Extended supersymmetry in Dirac action with extra dimensions

Yukihiro Fujimoto\(^1\), Kouhei Hasegawa\(^2\), Kenji Nishiwaki\(^3\), Makoto Sakamoto\(^2\), Kentaro Tatsumi\(^2\) and Inori Ueba\(^2\)

\(^1\) National Institute of Technology, Oita College, Oita 870-0152, Japan
\(^2\) Department of Physics, Kobe University, Kobe 657-8501, Japan
\(^3\) School of Physics, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea

E-mail: y-fujimoto@oita-ct.ac.jp, kouhei@phys.sci.kobe-u.ac.jp, nishiken@kias.re.kr, dragon@kobe-u.ac.jp, kentaro@stu.kobe-u.ac.jp and i-ueba@stu.kobe-u.ac.jp

Received 2 July 2018, revised 24 August 2018
Accepted for publication 4 September 2018
Published 18 September 2018

Abstract
We investigate a new realization of extended quantum-mechanical supersymmetry. We first show that an \(\mathcal{N} = 2\) quantum-mechanical supersymmetry is hidden in the four-dimensional (4D) spectrum of the Kaluza–Klein decomposition for the higher dimensional Dirac field, that is, Kaluza–Klein mode functions of 4D right-handed spinors and 4D left-handed ones form \(\mathcal{N} = 2\) supermultiplets. In addition to \(\mathcal{N} = 2\) supersymmetry, we discover that an \(\mathcal{N}\)-extended supersymmetry (\(\mathcal{N} = d + 2, (d + 1)\) for \(d = \text{even (odd)}\) extra dimensions) is further hidden in the 4D spectrum. The extended symmetry can explain additional degeneracy of the spectrum. Furthermore, we show that a superpotential can be introduced into the \(\mathcal{N}\)-extended supercharges and clarify the condition to preserve the supersymmetry. The partial breaking of the supersymmetry is also demonstrated.

Keywords: quantum-mechanical supersymmetry, extended supersymmetry, extra dimensions

1. Introduction
Quantum-mechanical supersymmetry (QM SUSY) has a wide range of applicable topics, e.g. exactly solvable systems in quantum mechanics [1–5], black holes and AdS/CFT [6–10], Sachdev–Ye–Kitaev model [11–15], and so on. Thus it is interesting and important to investigate new realizations of QM SUSY. In particular, it is worth while constructing \(\mathcal{N}\)-extended supersymmetry, since not so many models with arbitrary large \(\mathcal{N}\)-extended one are known.
The \mathcal{N}-extended supersymmetry has \mathcal{N} independent supercharges corresponding to the square root of a Hamiltonian, and supercharges relate degenerate eigenstates of the Hamiltonian. In order to find a new realization of \mathcal{N}-extended QM SUSY, we will investigate fermions in the higher dimensional space-time, because the 4D spectra in gauge/gravity theories with extra dimensions have been found to be governed by $\mathcal{N} = 2$ QM SUSYs [16–19]. We then expect that $\mathcal{N} = 2$ QM SUSY will be hidden also in the 4D spectrum of higher dimensional fermions. However, the degeneracy of such 4D spectrum is found to be, in general, much larger than that expected by the $\mathcal{N} = 2$ supersymmetry. This may imply that there should exist some symmetries in addition to the $\mathcal{N} = 2$ supersymmetry. The main purpose of this letter is to show that an \mathcal{N}-extended QM SUSY is hidden in the 4D spectrum of the higher dimensional Dirac action and can explain the degeneracy of the 4D spectrum.

In this paper, we show that there generally exists an $\mathcal{N} = 2$ QM SUSY hidden in the 4D spectrum of a higher dimensional Dirac action after the compactification of extra space dimensions. The symmetry turns out to connect the 4D right-handed spinors and the 4D left-handed ones. Furthermore, we find an \mathcal{N}-extended QM SUSY with $\mathcal{N} = d + 2 (d + 1)$ for $d =$ even (odd) extra dimensions. We then show that the \mathcal{N}-extended supersymmetry explains the degeneracy of the 4D spectrum in the higher dimensional Dirac action. Explicit constructions of \mathcal{N}-extended supersymmetry algebras with higher \mathcal{N}, have been investigated [20–27], but what we found in this paper gives a new realization of the \mathcal{N}-extended supersymmetry algebra.

