Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original article

Neurologic manifestations associated with COVID-19: a multicentre registry

Elodie Meppiel 1,*, Nathan Peiffer-Smadja 2,3, Alexandra Maury 1, Imen Bekri 4, Cécile Delorme 5, Virginie Desestret 6, Lucas Gorza 7, Geoffroy Hautecœque-Rayss 8, Sophie Landre 9, Annie Lannuzel 10, Solène Moulin 11, Peggy Perrin 12, Paul Petitgas 13, François Sella 8, Adrien Wang 7, Pierre Tattevin 13, Thomas de Broucker 1, on behalf of the contributors to the NeuroCOVID registry*

1) Department of Neurology, Centre Hospitalier de Saint-Denis, Hôpital Delafontaine, Saint-Denis, France
2) Department of Infectious Diseases, Bichat-Claude Bernard Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
3) Université de Paris, IAME, INSERM, Paris, France
4) Department of Neurology and Stroke Center, Centre Hospitalier de Versailles, Le Chesnay, France
5) Department of Neurology, Pitié-Salpêtrière Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
6) Department of Neuro-cognition and Neuro-ophtalmology, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
7) Department of Neurology, Hôpital Foch, Suresnes, France
8) Department of Neurology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
9) Department of Neurology, Hospices Civils de Colmar, Colmar, France
10) Department of Infectious Diseases, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
11) Department of Neurology, Centre Hospitalier Universitaire de la Guadeloupe, Faculté de médecine de l’université des Antilles, Centre d’investigation clinique Antilles Guyane, InsERM CIC 1424, Pointe-à-Pitre, France
12) Department of Nephrology, HôpitauxUniversitaires de Strasbourg, Strasbourg, France
13) Department of Infectious Diseases and Intensive Care Medicine, Centre Hospitalier Universitaire de Rennes, Rennes, France

Keywords:
COVID-19
Nervous system
Neurologic manifestations
SARS-CoV-2

A B S T R A C T

Objectives: To provide an overview of the spectrum, characteristics and outcomes of neurologic manifestations associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

Methods: We conducted a single-centre retrospective study during the French coronavirus disease 2019 (COVID-19) epidemic in March–April 2020. All COVID-19 patients with de novo neurologic manifestations were eligible.

Results: We included 222 COVID-19 patients with neurologic manifestations from 46 centres in France. Median (interquartile range, IQR) age was 65 (53–72) years and 136 patients (61.3%) were male. COVID-19 was severe or critical in 102 patients (45.2%). The most common neurologic diseases were COVID-19-associated encephalopathy (67/222, 30.2%), acute ischaemic cerebrovascular syndrome (57/222, 25.7%), encephalitis (21/222, 9.5%) and Guillain-Barré syndrome (15/222, 6.8%). Neurologic manifestations appeared after the first COVID-19 symptoms with a median (IQR) delay of 6 (3–8) days in COVID-19-associated encephalopathy, 7 (5–10) days in encephalitis, 12 (7–18) days in acute ischaemic cerebrovascular syndrome and 18 (15–28) days in Guillain-Barré syndrome. Brain imaging was performed in 192 patients (86.5%), including 157 magnetic resonance imaging (70.7%). Among patients with acute ischaemic cerebrovascular syndrome, 13 (22.8%) of 57 had multiterritory ischaemic strokes, with large vessel thrombosis in 16 (28.1%) of 57. Brain magnetic resonance imaging of encephalitis patients showed heterogeneous acute nonvascular lesions in 14 (66.7%) of 21. Cerebrospinal fluid of 97 patients (43.7%) was analysed, with pleocytosis found in 18 patients (18.6%) and a positive SARS-CoV-2 PCR result in two patients with encephalitis. The median (IQR) follow-up was 24 (17–34) days with a high short-term mortality rate (28/222, 12.6%).

Presented in part at the 6th (Virtual) Congress of the European Academy of Neurology (EAN): 23–26 May 2020.

* Corresponding author: Elodie Meppiel, Neurology Department, Centre Hospitalier de Saint-Denis, 2 rue du Dr Delafontaine, 93200, Saint-Denis, France.
E-mail address: elodie.meppiel@ch-stdenis.fr (E. Meppiel).

* Contributors to the French NeuroCOVID registry are listed in Supplementary Appendix S2.

https://doi.org/10.1016/j.cmi.2020.11.005
1198-743X/© 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Conclusions: Clinical spectrum and outcomes of neurologic manifestations associated with SARS-CoV-2 infection were broad and heterogeneous, suggesting different underlying pathogenic processes.

