QUOTIENTS OF MGL, THEIR SLICES AND THEIR GEOMETRIC PARTS

MARC LEVINE AND GIRJA SHANKER TRIPATHI

Abstract. Let \(x_1, x_2, \ldots \) be a system of homogeneous polynomial generators for the Lazard ring \(\mathbb{L}^* = MU^{2*} \) and let \(\text{MGL}_S \) denote Voevodsky’s algebraic cobordism spectrum in the motivic stable homotopy category over a base-scheme \(S \) \([Vo98]\). Take \(S \) essentially smooth over a field \(k \). Relying on the Hopkins-Morel-Hoyois isomorphism \([Hoy]\) of the 0th slice \(s_0 \text{MGL}_S \) for Voevodsky’s slice tower with \(\text{MGL}_S/(x_1, x_2, \ldots) \) (after inverting the characteristic of \(k \)), Spitzweck \([S10]\) computes the remaining slices of \(\text{MGL}_S \) as \(s_n \text{MGL}_S = \Sigma^n \mathbb{H} \otimes \mathbb{L}^{-n} \) (again, after inverting the characteristic of \(k \)). We apply Spitzweck’s method to compute the slices of a quotient spectrum \(\text{MGL}_S/(x_i : i \in I) \) for \(I \) an arbitrary subset of \(\mathbb{N} \), as well as the mod \(p \) version \(\text{MGL}_S/(p, x_i : i \in I) \) and localizations with respect to a system of homogeneous elements in \(\mathbb{Z}[x_j : j \notin I] \). In case \(S = \text{Spec} \ k \), \(k \) a field of characteristic zero, we apply this to show that for \(\mathcal{E} \) a localization of a quotient of \(\text{MGL} \) as above, there is a natural isomorphism for the theory with support \(\Omega_*(X) \otimes_{\mathbb{L}} \mathcal{E}^{-2*,-*}(k) \to \mathcal{E}_X^{2m-2*,m-*}(M) \) for \(X \) a closed subscheme of a smooth quasi-projective \(k \)-scheme \(M \), \(m = \dim_k M \).

Contents

Introduction \hfill 1
1. Quotients and homotopy colimits in a model category \hfill 3
2. Slices of effective motivic module spectra \hfill 10
3. The slice spectral sequence \hfill 16
4. Slices of quotients of \(\text{MGL} \) \hfill 18
5. Modules for oriented theories \hfill 21
6. Applications to quotients of \(\text{MGL} \) \hfill 27
References \hfill 29

Introduction

This paper has a two-fold purpose. We consider Voevodsky’s slice tower on the motivic stable homotopy category \(\mathcal{SH}(S) \) over a base-scheme \(S \) \([Vo00]\). For \(\mathcal{E} \) in \(\mathcal{SH}(S) \), we have the \(n \)th layer \(s_n \mathcal{E} \) in the slice tower for \(\mathcal{E} \). Let \(\text{MGL} \) denote Voevodsky’s algebraic cobordism spectrum in \(\mathcal{SH}(S) \) \([Vo98]\) and let \(x_1, x_2, \ldots \) be a system of homogeneous polynomial generators for the Lazard ring \(\mathbb{L}^* \). Via the

1991 Mathematics Subject Classification. Primary 14C25, 19E15; Secondary 19E08 14F42, 55P42.

Both authors wish to thank the Humboldt Foundation for financial support.
classifying map for the formal group law for MGL, we may consider x_i as an element of $MGL^{2i} (S)$, and thereby as a map $x_i : \Sigma^{2i} MGL \to MGL$, giving the quotient $MGL/(x_1,x_2,\ldots)$. Spitzweck [S10] shows how to build on the Hopkins-Morel-Hoyois isomorphism $[\text{Hoy}]$ to compute all the slices $s_n MGL$ of MGL. Our first goal here is to extend Spitzweck’s method to handle quotients of MGL by a subset of $\{x_1,x_2,\ldots\}$, as well as localizations with respect to a system of homogeneous elements in the ring generated by the remaining variables; we also consider quotients of such spectra by an integer. Some of these spectra are Landweber exact, and the slices are thus computable by the results of Spitzweck on the slices of Landweber exact spectra [S12], but many of these, such as the truncated Brown-Peterson spectra or Morava K-theory, are not.

The second goal is to extend results of [DL14, L09, L15], which consider the “geometric part” $X \mapsto E_{\ast\ast}(X)$ of the bi-graded cohomology defined by an oriented weak commutative ring T-spectrum E and raise the question: is the classifying map $E_{\ast\ast}(k) \otimes_{L_{\ast\ast}} \Omega_{\ast\ast} \to E_{\ast\ast}$ an isomorphism of oriented cohomology theories, that is, is the theory $E_{\ast\ast}$ a theory of rational type in the sense of Vishik [Vi12]? Starting with the case $E = MGL$, discussed in [L09], which immediately yields the Landweber exact case, we have answered this affirmatively for “slice effective” algebraic K-theory in [DL14], and extended to the case of slice-effective covers of a Landweber exact theory in [L15].

In this paper, we use our computation of the slices of a quotient of MGL to show that the classifying map is an isomorphism for the quotients and localizations of MGL described above.

The paper is organized as follows: in §1 and §2 we axiomatize Spitzweck’s method from [S10] to a more general setting. In §1 we give a description of quotients in a suitable symmetric monoidal model category in terms of a certain homotopy colimit. In §2 we begin by recalling some basic facts and the slice tower and its construction. We then apply the results of §1 to the category of \mathcal{R}-modules in a symmetric monoidal model category (with some additional technical assumptions), developing a method for computing the slices of an \mathcal{R}-module \mathcal{M}, assuming that \mathcal{R} and \mathcal{M} are effective and that the 0th slice $s_0 \mathcal{M}$ is of the form $\mathcal{M}/\{x_i : i \in I\}$ for some collection $\{x_i \in \mathcal{R}^{-2d_i,-d_i}(S), d_i < 0\}$ of elements in \mathcal{R}-cohomology of the base-scheme S; see theorem 2.3. We also discuss localizations of such \mathcal{R}-modules and the mod p case (corollary 2.4 and corollary 2.5). We discuss the associated slice spectral sequence for such \mathcal{M} and its convergence properties in §3 and apply these results to our examples of interest: truncated Brown-Peterson spectra, Morava K-theory and connective Morava K-theory, as well as the Landweber exact examples, the Brown-Peterson spectra BP and the Johnson-Wilson spectra $E(n)$, in §4.

The remainder of the paper discusses the classifying map from algebraic cobordism $\Omega_{\ast\ast}$ and proves our results on the rationality of certain theories. This is essentially taken from [L15], but we need to deal with a technical problem, namely, that it is not at present clear if the theories $[MGL/(\{x_i : i \in I\})]^{\ast\ast}$ have a multiplicative structure. For this reason, we extend the setting used in [L15] to theories that are modules over ring-valued theories. This extension is taken up in §5 and we apply this theory to quotients and localizations of MGL in §6.
1. Quotients and homotopy colimits in a model category

In this section we consider certain quotients in a model category and give a description of these quotients as a homotopy colimit [see proposition L.9]. This is an abstraction of the methods developed in [S10] for computing the slices of \(MGL \).

Let \((C, \otimes, 1)\) be a closed symmetric monoidal simplicial pointed model category with cofibrant unit \(1\). We assume that \(1\) admits a fibrant replacement \(\alpha : 1 \to 1\) such that \(1\) is a \(1\)-algebra in \(C\), that is, there is an associative multiplication map \(\mu_1 : 1 \otimes 1 \to 1\) such that \(\mu_1 \circ (\alpha \otimes \text{id})\) and \(\mu_1 \circ (\text{id} \otimes \alpha)\) are the respective multiplication isomorphisms \(1 \otimes 1 \to 1\), \(1 \otimes 1 \to 1\).

For a cofibrant object \(T\) in \(C\), the map \(T \cong T \otimes 1 \xrightarrow{\text{id} \otimes \alpha} T \otimes 1\) is a cofibration and weak equivalence. Indeed, the functor \(T \otimes (-)\) preserves cofibrations, and also maps that are both a cofibration and a weak equivalence, whence the assertion.

Remark 1.1. We will be applying the results of this section to the following situation: \(M\) is a cofibrantly generated symmetric monoidal simplicial model category satisfying the monoid axiom [ScSh, definition 3.3], \(R\) is a commutative monoid in \(M\), cofibrant in \(M\) and \(C\) is the category of \(R\)-modules in \(C\), with model structure as in [ScSh §4], that is, a map is a fibration or a weak equivalence in \(C\) if and only if it is so as a map in \(M\), and cofibrations are determined by the LLP with respect to acyclic fibrations. By [ScSh theorem 4.1(3)], the category \(\mathcal{R}\)-Alg of monoids in \(C\) has the structure of a cofibrantly generated model category, with fibrations and weak equivalence those maps which become a fibration or weak equivalence in \(M\), and each cofibration in \(\mathcal{R}\)-Alg is a cofibration in \(C\). The unit 1 is \(C\) is just \(R\) and we may take \(\alpha : 1 \to 1\) to be a fibrant replacement in \(\mathcal{R}\)-Alg.

Let \(\{x_i : T_i \to 1 \mid i \in I\}\) be a set of maps with cofibrant sources \(T_i\). We assign each \(T_i\) an integer degree \(d_i > 0\).

Let \(1/(x_i)\) be the homotopy cofiber (i.e., mapping cone) of the map \(x_i : 1 \otimes T_i \to 1\) and let \(p_i : 1 \to 1/(x_i)\) be the canonical map.

Let \(A = \{i_1, \ldots, i_k\}\) be a finite subset of \(I\) and define \(1/(\{x_i : i \in A\}\)) as
\[
1/(\{x_i : i \in A\}) := 1/(x_{i_1}) \otimes \ldots \otimes 1/(x_{i_k}).
\]

Of course, the object \(1/(\{x_i : i \in A\}\)) depends on a choice of ordering of the elements in \(A\), but only up to a canonical symmetry isomorphism. We could for example fix the particular choice by fixing a total order on \(A\) and taking the product in the proper order. The canonical maps \(p_i, i \in I\) composed with the map \(1 \to 1\) give rise to the canonical map
\[
p_I : 1 \to 1/(\{x_i : i \in A\})
\]
defined as the composition
\[
1 \xrightarrow{\mu^{-1}} 1 \otimes k \xrightarrow{\text{id} \otimes p_i} 1 \otimes \ldots \otimes 1/(\{x_i : i \in A\}).
\]

For finite subsets \(A \subset B \subset I\), define the map
\[
\rho_{A \subset B} : 1/(\{x_i : i \in A\}) \to 1/(\{x_i : i \in B\})
\]
as the composition
\[
1/(\{x_i : i \in A\}) \xrightarrow{\mu^{-1}} 1/(\{x_i : i \in A\}) \otimes 1
\]
\[
1/(\{x_i : i \in A\}) \otimes 1/(\{x_i : i \in B \setminus A\}) \cong 1/(\{x_i : i \in B\}).
\]
Thus, we often write these simply as \mathcal{F}. We often select a single cofibrant object M whose geometric realization is $\text{hocolim} I \mathcal{F}$ for certain integers $d_i > 0$. As T is cofibrant, so is $T^\otimes d_i$. In this case we set $\deg T = 1$, $\deg T^\otimes d_i = d_i$.

We let $[n]$ denote the set $\{0, \ldots, n\}$ with the standard order and Δ the category with objects $[n]$, $n = 0, 1, \ldots$, and morphisms the order-preserving maps of sets. For a small category A and a functor $F : A \to \mathcal{C}$, we let $\text{hocolim}_A F$ denote the standard simplicial object of \mathcal{C} whose geometric realization is $\text{hocolim}_A F$, that is

$$\text{hocolim}_A F_n = \prod_{\sigma : [n] \to A} F(\sigma(0)).$$

Lemma 1.4. Let $\{x_i : T_i \to 1 : i \in I_1\}$, $\{x_i : T_i \to 1 : i \in I_2\}$ be two sets of maps in \mathcal{C}, with cofibrant sources T_i. Then there is a canonical isomorphism

$$1/((\{x_i : i \in I_1 \amalg I_2\}) \cong 1/((\{x_i : i \in I_1\}) \otimes 1/((\{x_i : i \in I_2\}).$$

Proof. The category $\mathcal{P}_{\text{fin}}(I_1 \amalg I_2)$ is clearly equal to $\mathcal{P}_{\text{fin}}(I_1) \times \mathcal{P}_{\text{fin}}(I_2)$. For functors $F_i : A_i \to \mathcal{C}$, $i = 1, 2$, $\text{hocolim}_{A_1 \times A_2} F_1 \otimes F_2$ is the diagonal simplicial space associated to the bisimplicial space $([n] \times [m]) \mapsto [\text{hocolim}_{A_1} F_1]_n \otimes [\text{hocolim}_{A_2} F_2]_m$. Thus

$$\text{hocolim}_{A_1 \times A_2} F_1 \otimes F_2 \cong \text{hocolim}_{A_1} [\text{hocolim}_{A_2} F_1] \otimes F_2.$$

This gives us the isomorphism

$$1/((\{x_i : i \in I_1 \amalg I_2\}) = \text{hocolim}_{(A_1, A_2) \in \mathcal{P}_{\text{fin}}(I_1) \times \mathcal{P}_{\text{fin}}(I_2)} 1/((\{x_i : i \in A_1\}) \otimes 1/((\{x_i : i \in A_2\})

$$

$$\cong \text{hocolim}_{A_1 \in \mathcal{P}_{\text{fin}}(I_1)} 1/((\{x_i : i \in A_1\}) \otimes \text{hocolim}_{A_2 \in \mathcal{P}_{\text{fin}}(I_2)} 1/((\{x_i : i \in A_2\})

= 1/((\{x_i : i \in I_1\}) \otimes 1/((\{x_i : i \in I_2\})\)\)

\Box
Remark 1.5. Via this lemma, we have the isomorphism for all $M \in C$,

$$M/(\{x_i : i \in I_1 \cup I_2\}) \cong (M/(\{x_i : i \in I_1\})/(\{x_i : i \in I_2\})).$$

Let \mathcal{I} be the category of formal monomials in $\{x_i\}$, that is, the category of maps $N : I \to \mathbb{N}$, $i \mapsto N_i$, such that $N_i = 0$ for all but finitely many $i \in I$, and with a unique map $N \to M$ if $N_i \geq M_i$ for all $i \in I$. As usual, the monomial in the x_i corresponding to a given N is $\prod_{i \in I} x_i^{N_i}$, written x^N. The index $N = 0$, corresponding to $x^0 = 1$, is the final object of \mathcal{I}.

Take an $i \in I$. For $m > k \geq 0$ integers, define the map

$$x^m \times x^{m-k} : 1 \times T_i^{\otimes m} \to 1 \times T_i^{\otimes k}$$

as the composition

$$1 \times T_i^{\otimes m} = 1 \times T_i^{\otimes m-k} \times T_i^{\otimes k} \xrightarrow{id_{T_i^m} \otimes \times_{x_i^{m-k}} \otimes id_{T_i^{\otimes k}}} 1 \times T_i^{\otimes k} \times 1 \times T_i^{\otimes k} \xrightarrow{\mu_{T_i^{\otimes k}}} 1 \times T_i^{\otimes k}.$$

In case $k = 0$, we use 1 instead of $1 \otimes 1$ for the target; we define x^0 to be the identity map. The associativity of the maps μ_{I_k} shows that $x^m \times x^{m-k} \otimes x^{n-m} = x^m \times x^{n-k}$, hence the maps x^m all commute with each other.

