Lipoprotein(a) Levels and Apolipoprotein(a) Isoforms Related to Life Style Risk Factors

Shizukiyo Ishikawa 1, Tomohiro Deguchi 2, Kazuo Hara 2, Shuzo Takuma 2, Kazunori Kayaba 1, Akizumi Tsutsumi 3, Kazuomi Kario 4, and Masahiro Igarashi 1

Lipoprotein(a) [Lp(a)] has been considered to be a predictor of premature coronary heart disease and other cardiovascular diseases. Lp(a) levels are largely genetically determined, but the detailed mechanism of Lp(a) elevation is uncertain.

We examined the association between Lp(a) levels and apolipoprotein(a) [apo(a)] phenotypes as well as that of Lp(a) level and other various conditions. The subjects were 280 healthy Japanese (102 males and 178 females) aged 39 to 70 years who were living in a rural community in 1992. We obtained apo(a) phenotypes determined by SDS-PAGE as well as Lp(a) levels and other cardiovascular risk factors. We combined apo(a) phenotypes form 4 groups according to molecular weights (from high apo(a) molecular weight to low: I, II, III and IV).

Lp(a) levels were associated with apo(a) phenotype-groups, that is, they were inversely associated with apo(a) molecular weight. Small apo(a) phenotypes were less frequent than large ones. The median Lp(a) level was higher in smoking (29.2 mg/dL) than in non-smoking subjects (18.5 mg/dL) in phenotype-group III. Adjusted means of total cholesterol and fibrinogen levels in apo(a) phenotype-group IV were the highest of all phenotype-groups. Age, apo(a) phenotype, smoking status, total cholesterol and fibrinogen were positively correlated with Lp(a) levels by multiple regression analysis.

Lp(a) levels were found to be mainly associated with apo(a) phenotype, but varied broadly within the same apo(a) phenotype at various conditions, such as smoking status and high total cholesterol. J Epidemiol, 1999 ; 9 : 32-39

Lp(a) is a macromolecular complex in human plasma that assembled from a low density lipoprotein (LDL) and a high molecular weight Lp(a) glycoprotein or apolipoprotein(a) [apo(a)]. Since Berg first described Lipoprotein(a) [Lp(a)], many studies have examined the association between Lp(a) concentrations and cardiovascular diseases (CVD) 1 2 3 4 5. Although some prospective studies have reported negative result 4 6 7, the association between Lp(a) levels and coronary heart disease has been recently confirmed 8 9 10 11.

Unlike other lipoproteins, it has been reported that Lp(a) levels are mainly determined genetically 11 and are not markedly influenced by other factors, such as sex, age and food 12 13. Increased levels of Lp(a) are associated with various conditions, including myocardial infarction 3 12, cerebral infarction 14, peripheral vascular diseases 15, diabetes mellitus 16, renal failure 17, menopausal status 18 19, smoking, aging 19 20 21, and heredity 22.

Utermann et al. established the conception regarding Lp(a) isoforms and apo(a) phenotypes, that serum Lp(a) levels are largely determined by Lp(a) isoforms, but within the same type of Lp(a) isoform, serum Lp(a) levels vary broadly 23 24. It is unclear to what extent Lp(a) levels are determined genetically.

Received May 6, 1998 ; accepted July 31,1998.
1Department of Community and Family Medicine, Jichi Medical School, Tochigi, Japan.
2Department of Internal Medicine, Akaike Hospital, Fukuoka, Japan.
3Department of Environmental Medicine, Kurume University School of Medicine, Fukuoka, Japan.
4Department of Cardiology, Jichi Medical School, Tochigi, Japan.
Address for correspondence : Shizukiyo Ishikawa, Department of Community and Family Medicine, Jichi Medical School, Minamikawachi, Kawachi, Tochigi 3290498 Japan.

32
Lipoprotein(a) Levels and Apolipoprotein(a) Isoforms

and environmentally. Abe et al. reported Lp(a) levels and distribution of apo(a) phenotypes in healthy Japanese subjects, but we cannot find the studies to investigate the relationship of Lp(a) levels and apo(a) phenotypes with other risk factors in Japanese. This is the first study, to our knowledge, to clarify not only the distribution of apo(a) phenotypes, but the association between apo(a) phenotypes and other risk factors such as smoking and drinking habits, blood pressure and other serum lipids in a rural district in Japan as a part of the JMS Cohort Study.4,21,26,27

METHODS AND MATERIALS

The subjects were 280 healthy Japanese (men: 102 and women: 178) aged 39 to 70 years in Akaike town, Fukuoka, Japan, obtained by mass screening examination in November, 1992. All subjects had no past histories of CVD such as myocardial infarction or apoplexy. The subjects were included as a part of the JMS Cohort Study.19

Systolic and diastolic blood pressures (BP) were measured with a fully automated sphygmomanometer, BP203RV-II (Nippon Colin, Kornaki, Japan), placed on the right arm of the subjects who had been in the sitting position for 5 minutes before the measurement.

