Spatial Variation of Tropospheric NO₂ Concentration During First Wave CoVID-19 Induced Lockdown Estimated From Sentinel-5 Precursor

Jayant N Tripathi (jntripathi@gmail.com)
University of Allahabad

Anil Kumar Singh
University of Allahabad Faculty of Science

Chandan Dey
AcSIR: Academy of Scientific and Innovative Research, Ghaziabad

Saumitra Mukherjee
Jawaharlal Nehru University

Research Article

Keywords: Nitrogen Dioxide, CoVID-19 Pandemic, Sentinel-5 Precursor

Posted Date: October 25th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-985606/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract
CoVID-19 pandemic has forced many countries to shut down their industries as most of these countries observed complete state-wide lockdown during the first wave of this contagious virus. Factories and vehicles on the road are a major source of nitrogen dioxide (NO₂), which is also one of the major air pollutants. The emission of NO₂ is considered as a good indicator of prevalent global economic activities as its predominant corollary affairs typically involve industrial operations and these emissions are evidently visible from space. Sentinel-5 Precursor (launched in July 2018), equipped with spectrometer Tropomoi (Tropospheric Monitoring Instrument), is a low-earth-orbit atmosphere mission satellite dedicated towards monitoring air pollution sensing remotely. This study is focused primarily on, estimation and variation of NO₂ emission over different parts of the world, before and during the first wave of CoVID-19 epidemic (07 weeks duration). It is found that in most of the countries during the lockdown period (7 weeks), air quality was cleaner by about 40 to 50 % over the last year, mainly due to the shutdown of industry and traffic activities. The technology is quite promising and provides a tool to access if a country or place followed complete lockdown.

Introduction
The rapid increase of population in the world has led to an anthropogenic impact on the natural environment of the Earth. Urbanization can be seen to have increased in the world, rapidly (Chen et al., 2014). During the last few decades, industrialization, energy consumption, transportation, motorization, economic-growth, and power plants, etc. of the countries have proliferated with time and turn out to be the main cause of air pollution (Mayer, 1999). Growth in population has an adverse effect on the concentration of NO₂ in the atmosphere (Mayer, 1999). Particulate matter (PM) (e.g., soot, dust, smokes, fumes, mists, etc.), NO₂, sulfur dioxide (SO₂), ozone (O₃), carbon dioxide (CO2) and carbon monoxide (CO) are major pollutants of the air and has an acute harmful effect on the health of human beings (Kampa and Castanas, 2008; Hains et al., 2010; Rivas et al., 2015; Boersma et al., 2011; Cheng, et al., 2013; Hoek et al., 2015; Krotkov et al., 2016; Cam et al., 2017; Liu et al., 2020a; Ulenga and Siziya, 2020; Lamptey and Serwaa, 2020; Anchordoqui, et al., 2020; Okunlola, et al., 2020). One of the major sources of NO₂, contributing to the air, is the combustion of fossil fuels such as coal, oil, and gases due to vehicles, power stations, and heating. In any case, the role of extraterrestrial impact on the vacillation of these gases cannot be excluded (Mukherjee 2013). In urban areas, automobile emissions contribute approximately 80% of the NO₂. Burning of petrol, metal-refining, coal-fired power stations based electricity generation, food processing units and other manufacturing industries are other sources of NO₂ contributing to the air (Kaplan et al., 2019). Above mentioned sources also contribute SO₂ to the air(Krotkov et al., 2016; Cam et al., 2017; Fioletov et al., 2020).

