Anti-halo effects on reaction cross sections for 14,15,16C isotopes

Takuma Matsumoto1 and Masanobu Yahiro1

1Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
(Dated: September 26, 2014)

We study anti-halo effects on reaction cross sections σ_R for 14,15,16C scattering from a 12C target at 83 MeV/nucleon, using the g-matrix double-folding model. 15C is described by the 12C + n two-body model that reproduces the measured large s-wave spectroscopic factor, i.e., the shell inversion that the 1$s_{1/2}$ orbital is lower than the 0$d_{5/2}$ orbital in energy. 16C is described by the 14C + $n + n$ three-body model with the phenomenological three-body force (3BF) that explains the measured small s-wave spectroscopic factor. The 3BF allows the single-particle energies of the 14C + n subsystem to depend on the position r of the second neutron from the center of mass of the subsystem. The 1$s_{1/2}$ orbital is lower than the 0$d_{5/2}$ orbital for large r, but the shell inversion is restored for small r. Anti-halo effects due to the “partial shell inversion” make σ_R for 16C smaller than that for 15C. We also investigate projectile breakup effects on the mass-number dependence of σ_R with the continuum discretized coupled-channels method.

PACS numbers: 21.45.-v, 24.10.Eq, 25.60.Dz, 25.60.Gc

I. INTRODUCTION

Unstable nuclei have exotic properties such as halo formation [1, 2] and shell evolution; see Ref. [3] for the recent review on shell evolution. Elucidation of these properties is an important subject in nuclear physics. Reaction cross section σ_R is a powerful experimental tool for determining matter radii of nuclei and hence searching for halo nuclei. In addition, theoretical analyses for σ_R are easier compared with other reactions. In fact, σ_R was measured recently for the scattering of Ne and Mg isotopes from a 12C target at 240 MeV/nucleon [4, 5], and the double-folding model (DFM) based on the Melbourne g-matrix [6] was successful in reproducing the data with no free parameter [7–10]. The analyses suggest that 31Ne and 37Mg are halo nuclei with large deformation.

Pairing correlations are known to be important for even nuclei. The correlation plays an important role particularly in weakly bound nuclei, since they are bound only with it. In the mean-field picture based on the Hartree-Fock Bogoliubov (HFB) method [11], the correlation makes quasi-particle energies deeper and then reduces the root-mean-square (RMS) radius of the matter density. This mechanism becomes significant for unstable nuclei where the separation energy is smaller than the gap energy. This suggests that the pairing correlation suppresses halo formation for even-even unstable nuclei. This is called the pairing anti-halo effect.

The pairing anti-halo effect is an interesting mechanism, but there is no clear evidence for the effect. Hagino and Sagawa suggested that the odd-even staggering in σ_R is possible evidence for the effect [12–14], using the HFB method for 30,31,32Ne + 12C scattering at 240 MeV/nucleon [4] and the few-body models for 15,16,17C + 12C scattering at 83 MeV/nucleon [15]. They introduced the parameter [14]

$$\gamma_3 = \frac{\sigma_R(A + 1) - \sigma_R(A + 2) + \sigma_R(A)}{2},$$

where the mass number A of projectile is even in Eq. (1). The parameter γ_3 describes the deviation of $\sigma_R(A + 1)$ for an odd nucleus from the mean value $(\sigma_R(A + 2) + \sigma_R(A))/2$ for even nuclei on both sides. Sasabe et al. extended their idea and defined the dimensionless odd-even deviation parameter [16]

$$\Gamma_R = \frac{\gamma_3}{\sigma_R(A + 2) - \sigma_R(A)},$$

where $\Gamma_R > 1$ when $\sigma_R(A + 1) > \sigma_R(A + 2)$. The parameter evaluated from measured σ_R has a large value of $\Gamma_R^{\exp} = 2.0 \pm 0.8$ for 14,15,16C + 12C scattering at 83 MeV/nucleon [15]. The fact that $\Gamma_R^{\exp} > 1$ shows that anti-halo effects play an important role in σ_R for 16C. Sasabe et al. [16] analyzed the strong odd-even deviation with the continuum-discretized coupled-channels method (CDCC) [17–19] in order to take account of projectile breakup effects in addition to pairing (di-neutron) correlations. Here we identify di-neutron correlations with pairing ones. In the analysis, 15C was described by the 14C + n two-body orthogonality condition model (OCM) and 16C was by the 14C + $n + n$ three-body OCM with the phenomenological three-body force (3BF) that reproduces the total binding energy. The theoretical calculations well reproduce σ_R for 14,15C, but the calculated odd-even deviation parameter is $\Gamma_R = 0.77$ and significantly undershoots $\Gamma_R^{\exp} = 2.0 \pm 0.8$, although pairing correlations are taken into account in the three-body model. This implies that there exist other anti-halo effects besides the pairing anti-halo effect.

