GLOBAL OPTIMIZATION OF A NUMERICAL TWO-LAYER MODEL USING OBSERVED DATA: A CASE STUDY OF THE 2018 SUNDA STRAIT TSUNAMI

K. Pakoksung(1)*, A. Suppasri(2), A. Muhari(3), S. Syamsidik(4), F. Imamura(5)

(1) Postdoctoral Fellow, International Research Institute of Disaster Science, Tohoku University, pakoksung@irides.tohoku.ac.jp
(2) Associate Professor, International Research Institute of Disaster Science, Tohoku University, suppasri@irides.tohoku.ac.jp
(3) Act Director for Risk Mapping and Evaluation, National Disaster Management Authority, Indonesia, abdul.muhari@gmail.com
(4) Lecturer, Tsunami and Disaster Mitigation Research Center (TDMRC), Universitas Syiah Kuala-Indonesia, syamsidik@tdmrc.org
(5) Professor, International Research Institute of Disaster Science, Tohoku University, imamura@irides.tohoku.ac.jp

Abstract

Following the eruption of Anak Krakatoa, a considerable landslide occurred on the southwestern part of the volcano and, upon entering the sea, generated a large tsunami within the Sunda Strait, Indonesia, on 22 December 2018. This tsunami traveled ~5 km across the strait basin and inundated the shorelines of Sumatra and Java with a vertical runup reaching 13 m. Following the event, observed field data, GPS measurements of the inundation, and multibeam echo soundings of the bathymetry within the strait were collected and publicly provided. Using this dataset, numerical modeling of the tsunami was conducted using the two-layer (soil and water) TUNAMI-N2 model based on a combination of landslide sources and bathymetry data. The two-layer model was implemented to nest the grid system using a finest grid size of 20 m. To constrain the unknown landslide parameters, the differential evolution (DE) global optimization algorithm was applied, which resulted in a parameter set that minimized the deviation from the measured bathymetry after the event. The DE global optimization procedure was effective at determining the landslide parameters for the model with the minimum deviation from the measured seafloor. The lowest deviation from the measured...
bathymetry was obtained for the best-fitting parameters: a maximum landslide thickness of 301.2 m and a landslide time of 10.8 minutes. The landslide volume of 0.182 km3 estimated by the best-fitting parameters shows that the tsunami flow depth could have reached 3-10 m along the shore with a K value of 0.89, although the simulated flow depths were underestimated in comparison with the observation data. According to the waveforms, the general wave pattern was well reproduced at tide gauges during the event. A large number of objective function evaluations were necessary to locate the minimum with the DE procedure to fix the grid cell size to 20 m; this limited the accuracy of the obtained parameter values for the two-layer model. Moreover, considering the generalizations in the modeling of landslide movements, the impact landslide time and thickness must be carefully calculated to obtain a suitable accuracy.

Keywords: 2018 Sunda Strait tsunami, Subaerial/submarine landslide, Global optimization of a two-layer model

1. Introduction

Following the eruption of Anak Krakatoa, a considerable landslide occurred on the southwestern part of the volcano. This landslide generated a large tsunami around the Sunda Strait, Indonesia, on 22 December 2018, and upon entering the sea, this landslide caused an immense tsunami that traveled ~5 km across the strait and inundated the shores of Sumatra and Java with a vertical runup reaching 13 m (Muhari et al., 2020). Following the event, observed field data, GPS measurements of the inundation, and multibeam echo soundings of the bathymetry within the strait were collected and provided to the public (Muhari et al., 2020; Syamsidik et al., 2020). Figure 1 shows a map of the Sunda Strait in addition to the location of Anak Krakatau in the middle of the strait.

Volcanic eruption-triggered tsunamis have been recorded several times; one of the most recent marine caldera eruptions was the 1883 Krakatau event. The resulting tsunami caused approximately 70,000 deaths and affected the coastal area around the Sunda Strait and the western side of the Indian Ocean basin approximately 3000 km from Krakatau (Syamsidik et al., 2020). The event produced approximately 20 cu. km of pyroclastic deposits and generated a tsunami runup of 42 m (Heidarzadeh et al., 2020; Choi et al., 2003). The event was modeled by Maeno and Imamura (2011) using the nonlinear shallow water equation,
and the 1883 tsunami was successfully reproduced.

The numerical modeling of a submarine landslide- or subaerial landslide-generated tsunami requires different methods if the conclusions are displayed as completely coupled schemes. Numerical models comprising coupled dynamic schemes for landslide-generated tsunamis are limited (Heinrich et al., 2001; Shigihara et al. 2001), while those for earthquake-generated tsunamis are developed and widely implemented. There have been several studies of landslide-generated tsunamis using nonlinear shallow water hydrostatic models (Kowalik and Murty, 1993; Satake, 1995; Heidarzadeh et al., 2014), Boussinesq nonhydrostatic models (Grilli et al., 2012), the MOST model (Titov and Gonz’alez, 1997), the Cornell Multi-grid Coupled Tsunami Model (COMCOT) (Lui et al., 1998), and Tohoku University’s Numerical Analysis Model for Investigation of Near-field Tsunamis, No. 2 (TUNAMI-N2) model (Imamura and Imteaz, 1995). Moreover, several studies have been performed to model the tsunami generation mechanisms using other uncoupled methods, in which the generation and propagation periods are episodic (Lastras et al., 2005; Iglesias et al., 2012). One such example is the conceptual model of the BIG’95 submarine landslide and the numerical simulation of the propagation of the generated tsunami (Skvortsov, 2002; Watts et al., 2003; Fine et al., 2005; Tinti et al., 2011; Tinti et al., 2011). In the case of the Palu tsunami, the submarine landslide source was implemented by using a combination of models, namely, Titan2D (Pitman et al. 2003; Patra et al. 2005; Titan2D 2016) and JAGURS (Baba et al. 2017), with a multi-landslide location in the bay. The volume of the multi-landslide source varied from 0.02 to 0.07 km³ among six different locations (Nakata et al. 2020). In addition, the TUNAMI-N2 model was applied to model the submarine landslide-induced tsunami in Palu Bay by Pakoksung et al. (2019), who proposed that the main source of the landslide that generated the 2018 Palu tsunami was in the northern part of the bay.

