Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions

Estela L. Arrese, Fredy Z. Saudale and Jose L. Soulages

Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.

ABSTRACT: The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globsules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.

KEYWORDS: lipid droplet, lipid metabolism, perilipin, fat body, triglycerides, lipoprotein

INTRODUCTION

The major metabolic fates of fatty acids (FA) entering the cell are esterification into triglycerides (TG), synthesis of phospholipids for membrane biosynthesis, and beta-oxidation for ATP production in mitochondria. Adipocytes, however, capture and store the excess of FAs as TG in cytosolic lipid droplets (LDs), which are large quasi-spherical structures readily visualized by light microscopy.1–3 LDs are in physical contact with other LDs and also with other cellular structures such as endoplasmic reticulum (ER), mitochondria, peroxisomes, and endosomes. These interactions are frequently observed by electron microscopy4 (Fig. 1). Interestingly, live imaging revealed that LDs also undergo intracellular movements in the confines of the cytoplasm.5,6 LDs can be isolated from cell homogenates by density gradient ultracentrifugation7–10 and purified LDs retain their shape and functions, such as the ability to store TG11 or serve as substrate for lipases12 when tested in vitro.

The structure of LDs is commonly described as formed by a core of neutral lipids, predominantly TG and sterol esters, surrounded by a monolayer of phospholipids and a variety of proteins.13–15 TGs are the main lipids found in LDs. Other lipids are diglycerides (DG), retinyl- and cholesteryl esters (CEs), and ether lipids.16–20 A high content of CEs is found in LDs from macrophages and adrenal cells.21–24 The LD surface consists of phospholipids, lysophospholipids, and cholesterol.16 The phospholipid monolayer is the boundary that separates the hydrophobic core of LDs from the aqueous environment.25,26 It could also be involved in the differential recruitment of lipid droplet proteins.25 The protein coat is composed of numerous proteins; it can comprise up to hundreds of proteins.27 A distinctive group of proteins, the
perilipins or PAT proteins, are always associated with LDs as shown in all LD proteomes.2–10,28–38 This is a small group of proteins composed by perilipin (PLIN1), ADRP (PLIN2), TIP47 (PLIN3), S3–12 (PLIN4), and OXPAT (PLIN5).39,40 The PAT family of proteins is evolutionary conserved and relevant studies on the biology of LDs and the function of PLIN proteins are being conducted not only in vertebrates but also in other eukaryotic systems such as insects6,10,12,41–49 and yeast.50,51 Early studies on TG metabolism in adipocytes have shown significant conservation between mammals and insects.52 PLIN1 and PLIN2 occur in insects and were originally named LSD1 and LSD2.53 PLIN proteins have in common a conserved region of \textasciitilde100 amino acids toward the N-terminal called the PAT domain.54 The function of this region remains unknown but it is not required for binding to LD.52 PLIN proteins play important roles in the processes of lipid storage and mobilization, however the underlying mechanisms of function are not completely known in any system, yet. The occurrence of PLIN proteins depends on a variety of conditions such as type of tissue and the developmental and metabolic stage of the cell. PLIN proteins may also differ in the subcellular localization; while PLIN1 is always found associated with LDs for which they are classified as constitutive LD proteins, PLIN3–5, which are also found in the cytosol, are considered exchangeable LD-proteins.52 PLIN1 plays major roles in the storage and degradation of TG in adipocytes as indicated by studies in vertebrates35,56 and in insects.52,57 PLIN1 blocks lipolysis under basal conditions, but enables the action of lipases under hormone stimulated lipolysis.39 So far, only \textit{Drosophila}'s PLIN1 has been purified and reconstituted in lipid droplet-like particles allowing some unique structural and functional studies.49,58

Since the hallmark discovery that PLIN1 regulates the storage of lipids,59 the study of LDs has seen a steady increase in attention by the scientific community. In the past decade, LDs have emerged as heterogeneous organelles with great dynamics in size, abundance, and composition in regard to both proteins and lipids.60 Recent studies have provided more details on LD structure, biogenesis, function, and molecular regulation.3,13,15,61,62 Given the conservation among the basic mechanisms of control of lipid metabolism,63 studies in insects41 and other systems have been instrumental to the advancement of this field. LDs are currently associated with multiple cellular roles beyond the storage of lipids.27 Here we compiled some of the most recent studies with the goal of presenting the LDs as a major platform for the regulation and execution of multiple cellular functions.

Heterogeneity, A Feature of LDs

With the exception of mature white adipocytes from mammalian cells in which a single supersized LD (>100 \textmu m)64 is present, LDs of a broad range of sizes (1–100 \textmu m) are observed in both vertebrate and invertebrate adipocytes.15 Almost all types of cells are able to store TG in LDs, and in general, droplets in non-adipocyte cells are smaller.65 LDs are subjected to fast and substantial variations in size and number in response to hormonal changes and the availability of nutrients. For instance, a thirty-fold increase in LD-volume is observed within hours when \textit{Drosophila} S2 cells are incubated in the presence of oleic acid.66 In mammalian cells, LD size
can increase by the transfer of lipids between droplets, which is possible through contact sites and the cooperative action of FSP27 and PLIN1. This process leads to the formation of the single LD in mature adipocytes. Conversely, TG hydrolysis induces LD fragmentation and shrinking with a rapid formation of small and micro LDs (<1 μm) in adipocytes. Although, both small and micro LD originate during lipolysis, small LDs would be generated from the fission of large LDs, whereas micro LDs would be formed with TG produced by the re-esterification of FAs. Micro LDs and small LDs are considered physiologically relevant in the response to energy demands.

Enzymes of lipid synthesis are mostly integral membrane proteins of ER. Therefore, the site of the biogenesis of LDs is assumed to be the ER membrane, which harbors the diacylglycerol acyltransferases (DGAT) that are needed to catalyze the last reaction of TG synthesis. The hydrophobicity and low solubility of TG in phospholipids indicate that they would start accumulating in the bilayer promoting the formation of intramembrane lipid globules that would eventually bud off from the ER to the cytoplasm. Once the LD is formed, it could accept additional lipids. Live-cell microscopy studies suggested that at least part of TG synthesis takes place in the immediate vicinity of LDs, and that intracellular lipids continuously exit and re-enter LDs.

