Antipsychotics in Adults With Schizophrenia: Comparative Effectiveness of First-Generation Versus Second-Generation Medications

A Systematic Review and Meta-analysis

Lisa Hartling, PhD; Ahmed M. Abou-Setta, MD, PhD; Serdar Dursun, MD, PhD; Shima S. Mousavi, MD; Dion Pasichnyk, BSc; and Amanda S. Newton, RN, PhD

Background: Debate continues about the comparative benefits and harms of first-generation antipsychotics (FGAs) and second-generation antipsychotics (SGAs) in treating schizophrenia.

Purpose: To compare the effects of FGAs with those of SGAs in the treatment of adults aged 18 to 64 years with schizophrenia and related psychosis on illness symptoms, diabetes mellitus, mortality, tardive dyskinesia, and a major metabolic syndrome.

Data Sources: English-language studies from 10 electronic databases to March 2012, reference lists of relevant articles, and gray literature.

Study Selection: Randomized trials for efficacy and cohort studies at least 2 years in duration for adverse events.

Data Extraction: Two independent reviewers extracted data from 114 studies involving 22 comparisons and graded the strength of evidence for primary outcomes as insufficient, low, moderate, or high using the Grading of Recommendations Assessment, Development and Evaluation approach.

Data Synthesis: Few differences of clinical importance were found for core illness symptoms; lack of precision in effect estimates precluded firm conclusions for many comparisons. Moderate-strength evidence showed a clinically important benefit of haloperidol over olanzapine for improving positive symptoms, but the benefit was scale-dependent. It was seen when the Scale for the Assessment of Positive Symptoms was used but not when the Positive and Negative Syndrome Scale (PANSS) was used. Moderate-strength evidence showed a clinically important benefit of olanzapine over haloperidol in improving negative symptoms when the PANSS and the Scale for the Assessment of Negative Symptoms were used. Low-strength evidence showed no difference in mortality for chlorpromazine versus clozapine or haloperidol versus aripiprazole, increased incidence of the metabolic syndrome for olanzapine versus haloperidol (risk differences, 2% and 22%), and higher incidence of tardive dyskinesia for chlorpromazine versus clozapine (risk differences, 5% and 9%). Evidence was insufficient to draw conclusions for diabetes mellitus.

Limitations: All studies had high or unclear risk of bias. Length of study follow-up was often too brief to adequately measure adverse events. Medication comparisons, dosage, and outcome measurement were heterogeneous for head-to-head comparisons. Selective patient populations limit generalizability.

Conclusion: Clear benefits of FGAs versus SGAs for treating schizophrenia remain inconclusive because of variation in assessing outcomes and lack of clinically important differences for most comparisons. The strength of evidence on safety for major medical events is low or insufficient.

Primary Funding Source: Agency for Healthcare Research and Quality.

METHODS

The introduction of second-generation antipsychotics (SGAs) for treatment of schizophrenia was an important effort to improve symptom management, reduce extrapyramidal symptoms caused by first-generation antipsychotics (FGAs), and offer patients improved quality of life and functioning. Today, 20 commercial FGAs and SGAs that have been approved by the U.S. Food and Drug Administration (FDA) are available in the United States (Appendix Table 1, available at www.annals.org). Of these, SGAs are more frequently prescribed by physicians. In 2003, three quarters of the 2 million adult patients in the United States who were prescribed an antipsychotic medication were prescribed an SGA, which accounted for 93% of the estimated $2.82 billion spent on these medications in the United States (1).

Recent large-scale trials and meta-analyses have called into question whether SGAs and FGAs provide clinically important differences for patient outcomes (1–3), and the question of which medication is more efficacious has yet to be definitively answered. Part of the uncertainty about medication efficacy relates to the lack of studies focused on long-term management. Such issues as how patient management should be influenced by medication heterogeneity within the 2 classes also add ambiguity for physician decision making (1, 4–6), as do differences between recently published reviews in defining eligible medication comparisons, patients, and clinically important outcomes and evaluating the strength of evidence (1, 7–19).

This comparative effectiveness review summarizes the benefits and harms associated with commercially available, FDA-approved FGAs and SGAs. Broad inclusion criteria were used for comparisons among FGAs and SGAs, patients, and study outcomes to address the diversity of previously published reviews.

METHODS

We followed an open process for this review with input from various stakeholders, including the public (20),
and a protocol that followed standards for systematic reviews (21–23). A full technical report with detailed search strategies, methods, and evidence tables is available from the Agency for Healthcare Research and Quality (21).

Literature Search

We conducted comprehensive searches in MEDLINE (Appendix Table 2, available at www.annals.org), EMBASE, PsycINFO, International Pharmaceutical Abstracts, CINAHL, ProQuest Dissertations and Theses—Full Text, the Cochrane Central Register of Controlled Trials, and Scopus for studies published from 1950 to March 2012. For adverse events, we also searched the U.S. National Library of Medicine’s TOXLINE and the MedEffect Canada Adverse Reaction Database.

We hand-searched proceedings from the annual meetings of the American Psychiatric Association (2008–2010) and the International College of Neuropsychopharmacology (2008–2010). We searched clinical trial registries and contacted experts in the field and authors of relevant studies. We retrieved new drug applications for each of the included interventions from the FDA Web site. We reviewed the reference lists of reviews, guidelines, and new drug applications and searched for articles citing relevant studies using Scopus Citation Tracker.

Study Selection

Two reviewers independently screened titles and abstracts. We retrieved the full text of potentially relevant studies. Two reviewers independently reviewed each article using a standardized form with a priori eligibility criteria (Appendix Table 3, available at www.annals.org). We resolved discrepancies through discussion or third-party adjudication. We included studies if they were randomized, controlled trials (RCTs); were nonrandomized, controlled trials (non-RCTs); were cohort studies with a minimum follow-up of 2 years; included adults aged 18 to 64 years with schizophrenia or related psychoses; compared a commercially available FDA-approved FGA with an FDA-approved SGA; and provided data on illness symptoms (Appendix Table 4, available at www.annals.org) or the following adverse events: diabetes mellitus, death, tardive dyskinesia, or a major metabolic syndrome.

Quality Assessment and Rating the Body of Evidence

Two reviewers independently assessed the methodological quality of included studies and resolved disagreements through discussion. We assessed RCTs and non-RCTs using the Cochrane Risk of Bias Tool (22) and cohort studies using the Newcastle–Ottawa Scale (24).

Two reviewers independently evaluated strength of evidence using the Grading of Recommendations Assessment, Development and Evaluation approach of the Evidence-based Practice Center Program and resolved discrepancies through discussion (25). We examined 4 domains: risk of bias, consistency, directness, and precision. Within the grading system, randomized trials always begin with a “high” strength of evidence that can be downgraded on the basis of shortcomings in the body of evidence (for example, overall risk of bias, inconsistency between study results, indirectness of the measured outcomes, and imprecision of the pooled estimate). In contrast, observational studies (for example, cohort studies) begin with a “low” strength of evidence that can be further downgraded (similar to randomized trials) but can also, in rare cases, be upgraded. We assigned an overall grade of “high,” “moderate,” “low,” or “insufficient” strength of evidence. We graded core illness symptoms in the categories of positive symptoms, negative symptoms, general psychopathology, and global ratings or total scores (typically a compilation of positive and negative symptoms or general psychopathology, which included these symptoms plus mood states). We provided a grade for each scale that was reported in the relevant studies. We also graded the adverse events listed in the previous section.

Data Extraction

Two reviewers independently extracted data using standardized forms and resolved discrepancies by referring to the original report. We extracted information on study characteristics, populations, interventions, outcomes, and results. Primary outcomes were improved core symptoms.
Table 1. Summary of Results and Strength of Evidence for Core Illness Symptoms*

Variable, Scale, and Comparison	Studies (Participants), n (n)	Risk of Bias	Consistency	Precision	Mean Difference (95% CI)	Favored Drug	Strength of Evidence
Positive symptoms							
PANSS							
Haloperidol vs. risperidone	22 (4142)	Medium	Consistent	Precise	0.77 (0.09 to 1.45)†	Risperidone‡	Moderate
Haloperidol vs. clozapine	3 (184)	Medium	Consistent	Imprecise	−0.82 (−2.21 to 0.57)	–	Low
Haloperidol vs. olanzapine	14 (3742)	Medium	Consistent	Imprecise	0.43 (−0.22 to 1.08)	–	Low
Haloperidol vs. quetiapine	3 (358)	Medium	Consistent	Imprecise	0.83 (−0.29 to 1.95)	–	Low
Haloperidol vs. aripiprazole	2 (407)	Medium	Consistent	Imprecise	−0.99 (−2.64 to 0.67)	–	Low
SAPS							
Haloperidol vs. olanzapine	2 (178)	Medium	Consistent	Precise	−3.14 (−4.90 to −1.37)†	Haloperidol	Moderate
Haloperidol vs. risperidone	2 (195)	Medium	Consistent	Imprecise	−0.26 (−1.90 to 1.38)	–	Low
Negative symptoms							
PANSS							
Haloperidol vs. olanzapine	14 (3742)	Medium	Consistent	Precise	1.06 (0.46 to 1.67)†	Olanzapine	Moderate
Haloperidol vs. aripiprazole	3 (1701)	Medium	Consistent	Precise	0.80 (0.14 to 1.46)†	Aripiprazole‡	Moderate
Haloperidol vs. risperidone	22 (4142)	Medium	Consistent	Precise	0.61 (0.07 to 1.16)†	Risperidone‡	Moderate
Haloperidol vs. clozapine	3 (184)	Medium	Consistent	Imprecise	0.28 (−0.96 to 1.51)	–	Low
Haloperidol vs. quetiapine	3 (358)	Medium	Consistent	Imprecise	0.53 (−0.81 to 1.87)	–	Low
Haloperidol vs. ziprasidone	2 (900)	Medium	Consistent	Imprecise	0.56 (−0.30 to 1.42)	–	Low
SANS							
Haloperidol vs. olanzapine	5 (535)	Medium	Consistent	Precise	2.56 (0.94 to 4.18)†	Olanzapine	Moderate
Haloperidol vs. risperidone	4 (508)	Medium	Consistent	Imprecise	0.30 (−2.79 to 3.38)	–	Low
Haloperidol vs. clozapine	2 (157)	Medium	Consistent	Imprecise	0.94 (−2.60 to 4.48)	–	Low
Global ratings and total scores							
PANSS							
Haloperidol vs. risperidone	21 (4020)	Medium	Consistent	Precise	3.24 (1.62 to 4.86)	Risperidone	Moderate
Haloperidol vs. olanzapine	15 (4209)	Medium	Consistent	Precise	2.31 (0.44 to 4.18)†	Olanzapine	Moderate
Haloperidol vs. clozapine	4 (607)	Medium	Consistent	Imprecise	2.69 (−1.28 to 6.65)	–	Low
Haloperidol vs. quetiapine	5 (1013)	Medium	Consistent	Imprecise	0.31 (−2.34 to 2.96)	–	Low
Haloperidol vs. ziprasidone	4 (1105)	Medium	Consistent	Imprecise	1.22 (−0.62 to 3.07)	–	Low
BPRS							
Chlorpromazine vs. clozapine	6 (535)	Medium	Consistent	Precise	8.40 (5.92 to 10.88)†	Clozapine	Moderate
Haloperidol vs. aripiprazole	3 (779)	Medium	Consistent	Imprecise	−0.01 (−2.82 to 2.81)	–	Low
Haloperidol vs. risperidone	14 (2659)	Medium	Consistent	Imprecise	0.67 (−0.53 to 1.88)	–	Low
Haloperidol vs. quetiapine	4 (756)	Medium	Consistent	Imprecise	1.23 (−0.50 to 2.96)	–	Low
Haloperidol vs. clozapine	4 (268)	Medium	Consistent	Imprecise	2.16 (−0.56 to 4.87)	–	Low
Haloperidol vs. olanzapine	13 (4014)	Medium	Consistent	Imprecise	0.19 (−2.09 to 2.47)	–	Low
Haloperidol vs. ziprasidone	4 (1078)	Medium	Consistent	Imprecise	0.24 (−0.57 to 1.06)	–	Low
CGI-I							
Haloperidol vs. olanzapine	8 (3564)	Medium	Consistent	Precise	0.16 (0.01 to 0.31)†	Olanzapine‡	Moderate
Haloperidol vs. quetiapine	4 (1253)	Medium	Consistent	Precise	−0.23 (−0.42 to −0.04)†	Haloperidol‡	Moderate
Haloperidol vs. aripiprazole	5 (1366)	Medium	Consistent	Imprecise	−0.03 (−0.20 to 0.14)	–	Low
Haloperidol vs. risperidone	8 (2348)	Medium	Consistent	Imprecise	0.07 (−0.11 to 0.25)	–	Low
Haloperidol vs. ziprasidone	4 (1143)	Medium	Consistent	Imprecise	−0.00 (−0.26 to 0.26)	–	Low
CGI-S							
Haloperidol vs. olanzapine	2 (281)	Medium	Consistent	Imprecise	0.11 (−0.30 to 0.51)	–	Low
Haloperidol vs. quetiapine	3 (623)	Medium	Consistent	Imprecise	0.02 (−0.24 to 0.27)	–	Low
Haloperidol vs. risperidone	3 (657)	Medium	Consistent	Imprecise	−0.02 (−0.39 to 0.36)	–	Low
GAF							
Haloperidol vs. ziprasidone	3 (1085)	Medium	Consistent	Imprecise	0.30 (−1.58 to 2.19)	–	Low
General psychopathology							
PANSS							
Haloperidol vs. clozapine	3 (184)	Medium	Consistent	Imprecise	1.77 (−2.99 to 6.53)	–	Low
Haloperidol vs. olanzapine	10 (1187)	Medium	Consistent	Imprecise	0.53 (−1.20 to 2.25)	–	Low
Haloperidol vs. quetiapine	3 (358)	Medium	Consistent	Imprecise	1.55 (−0.29 to 3.38)	–	Low
Haloperidol vs. risperidone	16 (3036)	Medium	Consistent	Imprecise	0.87 (−0.48 to 2.21)	–	Low
HAM-D							
Haloperidol vs. olanzapine	3 (209)	Medium	Consistent	Imprecise	1.14 (−0.60 to 2.89)	–	Low
Haloperidol vs. risperidone	2 (408)	Medium	Consistent	Imprecise	−0.64 (−1.97 to 0.69)	–	Low
HAM-A							
Haloperidol vs. olanzapine	2 (283)	Medium	Consistent	Imprecise	0.90 (−0.43 to 2.23)	–	Low
Haloperidol vs. olanzapine	6 (2639)	Medium	Consistent	Precise	2.46 (1.78 to 3.14)†	Olanzapine	Moderate

Continued on following page
of illness (positive and negative symptoms and general psychopathology) and 4 adverse events specified a priori. Secondary outcomes included included functional outcomes; health care system use; response, remission, and relapse rates and medication adherence; health-related quality of life; other patient-oriented outcomes (for example, patient satisfaction); and general and specific measures of other adverse events (for example, extrapyramidal symptoms and weight gain).

