Numerical loop quantum cosmology: an overview

Parampreet Singh
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
E-mail: psingh@phys.lsu.edu

Received 17 June 2012, in final form 30 July 2012
Published 21 November 2012
Online at stacks.iop.org/CQG/29/244002

Abstract
A brief review of various numerical techniques used in loop quantum cosmology and results is presented. These include the way extensive numerical simulations provided insights into the resolution of classical singularities, resulting in the key prediction of the bounce at the Planck scale in different models, and the numerical methods used to analyze the properties of the quantum difference operator and the von Neumann stability issues. Using the quantization of a massless scalar field in an isotropic spacetime as a template, an attempt is made to highlight the complementarity of different methods to gain understanding of the new physics emerging from the quantum theory. Open directions which need to be explored with more refined numerical methods are discussed.

PACS numbers: 04.60.Pp, 04.60.Kz, 98.80.Qc

(Some figures may appear in colour only in the online journal)

1. Introduction

It is generally believed that a quantum theory of gravity will provide important insights into the resolution of singularities, the boundaries of spacetime in Einstein’s theory of general relativity (GR). Since we do not yet have a complete theory of quantum gravity, a pragmatic approach is to use the known techniques of quantum gravity to understand quantization of spacetimes with reduced degrees of freedom, such as cosmological models. This provides a test bed not only for methods of full quantum gravity, but potentially opens new avenues to eventually link quantum gravity with phenomenology and observations. An early attempt in this direction, based on Wheeler’s ideas on geometrodynamics was the Wheeler–DeWitt quantum cosmology. However, due to various mathematical and physical hurdles, in particular, lack of guidance from a more complete theory, it met with little success on the resolution of singularities. Although the Wheeler–DeWitt quantization yielded consistent behavior in the infrared regime (i.e. at the classical scales) in agreement with GR, unfortunately its predictions agreed with GR even in the ultraviolet (large spacetime curvature) regime. As an example,
a semi-classical state peaked in a macroscopic universe at late times in the Wheeler–DeWitt theory remains peaked on the classical trajectory throughout the evolution and encounters the big bang singularity.

In recent years, various shortcomings of Wheeler–DeWitt quantum cosmology have been overcome in the framework of loop quantum cosmology (LQC) [1], which is a quantization of spacetimes with finite degrees of freedom based on loop quantum gravity (LQG), a candidate for non-perturbative canonical quantization of gravity. As in the Wheeler–DeWitt theory, LQC is based on Dirac's method of constraint quantization. Instead of geometrodynamics variables in the Wheeler–DeWitt theory, the classical gravitational phase space is labeled by the symmetry-reduced versions of Ashtekar–Barbero connection A^a_i and its conjugate triad E^a_i, the phase space variables in LQG. The classical Hamiltonian constraint is expressed in terms of the elementary variables of quantization, the holonomies of connection and triads and is quantized. An inner product is found using methods of group averaging [2] which leads to a physical Hilbert space, and physics is extracted using a family of Dirac observables. This algorithm has been carefully carried out for various models in LQC. At the level of quantum Hamiltonian constraint, a striking difference between Wheeler–DeWitt quantum cosmology and LQC turns out to be the following. Unlike the Wheeler–DeWitt theory, where the quantum Hamiltonian constraint yields a differential equation on a continuum spacetime, the quantum evolution equation in LQC turns out to be a difference equation in geometrical variable(s). The origin of discrete quantum evolution operator lies in the discrete action of holonomy operators, which captures the non-local nature of field strength of the connection on the underlying quantum geometry.

LQC started with the seminal works of Bojowald more than a decade ago, which indicated resolution of singularities, albeit at a kinematical level [3, 4]. These ideas were put on a firm mathematical footing by Ashtekar et al in [5]. A loop quantization of cosmological spacetime, where the inner product, Dirac observables and the resulting physical implications using states in the physical Hilbert space were first made available, was performed for a spatially flat isotropic model with a massless scalar field [6–8]. For this model, classical solutions are generically singular, and there is no possibility, as is sometimes true in models with potentials, of fine tuning any parameter to avoid the singularity. Thus, it is an ideal arena to test whether methods of LQG can resolve the singularity. The massless scalar field also allows us to overcome a conceptual difficulty to understand evolution in constraint quantization. In the absence of external time, scalar field serves the role of internal clock and physics can be extracted using relational observables 1. A detailed analysis of resulting physics through sophisticated analytical and numerical methods demonstrated that the big bang singularity is resolved and replaced by a quantum bounce when the energy density (ρ) of the scalar field became equal to a critical value, $\rho \approx 0.41\rho_{\text{Planck}}$ [8]. At a small spacetime curvature (or large volume), the quantum Hamiltonian constraint, a difference operator with uniform discretization in volume, approximates the Wheeler–DeWitt quantum constraint and, hence, agrees with GR. Robustness of results on genericity of bounce and maximum energy density was confirmed with an exactly soluble model in LQC [9]. Thus, quantum geometric effects in LQC, not only cure the singularity problem, but also lead to a physically consistent infrared behavior. In the early quantizations of LQC [3–5], the latter was a serious problem, which was noted in different works [10–12]. As we will discuss later, this limitation is tied to the structure of quantum difference equation in the old quantization, which is uniformly discrete in eigenvalues of triads (proportional to area). It turns out to have difficulties with the von

1 In the absence of fields, this role can be played by geometrical degrees of freedom. An example is the case of vacuum Bianchi-I model, where predictions can be extracted by treating one of the scale factors as internal time.

2
Neumann stability issues at large volumes and leads to a critical density which depends on the phase space variables in such a way that the bounce could occur even at a very small spacetime curvature [7]. It turns out that for the isotropic models, the quantization which yields a difference equation with uniform discreteness in volume, and which is also referred as the improved quantization, is the only one which results in the correct infrared behavior for various types of matter and a critical density which is a fundamental constant [13].

With the success of improved quantization of LQC [8], quantization of isotropic spacetimes with a massless scalar field and positive spatial curvature [14, 15], negative spatial curvature [16, 17], and positive [18, 19] and negative cosmological constants [20] were performed. Each of these models introduced non-trivial subtleties in the quantization procedure, and unlike the case of spatially flat model, they could not be solved exactly. Extensive numerical simulations in these models confirmed the robustness of results on bounce and revealed various new features of rich physics resulting from quantum geometry. Recently, a rigorous quantization of Bianchi-I model with a massless scalar field has been performed [23], which overcomes problems with an earlier quantization [24]. Quantization of Bianchi-II [25] and Bianchi-IX models [26] have also been proposed and developments on cosmological models have also provided insights into loop quantization of Schwarzschild spacetimes [27–30]. As in the case of isotropic models, to loop quantize these spacetimes rigorously and consistently requires overcoming several mathematical hurdles. From the perspective of numerical methods, one of the difficulties is that unlike the case of isotropic models, the quantum Hamiltonian constraint in anisotropic and black hole spacetimes turns out to be a partial difference equation. With the non-uniform discretization in different variables, the numerical analysis of loop quantum Hamiltonian constraints in these models is far more challenging than the isotropic models.

In the above discussion, we focused on the role of numerical methods following the analysis in [6–8]. However, use of numerical techniques to understand properties of quantum difference equation in old quantizations of LQC are dated earlier [10–12, 31–37]. In these works, carried out before the inner product and physical Hilbert space in LQC became available, the thrust of most of the analysis was to gain insights into the viability of particular quantizations in LQC by using ideas of von Neumann stability to relate solutions of the quantum difference equation at large volumes to the Wheeler–DeWitt equation. These works also introduced notions of pre-classicality of solutions to identify the underlying conditions for a consistent infrared behavior [12, 32]. It is important to note some important differences in the usage of von Neumann stability analysis in LQC, and its conventional treatments in computational physics. Unlike the conventional treatments on von Neumann stability issues where the continuum partial differential equation (PDE) is fundamental and the goal is to understand whether a finite-difference equation obtained by discretization of PDE provides a good approximation, in LQC, it is the quantum difference equation which is fundamental and the goal of stability analysis is to verify whether in the large volume limit (or at small spacetime curvatures), solutions of quantum difference equation agree with those of the Wheeler–DeWitt equation. Note that the quantum difference equation obtained in LQC is not obtained by a discretization of the Wheeler–DeWitt theory, and the goal of stability analysis is not to compare

2 There are additional problems with such a critical density which will be discussed in section 5.

3 In above-mentioned works, numerical techniques to find physical states in the quantum theory were largely developed by Tomasz Pawlowski.

4 In these works, occurrence of bounce was studied by computing expectation values of the volume operator. Recently, bounce in the massless scalar model has been established by computing quantum probabilities using the consistent histories approach [21]. A similar analysis for the Wheeler–DeWitt theory predicts the probability of encountering a singularity as unity [22].
its solutions with the Wheeler–DeWitt equation at ultraviolet (or small volume) scales. Using these ideas, the application of von Neumann stability techniques has provided useful insights into the infrared behavior of quantizations of various models in LQC. Currently, techniques are being developed to overcome problem of non-uniform discretizations in partial quantum difference equations in anisotropic and black hole spacetimes in LQC [39, 40].

Another avenue where numerical techniques in LQC have been extensively used is in the effective dynamics approach. This is based on the observation that the underlying quantum dynamics in various models is approximated by an effective spacetime description derived from an effective Hamiltonian [41, 42]. In this approach, instead of using quantum difference equations, one works with the modified dynamical equations on a continuum spacetime encoding quantum gravity corrections. Thus, one can use standard numerical methods to solve differential equations. Nevertheless, various studies in this approach require a tight control on errors which has been carefully achieved. Examples of such works include studies on dynamics in inflationary and ekpyrotic potentials [43, 44], computation of classical probabilities in inflation [45, 46], assisted and multi-field inflationary dynamics [47], Gowdy models [48] and various investigations in anisotropic spacetimes [44, 49–52]. The effective dynamics approach has provided important insights into various issues in LQC. These include effects on cosmological perturbations [53], genericity of singularity resolution [54–56] and constraints on possible discretizations of the quantum difference operator [13, 57], which shed light on issues noted in the stability analysis of quantum difference equation.

The goal of this paper is to provide a brief overview of various numerical methods used in LQC. These range from those yielding physical evolution in the quantum theory to those related to using von Neumann stability ideas on the quantum difference equation in LQC. Due to space limitations, it is difficult to go into details of all the diverse models and their developments, and some omissions are unfortunately inevitable. These include detailed discussions on various results from effective dynamics where conventional numerical methods to solve differential equations suffice, factor ordering and symmetrization issues5, and in-depth discussions on pre-classicality issues which were developed before a rigorous formulation of LQC was available. Some of these results, such as issues of pre-classicality, are covered in detail in a recent review on numerical methods in LQC which provides a complementary view to various developments [59]. To make our discussion simpler to follow and to integrate results from different methods, we take the strategy of explaining different methods and results using a single model—quantization of spatially flat isotropic model with a massless scalar—and provide summary of main results of other models.

The plan of this paper is as follows. In section 2, we describe the basic setting of loop quantization using the example of a spatially flat Friedmann–Robertson–Walker (FRW) model with a massless scalar field which was rigorously quantized in LQC in [6–8]. This model serves as an excellent tool to illustrate various details of the quantization procedure and properties of quantum theory and has served as a template for quantization of models with spatial curvature [14–17], in the presence of cosmological constant [18–20] and anisotropic models [23, 25, 26, 60]. After describing the classical phase space in section 2.1, we briefly discuss the quantum theory in section 2.2 and obtain a quantum Hamiltonian constraint as a difference equation. We conclude this section with a brief discussion of the Wheeler–DeWitt quantization and the classical limit of loop quantum evolution equation. (Readers who are interested only in the numerical techniques can skip section 2 and refer to equation (2.18)). Section 3 is devoted to numerical methods used to obtain physical solutions of the quantum theory. We

5 Various results discussed in this paper are unaffected by these issues. For readers interested in a detailed discussion on these issues, we refer to [18, 58].
focus on the way numerical simulations are carried out in a spatially flat isotropic model with a massless scalar field [6–8] and discuss two methods to obtain physical states: one by using a fast Fourier transform (FFT) and another using evolution in internal time in sections 3.1 and 3.2, respectively. We summarize the results of a spatially flat isotropic model in section 3.3 and of the other models in section 3.4. In section 4, we discuss the von Neumann stability analysis. After explaining various subtleties and differences with the conventional stability analysis, we discuss examples of massless scalar, positive cosmological constant in LQC and the difference equation in the old quantization in LQC [5, 7]. The latter case serves to illustrate limitations of isotropic models which do not yield a quantum difference equation which is uniformly discrete in volume, such as the old quantization in LQC [4, 5] and lattice-refined models which allow arbitrary discretizations [62]. Section 5 deals with a brief discussion of effective spacetime description of LQC, and the way effective dynamics provides insights into issues in the stability analysis and uniqueness of discretization in isotropic LQC. We conclude with the summary and outlook in section 6.

2. Loop quantum cosmology: spatially flat isotropic model

In this section, we provide a brief overview of loop quantization of spatially flat FRW spacetime with a massless scalar field. Our discussion is based on the analysis in [6–9]. We start with a discussion of the classical phase space, the relation of connection and triad variables with the metric variables, and the classical Hamiltonian constraint. We then discuss kinematical aspects of the quantum theory and demonstrate the way physical Hilbert space and Dirac observables are obtained. We obtain the quantum difference equation which turns out to be uniformly discrete in volume and discuss its classical limit, which agrees with the Wheeler–DeWitt equation.

2.1. Classical framework

The spacetime metric for the spatially flat \((k = 0)\) isotropic homogeneous spacetime is given by

\[
\mathrm{d}s^2 = -N^2 \, \mathrm{d}t^2 + a^2(t) \, \mathrm{d}\mathbf{x}^2,
\]

where \(N\) is the lapse function and \(a(t)\) denotes the scale factor of the universe. The spatial manifold for the \(k = 0\) model can be non-compact with \(\mathbb{R}^3\) topology, or compact with a 3-torus \((\mathbb{T}^3)\) topology. If the topology is non-compact, we must introduce a fiducial cell \(\mathcal{V}\) as an infrared regulator to avoid divergences in spatial integrations in order to define a Hamiltonian framework. An obvious but important consistency requirement is that the choice of the cell \(\mathcal{V}\) must not affect the physical predictions of quantities invariant under the change of the cell\(^6\).

