Ants of the Hengduan Mountains: a new altitudinal survey and updated checklist for Yunnan Province highlight an understudied insect biodiversity hotspot

Cong Liu1, Georg Fischer2, Francisco Hita Garcia2, Seiki Yamane3, Qing Liu4, Yan Qiong Peng5, Evan P. Economo2, Benoit Guénard6, Naomi E. Pierce1

1 Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2 Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 3 Kagoshima University Museum, Korimoto 1-21-30, Kagoshima-shi, Japan 4 School of Resources and Environment, Baoshan University, Baoshan city, Yunnan Province, China 5 CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan Province, China 6 School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China

Corresponding author: Cong Liu (cong.liu0514@gmail.com)

Abstract
China’s Hengduan Mountain region has been considered one of the most diverse regions in the northern hemisphere. Its stunning topography with many deep valleys and impassable mountain barriers has promoted an astonishing diversification in many groups of organisms including plants, birds, mammals, and amphibians. However, the insect biodiversity in this region is still poorly known. Here, the first checklist of ant species from the Southern Hengduan Mountain region is presented, generated by sampling ant diversity using a wide array of collection methods, including Winkler leaf litter extraction, vegetation beating, and hand collection. 130 species/morphospecies from nine subfamilies and 49 genera were identified. Among them, 17 species from 13 genera represent new records for Yunnan province, and eight species are newly recorded for China. Moreover, we believe 41 novel morphospecies (31% of the total collected taxa) will prove to be new to science. These results highlight the rich ant fauna of this region and strongly sup-
port its status as a biodiversity hotspot. The current ant species checklist for the whole of Yunnan Province was updated by recording 550 named species from 99 genera. Taken together, our results suggest that the Yunnan ant fauna still remains under-sampled, and future sampling will likely yield many more species, among them many undescribed ones.

Keywords

biodiversity hotspot; checklist; China; Formicidae; Hengduan Mountains; new records; species

Introduction

The Hengduan Mountain region, located in the southeastern part of the Qinghai-Tibet Plateau, is one of the 35 recognized biodiversity hotspots in the world (Myers et al. 2000). The unique landscape, geomorphology, microhabitat differentiation and geographic isolation created by tectonic uplift during the last eight million years has promoted an astonishing diversification in many groups of organisms, making this region one of the most diverse temperate regions in the northern hemisphere (Boufford 2014; Price et al 2014; Xing and Ree 2017). For example, it harbors nearly 40 percent of China’s vascular plant diversity (ca. 12,000 species), including more than 3,000 endemic species (Boufford 2014). However, aside from the well-documented plants and some vertebrates, the diversity of other groups, especially invertebrates in this region remains largely unknown. Insect taxonomic groups in particular have received limited attention, and our understanding of their diversity in the Hengduan Mountains is extremely fragmented.

Ants are an ecologically dominant component of many ecosystems in terms of their abundance, richness, and ecosystem function (Hölldobler and Wilson 1990). Globally, about 15,600 ant species and subspecies have been described (Bolton 2020), making them the most diverse group of social insects and one of the most diverse families of insects. Despite the fact that ant diversity is mainly concentrated within tropical regions (Dunn et al. 2009; Guénard et al. 2012; Economo et al. 2018), the ant fauna of many other regions is still poorly known, especially in Asia (Guénard et al. 2010). Compiling and curating comprehensive and accurate ant species checklists for these regions is essential not only for insights into ant taxonomy and systematics, but also for long-term monitoring and conservation of these ecosystems (Guénard et al. 2017). The goal of this study is to provide a better understanding of the poorly known ant biodiversity in China’s Hengduan Mountains. The ultra-variable topography of this region, ideal for creating numerous vicariance events, combined with its wide range of climatic zones has contributed to the exceptional richness of endemic species inhabiting this area. Nevertheless, the rough topography has also made access and exploration rather challenging in the past. Against the background of extraordinary levels of plant diversity harbored by the Hengduan Mountains, it remains unclear whether or not ants and other insects display similar patterns of high diversity and endemism in this region.

To address this gap, we here present the results of an ant biodiversity survey conducted in the Gaoligong Shan mountains (part of the Hengduan Mountains), Yunnan
Province, southwest China undertaken in 2019. Our goal is to present a complete species checklist of ants from the Gaoligong Mountains, including new records, as well as to update the current ant species checklist for the whole of Yunnan Province.

The Gaoligong Shan mountains (lat. 24°56’–28°22’N, long. 98°08’–98°50’E) comprise the western-most part of the Hengduan Mountain Range, and are among the most biodiversity-rich areas in Yunnan (Li et al. 2008; Dumbecher et al. 2011; Lo and Bi 2019). The ant fauna in the Gaoligong Shan mountains remains poorly understood, despite several studies focusing on ant diversity patterns that have recorded 62 ant species from 31 genera (Xu 2001a, b), but lack a comprehensive list of species collected.

Yunnan province is the richest province of China in terms of ant diversity (Guénard and Dunn 2012). The latest ant checklist of Yunnan was compiled almost 10 years ago and consisted of 462 ant species. Since then, new ant inventories have been conducted (e.g. Liu et al. 2015a), as well as new species descriptions (e.g., Guénard et al. 2013; Xu et al. 2014a, b; Liu et al. 2015b; Staab et al. 2018), and the identification of previously dubious records have sensibly modified our understanding of Yunnan’s ant diversity and species composition. Therefore, in this study, we also provide an update to the ant species checklist of Yunnan province and discuss future trends.

Materials and methods

Ant specimens were collected from natural forests along an elevational gradient on both the eastern and western slopes of the Gaoligong Mountains in July 2019. We sampled leaf litter ants from 16 sites at roughly 150 m elevational intervals from 600 m to 3000 m, following the standardized sampling protocol developed in Liu et al. 2016. At each site, we established a 400 m² quadrat (20 m × 20 m) and collected leaf litter samples at the four corners of the quadrat (1 m²). We also collected leaf litter within the quadrat to cover a variety of microhabitats. Finally, ants on the ground, lower vegetation, and tree branches were collected both by hand and using a beating sheet. Leaf litter samples were extracted using mini Winkler extractors for 72 hours using the shuffling method described in Guénard and Lucky (2011).

Ant specimens were first placed in 99% ethanol and later sorted into morphospecies and point mounted. Each mounted specimen was assigned a unique Museum of Comparative Zoology, Harvard University (MCZ) specimen code and collection labels. Extended depth of field specimen images were taken with a Leica DFC400 digital camera mounted on a Leica M205C stereomicroscope through the Leica Application Suite V4 software in the Ant Room at the MCZ. Specimens were identified to species/morphospecies using available keys, the digital resources on Antwiki (http://www.antwiki.org) and AntWeb (http://www.antweb.org), as well as reference museum material. All mounted and alcohol-preserved ant specimens are currently deposited in the Ant Room of the MCZ.

Distribution maps of species were generated from records included within the Global Ant Biodiversity Informatics (GABI) database and available at https://antmaps.org (Janicki et al, 2016; Guénard et al. 2017). These maps are based on records reported
at the country level, or at the first administrative division for the larger countries (China, India, Japan). For larger islands that form their own natural biogeographic units like Borneo, Sumatra, New Guinea, the distribution maps used the island boundary instead of political boundaries (see also Guénard et al. 2012).

Results

Ants of the Hengduan Mountain region

More than 3000 specimens were collected during this survey, and 130 species and morphospecies in 49 genera and nine subfamilies were identified. After identification of 88 valid species from the 130 total collected species, a total of 17 new species records are presented for Yunnan province and eight represent new records for China (see Table 1). The newly recorded species belong to 13 genera from four subfamilies. Moreover, the 41 morphospecies that could not be identified are likely to represent new species.

Within the recent collection, the most speciose ant genus is *Pheidole* with eleven species (8.5% of the total species collected in the survey), followed by *Camponotus* (ten species, 7.7%), and *Polyrhachis* (seven species, 5.4%). Other diverse genera include *Aphaenogaster* (six species, 4.6%), *Strumigenys* (six species, 4.6%), *Tetramorium* (six species, 4.6%), *Aenictus* (five species, 3.8%), and *Carebara* (five species, 3.8%). More details are presented in Table 2.

Here, we present the list of ant species that were collected in the Gaoligong Shan mountains (Table 1), as well as images for each species (Figs 1–136).

Updated ant checklist in Yunnan

The ant species list of Yunnan Province was generated using records from GABI available at https://antmaps.org (Janicki et al. 2016; Guénard et al. 2017). In total, the Yunnan ant fauna is composed of 99 genera and 550 named species and subspecies. Among them, the ant genera *Lasiomyrma*, *Lordomyrma*, and *Prionopelta* are only known from unidentified morphospecies. Through our collection and the records from GABI, we have added 125 species and subspecies to the list of ants of Yunnan since the last ant checklist (Guénard et al. 2012). We also excluded 26 species records from the previous list and explained our rationale in each case (Table 3).

In Yunnan, the most diverse ant genus is *Pheidole* with 42 named species, followed by *Polyrhachis* (33 species), *Camponotus* (30 species), and *Tetramorium* (29 species). Other diverse genera include *Crematogaster* (25 species), and *Strumigenys* (25 species). Although 15 ant genera contain more than ten named species in Yunnan, the majority of ant genera occurring in Yunnan seem to be not particularly diverse. For example, 35 genera are represented by only one species in Yunnan (Table 4).
Table 1. List of ant species (Formicidae) in the Gaoligong Shan mountains, Yunnan with their respective illustrations. * New to Yunnan province; **New to China.

