Introduction

The home advantage (HA) is a well-known phenomenon in soccer worldwide (Carmichael and Thomas, 2005; Legaz-Arrese, Moliner-Urdiales, & Munguía-Izquierdo, 2012; Pollard and Pollard, 2005a; Pollard, 2006). Teams usually perform better if they play in their home city/stadium. The HA can be measured according to various factors such as match result or points won, goals and goals against, or via more specific metrics such as shot count or referee decisions (fouls and cards). It differs between countries (Nevill and Holder, 1999) and divisions (Leite and Pollard, 2018) and comprises a wide range of values. While in, e.g. Nigeria or Bosnia-Herzegovina (from 2006 to 2010), more than 70% of all points were gained playing at home (Pollard and Gómez, 2013), the HA can even reverse in isolated cases into an away advantage (AA) under special circumstances, e.g. for Spain and Germany during the onset of the COVID-19 pandemic from 2019 onwards (Fischer & Haucap, 2020; Sánchez & Lavin, 2020; Sors, Grassi, Agostini, & Murgia, 2020; Wunderlich et al., 2021). Further influences comprise travel and distance (Brown et al., 2002; Clarke & Norman, 1995; Goumas, 2014; Oberhofer, Philippovich, & Winner, 2009; Pollard, 1986, 2006; Pollard et al., 2008; Pollard & Seckin, 2007; Seckin & Pollard, 2007; Thomas et al., 2004), as well as for matches from the European UEFA Champions League, UEFA Europa League (Van Damme & Baert, 2019) and FIFA World Cups (Brown et al., 2002).

Results on travel distance vary depending on the setting and suggest no influence (Van Damme & Baert, 2019), for example explained by the comparably short distances within Greece (matches from 1994 to 2010) (Armatas & Pollard, 2014), minor influence (Pollard, 1986; Johnston, 2008; Pollard et al., 2008), for example reinforced by less overnight stays during World Cups (matches from 1987 to 1998) (Brown et al., 2002), major influence in vast countries such as Australia (Goumas, 2014) or influence that is simply present in Germany (1986–2010) (Oberhofer et al., 2009) or England (1970–1990) (Pollard, 1986; Clarke & Norman, 1995). The HA can be unusually high specifically in remote locations (Pollard & Seckin, 2007; Pollard & Gómez, 2013), such as in Brazil (Pollard et al., 2008) or Turkey (Seckin & Pollard, 2007), pronounced in specific regions such as the European Balkan (Pollard & Seckin, 2007) and lower in local derbies (Seckin & Pollard, 2007; Pollard, 1986, 2002), which may be explained by familiarity with home conditions if two teams share the same stadium, such as for example Ponzo and Scoppa (2014) in Italy. Further explanations regarding these travel effects comprise travel fatigue (Pollard &...
Pollard, 2005a; Leite & Pollard, 2018) promoted by remoteness and jet lag for long distances (Goumas, 2014), climate differences (Pollard et al., 2008), the number of fans that travelled with the away team (Pollard, 1986; Ponzo & Scoppa, 2014) as well as geographical and cultural isolation (along with remoteness) strengthening territoriality (Seckin & Pollard, 2007; Pollard & Seckin, 2007; Pollard & Gómez, 2009), the latter indirectly measurable via testosterone levels (Neave & Wolfson, 2003). Improved travel comfort nowadays (Pollard & Pollard, 2005a, b; Pollard, 1986) has been assumed to be a distance-dependent reason for HA reductions, for example in England (Thomas et al., 2004). Therefore, newer studies might find only less influence due to distance, such as that found by Van Damme and Baert (2019). However, the authors limited themselves only to top-class UEFA matches, where detriments (such as travel or adverse psychological influences of players) are more likely to be eliminated anyway through financial capacities, improved travel strategies (such as overnight stays) and more professionally trained players and referees (Wolfson & Neave, 2004; Stolen, Chamari, Castagna, & Wisloff, 2005; Pollard & Gómez, 2014). Appropriately, Leite and Pollard (2018) found a stronger influence for distance in lower divisions worldwide with less professional facilities.

To conclude, multifactorial explanations exist (Pollard, 2008; Pollard & Pollard, 2005a), and the relative (qualitative and quantitative) contributions of the mentioned factors are still to be established (Carron et al., 2005). Some of these are indirectly linked to distance (territoriality, familiarity with stadium conditions, number of fans travelling to the match, cultural differences, etc.), thereby imposing an indirect distance-dependent influence on HA (Van Damme & Baert, 2019). However, no previous study has explicitly assessed the change of distance-dependent influences on HA over time. Thus, the aim of this paper is to look only at the influence of distance on HA in the men’s German first soccer division “Bundesliga” and evaluate its change over time quantitatively. This league offers a large body of data since its start in 1964 in combination with decent travelling distances of up to about 800 km, which makes it a suitable candidate for such an analysis.

