An equivalent representation of the Jacobi field of a Lévy process

E. Lytvynov
Department of Mathematics
University of Wales Swansea
Singleton Park
Swansea SA2 8PP
U.K.
E-mail: e.lytvynov@swansea.ac.uk

Abstract

In [8], the Jacobi field of a Lévy process was derived. This field consists of commuting self-adjoint operators acting in an extended (interacting) Fock space. However, these operators have a quite complicated structure. In this note, using ideas from [1, 17], we obtain a unitary equivalent representation of the Jacobi field of a Lévy process. In this representation, the operators act in a usual symmetric Fock space and have a much simpler structure.

AMS Mathematics Subject Classification: 60G20, 60G51, 60H40, 47B36
Key words and phrases: Extended Fock space; Jacobi field; Lévy process; Lévy white noise

1 Lévy process and its Jacobi field

The notion of a Jacobi field in the Fock space first appeared in the works by Berezansky and Koshmanenko [3, 7], devoted to the axiomatic quantum field theory, and then was further developed by Brüning (see e.g. [10]). These works, however, did not contain any relations with probability measures. A detailed study of a general commutative Jacobi field in the Fock space and a corresponding spectral measure was carried out in a series of works by Berezansky, see e.g. [3, 5] and the references therein.

In [8] (see also [10, 18]), the Jacobi field of a Lévy process on a general manifold was studied. Let us shortly recall these results.

Let X be a complete, connected, oriented C^∞ (non-compact) Riemannian manifold and let $\mathcal{B}(X)$ be the Borel σ-algebra on X. Let σ be a Radon measure on $(X, \mathcal{B}(X))$ that is non-atomic and non-degenerate (i.e., $\sigma(O) > 0$ for any open set $O \subset X$). As a typical example of measure σ, one can take the volume measure on X.
We denote by D the space $C_0^\infty(X)$ of all infinitely differentiable, real-valued functions on X with compact support. It is known that D can be endowed with a topology of a nuclear space. Thus, we can consider the standard nuclear triple

$$D \subset L^2(X, \sigma) \subset D',$$

where D' is the dual space of D with respect to the zero space $L^2(X, \sigma)$. (Here and below, all the linear spaces we deal with are real.) The dual pairing between $\omega \in D'$ and $\varphi \in D$ will be denoted by $\langle \omega, \varphi \rangle$. We denote the cylinder σ-algebra on D' by $C(D')$.

Let ν be a measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ whose support contains an infinite number of points and assume $\nu(\{0\}) = 0$. Let

$$\tilde{\nu}(ds) := s^2 \nu(ds).$$

We further assume that $\tilde{\nu}$ is a finite measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, and moreover, there exists an $\varepsilon > 0$ such that

$$\int_\mathbb{R} \exp\left(\varepsilon |s|\right) \tilde{\nu}(ds) < \infty. \quad (1)$$

We now define a centered Lévy process on X (without Gaussian part) as a generalized process on D' whose law is the probability measure μ on $(D', C(D'))$ given by its Fourier transform

$$\int_{D'} e^{i \langle \omega, \varphi \rangle} \mu(d\omega) = \exp\left(\int_{\mathbb{R} \times X} (e^{is\varphi(x)} - 1 - is\varphi(x)) \nu(ds) \sigma(dx)\right), \quad \varphi \in D. \quad (2)$$

Thus, ν is the Lévy measure of the Lévy process μ. Without loss of generality, we can suppose that $\tilde{\nu}$ is a probability measure on \mathbb{R}. (Indeed, if this is not the case, define $\nu' := c^{-1} \nu$ and $\sigma' := c \sigma$, where $c := \tilde{\nu}(\mathbb{R})$.)

It follows from (1) that the measure $\tilde{\nu}$ has all moments finite, and furthermore, the set of all polynomials is dense in $L^2(\mathbb{R}, \tilde{\nu})$. Therefore, by virtue of (2), there exists a unique (infinite) Jacobi matrix

$$J = \begin{pmatrix}
a_0 & b_1 & 0 & 0 & 0 & \cdots \\
b_1 & a_1 & b_2 & 0 & 0 & \cdots \\
0 & b_2 & a_2 & b_3 & 0 & \cdots \\
0 & 0 & b_3 & a_3 & b_4 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}, \quad a_n \in \mathbb{R}, \ b_n > 0,$n}

whose spectral measure is $\tilde{\nu}$.