Some studies suggest that the newly formed LDs that appear in adipocytes incubated with FA localize on the cytosolic side of the plasma membrane. These LDs are smaller and coated with different types of perilipins unlike the larger and older cytosolic droplets that are coated with perilipin 1. Likewise, studies in Drosophila have shown that the fat body presents small LDs (1 μm) containing LSD2 and LSD1 and larger LDs that only express LSD1. The occurrence of subpopulations of LD is in line with previous studies showing the presence of different pools of neutral lipids in adipocytes from mammalian and insect adipose tissue. The incorporation of FA into these tissues leads to the accumulation of diacylglycerides (DG). In both systems, 20–50% of the FA are accumulated as DG, and the newly synthesized DG pool has a relatively long half-life. This pool of DG remained inaccesible to the TG biosynthetic pathway for several hours, and was preferentially mobilized under hormonally-stimulated lipolysis. It is possible that these lipids are stored in the newly formed LDs at the periphery of the cell.

LDs are Organelles

The quasi-spherical geometry and the presence of a large lipid core that characterizes both lipoproteins and LDs suggest that they could be compared. In fact, until not long ago, LDs were seen as simple intracellular lipoproteins. It may then be appropriate to point out some of the differences between these two structures. Lipoproteins are assembled in the ER lumen and secreted by the secretory pathway into the circulatory system. LDs also originate from the ER, and although the process of LD assembly is not understood yet, it is clear that nascent LD segregates from the cytoplasmic face of the ER. The synthesis of lipoproteins is restricted to certain types of cells (eg hepatocytes, enterocytes). However, LDs are common organelles present in most types of cells. Some tissues, such as the liver in vertebrates and the fat body of insects store lipids as cytoplasmic LDs and also synthesize and secrete lipoproteins to circulation. Lipoproteins transport lipids among tissues, whereas LDs hold lipids in the cytoplasm. The function of lipoproteins requires a structure that limits their interactions with many cellular and extracellular components, and thus, allows the particle to reach the target tissues. Conversely, LDs serve as a scaffold that recruits proteins involved in lipid metabolism and other metabolic processes. LDs are in contact with elements of cytoskeleton as shown in all LD proteomes. The intermediate filament vimentin was one of the first LD-associated proteins identified. Early studies showed a tight association between LDs and vimentin filaments enduring extensive washes with 1% Triton X-100. It has been shown that vimentin is required for proper lipolysis and for the provision of LD-cholesterol to the mitochondria for steroidogenesis. Cholesterol stored in the LDs of adrenal cells must be delivered to mitochondria, where the first step of steroid synthesis takes place. Genetic ablation of vimentin in mice resulted in a marked defect in steroidogenesis. Vimentin binds to LDs and proteins that are involved in LD metabolism, such as the hormone sensitive lipase, HSL, and the steroidogenic acute regulatory protein that targets mitochondria. Vimentin is considered an important component of the network that facilitates lipolysis and the movement of LDs toward mitochondria.

In Drosophila embryos, a bidirectional movement of LDs along cytoskeletal tracks has been demonstrated. These movements are driven by the cytoplasmic motors dynein and kinesin-1 and controlled by Klar, a highly abundant LD protein in fly embryos. Klar binds to LDs through a specific domain localized in the C-terminal region of the protein. Deletion of this Klar domain impairs binding of Klar to LDs and the ability to control droplet motion. The interaction of Klar with LD is controlled by the phosphorylation of LSD2, a LD protein from the PLIN family. As LSD2 controls lipid storage, it was proposed that phosphorylation of LSD2 controls both lipid metabolism and droplet motion. LD mobility could be associated with the delivery of lipids to other cellular organelles.

The number of proteins associated with the surface of LDs is remarkably large, whereas circulating lipoproteins only contain a discrete number of specific proteins (structural and exchangeable apolipoproteins). Given the variety of proteins associated with LDs, different types of interactions and mechanisms of association of proteins with the LD surface are expected. PLIN1, the best characterized LD-associated protein so far, is synthesized in free ribosomes and it is supposed to localize to LD surface from the cytosol. More recent
information showed that PLIN1 also can relocate to the ER from where the protein moves back and forth between ER and LD. These observations are in accordance with the tight association between LD and ER observed by electron microscopy, and the functional association between LDs and ER that has been demonstrated in yeast S. cerevisiae. Insect PLIN1 or LSD1 is not soluble in the hydrophilic environment and can only be maintained in solution when reconstituted in lipoprotein particles. It is then expected that its intracellular movement and localization to LD be mediated by small lipoprotein complexes. The involvement of coatamer-dependent mechanisms for proper localization of proteins at the LD surface has also been demonstrated.

Underlining the dynamic nature of these organelles is the fact that the protein coat of LD undergoes major changes in response to the metabolic state of the cell. As an illustration, Figure 2 shows protein profiles of LDs isolated from Manduca sexta fat body adipocytes under opposite physiological conditions: high lipogenesis and high lipolysis, which are characteristic of the larval and adult stages, respectively. The differences in protein composition that can be readily observed in Figure 2 were confirmed by mass spectrometry. The differences affected proteins such as perilipins, but also tens of other proteins that are not necessarily related to lipid metabolism. Lipoproteins also undergo changes in protein composition that have major impacts in metabolism. However, overall, the composition of lipoproteins is kept simple and includes a discrete set of proteins, mostly the apolipoproteins. The protein profile of purified insect lipoprotein, lipophorin is shown in Figure 2. Lipophorin is also synthesized in the fat body and, as LDs, was also purified by ultracentrifugation in a density gradient.