Eloodie Meppiel, Clin Microbiol Infect 2021;27:458
© 2020 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Introduction

Coronavirus disease 2019 (COVID-19), the disease linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an emerging infectious disease, with the first cases reported in China in December 2019 [1,2]. The virus has continued to spread since then, and on 11 March 2020, the World Health Organization characterized COVID-19 as a pandemic. Common manifestations of the disease include respiratory tract and associated systemic manifestations, but neurologic manifestations including headaches, dizziness, anosmia, encephalopathy and stroke have been reported in cohort studies [3,4]. However, the potential pathogenesis of SARS-CoV-2 in the central nervous system remains unclear [5], and the range of neurologic disorders associated with COVID-19 is not fully defined.

The present study aimed to provide a comprehensive overview of neurologic manifestations associated with SARS-CoV-2 infection and to describe the clinical course and outcomes of COVID-19 patients with neurologic manifestations.

Methods

Study design

We conducted a retrospective single-centre observational study to collect neurologic manifestations associated with COVID-19 in 46 hospitals in France. A case report form (CRF) was sent from 16 March to 27 April 2020 to French neurologists, infectious diseases specialists and intensivists. The study complied with French Commission Nationale de l’Informatique et des Libertés (CNIL; no.

Fig. 1. Study population of coronavirus disease 2019 (COVID-19) patients with neurologic manifestations.
2217844) and ethics committee (RCB 2020-A01300-39) requirements. The local institutional review board approved the study (no. 2020-0602 COVID).

Patients and data collection

We included adult COVID-19 patients with any neurologic manifestations occurring 5 days before to 35 days after the first symptoms of COVID-19. A confirmed case of COVID-19 was defined as a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse transcriptase PCR (RT-PCR) assay result on a nasopharyngeal sample or positive SARS-CoV-2 serology. As RT-PCR analysis and serology were unavailable in some centres, some cases were considered COVID-19 if the clinical history and the chest computed tomographic (CT) scan were typical of the disease according to the referring clinicians. We excluded patients with no diagnosis of COVID-19, patients with neurologic signs that were not time related to COVID-19, patients with incomplete data on the CRF and patients with exacerbations of chronic neurologic diseases. We defined COVID-19 illness severity as mild, moderate, severe or critical according to the criteria of the US National Institutes of Health [6]. The follow-up for each patient was recorded up to the completion of the CRF by clinicians.

Classification of neurologic manifestations

Neurologic manifestations were identified as either related to the central nervous system (CNS) or the peripheral nervous system (PNS), then classified into categories as follows.

Stroke

Stroke was considered in patients with sudden neurologic deficit related to an acute vascular lesion on cerebral magnetic resonance imaging (MRI) or CT scan, in patients with transient focal deficit and normal MRI (transient ischaemic attack) or in patients with cerebral venous thrombosis.

Encephalitis

Encephalitis was defined as an altered mental status lasting \(\geq 24 \) hours along with one of the following criteria: white blood cell count (WBC) in cerebrospinal fluid (CSF) \(< 5/\text{mm}^3\); or presence of compatible acute lesion on brain MRI. All patients with encephalitis had CSF examination [7,8].

Encephalopathy

Encephalopathy was defined by an altered mental status lasting \(\geq 24 \) hours that could be associated with seizure and/or focal neurologic signs in the absence of criteria for encephalitis [8]. We identified COVID-19—associated encephalopathy (CAE) if encephalopathy could not be accounted for by another cause, such as toxic or metabolic factors, according to the reporting clinician.

Guillain-Barré syndrome

Guillain-Barré syndrome (GBS) was defined according to standard diagnostic criteria [9].

Acute meningitis

Acute meningitis was defined as meningeal syndrome (head stiffness, headache, fever) without encephalitic course and CSF WBC counts of \(< 5/\text{mm}^3\).

Other

Neurologic manifestations that did not meet any of these criteria were categorized as other.

Results

The study population comprised 259 patients, which included 222 hospitalized COVID-19 patients with neurologic manifestations from 46 centres in all regions of continental France and overseas (Fig. 1, Supplementary Appendix S2). Participating physicians were neurologists (146/222, 65.8%), infectious diseases or internal medicine specialists (43/222, 19.4%), intensivists (14/222, 6.3%) or other specialists (19/222, 8.6%). The prevalence of neurologic manifestations among COVID-19 patients was estimated in one centre to be 8.8%; 43 patients with neurologic manifestations were reported from a total of 490 patients hospitalized with COVID-19.

Table 1

General characteristics of 222 COVID-19 patients with neurologic manifestations

Characteristic	Value
Age (years), median (IQR)	65 (53–72)
Male	136 (61.3)
Neurologic comorbidities	47 (21.2)
Prior stroke	20 (9.0)
Neurodegenerative disease	17 (7.7)
Epilepsy	5 (2.3)
Other	5 (2.3)
Diagnosis of COVID-19	
Positive SARS-CoV-2 nasopharyngeal PCR	192 (86.5)
Positive SARS-CoV-2 serology	4 (1.8)
Typical clinical course and chest CT	26 (11.7)
Severity of COVID-19	
Mild	55 (24.8)
Moderate	65 (29.3)
Severe	46 (20.7)
Critical	56 (25.2)
Occurrence of neurologic manifestations	
Neurologic manifestations occurring as	45 (20.3)
first symptoms	
Neurologic manifestation occurring after	141 (63.5)
COVID-19 symptoms	
Time (days) between first symptoms and	7 (1–12)
neurologic manifestation, median (IQR)	
Neurologic manifestation after withholding	36 (16.2)
sedation in ICU	
Neurologic symptoms	
Altered mental status	117 (52.4)
Focal central neurologic symptoms	97 (43.7)
Peripheral limb weakness	26 (11.7)
Headache	24 (10.8)
Seizure	21 (9.5)
Cranial neuropathy	10 (4.5)
Movement disorder	8 (3.6)
Anosmia	7 (3.2)
Dizziness	5 (2.3)
Ageusia	4 (1.8)
Neurologic assessment	205 (92.3)
Brain imaging	192 (86.5)
Brain MRI	157 (70.7)
Brain CT scan	35 (15.8)
Presence of acute lesion, n/N (%)	85/192 (44.3)
Spine MRI	6 (2.7)
Cerebrospinal fluid examination	97 (43.7)
WBC count >5/mm\(^3\), n/N (%)	18/97 (18.6)
SARS-CoV-2 PCR in cerebrospinal fluid	75 (33.8)
Positive, n/N (%)	27/5 (2.7)
Electroencephalogram	74 (33.3)
Electroneuromography	19 (8.6)
Follow-up (days), median (IQR)	24 (17–34)
Death	28 (12.6)
Acute respiratory distress syndrome	17 (7.7)
Stroke	5 (2.3)
Other	6 (2.7)

Data are presented as n (%) unless otherwise indicated. COVID-19, coronavirus disease 2019; CT, computed tomography; ICU, intensive care unit; IQR, interquartile range; MRI, magnetic resonance imaging; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WBC, white blood cell.

* According to National Institute of Health guidelines.
General characteristics of COVID-19 patients with neurologic manifestations

Median (interquartile range, IQR) age was 65 (53–72) years and 136 patients (61.3%) were male (Table 1). Forty-seven patients (21.2%) had a neurologic history, mostly prior stroke (20, 9.0%) and neurodegenerative disease (17, 7.7%). The diagnosis of COVID-19 was confirmed by a positive SARS-CoV-2 PCR result in 192 patients (86.5%) and by serology in four patients (1.8%). Twenty-six patients (11.7%) had a diagnosis that was based on a typical clinical course and imaging. COVID-19 severity was severe or critical in 102 patients (45.2%). The most common neurologic symptom was altered mental status (117, 52.4%). Neurologic assessment mostly included brain MRI (157, 70.7%) and CSF examination (97, 43.7%). SARS-CoV-2 PCR was performed on CSF samples in 75 patients (33.8%) and was negative in 73 (97.3%) of them. The median (IQR) follow-up was 24 (17–34) days. Twenty-eight patients (12.6%) died, mostly following acute respiratory distress syndrome (n = 17, 7.7%) or stroke (2.3%).

Clinical spectrum of neurologic manifestations associated with SARS-CoV-2 infection

CNS manifestations

One hundred eighty-nine patients (85.1%) had CNS manifestations, mostly encephalopathy (85/222, 38.3%), stroke (63/222, 28.4%) and encephalitis (21/222, 9.5%) (Fig. 1). The distribution of stroke was as follows: acute ischaemic cerebrovascular syndromes (AICS, 57/63) including 52 acute ischaemic strokes and stroke was as follows: acute ischaemic cerebrovascular syndromes, mostly following acute respiratory distress syndrome (21.2%) had a neurologic history, mostly prior stroke (20, 9.0%) and encephalitis (21/222, 9.5%) (Fig. 1). The distribution of neurologic manifestations was CAE (67/222, 30%), GBS (5/222, 2.3%), stroke (63/222, 28.4%) and encephalitis (21/222, 9.5%) (Table 2). The remaining patients exhibited neurologic manifestations several days after the first COVID-19 symptoms, with a median (IQR) delay of 6 (3–8) days and 7 (5–10) days respectively in CAE and encephalitis patients, and 12 days (IQR 7–18) in AICS and 18 days (IQR 15–28) in GBS.

Acute ischaemic cerebral syndrome

Median (IQR) age was 65 (55–78) years. Eight patients (14.0%) had a history of stroke and 43 (75.4%) of 57 had known cardiovascular risk factors: 34 had hypertension, 15 had diabetes, 13 had dyslipidaemia, seven were obese and five were active smokers. Large vessel infarct (Fig. 2(L–O)) was observed in 46 (88.4%) of 57 patients, with persisting thrombosis noted in 16 patients (16.1%). Thirteen patients (22.8%) experienced multiterritory ischaemic stroke. AICS was cryptogenic (ischaemic stroke for which no probable cause was found despite thorough diagnostic evaluation) in 38 (66.7%) of 57 patients. The mortality rate was 15.8%.

Encephalitis

Median (IQR) age was 67 (51–70) years. More than half of the patients (12/21, 57.1%) exhibited focal neurologic deficit in addition to altered mental status, with predominant cerebellar ataxia and pyramidal syndrome. Six patients (28.6%) also had movement disorders, mostly tremor and myoclonus. Brain MRI was abnormal in 14 (66.7%) of 21 patients with imaging compatible with encephalitis (Table 3, Fig. 2(A–G)). CSF examination demonstrated lymphocytic pleocytosis, with WBC count from 6 to 77/mm3 in 14 (66.7%) of 21 patients. SARS-CoV-2 PCR results of CSF testing were positive in two patients, both of whom had critical COVID-19 illness. Electroencephalogram was abnormal in 14 (93.3%) of the 15 patients so assessed (Table 3). Ten patients (47.6%) fully recovered, three of whom received corticosteroids. The mortality rate was 4.8%.

COVID-19–associated encephalopathy

Median (IQR) age was 68 (61–75) years and 20 (29.9%) of 67 had neurodegenerative disease. The majority of CAE patients experienced severe to critical COVID-19 (46/67, 68.7%). Neuroimaging was unremarkable except for six patients (9%) with acute small cerebral infarcts unrelated to clinical symptoms (Fig. 2(H–K)) and one with a typical reversible lesion of the splenium of corpus callosum. Thirty-four patients (50.7%) recovered spontaneously. Two patients received corticosteroids with partial improvement. The mortality rate was 14.9%.

Guillain-Barré syndrome

Median (IQR) age was 59 (53–65) years and ten (66.7%) of 15 had mild or moderate COVID-19. Fourteen patients had CSF examinations, that demonstrated isolated elevated protein levels in eight (57.1%) of them, ranging from 0.49 to 2.36 g/L. Negative SARS-CoV-2 PCR results were obtained in nine patients tested. Electroneuromyography was performed in 14 patients and was suggestive of demyelination in 13 (92.9%) of them.

Most patients with GBS, 14 (93.3%) of 15, were treated with intravenous immunoglobulin. Two required mechanical ventilation. There was no mortality during follow-up.

Discussion

Our results highlight the broad spectrum of neurologic manifestations associated with SARS-CoV-2 infection: the majority of neurologic manifestations were CAE (67/222, 30%), AICS (57/222, 26%), encephalitis (21/222, 10%) or GBS (15/222, 7%). Neurologic manifestations appeared after the first COVID-19 symptoms after a median delay of 6 days in CAE, 7 days in encephalitis, 12 days in AICS and 18 days in GBS. With a
Fig. 2. Brain MRI from patients with encephalitis or atypical strokes. (A–D) Patient 1, a 56-year-old woman with encephalitis, experienced headache, confusion, facial palsy, ophthalmoparesis, refractory status epilepticus and pleocytosis. SARS-CoV-2 PCR results were positive in respiratory sample but negative in CSF. Bilateral basal ganglia and thalami exhibited FLAIR hyperintensity (A), with small subcortical white matter FLAIR hyperintensities (B) visible in diffusion (C) with normal ADC map (D). (E) Patient 2, a 58-year-old man with encephalitis, was found to be SARS-CoV-2 PCR positive in nasopharyngeal swab sample and negative in CSF sample. Pleocytosis and left mesiotemporal and temporopolar hyperintensity were evident on axial FLAIR (E). (F, G) Patient 3, a 49-year-old man with encephalitis, experienced psychomotor agitation and inattention after withdrawal of
median delay of follow-up of 24 days, our registry found a high rate of short-term mortality in COVID-19 patients with CAE and AICS of around 15% (19/124).