Next, we denote by $\mathcal{P}(D')$ the set of continuous polynomials on D', i.e., functions on D' of the form $F(\omega) = \sum_{i=0}^n \langle \omega^{\otimes i}, f_i \rangle$, $\omega^{\otimes 0} := 1$, $f_i \in D^{\otimes i}$, $i = 0, \ldots, n$, $n \in \mathbb{Z}_+$.

2
Here, \(\hat{\otimes} \) stands for symmetric tensor product. The greatest number \(i \) for which \(f^{(i)} \neq 0 \) is called the power of a polynomial. We denote by \(\mathcal{P}_n(D') \) the set of continuous polynomials of power \(\leq n \).

By (11), (12), and [13, Sect. 11], \(\mathcal{P}(D') \) is a dense subset of \(L^2(D', \mu) \). Let \(\mathcal{P}^\sim_n(D') \) denote the closure of \(\mathcal{P}_n(D') \) in \(L^2(D', \mu) \), let \(\mathcal{P}_n(D') \), \(n \in \mathbb{N} \), denote the orthogonal difference \(\mathcal{P}_n^\sim(D') \ominus \mathcal{P}^\sim_{n-1}(D') \), and let \(\mathcal{P}_0(D') := \mathcal{P}^\sim_0(D') \). Then, we evidently have:

\[
L^2(D', \mu) = \bigoplus_{n=0}^{\infty} \mathcal{P}_n(D').
\] (3)

The set of all projections \(\langle \cdot \otimes f_n, \rangle \) of continuous monomials \(\langle \cdot \otimes f_n, \rangle, f_n \in \mathcal{D}^\otimes \), onto \(\mathcal{P}_n(D') \) is dense in \(\mathcal{P}_n(D') \). For each \(n \in \mathbb{N} \), we define a Hilbert space \(\mathfrak{F}_n \) as the closure of the set \(\mathcal{D}^\otimes \) in the norm generated by the scalar product

\[
(f_n, g_n)_{\mathfrak{F}_n} := \frac{1}{n!} \int_{D'} \langle \omega^\otimes, f_n \rangle : \langle \omega^\otimes, g_n \rangle: \mu(d\omega), \quad f_n, g_n \in \mathcal{D}^\otimes.\] (4)

Denote

\[
\mathfrak{F} := \bigoplus_{n=0}^{\infty} \mathfrak{F}_n n!,
\] (5)

where \(\mathfrak{F}_0 := \mathbb{R} \). By (3)–(5), we get the unitary operator

\[
\mathcal{U} : \mathfrak{F} \rightarrow L^2(D', \mu)
\]

that is defined through \(\mathcal{U} f_n := \langle \cdot \otimes f_n, \rangle \), \(f_n \in \mathcal{D}^\otimes \), \(n \in \mathbb{Z}_+ \), and then extended by linearity and continuity to the whole space \(\mathfrak{F} \).

An explicit formula for the scalar product \(\langle \cdot, \cdot \rangle_{\mathfrak{F}_n} \) looks as follows. We denote by \(\mathbb{Z}^+ \) the set of all sequences \(\alpha \) of the form

\[
\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n, 0, 0, \ldots), \quad \alpha_i \in \mathbb{Z}_+, \ n \in \mathbb{N}.
\]

Let \(|\alpha| := \sum_{i=1}^{\infty} \alpha_i \). For each \(\alpha \in \mathbb{Z}^+, 1\alpha_1 + 2\alpha_2 + \cdots = n, \ n \in \mathbb{N} \), and for any function \(f_n : X^n \rightarrow \mathbb{R} \) we define a function \(D_\alpha f_n : X^{|\alpha|} \rightarrow \mathbb{R} \) by setting

\[
(D_\alpha f_n)(x_1, \ldots, x_{|\alpha|}) := f(x_1, \ldots, x_{\alpha_1}, x_{\alpha_1+1}, x_{\alpha_1+2}, \ldots, x_{\alpha_1+\alpha_2}, x_{\alpha_1+\alpha_2+1}, \ldots, x_{\alpha_1+\alpha_2+1}, x_{\alpha_1+\alpha_2+2}, \ldots) \quad (2 \text{ times})
\]

\[
\ldots \quad (3 \text{ times})
\]