LD Proteomes: First Look at the LD Network

Proteomic studies of purified LD have shown that, in addition to the PLIN proteins, the protein coat of LDs includes a large number of significantly abundant proteins. A complex mixture of proteins from multiple subcellular compartments including cytosol, mitochondria, lysosomes, and ER are found associated with purified LDs. Proteins of the PLIN family, lipid metabolism, nucleus, ribosomes, chaperones, cytoskeleton, ER, membrane trafficking, and cell signaling are commonly identified in LD proteomes. The possibility of contamination of the LD preparations is often raised. However, the consistency on these findings in preparations of LDs from different systems clearly argues against that possibility. Electron micrographs from many systems have demonstrated tight physical contact of LDs with other subcellular compartments. Most recently, reports of functional interaction between LDs and ER, and LDs and mitochondria, and LDs and peroxisomes add support that these proteomes for the most part are a reflection of the complexity of LDs. Interestingly, LD proteomes show proteins that are known to possess integral membrane regions. This common observation suggests that the LD envelope may have bilayer domains enriched in ER or mitochondrial proteins or, alternatively, may contain domains that are fragments of ER or mitochondrial membranes. It seems obvious now that LDs cannot be simply described as a fat globule surrounded by a monolayer of phospholipid and a discrete number of different proteins anchored to its surface. Electron microscopy has provided evidence consistent with the presence of monolayer structure. However, that evidence may not apply to some LD population. The complexity of the protein composition of LDs that has been provided by the proteomic studies suggests that LDs have an ample spectrum of interactions with other organelles and a number of cytosolic proteins and protein complexes.

![Figure 2](image-url). Changes in the protein composition of LDs from the same tissue. Protein profiles of purified LDs from the fat bodies of Manduca sexta larva and adult insects obtained by SDS-PAGE are shown in lanes 1 and 2, respectively. Additional information on the protein compositions of the LDs was previously reported. For comparison, the protein profile of Manduca sexta low density lipoprotein purified by ultracentrifugation in a density gradient is shown in the lane labeled LDLp. ApoLp-I, -II and -III refer to the protein components of the insect low density lipoprotein. Parts of the figure are reproduced from previous reports with permission.
This picture of LDs is in line with the increasing evidence supporting a role of LDs in a number of cellular functions. Recent studies showing that structural and functional interactions between LDs and other organelles are of physiological relevance support this notion.50

LDS as Signaling Platforms Involved in Multiple Cellular Functions

The array of functions related to LDs can be separated into classical and non-classical functions. The former are directly or indirectly linked to lipid storage and mobilization, whereas the second group of functions involving “refugee” proteins are related to vesicular trafficking, protein folding, protein storage, autophagy, immunity, and virus replication.44 “Refugee” or non-resident proteins are proteins characteristic of other cellular compartment that nonetheless associate with LDs. Numerous refugee proteins have been identified in independent biochemical and proteomic studies.7–10,28–38 An increasing number of mostly recent studies are shedding light into why those proteins are present in LDs and what metabolic and/or cellular conditions cause their association with the organelle.

LDs and whole-body energy homeostasis. The adipose tissue in vertebrates and the fat body in insects play a major role in maintaining the whole body energy homeostasis. Under an energy demand, FA are mobilized from these tissues to supply fuel for other organs. Mammalian adipocytes secrete free FA, whereas insects mobilize FA as DG, which are transported in circulation by lipophorin.110 On the surface of the lipid droplet is PLIN1, which serves as a gatekeeper controlling the access of lipases to the lipids inside the droplet. Catecholamines in vertebrates111 and adipokinetic hormones in insects79,112 control the mobilization of FA through a cAMP/PKA signaling cascade. PKA-mediated phosphorylation of PLIN1 in vertebrates113 and LSD1 in insects12 activates TG hydrolysis. In vertebrates, lipolysis is catalyzed by the concerted action of at least PLIN1 proteins, three lipases (ATGL, HSL, MGL), a co-lipase (CGI58), and two separate pools of PKA.24,114 PKA proximal to plasma membrane phosphorylates HSL triggering the translocation to the surface of LD.22,115 The second PKA seems to be on the surface of LD116,117 apparently recruited by the protein OPA1.118 A new study showed that this protein, which is known to be a mitochondrial protein, is a putative A-kinase anchoring protein (AKAP) on LDs.119 Under stimulated conditions, OPA1 seems to operate on the surface of LDs recruiting PKA in connection to PLIN1 phosphorylation and activation of lipolysis.119

Other kinases such as ERK, p38 MAP, and AMP kinases are also activated by catecholamines120–122 and adipokinetic hormones.123 For example, HSL can be phosphorylated by ERK which increases its activity,124,125 whereas phosphorylation by AMP kinase is inhibitory.126,127 PLIN1 and HSL have multiple phosphorylation sites.56 The modulation of the lipolytic response may rely on differential phosphorylation levels of these proteins.128

The lipolytic activity of a cell must respond to short and long term requirements of its own metabolism, such as FA oxidation and membrane synthesis, but also of the whole body metabolism, for instance for the synthesis of steroid hormones, for the synthesis of lipoproteins, and for the provision of FA to other tissues. Since FA and cholesterol are mobilized from the surface of the LDs, it is not surprising that the LDs harbor a number of lipases, kinases, and regulatory proteins. This complexity is needed to allow the coordination of multiple signals originated from the metabolic requirements of both the cell and the whole organism.

LDs as transient platforms for protein storage. LDs are highly abundant in the oocytes of insects and play an essential role in the reproduction of insects by providing fuel and FA for the development of the embryo. The accumulation of histones in LDs has been detected in proteomic study in early *Drosophila* embryos.2 More importantly, these histones were transferred to the nuclei during development.9 Histone proteins are needed to assemble chromatin. As early embryogenesis involves several rounds of DNA-replication without translation, pre-made histones are required for chromatin packaging. In *Drosophila*, maternal histone protein is synthesized and temporarily stored in the nurse cells and then transferred to the oocyte.129,130 Maternal histone H2A, H2B, and H2Av proteins as well as those proteins that are generated by maternal histone mRNA accumulates in the LDs. Now we know that histones are recruited by the LDs through a LD-associated protein called Jabba, which forms protein complexes with histones.131 The sequestration of histones to LDs by Jabba helps their stabilization. Since, in the absence of Jabba, there is no storage of maternal histone H2A, H2B, and H2Av in the oocytes or early embryos, this process could be important to preserve histones from degradation. Like histones, Jabba is maternally provided.

It has been proposed that other proteins target LDs for temporary shelter. The common presence of ATP-synthase subunits in LDs is intriguing.7–10,132,133 A new study showed that three ATP-synthase subunits interact with invadoplysin,134 which also is a LD-associated protein.135 Invadoplysin is a conserved metalloproteinase required for proper mitochondrial function.134 It is possible that following their synthesis in the cytoplasm, the inactive ATP-synthase subunits are recruited by the LDs. The interaction with invadoplysin on the LD surface could be needed as part of a mechanism of folding and activation of ATP-synthase subunits.

