Materials and methods, values are the means ± s.d. F2,67 (one-way analysis of variance) = 4.94; P = 0.01.

Table 3 Relationship between p53 gene alterations and clinicopathological features

Mut− n (%)	Mut+ n (%)	Absence of expression of wild allele among mut + n (%)
Dukes' stage		
A	10 (15)	5 (11)
B	24 (37)	12 (27)
C	20 (31)	14 (32)
D	11 (17)	13 (30)
Total	65 (100)	44 (100)
Intestinal site		
Proximal colon	18 (26)	8 (18)
Distal colon	27 (44)	22 (50)
Rectum	20 (31)	14 (32)
Total	65 (100)	44 (100)

mut +, with p53 mutation, mut −, without p53 mutation.

coding sequence contained within exons 5–8 and their corresponding splice junctions.

Cell line

The human colorectal cancer cell line, HT29, with a known p53 point mutation at codon number 273, was used as a positive control for sequencing and RT–PCR analysis of p53 mRNA expression.

Statistical analysis

Results are expressed as the mean ± standard deviation. The mean p53 mRNA for each of the subgroups of tumours was compared by one-way analysis of variance. The chi-square (χ²) test of significance was used to analyse the frequency.

RESULTS

p53 mRNA levels

The p53 mRNA content from colorectal carcinoma and adjacent normal mucosa samples was examined by a semi-quantitative RT–PCR procedure, and the results were normalized against the β-actin mRNA content observed in the same samples. In adjacent mucosa, the relative level of p53 mRNA remained very low, i.e. 0.08 ± 0.06 AU (n = 40) and was always lower than 0.20 AU (Figure 2). This value was therefore chosen as the upper limit of the normal p53 mRNA level. In contrast to normal tissue, the p53 mRNA level observed in tumour tissue was distributed over a wide range of values with an upper limit of 1.55 AU. Forty tumours out of 109 (37%) exhibited mRNA values in the normal range, i.e. lower than 0.20 AU. p53 mRNA overexpression, i.e. higher than 0.20 AU, was observed in 69 out of 109 tumour samples (63%) with a mean value of 0.64 AU (s.d. 0.38).

Comparison between p53 mRNA expression and gene mutation

In the 69 tumours that overexpressed p53 mRNA, an absence of mutation was observed in the coding sequence of p53 mRNA in 29 cases (42%). In 21 out of 40 samples in which mutated mRNA p53 was observed, we also demonstrated coexpression of the wild-type allele. This is visible on the sequence spectrum by the presence of two bases at the same position (data not shown). However, it is impossible to sequence p53 cDNA from normal tissue by RT–PCR. The level of p53 mRNA was significantly higher in tumours expressing the mutated-type allele alone (0.86 ± 0.47 AU) than in tumours also expressing the wild-type allele (0.56 ± 0.31 AU) or in tumours with non-mutated p53 (0.56 ± 0.32 AU) (Table 2). In four of the 40 tumours without mRNA overexpression, we found p53 gene mutation associated with wild-type allele expression.

Relationship between p53 gene alterations and clinicopathological features

The frequency of mutation was not statistically different according to the Dukes’ stage (P=0.40) or the location (P=0.5) (Table 3).
Table 4: List of individual tumours showing p53 mutations in colorectal cancer