Now suppose we have a monomial in the x_i; to simplify the notation, we write the indices occurring in the monomial as $\{1, \ldots, r\}$ rather than $\{i_1, \ldots, i_r\}$. This gives us the monomial $x^N := x^{N_1} \cdots x^{N_r}$. Define

$$T^N := 1 \otimes T_1^{\otimes N_1} \otimes \cdots \otimes 1 \otimes T_r^{\otimes N_r} \otimes 1;$$

in case $N_i = 0$, we replace $\cdots 1 \otimes 1 \otimes 1 \otimes T_{i+1}^{\otimes M_{i+1}} \otimes \cdots$ with $\cdots 1 \otimes T_{i+1}^{\otimes M_{i+1}} \otimes \cdots$, and we set $T_0 := 1$.

Let $N \to M$ be a map in \mathcal{I}, that is $N_i \geq M_i \geq 0$ for all i. We again write the relevant index set as $\{1, \ldots, r\}$. Define the map

$$x^N \times x^{-M} : T^N \to T^M$$

as the composition

$$T^N \xrightarrow{\times_x x_j^{-M_j}} 1 \otimes T_1^{\otimes M_1} \otimes \cdots \otimes 1 \otimes T_r^{\otimes M_r} \otimes 1 \xrightarrow{\mu_{T_i^{\otimes N_i}}} T^M,$$

the map μ_{M} is a composition of \otimes-product of multiplication maps $\mu_1 : 1 \otimes 1 \to 1$, with these occurring in those spots with $M_j = 0$. In case $N_i = M_i = 0$, we simply delete the term x^0 from the expression.

The fact that the maps μ_1 satisfy associativity yields the relation

$$x^{M \times x^{-N-M}} = x^{N - x}$$

and thus the maps $x^N \times x^{-M}$ all commute with each other.

Defining $D_x(N) := T^N$ and $D_x(N \to M) = x^{N-M}$ gives us the \mathcal{I}-diagram

$$D_x : \mathcal{I} \to \mathcal{C}.$$

We consider the following full subcategories of \mathcal{I}. For a monomial M let $\mathcal{I}_{\geq M}$ denote the subcategory of monomials which are divisible by M, and for a positive integer n, recalling that we have assigned each T_i a positive integral degree d_i, let $\mathcal{I}_{\text{deg} \geq n}$ denote the subcategory of monomials of degree at least n, where the degree of $N := (N_1, \ldots, N_k)$ is $N_1d_1 + \cdots + N_kd_k$. One defines similarly the full subcategories $\mathcal{I}_{\leq M}$ and $\mathcal{I}_{\text{deg} \geq n}$.

Let \mathcal{I}_{0} be the full subcategory of \mathcal{I} of monomials $N \neq 0$ and $\mathcal{I}_{\leq 1} \subset \mathcal{I}_{0}$ be the full subcategory of monomials N for which $N_i \leq 1$ for all i. We have the corresponding
subdiagrams $D_x : T^o \to C$ and $D_x : T^o_{\leq 1} \to C$ of D_x. For $J \subset I$ a subset, we have the corresponding full subcategories $J \subset I$, $J^o \subset T^o$ and $J^o_{\leq 1} \subset T^o_{\leq 1}$ and corresponding subdiagrams D_x. If the collection of maps x_i is understood, we write simply D for D_x.

Let $F : A \to C$ be a functor, a an object in C, $c_a : A \to C$ the constant functor with value a and $\varphi : F \to c_a$ a natural transformation. Then φ induces a canonical map $\hat{\varphi} : \text{hocolim}_A F \to a$ in C. As in the proof of [S10, Proposition 4.3], let $C(A)$ be the category A with a final object $*$ adjoined and $C(F, \varphi) : C(A) \to C$ the functor with value a on $*$, with restriction to A being F and which sends the unique map $y \to *$ in $C(A)$, $y \in A$, to $\varphi(y)$. Let $[0, 1]$ be the category with objects $0, 1$ and a unique non-identity morphism, $0 \to 1$ and let $C(A)^\Gamma$ be the full subcategory of $C(A) \times [0, 1]$ formed by removing the object $* \times 1$. We extend $C(F, \varphi)$ to a functor $C(F, \varphi)^\Gamma : C(A)^\Gamma \to C$ by $C(F, \varphi)^\Gamma(y \times 1) = pt$, where pt is the initial/final object in C.

Lemma 1.6. There is a natural isomorphism in C

$$\text{hocolim}_{C(A)^\Gamma} C(F, \varphi)^\Gamma \cong \text{hocolim}_{A} \hat{\varphi}(\text{hocolim}_A F \to a).$$

Proof. For a category A we let $N(A)$ denote the simplicial nerve of A. We have an isomorphism of simplicial sets $N(C(A)) \cong \text{Cone}(N(A), *)$, where $\text{Cone}(N(A), *)$ is the cone over $N(A)$ with vertex $*$. Similarly, the full subcategory $A \times [0, 1]$ of $C(A)^\Gamma$ has nerve isomorphic to $N(A) \times \Delta[1]$. This gives an isomorphism of $N(C(A)^\Gamma)$ with the push-out in the diagram

$$
\begin{array}{c}
\text{N}(A) \uparrow \text{id} \times \delta_0 \\
\downarrow \downarrow \\
\text{N}(A) \times \Delta[1]
\end{array}
$$

This in turn gives an isomorphism of the simplicial object $\text{hocolim}_{C(A)^\Gamma} C(F, \varphi)^\Gamma_x$ with the pushout in the diagram

$$
\begin{array}{c}
\text{hocolim}_A F \uparrow \downarrow \\
\downarrow \downarrow \\
C(\text{hocolim}_A F, a)
\end{array}
$$

This gives the desired isomorphism. \Box

Lemma 1.7. Let $J \subset K \subset I$ be finite subsets of I. Then the map

$$\text{hocolim}_{J^o_{\leq 1}} D_x \to \text{hocolim}_{K^o_{\leq 1}} D_x$$

induced by the inclusion $J \subset K$ is a cofibration in C.

Proof. We give the category of simplicial objects in C, $C^{\Delta^{op}}$, the Reedy model structure, using the standard structure of a Reedy category on Δ^{op}. By [Hir03 theorem 19.7.2(1), definition 19.8.1(1)], it suffices to show that

$$\text{hocolim}_{J^o_{\leq 1}} D_x \to \text{hocolim}_{K^o_{\leq 1}} D_x$$
is a cofibration in \(C^{\Delta^n} \), that is, for each \(n \), the map
\[
\varphi_n : \text{hocolim} \mathcal{D}_n \amalg L^n \text{hocolim}_{J \leq 1} \mathcal{D}_n \rightarrow \text{hocolim} \mathcal{D}_n
\]
is a cofibration in \(C \), where \(L^n \) is the \(n \)th latching space.

We note that
\[
\text{hocolim} \mathcal{D}_n = \bigvee_{\sigma \in \mathcal{N}(J^{\leq 1}_n)} D(\sigma(0))
\]
where we view \(\sigma \in \mathcal{N}(J^{\leq 1}_n) \) as a functor \(\sigma : [n] \rightarrow J^{\leq 1}_n \); we have a similar description of \(\text{hocolim}_{K^{\leq 1}_n} D_n \). The latching space is
\[
L^n \text{hocolim} \mathcal{D}_n = \bigvee_{\sigma \in \mathcal{N}(J^{\leq 1}_n)_{\text{deg}}} D(\sigma(0)),
\]
where \(\mathcal{N}(J^{\leq 1}_n)_{\text{deg}} \) is the subset of \(\mathcal{N}(J^{\leq 1}_n) \) consisting of those \(\sigma \) which contain an identity morphism; \(L^n \text{hocolim}_{K^{\leq 1}_n} D_n \) has a similar description. The maps
\[
L^n \text{hocolim} \mathcal{D}_n \rightarrow \text{hocolim} \mathcal{D}_n, L^n \text{hocolim} \mathcal{D}_n \rightarrow L^n \text{hocolim} \mathcal{D}_n,
\]
\[
L^n \text{hocolim} \mathcal{D}_n \rightarrow \text{hocolim} \mathcal{D}_n, \text{hocolim} \mathcal{D}_n \rightarrow \text{hocolim} \mathcal{D}_n
\]
are the unions of identity maps on \(D(\sigma(0)) \) over the respective inclusions of the index sets. As \(\mathcal{N}(K^{\leq 1}_n) \) is the subset of \(\mathcal{N}(J^{\leq 1}_n) \) consisting of \(\sigma \) which contain an identity morphism; \(L^n \text{hocolim}_{K^{\leq 1}_n} D_n \) has a similar description. The maps
\[
\text{hocolim} \mathcal{D}_n \amalg L^n \text{hocolim}_{J \leq 1} \mathcal{D}_n \rightarrow L^n \text{hocolim}_{J \leq 1} \mathcal{D}_n \approx \text{hocolim} \mathcal{D}_n \bigvee C,
\]
where
\[
C = \bigvee_{\sigma \in \mathcal{N}(K^{\leq 1}_n)_{\text{deg}} \cap \mathcal{N}(J^{\leq 1}_n)_{\text{deg}}} D(\sigma(0)),
\]
and the map to \(\text{hocolim}_{K^{\leq 1}_n} D_n \) is the evident inclusion. As \(D(N) \) is cofibrant for all \(N \), this map is clearly a cofibration, completing the proof.

We have the \(n \)-cube \(\square^n \), the category associated to the partially ordered set of subsets of \(\{1, \ldots, n\} \), ordered under inclusion, and the punctured \(n \)-cube \(\square^n_0 \) of proper subsets. We have the two inclusion functors \(i^+_n, i^-_n : \square^{n-1} \rightarrow \square^n \), \(i^+_n(I) := I \cup \{n\} \), \(i^-_n(I) = I \) and the natural transformation \(\psi_n : i^-_n \rightarrow i^+_n \) given as the collection of inclusions \(I \subset I \cup \{n\} \). The functor \(i^-_n \) induces the functor \(i^-_{n0} : \square^{n-1} \rightarrow \square^n_0 \).

For a functor \(F : \square^n \rightarrow C \), we have the iterated homotopy cofiber, \(\text{hocofib}_n F \), defined inductively as the homotopy cofiber of \(\text{hocofib}_{n-1}(F(\psi_n)) \) : \(\text{hocofib}(F \circ i^-_n) \rightarrow \text{hocofib}(F \circ i^+_n) \). Using this inductive construction, it is easy to define a natural isomorphism \(\text{hocofib}_n F \cong \text{hocofib}_{\square^{n+1}_0} \hat{F} \), where \(\hat{F} \circ i^-_{n+10} = F \) and \(\hat{F}(I) = pt \) if \(n \in I \).

The following result is proved in \cite{S10} Lemma 4.2 and Proposition 4.3.

Lemma 1.8. Assume that \(I \) is countable. Then there is a canonical isomorphism in \(\text{Ho} \mathcal{C} \)
\[
1/(\{x_i \mid i \in I\}) \cong \text{hocofib}_{\square^I} \mathcal{D}_x \rightarrow \text{hocolim}_{\square^I} \mathcal{D}_x
\]
Proof. As 1 is the final object in \(I\), the collection of maps \(x \times: N^I \to 1\) defines a weak equivalence \(\pi: \text{hocofib}_{D_x} \to 1\). In addition, for each \(N \in I\), the comma category \(N/\pi\) has initial object the map \(N \to \tilde{N}\), where \(\tilde{N}_i = 1\) if \(N_i > 0\), and \(\tilde{N}_i = 0\) otherwise. Thus \(\tilde{I}\) is homotopy right cofinal in \(I\) (see e.g. [Hir03 definition 19.6.1]). Since \(D_x\) is a diagram of cofibrant objects in \(C\), it follows from [Hir03 theorem 19.6.7] that the map \(\text{hocolim}_{\tilde{I}} D_x \to \text{hocofib}_{\tilde{I}} D_x\) is a weak equivalence. This reduces us to identifying \(1/\{x_i\}\) with the homotopy cofiber of \(\pi_{\leq 1}: \text{hocofib}_{\tilde{I}} D_x \to 1\), where \(\pi_{\leq 1}\) is the composition of \(\pi\) with the natural map : \(\text{hocolim}_{\tilde{I}} D_x \to \text{hocofib}_{\tilde{I}} D_x\).

Next, we reduce to the case of a finite set \(I\). Take \(I = \mathbb{N}\). Let \(P_{fin}(I)\) be the category of finite subsets of \(I\), ordered by inclusion, consider the full subcategory \(P_{fin}^O(I)\) of \(P_{fin}(I)\) consisting of the subsets \(I_n := \{1, \ldots, n\}\) and let \(\tilde{I} = \{1\} \subset \mathbb{N}\) be the full subcategory with all indices in \(I_n\). As \(P_{fin}^O(I)\) is cofinal in \(P_{fin}(I)\), we have

\[
\text{colim} \text{hocolim}_{n} D_x \cong \text{hocolim}_{I} D_x.
\]

Take \(n \leq m\). By lemma 1.7 the the map \(\text{hocolim}_{I_n} D_x \to \text{hocolim}_{I_m} D_x\) is a cofibration in \(C\). Thus, using the Reedy model structure on \(C^n\) with \(\mathbb{N}\) considered as a direct category, the \(\mathbb{N}\)-diagram in \(C\), \(\text{hocolim}_{\tilde{I}} D_x\), is a cofibrant object in \(CN\). As \(\mathbb{N}\) is a direct category, the fibrations in \(C^n\) are the pointwise ones, hence \(\mathbb{N}\) has pointwise constants [Hir03 definition 15.10.1] and therefore [Hir03 theorem 19.9.1] the canonical map

\[
\text{hocolim}_{n} \text{hocolim}_{I_n} D_x \to \text{hocolim}_{I} D_x
\]

is a weak equivalence in \(C\). This gives us the weak equivalence in \(C\)

\[
\text{hocolim}_{n} D_x \to \text{hocolim}_{I} D_x.
\]

Since \(\mathbb{N}\) is contractible, the canonical map \(\text{hocolim}_{n} 1 \to 1\) is a weak equivalence in \(C\), giving us the weak equivalences

\[
\text{hocofib}_{\{I_n\}_{n=1}} \text{hocolim}_{n} D_x \to 1
\]

\[
\cong \text{hocofib}_{\{I_n\}_{n=1}} \text{hocolim}_{n} D_x \to 1
\]

\[
\sim \text{hocolim}_{n} \text{hocofib}_{\{I_n\}_{n=1}} D_x \to 1
\]

Thus, we need only exhibit isomorphisms in \(\text{HoC}\)

\[
\rho_n: \text{hocofib}_{\{I_n\}_{n=1}} D_x \to 1/(x_1, \ldots, x_n) := 1/(x_1) \otimes \ldots \otimes 1/(x_n),
\]

which are natural in \(n \in \mathbb{N}\).

