The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase
Richa Virmani, Andaleeb Sajid, Anshika Singhal, Mohita Gaur, Jayadev Joshi, Ankur Bothra, Richa Garg, Richa Misra, Vijay Pal Singh, Virginie Molle, et al.

To cite this version:
Richa Virmani, Andaleeb Sajid, Anshika Singhal, Mohita Gaur, Jayadev Joshi, et al.. The Ser/Thr protein kinase PrkC imprints phenotypic memory in Bacillus anthracis spores by phosphorylating the glycolytic enzyme enolase. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2019, 294 (22), pp.8930-8941. 10.1074/jbc.RA118.005424. hal-02282590

HAL Id: hal-02282590
https://hal.archives-ouvertes.fr/hal-02282590
Submitted on 27 May 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
The Ser/Thr protein kinase PrkC imprints phenotypic memory in *Bacillus anthracis* spores by phosphorylating the glycolytic enzyme enolase

Received for publication, August 18, 2018, and in revised form, February 18, 2019. Published, Papers in Press, April 5, 2019, DOI 10.1074/jbc.RA118.005424

Richa Virmani*, Andaleeb Sajid†, Anshika Singhal†, Mohita Gaur†, Jayadev Joshi*, @ Ankur Bothra†, Richa Garg†, Richa Misra†, Vijay Pal Singh†, Virginie Molle‡, Ajay K. Goel‡‡, Archana Singh†, Vipin C. Kalia§§, Jung-Kul Lee§§, Yasha Hasija*, Gunjan Arora**, and Yogendra Singh††

From the Department of Zoology, University of Delhi, Delhi 110007, India, † Council of Scientific and Industrial Research (CSIR)–Institute of Genomics and Integrative Biology, Delhi 110007, India, †† Delhi Technological University, Delhi 110042, India, **Defence Research and Development Establishment, Gwalior 474002, India, †† Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), CNRS, University of Montpellier, Montpellier 34000, France, §§ Sri Venkateswara College, University of Delhi, Delhi 110021, India, §§ Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 05029, Republic of Korea, and ‡‡ Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20851

Edited by Chris Whitfield

Bacillus anthracis is the causative agent of anthrax in humans, bovine, and other animals. *B. anthracis* pathogenesis requires differentiation of dormant spores into vegetative cells. The spores inherit cellular components as phenotypic memory from the parent cell, and this memory plays a critical role in facilitating the spores’ revival. Because metabolism initiates at the beginning of spore germination, here we metabolically reprogrammed *B. anthracis* cells to understand the role of glycolytic enzymes in this process. We show that increased expression of enolase (Eno) in the sporulating mother cell decreases germination efficiency. Eno is phosphorylated by the conserved Ser/Thr protein kinase PrkC which decreases the catalytic activity of Eno. We found that phosphorylation also regulates Eno expression and localization, thereby controlling the overall spore germination process. Using MS analysis, we identified the sites of phosphorylation in Eno, and substitution(s) of selected phosphorylation sites helped establish the functional correlation between phosphorylation and Eno activity. We propose that PrkC-mediated regulation of Eno may help sporulating *B. anthracis* cells in adapting to nutrient deprivation. In summary, to the best of our knowledge, our study provides the first evidence that in sporulating *B. anthracis*, PrkC imprints phenotypic memory that facilitates the germination process.

Deciphering the role of metabolic enzymes that orchestrate morphogenic transition states in bacteria is a fundamental question. *Bacillus anthracis* is the causative agent of anthrax in humans, bovine, and other animals (1, 2). It is known to survive hostile environments by forming spores that remain quiescent and retain minimum metabolic activity (3, 4). As a pathogen, the success of *B. anthracis* depends on the spore’s ability to develop into a growing vegetative cell. Under favorable conditions, spore metabolism is triggered to support energy needs and to develop into a fully functional cell (5). The metabolic checkpoints and energy reserves in the spore provide different stimuli at an early growth stage and ensure the completion of the developmental program. Therefore, the transformation of a dormant spore into a vegetative cell is a key step in the pathogenic cycle of *B. anthracis*. However, the molecular events leading to successful spore dormancy and later to germination remain to be fully elucidated.

During the process of germination, some spores disintegrate their protective structure and grow into vegetative cells (5). Sporulating cells carry a substantial set of macromolecules (including several proteins) through their journey from progenitor cell to spore (6). The role of these proteins remains largely unknown. This carryover of cellular components is termed “phenotypic memory” (7). The efficiency of spore germination has been shown to be determined by this phenotypic memory inherited from the parent cell (7, 8). In a recent study, the role of one such protein, alanine dehydrogenase, which controls alanine-induced outgrowth in cellular memory, was described (7). Because the protein cargo remains constant in the spore, these proteins decide the fate of the reviving spore depending on environmental conditions and sensory signaling molecules (9). There have been considerable efforts toward understanding the spore germination process and involvement of signaling mechanisms (10–12).

The link between metabolism and the spore revival process is not explored well. At the onset of germination, metabolism resumes without requiring new macromolecular synthesis (13). Reports in *Bacillus subtilis* have highlighted the essentiality and
interactions of glycolytic enzymes phosphofructokinase (Pfk), phosphoglyceromutase (Pgm), and enolase (Eno) (14). Eno and Pgm play an essential role in both glycolysis and gluconeogenesis where Pgm reversibly converts 3-phosphoglyceric acid (3-PGA) to 2-PGA, and Eno catalyzes the penultimate step of glycolysis by conversion of 2-PGA to phosphoenolpyruvate (PEP), thus deciding the flux of pathway. Bacteria survive harsh conditions efficiently by keeping an alternate source of energy, 3-PGA, which is used during the early events of spore germination (15). A balanced ratio of 3-PGA and 2-PGA is maintained by conversion of 2-PGA to phosphoenolpyruvate (3-PGA) to 2-PGA, and Eno catalyzes the penultimate step of glycolysis and gluconeogenesis where Pgm reversibly converts 3-phosphoglyceric acid to phosphoenolpyruvate.

3-PGA reserves, we decided to investigate the role of Eno in the spore germination process of B. anthracis. Previous studies have shown that an Eno deletion-mutant strain was defective in sporulation, whereas its inhibition led to a lag in ATP production during germination, thus uncovering a role for Eno in the bacterial life cycle (17, 18). Besides this, Eno is a component of the adsorbed anthrax vaccine and has been indicated in helping bacteria evade the innate immune cells by binding to host plasminogen (19, 20).

