RESEARCH ARTICLE

Clinicopathological Characteristics of Gynecological Cancer Associated with Hypoxia-Inducible Factor 1α Expression: A Meta-Analysis Including 6,612 Subjects

Yue Jin1,*, Haolu Wang2,3,*, Xiaowei Ma4, Xiaowen Liang3, Xin Liu3, Yu Wang1*

1 Department of Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China, 2 Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, 3 Therapeutics Research Centre, Princess Alexandra Hospital, School of Medicine, The University of Queensland, Brisbane, Australia, 4 Department of Clinical Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

* These authors contributed equally to this work.

* renjiwangyu@gmail.com

Abstract

Background

Gynecological cancer is characterized by tumor hypoxia. However, the role of hypoxia-inducible factor 1α (HIF-1α) in gynecological cancer remains unclear.

Method

Electronic databases including Cochrane Library, PUBMED, Web of Knowledge and clinical trial registries were searched from inception through October 2014 for published, case-control studies assessing the association between HIF-1α and the clinicopathological characteristics of gynecological cancer. We pooled results from 59 studies using fixed or random-effects models and present results as odds ratios (ORs) following the PRISMA guidelines.

Results

Our meta-analysis, which included 6,612 women, demonstrated that the expression of HIF-1α was associated with the clinicopathological characteristics of gynecological cancer. The expression of HIF-1α in cancer or borderline tissue was significantly higher than that in normal tissue (cancer vs. normal: odds ratio (OR) =9.59, 95% confidence interval (CI): 5.97, 15.39, p<0.00001; borderline vs. normal: OR=4.13, 95% (CI): 2.43, 7.02, p<0.00001; cancer vs. borderline: OR=2.70, 95% (CI): 1.69, 4.31, p<0.0001). HIF-1α was associated with histological grade of cancer (Grade 3 vs. Grade 1: OR=3.77, 95% (CI): 2.76, 5.16, p<0.0001; Grade 3 vs. Grade 2: OR=1.62, 95% (CI): 1.20, 2.19, p=0.002; Grade 2 vs. Grade 1: OR=2.34, 95% (CI): 1.82, 3.00,
Conclusion

HIF-1α is associated with the malignant degree, FIGO stage, histological grade, lymph node metastasis, 5-years survival rate and recurrence rate of gynecological cancer. It may play an important role in clinical treatment and prognostic evaluation.

Introduction

Solid tumors outgrow their own vasculature beyond the size of several cubic millimeters, resulting in hypoxia. HIF-1 regulates cellular oxygen homeostasis, and plays a key role in hypoxic conditions that occur during tumor angiogenesis, invasion and metastasis [1, 2]. HIF-1 is a heterodimeric transcription factor that consists of α and β subunits. The β subunit is constitutively expressed, while the expression of HIF-1α is regulated by the oxygen level [3]. Under normoxic conditions, HIF-1α would be degraded due to targeted ubiquitination and degradation by the proteasome. This process is mediated by direct binding of von Hippel—Lindau tumor suppressor protein (pVHL), a component of the E3 ubiquitin—protein ligase complex, with the minimal N-terminal transactivation domain (N-TAD) located within the oxygen-dependent degradation domain of HIF-1α. On the contrary, in hypoxic conditions, the degradation of HIF-1α is suppressed and the expression of HIF-1α would increase. Over-expression of HIF-1α has been reported in many types of malignancies, including lung, prostate, breast, colon and rectum carcinoma, and in both regional and distant metastases, implying that HIF-1α may play a vital role in tumor progression [4–6].

Gynecological malignancies, including cancers of endometrium, cervix, ovary, vulva and vagina, account for 11.7% of all new cancers in women. The American Cancer Society estimates that 94,990 women will have been diagnosed with, and 28,790 women will have died of, cancer of the female genital tract in 2014 in the USA [7]. Thus, it is important to understand the mechanisms of carcinogenesis and progression in gynecological cancer. HIF-1α is a key cellular survival protein during hypoxia, and is associated with tumor progression and metastasis in various solid tumors. In gynecological malignancies, Birner et al. [8] suggested that HIF-1α was a facilitator of premalignant progression. Acs et al. [9] and Birner et al. [10] found a consistent correlation between tumor stage and HIF-1α expression. Moreover, Seeber et al. [11], Bachtiary et al. [12] and Shimogai et al. [13] proposed HIF-1α as a predictor of poor prognosis and response to therapy. However, results of studies on HIF-1α in gynecological cancer are not always consistent. We carried out the first meta-analysis to assess the potential association between HIF-1α and the clinicopathological parameters of gynecological cancer. Cancers of the vulva and vagina are relatively rare. No study on HIF-1α and the clinicopathological characteristics of these malignancies has been published. Cancers of endometrium, cervix and ovary were included as subgroups in the final analysis.

Materials and Methods

Search strategy

We conducted the literature searches and meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines (S1 PRISMA Checklist).
The electronic databases including Cochrane Library, PUBMED, Web of Knowledge and clinical trial registries, were used for systematic literature searches. Eligibility was restricted to studies published from inception to October 2014 with abstract or full text available. No language restrictions were made. We employed “hypoxia-inducible factor”, “HIF-1α”, or “HIF-1”, concatenated with “gynecological”, “endometrial”, “cervical”, “ovarian”, “vulva”, “vagina” and “tumor”, “cancer”, “carcinoma”, or “malignancy” as search terms. A comprehensive search of reference lists of all review articles and original studies retrieved by this method was performed to identify additional reports.

Criteria for inclusion and exclusion

The inclusion criteria for primary studies were as follows: (1) primary gynecological cancer should be pathologically proven; and (2) HIF-1α expression should be detected with immunohistochemistry (IHC); and (3) the association between clinicopathologic variables and HIF-1α expression should be described; or (4) provides information on survival data; and (5) laboratory methodology of IHC: (5.1) the staining of protein should be described (nuclear, cytoplasm); and (5.2) tissue sample conservation (fixation in formalin, alcohol or paraffin); and (5.3) description of the revelation test procedure of the biological factors with the first antibody type, clone identification, second antibody type, reaction characteristics, coloration method and epitope unmasking method; and (5.4) description of the negative and positive control; and (5.5) definition of the level of positivity of the test; or (5.6) the pathologist evaluating the IHC outcome was double-blind (or random) to patient clinicopathologic data and outcome. When studies were retrospective, the pathologist blinding was simple-blind.

Exclusion criteria for primary studies were as follows: (1) review, abstract, case report, animal or cell studies; or (2) not possible to extract the exact data (the association between clinicopathologic variables and HIF-1α expression); or (3) patients received chemotherapy, radiotherapy, targeted therapy before operation; and (4) laboratory methodology of IHC: (4.1) the study design was not defined; or (4.2) was unclear and no detailed description of standard laboratory methodology about IHC; or (4.3) the pathologist blinding was unblinded.

