Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19

Nicholas Stoy*

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom

Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the “cytokine storm” of COVID-19.

Keywords: COVID-19, IRAK4, IRF5, M1 macrophages, cytokine storm, Pellino-1, innate immunity, adaptive immunity

INTRODUCTION

Effective treatments are required for COVID-19 hyperinflammatory syndrome, occurring characteristically 7–14 days after first symptoms (1) and variously described as “macrophage activation syndrome” (2), “cytokine storm” (3) or “acute respiratory distress syndrome” (4). Its immunological hallmarks are excessive elevation of predominantly proinflammatory cytokines, chemokines (5), and other bioactive molecules, such as HMGB1 (6) and reactive oxygen species (7). Upregulated cytokines include IL-6, TNF-α, IFN-γ, IL-1β, IL-15, IL-23, and IL-10, and chemokines, CXCL8(IL-8), CXCL9(MIG), CXCL10(IP10), CCL2(MCP-1), CCL3(MIP-1α), CCL5(RANTES), CCL7(MCP-3), CCL8(MCP-2), CCL11(eotaxin-1), and CCL20(MIP-3α) (1, 2, 8–11). This review examines the role of IRAK4 and IRF5 in the evolution and modulation of the immune response to SARS-CoV-2 and whether IRAK4 or IRF5 inhibitors could have a role in treating the hyperinflammatory phase (12–14).

OVERVIEW OF IRAK4 AND IRF5 SIGNALING

IRAK4, recruited with other binding partners to MYD88 (Figure 1) forms the myddosome (14–16), which is activated by ligands of the IL-1 receptor or TLRs that bind MYD88 (13, 17, 18).
FIGURE 1 | Overview of the IRAK4-IRF5 signaling axis and some ligands of possible relevance to SARS-CoV-2 immunopathogenesis.
IRAK4 is recruited to the complex with IRAK1 and TRAF6 (19). On receptor activation IRAK4 homodimerizes, autophosphorylates and subsequently phosphorylates IRAK1 (20–22). These kinases are ultimately responsible for activation of IRF5, requiring phosphorylation of critical C-terminal serines (23, 24). Another component of IRF5 activation is its K63polyubiquitination by TRAF6 (25, 26). The inducible (and IRAK1-phosphorylated) ubiquitin ligase Pellino-1, with E2-conjugating enzymes (27), reciprocally K63polyubiquinates both IRF5 and IRAK1/4 but, conversely, kinase-active IRAK1/4 mediates degradative polyubiquitination of Pellino-1 (27–29).

Distal to the mydosome the signaling pathway bifurcates into IRF5- and NF-kB-activating branches (30). At commencement of the IRF5 branch, activated IRAK4/IRAK1 phosphorylates the kinase TAK1 (31), which in turn phosphorylates IKKβ (24, 32); finally, IKKβ phosphorylates IRF5 (33, 34) facilitating its dimerization and translocation to the nucleus (35). Whereas, IKKβ is the archetypical kinase activator of NF-kB by phosphorylating IκBα, it is important to appreciate that kinase activity of IRAK4 is not essential for NF-kB activation by the mydosome route (35); however, this does not preclude an IRAK4 scaffolding function (20). Crucially, therefore, blocking IRAK4 with a specific kinase inhibitor abolishes IRF5 activation but still permits NF-kB activation by other means, either by IKKβ itself via this or other signaling pathways (31), or using other kinases such as a MEKK3-dependent pathway (17, 30, 35, 36). Speculatively, endosomal TLR3, responsive to dsRNA, may signal independently of MYD88 to IRF5 through TRAF6 using the adaptor TRIF (as well as to IRF3/7 via TRAF3) and may synergise with other TLRs (37, 38, 183); TLR4, translocated to endosomes, may also signal using TRAM-TRIF instead of MYD88 (19, 39–41, 183). IRF5 homodimers complex with CBP/p300 to initiate the IRF5 transcriptome synergistically with NF-kB (42, 43).

Activation of IRF5 is tightly controlled. Inducible IRAK-M inhibits assembly of the IRAK1-IRAK4-TRAF6 complex both directly, and indirectly by induced negative feedback (44–46); Lyn kinase, in dendritic cells (DCs), binds IRF5, inhibiting its K63polyubiquitination and phosphorylation, but not affecting the NF-kB branch (47); IRF8 competes with IRF5 at promoters, blocking its action (48, 49); and KAP1/TRIM28 is an IRF5 transcriptional co-repressor (50). TLR5 7-9 require at least two adapter proteins, TASL and SLC15A4, at the endosomal membrane, to engage the IRAK4-IRF5 pathway (51).

In responding to viruses, activated IRF5 homodimers bind with low affinity to “viral response elements” inducing primarily IFNA type I interferons (52). However, IRF5 binds strongly to the regulatory loci of other IRF5-targetted genes, such as IFNB, CXCL10, IL-10 (52), IL-12, and IL-23 (53), although in the case of anti-inflammatory IL-10, IRF5 is not directly responsible for its elevation in “cytokine storm,” being inhibitory at the IL-10 promoter (53, 54). Mechanistically, a challenging complexity of variables influence IRAK4-IRF5 pathway activation outcomes (55): these include different IRF5 dimerization partners—including homodimerization and IRF7 (56); functionally different IRF5 isoforms, as investigated in plasmacytoid DCs (pDCs) (57); IRF5 interacting with different transcription factors (17), most critically the NF-kB subunits, p50 (48, 58), and/or p65 (REL) (41, 59, 60); different cellular localizations, notably monocytes, macrophages, pDCs, and B cells (55, 58, 61); different triggers of pathway activation, for e.g., viral infection or autoimmunity; inhibition of the IRF5-mediated activation of IFN-β by the IκKα pathway (62); and differences between murine and human cells (63)—all beyond the scope of this review. Nevertheless, despite these many complicating factors, the IRAK4-IRF5 axis consistently polarizes monocytes/macrophages toward the proinflammatory M1 (49, 53, 64) phenotype, displaying a similar innate cytokine/chemokine profile as in “cytokine storm” and indicating a potential therapeutic role for IRAK4 or IRF5 inhibition.

