Neutrino effects on the morphology of cosmic large-scale structure

Yu Liu,1,∗ Yu Yu,1,† Hao-Ran Yu,2,3,1,‡ and Pengjie Zhang1,3,4,§

1Department of Astronomy, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
2Department of Astronomy, Xiamen University, Xiamen, Fujian 361005, P. R. China
3Tsung-Dao Lee institute, Shanghai, 200240, P. R. China
4Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, P. R. China

In this work, we propose a powerful probe of neutrino effects on the large-scale structure (LSS) of the Universe, i.e., Minkowski functionals (MFs). The morphology of LSS can be fully described by four MFs. This tool, with strong statistical power, is robust to various systematic errors and can comprehensively probe all orders of N-point statistics. By using a pair of high-resolution N-body simulations, for the first time, we comprehensively studied the subtle neutrino effects on the morphology of LSS. For an ideal LSS survey of volume ~ 1.73 Gpc3/h3, neutrino signals are mainly detected from void regions with a significant level up to ~ 10σ and ~ 300σ for CDM and total matter density fields, respectively. This demonstrates its enormous potential for much improving the neutrino mass constraint in the data analysis of upcoming ambitious LSS surveys.

PACS numbers:

I. INTRODUCTION

Neutrino mass problem is one of major challenges in fundamental physics. The Z boson lifetime measurements found that the number of active neutrinos is 3 (Nactive = 2.9840 ± 0.0082) [1], and the neutrino oscillation experiments also revealed that at least two of the three neutrino eigenstates are massive [2–4]. However, the oscillation experiments only give the mass-squared splittings between the neutrino eigenstates, which implies lower bound on the sum of neutrino masses, Σmν, to be 0.05 and 0.1 eV for the normal and inverted-mass hierarchies (e.g., [5]), respectively. The beta decay and neutrinoless double-beta decay experiments are the promising tool, with strong statistical power, is robust to various systematic errors and can comprehensively probe all orders of N-point statistics. At meanwhile, accurate measurement of absolute neutrino mass will be challenging.

In cosmology, the analysis of cosmological observables [e.g., anisotropies of cosmic microwave background (CMB) and distribution of LSS] can provide crucial complementary information on neutrino masses beyond particle physics experiments. At present, the strongest constraint on the upper bound of neutrino mass sum, Σmν < 0.12 eV (2σ), comes from cosmology by combination analysis of CMB and BAO data assuming ΛCDM cosmology [8]. The next-generation LSS surveys (e.g., SKA [9], DESI [10], LSST [11], WFIRST [12], Euclid [13]) and CMB surveys (e.g., the Simons Observatory [14] and CMB-S4 [15]) will map the cosmic large-scale structure with high precision, which provides great opportunity to improve the measurements of neutrino mass sum upper bound and other cosmological parameters.

Cosmic neutrinos with large thermal velocities can suppress the density perturbations below their free streaming scale, λνfν(σν, z) = a(2π/kfν) ≃ 7.7(1 + z)/ΩΛ + Ωm(1 + z)3]1/2(1 eV)/mν, Mpc/h [16–19]. The damping amplitude of density perturbation on nonlinear scales depends on the total neutrino masses, which has been commonly used to constrain and forecast the Σmν (e.g., [16, 20–23]). In linear theory, the damping amplitudes, |ΔP/P|, on small scales, kλνfν ≥ 1, in total matter power spectrum and in CDM power spectrum are ∼ 8fν and ∼ 6fν, respectively [24]. Here, the neutrino mass fraction is defined by fν ≡ Ων/Ωm, and density parameter of non-relativistic neutrinos is given by Ων = Σmν/(93.14h2eV) [17]. On large scales, kλνfν ∼ 1, neutrinos cluster just as CDM and baryonic matter.