We obtained blood samples before noon after an overnight fast. Lp(a) concentrations were determined by enzyme-linked immunosorbent assay (ELISA) (Immuno AG, Vienna, Austria). Apo(a) isoforms were determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions and the Lp(a) proteins were demonstrated by immunoblotting using polyclonal rabbit anti-apo(a) antibody. The subjects were tested exhibiting single or double band(s). According to their relative mobilities, the Lp(a) patterns were classified into phenotype F (faster than apo B-100), B (identical to apo B-100), S1, S2, S3 and S4 (slower to different degrees than apo B-100), and into the respective double-band phenotypes. Null type had no detectable apo(a) band. We combined the apo(a) phenotypes form 4 groups according to molecular weights, as previously performed by Klausen et al. 26

Plasma fibrinogen levels were determined with a one-stage clotting assay kit (Data-Fi, Dade, Miami, FL, USA). Factor VII coagulant activity (FVIIc) was measured by achromogenic assay using a human FVII-deficient plasma kit (Behringwerke AG, Marburg, Germany), and a chromogenic assay autoanalyzer (Behring chromatimer, Behringwerke, Marburg, Germany). The activity of commercially available pooled plasma (CTS Standard plasma; Behringwerke AG) was considered 100%. Total cholesterol and triglycerides were measured by an enzymatic method (Wako, Osaka, Japan). High density lipoprotein (HDL) cholesterol was measured by the phosphotungstate precipitation method (Wako, Osaka, Japan).

STATISTICAL METHODS

Statistical analysis was performed using the Statistical Analysis System (SAS) 6.12 edition (SAS Institute Inc., Cary, NC, USA). Lp(a) levels were presented as medians (95% confidence intervals). Systolic and diastolic blood pressure, total and HDL-cholesterol, fibrinogen and FVIIc were presented as means (± standard error (SE)). Lp(a) level and triglycerides were used for calculation after logarithmic transformation. Variables classified by apo(a) phenotype-groups were calculated using analysis of variance. The Kruskal-Wallis rank test and Wilcoxon's rank sum test were used for differences among Lp(a) levels. Multiple regression analysis was used to analyze the association between Lp(a) and other variables.

RESULTS

Frequencies of apo(a) phenotypes are shown in Table 1. Large molecular phenotypes of apo(a) were most frequently observed, (S3: 25.4%, S4: 27.1% and S3S4: 11.8%), and null type demonstrated 9.3% a frequency. We combined phenotypes S4 and null as phenotype-group I, phenotypes S3 and S3S4 as phenotype-group II, phenotypes S2, S2S3 and S2S4 as phenotype-group III, and other phenotypes as phenotype-group IV. Lp(a) concentrations increased with the numbers of phenotype-groups in order (I<II<III<IV), and the differences among Lp(a) levels of phenotype-groups were significant in both men and women (p<0.001 for both) (Table 2), which indicating that Lp(a) concentrations were inversely related to the molecular size of apo(a) phenotypes. No differences were seen between Lp(a) levels in men and women in each phenotype-group. Distributions of Lp(a) levels by apo(a) phenotype-groups are shown in Figure 1, each of which was highly skewed and varied broadly. However the modes were shifted to the higher levels of Lp(a) according to apo(a) phenotype-group.

Lp(a) levels were slightly increased with age in both men and women, but no significant differences were found among age groups in both sexes (p=0.515 in men and p=0.156 in women). No differences were seen between Lp(a) levels in men and women in total, in each age group (Table 3).

Total cholesterol levels tended to be higher in phenotype-groups III and IV (p=0.08), and HDL-cholesterol levels of phenotype-group III were higher than those of the other groups in the analysis of variance (p<0.01). Triglycerides levels of phenotype-group II were higher than those of the other groups (p=0.06). Both systolic and diastolic blood pressure, fibrinogen and FVIIc were not significantly different among apo(a) phenotype-groups (Table 4).

