On the Gradient of Harmonic Functions

Pisheng Ding

Abstract. For a harmonic function u on a domain in \mathbb{R}^n, this note shows that $\|\nabla u\|$ is essentially determined by the geometry of level hypersurfaces of u. Specifically, the factor by which $\|\nabla u\|$ changes along a gradient flow is completely determined by the mean curvature of the level hypersurfaces intersecting the flow.

1 Introduction

Let u be a harmonic function on an open connected subset Ω of \mathbb{R}^n. Suppose, for simplicity, that u has no critical points in Ω. Starting at a point $p_0 \in \Omega$, follow the gradient flow to reach another point $p \in \Omega$. By how much has $\|\nabla u\|$ changed along the flow? This note seeks to generalize the answer indicated in [1] for the case $n = 2$; see Remark 2 in §3.

For $a \in u(\Omega)$, let S_a denote the level-a hypersurface $\{p | u(p) = a\}$. Orient S_a by prescribing the normal field $N = \nabla u / \|\nabla u\|$. Define $H : \Omega \to \mathbb{R}$ by letting $H(p)$ be the mean curvature of $S_{u(p)}$ at p.

Theorem: Let p be a point on the gradient flow originating from p_0; let $\tilde{p}_0 p$ be the arc on the flow between p_0 and p. Then,

$$\|\nabla u(p)\| = \|\nabla u(p_0)\| \exp \left((n-1) \int_{p_0 \tilde{p}_0} H \, ds\right),$$

where s denotes arc length along $\tilde{p}_0 p$.

It turns out that the case $n = 3$ completely embodies the general case. For simplicity, we treat this case.

2 Preliminaries

We begin by considering the mean curvature H of level surfaces of a C^2 function f on a domain in \mathbb{R}^3.

Suppose that 0 is a regular value of f and let S denote the level-0 set $\{p | f(p) = 0\}$. Let $N = \nabla f / \|\nabla f\|$. For $p \in S$, let $T_p S$ denote the tangent plane of S at p. For each unit vector $v \in T_p S$, let γ_v be the unit-speed parametrization of the normal section of S with $\gamma_v(0) = p$ and $\gamma_v'(0) = v$, then the (signed) curvature $\kappa_v(p)$ of γ_v at p is defined by the equation $\gamma_v''(0) = \kappa_v(p) N(p)$. The mean curvature $H(p)$ of S at p is the mean of $\kappa_v(p)$ with v ranging over the unit circle in $T_p S$, i.e.,

$$H(p) := \frac{1}{2\pi} \int_{v \in T_p S : \|v\| = 1} \kappa_v(p) \, d\sigma,$$

where $d\sigma$ is the arc length element of the circle $\|v\| = 1$.

1MSC2010: Primary 31B05; Secondary 53A07.
Key words: harmonic function, gradient, mean curvature, level hypersurface.
As $\gamma_v(t) \in S$, the two vectors $\nabla f(\gamma_v(t))$ and $\gamma_v'(t)$ are orthogonal; hence

$$0 = \frac{d}{dt} \langle \nabla f(\gamma_v(t)), \gamma_v'(t) \rangle$$

$$= \left\langle \frac{d}{dt} \nabla f(\gamma_v(t)), \gamma_v'(t) \right\rangle + \langle \nabla f(\gamma_v(t)), \gamma_v''(t) \rangle$$

Note that

$$\langle \nabla f(\gamma_v(0)), \gamma_v''(0) \rangle = \kappa_p(v) \|\nabla f(p)\|,$$

whereas

$$\left\langle \frac{d}{dt} \bigg|_{t=0} \nabla f(\gamma_v(t)), \gamma_v'(0) \right\rangle = Q(p)(v, v),$$

where $Q(p) : T_p\mathbb{R}^3 \times T_p\mathbb{R}^3 \to \mathbb{R}$ is the Hessian quadratic form, implying that

$$\kappa_p(v) = -\frac{1}{\|\nabla f(p)\|} Q(p)(v, v).$$

To average $\kappa_p(v)$ over the unit circle, it suffices to average $Q(p)(v, v)$. To that end, let (ξ, η) be an orthonormal basis for T_pS; then (ξ, η, \mathbf{N}) is an orthonormal basis for $T_p\mathbb{R}^3$. It is simple to verify that

$$\frac{1}{2\pi} \int_{\nu \in T_pS : \|\nu\|=1} Q(p)(v, v) d\sigma = \frac{1}{2} (Q(p)(\xi, \xi) + Q(p)(\eta, \eta)).$$

