Vertex Ordering Problems in Directed Graph Streams

Amit Chakrabarti Prantar Ghosh Andrew McGregor Sofya Vorotnikova

We consider directed graph algorithms in a streaming setting, focusing on problems concerning orderings of the vertices. This includes such fundamental problems as topological sorting and acyclicity testing. We also study the related problems of finding a minimum feedback arc set (edges whose removal yields an acyclic graph), and finding a sink vertex. We are interested in both adversarially-ordered and randomly-ordered streams. For arbitrary input graphs with edges ordered adversarially, we show that most of these problems have high space complexity, precluding sublinear-space solutions. Some lower bounds also apply when the stream is randomly ordered: e.g., in our most technical result we show that testing acyclicity in the p-pass random-order model requires roughly $n^{1+1/p}$ space. For other problems, random ordering can make a dramatic difference: e.g., it is possible to find a sink in an acyclic tournament in the one-pass random-order model using polylog(n) space whereas under adversarial ordering roughly $n^{1/p}$ space is necessary and sufficient given $\Theta(p)$ passes. We also design sublinear algorithms for the feedback arc set problem in tournament graphs; for random graphs; and for randomly ordered streams. In some cases, we give lower bounds establishing that our algorithms are essentially space-optimal. Together, our results complement the much maturer body of work on algorithms for undirected graph streams.
1 Introduction

While there has been a large body of work on undirected graphs in the data stream model [20], the complexity of processing directed graphs (digraphs) in this model is relatively unexplored. The handful of exceptions include multipass algorithms emulating random walks in directed graphs [15, 22], establishing prohibitive space lower bounds on finding sinks [13] and answering reachability queries [11], and ruling out semi-streaming constant-pass algorithms for directed reachability [12]. This is rather unfortunate given that many of the massive graphs often mentioned in the context of motivating work on graph streaming are directed, e.g., hyperlinks, citations, and Twitter “follows” all correspond to directed edges.

In this paper we consider the complexity of a variety of fundamental problems related to vertex ordering in directed graphs. For example, one basic problem that motivated much of this work is as follows: given a stream consisting of edges of an acyclic graph in an arbitrary order, how much memory is required to return a topological ordering of the graph? In the offline setting, this can be computed in \(O(m+n) \) time using Kahn’s algorithm [16] or via depth-first trees [23] but nothing was known in the data stream setting.

We also consider the related minimum feedback arc set problem, i.e., estimating the minimum number of edges (arcs) that need to be removed such that the resulting graph is acyclic. This problem is NP-hard and the best known approximation factor is \(O(\log n \log \log n) \) for arbitrary graphs [10], although a PTAS is known in the case of tournaments [18]. Again, nothing was known in the data stream model. In contrast, the analogous problem for undirected graphs is well understood in the data stream model. The number of edges required to make an undirected graph acyclic is \(m - n + c \) where \(c \) is the number of connected components. The number of connected components can be computed in \(O(n \log n) \) space by constructing a spanning forest [2, 11].

Previous Work. Some versions of the problems we study in this work have been considered previously in the query complexity model. For example, Huang et al. [14] consider the “generalized sorting problem” where \(G \) is an acyclic graph with a unique topological order. The algorithm is presented with an undirected version of this graph and may query any edge to reveal its direction. The goal is to learn the topological ordering with the minimum number of queries. Huang et al. [14] and Angelov et al. [5] also studied the average case complexity of various problems where the input graph is chosen from some known distribution. Ailon [3] studied the equivalent problem for feedback arc set in tournaments. Note that all these query complexity results are adaptive and do not immediately give rise to small-space data stream algorithms.

Perhaps the relative lack of progress on streaming algorithms for directed graph problems stems from their being considered “implicitly hard” in the literature, a point made in the recent work of Khan and Mehta [19]. Indeed, that work and the also-recent work of Elkin [9] provide the first nontrivial streaming algorithms for computing a depth-first search tree and a shortest-paths tree (respectively) in semi-streaming space, using \(O(n/\text{polylog} n) \) passes. Notably, fairly non-trivial work was needed to barely beat the trivial bound of \(O(n) \) passes.

Some of our work here applies and extends the work of Guruswami and Onak [12], who gave the first super-linear (in \(n \)) space lower bounds in the streaming model for decision problems on graphs. In particular, they showed that solving reachability in \(n \)-vertex digraphs using \(p \) passes requires \(n^{1+\Omega(1/p)} / p^{O(1)} \) space. Via simple reductions, they then showed similar lower bounds for deciding whether a given (undirected) graph has a short \(s-t \) path or a perfect matching.

1.1 Results

Arbitrary Graphs. To set the stage, in Section 2 we present a number of negative results for the case when

1The problem was explicitly raised in an open problems session at the Shonan Workshop “Processing Big Data Streams” (June 5-8, 2017) and generated considerable discussion.
Table 1: Summary of our algorithmic and space lower bound results. These problems are defined in Section 1.2. The input stream is adversarially ordered unless marked as “random” above. Besides the above results, we also give an oracle (query complexity) lower bound in Section 3.4.

Problem	Passes	Input Order	Space Bound	Notes
ACYC	1		$\Theta(n^2)$	
ACYC	p		$n^{1+\Omega(1/p)} / p^{O(1)}$	
mult. approx. FAS-SIZE	1		$\Theta(n^2)$	
mult. approx. FAS-SIZE	p		$n^{1+\Omega(1/p)} / p^{O(1)}$	
TOPO-SORT	1		$\Theta(n^2)$	
TOPO-SORT	p		$n^{1+\Omega(1/p)} / (p+1)^{O(1)}$	
mult. approx. FAS	1		$\Theta(n^2)$	
mult. approx. FAS	p		$n^{1+\Omega(1/p)} / (p+1)^{O(1)}$	
STCONN-DAG	p	random	$n^{1+\Omega(1/p)} / p^{O(1)}$	error probability $1/p^{\Omega(p)}$
mult. approx. FAS-SIZE	p	random	$n^{1+\Omega(1/p)} / p^{O(1)}$	error probability $1/p^{\Omega(p)}$
TOPO-SORT	p	random	$n^{1+\Omega(1/p)} / (p+1)^{O(1)}$	error probability $1/p^{\Omega(p)}$
mult. approx. FAS	p	random	$n^{1+\Omega(1/p)} / (p+1)^{O(1)}$	error probability $1/p^{\Omega(p)}$
(1 + ε)-approx. FAS-T	1		$\tilde{O}(\varepsilon^{-2}n)$	exp. time post-processing
3-approx. FAS-T	p		$\tilde{O}(n^{1+1/p})$	
ACYC-T	1		$\tilde{O}(n)$	
ACYC-T	p		$\Omega(n/p)$	
SINK-FIND-T	$2p-1$		$\tilde{O}(n^{1/p})$	
SINK-FIND-T	p		$\Omega(n^{1/p}/p^2)$	
TOPO-SORT	1	random	$\tilde{O}(1)$	
TOPO-SORT	$O(\log n)$	random	$\tilde{O}(n^{3/2})$	random DAG + planted path
(1 + ε)-apx. RANK-AGGR	1		$\tilde{O}(\varepsilon^{-2}n)$	exp. time post-processing

The input digraph can be arbitrary. In particular, we show that there is no one-pass sublinear-space algorithm for such fundamental digraph problems as testing whether an input digraph is acyclic, topologically sorting it if it is, or finding its feedback arc set if it is not. These results set the stage for our later focus on specific families of graphs, where we can do much more, algorithmically.

For our lower bounds, we consider both arbitrary and random stream orderings. In Section 2.1, we concentrate on the arbitrary ordering and show that checking whether the graph is acyclic, finding a topological ordering of a directed acyclic graph (DAG), or any multiplicative approximation of feedback arc set requires $\Omega(n^{2})$ space in one pass. The lower bound extends to $n^{1+\Omega(1/p)} / p^{O(1)}$ when the number of passes is $p \geq 1$. In Section 2.2, we show that essentially the same bound holds even when the stream is randomly ordered. This strengthening is one of our more technically involved results and it is based on generalizing a fundamental result by Guruswami and Onak [12] on s–t connectivity in the multi-pass data stream model.

As a by-product of our generalization, we also obtain the first random-order super-linear (in n) lower bounds for the undirected graph problems of deciding (i) whether there exists a short s–t path (ii) whether
there exists a perfect matching.

Tournaments. A **tournament** is a digraph that has exactly one directed edge between each pair of distinct vertices. If we assume that the input graph is a tournament, it is trivial to find a topological ordering, given that one exists, by considering the in-degrees of the vertices. Furthermore, it is known that ordering the vertices by in-degree yields a 5-approximation to feedback arc set [8].

In Section 3, we present an algorithm which computes a \((1 + \varepsilon)\)-approximation to feedback arc set in one pass using \(\tilde{O}(\varepsilon^{-2}n)\) space\(^2\). However, in the post-processing step, it estimates the number of back edges for every permutation of vertices in the graph, thus resulting in exponential post-processing time. Despite its “brute force” feel, our algorithm is essentially optimal, both in its space usage (unconditionally) and its post-processing time (in a sense we shall make precise later). We address these issues in Section 3.4. On the other hand, in Section 3.2, we show that with \(O(\log n)\) additional passes it is possible to compute a 3-approximation to feedback arc set while using only polynomial time and \(O(n)\) space.

Lastly, in Section 4, we consider the problem of finding a sink in a tournament which is guaranteed to be acyclic. Obviously, this problem can be solved in a single pass using \(O(n)\) space by maintaining an “is-sink” flag for each vertex. Our results show that for arbitrary order streams this is tight. We prove that finding a sink in \(p\) passes requires \(\Omega(n^{1/p}/p^2)\) space. We also provide an \(O(n^{1/p}\log(3p))\)-space sink-finding algorithm that uses \(O(p)\) passes, for any \(1 \leq p \leq \log n\). In contrast, we show that if the stream is randomly ordered, then using \(\polylog n\) space and a single pass is sufficient. This is a significant separation between the arbitrary-order and random-order data stream models.

Random Graphs. In Section 5, we consider a natural family of random acyclic graphs (see Definition 1.2 below) and present two algorithms for finding a topological ordering of vertices. We show that, for this family, \(\tilde{O}(n^{4/3})\) space is sufficient to find the best ordering given \(O(\log n)\) passes. Alternatively, \(\tilde{O}(n^{3/2})\) space is sufficient given only a single pass, on the assumption that the edges in the stream are randomly ordered.

Rank Aggregation. In Section 6, we consider the problem of rank aggregation (formally defined in the next section), which is closely related to the feedback arc set problem. We present a one-pass, \(\tilde{O}(\varepsilon^{-2}n)\) space algorithm that returns \((1 + \varepsilon)\)-approximation to the rank aggregation problem. The algorithm is very similar to our \((1 + \varepsilon)\)-approximation of feedback arc set in tournaments and has the same drawback of using exponential post-processing time.

A summary of these results is given in Table 1.

