Supporting Information

Six-Coordinate Zinc Porphyrins for Template-Directed Synthesis of Spiro-Fused Nanorings

Ludovic Favereau,† Arjen Cnossen,‡ Julien B. Kelber,† Juliane Q. Gong,‡ René M. Oetterli,† Jonathan Cremers,† Laura M. Herz,‡ and Harry L. Anderson*†
† Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA
‡ Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU
* harry.anderson@chem.ox.ac.uk

Table of Contents

A. General methods S2
B. Synthetic procedures S2
C. Characterization of spiro-nanoring-template complexes (spectra & analysis) S8
 C1. Characterization of s-P11·(T6)$_2$: NMR analysis and Mass Spectra S8
 C2. Characterization of sEt-P11·(T6)$_2$: NMR analysis and Mass Spectra S14
D. UV-Vis-NIR titrations S18
 D1. Determination of K_1 values by titration of xEt-P5·T3, x-P5·T3 and l-P3$_{Zn3}$ with pyridine S18
 D1a. Break-up titration of x-P5·T3 with pyridine S20
 D1b. Break-up titration of xEt-P5·T3 with pyridine S21
 D1c. Break-up titration of l-P3$_{Zn3}$·T3 with pyridine S22
 D2. Determination of K_2 values by titration of xEt-P5 and x-P5 with T3 and K_1 value by titration of l-P3$_{ZnH2Zn}$ with T3 S23
 D2a. Binding of x-P5 with T3 S24
 D2b. Binding of xEt-P5 with T3 S25
 D2c. Binding of l-P3$_{ZnH2Zn}$ with T3 S26
 D3. Break-up titrations of spiro-nanoring s-P11·(T6)$_2$ and sEt-P11·(T6)$_2$ S27
 D3a. Break-up titration of s-P11·(T6)$_2$ with quinuclidine S28
 D3b. Break-up titration of sEt-P11·(T6)$_2$ with quinuclidine S29
 D4. Statistical factors S30
E. Spectra confirming purity and identity of new compounds S33
F. Photoluminescence Upconversion Spectroscopy S38
G. Anisotropy Modeling S39
H. References S40
A. General Methods

All reagents were purchased from commercial sources and solvents were used as supplied unless otherwise noted. Dry solvents (CHCl₃, CH₂Cl₂ and toluene) were obtained by passing through alumina under N₂. Diisopropylamine (DIPA) was dried over calcium hydride, distilled and stored under N₂ over molecular sieves.

NMR data were recorded at 500 MHz using a Bruker AVII500 (with cryoprobe) or DRX500, or at 400 MHz using a Bruker AVIII400 or AVIII400, or at 700 MHz using a Bruker AVIII700 (with cryoprobe) at 298 K. Chemical shifts are quoted as parts per million (ppm) relative to residual CHCl₃ (δH 7.27 ppm for ¹H NMR and at δC 77.2 ppm for ¹³C NMR) and coupling constants (J) are reported in Hertz. MALDI-ToF spectra were measured at the EPSRC National Mass Spectrometry service (Swansea) using the Applied Biosystems Voyager DE-STR or at the University of Oxford using Waters MALDI Micro MX spectrometer (with trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as matrix). UV/vis/NIR absorbance measurements were recorded at 25 °C with a Perkin-Elmer Lambda 20 photospectrometer using quartz 1 cm cuvettes. UV/vis/NIR titrations were analyzed by calculating the difference in absorptions and plotted using Origin™ software or fitted to models using SPECFIT™ software. Size exclusion chromatography (SEC) was carried out using Bio-Beads S-X1, 200–400 mesh (BioRad). Analytical and semi-preparative GPC were carried out on Shimadzu Recycling GPC system equipped with LC-20 AD pump, SPD-M20A UV detector and a set of JAIGEL 3H (20 × 600 mm) and JAIGEL 4H (20 × 600 mm) columns in toluene/1% pyridine as eluent at a flow rate of 3.5 mL/min.

B. Synthetic procedures

Tetra-(TIPS-acetylene) zinc octaethylporphyrin (TIPS)₄αEt-P₁, tetra-(TMS-acetylene) zinc porphyrin (TMS)₄α-P₁, porphyrin monomer P₁ and template T₆ were prepared using previously reported procedures. The synthesis of linear trimer l-P₃THS, cross pentamers xEt-P₅ and x-P₅ are summarized in Scheme S1.

Scheme S1. Syntheses of linear trimer l-P₃THS, cross pentamers xEt-P₅ and x-P₅. CPDIPS = cyanopropyldiisopropylsilyl. Ar = 3,5-bis(trihexylsilyl)phenyl.
Preparation of \(l\)-P3\(_{THS}\)

Mono-deprotected monomer \(P1a\) (1.01 g, 0.54 mmol) and bis-deprotected \(P1b\) (153 mg, 0.09 mmol) were dissolved in toluene (15 mL). Then a catalyst solution of Pd(PPh\(_3\))Cl\(_2\) (6.3 mg, 9.0 \(\mu\)mol), Cul (8.5 mg, 0.05 mmol) and 1,4-benzoquinone (19.4 mg, 0.18 mmol) in a mixture of toluene (7 mL) and distilled DIPA (7 mL) was added and the reaction mixture was stirred at room temperature for 1 h. The solution was passed through a short silica plug (100:1 CH\(_2\)Cl\(_2\):pyridine). The crude mixture was purified by column chromatography (4:1 / 40–60 petrol ether: CH\(_2\)Cl\(_2\)) and size-exclusion chromatography (BioBeads SX-1, toluene) before precipitated using CH\(_2\)Cl\(_2\)/MeOH to yield \(l\)-P3\(_{THS}\) (212 mg, 43%) as a dark green solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\), 298 K): \(\delta_H\) (ppm) 9.99 (d, \(J = 4.4\) Hz, 8H), 9.74 (d, \(J = 4.4\) Hz, 4H), 9.06 (d, \(J = 4.6\) Hz, 4H), 9.04 (d, \(J = 4.6\) Hz, 4H), 8.98 (d, \(J = 4.5\) Hz, 4H), 8.38 (s, 4H), 8.32 (s, 8H), 8.08 (s, 2H), 8.06 (s, 4H), 2.59 (t, \(J = 6.9\) Hz, 4H), 2.28–2.20 (m, 4H), 1.60–1.49 (m, 72H), 1.50–1.39 (m, 96H), 1.39–1.29 (m, 144H), 1.25–1.19 (m, 8H), 1.04–0.95 (m, 72H), 0.95–0.87 (m, 108H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\), 298 K): \(\delta_C\) (ppm) 152.3, 152.4, 151.0, 150.8, 150.6, 140.8, 140.5, 140.3, 140.2, 139.5, 135.4, 135.3, 133.6, 133.4, 131.3, 131.2, 125.2, 124.8, 119.8, 110.2, 101.8, 101.0, 100.5, 97.5, 87.7, 87.5, 82.9, 82.7, 33.7, 33.7, 31.8, 31.8, 24.2, 24.2, 22.9, 22.8, 21.8, 21.2, 18.8, 18.5, 14.4, 14.3, 12.8, 12.5, 10.3.

MALDI-TOF: \(m/z = 5486\) (C\(_{344}H_{556}N_{14}Si_{14}Zn_3\), \(M^+\) requires 5467).

\(\lambda_{\text{max}}\) (CHCl\(_3\) / nm (log \(\varepsilon\))): 453 (5.64), 491 (5.35), 579 (4.48), 663 (4.60), 722 (5.17).

Cross pentamer synthesis: Due to solubility and stability issues, fully deprotected compounds \(x\)-Et-P1a and \(x\)-P1a from (TIPS)\(_4\)Et-P1 and (TMS)\(_4\)P1 were not isolated but directly engaged in reaction after a short silica plug (see text below).