However, the damping level on power spectrum (two-point statistics) is small for realistic neutrino masses, fν ≲ 1%, which makes the damping effect easily contaminated by uncertainties from different sources, e.g., non-linear bias, redshift space distortions (RSDs), baryonic effects [25] and degeneracies with σ8 [26]. Worse still, two-point statistics can only capture Gaussian information, missing substantial higher-order information for density field being highly non-Gaussian at late Universe, while neutrino signals are basically detected around nonlinear scales. These deficiencies downgrade their power for neutrino mass constraints. Other possible unknown systematics beyond standard ΛCDM cosmology may also mimic neutrino effect on matter power spectrum and consequently affect neutrino mass constraints (e.g., nonzero curvature, dynamical dark energy, modified gravity [27–29], interactions in the dark sector, etc.). For these reasons, there is strong motivation to investigate new neutrino effects (e.g., [30, 31]) and novel alternative methods beyond two-point statistics (e.g., [32–35]). At meanwhile, accurate modeling of neutrino effects is also becoming increasingly essential and critical to the neutrino study in cosmology.

In this work, we propose a powerful non-Gaussian probe of neutrino effects on LSS, i.e., Minkowski functionals (MFs), toward improving constraining power on Σmν in data analysis of upcoming LSS surveys. This method can comprehen-

* liu-yu@sjtu.edu.cn
† Corresponding author.
yuyu22@sjtu.edu.cn
‡ haoran@xmu.edu.cn
§ zhangpj@sjtu.edu.cn
sively capture all orders of N-point statistics [27] of LSS and be robust to various systematic effects [27, 36-40], e.g., non-linear evolution, nonlinear bias, RSDs, etc. In particular, its potential in constraining Σ_{m_ν} was only addressed for the 2D weak lensing (WL) convergence field in Ref. [35], where the neutrino effects on WL correspond to that on the projected LSS (along line of sight) in between source and observer. In this work, we mainly focus our study on the analysis of neutrino effects on LSS, by using 3D MFs. In comparison with previous case-by-case studies (e.g., neutrino impacts on voids [41, 42] and halos/clusters [43, 44], which can only capture local information of neutrino effects on LSS), analysis by using MFs is helpful to comprehensively understand subtle neutrino effects on different density regions of LSS. Moreover, we find neutrino signals in MFs are mainly detected from underdense regions, which makes the neutrino detections potentially avoid various systematics from high density regions. Due to including higher-order information, non-Gaussian tools (e.g., 2D MFs [45, 46], peak statistics [46, 47], three-point statistics [46, 48, 49], etc. [47, 50]) combined with other probes also help breaking parameter degeneracies in various cosmological studies.

II. MINKOWSKI FUNCTIONALS

Minkowski Functionals are a set of morphological descriptors. They are all additive, motion invariant, which makes them insensitive to observational effects, e.g., the survey shape [40]. This tool, originally derived from theory of convex bodies and integral geometry, was first introduced to cosmology by Ref. [51], and then was commonly used to detect deviations from Gaussianity (e.g., [52, 53]). According to Hadwiger’s theorem [54], the morphological properties of any pattern in d-dimensional space can be fully characterized by $d + 1$ MFs, which allows MFs to comprehensively probe all orders of N-point statistics at once. Therefore, MFs can be served as a powerful non-Gaussian statistical tool in cosmology to provide extra information beyond popular two-point statistics, leading to improving power on cosmological parameter constraint (e.g. Ω_m, σ_8, w and Σ_{m_ν} in 2D weak lensing convergence field analysis [35, 45]).

For 3D LSS analysis in cosmology, the most commonly used patterns (other patterns also could be found in literatures, e.g., [51]) are the excursion sets (F_ν) of matter density field (or halo/galaxy field), where the density threshold (ν) is adopted to be diagnostic parameter for displaying the morphological features. Here, the excursion set F_ν is the set of all points x with density $\nu(x) \geq \nu$. The Minkowski Functionals measure the volume ($V_0(\nu)$) and the surface's area ($V_1(\nu)$), integrated mean curvature ($V_2(\nu)$), and Euler characteristic ($V_3(\nu)$) of the excursion set, normalized by the whole field volume $|\mathcal{D}|$,

\[
V_0(\nu) = \frac{1}{|\mathcal{D}|} \int_{F_\nu} d^3x,
\]

\[
V_1(\nu) = \frac{1}{6|\mathcal{D}|} \int_{\partial F_\nu} dS(x),
\]

\[
V_2(\nu) = \frac{1}{6\pi|\mathcal{D}|} \int_{\partial F_\nu} \left(\frac{1}{R_1(x)} + \frac{1}{R_2(x)} \right) dS(x),
\]

