LIMITS FOR EMBEDDING DISTRIBUTIONS

JINLIAN ZHANG, XUHUI PENG, AND YICHAO CHEN

Abstract. In this paper, we first establish a central limit theorem which is new in probability, then we find and prove that, under some conditions, the embedding distributions of H-linear family of graphs with spiders are asymptotic normal distributions. As corollaries, the asymptotic normality for the embedding distributions of path-like sequence of graphs with spiders and the genus distributions of ladder-like sequence of graphs are given. We also prove that the limit of Euler-genus distributions is the same as that of crosscap-number distributions. The results here can been seen a version of central limit theorem in topological graph theory.

1. Introduction

A graph is a pair $G = (V, E)$, where $V = V(G)$ is the set of vertices, and $E = E(G)$ is the set of edges. In topological graph theory, a graph is permitted to have both loops and multiple edges. A surface S is a compact connected 2-dimensional manifold without boundary. The orientable surface $O_k (k \geq 0)$ can be obtained from a sphere with k handles attached, where k is called the genus of O_k, and the non-orientable surface $N_j (j \geq 1)$ with j crosscaps, where j is called the crosscap-number of N_j. The Euler-genus γ^E of a surface S is given by

$$\gamma^E = \begin{cases} 2k, & \text{if } S = O_k, \\ j, & \text{if } S = N_j. \end{cases}$$

We use S_i to denote the surface S with Euler-genus i, for $i \geq 0$.

A graph G is embeddable into a surface S if it can be drawn in the surface such that any edge does not pass through any vertex and any two edges do not cross each other. If G is embedded on the surface S, then the components of $S - G$ are the faces of the embedding. A graph embedding is called a 2-cell cellular embedding if any simple closed curve in that face can be continuously deformed or contracted in that face to a single point. All graph embeddings in the paper are 2-cell cellular embeddings.

A rotation at a vertex v of a graph G is a cyclic ordering of the edge-ends incident at v. A (pure) rotation system ρ of a graph G is an assignment of a rotation at every vertex of G. A general rotation system for a graph G is a pair (ρ, λ), where ρ is a rotation system and λ is a map on $E(G)$ with values in $\{0, 1\}$. If $\lambda(e) = 1$, then the edge e is said to be twisted; otherwise $\lambda(e) = 0$, and we call the edge e untwisted. If $\lambda(e) = 0$, for all $e \in E(G)$, then the general rotation system (ρ, λ) is a pure rotation system. It is well-known that any graph embedding can be described by a general rotation system. Let T be a spanning tree of G, a T-rotation system (ρ, λ) of G is a general rotation system (ρ, λ) such that $\lambda(e) = 0$, for every edge $e \in E(T)$. For a

2000 Mathematics Subject Classification. Primary: 05C10; Secondary: 05A15; 05C30.

Key words and phrases. central limit theorem; embedding distributions; limits; H-linear family of graphs with spiders; normal distribution.

Yichao Chen currently works at SuZhou University of Science and Technology.
fixed spanning tree T, two embeddings of G are considered to be equivalent if their T-rotation systems are combinatorially equivalent. It is known that there is a sequence of vertex-flips that transforms a general rotation system into a T-rotation system.

The number of (distinct) cellular embeddings of a graph G on the surfaces O_k, N_j, and S_i are denoted by $\gamma_k(G)$, $\tilde{\gamma}_j(G)$, and $\varepsilon_i(G)$, respectively. By the genus distribution of a graph G we mean the sequence

$$\gamma_0(G), \gamma_1(G), \gamma_2(G), \cdots,$$

and the genus polynomial of G is

$$\Gamma_G(x) = \sum_{k=0}^{\infty} \gamma_k(G)x^k.$$

Similarly, we have the crosscap-number distribution $\{\tilde{\gamma}_i(G)\}_{n=1}^{\infty}$ and the Euler-genus distribution $\{\varepsilon_i(G)\}_{n=1}^{\infty}$. The crosscap-number polynomial $\tilde{\Gamma}_G(x)$ and the Euler-genus polynomial $\varepsilon_G(x)$ of G are defined analogously.

For a deeper discussion of the above concepts, we may refer the reader to [3, 4]. The following assumption will be needed throughout the paper. When we say embedding distribution of a graph G, we mean its genus distribution, crosscap-number distribution or Euler-genus distribution.

Usually, the embedding distribution of a graph G with tractable size can be calculated explicitly, we still concern the global feature of the embedding distribution of G. For example:

(1) Log-concavity. For this aspect, we refer to [10, 12, 13, 14, 29] etc.

(2) Average genus, average crosscap-number and average Euler-genus. The average genus of graph G is given by

$$\gamma_{avg}(G) = \frac{\Gamma_G'(1)}{\Gamma_G(1)} = \sum_{k=0}^{\infty} \frac{k \cdot \gamma_k(G)}{\Gamma_G(1)},$$

the average crosscap-number $\tilde{\gamma}_{avg}(G)$ and average Euler-genus $\varepsilon_{avg}(G)$ of a graph G is similarly defined. The study of average genus, average crosscap-number and average Euler-genus received many attentions in topological graph theory. For researches on this aspect, one can see [2, 26, 33] etc. There is also a notation of variance. For example, see that in [30]. The variance of the genus distribution of the graph G is given by

$$\gamma_{var}(G) = \sum_{k=0}^{\infty} (k - \gamma_{avg}(G))^2 \frac{\gamma_k(G)}{\Gamma_G(1)}.$$

We define the variance of crosscap-number distribution $\tilde{\gamma}_{var}(G)$ and of Euler-genus distribution $\varepsilon_{var}(G)$ similarly.

The motivation of this article is as follows. Let $\{G^n_i\}_{n=1}^{\infty}$ be a sequence of linear family of graphs with spiders whose definition is given in subsection 3.1, and we denote the embedding distribution of graph G^n_i by $\{p_i(n)\}_{i=0}^{\infty}$. The normalized sequence of $\{p_i(n)\}_{i=0}^{\infty}$ is

$$\frac{p_i(n)}{\sum_{k=0}^{\infty} p_k(n)}, \quad i = 0, 1, \cdots.$$

Then, the above sequence is a distribution in probability, we denote it by F_n. One problem appears, when n is big enough, whether the distribution F_n will look like some well-known distribution in probability. If the answer is yes, then it demonstrates the outline of embedding distribution for graph G^n_i when n is big enough. In the point of mathematics, this is to seek the limit for F_n or the embedding distribution of graph G^n_i.
In this paper, we make researches on the embedding distributions which are closely related to the above problem. Under some weak conditions, we show the embedding distributions (genus, crosscap-number or Euler-genus distributions) of G_n^0 are asymptotically normal distribution when n tends to infinity. We say the embedding distributions (genus, crosscap-number or Euler-genus distributions) of G_n^0 are asymptotically normal distribution with mean μ_n and variance σ_n^2 if

$$\lim_{n \to \infty} \sup_x \left| \sum_{i \leq x, x \in \mu_n} p_i(n) - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt \right| = 0.$$

Since normal distributions have many very good properties, the genus distributions (crosscap-number or Euler-genus distributions) of G_n^0 also have many good properties when n is big enough. Such as: (1) Symmetry, normal distributions are symmetric around their mean. (2) Normal distributions are defined by two parameters, the mean μ and the standard deviation σ. Approximately 95% of the area of a normal distribution is within two standard deviations of the mean. This implies that the genus distributions of G_n^0 are mainly concentrated on the interval $(\gamma_{avg}(G_n^0)-2\sqrt{\gamma_{var}(G_n^0)}, \gamma_{avg}(G_n^0)+2\sqrt{\gamma_{var}(G_n^0)})$ when n is big enough. Similar results also hold for crosscap-number and Euler-genus distributions. We also show that the genus distributions (crosscap-number or Euler-genus distributions) of G_n^0 are not always asymptotically normal distribution. This is the first time someone prove the embedding distributions of some families of graphs are asymptotically normal.

In Section 2, we establish a central limit theorem which is also new in probability. In Section 3, we apply this central limit theorem to the embedding distributions of G_n^0 and give their limits. In Section 4, some examples are demonstrated.

