Investigation of the association between clinical outcome and the cag pathogenicity-island and other virulence genes of *Helicobacter pylori* isolates from patients with dyspepsia in Eastern Turkey

Gokben Ozbey¹, Ulvi Demirel², Cem Aygun², Hasan Basri Ertas³

¹Vocational School of Health Services, Firat University, Elazig, Turkey.
²Department of Gastroenterology, Faculty of Medicine, Firat University, Elazig, Turkey.
³Department of Microbiology, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.

Submitted: March 20, 2012; Approved: April 4, 2013.

Abstract

The aims of our work were to determine the presence of the cag pathogenicity-island (cag PAI) and other virulence genes of *Helicobacter pylori* recovered from patients with gastritis and peptic ulcer, and to investigate the correlation of these virulence genes with clinical outcome. The presence of the cagA, the promoter regions of cagA, cagE, cagT, and the left end of cag-PAI (LEC), cag right junction (cagRJ), the plasticity region open reading frames (ORFs), vacA and oipA genes among 69 *H. pylori* isolates were determined by polymerase chain reaction. Intact cag PAI was detected in only one (1.4%) isolate. The cagA gene was identified in 52.1% and 76.2% of isolates from patients with dyspepsia (gastritis and peptic ulcer), respectively. The plasticity region ORFs i.e. JHP912 and JHP931 were predominantly detected in isolates from peptic ulcer. Less than 25% of the isolates carried other ORFs. Types I, II and III were the most commonly found among the isolates. None of the isolates possessed type Ib, 1c, IIIb, IV and V motifs. The most commonly vacA genotypes were s1am1a and s1m2 in isolates with peptic ulcer and gastritis, respectively. The results confirmed that the prevalence of oipA (Hp0638) gene was 75% and 85.7% in patients with gastritis and peptic ulcer, respectively. Furthermore, vacA s1am1a positivity was significantly related to peptic ulcer (p < 0.05).

Key words: *Helicobacter pylori*, gastritis, peptic ulcer, cag pathogenicity-island, polymerase chain reaction.

Introduction

Helicobacter pylori (*H. pylori*) is a bacterial pathogen which can cause gastritis, peptic ulcer and gastric carcinoma (Cremonini *et al.*, 2001; Saunders *et al.*, 2005). Strains of *H. pylori* are classified into two types (types I and II) (Xiang *et al.*, 1995: Hofman *et al.*, 2000). Type I is a pathogenic form, correlates with severe disease status, expresses functional vacuolating cytotoxin A (vacA) and includes an approximately 40 kb cluster located at 3’ end of the cag pathogenicity island (cag PAI) (Censini *et al.*, 1996; Ikenoue *et al.*, 2001; Kersulyte *et al.*, 2000; Mattar *et al.*, 2007). Type II which is less virulent and includes a non-pathogenic form of vacA, lacks cag PAI (Censini *et al.*, 1996; Backert *et al.*, 2004).

The cag PAI is separated the two groups (cagI and cagII) by a novel insertion sequence called IS605 and these include at least 14 and 16 open reading frames (ORFs), respectively (Censini *et al.*, 1996; Akopyants *et al.*, 1998; Audibert *et al.*, 2001; Mattar *et al.*, 2007). The cytotoxin associated gene E (cagE) gene which is needed for the induction of interleukin (IL)-8 from gastric epithelial cells is located in the cagI (Censini *et al.*, 1996; Ikenoue *et al.*, 2001; Tan *et al.*, 2005). The cagT gene has been reported to be a marker of the cagII region (Mattar *et al.*, 2007) and correlates with severe clinical outcomes (Mattar *et al.*, 2007; Pacheco *et al.*, 2008).

Comparison of the genome sequence analysis of *H. pylori* 26695 and J99 strains demonstrated several regions of different G+C contents (Tomb *et al.*, 1997; Alm *et al.*,...
DNA extraction and Determination of the cag-PAI was ensured from each participant. The Ethics Committee at Firat University and informed consent of the cag right junction (cag) (Occhialini et al., 2000; Salih et al., 2007). In the J99 plasticity region (JHP914 to JHP951), the authors reported to observed to be 38 ORFs while 33 ORFs were not included in H. pylori 26695, and the majority of the ORFs encode putative proteins with unknown function (Occhialini et al., 2000). However, some of ORFs have been determined to share similarity to genes encoding proteins included in DNA replication (JHP919 and JHP931) and other functions (JHP941 and JHP951) (Occhialini et al., 2000; Salih et al., 2007).