We have (cf. [15]):
Theorem 1 For any $f^{(n)}, g^{(n)} \in \mathcal{D}^{\hat{\otimes} n}$, we have:

$$
(f^{(n)}, g^{(n)})_{\mathfrak{F}_n} = \sum_{\alpha \in \mathbb{Z}_{+ \infty}^+ : 1\alpha_1 + 2\alpha_2 + \cdots = n} K_\alpha \int_{X^{\mid \alpha \mid}} (D_\alpha f_n)(x_1, \ldots, x_{\mid \alpha \mid}) \\
\times (D_\alpha g_n)(x_1, \ldots, x_{\mid \alpha \mid}) \sigma^{\mid \alpha \mid}(dx_1, \ldots, dx_{\mid \alpha \mid}),
$$

where

$$
K_\alpha = \frac{(1\alpha_1 + 2\alpha_2 + \cdots)!}{\alpha_1! \alpha_2! \cdots} \prod_{k \geq 2} \left(\frac{\prod_{i=1}^{k-1} b_i}{k!} \right)^{2\alpha_k}.
$$

(6)

Next, we find the elements which belong to the space \mathfrak{F}_n after the completion of $\mathcal{D}^{\hat{\otimes} n}$. To this end, we define, for each $\alpha \in \mathbb{Z}_{+ \infty}^+$, the Hilbert space

$$
L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) := L^2(X, \sigma)^{\hat{\otimes} \alpha_1} \otimes L^2(X, \sigma)^{\hat{\otimes} \alpha_2} \otimes \cdots.
$$

Define a mapping

$$
U^{(n)} : \mathcal{D}^{\hat{\otimes} n} \rightarrow \bigoplus_{\alpha \in \mathbb{Z}_{+ \infty}^+ : 1\alpha_1 + 2\alpha_2 + \cdots = n} L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) K_\alpha
$$

by setting, for each $f^{(n)} \in \mathcal{D}^{\hat{\otimes} n}$, the $L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) K_\alpha$-coordinate of $U^{(n)} f^{(n)}$ to be $D_\alpha f^{(n)}$. By virtue of Theorem 1, $U^{(n)}$ may be extended by continuity to an isometric mapping of \mathfrak{F}_n into

$$
\bigoplus_{\alpha \in \mathbb{Z}_{+ \infty}^+ : 1\alpha_1 + 2\alpha_2 + \cdots = n} L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) K_\alpha.
$$

Furthermore, we have (cf. [9, 16]):

Theorem 2 The mapping

$$
U^{(n)} : \mathfrak{F}_n \rightarrow \bigoplus_{\alpha \in \mathbb{Z}_{+ \infty}^+ : 1\alpha_1 + 2\alpha_2 + \cdots = n} L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) K_\alpha
$$

is a unitary operator.

By virtue of Theorem 2 and (5), we can identify \mathfrak{F}_n with the space

$$
\bigoplus_{\alpha \in \mathbb{Z}_{+ \infty}^+ : 1\alpha_1 + 2\alpha_2 + \cdots = n} L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) K_\alpha
$$

and the space \mathfrak{F} with

$$
\bigoplus_{\alpha \in \mathbb{Z}_{+ \infty}^+} L^2_{\alpha}(X^{\mid \alpha \mid}, \sigma^{\mid \alpha \mid}) K_\alpha (1\alpha_1 + 2\alpha_2 + \cdots)!.
$$
For a vector \(f \in \mathcal{F} \), we will denote its \(\alpha \)-coordinate by \(f_\alpha \).