15C is a halo nucleus with small one-neutron separation energy, $S_n = 1.218$ MeV. The s-wave spectroscopic factor λ_s in the ground state of 15C is found to be $\lambda_s(15C) = 0.97 \pm 0.08$ from Coulomb breakup measurements [20]. This means that the 1$s_{1/2}$ orbital is lower than the 0$d_{5/2}$ orbital in energy, i.e., the shell inversion takes place. The s-wave spectroscopic factor in the ground state of 16C, meanwhile, is determined to be $\lambda_s(16C) = 0.35 \pm 0.2$ from the measurements on longitudinal momentum distributions of 15C fragments from 16C breakup [21]. The suppression of λ_s from $\lambda_s(15C) = 0.97 \pm 0.08$ to $\lambda_s(16C) = 0.35 \pm 0.2$ is a key to clarifying the reason why Γ_R^{\exp} is so large.

In this paper, we reanalyze 14,15,16C + 12C scattering at 83 MeV/nucleon by using the Melbourne g-matrix DFM and study the mechanism underlying the strong odd-even devia-
Hamiltonian is with respect to two Jacobi coordinates and the interaction orbital is lower than the 0d orbital. This is referred to as “partial shell inversion” in this paper. We show that the partial shell inversion enhances the neutron radius of the center-of-mass correction is made in the standard manner. For the matter density is determined by HFB calculations, where calculations with the Gogny-D1S interaction. For 15C, we use the Bonn-A two-nucleon force as V14C and the neutron–nucleon interaction of Ref. 12 as V14Cn and V14C. The interaction V3 is the 3BF acting among n1, n2, and 14C. We consider two types of 3BFs. One is a volume-type 3BF of and the other is a surface-type 3BF of where ρ1 (ρ2) is the coordinate of n1 (n2) from 14C and r1 (r2) represents the coordinate of n2 (n1) from the center of mass of the n1 (n2) + 14C subsystem. Assuming ρ0 = 0.76 × 141/3 fm and r0 = 2.54 × 141/3 fm, we determined V0(v) and V0(s) from the measured two-neutron separation energy S2n(exp) = 5.47 MeV 27; the resultant values are V0(v) = −23.45 MeV and V0(s) = −6.18 MeV/fm². Note that Tρ1 + Tr1 = Tρ2 + Tr2 in Eq. (4).

For later convenience, we define the following four models by changing V: (I) V = Vn1c + Vn2c, (II) V = Vn1n2 + Vn1c + Vn2c, (III) V = Vn1n2 + Vn1c + Vn2c + V14C, and (IV) V = Vn1n2 + Vn1c + Vn2c + V3(s). Using the four models, we calculate the probabilities Pρ and P1 of 1s1/2 and 0d5/2 components in the ground state of 16C, the matter radius r(16C), and S2n. The probabilities are obtained by taking the overlap between the ground state of 16C and the 1s1/2 and 0d5/2 states of 15C. The difference between models II and III (IV) shows effects of the volume-type (surface-type) 3BF, whereas the difference between models I and II describes effects of pairing correlations.

In actual calculations, we used the Gaussian expansion method 28 in which h2 and h3 are diagonalized in a space spanned by Gaussian basis functions with geometric progression range parameters.

II. MODEL SETTING

In the present g-matrix DFM, the optical potential U for nucleus–nucleus scattering is obtained by solving the Melbourne g-matrix with projectile and target densities; see Ref. 19 for the detail. The reaction cross section is obtained by solving the one-body Schrödinger with U for the elastic S-matrix elements. For a 12C target, the matter density is assumed to be the same as the electron scattering since the neutron RMS radius deviates from the neutron one only by less than 1% in HFB calculations with the Gogny-D1S interaction 23. For 14C, the matter density is determined by HFB calculations, where the center-of-mass correction is made in the standard manner 9. The matter radius of 14C in the HFB calculation is r(14C) = 2.51 fm that is consistent with the measured charge radius 2.50 fm.

