CASE REPORT

Clinicopathological characteristics and molecular analysis of primary pulmonary mucoepidermoid carcinoma: Case report and literature review

Xuanguang Li1*, Zhibin Guo1*, Jinghao Liu1, Sen Wei1, Dian Ren1, Gang Chen1, Song Xu1,2 & Jun Chen1,2

1 Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
2 Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China

Keywords
Chemotherapy; lobectomy; MECT1-MAML2 fusion gene; pulmonary mucoepidermoid carcinoma.

Correspondence
Jun Chen and Song Xu, Department of Lung Cancer Surgery, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, 300052 Tianjin, China.
Tel: +86 22 6081 4803
Fax: +86 22 6036 3013
Email: huntercj2004@yahoo.com; xusong198@hotmail.com

*These authors contributed equally to this paper.

Received: 19 September 2017; Accepted: 25 October 2017.
doi: 10.1111/1759-7714.12565
Thoracic Cancer 9 (2018) 316–323

Abstract
Primary pulmonary mucoepidermoid carcinoma (PMEC) is extremely rare. Herein, we report a case of a 71-year-old male patient with high-grade PMEC involving the right upper lobe that was successfully resected via lobectomy. As a result of invasion into the pleural and paratracheal lymph nodes, four cycles of adjuvant chemotherapy with paclitaxel and carboplatin were administered. There were no signs of relapse during 10 months of follow-up. Furthermore, we reviewed the literature and summarized the surgical approaches, prognostic factors, and underlying genetic mechanisms of PMEC, which will benefit clinical treatment.

Introduction
Smetana et al. first described pulmonary mucoepidermoid carcinoma (PMEC) in 1952.1–4 It is an extremely rare malignant neoplasm of the lung that accounts for approximately 0.1–0.2% of all lung malignancies.3–7 PMEC is a salivary gland-type tumor of the lung,5,8 deriving from the minor salivary glands of the tracheobronchial tree9 and has been reported to occur over an age range of 3–78 years.3,10,11 Compared to other salivary gland-type tumors of the lung, there is no gender predilection in PMEC.5,12 According to the 2015 World Health Organization classification of lung cancer, PMEC is a mucoepidermoid carcinoma.13 Histologically, PMEC consists of mucous-forming, epidermoid, and intermediate cells that are divided into high-grade and low-grade variants.2,5,8,13–15 As opposed to high-grade PMEC, the prognosis of low-grade PMEC is excellent, with very good five-year survival rates.16

Case Report
A 71-year-old man with a long smoking history presented for evaluation of an asymptomatic lung mass in the right upper lobe (Table 1, patient 1). On physical examination, his vital signs were normal and there were no abnormalities on auscultation of the chest. Enhanced chest computed tomography (CT) showed a solitary mass with
Table 1 Detailed clinical features of eight cases of surgically resected PMEC at our institution

No.	Age	Gender	Smoking index	Symptom	Location	Location 2	Surgical procedure	Grade	pTNM	Adjuvant treatment	Outcome	OS (months)	DFS (months)
1	71	M	2000	None	RUL		Segmental lobectomy	High	T2N1M0	Yes	Alive	9	9
2	29	F	0	Dyspnea	RUL		Sleeve lobectomy	Low	T1N0M0	No	Alive	77	77
3	39	M	400	Hemoptysis	Trachea	Trachea	Sleeve resection of trachea	Low	T1N0M0	No	Alive	83	83
4	74	M	1200	None	RLL		Segmental bronchus lobectomy	Low	T1N0M0	Yes	Alive	14	14
5	69	F	0	Cough	RUL		Sleeve lobectomy	High	T1N0M0	No	Alive	6	6
6	76	M	800	Dyspnea	RUL		Sleeve lobectomy	High	T4N1M0	No	Alive	17	14
7	43	F	0	Cough	LUL		Sleeve lobectomy	Low	T2N0M0	No	Alive	36	36
8	39	M	1600	Cough	RUL		Sleeve lobectomy	Low	T1N0M0	No	Alive	35	35

DFS, disease-free-survival; LUL, left upper lobe; OS, overall-survival; PMEC, primary pulmonary mucoepidermoid carcinoma; pTNM, pathological tumor node metastasis; RLL, right lower lobe; RUL, right upper lobe.