In this study, we address the role of Eno in spore germination. Our results show that Eno acts as an intrinsic memory controller that influences the germination process and is regulated by the Ser/Thr protein kinase PrkC.

Results and discussion

B. anthracis Eno influences spore germination

To decipher the contribution of some key metabolic enzymes in spore germination, we cloned and expressed the glycolytic pathway genes pgk, pgm, and eno that are important for maintaining the 3-PGA reserve. The B. anthracis Sterne (Bas) strains overexpressing Pgk, Pgm, and Eno were analyzed for their sporulation and germination efficiencies. As shown in Fig. 1A, an increase in the expression of either glycolytic protein led to a decrease in sporulation efficiency. For germination efficiency, there was an ~75% decrease in Eno-overexpressing spores, whereas spores overexpressing Pgk and Pgm showed only about 20 and 40% decreases, respectively (Fig. 1B). To assess the levels of Eno in the overexpression strain, we generated Eno-specific polyclonal antibodies in mice (Fig. S1). Immunoblotting with these antibodies showed that the expression of Eno was increased by ~1.5-fold in the recombinant strain as compared with parent strain (Fig. S2).

Eno expression is reduced in B. anthracis spores

Our results suggest that overexpression of Eno causes a decrease in spore germination. Therefore, we decided to check the intrinsic regulation of Eno expression in spores as well as in vegetative cells. Using Eno-specific polyclonal antibodies, we determined the expression of Eno in whole-cell lysates at different stages of the B. anthracis lifecycle. Immunoblotting with anti-Eno antibody detected a specific band at ~45 kDa corresponding to the molecular mass of Eno. After quantification of band intensities, differential expression of Eno was observed in several growth stages relative to early log phase where the maximum expression was observed (Fig. 2). The expression of Eno consistently decreased in the later growth stages (log phase, late log phase, and stationary phase) until in a spore-forming stage where only 30% of the protein remained with respect to early log phase. Because spores have lower levels of Eno as compared with vegetative cells and overexpression of Eno leads to reduced fitness of the Bas strain during spore germination, there seems to be a decisive role of Eno in germination.

Eno is phosphorylated in vitro by the B. anthracis Ser/Thr protein kinase PrkC

Signaling mechanisms regulate the transition of B. anthracis from dormancy to vegetative state (21, 22). Interestingly, there is a growing body of evidence supporting the notion that PrkC could play an important role in the spore’s exit from dormancy (12, 23, 24). In our previous studies, we found that glycolytic enzymes are subjected to regulation by phosphorylation (25, 26). Large-scale phosphoproteome analysis in B. subtilis also

3 The abbreviations used are: Pfk, phosphofructokinase; pgk, phosphoglycerate kinase; Pgm, phosphoglyceromutase; Eno, enolase; PGA, phosphoglyceric acid; PEP, phosphoenolpyruvate; Bas, B. anthracis Sterne; Eno-P, phosphorylated Eno; Eno-UP, unphosphorylated Eno; PA, protective antigen; cfu, colony-forming unit.
Phenotypic memory in B. anthracis

Figure 2. Decreased expression of Eno in B. anthracis spores. Expression of Eno was analyzed by immunoblotting of lysates of different growth phases (early log (OD600 = 0.2–0.3), log phase (OD600 = 0.8–1.0), late log (OD600 = 1.5–1.7), and stationary phase (OD600 ≥ 2.2)) and spores with anti-Eno antibody. The histogram (upper panel) shows relative expression of Eno, which was calculated taking the expression of Eno in early log phase as 100% in the corresponding representative blot image (lower panel). Error bars represent S.D. of three independent experiments.

indicates phosphorylation of Eno, which is a close homolog of *B. anthracis* Eno (~80% sequence similarity) (27). Additionally, in our previous study, comparison of phosphoproteomic analyses of *B. anthracis* WT (Bas-wt) and prkC deletion mutant (BasΔprkC) identified phosphorylated isoforms of Eno (28). Therefore, we hypothesized that Eno could be regulated by PrkC-mediated phosphorylation, and this regulation might be important for *B. anthracis* morphogenesis.

To address this hypothesis, in vitro kinase assays were performed using recombinant PrkC and Eno with [γ-32P]ATP. As shown in Fig. 3A, Eno was found to be phosphorylated by PrkC. No phosphotransfer was observed when Eno was incubated alone or with the Ser/Thr phosphatase PrpC. Phosphotransfer analysis using in vitro kinase assay and two-dimensional gel electrophoresis indicated phosphorylation of Eno at early time points (Fig. 3, B–D). Thus, these assays confirmed that Eno is a substrate of PrkC. Subsequently, the phosphorylation of Eno was also confirmed in vivo using coexpression with PrkC and PrpC in *Escherichia coli*. Eno was found to be phosphorylated when coexpressed with PrkC (phosphorylated Eno (Eno-P)), whereas no phosphorylation was observed when coexpressed with PrpC (unphosphorylated Eno (Eno-UP)) as confirmed by Pro-Q Diamond phosphorun-specific staining (Fig. 3E). Eno-P isolated from cells metabolically labeled with [32P]orthophosphoric acid showed a 32P-labeled Eno demonstrating PrkC-specific phosphorylation under native conditions in *E. coli* (Fig. 3F).

Eno is phosphorylated on serine and threonine residues

To identify the residues in Eno that are phosphorylated by PrkC, purified Eno-P and Eno-UP proteins were subjected to MS (Fig. S3). We found nine phosphorylated serine and threonine residues in Eno-P, whereas no phosphorylated residues were identified in Eno-UP. To identify the location of phosphorylation sites in Eno, we generated a homology model of *B. anthracis* Eno using the crystal structure of *B. subtilis* Eno (Protein Data Bank (PDB) code 4A3R) (29). Fig. 4A shows the Bas Eno homology model with the phosphorylation sites marked. Three phosphorylated residues (Ser336, Thr363, and Ser367) were localized in the C-terminal hydrophobic region, whereas the remaining six residues were present at the protein surface (Fig. 4A). Among these sites, Ser367 was highly conserved among the Eno homologs and was found to be present in the flexible loop responsible for catalysis, as identified by multiple sequence alignment of Eno and its homologs (Fig. S4). Previously, Eno Ser367 was also identified as a phosphorylated residue in the spore phosphoproteome of *B. subtilis* (27). Further structural analysis of the three C-terminal residues indicated that Ser367 could interact with the catalytic site residues Lys340 and Ile339 (Fig. 4B), whereas Thr363 and Ser336 were present on the parallel and antiparallel strands, stabilizing the structure of the protein (Fig. 4C).