\[
V_3(\nu) = \frac{1}{4\pi|\mathcal{D}|} \int_{\partial F_\nu} \frac{1}{R_1(x)R_2(x)} dS(x),
\]

where $R_1(x)$ and $R_2(x)$ are the principal radii of curvature of the excursion set’s surface orientated toward lower density region. The first two MFs describe the size of the excursion set, and the last two MFs characterize the shape (geometrical property) and connectivity (topological property) of the set surface (isodensity contours at level ν), respectively. The last MF is simply related to the genus ($G = 1 - V_3$), that is the first topological descriptor commonly used in cosmology (e.g., [38, 55]). The topological Euler characteristic χ, obtained through a surface integration of the Gaussian curvature according to the Gauss-Bonnet theorem, is proportional to V_3 by a factor 2, $\chi = 2V_3$. And, V_3 is related to the number of isolated regions (balls) with density above a given threshold, empty regions inside balls (bubbles) and holes in ball surfaces (tunnels) per unit volume, $V_3 = \frac{1}{4\pi|\mathcal{D}|} (N_{\text{ball}} + N_{\text{bubble}} - N_{\text{tunnel}}$). This makes it more convenient to use than G due to its additivity. Moreover, it is also insensitive to systematic effects [36-39], since the intrinsic topology can be well conserved during deformation.

There are two standard numerical methods (i.e., the Koenker invarient and the Crofton’s formula) developed by [56] for measuring density field’s MFs. The MFs of Gaussian random field have analytic expressions, which remarkably agree with these numerical results [56, 57]. In this work, we choose the Crofton’s formula method to quote our results, for the two methods giving consistent results.

III. N-BODY SIMULATIONS

Beyond the attempts to understand neutrino effects on LSS analytically (e.g., [43, 58]), the neutrino cosmological N-body simulations are essential to study neutrino nonlinear dynamics. Various approaches have been proposed to implant massive neutrinos into the standard N-body simulations, e.g., the particle-based, the grid-based [59], the linear response [60], the hybrid approach between the particle-based and the grid-based [61] (or the linear response [62]) and even fluid techniques [63, 64]. In general, the grid-based and the linear response approaches cannot accurately resolve the non-linear neutrino structure formation on small scales, which can be alleviated by the hybrid approaches. While, particle-based approach can naturally capture the full non-linear neutrino clustering. But at meanwhile, this method is hindered by Poisson noise on small scales (induced by the large thermal motion of neutrinos), which has to be reduced by increasing the number.
of neutrino particles in the simulation. Our neutrino N-body simulation (TianNu) adopt the particle-based approach. For reducing Poisson noise, TianNu incorporates neutrinos with pushing to the extreme scales, which makes it currently one of world’s largest cosmological N-body simulations [65].

Specifically, we adopt a pair of high-resolution N-body simulations (i.e., TianZero with \(\Sigma m_\nu = 0 \) eV and TianNu with \(\Sigma m_\nu = 0.05 \) eV [65]) realized using publicly-available code, CUBEP3M [66], for resolving the subtle neutrino effects between neutrinos and CDM, especially on non-linear scale [67, 68]. CUBEP3M here is optimized using hybrid-parallelized Particle-Mesh (PM) algorithm for long-range gravitational force calculation, plus an adjustable Particle-Particle (PP) algorithm (\(r_{soft} = L/(20n_p^{1/3}) \)) for increasing resolution below mesh scale. Both simulations were initialized at \(z = 100 \) with the same initial condition parameterized with \([\Delta m, \Delta m, n_s, \sigma_8] = [0.27, 0.05, 0.67, 0.96, 0.83] \), evolving \(n_p = 6912^3 \) CDM particles with mass resolution of \(7 \times 10^8 M_\odot \) in periodic cubic box of width \(L = 1200 \) Mpc/\(h \) (volume \(\sim 1.73 \) Gpc\(^3\)/h\(^3\)). In TianNu, \(13824^3 \) neutrino particles with mass resolution of \(3 \times 10^5 M_\odot \) are incorporated into the mixture with \(\Omega_m \) fixed for clearly extracting neutrino effects. Here, the minimal normal hierarchy mass model is chosen to simulate neutrinos with one massive species (\(m_\nu = 0.05 \) eV) treated as particles and other two light species (\(m_\nu = 0 \) eV) included in background cosmology by using the CLASS [69] transfer function.