The CoVID-19 pandemic situation has caused lockdown in almost all the major countries of the world with the traffic and industrial activities suspended. Such a scenario creates an excellent opportunity for researchers to relatively access dynamic parameters; particularly the ones which are anthropogenic in
Several studies regarding relative variation of air quality before and during the lockdown has been carried with an emphasis on decrease in contaminant levels, such as the extent of the reduction of major pollutants, like carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in India and China during January to April, 2020 (Metya et al., 2020), variation of fine particulate matter (PM$_{2.5}$) and nitrogen dioxide (NO$_2$) in the continental United States (Berman and Ebisu, 2020), impacts on the air quality of São Paulo state, Brazil during lockdown (Nakada and Urban, 2020), affect of CoVID-19 lockdown on NO$_2$, O$_3$, PM2.5 and PM10 concentrations in Baghdad, Iraq (Hashim et al., 2020), etc. The present study is a contribution towards this body of literature with the results derived employing efficient and robust techniques.

The Copernicus Program which comes within the ambit of the European Space Agency operates a certain number of Earth perception satellites dedicated to measuring both the physical and Earth science parameters (Veefkind et al., 2012). Recently launched Sentinel-5 Precursor (Sentinel-5 P)satellite by the European Space Agency (October 2017), installed with Tropospheric Monitoring Instrument (TROPOMI), which senses in the shortwave infrared (SWIR), the near-infrared (NIR), the visible (VIS) and the ultraviolet (UV) spectral bands, is a low-earth-circle atmosphere crucial to observing air quality and air contamination (Veefkind et al., 2012; Eskes et al. 2019; van Geffen et al., 2019a; Inness et al. 2019). It completes near-global coverage in one day and has a high spatial-resolution of approximately 7×3.5 km2.

Sentinel, assembles various satellites which makes it one of the most important Earth observation programs. Key atmospheric constituents, such as nitrogen dioxide (NO$_2$), sulfur dioxide (SO$_2$), ozone (O$_3$), carbon monoxide (CO), methane (CH$_4$), formaldehyde (HCHO), aerosols and clouds are sensed by selected wavelengths range for TROPOMI installed on the Sentinel-5 P(Veefkind et al., 2012, Kaplan et al., 2019, van Geffen et al., 2019b). Copernicus Open Access Data Hub facilitates the freely downloadable near-real-time, offline and reprocessed data of the Sentinel-5 P. This study attempts to establish the effect of lockdown on the relative composition of NO$_2$ in the troposphere towards inferring significant improvement in air quality compared to last year using the Sentinel-5P data.

Data And Methods

The NO$_2$ data of the Sentinel-5 P, which was launched on 13 October 2017, were brought in to the public domain on 10 July 2018. A comparative study between the worldwide NO$_2$ emission in the present phase of 2020 and the same of 2019 was made using the Google Earth Engine tools. The correlation between the present pandemic and better air quality can be easily concluded from this study. It can be observed from the recently released satellite images by the European Space Agency that there has been a considerable decrease in the emission of NO$_2$ during this global crisis, which has led to a reduction in NO$_2$ spots in the atmosphere. From the study, it can be inferred that this decreased emission in specific regions is directly related to the decrease in human activities such as the use of motor vehicles, running of power plants and other industrial endeavors related to fossil fuel usage and economic activity, in those
particular regions (Fioletov et al., 2020; Smedt et al., 2018; Verhoelst et al., 2020; Timmermans et al., 2019). AMFv6 package has been used to derive Tropospheric NO2, VCDs of POMINO-TROPOMI (Figure 1) (Liu, et al., 2020)

Result And Discussion

COVID 19 Impact on worldwide NO2 Emission

In order to curb the transmission rate of the deadly virus and to flatten the curve of the spread of COVID-19 most countries have imposed restrictions such as shutting down offices, factories, schools, etc. and canceling all public events so as to avoid the possibility of any mass gathering which was bound to fan the spread even more. Many countries have requested their citizens to stay at home and to implement self-imposed travel restrictions, moving out of their houses only in case of emergencies or to facilitate absolute needs. As an obvious result of such lockdowns, there has been a considerable reduction in the road and air traffic which has further led to a reduction in emission of poisonous gases in the atmosphere due to a reduction in the consumption of fossil fuel and anthropogenic activities. Thus, in the light of this deadly epidemic it can be said that although there have been colossal and long-lasting social and economic impacts, the positive impact on the environment-howsoever temporary in nature-cannot be ignored.

