Organic pollutants are the largest kind of pollutants released into waters and wastewater from some industries and industrial processes. Photocatalytic degradation is one of the significant and effective methods to remove the dyes and other organic pollutants from water and wastewater. This mini-review presents the application of zinc ferrites and ZnFe$_2$O$_4$-based composites in the photocatalytic degradation of organic dyes. Zinc ferrite nanomaterials are obtained mainly by thermal methods, sol-gel, co-precipitation, and solid-state or hydrothermal routes. Zinc ferrites have good photocatalytic activity, but when exploited as composite photocatalysts, their photocatalytic efficiency was increased. As a critical magnetic material, the ZnFe$_2$O$_4$ spinel structure has been proven to be useful in removal dye, ZnFe$_2$O$_4$ have photocatalytic activity under visible light irradiation. However, it is possible to improve the efficiency of photocatalysis activity of ZnFe$_2$O$_4$ by coupling it with another semiconductor or coupling it with carbon nanotubes and graphene, resulting in enhanced photocatalytic performance.

Keywords: Dye degradation; Zinc ferrite; Nanotechnology; Photocatalysis; Magnetic nanoparticles

Graphical Abstract:

Biography:

Fatemeh Ajormal has completed BS in chemistry in Shahid Chamran University from Ahwaz in 2010. She has Master's degree in organic chemistry from University of Zanjan, at the moment she is a PhD student in organic chemistry. Her area of research interest is synthesis of heterocyclic compounds, synthesis of complexes and application of catalytic them.
Farzaneh Moradnia has completed her M. Sc. (2013) Degree under the supervision of Dr. Hamid Saeidian in Organic Chemistry from Payame Noor University, IRAN. At present she is following her Ph. D. degree under the supervision of Professor Ali Ramazani in organic chemistry from University of Zanjan, IRAN. Her area of research interest is green synthesis of nanomaterial as catalyst for water splitting, wastewater treatment, and multicomponent synthesis.

Saeid Taghavi Fardood received his M.Sc. degree under the supervision of Professor Gholamhassan Imanzadeh in Organic Chemistry from University of Mohaghegh Ardabili in 2011. Also, he obtained his Ph.D. degree under the supervision of Professor Ali Ramazani in Organic Chemistry from University of Zanjan in 2017. He is currently working as a researcher in chemistry at the University of Zanjan. His research interests include green synthesis of nanomaterial as photocatalysts for wastewater treatment, and application of heterogeneous nano-catalysts in multicomponent synthesis.

Ali Ramazani has completed his Ph.D under the supervision of Professor Issa Yavari in the Department of Chemistry at the Tarbiat Modares University (TMU) in the Tehran-Iran. He currently works as a full professor in Chemistry at the University of Zanjan in the Zanjan-Iran. His studies focused on organic synthesis and nanochemistry and he has published more than 350 papers. He is an Editorial Board Member of the international Journal Nanochemistry Research. He has received several national and international awards, including the 2013 khwarizmi international award, several top-cited author awards and best-paper awards from leading ISI Journals, Best Researcher Awards, and the Best Lecturer Awards at the University of Zanjan.

1. Introduction

Colors are used in large amounts in a multitude of industries to color the products. In reality, the art of using color for cloth has been known to people since 3500 BC. Color is the fundamental attraction of any fabric. WH Perkins, in 1856, discovered the use of synthetic color. However, their harmful nature has become a cause of grave concern to conservationist. The use of synthetic color harms all forms of life. Many colors are poisonous with doubtful mutagenic carcinogenic and carcinogenic effects that influence humans and aquatic biota. Today, more data on the environmental consequences of dyestuff application has become available, and the dye makers, gainer, and government themselves are taking substantial to cure the dye-containing wastewaters [1-15].

The different methods used to remove the dye, started just with some physical treatments such as equalization and sedimentation to maintain the total suspended solids (TSS), total dissolved solids (TDS), and pH of the discharged water. Other treatments, such as the use of biodegradation or filter and other, the innovation of the activated sludge process (aerobic biodegradation), were applied to treat the dye wastewater. The different methods used to remove the dye. Inorganic materials used as adsorbents in dye removal: clays, metal oxides, nanoparticles, and minerals are used as adsorbents. Photocatalytic degradation of organic pollutants is becoming one of the useful promising green chemistry technologies. Also, today utilization and demand for photo-catalysts can be great for environment pollution monitoring [16-25]. The use of photocatalytic wastewater treatment has many advantages, among which can be mention to degrade pollutants completely. In the beneficial usage of therapy of wastewater using photocatalyst, researchers found a considerable problem. Separation of photocatalyst compound from wastewater and water was hard, high-cost and time-consuming. Among photocatalysis, magnetic nanoparticles have distinctive advantages; the most important is the possibility of separating after photocatalysis is the process by using an external magnetic field. Iron oxide nanoparticles have attracted the researcher’s attention due to their excellent magnetic properties and easy magnetic separation of solids after adsorption, high surface area, high adsorption capacity, nanoparticle size, and great biocompatibility photocatalysis. Also, the iron
nanoparticles are very efficient to remove a wide
diversity of inorganic and organic contaminants [26-29].
The transfer can be active in removing the pollutants
from the surroundings, however, additional treatment
and/or disposal of the waste products ultimately is
required for complete removal the main advantage of
this method is functional degradation of organic
pollutants to CO₂ and H₂O and inorganic constituents
with solar energy as an endless energy source [30-32].
Various methods have been employed for improving
the photocatalytic activity of semiconductors, such as
metal composite, non-metal composite, and
heterojunctions. Heterojunctions are one of these
effective ways and divided to four main groups [33-35].
1. Multicomponent semiconductors
2. Semiconductor-carbon group (S-C) (grapheme,
CNT, graphite)
3. Semiconductor-metal (S-M)
4. Semiconductor-semiconductor (S-S).

2. Synthesis Zinc Ferrites

Different methods reported to prepare Zinc ferrites,
containing thermal methods, sol-gel, co-precipitation,
and many others.

