On First Integrals for Holomorphic Vector Fields

Jonny Ardila

1 Introduction.

One of the key stones in the theory of holomorphic foliations is the article [8], where is presented the following important result about the existence of holomorphic first integrals.

Theorem. Let F be a germ in $0 \in \mathbb{C}^2$ of holomorphic foliation of codimension 1. Suppose that:

1. $\text{Sing}(F) = \{0\}$.
2. There are only finite separatrices S_k.
3. The leaves that do not accumulate in 0 are close.

Then, exist V a neighborhood of 0, such that $F|_V$ has a holomorphic first integral.

Years latter in [9], one of their authors revisited this result in order to create a new proof, a simpler and more geometric one.

The present work is motivated by that demonstration and is divided in two parts:

In the first part, we adapt the technique used in [9] to a vector fields in \mathbb{C}^3 under the conditions exposed in [2] giving a new proof for the existence theorem presented there:

Theorem I. Suppose that $X \in \text{Gen}(\mathfrak{X}(\mathbb{C}^n, 0))$ satisfies condition (\star) and let S_X be the axis associated to the separable eigenvalue of X. Then, $F(X)$ has a holomorphic first integral if and only if, the leaves of $F(X)$ are closed off $\text{sing}(F(X))$ and transversely stable with respect to S_X.

In the second part, we return to dimension 2 and modified the proof in [9] obtaining:

Theorem II. Let F be a holomorphic Morse type foliation of codimension 1 in a neighborhood U of $B^4 \subset \mathbb{C}^2$. Suppose that:

1. $\text{Sing}(F) = \{0\}$.
2. There are only finite separatrices.
3. The leaves that not accumulated in 0 are close in U.

Then, $F|_B$ has a holomorphic first integral.
that solves in some how a limitation that \cite{9} has, as the author himself comments in it:

"Cette preuve(ou encore la conclusion du théorème) n’est pas entièrement satisfaisante. En effet, nous n’avons montré l’existence d’une intégrale première \(p_\alpha \) que sur un voisinage \(V \) des séparatrices strictement contenu dans la boule \(B \). Notre méthode, l’étude de l’espace des feuilles \(V/\mathcal{F}_V \) nécessite la transversalité des feuilles de \(\mathcal{F}_V \) à la sphère a \(B \). Elle ne permet pas d’étendre \(p_\alpha \) en une intégrale première sur \(B \)."

Throughout this work we identify \(\mathbb{C}^n \) with \(\mathbb{R}^{2n} \) (together with the euclidean norm \(\| \| \)) and use the notation:

- \(B_m^r \) for the open ball in 0 of radius \(r \) in \(\mathbb{R}^m \), \(\partial B_m^r \) the sphere of radius \(r \) and \(B_m^r \) the closure of \(B_m^r \).
- \(\mathcal{F}_r \), \(\partial \mathcal{F}_r \) and \(\mathcal{F}_r \) for the foliations induced by \(\mathcal{F} \) in \(B_m^r \), \(\partial B_m^r \) and \(B_m^r \) respectively.

We will omit \(m \) and \(r \), if \(m = 2n \) and \(r \) does not play a relevant role.

2 Generic Vector Fields in dimension 3.

This section is dedicated to prove Theorem 1 but, is necessary to introduce first some definitions and notation.

Denote the ring of germs of holomorphic functions on \((\mathbb{C}^n, 0) \) by \(\mathcal{O}_n \), the ring of formal series on \((\mathbb{C}^n, 0) \) by \(\hat{\mathcal{O}}_n \), the group of formal diffeomorphisms of \((\mathbb{C}^n, 0) \) by \(\hat{\text{Diff}}(\mathbb{C}^n, 0) \) and \(\text{Diff}(\mathbb{C}^n, 0) \) the subgroup of analytic diffeomorphisms (or just diffeomorphisms) of \(\hat{\text{Diff}}(\mathbb{C}^n, 0) \). Given a germ of a holomorphic vector field \(\mathcal{X} \in \mathfrak{X}(\mathbb{C}^n, 0) \) we shall denote by \(\mathcal{F}(\mathcal{X}) \) the germ of a one-dimensional holomorphic foliation on \((\mathbb{C}^n, 0) \) induced by \(\mathcal{X} \).

