Introduction into Geometry over Division Ring

Aleks Kleyn

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Theory of representations of \mathcal{F}-algebra is a natural development of the theory of \mathcal{F}-algebra. Exploring of morphisms of the representation leads to the concepts of generating set and basis of representation. In the book I considered the notion of tower of T^*-representations of \mathcal{F}_i-algebras, $i = 1, \ldots, n$, as the set of coordinated T^*-representations of \mathcal{F}_i-algebras.

I explore the geometry of affine space as example of tower of representations. Exploration of curvilinear coordinates allows us to see how look at the main structures of the manifold with affine connection. I explore Euclidean space over division ring.
Contents

Chapter 1. Preface .. 5
 1.1. Tower of Representations 5
 1.2. Morphism and Basis of Representation 5
 1.3. D-Affine space .. 5
 1.4. Conventions .. 6

Chapter 2. Representation of \(\mathcal{F} \)-Algebra 9
 2.1. Representation of \(\mathcal{F} \)-Algebra 9
 2.2. Morphism of Representations of \(\mathcal{F} \)-Algebra 11
 2.3. Automorphism of Representation of \(\mathcal{F} \)-Algebra 22
 2.4. Basis of \(T^* \)-representation 23
 2.5. Few Applications of Basis of Representation 28

Chapter 3. Tower of Representations of \(\mathcal{F} \)-Algebras 29
 3.1. Tower of Representations of \(\mathcal{F} \)-Algebras 29
 3.2. Morphism of Tower of \(T^* \)-Representations 31
 3.3. Endomorphism of Tower of Representations 34
 3.4. Basis of Tower of Representations 35
 3.5. Examples of Basis of Tower of Representation 41

Chapter 4. Geometry of Division Ring 43
 4.1. Center of Division Ring 43
 4.2. Geometry of Division Ring over Field 44

Chapter 5. Quadratic Map of Division Ring 47
 5.1. Bilinear Map of Division Ring 47
 5.2. Quadratic Map of Division Ring 48

Chapter 6. D-Affine Space ... 53
 6.1. D-Affine Space .. 53
 6.2. Basis in D-Affine Space 55

Chapter 7. Euclidean Space ... 57
 7.1. Euclidean Space ... 57
 7.2. Basis in Euclidean Space 58

Chapter 8. Calculus in D-Affine Space 59
 8.1. Curvilinear Coordinates in D-Affine Space 59
 8.2. Parallel Transfer ... 61

Chapter 9. Manifolds with D-Affine Connections 65
 9.1. Manifolds with D-Affine Connections 65
CHAPTER 1

Preface

1.1. Tower of Representations

The main goal of this book is considering of simple geometry over division ring. However I decided not to bind this book by description of affine and Euclidean geometry. During description of affine geometry I discovered interesting structure. At first I define D^*-vector space V. This is T^*-representation of the division ring D in additive group. Then I consider a set of points where the representation of D^*-vector space V is defined. This many-tier structure stimulate my interest and I returned to exploration of T^*-representations of F_i-algebra.

Thus the concept of tower of T^*-representations emerged. As soon as I began draw diagrams related to the tower of T^*-representations, I discovered pattern similar to diagrams in paper [11]. Although I did not succeed to carry this analogy to its logical conclusion, I hope that this analogy can bring to interesting results.

1.2. Morphism and Basis of Representation

Exploring of the theory of representations of F_i-algebra shows that this theory has a lot of common with theory of F_i-algebra. In [7, 8, 9], I explored morphisms of representation. They are maps that preserve the structure of representation of F_i-algebra (or of tower of representations).

Linear maps of vector spaces are examples of morphism of representations. The definition of basis is important structure in the theory of linear spaces. Concept of basis is directly linked to statement that the group of morphisms of linear space has two single transitive representations. The main function of basis is to form linear space.

The natural question arises. Can we generalize this structure to arbitrary representation? The basis is not the only set that forms the vector space. This statement is initial point where I started exploring of generating set of representation. Generating set of representation is one more interesting parallel between theory of representations and theory of universal algebra.

For some representations, the possibility to find generating set is not equivalent to the possibility to build basis. The problem to find the set of representations that allow to construct basis is interesting and important problem. I wonder is it possible to find effective algorithm of construction of basis of quantum geometry.

1.3. D-Affine space

Like in the case of D-vector space, I can start from considering of D^*-affine space and then move to exploring of D-affine space. However I do not expect something new on this way. Because I explore operations related to differentiation, I start immediately from exploring of D-affine space.
From the moment when I realized that affine space is tower of representations and linear maps of affine space are morphisms of tower of representations, I realized what form the connection has in manifold with D-affine connection. However, I decided to explore curvilinear coordinates in the affine space before I explore the manifold with affine connections.