By lemma 1.9 we have a natural isomorphism in \(C\),

\[
\text{hocofib}_{\{I_n\}_{n=1}} D_x \cong \text{holim}_{C(I_n, \leq 1)} C(D_x, \pi)^\Gamma.
\]

However, \(I_n, \leq 1\) is isomorphic to \(\square_0^n\) by sending \(N = (N_1, \ldots, N_n)\) to \(I(N) := \{i \mid N_i = 0\}\). Similarly, \(C(I_n, \leq 1)\) is isomorphic to \(\square_0^n\), and \(C(I_n, \leq 1)\) is thus isomorphic to \(\square_0^n\). From our discussion above, we see that \(\text{hocofib}_{C(I_n, \leq 1)} C(D_x, \pi)^\Gamma\)
is isomorphic to hocofib\(n C(D_x, \pi)\), so we need only exhibit isomorphisms in \(\text{Ho} C\)

\[
\rho_n : \text{hocofib}_n C(D_x, \pi) \rightarrow 1/(x_1) \otimes \ldots \otimes 1/(x_n)
\]

which are natural in \(n \in \mathbb{N}\).

We do this inductively as follows. To include the index \(n\) in the notation, we write \(C(D_x, \pi)_n\) for the functor \(C(D_x, \pi) : \square^n \rightarrow C\). For \(n = 1\), hocofib\(1 C(D_x, \pi)_1\) is the mapping cone of \(\mu_1 \circ (\times x_1 \otimes \text{id}) : 1 \otimes T_1 \otimes 1 \rightarrow 1\), which is isomorphic in \(\text{Ho} C\) to the homotopy cofiber of \(\times x_1 : 1 \otimes T_1 \rightarrow 1\). As this latter is equal to \(1/(x_1)\), so we take \(\rho_1 : \text{hocofib}_1 C(D_x, \pi)_1 \rightarrow 1/(x_1)\) to be this isomorphism. We note that \(C(D_x, \pi)_n \circ i_n^+ = C(D_x, \pi)_{n-1}\) and \(C(D_x, \pi)_n \circ i_n^- = C(D_x, \pi)_{n-1} \otimes T_n \otimes 1\).

Define \(C(D_x, \pi)_n\) by \(C(D_x, \pi)_{n-1} \otimes \pi_{n-1} \otimes T_n \otimes 1\). Give us the isomorphism in \(\text{Ho} C\) giving the desired naturality in \(n\).

\[
\rho_n : \text{hocofib}_n C(D_x, \pi)_n \rightarrow 1/(x_1) \otimes \ldots \otimes 1/(x_n)
\]

defined as the composition

\[
\text{hocofib}_n C(D_x, \pi)_n \cong \text{hocofib}_n C(D_x, \pi)'_n
\]

\[
\cong \text{hocofib}_n \text{hocofib}_n C(D_x, \pi)_{n-1} \otimes 1 \otimes T_n
\]

\[
\rho_{n-1} \circ \text{id} \otimes x_n \rightarrow \text{hocofib}_n C(D_x, \pi)_{n-1} \otimes 1
\]

\[
\cong \text{hocofib}_n C(D_x, \pi)_{n-1} \otimes 1 \otimes T_n
\]

\[
\cong \text{hocofib}_n C(D_x, \pi)_{n-1} \otimes 1 \otimes T_n
\]

\[
\rho_{n-1} \circ \text{id} \otimes x_n \rightarrow \text{hocofib}_n C(D_x, \pi)_{n-1} \otimes 1
\]

Via the definition of hocofib, we have the canonical map hocofib\(n-1 C(D_x, \pi)_{n-1} \rightarrow \text{hocofib}_n C(D_x, \pi)_n\). One easily sees that the diagram

\[
\begin{array}{ccc}
\text{hocofib}_n C(D_x, \pi)_n & \rightarrow & \text{hocofib}_n C(D_x, \pi)_n \\
\rho_{n-1} & \downarrow & \rho_{n} \\
1/(x_1) \otimes \ldots \otimes 1/(x_{n-1}) & \rightarrow & 1/(x_1) \otimes \ldots \otimes 1/(x_n)
\end{array}
\]

commutes in \(\text{Ho} C\), giving the desired naturality in \(n\).\(\square\)
Now let M be an object in C, let $QM \to M$ be a cofibrant replacement and form the I-diagram

$D_x \otimes QM : I \to C, (D_x \otimes QM)(N) = D_x(N) \otimes QM$.

Proposition 1.9. Assume that there is a canonical isomorphism in HoC

$$M/\{(x_i \mid i \in I)\} \cong hocolim D_x \otimes QM \to \text{hocolim} \, D_x \otimes QM$$

Proof. This follows directly from lemma [1.8] noting the definition of Q has a right adjoint r of Brown representability theorem [N97], the inclusion inclusion with $\text{colim} Q$ than the correct assumption hocolim F/I.

Proposition 1.10. Let $F : I_{\text{deg} \geq n} \to C$ be a diagram in a cofibrantly generated model category C. Suppose for every monomial M of degree n the natural map $\text{hocolim} F|_{I_{\text{deg} \geq n+1}} \to F(M)$ is a weak equivalence. Then the natural map $\text{hocolim} F|_{\text{deg} \geq n+1} \to \text{hocolim} F$ is a weak equivalence.

Proof. This is just [S10 lemma 4.4], with the following corrections: the statement of the lemma in loc. cit. has “hocolim $F|_{I_{\text{deg} \geq n}} \to F(M)$ is a weak equivalence” rather than the correct assumption “hocolim $F|_{I_{\text{deg} \geq n}} \to F(M)$ is a weak equivalence” and in the proof, one should replace the object $Q(M)$ with $\text{colim} Q/I_{I_{\text{deg} \geq n}}$ rather than with $\text{colim} Q/I_{I_{\text{deg} \geq n}}$.

2. Slices of effective motivic module spectra

In this section we will describe the slices for modules for a commutative and effective ring T-spectrum R that satisfies certain additional conditions. We adapt the constructions used in describing slices of MGL in [S10], which go through without significant change in this more general setting.

Let us first recall the definition of the slice tower in $SH(S)$. We will use the standard model category $Mot := Mot(S)$ of symmetric T-spectra over S, $T := k^1/k^1 \setminus \{0\}$, with the motivic model structure as in [J00], for defining the triangulated tensor category $SH(S) := HoMot(S)$.

For an integer q, let $\Sigma_T^qSH^{eff}(S)$ denote the localizing subcategory of $SH(S)$ generated by $S_q := \{\Sigma_T^pX \mid p \geq q, X \in Sm/S\}$, that is $\Sigma_T^qSH^{eff}(S)$ is the smallest triangulated subcategory of $SH(S)$ which contains S_q and is closed under direct sums and isomorphisms in $SH(S)$. This gives a filtration on $SH(S)$ by full localizing subcategories

$$\cdots \subset \Sigma_T^{q+1}SH^{eff}(S) \subset \Sigma_T^qSH^{eff}(S) \subset \Sigma_T^{q-1}SH^{eff}(S) \subset \cdots \subset SH(S).$$

The set S_q is a set of compact generators of $\Sigma_T^qSH(S)$ and the set $\cup_q S_q$ is similarly a set of compact generators for $SH(S)$. By Neeman’s triangulated version of Brown representability theorem [N97], the inclusion $i_q : \Sigma_T^qSH^{eff}(S) \to SH(S)$ has a right adjoint $r_q : SH(S) \to \Sigma_T^qSH^{eff}(S)$. We let $f_q := i_q \circ r_q$. The inclusion

$$\text{f:} \; SH(S) \to \bigcup_q \Sigma_T^qSH^{eff}(S).$$
$\Sigma_{q+1}^m \mathcal{SH}^{eff}(S) \to \Sigma_{q+1}^n \mathcal{SH}^{eff}(S)$ induces a canonical natural transformation $f_{q+1} \to f_q$. Putting these together forms the slice tower

(2.1) \[\cdots \to f_{q+1} \to f_q \to \cdots \to \text{id}. \]

For each q there exist triangulated functor $s_q: \mathcal{SH}(S) \to \mathcal{SH}(S)$ such that for every $E \in \mathcal{SH}(S)$, $s_q(E) \in \Sigma_{q+1}^m \mathcal{SH}^{eff}(S)$ and there is a canonical and natural distinguished triangle

$$f_{q+1}(E) \to f_q(E) \to s_q(E) \to \Sigma f_{q+1}(E)$$

in $\mathcal{SH}(S)$.

Pelaez has given a lifting of the construction of the functors f_q to the model category level. For this, he starts with the model category Mot and forms for each n the right Bousfield localization of Mot with respect to the objects $\Sigma^m_n F_n X_+$ with $m - n \geq q$ and $X \in \text{Sm}/S$. Here $F_n X_+$ is the shifted T-suspension spectrum, that is, $\Sigma^m_n X_+$ in degree $m \geq n$, pt in degree $m < n$, and with identity bonding maps. Calling this Bousfield localization Mot_q, the functor r_q is given by taking a functorial cofibrant replacement in Mot_q. As the underlying categories are all the same, this gives liftings \tilde{f}_q of f_q to endofunctors on Mot. The technical condition on Mot invoked by Pelaez is that of cellularity and right properness, which ensures that the right Bousfield localization exists; this follows from the work of Hirschhorn [Hir03]. Alternatively, one can use the fact that Mot is a combinatorial right proper model category, following work of J. Smith, detailed for example in [B10].

The combinatorial property passes to module categories, and so this approach will be useful here. The category Mot is a closed symmetric monoidal simplicial model category, with cofibrant unit the sphere (symmetric) spectrum \mathbb{S}_S and product \wedge. Let \mathcal{R} be a commutative monoid in Mot. We have the model category $\mathcal{C} := \mathcal{R}\text{-Mod}$ of \mathcal{R}-modules, as constructed in [ScSh]. The fibrations and weak equivalences are the morphisms which are fibrations, resp. weak equivalences, after applying the forgetful functor to Mot; cofibrations are those maps having the left lifting property with respect to trivial fibrations. This makes \mathcal{C} into a pointed closed symmetric monoidal simplicial model category; \mathcal{C} is in addition cofibrantly generated and combinatorial. Assuming that \mathcal{R} is a cofibrant object in Mot, the free \mathcal{R}-module functor, $\mathcal{E} \to \mathcal{R} \wedge \mathcal{E}$, gives a left adjoint to the forgetful functor and gives rise to a Quillen adjunction. For details as to these facts and a general construction of this model category structure on module categories, we refer the reader to [ScSh]; another source is [Hov], especially theorem 1.3, proposition 1.9 and proposition 1.10.

The model category $\mathcal{R}\text{-Mod}$ inherits right properness from Mot. We may therefore form the right Bousfield localization \mathcal{C}_q with respect to the free \mathcal{R}-modules $\mathcal{R} \wedge \Sigma^m_n F_n X_+$ with $m - n \geq q$ and $X \in \text{Sm}/S$, and define the endofunctor $\tilde{f}_q^\mathcal{R}$ on \mathcal{C} by taking a functorial cofibrant replacement in \mathcal{C}_q. By the adjunction, one sees that $\text{Ho}\mathcal{C}_q$ is equivalent to the localizing subcategory of $\text{Ho}\mathcal{C}$ (comactly) generated by $\{ \mathcal{R} \wedge \Sigma^m_n F_n X_+ \mid m - n \geq q, X \in \text{Sm}/S \}$. We denote this localizing subcategory by $\Sigma^m_q \text{Ho}\mathcal{C}^{eff}$, or $\text{Ho}\mathcal{C}^{eff}$ for $q = 0$. We call an object \mathcal{M} of \mathcal{C} effective if the image of \mathcal{M} in $\text{Ho}\mathcal{C}$ is in $\text{Ho}\mathcal{C}^{eff}$, and denote the full subcategory of effective objects of \mathcal{C} by \mathcal{C}^{eff}.
Just as above, Neeman’s results give a right adjoint \(r^R_q \) to the inclusion \(i^R_q : \Sigma^q \mathcal{C}^{eff} \to \mathcal{C} \) and the composition \(f^R_q := i^R_q \circ r^R_q \) is represented by \(\tilde{f}^R_q \). One recovers the functors \(f_q \) and \(\tilde{f}_q \) by taking \(R = \mathbb{S} \).

Lemma 2.2. Let \(\mathcal{R} \) be a cofibrant commutative monoid in \(\mathcal{M}ot \). The functors \(f^R_q : \text{Ho} \mathcal{C} \to \text{Ho} \mathcal{C} \) and their liftings \(\tilde{f}^R_q \) have the following properties.

1. Each \(f^R_n \) is idempotent, i.e., \((f^R_n)^2 = f^R_n \).
2. \(f^R_n \Sigma^1 = \Sigma^1 f^R_{n-1} \) for \(n \in \mathbb{Z} \).
3. Each \(\tilde{f}^R_q \) commutes with homotopy colimits.
4. Suppose that \(\mathcal{R} \) is in \(\mathcal{S}H^{eff} \). Then the forgetful functor \(U : \text{Ho} \mathcal{R}\text{-Mod} \to \mathcal{S}H(S) \) induces an isomorphism \(U \circ f^R_q \cong f_q \circ U \) as well as an isomorphism \(U \circ s^R_q \cong s_q \circ U \), for all \(q \in \mathbb{Z} \).

Proof. (1) and (2) follow from universal property of triangulated functors \(f^R_n \). In case \(\mathcal{R} = \mathbb{S} \), (3) is proved in [SH1 Cor 4.5]; the proof for general \(\mathcal{R} \) is the same. For (4), it suffices to prove the result for \(f_q \) and \(f^R_q \). Take \(\mathcal{M} \in \mathcal{C} \). We check the universal property of \(U f^R_q \mathcal{M} \to \mathcal{M} \): Since \(\mathcal{R} \) is in \(\mathcal{S}H^{eff} \) and the functor \(- \wedge \mathcal{R} \) is compatible with homotopy cofiber sequences and direct sums, \(- \wedge \mathcal{R} \) maps \(\Sigma^q \mathcal{S}H^{eff}(S) \) into itself for each \(q \in \mathbb{Z} \). As \(U(\mathcal{R} \wedge \mathcal{E}) = \mathcal{R} \wedge \mathcal{E} \), it follows that \(U(\Sigma^q \text{Ho} \mathcal{R}\text{-Mod}^{eff}) \subset \Sigma^q \mathcal{S}H^{eff}(S) \) for each \(q \). In particular, \(U(f^R_q(\mathcal{M})) \) is in \(\Sigma^q \mathcal{S}H^{eff}(S) \). For \(p \geq q \), \(X \in \mathcal{S}m/S \), we have

\[
\text{Hom}_{\mathcal{S}H(S)}(\Sigma^p \Sigma^\infty X_+, U(f^R_q(\mathcal{M}))) \cong \text{Hom}_{\text{Ho} \mathcal{C}}(\mathcal{R} \wedge \Sigma^p \Sigma^\infty X_+, f^R_q(\mathcal{M}))
\]

\[
\cong \text{Hom}_{\text{Ho} \mathcal{C}}(\mathcal{R} \wedge \Sigma^p \Sigma^\infty X_+, \mathcal{M})
\]

\[
\cong \text{Hom}_{\mathcal{S}H(S)}(\Sigma^p \Sigma^\infty X_+, U(\mathcal{M}))
\]

so the canonical map \(U(f^R_q(\mathcal{M})) \to f_q(U(\mathcal{M})) \) is therefore an isomorphism. \(\square \)

From the adjunction \(\text{Hom}_{\mathcal{C}}(\mathcal{R}, \mathcal{M}) \cong \text{Hom}_{\mathcal{Mot}}(\mathbb{S}, \mathcal{M}) \) and the fact that \(\mathbb{S} \) is a cofibrant object of \(\mathcal{Mot} \), we see that \(\mathcal{R} \) is a cofibrant object of \(\mathcal{C} \). Thus \(\mathcal{C} \) is a closed symmetric monoidal simplicial model category with cofibrant unit \(1 := \mathcal{R} \) and monoidal product \(\otimes = \wedge \mathcal{R} \). Similarly, \(T_\mathcal{R} := \mathcal{R} \wedge T \) is a cofibrant object of \(\mathcal{C} \). Abusing notation, we write \(\Sigma^q T(\cdot) \) for the endofunctor \(A \to A \otimes T_\mathcal{R} \) of \(\mathcal{C} \).

