Affleck-Dine baryogenesis after D-term inflation and solutions to the baryon-DM coincidence problem

Masahiro Kawasakia,b and Masaki Yamadaa,b

aInstitute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8582, Japan

bKavli IPMU (WPI), TODIAS, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan

Abstract

We investigate the Affleck-Dine baryogenesis after D-term inflation with a positive Hubble-induced mass term for a $B - L$ flat direction. It stays at a large field value during D-term inflation, and just after inflation ends it starts to oscillate around the origin of the potential due to the positive Hubble-induced mass term. The phase direction is kicked by higher-dimensional Kähler potentials to generate the $B - L$ asymmetry. The scenario predicts nonzero baryonic isocurvature perturbations, which would be detected by future observations of CMB fluctuations. We also provide a D-term inflation model which naturally explain the coincidence of the energy density of baryon and dark matter.
1 Introduction

Inflation is a new paradigm to solve cosmological problems related to the initial conditions of the early Universe. However, any preexisting baryon asymmetry is diluted away due to the inflationary expansion of the Universe, so that there should be a mechanism to generate the observed baryon asymmetry after inflation. In addition, the observed abundance of baryon asymmetry is equal to that of dark matter (DM) within of order unity ($\Omega_b/\Omega_{DM} \simeq 0.2$) [1], which is a mystery in cosmology referred to as the baryon-DM coincidence problem. This implies that the baryon asymmetry and DM have a common origin. We therefore need to consider inflation, baryogenesis, and DM production simultaneously to construct consistent cosmological models.

In this paper, we focus on D-term inflation models by the following reasons [2, 3]. First, the energy scale of D-term inflation is naturally of order the GUT scale, which predicts an amplitude of CMB fluctuations consistent with the observations [4, 5]. The second reason is related to the so-called η-problem. If inflation is driven by a nonzero F-term potential energy, supergravity effects induce masses of order the Hubble parameter to all scalar fields, including inflaton. However, the Hubble-induced mass for inflaton spoils the flatness of its potential and results in an $\mathcal{O}(1)$ slow roll parameter $\eta \sim 1$. Since Hubble-induced masses come only from nonzero F-term potential energy, the η problem is absence in the case of D-term inflation, in which inflation is driven by nonzero D-term potential energy.

In supersymmetric (SUSY) theories, baryon asymmetry can be generated by the Affleck-Dine baryogenesis using a $B - L$ charged flat direction called an AD field [6, 7]. Since the soft mass of the AD field is much smaller than the energy scale of inflation, it can stay at a large vacuum expectation value (VEV) during D-term inflation. After D-term inflation ends, the AD field obtains a Hubble-induced mass from the oscillating inflaton field through the supergravity effects. In the literature, the Hubble-induced mass term was assumed to be negative (i.e., tachyonic) or absent to investigate the dynamics of the AD field and calculate the produced baryon asymmetry [8, 9, 10, 11]. In this paper, we investigate the Affleck-Dine baryogenesis in the case that the AD field obtains a positive Hubble-induced mass term after D-term inflation. In this case, the AD field starts to oscillate around the origin of the potential due to the positive Hubble-induced mass term just after inflation. At the same time, the phase direction of the AD field feels non-renormalizable $B - L$ breaking operators and starts to rotate in the phase space, which results in a generation of $B - L$ asymmetry. Then, the coherent oscillation of the AD field decays and dissipates into the thermal plasma and the $B - L$ asymmetry is converted to the desired baryon asymmetry through the sphaleron effects [12, 13]. We calculate the baryon asymmetry and show that
the result can be consistent with the observed amount of baryon asymmetry. Since the AD field fluctuates due to the absence of Hubble-induced mass during D-term inflation, the Affleck-Dine baryogenesis predicts some amount of baryonic isocurvature perturbations \[9, 10, 11, 14, 15 \]. Especially, when the AD field starts to oscillate due to the positive Hubble-induced mass term, its radial direction also has quantum fluctuations and contributes to the baryonic isocurvature perturbations. If one might consider a high-scale D-term inflation model, the resulting isocurvature perturbations would be detected by future observations of CMB fluctuations.

We also build a D-term inflation model which naturally predicts the baryon-to-DM ratio of order unity. We introduce a shift symmetry for the inflaton superfield to ensure a large initial VEV of inflaton \[17 \]. We also introduce its linear term in the Kähler potential so that the branching of inflaton decay into gravitinos can be of order unity \[18, 19, 20, 21, 22, 23, 24 \]. When the mass of gravitino is larger than \(O(100) \) TeV, it decays into the minimal SUSY standard model (MSSM) particles before the big bang nucleosynthesis (BBN) epoch. The DM, which is the lightest SUSY particle (LSP), is therefore produced non-thermally from the gravitino decay. This scenario, together with the above Affleck-Dine baryogenesis scenario, predicts an \(\mathcal{O}(1) \) ratio of the energy density of baryon and DM. This means that the scenario naturally explains the baryon-DM coincidence problem. This arises from the fact that both of them is related to the energy scale of inflation. The amount of baryon asymmetry is proportional to the reheating temperature of the Universe and inversely proportional to the Hubble parameter during inflation. The DM abundance is proportional to the reheating temperature and inversely proportional to the mass of inflaton. Since the Hubble parameter and the mass is related to each other, the resulting baryon and DM density is naturally of order unity. We predict that the LSP mass is two orders of magnitude larger than the proton mass, which comes from the fact that the GUT scale is two orders of magnitude less than the Planck scale. When the LSP is mostly wino or higgsino, it would be detected by future indirect detection experiments of DM.

This paper is organized as follows. In the next section, we briefly review the simplest D-term inflation model as an illustration. In Sec. 3, we consider the Affleck-Dine baryogenesis and calculate the baryon asymmetry and baryonic isocurvature fluctuations in the case that the AD field obtains a positive Hubble-induced mass term after inflation. In Sec. 4, we provide a D-term inflation model which naturally predicts the baryon-to-DM ratio of order unity. Section 5 is devoted to the summary.
2 D-term inflation

We focus on D-term inflation [2, 3], in which inflation is driven by a finite energy density of the D-term potential. Although the following simple model of D-term inflation predicts the spectral index relatively blue tilted compared with the observation of CMB fluctuations, we review it as an illustration. Note that there are variants of D-term inflation models which predict the spectral index consistent with the observed value [25, 26], and the results in the next section can be applied to those models, too.\footnote{The results are not applicable to the inflation model considered in Ref. [27] because a F-term potential drives inflation with a sizable e-folding number in that scenario.}

We introduce a $U(1)$ gauge symmetry with a Fayet-Iliopoulos (FI) term ξ and consider superfields S, ψ_-, and ψ_+ with $U(1)$ gauge charges as 0, -1, and 1, respectively.\footnote{The FI term can be generated dynamically as discussed in Ref. [28]. They also argue that the production of cosmic strings at the end of inflation is generally avoided when the FI term is generated dynamically. Otherwise the CMB data puts an upper bound on a cosmic string contribution to the CMB fluctuations, which leads to the upper bound on the FI term [25, 29].} The D-term potential is written as

\[V_D = \frac{g^2}{2} (|\psi_+|^2 - |\psi_-|^2 - \xi)^2, \tag{1} \]

where g is the $U(1)$ gauge coupling constant. We introduce a superpotential given as

\[W^{(\text{inf})} = \lambda S \psi_+ \psi_-, \tag{2} \]

where λ is a coupling constant. Hereafter, we denote their scalar components by the same symbols as the superfields.

The scalar component of the field S plays a role of inflaton. Suppose that the inflaton S has a VEV larger than the critical value of $S_c \equiv g \sqrt{\xi}/\lambda$. The fields ψ_- and ψ_+ obtain large effective masses from the VEV of the inflaton and stays at the origin of the potential. In this regime, the nonzero D-term potential of $V_0 = g^2 \xi^2 / 2$ drives inflation. The Coleman-Weinberg potential for the inflaton lifts its potential above the critical point such as

\[V_{1-\text{loop}} \simeq \frac{1}{2} g^2 \xi^2 \left(1 + \frac{g^2}{16\pi^2} \log \frac{\lambda^2 |S|^2}{Q^2} \right), \tag{3} \]

where Q is a renormalization scale. Thus, the inflaton slowly rolls down to the origin of the potential. The COBE normalization requires $[4, 5]$

\[\sqrt{\xi} \simeq 6.6 \times 10^{15} \text{ GeV}. \tag{4} \]
This leads to the Hubble parameter during inflation such as

\[H_I \simeq \frac{g\xi/\sqrt{2}}{\sqrt{3}M_{Pl}} \simeq 3.7 \times 10^{12} \text{ GeV} \left(\frac{\sqrt{\xi}}{6.6 \times 10^{15} \text{ GeV}} \right)^2. \]

(5)

The e-folding number and a slow roll parameter are calculated as

\[N_* \simeq \frac{4\pi^2}{g^2} \frac{S_*^2}{M_{Pl}^2}, \]

\[\eta \equiv \frac{V''}{V} M_{Pl}^2 \simeq -\frac{g^2}{8\pi^2} \frac{M_{Pl}^2}{S_*^2} \simeq -\frac{1}{2N_*}, \]

(6), (7)

where the subscript \(_* \) denotes values corresponding to the pivot scale \(k_* = 0.05 \text{Mpc}^{-1} \). The slow roll condition fails \((\eta \sim 1) \) at the VEV around \(S \simeq g/(2\sqrt{2}\pi) \), which is larger than the critical value \(S_c \) for the case of \(\lambda = \mathcal{O}(1) \). Thus, slow roll inflation ends at the VEV around \(S \simeq g/(2\sqrt{2}\pi) \) and soon after that the waterfall field \(\psi_+ \) starts to oscillate around the low energy minimum of \(\sqrt{\xi} \).