Figure 1 Chest computed tomography (CT) scans. (a) Enhanced CT shows a solitary mass with heterogeneous enhancement in the apico-posterior segment of the upper lobe of the right lung, approximately 3.5 × 3.4 × 2.7 cm in size. (b) CT taken two months postoperatively shows good recovery.
Figure 2. Hematoxylin–eosin (HE) staining and immunohistochemistry. The tumor cells were diffusely positive for CK 7; partially positive for CK 5/6, p63, and TTF-1; and negative for p40, NapsinA, SOX-2, and SPA.

Figure 3. Tumor localization in 695 patients with primary pulmonary mucoepidermoid carcinoma. Tumors had no particular location tendency and were distributed almost equally among the trachea, right main bronchus (RMB), left main bronchus (LMB), and all lobes of both lungs. Br, bronchus; LLL, LUL, left upper lobe; left lower lobe; RLL, right lower lobe; RML, right middle lobe; RUL, right upper lobe.
Reference	Year (period)	Country	Number of cases	Age (years)	Gender (%)	Size (cm)	Treatment	TNM stage (%)	LN involvement (%)	Intra-thoracic invasion (%)	Survival data	Prognostic factors	
Jiang et al.	2014 (2001–2013)	China	34 (L 25, H 9)	H: Median age 65 (24–78)	M 19 (44.1)	H: 3.5 (1.5–5.0)	Surgery 34	H: I–IIA 3 (33.3)	No 3 (33.3)	No 24 (96.0)	NA	5 YSR OS 84.6%	Age
				L: Median age 40 (16–76)	F 15 (55.9)	L: 2.5 (0.6–6.0)	Postoperative Treatment	IIB–IV 6 (66.7)	L: Yes 1 (4.0)	NA	5 YSR DFS 81.6%	TNM stage	
						L: Radiotherapy 2	Chemo therapy 7				LN metastasis		
Hsieh et al.	2017 (1991–2015)	China (Taiwan)	41 (L 10, H 31)	≤ 65 19 (46.3%)	M 30 (73.2)	≤ 3 cm 25 (61.0%)	Surgery 41	I 21 (51.2)	Yes 15 (36.6)	NA	Stage		
				> 65 22 (53.7%)	F 11 (26.8)	> 3 cm 16 (39.0%)		II 11 (26.8)	No 26 (63.4)	NA		Disease stage	
Zhu et al.	2014 (2004–2011)	China	42 (L/INT 33, H 9)	MAML2 rearrangement (+) (n = 21)	Medium age 33 (14–73)	M 13 (61.9)	3.0 (0.5–6.5)	Surgery 41	I–IIA 19 (90.5)	Yes 2 (9.5)	No 4 (19.0)	5 YSR OS 94.7%	Age
				MAML2 rearrangement (+) (n = 21)	Medium age 33 (14–73)	F 8 (38.1)	MAML2 rearrangement (+)	IIB–IV 2 (9.5)	No 19 (90.5)	No 17 (81.0)	5 YSR DFS 88.4%	Disease stage	
					Medium age 50 (27–76)	M 12 (57.1)	3.0 (0.5–10.0)		I–IIA 17 (81.0)	Yes 5 (23.8)	No 6 (28.6)	5 YSR OS 64.6%	pT status
					F 9 (48.3)			IIB–IV 2 (19.0)	No 16 (76.2)	No 15 (71.4)	5 YSR DFS 53.0%	pH status	
Huo et al.	2015 (2000–2014)	China	26 (L 18, H 8)	Mean age 46.5 (12–79)	M 13 (50.0)	NA	Surgery 23	Yes 1 (3.8)	Yes 2 (7.7)	NA	5 and 10 YSR OS 72.1%	Age, peribronchial growth pattern, tumor size, grade, Ki-67 labeling index	
				F 13 (50.0)	NA	Chemo therapy 3		Yes 21 (80.8)	No 20 (76.9)	NA 4 (15.4)			
Lee et al.	2014 (2000–2010)	Korea	23 (L INT 12, H 6)	H: Median age 57 (24–75)	M 13 (56.5)	H: 3.0 (2.0–4.0)	Surgery 23	I–IIA 22 (95.7)	Yes 0 (0)	No 23 (100)	NA	5 YSR DFS 100%	Age
				INT: Median age 32 (10–62)	F 10 (43.5)	INT: 2.35 (1.0–3.0)		IIB–IV 1 (4.3)	NA 2 (9.5)	NA	8 YSR OS 100%	Disease stage	
				L: Median age 32 (12–54)	M 13 (56.5)	L: 1.4 (0–3.7)					8 YSR DFS 90.9%		
Reference	Year (period)	Country	Number of cases	Age (years)	Gender (%)	Size (cm)	Treatment	TNM stage (%)	LN involvement (%)	Infrathoracic invasion (%)	Survival data	Prognostic factors	
-----------	--------------	---------	-----------------	-------------	------------	-----------	-----------	--------------	---------------------	------------------------	--------------	-------------------	
Zhu et al.	2013 China	69 (L 45, INT 11, H 13)	Median age	M 38 (55.1)	47.5 (7–73)	2.65 (0.5–10)	Surgery 66	I: 48 (69.6)	Yes 12 (17.6)	Yes 16 (23.1)	Stage	TNM stage, intrathoracic invasion, LN metastasis, margin status	
Komiya et al.	2016 United States	423 (L 226, H 73, unknown 124)	≥ 39 130	M 232 (54.8)	F 191 (45.2)	Surgery alone 2.74	Surgery + Radiation 30	NA	NA	NA	NA	Stage	Localized: 5 YSR 97% Regional: 5 YSR 56.9% Distant: 5 YSR 8.2% Grade L: 5 YSR 90.6% H: 5 YSR 28.6%
Salem et al	2017 United States	16 (L 14, H 2)	Median age	M 7 (43.6)	F 9 (56.3)	Median tumor size 2.6 (0.6–10)	Surgery 14	I: 10 (62.4)	Yes 3 (18.8)	Yes 1 (6.3)	Median follow-up months	40.7 (1.7–120.1) Died 3 (18.8) Alive 13 (81.2)	

