Intrinsic high-temperature superconductivity in ternary iron selenides

Shin-Ming Huang1, Chung-Yu Mou1,2,3, and Ting-Kuo Lee2
1Department of Physics, National Tsing Hua University, Hsinchu 30043, Taiwan
2Institute of Physics, Academia Sinica, Nankang, Taiwan and
3Physics Division, National Center for Theoretical Sciences, P.O. Box 2-131, Hsinchu, Taiwan

We examine superconductivity in the mesoscopically mixed antiferromagnetic (AF) and superconducting (SC) phases of ternary iron selenides K\textsubscript{x}Fe\textsubscript{2−x}Se\textsubscript{2}. It is shown that the interlayer hopping and AF order are key factors to determine T_c of the SC phase. In general, the hopping will produce deformed Fermi surfaces (FS's) that tend to suppress superconductivity. However, contrary to the common expectation, we find that larger AF order actually results in larger SC order, which explains the observed relatively high T_c in these phases. Furthermore our results indicate that by reducing the interlayer hopping appropriately, phase-separated K\textsubscript{x}Fe\textsubscript{2−x}Se\textsubscript{2} may exhibit its intrinsic SC phase in the two dimensional limit with a much higher T_c ($\sim 65K$) than what has been observed.

PACS numbers: 74.70.Xa, 74.20.Mn, 74.20.Rp

I. INTRODUCTION

The newly discovery of ternary iron-selenide superconductors A\textsubscript{y}Fe\textsubscript{2−x}Se\textsubscript{2} (A=K, Rb, Cs, and Tl)10 opens an interesting route to explore the origin of high temperature superconductivity in Fe-based superconductors. These materials have T_c up to 30K, which is relatively high in comparison to the average T_c in the family of Fe-based superconductors. However, unlike many other Fe-based materials, in which the SC order gets suppressed in the presence of the AF order due to their strong competition, early resistivity measurements11,12 surprisingly found that AF order and SC order coexisted while T_c was still kept relatively high. Further systematic investigations reveal that T_c's and the AF transition temperatures (T_N) of these materials exhibit similar trends: Both T_N and T_c are higher in the SC samples than those in the non-SC sample. This clearly implies that the coexisted antiferromagnetic ordering and superconductivity are not simply competing against each other13. In addition, it is found that the AF phase coincides with the $\sqrt{5} \times \sqrt{5}$ Fe-vacancy order with extraordinarily large magnetic moment of 3.3μ_B/Fe\textsubscript{5}. These results prompt a critical examination and explanation on how the AF order with large moment can coexist with the SC order while T_c remains so high.

To explore the origin of relatively high T_c in ternary iron-selenides, the nature of the phase with coexistence of SC and AF orders is further examined. A number of experiments5,14 show that instead of being coexistent homogeneously, the SC and AF orders are phase separated at mesoscopic scales. In particular, the volume fraction of the SC phase is estimated to be less than 20\% by using local probes11,14. Furthermore, it is shown that metallic behavior is exhibited in the SC phase15, while semiconducting behavior is found in the magnetic phase16. In addition, a heterostructure arrangement of SC and AF layers stacking alternatively is observed in TEM experiments17, in consistent with the picture suggested by Charnukha et al18. A more direct visualization is obtained by recent STM results19, in which two distinct regions along c-axis are clearly identified in K\textsubscript{y}Fe\textsubscript{2−y}Se\textsubscript{2} compound, SC KFe\textsubscript{2}Se\textsubscript{2} (122 system) and insulating K\textsubscript{x}Fe\textsubscript{6}Se\textsubscript{2} (245 system) with the $\sqrt{5} \times \sqrt{5}$ order. Furthermore, it is found that pure KFe\textsubscript{2}Se\textsubscript{2} could exist in a metallic state without superconductivity but with weak charge density wave20.

On the theoretical side, much work has been devoted to understand homogeneous AF and SC phases of either 122 or 245 system21–23. Little is known about the mechanism of superconductivity in the combined system. Recently, Jiang et al24 investigated a bilayer heterostructure with both SC and AF phases. Based on the pair-hopping approximation between the SC and AF layers, it is shown that a drop of magnetic moment occurs in the AF layer when the temperature goes below the SC transition, in agreement with the observation of neutron scattering experiments25. Since the effect on SC phase due to the AF order is found to be quite substantial26,27, it is interesting to examine what is the effect of AF order on superconductivity, especially in the presence of such strong AF order in the iron-vacancy-ordering phase.