Although it was clear in my mind what happens when I change coordinates, the picture that I saw appears more interesting then I expected. I have met two very important ideas.

I started from construction of affine space as tower of representations. It turned out, that there exists one more model where we represent vector fields as sets of maps.\footnote{At this time it is not clear whether this model leads me to geometry that Alain Connes explores in \cite{Connes}. Answer on this question requires further research.} However these two models do not contradict one to another, but rather are complementary.

Second observation did not come as a surprise for me. When I started to explore D-vector space, I was ready to consider linear combination of vectors as polylinear form; however I got the conclusion that this does not change dimension of space, and for this reason I did not go beyond exploration of $D^{*}\ast$-basis.

It is interesting to observe how new concept appears during writing of book. Construction that I made in chapter 8 again returned me to a linear combination as sum of linear forms. However at this time I have linear dependence of 1-forms. And coefficients of linear dependence are not outside of 1-form, but inside. If we consider 1-forms over field, then 1-form is transparent for scalars of the field, and there is no difference for us whether coefficients are outside or inside the form.

Linear dependence is not subject of this book. I will explore this question in following papers. In this book I use this definition assuming that its properties are clear from written equations.

Exploring of curvilinear coordinates also gave opportunity to see transformation rule of coordinates of D-affine connection when we change coordinates. However, I think it was luck that I was able to write the explicit transformation law, and this luck was associated with the fact that the connection has only one contravariant index. I have reason to believe that such an operation, like raising or lowering the index of the tensor in Riemannian space can have only an implicit form of record.

For years affine geometry was symbol for me of the most simple geometry. I am glad to see that I was wrong. At the right moment affine geometry turned out to be a source of inspiration. Affine geometry is the gate of differential geometry. Although, in order to plunge deeply into the differential geometry, I need good knowledge about differential equations, I conclude the book with very brief excursion into the manifold with affine connections. It can give to reader the taste of the new geometry.

1.4. Conventions

(1) Function and map are synonyms. However according to tradition, correspondence between either rings or vector spaces is called map and map of either real field or quaternion algebra is called function. I also follow this tradition.

(2) We can consider division ring D as D-vector space of dimension 1. According to this statement, we can explore not only homomorphisms of division
ring D_1 into division ring D_2, but also linear maps of division rings. This means that map is multiplicative over maximum possible field. In particular, linear map of division ring D is multiplicative over center $Z(D)$. This statement does not contradict with definition of linear map of field because for field F is true $Z(F) = F$. When field F is different from maximum possible, I explicit tell about this in text.

(3) In spite of noncommutativity of product a lot of statements remain to be true if we substitute, for instance, right representation by left representation or right vector space by left vector space. To keep this symmetry in statements of theorems I use symmetric notation. For instance, I consider $D\ast$-vector space and $\ast D$-vector space. We can read notation $D\ast$-vector space as either D-star-vector space or left vector space. We can read notation $D\ast$-linear dependent vectors as either D-star-linear dependent vectors or vectors that are linearly dependent from left.

(4) We consider algebra A which is finite dimensional vector space over center. Considering expansion of element of algebra A relative basis e we use the same root letter to denote this element and its coordinates. However we do not use vector notation in algebra. In expression a^2, it is not clear whether this is component of expansion of element a relative basis, or this is operation $a^2 = aa$. To make text more clear we use separate color for index of element of algebra. For instance, $a = a^i e_i$.

(5) When we consider finite dimensional algebra we identify the vector of basis e_0 with unit of algebra.

(6) Since the number of \mathfrak{g}-algebras in the tower of representations is varying, then we use vector notation for a tower of representations. We denote the set $(A_1, ..., A_n)$ of \mathfrak{g}-algebras A_i, $i = 1, ..., n$ as \mathfrak{g}. We denote the set of representations $(f_{1,2}, ..., f_{n-1,n})$ of these algebras as \mathfrak{f}. Since different algebras have different type, we also talk about the set of \mathfrak{g}-algebras. In relation to the set \mathfrak{g}, we also use matrix notations that we discussed in section [7]-2.1. For instance, we use the symbol $\mathfrak{g}_{[1]}$ to denote the set of \mathfrak{g}-algebras $(A_2, ..., A_n)$. In the corresponding notation $(\mathfrak{g}_{[1]}, \mathfrak{f})$ of tower of representation, we assume that $\mathfrak{f} = (f_{2,3}, ..., f_{n-1,n})$.

