Linking function to global and local dynamics in an elevator-type transporter

Didar Ciftci, Chloe Martens, Vishnu G. Ghani, Scott C. Blanchard, Argyris Politis, Gerard H. M. Huysmans, and Olga Boudker

Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular machinery setting their rates, determine transport efficiency—yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh. We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.

Significance

Structural snapshots of membrane transporters show that they cycle through several conformational states to bring substrates across the membrane. The rates of these molecular motions determine the activity of the transporters. In this work, we directly compare real-time single-molecule measurements of conformational changes and substrate transport rates in the model glutamate transporter homologue, GltPh. We couple these experiments with hydrogen–deuterium exchange mass spectrometry measurements of local protein flexibility to directly link local and global conformational dynamics with function.

Author contributions: D.C., C.M., S.C.B., A.P., G.H.M.H., and O.B. designed research; D.C., C.M., V.G.G., and G.H.M.H. performed research; S.C.B. and A.P. contributed new reagents/analytic tools; D.C., C.M., V.G.G., G.H.M.H., and O.B. analyzed data; and D.C., C.M., V.G.G., S.C.B., G.H.M.H., and O.B. wrote the paper.

Published December 3, 2021.

Published by the National Academy of Sciences.
slow-moving transporters and weaken substrate affinity, such as Y204L/A345V/V366A, reduce the population of the slow-working transporters and confer overall gain-of-function properties. The slow-working population comprises transporters with rare elevator transitions or slow substrate release. We then used HDX-MS to explore how the Y204L/A345V/V366A mutant differed from the WT protein. We found that the mutations decreased the stability of the secondary structure around the substrate-binding site, suggesting that the increased local dynamics underlie reduced kinetic heterogeneity within the mutant transporter ensemble.

Results

Substrate Translocation Can Limit the Transport Rate. We previously developed two TIRF-based single-molecule assays that follow elevator dynamics and transport activity of GltPh under near-identical conditions (5–7, 9) (Fig. 1). GltPh variants were labeled with a mixture of the donor and acceptor dyes and poly-ethylene glycol 11 (PEG11)-biotin before reconstitution into liposomes for smFRET conformational dynamics experiments. In contrast, GltPh variants were labeled only with PEG1-biotin and reconstituted into liposomes with encapsulated l-Asp-binding protein ccPEB1A-Y198F labeled with donor and acceptor dyes for single-transporter activity assays (9). We then assayed GltPh dynamics and activity in the presence of ionic gradients required for concentrative transport. The internal liposome buffers were devoid of Na+ ions or l-Asp, while the external buffers contained 200 mM Na+ and a saturating l-Asp concentration. In the transport assays, the time between the substrate application and the first observed increase of FRET efficiency (E_{FRET}) of the encapsulated fluorescently labeled ccPEB1a-Y198F marks the completion of the first half-cycle, t_{HC}, which includes l-Asp binding, translocation, and release into the liposome (Fig. 1B). Fitting the subsequent gradual E_{FRET} increase due to further rounds of l-Asp transport to a time-dependent mass action binding equation yields a mean turnover time, t_{TO} (Fig. 1B and Materials and Methods) (9).

We compared previously measured elevator dynamics (5) with single-transporter activities of WT GltPh, taken from ref. 9, and of gain-of-function mutants, measured in this study (Fig. 2 and SI Appendix, Figs. S1 and S2). Mean transport rates of WT GltPh and the Y204L/A345V/V366A mutant (~0.01 and 0.08 s−1) agreed well with their mean transition frequencies (~0.01 and 0.12 s−1) (Fig. 2 A and B). Similar to WT transporters (9), the transport rates of individual Y204L/A345V/V366A molecules deviated substantially from the mean, ranging from less than 0.01 s−1 to over 1 s−1 (Fig. 2 A, Top and B, Top and SI Appendix, Figs. S3 and S4). However, the mutant transporters showed a higher fraction of faster uptake, with 26 ± 6% (compared to 8 ± 2% of the WT) completing the first half-cycle within 5 s (the fast component in SI Appendix, Table S1). About half of Y204L/A345V/V366A molecules (55 ± 13% compared to 72 ± 7% for the WT) did not complete a single transport half-cycle before the fluorescently labeled ccPEB1a-Y198F photobleached (mean t_{PB} ∼60 s). For convenience, we term this subpopulation as “nonresponding.” Notably, however, most of the nonresponding transporters do complete their transport cycle within 30 min following substrate addition, showing that, while slow, they are active (9). The uptake results are in excellent agreement with the elevator dynamics measurements, which showed that 48 ± 7% and 80 ± 2% of the substrate bound Y204L/A345V/V366A mutant and WT GltPh transporters, respectively, did not make excursions into the IFS before the fluorophores photobleached (Fig. 2 A, Middle and B, Middle).

