IN VITRO ANTIOXIDANT AND IN VIVO HEPATOPROTECTIVE ACTIVITY OF ETHANOL EXTRACTS FROM THE BARK OF SHOREA ROBUSTA (DIPTEROCARPACEAE) AGAINST CARBON TETRACHLORIDE-INDUCED LIVER TOXICITY IN RATS

DIPTANU BISWAS1*, SHIVRAJ GOUDA T2, NARAYANASWAMY LACHMANAN GOWRI SHANKAR3

1Department of Pharmacognosy, Creative Educational Society’s College of Pharmacy, Kurnool, Andhra Pradesh, India. 2Department of Pharmacology, NET Pharmacy College, Raichur, Karnataka, India. 3Department of Pharmacognosy, Prime College of Pharmacy, Palakkad, Kerala, India. Email: diptanu69@gmail.com

ABSTRACT

Objective: The study is designed for the evaluation of in vivo hepatoprotective and in vitro antioxidant activity of ethanol extracts from the bark of Shorea robusta (EESR) (Dipterocarpaceae) by carbon tetrachloride (CCl4) induced hepatotoxicity in rats.

Methods: EESR was evaluated for hepatoprotective activity in rats by inducing liver damage by CCl4. The antioxidant activity of EESR was assayed by various in vitro antioxidant methods and activities were compared to standard ascorbic acid.

Results: Ethanol extracts at an oral dose 200 mg/kg and 400 mg/kg exhibited a significant (*p<0.005) protective effects by lowering the level of serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, serum bilirubin, total cholesterol, and increasing the level of total proteins as compared to silymarin (50 mg/kg) used as positive control. The extracts exhibit significant antioxidant activity in various in vitro antioxidant models.

Conclusion: From these studies, we are concluding that, the EESR have potent hepatoprotective effects and have antioxidant properties, hence can be used as a natural product against liver damage.

Keywords: Antioxidant, Carbon tetrachloride, Hepatoprotective, Shorea robusta.

INTRODUCTION

Shorea robusta is a large such deciduous tree seldom quite leaflets found extensively in North East and Central India [1,2]. Bark is reddish brown-gray in color, smooth and longitudinally a fissured. The plant is traditionally used in dysentery for the plaster of fumigation. It is commonly administered for weak digestion, gonorrhea and as an aphrodisiac [3-5]. Scientifically, the plant has been reported on various activities such as analgesic [6,7], antinociceptive, anti-inflammatory [8,9], oxidative stress [10], wound healing [11,12], and antiulcers [13]. Few novel compounds also isolated from various parts of the plants like a new flavonoids 3,7-dihydroxy-8-methoxy flavones-7-O-α-L rhamnopyranosyl (1→4)-α-L rhamnoglucoside pyranosyl (1→6) β-glucopyranosyl has been isolated from the seeds of S. robusta [14]. Two terpenoids have been isolated from the resin of S. robusta namely 3, 25-epoxy-1, 2, 3, 11-tetra-hydroxys-12-en-28-oic acid and 3, 25-epoxy 1, 2, 3-tri-hydroxys-12-en-28-oic acid [15].

The liver is a glandular organ of the body which plays a key role in the metabolism of carbohydrates, lipids, protein and detoxifying xenobiotics, and drugs. Thus, the liver has a chance to get injured due to its chronic exposure to drugs, environmental toxins, and xenobiotics [16]. Liver diseases are a global problem and synthetic drugs available for the treatment of liver disorders are believed to have serious adverse effects on the biological system [17]. Numerous medicinal plants and their formulations are used for liver disorders in ethnomedicinal practice as well as the traditional system of medicine in India [18]. The liver is a major organ attacked by reactive oxygen species and primary cells are subjected to oxidative stress-induced liver injury. Antioxidant substances protect the liver from various oxidative damages [19]. Our aim is to find out the hepatoprotective activity of ethanol extracts from the bark of S. robusta (EESR) in carbon tetrachloride (CCl4) induced hepatotoxicity in rats. Antioxidant activities of the extracts were also evaluated to test whether the drug has antioxidant potential or not.

METHODS

Plant materials

Barks of S. robusta were procured from wild source of the forest of Tripura. The plant material was identified and authenticated by Prof. P. Jayaraman, Director plant anatomy center Tambaram, Chennai, with reference number (PARC/2012/1276). The specimen is preserved at herbarium of the institute.

