TRACE INEQUALITIES ON A GENERALIZED WIGNER-YANASE SKew INFORMATION

S. FURUICHI, K.YANAGI, AND K.KURIYAMA

Abstract. We introduce a generalized Wigner-Yanase skew information and then derive the trace inequality related to the uncertainty relation. This inequality is a non-trivial generalization of the uncertainty relation derived by S.Luo for the quantum uncertainty quantity excluding the classical mixture. In addition, several trace inequalities on our generalized Wigner-Yanase skew information are argued.

1. Introduction

Wigner-Yanase skew information

\[I_{\rho}(H) = \frac{1}{2} Tr \left(\left(i \left[\rho^{1/2}, H \right] \right)^2 \right) \]

was defined in [8]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum state \(\rho \) and an observable \(H \). Here we denote the commutator by \([X, Y] \equiv XY - YX \). This quantity was generalized by Dyson

\[I_{\rho,\alpha}(H) = \frac{1}{2} Tr \left(\left(i \left[\rho^\alpha, H \right] \right) \left(i \left[\rho^{1-\alpha}, H \right] \right) \right) \]

which is known as the Wigner-Yanase-Dyson skew information. It is famous that the convexity of \(I_{\rho,\alpha}(H) \) with respect to \(\rho \) was successfully proven by E.H.Lieb in [5]. From the physical point of view, an observable \(H \) is generally considered to be an unbounded operator, however in the present paper, unless otherwise stated, we consider \(H \in B(\mathcal{H}) \), where \(B(\mathcal{H}) \) represents the set of all bounded linear operators on the Hilbert space \(\mathcal{H} \), as a mathematical interest. We also denote the set of all self-adjoint operators (observables) by \(L_h(\mathcal{H}) \) and the set of all density operators (quantum states) by \(\mathcal{S}(\mathcal{H}) \) on the Hilbert space \(\mathcal{H} \). The relation between the Wigner-Yanase skew information and the uncertainty relation was studied in [7]. Moreover the relation between the Wigner-Yanase-Dyson skew information and the uncertainty relation was studied in [4, 9]. In our previous paper [9], we defined a
generalized skew information and then derived a kind of an uncertainty relation. In the section 2, we introduce a new generalized Wigner-Yanase skew information. On a generalization of the original Wigner-Yanase skew information, our generalization is different from the Wigner-Yanase-Dyson skew information and a generalized skew information defined in our previous paper [9]. Moreover we define a new quantity by our generalized Wigner-Yanase skew information and then we derive the trace inequality expressing a kind of the uncertainty relation.

2. Trace inequalities on a generalized Wigner-Yanase skew information

Firstly we review the relation between the Wigner-Yanase skew information and the uncertainty relation. In quantum mechanical system, the expectation value of an observable H in a quantum state ρ is expressed by $\text{Tr} [\rho H]$. It is natural that the variance for a quantum state ρ and an observable H is defined by $V_\rho(H) \equiv \text{Tr}[\rho (H - \text{Tr}[\rho H])^2] = \text{Tr}[\rho H^2] - \text{Tr}[\rho H]^2$. It is famous that we have the Heisenberg’s uncertainty relation:

$$V_\rho(A)V_\rho(B) \geq \frac{1}{4} |\text{Tr}[\rho [A, B]]|^2,$$

for a quantum state ρ and two observables A and B. The further strong result was given by Schrödinger

$$V_\rho(A)V_\rho(B) - |\text{Cov}_\rho(A, B)|^2 \geq \frac{1}{4} |\text{Tr}[\rho [A, B]]|^2,$$

where the covariance is defined by $\text{Cov}_\rho(A, B) \equiv \text{Tr}[\rho (A - \text{Tr}[\rho A] I) (B - \text{Tr}[\rho B] I)]$. However, the uncertainty relation for the Wigner-Yanase skew information failed. (See [7, 4, 9].)