To determine the role of individual phosphorylation sites, we chose to study the three C-terminal residues located in the hydrophobic pocket. These residues were mutated to generate single mutants EnoS336A, EnoT363A, and EnoS367A; a double mutant, EnoS363A/T363A; and a triple mutant, EnoS336A/T363A/S367A. Equal amounts of Eno and its mutant derivatives were used in an in vitro kinase assay with PrkC. Quantification of phosphorylation levels indicated a significant decrease in signal for all the single Eno mutants, whereas the double mutant EnoS336A/T363A showed a >60% loss in phosphorylation levels (Fig. 4D). In the triple mutant (EnoS336A/T363A/S367A), there was a significant loss (>80%) in phosphorylation (Fig. 4E), showing that Ser336, Thr363, and Ser367 were important phosphorylation sites.

The role of these three residues in regulating the enzyme activity was also analyzed. In glycolysis, Eno catalyzes the pentulstep reaction by converting 2-PGA to PEP. We evaluated the phosphorylation-mediated variations on the activity of Eno by using a kit-based colorimetric assay that measures the formation of an intermediate product during this conversion. As shown in Fig. 4F, a considerable loss (40–50%) in the activity of EnoS336A and EnoS367A mutants was observed, whereas EnoT363A exhibited an increase in activity. Furthermore, the triple mutant showed a ~40% decrease in the overall protein activity as compared with Eno-wt (Fig. 4G).

To understand the effect of mutations on the structural integrity of Eno, we performed circular dichroism (CD) spectroscopy using Eno purified from *E. coli* (Eno-wt), Eno-P (Eno coexpressed with PrkC), Eno-UP (Eno coexpressed with PrpC), and the triple mutant EnoS336A/T363A/S367A. To our surprise, all four samples showed a similar α-helix and β-sheet composition, suggesting that the mutations as well as phosphorylation...
Figure 3. Eno is phosphorylated by PrkC in vitro. A, autoradiogram (upper panel) showing phosphorylation of recombinant Eno (5 μg) by PrkC (1 μg). PrpC (1 μg) and Eno alone were used as negative controls. The corresponding SDS-PAGE is shown (lower panel). Lane M, molecular mass markers. B, autoradiogram showing time-dependent phosphorylation of Eno (top panel) that was normalized to protein amounts and plotted using GraphPad Prism (lower panel). The intensity of phosphorylation of protein bands was calculated using QuantityOne software. Eno phosphorylation after 30 min was taken as 100% (signal saturation), and relative phosphorylation was calculated. The error bars show S.D. of three independent experiments. C and D, time-dependent phosphorylation of Eno by PrkC using cold ATP. Isoforms were resolved by 2D gel electrophoresis, and subsequent blots were probed with anti-Eno antibodies to determine the stoichiometry of Eno phosphorylation at different time points. Multiple species (encircled) were observed after 30 min of the reaction as compared with 0 and 10 min, and their relative intensity was calculated and plotted using GraphPad Prism. E and F, His-Eno purified from E. coli cells expressing Eno with PrkC (Eno-P) or PrpC (Eno-UP) were resolved by SDS-PAGE and stained with Pro-Q Diamond followed by analysis using a Typhoon imager (E). E. coli cells overexpressing Eno-P or Eno-UP were subjected to metabolic labeling using [32P]orthophosphoric acid (F). In both panels, Eno-P was found to be phosphorylated, whereas no phosphorylation was observed on Eno-UP.
Phenotypic memory in B. anthracis

A

Autoradiogram
Coomassie stained gel

Relative phosphorylation (%)

0 20 40 60 80 100

WT T363A S336A S367A S336A/T363A

55 kDa
35 kDa

B

C

55 kDa
40 kDa

E

Relative phosphorylation (%)

0 20 40 60 80 100 120

55 kDa
40 kDa

 Autoradiogram
Coomassie stained gel

F

Relative protein activity (%)

0 50 100 150 200

WT T363A S336A S367A S336A/T363A

G

Relative protein activity (%)

0 20 40 60 80 100

WT S336A/T363A/S367A

do not affect the secondary structure of the protein and maintain overall conformation (Table 1).

Previous studies on Eno structure from diverse species have shown that Ser367 is a part of a flexible loop as mentioned earlier (30). This flexible loop is involved in binding to 2-PGA and subsequent conformational change. Additionally, we found this loop to be conserved in Eno from different species (Fig. 54). Therefore, we speculate that this flexibility of the loop and associated conformational change in the absence of substrate might allow the residue to become phosphorylated by the kinase (31).

Eno is phosphorylated in B. anthracis vegetative cells and spores

We next investigated the in vivo phosphorylation status of Eno. We overexpressed Eno with a C-terminal polyhistidine tag in Bas-wt (Bas Eno) and BasΔprkC (BasΔprkC Eno) Sterne strains. Purified proteins from respective strains were subjected to immunoblotting using anti-pSer and anti-pThr antibodies. Eno-P (coexpressed with PrkC) was used as a positive control, and E. coli Eno (not coexpressed with PrkC) was used as a negative control. pSer- and pThr-specific antibodies recognized Eno purified from Bas-wt, whereas the phosphorylation signal was significantly reduced, although not completely absent, in the BasΔprkC strain (Fig. 5, A and B). This result indicates that Eno is predominantly phosphorylated by PrkC in vivo but may also be phosphorylated by other kinases in the absence of PrkC.

Furthermore, we analyzed the stoichiometry of in vivo phosphorylation of Eno by resolving the phosphorylated and unphosphorylated isomers on 2D gel electrophoresis. Whole-cell protein extracts from Bas-wt and BasΔprkC were subjected to electrophoresis followed by immunoblotting with anti-Eno antibody. Four Eno isoforms were observed in BasΔprkC cells (Fig. 5C). However, in Bas-wt cells, we identified seven Eno isoforms among which four were present at a pI similar to that in the BasΔprkC strain (pI 4.5–5.0), whereas the remaining three isoforms migrated at acidic pI range (toward 4.0; Fig. 5C), thus confirming the specificity of phosphorylation of Eno in vegetative cells.

