Bright and dark modes induced by graphene bubbles

JIN-WU JIANG and JIAN-SHENG WANG

Department of Physics and Centre for Computational Science and Engineering, National University of Singapore - Singapore 117542, Republic of Singapore

received 9 November 2011; accepted in final form 2 January 2012
published online 3 February 2012

PACS 63.22.Rc – Phonons in graphene
PACS 63.20.Pw – Localized modes
PACS 63.20.D- – Phonon states and bands, normal modes, and phonon dispersion

Abstract – Through a lattice dynamics analysis, it is revealed that the bubble plays a role of energy shield in the graphene, which helps to split the normal modes into two categories of distinct topological nature, namely the bright and dark modes. The topological invariants, Euler characteristic, of the bright and dark modes are 1 and 0, respectively. For bright modes, the energy is confined inside the bubble, so this type of modes is sensitive to the shape of the bubble; while the opposite phenomenon is observed for the dark modes. The different behavior of these two types of normal modes is examined and verified in the process of phonon thermal transport. The bright and dark modes are expected to be distinguished in experiment with existing scanning force microscope techniques, and they should play significant roles in many other physical processes.

Copyright © EPLA, 2012

The strain engineering provides an exciting approach to improve or manipulate various properties of graphene-based materials [1]. By generating strain, the experimentalists have been able to study the zero-field quantum Hall effect in graphene and realize energy gap with the help of the strained supperlattices [2], and observe the strain-induced red-shift of the G mode [3,4]. The strain effect has also been theoretically investigated for different aspects of graphene, such as the strain-induced electrochemical potential and charges [5,6], the electronic band gap for single-layer graphene [7] and bilayer graphene [8], the pseudomagnetic fields [9–11], the optical properties [12], and the hydrogen storage capabilities of metal-decorated graphene [13]. As a specific morphology of strain, a bubble in graphene was observed by Stolyarova et al. in 2009, which is formed due to the gas between graphene and its substrate [14]. In 2010, Levy et al. found a very strong pseudo-magnetic field inside the bubble by using the scanning tunneling microscopy to do the spectroscopic measurements [15]. Quite recently, the Manchester’s graphene research group show that it is possible to control the shape of the bubble in graphene by an external electric field [16]. This technique is proposed to produce optical lenses with variable focal length.

Fig. 1: Two different views of a bubble in the graphene. The size parameters of the bubble are \((h, \lambda) = (7,8)\,\text{Å}\), where \(h\) is the height of the bubble and \(\lambda\) reflects the lateral size of the bubble.

In this paper, we investigate the effect of the bubble on the normal modes in graphene. We distinguish two opposite categories of normal modes, namely bright and dark modes, which are topologically different. The bubble is full of energy for the bright modes, while there is no energy inside the bubble in the dark mode. Due to their topological difference, the bright/dark mode is sensitive/insensitive to the shape of the bubble in the graphene. We examine the different behavior of bright and dark modes in the phonon thermal transport process. It is expected that the distinction between these two types of normal modes should be able to be measured in the experiment.

Figure 1 displays the configuration of a bubble within the graphene. The size of the graphene is 59.6 Å × 44.3 Å.
The xy-plane lies in the graphene plane and the z-direction is perpendicular to the graphene plane. The bubble has a Gaussian shape. The z-coordinate of atoms on the surface of the bubble is given by $z(x, y) = h \exp\left(-\frac{(x - x_0)^2 + (y - y_0)^2}{2\lambda^2}\right)$, where (x_0, y_0) are the x- and y-coordinates of the center of the bubble. The bubble thus is characterized by the height h and a lateral dimension λ. $(h, \lambda) = (7, 8) \text{ Å}$ for the specific bubble shown in the figure.

