Data-driven Operation of the Resilient Electric Grid: A Case of COVID-19

H. Noorazar¹, A. Srivastava¹*, S. Pannala¹, K. S. Sajan¹

Abstract
Electrical energy is a vital part of modern life, and expectations for grid resilience to allow a continuous and reliable energy supply has tremendously increased even during adverse events (e.g., Ukraine cyberattack, Hurricane Maria). The global pandemic COVID-19 has raised the electric energy reliability risk due to potential workforce disruptions, supply chain interruptions, and increased possible cybersecurity threats. Additionally, the pandemic introduces a significant degree of uncertainty to the grid operation in the presence of other challenges including aging power grids, high proliferation of distributed generation, market mechanism, and active distribution network. This situation increases the need for measures for the resiliency of power grids to mitigate the impact of the pandemic as well as simultaneous extreme events including cyberattacks and adverse weather events. Solutions to manage such an adverse scenario will be multi-fold: a) emergency planning and organizational support, b) following safety protocol, c) utilizing enhanced automation and sensing for situational awareness, and d) integration of advanced technologies and data points for ML-driven enhanced decision support. Enhanced digitalization and automation resulted in better network visibility at various levels, including generation, transmission, and distribution. These data or information can be employed to take advantage of advanced machine learning techniques for automation and increased power grid resilience. In this paper, we explore the resilience of power grids in the face of pandemics and discuss various machine learning tools that can be helpful to augment human operators by: a) reviewing the impact of COVID-19 on power grid operations and actions taken by operators/organizations to minimize the impact of COVID-19, and b) presenting recently developed tools and concepts of machine learning and artificial intelligence that can be applied to increase the resiliency of power systems in normal and extreme scenarios such as the COVID-19 pandemic.

Keywords
Electric grid resilience, COVID-19, extreme events, power grid operation, machine learning, data analytics

1 School of Electrical Engineering and and Computer Science, Washington State University, Pullman, WA 99164, USA
*Corresponding author: anurag.k.srivastava@wsu.edu
*Acknowledgement: This work was partially supported by the U.S. Department of Energy UI-ASSIST Grant DE-IA0000025 and the National Science Foundation award #1840192. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Technical support from Anshuman, Gowtham Kandaperumaland Jonah Davis is acknowledged

1. Introduction

Electricity is essential for daily life, and the electric power industry is the backbone of the country’s economy. Interruption in the flow of energy will lead to catastrophic impacts on other critical infrastructure, like the inability to manufacture essential needs and the hindrance of healthcare systems. The consequences are far-reaching and impactful. Consistent supply of electricity is a matter of national security: during the COVID-19 pandemic, “the Department of Homeland Security listed power plants, dams, nuclear reactors, communications, and transportation systems as critical infrastructure.” [1, 2].

Power grids are actively generating and are continuously being monitored and maintained to provide reliable energy for each customer. The transmission ecosystem is under constant monitoring to assess the condition of the system and to execute appropriate actions if needed. Figure 1 shows the operation and control layout of existing power grids. Distribution control room operators must monitor grid load and coordinate with field crews during routine maintenance and unexpected events [3] to restore power whenever abnormal circumstances cause outages.

1.1 Background
Having robust contingency plans in the case of emergencies is vital. The energy and utility sector in the U.S. is well planned and designed to withstand disasters and emergencies. Still, “since 1980, there have been 246 weather and climate disasters exceeding $1.6 trillion in remediation” [4]. Contingency planning has also improved and has been reshaped by pandemics of the past [5]. Examples of such experiences are the Black Death, the 1918 Spanish Flu, the influenza pandemics of 1957 and 1968, the SARS outbreak in the mid-2000s, and the 2009 H1N1 influenza. Nevertheless, the novel situations caused
by COVID-19, with its fast spread and high transmissibility rate, have significantly affected the utility industry. Most of the contingency and backup plans are designed for physical assets and do not consider the health of employees [6]. We emphasize the fact that most, if not all, of the literature studying the resilience of power grid systems focuses its analysis on extreme weather conditions or cyberattacks that threaten the physical components of a power grid. To date, extant literature on the human aspects of power grid resiliency is very poor. For example, Jufri et al. [7] explore definitions of resiliency, grid exposure, and grid vulnerability in their review paper. All of the resources explored by [7] focus on extreme weather events as low-probability high-impact events. Building barriers and walls to protect physical assets against flood is discussed in the literature and technical reports [8, 9]. However, the human side of power systems is taken for granted. COVID-19 has impacted operators, forcing them to work remotely or be quarantined, and consequently, utility operations have been affected. Simmons and Stiles [10] and Terry [11] compare characteristics of COVID-19 and the 1918 Flu and the potential problems that can occur today due to coupled infrastructure, and authors from [1] recounts painful lessons and what can be learned from the 1918 Flu pandemic. In addition to the pandemics mentioned in previous paragraphs, electrical disturbances caused by weather have increased over the past several decades [13]. It is estimated that power outages have cost the United States economy $18-$33 billion between 2003 and 2012 [14]. The average cost for each weather event totals roughly $150,000, and 50 events could happen every year, resulting in losses of $3 million annually [15]. On a smaller scale, EPB Electric Power in Chattanooga, TN, estimated that the annual cost of power outages to the community is approximately $100 million. By deploying automated switching and smart meters, they saved about $1.5 million in operational savings during the July 2012 wind storm [16]. According to EPRI, “severe droughts in recent years have sharply reduced hydropower capacity in the West and Southeast (U.S.) by 50%.” [17]. According to the survey by IBM, proactive data-driven solutions can save a significant amount each year. Natural disasters are local (both in time and space); however, the COVID-19 pandemic spreads with people at high rates. Furthermore, it is not yet known whether a person can get infected multiple times [18, 19]. Preliminary studies suggest antibodies may last only a few weeks or months [20, 21]. If one can get infected more than once, then the severity of the problem would be magnified. System operators are highly skilled, and the expertise of an experienced grid operator is significant. Hence, the replacement of the workforce is challenging in case of any loss.

1.2 Motivation
Due to the novelty of the pandemic and the lack of identifying the symptoms prematurely, operators of a control center became affected, and consequently, a power generation unit was shutdown [22]. Subsequently, all members of the electric power industry are actively updating their plans/guidelines in response to the ever-changing impacts of COVID-19. The Electricity Subsector Coordinating Council (ESCC) is releasing and updating its resource guides, including recommendations for decision-makers of industry [23], and the North American Reliability Corporation (NERC) is providing (and updating) its planning recommendations [24]. To cope with unforeseen events such as pandemics and/or other natural disasters, we need to utilize all the available tools. Eliminating or reducing manual interventions will ensure resilient and reliable grid operations during normal situations, in extreme natural events, and under scenarios such as the COVID-19 pandemic. The reduction of manual interventions will help utility field crew reduce their exposure to people who could be either symptomatic or asymptomatic carriers of the virus. These tools not only help in pandemic situations but also are helpful in general and under normal conditions. The power grid management has evolved with the invention and advances in computer technologies [25] but is still behind and has not fully integrated newly developed research methods. Data analytics and machine learning (ML) tools can play a significant role.
in formulating effective solutions and strategies for managing natural events [26]. Moreover, as power systems become more complex, human operators must work in various situations and may encounter different types of emergencies [27]. More than two decades ago, in 1998, Bilke stated, “trends in the electric utility industry have increased the chances and costs of errors by power system operators” [28]. Using more sensors leads to the collection of more data. Consequently, the analysis of such vast data is beyond the cognitive capabilities of humans [29], and more tools for assisting the operators are needed [30, 29, 31]. Innovative technologies can improve operator knowledge of the state of the power system and thus make more efficient and reliable operation possible [32]. Decentralization of power systems, shifting towards smart grids and consequently more complicated systems, and a scarcity of expert operators all mean new technologies and automation must assist human operators in their larger roles. Not only will machine learning be essential on the micro-level to perform some of the system operators’ tasks but, on the macro level, new technologies are needed for decision-makers to make better informed decisions in the case of disasters [4].

1.3 Contributions

Most of the recent COVID-19-related papers and reports have focused on statistics in the reduction of power usage and change of demand patterns [33, 34]. Some of these papers rushed to analyze the change of pattern of power consumption. Barooah and Duzgun. [34] claims COVID-19 does not solely cause the change in demand pattern. While these COVID-19-related papers report on impacts on load-demand, economy, and implement strategies to deal with difficulties of the pandemic [35], the main goal of this paper is to recommend technical strategies that are not integrated into the industry to date, and these techniques will have a far-reaching impact if the industry adopts them. Increasing the resiliency of power grids helps utility companies to deal with situations such as COVID-19 along with other natural events. Resiliency usually is defined under high-impact low-probability weather events that impact physical assets of power grids. The COVID-19 pandemic has affected power grids indirectly by impacting operators. It is shown [36] that early restrictions on travel are effective, and late restrictions (when the outbreak is widespread) are less effective. Thus, implementing statistical learning approaches enhances the resiliency of microgrids by reducing the number of onsite operators.

Winter began in the Northern Hemisphere, and the importance of power systems’ resiliency cannot be overstated. In 2020, We have already seen a flood on May 19th and 20th, in Midland County, Michigan [37], as well as a Cyclone hurricane in India and Bangladesh, on May 20, present adverse impacts on the power transmission system [38]. The scope of our paper does not consider an analysis of natural disasters. While planning, operating, and restoring strategies in response to natural disasters are discussed in a typical review paper (first three rows of Table 1), we only discuss the methods relevant to pandemic scenarios (last two rows of Table 1). These models increase the resiliency of the power grid by decreasing the dependency on operators and increasing the automation. These methods significantly improve the non-physical problems that have mostly been ignored in the past. Reference [39] reviews some of the ideas related to human resource resilience.