Next, we investigated whether Eno was phosphorylated in spores. We overexpressed and purified Eno from B. anthracis spore lysate (Eno Bas Spore) followed by immunoblotting with anti-pThr antibody. Eno phosphorylation was detected in spores despite its low expression (Fig. 5D). The phosphorylation was also confirmed by using anti-pSer antibodies (Fig. S5).

Kinetic parameters of circular dichroism analysis

Parameters	Eno-wt	Eno-P	Eno-UP
α-Helix (%)	71.56	69.91	69.84
β-Strand (%)	5.06	5.13	5.18

These results show that Eno is regulated by PrkC-mediated phosphorylation in spores of B. anthracis, confirming its role in spore germination.

Phosphorylation decreases catalytic activity and Mg$^{2+}$ cofactor affinity of Eno

After establishing that Eno is a substrate of PrkC, we investigated the effect of phosphorylation on Eno activity. In the activity assay, Eno-P was found to be ~60% less active than Eno-UP, suggesting that phosphorylation causes a decrease in the activity of Eno (Fig. 6A).

Interestingly, spores contain high concentrations of divalent cations such as Ca$^{2+}$, Mg$^{2+}$, and Mn$^{2+}$ to keep themselves dehydrated, thus maintaining a low metabolic profile (32, 33). As Eno is a metalloenzyme requiring Mg$^{2+}$ as a cofactor (34), we investigated whether phosphorylation had an impact on Eno–Mg$^{2+}$ interaction. Eno-P and Eno-UP (coexpressed with PrkC and PrpC, respectively) were used to study the phosphorylation-mediated regulation of the Eno–Mg$^{2+}$ interaction. A fluorimetry-based method was used to measure variations in the intrinsic tryptophan fluorescence of Eno upon addition of MgCl$_2$ (35). We observed that Eno–Mg$^{2+}$ complex formation was correlated with an enhancement of tryptophan fluorescence intensity. Our data showed that fluorescence of Eno–UP with Mg$^{2+}$ was higher than that of Eno-P, indicating a negative effect of phosphorylation on metal binding (Fig. 6B).

Different concentrations of Mg$^{2+}$ were titrated with Eno-UP or Eno-P, and the binding constant (K_D) was calculated. For Eno-UP, the K_D was higher (0.254 ± 0.01 m) than the K_D for Eno-P (0.181 ± 0.03 m). Hence, these results show that Eno phosphorylation reduces Mg$^{2+}$ binding affinity, which is in agreement with the decreased activity of phosphorylated Eno.

PrkC is involved in the regulation of Eno expression in spores

We further analyzed the effect of PrkC on Eno expression in spores by comparing the protein levels of Eno in spores of Bas-wt and BasΔprkC Sterne strains (Fig. 7A) as well as during exponential growth (Fig. 7B). Our results showed 2–3-fold higher protein levels of Eno in BasΔprkC spores compared with Bas-wt spores, whereas the expression was similar in both strains during the exponential phase (Figs. 7 and S6). Thus, Eno protein levels might be regulated by PrkC. These results could in part explain the compromised virulence phenotype of the PrkC-null mutant as observed in earlier studies (36). However, it remains to be determined whether this PrkC-dependent regulation is direct or indirect. It could be hypothesized that PrkC phosphorylates a yet to be discovered transcription factor that regulates the expression of Eno. Such regulation could occur through a phospho-dependent interaction. A fluorimetry-based method was used to measure variations in the intrinsic tryptophan fluorescence of Eno upon addition of MgCl$_2$ (35). We observed that Eno–Mg$^{2+}$ complex formation was correlated with an enhancement of tryptophan fluorescence intensity. Our data showed that fluorescence of Eno–UP with Mg$^{2+}$ was higher than that of Eno-P, indicating a negative effect of phosphorylation on metal binding (Fig. 6B).

Different concentrations of Mg$^{2+}$ were titrated with Eno-UP or Eno-P, and the binding constant (K_D) was calculated. For Eno-UP, the K_D was higher (0.254 ± 0.01 m) than the K_D for Eno-P (0.181 ± 0.03 m). Hence, these results show that Eno phosphorylation reduces Mg$^{2+}$ binding affinity, which is in agreement with the decreased activity of phosphorylated Eno.

Kinetic parameters of circular dichroism analysis

Parameters	Eno-wt	Eno-P	Eno-UP
α-Helix (%)	71.56	69.91	69.84
β-Strand (%)	5.06	5.13	5.18

These results show that Eno is regulated by PrkC-mediated phosphorylation in spores of B. anthracis, confirming its role in spore germination.

Phosphorylation decreases catalytic activity and Mg$^{2+}$ cofactor affinity of Eno

After establishing that Eno is a substrate of PrkC, we investigated the effect of phosphorylation on Eno activity. In the activity assay, Eno-P was found to be ~60% less active than Eno-UP, suggesting that phosphorylation causes a decrease in the activity of Eno (Fig. 6A).

Interestingly, spores contain high concentrations of divalent cations such as Ca$^{2+}$, Mg$^{2+}$, and Mn$^{2+}$ to keep themselves dehydrated, thus maintaining a low metabolic profile (32, 33). As Eno is a metalloenzyme requiring Mg$^{2+}$ as a cofactor (34), we investigated whether phosphorylation had an impact on Eno–Mg$^{2+}$ interaction. Eno-P and Eno-UP (coexpressed with PrkC and PrpC, respectively) were used to study the phosphorylation-mediated regulation of the Eno–Mg$^{2+}$ interaction. A fluorimetry-based method was used to measure variations in the intrinsic tryptophan fluorescence of Eno upon addition of MgCl$_2$ (35). We observed that Eno–Mg$^{2+}$ complex formation was correlated with an enhancement of tryptophan fluorescence intensity. Our data showed that fluorescence of Eno–UP with Mg$^{2+}$ was higher than that of Eno-P, indicating a negative effect of phosphorylation on metal binding (Fig. 6B).