Readings from the Sentinel-5 P from the Satelite imagery released by the European Space Agency clearly show that over the past 7 weeks, the levels of nitrogen dioxide (NO2) over cities and industrial clusters in the USA, Europe, and Asia were remarkably reduced, as evident from a comparison with last year. This decrease shall have several health benefits as NO2 released from automobiles, factories, etc. are a major cause of exacerbation respiratory illnesses such as asthma, bronchitis, and pneumonia and have decreased several thousand deaths related to respiratory deseases caused by the air pollution (Mirabellia et al., 2020; Venter et al., 2020; Annesi-Maesano et al., 2012; Szyszkowicz et al. 2014; Myllyvirta and Thieriot 2020; To et al. 2013; Watt 2006; Studnicka et al. 1997). Global tropospheric NO2 emission has been shown in Fig. 2 and 3 for the same period of the year 2019 and 2020, respectively.

Impact on the United States of America

It is observed that NO2 concentration has decreased by 50% in most parts of the North East, Southeast, and Midwest of the United States(US) during the studied time period (Fig. 4).From Fig. 4 it can be inferred that suspension of industry and activites during these seven weeks leadto reduction in consumption of fossil fuel and as a result it has improved the air quality of the US. Fig. 5 shows daily average NO2 emission of 2019 and 2020 for the North East, South East and Midwest regions of the US for the studied 7 weeks duration and confirms improvement in air quality.

Impact on European Countries
With the rapid escalation of CoVID-19 in Lombardy, Italy, the country which was the first in Europe to become a hotspot of the disease and declared complete lockdown on March 9, 2020, which was followed by Spain on March 14, issuing general confinement and further toughening the measures on 28 March; France declared complete lockdown on March 17 and Germany, rather, opted for strict social distancing measures since March 22, while the UK announced a complete lockdown on March 23 ("Coronavirus: What are the lockdown measures across Europe?" DW; 14.04.2020; and "When did the UK lockdown start and how long will it last? - Heart"; 28.05.2020). Comparing the mean NO\textsubscript{2} emissions for the identical months and dates for the year 2019 and 2020 (Fig. 6 & 7) a unique observation is observed in the world context that the patches of highest concentration, of about 200 mol/km2 fell sharply less than 150. In most of the other countries, although shades of concentrations lightened the kernel spots remained consistent. Declination of European nitrogen oxide emissions is unambiguously portrayed. Highest emission, during the lockdown, is spotted in Antwerp, Belgium followed by southwestern Cologne and Dortmund city of Germany and westerly neighboring Brussel, Netherland. These cities in the cluster, along with London, Paris, and Milan appear to emit the highest emission also during the year 2019. However, London, Paris, and Milan registered a very steep decline of NO\textsubscript{2} emission in 2020. The prominent decline is also observed in Barcelona and Madrid of Spain. The precipitous decline could be attributed to the fact that a significant portion of the NO\textsubscript{2} emission of most of these high yielding cities derives from traffic (Degraeuwe et al., 2017; Omrani et al., 2020; Ialongo et al., 2020; Ogen, 2020). It is estimated that more than 11,000 deaths have been avoided in Europe due to coal and oil consumption plummet during COVID-19 lockdown (Myllyvirta and Thieriot 2020; Ogen, 2020).

Impact on India

In India, it's evident from both the figures (Fig. 8 & 9) that a significant and essential drop in NO\textsubscript{2} emission is observed all over the country with the atypical exception in few northeastern states, where the subtle increase in the emission concentration is detected (Fig 8 & 9). The highest concentrations, during the lockdown period, are conspicuous to the coal excavated central-eastern sectors, while the industrial belt of Gujrat-Maharashtra appears to indicate reduced NO\textsubscript{2} emission by more than 70%. Similar depletion is also observed in the central and southern states where the blistering NO\textsubscript{2} concertation zones from 2019 appears mildewed or even nullified. The area in and around Delhi, considered as one of the worst air quality index cities by the World Meteorological Organization, has seen a significant drop in NO\textsubscript{2} release. As such, all the hotspots of nitrogen oxides (Ghude et al., 2008, Ghude et al., 2011) clearly show dramatic declination. The uninhabited or sparsely populated northern regions, quintessentially, show no difference. The temporal shutdown of industries and less traffic explains the considerable decrease, while for the coal-bearing zones, emission may be expected even without anthropogenic interventions. (Reference can be added)

