Stochastic Sensor Scheduling via Distributed Convex Optimization

Chong Lia, Nicola Eliab

aDept. of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011. Currently with Qualcomm Research, Bridgewater, NJ, 08807.

bDept. of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011.

Abstract

In this paper, we propose a stochastic scheduling strategy for estimating the states of \(N\) discrete-time linear time invariant (DTLTI) dynamic systems, where only one system can be observed by the sensor at each time instant due to practical resource constraints. The idea of our stochastic strategy is that a system is randomly selected for observation at each time instant according to a pre-assigned probability distribution. We aim to find the optimal pre-assigned probability in order to minimize two cost functions on the estimate error covariance. We first relax these two optimization problems into tractable forms and then decompose them into coupled small convex optimization problems which can be solved in a distributed fashion. We also give closed-form solutions of the underlying modified algebraic Riccati equation (MARE) for a special class of systems, under which the distributed optimization algorithms perform much more efficiently. Finally, for scheduling implementation, we propose centralized and distributed deterministic scheduling strategies heuristics based on the optimal stochastic solution. Besides the specific scheduling problem investigated in this paper, the monotonicity and trace-convexity properties of the MARE proved in this paper are of importance to address other relevant detection and estimation problems.

Key words: Networked control systems, sensor scheduling, Kalman filter, stochastic scheduling, sensor selection

1 Introduction

In this paper, we consider the problem of scheduling the observations of independent targets in order to minimize the tracking error covariance, but when only one target can be observed at a given time. This problem captures many interesting tracking/estimation application problems. As motivational example, consider \(N\) independent dynamic targets, spatially distributed in an area, that need to be tracked (estimated) by a single (mobile) camera sensor. The camera has limited sensing range and therefore it needs to zoom in on, or be in proximity of, one of the targets for obtaining measurements. Under the assumption that the switching time among the targets is negligible, then we need to find a visiting sequence in order to minimize the estimate error. Another case is when a set of \(N\) mobile surveillance devices need to track \(N\) geographically-separated targets, where each target is tracked by one assigned surveillance device. However, the sensing/measuring channel can only be used by one estimator at the time (e.g. sonar range-finding [2]). Then, we need to design a scheduling sequence of surveillance devices for accurate tracking.

1.1 Related Work and Contributions of This Paper

There has been considerable research effort devoted to the study of sensor selection problems, including sensor scheduling [3–13] and sensor coverage [7, 14–18]. This trend has been inspired by the significance and wide applications of sensor networks. As the literature is vast, we list a few results which are relevant to this paper. The sensor scheduling problem mainly arises from minimization of two relevant costs: sensor network energy consumption and estimate error. On the one hand, [5], [6] and [9], see also reference therein, have proposed various efficient sensor scheduling algorithms to minimize the sensor network energy consumption and consequently maximize the network lifetime. On the other hand, researchers have proposed many tree-search based sensor scheduling algorithms (mostly in conjunction with Kalman filtering) to minimize the estimate error [3], [4], [13], e.g. sliding-window, thresholding, relaxed dynamic programming, etc. By taking both sensor network lifetime and estimate accuracy into account, several sensor tree-search based scheduling algorithms have
been proposed in [8], [19]. In [10], the authors have formulated the general sensor selection problem and solved it by relaxing it to a convex optimization problem. The general formulation therein can handle various performance criteria and topology constraints. However, the framework in [10] is only suitable for static systems instead of dynamic systems which are mostly considered in the literature.

In general, deterministic optimal sensor selection problems are notoriously difficult. In this paper, we propose a stochastic scheduling strategy. At each time instant, a target is randomly chosen to be measured according to a pre-assigned probability distribution. We find the optimal pre-assigned distribution that minimize an upper bound on the expected estimate error covariance (in the limit) in order to keep the actual estimate error covariance small. Compared with algorithms in the literature, this strategy has low-computation, is simple to implement and provides performance guarantee on the general deterministic scheduling problem. Of course, the reduction of computational complexity comes at the expenses of degradation of the ideal performance. However, in many situations the extra computational complexity cost may not be justified. Further this strategy can easily incorporate many extra constraints on the scheduling design which might be difficult to handle in existing algorithms (e.g. tree-search based algorithms).

Our work is related to [7], [20] and [11]. [7] introduces stochastic scheduling to deal with sensor selection and coverage problems, and [20] extends the setting and results in [7] to a tree topology. Although we also adopt the stochastic scheduling approach, the problem formulation and proposed algorithms of this paper are different from [7, 20]. In particular, we consider different cost functions and design distributed algorithms that provide optimal probability distributions. [11] has considered a scheduling problem in continuous-time and proposed a tractable relaxation, which provides a lower bound on the achievable performance, and an open-loop periodic switching strategy to achieve the bound in the limit of arbitrarily fast switching. However, besides the difference in the formulations, their approach does not appear to be directly extendable to the discrete-time setting. In summary, our main contributions include:

1. We obtain a stochastic scheduling strategy with performance guarantee on the general deterministic scheduling problem by solving distributed optimization problems.
2. We prove the monotonicity and trace-convexity properties of the underlying discrete-time MARE and provide a closed-form solution of a special class of MARE, which may provide mathematical foundation to address many other relevant estimation and detection problems.

1.2 Notations and Organization

Throughout the paper, A' is the transpose of matrix A. $\text{Ones}(n,n)$ implies an $n \times n$ matrix with 1 as all its entries. $\text{Diag}(V)$ denotes a diagonal matrix with vector V as its diagonal entries. $M \succeq 0$ (or $M \in S_+$) and $M > 0$ (or $M \in S_{++}$) respectively implies matrix M is positive semi-definite and positive definite where S_+ and S_{++} represent the positive semi-definite and positive definite cones. For a matrix A, if the block entry $A_{ij} = A'_{ji}$, we use (\cdot) in the matrix to present block A_{ij}.

The paper is organized as follows. In section II, we mathematically formulate the stochastic scheduling problem. In section III and IV, we develop approaches and distributed computing algorithms to solve the optimization problems under two relevant cost functions, respectively. In section V, we present some further results and the extensions of our model. In section VI, we consider the scheduling implementation problem. At last, we present simulations to support our results.

2 Sensor Scheduling Problem Setup

Consider a set of N DTLTI systems (targets) evolving according to the equations

$$x_i[k+1] = A_i x_i[k] + w_i[k] \quad i = 1, 2, \ldots, N$$

(1)

where $x_i[k] \in \mathbb{R}^{n_i}$ is the process state vector and $w_i[k] \in \mathbb{R}^{n_i}$ is an independent Gaussian noise with zero mean and covariance matrix $Q_i > 0$. The initial state $x_i[0]$ is assumed to be an independent Gaussian random variable with zero mean and covariance matrix $R_i[0]$. In practice, each DTLTI system modeled above may represent the dynamic change of a local environment, the trajectory of a mobile vehicle, the varying states of a manufactory machine, etc. As a result of the sensor’s limited range of sensing or the congestion of the sensing channel, at time instant k, only one system can be observed as

$$\tilde{y}_i[k] = \xi_i[k](C_i x_i[k] + v_i[k])$$

(2)

where $\xi_i[k]$ is the indicator function indicating whether or not the system i is observed at time instant k, and accordingly we have constraint $\sum_{i=1}^{N} \xi_i[k] = 1$. $v_i[k] \in \mathbb{R}^{p_i}$ is the measurement noise, which is assumed to be independent Gaussian with zero mean and covariance matrix R_i.

Assumption 1 For all $i \in \{1, 2, \ldots, N\}$, the pair $(A_i, Q_i^{1/2})$ is controllable and the pair (A_i, C_i) is detectable.

Denote $\hat{x}_i[k]$ as the estimate at time k, obtained by a causal estimator for system i, which depends on the past and current observations $\{\tilde{y}_i[j]\}_{j=1}^{k}$. We begin by considering problem of minimizing (in the limit) the maximal estimate error and the average estimate error among targets, respectively. The
problem can be formulated mathematically as

\[
\min_{\hat{x}_i, i = [1, \ldots, N], \{\xi_i(j)\}_{j=1}^{T}} \int \left(\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{E}[(x_t[k] - \hat{x}_i[k])(x_t[k] - \hat{x}_i[k])'] \right)
\]

subject to \text{ Equation : (1), (2), } i = 1, \ldots, N,

\[
\sum_{i=1}^{N} \xi_i[k] = 1,
\]

where \(J \in \{J_1 = \max, Tr(\cdot), J_2 = \frac{1}{N} \sum_{i=1}^{N} Tr(\cdot) \}. \)

As the DTLTI systems are assumed to be evolving independently, then for a fixed \(\{\xi_i(j)\}_{j=1}^{T} \) the optimal estimator for minimizing the estimate error covariance of system \(i \) (\(i = 1, 2, \ldots, N \)) is given by a Kalman filter\(^2\) whose process of prediction and update are presented as follows [21].