Lp(a) levels were not significantly different between hyper-
Table 1. Distribution of Apo (a) phenotypes.

Apo (a) Phenotype-group	Apo (a) Phenotype	n	%
I	S4	76	27.1
	Null	26	9.3
	Sum	102	36.4
II	S3	71	25.4
	S3, S4	33	11.8
	Sum	104	37.2
III	S2	16	5.7
	S2, S3	12	4.3
	S2, S4	9	3.2
	Sum	37	13.2
IV	F	2	0.7
	F, B	1	0.4
	F, S1		
	F, S2	1	0.4
	F, S3	1	0.4
	F, S4	4	1.4
	B	4	1.4
	B, S1	1	0.4
	B, S2	2	0.7
	B, S3	1	0.4
	B, S4	4	1.4
	S1	3	1.1
	S1, S2	2	0.7
	S1, S3	5	1.8
	S1, S4	6	2.1
	Sum	37	13.2

Total 280 100.0

Table 2. Median Lp (a) levels with 95% CIs according to the apo (a) phenotype-group.

Apo (a) Phenotype-group	Men	Women		
	n	Lp (a)	n	Lp (a)
I	37	4.1 (1.5-6.4)	65	3.6 (2.3-5.2)
II	37	9.5 (7.1-14.2)	67	10.5 (7.6-14.0)
III	12	29.2 (11.5-37.7)	25	18.1 (9.4-26.4)
IV	16	37.1 (23.2-51.5)**	21	50.5 (39.5-67.1)**

*** p<0.001 : Median Lp (a) levels among apo (a) phenotype-groups, using the Kruskal-Wallis test
Figure 1(a-d). Frequency by Lp (a) levels in apo(a) phenotype-groups.

Table 3. Median Lp (a) levels with 95% CIs according to age.

	Men	Women		
	n	Lp (a)	n	Lp (a)
All	102	9.8 (7.6-14.2)	178	9.3 (7.3-11.8)
Age (Years)				
39-49	43	8.6 (3.8-11.5)	57	6.7 (3.6-12.2)
50-59	16	11.7 (4.4-31.2)	50	9.9 (6.5-18.1)
60-70	43	13.8 (7.8-20.5)	71	10.1 (7.3-14.8)

Using the Kruskal-Wallis test
tensive and normotensive subjects, or between drinking and non-drinking subjects in each phenotype-group in all subjects (Data not shown). Lp(a) levels were also not significantly different between in smoking and non-smoking subjects in each phenotype-group. However the median Lp(a) level in phenotype group III was higher in smoking subjects than in non-smoking subjects in all subjects [Median level of Lp(a); Smoking: 29.2, Non-smoking: 18.5]. A similar tendency was observed between smoking and non-smoking subjects in only men.

By multivariate regression analysis, logarithmic Lp(a) levels were significantly and positively associated with age (p<0.01), apo(a) phenotype-group (p<0.01), smoking status (p=0.03), total cholesterol (p<0.01) and fibrinogen (p<0.01), and negatively associated with logarithmic triglycerides (p<0.01) (multiple correlation coefficient: 0.49) (Table 5).

Table 4. Means of other cardiovascular risk factors stratified by apo (a) phenotype-group adjusted for sex and age.

Apo (a) phenotype-group	n	Mean	SE	p value
Systolic blood pressure				
I	102	134.7	2.0	0.66
II	104	135.2	2.0	
III	37	130.6	3.3	
IV	37	134.5	3.2	
Diastolic blood pressure				
I	102	82.8	1.2	
II	104	81.8	1.2	
III	37	79.8	1.9	
IV	37	81.5	1.9	0.60
Total cholesterol				
I	102	199.2	3.4	
II	104	199.8	3.4	
III	37	204.5	5.5	
IV	37	214.9	5.4	0.08
HDL-cholesterol				
I	102	53.1	1.5	<0.01
II	104	50.4	1.5	
III	37	59.9	2.4	
IV	37	53.5	2.4	
Triglycerides#				
I	102	94.5 (93.5-95.6)		
II	104	103.2 (102.2-104.3)		
III	37	81.5 (80.5-82.6)		
IV	37	90.6 (89.6-91.7)		
Fibrinogen				
I	102	233.1	5.5	
II	104	236.5	5.5	
III	37	234.3	9.0	
IV	37	251.5	8.9	0.36
Factor VIIc				
I	102	104.3	1.6	
II	104	103.8	1.6	
III	37	107.3	2.6	
IV	37	109.2	2.6	0.26

p value were calculated by analysis of variance
#Geometric mean (±se)
We examined Lp(a) levels and apo(a) phenotypes in a Japanese population using cross-sectional data. Few studies have reported Lp(a) and apo(a) phenotypes in Japanese 25). We studied not only the distribution of apo(a) phenotypes, but the association between apo(a) phenotypes and other risk factors.