Impact on China
The most subtle change in NO$_2$ concentration, across the globe, is observed in China (Fig. 10). While NO$_2$ emanation drastically declined in most of the industrial and populated cities across the globe, Beijing and its adjacent northern cluster of cities recorded the highest emanation in the world at a time when, almost, the whole world was under a lockdown or restricted public activity. Here, the efficacy of time series evaluation (Fig. 11) plays a key role in distinguishing and elucidating the fall in emission. No perceptible variation in NO$_2$ emission could be traced from the uninhabited terrains. In a nutshell, the NO$_2$ emanating sources were actively functioning in China as usual years, as evidenced by the high emissions stemming from industrially captivated Beijing and its neighbored regions, with the remarkable exception of the Hubei province. With this premise, it may be inferred that China, well-nigh, operated its traffic and effluent emanating industries conventionally, diametric to global scenario. Incidentally, the prime reason for the eccentric pattern in global NO$_2$ emission stems from China (Liu et al., 2020b; Ding, et al., 2020).

Further, the Hubei province is studied with supplementary inclusion of November and December 2019 and January to April 2020.

Impact on Wuhan (China)

Even as the scheming decline in NO$_2$ emission is observed in China, the Hubei Province with Wuhan as its capital city, where the CoVID-19 case reportedly emerged for the first time (Lin et al., 2020), however, recorded a sharp fall. Such contrasting variation within similar geographical expanses prompted a localized study of mean NO$_2$ emission in Hubei province. It is evident from the map that in January 2020 lowest ever emission is detected which sluggishly increased over the two months. Now, it is imperative to note that public traffic was suspended within Wuhan city on 23 January (Lin et al., 2020), showing stark inconsistency with the NO$_2$ emission findings as shown in the map (Fig 12) and time-series variation (Fig 13).

Ideally, the declining volume of NO$_2$ for a week could never average out the higher emission of the remaining three weeks to produce the lowest ever emission volume for the entire month of January 2020. However, the emissions were typically high during November and December 2019. The discordant correlation suggests that restriction in public traffic was imposed well before the last week of January, as known widely across the globe.

Conclusion

The pandemic brought about by the novel Corona Virus-2019, known for causing one of the most contagious diseases in the recent past, has paralyzed several aspects of day-to-day life. Most importantly, from a broader perspective, it has inflicted deceleration in global economic growth. While the pandemic meted out multifaceted abominate repercussions, it Ironically engaged mankind to contemplate on the environmental exploitation due to industrialization with vivid and life-size examples and recognize climate change. This paper scientifically documents one such example in the form of depletion in NO$_2$ emission in some of the major developed and developing countries of the world due to
lockdown or restricted public activity. In presenting the moderate to the steep decline in NO$_2$ concentrations in major cities, the results also portray a grim picture of how most of the public activities are still dependent on processes which yield environmentally hazardous effluents even after widespread awareness on promoting a switch over to the ‘clean and green’ technologies.

Declarations

Acknowledgements:

(To be written after the review and before the final publication)

(A) The Data Availability Statement (DAS):

Data was downloaded from the sites mentioned in the text and processed. There is no data uploaded to the journal.

(B) Declaration of interest:

This is to declare by all the authors that no financial and personal relationships directly or indirectly with other people or organizations have been taken and there is no conflict of interest directly or indirectly with other people or organizations.

(C) Funding:

This is to declare that no fund has been received by any individual or organization to support this research. This is not applicable in this research.