Where possible, results are discussed in the context of other countries.

Methods

The data used in this article are freely available in the public domain. Thus, no statement of ethical approval is required.

Match results of the men’s German first soccer division from years 1964 to 2020 (denoting the year in which the respective season started) were taken from online databases (Fussballdaten, 2015; DFB, 2021) with a total of 56·306·1·240 (in 1964) = 17,376 matches played by 55 teams. Each game with index i is assigned a normalised “result” value r_i in [0; 1], which is set according to the match outcome ($r_i = 0$ (loss), $r_i = 0.5$ (draw), $r_i = 1$ (win)) for the respective team and indicating its performance/ability. This way, artificial mathematical alterations are avoided (Clarke & Norman, 1995) due to a change from 2 to 3 points per victory, which occurred for the German first division between 1994 and 1995. For comparison, for the 2-point counting system, the normalised result value r directly translates into the percentage of points gained at home g (with respect to all points gained), which is a common measure in the literature. A mathematical analysis reveals that here g is usually slightly larger than r on average by an offset of $Δ_2g := \langle g - r \rangle ≈ +0.01 = 1\%$ when changing to a 3-point counting system (see Discussion for details). The average team performance or result for a specific ensemble of N matches is marked as $r(t)$ or $r(d)$ ($g(t)$ or $g(d)$ alike), as a function of time t or distance d, respectively. Averaging of r runs over all N match results of all home teams, neglecting the respective result for the away team. Therefore, an averaged value of $r = 0.5$ would indicate that there is no HA and a value of $r = 1$ would mean that the home team would always win (for $r = 0$ the HA is reversed and the away team always wins). Thus, the HA will be regarded with respect to 0.5 and the term $r − 0.5$ is used for analysis.

The respective geographical latitude $ϕ$ and longitude $λ$ coordinates of the cities of the teams in Germany are taken from another online database (Geonames, 2016). The respective absolute (travelling) distance $|d|$ between two cities (indices 1 and 2) is calculated by the mathematical distance on a great circle via

$$|d| = R_E \cdot \cos^{-1}(\delta) \tag{1}$$

where R_E is the average earth’s radius (Keller, 2003) and

$$\delta = \sin(ϕ_1) \cdot \sin(ϕ_2) + \cos(ϕ_1) \cdot \cos(ϕ_2) \cdot \cos(λ_2–λ_1) \tag{2}$$

assuming thereby that the earth resembles a mathematically perfect sphere.

The average result r is calculated as a function of time t as $r(t)$ (here, the starting year of the soccer season) and as a function of the distance d as $r(d)$. The applied discretisations for evaluation are $Δt = 1$ a (1 year) in time and $Δd = 20$ km in distance. This means that a data point $r(d)$ contains match results from the semi-open interval $[d; d + Δd]$. All data points are provided with error bars, which denote the standard error confidence interval $s = σ/\sqrt{N}$, where $σ$ is the standard deviation of r and N is the number of considered matches for the respective data point. The discretisation is necessary to ensure satisfying large enough match counts $N(d)$ or $N(t)$ per datum.

The software Gnuplot is used for diagrams and fits. It applies the Levenberg—Marquardt algorithm (Levenberg, 1944; Marquardt, 1963), here with weighting of the data points by (the inverse of) their respective error confidence. The related parameter errors are given as asymptotic standard errors s from the fit, which are used here for the calculation of statistical significance (given for statistical p-values < 0.05) via t-test to check whether defective parameters are distinguishable. Bivariate Pearson correlation coefficients c in the closed interval $[-1; 1]$ are calculated and Gaussian error propagation is applied.
Results

The per-year averaged performance \(r(t) \) for all home games of the \(m = 18 \) active teams in the respective season (only in 1964, \(m = 16 \) teams) is shown in [Fig. 1]. The overall averaged home game result \(<r> = 0.631 \pm 0.003 \quad (<g_0> = 63.4\%)\) is clearly distinct from 0.5; therefore an HA is present (Pollard & Pollard, 2005a). However, with progressing time \(t \), one can see that the HA is decreasing by trend \(r(t) \) is decreasing with a high anti-correlation of \(c = -0.82 \): In the 1970s roughly \(r(t) \approx 0.7 \) (about 70% of all points gained at home) and from the 1990s onwards \(r(t) \approx 0.6 \). In order to investigate the two regimes separately, two time-ensembles are defined: From 1964 to 1989 (dataset A with \(<r_A> = 0.679 \pm 0.004 \) and 7890 matches with \(c = -0.10 \) and \(<g_A> = 67.9\%)\) and thereafter from 1990 to 2020 (dataset B with \(<r_B> = 0.591 \pm 0.004 \) and 9486 matches with \(c = -0.59 \) and \(<g_B> = 59.8\%)\). They are isolated by a vertical black line in [Fig. 1], where \(r(t) \) drops to 0.65 and below. This way, the majority of data points \(r(t) \) of A lie above B and both datasets can be analysed separately.

Discretised plots of the averaged performances \(r(d) \) as a function of the cities’ distance \(d \) is shown in [Fig. 2]. Respectively averaged distances per match are \(<d_A> = (282 \pm 163) \) km and \(<d_B> = (325 \pm 169) \) km \((s \approx 2 \) km, respectively). One observes that the HA is larger for dataset A (higher \(r(d) \)) compared to dataset B for the majority of distances \(d \) and \(r(d) \) decreases slightly for small \(d \). A saturation of \(r(d) \) can be spotted around 100 km (for dataset A), but generally, \(r(d) \) is comparatively constant. A linear fit (not shown) for data points \(d \geq 100 \) km to each dataset separately reveals that the slopes cannot be unambiguously classified as positive or negative according to error (both slopes \(<0.01 \) per 100 km). This finding is also in line with calculated correlation coefficients \(c \) (of distance \(d \) vs. result \(r \)) to be around zero for both datasets \((0 = \left| c_{AB} \right| \quad (d \geq 100 \) km) \(<0.01 \)). Still, for both datasets \(r(0\) km \() > 0.5 \) is clearly valid, which indicates that a negligible distance \(d \) is still connected with a detectable HA. Nevertheless, as mentioned above, a slight decrease in the HA of the home team can be observed for short distances \(d \), especially for dataset A. Accordingly, for \(d \leq 100 \) km small positive correlations of \(A) 0.070 \) \((p < 0.01)\) and \(B) 0.021 \) (insignificant) as well as positive linear slopes of \(A) 0.071 \) and \(B) 0.020 \) (each per 100 km) can be found in this region. In order to investigate the influence of distance more closely, an exponential function according to Eq. 3 has been fitted to both datasets separately

\[
r(d) = r_0 + r_\infty \cdot e^{-\frac{d}{d_0}}
\]

where the fit parameter \(r_0 \) represents the maximal result value \(r(d) \) and thus maximal HA and \(r_\infty \) \(<0) \) and \(d_0 \) \((0\) km \() \> 0 \) km \() \) represent the distance-dependent contribution and influence on HA. The motivation for an exponential saturating function is that the average performance \(r(d) \) first increases, but then seems to stabilize for large distances \(d \), as pointed out before. The results of the least square fit procedure are shown in [Table 1].

Discussion

First, it is notable that \(r(0\) km \() = r_0 + r_\infty > 0.5 \) \((p < 0.01)\), which means that the HA cannot be solely explained by the geographical/travelling distance alone, as reported before (e.g. Carmichael & Thomas, 2005; Pollard, 2006, 2008; Legaz-Arrese et al., 2012). The HA is predominantly present, even if teams with minimal distance \(d \) \((\text{e.g.} \text{if they belong to the same city}) \) play each other (Clarke & Norman, 1995; Ponzo & Scoppa, 2014). Familiarity with home conditions (Pollard, 2002), territoriality (Wolfgang & Neave, 2004) or crowd effects (Johnston, 2008; Neville et al., 1996) among other factors can cause this finding. However, this distance-independent contribution to HA has significantly \((p < 0.01)\) decreased over time (see \(r^* \) of datasets A and B in [Table 1]).

Since \(r_\infty \) is negative throughout and non-zero \((p < 0.01)\) for dataset A, an influence of the distance \(d \) on the HA is present (see Eq. 3). However, it also has significantly \((p < 0.01)\) decreased \((r_{\infty,A} < r_{\infty,A})\). On the one hand, shorter distances \(d \) reduce the HA of the home team and on the other hand, the HA saturates for larger distances \(d \). The total influence of distance is smaller compared to the distance-independent influences on HA, since \(|r_\infty| < |r^*|\) is significant \((p < 0.01)\) in the past (A) and the present (B). The results suggest that up to half \((p < 0.01)\) of the total HA has been explicable by
distance-related effects in the past (see β_3 in Table 1), while these effects have been roughly halved to an insignificant amount nowadays (see β_3).

These findings will be discussed in the context of selected other countries. Pollard (1986) analysed the two highest divisions in England (1970–1981), a country with distances comparable to Germany, where he found lower but existing HA in London local derbies (394 matches) as well as in London derbies with distances comparable to Germany, finding an increase of HA with distance ($r_0=0.617$ derived from the dataset they used) comparable with the value of $r_0=0.018\pm0.025$ found here for dataset B (1990–2020). The same trend has been described for the Italian Seria A (Ponzo & Scoppa, 2014) from 1991 to 2012 (7398 matches) even between teams that share the same stadium (128 matches), probably cancelling out familiarity with home conditions as a factor in this case (Pollard, 2002). One limitation of the present study is that the number of same stadium derbies is unknown, which might reduce HA for the shortest distances ($d=0\text{ km}$). However, the number of same city derbies is only about 10% (40 of 389 matches with $d<20\text{ km}$), thus playing a minor role here.

As a mathematical robustness test, we repeated our analysis for the percentage of points gained at home $g(t)$ with 3 (win), 1 (draw) and 0 (loss) points per match (3-point counting system), which is a common measure for many soccer divisions worldwide (e.g. in England since 1981, Turkey since 1987, Italy since 1993), including the German Bundesliga since 1995. As noted before, for the 2-point counting system (1994 and earlier) the identity $r=g$ holds. For the years from 1995 to 2020 (defined as dataset C as a subset of dataset B), we find very high correlations of $\alpha_C=0.9997$ between the two types of analysis for $r_C(t)$ with $g_C(t)$ as well as for $r_C(d)$ with $g_C(d)$. However, g is usually (except for the year 2019 with AA) slightly larger than the result r by an offset of $\Delta_{3p}=-0.0083\pm0.0026=-(0.8\pm0.3)%$ on average ($<g_C> = 0.594\pm0.003 = 59.4\%$ and $<r_C> = 0.586\pm0.003 = 58.6\%$), which has to be taken into account. All according fit parameters for $g(d)=g_0+g_{\infty}\cdot \exp(-d/d_0)$ equivalent to Eq. 3 ($g_0=0.597\pm0.011 = 59.7\%$, $g_{\infty}=-0.021\pm0.026 = -2.1\%$, $d_0=122\pm313$ km, $g^*=0.076\pm0.037 = 7.6\%$, $g_{HA}=0.097\pm0.011 = 9.7\%$, $\alpha_C=(3.6\pm4.4)\%$, $\beta_C=(22\pm29)\%$ coincide well with fit parameters of $r(d)$ ($r_0=0.589\pm0.009$,
Table 1 | Fit parameters of Eq. 3 for the respective dataset curves displayed in Fig. 2 and according consecutive calculations

Fit parameter	Dataset A (1964–1989)	Dataset B (1990–2020)	Explanation of parameters in Eq. 3		
r_0	0.689 ± 0.006 (±0.9%) ***	0.598 ± 0.029 (±4.8%) ***	Maximal result value $r(d)$ and thus maximal HA		
r_∞	-0.076 ± 0.026 (±34%) **	-0.018 ± 0.025 (±139%)	The distance-dependent contribution to HA (in contrast to r^*)		
d_0	(41 ± 27) km (±66%)	(283 ± 1131) km (±400%)	A saturation distance for the HA		
Calculation					
$r(0\,\text{km}) = r_0 + r_\infty$	0.613 ± 0.032 (±5.2%) ***	0.580 ± 0.054 (±9.3%) ***	Maximal distance-independent HA for 0 km travelling distance		
$r^* = (r(0\,\text{km}) - 0.5) \times 0.0113 ± 0.0032 (±28%)$ **	0.080 ± 0.054 (±68%)	Distance-independent contribution to HA (in contrast to r_∞)			
$r_{\text{max}} := r(0\,\text{km})$	0.189 ± 0.006 (±3.1%) ***	0.098 ± 0.029 (±30%) **	Combined HA (distance-dependent and distance-independent)		
$\alpha :=	r_\infty / r_0	$	(11.0 ± 3.8) % (±35%) **	(3.0 ± 4.3) % (±144%)	Relative share of the distance-dependent contribution on the maximal HA (α) and on the combined HA (β)
$\beta :=	r_\infty / r_0	\times 0.15$	(40 ± 15) % (±38%) *	(18 ± 31) % (±172%)	