DEFICIENCY OR INHIBITION OF IRAK4 OR IRF5 AND VIRAL INFECTIONS

A proinflammatory response is characteristic of the innate immune system’s reaction to microbial infection. Endotoxin tolerance in monocytes blunts this response by interfering with recruitment and activation of IRAK4 at the MYD88 receptor complex, inhibiting K63polyubiquitination of IRAK1 and TRAF6, and compromising IRAK1-TRAF6 function and TAK1 activation (65). Mice lacking IRAK4 exhibit deficient IL-1 and TLR signaling, are resistant to LPS and cannot induce TNF-α or IL-6 (17, 66, 67). The IRAK4 inhibitor, chlorogenic acid, extracted from lonicerae flos, protects mice from endotoxic shock: chlorogenic acid inhibits autophosphorylation of IRAK4 (68); however, this does not preclude an IRAK4-IRF5 interaction. The IRAK4 inhibitor, chlorogenic acid, extracted from lonicerae flos, protects mice from endotoxic shock: chlorogenic acid inhibits autophosphorylation of IRAK4 (68); however, this does not preclude an IRAK4-IRF5 interaction. A proinflammatory response is characteristic of the innate immune system’s reaction to microbial infection. Endotoxin tolerance in monocytes blunts this response by interfering with recruitment and activation of IRAK4 at the MYD88 receptor complex, inhibiting K63polyubiquitination of IRAK1 and TRAF6, and compromising IRAK1-TRAF6 function and TAK1 activation (65). Mice lacking IRAK4 exhibit deficient IL-1 and TLR signaling, are resistant to LPS and cannot induce TNF-α or IL-6 (17, 66, 67). The IRAK4 inhibitor, chlorogenic acid, extracted from lonicerae flos, protects mice from endotoxic shock: chlorogenic acid inhibits autophosphorylation of IRAK4 (68); however, this does not preclude an IRAK4-IRF5 interaction.

In the same way that endotoxic shock is abrogated by inhibiting IRF5, “cytokine storm” in viral infection can also be suppressed by IRF5 inhibition, as shown for influenza A (26, 70). Thus, IRF5 inhibition protects from hyperinflammation whether induced by viral or bacterial infection, the latter a common complication of acute respiratory distress syndrome, although its incidence in COVID-19 is only just being investigated (71–73, 184).

THE IMMUNOPATHOGENESIS AND CLINICAL CORRELATES OF SARS-CoV-2 INFECTION

Figure 2 summarizes how SARS-CoV-2 innate immune activation is linked to specific T cell (cytotoxic and memory) and B cell (antibody) adaptive immune responses, comprising the substantive immunological reaction necessary for viral elimination (53, 54). COVID-19 immunopathogenesis divides conveniently into three overlapping interactive phases with sequential involvement of epithelial cells, innate immune cells and adaptive immune cells. Nasal and alveolar type II epithelial cells express high levels of ACE2, the SARS-CoV-2 entry receptor, and respond first. Epithelial immune activation is mediated by IRF3 phospho-dimerisation, with a lesser contribution from IRF5 phospho-dimerization, and NF-kB p65 as coactivator.
FIGURE 2 | With burgeoning knowledge of immune cell phenotypes in COVID-19, particularly from single-cell transcriptomics, and despite much heterogeneity amongst T-cell clusters, it is now possible to attempt a broad generalization of (at least some) changes in innate and adaptive immunity during COVID-19 progression.

In this schematic representation, a suppressed type I interferon response in epithelial cells, IRF5-dependent proinflammatory macrophage and DC polarization, and an...
(59, 60, 75). Critically, the type I interferon component of the epithelial cell proinflammatory response is selectively suppressed by proliferating SARS-CoV-2 (74), so disrupting secondary expression of interferon-stimulated genes (ISGs) including the potent IRF3 dimerisation partner IRF7 (75). Epithelial cells favor IFN-α expression but this is a less effective inducer of ISGs than type I interferons (76). The viral MDA5 RNA-sensor requires kinases TBK1 or IKKε to activate IRF3 (77, 78); the same kinases can activate IRF5. By contrast, IKKβ, a strong activator of IRF5, fails to activate IRF3 (61) In phase two, epithelial chemokines attract a large influx of innate immune cells comprising DCs, natural killer (NK) cells and neutrophils (11, 79–81); IRF5 is considered the main orchestrator of this innate response (61). DCs are pivotal in communicating with the adaptive immune system to initiate phase three: programming of adaptive immunity. Phase three culminates either in viral clearance and COVID-19 resolution or complications such as "cytokine storm," clotting disorders, cardiovascular complications or multi-organ failure. Involvement of adaptive immunity adds further cytokines to the mix. IL-17, the product of Th-17 cells, is triggered by DCs expressing IL-23 (increased with age). Induction of this and other DC cytokines IL-1β, IL-6, IL-12, and TNF-α is again dependent on IRF5, usually with NF-kB coactivators (53, 58, 59, 61, 82–84). Indeed, recent evidence suggests IRF5 may even vie with IFN7 for the title ‘master regulator,’ if not of type I interferons, at least of most other DC cytokines (42, 52, 75, 85–88); furthermore, there is mutual inhibition between these two IRFs (56). Th1 cells are activated by the innate cytokine IL-12 from DCs and secrete IFN-γ, as do NK cells. However, in COVID-19 multifunctional activated T cells secreting two of the three cytokines IFN-γ, IL-2, and TNF-α were reduced whilst T cells producing all three were non-functional (89).

