The effect of virulence genotypes of *Helicobacter pylori* on eradication therapy in children

Shuang-Hong Zhang, Xuan Zhu, Bi-Min Li, Hong Li

Department of Gastroenterology, The First Affiliated Hospital, Nanchang University, ‘Central Laboratory, Children’s Hospital of Jiangxi, Nanchang, Jiangxi Province, China

Abstract

Background/Aim: It is important to eradicate *Helicobacter pylori* at an early stage in patients during childhood to potentially prevent the development of *H. pylori*-related diseases. Studies have demonstrated that the virulence genotype of *H. pylori* influences the efficacy of eradication therapy. The efficacy of triple therapy has decreased significantly, which has seriously affected the clinical outcome of children with *H. pylori* infection. In this study we aimed to investigate the influence of virulence genotypes of *H. pylori* on triple eradication therapy in children.

Patients and Methods: *H. pylori* strains were isolated from the gastric antrum mucosa in children with upper gastrointestinal symptoms. Polymerase chain reaction (PCR) was conducted to determine the *H. pylori* cagA, vacA, and iceA genotypes. All patients with *H. pylori* infection were administered 14-day triple therapy. After drug withdrawal for at least 4 weeks, the 13C-urea breath test (13C-UBT) was used to observe the therapeutic effect of *H. pylori* eradication. The eradication rates were evaluated by intention-to-treat (ITT) and per-protocol (PP) analyses.

Results: A total of 107 patients were enrolled in this study. Nine patients were lost to follow-up, and 98 patients were administered eradication therapy. Based on ITT and PP analyses, the *H. pylori* eradication rate was 64.5% (69/107) and 70.4% (69/98), respectively. Among the successful eradication groups, the cagA-positive, vacAs1a, vacAs1c, vacAm1, vacAm2, iceA1, and iceA2 genes were identified in 72.8%, 68.1%, 76.9%, 60.0%, 74.6%, 71.8%, and 75.0% of strains, respectively. Of the unsuccessful eradication groups, the cagA-positive, vacAs1a, vacAs1c, vacAm1, vacAm2, iceA1, and iceA2 genes were identified in 27.2%, 31.9%, 23.1%, 40.0%, 25.4%, 28.2%, and 25.0% of strains, respectively. No statistically significant differences were noted in the detection rate of the *H. pylori* genotypes between the *H. pylori* successful and unsuccessful eradication groups (P > 0.05).

Conclusions: The cagA, vacA, and iceA genotypes of *H. pylori* are not associated with the efficacy of omeprazole-based triple therapy on the eradication of *H. pylori* infection in children.

Keywords: Child, *Helicobacter pylori*, polymerase chain reaction, triple therapy, virulence genotype
INTRODUCTION

Helicobacter pylori (*H. pylori*) is associated with various diseases of the upper gastrointestinal tract, such as gastritis, peptic ulcers, and mucosa-associated lymphoid tissue in children.[1] It is important to eradicate *H. pylori* at an early stage in patients during childhood to potentially prevent the development of *H. pylori*-related diseases. The main virulence genes of *H. pylori* include *cagA*, *vacA*, and *iceA*. At present, the recommended therapy for eradicating *H. pylori* in pediatric patients is triple therapy, which consists of a proton pump inhibitor (PPI) and two other antibiotics.[2] The efficacy of triple therapy has decreased in children. The reasons for failure in eradication mainly include *H. pylori* strain factors, host factors, environmental factors, inappropriate treatment, and low compliance to therapy. This study aimed to investigate the influence of *H. pylori* virulence genotypes on 14-day omeprazole-based triple therapy with two antibiotics by detecting the *cagA*, *vacA*, and *iceA* status of *H. pylori* in children.

PATIENTS AND METHODS

From July 2014 to September 2015, 107 patients who suffered from abdominal pain, vomiting, belching, and gastrointestinal bleeding and who underwent gastroscopy were enrolled in this study. After informed consent was obtained, gastric biopsies were collected by a clinical gastroenterologist. The exclusion criteria were as follows: (1) patients who had taken any PPI, *H*₂ receptor antagonists, bismuth salts, or antibiotics for at least 4 weeks prior to the time of their enrolment in the study; (2) patients whose condition was complicated by severe heart, lung, blood, liver, or kidney dysfunction; and (3) patients who would not comply to the study. The ethics committee of the Children’s Hospital of Jiangxi approved the study, NO. JXSETYY-2016003. Informed consent was obtained from the parents or guardians of the children enrolled in the study.