2.1. Co-precipitation Method

Co-precipitation procedure for synthesis of zinc ferrites
is similar to thermal methods. Fe(III) and zinc salt are
dissolved in water along with oleic acid, surfactant,
under stirring and gentle heating. The pH is enhanced
to 7–10 to precipitate the zinc ferrite particles. The
obtained nanoparticles are filtered and washed with
distilled water and ethanol, then dried at oven. Once
dried, the nanoparticles can then be calcined at
different temperatures to specify the impact of the
tenperature on the activity of the samples. [36-38]

2.2. Sol-gel Methods

The term ‘sol-gel’ is used for a diverse range of
chemistries involve the addition of the metal and iron
precursors, along with citric acid, to create a gel. Sol-
gel and citrate methods require the addition of the zinc
and iron precursors, along with citric acid or another
gel, to create a gel. The precursors are dissolved in
water or ethanol and stirred vigorously at a specified
pH until a gel-like material is developed. The gel is
dried and then sintered at determined temperatures at
different periods. The sintering time usually is varied
and tested to determine the effects on the photocatalytic
activity [39-58].

2.3. Hydrothermal method

Hydrothermal synthesis contains the numerous
techniques of crystallizing substances from high-
temperature aqueous solutions at high vapor pressures.
The benefits of the hydrothermal technique over other
kinds of crystal growth contain the ability to form
crystalline phases that are not stable at the melting
point. Also, materials that have a high vapor pressure
near their melting points can be grown by the
hydrothermal method. This method is also particularly
appropriate for the growth of large good-quality
crystals while maintaining control over their
composition. The grain size of the powder grows
with the time and temperature of hydrothermal
treatment. [59-61]

2.4. Solvothermal Method

Solvothermal synthesis is the effective methods used to
produce magnetic zinc ferrite. This method similar to
the hydrothermal route (where the synthesis is
conducted in a stainless steel autoclave), the only
difference being that the precursor solution is usually
not aqueous in compared with the conventional
hydrothermal technique, solvothermal synthesis shows
better effects on dispersed nanoparticles in a recent
study in 2017 by Guangshuo Wang et al. zinc ferrite
(ZnFe₂O₄) nanocrystal clusters were synthesized
successfully with a surfactant-assistant solvothermal
method and investigated as a potential
magnetorheological material. It was found that the
ZnFe₂O₄ nanocrystal clusters showed a definite shape
and homogeneous dispersion, as well as improved
sedimentation stability. [62-64]

2.5. Microemulsion Method

The word microemulsion was proposed initially by
Schulman et al. (1959). The microemulsion method to
be one of the versatile preparation methods which enable
to control the particle properties such as
mechanisms of particle size control, morphology,
geometry, homogeneity, and surface area. A report by
R. D. K. Misra and et al. described this technique to
produce nanocrystalline zinc ferrites with a narrow size
distribution. In general, this potential method is based
on the synthesis of zinc ferrite in a controlled
environment using conditions that were reported
generated in water in oil microemulsion. The technique
permits reasonable control of particle size distribution
and non-aggregated products. [65-67]

3. Photocatalysts

ZnFe₂O₄ as a magnetic material whit the spinel
structure, has been proven to be useful in many
applications such as dye removal. According to its
visible-light response, excellent photochemical
stability, and low cost. ZnFe₂O₄ has attracted
considerable attention in the conversion of solar energy
and photochemical hydrogen production from water.
Also, the ZnFe₂O₄ magnetic particles possessed
intrinsic peroxidase-like activity, which could react with H\textsubscript{2}O\textsubscript{2} to produce •OH. Zinc ferrite is one of the most important ferrites. ZnFe\textsubscript{2}O\textsubscript{4} nanoparticles have a significant photo-response in the visible light region (1.92 eV) with excellent photochemical stability, suggesting their potential uses as the gas sensors and photocatalysts [16,68]. Photooxidation and photoreduction refer to the initiation of oxidation and reduction reactions by light energy. When irradiated with light energy, an electron (e−) is excited from the valence band (VB) to the conduction band (CB) of the photocatalyst, leaving a photogenerated hole (h+) photogenerated electron and holes are capable of oxidizing/reducing adsorbed substrates. The ZnFe\textsubscript{2}O\textsubscript{4} NPs promote a photocatalytic reaction by acting as mediators for the charge transfer between two adsorbed molecules advises in the first, charge transfer at the semiconductor–electrolyte interface follows bandgap excitation of a semiconductor nanoparticle. In the latter case, the semiconductor nanoparticle quenches the excited state by accepting an electron, and either transferring the charge to another substrate or generating photocurrent [60]. In both cases, the semiconductor sensitizer remains, thus it is described as photocatalytic.

The mechanism which is suggested for photocatalyst reaction in the presence zinc ferrite is that the potential of ZnFe\textsubscript{2}O\textsubscript{4} to oxidize pollutants in the system is based on the hypothesis, which is presented by Minhua Su et al. [69]. A schematic of the reaction mechanism is depicted in Figure 1, forming holes and electrons by absorbing the photons.

\[
\text{Fe}^{3+} + e^{-} \rightarrow \text{Fe}^{2+}
\]
\[
\text{Fe}^{3+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{2+} + \text{HO}^{•} + \text{H}^+
\]
\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 \rightarrow \text{Fe}^{3+} + \text{OH}^{•} + \text{OH}^{-}
\]

The valence band edge of ZnFe\textsubscript{2}O\textsubscript{4} is located at ca. 0.38 eV vs. SCE while the conduction band is at −1.54 eV vs. SCE. In the presence of light, holes (h\textsubscript{vb}) are produced, which can oxidize pollutant molecules. Holes may also oxidize water to form 'OH.

\[
h^+_{\text{vb}} + \text{OH} \rightarrow \text{OH}^{•} + \text{H}^+
\]

Importantly, H\textsubscript{2}O\textsubscript{2} in the system can capture electrons, thus diminishing the recombination of holes and electrons, which can enhance the photocatalytic performance of ZnFe\textsubscript{2}O\textsubscript{4} in the presence of H\textsubscript{2}O\textsubscript{2} and visible light. Furthermore, the capturing of electrons produces 'OH radical.

\[
\text{H}_2\text{O}_2 + e^{-} \rightarrow \text{OH}^{•} + \text{OH}^{-}
\]

The combined effects of there are thus expected to enhance the degradation of pollutants. [70,71]

\[
\text{Figure 1. Mechanism of photodegradation of dye by ZnFe}_2\text{O}_4 \text{NPs}
\]

4. Coupling two Semiconductor Systems

ZnFe\textsubscript{2}O\textsubscript{4} is a magnetic semiconductor material. Therefore, ZnFe\textsubscript{2}O\textsubscript{4}-based composites particularly afford a potential benefit for repeated magnetic separation purposes.