As for 15C, we use the 14C + n two-body OCM in which the Pauli-forbidden states are excluded in the modelspace 25. The Hamiltonian is

\[h_2 = T_\rho + V_{nc}, \]

where T_\rho is the kinetic-energy operator with respect to the relative coordinate between n and the core nucleus 14C. The interaction V_{nc} between n and 14C is taken from Ref. 12. In this model, the shell inversion takes place, that is, the 1s1/2 orbital is lower than the 0d5/2 orbital. As a consequence of this property, this model well reproduces properties of the ground and 1s1/2 excited states of 15C such as \(\lambda(15C) = 0.97 \pm 0.08 \). The matter radius of 15C predicted by this model is \(\bar{r}(15C) = 2.87 \) fm that is much larger than \(\bar{r}(14C) = 2.51 \) fm. If the shell inversion does not take place, the calculated radius becomes \(\bar{r}(15C) = 2.65 \) fm that is estimated by assuming the ground state with 0d5/2 and \(S_n = 1.218 \) MeV. The shell inversion is thus inevitable for 15C to have a halo structure.

As for 16C, we use the 14C + n + n three-body OCM. The Hamiltonian is

\[h_3 = T_{\rho_1} + T_{\rho_1} + V, \]

which consists of the kinetic-energy operators \(T_{\rho_1} \) and \(T_{\rho_1} \) with respect to two Jacobi coordinates and the interaction V defined by

\[V = V_{n1n2} + V_{n1c} + V_{n2c} + V_3, \]

where \(V_{n1n2} \) is the two-nucleon force acting between two valence neutrons, \(n_1 \) and \(n_2 \), and \(V_{n1c} (V_{n2c}) \) is the interaction between \(n_1 (n_2) \) and 14C. We use the Bonn-A two-nucleon force 26 as V14Cn and the neutron–nucleon Interaction of Ref. 12 as V14C and V14C. The interaction V3 is the 3BF acting among n1, n2, and 14C. We consider two types of 3BFs. One is a volume-type 3BF of

\[V_3^{(v)} = \sum_{c=1,2} V_0^{(v)} \rho_2 e^{-\left(\rho_c/\rho_0\right)^2} e^{-(r_c/r_0)^2}, \]

and the other is a surface-type 3BF of

\[V_3^{(s)} = \sum_{c=1,2} V_0^{(s)} \rho_2 e^{-\left(\rho_c/\rho_0\right)^2} e^{-(r_c/r_0)^2}, \]

III. RESULTS

A. Ground-state properties of 16C

Table I shows a comparison of four models for \(P_\delta \), \(P_d \), the ratio \(\delta = \bar{r}(15C)/\bar{r}(16C) \), and \(S_{2n} \). In model I, \(P_\delta \) is almost 100%, so that 15C has a halo structure of \(\delta = 1.09 \). In model II where \(V_{nn} \) is added to model I, \(P_\delta \) decreases to 79% whereas \(P_d \) increases to 16%, so that \(\delta \) is reduced to 1.04. Thus pairing correlations surely reduce \(\delta \), but the reduction is only 5%. The value of \(S_{2n} \) for model II is still smaller than the experimental value \(S_{2n}(exp) = 5.47 \) MeV. This indicates that the
introduction of phenomenological 3BF is necessary. In model III where \(V_3^{(v)} \) is added to model II, \(P_s \) and \(P_d \) are close to the results in model II. The reduction of \(\delta \) due to \(V_3^{(v)} \) is 6% and comparable with that due to pairing correlation. In model IV where \(V_3^{(v)} \) is added to model II, however, \(P_s \) is largely reduced to 15% that is consistent with the measured value \(\lambda_f^{(16C)} = 0.35 \pm 0.2 \), so that \(\delta \) is reduced from 1.04 to 0.95.

The reduction of \(\delta \) due to \(V_3^{(v)} \) is thus 9% and twice as much as that due to pairing correlation.

TABLE I: Comparison of four models for the probabilities \(P_s, P_d \) of \(1s_{1/2} \) and \(0d_{5/2} \) components in the ground state of \(^{16}C \), the ratio \(\delta = \tilde{r}(^{16}C)/\tilde{r}(^{15}C) \) and the two-neutron separation energy \(S_{2n} \), and the odd-even deviation parameter \(\Gamma_{rds} \).

