Optimization for Mass Hierarchy

John LoSecco

APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU,
Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris Cedex 13, France and
Commissariat à l’Energie Atomique et aux Énergies Alternatives, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette, France

(Dated: May 7, 2014)

The Δm_{13}^2 oscillation frequency for reactor neutrinos differs by 6.4% between normal and inverted mass hierarchies. This frequency difference accumulates to a phase difference over distance and time. The optimal distance is when the maximum phase difference between hierarchies occurs near the peak in the observable reactor neutrino spectrum.

Recent developments in neutrino mixing include measurement of θ_{13} \cite{1} \cite{2} and refinement of parameters \cite{3}. Outstanding questions include the mass hierarchy, the CP violating phase δ, sterile neutrinos, the Majorana nature of neutrino mass and the overall neutrino mass scale. Experiments are underway to better understand these questions.

The measurement of θ_{13} has done a great deal to permit the field to expand quickly. Plans to measure the mass hierarchy frequently involve ambiguities with δ. Given the unexpectedly large value for θ_{13} it is worth reconsidering strategies to determine the mass hierarchy.

The transition probability to find a neutrino of type β after a time t when starting with a neutrino of type α in vacuum is given by \cite{4}:

$$P_{\alpha \rightarrow \beta} = |<\nu_\beta|\nu_\alpha(t)>|^2 = |\sum_j U_{\alpha j}^* U_{\beta j} e^{-i m_j^2 L/2E}|^2$$

Where $U_{\beta j}$ are elements of the complex PMNS matrix, the m_j^2 are the square of the masses of the j’th neutrino mass eigenstate and $L \approx ct$. $\overline{\nu_e}$ disappearance experiments to measure the mass hierarchy have an advantage that the measurement is independent of CP violating phases so those ambiguities can be avoided.

In the case of an electron antineutrino disappearance experiment this can be written as \cite{5}:

$$P_{\overline{\nu}_e \rightarrow \overline{\nu}_e} = 1 - (\cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21}))$$
$$+ \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$
$$+ \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32}))$$

where $\Delta_{ij} = 1.267(m_i^2 - m_j^2) L/E$. Since $\cos^2(\theta_{12}) \approx 0.7$ and $\sin^2(\theta_{12}) \approx 0.3$ the high frequency oscillation is dominated by Δ_{31}. The L/E plot shows (figure 1) a low amplitude high frequency oscillation at $\approx \Delta_{31}$ added to a high amplitude low frequency oscillation at Δ_{21}.

A popular method to determine the mass hierarchy \cite{5} \cite{6} is to position a large reactor antineutrino detector near the solar neutrino oscillation (Δm_{12}^2) minimum and to look at ripples in the spectrum caused by θ_{13} oscillations. The combination of large distances and the oscillation minimum leads to very low rates, resulting in the need for a very large detector and long exposure times. The oscillation frequency, the ripple spacing, also in the need for a very large detector and long exposure times. The oscillation frequency, the ripple spacing, also

The portion of the transition probability sensitive to the mass hierarchy can be isolated from equation \cite{4}:

$$D = \sin^2(2\theta_{13}) \cos^2(\theta_{12}) \sin^2(\Delta_{31})$$
$$= \frac{\sin^2(2\theta_{13}) \cos^2(\theta_{12})(1 - \cos(2\Delta_{31}))}{2}$$
Now $\Delta_{31} = \Delta_{32} + \Delta_{21}$ so $\cos(2\Delta_{31}) = \cos(2\Delta_{32} + 2\Delta_{21}) = \cos(2\Delta_{32}) \cos(2\Delta_{21}) - \sin(2\Delta_{32}) \sin(2\Delta_{21})$. This gives:

$$D = \frac{\sin^2(2\theta_{13})}{2} \cos^2(\theta_{12})$$

$$1 - (\cos(2\Delta_{32}) \cos(2\Delta_{21}) - \sin(2\Delta_{32}) \sin(2\Delta_{21}))$$

The mass hierarchy is the sign of Δ_{32}. The only term in D odd in Δ_{32} is $\sin^2(2\theta_{13}) \cos^2(\theta_{12})$ $\sin(2\Delta_{32}) \sin(2\Delta_{21})$. The difference between normal and inverted hierarchy (figure 2) is:

$$|D_N - D_I| = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) |\sin(2|\Delta_{32}|) \sin(2\Delta_{21})|$$

The maximum size of this difference is $\cos^2(\theta_{12}) \sin^2(2\theta_{13})$. Since the Δ_{21} oscillation is fairly slow this maximum difference can be found near $|\sin(2\Delta_{21})| = 1$. The smallest value maximizing it is $2\Delta_{21} = \pi/2$. For $\Delta m^2_{21} = 7.54 \times 10^{-5}$ eV2 this suggests an optimal L/E near 8200 m/MeV, figure 2.

