Abstract
Poly-ADP-ribose polymerase 1 (PARP-1) and PARP-2 are DNA damage sensors that are most active during S-phase of the cell cycle and that have wider-reaching roles in DNA repair than originally described. BRCA1 and BRCA2 (Breast Cancer) proteins are involved in homologous recombination repair (HRR), which requires a homologous chromosome or sister chromatid as a template to faithfully repair DNA double-strand breaks. The small-molecule NAD+ mimetics, olaparib, niraparib, rucaparib, veliparib, and talazoparib, inhibit the catalytic activity of PARP-1 and PARP-2 and are currently being studied in later-stage clinical trials. PARP inhibitor clinical trials have predominantly focused on patients with breast and ovarian cancer with deleterious germline BRCA1 and BRCA2 mutations (gBRCA1/2+) but are now expanding to include cancers with known, suspected, or more-likely-than-not defects in homologous recombination repair. In ovarian cancer, this group also includes women whose cancers are responsive to platinum therapy. Olaparib was FDA-approved in January 2018 for the treatment of gBRCA1/2+ metastatic breast cancers. gBRCA1+ predisposes women to develop triple-negative breast cancers, while women with gBRCA2+ tend to develop hormone-receptor-positive, human epidermal growth factor receptor 2 negative breast cancers. Although PARP inhibitor monotherapy strategies seem most effective in cancers with homologous recombination repair defects, combination strategies may allow expansion into a wider range of cancers. By interfering with DNA repair, PARP inhibitors essentially sensitize cells to DNA-damaging chemotherapies and radiation therapy. Certainly, one could also consider expanding the utility of PARP inhibitors beyond gBRCA1/2+ cancers by causing DNA damage with cytotoxic agents in the presence of a DNA repair inhibitor. Unfortunately, in numerous phase I clinical trials utilizing a combination of cytotoxic chemotherapy at standard doses with dose-escalation of PARP inhibitors, there has generally been failure to reach monotherapy dosages of PARP inhibitors due to myelosuppressive toxicities. Strategies utilizing angiogenesis inhibitors and immune checkpoint inhibitors are generally not hindered by additive toxicities, though the utility of combining PARP inhibitors with treatments that have not been particularly effective in breast cancers somewhat tempers enthusiasm. Finally, there are combination strategies that may serve to mitigate resistance to PARP inhibitors, namely, upregulation of the intracellular Phospholiposide-3-kinase, AK thymoma (protein kinase B), mechanistic target of rapamycin (PI3K–AKT–mTOR) pathway, or perhaps are more simply meant to interfere with a cell growth pathway heavily implicated in breast cancers while administering relatively well-tolerated PARP inhibitor therapy.

Keywords: BRCA1, BRCA2, breast cancer, niraparib, olaparib, PARP inhibitor, rucaparib, talazoparib, veliparib.

Introduction
In the care of oncology patients, poly-ADP-ribose polymerase (PARP) inhibitors are best known as a semitargeted treatment for BRCA1- and BRCA2-associated ovarian and breast cancers, but a broader understanding of PARP biology has spurred interest in expanding their clinical utility (see Figure 1). Using NAD+ as a substrate, PARP enzymes catalyze the addition of linear and branching chains of ADP-ribose to aspartic acid, glutamic acid, and/or lysine amino acids on acceptor proteins in a process termed poly-ADP-ribose-ylation (‘PARylation’).1 Seventeen PARP enzymes have been discovered, with their functionalities primarily determined by their target-binding domains, cellular compartment localization signals, and tertiary structures.1,2 PARP-1 and PARP-2 localize to the nucleus and undergo conformational changes to become catalytically activated upon binding to exposed DNA. They effectively act as sensors of DNA damage – including single-strand and double-strand DNA breaks, DNA supercoils, DNA crosslinks, and stalled replication forks – and facilitate DNA repair processes at the
PARP-1 and PARP-2 recognize DNA damage, including single-strand and double-strand DNA breaks, DNA crosslinks, supercoils, and stalled replication forks. Upon binding to DNA, PARP-1 and PARP-2 become catalytically active, utilizing nicotinamide as a substrate to add ADP-ribose chains to target proteins in a process termed ‘PARylation.’ PARylation of histones H2B and H1 relaxes the chromatin to allow access to DNA for repair, the G2/M checkpoint is activated to allow time to repair DNA, DNA repair proteins are recruited to the site of damage, and transcription is temporarily halted via PARylation of RNA Pol I and RNA Pol II. PARP-1 also has roles to play in cell death if DNA cannot be repaired, both as an active participant in apoptosis and indirectly by draining the cell of its nicotinamide resources, which is necessary for normal cell respiration. ATM, Ataxia telangiectasia mutated serine/threonine kinase; dsDNA, double-stranded DNA; NAD+, nicotinamide; PARP-1, poly-ADP-ribose polymerase 1; PARylation, poly(ADP-ribose)ylation; ssDNA, single-stranded DNA.

PARP-1 and PARP-2 recognize DNA damage, including single-strand and double-strand DNA breaks, DNA crosslinks, supercoils, and stalled replication forks. Upon binding to DNA, PARP-1 and PARP-2 become catalytically active, utilizing nicotinamide as a substrate to add ADP-ribose chains to target proteins in a process termed ‘PARylation.’ PARylation of histones H2B and H1 relaxes the chromatin to allow access to DNA for repair, the G2/M checkpoint is activated to allow time to repair DNA, DNA repair proteins are recruited to the site of damage, and transcription is temporarily halted via PARylation of RNA Pol I and RNA Pol II. PARP-1 also has roles to play in cell death if DNA cannot be repaired, both as an active participant in apoptosis and indirectly by draining the cell of its nicotinamide resources, which is necessary for normal cell respiration. ATM, Ataxia telangiectasia mutated serine/threonine kinase; dsDNA, double-stranded DNA; NAD+, nicotinamide; PARP-1, poly-ADP-ribose polymerase 1; PARylation, poly(ADP-ribose)ylation; ssDNA, single-stranded DNA.

PARP-1 and PARP-2 recognize DNA damage, including single-strand and double-strand DNA breaks, DNA crosslinks, supercoils, and stalled replication forks. Upon binding to DNA, PARP-1 and PARP-2 become catalytically active, utilizing nicotinamide as a substrate to add ADP-ribose chains to target proteins in a process termed ‘PARylation.’ PARylation of histones H2B and H1 relaxes the chromatin to allow access to DNA for repair, the G2/M checkpoint is activated to allow time to repair DNA, DNA repair proteins are recruited to the site of damage, and transcription is temporarily halted via PARylation of RNA Pol I and RNA Pol II. PARP-1 also has roles to play in cell death if DNA cannot be repaired, both as an active participant in apoptosis and indirectly by draining the cell of its nicotinamide resources, which is necessary for normal cell respiration. ATM, Ataxia telangiectasia mutated serine/threonine kinase; dsDNA, double-stranded DNA; NAD+, nicotinamide; PARP-1, poly-ADP-ribose polymerase 1; PARylation, poly(ADP-ribose)ylation; ssDNA, single-stranded DNA.

PARP-1 and PARP-2 recognize DNA damage, including single-strand and double-strand DNA breaks, DNA crosslinks, supercoils, and stalled replication forks. Upon binding to DNA, PARP-1 and PARP-2 become catalytically active, utilizing nicotinamide as a substrate to add ADP-ribose chains to target proteins in a process termed ‘PARylation.’ PARylation of histones H2B and H1 relaxes the chromatin to allow access to DNA for repair, the G2/M checkpoint is activated to allow time to repair DNA, DNA repair proteins are recruited to the site of damage, and transcription is temporarily halted via PARylation of RNA Pol I and RNA Pol II. PARP-1 also has roles to play in cell death if DNA cannot be repaired, both as an active participant in apoptosis and indirectly by draining the cell of its nicotinamide resources, which is necessary for normal cell respiration. ATM, Ataxia telangiectasia mutated serine/threonine kinase; dsDNA, double-stranded DNA; NAD+, nicotinamide; PARP-1, poly-ADP-ribose polymerase 1; PARylation, poly(ADP-ribose)ylation; ssDNA, single-stranded DNA.
PARP inhibitor monotherapy

Olaparib, rucaparib, and niraparib are approved for use in ovarian cancer as monotherapy.104–110 Efficacy data for PARP inhibitor monotherapy in breast cancer patients primarily come from early stage clinical trials. However, two phase III studies evaluating single agent PARP inhibition (olaparib and talazoparib) in advanced breast cancer have recently been reported, resulting in the first regulatory approval of a PARP inhibitor for breast cancer. The results of monotherapy studies are reviewed later.

Olaparib

In 2009, Fong et al. published the results of a phase I clinical trial (NCT00516373) of olaparib in patients with advanced solid tumors followed by an expansion cohort enriched for BRCA1/2+ patients with ovarian and breast cancers.27 One of the nine breast cancer patients – gBRCA2+ with extensive pulmonary metastases and progression on anthracycline-based chemotherapy – had a complete response (CR) that lasted over 60 months. An additional 3/9 breast cancer patients, one gBRCA2+ and two BRCA wild-type (BRCA-wt), had stable disease (SD) for 4 months or more.

The nature of phase I clinical trials with cytotoxic therapies is to dose-escalate to a maximum tolerated dose (MTD) based on dose-limiting toxicities (DLTs) to establish a recommended phase II dose (RP2D). The minimal effective dose is not usually determined, though in clinical practice cytotoxic therapies are often dose-reduced from standard doses according to an
Table 1. Breast cancer clinical trials with PARP inhibitors registered with clinicaltrials.gov as on April 2018.

NCT number (Trial name)	Trial phase, design	Eligible population*	Interventions	Primary outcomes	Secondary outcomes
PARP inhibitor monotherapy					
NCT03329937	I	Women	• Niraparib	MRI RadR	pCR, TRR, S/T
NR	Neoadj	gBRCA1/2+ breast carcinoma >1 cm in neoadjuvant setting			
SG					
O					
Recruiting					
NCT00749502	I	All genders	• Niraparib	DLT, MTD, PD	Not given
NR		Advanced malignancies including HER2–breast cancer after ≤1 cytotoxic regimen			
SG					
O					
Adv					
NCT00516373	I	All genders	• Olaparib	DLT, MTD, RP2D	ORR
NR		Advanced solid tumors, incurable. Expansion cohort with gBRCA1/2+ enriched population, primarily ovarian			
SG					
O					
Adv					
NCT00777582	I	All genders	• Olaparib, 300 mg tablet po bid	PK, RP2D	PD, S/T
R		Stage I: Advanced solid tumors refractory to standard therapies Stage II: Solid tumors, particularly gBRCA1/2+ breast or ovarian cancer			
X		• Olaparib, 400 mg capsule po bid			
O		• Olaparib, 400 mg tablet po bid			
Adv					
NCT02210663	I	All genders, 20 yo and up	• Veliparib	DLT	PK, AEs, SD, PR, CR
NR		gBRCA1/2+ advanced breast cancer after anthracyclines and/or taxane (in Japanese patients)			
SG					
O					
Adv					
NCT00892736	I	All genders, 19 yo and up	• Veliparib	MTD, DLT, RP2D	PK, CR, PR, SD, AEs, PD
NR		gBRCA1/2+ cancers, ovarian cancer, and HER2–basal-like breast cancer with progression after standard therapies			
SG					
O					
Adv					
Table 1. (Continued)

Study ID	Design	Site	Sponsor	Intervention	Endpoint	Status	Key Details
NCT01989546	I/II NR SG O Met	All genders		gBRCA1/2+ metastatic breast cancer after ≥1 cytotoxic treatment	Talazoparib, 1 mg po daily	PD	CR, PR
NCT01286987	I/II NR SG O Adv	All genders		Ph I: Inoperable locally advanced or metastatic solid tumor Ph II: gBRCA1/2+ breast cancer after ≤4 cytotoxic regimens	Talazoparib	MTD	AEs, PK, RP2D, ORR
NCT00494234 (ICEBERG 1)	II NR P O Adv	Women		gBRCA1/2+ advanced breast cancer after failure of ≥1 cytotoxic	Olaparib, 100 mg bid	ORR	CBR, PFS, DOR, ECOG
NCT00679783	II NR P O Adv	All genders		Advanced, recurrent gBRCA1/2+ breast cancer or TNBC. Also included ovarian cancer patients	Olaparib, 400 mg po bid	ORR	DCR, DOR, PFS
NCT03344965	II NR P O Met	All genders		gBRCA1/2 wild-type, metastatic breast cancer with genetic HRD or deleterious somatic BRCA1/2 mutation	Olaparib	ORR	CBR, PFS, SD, AEs
NCT02681562 (OLTRE)	II NR P O Neoadj	Women		Locally advanced TNBC (arm A) or gBRCA1/2+ breast cancer (arm B)	Olaparib	Correlate gene expression and protein with clinical response	ORR, S/T, QoL