Note that

$$Q(p)(\xi, \xi) + Q(p)(\eta, \eta) + Q(p)(\mathbf{N}, \mathbf{N}) = \text{Tr} Q(p) = \Delta f(p).$$

Thus, we have

$$H(p) = \frac{Q(p)(\mathbf{N}, \mathbf{N}) - \Delta f(p)}{2 \|\nabla f(p)\|}.$$ \hfill (1)

3 Proof of Theorem

Let u be a harmonic function on an open connected subset Ω of \mathbb{R}^3 without critical points. Let $\mathbf{N} = \nabla u / \|\nabla u\|$. Let $s \mapsto \varphi(s)$ be the unit-speed gradient flow originating from p_0; φ is such that

$$\varphi'(s) = \mathbf{N}(\varphi(s)) \quad \text{and} \quad \varphi(0) = p_0.$$

Consider $g(t) := u(\varphi(t))$. Then,

$$g'(s) = \langle \nabla u(\varphi(s)), \varphi'(s) \rangle = \|\nabla u(\varphi(s))\|,$$

$$g''(s) = \left\langle \frac{d}{ds} \nabla u(\varphi(s)), \varphi'(s) \right\rangle + \langle \nabla u(\varphi(s)), \varphi''(s) \rangle.$$

As $\|\varphi\| \equiv 1$, the vectors φ' and φ'', and hence ∇u and φ'', are always orthogonal. Thus,

$$g''(s) = Q(\varphi(s))(\mathbf{N}, \mathbf{N}).$$
By (1) in §2,

\[H(\varphi(s)) = \frac{Q(\varphi(s)) (N,N)}{2 \|\nabla u(\varphi(s))\|^2} = \frac{1}{2} \frac{g''(s)}{g'(s)} = \frac{1}{2} \frac{d}{ds} \log g'(s) \]

\[= \frac{1}{2} \frac{d}{ds} \log \|\nabla u(\varphi(s))\|. \tag{2} \]

Integrating both sides yields the result.

Remarks:

1. If \(u \) is a harmonic function of two variables, the above analysis can be easily adapted to show that

\[\|\nabla u(p)\| = \|\nabla u(p_0)\| \exp \left(\int_{p_0}^p \kappa \, ds \right), \]

where \(\kappa \) is the curvature (signed, according to choice made of \(N \)) of the level curves of \(u \). This formula was suggested in [1] by a purely complex-analytic argument, as \(u \) is locally the real part of a holomorphic function. However, this argument does not apply when \(n > 2 \).

2. For \(n > 3 \), it suffices to notes that a level hypersurface of an \(n \)-variable \(C^2 \) function \(f \) has at \(p \) mean curvature

\[H(p) = \frac{Q(p)(N,N) - \Delta f(p)}{(n-1)\|\nabla f(p)\|} , \]

where the factor \(1/(n-1) \), the counterpart of the factor \(1/2 \) in (1), stems from averaging a quadratic form on \(\mathbb{R}^n \) over a unit \((n-2)\)-sphere. Omitting the obvious details, we conclude, as a generalization of (2), that, for a harmonic function \(u \) of \(n \) variables,

\[H = \frac{1}{(n-1)} D_N \log \|\nabla u\| , \]

from which the general case of the Theorem follows.

References

[1] R. P. Jerrard and L. A. Rubel, On the Curvature of the Level Lines of a Harmonic Function, Proceedings of the American Mathematical Society, Vol. 14, No. 1 (1963), pp.29-32.

Illinois State University, Normal, Illinois
pding@ilstu.edu