Note that, for for \(\alpha = (n, 0, 0, \ldots) \), we have

\[
L^2_\alpha(X^{\lvert \alpha \rvert}, \sigma^\lvert \alpha \rvert) = L^2(X, \sigma) \hat{\otimes} \mathcal{F}_n, \quad K_\alpha = 1, \quad (1\alpha_1 + 2\alpha_2 + \cdots)! = n!.
\]

Hence, the space \(\mathcal{F} \) contains the symmetric Fock space

\[
\mathcal{F}(L^2(X, \sigma)) = \bigoplus_{n=0}^{\infty} L^2(X, \sigma) \hat{\otimes} \mathcal{F}_n
\]

as a proper subspace. Therefore, we call \(\mathcal{F} \) an extended Fock space. We also note that the space \(\mathcal{F} \) satisfies the axioms of an interacting Fock space, see [11].

In the space \(L^2(D', \mu) \), we consider, for each \(\varphi \in D \), the operator \(M(\varphi) \) of multiplication by the function \(\langle \cdot, \varphi \rangle \). Let \(J(\varphi) := UM(\varphi)U^{-1} \). Denote by \(\mathcal{F}_{\text{fin}}(D) \) the set of all vectors of the form \((f_0, f_1, \ldots, f_n, 0, 0, \ldots) \), \(f_i \in D \hat{\otimes} i \), \(i = 0, \ldots, n \), \(n \in \mathbb{Z}_+ \). Evidently, \(\mathcal{F}_{\text{fin}}(D) \) is a dense subset of \(\mathcal{F} \). We have the following theorem, see [3].

Theorem 3 For any \(\varphi \in D \), we have:

\[
\mathcal{F}_{\text{fin}}(D) \subset \text{Dom}(J(\varphi)), \quad J(\varphi) \upharpoonright \mathcal{F}_{\text{fin}}(D) = J^+(\varphi) + J^0(\varphi) + J^-(\varphi).
\]

Here, \(J^+(\varphi) \) is the usual creation operator:

\[
J^+(\varphi)f_n = \varphi \hat{\otimes} f_n, \quad f_n \in D \hat{\otimes} n, \quad n \in \mathbb{Z}_+.
\]

Next, for each \(f^{(n)} \in D \hat{\otimes} n \), \(J^0(\varphi)f^{(n)} \in \mathcal{F}_n \) and

\[
(J^0(\xi)f^{(n)})_\alpha(x_1, \ldots, x_{\lvert \alpha \rvert}) = \sum_{k=1}^{\infty} \alpha_k a_{k-1} S_{\alpha}(\xi(x_{\alpha_1 + \cdots + \alpha_k})(D_{\alpha f^{(n)}})(x_1, \ldots, x_{\lvert \alpha \rvert}))
\]

\(\sigma^{\otimes \lvert \alpha \rvert} \)-a.e., \(\alpha \in \mathbb{Z}^\infty_+, \quad 1\alpha_1 + 2\alpha_2 + \cdots = n \),

\[
J^-(\xi)f^{(n)} = 0 \text{ if } n = 0, \quad J^-(\xi)f^{(n)} \in \mathcal{F}_{n-1} \text{ if } n \in \mathbb{N} \text{ and }
\]

\[
(J^-(\xi)f^{(n)})_\alpha(x_1, \ldots, x_{\lvert \alpha \rvert}) = nS_{\alpha} \left(\int_X \xi(x)(D_{\alpha_1 1 f^{(n)}})(x_1, \ldots, x_{\lvert \alpha \rvert}) \sigma(dx) \right)
\]

\(\sigma^{\otimes \lvert \alpha \rvert} \)-a.e., \(\alpha \in \mathbb{Z}^\infty_+, \quad 1\alpha_1 + 2\alpha_2 + \cdots = n - 1 \).
In formulas (9) and (10), we denoted by S_α the orthogonal projection of $L^2(X^{[\alpha]}, \sigma^{\otimes [\alpha]})$ onto $L^2_\alpha(X^{[\alpha]}, \sigma^{\otimes [\alpha]})$,

$$\alpha \pm 1_n := (\alpha_1, \ldots, \alpha_{n-1}, \alpha_n \pm 1, \alpha_{n+1}, \ldots), \quad \alpha \in \mathbb{Z}_{+0}, \ n \in \mathbb{N}.$$

Finally, each operator $J(\varphi), \varphi \in \mathcal{D}$, is essentially self-adjoint on $\mathcal{F}_{\text{fin}}(\mathcal{D})$.

