Pharmacological Activities of Coumarin Compounds in Licorice: A Review

Yimei Zang

Abstract
Licorice is a traditional medicine commonly used in China and many other countries. Over the last 50 years, the structure and pharmacological effects of coumarin compounds in licorice have been investigated. However, a comprehensive review of the literature summarizing current trends is currently lacking. Thus, the aim of the present review is to provide an up-to-date summary of the scientific literature regarding the pharmacological effects of coumarin compounds in licorice, thereby laying the foundation for further research and optimal utilization of licorice. We retrieved 111 articles on the coumarin components of licorice and their potential pharmacological effects, based on titles, keywords, and abstracts from databases (including PubMed and Web of Science). Glycyccoumarin, isoglycycoumarin, licoarylcoumarin, licopyranocoumarin, glycyrin, isotrifoliol, glycyrol, and glycyrurol have been investigated for their anticancer, hepatoprotective, antispasmodic, immunosuppressive, anti-inflammatory, and antibacterial properties, and use as therapeutic agents in metabolic syndrome, thereby demonstrating their potential for clinical applications. Future research should further explore the pharmacological mechanisms of action of coumarin compounds, including their antibacterial activities. Investigations into the pharmacological activities of different glycycoumarin isomers might open new research frontiers.

Keywords
licorice, coumarins, pharmacological activities, glycycoumarin, glycyrol

Received: February 11th, 2020; Accepted: August 4th, 2020.

Introduction
Licorice, or Gan-Cao in Chinese, is derived from the roots and rhizomes of Glycyrrhiza uralensis Fisch., G. inflata Bat., and G. glabra L. Licorice is an ancient Chinese ethnomedicine and its traditional benefits include tonifying the spleen and stomach, relieving pain, reducing phlegm, alleviating cough, and detoxification. Currently, licorice is used in many countries for the treatment of various digestive ailments (eg, stomach ulcers, hyperdipsia, flatulence, and colic), respiratory tract disorders (eg, coughs, sore throat, pneumonia, bronchitis, and bronchial asthma), fluid retention, low blood pressure, sexual debility, paralysis, rheumatism, psoriasis, malaria, jaundice, and certain viral infections.

Coumarins are benzopyrone analogs that are secondary metabolites of many plant species, including those from the Clusiaceae, Umbelliferae, Rutaceae, and Leguminosae families. Coumarins such as novobiocin, coumermycin, and aflatoxin, have also been identified in bacteria and fungi. In addition, coumarins and their hybrids can be rationally designed and produced and their derivatives synthesized via Perkin condensation, Knoevenagel condensation, the Pechmann reaction, and metal-catalyzed cyclization. Based on their structural diversity, compounds in this family have been divided into various categories, including simple coumarins and polycyclic coumarins such as furanocoumarins, pyranocoumarins, and phenylcoumarins.

Coumarins and coumarin-based hybrids have demonstrated numerous biological properties, including anticancer, anti-inflammatory, antioxidant, antiviral, antimicrobial, antifungal, antitubercular, anticoagulant, antispasmodic, antihyperglycemic, antitubulin, immunosuppressive, hepatoprotective, and neuroprotective activities. Some mechanistic studies have also been performed. For example, coumarins have been evaluated as mitogen-activated and extracellular signal-regulated kinase inhibitors, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitors, and nucleotide excision repair inhibitors that interfere with cell growth, proliferation, differentiation, and other important cellular processes. Thus,
their activity has been associated with tumorigenesis.15 Coumarins and their derivatives also exhibit antimicrobial activities by blocking quorum-sensing signaling systems and inhibiting the formation of biofilms.25 The antioxidant action of some coumarins is dependent on the benzylic hydrogen atoms; the resonance involving these atoms promotes the release of hydrogen as a free radical, whereas the inductive effect of the benzene ring, oxygen, and nitrogen draws electrons to form a carbon-free radical, enhancing the stability of the molecule.37 The antiviral mechanisms of some coumarins involve either the inhibition of proteins essential for viral entry, replication, and infection, or the regulation of cellular pathways such as the Akt-mammalian target of rapamycin, NF-κB, and antioxidant pathways, which include nuclear factor erythroid 2-related factor 2 (Nrf2).

Licorice contains various naturally active compounds including flavonoids, triterpenoid saponins, coumarins, and phenolics. Of these, coumarins are one of the most important natural organic compounds.38-40 Since glycyrol and isoglycyrol were first separated from \textit{Glycyrrhiza} spp. in 1969,41 their structures and pharmacological effects, as well as those of other licorice-coumarin compounds, have been gradually elucidated. Coumarin compounds in licorice possess different structures and include simple coumarins (liqcoumarin38), 3-arylcoumarins (glycycoumarin,42 isoglycycoumarin,43 licoarylcoumarin,44 7,2′,4′-trihydroxy-5-methoxy-3-arylcoumarin,45 licycoplanocoumarin [also known as GU-7],46,47 glycyrin,48 and licofuranocoumarin49], coumestans (isotrifoliol,49 glycyrol,41 isoglycyrol,41 neoglycyrol,50 glycyrol,51 gancaonin-F,52 hedysarimcoumestan B,45 hedysarimcoumestan E,45 and sophoracoumestan C53], and 4-arylcoumarins (inflacoumarin A54). Among these, glycycoumarin, isoglycycoumarin, licycoplanocoumarin, isotrifoliol, glycyrol, glycyrol, licoarylcoumarin, and glycyrin are the major coumarin components; their structures are presented in Figure 1.

Previously reported studies on the pharmacological effects of 8 coumarin compounds (glycycoumarin, isoglycycoumarin, licoarylcoumarin, licoparanocoumarin, glycyrin, isotrifoliol, glycyrol, and glycyrol) were identified using available online scientific databases such as PubMed and Web of Science, without a time restriction. The names of coumarin compounds in licorice, including “glycycoumarin” and “glycyrol,” were combined with words related to their pharmacological actions, including “anti-inflammatory” and “anticancer,” and searched in titles, keywords, and abstracts. The methods of biosynthesis, metabolic reactions, and coumarin products were not within the scope of this analysis. In addition, papers on compound medicines with an unclear chemical composition were excluded. Using this search strategy, 156 articles between 1964 and 2020 were identified, of which 45 were excluded. The pharmacological effects mentioned in the 111 articles included in this review are shown in Table 1. This review summarizes the findings of both in vivo and in vitro studies on coumarins from licorice.

\textbf{Anticancer Activities}

The anticancer activity of glycyrol was first reported in 2007,55 when it was demonstrated to dose-dependently decrease the viability of human gastric cancer cells (AGS and SNU638 cells). However, its mechanism of action was not determined at that time. Glycyrol was later found to induce apoptosis in human kidney epithelial 293 T cells (HEK 293 T cells) through

![Figure 1. Structures of 8 major coumarin compounds in licorice.](image-url)
endonuclease G. Glycyrol can significantly suppress the NF-κB-dependent transcriptional activity induced by phorbol ester (phorbol 12-myristate 13-acetate), as determined using luciferase reporter activity in HEK 293 T cells. Glycyrol also induces apoptosis by activating p53 through endonuclease G. Another study revealed that glycyrol induces apoptosis in human Jurkat cells through a membrane death receptor pathway that is independent of p53. This indicates that glycyrol induces the apoptosis of human Jurkat cells by NF-κB inhibition, S-phase arrest, caspase activation, and Fas enhancement, but not via either Bcl-2 or Bax proteins.

The anticancer activity of glycyrol, both in vitro and in vivo, was first evaluated in 2014, when it was found to induce cell death associated with apoptosis and autophagy, as evidenced by morphological changes in AGS and HCT-116 cells. In addition, glycyrol has been shown to suppress tumor growth in a nude mouse tumor xenograft model bearing HCT-116 cells.

Butyrate has been shown to exert anticancer activity by inducing apoptosis and inhibiting the growth of colon cancer cells. Lu et al. attempted to combine butyrate with glycyrol to reduce the proliferation of cancer cells. These results demonstrated that the combination greatly enhanced the apoptotic effect of butyrate owing to the benzofuranyl, isopentenyl, and furan groups of glycyrol.