In this work, we investigate superconductivity in a bilayer system with iron vacancy-free layer on top of an iron vacancy-ordered AF layer (245). The iron vacancy-free layer is nominally taken to be the 122 system with fitted band structures. The electronic structures are examined under different strength of interlayer hopping, interlayer spin coupling, and AF order. It is shown that both the interlayer hopping and interlayer spin coupling generally suppress superconductivity. In particular, the interlayer hopping would result in deformed Fermi surfaces structures that tend to frustrate the coupling of SC orders on Fermi surfaces. However, unexpectedly we find that for fixed hopping amplitude, larger AF orders actually result in larger SC orders, which explains the observed relatively high T_c and trends of T_c versus the AF transition temperature T_N in these phases. Our results imply that in the 2D limit, the pure SC phase in phase-separated ternary iron selenides may have a much higher T_c, being around 65K.
FIG. 1: Coupled 122-245 bilayer junction. Top lattice is the SC 122 layer and bottom one is the AF 245 layer. The dotted lines enclose the unit cell in each layer, and its basis contains five Fe atoms, denoting by A, B, C, D, and E. The E sites in the 245 layer are vacancy positions, denoted by empty circles.

II. THEORETICAL MODEL

We start by modeling the phase-separated region of K$_x$Fe$_{2-x}$Se$_2$ as a bilayer junction26, shown in Fig. 1. Here the top layer is nominally taken as the SC 122 phase and the bottom layer is the AF 245 phase. The system is governed by the Hamiltonian,

$$H = H_{122} + H_{245} + H_I^1 + H_I^J.$$

Here H_{122} and H_{245} are the individual Hamiltonian for the 122 and 245 layers, H_I^1 is the Hamiltonian for interlayer hopping, and H_I^J is the Hamiltonian for the interlayer spin coupling. To include multi-orbital effect, we shall focus on the most relevant orbitals by considering two orbitals only, $d_{\tau\sigma}$ and $d_{\tau'\sigma}$ with τ or τ' being along the nearest neighbor Fe-Fe direction. In the following, $c_{\tau} (d_{\tau})$ denotes the electron annihilation operator for the 122 (245) layer with $\tau = 1$ and 2 representing $d_{\tau\sigma}$ and $d_{\tau'\sigma}$, respectively. All the energies are in unit of electronvolt (eV).

For the 122 layer, H_{122} contains a hopping term and a pairing term. The hopping term is described by Das and Balatsky25, which yields FS pockets at $(\pi,0)$ and $(0,\pi)$ in the 1Fe/cell picture. The pairing term with an attractive potential within nearest neighbor and next nearest neighbor sites is given by

$$H_\Delta = -V_1 \sum_{i,d=x,y,\tau,\sigma} c_{\tau;i+d,\sigma}^\dagger c_{\tau;i,-\sigma} - \sigma c_{\tau;i,-\sigma}^\dagger c_{\tau;i+d,\sigma},$$

$$-V_2 \sum_{i,d=x,y,\tau,\sigma} c_{\tau;i+d,\sigma}^\dagger c_{\tau;i,-\sigma}^\dagger c_{\tau;i,-\sigma} c_{\tau;i+d,\sigma}.$$

Here σ is the spin index and V_1 and V_2 are positive.

To describe the 245 layer, we note that the unit cell with one vacancy contains 8 orbitals of electrons. The tight-binding model that respects the $I/4m$ symmetry of $\sqrt{5} \times \sqrt{5}$ Fe-vacancy order is constructed in Ref. 23. Following Ref. 23, H_{245} is constructed by removing $d_{\tau\sigma}$ with parameters being modified. The parameters for hopping are $t_{11,\tau} = -t_{11,\tau'} = 0.3$, $t_{12,\tau} = 0.2$, $t_{12,\tau'} = 0.15$, $t_{11,\tau} = -0.15$, $t_{11,\tau'} = -t_{11,\tau} = -0.08$, $t_{12,\tau} = t_{12,\tau'} = 0$, $t_{12,\tau} = t_{12,\tau'} = -0.02$, and $\Delta = 0.08$. Here $t_{\tau'\tau'\tau'}$ ($t_{\tau'\tau'\tau'}$) are for intracell (intercell) hoppings between orbitals τ and τ' along \mathbf{R} directions and Δ is the site energy difference between $d_{\tau\sigma}$ and $d_{\tau'\sigma}$ orbitals. Other hopping parameters can be obtained from above by using symmetries of the system, for example, $t_{22,\tau} = t_{11,\tau'}$ as a result of the 4-fold rotational symmetry. In addition to hopping, the interaction between electrons in the 245 layer is given by the generalized Hubbard model23

