Any flat connection on a principal fibre bundle comes from a linear representation of the fundamental group. The noncommutative analog of this fact is discussed here.

1 Motivation. Preliminaries

1.1 Coverings

Definition 1.1. [10] Let $\tilde{\pi} : \tilde{X} \to X$ be a continuous map. An open subset $U \subset X$ is said to be evenly covered by $\tilde{\pi}$ if $\tilde{\pi}^{-1}(U)$ is the disjoint union of open subsets of \tilde{X} each of which is mapped homeomorphically onto U by $\tilde{\pi}$. A continuous map $\tilde{\pi} : \tilde{X} \to X$ is called a covering projection if each point $x \in X$ has an open neighborhood evenly covered by $\tilde{\pi}$. \tilde{X} is called the covering space and X the base space of the covering.

Definition 1.2. [10] Let $p : \bar{X} \to X$ be a covering. A self-equivalence is a homeomorphism $f : \bar{X} \to \bar{X}$ such that $p \circ f = p$. This group of such homeomorphisms is said to be the group of covering transformations of p or the covering group. Denote by $G \left(\bar{X} \mid X \right)$ this group.

Remark 1.3. Above results are copied from [10]. Below the covering projection word is replaced with covering.
1.2 Flat connections in the differential geometry

Here I follow to [8]. Let M be a manifold and G a Lie group. A *(differentiable) principal bundle over M with group G* consists of a manifold P and an action of G on P satisfying the following conditions:

(a) G acts freely on P on the right: $(u,a) \in P \times G \mapsto ua = R_au \in P$;

(b) M is the quotient space of P by the equivalence relation induced by G, i.e. $M = P / G$, and the canonical projection $\pi : P \to M$ is differentiable;

(c) P is locally trivial, that is, every point x of M has an open neighborhood U such that $\pi^{-1}(U)$ is isomorphic to $U \times G$ in the sense that there is a diffeomorphism $\psi : \pi^{-1}(U) \to U \times G$ such that $\psi(u) = (\pi(u), \varphi(u))$ where φ is a mapping of $\pi^{-1}(U)$ into G satisfying $\psi(ua) = (\psi(u))a$ for all $u \in \pi^{-1}(U)$ and $a \in G$.

A principal fibre bundle will be denoted by $P(M, G, \pi)$, $P(M, G)$ or simply P.

Let $P(M, G)$ be a principal fibre bundle over a manifold with group G. For each $u \in P$ let $T_u(P)$ be a tangent space of P at u and G_u the subspace of $T_u(P)$ consisting of vectors tangent to the fibre through u. A *connection* Γ in P is an assignment of a subspace Q_u of $T_u(P)$ to each $u \in P$ such that

(a) $T_u(P) = G_u \oplus Q_u$ (direct sum);

(b) $Q_u = (R_a)\ast Q_u$ for every $u \in P$ and $a \in G$, where R_a is a transformation of P induced by $a \in G$, $R_au = ua$.

Let $P = M \times G$ be a trivial principal bundle. For each $a \in G$, the set $M \times \{a\}$ is a submanifold of P. The canonical flat connection in P is defined by taking the tangent space to $M \times \{a\}$ at $u = (x,a)$ as the horizontal tangent subspace at u. A connection in any principal bundle is called *flat* if every point has a neighborhood such that the induced connection in $P|_U = \pi^{-1}(U)$ is isomorphic with the canonical flat connection.

Corollary 1.4. *(Corollary II 9.2 [8]*) Let Γ be a connection in $P(M, G)$ such that the curvature vanishes identically. If M is paracompact and simply connected, then P is isomorphic to the trivial bundle and Γ is isomorphic to the canonical flat connection in $M \times G$.

