Determination of Norfloxacin and Tinidazole In Pharmaceutical Formulation by using Chemometric-Assisted UV-Spectrophotometric Method

Ankit Bhalchandra More\(^2\)*, Rajendra B. Patil\(^1\), Sheetal Patil\(^2\)

1. JSPM’s Rajarshi Shahu College of Pharmacy and Research, Tathawade, Pune- 411033, Maharashtra, India
2. Alard College of Pharmacy, Marunje, Hinjewadi, Pune-411057, Maharashtra, India

ABSTRACT

This presented work is based on application of two multivariate calibration methods for simultaneous UV-Visible spectrophotometric determination of active substances in combined pharmaceutical formulation contained of Tinidazole (TINI) and Norfloxacin (NFX). The methods used were Partial Least Square (PLS) and Principal Component Regression (PCR). The spectra of both NFX and TINI were recorded at concentrations within their linear range 2.0-12.0 μg/mL for NFX and 5.0-30.0 μg/mL for TINI. The 29 set of mixtures were used for calibration and 07 set of mixtures were used for validation in the wavelength range of 260 to 320 nm with the wavelength interval λ= 0.2 nm in methanol. The methods were validated as per International Conference on Harmonization Q2 (R1) (ICH) guidelines. These methods were successfully applied for determination of drugs in pharmaceutical formulation (tablet) with no interference of the excipients as indicated by the recovery study results. The proposed methods are simple, rapid and can be easily used as an alternative analysis tool in the quality control as well as in process control of drugs and formulation.

Keywords: Norfloxacin, Tinidazole, PLS, PCR, Validation.

*Corresponding Author Email: ankit12more@gmail.com
Received 20 May 2018, Accepted 20 June 2018*
INTRODUCTION

Norfloxacin (NFX) is chemically 1-ethyl-6-fluoro-4-oxo-7-piperazin-1-yl-1H-quinoline-3-carboxylic acid [Fig.1(a)]. NFX is a bactericidal agent used to treat variety of bacterial infections. It works by stopping the growth of bacteria. The main indication includes urinary tract infections [1]. Tinidazole (TINI) is chemically 1-(2-ethylsulfonylethyl)-2-methyl-5-nitro-imidazole [Fig.1(b)]. TINI is an anti-parasitic drug used against protozoan infections. It is widely known throughout Europe and the developing world as a treatment for a variety of amoebic and parasitic infections [2].

Several methods are reported for quantitative determination of NFX and TINI in single and in combination such as UV [3-5] and RP-HPLC [6-11].

Chemometric is the science of extracting information from chemical systems. Multivariate calibration methods e.g., multiple linear regression (MLR), principle component regression (PCR) and partial least squares (PLS), utilizing spectrophotometric data are the important chemometric approach for determination of mixtures including drugs combination [12]. As there are no reports on chemometric analysis of these drugs, this work was undertaken which presents simple, accurate and reproducible multivariate spectrophotometric methods for simultaneous determination of NFX and TINI in tablet dosage form.

![Figure. 1: Structure of a) Norfloxacin (NFX) and b) Tinidazole (TINI)](image)

MATERIALS AND METHOD

Instrumentation

Double beam UV- Vis spectrophotometer (Jasco V-550) with matched pair of 1cm quartz cells were used to record spectra of all solutions. The spectra were recorded at spectral band width of 2.0 nm, scanning speed 100 nm/min and data pitch 0.2 nm. Unscrambler X (10.3) (64-bit) trial version and Microsoft Excel 2013 were used for model generation and application of chemometric.
Material and Reagents
Reference standard of NFX and TINI were obtained from Cipla Ltd. and Aarti Drugs Ltd., Mumbai as gift samples and methanol (AR grade purchased from LOBA Chemie, India). NORFLOX-TZ tablets manufactured by Cipla Ltd. containing Norfloxacin IP 400 mg and Tinidazole IP 600 mg were procured from local pharmacy shop.