Plasma concentrations of Lp(a) are mainly determined by the apo(a) gene locus on chromosome 6 and apo(a) sizes are inversely associated with Lp(a) levels 29,30,31). Apo(a) polymorphism was investigated in various ethnic populations and Lp(a) levels were found to vary between races and ethnic groups 29,32,33). Abe et al. reported that the distribution of Lp(a) and allele frequencies in Japanese were similar to the results for European whites, but they were different from Asian populations, such as Chinese, Indians and Malaysians 34).

Lp(a) has been recognized as an independent risk factor of coronary heart disease (CHD) 6-10). Small apo(a) isoforms (B, S1 and S2) were associated with high Lp(a) levels, as previous studies demonstrated 23), and significantly associated with CHD 28,29, especially in subjects under 60 years of age 26). Small size apo(a) were also associated with premature coronary heart diseases and other cardiovascular diseases 28,29,31,36,37). Rader et al. reported a substantial variation in Lp(a) levels among individuals with the same apo(a) phenotype as determined by the Lp(a) production rate 30). It has been suggested that Lp(a) is initially determined genetically, and is then influenced by various conditions. Higher genetic Lp(a) levels are correlated with CVD. However a surplus of Lp(a), which indicates a difference between the genetic level of Lp(a) and the level after being influenced by environmental factors, may also be associated with CVD.

Subjects with genetically higher levels develop CVD more easily, but subjects with genetically lower levels also may develop CVD, if surplus Lp(a) levels increase. Surplus Lp(a) also acts as a acute phase reacting protein 39). In some situations, such as in end-stage renal failure 17) or after a surgical operation 45), Lp(a) concentrations increase due to the inflammatory state. Cardiovascular events that consist of a long-lasting intravessel change may cause activated coagulating conditions and an elevated Lp(a) level. Therefore high Lp(a) levels are not only risk factors of CVD, but predictors for coagulating conditions.

Sechi et al. reported an association between Lp(a) concentrations and the severity of target-organ damage, and a significantly higher frequency of low-molecular weight apo(a) isoforms with increasing severity of target-organ damage. It has been suggested that Lp(a) concentrations were inversely related to the molecular weight of apo(a), and that a low molecular weight apo(a) was essentially related to CHD or other cardiovascular diseases 37).

In the present study, the median Lp(a) level was higher in smoking (29.2 mg/dL) than in non-smoking subjects (18.5 mg/dL) in phenotype-group III. Adjusted means for sex and age of total cholesterol and fibrinogen levels in apo(a) phenotype-group IV were the highest of all phenotype-groups. By multiple regression analysis Log[Lp(a)] as significantly correlated with apo(a) phenotype-group, age-group, smoking status, total cholesterol, log(triglycerides) and fibrinogen. These results followed the previous studies, in which Lp(a) levels were determined genetically and associated with environmental factors like smoking, age and other cardiovascular risk factors.
ACKNOWLEDGMENT

This study was supported in part by grants from the Foundation for the Development of the Community, Tochigi, Japan.

We would like to thank Akio Noma, the former professor of Gifu University, School of Medicine, Gifu, Japan, and Akira Abe, professor of Gifu College of Medical Technology, Gifu, Japan, for measuring Lp(a) levels and determining apo(a) phenotypes.

