SUMMARY This paper investigates the sum rate (SR) maximization problem for downlink cooperative non-orthogonal multiple access (C-NOMA) systems with hardware impairments (HIs). The source node communicates with users via a half-duplex amplified-and-forward (HD-AF) relay with HIs. First, we derive the SR expression of the systems under HIs. Then, SR maximization problem is formulated under maximum power of the source, relay, and the minimum rate constraint of each user. As the original SR maximization problem is a non-convex problem, it is difficult to find the optimal resource allocation directly by traditional convex optimization method. We use variable substitution method to convert the non-convex SR maximization problem to an equivalent convex optimization problem. Finally, a joint power and rate allocation based on interior point method is proposed to maximize the SR of the systems. Simulation results show that the algorithm can improve the SR of the C-NOMA compared with the cooperative orthogonal multiple access (C-OMA) scheme.

key words: cooperative non-orthogonal multiple access, sum rate, resource allocation, hardware impairments, interior-point

1. Introduction

5G large connection Internet of Things (IoT) mass machine communication needs to support a connection number density of 1 million per square kilometer, which requires low cost, low signaling overhead, low latency, and low power consumption. Non-orthogonal multiple access (NOMA), is an core key technology of 5G new air interface, which is expected to solve the above problems [1]. The main feature of NOMA is to allow multiple users to share the same time, frequency, and code resources with different power allocation according to their channel conditions. At the receiver, the successive interference cancellation (SIC) technology is used to decode the superimposed information. NOMA can achieve higher spectral efficiency, higher cell edge throughput, lower transmission latency, enhanced user fairness, support more number of users compared with orthogonal multiple access (OMA) [2].

Cooperative non-orthogonal multiple access (C-NOMA) has been extensively studied to improve the capacity and reliability of wireless communication networks in [3]–[9]. Considering the information of the primary user and the secondary user were transmitted through the NOMA relay, a new two-slot NOMA relay-assisted spectrum sharing scheme was proposed in [3]. [4] studied relay selection scheme of a cooperative NOMA network. The outage probability was derived under fixed and adaptive power allocation at the relay. [5] investigated a dual-user multi-relay C-NOMA network with distributed space-time coding, and proposed two dual-relay selection strategies with fixed and dynamic power allocation. [6] studied the NOMA downlink relay transmission. The macro base station firstly used NOMA to transmit to a group of relays, and then all relays used NOMA to transmit the data they received to the mobile terminal users. An optimal power allocation was proposed for BS and relay to maximize the total throughput provided to end-users. [7] studied NOMA amplification and forwarding (AF) relay networks, where joint power allocation and relay beam-forming design were considered. In [8], a novel non-orthogonal cooperative multiple access scheme was proposed to ensure the secure transmission of data for specific users. With the emphasis on external eavesdroppers and untrusted relays, a safe beam-forming algorithm was used to maximize the security rate of the systems in [9].

The works in [3]–[9] have assumed ideal hardware conditions. In practical cooperative NOMA systems, the transceivers of the BS node, the relay node, and the user node suffer from different types of hardware impairments (HIs), including in-phase/quadrature-phase imbalance (IQI), nonlinear amplifiers equivalent noise and radio frequency circuit noise [10]–[12]. The performance analysis of C-NOMA systems with HIs is just at the initial stage of research [13]–[18]. [13] studied the impact of quantifying residual hardware impairments (RHIs) based on a multi-users C-NOMA AF relaying network. The authors derived an accurate and asymptotic expressions of the outage probability in closed-form. Furthermore, [14] investigated the impact of transceiver hardware impairments based on multi-users C-NOMA AF relaying network under a universal fading channel, and proposed two representative NOMA schemes. [15] studied the outage probability of NOMA systems under a single-carrier NOMA system with IQI hardware impairments. The energy harvesting (EH) under non-ideal channel state information in the multi-relay C-NOMA systems was analyzed in [16], and the closed-form expression of its outage probability was derived. The authors in [17] considered an unmanned aerial vehicle (UAV)-aided NOMA multi-way relaying networks (MWRNs), and derived the analytical expression for the achieve sum-rate. [18] researched an ambient backscatter NOMA system in the presence of a malicious eavesdropper, and gave the analyti-
cal expressions for the outage probability and the intercept probability. These studies in [13]–[18] mainly analyzed performance indicators such as the outage probability and asymptotic rate of NOMA systems under hardware impairments. However, they did not consider to optimize the system performance from resource allocation perspective.

