Endoscopic Placement of Stents for Malignant Colorectal Obstructions: Differences in Clinical Outcomes after Elective and Emergency Procedures

Stefania Ghersi1*, Cecilia Binda2, Marco Bassi1, Sara Balena3, Stefano Landi3, Vincenzo Cennamo1

1Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy
2Internal Medicine, Gastroenterology and Liver Unit, Gastroenterology and Oncology Area, Fondazione Policlinico Universitario A. Gemelli IRCCS -Università Cattolica del Sacro Cuore, Roma, Italy
3Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy

*Corresponding author: Stefania Ghersi, Unit of Gastroenterology and Digestive Endoscopy, AUSL Bologna Bellaria-Maggiore Hospital, Italy. Tel: +390516478392; Email: stefania.ghersi@ausl.bologna.it

Citation: Ghersi S, Binda C, Bassi M, Balena S, Landi S, et al. (2018) Endoscopic Placement of Stents for Malignant Colorectal Obstructions: Differences in Clinical Outcomes after Elective and Emergency Procedures. J Surg: JSUR-1166. DOI: 10.29011/2575-9760.001166

Received Date: 03 September, 2018; Accepted Date: 11 September, 2018; Published Date: 17 September, 2018

Abstract

Colorectal cancer can arise with acute obstruction that represents a potentially life-threatening condition that needs an emergency treatment for decompression. The advent of Self Expandable Metal Stents (SEMS) has changed the paradigm of treatment of this patient, limiting the appeal to emergency surgery. Nevertheless, clinical data from the most recent studies are conflicting and have generated a debate on the use of SEMS because of the uncertain effects from the oncological point-of-view. In this review we try to draw the state of art for the use of SEMS for obstruction due to colorectal cancer, both in the setting of palliation and bridge-to-surgery, focusing on data on short-term and long-term clinical outcomes.

Keywords: Colorectal Cancer; Colorectal Obstruction; Colorectal Stent; Outcomes; Self-Expandable Metal Stents

Introduction

Acute malignant large bowel obstruction represents an urgent condition characterized by pain, vomiting, hydroelectrolytic alterations and which can be complicated by ischemic and septic events that can lead to death. Poor clinical conditions in this situation may increase the risk of complications in the patient undergoing to emergency surgery. Acute occlusion is the first manifestation in 8% to 29% of cases of colorectal cancer [1]. Patients with large bowel obstruction have a worse prognosis and their management with emergency surgical decompression is associated with high morbidity and mortality rates [2]. In recent years, the use of Self-Expanding Metal Stents (SEMS) has been considered a valid alternative to emergency surgery for bowel decompression because of the high rates of success and low rates of complications [3], so that the endoscopic treatment spread out in the last decade. However, while its use is largely consolidated for palliation in patients with unresectable disease or patients unfit for surgery, its use as bridge to elective surgery in patients with potentially resectable disease has been largely downsized and is still under debate. Although less invasive than a surgical treatment, SEMS placement indeed is not free of complications, the most feared of which is perforation during and after stenting. When occurred in patients potentially resectable, perforation can determine a spreading of disease that can compromise oncological outcomes. Indeed, the most recent ESGE guidelines [4] indicate that the insertion of SEMS as a bridge to surgery is not recommended as a standard treatment for neoplastic colon obstructions, but this option should be limited to those patients with left-side colonic obstructions with an increased risk of postoperative mortality (ASA III and/or age > 70 years). The use of SEMS in proximal obstructions (proximal lesions to splenic flexure) showed conflicting results [5-7] so that guidelines [4] consider stent placement a valid alternative to surgery only for palliation. In patients with potentially curable proximal disease, indeed, surgical resection remains the gold standard [4]. The presence of perforation, peritoneal carcinosis, tight stenosis of the anal sphincter, lesions less than 5-6 cm from the anal orifice, instead, are considered contraindications to the use of SEMS [8].
Two types of SEMS are available: covered and uncovered stents. They both demonstrated to be equally effective and secure [4], although some studies showed that uncovered ones have a lower risk of migration [9,10]. On the contrary, their main limitation is the higher tumor ingrowth rate, as they are recolonized by the neoplasm with subsequent recurrence of the occlusion [11]. Moreover, the outcome of stent placement is highly influenced by the stent’s diameter that should be greater that 24 mm [12]. For a correct insertion, the stent should also be positioned 2 cm upstream e downstream of the lesion [13]. Hence, the choice of the length of the stent should take into consideration both the length of the stricture and the shortening of the stent after the deployment.