All transporters that completed multiple rounds of transport (37 ± 14% of the mutant and 15 ± 6% of the WT) showed similar t_{HC} and t_{TO}, yielding two-dimensional (2D) population histograms elongated along the diagonal (Fig. 2 A, Top and B, Top). Thus, subpopulations of transporters appear to work at constant but different rates over several turnovers. Similar t_{HC} and t_{TO} values further indicate that the half-cycle—substrate binding, translocation, and release—is the rate-limiting part of the complete cycle. Consistently, the distributions of the OFS lifetimes covered the same ranges as t_{HC} and t_{TO} values for both variants, with the majority of the molecules populating the E_{FRET} state corresponding to the OFS. IFS lifetime distributions and their means were comparatively short (Fig. 2 A, Middle and B, Middle) (5). Taken together, these uptake and dynamics data indicate that substrate translocation represents the rate-limiting step in these transporters, while the return of the empty transporter back into the IFS is comparatively fast (Fig. 2 A, Bottom and B, Bottom).

In line with our earlier studies (5, 9), the transporters comprise subpopulations that, following substrate binding in the OFS, translocate into the IFS with different rates, which are maintained over several turnovers. The interconversion between the apparent “dynamic modes” rarely occurs on the timescale of our observations, so that only 5 to 20% of the single-molecule dynamics traces display shifts between modes (5, 9). The measured distributions of t_{HC}, t_{TO}, and t_{OF} shifted to shorter times in Y204L/A345V/V366A mutant, suggesting that these mutations increased the population of faster-moving, more dynamic transporters, similar to previously characterized R276S/M395R gain-of-function mutations (7, 9).

Substrate Release Can Limit the Transport Rate. The variants containing K290A mutations showed slower transport activity than elevator dynamics (Fig. 2 C and D and SI Appendix, Figs. S1
In particular, K290A GltPh showed a ∼30-fold increased mean elevator transition frequency and only a twofold increase in mean transport rate compared to the WT transporter. Like WT GltPh, the majority of the K290A transporters (76 ± 8%) did not complete a single transport half-cycle, displaying similarly broad distributions of s_{HC} and s_{TO} (Fig. 2 C, Top and SI Appendix, Figs. S3 and S4). Thus, although the K290A mutation is more effective in increasing the elevator dynamics through enriching the fast dynamic mode compared to the Y204L/A345V/V366A mutations, this increase does not translate into higher transport rates.

Therefore, substrate translocation is not rate limiting in the K290A transporters. Since K290A IFS lifetimes are still short (Fig. 2 C, Middle), either binding or release of Na⁺ ions and l-Asp must be slow in this mutant. We measured the kinetics of Na⁺ and l-Asp binding using the voltage-sensitive amphipathic dye RH421 (28, 48–50) upon the addition of 200 mM NaCl to the protein samples in the presence of l-Asp, that is, under conditions matching single-molecule transport assays. Single exponential kinetics described fluorescence changes well, yielding rate constants of 0.92 ± 0.12 s⁻¹ and 0.58 ± 0.04 s⁻¹ for the WT and K290A transporters, respectively (SI Appendix, Fig. S5 A and B). We observed similar rates at lower Na⁺ concentrations (10 mM NaCl, 100 μM l-Asp) (SI Appendix, Fig. S5 C and D). These comparatively fast binding rates are consistent with earlier reports on WT GltPh (6, 48, 51–53). Previous studies suggested that HP2 might undergo slow conformational changes following rapid Na⁺ binding (46), although others have...
We cross-linked the mutants in the IFS using Hg2+ containing the following mutations: P11W/K55C/C221A/A364C/V366A. GltPh showed a mean transport rate of 0.15 s⁻¹. In the single-molecule transport assay, Y204L/K290A/A345V/V366A GltPh Exhibits Increased Flexibility around the Substrate-Binding Site. Our mutations suggest that only simultaneous increases of elevator dynamics and L-Asp release rates can be rate limiting in the K290A transport cycle, we measured the release rates for the GltPh variants directly. We introduced our gain-of-function mutations within the GltPh background containing the following mutations: P11W/K55C/C221A/A364C (48). We proteolyzed GltPh variants for fragment separation and used tryptophan fluorescence to follow substrate dissociation. GltPh does not contain native tryptophan, and P11W fluorescence has been shown to report on substrate release kinetics without affecting binding (48). Proteins were rapidly diluted into buffers with 1 mM Na⁺ ions in the absence of L-Asp, leading to substrate release and the tryptophan fluorescence decay (SI Appendix, Fig. S7). The WT and K290A mutant showed similar slow substrate dissociation kinetics, with fitted rates of 0.062 ± 0.001 and 0.0129 ± 0.0003 s⁻¹ (SI Appendix, Fig. S7). These ensemble measurements do not allow detailed kinetic analysis. Nevertheless, we note that biexponential functions fitted the fluorescence decay data better than single exponentials, consistent with heterogeneous release rates (SI Appendix, Fig. S7).