$$H_I = \sum_{\tau} \sum_{i=1,2} \left\{ U \sum_{\upsilon} \tau_{\upsilon,i} c_{\tau,i}^\dagger \tau_{\upsilon,i} c_{\tau,i} + \frac{U'}{2} \tau_{\upsilon,i} \tau_{\upsilon,i} - 2J_H S^{(d)}_{i,i} \cdot S^{(d)}_{i,i} + J_C \left(\langle d_{11,\tau}^\dagger d_{11,\tau} d_{21,\tau}^\dagger d_{21,\tau} \rangle + \text{h.c.} \right) \right\}. \quad (3)$$

Here A, B, C, D denote Fe atoms in the unit cell, as illustrated in Fig. 1. The onsite interaction parameters follow the relations, $U' = U - 2J_H$, $J_C = J_H$, and $J_H = 0.2U$. The chemical potential is used to control the particle density per iron at $n = 2$.

As two layers couple, the unit cell of the 122 layer is enlarged as that of the 245. We shall denote Fe atoms by A, B, C, D. Here E is the position of the vacancy in 245, as illustrated in Fig. 1. H_I^1 is given by

$$H_I^1 = t_\perp \sum_{\tau} \sum_{I=A,B,C,D} \sum_{\tau',\sigma} \left(c_{\tau I,i;\sigma} d_{\tau'I,i;\sigma} + d_{\tau I,i;\sigma}^\dagger c_{\tau'I,i;\sigma} \right). \quad (4)$$

On the other hand, the interlayer spin interaction H_I^J is given by

$$H_I^J = J_\perp \sum_{\tau} \sum_{I=A,B,C,D} \sum_{\tau',\tau''} S^{(c)}_{\tau I,i} \cdot S^{(d)}_{\tau'i,i}. \quad (5)$$

Here $S^{(c)}_{\tau I,i}$ is the spin operator of electrons in the 122 layer, while $S^{(d)}_{\tau I,i}$ is that of electrons in the 245 layer. For Fe-based superconductors, J_\perp is found to be in the range of $1 - 5$ meV22. We shall set J_\perp to be a nominal value of 10 meV in this work.

In the following, we shall first turn off J_\perp and consider effects of t_\perp. The distance between two nearest vacancies will be set as unity and their directions are denoted as x and y. For the isolated 245 layer, the mean field solutions of the AF order are shown in Fig. 2. Since we shall focus on effects of AF order on superconductivity, AF orders are treated as boundary conditions and will not be solved self-consistently later when interlayer couplings are turned on. Hence these values obtained in Fig. 2 will be adopted later even when the interlayer couplings are turned on. It is seen that the antiferromagnetism is weak when $U \lessapprox 1.5$ and is strong with saturated magnetization when $U > 1.5$. In Fig. 3 we show the energy dispersions of the AF states with $U=0, 1.0, 1.5,$
and 2.0, at which the development of the antiferromagnetism is at the beginning, in the middle, right before the jump, and at the saturation, respectively. Clearly, H_{245} reproduces the quasi-nested Fermi surface (FS) and the expected block checkerboard antiferromagnetism [with $q = (\pi, \pi) = Q$] as the Hubbard U increases above the critical value, $U \approx 0.5$. The minimal gap is along the diagonal $(M - M)$ direction and is smaller than 0.05eV before the saturation. When $U > 1.5$, a large AF gap, $2\Delta_{AF}$, opens. However, for $1.0 < U < 1.5$, we find that although bands are expelled to higher energy as U increases, the energy gap near the chemical potential decreases, resulting in the AF gap at $U = 1.0$ ($\Delta_{AF} = 0.046$) is larger than that at $U = 1.5$ ($\Delta_{AF} = 0.023$). Note that with two d-orbitals, one can not produce detailed characteristics of the band structure as those obtained by the first principal calculations. However, important relevant features are reproduced with the AF state being an gapped insulator and the AF order being agrees with the experimental observation.

