Measurement of the D*(2010)+ meson width and the D*(2010)+ - D0 mass difference.

Permalink
https://escholarship.org/uc/item/2sw0v5ms

Journal
Physical review letters, 111(11)

ISSN
0031-9007

Authors
Lees, JP
Poireau, V
Tisserand, V
et al.

Publication Date
2013-09-09

DOI
10.1103/physrevlett.111.111801

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Measurement of the $D^{(*)}(2010)^+$ Meson Width and the $D^{*}(2010)^+ − D^0$ Mass Difference

J. P. Lees,1 V. Poireau,1 V. Tisserand,1 E. Grauges,2 A. Palano,3,4 G. Eisen,5 B. Stugu,5 D. N. Brown,6 L. T. Kerth,6 Yu. G. Kolomensky,6 M. J. Lee,6 G. Lynch,6 H. Koch,7 T. Schroeder,7 C. Hearty,8 T. S. Mattison,8 J. A. McKena,8 R. Y. So,8 A. Khan,9 V. E. Blinov,10,12 A. R. Buzykaev,10 V. P. Druzhinin,10,11 V. B. Golubev,10,11 E. A. Kravchenko,10,11 A. P. Onuchin,10,12 S. I. Serednyakov,10 Yu. I. Skovpen,10,11 E. P. Solodov,10,11 K. Yu. Todyshev,10,11 A. N. Yushkov,10 D. Kirkby,13 A. J. Lankford,13 M. Mandelkern,13 B. Dey,14 J. W. Gary,14 O. Long,14 G. M. Vitug,14 C. Campagnari,15 M. Franco Sevilla,15 T. M. Hong,15 D. Kovalsky,15 J. D. Richman,15 C. A. West,15 A. M. Eisner,16 W. S. Lockman,16 A. J. Martinez,16 B. A. Schumm,16 A. Seiden,16 D. S. Chao,17 C. H. Cheng,17 B. Echenard,17 K. T. Flood,17 D. G. Hitlin,17 P. Ongmongkolkul,17 F. C. Porter,17 R. Andreassen,18 C. Fabby,18 Z. Huard,18 B. T. Meadows,18 M. D. Sokoloff,18 L. Sun,18 P. C. Bloom,19 W. T. Ford,19 A. Gaz,19 U. Nauenberg,19 J. G. Smith,19 S. R. Wagner,19 R. Ayad,19 W. H. Toki,19 B. Spaan,20 K. R. Schubert,20 R. Schwierz,21 D. Bernard,23 M. Verderi,23 S. Player,24 D. Bettoni,25 C. Bozzi,25 R. Calabrese,25 G. Cividale,25 E. Fioravanti,25 I. Gargiulo,25,26 E. Luppi,25,26 L. Piemontese,25 V. Santoro,25 R. Baldini-Ferroli,27 A. Calcaterra,27 R. de Sangro,27 G. Casarosa,64,65 A. Cervelli,64,65 F. Forti,64,65 M. A. Giorgi,64,65 A. Lusiani,64,66 B. Oberhof,64,65 E. Paoloni,64,65 J. Cochran,36 W. T. Meyer,36 S. Prell,36 A. E. Rubin,36 A. V. Gritsan,37 N. Arnaud,38 M. Davier,38 D. Derkach,38 E. Manoni,62 S. Pacetti,62,63 A. Rossi,62 C. Angelini,64,65 G. Batignani,64,65 S. Bettarini,64,65 M. Carpinelli,64,65,¶ H. Briand,61 G. Calderini,61 J. Chauveau,61 Ph. Leruste,61 G. Marchiori,61 J. Ocariz,61 S. Sitt,61 M. Biasini,62,63 M. Simard,62 P. Taras,62 G. De Nardo,53,54 D. Monorchio,53,54 G. Onorato,53,54 C. Sciacca,53,54 M. Martinelli,55 G. Grosdidier,38 F. Le Diberder,38 A. M. Lutz,38 B. Malacasa,38 P. Roudeau,38 A. Stocchi,38 G. Wormser,38 D. J. Lange,39 D. M. Wright,39 J. P. Coleman,39 J. R. Fry,30 E. Gabathuler,40 D. E. Hutchcroft,40 D. J. Payne,40 C. Touramanis,40 A. J. Bevan,40 F. Di Lodovico,40 R. Sacco,40 G. Cowan,47 J. Bougher,47 D. E. Hutchcroft,40 D. J. Payne,40 W. Park,74 M. V. Purohit,74 R. M. White,74,88 J. R. Wilson,74 A. Randle-Conde,75 S. J. Sekula,75 M. Bellis,76 P. R. Burchat,76 T. S. Miyashita,76 E. M. T. Puccio,76 M. S. Alam,77 J. A. Ernst,77 R. Gorodetsky,78 N. Guttman,78 D. R. Peimer,78 A. Soffer,78 S. M. Spanier,79 J. L. Ritchie,80 A. M. Ruland,80 R. F. Schwitters,80 B. C. Wray,80 J. M. Izen,81 X. C. Lou,81 F. Bianchi,82,83 F. De Mori,82,83 A. Filippi,82 D. Gamba,82,83 S. Zambito,82,83 L. Lanceri,84,85 L. Vitale,84,85 F. Martinez-Vidal,86 A. Oyanguren,86 P. Villanueva-Perez,86 H. Ahmed,87 J. Albert,87 Sw. Banerjee,87 F. U. Bernlochner,87 H. H. F. Choi,87 G. J. King,87 R. Kowalewski,87 M. J. Lewczuk,87 T. Lueck,87 I. M. Nugent,87
We measure the mass difference Δm between the $D^*(2010)^+ \rightarrow D^0 \pi^+$ and the D^0 and the natural linewidth Γ of the transition $D^*(2010)^+ \rightarrow D^0 \pi^+$. The data were recorded with the BABAR detector at center-of-mass energies at and near the $Y(4S)$ resonance, and correspond to an integrated luminosity of approximately 477 fb$^{-1}$. The D^0 is reconstructed in the decay modes $D^0 \rightarrow K^- \pi^+$ and $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$. For the decay mode $D^0 \rightarrow K^- \pi^+$ we obtain $\Gamma = (83.4 \pm 1.7 \pm 1.5) \text{ keV} \Delta m = (145425.6 \pm 0.6 \pm 1.8) \text{ keV}$, where the quoted errors are statistical and systematic, respectively. For the $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ mode we obtain $\Gamma = (83.2 \pm 1.5 \pm 2.0) \text{ keV} \Delta m = (145426.6 \pm 0.5 \pm 2.0) \text{ keV}$. The combined measurements yield $\Gamma = (83.3 \pm 1.2 \pm 1.4) \text{ keV} \Delta m = (145425.9 \pm 0.4 \pm 1.7) \text{ keV}$; the width is a factor of approximately 12 times more precise than the previous value, while the mass difference is a factor of approximately 6 times more precise.