Species	Figure
Aenictus artipus Wilson, 1964	Fig. 1
Aenictus brevinodus Jaitrong & Yamane, 2011	Fig. 2
Aenictus hodgsoni Forel, 1901	Fig. 3
Aenictus paradentatus Jaitrong, Yamane & Tasen, 2012	Fig. 4
Aenictus watanaeiti Jaitrong & Yamane, 2013	Fig. 5
Cerapachys sulcinodis Emery, 1889	Fig. 6
Cerapachys sp. clm01	Fig. 7
Chrysaline costatus (Bharti & Wachkoo, 2013)	Fig. 8
Dorylus orientalis Westwood, 1835	Figs 9, 10
Oeceraea biroi (Forel, 1907)	Fig. 11
Amblyoponinae	
Stigmamima octodentatum (Xu, 2006)	Fig. 12
Dolichoderinae	
Dolichoderus feae Emery, 1889	Fig. 13
Dolichoderus squamanodus Xu, 2001	Fig. 14
Dolichoderus taprobanicus (Smith, 1858)	Fig. 15
Ochetellus glaber (Mayr, 1862)	Fig. 16
Tapinoma melanocephalum (Fabricius, 1793)	Fig. 17
Ectatomminae	
Gnamptogenys quadratinodules Chen, Lattke & Zhou, 2017	Fig. 18
Formicinae	
Anoplolepis gracilipes (Smith, 1857)	Fig. 19
Camponotus bellus leucodiscus Wheeler, 1919	Fig. 20
Camponotus keibitzi Forel, 1913	Fig. 21
Camponotus lasisene Wang & Wu, 1994	Figs 22, 23
Camponotus mitsu (Smith, 1858)	Fig. 24
Camponotus nicobarensis Mayr, 1865	Fig. 25
Camponotus sp. clm01	Fig. 26
Camponotus sp. clm02	Fig. 27
Camponotus sp. clm03	Fig. 28
Camponotus sp. clm04	Fig. 29
Camponotus sp. clm05	Fig. 30
Formica cunicularia Latreille, 1798	Fig. 31
Formica japonica Motschoulsky, 1866	Fig. 32
Lasius obscuratus Stitz, 1930	Fig. 33
*Lasius Himalayana Bingham, 1903	Fig. 34
Nylanderia bourbonica (Forel, 1886)	Fig. 35
Nylanderia sp. clm01	Fig. 36
Nylanderia sp. clm02	Fig. 37
Oecophylla smaragdina (Fabricius, 1775)	Fig. 38
Paraparatrechina sakunae (Ito, 1914)	Fig. 39
Paraparatrechina sp. clm01	Fig. 40
Paraparatrechina sp. clm02	Fig. 41
Polyrhachis armata (Le Guillou, 1842)	Fig. 42
Polyrhachis bivamata (Drury, 1773)	Fig. 43
Polyrhachis divers Smith, 1857	Fig. 44
Polyrhachis furcata Smith, 1858	Fig. 45
Polyrhachis balladai Emery, 1889	Fig. 46
Polyrhachis illaudata Walker, 1859	Fig. 47
Polyrhachis laevigata Smith, 1857	Fig. 48
Species	Figure
--	--------
* Polyrhachis tibialis* Smith, 1858	Fig. 49
* Prenolepis angularis* Zhou, 2001	Fig. 50
* Prenolepis fustinoda* Williams & LaPolla, 2016	Fig. 51
Prenolepis sp. clm01	Fig. 52
Prenolepis sp. clm02	Fig. 53
* Pseudolatus emeryi* Forel, 1915	Fig. 54
* Pseudolatus silvestrii* Wheeler, 1927	Fig. 55
** Myrmicinae **	
Aphaenogaster *feae* Emery, 1889	Fig. 56
Aphaenogaster sp. clm01	Fig. 57
Aphaenogaster sp. clm02	Fig. 58
Aphaenogaster sp. clm03	Fig. 59
Aphaenogaster sp. clm04	Fig. 60
Aphaenogaster sp. clm05	Fig. 61
* Cardiocondyla itsukii* Seifert, Okita & Heinze, 2017	Fig. 62
Cardiocondyla sp. clm01	Fig. 63
Carebara acutipina (Xu, 2003)	Fig. 64
Carebara affinis (Jerdon, 1851)	Fig. 65
Carebara alitnoda (Xu, 2003)	Fig. 66
Carebara bicornata (Xu, 2003)	Fig. 67
Carebara sp. clm01	Fig. 68
* Catanacius marginatus* Bolton, 1974	Fig. 69
Crematogaster quadriruga Forel, 1911	Fig. 70
Crematogaster sp. clm01	Fig. 71
Crematogaster sp. clm02	Fig. 72
** Dilobocondyla eguchii** Bharti & Kumar, 2013	Fig. 73
Gaoligongidris planodorsa Xu, 2012	Fig. 74
Gauromyrmex sp. clm01	Fig. 75
Lordomyrma sp. clm01	Fig. 76
Monomorium *pharaonis* (Linnaeus, 1758)	Fig. 77
Monomorium sp. clm01	Fig. 78
Myrmica draco Radchenko, Zhou & Elms, 2001	Fig. 79
Myrmica pleorhityida Radchenko & Elmes, 2009	Fig. 80
Myrmica sp. clm01	Fig. 81
Myrmeicina sp. clm01	Fig. 82
Myrmeicina sp. clm02	Fig. 83
Myrmeicina sp. clm03	Fig. 84
Pheidole allani Bingham, 1903	Figs 85, 86
Pheidole fervens Smith, 1858	Fig. 87
Pheidole fervida Smith, 1874	Fig. 88, 89
Pheidole gatesi (Wheeler, 1927)	Fig. 90
Pheidole indica Mayr, 1879	Fig. 91
Pheidole magna Eguchi, 2006	Figs 92, 93
* Pheidole nodifera* (Smith 1858)	Fig. 94
Pheidole zoeae Santschi, 1925	Figs 95, 96
Pristomyrmex brevispinosus Emery, 1887	Fig. 97
Pristomyrmex hamatus Xu & Zhang, 2002	Fig. 98
Stenamma wumengense Liu & Xu, 2011	Fig. 99
Strumigenys asamensis De Andrade, 1994	Fig. 100
Strumigenys strygax Bolton, 2000	Fig. 101
** Strumigenys taphra** (Bolton, 2000)	Fig. 102
Strumigenys sp. clm01	Fig. 103
Strumigenys sp. clm02	Fig. 104
Strumigenys sp. clm03	Fig. 105
Ants in the Hengduan Mountains

Species	Figure
Temnothorax striatus Zhou, Huang, Yu & Liu, 2010	Fig. 106
Temnothorax sp. clm01	Fig. 107
Temnothorax sp. clm03	Fig. 108
Tetramorium tonganum Mayr, 1870	Fig. 109
Tetramorium sp. clm01	Fig. 110
Tetramorium sp. clm02	Fig. 111
Tetramorium sp. clm03	Fig. 112
Tetramorium sp. clm04	Fig. 113
Vollenhovia pyrrhoria Wu & Xiao, 1989	Fig. 114
Vollenhovia sp. clm03	Fig. 115

Ponerinae

Species	Figure
Brachyponera lateipes (Mayr, 1862)	Fig. 116
Ectomomyrmex lobocarenus (Xu, 1995)	Fig. 117
Ectomomyrmex obtusus Emery, 1900	Fig. 118
Hypoponera sp. clm01	Fig. 119
Hypoponera sp. clm02	Fig. 120
Hypoponera sp. clm03	Fig. 121
Leptogenys birmana Forel, 1900	Fig. 122
Leptogenys kittingi (Mayr, 1870)	Fig. 123
Odontomachus circulus Wang, 1993	Fig. 124
Odontomachus fuscus Wang, 1993	Fig. 125
Platethyrea parallela (Smith, 1859)	Fig. 126
Ponera bawana Xu, 2001	Fig. 127
Ponera xanthid Xu, 2001	Fig. 128

Proceratinidae

Species	Figure
Discothyrea banna Xu, Burwell & Nakamura, 2014	Fig. 129
Discothyrea diana Xu, Burwell & Nakamura, 2014	Fig. 130
Proceratium longigaster Karavaiev, 1935	Fig. 131
Proceratium longimenense Xu, 2006	Fig. 132
Proceratium zhaoi Xu, 2000	Fig. 133

Pseudomyrmecinae

Species	Figure
Tetraponera allaborans (Walker, 1859)	Fig. 134
Tetraponera attenuata Smith, 1877	Fig. 135
Tetraponera protensa Xu & Chai, 2004	Fig. 136

Table 2. Number of ant species of per genus collected in this survey as well the total number of each species per genus in Yunnan province.

Genus	Gaoligongshan Mt.	Yunnan	Genus	Gaoligongshan Mt.	Yunnan
Camponotus	10	30	Leptogenys	2	17
Pheidole	8	42	Monomorium	2	6
Polyrhachis	8	32	Odontomachus	2	6
Aphaenogaster	6	10	Ponera	2	14
Strumigenys	6	24	Pseudomyrmex	2	4
Tetramorium	5	29	Pseudolasius	2	6
Aenictus	5	19	Vollenhovia	2	3
Carebara	5	19	Anoplolepis	1	1
Prenolepis	4	7	Brachyponera	1	3
Crematogaster	3	25	Cataulacus	1	4
Dolichoderus	3	9	Chrysaceae	1	1
Hypoponera	3	7	Dilobocondyla	1	3
Lasius	2	6	Dorylus	1	3
Myrmica	3	12	Gaoligongidris	1	1
Table 3. Ant species records that have been excluded from Yunnan when compared to the previous list. The explanation “Needs verification” usually signifies that the species has never been recorded before in this region and/or is easily mistaken for another species and likely to have been misidentified. “Dubious” means that the record occurrence is highly unlikely given the known species distribution. Notes provide additional references regarding records and/or further information.

Excluded species records	Explanations	Notes
Camponotus aethiops	Needs verification	A Palearctic species with distribution in Asia needs confirmation
Camponotus spenceri	Dubious	An Australian species misreported previously
Cardiocondyla nuda	Dubious	Could be C. kagutsuchi, see Seifert 2003
Discothyrea clavicornis	Dubious	A misidentification of D. diana
Discothyrea kamiteta	Dubious	A misidentification of D. banna
Formica fusca	Needs verification	A Palearctic species with distribution in Asia needs confirmation
Hypoponera exoecata	Needs verification	Species with distribution limited to East Asia
Lasius alienus	Dubious	See Seifert 2020
Lasius emarginatus	Dubious	A West Palearctic species with distribution in Asia doubtful
Lasius fuliginosus	Dubious	See Espadaler et al. 2001
Lasius niger	Dubious	See Seifert 1992
Lasius productus	Needs verification	Species with distribution limited to Japan and the Korean Peninsula
Lasius spathepus	Needs verification	Species with distribution limited to Japan, the Korean Peninsula and Eastern Russia
Leptogenys yerburyi	Dubious	See Xu and He 2015
Myrmica ireae	Needs verification	See Chen et al. 2016.
Odontoponera transversa	Dubious	See Yamane 2009
Proceratium deelemani	Dubious	Record represented a new species subsequently described in Staab et al. 2018.
Proceratium japonicum	Dubious	A misidentification of P. longisterr
Tetramorium melinus	Needs verification	A central Asian species which presence in Yunnan requires confirmation
Tetenara trevorsculptura	Dubious	An Indian species that is restricted to the Southwest.
Tetramorium globulinode	Dubious	An Afrotopical species incorrectly reported in Asia
Tetramorium khuen	Dubious	An endemic species in the Philippines
Tetramorium melinus	Dubious	A misidentification of T. wrighthonii
Tetraponera atakensi	Dubious	Phil Ward (Personal communication, 18 August 2015)
Tetraponera nigra	Dubious	Phil Ward (Personal communication, 18 August 2015)
Vollenhovia emeryi	Dubious	See Wetterer et al. 2015
Table 4. Number of ant species (both native and exotic species) in Yunnan Province.