Different from the prior works in [3]–[9], we consider non-ideal hardware condition of downlink C-NOMA network. Furthermore, different from the analysis scheme proposed in [13] and [14], we analyze the impact of HIs in the resource allocation perspective. The analysis utilizes the generalized hardware impairments topology model of [13]. This paper researches the sum rate (SR) maximization of single-carrier C-NOMA network under hardware impairments condition of source, reliable half-duplex amplification-and-forward (HD-AF) relay, and multi-users. We propose to analyze the SR through Rayleigh fading channels. We first derive the SR maximization problem under quality of service (QoS) constraints, which is non-convex and difficult to obtain the solution. By utilizing variable substitution, the non-convex SR maximization problem is converted into an equivalent convex optimization problem. Next, a joint user admitted control, power allocation factor (PAF) and rate allocation algorithm based on the interior point method is proposed to maximize the SR, and the closed-form solution expressions for the PAF are derived. Simulation results show that the proposed resource allocation algorithm is superior to cooperative orthogonal multiple access (C-OMA) scheme in terms of system’s SR and the number of system admitted users. Furthermore, we investigate the impact of relay location based on two schemes.

The remaining sections are organized as follows: Sect. 2 describes the system model of C-NOMA with hardware impairments. Section 3 analyzes SR optimization problem with user admission control. Numerical results are provided in Sect. 4. The conclusion is presented in Sect. 5.

2. System Model

We consider a downlink NOMA-based half-duplex (HD) relay network consisting of a source node base station S, a half-duplex relay node R, and user nodes $U_n (n = 1, ..., N)$ as Fig. 1. We assume that each user is equipped with a single antenna. Due to obstacles and severe shadowing, there is no direct link between the BS and the user. The base station first transmits the signal to the relay node, and then the relay amplifies and forwards to the signal to the user according to the AF protocol. The channels from S to R and R to U follow independent but differently distributed (i, n, i, d) Rayleigh fading.

In the cooperative NOMA network based on the AF protocol, the communication process is divided into two time slots. Next, we introduce the AF protocol for C-NOMA as follows.

![Fig. 1 System model of C-NOMA.](image)

2.1 First Slot

The source node S sends a superimposed signal $\sum_{n=1}^{N} \sqrt{\alpha_n} P_{S} x_{n}$ to the relay node R. The signal received by the relay node R is expressed as:

$$y_{R} = h_{S} \left(\sum_{n=1}^{N} \sqrt{\alpha_n} P_{S} x_{n} + \eta_{SR} \right) + n_{R}$$ \hspace{1cm} (1)

Where $h_{S} = g_{S,R} \cdot PL^{-1}(d_{SR})$ is the channel gain from the S to the R link. $g_{S,R}$ denotes the small-scale Rayleigh fading channel gain, and $PL^{-1}(d_{SR})$ is the path loss function between the S and R at distance d_{SR} [19]. P_{S} is the transmit power of the S, x_{n} and α_{n} are respectively the information and the power allocation factor by the S allocate to the user $U_{n}(n = 1, ..., N)$. In addition, $n_{R} \sim CN(0, \sigma_{R}^{2})$ is the background noise at the R. The HIs at both the source node S and the relay node R is characterized as independent tortion noise η_{SR}, where $\eta_{SR} \sim CN(0, \kappa_{SR}^{2} P_{S})$, and $\kappa_{SR} \triangleq \sqrt{\kappa_{S}^{2} + \kappa_{R}^{2}}$ represents the sum error vector magnitudes (EVMs) from the S to the R link, where κ_{S} and κ_{R} severally characterizes the EVMs at the S and the R.