LDs as transient platforms in the path of protein degradation. Misfolded proteins in the ER lumen are removed from the ER via dislocation to the cytosol, where they are degraded by the ubiquitin/proteasome system. This process, which is called ER-associated degradation (ERAD), covers a range of different mechanisms that include protein adaptors whose function is to recruit misfolded proteins to the ubiquitination machinery.10,33 Proteasomes are distributed in the vicinity of LDs,136 and LDs are involved in the
degradation of at least two substrates: lipidated ApoB100 and 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, the rate-limiting enzyme of cholesterol synthesis. A role for LDs in ERAD was originally suggested when proteasome inhibition caused the accumulation of ApoB100 at the surface of LDs. Furthermore, LDs might play a broader role in the degradation of misfolded ER proteins since pharmacological inhibition of LD formation impairs the dislocation of other proteins. To eliminate lipidated ApoB100 from the ER lumen, the lipidated particle is transported to the LD surface in a process that involves the proteins Derlin-1 and Ubxd8. It has been suggested that Derlin-1 in the ER membrane and Ubxd8 on the LD surface interact in an ER-LD junction allowing the passage of ApoB100 to the LD surface for ubiquitination. Ubxd8, a LD-associated protein recruits VCP/p97, the ATP driven chaperone required to process ubiquitin-labeled proteins. The ubiquitination machinery also involves E3 ubiquitin ligases that use adaptor proteins for substrate recognition. Ancient ubiquitous protein 1 (AUP1), a highly conserved protein that localizes to ER and LDs, and is found in LD proteomes, acts as an adaptor recruiting different ubiquitin ligases such as E2 conjugase Ube2g2, an E3 ligase AMFR/gp78, and Ubxd8, a LD-associated protein. A range of pathogens such as hepatitis C virus (HCV), dengue virus, bacteria Mycobacterium leprae, and the protozoan Trypanosoma cruzi target LDs and manipulate host cell lipid metabolism. Pathogens may target host-derived LDs either for gaining nutrients or for escaping host immune systems. They also exploit host-derived LDs as sites for their protein assembly. HCV assembles virions at lipid droplet surface. HCV core protein localizes to LDs and initiates production of viral particles at LD-associated membranes of the ER. During infection, some nonstructural proteins of HCV, such as NS2, NS3, and NSSA and viral replication RNA complexes are recruited on the LD membrane surface. A critical role of DGAT1, the enzyme thatsynthesizes TGs in the ER, in recruiting the virus to LDs has been recently reported. DGAT1 would serve as a cellular hub for HCV core and NSSA proteins, guiding both onto the surface of the same subset of LDs. Binding of HCV core protein to LD causes a redistribution of the LDs around the nucleus and displacement of ADRP from the LD surface. The interaction between HCV core protein and LDs also leads to the accumulation of TG and the formation of larger LDs. This interaction could be associated with the development of steatosis. HCV core protein can also slowly affect LD localization by controlling the directionality of LD movement on microtubules.

LDs play an important role in the synthesis of eicosanoids, important mediators of the inflammatory response. LDs of macrophages and mast cells store arachidonic acid, which is the precursor for the synthesis of eicosanoids. LDs of these cells are considered central organelles of the inflammatory response because they are the place for storage and synthesis of prostaglandins and leukotrienes.
that are secreted during infective processes.162 Interestingly, LDs of macrophages seem to be structurally different from other LDs.172 In addition to the protein coat surrounding the droplet, these LDs appear to have internal structures consisting of membranous structures and proteins in the core of the particle.173–175 To what extent this is a unique structural feature of the LDs of macrophages, or a more general case remains to be elucidated. Several pathogens induce the accumulation of LDs in immune cells.161,172,176–179 T. cruzi infection promotes the accumulation of LDs concomitantly with a higher production of prostaglandin PGE2.161 Furthermore, during the in vivo infection with T. cruzi, LDs associate with phagosomes, the vacuole in which the pathogen is internalized.166 It is not clear whether the phenomena observed are more important for pathogen survival or for the defense of the host. However, increasing evidence suggests that LDs are playing a role in infection/immunity processes.

Conclusion

From simple globs of fat to highly dynamic organelles of unexpected complexity, our perception of LDs has been radically transformed in the last years. Now we recognize LDs as organelles involved in a number of cellular processes beyond their role as site for lipid storage. The broad range of LD functions implicates specific interactions with other cellular compartments and in some conditions the concerted movement of LDs along microtubule tracks. Although the details of the mechanisms for any of the cellular functions in which LDs are involved are limited, protein–protein interactions involving LD-associated proteins emerge as vital components of LD biology. Knowing the full spectrum of LD interactions and signaling mechanisms is essential to understanding LD biology and lipid metabolism.

Author Contributions

Wrote the first draft of the manuscript: FZS, ELA. Contributed to the writing of the manuscript: JLS. Made critical revisions and approved final version: ELA, JLS. All authors reviewed and approved of the final manuscript.