By (7), the operator $J(\varphi) \upharpoonright \mathcal{F}_{\text{fin}}(\mathcal{D})$ is a sum of creation, neutral, and annihilation operators, and hence $J(\varphi) \upharpoonright \mathcal{F}_{\text{fin}}(\mathcal{D})$ has a Jacobi operator’s structure. The family of operators $(J(\varphi))_{\varphi \in \mathcal{D}}$ is called the Jacobi field corresponding to the Lévy process μ.

2 An equivalent representation

As shown in [4, 13, 15, 16], in some cases, the formulas describing the operators $J^0(\varphi)$ and $J^-(\varphi)$ can be significantly simplified. However, in the case of a general Lévy process this is not possible, see [8]. We will now present a unitarily equivalent description of the Jacobi field $(J(\varphi))_{\varphi \in \mathcal{D}}$, which will have a simpler form.

Let us consider the Hilbert space ℓ_2 spanned by the orthonormal basis $(e_n)_{n=0}^\infty$ with

$$e_n = (0, \ldots, 0, \underbrace{1}_{(n+1)\text{-st place}}, 0, 0 \ldots).$$

Consider the tensor product $\ell_2 \otimes L^2(X, \sigma)$, and let

$$\mathcal{F}(\ell_2 \otimes L^2(X, \sigma)) = \bigoplus_{n=0}^\infty (\ell_2 \otimes L^2(X, \sigma))^{\otimes n} n!$$

be the (usual) symmetric Fock space over $\ell_2 \otimes L^2(X, \sigma)$.

Denote by $\ell_{2,0}$ the dense subset of ℓ_2 consisting of all finite vectors, i.e.,

$$\ell_{2,0} := \{(f^{(n)})_{n=0}^\infty : \exists N \in \mathbb{Z}_+ \text{ such that } f^{(n)} = 0 \text{ for all } n \geq N\}.$$

The Jacobi matrix J determines a linear symmetric operator in ℓ_2 with domain $\ell_{2,0}$ by the following formula:

$$Je_n = b_{n+1}e_{n+1} + a_ne_n + b_ne_{n-1}, \quad n \in \mathbb{Z}_+, \ e_{-1} := 0.$$

Denote by J^+, J^0, J^- the corresponding creation, neutral, and annihilation operators in $\ell_{2,0}$, so that $J = J^+ + J^0 + J^-.$

Denote by Φ the linear subspace of $\mathcal{F}(\ell_2 \otimes L^2(X, \sigma))$ that is the linear span of the vacuum vector $(1, 0, 0, \ldots)$ and vectors of the form $(\xi \otimes \varphi)^{\otimes n}$, where $\xi \in \ell_{2,0}$, $\varphi \in \mathcal{D}$, and $n \in \mathbb{N}$. The set Φ is evidently a dense subset of $\mathcal{F}(\ell_2 \otimes L^2(X, \sigma))$.

6
Now, for each $\varphi, \psi \in \mathcal{D}$ and $\xi \in \ell_{2,0}$, we set

\[
A^+(\varphi)(\xi \otimes \psi)^{\otimes n} := (e_0 \otimes \varphi) \hat{\otimes} (\xi \otimes \psi)^{\otimes n} + n((J^+ \xi) \otimes (\varphi \psi)) \hat{\otimes} (\xi \otimes \varphi)^{\otimes (n-1)},
\]

\[
A^0(\varphi)(\xi \otimes \psi)^{\otimes n} := n((J^0 \xi) \otimes (\varphi \psi)) \hat{\otimes} (\xi \otimes \varphi)^{\otimes (n-1)},
\]

\[
A^-(\varphi)(\xi \otimes \psi)^{\otimes n} := n(\xi, e_0)(\varphi, \psi)(\xi \otimes \varphi)^{\otimes (n-1)} + n((J^- \xi) \otimes (\varphi \psi)) \hat{\otimes} (\xi \otimes \varphi)^{\otimes (n-1)},
\]

and then extend these operators by linearity to the whole Φ. Thus,

\[
A^+(\varphi) = a^+(e_0 \otimes \varphi) + a^0(J^+ \otimes \varphi),
\]