Definition 1. We shall say that \(\mathcal{F}(\mathcal{X}) \) is non-degenerate generic if \(d\mathcal{X}(0) \) is non-singular, diagonalizable, and after some suitable change of coordinates \(\mathcal{X} \) leaves invariant the coordinate planes. Denote the set of germs of non-degenerate generic vector fields on \((\mathbb{C}^n, 0) \) by \(\text{Gen}(\mathfrak{X}(\mathbb{C}^n, 0)) \).

Definition 2. We say that a germ of a holomorphic foliation \(\mathcal{F}(\mathcal{X}) \) has a holomorphic first integral, if there is a germ of a holomorphic map \(F : (\mathbb{C}^n, 0) \to (\mathbb{C}^{n-1}, 0) \) such that:

(a) \(F \) is a submersion off some proper analytic subset. Equivalently if we write \(F = (f_1, \ldots, f_{n-1}) \) in coordinate functions, then the \((n-1) \)-form \(df_1 \wedge \cdots \wedge df_{n-1} \) is non-identically zero.

(b) The leaves of \(\mathcal{F}(\mathcal{X}) \) are contained in level curves of \(F \).

Further, a germ \(f \) of a meromorphic function at the origin \(0 \in \mathbb{C}^n \) is called \(\mathcal{F}(\mathcal{X}) \)-invariant if the leaves of \(\mathcal{F}(\mathcal{X}) \) are contained in the level sets of \(f \). This can be precisely stated in terms of representatives for \(\mathcal{F}(\mathcal{X}) \) and \(f \), but can also be written as \(i_\mathcal{X}(df) = \mathcal{X}(f) \equiv 0 \).
Definition 3 (condition (⋆)). Let \mathcal{X} be a germ of a holomorphic vector field at the origin such that the origin $0 \in \mathbb{C}^m, m \geq 3$ is a nondegenerate singularity of \mathcal{X} (i.e. $d\mathcal{X}(0)$ is non-singular). We say that \mathcal{X} satisfies condition (⋆) if there is a real line $L \subset \mathbb{C}$ through the origin, separating a certain eigenvalue λ from the others.

2.1 Proof of Theorem I.

The proof is divided in two parts:
A. Construction a neighborhood V of the origin.
B. Study of the quotient space V/F_V.

Lemma A. There exists open sets V, U with $V \subset U \subset \overline{B}$ such that, V is a neighborhood \mathcal{F}-invariant of S (the union of separatrices), and the leaves in V cut ∂U transversally.

Let’s set $V^* = V \setminus S$, F_{V^*} the foliation induced by \mathcal{F} in V^*, V^*/F_{V^*} the quotient space and q_{V^*} the quotient map ($q_{V^*} : V^* \rightarrow V^*/F_{V^*}$).

Lemma B. Exist a homeomorphic map $h : V^*/F_{V^*} \rightarrow B^*$, such that $h \circ q_{V^*} = p_{V^*}$ is a submersion.

Proof of Theorem I. Therefore, p_{V^*} is holomorphic and bounded in V^*, and S is an analytic set that do not disconnect V (see [5]) then, p_{V^*} extents as a holomorphic first integral in V.

2.2 Proof of the Lemmas.

First of all, fix a small enough ball $B = B_2^n$ centered in $0 \in \mathbb{C}^n (\cong \mathbb{R}^{2n})$.

Though we only need the transversality of the coordinate axes with the sphere, remember that we are working with germs of vector fields and we have this property after a coordinate change so, what we mean with small enough is that is contained in a neighborhood of the origin where the germ is defined and has this property.

Proof of Lemma A. The proof is divided in the following affirmations:

Affirmation 4. If L is a leaf of \mathcal{F} transverse to ∂B. Then, it exist a fundamental systems of neighborhoods \mathcal{F}-invariant of L in \overline{B}.