Wang et al. showed that glycyrol exerts higher cytotoxicity than liquiritcoumarin, crotoliquiritin, ammopiptanoside A, glycyrin, hedysanincomestan B, glycyrrhisoflavone, licoisoflavone A, isolicoflavonol, licoflavonol, isoliquiritigenin, licochalcone, licoricone, and gabroly. Glycyrol exhibits a moderate antiproliferative effect with a half-maximal inhibitory concentration (IC50) of 11.46 µM for A549 cells and 7.38 µM for NCI-H292 cells, following treatment for 48 hours; however, the underlying mechanism for this effect was not determined.

Glycycomarin, another coumarin component extracted from licorice, was found to exert potent antitumor effects, as demonstrated through the induction of apoptosis in vitro (HepG2, Huh7, DU-145, and HCT-116 cells) and reduction of tumor size in vivo (male BALB/c athymic nude mice). The treatment of HepG2 cells with glycycomarin for 36 hours leads to a concentration-dependent increase in cell death.

ABT-737 is an inhibitor of the Bcl-2 family of proteins that leads to the disruption of mitochondrial membrane potential. The protective effects of glycycomarin inhibited ABT-737-mediated toxicity of platelets against liver cancer significantly in both cell culture and xenograft animal models.

The specific mechanisms underlying the anticancer activities of these coumarin compounds are shown in Table 2.

Hepatoprotective Activities

Recent studies have used glycycomarin to ameliorate alcoholic liver disease, combat acetaminophen-induced acute liver injury (AILI), and prevent the development of nonalcoholic fatty liver disease (NAFLD).

Glycycomarin exerts a strong preventive effect against alcohol-induced hepatotoxicity in mouse models of chronic and acute alcohol-induced liver injury. However, a study found a clear decrease in steatosis induced by chronic alcohol exposure following co-treatment with glycycomarin and alcohol.

Another study demonstrated that glycycomarin (50 mg/kg) is effective in acetaminophen-induced hepatotoxicity in C57BL/6N mice. AILI is dose-dependently ameliorated following treatment with glycycomarin, as demonstrated by a progressive reduction in the serum levels of alanine aminotransferase. Moreover, glycycomarin is superior to N-acetylcysteine, a modified amino acid clinically used as the only standard treatment for AILI, in terms of effective dosage and therapeutic time window.

Two later studies revealed that glycycomarin could effectively prevent NAFLD by suppressing endoplasmic reticulum (ER) stress and inducing lipoapoptosis. In in vitro models, treatment with 10-40 μM glycycomarin was found to suppress apoptosis significantly in HepG2 cells; at 20 μM, and it was highly effective in preventing oleic acid/palmitic acid-induced lipid accumulation. In in vivo models, glycycomarin reverses the biochemical and pathological changes in methionine/choline-deficient diet-fed mice, such as a marked
Table 2. Summary of Studies Investigating the Anticancer Activities of Coumarin Compounds From Licorice.

Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	Reference
Anticancer (gastric)	Glycyrol	AGS and SNU638 cells	In vivo	Not determined	55
Apoptosis of tumor cells	Glycyrol	HEK 293 T cells	In vitro	Downregulation of NF-κB-dependent genes; inducing apoptosis through activation of p53 via endonuclease G	56
(kidney)				Enhanced cleavage of procaspases-8, 9, and 3, and decreased caspase-3 activity	57
Apoptosis of human Jurkat	Glycyrol	Human Jurkat T lymphocytes	In vitro	Induction of G0/G1 phase arrest by increasing p21; activation of JNK/p38 MAPKs and induction of caspase-dependent apoptosis, accompanied by AMPK activation	58
T cells				Suppression of IAPs, combined with butyrate-induced mitochondrial pathway leading to the synergistic induction of cell death	61
Apoptosis of tumor cells	Glycyrol	Human gastric cancer AGS, human colon cancer HCT-116 cells	In vitro; in vivo	Induction of G0/G1 phase arrest by increasing p21; activation of JNK/p38 MAPKs and induction of caspase-dependent apoptosis, accompanied by AMPK activation	58
(gastric, kidney)				Induction of G0/G1 phase arrest by increasing p21; activation of JNK/p38 MAPKs and induction of caspase-dependent apoptosis, accompanied by AMPK activation	58
Anticancer (colon)	Glycyrol	Human colon cancer cells HCT-116, HT-29	In vitro	Suppression of IAPs, combined with butyrate-induced mitochondrial pathway leading to the synergistic induction of cell death	61
Cytotoxicity	Glycyrol	A549 cells and NCI-H292 cells	In vitro	Not determined	62
Anticancer (liver)	Glycycoumarin	Human hepatocellular carcinoma cells	In vitro; in vivo	Binds to and inactivates oncogenic TOPK, leading to activation of the p53 pathway	63
		HepG2, Huh7, and human prostate cancer DU-145 cells; human colon cancer HCT-116 cells; male BALB/c athymic nude mice		Inactivates the TOPK-survivin axis and inhibits de novo lipogenesis	64

Abbreviations: AMPK, adenosine monophosphate-activated protein kinase; IAPs, inhibitors of apoptosis proteins; JNK, c-Jun N-terminal kinase; MAPKs, mitogen-activated protein kinases; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; TOPK, T-LAK cell-originated protein kinase.
increase in alanine transaminase, a key marker of liver injury, and the accompanying profound hepatic steatosis. In addition, glycyounarin leads to a reduction in body weight. In a recent study by the same group, glycyrol was also found to suppress fumonisin B1 (FB1)-induced ER stress and protect against apoptosis via the inactivation of inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α). Glycyrol (10 µM) significantly reduces the apoptosis of AML12 cells following exposure to 300 µM FB1 for 48 hours. Furthermore, FB1-induced IRE1α phosphorylation and Bip upregulation are suppressed following treatment with glycyrol at this concentration for 24 hours ($P < 0.01$).

The specific mechanisms underlying the hepatoprotective activities of these coumarin compounds are presented in Table 3.

Antispasmodic Activities

The antispasmodic activity of the coumarin compounds found in licorice can help control abdominal cramping, fecal urgency, and postprandial lower-abdominal discomfort associated with diarrhea. Glycycoumarin was found to inhibit contractions induced by various types of stimulants, including carbachol, potassium chloride, barium chloride, and A23187 (calcium ionophore III), with similar efficacy as papaverine, a representative antispasmodic drug targeting the smooth muscle. In addition, the antispasmodic potency of cultivated and wild licorice was found to be directly dependent on glycycoumarin content, according to a study published by Nagai et al. They also reported that boiled-water extracts from 4-year-old cultivated and wild licorice exerted relaxant activity on carbachol-induced contractions in mouse jejunum (median effective dose: 134 ± 21 and 134 ± 16 µg/mL, respectively). However, the mechanism of action underlying this activity was not determined.

Shaoyaogancao-tang, a formulation that contains powdered extracts of the roots and rhizomes of licorice, is prescribed to provide rapid relief of muscle cramps arising from different causes. Researchers found that a low intravenous dose (2.7 mmol/kg) of glycycoumarin (1 of 8 active constituents) attenuated tetanus-induced contractions in mouse jejunum (median effective dose: 134 ± 21 and 134 ± 16 µg/mL, respectively). However, the mechanism of action underlying this activity was not determined.

Shoayanagancao-tang, a formulation that contains powdered extracts of the roots and rhizomes of licorice, is prescribed to provide rapid relief of muscle cramps arising from different causes. Researchers found that a low intravenous dose (2.7 mmol/kg) of glycycoumarin (1 of 8 active constituents) attenuated tetanus-induced contractions in mouse jejunum (median effective dose: 134 ± 21 and 134 ± 16 µg/mL, respectively). However, the mechanism of action underlying this activity was not determined.