1.2 Models and Preliminaries

Vertex Ordering Problems in Digraphs. An ordering of an \(n\)-vertex digraph \(G = (V, E)\) is a list consisting of its vertices. We shall view each ordering \(\sigma\) as a function \(\sigma: V \rightarrow [n]\), with \(\sigma(v)\) being the position of \(v\) in the list. To each ordering \(\sigma\), there corresponds a set of back edges \(B_G(\sigma) = \{(v, u) \in E : \sigma(u) < \sigma(v)\}\). We say that \(\sigma\) is a **topological ordering** if \(B_G(\sigma) = \emptyset\); such \(\sigma\) exists iff \(G\) is acyclic. We define \(\beta_G = \min\{|B_G(\sigma)| : \sigma\text{ is an ordering of } G\}\), i.e., the size of a minimum feedback arc set for \(G\).

We now define the many interrelated digraph problems studied in this work. In each of these problems, the input is a digraph \(G\), presented as a stream of its edges. The ordering of the edges is adversarial unless specified otherwise.

- **ACYC:** Decide whether or not \(G\) is acyclic.
- **MIN BACK EDGES:** Given a digraph \(G\), find a topological ordering \(\sigma\) of \(G\) with the minimum number of back edges.

\(^2\)Throughout the paper, \(\tilde{O}(f(n)) = O(f(n)\polylog n)\).
TOPO-SORT: Under the promise that G is acyclic, output a topological ordering of its vertices.

STCONN-DAG: Under the promise that G is acyclic, decide whether it has an s-to-t path, these being two prespecified vertices.

SINK-FIND: Under the promise that G is acyclic, output a sink of G.

FAS-SIZE (α-approximation): Output an integer $\beta \in [\beta_G, \alpha \beta_G]$.

FAS (α-approximation): Output an ordering σ such that $|B_G(\sigma)| \leq \alpha \beta_G$.

FAS-T: Solve FAS under the promise that G is a tournament. In a similar vein, we define the promise problems ACYC-T, TOPO-SORT-T, SINK-FIND-T, FAS-SIZE-T.

For randomized solutions to these problems we shall require that the error probability be at most $1/3$.

We remark that the most common definition of the minimum feedback arc set problem in the literature on optimization is to identify a small set of edges whose removal makes the graph acyclic, so FAS-SIZE is closer in spirit to this problem than FAS. As we shall see, our algorithms will apply to both variants of the problem. On the other hand, lower bounds sometimes require different proofs for the two variants. Since $\beta_G = 0$ iff G is acyclic, we have the following basic observation.

Observation 1.1. Producing a multiplicative approximation for any of FAS, FAS-T, FAS-SIZE, and FAS-SIZE-T entails solving (respectively) TOPO-SORT, TOPO-SORT-T, ACYC, and ACYC-T.

For an ordering π of a vertex set V, define $E^\pi = \{(u,v) \in V^2 : \pi(u) < \pi(v)\}$. Define $\text{Tou}(\pi) = (V, E^\pi)$ to be the unique acyclic tournament on V consistent with π.

As mentioned above, we will also consider vertex ordering problems on random graphs from a natural distribution. This distribution, which we shall call a “planted path distribution,” was considered by Huang et al. [14] for average case analysis in their work on generalized sorting.

Definition 1.2 (Planted Path Distribution). Let PlantDAG$_{n,q}$ be the distribution on digraphs on $[n]$ defined as follows. Pick a permutation π of $[n]$ uniformly at random. Retain each edge (u,v) in $\text{Tou}(\pi)$ with probability 1 if $\pi(v) = \pi(u) + 1$, and with probability q, independently, otherwise.

Rank Aggregation. The feedback arc set problem in tournaments is closely related to the problem of rank aggregation (RANK-AGGR). Given k total orderings $\sigma_1, \ldots, \sigma_k$ of n objects we want to find an ordering that best describes the “preferences” expressed in the input. Formally, we want to find an ordering that minimizes $\text{cost}(\pi) := \sum_{i=1}^k d(\pi, \sigma_i)$, where the distance $d(\pi, \sigma)$ between two orderings is the number of pairs of objects ranked differently by them. That is,

$$d(\pi, \sigma) := \sum_{a,b \in [n]} 1\{\pi(a) < \pi(b), \sigma(a) < \sigma(b)\},$$

where the notation $1\{\phi\}$ denotes a 0/1-valued indicator for the condition ϕ.

In the streaming model, the input to RANK-AGGR can be given either as a concatenation of k orderings, leading to a stream of length kn, or as a sequence of triples (a,b,i) conveying that $\sigma_i(a) < \sigma_i(b)$, leading to a stream of length $k\binom{n}{2}$. Since we want the length of the stream to be polynomial in n, we assume $k = n^{O(1)}$.

Lower Bounds through Communication Complexity. Space lower bounds for data streaming algorithms are most often proven via reductions from standard problems in communication complexity. We recall two such problems, each involving two players, Alice and Bob. In the INDEX$_N$ problem, Alice holds a vector $x \in \{0,1\}^N$ and Bob holds an index $k \in [N]$: the goal is for Alice to send Bob a message allowing him to output x_k. In the DISJ$_N$ problem, Alice holds $x \in \{0,1\}^N$ and Bob holds $y \in \{0,1\}^N$: the goal is for them to communicate interactively, following which they must decide whether x and y are disjoint, when
considered as subsets of \([N]\), i.e., they must output \(\vee_{i=1}^{N} x_i \land y_i\). In the special case \(\text{DISJ}_{N,3}\), it is promised that the cardinalities \(|x| = |y| = s\). In each case, the communication protocol may be randomized, erring with probability at most \(\delta\). We shall use the following well-known lower bounds.

Fact 1.3 (See, e.g., [1,21]). For error probability \(\delta = \frac{1}{4}\), the one-way randomized complexity \(R_{1/3}^{\geq}(\text{INDEX}_N) = \Omega(N)\) and the general randomized complexity \(R_{1/3}^{\geq}(\text{DISJ}_{N,3}) = \Omega(N)\).

Other Notation and Terminology. We call an edge critical if it lies on a directed Hamiltonian path of length \(n - 1\) in a directed acyclic graph. We say an event holds with high probability (w.h.p.) if the probability is at least \(1 - 1/\text{poly}(n)\). Given a graph with a unique total ordering, we say a vertex \(u\) has rank \(r\) if it occurs in the \(r\)th position in this total ordering.

2 General Digraphs and the Hardness of some Basic Problems

In this section, our focus is bad news. In particular, we show that there is no one-pass sublinear-space algorithm for the rather basic problem of testing whether an input digraph is acyclic, nor for topologically sorting it if it is. These results set the stage for our later focus on tournament graphs, where we can do much more, algorithmically.

2.1 Arbitrary Order Lower Bounds

To begin, note that the complexity of \(\text{TOPO-SORT-T}\) is easily understood: maintaining in-degrees of all vertices and then sorting by in-degree provides a one-pass \(O(n \log n)\)-space solution. However, the problem becomes maximally hard without the promise of a tournament.

Theorem 2.1. Solving \(\text{TOPO-SORT}\) in one pass requires \(\Omega(n^2)\) space.

Proof. We reduce from \(\text{INDEX}_N\), where \(N = p^2\) for a positive integer \(p\). Using a canonical bijection from \([p]^2\) to \([N]\), we rewrite Alice’s input vector as a matrix \(x = (x_{ij})_{i,j \in [p]}\) and Bob’s input index as \((y, z) \in [p]^2\).

Our reduction creates a graph \(G = (V, E)\) on \(n = 4p\) vertices: the vertex set \(V = L^0 \cup R^0 \cup L^1 \cup R^1\), where each \(|L^b| = |R^b| = p\). These vertices are labeled, with \(r_i^b\) being the \(i\)th vertex in \(L^0\) (and similarly for \(r_i^1, r_i^0, r_i^1\)).

Based on their inputs, Alice and Bob create streams of edges by listing the following sets:

\[
E_x = \{(r_i^0, r_j^b) : b \in \{0, 1\}, i, j \in [p], x_{ij} = b\} , \quad E_{yz} = \{(r_i^0, r_j^1), (r_i^1, r_j^0)\}.
\]

The combined stream defines the graph \(G\), where \(E = E_x \cup E_{yz}\).

We claim that \(G\) is acyclic. In the digraph \((V, E_x)\), every vertex is either a source or a sink. So the only vertices that could lie on a cycle in \(G\) are \(r_i^0, r_i^1, r_i^1, r_i^1\). Either \((r_i^0, r_i^0) \notin E\) or \((r_i^1, r_i^1) \notin E\), so there is in fact no cycle even among these four vertices.

Let \(\sigma\) be a topological ordering of \(G\). If \(x_{yz} = 0\), then we must, in particular, have \(\sigma(r_i^0) < \sigma(r_i^1)\), else we must have \(\sigma(r_i^1) < \sigma(r_i^0)\). Thus, by simulating a one-pass algorithm \(A\) on Alice’s stream followed by Bob’s stream, consulting the ordering \(\sigma\) produced by \(A\) and outputting 0 if \(\sigma(r_i^0) < \sigma(r_i^1)\), the players can solve \(\text{INDEX}_N\). It follows that the space used by \(A\) must be at least \(R_{1/3}^{\geq}(\text{INDEX}_N) = \Omega(N) = \Omega(p^2) = \Omega(n^2)\).

For our next two results, we use reductions from \(\text{STCONN-DAG}\). It is a simple exercise to show that a one-pass streaming algorithm for \(\text{STCONN-DAG}\) requires \(\Omega(n^2)\) space. Guruswami and Onak [12] showed that a \(p\)-pass algorithm requires \(n^{1+\Omega(1/p)} / p^{O(1)}\) space.\(^3\)

\(^3\)Although their paper states the lower bound for \(s-t\) connectivity in general digraphs, their proof in fact shows the stronger result that the bound holds even when restricted to DAGs.
Proposition 2.2. Solving ACYC requires $\Omega(n^2)$ space in one pass and $n^{1+\Omega(1/p)}/p^{O(1)}$ space in p passes.

Proof. Given a DAG G and specific vertices s,t, let G' be obtained by adding edge (t,s) to G. Then G' is acyclic iff G has no s-to-t path. By the discussion above, the lower bounds on ACYC follow. □

Corollary 2.3. Solving TOPO-SORT in p passes requires $n^{1+\Omega(1/p)}/(p+1)^{O(1)}$ space.

Proof. Given a p-pass S-space algorithm A for TOPO-SORT, we can obtain a $(p+1)$-pass $(S+O(n\log n))$-space algorithm for ACYC as follows. Run algorithm A, store the ordering it outputs, and in another pass, check if the ordering induces any back-edge. If it does, we output NO, and otherwise, we output YES. In case of any runtime error, we return NO. For correctness, observe that if the input graph G is acyclic, then A returns a valid topological ordering w.h.p.. Hence, the final pass doesn’t detect any back-edge, and we correctly output YES. In case G is not acyclic, the promise that the input graph for TOPO-SORT would be a DAG is violated, and hence, A either raises an error or returns some ordering that must induce a back-edge since G doesn’t have a topological ordering. Thus, we correctly return NO in this case. Finally, Proposition 2.2 implies that $S+O(n\log n) \geq n^{1+\Omega(1/p)}/(p+1)^{O(1)}$, i.e., $S \geq n^{1+\Omega(1/p)}/(p+1)^{O(1)}$. □

Corollary 2.4. A multiplicative approximation algorithm for either FAS-SIZE or FAS requires $\Omega(n^2)$ space in one pass. In p passes, such approximations require $n^{1+\Omega(1/p)}/p^{O(1)}$ space and $n^{1+\Omega(1/p)}/(p+1)^{O(1)}$ space respectively.