ALI, angiolymphatic invasion; H, high-grade tumors; INT, intermediate-grade tumors; L, low-grade tumors; LN, lymph node; NA, not assessed; PMEC, primary pulmonary mucoepidermoid carcinoma; TNM, tumor node metastasis; YSR, year survival rate.
Table 3 Summary of molecular analyses of PMECs from previous studies

Reference	Year (period)	Country	Number of cases	Age (years)	Sex (%)	Size (cm)	TNM stage (%)	LN involvement (%)	MAML2 rearrangement (%)	EGFR mutation	Outcome
Behboudi	2006	Sweden	Case 1: L	6	F	1.3	NA	NA	NA	Case 1: Positive	14 years
		Finland	Case 2: M		M	1.0	NA	NA	NA	Case 2: Positive	11 years
			Case 3: F	32	F	NA	NA	NA	NA	Case 3: Positive	5 years
Zhu	2014	China	42 (L/INT 33, H 9)	33 (14–73)	F 8 (38.1)	MAML2 rearrangement (+)					
	(2004–2011)		MAML2			Median age	Median age	Median age	Median age		
			MAML2			12 (57.1)	17 (81.0)	41 (14–73)	41 (14–73)		
Achcar	2009	United Kingdom	17 (L 10, H 7)	39.5 (33–51)	M 11 (55.0)	MAML2 rearrangement (+)	MAML2 rearrangement (+)	MAML2 rearrangement (+)	MAML2 rearrangement (+)		
	(1997–2008)		MAML2			Median age	Median age	Median age	Median age		
			MAML2			2 (15.4)	19 (84.6)	17 (33–51)	17 (33–51)		
Yu et al.	2012	China	20 (L 17, H 3)	25–74	M 11 (55.0)	L 861Q	I760I	None	L861Q 5		
	(2001–2009)		MAML2			Median age	Median age	Median age	Median age		
			MAML2			48 (8–73)	45 (0.5–4.5)	2.4 (1.5–3.5)	2.1 (0.5–4.5)		

H, high-grade tumors; INT, intermediate-grade tumors; L, low-grade tumors; LN, lymph node; NA, not assessed; PMEC, primary pulmonary mucoepidermoid carcinoma; TNM, tumor-node-metastasis; YSR, year survival rate.
heterogeneous enhancement in the apicoposterior segment of the upper lobe of the right lung (Fig 1a). Laboratory evaluation showed elevated carcinoembryonic antigen levels (5.86 μg/L; normal range 0–5 μg/L) but no other abnormalities. The patient underwent video-assisted thoracic surgery with right upper lobectomy and lymph node dissection. Grossly, the mass measured 4 × 3.5 × 2.5 cm and was grey-white in color. On microscopic examination, all three typical cell types of mucoepidermoid carcinoma were observed (Fig 2). Immunohistochemistry revealed that the tumor cells were diffusely positive for CK 7; partially positive for CK 5/6, p63, and TTF-1; and negative for p40, NapsinA, SOX-2, and SPA. Ki-67 was approximately 70%. The final diagnosis was high-grade PMEC with pleural and paratracheal lymph node invasion (T2aN1M0, stage II b). All resection margins were negative. Postoperative CT showed good recovery (Fig 1b). The patient had four cycles of postoperative adjuvant chemotherapy with paclitaxel and carboplatin, and there were no signs of relapse during 10 months of follow-up.