This Anak Krakatau tsunami event was recently modeled (Grilli et al., 2019) using the 3D Nonhydrostatic Wave (NHWA VE) model (Ma et al., 2012; Kirby et al., 2016) to simulate the landslide and the 2D Boussinesq FUNWAVE-TVD model (Shi et al., 2012) to simulate the tsunami propagation. Furthermore, COMCOT (Liu et al., 1998; Wang and Liu, 2006) was also used to model this event (Heidarzadeh et al., 2020), and the initial sea surface elevation was identified as the landslide source. Some previous studies
implemented other methods to propose the landslide source for the 2018 Anak Krakatau tsunami. For example, synthetic aperture radar and broadband seismic observations were used to identify the landslide volume (<~0.2 km³), as presented by Lingling et al. (2020). In this study, the two-layer TUNAMI-N2 model (Imamura and Imteaz, 1995; Pakoksung et al., 2019) is implemented to model the 2018 Anak Krakatau tsunami.

The 2018 Anak Krakatau tsunami provides a specific opportunity to investigate and capture the essential mechanism responsible for the generation and propagation of a landslide-induced tsunami through numerical modeling, as an exhaustive amount of data was acquired to calibrate the model. Optimization was achieved by comparing the field observations and deposit simulation results to delineate the impact physics of tsunamis without the scale effects detected by the physical experiment.

The aim of this study is to investigate the possible source of the 2018 Sunda Strait tsunami using preliminary data. This study focuses on a tsunami generated by a subaerial/submarine landslide. The method employed to find the tsunami source is to apply an optimization procedure to determine the unknown landslide parameters through a comparison between the measured and simulated bathymetry with an inverse modeling methodology.

The remainder of this paper is presented as follows. The methodology is explained in section 2. The beginning of section 2 presents the hypothesis regarding the subaerial/submarine landslide for the studied event (section 2.1). Then, the topography/bathymetry used for modeling is described in section 2.2, and the numerical method utilized to model the tsunami is explained in section 2.3. Section 2.4 presents the optimization algorithm and its application to tsunami landslide modeling, and the model setup is described in section 2.5. Finally, the modeling results are presented in section 3, the results are discussed in section 4, and the conclusions are provided in section 5.

2. Methodology

This paper comprises four components. First, the hypothesis required for modeling the subaerial/submarine
landslide is presented. Second, topography and bathymetry data are used to generate a tsunami model, and the observed bathymetry data are used to verify the model during the optimization part. Third, the numerical model is used to reproduce the landslide movement and tsunami propagation. Finally, the optimization procedure is applied to determine the optimal parameters of the landslide using the observed bathymetry.

2.1 Subaerial/submarine landslide modeling

The basic assumption of this study is that the 2018 Sunda Strait tsunami was initially generated as a subaerial/submarine landslide tsunami induced by the movement of soil materials originally located on the upper slope. This process produced a subaerial/submarine landslide on the land and seafloor, forming a submarine deposit. The tremendous landslide was probably triggered by the volcanic eruption of Anak Krakatau. This subaerial/submarine landslide should have produced a tsunami that affected the coastal area of the Sunda Strait.

The hypothesized landslide locations on Anak Krakatau are shown in Fig. 2; these landslides can be detected by satellite images from before and after the eruption. These landslides, which are located in different areas of the coastline, were the main cause of the studied tsunami. The change in the coastline was used to consider the landslide model using ellipsoid modeling. The shape of the landslide hypothesized by ellipsoid modeling has a length of approximately 1.7 km and a width of approximately 0.8 km; the center is located at a latitude of -6.102 degrees and a longitude of 105.42 degrees. The depth of the landslide could not be captured by the satellite image; hence, the depth is an unknown parameter for the optimization modeling in section 2.4.

2.2 Topography and bathymetry data

Complete bathymetric and topographic data from throughout the Sunda Strait and surrounding continental areas were provided by BATNAS, Indonesia (available at http://tides.big.go.id/DEMNAS/index.html). The data consist of two datasets with a resolution of 180 m for the bathymetry in the sea and 8 m for the topography on land. Both datasets were resampled to 2 domains with different resolutions, namely, 180 m and 20 m (the study area in Fig. 1). The domain with a resolution of 180 m resulted in 1079 columns and 956
rows covering the Sunda Strait area.

The Naval Hydrographic and Oceanographic Center of Indonesia used multibeam sonar equipment to survey the bathymetry after the eruption of Anak Krakatau (PUSHIDROSAL–Naval Hydrographic and Oceanographic Center, 2019) as proposed by Muhari et al. (2020). The measured area of new bathymetry data covers only the front of the collapse caldera, as shown in Fig. 3, and the observed area covers only the southwestern part of Anak Krakatau with an average difference of 30 m from the bathymetry before the eruption. Based on the difference between both bathymetry datasets, we question when the collapse of soil materials from the volcano eruption reproduced the shape approximating the observation data (the bathymetry after the event). Thus, the sliding time is an unknown parameter for the optimization modeling in section 2.4.