We recall that the category \(\mathcal{Mot} \) satisfies the monoid axiom of Schwede-Shipley [SncSh; definition 3.3]; the reader can see for example the proof of [Ho; lemma 4.2]. Following remark [1.1] there is a fibrant replacement \(\mathcal{R} \to 1 \) in \(\mathcal{C} \) such that \(1 \) is an \(\mathcal{R} \)-algebra; in particular, \(\mathcal{R} \to 1 \) is a cofibration and a weak equivalence in both \(\mathcal{C} \) and in \(\mathcal{Mot} \), and in \(\mathcal{C} \) is fibrant in both \(\mathcal{C} \) and in \(\mathcal{Mot} \).

For each \(\bar{x} \in \mathcal{R}^{-2d,-d}(S) \), we have the corresponding element \(\bar{x} : T^{\otimes d}_\mathcal{R} \to \mathcal{R} \) in \(\text{Ho} \mathcal{C} \), which we may lift to a morphism \(x : T^{\otimes d}_\mathcal{R} \to 1 \) in \(\mathcal{C} \). Thus, for a collection of elements \(\{\bar{x}_i \in \mathcal{R}^{-2d_i,-d_i}(S) \mid i \in I\} \), we have the associated collection of maps in \(\mathcal{C} \), \(\{x_i : T^{\otimes d_i}_\mathcal{R} \to 1 \mid i \in I\} \) and thereby the quotient object \(1/\{\{x_i\}\} \) in \(\mathcal{C} \). Similarly, for \(\mathcal{M} \) an \(\mathcal{R} \)-module, we have the \(\mathcal{R} \)-module \(\mathcal{M}/\{\{x_i\}\} \), which is a cofibrant object in \(\mathcal{C} \). We often write \(\mathcal{R}/\{\{x_i\}\} \) for \(1/\{\{x_i\}\} \).

Lemma 2.2. Suppose that \(\mathcal{R} \) is in \(\mathcal{S}H^{eff}(S) \). Then for any set

\[
\{\bar{x}_i \in \mathcal{R}^{-2d_i,-d_i}(S) \mid i \in I, d_i > 0\}
\]

of elements of \(\mathcal{R} \)-cohomology, the object \(\mathcal{R}/\{\{x_i\}\} \) is effective. If in addition \(\mathcal{M} \) is an \(\mathcal{R} \)-module and is effective, then \(\mathcal{M}/\{\{x_i\}\} \) is effective.
Proof. This follows from lemma 2.1 since f^R_n is a triangulated functor and \mathcal{C}^{eff} is closed under homotopy colimits.

Let A be an abelian group and SA the topological sphere spectrum with A-coefficients. For a T-spectrum \mathcal{E} let us denote the spectrum $\mathcal{E} \wedge (SA)$ by $\mathcal{E} \otimes A$. Of course, if A is the free abelian group on a set S, then $\mathcal{E} \otimes A = \oplus_{s \in S} \mathcal{E}$.

Let $\{x_i \in \mathcal{R}^{-2d_i,-d_i}(S) \mid i \in I, d_i > 0\}$ be a set of elements of R-cohomology, with I countable. Suppose that R is cofibrant as an object in Mot and is in $SH^{iff}(S)$. Let \mathcal{M} be in \mathcal{C}^{iff} and let $Q\mathcal{M} \to \mathcal{M}$ be a cofibrant replacement. By lemma 1.8, we have a homotopy cofiber sequence in \mathcal{C},

$$hocolim_{T^I} D_x \otimes Q\mathcal{M} \to Q\mathcal{M} \to \mathcal{M}/(\{x_i\}).$$

Clearly $hocolim_{T^I} D_x \otimes Q\mathcal{M}$ is in $\Sigma_I^{+} Ho \mathcal{C}^{iff}$, hence the above sequence induces an isomorphism in $Ho \mathcal{C}$

$$s_0^R \mathcal{M} \xrightarrow{\sigma_{\mathcal{M}}} s_0^R (\mathcal{M}/(\{x_i\})).$$

Composing the canonical map $\mathcal{M}/(\{x_i\}) \to s_0^R (\mathcal{M}/(\{x_i\})$ with $\sigma_{\mathcal{M}}^{-1}$ gives the canonical map

$$\pi_{\mathcal{M}} : \mathcal{M}/(\{x_i\}) \to s_0^R \mathcal{M}$$

in $Ho \mathcal{C}$. Applying the forgetful functor gives the canonical map in $SH(S)$

$$\pi_{\mathcal{M}} : U(\mathcal{M}/(\{x_i\})) \to U(s_0^R \mathcal{M}) \cong s_0(U\mathcal{M}).$$

This equal to the canonical map $U(\mathcal{M}/(\{x_i\})) \to s_0(U(\mathcal{M}/(\{x_i\}))$ composed with the inverse of the isomorphism $s_0(U\mathcal{M}) \to s_0(U(\mathcal{M}/(\{x_i\}))$.

Theorem 2.3. Let \mathcal{R} be a commutative monoid in $Mot(S)$, cofibrant as an object in $Mot(S)$, such that \mathcal{R} is in $SH^{iff}(S)$. Let $X = \{x_i \in \mathcal{R}^{-2d_i,-d_i}(S) \mid i \in I, d_i > 0\}$ be a countable set of elements of \mathcal{R}-cohomology. Let \mathcal{M} be an \mathcal{R}-module in \mathcal{C}^{iff} and suppose that the canonical map $\pi_{\mathcal{M}} : U(\mathcal{M}/(\{x_i\})) \to s_0(U\mathcal{M})$ is an isomorphism. Then for each $n \geq 0$, we have a canonical isomorphism in $Ho \mathcal{C}$,

$$s_n^R \mathcal{M} \cong \Sigma_t s_0^R \mathcal{M} \otimes \mathbb{Z}[X]_n,$$

where $\mathbb{Z}[X]_n$ is the abelian group of weighted-homogeneous degree n polynomials over \mathbb{Z} in the variables $\{x_i, i \in I\}$, $\deg x_i = d_i$. Moreover, for each n, we have a canonical isomorphism in $SH(S)$,

$$s_n U\mathcal{M} \cong \Sigma_t s_0 U\mathcal{M} \otimes \mathbb{Z}[X]_n.$$

Proof. Replacing \mathcal{M} with a cofibrant model, we may assume that \mathcal{M} is cofibrant in \mathcal{C}; as \mathcal{R} is cofibrant in Mot, it follows that $U\mathcal{M}$ is cofibrant in Mot.

Since $\pi_{\mathcal{M}} = U(\pi_{\mathcal{M}}^R)$, our assumption on $\pi_{\mathcal{M}}$ is the same as assuming that $\pi_{\mathcal{M}}^R$ is an isomorphism in $Ho \mathcal{C}$. By construction, $\pi_{\mathcal{M}}^R$ extends to a map of distinguished triangles

$$\begin{array}{ccc}
(hocolim_{T^I} D_x) \otimes \mathcal{M} & \longrightarrow & \mathcal{M}/(\{x_i\}) \\
\alpha & \Downarrow & \Sigma(hocolim_{T^I} D_x) \otimes \mathcal{M} \\
f_1^R \mathcal{M} & \longrightarrow & s_0^R \mathcal{M} \\
\sigma_{\mathcal{M}} & \Downarrow & \Sigma f_1^R \mathcal{M},
\end{array}$$

and thus the map α is an isomorphism. We note that α is equal to the canonical map given by the universal property of $f_1^R \mathcal{M} \to \mathcal{M}$.

References:

1. [Lemma 2.1](#).
2. [Theorem 1.8](#).
3. [Remark 2.1](#).
4. [Diagonal Lemma 2.1](#).
5. [Diagram 2.1](#).
6. [Map 2.1](#).
We will now identify $f_n^R \mathcal{M}$ in terms of the diagram $D_n [I_{\deg \geq n} \otimes \mathcal{M}]$, proving by induction on $n \geq 1$ that the canonical map $\text{hocolim} D_x \otimes \mathcal{M}_{\deg \geq n} \to f_n^R \mathcal{M}$ in $\text{Ho} \mathcal{C}$ is an isomorphism.

As $I^0 = I_{\deg \geq 1}$, the case $n = 1$ is settled. Assume the result for n. We claim that the diagram

$$\text{hocolim} f_{n+1}^R [D_x \otimes \mathcal{M}_{\deg \geq n}] : I_{\deg \geq n} \to \mathcal{C}$$

satisfies the hypotheses of proposition L.10. That is, we need to verify that for every monomial M of degree n the natural map

$$\text{hocolim} f_{n+1}^R [D_M \otimes \mathcal{M}] \to f_{n+1}^R [D(M) \otimes \mathcal{M}]$$

is a weak equivalence in \mathcal{C}. This follows by the string of isomorphisms in $\text{Ho} \mathcal{C}$

$$\text{hocolim} f_{n+1}^R D_M \otimes \mathcal{M} \cong \text{hocolim} f_{n+1}^R \Sigma^n_T D_{\deg \geq 1} \otimes \mathcal{M}$$

$$\cong \text{hocolim} \Sigma^n_T f_{n+1}^R D_{\deg \geq 1} \otimes \mathcal{M}$$

$$\cong \Sigma^n_T f_{n+1}^R \text{hocolim} D_{\deg \geq 1} \otimes \mathcal{M}$$

$$\cong \Sigma^n_T f_{n+1}^R M$$

$$\cong f_{n+1}^R \Sigma^n_T M$$

$$\cong f_{n+1}^R [D(M) \otimes \mathcal{M}]$$.

Applying proposition L.10 and our induction hypothesis gives us the string of isomorphisms in $\text{Ho} \mathcal{C}$

$$f_{n+1}^R M \cong f_{n+1}^R f_n^R \mathcal{M} \cong f_{n+1}^R \text{hocolim} [D_x \otimes \mathcal{M}_{\deg \geq n}]$$

$$\cong \text{hocolim} f_{n+1}^R [D_x \otimes \mathcal{M}_{\deg \geq n}] \cong \text{hocolim} f_{n+1}^R [D_x \otimes \mathcal{M}_{\deg \geq n+1}]$$

$$\cong \text{hocolim} D_x \otimes \mathcal{M}_{\deg \geq n+1},$$

the last isomorphism following from the fact that $D_x (x^n) \otimes \mathcal{M}$ is in $\Sigma^n_T \mathcal{C}^{\text{eff}}$, and hence the canonical map $f_{n+1}^R [D_x \otimes \mathcal{M}] \to D_x \otimes \mathcal{M}$ is an objectwise weak equivalence on $I_{\deg \geq n+1}$.

For the slices s_n we have

$$s_n^R \mathcal{M} := \text{hocolim}(f_{n+1}^R M \to f_n^R M) \cong \text{hocolim}(f_{n+1}^R f_n^R M \to f_n^R M)$$

$$\cong \text{hocolim}(f_{n+1}^R [D_{\deg \geq n} \otimes \mathcal{M}] \to \text{hocolim} D_{\deg \geq n} \otimes \mathcal{M})$$

$$\cong \text{hocolim} f_{n+1}^R [D_{\deg \geq n} \otimes \mathcal{M}] \to D_{\deg \geq n} \otimes \mathcal{M}).$$

At a monomial of degree greater than n, the canonical map $f_{n+1}^R [D_{\deg \geq n} \otimes \mathcal{M}] \to D_{\deg \geq n} \otimes \mathcal{M}$ is a weak equivalence, and at a monomial M of degree n the homotopy cofiber is given by

$$\text{hocolim} f_{n+1}^R [D(M) \otimes \mathcal{M}] \to D(M) \otimes \mathcal{M} = \text{hocolim} f_{n+1}^R [\Sigma^n_T M] \to \Sigma^n_T M$$

$$\cong \text{hocolim} (\Sigma^n_T f_{n+1}^R M \to \Sigma^n_T M) \cong \Sigma^n_T s_n^R M.$$

Let s_n^R be the funtor on \mathcal{C}^{eff}, $N \mapsto \text{hocolim}(f_{n+1}^R N \to N)$, and let $F_n \mathcal{M} : I_{\deg \geq n} \to \mathcal{C}^{\text{eff}}$ be the diagram

$$F_n(M) = \begin{cases} pt & \text{for } \deg M > n \\ \Sigma^n_T s_n^R M & \text{for } \deg M = n. \end{cases}$$
We thus have a weak equivalence of pointwise cofibrant functors
\[\text{hocolim}(f_{n+1}^R : D_{\text{deg} \geq n} \otimes M) \rightarrow \text{D}_{\text{deg} \geq n} \otimes M) \rightarrow F_n : I_{\text{deg} \geq n} \rightarrow C, \]
and therefore a weak equivalence on the homotopy colimits. As we have the evident
isomorphism in \(\text{Ho} C \)
\[\text{hocolim}_{I_{\text{deg} \geq n}} F_n \cong \oplus_{M, \text{deg} M = n} \Sigma^n s_0^R M, \]
this gives us the desired isomorphism \(s_n^R M \cong \Sigma^n \Pi_0^R M \otimes \mathbb{Z}[X]_n \) in \(\text{Ho} C \). Applying the forgetful functor and using lemma \(2.3 \) gives the isomorphism \(s_n U M \cong \Sigma^n \Pi_0 U M \otimes \mathbb{Z}[X]_n \) in \(SH(S) \). \(\Box \)

Corollary 2.4. Let \(R, X \) and \(M \) be as in theorem \(2.3 \). Let \(Z = \{ z_j \in \mathbb{Z}[X]_{c_j} \} \) be a collection of homogeneous elements of \(\mathbb{Z}[X] \), and let \(M[Z^{-1}] \in C \) be the localization of \(M \) with respect to the collection of maps \(\times z_j : M \rightarrow \Sigma^{-e_j} M \). Then there are natural isomorphisms
\[s_n^R M[Z^{-1}] \cong \Sigma^n \Pi_0^R M \otimes \mathbb{Z}[X][Z^{-1}]_n, \]
\[s_n U M[Z^{-1}] \cong \Sigma^n \Pi_0 U M \otimes \mathbb{Z}[X][Z^{-1}]_n. \]