IV. DATA

Analysis and results in this work are based on density fields at \(z = 0.01 \), which is instrumented in forecasting neutrino signatures from a shallower, lower-redshift galaxy survey with high number density (e.g., Bright Galaxy Survey (BGS) sample within \(0.05 < z < 0.4 \) in DESI [10]). Here, the advantage of using density fields to perform analysis is that it can help us better understand subtle neutrino effects on LSS. Both CDM field (\(\Phi_{dm, \text{TianZero}} \) and TianNu) and total matter field (\(\Phi_{\text{total, TianNu}} \)) are computed by Cloud-In-Cell (CIC) interpolation technique onto \(N_q = 2048^3 \) regular grids. For interpolation of \(\Phi_{\text{total, TianNu}} \), each particle is weighted by a factor of \(\Omega_i/(\Omega_m N_i) \), where \(\Omega_i \) and \(N_i \) are the energy fraction and number of particles of species \(i \), respectively. We subsequently smooth these fields separately by two Gaussian window functions with different smoothing scales, \(R_G \) (i.e., \(0.2L_q = 0.12 \) Mpc/\(h \) and \(0.4L_q = 0.24 \) Mpc/\(h \)), where \(L_q \equiv L/N_q^{1/3} \) is the grid size), to obtain the smoothed fields. These Gaussian smoothed fields serve for investigating the impacts of smoothing on our results. The MFs are then measured for all these fields as a function of \(\rho/\bar{\rho} = 1 + \delta \), which is the density threshold used to define the excursion set. We compare the MFs measured from different cosmological models (i.e., \(\Lambda \)CDM and \(\nu \)CDM) to highlight neutrino signatures and analyze the neutrino effects on LSS.

V. NEUTRINO EFFECTS ON THE MORPHOLOGY OF LSS

Our results are presented in Figure 1. Left panels show the MFs themselves, while the differences in MFs between \(\nu \)CDM and \(\Lambda \)CDM cosmology, the \(\Delta V_i \)s, are displayed in right panels. The results are well visualized by logarithmic x-axis in the range of \([0.003, 1000] \), considering that the probability distribution function of density field roughly obeys lognormal form at low redshift [70]. The error bars are estimated by the standard errors [71] of MFs of \(\Phi_{dm/\text{total}} \) (i.e., \(\Phi_{dm} \) or \(\Phi_{\text{total}} \)), \(\sigma_c = \sigma/\sqrt{n} \), where the \(\sigma \) is the standard deviation of the MFs measured from \(n = 83 = 512 \) subfields (\(L_{sub} = 150 \) Mpc/\(h \)) obtained by equal-subdivided \(\Phi_{dm/\text{total}} \). The \(\Delta V_i \)s are measured by two cases, i.e., \(\Delta V_i^{dm/\text{total}} \equiv V_i(\Phi_{dm/\text{total}})_{\text{TianNu}} - V_i(\Phi_{dm})_{\text{TianZero}} \), considering that \(\Phi_{dm} \) and \(\Phi_{\text{total}} \) can in principle be inferred from galaxy clustering and weak lensing [72] (or integrated Sachs-Wolfe effect) from various cosmological surveys, respectively. In the following, the neutrino effects on LSS are resolved by understanding the \(\Delta V_i \)s. Nevertheless, we will also mention \(V_i \) when they are necessary for helping our understanding of \(\Delta V_i \).