Classification of Events	Examples
Physical, manmade	Riots, vandalism, war [40, 41, 42, 43]
Physical, natural	Hurricane, earthquake, storms [44, 45, 46]
Cyber	Phishing, data injection [47, 48, 49, 50]
Non-physical, natural	COVID-19, Spanish flu

The originality and motivation for our paper compared to other review papers lies in the fact that we focus on reviewing challenges of power grids under pandemics and offer potential approaches to counteract them. Thus, comparing different ML-based models (e.g. performance of the models) against each other is beyond scope of this paper. In this paper we provide an overview of data-driven methods that leads to the augmentation of human roles in operating power grids, which consequently will be beneficial in cases such as the COVID-19 pandemic. Contributions of this paper include:

1. Analyzed impact of COVID-19 on power grid operations and actions being taken by operators/organizations to minimize the impact of COVID-19.
2. Analyzed concept of resiliency and key differences with other existing concepts for the power grid
3. Reviewed some of the recent ML-based methodologies developed for increasing power systems’ resiliency that are relevant under the pandemic scenario and in general.
4. Suggested integrating some of the recently developed tools or concepts in ML and AI with industry practices. These approaches can increase the resiliency of power systems in general and in extreme scenarios such as the COVID-19 pandemic.
5. Presented an example case study for COVID-19 with the real-time resiliency management tool (RT-RMT) developed by our team that uses real-time data for optimal crew routing and restoration process after a power outage during the COVID-19 pandemic.

The rest of the paper is organized as follows. In Sec. 2, a quick review of existing power grid operations is presented. Next, in Sec. 3 impact of COVID-19 pandemic on power grid operations is analyzed. Afterward, Sec. 4 investigates possible and employed practices to manage and combat the pandemic.
We discuss some research directions that can be explored further in the future. Finally, we present our conclusions in Sec. 6.

2. Existing power grid operational practice

Power systems require a level of centralized planning and operation to ensure system reliability.

2.1 Normal operation

The electric power system is built to handle periodic equipment failures, primarily by isolating faulty zones whenever any problems occur. The control room is the brain of a power grid, responsible for the reliability and security of the network. These operations in the power system are a combination of automated control and actions that require direct human intervention. System operators at control centers carry out many of these centralized tasks, including short-term monitoring, analysis, and control.

2.1.1 SCADA: data acquisition and control

Supervisory control and data acquisition (SCADA) helps in achieving situational awareness and effective decision making. SCADA is a system of software and hardware elements responsible for gathering, monitoring, and processing real-time data. SCADA acquires measurement information related to voltage, current, and frequency, circuit breakers status, monitoring active and reactive power flow, etc. Collecting, processing, and displaying real-time data allows operators to analyze the data via human-machine interface and enables them to take proper actions remotely from the control center. Currently, the presence of operators in control centers is necessary 24 hours a day. Operators utilize the energy management system and distribution management system to monitor the state of the system such as the balance between generation and demand, fault signals, thermal loading of feeders, etc.

2.1.2 Control center: situational awareness and decision making

Situational awareness means being constantly aware of the state of power station or grid conditions. It is a significant contributor to successful control room operations. Observing the early signs of the system approaching a vulnerable state requires a wide-area view and analytics to recognize conditions. Situational awareness is vital to ensuring coordinated responses among operators within large organizations [51]. Situational awareness gained through SCADA and utilizing sensors such as a smart meter, phasor measurement unit (PMU), and data acquired through the communication system provides an opportunity to develop continuous monitoring of the system[50].

Table 2 presents current challenges faced by electrical power systems where ML approaches can alleviate these problems and help operators in different tasks with decision support tools. Research methodologies have been developed to battle these challenges but are not yet integrated into the systems. Primarily, these approaches will reduce dependency on human operators, which is helpful in situations such as the COVID-19 pandemic.

2.2 Contingent operation: power outage and restoration

Power outage, restoration, and assessment management plan vary between expected contingency and emergency operations. The following section will discuss the preparation for events and restoration efforts during these two modes of operations.

2.2.1 Planning and training for normal expected contingency

In normal expected contingency operation, utilities prepare for all sorts of circumstances ranging from small storms, winter snow and ice storms, cyclones, insufficient resources of generation, shortage of fuel reserves, accidents, cyberattacks, etc. There are several activities that utilities perform during regular operation to prepare for events in advance:

- Operators and field crews perform exercises and drills to prepare for various incidents.
- Modernizing physical infrastructure to make it less vulnerable to physical or cyber events.
- Utilities complete contingency planning to ensure they can maintain supply even if one or more system components go offline.
- Utilities perform regular vegetation management, which includes the cutting or trimming of plants, bushes, and other foliage that could be too near electric infrastructure, preventing potential damage to equipment during storms.
- Utilities regularly examine resources, noting deterioration and required repairs or replacements.

2.2.2 Planning and Resilient Operation for Emergency

During emergency operation mode, utilities coordinate with control room operators and crews to re-establish power supplies as fast as possible. If the event is known beforehand, then utility planning will be in two phases, pre-event and post-event.

Pre-event process:

- Utilities create different leads for different functions (e.g., damage, restoration, vegetation management, overall communications).
- Utilities review critical infrastructure in the area.
- Utilities identify resources, including crews, backup generators, and other equipment, as well as mutual assistance available to respond to emergencies.
Table 2. Challenges for the power grid operation and control in extreme events.

Field	Challenge	Opportunity (Developed Methods)	Refs.
Control Center	Fault detection due to incomplete and conflicting alarms.	Data-driven based on mixed integer linear programming.	[52]
	Increasing number of measurement devices increases the number of alarms causing analysis and situational awareness more challenging.	Real-time event detection using synchrophasor data, and ensemble methodology that includes maximum likelihood estimation, DBSCAN, and decision trees.	[53]
	Fault section estimation.	Neural networks	[54, 55, 56, 57]
	Classifying the observed anomalies of instrument transformers into different types of malfunctions, failures, or degradation.	A pipeline consisting of three steps; maximum likelihood estimation, DBSCAN and a decision logic diagram.	[58]
Office Staff	Classifying the customer ticket texts/calls.	Natural language processing, text analytics, recurrent neural networks.	[59]
Transmission protection systems	Detecting root cause of failures in transmission protection systems.	Anomaly detection using an ensemble of ML approaches.	[60]
System Protection - Cyber Security	Monitoring and detecting malicious activity in transmission protection systems.	Anomaly detection pipeline that includes LSTM networks, semi-supervised deep learning algorithms, and ridge regression. Several ML algorithms such as random forests and support vector machine.	[50]
	Classifying malicious data and possible cyberattacks.	Gaussian mixture model is used to solve the problem.	[48]
	Detecting anomalies and false data injection.	Support vector machine and artificial immune system.	[49]
	Detecting intrusions in smart grids.		

- Utilities employ advanced tools to anticipate extreme events and to prepare the system to have minimal impact.

Post-event process:

- Utilities perform a destruction estimation of lines and substations.
- Utilities eliminate all hazardous situations, such as downed live wires or other potentially life-threatening situations.
- Utilities restore power plant and transmission lines that carry maximum power to the distribution system whenever damaged.
- Utilities prioritize restoring power to critical infrastructure such as hospitals, police, and fire stations before individual homes and small businesses.
- Utilities employ advanced resiliency tools to optimize and recover after extreme events.

- Utilities employ advanced tools to anticipate extreme events and to prepare the system to have minimal impact.

Post-event process:

- Utilities perform a destruction estimation of lines and substations.
- Utilities eliminate all hazardous situations, such as downed live wires or other potentially life-threatening situations.
- Utilities restore power plant and transmission lines that carry maximum power to the distribution system whenever damaged.
- Utilities prioritize restoring power to critical infrastructure such as hospitals, police, and fire stations before individual homes and small businesses.
- Utilities employ advanced resiliency tools to optimize and recover after extreme events.
3. Impact of COVID-19 on the power grid operation

Edison Electric Institute in their 2020 report [62], states that “it is predicted that a large percentage of a company’s employees (up to 40%) could be out sick, quarantined, or might stay home to care for sick family members.” Moreover, certain nuclear facilities have operated marginally at low capacity due to remote operations and the challenges presented by delayed maintenance work, all of which impacts the timely operation of such facilities. Furthermore, COVID-19 is expected to delay project developments and impact renewable auctions due to supply chain delays. The pandemic has forced the NERC to delay implementation of several reliability standards [63, 64], some of which are cybersecurity measures. The pandemic has forced utilities to operate with skeleton crews, providing more opportunities for cyberattacks [23]. Three infected IT security engineers at a nuclear power plant were quarantined for 14 days [22], increasing the threat to normal operations. State of the art technologies in AI and ML can aid in reducing humans’ direct involvement with oversight, maintenance, and failure detection [60]. Protection systems are always of the highest priority in the energy industry.

For increased security against cyberattacks, extra measurements must be taken (see [50]).

COVID-19 impacted power demand, mostly when lockdown periods went into effect. Electric Power Research Institute (EPRI) reported the change of pattern of load in Italy, Spain, and the U.S. [65]. Load impacts in the U.S. were also reported in [66, 67, 10].

Figure 2 compares the power consumption in 2020 and 2019 in various regions of the U.S. and Italy when the pandemic became widespread, and lockdowns began. The data for the U.S. is obtained from Energy Information. The data for Italy is obtained from ENTSO-E Transparency [68]. The lockdown started on March 19 [69] in the state of California. The demand in California was higher before the lockdown began in 2020 compared to 2019. However, after the lockdown, it dropped below that of 2019 by a small amount. The Northwest region includes several states; therefore, there was no uniform date for the beginning of lockdowns in the region, and no clear change of pattern is seen in the Northwest. In the state of New York, lockdown started on March 22 [70]. Here, demand in 2020 was less than demand in 2019, even before the lockdown period began. This difference might indicate that other factors (beyond COVID-19) might be involved in the difference between consumption loads of 2020 and 2019.