Till date, we studied on the presence of several genes, such as cagA, vacA, cagE, induced by contact with epithelium (iceA) and blood adhesion binding antigen (babA2) among adults (Ozbey et al., 2012) and children (Ozbey et al., 2013) in Eastern Turkey. However, the data on identification of cag PAI and multiple virulence genes of H. pylori in Turkey is scarce. This study aimed to identify the presence of cag PAI and other virulence genes of H. pylori isolates from dyspeptic patients with gastritis and peptic ulcer in Elazig Province, the East of Turkey as well as to evaluate the relevance between the clinical outcome and the cag PAI and other virulence genes.

Materials and Methods

Isolates

A total of 69 H. pylori isolates (48 cases of gastritis and 21 cases of peptic ulcer) obtained from Turkish dyspeptic patients attending Gastroenterology Unit of Firat University Hospital between May and December 2011 were analyzed for the presence of cag PAI and other virulence genes. Ethics approval was given by the Medical Ethics Committee at Firat University and informed consent was ensured from each participant.

DNA extraction and Determination of the cag-PAI and other virulence genes

DNA samples from H. pylori isolates were extracted by QIAamp DNA mini kit (Qiagen, Germany) according to the manufacturer’s guidelines.

PCR analyses were performed to amplify cagA, the cagA promoter region, cagE, cagT, and the LEC of the cag PAI, as described elsewhere (Ikenoue et al., 2001; Kauser et al., 2004) (Table 1).

Primers which designed by Kersulyte et al. (2000), Mukhopadhyay et al. (2000), Veralovic et al. (1991) and Kauser et al. (2005a) were used to determine the presence of the cag right junction (cagRJ), the plasticity region ORFs, vacA and oipA (Hp0638) genes (Table 1).

Amplification reactions were performed using 2XPCR Master Mix kit (#K01071, Fermentas) following the manufacturer’s instructions in touchdown thermal cycler (Hybaid, England) with PCR conditions shown in Table 1. Ten µL aliquot of each amplicon was expose to gel electrophoresis on a 1.5% agarose gel and visualised using a UV transilluminator.

Statistical analysis

Fisher’s exact and χ² tests were used to analyze significant differences between the cag PAI and other virulence genes of H. pylori isolates with the clinical outcome. A probability of less than 0.05 was evaluated significant.

Results

Table 2 shows the distribution of the cag PAI and other virulence genes of H. pylori isolates from cases of gastritis and peptic ulcer. The prevalence of LECI, LECII, cagE, the promoter region of the cagA and cagA were detected more (14.3%, 19%, 38.1%, 47.6% and 76.2%, respectively) in isolates from peptic ulcer. One isolate (1.4%; 1 of 69) was observed to possess the intact cag PAI.

Types I (6.3%), II (4.2%) and III (8.3%) were observed predominantly in isolates from gastritis. However, Ia (19%) and IIIa (23.8%) motifs were the most common types in peptic ulcer isolates. None of the isolates contained type Ib, Ic, IIIb, IV and V motifs. The most predominant plasticity region ORFs were JHP912 and JHP931 and these two ORFs were identified more in isolates from peptic ulcer. Less than 25% of the isolates carried other ORFs (JHP926, JHP933, JHP944, JHP945, JHP986). The vacA s1am1a was the most extensively vacA genotype found in isolates with peptic ulcer while s1m2 was the most predominant genotype in patients with gastritis. However, no vacAs1c, vacAm1b and vacAs2m1 genotypes were demonstrated in the current study. The oipA gene was observed in 75% of isolates with gastritis and 85.7% of isolates with peptic ulcer.

Assessing the association between the cag PAI and other virulent genes with clinical outcome, vacA s1am1a genotype was shown to be statistically significant with peptic ulcer (p < 0.05).

Discussion

Since its first identification by Censini et al. (1996) in 1996, the cag PAI part of the H. pylori genome has been widely studied so far (Olbermann et al., 2010; Rizzato et al., 2012).