Models	\(P_s [%] \)	\(P_d [%] \)	\(\delta \)	\(S_{2n} \) [MeV]	\(\Gamma_{rds} \)
I	99	0	1.09	2.40	0.11
II	79	16	1.04	3.22	0.52
III	72	14	0.98	5.47	1.50
IV	15	74	0.95	5.47	2.48

We make the following analysis to study the mechanism underlying the large reduction of \(P_s \) due to \(V_3^{(v)} \). We start with the approximate Hamiltonian \(T_{pi} + V_{n_{1c}}(\rho_1) \) instead of \(h_3 \). For the approximate Hamiltonian, one can clearly define the single-particle energies in the \(^{14}C + n \) subsystem of \(^{16}C \). The effects of 3BF on the single-particle energies can be estimated by adding a half of 3BF to the approximate Hamiltonian:

\[
h'_3(r_1) = T_{pi} + V_{n_{1c}}(\rho_1) + V_3(\rho_1, r_1),
\]

where \(V_3(\rho_1, r_1) \) is the \(c = 1 \) part of \(V_3 \) and the OCM is taken. The single-particle energies of \(h'_3(r_1) \) are obtained as a function of \(r_1 \). The single-particle energies are plotted as a function of \(r \) for \(1s_{1/2} \) and \(0d_{5/2} \) orbitals in Fig. 1(a) where we have used \(r \) as the shorthand notation of \(r_1 \). In panel (a) for the volume-type 3BF, the \(1s_{1/2} \) orbital is lower than the \(0d_{5/2} \) orbital for any \(r \). The shell inversion thus takes place for any \(r \). In panel (b) for the surface-type 3BF, meanwhile, the \(1s_{1/2} \) orbital is lower than the \(0d_{5/2} \) orbital at large \(r \), but the shell inversion is restored at \(r < 5 \) fm. This partial shell inversion is an origin of the large reduction of \(P_s \) due to \(V_3^{(v)} \).

Now we consider the sum \(\tilde{R}(A) = \tilde{r}(A) + \tilde{r}(A_T) \) of projectile and target RMS radii \(\tilde{r}(A) \) and \(\tilde{r}(A_T) \), and introduce the dimensionless odd-even deviation parameter \(\Gamma_{rds} \) for \(\tilde{R}(A) \) as

\[
\Gamma_{rds} = \frac{\tilde{R}^2(A + 1) - [\tilde{R}^2(A) + \tilde{R}^2(A + 2)]/2}{[\tilde{R}^2(A + 2) - \tilde{R}^2(A)]/2},
\]

where the mass number \(A_T \) of target is 12 in the present case. The parameter \(\Gamma_{rds} \) has the same property as \(\Gamma_R \); namely, \(\Gamma_{rds} > 1 \) when \(\tilde{R}(A + 1) > \tilde{R}(A + 2) \).

The parameter \(\Gamma_{rds} \) is also tabulated in Table I for four models. In model I, \(\Gamma_{rds} \) is much smaller than 1. In model II where \(V_{n_{1c}} \) is added to model I, \(\Gamma_{rds} \) becomes slightly large but still smaller than 1. Comparing models III and IV with model II, one can see that the enhancement of \(\Gamma_{rds} \) due to \(V_3^{(v)} \) is much larger than that due to \(V_{n_{1c}} \) and the enhancement of \(\Gamma_{rds} \) due to \(V_3^{(v)} \) is even larger than that due to \(V_3^{(v)} \). The partial shell inversion is thus important as an origin of the odd-even deviation in \(\tilde{R}(A) \), and \(\Gamma_{rds} \) is a good quantity to detect the partial shell inversion.