H. pylori isolation and culture

Gastric mucosal biopsy specimens were used for *H. pylori* culture. The biopsies from each patient were cultured on the surface of Karmali agar (Oxoid, Basingstoke, Hampshire, England) plates. The cultured plates were incubated in microaerobic atmosphere conditions (37°C, 5% oxygen, 10% carbon dioxide, and 85% nitrogen) for 3 to 7 days. After culture, smooth, neat, gray, circular, translucent colonies approximately 0.5 to 2 mm in diameter were identified as *H. pylori* based on a rapid urease test and modified Giemsa staining; consistent positive results between the two tests was required. The bacterial isolates were preserved in brain heart infusion broth enriched with 20% glycerol and 10% inactivated horse serum and were stored at −80°C. The standard NCTC11639 *H. pylori* strain was donated by the Institute of Digestive Diseases, the First Affiliated Hospital of Nanchang University.

H. pylori eradication therapy

Patients received 14-day triple therapy consisting of omeprazole (0.6–0.8 mg/kg, bid), amoxicillin (50 mg/kg/day, bid), clarithromycin (15–20 mg/kg/day, bid), or metronidazole (20 mg/kg/day, bid). For patients who were allergic to penicillin, amoxicillin was replaced with metronidazole. For patients with gastrointestinal bleeding and peptic ulcers, omeprazole (0.6–0.8 mg/kg, qd) was administered for an additional 2–4 weeks after the 14-day treatment.

PCR amplification of *H. pylori* virulence genotypes

Genomic DNA was extracted from *H. pylori* strains isolated from gastric biopsy specimens using the QIAamp DNA mini kit (Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. The extracted DNA was stored at −20°C until it was used for polymerase chain reaction (PCR) amplification. PCR was performed on purified genomic DNA from all *H. pylori* isolates to examine the presence of virulence genotypes, including *cagA*, *vacA*, and *iceA*. Primers were designed based on published papers and are listed in Table 1.[3–8] The primer sequences for *H. pylori* DNA were synthesized by GenScript Co. Ltd. (Nanjing, China). Each PCR was performed in a total volume of 25 μl. The final reaction mixture contained 500 ng of genomic DNA, 8.5 μl of distilled water, and 12.5 μl of 2 × Taq PCR master mix (TIANGEN, KT201, Beijing, China), including 0.1 U/μl Taq Polymerase, 500 μmol/L of each dNTP, 20 mmol/L Tris-HCl (pH 8.3), 100 mmol/L KCl, 3 mmol/L MgCl₂, and 2 μl of each primer (forward and reverse mixture). The PCR amplification conditions were as follows: pre-denaturation was performed at 95°C for 5 min; 30 cycles of 30 s at 94°C, 30 s at 55°C (for *ureA*, *cagA*, *vacAs1*, *vacAs1a*, *vacAs1b*, *vacAm1*, *vacAm2*, *iceA1*, and *iceA2*) or 59°C (for *vacAs1c* and *vacAs2*) for annealing; and a final extension at 72°C for 7 min. The final reactions were stored at 4°C. PCR products were electrophoresed on a 2.0% (w/v) agarose gel (Sigma, USA) that was stained with 0.5 μg/ml ethidium bromide and developed under UV light (Bio-Rad, USA) according to the standard procedures. A 100-bp DNA ladder (TIANGEN, D2000, Beijing, China) served as a molecular size marker.

Eradication assessment

At least 4 weeks after the completion of treatment, bacterial eradication was assessed using a ¹³C-urea breath
test (13C-UBT). 13C-UBT employed a 13C-urea 75-mg capsule (Zhonghe Headway Bio-sci and Tech Co, Ltd, Shenzhen, China). When the 30-min Delta over baseline value was 4 or more, the patient was determined to be positive for H. pylori. A negative result was regarded as an eradication success, whereas a positive result was regarded as an eradication failure.[2]

Statistical analysis
Statistical analysis was performed using (SPSS Inc., Chicago, IL, USA). The eradication rates were evaluated by intention-to-treat (ITT) and per-protocol (PP) analyses. Chi-square test was used for comparisons between the groups. A P value of <0.05 was considered statistically significant.