The linewidth of the $D^{*}(2010)^+ (D^{*+})$ provides a window into a nonperturbative regime of strong interaction physics where the charm quark is the heavier meson constituent [1–3]. The linewidth provides an experimental test of D meson spectroscopic models, and is related to the strong coupling of the $D^* D \pi$ system $g_{D^*D\pi}$. In the heavy-quark limit, which is not necessarily a good approximation for the charm quark [4], this coupling can be related to the universal coupling of heavy mesons to a pion g_{π}. Since the decay $B^* \rightarrow B \pi$ is kinematically forbidden, it is not possible to measure the coupling $g_{B^*B\pi}$ directly. However, the D and B systems can be related through g_{π}.

The linewidht of the $D^{*}(2010)^+ (D^{*+})$ provides a window into a nonperturbative regime of strong interaction physics where the charm quark is the heavier meson constituent [1–3]. The linewidth provides an experimental test of D meson spectroscopic models, and is related to the strong coupling of the $D^* D \pi$ system $g_{D^*D\pi}$. In the heavy-quark limit, which is not necessarily a good approximation for the charm quark [4], this coupling can be related to the universal coupling of heavy mesons to a pion g_{π}. Since the decay $B^* \rightarrow B \pi$ is kinematically forbidden, it is not possible to measure the coupling $g_{B^*B\pi}$ directly. However, the D and B systems can be related through g_{π}.

10.1103/PhysRevLett.111.111801
allowing the calculation of \(g_{B^+B^0} \), which is needed for a model-independent extraction of \(|V_{ub}| \) [5,6] and which forms one of the larger theoretical uncertainties for the determination of \(|V_{ub}| \) [7].