Many nanoparticles, discovered by chemists (such as ZnO and β-AgVO\textsubscript{3}) are considered as a significant breakthrough in the field of visible-light-driven photocatalysts and removal dye more accurately, their shows an extremely high quantum efficiency of approximately in water oxidation with the mater as a scavenger. However, as there are light-sensitive and slightly soluble in aqueous solution, it will be decomposed dye to during the photocatalytic reaction process without any sacrificial electron acceptor. This process not only destroys the structure of nanoparticles, but also can reduce its light absorption efficiency, inevitably influencing its photocatalytic activity and stability [72; 73]. So, it is possible to improve the effectiveness of the photoinduced charge separation in ZnFe\textsubscript{2}O\textsubscript{4} by coupling it with another semiconductor, resulting in enhanced photocatalytic performance. Electrons photo induced on the conduction band of a
Entry	Catalyst	Method synthesis	Dye (mg/L)	Amount of Catalyst (g/L)	Irradiation source	Irradiation time (min)	Degradation (%)	Dye	Ref.
1	ZnFe$_2$O$_4$	Sol-gel method	25	5	> 400 nm	240	4	Methyl Orange	[78]
2	0.5μm	Co-precipitation Calculated at 500 Sol-gel method	10	4	> 400 nm	60	75	Methyl Orange	[79]
3	75(Thickness/nm)	Sol-gel method	12	1 layer	200-700 nm	60	35	Methyl Orange	[80]
4	100(Thickness/nm)	Sol-gel method	12	2 layers	200-700 nm	60	43	Methyl Orange	[80]
5	100(Thickness/nm)	Sol-gel method	12	2 layers	200-700 nm	60	15	Methyl Orange	[80]
6	100(Thickness/nm)	Sol-gel method	12	2 layers	200-700 nm	60	37	Methyl Orange	[80]
7	100(Thickness/nm)	Sol-gel method	12	2 layers	200-700 nm	60	39	Methyl Orange	[80]
8	100(Thickness/nm)	Sol-gel method	12	2 layers	200-700 nm	60	30	Methyl Orange	[80]
9	135(Thickness/nm)	Sol-gel method	12	3 layers	200-700 nm	60	53	Methyl Orange	[80]
10	165(Thickness/nm)	Sol-gel method	12	4 layers	200-700 nm	60	47	Methyl Orange	[80]
11	207(Thickness/nm)	Sol-gel method	12	5 layers	200-700 nm	60	37	Methyl Orange	[80]
12	ZnFe$_2$O$_4$	Solvothermal	20	0.5	200-700 nm	120	93	Reactive Red 120	[51]
13	ZnFe$_2$O$_4$	Solvothermal	20	1	200-700 nm	120	>95	Reactive Red 120	[51]
14	ZnFe$_2$O$_4$	Solvothermal	20	1	Dark	120	95	Reactive Red 120	[51]
15	ZnFe$_2$O$_4$ + H$_2$O	Solvothermal	100	0.2	200-280 nm	60	>95	Reactive Red 120	[81]
16	ZnFe$_2$O$_4$ + H$_2$O	Solvothermal	100	0.2	200-280 nm	60	100	Reactive Red 198	[81]
17	ZnFe$_2$O$_4$ + H$_2$O	Microwave ~40 nm	10	0.6	400-700 nm	180	32	Methylene Blue	[82]
18	ZnFe$_2$O$_4$	Hydrothermal	10	1	> 420 nm	360	8	Methylene Blue	[83]
19	ZnFe$_2$O$_4$ + H$_2$O	Hydrothermal	10	1	> 420 nm	360	52	Methylene Blue	[83]
20	ZnFe$_2$O$_4$ + H$_2$O	Hydrothermal	10	1	> 420 nm	360	52	Methylene Blue	[83]
No.	Formula	Method	Size or Condition	pH	pH	Wavelength	Concentration	Adsorbate	Ref.
-----	------------------	--------------------------	-------------------------	----	----	------------	---------------	---------------	-------
21	ZnFe$_2$O$_4$ + H$_2$O$_2$	Hydrothermal	15nm	10	10	Dark	360	45	Methylen...[83]
22	ZnFe$_2$O$_4$	Co-precipitation	60	24		670 nm	60	70	Methylene Blue[84]
23	ZnFe$_2$O$_4$	Co-precipitation	20	0.8		200–700 nm	154	38.4	Rhodamine B[85]
24	bulk ZnFe$_2$O$_4$	Colloid mill and hydro...	20	0.5		254	360	45	Rhodamine B[85]
25	ZnFe$_2$O$_4$ + H$_2$O$_2$	Solvothermal	20	0.5		553	120	30	Rhodamine B[86]
26	ZnFe$_2$O$_4$	Solvothermal	20	0.5		553	120	12	Rhodamine B[86]
