The Level Two and Three Modular Invariants of SU(n)

Terry Gannon†
Max-Planck-Institut für Mathematik, Bonn, D-53225

Abstract

In this paper we explicitly classify all modular invariant partition functions for $A_r(1)$ at level 2 and 3. Previously, these were known only for level 1. The level 2 exceptionals exist at $r = 9, 15, \text{ and } 27$; the level 3 exceptionals exist at $r = 4, 8, \text{ and } 20$. One of these is new, but the others were all anticipated by the “rank-level duality” relating $A_r(1)$ level k and $A_{k-1}^{(1)}$ level $r+1$. The main recent result which this paper rests on is the classification of “ADE-type invariants”.

† Permanent address as of Sept 1996: Math Dept, York University, North York, Canada M3J 1P3
1. Introduction

The problem of classifying all modular invariant partition functions corresponding to a given affine algebra $X_r^{(1)}$ and level k, has been around for about a decade. The problem is easy to state. The level k highest weights λ of $X_r^{(1)}$ form a finite set $P^k(X_r^{(1)})$; the problem is to find all sesquilinear combinations

$$Z = \sum_{\lambda, \mu \in P^k(X_r^{(1)})} M_{\lambda, \mu} \chi_\lambda \chi_\mu^* \quad (1)$$

of the characters χ_λ, which satisfy three properties:

- Z is modular invariant (i.e. its coefficient matrix M commutes with the matrices S and T defined in eqs.(3) below);
- $M_{\lambda, \mu} \in \mathbb{Z}_{\geq} \{0, 1, 2, \ldots \}$ for all $\lambda, \mu \in P^k(X_r^{(1)})$;
- $M_{k\Lambda_0, k\Lambda_0} = 1$.

These functions Z or matrices M are called physical invariants.

In spite of considerable effort, for few $X_r^{(1)}$ and k do we have a complete classification. The original result is the A-D-E classification [1] for $A_1^{(1)}$, $\forall k$. Also, $A_2^{(1)}$ for all k is known [2], as is $k = 1$ for all (simple) $X_r^{(1)}$ [3,4]. In this paper we add two more results: $k = 2, 3$ for all $A_r^{(1)}$.

Nevertheless, there has been considerable progress, on a more abstract level, towards solving this problem. In particular, in [5] we find for $A_r^{(1)}$ at all levels k, all physical invariants satisfying in addition the condition

$$M_{\lambda, k\Lambda_0} \neq 0 \text{ or } M_{k\Lambda_0, \lambda} \neq 0 \implies \lambda = J'(k\Lambda_0) \quad (2)$$

for some simple current J' (the simple currents for $A_r^{(1)}$ are simply the rotation symmetries of its extended Coxeter-Dynkin diagram). These physical invariants are called \mathcal{ADE}_7-type invariants. Almost every physical invariant is expected to satisfy eq.(2).

This paper is essentially two corollaries to [5]. The main purpose here is simply to illustrate the value of the \mathcal{ADE}_7 classification, and to help clarify the final step in the physical invariant classification: the determination of anomalous “ρ-couplings”. Another immediate consequence of [5] would be physical invariant classifications for $A_r^{(1)}$ for several “small” pairs (r, k) (though admittedly, the value of those results is not so clear).

In the following section we review the basic tools we will use, and list all of the level $k \leq 3$ physical invariants for $A_r^{(1)}$. In section 3 we give the completeness proof for $k = 2$, and in section 4 we give it for $k = 3$.

2. Review

The level k weights λ form the set

$$P^r_{+} = P^k_{+}(A_r^{(1)}) = \{ (\lambda_0, \lambda_1, \ldots, \lambda_r) | \lambda_i \in \mathbb{Z}_{\geq}, \sum_i \lambda_i = k \}.$$
We will also write these as $\lambda = \sum \lambda_i \Lambda_i$. For convenience put $\Lambda^i = (k - 1)\Lambda_0 + \Lambda_i$. Define $\rho = (1, 1, \ldots, 1)$ and put $\bar{r} = r + 1$, $\bar{k} = k + \bar{r}$. The affine characters χ_λ at fixed level k define a natural unitary representation of $SL_2(\mathbb{Z})$ [6]:

\[
\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \circ \chi_\lambda = \sum_{\mu \in P_{r,k}^+} S_{\lambda,\mu} \chi_\mu \quad (3a)
\]