Genus	Native	Exotic	Genus	Native	Exotic
Pheidole	42	0	*Solenopsis*	2	1
Polyrhachis	32	0	*Acanthomyrmex*	2	0
Camponotus	30	0	*Acropyga*	2	0
Tetramorium	28	1	*Echinopla*	2	0
Crematogaster	25	0	*Meranoplus*	2	0
Strumigenys	24	1	*Myrmoteras*	2	0
Aenictus	19	0	*Paraparatrechina*	2	0
Carebara	19	0	*Perissomyrmex*	2	0
Ponera	14	0	*Pseudoneoponera*	2	0
Tetraponera	12	0	*Rhopalomastix*	2	0
Myrmica	12	0	*Trichomyrmex*	0	2
Stigmatomma	11	0	*Vollenhovia*	2	0
Technomyrmex	11	0	*Anoplolepis*	1	0
Aphaenogaster	10	0	*Buniapone*	1	0
Nylanderia	9	1	*Centromyrmex*	1	0
Dolichoderus	9	0	*Cerapachy*	1	0
Ectomomyrmex	8	0	*Chrysapace*	1	0
Leptotrema	8	0	*Diaecamma*	1	0
Colobopsis	7	0	*Emeryopone*	1	0
Hyponera	5	2	*Erromyrmex*	1	0
Prenolepis	7	0	*Euponera*	1	0
Tennothobax	7	0	*Gauliogonidris*	1	0
Formica	7	0	*Gauromyrmex*	1	0
Gnamptogenys	7	0	*Geomyrmex*	1	0
Myrmecina	7	0	*Harpegnathos*	1	0
Anochetus	6	0	*Iridomyrmex*	1	0
Lasius	6	0	*Lasiummyrm*	1	0
Odontomachus	6	0	*Lionetopum*	1	0
Pheidoleotus	5	0	*Lioponera*	1	0
Cryptopone	5	0	*Lordomyrmex*	1	0
Monomorium	5	0	*Mesoponera*	1	0
Proceratium	4	0	*Messor*	1	0
Catagelatus	4	0	*Myrmicaria*	1	0
Plagiolepis	3	1	*Myrmix*	1	0
Pristomyrmex	4	0	*Ochetellus*	1	0
Proanilla	4	0	*Odontoponera*	1	0
Stenamma	4	0	*Octophyllia*	1	0
Tapinoma	4	0	*Ooceraea*	1	0
Brachyonera	3	0	*Parasycia*	1	0
Cardiocondyla	2	1	*Paratrechina*	0	1
Chronicen	3	0	*Philidris*	1	0
Dilobomyrmex	3	0	*Prionopelta*	1	0
Discotyloga	3	0	*Probolomyrmex*	1	0
Dorylus	3	0	*Rotastruma*	1	0
Karidris	3	0	*Simopone*	1	0
Leptanilla	3	0	*Sycia*	1	0
Lophomyrmex	3	0	*Vombisidrict*	1	0
Myopias	3	0	*Yunodorylus*	1	0
Recurvidris	3	0			
Aenictus artipus

Figure 1. *Aenictus artipus* worker (MCZ-ENT00763651) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Aenictus brevinodus

Figure 2. Aenictus brevinodus worker (MCZ-ENT00763491, new to China) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 3. *Aenictus hodgsoni* worker (MCZ-ENT00763191) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Aenictus hodgsoni
Figure 4. *Aenictus paradentatus* worker (MCZ-ENT00763384) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Aenictus paradentatus
Figure 5. *Aenictus watanasiti* worker (MCZ-ENT00764608, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Aenictus watanasiti
Figure 6. Cerapachys sulcinodis worker (MCZ-ENT00759751) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Cerapachys sulcinodus
Figure 7. *Cerapachys* sp1 worker (MCZ-ENT00763371) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Chrysapace costatus

Figure 8. *Chrysapace costatus* worker (MCZ-ENT00763341) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Dorylus orientalis

Figure 9. *Dorylus orientalis* minor worker (MCZ-ENT00760027) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Dorylus orientalis (soldier)

Figure 10. Dorylus orientalis major worker (MCZ-ENT00760028) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Ooceraea biroi

Figure 11. *Ooceraea biroi* worker (MCZ-ENT00759984) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 12. *Stigmatoma octodentatum* worker (MCZ-ENT00759880) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Stigmatoma octodentatum
Figure 13. *Dolichoderus feae* worker (MCZ-ENT00763272) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Dolichoderus feae
Figure 14. *Dolichoderus squamanodus* worker (MCZ-ENT00762839) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Dolichoderus squamanodus
Figure 15. *Dolichoderus taprobanae* worker (MCZ-ENT00763246) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Dolichoderus taprobanae
Figure 16. *Ochetellus glaber* worker (MCZ-ENT00763401) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Ochetellus glaber
Figure 17. *Tapinoma melanocephalum* worker (MCZ-ENT00760062) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Tapinoma melanocephalum
Figure 18. Gnamptogenys quadrutinodules worker (MCZ-ENT00759741) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Gnamptogenys quadrutinodules
Figure 19. Anoplolepis gracilipes worker (MCZ-ENT00760060) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Ants in the Hengduan Mountains

Figure 20. *Camponotus bellus leucodiscus* worker (MCZ-ENT00760068, new to China) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Camponotus keihitoi

Figure 21. *Camponotus keihitoi* worker (MCZ-ENT00763692, new to China) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Camponotus lasiselene

Figure 22. *Camponotus lasiselene* minor worker (MCZ-ENT00763190) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 23. *Camponotus lasiselene* major worker (MCZ-ENT00763247) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Camponotus lasiselene
Figure 24. *Camponotus mitis* worker (MCZ-ENT00763213) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Camponotus mitis
Figure 25. *Camponotus nicobarensis* worker (MCZ-ENT00763198) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Camponotus nicobarensis
Figure 26. *Camponotus* sp. clm01 worker (MCZ-ENT00762843) A mesosoma in profile view B mesosoma in dorsal view C head in front view.

Camponotus sp1
Figure 27. *Camponotus* sp. clm02 worker (MCZ-ENT00759861) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 28. *Camponotus* sp. clm03 worker (MCZ-ENT00762821) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Camponotus sp4

Figure 29. *Camponotus* sp. clm04 worker (MCZ-ENT00762978) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Figure 30. *Camponotus* sp. clm05 worker (MCZ-ENT00763312) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 31. *Formica cunicularia* worker (MCZ-ENT00759967) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Formica cunicularia
Figure 32. *Formica japonica* worker (MCZ-ENT00760066) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Lasius obscuratus

Figure 33. Lasius obscuratus worker (MCZ-ENT00760025, new to Yunnan) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 34. *Lasius himalayanus* worker (MCZ-ENT00763360, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Lasius himalayanus
Nylanderia bourbonica

Figure 35. *Nylanderia bourbonica* worker (MCZ-ENT00760019) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 36. *Nylanderia* sp. clm01 worker (MCZ-ENT00759776) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 37. *Nylanderia* sp. clm02 worker (MCZ-ENT00759968) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

* Nylanderia sp2
Figure 38. *Oecophylla smaragdina* worker (MCZ-ENT00763551) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 39. *Paraparatrechina sakurae* worker (MCZ-ENT00759953) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Paraparatrechina sp1

Figure 40. *Paraparatrechina* sp. clm01 worker (MCZ-ENT00763500) A mesosoma in profile view
B mesosoma in dorsal view C head in front view D global distribution map.
Figure 41. *Paraparatotrechina* sp. clm02 worker (MCZ-ENT00763427) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 42. *Polyrhachis armata* worker (MCZ-ENT00763282) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Polyrhachis armata
Figure 43. Polyrhachis bihamata worker (MCZ-ENT00763176). A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Polyrhachis dives

Figure 44. *Polyrhachis dives* worker (MCZ-ENT00760042). **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Polyrhachis furcata

Figure 45. Polyrhachis furcata worker (MCZ-ENT00763549) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 46. *Polyrhachis halidayi* worker (MCZ-ENT00763195) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 47. *Polyrhachis illaudata* worker (MCZ-ENT00760071) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 48. *Polyrhachis laevigata* worker (MCZ-ENT00763568) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 49. *Polyrhachis tibialis* worker (MCZ-ENT00763284). A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Ants in the Hengduan Mountains

Figure 50. Prenolepis angularis worker (MCZ-ENT00763328, new to Yunnan). A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Prenolepis angularis
Figure 51. *Prenolepis fustinoda* worker (MCZ-ENT00763200, new to Yunnan) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Prenolepis fustinoda
Prenolepis sp1

Figure 52. *Prenolepis* sp. clm01 worker (MCZ-ENT00763220) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Figure 53. *Prenolepis* sp. clm02 worker (MCZ-ENT00763467) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.

Prenolepis sp2
Figure 54. *Pseudolasius emeryi* worker (MCZ-ENT00762951) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Pseudolasius emeryi
Figure 55. *Pseudolasius silvestrii* worker (MCZ-ENT00762838) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Aphenogaster feae

Figure 56. Aphaenogaster feae worker (MCZ-ENT00763554) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Aphenogaster sp1

Figure 57. *Aphenogaster* sp. clm01 worker (MCZ-ENT00762870) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Figure 58. *Aphaenogaster* sp. clm02 worker (MCZ-ENT00763366) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.

Aphaenogaster sp2
Aphaenogaster sp3

Figure 59. *Aphaenogaster* sp. clm03 worker (MCZ-ENT00763603) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Ants in the Hengduan Mountains

Aphenogaster sp4

Figure 60. Aphenogaster sp. clm04 worker (MCZ-ENT00764622) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 61. *Aphaenogaster* sp. clm05 worker (MCZ-ENT00762809) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 62. *Cardiocondyla itsukii* worker (MCZ-ENT00762820, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Cardiocondyla itsukii

Figure 62. *Cardiocondyla itsukii* worker (MCZ-ENT00762820, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Cardiocondyla sp1

Figure 63. *Cardiocondyla* sp. clm01 worker (MCZ-ENT00763607) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Carebara acutispina

Figure 64. Carebara affinis worker (MCZ-ENT00759841) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Carebara affinis

Figure 65. Carebara acutispina worker (MCZ-ENT00759773) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Carebara altinoda

Figure 66. Carebara altinoda worker (MCZ-ENT00759928) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 67. *Carebara bihornata* worker (MCZ-ENT00759796) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Caerbara bihornata
Carebara sp1

Figure 68. Carebara sp. clm01 worker (MCZ-ENT00759855) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Catalulacus marginatus

Figure 69. Catalulacus marginatus worker (MCZ-ENT00760045, new to Yunnan) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 70. *Crematogaster quadriruga* worker (MCZ-ENT00759778) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 71. *Crematogaster* sp. clm01 worker (MCZ-ENT00762837) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 72. *Crematogaster* sp. clm02 worker (MCZ-ENT00762875) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.