Firstly we define

\[
\hat{x}_i[k] \triangleq \mathbb{E}[x_i[k] | \{\hat{y}_i[j] \}_{j=1}^{k}]
\]

\[
P_i[k|k] \triangleq \mathbb{E}[(x_i[k] - \hat{x}_i[k])(x_i[k] - \hat{x}_i[k])' | \{\hat{y}_i[j] \}_{j=1}^{k}]
\]

\[
\hat{x}_i[k+1|k] \triangleq \mathbb{E}[x_i[k+1] | \{\hat{y}_i[j] \}_{j=1}^{k}]
\]

\[
P_i[k+1|k] \triangleq \mathbb{E}[(x_i[k+1] - \hat{x}_i[k+1])(x_i[k+1] - \hat{x}_i[k+1])' | \{\hat{y}_i[j] \}_{j=1}^{k}]
\]

Then the Kalman filter evolves as

\[
\hat{x}_i[k+1|k] = A_i \hat{x}_i[k|k]
\]

\[
P_i[k+1|k] = A_i P_i[k|k] A_i' + Q_i
\]

\[
\hat{x}_i[k+1|k+1] = \hat{x}_i[k+1|k] + \hat{P}_i[k|k+1] K_i[k+1|k] (y_i[k+1] - C_i \hat{x}_i[k+1|k])
\]

\[
P_i[k+1|k+1] = P_i[k+1|k+1] - \hat{P}_i[k|k+1] K_i[k+1|k] C_i P_i[k+1|k+1]
\]

where \(K_i[k+1] = P_i[k+1|k] C_i' (C_i P_i[k+1|k] C_i' + R_i)^{-1} \) is the Kalman gain matrix. After straightforward derivation, we have the covariance of the estimate error evolving as

\[
A_i P_i[k|k] A_i' + Q_i - \xi_i[k] A_i P_i[k|k] C_i' (C_i P_i[k|k] C_i' + R_i)^{-1} C_i P_i[k|k] A_i' = P_i[k+1|k] \quad (4)
\]

where we use the simplified notation \(P_i[k] = P_i[k|k-1] \). Note that the error covariance \(P_i[k+1] \) is a function of sequence \(\{\xi_i(j)\}_{j=1}^{T} \). Moreover, given \(\{\xi_i(j)\}_{j=1}^{T} \), the evolution of the error covariance \(P_i \) is independent of the measurement values. Substituting the optimal estimator, the problem (3) is simplified into the following one.

Deterministic Scheduling Problem:

\[
\mu_d = \min_{\{\xi_i[j]\}_{j=1}^{T}, i = 1, \ldots, N} \int \left(\limsup_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} P_i[k] \right)
\]

subject to \text{ Equation : (4), } \sum_{i=1}^{N} \xi_i[k] = 1,

where \(J \in \{J_1 = \max, Tr(\cdot), J_2 = \frac{1}{N} \sum_{i=1}^{N} Tr(\cdot) \}. \)

This problem is notoriously difficult to solve. There are not known optimal alternatives to searching all possible schedules and then pick the optimal one by complete comparison. However, the procedure is not computationally tractable in practice. Motivated by this fact, in what follows, we present a stochastic scheduling strategy with advantages summarized below:

1. The stochastic schedule strategy provides an upper bound on the performance of the deterministic scheduling problem as proved in Theorem 1 next.
2. The stochastic schedule problem can be easily relaxed into a convex optimization problem which can be solved efficiently in a distributed fashion.
3. It is an open-loop strategy and consequently has low computing complexity and is simple to implement.
4. Several practical constraints/considerations can be easily incorporated into the stochastic schedule strategy, as discussed in Section 5.

2.1 Problem Formulation: Stochastic Scheduling Strategy

First of all, we remove the dependence on time instant \(k \) and consider \(\xi_i[k] \) as an independent and identically distributed (i.i.d.) Bernoulli random variable with

\[
\xi_i[k] = \begin{cases}
1 & \text{with probability } q_i \\
0 & \text{with probability } 1 - q_i
\end{cases} \quad i = 1, 2, \ldots, N \quad (6)
\]

for all \(k \), where \(q_i \) is the probability that the system \(i \) is observed at each time instant. As \(\sum_{i=1}^{N} q_i = 1 \), we have \(\sum_{i=1}^{N} q_i = 1 \). Then the stochastic scheduling strategy is that at each time instant a target (i.e., DTLTI system) is randomly chosen for measurements according to a pre-assigned probability distribution \(\{q_i \}_{i=1}^{N} \).

Notice that the error covariance \(P_i[k+1] \) is random as it depends on the randomly chosen sequence \(\{\xi_i(j)\}_{j=1}^{T} \). Thus we need to evaluate the expected estimate error covariance in order to minimize the actual estimate error. Putting above together, we have the stochastic scheduling problem motivated by (5) as follows.

\(^2\) This indicates that \(N \) parallel estimators, i.e., Kalman filters, are used for estimating \(N \) independent DTLTI systems.
Stochastic Scheduling Problem

$$\mu_d = \min_{q_i, i \in [1, N]} J \left(\limsup_{k \to \infty} E_{\xi, k}[P_i[k]] \right)$$

subject to

$$\sum_{i=1}^{N} q_i = 1, 0 \leq q_i \leq 1,$$

where \(J \in \{ J_1 = \max Tr(\cdot), J_2 = \frac{1}{N} \sum_{i=1}^{N} Tr(\cdot) \} \), and the expectation is w.r.t \(\{ \xi[1], \ldots, \xi[k] \} \), which we denote by \(\xi_{k-1} \).

Theorem 1 The deterministic scheduling performance \(\mu_d \) in (5) is upper bounded by the stochastic scheduling performance \(\mu_s \) in (7).

Proof. See Appendix. \(\square \)

2.2 Relaxation

Problem (7) involves the evolution of

$$E_{\xi, k}[P_i[k]] = A_i E_{\xi, k-1}[P_i[k-1]]A_i^T + Q_i - q_i E_{\xi, k-1}[A_iP_i[k-1]|C_iP_i[k-1]|C_i^T + R_i)^{-1}C_iP_i[k-1]|A_i^T]$$

Unfortunately, the right-hand side of the above expression is not easily computable, as it involves the expectation w.r.t \(\xi_{k-1} \), of a nonlinear recursive expression of \(P_i[k-1] \). However, [21] has nicely shown that \(\limsup_{k \to \infty} E_{\xi, k}[P_i[k]] \) is upper bounded by the fixed point \(X_i \) of the following associated MARE,

$$X_i = A_iX_iA_i^T + Q_i - q_iA_iX_iC_i^T(C_iX_iC_i^T + R_i)^{-1}C_iX_iA_i^T.$$ (8)

This result motivates us to minimize \(J(X_i) \) as a means to keep \(J(\limsup_{k \to \infty} E_{\xi, k}[P_i[k]]) \) itself small. Specifically, we consider the following two problems in the rest of the paper.

OP I:

$$\min_{q_i, i \in [1, N]} \max_i Tr(X_i)$$

subject to:

$$\sum_{i=1}^{N} q_i = 1, q_i^c < q_i \leq 1, i = 1, 2, \ldots, N$$

and

OP II:

$$\min_{q_i, i \in [1, N]} \frac{1}{N} \sum_{i=1}^{N} Tr(X_i)$$

subject to:

$$\sum_{i=1}^{N} q_i = 1, q_i^c < q_i \leq 1, i = 1, 2, \ldots, N$$

where \(X_i \) is an implicit function of \(q_i \), defined by \(X_i = g_{q_i}(X_i) \) and

$$g_{q_i}(X_i) = A_iX_iA_i^T + Q_i - q_iA_iX_iC_i^T(C_iX_iC_i^T + R_i)^{-1}C_iX_iA_i^T.$$ (11)

Remark 2 \(q_i^c \) is the critical value depending on the unstable eigenvalues of \(A_i \), where the fixed point \(X_i \) exists if and only if the assigned probability \(q_i > q_i^c \). We refer interested readers to [21, 22] for the details on \(q_i^c \). In this paper, we assume \(\sum_{i=1}^{N} q_i < 1 \), otherwise the above optimization problem has no feasible solution, i.e., the upper bound turns out to be infinity. For stable systems, we always have \(q_i^c = 0 \).

Note that the searching space of the above optimization problem is continuous, and it will be shown that the problem is convex. In addition, based on Theorem 1, the objective value of the above problem is an upper bound on the performance of the deterministic scheduling problem (5). In the rest of the paper, we provide efficient distributed algorithms to obtain the optimal solutions of problem (9) and (10).

3 Minimization of The Maximal Estimate Error among Targets.

In this section, we consider problem (9), which is denoted by OP I. We first show that OP I can be decoupled into \(N \) convex optimization problems, which can be solved separately. Then by utilizing the classical consensus algorithm, we propose a distributed computing algorithm to obtain the optimal solution of OP I. First of all, we recall some results on the MARE in [21].

Lemma 3 Fix \(q \in \mathbb{R}, \{ q_i^c \} \), for any initial condition \(X_0 > 0 \),

$$\lim_{k \to \infty} g^{(k)}(X_0) = \lim_{k \to \infty} g_q(g_q(\cdots g_q(X_0))) = X$$

where \(X \) is the unique positive-semidefinite fixed point of the MARE, namely, \(X = g_q(X) \).

Lemma 4 For a given scalar \(q \) and a DT-LTI system \((A, C, Q, R)\) as described in (1) and (2), the fixed point \(X \) of the MARE presented in the form of (8) can be obtained by solving the following LMI problem.

$$\text{argmax}_X \quad Tr(X)$$

subject to

$$\begin{bmatrix} AXA' - X + Q & \sqrt{\sigma}AXC' \\ \sqrt{\sigma}CA' & CXC' + R \end{bmatrix} \succeq 0$$ (12)

$$X \succeq 0.$$

Lemma 5 Assume \(X, Q, R \in S_+ \) and \((A, Q^\frac{1}{2})\) is controllable. Then the following facts are true.