2.2 Second Slot

In the second time slot, the relay node R amplifies the received signal y_{R} with amplification factor β, and the amplification gain factor is given as follows.

$$\beta = \frac{P_{R}}{\sqrt{(1 + \kappa_{SR}^{2}) P_{S} |y_{R}|^{2} + \sigma_{R}^{2}}}$$ \hspace{1cm} (2)

Where P_{R} is the transmission power of relay R. The n-th user U_{n} receives the signal transmitted by the relay can be express as:

$$y_{U_{n}} = h_{R,n} (\beta y_{R} + \eta_{R,n}) + u_{n}$$

$$= h_{R,n} \beta h_{S} \left(\sum_{n=1}^{N} \sqrt{\alpha_n} P_{S} x_{n} + \eta_{SR} \right) + n_{R} + h_{R,n} \eta_{R,n} + u_{n}$$

$$= \beta h_{S} h_{R,n} \sqrt{P_{S} \left(\sum_{k=1}^{N-1} \sqrt{\alpha_k} x_k + \sqrt{\alpha_n} x_n + \sum_{j=n+1}^{N} \sqrt{\alpha_j} x_j \right)} + \beta h_{S} h_{R,n} \eta_{SR} + h_{R,n} \eta_{R,n} + \beta h_{R,n} u_{R,n} + u_{n}.$$ \hspace{1cm} (3)

IEICE TRANS. INF. & SYST., VOL.E104–D, NO.9 SEPTEMBER 2021
Where $h_{R,n} = g_{R,U_n} \cdot PL^{-1}(d_{R,U_n})$ is the channel gain from the R to the U_n link, g_{R,U_n} denotes the small-scale Rayleigh fading channel gain, and $PL^{-1}(d_{R,U_n})$ is the path loss function between the R and U_n at distance d_{R,U_n}, and $n_{U_n} \sim CN(0, \sigma^2_{U_n})$ is the Additive white Gaussian noise (AWGN) at U_n. Similarly, the independent distortion noise $n_{R,n} \sim CN(0, \kappa^2_{R,U_n} P_R)$ denotes the HIs at both R and U_n. Moreover, $\kappa^2_{R,U_n} = \sqrt{\kappa^2_R + \kappa^2_U}$; $(n = 1, \ldots, N)$ represents the sum EVMs of the R to U_n link. For simplicity, we assume $\kappa^2_{R,U_n} \approx \kappa^2_R$. Without loss of generality, it’s the ideal model without HIs when invoking $\kappa^2_R = \kappa^2_{R,U_n} = 0$ into (2) and (3).

It’s assumed that the user’s channel gains are ordered to satisfy $|h_{R,1}|^2 \leq \cdots \leq |h_{R,N}|^2$. User U_n firstly decodes weak users ($k < n$) and the interference caused by U_k can be cancelled from the received signal by utilizing SIC, while strong users ($j > n$) signals are regarded as interference. The Signal interference to noise ratio (SINR) of U_k denoted as:

$$\gamma_{k-n} = \frac{\alpha_n P_S |h_{k,n}|^2}{\beta |h_{R,n}|^2 \left(\sum_{n' = 1}^{N} \alpha_{n'} + \kappa^2_{SR} \right) P_S |h_{k,n}|^2 + \sigma^2_{R,U_n} P_R |h_{R,n}|^2 + \sigma^2_{U_n}}.$$

(4)

Then the SINR of users after interference elimination of weak users ($k < n$) is:

$$\gamma_{n-n} = \frac{\alpha_n P_S \beta |h_{j,n}|^2}{\beta |h_{R,n}|^2 \left(\sum_{n' = 1}^{N} \alpha_{n'} + \kappa^2_{SR} \right) P_S |h_{j,n}|^2 + \sigma^2_{R,U_n} P_R |h_{R,n}|^2 + \sigma^2_{U_n}}.$$

(5)

Substitute expression (2) into (5) for simplification to obtain the SINR of the receiver U_n after SIC:

$$\gamma_n = \frac{\alpha_n K_n}{\sum_{n' = 1}^{N} \alpha_{n'} + M_n} K_n + L_n.$$

(6)

where M_n, K_n, and L_n are given by

$$M_n = \kappa^2_{SR} + \kappa^2_{R,U_n} + \kappa^2_R \kappa^2_{U,n},$$

$$K_n(P_S, P_R) = P_S |h_{j,n}|^2 P_R |h_{R,n}|^2,$$

$$L_n(P_S, P_R) = (1 + \kappa^2_{SR} |\sigma^2_{U,n} P_S |h_{j,n}|^2) (1 + \kappa^2_{R,U_n} |\sigma^2_{R,n} P_R |h_{R,n}|^2)$$

$$+ \kappa^2_R \kappa^2_{U,n}.$$

The rate r_n of U_n can be simplified as follows:

$$r_n = \frac{1}{2} \sum_{n = 1}^{N} \log_2 \left(1 + \frac{\alpha_n K_n(P_S, P_R)}{\sum_{n' = 1}^{N} \alpha_{n'} + M_n} K_n(P_S, P_R) + L_n(P_S, P_R) \right).$$