This paper is organized as follows: in section 2, we clarify the properties of the mode functions of the Dirac field providing the 4D mass eigenstates. In section 3, we reveal a hidden $\mathcal{N} = 2$ QM SUSY on such mode functions. We show a hidden \mathcal{N}-extended QM SUSY in section 4. It is shown that the whole degenerate mode functions on the hyperrectangular internal space (extra dimensions) can be explained by the \mathcal{N}-extended supersymmetry. In section 5, we introduce a superpotential into the extended QM SUSY. Then, we clarify the conditions that the superpotential can preserve or (partially) break the extended supersymmetry. Section 6 is devoted to summary and discussion.

2. Higher dimensional Dirac action and KK decomposition

In this section, we discuss the Kaluza–Klein (KK) decomposition of a higher dimensional Dirac field and clarify the properties of the mode functions of the KK decomposition. The decomposition is executed in such a way that the induced Dirac action at four dimensions (4D) is constructed in terms of the 4D mass eigenstates.

Let us consider the action of a free Dirac field on the direct product of the 4D Minkowski space-time M^4 and a d-dimensional flat internal space Ω given as

$$S = \int_{M^4} d^4x \int_{\Omega} d^dy \bar{\Psi}(x,y) [i\Gamma^\mu \partial_\mu + i\Gamma^y \partial_y - M] \Psi(x,y).$$

(1)

The x^μ ($\mu = 0, 1, 2, 3$) are the coordinates of the Minkowski space-time M^4 and y^k ($k = 1, 2, \cdots, d$) are the coordinates of the internal space Ω. We take the metric as $\eta_{NM} = \eta_{NM} = \text{diag}(-1, +1, \cdots, +1)$ where $N, M = 0, 1, \cdots, y_d$. The gamma matrices Γ^N satisfy the Clifford algebra,

$$\{\Gamma^N, \Gamma^M\} = -2\eta^{NM} \mathbf{1}_{2^{(d/2)}}.$$

(2)

For earlier works on higher dimensional spinors, see e.g. [28–30].
The $\Psi(x, y)$ is the $(d + 4)$-dimensional Dirac spinor which has $2^{d/2+2}$ components with mass M. The symbol $[d/2 + 2]$ is the maximum integer less than or equal to $d/2 + 2$. I_n represents the $n \times n$ unit matrix. The Dirac conjugate is defined as $\Psi(x, y) = \Psi^\dagger(x, y)\Gamma^0$. It turns out to be very convenient for our analysis to use the following representation of the gamma matrices Γ^k, based on the 4D chiral representation:

\[
\Gamma^0 = \sigma^1 \otimes I_{2^{d/2+1}} \otimes I_2, \\
\Gamma^a = i\sigma^2 \otimes I_{2^{d/2+1}} \otimes \sigma^a \quad (a = 1, 2, 3), \\
\Gamma^{\bar{a}} = -i\sigma^2 \otimes I_{2^{d/2+1}} \otimes \bar{\sigma}^a \quad (a = 1, 2, 3), \\
\Gamma^{\gamma_k} = -\sigma^3 \otimes \gamma_k \otimes I_2 \quad (k = 1, 2, \ldots, d),
\]

where σ^a denote the Pauli matrices and γ_k $(k = 1, 2, \ldots, d)$ correspond to the internal space gamma matrices which satisfy $\left\{ \gamma^{\alpha}, \gamma^{\beta} \right\} = -2\delta^{\alpha\beta}1_{2^{d/2+1}}$ with $(\gamma^{\alpha})^\dagger = -\gamma^{\alpha}$ (see equation (2))5. We define the 4D chiral matrix Γ_5 and the internal space chiral matrix Γ_{d+1} (for even d) by

\[
\begin{align*}
\Gamma_5 &= i\Gamma^0 \ldots \Gamma^3 = -\sigma^1 \otimes I_{2^{d/2+1}} \otimes I_2, \\
\Gamma_{d+1} &= i^{d/2}\Gamma^{\bar{a}} \ldots \Gamma^{\gamma_d} = I_2 \otimes \Gamma_{d+1} \otimes I_2 \\
(\text{for even } d),
\end{align*}
\]

with $\gamma_{d+1} = i^{d/2}\gamma_{\gamma_d} \ldots \gamma_{\gamma_1}$. The 4D chiral projection matrices P_{RL} are given by

\[
\begin{align*}
P_L &= \frac{1 - \Gamma_5}{2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes I_{2^{d/2+1}} \otimes I_2, \\
P_R &= \frac{1 + \Gamma_5}{2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes I_{2^{d/2+1}} \otimes I_2.
\end{align*}
\]

The eigenstates of the 4D chiral matrix Γ_5 with the eigenvalue $+1$ (-1) are called right-handed (left-handed).