Preparation of Cross Pentamer \(x\)-Et-P5

To a solution of (TIPS)\(_4\)Et-P1 (26 mg, 20 \(\mu\)mol) in CH\(_2\)Cl\(_2\) (4 mL) and pyridine (0.1 mL) was added TBAF (0.2 mL, 1.0 M solution in THF, 0.2 mmol). The solution was stirred at room temperature for 1 h and subsequently passed through a short silica plug (100:1 CH\(_2\)Cl\(_2\):pyridine). The solution was not concentrated but directly added to a solution of mono-deprotected monomer (459 mg, 0.24 mmol) in CH\(_2\)Cl\(_2\). The total solvent volume was adjusted to 25 mL by addition of CH\(_2\)Cl\(_2\). Then, dry DIPA (5 mL), Pd(PPh\(_3\))Cl\(_2\) (18 mg, 26 \(\mu\)mol), Cul (25 mg, 0.13 mmol) and 1,4-benzoquinone (56 mg, 0.52 mmol) were added and the reaction mixture was stirred at room temperature for 3 h. The solution was then passed through a short silica plug (100:1 CH\(_2\)Cl\(_2\):pyridine). The crude product was purified by column chromatography (3:1 40–60 petrol ether:CH\(_2\)Cl\(_2\) + 1% pyridine) and size-exclusion chromatography (BioBeads SX-1, toluene) before precipitated using CH\(_2\)Cl\(_2\)/MeOH to yield \(x\)-Et-P5 (124 mg, 75%) as a brown solid.

\(^1\)H NMR (500 MHz, CDCl\(_3\) + 1% pyridine-d5, 298 K): \(\delta_H\) (ppm) 9.80 (d, \(J = 4.5\) Hz, 8H), 9.66 (d, \(J = 4.5\) Hz, 8H), 8.94 (d, \(J = 4.5\) Hz, 8H), 8.88 (d, \(J = 4.4\) Hz, 8H), 8.27 (s, 16H), 8.03 (s, 8H), 4.50–4.23 (m, 16H), 2.59 (t, \(J = 6.8\) Hz, 8H), 2.28–2.20 (m, 8H), 2.13 (t, \(J = 7.2\) Hz, 24H), 1.59–1.50 (m, 96H), 1.51–1.39 (m, 144H), 1.39–1.29 (m, 192H), 1.23–1.18 (m, 16H), 1.01–0.94 (m, 96H), 0.94–0.87 (m, 144H).

\(^{13}\)C NMR (125 MHz, CDCl\(_3\) + 1% pyridine-d5, 298 K): \(\delta_C\) (ppm) 152.8, 152.4, 150.8, 150.5, 148.4, 146.2, 140.8, 140.4, 139.3, 134.9, 133.3, 133.0, 130.8, 130.6, 124.6, 119.9, 111.1, 101.1, 100.1, 100.0,
96.7, 96.5, 94.9, 87.0, 82.5, 33.7, 31.8, 24.2, 22.8, 21.9 (broad), 21.8, 21.2, 18.8, 18.5, 17.3, 14.3, 12.9, 12.5, 10.4.

MALDI-TOF: \(m/z = 8231 \) (C\(_{516}\)H\(_{800}\)N\(_{24}\)Si\(_{20}\)Zn\(_{5}\), \(M^+ \) requires 8214).

\(\lambda_{\text{max}} \) (CHCl\(_3\)) / nm (log \(\varepsilon \)): 441 (5.93), 550 (5.31), 667 (5.51), 818 (5.32).

Preparation of Cross Pentamer \(x\)-P5

To a solution of \((\text{TMS})_4 x\)-P1 (17 mg, 16 \(\mu \)mol) in CH\(_2\)Cl\(_2\) (4 mL) and pyridine (0.1 mL) was added TBAF (0.2 mL, 1.0 M solution in THF, 0.2 mmol). The solution was stirred at room temperature for 1 h and subsequently passed through a short silica plug (100:1 CH\(_2\)Cl\(_2\):pyridine). The solution was not concentrated but directly added to a solution of mono-deprotected monomer (360 mg, 0.19 mmol) in CH\(_2\)Cl\(_2\). The total solvent volume was adjusted to 10 mL by addition of CH\(_2\)Cl\(_2\). Then, dry DIPA (2 mL), Pd(PPh\(_3\))\(_2\)Cl\(_2\) (3.6 mg, 5.1 \(\mu \)mol), CuI (1.2 mg, 6.4 \(\mu \)mol) and 1,4-benzoquinone (2.8 mg, 26 \(\mu \)mol) were added and the reaction mixture was stirred at room temperature for 2 h. The solution was then passed through a short silica plug (3:1 40–60 petrol ether:CH\(_2\)Cl\(_2\)+1% pyridine), purified by size-exclusion chromatography (BioBeads SX-1, toluene) before precipitated using CH\(_2\)Cl\(_2\)/MeOH to yield \(x\)-P5 (19 mg, 15%) as a brown solid.

\(^1\)H NMR (400 MHz, CDCl\(_3\), 298 K): \(\delta_H \) (ppm) 10.05 (s, 8H), 10.03 (d, \(J = 4.6 \) Hz, 8H), 9.73 (d, \(J = 4.6 \) Hz, 8H), 9.05 (d, \(J = 4.6 \) Hz, 8H), 8.97 (d, \(J = 4.6 \) Hz, 8H), 8.31 (s, 16H), 8.01 (s, 8H), 2.57 (t, \(J = 6.8 \) Hz, 8H), 2.27–2.18 (m, 8H), 1.55–1.47 (m, 96H), 1.43–1.35 (m, 144H), 1.34–1.24 (m, 192H) 1.23–1.16 (m, 16H), 0.98–0.91 (m, 96H), 0.91–0.83 (t, \(J = 7.0 \) Hz, 144H).

\(^{13}\)C NMR (100 MHz, CDCl\(_3\), 298 K): \(\delta_C \) (ppm) 153.3, 152.4, 151.0, 150.7, 140.6, 140.2, 139.5, 135.3, 133.8, 133.4, 132.7, 131.2, 124.8, 119.8, 111.1, 110.1, 103.4, 102.0, 99.9, 97.6, 88.2, 86.4, 83.5, 82.3, 65.2, 33.7, 31.8, 24.2, 22.8, 21.8, 21.2, 18.8, 18.5, 14.3, 12.8, 12.4, 10.3.

MALDI-TOF: \(m/z = 7941 \) (C\(_{500}\)H\(_{768}\)N\(_{24}\)Si\(_{20}\)Zn\(_{5}\), \(M^+ \) requires 7989).

\(\lambda_{\text{max}} \) (CHCl\(_3\)) / nm (log \(\varepsilon \)): 438 (5.86), 518 (5.50), 582 (4.89), 635 (5.36), 742 (5.35).

Figure S1. Extinction coefficient (\(\varepsilon \)) spectra of \(l\)-P3\(_{\text{TMS}}\) (black), \(x\)-P5 (blue) and \(x\)Et-P5 (red) in CHCl\(_3\) solution (298 K).
Preparation of sEt-P11·(T6)$_2$

Full deprotection of trimer \textit{l}-P3$_{\text{THS}}$ (28 mg, 5.1 µmol) was carried out in CH$_2$Cl$_2$ (10 mL) using TBAF (0.3 mmol, 0.3 mL, 1.0 M solution in THF). Full deprotection of cross pentamer xEt-P5 (7.0 mg, 0.85 µmol) was realized following the same procedure, in CH$_2$Cl$_2$ (5 mL) using TBAF (50 µmol, 0.05 mL, 1.0 M solution in THF). Both crude mixtures were passed through a short silica plug (CHC$_3$), mixed together and concentrated to 4 mL. Then, hexadentate template T6 (3.4 mg, 3.4 µmol) was added and the resulting mixture was sonicated for 0.5 h. A catalyst solution was prepared by dissolving Pd(PPh$_3$)$_2$Cl$_2$ (0.5 mg, 0.7 µmol), Cul (0.7 mg, 3.4 µmol) and 1,4-benzoquinone (1.4 mg, 13 µmol) in dry CHC$_3$ (1 mL) and freshly distilled DIPA (1 mL). This solution was added to the reaction mixture, which was stirred vigorously at room temperature for 2 h. The crude reaction solution was first passed through a plug of silica using (1:1 40–60 petrol ether:CH$_2$Cl$_2$), then over a size exclusion column on Biobeads SX-1 (toluene, 1% pyridine) and finally through recycling GPC (toluene, 1% pyridine). Fraction contained the desired product was further purified by column chromatography (95:5 40–60 petrol ether: CH$_2$Cl$_2$ + 1% pyridine) before precipitated using CH$_2$Cl$_2$/MeOH to yield sEt-P11·(T6)$_2$ as a brown solid (3.8 mg, 23%).