1. \(g_q(X) \succ g_q(Y) \) if \(X \succ Y \).
2. \(g_{q_1}(X) \succeq g_{q_2}(X) \) if \(q_1 \leq q_2 \).
Now we prove the monotonicity of the fixed point of the MARE, which will facilitate us to analyze OP I.

Definition 6 (Matrix-monotonicity) A function \(f: \mathbb{R} \to \mathbb{S}_+ \) is matrix-monotonic if for all \(x, y \in \text{dom} f \) with \(x \leq y \), we have either \(f(x) \preceq f(y) \) or \(f(x) \succeq f(y) \) in the positive semidefinite cone \(\mathbb{S}_+ \).

Theorem 7 (Matrix-monotonicity of the MARE) For all \(q \in \mathbb{R}_{(q', 1)} \), the fixed point of the MARE is matrix-monotonically decreasing w.r.t. the scalar \(q \).

Proof. Assume \(q^c < q_1 \leq q_2 \leq 1 \) and \(X_1, X_2 \) satisfying \(X_1 = g_{q_1}(X_1) \) and \(X_2 = g_{q_2}(X_2) \). The existence of the fixed points \(X_1 \) and \(X_2 \) is guaranteed according to Lemma 3. We need to show \(X_1 \succeq X_2 \). Since \(q_1 \leq q_2 \), by using Lemma 5(2) we have

\[
X_1 = g_{q_1}(X_1) \succeq g_{q_2}(X_1).
\]

By Lemma 5(1), we have

\[
X_1 \succeq g_{q_2}(g_{q_2}(X_1)) \succeq g_{q_2}(g_{q_2}(g_{q_2}(X_1))) \geq \ldots \succeq g_{q_2}^{(k)}(X_1)
\]

By the convergence property of the MARE (i.e., Lemma 3), we have \(X_1 \succeq X_2 \) by taking \(k \to \infty \). □

Remark 8 This theorem reveals an important message that, for any two different scalar \(q_1 \) and \(q_2 \), the corresponding fixed points can be ordered in the positive semidefinite cone. In other words, for a given system model \((A, C, Q, R)\), the fixed points of the MARE w.r.t. variable \(q \) are comparable. As we will see, this property is the foundation for the trace-convexity property of the MARE, i.e., the trace of the fixed point of the MARE is convex in \(q \).

Now, we are ready to analyze and solve OP I. For the ease of reading, we occasionally use notation \(X_i(q_i) \) to stress that \(X_i \) is a function of \(q_i \), i.e., \(X_i \) is the fixed point of the MARE w.r.t. the scalar \(q_i \).

Corollary 9 Problem OP I is a quasi-convex optimization problem.

Proof. Consider the cost function of OP I. From Theorem 7, \(Tr(X_i(q_i)) \) is monotonically non-increasing in \(q_i \), as the trace function is linear. Therefore, \(Tr(X_i(q_i)) \) is a quasi-convex function, for each \(i = 1, \ldots, N \), due to the fact that any monotonic function is quasi-convex. Next, based on the fact that non-negative weighted maximum of quasi-convex functions preserves quasi-convexity, the result follows. □

Next, we can rewrite Problem OP I in the following equivalent form

\[
\begin{align*}
\min_{q_i, i = [1, N], \gamma > 0} & \quad \gamma \\
\text{subject to:} & \quad Tr(X_i(q_i)) < \gamma, \\
& \quad q_i^c < q_i \leq 1, \quad i = 1, 2, \ldots, N,
\end{align*}
\]

The problem is in principle solved by bisecting \(\gamma \) and checking the feasible set is not empty. However the constraint set is not in a useful form yet. For any fixed \(\gamma \), the feasible set is convex but not easy to work with, given the implicit functions \(Tr(X_i(q_i)) \). At the same time, the feasible set is characterized by linear constraints, as the constraint \(Tr(X_i(q_i)) < \gamma \) implies that \(q_i > q_i(\gamma) \), for some \(q_i(\gamma) \). It is then convenient to consider the following related problem for a given \(\gamma > 0 \).

\[
\begin{align*}
\mu(\gamma) &= \min_{q_i, i = [1, N]} \sum_{i=1}^{N} q_i \\
\text{subject to:} & \quad Tr(X_i(q_i)) < \gamma, \\
& \quad q_i^c < q_i \leq 1, \quad i = 1, 2, \ldots, N,
\end{align*}
\]

Lemma 10 Given \(\gamma > 0 \), \(\mu(\gamma) \leq 1 \) if and only if the set

\[
\mathcal{S}_\gamma = \left\{ q_i, i = 1, \ldots, N | q_i^c < q_i \leq 1, Tr(X_i(q_i)) < \gamma, \sum_{i=1}^{N} q_i = 1 \right\}
\]

is not empty.

Proof. Assume \(\mathcal{S}_\gamma \) is not empty. Then the feasible set of the implicit linear program (15) is not empty, and \(\sum_{i=1}^{N} q_i = 1 \). Thus \(\mu(\gamma) \leq 1 \). For the other direction, if \(\mu(\gamma) = 1 \), then \(\mathcal{S}_\gamma \) is not empty. If \(\mu(\gamma) < 1 \), then let \(\alpha > 1 \) such that \(\alpha \mu(\gamma) = 1 \), and consider \(\tilde{q}_i = \alpha q_i \), for \(i = 1, \ldots, N \). Then, \(\sum_{i=1}^{N} \tilde{q}_i = 1, \tilde{q}_i > q_i^c \), and \(Tr(X_i(\tilde{q}_i)) \leq Tr(X_i(q_i)) < \gamma \). Thus, \(\mathcal{S}_\gamma \) is not empty. □
Finally, (15) can be solved by minimizing N independent problems, namely $\mu(\gamma) = \sum_{i=1}^{N} q_{i}^{\text{opt}}(\gamma)$ where

$$q_{i}^{\text{opt}}(\gamma) = \min_{q_{i}} q_{i},$$

subject to $\text{Tr}(X_{i}) < \gamma$, $q_{i}^{f} < q_{i} \leq 1$ (16)

Based on Theorem 7, we see that the optimal solution $q_{i}^{\text{opt}}(\gamma)$ of the problem (16) implies the smallest probability required for measuring system i for achieving the pre-assigned estimate performance γ. If the problem (16) is not feasible (e.g., γ is too small), we set $q_{i}^{\text{opt}}(\gamma) = 1$. Next, we show that the optimization problem (16) can be re-formulated as the iteration of a Linear Matrix Inequality (LMI) feasibility problem. Without abuse of notation, we remove the subscript i since the following results apply to all DLTI dynamic systems.

Lemma 11 Assume that $(A, Q^{1/2})$ is controllable and (A, C) is detectable. For any given $q \in \mathbb{R}(q^{f}, 1)$ and invertible matrices Q and R, the following statements are equivalent:

1. $\exists \bar{X} \in S_{+}$ such that $\bar{X} = g_{q}(\bar{X})$.
2. $\exists \bar{K}$ and $X \in S_{++}$ such that $X \succ \Phi_{q}(K, X)$ (defined in (13)).
3. $\exists H$ and $G \in S_{++}$ such that $\Gamma_{q}(H, G) \succ 0$.

where

$$\Gamma_{q}(G, H) = \begin{bmatrix} G & qGA + qHC & G & GA - qGA & qH \\ (\cdot)' & qG & 0 & 0 & 0 \\ (\cdot)' & (\cdot)' & Q^{-1} & 0 & 0 \\ (\cdot)' & (\cdot)' & (\cdot)' & G - qG & 0 \\ (\cdot)' & (\cdot)' & (\cdot)' & (\cdot)' & qR^{-1} \end{bmatrix}$$

Proof. 1) \Rightarrow 2). According to Lemma 5 (3), we have $X = g_{q}(\bar{X}) = \Phi_{q}(K_{\bar{X}}, \bar{X})$ with $K_{\bar{X}} = -A\bar{X}C'(\bar{X}C' + R)^{-1}$. Then

$$2\bar{X} = 2\Phi_{q}(K_{\bar{X}}, \bar{X}) = \begin{bmatrix} X A + q(A + K_{\bar{X}}C)(2\bar{X})(A + K_{\bar{X}}C)' + 2Q + 2K_{\bar{X}}R_{K_{\bar{X}}}' \nonumber \\ (1 - q)A(2\bar{X})A' + q(A + K_{\bar{X}}C)(2\bar{X})(A + K_{\bar{X}}C)' + 2Q + 2K_{\bar{X}}R_{K_{\bar{X}}}' \end{bmatrix} \succ 0$$

(17)

The inequality follows from the fact that $Q \succ 0$ and $K_{\bar{X}}R_{K_{\bar{X}}}' \succ 0$. Clearly we further have $2\bar{X} \succ Q \succ 0$. The proof is complete.

2) \Rightarrow 1). If $X \succ \Phi_{q}(K, X)$, the proof follows from Theorem 1 in [21].

