Pinned Distance Sets Using Effective Dimension

Don Stull
Joint with Jacob Fiedler

University of Chicago
Let $E \subseteq \mathbb{R}^n$. The distance set of E is

$$\Delta E = \{|x - y| \mid x, y \in E\}.$$

More generally, if $x \in \mathbb{R}^n$, the pinned distance of E w.r.t. x is

$$\Delta_x E = \{|x - y| \mid y \in E\}.$$
When E is a finite set, Erdős conjectured that $|\Delta E|$ is at least (almost) linear in terms of $|E|$.

- In a breakthrough paper, Guth and Katz proved this in the plane.
- Still an important open problem for \mathbb{R}^n with $n \geq 3$.

Falconer posed an analogous question for the case that E is infinite, known as Falconer’s distance set problem.

- If $E \subseteq \mathbb{R}^n$ has $\dim_H(E) > n/2$, then ΔE has positive measure.
- Still open in all dimensions.
- Guth, Iosevich, Ou and Wang, proved that if $E \subseteq \mathbb{R}^2$ and $\dim_H(E) > 5/4$, then $\mu(\Delta E) > 0$.
Substantial progress has been made in a slightly different direction, on the Hausdorff dimension of *pinned distance sets* in the plane for “many” \(x \in E \).

- Shmerkin proved that, if \(\dim_H(E) > 1 \) and \(\dim_H(E) = \dim_P(E) \), then \(\dim_H(\Delta_x E) = 1 \).

- Liu showed that, if \(\dim_H(E) = s \in (1, 5/4) \), then \(\dim_H(\Delta_x E) \geq \frac{4}{3}s - \frac{2}{3} \).

- Shmerkin improved this bound when \(\dim_H(E) = s \in (1, 1.04) \), by proving that
 \[
 \dim_H(\Delta_x E) \geq 2/3 + 1/42 \approx 0.6904
 \]

- S. proved that, for any \(E \) with \(\dim_H(E) > 1 \),
 \[
 \dim_H(\Delta_x E) \geq \frac{\dim_H(E)}{4} + \frac{1}{2}
 \]
Our results

Let $E \subseteq \mathbb{R}^2$ be analytic and $1 < d < \text{dim}_H(E)$.

- There is a subset F of full dimension such that, for all $x \in F$,
 $$\text{dim}_H(\Delta_x E) \geq \frac{d(d-4)}{d-5}$$

 - This improves the best known bounds when $\text{dim}_H(E) \in (1, 1.127)$.

- For all x outside a set of dimension 1
 $$\text{dim}_H(\Delta_x E) \geq \frac{\text{dim}_P(E)+1}{2\text{dim}_P(E)}.$$

- If $\text{dim}_P(E) < \frac{d(3+\sqrt{5})-1-\sqrt{5}}{2}$, then for all x in a subset of full dimension $\text{dim}_H(\Delta_x E) = 1$.

- There is a point $x \in E$ such that
 $$\text{dim}_P(\Delta_x E) \geq \frac{12-\sqrt{2}}{8\sqrt{2}} \approx 0.9356$$
 - Improves (slightly) the Keleti-Shermkin bound for packing dimension.
Regularity results

We can generalize the problem, by considering a pinned set X, and a test set Y, and investigating

$$\sup_{x \in X} \dim_H(\Delta_x Y).$$

We proved that, under some regularity assumptions, the distance sets achieve maximal dimension.

1. If Y is analytic, with $\dim_H(Y) > 1$ and $\dim_P(Y) < 2 \dim_H(Y) - 1$. Then, for any subset X with $\dim_H(X) > 1$,

$$\dim_H(\Delta_x Y) = 1.$$

for all $x \in X$ outside a set of (Hausdorff) dimension one.

2. If Y is analytic with $\dim_H(Y) > 1$, and X satisfies $\dim_H(X) = \dim_P(X) > 1$, then there is a subset $F \subseteq X$ such that,

$$\dim_H(\Delta_x Y) = 1,$$

for all $x \in F$.
Fix a universal Turing machine U. Let $x \in \mathbb{R}$ and $r \in \mathbb{N}$. The **Kolmogorov complexity of x at precision r** is

$$K_r(x) = \text{minimum length input } \pi \in \{0, 1\}^\ast \text{ such that } U(\pi) = x \upharpoonright r,$$

where $x \upharpoonright r$ is the first r bits in the binary representation of x.