Different concentrations of Mg$^{2+}$ were titrated with Eno-UP or Eno-P, and the binding constant (K_D) was calculated. For Eno-UP, the K_D was higher (0.254 ± 0.01 m) than the K_D for Eno-P (0.181 ± 0.03 m). Hence, these results show that Eno phosphorylation reduces Mg$^{2+}$ binding affinity, which is in agreement with the decreased activity of phosphorylated Eno.

PrkC is involved in the regulation of Eno expression in spores

We further analyzed the effect of PrkC on Eno expression in spores by comparing the protein levels of Eno in spores of Bas-wt and BasΔprkC Sterne strains (Fig. 7A) as well as during exponential growth (Fig. 7B). Our results showed 2–3-fold higher protein levels of Eno in BasΔprkC spores compared with Bas-wt spores, whereas the expression was similar in both strains during the exponential phase (Figs. 7 and S6). Thus, Eno protein levels might be regulated by PrkC. These results could in part explain the compromised virulence phenotype of the PrkC-null mutant as observed in earlier studies (36). However, it remains to be determined whether this PrkC-dependent regulation is direct or indirect. It could be hypothesized that PrkC phosphorylates a yet to be discovered transcription factor that regulates the expression of Eno. Such regulation could occur through a phospho-dependent interaction. A fluorimetry-based method was used to measure variations in the intrinsic tryptophan fluorescence of Eno upon addition of MgCl$_2$ (35). We observed that Eno–Mg$^{2+}$ complex formation was correlated with an enhancement of tryptophan fluorescence intensity. Our data showed that fluorescence of Eno–UP with Mg$^{2+}$ was higher than that of Eno-P, indicating a negative effect of phosphorylation on metal binding (Fig. 6B).

Different concentrations of Mg$^{2+}$ were titrated with Eno-UP or Eno-P, and the binding constant (K_D) was calculated. For Eno-UP, the K_D was higher (0.254 ± 0.01 m) than the K_D for Eno-P (0.181 ± 0.03 m). Hence, these results show that Eno phosphorylation reduces Mg$^{2+}$ binding affinity, which is in agreement with the decreased activity of phosphorylated Eno.
upon a signal received by PrkC at the onset of sporulation to trigger Eno down-regulation.

Eno phosphorylation status does not regulate its secretion but may affect its cellular localization

Surface-exposed signaling proteins like PrkC might be involved in maintaining the cellular dynamics during morphogenesis by modifying the activities and localization of metabolic enzymes to fulfill cellular requirements. Therefore, we examined whether the phosphorylation status of Eno could be linked to its cellular localization. To determine the localization of Eno within the vegetative cells, we probed the native protein in Bas-wt cells in exponential phase by anti-Eno antibodies using immuno-EM. Eno was found to be localized at the cell membrane and cytoplasm (Figs. 8, A and B, and S7). Subsequently, we compared the localization of Eno in BasΔprkC and prkC-complemented strains at the exponential stage and noticed variability in Eno localization patterns among all three strains. Eno was found to be predominantly localized on the cell membrane in the BasΔprkC strain as compared with the Bas-wt and prkC-complemented strains (Fig. 8B), indicating that the unphosphorylated isoform preferentially localizes at the membrane in vegetative cells.

In *B. subtilis*, Eno is known to be secreted via the nonclassical secretion pathway through a membrane-embedded hydrophobic domain (37, 38). We checked whether Eno secretion could also be impacted upon phosphorylation. So, culture supernatants and cell lysates of the Bas-wt and BasΔprkC cells grown to the late exponential phase were subjected to immunoblotting with anti-Eno antibodies. As a control, we used a very well-known secretory protein from *B. anthracis*, the protective antigen (PA), which also forms part of the anthrax vaccine. The supernatant fraction was probed with the polyclonal antibody to PA to confirm that the supernatant contained the secreted proteins. Immunoblotting showed that *B. anthracis* Eno is secreted from the cell, but secretion was independent of its phosphorylation status (Fig. 8C). Thus, we conclude that PrkC affected the localization of Eno but not its secretion.

Conclusions

Development of spore to a vegetative cell requires a shift in metabolism. During spore formation, bacteria down-regulate their metabolism by halting transcriptional and translational machinery and storing energy reserves. At the beginning of germination, a spore requires substantial metabolic supplements. PrkC is known to sense germination cues from the environment and helps in regulating translation and metabolism during the spore germination. One of the primary questions in cellular development is how the metabolic machinery switches from dormancy during sporulation to exponential growth dur-
Phenotypic memory in *B. anthracis*

In conclusion, our results provide evidence of Eno regulation by phosphorylation and its involvement in the process of germination of *B. anthracis* spores. Our study elucidates the phosphorylation of Eno and identifies its regulation by PrkC. The role of PrkC has been previously discussed in spore germination (12). Our results show that during sporulation PrkC initiates imprinting phenotypic memory by modifying the metabolic protein Eno. This imprinting memory helps *B. anthracis* to survive the nutritional shift and helps in spore germination.

Experimental procedures

Bacterial strains and growth conditions

E. coli strains DH5α (Novagen) and BL21-DE3 (Agilent) were used for cloning and expression of recombinant proteins, respectively. *E. coli* cells were grown and maintained with constant shaking (200 rpm) at 37 °C in LB broth supplemented with 100 μg/ml ampicillin or 25 μg/ml chloramphenicol for the coexpression system. Bas-wt, PrkC deletion strain (BasΔprkC) and *prkC*-complemented strains (BasΔprkC complement) (12) were grown in LB medium supplemented with antibiotics as required. LB agar was used as the solid medium for culturing both *E. coli* and *B. anthracis* in the presence of selective antibiotics.

Cloning and mutagenesis of *B. anthracis* genes

Cloning and mutagenesis were performed according to the standard molecular biology procedures described earlier using *B. anthracis* Sterne strain genomic DNA (39, 40). The coding sequences of *eno* (Bas4985), *pgm* (Bas4986), and *pgk* (Bas4988) from *B. anthracis* were amplified by PCR using primers containing SpeI and BamHI restriction sites with six-histidine repeat sequences in the reverse primer (Table S1). The resulting PCR product was cloned into *E. coli* B. anthracis shuttle vector pYS5. Clones were then confirmed with restriction digestion and DNA sequencing (SciGenome). The confirmed plasmid was electroporated in Bas-wt or BasΔaprK strain using BTX Electro Cell Manipulator 600. For cloning and expression in *E. coli*, *eno* was amplified by PCR using primers containing BamHI and Xhol restriction sites. The resulting PCR product was cloned in pPro-Ex-HTc. To generate the site-specific mutants of Eno, site-directed mutagenesis was performed using the QuikChange® XL Site-Directed Mutagenesis kit (Agilent).

