Development and Validation of Tramadol Hydrochloride in Bulk and Pharmaceutical Dosage form by Ultraviolet Spectroscopy

Meenu Chaudhary*
School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India.
*Corresponding author’s E-mail: ranakotinids@gmail.com

Received: 18-08-2021; Revised: 24-10-2021; Accepted: 30-10-2021; Published on: 15-11-2021.

ABSTRACT
A simple, rapid, accurate, precise and economic spectrophotometric technique for estimation of tramadol hydrochloride in 0.1N HCl have been developed. Tramadol Hydrochloride exhibit absorbance most 270nm when 0.1N HCl used as solvent proportion, so absorbance was once measured at the identical wavelengths for the determination of Tramadol Hydrochloride obeys Beer Lambert’s law in the concentration range of 20-180µg/ml. The present study describes development and validation of simple and economic UV spectrophotometric method for the estimation of Tramadol Hydrochloride in bulk and injection dosage form using absorbance maxima method. Solubility studies indicated that a Tramadol Hydrochloride shows better solubility in proposed diluents i.e., 0.1N HCl solution the λmax of Tramadol Hydrochloride was found to be 270nm. Because of cost effective and minimal maintenance, the present UV spectrophotometric methods can be preferred at small scale industries as compared to other reported methods.

Keywords: Validation, Tramadol Hydrochloride, injection, 0.1N HCl, UV spectrophotometric.

MATERIALS AND METHODS

Materials
Tramadol Active Pharmaceutical Ingredient was provided as gift tester by Windlass Biotech Dehradun Uttarakhand. Tramadol (Marketed formulation) is manufactured by Consen Pharma limited.

Instruments
The Ultra Violet-Spectroscopy were conceded out with a Cary 60Single Beam UV spectrometer manufacturer by Agilent Tech, Digital Weight Balance: TX323L, Shimadzu was used.

Preparation of Standard Stock Solution of Tramadol
Accurately weigh about 50mg of the drug and transferred to 50ml of volumetric flask and dissolved it in 50ml of 0.1N HCl. Then volume was made up to the mark with 0.1N HCl. The 10ml of previously set solution was diluted with 50ml of HCl. This standard solution contained 100µg of drug per ml.

Determination of wavelength of maximum absorbance (λ max)
1ml of standard stock solution was pipette out and transferred to a 10ml of volumetric flask. The volume was made up to the mark with 0.1N HCl. The solution contained 100µg/ml of the drug. Then 1ml of the solution is taken in a 10ml volumetric flask was added to it then volume was made up to the mark with 0.1N HCl. This solution contain 10µg/ml of the drug. The absorbance of this solution was scanned in the range of 200-400nm against 0.1N HCl as a blank.
The absorbance of the Tramadol Hydrochloride in 0.1 N HCl by UV Spectrophotometric method.

Preparation of calibration curve for Tramadol at 270nm

1,2,3,4,5,6,7 and 8ml standard stock solution (200μg/ml) were pipette out into a series of 10ml volumetric flask. Then the volumes were made up to the mark with 0.1N HCl and mixed to obtain the solutions in the concentration range of 20, 40, 60, 80, 100, 120, 140, 160μg/ml of drug.

The absorbance of these resultant solutions were measured at 270nm against 0.1N HCl as a blank and graph was plotted between absorbance obtained and the concentration of the solution. (Table 1).

Table 1: Linearity, Range, E 1% 1CM, Absorptivity (L gm⁻¹ cm⁻¹), and Molar Absorptivity (L mol⁻¹ cm⁻¹)

Concentration (μg/ml)	Absorption	Mean	E1%	Absorptivity	Molar Absorptivity		
	A1	A2	A3				
0	0	0	0	0			
20	0.1152	0.1151	0.1151	0.1151	57.55	5.755	1515.867
40	0.2340	0.2340	0.2362	0.2340	58.5	5.85	1540.89
60	0.3545	0.3546	0.3548	0.3546	59.1	5.91	1556.694
80	0.4718	0.4718	0.4716	0.4718	58.97	5.897	1553.2698
100	0.5862	0.5861	0.5863	0.5861	58.61	5.86	1543.7874
120	0.7036	0.7038	0.7028	0.7032	58.6	5.86	1543.524
140	0.8081	0.8074	0.8076	0.8077	57.69	5.769	1519.5546
160	0.9241	0.9246	0.9254	0.9247	57.79	5.779	1522.1886
180	1.0299	1.0298	1.0296	1.0297	57.42	5.742	1512.4428

