Antimicrobial Resistance Markers of Class 1 and Class 2 Integron-bearing Escherichia coli from Irrigation Water and Sediments

Matthew T. Roe,* Everardo Vega,* and Suresh D. Pillai*

Municipal and agricultural pollution affects the Rio Grande, a river that separates the United States from Mexico. Three hundred and twenty-two Escherichia coli isolates were examined for multiple antibiotic resistance phenotypes and the prevalence of class 1 and class 2 integron sequences. Thirty-two (10%) of the isolates were resistant to multiple antibiotics. Four (13%) of these isolates contained class 1–specific integron sequences; one isolate contained class 2 integron–specific sequences. Sequencing showed that the class 1 integron–bearing strain contained two distinct gene cassettes, sat-1 and aadA. Although three of the four class 1 integron–bearing strains harbored the aadA sequence, none of the strains was phenotypically resistant to streptomycin. These results suggest that integron-bearing E. coli strains can be present in contaminated irrigation canals and that these isolates may not express these resistance markers.

Integron gene sequences contribute to the spread of antimicrobial resistance alleles by lateral gene transfer of gene cassettes in a variety of enteric bacteria, including Campylobacter spp., Escherichia coli, and Salmonella enterica serotype Typhimurium (1–4). The gastrointestinal environment is suspected of serving as a reservoir for integron-bearing strains; when antimicrobial exposure occurs, gene transfer events—which spread cassettes between commensal organisms that are expelled into the environment (2)—would also occur.

The Rio Grande, the river separating the United States from Mexico along the Texas-Mexico region, serves as a source for irrigation water in Texas and Mexico. Previous studies in our laboratory and others have shown that the transboundary region is subject to extensive microbial and chemical contamination. This contamination has been associated with agricultural, municipal, and industrial wastes originating from both sides of the border (5,6). Leaking septic tanks and wastewater effluent discharges result in fecal contamination levels as high as 2,000 CFU/mL of fecal coliforms (7,8).

Because of the strategic importance of the Rio Grande for U.S. agriculture and the potential transmission of antimicrobial resistance determinants by means of food crops, we investigated the prevalence and characteristics of class 1 and class 2 integron–bearing E. coli strains. These strains were previously isolated from a study investigating fecal contaminants in irrigation water and associated sediments at specific locations along the river (9).

Methods

Three hundred and twenty-two E. coli isolates were previously isolated from irrigation water and associated sediments at the El Paso, Presidio, and Weslaco regions of the river (9). After being confirmed as E. coli by MUG (4-methyl umbelliferyl-β-D-glucuronide)–based fluorescence, these isolates were screened for antimicrobial susceptibility by using the agar dilution method (10,11). The isolates were tested against ampicillin, tetracycline, ceftriaxone, cephalothin, gentamicin, kanamycin, streptomycin, chloramphenicol, ciprofloxacin, and trimethoprim/sulfamethoxazole. The antibiotics were tested at concentrations established by the National Antimicrobial Resistance System (12).

Isolates that were multidrug resistant (resistant to two or more antimicrobial agents) were grown overnight in 5 mL of Mueller-Hinton broth (Accumedia, Baltimore, MD) with the appropriate concentration of antimicrobial compound. A 1-mL aliquot of the culture was centrifuged at 10,000 rpm for 2 min. The cell pellet was resuspended in 500 µL of sterile water and boiled for 10 min. The resulting DNA suspension was used as template DNA in polymerase chain reaction (PCR) amplification for the class 1 and class 2 integrase gene and variable regions using the primer sequences shown in the Table (13–15).

The PCR reactions used 10 µL of template DNA, 5 µM of primers, 25 mM MgCl, 10 mM deoxynucleotide triphosphate, and 23 ng bovine serum albumin. Nuclease-free water (Ambion, Austin, TX) was added to achieve a volume of 50 µL. A “hot start” method was used, and 1.25 U of Taq DNA polymerase (Sigma, St. Louis, MO) was

*Texas A&M University, College Station, Texas, USA
added after initial template denaturation. The PCR cycle was as follows: initial denaturation for 12 min at 94°C, hot start pause at 80°C followed by 35 cycles of denaturation at 94°C for 1 min, primer annealing at 60°C for 1 min, and extension at 72°C for 5 min at first cycle. An additional 5 s was progressively added to each cycle to reach a final of 7 min, 55 s. PCR products were analyzed on 1% agarose gel.