We study the \(D^{++} \to D^0 \pi^+ \) transition, using the \(D^0 \to K^- \pi^+ \) and \(D^0 \to K^- \pi^+ \pi^- \pi^+ \) decay modes, to extract values of the \(D^{++} \) width \(\Gamma \) and the difference between the \(D^{++} \) and \(D^0 \) masses \(\Delta m_0 \). Values are reported in natural units and the use of charge conjugate reactions is implied throughout this Letter. The only prior measurement of the width is \(\Gamma = (96 \pm 4 \pm 22) \) keV by the CLEO Collaboration, where the uncertainties are statistical and systematic, respectively [8]. In the present analysis, we use a data sample that is approximately 50 times larger. This allows us to apply restrictive selection criteria to reduce background and to investigate sources of systematic uncertainty with high precision.

To extract \(\Gamma \), we fit the distribution of the mass difference between the reconstructed \(D^{++} \) and the \(D^0 \) masses, \(\Delta m \). The signal component is described with a \(P \)-wave relativistic Breit-Wigner (RBW) function convolved with a resolution function based on a GEANT4 Monte Carlo (MC) simulation of the detector response [9].

The FWHM of the RBW line shape (= 100 keV) is much less than the FWHM of the almost Gaussian resolution function which describes more than 99% of the signal (= 300 keV). Therefore, near the peak, the observed FWHM is dominated by the resolution function shape. However, the shapes of the resolution function and the RBW differ far away from the pole position. Starting (1.5–2.0) MeV from the pole position, and continuing to (5–10) MeV away (depending on the \(D^0 \) decay channel), the RBW tails are much larger. The observed event rates in this region are strongly dominated by the intrinsic linewidth of the signal, not the signal resolution function or the background rate. We use the very different resolution and RBW shapes, combined with the good signal-to-background rate far from the peak, to measure \(\Gamma \) precisely [10].

This analysis is based on a data set corresponding to an integrated luminosity of approximately 477 fb\(^{-1}\) recorded at, and 40 MeV below, the \(\Upsilon(4S) \) resonance [11]. The data were collected with the BABAR detector at the PEP-II asymmetric energy \(e^+e^- \) collider, located at the SLAC National Accelerator Laboratory. The BABAR detector is described in detail elsewhere [12,13]; we summarize the relevant features below. The momenta of charged particles are measured with a combination of a cylindrical drift chamber and a five-layer silicon vertex tracker (SVT), both operating within the 1.5 T magnetic field of a superconducting solenoid. Information from a ring-imaging Cherenkov detector is combined with specific ionization \((dE/dx)\) measurements from the SVT and the cylindrical drift chamber to identify charged kaon and pion candidates. Electrons are identified, and photons measured, with a CsI(Tl) electromagnetic calorimeter. The return yoke of the superconducting coil is instrumented with tracking chambers for the identification of muons. We remove a large amount of combinatorial and \(B \) meson decay background by requiring \(D^{++} \) mesons produced in \(e^+e^- \to c\bar{c} \) reactions to exhibit an \(e^+e^- \) center-of-mass-frame momentum greater than 3.6 GeV. The entire decay chain is fit using a kinematic fitter with geometric constraints at the production and decay vertex of the \(D^0 \) and the additional constraint that the \(D^{++} \) laboratory momentum points back to the luminous region of the event. The pion from \(D^{++} \) decay is referred to as the “slow pion” (denoted \(\pi^+_s \)) because of the limited phase space available in the \(D^{++} \) decay. The selection criteria are chosen to provide a large signal-to-background ratio \((S/B)\), in order to increase the sensitivity to the long signal (RBW) tails in the \(\Delta m \) distribution; they are not optimized for statistical significance. The criteria are briefly mentioned here and presented in detail in the archival reference for this analysis [10]. The resolution in \(\Delta m \) is dominated by the resolution of the \(\pi^+_s \) momentum, especially the uncertainty of its direction due to Coulomb multiple scattering. We implement criteria to select well-measured pions. We define our acceptance angle to exclude the very-forward region of the detector, where track momenta are not accurately reconstructed, as determined using an independent sample of reconstructed \(K^0_s \to \pi^- \pi^+ \) decays. The \(K^0_s \) momentum is observed to vary as a function of the polar angle \(\theta \) of the \(K^0_s \) momentum measured in the laboratory frame with respect to the electron beam axis. To remove contributions from the very-forward region of the detector we reject events with any \(D^{++} \) decay track for which \(\cos \theta > 0.89 \); this criterion reduces the final samples by approximately 10%.