Therapeutic Activities Toward Metabolic Syndrome

Metabolic syndrome refers to a cluster of conditions that occur simultaneously and increase the risk of heart disease, stroke, and type 2 diabetes. Ligands, such as those targeting peroxisome proliferator-activated receptor (PPAR)-γ, are effective in metabolic syndrome, including type 2 diabetes. Glycycoumarin,
glycyrrin, dehydroglyasperin C (flavonoid), and dehydroglyasperin D (flavonoid) have been reported as PPAR-γ ligands. When these were mixed at the same concentrations found in licorice ethanolic extract, the effective PPAR-γ ligand-binding activity was found to be 90% of the extract-binding activity. Glycyrrin markedly reduces blood glucose levels in genetically diabetic KK-Ay mice. In addition, glycyrin exhibits significant PPAR-γ ligand-binding activity in vitro. However, after 4 days of feeding, the blood glucose levels of glycyrin-treated and pioglitazone-treated animals were markedly reduced relative to those in the control group. In an oral sucrose tolerance test, glycyrin and pioglitazone significantly inhibited the increase in blood glucose levels in mice after sucrose loading. The specific mechanisms underlying the therapeutic activities of these coumarin compounds on metabolic syndrome are shown in Table 5.

Immunosuppressive and Anti-Inflammatory Activities

Calcineurin (CN) is a protein phosphatase that plays an important role in immune regulation. Glycyrol (IC$_{50}$ = 84.6 µM) was found to dose-dependently inhibit CN activity in an enzymatic assay. At a nontoxic concentration, glycyrin markedly reduced the proliferation of murine splenic T lymphocytes induced by concanavalin A and the mixed lymphocyte reaction. The delayed hypersensitivity (DTH) of glycyrin-treated mice decreased in a dose-dependent manner, whereas graft survival (BALB/c mice with skin grafts from male donor C57BL/6 mice) increased by 59% compared with that of the control group ($P < 0.05$). Another study examined the interaction between glycyrin with calcineurin A (CNA) and demonstrated that glycyrin binding changes the secondary structure of CNA, which may inhibit CN activity.

Glycycoumarin has also been shown to induce autoimmune regulation and inflammatory responses. A study demonstrated that the anti-inflammatory effect of glycycoumarin is caused by the inhibition of nuclear factor-kappa B alpha (IkBα) phosphorylation. However, another study reported that the peroral administration of glycycoumarin is effective in slowing down collagen-induced arthritis in male DBA/1J mice, a model of rheumatoid arthritis, as it decreases serum inflammatory cytokine levels. Glycycoumarin reduces DTH, improves carbon clearance and decreases acetic acid-induced capillary permeability.

Glycycoumarin is another coumarin constituent that exerts anti-inflammatory activity. This compound inhibited prostaglandin E2 (PGE2) secretion by more than 80% at a concentration of 10 µM in RAW 264.7 murine macrophages.

Glycycoumarin and glycyrin are 2 of the main compounds in San’ao decoction (SAD), an extract formulation prescribed for the treatment of asthma. The ethyl acetate fraction of SAD has a dramatic effect on PPAR-γ activation and may have anti-inflammatory properties during various chronic
inflammatory processes. Glycycoumarin (5 µM) also exerted significant activity on PPAR-γ; however, this was found to be less than that of formononetin in the SAD ethyl acetate fraction. The specific mechanisms underlying the immunosuppressive and anti-inflammatory activities of these coumarin compounds are shown in Table 6.

Neuroprotective Activities

Licorice has been shown to possess protective effects against amyloid β (Aβ) oligomer-induced apoptosis.91 This study also demonstrated that glycycoumarin markedly reduced Aβ oligomer-induced neuronal death at concentrations of 10, 30, and 50 mM ($F_{[6, 35]} = 64.584, P < 0.001$).

Parkinson’s disease is a neurodegenerative disease characterized by the progressive death of dopaminergic neurons in the substantia nigra. Licopyranocoumarin and glycyrurol have demonstrated cytoprotective effects in neuronal cells. These compounds block 1-methyl-4-phenylpyridinium (MPP+) induced neuronal PC12D cell death and the loss of mitochondrial membrane potential, which are mediated by c-Jun N-terminal kinase.92

The specific mechanisms underlying the neuroprotective activities of these coumarin compounds are shown in Table 7.

Antimicrobial Activities

Glycycoumarin was first reported to exert activity against microorganisms including bacteria, yeast, and fungi, in 1988.93 Approximately, 13 years later, a study revealed that glycyrol, glycyrin, and glycycoumarin display antibacterial activity against *Streptococcus pyogenes*, *Haemophilus influenzae*, *Moraxella catarrhalis*, and other bacteria of the upper respiratory tract.94 The minimum inhibitory concentrations (MICs) of these 3 compounds against microorganisms are listed in Table 8. A previous study showed that glycyrin has weak activity against *Helicobacter pylori*, similar to that reported for glycyrhetinic acid and liquiritigenin.95 Eerdunbayaer et al found that licoarylcoumarin and glycycoumarin have moderate antibacterial activity toward vancomycin-resistant *Enterococci*.96 Low MIC values (16 µg/mL) were found for *Enterococcus faecium* and *Enterococcus faecalis* via the liquid dilution method. However, the mechanisms underlying the antimicrobial activity were not elucidated in the above-mentioned studies.

In 2015, a study revealed that activity-guided compounds from *G. glabra* significantly decreased the virulence factor of *Acinetobacter baumannii*, including motility ($P < 0.05$), which regulates quorum sensing and the production of antioxidant enzymes.97 Glycyrin was also identified as a coumarin compound responsible for quorum quenching against *A. baumannii*. Another study found that glycyrin extracted from *G. glabra* possessed activity against *Bacillus subtilis* FtsZ (BsFtsZ) guanosine triphosphate (GTPase), with efficacy levels similar to those reported for the synthetic FtsZ inhibitor, Zantrin.
Only 1 in vivo experiment involving coumarin in licorice indicates that glycyrol may contribute to the development of a novel agent with antifungal activity against cutaneous candidiasis. The comparison of infected sites on the dorsal sides of treated and untreated mice showed that glycyrol treatment of the infected sites reduced colony-forming units by up to 60% and 85.5% at 20 and 40 µg/mouse of glycyrol, respectively (P < 0.01). To the best of my knowledge, coumarins from licorice are safe for human consumption, but a thorough analysis of their potential cytotoxicity has not been performed to date. Two of the studies mentioned above have reported underlying mechanisms of action of coumarin compounds, whereas the other studies have not demonstrated any mechanism, as summarized in Table 9.

Antioxidant Activities

A previous study has indicated that some coumarin compounds possess the significant antioxidant ability for scavenging peroxyl radicals in experiments involving reactive oxygen species.

The first study to report the antioxidant activity of glycycomarin derived from licorice also elucidated its antimicrobial activity. However, the data indicate that the peroxidase activity of glycycomarin is close to that of the blank control, suggesting that...
glycycoumarin does not exert significant peroxidase activity. Nevertheless, another study revealed that glycycoumarin has strong scavenging activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)+ radicals and could inhibit lipid peroxidation in rat liver microsomes relative to ascorbic acid. The specific mechanisms underlying the antioxidant activities of these coumarin compounds are shown in Table 10.

Antiviral Activities

Many coumarin compounds such as dicamphanoyl-khellactone and calanolide A have been reported to exhibit anti-human immunodeficiency virus (HIV) effects via unique mechanisms dependent on the different stages of HIV replication.

A study published in 1988 revealed the anti-HIV activity of licopyranocoumarin and glycycoumarin. These compounds showed inhibitory activity against giant cell formation at 20 µg/mL without any observable cytotoxicity. To date, however, there has been no other report of licorice-based coumarins exerting this effect. Nonetheless, glycycoumarin was reported to possess activity against the hepatitis C virus (HCV), with a half-maximal effective concentration of 15.5 ± 0.8 mg/mL. In addition, a subsequent report revealed that glycycoumarin, glycyrin, and glycyrol are anti-HCV constituents, with IC_{50} values of 8.8, 7.2, and 4.6 mg/mL, respectively.

Neuraminidase (NA) is an enzyme involved in the release of progeny virus from infected cells and is known to cleave sugars that bind to mature viral particles. Glycyrol, which has a 5-membered closed B ring, demonstrated high (IC_{50} = 3.1 µM) activity against NA.

The specific mechanisms underlying the antiviral activities of these coumarin compounds are shown in Table 11.