2. A Central Limit Theorem

For a non-negative integer sequence $\{p_i(n)\}_{i=0}^{\infty}$, let $P_n(x) = \sum_{i=0}^{\infty} p_i(n)x^i, x \in \mathbb{R}$. In this section, we always assume $P_n(x)$ satisfies a k^{th}-order homogeneous linear recurrence relation

$$P_n(x) = b_1(x)P_{n-1}(x) + b_2(x)P_{n-2}(x) + \cdots + b_k(x)P_{n-k}(x), \tag{2.1}$$

where $b_j(x) (1 \leq j \leq k)$ are polynomials with integer coefficients. We define a polynomial associated with (2.1)

$$F(x, \lambda) = \lambda^k - b_1(x)\lambda^{k-1} - b_2(x)\lambda^{k-2} - \cdots - b_{k-1}(x)\lambda - b_k(x). \tag{2.2}$$

Obviously, for any $x \in \mathbb{R}$, there exist some $r = r(x) \in \mathbb{N}$, $m_1(x), \cdots, m_r(x) \in \mathbb{N}$ with $\sum_{i=1}^{r} m_i(x) = k$, and numbers $\lambda_i(x), i = 1, \cdots, r$ with $|\lambda_1(x)| \geq |\lambda_2(x)| \geq |\lambda_3(x)| \geq \cdots |\lambda_r(x)|$ such that

$$F(x, \lambda) = (\lambda - \lambda_1(x))^{m_1(x)}(\lambda - \lambda_2(x))^{m_2(x)} \cdots (\lambda - \lambda_r(x))^{m_r(x)}. \tag{2.3}$$

And the general solution to (2.1) is given by

$$P_n(x) = \sum_{i=1}^{r} \lambda_i^n(x)(a_{i,0}(x) + a_{i,1}(x)n + \cdots + a_{i,m_i(x)-1}(x)n^{m_i(x)-1}). \tag{2.4}$$

Let

$$e = \frac{\lambda_1(1)}{D}, \quad v = \frac{-\left(\lambda_1(1)\right)^2 + D \cdot \lambda_1''(1) + D \cdot \lambda_1'(1)}{D^2}. \tag{2.5}$$
where $D = \lambda_1(1)$. For any $n \in \mathbb{N}$, let X_n be a random variable with distribution
\[
P(X_n = i) = \frac{p_i(n)}{P_n(1)}, \quad i = 0, 1, \ldots,
\]

The remainder of this section is devoted to the proof of the following theorem.

Theorem 2.1. Let $P_n(x) = \sum_{i=0}^{\infty} p_i(n)x^i, n \geq k + 1$ be polynomials satisfying (2.1). At $x = 1$, suppose the multiplicity of maximal root for polynomial (2.2) is 1. Then the following results hold depending on the value of v.

Case I: $v > 0$. The law of X_n is asymptotically normal with mean $e \cdot n$ and variance $v \cdot n$ when n tends to infinity. That is,
\[
\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| \frac{1}{P_n(1)} \sum_{\lambda_1 + \cdots + \lambda_r = n} \sum_{0 \leq i \leq x^{\delta+n}} p_i(n) - \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \right| = 0.
\]
In particular, we have
\[
\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \frac{1}{P_n(1)} \left| \sum_{\lambda_1 + \cdots + \lambda_r = n} \sum_{0 \leq i \leq x^{\delta+n}} p_i(n) - \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \right| = 0.
\]

Case II: $v < 0$. This case is impossible to appear.

Case III: $v = 0$. For any $\alpha > \frac{1}{\delta}$, the law of X_n is asymptotically one-point distribution concentrated at 0. In more accurate words, the following holds.
\[
\lim_{n \to \infty} \mathbb{P} \left(\frac{X_n - e \cdot n}{n^{\alpha}} \leq x \right) = \begin{cases} 1, & \text{if } x \geq 0, \\ 0, & \text{else}. \end{cases}
\]
Furthermore, if all these functions $b_1(x), \cdots, b_k(x)$ are constant, then the limits of the law of X_n is a discrete distribution. That is, for some $\kappa \in \mathbb{N}$ and $\omega_j, j = 0, \cdots, \kappa$ with
\[
\sum_{j=1}^{\kappa} \omega_j = 1, \quad \text{we have}
\]
\[
\lim_{n \to \infty} \mathbb{P}(X_n = j) = \omega_j, j = 0, \cdots, \kappa.
\]

Proof. One arrives at that
\[
D = \lambda_1(1) > |\lambda_2(1)| \geq |\lambda_3(1)| \geq \cdots |\lambda_r(1)| \quad \text{and} \quad m_1(1) = 1.
\]
By [21] and the smooth of F, for $i = 1, \cdots, r$, $\lambda_i(x)$ are continuous. Thus, for some $\delta > 0$, we have
\[
\lambda_1(x) > |\lambda_2(x)| \geq |\lambda_3(x)| \geq \cdots |\lambda_r(x)|, \quad \forall x \in (1 - \delta, 1 + \delta).
\]
For $m_1(x)$ and $\lambda_1(x)$, we have the following fact.

Fact: for some $\delta > 0$, we have $\lambda_1(x)$ is smooth on $(1 - \delta, 1 + \delta)$ and
\[
m_1(x) = 1, \quad \forall x \in (1 - \delta, 1 + \delta).
\]
One easily sees that
\[
F(1, \lambda) = (\lambda - \lambda_1(1))(\lambda - \lambda_2(1))^{m_2(1)} \cdots (\lambda - \lambda_r(1))^{m_r(1)}.
\]
and
\[
\frac{\partial F(x, \lambda)}{\partial \lambda} \bigg|_{x=1, \lambda = \lambda_1(1)} \neq 0.
\]
Actually, $\lambda_1(x)$ can be seen an implicit function decided by

$$F(x, \lambda) = 0.$$

By the smooth of F and the implicit function theorem, $\lambda_1(x)$ is smooth on $(1 - \varepsilon, 1 + \varepsilon)$ for some $\varepsilon > 0$. By the smooth of F and (2.10), for some $\varepsilon > 0$, we have

$$\frac{\partial F(x, \lambda)}{\partial \lambda} \neq 0, \quad \forall x \in (1 - \varepsilon, 1 + \varepsilon), \forall \lambda \in (\lambda_1(1) - \varepsilon, \lambda_1(1) + \varepsilon)$$

which yields the desired result (2.9).

Combining (2.7), the general solution to (2.1) is given by

$$P_n(x) = a(x)\lambda_1^n(x) + \sum_{i=2}^{r} \lambda_i^n(x) \left(a_i,0(x) + a_i,1(x)n + \cdots + a_i,m_i(x)-1(x)n^{m_i(x)-1} \right).$$

(2.11)

We consider the following three different cases.

Case I: $v > 0$. Let $Y_n = X_n - en\sqrt{vn}$ and $\phi_{Y_n}(t) = Ee^{itY_n}$ be the characteristic function of Y_n, where i is a complex number with $i^2 = -1$.

In order to prove

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| P(Y_n \leq x) - \int_{-\infty}^{x} e^{-u^2/2} du \right| = 0,$$

by the continuity theory (Chapter 15) for characteristic function in probability, we only need to prove

$$\lim_{n \to \infty} \phi_{Y_n}(t) = \lim_{n \to \infty} Ee^{it\sqrt{v_n}X_n} = \int_{\mathbb{R}} e^{it\sqrt{2}u} e^{-u^2/2} du = e^{-t^2/2}, \quad \forall t.$$

(2.12)

We will give a proof of this.

Let $a_n = \frac{1}{\sqrt{vn}}$, $b_n = \sqrt{\frac{e^2n}{v}}$ and $y = e^{an}$. By these definitions, one easily sees that

$$\frac{n\lambda_1(1)}{D} a_n - b_n = ne\sqrt{\frac{e^2n}{v}} = 0,
\frac{n\lambda_1(1)D + \lambda_1''(1)D - \lambda'(1)^2}{2D^2} a_n^2 = n \cdot \frac{v}{2} \cdot \frac{1}{vn} = \frac{1}{2}$$

(2.13)

By Taylor formula, we have

$$\ln \frac{\lambda_1(y)}{D} = \frac{\lambda_1(1)}{D}(y - 1) + \frac{1}{2D^2} \left[\lambda_1''(1)D - (\lambda_1'(1))^2 \right] (y - 1)^2 + o((y - 1)^2),$$

and

$$y = 1 + a_n t + a_n^2 t^2 + o(a_n^2 t^2).$$
Therefore, by \(\lim_{n \to \infty} y = 1 \), it holds that
\[
\ln \frac{\lambda_1(y)}{D} = \frac{\lambda_1'(1)}{D}(a_n t + \frac{1}{2}a_n^2 t^2 + o(a_n^2 t^2)) \\
+ \frac{1}{2D^2} [\lambda_1''(1)D - (\lambda_1'(1))^2] (a_n t + \frac{1}{2}a_n^2 t^2 + o(a_n^2 t^2))^2 \\
+ o((a_n t + \frac{1}{2}a_n^2 t^2 + o(a_n^2 t^2))^2).
\]

where in the last equality, we have used (2.5).

In the above equality, we replace \(e \) by \(y \), and get
\[
\ln \frac{\lambda_1(y)}{D} = \frac{\lambda_1'(1)}{D}(a_n t + \frac{1}{2}a_n^2 t^2 + \frac{1}{2D^2} [\lambda_1''(1)D - (\lambda_1'(1))^2] a_n^2 t^2 + o(\frac{1}{n}).
\]

By Taylor formula, we have
\[
\lim_{n \to \infty} E e^{\frac{\lambda_1(y) - \lambda_1(1)}{\sqrt{\frac{\lambda_1(1)}{y}}} - \frac{\lambda_1(1)}{y} t} = \lim_{n \to \infty} P_n(e^{a_n t}e^{-b_n t}) = \lim_{n \to \infty} \frac{P_n(y)e^{-b_n t}}{a(1)D^n}
\]

where in the last equality, we have used (2.5).