Review procedure and data extraction

Titles and abstracts were studied to assess inclusion criteria and examined independently for eligibility by two reviewers (Y. Jin and H. Wang). Disagreements were resolved by consulting a third reviewer (Y. Wang). The study characteristics were recorded as follows: (1) the first author, the nationality of included patients, article publication year; (2) the number of patients, cancer cases, borderline cases and controls for positive HIF-1α expression (HIF-1α expression score ≥ +), which was measured by semi-quantitatively assessing the percentage of tumor cells expressing HIF-1α, intensity of cell staining and extent of staining; (3) the number of test cases (FIGO III–IV stage, lymph nodes metastasis) and control cases (FIGO I–II, no lymph nodes metastasis) for positive HIF-1α expression; (4) the number of test cases (Grade 3 or Grade 2) and control cases (Grade 1); (5) the hazard ratio of 5-year disease free survival (DFS) and OS.

Quality assessments

Newcastle–Ottawa Scale (NOS) was used to assess the methodological quality of the included case-control studies. A study can be awarded 1 point for each numbered item in nine of NOS. Studies with scores of 0–4 are considered as low-quality, while 5–9 as high-quality.
Statistical analysis

We estimated the odds ratio (OR) for clinicopathologic variables (FIGO III–IV vs. FIGO I–II; lymph nodes metastasis vs. no lymph nodes metastasis; Grade 3 or Grade 2 vs. Grade 1), 5-year DFS and 5-year overall survival (OS). Statistical heterogeneity assumption among studies was checked using the X²-based Q-test. When I^2 was less than 50%, pooled odds ratios, relative risk and 95% confidence intervals (CIs) were calculated using Mantel-Haenszel method with fixed effect models. Whereas significant heterogeneity among the studies was detected ($I^2>50%$), a random-effect model was adopted. If necessary, a sensitive analysis was also performed to evaluate the influence of individual studies on the final effect. All p-values were two-sided. A p-value < 0.05 was considered significant. All the statistical analyses were performed using RevMan 5.0 software (The Cochrane Collaboration, Oxford, United Kingdom).

Results

Description and quality assessments of included studies

The bibliographical search yielded a total of 698 studies and full text or abstract was obtained for 91 studies. Thirty-two of these studies did not meet the inclusion criteria: four studies referred to a duplicate dataset, twenty-three studies did not present exact data to extract, and five was animal studies. Finally, fifty-nine independent studies [2, 8–65] were included in the final review. The processes of study selection were summarized in the flow diagram (Fig 1). The main characteristics of the eligible studies were shown in Table 1, and the quality assessments of the included studies were summarized in S1 Table.

HIF-1α expression and pathological variables

All 59 studies including 6612 patients explored the association between HIF-1α expression and clinicopathological variables of gynecological cancer. We performed pooled analyses with available data on the association between HIF-1α expression and pathological type, FIGO stage, histological type, and lymph node metastasis. Table 2 summarized the evaluations of association between HIF-1α expression and clinicopathological variables of gynecological cancer.

The estimated pooled OR for all studies showed a significantly increased risk of malignant progression (cancer vs. borderline: OR, 2.70; 95% CI, 1.69–4.31, cancer vs. normal: OR, 9.59; 95% CI, 5.97–15.39, borderline vs. normal: OR, 4.13; 95% CI, 2.43–7.02, Figs 2–4, all $p<0.05$), higher FIGO stage (III–IV vs. I–II: OR, 2.66; 95% CI, 1.87–3.79, Fig 5, $p<0.05$), higher grade type (Grade 3 vs. Grade 1: OR, 3.77; 95% CI, 2.76–5.16, Grade 3 vs. Grade 2: OR, 1.62; 95% CI, 1.20–2.19, Grade 2 vs. Grade 1: OR, 2.34; 95% CI, 1.82–3.00, Figs 6–8, all $p<0.05$) and lymph node metastasis (yes vs. no: OR, 3.98; 95% CI, 2.10–12.89, Fig 9, $p<0.05$) in patients with positive HIF-1α expression. To explore potential sources of heterogeneity, we conducted subgroup analyses considering tumor types of gynecological cancer including endometrial, cervical and ovarian cancer. Almost all subgroup analyses maintained the positive association except the analysis of endometrial (borderline vs. normal: OR, 3.48; 95% CI, 0.75–16.15, Fig 4, $p = 0.11$), Grade 3 vs. Grade 2: OR, 1.15; 95% CI, 0.65–2.01, Fig 7, $p = 0.63$.) and cervical cancer (Grade 3 vs. Grade 2: OR, 1.62; 95% CI, 0.91–2.90, Fig 3, $p = 0.10$).

HIF-1α expression and 5-year DFS rate, 5-year OS rate

The estimated pooled OR for 14 studies on the prognostic value of HIF-1α expression showed the positive expression of HIF-1α were associated with lower 5-year DFS and OS
rate (<5 years vs. ≥5 years, Figs 10 and 11, $p<0.05$), the OR (95% CI) was 2.93 (1.43, 6.01), 5.53 (2.48, 12.31), respectively. To explore potential sources of heterogeneity, we conducted subgroup analyses. However, the subgroup of endometrial (DFS: OR, 1.56; 95% CI, 0.36–6.83, Fig 10, $p = 0.55$, OS: OR, 3.67; 95% CI, 0.52–25.63, Fig 11, $p = 0.19$) and ovarian cancer (DFS: OR, 2.42; 95% CI, 0.80–7.36, Fig 11, $p = 0.12$) did not maintain the positive association.

Sensitivity analysis

Sensitivity analysis was performed to explore the influence of an individual study on the pooled results by repeating the meta-analysis while omitting some obviously different studies at the
Table 1. Characteristics of studies included in this meta-analysis.