B. Reaction cross sections

The parameter \(\Gamma_R \) is identical with \(\Gamma_{rds} \), if the following two conditions are satisfied. The first condition is that projectile breakup is negligible. If it is significant, the effects on \(\sigma_R \) are larger for \(^{15}C \) projectile than for \(^{16}C \) projectile, since \(^{15}C \) has much smaller \(S_n \) than \(^{16}C \). This enhances \(\Gamma_R \) from \(\Gamma_{rds} \), but the following second condition is more significant in the present case. For simplicity, let us assume that projectile breakup is negligible. When the absolute value of the elastic \(S \)-matrix element is 0 for orbital angular momenta \(L \) corresponding to the nuclear interior and 1 for \(L \) to the nuclear exterior, it is satisfied that \(\sigma_R(A) = \pi \tilde{R}^2(A) \). This situation
is called the black-sphere scattering (BSS). Hence Γ_R agrees with Γ_{rds}, when the BSS is realized and projectile breakup is negligible. The present scattering largely differs from the BSS [16], so that Γ_R is much reduced from Γ_{rds} by the non-BSS effect, as shown below.

It is not easy to estimate projectile breakup effects when the coupling potentials among elastic and breakup channels are calculated within the framework of the g-matrix double folding, since it requires time-consuming calculations. We then do CDCC calculations by assuming the 14C + $n + ^{12}$C three-body model for 14C + 12C scattering and the 14C + $n + ^{12}$C four-body model for 16C + 12C scattering. The optical potentials U_x between $x = ^{14}$C and a 12C target are constructed by folding the Melbourne g-matrix with densities of x and 12C. The optical potential U_{rds} is slightly reduced so that the single-channel calculation with no projectile breakup can yield the same σ_R as the DFM. The detail of CDCC calculations is the same as in Ref. [16]. Coulomb breakup is neglected, since it is small. Convergence of CDCC solutions with respect to increasing the modelspace is confirmed for σ_R.

Figure 2 shows σ_R for 14,15,16C + 12C scattering at 83 MeV/nucleon. The parameter Γ_R is tabulated in Table II for models III and IV. In panel (a) of Fig. 2 the results of the DFM are plotted as a function of A. For 14,15C, the theoretical results are shown by circles. For 16C, the theoretical results are plotted by a circle for the volume-type 3BF and by a square for the surface-type 3BF. The parameter Γ_R is 1.24 and larger than 1 for the surface-type 3BF, whereas $\Gamma_R = 0.79$ for the volume-type 3BF. The reaction cross sections thus have strong odd-even deviation for the surface-type 3BF. The reduction from $\Gamma_{\text{rds}} = 2.48$ to $\Gamma_R = 1.24$ for the surface-type 3BF is due to the non-BBS effect. In panel (b), projectile breakup corrections are added to the results of panel (a). The results well reproduce the measured σ_R for 14,15,16C [15]: here the data are plotted with 2-σ error (95.4% certainty). Projectile breakup enhances Γ_R from 1.24 to 1.78 for the surface-type 3BF and from 0.79 to 1.12 for the volume-type 3BF. The difference between $\Gamma_R = 1.78$ and 1.12 comes from presence or absence of the partial shell inversion. Both the partial shell inversion and the projectile breakup effect are thus important for the surface-type 3BF. The final result $\Gamma_R = 1.78$ with the partial shell inversion and the projectile breakup effect is consistent with the experimental value $\Gamma_{\text{exp}} = 2.0 \pm 0.8$.

![Figure 2](image)

Figure 2: (Color online) Reaction cross sections σ_R for 14,15,16C + 12C scattering at 83 MeV/nucleon. Panels (a) and (b) represent the results of DFM and CDCC calculations, respectively. For 14,15C, the circles and square correspond to the results of the volume-type and surface-type 3BFs, respectively. The experimental data are taken from Ref. [15] and are plotted with 2-σ error (95.4% certainty).

Models	Γ_R(DFM)	Γ_R(CDCC)	Γ_{exp}
III	0.79	1.12	
IV	1.24	1.78	2.0 ± 0.8

Table II: Summary of odd-even deviation parameters Γ_R.