\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \circ \chi_\lambda = \sum_{\mu \in P_{r,k}^+} T_{\lambda,\mu} \chi_\mu \quad . \quad (3b)
\]

Then Z in (1) is modular invariant iff

\[
MT = TM \quad (4a)
\]
\[
MS = SM \quad . \quad (4b)
\]

(4a) is equivalent to the selection rule

\[
M_{\lambda,\mu} \neq 0 \implies (\lambda + \rho | \lambda + \rho) \equiv (\mu + \rho | \mu + \rho) \pmod{2\bar{k}} , \quad (4c)
\]

where $(-|-)$ denotes the familiar invariant form of A_r (normalized so that roots have norm 2), and $\bar{\lambda} = (\lambda_1, \ldots, \lambda_r)$. Eq.(4b) is more difficult to interpret, though explicit expressions for $S_{\lambda,\mu}$ exist [6]. S is unitary and symmetric.

Let J and C denote the following permutations of $P_{r,k}^+$:

\[
J(\lambda_0, \lambda_1, \ldots, \lambda_r) = (\lambda_r, \lambda_0, \lambda_1, \ldots, \lambda_{r-1})
\]
\[
C(\lambda_0, \lambda_1, \ldots, \lambda_r) = (\lambda_0, \lambda_r, \lambda_{r-1}, \ldots, \lambda_1) .
\]

They are called simple currents and conjugations, respectively. Let J_d denote the group generated by J^d. Write $[\lambda]$ for the orbit of λ with respect to both C and J, and write $[\lambda]_d$ for the orbit with respect to J_d. C defines a physical invariant in the obvious way, also denoted by C. In a more subtle way [7], so does J_d. First define

\[
t(\lambda) = \sum_{j=1}^{r} j\lambda_j ,
\]

and put $k' = k$ unless both \bar{r} and k are odd, in which case put $k' = \bar{k}$. Then for any divisor d of \bar{r} for which $k'd$ is even, we get a physical invariant $I[\mathcal{J}_d]$ given by

\[
I[\mathcal{J}_d]|_{\lambda,\mu} = \sum_{j=1}^{\bar{r}/d} \delta^{\bar{r}/d}(t(\lambda) + djk'/2) \delta_{\mu,J^d\lambda} \quad (5)
\]

where $\delta^y(x) = 1$ or 0 depending respectively on whether or not $x/y \in \mathbb{Z}$. Any physical invariant which cannot be expressed as the matrix product $C^a \cdot I(\mathcal{J}_d)$ for some a, d, is called exceptional.
The level 2 exceptionals $\mathcal{E}^{(r,2)}$ are

$$\mathcal{E}^{(9,2)} = \sum_{i=0}^{9} |\chi J^i \Lambda^0 + \chi J^i (\Lambda_3 + \Lambda_7)|^2 + \sum_{i=0}^{4} |\chi J^i \Lambda^3 + \chi J^i (\Lambda_5 + \Lambda_8)|^2$$

$$\mathcal{E}^{(15,2)} = \sum_{i=0}^{7} (|\langle \chi J^i \Lambda^0 \rangle^2| + |\langle \chi J^i \Lambda^4 \rangle^2| + |\langle \chi J^i \Lambda^6 \rangle^2| + |\langle \chi J^i \Lambda^8 \rangle^2| + |\langle \chi J^i (\Lambda_3 + \Lambda_5) \rangle^2| \chi J^i \Lambda^8 + \chi J^i \Lambda^8 \langle \chi J^i (\Lambda_3 + \Lambda_5) \rangle^2|)$$

$$\mathcal{E}^{(27,2)} = \sum_{i=0}^{13} (|\langle \chi J^i \Lambda^0 \rangle_{14} + \langle \chi J^i (\Lambda_5 + \Lambda_{23}) \rangle_{14}|^2 + |\langle \chi J^i (\Lambda_3 + \Lambda_{25}) \rangle_{14} + \langle \chi J^i (\Lambda_6 + \Lambda_{22}) \rangle_{14}|^2)$$

together with the matrix products $C \cdot \mathcal{E}^{(9,2)}$, $C \cdot \mathcal{E}^{(15,2)}$, $\frac{1}{2} I[J_4] \cdot \mathcal{E}^{(15,2)}$, and $C \cdot \mathcal{E}^{(29,2)}$. In these equations we use the short-hand

$$\langle \chi \lambda \rangle_d \overset{\text{def}}{=} \sum_{j=1}^{\ell/d} \chi J^j \delta \lambda$$