Antiplatelet and Antithrombotic Activities

Through in vitro experiments, licopyranocoumarin was found to inhibit progressively the aggregation of platelets induced by 0.01 U/mL of thrombin. Furthermore, licopyranocoumarin can suppress the phosphorylation of 40 and 20 kDa proteins, production of inositol 1,4,5-trisphosphate, increase intracellular calcium ions, and activity of phosphodiesterase in platelets. Isotrifoliol is reported to significantly prolong thrombin time (TT) with a good dose-effect relationship (dosage = 2.5 µg/mL, TT prolongation = 10.35 ± 2.38%).

The specific mechanisms underlying these activities of coumarin compounds are shown in Table 12.

Other Activities

The specific mechanisms underlying other activities of coumarin compounds are described below and summarized in Table 13.

Estrogenic activity. Glycycoumarin is an estrogen agonist that can stimulate the expression of estrogen-regulated genes; however, the potency and efficacy of glycycoumarin in stimulating the expression of such genes are lower than those of methoxychalcone and vestitol.

Protecting against acute lung injury. Paraquat (PQ) is one of the most widely used herbicides in developing countries and a highly toxic compound capable of causing acute lung injury.

Table 7. Summary of Studies Investigating the Neuroprotective Activities of Coumarin Compounds From Licorice.

Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	Reference
Amyloid β oligomer-induced apoptosis	Glycycoumarin	Sprague-Dawley rat embryos	In vivo	Attenuation of amyloid β oligomer-induced activation of caspase-3, but not caspases-8 and 9	91
Cytoprotective treatment for Parkinson's disease	Licopyranocoumarin and glycryrrol	PC12 pheochromocytoma cells	In vitro	Inhibition of reactive oxygen species generation and the subsequent suppression of MPP+-induced JNK activation; attenuation of MPP+-induced neuronal PC12D cell death	92

Table 8. Minimum Inhibitory Concentrations (MICs; µg/mL) of 3 Licorice Constituents Tested Against Microorganisms.

Substance	Glycycoumarin	Glycyrol	Glycryrrol
Bacteria			
Streptococcus mutans	12.5	-	-
Staphylococcus aureus	3.13	-	-
Bacillus subtilis	6.25	-	-
Streptococcus pyogenes	25	50	50
Haemophilus influenzae	25	100	20
Moraxella catarrhalis	100	>100	50
Yeasts			
Saccharomyces cerevisiae	25	-	-
Candida utilis	50	-	-
Pichia nankawae	25	-	-

Note: “-“ Denotes not determined.
Glycyrol has been shown to decrease the accumulation of PQ in vivo in Kunming mice (oral bioavailability = 90.8%, drug-likeness >0.1). In addition, glycyrol has been used to inhibit PQ-induced cell death associated with the cytochrome P450 (CYP450) and Nrf2 pathways in vitro.

Use as a selective probe.

CYP2A6 is an important hepatic phase I detoxifying enzyme with a polymorphism that may be related to smoking and hepatomas. Coumarin compounds have been used as probe substrates for CYP2A6 and are subsequently metabolized to 7-hydroxycoumarin. CYP2A6 was identified as the major enzyme involved in the metabolism of isoglycycoumarin, and the catalytic activity of CYP2A6 can be determined by its hydroxylation of isoglycycoumarin to generate licopyranocoumarin.

Discussion

Licorice has been used since ancient times as a common medicinal ingredient and is favored owing to its beneficial activities in the treatment of numerous diseases. To date, the chemistry and pharmacology of licorice have been investigated in many studies in different countries. Although the content of coumarin compounds in licorice is relatively low, an increasing number of researchers are now focusing on their pharmacological activities.

The studies discussed herein have investigated the activities of some coumarin compounds present in licorice such as glycycoumarin, isoglycycoumarin, glycyrol, glycyrin, licopyranocoumarin, licoarylcoumarin, glycyrurol, and Gu-7. These compounds have been reported to exhibit anticancer, hepatoprotective, antispasmodic, immunosuppressive, anti-inflammatory, and antimicrobial activities, as well as therapeutic effects on metabolic syndrome components. In recent years, coumarins in licorice have drawn significant attention owing to their potential therapeutic applications in cancer, hepatic disease, and viral infections.

While performing this literature review, in some cases, the structure presented as glycyrol was found to be |

Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	References
Antimicrobial activity	Glycycoumarin	Microorganisms listed in Table 8	In vitro	-	93
Antibacterial activity against upper respiratory tract pathogens	Glycyrol, glycyrin, and glycycoumarin	*Streptococcus pyogenes, Haemophilus influenza,* and *Moraxella catarrhalis*	In vitro	-	94
Inhibition of *Helicobacter pylori* activity	Glycyrin	*H. pylori* ATCC 43504, ATCC 43526, *H. pylori* ZLM 1007, ZLM 1200, clarithromycin-resistant *H. pylori* GP98	In vitro	-	95
Inhibition of *Enterococcus* species activity	Licoarylcoumarin and glycycoumarin	*E. faecalis* FN-1 and *E. faecalis* NCTC 12201	In vitro	-	96
Attenuation of quorum sensing-mediated virulence of *Acinetobacter baumannii*	Glycyrin	*Acinetobacter baumannii* strains and *Acinetobacter tumefaciens* A136	In vitro	Reduced expression of the autoinducer synthase gene, *abaI,* and decreased production (92%) of 3-OH-C12-HSL	97
Inhibition of *Bacillus subtilis* FtsZ (FtsZ) GTPase activity	Glycyrin	Plasmid DNA encoding BsFtsZ, EcFtsZ, and the BsFtsZ V307R mutant protein	In vitro	Binds to the cleft on BsFtsZ as an uncompetitive FtsZ inhibitor, PC190723; anti-BsFtsZ inhibitory activity	98
Inhibition of *Candida albicans* activity	Glycyrol	BALB/c female mice; *C. albicans* yeast cells	In vivo and in vitro	Damages the cell wall to enhance the response of *C. albicans* to fluconazole	99

Abbreviation: 3-OH-C12-HSL, N-(3-hydroxydodecanoyl)-L-homoserine lactone.

"-" Denotes not determined.
neoglycyrol,58,59,86-89 as shown in Figure 2. Glycyrrol and neoglycyrol are isomers; glycyrrol contains 5′-hydroxy and 7′-methoxy in its structure, whereas neoglycyrol is the converse. Therefore, the structure of glycyrrol in those studies should be verified. Additionally, further studies are needed to confirm whether neoglycyrol exerts similar pharmacological effects as glycyrrol. Since isoglycycomarin and glycycoumarin are isomers, they may display similar pharmacological effects, which warrant further study.

Similarly, isotrifoliol was misidentified as glycycoumarin in 2 studies.119,120 Its structure is shown in Figure 1. The structures of these 2 compounds are different; glycycoumarin is chemically 3-arylcoumarin, while isotrifoliol is a coumestan. Isotrifoliol has shown significant anti-thrombotic activity, but the mechanisms underlying this activity were not elucidated. Another study showed that isotrifoliol isolated from soy leaves exhibits anti-inflammatory effects, specifically inhibiting lipopolysaccharide (LPS)-induced NF-κB and mitogen-activated protein kinase activation by attenuating Toll-like receptor (TLR) signaling in macrophages.121 Since both licorice and soy belong to the Leguminosae family, it could be inferred that isotrifoliol is present in many plants belonging to this family. Therefore, isotrifoliol could be extracted from more plants from the

| Table 10. Summary of Studies Investigating the Antioxidant Activities of Coumarin Compounds From Licorice. |
|---|---|---|---|---|---|
Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	References
Antioxidant activity in lard	Glycycoumarin	1 g of mixed lard	In vitro	No significant activity	93
Scavenging activity	Glycycoumarin	RAW 264.7 murine macrophages	In vitro	Exerts protective effects by chelating metals or altering iron redox chemistry	101

| Table 11. Summary of Studies Investigating the Antiviral Activity of Coumarin Compounds From Licorice. |
|---|---|---|---|---|---|
Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	References
Anti-HIV activity	Lacopyranocoumarin; glycycoumarin	Human lymphoblastic leukemia cell line; OKM-3T	In vitro	Not determined	46
Inhibition of hepatitis C viral replication	Glycycoumarin	Human hepatoma cell line; Huh7	In vitro	Decreased translation of the HCV nonstructural protein, NS5A, from the HCV replicon	104
Anti-HCV	Glycycoumarin; glycuryl; glycyrin	Huh 7.5 cells	In vitro	Inhibition of HCV ribonucleic acid replication and HCV protein synthesis to produce HCV infectious particles	105
Inhibition of neuraminidase activity	Glycuryl	rvH1N1 (A/Bervig-Mission/1/18) neuraminidase	In vitro	A 5-membered ring between C-4 and C-20 in coumestan is critical for neuraminidase inhibition	107

| Table 12. Summary of Studies Investigating the Anticoagulative Activities of Coumarin Compounds in Licorice. |
|---|---|---|---|---|---|
Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	References
Antiplatelet activity	Licopyranocoumarin	Blood obtained from healthy volunteers	In vitro	Inhibition of platelet aggregation by increased intracellular cyclic adenosine monophosphate concentration	47
Antithrombotic activity	Isotrifoliol	Blood obtained from rabbits’ common carotid artery	In vitro	-	51

Abbreviations: HCV, hepatitis C virus; HIV, human immunodeficiency virus.

“-” Denotes not determined.
Glycycoumarin, glycyrol, and glycyrin have been utilized for their anticancer, hepatoprotective, antispasmodic, and antibacterial properties; however, further studies are required to understand their antibacterial mechanism(s) of action. I anticipate that these future studies will contribute to the development and utilization of licorice resources.

Acknowledgments

I would like to express my gratitude to all those who assisted in the preparation of this review. My deepest gratitude goes first to Professor Chunsheng Liu, my supervisor during my Master's degree, who helped me to identify this review topic. Second, I would like to express my heartfelt gratitude to the Biomedicine College of Beijing City University for providing the resources to complete this review. Finally, I would like to thank “Editage” for their excellent assistance in language editing.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

Yimei Zang https://orcid.org/0000-0003-0259-2903

References

1. Flora of China Editorial Committee of Chinese Academy of Sciences. *Flora of China*. Science Press; 1998:167-174.
2. China Pharmacopoeia Committee. *Pharmacopoeia of the People’s Republic of China*. China Medical Science Press; 2015:2015. 86-87.
3. Zeng L, Li SH, Lou ZC. Morphological and histological studies of Chinese licorice. *Yao Xue Xue Bao*. 1988;23(3):200-208.
4. Liu Y, Chen H-H, Wen H, Gao Y, Wang L-Q, Liu C-S. Enhancing the accumulation of β-amyrin in *Saccharomyces cerevisiae* by co-expression of *Glycyrrhiza uralensis* squalene synthase 1 and β-amyrin synthase genes. *Yao Xue Xue Bao*. 2014;49(5):734-741.
5. Sawant BS, Alawe JR, Rasal KV. Pharmacognostic study of *Glycyrrhiza glabra* Linn-a review. *Int Ayurvedic Med J*. 2016;4(10):3188-3193.
6. Mamedov NA, Egamberdieva D. Phytochemical constituents and pharmacological effects of licorice: a review. In: Munir O, Khalid RH, eds. *Plant and Human Health*. Springer; 2019:3. 1-21.
7. El-Saber Batiba G, Magdy Beshbishy A, El-Mieeh A, Abdel-Daim MM, Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of *Glycyrrhiza glabra* L. (Fabaceae). *Biomolecules*. 2020;10(3):352 doi: 10.3390/biom10030352
8. Bourgaud F, Poutraud A, Guybert C. Extraction of coumarins from plant material (Leguminosae). *Phytotaxa*. 1994;5(3):127-132. doi:10.1020/pha.2800050308
9. Stefanachi A, Leonetti F, Pisani I, Catto M, Carotti A. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. *Molecules*. 2018;23(2):250. doi:10.3390/molecules23020250

Table 13. Summary of Studies Investigating Other Activities of Coumarin Compounds in Licorice.

Property	Coumarin compound	Experimental subject	Experimental mode	Mechanism of action	Reference
Estrogenic activity	Glycycoumarin	MCF-7 cells	In vitro	Binds with approximately equal affinity to ERα and ERβ (beta/alpha ratio, approximately 1); increased expression of PgR and GREB1	109
Acute lung injury	Glycyrol	Human type II alveolar adenocarcinoma basal epithelial, A549 cells; HepG2 cells; KM mice	In vitro; in vivo	Increased levels of CYP3A4, Nrf2, and its downstream detoxification genes GR, GPX, and NQO1	110
Selective probe	Isoglycycoumarin	Human CYP2A6 cells; recombinant CYP2A6; human liver microsomes	In vitro	Cyclize isoprenyl group of isoglycycoumarin entering the active cavity of CYP2A6	111

Abbreviations: ER, estrogen receptor; GPX, glutathione peroxidase; GR, glutathione reductase; GREB1, growth regulation by estrogen in breast cancer 1; KM, Kun Ming; NQO1, NAD(P)H quinone oxidoreductase 1; Nrf2, nuclear factor erythroid 2-related factor 2; PgR, progesterone receptor.
10. Eustáquio AS, Gust B, Luft T, Li SM, Chatter KF, Heide L. Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. *Chem Biol*. 2003;10(3):279-288. doi:10.1016/s1074-5521(03)00051-6

11. Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global concern for food safety, human health and their management. *Front Microbiol*. 2016;7:2170. doi:10.3389/fmicb.2016.02170

12. Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. *Biomed Res Int*. 2013;2013(6):963248. doi:10.1155/2013/963248

13. Singh H, Singh JV, Kaur N, et al. Rational approaches, design strategies, structure activity relationship and mechanistic insights for esterase inhibitors. *Mini Rev Med Chem*. 2018;18(10):837-894. doi:10.2174/138955751766170807124507

14. Jadhav NH, Sakate SS, Rasal NK, Shinde DR, Pawar RA. Heterogeneously catalyzed Pechmann condensation employing the tailored Zn0.925Ti0.075O NPs: synthesis of coumarin. *ACS Omega*. 2019;4(5):8522-8527. doi:10.1021/acsomega.9b00257

15. Katsori A-M, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2012 – 2014). *Expert Opin Ther Pat*. 2014;24(12):1323-1347. doi:10.1517/13543776.2014.972368

16. Musa MA, Cooperwood JS, Khan MOF. A review of coumarin derivatives in pharmacotherapy of breast cancer. *Curr Med Chem*. 2008;15(26):2664-2679. doi:10.2174/092986708786242877

17. Sanduja M, Gupta J, Singh H, Pagare PP, Rana A. Ursical-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. *J Saudi Chem Soc*. 2020;24(2):251-266. doi:10.1016/j.jscs.2019.12.001

18. Bansal Y, Sethi P, Bansal G. Coumarin: a potential nucleus for anti-inflammatory molecules. *Med Chem Res*. 2013;22(7):3049-3060. doi:10.1007/s00044-012-0321-6

19. Melagraki G, Afantis A, Iggesi-Markopoulou O, et al. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. *Eur J Med Chem*. 2009;44(7):3020-3026. doi:10.1016/j.ejmech.2008.11.034

20. Roussaki M, Kontogiorgis CA, Hadjipavlou-Litina D, Hamilakis S, Detsi A. A novel synthesis of 3- aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. *Biorg Med Chem Lett*. 2010;20(13):3889-3892. doi:10.1016/j.bmcl.2010.05.022

21. Pedersen JZ, Oliveira G, Incerpi S, et al. Antioxidant activity of 4-methylcoumarins. *J Pharm Pharmocol*. 2007;59(12):1721-1728. doi:10.1011/ijpp.59.12.0015

22. Mishra S, Pandey A, Manvani S. Coumarin: an emerging antiviral agent. *Heliyon*. 2020;6(1):e03217. doi:10.1016/j.heliyon.2020.e03217

23. Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. *Eur J Med Chem*. 2016;123:236-255. doi:10.1016/j.ejmech.2016.07.056

24. Bhagat K, Bhagat J, Gupta MK, et al. Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. *ACS Omega*. 2019;4(5):8720-8730. doi:10.1021/acsomega.8b02481

25. Singh A, Singh JV, Rana A, et al. Monocarbonyl curcumin-based molecular hybrids as potent antibacterial agents. *ACS Omega*. 2019;4(7):11673-11684. doi:10.1021/acsomega.9b01109

26. Reen FJ, Gutiérrez-Barranquero JA, Parages ML, O’ Gara F. Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. *Appl Microbiol Biotechnol*. 2018;102(5):2063-2073. doi:10.1007/s00253-018-8877-x

27. Chiang C-C, Cheng M-J, Peng C-F, Huang H-Y, Chen I-S. A novel dimeric coumarin analog and antymycobacterial constituents from *Fatoua pilosa*. *Chem Biodivers*. 2010;7(7):1728-1736. doi:10.1002/cbdv.200900326

28. Jung J-C, Min J-P, Park O-S. A highly practical route to 2-methylchromones from 2-acetoxybenzoic acids. *Synth Commun*. 2003;33(12):1837-1845. doi:10.1081/SCC-100104333

29. Luzszecki JJ, Wojda E, Andres-Mach M, et al. Anticonvulsant and acute neurotoxic effects of imperatorin, osthol and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. *Epilepsy Res*. 2009;85(2-3):293-299. doi:10.1016/j.eplepsyres.2009.03.027

30. Fort DM, Rao K, Jolad SD, Luo J, Carlson TJ, KingSR. Antihiperglycemic activity of *Teramnus labialis* (Fabaceae). *Phytochemistry*. 2000;66(6):465-467. doi:10.1016/S0031-1872(00)00326-5

31. Singh H, Kumar M, Nepali K, et al. Triazole tethered C5-coumarinoid-coumarin based molecular hybrids as novel antitubulin agents: design, synthesis, biological investigation and docking studies. *Eur J Med Chem*. 2016;116:102-115. doi:10.1016/j.ejmech.2016.03.050

32. Singh H, Singh JV, Gupta MK, et al. Triazole tethered isatine-coumarin based molecular hybrids as novel antitubulin agents: design, synthesis, biological investigation and docking studies. *Biorg Med Chem Lett*. 2017;27(17):3974-3979. doi:10.1016/j.bmcl.2017.07.069

33. Grover J, Jachak SM. Coumarins as privileged scaffold for anti-inflammatory drug development. *RSC Adv*. 2015;5(49):38892-38905. doi:10.1039/C5RA05643H

34. Cherng J-M, Chiang W, Chiang L-C. Immunomodulatory activities of common vegetables and spices of Umbelliferae and its related coumarins and flavonoids. *Food Chem*. 2008;106(3):944-950. doi:10.1016/j.foodchem.2007.07.005

35. Ma J, Li C-J, Yang J-Z, et al. Three new coumarin glycosides from the stems of *Hydrangea paniculata*. *J Asian Nat Prod Res*. 2017;19(4):320-326. doi:10.1080/10286020.2017.1305958

36. Moffett RB. Central nervous system depressants. VII. pyridyl coumarins. *J Med Chem*. 1964;7(4):446-449. doi:10.1021/jm00334a010

37. Kadhum AAH, Al-Amiery AA, Musa AY, Mohamed AB. The antioxidant activity of new coumarin derivatives. *Int J Med Sci*. 2011;12(9):5747-5761. doi:10.3390/ijms12095747

38. Yin L, Guan E, Zhang Y, et al. Chemical profile and anti-inflammatory activity of total flavonoids from *Glycyrrhiza uralensis* Fisch. *Iran J Pharm Res*. 2018;17(2):726-734.

39. Hosseinzadeh H, Nassiri-Asl M. Pharmacological effects of *Glycyrrhiza* spp. and its bioactive constituents: update and
review. *Phytother Res.* 2015;29(12):1868-1886. doi:10.1002/ptr.5487

40. Bahmani M, Rafieian-Kopaei M, Jeloudari M, et al. A review of the health effects and uses of drugs of plant licorice (*Glycyrrhiza glabra* L.) in Iran. *Asian Pac J Trop Dis.* 2014;4(2):S847-S849. doi:10.1016/S2222-1808(14)60742-8

41. Saitoh T, Shibata S. Chemical studies on the oriental plant. *Chem Pharm Bull.* 1969;17(4):729-734. doi:10.1248/cpb.17.729

42. Lu Z, RY Z, Wang D, Gao CY, Lou ZC. The chemical constituents of *Glycyrrhiza uralensis* Fisch—The structures of isolicafonol and glycycoumarin (in Chinese). *Acta Chim Sin.* 1984;42:1080-1084

43. Zhu DY, Song GQ, Jiang FX, Chang XR, Guo WB. Studies on chemical constituents of *Glycyrrhiza uralensis* Fisch—The identification of *Glycyrrhiza uralensis* Fisch. *Acta Chim Sin.* 1989;37(11):3005-3009. doi:10.1248/cpb.37.3005

44. Hatano T, Yasuhara T, Fukuda T, Noro T, Okuda T. Phenolic constituents of *Glycyrrhiza uralensis* Fisch—The structures of licopyranocoumarin, licaroylcoumarin and glisoflavone, and inhibitory effects of licorice phenolics on xanthine oxidase. *Chem Pharm Bull.* 1989;37(11):3005-3009.

45. Liu YC, Chen YG, Wang D, et al. Studies on chemical constituents on roots of *Glycyrrhiza uralensis* Fisch (in Chinese). *Chin J Pharm Anal.* 2011;31:1251-1253.

46. Hatano T, Yasuhara T, Miyamoto K, Okuda T. Anti-human immunodeficiency virus phenolics from licorice. *Chem Pharm Bull.* 1988;36(6):2286-2288. doi:10.1248/cpb.36.2286

47. Tawata M, Yoda Y, Aida K, et al. Anti-platelet action of GU-7, a 3-arylcoumarin derivative, purified from *Glycyrrhiza Radix.* *Planta Med.* 1990;56(3):259-263. doi:10.1055/s-2006-960951

48. Kinoshita T, Saitoh T, Shibata S. A new 3-arylcoumarin from licorice root. *Chem Pharm Bull.* 1978;26(1):135-140. doi:10.1248/cpb.26.135

49. Hatano T, Aga Y, Shintani Y, Ito H, Okuda T, Yoshida T. Minor flavonoids from licorice. *Phytochemistry.* 2000;55(8):959-963. doi:10.1016/S0031-9422(00)00244-2

50. Wang CL, Zhang RY, Han YS, Dong XG, Liu WB. Chemical analysis of components in *Glycyrrhiza uralensis* Nrf2 inducing activity from *Glycyrrhiza uralensis.* *Nat Prod Res.* 2020;14(3):1-8. doi:10.1080/14786419.2020.1715398

51. Song X, Yin S, Zhang E, et al. Glycycoumarin ameliorates alcohol-induced liver injury predominantly via activating sustained autophagy. *Br J Pharmacol.* 2018;175(19):3747-3757. doi:10.1111/bph.14444

52. Zhang E, Yin S, Song X, Fan L, Hu H. Glycycoumarin ameliorates alcohol-induced hepatotoxicity via activation of Nrf2 and autophagy. *Free Radic Biol Med.* 2015;89:135-146. doi:10.1016/j.freeradbiomed.2017.05.006

53. Yang M, Ye L, Yin S, et al. Glycycoumarin protects mice against acetaminophen-induced liver injury predominantly via activating sustained autophagy. *Br J Pharmacol.* 2018;175(19):3747-3757. doi:10.1111/bph.14444

54. Zhang E, Yin S, Song X, Fan L, Hu H. Glycycoumarin inhibits hepatocyte lipopaptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. *Sci Rep.* 2016;6(1):38138. doi:10.1038/srep38138

55. Zhang E, Song X, Yin S, Fan L, Ye M, Hu H. Glycycoumarin prevents hepatic steatosis through activation of adenosine 5′-monophosphate (AMP)-activated protein kinase signaling pathway and up-regulation of BTG1/Tob-1. *J Funct Foods.* 2017;34:277-286. doi:10.1016/j.jff.2017.04.036

56. Lee S, Oh H-M, Lim W-B, et al. Gene induction by glycyr to apoptosis through endonuclease G in tumor cells and prediction of oncogene function by microarray analysis. *Anticancer Drugs.* 2008;19(5):503-515. doi:10.1097/CAD.0b013e3282f5a582