-If L is transverse to ∂B using the fact that leaves in \mathcal{F} are compact and closed off the origin then, the holonomy of L is finite. We can use Reeb’s Theorem in $(\partial S_X, \partial \mathcal{F})$ showing the affirmation.

Remark 5. Is important to observe that this affirmation is actually true for any open set $U \subset B$.

Now, we have that the curve $S_X \cap \partial B$ posses a neighborhood where $\partial \mathcal{F}$ is a transversally holomorphic foliation without singularities. $S_X \cap \partial B$ is compact and, using the Lemma 2 in [2] (is here where we need the transversely stable hypothesis of the leaves respect to S_X), its holonomy is periodic then, applying Reeb’s in $(\partial S_X, \partial \mathcal{F})$ we have:
Affirmation 6. The leaf ∂S_X of ∂F possesses a tubular neighborhood $T_1(\epsilon)$ in ∂B

$$J_1 : B^{2n-2}_\epsilon \times S^1 \to T_1(\epsilon),$$

such that $J_1^{-1}(\partial F)$ is the suspension of a periodic diffeomorphism in B^{2n-2}_ϵ.

$T_1(\epsilon)$ is ∂F-invariant and $T_1(\epsilon') = J_1(B^{2n-2}_\epsilon \times S^1)$ with $0 < \epsilon' < \epsilon$ forms a fundamental system of neighborhoods of ∂S_X in ∂B. In addition $T_1(\epsilon)$ is transverse to F.

Next, remember that the vector fields in $\text{Gen}(X(\mathbb{C}^n, 0))$ satisfying condition (\star) and having a holomorphic first integral can be written as:

$$X(x) = \sum_{i=1}^{n-1} k_i x_i (1 + a_i(x)) \frac{\partial}{\partial x_i} - k_n x_n (1 + a_n(x)) \frac{\partial}{\partial x_n},$$

where $k_1, \ldots, k_n \in \mathbb{Z}^+$, in this case S_X is the x_n axis. Now taking $x_n = 0$ we have that $X_0(x) = X(x_1, \ldots, x_{n-1}, 0)$ is a hyperbolic vector field (i.e., $k_j > 1$ for all j) in Poincaré’s domain then is smoothly linearizable. In order to see the hyperbolicity, suppose that $k_1 = 1$ and $k_2 > 1$ then in the plane $\{x_1, x_2\}$ restricted to the sphere we have that only one leaf is closed and the others are open spiraling to it (see [1] Cap. 3) in contradiction to our hypothesis. Also, we are omitting the tangent to the identity case using that generically X has n different eigenvalues. Consider the linear vector field,

$$j^1X_0(x) = k_1 x_1 \frac{\partial}{\partial x_1} + \cdots + k_{n-1} x_{n-1} \frac{\partial}{\partial x_{n-1}},$$

we are interested in the transversality of this vector field with the sphere of radius δ in $\{x_n = 0\}$, in order to see this we calculate the tangent points of the field with it i.e., the solutions of the following equation where $\langle \cdot \rangle$ is the Hermitian product:

$$\langle j^1X_0(x), x \rangle = k_1 |x_1|^2 + \cdots + k_{n-1} |x_{n-1}|^2 = 0.$$

Hence this vector field is always transverse to the spheres, if φ is the biholomorphism that conjugates X_0 with is linear part, i.e., $X_0 = \varphi^* (j^1X_0)$, we can take the inverse image of a ball B^{2n-2}_δ in the complex hyperplane $\{x_n = 0\}$ and, the fact that the vector field j^1X_0 is transverse to this ball guarantee us that X_0 is
transverse to \(\varphi^{-1}(\partial B_3^{2n-2}) \). Define now the following open set which is a solid cylinder intercepted with \(B \),

\[
U = B \cap \{ x \in \mathbb{C}^n \mid (x_1, \ldots, x_{n-1}, 0) \in \varphi^{-1}(B_3^{2n-2}) \}.
\]

Now, for each leaf in \(F \cap \varphi^{-1}(\partial B_3^{2n-2}) \) we can apply the Affirmation 6 and obtain a neighborhood similar to \(T_1(\epsilon) \) (in the sense that the holonomy is finite but we cannot guarantee its periodicity) and the compactness of \(\varphi^{-1}(\partial B_3^{2n-2}) \) allows to take a finite covering of it formed by a finite union of those neighborhoods, we note this covering by \(T_2(\epsilon) \).