Conflicting results have been obtained in studies on the prevalence of cagA gene in different geographical regions of the world. The prevalence of the cagA gene was 60-70% in Western countries (Rudi et al., 1998) but the prevalence in East Asian countries was detected to be found in more than 90% of cases (Maeda et al., 1998; Yamaoka et al., 1999). This study was similar to that reported in Turkey (Salih et al., 2007) and Western countries (Covacci et al., 1999; Arents et al., 2001) where cagA gene were observed
Genes	Primer	Oligonucleotide sequence (5’-3’)	PCR conditions	Size (bp) of PCR product	References
cag PAI					
cagA1	cagA-F1	AACAGGCAAGTAGCTAGGCC	94 °C for 5 min (initial denaturation)	701	
	cagA-R1	TATTAAGCGTGTTGGTGGT			
cagA2	cagA-F2	GATAACAGGCAAGCTTNGA		349	
	cagA-R2	CTGCAAAAGAATTTGGCGA			
cagAP1	cagAP-F1	GTGGGTAAATATGTAATAGC	90 °C for 30 s; 52 °C for 30 s	730	(Ikenoue et al., 2001; Kauser et al., 2004, 2005a)
	cagAP-R1	CTGCAAAAGAATTTGGCGA	70 °C for 1 min (40 cycles)		
cagAP2	cagAP-F2	CTACTTGTCCACACCATTTT	70 °C for 10 min (final extension)	1181	(Ikenoue et al., 2001; Kauser et al., 2004, 2005a)
	cagAP-R2	CTGCAAAAGAATTTGGCGA			
cagE	cagE-F1	GCGATTGTTATCTGCATTTAT	94 °C for 10 min (final extension)	329	
	cagE-R1	GAAGTGGTTAAAATAATCAATGCCC			
cagT	cagT-F1	CCATGTTTATACGCTGTTG	94 °C for 10 min (final extension)	301	
	cagT-R1	CATCACCACACCTTGTGAT			
LECI	LEC-F1	ACATTGTGCTAAATAAACGCC	94 °C for 10 min (final extension)	384	
	LEC-R1	TCTCATGTTGCATTTATGCT			
LECII	LEC-F2	AATAGGCTTTGTGGCATAGA		877	
	LEC-R2	ATCTTATGCTTCTTTATTCT			
cag right junction					
cagF4584 F (1)	GTTAATACAAAGGTTGGTTCTCCAAATACT	94 °C for 30 s, 52 °C for 30 s	1000/800	(Kersulyte et al., 2000; Kauser et al., 2005a)	
cagR5280 R (3)	GGTTCAGGCATTCCCTCTAAATC		400		
cagF4584 F (1)	GTTAATACAAAGGTTGGTTCTCCAAATACT	94 °C for 30 s, 52 °C for 30 s	1000/800	(Kersulyte et al., 2000; Kauser et al., 2005a)	
miniIS605 R (8)	CGGTTAAGGATTGGTTTATTCCCTTTT	94 °C for 10 min (40 cycles)	350		
fcn unk F (6)	TGGATTTACTCTGCTATGACT	94 °C for 10 min (40 cycles)	350		
cagR5280 R (3)	GGTTCAGGCATTCCCTCTAAATC	72 °C for 1 min (30 cycles)	350		
cagF4584 F (1)	GTTAATACAAAGGTTGGTTCTCCAAATACT	94 °C for 30 s, 52 °C for 30 s	1000/800	(Kersulyte et al., 2000; Kauser et al., 2005a)	
miniIS605 R (8)	CGGTTAAGGATTGGTTTATTCCCTTTT	94 °C for 10 min (40 cycles)	350		
IS606-1692 F (5)	CCATTATTGCTGCTCTCA	72 °C for 1 min (30 cycles)	350		
cagR5280 R (3)	GGTTCAGGCATTCCCTCTAAATC	72 °C for 1 min (30 cycles)	350		
cagF4584 F (1)	GTTAATACAAAGGTTGGTTCTCCAAATACT	94 °C for 30 s, 52 °C for 30 s	1000/800	(Kersulyte et al., 2000; Kauser et al., 2005a)	
Xins R (7)	CGCTCCTCTCTTGTCTGCTG	94 °C for 10 min (40 cycles)	350		
Plasticity region					
JHP912 F	CAATAGCTTGGCTACGCCTT		624		
ORFs					
JHP912 R	GTTTAATGCTGCTGCTG		991		
JHP926 F	GATGAGCATAATCAG		991		
JHP926 R	ACCCTTCAATACCGCTAGA		991		
Genes	Primer	Oligonucleotide sequence (5'-3')	PCR conditions	Size (bp) of PCR product	References
--------------------------------	-----------------	---------------------------------	--	--------------------------	-----------------------------
JHP931F	GTATTAGCGAAGTGCAATCAC		94 °C for 5 min (initial denaturation)	1.133	(Mukhopadhyay et al., 2000)
JHP931R	GCTAATTTGTAGGCGGTAAGC		72 °C for 1 min (initial denaturation)	94 °C for 1 min	(Mukhopadhyay et al., 2000)
JHP933 F	GAGTGAGTTAGCGAACC		72 °C for 1 min (35 cycles)	708	(Mukhopadhyay et al., 2000)
JHP933 R	CTGTGCTTGCCTGCAAGG		72 °C for 1 min (35 cycles)	358	(Mukhopadhyay et al., 2000)
JHP944 F	CTATGAGTGAGAAATTAACGC		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
JHP944 R	CGCTCCATCCATCATTTTG		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
JHP945 F	CAATGCGACTAACAGCATAG		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
JHP945 R	CGCATATTGCGATCTTCTTG		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
JHP947 F	GATAATCTACGCGAAGG		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
JHP986 F	GCATGTCGCAATCGTAGC		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
JHP986 R	TGCATTTGCGATTTGCCTC		72 °C for 7 min (final extension)	611	(Mukhopadhyay et al., 2000)
vacA signal and middle regions					
vacA1 or vacA2					
VAIF	ATGAAAAAAACCTTTTAC			259 (s1)	(Carrol et al., 2004)
VAIXR	GCAATTGGCAAGTGATGTT			286 (s2)	(Carrol et al., 2004)
vacA1a					
SS1-F	GTCAGCATCACACGCAAC			190	(Atherton et al., 1995)
VA1-R	CTGCTTGAATGCGCCAAC			190	(Atherton et al., 1995)
vacA1b					
SS3-F	AGGCGCATTACCGCAAGG			187	(Yamazaki et al., 2005)
VA1-R	CTGCTTGAATGCGCCAAC			187	(Yamazaki et al., 2005)
vacA1c					
SIC-F	CTCTCGTATTATGGGGYTT			213	(Yamazaki et al., 2005)
VA1-R	CTGCTTGAATGCGCCAAC			213	(Yamazaki et al., 2005)
vacA1m1a					
VA3-F	GTCTAAAATGCGTGTATTG			300	(Kersulyte et al., 2000;
VA3-R	CCATTTGTCACCTGTAAGAC		72 °C for 1 min (30 cycles)	300	(Kersulyte et al., 2000;
vacA1m1b					(Kauser et al., 2005a)
VAm-F3	GCACCCCAATGCTCATGATGAT			300	(Kersulyte et al., 2000;
VAm-R3	GCTTATGCGTCTAAAGAAGCAT			300	(Kersulyte et al., 2000;
vacA1m2					(Kauser et al., 2005a)
VA4-F	GGAACCCCAGGAAACATTG			400	(Kersulyte et al., 2000;
VA4-R	CATAATCGCGCTCTGCAAC			400	(Kersulyte et al., 2000;
oipA					(Veralovic et al., 1991;
HP0638-F	GTTTTTGATGCTATGGGATT		94 °C for 1 min; 52 °C 1 min;	401	(Veralovic et al., 1991;
HP0638-R	GTGCATCTCTATGGCTTTT			401	(Veralovic et al., 1991;
Table 2 - Distribution of the *cag* PAI and the other virulence genes of *H. pylori* isolates from cases of gastritis and peptic ulcer.

