A lattice QCD calculation of the transverse decay constant of the $b_1(1235)$ meson.

K. Jansena, C. McNeileb, C. Michaelc, C. Urbachd

a NIC, DESY, Zeuthen, Platanenallee 6, D-15738 Zeuthen, Germany
b Department of Theoretical Physics, University of Wuppertal, Wuppertal, 42199, Germany.
c Theoretical Physics Division, Dept. of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK
d Humboldt-Universität zu Berlin, Institut für Physik
Mathematisch-Naturwissenschaftliche Fakultät I, Theorie der Elementarteilchen / Phänomenologie, Newtonstr. 15, 12489 Berlin Germany

Abstract

We review various B meson decays that require knowledge of the transverse decay constant of the $b_1(1235)$ meson. We report on an exploratory lattice QCD calculation of the transverse decay constant of the b_1 meson. The lattice QCD calculations used unquenched gauge configurations, at two lattice spacings, generated with two flavours of sea quarks. The twisted mass formalism is used.

Key words:

1. Introduction and motivation

The transverse decay constant of the $b_1(1235)$ meson ($f_{b_1}^T$) is theoretical input to a number of decays of the B meson. For example $f_{b_1}^T$ is an important QCD input to the following decays: $\overline{B}^0 \rightarrow b_1^- \rho^+$, $\overline{B}^0 \rightarrow b_1^- K^{*+}$, using the light cone formalism [1, 2]. The $f_{b_1}^T$ constant is also input to the decay $B \rightarrow b_1 \gamma$ [3, 4] that use light cone sum rules. Diehl and Hiller [5] discuss studying decays of the B meson with final states that include the b_1 meson.

There are alternative theoretical formalisms [6, 7, 8, 9] to the light cone sum rules such as factorization, that describe the non-leptonic decays of the B meson to final states that include the b_1 meson. So it is important to have a cross-check of the input parameters used in the light cone formalism.
BaBar has experimentally measured the B decays: $b_1 \pi$ and $b_1 K$ [10, 11]. The charmless decays of the B meson, that include those with a b_1 meson in the final state, have been reviewed by Cheng and Smith [12].

The transverse decay constant of the b_1 meson is not accessible to experiment, but can be calculated in models [13] and sum rules. Calculations of the b_1 meson have also been used to tune sum rules [14, 15, 16]. In particular, the same sum rules are used to simultaneously extract the transverse decay constants of the b_1 and ρ mesons [14, 15].

In principle lattice QCD should be able to produce an accurate result for $f_{b_1}^T$, particularly as modern lattice QCD calculations usually have multiple lattice spacings and volumes, with pion masses below 300 MeV [17]. To the best of our knowledge, there has never been a lattice QCD calculation of $f_{b_1}^T$ before this one.

The b_1 meson is a good test case for lattice techniques that deal with resonances, because it is thought to be a basic quark-antiquark meson that decays via S-wave. The experimental width of the $b_1(1235)$ is 142(9) MeV, and the bulk of the decays are to $\omega \pi$. Hence further motivation for this study is to compute as much information about the b_1 meson from our lattice QCD calculations as possible.

Light cone sum rules and factorization methods, also use the decay constants of the a_0, $\pi(1300)$, a_1 mesons to study the decays of the B meson, but there have been previous lattice QCD calculations of those quantities [18, 19, 20].

2. The lattice QCD calculation

The transverse decay constant ($f_{b_1}^T(\mu)$) of the b_1 meson is defined [21] by

$$
\langle 0 \mid \bar{\psi} \sigma_{\mu\nu} \psi \mid b_1(P, \lambda) \rangle = if_{b_1}^T(\mu)\epsilon_{\mu\nu\alpha\beta}\epsilon_{(\lambda)}^\alpha P^\beta \tag{1}
$$

where $\sigma_{\mu\nu} = i/2[\gamma_\mu, \gamma_\nu]$, and $\epsilon_{(\lambda)}^\alpha$ is the polarization vector of the meson. It is convenient to introduce the tensor current $T_{\nu\mu} = \bar{\psi} \sigma_{\mu\nu} \psi$. We do not include any momentum in this lattice calculation. For completeness we note that the b_1 meson has $J^{PC} = 1^{+-}$.

In the isospin limit the leptonic decay constant of the b_1 meson is zero, because the T_{ij} operator is orthogonal to the vector and axial currents. Although for some quantities, such as the matrix element for $\rho - \omega$ mixing [22] or the decay constant of the flavour non-singlet 0^{++} meson [19] an estimate of
isospin violating quantities can be made from a lattice calculation with two degenerate flavours of sea quarks, we don’t see how to estimate the leptonic decay constant of the b_1 meson without using non-degenerate light quarks. A formalism to do this has recently been developed for twisted mass QCD \cite{23}.