1H NMR (500 MHz, CDCl$_3$, 298 K): δ$_H$ (ppm) 9.56 (d, $J = 4.6$ Hz, 8H), 9.55–9.49 (m, 24H), 9.44 (d, $J = 4.5$ Hz, 8H), 8.77–8.68 (m, 40H), 8.35–8.24 (m, 20H), 8.03–7.94 (m, 40H), 5.75 (d, $J = 8.4$ Hz, 4H), 5.67 (d, $J = 9.1$ Hz, 4H), 5.61 (d, $J = 7.2$ Hz, 8H), 5.57 (d, $J = 8.4$ Hz, 8H), 5.53 (d, $J = 7.4$ Hz, 8H), 5.48–5.40 (m, 16H), 5.09 (d, $J = 6.0$ Hz, 10H), 4.99 (d, $J = 6.7$ Hz, 4H), 4.96 (d, $J = 5.7$ Hz, 8H), 4.45 (br s, 8H), 4.39–4.33 (m, 4H), 3.94 (br s, 8H), 2.41–2.37 (m, 10H), 2.36 (d, $J = 6.7$ Hz, 10H), 1.93 (br t, $J = 6.7$ Hz, 24H), 1.54–1.42 (m, 240H), 1.41–1.19 (m, 720H), 0.98–0.76 (m, 600H).

MALDI-TOF: $m/z = 19702$ (sEt-P11·(T6)$_2$), C$_{1268}$H$_{1836}$N$_{56}$Si$_{40}$Zn$_{11}$, M^+ requires 19672).

λ$_{\text{max}}$ (CHC$_3$) / nm (log ε): 438 (5.67), 486 (5.91), 729 (5.36), 797 (5.59), 837 (5.78), 880 (5.82), 971 (4.71).

Preparation of s-P11·(T6)$_2$

Full deprotection of trimer \textit{l}-P3$_{\text{THS}}$ (33 mg, 6.0 µmol) was carried out in CH$_2$Cl$_2$ (10 mL) using TBAF (0.36 mmol, 0.36 mL, 1.0 M solution in THF). Full deprotection of cross pentamer x-P5 (8 mg, 1.0 µmol) was realized following the same procedure, in CH$_2$Cl$_2$ (5 mL) using TBAF (60 µmol, 0.06 mL, 1.0 M solution in THF). Both crude mixtures were passed through a short silica plug (CHC$_3$), mixed together and concentrated to 4 mL. Then, hexadentate template T6 (4.0 mg, 4.0 µmol) was added and the resulting mixture was sonicated for 0.5 h. A catalyst solution was prepared by dissolving Pd(PPh$_3$)$_2$Cl$_2$ (0.6 mg, 0.8 µmol), Cul (0.8 mg, 4.0 µmol) and 1,4-benzoquinone (1.7 mg, 16 µmol) in dry CHC$_3$ (1 mL) and freshly distilled DIPA (1 mL). This solution was added to the reaction mixture, which was stirred vigorously at room temperature for 2 h. The crude reaction solution was first passed through a plug of silica using (1:1 40–60 petrol ether:CH$_2$Cl$_2$), then over a size exclusion column on Biobeads SX-1 (toluene, 1% pyridine) and finally through recycling GPC (toluene, 1% pyridine). Fraction contained the desired product was further purified by column chromatography (95:5 40–60 petrol ether: CH$_2$Cl$_2$ + 1% pyridine) before precipitated using CH$_2$Cl$_2$/MeOH to yield s-P11·(T6)$_2$ as a brown solid (2.5 mg, 15%).

1H NMR (500 MHz, CDCl$_3$, 298 K): δ$_H$ (ppm) 9.58 (d, $J = 4.5$ Hz, 8H), 9.57 (d, $J = 4.5$ Hz, 8H), 9.55–9.51 (m, 24H), 9.30 (s, 8H), 8.80 (d, $J = 4.6$ Hz, 8H), 8.75 (d, $J = 4.5$ Hz, 8.73–8.68 (m, 24H), 8.33–8.26 (m, 20H), 8.08 (bs, 8H), 8.03–7.93 (m, 32H), 5.58–5.50 (m, 24H), 5.50–5.46 (m, 12H), 5.46–5.39
(m, 12H), 5.03 (bd, J = 6.1 Hz, 8H), 4.98 (d, J = 6.2 Hz, 12H), 4.94 (d, J = 6.8 Hz, 4H), 2.74–2.65 (m, 4H), 2.45–2.35 (m, 20H), 1.54–1.18 (m, 960H), 1.00–0.84 (m, 456H), 0.83–0.76 (m, 144H).

MALDI-TOF: m/z = 19486 (s-P11·(T6)2, C_{1252}H_{1804}N_{56}Si_{40}Zn_{11}, M^+ requires 19449); m/z = 18485 (s-P11·T6, C_{1198}H_{1756}N_{50}Si_{40}Zn_{11}, M^+ requires 18452); m/z = 17481 (s-P11, C_{1108}H_{1708}N_{44}Si_{40}Zn_{11}, M^+ requires 17456).

λ_{max} (CHCl_3) / nm (log ε): 486 (5.84), 783 (5.58), 822 (5.78), 868 (5.87), 950 (4.52).

The synthesis of linear trimer having a central free-base porphyrin, l-P3_{ZnH2Zn}, is summarized in Scheme S2. l-P3_{ZnH2Zn} was synthesized using a statistical palladium-catalyzed reaction between the fully deprotected free-base monomer P1a_{2H} and a large excess of mono-deprotected zinc porphyrin monomer P1a_{Zn} in 39% yield.

Scheme S2. Syntheses of linear trimer l-P3_{ZnH2Zn}. Conditions and reagents for a): TBAF, CH_2Cl_2, 20 °C. CPDIPS = cyanopropyldiisopropylsilyl. Ar = 3,5-bis(trihexylsilyl)phenyl.

Preparation of P1_{2H}

P1 (74 mg, 0.04 mmol) was dissolved in CHCl_3 (10 mL). Trifluoroacetic acid (0.1 mL) was added dropwise to the porphyrin solution and the reaction mixture was stirred at room temperature for 15 minutes. After completion of the reaction followed by TLC, pyridine was added (0.5 mL). The reaction mixture was immediately passed through a short plug of silica gel (CHCl_3) and concentrated to dryness to give the title compound as a dark solid (69 mg, 95%).

^1H NMR (500 MHz, CDCl_3, 298 K): δ_H (ppm) 9.61 (d, J = 4.6 Hz, 4H), 8.83 (d, J = 4.4 Hz, 4H), 8.24 (s, 4H), 8.02 (s, 2H), 2.56 (t, J = 6.8 Hz, 4H), 2.25–2.16 (m, 4H), 1.54–1.47 (m, 24H), 1.43–1.36 (m, 24H), 1.36–1.26 (m, 48H), 0.99–0.92 (m, 24H), 0.89 (t, J = 6.3 Hz, 36H), –2.10 (s, 2H).

^13C NMR (125 MHz, CDCl_3, 298 K): δ_C (ppm) 140.3, 139.6, 139.5, 135.4, 123.4, 119.8, 109.6, 100.5, 9.9, 33.6, 31.7, 24.2, 22.8, 1.7, 21.2, 18.7, 18.5, 14.3, 12.8, 12.4, 10.2.

MALDI-TOF: m/z = 2006.4 (C_{1218}H_{212}N_6Si_6, M^+ requires 2002.5). λ_{max} (CHCl_3) / nm log(ε): 680 (4.4), 620 (3.8), 585 (4.7), 544 (4.1), 443 (5.4), 433 (5.5).
Preparation of P1a2H

P1a2H (69 mg, 0.03 mmol) was dissolved in CH2Cl2 (5 mL) under nitrogen. TBAF solution (1.0 M in THF) (0.1 mL, 0.1 mmol) was added dropwise to the reaction mixture which was stirred at room temperature for 15 minutes. Then acetic acid (50 µL) was added and the crude reaction mixture was immediately passed through a short plug of silica gel (CHCl3). Fraction contained the desired product was concentrated to dryness and used in the next step without further purification (61 mg, 99%).