Author	Number of patients	Year (country)	HIF-1α positive (negative)	Pathological type	Histological type	FIGO stage	Histological grade	Lymph node metastasis	5-years overall survival rate	5-years disease free survival rate	
Ovarian cancer											
Daponte14	120	2008 (Greece)	61 (59)	78/22/20	-	-	-	-	-	-	
Shimogai13	66	2008 (Japan)	11 (55)	48/5/13	22/44	-	25/41	24/42	11/55	-	
Yu15	117	2012 (China)	59 (58)	87/2/5	45/44	-	42/45	-	-	53/34	
Birner10	172	2001 (Austria)	116 (56)	102/50/20	64/8/30	-	-	-	-	-	
Osada16	107	2007 (Japan)	82 (25)	72/17/18	-	48/24	32/30	-	-	-	
Shen17	63	2013 (China)	55 (8)	-	63/23	-	-	53/34	-	-	
Su18	81	2011 (China)	40 (41)	35/22/24	-	13/22	4/17	-	-	-	
Yu19	30	2009 (China)	26 (4)	30/20	-	12/18	10/18	-	-	-	
Liu20	170	2012 (China)	80 (81)	96/4/45	45/8/3	30/66	24/40	-	-	-	
Chen11	62	2011 (China)	29 (33)	62/2/2	40/22	26/36	25/37	-	36/26	44/18	
Fu22	119	2008 (China)	70 (49)	101/7	51/9/41	53/48	-	-	-	-	
Guo23	108	2010 (China)	39 (66)	58/30	-	20/38	18/28/2	27/31	-	-	
Naka26	52	2007 (Japan)	36 (16)	52/3/2	29/9/14	5/2	19/14	-	-	-	
Ji25	116	2013 (China)	70 (46)	41/20/7	-	20/21	27/14	-	-	-	
Nakayama26	60	2002 (Japan)	30 (30)	60/-	29/17/2	33/26	17/16	22/2	-	-	
Iida27	102	2008 (Japan)	91 (11)	39/32/23	-	-	-	-	-	-	
Chen28	164	2012 (China)	62 (102)	124/4	80/44	53/71	49/75	-	50/74	-	
Li29	141	2011 (China)	66 (75)	60/23/30	40/20	15/41	23/6	36/24	-	-	
Wong30	53	2003 (USA)	22 (31)	37/16	29/2/6	<3/7	-	-	-	-	
Luo31	308	2005 (China)	208 (100)	238/19/38	148/20/70	77/161	53/101	84/2	-	-	
Wang32	145	2008 (China)	86 (79)	112/9/18	58/33/31	46/76	24/48	38/8	-	-	
Tong34	31	2008 (China)	26 (5)	31/-	31/1/-	-	21/10	-	21/10	-	
Li33	73	2009 (China)	35 (38)	37/19/-	-	13/24	12/5/2	-	27/10	-	
Miyazawa35	36	2009 (Japan)	21 (2)	23/2/11	5/7/11	-	-	-	-	-	
Yasuda36	74	2008 (Japan)	69 (5)	74/-	21/18/35	-	-	-	-	-	
Cervical cancer											
Cheng37	158	2013 (China)	63 (35)	98/32/28	98/-	57/41*	42/35/21	39/59	-	-	
Kim38	745	2013 (Korea)	60 (91)	179/209/357	144/35	174/5	-	-	17/34	31/120	
Huang39	74	2014 (China)	39 (35)	74/-	58/16	35/39*	38/36*	17/57	-	-	
Dallas40	44	2008 (Germany)	32 (12)	44/-	-	9/35	-	19/25	-	-	
Birner8	106	2000 (Austria)	20 (71)	-	91/-	-	-	17/74	28/63	-	
Bachtiany12	67	2003 (Austria)	32 (35)	67/-	-	9/10/5	-	17/45	-	-	
Li51	120	2010 (China)	90 (30)	40/40/40	40/-	-	-	-	10/21/9	10/30	
Guo42	189	2008 (China)	93 (96)	79/90/20	79/-	54/25	15/36/2	-	-	-	
Liu43	93	2008 (China)	26 (19)	45/28/20	45/-	45/-	29/16	-	-	-	
Zhang44	54	2009 (China)	28 (26)	34/10/10	23/11	34/-	13/21	19/15	-	-	
Acs45	170	2003 (USA)	143 (27)	15/70/85	15/-	15/-	-	-	-	-	

(Continued)
Author	Number of patients	Year (country)	HIF-1α positive (negative)	Pathological type	Histological type	FIGO stage	Histological grade	Lymph node metastasis	5-years overall survival rate	5-years disease free survival rate
Hutchison	99	2004 (United Kingdom)	68(31)	99/-/-	-	57/42	17/57/14	-	-	-
No	116	2009 (Korea)	40(76)	36/39/41	-	-	-	11/25	-	-
Ishikawa	38	2004 (Japan)	20(18)	38/-/-	38/-	-/38	-	-	-	-
Haugland	101	2002 (Canada)	23(22)	45/-/-	33/12	30/15	-	11/34	-	-
Burri	91	2003 (Switzerland)	46(32)	78/-/-	63/15	9/43/26	-	30/47	-	-
Markowska	106	2007 (Poland)	81(25)	106/-/-	-	29/46/31	-	-	-	-
Ozbudak	100	2008 (Turkey)	45(55)	100/-/-	100/-	69/31	60/25/15	-	-	-
Feng	187	2013 (China)	100(87)	124/28/35	124/-	101/23	57/41/26	31/93	-	-
Espinosa	64	2010 (Italy)	17(32)	64/-/-	64/-	24/25	14/22/28	-	-	-
Seebauer	108	2010 (Netherlands)	54(39)	93/-/-	75/18	75/18	28/47/18	-	-	18/72
Pijnenborg	65	2007 (Netherlands)	14(51)	65/-/-	65/-	60/5	20/29/16	-	40/25	
Acs	166	2004 (USA)	79(28)	107/-/-/59	74/33	65/42	36/20/51	-	-	-
Pansare	149	2007 (USA)	54(90)	149/-/-	80/41	114/30	42/66^	-	-	-
Horrée	79	2007 (Netherlands)	48(31)	39/23/17	39/-	23/16	6/21/12	-	-	-
Koda	85	2007 (Poland)	55(30)	60/-/-/25	-	29/31	8/44/8	-	-	-
Aybali	94	2011 (Turkey)	28(66)	94/-/-	76/18	64/30	36/30/28	34/60	9/85	
Yeramian	93	2011 (Spain and USA)	26(55)	93/-/-	93/-	-	26/35/21	-	9/72	
Li	54	2008 (China)	20(34)	42/-/12	36/6	21/21	8/34^	32/10	-	-
Zhai	62	2007 (China)	25(37)	42/-/20	42/-	28/14	25/17^	16/26	-	-
Pan	93	2011 (China)	51(42)	52/23/18	52/-	32/20	17/17/18	11/41	-	-
Song	40	2009 (China)	26(14)	30/10/-	20/10	27/3	-	-	-	-
Sivridis	106	2002 (Greece)	40(41)	81/-/25	81/-	81/-	50/31^	10/71	-	-
Wang	125	2010 (China)	65(33)	105/-/20	105/-	92/13	53/40/12	12/86	-	-

*: serous/mucinous;
^a: serous/mucinous/others;
Δ: serous/others;
^b: G1/G2/G3;
^c: G1/G2-G3;
^d: G1/G2-G3;
^e: Ia1-Ila/IIb-IIIb;
^f: Ia2-IIb-IIIb-IIib-IVa
^g: Ia2-IIb-IIIb-IIib-IVa
|doi:10.1371/journal.pone.0127229.t001|
Table 2. Quantitative analyses of HIF-1α expression and clinicopathological variables of gynecological cancer.