![FIG. 2: (Color online) Mean field solutions of the checkerboard AF states of H_2 for the Hubbard U being up to two. Magnetic moments ($m = n_\uparrow - n_\downarrow$) and particle densities ($n = n_\uparrow + n_\downarrow$) at site-$A$ and B for orbital-1 and 2 are respectively displayed. The antiferromagnetism arises at the critical point $U = 0.5$, and it jumps to being fully magnetized at $U = 1.6$.](image)

After the interlayer hopping is included, FS’s of the 122 layer start to deform as shown in Fig. [3] Here three values of t_\perp ($t_\perp = 0.05, 0.1, \text{ and } 0.15$) for $U = 0.5, 1.0, 1.5$, and 2.0 are shown. Panels in the first row are for $t_\perp = 0.05$, the second row are for $t_\perp = 0.1$, and the third one are for $t_\perp = 0.15$. On the other hand, columns from the left to the right are cases with $U = 0.5, U = 1.0, U = 1.5$, and $U = 2.0$, respectively. It is seen that for large U with large AF orders, FS sheets at $(\pi, 0)$ are always disconnected from those at $(0, \pi)$; while for weak AF orders, interlayer hopping deforms FS pockets at $(\pi, 0)$ and $(0, \pi)$ so that they start to connect with each other and, consequently, more FS pockets emerge and the electronic structure become very complicated. In particular, as t_\perp increases or U decreases, apparent FS pockets emerge around Γ and M, which are mainly contributions from the AF state.

![FIG. 3: Energy dispersions in the range $(-1, 1)$ of the AF states for H_{245} at $U=0, 1.0, 1.5, \text{ and } 2.0$, respectively. It is clear that above $U \approx 1.5$, a large AF gap, Δ_{AF}, opens.](image)

III. RESULTS

We first characterize SC states in the 122 system. For this purpose, we note that since A_g (s-wave) and B_g (d-wave) are the two major competing order parameters, we shall only consider these pairing symmetries. In addition, in constructing SC order parameters, one needs to impose point group symmetries. Therefore, the $d_{\pi\pi}$-orbital pairs are obtained from the $d_{\pi\pi}$-orbital pairs, e.g., $\langle c_{2A_1}; c_{2B_1} \rangle = \pm \langle c_{1B}; c_{1C}; i \rangle$, where \pm denotes s-wave/d-wave. In addition, due to the presence of vacancies, translation symmetry will not hold always, e.g., $\langle c_{1D}; c_{1E}; i \rangle \neq \langle c_{1A}; c_{1C}; i \rangle$.

Given the pairing symmetry, T_c is obtained by solving the Bethe-Salpeter equation

$$\Delta^{ij}(K) = -\lambda \sum_{K'} \Delta^{m'n'}(K) G_{mm'}(K') G_{nn'}(-K') V^{ij}_{mn}(K, K').$$

(6)

Here $K = (k, i\omega_n)$ with $\omega_n = (2n + 1)\pi kT$ being the Matsubara frequency, the indices i and j are orbital-sublattice indices containing both orbital and site labels, and implicit summation over orbital indices $m, n, m', \text{ and } n'$ is taken. Δ is the pairing amplitude, λ is the eigenvalue, and V is the pairing interaction. $G_{mm'}$ is the Green’s function with orbital indices m, m' defined by

$$G_{mm'}(k, i\omega_n) = \sum_{\mu} \frac{A_{m\mu}(k) A_{m'\mu}^*(k)}{i\omega_n - \xi_{\mu}(k)}.$$

(7)

Here ξ_{μ} is the energy of the band μ. $A_{m\mu}$ is the transformation matrix that connects the orbital basis $\psi_{m\mu}(k)$ to the eigen-energy basis $\gamma_{\mu}(k)$ via the relation $\psi_{m\mu}(k) = \int d\omega \gamma_{\mu}(k, \omega) \phi_{\mu}(k, \omega)$.
The FS contours in the absence of superconductivity when 122-245 two layers couple together. Panels in the first row are for $t_{\perp}=0.05$; those in the middle are for $t_{\perp}=0.1$; those in the last are for $t_{\perp}=0.15$. While panels in the first column are for $U=0.5$, second for $U=1.0$, third for $U=1.5$, and fourth for $U=2.0$. Unit of the x-axis is k_x/π and that of the y-axis is k_y/π. Here dashed lines are the magnetic Brillouin zone boundaries and the AF order parameters are those obtained from the isolated 245 layer.