Recently, S. Luo introduced the quantity $U_\rho(H)$ representing a quantum uncertainty excluding the classical mixture:

$$U_\rho(H) \equiv \sqrt{V_\rho(H)^2 - (V_\rho(H) - I_\rho(H))^2},$$

then he derived the uncertainty relation on $U_\rho(H)$ in [6]:

$$U_\rho(A)U_\rho(B) \geq \frac{1}{4} |\text{Tr}[\rho [A, B]]|^2.$$

Note that we have the following relation

$$0 \leq I_\rho(H) \leq U_\rho(H) \leq V_\rho(H).$$

The inequality (2.3) is a refinement of the inequality (2.1) in the sense of (2.4).

In this section, we study one-parameter extended inequality for the inequality (2.3).

Definition 2.1. For $0 \leq \alpha \leq 1$, a quantum state ρ and an observable H, we define the Wigner-Yanase-Dyson skew information

$$I_{\rho, \alpha}(H) \equiv \frac{1}{2} \text{Tr} [(i [\rho^\alpha, H_0]) (i [\rho^{1-\alpha}, H_0])]$$

and we also define

$$J_{\rho, \alpha}(H) \equiv \frac{1}{2} \text{Tr} [(\rho^\alpha, H_0) (\rho^{1-\alpha}, H_0)],$$

for $0 \leq \alpha \leq 1$. The uncertainty relation for the Wigner-Yanase skew information is expressed by

$$I_{\rho, \alpha}(A)V_{\rho, \alpha}(B) \geq \frac{1}{4} |\text{Tr}[\rho [A, B]]|^2,$$
where \(H_0 \equiv H - Tr[\rho H]I \) and we denote the anti-commutator by \(\{X, Y\} = XY + YX \).

Note that we have
\[
\frac{1}{2} Tr \left[(i [\rho^\alpha, H_0]) (i [\rho^{1-\alpha}, H_0]) \right] = \frac{1}{2} Tr \left[(i [\rho^\alpha, H]) (i [\rho^{1-\alpha}, H]) \right]
\]
but we have
\[
\frac{1}{2} Tr \left[\left\{ \rho^\alpha, H_0 \right\} \left\{ \rho^{1-\alpha}, H_0 \right\} \right] \neq \frac{1}{2} Tr \left[\left\{ \rho^\alpha, H \right\} \left\{ \rho^{1-\alpha}, H \right\} \right].
\]
Then we have the following inequalities:
\[
(I_{\rho,\alpha}(H) \leq J_{\rho}(H) \leq J_{\rho,\alpha}(H),
\]
since we have \(Tr[\rho^{1/2}H\rho^{1/2}] \leq Tr[\rho^\alpha H\rho^{1-\alpha}H] \). (See [1, 2] for example.) If we define
\[
U_{\rho,\alpha}(H) \equiv \sqrt{V_{\rho}(H)^2 - (V_{\rho}(H) - I_{\rho,\alpha}(H))^2},
\]
as a direct generalization of Eq. (2.2), then we have
\[
0 \leq I_{\rho,\alpha}(H) \leq U_{\rho,\alpha}(H) \leq U_{\rho}(H)
\]
due to the first inequality of (2.6). We also have
\[
U_{\rho,\alpha}(H) = \sqrt{I_{\rho,\alpha}(H)J_{\rho,\alpha}(H)}.
\]

Remark 2.2. From the inequalities (2.4), (2.6) and (2.8), our situation is that we have
\[
0 \leq I_{\rho,\alpha}(H) \leq U_{\rho,\alpha}(H) \leq U_{\rho}(H)
\]
and
\[
0 \leq I_{\rho,\alpha}(H) \leq U_{\rho,\alpha}(H) \leq U_{\rho}(H).
\]
Therefore our first concern is the ordering between \(I_{\rho}(H) \) and \(U_{\rho,\alpha}(H) \). However we have no ordering between them. Because we have the following examples. We set the density matrix \(\rho \) and the observable \(H \) such as
\[
\rho = \begin{pmatrix} 0.6 & 0.48 \\ 0.48 & 0.4 \end{pmatrix}, \quad H = \begin{pmatrix} 1.0 & 0.5 \\ 0.5 & 5.0 \end{pmatrix}.
\]
If \(\alpha = 0.1 \), then \(U_{\rho,\alpha}(H) - I_{\rho}(H) \) approximately takes \(-0.14736\). If \(\alpha = 0.2 \), then \(U_{\rho,\alpha}(H) - I_{\rho}(H) \) approximately takes \(0.4451\).

Conjecture 2.3. Our second concern is to show an uncertainty relation with respect to \(U_{\rho,\alpha}(H) \) as a direct generalization of the inequality (2.3) such that
\[
(U_{\rho,\alpha}(X))U_{\rho,\alpha}(Y) \geq \frac{1}{4} Tr[\rho[X, Y]]^2
\]
However we have not found the proof of the above inequality (2.10). In addition, we have not found any counter-examples of the inequality (2.10) yet.

In the present paper, we introduce a generalized Wigner-Yanase skew information which is a generalization of the Wigner-Yanase skew information defined in Eq. (1.1), but different from the Wigner-Yanase-Dyson skew information defined in Eq. (2.5).
Definition 2.4. For $0 \leq \alpha \leq 1$, a quantum state ρ and an observable H, we define a generalized Wigner-Yanase skew information by

$$K_{\rho,\alpha}(H) \equiv \frac{1}{2} Tr \left(\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, H_0 \right) \right)^2$$

and we also define

$$L_{\rho,\alpha}(H) \equiv \frac{1}{2} Tr \left(\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, H_0 \right) \right)^2.$$

Remark 2.5. For two generalized Wigner-Yanase skew informations $I_{\rho,\alpha}(H)$ and $K_{\rho,\alpha}(H)$, we have the relation:

$$I_{\rho,\alpha}(H) \leq K_{\rho,\alpha}(H).$$

Indeed, for a spectral decomposition of ρ such as $\rho = \sum_k \lambda_k |\phi_k\rangle\langle\phi_k|$, we have the following expressions:

$$I_{\rho,\alpha}(H) = \frac{1}{2} \sum_{m,n} \left(\lambda_m^\alpha - \lambda_n^\alpha \right) \left(\lambda_m^{1-\alpha} - \lambda_n^{1-\alpha} \right) |\langle \phi_m | H | \phi_n \rangle|^2$$

and

$$K_{\rho,\alpha}(H) = \frac{1}{2} \sum_{m,n} \left(\frac{\lambda_m^\alpha - \lambda_n^\alpha + \lambda_m^{1-\alpha} - \lambda_n^{1-\alpha}}{2} \right)^2 |\langle \phi_m | H | \phi_n \rangle|^2.$$

By simple calculations, we see

$$\left(\frac{\lambda_m^\alpha - \lambda_n^\alpha + \lambda_m^{1-\alpha} - \lambda_n^{1-\alpha}}{2} \right)^2 - \left(\lambda_m^\alpha - \lambda_n^\alpha \right) \left(\lambda_m^{1-\alpha} - \lambda_n^{1-\alpha} \right) \geq 0.$$

Throughout this section, we put $X_0 \equiv X - Tr[\rho X]I$ and $Y_0 \equiv Y - Tr[\rho Y]I$. Then we show the following trace inequality.

Theorem 2.6. For a quantum state ρ and observables X, Y and $\alpha \in [0, 1]$, we have

$$W_{\rho,\alpha}(X) W_{\rho,\alpha}(Y) \geq \frac{1}{4} \left| Tr \left(\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right) \right|^2$$

where

$$W_{\rho,\alpha}(X) \equiv \sqrt{K_{\rho,\alpha}(X)L_{\rho,\alpha}(X)}.$$

Proof: Putting

$$M \equiv i \left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, X_0 \right) x + \left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, Y_0 \right)$$