2.3 two-layer model

The tsunami model in the Sunda Strait was assessed with a two-layer numerical model that was developed to solve the nonlinear shallow water equation with two interfacing layers and appropriate kinematic and dynamic boundary conditions at the land and seafloor, their interface, and the water surface (Imamura and Imtiaz, 1995; Pakoksung et al., 2019). This two-layer model simulates landslide-generated tsunamis by modeling the interactions between the generated tsunami and subaerial/submarine landslides as the upper and lower layers, respectively. Subaerial/submarine landslides produce tsunamis similar to those produced by earthquakes with a vertical displacement of the seafloor creating a similar displacement at the sea surface, as shown in Fig. 4. The mathematical model employed in the landslide tsunami code consists of a stratified medium with two layers, as shown in Fig. 4. The first layer is composed of a homogeneous inviscid fluid with constant density ρ_1 representing seawater, and the second layer is based on a fluidized granular material with density ρ_s and porosity φ. In this study, the mean density of the fluidized debris is constant and equals $\rho_2 = (1 - \varphi)\rho_s + \varphi\rho_1$, as noted in previous research (Macias et al., 2015). The two fluids, water and fluidized debris, are hypothesized to be immiscible in this study. The governing equations are written as follows:

Continuity equation of the 1st layer:
\[\frac{\partial Z_1}{\partial t} + \frac{\partial Q_{1x}}{\partial x} + \frac{\partial Q_{1y}}{\partial y} = 0 \] (1)

Momentum equations of the 1st layer in the X and Y directions:

\[\frac{\partial Q_{1x}}{\partial t} + \frac{\partial}{\partial x} \left(Q_{1x}^2 D_1 \right) + \frac{\partial}{\partial y} \left(\frac{Q_{1x} Q_{1y}}{D_1} \right) + g D_1 \frac{\partial Z_1}{\partial x} + g D_1 \frac{\partial Z_2}{\partial x} + \tau_{1x} = 0 \] (2)

\[\frac{\partial Q_{1y}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_{1y}^2}{D_1} \right) + \frac{\partial}{\partial y} \left(Q_{1x} Q_{1y} D_1 \right) + g D_1 \frac{\partial Z_1}{\partial y} + g D_1 \frac{\partial Z_2}{\partial y} + \tau_{1y} = 0 \] (3)

Continuity equation of the 2nd layer:

\[\frac{\partial Z_2}{\partial t} + \frac{\partial Q_{2x}}{\partial x} + \frac{\partial Q_{2y}}{\partial y} = 0 \] (4)

Momentum equations of the 2nd layer in the X and Y directions:

\[\frac{\partial Q_{2x}}{\partial t} + \frac{\partial}{\partial x} \left(Q_{2x}^2 D_2 \right) + \frac{\partial}{\partial y} \left(\frac{Q_{2x} Q_{2y}}{D_2} \right) + g D_2 \frac{\partial Z_2}{\partial x} + g D_2 \frac{\partial Z_1}{\partial x} + \tau_{2x} = 0 \] (5)

\[\frac{\partial Q_{2y}}{\partial t} + \frac{\partial}{\partial x} \left(\frac{Q_{2y}^2}{D_2} \right) + \frac{\partial}{\partial y} \left(Q_{2x} Q_{2y} D_2 \right) + g D_2 \frac{\partial Z_2}{\partial y} + g D_2 \frac{\partial Z_1}{\partial y} + \tau_{2y} = 0 \] (6)

where index 1 relates to the upper layer and index 2 indicates the second layer. \(Z_i(x, y, t), \ i = 1, 2 \) is the level of the layer at each point \((x, y) \) at time \(t \), where the level value is measured from a given reference level. \(Q_i(x, y, t), \ i = 1, 2 \) is the vertically integrated discharge in the \(x \) and \(y \) directions. \(g \) is the gravitational acceleration. \(\rho_1 \) and \(\rho_2 \) are the densities of the 1st layer and 2nd layer, respectively. \(\tau_i(x, y, t) \) is the bottom stress in each layer at each point \((x, y) \) at time \(t \). In the momentum equation, the interaction between the 1st layer and the 2nd layer is determined by the fifth term of the momentum equation.

2.4 Landslide parameter sensitivity and optimization

Based on the uncertainties in the parameters of landslide movement, an inverse method was applied to determine the optimal parameters that best describe the bathymetry after the volcanic eruption. For the two-layer model, the best-fitting parameters were estimated by a grid search, whereby different combinations of parameters were repeatedly run on the model. A set of initial models were approached to obtain an approximate idea of the landslide parameter ranges. Two parameters were varied: the maximum landslide depth and its sliding time. The objective function, namely, the quality of fit, was considered by using the sum
squared error (SE) index as a summation of the squared differences between the observed and simulated bathymetry at a spatial location in front of the volcano.

\[
SE = \sum_{i=1}^{n} \left(y_i^{(obs.)} - y_i^{(sim.)} \right)^2
\]

(7)

The grid search method initially considers the result of the SE index in a parameter to be complex with a gradient-based minimization process, and the algorithm was regarded as unsuccessful if the solution became stuck in a local minimum. Then, a global optimization procedure was selected to test the parameter space. The differential evolution (DE) procedure provided by Storn and Price (1997) was selected and applied to Equations (1) – (6), as shown by the flowchart in Fig. 5. The DE approach is a simple method and uses a few control variables to control the minimization. This method has a good performance compared with other minimization procedures based on a test dataset. On a stochastic search method, the DE algorithm starts with the random generation of parameter vectors, and new trial vectors are determined by disturbing a target vector from the existing vectors. The two-layer model is run by using the trial vector parameters if the result of the objective function is lower than the trial vector that replaces the target vector (Gylfadottir et al., 2017).