Neural networks can be used for short-term load forecasting. Badri et al. [71] compare neural networks against fuzzy logic in the context of short-term load forecasting and reports on superiority of neural networks. Additionally, Dudek [72] compares different neural networks against each other for the same goal. The authors have to admit a rapid change in behavior of power consumption as a result of lockdowns. Thus, a lack of sufficient data for ML-approaches will be a challenge.

Ruan et al. [73] have made an ensemble model to predict electricity consumption in NYISO in 2020 if COVID-19 were absent. They trained 800 neural network models, selecting the top 25% models with the lowest error. For certain selected days in April, they showed that electricity consumption was much lower than predicted by the model. Table 3 presents reduction of power consumption in different countries in 2020 compared to 2019. The reduction of electricity usage translates into a reduction of the system’s resilience. Furthermore, most of the reduction of demand results from a reduction of electricity usage by large segments such as industrial and commercial organizations. These customers form a large segment of normal electricity demand, and their lack of stability translates into a reduction of stability in power grid operations.

In the U.K., the consumption of the transmission system kept falling week after week; “compared to the week of March 9th, total electricity demand fell by 13% in the week of March 23rd, by 14% in the week of March 30th, and by 24% in the week starting April 6th.” [74]. Europe went through a significant reduction (27%) during lockdowns. Even after the easing of lockdowns in June, the demand was still 10% less than that of 2019 [75].

Some interesting results, such as the impact of social distancing on electricity consumption can be found in [73]. To prevent the spread of the virus, operators and technicians have had to change their normal operations. Different solutions have been proposed by experts. The followings are some examples of the pandemic’s impacts and potential mitigations to consider.

- Minimizing the number of onsite staff and working remotely if possible.
- Using main and backup control rooms at different times and/or with separate operators.
- Regularly sterilizing control center facilities during the day.
- Changing shift duration and cycles.
- Limiting common equipment usage.
- Cancelling face-to-face meetings and direct interactions.
- Limiting the number of field technicians in each vehicle and ensuring technicians carry personal protective equipment.
- Closing all non-critical common areas, such as exercise rooms or even cafeterias.

4. Solutions for minimizing impact of COVID-19

The COVID-19 pandemic has changed usual operations at different levels. Recently, the Federal Energy Regulatory Commission (FERC) and NERC produced industry guidelines
to reduce the impact of COVID-19 [80], and a comprehensive guide is given by [81].

4.1 Actions Being Taken by Grid Operators
Operators are taking different actions to minimize the spread and impact of SARS-CoV-2 while attending their jobs and maintaining the power stations. Below is a list of some of these strategies.

- Back-up control centers are activated, key workers are isolated, and deep cleaning has become routine [82].
- Food and other supplies are stored at the generating station (Utah’s Intermountain Power Plant) [83].
- Operators are preparing for the worst-case scenario; “we could operate the plant with a skeleton crew for an extended period of time” (Utah’s Intermountain Power Plant). An example is shown in Fig. 3 provided by [84], demonstrating New York’s power grid control operation working with only essential operators.
- Employees are telecommuting. (Southern California Edison, NYPA)
- Rotating personnel between power line repair teams is kept to a minimum (Southern California Edison) [83].
- Non-critical planned maintenance is being postponed (Southern California Edison).
- Critical workers are isolated (American Gas Assn.). In fact, “some sequestration is underway in certain areas, with employees and contractors living on-site at power stations.”
plants and other facilities. It is critical that sequestered employees who are in close quarters be tested before and during sequestration” [22].

- Regular health screenings are being performed, as well as deep cleanings of control rooms to keep the coronavirus out (NYPA) [85].
- Splitting control center operators between the main and backup control center to limit contact (PJM) [85].

4.2 Enabling grid resiliency

Other than the usual operational paradigm to focus on reliability, security, restoration, and emergency planning, energy suppliers need to invest in resiliency to bounce back from extreme events. Resiliency is a multidimensional concept. Jufri et al. [7] state that resiliency “involves multidisciplinary knowledge, such as power system, civil and structure, geography, computer science, probability, and meteorology and climatology.” Consequently, several definitions are available. Even for one aspect of resiliency, several definitions have been put forward, and there is no consensus in a given community. Definitions for a given aspect are not mutually exclusive and may overlap [86]. Table 4 provides some of the definitions of resiliency from different perspectives and/or in different domains, as well as for some closely related topics. For more details please see [87, 86]. As mentioned before, most of the effort on resiliency is focused on physical assets. In this paper, however, we are dealing with disease, which adds a different dimension to the problem: health. Consequently, the organizational domain becomes relevant, and a definition of resiliency for this aspect is presented in Table 4. By implementing ML approaches, the resiliency of a power system—as a group/society/organization—is increased as organizational responsiveness is shifted from humans to machines.

In general, the resiliency of a power grid is defined as “the ability to withstand and fast recovery from deliberate attacks, accidents, or naturally occurring threats or incidents” [91]. For a system to be resilient, it needs to have a robust damage prevention plan in place, and a system designed for adaptation and fast recovery in case of any damage. Temporally there are 3 stages to make, keep, and improve the system’s resiliency (Fig. 4) pre-, during, and post-event actions are needed. Extreme events cause a limited or complete blackout in the power grid. A complete blackout occurs with a low probability as a result of multiple interrelated contingencies; operators rarely anticipate that. If pandemics such as COVID-19 coincide with extreme weather events, then the problem escalates to a whole other level where the consequences are extremely high for at least two reasons. The first reason is that the COVID-19 regulations and limitations themselves increase difficulties on power grid operators. For example, fewer technicians are available to fix failures, while there are more opportunities for cyberattackers. The second reason is that hospitals (a very specific example is ventilators) depend on electricity [92]: “... electric power is not just important for the overall functioning of the facility, it is critical for direct patient care.” Automation and ML can aid in different ways to increase the resiliency of networks. For example, ML can help evaluate the risk of failure and consequently with the scheduling of timely maintenance [93]. Resiliency has to be implemented at multiple levels, though, as different incidents threaten the system, e.g., a blizzard vs. human error.

Different approaches that can enhance the resiliency of power grid are discussed here.

4.2.1 Challenges and Opportunities with Integration of Microgrids and DERs

Although rigorous efforts and suitable solutions to strengthen the resiliency of the power grid are continuously evolving, the operator still needs to deal with challenging conditions due to unprecedented or adverse events. With the increased deployment of DERs and microgrids, the reliability and resiliency of the power grid can significantly be enhanced [94]. By reconfiguration of the network, DERs can be used to serve critical loads when the utility grid or a centralized generation unit is not available [95]. Similar to DERs, microgrids could operate independently or in connection with the distribution network [96, 97]. Furthermore, a microgrid can be used to pick up critical loads outside its boundary to increase the resiliency of power grids in case of extreme events [98]. Consequently, smart grids and distributed renewable energy systems can be a solution in the future [99] to alleviate problems imposed by pandemics.

Despite the fact that microgrids increase the resiliency of power systems, they face their own challenges. Machine learning provides solutions in the microgrid ecosystem as well. For example, Lin et al. [100] combine neural networks and support vector machine for state recognition in microgrids. Their algorithm is used to increase reliability of operation by changing the protective settings and the network topology based on the system’s state. To learn more about these challenges (e.g. physical or cyber threats) please see Mishra et al. [101]. Table 5 provides a summary of some of these challenges and some of the methodologies developed by researchers to overcome the difficulties.

4.2.2 Operational practice for human operators

Operational practice guidelines and decision-making tools help the operator to apply the best plan to minimize the impact of an event, but mainly for known and analyzed events. Effective proactive strategies with quantified measures in terms of resiliency metric can lead to substantial improvement in resilient power distribution grids [106, 107, 108], [109, 110]. Training for extreme events will be important. Further, any advancement in automatic decision-making tools based on data processing and analysis will ease the operator in handling these events [111]. An automatic emergency control action plan can be developed based on previous incidents and can be suggested to operators or used as an emergency automated operation. Distancing employees and scheduling operating cycles for minimal interactions with others during health haz-
Figure 3. Control center normal operations are impacted by COVID-19. Power systems are operating with minimal number of staff onsite.

Figure 4. Multi-temporal resilience framework

...ards like COVID-19 stops escalation of impact to employees, specifically to critical personnel of utility companies, such as control center operators and field crews.

4.2.3 Organizational support
Organizational support plays a major role in a resilient grid operation, especially given that multiple organizations and interests impact grid operations—federal, state, and city governmental bodies, FERC, NERC, public utility commissions, vendors, service providers, technical committees, standard development organizations, researchers, and, of course, consumers. With proper support and guidelines from regulation authorities and federal energy agencies, utility companies could accelerate the deployment of advanced grid technologies to perform remote operations and increase the level of automation with sufficient personnel involvement. Organizations need to develop policy, proactive or corrective action plans against extreme weather (Tsunamis, Hurricanes, Tornadoes, etc.) and outbreaks (COVID-19, Ebola, etc.). As the grid is highly susceptible to cyber threats during these kinds of events, robust communication infrastructures and adaptive action plans must be implemented. During outbreak events, automated alarm and text messaging of outages, faults, equipment failures, and malfunctioning to crew engineers and field inspectors should be deployed to reduce the spread of infection and loss of crew. Automated routing of field personnel to equipment maintenance and replacement with minimal customer or human interaction can ensure continuous power supply. Moreover, optimal placement of inventory and crew by organization greatly diminishes power delivery interruptions. Further, mutual coordination and personnel exchange between organizations operating in the same region could establish a more resilient and robust grid.

