Single door laminoplasty plus posterior atlantoaxial dislocation with congenital malformation: A case report and review of literature

Yi Zhu, Xie-Xing Wu, An-Qing Jiang, Xue-Feng Li, Hui-Lin Yang, Wei-Min Jiang

Abstract

BACKGROUND
Posterior atlantoaxial dislocation (PAD) is a rare type of upper cervical spine disease. We sought to describe a unreported case of old PAD with os odontoideum (OO) and atlas hypoplasia (AH) and our unique treatment approach consisting of C1 single door laminoplasty with C1-3 posterior fixation and fusion.

CASE SUMMARY
A 70-year-old male patient who suffered from progressive aggravating numbness and limb weakness for 4 years without trauma, was diagnosed with old PAD with OO and AH. The patient underwent closed reduction and C1 single door laminoplasty with C1-3 posterior fixation and fusion instead of C1 laminectomy with occipitocervical fusion. During the 3-year follow-up, he was able to walk by himself instead of using a wheelchair and with a ± 25° range of head rotation as well as a ± 10° range of flexion-extension. Three-year follow-up images showed satisfactory reduction and fusion.

CONCLUSION
C1 single door laminoplasty with cervical fusion in PAD combined with spinal cord compression could be a suitable and effective surgical option. Compared with laminectomy and occipitocervical fusion, it retains more cervical range of motion, has a smaller incision and provides an adequate bone grafting space for atlantoaxial fusion.

Key Words: Posterior atlantoaxial dislocation; C1 laminoplasty; Os odontoideum; Atlas hypoplasia; Case report
This article describes an unreported case of old posterior atlantoaxial dislocation with os odontoideum and atlas hypoplasia. C1 single door laminoplasty with C1-3 posterior fixation and fusion was performed as surgical treatment, which retained partial range of motion, decreased operative trauma and provided an adequate bone grafting space for atlantoaxial fusion compared with laminectomy and occipitocervical fusion.

Citation: Zhu Y, Wu XX, Jiang AQ, Li XF, Yang HL, Jiang WM. Single door laminoplasty plus posterior fusion for posterior atlantoaxial dislocation with congenital malformation: A case report and review of literature. World J Clin Cases 2020; 8(23): 6136-6143
URL: https://www.wjgnet.com/2307-8960/full/v8/i23/6136.htm
DOI: https://dx.doi.org/10.12998/wjcc.v8.i23.6136

INTRODUCTION
Posteriar atlantoaxial dislocation (PAD) is a rare disease which only accounts for approximately 0.3% of all cervical spine injuries and 1.7% of upper cervical spine injuries[1]. To date, only 29 cases of PAD of several types have been reported, all of which have been due to traumatic accidents[2-29]. Herein, a unreported case of old PAD with os odontoideum (OO) and atlas hypoplasia (AH) is introduced, as well as our unique treatment approach consisting of C1 single door laminoplasty with C1-3 posterior fixation and fusion.

CASE PRESENTATION

Chief complaints
A 70-year-old male patient suffered from progressive aggravating numbness and weakness of limbs.

History of present illness
The patient’s symptoms started 5 years ago without any trauma or accident. When admitted to our hospital, he could only move using a wheelchair.

History of past illness
The patient had no previous relevant medical history.

Personal and family history
The patient had no previous relevant family history.

Physical examination
The results of physical examination revealed that the grip strength in both hands was grade 3, the muscle tension of both lower limbs was high, bilateral Hoffman sign was positive, knee and ankle reflexes were hyperactive, and ankle clonus was positive.

Laboratory examinations
Laboratory examinations showed no obvious deficits.

Imaging examinations
Considering that there was no history of trauma, and the borders of the odontoid free body and basis were smooth and rounded, an old PAD combined with OO was diagnosed based on computed tomography (CT) results (Figure 1A). The C1 inner sagittal diameter was 22.51 mm (Figure 1B) which supported the diagnosis of AH[30]. The results of magnetic resonance imaging (MRI) (Figure 1C) showed that the spine cord was constricted by the odontoid process and the signal of the spine had changed at the level of atlantoaxial dislocation.
Figure 1 Preoperative images. A: Parasagittal computed tomography (CT) showing the posterior atlantoaxial dislocation combined with os odontoideum; B: Axial CT scan, demonstrating the C1 inner sagittal diameter (white line) = 22.51 mm and the canal sagittal diameter (black line) = 12.00 mm; C: Parasagittal magnetic resonance imaging.