2) \Leftrightarrow 3).

$$X \succ \Phi_{q}(K, X) \Leftrightarrow X \succ (1 - q)(AXA' + Q) + q(A + KC)X(A + KC)' + qQ + qKR_{K_{\bar{X}}}'$$

By using Schur complement decomposition, this is equivalent to

$$\Lambda = \begin{bmatrix} X - Q - qKR_{K_{\bar{X}}}'(A + KC)X & AX \\ (\cdot)' & q^{-1}X \end{bmatrix} \succ 0$$

Furthermore, this is equivalent to

$$\begin{bmatrix} X^{-1} & 0 & 0 \\ 0 & qX^{-1} & 0 \end{bmatrix} \Lambda \begin{bmatrix} 0 & qX^{-1} & 0 \\ 0 & 0 & (1 - q)x^{-1} \end{bmatrix} \succ 0$$

where $\Theta_{q}(X, K) = \Phi_{q}(K, X)$. Applying one more time the Schur complement decomposition on the first element of the matrix, we obtain $\Theta_{q}(X, K) > 0$ where $\Theta_{q}(X, K)$ is defined in (19). By taking $G = X^{-1}$ and $H = X^{-1}K$ we have $\Gamma_{q}(H, G) \succ 0$.

Based on Lemma 11, the problem (16) can be transformed into a feasibility problem as follows.

Theorem 12 If $(A, Q^{1/2})$ is controllable and (A, C) is detectable, the solution of the optimization problem (16) can be obtained by solving the following quasi-convex optimization problem in variables (q, G, H, X).

$$\min_{q, G, H, Y} q$$

subject to $\text{Tr}(Y) < \gamma$, $i = 1, 2, \ldots, N$

(18)

$$\begin{bmatrix} Y \ I \\ I \ G \end{bmatrix} \succ 0$$

$$\Gamma_{q}(G, H) \succ 0, \quad q^{f} < q \leq 1, \quad G \succ 0$$

Proof. From the usefulness of the substitution of $G = X^{-1}$ in Lemma 11, it is straightforward to obtain the following equivalent statements by the Schur complement decomposition.

a) $\exists \bar{X} \in S_{++}$ such that $\text{Tr}(X) < \gamma$.

b) $\exists \bar{X} \in S_{++}$ such that $\bar{Y} - X \succ 0$ and $\text{Tr}(Y) < \gamma$

c) $\exists \bar{Y} \in S_{++}$ such that $\text{Tr}(Y) < \gamma$ and

$$\begin{bmatrix} Y \ I \\ I \ G \end{bmatrix} \succ 0$$
From Lemma 11, we have the equivalence between $X = g_q(X)$ and $\Gamma_q(G,H) > 0$ in terms of feasibility. For fixed q, $\Gamma_q(G,H) > 0$ is a LMI in variables (G,H). Therefore, the problem (18) can be solved as a quasi-convex optimization problem by using bisection for variable q. □

As shown in the above proof, the optimization problem (18) can be solved by using bisection for variable q and iterating LMI feasibility problems. By solving problem (16) through (18), the i-th estimator obtains the minimal attention q_i^{opt} for target i for a guaranteed performance γ. It is easy to infer that $\mu(\gamma)$ is decreasing w.r.t performance γ. Thus, in order to solve problem OP I, we need to search over γ for the optimal $\mu(\gamma) = 1$ according to Lemma 10 and problem (15). If a centralized scheduler/computing-unit is available, it can collect the $q_i^{opt}(\gamma)$’s from the estimators, check that their sums is less than or equal to one, and send back to the estimator an updated value of γ based on a bisection algorithm. Alternatively, the estimators need to cooperate and agree on a optimal feasible γ. This can be done assuming the estimators are strongly connected via a network where the communications between any two estimators are error-free. In this case, each estimator needs to obtain the value of $\mu(\gamma) = \sum_{i=1}^{N} q_i^{opt}(\gamma)$ by communicating with its neighbors. Under the assumption that N is known to the estimators, $\frac{1}{N} \sum_{i=1}^{N} q_i^{opt}(\gamma)$ can be obtained by a distributed averaging process in finite steps as shown in [23]. Then, by increasing or decreasing γ under a common bisection rule among estimators, the value of $\sum_{i=1}^{N} q_i^{opt}(\gamma)$ can be driven to 1 and consequently OP I is solved.

The above argument, leads to the following distributed computing algorithm, Algorithm 1, to solve OP I. The inputs of the algorithm are global information assumed to be known by each estimator in prior. Denote γ^{opt} as the optimal objective value of OP I. To avoid cumbersome details and to save space, we present the algorithm under the assumption that the interval $[l,u]$ is selected to contain γ^{opt}, i.e., we have $l \leq \gamma^{opt} \leq u$ at each step. Then the algorithm is guaranteed to converge to the optimal objective value γ^{opt} within the desired tolerance.

Algorithm 1 Distributed algorithm for solving OP I

Input: $N, l \leq \gamma^{opt}, u \geq \gamma^{opt}$, tolerance $\varepsilon \geq 0$.
Output: $\{q_i^{opt}\}_{i=1}^{N}, J_*$

1: for all $i \in \{1,2,\cdots,N\}$ do
2: $u_i \leftarrow u$ and $l_i \leftarrow l$.
3: end for
4: for all $i \in \{1,2,\cdots,N\}$ do
5: while $u_i - l_i > \varepsilon$ {Operations in this loop are synchronized among estimators.} do
6: $\gamma \leftarrow \frac{l_i + u_i}{2}$.
7: Obtain $q_i^{opt}(\gamma)$ by solving problem (18).
8: Obtain $\mu(\gamma) = \sum_{i=1}^{N} q_i^{opt}(\gamma)$ via the distributed averaging algorithm.
9: if $\mu(\gamma) \leq 1$ then
10: $u_i \leftarrow \gamma$
11: else
12: $l_i \leftarrow \gamma$
13: end if
14: end while
15: end for
16: $J_* \leftarrow \gamma$

4 Minimization of The Average Estimate Error among Targets

In this section, we consider problem (10), which is denoted by OP II. Unfortunately, the previous approach does not work in this case since the objective function can not be decoupled. In order to propose a distributed computing algorithm to solve OP II, we first prove the convexity of OP II. Then under strong duality, we decompose its dual problem and solving problem (19). Unfortunately, the previous approach does not work in this case since the objective function can not be decoupled. In order to propose a distributed computing algorithm to solve OP II, we first prove the convexity of OP II. Then under strong duality, we decompose its dual problem and solving problem (19).
have $-\varepsilon I_n < f(x) - f(y) < \varepsilon I_n$.

We next prove the continuity property of the MARE.

Theorem 14 (Uniform continuity of the MARE) If the fixed point of the MARE exists and is positive semidefinite for $q \in \mathbb{R}_{(q',1)}$, the fixed point is uniformly continuous in q.

Proof. See Appendix. □

Corollary 15 If the fixed point of the MARE exists and is positive semidefinite for $q \in \mathbb{R}_{(q',1)}$, the trace of the fixed point is uniformly continuous in q.

The proof is very straightforward and thus omitted herein.

To show the convexity of OP II, we need to prove the convexity of $Tr(X)$ on q. By looking at formula (8), we see that the fixed point X of the MARE is an implicit function of scalar q. Therefore, it is not trivial to show the convexity as any standard technique (e.g. taking second derivative) can not be applied.

Theorem 16 (Trace-convexity of the MARE) If the fixed point of the MARE exists and is positive semidefinite for $q \in \mathbb{R}_{(q',1)}$, the trace of the fixed point is convex in q.

Proof. For any fixed $q' < q_1 < q_2 \leq 1$, let X and Y be the fixed points of the corresponding MAREs (i.e., $X = g_q(X)$ and $Y = g_q(Y)$). Assume $q_1 = \lambda q_1 + (1 - \lambda)q_2$ with $\lambda \in \mathbb{R}_{[0,1]}$ and $Z_\lambda = g_{q_1}(Z_\lambda)$. According to Theorem 7 and Remark 8, we have $X \succ Z_\lambda \succeq Y$. To prove convexity, we need to show $\lambda Tr(X) + (1 - \lambda)Tr(Y) \succeq Tr(Z_\lambda)$ for $\forall \lambda \in \mathbb{R}_{[0,1]}$. We prove this by contradiction. Assume that there exists λ^* such that $Tr(Z_\lambda) > \lambda^* Tr(X) + (1 - \lambda^*) Tr(Y)$. Since we have $\lambda^* Tr(X) + (1 - \lambda^*) Tr(Y) \in [Tr(Y), Tr(X)]$ and the trace of the fixed point of the MARE is uniformly continuous (i.e. Corollary 15), we apply the Intermediate Value Theorem that there exists $\bar{q} \in [q_1, q_2]$ such that the corresponding fixed point $V_{\bar{q}}$ (i.e. $V_{\bar{q}} = g_{\bar{q}}(V_{\bar{q}})$) satisfies $Tr(V_{\bar{q}}) = \lambda^* Tr(X) + (1 - \lambda^*) Tr(Y)$. Without loss of generality, we can write $V_{\bar{q}}$ in the form of $\lambda^*(X + H) + (1 - \lambda^*)Y$ such that

$$Tr(\lambda^*(X + H) + (1 - \lambda^*)Y) = \lambda^* Tr(X) + (1 - \lambda^*) Tr(Y),$$

where H represents a matrix with appropriate dimension and $Tr(H) = 0$. Therefore,

$$Tr(Z_{\lambda^*}) > \lambda^* Tr(X) + (1 - \lambda^*) Tr(Y)$$

$$\iff Tr(Z_{\lambda^*}) > Tr(\lambda^* (X + H) + (1 - \lambda^*) Y)$$

$$\iff Z_{\lambda^*} \succ \lambda^* (X + H) + (1 - \lambda^*) Y$$

where the last line follows from the fact that both Z_{λ^*} and $V_{\bar{q}} = \lambda^* (X + H) + (1 - \lambda^*) Y$ are the fixed points of the MARE and thus can be ordered in the positive definite cone according to Theorem 7. Thus, we have

$$Z_{\lambda^*} = g_{q_{\lambda^*}}(Z_{\lambda^*})$$

$$\succ g_{q_{\lambda^*}}(\lambda^* (X + H) + (1 - \lambda^*) Y)$$

$$\geq \lambda^* g_{q_{\lambda^*}}(X + H) + (1 - \lambda^*) g_{q_{\lambda^*}}(Y)$$

where (a) and (b) follow from Lemma 5(1) and (5), respectively. Repeat the above process and we have

$$Z_{\lambda^*} = g_{q_{\lambda^*}}(Z_{\lambda^*})$$

$$\succ g_{q_{\lambda^*}}(\lambda^* g_{q_{\lambda^*}}(X + H) + (1 - \lambda^*) g_{q_{\lambda^*}}(Y))$$

$$\geq \lambda^* g_{q_{\lambda^*}}(X + H) + (1 - \lambda^*) g_{q_{\lambda^*}}(Y).$$