$\mathcal{E}^{(9,2)}$ first appeared in [8], which also anticipated the other two – although to this author’s knowledge neither $\mathcal{E}^{(15,2)}$ nor $\mathcal{E}^{(29,2)}$ have appeared explicitly in the literature before (however [9] found the projection $\frac{1}{2} I[J_4] \cdot \mathcal{E}^{(15,2)}$). The level 3 exceptionals are

$$\mathcal{E}^{(4,3)} = \sum_{i=0}^{4} (|\langle \chi J^i \Lambda^0 \rangle + \langle \chi J^i (\Lambda_0 + \Lambda_2 + \Lambda_3) \rangle|^2 + |\langle \chi J^i (2\Lambda_1 + \Lambda_3) \rangle + \langle \chi J^i (\Lambda_2 + 2\Lambda_4) \rangle|^2)$$

$$\mathcal{E}^{(8,3)} = \sum_{i=0}^{2} (|\langle \chi J^i (\Lambda_0 + \Lambda_2 + \Lambda_3) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_2 + \Lambda_4) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_3 + \Lambda_6) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_3 + \Lambda_8) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_3 + \Lambda_{10}) \rangle|^2)$$

$$\mathcal{E}^{(8,3)}' = \sum_{i=0}^{2} (|\langle \chi J^i (\Lambda_0 + \Lambda_2 + \Lambda_4 + \Lambda_5) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_2 + \Lambda_7) \rangle|^2)$$

$$\mathcal{E}^{(8,3)}'' = |\langle \chi \Lambda^0 \rangle|^2 + |\langle \chi \Lambda_0 + \Lambda_4 + \Lambda_5 \rangle|^2 + |\langle \chi \Lambda_0 + \Lambda_2 + \Lambda_7 \rangle|^2 + \langle \chi \Lambda_0 + \Lambda_2 + \Lambda_4 + \Lambda_5 \rangle|^2 + |\langle \chi \Lambda_1 + \Lambda_2 + \Lambda_5 \rangle|^2 + \langle \chi \Lambda_1 + \Lambda_2 + \Lambda_4 + \Lambda_5 \rangle|^2$$

$$\mathcal{E}^{(20,3)} = \sum_{i=0}^{6} (|\langle \chi J^i \Lambda^0 \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_4 + \Lambda_{17}) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_6 + \Lambda_{15}) \rangle|^2 + |\langle \chi J^i (\Lambda_0 + \Lambda_{10} + \Lambda_{11}) \rangle|^2 + |\langle \chi J^i (\Lambda_1 + \Lambda_8 + \Lambda_{12}) \rangle|^2 + |\langle \chi J^i (\Lambda_9 + \Lambda_{13} + \Lambda_{20}) \rangle|^2 + |\langle \chi J^i (2\Lambda_2 + \Lambda_{17}) \rangle|^2 + |\langle \chi J^i (\Lambda_4 + 2\Lambda_{19}) \rangle|^2)
we will generally put tilde’s over the quantities of a diagram of some weight in \(\lambda \). Note the strong resemblance of the exceptionals in eqs. (6), (7) (except \(\tilde{S} \)) of this section, and reflect it through the diagonal (i.e. take its transpose). Deleting all columns (if any) of length \(k \), this will be the Young diagram of some weight in \(P_{+}^{k-1,r+1} \) which we will denote by \(T(\lambda) \). To avoid confusion we will generally put tilde’s over the quantities of \(A_{r}^{(1)} \) level \(k \), and \(A_{k-1}^{(1)} \) level \(r + 1 \). In particular, choose any \(\lambda \in P_{+}^{r,k} \). Construct its Young diagram, and reflect it through the diagonal (i.e. take its transpose).