*Crema*togaster sp2
Figure 73. *Dilobocondyla eguchii* worker (MCZ-ENT00763656, new to China) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Gaoligongidris planodorsa

Figure 74. *Gaoligongidris planodorsa* worker (MCZ-ENT00759792) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Grauromyrmex sp1

Figure 75. *Grauromyrmex* sp. clm01 worker (MCZ-ENT00764656) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 76. *Lordomyrma* sp1 worker (MCZ-ENT00763514) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 77. *Monomorium pharaonis* worker (MCZ-ENT00760064) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Monomorium sp1

Figure 78. Monomorium sp. clm01 worker (MCZ-ENT00759771) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Myrmica draco

Figure 79. *Myrmica draco* worker (MCZ-ENT00759985) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Myrmica pleiorhytida

Figure 80. Myrmica pleiorhytida worker (MCZ-ENT00759935) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 81. *Myrmica* sp. clm01 worker (MCZ-ENT00763256) A mesosoma in profile view B mesosoma in dorsal view C head in front view.

Myrmica sp1
Myrmecina sp1

Figure 82. _Myrmecina_ sp. clm01 worker (MCZ-ENT00759959) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 83. Myrmecina sp. clm02 worker (MCZ-ENT00759803). A mesosoma in profile view B mesosoma in dorsal view C head in front view.

Myrmecina sp2
Ants in the Hengduan Mountains

Figure 84. *Myrmecina* sp. clm03 worker (MCZ-ENT00763515). **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.

Myrmecina sp3
Figure 85. *Pheidole allani* minor worker (MCZ-ENT00759865) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Pheidole allani
Pheidole allani

Figure 86. Pheidole allani major worker (MCZ-ENT00759866) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Pheidole fervens

Figure 87. *Pheidole fervens* worker (MCZ-ENT00764619) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 88. *Pheidole fervida* minor worker (MCZ-ENT00759918) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Pheidole fervida
Figure 89. *Pheidole fervida* major worker (MCZ-ENT00760026) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 90. *Pheidole gatesi* worker (MCZ-ENT00763577) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 91. *Pheidole indica* worker (MCZ-ENT00762822) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Pheidole indica
Figure 92. *Pheidole magna* minor worker (MCZ-ENT00759762) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Pheidole magna minor
Pheidole magna

Figure 93. *Pheidole magna* major worker (MCZ-ENT00759980) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Pheidole nodifera

Figure 94. *Pheidole nodifera* worker (MCZ-ENT00759837, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 95. *Pheidole zoceana* minor worker (MCZ-ENT00760015) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Pheidole zoceana
Figure 96. Pheidole zoceana major worker (MCZ-ENT00760016) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 97. *Pristomyrmex brevispinosus* worker (MCZ-ENT00763505) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Pristomyrmex brevispinosus
Figure 98. *Pristomyrmex hamatus* worker (MCZ-ENT00763502) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 99. *Stenamma wumengense* worker (MCZ-ENT00762907) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Stenamma wumengense

Figure 99. *Stenamma wumengense* worker (MCZ-ENT00762907) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Ants in the Hengduan Mountains

Figure 100. *Strumigenys assamensis* worker (MCZ-ENT00759885) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Strumigenys assamensis
Figure 101. *Strumigenys strygax* worker (MCZ-ENT00763507)
A mesosoma in profile view
B mesosoma in dorsal view
C head in front view
D global distribution map.

Strumigenys strygax

Figure 101. *Strumigenys strygax* worker (MCZ-ENT00763507)
A mesosoma in profile view
B mesosoma in dorsal view
C head in front view
D global distribution map.
Figure 102. *Strumigenys taphra* worker (MCZ-ENT00759758, new to China) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 103. *Strumigenys* sp. clm01 worker (MCZ-ENT00763511) A mesosoma in profile view B mesosoma in dorsal view C head in front view.

Strumigenys sp1
Figure 104. *Strumigenys* sp. clm02 worker (MCZ-ENT00759897) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.

Strumigenys sp2
Figure 105. *Strumigenys* sp. clm03 worker (MCZ-ENT00759991) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Figure 106. *Temnothorax striatus* worker (MCZ-ENT00759763, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Temnothorax striatus
Figure 107. *Temnothorax* sp1 worker (MCZ-ENT00759977)
A mesosoma in profile view
B mesosoma in dorsal view
C head in front view.

Temnothorax sp1
Temnothorax sp3

Figure 108. *Temnothorax* sp. clm03 worker (MCZ-ENT00763303) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 109. *Tetramorium tonganum* worker (MCZ-ENT00764651) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Tetramorium sp1

Figure 110. *Tetramorium* sp. clm01 worker (MCZ-ENT00759754) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Tetramorium sp2

Figure 111. *Tetramorium* sp. clm02 worker (MCZ-ENT00763454) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Tetramorium sp3

Figure 112. *Tetramorium* sp. clm03 worker (MCZ-ENT00760040) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 113. *Tetramorium* sp. clm04 worker (MCZ-ENT00759856) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Figure 114. *Vollenhovia pyrrhoria* worker (MCZ-ENT00759854) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Vollenhovia pyrrhoria
Figure 115. *Vollenhovia* sp. clm03 worker (MCZ-ENT00764617) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 116. *Brachyponera luteipes* worker (MCZ-ENT00759752) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 117. *Ectomomyrmex lobocarenus* worker (MCZ-ENT00759748) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Ectomomyrmex lobocarenus
Figure 118. *Ectomomyrmex obtusus* worker (MCZ-ENT00759859, new to China) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Ectomomyrmex obtusus
Figure 119. *Hypoponera* sp1 worker (MCZ-ENT00759780) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.
Figure 120. Hypoponera sp. clm02 worker (MCZ-ENT00759849) A mesosoma in profile view B mesosoma in dorsal view C head in front view.
Figure 121. *Hypoponera* sp. clm03 worker (MCZ-ENT00759808) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view.

Hypoponera sp3
Figure 122. *Leptogenys birmana* worker (MCZ-ENT00763178) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Leptogenys birmana
Figure 123. *Leptogenys kitteli* worker (MCZ-ENT00763321). A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Leptogenys kitteli
Odontomachus circulus

Figure 124. *Odontomachus circulus* worker (MCZ-ENT00762856). **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 125. *Odontomachus fulgidus* worker (MCZ-ENT00760009, new to Yunnan) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Odontomachus fulgidus
Platythyrea parallela

Figure 126. *Platythyrea parallela* worker (MCZ-ENT00763657) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Ponera bawana

Figure 127. Ponera bawana worker (MCZ-ENT00759807) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 128. *Ponera xantha* worker (MCZ-ENT00759845) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Ponera xantha
Figure 129. *Discothyrea banna* worker (MCZ-ENT00759809) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.

Discothyrea banna
Figure 130. *Discothyrea diana* worker (MCZ-ENT00759806) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.

Discothyrea dina
Proceratium longigaster

Figure 131. *Proceratium longigaster* worker (MCZ-ENT00759931) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Figure 132. Proceratium longmenensense worker (MCZ-ENT00763325) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Proceratium zhaoi

Figure 133. *Proceratium zhaoi* worker (MCZ-ENT00759857)

A mesosoma in profile view

B mesosoma in dorsal view

C head in front view

D global distribution map.
Tetraponera allaborans

Figure 134. *Tetraponera allaborans* worker (MCZ-ENT00763523) **A** mesosoma in profile view **B** mesosoma in dorsal view **C** head in front view **D** global distribution map.
Figure 135. *Tetraponera attenuata* worker (MCZ-ENT00763165) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Tetraponera protensa

Figure 136. Tetraponera protensa worker (MCZ-ENT00763526) A mesosoma in profile view B mesosoma in dorsal view C head in front view D global distribution map.
Yunnan ant list:

AMBLYOPONINAE

Mystrium: 1 species

Mystrium camillae Emery, 1989

Prionopelta: 1 species (undescribed)

Prionopelta sp.

Stigmatomma: 11 species

* Stigmatomma amblyops Karavaiev, 1935
* Stigmatomma awa (Xu, 2012)
* Stigmatomma crenatum (Xu, 2001)
* Stigmatomma kangba (Xu, 2012)
* Stigmatomma meilianum (Xu, 2012)
* Stigmatomma mulanae (Xu, 2000)
* Stigmatomma octodentatum (Xu, 2006)
* Stigmatomma rothneyi (Forel, 1900)
* Stigmatomma scrobiceps (Guénard, 2013)
* Stigmatomma silvestrii (Wheeler, 1928)
* Stigmatomma trilobum (Xu, 2001)

DOLICHODERINAE

Chronoxenus: 3 species

Chronoxenus myops (Forel, 1895)
Chronoxenus walshii (Forel, 1895)
Chronoxenus wroughtonii (Forel, 1895)

Dolichoderus: 9 species

Dolichoderus affinis Emery, 1889
Dolichoderus feae Emery, 1889
Dolichoderus incisus Xu, 1995
* Dolichoderus laotius Santschi, 1920
* Dolichoderus moggridgei Forel, 1886
* Dolichoderus sagmanotus* Xu, 2001
* Dolichoderus squamanodus* Xu, 2001
* Dolichoderus taprobanae* (Smith, 1858)
Dolichoderus thoracicus (Smith, 1860)

Iridomyrmex: 1 species

Iridomyrmex anceps (Roger, 1863)

Liometopum: 1 species

Liometopum sinense Wheeler, 1921

Ochetellus: 1 species

Ochetellus glaber (Mayr, 1862)

Philidris: 1 species

Philidris laevigata (Emery, 1895)

Tapinoma: 4 species

Tapinoma geei Wheeler, 1927
Tapinoma indicum Wheeler, 1895
Tapinoma melanocephalum (Fabricius, 1793)
Tapinoma wroughtonii Forel, 1904

Technomyrmex: 11 species

Technomyrmex albipes (Smith, 1861)
Technomyrmex antennus Zhou, 2001
Technomyrmex bicolor Emery, 1893
Technomyrmex brunneus Forel, 1895
Technomyrmex elatior Forel, 1902
Technomyrmex horni Forel, 1912
Technomyrmex kraepelini Forel, 1905
Technomyrmex obscurior Wheeler, 1928
Technomyrmex pratensis (Smith, 1860)
Technomyrmex vitiensis Mann, 1921
Technomyrmex yamanei Bolton, 2007