The fiducial volume of the cell \(\mathcal{V}\) is given by

\[
\mathcal{V}_0 = \int_{\mathcal{V}} \mathrm{d}^3 \mathbf{x} \, \sqrt{\hat{q}},
\]

where \(\hat{q}\) denotes the determinant of the fiducial metric \(\hat{q}_{ab}\) on the spatial manifold defined by the co-moving coordinates \(x^a\). The physical metric on the spatial manifold \(q_{ab}\) is related to the fiducial metric as \(q_{ab} = a^2 \hat{q}_{ab}\), and the physical volume of the cell \(\mathcal{V}\) is given by \(\mathcal{V} = a^3 \mathcal{V}_0^{1/3}\).

The gravitational phase space variables in LQG are the Ashtekar–Barbero SU(2) connection \(A_i^a\) and its canonical conjugate, the densitized orthonormal triads \(E_i^a\), which satisfy

\[
\left\{ A_i^a(x), E_j^b(y) \right\} = 8\pi G \gamma \delta_i^b \delta_j^a \delta^3(x, y).
\]

\(^6\) As will be discussed later, this requirement can be used as one of the criteria in selection of a unique discretization of quantum difference evolution operator in LQC [13].
Here, $\gamma \approx 0.2375$ is the Barbero–Immirzi parameter whose value is set by the black hole thermodynamics in LQG [61]. The connection and the triad variables are related to the conventional metric variables in the following way. The triad E^i_a are related to the spatial metric as $E^i_a E^j_b = q^{ij} a^b$, and the Ashtekar–Barbero connection is related to the extrinsic curvature K_{ab} as $A_i^a = \Gamma^i_a + \gamma K_{ia}^a = \Gamma^i_a + \gamma \epsilon^{ab} K_{ab}$, where Γ^i_a denotes the spin connection which vanishes for the $k = 0$ model, c_{α}^a is the undensitized triad and K_i^a is the extrinsic curvature 1-form.

Given the symmetries of the isotropic and homogeneous FRW spacetime, the connection A_i^j and triad E^a_i can be expressed in terms of an isotropic connection and triad pair (c, p) [5]:

$$A^i_a = c V_o^{-1/3} \dot{\delta}^i_a, \quad E^a_i = p V_o^{-2/3} \sqrt{q} \delta^a_i,$$

(2.3)

where δ^i_a denote fiducial triads and $\dot{\delta}^i_a$ are the fiducial co-triads compatible with the fiducial metric q_{ab}. The canonical pair (c, p) satisfy the Poisson bracket relation $(c, p) = 8\pi G \gamma / 3$. Note that the triad can take positive or negative values depending on the relative orientation of the physical and fiducial triads. Since we will not consider fermions in our analysis, the choice of an orientation represents a gauge freedom which does not affect physical predictions. It will be later fixed by choosing symmetric states in the quantum theory. It is also useful to note the relation between the (c, p) and the metric variables. The triad p is related to scale factor as $|p| = V_o^{1/3} a^2$, and only on the classical solutions of GR, $c = \gamma V_o^{1/3} \dot{a} / N$, where a ‘dot’ denotes derivative with respect to time t.

It turns out that quantum theory is considerably simpler if we express the gravitational phase space in terms of a canonical pair (b, v) related to (c, p) as,

$$b = \frac{c}{|p|^{1/2}}, \quad v = \frac{|p|^{3/2}}{2\pi G \gamma \hbar} \text{sgn}(p),$$

(2.4)

where $\text{sgn}(p)$ is +1 if physical and fiducial triads have the same orientation and is −1 if the orientation is opposite. The conjugate variables b and v satisfy

$$\{b, v\} = \frac{2}{\hbar}$$

(2.5)

where \hbar in the denominator is an artifact of the definition of v in (2.4). It should be noted that though v is a measure of physical volume $V = |p|^{1/2}$, it has dimensions of length. The variable b has dimensions of inverse length, and only in the classical theory is related to the Hubble rate H of the scale factor as $b = \gamma H = \gamma \dot{a} / a$ (for the lapse $N = 1$). The matter part of the phase space, for the massless scalar model under consideration, is labeled by the scalar field ϕ and its conjugate momentum p_ϕ, which satisfy $(\phi, p_\phi) = 1$. The conjugate momentum is related to $\dot{\phi}$ as $p_\phi = V_o a^3 \dot{\phi}$ (for $N = 1$). The classical phase space is thus four dimensional identified by $(b, v; \phi, p_\phi)$.

Before we proceed to the Hamiltonian constraint, it is useful to note the way these variables transform under freedoms related to the choice of spatial coordinates and fiducial volume V_o, which brings forward the advantage of using b instead of c in the framework. The first freedom allows a rescaling of coordinates $x \rightarrow x = ax$ without affecting the metric. Under this freedom, various variables considered above transform as

$$a \rightarrow a, \quad V_o \rightarrow \alpha^3 V_o, \quad V \rightarrow V, \quad (c, p) \rightarrow (c, p), \quad (b, v) \rightarrow (b, v) \quad \text{and} \quad (\phi, p_\phi) \rightarrow (\phi, p_\phi).$$

(2.6)

Thus, under the rescaling of coordinates, both c and b are invariant. However, under the freedom of the choice of fiducial cell, $V \rightarrow \beta^3 V$, one obtains

$$a \rightarrow a, \quad V_o \rightarrow \beta^3 V_o, \quad V \rightarrow \beta^3 V, \quad (c, p) \rightarrow (\beta c, \beta^2 p), \quad (b, v) \rightarrow (b, \beta^3 v) \quad \text{and} \quad (\phi, p_\phi) \rightarrow (\phi, \beta^3 p_\phi).$$

(2.7)
It is to be noted that under the rescaling of fiducial cell, \(b \) is invariant but \(c \) is not. Furthermore, it is straightforward to check that if we consider a phase space variable \(P_m = c|p|^m \), then it is invariant under the rescaling of fiducial cell only when \(m = -1/2 \), i.e. when \(P_m = b \). The variable \(P_m \) is used in the lattice refinement scheme with \(-1/2 < m < 0 \) \[62\], and this observation will be useful for later discussion (in section 5) to gain insights into the consistency of improved quantization \[8\] and inconsistencies of other quantizations in isotropic LQC.

Before we write the classical Hamiltonian constraint in terms of gravitational phase space variables, we note that the scalar field \(\phi \) satisfies \(\Box \phi = 0 \) and is used as internal time in LQC. It is then natural to choose the lapse \(N = a^3 \) such that the time variable \(\tau \) satisfies \(\Box \tau = 0 \). Unless noted specifically, in the following, we will work with this choice of lapse function. Using this lapse function, the classical Hamiltonian constraint for the isotropic homogeneous model with a massless scalar field becomes

\[
C_{\text{class}} = -3\pi Gb^2v^2 + p_\phi^2 \approx 0. \tag{2.8}
\]

Using the classical Hamilton’s equations, it is straightforward to obtain the dynamical equation from the above Hamiltonian constraint

\[
\frac{\partial \nu}{\partial \phi} = \pm \sqrt{12\pi G\nu} \tag{2.9}
\]

whose integration yields the classical trajectories:

\[
\phi = \pm \frac{1}{\sqrt{12\pi G}} \ln \frac{\nu}{v_c} + \phi_k, \tag{2.10}
\]

where \(v_c \) and \(\phi_k \) are the constants of integration. In the classical theory, we thus obtain expanding and contracting branches. The expanding branch encounters the big bang singularity at \(\nu = 0 \) in the backward evolution at a certain value of internal time \(\phi \). Similarly, the contracting branch ends in the big crunch singularity in the future evolution.

2.2. Quantum framework

In LQG, elementary variables are given by the holonomies of connection \(A_i^\mu \) and fluxes of triad \(E_i^\mu \). In LQC, to define holonomies, we consider straight edges \(c \) that generate an algebra of almost periodic functions of \(c \). The gravitational part of the kinematical Hilbert space \(\mathcal{H}_{\text{kin}} = \mathcal{H}_{\text{kin}}^{\text{grav}} \otimes \mathcal{H}_{\text{kin}}^{\text{matter}} \) is obtained by finding a representation of holonomy flux algebra using the Gel’fand–Naimark–Segal construction, which results in \(\mathcal{H}_{\text{kin}}^{\text{grav}} \) as a space of square integrable functions on the Bohr compactification of the real line: \(L^2(\mathbb{R}, \delta_{\text{Bohr}}) \) \[5\]. Unlike the gravitational sector, the matter part of kinematical Hilbert space is obtained by quantizing matter with methods of Fock quantization. In contrast to the Wheeler–DeWitt quantization, where the gravitational part of the kinematical Hilbert space is \(L^2(\mathbb{R}, dc) \), normalizable states in \(\mathcal{H}_{\text{kin}}^{\text{grav}} \) can be expressed in terms of a countable sum of \(N_\mu \), with \(\langle N_\mu | N_{\mu'} \rangle = \delta_{\mu \mu'} \). It should also be noted that unlike the Wheeler–DeWitt theory, there is no operator corresponding

7 The usage of the term ‘lattice’ here should not be confused with the one in lattice LQG in \[63\], where it is used in the context of a lattice of homogeneous universes to investigate inhomogeneities.

8 The presence of \(\hbar \) in the following classical constraint is an artifact of the definition of \(\nu \) in equation (2.4).
to \(c \) (or its curvature) in LQC. Instead, its information is contained in the corresponding holonomy operator. The action of the operators \(\hat{N}_\mu \) on states \(\Psi(\mu) \) in the triad representation is translational: \(\hat{N}_\mu \Psi(\mu) = \Psi(\mu + \zeta) \), where \(\zeta \) is a constant. In contrast, the action of \(\hat{c} \) in the Wheeler–DeWitt theory is differential in the triad representation (as in the standard Schrödinger mechanics). Thus, even at the kinematical level, there are significant differences between LQC and Wheeler–DeWitt quantizations. The most important difference being that the continuum differential geometry common to GR and the Wheeler–DeWitt theory is replaced by a discrete quantum geometry in LQC.

The next step in the quantization procedure is to express the classical Hamiltonian constraint in terms of the elementary variables for quantization. In terms of triads and holonomies, the gravitational part is given by

\[
C_{\text{grav}} = \gamma^{-2} V_o^{-1/3} \epsilon_{ijk} \hat{a}_i \hat{a}_j |p|^2 F_{ab}^k.
\]

Here, \(F_{ab}^k \) is field strength of the connection, expressed in terms of holonomies over a square plaquette \(\square_{ij} \) with the length \(\hat{\mu} V_o^{1/3} \):

\[
F_{ab}^k = -2 \lim_{Ar \rightarrow 0} \text{Tr} \left(h_{\square_{ij}} \frac{1}{Ar} r^k \right) \hat{\omega}_{ab}^k,
\]

where \(h_{\square_{ij}} = h_i^j h_j^i (h_j^i)^{-1} (h_i^j)^{-1} \). Before one promotes \(C_{\text{grav}} \) to a quantum operator, it is important to note that the limit \(\square_{ij} \rightarrow 0 \) does not exist in the quantum theory. The non-existence of this limit is tied to the underlying quantum discreteness in LQG and is consistent with the fact that in LQG there exist no operators corresponding to connection or its curvature. The underlying quantum discreteness allows the loop \(\square_{ij} \) to be shrunk only to a minimum area, given by the lowest non-zero eigenvalues of the area operator in LQG, \(\Delta l_\text{Pl} \), where \(\Delta = 4\sqrt{3}\pi \gamma \). This constrains the parameter \(\hat{\mu} \) to [23]

\[
\hat{\mu}^2 = \frac{\Delta l_\text{Pl}^2}{|p|}.
\]

The dependence of \(\hat{\mu} \) on triad \(p \) makes the action of resulting field strength operator,

\[
\hat{F}_{ab}^k \Psi(\mu) = \epsilon_{ijk} V_o^{-2/3} \hat{a}_i \hat{a}_j \left(\frac{\sin^2(\hat{\mu} c)}{\hat{\mu}^2} \right) \Psi(\mu),
\]

less straightforward than the simple translation action of elements \(\exp(\alpha c/2) \) on the eigenstates of the triad. It turns out that the action simplifies in the volume representation \(\langle v \rangle \). In the eigenbasis of \(\hat{V} \) operator, the action of elementary variables \(\hat{V} \) and its conjugate \(\exp(\lambda \hat{b}) \), where \(\lambda \) is a parameter with dimensions of length, is given by

\[
\hat{V} \langle v \rangle = 2\pi \gamma \frac{1}{l_\text{Pl}^2} \langle v \rangle \langle v \rangle, \quad \exp(\lambda \hat{b}) |v\rangle = |v - 2\lambda\rangle.
\]

The parameter \(\lambda \) is related to the area gap as \(\lambda^2 = \Delta l_\text{Pl}^2 \). It thus directly captures the discreteness of the underlying quantum geometry.

The resulting action of the gravitational part of the quantum Hamiltonian constraint yields a difference equation in uniform steps of volume. For the case of a massless scalar field, the action of total Hamiltonian constraint operator \(\hat{C}_\text{H} = \hat{C}_\text{grav} + 16\pi G \hat{C}_\text{mat} \) is given by

\[
\partial_v^2 \Psi(v, \phi) = 3\pi G v \frac{\sin \lambda b}{\lambda} \Psi(v, \phi) - \Theta \Psi(v, \phi) =: -\Theta \Psi(v, \phi),
\]

where \(\Theta \) is a positive-definite, internal-time-independent difference operator, with the following action:

\[
\Theta \Psi(v, \phi) := -\frac{3\pi G}{4\lambda^2} v \left((v + 2\lambda) \Psi(v + 4\lambda) - 2v \Psi(v, \phi) + (v - 2\lambda) \Psi(v - 4\lambda) \right).
\]
The physical states $\Psi(v, \phi)$ are chosen to be symmetric under the change in orientation of triads, i.e. $\Psi(v, \phi) = \Psi(-v, \phi)$. In the absence of fermions, as is the case in this analysis, this symmetry requirement eliminates a large gauge freedom induced by the parity operator Π with the action $\Pi \Psi(v) = \Psi(-v)$ and associated with the choice of triad orientation. Note that the form of the quantum constraint is very similar to as in the Klein–Gordon theory, where ϕ plays the role of time and Θ acts like a spatial Laplacian operator, and as in the Klein–Gordon theory, physical states can be decomposed into positive- and negative-frequency subspaces.