Tumour Site	Expression of wild allele	Codon number	Base change	Amino acid change	p53 mRNA level					
					Normal mucosa†	Tumours‡				
121	R	C	+	2–3–4	1 → 43	1 → 129	Another polypeptide sequence in N terminus	0.07	0.24	
44	PC	C	+	4	33 → 48	97 → 144	Another polypeptide sequence between aa 33 and 48	0.09	0.48	
37	DC	D	+	5	143	GTG → GCG	V → A	ND	0.48	
140	DC	A	–	5	143	GTG → GAG	V → E	0.17	1.54	
12	R	C	–	5	161	GCC → ACC	A → T	0.01	1.54	
120	R	D	+	5	167	CAG → CGG	E → R	0.05	0.40	
46	PC	B	+	5	168	CAC → CGC	H → R	0.11	0.33	
160	PC	B	–	5	175	CGC → CAG	R → H	0.13	1.32	
173	DC	B	–	5	175	CGC → GGC	R → G	0.04	0.62	
194	DC	C	+	5	177–179	Deletion of deletion of PHH	ND	0.62		
122	R	B	+	5	179	CAT → TAT	H → Y	0.05	0.45	
11	DC	D	+	6	194	CTT → CCT	L → P	ND	0.67	
148	DC	B	+	6	196	CGA → TGA	R → Stop	0.06	0.98	
193	DC	B	+	6	196	CGA → TGA	R → Stop	ND	0.35	
108	DC	D	+	6	205	TAT → GAT	Y → D	ND	0.25	
125	R	B	–	6	220	TAT → TGT	Y → C	ND	1.22	
104	R	B	+	7	245	GCC → GAC	G → D	ND	0.94	
157	R	A	+	7	245	GCC → TGC	G → C	ND	0.77	
13	PC	B	–	7	248	CGG → CAG	R → Q	0.01	0.36	
72	R	C	–	7	248	CGG → TGG	R → W	ND	0.27	
88	R	C	–	7	248	CGG → CAG	R → Q	ND	0.46	
96	R	B	+	7	248	CGG → CAG	R → Q	0.12	0.30	
150	DC	A	–	7	248	CGG → TGG	R → W	0.18	1.49	
138	DC	A	+	7	248	CGG → CAG	R → Q	0.10	0.10	
97	DC	D	+	7	255	ATC → TTC	I → F	0.00	0.10	
147	PC	C	+	7	257	Deletion	Frameshift changing aa sequence (stop codon 344)	0.06	1.42	
199	R	C	+	7	259	CTG → TG	Insertion	0.21		
155	R	C	+	8	263	GAC → GTAC	Insertion of 5b: AA [GGTAA] T	ND	0.70	
156	R	C	–	8	266	GGA → GTA	G → V	ND	1.13	
71	DC	D	–	8	272	GTG → ATG	V → M	ND	0.56	
41	DC	C	–	8	272	GTG → TTG	V → L	ND	0.31	
35	DC	D	–	8	273	CGT → TGT	R → C	ND	0.31	
36	DC	D	–	8	273	CGT → TGT	R → C	ND	0.97	
43	DC	B	+	8	273	CGT → TGT	R → C	0.08	0.25	
77	PC	A	+	8	273	CGT → CAT	R → H	ND	0.77	
143	DC	D	+	8	273	CGT → CAT	R → H	ND	0.37	
151	DC	D	–	8	273	CGT → TGT	R → C	0.18	1.15	
62	DC	D	–	8	273	CGT → TGT	R → C	ND	0.70	
129	R	B	–	8	273	CGT → TGT	R → C	ND	0.69	
32	DC	C	–	8	274	GTT → CTT	V → L	ND	0.38	
164	PC	D	+	8	280	Deletion	Frameshift changing aa sequence (stop codon 344)	0.02	0.10	
9	DC	C	+	8	301	Deletion	Frameshift changing aa sequence (stop codon 344)	0.10	0.10	
186	DC	C	+	9	306	CCA → CA	CGA → TGA	R → stop	ND	0.78

†PC, proximal colon; DC, distal colon; R, rectum. ‡Expression of wild allele: +, wild and mutated-type alleles are expressed together; –, mutated-type allele is expressed alone. §Ratio between the amount of p53 to β-actin RT–PCR products at 26 cycles. ND, not determined. aa, amino acid.