Affirmation 7. It exist \(0 < \epsilon' < \epsilon \) such that the intersection of \(\partial U \) with the \(F \)-saturated \(V(\epsilon') \) of \(T_1(\epsilon') \) is contained in \(T(\epsilon) = T_1(\epsilon) \cup T_2(\epsilon) \).

- By contradiction, take a sequence \(\{a_k\}_k \) of points in \(T_1(\epsilon) \) such that \(a_k \to a \in \partial S_X \) and satisfying \(L_{a_k} \cap \partial U \not\subset T(\epsilon) \) where \(L_{a_k} \) is the leaf in \(F \) passing by \(a_k \). Take \(b_k \) a point in \((L_{a_k} \cap \partial U) \setminus T(\epsilon) \), then \(\{b_k\}_k \) is a sequence in a compact thus \(b_k \to b \) (using the same notation for a subsequence), if \(L_b \) is transverse to \(\partial U \) then, by Affirmation 4 it exist a saturated neighborhood of \(L_b \) by transverse leaves to \(U \) then, it does not contain separatrices meaning that \(L_b \) is far from \(S_1 \), contradiction. If \(L_b \) is not transverse to \(\partial U \) we can take small \(U \) and apply Affirmation 4 again, a contradiction.

Remark 8. In the previous affirmation (Aff. 7) we are using implicitly that the only separatrices are \(S_X \) and the ones contained in \(\{x_n = 0\} \). This is easy to see by taking the vector field in the form \(\epsilon \) and supposing that there exits a integral curve \(c(T) = (x_1(T), \ldots, x_n(T)) \) such that \(c(T) \to 0 \) if \(|T| \to \infty \). Without lost of generality take real time \(t \) and \(\lambda_n = -1 \), in this case the condition \((*)\) implies that \(\text{Re}(\lambda_i) > 0 \) for \(i = 1, \ldots, n-1 \), and this can be used to show that the equations in \(\mathcal{A}(c(t)) = c'(t), \) i.e., \(x'_i(t) = \lambda_i x_i(t)(1 + a_i(c(t))) \), can not go to 0 simultaneously.

Affirmation 9. It exist \(0 < \epsilon_1 < \epsilon' \) such that \(V(\epsilon_1) = V \), the \(F \)-saturated of \(T_1(\epsilon_1) \), is a neighborhood of \(0 \) in \(U \).

- The pseudo-group of holonomy is generated by an enumerable set of biholomorphisms with finitely many non trivial fixed points. The set of leaves of \(F \) with non-trivial holonomy is meager (see [4] proposition 2.7, pag. 96) so we can choose \(\epsilon_1 \) such that \(0 < \epsilon_1 < \epsilon' \) and the leaves cutting \(J_1(\partial B_3^{2n-2} \times 1) = C_{\epsilon_1} \) have trivial holonomy. Again, the compactness of the leaves allows to apply Reeb stability theorem. For all \(a \in C_{\epsilon_1} \) the leaf \(L_a \) in \(F \) through \(a \) possess a \(F \)-saturated tubular neighborhood (see Fig. 2):

\[
J_a : \tau_a \times L_a \to T(L_a),
\]

such that \(J_a^{-1}(F) \) is foliated by fibers \(z \times L_a \), where \(\tau_a \) is a small curve transverse to \(F \) through \(a \) contained in \(T_1(\epsilon) \). In particular the \(F \)-saturated of \(\nu_a = \tau_a \cap C_{\epsilon_1} \) is \(C^\infty \)-diffeomorphic to the product \(\nu_a \times L_a \) and the saturated of \(C_{\epsilon_1} \) is a \(C^\infty \)-hypersurface (whose boundary is contained in \(\partial U \) fibered over \(S^1 \). By construction, is the boundary of \(V = V(\epsilon_1) \) the \(F \)-saturated of \(T_1(\epsilon_1) \).