2.5 Numerical simulation

Numerical tsunami simulations were performed based on the landslide sources to simulate possible tsunamis and to collect numerical results along the coastline of the Sunda Strait. In this study, three bathymetry and topography domains with resolutions of 20, 60, and 180 m were used to perform a constant-grid tsunami simulation, which yielded some 11 million equations and unknowns to be solved at each time step of 0.01 s. At the boundary lines, the open sea was limited with nonreflective boundary conditions, whereas the coastal areas had no specific boundary conditions for wet/dry fronts (Imamura, 1995).

Using the two-layer model, the landslide induced by the eruption of Anak Krakatau was simulated with a range of values for each parameter to obtain approximate boundaries for the values that best fit the observed bathymetry. The parameters that were varied were the maximum landslide depth in the range of 100 – 450 m and the sliding time in the range of 1 – 20 minutes. Other parameters were kept fixed as follows: water
density = 1000 kg/m3, landslide density = 2,000 kg/m3, and Manning coefficient = 0.025.

3. Results

The numerical tsunami simulation results from the possible subaerial/submarine landslide sources are presented in this section. The original positions and final positions of the sources were investigated to assess the impact of a tsunami generated by each volcanic eruption-induced landslide. The height of the potential tsunami on the coastal area was investigated based on the maximum tsunami amplitude at the shoreline and coastal area defined as the maximum tsunami height from the possible submarine landslide scenario. The maximum tsunami amplitude and inundation area from the numerical modeling were calculated from the terrain data with a grid size of 20 m over a simulation time of 90 minutes.

3.1 Global optimization procedure result

The global optimization method using the DE algorithm introduced in section 2.4 was applied to determine the optimal landslide parameters. For the maximum thickness (D) and sliding time (T), the optimization was run with the bounds $100 \leq D \leq 450$ m and $1 \leq T \leq 20$ minutes; the results are shown in Fig. 6. The lowest deviation from the measured bathymetry was obtained for the parameter ranges $250 \leq D \leq 400$ m and $7.5 \leq T \leq 13.5$ minutes. The two-layer model calculated the soil movement for a landslide model with the parameters in the best-fitting range ($D = 301.2$ m and $T = 10.8$). Overall, the fit was very good, and the improvement for the underwater area is far from the shore (approximately 1 km).

3.2 Subaerial/submarine landslide modeling and tsunami generation

The mathematical model parameters were modeled to match the simulated submarine deposits, as shown in Figs. 6b, which presents a subaerial/submarine landslide that slid southwestward down a slope of approximately 20 degrees. This landslide movement was modeled from the starting position to the end position, and the sliding is oriented downslope along the sliding plane. Therefore, if the hypothesized submarine landslide occurred, we expect that it would have reproduced the associated tsunami and its impacts on this study area. Simulation snapshots of the propagating tsunami at different times are shown in Fig. 7 for 0 s, 5 s, 10 s, 20 s, 30 s, and 60 s after the tsunami was generated by the volcano eruption-induced
landslide. The modeled landslide mostly collapsed within approximately 1 minute of the volcano altitude decreasing from approximately 300 m to approximately 100 m. The flank collapsed via the slow sliding of a 0.182 km3 mass down the subaerial/submarine slope, and sliding completely stopped after 10.8 minutes (as determined by the optimization procedure).

3.3 Tsunami propagation resulting from the best-fitting parameters

The landslide exerted a barrier effect that is reflected in the maximum amplitude distribution, with the subaerial/submarine zone in which sliding initiated exhibiting the maximum amplitudes. A region of highly elevated amplitudes can also be observed surrounding the volcanic mountain; however, the amplitudes decrease dramatically in the middle between the volcano and the shorelines of the Sunda Strait in Sumatra and Java. On the other hand, the amplitude increases in the surf zone near the shorelines of both islands because of the shallow water depths therein. The maximum tsunami height from the numerical simulation based on the best-fitting parameters is shown in Fig. 8. The flank collapse generated the maximum positive elevation (approximately 70 m on the southwestern side of the volcano approximately 1 km from the sliding plane).

Furthermore, a velocity decrease was noted over the main high relief, and this velocity variation produced an alteration in the concentric pattern of arrival times obtained from the best-fitting parameters covering the domain area, as shown in Fig. 9. The distribution of arrival times appears marked by inflection lines in the propagation pattern. In this regard, the presence of continuous seamounts in the middle of the strait amplified the amplitude; however, these seamounts were responsible for wave deceleration and therefore produced a delayed arrival along the coastline. The first place struck by the tsunami was Surtung Island (far from the volcano, approximately 3 km). Moreover, Rakata Island was affected at the same time (approximately 60 s). On Java, the first tsunami arrived after approximately 35 minutes at Pandeglang city (approximately 51 km from the volcano). The first tsunami arrived at Sumatra Island in the city of Kiluan Negeri after approximately 30 minutes (approximately 44 km from the volcano).