In linear theory, cosmic neutrino background can slow down the growth of CDM perturbations, e.g., on scales \(k \gg k_{nr} \approx 0.018(\Omega_m)^{1/2}(m_\nu/1\text{eV})^{1/2} h^{-1}\text{Mpc}^{-1} \), the \(\delta_{dm} \propto a \) is replaced by \(\delta_{dm} \propto a^{p+} \propto a^{1-3/5\nu} \) during matter domination and \(\delta_{dm} \propto a^{g(a)} \) is replaced by \(\delta_{dm} \propto [a^{g(a)}]^{1-3/5\nu} \) during \(\Lambda \) domination, where \(a(\nu) \) is a damping factor normalized to \(g = 1 \) for \(\nu \ll 1 \) [17] (corresponding to the global slowdown of structure growth caused by \(\Lambda \)). Overall, in Figure 1 the \(\Delta V_i \)s measured by the two cases have the same trend, which can be well interpreted by the aforementioned neutrino effects. For TianNu, \(\Phi_{\text{total}} \) is partially contributed by neutrinos, i.e., \(\delta_{\text{total}} = \delta_{dm} + \delta_{f, \nu} \), where \(\delta_{dm} \equiv \Omega_c/\Omega_m \) and \(f_\nu \approx 0.37\% \). While, the clustering of neutrinos is much weaker than that of CDM, due to neutrino free-streaming (\(\lambda_{fs}(0.05 \text{eV}, 0.01) \approx 150 \text{ Mpc/h} \)). Therefore, the matter perturbations in \(\Phi_{\text{total}} \) are slightly lower than that in \(\Phi_{dm} \), which makes the amplitudes of \(\Delta V_i^{dm} \)s are relatively larger than that of \(\Delta V_i^{dm} \)s (cf. Figure 1).

When \(\rho/\bar{\rho} \) is low enough, the complement of excursion set will be the isolated void regions with closed surfaces whose positive directions point inward, which leads to a negative mean curvature (\(K \)) of the excursion set’s surface, i.e., \(V_2 < 0 \). Specifically, in the range of \(\rho/\bar{\rho} \lesssim 0.2 \), we find the \(\Delta V_0 > 0 \) and \(\Delta V_1 < 0 \), which means that voids’ sizes become smaller and their inner matter becomes denser with presence of massive neutrinos [41]. Therefore, the mean curvature (\(K \)) of the excursion set’s surface at meanwhile becomes smaller, i.e., \(\Delta K < 0 \). These results can be well understood, since neutrinos contribute to the interior mass of underdense regions and slow down CDM evacuation from voids [41]. The trend of \(\Delta V_2 \) in this range is a little bit complicated, since \(\Delta V_2 \) is the combination result between \(\Delta V_1 \) and \(\Delta K \). We note that \(V_2 \) can be roughly expressed by \(V_2 \sim K - V_1 \).
FIG. 1. Left panels: The MFs of LSS as functions of $1 + \delta$, which are computed from the density fields with different smoothing scales, i.e., $0L_0$, $0.2L_0$, $0.4L_0$, at $z = 0.01$. For TianNu, the MFs of CDM fields and total matter fields are measured. Here, the error bars are too tiny to be visible. The $1 + \delta$, i.e., $\rho/\bar{\rho}$, is the density threshold used for the calculations of MFs. Right panels: The differences in the MFs between \$^{\Lambda}$CDM and νCDM cosmology ($\Sigma m_\nu = 0.05$ eV). The error bars in subpanels are omitted for clarity.

Completely opposite trend with ΔV_1 in the range of $\rho/\bar{\rho} \lesssim 0.08$ considering $K < 0$, i.e., $\Delta V_2 > 0$: when dominated by ΔK, ΔV_2 shares the same trend with ΔK in the range of $0.08 \lesssim \rho/\bar{\rho} \lesssim 0.2$, i.e., $\Delta V_2 < 0$.

For a higher $\rho/\bar{\rho}$, the excursion set will turn into the non-virialized web-like skeletons surrounding voids, which makes a positive K, i.e., $V_2 > 0$. The transition from negative to positive of V_2 happens at $\rho/\bar{\rho} \in [0.2, 0.3]$ in our study. Here, we
Note that the accurate V_j values depend on the smoothing (R_q) and resolution (N_m) of the density field, which can result in different transition point of V_j. In the range of $0.2 \leq \rho/\bar{\rho} \leq 1$, we find $\Delta V_3 > 0$, $\Delta V_1 > 0$ and $\Delta V_2 < 0$, since neutrino background delays the structure growth making web-like skeletons bigger and looser. Here, the K still becomes smaller, i.e., $\Delta K < 0$, and ΔV_2 is dominated by ΔK. When $\rho/\bar{\rho}$ is high enough, for the same reason, the over-dense regions $(\rho/\bar{\rho} \geq 1)$ shrink in size, making the excursion set smaller and resulting in $\Delta K > 0$. Therefore, we see that the ΔV_0 and ΔV_1 transit from positive to negative in the range of $\rho/\bar{\rho} \gtrsim 1$. Meanwhile, we find $\Delta V_2 > 0$ in the vicinity of $\rho/\bar{\rho} \approx 1$, where ΔK plays a key role in ΔV_2. When $\rho/\bar{\rho}$ reaches a high enough level $(\rho/\bar{\rho} \gg 1)$, ΔV_2 will be dominated by ΔV_1, making them share the same trend, i.e., $\Delta V_2 < 0$.

