Laser induced ultrafast Gd 4f spin dynamics in Co\textsubscript{100-x}Gd\textsubscript{x} alloys by means of time-resolved XMCD

T. Ferté1,a, M. Beens2,b, G. Malinowski3,c, K. Holldack4,d, R. Abrudan4,e, F. Radu4,f, T. Kachel4,g, M. Hehn3,h, C. Boeglin1,i, B. Koopmans2,j, and N. Bergeard1,k

1 Université de Strasbourg, CNRS, Institut de Physique Et Chimie Des Matériaux de Strasbourg, UMR 7504, 67000 Strasbourg, France
2 Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
3 Institut Jean Lamour, Université Henri Poincaré, Nancy, France
4 Helmholtz-Zentrum Berlin Für Materialien Und Energy GmbH, Albert-Einstein-Str. 15, Berlin, Germany

Received 18 May 2022 / Accepted 10 March 2023 / Published online 3 April 2023
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract We have studied the laser induced ultrafast quenching of Gd 4f magnetic order in ferrimagnetic Co\textsubscript{100-x}Gd\textsubscript{x} alloys to highlight the role of the Co 3d–Gd 5d inter-atomic exchange coupling. We have taken advantage of the ultrashort soft X-ray pulses deliver by the femtoslicing beamline at the BESSY II synchrotron radiation source at the Helmholtz–Zentrum Berlin to perform element- and time-resolved X-ray Magnetic Circular Dichroism spectroscopy. Our results show that the laser induced quenching of Gd 4f magnetic order occurs on very different time-scales for the Co\textsubscript{72}Gd\textsubscript{28}, the Co\textsubscript{77}Gd\textsubscript{23} and the Co\textsubscript{79}Gd\textsubscript{21} alloys. Most of the magnetic moment losses occur within the first picosecond (ps) while the electron distribution is strongly out of equilibrium. After the equilibration of the electrons and lattice temperatures \((t > 1 \text{ ps})\), the magnetic losses occur on slower rates that depend on the alloy composition: increasing the Co composition speeds up the demagnetization of Gd 4f sublattice. The strength of the Co 3d–Gd 5d inter-atomic exchange coupling which depends on composition, determines the efficiency of the angular momentum flow from the Gd 4f spin towards the lattice. Our results are in qualitative agreements with the predictions of the microscopic three temperatures model for ferrimagnetic alloys.

1 Introduction

The fundamental researches in spintronics aim at providing faster and energy efficient devices for the processing, the transfer and the storage of numerical data [1]. It is particularly crucial to address the needs of tomorrow’s digital society while complying with the environmental challenges. The intensive experimental and theoretical works carried out in the field of “Femtomagnetism” over the last 25 years [2–4] have provided new paradigms to reduce both the time and the energy required for deterministic spin manipulation in magnetic materials by using infrared (IR) femtosecond (fs) laser pulses [5]. All-Optical Helicity Independent Switching (AO-HIS) induced by a single IR fs laser (or electron) pulse [6–8] and ultrafast spin switching induced by a single femtosecond spin-polarized hot-electron (SPHE) pulse via the Spin-Transfer Torque (STT) [9–11] are among the most promising solutions within this scope. Interestingly, the ferrimagnetic transition metal (TM)/Gd alloys and multilayers play a central role in both processes. Several studies have established some state diagrams that have revealed a dependence of their switching efficiencies notably on the alloy composition [10, 12]. However, these studies are mainly based on time-resolved Magneto-Optical Kerr Effect (TR-MOKE) which is only sensitive to the laser induced ultrafast TM 3d spin dynamics in these GdTM alloys. Previous experiments based on element- and time-resolved X-ray Magnetic Circular Dichroism
(TR-XMCD) have reported on distinct Gd 4f and TM 3d spin dynamics induced by IR fs laser pulses in such Gd based alloys [13–18]. These distinct laser induced ultrafast spin dynamics (demagnetization amplitudes and characteristic demagnetization times) are believed to be the key parameters to achieve the ultrafast spin switching either by AO-HIS or ultrafast STT [9, 13]. It has recently been shown that the Gd 4f spin angular momentum is transferred to the lattice via the intra-atomic Gd 5d–Gd 4f and the inter-atomic Gd 5d–TM 3d exchange couplings [18] since there is no direct Gd 4f spin–lattice coupling [19–22]. Because of the localized nature of the Gd 4f electrons, the intra-atomic Gd 5d–Gd 4f exchange coupling is believed to be independent on alloy composition. Oppositely, it is believed that the inter-atomic Gd 5d–TM 3d exchange coupling depends on the composition and that its strength has an influence on the Gd 4f spin dynamics [23]. As a consequence, it is of paramount importance to extract experimentally the Gd 4f spin dynamics as a function of the inter-atomic Gd 5d–TM 3d exchange coupling (and thus on composition) to interpret the state diagrams and to reveal the mechanisms behind these single-shot spin switching [10, 12]. This knowledge is still fragmented because of the lack of systematic experimental investigations although theoretical models have attempted to fill this gap [23–26].