4.2.4 Redundancy and automation
Restoration is a key functionality of an advanced distribution management system (ADMS) for keeping the lights on after an outage. Redundancy plays a vital role in the restoration process, and spare inventory and parallel lines act as major attributes thereof. Outage management systems (OMS) can identify faulted sections using information received from trouble calls or field inspectors and dispatch crews to mend damaged equipment [13]. An increased number of multiple power flow paths in the network permits the load to be supplied through alternate pathways [32]. Modern grid technologies—automatic metering infrastructure (AMI), micro-phasor measurement units (microPMU), intelligent electronic devices (IED), fault indicators, remote terminal units (RTUs), digital relays and circuit breakers, data analytical tools—provide enhanced observability and controllability of distribution networks [13, 112]. Field devices can be used to automate the power grid through ML techniques. For example, predicting the probability of failure of a feeder switch can help prevention of outages. In the case of COVID-19, redundancy of spare devices and automation will help in faster restoration.

4.3 Future ML-based tools and resiliency
The need for increasing system resiliency has been heightened by several recent natural events and their dramatic impacts. But natural disasters are just one major cause of high-impact outages [113]. An example of this kind is human-caused outages applicable in the COVID-19 case. Making operators work longer hours or sequestering them to live on-site at power plants will increase the rate of human error. With increasing...
Table 4. Definitions of resilience and other coupled/interrelated concepts.

Concept	Definition	Refs.
Resiliency	Ability to harden the power system against—and quickly recover from high-impact, low-frequency events. Resiliency consists of damage prevention, system recovery, and survivability.	[88]
Damage prevention (as a part of resiliency)	Damage prevention is self-explanatory. It is related to predicting and hardening the power systems against high-impact, low-frequency events.	[88]
System recovery (as a part of resiliency)	Going back to normal operations after occurrence of high-impact, low-frequency events.	[88]
Survivability (as a part of resiliency)	Ability to maintain some basic level of power to consumers when complete access to their normal power sources is not possible.	[88]
Resiliency	“measure of a system’s ability to absorb continuous and unpredictable change and still maintain its vital functions.”	[86]
Resiliency in organizational domains	“ability of an organization to absorb strain and improve functioning despite the presence of adversity.”	[86]
Reliability	“the degree to which the performance of the elements of [the electrical] system results in power being delivered to consumers within accepted standards and in the amount desired.”	[89]
Flexibility	“the inherent capability to modify a current direction to accommodate and successfully adapt to changes in the environment.”	[90]

complexity, the tasks of human operators become even more challenging. Unlike a self-driving car, a fully automated scenario without human intervention is not possible due to complexity of the power grid. ML-based tools could help to minimize strain on over-burdened operators and hence minimize the chance of human error. We review the potential of statistical learning and recently developed techniques to mitigate potential power grid challenges as outlined here.

ML and natural disasters. Gupta et al. [114] employ a probabilistic framework and support vector machine to predict cascading failure and provide early warning in case of any future events to increase resiliency. Eskandarpour and Khodaei [115] develop an ML-based prediction method to determine the potential outage of power grid components in response to an imminent hurricane. The decision boundary of the classifier is obtained via logistic regression to predict the number of failed components and failure duration. Predicting the state of a system after a hurricane is investigated in [116] using a support vector machine-based model to categorize power grid components into two classes—damaged and operational. Guikema [117] uses regression and data mining techniques to estimate the number of poles that need to be replaced after a hurricane event. Glavic et al. [118] and Huang et al. [119] explore the application of reinforcement learning in power system emergency control dynamics to alleviate current practices. In one interesting article, Maharjan et al. [120] combine DERs and support vector machines to improve the resiliency of power grids during natural disasters. They consider a scenario in which different load needs are categorized to prioritize life threatening cases (e.g., a kidney dialysis machine is more important than a fridge) and ensure power availability for the most necessary items during outages.

ML and cyber attacks. Hink et al. [48] explore several ML algorithms—such as random forests and support vector machine—to classify “malicious data and possible cyber-attacks” to help operators in normal and emergency situations. Foroutan and Salmasi [61] investigate a Gaussian mixture model for detecting anomalies and compare their model against some other models for false data injection. Zhang et al. [49] examine a distributed intrusion detection system embedded at each level of the smart grid—the home area networks, neighborhood area networks, and wide area net-
Table 5. Examples of Challenges and Opportunities with Integration of Microgrids

Component	Challenge	Opportunity (Developed Methods)	Refs.
System Protection - Cyber Security	Detect and stop cyber attacks in wireless sensor networks in microgrids with different ownership.	Detecting anomaly based on the lower and upper bound estimation method to predict optimal intervals over the smart meter readings at electric consumers. They make use of the combinatorial concept of prediction intervals to solve the instability issues arising from the NNs.	[102]
Utility grid connected microgrids	Microgrids with distributed generation increase resiliency of power systems in case of any faults. Microgrids and using ML in their routine operations gives time and space to operators to fix the damaged components.	A NN is developed to provide cooperative voltage regulation for a microgrid that can be applied locally in a privacy preserving way.	[103]
Fault detection	Detecting events in each of the distributed stations.	Modified ensemble of bagged decision trees with an added boosting method.	[105]

works using the support vector machine and artificial immune system.

Protection systems are an essential part of the system, yet, they are prone to external influences. Multiple alarms reported in the control center could be a result of the faults or failures in the protection system (unexpected operation). Ahmed et al. [50] develop a ML technique to monitor transmission protection systems and detect malicious activity using long short-term memory (LSTM). These data are also utilized for failure diagnosis. Finally, a model to find the root causes of the observed events assisted by the cyber log data from the protection devices are developed. Anomaly detection in PMUs is further discussed in [60] to detect the root cause of the failure in the transmission protection system, and it is shown that ensemble models are superior to stand-alone methods.

ML-based tools to supplement operators. ML can help the operators in a variety of ways. For example, it can be used to classify the customer ticket texts into different categories [59] such as serious or non-serious events. Natural language processing and/or recurrent neural networks can be used to analyze customers’ trouble calls to pinpoint the location of the faulty equipment as opposed to operators taking the calls. By automating this process, interaction among operators will be minimized as needed in the case of COVID-19.

For dispatchers and operators to manage a power grid correctly and efficiently, they need to understand the dynamics and the current state of the grid. Using alarms generated by SCADA is one of their tools. The rate of alarm generation can be reduced significantly (98%) by using an intelligent alarm processing system, which is a tremendous improvement for operators and dispatchers [121]. Interventions like these are critical, especially in emergencies, since the long work shifts and high levels of stress that occur over times of emergency (such as COVID-19) make operators even more prone to mistakes [122]. Furthermore, ML can be utilized to classify the alarms and hence reduce the workload of operators. Employing ML can help to identify multiple events associated with a set of reported alarms, consequently reducing the operators’ cognitive burden.

4.4 A case study for Resiliency Management Tool with NLP

A real-time resiliency management tool (RT-RMT) is a unique tool developed by the authors’ team. It provides the resiliency score of any power system network by considering the various factors such as power generation, critical and non-critical loads, threat type, and impact model including available backup resources, inventory, field crew, and inspection team, and weather information [123]. This tool also encompasses geospatial information of the power grid, and assesses an infrastructure condition to compute resilience scores during the propagation stages of natural threats. Three stages of events, pre-, during, and post-event, are considered to provide resiliency scores for each stage by taking relevant influencing factors into account. The real-time resiliency score is computed every 15 minutes using the information acquired through communication channels from different devices (e.g., SCADA, PLC, RTUs) in the distribution system. It can be deployed along with a commercial distribution management.
system software. RT-RMT provides real-time operational topology or configuration on a live tracking map shown in Fig. 5. Further, it displays the connection between different nodes of the network and routing over the GIS layer. It can be adapted to analyze the impact of health hazards (e.g., COVID-19) and can effectively minimize its influence on the electrical distribution system operations. RT-RMT tool has four main windows; system information, resilience monitoring, decision support, and planning analysis. System information portrays physical assets (number of buses, transformers, fault indicators, protection devices, other equipment), and their ratings along with deployed location and current operating status. Resilience monitoring captures real-time resiliency score for the provided distribution system. This value will change subject to operating conditions (i.e., with variations in the generation, loads connected, etc.). The decision support on RT-RMT helps the operator take appropriate actions suggested by the tool to boost the system’s resiliency, including pre-, during, and post-event requirements as the event progresses through different stages. Planning and analysis of tool emphasizes enhancing the resilience of system operation with system upgrades like adding distributed energy resources, increased energy reserve, fast communication technologies, sensors, etc.

Two use cases are developed to evaluate the performance of the RT-RMT tool. The first use case focuses on the normal operation of the distribution system without any event. The evaluated resiliency score for a given operating condition is near to 0.9 as shown in Fig. 5. The second use case includes the COVID-19 pandemic. It shows how RT-RMT will be adapted to help the operators address the problems with minimal impact on the electrical power supply and all the consumers. The data used in this scenario are obtained from John Hopkins’ Coronavirus dataset [124] and are anonymized to avoid data privacy issues. Different regions with different intensities of COVID-19 cases are shown in different colors in Fig. 6 over the distribution system in a live tracking map. This tool informs the operators (visually) about areas with high cases of COVID-19. Consequently, they can decide to change any scheduled maintenance plan or repair a failed equipment plan as needed. The operator may address the issues in regions with a low number of COVID cases, first with precautions. For example, by sending limited crew per vehicle. RT-RMT also optimizes the route to avoid the paths going through regions with a high number of cases to protect crew members against infection. The operator could also plan to send crew members at once in a day along with PPE kits to ensure minimal contact of humans. Further, effective reconfiguration of the network can also be performed in regions with high positive cases to restore the power after an outage or equipment failure so that electrical supply is still maintained without field crew inspection and replacement of faulty equipment. Detailed explanation is provided in the section 4.4.1.