Innate immunity is relatively preserved during aging and constitutively upregulated in many comorbid conditions exacerbating COVID-19, albeit stimulating a defective adaptive response. In aging, pDCs retain most of the proinflammatory phenotype, but type I and type III interferons are impaired (90), as are interactions with T and B cells for antigen presentation, primarily due to T and B cell dysfunction, exacerbated by SARS-CoV-2 (91). IRF5 is constitutively expressed by pDCs, especially in females who produce more IFN-α on TLR stimulation than males, making dysregulation of immune responses in COVID-19 in females less likely (92, 93). IRF5-dependent IFN-β expression in DCs is demonstrated in IRF5-knock-out mice, which exhibit poor interferon responses to TLR stimulation or microbial infection (49, 94). Overall, DCs adopt a proinflammatory phenotype on contact with SARS-CoV-2, a tendency exacerbated by increasing age (91, 95). Cellular correlates of poor outcome in COVID-19 are neutrophilia (3), low CD4+ and CD8+ T cells and general lymphopenia (96, 97), combined with increased markers of T cell exhaustion (PD-1 and TIM-3) and senescence (CD57) and a specific cytokine signature (10, 73, 98–100).

B cells depend on IRF5-induced Blimp-1 for differentiation into plasma cells, responsible for long-lasting antibody immunity (101). In SARS-CoV-2 “cytokine storm,” B cell function is compromised by reduced total circulating B cells, reduced class switching from IgM to IgG and increased plasmablasts and transitional cells, suggestive of rapid B cell proliferation and exhaustion, probably related to excessive IL-6 and TNF-α (102).

Platelets are integral components of the immune system. Viruses can enter platelets, activate endosomal TLRs (TLR7/TLR9) and downstream MYD88-IRAK4-IRAK1-IKKβ (and presumably IRF5), possibly contributing to COVID-19 thrombocytopenia and clotting irregularities (103, 104).

THE METABOLIC DIMENSION AND COVID-19 COMORBIDITIES

Maintaining the M1 phenotype is energy-consuming and achieved by a “metabolic switch” from oxidative to glycolytic metabolism during M2-to-M1 polarization (41). Viral infections increase glucose metabolism in macrophages, involving activation of the hexosamine biosynthesis pathway and associated enzyme O-GlcNAc transferase, as already proposed for SARS-CoV-2 (105). Thus, increased activation of IRF5 by K63polyubiquitination may turn out to provide an important link between so-called “metabolic inflammation” and increased severity of the cytokine response in COVID-19 (105, 106). Infection with influenza virus markedly increases GlcNAcylation of IRF5 at serine 430 in human macrophages, which is essential for K63polyubiquitination of the same residue that activates IRF5, thus promoting proinflammatory cytokine expression and possibly increased viral replication (26). Inflammation is a well-recognized driver of the metabolic syndrome, manifest clinically in obesity, type II diabetes and other conditions in which insulin resistance occurs. Blood sugar instability associates with IRF5 upregulation and M1 phenotype in adipose tissue macrophages, including elevation of the cardiovascular risk factor, matrix metalloproteinase-9. TLR4 is also upregulated and it has even been hypothesized that increased proinflammatory cytokines could be triggered by endogenous TLR4 ligands, presumably...
through IRAK4-IRF5 signaling (41). IRF5 knock-out mice exhibit improved glucose tolerance and reduced excess body fat. The M1 macrophage cytokine and chemokine profile of adipose tissue in obesity and diabetes, signifying chronic inflammation, is in many respects similar to a muted version of cytokine storm. Thus, adipose IRF5 transcripts in obesity correlate positively with TNF-α, IL-1β, IL-6, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP10, CCL2/MCP1, CCL5, and CCL7/MCP3, all of which can be elevated in COVID-19 "cytokine storm" (107, 108); positive correlations with IL-2 and IL-12 have been reported by the same group. TLR4, TLR7, and TLR8 are increased in obesity and correlate with IRF5 expression, but whether this occurs in SARS-CoV-2 infection is unknown (109, 110).

There is increased Pellino-1 expression in adipose tissue macrophages in obesity. Pellino-1 exacerbates glucose intolerance in obese mice through K63polyubiquitination of IRF5, promoting M1 macrophage polarization (106); the adverse proinflammatory skewing of innate immunity is further compounded by Pellino-1 inhibition of tolerogenic M2 macrophages by K63polyubiquitination of IRAK1 (111). Correspondingly, in acute viral respiratory infections, there is an association between elevated Pellino-1 and proinflammatory cytokines (112).

Chronic innate proinflammatory drive to the adaptive immune system in metabolic inflammation leads eventual to T cell exhaustion. Changes in T and B cell function in metabolic inflammation, as well as in the elderly and, more acutely, in COVID-19 are all broadly similar, in that innate function is relatively preserved, but T cell and B cell compartments exhibit features of "exhaustion" or "senescence" (73, 113, 114). Therefore, pre-existing metabolic inflammation across a variety of chronic conditions presages an unfavorable course and outcome of COVID-19 (115, 116).

DISCUSSION

The well-established paradigm that innate immunity programs adaptive immunity applies not only in microbial infection (117) but also autoimmunity (118, 119) and cancer, being generally tolerogenic in the latter. “Cytokine storm” of COVID-19 illustrates the dangers of a fundamental mismatch between increased proinflammatory innate signaling and a defective adaptive response, insufficient to kill the virus or prevent spread (105), thus failing to abort innate immune activation. This review has presented evidence that IRF5 is a key "hub" molecule determining the normal balance between innate and adaptive immunity. In what clinical situations, therefore, could IRAK4/IRF5 inhibitors have therapeutic benefit?

Many clinical consequences arise from immune system dysregulation in COVID-19. Importantly, for proposed treatment of "cytokine storm" with an IRAK4 inhibitor, timing, and dose titration are critical—too early, too protracted or too high a dose and the natural host immune response is further blunted. It follows that reliable real-time (blood) biomarkers of IRF5-driven immune activation would be essential to determine the threshold for both commencement and termination of treatment (120, 121). To avoid overdosage, the ideal IRAK4 inhibitor would be quick-acting with short half-life (122, 123). Amongst candidate COVID-19 inflammation biomarkers is IRF5 itself, raising the possibility of studying this key molecule across the whole range of SARS-CoV-2 infection and associated comorbidities (124, 125); already IRF5 is suggested as a novel adipose marker in chronic metabolic inflammation (108) and inflammatory bowel disease (125).