In this preliminary work, we have investigated the laser induced ultrafast Gd 4f spin dynamics in Co100−xGdx (20) alloy layers were grown by DC-magnetron sputtering on [Ta(5)/Cu(20)/Ta(5)]3 multilayers deposited on Si3N4 (200) membranes (unit in nm). The [Ta(5)/Cu(20)/Ta(5)]3 multilayer is used as an heat sink to reduce the laser induced DC-heating. The alloy layers were capped with Al(5) to prevent oxidation in ambient air [31]. We have selected alloys with x = 28, x = 23 and x = 21 that have Curie temperature (T_Curie) equal to 650 K, 765 K and 850 K respectively [27, 28]. We have characterized the dependence of their magnetic properties as a function of temperature by means of static X-ray Absorption Spectroscopy (XAS). These measurements have been performed by using the ALICE reflectometer installed on the PM3 beamline at the BESSY II synchrotron radiation source operated by the Helmholtz–Zentrum Berlin [32]. For these measurements, the magnetic field was applied along the X-rays propagation vector while the samples were tilted by 30° because of their in-plane uniaxial magnetic anisotropy [31, 33]. Hysteresis loops for the Co72Gd28 (Fig. 1a), the Co77Gd23 (Fig. 1b) and the Co79Gd21 (Fig. 1c) alloys were recorded by monitoring the transmission of circularly polarized X-rays tuned to the resonant Co L3 edge as a function of the external magnetic field. The dependence of the coercive field on temperature for the three samples is shown in Fig. 1d. The XAS at the Co L3 (Fig. 2a) and Gd M5 (Fig. 2b) edges were acquired by monitoring the transmission of circularly polarized X-ray under magnetic fields of ± 1 kOe. The XMCD amplitude (in %) is defined as the difference divided by the mean value of the X-ray absorption at the resonance for two opposite field directions. The XMCD amplitude as a function of temperature at the Co L3 and Gd M5 edges for the Co72Gd28, the Co77Gd23 and the Co79Gd21 alloys are shown in Fig. 2a–c respectively.

The laser induced ultrafast Gd 4f spin dynamics was recorded by using element- and time-resolved X-ray Magnetic Circular Dichroism (tr-XMCD) at the femtoscopic beamline of the BESSY II synchrotron radiation source at the Helmholtz–Zentrum Berlin [34]. The transient XMCD signals have been measured by monitoring the transmission of circularly polarized X-ray pulses tuned to specific core level absorption edges as a function of a pump-probe delay for two opposite directions of the magnetic field. The photon energy was set to the Gd M5 edges using a reflection zone plate monochromator on UE56/1-ZPM. A ~ 500 μm (FWHM) beam diameter for the pump laser on the sample was selected in order to ensure homogeneous pumping over the probed area of the sample (~ 200 μm). A magnetic field of ± 5.5 kOe was applied along the propagation axis of both the IR laser and the X-rays beam during the experiment. Its strength is larger than the coercive fields of the Co100−xGdx alloys in the explored temperature range (Fig. 1d). As for the static XMCD measurements, the samples were tilted by 30°
Fig. 1 Hysteresis loops at selected temperatures recorded by monitoring the transmission of circularly polarized X-rays at the Co L₃ edge, as a function of the external magnetic field for the Co₇₂Gd₂₈ (a), the Co₇₇Gd₂₃ (b) and the Co₇₉Gd₂₁ (c) alloys. (d) Coercive field as a function of temperature for the Co₇₂Gd₂₈ (black squares), the Co₇₇Gd₂₃ (red circles) and the Co₇₉Gd₂₁ (green triangles) alloys (mind the break on ordinate axis).