In the above equality, we replace \(t \) by \(it \). Then, we get
\[
\lim_{n \to \infty} E e^{it \frac{\lambda_1(y) - \lambda_1(1)}{\sqrt{\frac{\lambda_1(1)}{y}}} - \frac{\lambda_1(1)}{y} t} = e^{-\frac{t^2}{2}}
\]

which finishes the proof of (2.12).

Case II: \(v < 0 \). Let \(Y_n = \frac{X_n - vn}{\sqrt{\frac{\lambda_1(1)}{y}}} \) and \(\phi_{Y_n}(t) = E e^{itY_n} \). Set \(a_n = \frac{1}{\sqrt{-vn}} \), \(b_n = \sqrt{\frac{\lambda_1(1)}{y}} \) and \(y = e^{a_n t} \).

By Taylor formula, we have
\[
\ln \frac{\lambda_1(y)}{D} = \frac{\lambda_1'(1)}{D}(a_n t + \frac{1}{2}a_n^2 t^2) + \frac{1}{2D^2} [\lambda_1''(1)D - (\lambda_1'(1))^2] a_n^2 t^2 + o(\frac{1}{n}).
\]

Then, by (2.7), we have
\[
\lim_{n \to \infty} E e^{\frac{\lambda_1(y) - \lambda_1(1)}{\sqrt{\frac{\lambda_1(1)}{y}}} - \frac{\lambda_1(1)}{y} t} = \lim_{n \to \infty} \frac{P_n(e^{a_n t}e^{-b_n t})}{a(1)D^n} = \lim_{n \to \infty} \frac{P_n(y)e^{-b_n t}}{a(1)D^n}
\]

where in the last equality, we have used (2.5).

In the above equality, we replace \(t \) by \(it \) and get
\[
\lim_{n \to \infty} E e^{it \frac{\lambda_1(y) - \lambda_1(1)}{\sqrt{\frac{\lambda_1(1)}{y}}} - \frac{\lambda_1(1)}{y} t} = e^{-\frac{t^2}{2}}.
\]

On the other hand, by the properties of characteristic function, one sees
\[
|E e^{it \frac{\lambda_1(y) - \lambda_1(1)}{\sqrt{\frac{\lambda_1(1)}{y}}}}| \leq 1
\]
which contradicts with (2.13) and gives the desired result.

Case III: \(v = 0 \). Let \(Y_n = X_n - cn, a_n = n^{-\alpha}, b_n = cn^{1-\alpha} \) and \(y = e^{an}t \).

By Taylor formula and \(v = 0 \), we have

\[
\ln \left(\frac{\lambda_i(y)}{D} \right) = \frac{\lambda_i'(1)}{D} (y - 1) + \frac{1}{2D^2} [\lambda_i''(1)D - (\lambda_i'(1))^2] (y - 1)^2 + \mathcal{O}(y, y^3)
\]

\[
= \frac{\lambda_i'(1)}{D} (a_n t + \frac{1}{2} a_n^2 t^2) + \frac{1}{2D^2} [\lambda_i''(1)D - (\lambda_i'(1))^2] a_n^2 t^2 + \mathcal{O}(n^{-3\alpha})
\]

\[
= \frac{\lambda_i'(1)}{D} a_n t + \mathcal{O}(n^{-3\alpha}) = e^{an} t + \mathcal{O}(n^{-3\alpha}).
\]

Therefore,

\[
\lim_{n \to \infty} \exp \left\{ n \ln \left(\frac{\lambda_i(y)}{D} \right) - b_n t \right\} = \lim_{n \to \infty} \exp \left\{ n \ln \frac{en^{-\alpha} t + n \cdot \mathcal{O}(n^{-3\alpha}) - en^{1-\alpha} t}{-b_n t} \right\} = 1.
\]

Then, by (2.7), we have

\[
\lim_{n \to \infty} \mathbb{E} e^{\frac{X_n - cn}{an}} = \lim_{n \to \infty} \mathbb{E} e^{\frac{a_n}{an}X_n - \frac{b_n}{an} t} = \lim_{n \to \infty} \frac{P_n(y) e^{-b_n t}}{a(1) D^n} = \lim_{n \to \infty} \frac{P_n(y) e^{-b_n t}}{a(1) D^n}
\]

\[
= \lim_{n \to \infty} \frac{\lambda_i'(y) a(y)}{a(1) D^n} e^{-b_n t} = \lim_{n \to \infty} \lambda_i'(y) D e^{-b_n t} = \exp \left\{ n \ln \frac{\lambda_i(y)}{D} - b_n t \right\}.
\]

In the above equality, we replace \(n \) by \(i t \) and get

\[
\lim_{n \to \infty} \mathbb{E} e^{\frac{X_n - cn}{an}} = 1
\]

which yields the desired result.

Now we give a proof of (2.10). Noting (2.11), we have

\[
P_n(x) = a(x) \lambda_i^n + \sum_{i=2}^{r} \left(a_{i,0}(x) + a_{i,1}(x) n + \cdots + a_{i,m_i(x)-1}(x) n^{m_i(x)-1} \right) \lambda_i^n,
\]

where \(m_i(x) = m_i, i = 2, \cdots, r \) are constants. Since \(P_n(x) \) is a polynomial of \(x \) and \(\lambda_i, i = 1, \cdots, r \) are constant, \(a(x) \) is also a polynomial of \(x \). Assume

\[
a(x) = \sum_{j=0}^{\kappa} c_j x^j.
\]

then,

\[
\lim_{n \to \infty} \mathbb{E} e^{\frac{X_n}{an}} = \lim_{n \to \infty} \frac{P_n(e^t)}{P_n(1)} = \lim_{n \to \infty} \frac{a(e^t) D^n}{a(1) D^n} = \frac{a(e^t)}{a(1)} = \sum_{j=0}^{\kappa} \omega_j e^{jt},
\]

where \(\omega_j = \frac{c_j}{a(1)} \). In the above equality, we replace \(n \) by \(it \) and get

\[
(2.15) \quad \lim_{n \to \infty} \mathbb{E} e^{\frac{X_n}{an}} = \sum_{j=0}^{\kappa} \omega_j e^{jt}.
\]

By the continuity theory ([8], Chapter 15]) for characteristic function in probability, we obtain the desired result.

By (2.10), the condition \(v > 0 \) is necessary to ensure the asymptotic normality. In the end of this section, we give a remark here to explain the \(e, v \) appeared in Theorem 2.1.
Remark 2.2. In the special case, when \(P_n(x) = a(x)\lambda^n_1(x) \), it holds that

\[
\mathbb{E}X_n = \frac{P'_n(1)}{P_n(1)} = e \cdot n + O(1)
\]

and

\[
\text{Var}(X_n) = \frac{P''_n(1) + P'_n(1)}{P_n(1)} \cdot \left(\frac{P'_n(1)}{P_n(1)} \right)^2 = v \cdot n + O(1).
\]

Since \(\lambda_1(x) > \lambda_i(x), i = 2, \cdots, k \), we can expect that for the \(P_n(x) \) in (2.11) and \(P_n(x) = a(x)\lambda^n_1(x) \), they have the same asymptotic mean and variance when \(n \) tends to infinity.

3. The limits for embedding distributions

In this section, we consider the limit for embedding distributions of \(H \)-linear family of graphs with spiders \(\{G_n^n\}_{n=1}^\infty \). In subsection 3.1, we give a definition of \(G^n_n \). In subsection 3.2, we briefly describe the production matrix. Then we give the limit of embedding distribution for graph \(G^n_n \) in subsection 3.3. Finally, we demonstrate the relation between the limit of crosscap-number distributions and Euler-genus distributions in subsection 3.4.

3.1. \(H \)-linear family of graphs with spiders. The definition of \(H \)-linear family of graphs with spiders, gave by Chen and Gross [6], is a generalization of \(H \)-linear family of graphs introduced by Stahl [27]. Suppose \(H \) is a connected graph. Let \(U = \{u_1, \cdots, u_s\} \) and \(V = \{v_1, \cdots, v_s\} \) be two disjoint subsets of \(V(H) \). For \(i = 1, 2, \cdots \), suppose \(H_i \) is a copy of \(H \) and let \(f_i : H \to H_i \) be an isomorphism. For each \(i \geq 1 \) and \(1 \leq j \leq s \), we set \(u_{i,j} = f_i(u_j) \) and \(v_{i,j} = f_i(v_j) \). An \(H \)-linear family of graphs, denoted by \(\mathcal{G} = \{G^n_n\}_{n=1}^\infty \), is defined as follows:

- \(G_1 = H_1 \).
- \(G_n \) is constructed by \(G_{n-1} \) and \(H_n \) be amalgamating the vertex \(v_{n-1,j} \) of \(G_{n-1} \) with the vertex \(u_{n,j} \) of \(H_n \) for \(j = 1, \cdots, s \).