Digital query assistant is developed using natural language processing and plugged into the RT-RMT tool with the name “Ask Virtual Assistant” as shown in Fig. 5. This can be used to dig the required information from the database where high data volumes from the power system network are stored. A virtual assistant will ease operator searches for necessary information during normal operating scenarios as well as emergency situations (such as outages, weather-related events, pandemics). The virtual assistant also lessens the cognitive burden on operators, reducing human errors in control decisions. A typical demonstration is showcased here by asking the query: “what node has the lowest voltage”? Results appear within a small window over the main screen as shown in Fig. 7. This can be further enhanced with a virtual voice assistant—similar to Google and Apple applications—which helps the operator to locate necessary information.

4.4.1 Use case of RT-RMT for optimal crew routing during COVID-19 pandemic

The distribution test system is a 45-node simplified distribution network that is remote and with a large DERs supporting most of the operation, as shown in Fig. 5. The dataset for the COVID-19 is derived from the CORD-19 (COVID-19 Open Research Dataset) presented by Wang et al. [125]. In normal operating conditions, the RT-RMT only supports operator actions while tracking the resilience performance of the system. In the case of the COVID-19 pandemic, the authors developed a safe crew-routing algorithm, presented in Fig. 8 that solves the crew routing problem for system repairs. It then filters the solution set for the crew route and schedules a path with the least risk of contracting COVID-19. The filtered solution set is then subject to a comparative analysis through the resilience metrics to identify the most resilient crew route and is visualized in the RT-RMT live map for operator sign-off. The resilience metric that captures the resilience performance of the system after the extreme event has ended gathers the resilience indicators that inform the rapidity of recovery for each restoration plan that is proposed by the operator.

A vector of recover resilience indicators is formed \(\mathbf{R} = \{T, C, \tau, CL, SO\} \) for each path. The indicator \(T \) represents the total repair time, \(C \) represents the cost of repairs, \(\tau \) represents the topological resilience coefficient that is based on graph-theoretical spectral metrics [106], \(CL \) represents the number of critical loads restored in the process, and \(SO \) is the number of switching operations. For each path, the vector \(\mathbf{R} \) is computed, and the analytical hierarchical process [109] is applied to find the composite resilience score. Resilience is maximally enabled when the operator selects a path with the highest resilience metric score.

A simple eight-node repair scenario is analyzed in the test system from Fig. 6. Once the RT-RMT obtains the damage assessment scenario, the resilience computation engine applies the routing algorithm to get the lowest weight route with the GIS, COVID-19 data, repair information, and scheduling requirements so that exposure of field crew to COVID-19 hotspots is avoided. Figure 6 shows the main operator screen with the resilience metrics calculations. The position of each node and relative proximity with COVID-19 hotspots are dis-
played on the tool UI (Fig. 9). Three routes are analyzed using the resilience metrics analysis, and the most resilient option that is also the safest is chosen. The safest route with avoided zones is shown in Fig. 9.

5. Future Work and Path Forward

The data needed for statistical learning can be divided into two parts: environmental data and power system data [126]. The ecological situation (e.g., precipitation, soil moisture, wind speed, etc.) is not affected by the pandemic. Some parts of power systems data, such as component failures or the nature of cyberattacks, are not also affected by COVID-19. Hence, the rarity of COVID-19 affects neither the power system data nor the environmental data. Consequently, ML-approaches can be beneficial in pandemic situations. One challenge that needs to be addressed is finding efficient approaches to deal with sudden behavior changes in energy consumption patterns in terms of short-term forecasting.

As reported by many resources such as [35], many control center experts had to work long hours, which leads to fatigue (as well as other problems), potentially resulting in human error. Implementing ML approaches can reduce the cognitive workload of humans in such cases.

Statistical learning techniques, e.g., natural language processing, can be employed to analyze incoming calls of customers to pinpoint the location of failures in the power grid. Investing in the implementation of ML approaches is worthwhile to help customer operations and office staff by automatically detecting failed devices/locations, even without taking calls.

The IT staff were forced to work remotely which created opportunities for cyberattackers. Implementing ML approaches to detect suspicious changes in the power grid to protect against cyberattacks is beneficial to IT experts. Opinion dynamics have been studied for about 50 years; however, they have attracted a lot of attention recently [127, 128]. In the past few years, opinion dynamics are being used to thwart attacks on networks [129, 130, 131]. Therefore, combining ML and opinion dynamics is a potential future technique that could be applied to power grids to combat cyberattacks.

Utilizing topological data analytics in anomaly detection in power grid studies are limited. Two examples of topologi-
Topological data analytics in [133] is used to identify the divergent subpopulation in phenomics data throughout the growth period of plants. Such an approach might potentially detect the root cause of failures and early warning when equipment starts to behave abnormally. Moreover, Chen et al. [134] have designed an algorithm that reveals ML-algorithms’ (such as Recurrent Neural Networks) vulnerability to disturbance of input data. Attackers might manipulate the input data in order to affect the output of ML-algorithms. Chen et al. argue that current algorithms cannot detect such disturbances. Therefore, it would be worthwhile to investigate the approach of [133] to detect such disturbances. Furthermore, ML is also being explored for cyber situational awareness [135] and needs more development in the future.

The existence of large amounts of data (e.g., collected by PMUs) is both a gift and a curse. From a hardware point of view, there is a need to either build an infrastructure that can handle that amount of data or long-term collaborations with Microsoft’s Azure or Amazon’s AWS need to be established. From a software point of view, there are packages that implement some ML techniques to enable dealing with data at scale. However, there are some challenges: some of the implemented techniques are very costly in terms of storage and computations (e.g., iterative methods such as neural networks), or not all ML techniques are implemented in a given software/library. Zheng and Degnino [136] provide a detailed survey of available resources and challenges in this regard.

Finally, we remind the reader of a lack of contingency plans for human aspect of power systems. COVID-19 revealed the vulnerability of power systems being implicitly affected as a result of human operators’ vulnerability. Thus, there is an important gap in our knowledge that needs to be addressed. Filling this gap will need financial and organizational support but will be beneficial long term. Regardless of the dearth of data on operator vulnerability, resiliency, and/or contingency plans for human assets, the implementation of data-driven approaches discussed in this paper will increase the resiliency of the power grids so that normal operations can continue smoothly under circumstances such as COVID-19. The presence of data-driven techniques can be considered a prevention strategy for any interruption—e.g., the decrease in working hours of operators or the reduction in the number of human operators on site.

Similar to protection plans for physical assets (e.g., water barriers for substations), there is a need to build similar protection plans for human assets. Similar concepts can be carried out for humans—e.g., building onsite amenities for humans to stay for long shifts.

6. Conclusions

As observed over the last several years, the frequency and intensity of natural disasters and extreme events and their associated impact on the power grid have been increasing. Pandemics such as COVID-19 add to these challenges and push organizations to their limits. Driven by smart grid investment, the power grid is moving towards massive sensor deployment and automation. Enhanced digitalization has resulted in the collection of so much data that it is beyond the capacity of human operators to analyze, use, and factor it into...
timely decisions when responding to extreme events.

In this paper, the impact of COVID-19 on power grid operations has been analyzed. Actions being taken by operators/organizations to minimize the effects of COVID-19 has been discussed in detail. Solutions have been suggested for deploying recently developed tools and concepts in ML and AI that will increase the resiliency of power systems in general and in extreme scenarios such as the COVID-19 pandemic. Suggested tools can assist operators in taking control actions, allowing collaborative machine-human interactions while using increased data integration from diverse sources in an intelligent manner. Data-driven ML and AI could benefit operators by helping with the systems’ resiliency, decision making, and disaster management in smarter ways. For example, predicting disaster impact, anomaly detection, and overlapping the COVID-19 hotspots with electricity service maps helps control room operators restore the grid fast and effectively by considering all safety measures. A sample case study of data-driven RT-RMT tool is presented to demonstrate the usefulness of advanced tools to system operator in case of pandemic and for enhanced resiliency.

References

[1] “A Guide to Critical Infrastructure Security and Resilience,” https://www.cisa.gov/sites/default/files/publications/Guide-Critical-Infrastructure-Security-Resilience-110819-508v2.pdf, [Online; accessed 30-Apr.-2020].

[2] “Utility readiness during pandemic: Keeping the lights on despite covid-19,” https://www.tdworld.com/disaster-response/article/21126619/utility-readiness-during-pandemic-keeping-lights-on-despite-covid19, [Online; accessed 30-Apr.-2020].

[3] S. Stevens-Adams, K. Cole, M. Haass, C. Warrender, R. Jeffers, L. Burnham, and C. Forsythe, “Situation awareness and automation in the electric grid control room,” Procedia Manufacturing, vol. 3, pp. 5277 – 5284, 2015, 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015) and the Affiliated Conferences, AHFE 2015.

[4] J. W. Talley, “Disaster management in the digital age,” IBM Journal of Research and Development, vol. 64, no. 1/2, pp. 1:1–1:5, 2020.

[5] https://www.eenews.net/stories/1062615349, [Online; accessed 30-Apr.-2020].

[6] “The microbiological threat to the national power grid, advanced pandemic planning for utilities executives.” https://www.mcguirewoods.com/news-resources/publications/Roche-Energy-White-Paper.pdf, [Online; accessed 30-Apr.-2020].

[7] F. H. Jufri, V. Widiputra, and J. Jung, “State-of-the-art review on power grid resilience to extreme weather events: Definitions, frameworks, quantitative assessment methodologies, and enhancement strategies,” Applied Energy, vol. 239, pp. 1049 – 1065, 2019.

[8] P. Hoffman, W. Bryan, M. Farber-DeAnda, M. Cleaver, C. Lewandowski, and K. Young, “Hardening and resiliency: Us energy industry response to recent hurricane seasons,” Office of Electricity Delivery and Energy Reliability, US Department of Energy, OE/ISER Final Report, 2010.

[9] J. M. Boggess, G. W. Becker, and M. K. Mitchell, “Storm flood hardening of electrical substations,” in 2014 IEEE PES T D Conference and Exposition, 2014, pp. 1–5.