with respect to the X-ray propagation axis. The temperature of the cryostat was set to $T = 80$ K while the laser power was tuned to reach approximately ~ 45% demagnetization amplitude for the Co₇₂Gd₂₈ and the Co₇₇Gd₂₃ alloys (Fig. 3a, b). We have worked in a “moderate” excitation regime to avoid laser induced damages of the layers and to match the demagnetization amplitudes reported for pure Gd layer in the pioneer work of Wietstruk et al. [19]. Unfortunately, the tr-XMCD measurements at $T = 80$ K were not possible for the Co₇₉Gd₂₁ alloy since the transient lattice temperature exceeded its temperature of magnetic compensation ($T_{\text{comp}} \sim 250$ K) resulting in heat-assisted magnetization reversal (Fig. 4) [35]. The temperature of the cryostat was then set to $T = 300$ K (thus above T_{comp}) for this sample (Fig. 3c). It is worth noticing that $T^{*} = T - T_{\text{Curie}}$ is very similar for the measurements on the Co₇₂Gd₂₈ at $T = 80$ K ($T^{*} \sim 570$ K) and the Co₇₉Gd₂₁ alloys ($T^{*} = 550$ K) [36].

3 Experimental results and discussion:

By considering the characterization of the static magnetic properties of our samples, we observed a pronounced increase of the coercive field between $T = 220$ K and $T = 270$ K for the Co₇₉Gd₂₁ alloy (Fig. 1d). It is accompanied by a reversal of the hysteresis loop’s sign when the temperature is increased from $T = 220$ K to $T = 270$ K (Fig. 1c) [37, 38]. This change of sign above 220 K, which is also visible in the XMCD signals at the Gd M₅ and Co L₃ edges (Fig. 2c), shows that the temperature of magnetic compensation is $T_{\text{comp}} \sim 250$ K for the Co₇₉Gd₂₁ alloys. This value for T_{comp} is consistent with the one tabulated for the same composition in literature [28]. For the Co₇₂Gd₂₈ and the Co₇₇Gd₂₃ alloys, we do not observe any reversal of the hysteresis loops nor any sign changes of the XMCD signals which means that T_{comp}, if it exists for these alloys, is above $T = 300$ K. Nevertheless, the coercive field slightly increases with the temperature for the Co₇₇Gd₂₃ alloy which indicates that T_{comp} is slightly above $T = 300$ K.
The actual ones. Interestingly, the XMCD amplitudes at which the nominal compositions are close ($\pm 1\%$) to the actual ones. Interestingly, the XMCD amplitudes at the Gd M$_5$ edge as well as the XMCD spectrum (blue line) at the Co L$_3$ edge for the Co$_72$Gd$_{28}$ alloy at $T = 80$ K. (b) Same as (a) but at the Gd M$_5$ edge. The spectra were recorded by monitoring the transmission of circularly polarized X-rays. XMCD amplitude at the Co L$_3$ (open symbols) and Gd M$_5$ (filled symbols) edges as a function of temperature for the Co$_72$Gd$_{28}$ (c, black squares), the Co$_{77}$Gd$_{23}$ (d, red circles) and the Co$_{79}$Gd$_{21}$ (e, green triangles) alloys. (f) Compared XMCD amplitude at the Gd M$_5$ edge as a function of temperature for the Co$_72$Gd$_{28}$ (black squares), the Co$_{77}$Gd$_{23}$ (red circles) and the Co$_{79}$Gd$_{21}$ (green triangles) alloys. The symbol sizes reflect the experimental uncertainty.

![Fig. 2](image)

It is also consistent with the tabulated data in literature [28]. The static magnetic properties of the alloys attest that the nominal compositions are close ($\pm 1\%$) to the actual ones. Interestingly, the XMCD amplitudes at the Gd M$_5$ edge are very similar for the Co$_72$Gd$_{28}$, the Co$_{77}$Gd$_{23}$ and Co$_{79}$Gd$_{21}$ alloys and they show almost identical temperature dependence (Fig. 2f). It shows that the average magnetic moment per Gd atom (μ_{Gd} in $\text{M}_{\text{B}}/\text{at}$.) is nearly identical in these alloys which is consistent with the localized nature of Gd 4f spins. In the following, we will consider that $\mu_{\text{Gd}}(80$ K) = 7 M_{B}/atoms for all samples which is consistent with mean field calculations [31].