Expression and purification of recombinant *B. anthracis* proteins

The recombinant His$_6$-tagged fusion proteins were overexpressed and purified from *E. coli* and *B. anthracis* as described previously (28). *E. coli* BL21-DE3 strains harboring plasmid pACYC-PrkC or pACYC-PrpC were cotransformed with Bas4985 (*eno*)–containing plasmid (pProEx-HTc) to overexpress and purify Eno-P or Eno-UP, respectively. The phosphorylation status was checked by staining with Pro-Q Diamond phospho-specific stain (Molecular Probes, Life Technologies) according to the manufacturer’s instructions. The protein amounts were checked by SYPRO Ruby protein gel stain (Molecular Probes, Life Technologies) and Coomassie Brilliant Blue stain.

Figure 6. Effect of phosphorylation on Eno activity. A, Histogram showing the comparative activity of Eno-P and Eno-UP. Phosphorylated and unphosphorylated forms were compared in identical conditions. The activity was calculated taking Eno-UP as 100%. The experiments were performed thrice and the error bars show S.D. of three values. B, the interaction of Eno-P and Eno-UP (1 μM each) with MgCl$_2$ (0.05 mM) was recorded from 330 to 430 nm after excitation at 280 nm. ***, p < 0.001 as determined by two-tailed unpaired Student’s t test.

Figure 7. Relative expression of Eno. Eno expression was analyzed by comparing the spore lysates (A) and vegetative cell lysates (exponential phase) (B) of Bas-wt and prkC deletion (BasΔprkC) strains. The expression level was calculated using the Western blots (Fig. S6) by Fiji-ImageJ and represents the mean with error bars showing S.D. of three independent values *, p < 0.05 as determined by two-tailed unpaired Student’s t test.
Sporulation and germination efficiency

Spores were prepared as described in the previous study (41). Different dilutions of heat-treated and nontreated spores were plated on LB agar, and cfu were counted. The sporulation efficiency was calculated as cfu per ml (heat-treated)/cfu per ml (nontreated) and compared with respect to Bas-wt (taken as 100%) (42). For germination efficiency, spores were diluted to an OD600 of 1 and heat-treated at 70 °C for 30 min (43). The heat-treated spores were serially diluted in deionized water, plated on LB agar (without antibiotics), and incubated at 37 °C overnight. cfu were counted, and Bas-wt spore cfu were taken as 100%. Statistical analysis was performed using parametric t test.

Eno activity assay

The activity of His6-tagged Eno-UP and Eno-P (1 μg) was measured using an Eno colorimetric activity assay kit according to the manufacturer’s protocol (Biovision). Eno catalyzes the conversion of 2-PGA to PEP. The intermediate product formed reacts with a peroxide substrate to generate color (OD570) at 25 °C proportional to the Eno activity. A standard curve was generated with different dilutions of H2O2, and Eno activity was calculated using the following formula.

\[
\text{Enolase activity} = \frac{B \times \text{Sample dilution factor}}{(\text{Reaction time}) \times V} \quad \text{(Eq. 1)}
\]

Where \(B\) is the amount (nmol) of \(\text{H}_2\text{O}_2\) generated between \(T_{\text{initial}}\) and \(T_{\text{final}}\) reaction: Reaction time = \(T_{\text{final}} - T_{\text{initial}}\) (min). \(V\) is the sample volume (ml) added to the well.

In vitro kinase assay

PrkC (1 μg) was used for in vitro kinase assay with Eno and its mutants in kinase buffer (20 mM HEPES, pH 7.2, 10 mM MgCl2, and 10 mM MnCl2) containing 2 μCi of [γ-32P]ATP (BRIT, Hyderabad, India) at 25 °C for 30 min as described previously (25).

Metabolic labeling

E. coli BL21-DE3 transformants harboring either pACYC-PrkC:Eno or pACYC-PrpC:Eno were used for metabolic labeling using [γ-32P]orthophosphoric acid as described previously (44). Extracted samples were analyzed by autoradiography using a Personal Molecular Imager (PMI, Bio-Rad).

Mass spectrometry analysis

Samples were resolved by SDS-PAGE and trypsinized to prepare peptide mixtures for mass spectrometric analysis (45). Peptides were separated and measured by LC–electrospray ionization–MS using the Easy-nLCII HPLC system (Thermo Fisher Scientific) coupled directly to an LTQ Orbitrap Velos™ mass spectrometer (Thermo Fisher Scientific). Proteins were identified by searching all MS/MS spectra against a forward–reverse database that was composed of all protein sequences of B. anthracis Sterne and common contaminants using Sorcerer™-SEQUEST (version v.27, rev.11, Thermo Fisher Scientific) in conjunction with Scaffold (version 3 00 06, Proteome Software Inc., Portland, OR).
Immuno-EM

Bas-wt, kinase-deletion mutant (BasΔprkC), and the complemented strain (BasΔprkC complement) were grown at 37 °C to mid-log phase and harvested. The cells were fixed in 2% paraformaldehyde and 0.05% glutaraldehyde dissolved in 0.1M sodium phosphate buffer (PB), pH 7.4, for 2 h and then washed three times with PB. The cells were then resuspended in 2% agar and harvested again. The cell pellets were immersed in 30% sucrose (w/v) overnight at 4 °C and subjected to immunolabeling as described previously (46) using a 1:10 dilution of anti-Eno antibodies and preimmune serum as a control.

Ultrathin sections (70 nm thick) were cut on an RMC ultramicrotome, stained with 1% uranyl acetate, and imaged in a Tecnai G2 20 twin (FEI) transmission electron microscope. Cell-surface enolase expression was normalized with cytosolic expression using Fiji-ImageJ and plotted using GraphPad Prism.

Enzyme-linked immunosorbent assay (ELISA)

An indirect ELISA was performed as described earlier with some modifications (47). Briefly, His$_6$-tagged Eno (100 ng/well) was dissolved in a coating buffer (carbonate-bicarbonate buffer, pH 9.6) and adsorbed on the surface of a 96-well ELISA plate (Maxisorb, Nunc) for 16 h at 4 °C. The test serum was serially diluted (1% in phosphate-buffered saline (PBS)) and added to each well to be kept for 1 h at 37 °C. Preimmune serum was used as a control. The experiment was done in triplicates, and the antibody titer was expressed as the reciprocal of the end-point dilution.

