Dynamic analysis of the extended space charge layer using chronopotentiometric measurements

Inhee Cho 1,2, Hyomin Lee 3 and Sung Jae Kim 2,4,5*

Abstract
In this paper, we experimentally verified the length (LESC) and the concentration (cESC) of the extended space charge (ESC) layer in front of the electrical double layer (EDL) using the chronopotentiometric measurement and the equivalent circuit model analysis. From the experimentation, the coupled-response of the EDL and the ESC layer was discriminated from the contribution of electro-osmotic flow (EOF). In addition, we derived the potential differences across the ESC (VESC) layer using the circuit model of the ICP layer under rigorous consideration of ESC and EDL. As a result, we obtained that VESC was linearly proportional to the square of the applied current (iapplied). Hence, LESC and cESC were quantitatively provided, where LESC is linear to the iapplied and cESC is constant regardless of iapplied. Thus, this experimentation could not only clarify an essential ICP theory but also guide in ESC-based applications.

Keywords: Ion concentration polarization, Chronopotentiometric measurement, Extended space charge layer

Introduction
Perm-selective ion selective transportation through an electrochemical nanoporous membrane has been widely utilized for numerous engineering applications such as desalination [1–7], preconcentration [8–17] and energy harvesting [2, 18–22]. In such systems, ion concentration gradients are formed on both sides of the nanoporous membrane, which is called an ion concentration polarization (ICP) phenomenon [23, 24]. Typically, a zone where electrolyte concentration was extremely low was formed at the anodic side of membrane, while the electrolyte concentration significantly increased at the cathodic side of membrane in the case of cation-selective membrane [25]. These zones were called the ion depletion zone and the ion enrichment zone, respectively. In order to characterize these zone, numerous theories and experimentations had been conducted such as the possible overlimiting conductance (OLC) mechanisms by instabilities [26–32], diffusioosmosis [33], electro-osmotic flow (EOF) and surface conduction (SC) [34–38], etc. Most of these studies pointed that all these nonlinear electro-kinetic phenomena were stemming from the development of extended space charge (ESC) layer in front of the electrical double layer (EDL) at an overlimiting current regime, predicted by Rubinstein and Zaltzman [39, 40]. Recently, the electrical impedance spectroscopy (EIS) have been proposed to probe the existence of the ESC layer [41–43]. However, the direct confirmation based on AC electric field analysis was lacking, because the electrical response was tightly involved with the couplings of EDL, ESC layer and EOF.

Therefore, in this study, we suggested an experiment and a circuit analysis for obtaining the potential across the ESC layer (VESC). First of all, chronopotentiometric measurement (dc bias with constant current) was used to discriminate the electrical response of both the EDL and the ESC layer out of EOF. Furthermore, we proposed the equivalent circuit model of an ion depletion zone reflecting EDL and ESC layer, where each resistor and each
capacitor are serially connected. From those analyses, we finally obtained the relationship between V_{ESC} and the applied current, which has never been proposed before. Finally, we quantitatively derived the ESC layer information such as the length, the total charge and the concentration. Therefore, this study would be one of essential basis for ICP research not only in fundamental aspect but also various applications based on ICP.

Materials and methods

Device fabrication

As shown in Fig. 1a, we fabricated a micro/nano-fluidic device consisting of the main microchannel (1 cm length, 100 μm height and 15 μm depth), the buffer microchannel (1 cm length, 100 μm height, and 15 μm) and two side microchannels (40 mm length, 15 μm height and 15 μm depth). For the external hydrodynamic injection, the two side microchannels were tangentially connected to the main microchannel, which is 50 μm apart from the end of the main microchannel. The side microchannels on both sides of the main microchannel was installed for easiness of the experiment [44] and preventing ever-increasing ICP layer [45]. By injecting fresh electrolyte solution through the side microchannels, the diffusion length was reduced as an order of a hundred micron, confining the ICP layer as the triangular shape as shown in Fig. 1b, c. The main building block of device were made of a polydimethyl siloxane (PDMS, Sylgard 184 silicone elastomer kit, Dow corning). We followed the general soft-lithographical fabrication method for PDMS [46]. The Nafion nanoporous membrane was patterned on the glass substrate based on the surface patterning method [45, 47]. Simply, Nafion was patterned using a straight microchannel (200 μm width x 50 μm depth) on a glass side, and the PDMS piece of the main

