1 INTRODUCTION

Let k be a non-Archimedean local field of zero characteristic. Consider an increasing sequence of its finite extensions

$$ k = K_1 \subset K_2 \subset \ldots \subset K_n \subset \ldots. $$

The infinite extension

$$ K = \bigcup_{n=1}^{\infty} K_n $$

may be considered as a topological vector space over k with the inductive limit topology. Its strong dual K^* is the basic object of the non-Archimedean infinite-dimensional analysis initiated by the author [1]. Let us recall its main constructions and results.

Consider, for each n, a mapping $T_n : K \to K_n$ defined as follows. If $x \in K_\nu$, $\nu > n$, put

$$ T_n(x) = \frac{m_n}{m_\nu} \text{Tr}_{K_\nu/K_n}(x) $$

where m_n is the degree of the extension K_n/k, $\text{Tr}_{K_\nu/K_n} : K_\nu \to K_n$ is the trace mapping. If $x \in K_n$ then, by definition, $T_n(x) = x$. The
mapping \(T_n\) is well-defined and \(T_n \circ T_\nu = T_n\) for \(\nu > n\). Below we shall often write \(T\) instead of \(T_1\).

The strong dual space \(\mathcal{K}\) can be identified with the projective limit of the sequence \(\{K_n\}\) with respect to the mappings \(\{T_n\}\), that is with the subset of the direct product \(\prod_{n=1}^\infty K_n\) consisting of those \(x = (x_1, \ldots, x_n, \ldots)\), \(x_n \in K_n\), for which \(x_n = T_n(x_\nu)\) if \(\nu > n\). The topology in \(\mathcal{K}\) is introduced by seminorms
\[
\|x\|_n = \|x_n\|, \quad n = 1, 2, \ldots,
\]
where \(\|\cdot\|\) is the extension onto \(K\) of the absolute value \(|\cdot|_1\) defined on \(k\).

The pairing between \(K\) and \(\mathcal{K}\) is defined as
\[
<x, y> = T(xy_n)
\]
where \(x \in K_n \subset K\), \(y = (y_1, \ldots, y_n, \ldots) \in \mathcal{K}\), \(y_n \in K_n\). Both spaces are separable, complete, and reflexive. Identifying an element \(x \in K\) with \((x_1, \ldots, x_n, \ldots) \in \mathcal{K}\) where \(x_n = T_n(x)\), we can view \(K\) as a dense subset of \(\mathcal{K}\). The mappings \(T_n\) can be extended to linear continuous mappings from \(\mathcal{K}\) to \(K_n\), by setting \(T_n(x) = x_n\) for any \(x = (x_1, \ldots, x_n, \ldots) \in \mathcal{K}\).

Let us consider a function on \(K\) of the form
\[
\Omega(x) = \begin{cases}
1, & \text{if } \|x\| \leq 1; \\
0, & \text{if } \|x\| > 1.
\end{cases}
\]
\(\Omega\) is continuous and positive definite on \(K\). That results in the existence of a probability measure \(\mu\) on the Borel \(\sigma\)-algebra \(\mathcal{B}(\mathcal{K})\), such that
\[
\Omega(a) = \int_{\mathcal{K}} \chi(<a, x>) \, d\mu(x), \quad a \in K,
\]
where \(\chi\) is a rank zero additive character on \(k\). The measure \(\mu\) is Gaussian in the sense of Evans [2]. It is concentrated on the compact additive subgroup
\[
S = \{x \in \mathcal{K}: \|T_n(x)\| \leq q_n^{d_n/m_n}\|m_n\|, \ n = 1, 2, \ldots\}
\]
where \(q_n\) is the residue field cardinality for the field \(K_n\), \(d_n\) is the exponent of the different for the extension \(K_n/k\). The restriction of \(\mu\) to \(S\) coincides with the normalized Haar measure on \(S\). On the other hand, \(\mu\) is singular with respect to additive shifts by elements from \(\mathcal{K} \setminus S\).
Having the measure μ, we can define a Fourier transform $\hat{f} = \mathcal{F}f$ of a complex-valued function $f \in L_1(K)$ as