$$\sin(2|\Delta_{32}|) \sin(2\Delta_{21}) = \frac{1}{2} \cos(2|\Delta_{32} - \Delta_{21}|) - \cos(2|\Delta_{32} + \Delta_{21}|))$$

The largest observable difference between the two mass hierarchies occurs when the two predictions are 180 degrees out of phase.

$$2(|\Delta_{32} - \Delta_{21}|) = n\pi$$

$$2(|\Delta_{32} + \Delta_{21}|) = (n + 1)\pi$$

$$4|\Delta_{32}| = (2n + 1)\pi$$

$$4\Delta_{21} = \pi$$

The two oscillation frequencies for the two possible mass hierarchies differ by about 6.4% so the optimal phase difference would first occur at about 7.8 oscillations.

$$\frac{|\Delta_{32}|}{\Delta_{21}} = 2n + 1$$

Which gives $n=15.6$, $L/E=8200$ m/MeV.

The extrema of $|D_N - D_I|$ are the solutions to the equation

$$\tan(2\Delta m^2_{12} L/E) = -\tan(2|\Delta m^2_{32}| L/E)$$

A numerical search (figure 2) gives the L/E to the first global maximum at $L/E=8418$. The smallest L/E which is over 90% of this maximum separation is at $L/E=5861$.

The flux times cross section for a typical reactor neutrino spectrum peaks at about 3.66 MeV. A neutrino propagation length of about 30 km would provide optimal conditions in the vicinity of this peak. The actual shape of the spectrum is fuel dependent and depends on reactor burnup so precise optimization is not possible. But the
most of the observable spectrum would be sensitive to the mass hierarchy.

Since the neutrino mass parameters are only approximately known the estimate given here is not precise. But given the factor of 5 in the accessible neutrino energy range the position optimization described here should be adequate to get the optimal L/E very near the peak in the spectrum. The value of Δm^2 in Fogli et al. [3] has been used for our value of Δm^2_{32}. Fogli et al. has $\Delta m^2_{32} = \Delta m^2 + \delta m^2/2$. Most measurements of Δm^2_{32} come from muon neutrino disappearance experiments [8].

Systematic errors on Δm^2_{32} may be problematic. Since the experiment can not measure the normal and inverted mass hierarchy and compare them, comparison must be made to distributions based on an assumed value of Δm^2_{32} and a mass hierarchy.

I would like to thank Yifang Wang for useful discussions concerning the Daya Bay II experiment. I would like to thank Jamie Dawson and Didier Kryn for useful comments on the manuscript. This work was supported in part by the Commission franco-américaine.

After posting the first draft of this note I became aware of some recent work on this question [9]. I would like to thank J. Evslin for correspondence concerning the mass ambiguity.

* losecco@nd.edu

[1] Y. Abe et al. [Double Chooz Collaboration], “Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment,” Phys. Rev. Lett. 108, 131801 (2012) [arXiv:1112.6353 [hep-ex]].

[2] F. P. An et al. [Daya-Bay Collaboration], “Observation of electron-antineutrino disappearance at Daya Bay,” Phys. Rev. Lett. 108, 171803 (2012) [arXiv:1203.1669 [hep-ex]].

J. K. Ahn et al. [RENO Collaboration], “Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment,” Phys. Rev. Lett. 108, 191802 (2012) [arXiv:1204.0626 [hep-ex]].

[3] G.L. Fogli et al. Phys. Rev. D 86, 013012 (2012) “Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches” arXiv:1205.5254v3 (2012).

[4] Particle Data Group, (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012).

[5] J. Learned, S. Dye, S. Pakvasa and R. Svoboda, Phys. Rev. D 78, 071302 (2008).

[6] Yu-Feng Li, Jun Cao, Yifang Wang, Liang Zhan “Unambiguous Determination of the Neutrino Mass Hierarchy Using Reactor Neutrinos” arXiv:1303.6733 [hep-ex]).

L. Zhan, Y. Wang, J. Cao and L. Wen, Phys. Rev. D 78, 111103 (2008).

L. Zhan, Y. Wang, J. Cao and L. Wen, Phys. Rev. D 79, 073007 (2009).

[7] Y. Abe et al. Phys. Rev. D, 86, 052008 (2012).

[8] P. Adamson et al. “Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam” Phys. Rev. Lett. 101 131802 (2008) arXiv:0806.2237.
P. Adamson et al. “Measurement of the neutrino mass splitting and flavor mixing by MINOS” Phys. Rev. Lett. 106 181801 (2011) arXiv:1103.0340.

This last reference has $\Delta m_{32}^2 = 2.32^{+0.12}_{-0.08} \times 10^{-3}$ eV2

[9] Emilio Ciuffoli, Jarah Evslin and Xinmin Zhang arXiv:1208.1991 and arXiv:1305.5150

Shao-Feng Ge, Kaoru Hagiwara, Naotoshi Okamura and Yoshitaro Takaesu arXiv:1210.8141