Fig. 1 a Image of micro/nanofluidic device used in this work and the magnified view of the device. Main and buffer microchannel had the dimension of 15 μm depth x 100 μm width and the side microchannel had one of 15 μm depth x 150 μm. The ICP layer **b** without or **c** with external flow from two side microchannels.
microchannel was irreversibly bonded in the middle using a plasma bonder (CuteMP, Femto Science, Korea) to a designated position on top of the Nafion-patterned glass.

Chemical preparation

Potassium chloride 1 mM solution were used for the experimentation. For tracking the electrokinetic flows and visualizing the ion concentration profile around the ion concentration polarization (ICP) layer, the negatively charged particle ($d = 0.2 \mu m$, Invitrogen) and the fluorescent dye (Alexa488, Sigma Aldrich) were mixed in the prepared solution [33, 37, 48].

Experimental setup

From the two side microchannels, we pumped the prepared solution with the volume rate, 20 nL/min using a syringe pump (PHD2000, Harvard apparatus) for 30 min until the injected flows were stabilized at the main microchannel. Then, we applied the external current source through the reservoir of the main microchannel utilizing the source measure unit (SMU 236, Keithley) while the two reservoirs of the buffer microchannel were grounded. Note that the reservoir of the two side microchannels were electrically floated during ICP. With a customized LabView program, we performed four experimentations as followed: (1) the chronopotentiometric measurement (V–t) from 1 to 30 nA with an 1 nA interval for each 3 min, (2) the chronoamperometric measurement (I–t) from 0.3 to 9.9 V with an 0.3 V interval for each 3 min, (3) the voltage–current (V–I) responses from 0 to 30 nA with a step current 1 nA for every 60 s per step and (4) the current–voltage (I–V) responses from 0 to 9.9 V with a step voltage 0.3 V for every 60 s per step. In order to capture the optical image of an ICP layer, we used a CCD camera (DP73, Olympus) and the image was obtained through the commercial software program (CellSens, Olympus).

Results and discussions

Chronopotentiometric measurement

Figure 2 showed the representing chronopotentiometric measurement of the ICP system, where the red line and the blue line indicated the electrical response at both the overlimiting current regime and the ohmic current regime, respectively. Previous studies neglected the voltage behavior at the ohmic current regime, while they described the voltage behavior at the overlimiting current regime as: (1) The initial voltage value was ohmic voltage which was subject to the electrodialysis system. (2) The sharp voltage hop (1st hop) appeared and the voltage value depended on the type of membrane. (3) A linear voltage growth (2nd hop) regime was followed, where the electroconvection initiated at this time, and then (4) the voltage value was saturated as the microvortices saturated both the size and speed [49, 50]. However, the aforementioned steps were insufficient to explain the voltage behavior in chronopotentiometry since the ICP layer model was missing. Furthermore, the internal structures inside ion depletion zone has never been suggested as an electrokinetic circuit model. Thus, we would introduce a unified equivalent circuit model including EDL and ESC as well as 2nd EOF in the following section.

Especially at the OLC regime, the voltage responses during the chronopotentiometric measurement showed the two voltage hops (V_{1st} and V_{2nd}) as shown in Fig. 3a. When the current was applied at $t=0$ (sec) from the main microchannel, the V_{1st} was followed due to the capacitance of both the ESC and the EDL, which the corresponding image and the circuit was shown in image i) in Fig. 3a and inset of in Fig. 3b, respectively. When the EOF was generated at $t=15$ s, the voltage was increasing until the EOF size saturated at $t>50$ s with the value V_{2nd}~$i_{applied}$ as shown in image ii) in Fig. 3a [50]. In this experimentation, we applied the various current values from 12 nA to 30 nA so that we can obtain the V_{1st}–$i_{applied}$ relations as shown in Fig. 3b. Note that the V_{1st} is not linear to the $i_{applied}$ indicating that the ohm’s law is not valid due to the appearance of the ESC layer as expected by Rubinstein and Zaltzman [40].