The Y204L/A345V/V366A mutant, like K290A, diminishes the population of the transporters with slow dynamics, albeit not as efficiently. However, unlike the K290A mutant, it shows less heterogeneous transport rates that parallel elevator dynamics and a diminished fraction of nonresponder transporters (Fig. 2B). Thus, the Y204L/A345V/V366A mutant must have a reduced or absent population of slow-releasing transporters. Indeed, we measured a several-fold faster mean L-Asp release rate from the IFS of the Y204L/A345V/V366A mutant compared to the WT and K290A transporters (SI Appendix, Fig. S7), consistent with the 20-fold lower substrate affinity (5). Combining the K290A and Y204L/A345V/V366A mutations should lead to synergistic increase of the elevator dynamics and the L-Asp release. In the single-molecule transport assay, Y204L/K290A/A345V/V366A GltPh showed a mean transport rate of 0.15 ± 0.06 s⁻¹, faster than either the Y204L/A345V/V366A or K290A mutants (Fig. 2D and SI Appendix, Fig. S1B), with most transporters showing transport (62 ± 6%) and elevator transitions (73 ± 6%) during the observation window and having rapid substrate release (SI Appendix, Fig. S7). The distributions of the OFS and IFS lifetimes and τ₁HC and τ₂D0 times were very similar, with markedly reduced heterogeneity.

Y204L/A345V/V366A GltPh Exhibits Increased Flexibility around the Substrate-Binding Site. Our mutations suggest that only simultaneous increases of elevator dynamics and L-Asp release rates, such as in the Y204L/A345V/V366A mutant, accelerate Gltn function. Surprisingly, however, the crystal structure of Y204L/A345V/V366A GltPh in the OFS was very similar to that of the WT transporter (5). To understand the effect of the Y204L/A345V/V366A mutations, we turned to HDX-MS to probe the structural flexibility and local dynamics of the mutant. HDX of labile backbone amide protons depends on H-bond stability and accessibility to bulk deuterium (19, 54). Changes in the HDX rate reflect solvent exposure and stability of the local secondary structure or other interactions involving backbone amides. We proteolyzed GltPh variants for fragment separation MS analysis after isotopic labeling at various time points and subsequent quenching to locate regions with variable exchange rates. Sequence coverage of the detected peptides ranged from 77 to 83% across individual repeats (SI Appendix, Fig. S8 and Materials and Methods).

We first compared HDX in the Y204L/A345V/V366A mutant and WT GltPh under apo conditions. We expressed the differences in deuterium uptake as changes in the relative fractional uptake (ΔRFU), which is positive when regions take up more deuterium in the mutant relative to WT GltPh or negative when they are better protected from uptake. There was little HDX in the scaffold domain of both GltPh variants (Fig. 3 and SI Appendix, Fig. S8 A and C), showing that its structural rigidity and stability remain unaffected by the mutations. In contrast, we observed significant HDX in the transport domain that was higher in Y204L/A345V/V366A GltPh, with positive ΔRFU values varying between 25% and 45% (Fig. 3B and SI Appendix, Fig. S9). Peptides encompassing parts of HP1, HP2, and the transmembrane (TM) helices 7 and 8 exchanged significantly faster in the mutant compared to WT over multiple biological repeats (Fig. 3 B–D and SI Appendix, Fig. S9). These regions surround the substrate-binding site and also form the interfaces with the scaffold domain. In contrast, lipid-facing TM3 and TM6 in the transport domain showed low HDX in both proteins.

When we carried out the HDX measurements in the presence of saturating L-Asp and Na⁺ concentrations, we observed exchange in the same regions as in the apo proteins, but HP1s 1 and 2 and TM7 and TM8 showed less exchange in both WT and Y204L/A345V/V366A GltPh (SI Appendix, Figs. S8, S10, and S11). However, the mutant still showed higher exchange compared to the WT transporter, resulting in decreased but positive ΔRFUs for most peptides (SI Appendix, Fig. S9 C and D). Only TM8 became fully protected in the mutant (SI Appendix, Figs. S8 and S9 C and D), suggesting the structural rearrangements upon substrate binding particularly stabilize this α-helix.

Overall, the HDX data suggest that Y204L/A345V/V366A mutations lead to increased protein flexibility around the substrate-binding site, particularly in the apo protein (Fig. 3). In the WT transporter, HP2 occludes the substrate binding both when bound to L-Asp and in the apo-form (23, 29, 31, 33, 42, 55). Therefore, HP2 likely protects proximal protein regions from HDX. Consistently, there are comparatively small differences in the extent of HDX with and without the substrate in WT GltPh (SI Appendix, Fig. S10 A and B). However, these differences are more pronounced in the Y204L/A345V/V366A mutant (SI Appendix, Figs. S10 C and D and S11), suggesting that HP2 has a higher propensity to open, increasing dynamics and water access to regions around the entire substrate-binding site.

Discussion

We have established a direct correlation between conformational dynamics and transport in the glutamate transporter homolog GltPh by comparing single-transporter activity and elevator dynamics. Using GltPh mutants that only boost the conformational dynamics or also diminish substrate affinity, we deduce that the transport cycle has two kinetically heterogeneous steps, substrate translocation from the OFS to IFS, and release from the IFS, and both can become rate limiting. Remarkably, mutations in HP2 affect rates of both processes, highlighting the critical role that this region plays in setting the functional properties of the transporter. In contrast, the return of the transport domain into the OFS and the coupled binding of Na⁺ ions and L-Asp are comparatively fast.