In order to extract physics, we need to find an inner product. It can be obtained by using group averaging procedure [2] or demanding that the action of Dirac observables, $\hat{V}|_\phi$ being the volume at internal time ϕ, and \hat{p}_ϕ being the self-adjoint. The physical inner product turns out to be

$$\langle \Psi_1 | \Psi_2 \rangle = \sum_v \hat{\Psi}_1(v, \phi_0)|v|^{-1}\Psi(v_2, \phi_0).$$

(2.19)

The action of Dirac observables on states $\Psi(v, \phi)$ is given by

$$\hat{V}|_\phi \Psi(v, \phi) = 2\pi \nu_l^3 e^{\epsilon(\phi - \phi_0)}|v|\Psi(v, \phi_0) \quad \text{and} \quad \hat{p}_\phi \Psi(v, \phi) = -i\hbar \partial_\phi \Psi(v, \phi) = \sqrt{\Theta}{\Psi}(v, \phi).$$

(2.20)

This provides us the physical Hilbert space $\mathcal{H}_{\text{phys}}$, which is the space of normalized positive-frequency states $\Psi(v, \phi)$ which are symmetric under the change in orientation of triads. Since Θ is a difference operator, physical states have support on lattice $v = \pm\epsilon + 4n\lambda$, where $\epsilon \in [0, 4]$, and the Hilbert space is decomposed into subspaces \mathcal{H}_ϵ which are preserved by the evolution. To extract physics, we can restrict ourselves to any of the sectors ϵ and the results turn out to be independent of this choice. From the point of view of the big bang singularity, the most interesting sector is $\epsilon = 0$. (Numerical results on singularity resolution discussed in next section correspond to this sector.) With the availability of a self-adjoint quantum evolution operator, Dirac observables and the inner product, we have a rigorous framework to extract physics from this quantum theory.

The exercise carried out above can be repeated in a straightforward way for the Wheeler–DeWitt theory [7–9]. One can find the kinematical Hilbert space, the action of quantum Hamiltonian constraint and Dirac observables $\hat{V}|_\phi$ and \hat{p}_ϕ, and the inner product. A crucial difference is that unlike in LQC, the underlying geometry in the Wheeler–DeWitt theory is not discrete and the quantum constraint (analogous to (2.17) turns out to be [8, 9]

$$\hat{\partial}_\phi^2 \Psi(v, \phi) = -\Theta \Psi(v, \phi) := 12\pi Gv \partial_\phi \nabla_\phi \Psi(v, \phi).$$

(2.21)

Thus, unlike LQC, where the evolution equation is a difference equation with uniform steps in volume, in the Wheeler–DeWitt theory, the evolution equation turns out to be a differential equation.

We now show that the LQC quantum difference equation leads to the Wheeler–DeWitt equation in the large volume limit. For smooth wavefunctions, at $v \gg \ell_H$, we can expand $\Psi(v \pm 2\lambda, \phi)$ in equation (2.18) as

$$\Psi(v \pm 2\lambda, \phi) = \Psi(v, \phi) \pm 4\lambda \partial_\phi \Psi(v, \phi) + \frac{1}{2}(4\lambda)^2 \partial^2_\phi \Psi(v, \phi) \pm \frac{1}{6}(4\lambda)^3 \partial^3_\phi \Psi(v, \phi) + \cdots.$$

(2.22)

Substituting into equation (2.17), we obtain

$$\hat{\partial}_\phi^2 \Psi(v, \phi) \sim 12\pi Gv \left(\partial_\phi \Psi(v, \phi) + v \partial^2_\phi \Psi(v, \phi)\right) + O \left(\lambda^3 \partial^3_\phi \Psi(v, \phi)\right).$$

(2.23)
If the wavefunction is slowly varying, in the approximation that the terms of the order $\lambda^3\partial^3/\Psi$ can be neglected, we obtain equation (2.21). Thus, in the limit of large volume (small spacetime curvature), the quantum Hamiltonian constraint in LQC, which is a quantum difference equation, yields the Wheeler–DeWitt equation.

3. Numerical techniques for obtaining physical states

In the previous section, we showed the way loop quantization of a spatially flat isotropic model results in a quantum Hamiltonian constraint which is a difference equation with uniform discreteness in volume. Here, we discuss numerical methods to determine physical states satisfying the quantum Hamiltonian constraint [7, 8]. We first describe a method based on calculation of symmetric eigenfunctions and computing an FFT to determine physical states. This is followed by the description of another method, involving the specification of an initial state peaked on a classical trajectory at late times in a macroscopic universe and evolved in the internal time ϕ using quantum evolution equation (2.17). We summarize results from these methods and other models in sections 3.3 and 3.4, respectively.

3.1. Physical states by the FFT method

This method is based on obtaining physical states by noting that any symmetric state in the physical Hilbert space can be expressed in terms of symmetric eigenfunctions $\psi^{(s)}_k$ of the $\hat{\Theta}$ operator:

$$\Psi(v, \phi) = \int_{-\infty}^{\infty} dk \tilde{\Psi}(k) e^{(s)}_k e^{i\omega \phi}, \quad (3.1)$$

where $\tilde{\Psi}(k)$ is a suitable function to define state profile, such as a Gaussian function. By numerically finding symmetric eigenfunctions, one can perform the FFT in the above equation and obtain the physical state. Since this method relies on the properties of eigenfunctions, we discuss some of the features of the latter below. Symmetric eigenfunctions are obtained by considering symmetric combinations of eigenfunctions of the $\hat{\Theta}$ operator:

$$\psi^{(s)}_{s^2}(v) = \omega^2 \psi^{(s)}_{s^2}(v),$$

where $s^2 = 12\pi G k^2$. The eigenfunctions $\psi^{(s)}_{s^2}(v)$ have a twofold degeneracy on the Hilbert space $H_{\text{grav}}|\varepsilon|$ (or on $H_{\text{grav}}^{-|\varepsilon|}$), a subspace of physical Hilbert space with states having support on the lattice $L_{|\varepsilon|}$ (or $L^{-|\varepsilon|}$). The way symmetric eigenfunctions are constructed depends on the choice of the sector ε. For $\varepsilon = 0$ or 2, lattices $L_{|\varepsilon|}$ and $L_{-|\varepsilon|}$ coincide with each other under the transformation $v \rightarrow -v$, and symmetric eigenfunctions can be constructed from either of the lattices. However, for $\varepsilon \neq 0, 2$, these lattices are distinct, and hence, symmetric eigenfunctions are constructed using the eigenfunctions $\psi^{(s)}_{s^2}(v)$ on positive and negative lattices. In this case, eigenfunctions have a fourfold degeneracy and symmetric eigenfunctions are constructed by a linear combination of $e^{(s)}_{s^2}(v)$ on positive and negative lattices.

To obtain these symmetric eigenfunctions, we first compute eigenfunctions $\psi^{(s)}_{s^2}(v)$ numerically for a given ε. Since at large volumes ($V \gg l^3$), $\Theta \rightarrow \Theta$, eigenfunctions $\psi^{(s)}_{s^2}(v)$ are expected to approach the Wheeler–DeWitt eigenfunctions $\psi^{(s)}_{s^2}(v)$. This indeed turns out to be true. In figure 1, we show the behavior of an eigenfunction in LQC and compare it with that of the Wheeler–DeWitt theory. Here, we note that each eigenfunction $\psi^{(s)}_{s^2}(v)$ of the Wheeler–DeWitt equation (2.21) can be expressed in a linear combination of the basis functions $\psi^{(s)}_{s^2}(v)$ as

$$\psi^{(s)}_{s^2}(v) = A \psi^{(s)}_{s^2}(v) + B \psi^{(s)}_{-s^2}(v), \quad (3.2)$$

where A and B are the constant coefficients, and at large volumes, $\psi^{(s)}_{s^2}(v) \simeq \psi^{(s)}_{s^2}(v) + O(\lambda^3/v^2)$. It is interesting to note that the eigenfunctions $\psi^{(s)}_{s^2}(v)$ decay exponentially at small volumes.
The volume at which exponential decay occurs is numerically found to be proportional to the value of ω (or the choice of p_ϕ). Recently, the exponential damping of eigenfunctions in the quantum regime has been studied analytically, which provides additional insights into the behavior of eigenfunctions [64]. It turns out that the volume at which exponential decay occurs corresponds to the volume at the bounce of the universe in LQC.

After obtaining symmetric eigenfunctions, we need to choose a function $\tilde{\Psi}(k)$ in the integral (3.1). We are interested in those states which at late times (or large volumes) correspond to a universe with a small spacetime curvature described by GR. We consider a sharply peaked state in volume as well as its conjugate b at late times on a classical trajectory. Due to the relation between b, p_ϕ and V implied by the classical constraint (2.8), it suffices to choose a state which is peaked in volume and p_ϕ. To be concrete, let us choose such a state at a large value of p_ϕ in the expanding branch:

$$|p_\phi^*| \gg \sqrt{\frac{12}{\pi}} G \hbar.$$

If k^* (which is negative in the expanding branch) corresponds to the value of p_ϕ, via $p_\phi = -\sqrt{\frac{12}{\pi}} G \hbar k$, at which the state is peaked, then for a small dispersion σ we choose

$$\tilde{\Psi}(k) = e^{-(k-k^*)^2/2\sigma^2} e^{-i\omega \phi^*}. \tag{3.3}$$

The volume at which state is peaked at time $\phi = \phi_0$ is determined by the value of ϕ^* on using the equation for classical trajectory (2.10). To compute $\Psi(v, \phi)$, one finds symmetric eigenfunctions in a range, say $k^* - 10\sigma, k^* + 10\sigma$, by discretizing the interval in a large number of points (approximately 212). The physical state $\Psi(v, \phi)$ is computed by an FFT, and the norm $\|\Psi\|^2$ and expectation values of Dirac observables $\hat{V}|\phi$ and \hat{p}_ϕ can be evaluated. We discuss the resulting physics in section 3.3.
3.2. Physical states by evolution in internal time

This method deals with the specification of an initial state peaked at a large values of p_ϕ and volume at $\phi = \phi_o$, with suitable boundary conditions and evolve it in the internal time ϕ using the quantum difference equation (2.17). In this approach, a numerical computation of symmetric eigenfunctions is not required. Rather one has to numerically solve a large number of coupled equations in ϕ, in a finite domain of numerical integration. To specify boundary conditions, one considers the quantum constraint equation in the form $i \partial_\phi \Psi(v, \phi) = \sqrt{\Theta} \Psi(v, \phi)$, which at large volumes is approximated by $\partial_\phi \Psi(v, \phi) = \sqrt{\frac{12}{\pi G}} \frac{\partial_\nu \Psi(v, \phi)}{\nu}$. Using a discretized version of this equation, boundary conditions are specified permitting only outgoing solutions. In all the numerical simulations carried out in [7, 8], the boundary was chosen such that the value of the wavefunction at the boundary was negligible compared to its peak value.

In numerical simulations of spatially flat isotropic model, three methods have been used to specify initial data $\Psi|_{\phi_o}$ and $\partial_\phi \Psi|_{\phi_o}$ at $\phi = \phi_o$. These are [7, 8] are follows.

1. A Gaussian state normalized with respect to inner product in the Wheeler–DeWitt theory, which is peaked in p_ϕ and volume for a macroscopic universe. The initial state is a minimum uncertainty state in V and b.

2. A solution of the Wheeler–DeWitt equation is chosen as an initial state with the Gaussian profile peaked at a classical trajectory at a small spacetime curvature. It is chosen to minimize the uncertainty in ϕ, p_ϕ.

3. A similar method to the previous one with a variation taking into account the fact that eigenfunctions of $\hat{\Theta}$ in large volume limit satisfy equation (3.2). To obtain this behavior, the initial state is constructed by a phase rotation of eigenfunctions of the Wheeler–DeWitt theory. The phase required for a suitable rotation is numerically determined.

With the above initial data, numerical simulations were performed for a large range of p_ϕ ranging from 100–10000 (in Planck units), for varying dispersions (\sim1%–10%) in [7, 8]. More recently, these simulations have been carried out for a much smaller values of p_ϕ (\sim5–20), and higher dispersions (\sim15%–30%) [66]. In the numerical simulations performed in [7, 8], numerical errors in internal time discretization were controlled by refining ‘time’ step such that

\[\| \Psi_1 - \Psi_2 \| \leq \| \Psi \|_2 (\Delta \phi_4) \epsilon, \quad (3.4) \]

where ϵ is a very small number, and, Ψ_1 and Ψ_2 correspond to wavefunctions computed with two discretizations of ϕ: $\Delta \phi$ and $\Delta \phi/2$. In the simulations carried out in [66], the consistency of the discrete time step has been found by taking into account the Courant–Friedrichs–Lewy (CFL) condition for given properties of the initial state. In various simulations in different works, a typical evolution between $\phi = 0$ and $\phi = -2$ is typically performed by discretizing the time interval in 10^5–10^6 steps.

We conclude the discussion of sections 3.1 and 3.2 with a brief comment on the two methods to obtain physical states. Although both methods can be equivalently used to obtain physical states, they may have some advantages and disadvantages depending on the model considered. As we see above, unlike the method to find physical states by the FFT discussed in section 3.1, one needs to carefully address the issues of domain of dependence, convergence and stability in obtaining physical states by the method evolution. Thus, in comparison to the FFT method where physical states are obtained once one has obtained eigenfunctions, this method may appear more involved. However, a notable advantage of the evolution method

9 For a detailed discussion of analytical issues involved in this construction, we refer the reader to [7, 8, 65].
lies in the fact that it is computationally economical since it has less memory requirements in comparison to the FFT method. A naïve implementation of the FFT method for spacetimes with more degrees of freedom, such as the Bianchi-I model, can raise the computational cost significantly. On the other hand, the latter method, at least for some simple models, is comparatively straightforward to be parallelized.