(7) Since we use vector notation for elements of the tower of representations, we need convention about notation of operation. We assume that we get result of operation componentwise. For instance, $\mathfrak{f}(\mathfrak{g}) = (r_1(a_1), ..., r_n(a_n))$.

(8) Without a doubt, the reader of my articles may have questions, comments, objections. I will appreciate any response.
Representation of \(\mathfrak{H} \)-Algebra

2.1. Representation of \(\mathfrak{H} \)-Algebra

Definition 2.1.1. Suppose we defined the structure of \(\mathfrak{H} \)-algebra on the set \(M \) ([2, 12]). We call the homomorphism of \(\mathfrak{H} \)-algebra

\[t : M \to M \]

transformation of \(\mathfrak{H} \)-algebra \(M \). \(^{2.1} \)

We denote \(\delta \) identical transformation.

Definition 2.1.2. Transformations is left-side transformation or \(T^* \)-transformation if it acts from left

\[u' = tu \]

We denote \(^*M \) the set of \(T^* \)-transformations of set \(M \). \(\square \)

Definition 2.1.3. Transformations is right-side transformations or \(\star^T \)-transformation if it acts from right

\[u' = ut \]

We denote \(M^* \) the set of nonsingular \(\star^T \)-transformations of set \(M \). \(\square \)

Definition 2.1.4. Suppose we defined the structure of \(\mathfrak{H} \)-algebra on the set \(^*M \) ([2]). Let \(A \) be \(\mathfrak{H} \)-algebra. We call homomorphism

\[(2.1.1) \quad f : A \to ^*M \]

left-side or \(T^* \)-representation of \(\mathfrak{H} \)-algebra \(A \) in \(\mathfrak{H} \)-algebra \(M \). \(\square \)

Definition 2.1.5. Suppose we defined the structure of \(\mathfrak{H} \)-algebra on the set \(M^* \) ([2]). Let \(A \) be \(\mathfrak{H} \)-algebra. We call homomorphism

\[f : A \to M^* \]

right-side or \(\star^T \)-representation of \(\mathfrak{H} \)-algebra \(A \) in \(\mathfrak{H} \)-algebra \(M \). \(\square \)

We extend to representation theory convention described in remark [7]-2.2.14. We can write duality principle in the following form

Theorem 2.1.6 (duality principle). Any statement which holds for \(T^* \)-representation of \(\mathfrak{H} \)-algebra \(A \) holds also for \(\star^T \)-representation of \(\mathfrak{H} \)-algebra \(A \).

Remark 2.1.7. There exist two forms of notation for transformation of \(\mathfrak{H} \)-algebra \(M \). In operational notation, we write the transformation \(A \) as either \(Aa \) which corresponds to the \(T^* \)-transformation or \(aA \) which corresponds to the \(\star^T \)-transformation. In functional notation, we write the transformation \(A \) as \(A(a) \) regardless

\(^{2.1}\) If the set of operations of \(\mathfrak{H} \)-algebra is empty, then \(t \) is a map.
of the fact whether this is $T\star$-transformation or this is $\star T$-transformation. This notation is in agreement with duality principle. This remark serves as a basis for the following convention. When we use functional notation we do not make a distinction whether this is $T\star$-transformation or this is $\star T$-transformation. We denote $\star M$ the set of transformations of \mathfrak{H}-algebra M. Suppose we defined the structure of \mathfrak{F}-algebra on the set $\star M$. Let A be \mathfrak{F}-algebra. We call homomorphism

$$f : A \rightarrow \star M$$

representation of \mathfrak{F}-algebra A in \mathfrak{H}-algebra M.

Correspondence between operational notation and functional notation is unambiguous. We can select any form of notation which is convenient for presentation of particular subject.

Diagram

\[
\begin{array}{ccc}
M & \xrightarrow{f(a)} & M \\
\downarrow{f} & & \\
A & &
\end{array}
\]

means that we consider the representation of \mathfrak{F}-algebra A. The map $f(a)$ is image of $a \in A$.

Definition 2.1.8. Suppose map (2.1.2) is an isomorphism of the \mathfrak{F}-algebra A into $\star M$. Then the representation of the \mathfrak{F}-algebra A is called **effective**.

Remark 2.1.9. Suppose the $T\star$-representation of \mathfrak{F}-algebra is effective. Then we identify an element of \mathfrak{F}-algebra and its image and write $T\star$-transormation caused by element $a \in A$ as $v' = av$

Suppose the $\star T$-representation of \mathfrak{F}-algebra is effective. Then we identify an element of \mathfrak{F}-algebra and its image and write $\star T$-transormation caused by element $a \in A$ as $v' = va$

Definition 2.1.10. We call a representation of \mathfrak{F}-algebra **transitive** if for any $a, b \in V$ exists such g that $a = f(g)(b)$

We call a representation of \mathfrak{F}-algebra **single transitive** if it is transitive and effective.