Repeatability

Pipetted out 1ml of standard solution shifted into a series of nine 10ml analytical flask and diluted with 0.1N HCl to get the concentration of 20μg/ml. Optical density of the resultant solutions was dignified at 270nm 0.1N HCl used as a blank and graph was plotted between absorbance obtained and the concentration of the solution. (Table 2).

Table 2: Study of Repeatability

Nominal Con μg/ml	Absorbance	Observed Con(μg/ml)	Mean Con μg/ml	SD	%RSD
20	0.1111	17.2	17.2	0.00293	0.01704
20	0.1157	18.1	17.2	0.00293	0.01704
20	0.1096	17.0	17.2	0.00293	0.01704
20	0.1115	17.2	17.2	0.00293	0.01704
20	0.1067	16.4	17.2	0.00293	0.01704
20	0.1113	17.2	17.2	0.00293	0.01704
Accuracy
The accuracy was assessed by the standard addition method of three replicate determinations of three different solutions containing 80,100,120 µg/ml of Tramadol Hydrochloride. The average % recoveries for three different concentrations was found to be 99.79 using proposed UV spectrophotometric method. The higher values indicated that the proposed UV spectrophotometric method was accurate for the determination of Tramadol Hydrochloride in pharmaceutical dosage form. Results of recovery studies are summarized in (Table 3).

Recovery	Nominal Conc. (µg/ml)	Absorbance	Observed conc. (µg/ml)	% Recovery
80%	90=50+40	0.5043	89.9	99.89
80%	90=50+40	0.5203	89.9	99.89
80%	90=50+40	0.5248	90.0	100.00
100%	100=50+50	0.6096	99.8	99.80
100%	100=50+50	0.5866	99.9	99.90
100%	100=50+50	0.5868	99.9	99.90
120%	110=50+60	0.6450	109.4	99.45
120%	110=50+60	0.6523	109.6	99.64
120%	110=50+60	0.6449	109.9	99.91
Mean				99.82

Table 3: Accuracy

Specificity
Specificity study was carried out by observing any interference in absorbance of drug in the existence of conjoint excipients like Starch, Talc, Lactose, Magnesium Stearate etc. Absorbance of 100 µg/ml drug solution with and without excipients was measured at 270nm. The results obtained were summarized in the (Table 4).

Nominal con(µg/ml)	Without Excipients	With Excipients	% Interference		
	Absorbance	Observed Conc. (µg/ml)	Absorbance	Observed Conc. (µg/ml)	% Interference
100	0.5856	101.1	0.5567	96.2	0.95
100	0.5822	100.5	0.5795	100.2	1.00
100	0.5814	100.6	0.5721	98.7	0.98
100	0.5601	96.6	0.5563	96.1	0.99
100	0.5613	96.8	0.5716	98.6	1.02
Mean				0.987811	

% Assay of Tramadol injection two different brands
The injection were in liquid and amount of liquid containing 2ml of Tramadol was transferred into 100ml of volumetric flasks and make up the volume up to the mark with 0.1N HCl. The absorbance of this resultant solution was estimated at 270nm.

Sr. No	Absorbance	Conc.(µg/ml)	Dil. Factor	Content (ml)	Label claim(ml)	%Assay
1	0.6059	104.8	100	97.9	100	97.9
2	0.6053	103.6	100	98.7	100	98.7
3	0.6062	105.7	100	97.9	100	97.9
Mean						98.16
Table 6: Brand B (Supridol IV) Neon laboratories LTD

Sr. No	Absorbance	Conc. (µg/ml)	Dil. Factor	Content (ml)	Label claim (ml)	% Assay
1	0.5470	94.4	100	101.10	100	101.1
2	0.5466	94.6	100	101.90	100	101.9
3	0.5479	94.5	100	102.60	100	102.6
Mean						101.86

CONCLUSION

A simple UV spectrophotometric method have been developed and validated for the determination of Tramadol Hydrochloride in bulk, tablet and injection dosage form. The results of the validation parameters show that the UV spectrophotometric methods were found to be accurate, precise and sensitive. Because of cost-effective and minimal maintenance, the present UV spectrophotometric methods can be preferred at small scale industries and successfully applied and suggested for the quantitative analysis of Tramadol Hydrochloride in pharmaceutical formulations for QC, where economy and time are essential and to assure therapeutic efficacy.