When studies incorporated multiple relevant treatment groups or multiple follow-up periods, we extracted data from all groups for the longest follow-up period. In cases of multiple reports of the same study, we referenced the primary, or most relevant, study and extracted additional data from companion reports.

Data Analysis
We conducted meta-analyses in RevMan, version 5.01 (The Cochrane Collaboration, Nordic Cochrane Centre, Copenhagen, Denmark), using a random-effects model (26) when studies were sufficiently similar in terms of design, population, interventions, and outcomes. We combined risk ratios for dichotomous outcomes using the DerSimonian and Laird random-effects model and combined continuous outcomes using mean differences with 95% CIs. We quantified statistical heterogeneity using the I^2 statistic. For trials with multiple study groups, we pooled the data for all relevant groups in the same trial before including the study in any meta-analysis so that the same groups were never represented more than once in any given meta-analysis. Where measures of variance were not reported in the studies, we imputed the variance from the largest reported SD in the given meta-analysis.

We conducted subgroup and sensitivity analyses for illness or disorder subtypes, sex, age group (18 to 35 years, 36 to 54 years, and 55 to 64 years), race, comorbid conditions, drug dosage, follow-up period, previous exposure to antipsychotics, treatment of a first episode versus prior episodes, and treatment resistance. Details of these analyses are presented in the appendices to the full technical report. We report subgroup and sensitivity analyses if there was substantial heterogeneity ($I^2 \geq 50\%$). For comparisons with at least 10 studies, we assessed publication bias using funnel plots and statistical tests (27–29). For our primary outcome of core symptoms, we considered a difference of 20% to be clinically important (7, 30). We calculated absolute differences (that is, risk differences) for adverse events to enhance interpretation of results.

Role of the Funding Source
The Agency for Healthcare Research and Quality suggested the initial questions and approved copyright assertion for the manuscript but did not participate in the literature search, data analysis, or interpretation of the results.

RESULTS
A total of 9703 unique study reports were identified; we included 114 primary publications (2, 31–143) (110 RCTs, 2 non-RCTs, and 2 retrospective cohort studies) and 149 companion publications (Figure). The studies were published between 1974 and 2012 and involved 22 drug comparisons. Most studies were multicenter (54%), involved inpatients (48%), and were conducted in North America (42%). The number of participants ranged from 10 to 118,522 (median, 78; interquartile range, 38 to 296). The average participant age ranged from 21 to 50 years (median, 37 years; interquartile range, 32 to 40 years). The length of follow-up (that is, study duration) ranged from less than 1 day to 4 years (median, 8 weeks;
Table 2. Summary of Results for Other Outcomes

Variable and Comparison	Events/Participants, n/N*	Effect Estimate (95% CI)
	FGAs	SGAs
Medication adherence		
Chlorpromazine vs. clozapine	8/83 21/81	RR, 0.37 (0.17 to 0.79)†
Haloperidol vs. aripiprazole‡	0/33 1/66	RR, 0.66 (0.03 to 15.70)
Haloperidol vs. olanzapine	99/153 127/214	RR, 1.12 (0.86 to 1.46)
Haloperidol vs. risperidone	283/361 307/419	RR, 1.04 (0.89 to 1.21)
Time to all-cause medication discontinuation		
Perphenazine vs. olanzapine	48 229	MD, \(-78.70 (-119.34 \text{ to } -38.06) \)†
Perphenazine vs. risperidone	48 221	MD, \(-33.40 (-75.18 \text{ to } 8.38) \)
Response rates§		
Chlorpromazine vs. clozapine	6/169 48/154	RR, 0.13 (0.06 to 0.28)†
Chlorpromazine vs. olanzapine	0/42 3/42	RR, 0.14 (0.01 to 2.68)
Chlorpromazine vs. quetiapine	52/100 65/101	RR, 0.81 (0.64 to 1.02)
Haloperidol vs. olanzapine	747/1606 1312/2493	RR, 1.12 (0.86 to 1.46)
Haloperidol vs. clozapine	23/87 43/91	RR, 0.52 (0.22 to 1.23)
Haloperidol vs. quetiapine	275/611 370/810	RR, 0.99 (0.76 to 1.30)
Haloperidol vs. risperidone	641/1113 1404/2374	RR, 0.94 (0.86 to 1.02)
Haloperidol vs. aripiprazole	374/816 652/1369	RR, 1.01 (0.76 to 1.34)
Haloperidol vs. olanzapine	49/115 115/220	RR, 0.82 (0.64 to 1.04)
Haloperidol vs. risperidone	250/482 489/801	RR, 0.98 (0.74 to 1.30)
Fluphenazine vs. olanzapine	17/30 23/30	RR, 0.74 (0.51 to 1.07)
Fluphenazine vs. quetiapine	2/13 3/12	RR, 0.62 (0.12 to 3.07)
Fluphenazine vs. risperidone	2/13 3/13	RR, 0.67 (0.13 to 3.35)
Perphenazine vs. aripiprazole	36/146 40/154	RR, 0.95 (0.64 to 1.40)
Remission rates		
Chlorpromazine vs. clozapine	69/95 70/94	RR, 0.69 (0.23 to 2.06)
Haloperidol vs. olanzapine	89/291 133/291	RR, 0.65 (0.45 to 0.94)†
Haloperidol vs. quetiapine	17/103 24/104	RR, 0.72 (0.41 to 1.25)
Haloperidol vs. risperidone	28/87 36/92	RR, 0.84 (0.56 to 1.24)
Haloperidol vs. ziprasidone	99/407 199/678	RR, 0.89 (0.71 to 1.12)
Relapse rates		
Chlorpromazine vs. clozapine	11/83 13/81	RR, 0.83 (0.39 to 1.73)
Haloperidol vs. risperidone	244/704 179/701	RR, 1.35 (1.17 to 1.57)†
Haloperidol vs. clozapine	2/37 3/38	RR, 0.68 (0.12 to 3.87)
Rates of hospitalization or rehospitalization		
Chlorpromazine vs. clozapine	5/83 7/81	RR, 0.70 (0.23 to 2.11)
Haloperidol vs. olanzapine	14/103 18/105	RR, 0.79 (0.42 to 1.51)
Haloperidol vs. quetiapine	14/103 14/104	RR, 1.01 (0.51 to 2.01)
Haloperidol vs. risperidone	28/209 16/213	RR, 1.94 (0.99 to 3.79)
Haloperidol vs. ziprasidone	16/256 5/230	RR, 2.62 (0.99 to 6.97)
Perphenazine vs. olanzapine	41/261 38/336	RR, 1.39 (0.92 to 2.09)
Perphenazine vs. quetiapine	41/261 68/337	RR, 0.78 (0.55 to 1.11)
Perphenazine vs. risperidone	41/261 51/341	RR, 1.05 (0.72 to 1.53)
Perphenazine vs. ziprasidone	41/261 33/185	RR, 0.88 (0.58 to 1.34)
Mean hospital bed days		
Haloperidol vs. clozapine	218 205	MD, \(-7.10 (-19.02 \text{ to } 4.82) \)
Haloperidol vs. olanzapine	150 159	MD, \(-7.10 (-20.95 \text{ to } 6.75) \)
Health-related quality of life		
20% improvement		
Perphenazine vs. aripiprazole	31/146 55/154	RR, 0.59 (0.41 to 0.87)†
QLS		
Haloperidol vs. ziprasidone	151 448	MD, \(-12.12 (-22.06 \text{ to } -2.17) \)†
Haloperidol vs. olanzapine	103 227	MD, \(-2.62 (-6.39 \text{ to } 1.15) \)
Haloperidol vs. risperidone	30 33	MD, \(-0.10 (-0.17 \text{ to } 0.37) \)
Perphenazine vs. olanzapine	261 336	MD, \(-0.00 (-0.16 \text{ to } 0.16) \)
Perphenazine vs. quetiapine	261 337	MD, \(-0.10 (-0.07 \text{ to } 0.27) \)
Perphenazine vs. risperidone	261 341	MD, \(-0.07 (-0.24 \text{ to } 0.10) \)
Perphenazine vs. ziprasidone	261 185	MD, \(-0.07 (-0.27 \text{ to } 0.13) \)

Continued on following page
interquartile range, 6 to 26 weeks) for RCTs and non-RCTs; the cohort studies were 3 and 22 years in duration. The route of medication administration was primarily oral; intramuscular administration occurred in 10 studies (9%). Sixty-eight percent of studies were supported by the pharmaceutical industry.

None of the RCTs and non-RCTs had low risk of bias, 67% had unclear risk of bias, and 33% had high risk of bias. Trials were commonly assessed as having unclear risk of bias because of incomplete reporting of sequence generation, allocation concealment, and blinding methods. The most common reasons for trials to be assessed as having high risk of bias were lack of blinding and inadequate handling or reporting of outcome data. Methodological quality of the cohort studies was good; both collected data retrospectively.

Table 2—Continued

Variable and Comparison	Events/Participants, n/N*	FGAs	SGA, Effect Estimate (95% CI)
Mansa			
Haloperidol vs. olanzapine	103/105	MD, 0.00 (−1.38 to 1.38)	
Haloperidol vs. quetiapine	103/104	MD, 0.00 (−1.38 to 1.38)	
Haloperidol vs. ziprasidone	103/82	MD, −0.10 (−1.48 to 1.28)	
QLP			
Haloperidol vs. risperidone	146/143	MD, 0.10 (−0.20 to 0.40)	
Schizophrenia-specific QLS			
Haloperidol vs. olanzapine	132/144	MD, −3.62 (−8.94 to 1.70)	
Other			
Haloperidol vs. olanzapine	10/17	MD, −2.05 (−25.81 to 21.71)	
Patient satisfaction			
Haloperidol vs. aripiprazole	7/33/42/66	RR, 0.33 (0.17 to 0.66)*	
Haloperidol vs. clozapine	9/17/11/17	RR, 0.82 (0.46 to 1.45)	
Haloperidol vs. risperidone	11/33/17/34	RR, 0.67 (0.37 to 1.20)	
Caregiver satisfaction: haloperidol vs. aripiprazole	6/33/38/66	RR, 0.32 (0.15 to 0.67)*	
Patients with paid employment in past month			
Perphenazine vs. olanzapine	19/261/19/336	RR, 1.29 (0.70 to 2.38)	
Perphenazine vs. quetiapine	19/261/14/337	RR, 1.75 (0.90 to 3.43)	
Perphenazine vs. risperidone	19/261/18/341	RR, 1.38 (0.74 to 2.57)	
Perphenazine vs. ziprasidone	19/261/11/185	RR, 1.22 (0.60 to 2.51)	
Sexual dysfunction			
Fluphenazine vs. quetiapine	7/13/3/12	RR, 2.15 (0.72 to 6.48)	
Fluphenazine vs. risperidone	7/11/3/13	RR, 1.40 (0.60 to 3.28)	
Haloperidol vs. quetiapine	26/103/26/104	RR, 1.01 (0.63 to 1.62)	
Haloperidol vs. olanzapine	27/159/34/160	RR, 0.81 (0.52 to 1.24)	
Haloperidol vs. ziprasidone	26/103/30/82	RR, 0.69 (0.45 to 1.07)	
Haloperidol vs. risperidone	1/76/5/84	RR, 0.30 (0.05 to 1.78)	
Alleviation of sexual dysfunction after treatment			
Fluphenazine vs. quetiapine	1/13/2/12	RR, 0.46 (0.05 to 4.46)	
Fluphenazine vs. risperidone	1/13/6/13	RR, 0.17 (0.02 to 1.20)	
Patient insight into illness: haloperidol vs. olanzapine	132/131	MD, −1.10 (−3.95 to 1.75)	
Attitude about drugs: haloperidol vs. risperidone	146/143	MD, −0.80 (−2.12 to 0.52)	
Economic independence: haloperidol vs. risperidone	29/50/31/50	RR, 0.94 (0.68 to 1.29)	
Positive urine toxicology test result: haloperidol vs. olanzapine	6/15/2/16	RR, 3.20 (0.76 to 13.46)	

FGA = first-generation antipsychotic; LQLP = Lancashire Quality of Life Profile; MANSA = Manchester Short Assessment of Quality of Life; MD = mean difference; QLS = Quality-of-Life Scale; RR = risk ratio; SGA = second-generation antipsychotic.

* For continuous outcomes, only the number of participants is presented.
† Statistically significant result that favored the SGA.
‡ The outcome in this comparison was low adherence.
§ The definition of “response rate” varied across studies (for example, a 50% reduction on the Positive and Negative Syndrome Scale and a 40% improvement on the Brief Psychiatric Rating Scale).
results for the Positive and Negative Syndrome Scale (PANSS) are displayed in Appendix Table 5 (available at www.annals.org). The following sections describe the results for which there was at least low strength of evidence.

Two differences were found in positive symptom alleviation in comparisons of haloperidol with 5 SGAs, as measured by the PANSS and the Scale for the Assessment of Positive Symptoms. Low-strength evidence showed a benefit for risperidone compared with haloperidol on the PANSS; the difference was not considered clinically important, and there was indication of publication bias. Moderate-strength evidence showed a clinically important benefit of haloperidol over olanzapine on the Scale for the Assessment of Positive Symptoms (Appendix Figure 1, available at www.annals.org), although there was substantial heterogeneity (I² = 76%). When 1 outlier (significantly favoring haloperidol) was removed, heterogeneity decreased and results remained in favor of risperidone (Appendix Figure 5, available at www.annals.org); there was no indication of publication bias. The outlying study (n = 100) used a relatively small fixed dose of risperidone (2 mg/d), whereas most of the other studies used a range from 1 mg/d to 5 to 20 mg/d. Subgroup analyses by dosage showed less heterogeneity and more benefits for higher doses of risperidone (data in technical report).