Equivalent electrokinetic circuit model of the ICP layer

At the charged membrane surface, the EDL was composed of both resistor (R_{EDL}) and capacitor (C_{EDL}) in parallel and they were connected in series to the diffuse layer resistor (R_{bulk}) as in Fig. 4a. This simple circuit coincided with the voltage–time behavior in the ohmic regime, which showed the gentle slope and the slight voltage hop as in Fig. 2. Once the current was applied exceeding
Fig. 3
(a) The result of chronopotentiometric measurement at 29 nA (in the regime of OLC regime) and the corresponding images at i) $t = 10$ s and ii) $t = 60$ s, respectively.
(b) The V_{1st}-$i_{applied}$ relations and the equivalent circuit model of the ICP layer at inset of the graph.
limiting current, the ESC layer grew between the EDL and the diffuse layer, where both resistor \((R_{ESC})\) and capacitor \((C_{ESC})\) should be additionally employed as in Fig. 4b. This electrical circuit model affected the total RC delay time, converting the gentle slope at ohmic current regime into the sharp one at overlimiting current regime.

Normally, time-varying voltage responses existed where the resistance and the capacitance are parallel in the circuit model. Considering that bulk solution was regarded to the quasi-neutral regions, one can ignore the resistance and the capacitance of the EDL as well as the resistance of one. This means that the voltage responses should be divided into the constant term (for diffusion layer) and the time-varying one (for EDL) as follows:

\[
V(t) = V_0 + V_{EDL} \exp \left(-\frac{t}{\tau_{EDL}}\right) \tag{1}
\]

where \(V_0\) is the potential of diffuse layer, \(V_{EDL}\) the potential of EDL and the \(\tau_{EDL}\) is the RC delay time \((\tau_{EDL} = R_{EDL} C_{EDL}\) in the circuit model). As shown in Additional file 1: Figure S4, the collapsed data of the \(V_{EDL}\) has the linear relations to the applied current density, which lead to the constant resistance values \((R_{EDL} = V_{EDL}/I)\) as 3 MΩ. Each component has the value 240±42 MΩ (for \(R_{bulk}\)), 3±0.7 MΩ (for \(R_{EDL}\)), 6±1.2 μF (for \(C_{EDL}\)), 1.09(\(I/I_{lim}\)) MΩ (for \(R_{ESC}\)) and 2.23(\(I/I_{lim}\))−1 μF (for \(C_{ESC}\), respectively. The simple calculation result and the derivations was introduced in supporting materials (Additional file 1: Table S1, Figure S4).

Valenca and co-workers reported that the microvortices by ICP induced the potential difference at \(V_{2nd}\) in the EC dominant regime [50]. This indicated that, in a certain overlimiting current value \(I_{OLC} > I_{lim}\), one can estimate the point conductance at \(I_{OLC}\) with a simple calculation as \(\sigma_{OLC} = I/V_{2nd}\). We also confirmed the conductivities in EOF regime, where the applied current is ranging from 12 nA to 29 nA, leading to OLC by EOF as the constant value of 0.21 nS in our system. Note that the experimental results and the set of data were provided in supporting materials (Additional file 1: Figure S2). In addition, critical time \((T_c)\) that initiates the EOF has the relation of the OLC conductance \((\sigma_{OLC})\) and its time-derivative one \((\dot{\sigma}_{OLC}/\dot{t})\). This means that \(T_c\) is also subject to the \(V_{2nd}\) and its time-derivative one \((\dot{V}_{2nd}/\dot{t})\). The scaling was developed and quantified in supporting materials (Additional file 1: Figure S3).