(Continued)
NCT number (Trial name)	Trial phase, design	Eligible population*	Interventions	Primary outcomes	Secondary outcomes	
NCT02299999 (SAFIR02_Breast)	II R P O Met	All genders	Metastatic HER2– breast cancer after ≤2 cytotoxic regimens	• Targeted therapy** (including olaparib, 300 mg po bid)	PFS	PFS, OS, ORR, PR, CR, SD, S/T
NCT00664781	II NR SG O Adv	All genders	gBRCA1/2+ inoperable locally advanced or metastatic breast cancer or ovarian cancer	• Rucaparib, 600 mg po bid	ORR, S/T	TTP, OS, PK
NCT02505048 (RUBY)	II NR SG O Met	Women	Metastatic gBRCA1/2 wild-type, HER2– breast cancer after ≥1 chemo with ‘BRCaness’ by Clovis genomic signature or BRCA1/2 somatic mutation	• Rucaparib, 600 mg po bid	CBR	CR, PR, SD, PFS, OS, AEs
NCT02034916 (ABRAZO)	II NR P O Adv	All genders	gBRCA1/2+ locally advanced or metastatic breast cancer with a documented PR or CR to platinum for metastatic disease or ≥2 nonplatinum regimens in the metastatic setting	• Talazoparib, 1 mg, after exposure to platinum	ORR	CBR, DOR, PFS, OS, AEs, S/T, PK, QoL
NCT02286687	II NR SG O Adv	All genders	Advanced or metastatic solid tumors with HRD due to somatic mutations	• Talazoparib, 1 mg po daily	CBR, CR, PR, SD	Not given
NCT02401347	II NR P O Adv	All genders	Advanced BRCA1/2 wild-type TNBC with HRD by Myriad’s HRD assay or HER2– cancer with HR gene deficiency excluding BRCA1/2+ after ≥1 cytotoxics	• Talazoparib, 1 mg po daily	ORR	CBR, PFS, AEs

(Continued)
Study ID	Phase	All Genders	Disease Description	PARP Inhibitors and Chemotherapy	Endpoints	Additional Details
NCT01905592 (BRAVO)	III	All genders	gBRCA1/2+ metastatic or incurable locally advanced breast cancer after ≤2 cytotoxic regimens	Niraparib, 300 mg po daily	PFS	OS, QoL
NCT02000622 (OlympiAD)	III	All genders	gBRCA1/2+ metastatic breast cancer after anthracycline + taxane in adjuvant or metastatic setting or after endocrine therapy for ER/PR+	Olaparib, 300 mg po bid	PFS	PFS2, OS, ORR, CR, PR, SD, QoL, TFST, TSST
NCT01945775 (EMBRACA)	III	All genders	gBRCA1/2+ inoperable locally advanced or metastatic breast cancer with ≤3 cytotoxic regimens	Talazoparib, 1 mg po daily	PFS	ORR, OS, AEs, PK, DOR, QoL
NCT00782574	I	All genders	Metastatic, incurable ovarian, pancreatic, or breast cancer	Olaparib + cisplatin ⇒ olaparib, 300 mg po bid maintenance	S/T	PK, ORR
NCT01445418	I	All genders	gBRCA1/2+ unresectable or metastatic TNBC or ovarian cancer	Olaparib + carboplatin on day 1 of a 21-day cycle	S/T	ORR, PD
NCT01237067	I	All genders	Recurrent/refractory inoperable or metastatic breast cancer, particularly if gBRCA1/2+, and gynecological cancers	Olaparib + carboplatin ⇒ olaparib, 300 mg po bid maintenance	PD, S/T	Not given

(Continued)
Table 1. (Continued)

NCT number (Trial name)	Trial phase, design	Eligible population*	Interventions	Primary outcomes	Secondary outcomes	
NCT02418624 (REVIVAL)57	I R P O Adv	All genders	· Olaparib + carboplatin ×2 cycles ⇒ olaparib, 300 mg po bid maintenance · Capecitabine	MTD olaparib in combination	PK, PD, ORR	
		gBRCA1/2+ HER2– advanced breast cancer treated with ≤1 prior cytotoxic therapy in metastatic setting				
NCT0051672458	I R P O Met	All genders	· Olaparib + carboplatin · Olaparib + paclitaxel · Olaparib + paclitaxel + carboplatin	MTD of olaparib in combination	DLT	
		Metastatic solid tumors				
NCT0081922159	I R P O Adv	All genders	· Olaparib + liposomal doxorubicin	RP2D, MTD	PK, S/T, AEs, PD	
		Advanced incurable solid tumors, ≤3 cytotoxic therapies				
NCT0100919060	I R P O Adv	All genders	· Rucaparib IV + carboplatin · Rucaparib IV + carboplatin + paclitaxel · Rucaparib IV + pemetrexed + cisplatin · Rucaparib IV + epirubicin + cyclophosphamide · Rucaparib po + carboplatin	DLT, MTD of rucaparib	PK, PD, QTc	
		Advanced solid tumors, including breast				
NCT0125187461	I R P O Adv	All genders	· Veliparib po bid + carboplatin	AEs, S/T, RP2D	CR, PR, SD, CBR, PD, exploratory biology	
		Inoperable locally advanced or metastatic TNBC, gBRCA1/2+, or FANC-associated HER2– breast cancers; ≤3 cytotoxic regimens in metastatic setting				
NCT0203355162	I R P O Met	All genders	· Veliparib monotherapy · Velaparib + carboplatin + paclitaxel · Velaparib + FOLFIRI	AEs	ORR, OS, TTP, PFS, EKG, PK	
		Metastatic malignancy; must be gBRCA1/2+ for monotherapy arm				
Study ID	Stage	Gender	Disease Description	Treatment	Design	Endpoints
-----------------------	-------	--------	---	---	--------	---
NCT00535119^63	I	NR	All genders	**Velaparib** + carboplatin + paclitaxel	RP2D	DLT, PR, CR, SD, TTP, AEs, PD
		SG	A. Advanced solid malignancy			
		O Adv	B. gBRCA1/2+ breast cancer			
NCT01281150^64	I	NR	All genders	**Veliparib** + carboplatin + paclitaxel	MTD	PD, DLT, AEs, CR, PR, SD
		SG	Inoperable locally advanced or metastatic HER2– breast cancer			
		O Adv				
NCT01366144^65	I	NR	All genders	**Velaparib** + carboplatin + paclitaxel	PK, PD, MTD in pts with liver or renal dysfunction	AEs, DLT, SD, PR, CR, ORR, TTP
		SG	Inoperable locally advanced or metastatic solid tumors in patients with liver or kidney disease			
		O Adv				
NCT01104259^66	I	NR	All genders	**Veliparib** po bid + cisplatin + vinorelbine ⇒ velaparib maintenance	MTD	S/T, PK, PD, PFS, CR, PR, ORR, DOR, ECOG, TTP
		SG	Recurrent or metastatic TNBC or gBRCA1/2+ associated			
		O Adv				
NCT01351909^67	I	NR	All genders	**Veliparib** + cyclophosphamide + **Veliparib**	RP2D	PFS, CBR, CR, PR, OS, biomarkers
		SG	Inoperable locally advanced or metastatic HER2– breast cancer after ≥1 hormonal or chemo treatment unless gBRCA1/2+			
		O Adv				
NCT01145430^68	I	NR	All genders	Pegylated liposomal doxorubicin + **Veliparib**	RP2D	AEs, OS, PFS
		SG	Metastatic TNBC after ≤ 2 cytotoxic regimens			
		O Adv				

(Continued)
NCT number (Trial name)	Trial phase, design	Eligible population*	Interventions	Primary outcomes	Secondary outcomes	
NCT0106381669	I	All genders	• Veliparib + carboplatin + gemcitabine for up to ten cycles ⇒ optional veliparib maintenance	MTD veliparib, RP2D	PK, S/T, PR, CR, SD	
		Inoperable locally advanced or metastatic solid tumors, ≤2 cytotoxic regimens				
NCT0057665470	I	All genders	• Veliparib D1–15 + irinotecan (21-day cycle)	OBD, MTD, RP2D, DLT	AEs, PR, SD, CR, PD PK	
		Inoperable locally advanced or metastatic TNBC, gBRCA1/2+ required for dose expansion phase				
NCT0052661771	I	All genders	• Veliparib + temozolomide	MTD, S/T, PK	Not given	
		Unresectable or metastatic nonheme malignancies				
		Expansion cohort must be gBRCA1/2+				
NCT0161813672	I/II	All genders	• PARP1/2 and tankyrase 1/2 inhibitor E7449	Ph I: MTD of E7449	Ph II: ORR	
		Ph I: Metastatic breast cancer Ph II: TNBC after one cytotoxic regimen (but excluded if given carboplatin or paclitaxel)	• E7449 + temozolomide			
			• E7449 + carboitalmin + paclitaxel			
NCT0070770773	I/II	Women	• Olaparib, 200 mg po bid continuously + paclitaxel, 90 mg/m² weekly ×3 weeks of a 28-day cycle (n=19)	RP2D, AEs, S/T	Not given	
		Metastatic TNBC, ≤1 cytotoxic regimen in the metastatic setting				
NCT01074970 (BRE09-146)	II	All genders	• Cisplatin, 75 mg/m² day 1 of a 21-day cycle ×4 cycles	2 year DFS	1 year DFS, S/T, OS, PK	
		gBRCA1/2+ and TNBC who received neoadjuvant chemotherapy (anthracyclines 57% and taxanes 91%) and surgery with curative intent	• Cisplatin, 75 mg/m² day 1 + rucaparib, 30 mg IV days 1–3 of a 21-day cycle ×4 cycles			
			Both arms followed by rucaparib, 30 mg IV or 100 mg po maintenance ×24 weeks			
Table 1. (Continued)

Study ID	Design	Phase	Treatment	Outcome Measures		
NCT01149083	II	NR	Women, gBRCA1/2+, inoperable locally advanced or metastatic breast cancer	• Veliparib, 400 mg po bid (n=44) ⇒ progression ⇒ Veliparib, 150 mg po bid + carboplatin AUC 5–6 every 3 weeks (n=30)		
		SG/X		ORR	PFS, S/T, CBR at 24 weeks, OS	
		O				
		Adv				
NCT01506609	II	R	All genders, gBRCA1/2+, inoperable locally recurrent or metastatic breast cancer after ≤2 cytotoxic regimens in the metastatic setting; patients who received taxane in the metastatic setting were excluded	• Temozolomide, 150–200 mg/m² D1–5 + Veliparib, 40 mg po bid D1–7 of 28-day cycle (n=94)	PFS	OS, CBR, ORR, CR, PR, SD, CIPN
(BROCADE)		P		• Carboplatin AUC6 + paclitaxel, 175 mg/m² q3 weeks + Veliparib, 120 mg po bid D1–7 (n=97)		
		DM		• Carboplatin + paclitaxel + placebo (n=99)		
NCT01042379	II	R	All genders, Stage II–III or regional IV (supravacuicular lymph nodes only) with operable breast cancer and tumors ≥2.5 cm	• Paclitaxel, 80 mg/m² weekly ⇒ doxorubicin + cyclophosphamide (standard of care)	Probability of pCR over standard neoadjuvant	pCR, RCB, RFS, OS, AEs, MRI volume
(I-SPY 2)		O		• Paclitaxel, 80 mg/m² weekly + carboplatin AUC6 on day 1 + Veliparib, 50 mg po bid continuously of a 21-day cycle ⇒ doxorubicin + cyclophosphamide		
		Neoadj				
NCT02595905	II	R	All genders	• Cisplatin + Veliparib	PFS	OS, CBR, CR, PR, SD
		P	Locally recurrent or metastatic TNBC or gBRCA1/2+ breast cancer treated with ≤1 cytotoxic regimen	• Cisplatin + Veliparib		
		O				
		Adv				
NCT01306032	II	R	All genders	• Veliparib, 60 mg po continuously + cyclophosphamide, 50 mg po daily ×21 days	ORR, CR, PR, PFS	AEs, PD, biomarkers
		X	Metastatic TNBC	• Cyclophosphamide, 50 mg po daily ×21 days		
		O				
		Met				
NCT01009788	II	NR	All genders	• Veliparib, 30–40 mg po bid + temozolomide, 150 mg/m² po daily days 1–5 on a 28-day cycle	ORR, S/T	PFS, CBR
		SG	Metastatic BC after ≥1 cytotoxic regimen with expansion cohort of gBRCA1/2+ metastatic breast cancer			
		O				
		Met				