3.3. Key features of results and their robustness

We summarize results from the numerical methods described above to obtain physical states in the spatially flat isotropic model with a massless scalar. We also discuss, in brief, results from the spatially curved models with a massless scalar [14, 16, 17], with positive and negative cosmological constants [19, 20] and from preliminary works in the presence of anisotropies.

• The main result obtained using the numerical simulations based on FFT and state evolution methods is that physical states in LQC do not encounter the classical big bang singularity. Rather, expectation values of the volume observable $\langle \hat{V} \rangle$ reveal that universe bounces from a forward evolution in a contracting branch to an expanding branch (or vice versa) when the energy density of the scalar field becomes $\rho \approx 0.41 \rho_{\text{Planck}}$. The bounce occurs independent of the choice of p_ϕ or the sector ϵ. This behavior can be seen in figure 2 where the amplitude of the wavefunction in LQC is plotted versus $v = v/\lambda$ and ϕ and the expectation values of volume observable are compared with classical trajectories. The initial state is peaked at $v^* = 22400$ (where $v = v/\lambda$) with $p^*_{\phi} = 1500$ (in Planck units) and evolved using a method to consider the initial state as a solution of the Wheeler–DeWitt equation in section 3.2. The lattice in this simulation is chosen to be $\epsilon = 0$. To compare with the Wheeler–DeWitt theory, we show the evolution of the same initial state specified in the expanding branch using Wheeler–DeWitt equation (2.21) in figure 3. Unlike the state in LQC which bounces, one finds that the state in the Wheeler–DeWitt theory is peaked
Figure 3. The evolution of initial state chosen in figure 2 is shown in the Wheeler–DeWitt theory for comparison. The state peaked on the classical expanding trajectory evolves to the big bang singularity and does not bounce. The expectation values of volume observable are also shown for two different simulations, one corresponding to expanding branch and the other to the contracting branch. The states in expanding and contracting branches in the Wheeler–DeWitt theory are peaked on classical trajectories (shown by solid lines), which are singular and disjoint.

on the classical trajectory at all times and encounters the big bang singularity at $v = 0$ in the past evolution. Note that unlike the Wheeler–DeWitt theory, where expectation values agree with the classical solution at all times, in LQC expectation values show a non-singular bounce which joins two disjoint trajectories of classical GR.

- Classical GR turns out to be a good approximation to loop quantum evolution till the energy density reaches a percent of the Planck value. Significant deviations from classical trajectory occur when energy density becomes larger than this value. In the regime where the energy density is smaller than the above value, a physical state in LQC is peaked on a classical trajectory in the expanding branch after the bounce, and on a classical contracting branch in the pre-bounce regime, corresponding to the same value of p_ϕ. Quantum gravitational effects bridge two disjoint classical solutions. Thus, LQC yields GR in the infrared limit and new Planck scale physics devoid of the singularity in the ultraviolet regime. This behavior can be seen from a plot of expectation values in figure 2, which shows that at large volumes, there is an excellent agreement between LQC and classical GR, where as at small volumes there are significant departures.

- Physical states remain sharply peaked throughout the evolution, as is also clear from figure 2. Depending on the method used and properties of the initial state, there is only a little variation in the behavior of relative fluctuations across the bounce. Subsequent to the analysis in [8, 9], strong constraints on change in relative fluctuation of volume and p_ϕ observables across the bounce have been obtained analytically for states which are similar as well as more general than those considered in numerical simulations [67–69]. These analytical results confirm the numerical observation that if one considers an initial state peaked in a classical macroscopic universe at late times, it evolves via the LQC quantum constraint to a state across the bounce with similar features at early times.

- Norm of the state is preserved and the expectation value of \hat{p}_ϕ observable remains constant throughout the bounce.

- The expectation value of volume observable at the bounce coincides with the value at which eigenfunctions become exponentially damped [7, 8]. This result has also been confirmed analytically [64].
Figure 4. This plot demonstrates the validity of effective dynamical trajectory for the massless scalar model in LQC for the numerical simulation of quantum evolution of initial state discussed in figure 2. The expectation values of volume observable are peaked on the effective trajectory (solid line) obtained from equation (5.1) throughout the evolution.

- Extensive numerical simulations confirm that underlying quantum dynamics in LQC can be approximated by an effective spacetime dynamics even in the Planck regime for states which peak in a macroscopic universe at late times. This behavior is shown in figure 4 and is discussed in detail in section 5.

Remark 1. The spatially flat isotropic model with a massless scalar field can be solved exactly in the \(b \) representation [9]. Results obtained analytically confirm with those from the numerical simulations in the \(\nu \) representation performed earlier. In particular, using an exactly soluble model, one finds that the bounce occurs for generic states in the physical Hilbert space, not necessarily semi-classical ones, in the sense that the expectation values \(\langle \hat{V} \rangle_\phi \) are bounded below. The energy density of the scalar field has a finite upper bound given by

\[
\rho_{\text{max}} = \frac{3}{8\pi G \gamma^2 \lambda^2} \approx 0.41 \rho_{\text{Planck}},
\]

which agrees with the value of critical energy density at which bounce occurs in all numerical simulations.

Remark 2. In the old quantization of LQC [5, 28], the quantum difference equation turns out to be uniformly discrete in the eigenvalues of triads. This occurs if while relating area of the loop over which holonomies are considered to the minimum eigenvalue of area operator, \(\bar{\mu} \) is considered as a constant (\(\mu_o \)). The resulting action of the elements of the holonomies \(\exp(i\mu_o c) \) is by uniform translations on triad eigenvectors, a feature shared by the action of the quantum Hamiltonian constraint in the old quantization. A rigorous quantization of this model was performed in [6, 7]. As in the improved quantization, there is a bounce, but with an important difference. Unlike the bounce discussed above, in the old quantization of LQC, bounce does not occur at a universal value of energy density. For the massless scalar model, the energy density at the bounce turns out to be inversely proportional to \(\rho_{\phi} \). Also, recall that \(\rho_{\phi} \) is not invariant under the rescaling of fiducial cell (equation (2.7)).\(^{10} \) These features lead to a serious infrared problem in this quantization. The same problem plagues loop quantizations of isotropic models which do not yield quantum difference equation with uniform discreteness in volume (such as a lattice refinement scheme [62]). We discuss these issues further in section 5.

\(^{10} \) As discussed in section 5, the infrared problem occurs in this quantization irrespective of problem of the rescaling of the fiducial cell.
3.4. Other models

In this part, we briefly summarize various numerical results obtained in a spatially curved model, spatially flat model with positive and negative cosmological constant, and in the presence of inflationary potential and Bianchi-I model.

Spatially curved models. Following the quantization procedure outlined in section 2 and numerical techniques discussed above, a rigorous analysis of a spatially closed ($k = 1$) isotropic model with a massless scalar field was performed in [14, 15]. Unlike the $k = 0$ model, a classical $k = 1$ filled with a massless scalar inevitably collapses in future evolution of the expanding branch and encounters a big crunch singularity in a finite time. Thus, there is a physical singularity both in the past and the future evolution. LQC resolves both of these singularities for arbitrary choices of parameters. A technical difference in comparison to the $k = 0$ model is that the corresponding quantum difference operator $\Theta_{k=1}$ (which is uniformly discrete in volume) has discrete eigenvalues, due to which a numerical procedure is more involved. Results from the numerical simulations with states peaked at classical trajectories at late times and evolved with the quantum difference equation show bounce at $\rho \approx 0.41\rho_{\text{Planck}}$ before big bang and big crunch are reached. In this model, loop quantum dynamics exhibits a cyclic evolution. Notably, states remain sharply peaked throughout the evolution for many cycles [14]. As in the case of spatially flat model, an excellent agreement of loop quantum dynamics and effective dynamics obtained from an effective Hamiltonian was found [14].

Loop quantization of $k = 1$ model overcame various limitations of an earlier quantization of the same model in LQC [4], which led to a quantum difference equation with uniform discreteness in triad eigenvalues. These limitations were first noted in the work of Green and Unruh [10], who found that eigenfunctions of the quantum constraint operator do not exhibit consistent infrared properties. In particular, they do not decay at large volumes where recollapse of the classical $k = 1$ universe is expected. These problems were resolved in the quantization proposed in [14, 15]. We will later discuss the way this issue is related to the von Neumann stability of the quantum difference equation in the old and improved quantizations in LQC.

The strategy for loop quantization of $k = 0$ and $k = 1$ models runs into some technical difficulties for $k = -1$ model [16, 17]. The existing quantization of this model considers holonomies of extrinsic curvature rather than the connection, and the resulting quantum difference operator is not essentially self-adjoint. Nevertheless, physical states have been studied by computing the eigenfunctions and taking an FFT [16]. These states reveal the existence of bounce when the energy density becomes equal to $\rho_{\text{max}} \approx 0.41\rho_{\text{Planck}}$. The quantization also shares various nice features of $k = 0$ and $k = 1$ models, including states remaining sharply peaked at all values of internal time, and consistent ultraviolet and infrared behavior. Effective dynamics also provides a consistent picture of the evolution of physical states in LQC.

Cosmological constant. A spatially flat model with a massless scalar field has been loop quantized with a positive [19] and a negative cosmological constant [20]. As in the spatially flat case with a massless scalar, the difference equation turns out to be uniformly discrete in volume. For the case of a negative cosmological constant, classical evolution predicts a recollapse of the universe at large volume, similar to the case of $k = 1$ model, and apart from past big bang, there is a big crunch singularity in the future evolution. The quantum difference operator turns out be self-adjoint, with discrete eigenvalues and its spectrum is numerically found to be non-degenerate. Numerical simulations reveal the existence of bounce when the
total energy density of scalar field and cosmological constant become equal to $\rho \approx 0.41 \rho_{\text{Planck}}$, and the big bang and big crunch singularities of the classical theory are avoided. Numerical studies with a large range of cosmological constant confirm that the recollapse of the universe occurs at the classically predicted volume. Furthermore, states are found to be sharply peaked throughout the evolution, and effective dynamics is found to be in excellent agreement with quantum evolution [20].

A rigorous quantization of spatially flat model with a massless scalar and positive cosmological constant reveals various interesting features of the quantum difference operator [18, 19]. In the classical theory, for any choice of positive cosmological constant, universe expands to infinite volume. With the massless scalar field playing the role of internal time, the infinite volume is reached in a finite value of internal time, $\phi = \phi_f$. Its one consequence is that the quantum difference operator Θ_λ is not essentially self-adjoint. However, by choosing a self-adjoint extension, quantum evolution can be continued beyond ϕ_f. Extensive numerical simulations show that the detailed physics depends weakly on the choice of self-adjoint extension. The quantum difference operator Θ_λ has discrete eigenvalues; however, they depend on the choice of self-adjoint extension. Numerical evolution of states reveal that the big bang singularity is resolved in the past evolution, and the evolution continues beyond ϕ_f where a cycle of contraction starts. Bounces of the universe in different cycles occur when the total energy density is $\rho \approx 0.41 \rho_{\text{Planck}}$. The quantum evolution from $\phi = -\infty$ to $\phi = \infty$ is thus composed of infinite cycles of expansion and contraction. Furthermore, numerical simulations find an agreement between loop quantum evolution and effective dynamics. It is interesting to note that a non-trivial physical Hilbert space exists only when the value of cosmological constant is smaller than a critical value of $\Lambda = \frac{3}{y^2} \lambda^2$ [18]. Note that in the presence of a massless scalar field, if Λ becomes equal to the critical value, the energy density would become greater than $\rho_{\text{max}} \approx 0.41 \rho_{\text{Planck}}$. This observation is also tied to the von Neumann stability of the quantum difference equation, which we discuss in section 4.

Inflationary potential. Quantization of ϕ^2 inflationary potential in spatially flat isotropic LQC is based on common features with that of the case of a positive cosmological constant discussed above [70]. In this model, the scalar field ϕ is not monotonic; however, it can be treated as an internal clock locally. At each instant ϕ, the quantum difference operator Θ is equivalent to the one in the case of a positive cosmological constant and is, hence, not essentially self-adjoint. For evolution, one thus has to carefully choose self-adjoint extensions between different ‘time’ slices. A preliminary numerical analysis with states which lead to a macroscopic universe at late times with this model indicates the existence of bounce at $\rho \approx 0.41 \rho_{\text{Planck}}$ and the validity of the effective Hamiltonian approach till the scale of bounce.

Bianchi-I spacetimes. Recently, a loop quantization of Bianchi-I model with a massless scalar field has been rigorously performed by Ashtekar and Wilson-Ewing [23]. Due to three spatial triads, the structure of a non-singular quantum difference operator is much richer in comparison to the isotropic model. In this model, it is a partial difference equation in geometrical variables. Due to the underlying complexity of the partial difference equation, the numerical evolution of physical states in this model is yet to be performed. One of the technical hurdles arises due to the non-uniformity of discrete variables, which we discuss in section 4.

Numerical simulations have been performed for vacuum Bianchi-I model with a different quantization proposed earlier by Chiu [24]. Although this quantization suffers from fiducial cell scaling and infrared problems [57], it nevertheless serves as a good playground to develop and test numerical methods beyond isotropic description. Detailed properties of the quantum
theory, such as essential self-adjointness of the quantum difference operator, were found and techniques to obtain a physical solution were introduced in [71]. In this analysis, one of the geometric variables plays the role of internal time, and relational dynamics between different geometric variables shows the absence of singularity and the existence of bounce. States remained sharply peaked throughout the evolution. It is to be noted that dynamics obtained from an effective Hamiltonian constraint is shown to be a good approximation to the quantum evolution.

4. von Neumann stability analysis of difference equations

A useful way to understand various properties of the quantum difference operator \hat{H} in LQC at large volumes and its relation to the corresponding operator \hat{H} in the Wheeler–DeWitt theory is by using ideas of the von Neumann stability analysis. In various branches of physics, this analysis plays an important role in obtaining faithful numerical solutions of PDEs by discretization. Using the von Neumann analysis, it is possible to determine whether a particular discretization of a PDE is stable, which by the Lax–Richtmyer equivalence theorem is a necessary and sufficient condition for a consistent finite-difference scheme to be convergent. Here, the consistency and convergence are used in the conventional sense of numerical methods (see, e.g., [72]). By consistency we imply that a smooth solution of a PDE is an approximate solution of the finite-difference equation obtained by its discretization when discreteness parameters tend to zero, and convergence implies that a solution of the finite-difference equation approximates a solution of the PDE.