Altered mental status was reported in 52% of patients in our registry. Several cohorts of hospitalized patients with COVID-19 have shown a significant proportion of impaired consciousness, ranging from 7.5% to 20% [1,3,4,10]. Encephalitis represented up to 10% of patients in our registry; more than half had focal neurologic deficit. Ellul et al. [8] suggested case definitions for neurologic associations of COVID-19. COVID-19 encephalitis is considered confirmed in a patient with encephalitis (as defined by Venkatesan et al. [7]) and specific intrathecal antibody or SARS-CoV-2 found in the CSF or the brain (PCR or culture). COVID-19 encephalitis is probable if SARS-CoV-2 is found in a respiratory sample. Following these definitions, we found two confirmed COVID-19 encephalitis and 19 probable COVID-19 encephalitis cases. Brain MRI results were highly heterogeneous, consistent with the published cases of encephalitis: white matter lesion and/or basal ganglia and thalamic involvement suggestive of acute disseminated encephalomyelitis [11] or acute necrotizing encephalopathy [12–14], other nonspecific diffuse involvement of white matter [15,16], mesiotemporal lesions [10,17] with possible frontoinsular extension, leptomeningeal abnormalities [4] and brainstem lesions [18]. Only two patients in our registry had a positive SARS-CoV-2 PCR result from a CSF sample. Two other encephalitis patients with positive SARS-CoV-2 PCR results from CSF testing have been reported [11,17].

In our series, the short-term outcome was generally favourable without any specific treatment, suggesting a parainfectious

Table 2
Baseline and clinical characteristics of COVID-19 patients with acute ischaemic cerebrovascular syndrome, encephalopathy, encephalitis and GBS

Characteristic	Acute ischaemic cerebrovascular syndrome (n = 57)	Encephalitis (n = 21)	COVID-19–associated encephalopathy (n = 67)	GBS (n = 15)
Age (years), median (IQR)	65 (55–78)	67 (51–70)	68 (61–75)	59 (53–65)
Male	34 (59.6)	15 (71.4)	41 (60.3)	13 (86.7)
Medical history				
Prior stroke	8 (14.0)	0	4 (6.0)	1 (6.7)
Neurodegenerative disease	1 (1.8)	1 (4.8)	20 (29.9)	0
Vascular comorbidities*	43 (75.4)	NA	NA	NA
Severity of COVID-19				
Mild	21 (36.8)	4 (19)	6 (9.0)	7 (46.7)
Moderate	16 (28.1)	7 (33.3)	16 (23.9)	3 (20.0)
Severe	13 (22.8)	3 (14.3)	16 (23.9)	1 (6.7)
Critical	7 (12.3)	7 (33.3)	29 (43.3)	4 (26.7)
Neurologic manifestations occurrence				
Neurologic manifestations occurring as first symptoms	14 (24.6)	1 (4.8)	15 (22.4)	0
Neurologic manifestation occurring after first COVID-19 symptoms	40 (70.2)	14 (66.7)	32 (47.8)	12 (80.0)
Time between first symptoms and neurologic manifestation, median (IQR), day	12 (7–18)	7 (5–10)	6 (3–8)	18 (15–28)
Neurologic manifestation after withholding sedation in ICU	3 (5.3)	6 (28.6)	20 (29.9)	3 (20.0)
Neurologic symptoms				
Headache	2 (3.5)	3 (14.3)	6 (9.0)	0
Altered mental status	8 (14.0)	21 (100)	67 (100)	3 (20.0)
Seizure	1 (1.8)	2 (9.5)	7 (10.4)	0
Focal central neurologic symptoms	56 (98.2)	12 (57.1)	13 (19.4)	2 (13.3)
Motor or sensitive deficit	42 (73.7)	2 (9.5)	1 (1.5)	1 (6.7)
Cerebellar ataxia	6 (10.5)	6 (28.6)	9 (13.4)	0
Pyramidal syndrome	NA	6 (28.6)	4 (6.0)	0
Central oculomotor syndrome	6 (10.5)	1 (4.8)	1 (1.5)	1 (6.7)
Movement disorder	0	6 (28.6)	3 (4.5)	1 (6.7)
Peripheral limb weakness	1 (1.8)	2 (9.5)	7 (10.4)	11 (73.3)
Cranial neuropathy	0	1 (4.8)	2 (3.0)	4 (26.7)
Follow-up (days), median (IQR)	24 (16–32)	21 (18–29)	28 (19–37)	18 (14–29)
Resolution of neurologic symptoms	21 (36.8)	10 (47.6)	34 (50.7)	1 (6.7)
Death	9 (15.8)	1 (4.8)	10 (14.9)	0