Continued
Table 1. (Continued)

NCT number (Trial name)	Trial phase, design	Eligible population*	Interventions	Primary outcomes	Secondary outcomes
NCT03150576 (PARTNER)	II/III R P O Neoadj	All genders, 16–70 yo TNBC or gBRCA1/2+ HER2– tumors	Paclitaxel, 80 g/m², on days 1, 8, 15 + carboplatin AUC5 day 1 of a 21-day cycle Paclitaxel, 80 g/m², on days 1, 8, 15 + carboplatin AUC5 day 1 + olaparib, 150 mg po bid day 2–10 of a 21-day cycle Paclitaxel, 80 g/m², on days 1, 8, 15 + carboplatin AUC5 day 1 + olaparib, 150 mg po bid day 3–14 of a 21-day cycle	AE, pCR, TCR	RFS, BCSS, DDFS, LRFS, OS, RCB, RadR, QoL
NCT02032277 (BrighTNess)	III R P DM Neoadj	Women Operable stage II–III TNBC (T1N1-2 or T2-4N0-2), gBRCA1/2+ or gBRCA1/2 wild-type	Paclitaxel, 80 mg/m² weekly + carboplatin AUC6 on day 1 + veliparib, 50 mg bid of a 21-day cycle ×4 cycles ⇒ surgery ⇒ adjuvant AC (n=316) Paclitaxel + carboplatin + po placebo ⇒ surgery ⇒ AC (n=160) Paclitaxel + IV placebo + po placebo ⇒ surgery ⇒ AC (n=158)	pCR	EFS, CBR OS, S/T, BCS, QoL, ECOG, RCB
NCT02163694 (BROCADE 3)	III R P DM Adv	All genders gBRCA1/2+ HER2– inoperable locally advanced or metastatic breast cancer with ≤2 cytotoxic regimens	Paclitaxel, 80 mg/m² on days 1, 8, and 15 + carboplatin AUC6 on day 1 + veliparib, 120 mg po bid days 2–5 of a 21-day cycle ⇒ maintenance veliparib, 300–400 mg po bid continuously Paclitaxel + carboplatin + placebo	PFS	DOR, PFS2, ORR, OS, CBR, ECOG, QoL
PARP inhibitors + angiogenesis inhibitors					
NCT03075462	I NR SG O Adv	Women Inoperable locally advanced or metastatic TNBC after ≤1 cytotoxic regimen	Fluzoparib + VEGFR inhibitor apatinib	AEs	ORR, DOR, TTP, OS, PK
NCT01116648	I/II R P O Met	Women Ph I only: recurrent ovarian or metastatic TNBC	Olaparib, 100–400 mg po bid + VEGF inhibitor cediranib maleate 20–30 mg po bid	DLT, MTD, PFS	Ph I: S/T
Table 1. (Continued)

NCT	Phase	Gender	Criteria	Treatment	Results	Notes
NCT02484404⁸⁶	I/II	All genders	Ph I: metastatic solid tumors Ph II: gBRCA1/2+ recurrent TNBC after ≤3 cytotoxic regimens	- Olaparib + PDL1 inhibitor durvalumab + VEGFR inhibitor cediranib + durvalumab - Olaparib + durvalumab + cediranib	Ph I: RP2D Ph II: ORR	Not given
NCT02498613⁸⁷	II	All genders	Unresectable or metastatic TNBC after cytotoxic chemotherapy	- Olaparib + cediranib maleate	ORR	AEs, PFS, biomarkers
NCT02898207⁸⁸	I	All genders	Metastatic TNBC after ≤4 cytotoxic regimens	- Olaparib + HSP90 inhibitor onalespib	MTD	PD
NCT02657889⁸⁹ (KEYNOTE-162)	I/II	All genders	Advanced or metastatic TNBC Ph I: ≤4 cytotoxic therapies in metastatic setting Ph II: ≤2 cytotoxic therapies in metastatic setting	- Niraparib, 200 mg po bid + PD1 inhibitor pembrolizumab, 200 mg IV on day 1 of a 21-day cycle	DLT, ORR	S/T, DOR, ORR, DCR, PFS, OS, PK, biomarkers
NCT02734004^{90,91} (MEDIOLA)	I/II	All genders	Ph II gBRCA1/2+ HER2− metastatic breast cancer patients who have received anthracycline/taxane therapy	- Ph I: Olaparib, 300 mg po bid + PDL1-inhibitor durvalumab - Ph II: Olaparib, 300 mg po bid ×4 weeks, ⇒ olaparib, 300 mg po bid + durvalumab, 1500 mg IV every 4 weeks	CBR, CR, PR, SD, S/T	Biomarkers, TDT, DOR, PFS, OS, ADA, PK, PD
NCT03330406 (JAVELIN PARP MEDLEY)	Ib/II	All genders	Inoperable locally advanced or metastatic gBRCA1/2+ or ATM-deficient TNBC or HR+ breast cancer	- Talazoparib + PD-L1 inhibitor avelumab	DLT, OR	PK, ADA, biomarkers, TTR, DOR, PFS, OS
NCT02484404		Olaparib + durvalumab + cediranib (see angiogenesis section above)				

⁸⁶ Olaparib + durvalumab + cediranib (see angiogenesis section above)
Table 1. (Continued)

NCT number (Trial name)	NCT03167619 (DORA)\(^93\)	NCT02849496\(^74\)	NCT01623349\(^95,96\)	NCT03162627\(^97\)	NCT02208375\(^88,99\)
Eligible population	Women, 21 yo and up	All genders	All genders	All genders	Women
	Inoperable locally advanced or metastatic TNBC after ≥4 cycles of platinum-based therapy with documented clinical benefit	Stage III–IV gBRCA1/2+ TNBC after ≤3 cytotoxic chemotherapy regimens	Metastatic TNBC after failure of ≥1 cytotoxic	Metastatic solid tumors	Metastatic TNBC, ovarian cancer, and endometrial cancer
Interventions	- **Olaparib**, 300 mg po bid	- **Veliparib** po bid continuously	- **Olaparib** + PI3K inhibitor BKM120	- **Olaparib** + MEK1/2 inhibitor selumetinib	- **Olaparib**, 300 mg po bid + mTORC1/2 inhibitor AZD2014 (continuous dosing)
	- **Olaparib**, 300 mg po bid + durvalumab		- **Olaparib** + PI3K inhibitor BYL719		- **Olaparib**, 300 mg po bid + mTORC1/2 inhibitor AZD2014 (intermittent dosing)
					- **Olaparib**, 300 mg po bid + AKT inhibitor AZD5363 (intermittent)
Primary outcomes	PFS	PFS	MTD, RP2D	MTD	MTD, RP2D
	OS, S/T, ORR	ORR, DOR, biomarkers	S/T, PK, ORR, exploratory biology	PK, ORR, PD	ORR, biomarkers
Secondary outcomes					

(Continued)
Table 1. (Continued)

PARP inhibitors + radiation therapy	Women	**Olaparib** + radiation therapy	MTD of olaparib	AEs, ORR, CR, PR, LRFS, DDFS, OS, BCSS, biomarkers	
NCT03109080 (RadioPARP)\(^{100}\)	I NR SG O Met, Adj	Inoperable advanced disease, residual disease after neoadjuvant therapy and surgery, or metastatic TNBC			
Recruiting					
NCT02227082\(^{101}\)	I NR SG O Adv	Women	**Olaparib** + radiation therapy	DLT	S/T
Recruiting		Inoperable local recurrence and/or metastatic breast cancer			
NCT01477489\(^{102}\)	I NR SG O Adv	All genders, 19 yo and up	**Veliparib** + radiation therapy	MTD of veliparib	S/T
Recruiting		Locoregional recurrence after mastectomy or inflammatory BC after mastectomy in adjuvant setting.			

PARP inhibitors + HER2 inhibitors	Women	**Niraparib** + HER2 inhibitor trastuzumab	Ph I: DLT	Ph I: PK
NCT03368729\(^{103}\)	I/II NR SG O Met	Metastatic HER2+ breast cancer		
Not yet recruiting			Ph II: ORR	Ph II: AEs, PFS

Table 1 is organized by category (e.g. monotherapy trials), followed by clinical trial phase, then alphabetized by PARP inhibitor. The PARP inhibitor utilized is bolded. If germline *BRCA1* or *BRCA2* mutation (or strong suspicion of such) is a requirement for enrollment, *gBRCA1/2* is bolded. Clinical trials with iniparib are not included, as iniparib is no longer considered as a PARP inhibitor. In clinical trials performed after this came to light, use of iniparib was not considered as prior use of a PARP inhibitor and therefore not a barrier to enrollment.

*18 years old and older unless otherwise mentioned.

**Therapy targeted to deleterious mutations discovered by comparative genomic hybridization and next generation sequencing, including olaparib, antiandrogen bicalutamide, VEGFR and EGFR inhibitor vandetanib, MEK inhibitor selumetinib, pan-HER inhibitor sapitinib, AKT inhibitor AZD5363, EGFR inhibitor AZD4547, and mTORC1/2 inhibitor vistusertib.

ADA, antidrug antibodies; Adj, adjuvant therapy = after definitive resection with curative intent; Adv, advanced breast cancer = inoperable, locally invasive or metastatic disease; AEs, adverse events as defined by the Common Terminology Criteria for Adverse Events (CTCAE); BCS, breast conservation surgery; BCSS, breast cancer-specific survival = time from enrollment to death from breast cancer; BICR, blinded-independent central review; bid, *bis in die* (twice a day); CBR, clinical benefit rate = CR + PR + SD; CIPN, chemotherapy-induced neuropathy; CR, complete response rate = proportion of patients with no measurable disease; CTCAE, Common Terminology Criteria for Adverse Events = definitions for severity of organ toxicity for patients receiving antineoplastic agents per the National Cancer Institute; DCR, disease control rate = CR + PR + SD; DDFS, distant disease-free survival = time from study enrollment to distant relapse or date of death from all causes; DLT, dose-limiting toxicity = drug-related grade 3–5 adverse
events using CTCAE; DM, double masking; DOR, duration of response = time from initial response to first documented tumor progression; gBRCA1/2+, germline-mutated BRCA1 or BRCA2; HER2, human epidermal growth factor; HGSOC, high-grade serous ovarian cancer; HRD, homologous recombination deficiency (as defined by a deleterious mutation in BRCA1, BRCA2, PTEN, PALB2, CHEK2, ATM, NBN, BARD1, BRIP1, RAD50, RAD51C, RAD51D, MRE11, ATR, or FANC genes or by a high score on Myriad’s HRD assay); irRC, Immune-Related Response Criteria = rules defining tumor response, stabilization, or progression for immuno-oncology drugs, which can result in an inflammatory response that appears to be progression; LRFS, local recurrence-free survival = time from enrollment to first local recurrence or death from all causes; Met, metastatic disease; MTD, maximum tolerated dose = one dose level below the highest dose at which 1/3 of the patients at that dose level experience a dose-limiting toxicity as defined by NCI CTCAE; NCI, National Cancer Institute; Neoadj, neoadjuvant = pre-operative chemotherapy; NR, nonrandomized; O, open label; OBD, optimal biologic dose = dose of complete PARP inhibition; ORR, objective response rate = CR + PR; OS, overall survival = time from study enrollment until death from all causes; P, parallel assignment; pCR, pathological complete response = no tumor remaining in breast or lymph nodes after neoadjuvant therapy as determined by pathological evaluation; PD, pharmacodynamics = drug effect on physiology; PFS, progression-free survival = time from study enrollment to determination of tumor progression or death due to any cause; PFS2, progression-free survival 2 = time from first PFS to second PFS or death; PK, pharmacokinetics = study of the absorption, bodily distribution, metabolism, and excretion of drugs; po, per os (by mouth); PR, partial response rate = proportion of patients with favorable but incomplete response of a predefined amount for a predefined minimum time period; QoL, quality of life = impact of health status on physical, mental, emotional, social functioning; R, randomized; RadR, radiological response rate; RCB, residual cancer burden = pathological diagnosis of residual cancer burden after neoadjuvant chemotherapy at time of surgical resection; RECIST, Response Evaluation Criteria in Solid Tumors = rules defining tumor response, stabilization, or progression for antineoplastic agents; RFS, relapse-free survival; RP2D, recommended phase 2 dose = highest oncology drug dose with acceptable toxicity, usually defined in reference to DLT and MTD established in phase I clinical trials; S, sequential assignment; SD, stable disease rate = proportion of patients without disease shrinkage or progression by RECIST criteria; SG, single group; S/T, safety and tolerability = number and grade of adverse events; TCR, therapy completion rate; TFST, time to first subsequent therapy = time from enrollment to the first subsequent therapy start date or death date; TKI, tyrosine kinase inhibitor; TNBC, triple-negative breast cancer; TRR, tumor response rate = CR + PR; TSST, time to second subsequent therapy = time from enrollment to the second subsequent therapy start date or death date; TTD, time to treatment discontinuation = time from enrollment to treatment discontinuation for any reason; TTF, time to treatment failure = time from enrollment to documentation of progression, unacceptable toxicity, or patient refusal to continue participation; TTP, time to progression = time from study enrollment to determination of tumor progression; TTR, time to tumor response; TTSC, time to second cancer; VEGFR, Vascular endothelial growth factor receptor; X, crossover study; yo, years old.