REFERENCES

1. Digel M, Eloheil R, Fuellkrug J. Lipid droplets lighting up: insights from live microscopy. FEBS Lett. 2010;584(11):2168–2175.
2. Fujimoto T, Ohsaki Y, Suzuki M, Cheng JL. Imaging lipid droplets by electron microscopy. Methods Cell Biol. 2013;116:227–251.
3. Ohsaki Y, Suzuki M, Fujimoto T. Open questions in lipid droplet biology. Chem Soc Trans. 2014;21(1):86–90.
4. Murphy S, Martin S, Parton RG. Lipid droplet-organelle interactions: sharing the fats. Biochim Biophys Acta. 2009;1791(4):441–447.
5. Targett-Adams P, Chambers D, Gledhill S, et al. Live cell analysis and targeting of the lipid droplet-binding adipocyte differentiation-related protein. J Biol Chem. 2003;278(18):15896–16007.
6. Welte MA. Fat on the move: intracellular motion of lipid droplets. Biochim Biophys Acta Trans. 2009;1791(4):991–996.
7. Beller M, Riedel D, Jänsch L, et al. Characterization of the Drosophila lipid droplet subproteome. Mol Cell Proteomics. 2006;5(6):1082–1094.
8. Brassemelle DL, Dolau G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem. 2004;279(45):46835–46842.
9. Cerrelli S, Guo Y, Gross SP, Welte MA. The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curro Biol. 2006;16(18):1783–1795.
10. Soulages JL, Fridau J, Hartson S, Chen X, Howard AD, Arrese EL. Developmental changes in the protein composition of Manduca sexta lipid droplets. Insect Biochem Mol Biol. 2012;42(5):305–320.
11. Kuerschner L, Moessinger C, Thiele C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets. Traffic. 2008;9(3):293–302.
12. Patel RT, Soulages JL, Haritasharamanum B, Arrese EL. Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem. 2005;280(24):22624–22631.
13. Fujimoto T, Parton RG. Not just fat: the structure and function of the lipid droplet. Cold Spring Harbor Perspectives in Biol. 2011;3(3).
14. Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol. 2008;130(2):263–279.
15. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40(5):315–348.
16. Pratte S, Holf G, Hammer A, et al. Intracellular distribution and mobilization of unesterified cholesterol in adipocytes: triglyceride droplets are surrounded by cholesterol-rich ER-like surface layer structures. J Cell Sci. 2000;113(17):2977–2989.
17. Zweytick D, Achenstarth K, Daum G. Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta. 2010;1796(2):101–120.
18. Bartz R, Li WH, Veyables B, et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid trafficking. J Lipid Res. 2007;48(4):837–847.
19. Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y. Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol. 2008;130(2):263–279.
20. Murphy DJ. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog Lipid Res. 2001;40(5):315–348.
21. Fong TH, Yang CC, Greenberg AS, Wang SM. Immunocytocchemical studies on lipid droplet superfamilies in adrenal cells. J Cell Biol. 2002;86(3):432–439.
22. Krintel C, Morgelin M, Logan DT, Holm C. Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 2009;276(17):4722–4762.
23. Servetnick DA, Brassemelle DL, Cruigayj J, Kimmel AR, Wolf J, Londos C. Perilipins are associated with cholesteryl ester droplets in steroidogenic adrenal-cortical and Leydig-cells. J Biol Chem. 1995;270(28):16970–16973.
24. Zeichner R, Zimmermann R, Eichmann TO, et al. FAT SIGNALS—lipases and lipolysis in lipid metabolism and signalling. Cell Metab. 2012;15(3):279–291.
25. Penno A, Hackerbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta. 2013;1833(3):589–594.
26. Storey SM, McIntosh AL, Senthivayagam S, Moon KC, Atharev BP. The phospholipid monolayer associated with perilipin-enriched lipid droplets is a highly organized rigid membrane structure. Am J Physiol Endocrinol Metab. 2011;301(5):E991–E1003.
27. Hodges BDM, Wu CC. Proteomic insights into an expanded cellular role for cytoplasmic lipid droplets. J Lipid Res. 2010;51(2):262–272.
28. Bartz R, Zehmer JK, Zhu M, et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-Mediated protein translocation. J Proteome Res. 2007;6(8):3256–3265.
29. Beilstein F, Bouchoux J, Rousset M, Demignot S. Proteomic analysis of lipid droplets from Caco-2/TC7 enterocytes identifies novel modulators of lipid secretion. PLoS One. 2013;8(1):e53017.
30. Brodska JL, Wójcickiewicz RJJ. Substrate-specific mediators of ER associated degradation (ERAD). Curr Opin Cell Biol. 2009;21(4):516–521.
31. Ding Y, Wu Y, Zeng R, Liao K. Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse. Chin J Biochem Biophys. 2012;24(5):394–406.
32. Fujimoto Y, Ibarra H, Sakai J, et al. Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim Biophys Acta. 2004;1644(1):47–59.
33. Hampton RV. ER-associated degradation in protein quality control and cellular regulation. Cell 2002;144(4):476–482.
34. Larsson S, Resjo S, Gomez MF, James P, Holm C. Characterization of the lipid droplet proteome of a clonal insulin-producing beta-cell line (INS-1 832/13). J Proteome Res 2012;11(2):1264–1273.
35. Leonard DA, Chen HW. ATP-dependent degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in permeabilized cells. J Biol Chem 1987; 262(16):7914–7919.
36. Sato S, Fukawasa Y, Yamakawa Y, et al. Proteomic profiling of lipid droplet proteins in hepatoma cell lines expressing hepatitis C virus core protein. J Biochem. 2008;143(6):921–930.
37. Turro S, Ingelmo-Torres M, Estanyol JM, et al. Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 2006;7(9):1254–1269.
38. Wu H-C, Mele RN, Ira E, Howard AM, Chetty PS, Roques BL. Origin of adsorbed lysosome lipid bodies: proteomic and ultrastructural studies. J FASEB J 2007;21(1):167–178.
39. Brasseaux DL. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007;48(12):2547–2559.
40. Kimmel AR, Brasseaux DL, M-Andrews-Hill M, Szalayc L, Londos C. Adorption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 2010;51(3):468–471.
41. Kuhnlein RP. The contribution of the Drosophila model to lipid droplet research. Prolipid Biol 2011;50(4):348–356.
42. Bi J, Xiang Y, Chen H, et al. Opposite and redundant roles of the two Drosophila perilipins in lipid mobilization. J Cell Sci 2012;125(15):3568–3577.
43. Teixeira L, Rabouille C, Rorth P, Ephrussi A, Vanzo NF. Drosophila perilipin/ADRP homologue Lsd regulates lipid metabolism. Mech Dev 2003;120(9):1071–1081.
44. Welte MA. Proteins under new management: lipid droplets deliver. Trends Cell Biol 2005;17(8):363–369.
45. Gronke S, Beller M, Fellert S, Ramakrishnan H, Jackle H, Kuhnlein RP. Control of fat storage by a Drosophila PAT domain protein. Current Biol 2003;13(7):603–606.
46. Ohnishi A, Hull JJ, Kaji M, et al. Hormone signaling linked to sphingomyelin biosynthetic cycle involving Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of the insulin receptor. J Biol Chem 2011;286(27):24101–24112.
47. Arrese EL, Mirza S, Rivera L, Howard AD, Chetty PS, Soulages JL. Expression and structure of lipid storage protein-2 from Drosophila melanogaster. Protein Pept Lett 2008;15(9):1027–1032.
48. Arrese EL, Rivera L, Hamada M, Soulages JL. Purification and characterization of recombinant lipid storage protein-2 from Drosophila melanogaster. Protein Pept Lett 2008;15(9):1027–1032.
49. Arrese EL, Rivera L, Hamada M, Soulages JL, Fujikawa K, Takanawat R, Kimmelman AP. Formation of recombinant lipid storage protein-2 from Drosophila melanogaster. Protein Pept Lett 2008;15(9):1027–1032.
50. Goodman JM. Demonstrated and inferred metabolism associated with cytosolic lipid droplet proteins that regulate cellular lipid stores. J Biol Chem 2002;277(17):14219–14224.
51. Sato S, Fukasawa M, Yamakawa Y, et al. Proteomic profiling of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 2009;1791(6):419–440.
52. Miura S, Gan JW, Brzostowski J, et al. Functional conservation for lipid droplet proteins that regulate cellular lipid storage. Biochim Biophys Acta 2009;1791(6):419–440.
53. Miura S, Got JV, Kaji M, et al. Stromal associated lipoprotein and perilipin A are novel regulators of lipid droplet size in vivo. J Lipid Res 2010;51(1):77–85.
54. Turró S, Ingelmo-Torres M, Estanyol JM, et al. Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 2006;7(9):1254–1269.
55. Wu H-C, Mele RN, Ira E, Howard AM, Chetty PS, Roques BL. Origin of adsorbed lysosome lipid bodies: proteomic and ultrastructural studies. J FASEB J 2007;21(1):167–178.
56. Brasseaux DL. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 2007;48(12):2547–2559.
57. Kimmel AR, Brasseaux DL, M-Andrews-Hill M, Szalayc L, Londos C. Adorption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 2010;51(3):468–471.
58. Lin P, Chen X, Moktan H, et al. Membrane attachment and structure models of Drosophila lipid droplet protein 1. J Biol Chem 2012;287(14):11164–11173.
59. Lin P, Chen X, Moktan H, et al. Membrane attachment and structure models of Drosophila lipid droplet protein 1. J Biol Chem 2012;287(14):11164–11173.
60. Fujikawa K, Takanawat R, Kimmelman AP. Formation of recombinant lipid storage protein-2 from Drosophila melanogaster. Protein Pept Lett 2008;15(9):1027–1032.
61. Arrese EL, Rivera L, Hamada M, Soulages JL. Purification and characterization of recombinant lipid storage protein-2 from Drosophila melanogaster. Protein Pept Lett 2008;15(9):1027–1032.
Lipid droplets as signaling platforms linking metabolic and cellular functions