If $\tilde{\pi} : \tilde{M} \to M$ is a covering then the $\tilde{\pi}$-*lift* of P is a principal $\tilde{P}(\tilde{M}, G)$ bundle, given by

$$\tilde{P} = \left\{ (u, \tilde{x}) \in P \times \tilde{M} \mid \pi(u) = \tilde{\pi}(\tilde{x}) \right\}.$$

If Γ is a connection on $P(M, G)$ and $\tilde{M} \to M$ is a covering then is a canonical connection $\tilde{\Gamma}$ on $\tilde{P}(\tilde{M}, G)$ which is the *lift* of Γ, that is, for any $\tilde{u} \in \tilde{P}$ the horizontal space $\tilde{Q}_{\tilde{u}}$ is isomorphically mapped onto the horizontal space $Q_{\tilde{\pi}(\tilde{u})}$ associated with the connection.
\[\Gamma. \] If \(\Gamma \) is flat then from the Proposition (II 9.3 [8]) it turns out that there is a covering \(\widetilde{M} \to M \) such that \(\check{P} (\widetilde{M}, G) \) (which is the lift of \(P (M, G) \)) is a trivial bundle, so the lift \(\check{\Gamma} \) of \(\Gamma \) is a canonical flat connection (cf. Corollary [1.4]). From the the Proposition (II 9.3 [8]) it follows that for any flat connection \(\Gamma \) on \(P (M, G) \) there is a group homomorphism \[\varphi : G (\widetilde{M} \mid M) \to G \] such that

(a) There is an action \(G (\widetilde{M} \mid M) \times \check{P} \to \check{P} \approx \widetilde{M} \times G \) given by
\[g (\check{x}, a) = (g \check{x}, \varphi (g) a); \forall \check{x} \in \widetilde{M}, a \in G, \]

(b) There is the canonical diffeomorphism \(P = \check{P} / G (\widetilde{M} \mid M) \),

(c) The lift \(\check{\Gamma} \) of \(\Gamma \) is a canonical flat connection.

Definition 1.5. In the above situation we say that the flat connection \(\Gamma \) is induced by the covering \(\widetilde{M} \to M \) and the homomorphism \(G (\widetilde{M} \mid M) \to G \), or we say that \(\Gamma \) comes from \(G (\widetilde{M} \mid M) \to G \).

Remark 1.6. The Proposition (II 9.3 [8]) assumes that \(\widetilde{M} \to M \) is the universal covering however it is not always necessary requirement.

Remark 1.7. If \(\pi_1 (M, x_0) \) is the fundamental group [10] then there is the canonical surjective homomorphism \(\pi_1 (M, x_0) \to G (\widetilde{M} \mid M) \). So there exist the composition \(\pi_1 (M, x_0) \to G (\widetilde{M} \mid M) \to G \). It follows that any flat connection comes from the homomorphisms \(\pi_1 (M, x_0) \to G \).

Suppose that there is the right action of \(G \) on \(P \) and suppose that \(F \) is a manifold with the left action of \(G \). There is an action of \(G \) on \(P \times F \) given by \(a (u, \xi) = (ua, a^{-1} \xi) \) for any \(a \in G \) and \((u, \xi) \in P \times F \). The quotient space \(P / G = (P \times F) / G \) has the natural structure of a manifold and if \(E = P \times_G F \) then \(E (M, F, G, P) \) is said to be the fibre bundle over the base \(M \), with (standard) fibre \(F \), and (structure) group \(G \) which is associated with the principal bundle \(P \) (cf. [8]). If \(P = M \times G \) is the trivial bundle then \(E \) is also trivial, that is, \(E = M \times F \). If \(F = \mathbb{C}^n \) is a vector space and the action of \(G \) on \(\mathbb{C}^n \) is a linear representation of the group then \(E \) is the linear bundle. Denote by \(T (M) \) (resp. \(T^* (M) \)) the tangent (resp. contangent) bundle, and denote by \(\Gamma (E) \), \(\Gamma (T (M)) \), \(\Gamma (T^* (M)) \) the spaces of sections of \(E \), \(T (M) \), \(T^* (M) \) respectively. Any connection \(\Gamma \) on \(P \) gives a covariant derivative on \(E \), that is, for any section \(X \in \Gamma (T (M)) \) and any section \(\xi \in \Gamma (E) \) there is the derivative given by
\[\nabla_X (\xi) \in \Gamma (E). \]