for any $x \in \mathbb{R}$, then we have

$$0 \leq Tr[M^* M]$$

$$= \left(\frac{1}{4} Tr \left((i[\rho^\alpha, X_0])^2 + (i[\rho^{1-\alpha}, X_0])^2 + I_{\rho,\alpha}(X) \right) \right) x^2$$

$$+ \frac{1}{2} Tr \left(i[\rho^\alpha, X_0] + i[\rho^{1-\alpha}, X_0] \right) \left(\{\rho^\alpha, Y_0\} + \{\rho^{1-\alpha}, Y_0\} \right) x$$

$$+ \left(\frac{1}{4} Tr \left(\{\rho^\alpha, Y_0\}^2 + \{\rho^{1-\alpha}, Y_0\}^2 \right) + J_{\rho,\alpha}(Y) \right).$$
Therefore we have
\[
\frac{1}{4} \left| \text{Tr} \left[(\rho^\alpha + \rho^{1-\alpha})^2 (i [X, Y]) \right] \right|^2 \\
\leq 4 \left(\frac{1}{4} \text{Tr} \left[(i [\rho^\alpha, X_0])^2 + (i [\rho^{1-\alpha}, X_0])^2 + I_{\rho,\alpha}(X) \right] \right) \\
\times \left(\frac{1}{4} \text{Tr} \left[(\rho^\alpha, Y_0)^2 + (\rho^{1-\alpha}, Y_0)^2 \right] + J_{\rho,\alpha}(Y) \right),
\]

since we have
\[
\text{Tr} \left[(i [\rho^\alpha, X_0])^2 + (i [\rho^{1-\alpha}, X_0])^2 \right] = \text{Tr} \left[(\rho^\alpha + \rho^{1-\alpha})^2 (i [X, Y]) \right].
\]

As similar as we have
\[
\frac{1}{4} \left| \text{Tr} \left[(\rho^\alpha + \rho^{1-\alpha})^2 (i [X, Y]) \right] \right|^2 \\
\leq 4 \left(\frac{1}{4} \text{Tr} \left[(i [\rho^\alpha, Y_0])^2 + (i [\rho^{1-\alpha}, Y_0])^2 + I_{\rho,\alpha}(Y) \right] \right) \\
\times \left(\frac{1}{4} \text{Tr} \left[(\rho^\alpha, X_0)^2 + (\rho^{1-\alpha}, X_0)^2 \right] + J_{\rho,\alpha}(X) \right).
\]

By the above two inequalities, we have
\[
W_{\rho,\alpha}(X) W_{\rho,\alpha}(Y) \geq \frac{1}{4} \left| \text{Tr} \left[\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right]^2 [X, Y] \right|^2.
\]

\[\square\]

Corollary 2.7. For a quantum state \(\rho \) and observables (possibly unbounded operators) \(X, Y \) and \(\alpha \in [0, 1] \), if we have the relation \([X, Y] = \frac{1}{2\pi i} I \) on \(\text{dom}(XY) \cap \text{dom}(YX) \) and \(\rho \) is expressed by \(\rho = \sum_k \lambda_k |\phi_k\rangle \langle \phi_k| \), \(|\phi_k\rangle \in \text{dom}(XY) \cap \text{dom}(YX) \), then
\[
W_{\rho,\alpha}(X) W_{\rho,\alpha}(Y) \geq \frac{1}{4} \left| \text{Tr} \left[\rho [X, Y] \right] \right|^2.
\]

Proof: It follows from Theorem 2.6 and the following inequality:
\[
\frac{1}{4} \left| \text{Tr} \left[\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right]^2 [X, Y] \right|^2 \geq \frac{1}{4} |\text{Tr} \left[\rho [X, Y] \right]|^2,
\]
whenever we have the canonical commutation relation such as \([X, Y] = \frac{1}{2\pi i} I \).

\[\square\]

Remark 2.8. Theorem 2.6 is not trivial one in the sense of the following (i) and (ii).