In a conventional von Neumann analysis, for a given discretization of a PDE, say 1+1 dimension in space and time, one proceeds by a Fourier decomposition of the solution of finite-difference equation in space which results in a recursion relation in time. Using this algebraic equation, one can determine the amplification factor g between the values of the solution at two neighboring time steps. The von Neumann analysis requires that $|g| \leq 1$ for all the roots of the algebraic equation. There are some important differences in the conventional usage of the von Neumann stability analysis in various branches of physics and in LQC. These are noted as follows.

(1) Unlike in the conventional applications of the von Neumann analysis where the differential equation is fundamental, in LQC it is the difference equation which is fundamental. The discretization in geometric variable(s) is fixed by the underlying quantum geometry. Thus, in order to numerically solve the quantum Hamiltonian constraint in LQC, there is no freedom in changing the Planck scale discretization of quantum geometry to enhance the numerical efficiency. As emphasized in section 1, in the von Neumann stability analysis in LQC, our goal is to compare solutions of difference equations which are uniformly discrete in different geometrical variables obtained from loop quantizations with the Wheeler–DeWitt theory at large volumes to understand the infrared behavior of quantum difference equation in LQC. It is to be noted that as in the conventional

11 Note that there are two types of discreteness studied here in LQC. Apart from the discreteness in quantum geometry resulting from the properties of area and volume operators in LQG, the other discreteness deals with structure of the difference equation—whether it uniformly discrete in volume, area or any other geometric variable. (For a discussion on similar issues in LQG and broader context, we refer the reader to [73]). A quantum difference equation, irrespective of whether it is uniformly discrete in volume or not, shares the same kinematical properties of discrete quantum geometry identified by the eigenvalues of the geometrical operators.
numerical methods, there is freedom to choose the discretization in (internal) time labeled by ϕ appropriately12.

(2) In the von Neumann analysis, stability issues are analyzed in the limit of discretization parameters tending to zero. Since the discretization parameter(s) of geometry in LQC are fixed, one uses the von Neumann analysis in the regime where the discreteness scale can be ignored. As an example, for the isotropic model with a massless scalar, one can consider a large volume limit $v \gg l_{Pl}$ or $v \to \infty$. In early works in LQC, different types of limits were used to analyze stability. Above criterion was first used in the work of Cartin and Khanna [12].

(3) There is a difference on the roles of space and time in the conventional usage of the von Neumann analysis and in LQC. As discussed above, conventionally one performs a Fourier transform in space and analyzes the temporal behavior of amplification factor g. In isotropic LQC with a massless scalar field as internal time, the Fourier transform is performed in ϕ and the spatial behavior of amplification factor at large volumes is analyzed. Even for other models so far studied in LQC, such as Bianchi spacetimes and Schwarzschild interior, one identifies one of the geometric variables as ‘time’ and analyzes the behavior of amplification factor in another geometric variable (see, e.g., [74–76]).

(4) Strictly speaking, the von Neumann analysis is applicable only for the case of constant coefficients. For variable coefficients, as we will encounter in LQC, one can apply this method using the frozen coefficient approximation. In the conventional von Neumann analysis, this implies that one considers the stability in a small neighborhood where coefficients in the PDE can be treated as constants up to a leading order. Extra care is needed to interpret results on the stability in such a case.

In LQC, the first work incorporating ideas of the von Neumann analysis was by Bojowald and Date to understand properties of difference equations resulting from loop quantization [32]. At the stage of that early work, the knowledge of the inner product and physical Hilbert space, which plays a vital role in ruling out unphysical solutions, was not available. Rather, the consistency of difference equation with respect to the Wheeler–DeWitt equation was analyzed, to rule out inconsistent quantizations. This analysis gave primary importance to the differential equation, as in the conventional usage of the von Neumann analysis, and the consistency of difference equation was verified in the limit of discretization parameter becoming zero. This provided one notion of ‘pre-classicality’ in LQC. In a series of works, Cartin and Khanna investigated issues of ‘pre-classicality’ without taking the discreteness parameter to zero, but instead taking an appropriate limit to a small spacetime curvature (or large values of volume) [12, 35, 38]. Solutions having pre-classical behavior have a desirable property expected from solutions of a consistent quantum theory with correct infrared behavior. Such solutions do not display unphysical small scale oscillations in regimes far from the Planck regime.

Below, we focus on the von Neumann stability issues in the context of spatially flat isotropic models for improved quantization in LQC [8] and compare it with the old quantization in LQC [4, 5, 7]. This provides a flavor of the way this technique has been used in LQC to analyze the consistency of quantum difference equations [75–77]. Our discussion has some parallels with the discussion of the isotropic closed model in [59] and properties of eigenfunctions in the presence of cosmological constant in [77], where problems with infrared behavior have been discussed. After discussion of the von Neumann stability issues for the spatially flat isotropic model, we summarize main results for other spacetimes in LQC.

12 This freedom is expected to be absent or severely limited if the scalar field is also polymer quantized using methods of LQG, instead of being Fock quantized.
4.1. Stability analysis for a flat isotropic model

Results on the stability analysis for the improved quantization of a spatially flat isotropic model with a massless scalar field considered in section 2 were first reported by Cartin and Khanna [78]. Recently, a comparison of improved and old quantizations in the isotropic model in the perspective of behavior of solutions at large volumes has been made in the presence of cosmological constant [77], which can be understood using the von Neumann stability. In the following, we show the way the stability analysis is performed in different models of LQC and contrast between improved and old quantization schemes. As we discuss below, important lessons and pitfalls of using this analysis can be understood by considering different matter. We first discuss the stability of quantum difference constraint as discussed in section 2 for a massless scalar field and a positive cosmological constant. We then show that though the quantum difference equation for old quantization is stable for massless scalar, instabilities develop on the inclusion of positive cosmological constant. As emphasized before, we note that in LQC it is the quantum difference equation which is fundamental, and the stability or the instability used below should not be confused with the conventional usage of terms in the von Neumann analysis where PDE is fundamental and the goal is to determine whether a discretization of the PDE is stable or unstable.

4.1.1. Isotropic model with massless scalar

The loop quantization of massless scalar field in a spatially flat isotropic model was discussed in section 2. Let us begin with rewriting of the quantum difference equation (2.17) as follows:

\[\partial_\nu^2 \Psi(\nu, \phi) = C_+ (\nu) \Psi(\nu + 4\lambda, \phi) + C_0 (\nu) \Psi(\nu, \phi) + C_- (\nu) \Psi(\nu - 4\lambda), \]
(4.1)

where coefficients \(C_+, C_0 \) and \(C_- \) are given by

\[C_+ (\nu) = \frac{3\pi G}{4\lambda^2} \nu (\nu + 2\lambda), \quad C_- (\nu) = \frac{3\pi G}{4\lambda^2} \nu (\nu - 2\lambda), \quad C_0 (\nu) = -\frac{3\pi G}{\lambda^2} \nu. \]
(4.2)

Our goal is to understand the way solution of the above equation changes (or amplifies) at neighboring steps at large volumes. To find this amplification factor, an equivalent short-cut to the Fourier transform procedure used in the von Neumann analysis is to consider an ansatz (in the large volume limit)

\[\Psi(\nu, \phi) = g^n e^{i4\lambda \phi} \]
(4.3)

where \(n \) is an integer label of the discrete steps, and \(g \) is the amplification factor: \(\Psi(\nu + 4\lambda)/\Psi(\nu) = g \). The substitution of (4.3) into (4.7) yields the following quadratic equation in the amplification factor:

\[C_+ (\nu) g^2 + (C_0 (\nu) - \omega^2) g + C_- (\nu) = 0. \]
(4.4)

Since we are interested in the large volume limit, we consider the behavior of coefficients in a small neighborhood at large volume, where they are approximated as

\[C_+ (\nu) \simeq C_- (\nu) = \frac{3\pi G}{4\lambda^2} \nu^2 + O\left(\frac{\nu}{\lambda}\right) \]
(4.5)

and

\[C_0 - \omega^2 \simeq -\frac{3\pi G}{2\lambda^2} \nu^2 + O(1). \]
(4.6)

The von Neumann analysis requires both the roots of the quadratic equation (4.4) to have modulus bounded by unity. Substituting (4.5) and (4.6) into equation (4.4), it is straightforward to see that the two roots for the amplitude \(g \) are equal to unity. Thus, by the von Neumann analysis, the difference equation (2.17) is stable at large volumes. The boundedness of the
roots of the quadratic equation (4.4) suggests that there will be no sharp change in the solution at large scales. Recall that at large volumes, the quantum difference equation for this model leads to the Wheeler–DeWitt equation (2.21). Hence, according to the von Neumann stability analysis, eigenfunctions of LQC at large volume should approximate those of the Wheeler–DeWitt theory. This behavior is confirmed by figure 1 in section 3, where we find that the eigenfunctions of LQC smoothly approach to those of the Wheeler–DeWitt theory.

4.1.2. Isotropic model: massless scalar with a positive cosmological constant. A rigorous quantization of positive cosmological constant in LQC has been performed recently by Pawlowski and Ashtekar, and extensive numerical studies of the resulting difference equation have been performed [19] (see also [18] for detailed properties of a quantum difference operator). This case is interesting due to various physical and technical reasons, one of it being that since a massless scalar has an equation of state -1 and that of a cosmological constant is $+1$, the matter Hamiltonian spans the whole range of equation of state for matter satisfying the weak energy condition. Thus, this model provides a formidable robustness test of the success of the quantization procedure in LQC. We now discuss the stability issue for this model on the lines of a massless scalar field case discussed above. (A similar analysis of properties of solutions of quantum constraint operator with a different choice of lapse has been performed by Tanaka et al [77]).

In the case of a positive cosmological constant with a massless scalar field, the quantum Hamiltonian constraint takes the form of the following difference equation:

$$\partial^2_\phi \Psi(v, \phi) = C_+ (v) \Psi(v + 4\lambda, \phi) + (C_0 (v) + \pi y^2 G \Lambda v^2) \Psi(v, \phi) + C_- (v) \Psi(v - 4\lambda),$$

(4.7)

where C_+, C_0 and C_- are given by equation (4.2) and are slightly different from the analysis in [19] due to factor ordering. Using the ansatz (4.3) in a large volume limit, and following the steps outlined in section 4.1.1, we obtain a similar quadratic equation as (4.4), with the only change in the coefficient of the linear term in the amplification factor:

$$C_0 (v) + \pi y^2 G \Lambda v^2 - \omega^2 \simeq -\frac{3\pi G \nu^2}{2\lambda^2} \left(1 - 2\frac{\Lambda}{\Lambda_{\text{crit}}} \right) + O(1), \quad \text{where} \quad \Lambda_{\text{crit}} = \frac{3}{y^2 \lambda^2}. \quad (4.8)$$

Using the above equation and (4.5) in the quadratic equation for g, we obtain the following roots:

$$g = \left(1 - 2\frac{\Lambda}{\Lambda_{\text{crit}}} \right) \pm \left(\left(1 - 2\frac{\Lambda}{\Lambda_{\text{crit}}} \right)^2 - 1 \right)^{1/2}. \quad (4.9)$$

For $\Lambda = 0$, the roots of the equation are given by the massless scalar case discussed above. For $\Lambda = \Lambda_{\text{crit}}$, the amplification factor gives two roots, equal to -1. For $0 < \Lambda < \Lambda_{\text{crit}}$, both roots are oscillatory with magnitude equal to unity. However, for $\Lambda > \Lambda_{\text{crit}}$, one of the roots has magnitude greater than unity. Hence, the von Neumann analysis implies that for $\Lambda > \Lambda_{\text{crit}}$, equation (4.7) cannot be regarded stable at large volumes.

This observation is interesting. As discussed in section 3.3, it has been shown that for a loop quantization of massless scalar field with cosmological constant, a non-trivial physical Hilbert space exists only for $\Lambda < \Lambda_{\text{crit}}$ [18, 19]. The physical Hilbert space is zero dimensional for $\Lambda \geq \Lambda_{\text{crit}}$. The slight discrepancy on the viability of the case $\Lambda = \Lambda_{\text{crit}}$ between the analysis of [18, 19] and the von Neumann analysis above results due to the approximation involved in equation (4.8), which essentially ignores the role of massless scalar in the vanishing contribution of ω^2 term. If this order of contribution is included, the von Neumann analysis...
leads to the same constraints on \(\Lambda \) as obtained by the mathematical analysis of physical Hilbert space in [18, 19]. Furthermore, the value of \(\Lambda_{\text{crit}} \) obtained from the above stability analysis is the maximum allowed value of cosmological constant consistent with the maximum allowed energy density \((\rho_{\text{max}} = 0.41 \rho_{\text{Planck}}) \) in a massless scalar field case for a dense subspace of the physical Hilbert space in LQC. In the numerical simulations of semi-classical states for massless scalar with a positive cosmological constant, bounce of the scale factor has also been found to always occur at the above value [19]. It will be interesting to explore a deeper relation between above observations originating from different directions in this model.

4.1.3. Old quantization: massless scalar and cosmological constant. We now discuss the von Neumann stability issue for the quantum difference equation which originates in the old quantization of LQC. In this quantization of LQC, the parameter \(\bar{\mu} \) in equation (2.14) was assumed to be a constant: \(\bar{\mu} = \mu_o \). With this assumption, the resulting quantum-difference equation turns out to be uniform in eigenvalues of triad operator (which are proportional to area), rather than the volume operator [5]. A careful analysis of the eigenfunctions of this quantization revealed problems with the infrared behavior for the case of cosmological constant [11]. Problems with the large volume behavior were also reflected in an early quantization of \(k = 1 \) model in LQC by Green and Unruh [10]. As discussed in section 3.3, a rigorous quantization with a massless scalar field in spatially flat model was performed in [7], which demonstrated a bounce. However, the critical density turned out to be proportional to inverse of \(p_\phi \) and, thus, was not invariant under rescaling of fiducial cell. Insights into the problems of this quantization using effective dynamics are discussed in section 5.