RESULTS

Characteristics of the study group
Of all the 107 children, 98 completed eradication therapy and received 13C-UBT after treatment. Among these patients, 77 were males and 21 were female. The patients ranged from 4 to 14 years old. According to the endoscopy diagnoses, 29 patients had chronic gastritis, 12 had duodenal bulb inflammation, and 57 had peptic ulcers (3 had gastric ulcers and 54 had duodenal ulcers). Nine patients did not complete the treatment. Among these patients, 2 were too young to receive eradication therapy, 1 patient discontinued treatment due to a rash, 4 patients did not receive 13C-UBT after treatment, and 2 patients were lost to follow-up.

Eradication of H. pylori
Among 98 patients, 69 had a negative result for 13C-UBT and were regarded as eradication success. The eradication rates according to ITT and PP analysis were 64.5% (69/107) and 70.4% (69/98), respectively.

Analysis of cagA, vacA, and iceA genotypes
Among 98 strains, the cagA subtypes were detected in 92 strains of H. pylori isolates. The number of strains positive for vacA1a, vacA1c, vacA1m1, and vacA1m2 subtypes were 72, 26, 30, and 67 strains, respectively. One strain was both vacA1m1 and vacA1m2 positive. The number of strains positive for vacA1a/m1, vacA1a/m2, vacA1c/m2, and vacA1c/m1 subtypes was 26, 49, 4, and 18 strains, respectively. However, the vacA1c1 and vacA1s2 subtypes were not detected in any samples. In addition, the number of strains positive for iceA1 and iceA2 subtypes was 78 and 8 strains, respectively, whereas 8 strains were both iceA1 and iceA2 positive [Table 2].

Association of H. pylori genotypes with eradication rates
Among the successful eradication groups, the cagA, vacA1a, vacA1c, vacA1m1, vacA1m2, iceA1, and iceA2 genes were identified in 72.8%, 68.1%, 76.9%, 60.0%, 74.6%, 71.8%, and 75.0% of strains, respectively. Of the unsuccessful eradication groups, the cagA-positive, vacA1a, vacA1c, vacA1m1, vacA1m2, iceA1, and iceA2 genes were identified in 27.2%, 31.9%, 23.1%, 40.0%, 25.4%, 28.2%, and 25.0% of strains, respectively. No statistically significant differences in the prevalence of H. pylori genotypes were noted between the successful and unsuccessful eradication groups (P > 0.05) [Table 3].

DISCUSSION

H. pylori is a Gram-negative, spiral, microaerophilic bacterium. The bacteria can adhere to the surface of the gastric mucosal epithelium and the bottom layer of the

Table 1: PCR primers for the amplification of H. pylori cagA, vacA and iceA sequences
Amplified region
cagA
vacAs1
vacAs2
vacAs1a
vacAs1b
vacA1c
vacA1m1
vacA2

Table 2: Prevalence of H. pylori genotypes detected in strains
Genotype
cagA-positive
vacA1a
vacA1c
vacA1m1
vacA1m2
vacA1/m1
vacA1/m2
iceA1
iceA2
gastric mucosa, and the infection status can be lifelong if the infected person does not undergo standardized treatment.\[^4\] At present, the recommended therapy to eradicate \textit{H. pylori} in children involves triple therapy that consists of a PPI and two additional antibiotics.\[^2\]

In regard to eradication therapy, PPIs have an anti-\textit{H. pylori} effect. The bactericidal effect of antibiotics depends on strong acid inhibition of PPI, whereas PPIs and antibiotics have synergistic bactericidal effects. Thus, PPI-based triple therapy may increase the efficacy of \textit{H. pylori} eradication therapies.\[^7\]

Given the development of this triple therapy and continued widespread use of antibiotics in general practice in recent years, the failure rate of this triple therapy has increased among children. \textit{H. pylori} eradication treatment may fail for a number of reasons, including antibiotic resistance, bacterial virulence factors, environmental factors, different diseases, and low compliance to therapy.\[^8\]-\[^12\] \textit{H. pylori} virulence genes include genes such as \textit{vacA}, \textit{cagA}, and \textit{iceA}. The cytotoxin-associated gene \textit{A} (\textit{agA}) gene, which encodes cytotoxin-associated \textit{A} protein (CagA), enters host epithelial cells of the stomach using a type IV secretion system, undergoes phosphorylation, interferes with host cell signalling pathways, and produces severe inflammation and tissue damage. Vacuolating cytotoxin gene \textit{A} (\textit{vacA}) encodes vacuolating cytotoxin \textit{A} (VacA). The \textit{vacA} genetic structure has alleles of the mosaic structure, including the signal (s) and middle (m) regions. The “s” and “m” regions are divided into \textit{s1} (\textit{s1a}, \textit{s1b}, and \textit{s1c}) or \textit{s2} and \textit{m1} or \textit{m2} subtypes, respectively. The induced by contact with epithelium (\textit{iceA}) gene has two main allelic variants – \textit{iceA1} and \textit{iceA2}. Several studies have reported that the virulence genotype of \textit{H. pylori} may play an important role in the development of gastrointestinal disease.\[^13\],\[^14\]

