The groups G_n^2 and Coxeter groups

V. O. Manturov

The groups G_n^k, which are closely related to braid groups, geometry, topology, and dynamical systems, were constructed in [1]. The word problem and the conjugacy problem for G_n^k are extremely important. Already the groups G_n^2 of free braids (known also as groups of virtual Gauss braids [2]) are deeply non-trivial and have geometric meaning [3], [4], and an understanding of them can shed light on the groups G_n^k with $k > 2$, because there are homomorphisms $G_n^k \rightarrow G_{n-1}^k$ and $G_n^k \rightarrow G_{n-1}^{k-1}$ (see [1] and [5]). The objective of this note is the construction of an explicit bijection between G_n^2 and the Coxeter group $C(n, 2)$, a bijection which is an isomorphism on finite-index subgroups of the two groups. This leads to an algebraic solution of the word problem in G_n^2. The final result is stated in the form of Theorem 3: the group G_n^2 can be embedded in a semidirect product of the Coxeter group $C(n, 2)$ and a permutation group. We first describe a ‘rewriting procedure’ giving a bijection between words in $C(n, 2)$ and words in G_n^2. A similar ‘rewriting’ algorithm was studied in [6]. The problem of an analogous representation of G_n^k for $k > 2$ in terms of Coxeter groups remains open.

Let Γ be a graph on $\binom{n}{2}$ vertices $\{b_{ij}\}$, where i and j range over all unordered pairs of distinct numbers in $\{1, \ldots, n\}$; two vertices are joined by an edge (of index 3) if and only if they have a single common index. The group $C(n, 2)$ is defined by the generators b_{ij} and the families of generating relations

$$
(b_{ij}b_{ik})^3 = 1 \quad \forall i, j, k \in \{1, \ldots, n\}: \text{Card}\{\{i, j, k\}\} = 3; \quad (1)
$$

$$
b_{ij}b_{kl} = b_{kl}b_{ij} \quad \forall i, j, k, l \in \{1, \ldots, n\}: \text{Card}\{\{i, j, k, l\}\} = 4; \quad (2)
$$

$$
b_{ij}^2 = 1 \quad \forall i, j \in \{1, \ldots, n\}: i \neq j. \quad (3)
$$

For an integer $n > 2$ we define G_n^2 to be the group with $\binom{n}{2}$ generators a_{ij} (for all possible unordered pairs (i, j) of integers in $\{1, \ldots, n\}$) and the three families of defining relations:

$$
a_{ij}a_{ik}a_{jk} = a_{jk}a_{ik}a_{ij} \quad \forall i, j, k \in \{1, \ldots, n\}: \text{Card}\{\{i, j, k\}\} = 3; \quad (1')
$$

$$
a_{ij}a_{kl} = a_{kl}a_{ij} \quad \forall i, j, k, l \in \{1, \ldots, n\}: \text{Card}\{\{i, j, k, l\}\} = 4; \quad (2')
$$

$$
a_{ij}^2 = 1 \quad \forall i, j \in \{1, \ldots, n\}: i \neq j. \quad (3')
$$

We consider a homomorphism $l: G_n^2 \rightarrow S_n$ taking a_{ij} to the transposition (i, j) and a homomorphism $m: C(n, 2) \rightarrow S(n)$ taking b_{ij} to (i, j), and we let $C'(n, 2) = \text{Ker}(m)$ and $PG_n^2 = \text{Ker}(l)$.

Let $w = a_{i_1,1,1}a_{i_1,1,2} \cdots a_{i_k,1,1}a_{i_k,1,2}$ be a word defining an element in G_n^2. For $j = 1, \ldots, k$ we denote by w_j the product of the first j letters of w and by w_0 the empty word. For $p = 1, \ldots, k$, we define the permutation $\sigma_p = l(w_p)^{-1}$ by setting $\sigma_0 = \text{id}$. We write $w = b_{\sigma_0(i_1,1),\sigma_0(i_1,2)}b_{\sigma_1(i_2,1),\sigma_1(i_2,2)} \cdots b_{\sigma_{k-1}(i_k,1),\sigma_{k-1}(i_k,2)}$.

This research was financed by a grant of the Russian Science Foundation (project no. 16-11-10291).

AMS 2010 Mathematics Subject Classification. Primary 20F10, 20F36, 20F55.

DOI: https://doi.org/10.1070/RM9765.
Theorem 1. If two words w and w' define equal elements of G_n^2, then the words \bar{w} and \bar{w}' generate equal elements of $C(n,2)$. Moreover, $l(w) = m(\bar{w})^{-1}$.