1H NMR (400 MHz, CDCl3, 298 K): δH (ppm) 9.66 (d, J = 4.7 Hz, 4H), 8.86 (d, J = 4.5 Hz, 4H), 8.27 (s, 4H), 8.01 (s, 2H), 4.21 (s, 2H), 1.54–1.44 (m, 24H), 1.43–1.27 (m, 72H), 0.99–0.92 (m, 24H), 0.89 (t, J = 7.0 Hz, 36H), –2.24 (s, 2H).

Preparation of l-P3ZnH2Zn

P1a2H (61.0 mg, 37.0 µmol), mono-deprotected monomer P1 (480 mg, 0.26 mmol), Pd2(dba)3 (17.0 mg, 18.5 µmol), tri-2-furylphosphine (34.4 mg, 0.15 mmol) and 1,4-benzoquinone (48.0 mg, 0.44 mmol) were dissolved in a mixture of toluene and triethylamine (5:1) (20 mL). The reaction mixture was stirred at 60 °C for 24 h. The solvents were removed and the mixture was purified over a plug of silica gel (CHCl3 + 1% pyridine). Fraction contained the desired product was further purified by SEC column (CHCl3 + 1% pyridine) and concentrated to dryness to yield l-P3ZnH2Zn as a dark green solid (78.0 mg, 39%).

1H NMR (500 MHz, CDCl3 + 1% pyridine-d5, 298 K): δH (ppm) 9.94 (d, J = 4.6 Hz, 4H), 9.89 (d, J = 4.7 Hz, 4H), 9.70 (d, J = 4.5 Hz, 4H), 9.00 (d, J = 4.6 Hz, 4H), 8.95 (d, J = 4.7 Hz, 4H), 8.93 (d, J = 4.5 Hz, 4H), 8.38 (s, 4H), 8.31 (s, 8H), 8.08 (s, 2H), 8.05 (s, 4H), 2.59 (t, J = 6.9 Hz, 4H), 2.29–2.20 (m, 4H), 1.60–1.50 (m, 72H), 1.50–1.39 (m, 96H), 1.39–1.30 (m, 144H), 1.24–1.18 (m, 8H), 1.04–0.95 (m, 72H), 0.95–0.87 (m, 108H), –1.50 (s, 2H).

13C NMR (125 MHz, CDCl3 + 1% pyridine-d5, 298 K): δC (ppm) 152.3, 150.9, 150.6, 143.5, 140.9, 140.6, 139.7, 139.5, 139.4, 136.2, 135.6, 135.1, 133.5, 133.2, 131.0, 130.9, 124.7, 124.2, 122.6, 119.9, 99.6, 96.9, 88.9, 86.9, 83.6, 82.2, 33.7, 31.8, 24.2, 22.9, 21.8, 21.2, 18.8, 18.5, 14.3, 12.8, 10.0.

MALDI-TOF: m/z = 5417 (C34H552N14Si14Zn2, M+ requires 5406).

λ_max (CHCl3) / nm log(e): 751 (5.1), 659 (4.9), 598 (4.4), 455 (5.7).
C. Characterization of Spiro-Nanoring-Template Complexes (spectra & analysis)

C1. Characterization of s-P11·(T6)2: NMR analysis and Mass Spectra

Based on the D_{2d} symmetry of s-$P11$·$(T6)_2$ complex, only one quarter of the molecule needs to be considered in the interpretation of the 1H NMR spectrum (Figure S2). The chemical structure in Figure S2 represents the four porphyrin units (P_s where s is for spiro, P_A, P_B and P_C) contained in this quarter and the portion of the template that coordinates the porphyrin units. The full assignment of the 1H NMR spectrum for the s-$P11$·$(T6)_2$ complex is outlined in the following section (Figure S2). This was completed by comparison with similar template-ring systems and with the assistance of COSY and NOESY NMR experiments.

Figure S2. Representative quarter of the spiro-fused ring structure for the 1H interpretation (top, protons 3_{A-C} are pointing to the inside of the ring (towards the template) and protons $3'_{A-C}$ to the outside of the ring, arrows for keys NOEs) and 1H NMR spectrum of s-$P11$·$(T6)_2$ (bottom, 500 MHz, CDCl$_3$, 298 K, * for dichloromethane).
Figure S3. Expansions of the keys regions of the 1H NMR spectrum of s-P11·(T6)$_2$ (500 MHz, CDCl$_3$, 298 K, * for dichloromethane).
The proton assignments for \(s\-\text{P11}\,(\text{T6})_2 \) is based on the initial assumption that the porphyrin \(\beta \)-protons between 9.20 and 9.70 ppm, correspond to protons \(I_{A-C} \), \(I'_{A-C} \) and \(I_S \) which are adjacent to the butadiyne bridge in \(s\-\text{P11}\,(\text{T6})_2 \). This assumption was later confirmed by COSY and NOESY experiments.

Due to ring current effect, the \(\alpha \)-protons \(a, a', a'' \) and \(a''' \) on the \(\text{T6} \) template pyridine moieties are strongly shielded and appear at very low chemical shifts (around 2.40 ppm for \(a, a' \) and \(a'' \) and 2.70 ppm for \(a''' \)).

In the NOESY spectrum (Figure S4), the porphyrin \(\beta \)-protons \(1,1'A \) and \(1,1'B-C \) show NOE with the template \(\alpha \)-protons \(a, a' \) and \(a'' \) and the porphyrin \(\beta \)-protons \(I_S \) show NOE with the template \(\alpha \)-protons \(a''' \). Additionally, the porphyrin \(\beta \)-protons \(1,1'A \) show NOE with protons \(I_S \) of the spiro porphyrin \(P_S \) which confirm that \(\beta \)-protons \(1,1'A \) belong to the four porphyrins \(P_A \) directly bound to the spiro porphyrin.

![Figure S4](image_url)

Figure S4. Regions of the NOESY spectrum of \(s\-\text{P11}\,(\text{T6})_2 \) corresponding to the porphyrin \(\beta \)-protons and the \(\text{T6} \) pyridine template \(\alpha \)-protons (500 MHz, CDCl\(_3\), 298 K).
The template β-protons \(b, b', b'' \) and \(b''' \) are less affected by the ring current and are therefore less shielded than α-protons \(a, a', a'' \) and \(a''' \). Based on their coupling with protons \(a, a', a'' \) and \(a''' \) in the COSY spectrum, their assignment can be confirmed (Figure S5). Based on their integration and the symmetry of the molecule, template β-protons \(b, b', b'' \) can be readily assigned.

![Figure S5. Region of the COSY spectrum of \(s\text{-P11(T6)}_2 \) corresponding to the T6 pyridine template α- and β-protons (500 MHz, CDCl₃, 298 K).](image)

In the NOESY spectrum, template protons \(b, b', b'' \) and \(b''' \) show NOEs with protons \(c, c', c'' \) and \(c''' \) respectively (Figure S6, left). The NOE between \(b''' \) and \(c''' \) was difficult to analyze because of the overlap of protons \(c'' \) and \(c''' \). This helps clarify the assignment for protons \(d, d', d'' \) and \(d''' \) that couple to protons \(c, c', c'' \) and \(c''' \), respectively, in the COSY spectrum (Figure S6, right).

![Figure S6. Regions of the NOESY (left) and COSY (right) spectrum of \(s\text{-P11(T6)}_2 \) corresponding to the T6 pyridine template β-, γ- and δ-protons (500 MHz, CDCl₃, 298 K).](image)
The porphyrin β-protons between 8.65 and 8.85 ppm correspond to protons 2,2'_{A-C} based on their correlations with protons 1,1'_{A-C} in the COSY spectrum (Figure S7, left). The protons of the aryl solubilizing side groups can also be assigned based on their correlations with protons 2,2'_{A-C} in the NOESY spectrum (Figure S7, right).