- Can think of U as a computer.
- Can think of π as a program written in, e.g., Python.

Let $y \in \mathbb{R}$. The **Kolmogorov complexity of x at precision r given y at precision s** is

$$K_{r,s}(x \mid y) = \text{minimum length input } \pi \in \{0, 1\}^\ast \text{ such that } U(\pi, y \upharpoonright s) = x \upharpoonright r.$$

For every $x \in \mathbb{R}^n$ and $r \in \mathbb{N}$, $0 \leq K_r(x) \leq nr + O(\log r)$.

- If x is rational, then $K_r(x) = O(\log r)$
- Almost every point satisfies $K_r(x) = r - O(\log r)$ for every $r \in \mathbb{N}$. We call these points random.

Symmetry of information: For every $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, and $r, t \in \mathbb{N}$,

$$K_{r,t}(x, y) = K_t(y) + K_{r,t}(x \mid y) + O(\log r + \log t).$$

We can relativize the definitions in the natural way to get $K_r^A(x)$, $K_{r,t}^A(x \mid y)$, ... for any oracle $A \subseteq \mathbb{N}$.
Let $x \in \mathbb{R}^n$. The (effective Hausdorff) dimension of x is

$$\dim(x) = \liminf_{r \to \infty} \frac{K_r(x)}{r}.$$

The (effective) packing dimension of x is

$$\text{Dim}(x) = \limsup_{r \to \infty} \frac{K_r(x)}{r}.$$

- $0 \leq \dim(x) \leq \text{Dim}(x) \leq n$.
- Almost every point satisfies $\dim(x) = \text{Dim}(x) = n$.
- If x is rational, then $\dim(x) = \text{Dim}(x) = 0$.

D. M. Stull (University of Chicago)

Pinned Distance Sets
Theorem (J. Lutz and N. Lutz)

For every set $E \subseteq \mathbb{R}^n$,

$$\dim_H(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \dim^A(x) \quad \text{and} \quad \dim_P(E) = \min_{A \subseteq \mathbb{N}} \sup_{x \in E} \Dim^A(x).$$

- The Hausdorff dimension of a set is characterized by the (effective) dimension of the points in the set.
- Allows us to use computability to attack problems in geometric measure theory.
Pinned distance sets using effective dimension

Theorem (Fiedler, S.)

Let \(X, Y \subseteq \mathbb{R}^2 \) such that \(Y \) is analytic, with \(1 < \dim_H(Y), \dim_H(X) \). Then there is a subset \(F \subseteq X \) of full dimension, such that, for all \(x \in F \),

\[
\dim_H(\Delta_x Y) \geq d \left(1 - \frac{(D-1)(D-d)}{2(D^2+D-1)-2d(2D-1)} \right),
\]

where \(d = \min\{\dim_H(X), \dim_H(Y)\} \) and \(D = \max\{\dim_P(X), \dim_P(Y)\} \).

We reduce our main theorem on the Hausdorff dimension of pinned distance sets to this pointwise analog.

1. Orponen’s theorem on radial projections.
2. Point-to-set principle.
Pinned distance sets using effective dimension

Theorem (Fiedler, S.)

Suppose that \(x, y \in \mathbb{R}^2, e_1 = \frac{y-x}{|y-x|} \) satisfy the following.

(C1) \(\dim(x), \dim(y) > 1 \)

(C2) \(K_r^x(e_1) \approx r \) for all \(r \).

(C3) \(K_r^x(y) \approx K_r(y) \) for all sufficiently large \(r \).

(C4) \(K_r(e_1 \mid y) \approx r \) for all \(r \).

Then

\[
\dim^x(|x - y|) \geq d \left(1 - \frac{(D-1)(D-d)}{2(D^2+D-1)-2d(2D-1)} \right),
\]

where \(d = \min\{\dim(x), \dim(y)\} \) and \(D = \max\{\text{Dim}(x), \text{Dim}(y)\} \).
We fix $x, y \in \mathbb{R}^2$ satisfying the conditions. To get a lower bound on $\dim^x(|x - y|)$, we show the analogous bound at each precision (scale). Fix a precision $r \in \mathbb{N}$.

1. Symmetry of information: proving a lower bound on $K_r^x(|x - y|)$ is equivalent to establishing an upper bound on $K_r^x(y \mid |x - y|)$.
 - How many bits are needed to specify (a 2^{-r}-approximation of) y if you know (2^{-r}-approximations of) x and $|x - y|$.