The main result of this paper is that these exhaust all physical invariants for \(A_{r}^{(1)} \) at levels 2,3. At level 1, there are no exceptionals: all physical invariants are given by eq. (5). Note the strong resemblance of the exceptionals in eqs. (6), (7) (except \(\tilde{S} \)) of this section, and reflect it through the diagonal (i.e. take its transpose). Deleting all columns (if any) of length \(k \), this will be the Young diagram of some weight in \(P_{+}^{k-1,r+1} \) which we will denote by \(T(\lambda) \). To avoid confusion we will generally put tilde’s over the quantities of \(A_{r}^{(1)} \) level \(k \), and \(A_{k-1}^{(1)} \) level \(r + 1 \). In particular, choose any \(\lambda \in P_{+}^{r,k} \). Construct its Young diagram, and reflect it through the diagonal (i.e. take its transpose).

Then

\[
S_{\lambda,\mu} = \sqrt{\frac{k}{\bar{r}}} \exp \left[\frac{2\pi i}{\bar{r}k} \{ t(\lambda) \} \{ t(\mu) \} \right] \tilde{S}_{T(\lambda),T(\mu)}
\]

with a similar expression relating \(T_{\lambda,\mu} \) and \(\tilde{T}_{T(\lambda),T(\mu)} \). From (8a) we find that \(T'(J_\lambda) \in \tilde{T}_1 T'(\lambda) \). With the exception of \(\tilde{S} \), the map \(T' \) connects the exceptionals of \(A_{1}^{(1)} \) and \(A_{2}^{(1)} \) with those in eqs. (6), (7) above.

We conclude this section by reviewing the basic lemmas. A well-known result is [6]

\[
S(0,\lambda) \geq S(0,\lambda^0) > 0 ,
\]

with equality in (9a) iff \(\lambda \in [\Lambda^0] \). Two useful identities are

\[
\frac{S(\lambda,\rho) \exp(2\pi i (bt(\lambda) + at(\mu) + kab) / \bar{r})}{2k} \equiv \frac{-2at(\lambda) + ka(\bar{r} - a)}{2\bar{r}} + \frac{(\lambda + \rho, [\lambda + \rho])}{2k} .
\]

For the remainder of this section let \(M \) be any physical invariant. Useful definitions are

\[
\mathcal{P}_L = \{ \lambda \in P_{+}^{r,k} | \exists \mu \in P_{+}^{r,k} \text{ such that } M_{\lambda,\mu} \neq 0 \}
\]

\[
s_L(\lambda) = \sum_{\mu \in P_{+}^{r,k}} S_{\lambda,\mu} M_{\mu,\lambda^0}
\]

and define \(\mathcal{P}_R \) and \(s_R(\mu) \) analogously. Our first result comes from [5,11].

Cyclotomy Lemma

(a) For each \(\lambda \in P_{+}^{r,k} \), \(s_L(\lambda) \geq 0 \). Also, \(s_L(\lambda) > 0 \) iff \(\lambda \in \mathcal{P}_L \).

(b) If \(M_{J_\rho,\lambda,\mu} \neq 0 \), then \(M_{J_\mu,\lambda,J_\rho} = M_{\lambda,\mu} \) for all \(\lambda, \mu \in P_{+}^{r,k} \), and \(M_{\lambda,\mu} \neq 0 \) only if \(at(\lambda) \equiv bt(\mu) \) (mod \(\bar{r} \)).
We may decompose M into a direct sum of submatrices $M^{(i)}$, and apply Perron-Frobenius theory \[12\] to each submatrix. Let $M^{(0)}$ be the submatrix containing the index Λ^0, and let $e(M^{(i)})$ denote the largest real eigenvalue of $M^{(i)}$.

Perron-Frobenius Lemma \[11\] $e(M^{(i)}) \leq e(M^{(0)})$ for all i. If $(M^{(0)})^2 = e M^{(0)}$ for some number e, then $e(M^{(i)}) = e$ for each nonzero $M^{(i)}$.