One component calibration
To find linear concentration of each drug, one component calibration was performed. Linear dynamic ranges were studied in the concentration range of 2.0-12.0 μg/mL and 5.0-30.0 μg/mL for both NFX and TINI respectively. Absorbance values were recorded at λ_{max} of each drug (273 nm for NFX and 311 nm for TINI) against methanol as blank. Linear dynamic range for each compound was determined by least-square linear regression of concentration and the corresponding absorbance. Fig. 2 represents overlain spectra of NFX and TINI and their mixture.

![Figure 2: Overlay Spectra of NFX, TINI, and Mixture](image)

Preparation of standard stock solution
Stock solution of NFX and TINI were prepared by dissolving accurately weighed 10 mg of standard drugs in 10 mL of methanol, separately. The concentration of NFX and TINI were 1000 μg/mL from which further 2.5 mL was pipetted and diluted to 25 mL to achieve final concentration of 100 μg/mL of NFX and TINI, respectively.

Preparation of working stock solution
Working standard solutions were prepared from standard stock solution of 100 μg/mL by appropriate dilution with methanol to obtain final concentration of 2, 4, 6, 8, 10, and 12 μg/mL and
5, 10, 15, 20, 25, and 30 μg/mL for NFX and TINI, respectively.

Construction of calibration and validation set

A total set of 36 mixtures were prepared by combining working standard of NFX and TINI in their linear concentration range of 2.0-12.0 μg/mL and 5.0-30.0 μg/mL (Table I). From these 29 mixtures were used for calibration set and 07 mixtures were used for validation set by random selection. The absorbance spectra were recorded in range of 260-320 nm with 0.2 nm interval. The spectra were saved as ASCII (.txt) format which were further extracted in MS-Excel as required by Unscrambler software for model generation. The PCR and PLS models were developed utilizing absorption data using Unscrambler software. Selection of proper number of latent variables for development of model was necessary to obtain good prediction. Leave-one-out (LOO) cross validation method was used to obtain necessary number of latent variables (LVs), as shown in Fig. 3 and calculated using formula [13],

\[
\text{RMSECV} = \sqrt{\frac{\sum (C_{\text{act}} - C_{\text{pre}})^2}{I_c}}
\]

Where,

- RMSECV = Root mean square error of cross validation
- Cact = actual concentration of calibration set
- Cpre = predicted concentration of validation set
- Ic = Total number of samples in calibration set

![Figure 3: Explained Variance Describing Number of Optimum PCS (Principle Components)](image-url)
After the PCR and PLS models have been constructed, it was found that the optimum number of LVs were two factors for both PCR and PLS. For validation of generated models, concentration in validation set was predicted by using proposed PCR and PLS models (Table II). The validation of all methods was performed as per ICHQ2 (R1)[14]

Table I: Composition of Calibration and Validation Sets.

MIX. NO.	NFX (μg/mL)	TINI (μg/mL)	MIX. NO.	NFX (μg/mL)	TINI (μg/mL)
1	2	10	19	8	20
2	2	15	20	8	25
3	2	25	21	8	30
4	2	30	22	10	15
5	4	5	23	10	20
6	4	10	24	10	25
7	4	15	25	10	30
8	4	20	26	12	5
9	4	25	27	12	10
10	4	30	28	12	15
11	6	5	29	12	25
12	6	10	30	2	5
13	6	15	31	2	20
14	6	20	32	6	30
15	6	25	33	10	5
16	8	5	34	10	10
17	8	10	35	12	20
18	8	15	36	12	30

* Mix No. 1-28 calibration set
* Mix No. 29-36 validation set

Table II: Predicted Results for Validation Set by PCR and PLS Method.