$$\hat{f}(\xi) = \int_K \chi(\langle \xi, x \rangle) f(x) \, d\mu(x).$$

Let $\mathcal{E}(K) \subset L_1(K)$ be the set of “cylindrical” functions of the form $f(x) = \varphi(T_n(x))$ where $n \geq 1$, φ is a locally constant function. The fractional differentiation operator D^α, $\alpha > 0$, is defined on $\mathcal{E}(K)$ as $D^\alpha = \mathcal{F}^{-1} \Delta^\alpha \mathcal{F}$ where Δ^α is the operator of multiplication by the function

$$\Delta^\alpha(\xi) = \begin{cases} ||\xi||^\alpha, & \text{if } ||\xi|| > 1 \\ 0, & \text{if } ||\xi|| \leq 1 \end{cases}, \quad \xi \in K.$$

Correctness of this definition follows from the theorem of Paley-Wiener-Schwartz type for the transform \mathcal{F}. The operator D^α is essentially self-adjoint on $L_2(K)$.

The operator D^α is an infinite-dimensional counterpart of the p-adic fractional differentiation operator introduced by Vladimirov [3] and studied extensively in [4-14]. In some respects the infinite-dimensional D^α resembles its finite-dimensional analogue though it possesses some new features. For example, we shall show below that the structure of its spectrum depends on arithmetic properties of the extension K.

Both in the finite-dimensional and infinite-dimensional cases D^α admits a probabilistic interpretation. Namely, $-D^\alpha$ is a generator of a cadlag Markov process, which is a p-adic counterpart of the symmetric stable process. In analytic terms, that corresponds to a hyper-singular integral representation of $D^\alpha f$, for a suitable class of functions f. In [1] such a representation was obtained for $f \in \mathcal{E}(K)$, $f(x) = \varphi(T_n(x))$, φ locally constant:

$$(D^\alpha f)(x) = \psi(T_n(x))$$

where

$$\psi(z) = q_n^{d_{n/m}} \left[1 - q_n^{\alpha/m} \|m_n\|^{-m_n} \right]^{1 - q_n^{1-\alpha/m}} \|m_n\|^{-m_n} \times \left[\|x\|^{-m_n-\alpha} \|m_n\|^{m_n+\alpha} + \frac{1 - q_n^{-1}}{q_n^{\alpha/m} - 1} q_n^{-d_n(1+\alpha/m)} \right] \times [\varphi(z - x) - \varphi(z)] \, dx, \quad (1)$$

$z \in K_n, \|z\| \leq q_n^{d_{n/m}} \|m_n\|$.

In this paper we shall show that there exists also a representation in terms of the function \(f \) itself:

\[
(D^\alpha f)(y) = \int_{\mathcal{B}(\mathcal{K} \setminus \{0\})} [f(y) - f(x + y)] \Pi(dx)
\]

where \(\Pi \) is a measure on \(\mathcal{B}(\mathcal{K} \setminus \{0\}) \) finite outside any neighbourhood of zero.

Another measure of interest in this context is the heat measure \(\pi(t, dx) \) corresponding to the semigroup \(\exp(-tD^\alpha), t > 0 \). We show that in contrast both to the finite-dimensional case and to the similar problem for the real infinite-dimensional torus [15], \(\pi(t, dx) \) is not absolutely continuous with respect to \(\mu \), whatever is the sequence \(\{K_n\} \).

2 SPECTRUM

We shall preserve the notation \(D^\alpha \) for its closure in \(L_2(\mathcal{K}) = L_2(S, d\mu) \). It is clear from the definition that the spectrum of \(D^\alpha \) coincides with the closure in \(\mathbb{R} \) of the range of the function \(\Delta^\alpha(\xi), \xi \in \mathcal{K} \). In order to investigate the structure of the spectrum, we need some auxiliary results.

It follows from the duality theory for direct and inverse limits of locally compact groups [16] that the character group \(\mathcal{K}^* \) of the additive group of \(\mathcal{K} \) is isomorphic to \(\mathcal{K} \). The isomorphism is given by the relation

\[
\psi(y) = \chi(<a_\psi, y>), \quad y \in \mathcal{K},
\]

where \(a_\psi \in \mathcal{K} \) is an element corresponding to the character \(\psi \).

Denote \(O = \{\xi \in \mathcal{K} : \|\xi \leq 1\} \), \(O_n = O \cap K_n \).