Variables	Number of patients	Test of association	Test of heterogeneity	Meta-analysis model			
		OR (95% CI)	Z test	p value	Q	p value	I² (%)
Pathological type							
Cancer vs Borderline							
Endometrial cancer	212	4.45[2.57,7.71]	5.33	<0.00001	2.36	0.50	0 Fixed
Cervical cancer	328	2.36[1.04,5.38]	2.05	0.04	18.09	0.003	72 Random
Ovarian cancer	1045	2.31[1.04,5.09]	2.07	0.04	63.13	<0.0001	76 Random
Total	1900	2.70[1.69,4.31]	4.15	<0.0001	63.13	<0.0001	70 Random
Cancer vs Normal							
Endometrial cancer	486	11.03[6.55,18.58]	9.02	<0.00001	8.73	0.12	43 Fixed
Cervical cancer	484	8.17[2.80,23.85]	3.85	0.001	21.59	0.003	68 Random
Ovarian cancer	1401	9.73[4.90,19.32]	6.51	<0.0001	44.90	<0.0001	73 Random
Total	2371	9.59[5.97,15.39]	9.36	<0.0001	76.80	<0.0001	66 Random
Borderline vs Normal							
Endometrial cancer	144	3.48[0.75,16.15]	1.59	0.11	5.43	0.07	63 Random
Cervical cancer	520	2.40[1.52,3.78]	3.78	0.0002	7.59	0.27	21 Fixed
Ovarian cancer	438	6.29[2.69,14.73]	4.24	<0.0001	21.57	0.0006	63 Random
Total	1087	4.13[2.43,7.02]	5.24	<0.0001	41.82	0.0007	59 Random
FIGO stage							
Endometrial cancer	830	2.76[1.25,6.09]	2.50	0.01	38.44	<0.0001	74 Random
Cervical cancer	290	1.76[1.03,2.99]	2.08	0.04	3.74	0.29	20 Fixed
Ovarian cancer	1354	3.01[1.92,4.74]	4.78	<0.0001	39.80	0.0008	60 Random
Total	2474	2.66[1.87,3.79]	5.42	<0.0001	83.78	<0.0001	63 Random
Histological type							
G3 vs G1							
Endometrial cancer	301	2.65[1.53,4.59]	3.49	0.005	7.35	0.20	32 Fixed
Cervical cancer	240	4.29[2.68,14.14]	4.46	<0.0001	10.76	0.06	54 Fixed
Ovarian cancer	466	4.52[2.79,7.31]	6.13	<0.0001	16.50	0.06	45 Fixed
Total	1007	3.77[2.76,5.16]	8.32	<0.0001	36.18	0.02	42 Fixed
G3 vs G2							
Endometrial cancer	299	1.15[0.65,2.01]	0.48	0.63	3.33	0.65	0 Fixed
Cervical cancer	347	1.62[0.91,2.90]	1.65	0.10	5.59	0.35	11 Fixed
Ovarian cancer	567	2.02[1.27,3.19]	2.99	0.003	13.91	0.13	35 Fixed
Total	1213	1.62[1.20,2.19]	3.14	0.002	24.17	0.29	13 Fixed
G2 vs G1							
Endometrial cancer	410	2.19[1.43,3.37]	3.58	0.003	8.23	0.14	39 Fixed
Cervical cancer	351	2.40[1.46,3.93]	3.46	0.005	3.68	0.60	0 Fixed
Ovarian cancer	541	2.43[1.65,3.59]	4.48	<0.0001	10.41	0.32	14 Fixed
Total	1302	2.34[1.82,3.00]	6.68	<0.0001	22.43	0.38	6 Fixed
Lymph node metastasis							
Endometrial cancer	454	4.02[1.32,12.26]	2.44	0.01	10.75	0.03	63 Random
Cervical cancer	471	2.94[1.19,7.329]	2.33	0.02	24.73	0.0008	72 Random
Ovarian cancer	566	5.20[2.10,12.89]	3.56	0.004	33.87	<0.0001	76 Random
Total	1391	3.98[2.10,12.89]	5.00	<0.0001	3.98	<0.0001	71 Random
5-years disease free survival rate							
Endometrial cancer	330	1.56[0.36,6.83]	0.60	0.55	11.80	0.008	75 Random
Cervical cancer	280	5.28[2.90,9.63]	5.43	<0.0001	1.91	0.38	0 Fixed
Ovarian cancer	97	2.42[0.80,7.36]	1.56	0.12	0.36	0.55	0 Fixed

(Continued)
Table 2. (Continued)

Variables	Number of patients	OR (95% CI)	Z test	p value	Q	p value	I² (%)	Meta-analysis model
Total	707	2.93[1.43,6.01]	2.93	0.003	20.71	0.008	61	Random
5-years overall survival rate								
Endometrial cancer	179	3.67[0.52,25.63]	1.31	0.19	2.43	0.12	59	Random
Cervical cancer	286	3.28[1.63,6.60]	3.34	0.008	3.07	0.22	35	Fixed
Ovarian cancer	215	11.46[3.43,38.29]	3.96	<0.0001	4.54	0.10	56	Random
Total	680	5.53[2.48,12.31]	4.19	<0.0001	17.46	0.01	60	Random

![Fig 2. Forest plot of the expression of HIF-1α in cancer versus that in borderline tissue. (I² = 69%).](https://doi.org/10.1371/journal.pone.0127229.g002)
time. Statistically similar results were obtained by this procedure, indicating the stability of this meat-analysis (data not shown).

Discussion

HIF-1α is a key transcription factor that regulates cellular reaction to hypoxia. It is over-expressed in many types of malignancies in response to low oxygen concentration [66], and plays
a key role in hypoxic conditions that occur during tumor angiogenesis, invasion and metastasis [67, 68]. In gynecological cancer, HIF-1α has been suggested as an adverse prognostic factor, but conflicting findings do exist [69]. Thus, pooled analysis was performed with available data on the association between HIF-1α expression and clinicopathological variables.

We demonstrated that the expression of HIF-1α in normal tissue was lower than that in borderline or cancer tissue in gynecological cancer, which is in agreement with previous findings from different studies [2, 8, 9, 16, 27, 30, 52, 57, 70]. HIF-1α may be a facilitator of premalignant progression in gynecological cancer. This positive association maintained in most subgroup analyses except in the "borderline vs. normal" of endometrial cancer. This inconsistency may result from a relatively small number of included studies (only three studies were in the subgroup analysis).
Clinicopathologic features including pathological type, tumor stage, and lymph node metastasis are the major facts related to cancer-related prognosis. In our meta-analysis, higher HIF-1α expression was found to be associated with increased risk of lymph node metastasis, higher FIGO stage, higher histological grade, and lower 5-year OS and DFS rate. These findings...
revealed that HIF-1α could be considered as a hallmark of tumour progression, and a prognostic factor for gynecological cancer. To reveal the mechanisms, several included studies of this meta-analysis reported that HIF-1α is related to many critical aspects of gynecological cancer biology. HIF-1α synthesis could be increased by several growth factors, cytokines and other signaling molecules responsible for stimulating phosphatidylinositol 3-kinase (PI3K) or mitogen-activated protein kinase (MAPK) pathways [38]. The regulated markers of HIF-1α, such as glucose transporter type 1 (GLUT1), carbonic anhydrase 9 (CA9) and c-Met, have been found to be highly associated with poor prognosis in various cancers [38]. HIF-1α also regulates many

Study or Subgroup	G3 Events	G3 Total	Weight	Odds Ratio M-H Fixed, 95% CI	Odds Ratio M-H Fixed, 95% CI
3.10.1 Endometrial Cancer	Ayebli 2011	3 10	7 36	5.0%	1.78 [0.38, 8.66]
	Feng 2013	22 26	30 57	6.7%	4.95 [1.51, 16.20]
	Koda 2007	6 8	7 8	4.1%	0.43 [0.03, 5.98]
	Ozbudak 2008	7 15	27 60	13.4%	1.07 [0.34, 3.33]
	Pan 2011	16 18	9 17	2.4%	7.11 [1.23, 40.90]
	Seeberg 2010	12 18	9 28	5.5%	4.22 [1.20, 14.90]
Subtotal (95% CI)	95	206	37.1%	2.65 [1.53, 4.59]	
Total events	66	89			
Heterogeneity: Chi² = 7.35, df = 5 (P = 0.20); I² = 32%					
Test for overall effect: Z = 3.49 (P = 0.0005)					