[10] M. Simmons and C. Stiles, “1918 flu sheds light on how covid-19 could affect critical infrastructure,” https://www.hstoday.us/subject-matter-areas/infrastructure-security/1918-flu-sheds-light-on-how-COVID-19-could-affect-critical-infrastructure/, [Online; accessed 30-Apr.-2020].

[11] M. Terry, “Compare: 1918 spanish influenza pandemic versus covid-19,” https://www.biospace.com/article/
compare-1918-spanish-influenza-pandemic-versus-covid-19, [Online; accessed 30-Apr.-2020].

[12] J. Zeitz, “Rampant lies, fake cures and not enough beds: What the Spanish flu debacle can teach us about coronavirus,” https://www.politico.com/news/magazine/2020/03/17/spanish-flu-lessons-coronavirus-133888, [Online; accessed 30-Apr.-2020].

[13] J. W. C. Chen and D. Ton, “Modernizing distribution system restoration to achieve grid resiliency against extreme weather events: An integrated solution,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1267–1288, July 2017.

[14] “Economic benefits of increasing electric grid resilience to weather outages,” https://www.energy.gov/sites/prod/files/2013/08/f12/Grid%20Resiliency%20Report_FINAL.pdf, [Online; accessed 30-Apr.-2020].

[15] “Rapid response: How outage prediction models help utilities get power back on quickly and save money after a storm,” https://www.ibm.com/downloads/cas/P80BZ0XX, [Online; accessed 30-Apr.-2020].

[16] “Electric grid security and resilience establishing a baseline for adversarial threats,” https://www.energy.gov/sites/prod/files/2017/01/f34/Electric%20Grid%20Security%20Adversarial%20Resilience,-Establishing%20a%20Baseline%20for%20Adversarial%20Threats.pdf, [Online; accessed 30-Apr.-2020].

[17] “Electric power system resiliency, challenges and opportunities,” https://www.naseo.org/Data/Sites/1/resiliency-white-paper.pdf, [Online; accessed 30-Apr.-2020].

[18] “Coronavirus: Can you get covid-19 twice or does it cause immunity?” https://www.independent.co.uk/life-style/health-and-families/coronavirus-immunity-reinfection-get-covid-19-twice-sick-spread-relapse-a9400691.html, [Online; accessed 07-Jul.-2020].

[19] “Can you get the covid-19 coronavirus twice?” https://theconversation.com/can-you-get-the-covid-19-coronavirus-twice-137309, [Online; accessed 07-Jul.-2020].

[20] A. Heidt, “Studies report rapid loss of covid-19 antibodies,” https://www.the-scientist.com/news-opinion/studies-report-rapid-loss-of-covid-19-antibodies-67650, [Online; accessed 29-Jul.-2020].

[21] T. Liu, S. Wu, H. Tao, G. Zeng, F. Zhou, F. Guo, and X. Wang, “Prevalence of IgG antibodies to sars-cov-2 in Wuhan-implications for the ability to produce long-lasting protective antibodies against sars-cov-2,” medRxiv, 2020.

[22] “Ensuring energy reliability throughout the covid-19 pandemic: Testing and protecting mission-essential control center and generation facility personnel is fundamental,” https://www.electricitysubsector.org/-/media/Files/ESCC/Documents/ESCC_Mission_Essential_Workforce_2020.ashx?la=en&hash=761809ED20A06A987105A0817A180202406AFDF, [Online; accessed 30-Apr.-2020].

[23] “Special report. Pandemic preparedness and operational assessment: Spring 2020,” https://www.nerc.com/pa/rm/bpsa/Alerts%20DL/NERC_Pandemic_Preparedness_and_Op_Assessment_Spring_2020.pdf, [Online; accessed 30-Apr.-2020].

[24] M. S. Shaker, J. Oppenheimer, M. Grayson, D. Stukus, N. Hartog, E. W. Hsieh, N. Rider, C. M. Dutmer, T. K. V. Leek], H. Kim, E. S. Chan, D. Mack, A. K. Ellis, D. Lang, J. Lieberman, D. Fleischers, D. B. Golden, D. Wallace, J. Portnow, G. Mosnaim, and M. Greenhawt, “Covid-19: Pandemic contingency planning for the allergy and immunology clinic,” The Journal of Allergy and Clinical Immunology: In Practice, vol. 8, no. 5, pp. 1477 – 1488.e5, Mar. 2020.

[25] K. M. F. F. Wu and A. Bose, “Power system control centers: Past, present, and future,” Proceedings of the IEEE, vol. 93, no. 11, pp. 1890–1908, Nov. 2005.

[26] “Utility outage prediction 2.0: Embracing advanced analytics & machine learning solutions,” https://www.ibm.com/downloads/cas/VO6DNBR3, [Online; accessed 30-Apr.-2020].

[27] Y. Bao, C. Guo, Z. Zhang, J. Wu, S. Pang, and Z. Zhang, “Impact analysis of human factors on power system operation reliability,” Journal of Modern Power Systems and Clean Energy, vol. 6, no. 1, pp. 27–39, 2018.

[28] T. A. Bilke and I. Midwest, “Cause and prevention of human error in electric utility operations,” Master’s thesis, Colorado State University, 1998.

[29] A. M. Prostojovsky, C. Brosinsky, K. Heussen, D. Westermann, J. Kreusel, and M. Mariellli, “The future role of human operators in highly automated electric power systems,” Electric Power Systems Research, vol. 175, p. 105883, 2019.

[30] R. Guttromson, F. Greitzer, M. Paget, and A. Schur, “Human factors for situation assessment in power grid operations,” Pacific Northwest National Laboratory Report–PNNL16780, 2007.

[31] I. Czarnowski, Y. Guo, Z. Yang, S. Feng, and J. Hu, “Complex power system status monitoring and evaluation using big data platform and machine learning algorithms: A review and a case study,” Complexity, p. 8496187, 2018.

[32] “The future of the electric grid,” https://energy.mit.edu/wp-content/uploads/2011/12/MITEL-The-Future-of-the-Electric-Grid.pdf, [Online; accessed 30-Apr.-2020].
[33] “Covid-19 pandemic; challenges and opportunities in power systems,” https://smartgrid.ieee.org/newsletters/may-2020/covid-19-pandemic-challenges-and-opportunities-in-power-systems, [Online; accessed 30-Apr.-2020].

[34] P. Barooah and D. Agdas, “The covid-19 pandemic’s impact on electricity demand and supply,” https://eprints.qut.edu.au/200965/1/ [Online; accessed 30-Apr.-2020].

[35] A. Paaso, S. Bahramirad, J. Beerten, E. Bernabeu, B. Chiu, B. Hederman, L. Jones, Y. Jun, H. Koch, J. C. Montero, N. Nair, D. Novosel, T. Pierpoint, F. Rahmatian, J. R. Aguero, C. Root, D. Sharafi, E. Tejera, and V. Vittal, “Ieee power & energy society industry technical support leadership committee sharing knowledge on electrical energy industry’s first response to covid-19,” Sharing knowledge on electrical energy industry’s first response to COVID-19, 2020.

[36] M. U. Kraemer, C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein, D. M. Pigott, L. Du Plessis, N. R. Faria, R. Li, W. P. Hanage et al., “The effect of human mobility and control measures on the covid-19 epidemic in china,” Science, vol. 368, no. 6490, pp. 493–497, 2020.

[37] “Michigan puts $175m price tag on flooding damage in midland county,” https://www.freep.com/story/news/local/michigan/2020/06/08/midland-flooding-reg label disaster-whitmer/5321673002/ [Online; accessed 07-Jul.-2020].

[38] “After cyclone hits india and bangladesh, the waiting begins,” https://www.nytimes.com/2020/05/20/world/asia/cyclone-amphan-india-bangladesh-map.html, 2020, [Online; accessed 07-Jul.-2020].

[39] G. Kandaperumal and A. K. Srivastava, “Resilience of the electric distribution systems: concepts, classification, assessment, challenges, and research needs,” IET Smart Grid, vol. 3, no. 2, pp. 133–143, 2020.

[40] A. Arab, A. Khodaei, S. K. Khator, and Z. Han, “Electric power grid restoration considering disaster economics,” IEEE Access, vol. 4, pp. 639–649, 2016.

[41] V. Krishnamurthy and A. Kwasinski, “Comparison of communication networks power resilience during man-made and natural disasters,” in 2018 IEEE International Telecommunications Energy Conference (INTELEC), 2018, pp. 1–8.

[42] A. Kwasinski and P. T. Krein, “Telecom power planning for natural and man-made disasters,” in INTELEC 07 - 29th International Telecommunications Energy Conference, 2007, pp. 216–222.

[43] N. R. Council et al., Terrorism and the electric power delivery system. National Academies Press, 2012.

[44] M. Amirioun, F. Aminifar, H. Lesani, and M. Shahiddehpour, “Metrics and quantitative framework for assessing microgrid resilience against windstorms,” International Journal of Electrical Power & Energy Systems, vol. 104, pp. 716–723, 2019.

[45] Y. Wang, C. Chen, J. Wang, and R. Baldick, “Research on resilience of power systems under natural disasters—a review,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1604–1613, 2016.

[46] M. A. Mohamed, T. Chen, W. Su, and T. Jin, “Proactive resilience of power systems against natural disasters: A literature review,” IEEE Access, vol. 7, pp. 163 778–163 795, 2019.

[47] E. Hossain, I. Khan, F. Un-Noor, S. S. Sikander, and M. S. H. Sunny, “Application of big data and machine learning in smart grid, and associated security concerns: A review,” IEEE Access, vol. 7, pp. 13 960–13 988, 2019.

[48] R. C. Borges Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, and S. Pan, “Machine learning for power system disturbance and cyber-attack discrimination,” in 2014 7th International Symposium on Resilient Control Systems (ISRCS), 2014, pp. 1–8.