Repeat this process for k times,

$$Z_{\lambda^*} \succ \lambda^* g_{q_{\lambda^*}}(X + H) + (1 - \lambda^*) g_{q_{\lambda^*}}(Y).$$

In order to take the limit of k and apply the convergence property of the MARE, we next show that the initial point $X + H \succeq 0$. Since $q \leq q_2$, we have the fixed points $V_q = \lambda^* (X + H) + (1 - \lambda^*) Y \succeq Y$ according to the monotonicity property of the MARE. After some algebra, it is straightforward to have $X + H \succeq Y \succeq 0$.

By taking $k \to \infty$ and using Lemma 3 (i.e. the convergence property), we have

$$Z_{\lambda^*} \succ \lambda^* Z_{\lambda^*} + (1 - \lambda^*) Z_{\lambda^*} = Z_{\lambda^*}$$

which is a contradiction. The proof is complete. □

Now, we have the following convexity theorem on OP II.

Theorem 17 The optimization problem OP II as shown below is convex.

$$\min_{q_i} 1 \sum_{i=1}^{N} Tr(X_i)$$

$$\text{subject to } \sum_{i=1}^{N} q_i = 1, q_i < q_i \leq 1, \; i = 1, 2, \ldots, N,$$

where X_i is an implicit function of q_i, defined by $X_i = g_{q_i}(X_i)$ and

$$g_{q_i}(X_i) = A_i X_i A_i + Q_i - q_i A_i X_i C_i (C_i X_i C_i + R_i)^{-1} C_i X_i A_i$$

Proof. Based on Theorem 16, it is straightforward to prove this theorem based on the fact that the sum of convex functions is convex. □

We next propose a distributed computing algorithm to solve OP II. In what follows, we assume that the problem has strictly feasible solutions, namely $\sum_{i=1}^{N} q_i^c \geq 1$. The case where $\sum_{i=1}^{N} q_i^c = 1$, can be treated separately. As the optimization problem (21) is convex and has a strictly feasible
solution the strong duality holds according to Slater’s condition. This allows us to look at its dual problem without loss of optimality and to adopt the well-known dual decomposition algorithm [24], to solve OP II in a distributed fashion.

We next present the details of this approach.

Define the Lagrangian $L(q, \gamma)$ associated with OP II as follows:

$$L(q, \gamma) = \frac{1}{N} \sum_{i=1}^{N} Tr(X_i(q_i)) + \gamma (\sum_{i=1}^{N} q_i - 1)$$

where $\gamma \in \mathbb{R}$ is the Lagrange multiplier associated with $\sum_{i=1}^{N} q_i = 1$ and q_i is referred to as $[q_1, q_2, \cdots , q_N]$. Note that we are not relaxing the constraints $q_i \leq 1$. Then the Lagrange dual function is defined as

$$v(\gamma) = \min_{q_i < q_1 \leq 1, i=1[N]} \left\{ \frac{1}{N} \sum_{i=1}^{N} Tr(X_i(q_i)) + \gamma (\sum_{i=1}^{N} q_i - 1) \right\}$$

Note that the Lagrangian is separable (w.r.t individual q_i) and each separated term $Tr(X_i(q_i))$ is a convex function on q_i. Namely,

$$L(q, \gamma) = \sum_{i=1}^{N} L_i(q_i, \gamma)$$

where

$$L_i(q_i, \gamma) \triangleq \frac{1}{N} Tr(X_i(q_i)) + \gamma q_i - \frac{1}{N} \gamma$$.

Therefore, the Lagrange dual function has the following form

$$v(\gamma) = \sum_{i=1}^{N} \min_{q_i < q_1 \leq 1} L_i(q_i, \gamma)$$

and the dual problem is

$$\max_{\gamma} \sum_{i=1}^{N} \min_{q_i < q_1 \leq 1} L_i(q_i, \gamma).$$

The strong duality guarantees that the above dual problem provides the optimal value of OP II. According to [24], the above problem can be solved by the well-known dual decomposition algorithm, that is,

$$q_i^{op}(k+1) = \arg \min_{q_i < q_1 \leq 1} L_i(q_i, \gamma(k)), \quad i = 1, \cdots , N$$

$$\gamma(k+1) = \gamma(k) + \alpha(k) \left(\sum_{i=1}^{N} q_i^{op}(k+1) - 1 \right)$$

where $\alpha(k)$ is a step size, and index k is the iteration counter.

The updating process (28) can be performed in a distributed and parallel fashion. Each estimator node needs to solve the decoupled problem

$$q_i^{op}(k+1) = \arg \min_{q_i < q_1 \leq 1} \frac{1}{N} Tr(X_i(q_i)) + \left(q_i - \frac{1}{N} \right) \gamma(k)$$

for a given $\gamma(k)$. Each problem is convex, according to Theorem 16, and can be efficiently solved (in parallel) as shown in Lemma 4, by gridding on the scalar q_i.

If a centralized scheduler is available, then it can be in charge of gathering the $q_i^{op}(k)$ and updating (29). Otherwise, as proposed in the distributed algorithm for solving OP I and under the same assumptions, each estimator node can obtain $\sum_{i=1}^{N} q_i^{op}(k)$ by the distributed averaging algorithm in [23] in finite steps, and compute $\gamma(k+1)$.

The details of distributed algorithm 2 to solve OP II are given next. The inputs of the algorithm are global information assumed to be known by each estimator in prior.

Algorithm 2 Distributed algorithm for solving OP II

Input: $N, \beta > 0, \gamma_0$, tolerance $\varepsilon \geq 0$.

Output: $\{q_i^{op}\}_{i=1}^{N}$, J_2

1: for all $i \in \{1, 2, \cdots , N\}$ do
2: $\gamma \leftarrow \gamma_0$, \{Initialization\}
3: $q_i^{op} = 0$, $k = 1$.
4: end for
5: for all $i \in \{1, 2, \cdots , N\}$ do
6: while $|\sum_{i=1}^{N} q_i^{op} - 1| > \varepsilon$ \{Operations in this loop are synchronized among estimators.\} do
7: For a given γ, obtain the solution q_i^{op} and the objective value $v_i(\gamma)$ by solving problem (30).
8: Obtain $\sum_{i=1}^{N} q_i^{op}$ and $\sum_{i=1}^{N} v_i$ via the distributed averaging algorithm.
9: $\gamma \leftarrow \gamma + \frac{\beta}{k} (\sum_{i=1}^{N} q_i^{op} - 1)$
10: $k \leftarrow k + 1$
11: end while
12: end for
13: $J_2 \leftarrow \sum_{i=1}^{N} v_i$

Remark 18 Before performing the above algorithm, it is necessary to check the feasibility of the primal problem OP II in order to verify the strong duality. This process can be done in a distributed fashion as well. Firstly, each estimator calculates the critical value q_i^{*} which only depends on the unstable eigenvalues of the corresponding dynamic system (see Remark 2). Then by running the distributed averaging algorithm, each estimator obtains $\sum_{i=1}^{N} q_i^{*}$ and can check if $\sum_{i=1}^{N} q_i^{*} < 1$. For the case of $\sum_{i=1}^{N} q_i^{*} > 1$, the primal problem is not feasible and thus the proposed stochastic strategy may not work.
5 Further Discussions and Remarks

5.1 Closed-form Solutions to MARE of Single-State Systems

In what follows, we consider a special class of systems for which the underlying MARE has a closed-form solution and therefore the proposed algorithms perform even more efficiently. To the best knowledge of authors, this is the first non-trivial closed-form solution of the MARE in the literature.

Consider a set of N DTLTI single-state systems to be measured evolving according to the equation

$$x_i[k+1] = a_i x_i[k] + w_i[k]$$

where $x_i[k], v_i[k], u_i[k] \in \mathbb{R}$ and the covariance of w and v are $Q_i \in \mathbb{R}^{+}$ and $R_i \in \mathbb{R}^{+}$, respectively. The measurement taken by the sensor at each time instant is formulated as follows,

$$\bar{y}_i[k] = \xi_i[k] (x_i[k-d_i] + v_i[k])$$

where d_i represents the delay in measurement, which we assume to be fixed and known in this paper. By using augmented states to deal with delays, it is straightforward to have the following compact form for system i with measurement delays,

$$X_i[k+1] = A_i X_i[k] + B_i w_i[k]$$

$$\bar{y}_i[k] = \xi_i[k] (C_i X_i[k] + v_i[k]),$$

where X, A, B, C has the following structure

$$X_i[k] = \begin{bmatrix} x_i^1[k] \\ x_i^2[k] \\ \vdots \\ x_i^{d_i}[k] \\ x_i[k] \end{bmatrix}, \quad A_i = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & \cdots & a_i \end{bmatrix}, \quad B_i = \begin{bmatrix} \vdots \end{bmatrix}$$

$$C_i = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}.$$

Note that only $x_i[k]$ is the true state of system i at time instant k while other states included in vector $X_i[k]$ are dummy variables for handling delays. By exploiting the special structure of above model, we are able to obtain the closed-form fixed point of the MARE. We present this result in the following theorem.