Study or Subgroup	G3 Events	G3 Total	Weight	Odds Ratio M-H Fixed, 95% CI	Odds Ratio M-H Fixed, 95% CI
3.10.2 Cervical Cancer	Bachtiary 2003	8 17	2 7	3.5%	2.22 [0.33, 14.80]
	Cheng 2013	18 21	20 42	4.4%	6.60 [1.69, 25.62]
	Guo 2008	26 26	8 17	0.4%	59.24 [3.11, 1128.24]
	Hutchison 2004	9 14	12 17	9.0%	0.75 [0.17, 3.40]
	Liu 2010	8 9	9 10	2.2%	0.89 [0.05, 16.66]
	Markowska 2007	28 31	16 29	3.7%	7.58 [1.87, 30.68]
Subtotal (95% CI)	118	122	23.3%	4.29 [2.26, 8.14]	
Total events	97	67			
Heterogeneity: Chi² = 10.76, df = 5 (P = 0.06); I² = 54%					
Test for overall effect: Z = 4.46 (P < 0.00001)					

Study or Subgroup	G3 Events	G3 Total	Weight	Odds Ratio M-H Fixed, 95% CI	Odds Ratio M-H Fixed, 95% CI
3.10.3 Ovarian Cancer	Guo 2010	11 12	6 18	0.9%	22.00 [2.27, 212.86]
	Liu 2012	25 32	15 24	8.7%	2.14 [0.66, 6.95]
	Luo 2005	81 84	32 53	3.3%	17.72 [4.94, 63.54]
	Nakai 2007	6 10	13 19	8.4%	0.69 [0.14, 3.40]
	Nakayama 2002	13 22	3 17	3.2%	6.74 [1.49, 30.48]
	Osada 2007	8 10	24 32	5.3%	1.33 [0.23, 7.63]
	Shen 2013	14 16	14 19	3.7%	2.50 [0.41, 15.11]
	Su 2011	14 14	3 4	0.4%	12.43 [0.41, 374.96]
	Wang 2008	33 38	12 24	4.5%	6.60 [1.92, 22.69]
	Yu 2009	8 8	9 10	1.1%	2.68 [0.10, 75.12]
Subtotal (95% CI)	246	220	39.6%	4.52 [2.79, 7.31]	
Total events	213	131			
Heterogeneity: Chi² = 16.50, df = 9 (P = 0.06); I² = 45%					
Test for overall effect: Z = 6.13 (P < 0.00001)					

Study or Subgroup	G3 Events	G3 Total	Weight	Odds Ratio M-H Fixed, 95% CI	Odds Ratio M-H Fixed, 95% CI
	459	548	100.0%	3.77 [2.76, 5.16]	
Total events	376	287			
Heterogeneity: Chi² = 36.18, df = 21 (P = 0.02); I² = 42%					
Test for overall effect: Z = 8.32 (P < 0.00001)					
Test for subgroup differences: Not applicable					

Fig 6. Forest plot of the expression of HIF-1α in Grade 3 tissue versus that in Grade 1 tissue. (I² = 42%).

doi:10.1371/journal.pone.0127229.g006
cancer signaling pathways, including PI3K/AKT/mTOR, Notch, and Myc, to mediate tumor proliferation, invasion and migration [2, 8, 9, 16, 27, 30, 52, 57, 70].

However, the association between HIF-1α and the clinicopathologic features was not observed in subgroup analyses of “Grade 3 vs. Grade 2” in endometrial and cervical cancers. When stratified by cancer type, results of survival analysis were not statistically significant in the “endometrial and ovarian cancer” subgroup. We suggested that besides the heterogeneity of included studies, other factors related to clinicopathologic features of gynecological cancer might contribute to this inconsistency. For example, type I endometrial cancer is often characterized by

cancer signaling pathways, including PI3K/AKT/mTOR, Notch, and Myc, to mediate tumor proliferation, invasion and migration [2, 8, 9, 16, 27, 30, 52, 57, 70].

However, the association between HIF-1α and the clinicopathologic features was not observed in subgroup analyses of “Grade 3 vs. Grade 2” in endometrial and cervical cancers. When stratified by cancer type, results of survival analysis were not statistically significant in the “endometrial and ovarian cancer” subgroup. We suggested that besides the heterogeneity of included studies, other factors related to clinicopathologic features of gynecological cancer might contribute to this inconsistency. For example, type I endometrial cancer is often characterized by

Fig 7. Forest plot of the expression of HIF-1α in Grade 3 tissue versus that in Grade 2 tissue. (I² = 13%).

doi:10.1371/journal.pone.0127229.g007
mutations in tumor suppressor PTEN, while type II endometrial cancer generally contains the mutation of another tumor suppressor p53 [71–74]. In cervical cancer, the overexpression of human papillomavirus (HPV) and the loss of p53 promote tumor invasion and metastasis [75]. Thus, further studies included both HIF-1α and other factors are warranted to validate our findings, and to unravel the mechanism of carcinogenesis and progression in gynecological cancer.

Some limitations should be acknowledged. First, immunohistochemistry was a semiquantitative method, and this may affect the precision of the result. In this meta-analysis, no
subgroup survival analysis was performed for different histological subtypes. Differences in primary antibodies, immunohistochemistry staining protocols, evaluation standards, and cut-off values for high HIF-1α expression might contribute to heterogeneity. However, this meta-analysis pooled series of studies and had higher statistical power to make up for this disadvantage to some extent. Further multicenter researches using standardized and quantitative methods are encouraged. Second, this meta-analysis included studies published in between 2001 and 2014. During those 13 years, improved surgical techniques and better perioperative care were developed at more specialized centers. The time-varying therapeutic regimen would be the major source of heterogeneity in cancer-related prognosis. For example, in the survival analysis

![Fig 9. Forest plot of association between HIF-1α expression and lymph node metastasis. (I² = 71%).](doi:10.1371/journal.pone.0127229.g009)
of the “endometrial and ovarian cancer” subgroup, three studies reported postoperative adjuvant chemotherapy, fourteen studies reported postoperative adjuvant radiotherapy, while others did not provide any information about postoperative adjuvant therapy. Thus, the results of the prognosis analyses should be interpreted with caution. Third, more than half of included studies in this meta-analysis are from Asia. Because of this population bias, our results might not fully reveal the association of HIF-1α and clinicopathological characteristics of patients all over the world. Therefore, patients from a variety of countries should be studied to improve the reliability of our analysis in the near future.