Theorem 2.1.11. $T\star$-representation is single transitive if and only if for any $a, b \in M$ exists one and only one $g \in A$ such that $a = f(g)(b)$

Proof. Corollary of definitions 2.1.8 and 2.1.10.
2.2. Morphism of Representations of \mathfrak{F}-Algebra

Theorem 2.2.1. Let A and B be \mathfrak{F}-algebras. Representation of \mathfrak{F}-algebra B
\[g : B \to \mathfrak{M} \]
and homomorphism of \mathfrak{F}-algebra
\[h : A \to B \]
define representation f of \mathfrak{F}-algebra A.

\[\begin{array}{ccc}
A & \xrightarrow{f} & \mathfrak{M} \\
\downarrow{h} & & \downarrow{g} \\
B & & \\
\end{array} \]

Proof. Since mapping g is homomorphism of \mathfrak{F}-algebra B into \mathfrak{F}-algebra \mathfrak{M}, the mapping f is homomorphism of \mathfrak{F}-algebra A into \mathfrak{F}-algebra \mathfrak{M}. \qed

Considering representations of \mathfrak{F}-algebra in \mathfrak{H}-algebras M and N, we are interested in a mapping that preserves the structure of representation.

Definition 2.2.2. Let $f : A \to \mathfrak{M}$ be representation of \mathfrak{F}-algebra A in \mathfrak{H}-algebra M and $g : B \to \mathfrak{N}$ be representation of \mathfrak{F}-algebra B in \mathfrak{H}-algebra N. Tuple of maps
\[(r : A \to B, R : M \to N) \]
such that
- r is homomorphism of \mathfrak{F}-algebra
- R is homomorphism of \mathfrak{H}-algebra

\[R \circ f(a) = g(r(a)) \circ R \]
is called **morphism of representations from f into g**. We also say that **morphism of representations of \mathfrak{F}-algebra in \mathfrak{H}-algebra** is defined. \qed

For any $m \in M$ equation (2.2.3) has form
\[R(f(a))(m) = g(r(a))(R(m)) \]

Remark 2.2.3. We may consider a pair of maps r, R as map
\[F : A \cup M \to B \cup N \]
such that
\[F(A) = B \quad F(M) = N \]
Therefore, hereinafter we will say that we have the map (r, R). \qed
Remark 2.2.4. Let us consider morphism of representations (2.2.2). We denote elements of the set B by letter using pattern $b \in B$. However if we want to show that b is image of element $a \in A$, we use notation $r(a)$. Thus equation

$$r(a) = r(a)$$

means that $r(a)$ (in left part of equation) is image $a \in A$ (in right part of equation). Using such considerations, we denote element of set N as $R(m)$. We will follow this convention when we consider correspondences between homomorphisms of \mathcal{F}-algebra and mappings between sets where we defined corresponding representations.

There are two ways to interpret (2.2.4)

- Let transformation $f(a)$ map $m \in M$ into $f(a)(m)$. Then transformation $g(r(a))$ maps $R(m) \in N$ into $R(f(a)(m))$.
- We represent morphism of representations from f into g using diagram

\[
\begin{array}{c}
M \\
\downarrow f \\
A \\
\downarrow r \\
B \\
\downarrow g \\
N \\
\uparrow R \\
\end{array}
\]

From (2.2.3) it follows that diagram (1) is commutative.

\[
H \circ \omega(f(a_1), ..., f(a_n)) = \omega(g(h(a_1)), ..., g(h(a_n))) \circ H
\]

for any n-ary operation ω of \mathcal{F}-algebra.

Proof. Since f is homomorphism, we have

\[
H \circ \omega(f(a_1), ..., f(a_n)) = H \circ (\omega(a_1, ..., a_n))
\]

From (2.2.3) and (2.2.6) it follows that

\[
H \circ \omega(f(a_1), ..., f(a_n)) = g(h(\omega(a_1, ..., a_n))) \circ H
\]

Since h is homomorphism, from (2.2.7) it follows that

\[
H \circ \omega(f(a_1), ..., f(a_n)) = g(\omega(h(a_1), ..., h(a_n))) \circ H
\]

Since g is homomorphism, (2.2.5) follows from (2.2.8).
Theorem 2.2.6. Let the map
\[h : A \rightarrow B \quad \text{and} \quad H : M \rightarrow N \]
be morphism from representation
\[f : A \rightarrow \ast M \]
of \(\mathfrak{G} \)-algebra \(A \) into representation
\[g : B \rightarrow \ast N \]
of \(\mathfrak{G} \)-algebra \(B \). If representation \(f \) is effective, then the map
\[\ast H : \ast M \rightarrow \ast N \]
defined by equation
\[(2.2.9) \quad \ast H(f(a)) = g(h(a)) \]
is homomorphism of \(\mathfrak{G} \)-algebra.