$$\sum_{\mu} A_{\mu\mu}(k) \gamma_\mu(k).$$

It is more convenient to work in the k-space by transforming Eq. (6) into band representation using the transformation matrix $A_{\mu\nu}$. We shall assume that pairing is among intra-band and decompose the interaction into different bases $g_a(k)$

$$V_{mn}^{ij}(k,k') = -\delta_{im}\delta_{jn} \sum_a V_{a}^{ij} g_a(k) g_a^*(k').$$

By multiplying both sides of Eq. (6) by $A_{\mu\nu}(-k)A_{\nu\mu}(k)$ and summing over i, j and then performing the Matsubara frequency summation, Eq. (3) is transformed into the representation in the band basis

$$\Delta_\mu(k) = 2 \sum a' \sum \epsilon' \leq \epsilon' J_a^{\epsilon\epsilon'} \epsilon_{\epsilon'} [g_a'(k) A_{\epsilon'\mu}(-k) A_{\epsilon'\mu}(k)] J_{a'}^{\epsilon'\epsilon'},$$

with $J_a^{\epsilon\epsilon'}$ being the order parameter satisfying a self-consistent equation

$$J_a^{\epsilon\epsilon'} = \lambda \sum a' \sum \epsilon' \leq \epsilon' V_{a'}^{\epsilon'\epsilon'} \chi_{a'}^{\epsilon'\epsilon'} J_{a'}^{\epsilon'\epsilon'}.$$

Here $\Delta_\mu(k) \equiv \sum_{\mu,\nu} A_{\mu\nu}(-k)A_{\nu\mu}(k)\Delta^{\mu\nu}(k)$ and $\chi_{a\epsilon\epsilon'}$ is given by

$$\chi_{a\epsilon\epsilon'} = \frac{2}{N} \sum_{k} \Re [g_a(k) A_{\epsilon\mu}(-k) A_{\epsilon\mu}(k)] \frac{\Im [g_a(k) A_{\epsilon'\mu}(-k) A_{\epsilon'\mu}(k)]}{\chi_\mu(k)}$$

with $\chi_\mu(k) = \tanh(\xi_\mu(k)/2kT)/2\xi_\mu(k)$. The SC state is found by solving eigenvalues and eigenvectors of the vertex \mathcal{V}_K in Eq. (10) with T_c being obtained when $\lambda = 1$.

In Fig. 5, we examine the SC gap functions near the FS's defined by

$$\Delta(k) = \sum_{\mu} \Delta_\mu(k) \Theta(\epsilon - |\mu_\mu(k)|).$$

Here ϵ is a small energy cutoff that restricts the gap function to be exhibited near FS. Three different t_{\perp}, 0.05, 0.10, and 0.15 at $U=1.5$ are shown for s-wave in the left column and d-wave in the right column. Clearly, one sees that as the interlayer hopping increases and the...
FIG. 5: (Color online) Gap functions $\Delta(k)$ of s-wave (left column) and of d-wave (right column) near FS’s at T_c. Three cases of t_\perp’s are compared: $t_\perp = 0.05$, $t_\perp = 0.10$, and $t_\perp = 0.15$. Other common parameters are $V_1 = 0.175$, $V_2 = 0.225$, and $U = 1.5$. The scale is arbitrary.

FIG. 6: (Color online) (a) Suppression of T_c versus t_\perp of s-wave for different U’s. Here $V_1 = 0.175$ and $V_2 = 0.25$. Note that T_c of d-wave has similar trend but the suppression is more severe. (b) Average moment that penetrates into the 122 layer in the normal state for different U and t_\perp. FS contours start to deform, the gap functions becomes more anisotropic and the condensation energy decreases. However, the characters of both s-wave and d-wave are clearly kept on the deformed FS as shown in Fig. 5 for $t_\perp = 0.15$, where zeros of $\Delta(k)$ are present for the d-wave on the central FS, but they do not exist for the s-wave. This symmetry property makes the d-wave more disadvantageous than the s-wave when two layers are strongly coupled. Hence d-wave is more sensitive to the interlay coupling than the s-wave. Note that since there is only an indirect correlation between particles with momentum k and $k + \mathbf{Q}$ via the 245 layer, $\Delta(k)$ does not have to be equal to $\Delta(k + \mathbf{Q})$.