In terms of the 4D left-handed (right-handed) two component chiral spinors $\phi^{(n)}_\alpha(x)$ ($\chi^{(n)}_\alpha(x)$)7, the KK decomposition of the $(d + 4)$-dimensional Dirac field $\Psi(x, y)$ will be given by

\[
\begin{align*}
\Psi(x, y) &= \sum_n \sum_\alpha \left\{ e_L \otimes f^{(n)}_\alpha(y) \otimes \phi^{(n)}_\alpha(x) + e_R \otimes g^{(n)}_\alpha(y) \otimes \chi^{(n)}_\alpha(x) \right\} \\
&= \sum_n \sum_\alpha \left\{ f^{(n)}_\alpha(y) \otimes \phi^{(n)}_\alpha(x) + g^{(n)}_\alpha(y) \otimes \chi^{(n)}_\alpha(x) \right\},
\end{align*}
\]

where $e_L = (1, 0)^T$ and $e_R = (0, 1)^T$ characterize the 4D chirality. The index n represents the nth level of the KK modes and α denotes the index that distinguishes the degeneracy of the nth KK modes (if exist). The mode functions $f^{(n)}_\alpha(y)$ ($g^{(n)}_\alpha(y)$) have $2^{d/2}$ components and are assumed to form a complete set with respect to the internal space associated with the 4D left-handed (right-handed) chiral spinors $\phi^{(n)}_\alpha(x)$ ($\chi^{(n)}_\alpha(x)$).

5 For the case of $d = 1$, γ^1 is defined as i.
6 In odd dimensions, there is no internal chiral matrix corresponding to Γ_{d+1} or γ_{d+1}.
7 For two component spinors, we follow the notation adopted in [31], which includes the followings: $\sigma^a = \{I_2, \sigma^a\}$, $\bar{\sigma}^a = \{I_2, -\sigma^a\}$, $(\phi^{(n)}_\alpha(x))$ = $\phi^{(n)}_\alpha(x)$, and $(\chi^{(n)}_\alpha(x))$ = $\chi^{(n)}_\alpha(x)$.
Substituting this expansion (6) into the action (1), we find

$$S = \int_{M^4} d^4x \sum_{\alpha,n} \left[(f_{\alpha}^{(n)}|f_{\beta}^{(m)}) \bar{\psi}_{\alpha}^{(n)}(x) i\sigma^\mu \partial_\mu \psi_{\beta}^{(m)}(x) + (g_{\alpha}^{(n)}|g_{\beta}^{(m)}) \bar{\chi}_{\alpha}^{(n)}(x) i\sigma^\mu \partial_\mu \chi_{\beta}^{(m)}(x) \right]$$

$$+ (f_{\alpha}^{(n)}|A\bar{g}_{\beta}^{(m)}) \bar{\psi}_{\alpha}^{(n)}(x) \chi_{\beta}^{(m)}(x) + (g_{\alpha}^{(n)}|A\bar{f}_{\beta}^{(m)}) \bar{\chi}_{\alpha}^{(n)}(x) \phi_{\beta}^{(m)}(x) \right].$$

(7)

where \(\langle X | Y \rangle = \int_{M^4} d^4x X^\dagger(y) Y(y) \) and \(A = +i\gamma^\nu \partial_\nu - M, \ A^\dagger = -i\gamma^\nu \partial_\nu - M. \) We note that \(A \) and \(A^\dagger \) are the off-diagonal components of the Dirac operator \(\Gamma^0(\gamma^\nu \partial_\nu - M) \) written as

$$\Gamma^0(\gamma^\nu \partial_\nu - M) = \begin{pmatrix} 0 & A^\dagger \\ A & 0 \end{pmatrix} \otimes 1_2.$$ \hspace{1cm} (8)