If \(E = M \times \mathbb{C}^n \), \(\Gamma \) is the canonical flat connection and \(\xi \) is a trivial section, that is, \(\xi = M \times \{ x \} \) then
\[\nabla_X \xi = 0, \quad \forall X \in T (M). \quad (1.1) \]
For any connection there is the unique map
\[\nabla : \Gamma(E) \to \Gamma(E \otimes T^* (M)) \tag{1.2} \]
such that
\[\nabla_X \xi = (\nabla \xi, X) \]
where the pairing \((\cdot, \cdot) : \Gamma(E \otimes T^* (M)) \times \Gamma(T (M)) \to \Gamma(E)\) is induced by the pairing \(\Gamma(T^* (M)) \times \Gamma(T (M)) \to \mathcal{C}^\infty (M)\).

1.3 Noncommutative generalization of connections

The noncommutative analog of manifold is a spectral triple and there is the noncommutative analog of connections.

1.3.1 Connection and curvature

Definition 1.8.

(a) A cycle of dimension \(n\) is a triple \((\Omega, d, \int)\) where \(\Omega = \bigoplus_{j=0}^{n} \Omega^j\) is a graded algebra over \(\mathbb{C}\), \(d\) is a graded derivation of degree 1 such that \(d^2 = 0\), and \(\int : \Omega^n \to \mathbb{C}\) is a closed graded trace on \(\Omega\),

(b) Let \(\mathcal{A}\) be an algebra over \(\mathbb{C}\). Then a cycle over \(\mathcal{A}\) is given by a cycle \((\Omega, d, \int)\) and a homomorphism \(\mathcal{A} \to \Omega^0\).

Definition 1.9. Let \(\mathcal{A} \xrightarrow{\rho} \Omega\) be a cycle over \(\mathcal{A}\), and \(\mathcal{E}\) a finite projective module over \(\mathcal{A}\). Then a connection \(\nabla\) on \(\mathcal{E}\) is a linear map \(\nabla : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^1\) such that
\[\nabla(\xi x) = \nabla(\xi) x = \xi \otimes d_{\mathcal{A}}(x) ; \forall \xi \in \mathcal{E}, \forall x \in \mathcal{A}. \tag{1.3} \]

Here \(\mathcal{E}\) is a right module over \(\mathcal{A}\) and \(\Omega^1\) is considered as a bimodule over \(\mathcal{A}\).

Remark 1.10. The map \(\nabla : \mathcal{E} \to \mathcal{E} \otimes_{\mathcal{A}} \Omega^1\) is an algebraic analog of the map \(\nabla : \Gamma(E) \to \Gamma(E \otimes T^* (M))\) given by (1.2).

Proposition 1.11.

Following conditions hold:

(a) Let \(e \in \mathrm{End}_\mathcal{A} (\mathcal{E})\) be an idempotent and \(\nabla\) is a connection on \(\mathcal{E}\); then
\[\xi \mapsto (e \otimes 1) \nabla \xi \tag{1.4} \]
is a connection on \(e\mathcal{E}\),

(b) Any finite projective module \(\mathcal{E}\) admits a connection,

(c) The space of connections is an affine space over the vector space \(\mathrm{Hom}_\mathcal{A} (\mathcal{E}, \mathcal{E} \otimes_{\mathcal{A}} \Omega^1)\),

\[4\]
(d) Any connection ∇ extends uniquely up to a linear map of $\tilde{E} = E \otimes_A \Omega$ into itself such that
$$\nabla (\xi \otimes \omega) = \nabla (\xi) \omega + \xi \otimes d\omega; \quad \forall \xi \in E, \ \omega \in \Omega. \quad (1.5)$$

A curvature of a connection ∇ is a (right A-linear) map
$$F_\nabla : E \to E \otimes_A \Omega^2 \quad (1.6)$$
defined as a restriction of $\nabla \circ \nabla$ to E, that is, $F_\nabla = \nabla \circ \nabla|_E$. A connection is said to be flat if its curvature is identically equal to 0 (cf. \[1\]).