The given errors are the asymptotic standard errors s according to the least square fit procedure. The rightmost bracket gives the relative error in percent (%). The stars (*) denote that the respective value is significantly different from zero (*$p < 0.05$, **$p < 0.01$, ***$p < 0.001$). The values of all calculations for datasets A and B are significantly different ($p < 0.01$), except for the d_0 parameter. These differences represent a significant change (decrease) of home advantage (HA) over the decades. The fit parameter r_0 represents the maximal result value $r(d)$ in the closed interval $[0;1]$ regarding normalised match results ($0 = \text{loss}$, $0.5 = \text{draw}$, $1 = \text{win}$). Thus, the more r_0 exceeds the value of 0.5 (or r_∞ the value of 0), the more HA is present. Furthermore, since $r(0\,\text{km}) > 0.5$ is valid (or $r^* > 0$), an HA also exists for negligible travelling distances, for example in local stadium derbies ($d = 0\,\text{km}$). The fit parameter r_∞ represents the distance-independent contribution to HA, which can be contrasted to the distance-independent contribution r^*. The parameter d_0 is a measure for the travelling distance above which HA saturates (exponentially according to the model of Eq. 3). The variables α and especially β show the relative shares of the distance-dependent contribution (r_∞) to the maximal result of HA (α) as well as to the combined HA (β), directly displaying the maximum possible impact of travelling distance on the normalized result or HA. A robustness test for this analysis with normalised result value has been executed relating to an analysis with 3 points per win (see Discussion).
Germany (Oberholzer et al., 2009), Italy (Ponzo & Scoppa, 2014) and Turkey (Seckin & Pollard, 2007) are qualitatively comparable and understandable in context with the saturation behaviour proposed here (see □ Fig. 2). The abovementioned particular influences for large distances as suggested for Brazil (Pollard et al., 2008), Australia (Goumas, 2014), Turkey (Seckin & Pollard, 2007) or the Balkan region (Pollard & Seckin, 2007) do not play a role for Germany due to its limited extent. In possible contrast to Greece (Armatas & Pollard, 2014), significant influence of distance on HA has also existed in the past for the lowest distances; however, this has declined to an insignificant amount nowadays.

Looking at the underlying causes for the reduction of the distance-dependent influence detected here, altered balances in the distance-dependent factors travel fatigue (Pollard & Pollard, 2005a; Goumas, 2014) and away team fan support (Ponzo & Scoppa, 2014; Seckin & Pollard, 2007) have been suggested. For example, travel fatigue could have been reduced nowadays by less stressful travelling, more travel comfort (Pollard & Pollard, 2005a) or extended overnight stays (Brown et al., 2002) for relaxation, which might explain the reduction in distance-dependent HA over the decades found here. A travelling distance of around 100 km might have been a critical distance for notable travel fatigue in the past (see dataset A in □ Fig. 2) due to inferior travel facilities. Teams in Germany usually travel by bus to away matches, nowadays with notable comfort (Autobild, 2021), since various travel factors (bus size, seat width and comfort, travel speed and duration, vibration attenuation, paving quality, etc.) have improved over the decades (e.g. HOV, 2021; MAN, 2021). These long-term developments went along with increasing club budgets and Gross Domestic Product (GDP) of Germany (DeStatis, 2021). These financial and travelling possibilities are reduced in lower divisions, which consequently leads to higher HA (Leite & Pollard, 2018). In addition, general improvement of travel possibilities may also have increased accessibility for the away team’s fans to accompany their team in larger numbers. Thus, more fans of the away team would be present in the stadium, decreasing the home team’s HA via noise and crowd effects and thus altering the amount of important referee decisions (Carron et al., 2005; Neill et al., 1996; Ponzo & Scoppa, 2014). However, the influence of the crowd on HA might not always be significant or relevant, as suggested by recent studies in the context of COVID-19 for Austria and England (Sánchez & Lavin, 2020) or other European countries (Wunderlich et al., 2021).

Furthermore, it is a well-known fact that intraspecific territorial aggression in vertebrates declines with distance up to a maximum distance from their territory centre (Myrberg & Thresher, 1974; Lorenz, 1966). Accordingly, the saturation of HA with distance found here may be linked to a reduction of the away team’s intraspecific aggression up to their (perceived) territory border, which could be around 100 km away from their home stadium. However, players as well as referees may act more professionally today, and are also better trained physiologically (Stolen et al., 2005) and psychologically. They may thus be less influenced by travelling, territorial influences, the surrounding of the playing field and crowd effects (e.g. noise), especially in higher divisions (Leite & Pollard, 2018). To train such behaviour has been proposed by Wolfson and Neave (2004) as a strategy for away team coaches (Pollard & Gómez, 2014). Thus, parts of the reductions of the distance-dependent as well as the distance-independent contributions to the HA may be due to developments that might be summarised as increased professionalism and internationalisation nowadays or, alternatively, altered idiosyncrasies of players (Thomas et al., 2004) and stadiums. Players might be less emotionally affiliated with a home stadium, location or city as well as less unnerved by foreign places and stadiums, since they might change teams, clubs or places, or come from other countries, which might reduce familiarity with home conditions (Pollard, 1986) and territoriality (Wolfson & Neave, 2004; Neave & Wolfson, 2003). Accordingly, Pollard (2002) found that the HA is reduced when a team changes stadium. Thus, a change of territoriality over the decades may be an indirect cause (Thomas et al., 2004) for the reduction of the influence of distance here. To measure territoriality, salivary testosterone levels of players have been successfully used as an indirect marker, and it has been shown that testosterone levels are significantly higher before a home game than an away game (Neave & Wolfson, 2003). Indeed, there have been reports from European (Andersson et al., 2007; Carruthers, 2009) and North American countries (Travison, Araujo, O’Donnell, Kupelian, & McKinlay, 2007) that testosterone levels in men have been gradually decreasing for the last century in the general population overall. These findings could indicate a decline in territoriality, which could also be connected to a diminution of the distance-independent as well as the distance-dependent HA (e.g. if testosterone level differences between teams are correlated with distance according to intraspecific aggression).