Amplification products were extracted from the gels with the QIAGEN QIAquick gel extraction kit (Valencia, CA). The amplified products were sequenced at a commercial facility (MWG Biotech Inc., High Point, NC) with the QIAGEN QIAquick gel extraction kit (Valencia, CA). The amplified products were analyzed by using Clustal W version 1.82 (18). Putative gene relationships and sequence data were compared with the Presidio and Weslaco sampling regions.

Results

Of the 322 E. coli isolates from sediment and irrigation water samples analyzed for antimicrobial resistance, 104 (32%) isolates showed resistance to at least one of the antimicrobial compounds (Figure 1). Approximately 10% (32/322) of all the isolates showed a multidrug resistance phenotype. Eighteen percent of the isolates were resistant to ceftriaxone; however, only 5% (2/32) of all isolates were resistant to ceftriaxone, which also belongs to the cephalosporin family. Resistance to ampicillin was prevalent in approximately 35% (11%) of the isolates. Resistance to tetracycline (9%), kanamycin (2%), gentamicin (0.3%), and streptomycin (4%) was also observed. Resistance to the fluoroquinolone ciprofloxacin was seen in one isolate. Three (<1%) of the 322 isolates were resistant to sulfonamide sulfamethoxazole. On the basis of analysis of variance, antimicrobial resistance and the sampling location were correlated. Isolates from the El Paso sampling region had significantly higher (p<0.05) antimicrobial resistance as compared with the Presidio and Weslaco sampling regions (data not shown).

Table. Oligonucleotide primer sequences used for amplification of class 1 and class 2 integrase and variable regions

Primer	Primer sequence	Target	Reference
intI-1	5′-GGCATCAAGCAGAAG-3′	5′-Class 1 integron variable region	Levesque et al. 1995 (13)
intI-2	5′-AAACAGACTGTGACCTGA-3′	3′-Class 1 integron variable region	Levesque et al. 1995 (13)
hep51	5′-GTAGCCATGCAAGTACGAG-3′	5′-Class 2 integron variable region	White et al. 2001 (14)
hep74	5′-CGGGATCCGACGGCATGCGAACATTGTA-3′	3′-Class 2 integron variable region	White et al. 2001 (14)
intI1F	5′-GGGCTAAGATCGATGGGTTTG-3′	5′-intI1 gene	Mazel et al. 2000 (15)
intI1R	5′-CATATGGTAAATCATCGTC-3′	3′-intI1 gene	Mazel et al. 2000 (15)
intI2F	5′-CAAGGATATCGACAAAGGT-3′	5′-intI2 gene	Mazel et al. 2000 (15)
intI2R	5′-GTAGCAACGAGGTACGAAAAATG-3′	5′-intI2 gene	Mazel et al. 2000 (15)
animal wastes regularly harbor multidrug-resistant water. Previous studies have reported that municipal and urbanized sampling locations is not surprising since these isolates, but resistance to the closely related kanamycin was seen. These results are similar to those reported by Zhao et al. (3), who identified that the aadA gene transferred to a strain of Hafnia alvei but did not report resistance to streptomycin or spectinomycin. These researchers attributed their findings to the inefficient expression of the inserted gene cassette by the integron promoter. Previous studies have also shown that the antimicrobial resistance phenotype can be modulated once these strains are exposed to specific environmental conditions (32).

The aadA gene cassette is not novel in class 1 integrons. Earlier work by Zhao et al. (3) and Bass et al. (24) has shown that the aadA gene is highly conserved among Shiga toxin–producing and avian clinical E. coli isolates, respectively. The only class 2 integron-bearing strain isolated in this study also contained the aadA gene in addition to the sat-1 gene, which codes for resistance to kanamycin, a finding in agreement with the phenotypic expression.
The sat-1 gene, which codes for the streptothricin acetyl transferase, was not detected in any other E. coli isolate. The presence of the sat-1 gene cassette, in combination with the aadA gene, suggests that this class 2 integron is likely a derivative of the class 2 integron found on transposon Tn7 (33,34).