The proportion of mutated tumours not expressing the wild-type allele was roughly the same at each Dukes’ stage. Conversely, this proportion varied according to site: 25% of the tumours did not express the wild-type allele in the proximal colon vs 50% and 43% in distal colon and rectum respectively, but this difference was not statistically significant (P=0.47) (Table 3).

p53 gene mutation

Table 4 provides the exact DNA alteration observed in 44 tumours and its location on the gene. The histological grade and p53 mRNA expression in these tumours and their adjacent normal tissues are also shown. Among the 36 substitutions of a single base pair, 28 (77.8%) were G:C ←→ A:T transitions (21 occurring at CpG

"British Journal of Cancer (1997) 75(4), 528–536 © Cancer Research Campaign 1997"
Three were number273 (six CGT with (CGC reading Insertion at acids. pairs nucleotide a large rearrangement (tumour121) ments tumours, the p53 mRNA level was either 0.46 ± 0.22 AU when the wild-type allele was expressed or 0.87 ± 0.35 AU when not expressed. These results are identical to those obtained with respect to all mutated tumours expressing the wild-type allele (or not) (Table 2). Six of the missense mutations affected codon number 248 (four CGG → CAG, R → Q and two CGG → TGG, R → W), two of the missense mutations affected codon number 175 (CGC → CAC, R → H and CGC → GGC, R → G) and the codon number 245 (GGC → GGA, G → D and GGC → TGC, G → C). We also found two mutations at codon number 272 (GTG → ATG, V → M and GTG → TTT, V → L).

Eight mutations created major rearrangements of the mRNA reading frame (Table 4), four of them were insertions or deletions of one basepair. Deletions of cytosine 983 at codon 257 (tumour 147), adenine 1052 at codon 280 (tumour 164) and cytosine 1115 at codon 301 (tumour 9) gave three putative p53 proteins composed of 343 amino acids differing in their C-terminus. Insertion of a thymine after the guanine 989 at codon 259 (tumour 199) gave a putative shorter polypeptide composed of 262 amino acids. In four cases, more marked rearrangements were observed: a large rearrangement (tumour 121) in the N-terminus (from nucleotide 1 to 129), a non-homologous recombination of 43 basepairs after nucleotide 97 (tumour 44), a deletion of nine bases (amino acids 177 to 179, PIH) (tumour 194) and an insertion of five bases after nucleotide 1002 at codon 263 (tumour 155) giving a p53 protein composed of 343 amino acids. These eight rearrangements all concerned advanced Dukes’ stage (seven were Dukes’ stage C and one was Dukes’ stage D).

DISCUSSION

In this series of 109 primary colorectal carcinomas, we observed p53 mRNA overexpression in 63% of the cases. This overexpression occurred without any correlation with the stage or site of the disease. The mean level of p53 mRNA expression is five- to sixfold higher in these tumours than in adjacent normal mucosa. Some tumours showed high p53 mRNA levels, while others showed a slight increase. In the latter case, p53 mRNA may either be weakly expressed in all tumour cells or highly expressed in a few tumour cells owing to tumour heterogeneity. Indeed, we described that the tumour cell staining varied in extent and intensity when p53 protein is detected by IHC (Zeng et al., 1994). Our results clearly demonstrate that p53 regulation may occur at a pretranscriptional step, involving either an increase in p53 gene expression and/or stabilization of its mRNA. Our findings confirm earlier reports, which showed an elevated level of p53 transcripts in 28 (Gothe et al., 1991) and 25 (Lothe et al., 1992) cases, 70% and 66% of tested tumours overexpressed p53 respectively. In these studies, p53 mRNA quantification was performed by Northern blot analysis.