Phenotypic memory in B. anthracis

J. Biol. Chem. (2019) 294(22) 8930 –8941

8939

Figure 9. Proposed model illustrating PrkC and Eno interactions. The interactions and their impact on bacterial spore germination are shown in native B. anthracis, B. anthracis overexpressing Eno, and B. anthracis PrkC-deficient strains. Top panel, native Eno expression. In Bas-wt cells, there is a basal-level expression of Eno in vegetative cells that is carried over in the spores. The expression and activity are kept low by PrkC through phosphorylation so that the spores can germinate effectively. Middle panel, Eno overexpression strain. The expression is raised to 1.5-fold in this strain with subsequent activation in the spore leading to spore germination defect. Bottom panel, PrkC-deficient strain. Membrane-localized unphosphorylated Eno is carried over in spores with increased expression and activity leading to spore germination defect.
Phenotypic memory in B. anthracis

Antibody generation and Western blotting

B. anthracis Enol (Bas4985) expressed in E. coli with a His6 tag was purified with up to 98% homogeneity (as per SDS-PAGE analysis). The affinity-purified protein was dialyzed against PBS and confirmed to be endotoxin-free using a kit-based assay (Pierce). The protein was then used to immunize a group of Rabbit and BALB/c mice (n = 3) first in combination with Freund’s complete adjuvant and subsequently Freund’s incomplete adjuvant. After three booster doses (2 weeks apart), the animals were bled, and the isolated serum was analyzed using an indirect ELISA, which showed an efficient titer against Enol. The specificity of the Western blots was determined by probing B. anthracis cell lysates with different dilutions of Enol serum. The antibodies recognize a ~45-kDa molecular-mass protein corresponding to Enol. Enol purified from E. coli was taken as a positive control, and GSH S-transferase was used as a negative control. Anti-PA antibody was used from the previous studies (41). For estimating protein size, prestained protein markers were used (Bio-Rad, catalog numbers 26616, 26619, and 26634).

Quantification and statistical analysis

For the radioactivity-based experiments, the autoradiograms were quantified using QuantityOne software (Bio-Rad), and the corresponding Coomassie Brilliant Blue–stained gels were quantified using Fiji-ImageJ software, and the respective values normalized using GraphPad Prism. The Western blots were quantified using QuantityOne software (Bio-Rad), and the corresponding Coomassie Brilliant Blue–stained gels were quantified using Fiji-ImageJ software, and the respective values normalized using GraphPad Prism. The Western blots were quantified using GraphPad Prism. For time-dependent 2D gel electrophoresis, the amount of phosphorylated by the controls were plotted using GraphPad Prism. For estimating protein size, prestained protein markers were used (Bio-Rad, catalog numbers 26616, 26619, and 26634).

Intensity of phosphorylation (at a given time point)

\[
= \frac{\text{Intensity of phosphoisoforms/Intensity of the total input protein}}}{} \times 100 \quad \text{(Eq. 2)}
\]

For statistical significance, a parametric unpaired t test was performed with Welch’s correction.

Circular dichroism spectroscopy

CD spectra of Enol and its mutants (Eno-wt, Eno-UP, Eno-P, Eno[S336A/T363A/S367A]) were recorded using a Jasco J-815 CD spectropolarimeter. The spectrum was recorded from 190 to 250 nm at 25 °C using a cell of 0.1-cm path length. Experiments were repeated thrice, and molar ellipticity values with respect to wavelength were analyzed using the K2D3 web server to estimate the protein secondary structure (48).

Animal ethics approval

The animal experiments were performed according to the Institutional Animal Ethics Committee (IAEC) of Defense Research and Development Establishment (registration number 37/GO/c/1999/CPCSEA dated April 13, 2011). The animals were maintained according to the approved guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPSEA), Government of India. The study was also approved by the Institutional Biosafety Committee of Defense Research and Development Establishment (DRDO), Ministry of Defense, Government of India (protocol number IBSC/12/BT/AKG/22). For generation of antibodies, animals (mice and rabbits) were used after approval of the Animal Ethics Committee of CSIR–Institute of Genomics and Integrative Biology.

Author contributions—R. V. and G. A. conceptualization; R. V. and G. A. data curation; R. V., A. Sajid, V. M., and G. A. formal analysis; R. V. validation; R. V., A. Sajid, A. Singhal, M. G., J. J., A. B., R. G., R. M., V. P. S., A. K. G., and G. A. investigation; R. V., A. Singh, and G. A. visualization; R. V., A. Sajid, A. Singhal, and G. A. methodology; R. V., A. Sajid, A. Singhal, V. M., V. C. K., J.-K. L., G. A., and Y. S. writing—original draft; R. V., A. Sajid, A. Singhal, G. A., and Y. S. writing—review and editing; Y. H. and Y. S. resources; Y. H., G. A., and Y. S. supervision; Y. S. funding acquisition; Y. S. project administration; V. M. performed and analyzed mass spectrometry experiments; A. K. G. helped in mouse experiment; A. Singh performed microscopy experiment.

Acknowledgments—We thank NIH Fellows Editorial Board, Kriti Arora, and Abhinav Kumar for help in manuscript editing.