Proof. This is immediate from Observation 1.1, Theorem 2.1, Proposition 2.2, and Corollary 2.3. □

2.2 Random Order Lower Bounds

We consider the STCONN-DAG, ACYC, and FAS problems in a uniformly randomly ordered digraph stream. Recall that for adversarially ordered streams, these problems require about $n^{1+\Omega(1/p)}$ space in p passes. The hardness ultimately stems from a similar lower bound for the SHORTPATH-DAG problem. In this latter problem, the input is an n-vertex DAG with two designated vertices v_s and v_t, such that either (a) there exists a path of length at most $2p+2$ from v_s to v_t or (b) v_t is unreachable from v_s. The goal is to determine which of these is the case.

Our goal in this section is to show that the same lower bound continues to hold under random ordering, provided we insist on a sufficiently small error probability, about $1/p^{\Omega(p)}$. We prove this for SHORTPATH-DAG. As this is a special case of STCONN-DAG, a lower bound for SHORTPATH-DAG carries over to STCONN-DAG. Further, by the reductions in Proposition 2.2 and Corollaries 2.3 and 2.4, the lower bounds also carry over to ACYC, TOPO-SORT, and FAS. We also show a barrier result arguing that this restriction to low error is necessary: for the SHORTPATH-DAG problem, if an error probability of at least $2/p!$ is allowed, then $O(n)$ space is achievable in p passes.

Our proof uses the machinery of the Guruswami–Onak lower bound for SHORTPATH-DAG under an adversarial stream ordering [12]. As in their work, we derive our space lower bound from a communication lower bound for set chasing intersection (henceforth, SCI). However, unlike them, we need to prove a “robust” lower bound for SCI, in the sense of Chakrabarti, Cormode, and McGregor [7], as explained below. To define SCI, we first set up a special family of multilayer pointer jumping problems, described next.

Picture a layered digraph G^* with $2k+1$ layers of vertices, each layer having m vertices, laid out in a rectangular grid with each column being one layer. From left to right, the layers are numbered $-k, -k+1, \ldots, k$. Layer 0 is called the mid-layer. The only possible edges of G^* are from layer ℓ to layer $\ell-1$, or from layer $-\ell$ to layer $-\ell+1$, for $\ell \in [k]$ (i.e., edges travel from the left and right ends of the rectangular grid towards the mid-layer). We designate the first vertex in layer $-k$ as v_s and the first vertex in layer k as v_t.
Each vertex not in the mid-layer has exactly t outgoing edges, numbered 1st through tth, possibly with repetition (i.e., G^* is a multigraph). Think of these edges as pointers. An input to one of our communication problems (to be defined soon) specifies the destinations of these pointers. Thus, an input consists of $2mkt$ tokens, where each token is an integer in $[m]$ specifying which of the m possibilities a certain pointer takes. The pointers emanating from layer ℓ of vertices constitute the ℓth layer of pointers. Our communication games will involve $2k$ players named $P_{-k}, \ldots , P_{-1}, P_1, \ldots , P_k$. We say that P_ℓ is the natural owner of the portion of the input specifying the ℓth layer of pointers.

In the $\text{SCI}_{m,k,t}$ problem, the goal is to determine whether or not there exists a mid-layer vertex reachable from v_s as well as v_t. Consider the communication game where each pointer is known to its natural owner and the players must communicate in k rounds, where in each round they broadcast messages in the fixed order $P_{-1}, \ldots , P_{-k}, P_1, \ldots , P_k$. Guruswami and Onak showed that this problem requires total communication $\Omega(m^{1+1/(2k)}/k^{16}\log^{3/2}m)$ in the parameter regime $t^{2k} \ll m$. This almost immediately implies a similar lower bound for SHORTPATH-DAG—simply reverse the directions of the pointers in positive-numbered layers—which then translates into a data streaming lower bound along standard lines.

The key twist in our version of the SCI problem is that each pointer is allocated to one of the $2k$ players uniformly at random: thus, most pointers are not allocated to their natural owners. The players have to determine the output to SCI communicating exactly in the same pattern as before, up to a small error probability taken over the protocol’s internal randomness as well as the random allocation. This setup potentially makes the problem easier because there is a good chance that the players will be able to “jump two pointers” within a single round. Our main technical result is to show that a lower bound of the form $m^{1+\Omega(1/k)}$ holds despite this. In the terminology of Chakrabarti et al. [7], who lower-bounded a number of communication problems under such random-allocation setups, this is a robust communication lower bound.

Theorem 2.5. Suppose that $t^{2k} = o(m/\text{polylog}(m))$ and that protocol Π solves $\text{SCI}_{m,k,t}$ with error $\varepsilon < (2k)^{-2k-2}$ when the input is randomly allocated amongst the $2k$ players, as described above. Then, Π communicates $\Omega(m^{1+1/(2k)}/k^{16}\log^{3/2}m)$ bits.

To prove this result, we consider a problem we call $\text{MPJ-MEET}_{m,k,t}$, defined next (Guruswami and Onak called this problem $\text{OR} \circ \text{LPCE}$). Consider an input G^* to $\text{SCI}_{m,k,t}$ and fix an $i \in [t]$. If we retain only the ith pointer emanating from each vertex, for each layer ℓ, the ℓth layer of pointers defines a function $f_{\ell,i}: [n] \rightarrow [n]$. Let x_i (respectively, y_i) denote the index of the unique mid-layed vertex reached from v_s (respectively, v_t) by following the retained pointers. Formally,

$$x_i = f_{-1,i}(f_{-2,i}(\cdots f_{-k,i}(1)\cdots)), \quad y_i = f_{1,i}(f_{2,i}(\cdots f_{k,i}(1)\cdots)).$$

Define a function to be r-thin if every element in its range has at most r distinct pre-images. The instance G^* is said to meet at i if $x_i = y_i$ and is said to be r-thin at i if each function $f_{\ell,i}$ is r-thin. The desired output of MPJ-MEET is

$$\text{MPJ-MEET}(G^*) = \bigvee_{i=1}^t \{G^* \text{ meets at } i\} \lor \{G^* \text{ is not } (C\log m)\text{-thin at } i\},$$

for an appropriate universal constant C. The corresponding communication game allocates each pointer to its natural owner and asks them to determine the output using the same communication pattern as for SCI. Here is the key result about this problem.

Lemma 2.6 (Lemma 7 of Guruswami–Onak [12]). The $(k-1)$-round constant-error communication complexity $R^{k-1}(\text{MPJ-MEET}_{m,k,t}) = \Omega(tm/(k^{16}\log m)) - O(kr^2)$.

Using this, we prove our main technical result.
Proof of Theorem 2.5. Based on the \(\varepsilon \)-error protocol \(\Pi \) for \(\text{SCI}_{m,k,t} \), we design a protocol \(Q \) for \(\text{MPJ-MEET}_{m,k,t} \) as follows. Let \(G' \) be an instance of \(\text{MPJ-MEET} \) allocated to players as described above. The players first check whether, for some \(i \), \(G' \) fails to be \(r \)-thin at \(i \), for \(r := C \log m \); this check can be performed in the first round of communication with each player communicating a single bit. If the check passes, the protocol ends with output 1. From now on, we assume that \(G' \) is indeed \(r \)-thin at each \(i \in [t] \).

Using public randomness, players randomly renumber the vertices in each layer of \(G' \), creating an instance \(G'' \) of \(\text{SCI} \).\(^4\) The players then choose \(\rho \), a random allocation of pointers as in the \(\text{SCI} \) problem. They would like to simulate \(\Pi \) on \(G' \), as allocated by \(\rho \), but of course they can’t do so without additional communication. Instead, using further public randomness, for each pointer that \(\rho \) allocates to someone besides its natural owner, the players reset that pointer to a uniformly random (and independent) value in \([m]\). We refer to such a pointer as damaged. Since there are \(2k \) players, each pointer is damaged with probability \(1 - 1/(2k) \). Let \(G'' \) denote the resulting random instance of \(\text{SCI} \). The players then simulate \(\Pi \) on \(G'' \) as allocated by \(\rho \).

It remains to analyze the correctness properties of \(Q \). Suppose that \(G' \) is a 1-instance of \(\text{MPJ-MEET} \). Then there exists \(i \in [t] \) such that \(G' \) meets at \(i \). By considering the unique maximal paths out of \(v_x \) and \(v_t \) following only the \(i \)-th pointers at each vertex, we see that \(G'' \) is also a 1-instance of \(\text{SCI} \). Since the vertex renumbering preserves connectivity, \(G' \) is also a 1-instance of \(\text{SCI} \). With probability \((2k)^{-2k} \), none of the \(2k \) pointers on these renumbered paths is damaged; when this event occurs, \(G'' \) is also a 1-instance of \(\text{SCI} \). Therefore, \(Q \) outputs 1 with probability at least \((2k)^{-2k}(1 - \varepsilon) \).

Next, suppose that \(G' \) is a 0-instance of \(\text{MPJ-MEET} \). It could be that \(G' \) is a 1-instance of \(\text{SCI} \). However, as Guruswami and Onak show,\(^5\) the random vertex renumbering ensures that \(\Pr[\text{SCI}(G') = 1] < o(1) \). For the rest of the argument, assume that \(\text{SCI}(G') = 0 \). In order to have \(\text{SCI}(G'') = 1 \), there must exist a mid-layer vertex \(x \) such that

\[
\left(f_{1,i_1}(f_{2,j_2}(\cdots f_{k,i_k}(1)\cdots))\right) = \left(f_{-1,j_1}(f_{-2,j_2}(\cdots f_{-k,j_k}(1)\cdots))\right)
\]

for some choice of pointer numbers \(i_1, \ldots, i_k, j_1, \ldots, j_k \in [t] \). We consider three cases.

- **Case 1:** None of the pointers in the above list is damaged. In this case, eq. (1) cannot hold, because \(\text{SCI}(G') = 0 \).

- **Case 2:** The layer-1 pointer in the above list is damaged. Condition on a particular realization of pointers in negative-numbered layers and let \(x \) denote the mid-layered vertex reached from \(v_x \) by following pointers numbered \(j_k, \ldots, j_1 \), as in eq. (1). The probability that the damaged pointer at layer 1 points to \(x \) is \(1/m \). Since this holds for each conditioning, the probability that \(\text{SCI}(G'') = 1 \) is also \(1/m \).

- **Case 3:** The layer-\(\ell \) pointer is damaged, but pointers in layers \(1, \ldots, \ell - 1 \) are not, where \(\ell \geq 2 \). Again, condition on a particular realization of pointers in negative-numbered layers and let \(x \) be as above. Since the functions \(f \) in eq. (1) are all \(r \)-thin, the number of vertices in layer \(\ell - 1 \) that can reach \(x \) using only undamaged pointers is at most \(r^{\ell - 1} \leq r^{k - 1} \). The probability that the damaged pointer at layer \(\ell \) points to one of these vertices is at most \(r^{k - 1}/m \).