Remark 1.12. Above algebraic notions of curvature and flat connection are generalizations of corresponding geometrical notions explained in \[8\] and the Section 1.2.

For any projective A module E there is a trivial connection $\nabla : E \to E \otimes_A \Omega^1$
$$\nabla = \text{Id}_E \otimes d.$$
From $d^2 = d \circ d = 0$ it follows that $(\text{Id}_E \otimes d) \circ (\text{Id}_E \otimes d) = 0$, i.e. any trivial connection is flat.

Lemma 1.13. If $\nabla : E \to E \otimes_A \Omega^1$ is a trivial connection and $e \in \text{End}_A (E)$ is an idempotent then the given by (1.4)
$$\xi \mapsto (e \otimes 1) \nabla \xi$$
connection $\nabla_e : eE \to eE \otimes \Omega^1$ on eE is flat.

Proof. From
$$(e \otimes 1) (\text{Id}_E \otimes d) \circ (e \otimes 1) (\text{Id}_E \otimes d) = e \otimes d^2 = 0$$
it turns out that $\nabla_e \circ \nabla_e = 0$, i.e. ∇_e is flat. \hfill \Box

Remark 1.14. The notion of the trivial connection is an algebraic version of geometrical canonical connection explained in the Section 1.2.

1.3.2 Spectral triples

This section contains citations of \[7\].

Definition of spectral triples

Definition 1.15. \[7\] A (unital) spectral triple (A, \mathcal{H}, D) consists of:
- a pre-C^*-algebra A with an involution $a \mapsto a^*$, equipped with a faithful representation on:
 - a Hilbert space \mathcal{H}; and also
 - a selfadjoint operator D on \mathcal{H}, with dense domain $\text{Dom} D \subset \mathcal{H}$, such that $a(\text{Dom} D) \subseteq \text{Dom} D$ for all $a \in A$.

There is a set of axioms for spectral triples described in \[7, 11\].
Noncommutative differential forms

Any spectral triple naturally defines a cycle \(\rho : \mathcal{A} \to \Omega_D \) (cf. Definition 1.9). In particular for any spectral triple there is an \(\mathcal{A} \)-module \(\Omega^1_D \subset B(\mathcal{H}) \) of order-one differential forms which is a linear span of operators given by

\[
a [D, b]; \ a, b \in \mathcal{A}.
\]

(1.7)

There is the differential map

\[
d : \mathcal{A} \to \Omega^1_D,
\]

\[
a \mapsto [D, a].
\]

(1.8)

2 Noncommutative finite-fold coverings

2.1 Coverings of \(\mathcal{C}^* \)-algebras

Definition 2.1. If \(\mathcal{A} \) is a \(\mathcal{C}^* \)-algebra then an action of a group \(G \) is said to be involutive if \(ga^* = (ga)^* \) for any \(a \in \mathcal{A} \) and \(g \in G \). The action is said to be non-degenerated if for any nontrivial \(g \in G \) there is \(a \in \mathcal{A} \) such that \(ga \neq a \).

Definition 2.2. Let \(\mathcal{A} \hookrightarrow \tilde{\mathcal{A}} \) be an injective *-homomorphism of unital \(\mathcal{C}^* \)-algebras. Suppose that there is a non-degenerated involutive action \(G \times \tilde{\mathcal{A}} \to \tilde{\mathcal{A}} \) of a finite group \(G \), such that \(\mathcal{A} = \tilde{\mathcal{A}}^G \) def \(\{ a \in \tilde{\mathcal{A}} \mid a = ga; \forall g \in G \} \). There is an \(\mathcal{A} \)-valued product on \(\tilde{\mathcal{A}} \) given by

\[
\langle a, b \rangle_{\tilde{\mathcal{A}}} = \sum_{g \in G} g (a^*b)
\]

(2.1)

and \(\tilde{\mathcal{A}} \) is an \(\mathcal{A} \)-Hilbert module. We say that a triple \((A, \tilde{A}, G)\) is an unital noncommutative finite-fold covering if \(\tilde{A} \) is a finitely generated projective \(\mathcal{A} \)-Hilbert module.