Discussion

SEMS and Palliation

Palliation represents the main indication to colonic stenting for obstruction due to colorectal cancer [4]. According to data of two meta-analysis [14,15], the technical success rates ranged from 88-100%. Although the conflicting results, the use of SEMS for palliation is recommended also for proximal obstructions [4]. A recent retrospective multicenter cohort study on palliation in patients affected by obstructing proximal colon cancer [16] showed higher technical and clinical success rates for emergency surgical treatment than SEMS. However, surgery had higher hospital stays and higher rates of early Adverse Events (AEs), so that author concluded that SEMS remains the first therapeutical option in this setting and surgery should be reserved in case of failure of endoscopic treatment. Short-term outcomes. Two meta-analysis showed the advantages of SEMS compared to palliative surgery [14,15]. Stent placement, indeed, is associated to a shorter duration of hospitalization and lower rates of admission to intensive care unit (0.8% vs 18%) [14,15] when compared to surgery. However, the same studies [14,15] outlined that the patients treated surgically had a rapid regression of symptoms related to obstruction, that was significantly higher than in patients treated endoscopically (100% versus 93%). The successful deployment of the stent, indeed, it is not associated to decompression in all patients, suggesting that both technical and clinical outcome can be influenced by the length and the angulation of the stricture: shorter stricture and wider median colonic angulation distal to the stricture are positively correlated to better outcomes [17]. Nevertheless, a recent study by Nitta, et al. [18] showed that SEMS placement was associated to a rapid improvement in symptoms, with a recovery of the oral intake after a median of 2.1 days after stent placement. Moreover, the 30-days mortality rates is about for 4% in case of use of SEMS, while it rank 11% for emergency surgery [15].

Not secondarily, in case of emergency surgery the rate of stoma formation is higher than for palliative SEMS (13% vs. 54%) [15] decreasing significantly the quality of life of patients. An English observational study [19] considered 173 patients who have been subjected to emergency surgery with stoma formation and 172 treated with stent placement, demonstrating higher perioperative and postoperative complications in the stoma-group. Notably, the SEMS-group had a lower number of patients that died in hospital (6.4% vs 12.7%). Almost 13% of patients treated with SEMS placement have a complication within 30 days [19]. Early complications are mainly represented by perforation and stent migration. Perforation occur in 4-7% of cases [17,20] and seems to be related to longer strictures [17]. Migration occur in 4-10% of cases and is more frequent in the first 24 hours [15,20,21]. The risk of migration seems to be higher for fully-covered SEMS, stent with a diameter < 24 mm and previous balloon dilation [9,10,22]. Usually, most migrations are distal and can be safely managed endoscopically. Moreover, the use of SEMS for palliation allows an earlier beginning of chemotherapy, usually within 16 days, compared to 33 days in case of palliative surgery [15,21], having potential consequences on long-term oncological outcome. However, the concomitant bevacizumab-based chemotherapy is associated to an increased risk of colic perforation in patients treated endoscopically [23,24] so that the use of SEMS for palliation is not recommended in those patient that should be considered or are being treated with antiangiogenic therapy, such as bevacizumab [4].