Theorem 19 For a given $0 < q < 1$, consider the MARE described as (A, C, R, \bar{Q}), where (A, C) have the structure presented in (33), $R \in \mathbb{R}^{+}$ and $\bar{Q} = BQB'$ with $Q \in \mathbb{R}^{+}$. Then the MARE has a unique positive-semidefinite fixed point X as follows, if $a = 1$ and $q \neq 0$,

$$X = \begin{bmatrix} x_1 & x_1 & \cdots & x_1 \\ x_1 & x_2 & \cdots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

where

$$x_j = \frac{Q + \sqrt{Q^2 + 4 q Q R}}{2 q} + (j-1)Q \quad j = 1, 2, \ldots, n;$$

if $0 < a < \sqrt{\frac{1}{1-q}}$ and $a \neq 1$,

$$X = \begin{bmatrix} x_1 & a x_1 & \cdots & a^{n-1} x_1 \\ a x_1 & x_2 & \cdots & a^{n-2} x_2 \\ \vdots & \vdots & \ddots & \vdots \\ a^{n-1} x_1 & a^{n-2} x_2 & \cdots & x_n \end{bmatrix}$$

where

$$x_1 = Ra^2 - R + Q + \sqrt{(Ra^2 - R + Q)^2 - 4(a^2 - 1 - a^2 q)QR} \frac{2(1 + a^2 q - a^2)}{1 - a^2}$$

$$x_j = a^{2(j-1)} x_1 + \frac{1 - a^{2(j-1)} Q}{1 - a^2} \quad j = 1, 2, \ldots, n;$$

if $a \geq \sqrt{\frac{1}{1-q}}$, MARE fails to converge to a steady state value.

The proof is tedious but straightforward by plugging in the above closed-form solution into the MARE. If $a \geq \sqrt{\frac{1}{1-q}}$, the results directly follows from [22]. In light of the aforementioned closed-form solution to MARE, the associated OP I and OP II can be significantly simplified and efficiently solved by standard technical tools.

5.2 Model Extensions

In practical scenario, some conditions/constraints besides estimate accuracy might be considered in the sensor scheduling problem. However, putting extra constraints on scheduling design is definitely not trivial and may lead to troubles in many existing scheduling strategies. As we will show through two specific examples, our stochastic scheduling strategy can easily incorporate extra conditions/constraints.

5.2.1 Prioritization of Certain Targets

Consider N ($N \geq 3$) targets (i.e., DTLTI dynamic systems) in one area to be estimated by one moving sensor and target
2 asks for more attention (i.e., more precise estimation) from the sensor. According to our model, we may incorporate this extra condition by adding constraint \(q_2 \geq \alpha \) where \(\alpha \) represents the assigned attention weight for target 2. Then we need to solve the following problem,

\[
\min_{q_i, i = [1, N]} J \in \{ J_1 = \max_i Tr(X_i), J_2 = \frac{1}{N} \sum_{i=1}^{N} Tr(X_i) \}
\]

subject to

\[
X_i = g_{q_i}(X_i), \quad \sum_{i=1}^{N} q_i = 1, \quad q_2 \geq \alpha \\
q_i(1 - \tau_i) > q_i^*, \quad q_i \leq 1, \quad i = 1, 2, \ldots N
\]

(36)

5.2.2 Measurement Loss in Sensing

In practice, measurement loss is a common phenomena due to various sources, e.g., shadowing, weather condition, large delay, etc. If the measurement loss probability \(\tau_i \) for sensing \(i \)-th target is known in prior, this extra condition can be easily incorporated in our model. Assume that \(q_i \)'s are pre-assigned to each target. Then the actual probability of reliably receiving measurements from \(i \)-th target is \(q_i(1 - \tau_i) \) because of measurement loss. Therefore, OP I and OP II can be modified as follows,

\[
\min_{q_i, i = [1, N]} J \in \{ J_1 = \max_i Tr(X_i), J_2 = \frac{1}{N} \sum_{i=1}^{N} Tr(X_i) \}
\]

subject to

\[
X_i = g_{q_i(1 - \tau_i)}(X_i) \\
\sum_{i=1}^{N} q_i = 1 \\
q_i(1 - \tau_i) > q_i^*, \quad q_i \leq 1, \quad i = 1, 2, \ldots N
\]

(37)

Clearly, with a bit modification, these two extended problems can be solved by the proposed distributed algorithms as well.

6 Scheduling Implementation

For completeness, in this section we consider the problem of scheduling implementation and present a simple approach to implement the scheduling sequence. For stochastic scheduling implementation, a central scheduler is required to construct a scheduling sequence by randomly selecting targets (via a random seed) according to the optimal probability distribution. Note that this construction process can be performed efficiently either off-line or on-line.

We next turn our attention back to a deterministic scheduling and look for one consistent with the optimal stochastic solution. Note that the optimization problems are minimizing the average costs of all possible stochastic sequences.

With the optimal stochastic solutions, we are able to randomly construct a sequence compatible with the distribution. However, in practice, such random-constructed scheduling sequence may result in undesirable performance. For example, one target may not be measured for a long consecutive time instants and its error covariance is temporarily built up. Thus, we would like to identify and use, among all possible stochastic sequences, those that have low costs. Motivated by the sensor scheduling literature, which suggests periodic solutions [27, 28], we define and look for deterministic sequences of minimal consecutiveness, defined next. These sequences are periodic and switch among targets most often compatibly with the optimal scheduling distribution. We remark that the approach we propose in this section is heuristic but it can be implemented in a distributed fashion and leads to good performance in simulations. We leave the analysis of this and other approaches to future research.

Definition 20 Let \(\{ s[k] \}_{k=1}^{L} \) be a set of sequences with length \(L \), where each element \(s[k] \) in the sequence takes value from an element set \(\mathbb{X} = \{ a_1, a_2, \ldots, a_N \} \) and the number of occurrences of each value \(a_i \) in the sequence is \(n_i \). Under these assumptions, then the sequence of minimal consecutiveness is the solution of the following optimization problem

\[
\min_{\{s[k]\}_{k=1}^{L}} \max_{j \geq i, s[i]} \{ j - i | j \geq i, s[i] = s[i+1] = \cdots = s[j] \}.
\]

Note that the minimal consecutiveness sequence may not be unique. The intuition for concentrating on sequences of minimal consecutiveness is that, under this class of sequences, each target is visited in the shortest time instants compatible with the optimal probability distribution. We next provide a heuristic algorithm with objective to construct a periodic minimal consecutiveness sequence.

Algorithm 3 Construction of a scheduling sequence of minimal consecutiveness

Input: \(L \): the sequence length; \(n_i \): the number of occurrences of \(a_i \) (\(i \in \{ 1, 2, \ldots, N \} \)) in a \(L \)-length sequence.

Without loss of generality, we assume that \(n_1 \geq n_2 \geq \cdots \geq n_N \).

Output: \(\{ s[k] \}_{k=1}^{L} \)

1: \(\{ s[k] \}_{k=1}^{L} \leftarrow \) Generate a \(n_1 \)-length sequence with all entries as \(a_1 \).

2: for all \(i \in \{ 2, \ldots, N \} \) do

3: Interpolate an element \(a_i \) for every \(m_i \)’s \(a_1 \) with equal interpolation interval where \(m_i = \left[\frac{n_i}{n_N} \right] \). This can be done by using a backoff counter for each \(a_i \). From the beginning of the sequence, the counter is reduced by one whenever an \(a_i \) is found and reset to be \(\left[\frac{n_i}{n_{i+1}} \right] \) as long as \(a_i \) is placed.

4: end for

Remark 21 First of all, the complexity of running Algorithm 3 is \(O(L) \). Next, in our stochastic scheduling strat-
egy, the integer value \(n_i \) is obtained from the optimal probability distribution, i.e., \(n_i = \lfloor q_i L \rfloor \). In order to generate a scheduling sequence precisely matching the distribution \(q_i \)'s within certain precision, \(L \) should be chosen such that \(q_i L \) \((i = 1, 2, \cdots, N)\) is an integer. The rare cases where \(L \) is supposed to be infinity, are approximated by taking \(L \) large, and a viable sequence is then obtained by periodic continuation. Therefore, besides practical requirements on the length of measuring period, we should choose \(L \) by taking into account both the computing capability of the centralized scheduler and the probability matching precision.

Remark 22 Several other relevant deterministic scheduling strategies can be found in the literature, e.g. Round Robin, Pinwheel Scheduling [29, 30]. However, a careful review finds that they are not suitable/extendable to our specific settings.