The transporter subpopulations with different rates of elevator transitions and substrate release are unlikely to be due to heterogeneous biochemical processing, such as proteolysis or posttranslational modifications. First, we produce GltPh in...
Escherichia coli, which lacks posttranslational modification machinery (56). Second, point mutations can eliminate both dynamics and transport rate heterogeneities. Instead, our observations suggest that there are conformational substates that persist over multiple transport turnovers. “Slow” substates encounter high energy barriers during transport domain translocation from the OFS to IFS and/or during substrate gating in the IFS (Fig. 4). “Fast” transporters encounter reduced barriers during both processes. Structural studies have shown that both the elevator transitions and substrate gating in the IFS involve remodeling of the interface between the transport and scaffold domains and, in particular, conformational changes of HP2 interacting with the scaffold (7, 22–24, 29, 47). Furthermore, our earlier experiments suggested that the principal energy barrier of the OFS-to-IFS transition involves forming a stable interface between HP2 and the scaffold in the IFS (5). It is likely that A345V and V366A mutations in HP2, located on the interface between the hairpin and the transport domain core, affect the local protein packing. Together, these considerations implicate HP2 as a structural determinant of both energy barriers.

How do the Y204L/A345V/V366A mutations reduce the energy barriers of the elevator dynamics and L-Asp release? HDX-MS revealed that the mutations decrease the structural rigidity of the protein regions around the substrate-binding site, including HP2. Thus, we suggest that, in Y204L/A345V/V366A GlpNt, rapid local fluctuations of HP2 favor substrate release and facilitate access to subpopulations with faster elevator dynamics. Coupling of fast nanosecond-to-microsecond local structural fluctuations to large-scale concerted movements on the millisecond-to-second timescale, underlying catalytic activity, has been demonstrated in enzymes (57, 58). Furthermore, a comparison of enzymes from thermophilic and mesophilic organisms showed that increased activity at lower temperatures correlates with increased protein flexibility (59). GlpNt originates from a hyperthermophilic archaean and shows much lower activity at room temperature than its mesophilic counterparts (23, 38, 60–63). Therefore, it is, perhaps, not unexpected that the protein demonstrates rigidity at ambient temperatures in HDX-MS experiments, and mutations leading to increased protein flexibility also lead to increased activity, akin to natural thermal adaptations.

HP2 mutations, located over 10 Å away from the binding site, might weaken L-Asp affinity by increasing the conformational entropic penalty of binding. NMR spectroscopy was previously employed to experimentally correlate the losses of conformational entropy to decreased binding affinity in protein/protein and protein/DNA interactions (64, 65). While HDX-MS does not provide equivalent information, it is notable that the Y204L/A345V/V366A mutant shows a greater loss of flexibility upon substrate binding compared to the WT transporter, which would be consistent with the larger loss of conformational entropy.

Our results show that subtle packing mutations, such as in the Y204L/A345V/V366A GlpNt, or single mutations breaking polar interactions, such as K290A, can modulate the energy barriers of the transport cycle and alter which step is rate limiting.

Fig. 3. Effect of Y204L/A345V/V366A mutations on apo GlpNt local dynamics measured by HDX-MS. (A) Heat maps representing the RFU of WT (Top) and Y204L/A345V/V366A mutant (Bottom) apo-GlpNt (in buffer containing 200 mM KCl). Shown is a representative experiment from three biological replicates (SI Appendix, Fig. S8). The secondary structure elements of GlpNt are shown on top. The scaffold domain is colored wheat, and the transport domain is light blue. The RFU of deuterium at each incubation time (1, 5, 15, and 60 min) is displayed according to the rainbow color code shown. Uncolored regions indicate areas with no peptide coverage. (B) ΔRFU, comparing GlpNt mutant minus the WT. Red and blue indicate relative deprotection and protection, respectively. (C and D) Peptides, consistently showing significant (99% CI) deprotection upon mutation, mapped on the 3D structure (C; Protein Data Bank accession code 2NWX), and the topological 2D map (D). In C, the scaffold domain is shown as a transparent surface to facilitate visualization of the transport domain, depicted as ribbons. L-asp is shown as spheres to indicate the location of the binding site.
limiting. Thus, it is likely that homologous glutamate transporters have different rate-limiting steps. For example, the rate-limiting step in mammalian glutamate transporters is the return of the potassium-bound transport domain to the OFS (66–68). Intriguingly, stabilizing a closed conformation of HP2 in EAAT1 and EAAT2 renders it potassium independent (47), suggesting that HP2 has a similarly critical role in defining the energy landscape of these transporters. Finally, while observed in many cases (69–75), it remains unknown how widespread kinetic heterogeneities are. Further studies will reveal their potential existence and physiological relevance in mammalian transporters and whether these heterogeneities can be modulated by cellular factors or sequence variations.