90. Kumar N, Robidoux J, Daniel KW, Guzman G, Floreing LM, Collins S. Requirement of vimentin filament assembly for beta(3)-adrenergic receptor activation of ERK MAP kinase and lipolysis. J Biol Chem. 2007;282(12):9424–9430.

91. Shen WJ, Patel S, Eriksson JE, Kraemer FB. Vimentin is a functional partner of hormone sensitive lipase and facilitates lipolysis. J Proteome Res. 2010;9(4):1784–1794.

92. Shen WJ, Zaidi SK, Patel S, et al. Ablation of vimentin results in defective steatogenesis. Endocrinology. 2012;153(7):3249–3257.

93. Kraemer FB, Khor VK, Shen W-J, Azhar S. Cholesterol ester droplets and steatogenesis. Mol Cell Endocrinol. 2013;371(1–2):15–19.

94. Welte MA, Cernelli S, Griner J, et al. Regulation of lipid droplet transport by the perilipin homolog LSD2. Curr Biol. 2005;15(14):1266–1275.

95. Guo Y, Jangi S, Welte MA. Organelle-specific control of intracellular transport: distinctly targeted isoforms of the regulator Klar. Mol Biol Cell. 2005;16(3):1406–1416.

96. Yu YV, Li Z, Rizzo NP, Einstein J, Welte MA. Targeting the motor regulator Klar to lipid droplets. BMC Cell Biol. 2011;12.

97. Londos C, Brasaeule DL, Schulz CJ, Segrest JP, Kimmel AR. Perilipins, ADPR, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol. 1999;10(1):53–58.

98. Wollins NE, Brasaeule DL, Bickel PE. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 2006;580(23):5484–5491.

99. Brasaeule DL, Bier T, Kimmel AR, Londos C. Post-translational regulation of perilipin expression. Stabilization by stored intracellular neutral lipids. J Biol Chem. 1999;274(41):29183–29187.

100. Skinner JR, Harris LA, SheW TM, Abumrad NA, Wollins NE. Perilipin 1 moves between the fat droplet and the endoplasmic reticulum. Adipocyte. 2013;2(2):80–86.

101. Blanchette-Mackie EJ, Dwyer NK, Barber T, et al. Perilipin is located on the surface layer of intracellular lipid droplets in adipocytes. J Lipid Res. 1995;36(6):1211–1226.

102. Skinner JR, Shew TM, Schwartz DM, et al. Dialyglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3-TIP47 during lipid storage and mobilization. J Biol Chem. 2009;284(5):30941–30948.

103. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R. Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci. 2011;124(4):2424–2437.

104. Beller M, Sztalryd C, Southall N, et al. COPI complex is a regulator of lipid droplet formation in human fibroblasts. J Cell Sci. 2011;124(14):2424–2437.

105. Beller M, Stalryd C, Southall N, et al. COPI complex is a regulator of lipid surface lipid packaging. PLoS Biol. 2008;6(15):2530–2549.

106. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. Organelle relationships in cultured 3T3-L1 preadipocytes. J Biol Chem. 1980;255(3):180–196.

107. Blanchette-Mackie EJ, Scow RO. Movement of lipolytic products to mitochondria and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system. J Cell Biol. 2008;179(10):1834–1841.

108. Novikoff AB, Novikoff PM, Rosen OM, Rubin CS. Organelle relationships in cultured 3T3-L1 preadipocytes. J Biol Chem. 1980;255(1):180–196.