Proof. Because representation \(f \) is effective, then for given transformation \(f(a) \) element \(a \) is determined uniquely. Therefore, transformation \(g(h(a)) \) is properly defined in equation \((2.2.9)\).

Since \(f \) is homomorphism, we have
\[(2.2.10) \quad \ast H(\omega(f(a_1),...,f(a_n))) = \ast H(\omega(a_1,...,a_n)) \]
From \((2.2.9)\) and \((2.2.10)\) it follows that
\[(2.2.11) \quad \ast H(\omega(f(a_1),...,f(a_n))) = g(h(\omega(a_1,...,a_n))) \]
Since \(h \) is homomorphism, from \((2.2.11)\) it follows that
\[(2.2.12) \quad \ast H(\omega(f(a_1),...,f(a_n))) = \omega(h(\omega(a_1),...,h(a_n))) \]
Since \(g \) is homomorphism,
\[\ast H(\omega(f(a_1),...,f(a_n))) = \omega(g(h(a_1)),...,g(h(a_n))) = \omega(\ast H(f(a_1)),...,\ast H(f(a_n))) \]
follows from \((2.2.12)\). Therefore, the map \(\ast H \) is homomorphism of \(\mathfrak{G} \)-algebra. \(\square \)

Theorem 2.2.7. Given single transitive representation
\[f : A \rightarrow \ast M \]
of \(\mathfrak{G} \)-algebra \(A \) and single transitive \(T^* \)-representation
\[g : B \rightarrow \ast N \]
of \(\mathfrak{G} \)-algebra \(B \), there exists morphism
\[h : A \rightarrow B \quad \text{and} \quad H : M \rightarrow N \]
of representations from \(f \) into \(g \).
Proof. Let us choose homomorphism h. Let us choose element $m \in M$ and element $n \in N$. To define map H, let us consider following diagram

From commutativity of diagram (1), it follows that

$$H(am) = h(a)H(m)$$

For arbitrary $m' \in M$, we defined unambiguously $a \in A$ such that $m' = am$. Therefore, we defined mapping H which satisfies to equation (2.2.3). □

Theorem 2.2.8. Let

- $f : A \to \ast M$ be single transitive representation of \mathcal{F}-algebra A and
- $g : B \to \ast N$ be single transitive representation of \mathcal{F}-algebra B. Given homomorphism of \mathcal{F}-algebra

 $$h : A \longrightarrow B$$

 let us consider a map

 $$H : M \longrightarrow N$$

such that (h,H) is morphism of representations from f into g. This map is unique up to choice of image $n = H(m) \in N$ of given element $m \in M$.

Proof. From proof of theorem 2.2.7 it follows that choice of homomorphism h and elements $m \in M$, $n \in N$ uniquely defines the map H. □

Theorem 2.2.9. Given single transitive representation

$$f : A \to \ast M$$

of \mathcal{F}-algebra A, for any endomorphism of \mathcal{F}-algebra A there exists endomorphism

$$p : A \longrightarrow A \quad P : M \longrightarrow M$$

of representation f.
Proof. Let us consider following diagram

\[
\begin{array}{c}
M \xrightarrow{H} M \\
\downarrow^a \quad \quad \downarrow^{p(a)} \\
M \xrightarrow{H} M \\
\end{array}
\]

Statement of theorem is corollary of theorem 2.2.7. \hfill \Box

Theorem 2.2.10. Let

\[
f : A \to {}^*M
\]

be representation of \(\mathfrak{F}\)-algebra \(A\),

\[
g : B \to {}^*N
\]

be representation of \(\mathfrak{F}\)-algebra \(B\),

\[
h : C \to {}^*L
\]

be representation of \(\mathfrak{F}\)-algebra \(C\). Given morphisms of representations of \(\mathfrak{F}\)-algebra

\[
p : A \longrightarrow B \\
Q : M \longrightarrow N
\]

\[
q : B \longrightarrow C \\
R : N \longrightarrow L
\]

There exists morphism of representations of \(\mathfrak{F}\)-algebra

\[
r : A \longrightarrow C \\
R : M \longrightarrow L
\]

where \(r = qp\), \(R = QP\). We call morphism \((r, R)\) of representations from \(f\) into \(h\)

product of morphisms \((p, P)\) and \((q, Q)\) of representations of \(\mathfrak{F}\)-algebra.