Combining the cases, the probability that eq. (1) holds for a particular choice of pointer numbers \(i_1, \ldots, i_k, j_1, \ldots, j_k \in [t] \) is at most \(r^{k - 1}/m \). Taking a union bound over the \(r^{2k} \) choices, the overall probability \(\Pr[\text{SCI}(G'') = 1] < t^{2k}r^{k - 1}/m = o(1) \), for the parameter regime \(t^{2k} = o(m/\log\log m) \) and \(r = O(\log m) \). Therefore, \(Q \) outputs 1 with probability at most \(\varepsilon + o(1) \).

\(^4\)This step is exactly as in Guruswami-Onak [12]. Formally, each function \(f_{i,j} \) is replaced by a corresponding function of form \(\pi_{\ell,i} \circ f_{i,j} \circ \pi_{\ell+1,j}^{-1} \) (for \(\ell > 0 \), for random permutations \(\pi_{\ell,i} : [m] \to [m] \). To keep things concise, we omit the full details here.

\(^5\)See the final paragraph of the proof of Lemma 11 in [12].
Thus far, we have a protocol Q that outputs 1 with probability α when $\text{MPJ-MEET}(G^*) = 0$ and with probability β when $\text{MPJ-MEET}(G^*) = 1$, where $\alpha \leq \epsilon + o(1)$ and $\beta \geq (2k)^{-2k}(1 - \epsilon)$. Recall that $\epsilon = (2k)^{-2k-2}$, so β is bounded away from α. Let Q' be a protocol where we first toss an unbiased coin: if it lands heads, we output 0 with probability $\delta := (\alpha + \beta)/2$ and 1 with probability $1 - \delta$; if it lands tails, we simulate Q. Then Q' is a protocol for MPJ-MEET with error probability $\frac{1}{2} - (\beta - \alpha)/4$. By Lemma 2.6, this protocol must communicate $\Omega(m^{1+1/(2k)}/k^{16}\log^{3/2}m)$ bits and so must Π.

By a standard reduction from random-allocation communication protocols to random-order streaming algorithms, we obtain the following lower bound: the main result of this section.

Theorem 2.7. For each constant p, a p-pass algorithm that solves SHORTPATH-DAG on n-vertex digraphs whose edges presented in a uniform random order, erring with probability at most $1/p^{\Omega(p)}$ must use $\Omega(n^{1+1/(2(p+2))}/\log^{3/2}n)$ bits of space.

Consequently, similar lower bounds hold for the problems STCONN-DAG, ACYC, TOPO-SORT, FAS, and FAS-SIZE.

This paper is focused on directed graph problems. However, it is worth noting that a by-product of our generalization of the Guruswami–Onak bound to randomly ordered streams is that we also obtain the first random-order super-linear (in n) lower bounds for two important undirected graph problems.

Corollary 2.8. For each constant p, $n^{1+\Omega(1/p)}$ space is required to solve either of the following problems in p passes, erring with probability at most $1/p^{\Omega(p)}$, over a randomly ordered edge stream of an n-vertex undirected graph G:

- decide whether G contains a perfect matching;
- decide whether the distance between prespecified vertices v_s and v_t is at most $2p + 2$.

A Barrier Result. Notably, Theorem 2.7 applies only to algorithms with a rather small error probability. This is inherent: allowing just a slightly larger error probability renders the problem solvable in semi-streaming space. This is shown in the result below, which should be read as a barrier result rather than a compelling algorithm.

Proposition 2.9. Given a randomly ordered edge stream of a digraph G, the SHORTPATH-DAG problem on G can be solved using $O(n)$ space and p passes, with error probability at most $2/p!$.

Proof. Recall that we’re trying to decide whether or not G has a path of length at most $(2p + 2)$ from v_s to v_t. The high-level idea is that thanks to the random ordering, a “Bellman–Ford” style algorithm that grows a forward path out of v_s and a backward path out of v_t is very likely to make more than one step of progress during some pass.

To be precise, we maintain arrays d_s and d_t, each indexed by V. Initialize the arrays to ∞, except that $d_s[v_s] = d_t[v_t] = 0$. During each pass, we use the following logic.

for each edge (x, y) in the stream:
- if $d_s[x] + d_t[y] \leq 2p + 1$: output TRUE and halt
- $d_s[y] \leftarrow \min(d_s[y], 1 + d_s[x])$
- $d_t[x] \leftarrow \min(d_t[x], 1 + d_t[y])$

If we complete p passes without any output, then we output FALSE.

If G has no short enough path from v_s to v_t, this algorithm will always output FALSE. So let’s consider the other case, when there is a v_s–v_t path π of length at most $2p + 2$. Let vertex z be the midpoint of π, breaking ties arbitrarily if needed. The subpaths $[v_s, z]_\pi$ and $[z, v_t]_\pi$ have lengths q and r, respectively, with $q \leq p + 1$.
and \(r \leq p + 1 \). Notice that if our algorithm is allowed to run for \(q \) (resp. \(r \)) passes, then \(d_z[r] \) (resp. \(d_z[q] \)) will settle to its correct value. If both of them settle, then the algorithm correctly outputs \(\text{TRUE} \). So, the only nontrivial case is when \(q, r \in \{ p, p + 1 \} \).

Let \(E_i \) be the event that the random ordering of the edges in the stream places the edges of \([v, z], \pi \) in the exact reverse order of \(\pi \). Let \(E_i \) be the event that the random ordering places the edges of \([z, v], \pi \) in the exact same order as \(\pi \). If \(E_i \) does not occur, then for some two consecutive edges \((w, x), (x, y)\) on \([v, z], \pi \), the stream puts \((w, x)\) before \((x, y)\). Therefore, once \(d_z[w] \) settles to its correct value, the following pass will settle not just \(d_z[x] \), but also \(d_z[y] \); therefore, after \(q - 1 \leq p \) passes, \(d_z[z] \) is settled. Similarly, if \(E_i \) does not occur, then after \(r - 1 \leq p \) passes, \(d_z[z] \) is settled. As noted above, if both of them settle, the algorithm correctly outputs \(\text{TRUE} \).

Thus, the error probability \(\leq \Pr[E \lor E_i] \leq \Pr[E] + \Pr[E_i] = 1/q! + 1/r! \leq 2/p! \), as required. \(\square \)

3 Feedback Arc Set in Tournaments

3.1 Accurate, One Pass, but Slow Algorithm for FAS-T

We shall now design an algorithm for FAS-T (that also solves FAS-SIZE-T) based on linear sketches for \(\ell_1 \)-norm estimation. Recall that the \(\ell_1 \)-norm of a vector \(x \in \mathbb{R}^N \) is \(\|x\|_1 = \sum_{i \in [N]} |x_i| \). A \(d \)-dimensional \(\ell_1 \)-sketch with accuracy \(\varepsilon \) and error parameter \(\delta \) is a distribution \(S \) over \(d \times N \) matrices, together with an estimation procedure \(\text{Est} : \mathbb{R}^d \rightarrow \mathbb{R} \) such that

\[
\Pr_{S \sim S} \left[\|x\|_1 \leq \text{Est}(Sx) \leq (1 + \varepsilon)\|x\|_1 \right] \geq 1 - \delta.
\]

Such a sketch is “stream friendly” if there is an efficient procedure to generate a given column of \(S \) and further, \(\text{Est} \) is efficient. Obviously, a stream friendly sketch leads to a space and time efficient algorithm for estimating \(\|x\|_1 \) given a stream of entrywise updates to \(x \). We shall use the following specialization of a result of Kane et al. [17].

Fact 3.1 (Kane et al. [17]). *There is a stream friendly \(d \)-dimensional \(\ell_1 \)-sketch with accuracy \(\varepsilon \) and error \(\delta \) that can handle \(N^{O(1)} \) many \(\pm 1 \)-updates to \(x \in \mathbb{R}^N \), with each update taking \(O(\varepsilon^{-2} \log \varepsilon^{-1} \log \delta^{-1} \log N) \) time, with \(d = O(\varepsilon^{-2} \log \delta^{-1}) \), and with entries of the sketched vector fitting in \(O(\log N) \) bits.*

Theorem 3.2. *There is a one-pass algorithm for FAS-T that uses \(O(\varepsilon^{-2} n \log^2 n) \) space and returns a \((1 + \varepsilon)\)-approximation with probability at least \(\frac{2}{3} \), but requires exponential post-processing time.*

Proof. Identify the vertex set of the input graph \(G = (V, E) \) with \([n]\) and put \(N = \binom{2}{n} \). We index vectors \(z \) in \(\mathbb{R}^N \) as \(z_{uv} \), where \(1 \leq u < v \leq n \). Define a vector \(x \in \{0, 1\}^N \) based on \(G \) and vectors \(y^\pi \in \{0, 1\}^N \) for each permutation \(\pi : [n] \rightarrow [n] \) using indicator variables as follows.

\[
x_{uv} = 1 \{(u, v) \in E\}, \quad y_{uv}^\pi = 1 \{\pi(u) < \pi(v)\}.
\]

A key observation is that the \(uv \)-entry of \(x - y^\pi \) is nonzero iff the edge between \(u \) and \(v \) is a back edge of \(G \) according to the ordering \(\pi \). Thus, \(|B_G(\pi)| = \|x - y^\pi\|_1 \).

Our algorithm processes the graph stream by maintaining an \(\ell_1 \)-sketch \(Sx \) with accuracy \(\varepsilon/3 \) and error \(\delta = 1/(3 \cdot n!) \). By Fact 3.1, this takes \(O(\varepsilon^{-2} n \log^2 n) \) space and \(O(\varepsilon^{-2} \log \varepsilon^{-1} n \log^2 n) \) time per edge.

In post-processing, the algorithm considers all \(n! \) permutations \(\pi \) and, for each of them, computes \(S(x - y^\pi) = Sx - Sy^\pi \). It thereby recovers an estimate for \(\|x - y^\pi\|_1 \) and finally outputs the ordering \(\pi \) that minimizes this estimate. By a union bound, the probability that every estimate is \((1 \pm \varepsilon/3)\)-accurate is at least \(1 - n! \cdot \delta = 2/3 \). When this happens, the output ordering provides a \((1 + \varepsilon)\)-approximation to FAS-T by our key observation above. \(\square \)
Despite its “brute force” feel, the above algorithm is essentially optimal, both in its space usage (unconditionally) and its post-processing time (in a sense we shall make precise later). We address these issues in Section 3.4.

3.2 Multiple Passes: FAS-T in Polynomial Time

For a more time-efficient streaming algorithm, we design one based on the KwikSort algorithm of Ailon et al. [4]. This (non-streaming) algorithm operates as follows on a tournament \(G = (V, E) \).

- Choose a random ordering of the vertices: \(v_1, v_2, \ldots, v_n \).
- Vertex \(v_1 \) partitions \(V \) into two sub-problems \(\{ u : (u, v_1) \in E \} \) and \(\{ w : (v_1, w) \in E \} \). At this point we know the exact place of \(v_1 \) in the ordering.
- Vertex \(v_2 \) further partitions one of these sub-problems. Proceeding in this manner, after \(v_1, v_2, \ldots, v_i \) are considered, there are \(i + 1 \) sub-problems.
- Continue until all \(n \) vertices are ordered.

When \(v_i \) is being used to divide a sub-problem we refer to it as a pivot.