The scalar spectral index is calculated as

\[n_s \simeq \frac{1}{N_*} \simeq 0.98. \]

(8)

It is measured by Planck data alone such as \([5]\)

\[n_s^{(obs)} = 0.9616 \pm 0.0094 \quad (68\%). \]

(9)

So the above prediction deviates by about \(2\sigma \) from the observation. Let us emphasize that the results in the next section can be applied to other variants of D-term inflation models, including the ones which predict the spectral index consistent with the observed value within a \(1\sigma \) level \([25, 26]\).

After inflation ends, the energy density of the Universe is dominated by that of the oscillation of \(S \) and \(\psi_+ \). When some MSSM fields carry nonzero \(U(1) \) charge, the field \(\psi_+ \) immediately decays into the MSSM fields through the interaction in the D-term potential. Even if the MSSM fields have no \(U(1) \) charge, the kinetic mixings between the \(U(1) \) and \(U(1)_Y \) makes the field \(\psi_+ \) decay into the MSSM fields relatively fast \([8]\). Thus, the reheating temperature of the Universe is determined by the relatively late-time decay of the inflaton \(S \), which dilutes the relics produced from the decay of \(\psi_+ \). We define the reheating temperature as

\[T_{RH} \simeq \left(\frac{90}{g_s(T_{RH})\pi^2} \right)^{1/4} \sqrt{\Gamma_S M_{Pl}}, \]

(10)
where Γ_S is the decay rate of the inflaton S. The reheating temperature of the Universe depends on the mass of the inflaton ($m_S \equiv \lambda \sqrt{\xi}$) and the assumption of interactions between S and the MSSM fields, which is determined by their underlying symmetry. We explicitly calculate the reheating temperature in Sec. 4 for a specific model with a shift symmetry and an approximate Z_2 symmetry, while we regard it as a free parameter in the next section to calculate the amount of baryon asymmetry generated by the Affleck-Dine baryogenesis.

3 Affleck-Dine baryogenesis

In this section, we consider the Affleck-Dine baryogenesis [6, 7] after D-term inflation and calculate the resulting baryon asymmetry and baryonic isocurvature perturbations. We consider the case that the AD field obtains a positive Hubble-induced mass term after the end of inflation, which has been overlooked in the literature. We investigate the potential of the AD field after D-term inflation in the next subsection, and then we calculate the baryon asymmetry. In Sec. 3.3, we calculate baryonic isocurvature perturbations predicted by the Affleck-Dine baryogenesis. Finally, we comment on Q-ball formation in Sec. 3.4.

3.1 Potential of the AD field

We consider the Affleck-Dine baryogenesis [6, 7] using a flat direction (=AD field) ϕ with nonzero $B - L$ charge. The AD field has soft SUSY breaking terms through the low-energy SUSY breaking effect. Since the soft mass of the flat direction is much smaller than the Hubble parameter during inflation, it has a large VEV during inflation. In this paper, we assume that the superpotential of the AD field is absent or sufficiently small so that the initial VEV of the AD field ϕ_i can be as large as the Planck scale ($\phi_i \simeq M_{Pl}$). Such a large VEV is favoured to avoid the baryonic isocurvature constraint as shown in Sec. 3.3 (see also Ref. [15]). Note that owing to the exponential term in the supergravity potential the VEV of the AD field is restricted below the Planck scale. Since the curvature of the phase direction is absent (or at least much less than the Hubble parameter), the phase of the flat direction also stays at a certain phase during inflation. We denote the initial phase of the AD field as θ_i.

\footnote{For example, we can introduce R-symmetry in which the charge of the AD field is zero to forbid the superpotential for the AD field. This symmetry is not exact because it is inconsistent with the constant term in the superpotential which is needed to ensure the (almost) vanishing cosmological constant as well as the gaugino mass terms. Since the R-symmetry breaking order parameter is of order the gravitino mass, which is much smaller than the energy scale of inflation, such breaking terms can be neglected in the following discussion.}
After inflation, the energy density of the Universe is dominated by that of oscillating inflaton. Since the inflaton oscillation induces F-term potential, the flat direction obtains Hubble-induced terms through supergravity effects [7]. The scalar potential in supergravity is given as

\[V = e^{K/M_{Pl}^2} \left[(D_i W) \bar{K}^{ij} (D_j W)^* - \frac{3}{M_{Pl}^2} |W|^2 \right], \]

where \(K \) is a Kähler potential and \(D_i W = W_i + K_i W/M_{Pl}^2 \). The subscripts represent the derivative with respect to field \(i \) and \(K^{ij} \equiv (K_{ij})^{-1} \). Since the F-term of \(\psi^- \) is given by \(\lambda S \psi_+ \), the scalar potential includes the following term:

\[V \supset |\phi|^2 M_{Pl}^2 |\lambda S \psi_+|^2. \]

(12)

Using \(\psi_+ = \sqrt{\xi} \) and taking average with respect to time, we obtain the Hubble-induced mass term of

\[V \supset \frac{3}{2} H^2(t) |\phi|^2. \]

(13)

Here we have used the virial theorem:

\[m_S^2 \langle |S|^2 \rangle \simeq \frac{3}{2} H^2(t) M_{Pl}^2, \]

(14)

where \(\langle \rangle \) represents the time-average. In the literature, they assume a negative Hubble-induced mass term which comes from higher-dimensional Kähler potentials, say,

\[K^{(H)} = c_S |S|^2 |\phi|^2 M_{Pl}^2, \]

(15)

where \(c_S \) is an \(O(1) \) constant. As we stated in the introduction, we consider the positive Hubble-induced mass term and do not need to introduce such higher-dimensional terms. Hereafter, we consider a general case and denote the coefficient of the Hubble-induced mass term as \(c_H \) (= \(O(1) \)).

In addition to the Hubble-induced mass term, the flat direction obtains higher-dimensional terms from non-renormalizable Kähler potentials.\(^4\) The following Kähler potential may exist and induce \(U(1) \) breaking higher-dimensional potential for the flat direction:

\[\frac{2}{3} a_H \int d^2 \theta d^2 \bar{\theta} |S|^2 \phi^n \frac{n M_{Pl}^n}{n M_{Pl}^n}, \]

\[\simeq -\frac{2}{3} a_H |\partial \mu S|^2 \phi^n \frac{n M_{Pl}^n}{n M_{Pl}^n}, \]

\[\simeq a_H H^2(t) \left(\frac{n M_{Pl}^n}{n M_{Pl}^n}, \right. \]

(16)

\(^4\) The usual Hubble-induced A-terms are absent during the inflaton oscillation era.
where n is an integer depending on flat directions. For example, $n = 3, 6, 9, \ldots$ for $u^c d^c d^c$ flat direction. In the last line, we take average with respect to time and use the relation of $\langle (\partial_0 S)^2 \rangle \simeq 3H^2(t)M_{\text{Pl}}/2$, which comes from the virial theorem. Note that this term has a nonzero phase which is different from the phase of the flat direction θ_i during inflation. We can redefine the phase of the flat direction to eliminate the phase of a_H. After the elimination, we redefine the initial phase of the flat direction as θ_i without loss of generality. The discrepancy between the initial phase of the flat direction and the phase of the above $U(1)$ breaking term is essential to generate the baryon asymmetry.

In summary, the AD field obtains the following potential after inflation:

$$V(\phi) = c_H H^2(t) |\phi|^2 - a_H H^2(t) \left(\frac{\phi^n}{nM_{\text{Pl}}^{n-2}} + \text{c.c.} \right) + \ldots,$$

(17)

where c_H and a_H are positive $O(1)$ parameters. The dots represents higher-dimensional terms which restrict the AD field below the Planck scale. Since the flat direction starts to oscillate due to the Hubble-induced mass, we can neglect usual soft mass and A-terms for the AD field.