Materials and Methods

GltPh Purification and Labeling for Single-Transport Experiments. All GltPh variants containing a single engineered cysteine (N378C/C321A), seven engineered histidines to optimize expression, and a hexahistidine tag for affinity purification were produced, purified, and labeled as described previously (6). Briefly, GltPh variants were expressed in E. coli DH10b(DE3) cells, deficient in Lorn and OmpT proteases, grown in lysogeny broth (LB) medium supplemented with 100 μg/mL ampicillin and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (iMG) in the same buffer with 1 mM DDM and eluted with 250 mM imidazole. Following thrombin cleavage of the His6-tag, GltPh was further purified by size exclusion chromatography (SEC) using a Superdex 200 column (GE Healthcare) in buffer containing 20 mM Hepes, pH 7.4, 200 mM NaCl, 1 mM L-Asp, and 0.1 or 1 mM Tris (2-carboxyethyl) phosphine (TCEP) and solubilized with 40 mM n-dodecyl β-D-maltopyranoside (DDM) for 1 h at 4 °C. Insoluble material was removed by centrifugation (1 h at 100,000 × g and 4 °C). GltPh was purified using nickel nitriilotriacetic acid (NiNTA) agarose Qiagen in the same buffer with 1 mM DDM and eluted with 250 mM imidazole. Following thrombin cleavage of the His6-tag, GltPh was further purified by size exclusion chromatography (SEC) using a Superdex 200 column (GE Healthcare) in buffer containing 20 mM Hepes, pH 7.4, 200 mM NaCl, 0.1 mM L-Asp, and 1 mM DDM. For transport experiments, GltPh variants were labeled with maleimide-activated biotin-PEG1 (EZ-Link, Thermo Fisher Scientific) and N-ethyl maleimide (NEM) at a molar ratio of 1:2:4 of protein:biotin-PEG, NEM. Excess reagents were removed by SEC. Protein samples were concentrated to 3 mg/mL to 4 mg/mL using 10-kDa cutoff concentrators (EM Millipore) and reconstituted immediately into liposomes.

PEB1a Purification and Labeling. The PEB1a protein with C185, N73C, K149C, and Y198F mutations (cPEB1a-Y198F) was expressed and purified, as described previously (5). Briefly, cells were grown in LB medium supplemented with 100 μg/mL ampicillin and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside for 3 h at 37 °C followed by 16 h at 18 °C. Cells were disrupted by osmotic shock and centrifuged for 30 min at 3,600 × g at 4 °C to pellet the debris. The protein was purified by Ni-NTA chromatography (Qiagen) in buffer containing 50 mM Hepes/Tris, pH 7.4, 200 mM NaCl, 1 mM TCEP, eluting with 250 mM imidazole. Protein was further purified by SEC in 50 mM Hepes/Tris, pH 7.4, 200 mM NaCl and immediately labeled with LD555P and LD655 at a molar ratio of 1:1:1.5 of protein/LD555P/LD655 for 1 h at 25 °C. Excess reagents were removed by SEC in 50 mM Hepes/Tris, pH 7.4, 200 mM KCl. Protein samples were concentrated to 3 μg/mL to 4 μg/mL using 10-kDa cutoff concentrators (EM Millipore).
Glḥs. Trajectories that lasted longer than 15 frames with a signal-to-noise ratio of at least eight and an initial Efluct between 0.4 and 0.7 were selected to extract τFluc and τFlow. Further manual curation was performed to remove trajectories with an apparent lack of anticorrelation between fluorophore intensities and multiple donor or acceptor photobleaching events indicating unspecific labeling of the sensor or multiple sensors as described previously (9) (SI Appendix, Fig. S2). Removed trajectories usually correspond to 30 to 40% of the dataset. The shortest observed τFluc in each dataset was used to approximate the substrate application time. We also supplemented l-Asp/NaclC buffers with 10 mM LD655 and used the increased background intensity to assess the time of buffer entry (SI Appendix, Fig. S2). The comparison shows that the shortest τFluc agrees well with the apparent buffer entry times with a maximum shift of one to two frames (SI Appendix, Fig. S2). Cumulative frequency distributions of τFluc were multiplied by the average responding mole percentage for each mutant and were fitted to bieponential or triexponential association functions using Prism (Graphpad) to calculate γfast, fast, γslow, slow, and γtransport, the percentages of molecules transporting with fast, intermediate, and slow rates, kFast, kTransport, and kTransport, respectively (SI Appendix, Table S1). Mean transport rates per monomer (SI Appendix, Table S1), kTransport, were calculated as

$$k_{\text{Transport}} = \frac{\gamma_{\text{Fast}} \times k_{\text{Fast}} + \gamma_{\text{Intermediate}} \times k_{\text{Intermediate}} + \gamma_{\text{Slow}} \times k_{\text{Slow}}}{3}$$

Histograms and population contour plots of τFluc and τFlow were prepared using Origin (Originlab Corporation). The τFluc histograms were fitted to a transformed probability density function as described in ref. 80 based on the rate constants calculated from the cumulative frequency distributions (SI Appendix, Fig. S4).

RH421 Fluorescence Binding Kinetics Measurements. GltbN variants were exchanged by SEC into a buffer containing 20 mM Hepes/Tris pH 7.4, 1 mM NaCl, 200 mM Choline-Cl, 1 mM DDM. Samples were diluted to a final concentration of 0.2 μM in buffer containing 20 mM Hepes/Tris pH 7.4, 200 mM KC1, 0.4 mM DDM, 200 mM RH421, and 1 mM TCEP in the presence or absence of various concentrations of l-Asp. RH421 was excited at 532 nm, and emission was measured at 628 nm. Samples were preincubated at 25°C until the fluorescence signal plateaued. NaCl or l-Asp was added, and the fluorescence signal was recorded until equilibrium was reached. The signal was corrected for dilution, and the fluorescence decay curves, reflecting Na+ or coupled Na+ and l-Asp binding, were fitted to single exponential functions in Prism (Graphpad).

