River Monitoring: In View of the Physical Habitat of the River and the Presence of Macroinvertebrates

Susy Amizera*, Elvira Destiansari, Didi Jaya Santri, Zainal Arifin, Nike Anggraini

Biologi Education Department, Faculty of Teacher Trainer and Education, Sriwijaya University, Indonesia

*email: susyamizera@fkip.unsri.ac.id

ABSTRACT

Monitoring of river aims to determine the condition of water quality. One alternative effort that can be used to have description of water quality is by reviewing the condition of the river's physical habitat. In this regard, the physical habitat condition will affect the presence of macroinvertebrates. The aims of this study was to determine the quality of river by observing the physical habitat of the river and the presence of macroinvertebrates. Data collection techniques are carried out spatially by dividing the river into several segments by taking into the state of the environment which include industry area, agriculture (rice field) area, housing area, pipe oil area and the springhead of the river. Based on the results of the study, it shown that the condition of river waters can be categorized in an unhealthy condition. This can be seen from the type of substrate cover, river bank stability and human activities in the river. It causes by eroding, agricultural activities, livestock, waste disposal, sand mining and garbage disposal. These conditions also affect the composition of macroinvertebrates found in this waters, which have a high level of tolerance in unhealthy physical habitat conditions such as Limnodrilus sp. and Aulodrilus sp.

Introduction

River Monitoring is an effort to manage the river which aims to determine the condition of the quality of these waters. According to (Yohannes et al., 2019), water quality can be measured by measuring several parameters related to physical, chemical and biological aspects. This measure of water quality refers to the standards of water quality.

The measurements with physical, chemical, and biological parameters cannot show the quality of these waters directly because water samples must be analyzed in the laboratory first. One alternative effort that can be used to obtain a direct description of water quality is by reviewing the condition of the river's physical habitat (Trisnaini et al., 2018). Physical habitat monitoring is considered important because it can be monitored directly without going through further examination in the laboratory.

Monitoring of the river’s physical habitat can be done by observing the amount of substrate cover, river bank conditions, and human activities that occur in the river. The changes in physical conditions along the river can be influenced by physical factors such as variations in sedimentation that cause changes in the quality of the waters.
The Observation of river habitat conditions for river health assessment is carried out following work. First, the researchers did the observation to get a general view of the condition of the river in the location which will be assessed, they are industry area, agriculture (rice field) area, housing area, pipe oil area and the springhead of the river, the observation be conducted at each station. Then, the research observed physical habitat parameters such as river bed substrate composition, river sedimentation rate, river bank erosion, riverbank vegetation shade and water turbidity, also the activity of human around of the river. Furthermore, the research noted the results of observations on several river habitat parameters by giving a check mark (√) in the column to the category of river habitat conditions.

The quality of the river's physical habitat was analyzed based on the river's physical habitat assessment sheet. The results of observations of river physical habitats are related to the health of river are presented in table 1.

Tabel 1. Assessment of the River Health

Average score	Level of River Health
2,4 – 3,0	Health, the river provide diverse and stable habitat conditions to support the life of organism
1,7 – 2,3	Less healthy, The river provide less varied and less stable habitats to support the life of organism
1,0 – 1,6	Unhealthy, the river provide unvaried and unstable habitats to support the life of organism

Source: (Rini, 2011).

The sample of macroinvertebrate was taken using an Eckman Grabb (15x15 cm). The samples took at 6 research stations. At each station three sampling points were taken representing the right, left and middle of the river. The collected sediment was filtered using a benthic sieve which has a 1.0 mm mesh size. Then, the samples of macroinvertebrate were identified using a binocular stereo microscope. Identification activities are carried out using identification books, river health guidebooks (Rini, 2011).
Furthermore, the number of macroinvertebrate samples was counted according to the species of macroinvertebrate which are found.

Results and Discussion

The quality of the Kundur River can be assessed based on the condition of the river's physical habitat and the presence of macroinvertebrates as bioindicators. Physical habitat conditions are assessed through an assessment of the physical habitat of the river as presented in Table 2, then an assessment of the water quality conditions in the river will be associated with the presence of macroinvertebrate.