Lemma 1 The dual group \(S^* \) of the subgroup \(S \subset \mathcal{K} \) is isomorphic to the quotient group \(\mathcal{K}/O \).

Proof: We may assume (without restricting generality) that \(k = \mathbb{Q}_p \).

Let

\[
S^{(n)} = \{z \in K_n : \|z\| \leq q_n^{d_n/m_n}\|m_n\|\}, \quad n = 1, 2, \ldots .
\]

It is clear that \(S^{(n)} \) is a compact (additive) group. If \(z \in S^{(\nu)}, \nu > n \), then

\[
\|T_n(z)\| = \|m_n\| \cdot \|m_\nu\|^{-1}\|\text{Tr}_{K_\nu/K_n}(z)\|
\]
where $|m_{\nu}^{-1}z|_{\nu} \leq q_{\nu}^{d_{\nu}}$, and $| \cdot |_\nu$ is the normalized absolute value on K_ν [17]. Therefore (see Chapter 8 in [18])

$$|m_{\nu}^{-1}\text{Tr}_{K_\nu/K_n}(z)|_n \leq q_{n}^{d_{n}}$$

where $l \in \mathbb{Z}$, $e_{n\nu}(l-1) < d_{\nu} - d_{n\nu} \leq e_{n\nu}l$, $e_{n\nu}$ and $d_{n\nu}$ are the ramification index and the exponent of the different for the extension K_ν/K_n. On the other hand, $d_{\nu} = e_{n\nu}d_{n} + d_{n\nu}$, so that $l = d_{n}$, and we find that $T_n(z) \in S^{(n)}$.

Hence, $T_n : S^{(\nu)} \to S^{(n)}$. It is clear that T_n is a continuous homomorphism. As a result, S can be identified with an inverse limit of compact groups $S^{(n)}$ with respect to the sequence of homomorphisms T_n. Using the auto-duality of each field K_n, we can identify the group dual to $S^{(n)}$ with K_n/Φ_n, where Φ_n is the annihilator of $S^{(n)}$ in K_n. On the other hand, $\Phi_n = O_n$.

Indeed,

$$\Phi_n = \{ \xi \in K_n : \chi(T(z\xi)) = 1 \quad \forall z \in S^{(n)} \}$$

$$= \{ \xi \in K_n : |T(z\xi)|_1 \leq 1 \quad \forall z \in S^{(n)} \}.$$

If $\xi \in O_n$ then $|m_{n}^{-1}z\xi|_n \leq q_{n}^{d_{n}}$ for any $z \in S^{(n)}$, whence $\xi \in \Phi_n$ by the definition of the number d_{n}.

Thus $O_n \subset \Phi_n$. Conversely, suppose that $\xi \in \Phi_n \setminus O_n$, that is $\|\xi\| > 1$, $|T(z\xi)|_1 \leq 1$ for all $z \in S^{(n)}$. Let z be such that $\|z\| = \|m_{n}\|q_{n}^{d_{n}/m_{n}}$. Then

$$|m_{n}^{-1}|_n \cdot |\xi|_n \cdot |z|_n = |\xi|_nq_{n}^{d_{n}} > q_{n}^{d_{n}}.$$

It follows from the properties of trace [18] that z can be chosen in such a way that $|\text{Tr}_{K_n/k}(m_{n}^{-1}z\xi)|_1 > 1$, and we have a contradiction. So $\Phi_n = O_n$.

It follows from the identity

$$T(\xi T_n(z)) = T(\xi z), \quad \xi \in K_n, \quad z \in K_\nu, \quad \nu > n,$$

that the natural imbeddings $K_n/O_n \to K_\nu/O_\nu, \nu > n$, are the dual mappings to the homomorphisms $T_n : S^{(\nu)} \to S^{(n)}$. Using the duality theorem [16], we find that

$$S^* = \lim_{\to} K_n/O_n$$

where the direct limit is taken with respect to the imbeddings. The right-hand side of (4) equals K/O.