Method	NFX	TINI	PLS	NFX	TINI	PCR	NFX	TINI	
Actual(μg/mL)	Predicted	% R*							
2	5	2.1936	109.68	6.0944	121.888	2.1936	109.68	6.0944	121.888
2	20	2.4391	121.955	20.3889	121.955	2.4391	121.955	20.3889	121.955
6	30	6.7805	113.0083	29.9226	99.742	6.7805	113.0083	29.9226	99.742
10	5	10.3159	103.159	7.0969	141.938	10.3159	103.159	7.0969	141.938
10	10	10.6433	106.433	9.1402	91.402	10.6433	106.433	9.1402	91.402
12	20	12.4715	103.9292	21.0889	105.4445	12.4715	103.9292	21.0889	105.4445
12	30	12.4351	103.6258	31.0103	103.3677	12.4351	103.6258	31.0103	103.3677

* % R: percent recovery

Assay of marketed preparation

20 tablets of NORFLOX-TZ were accurately weighed and finely powdered. Tablet powder equivalent to 10 mg of TINI (6.66 mg of NFX) was taken and transferred to 10 mL volumetric
flask and was diluted to 10 mL with methanol. The solution was sonicated for 10 minutes. This solution was then filtered with help of Whatman filter paper no. 41. The 1 mL of filtrate solution was diluted to 10 mL with methanol. Further 0.7 mL and 1 mL of this solution was diluted to 10 mL with methanol to get final concentration of 7 μg/mL and 10 μg/mL of NFX and TINI, respectively. The procedure was repeated 6 times for tablet formulation. The results of assay are presented in Table III.

Table III: Assay Result for NFX and TINI in Tablet (NORFLOX-TZ) by Proposed Methods

Method	Actual (μg/mL)	NFX	TINI	Predicted (μg/mL)	Percentage Recovery				
NFX	6.66	10	100	6.669	99.96	6.645	99.775	9.998	99.98
TINI	10			6.621	99.414	6.561	98.514	10.3345	103.345
NFX	6.66	10	99.264	6.611	10.2686	6.683	100.345	10.2689	102.689
TINI	6.66	10	104.441	6.589	104.441	6.528	98.018	10.4512	104.512
NFX	6.66	10	99.114	6.601	102.217	6.652	99.880	10.2245	102.245
TINI	6.66	10	104.091	6.7001	104.901	6.6385	99.677	10.4945	104.945
MEAN	6.63185	0.65029	0.176531	1.765308	0.059798	0.897873	0.178672		
SD	0.043309	0.65029	0.176531	1.765308	0.059798	0.897873	0.178672		

Accuracy study

The accuracy study was carried out at three levels 50 %, 100 %, and 150 % of assay concentration. Calculated amount of NFX and TINI from standard solutions were spiked into sample solution and scanned in range of 260-320 nm. Concentrations were predicted by using developed PCR and PLS models. Accuracy data is presented in Table IV and Table V.

Table IV: Accuracy Data of NFX by PCR and PLS Models.

Level %	Sample Conc. (μg/mL)	Amount added (μg/mL)	Total Conc. (μg/mL)	Predicted Conc. (μg/mL)	% Recovery	% RSD	PCR	PLS	PCR	PLS	PCR	PLS	PCR	PLS
50 %	6.66	2	8.66	8.4544	97.626	1.2513	1.472							
	8.5023	8.7011	98.179	100.47532	569									
	8.3254	8.5261	99.985	98.454										
100 %	6.66	4	10.66	10.5633	99.09	0.9449	0.499							
	10.4589	10.4588	98.11	98.113	31									
	10.3597	10.3596	97.18	97.182										
150 %	6.66	6	12.66	12.548	99.115	1.1728	1.168							
	12.5646	12.5644	99.246	99.24	771									
	12.562	12.5621	99.226	99.23										

www.ajptr.com
Table V: Accuracy data of TINI by PCR and PLS models

LEVEL %	Sample Conc. μg/mL	Amount added μg/mL	Total Conc. μg/mL	Predicted Conc. μg/mL	% Recovery	% RSD							
				PCR	PLS	PCR	PLS	PCR	PLS	PCR	PLS	PCR	PLS
50 %	10	5	15	15.346	15.356	102.307	102.373	1.62116	1.573311				
				15.456	15.458	103.040	103.053						
				15.8269	15.8213	105.513	105.475						
100 %	10	10	20	20.8456	20.8458	104.228	104.229	1.266973	1.2615				
				20.5745	20.570	102.87	102.85						
				20.15	20.198	100.75	100.99						
150 %	10	15	25	25.215	25.2105	100.860	100.842	0.708	0.699				
				25.4896	25.4863	101.958	101.945						
				25.153	25.156	100.612	100.624						