The aadA gene was conserved among the class 1 and class 2 integrons, which suggests a possible selective mechanism for this cassette in enteric bacteria from natural waters. The 2-kb integron-specific variable region–containing strain, which was isolated from the Presidio area, harbored the dihydrofolate reductase gene (dhfrXII) instead of the aadA gene (35).

Overall, these results suggest that the irrigation canals and sediments associated with the Rio Grande are contaminated by bacteria of fecal origin that contain antimicrobial resistance genes. Of 322 E. coli isolates, 32 (approximately 10%) were resistant to multiple antimicrobial drugs. Five of these 32 E. coli isolates harbored class 1 and class 2 integron sequences. This study did not investigate the possibility that other integron-bearing nonfecal bacteria were present. The occurrence of integron-bearing E. coli in irrigation water is important since these organisms are known fecal contaminants, and the potential for lateral gene transfer exists. The results also indicate that integron-bearing strains may not always express the antimicrobial phenotype; thus, phenotype-based isolation of resistant organisms can underestimate the levels of resistant organisms. Studies are needed to identify whether integron-mediated antimicrobial resistance transfer does indeed occur within the irrigation canal sediments and on vegetable surfaces, when they are irrigated with contaminated irrigation water.

Acknowledgments

We thank Anne Summers and Cynthia Liebert for providing the integron-positive strains and James Zhu for helpful discussions concerning the sequencing data.

This work was supported by funds from the State of Texas ATP project 00517-0361-1999, the U.S. Department of Agriculture (USDA)/CSREES-IFAFS grant 00-52102-9637, the USDA CSREES grant 2001-34461-10405 and Hatch grant H8708.

Mr. Roe conducted this study while an M.S. student in the Food Safety and Environmental Microbiology Laboratory in the Poultry Science Department at Texas A&M University. His research interests are in environmental microbiology and food safety.