2. A 2^{-r}-approximation of $|x - y|$ gives an annulus of thickness 2^{-r}. We need to specify where y is on this annulus (trivial bound - give r bits).

3. Use an induction on scales approach - find a “nice” sequence of precisions $r_1 < r_2 < \ldots r_k = r$. To specify y to precision r, first specify to precision r_1, using this to specify y to precision r_2, and so on.

4. We choose our precisions based on the behavior of the complexity function $K_s(y)$.
 - When the complexity is growing very quickly (slope at least 1), we are able to show that $K(|x - y|)$ is growing at a rate of 1 (best possible).
Complexity of y increases slowly

Suppose that between precisions r_i and r_{i+1}, the complexity of y is increasing slowly (much less than slope 1)

- Want to specify y up to precision r_{i+1}, given x and $|x - y|$ and given y up to precision r_i.
- Want to show that y is essentially the only point in the annulus whose complexity is growing slowly.
- That is, if z is in the annulus, then either z is very close to y, or the complexity of z is growing quickly.
Goal: Prove the complexity of other points on annulus are growing more quickly than that of y.

Reduce this to *projections*.

Main idea: we can compute x if we know y, z and the position of x along the line with direction e_2^\perp containing x.

$$K(x | y) \lesssim K(z | y) + K(x | p_{e_2}x, e_2)$$

Thus, if complexities of z and y are growing very slowly, then the complexity of x is growing slowly.

Goal is to prove that $K(x | p_{e_2}x, e_2)$ is small.
Reducing to projections

Suppose that $|x - z| = |x - y|$, and let $s := -\log \|y - z\|$.

$$K_{r-s}(x \mid y) \lesssim K_r(z \mid y) + K_{r-s,r-r}(w, e_2 \mid y, z) + K_{r-s,r}(x \mid w, e_2)$$

$$\lesssim K_r(z \mid y) + K_{r-s}(x \mid p_{e_2}x, e_2).$$

We know that $K_{r-s}(x \mid y) \gtrsim d(r - s)$. So, if

- the complexity of z increases at least as slowly as that of y, and
- we can get a strong enough upper bound on $K_{r-s}(x \mid p_{e_2}x, e_2)$

we have a contradiction - i.e., no such z exists on the annulus.
Projection theorem

- We want to bound $K_r(x \mid p_e x, e)$ - the complexity of computing (an approximation of) x given (approximations of) $p_e x$ and e.

- When the direction e is random relative to x, i.e., $K_r^x(e) \approx r$, we know that $K_r(x \mid p_e x, e) \approx K_r(x) - r$.
 - This is the pointwise analog of Marstrand’s projection theorem.

- Unfortunately we don’t have enough control over the direction to directly apply this result.

- However, we do have enough control to ensure that e is random up to some initial precision:

$$K_s^x(e) \approx s,$$

where $s = -\log |z - y|$.

D. M. Stull (University of Chicago)

Pinned Distance Sets
Projection theorem

Theorem (Fiedler, S.)

Let $x \in \mathbb{R}^2$, $e \in S^1$, $\varepsilon \in \mathbb{Q}^+$, $C \in \mathbb{N}$, $A \subseteq \mathbb{N}$, and $t, r \in \mathbb{N}$. Suppose that r is sufficiently large, and that the following hold.

(P1) $1 < d \leq \text{dim}^A(x) \leq \text{Dim}^A(x) \leq D$.

(P2) $t \geq \frac{d(2-D)}{2}r$.

(P3) $K_{s,x}^A(e) \geq s - C \log s$, for all $s \leq t$.

Then

$$K_r^A(x \mid p_e x, e) \leq \max\{\frac{D-1}{D}(dr - t) + K_r^A(x) - dr, K_r^A(x) - r\} + \varepsilon r.$$
Complexity of y increases slowly

Goal: Prove the complexity of other points on annulus are growing more quickly than that of y.

For any $e \in S^1$ and $x \in \mathbb{R}^2$, $p_e x = e \cdot x$.

- We can compute x if we know y, z and the position of x along the line with direction e_2^\perp containing x.
 $$K(x \mid y) \lesssim K(z \mid y) + K(x \mid p_{e_2} x, e_2)$$

- Thus, if complexities of z and y are growing sufficiently slowly, we have a contradiction.
Thank you!