We now examine effects of the interlayer hopping and the AF order on the SC transition. First, we note that similar to the situations in iron-pnictides, V_1 tends to favor the d-wave while V_2 favors the s-wave, and the phase boundary is at $V_1/V_2 \approx 0.78$. To be concrete, we shall set $V_1 = 0.175$ and $V_2 = 0.25$ and focus on T_c of the s-wave. Similar behavior is found for d-wave. Fig. 6(a) shows T_c of s-wave SC order versus t_\perp for different values of U. Clearly, for a given AF order (fixed by U), it is seen that T_c always gets suppressed by t_\perp. However, for fixed t_\perp, when U increases, the change of T_c is non-monotonic (due to non-monotonic Δ_{AF}) and T_c is only weakly suppressed at $U \sim 2$. Further analysis shown in Fig. 6(b) indicates that the penetrated AF order into the 122 layer has the inverse trend as that of T_c. These behaviors can be understood by examining FS structures. Comparison of Fig. 6(a) and Fig. 6(b) shows that the suppression of the SC order is due to the deformed FS structures induced by the interlayer hopping. The deformed FS structures generally frustrate the coupling of SC orders on FS’s and thus suppress the SC order. However, in the presence of strong AF order, the 245 layer is insulating with a gap. Since the coherence length ξ_{AF} of an AF phase is $\xi_{AF} \sim \frac{\hbar v_F}{2\Delta_{AF}}$ with v_F being the characteristic Fermi velocity, a large AF gap implies a short penetration depth of the AF order into the SC layer. Hence the induced deformation of FS structure is weak, which leads to weak suppression of superconductivity. Note that since the interlayer hopping between AF layer and SC layer suppresses T_c, these results imply that the pure SC phase has a higher T_c. If one takes $t_\perp = 0.15$ and $U = 2$ as a reasonable estimation of phase-separated ternary iron selenides, the real SC transition is around $65K$, which is comparable to highest observed T_c in the family of iron selenides. The suppression of T_c due to the interlayer hopping is also studied by Berg et al. for a one-band negative U model, in which it is shown that the leading order correction to the pairing susceptibility is negative and is proportional to t_\perp^2. As a result, in their model, T_c is suppressed by the order of t_\perp^2 for small t_\perp. The susceptibility suppression also happens in our case as one can see that in Eq. (11), t_\perp will change ξ_μ and $A_{\mu \nu}$ and thus values of K. However, due to multi-orbital nature of our model, the behavior of T_c at small t_\perp do not follow simple quadratic behavior. Only for weak suppression of...
T_c at large U shown in Fig. 6(a), we find that suppression of T_c is quadratic in t_\perp, in agreement with results found in Ref. 28.

Finally we examine effects of interlayer spin interaction H^\perp on superconductivity. For this purpose, we first note that H^\perp only characterizes single particle scattering in the 122 layer and 245 layer respectively. Hence the effective Hamiltonian for scatterings of Cooper pairs in the 122 layer must be second order in H^\perp. To the second order in the perturbation theory, scattering of two particles for particle-particle channel in the 122 layer is given by $T_\perp^{(2)} = H^\perp (E_0 - H_0) H^\perp$, where E_0 is the unperturbed ground state energy, $H_0 = H_{122} + H_{245}$, and $H_0 - E_0$ is the energy excitation for the intermediate state. During the scattering of two particles in the 122 layer, scatterings in the 245 layer are captured by the magnetic susceptibility with the major weight being in particle-hole excitations. Since the particle-hole excitation energy of an AF insulator is the sum of the energies for two quasi-particles above the AF gap, the change of energy for the intermediate state during scattering of Cooper pairs is at least $2\Delta_{AF}$. By neglecting dispersion of energy spectrum, we find $(E_0 - H_0)^{-1} \approx -(2\Delta_{AF})^{-1}$. Therefore, after taking average over d electrons of the 245 layer, the effective intra-orbital pairing Hamiltonian due to interlayer spin interaction is given by

$$\delta H_\Delta = V_J \sum_{i,\bar{d}=\bar{x},\bar{y},\bar{z}\pm\bar{y}} \sum_{r,\sigma} c^\dagger_{r,i+\bar{d},\sigma} c_{r,i,-\sigma} c_{r,i,-\sigma} c_{r,i+\bar{d},\sigma},$$

where the summation does not include E sites and $V_J = \frac{3J^2}{\Delta_{AF}}$. We note that it is a repulsive interaction for Cooper pairs and hence the interlayer interaction tends to suppress superconductivity. In Fig. 6 we examine changes of T_c for J_\perp = 0.01 in three different U’s with corresponding V_J being 0.0016, 0.0032, and 0.0001. It is seen that similar to effects of t_\perp, T_c gets suppressed but the suppression is non-monotonic and the variation of suppression is less than the suppression due to different U’s. In particular, similar to the suppression by t_\perp, a stronger AF phase gets less suppression in superconductivity. The mechanism behind the behavior of suppression of T_c is clearly due to the dependence of effective pairing strength V_J being inversely proportional to Δ_{AF}.