In Fig. 3a–c, we show the transient XMCD as a function of the pump-probe delay for the Co$_72$Gd$_{28}$, the Co$_{77}$Gd$_{23}$ and the Co$_{79}$Gd$_{21}$ alloys respectively. The data are normalized by the XMCD signal at negative delays. For the Co$_{79}$Gd$_{21}$ alloy, we have further normalized the data by the $\mu_{\text{Gd}}(300$ K) / $\mu_{\text{Gd}}(80$ K) (~ 0.7) ratio to account for the averaged Gd magnetic moment per atom at $T = 300$ K. We observe a laser induced partial quenching of the Gd 4f magnetic order followed by a recovery but the time-scales vary with the alloy composition. The recovery of Gd 4f magnetic order occurs on a much longer time scale for the Co$_72$Gd$_{28}$ alloy (we extracted a characteristic recovery time $\tau_{\text{Recov}} = 160 \pm 48$ ps) than for the Co$_{79}$Gd$_{21}$ alloy ($\tau_{\text{Recov}} = 43 \pm 8$ ps). The characteristic recovery times reflect the rate at which the heat injected by the fs laser pulses is evacuated from the magnetic layers. The thermal heat conductivity (considering both electron and phonon transports) is strongly temperature dependent for ferrimagnetic alloys [39]. The measurements were carried out at $T = 80$ K for the Co$_72$Gd$_{28}$ alloy (Fig. 3a) and $T = 300$ K for the Co$_{79}$Gd$_{21}$ alloy (Fig. 3c). Therefore, we infer that the different base temperatures could explain the different recovery times. However, dedicated investigations are still needed to sustain our claim.

The maximum demagnetization amplitudes are $A_{28} = 0.45 \pm 0.04$, $A_{23} = 0.4 \pm 0.04$ and $A_{21} = 0.58 \pm 0.03$ while the delay at which these maximum demagnetization states are reached are $d_{28} = 12.5 \pm 1$ ps, $d_{23} = 7.5 \pm 0.5$ ps and $d_{21} = 3.5 \pm 0.5$ ps for the Co$_72$Gd$_{28}$, the Co$_{77}$Gd$_{23}$ and the Co$_{79}$Gd$_{21}$ alloys respectively (Fig. 3). It is worth noticing that the Co$_{72}$Gd$_{28}$ and the Co$_{77}$Gd$_{23}$ alloys display almost identical demagnetization amplitude and magnetic moment per Gd atoms. Therefore, they exhibit an almost identical loss of magnetic moment per Gd atoms ($\Delta \mu_{\text{Gd}} = 3.15 \pm 0.3 \mu_{\text{B}}$/at and $2.8 \pm 0.3 \mu_{\text{B}}$/at respectively). As a consequence, the demagnetization rate, which we define as $\Delta \mu_{\text{Gd}}/d$, is enhanced in the Co$_{77}$Gd$_{23}$ alloy as compared to that in the Co$_72$Gd$_{28}$ alloy (Fig. 5). Furthermore, in spite of larger demagnetization amplitude, the
Fig. 3 Transient XMCD at the Gd M₅ edges for the Co₇₂Gd₂₈ (a, black squares), the Co₇₇Gd₂₃ (b, red circles) and the Co₇₉Gd₂₁ (c, green triangles) alloys as a function of the pump-probe delay. The measurements were carried out at $T = 80$ K for the Co₇₂Gd₂₈ and the Co₇₇Gd₂₃ alloys (a, b) and at $T = 300$ K for the Co₇₉Gd₂₁ alloy (c). The curves were normalized by the average XMCD amplitude at negative delays and at $T = 80$ K (see text for details). The solid blue lines are exponential fits and serve as guides to the eyes. The maximum demagnetization amplitude (A_x) is labelled by the vertical arrows. (d–f) Same as (a–c) but on a narrower delay range.

Fig. 4 Transient normalized XMCD at the Gd M₅ edge measured in the hybrid mode (time resolution ~ 60 ps) for the Co₇₉Gd₂₁ alloy at $T = 80$ K and laser power $P = 70$ mW.

Fig. 5 Demagnetization rates as a function of the Gd composition. It is defined as the ratio between the magnetic moment losses per atoms and the delay at which the minimum demagnetization is obtained.