(D) Authors’ contributions:

Conceptualization and design: Jayant Nath Tripathi, Anil Kumar Singh;

Methodology: Anil Kumar Singh, Jayant Nath Tripathi;

Formal analysis and investigation: Anil Kumar Singh;

Writing - original draft preparation: Anil Kumar Singh, Jayant Nath Tripathi and Chandan Dey and all authors commented on previous versions of the manuscript;

Writing - review and editing: Chandan Dey, Saumitra Mukherjee;

Supervision: Jayant Nath Tripathi;

All authors read and approved the final manuscript.

References
1. Anchordoqui, L. A., Dent, J. B., Weiler, T. J., 2020, A Physics Modeling Study of COVID-19 Transport in Air. SciMedicine Journal, 2, 83-91. http://dx.doi.org/10.28991/SciMedJ-2020-02-SI-7

2. Annesi-Maisano, I., Marion Hulin, M., Lavaud, F., Raherison, C., Kopferschmitt, C., de Blay, F., Charpin, D.A., Denis, C., 2012. Poor air quality in classrooms related to asthma and rhinitis in primary schoolchildren of the French 6 Cities Study, Thorax 2012; 67:682-688. DOI:10.1136/thoraxjnl-2011-200391.

3. Berman, J.D. and Ebisu, K., 2020. Changes in US air pollution during the COVID-19 pandemic. Science of the Total Environment, 739, p.139864.

4. Boersma, K. F., Eskes, H. J., Dirksen, R. J., van der A, R. J., Veefkind, J. P., Stammes, P., Huijnen, V., Kleipool, Q. L., Sneep, M., Claas, J., Leitao, J., Richter, A., Zhou, Y., Brunner, D., 2011. An improved tropospheric NO\textsubscript{2} column retrieval algorithm for the Ozone Monitoring Instrument, Atmos. Meas. Tech. Discuss., 4, 2329–2388, 2011.

5. Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C., Krotkov, N. A., 2017. A decade of global volcanic SO\textsubscript{2} emissions measured from space, Scientific Reports, 7:44095, DOI: 10.1038/srep44095.

6. Chen, M., Zhang, H., Liu, W., Zhang, W., 2014. The Global Pattern of Urbanization and Economic Growth: Evidence from the Last Three Decades. PLoS One 9, e103799. https://doi.org/10.1371/journal.pone.0103799

7. Cheng, M., Jiang, H., Guo, Z., Zhang, X., Lu, X., 2013. Estimating NO\textsubscript{2} dry deposition using satellite data in eastern China, International Journal of Remote Sensing, 34:7, 2548-2565, DOI: 10.1080/01431161.2012.747019.

8. Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S., 2017. Impact of passenger car NO\textsubscript{X} emissions on urban NO\textsubscript{2} pollution–Scenario analysis for 8 European cities. Atmos. Environ. 171, 330–337.

9. Ding, J., van der A, R.J., Eskes, H.J., Milling, B., Stavrakou, T, van Geffen, J.H.G.M., Veefkind, J.P., 2020. Chinese NO\textsubscript{X} emission reductions and rebound as a result of the COVID-19 crisis quantified through inversion of TROPOMI NO\textsubscript{2} observations, Geophysical Research Letters (submitted), https://doi.org/10.1002/essoar.10503145.1.

10. Eskes, H., van Geffen, J., Boersma, F., Eichmann, K.U., Apituley, A., Pedergnana, M., Sneep, M., Veefkind, J.P., Loyola, D., 2019. Sentinel-5 precursor/TROPOMI Level 2 Product User Manual, Nitrogen dioxide, S5P-KNMI-L2-0021-MA, CI-7570-PUM.

11. Fiolet, V., McLinden, C.A., Griffin, D., Theys, N., Loyola, D.G., Hedelt, P, Krotkov, N.A., Can, L., 2020. Anthropogenic and volcanic point source SO\textsubscript{2} emissions derived from TROPOMI onboard Sentinel-5 Precursor: first results, Atmos. Chem. Phys., 20, 5591–5607.