Moderate-strength evidence showed a benefit for haloperidol compared with quetiapine on the Clinical Global Impression—Severity scale, but the difference was not clinically important. Moderate-strength evidence showed a clinically important benefit for clozapine compared with chlorpromazine based on the total score from the Brief Psychiatric Rating Scale (Appendix Figure 6, available at www.annals.org).

Haloperidol was compared with 4 SGAs, most commonly olanzapine, and results were reported for 8 scales assessing an overall change in general psychopathology. Moderate-strength evidence showed a difference for 1 of

Adverse Event and Comparison	Study Design	Study Duration	Studies (Participants), n (n)	Events/ Participants, n/N	Events/ Participants, n/N	Risk Difference (95% CI)	Risk Ratio (95% CI)
Death							
Chlorpromazine vs. clozapine	Overall	–	2 (214)	–	–	–.04 (-.14 to .06)	0.33 (0.01 to 7.81)
	RCT	208 wk	1 (50)	0/25	1/25	–.01 (-.02 to .05)	2.93 (0.12 to 70.85)
	RCT	12 mo	1 (164)	1/83	0/81	–	
Haloperidol vs. aripiprazole	Overall	–	2 (655)	–	–	–	
	RCT	24 h	1 (360)	0/185	0/175	0.00 (-0.01 to 0.01)	NE
	RCT	24 h	1 (295)	0/60	2/235	–.01 (-.03 to .02)	0.77 (0.04 to 15.91)
The metabolic syndrome							
Haloperidol vs. olanzapine	Overall	–	2 (139)	–	–	–	
	RCT	12 wk	1 (72)	4/36	5/37	–.02 (-.17 to .13)	0.82 (0.24 to 2.82)
	RCT	6 wk	1 (66)	1/31	9/35	–.22 (-.38 to -.07)	0.13 (0.02 to 0.93)
Tardive dyskinesia							
Chlorpromazine vs. clozapine	Overall	–	2 (204)	–	–	–	
	RCT	9 y	1 (164)	17/83	9/81	0.09 (-0.02 to 0.20)	1.84 (0.87 to 3.89)
	RCT	12 wk	1 (40)	1/19	0/21	0.05 (-0.08 to 0.18)	3.30 (0.14 to 76.46)

NE = not estimable; RCT = randomized, controlled trial.
14 comparisons: Olanzapine showed a clinically important benefit on the Montgomery–Asberg Depression Rating Scale (Appendix Figure 7, available at www.annals.org).

Response, Remission, and Relapse Rates and Medication Adherence

Findings for these outcomes are presented in Table 2 and were available for 17 head-to-head comparisons. A statistically significant difference in response rates was found favoring clozapine over chlorpromazine (3 studies) (75, 84, 91). Olanzapine was favored over haloperidol for remission (3 trials) (88, 144, 145) and response rates (14 trials) (40, 85, 88, 98, 101–103, 107, 112, 126, 135, 140, 144, 145). Risperidone was favored over haloperidol for relapse rates (6 trials) (63, 67, 110, 115, 127, 130). Olanzapine was favored over perphenazine for time to all-cause medication discontinuation (37). Clozapine was favored over chlorpromazine for medication adherence (77). These last 2 findings are based on single studies and should be interpreted with caution.

Patient-Oriented Outcomes and Health Care System Use

Patient-oriented outcomes broadly refer to functional outcomes (for example, sexual dysfunction, employment, and economic independence) and outcomes that are important to patients (for example, health-related quality of life). Results for functional outcomes were available for 9 head-to-head comparisons (Table 2), with no statistically significant differences in any comparisons. In terms of health-related quality of life, aripiprazole compared with perphenazine showed 20% improvement (1 trial) (90), and ziprasidone compared with haloperidol showed benefits on the Quality-of-Life Scale (1 trial) (118). Statistically significant differences were found favoring aripiprazole over haloperidol for caregiver satisfaction (1 trial) (66) and patient satisfaction (1 trial) (66). Results for health care system use were available for 10 head-to-head comparisons, with no statistically significant differences for any comparison (Table 2). Some of the results described in this section and Table 2 are based on single trials and should be interpreted with caution.

Medication-Associated Adverse Events and Safety

For the 4 key adverse events, the strength of evidence was insufficient to draw conclusions for most comparisons (Appendix Table 6, available at www.annals.org). Two trials each provided data on mortality for chlorpromazine versus clozapine (105, 106) and haloperidol versus aripiprazole (Table 3) (34, 136). Absolute differences were small, ranging from 1% to 4% and 0% to 1%, respectively. The length of follow-up (that is, duration) of the trials for the latter comparison was only 24 hours, and the drug was administered via intramuscular injection in both studies. Low-strength evidence showed a higher incidence of the metabolic syndrome for olanzapine than for haloperidol; risk differences were 2% and 22%, respectively, in the 2 relevant studies (88, 102). Low-strength evidence showed a higher incidence of tardive dyskinesia for chlorpromazine than for clozapine; risk differences were 5% and 9% at 12 weeks and 9 years, respectively (77, 84). Across all studies involving adverse events, the strength of evidence was driven by lack of precision in the estimates of effect because of the small numbers of participants studied and events observed.

Data were also recorded for general measures of adverse events and specific adverse events by physiologic system; extrapyramidal symptoms were the most frequently reported event (detailed data and analyses available in technical report). For general measures of adverse events, statistically significant differences were found in the incidence of adverse events and withdrawals due to adverse events for several comparisons. The comparison usually included haloperidol, and the risk was consistently higher with the FGA.

Discussion

Despite FGAs and SGAs being a mainstay in the treatment of schizophrenia in adults, questions remain about whether and how the various commercially available medications differ in efficacy and safety profiles (1–6). This review provides a comprehensive synthesis of the evidence on the comparative benefits and harms of FDA-approved FGAs and SGAs. We used a broad approach to inclusion criteria for comparisons, patients, and study outcomes to bring together the diversity of previously published reviews and provide a broader perspective on evidence in the field (1, 7–19).

We identified a large number of relevant studies (114 studies and 22 different comparisons), the majority of which were efficacy trials (146). The most frequent comparisons involved haloperidol and risperidone (40 studies) or olanzapine (35 studies); however, the number of studies
available for each comparison and outcome was often limited.

Overall, we found few differences of clinical importance between the active drugs; however, this does not imply that they are equivalent. The strength of evidence from these studies was generally low or insufficient, with considerable variation in scales and subscales used to measure symptoms. This heterogeneity, coupled with the small number of studies within specific comparisons, suggests that there is insufficient power to explain some of the negative findings and precludes firm conclusions that are needed for front-line clinical decision making.

At this time, evidence supporting the use of SGAs for negative symptoms is stronger than that supporting their use for positive symptoms; olanzapine and risperidone were found to be more efficacious than haloperidol in reducing such symptoms as blunted affect and withdrawal. This effect, however, was not observed for improving overall (global) functioning and general psychopathology. Contrary to recent reviews (7, 8), we found no evidence of benefit in improving symptoms with clozapine compared with haloperidol, although moderate-strength evidence showed benefits for clozapine compared with chlorpromazine. Differences in study inclusion criteria between our review and previously published reviews probably account for the different outcomes, with our review including more studies from which to base conclusions. In light of the totality of evidence in this review, the ample low-quality evidence showing no difference between haloperidol and various SGAs in improving symptoms provides an inadequate evidence base to advocate for one medication over another.

The data for adverse events were of low to insufficient strength, suggesting the need for a more focused evaluation of drug safety. Despite our efforts to identify long-term safety data from observational studies, only 2 retrospective cohort studies provided follow-up data at least 2 years in duration. Short-term efficacy trials, which are accepted by the regulatory authorities, may not identify time-dependent adverse events, such as tardive dyskinesia, diabetes mellitus, the metabolic syndrome, or death. Although few studies measured mortality, some evidence suggests that treatment with FGAs or SGAs is no different after immediate use (within 24 hours) or long-term use (>12 months). The strength of evidence for other mortality-related outcomes (such as suicide-related behaviors, which is a risk in this clinical population) (147–149) was insufficient to draw conclusions.

We found low-strength evidence for an increased incidence of the metabolic syndrome with use of olanzapine. In general, most studies showed no difference between FGAs and SGAs in terms of increased risk for the metabolic syndrome or diabetes mellitus; however, the strength of evidence was usually insufficient. Although the methodological and reporting limitations of these studies make conclusions about these outcomes premature (150), several reviews have identified clozapine and olanzapine as contributing to greater weight gain (7, 151–153), but this may not necessarily translate into increased risk for more severe outcomes. Further study of this trajectory is warranted with higher-quality longitudinal studies.

Our results are consistent with those of CATIE (Clinical Antipsychotic Trials of Intervention Effectiveness) (2), a widely cited trial in this field. CATIE was designed to evaluate whether FGAs were inferior to SGAs in efficacy and safety. Findings from CATIE suggested that the FGA perphenazine and various SGAs (olanzapine, quetiapine, risperidone, and ziprasidone) differed more in their adverse effect profiles than in their therapeutic effect profiles. The study, like this review, also showed that effectiveness across medications varied and that the difference was clinically important in some cases.

Our results are also similar to those of a recent systematic review of SGAs versus FGAs, although our review is broader in scope in terms of medications included, patient populations, and outcomes (1). There were several methodological differences between the previous review and this one: The previous review included non–FDA-approved antipsychotics, restricted the analysis to only double-blind trials, included only studies examining optimum SGA dosage and oral route of administration, pooled data across efficacy outcome measures, and pooled different FGAs. The different methodologies may have led to slightly different conclusions about individual SGAs.

One of the unique features of our review is the strength-of-evidence assessments, which provide information on the level of confidence one can place on the results of existing studies. In most cases, the strength of evidence was insufficient or low, highlighting the likelihood that future research may change the estimates of effect and the need for a stronger evidence base to inform clinical practice. Current treatment guidelines from the American Psychiatric Association for patients with schizophrenia provide specific recommendations on medication timing (for example, acute phase or first episode) but broad variables for medication options (154). This approach may reflect the current state of evidence for FGAs and SGAs, and as stronger evidence emerges, it may come to reflect more specific recommendations for prescribing physicians.

There were limitations in the design and quality of the primary studies. Most studies were short-term RCTs, often with an a priori hypothesis that the SGA would be more efficacious (155). Most trials did not sufficiently report methods to prevent selection and performance bias. Few trials reported blinding study investigators and participants; single-blinded and open-label trials in this field have been found to favor SGAs over FGAs (1). Furthermore, the individual studies and, in many cases, the pooled results may not have sufficient power to detect equivalence or noninferiority between drugs.
Most studies in this review were industry-funded (69%), which can increase the chance of proindustry findings (156). Funding was not disclosed for 19% of studies, highlighting the need for transparency in reporting the nature and extent of financial support. The choice of medication comparisons, dosages, and outcomes in the studies included in this review may have been driven by the funder’s interests and priorities. Publication and reporting of select comparisons and outcomes are other potential limitations of this body of evidence.

Few studies provided evidence for comparable patient populations. We found notable heterogeneity across studies for disorder subtypes, comorbid drug or alcohol use, treatment resistance, and number of previous episodes, which result in differential response to treatment. Furthermore, many studies were highly selective in patient enrollment, which may increase the likelihood of drug benefit and decrease the likelihood of adverse events. Detailed subgroup analyses are reported elsewhere (21). Characteristics of the research, including drug dosages (for example, lower doses of FGAs in more recent studies) and patient populations (for example, fewer patients already exposed to FGAs or proven treatment resistance to FGAs in recent studies), also changed over time. Finally, differences in medication comparisons and dosage and outcome measurement limited our synthesis, and outcomes that are important for understanding medication adherence and persistence (a common clinical encounter in this patient population), such as sedation and restlessness, were rarely reported.

More longitudinal research is needed on the long-term safety of FGAs versus SGAs. Despite our efforts to identify long-term safety data from observational studies, only 2 retrospective cohort studies were identified. Consensus is needed on the most important comparisons between FGAs and SGAs for future studies. Short- and long-term evaluations with patient subpopulations, including those with medical and neurologic comorbid conditions, are needed. There is a need for studies investigating the influence of dose, age, and other factors, such as comorbid conditions, on serious adverse events, which would help estimate possible risks in specific patient populations. Future studies should also examine functional outcomes that are important to patients, including health-related quality of life, relationships, academic and occupational performance, and legal interactions.

Existing studies on the comparative effectiveness of individual FGAs and SGAs preclude drawing firm conclusions because of sparse data and imprecise effect estimates. There were relatively few differences of clinical importance among 114 studies. The current evidence base is inadequate for clinicians and patients to make informed decisions about treatment. Outcomes potentially important to patients were rarely assessed. Data on long-term safety are lacking and urgently needed.

From University of Alberta, Edmonton, Alberta, Canada, and University of Manitoba/Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada.

Acknowledgment: The authors thank Mrs. Carol Spooner and Ms. Janine Schouten for help in article selection and data extraction; Dr. Susan Armijo-Olivo for help in data extraction; Ms. Amy Beath and Ms. Andrea Milne for help in literature searching; Ms. Annabritt Chisholm and Ms. Teodora Radisic for help in article retrieval; Mr. Ben Vandermeer for help in data analysis; Ms. Jennifer Seida for help in critical review and copyediting; Ms. Christine Ha, Ms. Elizabeth Sumamo Schellenberg, and Mr. Kai Wong for help in screening the gray literature; and the members of the technical expert panel (listed in full technical report).

Grant Support: By the Agency for Healthcare Research and Quality (AHRQ) (contract 290-2007-10021), U.S. Department of Health and Human Services.

Potential Conflicts of Interest: Dr. Hartling: Contract (money to institution): AHRQ. Dr. Abou-Setta: Grant (money to institution): AHRQ. Dr. Dursun: Grants/grants pending (money to institution): CIHR-Canada, Norlien Foundation; Patents (planned, pending, or issued): sodium nitroprusside for the treatment of schizophrenia, in partnership with the University of Alberta, TEC Edmonton Office. Dr. Newton: Grant (money to institution); AHRQ; Other (money paid to author): University of Alberta Evidence-based Practice Center. Disclosures can also be viewed at www.acponline.org/authors/icmje/ConflictOfInterestForms.do?msNum=M12-0362.