Co₇₉Gd₂₁ alloy also shows an almost identical loss of its magnetic moment ($2.84 \pm 0.2 \mu_B$/at) as compared to the Co₇₂Gd₂₈ and the Co₇₇Gd₂₃ alloys but its demagnetization rate is further enhanced (Fig. 5). We have also displayed the transient normalized XMCD signal during the few picoseconds past the laser excitation in Fig. 3d–f. We observe that the demagnetization of the Gd 4f sublattice occurs on two subsequent time-scales for the Co₇₂Gd₂₈ and the Co₇₇Gd₂₃ alloys as previously reported for pure Gd layers [19, 29]. So far, such two-step demagnetization for the RE 4f sublattice in ferromagnetic RE-TM alloys were experimentally observed in Fe(Co)Tb alloys [21, 40–43] by means of element-selective time-resolved MOKE [44] and indirectly in
FeCoGd alloys [23, 24]. On contrary, several direct measurements by element- and time-resolved XMCD experiments have reported on “fast” single step demagnetization for RE 4f sublattices in Co_{100-x} Dy_x and Co_{100-x} Tb_x alloys [14, 16, 36, 45, 46]. It can be explained by sizable contributions of direct Dy 4f and Tb 4f spin–lattice coupling [21, 22, 47]. For sake of comparison, we have performed calculations based on the m3T model adapted to describe the spin dynamics in ferrimagnetic alloys [26]. We have injected the same input parameters in these calculations as those used in a previous study on alike Co_{100-x}Gd_x layers [30]. The laser power was selected to match the experimental demagnetization amplitude while a sample composition x = 75 was chosen. The electronic and lattice temperatures as well as the transient magnetization are shown in Fig. 6. The simulated curves show a two steps demagnetization: a “fast” demagnetization step which occurs while the electron and the lattice temperatures are not thermalized (t < 1 ps) and a “slow” demagnetization step after the equilibration. In our experimental data (Fig. 3), we also observe that most of the Gd 4f magnetic moment losses occur within 1 ps for the Co_{72}Gd_{28} and the Co_{77}Gd_{23} alloys which is consistent with the characteristic electron-lattice equilibration times (Fig. 6). Since the Gd 4f spins are not directly excited by the fs laser pulses and in absence of Gd 4f direct spin–lattice coupling, this sub-picosecond quenching of Gd 4f spin order is necessarily driven by the photoexcited conduction band and by the intra-atomic Gd 5d–Gd 4f exchange coupling. After 1 ps past the laser excitation, the magnetization is still decreasing but at lower rates as compared to that in the excited states for both alloys. The dynamics is much slower for the Co_{72}Gd_{28} alloy (d_{28} ≈ 12.5 ps) than for the Co_{77}Gd_{23} alloy (d_{23} ≈ 7.5 ps). In the frame work of the m3T model, the characteristic demagnetization times scale with $T_{\text{Curie}} / (T_{\text{Curie}})^2$ [29]. Since we have reported almost identical magnetic moments for the Gd atoms in the Co_{72}Gd_{28} and the Co_{77}Gd_{23} alloys (Fig. 2f), the different dynamics we observe can be qualitatively understood by considering the different T_{Curie} and thus the different inter-atomic Gd 5d–Co 3d exchange coupling [25]. Wietstruk et al. have proposed that the second and “slow” demagnetization step in pure Gd layers is caused by the indirect Gd 4f spin–lattice coupling which is mediated by the Gd 5d–Gd 4f intra-atomic exchange coupling and the Gd 5d spin–lattice coupling [19]. In our Co_{100-x}Gd_x alloys, the Gd 5d–Co 3d inter-atomic exchange coupling and the Co 3d spin–lattice coupling enhance the indirect Gd 4f spin–lattice coupling which speeds up the Gd 4f demagnetization in respect to pure Gd layer. Similar mechanism was proposed by Eschenlohr et al. in Tb_{100-x}Gd_x alloys [20]. However, in their case, the indirect Gd 4f spin–lattice coupling was enhanced by the Gd 4f–Tb 4f RKKY coupling [48] and the direct Tb 4f spin–lattice coupling [20]. Here, we confirm that the Co spin–lattice coupling is an efficient channel for angular momentum transfer in ferrimagnetic alloys [18, 49] and this mechanism cannot be neglected even in case of “strong” direct RE 4f spin–lattice coupling [21].