Dorylinae

Aenictus: 19 species

* *Aenictus artipus* Wilson, 1964
Aenictus binghamii Forel, 1900
Aenictus brevinodus Jaitrong & Yamane, 2011
Aenictus ceylonicus (Mayr, 1866)
Aenictus dentatus Forel, 1911
Aenictus feae Emery, 1889
Aenictus fergusoni Forel, 1901
Aenictus grandis Bingham, 1903
Aenictus hodgsoni Forel, 1901
Aenictus laeviceps (Smith, 1857)
Aenictus maneerati Jaitrong & Yamane, 2013
Aenictus paradentatus Jaitrong & Yamane, 2012
Aenictus piercei Wheeler & Chapman, 1930
Aenictus punensis Forel, 1901
Aenictus shuckardi Forel, 1901
Aenictus thailandianus Terayama & Kubota, 1993
Aenictus watanasiti Jaitrong & Yamane, 2013
Aenictus westwoodi Forel, 1901
* Aenictus yangi Liu, 2015

Cerapachys: 1 species

Cerapachys sulcinodis Emery, 1889

Chrysapace: 1 species

* Chrysapace costatus (Bharti & Wachkoo, 2013)

Dorylus: 3 species

Dorylus laevigatus (Smith, 1857)
Dorylus orientalis Westwood, 1835
Dorylus vishnui Wheeler, 1913

Lioponera: 1 species

Lioponera longitarsus (Mayr, 1879)

Ooceraea: 1 species

Ooceraea biroi (Forel, 1907)

Parasyscia: 1 species

Parasyscia fossulata (Forel, 1895)
Simopone: 1 species

Simopone yunnanensis Chen, 2015

Syscia: 1 species

Syscia typhla Roger, 1861

Yunodorylus: 1 species

Yunodorylus sexspinus Xu, 2000

ECTATOMMINAE

Gnamptogenys: 6 species

Gnamptogenys bicolor (Emery, 1889)
Gnamptogenys coccina Zhou, 2001
Gnamptogenys coxalis (Roger, 1860)
Gnamptogenys quadrutinodules Chen, 2017
Gnamptogenys sichuanensis Lattke, 2004
Gnamptogenys sinensis Wu & Xiao, 1987
Gnamptogenys treta Lattke, 2004

FORMICINAE

Acropyga: 2 species

Acropyga nipponensis Terayama, 1985
Acropyga yaeyamensis Terayama & Hashimoto, 1996

Anoplolepis: 1 species

Anoplolepis gracilipes (Smith, 1857)

Camponotus: 28 species

Camponotus albosparsus Bingham, 1903
Camponotus anningensis Wu & Wang, 1989
Camponotus auratiacus Zhou, 2001
Camponotus barbatus taylori Forel, 1892
Camponotus bellus leucodiscus Wheeler, 1919
Camponotus binghamii Forel, 1894
Camponotus chongqingensis Wu & Wang, 1989
Camponotus compressus (Fabricius, 1787)
Camponotus confucii Forel, 1894
Camponotus cornis Wang & Wu, 1994
* Camponotus crassisquamis Forel, 1902
Camponotus dolendus Forel, 1892
Camponotus exiguo guttatus Forel, 1886
* Camponotus fuscivillosus Xiao & Wang, 1989
Camponotus holosericeus Emery, 1889
* Camponotus invidus Forel, 1892
* Camponotus itoi Forel, 1912
Camponotus japonicus Mayr, 1866
Camponotus jianghuaensis Xiao & Wang, 1989
Camponotus lasistene Wang & Wu, 1994
Camponotus minus Wang & Wu, 1994
Camponotus mitis (Smith, 1858)
Camponotus nicobarensis Mayr, 1865
Camponotus parius Emery, 1889
Camponotus pseudoirritans Wu & Wang, 1989
Camponotus pseudolendus Wu & Wang, 1989
* Camponotus radiatus Forel, 1892
Camponotus siemsseni Forel, 1901
Camponotus singularis (Smith, 1858)
Camponotus tonkinus Santschi, 1925
Camponotus vitiosus (Smith, 1874)

Colobopsis: 7 species

Colobopsis badia (Smith, 1857)
* Colobopsis ceylonica (Emery, 1925)
Colobopsis cotesii (Forel, 1893)
Colobopsis leonardi (Emery, 1889)
Colobopsis politae (Wu & Wang, 1994)
Colobopsis rothneyi (Forel, 1893)
Colobopsis vitrea (Smithi, 1860)

Echinopla: 2 species

* Echinopla cherapunjiensis Bharti & Gul, 2012
* Echinopla striata Smith, 1857

Formica: 5 species

Formica cunicularia Latreille, 1798
* Formica gagatoides Ruzsky, 1904
* Formica glabridorsis Santschi, 1925
* Formica lemani Bondroit, 1917
Formica japonica Motschoulsky, 1866
* Formica sanguinea Latreille, 1798
Formica sinensis Wheeler, 1913

Gesomyrmex: 1 species

* Gesomyrmex kalshoveni Wheeler, 1929

Lasius: 6 species

Lasius draco Collingwood, 1982
Lasius flavus (Fabricius, 1782)
* Lasius himalayanus Bingham, 1903
Lasius nipponensis Forel, 1912
* Lasius obscuratus Stitz, 1930
Lasius sichuense Seifert, 2020

Lepisiota: 8 species

Lepisiota acuta Xu, 1994
Lepisiota capensis (Mayr, 1862)
Lepisiota opaca (Forel, 1892)
* Lepisiota pulchella (Forel, 1892)
Lepisiota reticulata Xu, 1994
Lepisiota rothneyi (Forel, 1894)
Lepisiota rothneyi wroughtonii (Forel, 1902)
Lepisiota xichangensis (Wu & Wang, 1995)

Myrmoteras: 2 species

Myrmoteras binghamii Forel, 1893
Myrmoteras cuneonodus Xu, 1998

Nylanderia: 10 species

Nylanderia birmana (Forel, 1902)
Nylanderia bourbonica (Forel, 1886)
* Nylanderia emmae (Forel, 1894)
* Nylanderia flaviabdominis (Wang, 1997)
Nylanderia flavipes (Smith, 1874)
Nylanderia indica (Forel, 1894)
Nylanderia sharpii (Forel, 1899)
Nylanderia taylori (Forel, 1894)
Nylanderia vividula (Nylander, 1846) (Exotic)
Nylanderia yerburyi (Forel, 1894)

Oecophylla: 1 species

Oecophylla smaragdina (Fabricius, 1775)

Paraparatrechina: 2 species

* Paraparatrechina sakurae (Ito, 1914)
* Paraparatrechina sauteri (Forel, 1913)

Paratrechina: 1 species

Paratrechina longicornis (Latreille, 1802) (Exotic)

Plagiolepis: 4 species

Plagiolepis alluaudi Emery, 1894 (Exotic)
Plagiolepis demangei Santschi, 1920
Plagiolepis exigua Forel, 1894
* Plagiolepis jerdonii Forel, 1894

Polyrhachis: 32 species

Polyrhachis armata (Le Guillou, 1842)
Polyrhachis bakana Xu, 1998
Polyrhachis bicolor Smith, 1858
Polyrhachis bihamata (Drury, 1773)
Polyrhachis brevicorpa Xu, 2002
Polyrhachis burmanensis Donisthorpe, 1938
Polyrhachis cornihamera Xu, 2002
Polyrhachis cornhumera Zhou & Huang, 2002
Polyrhachis cyphonota Xu, 1998
Polyrhachis dentibumera Xu, 2002
Polyrhachis dives Smith, 1857
* Polyrhachis exercita* (Walker, 1859)
Polyrhachis furcata Smith, 1858
Polyrhachis gibba Emery, 1901
Polyrhachis halidayi Emery, 1889
* Polyrhachis hippomanae Emery, 1861
* Polyrhachis hippocapenes ceylonensis Emery, 1893
Polyrhachis illaudata Walker, 1859
Polyrhachis jianghuaensis Wang & Wu, 1991
Polyrhachis laevigata Smith, 1857
Polyrhachis moesta Emery, 1887
Polyrhachis orbihumera Xu, 2002
Polyrhachis paracamponota Wang & Wu, 1991
Polyrhachis proxima Roger, 1863
Polyrhachis pubescens Mayr, 1879
Polyrhachis punctillata Roger, 1863
Polyrhachis rastellata (Latreille, 1802)
Polyrhachis rotocippita Xu, 2002
Polyrhachis rufipes Smith, 1858
Polyrhachis thompsoni Bingham, 1903
Polyrhachis thrinax Roger, 1863
Polyrhachis tibialis Smith, 1858

Prenolepis: 7 species

Prenolepis angularis Zhou, 2001
* Prenolepis fustinoda Williams & LaPolla, 2016
* Prenolepis mediops Williams & LaPolla, 2016
Prenolepis melanogaster Emery, 1893
Prenolepis naoroji Forel, 1902
* Prenolepis shanialena Williams & LaPolla, 2016
* Prenolepis striata Chen & Zhou, 2018

Pseudolasius: 6 species

Pseudolasius bidenticypeus Xu, 1997
Pseudolasius cibdelus Wu & Wang, 1992
Pseudolasius emeryi Forel, 1911
Pseudolasius familiaris (Smith, 1860)
Pseudolasius risii Forel, 1894
Pseudolasius silvestrii Wheeler, 1927

LEPTANILLINAE

Leptanilla: 3 species

Leptanilla hunanensis Tang, Li & Chen, 1992
Leptanilla kunmingensis Xu & Zhang, 2002
Leptanilla yunnanensis Xu, 2002

Protanilla: 4 species

- Protanilla bicolor Xu, 2002
- Protanilla concolor Xu, 2002
- *Protanilla furcomandibula* Xu, 2002
- Protanilla gengma Xu, 2012

MYRMICINAE

Acanthomyrmex: 2 species

- *Acanthomyrmex glabfemoralis* Zhou & Zheng, 1997
- *Acanthomyrmex luciolae* Emery, 1893

Aphaenogaster: 9 species

- *Aphaenogaster beccarii* Emery, 1887
- *Aphaenogaster exasperata* (Smith, 1921)
- *Aphaenogaster famelica* (Smith, 1874)
- *Aphaenogaster feae* Emery, 1889
- *Aphaenogaster geei* Wheeler, 1921
- *Aphaenogaster japonica* Forel, 1911
- *Aphaenogaster lepida* Wheeler, 1930
- *Aphaenogaster rothneyi* (Forel, 1902)
- *Aphaenogaster schurri* (Forel, 1902)
- *Aphaenogaster smythiesii* (Forel, 1902)

Cardiocondyla: 3 species

- *Cardiocondyla itsukii* Seifert, Okita & Heinze, 2017 (*Exotic*)
- *Cardiocondyla obscurior* Wheeler, 1929
- *Cardiocondyla wroughtonii* (Forel, 1890)