cag PAI	Gastritis (n = 48) (%)	Peptic ulcer (n = 21) (%)
LEC1	5 (10.4)	3 (14.3)
LEC2	3 (6.3)	4 (19)
cagT	17 (35.4)	7 (33.3)
cagE	16 (33.3)	8 (38.1)
cagAP	8 (16.7)	10 (47.6)
cagA	25 (52.1)	16 (76.2)
cagRJ region		
Type I	3 (6.3)	1 (4.8)
Type Ia	0	4 (19)
Type II	2 (4.2)	0
Type III	4 (8.3)	0
Type IIIa	1 (2.1)	5 (23.8)
ORFs		
JHP912	25 (52.1)	14 (66.7)
JHP926	1 (2.1)	0 (0)
JHP931	15 (31.3)	9 (42.9)
JHP933	10 (20.8)	5 (23.8)
JHP944	8 (16.7)	3 (14.3)
JHP945	11 (22.9)	4 (19)
JHP986	6 (12.5)	1 (4.8)
vacA alleles		
vacAs1a	35 (72.9)	19 (90.5)*
vacAs1b	2 (4.2)	0 (0)
vacAs2	11 (22.9)	2 (9.5)
vacAm1a	10 (20.8)	15 (71.4)*
vacAm2	38 (79.2)	6 (28.6)
oipA	36 (75)	18 (85.7)

*significant p < 0.05.

To be higher in peptic ulcer patients compared to gastritis. We confirmed that no relevance between the *cagA* and gastroduodenal disease in the present study which was in accordance with previous studies (Hussein et al., 2008; Baghaei et al., 2009). However, other studies (Gunn et al., 1998; Basso et al., 2008) represented an association.