FINAL DIAGNOSIS

The final diagnosis in the presented case was an old PAD combined with OO and AH.

TREATMENT

Due to the mechanism of posterior dislocation, skull traction was performed under a flexed position of the cervical spine with an initial weight of 3.5 kg and gradually increased to 7.5 kg, and the flexed angle also increased synchronously. Lateral radiographs (Figure 2A-C) were obtained on the fourth day, the eighth day and the twelfth day after skull traction. MRI (Figure 2D) after skull traction demonstrated satisfactory reduction of the dislocation, but the cervical canal was compressed again by the posterior arch of C1 due to AH. Therefore, decompression surgery was necessary.

The surgery was performed under general anesthesia and in the prone position. Cortical somatosensory evoked potential (CSEP) was utilized to monitor the neurological condition. The reference frame of the 3-dimensional navigation system was placed on the spinous process of C4 through an isolated small incision. Then the surgeons inserted 5 pedicle screws in C1, C2 (right side) and C3 under the guidance of the O-arm machine and navigation. The C1 single door laminoplasty was performed with the assistance of a surgical electric grinder and a piezosurgery osteotomy. Bone autograft mixed with bone allograft was placed between C1 and C2 posterior arch as an atlantoaxial fusion. There was no specific medication except routine methylprednisolone, omeprazole, antibiotics and dehydration.
OUTCOME AND FOLLOW-UP

The grip strength in both hands was improved after skull traction and surgery, as well as muscle tension of the lower limbs. Neurological signs including Hoffman, Babinski and ankle clonus returned to normal. During the 3-year follow-up, he was able to walk by himself instead of using a wheelchair and with a ± 25° range of head rotation as well as a ± 10° range of flexion-extension. Three-year follow-up images showed satisfactory reduction and fusion (Figure 3).

DISCUSSION

Literature review

A total of 29 PAD patients with or without fracture and neurological deficit were found following a thorough literature review of PubMed, Elsevier, MEDLINE and Web of Science (Table 1). The rarity of this dislocation is mainly due to the anatomical locking structure as the dorsal ligament of the osseo-ligamentous ring is easily damaged compared to the odontoid process and hence anterior atlantoaxial dislocation occurs more frequently [31]. The treatment methods for PAD include closed reduction (mostly skull traction), open reduction (mostly odontoidectomy), anterior odontoid screw fixation and posterior fusion. Skull traction was first reported in a case of PAD without fracture or neurological deficit by Haralson et al [2] and gradually became the first choice for conservative treatment and preoperative reduction. However, closed reduction was considered to be a risky procedure especially when the patient was under anesthesia. Sud et al [11] reported a case who developed quadripareisis during traction which might lead to transient over-distraction of the spinal cord. Open reduction was considered a second choice after ineffective closed reduction [3,13-19].

Figure 2 Images of reduction. A: Lateral radiographs 4 d after traction; B: Lateral radiographs 8 d after traction; C: Lateral radiographs 12 d after traction, showing satisfactory closed reduction; D: Post-reductional parasagittal magnetic resonance imaging, demonstrating that the spinal cord was still compressed by C1 posterior arch.
Table 1 Review of previously reported posterior atlantoaxial dislocation cases