REFERENCES

1. Upadhyay D.K, Palaian. S: A review on Tramadol in the J of Institute of Medicine, December 2006; 10: 225-239.
2. Narayan. S: Simultaneous analysis of Paracetamol and Tramadol- Analytical method development & Validation. Der Pharma Chemica. January 2009; 8: 448-452.
3. Chaudhari S.P: Development and validation of UV spectrophotometric method for simultaneous estimation of Tramadol hydrochloride and Quercetin in niosomes formulation in J Scholar Research Library 2015; 7: 205-210.
4. Purank M: A review on Development and Validation of spectrophotometric methods for simultaneous estimation of tramadol hydrochloride and chlorzoxazone in tablet dosage form Indian J of pharmaceutical sciences 2006; 68: 737-739.
5. Sayed M: A review on Development of UV Spectrophotometric methods and validation for estimation of tramadol hydrochloride in bulk and tablet dosage form by absorbance maxima and area under the curve method J App Pharm April 2014;6: 210-216.
6. Sagarbechara, Padmavathi P. Prabhu: A review on Development of New Analytical Method and Its Validation for the Determination of Tramadol Hydrochloride in Bulk and Marketed Formulations in Asian J of Biomedical and Pharmaceutical Sciences 2013; 3: 53-56.
7. Chandra P, Rathore Atul Singh: Application of HPLC for the Simultaneous Determination of Aceclofenac, Paracetamol and Tramadol Hydrochloride in Pharmaceutical Dosage Form J Sci Pharm.2012; 8: 116-124.
8. Singh. K: A review on Method Development and Validation of Tramadol Hydrochloride by RP-HPLC Method in international journal of pharmacy and pharmaceutical researches 2017;10: 274-284.
9. Shyamalambica. P: Review on Development and Validation of RP-HPLC Method for Estimation of Tramadol Hydrochloride and Paracetamol in Pharmaceutical Formulation J International Journal of Engineering Research & Technology 2017;06: 2278-0181.
10. S Donda. T, Baviskar V.B: Development and Validation of RP-HPLC of tramadol hydrochloride and dicyclomine in bulk and pharmaceutical formulation in the J of the Chilean chemical society 2016;61: 0171-9797.
11. Desirreddy R.B, kumar P jieterdra : Development and Validation of RP-HPLC method for quarantine analysis of tramadol in pure and pharmaceutical formulations in Int. J. Chem. Science 2012;volume 10: 2039-2047.
12. Kachave R N, Prajna C Kasi Krishna: Bioanalytical Method Development and Validation for Simultaneous Determination of Paracetamol, Tramadol HCL, Domperidone Tablet Formulation by RP-HPLC: Its Pharmacokinetic Applications J Research and Review Pharmaceutical Analysis. 2018; volume 10: 2320-0812.
13. Desai P, Captain A: Development and Validation of HPTLC Method for Estimation of Tramadol HCl in Bulk and in Capsule Dosage Form in International J of PharmTech Research 2012;3: 2161-2165.
14. Tambe VS, Deodhar M.N: A review on LC and LC-MS study for simultaneous determination of tramadol hydrochloride and keterolac tromethamine in bulk and formulation with their major degradation products 2016;54: 87-97.
15. Tanaka H: Validated determination method of tramadol and its desmethylates in human plasma using an isocratic LC-MS/MS and its clinical application to patients with cancer pain or non-cancer pain in journal of Pharmaceutical health care and sciences 2016;volume 25: 50-65.

Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: editor@globalresearchonline.net

New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_iipsr@rediffmail.com

International Journal of Pharmaceutical Sciences Review and Research
Available online at www.globalresearchonline.net

©Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited.