Phonon propagation scale and nanoscale order in vitreous silica from Raman spectroscopy

Vitaly I Korepanov©

Institute of Microelectronics Technology and High Purity Materials RAS, Chernogolovka, Russia

E-mail: korepanov@iptm.ru

Received 23 September 2019
Accepted for publication 18 October 2019
Published 1 November 2019

Abstract
For nanoscale systems such as nanoparticles and 3D-bonded networks, the range of spatial coherence is well reflected in the Raman spectral pattern. For confined, or localized, phonons, the range of \(q \)-points contributing to the spectrum depends on the phonon confinement length, which makes it possible to derive size information from the spectra. In this work, the Raman spectrum of vitreous silica is described as localized phonons of an \(\text{SiO}_2 \) network. The convergence of the spectral pattern with the confinement size is studied. It is shown that the phonon propagation scale in vitreous silica is within the 0.5–2 nm range.

Keywords: phonon confinement, Boson peak, glasses, Raman spectroscopy

1. Introduction
Glasses possess a certain degree of local order as evidenced, in particular, by x-ray diffraction \([1, 2]\) and computational studies \([3–7]\). How to quantify the local order, and how to link the experimental data with understanding of the structure are disputable questions of high interest.

The estimates of the correlation length can be based on either static (in particular x-ray diffraction) or dynamic (vibrational spectroscopy) properties \([8]\). In the diffraction experiments of fused silica, the first sharp diffraction peak was assigned to the scale of about 2 nm \([8]\). Structure factor in the neutron diffraction studies also shows peaks in the range 0.8–2 nm interpreted as medium-range order \([9, 10]\).

Vibrational spectroscopy, especially Raman scattering, is sensitive to the nanoscale order and can give information on the coherence range \([11]\). It is argued that the bands in Raman spectra of such systems as fused silica and water represent the phonon modes localized by the disorder \([12–14]\). However, to link the degree of this disorder to the experimental spectral pattern is a non-trivial task.

A number of works suggest that the medium-range order is expressed in Raman spectra as a boson peak, a low-wave-number feature in the range 30–100 cm\(^{-1}\) \([7, 11, 13, 15, 16]\). This peak was also observed in inelastic neutron scattering and hyper-Raman spectroscopy \([17]\). An early attempt to interpret this peak quantitatively was done in terms of the elastic sphere model (frequency of the Raman peak is inversely proportional to the nanocrystal size) and gave the value of 2.5 nm \([8]\). Later, molecular dynamics simulation suggested that the boson peak should be interpreted as lowest optic states hybridized with acoustic states due to the disorder \([13]\). Low-energy modes were also analyzed within simplified model with locally distorted potentials; a coherence range was estimated to be from 1.5 to ~100 nm depending on the phonon energy \([16]\). Although computational studies allow simulation of the Raman spectra \([6, 18]\), physically consistent interpretation of the spectral pattern in terms of local order is still a challenge.

When the vibrations in the continuous network are localized by the disorder, the propagation scale of these phonon-like modes reflects the degree of the dynamic order \([14, 19]\). Raman spectral pattern for nanoscale systems is a reflection of this coherence \([11, 20]\). For the localized (confined) phonons, the Raman spectrum is not limited to the near Brillouin zone (BZ) center modes. The contribution of different \(k \)-points depends on the size, and can be found from Fourier decomposition of the confined phonons into the original bulk wavefunctions \([20]\):
\[I(\omega) \approx \frac{\Gamma_0(\sigma) \cdot |C(q_0, q)|^2}{(\omega - \omega(q))^2 + (\Gamma_0(\sigma)/2)^2} d^3q. \]

where \(\omega \) is the wavenumber, \(\sigma \) is the confinement size, \(\Gamma_0 \) is the natural linewidth, \(C(q_0, q) \) is the Fourier coefficient for a given confinement shape and size at a given wave vector \(q \). The scattering intensity at \(q_0 \) depends on the phonon propagation direction, and can be calculated from Raman tensor \([18]\). This gives additional intensity factor \(A_i(q, \varphi, \theta) \) for scattering angles \(\varphi \) and \(\theta \) \([21]\). The intensities should be integrated (numerically) over the scattering directions in polar coordinates and summed up over band index \(i \):

\[I(\omega) \approx \sum_i \iiint \frac{A_i(q_0, \varphi, \theta) \cdot \Gamma_{0i} \cdot |C(q_0, q)|^2 \cdot q^2}{(\omega - \omega_i(q))^2 + (\Gamma_{0i}(\sigma)/2)^2} dq d\varphi d\theta. \]

Within such approach, the acoustic phonons should have no contribution, because the intensity factors are zero. However, in disordered systems, the Raman intensity for acoustic phonon range should be described a different way. It was shown that there is an additional wavenumber dependence, referred to as light-to-vibration coupling coefficient \(C_{av}(\omega) \) \([22]\). Experimental studies showed that this dependence is close to linear \(C_{av}(\omega) \sim \omega \) \([23, 24]\).