Note that the above isomorphism is given by the same formula (3) where this time ψ_{a} is an arbitrary representative of a coset from K/O. □
Let \(\varphi_a(x) = \chi(<a,x>) \), \(x \in \overline{K} \), where \(a \in K \), \(\|a\| > 1 \) or \(a = 0 \). It is known [1] that

\[
(D^\alpha \varphi_a)(x) = \|a\|^\alpha \varphi_a(x)
\]

for \(\mu \)-almost all \(x \in \overline{K} \). Note that the set of values of the function \(a \mapsto \|a\|^\alpha \) with \(\|a\| > 1 \) coincides with the set

\[
\{q_n^{-\alpha/m_n}, n, N = 1, 2, \ldots\} \cup \{q_1^{-\alpha/e_n}, n, N = 1, 2, \ldots\}
\]

where \(e_n \) is the ramification index of the extension \(K_n/k \). Denote its residue degree by \(f_n \). It is well known that the sequences \(\{f_n\}, \{e_n\} \) are non-decreasing and \(e_n f_n = m_n \).

THEOREM 1 Let \(A \subset K \) be a complete system of representatives of cosets from \(K/O \). Then \(\{\varphi_a\}_{a \in A} \) is the orthonormal eigenbasis for the operator \(D^\alpha \) in \(L_2(S,d\mu) \). As a set, its spectrum equals the set (6) complemented with the point \(\lambda = 0 \). Each non-zero eigenvalue of \(D^\alpha \) has an infinite multiplicity. The point \(\lambda = 0 \) is an accumulation point for eigenvalues if and only if \(e_n \to \infty \).

Proof: The first statement follows from (5) and Lemma 1. The assertion about the accumulation at zero is obvious from (6).

Let us construct \(A \) as the union of an increasing family \(\{A_n\} \) of complete systems of representatives of cosets from \(K_n/O_n \). Each \(A_n \) consists of elements of the form \(a = \pi_n^{-N}(\sigma_1 + \sigma_2 \pi_n + \cdots + \sigma_{N-1} \pi_n^{N-1}) \), \(N \geq 1 \), where \(\sigma_1, \ldots, \sigma_{N-1} \) belong to the set \(F_n \) of representatives of the residue field corresponding to the field \(K_n \), \(\sigma_1 \neq 0 \), \(\pi_n \) is a prime element of \(K_n \). We have \(|a|_n = q_n^N \) so that \(\|a\| = q_1^{Nf_n/m_n} = q_1^{N/e_n} \).

Meanwhile card \(F_n = q_n = q_1^{f_n} \).

If \(e_n \to \infty \) then the same value of \(\|a\| \) corresponds to elements from infinitely many different sets \(A_n \) with different values of \(N \) (\(e_n \) is a multiple of \(e_{n-1} \) due to the chain rule for the ramification indices; see [19]). If the sequence \(\{e_n\} \) is bounded, then it must stabilize, and we obtain the same value of \(\|a\| \) for elements from infinitely many sets \(A_n \) with possibly the same \(N \). However, in this case \(f_n \to \infty \), the number of such elements (for a fixed \(N \)) is \(Nq_1^{f_n} - 1 \) (\(\to \infty \) for \(n \to \infty \)). In both cases we see that all the non-zero eigenvalues have an infinite multiplicity.

Note that the cases where \(e_n \to \infty \) or \(e_n \leq \text{const} \) both appear in important examples of infinite extensions. Let \(K \) be the maximal
unramified extension of \(k \). Then one may take for \(K_n \) the unramified extension of \(k \) of the degree \(n! \), \(n = 2, 3, \ldots \). Here \(e_n = 1 \) for all \(n \).

On the other hand, if \(K \) is the maximal abelian extension of \(k = \mathbb{Q}_p \) then a possible choice of \(K_n \) is the cyclotomic extension \(C_n = \mathbb{Q}_p(W_n) \) where \(W_l \) is the set of all roots of 1 of the degree \(l \) (see [20,21]). Writing \(n! = n'p^{h_n} \), \((n', p) = 1 \), we see that \(e_n = (p - 1)p^{h_n - 1} \to \infty \) as \(n \to \infty \).

\[\]

3 HYPER-SINGULAR INTEGRAL REPRESENTATION

The main aim of this section is the following result.

THEOREM 2 There exists such a measure \(\Pi \) on \(B(K \setminus \{0\}) \) finite outside any neighbourhood of the origin that \(D^\alpha \) has the representation (2) on all functions \(f \in E(K) \).