This study focused on 107 children who were positive for \textit{H. pylori} culture and were cured with a 14-day triple therapy with omeprazole, amoxicillin, clarithromycin, or metronidazole. In total, 98 patients completed the treatment, and 69 exhibited successful eradication based on 13C-UBT after treatment. The eradication rate according to ITT and PP analyses were 64.5% (69/107) and 70.4% (69/98), respectively. Over the past decades, standard triple therapy contributed to a successful eradication rate of greater than 90% in children. However, successful eradication rates have significantly declined. The emergence of \textit{H. pylori}-resistant strains is one of the most important causes of the reduction in the eradication rate of triple regimens with a PPI plus two antibiotics. At present, the most common resistance to antibiotics worldwide among affected children involve metronidazole and clarithromycin, whereas the resistance rate of amoxicillin is lower.\[^15\],\[^16\]

In China, the rates of resistance to metronidazole and clarithromycin were increased among children infected with \textit{H. pylori} with resistance rates of 49.2% and 34.9%, respectively. The amoxicillin resistance rate was 6.2%.\[^17\] In Japan, the rates of resistance to metronidazole and clarithromycin were 43.3% and 21.9%, respectively, among children infected with \textit{H. pylori}.\[^18\] In Turkey, the rates of resistance to metronidazole and clarithromycin among children infected with \textit{H. pylori} were 48.4% and 30.1%, respectively; resistance to amoxicillin was not observed.\[^19\]

The \textit{cagA}, \textit{vacA}, and \textit{iceA} genes are the major virulence genes of \textit{H. pylori}. Studies have assessed the relationship between \textit{H. pylori} genes and eradication therapy. The results of this study demonstrated that, among the groups that underwent successful eradication, the \textit{cagA}, \textit{vacA}, \textit{vacAs1a}, \textit{vacAs1c}, \textit{vacAm1}, \textit{vacAm2}, \textit{iceA1}, and \textit{iceA2} genes were identified in 72.8%, 68.1%, 76.9%, 60.0%, 74.6%, 71.8%, and 75.0% of strains, respectively. Of the groups that did not undergo successful eradication, the \textit{cagA}, \textit{vacA}, \textit{vacAs1a}, \textit{vacAs1c}, \textit{vacAm1}, \textit{vacAm2}, \textit{iceA1}, and \textit{iceA2} genes were identified in 27.2%, 31.9%, 23.1%, 40.0%, 25.4%, 28.2%, and 25.0% of strains, respectively. No statistically significant differences in the detection rate of \textit{H. pylori} genotypes were noted between the successful and unsuccessful \textit{H. pylori} eradication groups (\textit{P} > 0.05). These results suggest that

Table 3: Relationship between the detection rate of \textit{H. pylori} genotypes and treatment outcome