Proof. Three cases can be verified immediately: when w' is connected with w by a relation of the form $(1')$, a relation of the form $(2')$, or a relation of the form $(3')$. In each of these cases, in going from \bar{w} to \bar{w}' we obtain a corresponding relation of the group $C(n,2)$. The last assertion of the theorem is proved by induction: we begin with the transposition $(i_1,1, i_1,2)$, which is the same for the words w and \bar{w}, and then we use the fact that $(ab)^{-1} = a^{-1}(ab^{-1}a^{-1})$.

We denote the map $PG_n^2 \rightarrow C(n,2)$, $w \mapsto \bar{w}$, constructed above by co; it is clear that $C'(n,2) = \text{Im}(PG_n^2)$. The inverse map is constructed similarly: we just take account of the fact that if $\bar{w} = co(w)$, then $l(w) = m(\bar{w})^{-1}$. Therefore, if we know \bar{w}, then we know all the permutations $\sigma_k(w)$ and $l(w)$ for the word w that we are going to construct. Since for $w \in PG_n^2$ the permutation $l(w)$ is the identity, we have $(\bar{w}_1\bar{w}_2) = \bar{w}_1\bar{w}_2$ for $w_1, w_2 \in PG_n^2$. This leads to the following theorem.

Theorem 2. The map $co: w \mapsto \bar{w}$ is an isomorphism $PG_n^2 \rightarrow C'(n,2)$.

For Coxeter groups there is an algorithm of descent (for example, see [7]), which looks as follows. Let the Coxeter group W be given by a system of generators-reflections $S = \{s_i\}$ and the relations $s_i^2 = 1$ and $(s_is_j)^{m_{ij}} = 1$. We have $s_is_j \cdots = s_js_i \cdots$ (m_{ij} factors on the left- and right-hand sides). This relation of exchange is an elementary equivalence which does not change the length of a word. The relation $s_is_j = 1$ can be understood as an elementary equivalence changing the length by 2. A word w in the generators s_i is said to be reduced if its length is minimal among the lengths of all the words representing the same element of W. If w is equivalent to a reduced word w', then we can go from w to w' using only elementary transformations not increasing the length. In particular, if both the words w and w' are reduced, then we can go from w to w' by means of a sequence of exchanges. The rewriting algorithm is given by the following assertion.

Corollary 1. For a word w in the alphabet $\{a_{ij}\}$ and a reduced word w' equivalent to w in G_n^2 one can pass from w to w' by a sequence of transformations $(2')$, exchanges of type $(1')$, and deletions of consecutive identical letters $a_{ij}a_{ij} \rightarrow \varnothing$. If the words w and w' are reduced, then one can pass from w to w' using only $(1')$ and $(2')$.

We consider the semidirect products $G_n^2 \rtimes S_n$ and $C(n,2) \rtimes S_n$, where S_n acts on the generators a_{ij} and b_{ij} by permutations of indices.

Theorem 3. There exists an isomorphism between the semidirect products $C(n,2) \rtimes S_n$ and $G_n^2 \rtimes S_n$ that takes $(b_{ij}, 1)$ to $(a_{ij}, (i,j))$ for every transposition (i,j) and preserves the pair $(1, \sigma)$. Thus, G_n^2 is isomorphic to the normal subgroup of $C(n,2) \rtimes S_n$ complementary to S_n.

I thank L.A. Bokut’ for useful discussions and É. B. Vinberg, who suggested reformulating the main result in the form of Theorem 3.

Bibliography

[1] V. O. Manturov, Non-Reidemeister knot theory and its applications in dynamical systems, geometry, and topology, 2015, 10 pp., arXiv:1501.05208.
[2] V. G. Bardakov, P. Bellingeri, and C. Damiani, J. Knot Theory Ramifications 24:12 (2015), 1550063, 23 pp.
[3] V. O. Manturov, J. Knot Theory Ramifications 24:10 (2015), 1540007, 12 pp.
[4] V. O. Manturov and H. Wang, *J. Knot Theory Ramifications* **21**:13 (2012), 1240010, 23 pp.

[5] V. O. Manturov and I. M. Nikonov, *J. Knot Theory Ramifications* **24**:13 (2015), 1541009, 16 pp.

[6] I. K. Zhuk, *Dokl. Akad. Nauk BSSR* **19**:6 (1975), 485–487. (Russian)

[7] A. Björner and F. Brenti, *Combinatorics of Coxeter groups*, Grad. Texts in Math., vol. 231, Springer, New York 2005, xiv+363 pp.

Vassily O. Manturov
Bauman Moscow State Technical University,
Moscow, Russia;
Chelyabinsk State University,
Chelyabinsk, Russia
E-mail: vomanturov@yandex.ru

Presented by V. M. Buchstaber
Accepted 05/FEB/17
Translated by A. SHTERN