For the Co_{79}Gd_{21} alloy, we observed a single demagnetization step followed by a fast recovery (Fig. 3c, f). However, the composition is very similar to that of the Co_{77}Gd_{23} alloy and we have used the very same laser power. As a consequence, we could have expected similar characteristic times for the equilibration of the electrons and lattice temperatures. Differences between the “fast” and “slow” time scales for the Co_{79}Gd_{21} alloy are probably small and blurred by our experimental statistic. In addition, the faster demagnetization for the Co_{79}Gd_{21} alloy (d_{21} ≈ 3.5 ps) than for the Co_{77}Gd_{23} (d_{23} ≈ 7.5 ps) alloys is also consistent with its higher T_{Curie} and enhanced Gd 4f spin–lattice coupling. Lopez et al. have reported on an almost complete demagnetization of the Gd 4f sublattice within 2 ps in a Co_{50}Gd_{20} alloy [14]. The strong dependence of the characteristic demagnetization times on the composition is due to the sharp variation of the inter-atomic Co 3d–Gd 5d exchange coupling [25] which is attested by the sharp variation of T_{Curie} with the composition [27]. Our experimental results show unambiguously the key role played by the inter-atomic Co 3d–Gd 5d exchange coupling in the ultrafast Gd 4f spin dynamics in Co_{100-x}Gd_x alloys.

4 Conclusions

We have shown that the laser induced ultrafast Gd 4f spin dynamics depends substantially on the composition in Co_{x}Gd_{100-x} alloys. We have observed that the quenching of the Gd 4f magnetic order occurs on 2 subsequent time scales as previously predicted by the m3T model [29] and experimentally observed in pure Gd layers [19, 20]. The “fast” demagnetization step occurs while the electrons in the conduction band and the phonons (i.e. the lattice) are out of equilibrium. The “slow” demagnetization step occurs while the electrons and phonons have reached their thermal equilibrium. The characteristic demagnetization times
of this “slow” demagnetization depend on the composition. In absence of direct Gd 4f spin–lattice coupling, our experimental results show unambiguously the key role played by the inter-atomic Co 3d–Gd 5d exchange couplings on the ultrafast Gd 4f spin dynamics in Co$_{100-x}$Gd$_x$ alloys as recently claimed by Zhang et al. [22]. Further experiments are needed to determine whether the bottleneck for angular momentum transfer away from the Gd 4f sublattice in Co$_{100-x}$Gd$_x$ alloys is related by the intra-atomic exchange coupling or by the Co 3d spin–lattice coupling [48]. Our results also hint that for Co contents $>79\%$, the Gd 4f demagnetization occurs on similar time scales as that of Dy 4f (Tb 4f) in Co$_{100-x}$Dy$_x$ (Co$_{100-x}$Tb$_x$) alloys even without direct 4f spin–lattice coupling [21, 45, 50]. Quantitative analyses are needed to determine the transfer rates in Co$_{100-x}$Gd$_x$, Co$_{100-x}$Dy$_x$ and Co$_{100-x}$Tb$_x$ alloys to highlight the efficiency of direct RE 4f spin–lattice for angular momentum transfer. Finally, we can suggest that the recovery of Gd 4f magnetic order could be strongly affected by the lattice temperature and the heat conductivity [39]. As a conclusion, our experiments demonstrate that the Gd 4f spin dynamics (demagnetization and recovery) can be finely regulated in Co$_{100-x}$Gd$_x$ alloys by tuning the temperature and the composition. More systematic element- and time-resolved experiments at various compositions and temperatures are definitely needed in order to correlate the Gd 4f spin dynamics with the state diagrams of AO-HIS [12] and ultrafast STT [9]. So far, these studies have been mainly attempted by using ultrashort soft X-ray pulses at large scale facilities such as synchrotron [34] or XFEL [17]. However, recent instrumental developments have demonstrated that element selectivity in RE-TM alloys can also be obtained on table-top XUV pulsed sources based on High Harmonic Generation [51, 52] which offers tremendous opportunities to carry out the required systematic investigations.

Acknowledgements We are indebted for the scientific and technical support given by N. Pontius, Ch. Schüeller-Langeheine and R. Mitzner at the slicing facility at the BESSY II storage ring. The authors are grateful for financial support received from the following agencies: the French “Agence National de la Recherche” via Project No. ANR-11-LABX-0058_NIE and Project EQUIPEX UNION No. ANR-10-EQPX-52 and the EU Contract Integrated Infrastructure Initiative I3 in FP6 Project No. R II 3CT-2004-506008. This work was supported partly by the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, by the Project Plus cofounder by the “FEDER-FSE Lorraine et Massif Vosges 2014-2020”, a European Union Program and by the OVNI project from Region Grand-Est and by the MATELAS project institut Carnot ICEEL.