(i) Since the arithmetic mean is greater than the geometric mean, \(\text{Tr} \left[(i [\rho^\alpha, X_0])^2 \right] \geq 0 \) and \(\text{Tr} \left[(i [\rho^{1-\alpha}, X_0])^2 \right] \geq 0 \) imply \(K_{\rho,\alpha}(X) \geq I_{\rho,\alpha}(X) \), by the use of

Schwarz’s inequality. Similarly, \(\text{Tr} \left[(\rho^\alpha, Y_0)^2 \right] \geq 0 \) and \(\text{Tr} \left[(\rho^{1-\alpha}, Y_0)^2 \right] \geq 0 \) imply \(L_{\rho,\alpha}(Y) \geq J_{\rho,\alpha}(Y) \). We then have \(W_{\rho,\alpha}(X) \geq U_{\rho,\alpha}(X) \).

From the inequality 2.3 and the above, our situation is that we have
\[
U_{\rho,\alpha}(H) \leq U_{\rho}(H)
\]
and

\[U_{\rho,\alpha}(H) \leq W_{\rho,\alpha}(H). \]

Our third concern is the ordering between \(U_{\rho}(H) \) and \(W_{\rho,\alpha}(H) \). However, we have no ordering between them. Because we have the following examples. We set

\[
\rho = \begin{pmatrix} 0.8 & 0.0 \\ 0.0 & 0.2 \end{pmatrix}, \quad H = \begin{pmatrix} 2.0 & 3.0 \\ 3.0 & 1.0 \end{pmatrix}.
\]

If we take \(\alpha = 0.8 \), then \(U_{\rho}(H) - W_{\rho,\alpha}(H) \) approximately takes \(-0.241367\). If we take \(\alpha = 0.9 \), then \(U_{\rho}(H) - W_{\rho,\alpha}(H) \) approximately takes \(0.404141\).

This example actually shows that there exists a triplet of \(\alpha, \rho \) and \(H \) such that \(W_{\rho,\alpha}(H) < V_{\rho}(H) \), since we have \(U_{\rho}(H) \leq V_{\rho}(H) \) in general.

(ii) We have no ordering between \(TR \left[\left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right] \) and \(TR[\rho[X,Y]] \), by the following examples. If we take

\[
\rho = \frac{1}{2} \begin{pmatrix} 2 & 2i & 1 \\ -2i & 3 & -2i \\ 1 & 2i & 2 \end{pmatrix}, \quad X = \begin{pmatrix} 3 & 3 & -i \\ 3 & 1 & 0 \\ i & 0 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 & -i & 1 & -i \\ i & 1 & i \\ 1+i & -i & 3 \end{pmatrix},
\]

then we have

\[
TR \left[\left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right] \approx 0.348097, \quad TR[\rho[X,Y]] \approx 0.326531.
\]

If we take

\[
\rho = \frac{1}{2} \begin{pmatrix} 2 & 2i & 1 \\ -2i & 3 & -2i \\ 1 & 2i & 2 \end{pmatrix}, \quad X = \begin{pmatrix} 3 & 3 & -i \\ 1 & 3 & 0 \\ i & 0 & 1 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 & -i & 0 \\ i & 1 & i \\ 0 & -i & 3 \end{pmatrix},
\]

then we have

\[
TR \left[\left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right] \approx 0.304377, \quad TR[\rho[X,Y]] \approx 0.326531.
\]

Remark 2.9.

(i) If we take \(M = \rho^{1/2}X_0x + \rho^{1/2}Y_0 \) for any \(x \in \mathbb{R} \) presented in Eq. (2.12), we recover the Heisenberg uncertainty relation Eq. (2.1) shown in [3].

(ii) If we take \(\alpha = \frac{1}{2} \), then we recover the inequality (2.9) presented in [6].

(iii) We have another inequalities which are different from the inequality (2.11), by taking different self-adjoint operators \(M \) appeared in the proof of Theorem 2.6.