Proof. Each map \(\times z_j : M \rightarrow \Sigma^{-e_j} M \) induces the isomorphism \(\times z_j : M[Z^{-1}] \rightarrow \Sigma^{-e_j} M[Z^{-1}] \) in \(\text{Ho} C \), with inverse \(\times z_j^{-1} : \Sigma^{-e_j} M[Z^{-1}] \rightarrow M[Z^{-1}] \). Applying \(f_q^R \) gives us the map in \(\text{Ho} C \)
\[\times z_j : f_q^R M \rightarrow f_q^R \Sigma^{-e_j} M \cong \Sigma^{-e_j} f_q^R M. \]

As \(f_q^R M \) in \(\Sigma^{q+e_j} \text{Ho} C_{eff} \), both \(\Sigma^{-e_j} f_q^R M \) and \(f_q^R M \) are in \(\Sigma^q \text{Ho} C_{eff} \). The composition
\[\Sigma^{-e_j} f_q^R M \rightarrow \Sigma^{-e_j} M \times z_j^{-1} \rightarrow M[Z^{-1}] \]
gives via the universal property of \(f_q^R \) the map \(\Sigma^{-e_j} f_q^R M \rightarrow f_q^R M[Z^{-1}] \). Setting \(|N| = \sum_j N_j c_j \), this extends to give a map of the system of monomial multiplications
\[\times z^{N-M} : \Sigma^{N} f_q^R |N| M \rightarrow \Sigma^{-|N|} f_q^R M \rightarrow f_q^R M |N| M \]
to \(f_q^R M[Z^{-1}] \); the universal property of the truncation functors \(f_q \) and of localization shows that this system induces an isomorphism
\[\text{hocolim}_{N \in Z} \Sigma^{N} f_q^R |N| M \cong f_q^R M[Z^{-1}] \]
in \(\text{Ho} C \). As the slice functors \(s_q \) are exact and commute with hocolim, we have a similar collection of isomorphisms
\[\text{hocolim}_{N \in Z^q} \Sigma^{N} s_q^R |N| M \cong s_q(M[Z^{-1}]). \]

Theorem \(2.3 \) gives us the natural isomorphisms
\[\Sigma^{N} s_q^R |N| M \cong \Sigma^q s_0^R M \otimes \mathbb{Z}[X]_{q+|N|}; \]
via this isomorphism, the map \(\times z_j \) goes over to \(\text{id}_{\Sigma^q s_0^R M} \otimes \times z_j \), which yields the result. \(\Box \)
Corollary 2.5. Let R, X and M be as in theorem 2.3. Let $Z = \{z_j \in \mathbb{Z}[X]_c\}$ be a collection of homogeneous elements of $\mathbb{Z}[X]$, and let $M[\mathbb{Z}^{-1}] \in C$ be the localization of M with respect to the collection of maps $x \in \mathbb{Z}$: $M \to \Sigma^{-e_j} M$. Let $m \geq 2$ be an integer. We let $M[\mathbb{Z}^{-1}]/m := hocolim \times m : M[\mathbb{Z}^{-1}] \to M[\mathbb{Z}^{-1}]$. Then there are natural isomorphisms

$$s_n M[\mathbb{Z}^{-1}]/m \cong \Sigma^n s_n M/m \otimes \mathbb{Z}[X][\mathbb{Z}^{-1}],$$

$$s_n UM[\mathbb{Z}^{-1}]/m \cong \Sigma^n s_n UM/m \otimes \mathbb{Z}[X][\mathbb{Z}^{-1}].$$

This follows directly from corollary 2.4 noting that s_n^R and s_n are exact functors.

Remark 2.6. Let P be a multiplicatively closed subset of \mathbb{Z}. We may replace Mot with its localization $Mot[\mathbb{Z}^{-1}]$ with respect to P in theorem 2.3 corollary 2.4 and corollary 2.5 and obtain a corresponding description of $s_n^R M$ and $s_n UM$ for a commutative monoid R in $Mot[\mathbb{Z}^{-1}]$ and an effective R-module M.

For $P = \mathbb{Z}\{p^n, n = 1, 2, \ldots\}$, we write $Mot \otimes \mathbb{Z}(p)$ for $Mot[\mathbb{Z}^{-1}]$ and $SH(S) \otimes \mathbb{Z}(p)$ for $Hom Mot \otimes \mathbb{Z}(p)$.

3. The slice spectral sequence

The slice tower in $SH(S)$ gives us the slice spectral sequence, for $E \in SH(S)$, $X \in Sm/S$, $n \in \mathbb{Z}$,

$$E_2^{p,q}(n) := (s-q(E))(p+q,n)(X) \Rightarrow E^{p+q,n}(X).$$

This spectral sequence is not always convergent, however, we do have a convergence criterion:

Lemma 3.1 ([15 lemma 2.1]). Suppose that $S = \text{Spec} k$, k a perfect field. Take $E \in SH(S)$. Suppose that there is a non-decreasing function $f : \mathbb{Z} \to \mathbb{Z}$ with $\lim_{n \to \infty} f(n) = \infty$, such that $\pi_{a+b} E = 0$ for $a \leq f(b)$. Then the for all Y, and all $n \in \mathbb{Z}$, the spectral sequence $\mathbf{3.1}$ is strongly convergent \implies

\[\text{This yields our first convergence result. For } E \in SH(S), Y \in Sm/S, p, q, n \in \mathbb{Z}, \text{ define} \]

$$H^{p-q}(Y, \pi_{-q}(E)(n-q)) := \text{Hom}_{SH(S)}(\Sigma^\infty Y, \Sigma^{p+q,n} s-q(E)).$$

Here $\Sigma^{a,b}$ is suspension with respect to the sphere $S^{a,b} \cong S^{a-b} \wedge G_m^{a,b}$. This notation is justified by the case $S = \text{Spec} k$, k a field of characteristic zero. In this case, there is for each q a canonically defined object $\pi_q(E)$ of Voevodsky’s “big” triangulated category of motives $DM(k)$, and a canonical isomorphism

$$EM_{A^1}(\pi_q(E)) \cong \Sigma^q s_q(E),$$

where $EM_{A^1} : DM(k) \to SH(k)$ is the motivic Eilenberg-MacLane functor. The adjoint property of EM_{A^1} yields the isomorphism

$$H^{p-q}(Y, \pi_{-q}(E)(n-q)) := \text{Hom}_{DM(k)}(M(Y), \pi_{-q}(E)(n-q)[p-q]) \cong \text{Hom}_{SH(S)}(\Sigma^\infty Y, \Sigma^{p+q,n} s-q(E)).$$

We refer the reader to [PT11, RO08, Vo04] for details.

\[1\text{As spectral sequence } \{E_r^{p,n}\} \to G^{r+n} \text{ converges strongly to } G^n \text{ if for each } n, \text{ the spectral sequence filtration } F^r G^n \text{ on } G^n \text{ is finite and exhaustive, there is an } r(n) \text{ such that for all } p \text{ and all } r \geq r(n), \text{ all differentials entering and leaving } E_r^{p,n-p} \text{ are zero and the resulting maps } E_r^{p,n-p} \to E_r^{p,n-p} = \text{Gr}_r G^n \text{ are all isomorphisms.}\]
Proposition 3.2. Let R be a commutative monoid in $\text{Mot}(S)$, cofibrant as an object in $\text{Mot}(S)$, with R in $\mathcal{SH}^{	ext{eff}}(S)$. Let $X := \{x_i \in R^{-d_i - 1}(S)\}$ be a countable set of elements of R-cohomology, with $d_i > 0$. Let P be a multiplicatively closed subset of \mathbb{Z} and let M be an $R[\mathbb{P}^{-1}]$-module, with $UM \in \mathcal{SH}(S)^{\text{eff}}[\mathbb{P}^{-1}]$. Suppose that the canonical map

$$U(M/(\{x_i\})) \to s_0 UM$$

is an isomorphism in $\mathcal{SH}(S)[\mathbb{P}^{-1}]$. Then

1. The slice spectral sequence for M has the form:

$$E_2^{p,q}(n) := H^{p,q}((\{\pi_i^{\text{eff}}(M)(n - q)\}) \otimes_{\mathbb{Z}} Z[X])_q \to \mathcal{M}^{p+q,n}(Y).$$

2. Suppose that $S = \text{Spec} k$, k a perfect field. Suppose further that there is an integer a such that $M^{2r+s}(Y) = 0$ for all $Y \in \text{Sm}/S$, all $r \in \mathbb{Z}$ and all $s \geq a$. Then the slice spectral sequence converges strongly for all $Y \in \text{Sm}/S$, $n \in \mathbb{Z}$.

Proof. The form of the slice spectral sequence follows directly from theorem 2.3 extended via remark 2.6 to the P-localized situation. The convergence statement follows directly from lemma 3.1 where one uses the function $f(r) = r - a$. \hfill \square

We may extend the slice spectral sequence to the localizations $M[Z^{-1}]$ as in corollary 2.4.

Proposition 3.3. Let R, X, P and M be as in proposition 3.2 and that assume all the hypotheses for (1) in that proposition hold. Let $Z = \{z_j \in Z[X]_{e_j}\}$ be a collection of homogeneous elements of $Z[X]$, and let $M[Z^{-1}] \in C$ be the localization of M with respect to the collection of maps $x z_j : M \to \Sigma_{s}^\infty M$. Then the slice spectral sequence for $M[Z^{-1}]$ has the following form:

$$E_2^{p,q}(n) := H^{p,q}(\pi_0^{\text{eff}}(M)(n - q) \otimes_{\mathbb{Z}} Z[X][Z^{-1}]_q \to \mathcal{M}[Z^{-1}]^{p+q,n}(Y).$$

Suppose further that $S = \text{Spec} k$, k a perfect field, and there is an integer a such that $M^{2r+s}(Y) = 0$ for all $Y \in \text{Sm}/S$, all $r \in \mathbb{Z}$ and all $s \geq a$. Then the slice spectral sequence converges strongly for all $Y \in \text{Sm}/S$, $n \in \mathbb{Z}$.

The proof is same as for proposition 3.2 using corollary 2.4 to compute the slices of $M[Z^{-1}]$.

Remark 3.4. Let R be a commutative monoid in $\text{Mot}(S)$, with $R \in \mathcal{SH}^\text{eff}(S)$. Suppose that there are elements $a_i \in R^{2d_i,1}(S)$, $i = 1, 2, \ldots, f_i \leq 0$, so that M is the quotient module $R/(\{a_i\})$. Suppose in addition that there is a constant c such that $R^{2r+s}(Y) = 0$ for all $Y \in \text{Sm}/S$, $r \in \mathbb{Z}$, $s \geq c$. Then $M^{2r+s}(Y) = 0$ for all $Y \in \text{Sm}/S$, $r \in \mathbb{Z}$, $s \geq c$. Indeed

$$M := \text{hocolim}_n R/(a_1, a_2, \ldots, a_n)$$

so it suffices to handle the case $M = R/(a_1, a_2, \ldots, a_n)$, for which we may use induction in n. Assuming the result for $N := R/(a_1, a_2, \ldots, a_{n-1})$, we have the long exact sequence ($f = f_n$)

$$\ldots \to N^{p+2f+q+1}(Y) \to N^{p+q+1}(Y) \to M^{p+q}(Y) \to N^{p+2f+1+q+f}(Y) \to \ldots$$

Thus the assumption for N implies the result for M and the induction goes through.
4. Slices of Quotients of MGL

The slices of a Landweber exact spectrum have been described by Spitzweck in [S10], but a quotient of MGL or a localization of such is often not Landweber exact. We will apply the results of the previous section to describe the slices of the motivic truncated Brown-Peterson spectra $BP(n)$, effective motivic Morava K-theory $k(n)$ and motivic Morava K-theory $K(n)$, as well as recovering the known computations for the Landweber examples [S12], such as the Brown-Peterson spectra BP and the Johnson-Wilson spectra $E(n)$.

Let MGL_p be the commutative monoid in $Mot \otimes \mathbb{Z}(p)$ representing p-local algebraic cobordism, as constructed in [PPR] §2.1. As noted in loc. cit., MGL_p is a cofibrant object of $Mot \otimes \mathbb{Z}(p)$. The motivic BP was first constructed by Vezzosi in [Ve01] as a direct summand of MGL_p by using Quillen’s idempotent theorem. Here we construct BP and $BP(n)$ as quotients of MGL_p; the effective Morava K-theory is similarly a quotient of MGL_p/p. We consider as well the . Our explicit description of the slices allows us to describe the E_2-terms of slice spectral sequences for BP and $BP(n)$.

The bigraded coefficient ring $\pi_{*,*}MGL_p(S)$ contains $\pi_2MU \simeq \mathbb{L}_*$, localized at p, as a graded subring of the bi-degree $(2*,*)$ part, via the classifying map for the formal group law of MGL, split by the appropriate Betti or étale realization map. The ring $\mathbb{L}_{sp} := \mathbb{L}_* \otimes_{\mathbb{Z}} \mathbb{Z}(p)$ is isomorphic to polynomial ring $\mathbb{Z}(p)[x_1, x_2, \cdots]$ [A93, Part II, theorem 7.1], where the element x_i has degree $2i$ in π_*MU, degree $(2i, i)$ in $\pi_{*,*}MGL_p$ and degree i in \mathbb{L}_*.

The following result of Hopkins-Morel-Hoyois [Hoy] is crucial for the application of the general results of the previous sections to quotients of MGL and MGL_p.

Theorem 4.1 (Hoy, theorem 7.12). Let p be a prime integer, S an essentially smooth scheme over a field of characteristic to p. Then the canonical maps $MGL_p/(\{x_i : i = 1, 2, \ldots\}) \to s_0MGL_p \to H\mathbb{Z}(p)$ are isomorphisms in $SH(S)$.

In case $S = \text{Spec} k$, k a perfect field of characteristic prime to p, the inclusion $\mathbb{L}_{sp} \subset \pi_{2*,*}MGL_p(S)$ is an equality.

We define a series of subsets of the set of generators $\{x_i \mid i = 1, 2, \ldots\}$,

- $B^c_p = \{x_i : i \neq p^k - 1, k \geq 1\}$,
- $B_p = \{x_i : i = p^k - 1, k \geq 1\}$,
- $B(n)^c_p = \{x_i : i \neq p^k - 1, 1 \leq k \leq n\}$,
- $B(n)_p = \{x_i : i = p^k - 1, 1 \leq k \leq n\}$,
- $k(n)_p = \{x_{p^n-1}\}$.

We also define

$$k(n)^c_p = \{x_i : i \neq p^n - 1, \text{and } x_0 = p\} \subset \{p, x_1 \mid i = 1, 2, \ldots\}.$$
the truncated Brown-Peterson spectrum \(BP(n)\) is defined as
\[
BP(n) := MGL_p/(\{x_i \mid i \in B(n)_p^c\})
\]
and the Johnson-Wilson spectrum \(E(n)\) is the localization
\[
E(n) := BP(n)[x_{p^n-1}^{-1}].
\]

Definition 4.3 (Morava \(K\)-theories \(k(n)\) and \(K(n)\)). *Effective Morava \(K\)-theory\(k(n)\) defined as*
\[
k(n) := MGL_p/(\{x_i \mid i \in k(n)_p^c\}) \cong BP(n)/(x_{p-1}, \ldots, x_{p^n-1}, p).
\]

Define Morava \(K\)-theory \(K(n)\) as the localization
\[
K(n) := k(n)[x_{p^n-1}^{-1}]
\]
The spectra \(BP, BP(n), E(n), k(n)\) and \(K(n)\) are \(MGL_p\)-modules. \(BP\) and \(E(n)\) are Landweber exact. We let \(C\) denote the category of \(MGL_p\)-modules.