The length \((L_{ESC})\) and the concentration \((c_{ESC})\) of the ESC layer

At the ESC layer, the dimensionless length \((\tilde{L}_{ESC}\) normalized by diffusion length) should be 0.5(3ε\(V_{ESC}\))\((2/3)\) \((\hat{j})\)\((1/3)\), the total space charge density \((\Sigma_{ESC})\) should be \(\varepsilon(4/3)(2j_{VESC})\)\((1/3)\) and the concentration \((c_{ESC})\) should be 0.69(\(\varepsilon^2\psi_{ESC}^{-1}j_{j}^2\))\((1/3)\) [51, 52]. Here \(\varepsilon\) is the dimensionless Debye length; \(\psi_{ESC}\) is the dimensionless electric potential (normalized by the thermal potential \(RT/F\) and the \(j\) is the dimensionless applied current density (normalized by the cross-sectional area of microchannel). In our system, the diffusion length was 100 μm, \(\varepsilon\) was 4.26 × 10\(^{-4}\) and \(\psi_{ESC} \approx 7.89 \times 10^{-2} \times j^2\), leading to \(L_{ESC} \approx 132 \times j\) (nm), \(\Sigma_{ESC} \approx 0.225 \times j\) (μq/m\(^3\)) and \(c_{ESC} \approx 2.30\) (μM), respectively, leading to the conclusion of \(L_{ESC} \sim j_{applied}, \Sigma_{ESC} \sim j_{applied}\) and \(c_{ESC} \sim constant\) inside the ESC layer as shown in Fig. 5.

Conclusions

Recent experiments have been conducted for probing the space charge at the micro- and nano-channel interface device using electrical impedance spectroscopy (EIS),

![Fig. 4 Schematics of equivalent circuit of ICP layer at a ohmic current regime and b overlimiting current regime. c A unified equivalent electrokinetic circuit model of ICP layer considering EDL, ESC and 2nd EOF.](image-url)
employing a conventional equivalent circuit model. However, those literatures revealed out that the EIS method hardly determined the ESC layer response since the multiple electrokinetic responses were tightly coupled during ICP. For example, Yossifon and co-workers probed the diffusion layer(DL) and the electrical double layer(EDL) using EIS at the micro- and nano-channel systems [43]. They found out the detailed components of the EDL by separating the electrode-fluidic interface and microchannel–nanochannel interface. From this experiment, they clearly captured the resistances and the capacitances at both EDL for satisfying the theoretical calculations. However, this demonstration fails to present ESC layer responses at the higher voltage because of the coupling effect where electroconvective flows were involved, thereby arousing another issue for differentiating them, individually. Thus, we emphasized that this equivalent circuit model, for the first time, reflected EDL and ESC individually. Thus, we emphasized that this equivalent circuit model, for the first time, reflected EDL and ESC individually.

In this paper, we experimentally investigated the ESC layer using chronopotentiometric measurement and the unified equivalent electrokinetic circuit model of internal ICP structure with the consideration of EDL, ESC and 2nd EOF. Each electrical component such as two resistors, two capacitors and dependent current source were included in the new model, confirming the voltage responses in chronopotentiometric measurement. From our rigorous experimentation, we obtained the relationship between the potential across the ESC layer and the applied current, \(V_{E_{\text{ESC}}-\text{applied}} \). Furthermore, we quantitatively provided the \(L_{E_{\text{ESC}}-\text{applied}} \) and the \(c_{E_{\text{ESC}}-\text{applied}} \). Therefore, all this experimental verification of the ESC layer could lead to the further development of ICP theory as well as the ESC/ICP layer related applications.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s40486-020-00112-1.

Additional file 1: Figure S1. In order to obtain the limiting current values, we conducted the voltage-sweeping method in our systems. Under the 20nL/min flows was applied near the Nafion membrane, the limiting current value reaches 12 (nA). Figure S2. The \(V_{\text{ESC}} \) from the measurement has been obtained with the applied current, \(i \). This result showed that the slope of \(V_{\text{ESC}}^{-1} \), which is the overlimiting conductance (OLC) by electro-osmotic flows (EOF) have the constant values as 0.21 nS. Figure S3. The onset time (\(\tau_c \)) of electro-convective flows was obtained from the chronopotentiometric measurement. The \(\tau_c \) values are between 10 and 30, which result is coincided our scaling theory, \(\tau_c \sim 10^3 \). Figure S4. The \(V_{\text{lim}} \), which is the time-varying potential reflected by the electrical double layer, was obtained from the chronopotentiometric measurement. From this result, the resistance can be calculated by Ohm’s law (\(R_{\text{ESC}} \sim 1/V_{\text{lim}} \)). Table S1. The electrical components of the equivalent circuit model were calculated by simple calculation. Note that \(R_{\text{ESC}} \) and \(C_{\text{ESC}} \) remains same regardless of the applied current, \(i \), while \(R_{\text{REDL}} \) and \(C_{\text{REDL}} \) are linearly proportional to the current values (\(R