Our lattice calculation uses the twisted mass QCD formalism \cite{24}. Once a single parameter has been tuned, twisted mass QCD has non-perturbative $O(a)$ improvement \cite{25,26}. The twisted mass formalism has been reviewed by Shindler \cite{27}.

We have recently reported on the some basic measurements of the ρ, b_1 and a_0 mesons \cite{29}. In this paper we extend that study to the transverse decay constant of the b_1 meson. All the necessary details are in the previous paper \cite{29} and here we provide a brief summary. There is a additional information about the lattice techniques, such as the smearing and variational analysis in the ”methods paper for the ETM collaboration \cite{30}.” We used the twisted mass Wilson action and the tree level improved Symanzik action. The ensembles used in this analysis are in table 2. Details of the analysis of light pseudo-scalar mesons are in \cite{30,31}.

The correlators used to extract the $f_{b_1}^T$ decay constant are in equation 2. We use a smearing matrix of order 2, using basis functions of local and fuzzed interpolating operators, that includes the correlators in equation 2. We fit the smearing matrix to a factorizing fit form \cite{30} with two states. The charged interpolating operator for the b_1 meson in the twisted basis was used \cite{30}.

Ensemble	β	$a\mu_q$	Volume	$f_{b_1}^T(2\text{GeV})$
B_1	3.9	0.004	$24^3 \times 48$	249(55)
B_2	3.9	0.0064	$24^3 \times 48$	239(29)
B_3	3.9	0.0085	$24^3 \times 48$	254(26)
B_4	3.9	0.0100	$24^3 \times 48$	220(32)
B_5	3.9	0.0150	$24^3 \times 48$	256(33)
B_6	3.9	0.004	$32^3 \times 64$	233(29)
C_1	4.05	0.003	$32^3 \times 64$	202(83)
C_2	4.05	0.006	$32^3 \times 64$	193(55)
C_3	4.05	0.008	$32^3 \times 64$	216(44)
C_4	4.05	0.012	$32^3 \times 64$	289(47)

Table 1: Summary of results for $f_{b_1}^T$ used in this calculation. $a\mu_q$ is the bare mass of the light quark in lattice units. The ensemble names are from \cite{28}.

We used ensembles at two different β values. At $\beta = 3.9$ we included two volumes. We used the pion decay constant of the π meson to determine the lattice spacing. At $\beta = 4.05$ ($\beta = 3.9$) the lattice spacing is: $a = 0.0667(5)$ fm ($a = 0.0855(5)$ fm). The lattice spacing from f_π was consistent with the value from the nucleon mass [32]. In figures 1 and 2 we show effective mass plots for the b_1 correlators.

The decay constant $f_{b_1}^T$ depends on the value of the renormalisation scale. We used a renormalisation factor obtained from the Rome-Southampton non-

\[
\sum_x \sum_{k=1,j<k}^3 \epsilon_{ijk} \langle T_{ij}(x,t_x) T_{ij}(0,0) \rangle \rightarrow \frac{3m_{b_1}(f_{b_1}^T)^2 e^{-m_{b_1}t_x}}{2} \quad (2)
\]
Figure 2: Effective mass plot for the b_1 channel at $\beta = 4.05$, $\mu_q = 0.006$, $L=32$. The labels are the same as for figure 1.
Figure 3: The decay constant of the b_1 meson as a function of the square of the pion mass.

perturbative method [33, 34, 35]. As traditional in lattice QCD calculations we quote the result at the scale of 2 GeV. The renormalisation group equations can be used to evolve the decay constant to another scale.

The results for the decay constant from this calculation are in table 2. In figure 3, the transverse decay constant of the b_1 meson is plotted in physical units as a function of the square of the pion mass. Although the error bars are large, the results for $f^T_{b_1}$ are consistent between the two lattice spacings and volumes.

A common technique to check whether a state is a scattering state or a resonance is look at the volume dependence of the amplitude [36]. The use of the volume dependence of the amplitude and the connection to Lüscher’s method has recently been discussed by Meng et al. [37]. The ”rule of thumb”
is that if our b_1 correlator couples to a scattering state of $\omega\pi$, the volume dependence of the $f_{b_1}^T$ decay constant extracted from equation 2 is

$$f_{b_1}^T \sim \frac{1}{\sqrt{V}}$$

(3)

where V is the spatial volume. For a resonance $f_{b_1}^T$ should be independent of the volume (apart from small corrections if the box size is too small to fit the resonance state).

The numerical results at $\mu_q = 0.004$ at $\beta = 3.9$, show that $f_{b_1}^T(L = 32)/f_{b_1}^T(L = 24) = 0.94(24)$, compared to the prediction for scattering states in equation 3 of 0.65.