Figure 3.1 shows an example for the graphs \(H_1, H_2 \) and \(G_2 \).

Now, we introduce the definition of \(H \)-linear family of graphs with spiders. For \(1 \leq j \leq s \), let \((J_j, t_{j,i'})\) and \((\overline{J}_j, t_{j,i'})\) be graphs in which \(\{t_{j,i'}\}, \{t_{j,i'}\} \), respectively, are sets of root-vertices. For \(1 \leq i \leq s \), \(I_i \) and \(\overline{I}_i \) are subsets of \(\{1, \cdots, s\} \). A graph \(\{G^n_n\}_{n=1}^\infty \) is constructed from \(G_n \) by amalgamating the vertex \(u_{1,i} \) of \(G_n \) with the vertex \(t_{j,i'} \) of \(J_j \) for \(j \in \overline{I}_i \), and amalgamating the vertex \(v_{n,i} \) of \(G_n \) with \(t_{j,i'} \) of \(\overline{J}_j \) for \(j \in I_i \). The graphs \((J_j, t_{j,i'})\) and \((\overline{J}_j, t_{j,i'})\) are called spiders for the sequence \(\mathcal{G} \). The resulting sequence of graphs is said to be an \(H \)-linear family of graphs.
with spiders and is denoted by \(G^o \). We call \(G^o \) ring-like, if there is a spider among \(J_1, J_2, \ldots, J_s \) that coincide with a spider among \(J_1, J_2, \ldots, J_s \). The graphs in Figure 3.2 demonstrate an example of ring-like, in which \(s = 1 \) and \(J_1 = J_1 \).

3.2. Production matrix. By permutation-partition pairs, Stahl [27] showed that the calculation of genus polynomial of \(G_n \) can be converted to a (transfer) matrix method. Such matrices are also called production matrices [11] or transfer matrix [20] (using different techniques and methods). Here we briefly describe the production matrix of \(G \) (or \(G^o \)). For more details on this, see [20, 11] etc. We refer to [3] for face-tracing algorithm.

We suppose that there are \(k \) embedding types for the graph \(G_n \) with roots \(u_{1,1}, u_{1,2}, \ldots, u_{1,s}, v_{n,1}, v_{n,2}, \ldots, v_{n,s} \). For \(1 \leq j \leq k \), let \(\gamma^j_i(G_n) \) be the number of embeddings of \(G_n \) in \(O_k \) with type \(j \) and

\[
\Gamma^j_{G_n}(x) = \sum_{i \geq 0} \gamma^j_i(G_n)x^i.
\]

From the definition \(H \)-linear family of graphs and face-tracing algorithm, we obtain

\[
(\Gamma^1_{G_n}(x), \Gamma^2_{G_n}(x), \ldots, \Gamma^k_{G_n}(x))^T = M(x) \cdot (\Gamma^1_{G_{n-1}}(x), \Gamma^2_{G_{n-1}}(x), \ldots, \Gamma^k_{G_{n-1}}(x))^T.
\]

(3.1)

where \(\alpha^T \) is the transpose of the vector \(\alpha \) and

\[
M(x) = \begin{bmatrix} m_{1,1}(x) & m_{1,2}(x) & \cdots & m_{1,k}(x) \\ m_{2,1}(x) & m_{2,2}(x) & \cdots & m_{2,k}(x) \\ \vdots & \vdots & \ddots & \vdots \\ m_{k,1}(x) & m_{k,2}(x) & \cdots & m_{k,k}(x) \end{bmatrix}
\]

is the transfer matrix [20] or production matrix [11] of genus distribution of \(G \) (or \(G^o \)). In [11], the authors showed that the production matrix \(M(x) \) can be calculated with a computer program.

Let

\[
V_{G_n}(x) = (\Gamma^1_{G_n}(x), \Gamma^2_{G_n}(x), \ldots, \Gamma^k_{G_n}(x))^T,
\]

another property for the genus polynomial of \(H \)-linear sequence with spiders is that there exists a \(k \)-dimensional row-vector

\[
V = (v_1(x), \ldots, v_k(x))
\]

such that \(\Gamma^j_{G_n}(x) = V \cdot V_{G_n}(x) \). Note that if there are no spiders, that is \(G^o = G \), then \(V = (1, 1, \cdots, 1) \).

For the case of Euler-genus polynomials, there also has the production matrix of Euler-genus distribution of \(G \) (or \(G^o \)). We take [4] as an example of this.

Figure 3.2. Using a spider to construct \(G^o \)
Example 3.1. Suppose P_n is the path graph on n vertices. An ladder graph L_n is obtained by taking the graphical cartesian product of the path graph P_n with P_2, i.e. $L_n = P_n \square P_2$. From Section 3 in [4], the 2×2 production matrix of Euler-genus distribution of the ladder graph is given by

$$M(x) = \begin{bmatrix} 2 & 4 \\ 2x + 4x^2 & 4x \end{bmatrix}.$$

It follows that

$$M(1) = \begin{bmatrix} 2 & 4 \\ 6 & 4 \end{bmatrix}.$$

The maximum genus, maximum non-orientable genus and maximum Euler-genus of a graph G, denoted by $\gamma_{\max}(G)$, $\tilde{\gamma}_{\max}(G)$ and $\varepsilon_{\max}(G)$ respectively, are given by $\gamma_{\max}(G) = \max\{i|\gamma_i(G) > 0\}$, $\tilde{\gamma}_{\max}(G) = \max\{i|\tilde{\gamma}_i(G) > 0\}$ and $\varepsilon_{\max}(G) = \max\{i|\varepsilon_i(G) > 0\}$ respectively. One can see that $\varepsilon_{\max}(G) = \max\{2\gamma_{\max}(G), \tilde{\gamma}_{\max}(G)\}$. A cactus graph, also called a cactus tree, is a connected graph in which any two graph cycles have no vertex in common. Recall that a graph G with orientable maximum genus 0 if and only if G is the cactus graph, and a graph H of maximum Euler-genus 0 if and only if H is homeomorphic to the path graph P_n on n vertices for $n > 1$.

The following two basic properties are followed by the definition of H-linear family of graphs with spiders.

Proposition 3.1. For $1 \leq j \leq k$, $\sum_{i=1}^{k} m_{ij}(1)$ are all the same constant D. Moreover, for any $n \geq 2$, we have $\frac{P_n(1)}{P_{n-1}(1)} = D$, where $P_n(x) = \Gamma_{G_n}(x)$ or $E_{G_n}(x)$.

Remark 3.2. In the proof of Theorem 3.5 below, we will see D have the same meaning as that appeared in Section 2, so we use the same notation.

Proposition 3.3. Suppose $M(x)$ is the production matrix of genus distribution (Euler-genus distribution) of G, then $M(x)$ is a constant if and only if the maximum genus (maximum Euler-genus) of G_n equals 0, $\forall n \in \mathbb{N}$.

3.3. The limits for embedding distributions of H-linear families of graphs with spiders. A square matrix $A = (a_{i,j})_{i,j=1}^{k}$ is said to be non-negative if

$$a_{i,j} \geq 0, \quad \forall i, j = 1, \cdots, k.$$

Let A be a non-negative $k \times k$ matrix with maximal eigenvalue r and suppose that A has exactly h eigenvalues of modulus r. The number h is called the index of imprimitivity of A. If $h = 1$, the matrix A is said to be primitive; otherwise, it is imprimitive. A square matrix $A = (a_{i,j})_{i,j=1}^{k}$ is said to a stochastic matrix if

$$\sum_{i=1}^{k} a_{ij} = 1, j = 1, \cdots, k.$$

The following property of primitive stochastic matrix can be found in Proposition 9.2 in [1].

Proposition 3.4. Every eigenvalue λ of a stochastic matrix A satisfies $|\lambda| \leq 1$. Furthermore, if the stochastic matrix A is primitive, then all other eigenvalues of modulus are less than 1, and algebraic multiplicity of 1 is one.
Theorem 3.5. Consider the sequence of graphs $G^o = \{G^o_n\}_{n=1}^{\infty}$. Let $\{p_i(n), i = 0, 1, \ldots, \}$ be the genus polynomial (Euler-genus polynomial) of graph G^o_n, $P_n(x)$ be the genus polynomial (Euler-genus polynomial) of G^o_n and $M(x)$ be the production matrix for G^o. If the matrix $M(1)$ is primitive, then the results of Theorem 2.1 hold. Furthermore, if $M(x)$ is a constant, then the limit of the law for embedding distributions of G^o_n is a discrete distribution.