Proof of Lemma 2 We are going show that \(\tilde{\Delta} = V^*/FV^* \) and \((B_3^{2n-2})* \) (the punctured ball) are biholomorphic. Note that \(V^* \) is the saturation of \(T^*_1(\epsilon_1) = T_1(\epsilon_1) \setminus \partial S_X \) which is the same that the saturation of \(J_1(\mathbb{D}_{\epsilon_1} \times \{1\}) =: \Delta^*_1 \), and,
\[\Delta_{\epsilon_1}^* \text{ is transverse to } \mathcal{F}_{V^\ast} \text{ and biholomorphic to } (B^{2n-2})^* \text{ by a biholomorphism } \Phi : \Delta_{\epsilon_1}^* \to (B^{2n-2})^* \text{ that conjugates the action of a diagonal diffeomorphism } G \text{ centered in } 0 \in \mathbb{C}^n \text{ and the periodic holonomy } H \text{ in } \Delta_{\epsilon_1}^*. \]

\[\begin{array}{ccc}
\Delta_{\epsilon_1}^* & \xrightarrow{\Phi} & (B^{2n-2})^* \\
\downarrow q & & \downarrow q \\
\Delta & \xrightarrow{\Psi} & (B^{2n-2})^*/G
\end{array} \]

The action of the groups \(H \) and \(G \), in their respective spaces, is free and proper then, the quotient spaces \(\Delta \) and \((B^{2n-2})^*/G\) are manifolds with a unique smooth structure such that \(q \) is a smooth submersion (see [7] Chap. 21), and they are biholomorphic too by a biholomorphism \(\Psi \). We also know that \(q : (B^{2n-2})^* \to (B^{2n-2})^*/G \) is a finite covering now, remember that the holonomy \(H \) is periodic then \(G \) is also periodic and suppose that \(G(x_1, \ldots, x_{n-1}) = (\lambda_1 x_1, \ldots, \lambda_{n-1} x_{n-1}) \) where \(\lambda_j = e^{\alpha_j i} \) with \(\alpha_j \in [0, 2\pi) \) and \(j = 1, \ldots, n-1 \), and define

\[S(\alpha_j) = \{ x \in \mathbb{C}^n \mid 0 \leq \arg(x_j) < \alpha_j \text{ and } x_k = 0, \text{ for } k \neq j \}. \]

Thus the map

\[\begin{array}{ccc}
S(\alpha) & \xrightarrow{q} & \mathbb{D}^*/G
\end{array} \]

Figure 3: \(S(\alpha) \) in dimension 2.
\[q : (B^{2n-2})^* \cap S(\alpha_1) \times \cdots \times S(\alpha_{n-1}) \to (B^{2n-2})^*/G \]

is bijective, hence \((B^{2n-2})^*/G \) is biholomorphic to \((B^{2n-2})^* \cap S(\alpha_1) \times \cdots \times S(\alpha_{n-1}) \) which is biholomorphic to \((B^{2n-2})^* \). Therefore, it exist a biholomorphism \(h : \tilde{\Delta} \to (B^{2n-2})^* \) as we wanted and \(h \circ q \) is a submersion due to the smooth structure we are considering in \(\tilde{\Delta} \).

3 Vector Fields in dimension 2.

In this part, we make a small modification to the technique used in [9] (but, we preserve the same philosophy) and, that allow us to obtain an interesting result (Theorem II). The difference between our result and the one in [9] is that we managed to get a holomorphic first integral defined in the whole ball.

Something important is that here we need a small sphere \(B \). Also, in what follows \(M \) will always mean the variety of contacts restricted to \(B \).