57. Shin EM, Kim S, Merfort I, Kim YS. Glycyrrhizin induces apoptosis in human Jurkat T cell lymphocytes via the Fas-FasL/caspase-8 pathway. *Planta Med.* 2011;77(3):242-247. doi:10.1055/s-0030-1250260

58. Xu M-Y, Kim YS. Antitumor activity of glycyr through induction of cell cycle arrest, apoptosis and defective autophagy. *Food Chem Toxicol.* 2014;74:311-319. doi:10.1016/j.fct.2014.10.023

59. Bordontaro M, Lazarova DI, Sartorelli AC, Butyrate SAC. Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk? *Cell Cycle.* 2008;7(9):1178-1183. doi:10.4161/cc.7.9.5818

60. Pant K, Yadav AK, Gupta P, Islam R, Saraya A, Venugopal SK. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT1 pathway in hepatic cancer cells. *Redox Biol.* 2017;12:340-349. doi:10.1016/j.redox.2017.03.006

61. Lu S, Yin S, Zhao C, Fan L., Hu H. Synergistic anti-colon cancer effect of glycyrrhizin and butyrate is associated with the enhanced activation of caspase-3 and structural features of glycyrrhizin. *Food Chem Toxicol.* 2020;136:110952. doi:10.1016/j.fct.2019.110952

62. Wang M, Yang W, Liu X, et al. Two new compounds with Nrf2 inducing activity from *Glycyrrhiza uralensis*. *Nat Prod Res.* 2020;14(3):1-8. doi:10.1080/14786419.2020.1715398

63. Song X, Yin S, Zhang E, et al. Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase. *Oncotarget.* 2016;7(40):65732-65743. doi:10.18632/oncotarget.11610

64. Zhang E, Yin S, Lu X, Ye I, Fan J, Hu H. Glycycoumarin sensitizes liver cancer cells to ABT-737 by targeting de novo lipogenesis and TOPK-survivin axis. *Nutrients.* 2018;10(3):535. doi:10.3390/nu10030353

65. Song X, Yin S, Huo Y, et al. Glycycoumarin ameliorates alcohol-induced hepatotoxicity via activation of Nrf2 and autophagy. *Free Radic Biol Med.* 2015;89:135-146. doi:10.1016/j.freeradbiomed.2015.07.006

66. Yan M, Ye L, Yin S, et al. Glycycoumarin protects mice against acetaminophen-induced liver injury predominantly via activating sustained autophagy. *Br J Pharmacol.* 2018;175(19):3747-3757. doi:10.1111/bph.14444

67. Zhang E, Yin S, Song X, Fan L, Hu H. Glycycoumarin inhibits hepatocyte lipopaptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. *Sci Rep.* 2016;6(1):38138. doi:10.1038/srep38138

68. Zhang E, Song X, Yin S, Fan L, Ye M, Hu H. Glycycoumarin prevents hepatic steatosis through activation of adenosine 5′-monophosphate (AMP)-activated protein kinase signaling pathway and up-regulation of BTG1/Tob-1. *J Funct Foods.* 2017;34:277-286. doi:10.1016/j.jff.2017.04.036

69. Liu X, Zhang E, Yin S, Zhao C, Fan L, Hu H. Activation of the IRE1α arm, but not the PERK arm, of the unfolded protein response contributes to fumonisin B1-induced hepatotoxicity. *Toxins.* 2020;12(1):55-55. doi:10.3390/toxins12010055
70. Blackburn T, Wesley J. Affective disorders: depression and bipolar disorders. In: Moos WH, ed. Comprehensive Medicinal Chemistry II. . Elsevier; 2007:6. 45-83.
71. Sato Y, Akao T, He J-X, et al. Glycyoumarin from Glycyrrhiza Radix acts as a potent antispasmodic through inhibition of phosphodiesterase 3. J Ethnopharmacol. 2006;105(3):409-414. doi: 10.1016/j.jep.2005.11.017
72. Nagai H, Yamamoto Y, Sato Y, Akao T, Tani T. Pharmaceutical evaluation of cultivated Glycyrrhiza radensis roots in comparison of their antispasmodic activity and glycyoumarin contents with those of licorice. Biol Pharm Bull. 2006;29(12):2442-2445. doi:10.1248/bpb.29.2442
73. The Japanese Pharmacopoeia Commission. Japanese Pharmacopoeia. . Hirokawa Shoten; 2011:16. 1752-1753.
74. Kumuda T, Kumada H, Yoshida M, Nakano S, Suzuki H, Tango T. Effects of shakuyaku-kanzo-to (Tsumura TJ-68) on muscle cramps accompanying cirrhosis in a placebo-controlled double-blind parallel study. Rinsho yaku. 1999;15:499-523.
75. Hinoshita F, Ogura Y, Suzuki Y, et al. Effect of orally administered shao-yao-gan-cao-tang (Shakuyaku-kanzo-to) on muscle cramps in maintenance hemodialysis patients: a preliminary study. Am J Chin Med. 2003;31(3):445-453. doi:10.1142/S0129191303001144
76. Yamamoto K, Hoshiai H, Noda K. Effects of shakuyaku-kanzo-to on muscle pain from combination chemotherapy with paclitaxel and carboplatin. Gyno Oncol. 2001;81(2):333-334. doi:10.1006/gyno.2001.6168
77. Yoshida T, Sawa T, Ishiguro T, Horita A, Minatoguchi S, Fujinawa H. The efficacy of prophylactic Shakuyaku-Kanzo-to for myalgia and arthralgia following carboplatin and paclitaxel combination chemotherapy for non-small cell lung cancer. Support Care Cancer. 2009;17(3):315-320. doi:10.1007/s00520-008-0508-z
78. Lee KK, Omiya Y, Yuzurihara M, Kase Y, Kohayashi H. Antispasmodic effect of shakuyakukanzo extract on experimental muscle cramps in vivo: role of the active constituents of Glycyrrhiza Radix. J Ethnopharmacol. 2013;145(1):286-293. doi:10.1016/j.jep.2012.11.005
79. Gaio V, Nunes B, Fernandes A, et al. Generic variation at the CYP2C19 gene associated with metabolic syndrome susceptibility in a South Portuguese population: results from the pilot study of the European health examination survey in Portugal. Diabetes Metab Syndr. 2014;8(1):23-23. doi:10.1186/1758-5966-2-23
80. Unger RH. Lipotoxic diseases. Ann Rev Med.2002;53(1):319-336. doi:10.1146/annurev.med.53.082901.104057
81. Mac T, Kishida H, Nishiyama T, et al. A licorice ethanolic extract with peroxisome proliferator-activated receptor-γ ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats. J Nutr. 2003;133(11):3369-3377. doi:10.1093/jn/133.11.3369
82. Huang TH-W, Kota BP, Razumovski V, Roufogalis BD. Herbal or natural medicines as modulators of peroxisome proliferator-activated receptors and related nuclear receptors for therapy of metabolic syndrome. Basic Clin Pharmacol Toxicol. 2005;96(1):3-14. doi:10.1111/j.1742-7843.2005.pto96102x
83. Kuroda M, Mimaki Y, Sashida Y, et al. Phenolics with PPAR-γ ligand-binding activity obtained from licorice (Glycyrrhiza uralensis roots) and ameliorative effects of glycyrin on genetically diabetic KK-A(y) mice. Bioorg Med Chem Lett. 2003;13(24):4267-4272. doi:10.1016/j.bmcl.2003.09.052
84. Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev. 2000;80(4):1483-1521. doi:10.1152/physrev.2000.80.4.1483
85. Li J, Tu Y, Tong L, Zhang W, Zheng J, Wei Q. Immunosuppressive activity on the murine immune responses of glycyrol from Glycyrrhiza uralensis via inhibition of calcineurin activity. Pharm Biol. 2010;48(10):1179-1184. doi:10.3109/13880900903573169
86. Peng L, Qi Y, Wu H, Wei Q. Interaction of glycyrol with calcineurin A studied by spectroscopic methods and docking. JIBMB Life. 2011;63(1):14-20. doi:10.1002/jibl.408
87. Shin EM, Zhou HY, Guo LX, et al. Anti-inflammatory effects of glycyrol isolated from Glycyrrhiza uralensis in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol. 2008;8(11):1524-1532. doi:10.1016/j.intimp.2008.06.008
88. Fu Y, Zhou H, Wang S, Wei Q. Glycyrol suppresses collagen-induced arthritis by regulating autoimmune and inflammatory responses. PLoS One. 2014;9(7):e98137. doi:10.1371/journal.pone.0098137
89. Fu Y, Chen J, Li Y, Zheng Y, Li P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013;141(2):1063-1071. doi:10.1016/j.foodchem.2013.03.089
90. Zhou L, Tang Y-P, Gao L, Fan X-S, Liu C-M, Wu D-K. Separation, characterization and dose-effect relationship of the PPARgamma-activating bio-active constituents in the Chinese herb formulation ‘San-Ao Decoction’. Molecules. 2009;14(10):3942-3951. doi:10.3390/molecules14103942
91. Kanno H, Kawakami Z, Tabuchi M, Mizoguchi K, Ikarashi Y, Kase Y. Protective effects of glycyoumarin and procyoinidin B1, active components of traditional Japanese medicine yokukansan, on amyloid β oligomer-induced neuronal death. J Ethnopharmacol. 2015;159:122-128. doi:10.1016/j.jep.2014.10.058
92. Fujimaki T, Saiki S, Tashiro E, et al. Identification of licopyranocoumarin and glycyrol from herbal medicines as neuroprotective compounds for Parkinson’s disease. PLoS One. 2014;9(e):e100395. doi:10.1371/journal.pone.0100395
93. Demizu S, Kaiyama K, Takahashi K, et al. Antioxidant and antimicrobial constituents of licorice: isolation and structure elucidation of a new benzofuran derivative. Chem Pharm Bull. 1988;36(9):3474-3479. doi:10.1248/cpb.36.3474
94. Tanaka Y, Kikuzaki H, Yuzurihara M, Ikarashi Y, Kase Y. Effect of licopyranocoumarin on amyloid β oligomerization. J Nutr. 2001;131(3):270-273. doi:10.1177/002231780101310311
95. Fukai T, Marumo A, Kaitou K, Kanda T, Nomura T, Terada S, Nomura T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci. 2002;71(12):1449-1463. doi:10.1016/S0022-3205(02)01864-7
96. Eerdunbayaer E, Orabi MAA, Aoyama H, Kuroda T, Hatano T. Structures of two new flavonoids and effects of...
licorice phenolics on vancomycin-resistant Enterococcus species. Molecules. 2014;19(4):3883-3897. doi:10.3390/molecules19043883