A final very important result is the Galois symmetry \[13\] obeyed by S. Choose any $\lambda \in P^{r,k}_+$, and any integer ℓ coprime to $\bar{r} \bar{k}$. Then there will exist a Weyl group element w of A_r, a root lattice element α of A_r, and a weight in $P^{r,k}_+$ which we will denote by $(\ell \lambda)_+$, for which

$$
\ell \lambda + \rho = w((\ell \lambda)_+) + \bar{k} \alpha
$$

$$
\epsilon_\ell(\lambda) S_{(\ell \lambda)_+, \mu} = \epsilon_\ell(\mu) S_{\lambda, (\ell \mu)_+} \quad \forall \lambda, \mu \in P^{r,k}_+,
$$

where $\epsilon_\ell(\lambda) = \det w \in \{\pm 1\}$. Eq.(10b) also equals the value of the Galois automorphism corresponding to ℓ, applied to $S_{\lambda, \mu}$ (upto irrelevant sign independent of λ and μ). This is important because rank-level duality and (9a) then imply that

$$
\epsilon_\ell(\lambda) \epsilon_\ell(\Lambda^0) = \tilde{\epsilon}_\ell(T'(\lambda)) \tilde{\epsilon}_\ell(\tilde{\Lambda}^0)
$$

$$
T'((\ell \lambda)_+) \in \tilde{J}_1(\ell T'(\lambda))_+.
$$

In particular, (10c) follows by applying the Galois automorphism to $S_{\lambda, \Lambda^0}/S_{\Lambda^0, \Lambda^0} = \tilde{S}_{T'(\lambda), \tilde{\Lambda}^0}/\tilde{S}_{\tilde{\Lambda}^0, \Lambda^0}$. Eq.(10d) follows because rank-level duality T' is an exact (ignoring the irrelevant $\sqrt{k/r}$ factor) bijection for weights $\mu \in P^{r,k}_+$ with $t(\mu) \equiv 0 \pmod{\bar{r}}$: that implies

$$
\tilde{S}_{T'((\ell \lambda)_+), \tilde{\mu}} = \tilde{S}_{(\ell T'(\lambda))_+, \bar{\mu}}
$$

for all $\tilde{\mu} \in P^{-1,r+1}_+$ with $\tilde{t}(\mu) \equiv 0 \pmod{\bar{k}}$. From this equation, (10d) immediately follows.

Galois Lemma \[4,14\]

(a) $M_{\lambda, \mu} \neq 0$ only if $\epsilon_\ell(\lambda) = \epsilon_\ell(\mu)$ for all ℓ coprime to $\bar{r} \bar{k}$.

(b) $M_{\lambda, \mu} = M_{(\ell \lambda)_+, (\ell \mu)_+}$ for all $\lambda, \mu \in P^{r,k}_+$, and all ℓ coprime to $\bar{r} \bar{k}$.

We are most interested in applying Galois (a), together with Cyclotomy (a) and eq.(4c), to find the possibilities λ with either M_{λ, Λ^0} or $M_{\Lambda^0, \lambda}$ nonzero. What we will find is that, for all but finitely many pairs $(r, 2), (r, 3)$, eq.(2) will necessarily be satisfied. In [5], all such physical invariants were classified; for $k \leq 3$ we found that they are either of the form $C^a \cdot I[J_d]$, or equal $C^a \cdot E(15,2)$, $C^a \cdot E(8,3)$, or $\frac{1}{2} I[J_4] \cdot E(15,2)$.

3. The level 2 physical invariants of $A_r^{(1)}$

Throughout this section let M denote any physical invariant of $A_r^{(1)}$ level 2, not satisfying eq.(2). The condition $\epsilon_\ell(\lambda) = \epsilon_\ell(\Lambda^0)$ in Galois (a) was explicitly solved for $A_1^{(1)}$ in [11]. The result is that it forces $\lambda \in [\Lambda^0]_1$, unless $\bar{k} = 6, 10, 12$ or 30. Thus by (10c), it suffices to consider $r = 3, 7, 9$ or 27. $r = 3$ and $r = 7$ are handled directly by (4c).
A_9(1) level 2: By Galois (a), the only possibilities \(\lambda \) with \(M_{\lambda, A^0} \) or \(M_{A^0, \lambda} \) nonzero are \(\lambda \in [A^0] \cup [A^4] \). Eq.(4c) now forces \(\lambda = A^0 \) or \(\lambda = A_3 + A_7^{\text{def}} = \lambda' \). Now compute \(s_L(A^1) \) – this is trivial using (8). Then Cyclotomy (a) tells us

\[
\sin(\pi/6) - M_{\lambda', A^0} \sin(\pi/6) \geq 0.
\]

(11a)

Thus \(M_{\lambda', A^0} = 0 \) or 1. Similarly for \(M_{A^0, \lambda'} \). But (4b) evaluated at \((A^0, A^0) \) forces \(M_{\lambda', A^0} = M_{A^0, \lambda'} = 1 \).

Next, consider the possible \(\lambda \) with \(M_{J A^0, \lambda} \neq 0 \). Again from Galois (a) and (4c), we find that the only possibilities are \(\lambda \in \{ J^{\pm 1}A^0, J^{\pm 1}\lambda' \} \). Now if \(M_{J A^0, J^i A^0} = 0 \) for all \(i \), then (4b) evaluated at \((J^i A^0, A^0) \) would give

\[
(M_{J A^0, J^i A^0} + M_{J A^0, J^{-i} A^0} - 1) S_{\lambda', A^0} = S_{A^0, A^0},
\]

(11b)

which contradicts (9a). Thus, multiplying \(M \) if necessary by \(C \), we may assume \(M_{J A^0, J A^0} \neq 0 \).

Note that \(M_{\lambda', \lambda'} = 1 \) by Galois (b) with \(\ell = 7 \) (again this is easiest to see using rank-level duality). Finally, consider the possible \(\lambda \) with \(M_{A^3, \lambda} \neq 0 \). By Galois (a), \(\lambda \in [A^3] \), so by Cyclotomy (b), \(\lambda \in \{ A^3, J^5 A^3 \} \). Putting \((A^3, A^1) \) in (4b) forces \(M_{A^3, J^5 A^3} = M_{A^3, A^3} \), and now Perron-Frobenius forces them to equal 1.

All other entries of \(M \) are fixed by Cyclotomy (b), and we find \(M = \mathcal{E}^{(9,2)} \).

A_{27}^{(1)} level 2: As before, Galois (a) and (4c) tell us \(M_{A^0, \lambda} \neq 0 \) requires \(\lambda \in \{ [A^0]_{14}, [\lambda_5 + \lambda_2]_{14} \} \). Put \(\lambda' = \lambda_5 + \lambda_2 \). Assume first that \(M_{A^0, J^1 A^0} = 0 \). Write \(m = M_{A^0, \lambda'} \), \(m' = M_{A^0, J^1 A^0} \). Then \(s_L(A^{\ell-1}) \geq 0 \) requires

\[
\sin(\pi j/30) + m \sin(11\pi j/30) + m' \sin(19\pi j/30) \geq 0.
\]

(12)

We get \(m = m' = 0 \) by taking \(j = 2, 4, 15 \) in (12). Similarly for \(M_{\lambda, A^0} \neq 0 \). Hence \(M \) will obey eq.(2), contrary to hypothesis.

Thus \(M_{A^0, J^1 A^0} = M_{J^1 A^0, A^0} = 1 \). Hence by Cyclotomy (b), \(M_{A^0, \lambda'} = M_{A^0, J^1 A^0} = m \).

s_L(\lambda^{15}) \geq 0 \) forces \(m = 1 \).

As before (by conjugating \(M \) if necessary), we may assume \(M_{J A^0, J A^0} \neq 0 \). \(M_{\lambda', \lambda'} = 1 \) is forced by Galois (b) with \(\ell = 11 \). All other entries of \(M \) are now found by Cyclotomy (b) and Galois (b) (\(\ell = 13 \)). We obtain \(\mathcal{E}^{(27,2)} \).