In the following, we first perform the analysis with a massless scalar, and then include the regime \(\mu \) very large compared to \(\mu_o \), and using the ansatz \(\Psi(\mu, \phi) = g^{\mu/4\mu_o} e^{i\omega \phi} \) in the von Neumann analysis, we obtain the quadratic equation

\[f_+ (\mu) g^2 + (f_0 (\mu) - 8\pi GB(p) h^2 \omega^2) g + f_- (\mu) = 0. \]

The coefficients of this quadratic equation can be approximated for large \(\mu \) as

\[f_+ (\mu) \approx f_- (\mu) = \frac{3}{2} \sqrt{\frac{8\pi}{6} \frac{r_{\text{Pl}}}{\gamma(\mu_o)^{3/2}} \mu^{1/2}} + O(\mu^{-1/2}) \]

where

\[f_+ (\mu) = \frac{1}{2} \sqrt{\frac{8\pi}{6}} \frac{r_{\text{Pl}}}{(\gamma\mu_o)^{3/2}} \left| |\mu + 3\mu_o|^{3/2} - |\mu + \mu_o|^{3/2} \right|, f_- (\mu) = f_+ (\mu - 4\mu_o) \text{ and } f_0 (\mu) = -f_+ (\mu) - f_- (\mu) \]

and \(B(p) \) denotes the eigenvalue of inverse volume operator \(1/|p|^{3/2} \) given by

\[B(p) = \left(\frac{6}{8\pi \gamma r_{\text{Pl}}^2} \right)^{3/2} \left(\frac{2}{3\mu_o} \right)^6 (|\mu + \mu_o|^{3/4} - |\mu - \mu_o|^{3/4})^6. \]
and

\[f_0 - 8\pi GB(p)\omega^2 \simeq -3\sqrt{\frac{8\pi}{6}} \frac{\hbar}{\gamma^{3/2} \mu_o^2} \mu^{1/2} + O(\mu^{-1/2}). \]

(4.15)

Substituting (4.14) and (4.15) into equation (4.13), one finds that both the roots of the difference equation (4.16) are equal to unity. Thus, for the case of massless scalar field, old quantization appears to yield a similar result for the stability analysis at large volumes as the improved quantization. Since the domain of validity of the von Neumann analysis is only for the large volumes, it will be a mistake to extend this conclusion to small volumes. As we noted above and will further discuss in the next section, though the infrared behavior as analyzed from the perspective of the von Neumann analysis is similar for two quantizations, old quantization in LQC for a massless scalar field leads to unphysical quantum gravitational effects which are easily ruled out.

We now turn to the interesting case of cosmological constant in the old quantization of LQC. Since this case is known to be problematic in the large volume regime [11], we expect the von Neumann analysis to yield an amplification factor with modulus greater than unity. In the presence of positive cosmological constant, the quantum difference equation turns out to be

\[8\pi GB(p)\partial_\mu^2 \Psi(\mu, \phi) = f_+ (\mu) \Psi(\mu + 4\mu_o, \phi) + \left(f_0(\mu) + 2 \left(\frac{8\pi \gamma l_p^2}{6} \right)^{3/2} \Lambda \mu^{3/2} \right) \Psi(\mu, \phi) \]

\[+ f_-(\mu) \Psi(\mu - 4\mu_o). \]

(4.16)

where \(f_+, f_0 \) and \(f_- \) are given by equations (4.11). As before, the von Neumann stability analysis yields a quadratic equation for the amplification factor, which is

\[f_+ (\mu) g^2 + f_0 - 8\pi GB(p) \hbar^2 \omega^2 + 2 \left(\frac{8\pi \gamma l_p^2}{6} \right)^{3/2} \Lambda \mu^{3/2} \right) g + f_- (\mu) = 0. \]

(4.17)

In the regime where \(\mu \) is large, \(f_+ \) and \(f_- \) are approximated by equation (4.14). The coefficient of the linear term of the above quadratic equation approximates to

\[f_0 - 8\pi GB(p)\omega^2 + 2 \left(\frac{8\pi \gamma l_p^2}{6} \right)^{3/2} \Lambda \mu^{3/2} \simeq 2\Lambda \left(\frac{8\pi \gamma l_p^2}{6} \right)^{3/2} \mu^{3/2} + O(\mu^{-1/2}). \]

(4.18)

Using these expressions in (4.17), within the order of approximation of large \(\mu \), we obtain following two roots:

\[g_1 = 0, \quad g_2 = -\frac{16\pi}{9} \Lambda^2 (\gamma \mu_o)^3 \mu. \]

(4.19)

Since \(\gamma \) and \(\mu_o \) are fixed, for any given value of \(\Lambda \), there exists a sufficiently large value \(\mu \), such that \(|g_2| > 1 \). Thus, this model fails the von Neumann stability test at large volumes. This exercise gives a valuable lesson that one must be careful in claiming the stability of a quantization scheme, and it is important to understand the behavior of the difference equation with different matter. The above limitation of old quantization has been understood in the literature in various ways and is reflection of the bad infrared behavior of the quantization and thus ruled out.

We conclude this subsection with two remarks, one on problems with arbitrary discretizations which are sometimes proposed in loop quantization [62], and other on the closed models.
Remark 1. In the literature, arbitrary discretizations have also been considered in lattice-refined models inspired by LQC13. For the isotropic models, these are based on considering holonomies of a general variable introduced in section 2.1, $P_m = c|p|^m$ with $-1/2 < m < 0$ [62]. It is straightforward to repeat the above analysis for any value of m in the above range for cosmological constant, and one encounters similar difficulties as noted above for the old quantization in LQC. In fact, in isotropic LQC, it is only for the case of $m = -1/2$, which corresponds to $P_m = b$, that the von Neumann stability analysis gives a positive result for the case of a positive cosmological constant. Thus, the discretization in quantum theory is highly restrictive. This observation is in agreement with the one on uniqueness of discretization in LQC obtained in [13] using effective dynamics (discussed in section 5). Recall that in section 2.1, we discussed that for $m \neq -1/2$, one does not obtain invariance of the phase space variable P_m. We will discuss in the next section, how these different observations tie up with each other.

Remark 2. As mentioned earlier, based on an early quantization of isotropic models in LQC, Green and Unruh investigated the properties of quantum difference equation and the behavior of eigenfunctions in a spatially closed $k = 1$ model with a massless scalar field [10]. In this model, classical GR predicts a recollapse of the universe at a volume determined by the initial energy density of the scalar field. If the quantum theory leads to a consistent classical behavior at a small spacetime curvature, one expects wavefunctions to exponentially decay near the volume at which recollapse occurs. Authors of the above work, did not find this behavior. Instead, they found that, in general, solutions grow exponentially at large volumes. It is to be noted that at that stage of analysis, a rigorous quantum theory of a spatially closed model in LQC was lacking. In particular, little was known about the inner product which could provide insights into physical and unphysical solutions. Nevertheless, Green and Unruh’s work brought to light limitations with the earlier quantization in LQC. As discussed in section 3, these challenges were overcome successfully in an improved quantization which demonstrated correct ultraviolet and infrared behavior [14]. Extensive numerical simulations showed that a spatially closed LQC universe does indeed recollapse at the volume predicted by the classical theory and resolves the singularity via a non-singular bounce. From the perspective of discretization, it is to be noted that the quantization Green and Unruh used is uniformly discrete in triad eigenvalues, whereas the correct quantization leads to a difference equation which is uniformly discrete in volume. Recently, a von Neumann stability analysis of quantization considered by Green and Unruh shows that one of amplification factors has modulus greater than unity [59]. In contrast, both of the roots in the quadratic equation for amplification factors in the quantization of [14] have modulus equal to unity, as in the flat isotropic model.

4.2. Anisotropic spacetimes and Schwarzschild interior

In this part, we summarize results on the understanding of properties of the quantum difference equation, including von Neumann stability issues for loop quantization of spacetimes beyond isotropy assumption. As discussed earlier, in the early stages of investigations in LQC, a rigorous formulation of quantum theory, including the physical inner product, was not available, and resulting physics was not well understood. In the absence of these tools, various early works used notions of pre-classicality at large volumes to understand properties of

13On similar lines, ad hoc modifications to the Hamiltonian constraint and their effect on bounce have also been investigated [79]. Although such studies may be useful to understand the way properties of difference equations are affected by certain terms, being not derived from loop quantization, such studies give few insights into the robustness of bounce in LQC.
the quantum difference equation in relation to GR. Pre-classicality was obtained in different ways, depending on the procedure of taking underlying limit, whether of the discreteness parameter [32], or to the small spacetime curvature [12, 35, 38]. In the above approach, the usage of generating function technique was particularly useful to analytically obtain pre-classical solutions [33]. With the generating function method, Cartin and Khanna [12] showed the non-existence of pre-classical solutions for an early quantization of vacuum Bianchi-I model proposed by Bojowald [4]. It was then argued by Date that if one does not require a pre-classical solution to correspond to the sector with a vanishing volume, then pre-classical solutions can exist [36]. Cartin and Khanna then studied this model using the separation of variables and investigated the existence of a pre-classical solution for all values of triads. It was found that the existence of such pre-classical solutions depends on the sign of the separation parameter [35]. It should be noted that the presence of matter or cosmological constant may alleviate the problem of pre-classical solutions, as was shown in the analysis of [80]. For the same quantization in the case of vacuum Bianchi-I LRS model, a von Neumann stability analysis with a symmetric and a non-symmetric form of the quantum constraint revealed instabilities in large regions of spacetime [74]. In contrast, the quantum difference equation for an earlier quantization of Bianchi-I vacuum spacetime [24], written in the separable form turns out to be stable [81]. Generating functions were also used to study pre-classical solutions in the Schwarzschild interior and limitations of the quantization proposed in [27] were identified [38]. A von Neumann stability analysis of the same quantization of Schwarzschild interior shows instabilities [74], whereas a different quantization of Schwarzschild interior heuristically motivated by Boehmer and Vandersloot [29] demonstrates stability [75]. Nelson and Sakellariadou studied the von Neumann stability of the quantum difference equation for Bianchi-I vacuum spacetime resulting from the analysis of Ashtekar and Wilson-Ewing [23] and claimed that in the explicit implementation, the difference equation is unstable [76]. As we have discussed in section 4.1 and above, it can be naive to extend conclusions from one particular choice of matter (or its absence) to general matter. It is quite possible that in the presence of massless scalar the quantum difference equation turns out to be stable [82]. Since some of the detailed properties of the quantum theory, such as self-adjointness of quantum constraint operator and the associated inner product, in above Bianchi-I model remain to be fully understood, it is also possible that instabilities correspond to unphysical solutions which are weeded out in the physical Hilbert space. The effect of implementation of quantum difference equation in an implicit scheme, or by use of different variables, remains to be understood.

We now discuss an important technical issue which arises in the quantization of Bianchi spacetimes and the Kantowski–Sachs model. In these models, the quantum constraint operator in LQC is a difference equation in more than one variables. Instead of an ordinary difference equation as in the case of isotropic models, one has to solve a partial difference equation. This partial difference equation cannot be expressed in a form such that it is uniformly discrete in all the variables. Using appropriate redefinition of variables, it has been shown that the partial difference equation can be made uniformly discrete in one of the variables (see, e.g., [75] and [23] for a rigorous implementation at the quantum theory level in the Bianchi-I model). Due to the non-uniform step size, the structure of difference equation is such that the value of the wavefunction at some future discrete step cannot be recursively obtained from previous iterations. Furthermore, the discretization step in one direction can also depend on the one in the other direction, and the partial difference equation is not variable separable.

To overcome these problems, Sabharwal and Khanna have recently used a local interpolation method [39], and Nelson and Sakellariadou have proposed a Taylor expansion scheme for interpolation [40]. We illustrate below the difficulty of non-uniform grids and
summarize the interpolation method of [39] in a simple case where separability in variables is allowed. Let us assume a quantum constraint with two discrete variables (δ, τ), which are separable, and the partial difference equation can be written as two coupled difference equations. If C_i (where $i = 0, 1, 2$) denote coefficients in the τ difference equation, then say at $\delta = \delta_0$, a recursive relation can be used to determine C_2, given C_0 and C_1 as initial data. However, due to non-uniform stepping, at $\delta = \delta_1$, the recursive relation in τ would have coefficients which depend on the value of τ not obtained from uniform stepping of the values at $\delta = \delta_0$, such as $C_{2-\epsilon}, C_2$ and $C_{2+\epsilon}$. Using difference equations, it is not possible to determine $C_{2-\epsilon}$ from C_2, C_1 and C_0, and hence, one cannot use a recursive relation at $\delta = \delta_1$ to obtain $C_{2+\epsilon}$. In Sabharwal and Khanna’s algorithm, one performs a least-squares fit at $\delta = \delta_0$ to obtain a locally accurate formula which is used to determine $C_{2-\epsilon}$ from C_2, C_1 and C_0. This allows one to compute $C_{2+\epsilon}$ at $\delta = \delta_1$ using the difference equation at $\delta = \delta_1$. This value is used to obtain a revised locally accurate formula in the neighborhood of $\tau = 2 - \epsilon, 2, 2 + \epsilon$, which is then used to compute coefficients in the next step $\delta = \delta_2$. The local interpolation method is applicable in the regime where solutions are varying slowly in the neighborhood. Due to the similar behavior of solutions at a small spacetime curvature (or large volumes) in various models, the above method is useful to understand large volume behavior of quantum difference equations, von Neumann stability and evolution of semi-classical states at late times. However, in the regime where solutions can change rapidly in the neighboring points, a more general method, such as the one based on the Taylor series expansion for interpolation on neighboring points is expected to be more reliable, as it requires only analyticity of the solution and provides a better control on the accuracy of method [40]. At this stage, more work is needed to understand the domain of applicability of these methods.