Our fitting procedure involves two steps. In the first step we model the finite detector resolution associated with track reconstruction by fitting the \(\Delta m \) distribution for correctly reconstructed MC events using a sum of three Gaussians and a function to describe the non-Gaussian contributions from the very-forward region of the detector we reject events with any \(D^{++} \) decay track for which \(\cos \theta > 0.89 \); this criterion reduces the final samples by approximately 10%.

The second step uses the resolution shape parameters from the first step and convolves the Gaussian components with a RBW function to fit the measured \(\Delta m \) distribution in data. The RBW function is defined by

\[
\frac{d\Gamma(m)}{dm} = \frac{m\Gamma_{D^0D^{--}\pi^+}(m)m_0\Gamma}{(m_0^2 - m^2)^2 + [m_0 \Gamma_{total}(m)]^2},
\]

where \(\Gamma_{D^0D^{--}\pi^+} \) is the partial width to \(D^0 \pi^+_s \), \(m \) is the \(D^0 \pi^+_s \) invariant mass, \(m_0 \) is the invariant mass at the pole, \(\Gamma_{total}(m) \) is the total \(D^{++} \) decay width, and \(\Gamma \) is the natural linewidth we wish to measure. The partial width is defined by
Here, \(\ell = 1 \), \(F_{D^0 \rightarrow \pi^+ \pi^-}(\ell) = \sqrt{1 + \ell^2 p^2} \) is a Blatt-Weisskopf form factor for a vector particle with radius parameter \(r \) and daughter momentum \(p \), and the subscript zero denotes a quantity measured at the mass pole \(m_0 \) [14,15]. We use the value \(r = 1.6\text{GeV}^{-1} \) from Ref. [16]. For the purpose of fitting the \(\Delta m \) distribution, we obtain \(dI(\Delta m)/d\Delta m \) from Eqs. (1) and (2) through the substitution \(m = m(D^0) + \Delta m \), where \(m(D^0) \) is the nominal \(D^0 \) mass [17].

As in the CLEO analysis [8], we approximate the total \(D^{*+} \) decay width \(\Gamma_{\text{total}}(m) = \Gamma_{D^0 \rightarrow \pi^+ \pi^-}(m) \), ignoring the electromagnetic contribution from \(D^{*+} \rightarrow D^+ \gamma \). This approximation has a negligible effect on the extracted values, as it appears only in the denominator of the RBW function.

To allow for differences between MC simulation and data, the root-mean-square deviation of each Gaussian component of the resolution function is allowed to scale in the fit process by the common factor \((1 + \epsilon) \). Events that contribute to the non-Gaussian component have a well-understood origin (\(\pi_s \) decay in flight), which is accurately reproduced by MC simulation. In the fit to data, the non-Gaussian function has a fixed shape and relative fraction, and is not convolved with the RBW. The relative contribution of the non-Gaussian function is small (\(\lesssim 0.5\% \) of the signal), and the results from fits to validation signal-MC samples are unbiased without convolving this term. The background is described by a phase-space model of continuum background near the kinematic threshold [10]. We fit the \(\Delta m \) distribution from the kinematic threshold to \(\Delta m = 0.1665 \text{ GeV} \) using a binned maximum likelihood fit and an interval width of 50 keV.

In the initial fits to data, we observed a strong dependence of \(\Delta m_0 \) on the slow pion momentum. This dependence, which originates in the modeling of the magnetic field map and the material in the beam pipe and SVT, is not replicated in the simulation. Previous BABAR analyses have observed similar effects, for example, the measurement of the \(\Lambda_c^+ \) mass [18]. In that analysis the material model of the SVT was altered in an attempt to correct for the energy loss and the underrepresented small-angle multiple scattering (due to nuclear Coulomb scattering). However, the momentum dependence of the reconstructed \(\Lambda_c^+ \) mass could be removed only by adding an unphysical amount of material to the SVT. In this analysis we use a different approach to correct the observed momentum dependence and adjust track momenta after reconstruction.