Conjecture 2.10. Our fourth concern is whether the following inequality:

\[
(2.13) \quad U_{\rho,\alpha}(X)U_{\rho,\alpha}(Y) \geq \frac{1}{4} \left[TR \left[\left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right] \right]^2
\]

holds or not. However we have not found its proof and any counter-examples yet.

\(K_{\rho,\alpha}(H) \) and \(L_{\rho,\alpha}(H) \) are respectively rewritten by

\[
K_{\rho,\alpha}(H) = TR \left[\left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right)^2 H_0^2 - \left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right) H_0 \left(\frac{\rho^{\alpha} + \rho^{1-\alpha}}{2} \right) H_0 \right]
\]
and

\[L_{\rho,\alpha}(H) = \text{Tr} \left[\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right)^2 H_0^2 + \left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right) H_0 \left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right) H_0 \right]. \]

Thus we have

\[\frac{1}{2} \text{Tr} \left[\left(i \left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, H_0 \right) \right)^2 \right] = \frac{1}{2} \text{Tr} \left[\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, H \right) \right]^2 \]

but we have

\[\frac{1}{2} \text{Tr} \left[\left(\left\{ \frac{\rho^\alpha + \rho^{1-\alpha}}{2}, H_0 \right\} \right)^2 \right] \neq \frac{1}{2} \text{Tr} \left[\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2}, H \right) \right]^2. \]

In addition, we have \(L_{\rho,\alpha}(H) \geq K_{\rho,\alpha}(H) \) which implies

\[W_{\rho,\alpha}(H) \equiv \sqrt{K_{\rho,\alpha}(H)L_{\rho,\alpha}(H)} \geq \sqrt{K_{\rho,\alpha}(H)K_{\rho,\alpha}(H)} \geq K_{\rho,\alpha}(H). \]

Therefore our fifth concern is whether the following inequality for \(\alpha \in [0,1] \) holds or not:

\[(2.14) \quad K_{\rho,\alpha}(X)K_{\rho,\alpha}(Y) \geq \frac{1}{4} \left| \text{Tr} \left[\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right] \right|^2. \]

However this inequality fails, because we have a counter-example. If we set \(\alpha = \frac{1}{2} \) and

\[\rho = \frac{1}{4} \left(\begin{array}{cc} 3 & 0 \\ 0 & 1 \end{array} \right), \quad X = \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right), \quad Y = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right). \]

Then we have,

\[K_{\rho,\alpha}(X)K_{\rho,\alpha}(Y) = I_{\rho}(X)I_{\rho}(Y) = \left(\frac{1 - \sqrt{3}}{2} \right)^2 \]

and

\[\frac{1}{4} \left| \text{Tr} \left[\left(\frac{\rho^\alpha + \rho^{1-\alpha}}{2} \right)^2 [X,Y] \right] \right|^2 = \frac{1}{4} \left| \text{Tr} [\rho [X,Y]] \right|^2 = \frac{1}{4}. \]

Thus the inequality (2.14) does not hold in general.

Before closing this section, we reconsider the ordering \(W_{\rho,\alpha}(H) \) and \(V_{\rho}(H) \), although we have already stated an example of the triplet \(\alpha, \rho \) and \(H \) satisfying \(W_{\rho,\alpha}(H) < V_{\rho}(H) \) in the last line of (i) of Remark 2.8. If we set \(\alpha = \frac{1}{3} \) and

\[\rho = \left(\begin{array}{cc} 0.3 & 0.45 \\ 0.45 & 0.7 \end{array} \right), \quad H = \left(\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array} \right). \]

Then \(V_{\rho}(H) - W_{\rho,\alpha}(H) \) approximately takes \(-0.3072\). If we set \(\alpha = \frac{1}{5} \) and

\[\rho = \left(\begin{array}{cc} 0.3 & 0.4 \\ 0.4 & 0.7 \end{array} \right), \quad H = \left(\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array} \right). \]

Then \(V_{\rho}(H) - W_{\rho,\alpha}(H) \) approximately takes \(0.682011\). Therefore we have no ordering between \(W_{\rho,\alpha}(H) \) and \(V_{\rho}(H) \). Thus it is natural for us to have an interest in the following conjecture, since we have \(K_{\rho,\alpha}(H) \leq W_{\rho,\alpha}(H) \) in general.
Conjecture 2.11. Our final concern is whether the following inequality:

\[K_{\rho,\alpha}(H) \leq V_{\rho}(H), \quad \alpha \in [0,1] \]

holds or not. However we have not found its proof and any counter-examples yet.