References

1. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature 2000;405:299–304.
2. Lucey B, Crowley D, Moloney P, Cryan B, Daly M, O’Halloran F, et al. Integronlike structures in Campylobacter spp. of human and animal origin. Emerg Infect Dis 2000;6:50–5.
3. Zhao S, White DG, Ge B, Ayers S, Friedman S, English L, et al. Identification and characterization of integron-mediated antibiotic resistance among Shiga toxin–producing Escherichia coli isolates. Appl Environ Microbiol 2001;67:1558–64.
4. Briggs CE, Fratamico PM. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob Agents Chemother 1999;43:846–9.
5. Mroz RC Jr, Pillai SD. Bacterial populations in the groundwater on the US-Mexico border in El Paso County, Texas. South Med J 1994;87:214–7.
6. Pillai SD, Widmer KW, Maciorowski KG, Ricke SC. Antibiotic resistance profiles of Escherichia coli isolated from rural and urban environments. J Environ Sci Health 1997;32:1665–75.
7. International Boundary and Water Commission. Water Bulletin #63: Flow of the Rio Grande and related data. El Paso (TX): The Commission; 1993. p. 132.
8. Scandura JE, Sobsey MD. Viral and bacterial contamination of groundwater from on-site sewage treatment systems. Water Sci Technol 1997;35:141–6.
9. Rayburn EL, Sternes KL, Weidenfeld RP, Pillai SD. Microbial pathogens in irrigation canals and associated sediments. In: Proceedings of the 101st General Meeting of the American Society for Microbiology. 2001. Orlando (FL): American Society for Microbiology; 2001.
10. Food and Drug Administration. Bacteriological analytical manual online. 8th ed. 2001. Available from: URL: http://www.cfsan.fda.gov/~ebam/bam-toe.html
11. National Committee for Clinical Laboratory Studies. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Vol. 10. Villanova (PA): The Committee; 1999. p. 33.
12. Centers for Disease Control and Prevention/Food and Drug Administration; U.S. Department of Agriculture. National Antibiotic Resistance Monitoring System. Atlanta: The Centers; 1999.
13. Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother 1995;39:185–91.
14. White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the enterobacteriaceae. Antimicrob Agents Chemother 2001;45:2658–61.
15. Mazel D, Dychinco B, Webb VA, Davies J. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 2000;44:1568–74.
16. Huang X, Madan A. CAP3: a DNA sequence assembly program. Genome Res 1999;9:868–77.
17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–10.
18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–80.
19. Ash RJ. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg Infect Dis 2002;8:713–6.
20. Goni-Urriza M, Capdepuy M, Arpin C, Raymond N, Caumette P, Quentin C, et al. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microbiol 2000;66:125–32.
21. American Academy of Microbiology. Antimicrobial resistance: an ecological perspective. Washington: American Society for Microbiology; 1999. p. 1–14.
22. Wegener HC, Aarestrup FM, Jensen LB, Hammerum AM, Bager F. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance in therapeutic antimicrobial drugs in Europe. Emerg Infect Dis 1999;5:329–35.
23. Hall RM, Collis CM. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat 1998;1:109–19.
24. Bass L, Liebert CA, Lee MD, Summers AO, White DG, Thayer SG, et al. Incidence and characterization of integrons, genetic elements mediating multiple-drug resistance, in avian Escherichia coli. Antimicrob Agents Chemother 1999;43:2925–9.
25. Cech I, Essman A. Water sanitation practices on the Texas-Mexico border: implications for physicians on both sides. South Med J 1992;85:1053–64.
26. McEwen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis 2002;34(Suppl 3):S93–106.
27. Schwarz S, Chauslus-Danca E. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet Res 2001;32:201–25.
28. Texas Water Development Board, New Mexico Water Resources Research Institute. Transboundary aquifers of the El Paso-Ciudad Juarez/Las Cruces region. El Paso (TX): The Institute; 1997. p. 152.
29. Simpson JM, Santo Domingo JW, Reasoner DJ. Microbial source tracking: state of the science. Environ Sci Technol 2002;36:5279–88.
30. Rosser SJ, Young HK. Identification and characterization of class 1 integrons in bacteria from an aquatic environment. J Antimicrob Chemother 1999;44:11–8.
31. Sundstrom L, Radstrom P, Swedberg G, Skold O. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide-resistance genes. Sequence characterization of dhfrV and sulA and a recombination active locus of Tn21. Mol Gen Genet 1988;213:191–201.
32. Pillai SD, Pepper IL. Transposon Tn5 as an identifiable marker in Rhizobia: survival and genetic stability of Tn5 mutant bean Rhizobia under temperature stressed conditions in desert soils. Microb Ecol 1990;21:21–33.
33. Sundstrom L, Roy PH, Skold O. Site-specific insertion of three structural gene cassettes in transposon Tn7. J Bacteriol 1991;173:3025–8.
34. Hansson K, Sundstrom L, Pelletier A, Roy PH. IntI2 integron integrase in Tn7. J Bacteriol 2002;184:1712–21.
35. Huovinen P, Sundstrom L, Swedberg G, Skold O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 1995;39:279–89.

Address for correspondence: Suresh D. Pillai, Department of Poultry Science, 418D Kleberg Center, MS 2472 TAMUS, Texas A&M University, College Station, Texas 77843-2472, USA; fax: 979-845-1921; email: spillai@poultry.tamu.edu

OPPORTUNITIES FOR PEER REVIEWERS

The editors of Emerging Infectious Diseases seek to increase the roster of reviewers for manuscripts submitted by authors all over the world for publication in the journal. If you are interested in reviewing articles on emerging infectious disease topics, please e-mail your name, address, curriculum vitae, and areas of expertise to eideditor@cdc.gov.

At Emerging Infectious Diseases, we always request reviewers’ consent before sending manuscripts, limit review requests to three or four per year, and allow 2–4 weeks for completion of reviews. We consider reviewers invaluable in the process of selecting and publishing high-quality scientific articles and acknowledge their contributions in the journal once a year.

Even though it brings no financial compensation, participation in the peer-review process is not without rewards. Manuscript review provides scientists at all stages of their career opportunities for professional growth by familiarizing them with research trends and the latest work in the field of infectious diseases and by improving their own skills for presenting scientific information through constructive criticism of those of their peers. To view the spectrum of articles we publish, information for authors, and our extensive style guide, visit the journal web site at www.cdc.gov/eid.

For more information on participating in the peer-review process of Emerging Infectious Diseases, e-mail eideditor@cdc.gov or call the journal office at 404-371-5329.