We require that \(\phi_{\alpha}^{(n)} \) and \(\chi_{\alpha}^{(n)} \) are mass eigenstates of the 4D spectrum and that the action (7) should be written into the form

$$S = \int_{M^4} d^4x \left\{ \sum_{\alpha} \sum_{n} \bar{\psi}_{\alpha}^{(n)}(x) (i\gamma^\mu \partial_\mu + m_\alpha) \psi_{\alpha}^{(n)}(x) \\
+ \sum_{\alpha} \bar{\phi}_{\alpha}^{(n)}(x) i\sigma^\mu \partial_\mu \phi_{\alpha}^{(n)}(x) + \chi_{\alpha}^{(n)}(x) i\sigma^\mu \partial_\mu \chi_{\alpha}^{(0)}(x) \right\},$$ \hspace{1cm} (9)

where \(\psi_{\alpha}^{(n)}(x) = (\phi_{\alpha}^{(n)}(x), \chi_{\alpha}^{(n)}(x))^T \) are the nth KK 4D Dirac fields with mass \(m_\alpha \) and \(\phi_{\alpha}^{(n)}(x) \) \((\chi_{\alpha}^{(n)}(x)) \) in the second line are massless left-handed (right-handed) 4D chiral fields. This can be realized, provided the mode functions \(f_{\alpha}^{(n)}(y) \) and \(g_{\alpha}^{(n)}(y) \) satisfy the following orthonormality relations:

$$\langle f_{\alpha}^{(n)}|f_{\beta}^{(m)} \rangle = (g_{\alpha}^{(n)}|g_{\beta}^{(m)}) = \delta_{\alpha\beta} \delta^{mn},$$

$$\langle f_{\alpha}^{(n)}|A\bar{g}_{\beta}^{(m)} \rangle = (g_{\alpha}^{(n)}|A\bar{f}_{\beta}^{(m)}) = m_\alpha \delta_{\alpha\beta} \delta^{mn}.$$ \hspace{1cm} (10)

3. \(\mathcal{N} = 2 \) quantum-mechanical supersymmetry

In this section, we show that the orthonormality relations (10) imply that the mode functions \(f_{\alpha}^{(n)}(y) \) and \(g_{\alpha}^{(n)}(y) \) form supersymmetric partners (except for zero modes) in an \(\mathcal{N} = 2 \) supersymmetric quantum mechanics (SQM).

Since the mode functions \(f_{\alpha}^{(n)}(y) \) and \(g_{\alpha}^{(n)}(y) \) are assumed to form complete sets on the internal space, equation (10) leads to the relations

$$A\bar{f}_{\alpha}^{(n)}(y) = m_\alpha g_{\alpha}^{(n)}(y), \quad A\bar{g}_{\alpha}^{(n)}(y) = m_\alpha f_{\alpha}^{(n)}(y).$$ \hspace{1cm} (11)

It immediately follows that \(f_{\alpha}^{(n)}(y) \) and \(g_{\alpha}^{(n)}(y) \) satisfy the eigenvalue equations

$$(-\partial^2 + M^2)f_{\alpha}^{(n)}(y) = m_\alpha f_{\alpha}^{(n)}(y),$$

$$(-\partial^2 + M^2)g_{\alpha}^{(n)}(y) = m_\alpha g_{\alpha}^{(n)}(y),$$ \hspace{1cm} (12)

and that the above relations (11) and (12) can be naturally embedded in a system of an \(\mathcal{N} = 2 \) SQM, as explained below.

Let us introduce the supercharge \(Q \) and the ‘fermion’ number operator \((-1)^F\) such as
and then define the Hamiltonian by

\[H = Q^2. \]

(14)

This system is known as the $\mathcal{N} = 2$ SQM (see reviews [1]). It should be noticed that the supercharge Q and the fermion number operator $(-1)^F$ are represented as

\[\Gamma^0 (\imath \Gamma^y \partial_y - M) = Q \otimes 1_2, \quad \Gamma^5 = (-1)^F \otimes 1_2. \]

(15)

It follows that Q and $(-1)^F$ can be interpreted as the Dirac operator on the internal space and the 4D chiral operator, respectively.