Conclusions

Despite the limitations of this meta-analysis, we confirmed that HIF-1α is emerging as an important factor in the carcinogenesis of gynecological cancer. HIF-1α is associated with the malignant degree, FIGO stage, histological grade, lymph node metastasis, 5-years survival rate and recurrence rate of gynecological cancer. We expect that HIF-1α may serve as a reliable tool for early and accurate prediction of cancer and may be a potential therapeutic target for gynecological cancer.
Supporting Information

S1 PRISMA Checklist. PRISMA Checklist.

(SDOC)

S1 Table. Quality assessments of included studies.

(SDOC)

Author Contributions

Conceived and designed the experiments: YJ HLW. Performed the experiments: YJ HLW. Analyzed the data: YJ HLW XWM. Contributed reagents/materials/analysis tools: YW. Wrote the paper: YJ HLW XWM XWL XL YW.

References

1. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, et al. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003; 97(6):1573–81. Epub 2003/03/11. doi:10.1002/cncr.11246 PMID: 12627523.

2. Sivridis E, Giatromanolaki A, Gatter KC, Harris AL, Koukourakis MI, Tumor, et al. Association of hypoxia-inducible factors 1alpha and 2alpha with activated angiogenic pathways and prognosis in patients with endometrial carcinoma. Cancer. 2002; 95(5):1055–63. doi:10.1002/cncr.10774 PMID: 12209691.

3. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceedings of the National Academy of Sciences of the
15. Yu L, Wu S, Zhou L, Song W. Correlation between bacterial L-form infection, expression of HIF-1α/Bachtiary B, Schindl M, Potter R, Dreier B, Knocke TH, Hainfellner JA, et al. Overexpression of hypoxia-inducible factor-1 alpha gene polymorphisms and ovarian, cervical and endometrial cancers. Cancer detection and prevention. 2007; 31(2):102–9. Epub 2007/04/10. doi: 10.1016/j.cdp.2007.01.001 PMID: 17418979.

6. Kim YH, Park IA, Park WY, Kim JW, Kim SC, Park NH, et al. Hypoxia-inducible factor 1alpha polymorphisms and early-stage cervical cancer. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society. 2011; 21(1):2–7. Epub 2011/02/19. doi: 10.1097/IGC.0b013e318204f6e6 PMID: 21330825.

7. Siegel R, Ma J, Zou S, Jemal A. Cancer statistics, 2014. CA: a cancer journal for clinicians. 2014; 64(1):9–29. Epub 2014/01/09. doi: 10.3322/caac.21208 PMID: 24399786.

8. Birner P, Schindl M, Obermair A, Plank C, Breitenecker G, Oberhuber G. Overexpression of hypoxia-inducible factor 1alpha is a marker for an unfavorable prognosis in early-stage invasive cervical cancer. Cancer research. 2000; 60(17):4693–6. Epub 2000/09/15. PMID: 10987269.

9. Acs G, Xu X, Chu C, Acs P, Verma A. Prognostic significance of erythropoietin expression in human endometrial carcinoma. Cancer. 2004; 100(11):2376–86. Epub 2004/05/26. doi: 10.1002/cncr.20244 PMID: 15160341.

10. Birner P, Schindl M, Obermair A, Breitenecker G, Oberhuber G. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clinical cancer research: an official journal of the American Association for Cancer Research. 2001; 7(6):1661–8. Epub 2001/06/19. PMID: 11410504.

11. Seeber LM, Horree N, van der Groep P, van der Wall E, Verheijen RH, van Diest PJ. Necrosis related hypoxia-inducible Factor 1 alpha expression predicts prognosis in patients with endometrioid endometrial carcinoma. BMC cancer. 2010; 10:307. doi: 10.1186/1471-2407-10-307 PMID: 20585904; PubMed Central PMCID: PMC2909981.

12. Bachtiary B, Schindl M, Potter R, Dreier B, Knocke TH, Hainfellner JA, et al. Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2003; 9(6):2234–40. PMID: 12796391.

13. Shimogai R, Kigawa J, Itamochi H, Iba T, Kanamori Y, Oishi T, et al. Expression of hypoxia-inducible factor 1alpha gene affects the outcome in patients with ovarian cancer. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society. 2008; 18(3):499–505. Epub 2008/05/15. doi: 10.1111/j.1525-1438.2007.01055.x PMID: 18476949.

14. Daponte A, Ioannou M, Mylonis I, Simos G, Minas M, Messinis IE, et al. Prognostic significance of Hypoxia-Inducible Factor 1 alpha(HIF-1 alpha) expression in serous ovarian cancer: an immunohistochemical study. BMC cancer. 2008; 8:335. Epub 2008/11/19. doi: 10.1186/1471-2407-8-335 PMID: 19014607; PubMed Central PMCID: PMC2651893.

15. Yu L, Wu S, Zhou L, Song W. Correlation between bacterial L-form infection, expression of HIF-1α/α and vasculogenic mimicry in epithelial ovarian cancer. Sheng li xue bao: [Acta physiologica Sinica]. 2012; 64(6):657–65. Epub 2012/12/22. PMID: 23258329.

16. Osada R, Horuchi A, Kikuchi N, Yoshida J, Hayashi A, Ota M, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Human pathology. 2007; 38(9):1310–20. Epub 2007/06/09. doi: 10.1016/j.humpath.2007.02.010 PMID: 17555795.

17. Shen Y, Zhang XY, Shi YQ, Wang Y, Guo DH. Significance of Glut-1, HIF-1 and PS3 expression in ovarian cancer. Journal of Tianjin Medical University. 2013;(05):383–6.437.

18. Su M, Zhang Y, Huang H. Expression of HIF-1alpha and MMP-2 in vasculogenic mimicry of ovarian cancer. Current Advances In Obstetrics and Gynecology. 2011; 20(2):83–7. PMID: 21456215.

19. Shang X, Zhang CY, Zhang L, Lu YB. Expression and significance of hypoxia-inducible factor-1α and glucose transporter protein-1 in epithelial ovarian tumor. Chinese Clinical Oncology. 2009;(03):207–11.

20. Liu LX, Liu GM, Sun YH, He XP. Analysis of the Relationship between HIF-1α gene Expression and Drug Resistance of Chemotherapy in Ovarian Cancer. Progress in Modern Biomedicine. 2012; (02):276–9.
Chen Y, Zhang L, Liu X. The expression and clinical significance of semaphorin4D, hypoxia-inducible factor-1α and vascular endothelial growth factor in ovarian epithelial cancer. Chinese Journal of Obstetrics and Gynecology. 2011; 46(10):786–8. PMID: CSCD:4352401.

Fu L, Feng W, Zhao YH, Wang AH, Wang BB, Yang LX, et al. Expression and significance of hypoxia inducible factor-1α in ovarian epithelial cancer Chin J Lab Diagn. 2008;(11):1373–5.

Guo LL, Liu ZQ, Zhang LP, Guo GL. Expression and clinical significance of human leucocyte antigen α and vascular endothelial growth factor in ovarian epithelial cancer. JOURNAL OF HAINAN MEDICAL UNIVERSITY. 2010;(04):421–4.8.