We use a sample of \(K^0_S \rightarrow \pi^+ \pi^- \) events from \(D^{*+} \rightarrow D^0 \pi^+ \) decays, where \(D^0 \rightarrow K^0_S \pi^+ \pi^- \), and require that the \(K_S^0 \) daughter pions satisfy the same tracking criteria as the \(\pi^+ \) candidates for the \(D^0 \rightarrow K^+ \pi^- \) and \(D^0 \rightarrow K^- \pi^+ \pi^- \) signal modes. The \(K_S^0 \) decay vertex is required to lie inside the beam pipe and to be well separated from the \(D^0 \) vertex. These selection criteria yield an extremely clean \(K_S^0 \) sample (over 99.5\% pure), which is used to determine three fractional corrections to the overall magnetic field and to the energy losses in the beam pipe and, separately, in the SVT. We determine the best set of correction parameters by minimizing the difference between the \(\pi^+ \pi^- \) invariant mass.
TABLE I. Summary of the results from the fits to data for the $D^0 \to K^- \pi^+$ and $D^0 \to K^- \pi^+ \pi^- \pi^+$ channels (statistical uncertainties only). S/B is the ratio of the convolved signal PDF to the background PDF at the given Δm and ν is the number of degrees of freedom.

Parameter	$D^0 \to K^- \pi^+$	$D^0 \to K^- \pi^+ \pi^- \pi^+$
Number of signal events	$138\,536 \pm 383$	$174\,297 \pm 434$
Γ(keV)	83.3 ± 1.7	83.2 ± 1.5
Scale factor, $(1 + \epsilon)$	1.06 ± 0.01	1.08 ± 0.01
Δm_0(keV)	$145\,425.6 \pm 0.6$	$145\,426.6 \pm 0.5$
S/B at peak	2700	1130
$[\Delta m = 0.14542$(GeV)$]$	0.8	0.3
$[\Delta m = 0.1554$(GeV)$]$		
χ^2/ν	574/535	556/535

mass and the current world average for the K^0 mass (497.614 ± 0.024 MeV) [17] in 20 intervals of laboratory momentum in the range 0.0 to 2.0 GeV. The best-fit parameters increase the magnitude of the magnetic field by 4.5 G and increase the energy loss in the beam pipe and SVT by 1.8% and 5.9%, respectively [10]. The momentum dependence of Δm_0 in the preliminary results was mostly due to the slow pion. However, the correction is applied to all D^{*+} daughter tracks. All fits to data described in this analysis are performed using masses and Δm values calculated using corrected momenta. Simulated events do not require correction because the same field and material models used to propagate tracks are used for their reconstruction.

Figure 1 presents the results of the fits to data for both the $D^0 \to K^- \pi^+$ and $D^0 \to K^- \pi^+ \pi^- \pi^+$ decay modes. The normalized residuals show good agreement between the data and our fits. Table I summarizes the results of the fits to data for both D^0 decay modes. Table I also shows the S/B at the peak and in the high Δm tail of each distribution.

We estimate systematic uncertainties related to a variety of sources. The data are divided into disjoint subsets corresponding to intervals of D^{*+} laboratory momentum, D^{*+} laboratory azimuthal angle ϕ, and reconstructed D^0 mass, in order to search for variations larger than those expected from statistical fluctuations. These are evaluated using a method similar to the Particle Data Group scale factor [10,17]. The corrections to the overall momentum scale and dE/dx loss in detector material are varied to account for the uncertainty on the K^0_L mass. To estimate the uncertainty in the Blatt-Weisskopf radius we model the D^{*+} as a pointlike particle. We vary the parameters of the resolution function according to the covariance matrix reported by the fit to estimate systematic uncertainty of the resolution shape. We vary the end point used in the fit, which affects whether events are assigned to the signal or to the background component. This variation allows us to evaluate a systematic uncertainty associated with the background parametrization; within this systematic uncertainty, the residual plots shown in Fig. 1 are consistent with being entirely flat. Additionally, we vary the description of the background distribution near threshold. We fit MC validation samples to estimate systematic uncertainties associated with possible biases. Finally, we use additional MC validation studies to estimate possible systematic uncertainties due to radiative effects. All these uncertainties are estimated independently for the $D^0 \to K^- \pi^+$ and $D^0 \to K^- \pi^+ \pi^- \pi^+$ modes, as discussed in detail in Ref. [10] and summarized in Table II.