Another factor is the increase of points per victory from 2 to 3, which had been identified as a main cause for the observed drop in HA in 1981 in soccer in England (regarding the ratio of numbers of home wins to away wins) by Jacklin (2005) due to lessened incentives of away teams to settle for a draw (Thomas et al., 2004). As noted above, this rule change alone imposes a mathematical increase of about 1% on the percentage of points gained at home $g(d)$ (Clarke & Norman, 1995). In the men’s German first soccer division, this change happened between 1994 and 1995. However, this issue led only to a small drop of HA for a single year regarding normalised match result ($\Delta r = -0.043 = -4.3\%$), while a decreasing trend of HA had already set in during the years before (see □ Fig. 1). This may indicate only a minor influence of this issue here. It is interesting to note that another larger drop of HA ($\Delta r = -0.078 = -7.8\%$) is clearly visible in the year 1990, which is the year of German reunification. Never again after this year did the HA reach result values $r(t)$ of 0.65 or above (see □ Fig. 1). The reunification also led to other socioeconomic alterations within...
with its accompanying socio-economic changes (rather than spectators or distance), possibly also provoking psychological effects, is correlated with the reduction (and reverse of) HA in 2019, as it has been shown that socioeconomic changes (such as crises and civil wars) may also influence the HA (Pollard & Gómez, 2013).

Conclusions and implications

To conclude, the HA over the whole history of the men’s German first soccer division “Bundesliga” (for 57 years from 1964 to 2020) and its dependence on geographical (travelling) distance has been investigated. The HA is clearly present ($p < 0.01$), but its distance-dependent and distance-independent contribution both decreased over the decades ($p < 0.01$). This is the first time that a reduction in the distance-dependent HA is reported for Germany (Oberhofer et al., 2009). The HA increases with distance, but saturates for distances around 100 km, which is qualitatively comparable to findings for other countries with similar travelling distances, especially England (Pollard, 1986; Clarke & Norman, 1995), Italy (Ponzo & Scoppa, 2014) and Turkey (Seckin & Pollard, 2007).

Factors that might explain the reductions of the distance-dependent and distance-independent influence on HA have been discussed. These include improved travel conditions (and strategies) nowadays reducing travel fatigue (Pollard & Pollard, 2005a; Thomas et al., 2004; Van Damme & Baert, 2019), larger numbers of fans that travelled with the away team (Nevill et al., 1996; Ponzo & Scoppa, 2014; Seckin & Pollard, 2007), reduced familiarity and territoriality due to more internationalisation and professionalism nowadays (Stolen et al., 2005; Wolson & Neave, 2004; Neave & Wolson, 2003) in combination with declined testosterone levels on a population level (Andersson et al., 2007; Travison et al., 2007; Carruthers, 2009) as well as distance-dependent intraspecific aggression (Myrberg & Thresher, 1974; Lorenz, 1966). Selected individual larger drops in HA from one season to another (and even the occurrence of an AA in 2019) coincide with profound socioeconomic changes (Hesse et al., 2003) or rule changes (regarding points per victory), but tend to be uncorrelated with travelling distances or numbers of spectators (Wunderlich et al., 2021).