We calculate the normal modes by diagonalizing the dynamical matrix, which is obtained from the spring force constant model with longitudinal parameter k_l and transverse parameter k_\perp up to the fourth-nearest neighbors [17]. The advantage of the spring force constant model is that the given structure (Gaussian shape) has been presumed to be the minimum of the energy of the potential for the bubble, so that there will be no issue on structure optimization and imaginary phonon modes. The valence force field model [18] has also been tried and the calculation results are qualitatively the same. Calculations shown below are based on the spring force constant model. For each normal mode (ω, ξ), the energy carried by atom j is proportional to $\omega^2 (\xi_j^2 + \xi_j^2 + \xi_j^2)$, where ξ_α with $\alpha = x, y, z$ are the three components corresponding to atom j in the polarization vector ξ. We analyze the energy spatial distribution for each normal mode. Figure 2 shows the bubble energy in log scale for all normal modes in (a) pure graphene, (b) graphene with bubble (7, 8) Å, and (c) graphene with bubble (15, 8) Å. The bubble energy of a normal mode is defined to be the energy of this mode confined within a circular region of radius 5 Å around the bubble center. The bubble energy has been normalized in such a way that the total energy of the normal mode is unity. Panel (a) shows that the bubble energy of the pure graphene is about 3% for all normal modes. It indicates that the energy is uniformly distributed on the entire graphene, considering the area of the bubble region is also around 3% of whole area of the graphene. Panel (b) exhibits strong influence from the bubble on the energy spatial distribution of normal modes in graphene. On the one hand, the bubble energy of many normal modes is distinctly enhanced, and can reach as high as 80% for some normal modes. On the other hand, the bubble energy of some other normal modes are strongly suppressed to be two or three orders smaller than the pure graphene’s value of 3%. These observations manifest that the bubble acts as an energy shield. It can thus split the normal modes in graphene into two opposite categories. One is to confine the energy inside the bubble region, while the other tries to repel energy for the bubble region. Panel (c) further reveals that the bubble energy is more seriously enhanced/suppressed by taller bubbles; thus they show a better performance as an energy shield.

The energy spatial distributions are shown in fig. 3 for eight normal modes in graphene with bubble (7, 8) Å. The four upper normal modes belong to the category with large bubble energy. The energy is concentrated so strongly in the bubble region that the bubble looks bright. For this reason, we name this type of normal modes as “bright modes”. The opposite behavior is observed in the four lower panels. The bubble energy is almost zero, which means that the bubble region is an energy vacancy in these modes. The bubble looks dark and similarly this type of normal modes are named “dark modes”. The current scanning force microscope technique is able to image the vibrational morphology of normal modes, such as the edge modes in the graphene nanoribbon [19]. Hence, the bright and dark modes we have found here are readily to be observed in the experiment. The distinctness between these two type of normal modes is also quite possible to be verified experimentally. Figure 4 locates the position of bright and dark modes in the frequency space for graphene with bubble (7, 8) Å. It shows that the bright mode is more uniformly distributed in the whole frequency range while dark modes mainly locates in the high-frequency region. This figure indicates that the bright mode will play a role in whole temperature range. However, the dark mode will become important at high temperatures, where high-frequency normal modes can be sufficiently excited.
Bright and dark modes induced by graphene bubbles

Fig. 3: The energy spatial distribution of bright modes in the top four panels, and of dark modes in the bottom four panels for graphene with bubble (7, 8) Å. Value in each panel is the frequency of that normal mode.

Fig. 4: (Color online) The histogram of bright and dark modes in graphene with bubble (7, 8) Å. The total numbers of the bright and dark modes in this system are 101 and 112, respectively.

The bright and dark modes will affect directly the Raman G mode with frequency around 1580 cm\(^{-1}\), which is a characteristic of C-C bonds in graphene. They will introduce some additional fluctuations in the temperature coefficient of the Raman G mode [20,21], because the bright and dark modes are highly localized modes with extremely high/low bubble energy, while the Raman G mode has a normal bubble energy of 3%. The dark modes will be more important for this effect, as most dark modes locate in the same high-frequency region as Raman G mode. Besides, some bright and dark modes will be Raman active, resulting from the symmetry of the bubble structure. Hence, their temperature dependence can also be applied to record the small temperature change in the graphene sample, which plays a similar role as the Raman G mode.