12. Ghude, S.D., Fadnavis, S., Beig, G., Polade, S.D., Van Der A, R.J., 2008. Detection of surface emission hot spots, trends, and seasonal cycle from satellite-retrieved NO\textsubscript{2} over India. J. Geophys. Res. Atmos. 113.
13. Ghude, S.D., Kulkarni, P.S., Kulkarni, S.H., Fadnavis, S., Van Der A, R.J., 2011. Temporal variation of urban NOx concentration in India during the past decade as observed from space, International Journal of Remote Sensing, 32:3, 849-861, DOI: 10.1080/01431161.2010.517797.

14. Hains, J.C., Boersma, K.F., Kroon, M., Dirksen, R.J., Cohen, R.C., Perring, A.E., Bucsela, E., Volten, H., Swart, D.P.J., Richter, A., Wittrock, F., Schoenhardt, A., Wagner, T., Ibrahim, O.W., van Roozendae, M., Pinardi, G., Gleason, J.F., Veefkind, J.P., Levelt, P., 2010. Testing and improving OMI DOMINO tropospheric NO$_2$ using observations from the DANDELIONS and INTEX-B validation campaigns, J. Geophys. Res., 115, D05301, DOI:10.1029/2009JD012399.

15. Hashim, B.M., Al-Naseri, S.K., Al-Maliki, A. and Al-Ansari, N., 2020. Impact of COVID-19 lockdown on NO2, O3, PM2.5 and PM10 concentrations and assessing air quality changes in Baghdad, Iraq. Science of the Total Environment, 754, p.141978.

16. Hoek, G., Eeftens, M., Beelen, R., Fischer, P., Brunekreef, B., Boersma, K.F., Veefkind, P., 2015. Satellite NO$_2$ data improve national land-use regression models for ambient NO$_2$ in a small densely populated country, Atmospheric Environment 105, 173-180, doi:dx.doi.org/10.1016/j.atmosenv.2015.01.053.

17. https://www.dw.com/en/coronavirus-what-are-the-lockdown-measures-across-europe/a-52905137 (Coronavirus: What are the lockdown measures across Europe?).

18. https://www.heart.co.uk/news/how-long-uk-lockdown-last/ (When did the UK lockdown start and how long will it last? - Heart).

19. Ialongo, I., Virta, H., Eskes, H., Hovila, J., Douros, J., 2020. Comparison of TROPOMI/Sentinel-5 Precursor NO$_2$ observations with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020.

20. Inness, A., Ribas, R., Engelen, R., 2019. The use of Sentinel-5P air quality data by CAMS, ECMWF Newsletter No. 159 – Spring 2019, pp. 25-30.

21. Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environ. Pollut. doi.org/10.1016/j.envpol.2007.06.012.

22. Krotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S.V., Swartz, W.H., Bucsela, E.J. Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P., Levelt, P.F., Fioletov, V.E., Dickerson, R.R., He, H., Lu, Z., Streets, D.G., 2016. Aura OMI observations of regional SO2 and NO$_2$ pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605–4629, 2016.

23. Lamptey, E., and Serwaa, D., 2020 The Use of Zipline Drones Technology for COVID-19 Samples Transportation in Ghana, HighTech and Innovation Journal, 01, 67-71. http://dx.doi.org/10.28991/HIJ-2020-01-02-03

24. Lin, Q., Zhao, S., Gao, D., Lou, Y., Yang, S., Musa, S.S., Wang, M.H., Cai, Y., Wang, W., Yang, L., 2020. A conceptual model for the outbreak of Coronavirus disease 2019 (COVID-19) in Wuhan, China with individual reaction and governmental action. Int. J. Infect. Dis.