When DNA sequencing was performed, 44 tumours (40%) exhibited p53 mutation. Our data on the prevalence and spectra of p53 mutations in colorectal cancer agree with those obtained from 960 cases compiled by Greenblatt et al (1994). However, the most striking difference between the two studies concerns the number of non-missense type mutations, which accounted for 18% of mutations in our series vs 8% in Greenblatt’s study. Among the 36 substitutions of a single basepair, 28 of them occurred at CpG dinucleotides; the p53 coding region contains 39 CpG dinucleotides, which are potential sites for the methylation of cytosine. Recently, Tornaletti et al (1995) found that the p53 sequences along exons 5–8 were completely methylated at every CpG site, whatever the tissue. Methylation of CpG dinucleotides is thought to be the cause of the genetic changes occurring through spontaneous deamination of 5-methylcytosine (Rideout et al., 1990) and accounted for the majority of endogenous mutations in vertebrates (Sved et al., 1990). In our study, mutated and wild-type alleles were expressed simultaneously in 25 tumours, and the loss of wild-type allele expression was rarely observed in the proximal colon (25%) vs 50% and 43% in the distal colon and the rectum respectively. The rectum is a site in which a high incidence of 17p allelic loss has been observed. These differences were not statistically significant, and the hypothesis that genetic mechanisms leading to cancer differ in the proximal and distal colon needs to be verified (Delattre et al, 1989).

In 40 of the 44 mutated tumours, p53 mRNA levels were significantly higher in tumours expressing the mutated allele alone than in tumours expressing both wild- and mutated-type alleles. It has been described that p53 stimulates its own transcription (Deffie et al., 1993), and that some p53 mutant forms presented wild-type transactivation activity (Levine et al., 1991). In addition, p53 can induce transcription from an internal promoter located within the mdm2 gene (Juven et al., 1993), whose product, MDM2 oncprotein, has been identified as a negative regulator of the p53 gene. Further, MDM2, by binding to p53, inhibits its ability to activate transcription and may, therefore, be part of a negative feedback loop serving to terminate signals involving the transient activation of wild-type p53 (Oliner et al., 1992; 1993). So, when a p53 gene mutation occurs, the absence of a negative feedback might be responsible for p53 mRNA overexpression. The suppressor function of wild-type p53 may also be compromised in cells containing a mutant allele of p53, since the formation of wild-type – mutant p53 inactive complexes occurs (Milner et al., 1991). Thus, mutant forms abrogate the ability of wild-type p53 to transactivate appropriate target genes in vitro and in vivo (Farmer et al., 1992; Kern et al., 1992), and the relative quantity of mutated to wild-type p53 mRNA could determine the transformed phenotype, and the result could be partial or complete loss of wild-type function. p53 mRNA overexpression can account for an elevated content of p53 protein in the absence of p53 gene mutation. An increase in wild-type p53 has been observed in colorectal adenomas and has been suggested to constitute an early event in the process of adenoma formation and carcinogenesis (Tominaga et al., 1993; Boccuzzi, 1995); our present data showing no correlation between p53 mRNA and tumour stage agree with these results. Other results suggest that, in colorectal cancer, IHC detection of p53 protein does not always indicate the existence of an underlying p53 gene mutation (Dix et al., 1994). This abnormal expression of wild-type p53 protein was also found in normal cells of a patient from a family with a history of cancer (Barnes et al., 1992) and, more recently, a new case of Li–Fraumeni was reported in which no mutation in the coding sequence of the p53 gene was detected (Birch et al., 1994). In all cases, stabilization of the p53 protein depends on factors other than p53 gene mutation, such as (1) binding to other molecules of cellular (mdm2 gene product) or viral origin blocking p53 in an inactive conformation; and/or (2) its
sequestration in a cellular compartment in which it cannot exert its functions. Recent data have demonstrated wild-type p53 protein accumulation in the cytoplasm of astrocytomas (Lang et al, 1994), melanomas (Castresana et al, 1993) and testis cancer (Peng et al, 1993), and that nuclear exclusion of p53 might also be one way of inactivating p53 in breast cancer (Moll et al, 1992). Nuclear exclusion of wild-type p53 is suggested in a study showing its cytoplasmic accumulation in colorectal cancers (Bosari et al, 1995) with a higher prevalence in advanced tumours (Sun et al, 1992). Another study has shown an increase in p53 protein according to the stage of carcinomas from the rectum (Starzynska et al, 1992). In our study, the level of p53 mRNA did not correlate with either the Dukes’ stage or the tumour site, in accordance with previous data showing no correlation in colorectal cancers between p53 overexpression detected by IHC and clinicopathological data (Yamaguchi et al, 1992, ; Bosari et al, 1994). This lack of correlation between p53 overexpression (either mRNA or protein) and tumour stage suggests that it is an early event in these tumours, perhaps beginning with adeno ma formation (Tominaga et al, 1993).