Data availability The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

1. Mishra et al., IEEE Trans. Magn. 57, 0800134 (2021)
2. Beurepaire et al., Phys. Rev. Lett. 76, 4250 (1996)
3. Kirilyuk et al., Rev. Mod. Phys. 82, 2731 (2010)
4. Bigot et al., Ann. Phys. 525, 2 (2013)
5. Yang et al., Sci. Adv. 3, e1603117 (2017)
6. Ostler et al., Nat. Commun. 3, 666 (2012)
7. Lalieu et al., Phys. Rev. B 96, 220411(R) (2017)
8. Y. Xu et al., Adv. Mat. 29, 1703477 (2017)
9. Ihama et al., Adv. Mater. 30, 1804004 (2018)
10. Rémym et al., Adv. Sci. 200, 2020 (1996)
11. Ihama et al., J. Phys. Soc. Jpn. 90, 081009 (2021)
12. Wei et al., Phys. Rev. Appl. 15, 054065 (2021)
13. Radu et al., Nature 472, 205 (2011)
14. Lopez-Flores et al., Phys. Rev. B 87, 214412 (2013)
15. Bergeard et al., Nat. Commun. 5, 3466 (2014)
16. Radu et al., SPIN 5, 1550004 (2015)
17. Higley et al., Rev. Sci. Instrum. 87, 033110 (2016)
18. Hennecke et al., Phys. Rev. Lett. 122, 157202 (2019)
19. Wietstruk et al., Phys. Rev. Lett. 106, 127401 (2011)
20. Eschenlohr et al., Phys. Rev. B 89, 214423 (2014)
21. Chen et al., New J. Phys. 21, 123007 (2019)
22. Zhang et al., Phys. Rev. B 105, 054410 (2022)
23. Ren et al. arXiv:2012.14620 (2020)
24. Mekkonen et al., Phys. Rev. B 87, 184040 (2013)
25. Atxitaia et al., Phys. Rev. B 89, 224421 (2014)
26. Schellekens et al., Phys. Rev. B 87, 020407(R) (2013)
27. Tao et al., AIP Conf. Proc. 18, 641 (1974)
28. Hansen et al., J. Appl. Phys. 66, 756 (1989)
29. Koopmans et al., Nat. Mater. 9, 259 (2010)
30. Beens et al., Phys. Rev. B 100, 220409(R) (2019)
31. Bergeard et al., Phys. Rev. B. 96, 064418 (2017)
32. R. Abrudan et al., Rev. Sci. Instrum. 86, 063902 (2015)
33. R.C. Taylor et al., J. Appl. Phys. 47, 4666 (1976)
34. Holldack et al., J. Synchrotron Radiat. 21, 1090 (2014)
35. Stanciu et al., Phys. Rev. Lett. 99, 217204 (2007)
36. Ferté et al., J. Magn. Magn. Mat. 530, 167883 (2021)
37. Stanciu et al., Phys. Rev. B 73, 220402 (2006)
38. Binder et al., Phys. Rev. B 74, 134404 (2006)
39. Hopkins et al., J. Appl. Phys. 111, 103533 (2012)
40. Kim et al., Appl. Phys. Lett. 94, 192506 (2009)
41. Jiao et al., IEEE Trans. Magn. 49, 3191 (2013)
42. Ren et al., SPIN 7, 1740003 (2017)
43. Li et al., Phys. Rev. B 97, 184432 (2018)
44. Khorsand et al., Phys. Rev. Lett. 110, 107205 (2013)
45. Ferté et al., Phys. Rev. B 96, 144427 (2017)
46. Abrudan et al., Phys. Status Solidi RRL. 15, 2100047 (2021)
47. Fritschi et al., Sci. Adv. 6, 1601 (2020)
48. Windsor et al. Nat. Mater. (2022)
49. Dornes et al., Nature 48, 107205 (2013)
50. Ciuciulkaite et al., Phys. Rev. Mat. 4, 104418 (2020)
51. Fan et al., Optica. 9, 399 (2022)
52. Hennecke et al., Phys. Rev. Res. 4, L022062 (2022)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.