Figure S7. Regions of the COSY (left) and NOESY (right) spectrum of s-P11·(T6)$_2$ corresponding to the porphyrin β- and aryl protons (500 MHz, CDCl$_3$, 298 K).
Figure S8. MALDI-MS spectrum of s-P11-(T6)$_2$, obtained from the EPSRC National Mass Spectrometry Facility, Swansea. The mass of the molecular ions matches well with that expected for s-P11: $m/z = 19486$ (s-P11-(T6)$_2$, $C_{1252}H_{1882}N_{50}Si_{40}Zn_{11}$, M^+ requires 19449); $m/z = 18485$ (s-P11-(T6), $C_{1180}H_{1756}N_{50}Si_{40}Zn_{11}$, M^+ requires 18452); $m/z = 17481$ (s-P11, $C_{1108}H_{1708}N_{44}Si_{40}Zn_{11}$, M^+ requires 17456).
C2. Characterization of sEt-P11·(T6)$_2$: NMR analysis and Mass spectra

The assignment of the relevant protons for the complex sEt-P11·(T6)$_2$ (Figure S9–S10) was carried out by comparison with the complex s-P11·(T6)$_2$ and with the assistance of 2D COSY and NOESY NMR experiments.

Figure S9. Representative quarter of the fused ring structure for the 1H interpretation (top, protons 3α-c are pointing to the inside of the ring (towards the template) and protons 3α-c to the outside of the ring, arrows for keys NOEs) and 1H NMR spectrum of sEt-P11·(T6)$_2$ (bottom, 700 MHz, CDCl$_3$, 298 K).
Figure S10. Expansions of the keys regions of the 1H NMR spectrum of sEt-P11·(T6)$_2$ (700 MHz, CDCl$_3$, 298 K).
Figure S11. MALDI-MS spectrum of sEt-P11·(T6)₂, obtained from the EPSRC National Mass Spectrometry Facility, Swansea. The expected molecular ion [sEt-P11·(T6)₂]⁺ is the dominant signal: \(m/z = 19702 \) (sEt-P11·(T6)₂, \(C_{1268}H_{1836}N_{56}Si_{40}Zn_{11} \), \(M^+ \) requires 19673).
Figure S12. Extinction coefficient (ε) spectra of $\text{c-P6} \cdot \text{T6}$ (black), $\text{s-P11} \cdot \text{(T6)}_2$ (blue) and $\text{sEt-P11} \cdot \text{(T6)}_2$ (red) in toluene with 1% pyridine solution (298 K).

Figure S13. Partial extinction coefficient (ε, solid line) and normalized fluorescence spectra (dashed line) of $\text{c-P6} \cdot \text{T6}$ (black), $\text{s-P11} \cdot \text{(T6)}_2$ (blue) and $\text{sEt-P11} \cdot \text{(T6)}_2$ (red) in toluene with 1% pyridine solution (298 K). Data between 1130 and 1170 nm were omitted due to solvent absorption effect.
D. UV-Vis-NIR titrations

All titrations were performed in chloroform (containing ca. 0.5% ethanol as stabilizer) at 298 K and at constant porphyrin concentration (by adding porphyrin to the ligand stock solution before titrations were started). A key assumption underlying the analysis presented here is that each step in the titrations can be analyzed as an all-or-nothing two-state equilibrium. This assumption is supported by the isosbestic nature of the UV/vis titration for each step (Figure S14–25) and by the good fits to the calculated binding curves. Moreover, the measured binding constants are in good agreement with similar systems, previously reported.S4,S6

\textbf{Figure S14.} (a) Representation of the two-stage complexation of cross-pentamer x-P_5 with T3 and the 1:1 complexation of linear trimers $l\text{-P}_3\text{Zn}^3$ with T3, and (b) the corresponding structures of the linear trimers and template T3.

\textit{D1. Determination of }K_1\textit{ values by titration of }$x\text{Et-P}_5\cdot\text{T3}$, $x\text{-P}_5\cdot\text{T3}$\textit{ and }$l\text{-P}_3\text{Zn}^3$\textit{ with pyridine.}\n
Determination of K_1 was studied by break-up titration for complexes $x\text{Et-P}_5\cdot\text{T3}$ and $x\text{-P}_5\cdot\text{T3}$ with pyridine, because of the high binding constant for the formation of these complexes makes it difficult to determine their stabilities by direct titration. As a reference, complex $l\text{-P}_3\text{Zn}^3\cdot\text{T3}$ was also studied under identical conditions.
The complexes xEt-P5·T3, x-P5·T3 and l-P3Zn3·T3 were firstly prepared by adding one equivalent of T3 to a solution of xEt-P5, x-P5 or l-P3Zn3. Then, a large excess of pyridine was titrated into solutions of the 1:1 complex (ca. 10^{-6} M in CHCl_3 at 298 K) to displace the multidentate ligand. The denaturation constant K_d was determined from this titration and used to calculate the formation constants K_1 via the corresponding thermodynamic cycle shown below (the same thermodynamic cycle can be drawn for xEt-P5 and l-P3Zn3). \(^{(55)}\)

\[
K_1 = \frac{K_{py}^3}{K_d}
\]

![Figure S15. Thermodynamic cycle relating the formation constant of the template complex x-P5·(T3) (K_1) to the denaturation constant (K_d) and binding constant of each porphyrin unit for pyridine to form x-P5·(py)$_3$ (K_{py}^3). Note that pyridine will also bind to the other two sites on x-P5, but this process occurs in a different range of pyridine concentrations, so it can be ignored when analyzing the denaturation.](image)

Where:

- K_1 is the formation constant for the complex x-P5·T3 (also xEt-P5·T3 and l-P3Zn3·T3) from the corresponding cross-pentamer (or trimer).
- K_{py}^3 is the cube of the binding constant for coordination of pyridine to zinc porphyrin monomer (K_{py} = 3280 M$^{-1}$ under our conditions), measured as previously described.\(^{(55,56)}\)
- K_d is the denaturation constant determined by fitting the titration data using the OriginTM software;\(^{(54)}\) see K_d values, curves and spectra in Figure S16–S21.

The resulting values of K_1 are listed in Table S1. Statistical factors, K_σ,\(^{(57-59)}\) were calculated as described below (Section D3), and used to calculate the statistically-corrected 1:1 association constants K_{chem} using the equation $K_{chem} = K_1 / K_\sigma$.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
 & x-P5·T3 & xEt-P5·T3 & l-P3Zn3·T3 \\
\hline
K_1 Run 1 & (3.0 ± 0.3) × 10^8 M$^{-1}$ & (6.4 ± 0.9) × 10^{11} M$^{-1}$ & (1.2 ± 0.2) × 10^8 M$^{-1}$ \\
Run 2 & (2.6 ± 0.3) × 10^8 M$^{-1}$ & (5.3 ± 0.9) × 10^{11} M$^{-1}$ & (1.2 ± 0.2) × 10^8 M$^{-1}$ \\
Average & (2.8 ± 0.4) × 10^8 M$^{-1}$ & (5.9 ± 1.2) × 10^{11} M$^{-1}$ & (1.2 ± 0.2) × 10^8 M$^{-1}$ \\
\hline
K_σ & 32 & & 16 \\
K_{chem} & (8.8 ± 1.3) × 10^6 M$^{-1}$ & (1.8 ± 0.4) × 10^{10} M$^{-1}$ & (7.5 ± 1.9) × 10^6 M$^{-1}$ \\
spectra & Fig. S16–17 & Fig. S18–19 & Fig. S20–21 \\
\hline
\end{tabular}
\end{table}

S19
D1a. Break-up titration of x-P5·T3 with pyridine

(a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at λ = 825 and 765 nm and calculated fit (red line, from ORIGIN™ software). Run 1: $K_d = 108 \pm 2$ M$^{-2}$, $R^2 = 0.999$.

Figure S16. UV/vis/NIR break-up titration of x-P5·T3 ([x-P5·T3] = 1.8 × 10$^{-6}$ M) with pyridine in CHCl$_3$ at 298 K. (a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at λ = 825 and 765 nm and calculated fit (red line, from ORIGIN™ software). Run 1: $K_d = 108 \pm 2$ M$^{-2}$, $R^2 = 0.999$.

(b) Binding isotherm (black dots) derived from the difference of absorption data at λ = 825 and 765 nm and calculated fit (red line, from ORIGIN™ software). Run 1: $K_d = 108 \pm 2$ M$^{-2}$, $R^2 = 0.999$.