Another practical issue is management of patients on long-term immuno-suppressants: these drugs could be viewed simplistically as raising the threshold for effective adaptive immune activation, particularly with drugs inhibiting T or B cell function. Nevertheless, it is surmised that many patients could reset their immune response appropriately and experience symptomless or mild COVID-19, but in others, nearer the tipping-point, the chances of hyperinflammatory syndrome may be significantly increased. As there is no a priori reason in these patients to suppose increased viral uptake at the onset, the advised management of COVID-19 has continued to be on accepted lines and routine immuno-suppressants continued unless "cytokine storm" becomes imminent (126, 127).

Similar reasoning may be applied to initial high viral load or prolonged exposure, which could overwhelm adaptive immunity and push the balance toward increased, but less effective, innate immune activation and "cytokine storm." A related unresolved difficulty is management of chronic COVID-19 symptoms, especially if associated with identifiable chronic inflammation, including neurological sequelae (115). Indeed, the predisposing conditions for hyperinflammatory COVID-19 are likely to overlap with at least some of those responsible for post-infection sequelae. Whether viral persistence occurs is uncertain, but post-infection inflammatory markers suggest ongoing low-grade innate immune activation linked to adaptive immune dysregulation and/or exhaustion (128). Chronic infection promotes the death of protective CD4+ cells through TLR7 and IRF5 (129). Thus, in so-called “long COVID” the perceived imbalance of innate and adaptive immunity may be finely poised and potentially amenable to favorable manipulation, conceivably using IRAK4 or IRF5 inhibition.

Dexamethasone, anakinra and tocilizumab are amongst anti-inflammatory drugs already repurposed for treatment of "cytokine storm." Although the extent of dexamethasone interaction with the IRAK4-IRF5 axis is not established, IRAK4/IRF5 inhibitors are still likely to provide a more focused approach than the generalized actions of steroids (130). On the other hand, IRAK4/IRF5 inhibitors would have a wider spectrum of action than the IL-1 receptor antagonist, anakinra (131, 132) or IL-6 receptor blocker, tocilizumab. Predictably, there is concern that overuse/prolonged use of steroids as immuno-suppressants could suppress viral clearance (133): by contrast, IRAK4 inhibition is potentially steroid-sparing (134). Latest data indicates significant benefit in severe COVID-19 from tocilizumab, either alone or with dexamethasone (135–137). CXCL8/IL-8 inhibitors are being trialed to reduce neutrophil recruitment (138, 139). However, as proposed here, a better option might be concurrent suppression by just one drug of
multiple innate cytokines and chemokines, including IL-1, IL-6 and neutrophil-attractant chemokines (CXCL8 and CXCL5), as would be achievable by an IRAK4 or IRF5 inhibitor. Indeed, in co-cultured RNA-stimulated pDCs and NK cells, IRAK4 inhibition reduced IL-6, CXCL8, CCL3, CCL4, TNF-α, and IFN-γ (140), whereas, raised expression of IRF5 (but not IRF3 or IRF7) in kupffer cells and neutrophils in experimental cholestatic jaundice correlated with increased IL-6, TLR4, TLR7, TLR9, HMGB1, CXCL8, and CCL2, with some evidence of steroid reversibility (141).

Although developed recently, IRAK4 inhibitors are under assessment in psoriasis, whilst in rheumatoid arthritis a completed phase II clinical trial has demonstrated clinical improvement (142). Interestingly, dimethyl fumarate, already of proven clinical efficacy in treating both multiple sclerosis and psoriasis, is not only a direct inhibitor of IRAK4 but also suppresses innate proinflammatory cytokines in pDCs, providing a strong mechanistic rationale for its recently proposed repurposing for COVID-19 “cytokine storm” (143, 144). Low-grade inflammation is common in autoimmunity (145), with an inflammatory signature similar to COVID-19 (146). The therapeutic usefulness of IRF5 inhibitors is yet to be determined (13, 123, 145–148, 175).

Finally, in SARS-CoV-2 vaccine development, an adjuvant stimulating the evolutionary-conserved, IRAK4-IRF5 pathway should be an ideal partner for a SARS-CoV-2 vaccine. IRAK4-IRF5 pathway activators could be included in multi-epitope vaccines (149). Such formulations should promote optimum immune responses and immunological memory (150). Suitable targets would be TLR3, TL7, TLR8, or TLR9 (151–153).

Paradoxically, even with highly potent vaccines, the adaptive immune system in vulnerable groups may still fail to respond appropriately because risk factors predicting a poor adaptive immune response to vaccination could be the same as those predisposing to COVID-19 “cytokine storm,” although it is yet to be determined whether this will account for a significant fraction of vaccine failures.

In conclusion a caveat: given that IRF5 is essential for normal immunity and that “cytokine storm” in SARS-CoV-2 infection indicates a failure of adaptive immunity to respond appropriately to enhanced (IRF5-mediated) innate signals, it follows that attempts to stop “cytokine storm” by damping down innate immunity should be combined with, or ideally replaced by, effective SARS-CoV-2 virucidal drugs, another high priority in COVID-19 research (154–156).

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

ACKNOWLEDGMENTS

I should like to thank Andrezej Kierzek, Graham Stewart, and David Lewis for their encouragement when I was a Research Fellow at University of Surrey, 2012 to 2019, supported by a grant from BioVacSafe (project grant code RRD29A); and to Denis Noble who recently accepted me as Visitor at the Department of Physiology, Anatomy and Genetics, University of Oxford.
29. Cohen P, Strickson S. The role of hybrid ubiquitin chains in the MyD88 kinase activity of IRAK1/4 and the TAK1 kinase.

30. Ren J, Chen X, Chen ZJ. IKKbeta is an IRF5 kinase that activates interferon regulatory factor 5 by K63-linked polyubiquitination.

31. Chang Foreman HC, Van Scoy S, Cheng TF, Reich NC. Activation of transcription factor IRF5 in primary human monocytes.