Lemma 4.4. *The \(MGL_p\)-module spectra \(BP, BP(n)\) and \(k(n)\) are effective. \(BP\) and \(E(n)\) have the structure of oriented weak commutative ring \(T\)-spectra in \(SH(S)\).*

Proof. The effectivity of these theories follows from lemma \ref{lem:effectivity} and the fact that homotopy colimits of effective spectra are effective. The ring structure for \(BP\) and \(E(n)\) follows from the Landweber exactness (see \cite{NS00}). \(\square\)

We first discuss the effective theories \(BP, BP(n)\) and \(k(n)\).

Proposition 4.5. *Let \(p\) be a prime, \(k\) a field with exponential characteristic prime to \(p\) and \(S\) an essentially smooth \(k\)-scheme. Then in \(SH(S)\):
1. The zeroth slices of both \(BP\) and \(BP(n)\) are isomorphic to \(p\)-local motivic Eilenberg-MacLane spectrum \(HZ_{(p)}\), and the zeroth slice of \(k(n)\) is isomorphic to \(HZ/p\).
2. The quotient maps from \(MGL_p\) induce isomorphisms
\[
s_0BP \simeq (s_0MGL)_p \simeq s_0BP(n)
\]
and
\[
s_0k(n) \simeq (s_0MGL)_p/p.
\]
3. The respective quotient maps from \(BP, BP(n)\) and \(k(n)\) induce isomorphisms
\[
BP/(\{x_i : x_i \in B_p\}) \simeq s_0BP
\]
\[
BP(n)/(\{x_i : x_i \in B(n)_p\}) \simeq s_0BP(n)
\]
\[
k(n)/(x_{p^n-1}) \simeq s_0k(n)
\]

Proof. By theorem \ref{thm:classification} the classifying map \(MGL \to HZ\) for motivic cohomology induces isomorphisms
\[
MGL_p/(\{x_i : i = 1, 2, \ldots\}) \cong s_0MGL_p \cong HZ_{(p)}
\]
in \(SH(S) \otimes \mathbb{Z}_{(p)}\).

Now let \(S \subset \mathbb{N}\) be a subset and \(S^c\) its complement. By remark \ref{rem:complement} we have an isomorphism
\[
(MGL_p/(\{x_i : i \in S^c\}))/((\{x_i : i \in S\}) \cong MGL_p/(\{x_i : i \in \mathbb{N}\}).
\]
Also, as \(x_i\) is a map \(\Sigma^{2i}MGL_p \to MGL_p, i > 0\), the quotient map \(MGL_p \to MGL_p/(\{x_i : i \in S^c\})\) induces an isomorphism
\[
s_0MGL_p \to s_0[MGL_p/(\{x_i : i \in S^c\})].
\]
This gives us isomorphisms
\[(MGL_p/\langle x_i : i \in S^r \rangle)/\{(x_i : i \in S)\}) \cong s_0[MGL_p/\langle x_i : i \in S^r \rangle]\]
with the first isomorphism induced by the quotient map
\[MGL_p/\langle x_i : i \in S^r \rangle \rightarrow (MGL_p/\langle x_i : i \in S^r \rangle)/\{(x_i : i \in S)\}.
Taking \(S = B_p, B\langle n \rangle_p, \{x_{p^n-1}\}\) proves the result for \(BP, BP\langle n \rangle\) and \(k(n)\), respectively. \(\Box\)

For motivic spectra \(E = BP, BP\langle n \rangle, k(n)\), \(E(n)\) and \(K(n)\) defined in \[4.2\] and \[4.3\] let us denote the corresponding topological spectra by \(E_{\text{top}}\). The graded coefficient rings \(E_{\text{top}}^i\) of these topological spectra are
\[E_{\text{top}}^i \simeq \begin{cases} \mathbb{Z}_p[v_1, v_2, \cdots] & E = BP \\ \mathbb{Z}_p[v_1, v_2, \cdots, v_n] & E = BP\langle n \rangle \\ \mathbb{Z}_p[v_1, v_2, \cdots, v_n, v_n^{-1}] & E = E(n) \\ \mathbb{Z}/p[v_n] & E = k(n) \\ \mathbb{Z}/p[v_n, v_n^{-1}] & E = K(n) \end{cases}\]
where \(\deg v_n = 2(p^n - 1)\). The element \(v_n\) corresponds to the element \(\bar{x}_n \in MGL^{2n/n}(k)\).

\textbf{Corollary 4.6.} Let \(p\) be a prime, \(k\) a field with exponential characteristic prime to \(p\) and \(S\) an essentially smooth \(k\)-scheme. Then in \(\text{SH}(S)\), the slices of Brown-Peterson, Johnson-Wilson and Morava theories are given by
\[s_i E \simeq \begin{cases} \Sigma^i T H_{\mathbb{Z}_p} \otimes E_{\text{top}}^{i^2} & E = BP, BP\langle n \rangle\text{ and } E(n) \\ \Sigma^i T H_{\mathbb{Z}/p} \otimes E_{\text{top}}^{i^2} & E = k(n)\text{ and } K(n) \end{cases}\]
where \(E_{\text{top}}^{i^2}\) is degree \(2i\) homogeneous component of coefficient ring of the corresponding topological theory.

\textbf{Proof.} The statement for \(BP\) and \(BP\langle n \rangle\) follows from theorem \[2.3\] and remark \[2.6\]. The case of \(E(n)\) follows from corollary \[2.4\] and the cases of \(k(n)\) and \(K(n)\) follow from corollary \[2.5\]. \(\Box\)

\textbf{Theorem 4.7.} Let \(p\) be a prime, \(k\) a field with exponential characteristic prime to \(p\) and \(S\) an essentially smooth \(k\)-scheme. The slice spectral sequence for any of the spectra \(E = BP, BP\langle n \rangle, k(n)\), \(E(n)\) and \(K(n)\) in \(\text{SH}(S)\) has the form
\[E_2^{p,q}(X, m) = H^{p-q}(X, \mathcal{Z}(m-q)) \otimes_{\mathbb{Z}} E_{\text{top}}^{q+p} \Rightarrow E^{p+q+m}(X)\]
where \(\mathcal{Z} = \mathbb{Z}_p\) for \(E = BP\), \(BP\langle n \rangle\) and \(E(n)\), and \(\mathcal{Z} = \mathbb{Z}/p\) for \(E = k(n)\) and \(K(n)\). In case \(S = \text{Spec} k\) and \(k\) is perfect, these spectral sequences are all strongly convergent.

\textbf{Proof.} The form of the slice spectral sequence for \(E\) follows from corollary \[4.4\]. The fact that the slice spectral sequences strongly converge for \(S = \text{Spec} k\), \(k\) perfect, follows from remark \[4.4\] and the fact that \(MGL^{2r+s,t}(Y) = 0\) for all \(Y \in \text{Sm}/S\), \(r \in \mathbb{Z}\) and \(s \geq 1\). This in turn follows from the Hopkins-Morel-Hoyois spectral sequence
\[E_2^{p,q}(n) := H^{p-q}(Y, \mathbb{Z}(n-q)) \otimes_{\mathbb{L}} \Rightarrow MGL^{p+q,n}(Y)\]
which is strongly convergent by \[Hoy\, \text{theorem 8.12}\]. \(\Box\)
5. Modules for oriented theories

We will use the slice spectral sequence to compute the “geometric part” $E^{2*,*}$ of a quotient spectrum $E = MGL_p/\{x_i\}$ in terms of algebraic cobordism, when working over a base field k of characteristic zero. As the quotient spectra are naturally MGL_p-modules but may not have a ring structure, we will need to extend the existing theory of oriented Borel-Moore homology and related structures to allow for modules over ring-based theories.

5.1. Oriented Borel-Moore homology. We first discuss the extension of oriented Borel-Moore homology. We use the notation of [LM09]. Let Sch/k be the category of quasi-projective schemes over a field k and let Sch/k' denote the sub-category of projective morphisms in Sch/k. Let Ab_* denote the category of graded abelian groups, Ab_{\otimes} the category of bi-graded abelian groups.

Definition 5.1. Let A be an oriented Borel-Moore homology theory on Sch/k. An oriented A-module B is given by

(MD1) An additive functor $B_* : \text{Sch}/k' \rightarrow \text{Ab}_*$, $X \mapsto B_*(X)$.

(MD2) For each l.c.i. morphism $f : Y \rightarrow X$ in Sch/k of relative dimension d, a homomorphism of graded groups $f^* : B_*(X) \rightarrow B_{*+d}(Y)$.

(MD3) For each pair (X, Y) of objects in Sch/k a bilinear graded pairing

$$A_*(X) \otimes B_*(Y) \rightarrow B_*(X \times_k Y)$$

$$u \otimes v \mapsto u \times v$$

which is associative and unital with respect to the external products in the theory A.

These satisfy the conditions (BM1), (BM2), (PB) and (EH) of [LM09] definition 5.1.3. In addition, these satisfy the following modification of (BM3).

(MBM3) Let $f : X' \rightarrow X$ and $g : Y' \rightarrow Y$ be morphisms in Sch/k. If f and g are projective, then for $u' \in A_*(X')$, $v' \in B_*(Y')$, one has

$$(f \times g)_*(u' \times v') = f_*(u') \times g_*(v').$$

If f and g are l.c.i. morphisms, then for $u \in A_*(X)$, $v \in B_*(Y)$, one has

$$(f \times g)^*(u \times v) = f^*(u) \times g^*(v).$$

Let $f : A \rightarrow A'$ be a morphism of Borel-Moore homology theories, let B be an oriented A-module, B' an oriented A'-module. A morphism $g : B \rightarrow B'$ over f is a collection of homomorphisms of graded abelian groups $g_X : B_*(X) \rightarrow B'_*(X)$, $X \in \text{Sch}/k$ such that the g_X are compatible with projective push-forward, l.c.i. pullback and external products.

We do not require the analog of the axiom (CD) of [LM09] definition 5.1.3; this axiom plays a role only in the proof of universality of Ω_*, whereas the universality of Ω for A-modules follows formally from the universality for Ω among oriented Borel-Moore homology theories (see proposition 5.3 below).

Example 5.2. Let N_* be a graded module for the Lazard ring \mathbb{L}_* and let A_* be an oriented Borel-Moore homology theory. Define $A^N_*(X) := A_*(X) \otimes_{\mathbb{L}_*} N_*$. Then with push-forward $f^N_* := f^A_* \otimes \text{id}_{N_*}$, pull-back $f^N_* := f^A_* \otimes \text{id}_{N_*}$, and product
H, A-oriented duality theory (5.2. Oriented duality theories.
and Ω is unital.
□
For Proof.
∈ M ϑ
Proposition 5.3. Similarly,
particular, we have the category
SP Ω
B for smooth over
k Θ
A
A
B
B
f
θ
A
B
B
k
A
v
A
B
B
1
2
A
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
θ
A
B
B
f
∂X \times Y \rightarrow Y \times N
X \times Y \rightarrow Y \times N
1 \times a = a.
3 Leibniz rule: Given smooth pairs (M, X), (M, X'), (N, Y) with X ⊂ X' we have
\partial_{M \times N, X' \times N, Y \times N}(a \times b) = \partial_{M, X', X}(a) \times b
for \(a \in A^\circ_X (M \setminus X), b \in B^\circ_Y (N) \). For a triple \((N,Y',Y)\) with \(Y \subset Y' \subset N \), \(a \in A^\circ_X (M), b \in B^\circ_Y (N \setminus Y) \) we have
\[
\partial_{M \times N, M \times Y', M \times Y}(a \times b) = (-1)^m a \times \partial_{N,Y',Y}(b).
\]
We write \(a \cup b \in B_X \cap Y(N) \) for \(\delta^\circ_{M}(a \times b), a \in A^\circ_X (M), b \in B^\circ_Y (M) \).

In addition, we assume that the “Thom classes theory” [P09 lemma 3.7.2] arising from the orientation on \(A \) induces an orientation on \(B \) in the following sense: Let \((M,X)\) be a smooth pair and let \(p : E \to M \) be a rank \(r \) vector bundle on \(M \). Then the cup product with the Thom class \(th(E) \in A^\circ_{2r} (E) \)
\[
B^\circ_X (M) \xrightarrow{\cup r} B^\circ_{p^{-1}(X)} (E) \xrightarrow{th(E) \cup (-)} B^\circ_{2r+r+} (E)
\]
is an isomorphism.

Let \(\textbf{Sp}' \) be the category with the same objects \((M,X)\) as in \(\textbf{Sp} \), and where a morphism \(f : (M,X) \to (N,Y) \) is a projective morphism \(f : M \to N \) such that \(f(X) \subset Y \). One proceeds just as in [L08] to show that the orientation on \(B \) gives rise to an integration on \(B \), that is, one has for each morphism \(F : (M,X) \to (N,Y) \) in \(\textbf{Sp}' \) a pushforward map \(F_* : B^\circ_X (M) \to B^\circ_Y (-2d+)(N), d = \dim_k M - \dim_k N \), defining an integration with supports for \(B \), in the sense of [L08 definition 1.8], with the introduction of the bi-grading and the evident change to definition 1.8(2), in that the product \(f^*(-) \cap \) is a map from \(A^\circ_Z (M) \otimes B^\circ_Y (N) \) to \(B^\circ_{Z \cap -1, f^{-1}(Z)} (N) \), and \(\cup \) is similarly a map from \(A^\circ_X (M) \otimes B^\circ_Y (M) \) to \(B^\circ_{X \cap Z} (M) \). One similarly proves the analog of [L08 theorem 1.12], that the integration so constructed is the unique integration on \(B \) subjected to the orientation induced by the orientation on \(A \).