Long-term outcomes. While short-term complications are more frequent in patients treated with palliative surgery, palliative SEMS seems to be related to higher rates of late complications [15]. The most common late complication is re-obstruction, that may occur in 18% of patients [8,19,25], usually due to tumor ingrowth, although fecal impaction and mucosal prolapse are also possible causes. The rates of re-obstruction are higher for uncovered SEMS than for fully-covered SEMS (7.8% versus 4.7%) [10,26] and this difference is probably due to the lower rate of tumor ingrowth for covered stents (0.9% versus 11.4%). The median stent patency in the setting of palliation vary widely from different studies, between 55 days and 343 days, with a median of 106 days [27-29]. In their study, Nitta, et al. [18] found out that palliative stent re-occlusion is likely to occur within one year, with 69.2% of patients that maintain stent patency until the end or follow-up or death. This data differ from previous study that reported that 80% of patients preserve stent patency till death [4]. Usually, stent re-obstruction can be safely managed endoscopically. The first choice of treatment is stent-in-stent procedure, that consists in the deployment of a second stent into the obstructed stent, obtaining a clinical success in 75-86% of patients [4,29,30]. Two other chances of treatment are balloon dilation and argon laser therapy, although less used [31]. The overall morbidity is similar between patients treated with SEMS placement and palliative surgery, that rank 34% and 38% respectively [15,21], although in case of SEMS insertion the rates of colostomy/ileostomy is lower (13% versus 54%).
SEMS as Bridge to Surgery

The use of stent as bridge to surgery has been proposed as an alternative to emergency surgery for occlusive and potentially curable colorectal cancer. Although the encouraging results from previous studies, the most recent guidelines do not recommend the use of self-expandable metallic stent as bridge to surgery as a standard treatment for colon malignant obstructions [4]. The pre-operative stent insertion in potentially curable disease is suggested as a valid alternative treatment only for those patients with symptomatic left-sided malignant colonic occlusion with high surgical risk: patients older than 70 years and/or with ASA score > III [4,32]. These patients, indeed, are often elderly and affected by several pre-existing comorbidities, so that the acute occlusion can precipitate the already precarious conditions and the emergency surgery can be burdened by severe peri- and post-operative complications and higher mortality rates. The rational of stenting as “bridge-to-surgery” is to obtain the decompression due to the acute obstruction, in order to avoid an urgent surgical intervention and allow elective surgery. The 30-day mortality, indeed, is significantly higher after emergency surgery (14.9 %) when compared to elective surgical management, respectively 14.9% and 5.8% [33]. Standing on meta-analysis [34] the mean technical success rate for SEMS as bridge-to-surgery is 76.9%, with differences in post-operative mortality comparing SEMS as bridge-to-surgery and emergency surgery. Because of the lower rates of success for SEMS placement, in those cases of right-sided occlusion in potentially curable tumors one-stage surgery with resection followed by the primary anastomosis remains the gold standard and guidelines do not recommend the use of stenting as bridge-to-surgery [4,35]. A recent review comparing conventional emergency surgery (resection and primary anastomosis) with stent placement followed by elective resection for right-sided colonic obstructions showed a mortality rate of 10.8% in the first group and of 0% in the second [36]. However, when SEMS placement as bridge-to-surgery is indicated, guidelines weakly recommend performing elective surgery at a time interval of 5-10 days, in order reduce stent-related complications that may compromise subsequent surgery and the oncological outcome [4,37].

Short-term outcomes. Data on outcomes of SEMS as bridge-to-surgery are conflicting and vary from different meta-analysis, depending if they include only Randomized Control Trials (RCTs) or both randomized and non-randomized studies. A recent systematic review and meta-analysis [34], considering only RCTs, evaluated the efficacy and safety of colonic stenting as a bridge to surgery compared with emergency surgery. SEMS placement as a bridge to surgery followed by elective surgery showed a lower overall postoperative morbidity (33.1% vs. 53.9%), higher primary Anastomosis rate (67.2% vs. 55.1%), and lower stoma rate (9% vs. 27.4%) when compared to emergency surgery in left-sided ob-struction due colorectal tumors. However, the overall postoperative mortality was similar after SEMS insertion as a bridge to surgery and emergency surgery, respectively 10.7% and 12.4%. Similar results were also found in other studies that highlighted an higher primary anastomosis rate and a lower overall stoma rate in patients treated with SEMS placement as bridge-to-surgery, without increasing the risk of anastomotic leak or intra-abdominal abscess [38,39]. Kwak, et al. showed post-procedural complication were 9.5% in SEMS group and 17.7%, emergency surgery group, although no patient had permanent stoma in both groups [40]. The postoperative hospital stay was lower in the SEMS group than in the immediate surgery group (9 days in media vs 12 days, p<0.001), but no significant differences there were in 30-days mortality rate [41,42]. Nevertheless, patients treated with immediate surgery underwent to more stoma formation (43.1% vs 22.9% p<0.001) [42].