Table 1. (Continued)
individual patient’s toxicities. It could be argued that PARP inhibitors are a novel cytotoxic therapy, as they do essentially perpetuate DNA damage and have myelosuppression as the DLT. Olaparib was originally FDA-approved at a dosage of 400 mg by mouth twice daily, which required patients to take eight 50 mg capsules twice a day. The phase II trial ICEBERG 1 (NCT00494234) investigated dosage levels of 100 mg by mouth twice daily (n=27) compared with 400 mg by mouth twice daily (n=27) in women with gBRCA1/2 mutations with advanced breast cancers after a minimum of one cytotoxic regimen in the metastatic setting. The 100 mg dosage was grossly inferior in terms of median progression free survival (mPFS), overall response rate (ORR), and clinical benefit rate (CBR). Disappointingly, there were no confirmed partial or CRs in the phase II trial NCT00679783 with olaparib, 400 mg p.o. b.i.d., in patients with advanced gBRCA1/2+ breast cancer or triple-negative breast cancer (TNBC) (n=26 with 4 gBRCA1+, 6 gBRCA2+, 16 BRCA-wt). Five of the ten gBRCA1/2+ breast patients did actually have decrease in the size of target lesions by >30%, but three were not confirmed at the next follow up visit and two were taken off study for progression of nontarget lesions or new lesions. Of the 23 breast cancer patients evaluable for response, almost 1/3 had SD at 8 weeks, including 2 of 3 gBRCA1+, 3 of 5 gBRCA2+, and 2 of 14 BRCA-wt patients. A tablet formulation of olaparib was developed in part to reduce the 16-capsule/day pill burden on patients. Pharmacokinetic parameters for capsule versus tablet formulations were compared in the first stage of phase I trial NCT00777582 with the determination that the olaparib, 300 mg p.o. b.i.d., tablet formulation matched or exceeded drug exposure at steady state compared to the 400 mg p.o. b.i.d. capsule form. In the expansion phase, patients with advanced solid tumors refractory to standard therapies were randomly assigned to receive olaparib, 400 mg p.o. b.i.d., in capsule formulation, 400 mg p.o. b.i.d. in tablet form, or 300 mg p.o. b.i.d. in tablet form. Efficacy was similar in all three arms, but the 300 mg p.o. b.i.d. tablet dosing was more tolerable. In fact, almost 2/3 of patients taking 400 mg p.o. b.i.d. tablets required dose reduction to 300 mg p.o. b.i.d. The olaparib monotherapy dose for phase II and III clinical trials thereafter was set at 300 mg p.o. b.i.d. tabs, which reduced the pill burden from 16 capsules a day to four tablets a day. The phase III OlympiAD trial randomized patients with gBRCA1/2+ metastatic breast cancer to olaparib, 300 mg p.o. b.i.d., compared with physician’s choice of capecitabine, vinorelbine, or eribulin. The primary outcome measure was mPFS with ORR and overall survival (OS) as secondary endpoints. mPFS in the olaparib arm (n=205) was 7.0 months (95% CI: 5.7–8.3 months) based on investigator analysis and 7.4 months based on blinded-independent central review (BICR) compared to the chemotherapy arm (n=97) with mPFS of 4.2 months (95% CI: 2.8–4.3 months) by investigator analysis and 4.2 months (95% CI: 2.8–4.3 months) on BICR (hazard ratio [HR] 0.58, 95% CI: 0.43–0.80, p=0.001). Of the patients with measurable disease, 59.9% (100/167) on olaparib had an objective response compared to 28.8% (19/66) of the patients given chemotherapy. OS was not significantly different between the arms at 19.3 months in the PARP inhibitor arm and 19.6 months in the chemotherapy arm (HR 0.90, 95% CI: 0.63–1.29, p=0.57). The rate of grade 3 and 4 adverse events was lower in the olaparib arm at 36.6% compared to 50.5% in the chemotherapy arm. The most common grade 3/4 toxicities were anemia (16.1%), neutropenia (9.3%), and leukopenia (3.4%). Low-grade gastrointestinal side-effects were also common, including nausea (58.0%), vomiting (29.8%), and diarrhea (grade 1/2 20.0%, grade 3/4 0.5%). Olaparib was FDA-approved in January 2018 for gBRCA1/2+ HER2– breast cancers in the metastatic setting.

Talazoparib

In phase I/II trial NCT01286987 with talazoparib, 50% (7/14) of gBRCA1/2+ breast cancer patients had an objective response at the 1.0 mg p.o. daily dose. The phase II ABRAZO trial (NCT02034916) investigated talazoparib in patients with gBRCA1/2+ locally advanced or metastatic breast cancers with or without prior exposure to platinum agents. Those enrolled in the platinum-exposed arm were required to have had a documented PR or CR and could not have had progression of their disease on a platinum agent. Those who had not been exposed to platinum were required to have had two or more nonplatinum regimens in the metastatic setting. The primary outcome measure was ORR with CBR, PFS, and OS among the secondary outcome measures. Response rates to talazoparib were higher in patients who had not had prior platinum exposure, suggesting some degree of cross-resistance. The ORR was 20.8% (95% CI: 10.4–34.99) with a CBR of 27.1% (95% CI: 15.8–41.85) in the platinum-exposed cohort (n=48). In those without prior platinum exposure (n=35), the ORR was 37.1% (95% CI: 21.49–55.08) with CBR 45.7% (95% CI: 28.83–63.35). mPFS was 4.0 months (95% CI: 2.8–5.4 months) with a median overall survival (mOS) of 11.8 months (95% CI: 8.8–15.0) in those with prior platinum exposure (n=49), but 5.6 months (95% CI: 5.5–7.8 months) with mOS 16.5 months in the nonplatinum-exposed arm (n=35). As with all PARPi, myelosuppression was the predominant toxicity. EMBRACA (NCT01945775) is a recently reported phase III study comparing talazoparib, 1 mg p.o. daily, to physician’s choice chemotherapy (eribulin, vinorelbine, capcitabine, or gemcitabine) in patients with advanced breast cancer and germline BRCA1 or BRCA2 mutations. Patients were randomly assigned in a 2:1 ratio to talazoparib (n=287) or chemotherapy (n=144). The primary endpoint was PFS (assessed by BICR) with secondary endpoints being safety, OS, ORR, CBR at 24 weeks, and quality of life measurements. mPFS was 8.6
months in the talazoparib arm compared to 5.6 months in the chemotherapy arm (HR 0.54, p<0.0001) with an ORR of 62.6% (n=219) with talazoparib (including 12 CRs) compared to 27.2% (n=144; no CRs) with chemotherapy. Although grade 3/4 myelosuppressive toxicities were higher with talazoparib than chemotherapy (55 versus 39%), patients experienced fewer grade 3/4 gastrointestinal side-effects (5.6 versus 11.9%) and had a much slower decline in overall health (as assessed by the questionnaire EORTC QLQ-C30) compared to the chemotherapy arm.113,114 The Food and Drug Administration (FDA) granted priority review designation for talazoparib based on the results of EMBRACA.

Niraparib

In the phase I trial NCT00749502 evaluating niraparib in patients with advanced malignancies, the ORR was 2 of 4 gBRCA1/2+ breast cancer patients with one achieving PR at 150 mg/day for 132 days and the second with PR at 210 mg/day for 133 days. The RP2D was declared at 300 mg p.o. daily.26 The BRAVO study (NCT01905592) is a randomized phase III clinical trial investigating niraparib, 300 mg p.o. daily, compared to physician’s choice of chemotherapy with a primary outcome measure of PFS.

Rucaparib

Rucaparib has been predominantly studied in ovarian cancer, but the phase II ‘RUBY’ trial (NCT02505048) is currently recruiting for response (all dose levels included), the phase II ‘RUBY’ trial (NCT02505048) is currently recruiting for response (all dose levels included), and the phase II ‘RUBY’ trial (NCT02505048) is currently recruiting for response (all dose levels included). Rucaparib has been predominantly studied in ovarian cancer, but the phase II ‘RUBY’ trial (NCT02505048) is currently recruiting for response (all dose levels included), the phase II ‘RUBY’ trial (NCT02505048) is currently recruiting for response (all dose levels included), and the phase II ‘RUBY’ trial (NCT02505048) is currently recruiting for response (all dose levels included).

Veliparib

Veliparib was studied in cancers associated with gBRCA1/2+, ovarian cancers, or basal-like HER2-negative breast cancers in NCT0089736.31,116 Of the 52 BRCA+ patients (13 with breast cancer) evaluated for response (all dose levels included), the ORR was 23%, and the CBR was 58%. At the MTD of 400 mg p.o. b.i.d., 28 gBRCA1/2+ patients were evaluated with an ORR of 40% and CBR 68%. Twenty-four BRCA-wt patients (21 breast and 3 ovarian) had an ORR of 4% and CBR of 38%.32

Combination strategies

Chemotherapy

Recommended monotherapy dosages of PARP inhibitors are as follows: niraparib, 300 mg p.o. daily.26 olaparib, 300 mg p.o. b.i.d.,28 rucaparib, 600 mg p.o. b.i.d.,117 talazoparib, 1 mg p.o. daily,15 and veliparib 400 mg p.o. b.i.d.32 Myelosuppression is the primary DLT for PARPi, which has made combination of PARPi with cytotoxic chemotherapies problematic (see Table 2). The majority of phase I clinical trials using chemotherapy–PARPi combination approaches have understandably prioritized the use of standard dosages of chemotherapy over maximum doses of PARP inhibitor. In combination with myelosuppressive chemotherapies with efficacy in ovarian and breast cancers with HRR defects, namely, platinum agents in combination with taxane therapy, the RP2Ds of PARPi are a fraction of that required for efficacy as a monotherapy. In the phase II adjuvant BRE09-146 trial (NCT01074970), patients with gBRCA1/2+ breast cancers or TNBC were randomized to cisplatin, 75 mg/m² on day 1 of a 21-day cycle +/- rucaparib, 30 mg intravenously (IV) on days 1–3, after completion of neoadjuvant chemotherapy and surgery with curative intent. For reference, rucaparib, 20 mg IV, is approximately equivalent to 57 mg by mouth, and the monotherapy dose of rucaparib is 600 mg by mouth twice a day.122 At 2 years, the disease-free survival was 58.3% in the cisplatin arm compared with 63.1% in the cisplatin + rucaparib arm (p=0.43).126,127 It is not currently clear if maximizing the PARPi dose at the expense of the cytotoxic chemotherapy is a more viable therapeutic strategy, but the results of the phase III BrighTNess trial (discussed later) suggests that using a grossly subtherapeutic dose of PARPi in combination with standard dosages of chemotherapy does not significantly improve clinical outcomes.128

Strategies to mitigate the myelosuppressive effects of PARPi have mirrored strategies utilized for myelosuppressive cytotoxic chemotherapies, including intermittent dosing schedules and support with granulocyte colony stimulating factors (G-CSF) such as filgrastim. Phase I/II clinical trial NCT00707707 was amended to include an algorithm for filgrastim rescue and subsequent prophylaxis for women with metastatic TNBC being treated with olaparib, 200 mg p.o. b.i.d. continuously, in combination with paclitaxel, 90 mg/m² weekly × 3 weeks of a 28-day cycle, after 7/9 women in cohort 1 developed neutropenia (4/9 grade 3 or 4) with 8/9 requiring dose delay or reduction of paclitaxel.129 After implementation of neutropenia management with G-CSF, cohort 2 (n=10) fared better, with 4/10 developing neutropenia (2/10 grade 3 or 4) and fewer paclitaxel dose reductions.