109. Soni KG, Mardonos GA, Sougat R, Smirnova E, Jackson CL, Bonifacino JS. Coatomer-dependent protein delivery to lipid droplets. J Cell Sci. 2009;122(11):1219–1226.

110. Nakamura S, Kawanami H, Ueda H, Kizaki T, Ohno H, Izawa T. Possible mechanism of hormone-sensitive adipose differentiation by lipolysis. J Biochem. 2003;178(4):30941–30948.

111. Collins S. beta-Adrenoceptor signaling networks in adipocytes for recruiting hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 2002;277(10):8267–8272.

112. Huang M, Cibulskis K, Stojanov P, et al. Mutations in DNA repair genes across cancer types. Science. 2013;342(6161):1448–1452.

113. Wolin MS. Mammalian mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2005;33(pt 6):1120–1124.

114. Garton AJ, Campbell DG, Cafling D, Hardie DG, Colman RJ, Yaman SJ. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur J Biochem. 1989;179(1):249–254.

115. McDonough PM, Maciejewski-Leonard D, Hartig SM, et al. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One. 2013;8(2):e55511.

116. Hammondon MP, Laird CD. Chromosome structure and DNA replication in and follicular cells of Drosophila melanogaster. Chromosoma. 1985;93(4–5):267–278.

117. Ruddle A, Jacobobrena M. Biphasic pattern of histone gene-expression during Drosophila oogenesis. Proc Nat Acad Sci U S A. 1985;82(10):3316–3319.

118. Li Z, Thiel K, Thol PJ, Beller M, Kuchelbein RP, Wehe MA. Lipid droplets control the maternal histone supply of Drosophila embryos. Curr Biol. 2012;22(22):2104–2113.

119. DeLany JP, Floyd ZE, Zvonc S, et al. Proteomic analysis of primary cultures of human adipose-derived stem cells—modulation by adipogenesis. Mol Cell Proteomics. 2011;10:874–888.

120. Dugail I, Hajducz E. A new look at adipocyte lipid droplets: towards a role in the sensing of triacylglycerol stores? Cell Mol Life Sci. 2007;64(19–20):2452–2458.

121. Di Cara F, Duca E, Dunbar DR, Cagney G, Heck MMS. Invadopedia, a conserved lipid-droplet-associated metalloprotease, is required for mitochondrial function in Drosophila. J Cell Sci. 2011;124(20):4769–4781.

122. Cobbe N, Marshall KM, Gururaja Rao S, et al. The conserved metalloprotease invadopedia localizes to the surface of lipid droplets. J Cell Sci. 2009;122(18):3414–3423.

123. Ohaki Y, Cheng J, Fujita A, Tokumoto T, Fujimoto T. Cytoplasmic lipid droplets are sites of convergence of proteasomal and autophagic degradation of apolipoprotein B. Mol Biol Cell. 2006;17(6):2674–2683.

124. Ohaki Y, Cheng J, Suzuki M, Fujita A, Fujimoto T. Lipid droplets are arrested in the ER membrane by tight binding of lipoprotein Bapo-B. J Cell Sci. 2008;121(14):2415–2422.

125. Hartman IZ, Liu P, Zehner JK, et al. Sterol-induced dissociation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem. 2010;285(25):19289–19298.

126. Liu PS, Ying YS, Zhao YM, Mundy DJ, Zhu MF, Anderson RGW. Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem. 2004;279(5):3787–3792.

127. Schuberth C, Buchberger A. UBX domain proteins: major regulators of the AAA ATPase Cdc48/p97. Cell Mol Life Sci. 2008;65(15):2360–2371.

128. Barra R, Seemann J, Zehner JK, et al. Evidence that mono-ADP-ribosylation of the 26S proteasome arrests mitophagy. Mol Cell. 2007;18(3):3015–3025.

129. Meyer H, Bug M, Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol. 2012;14(2):117–123.

130. Spandid J, Lohmann D, Kuerschner L, Moessinger C, Thiele C. Ancient ubiquitin protein 1 (AUP1) localizes to lipid droplets and in the E3 ubiquitin-conjugating G2 (Ubc6g2) via its G2 binding region. J Biol Chem. 2011;286(7):5599–5606.

131. Klemm EJ, Sponeer E, Ploeg HL. Dual role of ancient ubiquitin protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J Biol Chem. 2011;286(43):37602–37614.
infection and enhanced by the uptake of apoptotic
interplay during innate immune responses.

158. Barba G, Harper F, Harada T, et al. Hepatitis C virus core protein shows a cyto
protein.

157. Finn PF, Dice JF. Proteolytic and lipolytic responses to starvation.

156. Dichlberger A, Kovanen PT, Schneider WJ. Mast cells: from lipid droplets to
mediators. Clin Sci (Lond). 2013;125(3):121–130.

155. Robenek H, Severs NJ. Recent advances in freeze-fracture electron microscopy:
the replica immunolabeling technique. Biochimica et Biophysica Acta.
2009;1791(6):408–418.

154. Velikkakath AKG, Nishimura T, Oita E, Ishihara N, Mizushima N. Mam
mammary epithelial cells.

153. Singh R, Hauser Y, Siddiqui A, et al. Hepatitis C virus hijacks host lipid metabolism.

152. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism.

151. Dugail I. Lysosome/lipid droplet interplay in metabolic diseases. Biochimie.
2014; 96:102–105.

150. Wu CC, Howell KE, Neville MC, Yates JR, McManaman JL. Proteomics reveal a
link between the endoplasmic reticulum and lipid secretory mechanisms in
mammalian epithelial cells. Electrophoresis. 2006;27(16):3470–3482.

149. Jiang H, He J, Pu S, Tang C, Xu G. Heat shock protein 70 is translocated to
lipid droplets for viral particle formation.

148. Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC. Spartan
activates apolipoprotein-AI and cholesterol efflux in human monocytes.
Blood. 2010;115(11):2280–2287.

147. Xu GH, Sztalryd C, Lonsio C. Degradation of perilipin is mediated through
the ubiquitination-proteasome pathway. Biochim Biophys Acta.
2006;1717(1):83–90.

146. Myiyanari Y, Atsuzawa K, Usuda N, et al. The lipid droplet is an important organ-
elle for hepatitis C virus production. Nat Cell Biol. 2007;9(9):1089–U1074.