No.	Ref.	Patient	Fracture	Neurological deficit	Treatment
1	Haralson et al[2], 1969	30, M	N	N	CR + WF
2	Sassard et al[3], 1974	20, F	N	Y	CR
3	Patzakis et al[4], 1974	37, M	N	N	CR
4	Fox et al[5], 1977	65, M	Y	Y	OR + WF
5	Jamshidi et al[6], 1983	22, M	N	N	CR + WF
6	Autricque et al[7], 1986	45, M	Y	Y	CR
7	Autricque et al[8], 1986	63, M	N	N	CR + OCF
8	Wong et al[9], 1991	23, M	N	Y	CR + AAF
9	Fujimura et al[10], 1997	54, M	N	N	CR
10	Carroll et al[11], 2002	19, F	N	Y	CR
11	Sud et al[12], 2002	38, M	N	N	OR + SF
12	Neumann et al[13], 2003	22, M	N	N	CR
13	Yoon et al[14], 2003	64, M	N	Y	OR + AAF
14	Chaudhary et al[15], 2008	35, F	N	Y	CR
15	Amirjamshidi et al[16], 2009	31, M	N	Y	OR + AAF
16	Jiang et al[17], 2010	48, M	N	N	OR + SF
17	Zhen et al[18], 2011	44, M	N	N	OR + AAF
18	Zhang et al[19], 2012	38, M	Y	Y	OR
19	Moreau et al[20], 2012	65, M	Y	N	OR + OCF
20	Kambali et al[21], 2013	32, M	N	Y	CR + AAF
21	Riouallon et al[22], 2014	25, M	N	Y	CR + SF
22	Meng et al[23], 2014	47, F	Y	N	CR + WF
23	Xu et al[24], 2015	54, M	N	Y	OR + AAF
24	Hu et al[25], 2015	50, M	N	Y	OR + AAF
25	He et al[26], 2016	72, M	Y	Y	OR + C1-3 F
26	Minyu et al[27], 2018	30, M	Y	N	CR + AAF
27	Ghailane et al[28], 2019	89, M	Y (C1 fracture)	N	CR
28	Ning et al[29], 2019	52, M	N	N	CR + AAF
29	Nowell et al[30], 2019	71, M	Y (Jefferson fracture)	N	CR + AAF
30	Our case	70, M	Y (OO)	Y (AH)	CR + C1-3 F

1Transoral atlantoaxial reduction plate. M: Male; F: Female; Y: Yes (Type II Odontoid fracture); N: No; CR: Closed reduction; OR: Open reduction; WF: Wiring fusion; OCF: Occipitocervical fusion; AAF: Atlantoaxial fusion; SF: Screw fixation; OO: Os odontoideum; AH: Atlas hypoplasia; F: Fusion.

To date, there is no consensus as to whether surgical fixation and fusion should be performed. An atypical case of PAD with C1 anterior arch fracture was treated by closed reduction under anesthesia without fusion because it was believed that there was no ligamentous instability due to the mechanism of PAD[27]. Hu et al[23] concluded that the need for fusion after successful closed reduction depends on the integrity of the transverse ligament and the stability of the cervical spine. However, evaluation of the condition of ligaments and stability of the cervical spine remains to be solved. Of these previously published cases, 21/29 underwent fixation or fusion, which indicated that most of the doctors were inclined to strengthen the stability by fusion.

Innovation points
What distinguishes our case from previous cases is the existence of OO and AH, as
well as the adoption of decompression and fusion as the surgical strategy. Hypoplasia occurs when the sagittal diameter of the atlas is less than or equal to 26 mm\cite{30}. Fareed et al\cite{32} indicated that PAD was more likely to occur in OO patients due to deficient ossification of the odontoid and hyperlaxity of the ligament ring.

During the treatment of our patient, two important points should be noted. One was the preoperative flexed-positional skull traction. Soft and scar tissue adhesion caused by an old PAD could form a strong counterforce against rapid reduction, and long-term high weight traction could stretch the bound tissue gently and gradually. Additionally, the mildness and progressivity of sustained traction might effectively reduce the risk of transient over-distraction and stimulation of the spinal cord. Preoperative closed reduction is safer than intraoperative closed reduction under anesthesia, especially for old dislocations.