Figure 10 displays the tsunami amplitude time series at the tide gauges situated along the Sunda Strait.
coastline with the corresponding sea level. The tide gauges are located at locations where they recorded the tsunami, as shown in Fig. 1. The tide gauges on Java are located in Ciwandan and Marina Jambu, while those on Sumatra are in Kota Agung and Panjang. The simulated tsunami propagated through the Sunda Strait and reached Ciwandan at 40 minutes with a wave height of 0.6 m, while the tsunami reached Marina Jambu at 35 minutes with a wave height of 1.0 m. The tsunami reached Panjang at 65 minutes with a wave height of 0.25 m, and the wave that arrived after 70 minutes had a height of 0.2 m. In a comparison between the observed and simulated general waveform patterns, good agreement is observed for Ciwandan, while the poor agreement is noted for Marina Jambu, Kota Agung, and Panjang.

The effects of the tsunami (from the best-fitting parameters) along the coastline of the Sunda Strait are considered in the 3 areas mentioned in Fig. 1, as shown in Figs. 11-13, based on the surveyed area in Symsidik et al. (2020). In the flood area along the coastal zone in area A, the tsunami flow depth has an average value of approximately 2.75 m with a maximum of 5.8 m in the middle of this area because of the large island (Sangiang Island) situated at the entrance of the strait. A comparison between the simulated wave height with the surveyed result revealed an underestimation, as shown in Fig. 11. Figure 11a presents the distribution of survey points and the computed flood areas along the coastline, indicating that all of the surveyed points were located in the computed flood area. Profiles of the observed and simulated flow depths along the coastline are compared in Fig. 11b, which reveals that the simulated results are close to the observed data in the northern part of the strait, while underestimated flow depths are observed in the south. In area B, the tsunami flow depth has an average value of approximately 3.0 m with a maximum of 6.2 m in the north. This area was highly impacted by the tsunami because of the large island (Panaitan Island) in the south, which reflected the tsunami to flow toward this area. A comparison between the simulated and observed flooding in this area (shown in Fig. 12) suggests that the model can simulate a flood covering all the survey points presented in Fig. 12a. Profiles of the observed and simulated flow depths along the coastline reveal that the simulated results are similar to the observed data in the north and south, while the flow depths are underestimated is in the middle, as shown in Fig. 12b. In area C, the tsunami flow depth has an average value of approximately 3.3 m with a maximum of 4.5 m in the east. The area is close to the volcano (approximately 80 km) but contains 2 large islands (Sebuku Island and Sebesi Island) located in the
front as natural protection; consequently, this area was impacted less than areas A and B. Figure 13a illustrates that the model can simulate a flood covering all the survey points. Profiles of the observed and simulated flow depths along the coastline reveal that the simulated results are close to the observed data in the west, while the flow depths are overestimated in the east, as shown in Fig. 13b.

4. Discussion

The tsunami water levels and flow depths were collected from a field survey after the 2018 Anak Krakatau tsunami by Symsidik et al. (2020). The tsunami runup was further determined using a numerical model since insufficient field measurement data were recorded. The numerical tsunami model was verified using a performance parameter, such as the geometric mean K or geometric standard deviation κ (Aida, 1978). The K value, which refers to the deviation or variance from the proportion between observed and simulated data, was derived from the mean of the K and κ values. The Japan Society of Civil Engineering (JSCE) recommends values of $0.95 < K < 1.05$ and $\kappa < 1.45$ for a model to achieve good agreement when evaluating the source of a tsunami and its propagation model (Japan Society of Civil Engineering, 2002; Suppasri et al. 2011; Pakoksung et al. 2018). The parameters K and κ are determined as shown below:

$$\log K = \frac{1}{n} \sum_{i=1}^{n} \log K_i \quad (8)$$

$$\log \kappa = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log K_i)^2 - (\log K)^2} \quad (9)$$

$$K_i = \frac{x_i}{y_i} \quad (10)$$

where x_i and y_i are the observed and simulated data, respectively, at point i.

The tsunami flow depths from the numerical simulation based on the best-fitting landslide model (achieved by the optimization procedure) and the bathymetric data were evaluated using field measurement data. The tsunami flow depths were compared with the measurements provided in a previous study (Syamsidik et al. 2020). The comparison reveals that K is approximately 0.89 and that κ is approximately 1.70, which agree well with the abovementioned JSCE standard. The observed tsunami flow depth varied from 0.5 to 6.5 m,
with the highest values located in the southern part of the beach in Pantai Cisiih. Scatter plots of the observed and simulated data are shown in Fig. 14, based on which the simulation results contain an error relative to the model in the range of approximately 3 m. This error is related to an overestimation of 1.5 m and an underestimation of approximately 1.5 m, as shown by the green line in the scatter plot, which illustrates the performance of the model compared with the observation data. The governing equation of tsunami runup ignores the effect of a building inside the model, although the building obstructs the flow on the terrain. The obstruction of a building can increase the flow resistance relative to a model without the building, and therefore, the simulation of flow through a building can raise the water level close to the real situation (Copeland 2000; Dutta et al. 2007; Aburaya and Imamura 2002; Fukui et al. 2019). The inclusion of buildings within the tsunami runup modeling process constitutes the limitation of this study; hence, we suggest inputting buildings into the model for a future study that might provide flow depths close to the observation data.