Emulating KwikSort in the Data Stream Model. We will emulate KwikSort in \(p \) passes over the data stream. In each pass, we will consider the action of multiple pivots. Partition \(v_1, \ldots, v_n \) into \(p \) groups \(V_1, \ldots, V_p \), where \(V_1 = \{ v_1, \ldots, v_{cn/(p \log n)} \} \), \(V_2 \) consists of the next \(cn^{3/p} \log n \) vertices in the sequence, and \(V_j \) contains \(cn^{j/p} \log n \) vertices coming after \(V_{j-1} \). Here \(c \) is a sufficiently large constant. At the end of pass \(j \), we want to emulate the effect of pivots in \(V_{j+1} \) on the sub-problems resulting from considering pivots in \(V_j \) through \(V_1 \). In order to do that, in pass \(j + 1 \) for each vertex \(v \in V_{j+1} \) we store all edges between \(v \) and vertices in the same sub-problem as \(v \), where the sub-problems are defined at the end of pass \(j \).

The following combinatorial lemma plays a key role in analyzing this algorithm’s space usage.

Lemma 3.3 (Mediocrity Lemma). In an \(n \)-vertex tournament, if we pick a vertex \(v \) uniformly at random, then \(\Pr[\epsilon n < d_{\text{in}}(v) < (1 - \epsilon) n] \geq 1 - 4\epsilon. \) Similarly, \(\Pr[\epsilon n < d_{\text{out}}(v) < (1 - \epsilon) n] \geq 1 - 4\epsilon. \) In particular, with probability at least \(1/3 \), \(v \) has in/out-degree between \(n/6 \) and \(5n/6. \)

Proof. Let \(H \) be a set of vertices of in-degree at least \((1 - \epsilon) n \). Let \(h = |H| \). On the one hand, \(\sum_{v \in H} d_{\text{in}}(v) \geq (1 - \epsilon) nh \). On the other hand, the edges that contribute to the in-degrees of vertices in \(H \) have both endpoints in \(H \) or one endpoint in \(H \) and one in \(V \setminus H \). The number of such edges is

\[
\sum_{v \in H} d_{\text{in}}(v) \leq \binom{h}{2} + h(n - h) = \frac{1}{2}(2nh - h^2 - h).
\]

Therefore, \((2nh - h^2 - h)/2 \geq (1 - \epsilon) nh \). This implies \(h < 2\epsilon n \).

Thus, the number of vertices with in-degree at least \((1 - \epsilon) n \) (and out-degree at most \(\epsilon n \)) is \(h < 2\epsilon n \). By symmetry, the number of vertices with out-degree at least \((1 - \epsilon) n \) (and in-degree at most \(\epsilon n \)) is also less than \(2\epsilon n \). Thus, the probability a random vertex has in/out-degree between \(\epsilon n \) and \((1 - \epsilon) n \) is \((n - 2h)/n > (n - 2\cdot 2\epsilon n)/n = 1 - 4\epsilon. \)

\[\square\]

The Mediocrity Lemma is tight: consider sets of vertices \(A, B, C \) where \(|A| = |C| = 2\epsilon n \) and \(|B| = (1 - 4\epsilon) n \). Edges on \(B \) do not form any directed cycles. Subgraphs induced by \(A \) and \(C \) are balanced, i.e., the in-degree equals the out-degree of every vertex (where degrees here are considered within the subgraph). All other edges are directed from \(A \) to \(B \), from \(B \) to \(C \), or from \(A \) to \(C \). Then vertices with in/out-degrees between \(\epsilon n \) and \((1 - \epsilon) n \) are exactly the vertices in \(B \), and a random vertex belongs to this set with probability \(1 - 4\epsilon. \)
Space Analysis. Let M_j be the maximum size of a sub-problem after pass j. The number of edges collected in pass $j+1$ is then at most $M_j |V_{j+1}|$. By Lemma 3.4 (below), this is at most $cn^{1+1/p} \log n$. Once the post-processing of pass $j+1$ is done, the edges collected in that pass can be discarded.

Lemma 3.4. With high probability, $M_j \leq n^{1-\varepsilon/p}$ for all j.

Proof. Let M_j^v denote the size of the sub-problem that contains v, after the jth pass. We shall prove that, for each v, $\Pr[M_j^v > n^{1-\varepsilon/p}] \leq 1/n^{10}$. The lemma will then follow by a union bound.

Take a particular vertex v. If, before the jth pass, we already have $M_{j-1}^v \leq n^{1-\varepsilon/p}$, there is nothing to prove. So assume that $M_{j-1}^v > n^{1-\varepsilon/p}$. Call a pivot “good” if it reduces the size of the sub-problem containing v by a factor of at least 5/6. A random pivot falls in the same sub-problem as v with probability at least $n^{1-\varepsilon/p}/n$; when this happens, by the Mediocrity Lemma, the probability that the pivot is good is at least $1/3$. Overall, the probability that the pivot is good is at least $n^{-\varepsilon/p}/3$.

In the jth pass, we use $cn^{1/p} \log n$ pivots. If at least $\log_{6/5} n$ of them are good, we definitely have $M_j^v \leq n^{1-\varepsilon/p}$. Thus, by a Chernoff bound, for a sufficiently large c, we have

$$\Pr[M_j^v > n^{1-\varepsilon/p}] \leq \Pr[\text{Bin}(cn^{1/p} \log n, n^{-\varepsilon/p}/3) < \log_{6/5} n] \leq 1/n^{10}. \quad \Box$$

Theorem 3.5. There exists a polynomial time p-pass data stream algorithm using $\tilde{O}(n^{1+1/p})$ space that returns a 3-approximation (in expectation) for FAS-T.

Proof. The pass-space tradeoff follows from Lemma 3.4 and the discussion above it; the approximation factor follows directly from the analysis of Ailon et al. [4]. \hfill \Box

3.3 A Space Lower Bound

Both our one-pass algorithm and the $O(\log n)$-pass instantiation of our multi-pass algorithm use at least $\Omega(n)$ space. For FAS-SIZE-T, where the desired output is a just a number, it is reasonable to ask whether $o(n)$-space solutions exist. We now prove that they do not.

Proposition 3.6. Solving ACYC-T is possible in one pass and $O(n \log n)$ space. Meanwhile, any p-pass solution requires $\Omega(n/p)$ space.

Proof. For the upper bound, we maintain the in-degrees of all vertices in the input graph G. Since G is a tournament, the set of in-degrees is exactly $\{0, 1, \ldots, n-1\}$ iff the input graph is acyclic.

For the lower bound, we reduce from DISJ$_{N/3}$. Alice and Bob construct a tournament T on $n = 7N/3$ vertices, where the vertices are labeled $\{v_1, \ldots, v_{2N}, w_1, \ldots, w_{N/3}\}$. Alice, based on her input x, adds edges (v_2i, v_{2i-1}) for each $i \in x$. For each remaining pair $(i, j) \in [2N] \times [2N]$ with $i < j$, she adds the edge (v_i, v_j). Let $a_1 < \cdots < a_{N/3}$ be the sorted order of the elements in Bob’s set y. For each $k = a_t \in y$, Bob defines the alias $v_{2N+k} = w_t$ and then adds the edges

$$E_k = \{(v_i, v_{2N+k}) : 1 \leq i \leq 2k-1\} \cup \{(v_{2N+k}, v_j) : 2k \leq j \leq 2N\}.$$

Finally, he adds the edges $\{(w_i, w_j) : 1 \leq i < j \leq N/3\}$. This completes the construction of T.

We claim that the tournament T is acyclic iff $x \cap y = \emptyset$. The “only if” part is direct from construction, since if x and y intersect at some index $k \in [N]$, we have the directed cycle $(v_{2k}, v_{2k-1}, v_{2N+k}, v_{2k})$. For the “if” part, let σ be the ordering (v_1, \ldots, v_{2N}) and let $T' = \text{Tou}(\sigma)$, as defined in Section 1.2. We show how to modify σ into a topological ordering of T, proving that T is acyclic. Observe that, by construction, the tournament $T \setminus \{w_1, \ldots, w_{N/3}\}$ can be obtained from T' by flipping only the edges (v_{2i-1}, v_{2i}) for each $i \in x$. Each time we perform such an edge flip, we modify the topological ordering of T' by swapping
the associated vertices of the edge. The resultant ordering would still be topological as the vertices were consecutive in the ordering before the flip. Thus, after performing these swaps, we get a topological ordering of $T \setminus \{w_1, \ldots, w_{N/3}\}$. Now, consider some $k \in \mathbf{y}$. Since $\mathbf{x} \cap \mathbf{y} = \emptyset$, $k \notin \mathbf{x}$ and so, v_{2k} succeeds v_{2k-1} in this ordering, just as in σ, since we never touched these two vertices while performing the swaps. Thus, for each such k, we can now insert v_{2N+k} between v_{2k-1} and v_{2k} in the ordering and obtain a topological ordering of T. This proves the claim.

Thus, given a p-pass solution to ACYC-T using s bits of space, we obtain a protocol for DISJOIN-$N, N/3$ that communicates at most $(2p - 1)s$ bits. By Fact 1.3, $(2p - 1)s = \Omega(N) = \Omega(n)$, i.e., $s = \Omega(n/p)$. \hfill \Box

Theorem 3.7. A p-pass multiplicative approximation for FAS-SIZE-T requires $\Omega(n/p)$ space.

Proof. This is immediate from Observation 1.1 and proposition 3.6. \hfill \Box

3.4 An Oracle Lower Bound

Let us now consider the nature of the post-processing performed by our one-pass FAS-T algorithm in Section 3.1. During its streaming pass, that algorithm builds an oracle based on G that, when queried on an ordering σ, returns a fairly accurate estimate of $|B_G(\sigma)|$. It proceeds to query this oracle $n!$ times to find a good ordering. This raises the question: is there a more efficient way to exploit the oracle that the algorithm has built? A similar question was asked in Bateni et al. [6] in the context of using sketches for the maximum coverage problem.

Were the oracle exact—i.e., on input σ it returned $|B_G(\sigma)|$ exactly—then two queries to the oracle would determine which of (i, j) and (j, i) was an edge in G. It follows that $O(n \log n)$ queries to such an exact oracle suffice to solve FAS-T and FAS-SIZE-T. However, what we actually have is an ε-oracle, defined as one that, on query σ, returns $\hat{\beta} \in \mathbb{R}$ such that $(1 - \varepsilon)|B_G(\sigma)| \leq \hat{\beta} \leq (1 + \varepsilon)|B_G(\sigma)|$. We shall show that an ε-oracle cannot be exploited efficiently: a randomized algorithm will, with high probability, need exponentially many queries to such an oracle to solve either FAS-T or FAS-SIZE-T.

To prove this formally, we consider two distributions on n-vertex tournaments, defined next.

Definition 3.8. Let $\mathcal{D}_{\text{yes}}, \mathcal{D}_{\text{no}}$ be distributions on tournaments on $[n]$ produced as follows. To produce a sample from \mathcal{D}_{yes}, pick a permutation π of $[n]$ uniformly at random; output $\text{Tou}(\pi)$. To produce a sample from \mathcal{D}_{no}, for each i, j with $1 \leq i < j \leq n$, independently at random, include edge (i, j) with probability $\frac{1}{2}$; otherwise include edge (j, i).

Let σ be an ordering of $[n]$. By linearity of expectation, if T is sampled from either \mathcal{D}_{yes} or \mathcal{D}_{no},

$$\mathbb{E}|B_T(\sigma)| = m := \frac{1}{2}\binom{n}{2}.$$

In fact, we can say much more.

