Supporting Information

New insights into the deactivation mechanism of V$_2$O$_5$-WO$_3$/TiO$_2$ catalyst during selective catalytic reduction of NO with NH$_3$: Synergies between arsenic and potassium species

Lin Li a,b, Lin Chen a,b, Ming Kong a,b,*, Qingcai Liu a,b, Shan Ren a,b

a Engineering Research Center for Energy and Environment of Chongqing, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

b Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials, Chongqing University, Chongqing 400044, PR China

a,b,* Corresponding Author: Ming Kong (M. Kong), e-mail: ming.kong@cqu.edu.cn

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019

Fig. S1 Concentration of outlet N$_2$O

Reaction condition: NO=NH$_3$=500 ppm, O$_2$=5%, total flow rate=500 ml/min, GHSV=12,000 h$^{-1}$.