Definition 5.5. Let \((H,A)\) be an oriented duality theory, in the sense of [L08 definition 3.1]. An oriented \((H,A)\)-module is a pair \((J,B)\), where

\((D1)\) \(J : \textbf{Sch}/k^l \to \textbf{Ab} \), is a functor

\((D2)\) \(B \) is an oriented \(A \)-module,

\((D3)\) For each open immersion \(j : U \to X \) there is a pullback map \(j^* : J^*_e(X) \to J^*_e(U) \)

\((D4)\) i. for each smooth pair \((M,X)\) and each morphism \(f : Y \to M \) in \(\textbf{Sch}/k \) and bi-graded cap product map

\[
\text{morphisms } f^*(-) \cap : A^\circ_X (M) \otimes H(Y) \to H(f^{-1}(X))
\]

ii. For \(X,Y \in \textbf{Sch}/k \) a bi-graded external product

\[
\times : H^s(e) \otimes J^*_e(Y) \to J^*_e(X \times Y).
\]

\((D5)\) For each smooth pair \((M,X)\), a graded isomorphism

\[
\beta_{M,X} : J^*_e(X) \to B^\circ_{X^{-d_*},d_*} (M); \quad d = \dim_k M.
\]

\((D6)\) For each \(X \in \textbf{Sch}/k \) and each closed subset \(Y \subset X \), a map

\[
\partial_{X,Y} : J^{s+1,*}(X \setminus Y) \to J^*_e(Y).
\]

These satisfy the evident analogs of properties (A1)-(A4) of [L08 definition 3.1], where we make the following changes: Let \(d = \dim_k M, e = \dim_k N \). One replaces \(H \) with \(J^*_e \) throughout (except in (A3)(ii)), and

- in (A1) one replaces \(A^\circ_Y (N), A^\circ_X (M) \) with \(B^\circ_{Y^{-d_*},d_*} (N), B^\circ_{X^{-d_*},d_*} (M) \),
- in (A2) on replaces \(A^\circ_Y (N), A^\circ_X (M) \) with \(B^\circ_{Y^{-e_*},e_*} (N), B^\circ_{X^{-e_*},d_*} (M) \),
- in (A3) one replaces \(A^\circ_Y (N), A^\circ_X (M) \) with \(B^\circ_{Y^{-d_*},d_*} (N), B^\circ_{X^{-d_*},d_*} (M) \),
• in (A3)(i) one replaces $A_Y(M)$ with $B_{Y}^{2d-s,d-s}(M)$ and $A_{Y \cap f^{-1}(X)}(N)$ with $B_{Y \cap f^{-1}(X)}^{2d-s,d-s}(N)$,
• in (A3)(ii) one replaces $A_Y(M)$ with $B_{X \times Y}^{2e-s,e-s}(N)$ and $A_{X \times Y}(M \times N)$ with $B_{X \times Y}^{2(d+e)-s,d+e-s}(M \times N)$, $H(X)$ with $H_*(X)$, $H(Y)$ with $J_*(Y)$ and $H(X \times Y)$ with $J_*(X \times Y)$,
• in (A4) one replaces $A_{X \setminus Y}(M \setminus Y)$ with $B_{X \setminus Y}^{2d-s,d-s}(M \setminus Y)$.

Remark 5.6. Let (H, A) be an oriented duality theory on Sch/k, for k a field admitting resolution of singularities. By [L08, proposition 4.2] there is a unique natural transformation

$$\vartheta_H : \Omega_* \to H_{2s,*}$$

of functors $\text{Sch}/k' \to \text{Ab}_*$ compatible with all the structures available for $H_{2s,*}$ and, after restriction to Sm/k is just the classifying map $\Omega^* \to A^{2s,*}$ for the oriented cohomology theory $X \mapsto A^{2s,*}(X)$. We refer the reader to [L08, §4] for a complete description of the properties satisfied by ϑ_H.

Via ϑ_H and the ring homomorphism $\rho_\Omega : \mathbb{L}_s \to \Omega_*(k)$ classifying the formal group law for Ω_*, we have the ring homomorphism $\rho_H : \mathbb{L}_s \to H_{2s,*}(k)$. If (J, B) is an oriented (H, A)-module, then via the $H_{2s,*}(k)$-module structure on $J_{2s,*}(k)$, ρ_H makes $J_{2s,*}(k)$ a \mathbb{L}_s-module. We write J_s for the \mathbb{L}_s-module $J_{2s,*}(k)$.

Proposition 5.7. Let k be a field admitting resolution of singularities. Let (H, A) be an oriented duality theory and (J, B) an oriented (H, A)-module. There is a unique natural transformation $\vartheta_{H/J} : \Omega^J_* \to J_{2s,*}$ from $\text{Sch}/k' \to \text{Ab}_*$ satisfying

1. $\vartheta_{H/J}$ is compatible with pullback maps j^* for $j : U \to X$ an open immersion in Sch/k.
2. $\vartheta_{H/J}$ is compatible with fundamental classes.
3. $\vartheta_{H/J}$ is compatible with external products.
4. $\vartheta_{H/J}$ is compatible with the action of 1st Chern class operators.
5. Identifying $\Omega^J_* (k)$ with $J_{2s,*}(k)$ via the product map $\Omega^J_* (k) \otimes_{\mathbb{L}_s} J_{2s,*}(k) \to J_{2s,*}(k)$, $\vartheta_{H/J} (k) : \Omega^J_* (k) \to J_{2s,*}$ is the identity map.

Proof. For $X \in \text{Sch}/k$, we define $\vartheta_{H/J}(X)$ by

$$\vartheta_{H/J}(u \otimes j) = \vartheta_H(u) \times j \in J_{2s,*}(X \times_k \text{Spec } k) = J_{2s,*}(X),$$

for $u \otimes j \in \Omega^J_* (X) := \Omega_*(X) \otimes_{\mathbb{L}_s} J_{2s,*}(k)$. The properties (1)-(5) follow directly from the construction. As $\Omega_*(X)$ is generated by push-forwards of fundamental classes, the properties (2), (3) and (5) determine $\vartheta_{H/J}$ uniquely. □

Remark 5.8. Let k, (H, A) and (J, B) be as in proposition 5.7. Suppose that $J_* := J_{2s,*}$ has external products \times_J and there is a unit element $1_J \in J_0(k)$ for these external products. Suppose further that these are compatible with the external products $H_*(X) \otimes J_*(Y) \to J_*(X \times_k Y)$, in the sense that

$$(h \times 1_J) \times_J b = h \times b \in J_*(X \times_k Y)$$

for $h \in H_*(X)$, $b \in J_*(Y)$, and that $1_H \times 1_J = 1_J$. Then $\vartheta_{H/J}$ is compatible with external products and is unital. This follows directly from our assumptions and the identity

$$\vartheta_{H/J}((u \otimes h) \times (u' \otimes j')) = \vartheta_H(u) \times \vartheta_{H/J}(u' \otimes (h \times j)).$$
5.3. Modules for oriented ring spectra. We now discuss the oriented duality theory and oriented Borel-Moore homology associated to a module spectrum for an oriented weak commutative ring T-spectrum.

Let \mathcal{E} be a weak commutative ring T-spectrum, that is, there are maps $\mu : \mathcal{E} \wedge \mathcal{E} \to \mathcal{E}$, $\eta : S \to \mathcal{E}$ in $\mathcal{SH}(S)$ that satisfy the axioms for a monoid modulo phantom maps. An \mathcal{E}-module is similarly an object $\mathcal{N} \in \mathcal{SH}(S)$ together with a multiplication map $\rho : \mathcal{E} \wedge \mathcal{N} \to \mathcal{E}$ that makes \mathcal{N} into a unital \mathcal{E}-module modulo phantoms.

Suppose that (\mathcal{E}, c) is an oriented weak commutative ring T-spectrum in $\mathcal{SH}(k)$, k a field admitting resolution of singularities. We have constructed in [LO8, theorem 3.4] a bi-graded oriented duality theory $(\mathcal{E}_{ses}^*, \mathcal{E}^{**})$ by defining $\mathcal{E}_{ses}^*(X) := \mathcal{E}_X^{2m-a,m-b}(M)$, where $M \in \text{Sm}/k$ is a chosen smooth quasi-projective scheme containing X as a closed subscheme and $m = \dim_k M$. Let \mathcal{N} be an \mathcal{E}-module. For $E \to M$ a rank r vector bundle on $M \in \text{Sm}/k$ and $X \subset M$ a closed subscheme, the Thom classes for E give rise to a Thom isomorphism $\mathcal{N}_X^r(M) \to \mathcal{N}_X^{2r+r,r}(E)$.

Using these Thom isomorphisms, the arguments used to construct the oriented duality theory $(\mathcal{E}_{ses}^*, \mathcal{E}^{**})$ go through without change to give \mathcal{N}^{**} the structure of an oriented \mathcal{E}^{**}-module, and to define an oriented $(\mathcal{E}_{ses}^*, \mathcal{E}^{**})$-module $(\mathcal{N}_{a,b}^{**}, \mathcal{N}^{**})$, with canonical isomorphisms $\mathcal{N}_{a,b}^{**}(X) \cong \mathcal{N}_X^{2m-a,m-b}(M)$, $m = \dim_k M$, and where the cap products are induced by the \mathcal{E}-modules structure on \mathcal{N}.

5.4. Geometrically Landweber exact modules.

Definition 5.9. Let (\mathcal{E}, c) be a weak oriented ring T-spectrum and let \mathcal{N} be an \mathcal{E}-module. The geometric part of \mathcal{E}^{**} is the $(2s, *)$-part $\mathcal{E}^s := \mathcal{E}^{2s,*}$ of \mathcal{E}^{**}, the geometric part of \mathcal{N} is the \mathcal{E}^s-module $\mathcal{N}^{2s,*}$, and the geometric part of \mathcal{N} is similarly given by $X \mapsto \mathcal{N}_X^s(X) := \mathcal{N}_{2s,*}^s(X)$. This gives us the \mathbb{Z}-graded oriented duality theory $(\mathcal{E}_s^*, \mathcal{E}^*)$ and the oriented $(\mathcal{E}_s^*, \mathcal{E}^*)$-module $(\mathcal{N}_s^*, \mathcal{N}^*)$.

Let (\mathcal{E}, c) be a weak oriented ring T-spectrum and let \mathcal{N} be an \mathcal{E}-module. By proposition 5.3, we have a canonical natural transformation

$$\vartheta_{\mathcal{E}^s/\mathcal{N}^s} : \Omega_{\mathcal{E}_s^s}^{\mathcal{N}_s^s(k)} \to \mathcal{N}_s^s$$

satisfying the compatibilities listed in that proposition.

We extend the definition of a geometrically Landweber exact weak commutative ring T-spectrum (see [L15, definition 3.7]) to the case of an \mathcal{E}-module:

Definition 5.10. Let (\mathcal{E}, c) be a weak oriented ring T-spectrum and let \mathcal{N} be an \mathcal{E}-module. We say that \mathcal{N} is geometrically Landweber exact if for each point $\eta \in X \in \text{Sm}/k$

i. The structure map $p_\eta : \eta \to \text{Spec } k$ induces an isomorphism $p_\eta^* : \mathcal{N}^{2s,*}(k) \to \mathcal{N}^{2s,*}(\eta)$.

ii. The product map $\cup_\eta : \mathcal{E}^{1,1}(\eta) \otimes \mathcal{N}^{2s,*}(\eta) \to \mathcal{N}^{2s+1,1+1}(\eta)$ induces a surjection $k(\eta) \times \otimes \mathcal{N}^{2s,*}(\eta) \to \mathcal{N}^{2s+1,1+1}(\eta)$

Here we use the canonical natural transformation $t_\mathcal{E} : \mathbb{G}_m \to \mathcal{E}^{1,1}(-)$ defined in [L15, remark 1.5] to define the map $k(\eta) \times \to \mathcal{E}^{1,1}(\eta)$ needed in (ii).
The following result generalizes \cite{L15} theorem 6.2 from oriented weak commutative ring T-spectra to modules:

Theorem 5.11. Let k be a field of characteristic zero, \mathcal{N} an MGL-module in $\mathcal{SH}(k)$, $(\mathcal{N}^*, \mathcal{N}^{**})$ the associated oriented $(\text{MGL}^*, \text{MGL}^{**})$-module, and \mathcal{N}' the geometric part of \mathcal{N}. Suppose that \mathcal{N} is geometrically Landweber exact. Then the classifying map

\[
\vartheta_{\text{MGL}/\mathcal{N}'} : \Omega^\star_{\mathcal{N}'}(k) \to \mathcal{N}'
\]

is an isomorphism.

Remark 5.12. Let k be a field of characteristic zero, and let (\mathcal{E}, c) be an oriented weak commutative ring T-spectrum in $\mathcal{SH}(S)$, and let \mathcal{N} be an \mathcal{E}-module. Via the classifying map $\varphi_{\mathcal{E}, c} : \text{MGL} \to \mathcal{E}$, \mathcal{N} becomes an MGL-module. In addition, the classifying map $\vartheta_{\mathcal{E}} : \Omega \to \mathcal{E}'$ is induced from $\varphi_{\mathcal{E}, c}$ and the classifying map $\vartheta_{\text{MGL}/\mathcal{N}'}$ factors through the classifying map $\vartheta_{\mathcal{E}/\mathcal{N}'} : \mathcal{E}'^{\star}(k) \to \mathcal{N}'$ as

\[
\vartheta_{\text{MGL}/\mathcal{N}'} = \vartheta_{\mathcal{E}/\mathcal{N}'} \circ (\varphi_{\mathcal{E}, c} \otimes id_{\mathcal{N}'(k)}).
\]

Thus, theorem 5.11 applies to \mathcal{E}-modules for arbitrary (\mathcal{E}, c). Moreover, if (\mathcal{E}, c) is geometrically Landweber exact in the sense of \cite{L15} definition 3.7, the map $\vartheta_{\mathcal{E}, c} : \mathcal{E}'^{\star}(k) \to \mathcal{E}'$ is an isomorphism \cite{L15} theorem 6.2 hence the map $\vartheta_{\mathcal{E}/\mathcal{N}'}$ is an isomorphism as well.

proof of theorem 5.11. The proof of theorem 5.11 is essentially the same as the proof of \cite{L15} theorem 6.2. Indeed, just as in *loc. cit.*, one constructs a commutative diagram (see \cite{L09} (6.4))

\[
\begin{array}{ccc}
\oplus_{\eta \in X(i)} k(\eta)^{\times} \otimes \mathcal{N}^{*-d+1}_{2s_{+1}+1}(X) & \xrightarrow{\text{Div}_{\mathcal{N}}^{\star}(1)} & \Omega^{\star}_{\mathcal{N}'}(k) \\
\vartheta^{(1)} & \longrightarrow & \vartheta(X) \longrightarrow \vartheta

\oplus_{\eta \in X(i)} k(\eta)^{\times} \otimes \mathcal{N}^{*-d+1}_{2s_{+1}+1}(X) & \xrightarrow{\text{Div}_{\mathcal{N}}^{\star}(1)} & \Omega^{\star}_{\mathcal{N}'}(k) \\
\vartheta^{(1)} & \longrightarrow & \vartheta(X) \longrightarrow \vartheta
\end{array}
\]

where we write \mathcal{N}^{\star} for $\mathcal{N}^{\star}(k)$, d is the maximum of $\dim_k X_i$ as X_i runs over the irreducible components of X, and $\mathcal{N}_{2s_{+1}}^{(1)}(X)$ is the colimit of $\mathcal{N}_{2s_{+1}}^{(1)}(W)$, as W runs over closed subschemes of X containing no dimension d generic point of X. A similarly defined colimit of the $\Omega^{\star}_{\mathcal{N}'}(k)$ gives us $\Omega^{\star}_{\mathcal{N}'}(X)$. The maps $\vartheta^{(1)}$, $\vartheta(X)$ and ϑ are all induced by the classifying map $\vartheta_{\text{MGL}/\mathcal{N}'}$. The top row is a complex and the bottom row is exact; this latter fact follows from the surjectivity assumption in definition 5.10 ii). The map ϑ is an isomorphism by part (i) of definition 5.10 and $\vartheta^{(1)}$ is an isomorphism by induction on d. To show that $\vartheta(X)$ is an isomorphism, it suffices to show that the identity map on $\oplus_{\eta \in X(i)} \mathcal{N}^{\star}(k) \otimes k(\eta)^{\times}$ extends diagram (5.1) to a commutative diagram.