32. Hayden MS, Ghosh S. Innate sense of purpose for IKKbeta.

33. Bergstrom B, Aune MH, Awuah JA, Kojen JF, Blix KJ, Ryan L, et al. TL Rigorously controls toll-like receptor-induced NF-κB activation via a TAK1-IRKβ-RIRF pathway.

34. Cushing L, Winkler A, Jelinsky SA, Lee K, Korver W, Hawtin R, et al. IRAK4 protein kinase IKKβ activates interleukin 1 receptor-associated kinase 4 and controls cytokine degradation of the pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases.

35. Flannery S, Bowie AG. The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling.

36. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, et al. Integral role of IRF-5 in the gene induction programme driven by Toll-like receptors.

37. Flannery S, Bowie AG. The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling.

38. Steinhagen F, Rodriguez LG, Tross D, Tewary P, Bode C, Klinman DM. Two mechanistically and temporally distinct NF-κB activation pathways.

39. Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T, et al. Integral role of IRF-5 in the gene induction programme driven by Toll-like receptors.

40. Kobayashi K, Hernandez LD, Galán JE, Janevsky CA Jr, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of toll-like receptor signaling. Cell. (2002) 110:191–202. doi: 10.1016/S0092-8674(02)00827-9

41. Chen W, Royer WE Jr. Structural insights into interferon regulatory factor 5 in primary human monocytes and macrophages and induces IFN-β production via a TAK1-IKKβ-IRF5 signaling pathway. J Immunol. (2015) 195:1105–11. doi: 10.4049/jimmunol.1403176

42. Mone MA. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR 7-9.

43. Liu L, Yang Z, Zeng X, Xue J, Song Z, Wang X, et al. KAP1/TRIM28: an inhibitor of IRF5 function and inflammatory processes in mice.

44. Zhang J, Takeda K, Fujita Y, Taniguchi T, Honda K. Cooperation between MyD88 and TRIF pathways in TLR synergy via IRFActivation. Biochem Biophys Res Commun. (2007) 354:1045–51. doi: 10.1016/j.bbrc.2007.01.090

45. Lim JS, Wang Z, Ouyang X, Takeda A, Fujita Y, Takaoka S. A new role for IRAK1/4 in cytokine production.

46. Lim JS, Wang Z, Ouyang X, Takeda A, Fujita Y, Takaoka S. A new role for IRAK1/4 in cytokine production.

47. Ouyang X, Negishi H, Takeda A, Fujita Y, Takaoka S. A new role for IRAK1/4 in cytokine production.

48. Steinhagen F, Rodriguez LG, Tross D, Tewary P, Bode C, Klinman DM. Two mechanistically and temporally distinct NF-κB activation pathways.

49. Kaur A, Lee LH, Chow SC, Fang CM. IRF5-mediated immune responses and inflammatory processes in mice.

50. Eames HL, Saliba DG, Krausgruber T, Lanfrancotti A, Ryzhakov G, Udalova IA. KAP1/TRIM28: an inhibitor of IRF5 function and inflammatory processes in mice.

51. Heinz LX, Lee J, Kapoor U, Kartnig F, Sedlyarov V, Papakostas K, et al. TASL is the SLC15A4-associated adaptor for IRF5 activation by TLR 7-9.

52. Steinbüchel E, Rodriguez LG, Tross D, Tewary P, Bode C, Klinman DM. IRAK and IRF8 modulate the CAL-1 human plasmacytoid dendritic cell line following TLR9 ligation. Eur J Immunol. (2016) 46:6474–55. doi: 10.1002/eji.201545911

53. Cui X, Al-Rashed F, Sindhu S, Arefanian H, Al Madhoun A, Kochumon S, Thomas R, et al. Repetitive intermittent hyperglycemia drives the MI Polarization and inflammatory responses in THP-1 macrophages through the mechanism involving the TLR4-IRF5 Pathway. Cells. (2020) 9:1892. doi: 10.3390/cells901892