In the course of proof we shall also obtain some new information about the Markov process \(X(t) \) generated by the operator \(-D^\alpha \). We assume below that \(X(0) = 0 \).

The projective limit topology on \(K \) coincides with the one given by the shift-invariant metric

\[r(x, y) = \sum_{n=1}^{\infty} 2^{-n} \frac{\|x - y\|_n}{1 + \|x - y\|_n}, \quad x, y \in K. \]

It is known [22] that the main notions and results regarding stochastic processes with independent increments carry over to the case of a general topological group with a shift-invariant metric.

Let \(\nu(t, \Gamma) \) be a Poisson random measure corresponding to the process \(X(t) \). Here \(\Gamma \in B_0 = \bigcup_{\gamma > 0} B_\gamma \),

\[B_\gamma = \{ \Gamma \subset B(K), \text{dist} (\Gamma, 0) \geq \gamma \}. \]

For any \(\Gamma \in B_0 \) we can define a stochastically continuous process \(X_\Gamma(t) \), the sum of all jumps of the process \(X(\tau) \) for \(\tau \in [0, t] \) belonging to \(\Gamma \). In a standard way [23] we find that

\[E \chi(\langle \lambda, X_\Gamma(t) \rangle) = \exp \left\{ \int_{\Gamma} (\chi(\langle \lambda, x \rangle) - 1) \Pi(t, dx) \right\}, \quad \lambda \in K, \]

where \(E \) denotes the expectation, \(\Pi(t, \cdot) = E\nu(t, \cdot) \).
Let \(\lambda \in K_n \). Consider the set
\[V_{\delta,n} = \{ x \in \overline{K} : \| T_n(x) \| \geq \delta \}, \quad 0 < \delta \leq 1. \]

Let us look at the equality (7) with \(\Gamma = V_{\delta,n} \), \(\delta \leq \| \lambda \|^{-1} \). If \(x \in V_{\delta,n} \) then
\[r(x, 0) \geq 2^{-n} \frac{\| x \|_n}{1 + \| x \|_n} \geq 2^{-n-1} \delta, \]
whence \(V_{\delta,n} \in B_0 \). If \(\delta \leq \| \lambda \|^{-1} \), \(x \not\in V_{\delta,n} \), then
\[\| < \lambda, x > \| = \| T(\lambda T_n(x)) \| \leq 1 \]
which implies that the integral in the right-hand side of (7) coincides with the one taken over \(\overline{K} \).

On the other hand, almost surely
\[\| X(t) - X_{V_{\delta,n}}(t) \|_n < \delta. \] (8)

Indeed, let \(t_0 \) be the first exit time of the process \(X(t) - X_{V_{\delta,n}}(t) \) from the set \(\overline{K} \setminus V_{\delta,n} \). Suppose that \(t_0 < \infty \) with a non-zero probability. Then
\[\| X(t_0 - 0) - X_{V_{\delta,n}}(t_0 - 0) \|_n < \delta, \] (9)
\[\| X(t_0 + 0) - X_{V_{\delta,n}}(t_0 + 0) \|_n \geq \delta. \] (10)

If \(\| X(t_0 + 0) - X(t_0 - 0) \|_n < \delta \) then \(X_{V_{\delta,n}}(t_0 + 0) = X_{V_{\delta,n}}(t_0 - 0) \), so that
\[\| [X(t_0 + 0) - X_{V_{\delta,n}}(t_0 + 0)] - [X(t_0 - 0) - X_{V_{\delta,n}}(t_0 - 0)] \|_n < \delta. \] (11)

If, on the contrary, \(\| X(t_0 + 0) - X(t_0 - 0) \|_n \geq \delta \), then
\[X_{V_{\delta,n}}(t_0 + 0) - X_{V_{\delta,n}}(t_0 - 0) = X(t_0 + 0) - X(t_0 - 0), \]
the expression in the left-hand side of (11) equals zero, and the inequality (11) is valid too. In both cases it contradicts (9), (10). Thus \(t_0 = \infty \) almost surely, and the inequality (8) has been proved. We have come to the following formula of Lévy-Khinchin type.