REFERENCES

1. Dahlen G, Ramberg UB. Pre-beta-1 lipoprotein and early detection of risk factors for coronary heart disease. Acta Med Scand 1974;195(5):341-4.
2. Berg K, Dahlen G, Frick MH. Lp(a) lipoprotein and pre-beta-1-lipoprotein in patients with coronary heart disease. Clin Genet 1974;6(3):230-5.
3. Rhoads GG, Dahlen G, Berg K, Morton NE, Dannenberg AL. Lp(a) lipoprotein as a risk factor for myocardial infarction. JAMA 1986;256(18):2540-4.
4. Jauhiainen M, Koskinen P, Ehnholm C, et al. Lipoprotein (a) and coronary heart disease risk: a nested case-control study of the Helsinki Heart Study participants [see comments]. Atherosclerosis 1991;89(1):59-67.
5. Ridker PM, Hennekens CH, Stampfer MJ. A prospective study of lipoprotein(a) and the risk of myocardial infarction [see comments]. JAMA 1993;270(18):2195-9.
6. Rosengren A, Wilhelmsen L, Eriksson E, Risberg B, Wedel H. Lipoprotein (a) and coronary heart disease risk: a nested case-control study in a general population sample of middle aged men. BMJ 1990;301 (6763):1248-51.
7. Sigurdsson G, Baldursdottir A, Sigvaldason H, Aagnarsson U, Thorgeirsson G, Sigfusson N. Predictive value of apolipoproteins in a prospective survey of coronary artery disease in men. Am J Cardiol 1992;69 (16):1251-4.
8. Cremer P, Nagel D, Labrot B, et al. Lipoprotein Lp (a) as predictor of myocardial infarction in comparison to fibrinogen, LDL cholesterol and other risk factors: results from the prospective Gottingen Risk Incidence and Prevalence Study (GRIPS). Eur J Clin Invest 1994;24 (7):444-53.
9. Boston AG, Gagnon DR, Cupples LA, et al. A prospective investigation of elevated lipoprotein (a) detected by electrophoresis and cardiovascular disease in women. The Framingham Heart Study. Circulation 1994;90 (4):1688-95.
10. Schaefer EJ, Lamon-Fava S, Jenner JL, et al. Lipoprotein (a) levels and risk of coronary heart disease in men. The lipid Research Clinics Coronary Primary Prevention Trial [see comments]. JAMA 1994;271(13):999-1003.
11. Boerwinkle E, Leffert CC, Lin J, Lackner C, Chiesa G, Hobbs HH. Apoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest 1992;90 (52-60).
12. Albers JJ, Adolphson JL, Hazzard WR. Radioimmunoassay of human plasma Lp(a) lipoprotein. J Lipid Res 1977;18:331-338.
13. Guyton JR, Dahlen GH, Patsch W, Kautz JA, Gotto J A. M. Relationship of plasma lipoprotein Lp(a) levels to race and to apolipoprotein B. Arteriosclerosis 1985;5:265-72.
14. Zenker G, Koltringer P, Bone G, Niederkorn K, Pfeiffer K, Jurgens G. Lipoprotein(a) as a strong indicator for cerebrovascular disease. Stroke 1986;17(5):942-5.
15. Teryrrell J, Cooke T, Reilly M, et al. Lipoprotein [Lp(a)] and peripheral vascular disease. J Intern Med 1992;232 (4):349-52.
16. Bruckert E, Davidoff P, Grimaldi A, et al. Increased serum levels of lipoprotein(a) in diabetes mellitus and their reduction with glycemic control. JAMA 1990; 263:35-6.
17. Parra HJ, Mezdour H, Cacher C, Dracoon M, Tackett A, Fruchart JC. Lp(a) lipoprotein in patients with chronic renal failure treated by hemodialysis. Clin Chem 1987;33:721.
18. Soma M, Fumagalli R, Meschia M, et al. Plasma Lp(a) concentration after oestrogen and progestagen in postmenopausal women. (letter). Lancet 1991;337:612.
19. Nago N, Kayaba K, Hiroaka J, et al. Lipoprotein(a) levels in the Japanese population: Influence of age and sex, and correlation to atherosclerotic risk factors, The Jichi Medical School Cohort Study. Am J Epidemiol 1995;141:815-21.
20. Jenner JL, Ordovas JM, Lamon-Fava S, et al. Effects of age, sex, and menopausal status on plasma lipoprotein(a) levels. The Framingham Offspring Study. Circulation 1993;87(4):1135-41.
21. Hiroaka J, Nakamura Y, Yanagawa H, Nago N. Distribution of lipoprotein(a) and relationship between its level and blood chemical findings in a rural area in Japan. J Epidemiol 1994;4:163-9.
22. Matsuo H, Ohashi H. Hereditability of Lp(a) and other lipids in Japanese rural area Takasu-JMS cohort study.-Jpn Circ J 1994;58:528.
23. Utermann G, Menzel HJ, Kraft HG, Duba HC, Kemmler HG, Seitz C. Lp(a) glycoprotein phenotypes. Inheritance and relation to Lp(a)-lipoprotein concentrations in plasma. J Clin Invest 1987;80(2):458-65.
24. Utermann G, Hoppichler F, Dieplinger H, Seed M, Thompson G, Boerwinkle E. Defects in the LDL receptor gene affect Lp (a) lipoprotein levels: Multiplicative inter-
action of two gene loci associated with premature atherosclerosis. Proc Natl Acad Sci U S A 1989;86:4171-4.