To rewrite the relations (11) and (12) in the language of the $\mathcal{N} = 2$ SQM, we introduce

\[\Phi^{(o)}_{\alpha, \pm}(y) = \begin{pmatrix} 0 \\ g^{(o)}_{\alpha}(y) \end{pmatrix}, \quad \Phi^{(o)}_{\alpha, -}(y) = \begin{pmatrix} f^{(o)}_{\alpha}(y) \\ 0 \end{pmatrix}. \]

(16)

Then, in terms of $\Phi^{(o)}_{\alpha, \pm}(y)$, the relations (11) and (12) can be rewritten as

\[Q \Phi^{(o)}_{\alpha, \pm}(y) = m_n \Phi^{(o)}_{\alpha, \mp}(y), \]

(17)

\[H \Phi^{(o)}_{\alpha, \pm}(y) = m_n^2 \Phi^{(o)}_{\alpha, \mp}(y) \]

(18)

with

\[(-1)^F \Phi^{(o)}_{\alpha, \pm}(y) = \pm \Phi^{(o)}_{\alpha, \mp}(y). \]

(19)

We call equations (11) and (17), supersymmetric relations. The mode functions $\Phi^{(o)}_{\alpha, +}(y)$ (or $g^{(o)}_{\alpha}(y)$) and $\Phi^{(o)}_{\alpha, -}(y)$ (or $f^{(o)}_{\alpha}(y)$) are (at least) doubly degenerate in the spectrum except for zero energy states (see figure 1), and they form $\mathcal{N} = 2$ supermultiplets. Thus, the $\mathcal{N} = 2$ supersymmetry turns out to be hidden in the 4D spectrum of the higher dimensional Dirac theory, as well as higher dimensional gauge/gravity theories [16–19].

\[\text{Figure 1. The 1D SQM model (known as a Witten model [32]) has the doubly degenerated spectrum except for the zero energy state ($j = 1, 2$).} \]
Here, a question arises about the degeneracy of the spectrum. Although the $N=2$ super-symmetry assures a pair of eigenstates in the spectrum, as seen in figure 1, the degeneracy of the spectrum in the higher dimensional Dirac action is found to be much larger than that expected by the $N=2$ supersymmetry (see figure 2), in general. This fact suggests that there should exist some symmetries in addition to the $N=2$ supersymmetry. To reveal hidden symmetries on the degeneracy of the spectrum is the purpose of the next section.

Before closing this section, we should give a comment on the Hermiticity property of the supercharge. The supercharge Q has to be Hermitian in the $N=2$ SQM but the Hermiticity of Q would not be trivial if the internal space Ω has boundaries. To verify the Hermiticity of Q, let us examine the variational principle of the action, $\delta S = 0$, which leads to the $(d+4)$-dimensional Dirac equation and also the condition for the surface integral, i.e.

$$
\int_{\partial \Omega} d^{d-1}y \begin{pmatrix} f^{(\alpha)}(y) \\ g^{(\alpha)}(y) \end{pmatrix} \begin{pmatrix} 0 & in_y \gamma^\nu \\ -in_y \gamma^\nu & 0 \end{pmatrix} \begin{pmatrix} f^{(\alpha)}(y) \\ g^{(\alpha)}(y) \end{pmatrix} = 0,
$$

for any n,m,α,β and $\tilde{n},\tilde{m},\tilde{\alpha},\tilde{\beta}$. The n_μ is a normal vector at each point of the boundary $\partial \Omega$. It turns out that the supercharge Q is Hermitian, provided that boundary conditions on $f^{(\alpha)}(y)$ and $g^{(\alpha)}(y)$ are chosen to satisfy equation (20).

4. \mathcal{N}-extended quantum-mechanical supersymmetry

Interestingly, the previous $\mathcal{N}=2$ supersymmetry can be enlarged to an \mathcal{N}-extended supersymmetry describing the additional degeneracy of the spectrum. The supersymmetry has $d+2$ ($d+1$) supercharges for $d =$ even (odd) extra dimensions. The supercharges form the \mathcal{N}-extended supersymmetry algebra such as