Abbreviations

ICP: Ion concentration polarization; EDL: Electrical double layer; ESC: Extended space charge; EOF: Electroosmotic flow; SC: Surface conduction; OLC: Over-limiting conductance; POMS: Poly-dimethyl siloxane; EIS: Electrical impedance spectroscopy.

Acknowledgements

All authors acknowledged the supports from BK21 Plus program of the Creative Research Engineer Development IT, Seoul National University.

Authors’ contributions

IC conducted the main experiment. HL advised circuit modeling. SJK supervised the project. All authors read and approved the final manuscript.

Funding

This work is supported by the Basic Research Laboratory Project (NRF-2018R1A4A0222513) and Mid-Career Project (NRF-2020R1A2C3006162) by the Ministry of Science and ICT. I. Cho was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (NRF-2020R1F1A1072960).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare no competing interests (both financial and non-financial).

Author details

1 Korea-Russia Innovation Center, Korea Institute of Industrial Technology, Incheon 22004, Republic of Korea. 2 Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea. 3 Department of Chemical and Biological Engineering, Jeju National University, Jeju 65243, Republic of Korea. 4 Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea. 5 Nano Systems Institute, Seoul National University, Seoul 08826, South Korea

Received: 2 March 2020 Accepted: 28 May 2020 Published online: 05 June 2020
References

1. Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5:297–301
2. Kim B, Choi S, Pham VS, Kwak R, Han J (2017) Energy efficiency enhancement of electromembrane desalination systems by local flow redistribution optimized for the asymmetry of cation/anion diffusivity. J Membr Sci 524:280–287
3. Kim B, Kwak R, Kwon HU, Pham VS, Kim M, Al-Anzi B, Lim G, Han J (2016) Purification of high salinity brine by multi-stage ion concentration polarization desalination. Sci Rep 6:31850
4. Kwak R, Kim SJ, Han J (2011) Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal Chem 83:7348–7355
5. Knust KN, Hlushkou D, Anand RK, Tallarek U, Crooks RM (2013) Electrochemically mediated seawater desalination. Angewandte Chemie Int Ed 52:8107–8110
6. Deng D, Aouad W, Braff WA, Schlumpberger S, Suss ME, Bazant MZ (2015) Water purification by shock electroosmosis: deionization, filtration, separation, and disinfection. Desalination 357:77–83
7. Park S, Jung Y, Son SY, Cho I, Cho Y, Lee H, Kim H-Y, Kim SJ (2016) Capillarity ion concentration polarization as spontaneous desalting mechanism. Nat Commun 7:11223
8. Fu LW, Hou HH, Chiu PH, Yang RJ (2018) Sample preconcentration from dilute solutions on micro/nanofluidic platforms: a review. Electrophoresis 39:2699–3109
9. Kim SJ, Song Y-A, Han J (2010) Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and application. Chem Soc Rev 39:912–922
10. Son SY, Lee S, Lee H, Kim SJ (2016) Engineered nanofluidic preconcentration devices by ion concentration polarization. BioChip J 10:251–261
11. Choi J et al (2015) Selective preconcentration and online collection of charged molecules using ion concentration polarization. RSC Adv 5:66178–66184
12. Lee H et al (2018) dCas9-mediated nanoelectrokinetic direct detection of target gene for liquid biopsy. Nano Lett 18:7642–7650
13. Baek S, Choi J, Son SY, Kim J, Hong S, Kim HC, Chae J-H, Lee H, Kim SJ (2019) Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion. Lab Chip 19:3190–3199
14. Lee S, Park S, Kim W, Moon S, Kim H-Y, Lee H, Kim SJ (2019) Nanoelectrokinetic buffer-channel-less radial preconcentrator and online extractor by tunable ion depletion layer. Biomicrofluidics 13:034113
15. Ko SH, Song YA, Kim SJ, Kim M, Han J, Kang KH (2012) Nanofluidic pre-concentration device in a straight microchannel using ion concentration polarization. Lab Chip 12:4472–4482
16. Cheow LF, Sarkar A, Kolitz S, Lauffenburger D, Han J (2014) Detecting kinase activities from single cell lysate using concentration-enhanced mobility shift assay. Anal Chem 86:7455–7462
17. Chen C-H, Sakar A, Song Y-A, Miller MA, Kim SJ, Griffith LG, Lauffenburger DA, Han J (2011) Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator. J Am Chem Soc 133:10368–10371
18. Subramani A, Badruzaman M, Oppenheimer J, Jacangelo JG (2011) Energy minimization strategies and renewable energy utilization for electromembrane desalination. Chem Soc Rev 40:5007–5023
19. Kjeang E, Djilali N, Sinton D (2009) Microfluidic fuel cells: a review. J Power Sources 186:353–359
20. Subramanian V, van Soestbergen M, Mani A, Biesheuvel PM, Whitesides GM (2010) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 82:6620–6626
21. Kew J, Yang S-Y, Park JS, Lee JA, Lee H, Kim SJ (2020) Surface conduction and electroosmotic flow around charged dielectric pillar arrays in microchannels. Lab Chip 20:675–686
22. Kim K, Kim W, Lee H, Kim SJ (2017) Stabilization of ion concentration polarization layer using micro fin structure for high-throughput applications. Nanoscale 9:3466–3475
23. Zaltzman B, Rubinstein I (2007) Electro-osmotic slip and electroconvective instability. J Fluid Mech 579:173–226
24. Rubinstein I, Zaltzman B (2010) Extended space charge in concentration polarization. Adv Colloid Interface Sci 159:117–129
25. Park S, Yossifon G (2016) Induced-charge electrokinetics, bipolar current, and concentration polarization in a microchannel–Nafion membrane system. Phys Rev E 93:062614
26. Green Y, Shloush S, Yossifon G (2014) Effect of geometry on concentration polarization in realistic heterogeneous permselective systems. Phys Rev E (Statistical Nonlinear and Soft Matter Physics) 89:043015
27. Schiffbauer J, Park S, Yossifon G (2013) Electrical impedance spectroscopy of microchannel-nanochannel interface devices. Phys Rev Lett 110:204504
28. Kim J, Kim H-Y, Lee H, Kim SJ (2016) Pseudo 1-D micro/nanofluidic device for exact electrokinetic responses. Langmuir 32:6478–6485
29. Cho I, Sung G, Kim SJ (2014) Overlimiting current through ion concentration polarization layer: hydrodynamic convection effects. Nanoscale 6:4620–4626
30. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984
31. Lee JH, Song Y-A, Han J (2008) Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8:596–601
32. Lee H, Alizadeh S, Kim TJ, Park S-M, Soh HT, Mani A, Kim SJ (2019) Overlimiting current in non-uniform arrays of microchannels. arXiv preprint arXiv:1910.09546
33. Krot J, Wessling M, Strathmann H (1999) Concentration polarization with monopolar ion exchange membranes: current–voltage curves and water desalination. J Membr Sci 162:145–154
34. de Valença JC, Wagtengert RM, Lammertink RG, Tsai PA (2015) Dynamics of microvortices induced by ion concentration polarization. Phys Rev E 92:031003
51. Rubinstein I, Zaltzman B (2010) Dynamics of extended space charge in concentration polarization. Phys Rev E 81:061502
52. Khair AS (2011) Concentration polarization and second-kind electrokinetic instability at an ion-selective surface admitting normal flow. Phys Fluids 23:072003

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.