Written informed consent was obtained from all patients for the publication of this case report and accompanying images.

Discussion

Several published reviews confirm that complete surgical resection remains the best treatment choice for PMEC and can result in better long-term survival compared to nonsurgical treatment.5–7,12 Advanced disease at the time of initial diagnosis may make complete resection difficult, especially in cases of high-grade PMEC. Because PMEC is a type of non-small cell lung cancer, adjuvant therapy should be administered when complete resection is not possible, although the utility of chemotherapy and radiotherapy in these cases remains controversial.5–7,14,17,18

We searched medical records from Tianjin Medical University General Hospital from January 2010 to April 2017 and identified a total of eight surgically resected cases of PMEC. Table 1 displays the characteristics of the eight patients and the surgical results. Patient 6, who had advanced high-grade disease (T4N1M0; stage IIIa) underwent extensive resection but refused chemotherapy, and experienced recurrence at 14 months. Patient 4, who had poor cardiovascular status, underwent a wedge resection with a final diagnosis of low-grade PMEC with positive margins. Thus, he received two cycles of pemetrexed and nedaplatin and one cycle of gemcitabine and nedaplatin and showed no sign of relapse during 14 months of follow-up.

In addition to our in-house review, we reviewed 695 cases of PMEC from nine previous studies. Most PMECs are low/intermediate grade, and tumor locations indicate no particular tendency (Fig 3). Complete resection of PMEC, whether high-grade or low-grade, in the absence of lymph node metastasis, yielded good prognosis, and prognostic factors predicting aggressive behavior included age, histological grade, tumor-node-metastasis stage, lymph node metastasis, and complete resection (Table 2).

The MECT1/MAML2 fusion gene is common in PMEC.8–10 In 62 patients analyzed in our systemic review, MAML2 rearrangement was much more common in low-grade (73.9%) compared to high-grade (18.8%) PMEC cases (Table 3). Five-year overall survival was also better in the MAML2 rearrangement-positive group (94.7% vs. 64.6% in patients without MAML2 rearrangement). Thus, MAML2 rearrangement may signal a better prognosis in cases of PMEC.

Finally, in a study by Han et al., gefitinib administration was attempted to treat a case of PMEC after metastasis to the chest wall and contralateral lung.8,19 CT follow-up indicated that the metastatic lesions had responded to the treatment, although there was no EGFR tyrosine kinase mutation detected in the chest wall tumor. These findings suggest that PMECs with the MECT1-MAML2 fusion gene may be a valid target for tyrosine kinase inhibitor therapy. However, this hypothesis requires further investigation in a clinical setting.

In summary, complete surgical resection remains the mainstay of treatment for PMEC and can result in long-term survival. Adjuvant chemotherapy may be useful in patients with high-grade PMEC, especially in cases of lymph node involvement or intrathoracic invasion. The current literature indicates that the MECT1-MAML2 fusion gene is common in PMEC and is specific to this tumor. Identifying MAML2 rearrangement might be helpful to differentiate PMEC from other epithelial lung malignancies. MAML2 rearrangement seems to be associated with a favorable clinical outcome and PMEC cases with the MECT1-MAML2 fusion gene may exhibit a good response to tyrosine kinase inhibitor therapy.

Acknowledgments

This work was financially supported by grants from the National Natural Science Foundation of China (81773207, 81172233), the Science and Technology Support Key Program of Tianjin (17FYFC00840), and the Tianjin Key Project of Natural Science Foundation (16JCZDJC34200, 16PTSYJC00160, 17JCZDJC36200).

Disclosure

No authors report any conflict of interest.
References

1. Smetana HF, Iverson L, Swan LL. Bronchogenic carcinoma: an analysis of 100 autopsy cases. *Mil Surg.* 1952; 111: 335–51.

2. Jiang L, Li P, Xiao Z *et al.* Prognostic factors of primary pulmonary mucoepidermoid carcinoma: A clinical and pathological analysis of 34 cases. *Int J Clin Exp Pathol* 2014; 7: 6792–9.