$$\{Q_i, Q_j\} = 2H\delta_{ij}, \quad [Q_i, H] = 0,$$

where $i,j = 1,2,\cdots,d+2$ ($i,j = 1,2,\cdots,d+1$) for even (odd) dimensions. The Hamiltonian H is the same as that given in the $\mathcal{N}=2$ supersymmetry algebra. The supercharges are defined by the composition of the reflections operators as...
\[Q_k = i(-1)^k (1_2 \otimes \gamma_{d+1}^n) R_k Q \quad (k = 1, \ldots, d), \]
\[Q_{d+1} = i(-1)^k (1_2 \otimes \gamma_{d+1}) P Q, \]
\[Q_{d+2} = Q, \]
\[(22) \]
for even dimensions, and
\[Q_k = i(-1)^k (1_2 \otimes i\gamma_{n}^x) R_k R_d Q \quad (k = 1, \ldots, d - 1), \]
\[Q_d = i(-1)^k (1_2 \otimes i\gamma_{n}^x) R_d P Q, \]
\[Q_{d+1} = Q. \]
\[(23) \]
for odd dimensions. The \(R_k (k = 1, 2, \cdots, d) \) denotes the reflection operator for the \(y_k \) direction, i.e. \((R_kf)(y_1, \cdots, y_{k-1}, y_k, y_{k+1}, \cdots, y_d) \equiv f(y_1, \cdots, -y_k, \cdots, y_d)\) for any function \(f(y_1, \cdots, y_d)\).

\[P = \prod_{k=1}^{d} R_k \] represents the point reflection (or parity) operator of the internal space. Here (when \(d \) is more than one), the element \(i(-1)^d Q \) is not included in this algebra since it is commutative with the other components except for \(Q \).

To demonstrate that the supercharges \(Q \) can explain the degeneracy of the spectrum at each KK level with \(m_n^2 > 0 \), let us consider, as an example, the \(d \)-dimensional hyperrectangle internal space:
\[\Omega = [-L_1/2, L_1/2] \times \cdots \times [-L_d/2, L_d/2], \]
\[(24) \]
where \(L_k (k = 1, 2, \cdots, d) \) is the length of the \(k \)-th side of the hyperrectangle with the Dirichlet boundary condition on \(g^{(n)}_{\alpha}(y) \), i.e.
\[g^{(n)}_{\alpha}(y) = 0 \quad \text{(or } \Phi^{(n)}_{\alpha,+}(y) = 0 \text{)} \quad \text{on } \partial \Omega. \]
\[(25) \]
Then, the supersymmetric relations \((11)\) (or \((17)\)) lead to the following boundary condition on \(f^{(n)}_{\alpha}(y) \) \[[33, 34] : \]
\[A^{1} f^{(n)}_{\alpha}(y) = 0 \quad \text{(or } Q \Phi^{(n)}_{\alpha,-}(y) = 0 \text{)} \quad \text{on } \partial \Omega. \]
\[(26) \]
It should be emphasized that the boundary conditions \((25)\) and \((26)\) are compatible with the \(\mathcal{N} \)-extended supersymmetry.

The \(n \)-th mode functions \(g^{(n)}_{\alpha}(y) \) and \(f^{(n)}_{\alpha}(y) \) with a KK mass \(m_n^2 > 0 \) are found to be of the form
\[g^{(n)}_{\alpha}(y) = h^{(n)}_{\alpha}(y)e_{\alpha}, \]
\[(27) \]
\[f^{(n)}_{\alpha}(y) = \frac{1}{m_n} A g^{(n)}_{\alpha}(y) \quad \left(\text{or } \Phi^{(n)}_{\alpha,-}(y) = \frac{1}{m_n} Q \Phi^{(n)}_{\alpha,+}(y) \right), \]
\[(28) \]
where \(h^{(n)}_{\alpha}(y) \) is a scalar function. Hereafter, we adopt the following variables for representing \(\alpha \) concretely, where the basis vectors of the spinor space \(e_{\alpha} = e_{s_1 s_2 \cdots s_{d/2}} \) \(s_p = \pm \) for \(p = 1, 2, \cdots, [d/2] \) are the eigenvectors of \(\gamma(p) = i\gamma_{2p-1}^p \gamma_p \) \[[35, 36] , \text{ i.e.} \]
\[\gamma(p)e_{s_1 s_2 \cdots s_{d/2}} = s_p e_{s_1 s_2 \cdots s_{d/2}}. \]
\[(29) \]
\[^9 \text{We note that the reflection operator } R_k \text{ acts on } \partial \Omega \text{ as } R_k \partial_c R_k^{-1} = (1 - 2\delta_{kc})\partial_c. \]
\[^{10} \text{Note that } g^{(n)}_{\alpha,-(d/2)} \text{ are eigenvectors of } \gamma(p), \text{ while } f^{(n)}_{\alpha,-(d/2)} \text{ are not. The forms of } f^{(n)}_{\alpha,-(d/2)} \text{ are determined by the corresponding states of } g^{(n)}_{\alpha,-(d/2)} \text{ through the relation } (28). \]
for all \(p = 1, 2, \ldots, \lfloor d/2 \rfloor \). \(s_p \) represents an eigenvalue of the \(p \)th internal chirality of \(\gamma(p) \).