LEMMA 2 For any \(\lambda \in K, \ t > 0 \)
\[E\chi(< \lambda, X(t) >) = \exp \left\{ \int_{\overline{K}} [\chi(< \lambda, x >) - 1] \Pi(t, dx) \right\}. \] (12)

REMARK Lemma 2 can serve as a base for developing the theory of stochastic integrals and stochastic differential equations over \(\overline{K} \). In fact, the techniques and results of [24] carry over to this case virtually unchanged.
Both sides of (12) can be calculated explicitly if we use the heat measure $\pi(t, dx)$ (see [1]). We have

$$E\chi(<\lambda, X(t)>) = \int \chi(<\lambda, x>)\pi(t, dx) = \rho_\alpha(\|\lambda\|, t)$$

where

$$\rho_\alpha(s, t) = \begin{cases} e^{-ts^\alpha}, & \text{if } s > 1 \\ 1, & \text{if } s \leq 1, \end{cases} \quad (13)$$

$s \geq 0, \ t > 0$. It follows from the definitions that $\Pi(t, \cdot)$ is symmetric with respect to the reflection $x \mapsto -x$. Therefore

$$\int K [\chi(<\lambda, x> - 1)\Pi(t, dx) = \begin{cases} -t\|\lambda\|^\alpha, & \text{if } \|\lambda\| > 1 \\ 0, & \text{if } \|\lambda\| \leq 1, \end{cases} \quad (14)$$

LEMMA 3 Let M_n be a compact subset of $K_n \setminus \{0\}$, $M = T_n^{-1}(M_n)$. Then

$$\Pi(t, M) = -t \int_{\eta \in K_n: \|\eta\| > 1} \|\eta\|^{\alpha}w_n(\eta) \, d\eta \quad (15)$$

where $w_n(\eta)$ is the inverse Fourier transform of the function $y \mapsto q_n^{-dn/2} \omega_M^{(n)}(m_n y)$, $\omega_M^{(n)}$ is the indicator of the set M_n in K_n, and dx is the normalized additive Haar measure on K_n.

Proof: Let ω_M be the indicator of the set M in \overline{K}. Then $\omega_M(x) = \omega_M^{(n)}(T_n(x))$, $x \in \overline{K}$,

$$\omega_M^{(n)}(\xi) = \int_{K_n} \chi(\xi \eta)w_n(\eta) \, d\eta, \quad \xi \in K_n.$$

Since

$$\int_{K_n} w_n(\eta) \, d\eta = \omega_M^{(n)}(0) = 0,$$

we get

$$\omega_M(x) = \int_{K_n} [\chi(\eta T_n(x)) - 1]w_n(\eta) \, d\eta.$$

Integrating with respect to $\Pi(t, dx)$ and using (14) we come to (15).
It follows from Lemma 3 that $\Pi(t, dx) = t \Pi(1, dx)$. We shall write $\Pi(dx)$ instead of $\Pi(1, dx)$.

Proof of Theorem 2: Let $f(x) = \varphi(T_n(x))$, $x \in K$, where φ is locally constant and in addition $\text{supp } \varphi$ is compact, $0 \notin \text{supp } \varphi$. It follows from Lemma 3 that

$$\int f(x) \Pi(dx) = -\int_{K_n} \Delta^\alpha(\eta) \psi(\eta) \, d\eta$$

where ψ is the inverse Fourier transform of the function $y \mapsto q_n^{-dn/2} \varphi(m_n y)$.

The right-hand side of (16) is an entire function with respect to α. Assuming temporarily $\text{Re } \alpha < -1$, we can use the Plancherel formula with subsequent analytic continuation (see [1]). As a result we find that for $\alpha > 0$

$$\int f(x) \Pi(dx) = -q_n^{d_n \alpha/m_n} \frac{1 - q_n^{\alpha/m_n}}{1 - q_n^{-1-\alpha/m_n}} \int_{x \in K_n, |x| \leq q_n^{d_n}} |x|^{-1-\alpha/m_n}$$

$$+ \frac{1 - q_n^{1/m_n}}{q_n^{\alpha/m_n} - 1} q_n^{-d_n(1+\alpha/m_n)} \varphi(m_n x) \, dx. \quad (17)$$

An obvious approximation argument shows that (17) is valid for any $f \in \mathcal{E}(K)$. Comparing (17) with (1) we obtain (2). \qed

4 HEAT MEASURE

Recall that the heat measure $\pi(t, dx)$ corresponding to the operator $-D^\alpha$ is defined by the formula

$$\int \chi(<\lambda, x>) \pi(t, dx) = \rho_\alpha(\|\lambda\|, t), \quad \lambda \in K, \ t > 0,$$

where ρ_α is given by (13).