The phonon confinement model formulated in this way was recently applied to hydrogen-bond network of water, it was shown that experimental Raman spectra of liquid water contain highly important information on the size of ice-like structure fragments \([14]\). The equation (2) links the Raman spectral pattern with the coherence range of the confined phonons. The present study aims at interpretation of the Raman spectra of silica in terms of phonons propagation scale of the SiO\(_2\) network.

2. Modeling and experimental details

Based on the similarities between cristobalite and fused silica glass in terms of structure and Raman spectra \([3, 7, 25, 26]\), cristobalite is taken as the structure motif at the nanometer
The phonon dispersion $\omega(q)$ was calculated with the Quantum Espresso package [27, 28]. The PBEsol functional was taken with high-throughput ultrashort pseudopotentials [29] with cut-off for wavefunctions/charge density of 56/320 Ry. The 12-atom unit cell was taken. The geometry and cell parameters were optimized with $8 \times 8 \times 6$ k-point grid; phonon dispersion was calculated with the $8 \times 8 \times 6$ grid. Raman tensor was calculated with LDA (PZ) functional with norm-conserving pseudopotentials [30] with the cut-off of 112/448 Ry with the same geometrical parameters. Although the Raman tensor can be calculated with PBEsol functional numerically using the finite-fields/finite-differences approach, it was found in our work [14] and in the literature [31] that Raman intensities estimated by GGA and LDA are in a very good agreement with each other. GGA-level computations are at least 3 times more expensive in terms of the machine time, therefore it was decided to use LDA for this simulation.

The intensity factors $A_i(q, \varphi, \theta)$ were calculated from Raman tensor for the vibrational forms for each φ and θ. The Sortphon algorithm was used to exclude the band index permutation [32]. For each band, the intensity factors were scaled according to the experimental spectra of bulk cristobalite. Scaling of the phonon energies was done to match the computed Raman spectral pattern of cristobalite with the experimental data by multiplying the whole dispersion function of the given band $\omega(q)$ by the scaling factor [33]. The scaling factors were in the range (0.96... 1.06). Calculated phonon dispersion is in good agreement with recent ab initio studies [7], where single scaling factor (1.039) was applied.

For the form-factor calculation, spherical confinement was assumed; the Fourier coefficients $C(q, \sigma)$ for this case have an analytic form of Bessel-like function [33]. The integration in equation (2) is done within [0,2] range of the reduced wavevector (i.e. not limited to the 1st BZ [34]).

The Raman spectra of the localized phonons were calculated with equation (2). For the natural linewidth, the inverse size dependence was assumed $\Gamma_i(\sigma) = \Gamma_i(\infty)(1 + g_i/\sigma)$, which reflects the different lifetimes of the localized phonons [11, 35, 36]. $\Gamma_i(\infty)$ is the linewidth for the bulk crystal. $g_i(\infty)$ and g_i values were determined from experimental data for bulk crystal and fused silica correspondingly.

The Raman measurements were carried out with a laboratory built spectroscopic system described elsewhere [37]. Excitation wavelength was 532 nm with laser power of 12 mW at the sample point; 20 × objective was used. Eight spectra were averaged with acquisition time of 30 s. The measured spectra were reduced with the Boltzmann factor and corrected for the ν^3 frequency dependence [37, 38]. For the correct comparison with the calculated spectra, the latter should also be divided by ω according to the Placzek’s expression [39].

3. Results and discussions

The calculated Raman spectral patterns for different propagation lengths are shown in figure 1. The bands of the bulk cristobalite broaden asymmetrically upon confinement in accordance with the dispersion functions. The most pronounced size dependence is seen in the low-wavenumber region (LWR). Similar size sensitivity can be found in nanoparticles [21,40] and hydrogen-bonded network of water [14], both experimentally and theoretically.

For the size below 2 nm, the calculated spectrum converges to the asymptotic pattern (figure 1). From the Fourier coefficients, $C(q,\sigma)$ it can be seen that the q-vectors are effectively spread through the whole BZ for sub-2 nm confinement (figure 2).

From comparison of experimental Raman spectra with the calculations (figure 3), it is clear that the observed spectrum corresponds to the ‘converged’ spectral pattern, in which phonons from the whole BZ are allowed. For the acoustic phonons considered separately, the calculated band maximum is highly sensitive to the size in the few-nm range (figure 4). It arrives to asymptote of ~70 cm$^{-1}$ by the sub-1 nm confinement, which corresponds to 2 unit cells. The corresponding cluster of this size is shown in figure 4 (right).