Data are presented as n (%) unless otherwise indicated. COVID-19, coronavirus disease 2019; GBS, Guillain-Barré syndrome; ICU, intensive care unit; IQR, interquartile range; NA, not applicable.

* Vascular comorbidities were only collected for patients with stroke. Data included hypertension, diabetes, obesity and cardiovascular diseases.
mechanism rather than direct neuropathogenicity of SARS-CoV-2. In an autopsy study of six COVID-19 patients, von Weyhern et al. [19] highlighted the presence of lymphocytic panencephalitis and meningitis. Another study documented the presence of SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WBC, white blood cell count.

In an autopsy study of six COVID-19 patients, von Weyhern et al. [19] highlighted the presence of lymphocytic panencephalitis and meningitis. Another study documented the presence of SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WBC, white blood cell count.

Table 3

Characteristic	Acute ischaemic cerebrovascular syndrome (n = 57)	Encephalitis (n = 21)	Encephalopathy (n = 67)	GBS (n = 15)
Brain imaging	57 (100)	21 (100)	57 (85.1)	5 (33.3)
CT scan	9 (15.8)	0	12 (17.9)	0
MRI	48 (84.2)	21 (100)	45 (67.2)	2 (13.3)
Acute ischaemic lesion	52 (91.7)	2 (9.5)	6 (9)	2 (13.3)
Unifocal ischaemic lesion	39 (68.4)	1 (4.8)	5 (7.5)	1 (6.7)
Multifocal ischaemic lesions	13 (22.8)	1 (4.8)	0	1 (6.7)
Large vessel infarct	46 (84.4)	0	0	1 (6.7)
Small vessel infarct	6 (11.5)	2 (9.5)	6 (9)	1 (6.7)
Microhemorrhages	2 (9.5)	2 (9.5)	3 (4.5)	0
Other lesion	14 (66.7)	1 (4.8)	1 (1.5)	0
Spine MRI	0	0	2 (3)	3 (20)
Any lesion	—	—	0	0
Cerebrospinal fluid examination	3 (5.2)	21 (100)	36 (53.7)	14 (93.3)
WBC count >5/mm³	—	14 (66.7)	0	1 (6.7)
Proteins >0.45 g/L	—	12 (57.1)	8 (11.9)	8 (53.3)
Isolated elevated proteins	—	4 (19.0)	8 (11.9)	8 (53.3)
Positive SARS-CoV-2 PCR	—	2 (9.5)	0	0
Electroencephalogram	4 (7.0)	15 (71.4)	32 (47.8)	2 (14.3)
Diffuse slowing	3 (5.3)	9 (42.9)	17 (25.4)	1 (6.7)
Anterior slowing	3 (14.3)	4 (19)	8 (11.9)	0
Focal lateralized slowing and/or paroxysm	1 (1.8)	1 (4.8)	3 (4.5)	0
Periodic pattern	1 (1.8)	1 (4.8)	1 (1.5)	0
Status epilepticus	1 (1.8)	1 (4.8)	1 (1.5)	0
Electroneurography	1 (1.8)	1 (4.8)	3 (4.5)	14 (93.3)
Abnormal findings	1 (1.8)	1 (4.8)	3 (4.5)	13 (86.7)
Axonal injury	1 (1.8)	1 (4.8)	1 (1.5)	0
Demyelination	0	0	2 (3)	13 (86.7)

Data are presented as n (%). COVID-19, coronavirus disease 2019; CT, computed tomography; FLAIR, fluid-attenuated inversion recovery; GBS, Guillain-Barré syndrome; MRI, magnetic resonance imaging; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WBC, white blood cell count.