[49] Y. Zhang, L. Wang, W. Sun, R. C. Green II, and M. Alam, “Distributed intrusion detection system in a multi-layer network architecture of smart grids,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp. 796–808, Dec. 2011.

[50] A. Ahmed, V. V. G. Krishnan, S. A. Foroutan, M. Touhiduzzaman, A. Srivastava, Y. Wu, A. Hahn, and S. Sindhu, “Cyber physical security analytics for anomalies in transmission protection systems,” in 2018 IEEE Industry Applications Society Annual Meeting (IAS), 2018, pp. 1–8.

[51] J. Giri, M. Parashar, J. Treher, and V. Madani, “The situation room: Control center analytics for enhanced situational awareness,” IEEE Power and Energy Magazine, vol. 10, no. 5, pp. 24–39, 2012.

[52] Y. Jiang and A. K. Srivastava, “Data-driven event diagnosis in transmission systems with incomplete and conflicting alarms given sensor malfunctions,” IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 214–225, 2020.

[53] S. Pandey, A. Srivastava, and B. Amidan, “A real time event detection, classification and localization using synchrophasor data,” IEEE Transactions on Power Systems, pp. 1–1, 2020.

[54] G. Cardoso, J. G. Rolim, and H. H. Zurn, “Application of neural-network modules to electric power system fault section estimation,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1034–1041, 2004.

[55] H. Wang and K. L. Butler, “Neural network modeling of distribution transformers with internal short circuit winding faults,” in PICA 2001. Innovative Computing
[56] A. S. Reddy and M. Vijaykumar, “Neural network modeling of distribution transformer with internal winding faults using double fourier series,” International Journal of Computer Science and Applications, vol. 1, no. 3, pp. 160–163, 2008.

[57] A. J. Ghanizadeh and G. B. Gharehpetian, “Ann and cross-correlation based features for discrimination between electrical and mechanical defects and their localization in transformer winding,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 5, pp. 2374–2382, 2014.

[58] B. Cui, A. K. Srivastava, and P. Banerjee, “Synchrophasor-based condition monitoring of instrument transformers using clustering approach,” IEEE Transactions on Smart Grid, vol. 11, no. 3, pp. 2688–2698, 2020.

[59] C. Rudin, Ş. Ertekin, R. Passonneau, A. Radeva, A. Tomar, B. Xie, S. Lewis, M. Riddle, D. Pangravivij, and T. McCormick, “Analytics for power grid distribution reliability in new york city,” Interfaces, vol. 44, no. 4, pp. 364–383, 2014.

[60] A. Gholami, A. K. Srivastava, and S. Pandey, “Data-driven failure diagnosis in transmission protection system with multiple events and data anomalies,” Journal of Modern Power Systems and Clean Energy, vol. 7, no. 4, pp. 767–778, 2019.

[61] S. A. Foroutan and F. R. Salmasi, “Detection of false data injection attacks against state estimation in smart grids based on a mixture gaussian distribution learning method,” IET Cyber-Physical Systems: Theory & Applications, vol. 2, no. 4, pp. 161–171, 2017.

[62] “Electric companies & pandemic planning what you should know,” https://www.eei.org/issuesandpolicy/Documents/Electric%20Companies%20and%20Pandemics%20-%20What%20You%20Should%20Know.pdf, [Online; accessed 30-Apr.-2020].

[63] “Ferc approves nerc’s motion to defer implementation of seven reliability standards due to covid-19,” https://www.nerc.com/news/Pages/NERC-Files-Motion-to-Defeer-Implementation-of-Seven-Reliability-Standards-Due-to-COVID-19.aspx, [Online; accessed 30-Apr.-2020].

[64] “Order granting deferred implementation of certain nerc reliability standard,” https://www.nerc.com/FilingsOrders/us/FERCOrdersRules/order%20granting%20motion%20to%20defer%20the%20implementation%20of%20the%20order%20granting%20a%20deferral%20of%20the%20implementation.pdf, [Online; accessed 30-Apr.-2020].

[65] A. Tuohy, A. Kelly, B. Deaver, E. Lannoye, and D. Brooks, “Covid-19 bulk system impacts,” http://mydocs.epri.com/docs/public/covid19/3002018602R2.pdf, [Online; accessed 30-Apr.-2020].

[66] “Covid-19-related load impacts are being reported by several us grid operators,” https://www.spglobal.com/platts/en/market-insights/latest-news/electric-power/032320-COVID-19-related-load-impacts-are-being-reported-by-several-us-grid-operators, [Online; accessed 30-Apr.-2020].

[67] “Utilities beginning to see the load impacts of covid-19 as economic shutdown widens,” https://www.utilitydive.com/news/utilities-are-beginning-to-see-the-load-impacts-of-COVID-19-as-economic-shutdown-widens/574632, [Online; accessed 30-Apr.-2020].

[68] “Entso-e transparency,” https://transparency.entsoe.eu/, [Online; accessed 29-Jul.-2020].

[69] Executive department of California, “Executive order n-33-20,” https://www.gov.ca.gov/wp-content/uploads/2020/03/33-20-attested-EO-N-33-20-COVID-19-HEALTH-ORDER.pdf, [Online; accessed 07-Jul.-2020].

[70] https://www.governor.ny.gov/news/governor-cuomo-signs-new-york-state-pause-executive-order, [Online; accessed 07-Jul.-2020].

[71] A. Badri, Z. Ameli, and A. Birjandi, “Application of artificial neural networks and fuzzy logic methods for short term load forecasting,” Energy Procedia, vol. 14, pp. 1883 – 1888, 2012, 2011 2nd International Conference on Advances in Energy Engineering (ICAEE). [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1876610211046030

[72] G. Dudek, “Neural networks for pattern-based short-term load forecasting: A comparative study,” Neurocomputing, vol. 205, pp. 64 – 74, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231216302764

[73] G. Ruan, D. Wu, X. Zheng, S. Sivarajani, L. Xie, H. Zhong, and C. Kang, “A cross-domain approach to analyzing the short-run impact of covid-19 on the U.S. electricity sector,” Joule, 2020.

[74] H. Abbas and J. Wen, “How is covid 19 impacting the UK electricity system?” https://www.frontier-economics.com/uk/en/news-and-articles/articles/article-17214-how-is-covid-19-impacting-the-uk-electricity-system/, [Online; accessed 13-Sept.-2020].

[75] “Covid-19 impact on electricity,” https://www.iea.org/reports/covid-19-impact-on-electricity/, [Online; accessed 13-Sept.-2020].

[76] “Covid-19: America hasn’t used this little energy in 16 years,” https://www.weforum.org/agenda/2020/04/
Data-driven Operation of the Resilient Electric Grid: A Case of COVID-19 — 19/21

[77] “California renewables curtailments surge as coronavirus cuts energy demand,” https://www.greentechmedia.com/articles/read/california-renewable-curtailments-spike-as-coronavirus-reduces-demand/, [Online; accessed 13-Sept.-2020].

[78] “Renewables achieve clean energy record as covid-19 hits demand,” https://www.renewableenergyworld.com / 2020 / 04 / 06 / renewables-achieve-clean-energy-record-as-covid-19-hits-demand/, [Online; accessed 13-Sept.-2020].

[79] “5 things to know about how coronavirus has hit global energy,” https://www.weforum.org/agenda/2020/05/covid19-energy-use-drop-crisis/, [Online; accessed 13-Sept.-2020].

[80] “FERC, NERC provide industry guidance to ensure grid reliability amid potential coronavirus impacts,” https://www.nerc.com/news/Headlines%20DL/ FERC%20NERC%2031820%20final.pdf, [Online; accessed 30-Apr.-2020].

[81] “Assessing and mitigating the novel coronavirus (covid-19), a resource guide - version 6: Updated april 20, 2020,” https://www.electricitysubsector.org/-/media/Files/ESCC/Documents/ESCC_COVID_Resource_Guide_v2-03242020.ashx?la=en&hash=D3732CBFB46827AA0331277E8D5CBE0CC4DFC3BF, [Online; accessed 30-Apr.-2020].

[82] “Announcement grid operators well prepared for covid-19, alert responses find,” https://www.nerc.com/news/Headlines%20DL/Alert%2027MAR20.pdf, [Online; accessed 30-Apr.-2020].

[83] “How power companies are keeping your lights on during the pandemic,” https://www.latimes.com/environment/story/2020-03-19/how-power-companies-are-keeping-your-lights-on-during-the-pandemic, [Online; accessed 30-Apr.-2020].

[84] “Entso-e transparency,” https://www.eenews.net/stories/1062737239, [Online; accessed 30-Apr.-2020].

[85] “America’s electricity is safe from the coronavirus—for now,” https://www.wired.com/story/americas-electricity-is-safe-from-the-coronavirus-for-now/, [Online; accessed 30-Apr.-2020].

[86] S. Hosseini, K. Barker, and J. E. Ramirez-Marquez. “A review of definitions and measures of system resilience,” Reliability Engineering and System Safety, vol. 145, no. C, pp. 47–61, 2016.

[87] Z. Bie, Y. Lin, G. Li, and F. Li, “Battling the extreme: A study on the power system resilience,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1253–1266, 2017.

[88] “Electric power system resiliency, challenges and opportunities,” https://www.naseo.org/Data/Sites/1/resiliency-white-paper.pdf, [Online; accessed 07-Jul.-2020].

[89] E. Hirst and B. Kirby, “Bulk-power basics: reliability and commerce,” Consulting in Electric-Industry Restructuring, Oak Ridge, Tennessee, vol. 37830, 2000.

[90] “Robustness, flexibility and resilience,” http://www.husdal.com/2008/04/28/robustness-flexibility-and-resilience-in-the-supply-chain/, text = Flexibility %20is%20the%20%20inherent%20%20capability,these%20%20changes%20%20despite%20%20severe%20impact, [Online; accessed 17-Jul.-2020].