27	ZnFe$_2$O$_4$	Colloid mill and hydro...	20	0.5		254	360	95	Rhodamine B[87]
28	ZnFe$_2$O$_4$	Colloid mill and hydro...	20	0.5		254	360	75	Rhodamine B[87]
29	ZnFe$_2$O$_4$	Colloid mill and hydro...	20	0.5		254	360	60	Rhodamine B[87]
30	ZnFe$_2$O$_4$	Colloid mill and hydro...	20	0.5		dark	360	0	Rhodamine B[87]
31	ZnFe$_2$O$_4$	Hydrothermal involving sodium oleate	-	-	dark	120	0	Rhodamine B[88]	
32	ZnFe$_2$O$_4$	Hydrothermal	30	0.3		630 nm	90	90	Toluidine Blue[89]
33	ZnFe$_2$O$_4$	Hydrothermal involving sodium oleate	-	-	300-700 nm	60	97	Rhodamine B[88]	
35	ZnFe$_2$O$_4$	Precipitation	27	0.3		630nm	90	90	Toluidine Blue[89]
36	ZnFe$_2$O$_4$	Precipitation	27	0.3		dark	90	0.5	Toluidine Blue[89]
37	ZnFe$_2$O$_4$ + H$_2$O$_2$	Pre-heated electrical	40	0.03		Visible light	60	98	Malachite Green[90]
38	ZnFe$_2$O$_4$	Co-precipitation	10	0.05		Sunlight	50	99	Methyl Orange[91]
39	ZnFe$_2$O$_4$	Colloid mill and hydro...	20	0.05		72W Halogen Lamp	360	97	Acid Oran Ge-II[87]
Entry	Compound	Method synthesis	Dye (mg/L)	Catalyst (g/L)	Irradiation source	Irradiation time (min)	Degradation (%)	Dye	Ref.
-------	-----------	------------------	------------	---------------	-------------------	-----------------------	-----------------	-----	------
1	ZnFe₂O₄/ZnO molar ratio%50	electrospinning and subsequent calcination process	10	0.5	solar irradiation 500 W Xenon	150	99%	Rhodamine B	[92]
2	β-AgVO₃/ZnFe₂O₄ size 20 and 35 nm	reverse micelle system	60	0.2	670 nm	60	>95	Methylene Blue	[84]
3	ZnO/ZnFe₂O₄+H₂O₂	co-precipitation	10	0.2	365	360	>95	Methyl Orange	[93]
4	ZnO/ZnFe₂O₄+H₂O₂	co-precipitation	10	0.2	380	360	47	Methyl Orange	[93]
5	ZnO/ZnFe₂O₄+H₂O₂	co-precipitation	10	0.2	800 under NIR	360	68	Methyl Orange	[93]
6	graphene oxide-ZnFe₂O₄	Hydrothermal	1.8	0.5	400	210	35	Malachite Green	[94]
7	graphene oxide-ZnFe₂O₄+H₂O₂	Hydrothermal	1.8	0.5	400	210	>97	Malachite Green	[94]
8	graphene oxide-ZnFe₂O₄+H₂O₂	Hydrothermal	1.8	0.5	dark	210	15	Malachite Green	[94]
9	ZnFe₂O₃/MWCNTs	Hydrothermal	10	1	> 420 nm	360	25	Methylene Blue	[83]
10	ZnFe₂O₃/MWCNTs + H₂O₂	Hydrothermal	10	1	> 420 nm	360	99	Methylene Blue	[83]
11	ZnFe₂O₃/MWCNTs + H₂O₂	Hydrothermal	10	1	Dark	360	95	Methylene Blue	[83]
12	ZnFe₂O₃/MWCNTs + H₂O₂	Hydrothermal	10	1	> 420 nm	360	67	Methylene Blue	[83]
13	ZnFe₂O₃/graphene + H₂O₂	Solvothermal	20	0.5	553	120	100	Rhodamine B	[86]
14	ZnFe₂O₃/graphene + H₂O₂	Solvothermal	20	0.5	464	120	96	Methyl Orange	[86]
15	ZnFe₂O₃/graphene + H₂O₂	Solvothermal	20	0.5	664	120	100	Methylene Blue	[86]
16	Meso-ZnFe₂O₄ + H₂O₂ 5-10 nm graphene oxide-ZnFe₂O₄+H₂O₂ size 10 nm	Hydrothermal	100	0.5	> 400 nm	120	>100	Acid Orange II (Aoii)	[16]
17	Meso-ZnFe₂O₄+H₂O₂ size 10 nm	solvothermal	10	0.5	664 nm	120	99.23	Methylene Blue	[95]
18	ZnO/ZnFe₂O₄ size 0.84nm	Hydrothermal	10	0.5	750 nm	140	>94	Methyl Orange	[96]
19	ZnO/ZnFe₂O₄ size 0.84nm	Hydrothermal	10	0.05	750nm	70	>92	Malachite Green	[97]
20	ZnFe₂O₃/ZnO Size 13 nm	Co-Precipitation	20	0.05	500	360	98	Methylene Blue	[98]
21	ZnFe₂O₃/ZnO Size 13 nm	Co-Precipitation	20	0.05	500	300	99	Methyl Orange	[98]
higher level semiconductor get injected into the lower level semiconductor’s conduction band. However, coupling semiconductors does not always increase photocatalysis by charge separation. They are usually determined by multitude of factors, including defect density, surface area, crystallinity, and quantum size effects. [26; 74-76] a schematic of the reaction mechanism is depicted in Figure 2.