Tabel 2. Physical Habitat Parameter of The River *(Rini, 2011)*

Parameter	Result	
Substrate cover in the littoral zone	>90% the substrate is dominated by sand, or silt; most of the substrate is eroded or removed from the river, the habitat for macroinvertebrate and diatom colonies is very little	1
Mud-covered riverbank substrate	More than 75% submerged substrate in fine mud; rock must be pryed to lift it from the river	1
Fluctuations in water level fluctuation	The difference in cross-sectional width of the river flowing with water and the height of the river water level during the rainy and dry seasons	2
Flow change due to dredging Or straighten river	No straightening or dredging of river rocks and sand	3
The stability of the river bank on the left	Unstable many parts of the river bank are eroding	1
The stability of the river bank on the Right	Unstable many parts of the river bank are eroding	1
Vegetation Width River border on the left	River border width 6-15 meters	2
Vegetation Width River border on the Right	River border width 6-15 meters	2
Human activities in around the river	Rivers and riverbanks are damaged due to the impact of agricultural activities, livestock, waste disposal, sand mining and garbage disposal	2
Human activity at a radius of 2 km in part upstream	Less than 5% the upstream area has large-scale sand and stone mining activities, waste disposal industry and house hold	2

Average Score 1.6

Based on tabel 2, the indicators for assessing the physical habitat of the river, it is known that the average score is 1.6 for the condition of the physical habitat of the river. The value indicates that the health level of the river's physical habitat is in an unhealthy condition. The unhealthy condition is in range 1.0 – 1.6 based on Assessment of the River Health. According to *(Rini, 2011)*. Unhealthy physical habitat conditions will cause the life of aquatic organisms to be less stable since the habitat of macroinvertebrate is less varied thus it is not suitable for the life of several species. Unhealthy physical habitat conditions will cause the life of aquatic organisms to be less stable since the habitat of macroinvertebrates is less varied thus it is not suitable for the life of several species.

Fluctuations in water level fluctuation can affect the quality of the river water. According to *(Siahaan, 2012)*, in the dry season, the level of water pollution in the river increases due to a decrease in surface level, this condition causes the diversity index decrease but the density of macroinvertebrates in certain species increases. This is in accordance with table 2 and table 3 that fluctuations in river surface

http://jurnal.radenfatah.ac.id/index.php/biota
levels reach 25-75%, so that macroinvertebrate diversity is low and high levels of dominance are found in certain species.

Flow change due to dredging or river straightening can cause the habitat of macroinvertebrate. The dredging of the river causes the transformation of the river ecosystem so that it has an impact on the diversity of macroinvertebrates. This is because dredging and straightening activities can provide relatively stable macroinvertebrate habitat, and have an impact on the restoration of river ecosystems (Nakano & Nakamura, 2006). Based on the result observations of river habitats (table 2) there is no dredging and straighten river, this is also one of the causes of macroinvertebrate diversity found in this river is low.

Low river bank stability can affect the rate of erosion to the river body. It can cause high sedimentation in the river. According to (Saputra et al., 2017), the rate of sedimentation in river can affect the diversity and dominance of macroinvertebrates. This condition indicates the environmental degradation. The result of observations of physical habitats on the rivers show that the stability of the river bank is low but still has vegetation width river border reaching 6-15 meters (table 2) which is still able to inhibit the rate of erosion into the river flows.

Human activities can cause environmental degradation in the river. It can have an impact on the destruction of the physical habitat of macroinvertebrates in these waters. Human activities that can cause changes in the river water environment such as agriculture, industry, and domestic activities (Yogafanny, 2015), (Kospa & Rahmadi, 2019), (Riyandini, 2020).

Due to the unhealthy condition of the river's physical habitat, the diversity of macroinvertebrates which were found in the river is low. The macroinvertebrates found are presented in table 3.

Family	Species	ΣOrganism
Tubificidae	Limnodrilus sp.	4720
Tubicifidae	Aulodrilus sp.	1295
Naididae	Dero sp.	70
Nereididae	Namalicastis sp.	66
Chironomidae	Chironomous sp.	10
Chironomidae	Clinotanypus sp.	16
Corbiculida	Corbiculidae sp.	588

Based on the table 3, it can be seen that in the river only 5 families and 7 species of macroinvertebrates were found and the dominant macroinvertebrate group is Tubificidae. The picture of macroinvertebrate which found shown in figure 1.