Figure S17. UV/vis/NIR break-up titration of x-P5·T3 ([x-P5·T3] = 1.5 × 10$^{-6}$ M) with pyridine in CHCl$_3$ at 298 K. (a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at λ = 827 and 766 nm and calculated fit (red line, from ORIGIN™ software). Run 2: $K_d = 137 \pm 10$ M$^{-2}$, $R^2 = 0.998$.

Appendix S17:

Table S17. Parameters for the binding isotherm of x-P5·T3 with pyridine in CHCl$_3$ at 298 K. Run 1: $K_d = 108 \pm 2$ M$^{-2}$, $R^2 = 0.999$.

Parameter	Value	Standard Error
K_d	108	2
R^2	0.999	0.001

Table S18. Parameters for the binding isotherm of x-P5·T3 with pyridine in CHCl$_3$ at 298 K. Run 2: $K_d = 137 \pm 10$ M$^{-2}$, $R^2 = 0.998$.

Parameter	Value	Standard Error
K_d	137	10
R^2	0.998	0.002
D1b. Break-up titration of xEt-P5·T3 with pyridine.

Figure S18. UV/vis/NIR break-up titration of xEt-P5·T3 ([xEt-P5·T3] = 8.0 × 10⁻⁷ M) with pyridine in CHCl₃ at 298 K. (a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at λ = 870 and 830 nm and calculated fit (red line, from ORIGIN™ software). Run 1: \(K_d = 0.055 ± 0.006 \text{ M}^{-2} \), \(R^2 = 0.997 \).

Figure S19. UV/vis/NIR break-up titration of xEt-P5·T3 ([xEt-P5·T3] = 7.6 × 10⁻⁷ M) with pyridine in CHCl₃ at 298 K. (a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at λ = 870 and 830 nm and calculated fit (red line, from ORIGIN™ software). Run 2: \(K_d = 0.067 ± 0.005 \text{ M}^{-2} \), \(R^2 = 0.998 \).
Figure S20. UV/vis/NIR break-up titration of \(l\)-P3Zn3·T3 (\([l\text{-}P3Zn3\cdot T3]\) = 2.1 \times 10^{-6} \text{ M}\) with pyridine in CHCl₃ at 298 K. (a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at \(\lambda = 763 \text{ and } 828 \text{ nm}\) and calculated fit (red line, from ORIGIN™ software). Run 1: \(K_a = 301 \pm 20 \text{ M}^{-2}, R^2 = 0.998\).

Figure S21. UV/vis/NIR break-up titration of \(l\)-P3Zn3·T3 (\([l\text{-}P3Zn3\cdot T3]\) = 2.0 \times 10^{-6} \text{ M}\) with pyridine in CHCl₃ at 298 K. (a) Changes in absorption upon addition of pyridine. Arrows indicate areas of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from the difference of absorption data at \(\lambda = 763 \text{ and } 828 \text{ nm}\) and calculated fit (red line, from ORIGIN™ software). Run 2: \(K_a = 287 \pm 24 \text{ M}^{-2}, R^2 = 0.997\).
D2. Determination of K_2 values by titration of xEt-P_5 and x-P_5 with T_3 and K_1 value by titration of l-P_3_{ZnH2Zn} with T_3

The determination of K_1 allowed us to study the second binding event between complex x-P_5·T_3 (and xEt-P_5·T_3) and template T_3 by direct titration. The reference complex l-P_3_{ZnH2Zn}·T_3 was also studied under the same conditions.

Simulation analysis of the binding isotherms between cross-pentamers xEt-P_5 and x-P_5 and T_3 were analyzed using the software SPECFIT™, using a three-component model: xEt-P_5 / xEt-P_5·T_3 / xEt-P_5·(T3)$_2$. Analysis of the titration curves with SPECFIT™ gives the formation constants of the 1:1 complex xEt-P_5·T_3 (K_1) and the 1:2 complex xEt-P_5·(T3)$_2$ (K_1×K_2). The resulting K_2 are displayed in Table S2 and Figures S22–27.

For linear trimer l-P_3_{ZnH2Zn}, UV/vis/NIR titrations were analyzed by calculating the difference in absorptions and plotted using Origin™ software (Figure S26–27). Due to the relatively weak binding constant between l-P_3_{ZnH2Zn} and T_3, direct titration experiment could be done to measure the corresponding association constant, K_1, displayed in Table S2.

Table S2. Association constants of cross-pentamers xEt-P_5 and x-P_5 and trimer l-P_3_{ZnH2Zn} with template T_3 (298 K, CHCl$_3$). K_1 values for complexes x-P_5·T_3 and xEt-P_5·T_3 come from break-up titration experiments, Section D1.

	x-P_5	xEt-P_5	l-P_3_{ZnH2Zn}
K_1			(3.8 ± 0.1) × 10^4 M$^{-1}$
Run 1	*	*	\[2.8 ± 0.4\] × 10^5 M$^{-1}$
Run 2	*	*	\[5.9 ± 1.2\] × 10^11 M$^{-1}$
Average	[(2.8 ± 0.4) × 10^5 M$^{-1}$]*	[(5.9 ± 1.2) × 10^11 M$^{-1}$]*	(3.3 ± 0.7) × 10^4 M$^{-1}$
K_2			(3.8 ± 0.1) × 10^5 M$^{-1}$
Run 1	(1.9 ± 0.1) × 10^5 M$^{-1}$	(3.8 ± 0.9) × 10^5 M$^{-1}$	
Run 2	(1.4 ± 0.2) × 10^5 M$^{-1}$	(4.3 ± 0.9) × 10^5 M$^{-1}$	
Average	(1.7 ± 0.3) × 10^5 M$^{-1}$	(4.1 ± 1.0) × 10^5 M$^{-1}$	
K_2			(4.3 ± 0.7) × 10^4 M$^{-1}$
K_2	(4.3 ± 0.7) × 10^4 M$^{-1}$	(1.0 ± 0.3) × 10^5 M$^{-1}$	

*fixed values of K_1 from Section D1 were used to analyze the titration data.
Statistical factors are explained in Section D4.
D2a. Binding of x-P5 with T3

Figure S22. UV/vis/NIR titration of x-P5 ([x-P5] = 1.8 × 10^{-6} M) with T3 in CHCl₃ at 298 K. (a) Changes in absorption upon addition of T3. Arrows indicate areas of increasing and decreasing absorption during the titration (black for the decrease of free x-P5, green for the increase of intermediate 1:1 complex x-P5·T3 and red for 1:2 complex x-P5·(T3)₂); (b) Binding isotherm (black dots) derived from absorption data at λ = 704 and 826, nm and calculated fit (red line, from SPECFIT™ software). A square end-point is reached at 1:1 x-P5·T3 ratio. Run 1: log(K₁K₂) = (13.72 ± 0.03), relative error of fit = 0.9%.

Figure S23. UV/vis/NIR titration of x-P5 ([x-P5] = 1.5 × 10^{-6} M) with T3 in CHCl₃ at 298 K. (a) Changes in absorption upon addition of T3. Arrows indicate areas of increasing and decreasing absorption during the titration (black for the decrease of free x-P5, green for the increase of intermediate 1:1 complex x-P5·T3 and red for 1:2 complex x-P5·(T3)₂); (b) Binding isotherm (black dots) derived from absorption data at λ = 704 and 826, nm and calculated fit (red line, from SPECFIT™ software). A square end-point is reached at 1:1 x-P5·T3 ratio. Run 2: log(K₁K₂) = (13.61 ± 0.05), relative error of fit = 2.0%.
D2b. Binding of xEt-P5 with T3

Figure S24. UV/vis/NIR titration of xEt-P5 ([xEt-P5] = 7.6 × 10⁻⁷ M) with T3 in CHCl₃ at 298 K. (a) Changes in absorption upon addition of T3. Arrows indicate areas of increasing and decreasing absorption during the titration (black for the decrease of free xEt-P5, green for the increase of intermediate 1:1 complex xEt-P5·T3 and red for 1:2 complex x-P5·(T3)₂); (b) Binding isotherm (black dots) derived from absorption data at λ = 898 and 785 nm and corresponding calculated fit (red line, from SPECFIT™ software). A square end-point is reached at 1:1 x-P5·T3 ratio. Run 1: log(𝐾₁,𝐾₂) = (17.35 ± 0.10), relative error of fit = 1.2%.