Let \(B^* \) notes \(B \) without the union of the separatrices, \(F_{B^*} \) the foliation induced by \(F \) in \(B^* \), \(B^*/F_{B^*} \) the quotient space and \(q_{B^*} \) the quotient map \((q_{B^*} : B^* \to B^*/F_{B^*}) \). The Theorem II is consequence of the following lemma which is the analogous of Lemma B,

Lemma B’. Exist a continuous map

\[h : B^*/F_{B^*} \to \mathbb{D}^* \]

such that \(h \circ q_{B^*} = p_{B^*} \) is holomorphic.

Proof of Theorem II. Therefore, \(p_{B^*} \) is holomorphic and bounded in \(B^* \), and the union of the separatrices is an analytic set that does not disconnect \(B \) then, \(p_{B^*} \) extents as a holomorphic first integral in \(B \).

We need the following definitions and results taken from [4]:

Definition 10. The foliation \(F \) of \(X \) is of Morse type if the singularities of \(r_X(x) = -\langle X(x), x \rangle X(x) \) on each leaf are nondegenerate. \(X \) is of Morse type if \(F \) is.

Theorem 11. Let \(X \) be a holomorphic vector field in \(U \) with a unique zero at 0. If \(X \) is a field of Morse type, then either we have \(M = \{0\} \) or \(M \setminus \{0\} \) is a smooth manifold of real codimension two. In the latter case, each connected component of \(M \setminus \{0\} \) consists entirely of either minimal points in the leaves or saddle points. The foliation \(F \) (defined by \(X \)) is transversal to \(M \setminus \{0\} \) (and therefore \(M \setminus \{0\} \) can be given a complex structure).

Proposition 12. Let \(\text{sat}(M) \) be the saturation of \(M \) in \(B \) and let \(S = B \setminus \text{sat}(M) \). Then the \(\omega \)-limit set of \(r_X(x) \) restricted to \(S \) consists of \(\{0\} \) alone. For each \(x \in \text{sat}(M) \), its \(\omega \)-limit set consists of a single point, which is in \(M \).
Theorem 13. The radial flow $r_{\mathcal{X}}$ endows S with the structure of a foliated cone, with base $S \cap \partial B_{r}$ foliated by $\mathcal{F} \cap \partial B_{r}$ and (deleted) top at 0. Every leaf of \mathcal{F} contained in S is an immersed copy of \mathbb{R}^2 or $S^1 \times \mathbb{R}$, depending on whether it intersects ∂B_{r} in a line or in a circle (i.e., a closed orbit). Each closed orbit in S corresponds to a separatrix of \mathcal{F}.

Proof of Lemma $[\mathcal{L}]$. First, if $M = \{0\}$ this means that \mathcal{X} is transverse to the spheres ∂B_{r} then, by $[\mathcal{L}]$, it exhibits only one singularity at $0 \in B$ which is accumulated by each orbit of \mathcal{X} (in addition it belongs to the Poincaré domain), which contradicts the finite many separatrices hypothesis. Therefore $M \neq \{0\}$ and we are in the second case of Theorem $[\mathcal{T}]$.

The proof is an adaptation of the proof of Lemma 2 in $[\mathcal{G}]$ to our case.

We are going to endow $\tilde{\Delta} = B^*/\mathcal{F}_{B^*}$ (the leaves space) with a Riemannian surface structure and show that each connected component of $\tilde{\Delta}$ is biholomorphic to a closed punctured disk. Note first that $\tilde{\Delta}$ is Hausdorff, with the quotient topology $q_{B^*} : B^* \to B^*/\mathcal{F}_{B^*}$ (just take two different leaves and apply local stability). Note also that Proposition $[\mathcal{P}]$ and Theorems $[\mathcal{T}]$ and $[\mathcal{T}]$ implies that, S is the union of the separatrices and B^* is the saturation of $M^* = M \setminus \{0\}$ which is transverse to \mathcal{F}_{B^*} and diffeomorphic to the cone with base $M \cap \partial B$ and deleted top $\{0\}$. With this in mind we can identify