\[
A^0(\varphi) = a^0(J^0 \otimes \varphi),
\]

\[
A^-(\varphi) = a^-(e_0 \otimes \varphi) + a^0(J^- \otimes \varphi),
\]

where $a^+(\cdot), a^0(\cdot), a^-(\cdot)$ are the usual creation, neutral, and annihilation operators in $\mathcal{F}^0(\ell_2 \otimes L^2(X, \sigma))$. (In fact, under, e.g., $a^0(J^+ \otimes \varphi)$ we understand the differential second quantization of the operator $J^+ \otimes \varphi$ in $\ell_2 \otimes L^2(X, \sigma)$, which, in turn, is the tensor product of the operator J^+ in ℓ_2 defined on $\ell_{2,0}$ and the operator of multiplication by φ in $L^2(X, \sigma)$ defined on \mathcal{D}.) Note also that

\[
A(\varphi) := A^+(\varphi) + A^0(\varphi) + A^-(\varphi)
\]

\[
= a^+(e_0 \otimes \varphi) + a^0((J^+ + J^0 + J^-) \otimes \varphi) + a^-(e_0 \otimes \varphi)
\]

\[
= a^+(e_0 \otimes \varphi) + a^0(J \otimes \varphi) + a^-(e_0 \otimes \varphi).
\]

In the following theorem, for a linear operator A in a Hilbert space H, we denote by \overline{A} its closure (if it exists).

Theorem 4 There exists a unitary operator

\[
I : \mathfrak{g} \to \mathcal{F}(\ell_2 \otimes L^2(X, \sigma))
\]

for which the following assertions hold. Let $J^+(\varphi), J^0(\varphi)$, and $J^-(\varphi), \varphi \in \mathcal{D}$, be linear operators in \mathfrak{g} with domain $\mathcal{F}_{\text{fin}}(\mathcal{D})$ as in Theorem 3. Then, for all $\varphi \in \mathcal{D}$,

\[
IJ^+(\varphi)I^{-1} = A^+(\varphi),
\]

\[
IJ^0(\varphi)I^{-1} = A^0(\varphi),
\]

\[
IJ^-(\varphi)I^{-1} = A^-(\varphi),
\]

and

\[
IJ(\varphi)I^{-1} = A(\varphi).
\]
Remark 1 Note, however, that the image of F_n under I does not coincide with the subspace $(\ell_2 \otimes L^2(X,\sigma))^\otimes n$ of the Fock space $\mathcal{F}(\ell_2 \otimes L^2(X,\sigma))$.

The proof of Theorem 4 is a straightforward generalization of the proof of Theorem 1 in [17], so we only outline it.

First, we recall the classical unitary isomorphism between the usual Fock space over $L^2(\mathbb{R} \times X, \nu \otimes \sigma)$ and $L^2(D',\mu)$:

$$U_1 : \mathcal{F}(L^2(\mathbb{R} \times X, \nu \otimes \sigma)) \rightarrow L^2(D',\mu).$$

This isomorphism was proved by Itô [12] and extended in [16] to a general Lévy process on X. Note also that

$$L^2(\mathbb{R} \times X, \nu \otimes \sigma) = L^2(\mathbb{R}, \nu) \otimes L^2(X,\sigma).$$

Next, we have the unitary operator

$$U_2 : L^2(\mathbb{R},\tilde{\nu}) \rightarrow L^2(\mathbb{R},\nu)$$

defined by

$$(U_2f)(s) := \frac{1}{s} f(s).$$

Let

$$U_3 : \ell_2 \rightarrow L^2(\mathbb{R},\tilde{\nu})$$

be the Fourier transform in generalized joint eigenvectors of the Jacobi matrix J, see [2]. The U_3 can be characterized as a unique unitary operator which maps the vector $(1,0,0,\ldots)$ into the function identically equal to 1, and which maps the closure \overline{J} of the symmetric operator J in ℓ_2 into the multiplication operator by the variable s.