(7)

3. Sum Rate Maximization Problem

From the above discussion, the sum rate maximization problem of cooperative NOMA system with HIs is as follows:

$$\max_{P_S, P_R, \alpha_1, \cdots, \alpha_N} \frac{1}{2} \sum_{n = 1}^{N} \log_2 \left(1 + \frac{\alpha_n K_n(P_S, P_R)}{\sum_{n' = 1}^{N} \alpha_{n'} + M_n} K_n(P_S, P_R) + L_n(P_S, P_R) \right).$$

s.t. \[C1 : 0 \leq P_S \leq P_{\text{max}}, \quad C2 : 0 \leq P_R \leq P_{\text{max}}, \quad C3 : \alpha_j \geq 0, \quad j = 1, \cdots, N, \quad C4 : \sum_{j = 1}^{N} \alpha_j = 1, \quad C5 : r_n \geq r_{n_{\text{min}}}, \quad n = 1, \cdots, N. \]

(8)

where $C1$ indicates the maximum transmission power constraint condition of S, $C2$ denotes the maximum transmission power constraint condition of R, $C3$ shows the non-negativity of power, $C4$ is the total transmit power constraint of S, $C5$ indicates the minimum rate constraint for each user. The coefficient $\frac{1}{2}$ in objective function takes into account the two-time slots required for transmission from S to U.

Since the objective function is non-convex, the problem (8) are non-convex optimization problems. Therefore, we cannot directly give the optimal solutions of (8). However, we will transform (8) into an equivalent convex problem through variable substitution. As the objective function in (8) monotonically increases with respect to P_S and P_R, we can see that the optimal solution to P_S and P_R should be P_{max} and P_{max}, respectively. Then, problem (8) can be rewritten as:

$$\max_{\alpha_1, \cdots, \alpha_N} \frac{1}{2} \sum_{n = 1}^{N} \log_2 \left(1 + \frac{\alpha_n K_n(P_S, P_R)}{\sum_{n' = 1}^{N} \alpha_{n'} + M_n} K_n(P_S, P_R) + L_n(P_S, P_R) \right).$$

s.t. \[C1 : \alpha_j \geq 0, \quad j = 1, \cdots, N, \quad C2 : \sum_{j = 1}^{N} \alpha_j = 1, \quad C3 : r_n \geq r_{n_{\text{min}}}, \quad n = 1, \cdots, N. \]

(9)

Therefore, we only need to find the optimal solution for the PAF. However, the SR problem is still non-convex problem with respect to the PAF. Next, we will change it into equivalent convex optimization problem by variable substitution. To solve the above problem, we describe the relationship between the PAF and rate by utilizing the following lemma as [20], and turn the problem (9) into a convex optimization problem.

Lemma 1: Let $I_n = M_n + L_n(P_{\text{max}}, P_{\text{max}})$ $(n = 1, \cdots, N)$, $I_{N+1} = 0$. The following equation stands for the transmit PAF regarding rate as variables:

$$\sum_{j = n}^{N} \alpha_j = \left(I_j - I_{j+1} \right) \times e^{2 \ln 2 \sum_{j = n}^{N} \alpha_j} - I_n.$$

(10)
Proof: Because $\gamma_n = \frac{1}{\sum_{j=1}^{N} a_j + I_n}$ and $r_n = \frac{1}{2} \log_2(1 + \gamma_n)$, then we can characterize the relation between rate and PAF as

$$e^{2 \ln 2 r_n} = \frac{\alpha_n + \sum_{j=1}^{N} \alpha_j + I_n}{\sum_{j=1}^{N} \alpha_j + I_n}.$$ \hspace{1cm} (11)

if $n = N$, we have $e^{2 \ln 2 r_n} = \frac{\alpha_N + r_n}{I_N}, \alpha_N$ can be rewritten as

$$\alpha_N = I_N e^{2 \ln 2 r_n} - I_N,$$ \hspace{1cm} (12)

if $n = N - 1$, we have

$$e^{2 \ln 2 r_{N-1}} = \frac{\alpha_{N-1} + \alpha_N + I_{N-1}}{\alpha_N + I_{N-1}}.$$ \hspace{1cm} (13)