Carebara: 18 species

- *Carebara acutispina* (Xu, 2003)
- *Carebara affinis* (Jerdon, 1951)
- *Carebara altinoda* (Xu, 2003)
- *Carebara asina* (Forel, 1902)
- *Carebara bengalensis* (Forel, 1902)
- *Carebara bibornata* (Xu, 2003)
Carebara curvispina (Xu, 2003)
* Carebara diversa (Jerdon, 1851)
* Carebara jiangxiensis Wu & Wang, 1995
Carebara lignata Westwood, 1840
* Carebara melasolena (Zhou & Zheng, 1997)
Carebara obtusidenta (Xu, 2003)
Carebara polyphemus (Wheeler, 1928)
Carebara rectidorsa (Xu, 2003)
Carebara reticapita (Xu, 2003)
Carebara striata (Forel, 2003)
Carebara taiponica (Wheeler, 1928)
Carebara trechideros (Zhou & Zheng, 1997)
Carebara wheeleri (Ettershank, 1966)

* Cataulacus: 4 species

Cataulacus granulatus (Latreille, 1802)
* Cataulacus marginatus Bolton, 1974
Cataulacus simoni Emery, 1893
Cataulacus taprobanae Smith, 1853

* Crematogaster: 25 species

Crematogaster anthracina Smith, 1857
* Crematogaster artifex Mayr, 1879
Crematogaster binghamii Forel, 1904
Crematogaster biroi Mayr, 1897
* Crematogaster contemta Mayr, 1879
Crematogaster dalyi Forel, 1902
Crematogaster dohrni Mayr, 1879
Crematogaster ebenina Forel, 1902
Crematogaster ferrarii Emery, 1888
Crematogaster hodgsoni Forel, 1902
* Crematogaster inflata Smith, 1857
Crematogaster macaoensis Wu & Wang, 1995
Crematogaster matsumurai Forel, 1901
Crematogaster nawai Ito, 1914
Crematogaster osakensis Forel, 1900
Crematogaster politula Forel, 1902
* Crematogaster quadriruga Forel, 1911
Crematogaster rogenhoferi Mayr, 1879
Crematogaster rothneyi Mayr, 1879
Crematogaster subnuda Mayr, 1879
Crematogaster travancorensis Forel, 1902
Crematogaster treubi Emery, 1896
Crematogaster walshi Forel, 1902
Crematogaster wroughtonii Forel, 1902
Crematogaster zoceensis Santschi, 1925

Dilobocondyla: 3 species

* Dilobocondyla eguchii Bharti & Kumar, 2013
Dilobocondyla fouqueti Santschi, 1910
* Dilobocondyla gasteroreticulata Bharti & Kumar, 2013

Erromyrma: 1 species

Erromyrma latinodis (Mayr, 1872)

Gaoligongidris: 1 species

Gaoligongidris planodorsa Xu, 2012

Gauromyrmex: 1 species

Gauromyrmex acanthinus (Karavaiev, 1935)

Kartidris: 3 species

Kartidris ashima Xu & Zheng, 1995
Kartidris nyos Bolton, 1991
Kartidris sparsipila Xu, 1999

Lasiomyrma: 1 species (undescribed)

Lasiomyrma sp.

Lophomyrmex: 3 species

Lophomyrmex bedoti Emery, 1893
Lophomyrmex birmanus Emery, 1893
Lophomyrmex quadrispinosus (Jerdon, 1851)

Lordomyrma: 1 species (undescribed)

Lordomyrma sp.
Meranoplus: 2 species

Meranoplus bicolor (Guérin-Méneville, 1844)
Meranoplus laeviventris Emery, 1889

Messor: 1 species

* Messor aciculatus* (Smith, 1874)

Monomorium: 5 species

Monomorium chinense Santschi, 1925
Monomorium floricola (Jerdon, 1851)
* Monomorium hainanense* Wu & Wang, 1995
Monomorium orientale Mayr, 1879
Monomorium pharaonis (Linnaeus, 1758)

Myrmecina: 5 species

* Myrmecina asiatica Okido, Ogata & Hosoishsi, 2020
* Myrmecina asthena Okido, Ogata & Hosoishsi, 2020
Myrmecina curvispina Zhou, Huang & Ma, 2008
Myrmecina guangxiensis Zhou, 2001
* Myrmecina sinensis Wheeler, 1921
Myrmecina striata Emery, 1889
Myrmecina taiwana Terayama, 1995

Myrmica: 11 species

Myrmica curiosa Radchenko, Zhou & Elmes, 2008
Myrmica draco Radchenko, Zhou & Elmes, 2008
* Myrmica excelsa Kupyanskaya, 1990
* Myrmica heterorhytida* Radchenko & Elmes, 2008
Myrmica margaritae Emery, 1889
Myrmica pleiorhytida Radchenko & Elmes, 2009
Myrmica polyglypta Radchenko & Rigato, 2008
Myrmica ritae Emery, 1889
Myrmica serica Wheeler, 1928
Myrmica sinensis Radchenko, Zhou & Elmes, 2008
Myrmica titanica Mayr, 2001
Myrmica yunnanensis Radchenko & Elmes, 2008
Myrmicaria: 1 species

Myrmicaria brunnea Saunders, 1842

Perissomyrmex: 2 species

Perissomyrmex bidentatus Zhou & Huang, 2006
Perissomyrmex fissus Xu & Wang, 2004

Pheidole: 42 species

Pheidole allani Bingham, 1903
Pheidole binghamii Forel, 1902
Pheidole capellinii Emery, 1902
Pheidole constanciae Forel, 1902
Pheidole elongicephala Eguchi, 2008
Pheidole exasperata (Mayr, 1866)
Pheidole fervens Smith, 1858
Pheidole fervida Smith, 1874
* *Pheidole fortis* Eguchi, 2006
Pheidole gatesi (Wheeler, 1927)
* *Pheidole hongkongensis* Wheeler, 1928
Pheidole indica Mayr, 1879
* *Pheidole indosinensis* Wheeler, 1928
Pheidole jucunda Forel, 1885
* *Pheidole laevicolar* Eguchi, 2006
* *Pheidole magna* Eguchi, 2006
Pheidole multidens Forel, 1902
Pheidole nietneri Emery, 1901
* *Pheidole nodifera* Smith, 1858
Pheidole nodus Smith, 1874
* *Pheidole ochracea* Eguchi, 2008
* *Pheidole parva* Mayr, 1865
Pheidole pieli Santschi, 1925
* *Pheidole plagiaria* Smith, 1860
* *Pheidole planifrons* Santschi, 1920
* *Pheidole rabo* Forel, 1913
Pheidole roberti Forel, 1902
* *Pheidole rugithorax* Eguchi, 2008
Pheidole sagei Forel, 1902
* *Pheidole singaporensis* Öz dikmen, 2010
Pheidole sinica (Wu & Wang, 1992)
* *Pheidole smythiesii* Forel, 1902
Ants in the Hengduan Mountains

Pheidole spathifera Forel, 1902
Pheidole sulciceps Roger, 1863
* Pheidole tandjongensis Forel, 1913
* Pheidole tjibodana Forel, 1905
* Pheidole tumida Eguchi, 2008
* Pheidole vieti Eguchi, 2008
* Pheidole vulgaris Eguchi, 2006
Pheidole watsoni Forel, 1902
Pheidole yeensis Forel, 1902
* Pheidole zoceana Santschi, 1925

Pheidole: 12 species

Pheidole brevispinosus Emery, 1887
Pheidole hamatus Xu & Zhang, 2002
Pheidole punctatus (Smith, 1860)
Pheidole sulcatus Emery, 1895

Pheidole: 12 species

Pristomyrmex: 4 species

Pristomyrmex brevispinosus Emery, 1887
Pristomyrmex hamatus Xu & Zhang, 2002
Pristomyrmex punctatus (Smith, 1860)
Pristomyrmex sulcatus Emery, 1895

Recurvidris: 3 species

* Recurvidris kemneri (Wheeler, 1954)
Recurvidris nuwa Xu & Zheng, 1995
Recurvidris recurvispinosa (Forel, 1890)

Recurvidris: 3 species

Rhopalomastix: 2 species

* Rhopalomastix rothneyi Forel, 1900
Rhopalomastix umbracapita Xu, 1999

Rhopalomastix: 2 species

Rotastruma: 1 species

* Rotastruma stenoceps Bolton, 1991

Rotastruma: 1 species

Solenopsis: 3 species

Solenopsis indagatrix Wheeler, 1928
Solenopsis invicta Buren, 1972 (Exotic)
Solenopsis jacoti Wheeler, 1923

Solenopsis: 3 species

Stenamma: 4 species

Stenamma ailaoense Liu & Xiu, 2011
Stenamma gurkhale DuBois, 1998
Stenamma jeriorum DuBois, 1998
Stenamma wumengense Liu & Xiu, 2011

Strumigenys: 24 species

Strumigenys ailaoshana Xu & Zhou, 2004
* Strumigenys assamensis De Andrade, 1994
Strumigenys dayui (Xu, 2000)
* Strumigenys doriae Emery, 1887
* Strumigenys dyschima (Bolton, 2000)
Strumigenys exilirhina Bolton, 2000
Strumigenys feae Emery, 1895
* Strumigenys kichijo (Terayama, 1996)
* Strumigenys leptothrix Wheeler, 1929
Strumigenys lewisi Cameron, 1886
* Strumigenys lyroessa (Roger, 1862)
* Strumigenys membranifera Emery, 1869 (Exotic)
* Strumigenys mitis (Brown, 2000)
Strumigenys mutica (Brown, 1949)
Strumigenys nanzanensis Lin & Wu, 1996
* Strumigenys nepalensis De Andrade, 1994
Strumigenys nongba (Xu & Zhou, 2004)
* Strumigenys paraposta Bolton, 2000
* Strumigenys rallarhina Bolton, 2000
* Strumigenys sauteri (Forel, 1912)
Strumigenys strygax Bolton, 2000
* Strumigenys sydorata Bolton, 2000
* Strumigenys taphra (Bolton, 2000)
* Strumigenys tritomea Bolton, 2000
Strumigenys yangi (Xu & Zhou, 2004)

Temnothorax: 7 species

Temnothorax angulohumerus Zhou, 2010
Temnothorax congruus (Smith, 1874)
Temnothorax hengshanensis (Huang, 2004)
Temnothorax nassonovi (Ruzsky, 1895)
Temnothorax orchidus Zhou, 2010
Temnothorax striatus Zhou, 2010
Temnothorax wui (Wheeler, 1929)