From the topological point of view, we can clearly distinguish the bright and dark modes. The topological nature of the bright and dark modes is equivalent to the circular and cirque, respectively, as shown in fig. 5. The gray filled area corresponds to the high density of spatial energy for normal modes. The Euler characteristic is the topological invariant. It coincides with the Euler number for the two geometries in fig. 5. The Euler characteristic (\(\chi\)) can be calculated through the Gauss-Bonnet theorem, after applying to these two special geometries:

\[
\chi = \frac{1}{2\pi} \int_{\text{edge}} K_g \, ds, \quad (1)
\]
where K_g is the curvature and ds is the line element along the edge. Using this formula, we get the Euler characteristic for the circular and the circle are 1 and 0, respectively. Hence, the Euler characteristic for the bright mode is 1 and that of the dark mode is 0.

From the above, we have learnt the energy spatial distribution for the bright and dark modes, from which we demonstrate that these two types of normal modes are of different topological nature with different Euler characteristic. As we know, the topological invariant is of key importance in many physical processes. It is quite possible that the different topological invariant of the bright and dark modes will lead to an observable distinction in those physical processes where the normal mode is an important exciton. The phonon thermal transport is one of such physical process, where the normal mode is the energy carrier. The thermal transport in graphene is currently an active field, where very high thermal conductivity was found [22–24]. For a recent review of this subject, we refer to ref. [25]. We apply NEGF approach [26] to calculate the transmission function, $T[\omega]$, of normal modes

$$T[\omega] = \text{Tr} \left(G^a \Gamma_L G^a \Gamma_R \right),$$

where $G^a = (G^r)^\dagger$ is the advanced Green’s function and Γ_L/Γ_R are the two self-energies. The phonon thermal conductance is calculated by the Landauer formula. Figure 6 shows the transmission for a bright mode at $\omega = 792 \text{cm}^{-1}$ and a dark mode at $\omega = 1622 \text{cm}^{-1}$ in graphene with bubbles of different shapes. Obviously, the transmission for the bright mode is very sensitive to the geometrical ratio h/λ, and decreases linearly with the increase of h/λ. It indicates that this mode becomes more bright for a bubble of larger h/λ, where the energy is more concentrated in the bubble region. On the contrary, we find that the dark mode is insensitive to the ratio of h/λ. This is because the energy of the dark mode is distributed throughout the whole graphene sample except the bubble region. Thus it is insensitive to the local environment of the bubble. The room-temperature thermal conductance result in fig. 7 confirms that the bright mode plays an important role and leads to a linear decrease of the thermal conductance with the increase of h/λ.

In conclusion, we have studied the normal modes in graphene with bubbles and found two topologically different types of normal modes, namely the bright and dark modes. The bright modes confine energy inside the bubble region and have an Euler characteristic of 1; while the dark mode repels energy from the bubble region and has an Euler characteristic of 0. As a result of their different topological nature, the bright mode is sensitive to the shape of the bubble; yet the dark mode is insensitive to the shape of the bubble. The distinction between bright and dark modes is expected to be observed in the experiment. We have also examined the difference between these two types of normal modes in the phonon thermal transport process, and find that the transmission of bright/dark mode is sensitive/insensitive to the geometrical ratio h/λ.

The authors thank X. F. Xu and L. F. Zhang for helpful discussion. The work is supported by a URC grant R-144-000-257-112 of National University of Singapore.