Substitute (12) into the denominator of (13), we have

$$\sum_{n=N-1}^{N} \alpha_n = I_N e^{2 \ln 2 (r_n - r_N)} + (I_{N-1} - I_N) e^{2 \ln 2 (r_{N-1} - r_N)} - I_{N-1}. \hspace{1cm} (14)$$

Equations (12) and (14) satisfy Lemma 1 and we further use the recursion method to obtain the equivalent form of total power allocation factor constraint. According to the same scaling method in [21], condition $\sum_{j=1}^{N} \alpha_j = 1$ is equivalent to $\sum_{j=1}^{N} \alpha_j \leq 1$ when PAF obtains the optimal solution $(\alpha_1, \ldots, \alpha_N)$. So far, C2 in problem (9) can be rewritten as

$$\sum_{j=1}^{N} (I_j - I_{j+1}) \times e^{2 \ln 2 \sum_{k=1}^{j} r_k} + I_1 - 1 \leq 0. \hspace{1cm} (15)$$

By utilizing Lemma 1, problem (9) is equivalent to the following rate allocation problem.

$$\max_{r_1, \cdots, r_N} \sum_{n=1}^{N} r_n, \hspace{1cm} (16)$$

s.t. $\sum_{j=1}^{N} (I_j - I_{j+1}) \times e^{2 \ln 2 \sum_{k=1}^{j} r_k} + I_1 - 1 \leq 0,$ \hspace{1cm} (17)

$r_n \geq r_n^{\text{min}}, n = 1, \cdots, N.$ \hspace{1cm} (18)

Lemma 2: (16)–(18) are convex optimization problems.

Proof: $e^{2 \ln 2 \sum_{k=1}^{j} r_k}$ is a convex function because expg(x) is convex if g is convex [22]. Furthermore, we have $|h_{R,1}|^2 \leq \cdots \leq |h_{R,N}|^2$ and $I_n = M_n + \frac{I_a^{(\text{max})} I_n^{(\text{min})}}{K R} (n = 1, \ldots, N)$. Thus, we can get $I_1 \geq \cdots \geq I_N$, then $\sum_{j=1}^{N} (I_j - I_{j+1}) \times e^{2 \ln 2 \sum_{k=1}^{j} r_k}$ is convex function because the non-negative weighted sum of convex functions is a convex function. Constraints (17)–(18) are convex sets, and the objective function is affine, then (16)–(18) are convex optimization problems.

By Lemma 2, we can use the interior-point method to give the optimal solution to (16)–(18). Next, a feasible condition is presented. Because the left-hand side of constraint (17) is an increasing function with the transmit rate, and the minimum transmit rate requirement for user n is $r_n^{\text{min}} (n = 1, \ldots, N)$.

Lemma 3: (16)–(18) have a feasible solution if and only if constraint (17) is satisfied.

From Lemma 1–3, the optimal PAF and rate allocation of each user can be obtained. The proposed SR maximization algorithm with Hardware impairments is shown in Algorithm 1.

Next, we provide the complexity analysis for algorithm 1 in the worst case. The complexity of computing the user admission control and the power allocation coefficient is $O(N)$, in which N represents the total number of users in the network. After user admission control, the complexity of problem (16)–(18) is $O((x^2 y + x^3) \log(\frac{1}{e}))$ with $x = N$ variables and $y = (N + 1)$ constraints, where e is the tolerance value of the interior point method [23]. Therefore, the overall complexity of Algorithm 1 is $O(N^2 \log(\frac{1}{e}))$.