Nakai H, Watanabe Y, Ueda H, Hoshiai H. Hypoxia-inducible factor-1α expression as a factor predictive of efficacy of taxane/platinum chemotherapy in advanced primary epithelial ovarian cancer. Cancer letters. 2007; 251(1):164–7. Epub 2007/01/12. doi: 10.1016/j.canlet.2006.11.017 PMID: 17215078.

Li GL, Wang Z, Han RF. Expression of Mitogen Activated Protein Kinase p38 and Hypoxia-inducible Factor-1α and Vascular Endothelial Growth Factor Is Related to Poor Prognosis in Ovarian Epithelial Cancer. Int J Mol Sci. 2012; 13(10):2724–72. Epub 2012/09/11. doi: 10.3390/ijms13102724 PMID: WOS:000310677600003.

Li SY, Yang WW, Wen QT, Xu L, Meng HM, Chen M, et al. Expression and significance of HIF-1α and PTEN in epithelial ovarian cancer and their correlation. Chinese Journal of Clinical and Experimental Pathology. 2009; 25(4):361–6. PMID: CSCD:3735660.

Luo J, Peng Z, Yang K, Wang H, Yang H, Dong D, et al. Relation between the expression of hypoxia-inducible factor-1α and angiogenesis in ovarian cancer using tissue microarray. Zhonghua fu chan ke za zhi. 2005; 40(1):38–41. Epub 2005/03/19. PMID: 15774091.

Wang XC, Li XY, Li SQ. Expression of HIF-1α and VEGF and Their Relationship in Ovarian Neoplasms. Chin J Misdiagn. 2008;(20):4795–7.

Li SY, Yang WW, Wen QT, Xu L, Meng HM, Chen M, et al. Expression and significance of HIF-1α and PTEN in epithelial ovarian cancer and their correlation. Chinese Journal of Clinical and Experimental Pathology. 2009; 25(4):361–3. PMID: CSCD:3735660.

Tong XG, Xu HM, Liu YP, Hou KZ. Role of Hypoxia-inducible Factor-1alpha(HIF-1alpha) and Angiogenic Factors in Peritoneal Metastases and Prognosis of Advanced Serous Ovarian Cancer. Chinese Journal of Clinical Oncology. 2008; 35(5):272–6. PMID: CSCD:3233120.

Miyazawa M, Yasuda M, Fujita M, Osamura RY, Hirabayashi K, et al. Hypoxic status in ovarian serous and mucinous tumors: relationship between histological characteristics and HIF-1α/GLUT-1 expression. Archives of gynecology and obstetrics. 2008; 277(6):539–46. doi: 10.1007/s00404-007-0500-8 PMID: 18026874.

Chen Y, Zhang L, Liu X, Tong XG, Xu HM, Liu YP, Hou KZ. Role of Hypoxia-inducible Factor-1alpha (HIF-1α) and Vascular Endothelial Growth Factor in Ovarian Cancer. Clinical Medical Engineering. 2011;(04):507–9.

Li SY, Yang WW, Wen QT, Xu L, Meng HM, Chen M, et al. Expression and significance of HIF-1α and PTEN in epithelial ovarian cancer and their correlation. Chinese Journal of Clinical and Experimental Pathology. 2009; 25(4):361–3. PMID: CSCD:3735660.

Wong C, Wellman TL, Lounsbury KM. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecologic oncology. 2003; 91(3):513–7. Epub 2003/12/17. PMID: 14675669.

Cheng Y, Chen G, Hong L, Zhou L, Hu M, Li B, et al. How does hypoxia-inducible factor-1α participate in enhancing the glycolysis activity in cervical cancer? Annals of diagnostic pathology. 2013; 17(3):305–11. doi: 10.1016/j.anndiagpath.2012.12.002 PMID: 23375385.

Kim BW, Cho H, Chung JY, Conway C, Yiaya K, Kim JH, et al. Prognostic assessment of hypoxia and metabolic markers in cervical cancer using automated digital image analysis of immunohistochemistry. Journal of translational medicine. 2013; 11:185. doi: 10.1186/1479-5876-11-185 PMID: 23927384; PubMed Central PMCID: PMC3750663.

Huang M, Chen Q, Xiao J, Yao T, Bian L, Liu C, et al. Overexpression of hypoxia-inducible factor-1alpha is a predictor of poor prognosis in cervical cancer: a clinicopathologic study and a meta-analysis.
41. Li N, Sun Y, Yu Q. Expression of HIF-1α in cervical carcinoma tissues. Chinese Journal of Diagnostic Pathology. 2010; 17(3):209–11.

42. Guo K-j, Xue H, Zhang Y. Expression and Significance of HIF-1α in cervical carcinoma. Journal of China Medical University. 2008; 37(2):237–9.

43. Liu M, Sun Y, Han SP, Zhao WB, Zheng CX, Wu J. Expression and Role of HIF-1α and VEGF in Cervical Cancer. Chinese Journal of Clinical Oncology. 2008; 35(16):925–8.

44. Zhang Lj, Zhang Sl, Lu Ym. The expression of hypoxia inducible factor-1α and glucose transporter-1 in cervical cancer and their associations with carcinogenesis. Journal of China Medical University. 2009; 38(2):136–8.

45. Acs G, Zhang Pj, McGrath Cm, Acs P, McBroom J, Mohyeldin A, et al. Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. The American journal of pathology, 2003; 162(6):1789–906. doi: 10.1016/S0006-8845(03)02706-5. PMID: 12759237; PubMed Central PMCID: PMC1868129.

46. Hutchison GJ, Valentine HR, Loncaster JA, Davidson SE, Hunter RD, Roberts SA, et al. Hypoxia-inducible factor 1α expression as an intrinsic marker of hypoxia: correlation with tumor oxygen, pimonidazole measurements, and outcome in locally advanced carcinoma of the cervix. Clinical cancer research: an official journal of the American Association for Cancer Research. 2004; 10(24):8405–12. Epub 2004/12/30. doi: 10.1158/1078-0432.ccr-03-0135 PMID: 15623619.

47. No JH, Jo H, Kim SH, Park IA, Kang D, Han SS, et al. Expression of vascular endothelial growth factor and hypoxia inducible factor-1α in cervical neoplasia. Annals of the New York Academy of Sciences. 2009; 1171:105–10. doi: 10.1111/j.1749-6632.2009.04891.x PMID: 19723043.

48. Ishikawa H, Sakurai H, Hasegawa M, Mitsuhashi N, Takahashi M, Masuda N, et al. Expression of hypoxic-inducible factor 1α predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma. International journal of radiation oncology, biology, physics. 2004; 60(2):513–21. doi: 10.1016/j.ijrobp.2004.03.025 PMID: 15380586.

49. Haugland HK, Vukovic V, Pintilie M, Fyles AW, Milosevic M, Hill RP, et al. Expression of hypoxia-inducible factor-1α in cervical carcinomas: correlation with tumor oxygenation. International journal of radiation oncology, biology, physics, 2002; 53(4):585–61. PMID: 12095550.

50. Burri P, Djonov V, Aebersold DM, Lindel K, Studer U, Altermatt HJ, et al. Significant correlation of hypoxia-inducible factor-1α with treatment outcome in cervical cancer treated with radical radiotherapy. International journal of radiation oncology, biology, physics. 2003; 56(2):494–501. Epub 2003/05/10. PMID: 12738326.