In the setting of bridge-to-surgery the risk of perforation should be evaluate because of its important consequences on the oncological outcome. The use of SEMS and the occurrence of tumor perforation, indeed, were identified to correlate with worse overall survival [43]. The overall risk of perforation is around 5% [44] and when occurred, perforation is associated to worse long-term outcome, especially recurrence of the disease [43].

Long-term outcomes. The main controversies related to the pre-operative use of the SEMS for potentially resectable and curable disease concern long-term results. The first doubts after the initial enthusiasm were moved in some studies that showed the increased risk of neoplastic dissemination derived from the preoperative treatment of malignant occlusion with SEMS [45]. During stent placement, indeed, may occur micro-perforations and squeezing of the tumor, favoring neoplastic cells diffusion [46,47]. Maruthachalam, et al. demonstrated that patients affected by colorectal cancer and treated with stent insertion had higher levels of CEA and mRNA expression of CK20 in the blood circulation. This was probably due to manipulation of tumor during insertion of the guidewire and to tissue damage given by stent dilation [45]. A higher rate of local recurrences emerged in RCT comparing oncological medium-term outcomes in SEMS before surgery versus primary surgical resection [48]. In a retrospective study of 2013 the use of SEMS as bridge to surgery was related to a worse of overall survival [49]. However, a recent Italian meta-analysis considering 13 studies and 1089 patients showed no differences in both local and systemic recurrences between SEMS as bridge-surgery and emergency surgery. The 3-year and 5-year mortality, indeed, were similar between the two groups [50]. Several meta-analysis comparing long-term outcomes in stenting as bridge-to-surgery and emergency surgery demonstrated that the oncological outcome, determined as overall survival, disease free-survival and neoplastic recurrence, was comparable between the two groups [9,42,51,52].
Conclusions

Endoscopic placement of stents for malignant colorectal obstructions is a safe and effective procedure. However, although it is usually performed in emergency, its correct use has to consider the stage of disease, patient’s comorbidities, and the potential or concomitant chemotherapy, in order to ensure the best oncological outcomes. Therefore, current indications [4] for colorectal SEMS placement include palliation for colonic obstruction by primary CRC and placement as a bridge to surgery only in those patients with high surgical risk, such as those with an ASA classification ≥III and aged over 70 years. While the use of palliative stenting is recommended both for left-sided and proximal obstructions, in case of potentially curable disease, stent placement is discouraged in right-sided neoplasia because of the lower rates of technical success and the conflicting results on clinical outcomes. Furthermore, in the setting of palliation, the use of SEMS is not recommended in those patients that should be considered or are being treated with antiangiogenic therapy, because of the higher risk of perforation. The uncertain results on long-term outcomes, limited in last years the use of SEMS as bridge-to-surgery, notwithstanding the potentially benefits on the short-term outcomes. However, evidences in the setting of SEMS as bridge-to-surgery are still lacking and further studies are needed in order to better evaluate the detainee the oncological outcome and to define the best time interval for the subsequent elective surgery.