Figure 1. Macroinvertebrates (a) Limnodrilus sp (b) Aulodrilus sp (c) Dero sp (d) Namalicastis sp (e)Chironomous sp (f) Clinotanypus sp (g) Corbicula sp
The Tubificidae is an Oligochaete class that has the ability to live in rivers that have high organic matter content, are cloudy, muddy, have low dissolved oxygen content and are tolerant of pesticides that enter water bodies (Putri et al., 2017). This is in line with the results of observations that the river flow is heavily influenced by human activities such as agricultural activities such as rice fields. In agriculture, the farmer usually used the pesticide for the plant. Pesticide residues from agricultural activities can be carried to river bodies and cause changes in river water quality (Atifah et al., 2019). Therefore, this condition is very supportive of the life of the Tubificidae in this river.

Limnodrillus sp. is the most abundant organism found in this river. Limnodrillus sp. live on muddy bottom substrates. The results of the study stated that the muddy sediment content had a high C-Organic content (Yolanda et al., 2019). The high availability of C-Organic can be a source of food for Limnodrillus sp. (Setiawan et al., 2015). It is in line with observations in the field that more than 75% of the substrate is submerged by fine silt (muddy). In this regard, the eroded part of the riverbank has the potential to add sediment to the riverbed. Erosion on riverbanks can cause changes in the elevation of the river bottom (Setyani, 2020). Therefore, this physical habitat is suitable with abundance of Limnodrillus sp.

Conclusion

Based on the results of the research, it can be concluded that the condition of river waters can be categorized in an unhealthy condition. This can be seen from the type of substrate cover, river bank stability and human activities in the river which cause by agriculture, industry, and domestic activities. These conditions also affect the composition of macroinvertebrates found in these waters. The diversity of macroinvertebrates which were found in the river is low with family of Tubificidae dominated because they have a high level of tolerance in unhealthy physical habitat conditions.

References

Ariani, Y. W., Damai, A. A., & Kartini, N. (2021). Pemantauan Kualitas Air Sungai Perairan Sungai Semuong di dalam Hutan Lindung Register 39, Desa Gunung Doh, Kabupaten Tanggamus, Provinsi Lampung. The Water Quality Monitoring of Sungai River in Protected Forest Register 39, Gunung Doh Village, Tangg. 26(1), 7–12. https://jpk ejournal.unri.ac.id/index.php/JPK/article/download/6744/pdf

Atifah, Y., Lubis, M., Lubis, L. T., & Maulana, A. (2019). Pencemaran Pestisida pada Sungai Batang Gadis, Mandailing Natal, Sumatera Utara. Bioeduscience: Jurnal Pendidikan Biologi Dan Sains, 3(2), 100–105. https://doi.org/10.29405/j.bes/32100-1053729

Gjoni, V., Marle, P., Ibelings, B. W., & Castella, E. (2022). Size–Abundance Relationships of Freshwater Macroinvertebrates in Two Contrasting Floodplain Channels of Rhone River. Water (Switzerland), 14(5), 1–20. https://doi.org/10.3390/w14050794

Khudhair, N., Yan, C., Liu, M., & Yu, H. (2019). Effects of Habitat Types on Macroinvertebrates Assemblages Structure: Case Study of Sun Island Bund Wetland. BioMed Research International, 2019. https://doi.org/10.1155/2019/2650678

Kospa, H. S. D., & Rahmadi, R. (2019). Pengaruh Perilaku Masyarakat Terhadap Kualitas Air di Sungai Sekanak Kota Palembang. Jurnal Ilmu Lingkungan, 17(2), 212. https://doi.org/10.14710/jil.17.2.212-221

Nakano, D., & Nakamura, F. (2006). Responses of macroinvertebrate communities to river restoration in a channelized segment of the Shibetsu River, Northern Japan. River Research and Applications, 22(6), 681–689. https://doi.org/10.1002/rra.928

Oliveira, C. dos R., Kraak, M. H. S., Penas-
Ortiz, M., van der Geest, H. G., & Verdonschot, P. F. M. (2020). Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams. *Science of the Total Environment*, 703. https://doi.org/10.1016/j.scitotenv.2019.135060

Pancawati, D. N., Suprapto, D., Purnomo, P. W., & Program. (2014). Karakteristik Fisika Kimia Perairan Habitat Bivalvia Di Sungai Wiso Jepara. *Management of Aquatic Resources*, 3(4), 141–146. https://doi.org/10.14710/marj.v3i4.7048

Putri, A. M. S., Suryanti, S., & Widyorini, N. (2017). Hubungan Tekstur Sedimen Dengan Kandungan Bahan Organik dan Kelimpahan Makrozoobenthos di Muara Sungai Banjir Kanal Timur Semarang. *Saintek Perikanan: Indonesian Journal of Fisheries Science and Technology*, 12(1), 75. https://doi.org/10.14710/ifjst.12.1.75-80

Rini S.D. (2011). *Ayo Cintai Sungai. Panduan Penilaian Kesehatan Sungai Melalui Pemeriksaan Habitat Sungai dan BIOTILIK*. Ecoton.