Fluorescence-Based l-Asp Release Measurements. Purified GltbN variants harboring P11W/K55C/C321A/A364C mutations were exchanged into a buffer containing 20 mM Hepes/Tris pH 7.4, 1 mM NaCl, 200 mM Choline-Cl, 1 mM DDM. Samples were diluted to a final concentration of 0.2 μM in buffer containing 20 mM Hepes/Tris pH 7.4, 200 mM KC1, 0.4 mM DDM, 200 mM RH421, and 1 mM TCEP in the presence or absence of various concentrations of l-Asp. RH421 was excited at 532 nm, and emission was measured at 628 nm. Samples were preincubated at 25°C until the fluorescence signal plateaued. NaCl or l-Asp was added, and the fluorescence signal was recorded until equilibrium was reached. The signal was corrected for dilution, and the fluorescence decay curves, reflecting Na+ or coupled Na+ and l-Asp binding, were fitted to single exponential functions in Prism (Graphpad).

In a bieponential function in Prism (Graphpad). Approximately 10% reduction in protein fluorescence was observed upon dissociation. Release rates and SEs from three independent experiments are shown on SI Appendix, Fig. S7.

HDX-MS Data Collection and Analysis. HDX-MS experiments were done on a Synapt G2-Si coupled to nanoACQUITY ultra-performance liquid chromatography (UPLC) with HDX Automation technology (Waters Corporation). WT and Y204L/A345V/V366A GltbN (without engineered cysteines) were purified as above and concentrated to ~30 μM. Five-microliter protein samples were incubated for 1 min, 5 min, 15 min, and 60 min in 95 μL of deuteration labeling buffer containing 20 mM Hepes, pH 8.5, 200 mM NaCl, 1 mM l-Asp, 0.025% β-DDM for the bound conditions or 20 mM Hepes, pH 8.5, 200 mM KC1, 0.025% β-DDM for the apo conditions. The protein samples were then digested on Enzymate ethylene bridged hybrid (BHE) pepsin C18 column (Waters Corporation) in 10°C. Peptides were trapped and desalted for 3 min using ACQUITY BEH C18 1.7-μm VANGUARD precolumn at a 200 μL/min flow rate using 0.1% formic acid in HPLC water pH 2.5. Peptides were then eluted to an ACQUITY UPLC BEH C18 1.7-μm analytical column with a linear gradient (8 to 40%) of 0.1% formic acid in acetonitrile at a flow rate of 40 μL/min. A cleaning run using a sawtooth gradient was performed between each sample run to reduce peptide carryover. Peptides were ionized through electrospray ionization (ESI) source in a positive ion mode using Synapt G2-Si mass spectrometer (Waters), with ion mobility separation (HD-Ms²). The unlabeled reference measurements were performed using 95 μL of 20 mM Hepes, pH8.5, 200 mM NaCl, 1mM l-Asp, 0.025% β-DDM for the bound references or 95 μL of 20 mM Hepes, pH8.5, 200 mM KC1, 0.025% β-DDM for the apo references. Between injections, the pepsin column was washed with 1.5 M Gu-HCl, 4% (vol/vol) MeOH, 0.05% (w/v) formic acid, and 8% (vol/vol) Enkephalin was injected as the source in parallel for mass accuracy correction, and sodium iodide was used for the mass spectrometer calibration. HDMS² data were acquired using a 20- to 30-V trap collision energy ramp. All the isotope labeling time points were performed in triplicate, and the reference points were performed in quintuplicate. Acquired reference M5² data were analyzed on PLSG (ProteoLynx Global Server 2.5, Waters) to determine the peptide map. All HDMS² data, including reference and deuterated samples, were then process by DynamX v.3.0 (Waters) for deuterium uptake determination. Peptide filtration and analysis were performed as described before (81). Specifically, the amount of relative deuterium uptake for each peptide was determined using DynamX (v. 3.0) and is not corrected for back exchange. The RFU was calculated from RFU = (YA,t/ (MaxUptake,t × DI)), where Y is the deuterium uptake for peptide at incubation time t, and D is the percentage of deuterium in the present in the sample after mixing the protein with the labeling solution. Statistical evaluation and filtering according to a 99% CI were performed using Deuteros software. All the peptides passing the filtering test were mapped on the 3D structure and topological map of the protein of interest. Woods plots were generated using the same software (82).

Data Availability. All data needed to evaluate the conclusions in the paper are included in the article and SI Appendix. Raw data for single molecule FRET trajectories can be found in Github, https://github.com/BoudkerLab/PNAS_data Uptake plots of the HDX-MS data can be accessed on Figshare (DOIs: 10.6084/m9. figshare.16825306; 10.6084/m9. figshare.16825306; 10.6084/m9. figshare.16825300).