97. Bhargava N, Singh SP, Sharma A, Sharma P, Capalash N. Attenuation of quorum sensing-mediated virulence of Acinetobacter baumannii by Glycyrrhiza glabra flavonoids. Future Microbiol. 2015;10(12):1953-1968. doi:10.2217/fmb.15.107

98. Matsui T, Laloo S, Nisa K, Morita H. Filamentating temperature-sensitive mutant Z inhibitors from Glycyrrhiza glabra and their inhibitory mode of action. Biogóg Méd Chem Lett. 2017;27(6):1420-1424. doi:10.1016/j.bmcl.2017.01.095

99. Rhew Z-I, Han Y. Synergic effect of combination of glycyrol and fucnonazole against experimental cutaneous candidiasis due to Candida albicans. Arch Pharm Res. 2016;39(10):1482-1489. doi:10.1007/s12272-016-0824-7

100. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des. 2004;10(30):3813-3833. doi:10.2174/1381612043382710

101. Fu Y, Chen J, Li Y-J, Zheng Y-F, Li P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013;141(2):1063-1071. doi:10.1016/j.foodchem.2013.03.089

102. Trivedi JC, Bariwal JB, Upadhyay KD, et al. Improved and rapid synthesis of new coumaryl chalcone derivatives and their antiviral activity. Tetrahedron Lett. 2007;48(48):8472-8474. doi:10.1016/j.tetlet.2007.09.175

103. Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee K-H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med Res Rev. 2003;23(3):322-345. doi:10.1002/med.10034

104. Adianti M, Aoki C, Komoto M, et al. Anti-Hepatitis C virus compounds obtained from Glycyrrhiza uralensis and other Glycyrrhiza species. Microbiol Immunol. 2014;58(3):180-187. doi:10.1111/1348-0421.12127

105. Sekine-Osajima Y, Sakamoto N, Nakagawa M, et al. Two flavonoids extracts from Glycyrrhiza Radix inhibit in vitro hepatitis C virus replication. Hepatol Res. 2009;39(1):60-69. doi:10.1111/j.1872-034X.2008.00398.x

106. Webbly RJ, Webstner RG. Are we ready for pandemic influenza? Science. 2003;302(5650):1519-1522. doi:10.1126/science.1090350

107. Ryu YB, Kim JH, Park S-J, et al. Inhibition of neuraminidase activity by polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Biogóg Méd Chem Lett. 2010;20(3):971-974. doi:10.1016/j.bmcl.2009.12.106

108. Grambow E, Strüder D, Klar E, Hinze B, Vollmar B. Differential effects of endogenous, phyto and synthetic cannabinoids on thrombogenesis and platelet activity. Biofactors. 2016;42(6):581-590. doi:10.1002/biof.1294

109. Boonmuen N, Gong P, Ali Z, et al. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities. Steroids. 2016;105:42-49. doi:10.1016/j.steroids.2015.11.006

110. Liu Z-J, Zhong J, Zhang M, et al. The alexipharmic mechanisms of five licorice ingredients involved in CYP450 and Nrf2 pathways in paraquat-induced mice acute lung injury. Oxid Med Cell Longev. 2019;2019:1-20. doi:10.1155/2019/7283104

111. Wang Q, Kuang Y, He J, et al. The prenylated phenolic natural product isoglycycomarin is a highly selective probe for human cytotoxic P450 2A6. Eur J Pharm Sci. 2017;109:472-479. doi:10.1016/j.ejps.2017.08.035

112. Wang X, Zhang M, Ma J, et al. Metabolic changes in paraquat poisoned patients and support vector machine model of discrimination. Biol Pharm Bull. 2015;38(3):470-475. doi:10.1248/bpb.b14-00781

113. Pemkrasatam S, Srivatanakul K, Kiyotani K, et al. In vivo evaluation of coumarin and nicotine as probe drugs to predict the metabolic capacity of CYP2A6 due to genetic polymorphism in Thais. Drug Metab Pharmacokinet. 2006;21(6):475-484. doi:10.2133/dmpk.21.475

114. Raunio H, Rahnasto-Rilla M. Cyp2A6: genetics, structure, regulation, and function. Drug Metabol Drug Interact. 2012;27(2):73-88. doi:10.1515/dmdi-2012-0001

115. Di YM, Chow VD-W, Yang L-P, Zhou S-F, YM D, Structure ZS-F. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009;10(7):754-780. doi:10.2174/138920009789895507

116. Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008;22(2):141-148. doi:10.1002/ptr.2295

117. Pastorino G, Cornara I, Soares S, Rodrigues F, Oliveira MBPP, Liquorice OM. Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323-2339. doi:10.1002/ptr.6178

118. Asl MN, Hosseinzadeh H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother Res. 2008;22(6):709-724. doi:10.1002/ptr.2362

119. Elkattan A, El-Saadany S, El-Sayed A, Gomaa A, Abdalmuneim J. Anticancer effects of tow traditional drinks Hibiscus (Hibiscus sabdariffa Linn) and liquorice (Glycyrrhiza glabra. Zagazig Journal of Agricultural Research. 2019;46(1):115-122. doi:10.21608/zjar.2019.40329

120. Qiao X, Liu C-F, Ji S, Lin X-H, Guo D-A, Ye M. Simultaneous determination of five minor coumarins and flavonoids in Glycyrrhiza uralensis by solid-phase extraction and high-performance liquid chromatography/electrospray ionization tandem mass spectrometry. Planta Med. 2014;80(2-3):237-242. doi:10.1055/s-0033-1360272

121. Li H, Yoon J-H, Won H-J, et al. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int Immunopharmacol. 2017;45:110-119. doi:10.1016/j.intimp.2017.01.033