Preparation of the extracts

Coarsely powdered dried bark (500 g) was extracted up to exhaustion with petroleum ether, chloroform and ethanol (70%) using soxhlet apparatus successively. The ethanol extracts thus obtained was dried under reduced pressure yielding 22% which was selected for the study.

Experimental animal

Wister albino rats of either sex were used throughout the experiments and mice was used for acute toxicity studies. After randomization into various groups and before initiation of the experiment, the rats were acclimatized for a period of 7-day-standard environmental conditions such as temperature (26±2°C), relative humidity (45-55%), and 12 hrs. Dark/light cycles were maintained in the quarantine. All the animals were fed with synthetic diet and water was allowed ad-libitum under strict hygienic condition. The entire animals were utilized for these studies and used according to the protocol approved by (No. IAEC/CESCOP/2016-07) Institutional Animal Ethics Committee.
Acute toxicity study
The acute toxicity for EESR was determined in albino mice which were maintained under standard conditions. The animals were fasted overnight before the experiment. Acute oral toxicity-acute toxic class method (OCED Guideline no. 423, Annexure-2d) adopted by Committee for the Purpose of Control and Supervision of Experiments on Animals, Government of India was followed for toxicity studies. There is no mortality was observed after oral administration of 2000 mg/kg of EESR [20]. Common side effects such as mild diarrhea, weight loss and depression of treated groups were recorded within 7 days of observation [21].

CCl4 induced hepatotoxicity
In the dose-response experiment, albino rats were randomly assigned into 5 groups consisting of 6 animals in each group. Group I serve as (-ve) control and were received 1 ml 2% acacia solution postoperatively (PO) for 5 days. Group II serves as (+ve) control received distilled for 5 days. Group III received standards silymarin/kg body weight (B.W), for 5 days PO mixing with 2% acacia solution. Group (IV and V) receiving EESR 200 mg/kg and 400 mg/kg P.O for 5 days by mixing with 2% acacia solution. Group I received olive oil 1 ml/kg B.W. Group II-V received CCl4 at a dose 2 ml/kg B.W, by mixing with olive oil (1:1) on the 2nd and 3rd day, after 30 minutes of administration 50 mg/kg silymarin [22], 200 mg/kg and 400 mg/kg of EESR, respectively. Blood samples were collected on the 6th day by retro-orbital plexus for evaluating the various biochemical parameters such as serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP), serum bilirubin, serum cholesterol, and total protein. They were determined by using biochemical kits of Agape. The animals were sacrificed; livers were isolated and washed with normal saline. Isolated livers were stored in 40% formalin solution and proceeded to histopathology for evaluation of the detailed hepatic architectural changes in each group microscopically [23,24].

Assessment of liver function
Assessment of liver function was done by collecting blood from retro-orbital punctures and centrifuge at 4000 rpm for 15 minutes. Then, after separating the serum various biochemical parameters such as SGOT, SGPT, ALP, total cholesterol, total protein, and total bilirubin [25,26] were evaluated using Mispa semi auto analyzer of Agape.

Histopathology
Histopathological studies were done by isolating the liver to check the cellular damage to the liver cells and hepatic veins. Sections were prepared and stained with hematoxylin and eosin dye for photomicroscopy including cell necrosis, fatty change, ballooning, degeneration, and damage in central vein.

Antioxidant activity
2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity
The free radical-scavenging activities of all samples were being estimated in terms of hydrogen donating or radical scavenging ability. Radical scavenging ability was estimated using the stable radical DPPH. A solution of 0.1 mM DPPH (Himedia, Mumbai) was prepared in ethanol; 1.0 ml of this solution was being added to 3.0 ml of all the extracts solution in water at different concentrations (1-10 µg/ml). After incubation, 0.5 ml of Griess reagent was added and absorbance was measured at 546 nm using UV-visible spectrophotometer [28]. The IC50 value was determined by conventional formula.

Super oxide scavenging activity
Add 100 ml riboflavin (20 µg) solution, 200 ml EDTA (12 mMol) solution, 200 ml methanol and 100 ml nitroblue tetrazolium (0.1 mg) solution in a test tube. The reaction mixture was being divided up to 3 ml with phosphate buffer (50 mM, pH 7.6). The absorbance of the mixture solution was measured at 590 nm after illumination for 15 minutes, phosphate buffer was used as blank. The optical density (OD) was being taken as control reading. Then to different concentrations of samples (1, 2, 4, 8 and 10 µg/ml) 100 µg/ml and add above reaction mixture dilute up to 3 ml with phosphate buffer solution. The absorbance of the solution was measured at 590 nm. L-ascorbic acid was used as a reference standard. Decreased value of absorbance of the reaction mixture indicates an increase in super oxide anion scavenging activity [29].

Reducing power method
Add different doses of sample(s) in 1 ml of ethanol to get 1 µg, 2 µg, 4 µg, 8 µg, and 10 µg/ml concentration. A test tube was also made as a control (without any test sample). Add phosphate buffer (2.5 ml, 0.2 M, pH 6.6) and potassium ferricyanide (2.5 ml, 1% w/w) with the sample. The mixture was incubated at 50°C for 20 minutes. Portions (2.5 ml) of trichloroacetic acid (10%) added to the mixture and centrifuged at 3000 rpm for 10 minutes. The upper layers of the mixture solution (2.5 ml) have mixed with distilled water (2.5 ml) and 0.1% ferric chloride (0.5 ml). The absorbance (OD) was being measured at 700 nm. L-ascorbic acid was used as a reference standard [30]. The results are expressed as IC50 or inhibitory concentration 50 value.

RESULTS
Acute toxicity study (LD50)
An attempt was made to identify LD50 of EESR; acute toxicity study was carried out according to fixed dose method of OECD 423. No mortality was observed at 2000 mg/kg in mice. It was thought that 2000 mg/kg was cut off dose. Therefore, 1/10a 1/5a 200 mg/kg and 400 mg/kg dose were taken as effective dose for all further in vivo studies.

CCl4 induced hepatotoxicity
A significant increase (*p<0.05) in biochemical parameters such as SGOT, SGPT, ALP, total cholesterol, total protein, and total bilirubin level was observed in animals treated with carbon tetrachloride (2 ml/kg i.p.) as compared to normal and total protein level has decreased in toxic group. After treatment of drug extracts, it had significantly increased to normal level to the various biochemical parameters. The results are explained in Table 1. Parameters treatment of EESR (200 mg/kg, 400 mg/kg) and silymarin on 6 days decrease the above parameters significantly (*p<0.05) as compared to CCl4, treated group. The degree of protection was high with the higher (400 mg/kg) dose of the extracts of S. robusta.

Histopathology
Liver histology of normal control animal (Fig. 1) shows normal liver architecture with central veins, cytoplasm and normal polygonal hepatocytes with round nucleolus and glandular cytoplasm. Blood infiltration in central veins, sinusoid space, and Kupffer cell was detected, it was noticed that most of the hepatocytes were normal. The liver with CCl4 treatment (Fig. 2) shows various degrees of degeneration like ballooning of hepatocytes, infiltration of lymphocytes, and the loss of cellular boundaries with large sinusoidal space. Histopathological examinations of liver section of the rats treated with silymarin and EESR (200 and 400 mg/kg) followed by CCl4 intoxication resulted in less necrosis and vacuoles formation and less degeneration of the liver.
hepatocytes and less rearrangements (Figs. 3-5). It indicates marked protective activity of EESR at 200 mg/kg and 400 mg/kg in CCl$_4$ induced hepatotoxicity in rat’s liver.

DISCUSSION

CCL$_4$ is a well-known hepatotoxic agent [31], the hepatotoxicity-induced by CCL$_4$ is due to its metabolites CCl$_3$ free radicals, a free radical that binds to lipoproteins and leads to peroxidation of lipids of endoplasmic reticulum [32,33]. CCL$_4$ causes hepatocyte injury that is characterized by centrilobular necrosis that is followed by hepatic fibrosis [34]. Administration of carbon tetrachloride elevated the hepatocytes and less rearrangements (Figs. 3-5). It indicates marked protective activity of EESR at 200 mg/kg and 400 mg/kg in CCl$_4$ induced hepatotoxicity in rat’s liver.

Antioxidant activity

EESR barks possess a concentration relationship of various radical scavenging activities, viz., DPPH radical scavenging activity, nitric oxide scavenging activity, super oxide radical scavenging activity, and radical reducing power activity. Ascorbic acid was used as a standard in DPPH, nitric oxide and super oxide scavenging activity. Rutin was used as the standard for reducing power activity. The results of antioxidant activity were described in Table 2.
Table 1: Effects of ethanol extracts from barks of S. robusta on biochemical parameters in rat livers

Groups	Treatment	Parameters	APL	Cholesterol	Total bilirubin	Total protein	
Group I	Normal control	SGOT	140.9±4.417	78.98±4.296	119.4±0.235	0.237±0.0143	10.63±1.282
		SGPT	55.45±2.235	189.1±7.498	189.1±7.498	0.020±0.021	136.0±13.15
Group II	CCl₃	APL	453.3±2.803	243.0±12.71	243.0±12.71	2.020±0.217	243.0±12.71
		Cholesterol	125.4±2.474*	125.4±2.474**	125.4±2.474***	0.273±0.027**	243.0±12.71
		Total bilirubin	188.6±12.20**	169.9±7.75**	169.9±7.75**	0.583±0.0546*	243.0±12.71
		Total protein	164.1±6.32**	140.1±6.10**	140.1±6.10**	3.577±0.239**	243.0±12.71

All values are expressed as a Mean±SEM (n=6) One-way ANOVA followed by multiple comparison Tukey test. Symbol represent statically significance ***p<0.001, **p<0.01, *p<0.05 compared with toxic CCl₃ group. SGOT: Serum glutamic oxaloacetic transaminase; SGPT: Serum glutamic pyruvic transaminase. APL: Alkaline phosphatase, S. robusta: Shorea robusta; SEM: Standard error of mean, CCl₃: Carbon tetra chloride

Table 2: Antioxidant activity of EESR

Scavenging methods	Positive control	IC₅₀ (μg/ml)	EESR	Standard
DPPH scavenging activity	Ascorbic acid	27.82±2.37**	10.63±1.282	
Nitric oxide scavenging	Ascorbic acid	40.5±1.498*	7.210±0.8577	
activity				
Super oxide scavenging	Ascorbic acid	35.19±2.055**	14.39±0.9484	
activity				
Reducing power	Ascorbic acid	37.79±2.83**	15.26±1.994	
method				

Values are represents as mean ± SEM as significant compared to blank. Symbol represents *p<0.05; **p<0.001; ***p<0.0001. DPPH: 2,2 diphenyl 1 picrylhydrazyl

serum level of SGOT, SGPT, APL and bilirubin significantly. A major defence mechanism involves in the antioxidant including super oxide dismutase, catalase glutathione peroxidase which convert active oxygen molecules into nontoxic compounds. Scavenging of free radicals is one of the major antioxidant mechanism to inhibit the chain reaction to lipid peroxidation [35]. In these studies, CCl₃ induced hepatotoxicity has been done to check the protective effects of ethanol extract from the bark of S. robusta in dose-dependent manner at a dose of 200 mg/kg and 400 mg/kg. An attempt also was made to find out the correlation between hepatoprotective activity and antioxidant activity.

The treatment of EESR restored the damaged liver cell and also brought down the elevated levels of SGOT, SGPT, APL, cholesterol and bilirubin related to the hepatic injury. Histology of liver section of normal control animal shows the normal liver architecture of central veins, cytoplasm and normal polygonal hepatocytes with round nucleus and glandular cytoplasm. Blood sinuoid and Kupffer cells were detected normal. CCl₃ treated liver shows various degrees of degeneration like ballooning of hepatocytes, infiltration of lymphocytes, and the loss of cellular boundaries. Histopathological examinations of liver section of the rats treated with EESR (200 mg/kg and 400 mg/kg) and following by CCl₃ intoxication resulted in the absence of necrosis and vacuoles formation and less degeneration of hepatocytes and less rearrangements. It indicates protective activity of EESR at 400 mg/kg and with silymarin-treated groups.

Since the preliminary phytochemical analysis of the extracts has shown the presence of flavonoids and phenol compounds [36], which have been known for its antioxidant and hepatoprotective activities [37]. The results of various antioxidant activities suggest that ESSR contains a free radical scavenging power which could exert a beneficial action against pathological alteration caused by generated free radical CCl₃ in CCl₃ induced hepatotoxicity in rats.

CONCLUSION

It is concluded that treatment of EESR decreases the CCl₃ induced elevation in biochemical parameters such as SGOT, SGPT, APL, cholesterol, serum bilirubin. It also significantly increases total protein in the blood of treated animal with test drugs and silymarin. These findings suggest that EESR is effective on bringing the functional improvement of hepatocytes. The healing effects of this extract was also confirmed by histological observation. The drugs also have antioxidant potential estimated by in vitro antioxidant study. Antioxidant may be helpful in the regeneration of hepatic cell from their oxidative damage. Further research is required to find out the correct mechanism for this drug in the treatment of hepatic damage.

ACKNOWLEDGMENT

I would like to thank Principal and Managements of Creative Education Society’s College of Pharmacy for providing all the facility to successfully complete my work and my senior colleague Dr. S V Suresh Kumar, HOD, Department of Pharmacognosy for helping me to do the work.

REFERENCES

1. Azonums. Indian Medicinal Plant: A Compendium of 500 Species. Vol. 4. Chennai, India: Orient Longman Publication; 2007. p. 124-5.
2. Natkarni KM. Indian Material Medica. Vol. 2. Bombay: Popular Prakashan; 1982. p. 456-7.
3. Chatterjee A, Prakash SC. The Treatise on Indian Medicinal Plant. Vol. 2. New Delhi: Publication and Information Directorate; 1995. p. 139.
4. Kiritkar KR, Basu BD. Indian Medicinal Plant. Vol. I. New Delhi: International Book Distributor, Book Seller and Publisher; 2005. p. 288-90.
5. Khare CP. Indian Medicinal Plant an Illustrate Dictionary. Berlin: Heidelberg: Springer Verlag; 2007. p. 602.
6. Wani TA, Kumar D, Prasad R, Verma PK, Sardar KK, Tandan SK, et al. Analgesic activity of the ethanolic extract of Shorea robusta resin in experimental animals. Indian J Pharmacol 2012;44(4):493-9.
7. Preet AS, Narishma BB, Gaya PK, Vidhu A. Evaluation of in-vivo anti-inflammatory and analgesic activity of Dillenia indica I. Elongata (Miq.) and Shorea robusta stem bark extracts. Asia Specif J Trop Dis 2016;6(1):75-81.
8. Jyothi G, William MC, Ravikumar B, Krishnamohan G. Anti nociceptive and anti-inflammatory activity of methanolic extract of leaves of Shorea robusta. Pharmacology 2008;1:9-19.
9. Mahod PS, Jangde CR, Namaware SD, Subash R. Experimental evaluation of analgesic property of bark skin of Saraca indica, and Shorea robusta (Shal). J Appl Pharm Sci 2014;4(3):62-5.
10. Karthick C, Chitra M, Radhika K. Protective activity of Shorea robusta leaf against oxidative stress in rats. Int J Pharm Sci Res 2013;4(12):4754-7.
11. Wani TA, Chandrashakara HH, Kumar D, Prasad R, Gopal A, Sardar KK, et al. Wound healing activity of ethanolic extract of Shorea robusta Gaertn. I. Resin. Indian J Exp Biol 2012;50(4):277-81.
12. Mukherjee H, Ojha D, Bharitkar YP, Ghosh S, Mondal S, Kaitty S, et al. Evaluation of the wound healing activity of Shorea robusta, an Indian ethnomedicine, and its isolated constituent(s) in topical formulation. J Ethnopharmacol 2013;149:335-43.
13. Santosh Kumar M, Amusaaya N, Bhuvaneswar P. Antiulcerogenic effect of resin from Shorea robusta Gaertn. F on experimentally induced ulcer model. Int J Pharm Pharm Sci 2013;5(1):229-72.
14. Prakash EO, Rao JT. A new flavone glycoside from the seeds of Shorea robusta. Fitocechavap 1999;70(6):539-41.
15. Mishra LN, Ahmad A. Triterpenoids from Shorea robusta resin. Phytochemistry 1997;45(3):575-8.
16. Ward FM, Daly MJ. Hepatic disease. In: Walker R, Edwards C, editors. Clinical Pharmacy and therapeutics. New Livingstone York: Churchill; 1999. p. 195-212.