Proof. We represent statement of theorem using diagram
Map r is homomorphism of \mathfrak{F}-algebra A into \mathfrak{F}-algebra C. We need to show that tuple of maps (r, R) satisfies to (2.2.3):

$$R(f(a)m) = QP(f(a)m)$$
$$= Q(g(p(a))P(m))$$
$$= h(gp(a))QP(m))$$
$$= h(r(a))R(m) \quad \square$$

Definition 2.2.11. Let \mathcal{A} be category of \mathfrak{F}-algebras. We define category $T \star \mathcal{A}$ of $T \star$-representations of \mathfrak{F}-algebra from category \mathcal{A}. $T \star$-representations of \mathfrak{F}-algebra are objects of this category. Morphisms of $T \star$-representations of \mathfrak{F}-algebra are morphisms of this category. \square

Theorem 2.2.12. Endomorphisms of representation f form semigroup.

Proof. From theorem 2.2.10, it follows that the product of endomorphisms $(p, P), (r, R)$ of the representation f is endomorphism (pr, PR) of the representation f. \square

Definition 2.2.13. Let us define equivalence S on the set M. Transformation f is called **coordinated with equivalence** S, when $f(m_1) \equiv f(m_2) \pmod{S}$ follows from condition $m_1 \equiv m_2 \pmod{S}$. \square

Theorem 2.2.14. Let us consider equivalence S on set M. Let us consider \mathfrak{F}-algebra on set $\ast M$. Since transformations are coordinated with equivalence S, we can define the structure of \mathfrak{F}-algebra on the set $\ast (M/S)$.

Proof. Let $h = \text{nat } S$. If $m_1 \equiv m_2 \pmod{S}$, then $h(m_1) = h(m_2)$. Since $f \in \ast M$ is coordinated with equivalence S, then $h(f(m_1)) = h(f(m_2))$. This allows to define transformation F according to rule

$$F([m]) = h(f(m))$$

Let ω be n-ary operation of \mathfrak{F}-algebra. Suppose $f_1, \ldots, f_n \in \ast M$ and

$$F_1([m]) = h(f_1(m)) \quad \ldots \quad F_n([m]) = h(f_n(m))$$

We define operation on the set $\ast (M/S)$ according to rule

$$\omega(F_1, \ldots, F_n)[m] = h(\omega(f_1, \ldots, f_n)m)$$

This definition is proper because $\omega(f_1, \ldots, f_n) \in \ast M$ and is coordinated with equivalence S. \square

Theorem 2.2.15. Let

$$f : A \rightarrow \ast M$$

be representation of \mathfrak{F}-algebra A,

$$g : B \rightarrow \ast N$$

be representation of \mathfrak{F}-algebra B. Let

$$r : A \longrightarrow B \quad R : M \longrightarrow N$$

be morphism of representations from f into g. Suppose

$$s = rr^{-1} \quad S = RR^{-1}$$
Then there exist decompositions of \(r \) and \(R \), which we describe using diagram

(1) \(s = \ker r \) is a congruence on \(A \). There exists decompositions of homomorphism \(r \)

\[r = itj \]

\(t \) is isomorphism

\[j(a) = j(j(a)) \]

\(i \) is the inclusion mapping

\[r(a) = i(r(a)) \]

(2) \(S = \ker R \) is an equivalence on \(M \). There exists decompositions of homomorphism \(R \)

\[R = ITJ \]

\(J \) is surjection

\[J(m) = J(m) \]

\(T \) is bijection

\[R(m) = T(J(m)) \]

\(I \) is the inclusion mapping

\[R(m) = I(R(m)) \]

(3) \(F \) is \(T\text{-representation of } \mathfrak{g} \text{-algebra } A/s \) in \(M/S \)

(4) \(G \) is \(T\text{-representation of } \mathfrak{g} \text{-algebra } rA \) in \(RM \)

(5) \((j, J) \) is morphism of representations \(f \) and \(F \)

(6) \((t, T) \) is morphism of representations \(F \) and \(G \)

(7) \((t^{-1}, T^{-1}) \) is morphism of representations \(G \) and \(F \)

(8) \((i, I) \) is morphism of representations \(G \) and \(g \)
There exists decompositions of morphism of representations

\[(r, R) = (i, I)(t, T)(j, J)\]

Proof. Existence of diagrams (1) and (2) follows from theorem II.3.7 ([12], p. 60).