* Among 46 patients with large vessel infarct, 16 had a persisting thrombosis located in internal carotid artery (n = 9) and/or proximal segment of middle cerebral artery (n = 6) or in basilar artery (n = 1).

* Basal ganglia FLAIR hyperintensity (n = 3), acute diffuse hemispheric white matter lesions (n = 2), FLAIR hyperintensity of genu of corpus callosum (n = 1), mesiotemporal FLAIR hyperintensity (n = 3) with frontoinsular extension in 2, brainstem and cerebellar peduncular FLAIR hyperintensity (n = 2), cranial nerve FLAIR hyperintensity (n = 1), focal leptomeningeal FLAIR hyperintensity (n = 2).

* Lesion in splenium of corpus callosum typical of mild encephalopathy with reversible splenial lesion syndrome.

multiterritory involvement [31], undetermined aetiology [32] and high mortality rate [32]. Several cases of GBS are currently reported in the literature [33–38], and one study has demonstrated an increased incidence of GBS during the COVID-19 epidemic compared to the three previous years [39]. GBS cases reported in this study can be considered to be probably associated with COVID-19, as defined by Ellul et al. [8].

Our study has several limitations. Firstly, this is a retrospective registry analysis, with all the reporting biases inherent in this mode, which means that the different proportions of neurologic manifestations should be interpreted with caution. Hospitals participated in the study on a voluntary basis, and our sample is probably not representative of all health facilities in France. However, our objective was to present a panel of neurologic manifestations associated with SARS-CoV-2 and their clinical description, not estimate the proportion of neurologic diseases among the entire population of COVID-19 patients. We think that with 46 participating centres including general hospitals as well as specialized neurology centres, we have captured a large panel of COVID-19 neurologic manifestations. Secondly, we only included hospitalized patients, so neurologic symptoms or manifestations associated with milder ambulatory forms of COVID-19 are probably underreported. This could explain why a low proportion of patients with dizziness or anosmia were found in this study. Thirdly, this registry focused on the acute phase of COVID-19 with a limited follow-up duration; we did not study long-term symptoms, including neurologic complaints, described in a variable proportion of patients with long COVID-19 [40]. Fourthly, the data are entirely published articles: high prevalence of large-vessel stroke [30,31],
descriptive and are based on the report at a definite time period during the French outbreak. We used a deliberately simplified CRF, given the exceptional workload shouldered by the medical teams; there was no exhaustive collection of medical history other than neurologic comorbidities and vascular comorbidities for AICS; nor did we analyse biological parameters. Fifthly, some neurologic manifestations that we report here may not be specific to SARS-CoV-2 infection, such as critical illness neuropathy or Tapia syndrome. Further studies are needed to study the direct or indirect role of SARS-CoV-2 infection in the different neurologic manifestations exhibited by patients with COVID-19.

Conclusions

Our study highlights the broad spectrum of neurologic manifestations associated with SARS-CoV-2 infection, which is probably related to different pathogenic pathways. Although encephalopathies were the most frequently reported manifestations, possibly linked to sepsis and cytokine storm, encephalitis was described in 10% of cases. A large majority of SARS-CoV-2 PCR results of CSF (73/75, 97.3%) were negative, and the short-term outcome of patients with encephalitis was generally favourable. Ischaemic strokes were also frequently reported, as was GBS, which occurred later in the course of the disease (18 days, compared to 7 days for encephalitis and 12 days for stroke). Further studies are needed to understand the physiopathology of neurologic manifestations in COVID-19 patients.

Transparency declaration

All authors report no conflicts of interest relevant to this article.

Acknowledgements

We acknowledge the support of the National College of General Hospital Neurologists (CNHG), the French Society for Infectious Diseases (SPLIF), the Association of French-Speaking Liberal Neurologists (ANLLF), the Multiple Sclerosis French Society (SF-SEP), REACTing, a French multidisciplinary collaborative network working on emerging infectious diseases, and the CoCo Neurosciences Study Group. We acknowledge the support of Jérôme Aboab and the Clinical Research Unit of Saint-Denis for obtaining the approval of the national ethics committees.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cmi.2020.11.005.

