Microsatellite Markers for *Aronia melanocarpa* (Black Chokeberry) and Their Transferability to Other *Aronia* Species

Samuel G. Obae1,6
Department of Biology, School of the Sciences, Stevenson University, 11200 Ted Herget Way, Owings Mills, MD 21117-7804

Mark H. Brand2
Department of Plant Science and Landscape Architecture, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4067

Bryan A. Connolly3
Department of Biology, Framingham State University, 100 State Street, Framingham, MA 01701-9101

Rochelle R. Beasley4 and Stacey L. Lance5
Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802

Additional index words. *Aronia arbutifolia*, *Aronia melanocarpa*, *Aronia mitschurinii*, *Aronia prunifolia*, chokeberry, SSR

Abstract. This study reports the development, characterization, and cross-species transferability of 20 genomic microsatellite markers for *A. melanocarpa*, an important nutraceutical fruit crop. The markers were developed with Illumina paired-end genomic sequencing technology using DNA from Professor Ed cultivar that was originally collected from the wild in New Hampshire. The markers are highly polymorphic and transferable to *A. arbutifolia* and *A. prunifolia* genomes. The average number of alleles per locus was 9.1, 4.5, and 5.6 for *A. melanocarpa*, *A. arbutifolia*, and *A. prunifolia*, respectively. The polymorphism information content (PIC) of loci ranged from 0.38 to 0.95 for all taxa, with an average of 0.80, 0.68, and 0.87 for *A. melanocarpa*, *A. arbutifolia*, and *A. prunifolia*, respectively. This is the first study to develop microsatellite markers in the *Aronia* genus. These markers will be very useful in studying the genetic diversity and population structure of wild *Aronia* and expediting the breeding efforts of this emerging fruit crop through marker-assisted selection.

The genus *Aronia* (Rosaceae) is composed of multistemmed deciduous woody shrubs native to eastern North America (Brand, 2009; Hardin, 1973). Generally, the genus is considered to contain three species, *A. melanocarpa* (L.) Elliot (black chokeberry), *A. arbutifolia* (Michx.) Elliot (red chokeberry), and *A. prunifolia* (purple chokeberry) (Hardin, 1973). There is a continuum of morphological and phenological characteristics among the three species and evidence suggests that *A. prunifolia* may be an interspecific hybrid between *A. arbutifolia* and *A. melanocarpa* (Brand, 2009; Hardin, 1973). The large-fruited forms of *Aronia* grown for fruit production represent a fourth species called *Aronia mitschurinii* (Jepsson, 2000; Skvortsov and Maitulina, 1982; Skvortsov et al., 1983). *Aronia mitschurinii* has been shown to be an intergeneric hybrid between *Aronia* and *Sorbus* (Leonard et al., 2013). For many years, dark-fruited forms of *Aronia* have been targeted for breeding as a fruit crop because of their valuable nutraceutical properties. Phytochemical analyses have shown that *Aronia* berries have the highest content of phenolic compounds of any temperate fruit (Zheng and Wang, 2003) with *A. melanocarpa* having the highest content of anthocyanins, exceeding levels found in *A. arbutifolia* or *A. prunifolia* fruits (Taheri et al., 2013). The nutraceutical potential of *Aronia* berries (see reviews by Kokotkiewicz et al., 2010; Kulling and Rawel, 2008) has sparked great interest in the development of *Aronia* as a fruit crop in the United States. To support *Aronia* agriculture and ensure its viability, there is a need to quickly develop new high-yielding cultivars using molecular breeding techniques and genetically diverse germplasm from *Aronia*'s native range (Persson Hovmalm et al., 2004). Some cultivars of *A. mitschurinii* have been selected, but these cultivars are phenotypically indistinguishable from other plants of *A. mitschurinii* and have limited molecular variation due to apomictic seed production (Brand, 2009; Persson Hovmalm et al., 2004).

The success of molecular plant breeding hinges on availability of genome-specific molecular tools such as microsatellites or simple sequence repeat (SSR) markers. SSR markers are hypervariable, codominantly inherited, and widely distributed in the genome making them very informative for plant studies (Kalia et al., 2011). Furthermore, SSR markers are sometimes transferable to closely related taxa making it possible to study other species whose genome sequence data are not available. The objective of this study was to develop microsatellite markers for *A. melanocarpa* and assess their transferability to *A. arbutifolia* and *A. prunifolia* genomes.