Previous studies reported that strains which lack the *cagT* gene had a defective ‘molecular syringe’ (Rohde et al., 2003; Kauser et al., 2005b). We represented that isolates from gastritis and peptic ulcer carried *cagE* and *cagT* with almost similar proportion. In a study performed in England, most of strains obtained from ulcer patients retained the *cagE* and *cagT* (Kauser et al., 2005b). A previous study has shown that the *cagE* is a better marker of an intact *cag* PAI in Japanese strains (Ikenoue et al., 2001) which is in contrast with our findings. Kauser et al. (2004) and Matteo et al. (2007) described that a conserved LEC region was rearranged more in strains related to severe pathology worldwide.

The prevalence of the *cag* PAI varies in different geographical regions. There was only one report concerning the distribution of the *cag* PAI and the ORFs of *H. pylori* strains in Turkey (Salih et al., 2007). Previous reports showed that an intact *cag* PAI gene was highly observed in Japanese, Malaysia and Singapore strains, least found in European and African strains, and very poorly found in Peruvian, Indian, Iranian and Turkish strains (Kauser et al., 2004; Baghaei et al., 2009; Salih et al., 2007; Schmidt et al., 2010). Our results also support the findings (Baghaei et al., 2009; Rudi et al., 1998) indicated that an intact *cag* PAI gene was detected to be low prevalence in Iranian and Turkish strains. This could be due to geographical closeness, the similar condition of life and diet in Iran and Turkey (Baghaei et al., 2009). An intact *cag* PAI may be underestimated when a selective primers were used since *cag* PAI was encoded by ~ 40 kb gene (Schmidt et al., 2010).

Five main types (I, II, III, IV and V) were detected at the cag RJ region and scientists reported that the three types (I, II and III) were prevalent (Kersulyte et al., 2000). The authors indicated that type IIIa or type I were observed in 28.8% of the motifs in England strains and some of the European strains share similar profiles with the Asian strains (Kauser et al., 2005b). The results of the current study are also supportive of a previous study that Turkish strains showed to be predominant of types I, II and III which were not associated with the severity of the disease (Salih et al., 2007).

Among the plasticity region ORFs, JHP940 and JHP947 have been observed more in strains with gastric cancer (Occhialini et al., 2000). Our data is similar to the previous reports in Costa Rica, Netherlands and Turkey where the prevalence of JHP0945 was almost similar proportions between *H. pylori* isolates obtained from gastritis and peptic ulcer (Occhialini et al., 2000; de Jonge et al., 2004; Salih et al., 2007) but different from a study (Sugimoto et al., 2012) which demonstrated that the prevalence of JHP0945 was found to be higher in isolates with peptic ulcer. We observed that JHP0931 gene was not associated with clinical disease in the present work which was in consistent with a study in Costa Rica (Occhialini et al., 2000). However, Salih et al. (2007) found that JHP912 and JHP931 genes was significant association in cases with peptic ulcer in Turkey.

The *H. pylori* oipA which have great antigenic characteristics and increase the serum level of IL-8 besides the clinically important demonstration of peptic ulcer, is an important virulence factor (Yamaoka et al., 2002; Zambon et al., 2002; Kudo et al., 2004). We showed no significant correlation between the oipA gene and peptic ulcer, in contrast with a previous study (Salih et al., 2007) performed in Turkey.
In a study carried out in Turkey, the authors detected that the most predominantly genotype among type II isolates was s1/m2, but except for one patient with gastritis and gastric ulcer possessed s1/m2 genotype, all type I isolates had s1/m1 genotype (Nagiyev et al., 2009). This study showed that none of *H. pylori* isolates had vacA m1b genotype. Our study is concurrence with previous studies (Blaser et al., 1995; Salih et al., 2007) which reported that s1a/m1a was the most prevalent genotype among isolates with peptic ulcer. In contrast, s1c/m1b and s1a/m1b strains were the predominant genotypes in East Asian countries (Yamazaki et al., 2005). We found that the s1m2 strains were predominantly detected in isolates from gastritis. Our findings were similar to the previous reports in Turkey (Erzin et al., 2006; Nagiyev et al., 2009) where the vacAs1a strains showed to be significantly correlated with peptic ulcer.

In conclusion, this study suggests that *cagA*, *oipA*, JHP912, JHP931 and *vacA* s1am1a were the most common genes in isolates with peptic ulcer, and *vacA*s1am1a was significantly correlated with peptic ulcer. When considering the worldwide distribution of *H. pylori* as a common pathogen, further larger scale researches are necessary to be conducted in strains obtained from different geographical regions in order to assess the possible role of *cag* PAI and other virulence genes in different clinical outcomes which is correlated with *H. pylori* infections.