3.2 Calculation of baryon asymmetry

In this subsection, we calculate the baryon asymmetry generated from the AD field with the potential (17). The initial VEV and phase are ϕ_i and θ_i, respectively. For $c_H > 0$, the flat direction starts to oscillate around the origin of the potential just after the end of inflation. At the same time, the flat direction is kicked in the phase direction due to the second term in Eq. (17). The $B - L$ asymmetry is generated through this dynamics. The evolution of equation for the $B - L$ charge density is written as

$$\dot{n}_{B-L} + 3H n_{B-L} = 2q \text{Im} \left[\phi^* \frac{\partial V}{\partial \phi} \right],$$

(18)

where q denotes the $B - L$ charge of the AD field. From this equation we obtain

$$a^3 n_{B-L}(t_{osc}) \simeq \int dt 2qa^3(t) |\phi V'_A| \sin(n\theta)$$

$$\equiv \epsilon qH_I \phi_i^2$$

(19)

$$\epsilon \simeq (3 - 4) \times \frac{8}{3n-6} a_H \sin(-n\theta_i) \left(\frac{\phi_i}{M_{\text{Pl}}} \right)^{n-2}$$

(20)

where we have used $\phi \propto a^{-3/4}$. We define $\epsilon (\leq 1)$ which represents the efficiency of baryogenesis. We have numerically solved the equations of motion for ϕ and S with the Friedmann
equation and have obtained the numerical factor of \((3 - 4)\) for \(\epsilon \lesssim 1\). Since the baryon density has to be smaller than the number density of the AD field, \(\epsilon\) is at most unity even for large \(a_H\) and \(\phi_i\). The amplitude of the flat direction decreases as time evolves due to the Hubble expansion and the \(B - L\) breaking effect is absent soon after the oscillation. Thus, the generated \(B - L\) asymmetry is conserved soon after the AD field starts to oscillate.

Then, the oscillating AD field decays and dissipates into radiation [30] and the sphaleron effect converts the \(B - L\) asymmetry to the baryon asymmetry [12, 13]. Since the sphaleron process is in thermal equilibrium, the resultant baryon asymmetry is related to the \(B - L\) asymmetry as

\[
n_b = \frac{8}{23} n_{B-L}.
\]

Assuming the absence of entropy production other than the reheating by inflaton decay, we can calculate the resulting baryon-to-entropy ratio \(Y_b\) as

\[
Y_b \equiv \frac{n_b}{s} = \frac{8}{23} \frac{n_{B-L}}{s} \left|_{RH} \right. \frac{3 T_{RH} n_{B-L}}{4 \rho_S} \left|_{osc} \right. \approx \frac{8}{23} \frac{\epsilon q T_{RH}}{4 H_I} \left(\frac{\phi_i}{M_{Pl}} \right)^2 \\
\simeq 8.7 \times 10^{-11} \epsilon q \left(\frac{T_{RH}}{4 \times 10^3 \text{ GeV}} \right) \left(\frac{H_I}{4 \times 10^{12} \text{ GeV}} \right)^{-1} \left(\frac{\phi_i}{M_{Pl}} \right)^2,
\]

where \(\rho_S \approx 3 H_I^2 M_{Pl}^2\) is the energy density of the inflaton \(S\). This can be consistent with the observed baryon asymmetry of \(Y_b^{\text{obs}} \simeq 8.7 \times 10^{-11}\) [1].

You can find differences from the conventional scenario of the Affleck-Dine baryogenesis. The Hubble parameter at the beginning of oscillation \(H_I\) is determined by the energy scale of inflation, not by the curvature of the potential for the flat direction (see Ref. [15], for example). This is because the flat direction starts to oscillate just after the end of inflation due to the positive Hubble-induced mass term, while in the conventional scenario it starts to oscillate at \(H(t) \simeq m_\phi\), where \(m_\phi\) is the soft mass of the AD field. This allows us to consider a relatively large reheating temperature even if the initial VEV \(\phi_i\) is as large as the Planck scale. In addition, the ellipticity parameter \(\epsilon\), which describes the efficiency of baryogenesis, can be much smaller than unity when \(\phi_i\) is smaller than the Planck scale. This is because the phase direction of the AD field is kicked by a higher-dimensional Kähler potential, which is highly suppressed for a small VEV of the AD field. However, as shown in the next subsection, the baryonic isocurvature constraint requires the initial VEV to be as large as the Planck scale. In that case, \(\epsilon\) is of order unity for \(a_H = \mathcal{O}(1)\).

One might wonder if the energy density of the AD field dominates that of the Universe in the case that its initial VEV is as large as the Planck scale. This may be true in the case
of conventional Affleck-Dine baryogenesis, in which the AD field starts to oscillate when the Hubble parameter decreases down to the soft mass of the flat direction. However, the energy density of the AD field never dominates the Universe in the above scenario because it decreases faster than that of radiation. Just after inflation, the AD field starts to oscillate around the origin due to the positive Hubble-induced mass term. Then, its number density decreases with time as a^{-3} due to the expansion of the Universe. This means that its energy density decreases as $a^{-9/2}$ because its effective mass is of order the Hubble parameter, which decreases as $a^{-3/2}$. When the Hubble parameter decreases down to the mass of the AD field, that is, when $H(t) \approx m_\phi$, its energy fraction to the total energy density is given as

$$\frac{\rho_{\text{AD}}}{\rho_{\text{tot}}} \bigg|_{H \approx m_\phi} \approx \left(\frac{m_\phi}{H_I} \right) \frac{\rho_{\text{AD}}}{\rho_{\text{tot}}} \bigg|_{H \approx H_I}$$

$$\approx 10^{-11} \left(\frac{\phi_i}{M_{\text{Pl}}} \right)^2 \left(\frac{m_\phi}{\text{TeV}} \right) \left(\frac{H_I}{4 \times 10^{12} \text{ GeV}} \right)^{-1}.$$

Thus, the energy density of AD field becomes negligible soon after inflation and the result of Eq. (22) is applicable to the case of $\phi_i \approx M_{\text{Pl}}$.

3.3 Baryonic isocurvature perturbations

Although the initial phase and radial values of the flat direction are almost constant over the whole range of the observable universe, they acquire quantum fluctuations like $|\delta \theta_i| \approx H_I \frac{2\pi}{\phi_i}$ and $|\delta \phi_i| \approx H_I \frac{2\pi}{\phi_i}$. These fluctuations result in baryonic isocurvature perturbations because the produced baryon density is related to the initial phase θ_i and VEV ϕ_i (see Eqs. (19) and (20)). The baryonic isocurvature perturbation $S_{\nu \gamma}$ is given by

$$S_{\nu \gamma} \equiv \frac{\delta Y_B}{Y_B} \approx n \left(\cot (n\theta) \delta \theta + \frac{\delta \phi_i}{\phi_i} \right).$$

Since we consider the case that the AD field starts to oscillate due to the positive Hubble-induced mass term, its radial direction also has quantum fluctuations and contributes to the baryonic isocurvature perturbations. This leads to an additional factor in Eq. (26), which cannot be suppressed by the tuning of the initial phase θ_i. Note that the VEV of the AD field
is smaller than the Planck scale due to the exponential factor in the supergravity potential. This leads to a lower bound on baryonic isocurvature perturbations like

\[|S_{b\gamma}| \simeq 2.7 \times 10^{-7} \times n \left(\frac{H_I}{4 \times 10^{12} \text{ GeV}} \right) \left(\frac{M_{\text{Pl}}}{\phi_i} \right), \]

\[\gtrsim 2.7 \times 10^{-7} \times n \left(\frac{H_I}{4 \times 10^{12} \text{ GeV}} \right), \]

where we assume \(1 + \cot (n\theta) \approx 1 \).

Since the density perturbations of the cosmic microwave background are predominantly adiabatic \([4, 5]\), the baryonic isocurvature perturbation is tightly constrained as \([16, 15]\)

\[|S_{b\gamma}| \lesssim 5.0 \times 10^{-5}. \]

Our scenario predicts the value below this constraint though it depends on the value of \(n \) and \(H_I \) (i.e., \(\xi \)). If one might consider a high-scale D-term inflation model, the resulting isocurvature perturbations can be as large as this lower bound and would be detected by future observations of CMB fluctuations.

