Alternative medium for the growth of endophytic fungi

Syamsia Syamsia¹, Abubakar Idhan², Husnah Latifah³, Noerfitryani Noerfityani⁴ and Aidil Akbar⁵

¹,²Lecturer Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Makassar
³Lecturer on Forestry, Faculty of Agriculture, Universitas Muhammadiyah Makassar
⁴Lecturer of Agribusiness, Faculty of Agriculture, Universitas of Muhammadiyah Makassar
⁵Study Program of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Makassar

E-mail: syamsiatayibe@unismuh.ac.id

Abstract. Medium for the growth of endophytic fungi generally uses Potato Dextrose Agar media, but because the price is expensive, it is necessary to find materials for alternative media from organic materials that are easy to obtain and inexpensive. The legume group was one of the alternative ingredients as the source of protein, corn, and rice as the source of carbohydrates for the growth medium. This study aimed to determine the potential of organic matter such as rice, corn, and legumes as a medium for the growth of endophytic fungi. The research methods included: rejuvenation of endophytic fungus isolation, preparation of organic medium from rice, corn, legumes, and potatoes, growth test of endophytic fungus on 4 types of organic media.

1. Introduction
Medium is a material consisting of a mixture of nutrients that serves as a place to grow microorganisms [1]. Microorganisms, including fungi require certain nutrients are available in the medium for their growth [2,3]. Fungi need carbon, nitrogen, vitamins, minerals, and enzymes [4]. Potato Dextrose Agar medium (PDA) is a medium that is often used for fungal growth in the laboratory. according to Devi et al., (2018), PDA medium has a simple formulation and is able to support the sporulation of several fungi [5]. However, the problem with using PDA medium is costly.

Alternative materials that can be used as an energy source for the growth of microorganisms can be sourced from carbohydrates. Sources of carbohydrates can be from tubers such as arrowroot, gayong, gembili, sweet potato and taro, cassava [1,4,6]. Types of nuts, according to Garraway and Evans (1984), the medium must contain protein for apical hyphal spore formation [7,8].

Source of protein from local plants, vegetable waste, bran, sorghum, corn and millet [6,9–12]. Based on the description above, this study aimed to obtain an alternative medium from corn, beans, greens and rice for the growth of endophytic fungi.
2. Research methods

2.1. Endophyte fungi

Pure cultures of six endophytic fungal isolation used in this study were grown on PDA medium. Each fungus was taken one plate using a cork borer, placed on the surface of the PDA medium. All isolates were incubated at room temperature for 7 days.

2.2. Culture medium preparation

2.2.1. PDA medium. Potatoes were peeled and cut into small pieces, then rinsed and drained. 200 grams of potatoes were put in Erlenmeyer added 500 grams of equates then cooked in a pot that already contained water until it boiled. The boiled potatoes were filtered and put in an Erlenmeyer and added 20 g of agar, 20 g of sucrose and added with distilled water to a volume of 500 ml. The dough was stirred until homogeneous and cooked until boiled. The solution was sterilized by autoclaving, then poured into a sterile petri dish in a laminar airflow. After cooling the cup was wrapped in plastic wrap. Medium was ready to be used as a control in this study.

2.2.2. Alternative medium. Materials for the manufacture of alternative mediums such as mung bean, corn and rice were purchased at the local market. Each material was washed under running water and drained. Mung bean as much as 200 grams and put in an Erlenmeyer then add 500 ml of distilled water and cook it until it boiled over a pot filled with water. The mung bean decoction was filtered using filter paper and put in an Erlenmeyer until the filtrate was obtained. Into the filtrate was added 20 g of agar, 20 g of sucrose, and distilled water to a volume of 1000 mL. The solution was stirred until homogeneous and cooked again. After boiling and homogeneous, Erlenmeyer covered with aluminium foil. The medium was sterilized by autoclaving at 121ª C for 15 minutes at a pressure of 2 atm. The medium was poured into a sterile petri dish in laminar airflow.

2.3. Growth of endophyte fungi

Endophytic fungi isolation E1, E2, E3, E4, E5 and E6, which had grown on PDA medium, were taken one plate each using a cork borer and placed on three types of alternative medium, namely green beans, corn, rice and PDA medium as controls. Each medium was done repeatedly three times. The growth of endophytic fungi in each medium was observed and documented.

3. Results and discussion

The three types of alternative media were able to support the growth of the six isolates of endophytic fungi. Mung bean and rice medium showed maximum growth almost the same as growth on PDA medium (control). The alternative medium used for fungal growth medium had different carbohydrate content. Corn had the highest carbohydrate content but the lowest protein content (Table 1). According to Sharma (2010), colony diameter, surface texture, zonation and fungal sporulation were influenced by the type of medium [6].

Medium	Protein (%)	Carbohydrate (%)	Fat	Source
Mung Bean	21.04	63.55	1.64	[13]
Corn	1.99	72.81	4.9	[14]
Rice	4.10	49.6	0.20	[15]
Potato	2.4	18	0.1	[16]

Table 1. Nutrients of alternative materials for fungal growth medium

The characteristics of the alternative medium of mung bean were brown, corn and rice were transparent white (Table 2). The growth of endophytic fungi on 3 types of alternative media, namely mung bean, corn, and rice, showed that all endophytic fungi isolates could grow on the three types of
alternative media. Mycelia growth, colony character and sporulation pattern of the 6 isolates of endophytic fungi varied (Table 3).