The other point is the unique surgical procedure. The conventional surgical procedure might be C1 laminectomy with occipitocervical fusion\cite{33}, which has the disadvantages of larger surgical injury and less range of head motion compared with C1 laminoplasty with cervical fusion that has not been reported so far. Boniello et al\cite{34} suggested that laminoplasty results in decreased length of stay, readmissions and complications compared with laminectomy. Noguchi et al\cite{35} indicated that laminoplasty was a safe and useful procedure for AH. To the best of our knowledge, C1 laminoplasty can retain one side of the pedicle, which makes atlantoaxial fusion possible and results in an adequate bone grafting space to increase the success rate of fusion. Yang et al\cite{36} demonstrated that bone grafting of the atlantoaxial joint plays an important role in increasing the fusion rate of atlantoaxial fusion. Conversely, C1 laminectomy would inevitably lead to occipitocervical fusion, which would lead to the loss of more cervical range of motion with increased operative injury.

Figure 3 Postoperative images during the 3-yr follow up. A: Lateral radiograph indicating stable fixation and fusion; B: Axial computed tomography scan, demonstrating the C1 inner sagittal diameter (white line) = 32.75 mm and the canal sagittal diameter (black line) = 22.24 mm; C: Parasagittal magnetic resonance imaging, demonstrating satisfactory release of compression caused by the odontoid process and C1 posterior arch.
CONCLUSION

C1 single door laminoplasty with fusion for PAD combined with spinal cord compression could be a suitable and effective surgical option. Compared with laminectomy and occipitocervical fusion, it retains partial range of motion, decreases operative injury and provides an adequate bone grafting space for atlantoaxial fusion. An effective flexed-positional skull traction is vital in patients diagnosed with PAD. These findings require verification by further prospective, randomized studies.