Materials and Methods

Plant materials and DNA extraction. A total of 22 *Aronia* germplasm accessions (13 *A. melanocarpa*, 4 *A. arbutifolia*, and 5 *A. prunifolia*) were used in this study (Table 1). All accessions are maintained as live plants at the University of Connecticut, Plant Science Research Farm, Storrs, CT. Genomic DNA was extracted from fresh young leaves following the protocol outlined in Lubell et al. (2008), with the exception that the initial homogenate was not filtered through miracloth. The quality and concentration of extracted DNA were determined using a NanoDrop-1000 spectrophotometer (Thermo Scientific, Wilmington, DE).

Isolation of microsatellite loci and primer design. DNA from ‘Professor Ed’ (accession number UC023) was used to isolate microsatellite loci. An Illumina paired-end shotgun library was prepared by shearing 1 μg of DNA using a Covaris S220 ultrasonicator (Covaris, Inc., Woburn, MA) and following the standard protocol of the Illumina MiSeq Reagents kit v2 (Illumina, San Diego, CA). Illumina sequencing was conducted on the MiSeq system (Illumina) with 150 bp paired-end reads. The resulting reads were analyzed with the program PAL_FINDER_v0.02.03 (Castoe et al., 2012) to identify reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites. Once reads were identified, they were batched to the program...
Table 1. Species, accession number, cultivar name, source, and place of collection of Aronia genotypes used in this study.

Species	Accession no.	Cultivar name	Source of accession	Place of collection
Aronia melanocarpa	UC004	Morton Iroquis Beauty	RareFind Nursery	New Jersey
	UC020	Wild	Maine	
	UC023	‘Professor Ed’	Wild	New Hampshire
	UC024	var. elata	Forest Farm	Oregon
	UC031	Wild	Wild	Connecticut
	UC049	Wild	Wild	Connectict
	UC054	Wild	Wild	New Jersey
	UC064	Wild	Wild	New York
	UC095	Wild	Wild	Pennsylvania
	UC110A	Wild	Wild	Tennessee
	UC160	Wild	Wild	Vermont
	Pt545686	USDA collection, Ames, IA	Ontario, Canada	
	Pt603106	USDA collection, Ames, IA	Tennessee	
Aronia arbutifolia	UC001	‘Brilliantissima’	Spring Meadow Nursery	Michigan
	UC021	‘Erecta’	Forest Farm	Oregon
	UC080	Wild	Wild	New York
	UC088	Wild	Wild	Florida
	UC019	Wild	Wild	Maine
	UC045	Wild	Wild	Rhode Island
	UC090	Wild	Wild	Massachusetts
	UC092	Wild	Wild	Massachusetts
	Pt603107	USDA collection, Ames, IA	Virginia	

PCR and marker analysis. The forty-eight primer pairs selected were tested for PCR amplification and polymorphism using DNA from eight additional samples of A. melanocarpa. PCR amplifications were performed in 12.5 µL volume containing 10 µm Tris (pH 8.4), 50 µm KCl, 25.0 µg/mL BSA, 3.0 µm MgCl2, 0.4 µm unlabeled primer, 0.04 µm tag-labeled primer, 0.36 µm fluorescent dye-labeled primer, 0.8 µm dNTPs, 0.5U AmpliTaq Gold® Polymerase (Applied Biosystems, Foster City, CA), and 20 ng DNA template using GeneAmp 9700 thermal cycler (Applied Biosystems) (Allen et al., 2012). A touchdown thermal cycling program (Don et al., 1991) was used for all PCR amplifications. The program included an initial denaturation step at 95 °C for 5 min followed by 20 cycles of 95 °C for 30 s, 65–55 °C annealing temperatures (decreasing 0.5 °C per cycle) for 30 s, and an extension step at 72 °C for 30 s; followed by 20 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, and a final extension step at 72 °C for 5 min.

Amplified fragments (amplicons) were separated by capillary electrophoresis using ABI-3130xl sequencer (Applied Biosystems) and were sized using Naurox internal size standard prepared as described in DeWoody et al. (2004) with the exception that nonfluorescent primers had GTTT pigtailed on their 5’-ends. Twenty primer pairs that successfully amplified and were polymorphic in the eight samples were further tested on five more A. melanocarpa samples and evaluated for their cross-amplification in A. arbutifolia and A. prunifolia accessions. Amplicons were analyzed using GeneMapper version 3.7 software (Applied Biosystems). Given the polyploid nature of the Aronia genus, genetic parameters such as observed and expected heterozygosity could not be reliably determined. Instead, PIC values were calculated to evaluate the genetic informativeness of each locus. Alleles at each locus were treated as dominant markers and were scored as present (1) or absent (0) across all accessions. The frequency of alleles at each locus was determined based on binary scores, and PIC values were calculated using the formula $\text{PIC} = 1 - \sum (P_i)^2$; where P_i is the frequency of the ith allele at each locus (Anderson et al., 1993).