Figure S25. UV/vis/NIR titration of xEt-P5 ([xEt-P5] = 7.5 × 10⁻⁷ M) with T3 in CHCl₃ at 298 K. (a) Changes in absorption upon addition of T3. Arrows indicate areas of increasing and decreasing absorption during the titration (black for the decrease of free xEt-P5, green for the increase of intermediate 1:1 complex xEt-P5·T3 and red for 1:2 complex x-P5·(T3)₂); (b) Binding isotherm (black dots) derived from absorption data at λ = 898 and 785 nm and corresponding calculated fit (red line, from SPECFIT™ software). A square end-point is reached at 1:1 x-P5·T3 ratio. Run 2: log(𝐾₁,𝐾₂) = (17.41 ± 0.09), relative error of fit = 1.1%.
D2c. Binding of \(l-P3\text{ZnH2Zn} \) with \(T3 \).

![Figure S26](image1)

Figure S26. UV/vis/NIR titration of \(l-P3\text{ZnH2Zn} \) (\([l-P3\text{ZnH2Zn}] = 2.2 \times 10^{-6} \) M) with \(T3 \) in \(\text{CHCl}_3 \) at 298 K. (a) Changes in absorption upon addition of \(T3 \). Arrows indicate areas of increasing and decreasing absorption during the titration (black for the decrease of free \(l-P3\text{ZnH2Zn} \) and red for 1:1 complex \(l-P3\text{ZnH2Zn} \cdot T3 \); (b) Binding isotherm (black dots) derived from the difference of absorption data at \(\lambda = 785 \) and 650 nm and calculated fit (red line, from ORIGIN™ software). Run 1: \(K_1 = (3.8 \pm 1.0) \times 10^4 \text{M}^{-1}, R^2 = 0.999 \).

![Figure S27](image2)

Figure S27. UV/vis/NIR titration of \(l-P3\text{ZnH2Zn} \) (\([l-P3\text{ZnH2Zn}] = 2.2 \times 10^{-6} \) M) with \(T3 \) in \(\text{CHCl}_3 \) at 298 K. (a) Changes in absorption upon addition of \(T3 \). Arrows indicate areas of increasing and decreasing absorption during the titration (black for the decrease of free \(l-P3\text{ZnH2Zn} \) and red for 1:1 complex \(l-P3\text{ZnH2Zn} \cdot T3 \); (b) Binding isotherm (black dots) derived from the difference of absorption data at \(\lambda = 785 \) and 650 nm and calculated fit (red line, from ORIGIN™ software). Run 2: \(K_1 = (2.8 \pm 1.0) \times 10^4 \text{M}^{-1}, R^2 = 0.998 \).
D3. Break-up titrations of spiro-nanoring s-P11·(T6) and sEt-P11·(T6) with quinuclidine.

Solutions of s-P11·(T6) and sEt-P11·(T6) in chloroform (containing ca. 0.5% ethanol as stabilizer) were titrated with quinuclidine to displace the T6 template (at 298 K at constant porphyrin complex concentration by adding porphyrin complex to the ligand stock solution before titrations were started). These UV-vis-NIR titrations show two distinct processes, quantified by the equilibrium constants K_{d1} and K_{d2}, which can be interpreted in terms of the thermodynamic cyclic in Figure S28.

![Thermodynamic cycle](image)

Figure S28. Thermodynamic cycle relating the formation constants of the template complexes s-P11·(T6) (K_{f1}) and s-P11·(T6)$_2$ (K_{f2}) to the denaturation constants K_{d1} and K_{d2} and the binding constant of each porphyrin unit for quinuclidine. K_Q is the binding constant of one porphyrin unit with quinuclidine, approximated from the binding constant of quinuclidine to cyclic hexamer c-P6 ($K_Q = 3.6 \times 10^5$ M$^{-1}$). $K_{f1} = K_Q^{s\cdot} / K_{d2}$ and $K_{f2} = K_Q^{d\cdot} / K_{d1}$.

Simulation analysis of these titrations was carried out using the software SPECFIT™ with a three components model: s-P11·(T6)$_2$ / s-P11·(T6)(Q)$_5$ / s-P11·(Q)$_{11}$ with fitting errors of 0.5% for s-P11·(T6)$_2$ and 0.8% for sEt-P11·(T6)$_2$. The resulting values of K_{f1} and K_{f2} are summarized in Table S3 and Figures S29–S32.

Table S3. Association constants of spiro-nanoring s-P11 and sEt-P11 with template T6 (in M$^{-1}$).

	s-P11·(T6)$_2$	sEt-P11·(T6)$_2$
$\log K_{f1}$	Run 1: 38.4 ± 0.3	36.6 ± 0.3
	Run 2: 37.9 ± 0.3	38.0 ± 0.3
	Average: 38.2 ± 0.2	37.3 ± 0.3
$\log K_{chem}$	35.3 ± 0.2	34.4 ± 0.3
$\log K_{f2}$	Run 1: 32.5 ± 0.4	29.1 ± 0.4
	Run 2: 31.4 ± 0.4	31.7 ± 0.4
	Average: 32.0 ± 0.4	30.4 ± 0.4
$\log K_{chem}$	29.7 ± 0.4	28.1 ± 0.4

spectra: Fig. S29–S30, Fig. S31–S32
D3a. Break-up titration of s-P11·(T6)$_2$ with quinuclidine.

Figure S29. UV/vis/NIR break-up titration of s-P11·(T6)$_2$ ([s-P11·(T6)$_2$] = 4.4 × 10$^{-7}$ M) with quinuclidine in CHCl$_3$ at 298 K. (a) Changes in absorption upon addition of quinuclidine. Arrows indicate regions of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from absorption data at λ = 875 nm and calculated fit (red line, from SPECFIT™ software). Run 1: logK_{f1} = 38.4 ± 0.3 and logK_{f2} = 32.5 ± 0.4; relative error of fit = 0.9%.

Figure S30. UV/vis/NIR break-up titration of s-P11·(T6)$_2$ ([s-P11·(T6)$_2$] = 7.8 × 10$^{-7}$ M) with quinuclidine in CHCl$_3$ at 298 K. (a) Changes in absorption upon addition of quinuclidine. Arrows indicate regions of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from absorption data at λ = 871 nm and calculated fit (red line, from SPECFIT™ software). Run 2: logK_{f1} = 37.9 ± 0.3 and logK_{f2} = 31.4 ± 0.4; relative error of fit = 0.7%.
D3b. Break-up titration of sEt-P11·(T6)$_2$ with quinuclidine.

Figure S31. UV/vis/NIR break-up titration of sEt-P11·(T6)$_2$ ([sEt-P11·(T6)$_2$] = 1.0 × 10$^{-6}$ M) with quinuclidine in CHCl$_3$ at 298 K. (a) Changes in absorption upon addition of quinuclidine. Arrows indicate regions of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from absorption data at $\lambda = 885$ nm and calculated fit (red line, from SPECFIT™ software). Run 1: log$K_{f1} = 36.6 \pm 0.3$ and log$K_{f2} = 29.1 \pm 0.4$; relative error of fit = 0.3%.