THEOREM 3 For each $t > 0$ the measure $\pi(t, \cdot)$ is not absolutely continuous with respect to μ.

Proof: Let us fix $N \geq 1$ and consider the set

$$M = \{ x \in K : \|T_n(x)\| \leq q_n^{d_n/m_n - N/f_n} \|m_n\|, \ n = 1, 2, \ldots \}$$
We shall show that \(\mu(M) = 0 \) whereas \(\pi(t, M) \neq 0 \).

Denote
\[
M_n = \left\{ x \in \mathcal{K} : \|T_n(x)\| \leq q_n^{d_n/m_n-N/n}m_n \right\}, \quad n = 1, 2, \ldots .
\]
It is clear that \(M = \bigcap_{n=1}^{\infty} M_n \). Repeating the arguments from the proof of Lemma 1, we see that \(M_\nu \subset M_n \) if \(\nu > n \). Thus
\[
\pi(t, M) = \lim_{n \to \infty} \pi(t, M_n), \quad \mu(M) = \lim_{n \to \infty} \mu(M_n).
\]

It follows from the integration formula for cylindrical functions [1] that
\[
\mu(M_n) = q_n^{-d_n}m_n \int_{K_n, \|z\| \leq q_n^{d_n/m_n-N/n}m_n} dz = q_n^{-d_n}m_n^{-1} \int_{K_n, \|z\| \leq q_n^{d_n-N/n}m_n} dz = q_n^{-N/n}e_n = q_n^{-N_n}e_n, \quad (18)
\]
so that \(\mu(M_n) = q_1^{-N_n} \to 0 \) for \(n \to \infty \). Thus \(\mu(M) = 0 \).

In a similar way (see [1])
\[
\pi(t, M_n) = |m_n|^{-1} \int_{K_n, \|z\| \leq q_n^{d_n-N/n}m_n} \Gamma^{(n)}(m_n^{-1}z, t) \ dz \quad (19)
\]
where \(\Gamma^{(n)}_\alpha \) is a fundamental solution of the Cauchy problem for the equation over \(K_n \) of the form \(\partial u/\partial t + \partial^\alpha_n u = 0 \). Here \(\partial^\alpha_n \) is a pseudo-differential operator over \(K_n \) with the symbol \(\Delta^\alpha_n(\xi) \). It is clear that
\[
\Gamma^{(n)}_\alpha(\zeta, t) = q_n^{-d_n/2} \tilde{\rho}_\alpha(\zeta, t)
\]
where tilde means the local field Fourier transform:
\[
\tilde{u}(\zeta) = q_n^{-d_n/2} \int_{K_n} \chi \circ \text{Tr}_{K_n/k}(z\zeta)u(z) \ dz,
\]
for a complex-valued function \(u \) over \(K_n \) (sufficient conditions for the existence of \(\tilde{u} \) and the validity of the inversion formula
\[
u(z) = q_n^{-d_n/2} \int_{K_n} \chi \circ \text{Tr}_{K_n/k}(-z\zeta)\tilde{u}(\zeta) \ d\zeta,
\]
are well known).

Using the Plancherel formula we can rewrite (19) in the form
\[
\pi(t, M_n) = \int_{K_n} \tilde{\Gamma}^{(n)}_\alpha(x, t)\tilde{\beta}_n(x) \ dx
\]
where
\[
\beta_n(\zeta) = \begin{cases}
1, & \text{if } |\zeta|_n \leq q_n^{d_n-Nn} \\
0, & \text{if } |\zeta|_n > q_n^{d_n-Nn}.
\end{cases}
\]