Table 2. Characteristics of medium alternative

Medium Alternative	Color
Mung Bean	light brown
Corn	White
Rice	White

Endophytic fungi isolate E1 and E3, and E5 showed different textures in the three types of medium. The growth rate of isolates E1, E3, and E5 on the three types of the medium was the same as on PDA medium, but sporulation on corn medium was very less than on mung bean and rice media (Figure 1). This showed that the nutrients contained in the mung bean and rice medium were able to support the growth of the fungus. According to Shareef (2019), the composition of the culture medium was an important factor for the growth of microorganisms [7].

Table 3. Mycelia growth, colony character and growth type and sporulation of endophytic fungus isolate on alternative medium.

Isolate	Medium	Texture	Top surface color	Color Surface Lower	Growth	Sporulation
E1	PDA	Thick	White	Beige	Concentric	Tall
	Mung Bean	Thick	White	White	Concentric	Currently
	Corn	Thin	White	White	Concentric	Less
	Rice	Thin	White	White	Concentric	Less
E2	PDA	Thick dense	White	White	Concentric	Tall
	Mung Bean	Thick dense	White	White	Concentric	Currently
	Corn	Grow thin	Yellow white-ish	Yellow white-ish	Concentric	Less
	Rice	Grow thin	Yellow white-ish	White	Concentric	Less
E3	PDA	Thick dense	Black and white	Black and white	Concentric	Tall
	Mung Bean	Grow thin	White	White	Concentric	Currently
	Corn	Fine cotton growth	Black and white	white middle black	Concentric	Less
	Rice	Grow thin	White mixed with black	White mix black	Concentric	Currently
E4	PDA	Thick dense	Green and yellow	Yellow	Spread	Tall
	Mung Bean	Thick dense	Gray white, green bordered	White	Spread	Currently
	Corn	Thick dense	Green Edge White	Yellow	Spread	Low
	Rice	Thick dense	Whiteside chocolate	Black	Spread	Tall
	PDA	Thick dense	White	White	Spread	Currently
	Rice	Fine cotton growth	Chocolate	Black	Spread	Low
E5	PDA	Fine cotton growth	Whiteside chocolate	Black	Spread	Currently
	Mung Bean	Fine cotton growth	Gray and white	yellowish	Spread	Tall
	Corn	Fine cotton growth	Gray and white	Gray	Spread	Currently
	Rice	Fine cotton growth	Gray and white	Gray	Spread	Tall

Endophytic fungi isolate E1 showed the same growth rate of isolates in the three types of alternative medium (mung bean, corn, and rice) and control (PDA). The color of the upper surface of the colonies was white and the same in all alternative and control media. The surface color on the
Mung Bean medium was not very clear because the medium colors were red, while on the Corn and Rice medium, the color was the same as the PDA medium, which was white. The texture on medium mung bean thick was almost the same as the control (PDA), but on medium corn and rice, the texture was slightly thin (Figure 1).

![Image of medium samples](image1)

Figure 1. Top surface (top), a bottom surface (bottom) of isolate E1 on PDA medium (control) and mung bean, corn, rice medium (alternative medium)

The fungal isolate E2 showed different growth in the three types of alternative media, on medium bean, the surface characteristics of thick hairy colonies with white color were almost the same as growth on PDA (Control) medium, the growth type of isolate E2 was slower than isolate E1. The growth of isolate E2 on corn and rice medium, the surface of the colony, was white with yellow pigment at the edges, but the pigment was wider in corn medium than in rice medium. The color of the lower surface of the medium corn and rice is yellow, the color of the mung bean and PDA is cream (Figure 2). According to Daly et al, (1984), the formation of pigments depends on the balance of metabolism, which was supported by the availability of peptone, minerals and iron in the medium [7].

![Image of medium samples](image2)

Figure 2. Top surface (top), a bottom surface (bottom) of isolate E2 on PDA medium (control) and mung bean, corn, rice medium (alternative medium)

E3 endophytic fungus isolates showed various growth on the three types of alternative media, including beans, corn and beans and PDA (control). The growth rate of isolates was almost the same in all types of alternative and control medium. Colony color was white on medium bung mean, grey
on medium corn, black mixed with yellow on medium rice. Colony texture was thin and dense on medium mung bean, hairy and thick texture on medium corn, thin and hairy on medium rice (Figure 3).

![Figure 3. Top surface (top), a bottom surface (bottom) of isolate E3 on PDA medium (control) and mung bean, corn, rice medium (alternative medium)](image)

E4 endophytic fungus isolates showed different colony growth rates in each medium. Isolate growth was faster on rice medium and the same as growth on PDA medium (control). The growth type of isolates was almost the same in all alternative and control media. Colony color on the mung bean medium was predominantly white with grey in the middle. On corn and rice medium the colour was the same dominant grey with white edges (Figure 4).