Algorithm 1 Sum Rate Maximization Algorithm of Cooperative NOMA with Hardware impairments

Input: $P_s, P_R, N, \sigma_{\text{R}}^2, \sigma_{\text{e}}^2, r_n^{\text{min}} (n = 1, \ldots, N)$

Initialization: set $\text{num}=0$ and $I_0(n=1, \ldots, N), I_{n+1} = 0$.

for all $i \in (1, \ldots, N)$ do

if $\sum_{j=1}^{N} (I_j - I_{j+1}) \times e^{2 \ln 2 \sum_{k=1}^{j} r_k} + I_1 - 1 > 0$ then

$\text{num} = \text{num} + 1$

end if

end for

if $\text{num} < N$ then

set $K = \text{num} + 1$

for all $n \in (K, \ldots, N)$ do

$a_n = \sum_{j=1}^{N} (I_j - I_{j+1}) \times e^{2 \ln 2 \sum_{k=1}^{j} r_k} + I_{n+1} - I_n$, where (r_1, \ldots, r_N) is the optimal solution to (16)–(18) by interior-point algorithm, moreover $\sum_{n=K}^{N} a_n = 1, r_n = \frac{1}{2} \log_2(1 + \frac{a_n}{\sum_{j=n+1}^{N} a_j + h_n})$.

end for

return $\text{SR}^* = \sum_{n=K}^{N} r_n$

else

$\text{SR}^* = 0$

end if

Output: SR^*, admitted number of users: $N^* = N - \text{num}$.
4. Simulation Results

This section presents the simulation results to evaluate the performance of the resource allocation algorithm proposed by the C-NOMA system based on QoS with hardware impairments and compares C-NOMA scheme with the C-OMA scheme. Considering large-scale fading in the simulation, we compare the effects of transmission power and relay location on sum rate of the systems. The base station is set to be $(−50, 0)$ m, the relay is first set to be $(0, 0)$, and then we investigated the impact of relay location on NOMA system. The number of users is $N = 8$, and the users are randomly distributed within $[30, 70] \times [−20, 20]$ m. The path loss is given by $128.1+37.6\log_{10} d$ dB [24], where d is the distance in kilometers. The noise power spatial diversity is -70dBm. The HI is set to be $k_{SR}^2 = k_{RU}^2$. $r_{\text{min}} = 0.1$bps/Hz($n = 1, ..., N$). The simulation results are the average value after 1000 independent simulations.

Figure 2 describes the average sum rate of the proposed algorithm under different hardware impairments factors, e.g. 0, 0.1, 0.2. From the simulation results, as the level of hardware impairments increases, the performance of C-NOMA is significantly better than C-OMA.

Figure 3 depicts the comparison of the performance of the number of admitted users in C-NOMA and C-OMA affected by different hardware impairments under the minimum rate constraint and different maximum transmission power. From the simulation results, the user tolerance performance of C-NOMA is significantly better than C-OMA, increasing respectively as $7\%, 16\%, 166\%$ when P_{max} equals to 45dBm. This is because C-NOMA can share the same spectrum resource, and C-OMA requires the spectrum to be equally divided and orthogonal, resulting in low spectrum utilization. This algorithm takes into account the admission control. When the power allocation is insufficient to satisfy the QoS requirements of all users in the current network, more users will be removed, and the system needs to allocate more power to the users with poor channel conditions to meet QoS requirements.

Figure 4 indicates the comparison of the average sum rate of C-NOMA and C-OMA versus Relay location from $(−30, 0)$ m to $(30, 0)$ m. It can be seen that the average sum rate of C-NOMA better than C-OMA, and the best relay locations are given in it. Moreover, with the increase of system hardware impairments, the influence of the relay location on sum rate is gradually weakened. The reason is that there is an upper-floor to the hardware impairments level of the practical cooperation system.

Figure 5 shows average number of admitted users with different BS location. When the power allocation is insufficient to meet the QoS requirements of all users in the current network, users with poor channel conditions will not be admitted to transit. As the level of hardware impairments
increases, C-NOMA performs better than C-OMA, and accommodate more users.

5. Conclusions

This study investigated the sum rate maximization problem of cooperative NOMA with hardware impairments. By combining the power allocation factor and minimum rate constraint, an optimization algorithm based on the interior point method is proposed to maximize the sum rate. We further investigate the impact of relay location. The simulation results show that the proposed algorithm improves the sum rate and the number of admitted users compared with C-OMA under different HIs factors and relay location. One of the future work is to consider the sum rate maximization problem of SWIPT assisted C-NOMA system as [25].

Acknowledgments

This work was partially supported by the National Science Foundation of P. R. China (No.61771064), the Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0264).