REFERENCES

1. Glezes V, Jacquot FP, Signoret F, Feron JM. Combined injuries in the upper cervical spine: clinical and epidemiological data over a 14-year period. Eur Spine J 2000; 9: 386-392 [PMID: 11057531 DOI: 10.1007/s005860000153]
2. Haralson RH 3rd, Boyd HB. Posterior dislocation of the atlas on the axis without fracture. Report of a case. J Bone Joint Surg Am 1969; 51: 561-566 [PMID: 5781589 DOI: 10.2106/00004623-196951030-00016]
3. Sassard WR, Heining CF, Pitts WR. Posterior atlanto-axial dislocation without fracture. Case report with successful conservative treatment. J Bone Joint Surg Am 1974; 56: 625-628 [PMID: 4822522 DOI: 10.2106/00004623-197456030-00023]
4. Patzakis MJ, Knopf A, Elfering M, Hoffer M, Harvey JP Jr. Posterior dislocation of the atlas on the axis; a case report. J Bone Joint Surg Am 1974; 56: 1260-1262 [PMID: 4436359 DOI: 10.2106/00004623-197456060-00020]
5. Fox JL, Jerez A. An unusual atlanto-axial dislocation. Case report. J Neurosurg 1977; 47: 115-118 [PMID: 86499 DOI: 10.3171/jns.1977.47.1.0115]
6. Jamshidi S, Dennis MW, Azzam C, Karim N. Traumatic posterior atlantoaxial dislocation without neurological deficit: case report. Neurosurgery 1985; 12: 211-213 [PMID: 6835503 DOI: 10.1227/00006123-198507000-00014]
7. Autricque A, Lesoin F, Villette L, Franz K, Pruvot JP, Jomin M. [Fracture of the odontoid process and C1-C2 Lateral luxation. 2 cases]. Ann Chir 1986; 40: 397-400 [PMID: 3592547]
8. Wong DA, Mack RP, Craigmiele TK. Traumatic atlantoaxial dislocation without fracture of the odontoid. Spine (Phila Pa 1976) 1991; 16: 587-589 [PMID: 2053005 DOI: 10.1097/00007632-199110000-00021]
9. Fujimura Y, Nakamura M, Kobayashi K. Posterior dislocation of the atlas on the axis without fracture: a case report. J Orthopaedic Surg 1997; 5: 81-84
10. Shih WJ. Sample size re-estimation - journey for a decade. Stat Med 2001; 20: 515-8; discussion 519 [PMID: 11223897 DOI: 10.1002/1097-0258(200102150-00026]
11. Sud S, Chaturvedi S, Buxi TB, Singh S. Posterior atlantoaxial dislocation without associated fracture. Skeletal Radiol 2002; 31: 529-531 [PMID: 12195506 DOI: 10.1007/s00256-002-0540-x]
12. Neumann U, Urbanski H, Riedel K. Posterior atlantoaxial dislocation without fracture of the odontoid. A case report. J Bone Joint Surg Am 2003; 85: 1343-1346 [PMID: 12851361 DOI: 10.2106/00004623-200307000-00023]
13. Yoon DH, Yang KH, Kim KN, Oh SH. Posterior atlantoaxial dislocation without fracture. Case report. J Neurosurg 2003; 98: 73-76 [PMID: 12546392 DOI: 10.3171/jns.2003.98.1.0073]
14. Chaudhary R, Chaudhary K, Metkar U, Rathod A, Raut A, Sanghvi D. Posterior atlantoaxial dislocation without odontoid fracture. Skeletal Radiol 2008; 37: 361-366 [PMID: 18259747 DOI: 10.1007/s00256-007-0439-7]
15. Amirjamshidi A, Abbassion K, Khazeni far M, Esmailijah A. Traumatic rotary posterior dislocation of the atlas on the axis without fracture. Report of a case and review of literature. Surg Neurol 2009; 71: 92-97; discussion 98 [PMID: 18262622 DOI: 10.1016/j.surneu.2007.07.023]
16. Jiang LS, Shen L, Wang W, Hu H, Dai LY. Posterior atlantoaxial dislocation without fracture and neurologic deficit: a case report and the review of literature. Eur Spine J 2010; 19 Suppl 2: S118-S123 [PMID: 19714372 DOI: 10.1007/s00586-009-1150-2]
17. Zhen P, Lan X, Yang LW. Traumatic posterior atlantoaxial dislocation without associated fracture and neurological deficit. Arch Orthop Trauma Surg 2011; 131: 681-685 [PMID: 21207046 DOI: 10.1007/s00402-010-1228-7]
18. Zhang K, Xu J, Wang Q, Wang G, Wu Z, Xia H, Yin QS. Treatment of dens fractures with posterior atlantoaxial dislocation with transoral atlantoaxial reduction plate surgery: case report and introduction of a novel treatment option. Spine (Phila Pa 1976) 2012; 37: E451-E455 [PMID: 21971128 DOI: 10.1097/BRS.0b013e31823735f5]
19. Moreau PE, Nguyen V, Atallah A, Kassab G, Thiog'o MW, Laporte C. Traumatic atlantoaxial dislocation with odontoid fracture: A case report. Orthop Traumatol Surg Res 2012; 98: 613-617 [PMID: 22901253 DOI: 10.1016/j.otsr.2012.03.012]
20 Kambali M, Anand HV, Priyamargavi H, Varma RB. Traumatic posterior atlantoaxial dislocation without related fractures of C1-C2. Indian J Orthop 2013; 47: 624-629 [PMID: 24379471 DOI: 10.4103/0019-5413.121597]

21 Riouallon G, Pascal-Moussellard H. Atlanto-axial dislocation complicating a type II odontoid fracture. Reduction and final fixation. Orthop Traumatol Surg Res 2014; 100: 341-345 [PMID: 24725907 DOI: 10.1016/j.otsr.2013.12.026]

22 Meng H, Gao Y, Li M, Luo Z, Du J. Posterior atlantoaxial dislocation complicating odontoid fracture without neurologic deficit: a case report and review of the literature. Skeletal Radiol 2014; 43: 1001-1006 [PMID: 24469150 DOI: 10.1007/s00256-013-1809-y]

23 Xu Y, Li F, Guan H, Xiong W. Traumatic Posterior Atlantoaxial Dislocation Without Associated Fracture but With Neurological Deficit: A Case Report and Literature Review. Medicine (Baltimore) 2015; 94: e1768 [PMID: 26512572 DOI: 10.1097/MD.0000000000001768]

24 Hu D, Yang X, Wang J. Traumatic Posterior Atlantoaxial Dislocation Without Fracture of Odontoid Process: A Case Report and Systematic Analysis of 19 Cases. J Orthop Trauma 2015; 29: e342-e345 [PMID: 26131568 DOI: 10.1097/BOT.0000000000000334]