Thus, the degeneracy at each KK level is \(2 \times 2^{\lfloor d/2 \rfloor} \). (The additional factor 2 corresponds to the degeneracy between \(g_0^{(n)} \) and \(f_0^{(n)} \).) The scalar function \(h^{(n)}(y) \) is the eigenmode of the Hamiltonian \(H = -\partial_y^2 + M^2 \) with the eigenvalue \(m^2_n = M^2 + \sum_{k=1}^d (nh_k)^2/L_k^2 \) where \(n_k = 1, 2, \ldots (k = 1, 2, \ldots, d) \), and is explicitly given by

\[
 h^{(n)}(y) = \prod_{k=1}^d \sqrt{\frac{2}{L_k}} \sin \left(\frac{\pi}{L_k} \left(y_k + \frac{L_k}{2} \right) \right). \tag{30}
\]

It is easy to verify that the \(\mathcal{N} \)-extended supercharges \(Q_j \) can explain the degeneracy of the mode functions, as we expected. We can derive the following general relationships with \(k' = 2p - 1 \) or \(2p \ (p = 1, 2, \ldots, \lfloor d/2 \rfloor) \) for \(d \) being even,

\[
 Q_{k'} \Phi^{(n)}_{s_1 \cdots s_p \cdots s_{d/2}; \pm}(y) \propto \Phi^{(n)}_{s_1 \cdots (s_p) \cdots s_{d/2}; \mp}(y), \tag{31}
\]

and for \(d \) being odd,

\[
 Q_{k'} \Phi^{(n)}_{s_1 \cdots s_p \cdots s_{d/2}; \pm}(y) \propto \Phi^{(n)}_{s_1 \cdots (s_p) \cdots s_{d/2}; \mp}(y), \tag{32}
\]

where flips are observed in one of the internal chiralities for the cases of (31) and (33). Here, we adopt the notation (being similar to that in equation (16))

\[
 \Phi^{(n)}_{s_1 \cdots s_p \cdots s_{d/2}; \pm}(y) = \begin{pmatrix} 0 \\ g^{(n)}_{s_1 \cdots s_p \cdots s_{d/2}}(y) \end{pmatrix}, \tag{35}
\]

\[
 \Phi^{(n)}_{s_1 \cdots s_p \cdots s_{d/2}; -}(y) = \begin{pmatrix} f^{(n)}_{s_1 \cdots s_p \cdots s_{d/2}}(y) \\ 0 \end{pmatrix}.
\]

We summarize the above statements as follows. Once a single mode function \(g^{(n)}_{\alpha}(y) \) (or \(f^{(n)}_{\alpha}(y) \)) is given (for fixed \(\alpha \)), the whole mode functions can be obtained by successively operating the \(\mathcal{N} \)-extended supercharges on \(g^{(n)}_{\alpha}(y) \) (or \(f^{(n)}_{\alpha}(y) \)) as shown at figure 3.

5. Extension of supersymmetry with superpotential

Let us consider the extension of the supersymmetry with a superpotential. To this end, we replace the bulk mass \(M \) with a scalar function \(W(y) \). Then, we can show that the \(\mathcal{N} = 2 \) supersymmetry given in section 3 holds with the supercharge

\[
 Q = \begin{pmatrix} 0 & i\gamma^\alpha \partial_\alpha - W(y) \\ -i\gamma^\alpha \partial_\alpha - W(y) & 0 \end{pmatrix}. \tag{36}
\]

It is, however, non-trivial for the whole of the extended supersymmetry to preserve with the introduction of the superpotential \(W(y) \).