Lemma 3.9. There is a constant c such that, for all $\varepsilon > 0$, sufficiently large n, a fixed ordering σ on $[n]$, and random T drawn from either \mathcal{D}_{yes} or \mathcal{D}_{no},

$$\Pr[(1 - \varepsilon)m < |B_T(\sigma)| < (1 + \varepsilon)m] \geq 1 - 2^{-c\varepsilon^2 n}.$$

Proof. When $T \leftarrow \mathcal{D}_{\text{no}}$, the random variable $|B_T(\sigma)|$ has binomial distribution $\text{Bin}(2m, \frac{1}{2})$, so the claimed bound is immediate.

Let $T \leftarrow \mathcal{D}_{\text{yes}}$. Partition the edges of the tournament into perfect matchings M_1, \ldots, M_{n-1}. For each $i \in [n - 1]$, let X_i be the number of back edges of T involving M_i, i.e.,

$$X_i = \left|\{(u, v) \in M_i : \text{either } (u, v) \in B_T(\sigma) \text{ or } (v, u) \in B_T(\sigma)\}\right|.$$
Notice that $X_i \sim \text{Bin}(n/2, \frac{3}{4})$, whence
\[
\Pr \left[(1 - \varepsilon)n/4 < X_i < \frac{1}{2}(1 + \varepsilon)n/4 \right] \geq 1 - 2^{b\varepsilon^2 n},
\]
for a certain constant b. By a union bound, the probability that all of the X_is are between these bounds is at least $1 - (n - 1)2^{-b\varepsilon^2 n} \geq 1 - 2^{-c\varepsilon^2 n}$, for suitable c. When this latter event happens, we also have $(1 - \varepsilon)m < |B_T(\sigma)| = \frac{1}{2} \sum_{i=1}^{n-1} X_i < (1 + \varepsilon)m$. \hfill \square

We define a (q, ε)-query algorithm for a problem P to be one that access an input digraph G solely through queries to an ε-oracle and, after at most q such queries, outputs its answer to $P(G)$. We require this answer to be correct with probability at least $\frac{2}{3}$.

Now consider the particular oracle $O_{T, \varepsilon}$, describing an n-vertex tournament T, that behaves as follows when queried on an ordering σ.

- If $(1 - \varepsilon/2)m < |B_T(\sigma)| < (1 + \varepsilon/2)m$, then return m.
- Otherwise, return $|B_T(\sigma)|$.

Clearly, $O_{T, \varepsilon}$ is an ε-oracle. The intuition in the next two proofs is that this oracle makes life difficult by seldom providing useful information.

Proposition 3.10. Every (q, ε)-query algorithm for TOPO-SORT-T makes $\exp(\Omega(\varepsilon^2 n))$ queries.

Proof. WLOG, consider a (q, ε)-query algorithm, A, that makes exactly q queries, the last of which is its output. Using Yao’s minimax principle, fix A’s random coins, obtaining a deterministic (q, ε)-query algorithm A' that succeeds with probability $\geq \frac{2}{3}$ on a random tournament $T \leftarrow D_{\text{yes}}$. Let $\sigma_1, \ldots, \sigma_q$ be the sequence of queries that A' makes when the answer it receives from the oracle to each of $\sigma_1, \ldots, \sigma_q$ is m.

Suppose that the oracle supplied to A' is $O_{T, \varepsilon}$. Let E be the event that A'’s query sequence is $\sigma_1, \ldots, \sigma_q$ and it receives the response m to each of these queries. For a particular σ_i,
\[
\Pr[O_{T, \varepsilon}(\sigma_i) = m] = \Pr[(1 - \varepsilon/2)m < |B_T(\sigma)| < (1 + \varepsilon/2)m] \geq 1 - 2^{-b\varepsilon^2 n}
\]
for a suitable constant b, by Lemma 3.9. Thus, by a union bound, $\Pr[E] \geq 1 - q2^{-b\varepsilon^2 n}$.

When E occurs, A' must output σ_q, but E itself implies that $|B_T(\sigma_q)| \neq 0$, so A' errs. Thus, the success probability of A' is at most $1 - \Pr[E] \leq q2^{-b\varepsilon^2 n}$. Since this probability must be at least $\frac{2}{3}$, we need $q \geq \frac{2}{3} \cdot 2^{b\varepsilon^2 n} = \exp(\Omega(\varepsilon^2 n))$. \hfill \square

Proposition 3.11. Every (q, ε)-query algorithm for ACYC-T makes $\exp(\Omega(\varepsilon^2 n))$ queries.

Proof. We proceed similarly to Proposition 3.10, except that we require the deterministic (q, ε)-query algorithm A' to succeed with probability at least $\frac{2}{3}$ on a random $T \leftarrow D_{\text{yes}} + D_{\text{no}}$. We view T as being chosen in two stages: first, we pick $Z \in R$ (yes, no) uniformly at random, then we pick $T \leftarrow D_Z$.

Define $\sigma_1, \ldots, \sigma_q$ and E as before. So $\Pr[E] \geq 1 - q2^{-b\varepsilon^2 n}$. When E occurs, A' must output some fixed answer, either “yes” or “no.” We consider these cases separately.

Suppose that A' outputs “no,” declaring that T is not acyclic. Then A' errs whenever $Z = \text{yes}$ and E occurs. The probability of this is at least $\frac{1}{4} - q2^{-b\varepsilon^2 n}$, but it must be at most $\frac{1}{4}$, requiring $q = \exp(\Omega(\varepsilon^2 n))$.

Suppose that A' outputs “yes” instead. Then it errs when $Z = \text{no}$, T is cyclic, and E occurs. Since
\[
\Pr[T \text{ acyclic} | Z = \text{no}] = n! / 2^{(\frac{n}{2})} = \exp(-\Omega(n^2)),
\]
we have $\frac{1}{4} \geq \Pr[A' \text{ errs}] \geq \frac{1}{4} - \exp(-\Omega(n^2)) - q2^{-b\varepsilon^2 n}$, requiring $q = \exp(\Omega(\varepsilon^2 n))$. \hfill \square

Theorem 3.12. A (q, ε)-query algorithm that gives a multiplicative approximation for either FAS-T or FAS-SIZE-T must make $q = \exp(\Omega(\varepsilon^2 n))$ queries.

Proof. This is immediate from Observation 1.1 and propositions 3.10 and 3.11. \hfill \square
4 Sink Finding in Tournaments

A classical offline algorithm for TOPO-SORT is to repeatedly find a sink \(v \) in the input graph (which must exist in a DAG), prepend \(v \) to a growing list, and recurse on \(G \setminus v \). Thus, SINK-FIND itself is a fundamental digraph problem. Obviously, SINK-FIND can be solved in a single pass using \(O(n) \) space by maintaining an “is-sink” flag for each vertex. Our results below show that for arbitrary order streams this is tight, even for tournament graphs.

In fact, we say much more. In \(p \) passes, on the one hand, the space bound can be improved to roughly \(O(n^{2/p}) \). On the other hand, any \(p \)-pass algorithm requires about \(\Omega(n^{1/p}) \) space. While these bounds don’t quite match, they reveal the correct asymptotics for the number of passes required to achieve polylogarithmic space usage: namely, \(\Theta(\log n/\log \log n) \).

In contrast, we show that if the stream is randomly ordered, then using \(\text{polylog}(n) \) space and a single pass is sufficient. This is a significant separation between the adversarial and random order data streams.

4.1 Arbitrary Order Sink Finding

Theorem 4.1 (Multi-pass algorithm). For all \(p \) with \(1 \leq p \leq \log n \), there is a \((2p-1)\)-pass algorithm for SINK-FIND-T that uses \(O(n^{1/p} \log (3p)) \) space and has failure probability at most \(1/3 \).

Proof. Let the input digraph be \(G = (V,E) \). For a set \(S \subseteq V \), let \(\max S \) denote the vertex in \(S \) that has maximum in-degree. This can also be seen as the maximum vertex within \(S \) according to the total ordering defined by the edge directions.

Our algorithm proceeds as follows.

- **Initialization**: Set \(s = \lfloor n^{1/p} \ln(3p) \rfloor \). Let \(S_1 \) be a set of \(s \) vertices chosen randomly from \(V \).
- For \(i = 1 \) to \(p - 1 \):
 - **During pass \(2i-1 \)**: Find \(v_i = \max S_i \) by computing the in-degree of each vertex in \(S_i \).
 - **During pass \(2i \)**: Let \(S_{i+1} \) be a set of \(s \) vertices chosen randomly from \(\{ u : (v_i, u) \in E \} \).
- **During pass \(2p-1 \)**: Find \(v_p = \max S_p \) by computing the in-degree of each vertex in \(S_p \).

For the sake of analysis, consider the quantity \(\ell_i = |\{ u : (v_i, u) \in E \}| \). Note that, for each \(i \in [p] \),

\[
\Pr \left[\ell_i > \ell_{i-1}/n^{1/p} \right] = (1 - 1/n^{1/p})^s \leq \frac{1}{3p}.
\]

Thus, by the union bound, \(\ell_p = 0 \) with probability at least \(1 - p/(3p) = 2/3 \). Note that \(\ell_p = 0 \) implies that \(v_p \) is a sink.

We turn to establishing a multi-pass lower bound. Our starting point for this is the tree pointer jumping problem TPJ, which is a communication game involving \(k \) players. To set up the problem, consider a complete ordered \(k \)-level \(t \)-ary tree \(T \); we consider its root \(z \) to be at level 0, the children of \(z \) to be at level 1, and so on. We denote the \(i \)-th child of \(y \in V(T) \) by \(y_i \), the \(j \)-th child of \(y_i \) by \(y_{i,j} \), and so on. Thus, each leaf of \(T \) is of the form \(z_{i_1,...,i_{k-1}} \) for some integers \(i_1,...,i_{k-1} \in [t] \).

An instance of TPJ is given by a function \(\phi : V(T) \to [t] \) such that \(\phi(y) \in \{0,1\} \) for each leaf \(y \). The desired one-bit output is

\[
\text{TPJ}(\phi) := g^{(k)}(z) = g(g(\cdots g(z)\cdots)), \text{ where}
\]

\[
g(y) := \begin{cases}
 \phi(y), & \text{if } y \text{ is a leaf,} \\
 y_{\phi(y)}, & \text{otherwise.}
\end{cases}
\]

\[15\]
For each $j \in \{0, \ldots, k-1\}$, Player j receives the input values $\phi(y)$ for each vertex y at level j. The players then communicate using at most $k-1$ rounds, where a single round consists of one message from each player, speaking in the order Player $k-1, \ldots, Player 0$. All messages are broadcast publicly (equivalently, written on a shared blackboard) and may depend on public random coins. The cost of a round is the total number of bits communicated in that round and the cost of a protocol is the maximum, over all rounds, of the cost of a round. The randomized complexity $R^{k-1}(\text{TPJ}_{k,t})$ is the minimum cost of a $(k-1)$-round $\frac{1}{k}$-error protocol for $\text{TPJ}_{k,t}$.

Combining the lower bound approach of Chakrabarti et al. [7] with the improved round elimination analysis of Yehudayoff [24], we obtain the following lower bound on the randomized communication complexity of the problem.