Acknowledgments

The authors appreciated Dr. Alfizah Hanafiah (Department of Medical Microbiology and Immunology, Faculty of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia), Dr. Guillermo I. Perez Perez (NYU School of Medicine, Department of Medicine and Microbiology, New York, USA) and Dr. Ikuko Kato (Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA) for their assistance with the correction of the manuscript. In addition, we thank to the management of the Elazig Veterinary Control and Research Institute for ensuring laboratory facilities during our study.

References

Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA, Bukhanov NO, Drazek ES, Roe BA, Berg DE (1998) Analyses of the *cag* pathogenicity island of *Helicobacter pylori*. Mol Microbiol 28:37-53.

Alm RA, Ling DSL, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, De Jonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen *Helicobacter pylori*. Nature 397:176-180.

Arents NL, Van ZAA, Thijs JC, Kornelis-Smid AMD, van Slochteren KR, Degener JE, Kleibeuker JH, van Doorn LJ (2001) The importance of vacA cagA and iceA genotypes of *Helicobacter pylori* infection in peptic ulcer disease and Gastroesophagyngeal reflux disease. Am J Gastroenterol 96:2603-2608.

Atherton JC, Cao P, Peek RM Jr, Tummuru MK, Blaser MJ, Cover TL (1995) Mosaicism in vacuolating cytotoxin alleles of *Helicobacter pylori*. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 270:17771-17777.

Audibert C, Burucoa C, Janvier B, Fauchère JL (2001) Implication of the structure of the *Helicobacter pylori* cag pathogenicity island in induction of interleukin-8 secretion. Infect Immun 69:1625-1629.

Backert S, Schwartz T, Miehlike S, Kirsch C, Sommer C, Kwok T, Gerhard M, Goebel UB, Lehn N, Koenig W, Meyer TF (2004) Functional analysis of the *cag* pathogenicity island in *Helicobacter pylori* isolates from patients with gastritis, peptic ulcer and gastric cancer. Infect Immun 72:1043-1056.

Baghiae K, Shokrzadeh L, Jafari F, Dabiri H, Yamaoka Y, Bolfion M, Zojahi H, Aslani M, Zali MR (2009) Determination of *Helicobacter pylori* virulence by analysis of the *cag* pathogenicity island isolated from Iranian population. Dig Liver Dis 41:634-638.

Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, Schiavon S, Guariso G, Cerotti M, Nitti D, Rugge M, Plebani M, Atherton JC (2008) Clinical relevance of *Helicobacter pylori* cagA and *vacA* gene polymorphisms. Gastroenterology 135:91-99.

Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyow PH, Stemmermann GN, Nomura A (1995) Infection with *Helicobacter pylori* strains possessing *cagA* is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55:2111-2115.

Carroll IM, Ahmed N, Beesley SM, Khan AA, Ghousunissa S, Morzain CA, Habibullah CM, Smyth CJ (2004) Microevolution between paired antral and paired antrum and corpus *Helicobacter pylori* isolates recovered from individual patients. J Med Microbiol 53:1-9.

Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A (1996) *cag*, a pathogenicity island of *Helicobacter pylori*, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 93:14648-14653.

Covacci A, Telford JL, Giudice GD, Parsonnet J, Rappuoli R (1999) *Helicobacter pylori* virulence and genetic geography. Science 284:1328-1333.

Cremonini F, Gasbarrini A, Arnuzzis A, Gasbarrini G (2001) *Helicobacter pylori*-related diseases. Eur J Clin Invest 31:431-437.

de Jonge R, Kuipers EJ, Langeveld SCL, Loffeld RJLF, Stoof J, van Vliet AHM, Kusters JG (2004) The *Helicobacter pylori* plasticity region locus *jhp0947-jhp0949* is associated with duodenal ulcer disease and interleukin-12 production in monocyte cells. FEMS Immunol Med Microbiol 41:161-167.

Doig P, De Jonge BL, Alm RA, Brown ED, Uria-Nickelsen M, Noonan B, Mills SD, Tummino P, Carmel G, Guild BC, Moir DT, Vovis GF, Trust TJ (1999) *Helicobacter pylori* physiology predicted from genomic comparison of two strains. Microbiol Mol Biol Rev 63:675-707.

Erzin Y, Koksal V, Altun S, DobrucaL A, Aslan M, Erdamar S, Dirican A, Kocazeybek B (2006) Prevalence of *Helicobacter pylori* vacA, cagA, cagE, iceA, babA2 geno-
types and correlation with clinical outcome in Turkish patients with dyspepsia. Helicobacter 11:574-580.