![Figure 4. Top surface (top), bottom surface (bottom) of isolate E4 on PDA medium (control) and mung bean, corn, rice medium (alternative medium)](image)

Endophytic fungi isolate E5 showed the same growth rate in all alternative and control media. The surface texture of the colonies on all mediums was different. Texture on thick-haired mung bean medium was almost the same as growth on PDA medium (control), on corn and thin-haired rice medium. Colony colour on mung bean medium were white, on corn medium blackish brown, the lower surface of the colony on all alternative medium was white (Figure 5)
The growth of endophytic fungus E6 isolate on mung bean medium was faster than the growth of corn, rice and PDA medium (control). The colour of the colonies on all types of medium was the same, namely grey, the surface texture of the colonies on mung bean and PDA medium was thickly hairy like velvet, while on corn and rice medium it was like fine and thin grains (Figure 6).

4. Conclusions
Alternative growth media that can be used to support the growth of endophytic fungal isolates can be taken from food crops such as green beans, corn, and rice. The best alternative medium for the growth of the six isolates of endophytic fungi are mung bean and rice. Mung beans and rice can be used as sources of protein and carbohydrates in the manufacture of growth medium for endophytic fungi isolates.
Acknowledgments

Thank you to LP3M Universitas Muhammadiyah Makassar which had funded this activity through a research grant for Higher Education Leading Applied Research (PTUPT) Activity based on the Assignment Agreement number 001/KONTR-PENL/PENGABD/IV/1442/2021 dated 10 May 2021.

References

[1] Octavia A and Wantini S 2017 Perbandingan Pertumbuhan Jamur Aspergillus flavus Pada Media PDA (Potato Dextrose Agar) dan Media Alternatif dari Singkong (Manihot esculenta Crantz) J. Anal. Kesehat. 6 625–31
[2] Jufri S W, Iswanto, Larekeng S H and Arif A 2021 Isolation and identification of fungi associated with natural forest land and post-mining areas of PT. Vale Indonesia: Preliminary study IOP Conference Series: Earth and Environmental Science vol 807 (IOP Publishing Ltd)
[3] Gusmiaty, Larekeng S H, Restu M and Amal F 2020 The ability of rhizosphere fungi isolate of mahogany [Swietenia mahagoni (L.) Jacq.] in dissolving phosphate Plant Cell Biotechnol. Mol. Biol. 21
[4] Wongjirathiti A and Yottakot S 2017 Utilisation of local crops as alternative media for fungal growth Pertanika J. Trop. Agric. Sci. 40 295–304
[5] Devi K S, Misra D K, Saha J, Devi P S and Sinha B 2018 Screening of Suitable Culture Media for Growth, Cultural and Morphological Characters of Pycnidia Forming Fungi Int. J. Curr. Microbiol. Appl. Sci. 7 4207–14
[6] Aini N and Rahayu T 2015 Alternatif Media for Fungal Growth Using a Different Source of Carbohydrate Semin. Nas. XII Pendidik. Biol. FKIO 861–6
[7] Shareef S A 2019 Formulation of Alternative Culture Media from Natural Plant Protein Sources for Cultivation of Different Bacteria and Fungi Zanco J. Pure Appl. Sci. 31 63–9
[8] Taurisia P P, Probortini M W and Nuhantoro I 2015 Pengaruh Media Terhadap Pertumbuhan dan Biomassa Cendawan Alternaria alternata (Fries) Keissler J. Biol. Udayana 19 30–3
[9] Novianti D 2018 Perbanyakan Jamur Trichoderma sp pada Beberapa Media Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam 15 35
[10] JHA S and SHIT S . D 2017 Alternative culture media for fungal growth using different formulation of plant material Int. J. pharma Bio Sci. 8
[11] Berde C V. and Berde V B 2015 Vegetable Waste As Alternative Microbiological Media For Laboratory And Industry 4 1488–94
[12] Adesemoye A O and Adedire C O 2005 Use of cereals as basal medium for the formulation of alternative culture media for fungi World J. Microbiol. Biotechnol. 21 329–36
[13] Lestari E, Kiptiah M and Apifah 2017 Karakteristik tepung kacang hijau dan optimasi penambahan tepung kacang hijau sebagai pengganti tepung terigu dalam pembuatan kue bingka Teknol. Agro Ind. 4 20–34
[14] Suarni 2009 Komposisi Nutrisi Jagung Menuju Hidup Sehat Prosiding Seminar Nasional Serelia pp 60–8
[15] Nuryani 2013 Potensi Subtitusi Beras Putih Dengan Beras Merah Sebagai Makanan Pokok Untuk Perlindungan Diabetes Melitus Media Gizi Masy. Indones. 3 157–68
[16] Purnomo E, Suedy S W A and Haryanti S 2014 Perubahan Morfologi Umi Kentang Konsumsi (Solanum Tuberosum L. Var Granola) Seelah Perakuan Cara dan Waktu Penyimpanan Yang Berbeda J. Biol. Univ. Diponegoro 3 40–8