145. Jo Y, Hartman LZ, DeBose-Boyd RA. Ancient ubiquitously and lipase-mediated
sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in
lipid droplet-associated endoplasmic reticulum membranes. Mol Biol Cell.
2013;24(3):169–183.

144. Xu GH, Szulcsy C, Lonsio C. Degradation of perilipin is mediated through
ubiquitin/proteasome pathway. Biochim Biophys Acta.
2006;1761(1):83–90.

143. Hooper C, Puttamadappa SS, Loring Z, Shekhtman A, Bakowska JC. Spartan
activates apotinin-1 interacting protein 4 (AIP4) E3 ubiquitin ligase and pro-
motes ubiquitination of adipophilin on lipid droplets. BMC Biol.
2010;8. 2003;35(1):59–67.

142. Furtado RS, Espejo C, Quiroga P, et al. Autophagy regulates lipid metabolism.

141. Shekhtman A, Liu H, Wang YJ, et al. Hepatitis C virus core protein shows a cyto-
protein.

140. Cao L, Jia L, Ma S, et al. Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in
mammalian epithelial cells. Electrophoresis. 2006;27(16):3470–3482.

139. Dugail I. Lysosome/lipid droplet interplay in metabolic diseases. Biochimie.
2014; 96:102–105.

138. Singh R, Cuervo AM. Lipophagy: connecting autophagy and lipid metabolism.

137. Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions.

136. Herker E, Harris C, Hernandez C, et al. Efficient hepatitis C virus particle forma-
tion requires diacylglycerol acyltransferase-1. Nat Med. 2010;16(11):1295–1298.

135. Boullant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J. Hepatitis C virus core protein induces lipid droplet redistribution in a microwaved–_and dye-in-gel–dependent manner. Traffic.
2008;9(8):1268–1282.

134. Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism.

133. Trends Endocrinol Metab. 2010;21(3):31–38.

132. Lyon RK, Hope G, Sherratt AR, McLauchlan J, Pezacki JP. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DI protein. PLoS One. 2013;8(11):e78065.

131. Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids. 2011;85(5):205–213.

130. Dichilberger A, Kovanen PT, Schneider WJ. Mast cells: from lipid droplets to
mediators. Clin Sci (Lond). 2013;125(3):121–130.

129. Dvorak AM, Dvorak HF, Peters SP, et al. Lipid bodies—cytoplasmic organelles
important to arachidonate metabolism in macrophages and mast-cells. J Immunol.
1998;151(6):2965–2976.

128. Melo RCN, D’Avila H, Wan H-C, Bozza PT, Dvorak AM, Weller PF. Lipid bodies in inflammatory cells: function, and current imaging tech-
niques. J Histochem Cytochem. 2011;59(5):540–556.

127. Robenek H, Robenek MJ, Troyer D. PAT family proteins pervade lipid droplet
cores. J Lipid Res. 2005;46(6):1331–1338.

126. Robenek H, Severs NJ. Recent advances in freeze–fracture electron microscopy:
the replica immunolabeling technique. Biol Proced Online. 2008;10:9–19.

125. Robenek H, Bues I, Hofnaegel O, Robenek MJ, Troyer D, Severs NJ. Com-
partmentalization of proteins in lipid droplet biogenesis. Biochimica et Biophysica Acta.
2009;1791(6):408–418.

124. Melo RCN, Dvorak AM. Lipid body-phagosome interaction in macrophages
during infectious diseases: host defense or pathogen survival strategy? PLoS Pathog.
2012;8(7):e1002729.

123. Melo RCN, Fabrino DL, Dias FF, Parreira GG. Lipid bodies: structural mark-
ers of inflammatory macrophages in innate immunity. Inflamm Res. 2006;55(9):342–348.

122. D’Avila H, Freire-de-Lima CG, Roque NR, et al. Host cell lipid bodies triggered by
Trypanosoma cruzi invasion and enhanced by the uptake of apoptotic cells are associated with prostanoid E-2 generation and increased parasite growth. J Infect Dis. 2011;204(5):951–961.

121. D’Avila H, Toledo DAM, Melo RCN. Lipid bodies: inflammatory organelles implicate in host-Trypanosoma cruzi interplay during innate immune responses. Mediators Inflammm. 2012:2012.

120. Wu Z, Soulsages JL, Joshi BD, Daniel SM, Hager ZJ, Arrese EL. TGL-
mediated lipolysis in Manduca sexta fat body: possible roles for lipopside-
dehydrogenase (LipDH) and high-density lipophorin (HDLp). Insect Biochim Mol Biol. 2014;45:58–68.

119. Syed GH, Amako Y, Siddiqui A. Hepatitis C virus hijacks host lipid metabolism.

118. Trends Endocrinol Metab. 2010;21(3):31–38.

117. Lyon RK, Hope G, Sherratt AR, McLauchlan J, Pezacki JP. Bidirectional lipid droplet velocities are controlled by differential binding strengths of HCV core DI protein. PLoS One. 2013;8(11):e78065.

116. Herker E, Harris C, Hernandez C, et al. Efficient hepatitis C virus particle forma-
tion requires diacylglycerol acyltransferase-1. Nat Med. 2010;16(11):1295–1298.

115. Boullant S, Douglas MW, Moody L, Budkowska A, Targett-Adams P, McLauchlan J. Hepatitis C virus core protein induces lipid droplet redistribution in a microwaved–_and dye-in-gel–dependent manner. Traffic.
2008;9(8):1268–1282.

114. Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-
pathogen interactions. Annu Rev Cell Dev Biol. 2012;28:411–437.

113. Herker E, Ott M. Emerging role of lipid droplets in host/pathogen interactions.
J Biol Chem. 2012;287(4):2280–2287.

112. Miyiyanari Y, Atsuzawa K, Usuda N, et al. The lipid droplet is an important organ-
elle for hepatitis C virus production. Nat Cell Biol. 2007;9(9):1089–U1074.

111. Jo Y, Hartman LZ, DeBose-Boyd RA. Ancient ubiquitously and lipase-mediated
sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in
lipid droplet-associated endoplasmic reticulum membranes. Mol Biol Cell.
2013;24(3):169–183.