Requests for Single Reprints: Lisa Hartling, PhD, University of Alberta, ECHA 4-472, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada; e-mail, hartling@ualberta.ca.

Current author addresses and author contributions are available at www.annals.org.

References
1. Leucht S, Corves C, Arber D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373:31-41. [PMID: 19058842]
2. Lieberman JA, Stroup TS, Swartz MS, Rosenheck RA, Perkins DO, et al; Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005;353:1209-23. [PMID: 16172203]
3. Jones PB, Barnes TR, Davies I, Dunn G, Lloyd H, Hayhurst KP, et al. Randomized controlled trial of the effect on quality of life of second- vs first-generation antipsychotic drugs in schizophrenia: Cost Utility of the Latest Antipsychotic Drugs in Schizophrenia Study (CUtLASS 1). Arch Gen Psychiatry. 2006;63:1079-87. [PMID: 17015810]
4. McDonagh M, Peterson K, Carson S, Fu R, Thakurta S. Drug Class Review: Atypical Antipsychotic Drugs: Final Update 3 Report. Portland, OR: Oregon Health & Science Univ; 2010. Accessed at www.ncbi.nlm.nih.gov/books/NBK50583 on 30 July 2012.
5. Barnes TR; Schizophrenia Consensus Group of British Association for Psychopharmacology. Evidence-based guidelines for the pharmacological treatment of schizophrenia: recommendations from the British Association for Psychopharmacology. J Psychopharmacol. 2011;25:567-620. [PMID: 21292923]
6. Kane JM, Correll CU. Past and present progress in the pharmacologic treatment of schizophrenia. J Clin Psychiatry. 2010;71:1115-24. [PMID: 20923620]
7. Klop M, Tzvet I, Skomedal T, Gassemyr J, Nativig B, Aursnes I. A review and Bayesian meta-analysis of clinical efficacy and adverse effects of 4 atypical neuroleptic drugs compared with haloperidol and placebo. J Clin Psychopharmacol. 2011;31:698-704. [PMID: 22020356]
17. 2009:CD006324. [PMID: 19588385]

18. Leucht S, Komossa K, Rummel-Kluge C, Giva H, Schmid F, Schwarz S, Silveira da Mota Neto JI, et al. Aripiprazole versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev. 2010:CD006624. [PMID: 20091599]

19. Komossa K, Rummel-Kluge C, Schmid F, Hunger H, Schwarz S, Srisurapanont M, et al. Quetiapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev. 2010:CD006625. [PMID: 20091600]

20. Komossa K, Rummel-Kluge C, Hunger H, Schmid F, Schwarz S, Duggan L, et al. Olanzapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev. 2010:CD006654. [PMID: 20236348]

21. Gillbody SM, Bagnall AM, Duggan L, Tunuainen A. Risperidone versus other atypical antipsychotic medication for schizophrenia. Cochrane Database Syst Rev. 2006:CD002306. [PMID: 10908551]

22. Essali A, Al-Haj Haasan N, Li C, Rathbone J. Clozapine versus typical neuroleptic medication for schizophrenia. Cochrane Database Syst Rev. 2009:CD000059. [PMID: 19160174]

23. Cipriani A, Boso M, Barbucci C. Clozapine combined with different antipsychotic drugs for treatment resistant schizophrenia. Cochrane Database Syst Rev. 2009:CD006324. [PMID: 19588385]

24. Tandon R, Belsmoker RH, Gattaz WF, Lopez-Ibor JJ Jr, Okasha A, Singh B, et al. Section of Pharmacopsychiatry, World Psychiatric Association. Pharmacopsychiatry Section statement on comparative effectiveness of antipsychotics in the treatment of schizophrenia. Schizophr Res. 2008;100:20-38. [PMID: 18243663]

25. Leucht S, Komossa K, Rummel-Kluge C, Corves C, Hunger H, Schmid F, et al. A meta-analysis of head-to-head comparisons of second-generation antipsychotics in the treatment of schizophrenia. Am J Psychiatry. 2009;166:152-63. [PMID: 19015230]

26. Leucht S, Ebster D, Engel RR, Giva H, Davis JM. How effective are second-generation antipsychotic drugs? A meta-analysis of placebo-controlled trials. Mol Psychiatry. 2009;14:429-47. [PMID: 18180700]

27. Agency for Healthcare Research and Quality. What Is The Research Process? Rockville, MD: Agency for Healthcare Research and Quality; 2012. Accessed at www.effectivehealthcare.ahrq.gov/index.cfm/what-is-comparative-effectiveness-research1/what-is-the-research-process on 30 July 2012.

28. Agency for Healthcare Research and Quality. Comparative Effectiveness of First and Second Generation Antipsychotics in the Adult Population. Rockville, MD: Agency for Healthcare Research and Quality; 2010. Accessed at http://effectivehealthcare.ahrq.gov/index.cfm/search-for-guides-reviews-and-reports?pageaction=displayproduct&productid=583 on 30 July 2012.

29. Higgins JPT, Green S. eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.0.1. The Cochrane Collaboration; 2008.

30. Institute of Medicine. Finding What Works in Health Care: Standards for Systematic Reviews. Washington, DC: National Academies Pr; 2011.

31. Wells GA, Shea B, O’Connell D, Peterson L, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa: Univ of Ottawa; 2009. Accessed at www.ohri.ca/programs/clinical_epidemiology/oxford.asp on 30 July 2012.

32. Owens DK, Lohr KN, Atkins D, Treadwell JR, Reston JT, Bass EB, et al. AHRQ series paper 5: grading the strength of a body of evidence when comparing medical interventions—Agency for Healthcare Research and Quality and the Effective Health Care Program. J Clin Epidemiol. 2010;63:513-23. [PMID: 19595577]

33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177-88. [PMID: 3080233]

34. Hayashino Y, Noguchi Y, Fukui T. Systematic evaluation and comparison of statistical tests for publication bias. J Epidemiol. 2005;15:235-43. [PMID: 16270633]

35. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088-101. [PMID: 7780900]
Cognitive effects of antipsychotic drugs in first-episode schizophrenia

Aripiprazole for patients with schizophrenia and schizoaffective disorder: comparison of intramuscular and oral formulations in a 6-week, randomized, blinded-assessment study. Psychopharmacology (Berl). 2005;178:514-23. [PMID: 15650846]

49. Buchanan RW, Ball MP, Weiner E, Kirkpatrick B, Gold JM, McMahon RP, et al. Olanzapine treatment of residual positive and negative symptoms. Am J Psychiatry. 2005;162:124-9. [PMID: 15625210]

50. Cavallaro R, Mistretta P, Cocchi F, Manzato M, Smeraldi E. Differential efficacy of risperidone versus haloperidol in psychopathological subtypes of subchronic schizophrenia. Hum Psychopharmacol. 2001;16:439-48. [PMID: 12040552]

51. Ceskova E, Svecova J. Double-blind comparison of risperidone and haloperidol in schizophrenic and schizoaffective psychoses. Pharmacopsychiatry. 1993;26:121-4. [PMID: 7694306]

52. Chiu E, Burrows G, Stevenson J. Double-blind comparison of clozapine with chlorpromazine in acute schizophrenic illness. Aust N Z J Psychiatry. 1976;10:343-7. [PMID: 798582]

53. Chouinard G, Jones B, Remington G, Bloom D, Addington D, MacEwan GW, et al. A Canadian multicenter placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients. J Clin Psychopharmacol. 1993;13:25-40. [PMID: 7683702]

54. Citrome L, Volavka J, Czobor P, Sheitman B, Lindenmayer JP, McEvoy J, et al. Effects of clozapine, olanzapine, risperidone, and haloperidol on hostility among patients with schizophrenia. Psychiatr Serv. 2001;52:1510-4. [PMID: 11684748]

55. Claghorn J, Honigfeld G, Abuzahab FS Sr, Wong R, Steinbrook R, Tuason V, et al. The risks and benefits of clozapine versus chlorpromazine. J Clin Psychopharmacol. 1987;7:377-84. [PMID: 3323261]

56. Claus A, Bollen J, De Cuypier H, Eneman M, Malfroid M, Peuskens J, et al. Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double-blind comparative study. Acta Psychiatr Scand. 1992;85:295-305. [PMID: 13758001]

57. Conley RR, Tamminga CA, Bartko JJ, Richardson C, Peszke M, Lingle J, et al. Olanzapine compared with chlorpromazine in treatment-resistant schizophrenia. Am J Psychiatry. 1998;155:914-20. [PMID: 9659857]

58. Conley RR, Kelly DL, Nelson MW, Richardson CM, Feldman S, Benham B, et al. Risperidone, quetiapine, and fluphenazine in the treatment of patients with schizophrenia. N Engl J Med. 2002;346:16-22. [PMID: 11777998]

59. Copolov DL, Link CG, Kowalczyk B. A multicentre, double-blind, randomized comparison of quetiapine (ICI 204,636, 'Seroquel') and haloperidol in schizophrenia. Psychol Med. 2000;30:95-105. [PMID: 10722180]

60. Corripio I, Catarfau AM, Perez V, Puigdemont D, Mena E, Aguilar Y, et al. Strial dopaminergic D2 receptor occupancy and clinical efficacy in psychosis exacerbation: a 123I-IBZM study with ziprasidone and haloperidol. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:465-9. [PMID: 15093952]

61. Gelenberg AJ, Doller JC. Clozapine versus chlorpromazine for the treatment of schizophrenia: preliminary results from a double-blind study. J Clin Psychopharmacol. 1979;9:238-40. [PMID: 374401]

62. Ghaleli A, Honarbahsh N, Boroumand MA, Jafarinia M, Tabrizi M, Rezaei F, et al. Correlation of adenosine activity with superior efficacy of olanzapine for treatment of chronic schizophrenia: a double-blind randomised trial. Hum Psychopharmacol. 2011;26:120-4. [PMID: 21412846]

63. Girgis RR, Phillips MR, Li X, Li K, Jiang H, Wu C, et al. Clozapine v. chlorpromazine in treatment-naive, first-episode schizophrenia: 9-year outcomes of a randomised clinical trial. Br J Psychiatry. 2011;199:281-8. [PMID: 21229228]

64. Goff DC, Posever T, Herz L, Simmons J, Latti N, Lapierre K, et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalised patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol. 1998;18:296-304. [PMID: 9690695]

65. Goldman MB, Hussain N. Absence of effect of olanzapine on primary pyripyzida results of a double-blind, randomized study. J Clin Psychopharmacol. 2004;24:678-80. [PMID: 15538138]

66. Guirguis E, Voinoskos G, Gray J, Schieman E. Clozapine (Leporex) vs chlorpromazine (Largactil) in acute schizophrenia: a double-blind controlled trial. Int J Neuropsychopharmacol. 2005;24:678-80. [PMID: 15538138]

67. de Sena EP, Santos-Jesus R, Miranda-Scippa A, Quarantini Lde C, Oliveira PR, et al. Clozapine versus haloperidol in the treatment of chronic schizophrenia. Int Clin Psychopharmacol. 2000;15:121-31. [PMID: 10870870]

68. Emsley RA. Risperidone in the treatment of first-episode psychotic patients: a double-blind multicenter study. Risperide Working Group. Schizophr Bull. 1999;25:721-9. [PMID: 10667742]

69. Emsley R, Turner HJ, Schronen J, Botha K, Smit R, Oosthuizen PP. Effects of quetiapine and haloperidol on body mass index and glycemic control: a long-term, randomized, controlled trial. Int J Neuropsychopharmacol. 2005;8:175-82. [PMID: 15737251]

70. Fakra E, Khalifa S, Da Fonseca D, Bennier N, Delaveau P, Azorin JM, et al. Effect of risperidone versus haloperidol on emotional responding in schizophrenic patients. Psychopharmacology (Berl). 2008;200:261-72. [PMID: 18575849]

71. Gaszner P, Makosz Z. Clozapine maintenance therapy in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:465-9. [PMID: 15093952]

72. Goff DC, Posever T, Herz L, Simmons J, Latti N, Lapierre K, et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol. 1998;18:296-304. [PMID: 9690695]

73. Goff DC, Posever T, Herz L, Simmons J, Latti N, Lapierre K, et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol. 1998;18:296-304. [PMID: 9690695]

74. Goldman MB, Hussain N. Absence of effect of olanzapine on primary pyripyzida results of a double-blind, randomized study. J Clin Psychopharmacol. 2004;24:678-80. [PMID: 15538138]

75. Hamer JL, Price RW, Holowka DM, Ling BH, Stahl SM. Long-term (3-year) effectiveness of haloperidol, risperidone and quetiapine in schizophrenia and schizoaffective disorder. J Clin Psychopharmacol. 2012;32:467-80. [PMID: 12424166]

76. Hirsch SR, Kissling W, Bauml J, Power A, O’Connor R. A 28-week comparison of ziprasidone and haloperidol in outpatients with stable schizophrenia. J Clin Psychopharmacol. 2002;63:516-23. [PMID: 12088164]

77. Hong CJ, Chen JY, Chiu HJ, Sim CJ, Hsu CS. A double-blind comparative study of clozapine versus chlorpromazine on Chinese patients with treatment-refractory schizophrenia. Int Clin Psychopharmacol. 1997;12:123-30. [PMID: 9248867]

78. Ishigooka J, Inada T, Miura S. Olanzapine versus haloperidol in the treatment of patients with chronic schizophrenia: results of the Japan multicenter, double-blind olanzapine trial. Psychiatry Clin Neurosci. 2001;55:403-14. [PMID: 11442893]

79. Itoha H, Miura S, Yagi G, Sakurai S, Ohtsuka N. Some methodological considerations for the clinical evaluation of neuroleptics—comparative effects of clozapine and haloperidol on schizophrenics. Folia Psychiatr Neurol Jpn. 1977;31:17-24. [PMID: 863344]
102. Kane JM, Carson WH, Saha AR, Quayle RD, Ingenito GG, Zimbroff DL, et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry. 2002;63:763-71. [PMID: 12563115]