Let

$$U_4 : \ell_2 \otimes L^2(X,\sigma) \rightarrow L^2(\mathbb{R} \times X, \nu \otimes \sigma)$$

be given by

$$U_4 := (U_2 U_3) \otimes \text{id},$$

where id denotes the identity operator. Using U_4, we naturally construct the unitary operator

$$U_5 : \mathcal{F}(\ell_2 \otimes L^2(X,\sigma)) \rightarrow \mathcal{F}(L^2(\mathbb{R} \times X, \nu \otimes \sigma)).$$

We now define a unitary operator

$$I := U U_1^{-1} U_5^{-1} : \mathcal{F} \rightarrow \mathcal{F}(\ell_2 \otimes L^2(X,\sigma)).$$

Then, the assertions of Theorem 4 about the unitary operator I follow from Theorem 3, the construction of the unitary operator I (see in particular Theorem 3.1 in [16], [12]), and a limiting procedure.
References

[1] L. Accardi, U. Franz, and M. Skeide, Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras, *Comm. Math. Phys.* 228 (2002), 123–150.

[2] Yu. M. Berezansky, “Expansions in Eigenfunctions of Selfadjoint Operators”, Amer. Math. Soc., Providence, R.I., 1968.

[3] Yu. M. Berezansky, Commutative Jacobi fields in Fock space, *Integral Equations Operator Theory* 30 (1998), 163–190.

[4] Yu. M. Berezansky, Pascal measure on generalized functions and the corresponding generalized Meixner polynomials, *Methods Funct. Anal. Topology* 8 (2002), no. 1, 1–13.

[5] Yu. M. Berezansky, Direct and inverse spectral problems for a Jacobi field, *St. Petersburg Math. J.* 9 (1998), 1053–1071.

[6] Yu. M. Berezansky and V. D. Koshmanenko, An asymptotic field theory in terms of operator Jacobian matrices, *Soviet Physics Dokl.* 14 (1969/1970), 1064–1066.

[7] Yu. M. Berezansky and V. D. Koshmanenko, Axiomatic field theory in terms of operator Jacobi matrices, *Teoret. Mat. Fiz.* 8 (1971), 75–191 (Russian).

[8] Yu. M. Berezansky, E. Lytvynov and D. A. Mierzejewski, The Jacobi field of a Lévy process, *Ukrainian Math. J.* 55 (2003), 853–858.

[9] Yu. M. Berezansky and D. A. Mierzejewski, The structure of the extended symmetric Fock space, *Methods Funct. Anal. Topology* 6 (2000), no. 4, 1–13.

[10] E. Brüning, When is a field a Jacobi field? A characterization of states on tensor algebras, *Publ. Res. Inst. Math. Sci.* 22 (1986), 209–246.

[11] Z. Huang and Y. Wu, Interacting Fock expansion of Lévy white noise functionals, *Acta Appl. Math.* 82 (2004), 333–352.

[12] K. Itô, Spectral type of the shift transformation of differential processes with stationary increments, *Trans. Amer. Math. Soc.* 81 (1956), 253–266.

[13] Y. Kondratiev and E. Lytvynov, Operators of gamma white noise calculus, *Infin. Dimen. Anal. Quant. Prob. Rel. Top.* 3 (2000), 303–335.

[14] E. Lytvynov, The square of white noise as a Jacobi field, *Infin. Dimens. Anal. Quantum Probab. Relat. Top.* 7 (2004), 619–629.
[15] E. Lytvynov, Polynomials of Meixner’s type in infinite dimensions—Jacobi fields and orthogonality measures, J. Funct. Anal. **200** (2003), 118–149.

[16] E. Lytvynov, Orthogonal decompositions for Lévy processes with an application to the Gamma, Pascal, and Meixner processes, Infin. Dimen. Anal. Quant. Prob. Rel. Top. **6** (2003), 73–102.

[17] E. Lytvynov, The square of white noise as a Jacobi field, Infin. Dimen. Anal. Quant. Prob. Rel. Top. **7** (2004), 619–629.

[18] E. Lytvynov, Lévy processes and Jacobi fields, to appear in Proceedings of the Volterra–CIRM–Greifswald International Conference Classical and Quantum Levy Processes: Theory and Applications, Levico Terme (Trento, Italy), September 27-October 3, 2003.

[19] A. V. Skorohod, “Integration in Hilbert Space,” Springer-Verlag, New York, 1974.