We start from diagram (4).

Let \(m_1 \equiv m_2 (\text{mod } S)\). Then

\[(2.2.22) \quad R(m_1) = R(m_2)\]

Since \(a_1 \equiv a_2 (\text{mod } s)\), then

\[(2.2.23) \quad r(a_1) = r(a_2)\]

Therefore, \(j(a_1) = j(a_2)\). Since \((r, R)\) is morphism of representations, then

\[(2.2.24) \quad R(f(a_1)(m_1)) = g(r(a_1))(R(m_1))\]

\[(2.2.25) \quad R(f(a_2)(m_2)) = g(r(a_2))(R(m_2))\]

From (2.2.22), (2.2.23), (2.2.24), (2.2.25), it follows that

\[(2.2.26) \quad R(f(a_1)(m_1)) = R(f(a_2)(m_2))\]

From (2.2.26) it follows

\[(2.2.27) \quad f(a_1)(m_1) \equiv f(a_2)(m_2) (\text{mod } S)\]

and, therefore,

\[(2.2.28) \quad J(f(a_1)(m_1)) = J(f(a_2)(m_2))\]

From (2.2.28) it follows that we defined map

\[(2.2.29) \quad F(j(a))(J(m)) = J(f(a)(m))\]

reasonably and this map is transformation of set \(M/S\).

From equation (2.2.27) (in case \(a_1 = a_2\)) it follows that for any \(a\) transformation is coordinated with equivalence \(S\). From theorem 2.2.14 it follows that we defined structure of \(\mathfrak{A}\)-algebra on the set \(* (M/S)\). Let us consider \(n\)-ary operation \(\omega\) and \(n\) transformations

\[F(j(a_1))(J(m)) = J(f(a_1)(m)) \quad i = 1, ..., n\]

of the set \(M/S\). We assume

\[\omega(F(j(a_1)), ..., F(j(a_n)))(J(m)) = J(\omega(f(a_1), ..., f(a_n)))(m))\]

Therefore, map \(F\) is representations of \(\mathfrak{A}\)-algebra \(A/s\).

From (2.2.29) it follows that \((j, J)\) is morphism of representations \(f\) and \(F\) (the statement 5 of the theorem).

Let us consider diagram (5).

Since \(T\) is bijection, then we identify elements of the set \(M/S\) and the set \(MR\), and this identification has form

\[(2.2.30) \quad T(J(m)) = R(m)\]

We can write transformation \(F(j(a))\) of the set \(M/S\) as

\[(2.2.31) \quad F(j(a)) : J(m) \to F(j(a))(J(m))\]
Since T is bijection, we define transformation
\[(2.2.32)\quad T(J(m)) \rightarrow T(F(j(a))(J(m)))\]
of the set RM. Transformation (2.2.32) depends on $j(a) \in A/s$. Since t is bijection, we identify elements of the set A/s and the set rA, and this identification has form
\[(2.2.33)\quad t(j(a)) = r(a)\]
Therefore, we defined map
\[G : rA \rightarrow ^*RM\]
according to equation
\[(2.2.34)\quad G(t(j(a)))(T(J(m))) = T(F(j(a))(J(m)))\]
Let us consider n-ary operation ω and n transformations
\[G(r(a_1))(R(m)) = T(F(j(a_1))(J(m)))\quad i = 1, ..., n\]
of space RM. We assume
\[(2.2.35)\quad \omega(G(r(a_1)), ..., G(r(a_n)))(R(m)) = T(\omega(F(j(a_1)), ..., F(j(a_n)))(J(m)))\]
According to (2.2.34) operation ω is defined reasonably on the set *RM. Therefore, the map G is representations of \mathfrak{G}-algebra.

From (2.2.34) it follows that (t, T) is morphism of representations F and G (the statement 6 of the theorem).

Since T is bijection, then from equation (2.2.30) it follows that
\[(2.2.36)\quad J(m) = T^{-1}(R(m))\]
We can write transformation $G(r(a))$ of the set RM as
\[(2.2.37)\quad G(r(a)) : R(m) \rightarrow G(r(a))(R(m))\]
Since T is bijection, we define transformation
\[(2.2.38)\quad T^{-1}(R(m)) \rightarrow T^{-1}(G(r(a))(R(m)))\]
of the set M/S. Transformation (2.2.38) depends on $r(a) \in rA$. Since t is bijection, then from equation (2.2.33) it follows that
\[(2.2.39)\quad j(a) = t^{-1}(r(a))\]
Since, by construction, diagram (5) is commutative, then transformation (2.2.38) coincides with transformation (2.2.31). We can write the equation (2.2.35) as
\[(2.2.40)\quad T^{-1}G(G(r(a_1)), ..., G(r(a_n)))(R(m)) = \omega(F(j(a_1)), ..., F(j(a_n)))(J(m))\]
Therefore (t^{-1}, T^{-1}) is morphism of representations G and F (the statement 7 of the theorem).