103. Kane JM, Melzer HZ, Carson WH Jr, McQuade RD, Marcus RN, Sanchez R. Aripiprazole Study Group. Aripiprazole for treatment-resistant schizophrenia: results of a multicenter, randomized, double-blind, comparison study versus placebo. J Clin Psychiatry. 2007;68:213-23. [PMID: 17353319]

104. Kane J, Honigfeld G, Singer J, Melzer H. Clozapine for the treatment-resistant schizophrenic. A double-blind comparison with chlorpromazine. Arch Gen Psychiatry. 1988;45:789-96. [PMID: 3046553]

105. Kane JM, Marder SR, Schooller NR, Winshing WC, Umbricht D, Baker RW, et al. Clozapine and haloperidol in moderately refractory schizophrenia: a 6-month randomized and double-blind comparison. Arch Gen Psychiatry. 2001;58:965-72. [PMID: 11576036]

106. Kane JM, Khanna S, Rajadhyaksha S, Giller E. Efficacy and tolerability of ziprasidone in patients with treatment-resistant schizophrenia. Int Clin Psychopharmacol. 2006;21:21-8. [PMID: 16317313]

107. Kane JM, Cohen M, Zhao J, Alphs L, Panagides J. Efficacy and safety of aripiprazole in a placebo- and haloperidol-controlled trial in patients with acute exacerbation of schizophrenia. J Clin Psychopharmacol. 2010;30:106-15. [PMID: 20502083]

108. Kasper S, Lerman MN, McQuade RD, Saha A, Carson WH, Ali M, et al. Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol. 2003;6:325-37. [PMID: 14609439]

109. Kee KS, Kern RS, Marshall BD Jr, Green MF. Risperidone versus haloperidol for perception of emotion in treatment-resistant schizophrenia: preliminary findings. Schizophr Res. 1998;31:159-65. [PMID: 9689720]

110. Keefe RS, Poe MP, McEvoy JP, Vaughan A. Source monitoring improvement in patients with schizophrenia receiving antipsychotic medications. Psychopharmacology (Berl). 2003;169:383-9. [PMID: 12759802]

111. Keefe RS, Young CA, Rock SL, Purdon SE, Gold JM, Breier A; HGGN Study Group. One-year double-blind study of the neurocognitive efficacy of olanzapine, risperidone, and haloperidol in schizophrenia. Schizophr Res. 2006;81:1-15. [PMID: 16202565]

112. Kim SH, Han DH, Joo SY, Min KJ. The effect of dopamine partial agonists on the nicotine dependency in patients with schizophrenia. Hum Psychopharmacol. 2010;25:187-90. [PMID: 20033907]

113. Kliesser E, Strauss WH, Lemmer W. The tolerability and efficacy of the atypical neuroleptic remoxipride compared with clozapine and haloperidol in acute schizophrenia. Acta Psychiatr Scand Suppl. 1994;380:68-73. [PMID: 8048341]

114. Kongasrun R, Trinidad-Otate P, Chaudhry HR, Raza SB, Lenes CR, Khan IU, et al. Asian outpatients with schizophrenia: a double-blind randomized comparison of quality of life and clinical outcomes for patients treated with olanzapine or haloperidol. J Med Assoc Thai. 2006;89:1157-70. [PMID: 17048425]

115. Krakowski MI, Czobor P, Citrome L, Bork N, Cooper TB. Atypical antipsychotic agents in the treatment of violent patients with schizophrenia and schizoaffective disorder. Arch Gen Psychiatry. 2006;63:622-9. [PMID: 16754835]

116. Lahti AC, Weiler MA, Holcomb HH, Tannenga CA, Cropsey KL. Modulation of limbic circuitry predicts treatment response to antipsychotic medication: a functional imaging study in schizophrenia. Neuropsychopharmacology. 2009;34:627-95. [PMID: 19675353]

117. Lee SM, Chou YH, Li MH, Wan FJ, Yen MH. Effects of antipsychotics on cognitive performance in drug-naïve schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:1101-7. [PMID: 17475386]

118. León CA. Therapeutic effects of clozapine. A 4-year follow-up of a controlled clinical trial. Acta Psychiatr Scand. 1979;59:471-80. [PMID: 380268]
in the treatment of schizophrenia: a randomized controlled trial. JAMA. 2003;290:2693-702. [PMID: 14645311]

125. Saddichha S, Ameen S, Akhtar S. Predictors of antipsychotic-induced weight gain in first-episode psychosis: conclusions from a randomized, double-blind, controlled prospective study of olanzapine, risperidone, and haloperidol. J Clin Psychopharmacol. 2008;28:27-31. [PMID: 18204357]

126. Sayers SL, Campbell EC, kondrich J, Mann SC, Cornish J, O’Brien C, et al. Cocaine abuse in schizophrenic patients treated with olanzapine versus haloperidol. J Nerv Ment Dis. 2005;193:379-86. [PMID: 15920378]

127. Schooner N, Rabinowitz J, Davidson M, Emsley R, Harvey PD, Kopala L, et al; Early Psychosis Global Working Group. Risperidone and haloperidol in first-episode psychosis: a long-term randomized trial. Am J Psychiatry. 2005;162:947-53. [PMID: 15863797]

128. Sergi MJ, Green MF, Widmark C, Reist C, Erhart S, Braff DL, et al. Social cognition [corrected] and neurocognition: effects of risperidone, olanzapine, and haloperidol in schizophrenia. Am J Psychiatry. 2007;164:1585-92. [PMID: 1789351]

129. Shopsin B, Klein H, Aaronsom M, Collora M. Clozapine, chlorpromazine, and placebo in newly hospitalized, acutely schizophrenic patients: a controlled, double-blind comparison. Arch Gen Psychiatry. 1979;36:657-64. [PMID: 375865]

130. Shrivastava A, Gopa S. Comparative study of risperidone and haloperidol on clinical and psychosocial parameters in treatment of schizophrenia: a randomised open trial. Indian J Psychiatry. 2000;42:52-6. [PMID: 21407908]

131. Singer L, Law SK. A double-blind comparison of clozapine (Leponex) and chlorpromazine in schizophrenia of acute symptomatology. J Int Med Res. 1974;2:433-5.

132. Smelos DA, Ziedonis D, Williams J, Losonczy MF, Williams J, Steinberg ML, et al. The efficacy of olanzapine for decreasing cue-elicited craving in patients with chronic schizophrenia and cocaine dependence: a preliminary report. J Clin Psychopharmacol. 2006;26:9-12. [PMID: 16415698]

133. Smith RC, Infante M, Singh A, Khandat A. The effects of olanzapine on neurocognitive functioning in medication-refractory schizophrenia. Int J Neuro-psychopharmacol. 2001;4:239-50. [PMID: 11669086]

134. Tamrakar SM, Nepal MK, Koirala NR, Sharma VD, Gurung CK, Adhikari SR. An open, randomized, comparative study of efficacy and safety of risperidone and haloperidol in schizophrenia. Kathmandu Univ Med J (KUMJ). 2006:4:152-60. [PMID: 18608580]

135. Tollefson GD, Beasley CM Jr, Tran PV, Street JS, Krueger JA, Tamura RN, et al. Olanzapine versus haloperidol in the treatment of schizophrenia and schizoaffective and schizophreniform disorders: results of an international collaborative trial. Am J Psychiatry. 1997;154:457-65. [PMID: 9090331]

136. Tran-Johnson TK, Sack DA, Marcus RN, Auby P, McQuade RD, Oren DA. Efficacy and safety of intramuscular aripiprazole in patients with acute agitation: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry. 2007;68:111-9. [PMID: 17284138]

137. Velligian DI, Newcomer J, Pultz J, Ciemansky J, Hoff AL, Mahurin R, et al. Does cognitive function improve with quetiapine in comparison to haloperidol? Schizophr Res. 2002;53:239-48. [PMID: 11738537]

138. Volavka J, Czobor P, Sheitman B, Lindemayer JP, Citrome L, McEvoy JP, et al. Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry. 2002;159:255-62. [PMID: 11823268]

139. Wirthing DA, Marshall BD Jr, Green MF, Mintz J, Marder SR, Wirthing WC. Risperidone in treatment-refractory schizophrenia. Am J Psychiatry. 1999;156:374-9. [PMID: 10484947]

140. Wright P, Birkett M, David SR, Meehan I, Alaka KJ, et al. Double-blind, placebo-controlled comparison of intramuscular olanzapine and intramuscular haloperidol in the treatment of acute agitation in schizophrenia. Am J Psychiatry. 2001;158:1149-51. [PMID: 11431240]

141. Wyn J, Green M, Sprock J, Light G, Widmark C, Reist C, et al. Effects of olanzapine, risperidone and haloperidol on prepulse inhibition in schizophrenia patients: a double-blind, randomized controlled trial. Schizophr Res. 2007;95:134-42. [PMID: 17662577]

142. Yen YC, Lung FW, Chong MY. Adverse effects of risperidone and haloperidol treatment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28:285-90. [PMID: 14751424]

143. Zhang XY, Zhou DF, Cao LY, Zhang PY, Wu GY, Shen YC. Risperidone versus haloperidol in the treatment of acute exacerbations of chronic inpatients with schizophrenia: a randomized double-blind study. Int Clin Psychopharmacol. 2001;16:325-30. [PMID: 11712620]

144. Crespo-Facorro B, Perez-Iglesias R, Ramirez-Bonilla M, Martinez-Garcia O, Llorca J, Luis Vazquez-Barquero J. A practical clinical trial comparing haloperidol, risperidone, and olanzapine for the acute treatment of first-episode non-affective psychosis. J Clin Psychiatry. 2006:67:1511-21. [PMID: 17107241]

145. Lieberman JA, Tollefson G, Tohen M, Green AI, Gur RE, Kahn R, et al; HGDH Study Group. Comparative efficacy and safety of atypical and conventional antipsychotic drugs in first-episode psychosis: a randomized, double-blind trial of olanzapine versus haloperidol. Am J Psychiatry. 2003;160:1396-404. [PMID: 12900300]

146. Gartlehner G, Hansen RA, Nissman D, Lohr KN, Carey TS. Criteria for Distinguishing Effectiveness From Efficacy Trials in Systematic Reviews. Technical Review no. 12. AHRQ Publication no. 06-0046. Rockville, MD: Agency for Healthcare Research and Quality; 2006.

147. Heil H, Isometsä ET, Henriksson MM, Heikkinen ME, Mattunen MJ, Lönnqvist JK. Suicide and schizophrenia: a nationwide psychological autopsy study on age- and sex-specific clinical characteristics of 92 suicide victims with schizophrenia. Am J Psychiatry. 1997;154:1235-42. [PMID: 9286182]

148. Meltzer HY. Suicideality in schizophrenia: a review of the evidence for risk factors and treatment options. Curr Psychiatry Rep. 2002;4:279-83. [PMID: 12126596]

149. Pompili M, Amador XF, Girardi P, Harkavy-Friedman J, Harrow M, Kaplan K, et al. Suicide risk in schizophrenia: learning from the past to change the future. Ann Gen Psychiatry. 2007;6:10. [PMID: 17367524]

150. Smith M, Hopkins D, Peveler RC, Holt RI, Woodward M, Ismail K. First- vs. second-generation antipsychotics and risk for diabetes in schizophrenia: systematic review and meta-analysis. Br J Psychiatry. 2008;192:406-11. [PMID: 18515889]

151. Gentile S. Long-term treatment with atypical antipsychotics and the risk of weight gain: a literature analysis. Drug Saf. 2006;29:303-19. [PMID: 16569080]

152. Taylor DM, McAskill R. Atypical antipsychotics and weight gain—a systematic review. Acta Psychiatr Scand. 2000;101:416-32. [PMID: 10864645]

153. Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MG, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry. 1999;156:1686-96. [PMID: 10553730]

154. American Psychiatric Association. Practice Guideline for the Treatment of Patients With Schizophrenia. 2nd ed. Arlington, VA: American Psychiatric Assc; 2004.

155. Lieberman JA, Stroup TS. The NIMH-CATIE Schizophrenia Study: what did we learn? Am J Psychiatry. 2011;168:770-5. [PMID: 21813492]

156. Sismondo S. Pharmaceutical company funding and its consequences: a qualitative systematic review. Contemp Clin Trials. 2008;29:109-13. [PMID: 17919992]
Critical revision of the article for important intellectual content: L. Hartling, A.M. Abou-Setta, S. Dursun, A.S. Newton.

Final approval of the article: L. Hartling, A.M. Abou-Setta, S. Dursun, A.S. Newton.

Provision of study materials or patients: S. Dursun.

Statistical expertise: A.M. Abou-Setta.

Obtaining of funding: L. Hartling.

Administrative, technical, or logistic support: A.M. Abou-Setta, S. Dursun, D. Pasichnyk.

Collection and assembly of data: L. Hartling, A.M. Abou-Setta, S. Dursun, S.S. Mousavi, D. Pasichnyk.