25 He DW, Huang WJ, Sheng XY, Wu LJ, Fan SW. Atlantoaxial Joint Interlocking Following Type II Odontoid Fracture Associated with Posterolateral Atlantoaxial Dislocation: a case report and review of Published reports. Orthop Surg 2016; 8: 405-410 [PMID: 27627726 DOI: 10.1111/os.12255]

26 Minyu Z, Shiyang W, Suraj C, Kelun H, Chaowei L, Honglin T. Traumatic Posterolateral C1-C2 Dislocation Complicated with Locked Lateral Mass and Type II Odontoid Fracture-5-Year Follow-up. World Neurosurg 2018; 114: 330-334 [PMID: 29626690 DOI: 10.1016/j.wneu.2018.03.191]

27 Ghailane S, Alsofyani MA, Pointillart V, Bouloussa H, Gille O. Traumatic posterior Atlanto-axial dislocation: case report of an atypical C1-C2 dislocation with an anterior arch fracture of C1. BMC Musculoskelet Disord 2019; 20: 612 [PMID: 31861991 DOI: 10.1186/s12891-019-3005-2]

28 Ning S, Yang S, Ding W, Ma T, Wu Z. Posterior atlantoaxial dislocation without fracture or neurological symptoms treated by transoral-posterior approach surgery: a case report and literature review. Eur Spine J 2019; 28: 37-40 [PMID: 30448988 DOI: 10.1007/s00586-018-5823-6]

29 Nowell M, Nelson R. Traumatic posterior atlantoaxial dislocation with associated C1 Jefferson fracture and bilateral vertebral artery occlusion without odontoid process fracture or neurological deficit. Eur Spine J 2019; 28: 9-12 [PMID: 29961910 DOI: 10.1007/s00586-018-5678-x]

30 Kelly MP, Oshima Y, Yeom JS, Agarwal R, Bajwa NS, Riew KD. Defining hypoplasia of the atlas: a cadaveric study. Spine (Phila Pa 1976) 2014; 39: E1243-E1247 [DOI: 25029221]

31 Bohlman HH. Acute fractures and dislocations of the cervical spine. An analysis of three hundred hospitalized patients and review of the literature. J Bone Joint Surg Am 1979; 61: 1119-1142 [PMID: 511875 DOI: 10.2106/0004623-197961080-00001]

32 Jumah F, Alkhodour S, Manssou S, He P, Hruby A, Adeeb N, Hanif R, Mortazavi MM, Tubbs RS, Nanda A. Os Odontoideum: A Comprehensive Clinical and Surgical Review. Cureus 2017; 9: e1551 [PMID: 29018648 DOI: 10.7759/cureus.1551]

33 Tarukado K, Ikuta K, Iida K, Tono O, Doi T, Harimaya K. Radiographic and Clinical Results of C1 Laminoplasty for the Treatment of Compressive Myelopathy. Asian Spine J 2020; 14: 445-469 [PMID: 31992026 DOI: 10.31616/asj.2019.0190]

34 Boniello A, Petruccelli P, Kerbel Y, Horn S, Bortz CA, Brown AE, Pierce KE, Alas H, Khalsa A, Passias P. Short-term Outcomes Following Cervical Laminoplasty and Decompression and Fusion With Instrumentation. Spine (Phila Pa 1976) 2019; 44: E1018-E1023 [PMID: 30973510 DOI: 10.1097/BRS.0000000000003057]

35 Noguchi A, Harada Y, Okabe S, Kohno T, Kamata K, Takahashi H. [A surgical case of cervical canal stenosis caused by atlas hypoplasia in an elderly patient]. No Shinkei Geka 1998; 26: 623-626 [PMID: 966496]

36 Yang JS, Chen H, Chu I, Liu P, Yan L, Liu TJ, Tian F, Zhang JN, Hao DJ. Does Additional Bone Grafting of Atlantoaxial Joint Increase Bone Fusion Rate of Iliac Crest Autograft in Posterior Occipitocervical Fusion? World Neurosurg 2019; 125: e29-e34 [PMID: 30711657 DOI: 10.1016/j.wneu.2018.12.155]