IV. SUMMARY

We reanalyzed 14,15,16C scattering from a 12C target at 83 MeV/nucleon with the Melbourne g-matrix DFM and studied the mechanism underlying the strong odd-even deviation of $\Gamma_{\text{exp}} = 2.0 \pm 0.8$. We introduced a surface-type 3BF to the 14C + $n + ^{12}$C three-body model in order to describe the suppression of the s-wave spectroscopic factor from $\lambda_s(^{15}$C) = 0.97 ± 0.08 to $\lambda_s(^{16}$C) = 0.35 ± 0.2. The 3BF allows the single-particle energies of the 14C + n subsystem to depend on the position r of the second neutron from the center of mass of the 14C + n subsystem. The 1$s_{1/2}$ orbital is lower than the 0$d_{3/2}$ orbital for large r, but the shell inversion is restored for small r. The suppression of $\lambda_s(^{16}$C) due to the partial shell inversion is stronger than that due to pairing correlation. Also for Γ_{rds}, Γ_R, anti-halo effects due to the partial shell inversion are more important than the pairing anti-halo effect and make the matter radius of 14C smaller than that of 15C and eventually enhances Γ_R largely. CDCC calculations with effects of projectile breakup and the partial shell inversion yield $\Gamma_R = 1.72$ that is consistent with the experimental value $\Gamma_{\text{exp}} = 2.0 \pm 0.8$. We therefore conclude that both the partial shell inversion and the projectile breakup effect in addition to pairing (di-neutron) correlations are important to describe the strong odd-even deviation of $\Gamma_{\text{exp}} = 2.0 \pm 0.8$.
The parameter Γ^exp_R is also large for $^{30,31,32}\text{Ne} + ^{12}\text{C}$ scattering at 240 MeV/nucleon [4]. Projectile breakup effects are small because of the high incident energy [8]. Meanwhile, the shell inversion may take place also in ^{31}Ne [8]. This suggests that the partial shell inversion takes place also for ^{31}Ne. If reaction cross sections are measured systematically at higher incident energies such as 240 MeV/nucleon, the Γ_R determined from the measurement may detect presence or absence of the partial shell inversion. Systematic measurements of Γ_R and accurate theoretical analyses of measured Γ_R are quite interesting as a future work.

Acknowledgments

The authors would like to thank Fukuda and Yamaguchi for helpful discussions. M. Y. is supported by Grant-in-Aid for Scientific Research (No. 26400278) from the Japan Society for the Promotion of Science (JSPS).

[1] I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985); Phys. Lett. B206, 592 (1988). I. Tanihata, J. Phys. G 22, 157 (1996).
[2] A. Ozawa et al., Nucl. Phys. A691, 599 (2001).
[3] O. Sorlin, EPJ Web Conf. 66, 01016 (2014) [arXiv:1401.1378 [nucl-ex]].
[4] M. Takechi et al., Phys. Lett. B707, 357 (2012).
[5] M. Takechi et al., submitted to Phys. Rev. Lett., EPJ Web of Conferences 66, 02101 (2014).
[6] K. Amos et al., in Advances in Nuclear Physics, edited by J. W. Negele and E. Vogt (Plenum, New York, 2000) Vol. 25, p. 275.
[7] K. Minomo et al., Phys. Rev. C 84, 034602 (2011).
[8] K. Minomo et al., Phys. Rev. Lett. 108, 052503 (2012).
[9] T. Sumi et al., Phys. Rev. C 85, 064613 (2012).
[10] S. Watanabe et al., Phys. Rev. C 89, 044610 (2014).
[11] K. Bennaceur et al., Phys. Lett. B496, 154 (2000).
[12] K. Hagino and H. Sagawa, Phys. Rev. C 84, 011303 (2011).
[13] K. Hagino and H. Sagawa, Phys. Rev. C 85, 014303 (2012).
[14] K. Hagino and H. Sagawa, Phys. Rev. C 85, 037604 (2012).
[15] D.Q. Fang et al., Phys. Rev. C69, 034613 (2004).
[16] S. Sasabe et al., Phys. Rev. C 88, no. 3, 037602 (2013).
[17] M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986).
[18] N. Austern et al., Phys. Rep. 154, 125 (1987).
[19] M. Yahiro et al., Prog. Theor. Exp. Phys. 2012, 01A206 (2012).
[20] U. Datta Pramanik et al., Phys. Lett. B 351, 63 (2003).
[21] T. Yamaguchi et al., Nucl. Phys. A 724, 3 (2003).
[22] H. de Vries et al., At. Data Nucl. Data Tables 36, 495 (1987).
[23] J. F. Berger et al., Comput. Phys. Commun. 63, 365 (1991).
[24] L.A. Schaller et al., Nucl. Phys. A379, 523 (1982).
[25] S. Saito, Prog. Theor. Phys. 41, 705 (1969).
[26] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).
[27] D. R. Tilley et al., Nucl. Phys. A565, 1 (1993).
[28] E. Hiyama et al., Prog. Part. Nucl. Phys. 51, 223 (2003).