Following earlier reports (Nevill et al., 1996; Nevill, Balmer, & Williams, 2002; Ponzo & Scoppa, 2014; Wunderlich et al., 2021; Sors et al., 2020), the number of referee decisions for the respective team can depend on attendance, crowd noise and fan balance. If, for example, away team fan attendance (arriving from remote locations) is a distance-dependent contributor, one could investigate whether this correlates with travelling distance and subsequently with the number of referee decisions in the match. Besides, for specific travel conditions (Armatas & Pollard, 2014) or in lower divisions (Leite & Pollard, 2018) with very short distances between cities and lower attendance, different influences of distance may be obtained (Clarke & Norman, 1995; Pollard, 1986, 2008; Whatling, Micklewright, & Griffin, 2012). An approximation has been made in this paper: The distance d on a perfect sphere is slightly different from the real geographical distance or travelling distance or travelling time. These quantities as well as direct measurements of the away team’s travel fatigue (Pollard & Pollard, 2005a) and testosterone levels (Neave & Wolson, 2003) depending on distance may yield more precise measures of the variation of the teams’ performance. Although influence of distance on a team’s performance has declined over the decades, it is still notable today for coaches to consider that distance and travel are factors in the team’s playing performance. However, for a complete understanding of causes for HA, further research is necessary. Time-dependent datasets over decades on factors such as referee decisions (Ponzo & Scoppa, 2014; Wunderlich et al., 2021; Sors et al., 2020), fans that travelled with the away team (Ponzo & Scoppa, 2014) depending on distance, team budget and coaching time invested per player (professionalism), frequencies of club changes of players (internationalisation), crowd noise (Carron et al., 2005; Sors et al.,
2020), mental and physiological state of players (Stolen et al., 2005) including testosterone levels (Andersson et al., 2007; Neave & Wolfson, 2003), result datasets of other (lower) divisions from Germany as well as other countries (and so on) could be of use for future analysis and comparison.

Corresponding address
Dr. Nils Beckmann
Department of Electrical Engineering and Computer Science, Osthwestfalen-Lippe University of Applied Sciences and Arts
Campusallee 12, 32657 Lemgo, Germany
nils.beckmann@th-owl.de

Acknowledgements. Open access to the respective datasets of Fussballdaten (2015) and Geonames (2016) is acknowledged. Thanks go to Zina Paul and Uhrich Rieder for their critical assessment of the manuscript.

Funding. Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest. N. Beckmann declares that he has no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
Andersson, A.-M., Jensen, T.K., Juul, A., Petersen, J.H., Jørgensen, T., & Skakkebæk, N.E. (2007). Secular decline in Male testosterone and sex hormone binding globulin serum levels in Danish population surveys. Journal of Clinical Endocrinology and Metabolism, 92(12), 4696–4705. https://doi.org/10.1210/jc.2006-2633.
Armata, V., & Pollard, R. (2014). Home advantage in Greek football. European Journal of Sport Science, 14(2), 116–122. https://doi.org/10.1080/17461391.2012.738537.
Autobild (2021). Fußball-Bundesliga: Mannschaftsbuss. https://www.autobild.de/bilder/fussball-bundesliga-mannschaftsbussen-5939653.html. Accessed June 2019.
Brown, T.D., Van Raalte, J.L., Brewer, B.W., Winter, C.R., Cornelius, A.E., & Andersen, M.B. (2002). World cup soccer home advantage. Journal of Sport Behavior, 25, 134–144.
Carmichael, F., & Thomas, D. (2005). Home-field effect and team performance: evidence from English premiership football. Journal of Sports Economics, 6, 264–281. https://doi.org/10.1117/15.27002542.66154.
Carron, A.V., Loughhead, T.M., & Bray, S.R. (2005). The home advantage in sport competitions: courneya and Carrons (1992) conceptual framework a decade later. Journal of Sports Sciences, 23, 385–407. https://doi.org/10.1080/02640410400215142.
Carruthers, M. (2009). Temporal changes in home advantage in Australian football. The Open Journal of Sports Sciences, 2, 669–679. https://doi.org/10.1016/S1469-0292(01)00033-4.
Carruthers, M. (2009). Time for international action on treating testosterone deficiency syndrome. The Aging Male, 12(1), 21–28. https://doi.org/10.1080/138853080299067.
Clarke, S.R., & Norman, J.M. (1995). Home ground advantage of individual clubs in English soccer. Journal of the Royal Statistical Society Series D, 44, 509–521. https://doi.org/10.1370/jrsta-D.234899.
Deutscher Fußball-Bund (DFB) (2021). Deutscher Fußball-Bund (DFB). http://www.dfb.de/. Accessed July 2021.
Fischer, K., & Haucap, J. (2020). Does crowd support drive the home advantage in professional soccer? Evidence from German ghost games during the Covid-19 pandemic. cesifo Working Papers 8549.
Fussballdaten (2015). http://www.fussballdaten.de/. Accessed July 2015.
Geonames (2016). Geonames. http://geonames.na. mil/ html. Accessed February 2016.
Goumas, C. (2014). Home advantage in Australian soccer. Journal of Science and Medicine in Sport, 17, 119–123. https://doi.org/10.1016/j.jams. 2013.02.014.
Hamburger Omnibus-Verein (HOV) (2021). Hamburger Omnibus-Verein (HOV). http://www.hov-bus. de/S tandard.1.pdf. Accessed April 2021.
Hesse, V., Voigt, M., Salzter, A., Steinberg, S., Friese, K., Keller, E., Gausche, R., & Eisele, R. (2003). Alterations in height, weight, and body mass index of newborns, children, and young adults in eastern Germany after German reunification. The Journal of Pediatrics, 142(3), 259–262.
Jacklin, P.B. (2005). Temporal changes in home advantage in English football since the second world war: what explains improved away performance? Journal of Sports Science, 23, 669–679. https://doi.org/10.1080/02640410400219148.
Johnston, R. (2005). On referee bias, crowd size, and home advantage in the English soccer premier- ship. Journal of Sports Sciences, 26, 563–568. https://doi.org/10.1080/02640410701173680.
Keller, H.U. (2003). Astrawissen – Zählen, Daten, Fakten. – Kosmos.
Leitner, R., & Gómez, M.A. (2014). Comparison of home advantage in men’s and women’s football.
leagues in Europe. European Journal of Sport Science, 14, 77–83. https://doi.org/10.1080/17461391.2011.651490.