For understanding ΔV_3, we need deep insights in hierarchical void formation, since topology of the excursion set heavily relies on the subtle structures of LSS. For void hierarchy [73], there are two classifications of voids, i.e., big void-in-void voids embedded in larger underdense regions (larger distinct voids) and small void-in-cloud voids embedded within a larger-scale overdensity. Here, void-in-void voids form at early epoch and then collide and merge with one another at late epoch, forming a larger distinct void. In this process, matter between them is squeezed and evacuated along walls and filaments towards the enclosing boundary of the larger newly formed void, leaving faint and gradually fading imprint of the initial internal substructures. And the same basic process repeats as this rearrangement of structure develops to a larger scale. While, void-in-cloud voids are squeezed by larger-scale overdensity and will vanish when the region around them has collapsed completely.

Specifically, we find $\Delta V_3 < 0$ for $\rho/\bar{\rho} \lesssim 0.05$ due to the decline in number of isolated underdense troughs (bubbles), corresponding to the suppression effect on number function of big voids in neutrino cosmology [41, 42]. The cosmic neutrinos slow down the void-in-void voids embedded in larger underdense regions (larger distinct voids) and small void-in-cloud voids embedded in a larger-scale overdensity. Here, void-in-void voids form at early epoch and then collide and merge with one another at late epoch, forming a larger distinct void. In this process, matter between them is squeezed and evacuated along walls and filaments towards the enclosing boundary of the larger newly formed void, leaving faint and gradually fading imprint of the initial internal substructures. And the same basic process repeats as this rearrangement of structure develops to a larger scale. While, void-in-cloud voids are squeezed by larger-scale overdensity and will vanish when the region around them has collapsed completely.

Neutrino suppress matter clustering on small scale, which has been well understood by a minimum of “spoon” shape around $k = 1 \, h \, \text{Mpc}^{-1}$ (corresponding to the size of massive halos) on $P_m/P_m^{\text{fiducial}}$, at $z \approx 0$ (e.g., [74, 75]). Due to this neutrino effect, matter in virialized objects is smeared around and filled in the void-in-cloud voids. In addition, this smeared matter also patch the relatively thin parts in the denser sheet-like structures. Therefore, with $\rho/\bar{\rho}$ rising $(\rho/\bar{\rho} > 0.2)$, we first see a similar trend as we see in the former two scenarios but with mild amplitude; when $\rho/\bar{\rho}$ being high enough, the excursion set will turn into isolated virialized density peaks (balls), finally we see V_3 goes to below zero, corresponding to the suppression effect on mass function of massive halos in neutrino cosmology [43, 44, 76]; i.e., $\Delta V_3 < 0$, then $\Delta V_3 > 0$ and finally $\Delta V_3 < 0$. With $\rho/\bar{\rho}$ rising higher and higher, we find ΔV_3 approximates to zero asymptotically, since the small halos with higher concentrations [77] are less impacted by massive neutrinos, corresponding to the upturn at high k (> $1 \, h \, \text{Mpc}^{-1}$) on $P_m'/P_m^{\text{fiducial}}$ [76].

VI. SMOOTHING EFFECTS

Gaussion smoothing is usually used to reduce noise contribution to the fields for MFs measurements (e.g., [27, 52, 56]). While, this process also erase non-Gaussian information from original fields [52], which can downgrade the discriminative power of MFs when resolving neutrino signatures. In our work, we note that appropriately smoothing density fields (e.g., $R_q = 0.2L_\|$) can improve the signal-to-noise (S/N) ratios of neutrino signals, $|\Delta V_i/\sigma|$, on ΔV_0, ΔV_1 and ΔV_2 within a narrow range around $\rho/\bar{\rho} = 0.03$, while it otherwise depresses the S/N ratios in other ranges. Conversely, it seems to definitely decrease the S/N ratios on ΔV_3 in the whole ranges, regardless of R_q. This may be due to that topology (V_3) is more susceptible to this artificial smearing of LSS than other V_is, on the premise of noise reduction. From the decline ratios of ΔV_is’ amplitudes and the S/N ratios of neutrino signatures on ΔV_is caused by different smoothing in Figure 1 and Figure 2, we can preliminary infer that the sensitivities of MFs to nonGaussianity (and to $\sum m$) roughly obey $V_1 < V_2 < V_3 \lesssim V_4$, which is consistent with previous studies on 2D MFs of weak lensing and CMB (e.g., [35, 43, 52]).

VII. SUMMARY AND CONCLUSION

In the past decade, cosmology has achieved great success in neutrino mass constraint. However, further improvement of neutrino mass constraint using LSS is mainly hindered by the challenges of statistical methods and systematics. The key problems are as follows:

(i) LSS has evolved to be highly non-Gaussian in the later Universe. Traditional methods for extracting neutrino information are based on two-point statistics. These traditional methods only can probe Gaussian information from LSS, missing substantial higher-order information.

(ii) Moreover, the neutrino signals extracted by traditional methods are mainly contributed by the neutrino effects on the small scales of high-density regions of LSS. However, this neutrino information suffers from the contaminations by tricky nonlinear effects and baryonic physics effects, etc.

Toward solving these critical problems (for improving constraining power on $\sum m$ in data analysis of up-coming LSS surveys), we propose an alternative powerful non-Gaussian
probe of neutrino effects on LSS, i.e., Minkowski functionals (MFs), in this work. This tool not only has strong statistical power, but also has strong robustness to systematics. It can extract full information encoded in LSS, circumventing a more complicated N-point statistics formalism. Better yet, the neutrino information extracted by this method is mainly from low-density regions [78] (because these regions with the highest neutrino to CDM density ratios should be more sensitive to neutrinos [79]), which potentially makes the extracted neutrino signals well avoid various contaminations of high-density regions. Therefore, the problems faced in the past are expected to be greatly alleviated.

By using this novel method, for the first time, we comprehensively studied subtle neutrino effects on the morphology of LSS, which further deepens our understanding of neutrino effects and provides essential and critical information for accurate modeling of neutrino effects in the future. For an ideal LSS survey of volume $\sim 1.73 \text{ Gpc}^3/h^3$, we show a compelling result that the neutrino signals can be extracted with a significant level up to $\sim 10\sigma$ and $\sim 300\sigma$ for CDM and total matter density fields, respectively, with an individual MF measurement (cf. Figure 2). These results demonstrate its great potential for much improving neutrino mass constraint in the data analysis of forth-coming LSS surveys.

Nevertheless, we have to mention that matter fields cannot be directly obtained from galaxy surveys. In reality, underlying matter fields are mapped by biased tracers, i.e., halos and galaxies. Here, our results can be treated as the theoretical upper limit of neutrino effects on halo/galaxy distribution. In view of the strong statistical power of MFs [27], these neutrino probings can probably survive in ambitious galaxy surveys with large galaxy number densities (e.g., BGS sample in DESI [10]). We postpone such a comprehensive study in an ongoing work, where stochasticity is reduced in the mass-weighted halo field [80] and mock galaxies are constructed by halo occupation distribution technique [81].

VIII. ACKNOWLEDGEMENTS

We thank the anonymous referee for the useful comments and suggestions. Y.L. thanks Thomas Buchert and Wenjuan Fang for helpful communications. This work was supported by the National Key Basic Research and Development Program of China (No. 2018YFA0404504), and the National Science Foundation of China (grants No. 11773048, 11621303, 11890691). H.R.Y. is supported by National Science Foundation of China 11903021.

[1] Physics Reports 427, 257 (2006).
[2] R. Becker-Szendy, C. B. Bratton, and D. Casper et al., Physical Review D 46, 3720 (1992).
[56] J. Schmalzing and T. Buchert, The Astrophysical Journal 482, L1 (1997).
[57] A. L. Melott, Physics Reports 193, 1 (1990).
[58] F. Führer and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 2015, 046 (2015), arXiv:1412.2764 [astro-ph.CO].
[59] J. Brandbyge and S. Hannestad, J. Cosmol. Astropart. Phys. 2009, 002 (2009), arXiv:0812.3149 [astro-ph].
[60] Y. Ali-Haimoud and S. Bird, Mon. Not. R. Astron. Soc. 428, 3375 (2013), arXiv:1209.0461 [astro-ph.CO].
[61] J. Brandbyge and S. Hannestad, J. Cosmol. Astropart. Phys. 2010, 021 (2010), arXiv:0908.1969 [astro-ph.CO].
[62] S. Bird, Y. Ali-Haimoud, Y. Feng, and J. Liu, Mon. Not. R. Astron. Soc. 481, 1486 (2018), arXiv:1803.09854 [astro-ph.CO].
[63] A. Banerjee and N. Dalal, J. Cosmol. Astropart. Phys. 2016, 015 (2016), arXiv:1606.06167 [astro-ph.CO].
[64] D. Inman and U.-L. Pen, Phys. Rev. D 95, 063535 (2017), arXiv:1609.09469 [astro-ph.CO].
[65] J. D. Emberson, H.-R. Yu, and D. Inman et al., Research in Astronomy and Astrophysics 17, 085 (2017), arXiv:1611.01545 [astro-ph.CO].
[66] J. Harnois-Déraps, U.-L. Pen, and I. T. Iliev et al., Mon. Not. R. Astron. Soc. 436, 540 (2013), arXiv:1208.5098 [astro-ph.CO].
[67] D. Inman, H.-R. Yu, and H.-M. Zhu et al., Phys. Rev. D 95, 083518 (2017).
[68] H.-R. Yu, J. D. Emberson, and D. Inman et al., Nature Astronomy 1, 0143 (2017), arXiv:1609.08968 [astro-ph.CO].
[69] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart. Phys. 2011, 034 (2011), arXiv:1104.2933 [astro-ph.CO].
[70] P. Coles and B. Jones, Mon. Not. R. Astron. Soc. 248, 1 (1991).
[71] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. p. 465 (1992).
[72] R. Massey, J. Rhodes, R. Ellis, N. Scoville, A. Leauthaud, A. Finoguenov, P. Capak, D. Bacon, H. Aussel, J.-P. Kneib, A. Koekemoer, H. McCracken, B. Mobasher, S. Pires, A. Refregier, S. Sasaki, J.-L. Starck, Y. Taniguchi, A. Taylor, and J. Taylor, Nature (London) 445, 286 (2007), arXiv:astro-ph/0701594 [astro-ph].
[73] R. K. Sheth and R. van de Weygaert, Mon. Not. R. Astron. Soc. 330, 517 (2004), arXiv:astro-ph/0311260 [astro-ph].
[74] S. Agarwal and H. A. Feldman, Mon. Not. R. Astron. Soc. 410, 1647 (2011), arXiv:1006.0689 [astro-ph.CO].
[75] E. Massara, F. Villaescusa-Navarro, and M. Viel, J. Cosmol. Astropart. Phys. 2014, 053 (2014), arXiv:1410.6813 [astro-ph.CO].
[76] J. Liu, S. Bird, and J. M. Zorrilla Matilla et al., J. Cosmol. Astropart. Phys. 2018, 049 (2018), arXiv:1711.10524 [astro-ph.CO].
[77] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997), arXiv:astro-ph/9611107 [astro-ph].
[78] F. Villaescusa-Navarro, M. Vogelsberger, M. Viel, and A. Loeb, Mon. Not. R. Astron. Soc. 431, 3670 (2013), arXiv:1106.2543 [astro-ph.CO].
[79] E. Massara, F. Villaescusa-Navarro, S. Ho, N. Dalal, and D. N. Spergel, arXiv e-prints , arXiv:2001.11024 (2020), arXiv:2001.11024 [astro-ph.CO].
[80] N. Hamaus, U. Seljak, and V. Desjacques et al., Phys. Rev. D 82, 043515 (2010), arXiv:1004.5377 [astro-ph.CO].
[81] Z. Zheng, A. A. Berlind, and D. H. Weinberg et al., Astrophys. J. 633, 791 (2005), arXiv:astro-ph/0408564 [astro-ph].