ACKNOWLEDGMENTS. We thank Roger Altman for the preparation of smFRET chambers. Daniel S. Terry for providing access to the TIRF microscopy setup for single-molecule imaging, and William Eng for assistance with protein production. Funding was provided by The National Institute of Neurological Disorders and Stroke (R01NS111767 to O.B., American Heart Association (AHA) Fellowship 19PRE4380215 to D.C., and Grant 7R01GM098859 to S.C.B. This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement MEMODYN 660083 (G.H.M.H.). A.P.’s work was supported by the Wellcome Trust Grant (109852/Z/15/Z) and the Leverhulme Trust Grant (RPG-2019-178). C.M. is a Research Fellow of the Fonds National de la Recherche Scientifique (FRS-FNRS, Belgium).
9. D. Ciftci et al., Single-molecule transport kinetics of a glutamate transporter homo-
log shows static disorder. Sci. Adv. 6, eaaz1949 (2020).
10. M. Yang et al., Single-molecule probing of the conformational heterogeneity of the
ABC transporter BtuCD. Nat. Chem. Biol. 14, 715–722 (2018).
11. L. Wang et al., Characterization of the kinetic cycle of an ABC transporter by single-
molecule and cryo-EM analyses. elife 9, e56451 (2020).
12. M. H. Goudsmits, D. J. Slotboom, A. M. van Oijen, Single-molecule visualization of
conformational changes and substrate transport in the vitamin B12 ABC importer
BtuCD-F. Nat. Commun. 8, 1652 (2017).
13. C. C. Su et al., Structures and transport dynamics of a Campylobacter jejuni multidrug
efflux pump. Nat. Commun. 8, 171 (2017).
14. D. S. Terry et al., A partially-open inward-facing intermediate conformation of
Leut is associated with Na+ release and substrate transport. Nat. Commun. 9, 230 (2018).
15. M. Dyla et al., Dynamics of P-type ATPase transport revealed by single-molecule
FRET. Nature 551, 346–351 (2017).
16. Y. Zhao et al., Characterization of the kinetic cycle of an ABC transporter.
J. Biol. Chem. 284, 109–113 (2009).
17. Y. Zhao et al., Single-molecule dynamics of gating in a neurotransmitter transporter
homologue. Nature 465, 188–193 (2010).
18. A. G. Fitzgerald et al., Quantifying secondary transport at single-molecule resolution.
Nature 575, 528–534 (2019).
19. E. Trabzeg, Z. E. Nazari, K. D. Rand, Conformational analysis of complex protein
states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges
and emerging solutions. TRAC Trend Anal. Chem. 106, 125–138 (2018).
20. L. Konermann, J. Pan, Y. H. Liu, Hydrogen exchange mass spectrometry for studying
protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011).
21. C. Martens, A. Politis, A glimpse into the molecular mechanism of integral membrane
proteins through hydrogen-deuterium exchange mass spectrometry. Protein Sci. 29,
1230–1231 (2020).
22. D. Yernool, O. Boudker, Y. Jin, E. Gouaux, Coupling substrate and ion binding to
electrostatic gating of a sodium-dependent aspartate transporter. Nature 495, 387–393 (2012).
23. N. Reyes, C. Ginter, O. Boudker, Transport mechanism of a bacterial homologue of
the vitamin B12 ABC importer from Pyrococcus horikoshii. Nature 431, 811–818 (2004).
24. O. Boudker, R. M. Ryan, D. Yernool, K. Shimamoto, E. Gouaux, Coupling protein
structure and dynamics.
25. D. Yernool, O. Boudker, E. Folta-Stogniew, E. Gouaux, Trimeric subunit stoichiometry
of P-type ATPase transport revealed by single-molecule dynamics of K+ coupling in
glutamate transporters. EMBO J. 38, e101601 (2019).
26. S. Oh, O. Boudker, Kinetic mechanism of coupled binding in sodium-aspartate sym-
porter GltP. elife 7, e37291 (2018).
27. M. Pedersen et al., Detection of charge movements in ion pumps by a family of styryl
dyes. J. Membr. Biol. 185, 221–236 (2002).
28. M. Habeck, E. Cirri, A. Katz, S. J. Karlish, H. J. Apoll, Investigation of electrostatic
partial reactions in detergent-solubilized Na+,K-ATPase. Biochemistry 48, 9147–9155
(2009).
29. I. Hanelt, S. Jensen, D. Wunnnicke, D. J. Slotboom, Low affinity and slow Na+ binding
precedes high affinity aspartate binding in the secondary-active transporter GltP. J.
Biol. Chem. 290, 15962–15972 (2015).
30. D. Ewers, T. Becher, J. P. Machtens, I. Weyand, C. Fahike, Induced fit substrate binding
to an archeal glutamate transporter homologue. Proc. Natl. Acad. Sci. U.S.A. 110,
12486–12491 (2013).
31. C. Allewa et al., Na+-dependent gate dynamics and electrostatic attraction during
substrate coupling in glutamate transporters. Adv. 6, eaba9584 (2020).