6.1 A Distributed Scheduling Implementation

The above algorithm lends itself to a distributed implementation. We assume that the estimators are strongly connected through a network where the communications between any two estimators are error-free. Under the assumption that each estimator is capable of sensing the channel state, i.e., idle or occupied, we propose a heuristic distributed scheduling mechanism to approximate the result of Algorithm 3. This distributed scheduling scheme is derived based on the well-known mechanism - carrier sense multiple access with collision avoidance (CSMA/CA). As used in CSMA/CA, our proposed multiple access mechanism relies on backoff timers as well. Specifically, each estimator generates a backoff timer as \(T_i = \frac{\alpha}{q_i} \) where \(\alpha \) is chosen such that \(T_i << \tau \) (\(\tau \) refers to the sampling period of DTLTI systems). Then each estimator regularly senses the transmission channel during its backoff timer. If the channel is sensed to be “idle” and the timer of estimator \(i \) goes off, estimator \(i \) begins to use the channel for observing the \(i \)-th DTLTI system. If the channel is sensed to be busy, then the backoff timer must be frozen until the channel becomes free again. Remark that no synchronization is necessary among backoff timers. With small probability, collision may happen among estimators. That is, backoff timers of two or more estimators go off at the same moment. To deal with this problem, the backoff timer of \(i \)-th estimator (subject to collision) can be adjusted as \(T_i = \frac{\alpha}{q_i - e_i} \) where \(e_i > 0 \) is randomly chosen and \(e_i << q_i \). After estimator \(i \) uses the channel once, \(T_i = \frac{\alpha}{q_i - e_i} \) is set to be \(T_i = \frac{\alpha}{q_i} \) immediately. We remark that, for a large period \(T \), the number of observations on \(i \)-th DTLTI system is approximately \(q_i \frac{T}{\tau} \) where \(\frac{\alpha}{q_i} \) can be treated as a normalizing factor. Thus the optimal probability distribution \(q_i \)'s is preserved.

7 Examples and Simulations

In this section, we present some simulation results to verify our stochastic scheduling strategy and algorithms.

Opt. Cost	Emp. Cost	MC Cost
45	35	53
50	58	59
55	43	20

Table 1 Results of the example

Opt. \(q_i \)’s	Opt. Cost	Emp. Cost	MC Cost
OPI 0.674, 0.326	59.1	58.7	55.7
OPII 0.480, 0.520	53.6	53.1	43.5

Fig. 1. Empirical estimate error covariances for DTLTI system (38). The performance for system 2 has the same feature. The empirical performance curve is obtained by averaging 5000 Monte Carlo simulations.

7.1 Example A

Consider a single sensor for measuring two DTLTI systems with the following state space representations,

\[
A_1 = \begin{bmatrix} 0 & 1 \\ -0.49 & 1.4 \end{bmatrix}, \quad C_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad Q_1 = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, \quad R_1 = 0.5 \quad (38)
\]

\[
A_2 = \begin{bmatrix} 0 & 1 \\ -0.72 & 1.7 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad R_2 = 1 \quad (39)
\]

The results of applying Algorithm 1, and Algorithm 2 are reported in the Table 1. In the table, we also report the empirical cost obtained by pre-assigning the optimal probability distribution to the sensor and computing the empirical error state covariance of each system by accordingly generating random switching sequences. This simulation result verifies that OP I and OP II provide an effective upper bound on the expected estimate error covariances of our stochastic scheduling strategies. This is further exemplified in Fig.1, which shows the empirical expected estimate error covariance of system (38), under selection Algorithm 1.

7.2 Minimal consecutiveness (MC) v.s stochastic scheduling (SS)

Consider OP I for comparison. As shown in Fig. 2, the blue solid curves show the evolution of the error covariance w.r.t time \(k \). We see several high peaks as a result of consecutive loss of observations. The dash lines show that the MC sequence provides much smoother error covariance which is quite necessary in certain applications. Furthermore, the objective value provided by MC sequence, 55.7, is smaller than the empirical expected estimate error covariances, 58.7, provided by the SS sequences. This performance enhancement is the result of “smoothness” provided by the MC sequence. Now consider OP II. The objective value provided by the MC sequence is 43.5, which is much smaller
than the empirical expected estimate error covariances 53.1 provided by the SS sequences. In a word, for both objectives the MC sequence provides a better upper bound than that provided by the SS sequences (i.e. the optimal objective value \(\mu_k \) in (7)).

The situation is similar when we add another system to higher than the sliding window (size 8) cost. In these cases, we see that MC has close performance to the sliding window sequence (31). It is worth noting that the optimal cost of the (tree search based) sliding window algorithm is 29.6 while the MC solution has a cost of 24.06.

Finally, for completeness, we compare the MC cost with the cost of the (tree search based) sliding window algorithm (see [31]). It is worth noting that the optimal cost of the original deterministic scheduling problem can be approximated by sliding window algorithm with sufficiently large window size. Consider OP II, in the two agent case, the MC cost is \(\approx 43.5 \), while the sliding window algorithm has a cost of \(\approx 43.4 \) with window size up to 20. In the three agent case, for window size equal to 8, the MC cost is \(\approx 6\% \) higher than the sliding window (size 8) cost. In these cases, we see that MC has close performance to the sliding window performance, while can be determined off-line, has low computing complexity and is simple to implement, and scales much better with the number of systems to schedule.

7.3 Example B

In this example, we consider three random-walk vehicles in an area and a single sensor equipped with a camera is used for tracking their \(1-D \) positions. The dynamics of their positions are evolving as (31) with \(q_i = 1 \). But they are subject to different process noises, measurement noises and delays. Here we assume that these vehicles have 1, 2 and 2 time-step measurement delays, respectively. Then we have expanded state space systems

\[
A_3 = \begin{bmatrix} 0 & 1 \\ -0.54 & 1.5 \end{bmatrix}, \quad C_3 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad Q_3 = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}, \quad R_3 = 1
\]

(40)

Considering OP II for brevity, the optimal stochastic selection probabilities are \([0.180, 0.355, 0.465] \) with an optimal cost of 86.8, while the associate MC solution has a cost of 72.8. Similarly, for the case of Example B next, the OP II cost is 29.65 while the MC cost is 24.06.

In what follows, we compare the solutions and the performances of OP I and OP II. By running the proposed distributed algorithms, the solutions of OP I and OP II are \([q_1, q_2, q_3] = [0.0649, 0.1612, 0.7739]\) and \([q_1, q_2, q_3] = [0.2163, 0.3043, 0.4794]\), respectively. We assume the existence of a centralized scheduler which constructs a random scheduling sequence accordingly. The tracking performances are shown in Fig. 3(a) and Fig. 3(b). The tracking paths (red curves) are shown in comparison with actual time-varying positions (black curves) of random-walk vehicles. Note that, for better comparison, we use identical actual moving trajectories in both figures. The flat segments of red curves imply that no measurement is taken in this time slot and the estimator simply propagates the state estimate of the previous time-step. In both figures, it is shown that the actual path of vehicle 1 changes slowly, corresponding the attention given to this sensor is small and the estimate path is updated rarely. In comparison, the tracking paths of vehicle 2 and vehicle 3 match the actual positions much better even though the flat segments in tracking path of vehicle 2 is occasionally visible. Compare Fig. 3(a) and Fig. 3(b), we clearly see that OP II results in more fairness of attention assignment among vehicles while the attention of OP I is dominated by vehicle 3.

8 Conclusion

In this paper, we have proposed a stochastic sensor scheduling problem where the states of \(N \) targets (i.e., DTLTI systems) need to be estimated. Due to some practical sensing constraints, at each time instant, only one target can be measured by the sensor. The basic idea of stochastic scheduling
is that at each time instant a target is randomly chosen for observation according to a pre-assigned probability distribution. We have relaxed the problem to a convex optimization problem and proposed distributed algorithms to obtain the optimal probability distribution under two relevant costs - the maximal estimate error and the average estimate error among all targets. Then we proposed centralized and distributed scheduling implementation schemes. Finally, we presented simulation results to verify our stochastic strategy.

9 Appendix

A. Proof of Theorem 1

Proof. By restricting the choice of schedule to a stochastic mode described in (6), we can obtain an upper bound on the performance μ_d of the deterministic scheduling problem (5) by solving

$$\min_{\{q_i\}_{i=1}^N} J(\limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{k=1}^T p_i[k])$$

subject to Equation : (4), (6), $\sum_{i=1}^N q_i = 1$ (41)

Next, we show that

$$J(\limsup_{T \rightarrow \infty} \frac{1}{T} \sum_{k=1}^T p_i[k]) \leq J(\limsup_{k \rightarrow \infty} E[p_i[k]])$$

where $J(\cdot) \in \{J_1 = \max_i Tr(\cdot), J_2 = \frac{1}{N} \sum_{i=1}^N Tr(\cdot)\}$. As the noises in our setup are assumed to be ergodic stationary process, and our sensor network (star topology) is a special case of the one (tree topology) considered in [20], under assumption 1 it is straightforward to check that all assumptions in Theorem 1 of [20] hold. As a result, we have

$$\lim_{T \rightarrow \infty} \frac{1}{T} \sum_{k=1}^T p_i[k] \leq \lim_{k \rightarrow \infty} E[p_i[k]].$$

Therefore, the performance μ_d of the deterministic scheduling problem (5) is clearly upper bounded by the performance μ_s of the stochastic scheduling problem (7) \hfill \Box

B. Proof of Theorem 14

Proof. Fix $q_1 \in \mathbb{R}_{(0,1)}$ and $X_1 = g_{q_1}(X_1)$. Let $q_2 \in (q_1, 1]$ and $X_2 = g_{q_2}(X_2)$. By Theorem 7, we have $X_1 \preceq X_2$. Now we need to prove that for any $\varepsilon > 0$, there exists $\delta > 0$ such that $X_1 - X_2 \preceq \varepsilon I_n$ if $q_2 - q_1 < \delta$.