References

1. Arora, G., Misra, R., and Sajid, A. (2017) Model systems for pulmonary infectious diseases: paradigms of anthrax and tuberculosis. Curr. Top. Med. Chem. 17, 2077–2099 CrossRef Medline
2. Beyer, W., and Turnbull, P. C. (2009) Anthrax in animals. Mol. Aspects Med. 30, 481–489 CrossRef Medline
3. Errington, J. (2003) Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1, 117–126 CrossRef Medline
4. Zheng, L., Abhyankar, W., Ouwerling, N., Dekker, H. L., van Veen, H., van der Wel, N. N., Roseboom, W., de Koning, L. J., Brul, S., and de Koster, C. G. (2016) Bacillus subtilis spore inner membrane proteome. J. Proteome Res. 15, 585–594 CrossRef Medline
5. Sinai, L., Rosenberg, A., Smith, Y., Segev, E., and Ben-Yehuda, S. (2015) The molecular timeline of a reviveing bacterial spore. Mol. Cell 57, 695–707 CrossRef Medline
6. Segev, E., Smith, Y., and Ben-Yehuda, S. (2012) RNA dynamics in aging bacterial spores. Cell 148, 139–149 CrossRef Medline
7. Mutlu, A., Trauth, S., Ziesack, M., Nagler, K., Bergeest, J. P., Rohr, K., Becker, N., Höfer, T., and Bischofs, I. B. (2018) Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat. Commun. 9, 69 CrossRef Medline
8. Kuijper, B., and Johnstone, R. A. (2016) Parental effects and the evolution of phenotypic memory. J. Evol. Biol. 29, 265–276 CrossRef Medline
9. Wang, S., Faeder, J. R., Setlow, P., and Li, Y. Q. (2015) Memory of germinant stimuli in bacterial spores. MBio, 6, e01859-15 CrossRef Medline
10. Pereira, S. F., Gonzalez, R. L. J., and Dworkin, J. (2015) Protein synthesis during cellular quiescence is inhibited by phosphorylation of a translational elongation factor. Proc. Natl. Acad. Sci. U.S.A. 112, E3274–E3281 CrossRef Medline
11. Setlow, P. (2014) Germination of spores of Bacillus species: what we know and do not know. J. Bacteriol. 196, 1297–1305 CrossRef Medline
12. Shah, I. M., Laaberki, M. H., Popham, D. L., and Dworkin, J. (2008) A reevaluation of the role of translational control in the early response to peptidoglycan fragments. Cell 135, 486–496 CrossRef Medline
13. Korza, G., Setlow, B., Rao, L., Li, Q., and Setlow, P. (2016) Changes in Bacillus spore small molecules, rRNA, germination, and outgrowth after extended sublethal exposure to various temperatures: evidence that protein synthesis is not essential for spore germination. J. Bacteriol. 198, 3254–3264 CrossRef Medline
14. Commichau, F. M., Rothe, F. M., Herzberg, C., Wagner, E., Hellwig, D., Lehnk-Habrink, M., Hammer, E., Völkner, U., and Stülke, J. (2009) Novel activities of glycolytic enzymes in Bacillus subtilis: interactions with essential proteins involved in mRNA processing. *Mol. Cell. Proteomics* **8**, 1350–1360 CrossRef Medline

15. Ghosh, S., Korza, G., Maciejewski, M., and Setlow, P. (2015) Analysis of metabolism in dormant spores of Bacillus species by 21P nuclear magnetic resonance analysis of low-molecular-weight compounds. *J. Bacteriol.* **197**, 992–1001 CrossRef Medline

16. Sunde, E. P., Setlow, P., Hederstedt, L., and Halle, B. (2009) The physical state of water in bacterial spores. *Proc. Natl. Acad. Sci. U.S.A.* **106**, 19334–19339 CrossRef Medline

17. Leyva-Vazquez, M. A., and Setlow, P. (1994) Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from *Bacillus subtilis*. *J. Bacteriol.* **176**, 3903–3910 CrossRef Medline

18. Setlow, P., and Kornberg, A. (1970) Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in the stationary phase is not due to cell lysis. *J. Bacteriol.* **193**, 5607–5615 CrossRef Medline

19. Arora, G., Sajid, A., Virmani, R., Kundra, P., Khanna, T., Sajid, A., Misra, R., Joshi, J., Yadav, V., Samanta, S., Saini, N., Pandey, A. K., Visweswariah, S. S., Hentschker, C., Becher, D., et al. (2015) Systematic analysis of mycobacterial acylation reveals first example of acylation-mediated regulation of enzyme activity of a bacterial phosphatase. *J. Bacteriol.* **290**, 26218–26234 CrossRef Medline

20. Arora, G., Sajid, A., Arulanandh, M. D., Misra, R., Singh, A., Kumar, S., Singh, L. K., Mattoo, A. R., Raj, R., Saiti, S., Basu-Modak, S., and Singh, Y. (2013) Zinc regulates the activity of kinase-phosphatase pair (BasPrkC/BasPrpC) in *Bacillus anthracis*. *Biometals* **26**, 715–730 CrossRef Medline

21. Singh, A., Dhasmmana, N., Sajid, A., Kumar, P., Bhaduri, A., Bharadwaj, M., Gandotra, S., Khaliq, V., C., Das, T. K., Goel, A. K., Pomerantsev, A. P., Misra, R., Gerth, U., Leppla, S. H., and Singh, Y. (2015) clpC operon regulates cell architecture and sporulation in *Bacillus anthracis*. *Environ. Microbiol.* **17**, 855–865 CrossRef Medline

22. Dale, J. L., Raynor, M. J., Ty, M. C., Hadijfrangiskous, M., and Koehler, T. M. (2018) A Dual role for the *Bacillus anthracis* master virulence regulator AtxA: control of sporulation and anthrax toxin production. *Front. Microbiol.* **9**, 482 CrossRef Medline

23. Paidhungat, M., and Setlow, P. (2000) Role of Ger proteins in nutrient and nonnutrient triggering of spore germination in *Bacillus subtilis*. *J. Bacteriol.* **182**, 2513–2519 CrossRef Medline

24. Singh, A., Arora, G., Sajid, A., Mapi, A., Bhat, A., Virmani, R., Upadhyay, S., Nandicoori, V. K., Sengupta, S., and Singh, Y. (2013) Regulation of homocysteine metabolism by *Mycobacterium tuberculosis* 5-adenosylhomocysteine hydrolyase. *Sci. Rep.* **3**, 2264 CrossRef Medline

25. Schmid, S. R., Gronau, K., Pietack, N., Becker, M., Becher, D., and Stülke, J. (2010) The phosphoproteome of the minimal bacterium *Mycoplasmadonum* analysis of the complete known Ser/Thr kinase suggests the existence of novel kinases. *Mol. Cell. Proteomics* **9**, 1228–1242 CrossRef Medline

26. Melo, R. C., Morgan, E., Monahan-Earley, R., Dvorak, A. M., and Weller, R. E. (2012) Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA. *PLoS Negl. Trop. Dis.* **6**, e3315 CrossRef Medline

27. Louis-Jeune, C., Andrade-Navarro, M. A., and Perez-Iratxeta, C. (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. *Proteins* **80**, 374–381 CrossRef Medline