In addition to direct interlayer spin coupling, in real materials, J_\perp may arise from super-exchange interaction between the 122 and 245 layers. In that situation, J_\perp is proportional to $\frac{t_\perp^2}{T}$.

$$\mathrm{Fig.~7:~}(\mathrm{Color~online})~\text{Suppression of } s\text{-wave } T_c \text{ (}\Delta T_c/T_c\text{) versus } t_\perp \text{ for a given interlayer spin interaction } J_\perp \text{ under three different } U\text{'s in the 245 system. Here } V_1 = 0.175 \text{ and } V_2 = 0.25 \text{ are same as those adopted in Fig. 6. The interlayer spin coupling } J_\perp \text{ is 0.01 with the corresponding } V_J\text{'s for } U=1.0, 1.5, \text{ and } 2.0 \text{ cases being } 0.0016, 0.0032, \text{ and } 0.0001 \text{ respectively.}$$

IV. SUMMARY

In summary, we have found that the existence of large magnetic moment in the AF phase is the key reason of why the phase-separated ternary iron selenides can maintain a relative high T_c despite of the strong competition between SC and AF orders. Based on a minimal bilayer model with both the 122 and 245 phases, we show that proximity effects of the AF order on the SC order generally result in the deformation of FS due to the interlayer hopping and Cooper pair scatterings due to the interlayer spin interaction. It is shown that the deformed FS’s generally frustrate coupling of SC orders and result in the suppression of superconductivity. In addition, the interlayer spin coupling generates repulsive Cooper pair scattering and it also tends to suppress superconductivity. However, when the AF phase has a large AF order, it is insulating with a large gap and the penetration of the AF order into the SC layer is suppressed. As a result, the superconductivity is protected against interlayer hopping and interlayer spin coupling when Δ_{AF} is much larger than the interlayer hopping. While our results are consistent with experimental observations made so far, there are a number of experimental observations of 3D-like FS’s in the phase-separated region.16,17,29. To account for these experimental results, it would require a relatively large interlayer coupling. Since the interlayer hopping between AF and SC layers suppresses T_c, our results imply that 2D-like system may be more preferable for higher T_c. In fact, the real
SC phase in phase-separated ternary iron selenides may have a higher T_c up to 65K, which is in comparable to highest observed T_c in the family of iron selenides.10

Acknowledgments

We thank Prof. Ming-Che Chang for useful discussions. This work was supported by the National Science Council of Taiwan.