Define a linear operator

$$L_{q_1}(X) = (1 - q_1)AXA' + q_1 F_{Kx_2}X F_{Kx_2}'$$

where $F_{Kx_2} = A + Kx_2C$. We have

$$X_2 - L_{q_1}(X_2) = g_{q_2}(X_2) - g_{q_1}(X_2) = (1 - q_2)(AX_2A' + Q) + q_2(F_{Kx_2}X_2F_{Kx_2}′ + V_{Kx_2}) - (1 - q_1)AX_2A' - q_1 F_{Kx_2}X_2F_{Kx_2}′ + Q + q_2 F_{Kx_2}R_{Kx_2}' + Q - (1 - q_1)q_2 AX_2A' - q_1 F_{Kx_2}X_2F_{Kx_2}′ + Q + q_2 F_{Kx_2}R_{Kx_2}' + Q$$

where line (a) follows from Lemma 5 (3), line (b) follows from $V_{Kx_2} = F_{Kx_2}R_{Kx_2}' + Q$. Now look at the last line, since $Q + q_2 F_{Kx_2}R_{Kx_2}' > 0$ (Q is the noise covariance matrix), there must exist $\lambda_1 > 0$ such that the value of the last line is positive definite when $q_2 - q_1 < \lambda_1$. Namely, we have $X_2 \succ L_{q_1}(X_2)$. Therefore, the linear operator $L_{q_1}(X)$ satisfies the condition of Lemma 5(6) and then for all $W \succeq 0$,

$$\lim_{k \rightarrow \infty} L_{q_1}^{(k)}(W) = 0.$$ (42)

Next, let $Z = X_1 - X_2$. Then

$$Z = X_1 - X_2 = g_{q_1}(X_1) - g_{q_2}(X_2) = g_{q_1}(X_1) - g_{q_1}(X_2) + g_{q_1}(X_2) - g_{q_2}(X_2) \leq \Phi_{q_1}(Kx_1, X_1) - \Phi_{q_2}(Kx_2, X_2) + (q_2 - q_1)AX_2C'(CX_2C' + R)^{-1}CX_2A' \leq \Phi_{q_1}(Kx_1, X_1) - \Phi_{q_2}(Kx_2, X_2) + \Delta = (1 - q_1)(AX_1A' + Q) + q_1(F_{Kx_1}X_1F_{Kx_1}' + V_{Kx_1}) - (1 - q_1)(AX_2A' + Q) - q_1(F_{Kx_2}X_2F_{Kx_2}' + V_{Kx_2}) + \Delta = (1 - q_1)AZA' + q_1 F_{Kx_2}Z F_{Kx_2}' + \Delta = L_{q_1}(Z) + \Delta$$

where $\Delta = (q_2 - q_1)AX_2C'(CX_2C' + R)^{-1}CX_2A'$, line (a) follows from Lemma 5(3) and line (b) follows from Lemma 5(4). Since the function $L_{q_1}(X)$ is linear and monotonically increasing in X, we repeat this process for k times and then have

$$Z \preceq L_{q_1}^{(k)}(Z) + \sum_{l=1}^{k-1} L_{q_1}^{(l)}(\Delta) + \Delta.$$ (43)

According to the limit property (42), for any given $\varepsilon > 0$ there exists an integer $M \geq 1$ such that $L_{q_1}^{(M)}(Z) \prec \frac{1}{M} I_n$. Furthermore, for this fixed M, there clearly exists a $\lambda_2 > 0$ such that, if $q_2 - q_1 < \lambda_2$, we have $\sum_{l=1}^{M-1} L_{q_1}^{(l)}(\Delta) + \Delta \prec \frac{1}{M} I_n$. Putting above together, we have $X_1 - X_2 \preceq \varepsilon I_n$ if $q_2 - q_1 < \delta = \min\{\lambda_1, \lambda_2\}$. Similarly, we can show the case of $q_2 \leq q_1$. Since q_1 is
chosen arbitrarily, the continuity is uniform. The proof is complete.

References

[1] C. Li and N. Elia, “A sub-optimal sensor scheduling strategy using convex optimization,” in American Control Conference, 2011, pp. 3603–3608.

[2] L. Creamean, W. Dunbar, D. van Gogh, J. Hickey, E. Kalvins, J. Melzter, and R. M. Murray, “The caltech multi-vehicle wireless testbed,” in Proceedings of 41th IEEE Conference on Decision and Control, 2002.

[3] A. Tiwari, M. Jun, D. Jeffcoat, and R. M. Murray, “Analysis of dynamic sensor coverage problem using kalman filters for estimation,” in Proceedings of 16th IFAC world congress, 2005.

[4] P. Alriksson and A. Rantzer, “Sub-optimal sensor scheduling with error bounds,” in Proceedings of 16th IFAC world congress, 2005.

[5] N. A. Vasanthi and S. Annadurai, “Sleep schedule for fast and efficient control of parameters in wireless sensor-actor networks,” in 1st international conference on communication system software and middleware, 2006, pp. 1–6.

[6] S. Liang, Y. Tang, and Q. Zhu, “Passive wake-up scheme for wireless sensor networks,” in 2nd international conference on innovative computing, information and control, 2007, p. 507.

[7] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage,” Automatica, vol. 42, pp. 251–260, 2006.

[8] L. Shi, K. H. Johansson, and R. M. Murray, “Change sensor topology when needed: How to efficiently use system resources in control and estimation over wireless networks,” in Proceedings of 46th IEEE Conference on Decision and Control, 2007, pp. 5478–5485.

[9] E. Bicak, E. Baeyens, and K. Poolla, “Energy-aware sensor selection and scheduling in wireless sensor networks,” in 1st IFAC workshop on estimation and control of networked systems, 2009.

[10] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Transactions on Signal Processing, vol. 57, pp. 451–462, 2009.

[11] J. Ny, E. Feron, and M. A. Dahleh, “Scheduling continuous-time kalman filters,” IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1381–1394, 2011.

[12] V. Srivastava, K. Parre, and F. Bullo, “Randomized sensor selection in sequential hypothesis testing,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2342–2354, 2011.

[13] Z. Lin and C. Wang, “Scheduling parallel kalman filters for multiple processes,” Automatica, vol. 49, no. 1, pp. 9–16, 2013.

[14] H. Choset, “Coverage for robotics a survey of recent results,” Annals of Mathematics and Artificial Intelligence, vol. 31, pp. 1–6, 2001.

[15] E. U. Acar and H. Choset, “Sensor-based coverage of unknown environments: incremental construction of morse decompositions,” International Journal of Robotics Research, vol. 21, no. 4, pp. 394–396, 2002.

[16] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,” IEEE Transactions on Automatic Control, vol. 20, no. 2, pp. 443–455, 2004.

[17] J. Cortes, “Coverage optimization and spatial load balancing by robotic sensor networks,” IEEE Transactions on Automatic Control, vol. 55, pp. 749–754, 2010.

[18] I. I. Hussein and D. M. Stipanovi, “Effective coverage control for mobile sensor networks with guaranteed collision avoidance,” IEEE Transactions on Control System Technology, vol. 15, no. 4, pp. 642–652, 2007.

[19] L. Shi, A. Capponi, K. H. Johansson, and R. M. Murray, “Network lifetime maximization via sensor trees construction and scheduling,” in 3rd international workshop on feedback control implementation and design in computing systems and networks, 2008.

[20] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “Stochastic sensor scheduling for energy constrained estimation in multi-hop wireless sensor networks,” IEEE Transactions on Automatic Control, vol. 56, no. 10, pp. 2489–2495, 2011.

[21] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464, 2004.

[22] Y. Mo and B. Sinopoli, “A characterization of the critical value for kalman filtering with intermittent observations,” in Proceedings of 47th IEEE Conference Decision and Control, 2008, pp. 2692–2697.

[23] Y. Mo and B. Sinopoli, “A characterization of the critical value for kalman filtering with intermittent observations,” in Proceedings of 47th IEEE Conference Decision and Control, 2008, pp. 2692–2697.

[24] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation and consensus using linear iterative strategies,” IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 650–660, 2008.

[25] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[26] S. Boyd and A. Mutapcic, “Subgradient methods,” Course Notes for EE364b, Stanford University, 2007.

[27] A. M. Rush and M. Collins, “A tutorial on dual decomposition and lagrangian relaxation for inference in natural language processing,” Association for the Advancement of Artificial Intelligence, 2012.

[28] P. Hovareshti, V. Gupta, and J. S. Baras, “Sensor scheduling using smart sensors,” in Proceedings of 46th IEEE Conference Decision and Control, 2007, pp. 494–499.

[29] W. Zhang, M. P. Vitus, J. Hu, A. Abate, and C. J. Tomlin, “On the optimal solutions of the infinite-horizon linear sensor scheduling problem,” in Proceedings of 49th IEEE Conference Decision and Control, 2010, pp. 396–401.

[30] M. Y. Chan and F. Y. L. Chin, “General schedulers for the pinwheel problem based on double-integer reduction,” IEEE Transactions on Computing, vol. 41, no. 6, pp. 755–768, 1992.

[31] ——, “Schedulers for larger classes of pinwheel instances,” Algorithmica, vol. 9, no. 5, pp. 425–462, 1993.

[32] V. Gupta, T. Chung, B. Hassibi, and R. M. Murray, “Sensor scheduling algorithms requiring limited computation,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, 2004, pp. 825–828.