In the ongoing phase II neoadjuvant I-SPY 2 trial (NCT01042379), breast cancer patients with operable stage II–III or stage IV with solely supraclavicular lymph node involvement (“regional stage IV”) and tumors ≥ 2.5 cm are randomized to one of many experimental arms with a standard-of-care control arm of paclitaxel, 80 mg/m² weekly × 12 weeks (T), followed by doxorubicin + cyclophosphamide (AC) ×4 cycles.77 The primary outcome measure is probability of pathologic complete response (pCR) over standard neoadjuvant therapy. I-SPY 2 included an experimental arm with PARP inhibitor veliparib, which was dosed at 50 mg p.o. b.i.d. continuously in conjunction with paclitaxel + carboplatin AUC6 on day 1 of a 21-day cycle (TCV) and followed by AC ×4 cycles. The estimated pCR rate in TNBC of TCV ⇒ AC (n=72) was estimated to be 51% (95% Bayesian probability interval 36–66%) compared to 26% in the T ⇒ AC arm (n=44) (95% Bayesian probability interval 9–43%). The predicted probability of success of TCV ⇒ AC in TNBC patients in a phase III trial was estimated to be 88%.
Table 2. Results of phase I dose escalation studies combining chemotherapy with PARP inhibitors.

Trial	Patient characteristics	Dosing strategy	Doses studied	RP2D	Results	DLTs	Most frequent Gr 3–5 AEs
NCT00782574	Ovarian, pancreatic, or breast cancer • 52/54 female • 42/54 with breast cancer • 29/54 gBRCA1/2+, 11/54 unknown	Dose-escalation of olaparib Cisplatin decreased to 60 mg/m² only for cohort 6	• Olaparib, 50–200 mg po bid continuously or intermittently (days 1–5 or days 1–10) + cisplatin, 60–75 mg/m² IV on day 1 of a 21-day cycle ⇒ olaparib monotherapy	Olaparib, 50 mg po bid days 1–5 + cisplatin 60 mg/m²	ORR 71% (12/17) in gBRCA1/2+ breast cancer. Authors note this falls within the range of ORR to single agent carboplatin or cisplatin in this population • 5/17 breast patients achieved objective durable treatment responses of >1 year	Gr 3 neutropenia • Gr 3 lipase elevation	Neutropenia² (16.7%) • Anemia (9.3%) • Leukopenia (9.3%)
NCT01445418	gBRCA1/2+ TNBC or ovarian cancer • 8/45 breast cancer (four TNBC, four ER/PR+ HER2–)	Dose-escalation of olaparib followed by dose-escalation of carboplatin	• Olaparib, 100–400 mg po bid intermittently (days 1–7) or continuously (days 1–21) + carboplatin AUC 3–5 every 3 weeks	Olaparib, 400 mg po twice daily on days 1–7 + carboplatin AUC5	CBR 8/8 breast cancer patients • CR of 23 months in 1/8 • 6/8 PR with mDOR 10 months • 1/8 SD of 14 months	MTD not reached on intermittent schedule	Neutropenia² (42.2%) • Anemia (15.6%) • Thrombocytopenia (20.0%)
NCT01237067	Breast and gynecological cancers (n=59) • 10/59 TNBC (four with BRCA1/2+)	Arm A: C1 olaparib ×7 days prior to carbo, C2 carbo prior to olaparib, and C3+ concurrent • Arm B: C1 carbo prior to olaparib, C2 olaparib ×7 days prior to carbo, and C3+ concurrent	• Olaparib, 200 mg po bid ×7 days + carboplatin AUC4 day 1 of 21-day cycle ⇒ olaparib, 300 mg po bid maintenance	Olaparib, 200 mg bid ×7 days with carboplatin AUC4 q21 days	1 CR TNBC of 32 months • 3 PR TNBC	Myelosuppression	Neutropenia (22%) • Anemia (12%) • Thrombocytopenia (10%) • Carboplatin hypersensitivity (3%)
NCT02418624 (REVIVAL)⁵⁷	gBRCA1/2+ HER2– breast cancer	Dose-escalation of carboplatin followed by dose-escalation of olaparib	• Olaparib, 25–100 mg po bid + carboplatin AUC 3–4×2 cycles ⇒ olaparib, 300 mg po bid monotherapy	N/A	Protocol published; no results	N/A	N/A

(Continued)
Table 2. (Continued)

Trial	Patient characteristics	Dosing strategy	Doses studied	RP2D	Results	DLTs	Most frequent Gr 3–5 AEs	
NCT00819221^{121}	Solid tumors (n=44)	Dose-escalation of olaparib	Olaparib, 50–400 mg po bid days 1–7 or continuously + liposomal doxorubicin 40 mg/m² on day 1 of a 28-day cycle	MTD not reached. RP2D olaparib, 400 mg po bid continuously	1/13 breast cancer pts achieved PR (gBRCA1/2+)	Gr 3 stomatitis	Stomatitis (16%)	
	Breast cancer n=13/44					Gr 5 (fatal) pneumonia/pneumonitis	Nausea (11%)	
						Gr 4 thrombocytopenia	Neutropenia (20%)	
							Thrombocytopenia (7%)	
NCT01009190^{122}	Advanced solid tumors (n=85)	Dose-escalation of carbo, then rucaparib	Rucaparib IV + carboplatin (n=7/18)	Arm E: MTD 240 mg po daily rucaparib + carboplatin AUC 5 mg/mL^4 min; rucaparib doses of 12, 18, and 24 mg IV are ~ equivalent to 33, 50, and 35 mg po, respectively				
	Breast cancer n=22/85			Arm E:	Overall, >2/3 of patients had clinical benefit	Neutropenia	Neutropenia (21.2%)	
	10/85 known to harbor gBRCA1/2+					Thrombocytopenia	(27.3%)	
NCT01251874^{123}	gBRCA1/2+ or FANC-associated HER2-breast cancers (n=44)	De-escalation of carboplatin followed by dose-escalation of veliparib	Veliparib, 50–200 mg po bid intermittent or continuous + carboplatin AUC 5–6 on day 1 of a 21-day cycle	RP2D V, 250 mg po bid, days 1-21 + carbo AUC 5 on day 1 of a 21-day cycle	43 evaluated: 18.6% PR, 48.8% SD	Gr 3–4	Thrombocytopenia	
	TNBC=39/44				gBRCA1/2+ or gFANC+: 25% PR, 62.5% SD			
NCT01281150^{124}	Advanced solid tumors (n=30)	Dose-escalation of veliparib	Veliparib, 50–200 mg po bid + carboplatin AUC 2 weekly + paclitaxel, 80 mg weekly	RP2D 150 mg po bid + carbo AUC 2 + paclitaxel 80 mg/m²	ORR TNBC 52%, BRCA1/2- 60% (3/5 PR), 67% BRCA1/2-, wt (1/9 CR, 5/9 PR), 29% in BRCA-unknown (2/7 PR)			
	2/30 HR+HER2-breast					Prolonged Gr 2	Neutropenia (60%)	
	22/30 TNBC						Thrombocytopenia	
						Anemia (17%)		
						Thrombocytopenia (10%)		
Table 2. (Continued)

| NCT01104259²⁵ | • TNBC or gBRCA1/2+– associated breast cancer (n=38)
| NCT01063816⁶⁹ | • Advanced solid tumors, primarily ovarian (n=75)
| | • Breast n=12/75, at least 1 gBRCA1/2+ |

| Dose-escalation of veliparib | • Veliparib, 20–300 mg po bid + cisplatin 75 mg/m² day 1 + vinorelbine tartrate 25 mg/m² days 1 and 8 of a 21-day cycle ×6–10 cycles ⇒ velaparib, 300 mg po bid maintenance |
| Dose-escalation of veliparib | • Veliparib, 30–310 mg po bid continuously + carboplatin AUC4 day 1 + gemcitabine, 800 mg/m² days 1 and 8 of a 21-day cycle ⇒ optional veliparib maintenance after max ten cycles; veliparib started with cycle 2 |

| MTD not reached | • MTD veliparib, 250 mg po bid + carboplatin AUC4 + gemcitabine, 800 mg/m² on days 1 and 8 of a 21-day cycle |
| Not reported for breast cancer patients | • Not reported for breast cancer patients |

Overall ORR 55% (2 CR + 19 PR)	• Overall ORR 55% (2 CR + 19 PR)
Overall CBR 89% 34% (13) with SD	• Overall CBR 89% 34% (13) with SD
BRCA1/2+ ORR 73% (6/11 PR, 2/11 CR)	• BRCA1/2+ ORR 73% (6/11 PR, 2/11 CR)
BRCA-wt ORR 53% (11/21 PR)	• BRCA-wt ORR 53% (11/21 PR)
BRCA-unknown ORR 33% (2/6 PR)	• BRCA-unknown ORR 33% (2/6 PR)

Gr 4 thrombocytopenia	• Gr 4 thrombocytopenia
Gr 3–4 neutropenic fever	• Gr 3–4 neutropenic fever
Neutropenia (13/38)	• Neutropenia (13/38)
Anemia (11/38)	• Anemia (11/38)
Thrombocytopenia (6/38)	• Thrombocytopenia (6/38)

Neutropenia	• Neutropenia
Neutropenia (56%)	• Neutropenia (56%)
Anemia (20%)	• Anemia (20%)
Thrombocytopenia (53%)	• Thrombocytopenia (53%)

Combination trials of PARP inhibitors plus chemotherapy have primarily been designed to maximize cytotoxic chemotherapy doses while dose-escalating the PARP inhibitor to MTD. DLTs and grade 3–4 adverse events are most often myelosuppressive in nature.

†G-CSF allowed.

AEs, adverse events as defined by the Common Terminology Criteria for Adverse Events (CTCAE); AUC, area under the curve; bid, bis in die (twice a day); carbo, carboplatin; CBR, clinical benefit rate = CR + PR + SD; cis, cisplatin; CR, complete response rate = proportion of patients with no measurable disease; DLT, dose-limiting toxicity = drug-related grade 3–5 adverse events using CTCAE; DOR, duration of response = time from initial response to first documented tumor progression; gBRCA1 or BRCA2; Gr, grade as defined by CTCAE; HER2−, HER2 negative; HR+, hormone receptor positive; IV, intravenous; MTD, maximum tolerated dose = one dose level below the highest dose at which 1/3 of the patients at that dose level experience a dose-limiting toxicity as defined by CTCAE; n, number of patients; N/A, not applicable/available; ORR, objective response rate = CR + PR; OS, overall survival = time from study enrollment until death from all causes; pem, pemetrexed; PFS, progression-free survival = time from study enrollment to determination of tumor progression or death due to any cause; po, per os (by mouth); PR, partial response rate = proportion of patients with favorable but incomplete response of a predefined amount for a predefined minimum time period; RECIST, Response Evaluation Criteria in Solid Tumors; RP2D, recommended phase 2 dose = highest oncology drug dose with acceptable toxicity, usually defined in reference to DLT and MTD established in phase I clinical trials; SD, stable disease rate = proportion of patients without disease shrinkage or progression by RECIST criteria; TNBC, triple-negative breast cancer; wt, wild-type gene.
The phase III randomized, placebo-controlled neoadjuvant trial BrightNess (NCT02032277) was developed based on the carboplatin + veliparib results of I-SPY 2, and results were recently published. Women with operable stage II–III TNBC were enrolled with stratification by gBRCA1/2 status and randomization to one of the three arms: paclitaxel, 80 mg/m² weekly + carboplatin AUC6 on day 1 of a 21-day cycle + veliparib, 50 mg p.o. b.i.d. continuously (n=316), paclitaxel + carboplatin + placebo p.o. b.i.d., or paclitaxel + IV placebo + placebo p.o. b.i.d. All patients received AC ×4 cycles in the adjuvant setting. The primary outcome was pCR. The pCR for the triple combination therapy was 53% (168/316), paclitaxel + carboplatin yielded a pCR of 58% (92/160), and paclitaxel alone had a pCR of 31% (49/158). The triplet combination was superior to paclitaxel alone (p<0.0001) but equivalent to paclitaxel + carboplatin (p=0.36). It should be noted that paclitaxel, 80 mg/m², and carboplatin AUC6 are standard full doses, but the veliparib dose is 1/8 of the monotherapy dose of veliparib, 400 mg p.o. p.c. The addition of veliparib, 50 mg p.o. b.i.d., to paclitaxel and carboplatin did not improve therapeutic benefit, though the addition of carboplatin to paclitaxel clearly did.