54. Inoue M, Arikawa T, Chen YH, Moriwaki Y, Price M, Brown M, et al. IRAK-1/4 and the TAK1 kinase.

55. Liu L, Yang Z, Zeng X, Xue J, Song Z, Wang X, et al. KAP1/TRIM28: an inhibitor of IRF5 function and inflammatory processes in mice.
55. Matta B, Barnes BJ. Coordination between innate immune cells, type I IFNs and IRF5 drives SLE pathogenesis. Cytokine. (2020) 132:154731. doi: 10.1016/j.cyto.2019.05.018
56. Barnes BJ, Field AE, Pitta-Rowe PM. Virus-induced heterodimer formation between IRF-5 and IRF-7 modulates assembly of the IFNA enhancesome in vivo and transcriptional activity of IFNA genes. J Biol Chem. (2003) 278:16630–41. doi: 10.1074/jbc.M216692000
57. Manci ME, Hu G, Sangster-Guity N, Ohalsky SL, Hoops K, Fitzgerald-Bocarsly P, et al. Two discrete promoters regulate the alternatively spliced human interferon regulatory factor-5 isoforms. Multiple isoforms with distinct cell type-specific expression, localization, regulation, and function. J Biol Chem. (2005) 280:21078–90. doi: 10.1074/jbc.M500532200
58. Steinhagen F, McFarland AP, Rodriguez LG, Tewary P, Jarrett A, Van Allen FA, et al. IRF-5 and NF-κB p50 co-regulate IFN-β and IL-6 expression in TLR9-stimulated human plasmacytoid dendritic cells. Eur J Immunol. (2013) 43:1896–906. doi: 10.1002/eji.201242792
59. Stein T, Wollschlegel A, Te H, Weiss J, Joshi K, Kinzel B, et al. Interferon regulatory factor-5 (IRF5) and related inflammatory cytokines associated with severity, prognosis, and causative pathogen in patients with community-acquired pneumonia. Med Sci Monit. (2018) 24:3620–30. doi: 10.12659/MSM.910756
60. De Biasi S, Meschiar M, Gibellini L, Bellinzazz C, Borella R, Fidanza L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. (2020) 11:3434. doi: 10.1038/s41467-020-17292-4
61. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Muller R, et al. Impaired host response to SARS-CoV-2 drives development of COVID-19. Cell. (2020) 181:1036–45.e9. doi: 10.1016/j.cell.2020.04.026
62. Honda K, Taniguchi T. IRFs: master regulators of signalling by toll-like receptors and cytokolic pattern-recognition receptors. Nat Rev Immunol. (2006) 6:644–58. doi: 10.1038/nri1900
63. Andreakos E, Tsiodras S. COVID-19: lambda interferon against viral load and hyperinflammation. EMBO Mol Med. (2020) 12:e12665. doi: 10.1002/emmm.2020012665
64. Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, Yamamoto Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. (2021) 34:108628. doi: 10.1016/j.celrep.2020.108628
65. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, et al. IKKepsilon and TBK1 are essential components of the IRF3 signalling pathway. Nat Immunol. (2003) 4:491–6. doi: 10.1038/ni921
66. Chen N, Xia P, Li S, Zhang T, Wang TT, Zhu J. RNA sensors of the innate immune system and their detection of pathogens. IUBMB Life. (2017) 69:297–304. doi: 10.1007/s13131-016-0523-5
67. Dax-Salazar C, Sun JC. Natural killer cell responses to emerging viruses of zoonotic origin. Curr Opin ViroL. (2020) 44:97–111. doi: 10.1016/j.coviro.2020.07.003
68. Jewett A. The potential effect of novel coronavirus SARS-CoV-2 on NK Cells; a perspective on potential therapeutic interventions. Front Immunol. (2020) 11:1692. doi: 10.3389/fimmu.2020.01692
69. Yan J, Heid M, Abraham C. Myeloid cell-Intrinsc IRF5 promotes T cell responses through multiple distinct checkpoints in vivo, and IRF5 immune-mediated disease risk variants modulate these myeloid cell functions. J Immunol. (2020) 205:1024–38. doi: 10.4049/jimmunol.1900743
70. El Mezayen R, El Gazzar M, Myrer R, High KP. Aging-dependent upregulation of IL-23p19 gene expression in dendritic cells is associated with differential transcription factor binding and histone modifications. Aging Cell. (2009) 8:535–65. doi: 10.1111/j.1474-9726.2009.00502.x
71. Oriss TB, Raundhal M, Morse C, Huff RE, Das S, Hannum R, et al. IRF5 distinguishes severe asthma in humans and drives Th1 phenotype and airway hyperreactivity in mice. JCI Insight. (2017) 2:e91019. doi: 10.1172/jci.insight.91019
72. Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T, et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature. (2005) 434:772–7. doi: 10.1038/nature03464
73. Yasuda K, Richez C, Maciaszek JW, Agrawal N, Akira S, Marshak-Rothstein A, et al. Murine dendritic cell type I IFN production induced by human IgG-RNA immune complexes is IFN regulatory factor (IRF5) and IRF7 dependent and is required for IL-6 production. J Immunol. (2007) 178:6876–85. doi: 10.4049/jimmunol.178.11.6876
74. Lazzer HM, Lancaster A, Wilkins C, Suthar MS, Huang A, Vick SC, et al. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog. (2013) 9:e1003118. doi: 10.1371/journal.ppat.1003118
75. Barnes BJ, Moore PA, Pitta PM. Virus-specific activation of a novel interferon regulatory factor, IRF-5, results in the induction of distinct interferon α genes. J Biol Chem. (2001) 276:23382–90. doi: 10.1074/jbc.M101216200
76. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. (2020) 17:541–3. doi: 10.1038/s41423-020-04091-3
77. Prakash S, Agrawal S, Cao JN, Gupta S, Agrawal A. Impaired secretion of interferons by dendritic cells from aged subjects to influenza: role of histone modifications. Age. (2013) 35:1785–97. doi: 10.1007/s11357-012-9477-8
78. Borges RC, Hohmann MS, Borghi SM. Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in SARS-CoV-2 pathogenesis. Frontiers in Immunology | www.frontiersin.org 9 April 2021 | Volume 12 | Article 638446
in determining disease outcome. *Int Rev Immunol.* (2020) 1–18. doi: 10.1080/08830185.2018.144195

92. Griesbeck M, Ziegler S, Laffont S, Smith N, Chauveau L, Tomaszko P, et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-alpha production in women. *J Immunol.* (2015) 195:5327–36. doi: 10.4049/jimmunol.1501684

93. Klein SL, Dhakal S, Ursin RL, Deshpande S, Sandberg K, Mauvais-Jarvis F. Biological sex impacts COVID-19 outcomes. *PLoS Pathog.* (2020) 16:e1008570. doi: 10.1371/journal.ppat.1008570

94. Gratz N, Hartweiger H, Matt U, Kratochvill F, Janos M, Sigel S, et al. Type I interferon production induced by *Streptococcus* pyogenes-derived nucleic acids is required for host protection. *PLoS Pathog.* (2011) 7:e1001345. doi: 10.1371/journal.ppat.1001345

95. Agrawal A, Sridharan A, Prakash S, Agrawal H. Dendritic cells and aging: consequences for autoimmunity. *Expert Rev Clin Immunol.* (2012) 8:73–80. doi: 10.1586/eri.11.77

96. Zhao Q, Meng M, Kumar R, Wu Y, Huang J, Deng Y et al. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a systemic review and meta-analysis. *Int J Infect Dis.* (2020) 96:131–5. doi: 10.1016/j.ijid.2020.04.086

97. Omarjee L, Janin A, Perrot F, Laviolle B, Meilhac O, Mahe G. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19. *Clin Immunol.* (2020) 216:108464. doi: 10.1016/j.clim.2020.108464

98. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). *Front Immunol.* (2020) 11:827. doi: 10.3389/fimmu.2020.00827