Figure 2. Schematic illustration of charge transfer in a coupled semiconductor system.

Carbon nanotubes (CNTs) have a significant electron-storage valence (one electron for every 32 carbon atoms) [26]. Photon-generated e−/h+ pairs usually take about 10−9 s to recombine, therefore they may accept photon-excited electrons in nanoclusters and thus retard or hinder e−/h+ pair recombination [77]. In Figure 3, schematic of the reaction mechanism reveals the reduced graphene oxide-ZnFe2O4 composite with high photocatalytic performance under visible light irradiation.

Figure 3. The reduced graphene oxide-ZnFe2O4 composite which shows for the high photocatalytic performance under visible light irradiation.

As can be seen in Table 1 and 2, zinc ferrites react to degrade organic dyes; however, in most cases complete degradation occurs in the presence of composite photocatalyst or oxidizing agent, H2O2.

5. Conclusion
Zinc ferrites were considered as effective photocatalysts to achieve oxidation processes in visible light region. Diverse preparation procedures affect the size, form, and overall structure, all of which can alter the photocatalytic activity. The photocatalysts lead to formation of the reactive radical species, which may degrade pollutants. To further enhance the production of reactive radical species, oxidants such as H2O2 can be added to generate a Fenton-type system. The mixture of zinc ferrites with other photocatalysts displayed a synergistic effect that produces enhanced photocatalytic activity. Zinc ferrites react to degrade organic dyes; however, in most cases, complete degradation only happens in the presence of composite photocatalyst or oxidizing agent, H2O2. OH, the enhancing the photocatalytic activity of the ZnFe2O4 and ZnFe2O4-composites is the effective separation of electron-hole pairs and the formation of •OH. Because of magnetic properties, zinc ferrite nanocatalyst can be simply recovered from reaction and reused up to multiple runs almost without loss of catalytic activity.

Acknowledgment
The authors would like to appreciate the University of Zanjan for its support.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
[1] Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 4(1), 22-26.
[2] Keyhanian, F., Shariati, S., Faraji, M., & Hesabi, M. (2016). Magnetite nanoparticles with surface modification for removal of methyl violet from aqueous solutions. Arabian Journal of Chemistry, 9, S348-S354.
[3] Gupta, V. (2009). Application of low-cost adsorbents for dye removal–A review. Journal of Environmental Management, 90(8), 2313-2342.
[4] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2018). A novel sol–gel synthesis and characterization of MgFe2O4@γ-Al2O3 magnetic nanoparticles using tragacanth gel and its application as a magnetically separable photocatalyst for degradation of organic dyes under visible light. Journal of Materials Science: Materials in Electronics, 29(8), 6702–6710.
[5] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2018). Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of
organic dyes. *Journal of Materials Science: Materials in Electronics*, 29(10), 8347-8353.

[6] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2019). Green synthesis of Zn$_0.5$Ni$_0.5$Al$_2$O$_4$ magnetic nanoparticles and investigation of their photocatalytic activity for degradation of reactive blue 21 dye. *Environmental Technology*, doi: 10.1080/09593330.2019.1581841

[7] Atrak, K., Ramazani, A., & Taghavi Fardood, S. (2019). Eco-friendly synthesis of Mg$_0.5$Ni$_0.5$Al$_2$Fe$_3$O$_x$ magnetic nanoparticles and study of their photocatalytic activity for degradation of direct blue 129 dye. *Journal of Photochemistry and Photobiology A: Chemistry*, 382, 111942.

[8] Moradi, S., Taghavi Fardood, S., & Ramazani, A. (2018). Green synthesis and characterization of magnetic NiFe$_2$O$_4$@ZnO nanocomposite and its application for photocatalytic degradation of organic dyes. *Journal of Materials Science: Materials in Electronics*, 29(16), 14151-14160.

[9] Sorbiun, M., Shayegan Mehr, E., Ramazani, A., & Taghavi Fardood, S. (2018). Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jatf) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. *Journal of Materials Science: Materials in Electronics*, 29(4), 2806-2814.

[10] Taghavi Fardood, S., Moradnia, F., & Ramazani, A. (2019). Green synthesis and characterisation of ZnMn$_2$O$_4$ nanoparticles for photocatalytic degradation of Congo red dye and kinetic study. *Micro & Nano Letters*, 14(9), 986-991.

[11] Taghavi Fardood, S., Ramazani, A., Asiabi, P. A., & Joo, S. W. (2018). A Novel Green Synthesis of Copper Oxide Nanoparticles Using a Henna Extract Powder. *Journal of Structural Chemistry*, 59(7), 1737-1743.

[12] Saeidian, H., & Moradnia, F. (2017). Benign synthesis of N-aryl-3,10-dihydroacridin-1(2H)-one derivatives via ZnO nanoparticle-catalyzed Knoevenagel condensation/intramolecular elimination reaction. *Iranian Chemical Communication*, 5(Issue 3), pp. 237-363), 252-261.

[13] Saeidian, H., Mirjafary, Z., Abdolmaleki, E., & Moradnia, F. (2013). An Expedient Process for the Synthesis of 2-(N-Arylamino) benzaldehydes from 2-Hydroxybenzaldehydes via Smiles Rearrangement. *Synlett*, 24(16), 2127-2131.

[14] Ramazani, A., Moradnia, F., Aghahosseini, H., & Abdolmaleki, I. (2017). Several Species of Nucleophiles in the Smiles Rearrangement. *Current Organic Chemistry*, 21(16), 1612-1625.

[15] Ramazani, A., Ahmadi, Y., Fattahi, N., Ahankan, H., Pakzad, M., Aghahosseini, H., & Joo, S. W. (2016). Synthesis Of 1, 3, 4-Oxadiazoles From The Reaction Of N-Isocyanimidophenylphosphorane (Nicitpp) With Cyclohexanone, A Primary Amine And An Aromatic Carboxylic Acid Via Intramolecular Aza-Wittig Reaction Of In-Situ Generated Iminophosphoranes. *Phosphorus, Sulfur, and Silicon and the Related Elements*, 191(7), 1057-1062.

[16] Su, M., He, C., Sharma, V. K., Asi, M. A., Xia, D., Li, X.-z., Xiong, Y. (2012). Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H$_2$O$_2$/visible light. *Journal of Hazardous materials*, 211, 95-103.

[17] Javadi, F., Yazdi, M. E. T., Baghani, M., & Es-haghi, A. (2019). Biosynthesis, characterization of cerium oxide nanoparticles using Ceratonia siliqua and evaluation of antioxidant and cytotoxicity activities. *Materials Research Express*, 6(6), 065408.

[18] Moradnia, F., Ramazani, A., Taghavi Fardood, S., & Gouranlou, F. (2019). A novel green synthesis and characterization of tetragonal-spinel MgMn$_2$O$_4$ nanoparticles by tragacanth gel and studies of its photocatalytic activity for degradation of reactive blue 21 dye under visible light. *Materials Research Express*, 6(7), 075057.

[19] Ouni, L., Ramazani, A., & Taghavi Fardood, S. (2019). An overview of carbon nanotubes role in heavy metals removal from wastewater. *Frontiers of Chemical Science and Engineering*, 13(2), 274-295.

[20] Ramazani, A., Farshadi, A., Mahyari, A., Sadri, F., Joo, S. W., Asiabi, P. A., Ahankan, H. (2016). Synthesis of electron-poor N-Vinylimidazole derivatives catalyzed by Silica nanoparticles under solvent-free conditions. *International Journal of Nano Dimension*, 7(1), 41-48.