We eagerly await results from this trial.

Radiation therapy

Radiation therapy induces DNA double-strand breaks, which are lethal if not repaired. By interfering with DNA repair, PARPi could be expected to act as radiosensitizers. Although radiosensitization is a common therapeutic approach in the definitive management of some cancers, such as squamous cell carcinomas of the head and neck, it is an uncommon strategy in the treatment of metastatic breast cancers. Nonetheless, the combination of PARPi with radiation therapy is intriguing. There are three clinical trials in the clinicaltrials.gov database involving PARPi and radiation therapy for the treatment of breast cancer. RadioPARP (NCT03109080) is recruiting women with (1) inoperable advanced disease, (2) residual disease after neoadjuvant therapy and surgery, and (3) metastatic TNBC for a dose-escalation trial with olaparib. NCT02227082 is an olaparib dose-escalation trial in women with inoperable locally recurrent and/or metastatic breast cancer.\(^\text{101}\) Phase I NCT01477489 with veliparib + radiation therapy also includes patients in the adjuvant setting; this trial has been completed, but results have not been published.\(^\text{102}\)

Angiogenesis, heat-shock protein inhibitors, and immune checkpoint inhibitors

Angiogenesis inhibitors and immune checkpoint inhibitors have thus far not reliably been shown to be of benefit in the treatment of breast cancer, and so there are no current FDA-approved indications for their use in breast cancer. The combination of angiogenesis inhibitors and/or immune checkpoint inhibitors with PARPi inhibitors will likely be safe due to nonoverlapping toxicities, and it might be expected that PARPi inhibitors could be used at full monotherapy dosages. Biologically, it has been hypothesized that hypoxia induces down-regulation of HRR proteins BRCA1 and RAD51 and induces a BRCA-like state that could sensitize cells to PARPi inhibitors.\(^\text{133,134}\) NCT01116648 is a completed phase I/II clinical trial involving women with recurrent ovarian carcinoma (n=20) or metastatic TNBC (n=8; 3 gBRCA1/2+, 1 BRCA1/2-wt, 4 unknown BRCA1/2 status).\(^\text{85}\) The MTD was olaparib, 400 mg p.o. b.i.d., in combination with small-molecule VEGFR tyrosine kinase inhibitor (TKI) cediranib, 30 mg p.o. daily; the RP2D was olaparib, 200 mg p.o. b.i.d., with cediranib, 30 mg p.o. daily. None of the breast cancer patients achieved complete or partial responses by RECIST criteria, but it should also be noted that only two breast cancer patients were in the highest dose arm with a therapeutic dose of olaparib, 400 mg p.o. b.i.d. Three breast patients had SD on olaparib, 200 mg p.o. b.i.d., including two gBRCA1/2+ patients with progression at 4 and 7 months.\(^\text{135}\) Three phase I or II clinical trials involving PARPi and radiation therapy for the treatment of breast cancer include: PARTNER study (NCT03150576) in combination with weekly paclitaxel, 80 mg/m² weekly + carboplatin AUC5 on day 1 of a 21-day cycle. At 150 mg p.o. b.i.d., the olaparib dose is half of the 300 mg p.o. b.i.d. monotherapy dose and is given for 12 days of a 21-day cycle starting either 2 days prior to chemotherapy administration or 2 days after chemotherapy administration.
trials combining PARP inhibitors with VEGFR TKIs are currently recruiting patients with advanced or metastatic TNBC in the second-line-or-beyond setting; NCT03075462 (PARP inhibitor fluzoparib + VEGFR inhibitor apatinib), NCT02484404 (olaparib + VEGFR inhibitor cediranib), and NCT02498613 (olaparib + cediranib). Preclinical data suggest that upregulation of the PI3K–AKT–mTOR pathway may contribute to PARP inhibitor resistance.

Induction of a BRCA-like phenotype is also the rationale behind the phase I dose-escalation clinical trial NCT02898207, which combines olaparib with heat-shock protein 90 (HSP90) inhibitor onalespib for patients with metastatic TNBC. HSP90 is a chaperone protein that facilitates folding and stabilization of BRCA1 (among many other proteins). Preclinical data suggest that stabilization of deleteriously mutated BRCA1 could be a mechanism of resistance to platinum agents and PARP inhibitors.

There are several studies combining PARP inhibitors with immune checkpoint inhibitors, including phase I/II KEYNOTE-162 (NCT02657889) in TNBC with niraparib, 200 mg p.o. b.i.d. + PD1 inhibitor pembrolizumab and phase I/II MEDIOLA (NCT02734004) in gBRCA1/2+ HER2-negative metastatic breast cancer patients with olaparib, 300 mg p.o. b.i.d. + PD-L1 inhibitor durvalumab. Phase II NCT02849496 has enrolled gBRCA1/2+ TNBC patients for veliparib in combination with PD-L1 inhibitor atezolizumab, phase Ib/II JAVELIN PARP MEDLEY (NCT03330405) is recruiting patients with gBRCA1/2+ or ATM-deficient breast cancer for evaluation of talazoparib + PD-L1 inhibitor avelumab, and phase II DORA (NCT03167619) is soon to start recruiting women with platinum-sensitive metastatic TNBC with olaparib, 300 mg p.o. b.i.d. + durvalumab.

Intracellular signaling

The intracellular phosphorylation cascades of the Rat sarcoma, rapidly accelerated fibrosarcoma, extracellular signal-regulated kinases (RAS–RAF–MEK–ERK) and PI3K–AKT–mTOR pathways have been implicated in the proliferation, survival, and metastatic potential of numerous types of cancer, thus driving development of small-molecule inhibitors targeting these pathways. PI3K, AKT, and mTOR inhibitors are of special interest in clinical trials for breast cancer in particular, as enhanced signaling through the PI3K–AKT–mTOR pathway is thought to represent a major mechanism of resistance to therapies targeting the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). There are dozens of inhibitors of the PI3K–AKT–mTOR pathway in development and a wide array of combination clinical trials in early and late stages, though FDA-approved indications for treatment of breast cancer with PI3K–AKT–mTOR inhibitors has been thus far limited to mTOR inhibitor everolimus in combination with exemestane after failure of letrozole or anastrozole for advanced hormone-receptor-positive (HR+), HER2-negative breast cancer based on BOLERO-2. Preclinical data suggest that upregulation of the PI3K–AKT–mTOR pathway may contribute to PARP inhibitor resistance as well.

Conclusions

The recent FDA approval of olaparib has been a much-welcomed expansion of therapeutic options for metastatic gBRCA1/2+ breast cancer patients. If PARPi approvals for breast cancer are to follow the same path as those for ovarian cancer, we are likely to see the approval of additional PARP inhibitors in the near future. To date, there is no data demonstrating an OS benefit for PARP inhibitors in breast cancer patients, though to be fair, none of the studies discussed in this manuscript has been powered to detect OS. In the metastatic setting, OS data are difficult to interpret, as treatment options are numerous and patients are likely to be treated with a series of therapies for disease control. The phase III trial OlympiA is powered to assess OS in patients with HER2-negative breast cancer with gBRCA1/2 mutations treated with olaparib in the adjuvant setting; data are expected in 2020. Active PARPi monotherapy phase I and II trials hint at a willingness to explore their use beyond patients with deleterious germline BRCA1/2 mutations to cancers with defects in homologous recombination repair, either germline or acquired, as well as in TNBC. Several academic and commercial institutions are developing assays to test tumor tissue for a BRCA-like phenotype, loosely defined as homologous recombination repair deficiency, and thus to expand the number of patients who could be offered PARP inhibitors. Intracellular signaling

The intracellular phosphorylation cascades of the Rat sarcoma, rapidly accelerated fibrosarcoma, extracellular signal-regulated kinases (RAS–RAF–MEK–ERK) and PI3K–AKT–mTOR pathways have been implicated in the proliferation, survival, and metastatic potential of numerous types of cancer, thus driving development of small-molecule inhibitors targeting these pathways. PI3K, AKT, and mTOR inhibitors are of special interest in clinical trials for breast cancer in particular, as enhanced signaling through the PI3K–AKT–mTOR pathway is thought to represent a major mechanism of resistance to therapies targeting the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2). There are dozens of inhibitors of the PI3K–AKT–mTOR pathway in development and a wide array of combination clinical trials in early and late stages, though FDA-approved indications for treatment of breast cancer with PI3K–AKT–mTOR inhibitors has been thus far limited to mTOR inhibitor everolimus in combination with exemestane after failure of letrozole or anastrozole for advanced hormone-receptor-positive (HR+), HER2-negative breast cancer based on BOLERO-2. Preclinical data suggest that upregulation of the PI3K–AKT–mTOR pathway may contribute to PARP inhibitor resistance as well. If this is clinically relevant, perhaps combinations of PARP inhibitors with inhibitors of PI3K, AKT, or mTOR are meant to enhance clinical benefit and prolong duration of response to PARPi. Phase I clinical trial NCT01623349 is evaluating olaparib in combination with PI3K inhibitors BKM120 or BYL719 in patients with metastatic TNBC after failure of one or more cytotoxic regimens. Olaparib, 300 mg p.o. b.i.d., in combination with mTOR inhibitor AZD2014 or AKT inhibitor AZD5363 is being evaluated in the phase I/II study NCT02208375.

Active PARPi monotherapy phase I and II trials hint at a willingness to explore their use beyond patients with deleterious germline BRCA1/2 mutations to cancers with defects in homologous recombination repair, either germline or acquired, as well as in TNBC. Several academic and commercial institutions are developing assays to test tumor tissue for a BRCA-like phenotype, loosely defined as homologous recombination repair deficiency, and thus to expand the number of patients who could be offered PARP inhibitors. Combination strategies could also potentially expand the role of PARP inhibitors beyond cancers with homologous recombination repair defects, though it will take time to understand how best to use them to full effect while minimizing toxicities. The diversity of currently active early phase combination clinical trials is a fascinating reflection of a rapidly growing understanding of DNA repair, PARP inhibitor resistance mechanisms, and cancer biology. In the details and designs of the clinical trials discussed herein, there are clues that platinum sensitivity predicts response to PARP inhibitors, PARP inhibitors may be useful radiosensitizers and chemosensitizers, induction of ‘BRCaness’ is being explored for therapeutic exploitation, and that intermittent dosing and G-CSF support are feasible tactics to mitigate myelosuppressive toxicities of PARP inhibitors in the same way as for cytotoxic chemotherapies. PARP inhibitors remain a very active area of research, to the benefit of our future patients.
Disclosure and potential conflicts of interest: Dr McCann has nothing to disclose. Dr Hurvitz reports: grants and nonfinancial support from Ambrx, Amgen, Bayer, BI Pharma, Biomarin, Casdadian, Daiichi Sankyo, Dignitana, Genentech, GSK, Lilly, Macrogenics, Medivation, Merrimack, Novartis, OBI Pharma, Pfizer, Pieris, PLIMA, Roche, and Seattle Genetics; other from Lilly, Novartis, and OBI Pharma, during the conduct of the study. The International Committee of Medical Journal Editors (ICMJE) Potential Conflicts of Interests form for the authors are available for download at http://www.drugsincontext.com/wp-content/uploads/2018/07/dic.212540-COI.pdf

Funding declaration: There was no funding for this manuscript.