Remark 2.3. Above definition is motivated by the Theorem 2.4.

Theorem 2.4. Suppose \(X \) and \(Y \) are compact Hausdorff connected spaces and \(p : Y \to X \) is a continuous surjection. If \(C(Y) \) is a projective finitely generated Hilbert module over \(C(X) \) with respect to the action

\[
(f\xi)(y) = f(y)\xi(p(y)), \ f \in C(Y), \ \xi \in C(X),
\]

then \(p \) is a finite-fold covering.

2.2 Coverings of spectral triples

Definition 2.5. Let \((A, \mathcal{H}, D)\) be a spectral triple, and let \(A \) be the \(\mathcal{C}^* \)-norm completion of \(\mathcal{A} \). Let \((A, \tilde{A}, G)\) be an unital noncommutative finite-fold covering such that there is
then

\[\tilde{H} = \tilde{A} \otimes \mathcal{H} \] is a Hilbert space such that the Hilbert product \((\cdot, \cdot)_{\tilde{H}}\) is given by

\[(a \otimes \xi, b \otimes \eta)_{\tilde{H}} = \frac{1}{|G|} \left(\xi, \sum_{g \in G} g \left(\tilde{a} \tilde{b} \right) \eta \right)_{\tilde{H}} \quad \forall \tilde{a}, \tilde{b} \in \tilde{A}, \, \xi, \eta \in \mathcal{H} \]

where \((\cdot, \cdot)_{\tilde{H}}\) is the Hilbert product on \(\mathcal{H}\). There is the natural representation \(\tilde{A} \to B \left(\tilde{H} \right)\).

A spectral triple \(\left(\tilde{A}, \tilde{H}, \tilde{D} \right)\) is said to be a \(\left(A, \tilde{A}, \tilde{G} \right)\)-lift of \((A, \mathcal{H}, D)\) if following conditions hold:

(a) \(\tilde{A}\) is a \(C^*\)-norm completion of \(\tilde{A}\),

(b) \(\tilde{D} \left(1_{\tilde{A}} \otimes A \xi \right) = 1_{\tilde{A}} \otimes A \tilde{D} \xi; \ \forall \xi \in \text{Dom} \tilde{D}\),

(c) \(\tilde{D} \left(g \tilde{\xi} \right) = g \left(\tilde{D} \tilde{\xi} \right)\) for any \(\tilde{\xi} \in \text{Dom} \tilde{D}, \ g \in G\).

Remark 2.6. It is proven in [5] that for any spectral triple \((A, \mathcal{H}, D)\) and any unital noncommutative finite-fold covering \(\left(A, \tilde{A}, \tilde{G} \right)\) there is the unique \(\left(A, \tilde{A}, \tilde{G} \right)\)-lift \(\left(\tilde{A}, \tilde{H}, \tilde{D} \right)\) of \((A, \mathcal{H}, D)\).

Remark 2.7. It is known that if \(M\) is a Riemannian manifold and \(\tilde{M} \to M\) is a covering, then \(\tilde{M}\) has the natural structure of Riemannian manifold (cf. [8]). The existence of lifts of spectral triples is a noncommutative generalization of this fact (cf. [5]).

3 Construction of noncommutative flat coverings

Let \((A, \mathcal{H}, D)\) be a spectral triple, let \((\tilde{A}, \tilde{H}, \tilde{D})\) is the \(\left(A, \tilde{A}, \tilde{G} \right)\)-lift of \((A, \mathcal{H}, D)\). Let \(V = \mathbb{C}^n\) and with left action of \(G\), i.e. there is a linear representation \(\rho : G \to GL(\mathbb{C}, n)\).