p53 mRNA overexpression with or without p53 mutation suggests two distinct mechanisms of inactivation leading to the development of cancer, and that the p53 status might have important implications for cancer therapy. The tumour-suppressing function of p53 preserves genome integrity and the p53 protein is required for apoptosis in response to radiation-induced DNA damage, a mechanism serving to eliminate potentially oncogenic cells (Lee et al, 1993). The relation between p53 mutations and the therapeutic response has been verified in vivo in athymic nude mice injected with embryonic transformed fibroblasts differing in their p53 status. Tumours expressing the wild-type p53 gene contained a high proportion of apoptotic cells and typically regressed after gamma radiation or doxorubicin treatment. In contrast, wild-type p53-deficient tumours continued to grow and contained few apoptotic cells (Lowe et al, 1994). These data show that much benefit could be gained from identifying cancers without p53 mutations, which are likely to respond more favourably to drug therapy than those with mutated p53. Conversely, patients whose tumours harbour p53 mutations might be spared from the toxicity associated with chemotherapy agents and would be good candidates for novel therapeutic approaches. Recently, Fujiwara et al (1994) reported the in vivo retroviral transduction of wild-type p53 in human lung cancer cells in an orthotopic nude mouse model with endogenous mutated p53. They demonstrated that cancer cell growth can be eliminated or greatly reduced by this in vivo gene therapy beginning 3 days after tumour cell inoculation. So, ‘cancer therapy meets p53 status’ (Kinzler et al, 1994).

Analysis of the level of p53 mRNA in colorectal cancer by quantitative RT–PCR provides a rapid and sensitive method for discriminating between tumours overexpressing p53 mRNA with or without p53 gene mutation. This should be useful for future anti-tumour research and for the design of therapeutic agents specific to the inactivation process. The observation period in our study was too short to clarify the relationship between p53 mRNA overexpression and clinical prognosis of patients with a colorectal carcinoma; we are following these patients.

ACKNOWLEDGEMENTS

We are grateful to Biéna Biévre-Marcé who edited the manuscript. We also thank Dr C Brahim-Horn for critical reviewing.

REFERENCES

Agoff SN, Hou J, Linzer DIH and Wu B (1993) Regulation of the human hsp 70 promoter by p53. Science 259: 84–87

Auvinen A, Isola J, Visakori T, Koivula T, Virtanen S and Hakama M (1994) Overexpression of p53 and long-term survival in colon carcinoma. Br J Cancer 70: 293–296

Baker SJ, Preisinger AC, Jessup MM, Paraseka C, Markowitz S, Willson JKV, Hamilton S and Vogelstein B (1990) p53 gene mutations occur in combination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer Res 50: 7717–7722

Barnes DM, Hanby AM, Gillett CE, Mohammed S, Hodgson S, Bobrow LG, Leigh JM, Purks T, MacGeoch C, Sparr NK, Bartek J, Vojtesek B, Pickley SM, and Lane DP (1992) Abnormal expression of wild-type p53 protein in normal cells of a cancer family patient. Lancet 340: 259–263

Battifora H (1994) p53 immunohistochemistry: a word of caution. Pathol 25: 435–437

Birch JM, Heighway J, Teare MD, Kelsey AM, Hartley AL, Tricker JK, Crowther D, Lane DP and Santibanez-Koref MF (1994) Linkage studies in a LI-Fraumeni family with increased expression of p53 protein but no germline mutation in p53. Br J Cancer 70: 1176–1181