References

1. Fan YB, Cheng YS, Chen NW, Xu HM, Yang Z, et al. (2006) Clinical application of self-expanding metallic stent in the management of left-sided colorectal malignant obstruction. World J Gastroenterol 12: 755-759.
2. Ascaneli S, Navarra G, Tonini G, Feo C, Zerbinati A, et al. (2003) Early and late outcome after surgery for colorectal cancer: elective versus emergency surgery. Tumori 89: 36-41.
3. Meisner S, Gonzalez-Huix H, Vandervoort JG, Goldberg P, Casellas JA, et al. (2001) Self-expandable metal stents for relieving malignant colorectal obstruction: short-term safety and efficacy within 30 days of stent procedure in 447 patients. Gastrointest Endosc 74: 876-84.
4. Van Hooff JE, Van Halsema EE, Vanbiervliet G, Regina GH, Beets-Tan, et al. (2014) Self-expandable metal stents for obstructing colonic and extracolonic cancer: European Society of Gastrointestinal Endoscopy (ESEG) Clinical Guideline. Endoscopy 46: 990-1053.
5. Cho YK, Kim SW, Lee BI, Lee JS, Jeoung YJ, et al. (2011) Clinical outcome of self-expandable metal stent placement in the management of malignant proximal colon obstruction. Gut Liver 5: 165-710.
6. Yao LQ, Zhong YS, Xu MX, Xu JM, Zhou Ph, et al. (2011) Self-expanding metallic stents drainage for acute proximal colon obstruction. World J Gastroenterol 17: 3220-3227.
7. Repici A, Adler DG, Gibb GC, Malesci A, Preatoni P, et al. (2007) Stenting of the proximal colon in patients with malignant large bowel obstruction: techniques and outcomes. Gastrointest Endosc 66: 940-944.
8. Yoon JY, Jung YS, Hong SP, Kim TI, Kim WH, et al. (2011) Clinical outcome and risk factors for technical and clinical failures of self-expandable metal stent insertion for malignant colorectal obstruction. American Society for Gastrointestinal Endoscopy 74: 858-868.
9. Zhang Y, Shi J, Shi B, Song CY, Xie WF, et al. (2012) Comparison of efficacy between uncovered and covered self-expanding metallic stents in malignant large bowel obstruction: a systematic review and meta-analysis. Colorectal Dis 14: 367-374.
10. Yang Z, Wu Q, Wang F, Ye X, Qi X, et al. (2013) A systematic review and meta-analysis of randomized trials and prospective studies comparing covered and bare self-expandable metal stents for the treatment of malignant obstruction in the digestive tract. Int J Med Sci 10: 825-835.
11. Choi JH, Lee YJ, Kim ES, Choi JH, Cho KB, et al. (2013) Covered self-expandable metal stents are more associated with complications in the management of malignant colorectal obstruction. Surg Endosc 27: 3220-3227.
12. Sagar J (2016) Role of colonic stents in the management of colorectal cancers. World J Gastrointest Endosc 8: 198-204.
13. Baron TH, Wong KeeSong LM, Repici A (2012) Role of self-expandable stents for patients with colon cancer (with videos). Gastrointest Endosc 75: 653-662.
14. Liang TW, Sun Y, Wei YC, Yang DX (2014) Palliative treatment of malignant colorectal obstruction caused by advanced malignancy: a self-expanding metallic stent or surgery? A system review and meta-analysis. Surg Today 44: 22-33.
15. Zhao XD, Cai BB, Cao RS, Shi RH (2013) Palliative treatment for incurable malignant colorectal obstructions: a meta-analysis. World J Gastroenterol 19: 5565-5574.
16. Siddiqui A, Cosgrove N, Yan LH, Brandt D, Janowski R (2017) Long-term outcomes of palliative colonic stenting versus emergency surgery for acute proximal malignant colonic obstruction: a multicenter trial. Endoscopy International Open 5: 232-238.
17. Boyle DJ, Thorn C, Saini A, Elton C, Atkin GK, et al. (2015) Predictive factors for successful colonic stenting in acute large-bowel obstruction: a 15-year cohort analysis 58: 358-362.
18. Nitta T, Kakeoke J, Ohta M, Fuji K, Tominaga T, et al. (2017) Clinical outcomes of self-expandable metal stent (SEMS) placement as palliative treatment for malignant colorectal obstruction: A single-center study from Japan. Annals of Medicine and Surgery 19: 33-36.
19. Abbott S, Eglinton TW, Ma Y, Stevenson C, Robertson GM, et al. (2014) Predictors of outcome in palliative colonic stent placement for malignant obstruction. Br J Surg 101: 121-126.
20. Almadi MA, Azzam M, Alharbi O, Mohammed AH, Sadaf N, et al. (2013) Complications and survival in patients undergoing colonic stenting for malignant obstruction. World J Gastroenterol 19: 7138-7145.
21. Karoui M, Charachon A, Delbaido C, Lorijau J, Laurent A, et al. (2007) Stents for palliation of obstructive metastatic colon cancer: impact on management and chemotherapy administration. Arch Surg 142: 619-623.
22. Kim BC, Han KS, Hong CW, Sohn DK, Park JW, et al. (2012) Clinical outcomes of palliative self-expanding metallic stents in patients with malignant colorectal obstruction. J Dig Dis 13: 258-266.
23. Cennamo V, Fuccio L, Mutri V, Minardi ME, Eusebi LH, et al. (2009) Does stent placement for advanced colon cancer increase the risk of perforation during bevacizumab-based therapy? Clin Gastroenterol Hepatol 7: 1174-1176.