Let \(\tilde{E} = A \otimes \mathbb{C}^n \approx \tilde{A}^n\) be a free module over \(\tilde{A}\), so \(\tilde{E}\) is a projective finitely generated \(A\)-module (because \(\tilde{A}\) is a finitely generated projective \(A\)-module). Let \(\tilde{\nabla} : \tilde{E} \to \tilde{E} \otimes \tilde{A} \Omega^1_D\) be the trivial flat connection. In [5] it is proven that \(\Omega^1_D = \tilde{A} \otimes A \Omega^1_D\) it follows that the connection \(\tilde{\nabla} : \tilde{E} \to \tilde{E} \otimes \tilde{A} \Omega^1_D\) can be regarded as a map \(\nabla' : \tilde{E} \to \tilde{E} \otimes \tilde{A} \tilde{H} \otimes A \Omega^1_D = \tilde{E} \otimes A \Omega^1_D\), i.e. one has a connection

\[\nabla' : \tilde{E} \to \tilde{E} \otimes A \Omega^1_D. \]

From \(\nabla' \circ \nabla'|_{\tilde{E}} = 0\) it turns out that \(\nabla' \circ \nabla'|_{\tilde{E}} = 0\), i.e. \(\nabla'\) is flat. There is the action of \(G\) on \(\tilde{E} = \tilde{A} \otimes \mathbb{C}^n\) given by

\[g \left(\tilde{a} \otimes x \right) = g \tilde{a} \otimes gx; \ \forall g \in G, \ \tilde{a} \in \tilde{A}, \ x \in \mathbb{C}^n. \] (3.1)

Denote by

\[\mathcal{E} = \tilde{E}^G = \left\{ \tilde{\xi} \in \tilde{E} \mid g \tilde{\xi} = \tilde{\xi} \right\} \] (3.2)
Clearly \mathcal{E} is an A-A-bimodule. For any $\tilde{\xi} \in \tilde{\mathcal{E}}$ there is the unique decomposition
\[
\tilde{\xi} = \xi + \xi \perp,
\]
\[
\xi = \frac{1}{|G|} \sum_{g \in G} g \tilde{\xi},
\]
\[
\xi \perp = \tilde{\xi} - \xi.
\]

From the above decomposition it turns out the direct sum $\tilde{\mathcal{E}} = \tilde{\mathcal{E}}^G \oplus \tilde{\mathcal{E}} \perp$ of A-modules. So $\mathcal{E} = \tilde{\mathcal{E}}^G$ is a projective finitely generated A-module, it follows that there is an idempotent $e \in \text{End}_A \tilde{\mathcal{E}}$ such that $\mathcal{E} = e\tilde{\mathcal{E}}$. The Proposition 1.11 gives the canonical connection
\[
\nabla : \mathcal{E} \to \mathcal{E} \otimes_A \Omega^1_D
\]
which is defined by the connection $\nabla' : \tilde{\mathcal{E}} \to \tilde{\mathcal{E}} \otimes_A \Omega^1_D$ and the idempotent e. From the Lemma 1.13 it turns out that ∇ is flat.

Definition 3.1. We say that ∇ is a flat connection induced by noncommutative covering $\left(\mathcal{E} = \tilde{\mathcal{E}}^G \oplus \tilde{\mathcal{E}} \perp\right)$ and the linear representation $\rho : G \to GL(C, n)$, or we say the ∇ comes from the representation $\rho : G \to GL(C, n)$.
4 Mapping between geometric and algebraic constructions

The geometric (resp. algebraic) construction of flat connection is explained in the Section 1.2 (resp. 3). Following table gives a mapping between these constructions.