4. The level 3 physical invariants of \(A_{1}^{(1)} \)

Throughout this section let \(M \) denote any physical invariant of \(A_{1}^{(1)} \) level 3 which does not satisfy eq.(2). The condition \(\epsilon_\ell(\lambda) = \epsilon_\ell(A^0) \) was also solved for \(A_{1}^{(1)} \) in [11], though in places the proof used (4c). Fortunately we are saved the hassle of verifying that the argument in [11] also works if one replaces (4c) with its rank-level dual, by a remarkable coincidence discovered (I believe) by Ph. Ruelle: The Galois condition \(\epsilon_\ell(\lambda) = \epsilon_\ell(\mu) \) for \(A_{1}^{(1)} \) also appears naturally in the analysis of Jacobians of Fermat curves! In particular, Thm. 0.3 of [15] solves this condition for all but 31 levels \(k \) (the highest exception being \(k = 177 \)).
For now let us avoid these 31 anomalous k. Then we learn from [15] that for \bar{k} odd, only $\lambda \in [\Lambda^0]$ satisfies Galois (a) with $\mu = \Lambda^0$. When $\bar{k} \equiv 0 \pmod{4}$, we get

$$\lambda \in [\Lambda^0] \cup [\Lambda_0 + 2\Lambda_s] \cup [\Lambda_0 + \Lambda_s + 2\Lambda_s],$$

and when $\bar{k} \equiv 2 \pmod{4}$, we get

$$\lambda \in [\Lambda^0] \cup [\Lambda_0 + 2\Lambda_s] \cup [\Lambda_0 + 2\Lambda_{(r-2)/4}],$$

where we put $s = r/2$.

Now apply (4c) to $\lambda \in [\Lambda_0 + 2\Lambda_s]$ and $\mu = \Lambda^0$. Multiplying (4c) by $2\bar{r}$ and using (9c), eq.(4c) implies $(\bar{r}^2 - \bar{r} + 1)/2 - 2/\bar{k} \in \mathbb{Z}$, which can never hold. The other possibilities for λ can be analysed similarly, as can the 31 anomalous levels. What we find is that (4c) and Galois (a) require any λ satisfying $M_{\Lambda^0, \lambda} \neq 0$ or $M_{\lambda, \bar{\Lambda}^0} \neq 0$ to be:

(i) for $\bar{k} \not\equiv 0 \pmod{4}$: $\lambda \in [\Lambda^0]$;

(ii) for $\bar{k} \equiv 0 \pmod{4}$, $\bar{k} \neq 24, 60$: $\lambda \in [\Lambda^0]_d \cup [\lambda^*_d]_d$, where d is the smallest positive solution to $k_1^2d^2 \equiv 0 \pmod{2\bar{r}}$;

(iii) $\bar{k} = 24$: $\lambda \in [\Lambda^0]_7 \cup [\lambda^*_7] \cup [\Lambda^0]_7$;

(iv) $\bar{k} = 60$: $\lambda \in [\Lambda^0]_19 \cup [\lambda^*]_19 \cup [\Lambda^0]_19 \cup [\Lambda^0]_19$,

where we put $\lambda^i = \Lambda_0 + \Lambda_i + \Lambda_{r-1}$ in (ii)-(iv), and where k' in (ii) is defined near eq.(5).

The arguments applying eq.(4b) and Cyclotomy (a) reduce by eq.(8) to the $A_2^{(1)}$ calculations explicitly given in [11]. We will give here one example. Suppose $M_{\Lambda^0, \lambda} = 0$ unless $\lambda \in [\Lambda^0]_d \cup [\lambda^*_d]$, as in (ii). Define $m = \sum_{\lambda \in [\Lambda^0]} M_{\Lambda^0, \lambda}$, and $m' = \sum_{\lambda \in [\lambda^*]} M_{\Lambda^0, \lambda}$. Then by Cyclotomy (b), $m' \geq m$. Now $s_R(2\Lambda_1 + \Lambda_{r-1}) \geq 0$ then reduces to [11]

$$0 \leq (m + m') \sin\left[\frac{2\pi}{k} \left(m + m' \right) \sin\left[\frac{8\pi}{k} \right] - \sin\left[\frac{10\pi}{k} \right] \right] \leq (m + m') \left\{ \sin\left[\frac{2\pi}{k} \right] - \sin\left[\frac{10\pi}{k} \right] \right\}.$$

This forces $\bar{k} = 8$ or $\bar{k} = 12$.