Theorem 4.2. $R^{k-1}(\text{TPJ}_{k,t}) = \Omega(t/k)$. \qed

Based on this, we prove the following lower bound.

Theorem 4.3 (Multi-pass lower bound). Any streaming algorithm that solves SINK-FIND-T in p passes must use $\Omega(n^{1/p} / p^2)$ space.

Proof. We reduce from $\text{TPJ}_{k,t}$, where $k = p+1$. We continue using the notations defined above. At a high level, we encode an instance of TPJ in the directions of edges in a tournament digraph G, where $V(G)$ can be viewed as two copies of the set of leaves of T. Formally,

$$V(G) = \{\langle i_1, \ldots, i_{k-1}, a \rangle : \text{each } i_j \in [t] \text{ and } a \in \{0, 1\}\}.$$

We assign each pair of distinct vertices $u,v \in V(G)$ to a level in $\{0, \ldots, k-1\}$ as follows. Suppose that $u = \langle i_1, \ldots, i_k \rangle$ and $v = \langle i'_1, \ldots, i'_k \rangle$. We assign \{u,v\} to level $j-1$, where j is the smallest index such that $i_j \neq i'_j$. Given an instance of $\text{TPJ}_{k,t}$, the players jointly create an instance of SINK-FIND-T as follows. For each j from $k-1$ to 0, in that order, Player j assigns directions for all pairs of vertices at level j, obtaining a set E_j of directed edges, and then appends E_j to a stream. The combined stream $E_{k-1} \circ \cdots \circ E_1 \circ E_0$ defines the tournament G. It remains to define each set E_j precisely.

The set E_{k-1} encodes the bits $\phi(y)$ at the leaves y of T as follows.

$$E_{k-1} = \{\langle \langle i_1, \ldots, i_{k-1}, 1-a \rangle, \langle i_1, \ldots, i_{k-1}, a \rangle \rangle \in V(G)^2 : \phi(z_{i_1, \ldots, i_{k-1}}) = a\}, \quad (3)$$

Notice that if we ignore edge directions, E_{k-1} is a perfect matching on $V(G)$.

Now consider an arbitrary level $j \in \{0, \ldots, k-2\}$. Corresponding to each vertex $z_{i_1, \ldots, i_{j-1}}$ at level j of T, we define the permutation $\pi_{i_1, \ldots, i_{j-1}} : [t] \rightarrow [t]$ thus:

$$\pi_{i_1, \ldots, i_{j-1}}(1), \ldots, \pi_{i_1, \ldots, i_{j-1}}(t) = (1, \ldots, \ell - 1, \ell + 1, \ldots, t, \ell),$$

where $\ell = \phi(z_{i_1, \ldots, i_{j-1}}). \quad (4)$

Using this, we define E_j so as to encode the pointers at level j as follows.

$$E_j = \{\langle \langle i_1, \ldots, i_{j-1}, i_j, i_{k-1} \rangle, \langle i_1, \ldots, i_{j-1}, i'_j, i'_k \rangle \rangle \in V(G)^2 : \pi_{i_1, \ldots, i_{j-1}}^{-1}(i_j) < \pi_{i_1, \ldots, i_{j-1}}^{-1}(i'_j)\}. \quad (5)$$

It should be clear that the digraph $(V(G), E_0 \cup E_1 \cup \cdots \cup E_{k-1})$ is a tournament. We argue that it is acyclic. Suppose, to the contrary, that G has a cycle σ. Let $j \in \{0, \ldots, k-2\}$ be the smallest-numbered level of an edge on σ. Then there exist h_{j-1}, h_j such that every vertex on σ is of the form $\langle h_1, \ldots, h_{j-1}, i_j, i_{k-1} \rangle$. Let $\phi(h_1), \ldots, \phi(h_{k-1})$ be the vertices on σ whose outgoing edges belong to level j. For each $q \in [t]$, let $\phi(q) = \langle h_1, \ldots, h_{j-1}, i'_j, \ldots, i'_k \rangle$. Let $\hat{\pi} = \pi_{h_1, \ldots, h_{j-1}}$. According to eq. (5),

$$\hat{\pi}^{-1}(i_j^{(1)}) < \hat{\pi}^{-1}(i_j^{(2)}) < \cdots < \hat{\pi}^{-1}(i_j^{(p)}) < \hat{\pi}^{-1}(i_j^{(1')}).$$
With high probability, for all \(u \) with \(|u| = 2^j \) we have
\[
X_{u,j} = 200 \log n > 0.1 \cdot 200 \log n .
\]

With high probability, for all \(u \) with \(|u| = 2^j \) we have
\[
|X_{u,j} - 200 \log n| < 0.1 \cdot 200 \log n .
\]

If follows from the claim that if after processing the \(i \)th segment of the stream there exists a \(v \) such that \(|S_v| = (200 \pm 20) \log n\) then with high probability \(rk(u) = \left(1 \pm 0.2\right) \cdot n/2^i \). We next need to argue that there exists such a \(v \).
Claim 4.6. With high probability, for every node \(u \) with \(rk(u) = (1 \pm 0.2) \cdot n/2^i \), there exists an edge \(uv \) in the \(i \)th segment such that \(|rk(v) - n/2^i| \leq 0.05 \cdot n/2^i \).

Proof. There are at least \(0.01 \cdot n/2^i \) such edges. The probability that none of them exists in the \(i \)th segment is at most \((1 - c_i/m)^{0.01 \cdot n/2^i} \leq 1/\text{poly}(n) \).

The above two claims allow us to argue by induction that we will have an element \(u \) with \(rk(u) = (1 \pm 0.2) \cdot n/2^i \) after the \(i \)th segment. At the end of the \(k \)th segment we have identified at least \((200 - 20) \log n\) vertices where every rank is at most \((1 + 0.2) \cdot n/2^k = O(\log n)\). With probability at least \(1 - 1/\text{poly}(n) \) one of these vertices includes an edge to the sink amongst the \((k + 1)\) segment and hence the sink is in \(P \) with high probability. There may be other vertices in \(P \) but the following claim shows that we will identify any false positives while processing the final \(499m/500 \) elements of the stream.

Claim 4.7. With probability at least \(1 - 1/499 \), there exists at least once outgoing edge from every node except the sink amongst the last \(499m/500 \) elements of the stream.

Proof of Claim. The probability no outgoing edge from the an element of rank \(r > 0 \) appears in the suffix of the stream is at most \((1 - 499/500)^r\). Hence, by the union bound the probability that there exists an element of rank \(r > 0 \) without an outgoing edge is at most \(\sum_{r \geq 1} (1 - 499/500)^r = 1/499 \).

This concludes the proof of Theorem 4.4.

5 Topological Ordering in Random Graphs

We present results for computing a topological ordering of \(G \sim \text{PlantDAG}_{n,q} \) (see Definition 1.2). We first present an \(O(\log n) \)-pass algorithm using \(\tilde{O}(n^{4/3}) \) space. We then present a one-pass algorithm that uses \(\tilde{O}(n^{3/2}) \) space and requires the assumption that the stream is in random order.

5.1 Arbitrary Order Algorithm

In this section, we present two different algorithms. The first is appropriate when \(q \) is large whereas the second is appropriate when \(q \) is small. Combining these algorithms and considering the worst case value of \(q \) yields the algorithm using \(\tilde{O}(n^{4/3}) \) space.

Algorithm for large \(q \). The basic approach is to emulate QuickSort. We claim that we can find the relationship between any vertex \(u \) among \(n \) vertices and a predetermined vertex \(v \) using three passes and \(O(n + q^{-3} \log n) \) space. Assuming this claim, we can sort in \(O(\log(q^2n)) \) passes and \(\tilde{O}(n/q) \) space: we recursively partition the vertices and suppose at the end of a phase we have sub-problems of sizes \(n_1, n_2, n_3, \ldots \). Any sub-problem with at least \(1/q^2 \) vertices is then sub-divided by picking \(\Theta(\log n) \) random pivots (with replacement) within the sub-problems using the aforementioned three pass algorithm. There are at most \(q^2n \) such sub-problems. Hence, the total space required partition all the sub-problems in this way is at most

\[
O\left(\log n \sum_{j=1}^{q^2 n} (n_j + q^{-3} \log n) \right) = O(nq^{-1} \log^2 n) .
\]

Note that the size of every sub-problem decreases by a factor at least 2 at each step with high probability and hence after \(\log(q^2n) \) iterations, all sub-problems have at most \(1/q^2 \) vertices. Furthermore, each vertex degree is \(O(1/q \cdot \log n) \) in each sub-problem. Hence, the entire remaining instance can be stored using \(O(n/q \cdot \log n) \) space.
It remains to prove our three-pass claim. For this, we define the following families of sets:

\[L_i = \{ u : \exists \text{u-to-v path of length } \leq i \}, \quad R_i = \{ u : \exists \text{v-to-u path of length } \leq i \}. \]

Using two passes and \(O(n \log n) \) space we can identify \(L_2 \) and \(R_2 \) using \(O(n \log n) \) space. Let \(U \) be the set of vertices not contained in \(L_2 \cup R_2 \). The following lemma (which can be proved via Chernoff bounds) establishes that \(L_2 \cup R_2 \) includes most of the vertices of the graph with high probability.

Lemma 5.1. With high probability, \(|U| = O(q^{-2} \log n) \).

In a third pass, we store every edge between vertices in \(U \) and also compute \(L_3 \) and \(R_3 \). Computing \(L_3 \) and \(R_3 \) requires only \(O(n \log n) \) space. There is an edge between each pair of vertices in \(U \) with probability \(q \) and hence, the expected number of edges between vertices in \(U \) is at most \(q |U|^2 = O(q^{-3} \log^2 n) \). By an application of the Chernoff Bound, this bound also holds w.h.p. Note that \(L_3, R_3 \), and the edges within \(U \) suffice to determine whether \(u \in L_\infty \) or \(u \in R_\infty \) for all \(u \). To see this first suppose \(u \in L_\infty \) and that \((u, w) \) is the critical edge on the directed path from \(u \) to \(v \). Either \(w \in L_2 \) and therefore we deduce \(u \in L_3 \) or \(u \in L_2 \); or \(u \notin L_2 \) and \(w \notin L_2 \) and we therefore store the edge \((u, w) \).

This establishes the following lemma.

Lemma 5.2. There is a \(O(\log n) \)-pass, \(\widetilde{O}(n/q) \)-space algorithm for TOPO-SORT on a random input graph \(G \sim \text{PlantDAG}_{n,q} \).

Algorithm for small \(q \). We use only two passes. In the first pass, we compute the in-degree of every vertex. In the second, we store all edges between vertices where the in-degrees differ by at most \(3 \sqrt{cnq / \ln n} \) where \(c > 0 \) is a sufficiently large constant.

Lemma 5.3. There is a two-pass, \(\widetilde{O}(n^{3/2} \sqrt{q}) \)-space algorithm for TOPO-SORT on a random input graph \(G \sim \text{PlantDAG}_{n,q} \).