51. Markowska J, Grabowski JP, Tomaszewksa K, Kojis Z, Pudelek J, Skrzypczak M, et al. Significance of hypoxia in uterine cervical cancer. Multicentre study. European journal of gynaecological oncology. 2007; 28(5):386–8. PMID: 17966218.

52. Ozbudak IH, Karaveli S, Simsek T, Erdogan G, Pesterelli E. Neoangiogenesis and expression of hypoxia-inducible factor 1α, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecologic oncology. 2008; 108(3):603–8. doi: 10.1016/j.ygyno.2007.11.028 PMID: 18191183.

53. Feng Z, Gan H, Cai Z, Li N, Yang Z, Lu G, et al. Aberrant expression of hypoxia-inducible factor 1α, TWIST and E-cadherin is associated with aggressive tumor phenotypes in endometrial endometrioid carcinoma. Japanese journal of clinical oncology. 2013; 43(4):396–403. doi: 10.1093/jjco/hys237. PMID: 23372184.

54. Espinosa I, Jose Carinier M, Catasus L, Canet B, D’Angelo E, Zannoni GF, et al. Myometrial invasion and lymph node metastasis in endometrioid carcinomas: tumor-associated macrophages, microvesSEL density, and HIF1α have a crucial role. The American journal of surgical pathology. 2010; 34(11):1708–14. Epub 2010/10/22. doi: 10.1097/PAS.0b013e3181f32168 PMID: 20962622.

55. Pijnenborg JM, Wijnakker M, Haglestein J, Delvoux B, Groothuis PG. Hypoxia contributes to development of recurrent endometrial carcinoma. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society. 2007; 17(4):897–904. doi: 10.1111/j.1525-1438.2007.00893.x PMID: 17359291.
56. Pansare V, Munkarah AR, Schimp V, Haitham Arabi M, Saed GM, Morris RT, et al. Increased expression of hypoxia-inducible factor 1alpha in type I and type II endometrial carcinomas. Modern pathology: an official journal of the United States and Canadian Academy of Pathology. Inc. 2007; 20(1):35–43. doi: 10.1038/modpathol.3800718 PMID: 17099695.

57. Horree N, van Diest PJ, van der Groep P, Sie-Go DM, Heintz AP. Hypoxia and angiogenesis in endometrioid endometrial carcinogenesis. Cellular oncology: the official journal of the International Society for Cellular Oncology. 2007; 29(3):219–27. Epub 2007/04/25. PMID: 17452774.

58. Koda M, Sulkowska M, Wincewicz A, Kanczuga-Koda L, Musiatowicz B, Szymanska M, et al. Expression of leptin, leptin receptor, and hypoxia-inducible factor 1 alpha in human endometrial cancer. Annals of the New York Academy of Sciences. 2007; 1095:90–8. doi: 10.1196/annals.1397.013 PMID: 17404022.

59. Aybatli A, Sayin C, Kaplan PB, Varol F, Altaner S, Sut N. The investigation of tumoral angiogenesis with HIF-1 alpha and microvessel density in women with endometrium cancer. Journal of the Turkish German Gynecological Association. 2012; 13(1):37–44. doi: 10.5152/jggga.2012.02 PMID: 24627673; PubMed Central PMCID: PMC3940222.

60. Yeramian A, Santacana M, Sorolla A, Encinas M, Velasco A, et al. Nuclear factor-kappaB2/p100 promotes endometrial carcinoma cell survival under hypoxia in a HIF-1alpha independent manner. Laboratory investigation: a journal of technical methods and pathology. 2011; 91(6):859–71. doi: 10.1038/labinvest.2011.58 PMID: 21537326.

61. Li XL, Zhong XJ, Deng YL. P38MAPK regulation of HIF-1 alpha on the growth of endometrial carcinoma. Annals of the New York Academy of Sciences. 2007; 1095:90–8. doi: 10.1196/annals.1397.013 PMID: 17404022.

62. Zhai L, Liu YD, Dai M. Relationship between expressions of PTEN and HIF-1 alpha in ovarian endometrioid endometrial carcinogenesis. Cellular oncology: the official journal of the International Society for Cellular Oncology. 2007; 29(3):219–27. Epub 2007/04/25. PMID: 17452774.

63. Munoz-Guerra MF, Fernandez-Contreras ME, Moreno AL, Martin ID, Herraez B, Gamallo C. Polymorphisms in the hypoxia inducible factor 1-alpha and the impact on the prognosis of early stages of oral cancer. Annals of surgical oncology. 2009; 16(8):2351–9. doi: 10.1245/s10434-009-0503-8 PMID: 19449077.

64. Shieh TM, Chang KW, Tu HF, Shih YH, Ko SY, Chen YC, et al. Association between the polymorphisms in exon 12 of hypoxia-inducible factor-1alpha and the clinicopathological features of oral squamous cell carcinoma. Oral oncology. 2010; 46(6):e47–53. Epub 2010/07/27. doi: 10.1016/j.oraloncology.2010.04.009 PMID: 20656543.

65. Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, et al. Hypoxia-inducible factor-1alpha in gynecological cancer. Critical reviews in oncology/hematology. 2011; 78(3):173–84. Epub 2010/07/16. doi: 10.1016/j.critrevonc.2010.05.003 PMID: 20627616.

66. Lee S, Garner EI, Welch WR, Berkowitz RS, Mok SC. Over-expression of hypoxia-inducible factor 1alpha in ovarian clear cell carcinoma. Gynecologic oncology. 2007; 106(2):311–7. Epub 2007/05/29. doi: 10.1016/j.ygyno.2007.03.041 PMID: 17532031; PubMed Central PMCID: PMC31995602.

67. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer research. 1999; 59(22):5830–5. Epub 1999/12/03. PMID: 10582706.

68. Risinger JI, Hayes AK, Berchuck A, Barrett JC. PTEN/MMAC1 mutations in endometrial cancer. Cancer research. 1997; 57(21):4736–8. Epub 1997/11/14. PMID: 9354433.

69. Kong D, Suzuki A, Zou TT, Sakurada A, Kemp LW, Wakatsuki S, et al. PTEN1 is frequently mutated in primary endometrial carcinomas. Nature genetics. 1997; 17(2):143–4. Epub 1997/11/05. doi: 10.1038/ng1097-143 PMID: 9326929.

70. Cohn DE, Basil JB, Venegoni AR, Mutch DG, Rader JS, Herzog TJ, et al. Absence of PTEN repeat tract mutation in endometrial cancers with microsatellite instability. Gynecologic oncology. 2000; 79(1):101–6. Epub 2000/09/28. doi: 10.1006/gyno.2000.5900 PMID: 11006040.
75. Tang X, Zhang Q, Nishitani J, Brown J, Shi S, Le AD. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clinical cancer research: an official journal of the American Association for Cancer Research. 2007; 13(9):2568–76. Epub 2007/05/03. doi: 10.1158/1078-0432.ccr-06-2704 PMID: 17473185.