$A_4^{(1)}$ level 3: Here $d = 5, m = 1$. $s_R(\Lambda^1) \geq 0$ forces $m' = 1$, and (4b) evaluated at (Λ^0, Λ^0) forces $M_{\Lambda^0, \lambda^*} = M_{\lambda^*, \Lambda^0}$. Conjugating if necessary, the usual argument forces $M_{\Lambda^0, \lambda^*} = 1$. $M_{\lambda^*, \lambda^*} = 1$ follows from Galois (b) ($\ell = s + 1$). We are done if we know the values of $M_{2\Lambda_1 + \Lambda_3, \lambda}$. For this to be nonzero, Cyclotomy (b) and Galois (a) says λ must equal either $\mu^1 \overset{\text{def}}{=} 2\Lambda_1 + \Lambda_3$ or $C\mu^1$. Now (4b) evaluated at (Λ^1, μ^1) gives us $M_{\mu^1, \mu^1} = M_{\mu^1, C\mu^1}$, and Perron-Frobenius forces $M_{\mu^1, \mu^1} = 1$.

$A_8^{(1)}$ level 3: The argument here is also analogous to the calculations given in [11]. The only difference is that we try to prove $M_{\Lambda^0, \lambda^*} \neq 0$. Galois (a) and eq.(4c) permit an unexpected possibility for $M_{\Lambda^0, \lambda} \neq 0$: $\lambda \in [\mu^3]_3$ where $\mu^3 = \Lambda_1 + \Lambda_3 + \Lambda_5$. If $M_{\Lambda^0, \mu^3} = 0$, then all proceeds as before, but if that entry is nonzero we get $M = E^{(8,3)}m$ by using the familiar arguments.

$A_{20}^{(1)}$ level 3: Again the only difference here arises in the proof that $M_{\Lambda^0, \lambda} \neq 0$. If $M_{\Lambda^0, \lambda_i} = 0$ for all i, then we get from (4b) evaluated at (Λ^0, Λ^0) the equality

$$\frac{m_4 - 3}{3} S_{\Lambda^0, \lambda^4} + \frac{m_6 - 3}{3} S_{\Lambda^0, \lambda^6} + \frac{m_{10} - 3}{3} S_{\Lambda^0, \lambda^{10}} = S_{\Lambda^0, \lambda^0},$$

where m_i are non-negative integer multiples of 3 defined in the obvious way. Since $S_{\Lambda^0, \lambda^i}/S_{\Lambda^0, \lambda^0} \approx 81.2, 137.9, 57.7$ for $i = 4, 6, 10$, respectively, we see this requires $m_4 = m_{10} = 6$ and $m_6 = 0$. This however is readily seen to violate Galois (b) ($\ell = 31$).
$A^{(1)}_{56}$ level 3: The identical contradiction used in [11] works here.

Acknowledgements I thank Philippe Ruelle, who brought Ref.[14] to my attention, and the MPIM for its hospitality.

References

[1] A. Cappelli, C. Itzykson, and J.-B. Zuber, Commun. Math. Phys. 113 (1987), 1-26.
[2] T. Gannon, Commun. Math. Phys. 161 (1994), 233-264.
[3] P. Degiovanni, Commun. Math. Phys. 127 (1990), 71-99.
[4] T. Gannon, Nucl. Phys. B396 (1993), 708-736.
[5] T. Gannon, “Kac-Peterson, Perron-Frobenius, and the classification of conformal field theories” (q-alg/9510026).
[6] V. G. Kac, Infinite Dimensional Lie Algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.
[7] A. N. Schellekens and S. Yankielowicz, Phys. Lett. B227 (1989), 387-391.
[8] M. A. Walton, Nucl. Phys. B322 (1989), 775-790.
[9] A. Font, Mod. Phys. Lett. A6 (1991), 3265-3272.
[10] D. Altschuler, M. Bauer and C. Itzykson, Commun. Math. Phys. 161 (1994), 233-264.
[11] T. Gannon, “The classification of SU(3) modular invariants revisited”, to appear in Annales de l'I.H.P., Phys. Théor. (hep-th/9404185).
[12] F. R. Gantmacher, The Theory of Matrices, Chelsea Publishing Co, New York, 1990.
[13] A. Coste and T. Gannon, Phys. Lett. B323 (1994), 316-321.
[14] Ph. Ruelle, E. Thiran and J. Weyers, Nucl. Phys. B402 (1993), 393-708.
[15] N. Aoki, Amer. J. Math. 113 (1991), 779-833.