We have \(\tilde{\Gamma}_\alpha^{(n)} = q_n^{-d_n/2} \rho_\alpha \),
\[
\tilde{\beta}_n(x) = \begin{cases}
q_n^{d_n-Nn}, & \text{if } |x|_n \leq q_n^{Nn} \\
0, & \text{if } |\zeta|_n > q_n^{Nn},
\end{cases}
\]
(see e.g. [11]), so that
\[
\pi(t, M_n) = q_n^{-Nn} \int_{|x|_n \leq q_n^{Nn}} \rho_\alpha (\|x\|, t) \, dx \geq q_n^{-Nn} \int_{|x|_n = q_n^{Nn}} \rho_\alpha (|x|_n^{1/m_n}, t) \, dx = (1 - q_n^{-1}) \exp (-t q_n^{\alpha N/f_n}) \geq (1 - q_1^{-1}) \exp (-t q_1^{\alpha N}).
\]

Hence, \(\pi(t, M) > 0. \)

ACKNOWLEDGEMENT This work was supported in part by the Ukrainian Fund for Fundamental Research (Grant 1.4/62).

REFERENCES

1. AN Kochubei. Analysis and probability over infinite extensions of a local field. Potential Anal. (to appear).
2. SN Evans. Local field Gaussian measures. In: E Cinlar, KL Chung, RK Getoor, eds. Seminar on Stochastic Processes 1988. Boston: Birkhäuser, 1989, pp. 121-160.
3. VS Vladimirov. Generalized functions over the field of p-adic numbers. Russian Math. Surveys 43, No. 5: 19-64, 1988.
4. VS Vladimirov, IV Volovich, EI Zelenov. p-Adic Analysis and Mathematical Physics. Singapore: World Scientific, 1994.
5. RS Ismagilov. On the spectrum of the self-adjoint operator in \(L_2(K) \) where \(K \) is a local field; an analog of the Feynman-Kac formula. Theor. Math. Phys. 89: 1024-1028, 1991.
6. S Haran. Riesz potentials and explicit sums in arithmetic. Invent. Math. 101: 697-703, 1990.
7. S Haran. Analytic potential theory over the p-adics. Ann. Inst. Fourier 43: 905-944, 1993.
8. AN Kochubei. Schrödinger-type operator over p-adic number field. Theor. Math. Phys. 86: 221-228, 1991.
9. AN Kochubei. Parabolic equations over the field of p-adic numbers. Math. USSR Izvestiya 39: 1263-1280, 1992.
10. AN Kochubei. The differentiation operator on subsets of the field of p-adic numbers. Russ. Acad. Sci. Izv. Math. 41: 289-305, 1993.
11. AN Kochubei. Gaussian integrals and spectral theory over a local field. Russ. Acad. Sci. Izv. Math. 45: 495-503, 1995.
12. AN Kochubei. Heat equation in a p-adic ball. Methods of Funct. Anal. and Topology 2, No. 3-4: 53-58, 1996.
13. AD Blair. Adelic path space integrals. Rev. Math. Phys. 7: 21-50, 1995.
14. VS Varadarajan. Path integrals for a class of p-adic Schrödinger equations. Lett. Math. Phys. 39: 97-106, 1997.
15. AD Bendikov. Symmetric stable semigroups on the infinite-dimensional torus. Expositiones Math. 13: 39-79, 1995.
16. S Kaplan. Extensions of the Pontrjagin duality. II: Direct and inverse sequences. Duke Math. J. 17: 419-435, 1950.
17. JWS Cassels, A Fröhlich, eds. Algebraic Number Theory. London and New York: Academic Press, 1967.
18. A Weil. Basic Number Theory. Berlin: Springer, 1967.
19. IB Fesenko, SV Vostokov. Local Fields and Their Extensions. Providence: American Mathematical Society, 1993.
20. K Iwasawa. Local Class Field Theory. Tokyo: Iwanami Shoten, 1980 (in Japanese; Russian translation, Moscow: Mir, 1983).
21. JP Serre. Local Fields. New York: Springer, 1979.
22. AV Skorohod. Random Processes with Independent Increments. Dordrecht: Kluwer, 1991.
23. II Gikhman, AV Skorohod. Theory of stochastic processes II. Berlin: Springer, 1975.
24. AN Kochubei. Stochastic integrals and stochastic differential equations over the field of p-adic numbers. Potential Anal. 6: 105-125, 1997.