Proof. Suppose that the characteristic polynomial of the production matrix $M(x)$ is

$$F(x, \lambda) = \lambda^k - b_1(x)\lambda^{k-1} - b_2(x)\lambda^{k-2} - \cdots - b_{k-1}(x)\lambda - b_k(x),$$

where $b_j(x)(1 \leq j \leq k)$ are polynomials with integer coefficients. We also assume $F(x, \lambda) = (\lambda - \lambda_1(x))^{m_1(x)} \cdots (\lambda - \lambda_r(x))^{m_r(x)}$. Then, by the results in [6] ([4]), the sequence of genus polynomials (Euler-genus polynomial) of H-linear family of graphs with spiders G^o_n satisfy the following k^{th}-order linear recursion

$$P_n(x) = b_1(x)P_{n-1}(x) + b_2(x)P_{n-2}(x) + \cdots + b_k(x)P_{n-k}(x).$$

By Proposition 3.1 and Proposition 3.4 if $M(1)$ is primitive, we have

$$D = \lambda_1(1) > |\lambda_2(1)| \geq |\lambda_3(1)| \geq \cdots |\lambda_r(1)|$$

and $m_1(1) = 1$.

For any $n \in \mathbb{N}$, we denote the embedding distribution of graph G^o_n by $\{p_i(n), i = 0, 1, 2, \ldots, \}$ and let X_n be a random variable with distribution

$$\mathbb{P}(X_n = i) = \frac{p_i(n)}{P_n(1)}, \quad i = 0, 1, \cdots,$$

and

$$e = \frac{\lambda'_1(1)}{D}, \quad v = \frac{-\left(\lambda'_1(1)\right)^2 + D \cdot \lambda''_1(1) + D \cdot \lambda'_1(1)}{D^2}.$$

So following the lines in the proof of Theorem 2.1 we finish our proof. Furthermore if $M(x)$ is a constant, then all these functions $b_1(x), \ldots, b_k(x)$ are constant. Noting the case III in Theorem 2.1 this theorem follows. □

The primitive of the matrix $M(1)$ is very important in our proof. For this, we give the following example.

Example 3.2. Let

$$M(x) = \begin{bmatrix} x + 1 & 0 \\ 0 & 2x \end{bmatrix}.$$

$M(1)$ is imprimitive. By calculation, we obtain

$$\lambda_1(x) = \frac{3x + 1 + |x - 1|}{2}, \quad \lambda_2(x) = \frac{3x + 1 - |x - 1|}{2}.$$

In this case, we even don’t have the differentiability of $\lambda_1(x)$ at $x = 1$.

Remark 3.6. As pointed by Stahl [27], in all known cases, the production matrix $M(x)$ for the genus distributions of any H-linear family of graphs is primitive at $x = 1$. Currently, we don’t know whether this is true for general (or most) linear families of graphs.
In the rest of this subsection, we apply Theorem 3.5 to path-like and ladder-like sequences of graphs.

A vertex with degree 1 is called a pendant vertex, and the edge incident with that vertex is called a pendant edge. If a pendant vertex \(u \) of a graph \(G \) is chosen to be a root, then the vertex \(u \) is called a pendant root. Suppose \((H,u,v)\) is a connected graph with two pendant roots \(u,v \). For \(i=1,2,\ldots,n \), let \((H_i,u_i,v_i)\) be a copy of \((H,u,v)\). By the way in subsection 3.1, we construct a \((H,u,v)\)-linear family of graphs and a \((H,u,v)\)-linear family of graphs with spiders \((J_1,t_{1,v})\) and \((J_1,t_{1,v'})\), where \((J_1,t_{1,v})\) and \((J_1,t_{1,v'})\) be two connected graphs with roots \(t_{1,v},\bar{t}_{1,v'} \) respectively. For the \((H,u,v)\)-linear family of graphs with spiders or not, they have the same production matrix. Therefore, we use the same notation \(\{P^H_n\}_{n=1}^{\infty} \) to denote them. For convenience, we call the graph \(P^H_n \) path-like. Figure 3.3 demonstrate the graphs \(H \) and \(P^H_1 \), the shadow part of \(H \) can be any connected graph.

![Graph H (left), and path-like graph P^H_n (right)](image)

Corollary 3.7. The genus distributions (Euler-genus distributions) of the path-like sequence of graphs \(\{P^H_n\}_{n=1}^{\infty} \) with spiders are asymptotic normal distribution if the maximum genus (maximum Euler-genus) of \((H,u,v)\) is greater than 0.

Proof. Let \((H,u,v)\) be a graph with two pendant roots \(u,v \). We introduce the following two partial genus distributions (partial Euler-genus distributions) for \((H,u,v)\). Let \(d_i(H) \) be the number of embeddings of \((H,u,v)\) in the surface \(O_i \) \((S_i)\) such that \(u,v \) lie on different face-boundary walks. In this case, we say that the embedding has type \(d \). Similarly, let \(s_i(H) \) be the number of embeddings of \((H,u,v)\) in \(O_i \) \((S_i)\) such that \(u,v \) lie on the same face-boundary walk, and we call the embedding has type \(s \). The two partial genus polynomials (partial Euler-genus polynomials) of \((H,u,v)\) are given by \(D_H(x) = \sum_{i \geq 0} d_i(H)x^i \), and \(S_H(x) = \sum_{i \geq 0} s_i(H)x^i \). Clearly,

\[
P_H(x) = D_H(x) + S_H(x),
\]

where \(P_H(x) \) is the genus polynomial (Euler-genus polynomial) of \((H,u,v)\). By face-tracing and Euler formula, we have the following claim.

Claim: If the graph \((P^H_{n-1}, u_1, v_{n-1})\) and \((H_n, u_n, v_n)\) embed on surfaces \(O_i \) \((S_i)\) and \(O_j \) \((S_j)\), respectively, then the graph \(P^H_n \) embeds on \(O_{i+j} \) \((S_{i+j})\).

By using the claim above, we will build recurrence formulas for the partial genus polynomials of \(P^H_n \). There are four cases.

Case 1: If both the embeddings of \(P^H_{n-1} \) and \((H_n, u_n, v_n)\) have type \(d \), then the embedding of \(P^H_n \) has type \(d \). This case contributes to \(D_{P^H_n}(x) \) the term \(D_{P^H_{n-1}}(x)D_{H_n}(x) \).

Case 2: If the embeddings of \(P^H_{n-1} \) and \((H_n, u_n, v_n)\) have type \(d \) and \(s \), respectively, then the embedding of \(P^H_n \) has type \(d \). This case contributes to \(D_{P^H_n}(x) \) the term \(D_{P^H_{n-1}}(x)S_{H_n}(x) \).

Case 3: If the embedding of \(P^H_{n-1} \) has type \(s \) and the embedding of \((H_n, u_n, v_n)\) has type \(d \), then the embedding of \(P^H_n \) has type \(d \), this case contributes to \(D_{P^H_n}(x) \) the term \(S_{P^H_{n-1}}(x)D_{H_n}(x) \).
Case 4: If both the embeddings of P_{n-1}^H and (H_n, u_n, v_n) have type s, then the embedding of P_n^H has type s. This case contributes to $S_{P_n^H}(x)$ the term $S_{P_{n-1}^H}(x)S_{H_n}(x)$.

The following linear recurrence system of equations summarizes the four cases above.

\begin{equation}
D_{P_n^H}(x) = (D_{H_n}(x) + S_{H_n}(x))D_{P_{n-1}^H}(x) + D_{H_n}(x)S_{P_{n-1}^H}(x),
\end{equation}

\begin{equation}
S_{P_n^H}(x) = S_{H_n}(x)S_{P_{n-1}^H}(x).
\end{equation}

Rewriting the equations above as

\[
\begin{pmatrix}
D_{P_n^H}(x) \\
S_{P_n^H}(x)
\end{pmatrix} =
\begin{pmatrix}
D_{H_n}(x) + S_{H_n}(x) & D_{H_n}(x) \\
0 & S_{H_n}(x)
\end{pmatrix}
\begin{pmatrix}
D_{P_{n-1}^H}(x) \\
S_{P_{n-1}^H}(x)
\end{pmatrix}.
\]

Since (H_n, u_n, v_n) be a copy of (H, u, v), thus the production matrix $M(x)$ of the genus (Euler-genus) distributions of $\{P_n^H\}^\infty_{n=1}$ is

\[
\begin{pmatrix}
D_{H}(x) + S_{H}(x) & D_{H}(x) \\
0 & S_{H}(x)
\end{pmatrix}.
\]

For simplicity of writing, we use $D(x)$, $S(x)$ and $P(x)$ to denote $D_H(x)$, $S_H(x)$ and $P_H(x)$, respectively. Obviously, the eigenvalues of matrix $M(x)$ are given by

$\lambda_1(x) = D(x) + S(x)$, \quad $\lambda_2(x) = S(x)$.

Since the graph H is connected, $S(x) = 0$ is impossible. We make the following discussions on the $D(x)$

If $D(x) = 0$, then H is the path graph P_m on m vertices ($m \geq 2$). In this case, the maximum genus (maximum Euler-genus) of (H, u, v) is equal 0.