3. Shen C, Che G. Clinicopathological analysis of pulmonary mucoepidermoid carcinoma. *World J Surg Oncol* 2014; 12: 33.

4. Hsieh CC, Sun YH, Lin SW, Yeh YC, Chan ML. Surgical outcomes of pulmonary mucoepidermoid carcinoma: A review of 41 cases. *PLoS One* 2017; 12: e0176918.

5. Falk N, Weissferdt A, Kalhor N, Moran CA. Primary pulmonary salivary gland-type tumors: A review and update. *Adv Anat Pathol* 2016; 23: 13–23.

6. Yamamoto T, Nakajima T, Suzuki H *et al.* Surgical treatment of mucoepidermoid carcinoma of the lung: 20 years’ experience. *Asian Cardiovasc Thorac Ann* 2016; 24: 257–61.

7. Pandey D, Garg PK, Jakhetiya A *et al.* Surgical experience of primary salivary gland tumors of lung: A case series. *Int J Surg* 2015; 21: 92–6.

8. Behboudi A, Enlund F, Winnes M *et al.* Molecular classification of mucoepidermoid carcinomas—prognostic significance of the MECT1-MAML2 fusion oncogene. *Genes Chromosomes Cancer* 2006; 45: 470–81.

9. Zhu F, Wang W, Hou Y *et al.* MAML2 rearrangement in primary pulmonary mucoepidermoid carcinoma and the correlation with FLT1 expression. *PLoS One* 2014; 9: e94399.

10. Huo Z, Wu H, Li J *et al.* Primary pulmonary mucoepidermoid carcinoma: Histopathological and moleculargenetic studies of 26 cases. *PLoS One* 2015; 10: e0143169.

11. du Toit-Prinsloo L, Bunn BK. Massive hemoptysis due to primary pulmonary mucoepidermoid carcinoma of the lung in a 12-year-old. *Forensic Sci Med Pathol* 2016; 12: 380–3.

12. Lee GD, Kang DK, Kim HR *et al.* Surgical outcomes of pulmonary mucoepidermoid carcinoma: A review of 23 cases. *Thorac Cardiovasc Surg* 2014; 62: 140–6.

13. Travis WD, Brambilla E, Nicholson AG *et al.* The 2015 World Health Organization Classification of Lung Tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification. *J Thorac Oncol* 2015; 10: 1243–60.

14. Zhu F, Liu Z, Hou Y *et al.* Primary salivary gland-type lung cancer: Clinicopathological analysis of 88 cases from China. *J Thorac Oncol* 2013; 8: 1578–84.

15. Roden AC, García JJ, Wehrs RN *et al.* Histopathologic, immunophenotypic and cytogenetic features of pulmonary mucoepidermoid carcinoma. *Mod Pathol* 2014; 27: 1479–88.

16. Komiya T, Perez RP, Yamamoto S, Neupane P. Primary lung mucoepidermoid carcinoma: analysis of prognostic factors using surveillance, epidemiology and end results program. *Clin Respir J* 2017; 11: 847–53.

17. Xi JJ, Jiang W, Lu SH, Zhang CY, Fan H, Wang Q. Primary pulmonary mucoepidermoid carcinoma: An analysis of 21 cases. *World J Surg Oncol* 2012; 10: 232.

18. Kang DY, Yoon YS, Kim HK *et al.* Primary salivary gland-type lung cancer: Surgical outcomes. *Lung Cancer* 2011; 72: 250–4.

19. Han SW, Kim HP, Jeon YK *et al.* Mucoepidermoid carcinoma of lung: Potential target of EGFR-directed treatment. *Lung Cancer* 2008; 61: 30–4.

20. Salem A, Bell D, Sepesi B *et al.* Clinicopathologic and genetic features of primary bronchopulmonary mucoepidermoid carcinoma: the MD Anderson Cancer Center experience and comprehensive review of the literature. *Virchows Arch* 2017; 470: 619–26.

21. Achcar Rde O, Nikiforova MN, Dacic S, Nicholson AG, Yousem SA. Mammalian mastermind like 2 11q21 gene rearrangement in bronchopulmonary mucoepidermoid carcinoma. *Hum Pathol* 2009; 40: 854–60.

22. Yu Y, Song Z, Gao H *et al.* EGFR L861Q mutation is a frequent feature of pulmonary mucoepidermoid carcinoma. *J Cancer Res Clin Oncol* 2012; 138: 1421–5.