References

[1] Z. Ding, Y. Liu, J. Choi, Q. sun, M. Elkashlan, I. Chih-Lin, and H.V. Poor, “Application of Non-Orthogonal Multiple Access in LTE and 5G Networks,” IEEE Commun. Mag., vol.55, no.2, pp.185–191, Feb. 2017.
[2] S.M.R. Islam, N. Avazov, O.A. Dobre, and K. Kwak, “Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges,” IEEE Commun. Surv. Tutor., vol.19, no.2, pp.721–742, Secondquarter 2017.
[3] B. Chen, Y. Chen, Y. Chen, Y. Cao, N. Zhao, and Z. Ding, “A Novel Spectrum Sharing Scheme Assisted by Secondary NOMA Relay,” IEEE Wireless Commun. Lett., vol.7, no.5, pp.732–735, Oct. 2018.
[4] P. Xu, Z. Yang, Z. Ding, and Z. Wang, “Optimal Relay Selection Schemes for Cooperative NOMA,” IEEE Trans. Veh. Technol., vol.67, no.8, pp.7851–7855, Aug. 2018.
[5] J. Zhao, Z. Ding, P. Fan, Z. Yang, and G.K. Karagiannidis, “Dual Relay Selection for Cooperative NOMA With Distributed Space Time Coding,” IEEE Access, vol.6, pp.20440–20450, 2018.
[6] Y. Wu, L.P. Qian, H. Mao, X. Yang, H. Zhou, and X. Shen, “Optimal Power Allocation and Scheduling for Non-Orthogonal Multiple Access Relay-Assisted Networks,” IEEE Trans. Mobile Comput., vol.17, no.11, pp.2591–2606, Nov. 2018.
[7] C. Xue, Q. Zhang, Q. Li, and J. Qin, “Joint Power Allocation and Relay Beamforming in Nonorthogonal Multiple Access Amplify-and-Forward Relay Networks,” IEEE Trans. Veh. Technol., vol.66, no.8, pp.7558–7562, Aug. 2017.
[8] B. Chen, Y. Chen, Y. Cao, Y. Chen, N. Zhao, Z. Ding, and X. Wang, “Security Enhancement Using a Novel Two-Slot Cooperative NOMA Scheme,” IEEE Trans. Veh. Technol., vol.69, no.3, pp.3470–3475, March 2020.
[9] A. Arafa, W. Shin, M. Vaezi, and H.V. Poor, “Secure Relaying in Non-Orthogonal Multiple Access: Trusted and Untrusted Scenarios,” IEEE Trans. Inf. Forensics Security, vol.15, pp.210–222, 2020.
[10] S. Solanki, P.K. Upadhyay, D.B. da Costa, P.S. Bithas, A.G. Kanatas, and U.S. Dias, “Joint Impact of RF Hardware Impairments and Channel Estimation Errors in Spectrum Sharing Multiple-Relay Networks,” IEEE Trans. Commun., vol.66, no.9, pp.3809–3824, Sept. 2018.
[11] N.I. Miridakis and T.A. Tsiftsis, “On the Joint Impact of Hardware Impairments and Imperfect CSI on Successive Decoding,” IEEE Trans. Veh. Technol., vol.66, no.6, pp.4810–4822, June 2017.
[12] A.E. Canbilen, S.S. Iki, E. Basar, S.S. Gultekin, and I. Develi, “Impact of I/Q Imbalance on Amplify-and-Forward Relaying: Optimal Detector Design and Error Performance,” IEEE Trans. Commun., vol.67, no.5, pp.3154–3166, May 2019.
[13] F. Ding, H. Wang, S. Zhang, and M. Dai, “Impact of Residual Hardware Impairments on Non-Orthogonal Multiple Access Based Amplify-and-Forward Relaying Networks,” IEEE Access, vol.6, pp.15117–15131, 2018.
[14] X. Li, J. Li, Y. Liu, Z. Ding, and A. Nallanathan, “Residual Transceiver Hardware Impairments on Cooperative NOMA Networks,” IEEE Trans. Wireless Commun., vol.19, no.1, pp.680–695, Jan. 2020.
[15] B. Selim, S. Muhaidat, P.C. Sofotasios, B.S. Sharif, T. Stouraitis, G.K. Karagiannidis, and N. Ai-Dhahir, “Outage probability of single carrier NOMA systems under I/Q imbalance,” 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, pp.1–6, 2018.
[16] X. Li, J. Li, P.T. Mathiopoulos, D. Zhang, L. Li, and J. Jin, “Joint Impact of Hardware Impairments and Imperfect CSI on Cooperative SWIPT NOMA Multi-Relaying Systems,” 2018 IEEE/CIC Int. Conf. Communications in China (ICCC), pp.95–99, Beijing, China, 2018.