5. Effective dynamics

In the previous sections, we have discussed different numerical methods to understand detailed features of quantum difference equation in LQC. Interestingly, various aspects of quantum dynamics in LQC can be understood also in terms of an effective spacetime description using effective dynamical differential equations derived from an effective Hamiltonian constraint. This description is derived in LQC using geometric formulation of quantum mechanics where one treats the space of quantum states as an infinite-dimensional quantum phase space with a symplectic structure and relates it to the classical phase space by seeking a faithful embedding [83]. Such an embedding can be obtained by a judicious choice of states, such as coherent states which at late times peak on classical trajectories in a macroscopic universe. In LQC, an effective Hamiltonian up to quantum corrections corresponding to properties of the states, such as fluctuations, has so far been achieved for the spatially flat model in the presence of a massless scalar [42] and dust [41], and the generalization for arbitrary matter is in progress [84]. Interestingly, using extensive numerical simulations on the evolution of states with quantum difference equations in LQC, the validity of effective Hamiltonian has been verified for models in the presence of spatial curvature [14, 16], inflationary potential [70] and even anisotropies [71, 85]. These works, hence, strongly indicate that the validity of effective Hamiltonian approach in LQC is more general. We illustrate the comparison of effective dynamics with quantum evolution in LQC for the numerical simulation discussed in another approach which can be used to obtain an effective Hamiltonian is a truncation method [86]. This method is also based on geometric formulation of quantum mechanics and is similar to the approach of the order by order perturbative analysis. It allows a discussion of broader set of states; however, extra care is needed to systematically control truncation errors. This method has not been as widely tested in LQC models as the one based on the embedding approach. For more discussion of analysis based on this approach, we refer the reader to [87, 88].
It can be clearly seen that the effective dynamical trajectory obtained from the effective Hamiltonian constraint discussed below (equation (5.1)) is in an excellent agreement with the expectation values of volume observable in LQC computed by state evolution, at all scales. In a recent work, this agreement has been observed even for states which bounce at very small volume [66].

In LQC, effective dynamics has yielded many insights into the new physics at Planck scale, including issues ranging from the genericity of singularity resolution [54–56], and phenomenological issues such as attractor behavior in inflationary dynamics [43, 45, 47] and implications for the probability of inflation [45, 46] to the detailed analysis of approach to Planck scales in anisotropic models in LQC [52, 51], and on the inclusion of inhomogeneous degrees of freedom [48] (for discussion of various applications see section 5 of [1]). Various results obtained in effective dynamics rely on a use of numerical methods to solve coupled ODEs, which carefully incorporate control on error terms, arising for example in a slight non-vanishing of the Hamiltonian constraint in a numerical simulation. For examples of works with detailed discussion on these issues in LQC, we refer the reader to [45, 47, 51, 52].

Amongst various applications of effective dynamics, a very useful one concerns with its use to gain insights into the problems with certain discretizations in LQC, such as old quantization [4, 5] or arbitrary discretization as proposed in the lattice refinement scheme [62]. Below we discuss this aspect of effective dynamics and show the way it leads to reveal similar problems with certain quantizations as demonstrated in the von Neumann stability analysis. Our discussion is based on the analysis in [13]. Since this part of the paper has some parallel with the classical cosmology, we work with the lapse $N = 1$. The effective Hamiltonian constraint for a spatially flat isotropic model with a massless scalar field in LQC is given by [42]

$$-\frac{3\hbar}{4\gamma} \sin^2(\lambda b) \frac{\lambda^2}{\gamma^2} \rho + \mathcal{H}_\phi \approx 0,$$

(5.1)

where $\mathcal{H}_\phi = \frac{p_\phi^2}{2} / |p|^{3/2}$ is the Hamiltonian for the massless scalar. It is straightforward to verify using equation (2.4) that in the regime $\lambda b \ll 1$ the above equation yields the classical Hamiltonian constraint (2.8) for lapse $N = 1$. Recall that on classical solutions of GR for a massless scalar model, $b = \gamma H \propto a^{-3}$, and hence, the effective Hamiltonian constraint approximates classical GR at large volumes. The same conclusion is reached for effective Hamiltonian constraint with arbitrary matter satisfying the weak energy condition [13]. This shows that effective Hamiltonian constraint (5.1) leads to a consistent infrared behavior. To understand the ultraviolet behavior, we consider the expression for energy density of the scalar field, which using equation (5.1), turns out to be

$$\rho = \frac{\gamma}{2} \frac{p_\phi^2}{V^2} = \frac{3}{8\pi G} \frac{\sin^2(\lambda b)}{\gamma^2a^2}.$$

(5.2)

The maximum value of energy density is given by $\rho_{\text{max}} = 3/8\pi G \gamma^2 a^2 \approx 0.41 \rho_{\text{Planck}}$, a universal constant. Recall that this is the same value where bounce occurs in numerical evolution of quantum states in LQC [8] and the value which emerges as an upper bound on expectation values for all states in the physical Hilbert [9]. It turns out that the effective dynamics also predicts a bounce at this energy density, and a period of superinflation between $\rho_{\text{max}} < \rho < \rho_{\text{max}}/2$ [89], whose many interesting implications have been studied in LQC.

So far we have discussed the effective Hamiltonian constraint in the improved quantization in LQC which yields a quantum difference equation which is uniformly discrete in volume. We now discuss some features of the effective dynamics in cases when quantization leads to a difference equation not uniformly discrete in volume. Examples are the cases of old
quantization in LQC where the quantum difference equation is uniformly discrete in triad eigenvalues [7], and the lattice refinement scheme where arbitrary discretizations are allowed [62]. All these cases can be studied by considering phase space variable \(P_m = c|p|^m \), for \(-1/2 < m < 0\) (introduced in section 2.1), and its conjugate \(x = |p|^{1-m}/(1-m) \). For a quantization based on these variables, the expression for energy density from the effective Hamiltonian constraint, which is similar to (5.1) with a sinusoidal term given by \(\sin^2(\lambda P_m p_g) \), turns out to be [13]

\[
\rho(P_m) = \frac{3}{8\pi G} \left(\frac{8\pi G}{6} \gamma \lambda^2 P_m^2 \right)^{(2m+1)/(2m-2)},
\]

(5.3)

where \(\lambda P_m \) is a constant related to the area gap in LQC. Note that except for the case of \(m = -1/2 \) that corresponds to \(P_m = b \) (and a uniform discretization in volume), the maximum value of \(\rho \) depends on \(p_\phi \). As discussed in section 3.3, this leads to a serious problem because \(p_\phi \) is not invariant under the rescaling of the fiducial cell, and the maximum energy density in such quantizations, at which bounce occurs, can be reached at an arbitrarily small spacetime curvature by a simple rescaling of the fiducial cell. Unfortunately, even fixing a compact spatial topology such as a 3-torus, with say \(V_0 = 1 \), in these quantizations does not help and the problem for a consistent infrared behavior persists. Note that for arbitrary \(m \), \(P_m \) varies with scale factor on classical trajectories as

\[
P_m = c|p|^m = \gamma a^{2m} \propto a^{-\left(3w+1-4m\right)/2},
\]

(5.4)

where we have used the classical equation \(\dot{a} \propto a^{-\left(3w+1\right)/2} \) following from the classical Friedmann equation and the stress-energy conservation law. For \(-1/2 < m \leq 0\), \(P_m \) increases with an increase in the scale factor of the universe for \(-1 \leq w < 0\). This implies that the term \(\sin^2(\lambda P_m p_g) \) in the effective Hamiltonian constraint for \(-1/2 < m \leq 0\) leads to large deviations from GR even for matter which satisfies the weak energy condition. This result is in confirmation with our discussion on problems with old quantization (which corresponds to \(m = 0 \)) and arbitrary discretizations \((-1/2 < m < 0\)) for the von Neumann stability issues of quantum difference equation. In the light of the above argument, in section 4.1.3, one would have expected that the old quantization of LQC will be problematic in achieving a correct classical limit for the case of cosmological constant, which turns out to be true. In fact, it is only for \(m = -1/2 \) that one obtains a consistent infrared behavior. Hence, out of all possible discretizations, uniform discretization in volume is unique in this sense [13].

Above discussion shows that effective Hamiltonian approach can be very useful in predicting detailed features of quantum difference operators which can be confirmed by more sophisticated numerical methods, such as the von Neumann analysis. In particular, innocuous rescaling of variable under change in fiducial cell can teach us important things. In the same spirit as above, different quantizations in Bianchi-I models have been discussed [57], which show the viability of the recent quantization by Ashtekar and Wilson-Ewing [23] in comparison to an earlier quantization by Chio [24]. It will be interesting to see if the analysis of [57] provides useful insights into the von Neumann stability analysis of Bianchi-I models in LQC with matter.

6. Summary and outlook

In this paper, we have reviewed various numerical techniques which have been used in LQC to understand the behavior of quantum difference operator and physical states. Since the applied numerical methods are diverse, we used the quantization of massless scalar field in isotropic

\[15\] A different analysis based on factor-ordering ambiguities results in a similar conclusion [58].
spacetime as a platform to discuss them in a coherent way. After providing a brief summary of the classical framework and basics of quantization and how it leads to the quantum Hamiltonian constraint as a difference equation with a uniform discretization in volume, we described the underlying procedure of obtaining physical states using an FFT and with an internal time evolution. These techniques have been extensively used in various isotropic models and also in preliminary investigations of anisotropic models in LQC. In all the models which have been quantized so far in LQC, these methods reveal the existence of bounce when the spacetime curvature becomes Planckian. A lot of work in LQC has been devoted to understand the behavior of quantum difference operator at large volumes and the consistency of quantization at infrared scales by comparison with the Wheeler–DeWitt theory using the von Neumann stability analysis. Illustrating these techniques for the isotropic model, we showed the way improved quantization of [8] overcomes problems associated with the old quantization in LQC [4, 5, 7]. Insights into these issues were also discussed using effective dynamics, and we highlighted the complementarity of these approaches to understand infrared issues. It is notable that the unique viable discretization, which is established from these works, emerges naturally from loop quantization [8]. It will be useful to apply these ideas in greater synergy for anisotropic and black hole spacetimes to gain insights into the properties of quantum difference equations in these models.

Numerical techniques in LQC have so far played a very important role in its progress; however, the field of numerical LQC is still in its infancy. Various avenues remain to be explored in near future which open opportunities for contributions from experts in numerical and computational methods. We have discussed some of the open directions in the paper, which include development of techniques to solve partial difference equations with non-uniform discretization carrying forward the works of [39, 40]. These methods will be in particular helpful to uncover detailed physics of anisotropic and black hole spacetimes in LQC. A related arena is to explore the quantum properties of spacetime in the bounce regime, on the lines of numerical techniques developed in classical GR to explore the structure of spacetime on the approach to space-like singularities [90, 91]. Work on these lines is expected to provide deep insights into the way quantum gravity affects mixmaster behavior and critical phenomena in gravitational collapse. For the Bianchi models, these avenues are being investigated using effective dynamics which already provide an interesting result that quantum geometric effects lead to Kasner transitions across the bounce in Bianchi-I spacetimes [52]. Critical phenomena and Choptuik scaling in gravitational collapse scenarios are also being studied, but so far only partial effects from LQG have been incorporated (see, e.g., [92–94]). These works indicate that underlying quantum geometry may lead to a mass gap in gravitational collapse scenarios [92–94]. Whether or not these results are borne out in a rigorous quantization can only be answered by carrying out extensive numerical simulations in near future. Investigations on these lines are also expected to provide us with insights into the phenomena of black hole evaporation. Recently, insights from singularity resolution in LQC were fruitfully used to gain the understanding of this issue for Callan–Giddings–Harvey–Strominger (CGHS) black holes [95], and the extensive numerical analysis revealed new insights into the quantum evaporation of these black holes [96]. Future work on similar lines with Schwarzschild black holes is expected to be a fertile ground for research where numerical methods will play an important role.

Going beyond the isotropic models, or asking more refined questions even in the isotropic models will require adapting algorithms to high performance computation techniques. To illustrate this, let us consider computational costs on an interesting avenue of research—to test the validity of effective dynamics in extreme regimes (i.e. at volumes comparable to Planck volume) with states which are more general than the ones considered in this paper. In
the spatially flat isotropic model, note that the characteristic speeds in the Wheeler–DeWitt equation (in the ν representation), to which quantum difference equation in LQC approximates to at large volumes, are proportional to volume. Since the discreteness in volume is fixed by the quantum geometry, this implies that the ‘time’ step to numerically integrate the equation in ϕ determined by the CFL condition is inversely proportional to the volume. Due to this reason, the computational cost of numerically evolving states with wider spreads is much higher with the same techniques as used for sharply peaked states. Note that a wider state would require the boundary in volume to be considered at a much higher value than the state which is sharply peaked. And, an increase in boundary volume, implies choosing a smaller time step. As an example, for the numerical simulation used in generation of figure 2, the outer boundary was taken at $v = 400\,000$ and the time interval was divided in $300\,000$ steps. The simulation took approximately 45 min on a dual core Opteron 280 machine. A naive implementation of the same algorithm for an outer boundary, say at $v = 4 \times 10^{10}$ (which is typically required for certain types of quantum states), increases the computational time by 10^{10} h! These costs would only grow for asking similar questions in anisotropic models. Certainly, better algorithms harnessing the power of high performance computing are required, which are being developed [66]. These algorithms will provide us with tools to understand robustness of new physics in the Planck regime and answer fundamental questions on the emergence of continuum spacetime from quantum geometry. Development of these algorithms will also open new avenues to perform extensive numerical evolution of states in anisotropic and black hole models using HPCs in the near future.

Acknowledgments

The author is grateful to Tomasz Pawlowski for his seminal contributions in development of numerical techniques in our joint collaborations in LQC. The author warmly thanks Daniel Cartin, Peter Diener, Brajesh Gupt and Gaurav Khanna for many insightful discussions on numerical aspects. The author also thanks Abhay Ashtekar, David Craig and Jorge Pullin for discussions. Numerical simulations discussed in this paper were developed and carried out using computational resources of Center for Computation and Technology at Louisiana State University, and the author thanks Brajesh Gupt for help with the figures. This work was supported by NSF grant PHY1068743.