99. Bouadma L, Wiedemann A, Patiër J, Sürênnaud M, Ryek H, Keller M, et al. The impact of body mass index on adaptive immune cells in the human bone marrow. *Immuno Ageing.* (2020) 17:15. doi: 10.1186/s12979-020-00186-w

100. Zheng Y, Liu X, Li W, Xie L, Li H, Wen W, et al. A human circulating immune cell landscape in aging and COVID-19. *Protein Cell.* (2020) 11:740–70. doi: 10.1007/s13358-020-00762-2

101. Bossi P, Toppi E, Sterbini V, Spalletta G. Implications of aging related chronic neuroinflammation on COVID-19 pandemic. *J Pers Med.* (2020) 10:102. doi: 10.3390/jpm10030102

102. Mauvais-Jarvis F. Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. *Diabetes.* (2020) 69:1857–63. doi: 10.2337/db19-00123

103. Chau AS, Weber AG, Maria NI, Narain S, Liu A, Hajizadeh N, et al. The longitudinal immune response to Coronavirus Disease 2019: chasing the cytokine storm. *Arthritis Rheumatol.* (2020) 72:33-35. doi: 10.1002/art.41526

104. Stoy NS. Innate origins of multiple sclerosis pathogenesis: implications for computer-assisted design of disease-modifying therapy. *Drug Dev Res.* (2011) 72:674–88. doi: 10.1002/ddr.20477

105. Lamagna C, Hu Y, DeFranco AL, Lowell CA. B cell-specific loss of lyn kinase leads to autoimmunity. *J Immunol.* (2014) 192:919–28. doi: 10.4049/jimmunol.1301979

106. Blot M, Jacquier M, Aho Gile LS, Beltramo G, Nguyen M, Bonniadu P, et al. CXCL10 could drive longer duration of mechanical ventilation during COVID-19 ARDS. *Crit Care.* (2020) 24:632. doi: 10.1186/s13054-020-03328-0

107. Chen Y, Wang J, Liu C, Su L, Zhang D, Fan J, et al. IP-10 and MCP-1 as biomarkers associated with metabolic inflammation and insulin resistance. *J Clin Immunol.* (2020) 40:1082–94. doi: 10.1007/s10875-020-00839-x

108. De Biasi S, Lo Tartaro D, Meschiari M, Gibellini L, Bellinazzi C, Borella R, et al. Expansion of plasmablasts and loss of memory B cells in peripheral blood from COVID-19 patients with pneumonia. *Eur J Immunol.* (2020) 50:1283–94. doi: 10.1002/eji.202048838

109. Laviada-Molina HA, Leaf-Beumer I, Rodriguez-Ayala E, Battarachae RA. Working hypothesis for glucose metabolism and SARS-CoV-2 replication: interplay between the hexosamine pathway and interferon RS5 triggering hyperinflammation. Role of BCG vaccine? *Front Endocrinol.* (2020) 11:514. doi: 10.3389/fendo.2020.00514

110. Kim D, Lee H, Koh J, Ko JS, Yoon BR, Jeon YK, et al. Enhanced adipose tissue expression of interferon regulatory factor (IRF)-5 in obesity: association with metabolic inflammation. *Cells.* (2019) 8:4114. doi: 10.3390/cells81111418

111. Sindhu S, Kochumon S, Thomas R, Bennakhi A, Al-Mulla F, Ahmad R. Enhanced adipose expression of interferon regulatory factor (IRF)-5 associates with the signatures of metabolic inflammation in diabetic obese patients. *Cells.* (2020) 9:730. doi: 10.3390/cells9030730

112. Kochumon S, Madhoun AA, Al-Rashed F, Azim R, Al-Ozaei E, Al-Mulla F, et al. Adipose tissue gene expression of CXCL10 and CXCL11 modulates inflammatory markers in obesity: implications for metabolic inflammation and insulin resistance. *Ther Adv Endocrinol Metab.* (2020) 11:2042018820930902. doi: 10.17727/taem/201820930902

113. Pangrazzi L, Naismith E, Miggitsch C, Carmona Arana JA, Keller M, Grubeck-Loebenstein B, et al. The impact of body mass index on adaptive immune cells in the human bone marrow. *Immuno Ageing.* (2020) 17:15. doi: 10.1186/s12979-020-00186-w
129. Fabie A, Mai LT, Dagenais-Lussier X, Hammami A, van Grevenynghe J, Stager S. IRF-5 promotes cell death in CD4 T cells during chronic infection. Cell Rep. (2018) 24:1163–75. doi: 10.1016/j.celrep.2018.06.107

130. Kow CS, Hasan SS. Dexamethasone or hydrocortisone in COVID-19? Cleve Clin J Med. (2020) 87:715. doi: 10.3949/ccjm.87c.12065

131. van de Veerdonk FL, Netea MG. Blocking IL-1 to prevent respiratory failure in COVID-19. Crit Care. (2020) 24:445. doi: 10.1186/s13054-020-01636-0

132. Mehta P, Cron RQ, Hartwell J, Manson JJ, Tattersall RS. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. (2020) 2:e358–67. doi: 10.1016/S2665-9913(20)30096-5

133. Wang M, Liao Z. SARS-CoV-2 and COVID-19: how much do we know? Acta Virol. (2020) 64:288–96. doi: 10.4119/av/2020_301

134. Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad DS, Karunananthi P, et al. Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J Immunol. (2017) 198:1308–19. doi: 10.4049/jimmunol.1600583

135. Horby PW, Campbell M, Staplin N, Spata E, Emberson J, Pessoa-Jesus AAA, et al. An immune-based biomarker signature is identified in COVID-19 cell landscape of immunological responses in patients with COVID-19. J Autoimmun. (2020) 111:102452. doi: 10.1016/j.jaut.2020.102452

136. Huang YH, Wang PW, Tiao MM, Chou MH, Du YY, Huang CC, et al. Dimethyl fumarate disrupts human innate immune signaling and Tfh cell mediated the production of cytokines and antiviral antibodies in Chinese patients with moderate COVID-19. J Cell Mol Med. (2020) 24:14270–9. doi: 10.1111/jcmm.16044