3. Concluding remarks

As we have seen, we introduced a generalized Wigner-Yanase skew information \(K_{\rho,\alpha}(H) \) and then defined a new quantity \(W_{\rho,\alpha}(H) \). We note that our generalized Wigner-Yanase skew information \(K_{\rho,\alpha}(H) \) is different type of the Wigner-Yanase-Dyson skew information \(I_{\rho,\alpha}(H) \). For the quantity \(K_{\rho,\alpha}(H) \), we do not have a trace inequality related to an uncertainty relation. However, we showed that we have a trace inequality related to an uncertainty relation for the quantity \(W_{\rho,\alpha}(H) \). This inequality is a non-trivial one-parameter extension of the uncertainty relation Eq.(2.23) shown by S.Luo in [6]. In addition, we studied several trace inequaities on informational quantities.

Finally, we give another generalized trace inequality of the inequality (2.3). For a quantum state \(\rho \) an observable \(H \) and \(\alpha \in [0,1] \), we define

\[
Z_{\rho,\alpha}(H) \equiv \frac{1}{4} \sqrt{\text{Tr} \left[(i[\rho^\alpha, H_0])^2 \right] \text{Tr} \left[(i[\rho^{1-\alpha}, H_0])^2 \right] \text{Tr} \left[(\rho^\alpha, H_0)^2 \right] \text{Tr} \left[(\rho^{1-\alpha}, H_0)^2 \right]},
\]

with \(H_0 \equiv H - \text{Tr}[\rho H]I \). Then we have the following inequality

\[
\sqrt{Z_{\rho,\alpha}(X)Z_{\rho,\alpha}(Y)} \geq \frac{1}{4} \left| \text{Tr} \left[\rho^{2\alpha}[X,Y] \right] \text{Tr} \left[\rho^{2(1-\alpha)}[X,Y] \right] \right|,
\]

for a quantum state \(\rho \), two observables \(X,Y \) and \(\alpha \in [0,1] \). We note that the inequality (3.1) recovers the inequality (2.3) by taking \(\alpha = 1/2 \) and we do not have any weak-strong relation between the inequality (2.11) and the inequality (3.1).

References

1. J.-C. Bourin, Some inequalities for norms on matrices and operators, Linear Alg. Appl., Vol.292(1999), pp.139-154.
2. J.I. Fujii, A trace inequality arising from quantum information theory, Linear Alg. Appl., Vol.400(2005), pp.141-146.
3. W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z.Phys., Vol.43(1927), pp.172-198.
4. H. Kosaki, Matrix trace inequality related to uncertainty principle, International Journal of Mathematics, Vol.16(2005), pp.629-646.
5. E.H. Lieb, Convex trace functions and the Wigner-Yanase-Dyson conjecture, Adv. Math., Vol.11(1973), pp.267-288.
6. S. Luo, Heisenberg uncertainty relation for mixed states, Phys. Rev. A, Vol.72(2005), 042110.
7. S. Luo and Q. Zhang, On skew information, IEEE Trans. Information Theory, Vol.50(2004), pp.1778-1782, and Correction to “On skew information”, IEEE Trans. Information Theory, Vol.51(2005), p.4432.
8. E.P. Wigner and M.M. Yanase, Information content of distribution, Proc. Nat. Acad. Sci. U.S.A., Vol.49(1963), pp.910-918.
9. K. Yanagi, S. Furuichi and K. Kuriyama, A generalized skew information and uncertainty relation, IEEE Trans. Information Theory, Vol.51(2005), pp.4401-4404.