Precision

Precision was carried at three concentration levels (4, 6, 8 μg/mL for NFX and 10, 15, 20 μg/mL for TINI) in three replicates at each level. The results of which are presented in Table VI.

Table VI: Precision Results Obtained Using Developed PCR and PLS Models.

Amount Taken μg/mL	Predicted Conc. μg/mL	% Recovery	% RSD						
	PCR TINI	PLS TINI	NFX	PCR TINI	PLS TINI	NFX	PCR TINI	PLS TINI	NFX
10 10 15 20	4 4 6 8	4 4 6 8	4 4 6 8	10.0002	10.0002	4.0001	99.998	99.998	99.998
10 10 15 20	9.916 9.9825 15.3462	3.9664 3.993 6.1385	4.0001 4.0001 4.0001	99.998 99.998 99.998	100.847 100.175 97.744	100.847 100.175 97.744	0.446396 0.446396 1.736026		
15 15 20 20	6 6 8 8	5.9297 6.0459 7.8551 7.9486	5.9297 6.0459 7.8551 7.9486	101.185 101.186 101.845 101.845	101.185 101.186 101.845 101.845	101.185 101.186 101.845 101.845	1.736026 1.736026 1.694982 1.694982		
20 20 20 20	8 8 8 8	7.8551 7.9486 8.1227 8.1227	7.8551 7.9486 8.1227 8.1227	101.845 101.845 101.845 101.845	101.845 101.845 101.845 101.845	101.845 101.845 101.845 101.845	1.736026 1.736026 1.694982 1.694982		
RESULTS AND DISCUSSION

Out of 36 mixtures, 29 set of mixtures were used for calibration and 07 set of mixtures were used for validation. The models were tried to develop with varying Δ λ. The best results were obtained with the wavelengths intervals λ= 0.2 nm in methanol. The developed method found to be accurate as results are close to 100% and precise with % RSD less than 2. Summary of results is presented in Table VII.

Table VII: Summary of Results

Parameters	Norfloxacin (NFX)	Tinidazole (TINI)	
PCR	2.0-12.0	2.0-12.0	2.0-12.0
PLS	2.0-12.0	2.0-12.0	2.0-12.0
Range (µg/mL)	2.0-12.0	2.0-12.0	2.0-12.0
Wavelength (nm)	260-320	260-320	260-320
Data interval (Δλ)	0.2	0.2	0.2
Factors / PC’s	2	2	2
% Recovery	99.368	99.577	102.9527
Correlation Coefficient (r²)	0.9903	0.9948	0.9921
Intercept	0.0802	0.0413	0.1244
Slope	0.9893	0.9943	0.9929

CONCLUSION

A study of the use of UV spectrophotometric in combination with PLS and PCR for the simultaneous determination of Tinidazole (TINI) and Norfloxacin (NFX) in a binary mixture has been accomplished. The PLS and PCR approaches used in this work are simple to perform, with adequate software support, and provides a clear example of the high resolving power of this technique. The results obtained confirmed the suitability of the proposed method for simple, accurate and precise analysis of TINI and NFX in pharmaceutical preparations. The proposed methods do not need separation of TINI and NFX before analysis. In addition, the proposed methods can be applied for analysis of drugs in quality control lab as well as for in process quality control. The results obtained using chemometric methods (PCR and PLS) were compared to those of the proposed UV-method and no significant difference was observed between the methods. The results obtained were found to be within the limits for all the validation parameter. Percentage recovery was found to be within percent limit, thus method was accurate.