$$B^*/\mathcal{F}_{B^*} = q_{B^*}(B^*) = q_{B^*}(M^*)$$

$$\tilde{\Delta} := q(M^*).$$

Suppose that the finite many connected components of M are M_1, \ldots, M_k and sat(M) = sat($M_1 \cup \cdots \cup M_k$) with $r \leq k$, consider $\tilde{\Delta}_1$ a connected component of $\tilde{\Delta}$ and suppose that $q^{-1}(\tilde{\Delta}_1) = M_1^* \cup \cdots \cup M_k^*$ with $s \leq r$. Let $a \in q^{-1}(\tilde{\Delta}_1)$ and L_a be the leaf in \mathcal{F}_{B^*} passing by a. Observe that L_a is compact and with finite holonomy. This holonomy is a subgroup of the group of rotations centered at $0 \in \mathbb{C}$, and is isomorphic to $\mathbb{Z}/n(a)\mathbb{Z}$, with $n(a) \in \mathbb{Z}$. Applying Reeb’s to (L_a, \mathcal{F}_{B^*}) we find a neighborhood \mathcal{F}_{B^*}-invariant of L_a that can be thought as the \mathcal{F}_{B^*}-saturated of Δ_a, a neighborhood of a in M, where Δ_a is biholomorphic to \mathbb{D}_1 (in \mathbb{D}_1 we consider the induced topology), the former neighborhood is biholomorphically conjugated to $\mathbb{D}_1 \times L_a$, having a first integral $z \to z^{n(a)}$.

Therefore, there exist a biholomorphism $\varphi_a : \mathbb{D}_1 \to \Delta_a$ that conjugates the action of a periodic rotation in \mathbb{D}_1 with the holonomy of a in Δ_a and, a homeomorphism $g_a : q(\Delta_a) \to \mathbb{D}_1$ that makes the next diagram commutative.

$$\begin{array}{ccc}
\mathbb{D}_1 & \xrightarrow{\varphi_a} & \Delta_a \\
g_a & & \downarrow q \\
 & & q(\Delta_a)
\end{array}$$

Where g_a (see Fig. $[\mathcal{I}]$) can be defined by

$$g_a \circ q \circ \varphi_a(z) = z^{n(a)}$$

$$\left(\varphi_a^{-1} \circ q_a^{-1} \circ q \circ \varphi_a(z)\right)^{n(a)} = z^{n(a)},$$

we are notating by q_a the restriction of q to Δ_a. So $g_a(\cdot) = (\varphi_a^{-1} \circ q_a^{-1}(\cdot))^{n(a)}$ is a homeomorphism (g_a) composed with a biholomorphism (φ_a) and, $g_a \circ q$ is
holomorphic over the F_V-saturate of Δ_a. In order to see that \{g_a \mid a \in q^{-1}(\tilde{\Delta}_1)\} is an atlas that define a differentiable structure in $\tilde{\Delta}_1$ (and therefore, $\tilde{\Delta}_1$ is a real manifold of dimension two i.e., locally a surface) we need to show:

- $\tilde{\Delta}_1 = \bigcup q(\Delta_a)$.
- If $q(\Delta_a) \cap q(\Delta_b) \neq \emptyset$, $g_a \circ q^{-1}_a(q(\Delta_a) \cap q(\Delta_b))$ and $g_b(q(\Delta_a) \cap q(\Delta_b))$ are open sets and $g_b \circ g^{-1}_a : g_b(q(\Delta_a) \cap q(\Delta_b)) \to g_b(q(\Delta_a) \cap q(\Delta_b))$ is a biholomorphism.

To see the second one, note that $q(\Delta_a) \cap q(\Delta_b)$ is intersection of two open sets and by continuity $g_b(q(\Delta_a) \cap q(\Delta_b)) = (\varphi^{-1}_b \circ q^{-1}_a(q(\Delta_a) \cap q(\Delta_b)))^{n(a)}$ is open. Finally,

$$g_b \circ g^{-1}_a(\cdot) = (\varphi^{-1}_b \circ q^{-1}_a(g_a \circ \varphi_a((\cdot)^{1/n(a)})))^{n(b)} = (\cdot)^{n(b)/n(a)}.$$

Remark 14. In the previous construction we can take points in the intersection of $q^{-1}(\Delta_1)$ with the sphere and obtain that $\tilde{\Delta}_1$ is a manifold with boundary. In order to do this, we need B to be contained in an open set where the hypothesis of the previous theorems and proposition remains valid or take a small ball $B' \subset B$.