Now we consider the case $D(x) \neq 0$. Under this situation, $\lambda_1(1) > \lambda_2(1)$ and the matrix $M(1)$ is primitive. By direct calculation, we get

$\epsilon = \frac{D'(1) + S'(1)}{D(1) + S(1)}$

$v = \frac{-(D'(1) + S'(1))^2 + (D(1) + S(1))\left(D''(1) + S''(1) + D'(1) + S'(1)\right)}{(D(1) + S(1))^2}$.

We assume $P(x) = \sum_m c_m x^m$. By Cauchy-Schwarz inequality,

\[
\left(\sum_m mc_m\right)^2 \leq \sum_m m^2 c_m \cdot \sum_m c_m = \left(\sum_m (m^2 - m)c_m + \sum_m mc_m\right) \cdot \sum_m c_m,
\]

which implies $P'(1)^2 \leq (P''(1) + P'(1)) \cdot P(1)$. By this inequality and (3.3), one easily sees that $v \geq 0$. Therefore, $v = 0$ is equivalent to the above Cauchy-Schwarz inequality becomes equality, that is

\[
\left(\sum_m mc_m\right)^2 = \sum_m m^2 c_m \cdot \sum_m c_m.
\]

Since $P(x) \neq 0$, we have $c_m > 0$ for some $m \geq 0$. The above equality is also equivalent to that for some $x \in \mathbb{R}$

\[
m\sqrt{c_m} + x\sqrt{c_m} = 0, \quad \forall m \geq 0.
\]
Therefore, \(v = 0 \) if and only if \(\gamma_{\text{max}}(H) = \gamma_{\text{min}}(H) \) (\(\varepsilon_{\text{max}}(H) = \varepsilon_{\text{min}}(H) \)). Noting that, a known fact in the topological graph theory says that \(\gamma_{\text{max}}(H) = \gamma_{\text{min}}(H) \) (\(\varepsilon_{\text{max}}(H) = \varepsilon_{\text{min}}(H) \)) implies that \(H \) is the cactus graph (\(H \) is the path graph), we complete our proof.

\[
\begin{align*}
\text{Figure 3.4. Graph } H \text{ (left), and ladder-like graph } L_n^H \text{ (right)}
\end{align*}
\]

Given any graph \((H, u, v)\) whose root-vertices \(u\) and \(v\) are both 1-valent, as in Figure 3.4, we construct a ladder-like sequence of graphs \(\{(L_n^H, u_n, v_n)\}_{n=1}^\infty\). The shadow part of \(H\) can be any connected graph, and the ladder-like sequences are a special case of \(H\)-linear family of graphs.

Corollary 3.8. The genus distributions of the ladder-like sequence of graphs \(\{L_n^H\}_{n=1}^\infty\) are asymptotic normal distribution.

Proof. By [7], the production matrix for genus distributions of the ladder-like sequence of graphs \(L_4^H, L_2^H, L_3^H, \ldots\) is

\[
M(x) = p(x) \begin{bmatrix} 4x & 2x & 0 \\ 0 & 0 & 0 \\ 0 & 2x & 4x \end{bmatrix} + q(x) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 4 \\ 4x & 2x & 0 \end{bmatrix},
\]

where \(p(x), q(x) \in \mathbb{Z}(x)\) are the partial genus polynomials for \(H\). Also by [7], \(q(x) = 0\) is impossible.

Obviously, \(D = 4(p(1) + q(1))\) and the eigenvalues of matrix \(M(1)\) are given by

\[
\lambda_1 = 4(p(1) + q(1)), \quad \lambda_2 = 4p(1) - 2q(1), \quad \lambda_3 = 0.
\]

By \(p(1) \geq 0\) and \(q(1) > 0\), one easily sees that

\[
\lambda_1 > |\lambda_2|, \quad \lambda_1 > |\lambda_3|
\]

and the matrix \(M(1)\) is primitive.

With the help of a computer, one arrives at that

\[
e = \frac{3 (p'(1) + q'(1)) + 3p(1) + q(1)}{3p(1) + q(1)},
\]

\[
v = \frac{4}{27(p(1) + q(1))} \left[2q(1)^2 - 27(p'(1) + q'(1))^2
+ 9q(1) \left(3p''(1) + 3q''(1) + 3q'(1) + 7p'(1) \right)
+ p(1) \left(27p''(1) + 27p'(1) + 27q''(1) - 9q'(1) + 14q(1) \right) \right].
\]

In the rest of this corollary, we will prove \(v > 0\). Assume

\[
p(x) = \sum_m a_m x^m, \quad q(x) = \sum_m b_m x^m.
\]

Using Cauchy-Schwarz inequality again, we see that \(p'(1)^2 \leq (p''(1) + p'(1)) \cdot p(1)\) and \(q'(1)^2 \leq (q''(1) + q'(1)) \cdot q(1)\). Therefore, in order to prove \(v > 0\), it is suffice to show that

\[
54p'(1)q'(1) + 9p(1)q'(1) < 2q(1)^2 + 9q(1) \left(3p''(1) + 7p'(1) \right) + p(1) \left(27q''(1) + 14q(1) \right).
\]
which is equivalent to
\[
\sum_{i,j} \left[54ija_ib_j + 9a_ijb_j \right] < 2q(1)^2 + \sum_{i,j} \left[27(i^2 - i) + 63i + 27(j^2 - j) + 14 \right] a_ib_j.
\]

The above inequality is due to
\[
2q(1)^2 + \sum_{i,j} \left[27(i - j)^2 + 36(i - j) + 14 \right] a_ib_j = 2q(1)^2 + \sum_{i,j} \left(27(i - j + 2 \cdot \frac{2}{3})^2 + 2 \right) a_ib_j > 0.
\]

We complete the proof of \(v > 0 \).

By Theorem 3.9, the genus distributions of the ladder-like sequence \(\{L_n^H\}_{n=1}^\infty \) are asymptotic normal distribution with mean \(c \cdot n \) and variance \(v \cdot n \).

\[\square\]

3.4. Limits for crosscap-number distributions of graphs. We demonstrate the relationship between the limits of crosscap-number distributions and Euler-genus distributions.

Theorem 3.9. Let \(a_n = \frac{\gamma_n}{\varepsilon_n} \), \(b_n = 1 - a_n \). If \(\lim_{n \to \infty} a_n = 0 \), we have

\[
\lim \sup_{n \to \infty} \frac{1}{x} \left| \sum_{0 \leq i \leq x} \varepsilon_i(G_n^o) - \sum_{0 \leq i \leq x} \hat{\gamma}_i(G_n^o) \right| = 0,
\]

which implies that the limits of crosscap-number distributions are the same as that of Euler-genus distributions.

Proof. Since \(a_n = \frac{\gamma_n}{\varepsilon_n} \), then \(b_n = 1 - a_n = \frac{\gamma_n}{\varepsilon_n} \). Let \(U_n, \hat{U}_n, W_n \) be three random variables with distributions given by the genus, crosscap-number and Euler-genus respectively, that is

\[
\mathbb{P}(U_n = i) = \frac{\gamma_i(G_n^o)}{\varepsilon_n(1)}, \quad \mathbb{P}(\hat{U}_n = i) = \frac{\hat{\gamma}_i(G_n^o)}{\varepsilon_n(1)}, \quad \mathbb{P}(W_n = i) = \frac{\varepsilon_i(G_n^o)}{\varepsilon_n(1)}, \quad i = 0, 1, \ldots.
\]

Since

\[
\varepsilon_n(1) = \varepsilon_n(1) + \hat{\gamma}_i(G_n^o),
\]

for any \(i \in \mathbb{N} \), we have

\[
\mathbb{E}_n(1) \cdot \mathbb{P}(W_n = i) = \varepsilon_i(G_n^o) = \gamma_i(G_n^o) + \hat{\gamma}_i(G_n^o)
\]

\[
= \mathbb{P}(U_n = \frac{i}{2}) \cdot \varepsilon_n(1) + \mathbb{P}(\hat{U}_n = i) \cdot \hat{\gamma}_n(1),
\]

here \(\gamma_i(G_n^o) \) is defined as 0 when \(i \) is an odd number. Therefore, it holds that

\[
\mathbb{P}(W_n = i) = a_n \mathbb{P}(2U_n = i) + b_n \mathbb{P}(\hat{U}_n = i)
\]

By this, for any \(x \geq 0 \), we have

\[
\mathbb{P}(W_n \leq x) - \mathbb{P}(\hat{U}_n \leq x) = a_n \mathbb{P}(2U_n \leq x) + (b_n - 1) \mathbb{P}(\hat{U}_n \leq x).
\]

Thus

\[
\left| \mathbb{P}(W_n \leq x) - \mathbb{P}(\hat{U}_n \leq x) \right| \leq a_n + (1 - b_n).
\]

By the definitions of \(W_n, \hat{U}_n \), the above inequality implies (3.6).

\[\square\]

By (3.6), once the limits of Euler-genus distributions is obtained, the limits of crosscap-number distributions is also known.

With the same method as that in Theorem 3.9, we obtain the following corollary.
Corollary 3.10. Let \(\{G_n\}_{n=1}^\infty \) be any sequence of graphs, which is not required to be \(H \)-linear family of graphs with spiders. If \(\lim_{n \to \infty} \frac{\varepsilon(G_n(1))}{\varepsilon(G_n(1))} = 0 \) or \(\lim_{n \to \infty} \beta(G_n) = \infty \), we have
\[
\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| \sum_{0 \leq i \leq x} \frac{\varepsilon_i(G_n)}{\varepsilon(G_n)} - \sum_{0 \leq i \leq x} \frac{\gamma_i(G_n)}{\Gamma(G_n(1))} \right| = 0.
\]

4. More examples and some research problems

The graphs, which have explicit formulas for their embedding distributions, mainly are linear families of graphs with spiders, see [4, 6, 8, 11, 29] for details. There are many linear families of graphs with spiders which satisfy the conditions of Theorem 2.1 or Theorem 3.5. However, we give a few examples to demonstrate the theorems, including the famous Möbius ladders, Ringel ladders and Circular ladders.

Example 4.1. Let \(Y_n \) be the iterated-claw graph of Figure 4.1.

\[
\begin{align*}
\text{Figure 4.1. The claw } Y_1 \text{ (left), and the iterated-claw graph } Y_n \text{ (right).}
\end{align*}
\]

The genus polynomial for the iterated-claw graph \(Y_n \) [4] is given by
\[
\Gamma_{Y_n}(x) = 20x\Gamma_{Y_{n-1}}(x) - 8(-3x + 8x^2)\Gamma_{Y_{n-2}}(x) - 384x^3\Gamma_{Y_{n-3}}(x).
\]

Since
\[
F(x, \lambda) = \lambda^3 - 20x\lambda^2 + 8(8x^2 - 3x)\lambda + 384x^3,
\]
\[
F(1, \lambda) = (\lambda - 16)(\lambda - 2(1 - \sqrt{7}))(\lambda - 2(\sqrt{7} + 1)),
\]
the conditions of Theorem 2.1 hold for \(P_n(x) = \Gamma_{Y_n}(x) \) and \(\lambda_1(1) = D = 16 \). By the derivative rule of implicit function and with the help of Maple, one sees
\[
e = \frac{6}{7}, \quad v = \frac{8}{147} > 0.
\]

For the constants \(e, v \) given above, we have
\[
\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| \frac{1}{\Gamma_{Y_n}(1)} \sum_{0 \leq i \leq x} \gamma_i(Y_n) - \int_{-\infty}^{\infty} e^{-\frac{1}{2}u} du \right| = 0.
\]

By [4], the Euler-genus polynomials of \(Y_n \) satisfy the following three-order recurrence relation
\[
\mathcal{E}_{Y_n}(x) = 2(3x + 28x^2)\mathcal{E}_{Y_{n-1}}(x) - 16(-3x^2 - 12x^3 + 4x^4)\mathcal{E}_{Y_{n-2}}(x) - 3072x^6\mathcal{E}_{Y_{n-3}}(x).
\]

Set \(P_n(x) = \mathcal{E}_{Y_n}(x) \) and
\[
F(x, \lambda) = \lambda^3 - 2(3x + 28x^2)\lambda^2 + 16(-3x^2 - 12x^3 + 4x^4)\lambda + 3072x^6.
\]

Since \(F(1, \lambda) = (\lambda - 64)(\lambda - 6)(\lambda + 8) \), the conditions of Theorem 2.1 hold and \(D = \lambda_1(1) = 64 \). By the derivative rule of implicit function and with the help of Maple, one sees
\[
e = \frac{160}{87}, \quad v = \frac{269092}{1975509} > 0.
\]
For the constants e, v given above, the Euler-genus distributions of Y_n are asymptotic normal distribution with mean $e \cdot n$ and variance $v \cdot n$. By Theorem 3.3 the crosscap-number distributions of Y_n are also asymptotic normal distribution with mean $e \cdot n$ and variance $v \cdot n$.

Example 4.2. Let $G_n = P_n \square P_3$ be the grid graph \[17\]. The genus polynomials for the grid graph G_n are given by the recursion

$$
\Gamma_{G_n}(x) = (1 + 30x)\Gamma_{G_{n-1}}(x) - 42(-x + 4x^2)\Gamma_{G_{n-2}}(x) - 72(x^2 + 14x^3)\Gamma_{G_{n-3}}(x) + 1728x^4\Gamma_{G_{n-4}}(x).
$$

With the help of Maple, the conditions of Theorem 2.1 hold for $P_n(x) = \Gamma_{G_n}(x)$ and

$$D = \lambda_1(1) = 24, \ e = \frac{34}{41}, \ v = \frac{4816}{68921} > 0. \ $$

The Euler-genus polynomials for the grid graphs G_n \[4\] satisfy the recursion

$$
\mathcal{E}_{G_n}(x) = (1 + 11x + 84x^2)\mathcal{E}_{G_{n-1}}(x) + 12x^2(7 + 30x - 28x^2)\mathcal{E}_{G_{n-2}}(x) - 288x^3(1 + 4x + 32x^2)\mathcal{E}_{G_{n-3}}(x) + 2768x^6\mathcal{E}_{G_{n-4}}(x).
$$

With the help of Maple, the conditions of Theorem 2.1 hold for $P_n(x) = \mathcal{E}_{G_n}(x)$ and

$$D = \lambda_1(1) = 96, \ e = \frac{5488}{3037}, \ v = \frac{4819233780}{28011371653} > 0. \ $$

By the discussions above, the embedding distributions of the grid graph G_n are asymptotic normal distributions.

Example 4.3. Suppose that n is a positive integer. Let C_n be the cycle graph on n vertices. The Ringel ladder R_n is obtained by adding an edge joining the two vertices of the leftmost edge and rightmost edge of the ladder graph L_n. A circular ladder CL_n is the graphical Cartesian product $C_n \square P_2$. The Möbius ladder ML_n is formed from an $2n$-cycle by adding edges connecting opposite pairs of vertices in the cycle, i.e., the Möbius ladder can be described as a circular ladder with a half-twist. It is known in \[6\] that the Ringel ladder, circular ladder, and Möbius ladder are ring-like families of graphs. Let H_n be the Ringel ladder R_n, circular ladder CL_n, or Möbius ladder ML_n.

By Theorem 3.1 in \[6\], the genus polynomials for H_n \[6\] satisfy the recursion

$$
\Gamma_{H_n}(x) = 4\Gamma_{H_{n-1}}(x) + (-5 + 20x)\Gamma_{H_{n-2}}(x) + (56x + 2)\Gamma_{H_{n-3}}(x) - 4(32x - 11)x\Gamma_{H_{n-4}}(x) + 8(28x - 1) x\Gamma_{H_{n-5}}(x) + 32(8x - 3)x^2\Gamma_{H_{n-6}}(x) - 256x^3\Gamma_{H_{n-7}}(x).
$$

Since

$$
F(x, \lambda) = \lambda^7 - 4\lambda^6 - (-5 + 20x)\lambda^5 - (-56x + 2)\lambda^4 + 4(32x - 11)x\lambda^3 - 8(28x - 1)x\lambda^2 - 32(8x - 3)x^2\lambda + 256x^3 \ \text{and} \ \lambda_1(x) = \sqrt{8x + 1} + 1, \ D = \lambda_1(1) = 4.
$$

With the help of Maple, one easily sees

$$e = \frac{1}{3}, \ v = \frac{2}{27} > 0. \ $$
By Theorem 2.1 for the constants e, v given above, we have

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} \left| \frac{1}{\Gamma_{H_n}(1)} \sum_{0 \leq i \leq x \sqrt{n + e - n}} \gamma_i(H_n) - \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du \right| = 0.$$

The Euler-genus polynomials for H_n are given by the recursion

$$\mathcal{E}_{H_n}(x) = (12x + 4)\mathcal{E}_{H_{n-1}}(x) + (-12x^2 - 34x - 5)\mathcal{E}_{H_{n-2}}(x)$$

$$+ (-240x^3 - 20x^2 + 26x + 2)\mathcal{E}_{H_{n-3}}(x)$$

$$+ 4(80x^3 + 128x^2 + 14x - 1)x\mathcal{E}_{H_{n-4}}(x)$$

$$+ 16(112x^3 + 8x^2 - 14x - 1)x^2\mathcal{E}_{H_{n-5}}(x)$$

$$- 128(8x^3 + 18x + 3)x^4\mathcal{E}_{H_{n-6}}(x)$$

$$- 2048(2x + 1)x^6\mathcal{E}_{H_{n-7}}(x).$$

Since

$$F(x, \lambda) = \lambda^7 - (12x + 4)\lambda^6 - (-12x^2 - 34x - 5)\lambda^5 - (-240x^3 - 20x^2 + 26x + 2)\lambda^4$$

$$- 4(80x^3 + 128x^2 + 14x - 1)x\lambda^3 - 16(112x^3 + 8x^2 - 14x - 1)x^2\lambda^2$$

$$+ 128(8x^3 + 18x + 3)x^4\lambda + 2048(2x + 1)x^6,$$

$$F(1, \lambda) = (\lambda + 2)^2(\lambda - 3)(\lambda - 4)(\lambda - 8)(\lambda - \frac{1}{2}(5 - \sqrt{89}))(\lambda - \frac{1}{2}(5 + \sqrt{89})),$$

the conditions of Theorem 2.1 hold for $P_n(x) = \mathcal{E}_{H_n}(x)$ and $D = \lambda_1(1) = 8$. With the help of Maple, we have

$$\lambda_1(x) = \sqrt{20x^2 + 4x + 1 + 2x + 1}, \quad e = \frac{4}{5}, \quad v = \frac{22}{125} > 0.$$

By Theorem 2.1 for the constants e, v given above, the Euler-genus distributions of H_n is asymptotic normal distribution with mean $e \cdot n$ and variance $v \cdot n$.