3.4 Comments on Q-ball formation

In this subsection, we comment on Q-ball formation. If the potential of the AD field is shallower than the quadratic potential, its coherent oscillation is unstable and fragments into non-topological solitons, called Q-balls \([32]\). The formation of Q-balls may change the scenario of Affleck-Dine baryogenesis \([33, 34, 35, 36, 37, 38, 39]\). For example, their decay can be another source of non-thermal production of DM \([35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 15, 51]\), or Q-balls can be a candidate for DM if they are stable \([34, 52, 53, 54]\). In the case considered in this paper, the AD field starts to oscillate by the positive Hubble-induced mass term. When the beta function for the Hubble-induced mass of the AD field is positive, Q-ball does not form. The beta function has positive contributions from Yukawa interactions while it has negative ones from gauge interactions. The former positive contributions are roughly proportional to the squared masses of squarks and sleptons, and the latter negative ones are roughly proportional to the squared masses of gauginos. Here, since the Hubble-induced mass for gauginos is absent or 1-loop suppressed, the positive contributions from Yukawa interactions are usually dominant. Therefore, the beta function for the Hubble-induced mass of the AD field is usually positive and Q-balls may not form in our scenario. However, if the AD field consists only of the first and second family squarks and/or sleptons, the positive contributions from Yukawa interactions are suppressed by small Yukawa couplings. In this
case, Q-balls might form. We estimate the typical charge Q of Q-balls as

$$Q \sim \beta \left(\frac{\phi_i}{m_{\phi, eff}} \right)^2,$$

(29)

where $m_{\phi, eff}$ is the effective mass and $\beta (\sim 10^{-2})$ is a numerical factor obtained from simulations of Q-ball formation [36, 37, 55]. Here, we should substitute the Hubble-induced mass into the effective mass, and so the typical charge of Q-balls is at most 10^8. Such small Q-balls soon evaporate into thermal plasma via interactions with the thermal plasma [58, 59] (see also Ref. [38]). Therefore, the subsequent cosmological scenario and the calculation of the baryon asymmetry does not change.

Even if Q-balls do not form just after the end of inflation, they may form at the time of $H(t) \simeq m_\phi$. After that time, the potential of the AD field is dominated by its soft mass term. If the beta function of the soft mass is negative, the AD field becomes to fragment into Q-balls at that time. Since $n_b \propto H(t) \phi^2(t) \propto a^{-3} \propto H(t)^2$ until the Hubble parameter decreases down to the soft mass, the amplitude of the AD field at $H(t) \simeq m_\phi$ is given as

$$\phi \mid_{H(t)=m_\phi} \simeq \left(\frac{m_\phi}{H_I} \right)^{1/2} \phi_i.$$

(30)

This implies that a typical charge of Q-balls is given as

$$Q \simeq \beta \left(\frac{\phi}{m_\phi} \right)^2 \simeq \beta \left(\frac{\phi_i^2}{m_\phi H_I} \right).$$

(31)

This is at most 10^{18} for typical parameters. Such small Q-balls are evaporate into thermal plasma soon after they form. Even if Q-balls survive, they are so small as to decay into quarks before the BBN epoch. However, they usually decay after the electroweak phase transition [56, 57]. Since the sphaleron process is decoupled at that time, the AD field has to carry a nonzero baryon charge (not $B-L$) to generate the baryon asymmetry. In that case, the resulting baryon asymmetry is given by Eq. (22) without the factor of $8/23$.

4 Model for solution to the baryon-DM coincidence problem

In this section, we propose a D-term inflation model which predicts an $O(1)$ ratio of baryon to DM density. We introduce a shift symmetry to ensure the flatness of the inflaton potential.

\footnote{The evaporation is efficient during the inflaton oscillation era. In addition, since the energy per unit charge for these Q-balls is given by the Hubble parameter, their energy density decreases with time as $a^{-9/2}$. Thus, the energy density of the Q-balls never dominate that of the Universe.}
above the Planck scale. When there exists a small linear term in the Kähler potential, the inflaton decays mainly into gravitinos [18, 19, 20, 21, 22, 23, 24]. The subsequent decay of those gravitinos is a source of non-thermal production of LSP DM and the resulting DM abundance is proportional to the reheating temperature and inversely proportional to the inflaton mass. Since the amount of the baryon asymmetry in Eq. (22) has similar parameter dependences, the baryon and DM densities are related with each other through the energy scale of inflation.

In the next subsection, we propose the D-term inflation model. In Sec. 4.2, we investigate reheating processes of the D-term inflation model and then calculate the abundance of DM.

4.1 Model

Let us introduce a shift symmetry and an approximate Z_2 symmetry for the inflaton field S [17]. Under these symmetries, S transforms as $S \rightarrow S + i\alpha$ (α: real) and $S \rightarrow -S$, respectively. Then, the Kähler potential is written as

$$K = c_S (S + S^*) + \frac{1}{2} (S + S^*)^2 + |\psi_-|^2 + |\psi_+|^2,$$

(32)

where c_S ($\ll 1$) is an order parameter for the Z_2 symmetry breaking effect. The superpotential of Eq. (2) explicitly breaks the shift symmetry, which is required to ensure a graceful exit. Otherwise the inflaton stays at a certain VEV because it has an exactly flat potential. In this model, we should replace $|S|^2$ with $(S + S^*)^2/2$ for the calculations in Sec. 3.1, though the results are unchanged.

There is an advantage to impose the shift symmetry to the inflaton. In order to obtain a sufficiently large e-folding number, say, $N_* \gtrsim 60$, the initial VEV of the inflaton S has to be as large as $N_* \frac{\sqrt{2}}{4\pi} M_{Pl} \simeq 0.5 M_{Pl}$, which is of order the Planck scale. This implies that the Planck-scale physics may affect the potential of the inflaton and spoil its flatness. However, the shift symmetry ensures the flatness of the inflaton potential above the Planck scale.

If Z_2 symmetry is exact, some MSSM particles have to carry odd Z_2 charge and interact with the field S [17] for the inflaton to decay. In this case the LSP DM abundance is given by the usual thermal relic density. Here, we introduce Z_2 breaking terms in the Kähler potential so that the field S efficiently decays into gravitinos [23, 24], whose decay is a source of non-thermal production of LSP DM.

We assume that the mass of gravitinos is of order 10^{2-3} TeV so that gravitinos decay into radiation before the BBN epoch. Otherwise the decay of gravitinos spoils the success of the BBN, or their energy density overcloses the Universe if they are stable. Such a heavy gravitino is well motivated in a class of SUSY models with a split spectrum [60, 61, 62, 63,
In these models, the masses of gravitino as well as squarks and sleptons are of order (or larger than) 10^{2-3} TeV while those of gauginos are of order 1 TeV. This hierarchy can be realized when gauginos acquire one-loop suppressed soft masses through the anomaly mediated SUSY breaking effect \cite{67, 68}. In that case, the mass of wino and gravitino is related with each other such as

$$m_{\tilde{w}} = \frac{g_2^2}{16\pi^2} (m_{3/2} + L) \simeq 3 \times 10^{-3} (m_{3/2} + L).$$

(33)

The factor L is the Higgsino threshold corrections and is calculated as \cite{68, 69}

$$L \equiv \mu_H \sin 2\beta \frac{m_A^2}{|\mu_H|^2 - m_A^2} \log \frac{|\mu_H|^2}{m_A^2},$$

(34)

where m_A is the mass of the heavy Higgs bosons, μ_H is the SUSY mass of the higgsinos, and $\tan \beta$ is the ratio of the VEV of H_u and H_d. When μ_H is of order the gravitino mass, the Higgsino threshold correction is important and the wino mass is $\sim 10^{-3} m_{3/2}$. Note that neutral higgsino can also be the LSP when μ_H is sufficiently small. The following discussion does not rely on the detailed properties of the LSP except for its mass. Hereafter, we assume that the mass of gravitino is $O(10^{2-3})$ TeV and that of the LSP is $O(10^{2-3})$ GeV.

In order to calculate the gravitino production rate from the inflaton decay, we need to specify the SUSY breaking sector. We introduce a Polonyi field z, which breaks SUSY in low energy scale, and consider a simple extension of the Polonyi model given as

$$K = |z|^2 - \frac{|z|^4}{\Lambda^2},$$

(35)

$$W = \mu^2 z + W_0,$$

(36)

where Λ is a cutoff scale, μ is the SUSY breaking scale, and W_0 is a constant term which makes the cosmological constant (almost) zero in the present Universe. This can be achieved by the O’Raifeartaigh model after integrating out relatively heavy particles \cite{70} or by dynamical SUSY breaking models, including the IYIT model \cite{71, 72}. The important parameters are calculated as

$$\mu^2 \simeq \sqrt{3} m_{3/2} M_{Pl},$$

(37)

$$m_z^2 \simeq \frac{12 m_{3/2}^2}{\Lambda^2} M_{Pl}^2,$$

(38)

$$\langle z \rangle_0 \simeq 2\sqrt{3} \left(\frac{m_{3/2}}{m_z} \right)^2 M_{Pl},$$

(39)

where m_z is the mass of z and $\langle z \rangle$ is its VEV at the low energy vacuum. Since the Hubble-induced mass is absent during D-term inflation, massless scalar fields cannot be stabilized.
at the origin. This implies that if the mass of the Polonyi field is much smaller than the Hubble parameter, it obtains a VEV as large as the Planck scale during inflation. In this section, we consider the case that the mass of the Polonyi field is larger than H_I and it stays at the origin of the potential during inflation, while we consider the case of relatively light Polonyi in Appendix. The conditions of $m_z \gtrsim H_I$ and $\Lambda \gtrsim \mu$ in the effective theory leads to the lower bound on the gravitino mass \cite{73}:

$$m_{3/2} \gtrsim \frac{\sqrt{3}H_I^2}{12M_{pl}},$$

$$\simeq 10^3 \text{TeV} \left(\frac{H_I}{4 \times 10^{12} \text{ GeV}} \right)^2.$$ \hspace{1cm} (40)

Thus, the heavy gravitino is favoured in D-term inflation to stabilize the VEV of the Polonyi field.