[21] Shayegan Mehr, E., Sorbiun, M., Ramazani, A., & Taghavi Fardood, S. (2018). Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. *Journal of Materials Science: Materials in Electronics*, 29(2), 1333-1340.
[22] Sorbiun, M., Shayeegan Mehr, E., Ramazani, A., & Taghavi Fardood, S. (2018). Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. *International Journal of Environmental Research, 12*(1), 29–37.

[23] Taghavi Fardood, S., Golfar, Z., & Ramazani, A. (2017). Novel sol–gel synthesis and characterization of superparamagnetic magnesium ferrite nanoparticles using tragacanth gum as a magnetically separable photocatalyst for degradation of reactive blue 21 dye and kinetic study. *Journal of Materials Science: Materials in Electronics, 28*(22), 17002-17008.

[24] Taghavi Fardood, S., & Ramazani, A. (2016). Green Synthesis and Characterization of Copper Oxide Nanoparticles Using Coffee Powder Extract. *Journal of Nanostructures*, 6(2), 167-171.

[25] Taghavi Fardood, S., Moradnia, F., Mostafaei, M., Afshari, Z., Faramarzi, V., & Ganjkhani, S. (2019). Biosynthesis of MgFeO$_4$ magnetic nanoparticles and its application in photo-degradation of malachite green dye and kinetic study. *Nanochemistry Research, 4*(1), 86-93.

[26] Mohamed, R., McKinney, D., & Sigmund, W. (2012). Enhanced nanocatalysts. *Materials Science and Engineering: R: Reports, 73*(1), 1-13.

[27] García, J. R., Sedran, U., Zaini, M. A. A., & Zakaria, Z. A. (2017). Preparation, characterization, and dye removal study of activated carbon prepared from palm kernel shell. *Environmental Science and Pollution Research, 1*-10.

[28] Jiang, L., Wang, Y., & Feng, C. (2012). Application of photocatalytic technology in environmental safety. *Procedia Engineering, 45*, 993-997.

[29] Taghavi Fardood, S., Moradnia, F., Moradi, S., Forootan, R., Yekke Zare, F., & Heidari, M. (2019). Eco-friendly synthesis and characterization of Fe$_3$O$_4$ nanoparticles and study of their photocatalytic activity for degradation of Congo red dye. *Nanochemistry Research*, doi: 10.22036/nrc.2019.02.00

[30] Taghavi Fardood, S., Atrak, K., & Ramazani, A. (2017). Green synthesis using tragacanth gum and characterization of Ni–Cu–Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. *Journal of Materials Science: Materials in Electronics, 28*(14), 10739–10746.

[31] Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on gC 3 N 4-based photocatalysts. *Applied Surface Science, 391*, 72-123.

[32] Bu, Y., & Chen, Z. (2014). Effect of oxygen-doped C 3 N 4 on the separation capability of the photoinduced electron-hole pairs generated by OC 3 N 4@ TiO 2 with quasi-shell-core nanostructure. *Electrochimica Acta, 144*, 42-49.

[33] William IV, L., Kostedt, I., Drwiega, J., Mazycz, D. W., Lee, S.-W., Sigmund, W., Chadik, P. (2005). Magnetically agitated photocatalytic reactor for photocatalytic oxidation of aqueous phase organic pollutants. *Environmental Science & Technology, 39*(20), 8052-8056.

[34] Bu, Y., & Chen, Z. (2014). Effect of oxygen-doped C$_3$N$_4$ on the separation capability of the photoinduced electron-hole pairs generated by O-C$_3$N$_4$@TiO$_2$ with quasi-shell-core nanostructure. *Electrochimica Acta, 144*, 42-49.

[35] Pan, H., Zhu, S., Lou, X., Mao, L., Lin, J., Tian, F., & Zhang, D. (2015). Graphene-based photocatalysts for oxygen evolution from water. *RSC Advances, 5*(9), 6543-6552.

[36] Welo, L. A., & Baudisch, O. (1925). XXXIX. The two-stage transformation of magnetite into haematite. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50*(296), 399-408.

[37] Ren, P., Zhang, J., & Deng, H. (2009). Preparation and microstructure of spinel zinc ferrite ZnFe$_2$O$_4$ by Co-precipitation method. *Journal of Wuhan University of Technology-Mater. Sci. Ed.*, 24(6), 927-930.

[38] Raja, P., Yadavalli, T., Ravi, D., Therese, H. A., Ramasamy, C., & Hayakawa, Y. (2017). Synthesis and magnetic properties of gadolinium substituted zinc ferrites. *Materials Letters, 188*, 406-408.

[39] Yadollahpour, A. (2015). Magnetic Nanoparticles in Medicine: A Review of Synthesis Methods and Important Characteristics. *Oriental Journal of Chemistry, 31*(Special Issue 1 (2015)), 271-277.

[40] Yadav, R. S., Havlica, J., Kuřitka, I., Kozakova, Z., Palou, M., Bartoniovičová, E., Hajdúchová, M. (2015). Magnetic Properties of ZnFe$_2$O$_4$ Nanoparticles Synthesized by Starch-Assisted Sol–Gel Auto-combustion Method. *Journal of Superconductivity and Novel Magnetism, 28*(4), 1417-1423.

[41] Pradeep, A., Priyadharsini, P., & Chandrasekaran, G. (2011). Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. *Journal of Alloys and Compounds, 509*(9), 3917-3923.
[42] Bahrami, M., Ramazani, A., Hanifehpour, Y., Fattahi, N., Taghavi Fardood, S., Asiabi, P. A., & Joo, S. W. (2016). In-situ generated stabilized phosphorus ylides mediated a mild and efficient method for the preparation of some new sterically congested electron-poor N-vinylated heterocycles. Phosphorus, Sulfur, and Silicon and the Related Elements, 191(10), 1368-1374.