For \(d = \text{even} \), the conditions for a realization of the full \(\mathcal{N} = d + 2 \) extended supersymmetry are found to be given by
or equivalently

$$W(y_1, \cdots, -y_k, \cdots, y_d) = W(y_1, \cdots, y_k, \cdots, y_d) \quad \text{for } k = 1, \cdots, d. \quad (38)$$

If the superpotential does not satisfy the above conditions, the extended supersymmetry is broken. For instance, let us consider the case that the superpotential $W(y)$ satisfies the relations (37) only for the directions y_{k_1}, \cdots, y_{k_m} ($m < d$), i.e.

$$\left(R_k W \right)(y) = W(y) \quad \text{for } k = k_1, \cdots, k_m. \quad (39)$$

Then, the supercharges Q_k ($k \neq k_1, \cdots, k_m$) and Q_{k+1} in equation (22) become ill-defined and should be removed from the supersymmetry algebra. Thus, the supercharges Q_k ($k = k_1, \cdots, k_m$) and Q_{k+2} in equation (22) form the $\mathcal{N} = m + 1$ extended supersymmetry for $m = \text{odd}$. Interestingly, it turns out that the $\mathcal{N} = m + 1$ extended supersymmetry can be enlarged to the $\mathcal{N} = m + 2$ extended one for $m = \text{even}$ with an additional supercharge

$$Q_{(k_1 \cdots k_m)} \equiv i (-1)^m (1_2 \otimes i^{m/2} \gamma_{y_{k_1}} \cdots \gamma_{y_{k_m}}) R_{k_1} \cdots R_{k_m} Q. \quad (40)$$

The same argument can be also applied to the odd d-dimensional case.

6. Summary and discussion

In this paper, we have succeeded in constructing the new realization of the \mathcal{N}-extended quantum-mechanical supersymmetry. First we considered the hidden $\mathcal{N} = 2$ quantum-mechanical supersymmetry in the KK decomposition of the higher dimensional Dirac field. The $\mathcal{N} = 2$
supersymmetry shows that the mode function $f^{(n)}_{\alpha}$ for the left-handed chiral spinor $\phi^{(n)}_{\alpha}$ and $g^{(n)}_{\alpha}$ for the right-handed chiral spinor $\bar{\chi}^{(n)}_{\alpha}$ in equation (6) form a pair of $\mathcal{N} = 2$ supermultiplets.

Surprisingly, we further found that the \mathcal{N}-extended quantum-mechanical supersymmetry with multiple supercharges is hidden in the spectrum. It turns out that once a single mode function is given, the supercharges in the \mathcal{N}-extended supersymmetry can generate the whole degenerate mode functions of the KK spectrum on the hyperrectangle extra dimensions with the boundary conditions (25) and (26).

Furthermore we revealed the extended supersymmetry with the superpotential. Then, we clarified the conditions for the superpotential to preserve or partially preserve the extended supersymmetry.

Our analysis is far from being complete. We have demonstrated only the case of the boundary conditions given in equations (25) and (26). Although the boundary conditions (25) and (26) are compatible with the \mathcal{N}-extended supersymmetry, all the supercharges given in equation (22) or (23) are not necessarily well-defined for other types of boundary conditions. For example, boundary conditions with no reflection symmetry of $y_k \rightarrow -y_k$, the supercharge Q_k will become ill-defined because Q_k includes the reflection operator R_k in the definition of equation (22) or (23). Thus, it would be of importance to determine how the \mathcal{N}-extended supersymmetry is broken by boundary conditions.

Allowed boundary conditions on a rectangle (as 2D extra dimensions) have been classified in [33, 34]. However, general boundary conditions for Dirac fields in arbitrary higher dimensions have not been obtained yet, because it is nontrivial to find general solutions to equation (20). So, it will be interesting to find a class of boundary conditions consistent with equation (20).

Although we have introduced a superpotential into the supercharges, we have not solved any mass spectrum of concrete models in this paper. It would be interesting to try to find a new class of exactly solvable quantum-mechanical models with the \mathcal{N}-extended supersymmetry. The issues mentioned in this section will be reported in a future work.

Acknowledgment

This work is supported in part by Grants-in-Aid for Scientific Research [No. 15K05055 and No. 25400260 (MS)] from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan.

ORCID iDs

Inori Ueba @ https://orcid.org/0000-0002-8930-2907

References

[1] Cooper F, Khare A and Sukhatme U 1995 Supersymmetry and quantum mechanics Phys. Rep. 251 267–385
[2] Quesne C and Tkachuk V M 2005 Dirac oscillator with nonzero minimal uncertainty in position J. Phys. A: Math. Gen. 38 1747–66
[3] Bagchi B, Quesne C and Roychoudhury R 2009 Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry Pramana 73 337–47
[4] Odake S and Sasaki R 2009 Infinitely many shape invariant potentials and new orthogonal polynomials Phys. Lett. B 679 414–7