References

[1] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395:507–13.
[2] Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical characteristics of covid-19 in New York City. N Engl J Med 2020.
[3] Mao L, Jia H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 2020.
[4] Helms J, Krenmer S, Merdji H, Clerel-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med 2020.
[5] Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurology 2020.
[6] US National Institutes of Health (NIH). COVID-19 treatment guidelines. Available at: https://www.covid19treatmentguidelines.nih.gov/overview/management-of-covid-19/.
[7] Venkatesan A, Tunkel AR, Bloch KC, Louring AS, Sejvar J, Bitnun A, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis 2013;57:1114–28.
[8] Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, et al. Neurological associations of COVID-19. Lancet Neurol 2020;19:767–83.
[9] Ashaby AK, Ghoshal DR. Assessment of current diagnostic criteria for Guiliain-Barré syndrome. Ann Neurol 1990;27:521–4.
[10] Romero-Sánchez CM, Díaz-Maroto L, Fernández-Díaz E, Sanchez-Larsen A, Layos-Romoer A, García-Garcia J, et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology 2020.
[11] Novi G, Rossi T, Pedemonte E, Saitta L, Rolla C, Roccagagliata L, et al. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol Neuroimunol Neurolinfammin 2020;7:e79.
[12] Foyadj N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19—associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 2020.
[13] Doon L, Varley J, Gonsarova A, Mallon D, Tona F, Muir D, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplectic anemia. Neurol Neuroimunol Neurolinfammin 2020;7:e789.
[14] Virhammar J, Kumlien E, Fullmar D, Frithiof R, Jackmann S, Skold MK, et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology 2020.
[15] Kandemirli SG, Dogan L, Sarikaya ZT, Kara S, Akinci K, Caya D, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 2020.
[16] Brun G, Hal JK, Cose Z, Kahan P, Carveli J, Girard N, et al. COVID-19—white matter and globus pallidus lesions: demyelination or small-vessel vasculitis? Neurol Neuroimunol Neurolinfammin 2020;7:e777.
[17] Layos-Romoer A, Tarsi H, Hasirci I, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis 2020;94:55–8.
[18] Wong PF, Craik S, Newman P, Makam A, Srinivasan K, Crawford E, et al. Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med (Lond) 2020.
[19] von Weyhern CH, Kaufmann I, Neff F, Kramer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet 2020.
[20] Paniz-Mondolfi A, Bryce G, Crimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory coronavirus-2 (SARS-CoV-2). J Med Virol 2020;92:699–702.
[21] Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinckernagel AS, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet 2020;395:1417–8.
[22] Hanafi R, Roger PA, Perin B, Kuchinskis G, Delevol N, Dallery F, et al. COVID-19 neurologic complication with CNS vasculitis-like pattern. AJNR Ann J Neuro radiol 2020;41:1384–7.
[23] Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844–7.
[24] Vellieux G, Haris S, Aucoc J, Harada D, Sugawara H, Takamino J, et al. A first case of meningeal/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis 2020;94:55–8.
[25] Kandemirli SG, Dogan L, Sarikaya ZT, Kara S, Akinci K, Caya D, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 2020.
[26] Slooter AJC, Otte WM, Devlin JW, Arora RC, Bleck TP, Claassen J, et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten Societies. Intensive Care Med 2020;46:1020–2.
[27] Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020;395:1517–20.
[28] Mazeraul A, Rigby C, Boucherieu E, Benghanem S, Bozza FA, Sharshar T, Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics 2020.
[29] Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368:473–4.
[30] Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med 2020.
[31] Beyrouti A, Adams ME, Benjamin L, Cohen H, Farmer SF, Goh YY, et al. Characteristics of ischaemic stroke associated with COVID-19. J Neurol Neurosurg Psychiatry 2020.
[32] Venkatesan A, Tunkel AR, Bloch KC, Louring AS, Sejvar J, Bitnun A, et al. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis 2013;57:1114–28.
[33] Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain-Barré syndrome associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology 2020.
[34] Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368:473–4.
[35] Vellieux G, Rouvel-Tallec A, Jaquet P, Grinea A, Sonneville R, d
Bigaut K, Mallaret M, Baloglu S, Nemoz D, Morand P, Baicry F, et al. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm 2020;7:e785.

Gigli GL, Bax F, Marini A, Pellitteri G, Scalice A, Surcinelli A, et al. Guillain-Barré syndrome in the COVID-19 era: just an occasional cluster? J Neurol 2020.

National Institute for Health Research (NIHR). Living with Covid-19. A dynamic review of the evidence around ongoing Covid-19 symptoms (often called long Covid). 2020. Available at: https://evidence.nihr.ac.uk/themedreview/living-with-covid19/.