[43] Imanzadeh, G., Kabiri, S., Taghavi, S., Zamanloo, M., & Mansoori, Y. (2013). SOLVENT-FREE C-ALKYLATION OF BARBITURIC ACID IN THE NANOCRYSTALLINE MORDENITE MEDIA. Journal of the Chilean Chemical Society, 58(3), 1888-1891.

[44] Ramazani, A., Taghavi Fardood, S., Hosseiniazadeh, Z., Sadri, F., & Joo, S. W. (2017). Green synthesis of magnetic copper ferrite nanoparticles using tragacanth gum as a biotemplate and their catalytic activity for the oxidation of alcohols. Iranian Journal OF Catalysis, 7(3), 181-185.

[45] Sadri, F., Ramazani, A., Ahankar, H., Taghavi Fardood, S., Azimzadeh Asiabi, P., Khoobi, M., Dayyani, N. (2016). Aqueous-phase oxidation of alcohols with green oxidants (oxone and hydrogen peroxide) in the presence of MgFe₂O₄ magnetic nanoparticles as an efficient and reusable catalyst. Journal of Nanostructures, 6(4), 264-272.

[46] Taghavi Fardood, S., & Ramazani, A. (2018). Black Tea Extract Mediated Green Synthesis of Copper Oxide Nanoparticles. Journal of Applied Chemical Research, 12(2), 8-15.

[47] Taghavi Fardood, S., Ramazani, A., Ayubi, M., Moradnia, F., Abdipour, S., & Forootan, R. (2019). Microwave Assisted Solvent-free Synthesis of 1-phenyl-1, 2-dihydro-3H-naphtho[1, 2-e][1, 3]oxazin-3-one Catalyzed by FeCl₃. Chemical Methodologies, 3(5), 583-589.

[48] Taghavi Fardood, S., Ramazani, A., Azimzadeh Asiabi, P., Bigdeli Fard, Y., & Ebadzadeh, B. (2017). Microwave-assisted multicomponent reaction for the synthesis of 2-amino-4H-chromene derivatives using ilmenite (FeTiO₃) as a magnetic catalyst under solvent-free conditions. Asian Journal of Green Chemistry, J(Issue 1. pp. 1-60), 34-40.

[49] Taghavi Fardood, S., Ramazani, A., Gofzar, Z., & Joo, S. W. (2017). Green synthesis of Ni-Cu-Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Applied Organometallic Chemistry, 31(12), e3823.

[50] Taghavi Fardood, S., Ramazani, A., Gofzar, Z., & Joo, S. W. (2017). Green Synthesis of α-Fe₂O₃ (hematite) Nanoparticles using Tragacanth Gel. Journal of Applied Chemical Research, 11(3), 19-27.

[51] Taghavi Fardood, S., Ramazani, A., Gofzar, Z., & Joo, S. W. (2018). Green Synthesis Using Tragacanth Gum and Characterization of Ni–Cu–Zn Ferrite Nanoparticles as a Magnetically Separable Catalyst for the Synthesis of Hexabenzyhexaazaisowurtzitane Under Ultrasonic Irradiation. Journal of Structural Chemistry, 59(7), 1730-1736.

[52] Taghavi Fardood, S., Ramazani, A., & Joo, S. W. (2017). Sol-gel Synthesis and Characterization of Zinc Oxide Nanoparticles Using Black Tea Extract. Journal of Applied Chemical Research, 11(4), 8-17.

[53] Taghavi Fardood, S., Ramazani, A., & Joo, S. W. (2018). Eco-friendly synthesis of magnesium oxide nanoparticles using arabic Gum. Journal of Applied Chemical Research, 12(1), 8-15.

[54] Taghavi Fardood, S., Ramazani, A., & Joo, S. W. (2018). Green Chemistry Approach for the Synthesis of Copper Oxide Nanoparticles Using Tragacanth Gel and Their Structural Characterization. Journal of Structural Chemistry, 59(2), 482-486.

[55] Taghavi Fardood, S., Ramazani, A., & Moradi, S. (2017). A Novel Green Synthesis of Nickel Oxide Nanoparticles Using Arabic Gum. Chemistry Journal of Moldova, 12(1), 115-118.

[56] Taghavi Fardood, S., Ramazani, A., & Moradi, S. (2017). Green synthesis of Ni-Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Journal of Sol-Gel Science and Technology, 82(2), 432-439.

[57] Taghavi Fardood, S., Ramazani, A., Moradi, S., & Azimzadeh Asiabi, P. (2017). Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science: Materials in Electronics, 28(18), 13596-13601.

[58] Taghavi Fardood, S., Ramazani, A., Moradnia, F., Afshari, Z., Ganjkhani, S., & Yekke Zare, F. (2019). Green Synthesis of ZnO Nanoparticles via Sol-gel Method and Investigation of Its Application in Solvent-free Synthesis of 12-Aryltetrahydrobenzo[α]xanthene-11-one Derivatives under Microwave Irradiation. Chemical Methodologies, 3(Issue 6. pp. 684-795), 696-706.
[59] Rozman, M., & Drofenik, M. (1995). Hydrothermal synthesis of manganese zinc ferrites. Journal of the American Ceramic Society, 78(9), 2449-2455.

[60] Hayashi, H., & Hakuta, Y. (2010). Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials, 3(7), 3794-3817.

[61] Makovec, D., Drofenik, M., & Žnidaršič, A. (1999). Hydrothermal synthesis of manganese zinc ferrite powders from oxides. Journal of the American Ceramic Society, 82(5), 1113-1120.

[62] Wang, G., Ma, Y., Tong, Y., Dong, X., & Li, M. (2017). Solvothermal synthesis, characterization, and magnetoreheological study of zinc ferrite nanocrystal clusters. Journal of Intelligent Material Systems and Structures, 28(17), 2331-2338.

[63] Fei, P., Zhong, M., Lei, Z., & Su, B. (2013). One-pot solvothermal synthesized enhanced magnetic zinc ferrite-reduced graphene oxide composite material as adsorbent for methylene blue removal. Materials Letters, 108, 72-74.

[64] Du, L., Du, Y., Li, Y., Wang, J., Wang, C., Wang, X., Han, X. (2010). Surfactant-Assisted Solvothermal Synthesis of Ba (CoTi)x Fe12−x O19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. The Journal of Physical Chemistry C, 114(46), 19600-19606.