This study presents a preliminary model of the flank collapse associated with the 2018 Anak Krakatau landslide, which generated a tsunami, and the landslide parameters are optimized based on the observed bathymetry after the event. The main purpose of this study is to thoroughly understand the landslide that occurred and estimate its volume despite lacking the submarine landslide mechanism. This study proposes a collapse volume of 0.182 km3 to obtain the flow depth distribution along the coastline around the Sunda Strait with a K of approximately 0.89 for a comparison with observation data. For comparison with previous studies, our landslide volume is different from that (approximately 0.27 km3) reported by Grill et al. (2019). On the other hand, our landslide volume is close to that of Paris et al. (2020) with 0.15 km3. Furthermore, our landslide volume is in the range (<0.2 km3) suggested by Lingling et al. (2020), who estimated the volume by using different methods, that is, a combination of synthetic aperture radar and broadband seismic observations. Regarding the four tide gauges, our results are similar to the findings of Grill et al. (2019) and Paris et al. (2020) considering the pattern of the waveform. Additionally, our maximum wave amplitude (approximately 70 m) is close to the maximum of approximately 80 m proposed by Paris et al. (2020); in contrast, our maximum wave height is quite different from that (approximately 100–150 m) proposed by Heidarzadeh et al. (2020).
The best-fitting parameters, namely, a maximum landslide thickness of 301.2 m and a landslide time of 10.8 minutes with a generated landslide volume of 0.182 km3, can simulate the waveform pattern well; accordingly, the general wave pattern was well reproduced at the tide gauges during the event. Our estimated landslide volume is different from that of Grill et al. (2019) but close to that of Paris et al. (2020) because of the model dimensions. Moreover, the landslide modeling conducted by Grill et al. (2019) was achieved by using a 3D nonhydrostatic model, while Paris et al. (2020) used 2D modeling to simulate the landslide. A 2D model is also implemented in this study, but our model has a different soil property term (friction angle of sliding material), which was excluded from the governing equation employed in this study. This missing term is a limitation of this study insomuch that the modeling is accomplished without the friction angle of sliding. This constitutes a small difference in the maximum amplitude of the wave (approximately 10 m) from Paris et al. (2020) as a result of the Boussinesq modeling and the resolution of the bathymetry data.

Even though the results are sufficiently good to facilitate a comparison with observation data, some limitations of this study should be explained. First, the landslide movement was produced by several processes, but this study considers only 3 parameters: the landslide density is fixed, while the other 2 parameters (depth and sliding time) are varied. These 2 parameters were selected through the optimization process by minimizing a different deviation from the bathymetry after the event; this selection might have affected the accuracy of the model. In addition, for future work, we suggest that some soil parameters, such as the friction angle, which depends on the soil type, and the friction angle and roughness coefficient between the landslide and sliding plane, be added to the two-layer model (system 1 in this study). Adding soil parameters into the two-layer model was already recommended in previous studies (Ioki et al., 2019; Iverson and Denlinger, 2001).

5. Conclusion

A large landslide released following the southwestern flank collapse of the Anak Krakatau volcano was modeled by a two-layer model integrated with a global optimization model to simulate the subsequent tsunami in the Sunda Strait. The parameters of the landslide model were estimated by global optimization
using the bathymetry surveyed after the event. The lowest deviation from the measured bathymetry was obtained to determine the best-fitting parameters: a maximum landslide depth of 301.2 m and a landslide time of 10.8 minutes with a generated landslide volume of 0.182 km³. The results show that the tsunami flow depth reached up to 1-13 m along the shore with a K of 0.89 with only minor underestimation compared with the observation data (flow depth). According to the waveforms, the general wave pattern was well reproduced at the tide gauges during the event. However, the model is restricted by some limitations. The landslide model was hypothesized by considering satellite images for the shape and employing ellipsoid modeling for the volume. Furthermore, the two-layer model was constructed without soil parameters, such as the friction angle and friction roughness. However, the tsunami simulation results related to this landslide are quite consistent with observed flow depths.

The two-layer model proposed in this paper produces a realistic situation that agrees with the main characteristics of the available tsunami data. However, future work should improve our model as new geological data from the volcano becomes available. Compared with the observation data, the results from the two-layer model, such as the flow depth and bathymetric change, were underestimated. The model requires high-resolution terrain data to produce a high-accuracy result and requires the integration of a nonhydrostatic term into the governing equation (Maeda et al. 2016; Gylfadottir et al. 2017). Hence, future efforts should be directed to producing more realistic estimates by modifying the model.

Although there are many uncertainties in tsunami hazard evaluation, such as uncertainties in the submarine landslide geometry, bathymetric and topographic datasets, and numerical modeling, as mentioned above, our intention was not to perform a probabilistic hazard evaluation. Instead, this study proposes that a set of subaerial/submarine landslides triggered by the 2018 volcanic eruption of Anak Krakatau could have produced the Sunda Strait tsunami.

6. Acknowledgments

The tide gauge records were provided by the Coastal Disaster Mitigation Division, Ministry of Marine Affairs and Fisheries, Jakarta, Indonesia. In this study, QGIS software was used to illustrate the spatial
results. This research was funded by the Willis Research Network (WRN) under the Pan-Asian/Oceanian tsunami risk modeling project and by financial support from Pacific Consultants Co., Ltd., through the International Research Institute of Disaster Science (IRIDeS) at Tohoku University.

7. References

Aida I (1978) Reliability of a tsunami source model derived from fault parameters. J. Phys. Earth. 26:57–73.

Aburaya T, Imamura F (2002) The proposal of a tsunami run-up simulation using combined equivalent roughness. Annu. J. Coast. Ocean Eng. 49:276-280 (in Japanese).

Baba T, Allgeyer S, Hossen J, Cummins PR, Tsushima H, Imai K, Yamashita K, Kato T (2017) Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Model 111:46–54.