In our previous paper [29] we showed that the decay of the b_1 meson to $\omega\pi$ was open in our calculation. However the mass of the lightest state in the 1^{-+} channel didn’t track the sum of the masses of the ω and π mesons particularly well. In Lüscher’s formalism for the study of resonances on the lattice the opening of strong decays is described by an avoided level crossing [38]. The detailed calculations of Bernard et al. [39] for the Δ baryon suggested that the avoided level crossing is ”washed out” by the dynamics, so comparing the mass from the resonant interpolating operator to the sum of the masses of the decay products is probably too simplistic. A similar situation happened with string breaking, where the linearly rising potential was seen to increase beyond the energy that allowed the string to break to two static B mesons [40].

The above considerations suggest that although we don’t have full control over the resonant nature of the b_1 meson, our interpolating operators are coupling to the b_1 meson in the range of quark masses in our calculations. We extrapolate $f_{b_1}^T$ linearly in the square of the pion mass to get $f_{b_1}^T(2 \text{ GeV}) = 236(23)$ MeV at the physical pion mass at $\beta = 3.9$.

In table 2 we collect together other estimates for $f_{b_1}^T$. We have evolved our lattice result to the scale of 1 GeV to compare with the results from sum rules. The formalism to evolve the decay constant with scale is described [29], that uses input from perturbative calculations by Gracey and others [45, 46, 47, 48]. The perturbative factor is 1.095 to evolve $f_{b_1}^T$ from 2 GeV to 1 GeV.

In the non-relativistic quark model the b_1 meson is a P-wave meson with a node in the wave-function at the origin. This would suggest the transverse decay constant is small. The partial inclusion of relativistic effects in the quark model [49] increases the decay constant. The results in table 2 show
that $f_{b_1}^T$ is of the same order of magnitude as the pion decay constant (132 MeV), so this is evidence that local interpolating operators will couple to the b_1 meson. Pragmatically using derivative sources \cite{50,51} with smearing techniques, such as Jacobi, may be useful to get a good signal.

3. Conclusion

We have presented the first calculation of the transverse decay constant of the b_1 meson from lattice QCD. We obtain $f_{b_1}^T(2 \text{ GeV}) = 236(23)$ MeV at the physical pion mass. The result is higher than the sum rule results by 3 σ. Future lattice QCD calculations need to reduce the statistical errors on the correlators, and to directly take into account the resonant nature of the b_1 meson.

4. Acknowledgments

We thank all members of ETMC for a very fruitful collaboration. We thank Prof. Braun for providing the error for the result in \cite{41}, and we thank Mihail Chizhov for useful comments on the paper.

References

[1] K.-C. Yang, Phys. Rev. D72, 034009 (2005), hep-ph/0506040.
[2] H.-Y. Cheng and K.-C. Yang, Phys. Rev. D76, 114020 (2007), 0709.0137,
[3] M. Jamil Aslam and Riazuddin, Phys. Rev. D75, 034004 (2007), hep-ph/0607114.

Group	Method	$f_{b_1}^T (1 \text{ GeV})$ MeV
Chizhov \cite{13}	extended NJL quark model	175(9)
Ball and Braun \cite{41}	sum rule	180(20)
Bakulev and Mikhailov \cite{42,43}	sum rule	184(5)
Bakulev and Mikhailov \cite{42,43}	sum rule	181(5)
Yang \cite{44,21}	sum rule	180(8)
This calculation	lattice QCD	258(25)

Table 2: Summary of calculations of $f_{b_1}^T$ at 1 GeV.
[4] W. Wang, R.-H. Li, and C.-D. Lu, (2007), 0711.0432,

[5] M. Diehl and G. Hiller, JHEP 06, 067 (2001), hep-ph/0105194,

[6] V. Laporta, G. Nardulli, and T. N. Pham, Phys. Rev. D74, 054035 (2006), hep-ph/0602243

[7] G. Calderon, J. H. Munoz, and C. E. Vera, Phys. Rev. D76, 094019 (2007), 0705.1181,

[8] W. Wang, R.-H. Li, and C.-D. Lu, Phys. Rev. D78, 074009 (2008), 0806.2510,

[9] J. H. Munoz and N. Quintero, (2009), 0905.1526,

[10] The BABAR, B. Aubert et al., Phys. Rev. Lett. 99, 241803 (2007), 0707.4561,

[11] BABAR, B. Aubert et al., Phys. Rev. D78, 011104 (2008), 0805.1217,

[12] H.-Y. Cheng and J. G. Smith, (2009), 0901.4396,

[13] M. V. Chizhov, JETP Lett. 80, 73 (2004), hep-ph/0307100,

[14] A. P. Bakulev and S. V. Mikhailov, Eur. Phys. J. C17, 129 (2000), hep-ph/9908287,

[15] W. Broniowski, M. V. Polyakov, H.-C. Kim, and K. Goeke, Phys. Lett. B438, 242 (1998), hep-ph/9805351.