For small coherence length, the expected spectral patterns show close similarity (figure 3). Below ~2 nm, the positions of the localized acoustic modes vary only within ~10 cm$^{-1}$ (figure 4). It is reasonable to assume that the experimental Raman spectra include contributions from multiple modes with localization scale in the range 0.5–2 nm. This interpretation is in good
agreement with the assignment of the x-ray and neutron diffraction data, which also show certain degree of coherence of the same size scale [8–10]. This result is more consistent than an early interpretation of the boson peak with elastic sphere model which suggested a size scale of ~2.5 nm [8].

4. Conclusions

The phonon confinement model allows one to link the Raman spectral pattern to the degree of medium-range order. It is shown that the Raman spectral pattern of vitreous silica can be well described as confined phonons of SiO2 networks. The LWR of the spectrum has a pronounced dependence on the phonon propagation scale. Upon the confinement, the Raman spectrum converges by the 2 nm size to the spectral pattern, in which q-points from the whole BZ are effectively allowed. Unlike the hydrogen-bonded network of water, the structure of vitreous silica is characterized by a high degree of uniformity. The size scale of the medium-range order estimated from Raman spectroscopy is in good agreement with the x-ray and neutron diffraction data, which also show the coherence in the 0.5–2 nm range. The present approach can be used to analyze not only nanoparticles, but also systems with different degrees of medium-range order, in particular amorphous systems at early stages of crystallization.

Acknowledgments

Many thanks to Dr D M Sedlovets for providing the computational facility for this work, Chun-Chieh Yu, Ankit Raj and Prof. Hiro-o Hamaguchi (USILab, NCTU) for help with spectral measurements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation, program no. 075-00475-19-00.

ORCID iDs

Vitaly I Korepanov https://orcid.org/0000-0001-5761-137X

References

[1] Biswas R K, Khan P, Mukherjee S, Mukhopadhyay A K, Ghosh J and Muraleedharan K 2018 Study of short range structure of amorphous Silica from PDF using Ag radiation in laboratory XRD system, RAMAN and NEXAFS J. Non-Cryst. Solids 488 1–9
[2] Cazzari L 1964 An x-ray diffraction study of the structure of silica glass Z. Kristallogr. 120 241–60
[3] Lazzeri M and Mauri F 2003 First-principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2 Phys. Rev. Lett. 90 036401
[4] Niu H, Piaggi P M, Invernizzi M and Parrinello M 2018 Molecular dynamics simulations of liquid silica crystallization Proc. Natl Acad. Sci. USA 115 5348–52
[5] Umari P, Gonze X and Pasquarello A 2003 Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum Phys. Rev. Lett. 90 027401
[6] Umari P and Pasquarello A 2005 Infrared and Raman spectra of disordered materials from first principles Diam. Relat. Mater. 14 1255–61
[7] Wehinger B, Bosak A, Refson K, Mirone A, Chumakov A and Krisch M 2015 Lattice dynamics of α-cristobalite and the Boson peak in silica glass J. Phys.: Condens. Matter 27 305401
[8] Sokolov A P, Kislukh A, Soltwisch M and Quitmann D 1992 Medium-range order in glasses: comparison of Raman and diffraction measurements Phys. Rev. Lett. 69 1540–3
[9] Elliott S R 1991 Medium-range structural order in covalent amorphous solids Nature 354 445–52
[10] Wright A C, Hulme R A, Grimley D I, Sinclair R N, Martin S W, Price D L and Galeener F L 1991 The structure of some simple amorphous network solids revisited J. Non-Cryst. Solids 129 213–32
[11] Gouadec G and Colomban P 2007 Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties Prog. Cryst. Growth Charact. Mater. 53 1–56
[12] Montagna M, Viliani G and Duval E 1996 Models of low-wavenumber Raman scattering from glasses J. Raman Spectrosc. 27 707–13
[13] Taraskin S N and Elliott S R 1997 Phonons in vitreous silica: dispersion and localization Europhys. Lett. 39 37–42
[14] Korepanov V I and Hamaguchi H 2019 Ordered structures in liquid water as studied by Raman spectroscopy and the phonon confinement model Bull. Chem. Soc. Japan 92 1127–30
[15] Zotov N, Ebböjö I, Timpel D and Keppeler H 1999 Calculation of Raman spectra and vibrational properties of silicate glasses: comparison between Na2Si4O9 and SiO2 glasses Phys. Rev. B 60 6383–97
[16] Nakayama T 1999 Strongly localized modes as the origin of the Bose peak in glasses Physica B 263 243–7
[17] Hehlen B and Simon G 2012 The vibrations of vitreous silica observed in hyper-Raman scattering J. Raman Spectrosc. 43 1941–50
[18] Shcheblanov N S, Povarnitsyn M E, Mishchik K N and Tanguy A 2018 Raman spectroscopy of femtosecond multipulse irradiation of vitreous silica: experiment and simulation Phys. Rev. B 97 1–8
[19] Elton D C and Fernández-Serra M 2016 The hydrogen-bond network of water supports propagating optical phonon-like modes Nat. Commun. 7 10193
[20] Richter H, Wang Z P and Ley L 1981 The one phonon Raman spectrum in microcrystalline silicon Solid State Commun. 39 625–9
[21] Korepanov V I, Chan S-Y, Hsu H-C and Hamaguchi H 2019 Phonon confinement and size effect in Raman spectra of ZnO nanoparticles Helium 5 e01222
[22] Shuker R and Gammon R 1970 Raman-scattering selection-rule breaking and the density of states in amorphous materials Phys. Rev. Lett. 25 222–5
[23] Zanatta M et al 2010 Elastic properties of permanently densified silica: a Raman, Brillouin light, and x-ray scattering study Phys. Rev. B 81 212201
[24] Caponi S, Coreuzzi S, Fioretto D, Fontana A, Monaco G and Rossi F 2011 Effect of polymerization on the boson peak, from liquid to glass J. Non-Cryst. Solids 357 530–3
[25] Sigaev V, Smelyanskaya E, Plotnikchenko V, Koltashev V, Volkov A and Pernice P 1999 Low-frequency band at 50 cm−1 in the Raman spectrum of cristobalite: identification of similar structural motifs in glasses and crystals of similar composition J. Non-Cryst. Solids 248 141–6
[26] Malo S, Pérez O and Hervieu M 2011 Spherulite-shaped cristobalite by fused silica devitrification J. Cryst. Growth 324 268–73
[27] Giannozzi P et al 2009 QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials J. Phys.: Condens. Matter 21 395502