Choi B, Pelinovsky E, Kim K, Lee J (2003) Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption, Copernicus Publications on behalf of the European Geosciences Union. Natural Hazards and Earth System Science 3(5):321–332.

Copeland R (2000) Determinate of flow resistance coefficient due to shrubs and woody vegetation, ERDC/CHL HETN-II-3, US Army Corps of Engineers, p 1-7.

Dutta D, Alam J, Umeda K, Hayashi M (2007) A two-dimensional hydrodynamic model for flood inundation simulation: a case study in the lower Mekong river basin. Hydrol. Process. 21:1223-1237.

Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: Preliminary analysis and numerical modeling. Marine Geology 215(1D2):45–57.

Fukui N, Prasetyo A, Mori N. (2019) Numerical modeling of tsunami inundation using upscaled urban roughness parameterization. Coastal Engineering 152:103534.

Grilli ST, Harris JC, Tayebeh S, Bakhsh T, Masterlark TL, Kyriakopoulos C (2012) Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations. Pure and Applied Geophysics 170(6–8):1333–1359.
Grilli S, Tappin D, Carey S, Watt S, Ward S, Grilli A (2019) Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific Reports 9:11946.

Gylfadottir SS, Kim J, Helgason JK, Brynjolfsson S, Hoskuldsson A, Johannesson T, Harbitz CB, Løvholt F (2017) The 2014 Lake Askja rockslide-induced tsunami: Optimization of numerical tsunami model using observed data, J. Geophys. Res. Oceans. 122:4110–4122.

Heidarzadeh M, Krastel S, Yalciner AC (2014) The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In: Krastel S. et al. (eds), Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, 37, Chapter 43 (pp. 483–959). USA: Springer International publishing.

Heidarzadeh M, Ishibe T, Sandanbata O, Muhari A, Wijanarto A (2020): Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatau volcanic tsunami Indonesia. Ocean Engineering 20: 195.

Heinrich P, Boudon G, Komorowski JC, Sparks RSJ, Herd R, Voight B (2001) Numerical simulation of the December 1997 Debris Avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters 28(13):2529–2532.

Imamura F (1995) Review of tsunami with a finite difference method, In: Long-Wave Runup Models. World Scientific Pub Co Inc: Singapore:25–42.

Imamura F, Imteaz MA (1995) Long waves in two-layers: Governing equations and numerical model. Science of Tsunami Hazards 13(1):3–24.

Iglesias O, Lastras G, Canals M, Olabarrieta M, González M, Aniel-Quiroga I (2012) The BIG’95 submarine landslide-generated tsunami; a numerical simulation. The Journal of Geology 120(1):31–48.

Ioki K, Tanioka Y, Yanagisawa H, Kawakami G (2019) Numerical simulation of the landslide and tsunami due to the 1741 Oshima-oshima eruption in Hokkaido, Japan. Journal of Geophysical Research: Solid Earth 124:1991-2002.

Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimension terrain 1. Coulomb mixture theory. Journal of Geophysical Research 106(B1):537-552.
Japan Soceity of Civil Engineering (2002) Tsunami assessment method for nuclear power plants in Japan, 72. Retrieved from http://www.jsce.or.jp/committee/ceofnp/Tsunami/eng/JSCE_Tsunami_060519.pdf

Kowalik Z, Murty TS (1993) Numerical modeling of ocean dynamics (p. 481). Singapore: World Scientific Pub.

Kirby J, Shi F, Nicolsky D, Misra S (2016) The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: A comparison of modeling approaches. Landslides 13:1421–1434.

Liu PLF, Woo SB, Cho YS (1998) Computer program for tsunami propagation and inundation. Technical report; Cornell University: Ithaca, NY, USA.

Lastras G, De Blasio FV, Canals M, Elverhøi A (2005) Conceptual and numerical modeling of the Big’95 debris flow, western Mediterranean Sea. Journal of Sedimentary Research 75:784–797.

Maeno F, Imamura F (2011) Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. Journal of Geophysical Research 116:B09205.

Muhari A, Heidarzadeh M, Susmoro H, Nugrohh HD, Kriwati E, Suparto, Wijanarto AB, Imamura F, Arikawa T (2019) The December 2018 Anak Krakatau Volcano Tsunami as Intereed from Post-Tsuanmi Field Survays and Spectral Analysis. Pure and Applied Geophysics 176 (12):5219-5233.

Ma G, Shi F, Kirby J (2012) Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling 43–44:22–35.

Shi F, Kirby J, Harris J, Geiman J, Grilli S (2012) A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling 43–44:36–51.

Macías J, Vázquez JT, Fernández-Salas LM, González-Vida JM, Bárcenas P, Castro MJ (2015) The Al-Borani submarine landslide and associated tsunami. A modelling approach. Marine Geology 361:79–95.

Maeda T, Tsushima H, Furumara T (2016) An effective absorbing boundary condition for linear long-wave and linear dispersive-wave tsunami simulations. Earth, Planets and Space 68(63):1-14.

Nakata K, Katsumata A, Muhari A (2020) Submarine landslide source models consistent with multiple records of the 2018 Palu tsunami, Sulawesi, Indonesia. Earth, Planets and Space 72:1-16.

PUSHIDROSAL-Naval Hydrographic and Oceanographic Center (2019) Pushidrosal assesses bathymetric
change and geomorphology of Anak Krakatau Volcano in Bahasa. http://www.pushidrosal.id/berita/6344/PUSHIDROSAL-TELITI-PERUBAHAN-KONTUR-KEDALAMAN-DAN-GEOMORFOLOGI-GUNUNG-ANAK-KRAKATAU/. Accessed 20 March 2019.