Genotype	Total number (n)	Successful Eradication (%)	Unsuccessful Eradication (%)	\(\chi^2\)	\(P\)
\textit{cagA}-positive	92	67 (72.8)	25 (27.2)	2.534	0.111
\textit{cagA}-negative	6	2 (33.3)	4 (66.7)	0.111	0.721
\textit{vacAs1a}	72	49 (68.1)	23 (31.9)	0.721	0.396
\textit{vacAs1c}	26	20 (76.9)	6 (23.1)	2.15	0.146
\textit{vacAm1}	30	18 (60.0)	12 (40.0)	0.365	0.833
\textit{vacAm2}	67	50 (74.6)	17 (25.4)	2.679	0.444
\textit{vacAs1a/m1}	26	15 (57.7)	12 (42.3)	0.146	0.721
\textit{vacAs1c/m1}	4	3 (75.0)	1 (25.0)	0.365	0.833
\textit{vacAs1c/m2}	18	13 (72.2)	5 (27.8)	0.365	0.833
\textit{iceA1}	78	56 (71.8)	22 (28.2)	0.365	0.833
\textit{iceA2}	8	6 (75.0)	2 (25.0)	0.365	0.833
\textit{iceA1-positive/iceA2-positive}	8	5 (62.5)	3 (37.5)	0.365	0.833
the \textit{cagA}, \textit{vacA}, and \textit{iecA} genotypes of \textit{H. pylori} may have no relation to the efficacy of omeprazole-based 14-day triple therapy in children. A study published by Van Doorn \textit{et al.} \cite{21} suggested that the eradication rates of \textit{H. pylori} were increased for \textit{cagA}-positive and \textit{vacAs1} \textit{H. pylori} strains, a finding that is consistent with the increased eradication rate observed among ulcer patients compared with functional dyspepsia patients. Khan \textit{et al.} \cite{22} demonstrated that the alarming levels of antibiotic resistance were associated with the \textit{cagA} gene in \textit{H. pylori} strains. The results of this study are inconsistent with previous reports, which may be related to the differences in \textit{H. pylori} infection rates between children and adults, and the different regions and \textit{H. pylori} strain polymorphisms in different regions. The \textit{cagA}-negative and \textit{vacAs2} \textit{H. pylori} strain may increase the risk of \textit{H. pylori} eradication failure, suggesting that \textit{cagA} and \textit{vacA} genotypes play an important role in \textit{H. pylori} eradication therapy. A possible reason is that \textit{cagA}-positive strains can induce severe inflammatory reactions in the gastric mucosa. When gastric mucosal inflammation is obvious, the blood flow in the mucosa is rich, which is beneficial to the efficacy of antibiotics in the gastric mucosa compared with the \textit{cagA}-negative strains. In the gastric mucosa, IL-1\textbeta can inhibit gastric acid secretion. The \textit{cagA}-positive strain noted in children produces significantly increased IL-1\textbeta in the gastric mucosa compared with \textit{cagA}-negative strains, which produce less gastric acid secretion. This feature makes the area more accessible to antibiotics and conducive to curing \textit{H. pylori}. The \textit{vacAs1} and \textit{vacAm1} genotypes of \textit{H. pylori} have been associated with severe gastric inflammation, produce a large amount of toxins, and induce increased vacuolating activity in gastric epithelial cells. Thus, this genotype enhances the antibacterial effect of antibiotics, whereas the \textit{vacAs2} and \textit{vacAm2} genotypes produce minimal or no toxins.\cite{22,23}

In conclusion, in areas of low (<20\%) clarithromycin resistance, triple therapy involving PPI and two antibiotics should be recommended as first-line treatment for children with \textit{H. pylori} infection. The results of this study indicate that the eradication rate of \textit{H. pylori} in children has declined considerably compared with previous studies. In addition, the \textit{cagA}, \textit{vacA}, and \textit{iecA} genotypes of \textit{H. pylori} are not associated with the efficacy of 14-day omeprazole-based triple therapy on the eradication of \textit{H. pylori} infection in children. Since the sample size in this study is limited, a multicenter, randomized controlled trial with a large sample size is needed to further address the issue.