Results and Discussion

Twenty of the 48 primer pairs tested amplified high-quality PCR products and exhibited polymorphism in A. melanocarpa accessions tested. The characteristics of the 20 microsatellite loci are shown in Table 2, and the BioSample metadata are available in the NCBI BioSample database (http://www.ncbi.nlm.nih.gov/biosample/) under accession number SAMN05325189. Together, the 20 polymorphic SSR loci yielded 182 alleles in A. melanocarpa. The number of alleles per locus ranged from three to twenty, with an average of 9.1. The allele sizes ranged from 147 to 451 bp, and PIC values ranged from 0.62 to 0.93, with an average of 0.80 (Table 2). All 20 SSRs were transferable to A. arbutifolia and A. prunifolia genomes (Table 2). In A. arbutifolia, the number of alleles per locus ranged from 1 to 9, with an average of 4.5. The allele sizes ranged from 155 to 423 bp, and PIC values ranged from 0.38 to 0.88, with an average of 0.68. In A. prunifolia, the number of alleles per locus ranged from 2 to 10, with an average of 5.6. The allele sizes ranged from 159 to 443 bp, and PIC values ranged from 0.59 to 0.95, with an average of 0.87 (Table 2).

Several studies have demonstrated cross transferability of SSR markers in plants; however, the ratio of marker transferability between taxa is influenced by the closeness of their relationship. In a study by Vanwynsberghe et al. (2009), transferability of apple SSR markers to other taxa within Maloideae subfamily ranged from 58% to 94%. Higher transferability ratios were observed between species within genera (94%) compared with between genera (58% to 81%). Similarly, Fan et al. (2013) reported that 58.2% of the 67 pear SSR markers tested were transferable to apple compared with only 1.5% in strawberry. Apple and pear belong to Maloideae subfamily and strawberry belongs to Rosoideae subfamily, both in the Rosaceae family. On the basis of these transferability percentages, it is apparent that the pear genome is more closely similar to that of apple than strawberry. In our study, the high percentage of transferability (100%) of A. melanocarpa SSR markers to A. arbutifolia and A. prunifolia obviously reflects the close similarities of their genomes. It will be interesting, however, to see if these newly developed Aronia SSR markers are transferable to other taxa in the Rosaceae family.

This is the first study to develop and characterize microsatellite markers in A. melanocarpa, and to test for their transferability to other Aronia species. Given the growing interest to develop Aronia as a nutraceutical fruit crop, these SSR markers will be a great resource for the scientific community interested in studying Aronia and other members of Rosaceae. In particular, these markers could be used in assessing the genetic diversity and structure of Aronia populations in the wild, evaluating the diversity of Aronia accessions currently held in different germplasm collections to better understand and manage existing genotypes, identifying important horticultural...
characteristics in different Aronia species, and expediting Aronia breeding efforts through marker-assisted selection.

Literature Cited

Allen, J.M., S.G. Obae, M.H. Brand, J.A. Silander, M.H. Brand, M.H. 2009. Aronia and expediting characteristics in different Aronia species, and expediting Aronia breeding efforts through marker-assisted selection.

DeWoody, J.A., J. Schapp, L. Kenefic, J. Busch, L. Murritt, and P. Keim. 2004. Universal method for producing ROX-labeled size standards suitable for automated genotyping. Biotechniques 37:348–352.

Don, R.H., P.T. Cox, B.J. Wainwright, K. Baker, and J.S. Mattick. 1991. ‘Touchdown’ PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19:4008.
Aronia plants to different reproductive strategies within the genus. Hereditas 141:301–312.

Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18:233–234.

Skvortsov, A.K. and Y.K. Maitulina. 1982. On distinctions of cultivated black-fruited Aronia from its wild ancestors (in Russian). Bull. GBS AN SSSR 126:35–40.

Skvortsov, A.K., Y.K. Maitulina, and Y.N. Gorbunov. 1983. Cultivated black-fruited Aronia: Place, time and probable mechanism of formation (in Russian). Bull. MOIP. Otd. Biol. 88 (3):88–96.

Taheri, R., B.A. Connolly, M.H. Brand, and B.W. Bolling. 2013. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. J. Agr. Food Chem. 61:8581–8588.

Vanwynsberghe, L., L. Decq, and J. Keulemans. 2009. Transferability of Malus × domestica microsatellite markers to other species and genera of the maloideae subfamily. Acta Hort. 839:567–574.

Zheng, W. and S.Y. Wang. 2003. Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agr. Food Chem. 51:502–509.