Pakoksung K, Suppasri A, Imamura F (2018) Systematic evaluation of different infrastructure system for tsunami defense in Sendai City. Geoscience 8:173.

Pakoksung P, Suppasri A, Imamura F, Athanasius C, Omang A, Muhari A (2019) Simulation of the Submarine Landslide Tsunami on 20 September 2018 in Palu Bay, Sulawesi Island, Indonesia, using a Two-Layer Model, Pure and Applied Geophysics 176 (8):3323.

Paris A, Heinrich P, Paris R, Abadie S (2020) The December 22, 2018 Anak Krakatau, Indonesia, Landslide and Tsunami: Preliminary Modeling Results. Pure Appl. Geophys. 177:571-590.

Patra, AK, Bauer AC, Nichita CC, Pitman EB, Sheridan MF, Bursik M, Rupp B, Webber A, Stinton AJ, Namikawa LM, Renschler CS (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geoth Res 139(1–2):1–21.

Pitman EB, Nichita CC, Patra A, Bauer A, Sheridan M, Bursik M (2003) Computing granular avalanches and landslides. Phys Fluids 15:3638.

Syamsidik, Benazir, Luthfi M, Suppasri A, Comfort LK (2020) The 22 December 2018 Mount Anak Krakatau Volcanogenic Tsunami on Sunda Strait Coasts, Indonesia: tsunami and damage characteristics. Natural Hazards and Earth System Science 20:549-565.

Shigihara Y, Goto D, Imamura F, Kitamura Y, Matsubara T, Takaoka K (2006) Hydraulic and numerical study on the generation of a subaqueous landslide-induced tsunami along the coast. Natural Hazards 39:159–177.

Satake K (1995) Linear and nonlinear computations of the 1992 Nicaragua earthquake tsunami. Pure and Applied Geophysics 144:455–470.

Skvortsov A (2002) Numerical simulation of landslide generated tsunamis with application to the 1975 failure in Kitimat Arm, British Columbia, Canada. PhD Thesis, School of Earth and Ocean Sciences, University of Victoria, British Columbia.
Storn R, Price K (1997) Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11:341–359.

Suppasri A, Koshimura S, Imamura F (2011) Developing tsunami fragility curves based on the satellite remote sensing and the numerical modeling of the 2004 Indian Ocean tsunami in Thailand. Nat. Hazards Earth Syst. Sci. 11:173–189.

Titov VV, González FI (1997) Implementation and testing of the method of splitting tsunami (MOST) model, NOAA Technical Memorandum ERL PMEL-112, p. 11.

Tinti S, Pagnoni G, Zaniboni F (2006) The landslides and tsunamis of the 30th of December 2002 in Stromboli analysed through numerical simulations. Bulletin of Volcanology 68(5):462–479.

Tinti S, Chiocci FL, Zaniboni F, Pagnoni G, de Alteriis G (2011) Numerical simulation of the tsunami generated by a past catastrophic landslide on the volcanic island of Ischia, Italy. Marine Geophysical Research 32:287–297.

Titan2D (2016) Titan2D mass-flow simulation tool. https://github.com/TITAN2D/titan2d. Accessed 6 June 2019

Watts P, Grilli ST, Kirby JT, Fryer GJ, Tappin R (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth System Sciences 3:391–402.

Wang X, Liu PF (2006) An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research 44:147–154.
Figure 1 Computation domain for the tsunami model in the Sunda Strait. The red box represents the main region with a resolution of 180 m, and the observed region with a resolution of 20 m is the blue box. The orange box is the location of the Anak Krakatau in the middle of the Sunda Strait.
Figure 2 Landslide modeling for the 2018 Anak Krakatau eruption: a) satellite image before the event, b) satellite image after the event, and c) landslide model based on the ellipsoid shape.
Figure 3 Observed bathymetry data after the Anak Krakatau eruption: a) the surveyed area and b) a comparison between the previous and current bathymetry along the red dotted line in the top panel.
Figure 4 two-layer conceptual schematic of the parameters for modeling the subaerial/submarine landslide.
Figure 5 Global optimization flowchart combined with the two-layer model for modeling the subaerial/submarine landslide.
Figure 6 Global optimization results, where the colored points give the value of the objective function for each simulation run.
Figure 7 Temporal evolution of the tsunami from the optimum landslide parameters after a) 0 s, b) 5 s, c) 10 s, d) 20 s, e) 30 s, and f) 60 s.
Figure 8 Maximum wave height in the whole Sunda Strait area based on the optimum parameters obtained from the optimization modeling.
Figure 9 Arrival times of the leading tsunami measured by the positive amplitude.
Figure 10 Comparison between the observation and simulation results at a) Ciwandan, b) Marina Jambu, c) Panjang, and d) Kota Agung.
Figure 11 Impact of the tsunami along the coastline in area A: a) flood extent and locations of survey points; b) water level along the coastline and comparison with observation data.
Figure 12 Impact of the tsunami along the coastline in area B: a) flood extent and locations of survey points; b) water level along the coastline and comparison with observation data.
Figure 13 Impact of the tsunami along the coastline in area C: a) flood extent and locations of survey points; b) water level along the coastline and comparison with observation data.
Figure 14 Scatter plot between the observed and simulated data (from the best-fitting parameters) for the maximum flow depth.