137. Kim B, Yang Q, Chan LW, Bhatia SN, Ruoslahti E, Sailor MJ. Fusogenic porous silicon nanoparticles as a broad-spectrum immunotherapy against bacterial infections. Nanoscale Horiz. (2021). doi: 10.1039/DNH00624F. [Epub ahead of print]

138. Liang Y, Li H, Li J, Yang ZN, Li JL, Zheng HW, et al. Role of interferon regulatory factor IRF5 in innate immune responses and systemic lupus erythematosus. Int Immunol. (2018) 30:529–36. doi: 10.1093/intimm/dxy032

139. Eames HL, Corbin AL, Udalova IA. Interferon regulatory factor 5 in human autoimmunity and murine models of autoimmune disease. Transl Res. (2016) 167:167–82. doi: 10.1016/j.trsl.2015.06.018

140. Kumar J, Qureshi R, Sagurthi SR, Qureshi IA. Designing of nucleoscapid protein based novel multi-epitope vaccine against SARS-COV-2 using immunoinformatics approach. Int J Pept Res Ther. (2020) 1–16. doi: 10.1007/s10989-020-10140-5. [Epub ahead of print]

141. Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K, et al. Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest. (2020) 130:6700–17.e10. doi: 10.1172/JCI120288

142. Ban T, Sato GR, Tamura T. Regulation and role of the transcription factor IRF5 in innate immune responses and systemic lupus erythematosus. Int Immunol. (2018) 30:529–36. doi: 10.1093/intimm/dxy032

143. Kim B, Yang Q, Chan LW, Bhaita SN, Raoliathi E, Sailor MJ. Fusogenic porous silicon nanoparticles as a broad-spectrum immunotherapy against bacterial infections. Nanoscale Horiz. (2021). doi: 10.1039/DNH00624F. [Epub ahead of print]

144. McHugh J. IRF5 inhibitor shows promise in mouse models of SLE. Nat Rev Rheumatol. (2020) 16:667. doi: 10.1038/s41584-020-00525-7

145. Van de Veerdonk FL, Netea MG. Blocking IL-1 to prevent respiratory failure in COVID-19. Crit Care. (2020) 24:445. doi: 10.1186/s13054-020-01636-0

146. Mehta P, Cron RQ, Hartwell J, Manson JJ, Tattersall RS. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol. (2020) 2:e358–67. doi: 10.1016/S2665-9913(20)30096-5

147. Wang M, Liao Z. SARS-CoV-2 and COVID-19: how much do we know? Acta Virol. (2020) 64:288–96. doi: 10.4119/av/2020_301

148. McHugh J. IRF5 inhibitor shows promise in mouse models of SLE. Nat Rev Rheumatol. (2020) 16:667. doi: 10.1038/s41584-020-00525-7

149. Reed SG, Tomai M, Gale MJ Jr. New horizons in adjuvants for vaccine development. Curr Opin Immunol. (2020) 65:97–101. doi: 10.1016/j.coi.2020.08.008

150. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

151. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

152. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

153. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

154. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

155. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

156. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408

157. Liang Z, Zhu H, Wang X, Jing B, Li Z, Xie X, et al. Adjuvants for coronavirus vaccines. Front Immunol. (2021) 11:585408. doi: 10.3389/fimmu.2020.585408
169. Chan JY, Lee K, Maxwell EL, Liang C, Laybutt DR. Macrophage alterations in islets of obese mice linked to beta cell disruption in diabetes. Diabetologia. (2019) 62:993–9. doi: 10.1007/s00125-019-4844-y

170. Azimi N, Shiramizu KM, Tagaya Y, Mariner J, Waldmann TA. Viral activation of interleukin-15 (IL-15): characterization of a virus-inducible element in the IL-15 promoter region. J Virol. (2000) 74:7338–48. doi: 10.1128/JVI.74.16.7338-7348.2000

171. Colpitts SL, Stoklasek TA, Plumlee CR, Obar JJ, Guo C, Lefrançois L. Cutting edge: the role of IFN-alpha receptor and MyD88 signaling in induction of IL-15 expression in vivo. J Immunol. (2012) 188:2483–7. doi: 10.4049/jimmunol.1103609

172. Yan W, Fan W, Chen C, Wu Y, Fan Z, Chen J, et al. IL-15 up-regulates the MMP-9 expression levels and induces inflammatory infiltration of macrophages in polymyositis through regulating the NF-kB pathway. Gene. (2016) 591:137–47. doi: 10.1016/j.gene.2016.06.055

173. Rosário C, Zandman-Goddard G, Meyron-Holtz EG, D'Cruz DP, Seshadri Y. The hyperferritinemic syndrome: macrophage activation syndrome, Still’s disease, septic shock and catastrophic antiphospholipid syndrome. BMC Med. (2013) 11:185. doi: 10.1186/1741-7015-11-185

174. Ramezani F, Babaie F, Aslani S, Hemmatzadeh M, Mohammadi FS, Gowhari-Shabgah A, et al. The role of the IL-33/ST2 immune pathway in autoimmunity: new insights and perspectives. Immunol Invest. (2021) 1–27. doi: 10.1080/08820139.2021.1878212. [Epub ahead of print].

175. Weiss M, Byrne AJ, Blazek K, Saliba DG, Pease JE, Perocheau D, et al. IRF5 controls both acute and chronic inflammation. Proc Natl Acad Sci USA. (2015) 112:11001–6. doi: 10.1073/pnas.1506254112

176. Pradhan P, Toy R, Jhita N, Atalis A, Pandey B, Beach A, et al. TRAF6–IRF5 kinetics, TRIF, and biophysical factors drive synergistic innate responses to particle-mediated MPLA-CpG co-presentation. Sci Adv. (2021) 7:eabd4235. doi: 10.1126/sciadv.abd4235

177. Sulaiman I, Chung M, Angel L, Tsay JJ, Wu BG, Yeung ST, et al. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome. medRxiv [Preprint]. (2021). doi: 10.1101/2021.02.23.21252221

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Stoy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.