Pollard, R., & Pollard, G. (2005a). Home advantage in soccer: a review of its existence and causes. International Journal of Soccer and Science, 3, 28–44.

Pollard, R., & Pollard, G. (2005b). Long-term trends in home advantage in professional team sports in North America and England (1876–2003). Journal of Sports Science, 23, 337–350. https://doi.org/10.1080/0264041040021559.

Pollard, R., & Seckin, A. (2007). Why is home advantage in south-east europe the highest in the world? In Book of long papers, 12th European Congress of Sport Psychology (pp. 53–56).

Pollard, R., Silva, C. D., & Medeiros, N. C. (2008). Home advantage in football in Brazil: differences between teams and the effects of distance traveled. Brazilian Journal of Soccer Science, 1(1), 3–10.

Ponzo, M., & Scoppa, V. (2014). Does the home advantage depend on crowd support? Evidence from same-stadium derbies. IZA Discussion Paper 8105. (pp. 1–17).

Seckin, A., & Pollard, R. (2007). Home advantage in Turkish professional soccer. Journal of Sports Science and Medicine, 10, 203–204. https://doi.org/10.2466/pms.107.1.51-54.

Sors, F., Grassi, M., Agostini, T., & Murgia, M. (2020). The sound of silence in association football: Home advantage and referee bias decrease in matches played without spectators. European Journal of Sport Science. https://doi.org/10.1080/17461391.2020.1845814.

Statistisches Bundesamt Deutschland (DeStatis) (2021). Statistisches Bundesamt Deutschland (DeStatis). https://service.destatis.de/DE/vgr_dashboard/bip.html. Accessed April 2021.

Stolen, T., Chamari, K., Castagna, C., & Wisloff, U. (2005). Physiology of soccer. Sports Medicine, 35, 501–536. https://doi.org/10.2165/00007256-200535060-00004.

Sánchez, A. J., & Lavin, J. M. (2020). Home advantage in European soccer without crowd. Soccer & Society, 22(1–2), 152–165. https://doi.org/10.1080/14660970.2020.1830067.

Thomas, S., Reeves, C., & Davies, S. (2004). An analysis of home advantage in the English football premiership. Perceptual and Motor Skills, 99, 1212–1216. https://doi.org/10.2466/pms.99.3f.1212-1216.

Travison, T. G., Araujo, A. B., O’Donnell, A. B., Kupelian, V., & McKinlay, J. B. (2007). A population-level decline in serum testosterone levels in American men. The Journal of Clinical Endocrinology and Metabolism, 92(1), 196–202. https://doi.org/10.1210/jc.2006-1375.

Van Damme, N., & Baert, S. (2019). Home advantage in European international soccer: which dimension of distance matters? Economics. https://doi.org/10.5018/economics-ejournal.ja.2019-50.

Whatling, A., Micklewright, D., & Griffin, M. (2012). High-pressure matches do not influence home-field advantage: a 30-year retrospective analysis of English professional football. Athletic Insight: The Online Journal of Sport Psychology, 4(3), 265–278.

Wolfson, S., & Neave, N. (2004). Preparing for home and away matches. Insight, 8, 43–46.

Wunderlich, F., Weigelt, M., Rein, R., & Memmert, D. (2021). How does spectator presence affect football? Home advantage remains in European top-class football matches played without spectators during the COVID-19 pandemic. PLOS ONE, 16(3), e248590. https://doi.org/10.1371/journal.pone.0248590.