References

[1] Ashtekar A and Singh P 2011 Loop quantum cosmology: a status report Class. Quantum Grav. 28 213001
[2] Ashtekar A, Lewandowski J, Marolf D, Mourao J and Thiemann T 1995 Quantization of diffeomorphism invariant theories of connections with local degrees of freedom J. Math. Phys. 36 6456
[3] Marolf D 1995 Refined algebraic quantization: systems with a single constraint arXiv:gr-qc/9508015
[4] Bojowald M 2001 Absence of singularity in loop quantum cosmology Phys. Rev. Lett. 86 5667
[5] Bojowald M 2002 Isotropic loop quantum cosmology Class. Quantum Grav. 19 2717
[6] Bojowald M 2003 Homogeneous loop quantum cosmology Class. Quantum Grav. 20 2595
[7] Ashtekar A, Bojowald M and Lewandowski J 2003 Mathematical structure of loop quantum cosmology Adv. Theor. Math. Phys. 7 233
[8] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang Phys. Rev. Lett. 96 141301
[9] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang: an analytical and numerical investigation Phys. Rev. D 73 124038
[10] Ashtekar A, Pawlowski T and Singh P 2006 Quantum nature of the big bang: improved dynamics Phys. Rev. D 74 084003
[11] Ashtekar A, Corichi A and Singh P 2008 Robustness of key features of loop quantum cosmology Phys. Rev. D 77 024046
[10] Green D and Unruh W G 2004 Difficulties with closed isotropic loop quantum cosmology Phys. Rev. D 70 103502
[11] Noui K, Perez A and Vandersloot K 2005 On the physical Hilbert space of loop quantum cosmology Phys. Rev. D 71 044025
[12] Cartin D and Khanna G 2005 Absence of pre-classical solutions in Bianchi I loop quantum cosmology Phys. Rev. Lett. 94 111302
[13] Corichi A and Singh P 2008 Is loop quantization in cosmology unique? Phys. Rev. D 78 024034
[14] Ashtekar A, Pawlowski T, Singh P and Vandersloot K 2006 Loop quantum cosmology of $k = 1$ FRW models Phys. Rev. D 75 0240035
[15] Szlach L, Kaminski W and Lewandowski J 2007 Closed FRW model in loop quantum cosmology Class. Quantum Grav. 24 2621
[16] Vandersloot K 2007 Loop quantum cosmology and the $k = − 1$ FRW model Phys. Rev. D 75 023523
[17] Szulc L 2007 Open FRW model in loop quantum cosmology Class. Quantum Grav. 24 6191
[18] Kaminski W and Pawlowski T 2010 The LQC evolution operator of FRW universe with positive cosmological constant Phys. Rev. D 81 024014
[19] Pawlowski T and Ashtekar A 2012 Positive cosmological constant in loop quantum cosmology Phys. Rev. D 85 064001
[20] Bentivegna E and Pawlowski T 2008 Anti-de Sitter universe dynamics in LQC Phys. Rev. D 77 124025
[21] Craig D and Singh P 2012 Consistent probabilities in loop quantum cosmology in preparation
[22] Craig D and Singh P 2011 Consistent histories in quantum cosmology Found. Phys. 41 371
[23] Ashtekar A and Wilson-Ewing E 2009 Loop quantum cosmology of Bianchi type I models Phys. Rev. D 79 083535
[24] Chiou D-W 2007 Loop quantum cosmology in Bianchi type I models: analytical investigation Phys. Rev. D 75 024029
[25] Ashtekar A and Wilson-Ewing E 2009 Loop quantum cosmology of Bianchi type II models Phys. Rev. D 80 123532
[26] Wilson-Ewing E 2010 Loop quantum cosmology of Bianchi type IX models Phys. Rev. D 82 043508
[27] Ashtekar A and Bojowald M 2006 Quantum geometry and the Schwarzschild singularity Class. Quantum Grav. 23 391
[28] Gambini R and Pullin J 2008 Black holes in loop quantum gravity: the complete space-time Phys. Rev. Lett. 101 161301
[29] Bochmer C G and Vandersloot K 2008 Stability of the Schwarzschild interior in loop quantum gravity Phys. Rev. D 78 067501
[30] Modesto L 2007 Loop quantum gravity and black hole singularity arXiv:hep-th/0701239
[31] Bojowald M 2001 Dynamical initial conditions in quantum cosmology Phys. Rev. Lett. 87 121301
[32] Bojowald M and Date G 2004 Consistency conditions for fundamentally discrete theories Class. Quantum Grav. 21 121
[33] Cartin D, Khanna G and Bojowald M 2004 Generating function techniques for loop quantum cosmology Class. Quantum Grav. 21 4495
[34] Bojowald M, Singh P and Skirzewski A 2004 Coordinate time dependence in quantum gravity Phys. Rev. D 70 124022
[35] Cartin D and Khanna G 2005 Separable wave functions in Bianchi I loop quantum cosmology Phys. Rev. D 72 084008
[36] Date G 2005 Pre-classical solutions of the vacuum Bianchi I loop quantum cosmology Phys. Rev. D 72 067301
[37] Singh P and Vandersloot K 2005 Semi-classical states, effective dynamics and classical emergence in loop quantum cosmology Phys. Rev. D 72 084004
[38] Cartin D and Khanna G 2006 Wave functions for the Schwarzschild black hole interior Phys. Rev. D 73 104009
[39] Sahbarwal S and Khanna G 2008 Numerical solutions to lattice-refined models in loop quantum cosmology Class. Quantum Grav. 25 085009
[40] Nelson W and Sakellariadou M 2008 Numerical techniques for solving the quantum constraint equation of generic lattice-refined models in loop quantum cosmology Phys. Rev. D 78 024030
[41] Willis J 2004 On the low energy ramifications and a mathematical extension of loop quantum gravity PhD Thesis, The Pennsylvania State University, State College, PA, USA
[42] Taveras V 2008 LQC corrections to the Friedmann equations for a universe with a free scalar field Phys. Rev. D 78 064072
[43] Singh P, Vandersloot K and Vereshchagin G V 2006 Non-singular bouncing universes in loop quantum cosmology Phys. Rev. D 74 043510

31
[44] Cailleteau T, Singh P and Vandersloot K 2009 Non-singular ekpyrotic/cyclic model in loop quantum cosmology Phys. Rev. D 80 124013
[45] Ashtekar A and Sloan D 2011 Probability of inflation in loop quantum cosmology Gen. Rel. Grav. 43 3619
[46] Corichi A and Karami A 2011 On the measure problem in slow roll inflation and loop quantum cosmology Phys. Rev. D 83 104006
[47] Ranken E and Singh P 2012 Non-singular power-law and assisted inflation in loop quantum cosmology Phys. Rev. D 85 104002
[48] Brizuela D, Marugan G A M and Pawlowski T 2010 Big bounce and inhomogeneities Class. Quantum Grav. 27 052001
Brizuela D, Marugan G A M and Pawlowski T 2011 Effective dynamics of the hybrid quantization of the Gowdy T^3 universe Phys. Rev. D 84 124017
[49] Chiou D W and Vandersloot K 2007 The behavior of non-linear anisotropies in bouncing Bianchi I models of loop quantum cosmology Phys. Rev. D 76 084015
[50] Gupta B and Singh P 2012 Contrastings features of anisotropic loop quantum cosmologies: the Role of spatial curvature Phys. Rev. D 85 044011
[51] Corichi A and Montoya E 2012 Effective dynamics in Bianchi type II loop quantum cosmology arXiv:1201.4853
[52] Gupta B and Singh P 2012 Quantum gravitational Kasner transitions in Bianchi-I spacetime Phys. Rev. D 86 024034
[53] See for example Tsujikawa S, Singh P and Maartens R 2004 Loop quantum gravity effects on inflation and the CMB Class. Quantum Grav. 21 5767
Copeland E J, Muiyene D J, Nunes N J and Shaeri M 2009 The gravitational wave background from super-inflation in loop quantum cosmology Phys. Rev. D 79 023508
Grain J, Cailleteau T, Barrau A and Giorgetti A 2010 Fully LQC-corrected propagation of gravitational waves during slow-roll inflation Phys. Rev. D 81 024040
Grain J, Barrau A, Cailleteau T and Mielczarek J 2010 Observing the big bounce with tensor modes in the cosmic microwave background: phenomenology and fundamental LQC parameters Phys. Rev. D 82 123520
Bojowald M, Calcagni G and Tsujikawa S 2011 Observational constraints on loop quantum cosmology Phys. Rev. Lett. 107 211302
Nelson W, Agullo I and Ashtekar A 2012 Perturbations in loop quantum cosmology arXiv:1204.1288
[54] Singh P 2009 Are loop quantum cosmologies never singular? Class. Quantum Grav. 26 125005
[55] Singh P and Vidotto F 2011 Exotic singularities and spatially curved loop quantum cosmology Phys. Rev. D 83 064027
[56] Singh P 2012 Curvature invariants geodesics and the strength of singularities in Bianchi-I loop quantum cosmology Phys. Rev. D 85 104011
[57] Corichi A and Singh P 2009 A geometric perspective on singularity resolution and uniqueness in loop quantum cosmology Phys. Rev. D 80 044024
[58] Nelson W and Sakellariadou M 2008 Unique factor ordering in the continuum limit of LQC Phys. Rev. D 78 024006
[59] Brizuela D, Cartin D and Khanna G 2012 Numerical techniques in loop quantum cosmology SIGMA 8 001
[60] Martin-Benito M, Garay L J, Marugan G A M and Wilson-Ewing E 2011 Loop quantum cosmology of the Bianchi I model: complete quantization arXiv:1110.1941
[61] Meissner K A 2004 Black hole entropy in loop quantum gravity Class. Quantum Grav. 21 5245
[62] Bojowald M 2006 Loop quantum cosmology and inhomogeneities Gen. Rel. Grav. 38 1771
[63] Wilson-Ewing E 2012 Lattice loop quantum cosmology: scalar perturbations arXiv:1205.3370
[64] Craig D 2012 Dynamical eigenfunctions and critical density in loop quantum cosmology arXiv:1207.5601
[65] Varadarajan M 2009 On the resolution of the big bang singularity in isotropic loop quantum cosmology Class. Quantum Grav. 26 083006
[66] Diener P, Gupt B and Singh P 2012 Testing validity of effective spacetime description in loop quantum cosmology in preparation
[67] Corichi A and Singh P 2008 Quantum bounce and cosmic recall Phys. Rev. Lett. 100 161302
[68] Kamiński W and Pawłowski T 2010 Cosmic recall and the scattering picture of loop quantum cosmology Phys. Rev. D 81 084027
[69] Corichi A and Montoya E 2011 Coherent semiclassical states for loop quantum cosmology Phys. Rev. D 84 044021
[70] Ashtekar A, Pawłowski T and Singh P 2012 Pre-inflationary dynamics in loop quantum cosmology in preparation
[71] Martin-Benito M, Marugan G A M and Pawlowski T 2009 Physical evolution in loop quantum cosmology: the example of vacuum Bianchi I Phys. Rev. D 80 084038
[72] Thomas J W 2010 Numerical Partial Differential Equations: Finite Difference Methods (Berlin: Springer)
Rovelli C 2011 Discretizing parametrized systems: the magic of Ditt-invariance arXiv:1107.2310
Rosen J, Jung J-H and Khanna G 2006 Instabilities in numerical loop quantum cosmology Class. Quantum Grav. 23 7075
Bojowald M, Cartin D and Khanna G 2007 Lattice refining loop quantum cosmology, anisotropic models and stability Phys. Rev. D 76 064018
Nelson W and Sakellariadou M 2009 Unstable anisotropic loop quantum cosmology Phys. Rev. D 80 063521
Tanaka T, Amemiya F, Shimano M, Harada T and Tamaki T 2011 Discretisation parameter and operator ordering in loop quantum cosmology with the cosmological constant Phys. Rev. D 83 104049
Cartin D and Khanna G 2006 Matrix methods in loop quantum cosmology Proc. Quantum Gravity in Americas III (Penn State, State College, PA) (http://igpg.gravity.psu.edu/events/conferences/Quantum_GravityIII/proceedings.shtml)
Laguna P 2007 Numerical analysis of the big bounce in loop quantum cosmology Phys. Rev. D 75 024033
Connors S and Khanna G 2006 Approximate pre-classical solutions in loop quantum cosmology Class. Quantum Grav. 23 2919
Khanna G 2012 private communication
AshTekar A 2012 private communication
Schilling T 1996 Geometry of quantum mechanics PhD Thesis The Pennsylvania State University, State College, PA, USA
AshTekar A and Schilling T 1997 Geometrical formulation of quantum mechanics arXiv:gr-qc/9706069
Singh P and Taveras V 2012 Effective equations for arbitrary matter in loop quantum cosmology in preparation
Szulc L 2008 Loop quantum cosmology of diagonal Bianchi type I model: simplifications and scaling problems Phys. Rev. D 78 064035
Bojowald M and Skirzewski A 2006 Effective equations of motion for quantum systems Rev. Math. Phys. 18 713
Bojowald M, Nelson W, Mulryne D and Tavakol R 2010 The high-density regime of kinetic-dominated loop quantum cosmology Phys. Rev. D 82 124055
Bojowald M, Brizuela D, Hernandez H H, Koop M J and Morales-Tecotl H A 2011 High-order quantum backreaction and quantum cosmology with a positive cosmological constant Phys. Rev. D 84 043514
Singh P 2006 Loop cosmological dynamics and dualities with Randall–Sundrum braneworlds Phys. Rev. D 73 063508
Berger B K 2002 Numerical approaches to space-time singularities Living Rev. Rel. 5 1
Garfinkle D 2007 Numerical simulations of general gravitational singularities Class. Quantum Grav. 24 S295
Bojowald M, Goswami R, Maartens R and Singh P 2005 A black hole mass threshold from non-singular quantum gravitational collapse Phys. Rev. Lett. 95 091302
Hasain V 2008 Critical behaviour in quantum gravitational collapse arXiv:0808.0949 [gr-qc]
Ziprick J and Kunstatter G 2009 Dynamical singularity resolution in spherically symmetric black hole formation Phys. Rev. D 80 024032
AshTekar A, Taveras V and Varadarajan M 2008 Information is not lost in the evaporation of two-dimensional black holes Phys. Rev. Lett. 100 211302
AshTekar A, Pretorius F and Ramazanoglu F M 2011 Surprises in the evaporation of two-dimensional black holes Phys. Rev. Lett. 106 161303