Proof. We show that, with high probability, the above algorithm collects all critical edges and furthermore only collects \(\widetilde{O}(n^{3/2} \sqrt{q}) \) edges in total. Let \(u \) be the element of rank \(r_u \). Note that \(d_{\text{in}}(u) \) has distribution \(1 + \text{Bin}(r_u - 2, q) \). Let \(X_u = d_{\text{in}}(u) - 1 \). By an application of the Chernoff Bound,

\[
\Pr \left[|X_u - (r_u - 2)q| \geq c(r_u - 2)q \ln n \right] \leq 1 / \text{poly}(n).
\]

Hence, w.h.p., \(r_u = 2 + X_u / q \pm \sqrt{cnq / \ln n} \) for all vertices \(u \). Therefore, if \((u, v) \) is critical, then

\[
|X_u - X_v| \leq |X_u - (r_u - 2)q| + |(r_u - 2)q - (r_v - 2)q| + |X_v - (r_v - 2)q| \leq 3 \sqrt{cnq \cdot \ln n}.
\]

This ensures that the algorithm collects all critical edges. For the space bound, we first observe that for an arbitrary pair of vertices \(u \) and \(v \), if \(|X_u - X_v| \leq 3 \sqrt{cnq \cdot \ln n} \) then

\[
|r_u - r_v| \leq |X_u - X_v| / q + 2 \sqrt{cnq / \ln n} \leq 8 \sqrt{cnq / \ln n}.
\]

Hence, we only store an edge between vertex \(u \) and vertices whose rank differs by at most \(8 \sqrt{cnq / \ln n} \). Since edges between such vertices are present with probability \(q \), the expected number of edges stored incident to \(u \) is \(8 \sqrt{cnq \cdot \ln n} \) and is \(O(\sqrt{nq \cdot \ln n}) \) by an application of the Chernoff bounds. Across all vertices this means the number of edges stored is \(O(n^{3/2} \sqrt{q} \cdot \ln n) \) as claimed.

Combining Lemma 5.2 and Lemma 5.3 yields the main theorem of this section.

Theorem 5.4. There is an \(O(\log n) \)-pass algorithm for TOPO-SORT on a random input graph \(G \sim \text{PlantDAG}_{n,q} \) that uses \(\widetilde{O}(\min(n/q, n^{3/2} \sqrt{q})) \) space. For the worst-case over \(q \), this is \(\widetilde{O}(n^{4/3}) \).
5.2 Random Order Algorithm

The transitive reduction of a DAG $G = (V, E)$ is the minimal subgraph $G^{\text{red}} = (V, E')$ such that, for all $u, v \in V$, if G has a u-to-v path, then so does G^{red}. So if G has a Hamiltonian path, G^{red} is this path.

The one-pass algorithm assuming a random ordering of the edges is simply to maintain G^{red} as G is streamed in, as follows. Let S be initially empty. For each edge (u, v) in the stream, we add (u, v) to S and then remove all edges (u', v') where there is a u'-to-v' path among the stored edges.

Theorem 5.5. There is a one-pass $\tilde{O}(\max(q, n/\sqrt{q}) \cdot \min\{n/\sqrt{q}, n^2/\sqrt{q}\})$-space algorithm for TOPO-SORT on inputs $G \sim \text{PlantDAG}_{n, q}$ presented in random order. In the worst case this space bound is $\tilde{O}(n^{3/2})$.

Proof. Consider the length-T prefix of the stream where the edges of G are presented in random order. It will be convenient to write $T = n^2 \hat{q}$. We will argue that the number of edges in the transitive reduction of this prefix is $O(\min\{n/\sqrt{q}, n^2/\sqrt{q}\})$ with high probability; note the bound $n^2 \hat{q}$ follows trivially because the transitive reduction has at most T edges. The result then follows by taking the maximum over all prefixes.

We say an edge (u, v) of G is short if the difference between the ranks is $r_v - r_u \leq \tau := cq^{-2} \log n$ where c is some sufficiently large constant. An edge that is not short is defined to be long. Let S be the number of short edges in G and let M be the total number of edges in G. Note that $\mathbb{E}[S] \leq (n - 1) + q \tau n$ and $\mathbb{E}[M] = (n - 1) + q (n^2/2)$. By the Chernoff bound, $S \leq 2q \tau n$ and $n^2 q / 4 \leq M \leq n^2 q$ with high probability. Furthermore, the number of short edges in the prefix is expected to be $T \cdot S/M$ and, with high probability, is at most
\[
2T \cdot S/M \leq 4T q \tau n / n^2 q/4 = 16cn/\hat{q} \cdot \log n.
\]

Now consider how many long edges are in the transitive reduction of the prefix. For any long edge (u, v), let X_w denote the event that $(u, w), (w, v)$ are both in the prefix. Note that the variables $\{X_w\}_{w: r_{u}+1 \leq r_w \leq r_v - 1}$ are negatively correlated and that
\[
\Pr[X_w = 1] \geq (qT / M)^2 / 2 \geq \hat{q}^2 / 2.
\]

Hence, if $X = \sum w: r_{u}+1 \leq r_w \leq r_v - 1 X_w$ then
\[
\mathbb{E}[X] \geq c\hat{q}^{-2} \log n \cdot \hat{q}^2 / 2 = c/2 \cdot \log n
\]

and so, by the Chernoff bound, $X > 0$ with high probability and if this is the case, even if (u, v) is in the prefix, it will not be in the transitive reduction of the prefix. Hence, by the union bound, with high probability no long edges exist in the transitive closure of the prefix. \hfill \square

6 Rank Aggregation

Recall the RANK-AGGR problem and the distance d between permutations, defined in Section 1.2. To recap, the distance between two orderings is the number of pairs of objects which are ranked differently by them, i.e.,
\[
d(\pi, \sigma) := \sum_{a, b \in [n]} \mathbb{1}\{\pi(a) < \pi(b), \sigma(b) < \sigma(a)\}.
\]

Note that RANK-AGGR is equivalent to finding the median of a set of k points under this distance function, which can be shown to be metric. It follows that picking a random ordering from the k input orderings provides a 2-approximation for RANK-AGGR.

A different approach is to reduce RANK-AGGR to the weighted feedback arc set problem on a tournament. This idea leads to a $(1 + \varepsilon)$-approximation via ℓ_1-norm estimation in a way similar to the algorithm in
Section 3.1. Define a vector x of length $\binom{n}{2}$ indexed by pairs of vertices \{a, b\} where

$$x_{a,b} = \sum_{i=1}^{k} \mathbb{1}\{\sigma_i(a) < \sigma_i(b)\},$$

i.e., the number of input orderings that have $a < b$. Then for any ordering π define a vector y^π, where for each pair of vertices \{a, b\},

$$y^\pi_{a,b} = k \cdot \mathbb{1}\{\pi(a) < \pi(b)\}.$$

It is easy to see that $\|x - y^\pi\|_1 = \text{cost}(\pi)$.

As in Section 3.1, our algorithm maintains an ℓ_1-sketch S with accuracy $\epsilon/3$ and error $\delta = 1/(3 \cdot n!)$. By Fact 3.1, this requires at most $O(\epsilon^{-2} n \log^2 n)$ space. In post-processing, the algorithm considers all $n!$ permutations π and, for each of them, computes $S(x - y^\pi) = Sx - Sy^\pi$. It thereby recovers an estimate for $\|x - y^\pi\|_1$ and finally outputs the ordering π that minimizes this estimate.

The analysis of this algorithm is essentially the same as in Theorem 3.2. Overall, we obtain the following result.

Theorem 6.1. There is a one-pass algorithm for rank aggregation that uses $O(\epsilon^{-2} n \log^2 n)$ space, returns a $(1 + \epsilon)$-approximation with probability at least $\frac{2}{3}$, but requires exponential post-processing time.

Acknowledgements

We thank Riko Jacob for a helpful discussion about the sink finding problem. We thank the anonymous SODA 2020 reviewers for several helpful comments that improved the presentation of the paper.

References

[1] F. Ablayev. Lower bounds for one-way probabilistic communication complexity and their application to space complexity. *Theoretical Computer Science*, 175(2):139–159, 1996.

[2] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear measurements. In *Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 459–467, 2012.

[3] N. Ailon. Active learning ranking from pairwise preferences with almost optimal query complexity. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 24*, pages 810–818. Curran Associates, Inc., 2011.

[4] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and clustering. *J. ACM*, 55(5):23:1–23:27, 2008.

[5] S. Angelov, K. Kunal, and A. McGregor. Sorting and selection with random costs. In *LATIN 2008: Theoretical Informatics, 8th Latin American Symposium, Búzios, Brazil, April 7-11, 2008, Proceedings*, pages 48–59, 2008.

[6] M. Bateni, H. Esfandiari, and V. S. Mirrokni. Almost optimal streaming algorithms for coverage problems. In *Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017*, pages 13–23, 2017.

[7] A. Chakrabarti, G. Cormode, and A. McGregor. Robust lower bounds for communication and stream computation. *Theor. Comput.*, 12(1):1–35, 2016. Preliminary version in *Proc. 40th Annual ACM Symposium on the Theory of Computing*, pages 641–649, 2008.
[8] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives a good ranking for weighted tournaments. *ACM Trans. Algorithms*, 6(3):55:1–55:13, 2010.

[9] M. Elkin. Distributed exact shortest paths in sublinear time. In *Proc. 49th Annual ACM Symposium on the Theory of Computing*, pages 757–770, 2017.

[10] G. Even, J. (Seffi) Naor, B. Schieber, and M. Sudan. Approximating minimum feedback sets and multicut in directed graphs. *Algorithmica*, 20(2):151–174, Feb 1998.

[11] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model. *Theoretical Computer Science*, 348(2-3):207–216, 2005.

[12] V. Guruswami and K. Onak. Superlinear lower bounds for multipass graph processing. *Algorithmica*, 76(3):654–683, Nov. 2016.

[13] M. R. Henzinger, P. Raghavan, and S. Rajagopalan. Computing on data streams. *External memory algorithms*, pages 107–118, 1999.

[14] Z. Huang, S. Kannan, and S. Khanna. Algorithms for the generalized sorting problem. In *IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011*, pages 738–747, 2011.

[15] C. Jin. Simulating random walks on graphs in the streaming model. In *10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA*, pages 46:1–46:15, 2019.

[16] A. B. Kahn. Topological sorting of large networks. *Commun. ACM*, 5(11):558–562, Nov. 1962.

[17] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact space complexity of sketching and streaming small norms. In *Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1161–1178, 2010.

[18] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors: A PTAS for weighted feedback arc set on tournaments. *Electronic Colloquium on Computational Complexity (ECCC)*, 13(144), 2006.

[19] S. Khan and S. K. Mehta. Depth first search in the semi-streaming model. In *Proc. 36th International Colloquium on Automata, Languages and Programming*, pages 42:1–42:16, 2019.

[20] A. McGregor. Graph stream algorithms: a survey. *SIGMOD Record*, 43(1):9–20, 2014.

[21] A. Razborov. On the distributional complexity of disjointness. *Theor. Comput. Sci.*, 106(2):385–390, 1992. Preliminary version in *Proc. 17th International Colloquium on Automata, Languages and Programming*, pages 249–253, 1990.

[22] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank on graph streams. *J. ACM*, 58(3):13, 2011.

[23] R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. *Acta Informatica*, 6(2):171–185, Jun 1976.

[24] A. Yehudayoff. Pointer chasing via triangular discrimination. Technical Report TR16-151, ECCC, 2016.