Acknowledgement

We would like to thank Yan Liu, You-Ju Li, and Lan Wei for their help with collecting tissue specimens from the gastric antrum in children used in this study. The research is supported by a grant from the Jiangxi Provincial Department of Science and Technology.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Oderda G, Marietti M, Pellicano R. Diagnosis and treatment of \textit{Helicobacter pylori} infection in pediatrics: Recommendation for 2014 clinical practice. Minerva Pediatr 2015;67:517-24.
2. Malfertheiner P, Megraud F, O'Morain CA, Gisbert JP, Kuipers EJ, Axon AT, \textit{et al.} Management of \textit{Helicobacter pylori} infection—the Maastricht V/Florence Consensus Report. \textit{Gut} 2017;66:6-30.
3. De Gusmão VR, Nogueira Mendes E, De Magalhães Quirino DM, Aguiar Rocha G, Camargos Rocha AM, Ramadan Ashour AA, \textit{et al.} \textit{vacA} genotypes in \textit{Helicobacter pylori} strains isolated from children with and without duodenal ulcer in Brazil. \textit{J Clin Microbiol} 2000;38:2853-7.
4. Yamaoka Y, Kodama T, Gutierrez O, Kim JG, Kashima K, Graham DY. Relationship between \textit{Helicobacter pylori} \textit{vacA} \textit{cagA}, and \textit{vacA} status and clinical outcome: Studies in four different countries. \textit{J Clin Microbiol} 1999;37:2274-9.
5. Ito Y, Azuma T, Ito S, Miyai H, Hirai M, Yamazaki Y, \textit{et al.} Analysis and typing of the \textit{vacA} gene from \textit{cagA}-positive strains of \textit{Helicobacter pylori} isolated in Japan. \textit{J Clin Microbiol} 1997;35:1710-4.
6. Sugano K, Taek J, Kuipers EJ, Graham DY, El-Omar EM, \textit{et al.} Kyoto global consensus report on \textit{Helicobacter pylori} gastritis. \textit{Gut} 2015;64:1533-67.
7. Gisbert JP, McNeill AG. Optimization strategies aimed to increase the efficacy of \textit{H. pylori} eradication therapies. Helicobacter 2017;22.
8. Gong Ej, Yun SC, Jang HY, Lim H, Choi KS, Ahn JY, \textit{et al.} Meta-analysis of first-line triple therapy for \textit{Helicobacter pylori} eradication in Korea: Is it time to change? \textit{J Korean Med Sci} 2014;29:704-13.
9. Lee JY, Kim N, Kim MS, Choi YJ, Lee JW, Yoon H, \textit{et al.} Factors affecting first-line triple therapy of \textit{Helicobacter pylori} including CYP2C19 genotype and antibiotic resistance. \textit{Dig Dis Sci} 2014;59:1235-43.
10. Marunami TT, Scarron RA, Brown HE, Harris RB, Chen Z, Musuku S, \textit{et al.} Management of \textit{Helicobacter pylori} in the United States: Results from a national survey of gastroenterology physicians. \textit{Prev Med} 2017;100:216-22.
11. Shiota S, Nguyen LT, Murakami K, Kuroda A, Mizukami K, Okimoto T, \textit{et al.} Association of \textit{Helicobacter pylori} duP4A with the failure of primary eradication. \textit{J Clin Gastroenterol} 2012;46:297-301.
12. Roma E, Miele E. \textit{Helicobacter pylori} Infection in Pediatrics. \textit{Helicobacter} 2015;20(Suppl 1):47-53.
13. Ki MR, Hwang M, Kim AJ, Lee EM, Lee EJ, Lee MM, \textit{et al.} Role of vacuolating cytotoxin VacA and cytotoxin-associated antigen CagA of \textit{Helicobacter pylori} in the progression of gastric cancer. \textit{Mol Cell Biochem} 2014;396:23-32.
14. Almeida N, Donato MM, Romãozinho JM, Luxo C, Cardoso O, Cipriano MA, \textit{et al.} Correlation of \textit{Helicobacter pylori} genotypes with gastric histopathology in the central region of a South-European country. \textit{Dig Dis Sci} 2015;60:74-85.
15. Gościniak G, Biernat M, Grabińska J, Bińkowska A, Poniewierka E, Axon AT, \textit{et al.} \textit{Helicobacter pylori} strain polymorphisms in different regions. The \textit{Maastricht V/Florence Consensus Report. Gut} 2017;66:6-30.
17. Li L, Ke Y, Yu C, Li G, Yang N, Zhang J, et al. Antibiotic resistance of *Helicobacter pylori* in Chinese children: A multicenter retrospective study over 7 years. Helicobacter 2017;22.

18. Okuda M, Kikuchi S, Mabe K, Osaki T, Kamiya S, Fukuda Y, et al. Nationwide survey of *Helicobacter pylori* treatment for children and adolescents in Japan. Pediatr Int 2017;59:57-61.

19. Maçin S, Demir H, Özen H, Yüce A, Akyön Y. Determination of *Helicobacter pylori* antibiotic resistance patterns in pediatric gastroenterology patients: The Hacettepe experience. Turk J Pediatr 2015;57:254-7.

20. Van Doorn LJ, Schneeberger PM, Nouhan N, Plaisier AP, Quint WG, De Boer WA. Importance of *Helicobacter pylori* cagA and vacA status for the efficacy of antibiotic treatment. Gut 2000;46:321-6.

21. Khan A, Farooqui A, Manzoor H, Akhtar SS, Quraishy MS, Kazmi SU. Antibiotic resistance and cagA gene correlation: Looming crisis of *Helicobacter pylori*. World J Gastroenterol 2012;18:2245-52.

22. Sugimoto M, Yamaoka Y. Virulence factor genotypes of *Helicobacter pylori* affect cure rates of eradication therapy. Arch Immunol Ther Exp (Warsz) 2009;57:45-56.

23. Russo F, Berloco P, Cuomo R, Caruso ML, Di Matteo G, Giorgio P, et al. *Helicobacter pylori* strains and histologically-related lesions affect the outcome of triple eradication therapy: A study from southern Italy. Aliment Pharmacol Ther 2003;17:421-8.