To see this, we note that the map $\text{div}_{\mathcal{N}}$ is defined by composing the boundary map

\[
\partial : \oplus_{\eta \in X(i)} \mathcal{N}^{\star}(\eta) \to \mathcal{N}^{(1)}_{2s_{+1}}(X)
\]

with the sum of the product maps $\text{MGL}^{2d-1,d-1}\otimes \mathcal{N}^{*-d+1}_{2s_{+1}+1}(k) \to \mathcal{N}^{2s_{+1}}(\eta)$ and the canonical map $t_{\text{MGL}}(\eta) : k(\eta)^{\times} \to \text{MGL}^{1,1}(\eta) = \text{MGL}^{2d-1,d-1}(\eta)$ (see \cite{L09}}
remark 1.5]). For MGL', we have the similarly defined map

$$\text{div}_{MGL} : \oplus_{\eta \in X(d)} k(\eta)^{x} \otimes L_{s-d+1} \to MGL'_{2s+1}(X),$$

after replacing $MGL'_{s-d+1}(k)$ with L_{s-d+1} via the classifying map $L_{s} \to MGL'_{s}(k)$. We have as well the commutative diagram (see [L09, (5.4)])

$$\begin{array}{ccc}
\oplus_{\eta \in X(d)} k(\eta)^{x} \otimes L_{s-d+1} & \xrightarrow{\text{Div}} & \Omega_{s}^{(1)}(X) \\
\downarrow & & \downarrow \vartheta_{MGL}^{(1)} \\
\oplus_{\eta \in X(d)} k(\eta)^{x} \otimes L_{s-d+1} & \xrightarrow{\text{div}_{MGL}} & MGL''_{2s+1}(X),
\end{array}$$

which after applying $- \otimes_{L} N'_{s}$ gives us the commutative diagram

$$(5.2) \quad \oplus_{\eta \in X(d)} k(\eta)^{x} \otimes N'_{s-d+1} \xrightarrow{\text{Div}_{N}} \Omega_{s}^{(1)}(X) \xrightarrow{\vartheta_{MGL}^{(1)} \otimes \text{id}} MGL'_{2s+1}(X) \otimes_{L_{s}} N'_{s}$$

The Leibniz rule for ∂ gives us the commutative diagram

$$(5.3) \quad \oplus_{\eta \in X(d)} k(\eta)^{x} \otimes N'_{s-d+1} \xrightarrow{\text{div}_{MGL}} MGL'_{2s+1}(X) \otimes_{L_{s}} N'_{s}$$

$$(5.4) \quad \oplus_{\eta \in X(d)} k(\eta)^{x} \otimes N'_{s-d+1} \xrightarrow{\text{div}_{N}} \Omega_{s}^{(1)}(X);$$

combining diagrams (5.2) and (5.3) yields the desired commutativity.

\[\square\]

6. Applications to Quotients of MGL

We return to our discussion of quotients of MGL_{p} and their localizations. We select a system of polynomial generators for the Lazard ring, $L_{s} \cong \mathbb{Z}[x_{1}, x_{2}, \ldots]$, deg $x_{i} = i$. Let $S \subset \mathbb{N}$, S^{c} its complement and let $\mathbb{Z}[S^{c}]$ denote the graded polynomial ring on the $x_{i}, i \in S^{c}$, deg $x_{i} = i$. Let $S_{0} \subset \mathbb{Z}[S^{c}]$ be a collection of homogeneous elements, $S_{0} = \{ z_{j} \in \mathbb{Z}[S^{c}]_{c_{j}} \}$, and let $\mathbb{Z}[S^{c}][S_{0}^{-1}]$ denote the localization of $\mathbb{Z}[S^{c}]$ with respect to S_{0}.

We consider a quotient spectrum $MGL_{p}/(S) := MGL_{p}/(\{ x_{i} \mid i \in S \})$ or an integral version $MGL/(S) := MGL/(\{ x_{i} \mid i \in S \})$. We consider as well the localizations

$$MGL_{p}/(S)[S_{0}^{-1}] := MGL_{p}/(S)[\{ z_{j}^{-1} \mid z_{j} \in S_{0} \}],$$

$$MGL/(S)[S_{0}^{-1}] := MGL/(S)[\{ z_{j}^{-1} \mid z_{j} \in S_{0} \}],$$

and the mod p version

$$MGL/(S,p)[S_{0}^{-1}] := MGL_{p}/(S)[S_{0}^{-1}]/p$$

Proposition 6.1. Let p be a prime, and let $S = \text{Spec } k$, k a perfect field with exponential characteristic prime to p. Let S be a subset of \mathbb{N} and S_{0} a set of homogeneous elements of $\mathbb{Z}[S^{c}]$. Then the spectra $MGL_{p}/(S)[S_{0}^{-1}]$ and $MGL_{p}/(S,p)[S_{0}^{-1}]$ are
geometrically Landweber exact. In case char \(k = 0\), \(MGL/(S)|S_0^{-1}\) is geometrically Landweber exact.

Proof. We discuss the cases \(MGL_p/(S)|S_0^{-1}\) and \(MGL_p/(S,p)|S_0^{-1}\); the case of \(MGL/(S)|S_0^{-1}\) is exactly the same.

Let \(A\) be a finitely generated abelian group and let \(\eta\) be a point in some \(X \in \text{Sm}/k\). Then the motivic cohomology \(H^*(\eta, A(r))\) satisfies
\[
H^{2r}(\eta, A(r)) = H^{2r+1}(\eta, A(r+1)) = 0
\]
for \(r \neq 0\),
\[
H^0(\eta, A(0)) = A, \quad H^1(\eta, A(1)) = k(\eta) \otimes A.
\]
We consider the slice spectral sequences
\[
E_2^{p,q}(n) := H^{p-q}(\eta, \mathbb{Z}(n-q)) \otimes \mathbb{Z}[S^n][S_0^{-1}] \Rightarrow (MGL_p/(S)|S_0^{-1})^{p+q,n}(\eta)
\]
and
\[
E_2^{p,q}(n) := H^{p-q}(\eta, \mathbb{Z}(n-q)) \otimes \mathbb{Z}[S^n][S_0^{-1}] \Rightarrow (MGL_p/(S,p)|S_0^{-1})^{p+q,n}(\eta)
\]
given by proposition 6.2. As in the proof of theorem 4.7, we have
\[
E_2^{p,q}(n) = 0 \text{ for } a > 0 \text{ and } n \in \mathbb{Z}, \text{ and thus by remark 5.3 the convergence hypotheses in proposition 6.2 are satisfied. Thus, these spectral sequences are strongly convergent. As discussed in the proof of proposition 3.8, the only non-zero } E_2 \text{ term contributing to } (MGL_p/(S)|S_0^{-1})^{2n,n}(\eta) \text{ or to } (MGL_p/(S,p)|S_0^{-1})^{2n,n}(\eta) \text{ is } E_2^{2n,n}(n) \text{, the only non-zero } E_2 \text{ term contributing to } (MGL_p/(S)|S_0^{-1})^{2n-1,n}(\eta) \text{ or contributing to } (MGL_p/(S,p)|S_0^{-1})^{2n-1,n}(\eta) \text{ is } E_2^{2n-1,n}(n) \text{, and all differentials entering or leaving these terms are zero. This gives us isomorphisms}
\]
\[
(MGL_p/(S)|S_0^{-1})^{2n,n}(\eta) \cong \mathbb{Z}(p)[S^n][S_0^{-1}]n,
\]
\[
(MGL_p/(S,p)|S_0^{-1})^{2n,n}(\eta) \cong \mathbb{Z}(p)[S^n][S_0^{-1}]n,
\]
\[
(MGL_p/(S)|S_0^{-1})^{2n-1,n}(\eta) \cong \mathbb{Z}(p)[S^n][S_0^{-1}]n \otimes k(\eta) \times
\]
\[
(MGL_p/(S,p)|S_0^{-1})^{2n-1,n}(\eta) \cong \mathbb{Z}(p)[S^n][S_0^{-1}]n \otimes k(\eta) \times
\]
from which it easily follows that \(MGL_p/(S)|S_0^{-1}\) and \(MGL_p/(S,p)|S_0^{-1}\) are geometrically Landweber exact.

\[28\] Marc Levine and Girja Shanker Tripathi

Corollary 6.2. Let \(S = \text{Spec } k\), \(k\) a field of characteristic zero. Fix a prime \(p\) and let \(N = MGL/(S)|S_0^{-1}\), \(MGL_p/(S)|S_0^{-1}\), or \(MGL_p/(S,p)|S_0^{-1}\), let \((N', N)\) be the associated \((MGL', MGL)\)-module and \(N'_s\) the geometric part of \(N'_{s*}\). Then the classifying map
\[
\vartheta_{N'_s(k)} : \Omega^{N'_s(k)} \rightarrow N'_s
\]
is an isomorphism of \(\Omega_s\)-modules.

This follows directly from proposition 6.1. As immediate consequence, we have

Corollary 6.3. Let \(S = \text{Spec } k\), \(k\) a field of characteristic zero. Fix a prime \(p\) and let \(N = BP, BP(n), E(n), k(n)\) or \(K(n)\), let \((N', N)\) be the associated \((MGL', MGL)\)-module and \(N'_s\) the geometric part of \(N'_{s*}\). Then the classifying map
\[
\vartheta_{N'_s(k)} : \Omega^{N'_s(k)} \rightarrow N'_s
\]
is an isomorphism of Ω_\ast-modules. In case $N = BP$ or $E(n)$, $\vartheta_{N^\ast(k)}$ is compatible with external products.

Remark 6.4. Suppose that the theory with supports $N^{2s\ast}$ has products and a unit, compatible with its $MGL^{2s\ast}$-module structure. Then by remark 5.8 the classifying map $\vartheta_{N^\ast(k)}$ is also compatible with products.

In the case of a quotient E of MGL or MGL_p by subset $\{x_i : i \in I\}$ of the set of polynomial generators, the vanishing of $MGL^{2r+s\ast}(k)$ for $s > 0$ shows that $E^{2s\ast}(k) = MGL^{2s\ast}(k)/(\{x_i : i \in I\})$, which has the evident ring structure induced by the natural $MGL^{2s\ast}(k)$-module structure. Thus, the rational theory $\Omega_\ast(E^\ast(k))$ has a canonical structure of an oriented Borel-Moore homology theory on Sch/k; the same holds for E a localization of this type of quotient. The fact that the classifying homomorphism $\vartheta_E : \Omega_\ast(E^\ast(k)) \to E^\ast(k)$ is an isomorphism induces on $E^\ast(k)$ the structure of an oriented Borel-Moore homology theory on Sch/k; it appears to be unknown if this arises from a multiplicative structure on the spectrum level.

References

[A95] Adams, J. F. Stable homotopy and generalised homology. Reprint of the 1974 original. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1995. x+373 pp.

[B10] Barwick, C. On left and right proper model categories and left and right proper Bousfield localizations, Homology, Homotopy and Applications 11(1) (2010), 1-76.

[DL14] Dai, S., Levine, M., Connective algebraic K-theory, J. K-Theory 13 (2014), no. 1, 956.

[Hir03] Hirschhorn, P. S. Model categories and their localizations. Mathematical Surveys and Monographs, 99. American Mathematical Society, Providence, RI, 2003.

[HPS97] Hovey, M., Palmieri, J., Strickland, N. Axiomatic stable homotopy theory Memoirs of AMS 1997.

[Hov] Hovey, M. Monoidal model categories, preprint (1998) http://mhovey.web.wesleyan.edu/papers/mon-mod.pdf

[Hoy] Hoyois, M. From algebraic cobordism to motivic cohomology. To appear in J. reine u. ang. Math. 2013, doi:10.1515/crelle-2013-0038, arXiv:1210.7182 [math.AG]

[J00] Jardine, J.F. Motivic symmetric spectra, Doc. Math. 5 (2000), 445–553.

[K13] Kerz, M. Comparison of motivic and algebraic cobordism, Michigan Math. J., Special Issue in honor of Melvin Hochster, Volume 57, August 2008, 523–572.

[L09] Levine, M. Comparison of theories. J. Algebra 322 (2009), no. 9, 3291–3317.

[L15] Levine, M. Motivic Landweber exact theories and their effective covers preprint (2015) arxiv:1401.0284 [math.AG]

[LG] Levine, M., Morel, F. Algebraic cobordism

[NS09] Naumann, N., Spitzweck, M., Østvær, P. A. Motivic Landweber exactness. Doc. Math. 14 (2009) 551–593.

[N97] Neeman, A. On a theorem of Brown and Adams. Topology 36 (1997), no. 3, 619–645.

[P09] Panin, I. Oriented cohomology theories of algebraic varieties. II (After I. Panin and A. Smirnov). Homology, Homotopy Appl. 11 (2009), no. 1, 349–405.

[PPR] Panin, I., Pimenov, K., Röndigs, O. On the relation of Voevodsky’s algebraic cobordism to Quillen’s K-theory. Invent. Math. 175 (2009), no. 2, 435–451.

[P11] Pelaez-Menaldo, J.P. Multiplicative structure on the motivic Postnikov tower. Astérisque No. 335 (2011), xvi+289 pp.

[RO08] Röndigs, O., Østvær, P.A. Modules over motivic cohomology. Adv. Math. 219 (2008), no. 2, 689–727.

[ScSh] Schwede, S., Shipley, B.E. Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3) 80 (2000), no. 2, 491–511.

[Sp] Spitzweck, M. Slices of motivic Landweber spectra. J. K-Theory 9 (2012), no. 1, 103–117.

[Sp2] Spitzweck, M. Relations between slices and quotients of the algebraic cobordism spectrum. Homology, Homotopy Appl. 12 (2010) no. 2 335–351.
[Ve01] Vezzosi, G. Brown-Peterson spectra in stable A^1-homotopy theory Rend. Sem. Mat. Univ. Padova 106 (2001) 47–64.

[Vi12] Vishik, A. Stable and unstable operations in algebraic cobordism. preprint (2012-14) arXiv:1209.5793 [math.AG]

[Vo04] Voevodsky, V. On the zero slice of the sphere spectrum. Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i Prilozh., 106–115; translation in Proc. Steklov Inst. Math. 2004, no. 3 (246), 93–102.

[Vo00] Voevodsky, V. A possible new approach to the motivic spectral sequence for algebraic K-theory. Recent progress in homotopy theory (Baltimore, MD, 2000) 371–379, Contemp. Math., 293 Amer. Math. Soc., Providence, RI, 2002.

[Vo98] Voevodsky, V., A^1-homotopy theory. Doc. Math.-Extra volume ICM I (1998) 579–604.

Universität Duisburg-Essen, Fakultät Mathematik, Thea-Leymann-Strasse 9, 45127 Essen, Germany
E-mail address: marc.levine@uni-due.de

Universität Duisburg-Essen, Fakultät Mathematik, Thea-Leymann-Strasse 9, 45127 Essen, Germany
E-mail address: tripathigirja@gmail.com