1 J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, Phys. Rev. B \textbf{82}, 180520(R) (2010).
2 A. F. Wang, J. J. Ying, Y. J. Yan, R. H. Liu, X. G. Luo, Z. Y. Li, X. F. Wang, M. Zhang, G. J. Ye, P. Cheng, Z. J. Xiang, and X. H. Chen, Phys. Rev. B \textbf{83}, 060512(R) (2011).
3 M. H. Fang, H. D. Wang, C. H. Dong, Z. J. Li, C. M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. \textbf{94}, 27009 (2011).
4 D. M. Wang, J. B. He, T.-L. Xia, and G. F. Chen, Phys. Rev. B \textbf{83}, 132502 (2011).
5 R. H. Liu, Europhys. Lett. \textbf{94}, 27008 (2011).
6 W. Bao, Q. Huang, G. F. Chen, M. A. Green, D. M. Wang, J. B. He, X. Q. Wang, and Y. Qiu, Chin. Phys. Lett. \textbf{28}, 086104 (2011).
7 Z. Wang, Y. J. Song, H. L. Shi, Z. W. Wang, Z. Chen, H. F. Tian, G. F. Chen, J. G. Guo, H. X. Yang, and J. Q. Li, Phys. Rev. B \textbf{83}, 140505(R) (2011).
8 F. Chen, M. Xu, Q. Q. Ge, Y. Zhang, Z. R. Ye, L. X. Yang, J. Jiang, B. P. Xie, R. C. Che, M. Zhang, A. F. Wang, X. H. Chen, D. W. Shen, J. P. Hu, and D. L. Feng, Phys. Rev. X \textbf{1}, 021020 (2011).
9 Y. Texier, J. Deisenhofer, Y. Tsurkan, A. Loidl, D. S. Inosov, G. Friemel, and J. Bobroff, Phys. Rev. Lett. \textbf{108}, 237002 (2012).
10 A. Charnukha, A. Cviklikov, T. Prokscha, D. Pröppler, N. Ocelic, A. Suter, Z. Salman, E. Morenzoni, J. Deisenhofer, V. Tsurkan, A. Loidl, B. Keimer, and A. V. Boris, Phys. Rev. Lett. \textbf{109}, 017003 (2012).
11 Z. Shermadini, H. Luetkens, R. Khasanov, A. Krzton-Maziopa, K. Conder, E. Pomjakushina, H.-H. Klauss, and A. Amato, Phys. Rev. B \textbf{85}, 100501(R) (2012).
12 Z. M. Stadnika, P. Wanga, J. Žukrowskib, H. D. Wang, C. H. Dong, M. H. Feng, J. Alloys Compd. \textbf{549}, 288 (2013).
13 W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J. P. Hu, X. Chen, and Q. K. Xue, Nat. Phys. \textbf{8}, 126 (2012).
14 W. Li, H. Ding, Z. Li, P. Deng, K. Chang, K. He, S. Ji, L. Wang, X. Ma, J. P. Hu, X. Chen, and Q. K. Xue, Phys. Rev. Lett. \textbf{109}, 057003 (2012).
15 T. Das and A. V. Balatsky, Phys. Rev. B \textbf{84}, 014521 (2011).
16 X.-W. Yan, M. Gao, Z.-Y. Lu, and T. Xiang, Phys. Rev. B \textbf{83}, 233205 (2011).
17 C. Cao and J. Dai, Phys. Rev. Lett. \textbf{107}, 056401 (2011).
18 W. Li, S. Dong, C. Fang, and J. P. Hu, Phys. Rev. B \textbf{85}, 100407(R) (2012).
19 D. Y. Liu, Y. M. Quan, Z. Zeng, and L. J. Zou, Physica B \textbf{407}, 1139 (2012).
20 S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, and A. V. Chubukov, Phys. Rev. Lett. \textbf{107}, 147002 (2011).
21 T. A. Maier, S. Graser, P. J. Hirschfeld, and D. J. Scalapino, Phys. Rev. B \textbf{83}, 100515(R) (2011).
22 Y. Zhou, D. H. Xu, F. C. Zhang, and W. Q. Chen, Europhys. Lett. \textbf{95}, 17003 (2011).
23 S. M. Huang and C. Y. Mou, Phys. Rev. B \textbf{84}, 184521 (2011).
24 Neutron scattering data can be found in, for example, M. Wang, C. Fang, D. X. Yao, G. T. Tan, L. W. Harriger, Y. Song, T. Netherton, C. Zhang, M. Wang, M. B. Stone, W. Tian, J. P. Hu, and P. Dai, Nat. Commun. \textbf{2}, 580 (2011); J. Zhao, D. T. Adroja, D. X. Yao, R. Bewley, S. Li, X. F. Wang, G. Wu, X. H. Chen, J. P. Hu, and P. Dai, Nat. Phys. \textbf{5}, 555 (2009); and J. Zhao, D. X. Yao, S. Li, T. Hong, Y. Chen, S. Chang, W. Ratcliff II, J. W. Lynn, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, E. W. Carlson, J. P. Hu, and P. Dai, Phys. Rev. Lett. \textbf{101}, 167203 (2008).
25 S. M. Huang and C. Y. Mou, Phys. Rev. B \textbf{85}, 184519 (2012).
26 H. M. Jiang, W. Q. Chen, Z. J. Yao, and F. C. Zhang, Phys. Rev. B \textbf{85}, 104506 (2012).
27 K. Seo, B. A. Bernevig, and J. P. Hu, Phys. Rev. Lett. \textbf{101}, 206404 (2008).
28 E. Berg, D. Orgad, and S. A. Kivelson, Phys. Rev. B \textbf{78}, 094509 (2008).
29 Z. H. Liu, P. Richard, N. Xu, G. Xu, Y. Li, X. C. Fang, L. L. Jia, G. F. Chen, D. M. Wang, J. B. He, T. Qian, J. P. Hu, H. Ding, and S. C. Wang, Phys. Rev. Lett. \textbf{109}, 037003 (2012).
30 Q. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Chin. Phys. Lett. \textbf{29}, 037402 (2012).