ACKNOWLEDGMENT

Authors are thankful to the Principal, Alard College of Pharmacy for providing necessary facilities to carry out the experiment. Authors are also thankful to Cipla Pharmaceuticals Ltd and Aarti Drugs Ltd, Mumbai for providing a working standard of Tinidazole and Norfloxacin.
REFERENCE:

1. https://www.drugbank.ca/drugs/DB01059 (16.09. 2016).
2. https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/019384s066lbl.pdf (16.09. 2016).
3. Singh L, Nanda S. Method for determination of tinidazole using direct UV-visible spectrophotometry and differential spectrophotometry in pure and tablet dosage forms. East and Central African Journal of Pharmaceutical Sciences 2011;14(1):75-80.
4. Nayak Khushboo, Khare Navin K, Sayare Atul, Ghode Prashant, Lawrence Raymond M. New validated UV spectrophotometric methods for estimation of norfloxacin and tinidazole in bulk and tablet dosage forms. Der Pharmacia Lettre 2012;4(1):192-8.
5. Gummadi Sowjanya, Thota Devi, Varri Sri Valli, Vaddi Pratyusha, Jillella Venkata Lakshmi Narasimha Seshagiri Rao. Development and validation of UV-spectroscopic methods for simultaneous estimation of ciprofloxacin and tinidazole in tablet formulation. International Current Pharmaceutical Journal 2012;1(10):317-21.
6. Dharuman J, Vasudevan M, Somasekaran KN, Dhandapania B, Ghodea Prashant D, Thiagarajan M. Rp-Hplc method development and validation for the simultaneous estimation of ofloxacin and tinidazole in tablets. Int. J. PharmTech Res. 2009;1(2):121-24.
7. Srinivasa Rao A, Pavankumar KLNNSVK, Satyanarayana P, Sastry Subrahmanyana G. Method development and validation for simultaneous estimation of norfloxacin, tinidazole and loperamide in bulk and pharmaceutical formulations using Rp-Hplc method. World J Pharm Pharm Sci. 2015;4(11):1112-24.
8. Sharma Ravi, Kaur Amandeep, Malhotra Dipali. Rp-Hplc method development and validation of norfloxacin in bulk form. World J Pharm Res. 2014 Aug;3(5):1145-54.
9. Singh Raghabaendra Narayan, Sahoo Shisir, Mishra Umashakar, Garnaik Bamakanta, Sahoo Sudhir Kumar, Hati Deepak. Stability indicating Rp-Hplc method development and validation of norfloxacin. American Journal of Advanced Drug Delivery 2013;1(5):743-58.
10. Murugan S, Sunil kumar V, Vineela Ruth Madhuri P, Niranjan Babu M, Kathiravan MK. Method development and validation of Tinidazole and Ciprofloxacin HCl in bulk and tablet dosage form by Rp-Hplc. IJNTPS 2014 Oct;4(2):130-9.
11. Sebaiy Mahmoud M, El-Shanawany Abdullah A, El-Adl Sobhy M, Abdel-Aziz Lobna M, Hashem Hisham A. Rapid Rp-Hplc method for simultaneous estimation of norfloxacin and tinidazole in tablet dosage form. Asian J. Pharm. Ana 2011 Oct-Dec;1(4):79-84.
12. Dinc E, Baleanu D. Spectrophotometric quantitative determination of cilazapriland hydrochlorothiazide in tablets by chemometric methods. J Pharm Biomed Anal 2002;81(4):715-23.

13. Gandhi SV, Pahade AR, Tapale SR. Chemometrics - Assisted UV spectrophotometric methods for determination of metoprolol succinate and hydrochlorothiazide in oralloyhi tablets. Pharm Analysis & Quality Assurance 2016;4(1):177-181.

14. International Conference on Harmonization. ICH harmonized tripartite guideline validation of analytical procedures text and methodology Q2 (R1) ICH, Geneva; 2005: 1-17.