[28] Giannozzi P et al 2017 Advanced capabilities for materials modelling with quantum ESPRESSO J. Phys.: Condens. Matter 29 465901

[29] Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Pseudopotentials for high-throughput DFT calculations Comput. Mater. Sci. 81 446–52

[30] van Setten M J, Giantomassi M, Bousquet E, Verstraete M J, Hamann D R, Gonze X and Rignanese G M 2018 The PSEUDODOJO: training and grading a 85 element optimized norm-conserving pseudopotential table Comput. Phys. Commun. 226 39–54

[31] Shang H, Rainbault N, Rinke P, Scheffler M, Rossi M and Carbogno C 2018 All-electron, real-space perturbation theory for homogeneous electric fields: theory, implementation, and application within DFT New J. Phys. 20 073040

[32] Huang L F, Gong P L and Zeng Z 2014 Correlation between structure, phonon spectra, thermal expansion, and thermomechanics of single-layer MoS2 Phys. Rev. B 90 045409

[33] Korepanov V I and Hamaguchi H 2017 Quantum-chemical perspective of nanoscale Raman spectroscopy with the three-dimensional phonon confinement model J. Raman Spectrosc. 48 842–6

[34] Roorden K, Goldthorpe I, McIntyre P and Chabal Y 2010 Modified phonon confinement model for Raman spectroscopy of nanostructured materials Phys. Rev. B 82 115210

[35] Kelly S, Pollak F H and Tomkiewicz M 1997 Raman spectroscopy as a morphological probe for TiO2 aerogels J. Phys. Chem. B 101 2730–4

[36] Potier A, Cassaignon S, Chanéac C, Villain F, Tronc E and Jolivet J-P 2003 Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy J. Mater. Chem. 13 877–82

[37] Okajima H and Hamaguchi H 2015 Accurate intensity calibration for low wavenumber (−150 to 150 cm−1) Raman spectroscopy using the pure rotational spectrum of N2 J. Raman Spectrosc. 46 1140–4

[38] Kauffmann T H, Kokanyan N and Fontana M D 2019 Use of Stokes and anti-Stokes Raman scattering for new applications J. Raman Spectrosc. 50 418–24

[39] Calzolari A and Nardelli M B 2013 Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach Sci. Rep. 3 2999

[40] Ivanda M et al 2007 Low wavenumber Raman scattering of nanoparticles and nanocomposite materials J. Raman Spectrosc. 38 647–59

[41] Lafuente B, Downs R T, Yang H and Stone N 2016 The power of databases: the RRUFF project Highlights in Mineralogical Crystallography (Boston, MA: DE GRUYTER) pp 1–30

[42] Alessi A, Agnello S, Buscarino G and Gelardi F M 2013 Raman and IR investigation of silica nanoparticles structure J. Non-Cryst. Solids 362 20–4

[43] Galeener F L and Geissberger A E 1983 Vibrational dynamics in 30Si-substituted vitreous SiO2 Phys. Rev. B 27 6199–204