25. Abe A, Noma A, Itakura H. Lipoprotein(a) phenotyping using a computerized micro scale and phenotype frequencies in a healthy Japanese population. Clin Chim Acta 1993;219 (1-2):149-57.

26. Gotto T, Kuroda T, Yamasawa M, et al. Correlation between lipoprotein(a) and aortic valve sclerosis assessed by echocardiography (the JMS Cardiac Echo and Cohort Study). Am J Cardiol 1995;76(12):928-32.

27. Ishikawa S, Kario K, Nago N, et al. Factor VII and fibrinogen levels examined by age, sex, and other atherosclerotic risk factors in a Japanese population. Thromb Haemost 1997;77:890-3.

28. Klausen IC, Sjol A, Hansen PS, et al. Apolipoprotein(a) isoforms and coronary heart disease in men: a nested case-control study. Atherosclerosis 1997;132(1):77-84.

29. Sandholzer C, Saha N, Kark JD, et al. Apo(a) isoforms predict risk for coronary heart disease. A study in six populations. Arterioscler Thromb 1992;12(10):1214-26.

30. Sandholzer C, Boerwinkle E, Saha N, Tong MC, Utermann G. Apolipoprotein(a) phenotypes, Lp(a) concentration and plasma lipid levels in relation to coronary heart disease in a Chinese population: evidence for the role of the apo(a) gene in coronary heart disease. J Clin Invest 1992;89(3):1040-6.

31. Klausen IC, Beisiegel U, Menzel HJ, Rosseneu M, Nicaud V, Faergeman O. Apo(a) phenotypes and Lp(a) concentrations in offspring of men with and without myocardial infarction. The EARS Study. European Atherosclerosis Research Study. Arterioscler Thromb Vasc Biol 1995;15(8):1001-8.

32. Sandholzer C, Hallman DM, Saha N, et al. Effects of the apolipoprotein(a) size polymorphism on the lipoprotein (a) concentration in 7 ethnic groups. Hum Genet 1991;86(6):607-14.

33. Marcovina SM, Albers JJ, Jacobs D Jr., et al. Lipoprotein[a] concentrations and apolipoprotein[a] phenotypes in Caucasians and African Americans. The CARDIA study. Arterioscler Thromb 1993;13(7):1037-45.

34. Abe A, Noma A. Studies on apolipoprotein(a) phenotypes. Part I. Phenotype frequencies in a healthy Japanese population. Atherosclerosis 1992;96(1):1-8.

35. Kark JD, Sandholzer C, Friedlander Y, Utermann G. Plasma Lp(a), apolipoprotein(a) isoforms and acute myocardial infarction in men and women: a case-control study in the Jerusalem population. Atherosclerosis 1993;98(2):139-51.

36. Dahlen GH, Guyton JR, Attar M, Farmer JA, Kautz JA, Gotto A Jr. Association of levels of lipoprotein Lp(a), plasma lipids, and other lipoproteins with coronary artery disease documented by angiography. Circulation 1986;74(4):758-65.

37. Sechi LA, Kronenberg F, De-Carli S, et al. Association of serum lipoprotein(a) levels and apolipoprotein(a) size polymorphism with target-organ damage in arterial hypertension. JAMA 1997;277(21):1689-95.

38. Rader DJ, Cain W, Zech LA, Usher D, Brewer HBJ. Variation in lipoprotein(a) concentrations among individuals with the same apolipoprotein(a) isoform is determined by the rate of lipoprotein(a) production. J Clin Invest 1993;91:443-447.

39. Maeda S, Abe A, Seishima M, Makino K, Noma A, Kawade M. Transient change of serum lipoprotein(a) as an acute phase protein. Atherosclerosis 1989;78:145-50.

40. Kawade M, Maeda S, Abe A, Yamashiro M. Alteration in plasma Lp(a) lipoprotein and acute phase protein after surgical operation. Clin Chem 1984;30:941.