4.2 Reheating process

In this subsection, we investigate the reheating process and calculate the DM abundance in the model introduced in the previous subsection.

As explained in Sec. 2, the field ψ_+ decays into the MSSM fields much faster than the inflaton S, so that the reheating temperature of the Universe is determined by the relatively late-time decay of the inflaton S \cite{8}. After the field ψ_+ decays completely, the effective superpotential can be rewritten as

$$W^{(\text{inf})} = m_S S \psi_-, \hspace{1cm} (41)$$

$$m_S \equiv \lambda \sqrt{\xi}, \hspace{1cm} (42)$$

where m_S is the effective mass of the fields S and ψ_-. This superpotential is equivalent to the one in the model of chaotic inflation proposed in Ref. \cite{17}, except for the value of m_S.

The supergravity effects induce a soft SUSY breaking B-term of $bm_{3/2}m_S S \psi_-$, where b is an $O(1)$ constant. This implies that they maximally mix with each other and form mass eigenstates

$$\Phi_\pm \equiv \frac{1}{\sqrt{2}} \left(S \pm \psi_-^i \right), \hspace{1cm} (43)$$

around the potential minimum \cite{19, 23}. Therefore, when the time scale of inflaton decay Γ_S^{-1} is longer than that of the mixing effect $m_{3/2}^{-1}$, we have to consider the decay of Φ_\pm to investigate the reheating process. Since we consider a heavy gravitino and a reheating temperature of order 10^3 GeV (see Eq. (22)), the mixing effect is indeed relevant.
The Z_2 breaking term in the Kähler potential results in the decay of the field Φ_\pm through supergravity effects [24].\(^6\) First, let us focus on the top Yukawa interaction in the MSSM sector:

$$W^{(\text{top})} = y_t Q_3 H_u u^c_3, \quad (44)$$

where y_t is the top Yukawa coupling constant, and Q_3, H_u, and u^c_3 are the chiral supermultiplets of the MSSM sector. The relevant interaction terms between ψ_- and the MSSM fields are given by

$$V = \frac{1}{M_{Pl}^2} K_S W^{(\text{top})} W^*_S + c.c. + \ldots,$$

$$= \frac{y_t m_S K_S}{M_{Pl}^2} \psi_-^* (\bar{Q}_3 H_u \bar{u}^c_3) + c.c. + \ldots, \quad (45)$$

where the dots "\ldots" represents the other irrelevant terms. Since the fields Φ_\pm consist of ψ_- as Eq. (43), they decay into the MSSM scalar fields through this interaction. They also decay into the MSSM fermion fields, which equally contributes to the Φ_\pm decay [24]. Thus, the partial decay rate of Φ_\pm into the MSSM fields is given as

$$\Gamma_{\text{MSSM}}(\Phi_\pm \rightarrow \text{MSSM}) = \frac{3 c_S^2}{256 \pi^3} |y_t|^2 \frac{m_S^3}{M_{Pl}^2}, \quad (46)$$

where we use $K_S = c_S$. Since we consider the gaugino mass (m_3) much smaller than the gravitino mass, the decay rates of S into gauge fields are suppressed by a factor of $(m_3/m_3/2)^2$ and can be neglected [22].

Next, let us consider the decay of Φ_\pm into gravitinos [18, 19, 20, 21, 22, 23, 24]. We follow the discussion presented in Ref. [74]. When the field S has a nonzero VEV, the field ψ_- mixes with the SUSY breaking field z and can decays into goldstino, (i.e., longitudinal component of gravitino). This is because the supergravity effects induce mixing terms such as

$$V = W_S (K_S W)^* + K_S^{-1} W_S W^*_z + c.c. + \ldots$$

$$= m_S d F_z \psi_- z^* + c.c. + \ldots, \quad (47)$$

$$d \equiv \langle K_S \rangle - \langle K_{Sz} \rangle, \quad (48)$$

where the dots "\ldots" represent the other irrelevant terms. The second term in d is relevant when there is a term like $(S + S^*) |z|^2$ in the Kähler potential, whose coefficient is of order

\(^6\) Since the field ψ_- has a small VEV of order $cm_3/2m_S$ due to the supergravity effects, it can decay into the MSSM fields through the D-term potential. However, we confirm that its partial decay rate is irrelevant due to the suppression factor coming from its small VEV and can be neglected.

15
Thus, the fields ψ_- and z mix with each other and the mixing angle is given by

$$\theta \simeq d \frac{F_z m_s}{m_z^2},$$

where we use $m_z \gg m_S$. Since the fields Φ_\pm consist of ψ_-, they mix with z and the mixing angle is given by $\theta/\sqrt{2}$. Since the SUSY breaking field z has an operator of

$$\mathcal{L} = -2 \frac{F_z}{\Lambda^2} z \bar{z} \gamma^+ \tilde{z} + h.c.,$$

it decays into goldstino \tilde{z}. Together with the mixings between Φ_\pm and z, the fields Φ_\pm decays into goldstino through this operator. The partial decay rate of the field Φ_\pm into goldstino is therefore calculated as [75]

$$\Gamma_{\tilde{z}}(\Phi_\pm \rightarrow \tilde{z} \tilde{z}) \simeq \frac{1}{32\pi} \left(\frac{\theta}{\sqrt{2}} \right)^2 \frac{m_z^4}{|F_z|^2 m_s},$$

$$\simeq \frac{d^2 m_s^3}{64\pi^2 M_{Pl}^2}$$

(51)

From Eqs. (46) and (51), the total decay rate Γ_S and the branching ratio of the decay of Φ_\pm into gravitinos $B_{3/2}$ are given by

$$\Gamma_S = \Gamma_{\text{MSSM}}(\Phi_\pm \rightarrow \text{MSSM}) + \Gamma_{\tilde{z}}(\Phi_\pm \rightarrow \tilde{z} \tilde{z}),$$

$$\text{Br}_{3/2} = \frac{d^2}{d^2 + 3 |y_t|^2 c^2 / (4\pi^2)}.$$

(52)

(53)

Since $d/c = O(1)$ and $y_t = O(1)$, the branching ratio is almost unity. This means that the energy density of the Universe is dominated by that of the gravitinos after the fields Φ_\pm (i.e., the inflaton S) decay completely.\(^7\)

Since the fields Φ_\pm are much heavier than gravitino, the produced gravitinos are highly relativistic. The Lorentz factor for the gravitinos at a time $H^{-1}(t)$ is given as

$$\gamma(t) = \left[\left(\frac{m_S}{m_{3/2}} \right)^2 \frac{H(t)}{\Gamma_S} + 1 \right]^{1/2} \simeq \frac{m_S}{m_{3/2}} \left(\frac{H(t)}{\Gamma_S} \right)^{1/2}.$$

(54)

The gravitinos decay into MSSM particles with a rate of

$$\Gamma_{3/2} \simeq \gamma^{-1}(t) \frac{1}{48\pi} \sum_i \frac{m_{3/2}^5 \bar{X}_i}{M_{Pl}^2},$$

(55)

\(^7\) Note that since we consider relatively low reheating temperature $\sim 10^{3-4}$ GeV, we can neglect the thermal production of gravitinos [76, 77].
where the summation is taken for all MSSM particles \tilde{X}_i. Since we consider a SUSY model with relatively light gauginos and relatively heavy squark and sleptons, we can roughly estimate the numerator as $24m_5^5/2$. This implies that the gravitino decays into radiation at the temperature

$$T_{3/2} \approx \left(\frac{90}{g_* \pi^2} \right)^{1/4} \sqrt{\frac{\Gamma_{3/2}}{M_{Pl}}} \approx 1.1 \text{ MeV} \left(\frac{T_{RH}}{4 \times 10^3 \text{ GeV}} \right)^{1/3} \left(\frac{m_S}{5 \times 10^{15} \text{ GeV}} \right)^{-1/3} \left(\frac{m_{3/2}}{400 \text{ TeV}} \right)^{4/3},$$

(56)

where g_* (≈ 10.75) is the effective number of degrees of freedom at the decay time. We require that the mass of gravitino is of order 10^{2-3} TeV or larger so that its decay completes before the BBN epoch, that is, $T_{3/2} \gtrsim 1$ MeV. Otherwise the decay particles interact with the light elements and spoil the success of the BBN [78, 79, 80, 81, 82]. The gravitino decay temperature $T_{3/2}$ is much smaller than the mass of the LSP, so that the decay of gravitino is a source of its nonthermal production. Since the energy density of the Universe is dominated by that of gravitino before they decay, the thermal relic density of the LSP is diluted by the entropy production from the gravitino decay. Therefore, the LSP abundance is determined by the nonthermal production from the gravitino decay. The produced number density of the LSPs is equal to that of the gravitinos due to the R-parity conservation. Note that the annihilation of the produced LSP is usually inefficient in such a low temperature.