The largest systematic uncertainty arises from an observed sinusoidal dependence for Δm_0 on ϕ. Variations with the same signs and phases are seen for the reconstructed D^0 mass in both $D^0 \to K^- \pi^+$, $D^0 \to K^- \pi^+ \pi^- \pi^+$, and for the K^0_S mass. An extended investigation revealed

TABLE II. Summary of systematic uncertainties with correlation ρ between the $D^0 \to K^- \pi^+$ and $D^0 \to K^- \pi^+ \pi^- \pi^+$ modes. The $K^- \pi^+$ and $K^- \pi^+ \pi^- \pi^+$ invariant masses are denoted by $m(D^0_{\text{rec.}})$.

Source	$\sigma_{\text{sys}}(\Gamma)$ (keV)	$\sigma_{\text{sys}}(\Delta m_0)$ (keV)	ρ
Disjoint D^{*+} momentum variation	0.88	0.98	0.47
Disjoint $m(D^0_{\text{rec.}})$ variation	0.00	1.53	0.56
Disjoint azimuthal variation	0.62	0.92	-0.04
Magnetic field and material model	0.29	0.18	0.98
Blatt-Weisskopf radius	0.04	0.04	0.99
Variation of resolution shape parameters	0.41	0.37	0.00
Δm fit range	0.83	0.38	-0.42
Background shape near threshold	0.10	0.33	1.00
Interval width for fit	0.00	0.05	0.99
Bias from validation	0.00	1.50	0.00
Radiative effects	0.25	0.11	0.00
Total	1.5	2.6	1.7
that at least part of this dependence originates from small errors in the magnetic field from the map used in track reconstruction [10]. The important aspect for this analysis is that the average value is unbiased by the variation in ϕ, which we verified using the reconstructed K^0 mass value. The width does not display a ϕ dependence, but each mode is assigned a small uncertainty because some deviations from uniformity are observed. The lack of a systematic variation of Γ with respect to ϕ is notable because Δm_0 shows a clear dependence such that the results from the $D^0 \to K^-\pi^+$ and $D^0 \to K^-\pi^+\pi^-\pi^+$ samples are highly correlated and shift together. We fit the Δm_0 values with a sinusoidal function and take half of the amplitude as the estimate of the uncertainty.

The results for the two independent D^0 decay modes agree within their uncertainties. The dominant systematic uncertainty on the RBW pole position comes from the variation in ϕ (1.5–1.9 keV). For the decay mode $D^0 \to K^-\pi^+$ we find $\Gamma = (83.4 \pm 1.7 \pm 1.5)$ keV and $\Delta m_0 = (145425.6 \pm 0.6 \pm 1.8)$ keV, while for the decay mode $D^0 \to K^-\pi^-\pi^-\pi^+$ we find $\Gamma = (83.2 \pm 1.5 \pm 2.6)$ keV and $\Delta m_0 = (145426.6 \pm 0.5 \pm 2.0)$ keV. Accounting for correlations, we obtain the combined measurement values $\Gamma = (83.3 \pm 1.2 \pm 1.4)$ keV and $\Delta m_0 = (145429.9 \pm 0.4 \pm 1.7)$ keV.

Using the relationship between the width and the coupling constant [10], we can determine the experimental value of $g_{D^+D^0\pi^-}$. Using Γ and the masses from Ref. [17] we determine the experimental coupling $g_{D^+D^0\pi^-}^{\text{exp}} = 16.92 \pm 0.13 \pm 0.14$, where we have ignored the electromagnetic contribution from $D^{*+} \to D^+\gamma$. The universal coupling is directly related to $g_{D^+D^0\pi^-}$ by $\hat{g} = g_{D^+D^0\pi^-}f_\pi/(2\sqrt{m_{D^+}m_{D^0}})$. This parametrization is different from that used by CLEO [8]; it is chosen to match a common convention in the context of chiral perturbation theory, as in Refs. [4,19]. With this relation and $f_\pi = 130.41$ MeV, we find $\hat{g}^{\text{exp}} = 0.570 \pm 0.004 \pm 0.005$.