Gunn MC, Stephens JC, Stewart JA, Rathbone BJ, West KP (1998) The significance of cagA and vacA subtypes of Helicobacter pylori in the pathogenesis of inflammation and peptic ulceration. J Clin Pathol 51:761-764.

Hofman V, Ricci V, Galmiche A, Brest P, Aubger P, Rossi B, Boquet P, Hofman P (2000) Effect of Helicobacter pylori on polymorphonuclear leukocyte migration across polarized T84 epithelial cell monolayers: role of vaculating toxin VacA and cag pathwaygenicity island. Infect Immun 68:5225-5233.

Hussein NR, Mohammadi M, Talebkhan Y, Doraghi M, Lety DP, Muhammad MK, Argent RH, Atherton JC (2008) Differences in virulence markers between Helicobacter pylori strains from Iraq and those from Iran: potential importance of regional differences in H. pylori-associated disease. J Clin Microbiol 46:1774-1779.

Ikenoue T, Maeda S, Gura KO, Akanuma M, Mitsuno Y, Imai Y, Yoshida H, Shiratori Y, Omata M (2001) Determination of Helicobacter pylori virulence by simple gene analysis of the cag pathwaygenicity island. Clin Diagn Lab Immunol 8:181-186.

Kauser F, Khan AA, Hussain MA, Carroll IM, Ahmad N, Tiwari S, Shouche Y, Das B, Alam M, Ali SM, Habibullah CM, Sierra R, Megraud F, Sechi LA, Ahmed N (2004) The cag pathwaygenicity island of Helicobacter pylori is disrupted in the majority of patient isolates from different human populations. J Clin Microbiol 42:5302-5308.

Kauser F, Hussain MA, Ahmed I, Ahmad N, Habeeb A, Khan AA, Ahmed N (2005a) Comparing genomes of Helicobacter pylori strains from the high altitude desert of Ladakh, India. J Clin Microbiol 43:1538-1545.

Kauser F, Hussain MA, Ahmed I, Srinivas S, Devi SM, Majeed AA, Rao KR, Khan AA, Sechi LA, Ahmed N (2005b) Comparative genomics of Helicobacter pylori isolates recovered from ulcer disease patients in England. BMC Microbiol 5:32-42.

Kersulyte D, Mukhopadhyay AK, Velapatino B, Su WW, Pan ZJ, Garcia C, Hernandez V, Valdez Y, Mistry RS, Gilman RH, Yuan Y, Gao H, Alarcon T, Lopez-Brea M, Nair GB, Chowdhury A, Datta S, Shirai M, Nakazawa T, Ally R, Segal I, Wong BCY, Lam SK, Olfat F, Boren T, Engstrand L, Torres O, Schneider R, Thomas JE, Czinn S, Berg DE (2000) Differences in genotypes of Helicobacter pylori from different human populations. J Bacteriol 182:3210-3218.

Kudo T, Nurgalieva ZZ, Conner ME, Crawford S, Odenbreit S, Haas R, Graham DY, Yamaoka Y (2000) Correlation between Helicobacter pylori OipA protein expression and oipA gene switch status. J Clin Microbiol 42:2279-2281.

Maeda S, Ogura K, Yoshida H, Kanai F, Ikenoue T, Kato N, Shiratori Y, Omata M (1998) Major virulence factors, VacA and CagA, are commonly positive in Helicobacter pylori isolates in Japan. Gut 42:338-343.

Mattar R, Marques SB, Monteiro MS, dos Santos AF, Iriya K, Carrilho FJ (2007) Helicobacter pylori cag pathogenicity island strains: clinical relevance for peptic ulcer disease development in Brazil. J Med Microbiol 56:9-14.

Matteo MJ, Granados G, Pérez CV, Olmos M, Sanchez C, Catalano M (2007) Helicobacter pylori cag pathogenicity island genotype diversity within the gastric niche of a single host. J Med Microbiol 56:664-669.

Mukhopadhyay AK, Kersulyte D, Jeong JY, Datta S, Ito Y, Chowdhury A, Chowdhury S, Santra A, Bhattacharya SK, Azuma T, Nair GB, Berg DE (2000) Distinctiveness of genotypes of Helicobacter pylori in Calcutta, India. J Bacteriol 182:3219-3227.

Nagiey T, Yula E, Abayli B, Koskal F (2009) Prevalence and genotypes of Helicobacter pylori in gastric biopsy specimens from patients with gastroduodenal pathologies in the Cukurova region of Turkey. J Clin Microbiol 47:4150-4153.