Tetramorium: 29 species

Tetramorium aptum Bolton, 1977
Tetramorium bicarinatum (Nylander, 1846)
Tetramorium cardiocarenurn Xu & Zheng, 1994
Tetramorium ciliatum Bolton, 1977
Tetramorium crepum Wang & Wu, 1988
Tetramorium cuneinode Bolton, 1977
Tetramorium cyclolobum Xu & Zheng, 1994
* Tetramorium difficile Bolton, 1977
* Tetramorium flavipes Emery, 1893
Tetramorium indosinense Wheeler, 1927
Tetramorium insolens (Smith, 1861)
Tetramorium kheperra (Bolton, 1976)
Tetramorium kraepelini Forel, 1905
Tetramorium lanuginosum Mayr, 1870
Tetramorium laparum Bolton, 1977
Tetramorium nipponense Wheeler, 1928
Tetramorium nursei Bingham, 1903
Tetramorium obtusidens Viehmeyer, 1916
Tetramorium pacificum Mayr, 1870
* Tetramorium parvispinum (Emery, 1893)
* Tetramorium polymorphum Yamane & Jaitrong, 2011
Tetramorium repletum Wang & Xiao, 1988
Tetramorium simillimum (Smith, 1851) (Exotic)
Tetramorium smithi Mayr, 1879
* Tetramorium tonganum Mayr, 1870
Tetramorium walshi (Forel, 1890)
* Tetramorium wroughtonii (Forel, 1902)
Tetramorium yerburi Forel, 1902
Tetramorium yulongense Xu & Zheng, 1994

Trichomyrmex: 2 species

Trichomyrmex destructor (Jerdon, 1851) (Exotic)
Trichomyrmex mayri (Forel, 1902) (Exotic)

Vollenhovia: 2 species

* Vollenhovia lucimandibula Wang, 2005
Vollenhovia pyrrhobia Wu & Xiao, 1989

Vombisidris: 1 species

* Vombisidris tibeta Xu & Yu, 2012
PONERINAE

Anochetus: 6 species

Anochetus graeffei Mayr, 1870
Anochetus madaraszi Mayr, 1897
Anochetus mixtus Radchenko, 1993
Anochetus myops Emery, 1893
Anochetus risii Forel, 1900
Anochetus subcoecus Forel, 1912

Brachyponera: 2 species

Brachyponera brevidorsa Xu, 1994
Brachyponera chinensis (Emery, 1895)
Brachyponera luteipes (Mayr, 1862)

Buniapone: 1 species

Buniapone amblyops (Emery, 1887)

Centromyrmex: 1 species

Centromyrmex feae (Emery, 1889)

Cryptopone: 5 species

Cryptopone gigas Wu & Wang, 1995
Cryptopone recticlypea Xu, 1998
Cryptopone sauteri (Wheeler, 1906)
Cryptopone taivanae (Forel, 1930)
Cryptopone testacea Emery, 1893

Diacamma: 1 species

Diacamma rugosum (Le Guillou, 1842)

Ectomomyrmex: 8 species

Ectomomyrmex annamitus (André, 1892)
Ectomomyrmex astutus (Smith, 1858)
Ectomomyrmex javanus Mayr, 1867
Ectomomyrmex leeuwenhoeki (Forel, 1886)
Ectomomyrmex lobocarenus (Xu, 1995)
* Ectomomyrmex obtusus Emery, 1900
Ectomomyrmex sauteri (Forel, 1912)
Ectomomyrmex zhengi (Xu, 1995)

Emeryopone: 1 species

Emeryopone melaina Xu, 1998

Euponera: 1 species

Euponera pilosior (Wheeler, 1928)

Harpegnathos: 1 species

Harpegnathos venator (Smith, 1858)

Hypoponera: 7 species

Hypoponera ceylonensis (Mayr, 1897)
Hypoponera confinis (Roger, 1860)
* Hypoponera ergatandria (Forel, 1893) (Exotic)
Hypoponera nippona (Santschi, 1937)
Hypoponera punctatissima (Roger, 1859) (Exotic)
Hypoponera sauteri Onoyama, 1989
Hypoponera truncata (Smith, 1860)

Leptogenys: 17 species

Leptogenys binghamii Forel, 1900
Leptogenys birmana Forel, 1900
Leptogenys chinensis (Mayr, 1870)
Leptogenys crassicorns Emery, 1895
* Leptogenys davydovi Karavaiev, 1935
Leptogenys diminuta (Smith, 1857)
* Leptogenys kitteli (Mayr, 1870)
* Leptogenys kraepelini Forel, 1905
Leptogenys laozii Xu, 2000
Leptogenys lucidula Emery, 1895
Leptogenys mengzii Xu, 2000
Leptogenys pangui Xu, 2000
* Leptogenys peuqueti (André, 1887)
* Leptogenys processionalis (Jerdon, 1851)
* Leptogenys rufida Zhou, 2012
* Leptogenys sunzii Xu, 2015
Leptogenys zhuangzii Xu, 2000

Mesoponera: 1 species

Mesoponera melanaria (Emery, 1893)

Myopias: 3 species

Myopias conicara Xu, 1998
Myopias daia Xu, 2014
Myopias hania Xu, 2012

Odontomachus: 6 species

Odontomachus circulus Wang, 1993
Odontomachus fulgidus Wang, 1993
Odontomachus granatus Wang, 1993
Odontomachus monticola Emery, 1892
Odontomachus rixosus Smith, 1857
Odontomachus tensus Wang, 1993

Odontoponera: 1 species

Odontoponera denticulata (Smith, 1858)

Platythyrea: 2 species

Platythyrea clypeata Forel, 1911
Platythyrea parallela (Smith, 1859)

Ponera: 14 species

Ponera alisana Terayama, 1986
Ponera baka Xu, 2001
Ponera bawana Xu, 2001
Ponera chiponensis Terayama, 1986
Ponera diodonta Xu, 2001
Ponera longlina Xu, 2001
Ponera menglana Xu, 2001
Ponera nangongshana Xu, 2001
Ponera paedericera Zhou, 2001
Ponera pentodontos Xu, 2001
Ponera pianmana Xu, 2001
Ponera scabra Wheeler, 1928
Ponera sinensis Wheeler, 1928
Ponera xantha Xu, 2001

Pseudoneoponera: 2 species

Pseudoneoponera bispinosa (Smith, 1858)
Pseudoneoponera rufipes (Jerdon, 1851)

Proceratiinae

Discothyrea: 3 species

Discothyrea banna Xu, 2014
Discothyrea diana Xu, 2014
Discothyrea sauteri Forel, 1912

Probolomyrmex: 1 species

Probolomyrmex longiscapus Xu & Zeng, 2000

Proceratium: 4 species

Proceratium longigaster Karavaiev, 1935
Proceratium longmenense Xu, 2006
Proceratium shohei Staab, 2018
Proceratium zhaoi Xu, 2000

Pseudomyrmecinae

Tetraponera: 12 species

Tetraponera allaborans (Walker, 1859)
Tetraponera amargina Xu & Chai, 2004
Tetraponera attenuata Smith, 1877
Tetraponera binghami (Forel, 1902)
Tetraponera concava Xu & Chai, 2004
Tetraponera convexa Xu & Chai, 2004
Tetraponera furcata Xu & Chai, 2004
Tetraponera microcarpa Wu & Wang, 1990
Tetraponera nitida (Smith, 1860)
Tetraponera notabilis Ward, 2001
Tetraponera protensa Xu & Chai, 2004
Tetraponera rufonigra (Jerdon, 1851)
Discussion

Ants in the Hengduan Mountain region

Field inventories and data synthesis efforts are essential for our understanding of ant diversity in ‘hotspots’ that harbor most of Earth’s biodiversity. Our study represents new survey data from an understudied region. We produce the first ant species checklist from China’s Hengduan Mountains (130 species).

A majority of the ant species were only collected below 1500 m, consistent with the strong effect of elevation on ant diversity observed elsewhere (Suppl. material 1, Fig. S1). This also suggests that future sampling in low elevation areas may increase species detection. For example, the number of *Strumigenys* species recovered in this survey is relatively low compared to the overall richness of this genus. This could be because we have relatively few collection events at low elevations where many of these species are known to occur. Indeed, all six *Strumigenys* species were collected below 1000 m from only three independent Winkler sampling sites.

Many of the new records in our collection such as *Aenictus brevinodus*, *Camponotus bellus leucodiscus*, *Cataulacus marginatus*, *Crematogaster quadriruga*, *Dilobocondyla eguchii*, *Gnamptogenys quadrutinodules*, and *Strumigenys taphra* represent the northern-most records of their known distributional ranges. Species records such as *Aenictus brevinodus*, *Camponotus bellus leucodiscus*, *Camponotus keihitoi*, *Cataulacus marginatus*, *Gnamptogenys quadrutinodules*, and *Strumigenys taphra* show a disjunction from the rest of their known distributions. It is unclear whether those records represent true biogeographic disjunctions, or sampling / taxonomic artifacts. Another potential reason could be that they were collected in the past, but have not been reported due to the lack of taxonomic infrastructure and species check lists from this region (Guénard et al. 2017). Additional inventories of ant diversity and taxonomic treatments are needed to answer these questions.

Despite the comparatively small area of China’s Hengduan Mountains that we explored for this inventory of myrmecofauna, we were able to collect 130 species, which accounts for more than 24 % of the total number of ant species (N = 550) for Yunnan province. Among them, more than 10% of the ant species that were collected in this survey represent new records for Yunnan province. Moreover, there are still more than 41 morphospecies (32% of the total collected) that we believe are undescribed and new to science. To date, three *Myrmecina* species (Figs 82–84) and one *Gauromyrmex* species (Fig. 75) are undergoing taxonomic revision, and species descriptions are being prepared.

Our sampling of the full ant diversity of the Hengduan mountain region is still relatively limited. For example, we only had one sampling site per elevation, which is insufficient to cover the complex topology of the Hengduan Mountains. We also only used leaf litter extraction and hand collection, which is unlikely to recover complete ant assemblages. The incorporation of additional sampling techniques into our methodology, such as pitfall trapping, soil baiting, twig sampling, light trapping and canopy fogging, will cover more strata and lifestyles, and thus significantly increase our rate of species discovery. Overall, our results highlight how little was previously known about
the ant fauna in this region and emphasize the need for further collecting in order to better understand the hidden ant biodiversity in China’s Hengduan Mountains, and Yunnan Province overall.