REFERENCES

[1] CASTRO NETO A. H., GUINEA F., PERES N. M. R., NOVOSELOV K. S. and GEIM A. K., Rev. Mod. Phys., 81 (2009) 109.
[2] GUINEA F., KATSNELSON M. I. and GEIM A. K., Nat. Phys., 6 (2010) 30.
[3] MOHIUDDIN T. M. G., LOMBARDO A., NAIR R. R., BONETTI A., SAVINI G., JALIL R., BONINI N., BASKO D. M., GALLOTIS C, MARZARI N., NOVOSELOV K. S., GEIM A. K. and FERRARI A. C., Phys. Rev. B, 79 (2009) 205433.
Bright and dark modes induced by graphene bubbles

[4] Huang M. Y., Yan H. G., Chen C. Y., Song D. H., Heinz T. F. and Hone J., Proc. Natl. Acad. Sci. U.S.A., 106 (2009) 7304.

[5] Kim E.-A. and Castro Neto A. H., EPL, 84 (2008) 57007.

[6] Guinea F., Katsnelson M. I. and Vozmediano M. A. H., Phys. Rev. B, 77 (2008) 075422.

[7] Pereira V. M., Castro-Neto A. H. and Peres N. M. R., Phys. Rev. B, 80 (2009) 045401.

[8] Choi S.-M., Jhi S.-H. and Son Y.-W., Nano Lett., 10 (2010) 3486.

[9] Guinea F., Geim A. K., Katsnelson M. I. and Novoselov K. S., Phys. Rev. B, 81 (2010) 075422.

[10] Low T. and Guinea F., Nano Lett., 10 (2010) 3551.

[11] Kim K.-J., Blanter Y. M. and Ahn K.-H., Phys. Rev. B, 84 (2011) 081401(R).

[12] Pereira V. M., Ribeiro R. M., Peres N. M. R. and Castro Neto A. H., EPL, 92 (2010) 67001.

[13] Zhou M., Lu Y., Zhang C. and Feng Y. P., Appl. Phys. Lett., 97 (2010) 103109.

[14] Stolyarova E., Stolyarov D., Bolotin K., Ryu S., Liu L., Rim K. T., Klima M., Hybertsen M., Pogorelsky I., Pavlishin I., Kusche K., Hone J., Kim P., Stormer H. L., Yakimenko V. and Flynn G., Nano Lett., 9 (2009) 332.

[15] Levy N., Burke S. A., Meaker K. L., Panlasigui M., Zettl A., Guinea F., Castro Neto A. H. and Crommie M. F., Science, 329 (2010) 544.

[16] Georgiou T., Britnell L., Blake P., Gorbachev R., Gholinia A., Geim A. K., Casiraghi C. and Novoselov K. S., Appl. Phys. Lett., 99 (2011) 093103.

[17] Saito R., Dresselhaus G. and Dresselhaus M. S., Physical Properties of Carbon Nanotubes (Imperial College Press) 1998.

[18] Jiang J. W., Tang H., Wang B. S. and Su Z. B., Phys. Rev. B, 77 (2008) 235421.

[19] Sanchez D. G., v. d. Zande A. M., Paulo A. S., Lassagne B., McEuen P. L. and Bachtold A., Nano Lett., 8 (2008) 1399.

[20] Calizo I., Miao F., Bao W., Lau C. N. and Balandin A. A., Appl. Phys. Lett., 91 (2007) 071913.

[21] Calizo I., Balandin A. A., Bao W., Miao F. and Lau C. N., Nano Lett., 7 (2007) 2645.

[22] Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F. and Lau C. N., Nano Lett., 8 (2008) 902.

[23] Nika D. L., Pokatilov E. P., Askerov A. S. and Balandin A. A., Phys. Rev. B, 79 (2009) 155413.

[24] Nika D. L., Ghosh S., Pokatilov E. P. and Balandin A. A., Appl. Phys. Lett., 94 (2009) 203103.

[25] Balandin A. A., Nat. Mater., 10 (2011) 569.

[26] Wang J.-S., Wang J. and Lü J. T., Eur. Phys. J. B, 62 (2008) 381.