157. Drugstore.com Web site. Accessed at www.drugstore.com on 30 March 2012.

158. Universal Drugstore Web site. Accessed at www.universaldrugstore.com on 30 March 2012.

159. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261-76. [PMID: 3616518]
| Generic Name | Trade Name | Mode of Administration | Recommended Dose | FDA Status | Indications | Drug Cost per Minimum Dose, U.S. $* |
|--------------------|---------------------|---|-------------------------|----------------|--------------------------------------|-------------------------------------|
| **First-generation antipsychotics** | | | | | | |
| Chlorpromazine | Chlorpromazine hydrochloride | Oral; intramuscular/intravenous | 200 to 600 mg/d | Approved in 1974 | Schizophrenia and BD | 1.90/200 mg |
| Droperidol | Inapsine | Intramuscular/intravenous | Initial 2.5 mg/dose | Approved in 1988 | Antiemetic and acute psychosis | 1.84/1 mg |
| Fluphenazine | Fluphenazine decanoate | Oral Intramuscular | 2.5 to 10 mg/d | Approved in 1960 | Schizophrenia and BD | 0.26/2.5 mg |
| Fluphenazine hydrochloride | | | 2.5 to 10 mg/dose | | | |
| Haloperidol | Haldol | Oral Intramuscular | 4 to 12 mg/d | Approved in 1986 | Schizophrenia | 0.44/4 mg |
| Droperidol decanoate | | | | | | |
| Loxapine | Loxapine | Oral | 60 to 100 mg/d | Approved in 1975 | Schizophrenia | 1.55/60 mg |
| Perphenazine | Perphenazine | Oral (nonhospitalized), oral (hospitalized) | 12 to 18 mg/d, 16 to 64 mg/d | Approved in 1965 | Schizophrenia | 1.80/16 mg |
| Loxapine decanoate | | | | | | |
| Pimozide | Orap | Oral | 7 to 10 mg/d | Approved in 1984 | Schizophrenia | 6.40/7 mg |
| Prochlorperazine | Compro | Oral | 15 to 40 mg/d | Approved in 1966 | Schizophrenia | 1.40/15 mg |
| Prochlorperazine edisylate | | Intramuscular | 15 to 40 mg/d | Approved in 1956 | Schizophrenia | 1.90/15 mg |
| Prochlorperazine maleate | | Intravenous | 7.5 to 40 mg/d | | | |
| Thioridazine | Mellaril | Oral | 150 to 300 mg/d | Approved in 1962 | Schizophrenia | 1.20/150 mg |
| Thiothixene | Navane | Oral | 6 to 30 mg/d | Approved in 1967 | Schizophrenia | 1.00/6 mg |
| Trifluoperazine | Trifluoperazine hydrochloride | Oral (nonhospitalized) | 1 to 2 mg | Approved in 1959 | Schizophrenia | 0.31/1 mg |
| **Second-generation antipsychotics** | | | | | | |
| Aripiprazole | Abilify | Oral Injection | 10 to 15 mg/d, Maximum of 30 mg/d | Approved in 2002 | Schizophrenia | 6.56/10 mg |
| Asenapine | Saphouris | Oral | Schizophrenia, 5 mg BD, 10 mg | Approved in 2004 | Acute schizophrenia and BD | 10.80/10 mg |
| Clozapine | Clozaril | Oral | 300 to 450 mg/d | Approved in 1989 | Treatment-resistant schizophrenia | 2.23/300 mg |
| Iloperidone | Fanapt | Oral | 12 to 24 mg/d | Approved in 2009 | Acute schizophrenia | 4.50/12 mg |
| Olanzapine | Zyprexa | Oral; intramuscular injection | Schizophrenia, 10 mg BD L, 10 to 15 mg/d | Approved in 1996 | Schizophrenia and BD | 9.00/10 mg |
| Lurasidone | Latuda | Oral | 40 to 80 mg/d | Approved in 2010 | Schizophrenia | 17.8/40 mg |
| Paliperidone | Invega | Oral | 6 mg/d | Approved in 2006 | Schizophrenia and schizoaffective disorder | 9.78/6 mg |
| Quetiapine | Seroquel | Oral | Schizophrenia, 150 to 750 mg/d BD, 400 to 800 mg/d | Approved in 1997 | Schizophrenia | 2.78/150 mg |
| Risperidone | Risperdal | Oral; intramuscular injection | Schizophrenia, 4 to 8 mg BD L, 1 to 6 mg/d | Approved in 1997 | Schizophrenia | 7.30/4 mg |
| Ziprasidone | Geodon | Oral; intramuscular injection | Schizophrenia, maximum of 80 mg BD (manic/mixed, maintenance), 40 to 80 mg | Approved in 2001 | Schizophrenia and BD | 4.75/40 mg |

BD = bipolar disorder; FDA = U.S. Food and Drug Administration.

* Data obtained from references 157 and 158.
| | |
|---|--|
| 1 | exp Schizophrenia/ |
| 2 | Schizophrenia, Catatonic/ |
| 3 | Schizophrenia, Disorganized/ |
| 4 | Schizophrenia, Paranoid/ |
| 5 | Psychotic Disorders/ |
| 6 | Schizotypal Personality Disorder/ |
| 7 | schizophreniform.tw. |
| 8 | (schizoaffective or schizo-affective).tw. |
| 9 | schizophren$.mp. |
| 10| (dementia adj (praecox or precoc)).tw. |
| 11| (delusional adj2 disorder*).tw. |
| 12| (negative or positive) adj syndrome*.tw. |
| 13| hebephrenia.tw. |
| 14| exp Bipolar Disorder/ |
| 15| (((bipolar or manic) adj2 (I or II or illness or disorder or psychosis or depress$)) or mania*).tw. |
| 16| (BP or hypoman$ or manic-depressive).tw. |
| 17| (BP 1 or BP 2 or BP I or BP II).tw. |
| 18| (cyclothym$. or euthymic).tw. |
| 19| (acute adj2 mania). |
| 20| (acute adj2 mixed adj episode*).tw. |
| 21| (rapid-cycling adj5 bipolar).tw. |
| 22| (rapid adj2 cycling adj5 bipolar).tw. |
| 23| (mixed adj2 state* adj3 bipolar).tw. |
| 24| or/1-23 |
| 25| exp Antipsychotic Agents/ |
| 26| exp Tranquilizing Agents/ |
| 27| (neuroleptic adj2 (agent* or drug*)).tw. |
| 28| or/25-27 |
| 29| (first or 1st) adj generation adj antipsychotic*).tw. |
| 30| chlorpromazine/ |
| 31| 50-53-3.rn. |
| 32| (Aminizin or Aminazine or Ampliact or BC 135 or Chlorpromazine or Chlorpromazinum or Chlorpromazina or Chlor-Promaryl or Chlorpromados or Chloroderan or Chlorpromazin or Contomin or Elmarin or Esnind or Fenactil or Fenaktyl or HL 5746 or Largactil or Largacthiazine or Megaphen or Largactyl or Klooprampatsiini or Kloprampzin or 6 Copin or Trinicalm Forte or Diminex Balsamico Juven Tos or Largatrex or Phenactyl or Prima or Promactil or Promazil or Prozil or Psychozine or Sanpron or Thorazin or Torazina or Winterini).mp. |
| 33| Droperidol/ |
| 34| 548-73-2.rn. |
| 35| (Dehydrobenzoperidol or Dehydrobenzperidol or Deidrobenzperidolo or Dridol or Dropeptan or Droperidol or Droperidol or Droperidol or Droperidolum or Disifelt or Halkan or Inapsin or Inapsine or Inopin or Thalamonal or Nilperidon or Properinol or Sintodril or Vetkalm).mp. |
| 36| fluphenazine/ |
| 37| 69-23-8.rn. |
| 38| (Dapolum or Elinol or Flufenazina or Fluofenazine or Fluphenazine or Fluphenazinum or Ftorphenazine or Meditmen or Pacinol or Sevinol or Siqualon or Triflumethazine or Valamina or Vespame).mp. |
| 39| haloperidol/ |
| 40| 52-86-8.rn. |
| 41| (Aldo or Alopeirdin or Aloperidol or Aloperidolo or Bootopron or Dazic or Einalon S or Eukystol or Fortunol or Galoperidol or Haldol or Halozut or Haloperidol or Haloperidol or Haloperidolon or Haloperidol or Serenace or Haloperidol or Haloper or Halopen or Keselan or Lealgin or Lintol or Mixidol or Peeluca or Permx or Serence or Sereneff or Sernas or Sernel or Serenda or Ullolind or Uliolind or Vesalium).mp. |
| 42| loxapine/ |
| 43| 1977-10-2.m. |
| 44| (Clozaepine or CL 62362 or Dibenacepin or Dibenzoazepine or Hydrofluoride 3170 or LW 3170 or Lossapina or Loksapiini or Loxapin or Loxapina or Loxapine or Oxilapina or Oxilapac or Loxtane or Desconex).mp. |
| 45| perphenazine/ |
| 46| 58-39-9.m. |
| 47| (Chlorperphenazine or Chlorpizaprin or Decenant or Emsinal or Etaperazin or Etaperazine or Ethaperazine or Etrafon or F-mon or Fentazin or Mutabon or Perfanina or Perfanzena or Perfazanazina or Perfenazina or Perphenazina or Perphenazinum or Perpirtyn or Sch 3940 or Thilatazin or Tranquisan or Trilaron or Trilafon or Trifan or Triptafen or Triphenat or Triavl).mp. |
| 48| Pimozide/ |
| 49| 2062-78-4.m. |
| 50| (Antollon or Opian or Orap or Pimotsidi or Pimozid or Pimoza or Pimozidas or Pimozide or Pimozidum or Pimozyd).mp. |
| 51| Prochlorperazine/ |
| 52| 58-38-8.m. |
| 53| (Apo-Prochlorazine or Capazine or Chlormethazine or Compazine or Compro or Dhaperazine or Emelent or Kronocin or Nipodal or Novamin or Nu-Prochlor or Meterazin or Meterazene or Mitil or Prochlpomazine or Prochlorperazine or Proclorperazina or Proklooriperatsiini or Proklorperazin or Prorazin or Phenothazine or Serall or Stemetil or Tementil or Temetid).mp. |
| 54| thiotoxine/ |
| 55| 5591-45-7.m. |
| 56| (Navane or Navaron or Orbinamon or Thiothixene or Tiotikseeni or Tiotxen or Tiotixeno or Tiotexen or Thixit or Tiotixene).mp. |
Appendix Table 2—Continued

57	trifluoperazine/
58	117-89-5.rn.
59	(Cuart D or Cuait N or eskazine or flupazine or Jatrosom or Jalonac or Parstelin or stelazine or Stelabid or Stelapar or Sycot or Terfluzine or Trifluoperazine or Trifluoperazini Hydrochloridum or trifftazin or Trinicalm Forte or Trinicalm Plus).mp.
60	thioridazine/
61	50-52-2.rn.
62	(Aldazine or Dazithin or Detril or Elperil or Mallorol or Malloryl or Melleril or Meleral or Mellerets or Melleretten or Melleril or Sonapax or Thoridazin or Thoridazine or Thoridazinium or Tioridatsiini or Tioridazin or Tioridazina or Tioridazinas).mp.
63	methotrimeprazine/
64	60-99-1.rn.
65	(Dedoran or Himamin or Himamine or Levomepromazine or Levomepromazin or Levopromazine or Levopromazinum or Levoxpro or Levoxpromazine or Neurocil or Neozine or Nirvan or Nojivan or Nozikan or Nozizane or Sinogan or Levomol or Nozian or Sinogina or Tisercin or Veractil).mp. Phenothiazines/ad, to, tu, ct, po, ae [Administration & Dosage, Toxicity, Therapeutic Use, Contraindications, Poisoning, Adverse Effects]
66	Butyrophenones/ad, to, tu, ct, po, ae
67	thioxanthenes/ad, to, tu, ct, po, ae
68	Dibenzoxazepines/ad, to, tu, ct, po, ae
69	Indoles/ad, to, tu, ct, po, ae
70	or/29-70
71	atypical antipsychotic\cdottw.
72	((second or 2nd) adj generation adj antipsychotic*).tw.
73	((third or 3rd) adj generation adj antipsychotic*).tw.
74	Asenapine/
75	65576-45-6.rn.
76	(Asenapine or EINECS 265-829-4).mp.
77	clozapine/
78	5786-21-0.rn.
79	(Clozapin or Clozapina or Clozapinium or Clorazil or Clozaril or FazaClo or Leponex or LX 100-129 or Zaponex).mp.
80	risperdone/
81	106266-06-2.rn.
82	(Apexdione or Psychodal or Risperdal or Risperidona or Risperidone or Risperidonum or Risperin or Risperlept or Rispolin or Spiron).mp.
83	olanzapine.mp.
84	132539-06-1.rn.
85	(Zyprexa or Olantsapiini or Olanzapin or Olanzapina or Olanzapinum or Olansek or Zalasta or Zypadhera or Symbax).mp.
86	quetiapine.mp.
87	(111974-69-7 or 111974-72-2).rn.
88	(Co-Quetiapine or HSD8 7557 or Seroquel).mp.
89	ziprasidone.mp.
90	146939-27-7.rn.
91	(Zeldox or zeldrox or geodon).mp.
92	aripiprazole.mp.
93	129722-12-9.rn.
94	(Abilittat or Abilify or Aripiprazole or Discmelt or OPC 31 or OPC 14597).mp.
95	paliperidone.mp.
96	144598-75-4.rn.
97	(9-Hydroxypiperidone or Invega or R 76477 or RO76477).mp.
98	iloperidone/
99	133454-47-4.rn.
100	(Fanapt or iloperidone or HP 873 or Zomaril).mp.
101	Isoxazoles/ad, to, tu, ct, po, ae
102	Dibenazepines/ad, to, tu, ct, po, ae
103	Pyrimidiones/ad, to, tu, ct, po, ae
104	Piperidines/ad, to, tu, ct, po, ae
105	Dibenzothiazepines/ad, to, tu, ct, po, ae
106	Piperazines/ad, to, tu, ct, po, ae
107	Pirenzipine/tu, ad, to, ct, po, ae
108	Thiazoles/ad, th, ct, po, to, ae
109	Quinolones/to, po, ct, ad, tu, ae
110	or/72-110
111	and/71,111
112	and/28,71,111
113	or/112-113
114	randomized controlled trial.pt.
115	controlled clinical trial.pt.
116	randomi?ed.ab.
117	placebo*.ab.
118	drug therapy.fs.
119	randomly.ab.