25. Liu, F., Duncan, B.N., Krotkov, N.A., Lamsal, L.N., Beirle, S., Griffin, D., McLinden, C.A., Goldberg, D.L., Lu, Z., 2020a. A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide, Atmos. Chem. Phys., 20, 99–116.
26. Liu, F., Page, A., Strod1, S.A., Yoshida, Y., Choi, S., Zheng, B., Lamsal, L.N., Li, C., Krotkov, N.A., Eskes, H., van der A, R., Veefkind, P., Levelt, P.F., Hauser, O.P. Joiner, J., 2020b. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19, Science Advances, (published on June 12, 2020), DOI:10.1126/sciadv.abc2992.

27. Liu, M., Lin, J., Kong, H., Boersma, K.F., Eskes, H., Kanaya, Y., He, Q., Tian, X., Qin, K., Xie, P., Spurr, R., Ni, R., Yan, Y., Weng, H., Wang, J., 2020, A new TROPOMI product for tropospheric NO2 columns over East Asia with explicit aerosol corrections, Atmospheric Mesurement Techniques, DOI: doi.org/10.5194/amt-2019-500

28. Mayer, H., 1999. Air pollution in cities, in Atmospheric Environment. pp. 4029–4037, doi.org/10.1016/S1352-2310(99)00144-2.

29. Metya, A., Dagupta, P., Halder, S., Chakraborty, S. and Tiwari, Y.K., 2020. COVID-19 lockdowns improve air quality in the South-East Asian regions, as seen by the remote sensing satellites. Aerosol and Air Quality Research, 20(8), pp.1772-1782.

30. Mirabellia, M.C., Ebelt, S., Damon, S.A. 2020. Air Quality Index and air quality awareness among adults in the United States, Environmental Research, 183, 109185.

31. Mukherjee, S., 2013. Extraterrestrial Influence on Climate Change, ISBN 978-81-322-07290. (https://link.springer.com/book/10.1007/978-81-322-0730-6).

32. Mulenga, D., & Siziya, S., 2020, Indoor Air Pollution Related Respiratory Ill Health, a Sequel of Biomass Use." to the literature review, SciMedicine Journal, 1, 30-37, http://dx.doi.org/10.28991/SciMedJ-2019-0101-5

33. Myllyvirta, L., Thieriot, H., 2020. 11,000 air pollution-related deaths avoided in Europe as coal, oil consumption plummet, Centre for Research on Energy, and Clean Air.

34. Nakada, L.Y.K. and Urban, R.C., 2020. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Science of The Total Environment, p.139087.

35. Ogen, Y., 2020. Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality, Science of the Total Environment, 726 138605, doi.org/10.1016/j.scitotenv.2020.138605.

36. Okunlola, M. A., Lamptey, E., Senkyire, E. K., Dorcas, S., Dooshima, B.A., 2020, Perceived Myths and Misconceptions about the Novel COVID-19 Outbreak, 3, 108-117. http://dx.doi.org/10.28991/SciMedJ-2020-0203-1

37. Omrani, H., Omrani, B., Parmentier, B., Helbich, M., 2020. Spatio-temporal data on the air pollutant nitrogen dioxide derived from Sentinel satellite for France, Data in Brief, 28, 105089, doi.org/10.1016/j.dib.2019.105089.

38. Rivas, M. B., Veefkind, P., Eskes, H., Levelt, P., 2015. OMI tropospheric NO2 profiles from cloud slicing: constraints on surface emissions, convective transport, and lightning NOx. Atmos. Chem. Phys., 15, 13519–13553, DOI:10.5194/acp-15-13519-2015.

39. Smedt, I.D., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Richter, A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H., van Geffen, J.,
Boersma, K.F., Veefkind, P., 2018. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project, Atmos. Meas. Tech., 11, 2395–2426.

40. Studnicka, M., Hackl, E., Pischinger, J., Fangmeyer, C., Haschke, N., Kuhr, J., et al. (1997). Traffic-related NO$_2$ and the prevalence of asthma and respiratory symptoms in seven year olds. European Respiratory Journal, 10(10), 2275–2278.