Boccuzzi A, Terzolo M, Leonardo E, Cappia S, Tappero P and Angeli A (1995) High frequency of p53 expression in colorectal adenomatous polyps. Anticancer Res 15: 1407–1410

Bosari S, Viale G, Bossi P, Maggioni M, Coggi G, Murray JJ and Lee AKC (1994) Cytoplasmic accumulation of p53 proteins: an independent prognostic indicator in colorectal adenocarcinomas. J Natl Cancer Inst 86: 681–687

Castresana JS, Rubio MF, Vazquez JJ, Idaste M, Sober AJ, Sczinger BR and Barnhill RL (1993) Lack of allelic deletion and point mutation as mechanisms of p53 inactivation in human malignant melanoma. Int J Cancer 55: 562–565

Chin KV, Ueda K, Pastan I and Gottesman MM (1992) Modulation of activity of the promoter of the human MDR 1 gene by ras and p53. Science 255: 459–462

Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML and Willye AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362: 849–852

Deffie A, Wu H, Reinke V and Lozano G (1993) The tumor suppressor p53 regulates its own transcription. Mol Cell Biol 13: 3415–3423

Delattre O, Law DJ, Remvikos Y, Sastre X, Feinberg AP, Olschewski S, Melot T, Salmon R, Valdice P and Thomas G (1989) Multiple genetic alterations in distal and proximal colorectal cancer. Lancet 12: 353–355

Dix B, Robbins P, Carrello S, House A and Iacopetta B (1994) Comparison of p53 gene mutation and protein overexpression in colorectal carcinomas. Br J Cancer 70: 585–590

Dulic V, Kaufmann WK, Wilson SJ, Tisty TD, Lees E, Harper JW, Ellidge SJ and Reed SI (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76: 1013–1023

El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW and Vogelstein B (1992) Definition of a consensus binding site for p53. Nature Genet 1: 45–49

El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B (1993) The role of p53 in colorectal tumorigenesis. Cell 72: 817–825

Faisse A, De Cremoux P, Extra JM, Linaires G, Espte M, Bourstyn E, De Rocquamourc A, Giachetti S, Marty M and Calvo F (1994) p53 mutations and overexpression in locally advanced breast cancers. Br J Cancer 69: 1145–1150

Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R and Prives C (1992) Wild-type p53 activates transcription in vitro. Nature 358: 83–86

Fearon ER and Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

Fritsch EF, Sambrook J and Maniatis T (1989) Molecular Cloning, A Laboratory Manual, 2nd edn. pp 916–919 Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY

Fujiiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA and Roth GI (1994) Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 86: 1458–1459

Funk WD, Pak DT, Karas RH, Wright WE and Shay JW (1992) A transcriptionally active DNA-binding site for human p53 protein complexes. Mol Cell Biol 12: 2866–2871

ABBREVIATIONS

Abbreviations IHC, immunohistochemistry; RT, reverse transcription; PCR, polymerase chain reaction; dNPTs, deoxynucleotide triphosphates; DTT, dithiothreitol; AU, arbitrary units; SD, standard deviation.
p53 mRNA overexpression in colorectal cancer

Ginsberg D, Mechtfa F, Yaniv M and Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. *Proc Natl Acad Sci USA* 88: 9979–9983

Gope M L, Chun M and Gope R (1991) Comparative study of the expression of *Rb* and p53 genes in human colorectal cancers, colon carcinoma cell lines and synchronized human fibroblasts. *Mol Cell Biol* 10: 55–63

Greenblatt MS, Bennett WP, Hollstein M and Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to etiology and molecular pathogenesis. *Cancer Res* 54: 4855–4878

Hamelin R, Laurent-Puig P, Olschwang S, Jego N, Asselan B, Remvikos Y, Girodet J, Salmon RJ and Thomas G (1994) Association of p53 mutations with short survival in colorectal cancer. *Gastroenterology* 106: 42–48

Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ (1993) The p21 Cdk-inactivating protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. *Cell* 75: 805–816

Hollstein M, Sidransky D, Vogelstein B and Harris CC (1991) p53 mutations in human cancers. *Science* 253: 49–53

Horio Y, Takahashi T, Kuroishi T, Hibii K, Suyama M, Niimi T, Shimokata K, Yamakawa K, Nakamura Y, Ueda R and Takahashi T (1993) Prognostic significance of p53 mutations and 3p deletions in primary resected non-small cell lung cancer. *Cancer Res* 53: 1–4

Juven T, Barak Y, Zauberman A, George DL and Oren M (1993) Wild-type p53 can mediate sequence-specific transactivation of an internal promoter within the *mdm2* gene. *Oncogene* 8: 3411–3416

Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig KW (1991) Participation of p53 protein in the cellular response to DNA damage. *Cell* 65: 6304–6311

Kastan MB, Zhan Q, El-Diery WS, Carrier F Jacks T, Walsh W V, Plunkett BS, Vogelstein B and Forman AJ Jr (1992) A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. *Cell* 71: 587–597

Kennedy SM, MacGeoch C, Jaffe R and Spurr NK (1994) Overexpression of the oncogene p53 in primary hepatic tumors of childhood does not correlate with gene mutations. *Hum Pathol* 25: 438–442

Kern SE, Fearon ER, Tersmette KWF, Enterline JP, Leffert M, Nakamura Y, White R, Vogelstein B and Hamilton S R (1989) Allelic loss in colorectal cancer. *JAMA* 261: 3099–3103

Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C and Vogelstein B (1991) Identification of p53 as a sequence-specific DNA-binding protein. *Science* 252: 1708–1711

Kern SE, Pietersen PA, Thiagalingam S, Seymour A, Kinzler W and Vogelstein B (1992) Oncogenic forms of p53 inhibit p53-regulated gene expression. *Science* 256: 827–830

Kinzler KW and Vogelstein B (1994) Clinical implications of basic research: cancer therapy meets p53. *N Engl J Med* 331: 49–50

Kupryjanczyk JD, Pignatelli M, Stamp GW, Kafri G, Lane D and Bodmer WF (1992) Over-expression of p53 nuclear oncprotein in colorectal adenomas. *Int J Cancer* 50: 638–688

Lieberette WR, Finkelman JD and Schild SE (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. *Nature* 358: 80–83

Linden JD, Pietepol JA, Thiagalingam SS, Gyuris J, Kinzler KW and Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53. *Nature* 362: 857–860

Papathanasiou MA, Kerr NC, Robbins JH, McBride OW, Alamo J R, Barrett SF, Hickson ID and Forman AE Jr (1991) Induction by ionizing radiation of the gadd-45 gene in cultured human cells: lack of mediation by protein kinase C. *Mol Cell Biol* 11: 1009–1016

Peng H Q, Hogg D, Malkin D, Bailey D, Gallu BL, Bultal M, Jerrett M, Buchanan J and Cross PE (1993) Mutation of the p53 gene did not occur in testis cancer. *Cancer Res* 53: 3574–3578

Pignatteli M, Stamp GW, Kafri G, Lane D and Bodmer WF (1992) Over-expression of p53 nuclear oncprotein in colorectal adenomas. *Int J Cancer* 50: 638–688

Remvikos Y, BD, and Thomas P (1993) Detection of p53 mutations in cultured human fibroblasts. *Cell* 71: 587–597

Kennedy SM, MacGeoch C, Jaffe R and Spurr NK (1994) Overexpression of the oncogene p53 in primary hepatic tumors of childhood does not correlate with gene mutations. *Hum Pathol* 25: 438–442

Ridout WM III, Coetzee GA, Olumi AF and Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. *Science* 249: 1288–1290