Ants in Yunnan

If the total species richness of ants in Yunnan, with 550 species, is still an underestimate of the full species numbers, the exceptional diversity of genera encountered in this region needs to be highlighted. With 99 genera, Yunnan generic diversity is only matched globally by a few regions in South East Asia, and Queensland, Australia. A major difference with other Asian regions lies in the composition of the genera retrieved and their origin. For instance, genera found in Borneo, Sumatra, Java, Vietnam, Thailand, Peninsular Malaysia are almost exclusively derived from tropical, Oriental origins. In contrast, the geographic location and topography of Yunnan province has promoted an intermixing of taxa from several biogeographic regions: the Oriental realm from the south, the Palearctic realm from the northwest, and the Sino-Japanese realm from the northeast. As a result, the composition of the Yunnan ant fauna includes both tropical, subtropical, and temperate elements. Such intermixed communities are evident even at a small scale. For instance, during previous fieldwork conducted in the Gaoligongshan Mountains in 2015 by two of the authors (BG and CL), for which specimens were unfortunately lost, the coexistence of tropical (*Dorylus, Ectomomyrmex*), subtropical (*Temnothorax*) and temperate genera (*Formica, Lasius*) was observed on a hillside at an elevation of about 1900 m on an ~ 250 m² patch of grassland. Interestingly, while this area exhibited a transition where fauna from distinctly different origins coexisted along a thin band of altitude, at lower elevations, tropical genera were dominant and at higher elevations, temperate genera became dominant. Overall, this generated an unexpectedly diverse faunal composition, with such mixed communities contemplated by Wheeler (1915) to explain the generic composition and diversity of fossil ants observed in Baltic amber. Possibly, the ant composition of genera now retrieved within Yunnan might represent the remains of a once more widespread assemblage found within Asia and Europe during the Miocene (Guénard et al. 2015). This highlights the specific nature of the Yunnan ant fauna and its importance in studying ant biogeography within Asia. It also serves as an excellent example of the formation and stability of ant community assemblages over time. Other neighboring regions such as Myanmar, Bhutan, Nepal or northeast India are likely to exhibit similar features, but to this point, the myrmecological exploration of these regions has been largely fragmentary (Guénard et al. 2010, 2012).

The diversity of Yunnan ants is also remarkable for particular ant genera for which their global peak of diversity is encountered in the region. While it is important to note that the global diversity of specific genera as well as their overall taxonomic descriptions remain incomplete, seven genera present their highest currently known global diversity in Yunnan (*Cryptopone*: 5 species, *Ectomomyrmex*: 8 species, *Kartidris*: 3 species, *Perissomyrmex*: 2 species, *Ponera*: 14 species, *Prenolepis*: 7 species, *Stigmatomma*: 11 species), while six others are remarkable by the level of global diversity there, among
the highest observed globally (Aenictus: 19 species, Carebara: 19 species, Dilobocondyla: 3 species, Myrmecina: 7 species, Proceratium: 4 species, Recurvidris: 3 species).

In conclusion, the important topographic variation, with mountain ranges aligned along a north-south axis combined with the presence of multiple climatic zones, including tropical rainforest in the lowland areas of the southern part of Yunnan create a diversity of microhabitats for supporting a diverse ant fauna. Moreover, the geographic position of Yunnan at the confluence of three biogeographic realms may promote ant diversity in the region. The collection of these 16 new ant records for Yunnan together with our previous discovery of 40 new ant records for Yunnan (Liu et al. 2015a) suggest that the true ant diversity in Yunnan is significantly higher. Moreover, the species diversity of some ant genera in nearby regions (based on data from GABI) also suggests that some ant genera sampled will ultimately be much more diverse in Yunnan (Guénard et al. 2017). For example, Hong Kong has recorded a similar diversity of Strumigenys species while having an area nearly 350 times smaller and a much less diverse topography compare to Yunnan (Tang et al. 2019), perhaps because leaf litter extraction has not been widely used for sampling ants in Yunnan. Thus, our survey to date indicates that further intensive sampling focused on different ecological strata (arboreal, leaf litter, subterranean) and combining various methods of extraction in both tropical and mountain habitats should yield many additional records and new species discovery in this region.

Acknowledgments

We thank Crystal Maier, David Lubertazzi, Stefan Cover, Patrick McCormack, Charles Whittemore Farnum, and Rachel Hawkins for assisting in different aspects of the research. We thank Brian Fisher, Himender Bharti, and Steve Shattuck for comments on the manuscript. This work was supported by E. O. Wilson Biodiversity Postdoctoral fellowship from the MCZ, Harvard University. GF, FHG, and EPE were supported by subsidy funding to the Okinawa Institute of Science and Technology Graduate University. QL was supported by funding from the Project of Key Laboratory of Insect Resources Conservation and Utilization in Western Yunnan, Baoshan University (YJF [2019] No.57). CL and YQP were also supported by funding from the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006) and CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, China (19CAS-TFE-2). EPE was funded by a JSPS Kakehni grant (17K15180) and a grant from the Japan Ministry of the Environment (Environment Research and Technology Development Fund no. 4-1904).

References

AntWeb (2020) AntWeb. http://www.antweb.org [accessed on 13 January 2020]
AntWiki (2020) AntWiki. http://www.antwiki.org [accessed on 10 February 2020]
of ant species (Hymenoptera: Formicidae). Myrmecological News 24: 83–89. https://doi.org/10.25849/myrmecol.news_024:083

Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge, Massachusetts, 732 pp.

Janicki J, Narula N, Ziegler M, Guénard B, Economo EP (2016) Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecological Informatics 32: 185–193. https://doi.org/10.1016/j.ecoinf.2016.02.006

Li R, Ji YH, Dao ZL, Li H (2008) A comparative floristic study on the seed plants of the east side and the west side of the northern Gaoligong Mts in northwestern Yunnan, China. Acta Botanica Yunnanica 30: 129–138. https://doi.org/10.3724/SPJ1143.2008.00129 [In Chinese]

Liu C, Guénard B, Hita Garcia F, Yamane S, Blanchard B, Yang DR, Economo EP (2015a) New records of ant species from Yunnan, China. ZooKeys: 17–78. https://doi.org/10.3897/zookeys.477.8775

Liu C, Hita Garcia F, Peng YQ, Economo EP (2015b) Aenictus yangi sp. n. – a new species of the A. ceylonicus species group (Hymenoptera, Formicidae, Dorylinae) from Yunnan, China. Journal of Hymenoptera Research 42: 33–45. https://doi.org/10.3897/JHR.42.8859

Lo YFP, Bi Z (2019) A preliminary report on butterfly fauna (Insecta: Lepidoptera) of Tengchong Section of Gaoligongshan National Nature Reserve, China. Journal of Threatened Taxa 11: 14452–14470. https://doi.org/10.11609/jott.4443.11.11.14452-14470

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501

Price TD, Hooper DM, Buchanan CD, Johannson US, Tierze DT, Alström P, Olsson U, Ghosh-Harihar M, Ishtiaq F, Gupta SK, Martens J, Harr B, Singh P, Mohan D (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509: 222–225. https://doi.org/10.1038/nature13272

Seifert B (1995) A Taxonomic Revision of the Palaearctic Members of the Ant Subgenus Lasius s. str. (Hymenoptera: Formicidae). Abhandlungen der Naturforschenden Gesellschaft zu Görlitz 66(5): 1–67. https://doi.org/10.25674/so92iss1pp15

Seifert B (2003) The ant genus Cardiocondyla (Insecta: Hymenoptera: Formicidae) – a taxonomic revision of the C. elegans, C. bulgarica, C. batesii, C. nuda, C. shuckardi, C. stambuloffii, C. wroughtonii, C. emeryi, and C. minutior species groups. Annalen des Naturhistorischen Museums in Wien Serie B Botanik und Zoologie 104: 203–338. https://www.zobodat.at/pdf/ANNA_104B_0203-0338.pdf

Seifert B (2020) A taxonomic revision of the Palaearctic members of the subgenus Lasius s.str. (Hymenoptera, Formicidae). Soil organisms 92(1): 15–86. https://doi.org/10.25674/so92iss1pp15

Staab M, Hita Garcia F, Liu C, Xu ZH, Economo EP (2018) Systematics of the ant genus Proceratium Roger (Hymenoptera, Formicidae, Proceratiinae) in China – with descriptions of three new species based on micro-CT enhanced next-generation-morphology. ZooKeys 770: 137–192. https://doi.org/10.3897/zookeys.770.24908

Tang KL, Pierce MP, Guénard B (2019) Review of the genus Strumigenys (Hymenoptera, Formicidae, Myrmicinae) in Hong Kong with the description of three new species and the
addition of five native and four introduced species records. ZooKeys 831: 1–48. https://doi.org/10.3897/zookeys.831.31515

Wetterer JK, Guénard B, Booher DB (2015) Geographic spread of Vollenhovia emeryi (Hymenoptera: Formicidae). Asian Myrmecology 7: 105–112. https://doi.org/10.20362/am.007010

Wheeler WM (1915) The ants of the Baltic Amber. Schriften der Physikalisch-Ökonomischen Gesellschaft zu Königsberg 55: 1–142. https://antwiki.org/wiki/images/e/ec/Wheeler_1915i.pdf

Xing Y, Ree RH (2017) Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America 114: E3444–E3451. https://doi.org/10.1073/pnas.1616063114

Xu ZH, Jiang XC, Chen ZQ, Wu DM (2001a) Study on the Ant Communities of the Vertical Band on East Slope of the Gaoligongshan Mountains Nature Reserve. Forest Research 14: 115–124. http://www.lykxyj.com/en/article/id/20010201

Xu ZH, Li JG, Fu L, Long QZ (2001b) A Study on the Ant Communities on West Slope at Different Elevation of the Gaoligongshan Mountain Nature Reserve in Yunnan, China. Zoological Research 22(1): 58–63. http://159.226.149.44/article/id/713

Xu ZH, Burwell CJ, Nakamura A (2014a) Two new species of the proceratine ant genus Discothyrea Roger from Yunnan, China, with a key to the known Oriental species. Asian Myrmecology 6: 33–41. https://doi.org/10.13102/sociobiology.v61i2.164-170

Xu ZH, Burwell CJ, Nakamura A (2014b) A new species of Ponerine ant genus Myopias from Yunnan, China, with a key to the known Oriental species. Sociobiology 61(2): 164–1700. http://dx.doi.org/10.13102/sociobiology.v61i2.164-170

Xu ZH, He QJ (2015) Taxonomic review of the ponerine ant genus Leptogenys Roger, 1861 (Hymenoptera: Formicidae) with a key to the Oriental species. Myrmecological News 21: 137–161. https://myrmecologicalnews.org/cms/index.php?option=com_content&view=category&id=623&Itemid=365

Yamane S (2009) Odontoponera denticulata (F. Smith) (Formicidae: Ponerinae), a distinct species inhabiting disturbed areas. Ari 32: 1–8. https://mbd-db.osu.edu/uploads/ref_work/publications/pdf_file/file/fc0b5b68-8eaa-41d9-8a53-dec37183badc/29193.pdf

Supplementary material 1

Figure S1. Ant species richness pattern along an elevational gradient in the Hengduan Mountains

Authors: Cong Liu, Georg Fischer, Francisco Hita Garcia, Seiki Yamane, Qing Liu, Yan Qiong Peng, Evan P. Economu, Benoit Guénard, Naomi E. Pierce

Data type: Image

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.978.55767.suppl1