17. Artbohro EM, Ekpo KE, Anoisike EO, Iheb GO. Effect of aqueous extract of bitter leaf (Vernonia amygdalina) on carbon tetra chloride induced liver damage in albino wistar rats. Eur J Sci Res 2009;26(1):122-30.
18. Suresh Kumar SV, Mishra SH. Hepatoprotective effect of Perugaria daemia (Forsk.) Ethanol extract and its fraction. Indian J Exp Biol 2008;46(6):447-52.
19. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015;16(11):26087-124.
20. Veeraraghavan P. Expert Consultant Committee for Purpose of Control and Supervision of Experiments on Animal (CPCSEA) Animal Welfare Division Government of India (Guide line No. 423, Annexure 2D of OECD) 19th September; 2001.
21. Lokesh D, Amitsankar D. Evaluation of mechanism for antihypertensive action of Clerodendrum colebrookianum Walp., Used by folklore healers in North-East India. J Ethnopharmacol 2012;143(1):207-12.
22. Bagaban IM, Roy SP, Chaudhary A, Das SK, Gohil KJ, Bhandari KK. Hepato protective activity of the methanolic extract of the Fagonia indica burm in carbon tetra chloride induced hepatotoxicity in albino rats. Asian Pac J Trop Bio Med 2012;S1:1457-60.
23. Singh A, Handa SS. Hepato protective activity of Apium graveolens and Hygrophila auriculata against paracetamol and thioacetamide intoxication in rats. J Ethnopharmacol 1995;49(3):119-26.
24. Suresh Kumar SV, Mishra SS. Hepatoprotective effect of extracts from Perugaria daemia Forsk. J Ethnopharmacol 2006;107(2):164-8.
25. Hossain CM, Mali HS, Chakraborty P. Hepatoprotective activity of Lawsonia inermis Linn, warm aqueous extract in carbon tetrachloride-induced hepatic injury in wister rats. Asian J Pharm Clin Res 2011;4(3):106-9.
26. Premod K, Deval RG, Lakshmayya, Ramachandra SS. Antioxidant and hepatoprotective activity of tubers of Momordica tuberosa Cogn. Against CCl4 induced liver injury in rats. Indian J Exp Biol 2008;46(7):510-3.
27. Biswas D, Yoganadam GP, Dey A, Deb L. Evaluation of anti microbial and wound healing potential of ethanol extracts Wedelia biflora Linn (DC) leaves. Indian J Pharm Sci 2013;75(2):156-61.
28. Wojdylo A, Oszminaski J, Czemerys R. Antioxidant activity and phenolic compound in 32 selected herb. Food Chem 2007;105(3):940-9.
29. Mandal SK, Chakraborty G, Gupta M, Mazumder UK. In vitro antioxidant activity of Diospyros malabarica Kostel bark. Indian J Exp Biol 2006;44(1):39-44.
30. Khan RA, Khan MR, Sahreen S, Ahmed M. Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill. Chem Cent J 2012;6(1):12.
31. Samal PK. Hepatoprotective activity of Ardisia solanacea in CCl4 induced hepatoxic albino rats. Asian J Res Pharm Sci 2013;3(2):79-82.
32. Singh B, Saxena AK, Chandan BK, Suri OP, Suri KA, Sathi NK. Hepato protective of verbenalin on experimental liver damage in rodents. Fitoterapia 1998;58:135-40.
33. Prakash T, Fadadu SD, Sharma UR, Surender V, Goli D, Stamina P, et al. Hepatoprotective activity of leaves of Rhododendron arboretum in CCl4 induced hepatotoxicity in rats. J Med Plant Res 2008;2(11):315-20.
34. Feng Y, Siu KY, Ye X, Wang N, Yuen MF, Leung CH, et al. Hepatoprotective effects of berberine on carbon tetrachloride-induced acute hepatotoxicity in rats. Chin Med 2010;5:33.
35. Jain A, Soni M, Deb L, Jain A, Rout SP, Gupta VB, et al. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. leaves. J Ethnopharmacol 2008;115(1):61-6.
36. Biswas D, Gouda TS, Gowrishankar NL. Pharmacognostic study and establishment of quality parameter for medicinal plant of Dipetrocarpus in North Eastern state Tripura. Int J Green Pharm 2015;9(4):S24-8.
37. Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci 1999;65(4):337-53.