Continued on following page
Appendix Table 2—Continued

121	trial.ab.
122	groups.ab.
123	or/115-122
124	humans/not (animals and humans).hw,sh.
125	123 and 124
126	and/24,114,125
127	limit 126 to yr="1987–2010"
128	limit 127 to english language
129	limit 126 to yr="1950–1986"
130	limit 129 to english language
131	cohort studies/
132	followup studies/
133	longitudinal studies/
134	prospective studies/
135	Retrospective Studies/
136	(observation$ or prospectiv$ or cohort$ or control$ or volunteer$ or evaluat$ or compar$ or longitudinal or long term or long-term or followup or followup or followup).mp. and (study or studies or trial$).ti,ab,sh.
137	or/131-136
138	humans.hw,sh.
139	and/137-138
140	meta-analysis.mp,pt.
141	review.pt.
142	search:.tw.
143	or/140-142
144	and/24,114,139
145	and/24,114,143
146	limit 145 to yr="1987–2010"
147	limit 146 to english language
148	limit 145 to yr="1950–1986"
149	limit 148 to english language
150	limit 144 to yr="1987–2010"
151	limit 150 to english language
152	limit 144 to yr="1950–1986"
153	limit 152 to english language

Appendix Table 3. Inclusion and Exclusion Criteria

Characteristic	Inclusion Criteria	Exclusion Criteria
Publication type	English language, full-text publications from 1950 to present	Non-English-language publications; conference abstracts
Study design	RCTs, non-RCTs, and prospective and retrospective cohort studies	Observational design with no comparison group (e.g., case reports, case series, and cross-sectional studies); case–control studies
Participants	Adults (aged 18 to 64 y) with schizophrenia or related psychoses	Pediatric population (aged <18 y); geriatric population (aged ≥64 y)
Interventions	Any available FDA-approved FGA	Unavailable or non-FDA-approved FGA or other interventions
Comparators	Any available FDA-approved SGA	Unavailable or non-FDA-approved SGA, placebo, or other interventions
Outcomes	Outcomes listed in the KQ; cohort studies reporting on ≥1 SAE	No a priori–identified outcomes available from the trial report or communication with the study’s corresponding author
Timing	All follow-up periods for trials; cohort studies with ≥2-y follow-up	Cohorts with <2-y follow-up
Setting	All settings	–

FDA = U.S. Food and Drug Administration; FGA = first-generation antipsychotic; KQ = key question; RCT = randomized, controlled trial; SAE = serious adverse event; SGA = second-generation antipsychotic.
Appendix Table 4. Examples of Core Symptoms*

Symptom Domain	Example
Negative	Delusions
	Conceptual disorganization
	Hallucinatory behavior
Positive	Blunted affect
	Emotional withdrawal
	Poor rapport
	Passive/apathetic social withdrawal
General	Anxiety
	Depression
	Motor retardation
	Disorientation
	Poor attention
	Disturbance of volition
	Active social avoidance

* Based on the Positive and Negative Syndrome Scale (159).

Appendix Table 5. Summary of Insufficient Strength of Evidence for Core Illness Symptoms When the PANSS Was Used

Variable and Comparison	Studies (Participants), n (n)	Risk of Bias	Consistency	Directness	Precision	Effect Estimate (95% CI)	Favored Drug	Strength of Evidence
Positive symptoms								
Chlorpromazine vs. clozapine	1 (40)	Medium	Unknown	Direct	Imprecise	2.00 (−0.79 to 4.79)	–	Insufficient
Fluphenazine vs. olanzapine	1 (60)	Medium	Unknown	Direct	Precise	5.10 (0.57 to 9.63)*	Olanzapine	Insufficient
Haloperidol vs. asenapine	1 (335)	Medium	Direct	Imprecise		0.16 (−1.22 to 1.54)	–	Insufficient
Perphenazine vs. olanzapine	1 (597)	Medium	Direct	Precise	1.47 (0.55 to 2.40)*	Olanzapine	Insufficient	
Perphenazine vs. quetiapine	1 (598)	Medium	Direct	Imprecise		−0.92 (−1.93 to 0.05)	–	Insufficient
Perphenazine vs. risperidone	1 (602)	Medium	Direct	Imprecise		−0.06 (−1.04 to 0.93)	–	Insufficient
Perphenazine vs. ziprasidone	1 (446)	Medium	Direct	Imprecise		−0.85 (−2.05 to 0.35)	–	Insufficient
Negative symptoms								
Fluphenazine vs. olanzapine	1 (60)	Medium	Unknown	Direct	Imprecise	3.00 (−1.00 to 7.00)	–	Insufficient
Haloperidol vs. asenapine	1 (335)	Medium	Direct	Imprecise		0.39 (−0.72 to 1.51)	–	Insufficient
Perphenazine vs. olanzapine	1 (597)	Medium	Direct	Imprecise		0.43 (−0.55 to 1.41)	–	Insufficient
Perphenazine vs. quetiapine	1 (598)	Medium	Direct	Imprecise		−0.70 (−1.66 to 0.25)	–	Insufficient
Perphenazine vs. risperidone	1 (602)	Medium	Direct	Imprecise		−0.87 (−1.85 to 0.11)	–	Insufficient
Perphenazine vs. ziprasidone	1 (446)	Medium	Direct	Imprecise		−0.97 (−2.06 to 0.10)	–	Insufficient
Total score								
Chlorpromazine vs. clozapine	1 (40)	Medium	Unknown	Direct	Imprecise	12.00 (−4.48 to 28.5)	–	Insufficient
Fluphenazine vs. olanzapine	1 (60)	Medium	Unknown	Direct	Precise	16.20 (1.22 to 31.18)*	Olanzapine	Insufficient
Haloperidol vs. aripiprazole	1 (300)	Medium	Direct	Precise		−4.59 (−7.42 to −1.77)*	Perphenazine	Insufficient
Perphenazine vs. olanzapine	1 (597)	Medium	Direct	Imprecise		−0.70 (−5.61 to 4.21)	–	Insufficient
Perphenazine vs. quetiapine	1 (598)	Medium	Direct	Imprecise		1.52 (1.36 to 4.41)	–	Insufficient
Perphenazine vs. risperidone	1 (602)	Medium	Direct	Imprecise		0.17 (−2.84 to 3.19)	–	Insufficient
Perphenazine vs. ziprasidone	1 (446)	Medium	Direct	Imprecise		2.23 (−1.15 to 5.61)	–	Insufficient
General psychopathology								
Chlorpromazine vs. clozapine	1 (40)	Medium	Unknown	Direct	Imprecise	5.00 (−3.68 to 13.68)	–	Insufficient
Fluphenazine vs. olanzapine	1 (60)	Medium	Unknown	Direct	Precise	8.20 (0.83 to 15.57)*	Olanzapine	Insufficient
Haloperidol vs. aripiprazole	1 (99)	Medium	Unknown	Direct	Imprecise	−1.60 (−5.28 to 2.08)	–	Insufficient
Haloperidol vs. asenapine	1 (335)	Medium	Direct	Imprecise		0.26 (−1.59 to 2.10)	–	Insufficient
Perphenazine vs. olanzapine	1 (597)	Medium	Direct	Imprecise		2.17 (0.66 to 3.68)*	Olanzapine	Insufficient
Perphenazine vs. ziprasidone	1 (446)	Medium	Direct	Imprecise		−1.92 (−3.69 to −0.15)*	Perphenazine	Insufficient
Perphenazine vs. quetiapine	1 (598)	Medium	Direct	Imprecise		−0.54 (−2.09 to 1.01)	–	Insufficient
Perphenazine vs. risperidone	1 (602)	Medium	Direct	Imprecise		0.24 (−1.38 to 1.86)	–	Insufficient

PANSS = Positive and Negative Syndrome Scale.

* Statistically significant result.
Appendix Figure 1. Positive symptoms (SAPS): haloperidol versus olanzapine.

Study, Year (Reference)	Haloperidol Mean (SD)	Total	Olanzapine Mean (SD)	Total	Mean Difference Weight, % IV, Random (95% CI)
SAPS					
Crespo-Facorro et al, 2012 (62)	-12.1 (2.9)	56	-8.9 (6.4)	55	90.7 -3.20 (-5.05 to -1.35)
Kim et al, 2010 (99)	55.7 (7.3)	55	58.2 (15.2)	32	9.3 -2.50 (-8.30 to 3.30)
Subtotal	91	87	100.0	87	-3.14 (-4.90 to -1.37)

Heterogeneity: $\chi^2 = 0.00; \phi^2 = 0.05 (P = 0.82); I^2 = 0%$

Test for overall effect: $Z = 3.48 (P < 0.001)$

IV = inverse variance; SAPS = Scale for the Assessment of Positive Symptoms.

Appendix Figure 2. Negative symptoms (PANSS and SANS): haloperidol versus olanzapine.

Study, Year (Reference)	Haloperidol Mean (SD)	Total	Olanzapine Mean (SD)	Total	Mean Difference Weight, % IV, Random (95% CI)
PANSS					
Tollefson et al, 1997 (135)	-4.4 (8.2)	81	-5.47 (7.2)	350	7.4 1.07 (-0.87 to 3.01)
Beasley et al, 1997 (41)	-1.74 (5.72)	23	-2.76 (5.81)	21	2.9 1.02 (-2.39 to 4.43)
Purdon et al, 2000 (120)	18 (5.6)	13	17.8 (5.5)	14	2.0 0.20 (-3.99 to 4.39)
Bernardo et al, 2001 (42)	-2.94 (5.65)	89	-3.76 (4.65)	93	10.7 0.82 (-0.69 to 2.33)
Ishigooka et al, 2001 (85)	16.86 (8.71)	10	15.62 (7.93)	17	0.8 1.24 (-5.34 to 7.82)
Avasthi et al, 2001 (39)	22.6 (5.6)	37	20.1 (6.3)	39	4.4 2.50 (-0.18 to 5.18)
Volavka et al, 2002 (138)	17.56 (5.95)	132	16.07 (6.4)	131	11.3 1.49 (0.05 to 2.93)
Lieberman et al, 2003 (106)	19 (3.5)	15	22.2 (4.5)	16	4.0 -3.20 (-6.03 to -0.37)
Smelson et al, 2006 (132)	-1.5 (4.8)	97	-2.5 (5.3)	159	13.3 1.00 (-0.26 to 2.26)
Keefe et al, 2006 (98)	-8.6 (8.792)	132	-11 (8.57)	144	6.8 2.40 (0.35 to 4.45)
Kongsakon et al, 2006 (101)	0.44 (4.6)	36	0.72 (3)	37	8.4 -0.28 (-2.07 to 1.51)
Krakowski et al, 2006 (102)	22.58 (6.54)	19	18.25 (4.42)	16	2.5 4.33 (0.68 to 7.98)
Lindenmayer et al, 2007 (107)	17.9 (7.84)	11	17.79 (6.89)	14	1.0 0.11 (-5.76 to 5.98)
Boulay et al, 2007 (45)	1355	2387	100.0	1.06 (0.46 to 1.67)	
Subtotal					

Heterogeneity: $\chi^2 = 0.30; \phi^2 = 17.91 (P = 0.16); I^2 = 27%$

Test for overall effect: $Z = 3.44 (P < 0.001)$

SANS

Study, Year (Reference)	Haloperidol Mean (SD)	Total	Olanzapine Mean (SD)	Total	Mean Difference Weight, % IV, Random (95% CI)
Beasley et al, 1996 (40)	-2.7 (5.9)	69	-4.26 (6.11)	198	44.9 1.56 (-0.08 to 3.19)
Avasthi et al, 2001 (39)	27.43 (19.43)	10	21.87 (19.47)	17	1.1 5.56 (-9.63 to 20.75)
Buchanan et al, 2005 (49)	30.2 (11.6)	34	29.6 (12.4)	29	6.7 0.60 (-5.36 to 6.56)
Crespo-Facorro et al, 2012 (62)	0.1 (6.3)	56	-4.4 (5.2)	55	33.7 4.50 (2.35 to 6.65)
Kim et al, 2010 (99)	56.6 (4.4)	35	54.8 (10.8)	32	13.5 1.80 (-2.22 to 5.82)
Subtotal	204	331	100.0	2.56 (0.94 to 4.18)	

Heterogeneity: $\chi^2 = 0.82; \phi^2 = 5.28 (P = 0.26); I^2 = 24%$

Test for overall effect: $Z = 3.11 (P = 0.002)$

IV = inverse variance; PANSS = Positive and Negative Syndrome Scale; SANS = Scale for the Assessment of Negative Symptoms.
Appendix Figure 3. Global rating and total symptom score improvement (PANSS): haloperidol versus olanzapine.

Study, Year (Reference)	PANSS	Haloperidol	Olanzapine	Mean Difference	Mean Difference	
		Mean (SD)	Mean (SD)	Total	Total	
Beasley et al, 1997 (41)		–20 (25.9)	–21.91 (26.9)	350	6.2	1.91 (4.40 to 8.22)
Tollefsen et al, 1997 (135)		–13.4 (20.6)	–17.7 (21.8)	1336	17.4	4.30 (2.34 to 6.26)
Ishigooka et al, 2001 (85)		–7.94 (21.85)	–11.84 (17.42)	93	7.1	3.90 (–1.86 to 9.66)
Bernardo et al, 2001 (42)		62.7 (20.7)	68.23 (23.3)	14	1.2	–5.30 (–21.90 to 11.30)
Altamura et al, 2002 (32)		74.43 (5.42)	75.08 (5.65)	13	10.5	–0.65 (–4.77 to 3.47)
Volavka et al, 2002 (138)		88.7 (16.6)	81.9 (21.8)	39	3.8	6.80 (–1.88 to 15.48)
de Haan et al, 2003 (68)		–11.4 (19.5)	–7.2 (31.9)	12	0.8	–4.20 (–25.35 to 16.95)
Rosenheck et al, 2003 (124)		75 (19)	73 (21)	159	9.7	2.00 (–2.46 to 6.46)
Lieberman et al, 2003 (106)		50 (29.9)	50 (28.78)	131	5.3	0.00 (–7.09 to 7.09)
Krakowski et al, 2006 (102)		0.58 (15.2)	4.83 (9.7)	37	6.9	–4.25 (–10.12 to 1.62)
Kongsakon et al, 2006 (101)		–36.7 (29.9)	–44.6 (28.78)	144	5.4	7.90 (0.96 to 14.84)
Keele et al, 2006 (98)		–7.6 (16.3)	–12.4 (16)	159	10.6	4.80 (0.71 to 8.89)
Boulay et al, 2007 (45)		56.1 (12.97)	62 (12.84)	14	2.9	–5.90 (–16.10 to 4.30)
Lindenmayer et al, 2007 (107)		67.58 (17.7)	57.25 (11.73)	16	3.1	10.33 (0.51 to 20.15)
Kahn et al, 2008 (88)		53.3 (17.25)	52.4 (17.42)	105	9.1	0.90 (–3.81 to 5.61)
Subtotal		**1587**	**2622**	**100.0**	**2.31 (0.44 to 4.18)**	

Heterogeneity: $\tau^2 = 4.22; \psi^2 = 22.25$ ($P \geq 0.07$); $I^2 = 37\%$
Test for overall effect: $Z = 2.42$ ($P = 0.02$)

IV = inverse variance; PANSS = Positive and Negative Syndrome Scale.