Figure S32. UV/vis/NIR break-up titration of sEt-P11·(T6)$_2$ ([sEt-P11·(T6)$_2$] = 9.1 × 10$^{-7}$ M) with quinuclidine in CHCl$_3$ at 298 K. (a) Changes in absorption upon addition of quinuclidine. Arrows indicate regions of increasing (red) and decreasing (black) absorption during the titration; (b) Binding isotherm (black dots) derived from absorption data at $\lambda = 885$ nm and calculated fit (red line, from SPECFIT™ software). Run 2: log$K_{f1} = 38.0 \pm 0.3$ and log$K_{f2} = 31.7 \pm 0.4$; relative error of fit = 0.6%.
D4. Statistical factors

\[D_{2h} \]
\[\sigma_{ext} = 4 \]
\[\sigma_{int} = 2^2 \]
\[\sigma = 16 \]

\[C_{2v} \]
\[\sigma_{ext} = 2 \]
\[\sigma_{int} = 1 \]
\[\sigma = 2 \]

\[C_{2v} \]
\[\sigma_{ext} = 2 \]
\[\sigma_{int} = 1 \]
\[\sigma = 2 \]

\[D_{2h} \]
\[\sigma_{ext} = 4 \]
\[\sigma_{int} = 2^2 \]
\[\sigma = 16 \]

\[C_{2v} \]
\[\sigma_{ext} = 2 \]
\[\sigma_{int} = 1 \]
\[\sigma = 2 \]

\[C_{2v} \]
\[\sigma_{ext} = 2 \]
\[\sigma_{int} = 2^1 \]
\[\sigma = 4 \]

\[D_{4h} \]
\[\sigma_{ext} = 8 \]
\[\sigma_{int} = 2^4 \]
\[\sigma = 128 \]

\[C_{2v} \]
\[\sigma_{ext} = 2 \]
\[\sigma_{int} = 1 \]
\[\sigma = 2 \]

\[C_{2v} \]
\[\sigma_{ext} = 2 \]
\[\sigma_{int} = 2^2 \]
\[\sigma = 8 \]
Figure S33. Statistical factors for trimers l-$P3ZnH2Zn$ and l-$P3Zn3$ and cross-pentamers x-$P5$ (statistical factors for xEt-$P5$ are the same as those of x-$P5$).
Figure 34. Statistical factors for s-$\text{P11$·$(T6)_2}$. Aromatic groups are omitted for clarity. Statistical factors for $s\text{Et-P11$·$(T6)_2}$ are the same as those for s-$\text{P11$·$(T6)_2}$.
E. Spectra confirming purity and identity of new compounds

Figure S35. 1H (top) and 13C NMR (bottom) spectra of free-base monomer P1_{221} (500 MHz and 125 MHz, CDCl$_3$, 298 K).
Figure S36. 1H (top, * for pyridine) and 13C NMR (bottom) spectra of trimer l-P$_3$Zn$_2$H$_2$Zn$_2$ (500 MHz and 125 MHz, CDCl$_3$, 298 K).
Figure S37. 1H (top) and 13C NMR (bottom) spectra of trimer I-P3_{THS} (400 MHz and 100 MHz, CDCl$_3$, 298 K).
Figure S38. 1H (top, * for pyridine) and 13C NMR (bottom) spectra of pentamer Et-P5 (500 MHz and 125 MHz, CDCl$_3$, 298 K).
Figure S39. 1H (top) and 13C NMR (bottom) spectra of pentamer x-P5 (500 MHz and 125 MHz, CDCl$_3$, 298 K).
F. Photoluminescence Upconversion Spectroscopy

The photoluminescence (PL) upconversion technique was used to investigate fluorescence dynamics of sample solutions held in quartz cuvettes as described in detail elsewhere.S10,S11

An excitation pulse was generated by a mode-locked Ti:Sapphire laser with pulse duration of 100 fs and a repetition rate of 80 MHz. Fluorescence is collected and optically gated in a beta-barium-borate (BBO) crystal by a vertically polarized time-delayed gate beam. The upconverted signal, which consists of sum-frequency photons from the gate pulse and the vertical component of the fluorescence, was collected, dispersed in a monochromator and detected using a nitrogen-cooled CCD. Using a combination of a half-wave plate and a Glan-Thompson polarizer, the polarization of the excitation pulse was varied and fluorescence intensity dynamics were recorded separately for components polarized parallel I_\parallel and perpendicular I_\perp to the excitation pulse polarization. The fluorescence anisotropy is defined using $\gamma = (I_\parallel - I_\perp)/(I_\parallel + 2I_\perp)$ and calculated from the measured components. The full-width-half-maximum of the instrumental response function was measured to be 270 fs. No anisotropy decay was observed, indicating that any polarization decay must occur within 270 fs for this level of signal-to-noise.

The concentration of the sample solution was on the order of 10^{-4} M. The excitation fluence was kept low (0.32 µJ/cm2) to avoid fluorescence quenching via exciton-exciton annihilation. The detection wavelength was 915 nm for s-P11-(T6)$_2$ and 987 nm for sEt-P11-(T6)$_2$.

![Figure S40](image)

Figure S40. Time-resolved fluorescence decay (components polarized parallel I_\parallel and perpendicular I_\perp to the excitation pulse polarization, black and red circles, respectively, for experimental data and straight lines for corresponding fitted curves) for s-P11-(T6)$_2$ and sEt-P11-(T6)$_2$ upon excitation at 825 and 835 nm and detection at 915 and 987 nm, respectively, together with the corresponding fluorescence anisotropy dynamics (γ, blue circles) in toluene with 1% pyridine. (The pyridine has no role in this experiment, but it was added because we use 1% pyridine in toluene as a standard solvent, for comparison with other porphyrin oligomers, some of which require pyridine to avoid aggregation.)
G. Anisotropy Modeling

A simple model is used to describe the spiro-nanoring and account for the measured anisotropy. As illustrated in Figure S41, porphyrin monomer units are assumed to form two smaller loops, each lying in a given plane (the template plane). The angle between the two planes is taken to be 90°. Further assumptions have been made:

1. The initially excited and emitting states are assigned to a pair of two monomers as described below. This is justified, because the anisotropy value does not vary with time over the excitation window and the actual extent of the excitation delocalization does not significantly affect the anisotropy value in such a circular arrangement.

2. The dipole moments are aligned tangentially to the circle the porphyrins are forming, and the porphyrin joining the two loops has two perpendicular dipole moments participating.

3. Each of the 12 dipole moments has equal probability of absorbing and emitting a photon.

The anisotropy can be then be calculated using the following equation:

$$\gamma = \frac{1}{5} (3\langle \cos^2 \kappa \rangle - 1)$$

where κ denotes the angle between the dipole moments of the absorbing and emitting states. For excitations created at each individual monomer site, $\cos^2 \kappa$ with respect to any porphyrin unit on the ring is summed over and the average is taken.

The anisotropy is calculated to be 0.025, which agrees well with the experimental results, that is, 0.03 for s-P11·(T6)$_2$ and 0.04 for sEt-P11·(T6)$_2$.

Figure S41. Oscillator distributions on nanorings assumed for PL anisotropy modelling: Circles denote porphyrin monomers and the arrows represent transition dipole moments. Porphyrin units are arranged in two smaller loops lying in two perpendicular planes defined by the templates. a) Initially excited state (red); b) emitting state.
H. References

(S1) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbühler, A. D. *Talanta* **1985**, *32*, 257.

(S2) Krivokapic, A.; Cowley, A. R.; Anderson, H. L. *J. Org. Chem.* **2003**, *68*, 1089.

(S3) Anderson, H. L.; Wylie, A. P.; Prout, K. *J. Chem. Soc., Perkin Trans. 1* **1998**, *1607*.

(S4) Hogben, H. J.; Sprafke, J. K.; Hoffmann, M.; Pawlicki, M.; Anderson, H. L. *J. Am. Chem. Soc.* **2011**, *133*, 20962.

(S5) Hoffmann, M.; Kärnbratt, J.; Chang, M.-H.; Herz, L. M.; Albinsson, B.; Anderson, H. L. *Angew. Chem. Int. Ed.* **2008**, *47*, 4993.

(S6) Liu, P.; Neuhaus, P.; Kondratuk, D. V.; Balaban, T. S.; Anderson, H. L. *Angew. Chem. Int. Ed.* **2014**, *53*, 7770.

(S7) Benson, S. W. *J. Am. Chem. Soc.* **1958**, *80*, 5151.

(S8) Bailey, W. F.; Monahan, A. S. *J. Chem. Educ.* **1978**, *55*, 489.

(S9) Ercolani, G.; Piguet, C.; Borkovec, M.; Hamacek, J. *J. Phys. Chem. B* **2007**, *111*, 12195.

(S10) Chang, M. H.; Hoeben, F. J. M.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; Silva, C.; Herz, L. M. *Chem. Phys. Lett.* **2006**, *418*, 196.

(S11) Chang, M. H.; Hoffmann, M.; Anderson, H. L.; Herz, L. M. *J. Am. Chem. Soc.* **2008**, *130*, 10171.

(S12) Gong, J. Q.; Parkinson, P.; Kondratuk, D. V.; Gil-Ramirez, G.; Anderson, H. L.; Herz, L. M. *J. Phys. Chem. C* **2015**, *119*, 6414.