4.1. Some researches problems. In the end of this paper, we demonstrate some research problems.

Question 4.1. In our paper, the limits of the embedding distributions for graphs are normal distributions or some discrete distributions. Can we prove that the limit of the embedding distributions for any H-linear family of graphs is a normal distribution or a discrete distribution. Furthermore, if the maximum genus (Euler-genus) $\varepsilon_{\max}(G)$ of H is greater than 0, do we have the limit for the genus distributions (Euler-genus distribution) for any H-linear family of graphs is a normal distribution?

Question 4.2. Suppose that $\{G_n\}_{n=1}^{\infty}$ is a family of graphs with $\beta(G_n) \to \infty$ (orientable maximum genus $\gamma_M(G_n) \to \infty$). Are the crosscap-number distributions (genus distributions) of G_n asymptotic normal.

A bouquet of circles B_n is define as a graph with one vertex and n edges. A dipole D_n is a graph with two vertices joining by n multiple edges. In [15], Gross, Robbins, and Tucker obtained a second-order recursion for the genus distributions of B_n. The genus distributions of D_n were obtained by Rieper in [25], and independently by Kwak and Lee in [16]. The wheel W_n is a graph formed by connecting a single vertex to each of the vertices of a n-cycle. The genus distribution of W_n was obtained in [5] by Chen, Gross and Mansour. The following special case of question 4.2 is may not hard.
Question 4.3. Are the embedding distributions of B_n, D_n and W_n asymptotic normal?

The following question is for the complete graph K_n on n vertices and complete bipartite graph $K_{m,n}$.

Question 4.4. Are the embedding distributions of K_n, and $K_{m,n}$ asymptotic normal?

Another question is the following.

Question 4.5. Is the embedding distribution of a random graph on n vertices asymptotic normal?

Acknowledgement Yichao Chen was supported by NNSFC under Grant No.11471106. Xuhui Peng was supported by Hunan Provincial Natural Science Foundation of China under Grant 2019JJ50377.

REFERENCES

[1] E. Behrends, Introduction to Markov chains, Vieweg+Teubner Verlag, Wesbaden, 2000.
[2] J. Chen, and J.L. Gross, Limit points for average genus.I:3-connected and 2-connected simplicial graphs, J. Combin. Theory B 55(1992), 82-103.
[3] J. Chen, J.L. Gross, and R.G. Rieper, Overlap matrices and total imbedding distributions, Discrete Mathematics, 128(1-3)(1994)73-94.
[4] Y. Chen, and J.L. Gross, An Euler-genus approach to the calculation of the crosscap-number polynomial, J. Graph Theory 88 (1)(2018), 80-100.
[5] Y. Chen, J.L. Gross, and T. Mansour, On the genus distributions of wheels and of related graphs, Discrete Math. 341 (2018) 934-945.
[6] Y. Chen, and J.L. Gross, Genus polynomials and crosscap-number polynomials for ring-like graphs, Math. Nachr. 292(4) (2019), 760-776.
[7] Y. Chen, J.L. Gross, T. Mansour, and T.W. Tucker, Genus polynomials of ladder-like sequences of graphs, J. Algebraic Combin. (2020), To appear.
[8] Y. Chen, J.L. Gross, T. Mansour, and T.W. Tucker, Recurrences for the genus polynomials of linear sequences of graphs, Mathematica Slovaca (2020), to appear.
[9] W. Feller, An introduction to probability theory and its applications, Wiley Series in Probability and Statistics (1971). Volume 2.
[10] J.L. Gross, T. Mansour, and T.W. Tucker, Log-concavity of genus distributions of ring-like families of graphs, European. J. Combin. 42(2014), 74-91.
[11] J.L .Gross, I. F. Khan, T. Mansour, and T.W. Tucker, Calculating genus polynomials via string operations and matrices, Ars Math. Contemp., 15 (2018), 267-295.
[12] J.L. Gross, T. Mansour, T.W. Tucker, and David G.L. Wang, Log-concavity of combinations of sequences and applications to genus distributions, SIAM J. Discrete Math., 29(2)(2015), 1002-1029.
[13] J.L. Gross, T. Mansour, T.W. Tucker, and David G.L. Wang, Combinatorial conjectures that imply local log-concavity of graph genus polynomials, European J. Combin. 52(2016), 207-222.
[14] J.L. Gross, T. Mansour, T.W. Tucker, and David G.L. Wang, Iterated claws have real-rooted genus polynomials, Ars Math. Contemp. 10(2)(2016), 255-268.
[15] J.L. Gross, D.P. Robbins, and T.W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory (B) 47(3)(1989), 292-306.
[16] J.H. Kwak, and J. Lee, Genus polynomials of dipoles, Kyungpook Math. J. 33(1993), 115-125.
[17] I.F. Khan, M.I. Poshni, and J.L. Gross, Genus distribution of $P_m \Box P_n$, Discrete Math. 312 (2012) 2863–2871.
[18] K.J. Mengers, A. Tucker, Statistics of genus numbers of cubic fields, arxiv:1611.07088 (2016).
[19] H. Minc, Nonnegative Matrices, John Wiley & Sons Inc, 1988.
[20] B. Mohar, The genus distribution of doubly hexagonal chains, “Topics in Chemical Graph Theory”, I. Gutman, Ed., Mathematical Chemistry Monographs Vol. 16a, Univ. Kragujevac, Kragujevac, (2014) 205–214.
[21] R. Naunin, and C. Palst, The roots of a polynomial depend continuously on its coefficients, Revista Colombiana de Matematicas 28(1994),35-37.
20 JINLIAN ZHANG, XUHUI PENG, AND YICHAO CHEN

[22] V.V. Petrov, limit theorems of probability theory sequences of independent random variables, Oxford University Press, 1995.

[23] M.I. Poshni, I.F. Khan, and J.L. Gross, genus distributions of graphs under edge-amalgamations, *Ars Math. Contemp.* 3(2010), 69-86.

[24] S.U. Pillai, T. Suel, and S.H. Cha, The perron-frobenius theorem-some of its applications, *IEEE Signal Processing Magazine* 22(2) (2005), 62-75.

[25] R.G. Riper, The enumeration of graph embeddings, Ph.D. Thesis, Western Michigan University, 1987.

[26] S. Stahl, The average genus of classes of graph embeddings, *Congr. Numer.* 40(1983), 375-388.

[27] S. Stahl, Permutation-partition pairs.III: embedding distributions of linear families of graphs, *J. Combin. Theory (B)* 52(2)(1991), 191-218.

[28] S. Stahl, On the average genus of the random graph, *J. Graph Theory*, 20(1) (1995) 1–18.

[29] S. Stahl, On the zeros of some genus polynomials, *Canad. J. Math.* 49(1997), 617-640.

[30] S. Stahl, Region distributions of graph embedding and stirling numbers, *Discrete Mathematics* 82(1990), 57-76.

[31] A.N. Shiryaev, Probability, Springer, Second Edition.

[32] E.H. Tesar, Genus distribution of ringel ladders, *Discrete Math.* 216(1)(2000), 235-252.

[33] A.T. White, An introduction to random topological graph theory, *Combin. Probab. Comput.* 3(04)(1994), 545-555.

[34] L. Wan, and Y. Liu, Orientable embedding genus distribution for certain types of graphs, *J. Combin. Theory (B)* 98(1)(2008), 19-32.

College of Mathematics and Econometrics, Hunan University, 410082 Changsha, China

E-mail address: jinlian916@hnu.edu.cn

MOE-LCSM, School of mathematics and statistics, Hunan Normal University, 410081 Changsha, China

E-mail address: xhpeng@hunnu.edu.cn

College of Mathematics and Econometrics, Hunan University, 410082 Changsha, China

E-mail address: ycchen@hnu.edu.cn