The Lorentz factor of the gravitino is of order 10^3 for the reference parameters shown in Eq. (56). This implies that the scale factor of the Universe continues to decrease as a^{-4} from the time of reheating by the decay of Φ_{\pm}. Although the LSPs are relativistic at the time they are produced from gravitino decay, they lose their energy through interactions with the thermal plasma and soon become to non-relativistic particles [83, 84, 85]. Therefore, the LSP DM is cold even though they are produced non-thermally in this scenario.

4.3 DM density and baryon-DM coincidence

Let us summarize the scenario of non-thermal production of DM. First, the inflaton S (or Φ_{\pm}) decays into gravitinos as well as the MSSM particles at $H(t) \simeq \Gamma_S$. Then the energy density of the Universe is dominated by the relativistic gravitinos and decreases as a^{-4}. The gravitinos decay into the MSSM particles just before the epoch of the BBN and the LSP DM is produced non-thermally. Since the thermal relic density of the LSP is diluted by the entropy production of gravitino decay, its abundance is determined by the gravitino decay.
Thus, we can estimate the resultant DM abundance as

\[Y_{\text{DM}} \equiv \frac{n_{\text{LSP}}}{s} \]

\[\equiv \frac{n_{3/2}}{s} \bigg|_{H=\Gamma_{3/2}} \]

\[\sim \frac{3T_{3/2} n_{3/2}}{4 \rho_{3/2}} \bigg|_{H=\Gamma_{3/2}} \]

\[\sim \frac{3T_{3/2}}{4} \left(\frac{\Gamma_S}{\Gamma_{3/2}} \right)^{1/2} \frac{n_{3/2}}{\rho_{3/2}} \bigg|_{H=\Gamma_S} \]

\[\sim \frac{3T_{\text{RH}}^{(\text{eff})}}{4} \frac{2B r_{3/2} n_{S}}{\rho_{S}} \bigg|_{H=\Gamma_S} \]

\[\sim \frac{3T_{\text{RH}}^{(\text{eff})}}{2m_S} , \]

(57)

where we have used \(B r_{3/2} \approx 1 \) in the last line. We define the effective reheating temperature \(T_{\text{RH}}^{(\text{eff})} \) by Eq. (10) with the replacement of \(g_{*}(T_{\text{RH}}) \rightarrow g_{*}(T_{3/2}) \) as

\[T_{\text{RH}}^{(\text{eff})} \approx \left(\frac{90}{g_{*}(T_{3/2}) \pi^2} \right)^{1/4} \sqrt{\Gamma_S M_{\text{Pl}}} \]

\[\approx 1.5 \times 10^3 \text{ GeV} \left(\frac{m_S}{5 \times 10^{15} \text{ GeV}} \right)^{3/2} \left(\frac{d}{10^{-10}} \right) . \]

(58)

The reheating temperature is adjusted by the \(Z_2 \) symmetry order parameter \(d \) to obtain a desirable amount of baryon asymmetry from Eq. (22) or DM from Eq. (57).

Here we take into account the baryon asymmetry generated by the Affleck-Dine baryogenesis. Once we replace the reheating temperature \(T_{\text{RH}} \) with the effective one \(T_{\text{RH}}^{(\text{eff})} \) defined by Eq. (58), the resulting baryon asymmetry is still given by Eq. (22) even in this scenario.\(^8\)

Combining Eqs. (22) and (57), we obtain the following simple relation for the baryon-to-DM ratio:

\[\frac{\Omega_b}{\Omega_{\text{DM}}} \approx \frac{4}{69} \epsilon q \frac{m_p}{m_{\text{LSP}}} \frac{m_S}{H_I} , \]

(59)

where we assume \(\phi_i \approx M_{\text{Pl}} \). Substituting benchmark parameters and the proton mass \(m_p \approx 0.938 \text{ GeV} \), we obtain

\[\frac{\Omega_b}{\Omega_{\text{DM}}} \approx 0.22 \epsilon q \left(\frac{m_{\text{LSP}}}{400 \text{ GeV}} \right)^{-1} \left(\frac{m_S}{6.6 \times 10^{15} \text{ GeV}} \right) \left(\frac{H_I}{4 \times 10^{12} \text{ GeV}} \right)^{-1} , \]

\(^8\) Note that the inflaton also decays into the MSSM fields with a branching \(\sim 10^{-(1-2)} \), so that there exists significant thermal plasma after the decay of inflaton. Thus, the sphaleron effect proceeds fast enough to convert the \(B - L \) asymmetry to the baryon asymmetry even if the dominant component of the Universe is gravitino at that time.
\[\simeq \, 0.12\epsilon q\lambda g^{-1} \left(\frac{m_{\text{LSP}}}{400 \text{ GeV}} \right)^{-1} \left(\frac{\sqrt{\xi}}{6.6 \times 10^{15} \text{ GeV}} \right)^{-1}, \tag{60} \]

which is naturally of order unity and is consistent with the observed value of \(\Omega_{b}^{(\text{obs})}/\Omega_{\text{DM}}^{(\text{obs})} \simeq 0.2 \) [1]. The scenario naturally explains the coincidence of their energy density, known as the baryon-DM coincidence problem. This is because both of them are related to the energy scale of inflation. The amount of baryon asymmetry is proportional to the reheating temperature of the Universe and inversely proportional to the Hubble parameter during inflation. That of DM is proportional to the reheating temperature and inversely proportional to the mass of inflaton. Since the Hubble parameter \((H_I \sim g\xi/M_{\text{Pl}}) \) and the inflaton mass \((m_S = \lambda\sqrt{\xi}) \) is related to each other, the resulting baryon and DM density is naturally of order unity. Interestingly, the electroweak scale DM mass \((O(10^2) \text{ GeV}) \) comes from the fact that the GUT scale, which \(\sqrt{\xi} \) is expected to be, is two orders of magnitude less than the Planck scale.

Although the result has an \(O(1) \) uncertainty coming mainly from \(\lambda \) and \(\xi \), the LSP with mass of \(O(10^{2-3}) \text{ GeV} \) is favoured in our scenario. If the LSP DM is mostly wino or higgsino, the indirect detection experiments of DM puts lower bounds on DM mass. The wino DM with \(m_{\tilde{w}} \leq 390 \text{ GeV} \) and \(2.14 \text{ TeV} \leq m_{\tilde{w}} \leq 2.53 \text{ TeV} \) is excluded [86], while the higgsino DM with \(m_{h} \leq 160 \text{ GeV} \) is excluded [87]. The future indirect detection experiments can detect the wino DM with \(m_{\tilde{w}} \leq 1.0 \text{ TeV} \) and \(1.66 \text{ TeV} \leq m_{\tilde{w}} \leq 2.77 \text{ TeV} \) [86].

5 Summary

We have considered the Affleck-Dine baryogenesis assuming a positive Hubble-induced mass term after D-term inflation. We have calculated the baryon asymmetry and found that the result is consistent with the observed abundance of baryon asymmetry for reheating temperature \(T_{\text{RH}} \sim 10^3 \text{ GeV} \). There are some differences from the conventional scenarios of the Affleck-Dine baryogenesis where the sign of the Hubble-induced mass term is negative. First, since the AD field starts to oscillate just after the end of inflation, the resulting baryon asymmetry is inversely proportional to the inflation scale \(H_I \). This allows us to consider a relatively large reheating temperature even if the initial VEV \(\phi_i \) is as large as the Planck scale. In addition, the ellipticity parameter \(\epsilon \), which describes the efficiency of baryogenesis, can be much smaller than unity when \(\phi_i \) is smaller than the Planck scale. This is because the phase direction of the AD field is kicked by a higher-dimensional Kähler potential, which effect is highly suppressed for a small VEV of the AD field. Since the radial direction as well as the phase one has quantum fluctuations during D-term inflation, the Affleck-Dine
baryogenesis predicts nonzero baryonic isocurvature perturbations. They would be detected by future CMB observations if one considers a high-scale D-term inflation model.