Ochialini A, Marais A, Alm R, Garcia F, Sierra R, Megraud F (2000) Distribution of open reading frames of plasticity region of strain 99H in Helicobacter pylori strains isolated from gastric carcinoma and gastritis patients in Costa Rica. Infect Immun 68:6240-6249.

Olbermann P, Josenhans C, Moodley Y, Uhr M, Stamer C, Vauterin M, Suerbaum S, Achtmann M, Linz B (2010) A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathwaygenicity island. PLoS Genet 6:e1001069.

Oz bey G, Aygun C (2012) Prevalence of genotypes in Helicobacter pylori isolates from patients in eastern Turkey and the association of these genotypes with clinical outcome. Braz J Microbiol 43:1332-1339.

Oz bey G, Dogan Y, Demiro ren K (2013) Prevalence of Helicobacter pylori virulence genotypes among children in Eastern Turkey. World J Gastroenterol 19:6585-6589.

Pacheco AR, Proenca-Modena JL, Sales AI, Fukuhara Y, da Silveira WD, Pimenta-Modena JL, de Oliveira RB, Brocchi, M (2008) Involvement of the Helicobacter pylori plasticity region and cag pathwaygenicity island genes in the development of gastroduodenal diseases. Eur J Clin Microbiol Infect Dis 27:1053-1059.

Rizzato C, Torres J, Plummer M, Muñoz N, Franceschi S, Camoringa-Ponce M, Fuentes-Panamá EM, Canzian F, Ikuko Kato I (2012) Variations in Helicobacter pylori cytotoxin-associated genes and their influence in progression to gastric cancer: Implications for Prevention. PLoS One 7:e29605.

Rohde M, Puls J, Buhrdorf R, Fischer W, Haas R (2003) A novel sheathed surface organelle of the Helicobacter pylori Cag Type IV secretion system. Mol Microbiol 49:219-234.

Rudi J, Kolb C, Maiwald M, Kuck D, Sieg A, Galle PR, Stremmler W (1998) Diversity of Helicobacter pylori vacA and cagA genes and relationship to vacA and cagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol 36:944-948.

Salih BA, Abasiyanik MF, Ahmed N (2007) A preliminary study on the genetic profile of cag pathwaygenicity-island and other virulent gene loci of Helicobacter pylori strains from Turkey. Infect Genet Evol 7:509-512.

Saunders NJ, Boonmee P, Peden JF, Jarvis SA (2005) Inter-species horizontal transfer resulting in core-genome and niche-adaptive variation within Helicobacter pylori. BMC Genomics 6:9.

Schmidt H-M Andres S, Nilsson C, Kovach Z, Kaakoush NO, Engstrand L, Goh K-L, Fock KM, Forman D, Mitchell HM (2010) The cagPAl is intact & functional but HP0521 varies significantly in Helicobacter pylori isolates from Malaysia & Singapore. Eur J Clin Microbiol Infect Dis 29:439-451.
Sugimoto M, Watada M, Jung SW, Graham DY, Yamaoka Y (2012) Role of Helicobacter pylori plasticity region genes in development of gastroduodenal disease. J Clin Microbiol 50:441-448.

Tan HJ, Rizal AM, Rosmadi MY, Goh KL (2005) Distribution of Helicobacter pylori cagA, cagE and vacA in different ethnic groups in Kuala Lumpur, Malaysia. J Gastroenterol Hepatol 20:589-594.

Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzgererald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539-547.

Veralovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in Eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823-6831.

Xiang ZY, Censini S, Bayeli PF, Telford JL, Figura N, Rappuoli R, Covacci A (1995) Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun 63:94-98.

Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY (1999) Relationship between Helicobacter pylori iceA, cagA, and vacA status and clinical outcome: studies in four different countries. J Clin Microbiol 37:2274-2279.

Yamaoka Y, Kikuchi S, El-Zimaity HM, Gutierrez O, Osato MS, Graham DY (2002) Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin-8 production. Gastroenterology 123:414-424.

Yamazaki S, Yamakawa A, Okuda T, Ohtani M, Suto H, Ito Y, Yamazaki Y, Keida Y, Higashi H, Hatakeyama M, Azuma T (2005) Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J Clin Microbiol 43:3906-3916.

Zambon CF, Basso D, Navaglia F, Germano G, Gallo N, Milazzo M, Greco E, Fogar P, Mazza S, Di Mario F, Basso G, Rugge M, Plebani M (2002) Helicobacter pylori virulence genes and host IL-1RN and IL-1B genes interplay in favouring the development of peptic ulcer and intestinal metaplasia. Cytokine 18:242-251.

All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License CC BY-NC.