Then by construction q (which is q_B) is holomorphic (because $g_a \circ q$ is holomorphic, thinking $\tilde{\Delta}$ as a manifold). Observe that $q : q^{-1}(\Delta_1) \to \tilde{\Delta}_1$ is proper and a finite covering.

We have that $\tilde{\Delta}_1$ can not be simply connected because, in that case it would be biholomorphic to \mathbb{D}_1 or \mathbb{C} and the preimage of its boundary S^1 (hyperbolic) or $\{\infty\}$ (parabolic) necessarily has to be $\partial \mathbb{D}_1$ and 0, which are of different kind.

Furthermore, $\pi_1(\tilde{\Delta}_1)$ is generated by one element, take a point $q(a)$ and two different elements $\alpha, \beta \in \pi_1(\tilde{\Delta}_1, q(a))$ and due to the fact that q is a finite
covering, there exist \(l, t \in \mathbb{Z} \) such that \(\alpha^l \) and \(\beta^t \) are lifted to closed curves in \(a \) which are homotopic. Then, \(\pi_1(\overline{\Delta}_1) \) is generated by one element and, \(\overline{\Delta}_1 \) and \(\mathbb{D}^* \) are homeomorphic. Finally, if \(B_1, B_2 \) are the boundaries of \(\overline{\Delta}_1 \) we have that \(q^{-1}(B_i) \) is a boundary of \(M^*_i \cup \cdots \cup M^*_s \) of the same class that \(B_i \) then \(\overline{\Delta}_1 \) and \(\mathbb{D}^* \) are biholomorphic.

We complete the prove observing that this biholomorphism can be extended up to the edge, in fact \(\overline{\Delta}_1 \) can be considered as a manifold with boundary biholomorphic to \(\mathbb{D}^* \). Hence each connected component of \(\overline{\Delta} \) is biholomorphic to a one closed punctured discs \(\mathbb{D}^* \).

![Figure 5: \(h : \overline{\Delta} \to \mathbb{D}^* \)](image)

Now, it is possible to construct a holomorphic map between a finite union of closed punctured discs and one closed punctured discs, just by fixing one as a center and, forming rings enlarging the others (Figure 5). Thus there exist a holomorphic map \(h : \overline{\Delta} \to \mathbb{D}^* \).

\[\square\]

References

[1] César Camacho and Paulo Sad. *Pontos singulares de equações diferenciais analíticas*. 16º Colóquio Brasileiro de Matemática. [16th Brazilian Mathematics Colloquium]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1987.

[2] L. Câmara and B. Scárdua. Closed orbits and integrability for singularities of complex vector fields in dimension three. *arXiv:1407.4560*, July 2014.

[3] C. Godbillon. *Feuilletages*. Progress in mathematics. Birkhäuser Verlag, 1991.

[4] X. Gomes-Mont, J. Seade, and A. Verjovsky. On the topology of a holomorphic vector field in a neighborhood of an isolated singularity. *Funktional. Anal. i Prilozhen.* 27(2):22–31, 96, 1993.

[5] R.C. Gunning. *Introduction to Holomorphic Functions of Several Variables*. Number v. 1. Taylor & Francis, 1990.

[6] Toshikazu Ito. A Poincaré-Bendixson type theorem for holomorphic vector fields. *Sūrikaisekikenkyūsho Kōkyūroku,* (878):1–9, 1994. Singularities of holomorphic vector fields and related topics (Japanese) (Kyoto, 1993).

[7] J. Lee. *Introduction to Smooth Manifolds*. Graduate Texts in Mathematics. Springer, 2012.
[8] J.-F. Mattei and R. Moussu. Holonomie et intégrales premières. *Ann. Sci. École Norm. Sup. (4)*, 13(4):469–523, 1980.

[9] R. Moussu. Sur l’existence d’intégrales premières holomorphes. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 26(4):709–717, 1998.