[17] X. Li, Q. Wang, Y. Liu, T.A. Tsiftsis, Z. Ding, and A. Nallanathan, “UAV-Aided Multi-Way NOMA Networks With Residual Hardware Impairments,” IEEE Wireless Commun. Lett., vol.9, no.9, pp.1538–1542, Sept. 2020.
[18] X. Li, M. Zhao, M. Zeng, S. Mumtaz, V.G. Menon, Z. Ding, and O.A. Dobrel, “Hardware Impaired Ambient Backscatter NOMA Systems: Reliability and Security,” IEEE Trans. Commun., vol.69, no.4, pp.2723–2736, April 2021.
[19] F. Fang, H. Zhang, J. Cheng, and V.C.M. Leung, “Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network,” IEEE Trans. Commun., vol.64, no.9, pp.3722–3732, Sept. 2016.
[20] Z. Wang, C. Wen, Z. Fan, and X. Wan, “Energy-Efficient Power Allocation with Rate Proportional Fairness Constraint in Non-Orthogonal Multiple Access Systems,” IEICE Trans. Fundamentals, vol.E101-A, no.4, pp.734–737, April 2018.
[21] Z. Wang, L. Jiang, and C. He, “Optimal Price-Based Power Control Algorithm in Cognitive Radio Networks,” IEEE Trans. Wireless Commun., vol.13, no.11, pp.5909–5920, Nov. 2014.
[22] S. Boyed and L. Vandenberghe, Convex Optimization, Cambridge University Press, pp.71–79, 2004.
[23] I.E. Nesterov and A. Nemirovskii, “Interior-point polynomial algorithms in convex programming,” Studies in Applied and Numerical Mathemat ics, vol.13, Philadelphia, PA, USA: SIAM, 1994.
[24] J. Wang, Q. Peng, Y. Huang, H. Wang, and X. You, “Convexity of Weighted Sum Rate Maximization in NOMA Systems,” IEEE Signal Process. Lett., vol.24, no.9, pp.1323–1327, Sept. 2017.
[25] G. Li, D. Mishra, Y. Hu, and S. Atapattu, “Optimal Designs for Relay-Assisted NOMA Networks With Hybrid SWIPT Scheme,” IEEE Trans. Commun., vol.68, no.6, pp.3588–3601, June 2020.
Xiaoyu Wan received his B.S. degree from Chongqing University of Posts and Telecommunications, Chongqing, China, in 1984 and the Ph.D. degree in the College of Electronic and Information Engineering, Sichuan University, China, in 2007. He is currently the professor and director of the Institute of Next Generation Network in Chongqing University of Posts and Telecommunications. His research interests include telecom enterprise operation and management, telecom enterprise financial management as well as the next generation network.

Ruifei Chang received his B.S. degrees in Electronic Information Engineering from Zhongyuan University Of Technology in 2018. Currently, he is pursuing the M.S. degree in Communication Engineering at Chongqing University of Posts and Telecommunications, Chongqing, China. His research interests are wireless communication and next generation network.

Zhengqiang Wang received his B.S. degree from Southeast University, Nanjing, China, in 2005, and the M.S. degree from Xuzhou Normal University, Xuzhou, China, in 2008, both in applied mathematics, and Ph.D. degree in the Department of Electronic Engineering, Shanghai Jiao Tong University, China, in 2015. Since December 2017, Dr. Wang served as the associate professor at Chongqing University of Posts and Telecommunications. His research interests include 5G, cognitive radio networks, game theory and network optimization.

Zifu Fan received his M.S. degree from Chongqing University of Posts and Telecommunications, Chongqing, China, in 2004. He is currently the professor of Chongqing University of Posts and Telecommunications. His research interests include the next generation network technology for communication and operations management.