We also proposed a D-term inflation model with a shift symmetry in the imaginary direction of the inflaton superfield and a small linear term in the Kähler potential. We consider the case that the mass of gravitino is \(O(10^{2-3}) \) TeV and the mass of the LSP is \(O(10^{2-3}) \) GeV, which is naturally realized in anomaly mediated SUSY breaking models. In this model, the inflaton decays mainly into gravitinos through the supergravity effects [18, 19, 20, 21, 22, 23, 24] and the subsequent decay of gravitinos is a source of non-thermal production of DM. Together with estimation of baryon asymmetry generated from the Affleck-Dine mechanism, the resulting DM density gives an \(O(1) \) baryon-to-DM ratio. This is because both of them are related to the energy scale of inflation. The amount of baryon asymmetry is proportional to the reheating temperature of the Universe and inversely proportional to the Hubble parameter during inflation. That of DM is proportional to the reheating temperature and inversely proportional to the mass of inflaton. Since the Hubble parameter and the mass is related to each other, the resulting baryon and DM density is naturally of order unity. We predict that the LSP mass is two orders of magnitude larger than the proton mass, which comes from the fact that the GUT scale is two orders of magnitude less than the Planck scale. When the LSP is mostly wino or higgsino, it would be detected by future indirect detection experiments of DM.

Acknowledgments

This work is supported by Grant-in-Aid for Scientific research from the Ministry of Education, Science, Sports, and Culture (MEXT), Japan, No. 25400248 (M.K.), World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and the Program for the Leading Graduate Schools, MEXT, Japan (M.Y.). M.Y. acknowledges the support by JSPS Research Fellowship for Young Scientists.
A Another solution for baryon-DM coincidence problem

In this appendix, we consider the case that the mass of the Polonyi field is less than the Hubble parameter H_I and it obtains a nonzero VEV during inflation. Even if the origin of its potential is a symmetry-enhanced point, the Polonyi field cannot be stabilized at the origin because of the absence of the Hubble-induced mass during D-term inflation. Although one might wonder if this is an obstacle known as the Polonyi problem, we show that its decay can explain the amount of DM once we allow an 10% fine-tuning for the initial VEV of the Polonyi field.

During D-term inflation, the Polonyi field obtains a VEV denoted as z_i, which might be as large as the Planck scale. Just after inflation ends, the Polonyi field starts to oscillate around the origin due to the positive Hubble-induced mass term as the AD field considered in Sec. 3. Then, its number density decreases with time as a^{-3} due to the expansion of the Universe. This means that its energy density decreases as $a^{-9/2}$ because its Hubble-induced mass is of order the Hubble parameter, which decreases as $a^{-3/2}$. After the Hubble parameter decreases down to its low-energy mass of the Polonyi field, that is, after the time of $H(t) \simeq m_z$, the Hubble-induced mass term can be neglected. Then its mass and VEV are given by Eqs (38) and (39), respectively. Note that the minimum of the potential is usually much smaller than the amplitude of the Polonyi field at that time because its amplitude decreases only as $a^{-3/4}$ until $H(t) \simeq m_z$:

$$z|_{H(t)=m_z} \simeq \left(\frac{m_z}{H_I}\right)^{1/2} z_i \gg \langle z \rangle_0.$$ \hspace{1cm} (61)

This means that its number density is not affected and continues to decreases with time as a^{-3}.

The Polonyi field decays mainly into gravitinos with a rate of

$$\Gamma_z(z \rightarrow 2\psi_{3/2}) \simeq \frac{1}{96\pi} \frac{m_z^3}{m_{3/2}^2 M_{Pl}^2}.$$ \hspace{1cm} (62)

Since we consider relatively low reheating temperature to realize the Affleck-Dine baryogenesis, we can neglect the thermal production of gravitinos. Thus, the gravitino abundance is determined by the number density of the Polonyi field. We require that the mass of gravitino is of order 10^{2-3} TeV so that it decays into the MSSM particles before the BBN epoch. Otherwise the decay particles interact with the light elements and spoil the success of the BBN [78, 79, 80, 81, 82]. The decay of gravitino is a source of non-thermal production of
LSP DM. We assume that the thermal relic of the LSP is much smaller than the observed DM abundance. This can be achieved for the case of wino-like LSP with a mass much less than 3 TeV [88, 89] or higgsino-like LSP with a mass much less than 1 TeV. The wino-like LSP is well motivated in models of anomaly mediated SUSY breaking, where the gravitino mass is naturally as large as $O(100)$ TeV as we required.

In summary, the LSP DM is non-thermally produced from the decay of gravitino, which is generated from the decay of the Polonyi field. The Polonyi field is generated by its coherent oscillation just after the end of inflation. We thus obtain the following DM abundance:

$$Y_{\text{DM}} \equiv \frac{n_{\text{LSP}}}{s} \left(\frac{n_{3/2}}{s} \right)_{\psi_{3/2}\text{decay}} \left(\frac{3T_{\text{RH}}n_{3/2}}{4\rho_I} \right)_{\text{RH}} \left(\frac{3T_{\text{RH}}n_z}{2\rho_I} \right)_{H=\Gamma_z} \left(\frac{3T_{\text{RH}}n_z}{2\rho_I} \right)_{H=H_I} \left(\frac{T_{\text{RH}}z_i^2}{2H_I M_{\text{Pl}}^2} \right),$$ (63)

where we use $n_z \simeq H_I z_i^2$ at $H = H_I$ in the last line.

Together with estimation of baryon asymmetry generated by the Affleck-Dine mechanism calculated in Sec. 3.2, the above result implies that the baryon-to-DM ratio is given by the following simple relation:

$$\frac{\Omega_b}{\Omega_{\text{DM}}} \simeq \frac{4}{23} \epsilon_b \frac{m_p}{m_{\text{LSP}}} \left(\frac{\phi_i}{z_i} \right)^2. \quad \text{(64)}$$

Thus, we can explain the observed baryon-to-DM ratio when $z_i/\phi_i \sim 0.1$. One might expect that the natural values of their initial VEVs are of order the Planck scale. In that case, the result requires a 10% fine-tuning for the value of z_i.

References

[1] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).
[2] P. Binetruy and G. R. Dvali, Phys. Lett. B 388, 241 (1996) [hep-ph/9606342].
[3] E. Halyo, Phys. Lett. B 387, 43 (1996) [hep-ph/9606423].

[4] G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 208, 19 (2013) [arXiv:1212.5226 [astro-ph.CO]].

[5] P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO].

[6] I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).

[7] M. Dine, L. Randall and S. D. Thomas, Nucl. Phys. B 458, 291 (1996). [hep-ph/9507453].

[8] C. F. Kolda and J. March-Russell, Phys. Rev. D 60, 023504 (1999) [hep-ph/9802358].

[9] K. Enqvist and J. McDonald, Phys. Rev. Lett. 83, 2510 (1999) [hep-ph/9811412].

[10] K. Enqvist and J. McDonald, Phys. Rev. D 62, 043502 (2000) [hep-ph/9912478].

[11] M. Kawasaki and F. Takahashi, Phys. Lett. B 516, 388 (2001) [hep-ph/0105134].

[12] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).

[13] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

[14] S. Kasuya, M. Kawasaki and F. Takahashi, JCAP 0810, 017 (2008) [arXiv:0805.4245 [hep-ph]].

[15] K. Harigaya, A. Kamada, M. Kawasaki, K. Mukaida and M. Yamada, Phys. Rev. D 90, no. 4, 043510 (2014) [arXiv:1404.3138 [hep-ph]].

[16] P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5082 [astro-ph.CO].

[17] M. Kawasaki, M. Yamaguchi and T. Yanagida, Phys. Rev. Lett. 85, 3572 (2000) [hep-ph/0004243].

[18] S. Nakamura and M. Yamaguchi, Phys. Lett. B 638, 389 (2006) [hep-ph/0602081].

[19] M. Kawasaki, F. Takahashi and T. T. Yanagida, Phys. Lett. B 638, 8 (2006) [hep-ph/0603265].

[20] T. Asaka, S. Nakamura and M. Yamaguchi, Phys. Rev. D 74, 023520 (2006) [hep-ph/0604132].
[21] M. Dine, R. Kitano, A. Morisse and Y. Shirman, Phys. Rev. D 73, 123518 (2006) [hep-ph/0604140].

[22] M. Endo, K. Hamaguchi and F. Takahashi, Phys. Rev. D 74, 023531 (2006) [hep-ph/0605091].

[23] M. Kawasaki, F. Takahashi and T. T. Yanagida, Phys. Rev. D 74, 043519 (2006) [hep-ph/0605297].

[24] M. Endo, M. Kawasaki, F. Takahashi and T. T. Yanagida, Phys. Lett. B 642, 518 (2006) [hep-ph/0607170].

[25] W. Buchmuller, V. Domcke and K. Schmitz, JCAP 1304, 019 (2013) [arXiv:1210.4105 [hep-ph]].