[65] Zhu, H., Gu, X., Zuo, D., Wang, Z., Wang, N., & Yao, K. (2008). Microemulsion-based synthesis of porous zinc ferrite nanorods and its application in a room-temperature ethanol sensor. Nanotechnology, 19(40), 405503.

[66] Malik, M. A., Wani, M. Y., & Hashim, M. A. (2012). Microemulsion method: a novel route to synthesize organic and inorganic nanomaterials: 1st nano update. Arabian Journal of Chemistry, 5(4), 397-417.

[67] Lu, T., Wang, J., Yin, J., Wang, A., Wang, X., & Zhang, T. (2013). Surfactant effects on the microstructures of Fe3O4 nanoparticles synthesized by microemulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 675-683.

[68] Du, C.-J., Bu, F.-X., Jiang, D.-M., Zhang, Q.-H., & Jiang, J.-S. (2013). Prussian blue analogue K2Zn3 [Fe (CN)6]2 and square microplates: large-scale synthesis and their thermal conversion into a magnetic nanoporous ZnFe2−xOx–ZnO composite. CrystEngComm, 15(48), 10597-10603.

[69] Su, M., He, C., Sharma, V. K., Abou Asi, M., Xia, D., Li, X.-z., Xiong, Y. (2012). Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light. Journal of Hazardous materials, 211-212, 95-103.

[70] Bayat, B. K. R., Ebrahimi, M., & Keyvani, B. (2013). Removal of Acid red 206 Dye in Pollutant Water by ZnFe2O4/Bentonite as a Nanophotocatalyst in Batch Reactor Using Taguchi Method. Journal of Water & Wastewater, 24(87), 128-136.

[71] Jing, L., Xu, Y., Qin, C., Liu, J., Huang, S., He, M., Li, H. (2017). Visible-light-driven ZnFe2O4/Ag/Ag3VO4 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Materials Research Bulletin, 95, 607-615.

[72] Yi, Z., Ye, J., Kikugawa, N., Kako, T., Ouyang, S., Stuart-Williams, H., Li, Z. (2010). An orthophosphase semiconductor with photooxidation properties under visible-light irradiation. Nature materials, 9(7), 559-564.

[73] Chen, X., Dai, Y., Liu, T., Guo, J., Wang, X., & Li, F. (2015). Magnetic core–shell carbon microspheres (CMSs)@ ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation. Journal of Molecular Catalysis A: Chemical, 409, 198-206.

[74] Ola, O., & Maroto-Valer, M. M. (2015). Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 16-42.

[75] Truppi, A., Petronella, F., Placido, T., Striccoli, M., Agostiano, A., Curri, M. L., & Comparelli, R. (2017). Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts, 7(4), 100.

[76] Abdullah, H., Kuo, D.-H., & Chen, Y.-H. (2016). High-efficient n-type TiO2/p-type Cu2O nanodiode photocatalyst to detoxify hexavalent chromium under visible light irradiation. Journal of materials science, 51(17), 8209-8223.

[77] Petcu, A. R., Meghea, A., Rogozea, E. A., Olteanu, N. L., Lazar, C. A., Cadar, D., . . . Mihaly, M. (2017). No catalyst dyes photodegradation in microemulsion template. ACS Sustainable Chemistry & Engineering, 5(6), 5273-5283.

[78] Cheng, P., Deng, C., Gu, M., & Shangguan, W. (2007). Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation. Journal of materials science, 42(22), 9239-9244.

[79] Jadhav, S., Hankare, P., Patil, R., & Sasikala, R. (2011). Effect of sintering on photocatalytic
Photocatalytic activities of ZnFe₂O₄ and ZnO-Zn₁₋ₓMₓFe₂O₄⁺δ (M= Sm³⁺, Eu³⁺ and Ho⁴⁺) nanocomposites. Synthesis, physical properties and high performance visible light induced photocatalytic degradation of malachite green. Advanced Powder Technology, 30(6), 1257-1268.

Yadav, N., Chaudhary, L., Sakhare, P., Dongale, T., Patil, P., & Sheikh, A. (2018). Impact of collected sunlight on ZnFe₂O₄ nanoparticles for photocatalytic application. Journal of Colloid and Interface Science, 527, 289-297.

Wang, C., Tan, X., Yan, J., Chai, B., Li, J., & Chen, S. (2017). Electrospinning direct synthesis of magnetic ZnFe₂O₄/ZnO multi-porous nanotubes with enhanced photocatalytic activity. Applied Surface Science, 396, 780-790.

Chen, H., Liu, W., & Qin, Z. (2017). ZnO/ZnFe₂O₄ nanocomposite as a broad-spectrum photo-Fenton-like photocatalyst with near-infrared activity. Catalysis Science & Technology, 7, 2236-2244.

Chen, P. (2017). Synthesis and photocatalysis of novel magnetic reduced graphene oxide-ZnFe₂O₄ nanocomposites with highly efficient interface-induced effect. Journal of Sol-Gel Science and Technology, 82(2), 397-406.

Rani, G. J., & Rajan, M. J. (2017). Reduced graphene oxide/ZnFe₂O₄ nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye. Research on Chemical Intermediates, 43(4), 2669-2690.

Chandel, N., Sharma, K., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V. K., & Singh, P. (2019). Magnetically separable ZnO/ZnFe₂O₄ and ZnO/CoFe₂O₄ photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arabian Journal of Chemistry, doi:10.1016/j.arabjc.2019.08.005

Rameshbabu, R., Kumar, N., Karthigeyan, A., & Neppolian, B. (2016). Visible light photocatalytic activities of ZnFe₂O₄/ZnO nanoparticles for the degradation of organic pollutants. Materials Chemistry and Physics, 181, 106-115.

How to cite this manuscript: Fatemeh Ajormal, Farzaneh Moradnia, Saeid Taghavi Fardood, Ali Ramazani. Zinc Ferrite Nanoparticles in Photodegradation of Dye: Mini-Review. Journal of Chemical Reviews, 2020, 2(2), 90-102.