Geometry	Algebra		
1 Riemannian manifold M.	Spectral triple $(C^\infty (M), L^2 (M, \mathcal{S}), \mathcal{D})$.		
2 Topological covering $\tilde{M} \to M$.	Noncommutative covering, $(C (M), C (\tilde{M}), G (\tilde{M}	M))$, given by the Theorem 2.4.	
3 Natural structure of Riemannian manifold on the covering space \tilde{M}.	Triple $(C^\infty (\tilde{M}), L^2 (\tilde{M}, \tilde{\mathcal{S}}), \mathcal{D})$ is the $(C (M), C (\tilde{M}), G (\tilde{M}	M))$-lift of $(C^\infty (M), L^2 (M, \mathcal{S}), \mathcal{D})$.	
4 Group homomorphism $G (\tilde{M}	M) \to GL (n, \mathbb{C})$.	Action $G (\tilde{M}	M) \times \mathbb{C}^n \to \mathbb{C}^n$.
5 Trivial bundle $\tilde{M} \times \mathbb{C}^n$.	Free module $C^\infty (\tilde{M}) \otimes \mathbb{C}^n$.		
6 Canonical flat connection on $\tilde{M} \times \mathbb{C}^n$.	Trivial flat connection on $C^\infty (\tilde{M}) \otimes \mathbb{C}^n$.		
7 Action of $G (\tilde{M}	M)$ on $\tilde{M} \times \mathbb{C}^n$.	Action of $G (\tilde{M}	M)$ on $C^\infty (\tilde{M}) \otimes \mathbb{C}^n$.
8 Quotient space $P = (\tilde{M} \times \mathbb{C}^n) / G (\tilde{M}	M)$.	Invariant module $\mathcal{E} = (C^\infty (\tilde{M}) \otimes \mathbb{C}^n)^{G(\tilde{M}	M)}$.
9 Geometric flat connection on P	Algebraic flat connection on \mathcal{E}.		

5 Noncommutative examples

5.1 Noncommutative tori

Following text is the citation of [5]. If Θ be a real skew-symmetric $n \times n$ matrix. There is a C^*-algebra $C (T^n_\Theta)$ which is said to be the noncommutative torus (cf. [5]). There is a pre-C^*-algebra $C^\infty (T^n_\Theta)$ and the spectral triple $(C^\infty (T^n_\Theta), \mathcal{H}, \mathcal{D})$ such that it is the dense...
inclusion $C^\infty(T^n_\Theta) \hookrightarrow C(T^n_\Theta)$. If $\mathbf{k} = (k_1, ..., k_n) \in \mathbb{N}^n$ and

$$\bar{\Theta} = \begin{pmatrix} 0 & \bar{\theta}_{12} & \ldots & \bar{\theta}_{1n} \\ \bar{\theta}_{21} & 0 & \ldots & \bar{\theta}_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \bar{\theta}_{n1} & \bar{\theta}_{n2} & \ldots & 0 \end{pmatrix}$$

is a skew-symmetric matrix such that

$$e^{-2\pi i \theta_{kn}} = e^{-2\pi i \bar{\theta}_{kn} k_n}$$

then one has a following theorem.

Theorem 5.1. [4] The triple $(C(T^n_\Theta), C(T^n_\Theta), Z_{k_1} \times ... \times Z_{k_n})$ is an unital noncommutative finite-fold covering.

There is $(C(T^n_\Theta), C(T^n_\Theta), Z_{k_1} \times ... \times Z_{k_n})$-lift $(C^\infty(T^n_\Theta), \bar{\mathcal{H}}, \bar{\mathcal{D}})$ of $(C^\infty(T^n_\Theta), \mathcal{H}, D)$. From the construction of the Section 3 it follows that for any representation $\rho: Z_{k_1} \times ... \times Z_{k_n} \to GL(N, \mathbb{C})$ there is a finitely generated $C^\infty(T^n_\Theta)$-module \mathcal{E} and a flat connection

$$\mathcal{E} \to \mathcal{E} \otimes_{C^\infty(T^n_\Theta)} \Omega^1_D$$

which comes from ρ.