Appendix Figure 4. Global rating and total symptom score improvement (PANSS): haloperidol versus risperidone (with outlier).

Study, Year (Reference)	PANSS	Haloperidol	Risperidone	Mean Difference	Mean Difference	
		Mean (SD)	Mean (SD)	Total	Total	
Beasley et al, 1997 (41)		–20 (25.9)	–21.91 (26.9)	350	6.2	1.91 (4.40 to 8.22)
Tollefsen et al, 1997 (135)		–13.4 (20.6)	–17.7 (21.8)	1336	17.4	4.30 (2.34 to 6.26)
Ishigooka et al, 2001 (85)		–7.94 (21.85)	–11.84 (17.42)	93	7.1	3.90 (–1.86 to 9.66)
Bernardo et al, 2001 (42)		62.7 (20.7)	68.23 (23.3)	14	1.2	–5.30 (–21.90 to 11.30)
Altamura et al, 2002 (32)		74.43 (5.42)	75.08 (5.65)	13	10.5	–0.65 (–4.77 to 3.47)
Volavka et al, 2002 (138)		88.7 (16.6)	81.9 (21.8)	39	3.8	6.80 (–1.88 to 15.48)
de Haan et al, 2003 (68)		–11.4 (19.5)	–7.2 (31.9)	12	0.8	–4.20 (–25.35 to 16.95)
Rosenheck et al, 2003 (124)		75 (19)	73 (21)	159	9.7	2.00 (–2.46 to 6.46)
Lieberman et al, 2003 (106)		50 (29.9)	50 (28.78)	131	5.3	0.00 (–7.09 to 7.09)
Krakowski et al, 2006 (102)		0.58 (15.2)	4.83 (9.7)	37	6.9	–4.25 (–10.12 to 1.62)
Kongsakon et al, 2006 (101)		–36.7 (29.9)	–44.6 (28.78)	144	5.4	7.90 (0.96 to 14.84)
Keele et al, 2006 (98)		–7.6 (16.3)	–12.4 (16)	159	10.6	4.80 (0.71 to 8.89)
Boulay et al, 2007 (45)		56.1 (12.97)	62 (12.84)	14	2.9	–5.90 (–16.10 to 4.30)
Lindenmayer et al, 2007 (107)		67.58 (17.7)	57.25 (11.73)	16	3.1	10.33 (0.51 to 20.15)
Kahn et al, 2008 (88)		53.3 (17.25)	52.4 (17.42)	105	9.1	0.90 (–3.81 to 5.61)
Subtotal		**1587**	**2622**	**100.0**	**2.31 (0.44 to 4.18)**	

Heterogeneity: $\tau^2 = 4.22; \psi^2 = 22.25$ ($P \geq 0.07$); $I^2 = 37\%$
Test for overall effect: $Z = 2.42$ ($P = 0.02$)

IV = inverse variance; PANSS = Positive and Negative Syndrome Scale.
Appendix Figure 5. Global rating and total symptom score improvement (PANSS): haloperidol versus risperidone (outlier removed).

Study, Year (Reference)	Haloperidol	Risperidone	Mean Difference	Mean Difference		
	Mean (SD)	Total	Mean (SD)	Total	Weight, % IV, Random (95% CI)	Mean Difference IV, Random (95% CI)
Claus et al, 1992 (56)	74.3 (20.16)	21	76.9 (20.16)	21	1.7	-2.60 (-14.79 to 9.59)
Chouinard et al, 1993 (53)	-9.3 (27.7)	21	-15.31 (27.55)	92	1.5	6.01 (-7.11 to 19.12)
Min et al, 1993 (114)	-21.9 (27.7)	19	-17.1 (30.6)	16	0.7	-8.30 (-24.29 to 14.69)
Marder and Meibach, 1994 (111)	88.8 (26.4)	66	81.54 (26.13)	256	4.4	7.26 (0.13 to 14.39)
Peuskens, 1995 (116)	-15.2 (19.95)	226	-16.52 (22.97)	1136	13.6	1.52 (-1.64 to 4.67)
Bliu et al, 1996 (43)	-26.4 (27.6)	20	-44.7 (27)	21	0.9	18.10 (1.38 to 34.82)
Emsley, 1999 (71)	-29.3 (24.75)	84	-30.9 (24.87)	99	4.3	1.60 (-0.51 to 8.81)
Liu et al, 2000 (108)	-31.6 (20.6)	28	-24.7 (15.7)	28	2.6	-9.90 (-16.69 to 2.69)
Shrivastava and Gupta, 2000 (130)	37.1 (3.6)	50	41.5 (3.6)	50	0.0	-4.40 (-5.77 to -3.03)
Zhang et al, 2001 (143)	64.7 (16.6)	37	61.8 (10.6)	41	2.1	2.90 (-7.89 to 13.69)
Csernansky et al, 2002 (63)	2.69 (15.63)	188	-3.17 (10.51)	177	15.7	5.86 (3.14 to 8.58)
Volavka et al, 2002 (138)	88.7 (16.6)	37	86.4 (20.1)	41	3.5	2.30 (-5.85 to 10.45)
Yen et al, 2004 (142)	66.2 (16)	20	60.7 (14.9)	21	2.7	5.05 (-3.98 to 14.98)
Schooler et al, 2005 (127)	-20.6 (23.8)	277	-21 (24.34)	278	10.4	0.40 (-3.61 to 4.41)
Keefe et al, 2006 (98)	-7.6 (16.3)	97	-9.5 (15.5)	158	10.2	1.90 (-2.15 to 5.95)
Tamrakar et al, 2006 (134)	-43.17 (12.64)	18	-52.11 (12.2)	18	3.5	8.94 (0.82 to 17.06)
Lee et al, 2007 (104)	68.1 (15.81)	10	63.6 (10.75)	10	1.8	4.50 (-7.35 to 16.35)
Abdallahian, 2004 (31)	86.1 (27.7)	30	71.3 (30.6)	35	1.3	14.80 (0.62 to 28.38)
Apiqian et al, 2008 (33)	-33.3 (7.7)	10	-35.6 (16.9)	10	1.9	2.30 (-9.21 to 13.81)
Falha et al, 2008 (73)	57.27 (12.92)	15	54.7 (9.5)	15	3.5	2.57 (-5.55 to 10.69)
Müller et al, 2008 (115)	57.5 (22.2)	146	56.6 (19.7)	143	8.0	0.30 (-3.94 to 5.74)
Ghaleiha et al, 2011 (76)	59.81 (8.5)	17	52.81 (8.84)	17	6.1	7.00 (1.17 to 12.83)
Subtotal	1387	2633	100.0	3.24 (1.62 to 4.86)		

Heterogeneity: $\chi^2 = 2.44$; $\phi^2 = 24.83$ ($P = 0.21$); $I^2 = 19$

Test for overall effect: $Z = 3.91$ ($P < 0.001$)

IV = inverse variance; PANSS = Positive and Negative Syndrome Scale.

Appendix Figure 6. Global rating and total symptom score improvement (BPRS): chlorpromazine versus clozapine.

Study, Year (Reference)	Chlorpromazine	Clozapine	Mean Difference	Mean Difference		
	Mean (SD)	Total	Mean (SD)	Total	Weight, % IV, Random (95% CI)	Mean Difference IV, Random (95% CI)
BPDS (on medication)						
Singer and Law, 1974 (131)	22.3 (12)	20	20.5 (13)	20	9.1	1.80 (-5.95 to 9.55)
Gelenberg and Doller, 1979 (75)	39 (12)	8	27 (13)	7	3.6	12.00 (-0.72 to 24.72)
Riniers et al, 1980 (123)	33.4 (9.7)	16	26.6 (4.9)	5	12.6	6.80 (0.39 to 13.21)
Claghorn et al, 1987 (55)	-14.64 (12)	76	-22.53 (13)	75	26.2	7.89 (3.90 to 11.88)
Kan et al, 1988 (91)	56 (12)	142	45 (13)	126	37.1	11.00 (7.99 to 14.01)
Hong et al, 1997 (84)	52 (10)	19	45 (12)	21	11.4	7.00 (0.18 to 13.82)
Subtotal	281	254	100.0	8.40 (5.92 to 10.88)		

Heterogeneity: $\chi^2 = 1.95$; $\phi^2 = 6.27$ ($P = 0.28$); $I^2 = 20$

Test for overall effect: $Z = 6.65$ ($P = 0.001$)

BPRS = Brief Psychiatric Rating Scale; IV = inverse variance.
Appendix Figure 7. General psychopathology (MADRS): haloperidol versus olanzapine.

Study, Year (Reference)	Haloperidol Mean (SD)	Total	Olanzapine Mean (SD)	Total	Mean Difference Weight, % IV, Random (95% CI)	Mean Difference IV, Random (95% CI)
Tollefson et al, 1997 (135)	-3.1 (8.8)	660	-6 (8.7)	1336	69.3	2.90 (2.08 to 3.72)
Avasthi et al, 2001 (39)	5 (4.58)	10	3 (2.42)	17	4.9	2.00 (-1.06 to 5.06)
Lieberman et al, 2003 (106)	8.38 (8.21)	132	6.95 (7.01)	131	13.6	1.43 (-0.41 to 3.27)
de Haan et al, 2003 (68)	-1.2 (3.6)	12	-2.8 (12.1)	12	0.9	1.60 (-5.54 to 8.74)
Krakowski et al, 2006 (102)	43.6 (53.4)	36	35.1 (32.4)	37	0.1	8.50 (-11.83 to 28.83)
Keefe et al, 2006 (98)	-1.7 (7.9)	97	-2.9 (8.3)	159	11.2	1.20 (-0.83 to 3.23)
Subtotal	947	1692				

Heterogeneity: τ² = 0.00; χ² = 4.27 (P = 0.51); I² = 0%
Test for overall effect: Z = 7.09 (P = 0.001)

IV = inverse variance; MADRS = Montgomery–Asberg Depression Rating Scale.
Appendix Table 6. Summary of Results for 4 Key Adverse Events With Insufficient Strength of Evidence

Adverse Event and Comparison	Study Design	Study Duration	Events/Participants, n/N	Risk Difference (95% CI)	Risk Ratio (95% CI)	Risk of Bias	Consistency	Directness	Precision	Favored Drug
Diabetes mellitus										
Haloperidol vs. olanzapine	RCT	6 wk	3/31 4/35	-0.02 (-0.17 to 0.13)	0.85 (0.21 to 3.49)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. olanzapine	RCT	18 mo	17/261 27/336	-0.02 (-0.06 to 0.03)	0.81 (0.45 to 1.45)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. quetiapine	RCT	18 mo	17/261 14/337	0.02 (-0.01 to 0.06)	1.57 (0.79 to 3.12)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. risperidone	RCT	18 mo	17/261 21/341	0.00 (-0.04 to 0.04)	1.06 (0.57 to 1.96)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. ziprasidone	RCT	18 mo	17/261 12/185	0.00 (-0.05 to 0.05)	1.00 (0.49 to 2.05)	Medium	Unknown	Direct	Imprecise	–
The metabolic syndrome										
Haloperidol vs. clozapine	RCT	12 wk	4/36 15/37	-0.29 (-0.48 to -0.11)**	0.27 (0.10 to 0.75)**	Medium	Unknown	Direct	Precise	Haloperidol
Perphenazine vs. olanzapine	RCT	18 mo	49/261 72/336	-0.03 (-0.09 to 0.04)	0.88 (0.63 to 1.21)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. quetiapine	RCT	18 mo	49/261 53/337	0.03 (-0.03 to 0.09)	1.19 (0.84 to 1.70)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. risperidone	RCT	18 mo	49/261 45/341	0.06 (-0.00 to 0.12)	1.42 (0.98 to 2.06)	Medium	Unknown	Direct	Imprecise	–
Perphenazine vs. ziprasidone	RCT	18 mo	49/261 23/185	0.06 (-0.00 to 0.13)	1.51 (0.96 to 2.39)	Medium	Unknown	Direct	Imprecise	–
Death										
Chlorpromazine vs. ziprasidone	RCT	12 wk	0/154 0/152	0.00 (-0.01 to 0.01)	NE	Medium	Unknown	Direct	Imprecise	–
Haloperidol vs. clozapine	Cohort	Duration of prescription	235/41 295 24/8330	0.00 (0.00 to 0.00)	1.98 (1.30 to 3.00)**	Medium	Unknown	Direct	Imprecise	Clozapine
Haloperidol vs. risperidone	Cohort	Duration of prescription	235/41 295 74/22 057	0.00 (0.00 to 0.00)	1.70 (1.31 to 2.20)**	Medium	Unknown	Direct	Imprecise	Risperidone
Haloperidol vs. ziprasidone	RCT	2 to 3 d	0/27 0/31	0.00 (-0.07 to 0.07)	NE	Medium	Unknown	Direct	Imprecise	–
Thioridazine vs. clozapine	Cohort	Duration of prescription	146/23 950 24/8330	0.00 (0.00 to 0.00)	2.12 (1.38 to 3.26)**	Medium	Unknown	Direct	Imprecise	Clozapine
Thioridazine vs. risperidone	Cohort	Duration of prescription	146/23 950 74/22 057	0.00 (0.00 to 0.00)	1.82 (1.37 to 2.40)**	Medium	Unknown	Direct	Imprecise	Risperidone
Tardive dyskinesia										
Chlorpromazine vs. ziprasidone	RCT	12 wk	16/154 13/152	0.02 (-0.05 to 0.08)	1.21 (0.61 to 2.44)	Medium	Unknown	Direct	Imprecise	–
Haloperidol vs. clozapine	Cohort	22 y	14/152 0/181	0.09 (0.05 to 0.14)*	34.50 (2.07 to 573.55)*	Medium	Unknown	Direct	Precise	Clozapine
Haloperidol vs. olanzapine	RCT	12 wk	5/219 0/234	0.02 (0.00 to 0.04)	11.75 (0.65 to 211.26)	Medium	Unknown	Direct	Imprecise	–
Haloperidol vs. ziprasidone	RCT	28 wk	2/153 0/148	0.01 (-0.01 to 0.04)	4.84 (0.23 to 99.93)	Medium	Unknown	Direct	Imprecise	–

NE = not estimable; RCT = randomized, controlled trial.

* Statistically significant result.