[16] J. Govaerts, L. J. Reinders, F. de Viron, and J. Weyers, Nucl. Phys. B283, 706 (1987),

[17] K. Jansen, (2008), 0810.5634,

[18] M. Wingate, T. A. DeGrand, S. Collins, and U. M. Heller, Phys. Rev. Lett. 74, 4596 (1995), hep-ph/9502274

[19] UKQCD, C. McNeile and C. Michael, Phys. Rev. D74, 014508 (2006), hep-lat/0604009.

[20] UKQCD, C. McNeile and C. Michael, Phys. Lett. B642, 244 (2006), hep-lat/0607032,
[21] K.-C. Yang, Nucl. Phys. B\textbf{776}, 187 (2007), 0705.0692,

[22] European Twisted Mass, C. McNeile, C. Michael, and C. Urbach, Phys. Lett. B\textbf{674}, 286 (2009), 0902.3897,

[23] A. Walker-Loud, (2009), 0904.2404,

[24] Alpha, R. Frezzotti, P. A. Grassi, S. Sint, and P. Weisz, JHEP \textbf{08}, 058 (2001), \texttt{hep-lat/0101001},

[25] R. Frezzotti and G. C. Rossi, JHEP \textbf{08}, 007 (2004), \texttt{hep-lat/0306014},

[26] P. Dimopoulos, R. Frezzotti, C. Michael, G. C. Rossi, and C. Urbach, (2009), 0908.0451,

[27] A. Shindler, Phys. Rept. \textbf{461}, 37 (2008), 0707.4093,

[28] European Twisted Mass, C. Urbach, PoS \textbf{LAT2007}, 022 (2007), 0710.1517,

[29] K. Jansen, C. McNeile, C. Michael, C. Urbach, and f. t. E. Collaboration, Phys. Rev. D\textbf{80}, 054510 (2009), 0906.4720,

[30] European Twisted Mass, P. Boucaud \textit{et al.}, (2008), 0803.0224,

[31] European Twisted Mass, B. Blossier \textit{et al.}, JHEP \textbf{04}, 020 (2008), 0709.4574,

[32] European Twisted Mass, C. Alexandrou \textit{et al.}, Phys. Rev. D\textbf{78}, 014509 (2008), 0803.3190,

[33] G. Martinelli, C. Pittori, C. T. Sachrajda, M. Testa, and A. Vladikas, Nucl. Phys. B\textbf{445}, 81 (1995), \texttt{hep-lat/9411010},

[34] P. Dimopoulos \textit{et al.}, PoS LAT\textbf{2007}, 241 (2007), 0710.0975,

[35] P. Dimopoulos \textit{et al.}, Presentation at trento meeting on perspectives and challenges for full qcd lattice qcd calculations, and in preparation, 2008.

[36] N. Mathur \textit{et al.}, Phys. Rev. D\textbf{70}, 074508 (2004), \texttt{hep-ph/0406196},

[37] G. Meng and C. Liu, Phys. Rev. D\textbf{78}, 074506 (2008),
[38] M. Luscher, Nucl. Phys. B364, 237 (1991),

[39] V. Bernard, M. Lage, U.-G. Meissner, and A. Rusetsky, JHEP 08, 024 (2008), 0806.4495,

[40] SESAM, G. S. Bali, H. Neff, T. Duessel, T. Lippert, and K. Schilling, Phys. Rev. D71, 114513 (2005), hep-lat/0505012.

[41] P. Ball and V. M. Braun, Phys. Rev. D54, 2182 (1996), hep-ph/9602323.

[42] A. P. Bakulev and S. V. Mikhailov, Eur. Phys. J. C19, 361 (2001), hep-ph/0006206.

[43] A. P. Bakulev and S. V. Mikhailov, Phys. Lett. B436, 351 (1998), hep-ph/9803298.

[44] K.-C. Yang, JHEP 10, 108 (2005), hep-ph/0509337.

[45] J. A. Gracey, Phys. Lett. B488, 175 (2000), hep-ph/0007171.

[46] K. G. Chetyrkin, J. H. Kuhn, and M. Steinhauser, Comput. Phys. Commun. 133, 43 (2000), hep-ph/0004189.

[47] T. van Ritbergen, J. A. M. Vermaseren, and S. A. Larin, Phys. Lett. B400, 379 (1997), hep-ph/9701390.

[48] M. Czakon, Nucl. Phys. B710, 485 (2005), hep-ph/0411261.

[49] C. Hayne and N. Isgur, Phys. Rev. D25, 1944 (1982),

[50] C. Gattringer, L. Y. Glozman, C. B. Lang, D. Mohler, and S. Prelovsek, Phys. Rev. D78, 034501 (2008), 0802.2020.

[51] G. Engel et al., (2009), 0910.2802,