5.2 Isospectral deformations

A very general construction of isospectral deformations of noncommutative geometries is described in [4]. The construction implies in particular that any compact Spin-manifold M whose isometry group has rank ≥ 2 admits a natural one-parameter isospectral deformation to noncommutative geometries $M_{\mathfrak{g}}$. We let $(C^\infty(M), L^2(M, S), \mathcal{D})$ be the canonical spectral triple associated with a compact spin-manifold M. We recall that $C^\infty(M)$ is the algebra of smooth functions on M, S is the spinor bundle and \mathcal{D} is the Dirac operator. Let us assume that the group Isom(M) of isometries of M has rank $r \geq 2$. Then, we have an inclusion

$$T^2 \subset Isom(M),$$

with $T^2 = \mathbb{R}^2/2\pi \mathbb{Z}^2$ the usual torus, and we let $U(s), s \in T^2$, be the corresponding unitary operators in $\mathcal{H} = L^2(M, S)$ so that by construction

$$U(s) \mathcal{D} = \mathcal{D} U(s).$$

Also,

$$U(s) a U(s)^{-1} = a_s(a), \quad \forall a \in \mathcal{A}, \quad \text{5.1}$$

where $\alpha \in \text{Aut}(\mathcal{A})$ is the action by isometries on the algebra of functions on M. In [4] is constructed a spectral triple $(\mathcal{C}^\infty(M), L^2(M, S), \mathcal{D})$ such that $\mathcal{C}^\infty(M)$ is a noncommutative algebra which is said to be an isospectral deformation of $C^\infty(M)$. For any
finite-fold topological covering $\tilde{M} \to M$ there is the finite-fold noncommutative covering $\left(lC \left(\tilde{M} \right), l \left(M \right), G \left(\tilde{M} | M \right) \right)$ (cf. [6]). So there is the $\left(lC \left(\tilde{M} \right), l \left(M \right), G \left(M \right) \right)$-lift

$$\left(lC^{\infty} \left(\tilde{M} \right), L^2 \left(\tilde{M}, \tilde{S} \right), D \right)$$

of $\left(L^\infty \left(M \right), L^2 \left(M, S \right), D \right)$. From the construction of the Section 3 it follows that for any representation $\rho : G \left(\tilde{M} | M \right) \to GL \left(N, \mathbb{C} \right)$ there is a finitely generated $lC^\infty \left(M \right)$-module E and a flat connection

$$E \to E \otimes_{lC^\infty \left(M \right)} \Omega^1_D$$

which comes from ρ.

References

[1] Tomasz Brzezinski Flat connections and (co)modules, arXiv:math/0608170, 2006.

[2] Shiing-Shen Chern, Weihuan Chen, Kai Shue Lam. Lectures on Differential Geometry, World Scientific, 1999.

[3] Alain Connes. Noncommutative Geometry, Academic Press, San Diego, CA, 661 p., ISBN 0-12-185860-X, 1994.

[4] Alain Connes, Giovanni Landi. Noncommutative Manifolds the Instanton Algebra and Isospectral Deformations, arXiv:math/0011194, 2001.

[5] Petr Ivankov. Coverings of Spectral Triples, arXiv:1705.08651, 2017.

[6] Petr Ivankov. Quantization of noncompact coverings, arXiv:1702.07918, 2017.

[7] Lecture notes on noncommutative geometry and quantum groups, Edited by Piotr M. Hajac.

[8] S. Kobayashi, K. Nomizu. Foundations of Differential Geometry. Volume 1. Interscience publishers a division of John Willey & Sons, New York - London. 1963.

[9] Alexander Pavlov, Evgenij Troitsky. Quantization of branched coverings. Russ. J. Math. Phys. (2011) 18: 338. doi:10.1134/S1061920811030071, 2011.

[10] E. H. Spanier. Algebraic Topology. McGraw-Hill. New York 1966.

[11] J. C. Várilly. An Introduction to Noncommutative Geometry. EMS 2006.