32. J. R. Engen, Analysis of protein conformation and dynamics by hydrogenv/deuterium
exchange MS. Anal. Chem. 81, 7870–7875 (2009).
33. E. A. Riederer et al., A facile approach for the in vitro assembly of multimeric mem-
brane transport proteins.
34. A. Hochkoeppler, Expanding the landscape of recombinant protein production in
Escherichia coli. Biotechnol. Lett. 35, 1971–1981 (2013).
35. K. A. Henzler-Wildman et al., A hierarchy of timescales in protein dynamics is linked
to enzyme catalysis. Nature 450, 913–916 (2007).
36. S. Mittal, Y. Cai, M. N. Dalan, D. N. Bolon, C. A. Schiffer, Hydrophobic core flexi-
bility modulates enzyme activity in HIV-1 protease. J. Am. Chem. Soc. 134, 4163–4168
(2012).
37. P. Zavadsky, J. Kardos, G. A. Swinger, G. A. Petsko, Adjustment of conformational
flexibility is a key event in the thermal adaptation of proteins. Proc. Natl. Acad.
Sci. U.S.A. 95, 7406–7411 (1998).
38. I. Gaillard, D. J. Slotboom, J. Knol, J. S. Loikema, W. N. Konings, Purification and
reconstitution of the glutamate carrier Glt of the thermophilic bacterium Bacillus
stearothermophilus. Biochemistry 35, 6150–6156 (1996).
39. M. Rahman et al., Characterisation of the DAAAS family Escherichia coli glutamate/
aspartate symporter GTAII using computational, chemical, biochemical and
biophysical methods. J. Membr. Biol. 250, 145–162 (2017).
40. B. Tolner, T. Ubbink-Kok, B. Poolman, W. N. Konings, Characterization of the proton/
glutamate symport protein of Bacillus subtilis and its functional expression in Escher-
ichia coli. J. Bacteriol. 177, 2863–2869 (1995).
41. D. Yernool, O. Boudker, E. Folta-Stogniew, E. Gouaux, Trimeric subunit stoichiometry
of the glutamate transporters from Bacillus caldohnenas and Bacillus stearothermo-
philus. Biochemistry 42, 12981–12988 (2003).
42. S. R. Tzeng, C. G. Kalodimos, Protein activity regulation by conformational entropy.
Nature 488, 236–240 (2012).
43. R. K. Kiderer, M. S. Markl, K. G. Valentine, A. J. Wand, Conformational entropy as an
important factor in protein folding and unfolding by a family of styryl dyes.
Protein Sci. 7, 359–366 (1998).
44. C. Grewer, N. Watzke, M. Wiessner, T. Rauen, Glutamate translocation of the neuro-
lglutamate transporter EAAC1 occurs within milliseconds. Proc. Natl. Acad. Sci. U.S.A.
97, 9706–9711 (2000).
45. D. E. Bergles, A. V. Tzingounis, C. E. Jahr, Comparison of coupled and uncoupled
curvature during glutamate uptake by GLT-1 transporters. J. Neurosci. 22, 10153–10162
(2002).
46. H. P. Larsson, A. V. Tzingounis, H. P. Koch, M. P. Kavanagh, Fluorometric measure-
ments of conformational changes in glutamate transporters. Proc. Natl. Acad. Sci.
U.S.A. 101, 3951–3956 (2004).
47. A. Auerbach, J. C. Lingle, Correlating structural dynamics and function in single ribozyme
structures. Proc. Natl. Acad. Sci. U.S.A. 97, 11973–11977 (2000).
48. H. P. Lu, L. Xun, X. S. Xie, Single-molecule enzymatic dynamics. Science 282,
1357–1360 (1998).
49. D. Min et al., Unfolding of a CIC chloride transporter retains memory of its evolution-
ary history. Nat. Chem. Biol. 14, 489–498 (2018).
50. Ciftci et al. Linking function to global and local dynamics in an elevator-type transporter
73. T. K. Nayak, S. Dana, S. Raha, S. K. Sikdar, Activator-induced dynamic disorder and molecular memory in human two-pore domain hTREK1 K channel. J. Chem. Biol. 4, 69–84 (2011).

74. Q. Xue, E. S. Yeung, Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

75. F. Zosel, D. Mercadante, D. Nettels, B. Schuler, A proline switch explains kinetic heterogeneity in a coupled folding and binding reaction. Nat. Commun. 9, 3332 (2018).

76. A. L. Blatz, K. L. Magleby, Correcting single channel data for missed events. Biophys. J. 49, 967–980 (1986).

77. M. F. Juette et al., Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).

78. C. Joo, T. Ha, Preparing sample chambers for single-molecule FRET. Cold Spring Harb. Protoc. 2012, 1104–1108 (2012).

79. C. E. Aitken, R. A. Marshall, J. D. Puglisi, An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

80. F. J. Sigworth, S. M. Sine, Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys. J. 52, 1047–1054 (1987).

81. C. Martens et al., Direct protein-lipid interactions shape the conformational landscape of secondary transporters. Nat. Commun. 9, 4151 (2018).

82. A. M. C. Lau, Z. Ahdash, C. Martens, A. Politis, Deuteros: Software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics 35, 3171–3173 (2019).