[91] “Presidential policy directive (ppd) 21: Critical infrastructure security and resilience,” https://www.cisa.gov/sites/default/files/publications/PPD-21-Critical-Infrastructure-and-Resilience-508.pdf, [Online; accessed 30-Apr.-2020].

[92] R. H. Michael Lewis, “Resilience and pandemics,” https://smartgrid.ieee.org/newsletters/may-2020/resilience-and-pandemics?utm_source=sg-monthly-may2020&utm_medium=email&utm_campaign=2020-enewsletter, [Online; accessed 7-Jul.-2020].

[93] C. Rudin, D. Waltz, R. N. Anderson, A. Boulanger, A. Salleb-Aouissi, M. Chow, H. Dutta, P. N. Gross, B. Huang, S. Jerome, D. F. Isaac, A. Kressner, R. J. Passonneau, A. Radeva, and L. Wu, “Machine learning for the new york city power grid,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 2, pp. 328–345, Feb 2012.

[94] R. Wu and G. Sansavini, “Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids,” Applied Energy, vol. 272, p. 115254, 2020.

[95] “Improving electric grid reliability and resilience: Lessons learned from superstorm sandy and other extreme events,” https://www.gridwise.org/documents/ImprovingElectricGridReliabilityAndResilience_66_13webFINAL.pdf, [Online; accessed 30-Apr.-2020].

[96] S. Mirsaeidi, D. M. Said, M. W. Mustafa, M. H. Habibuddin, and K. Ghaffari, “An analytical literature review of the available techniques for the protection of distribution grids to islanding microgrids,” International Journal of Electrical Power & Energy Systems, vol. 58, pp. 300 – 306, 2014.

[97] Z. Li, M. Shahidepour, F. Aminifar, A. Alabdulwahab, and Y. Al-Turki, “Networked microgrids for enhancing the power system resilience,” Proceedings of the IEEE, vol. 105, no. 7, pp. 1289–1310, Jul. 2017.
[98] X. Liu, M. Shahidehpour, Z. Li, X. Liu, Y. Cao, and Z. Bie, “Microgrids for enhancing the power grid resilience in extreme conditions,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 589–597, 2017.

[99] R. Madurai Elavaranas, G. Shafullah, K. Raju, V. Madgul, M. Arif, T. Jamal, S. Subramanian, V. Sriraja Balaguru, K. Reddy, and U. Subramaniam, “Covid-19: Impact analysis and recommendations for power sector operation,” Applied Energy, vol. 279, p. 115739, 2020.

[100] H. Lin, K. Sun, Z. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 770–779, 2019.

[101] S. Mishra, K. Anderson, B. Miller, K. Boyer, and A. Warren, “Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies,” Applied Energy, vol. 264, p. 114726, 2020.

[102] K. Abdollah, W. Su, and T. Jin, “A machine learning based cyber attack detection model for wireless sensor networks in microgrids,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2020.

[103] R. R. Kolluri and J. de Hoog, “Adaptive control using machine learning for distributed storage in microgrids,” in Proceedings of the Eleventh ACM International Conference on Future Energy Systems, 2020, pp. 509–515.

[104] H. Lin, K. Sun, Z.-H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET Generation, Transmission & Distribution, vol. 13, no. 6, pp. 770–779, 2019.

[105] M. Al Karim, J. Currie, and T. Lie, “Dynamic event detection using a distributed feature selection based machine learning approach in a self-healing microgrid,” IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 4706–4718, 2018.

[106] S. Chanda and A. K. Srivastava, “Defining and enabling resiliency of electric distribution systems with multiple microgrids,” IEEE Transactions on Smart Grid, vol. 7, no. 6, pp. 2859–2868, Nov. 2016.

[107] V. Venkataramanan, A. Hahn, and A. Srivastava, “Cyphyr: a cyber-physical analysis tool for measuring and enabling resiliency in microgrids,” IET Cyber-Physical Systems: Theory Applications, vol. 4, no. 4, pp. 313–321, Dec. 2019.

[108] V. Venkataramanan, A. Hahn, and A. Srivastava, “Cp-sam: Cyber-physical security assessment metric for monitoring microgrid resiliency,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1055–1065, Mar. 2020.

[109] I. Diahovchenko, G. Kandaperumal, and A. Srivastava, “Distribution power system resiliency improvement using distributed generation and automated switching,” in 2019 IEEE 6th International Conference on Energy Smart Systems (ESS), 2019, pp. 126–131.

[110] S. Pandey, S. Chanda, A. K. Srivastava, and R. O. Hovsapian, “Resiliency-driven proactive distribution system reconfiguration with synchrophasor data,” IEEE Transactions on Power Systems, vol. 35, no. 4, pp. 2748–2758, 2020.

[111] V. Madani, D. Novosel, S. Horowitz, M. Adamiak, J. Amantejgui, D. Karlsson, S. Imai, and A. Apostolov, “Ieee psrc report on global industry experiences with system integrity protection schemes (sips),” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2143–2155, Oct. 2010.

[112] “Smart grid investments improve grid reliability, resilience, and storm responses,” https://www.energy.gov/sites/prod/files/2014/12/f19/SG-ImprovesRestoration-Nov2014.pdf, [Online; accessed 30-Apr.-2020].

[113] V. Madani and D. Novosel, “Getting a grip on the grid,” IEEE Spectrum, vol. 42, no. 12, pp. 42–47, 2005.

[114] S. Gupta, R. Kambli, S. Wagh, and F. Kazi, “Support-vector-machine-based proactive cascade prediction in smart grid using probabilistic framework,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2478–2486, Apr. 2015.

[115] R. Eskandarpour and A. Khodaei, “Machine learning based power grid outage prediction in response to extreme events,” IEEE Transactions on Power Systems, vol. 32, no. 4, pp. 3315–3316, Jul. 2017.

[116] R. Eskandarpour, A. Khodaei, and A. Arab, “Improving power grid resilience through predictive outage estimation,” in 2017 North American Power Symposium (NAPS), 2017, pp. 1–5.

[117] S. D. Guikema, S. M. Quiring, and S.-R. Han, “Prestorm estimation of hurricane damage to electric power distribution systems,” Risk Analysis: An International Journal, vol. 30, no. 12, pp. 1744–1752, 2010.

[118] M. Glavic, R. Fonteneau, and D. Ernst, “Reinforcement learning for electric power system decision and control: Past considerations and perspectives,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 6918 – 6927, 2017, 20th IFAC World Congress.

[119] Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and Z. Huang, “Adaptive power system emergency control using deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1171–1182, 2020.

[120] L. Maharjan, M. Ditsworth, M. Niraula, C. Caicedo Narvaez, and B. Fahimi, “Machine learning based en-
ergy management system for grid disaster mitigation,” IET Smart Grid, vol. 2, no. 2, pp. 172–182, 2019.

[121] N. Baranovic, P. Andersson, I. Ivankovic, K. Zubrinic-Kostovic, D. Peharda, and J. E. Larsson, “Experiences from intelligent alarm processing and decision support tools in smart grid transmission control centers,” in Cigre Session, vol. 46, 2016, pp. 21–26.

[122] S. Pandey, N. Patari, and A. K. Srivastava, “Cognitive flexibility of power grid operator and decision making in extreme events,” in 2019 IEEE Power Energy Society General Meeting (PESGM), 2019, pp. 1–5.

[123] G. Kandaperumal and A. K. Srivastava, “Resilience of the electric distribution systems: concepts, classification, assessment, challenges, and research needs,” IET Smart Grid, vol. 3, no. 2, pp. 133–143, 2020.

[124] https://www.knowi.com/coronavirus-dashboards/covid-19-api/, [Online; accessed 07-Jul.-2020].

[125] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk, R. Kinney, Z. Liu, W. Merrill et al., “Cord-19: The covid-19 open research dataset.” ArXiv, 2020.

[126] Y. Wang, C. Chen, J. Wang, and R. Baldick, “Research on resilience of power systems under natural disasters—a review,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1604–1613, 2016.

[127] H. Noorazar, “Recent advances in opinion propagation dynamics: a 2020 survey,” The European Physical Journal Plus, vol. 135, 2020.

[128] H. Noorazar, K. R. Vixie, A. Talebanpour, and Y. Hu, “From classical to modern opinion dynamics,” International Journal of Modern Physics C, vol. 31, no. 07, p. 2050101, 2020.

[129] Y. Shang, “Consensus and clustering of expressed and private opinions in dynamical networks against attacks,” IEEE Systems Journal, 2019.

[130] J. E. Rubio, M. Manulis, C. Alcaraz, and J. Lopez, “Enhancing security and dependability of industrial networks with opinion dynamics,” in European Symposium on Research in Computer Security. Springer, 2019, pp. 263–280.

[131] C. Alcaraz, “Cloud-assisted dynamic resilience for cyber-physical control systems,” IEEE Wireless Communications, vol. 25, no. 1, pp. 76–82, 2018.

[132] F. Chazal and B. Michel, “An introduction to topological data analysis: fundamental and practical aspects for data scientists,” arXiv:1710.04019, 2017.

[133] M. Kamruzzaman, A. Kalyanaraman, and B. Krishnamoorthy, “Detecting divergent subpopulations in phenomics data using interesting flares,” in Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 2018, pp. 155–164.

[134] Y. Chen, Y. Tan, and D. Deka, “Is machine learning in power systems vulnerable?” in 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), 2018, pp. 1–6.

[135] U. Franke and J. Brynielsson, “Cyber situational awareness—a systematic review of the literature,” Computers & Security, vol. 66, pp. 18–31, 2014.

[136] J. Zheng and A. Dagnino, “An initial study of predictive machine learning analytics on large volumes of historical data for power system applications,” in 2014 IEEE International Conference on Big Data (Big Data), 2014, pp. 952–959.