Copyright: Copyright © 2018 McCann KE, Hurvitz SA. Published by Drugs in Context under Creative Commons License Deed CC BY NC ND 4.0 which allows anyone to copy, distribute, and transmit the article provided it is properly attributed in the manner specified below. No commercial use without permission.

Correct attribution: Copyright © 2018 McCann KE, Hurvitz SA. https://doi.org/10.7573/dic.212540. Published by Drugs in Context under Creative Commons License Deed CC BY NC ND 4.0.

Article URL: https://www.drugsincontext.com/advances-in-the-use-of-parp-inhibitor-therapy-for-breast-cancer

Correspondence: Kelly E. McCann, UCLA Dept of Medicine, Division of Hematology/Oncology, 2336 Santa Monica Suite 304, Santa Monica, CA 90404, USA. kmccann@mednet.ucla.edu

Provenance: invited; externally peer reviewed.

Submitted: 28 May 2018; Peer review comments to author: 4 July 2018; Revised manuscript received: 5 July 2018; Accepted: 9 July 2018; Publication date: 8 August 2018.

Drugs in Context is published by BioExcel Publishing Ltd. Registered office: Plaza Building, Lee High Road, London, England, SE13 SPT. BioExcel Publishing Limited is registered in England Number 10038393. VAT GB 252772009.

For all manuscript and submissions enquiries, contact the Editorial office dic.editorial@bioexcelpublishing.com

For all permissions, rights and reprints, contact David Hughes david.hughes@bioexcelpublishing.com

References

1. Schreiber V, Dantzer F, Ame J-C, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol. 2006;7(7):517–528. https://doi.org/10.1038/nrm1963
2. Kraus WL, Lis JT. PARP Goes Transcription. Cell. 2003;113(6):677–683. https://doi.org/10.1016/s0092-8674(03)00433-1.
3. Kim MY. Poly(ADP-ribosylation) by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev. 2005;19(17):1951–1967. https://doi.org/10.1101/gad.1331805
4. Murai J, Huang SyN, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599. https://doi.org/10.1158/0008-5472.can-12-2733
5. Murai J, Huang SYN, Renaud A, et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther. 2013;12(3):433–443. https://doi.org/10.1158/1535-7163.mct-13-0803
6. De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol. 2012;84(2):137–146. https://doi.org/10.1016/j.bcp.2012.03.018
7. Kashima L, Idogawa M, Mita H, et al. CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. J Biol Chem. 2012;287(16):12975–12984. https://doi.org/10.1074/jbc.m111.312828
8. Swindall A, Stanley J, Yang E. PARP-1: friend or foe of DNA damage and repair in tumorigenesis? Cancers. 2013;5(3):943–958. https://doi.org/10.3390/cancers5030943
9. Aredia F, Scovassi AI. Poly(ADP-ribose): a signaling molecule in different paradigms of cell death. Biochem Pharmacol. 2014;92(1):157–163. https://doi.org/10.1016/j.bcp.2014.06.021
10. Kotz J. PARP target practice. Science-Business eXchange. 2012;5(13):323. https://doi.org/10.1038/scibx.2012.323
11. Liscio P, Camaioni E, Carotti A, Pellicciari R, Macchiarulo A. From polypharmacology to target specificity: the case of PARP inhibitors. Curr Top Med Chem. 2013;13(23):2939–2954. https://doi.org/10.2174/15680266131336660209
12. Wahlberg E, Karlberg T, Kouznetsova E, et al. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol. 2012;30(3):283–288. https://doi.org/10.1038/nbt.2121
13. Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol. 2013;16(1):2–9. https://doi.org/10.1038/ncb2897
14. “Talazoparib” CID=44819241 [Internet]. PubChem Compound Database, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/44819241. Accessed October 26, 2017.
15. “Olaparib” CID=23725625 [Internet]. Pubmed Compound Database, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/23725625. Accessed October 26, 2017.
16. “Veliparib” CID=11960529 [Internet]. PubChem Compound Database, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/11960529. Accessed October 26, 2017.
17. “Niraparib” CID=24958200 [Internet]. PubChem Compound Database, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/24958200. Accessed October 26, 2017.
18. “Rucaparib” CID=9931954 [Internet]. PubChem Compound Database, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/compound/9931954. Accessed October 26, 2017.
19. Liu X, Shi Y, Maag DX, et al. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. *Clin Cancer Res.* 2011;18(2):S10–S23. https://doi.org/10.1158/1078-0432.CCR-11-1973
20. Patel AG, De Lorenzo SB, Flatten KS, Poirier GG, Kaufmann SH. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro. *Clin Cancer Res.* 2012;18(6):1655–1662. https://doi.org/10.1158/1078-0432.CCR-11-2890
21. Narod SA. BRCA mutations in the management of breast cancer: the state of the art. *Nat Rev Clin Oncol.* 2010;7(12):702–707. https://doi.org/10.1038/nrclinonc.2010.166
22. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. *Nat Rev Cancer.* 2011;11(1):68–78. https://doi.org/10.1038/nrc3181
23. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. *Cell.* 2002;108(2):171–182. https://doi.org/10.1016/S0092-8674(02)00615-3
24. McCann KE. Novel poly-ADP-ribose polymerase inhibitor combination strategies in ovarian cancer. *Clin Cancer Res.* 2009;16(21):6714–6722. https://doi.org/10.1158/1078-0432.CCR-09-1890
25. Study evaluating the antitumor activity and safety of niraparib as neoadjuvant treatment. https://ClinicalTrials.gov/show/NCT03329937
26. Sandhu SK, Schelman WR, Wilding G, et al. The poly(ADP-ribose) polymerase inhibitor olaparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. *Lancet Oncol.* 2013;14(9):882–892. https://doi.org/10.1016/S1470-2045(13)70240-7
27. Fong PC, Boss DS, Yap TA, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. *N Engl J Med.* 2009;361(2):123–134. https://doi.org/10.1056/NEJMoa0900212
28. Mateo J, Moreno V, Gupta A, et al. An adaptive study to determine the optimal dose of the PARP inhibitor olaparib. *Target Oncol.* 2016;11(3):401–415. https://doi.org/10.1007/s11523-016-0435-8
29. A phase I study of single agent veliparib in Japanese subjects with advanced solid tumors. https://ClinicalTrials.gov/show/NCT02210663
30. Yamamoto N, Nokihara H, Yamada Y, et al. A Phase I, dose-finding and pharmacokinetic study of olaparib (AZD2281) in Japanese patients with advanced solid tumors. *Curr Opin Obstet Gynecol.* 2018;30(1):7–16. https://doi.org/10.1097/GCO.0000000000000428
31. Venkitaraman AR. Cancer susceptibility and the functions of BRCA1 and BRCA2. *Cell.* 2002;108(2):171–182. https://doi.org/10.1016/S0092-8674(02)00615-3
32. Puhalla S, Beumer JH, Pahuja S, et al. Final results of a phase 1 study of single-agent veliparib (V) in patients (pis) with either Veliparib in treating patients with malignant solid tumors that do not respond to previous therapy. *Clin Cancer Res.* 2011;18(2):S10–S23. https://doi.org/10.1158/1078-0432.CCR-11-1973
33. Pilot trial of BMN 673, an oral PARP inhibitor, in patients with advanced solid tumors and deleterious BRCA mutations. https://ClinicalTrials.gov/show/NCT01989546
34. Study of talazoparib, a PARP inhibitor, in patients with advanced or recurrent solid tumors. https://ClinicalTrials.gov/show/NCT01286987
35. de Bono J, Ramanathan RK, Mina L, et al. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. *Cancer Discov.* 2014;4(2):153–165. https://doi.org/10.1158/2159-8290.CD-13-1250
36. Study to assess the efficacy and safety of a PARP inhibitor for the treatment of BRCA-positive advanced breast cancer. https://ClinicalTrials.gov/show/NCT00494234
37. Tutt A, Robson M, Garber JE, et al. ORAL1: phase II study of ABRAXOS in patients with known BRCA mutation status/triple neg breast cancer. https://ClinicalTrials.gov/show/NCT01288278
38. Phase II study of AZD2281 in patients with known BRCA mutation status or recurrent high grade ovarian cancer or patients with known BRCA mutation status/triple neg breast cancer. https://ClinicalTrials.gov/show/NCT00679783
39. Gelmon KA, Tischkowitz M, Mackay H, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. *Lancet Oncol.* 2011;12(9):852–861. https://doi.org/10.1016/S1470-2045(11)70214-5
40. Olaparib in metastatic breast cancer. https://ClinicalTrials.gov/show/NCT03344965
65. Veliparib, paclitaxel, and carboplatin in treating patients with solid tumors that are metastatic or cannot be removed by surgery and liver or kidney dysfunction. https://ClinicalTrials.gov/show/NCT01366144
66. Veliparib, cisplatin, and vinorelbine ditartrate in treating patients with recurrent and/or metastatic breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01104259)

67. Cyclophosphamide and veliparib in treating patients with locally advanced or metastatic breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01351909)

68. Veliparib and pegylated liposomal doxorubicin hydrochloride in treating patients with recurrent ovarian cancer, fallopian tube cancer, or primary peritoneal cancer or metastatic breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01145430)

69. Gray HJ, Bell-McGuinn K, Fleming GF, et al. Phase I combination study of the PARP inhibitor veliparib plus carboplatin and gemcitabine in patients with advanced ovarian cancer and other solid malignancies. *Gynecol Oncol*. 2018;148(3):507–514. https://doi.org/10.1016/j.ygyno.2017.12.029

70. Veliparib and irinotecan hydrochloride in treating patients with cancer that is metastatic or cannot be removed by surgery. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT00576654)

71. A phase I study of ABT-888 in combination with temozolomide in cancer patients. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT00526617)

72. An open-label, multicenter, phase 1/2 study of poly(ADP-Ribose) polymerase (PARP) inhibitor E7449 as single agent in subjects with advanced solid tumors or with B-cell malignancies and in combination with temozolomide (TMZ) or with carboplatin and paclitaxel in subjects with advanced solid tumors. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01618136)

73. Dent RA, Lindeman GJ, Clemons M, et al. Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. *Breast Cancer Res*. 2013;15(5). https://doi.org/10.1186/bcr3484

74. PARP inhibition for triple negative breast cancer (ER-/PR-/HER2-)With BRCA1/2 mutations. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01074970)

75. Veliparib with or without carboplatin in treating patients with stage III–IV breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01149083)

76. The study evaluating efficacy and tolerability of veliparib in combination with temozolomide or in combination with carboplatin and paclitaxel versus placebo in subjects with BRCA1 and BRCA2 mutation and metastatic breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01506609)

77. Rugo HS, Olopade OI, DeMichele A, et al. Adaptive randomization of veliparib–carboplatin treatment in breast cancer. *N Engl J Med*. 2016;375(1):23–34. https://doi.org/10.1056/nejma1513749

78. Cisplatin with or without veliparib in treating patients with recurrent or metastatic triple-negative and/or BRCA mutation-associated breast cancer with or without brain metastases. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02595905)

79. Phase II ABT-888 with cyclophosphamide. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01306032)

80. ABT-888 and temozolomide for metastatic breast cancer and BRCA1/2 breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01009788)

81. Platinum and polyadenosine S’diphosphoribose polymerisation (PARP) inhibitor for neoadjuvant treatment of triple negative breast cancer (TNBC) and/or germline BRCA (gBRCA) positive breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT03150576)

82. Geyer CE, O’Shaughnessy J, Untch M, et al. Phase 3 study evaluating efficacy and safety of veliparib (V) plus carboplatin (Cb) or Cb in combination with standard neoadjuvant chemotherapy (NAC) in patients (pts) with early stage triple-negative breast cancer (TNBC). *J Clin Oncol*. 2017;35(15_suppl):520. http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.520

83. A phase 3 randomized, placebo-controlled trial of carboplatin and paclitaxel with or without veliparib (ABT-888) in HER2-negative metastatic or locally advanced unresectable BRCA-associated breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02163694)

84. A study of fluzoparib given in combination with apatinib in ovarian or breast cancer patients. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT03075462)

85. Cediranib maleate and olaparib in treating patients with recurrent ovarian, fallopian tube, or peritoneal cancer or recurrent triple-negative breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT01116648)

86. Phase I/Ii study of the anti-programmed death ligand-1 antibody MEDI4736 in combination with olaparib and/or cediranib for advanced solid tumors and advanced or recurrent ovarian, triple negative breast, lung, prostate and colorectal cancers. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02484404)

87. A phase 2 study of cediranib in combination with olaparib in advanced solid tumors. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02498613)

88. Olaparib and onalespib in treating patients with solid tumors that are metastatic or cannot be removed by surgery or recurrent ovarian, fallopian tube, primary peritoneal, or triple-negative breast cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02898207)

89. Niraparib in combination with pembrolizumab in patients with triple-negative breast cancer or ovarian cancer. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02657889)

90. A phase I/Ii study of MEDI4736 in combination with olaparib in patients with advanced solid tumors. [ClinicalTrials.gov](https://ClinicalTrials.gov/show/NCT02734004)
114. Osoba D, Aaronson N, Zee B, Sprangers M, te Velde A. Modification of the EORTC QLQ-C30 (version 2.0) based on content.

113. Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for research and treatment of cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology.

112. Litton JK, Rugo HS, Johannes Ettl J, et al, eds. Abstract GS6-07: A phase 3 trial comparing talazoparib, an oral PARP inhibitor, significantly improves progression-free survival in patients with platinum-sensitive relapsed ovarian cancer: results from the phase III SOLO2 study.

111. Tryfonidis K, Bogaerts J, Martell RE, et al. A phase III randomized trial of niraparib versus physician’s choice of therapy in patients with advanced breast cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety.

110. Pujade-Lauraine E, Ledermann JA, Penson RT, et al. Treatment with olaparib monotherapy in the maintenance setting.

109. Mirza MR, Monk BJ, Herrstedt J, et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer.

108. Ledermann J, Oza AM, Lorusso D, et al. ARIEL3: a phase 3, randomised, double-blind study of rucaparib vs placebo following response to platinum-based chemotherapy for recurrent ovarian carcinoma (OC).

107. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed serous ovarian cancer patients: intergroup study EORTC-1307-BCG and BIGS-13.

106. Ledermann J, Harter P, Gourley C, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer.

105. Kaufman B, Shapira-Frommer R, Schmutzler RK, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation.

104. Jenner ZB, Sood AK, Coleman RL. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for triple negative breast cancer or high grade serous ovarian cancer.

103. Niraparib in combination with trastuzumab in metastatic HER2+ breast cancer.

102. Veliparib with radiation therapy in patients with inflammatory or loco-regionally recurrent breast cancer.

101. Olaparib and radiotherapy in inoperable breast cancer.

100. Olaparib & radiation therapy for patients triple negative breast cancer (TNBC).

99. Westin S, Litton J, Williams R, et al. 391PPhase I expansion of olaparib (PARP inhibitor) and AZD5363 (AKT inhibitor) in recurrent ovarian, endometrial and triple negative breast cancer.

98. A phase Ib study of the oral PARP inhibitor olaparib with the oral mTORC1/2 inhibitor AZD2014 or the oral AKT inhibitor AZD5363 for recurrent endometrial, triple negative breast, and ovarian, primary peritoneal, or fallopian tube cancer.

97. Selumetinib and olaparib in solid tumors.

96. Matulonis UA, Penson RT, Domchek SM, et al. Olaparib monotherapy in patients with advanced relapsed ovarian cancer and a germline BRCA1/2 mutation: a multistudy analysis of response rates and safety.

95. Jenner ZB, Sood AK, Coleman RL. Evaluation of rucaparib and companion diagnostics in the PARP inhibitor landscape for triple negative breast cancer or high grade serous ovarian cancer.

94. Domchek S, Bang YJ, Coukos G, et al. MEDIOLA: A phase I/II, open-label trial of olaparib in combination with durvalumab (MEDI4736) in patients (pts) with advanced solid tumours.

93. Phase II multicenter study of durvalumab and olaparib in platinum treated advanced triple negative breast cancer (DORA).

92. Javelin parp medley: avelumab plus talazoparib in locally advanced or metastatic solid tumors.

91. Domchek S, Bang YJ, Coukos G, et al. MEDIOLA: A phase I/II, open-label trial of olaparib in combination with durvalumab (MEDI4736) in patients (pts) with advanced solid tumours.

90. Review – PARP inhibitors for breast cancer.

89. Javelin parp medley: avelumab plus talazoparib in locally advanced or metastatic solid tumors.
Symptom Control and Quality of Life Committees of the NCI of Canada Clinical Trials Group. Qual Life Res. 1997;6(2):103–108. PubMed PMID: 9161109

115. Patsouris A, Vicier C, Campion L, et al. An open-label, phase II study of rucaparib, a PARP inhibitor, in HER2- metastatic breast cancer patients with high genomic loss of heterozygosity: RUBY. J Clin Oncol. 2017;35(15_suppl):TPS1117-TPS. http://ascopubs.org/doi/abs/10.1200/JCO.2017.35.15_suppl.TPS1117

116. Puhalla S, Beumer JH, Pahuja S, et al. Final results of a phase 1 study of single-agent veliparib (V) in patients (pts) with either BRCA1/2-mutated cancer (BRCA-), platinum-refractory ovarian, or basal-like breast cancer (BRCA-wt). J Clin Oncol. 2014;32(15_suppl):2570. http://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.2570

117. Kristeleit RS, Burris HA, LoRusso P, et al. Phase 1/2 study of oral rucaparib: final phase 1 results. J Clin Oncol. 2014;32(15_suppl):2573. http://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.2573

118. Byrski T, Dent R, Blecharz P, et al. Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res. 2012;14(4):R110. https://doi.org/10.1186/bcr3231

119. Lee J-M, Hays JL, Annunziata CM, et al. Phase I/ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst. 2014;106(6):dju089. https://doi.org/10.1093/jnci/dju089

120. Chou VL, Annunziata C, Lipkowitz S, et al. Abstract CT326: pharmacokinetic/pharmacodynamic study of sequence specificity of the PARP inhibitor, olaparib and carboplatin in recurrent womens cancers. Cancer Res. 2015;75(15 Suppl):CT326.

121. Del Conte G, Sessa C, von Moos R, et al. Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br J Cancer. 2014;111(4):651–659. https://doi.org/10.1038/bjc.2014.345

122. Wilson RH, Evans TRJ, Middleton MR, et al. A phase I study of intravenous and oral rucaparib in combination with chemotherapy in patients with advanced solid tumours. Br J Cancer. 2017;116(7):884–892. https://doi.org/10.1038/bjc.2017.36

123. Wesolowski R, Zhao M, Geyer SM, et al. Phase I trial of the PARP inhibitor, olaparib and carboplatin in recurrent malignant pleural mesothelioma. Br J Cancer. 2015;112(1):255–263. https://doi.org/10.1038/bjc.2015.80

124. Pahuja S, Beumer JH, Appleman LJ, et al. A phase I study of veliparib (ABT-888) in combination with weekly carboplatin and paclitaxel in advanced solid malignancies and enriched for triple-negative breast cancer (TNBC). J Clin Oncol. 2015;33(15_suppl):1015. http://ascopubs.org/doi/abs/10.1200/jco.2015.33.15_suppl.1015

125. Rodler ET, Kurland BF, Griffin M, et al. Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin Cancer Res. 2016;22(12):2855–2864. https://doi.org/10.1158/1078-0432.ccr-15-2137

126. Dwadasi S, Tong Y, Walsh T, et al. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple-negative breast cancer (TNBC): Hoosier Oncology Group BRE09-146. J Clin Oncol. 2014;32(15_suppl):1019. http://ascopubs.org/doi/abs/10.1200/jco.2014.32.15_suppl.1019

127. Miller K, Tong Y, Jones DR, et al. Cisplatin with or without rucaparib after preoperative chemotherapy in patients with triple-negative breast cancer: final efficacy results of Hoosier Oncology Group BRE09-146. J Clin Oncol. 2015;33(15_suppl):1082. http://ascopubs.org/doi/abs/10.1200/jco.2015.33.15_suppl.1082

128. Loibl S, O'Shaughnessy J, Untch M, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol. 2018;19(4):497–509. https://doi.org/10.1016/s1470-2045(18)30111-6

129. Han HS, Diéras V, Robson ME, et al. Abstract S2-05: efficacy and tolerability of veliparib (V; ABT-888) in combination with carboplatin (C) and paclitaxel (P) vs placebo (Plc)+C/P in patients (pts) withBRCA1orBRCA2mutations and metastatic breast cancer. J Clin Oncol. 2015;33(15_suppl):CT326.

130. Pahuja S, Beumer JH, Appleman LJ, et al. A phase I study of veliparib (ABT-888) in combination with weekly carboplatin and paclitaxel in advanced solid malignancies and enriched for triple-negative breast cancer (TNBC). J Clin Oncol. 2015;33(15_suppl):1015. http://ascopubs.org/doi/abs/10.1200/jco.2015.33.15_suppl.1015

131. Wesolowski R, Zhao M, Geyer SM, et al. Phase I trial of the PARP inhibitor, olaparib and carboplatin in recurrent malignant pleural mesothelioma. Br J Cancer. 2015;112(1):255–263. https://doi.org/10.1038/bjc.2015.80

132. Huggins-Puhalla SL, Han HS, Diéras V, et al. Phase III randomized, placebo-controlled trial of carboplatin (C) and paclitaxel (P) with/without veliparib (ABT-888) in HER2- BRCA-associated locally advanced or metastatic breast cancer (BC). J Clin Oncol. 2015;33(28_suppl):155. https://doi.org/10.1200/jco.2015.33.28_suppl.155

133. Nakasone ES, Hurvitz SA, McCann KE. Harnessing the immune system in the battle against breast cancer. Drugs Context. 2018;7:212520. https://doi.org/10.7573/dic.212520

134. Bindra RS, Gibson SL, Meng A, et al. Hypoxia-Induced down-regulation of BRCA1Expression by E2Fs. Cancer Res. 2005;65(24):11597–11604. https://doi.org/10.1158/0008-5472.can-05-2119

135. Liu JF, Tolany SM, Birrer M, et al. Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur J Cancer. 2013;49(14):2972–2978. https://doi.org/10.1016/j.ejca.2013.05.020
136. Neckers L. Heat shock protein 90: the cancer chaperone. J Biosci. 2007;32(3):517–530. https://doi.org/10.1007/s12038-007-0051-y

137. Johnson N, Johnson SF, Yao W, et al. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc Natl Acad Sci. 2013;110(42):17041–17046. https://doi.org/10.1073/pnas.1305170110

138. Konstantinopoulos P, Moore KN, Sachdev JC, et al. Phase I/II study of niraparib plus pembrolizumab in patients with triple-negative breast cancer or recurrent ovarian cancer (KEYNOTE-162). J Clin Oncol. 2016;34(15_suppl):TPS5599-TPS. http://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.TPS5599

139. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol. 2018;15(5):273–291. https://doi.org/10.1038/nrclinonc.2018.28

140. Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014;11(7):385–400. https://doi.org/10.1038/nrclinonc.2014.83

141. Bahrami A, Khazaei M, Hasanzadeh M, et al. Therapeutic potential of targeting PI3K/AKT pathway in treatment of colorectal cancer: rational and progress. J Cell Biochem. 2018;119(3):2460–2469. https://doi.org/10.1002/jcb.25950

142. Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–529. https://doi.org/10.1056/NEJMoa1109653

143. Piccart M, Hortobagyi GN, Campone M, et al. Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2dagger. Ann Oncol. 2014;25(12):2357–2362. https://doi.org/10.1093/annonc/mdu456

144. Bitler BG, Watson ZL, Wheeler LJ, Behbakht K. PARP inhibitors: clinical utility and possibilities of overcoming resistance. Gynecol Oncol. 2017;147(3):695–704. https://doi.org/10.1016/j.gyno.2017.10.003

145. Matulonis UA, Wulf G, Barry W, et al. Abstract CT324: phase I of oral BKM120 or BYL719 and olaparib for high-grade serous ovarian cancer or triple-negative breast cancer: Final results of the BKM120 plus olaparib cohort. Cancer Res. 2015;75(15 Suppl.):CT324-CT. https://doi.org/10.1158/1538-7445.am2015-ct324