[26] W. Buchmuller, V. Domcke and K. Kamada, Phys. Lett. B 726, 467 (2013) [arXiv:1306.3471 [hep-th]].

[27] W. Buchmuller, V. Domcke and K. Schmitz, JCAP11(2014)006 [arXiv:1406.6300 [hep-ph]].

[28] V. Domcke, K. Schmitz and T. T. Yanagida, Nucl. Phys. B 891, 230 (2015) [arXiv:1410.4641 [hep-th]].

[29] R. Battye, B. Garbrecht and A. Moss, Phys. Rev. D 81, 123512 (2010) [arXiv:1001.0769 [astro-ph.CO]].

[30] K. Mukaida and K. Nakayama, JCAP 1301, 017 (2013) [JCAP 1301, 017 (2013)] [arXiv:1208.3399 [hep-ph]].

[31] J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990).

[32] S. Coleman, Nucl. Phys. B262 (1985) 263.

[33] A. Kusenko, Phys. Lett. B405 (1997) 108.

[34] A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418, 46 (1998).

[35] K. Enqvist and J. McDonald, Phys. Lett. B 425, 309 (1998); Nucl. Phys. B 538, 321 (1999).

[36] S. Kasuya and M. Kawasaki, Phys. Rev. D 61, 041301(R) (2000).
[37] S. Kasuya and M. Kawasaki, Phys. Rev. D 62, 023512 (2000).
[38] S. Kasuya and M. Kawasaki, Phys. Rev. D 64, 123515 (2001).
[39] T. Higaki, K. Nakayama, K. Saikawa, T. Takahashi and M. Yamaguchi, Phys. Rev. D 90, no. 4, 045001 (2014) [arXiv:1404.5796 [hep-ph]].
[40] M. Fujii and K. Hamaguchi, Phys. Lett. B 525, 143 (2002) [hep-ph/0110072].
[41] M. Fujii and K. Hamaguchi, Phys. Rev. D 66, 083501 (2002) [hep-ph/0205044].
[42] M. Fujii and T. Yanagida, Phys. Lett. B 542, 80 (2002) [hep-ph/0206066].
[43] L. Roszkowski and O. Seto, Phys. Rev. Lett. 98, 161304 (2007) [hep-ph/0608013].
[44] O. Seto and M. Yamaguchi, Phys. Rev. D 75, 123506 (2007) [arXiv:0704.0510 [hep-ph]].
[45] I. M. Shoemaker and A. Kusenko, Phys. Rev. D 80, 075021 (2009).
[46] F. Doddato and J. McDonald, JCAP 1106, 008 (2011) [arXiv:1101.5328 [hep-ph]].
[47] S. Kasuya and M. Kawasaki, Phys. Rev. D 84, 123528 (2011) [arXiv:1107.0403 [hep-ph]].
[48] F. Doddato and J. McDonald, JCAP 1307, 004 (2013) [arXiv:1211.1892 [hep-ph]].
[49] S. Kasuya, M. Kawasaki and M. Yamada, Phys. Lett. B 726, 1 (2013) [arXiv:1211.4743 [hep-ph]].
[50] A. Kamada, M. Kawasaki and M. Yamada, Phys. Lett. B 719, 9 (2013) [arXiv:1211.6813 [hep-ph]].
[51] A. Kamada, M. Kawasaki and M. Yamada, arXiv:1405.6577 [hep-ph].
[52] S. Kasuya and M. Kawasaki, Phys. Rev. D 89, no. 10, 103534 (2014) [arXiv:1402.4546 [hep-ph]].
[53] S. Kasuya and M. Kawasaki, arXiv:1408.1176 [hep-ph].
[54] S. Kasuya, M. Kawasaki and T. T. Yanagida, arXiv:1502.00715 [hep-ph].
[55] T. Hiramatsu, M. Kawasaki and F. Takahashi, JCAP 1006, 008 (2010) [arXiv:1003.1779 [hep-ph]].
[56] A. G. Cohen, S. R. Coleman, H. Georgi and A. Manohar, Nucl. Phys. B 272, 301 (1986).
[57] M. Kawasaki and M. Yamada, Phys. Rev. D 87, 023517 (2013) [arXiv:1209.5781 [hep-ph]].

[58] M. Laine and M. E. Shaposhnikov, Nucl. Phys. B 532, 376 (1998) [hep-ph/9804237].

[59] R. Banerjee and K. Jedamzik, Phys. Lett. B 484, 278 (2000) [hep-ph/0005031].

[60] N. Arkani-Hamed and S. Dimopoulos, JHEP 0506, 073 (2005) [hep-th/0405159].

[61] G. F. Giudice and A. Romanino, Nucl. Phys. B 699, 65 (2004) [Erratum-ibid. B 706, 65 (2005)] [hep-ph/0406088].

[62] N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice and A. Romanino, Nucl. Phys. B 709, 3 (2005) [hep-ph/0409232].

[63] J. D. Wells, Phys. Rev. D 71, 015013 (2005) [hep-ph/0411041].

[64] L. J. Hall and Y. Nomura, JHEP 1201, 082 (2012) [arXiv:1111.4519 [hep-ph]].

[65] M. Ibe and T. T. Yanagida, Phys. Lett. B 709, 374 (2012) [arXiv:1112.2462 [hep-ph]].

[66] M. Ibe, S. Matsumoto and T. T. Yanagida, Phys. Rev. D 85, 095011 (2012) [arXiv:1202.2253 [hep-ph]].

[67] L. Randall and R. Sundrum, Nucl. Phys. B 557, 79 (1999) [hep-th/9810155].

[68] G. F. Giudice, M. A. Luty, H. Murayama and R. Rattazzi, JHEP 9812, 027 (1998) [hep-ph/9810442].

[69] T. Gherghetta, G. F. Giudice and J. D. Wells, Nucl. Phys. B 559, 27 (1999) [hep-ph/9904378].

[70] R. Kallosh and A. D. Linde, JHEP 0702, 002 (2007) [hep-th/0611183].

[71] K. I. Izawa and T. Yanagida, Prog. Theor. Phys. 95, 829 (1996) [hep-th/9602180].

[72] K. A. Intriligator and S. D. Thomas, Nucl. Phys. B 473, 121 (1996) [hep-th/9603158].

[73] W. Buchmüller, V. Domcke and C. Wieck, Phys. Lett. B 730, 155 (2014) [arXiv:1309.3122 [hep-th]].

[74] K. Nakayama, F. Takahashi and T. T. Yanagida, Phys. Lett. B 718, 526 (2012) [arXiv:1209.2583 [hep-ph]].
[75] K. Nakayama, F. Takahashi and T. T. Yanagida, Phys. Lett. B 734, 358 (2014) [arXiv:1404.2472 [hep-ph]].

[76] M. Bolz, A. Brandenburg and W. Buchmuller, Nucl. Phys. B 606, 518 (2001) [Erratum-ibid. B 790, 336 (2008)] [hep-ph/0012052].

[77] J. Pradler and F. D. Steffen, Phys. Rev. D 75, 023509 (2007) [hep-ph/0608344].

[78] M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. Lett. 82, 4168 (1999) [astro-ph/9811437].

[79] M. Kawasaki, K. Kohri and N. Sugiyama, Phys. Rev. D 62, 023506 (2000) [astro-ph/0002127].

[80] M. Kawasaki, K. Kohri and T. Moroi, Phys. Rev. D 71, 083502 (2005) [astro-ph/0408426].

[81] K. Ichikawa, M. Kawasaki and F. Takahashi, Phys. Rev. D 72, 043522 (2005) [astro-ph/0505395].

[82] M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Phys. Rev. D 78, 065011 (2008) [arXiv:0804.3745 [hep-ph]].

[83] J. Hisano, K. Kohri and M. M. Nojiri, Phys. Lett. B 505, 169 (2001) [hep-ph/0011216].

[84] G. Arcadi and P. Ullio, Phys. Rev. D 84, 043520 (2011) [arXiv:1104.3591 [hep-ph]].

[85] M. Ibe, A. Kamada and S. Matsumoto, Phys. Rev. D 87, no. 6, 063511 (2013) [arXiv:1210.0191 [hep-ph]].

[86] B. Bhattachjerjee, M. Ibe, K. Ichikawa, S. Matsumoto and K. Nishiyama, JHEP 1407, 080 (2014) [arXiv:1405.4914 [hep-ph]].

[87] J. Fan and M. Reece, JHEP 1310, 124 (2013) [arXiv:1307.4400 [hep-ph]].

[88] J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Phys. Lett. B 646, 34 (2007) [hep-ph/0610249].

[89] M. Cirelli, A. Strumia and M. Tamburini, Nucl. Phys. B 787, 152 (2007) [arXiv:0706.4071 [hep-ph]].