Santhanam U, Ray A and Sehgal PB (1991) Repression of the interleukin 6 gene promoter by p53 and the retinoblastoma susceptibility gene product. *Proc Natl Acad Sci USA* 88: 7605–7609

Shihio Y, Yamamoto T and Yamaguchi N (1992) Negative regulation of Rb expression by the p53 gene product. *Proc Natl Acad Sci USA* 89: 5206–5210

Shin DM, Kim J, Ro JY, Hittelman J, Roth JA, Hong WK and Hittelman WN (1994) Activation of p53 gene expression in premalignant lesions during head and neck tumorigenesis. *Cancer Res* 54: 321–326

Starszynska T, Bromley M, Ghosh A and Stern PL (1992) Prognostic significance of p53 overexpression in gastric and colorectal carcinoma. *Br J Cancer* 66: 558–562

Subler MA, Martin DW and Deb S (1992) Inhibition of viral and cellular promoters by human wild type p53. *J Virol* 66: 4757–4762

Sun XF, Cartensen JM, Zhang H, Stal O, Wingren S, Hatches T and Nordenskjold B (1992) Prognostic significance of cytoplasmic p53 oncprotein in colorectal adenocarcinoma. *Cancer* 50: 1369–1373

Sved J and Bird A (1990) The expected equilibrium of the Cpg dinucleotide in vertebrate genomes under a mutation model. *Proc Natl Acad Sci USA* 87: 4692–4696

Thorlacius S, Börresen AL and Eyfjord JE (1993) Somatic p53 mutations in human breast carcinomas in an icelandic population: a prognostic factor. *Cancer Res* 53: 1637–1641

Thut CJ, Chen JL, Klemm R and Tian R (1993) p53 transcriptional activation mediated by coactivators TAF 40 and TAF 60. *Science* 267: 100–103

Tominga O, Hamelin R, Trouvat V, Salmon RJ, Lesse G, Thomas G and Remvikos Y (1993) Frequently elevated content of immunocytochemically defined wild-type p53 protein in colorectal adenomas. *Oncogene* 8: 2653–2658

Tornielli S and Pfeifer GP (1995) Complete and tissue-independent methylation of CpG sites in the p53 gene: implication for mutations in human cancers. *Oncogene* 8: 1493–1499

Vogelstein B (1990) A deadly inheritance. *Nature* 348: 681–682

Waga S, Hannon GJ, Beach D and Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. *Nature* 369: 574–578

Wataya T, Shibagaki I, Imamura M, Shimagda Y, Toyoguchi J, Yandell DW, Ikenaga M, Tohe T and Ishizaki K (1993) Loss of transcripts of the p53 gene and overexpression of p53 protein in esophageal squamous cell carcinomas. *Cancer Res* 53: 846–850

Weintraub H, Hauchschka S and Tappcott S J (1991) The MCK enhancer contains a p53 responsive element. *Proc Natl Acad Sci USA* 88: 4570–4571

Wolffman M, Holmam JW, Müller M, Rathi U, Otto G, Zentgraf H and Galie PR (1994) p53 overexpression is frequent in European hepatocellular carcinoma and largely independent of the codon 249 hot spot mutation. *Oncogene* 9: 195–204

© Cancer Research Campaign 1997

British Journal of Cancer (1997) 75(4), 528–536
Yamaguchi A, Kurosaka Y, Fushida S, Kano M, Yonemura Y, Miwa K and Miyazaki I (1992) Expression of p53 protein in colorectal cancer and its relationship to short-term prognosis. Cancer 70: 2778-2784
Zambetti GP and Levine AJ (1993) A comparison of the biological activities of wild-type and mutant p53. FASEB J 7: 855–863
Zeng ZS, Sarkis AS, Zhang ZF, Klimstra DS, Charutonowicz E, Guillem JG, Cordon-Cardo C and Cohen AF (1994) p53 nuclear overexpression: an independent predictor of survival in lymphnode-positive colorectal cancer patients. J Clin Oncol 12: 2043–2050