Di Pierro and Eichten [20] present results in terms of R, the ratio of the width of a given state to the universal coupling constant. At the time of their publication, $\hat{g} = 0.82 \pm 0.09$ was consistent with the values from all of the modes in Ref. [20]. In 2010, the BABAR Collaboration published much more precise mass and width results for the $D_s(2460)^0$ and $D_s^*(2460)^0$ mesons [21]. Using these values, our measurement of Γ, and the ratios from Ref. [20], we calculate new values for the coupling constant \hat{g}. Table III shows the updated results. We estimate the uncertainty on \hat{g} assuming $\sigma_\Gamma \ll \Gamma$. The updated widths reveal significant differences among the extracted values of \hat{g}. The order of magnitude increase in precision of the D^{*+} width measurement compared to previous studies confirms the observed inconsistency between the measured D^{*+} width and the chiral quark model calculation by Di Pierro and Eichten [20].

After completing this analysis, we became aware of Rosner’s prediction in 1985 that the D^{*+} natural linewidth should be 83.9 keV [22]. He calculated this assuming a single quark transition model to use P-wave $K^+ \to K\pi$ decays to predict P-wave $D^{*+} \to D\pi$ decay properties. Although he did not report an error estimate for this calculation in that work, his central value falls well within our experimental precision. Using the same procedure and current measurements, the prediction becomes (80.5 ± 0.1) keV [23]. A new lattice gauge calculation yielding $\Gamma(D^{*+}) = (76 \pm 7)\text{keV}$ has also been reported recently [1].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (U.S.), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (Netherlands), NFR (Norway), MES (Russia), MINECO (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation (U.S.). The University of Cincinnati is gratefully acknowledged for its support of this research through a WISE (Women in Science and Engineering) fellowship to C. Faby.

*Deceased.
†Present address: University of Tabuk, Tabuk 71491, Saudi Arabia.
‡Also at Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
§Present address: University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
∥Present address: University of South Alabama, Mobile, Alabama 36688, USA.
¶Also at Università di Sassari, Sassari, Italy.
**Present address: Universidad Técnica Federico Santa María, Valparaíso, Chile 2390123.
[1] D. Becirevic and F. Sanfilippo, Phys. Lett. B 721, 94 (2013).
[2] P. Singer, Acta Phys. Pol. B 30, 3849 (1999).
[3] D. Guetta and P. Singer, Nucl. Phys. B, Proc. Suppl. 93, 134 (2001).
[4] B. El-Bennich, M. A. Ivanov, and C. D. Roberts, Phys. Rev. C 83, 025205 (2011).
[5] G. Burdman, Z. Ligeti, M. Neubert, and Y. Nir, Phys. Rev. D 49, 2331 (1994).
[6] C. M. Arnesen, B. Grinstein, I. Z. Rothstein, and I. W. Stewart, Phys. Rev. Lett. 95, 071802 (2005).
[7] J. Bailey et al., Phys. Rev. D 79, 054507 (2009).
[8] A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D 65, 032003 (2002).
[9] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[10] J. P. Lees et al. (BABAR Collaboration), arXiv:1304.5009 [Phys. Rev. D (to be published)].
[11] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[12] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[13] B. Aubert et al. (BABAR Collaboration), arXiv:1305.3560 [Nucl. Instrum. Methods Phys. Res., Sect. A (to be published)].
[14] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (John Wiley & Sons, New York, 1952).
[15] F. von Hippel and C. Quigg, Phys. Rev. D 5, 624 (1972).
[16] A. J. Schwartz (for the E791 Collaboration), arXiv:hep-ex/0212057.
[17] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[18] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 72, 052006 (2005).
[19] A. Abada, D. Bećirević, Ph. Boucaud, G. Herdoiza, J. Leroy, A. Le Yaouanc, O. Pêne, and J. Rodríguez-Quintero, Phys. Rev. D 66, 074504 (2002).
[20] M. Di Pierro and E. Eichten, Phys. Rev. D 64, 114004 (2001).
[21] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 111101(R) (2010).
[22] J. L. Rosner, Comments Nucl. Part. Phys. 16, 109 (1986).
[23] J. L. Rosner (private communication); arXiv:1307.2550.