24. Fuccio L, Correale L, Arezzo A, Repici A, Manes G, et al. (2014) Influence of K-ras status and anti-tumour treatments on complications due to colorectal self-expandable metallic stents: a retrospective multicenter study. Dig Liver Dis 46: 561-567.

25. Huhtinen H, Varpe P, Karvonen J, Rantala A, Gronroos JM, et al. (2013) Late complications related to palliative stenting in patients with obstructing colorectal cancer. Minim Invasive Ther Allied Technol 22: 352-358.

26. Sebastian S, Johnston S, Geoghegan T, Torreggiani W, Buckley M (2004) Pooled analysis of the efficacy and safety of self-expanding metal stenting in malignant colorectal obstruction. Am J Gastroenterol 99: 2051-2057.

27. Park JK, Lee MS, Ko BM, Kim HK, Kim YJ, et al. (2011) Outcome of palliative self-expanding metal stent placement in malignant colorectal obstruction according to stent type and manufacturer. Surg. Endosc 25: 1293-1299.

28. Watt AM, Faragher IG, Griffin TT, Rieger NA, Madeern GJ (2007) Self-expanding metallic stents for relieving malignant colorectal obstruction: a systematic review. Ann Surg 24: 24-30.

29. Yoon JY, Park SJ, Hong SP, Kim TI, Kim WH, et al. (2013) Outcomes of secondary self-expandable metal stents versus surgery after de-layered initial palliative stent failure in malignant colorectal obstruction. Digestion 88: 46-55.

30. Yoon JY, Jung YS, Hong SP, Kim TI, Kim WH, et al. (2011) Outcomes of secondary stent-in-stent self-expandable metal stent insertion for malignant colorectal obstruction. Gastrointest Endosc 74: 625-633.

31. Lee JM, Byeon JS (2015) Colorectal Stents: Current Status. Clin Endosc 48: 194-200.

32. Guo MG, Feng Y, Zheng Q, Di JZ, Wang Y, et al. (2011) Comparison of self-expanding metal stents and urgent surgery for left-sided malignant colorectal obstruction in elderly patients. Dig Dis Sci 56: 2706-2710.

33. Morris EJ, Taylor EF, Thomas JD, Quirke P, Finan PJ, et al. (2011) Thirty-day postoperative mortality after colorectal cancer surgery in England. Gut 60: 806-813.

34. Huang X, Lv B, Zhang S, Meng L (2014) Preoperative colorectal stents versus emergency surgery for acute left-sided malignant colorectal obstruction: a meta-analysis. J Gastrointest Surg 18: 584-591.

35. Frago R, Ramirez E, Millan M, Kreisler E, del Valle E, et al. (2014) Current management of acute malignant large bowel obstruction: a systematic review. Am J Surg 207: 127-138.

36. Amelung FJ, De Beaufort HW, Siersema PD, Verheijen PM, Consten EC (2015) Emergency resection versus bridge to surgery with stenting in patients with acute right-sided colorectal obstruction: a systematic review focusing on mortality and morbidity rates. Int J Colorectal Dis 30: 1147-1155.