Riyandini, V. L. (2020). Pengaruh Aktivitas Masyarakat Terhadap Kualitas Air Sungai Batang Tapakis Kabupaten Padang Pariaman. *Jurnal Sains Dan Teknologi*, 20(2), 203–209. https://ojs.sttind.ac.id/sttind_ojs/index.php/Sain/article/view/297

Saputra, O., Ihsan, Y. N., Sari, L. P., & Mulyani, Y. (2017). Sedimentasi Dan Sebaran Makrozoobentos Di Kawasan Laguna Segara Anakan Nusakambangan, Cilacap. *Perikanan Dan Ilmu Kelautan*, 8(1), 26–33. http://journal.unpad.ac.id/jpk/article/view/13881/6641

Setiawan, A., Setyawati, T. R., & Yanti, A. H. (2015). Kelimpahan Limnodrilus sp. pada Perairan Kanal di Kecamatan Pontianak Timur. *Protobiont*, 4(1), 248–252. http://dx.doi.org/10.26418/protobiont.v4i1.9792

Setyani, F. D. (2020). Sediment Transport Study In Estuary Of Weriagar River, Kabupaten Teluk Bintuni, West Papua. *Jurnal Teknologia*, 3(1), 62–71. https://aperti.ejournal.id/teknologia/article/view/57

Siahaan, R. (2012). Keanekaragaman Makrozoobentos sebagai Indikator Kualitas Air Sungai Cisadane, Jawa Barat – Banten (Macrozoobenthos diversity as indicator of water quality of Cisadane River). *Jurnal Bios Logos*, 1(1), 1–9. https://doi.org/10.35799/jbl.2.1.2012.374

Sudia, L. B., Indriyani, L., Erif, L. O. M., Hidayat, H., Qadri, M. S., Alimuna, W., Bana, S., & Hadjar, N. (2020). Kelimpahan Makrozoobenthos dan Kualitas Air Sungai yang Bermuara di Teluk Kendari. *Jurnal Ecosolum*, 9(1), 90–100. https://journal.unhas.ac.id/index.php/ecosolum/article/download/10342/5632

Trisnaini, I., Kumala Sari, T. N., & Utama, F. (2018). Identifikasi Habitat Fisik Sungai dan Keberagaman Biotilik Sebagai Indikator Pencemaran Air Sungai Musi Kota Palembang. *Jurnal Kesehatan Lingkungan Indonesia*, 17(1), 1. https://doi.org/10.14710/jkli.17.1.1-8

Widodo, T., Budiastuti, M. T. S., & Komariah, K. (2019). Water Quality and Pollution Index in Grenjeng River, Boyolali Regency, Indonesia. *Caraka Tani: Journal of Sustainable Agriculture*, 34(2), 150. https://doi.org/10.20961/carakatani.v34i2.29186

Yogafanny, E. (2015). Pengaruh Aktifitas Warga di Sempadan Sungai terhadap Kualitas Air Sungai Winongo. *Jurnal Sains & Teknologi Lingkungan*, 7(1), 29–40. https://doi.org/10.20885/jstl.vol7.iss1.art3

Yohannes, B. Y., Utomo, S. W., & Agustina, H. (2019). Kajian Kualitas Air Sungai...
dan Upaya Pengendalian Pencemaran Air. *IJEEM - Indonesian Journal of Environmental Education and Management*, 4(2), 136–155. https://doi.org/10.21009/ijeem.042.05
Yolanda, Y., Effendi, H., & Sartono, B. (2019). Konsentrasi C-organik dan substrat sedimen di perairan Pelabuhan Belawan Medan. *Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management)*, 3(2), 300–308. https://doi.org/10.36813/jplb.3.2.300-308