41. Szyszkwicz, M., Kousha, T., 2014. Emergency department visits for asthma in relation to the Air Quality Health Index: A case-crossover study in Windsor, Canada, Can J Public Health, 105(5), e336-e341.

42. Timmermans, R., Segers, A., Curier, L., Abida, R., Attié, J.L., Amraoui, L.E., Eskes, H., de Haan, J., Kujanpää, J., Laho, W., Nihuis, A.O., Quesada-Ruiz, S., Ricaud, P., Veefkin, P., Schaap, M., 2019. Impact of synthetic space-borne NO$_2$ observations from the Sentinel-4 and Sentinel-5P missions on tropospheric NO$_2$ analyses, Atmos. Chem. Phys., 19, 12811–12833, doi.org/10.5194/acp-19-12811-2019.

43. To, T., Shen, S., Atanferu, E.G., Guan, J., McLimont, S., Stocks, B., Licskai C., 2013. The Air Quality Health Index and Asthma Morbidity: A Population-Based Study, Environmental Health Perspectives, 121, 46-52.

44. van Geffen, J., Boersma, K.F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., Veefkind, J.P., 2019b. S5P/TROPOMI NO$_2$ slant column retrieval: method, stability, uncertainties, and comparisons against OMI, Atmospheric Measurement Techniques, doi.org/10.5194/amt-2019-471.

45. van Geffen, J.H.G.M., Eskes, H.J., Boersma, K.F., Maasakkers, J.D., Veefkind, J.P., 2019a. TROPOMI ATBD of the total and tropospheric NO$_2$ data products, S5P-KNMI-L2-0005-RP, CI-7430-ATBD.

46. Veefkind, J.P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., Claas, J., Eskes, H.J., de Haan, J.F., Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R., Visser, H., Levelt, P.F., 2012. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality, and ozone layer applications. Remote Sens. Environ. 120, 70–83. https://doi.org/10.1016/j.rse.2011.09.027.

47. Venter, Z. S., Aunan, K., Chowdhury, S., Lelieveld, J., 2020. COVID-19 lockdowns cause global air pollution declines with implications for public health risk, doi.org/10.1101/2020.04.10.20060673.

48. Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.C., Eskes, H.J., Eichmann, K.U., Fjæraa, A.M., et al., 2020. Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO$_2$ measurements with the NDACC ZSL-DOAS, MAX-DOAS, and Pandonia global networks, Atmospheric MeasurementTechniues, (Preprint. Discussion started: 26 May 2020), doi.org/10.5194/amt-2020-119.

49. Watt, J. 2006. Doctors blame air pollution for China's asthma increases, World Report, 368, 719-720.

Figures
Figure 1

Flowchart of the POMINO-TROPOMI algorithm (after Liu, et al., 2020).
Figure 2

NO2 Emission over the world during 2019 (20 March to 25 April)
Figure 3

NO2 Emission over the world during 2020 (20 March to 25 April)

Figure 4
NO2 Emission over the US during 2020 and 2019 (20 March to 25 April)

Figure 5

NO2 Emission time series over the US during 2019 & 2020 (20 March to 25 April)

Figure 6

NO2 Emission over the European countries during 2020 and 2019 (20 March to 25 April)
Figure 7

NO2 Emission time series over the Germany, France & Italy during 2019 & 2020 (20 March to 25 April)
Figure 8

NO2 Emission over India during 2020 and 2019 (20 March to 25 April)

Figure 9

NO2 Emission time series over India during 2019 & 2020 (20 March to 25 April)
Figure 10

NO2 Emission over China during 2020 and 2019 (20 March to 25 April)

Figure 11

NO2 Emission time series over China during 2018-19 & 2019-20 (1 December to 25 April)
Figure 12

NO2 Emission over Wuhan city from 2019 to 2020 (November to April)

Figure 13

NO2 Emission time series over Wuhan during 2018-19 & 2019-20 (1 December to 25 April)