37. Lee GJ, Kim HJ, Baek JH, Lee WS, Kwon KA (2013) Comparison of short-term outcomes after elective surgery following endoscopic stent insertion and emergency surgery for obstructive colorectal cancer. Int J Surg 11: 442-446.

38. Tan CJ, Dasari BV, Gardiner K (2012) Systematic review and meta-analysis of randomized clinical trials of self-expanding metallic stents as a bridge to surgery versus emergency surgery for malignant left-sided large bowel obstruction. British Journal of Surgery 99: 469-476.

39. Cirocchi R, Farinella E, Trastulli S, Desiderio J, Listorti C, et al. (2013) Safety and efficacy of endoscopic colorectal stenting as a bridge to surgery in the management of intestinal obstruction due to left colon and rectal cancer: a systematic review and meta-analysis. Surg Oncol 22: 14-21.

40. Kwak MS, Kim WS, Lee JM, Yang DH, Yoon YS, et al. (2016) Does Stenting as a Bridge to Surgery in Left-Sided Colorectal Cancer Obstruction Really Worsen Oncological Outcomes? Dis Colon Rectum 59: 725-732.

41. Varadarajulu S, Roy A, Lopes T, Drellichman ER, Kim M (2011) Endoscopic stenting versus surgical colostomy for the management of malignant colonic obstruction: comparison of hospital costs and clinical outcomes. Surg Endosc 25: 2203-2209.

42. Kang SI, Oh HK, Yoo JS, Ahn S, Kim MH, et al. (2018) Oncologic outcomes of preoperative stent insertion first versus immediate surgery for obstructing left-sided colorectal cancer. Surgical Oncology 27: 216-224.

43. Sloothaak DA, van den Berg MW, Dijkgraaf MG, Fockens P, Tanis PJ, et al. (2014) Oncological outcome of malignant colonic obstruction in the Dutch Stent-In 2 trial. Br J Surg 101: 1751-1757.

44. Khot UP, Lang AW, Murali K, Parker MC (2002) Systematic review of the efficacy and safety of colorectal stents. Br J Surg 89: 1096-1102.

45. Maruthachalam K, Lash GE, Shenton BK, Horgan AF (2007) Tumour cell dissemination following endoscopic stent insertion. Br J Surg 94: 1151-1154.

46. Small AJ, Coelho-Prabu N, Baron TH (2010) Endoscopic placement of self-expandable metal stents for malignant colorectal obstruction: long-term outcomes and complication factor. Gastrointest Endosc 71: 560-572.

47. Kim HJ, Choi GS, Park JS, Park SY, JUN SH (2013) Higher rate of perineural invasion in stent-laparoscopic approach in comparison to emergent open resection for obstructing left-sided colon cancer. Int J Colorectal Dis 28: 407-414.

48. Gorissen KJ, Tuynman JB, Fryer E, Wang L, Uberoi R, et al. (2013) Local recurrence after stenting for obstructing left-sided colonic cancer. Br J Surg 100: 1805-1809.

49. Sabbagh C, Browet F, Diouf M, Cosse C, Brehant O, et al. (2013) Is stenting as a “bridge to surgery” an oncologically safe strategy for the management of acute, left-sided, malignant, colonic obstruction? A comparative study with a propensity score analysis. Ann Surg 258: 107-115.

50. Ceresoli M, Allivi E, Coccolini F, Montori G, Fugazzola P, et al. (2017) Long-term oncologic outcomes of stent as a bridge to surgery versus emergency surgery in malignant left side colonic obstructions: a meta-analysis. J Gastrointest Oncol 8: 867-876.

51. Matsuda A, Miyashita M, Matsumoto S, Matsutani T, Sakurazawa N, et al. (2015) Late complications related to palliative stenting in patients with bevacizumab-based therapy. J Surg Oncol 111: 2229-2235.

52. Erichsen R, Horvath-Puho E, Jacobsen JB, Nilsson T, Baron JA, et al. (2015) Long-term mortality and recurrence after colorectal cancer surgery with preoperative stenting: a Danish nationwide cohort study. Endoscopy 47: 517-524.