Diagram (6) is the most simple case in our prove. Since map I is immersion and diagram (2) is commutative, we identify $n \in N$ and $R(m)$ when $n \in \text{Im}R$. Similarly, we identify corresponding transformations.
\[(2.2.41)\quad g'(i(r(a)))(I(R(m))) = I(G(r(a))(R(m)))\]
\[\omega(g'(r(a_1)), ..., g'(r(a_n)))(R(m)) = I(\omega(G(r(a_1)), ..., G(r(a_n)))(R(m)))\]
Therefore, (i, I) is morphism of representations G and g (the statement 8 of the theorem).
2. Representation of F-Algebra

To prove the statement 9 of the theorem we need to show that defined in the proof representation g' is congruent with representation g, and operations over transformations are congruent with corresponding operations over *N.

$$g'(i(r(a))(I(R(m)))) = I(G(r(a))(R(m))) \quad \text{by (2.2.41)}$$
$$= I(G(t(j(a)))(T(J(m)))) \quad \text{by (2.2.15), (2.2.19)}$$
$$= IT(F(j(a))(J(m))) \quad \text{by (2.2.34)}$$
$$= ITJ(f(a)(m)) \quad \text{by (2.2.29)}$$
$$= R(f(a)(m)) \quad \text{by (2.2.17)}$$
$$= g(r(a))(R(m)) \quad \text{by (2.2.3)}$$

$$\omega(G(r(a_1)), \ldots, G(r(a_n)))(R(m)) = T(\omega(F(j(a_1)), \ldots, F(j(a_n)))(J(m)))$$
$$= T(F(\omega(j(a_1)), \ldots, j(a_n)))(J(m)))$$
$$= T(F(j(\omega(a_1), \ldots, a_n)))(J(m)))$$
$$= T(J(f(\omega(a_1), \ldots, a_n))(m)))$$

□

Definition 2.2.16. Let

$$f : A \to {}^*M$$

be representation of F-algebra A,

$$g : B \to {}^*N$$

be representation of F-algebra B. Let

$$r : A \longrightarrow B \quad \text{and} \quad R : M \longrightarrow N$$

be morphism of representations from f into g such that f is isomorphism of F-algebra and g is isomorphism of F-algebra. Then map (r, R) is called \textbf{isomorphism of representations}.

Theorem 2.2.17. In the decomposition (2.2.21), the map (t, T) is isomorphism of representations F and G.

PROOF. The statement of the theorem is corollary of definition 2.2.16 and statements (6) and (7) of the theorem 2.2.15. □

From theorem 2.2.15 it follows that we can reduce the problem of studying of morphism of representations of F-algebra to the case described by diagram

$$\begin{array}{c}
M \xrightarrow{J} M/S \\
| \downarrow f(a) \quad \downarrow F(j(a)) \\
A \xrightarrow{j} A/s
\end{array}$$
Theorem 2.2.18. We can supplement diagram (2.2.42) with representation \(F_1 \) of \(\mathfrak{A} \)-algebra \(A \) into set \(M/S \) such that diagram

\[
\begin{array}{c}
M \\
\downarrow f(a) \quad \downarrow F_1 \\
J \\
\downarrow \quad \downarrow \quad \downarrow \\
M/S \\
\downarrow F(j(a)) \\
\end{array}
\]

is commutative. The set of transformations of representation \(F \) and the set of transformations of representation \(F_1 \) coincide.

Proof. To prove theorem it is enough to assume

\[F_1(a) = F(j(a)) \]

Since map \(j \) is surjection, then \(\text{Im} F_1 = \text{Im} F \). Since \(j \) and \(F \) are homomorphisms of \(\mathfrak{A} \)-algebra, then \(F_1 \) is also homomorphism of \(\mathfrak{A} \)-algebra. \(\square \)

Theorem 2.2.18 completes the series of theorems dedicated to the structure of morphism of representations \(\mathfrak{A} \)-algebra. From these theorems it follows that we can simplify task of studying of morphism of representations \(\mathfrak{A} \)-algebra and not go beyond morphism of representations of form

\[
id : A \rightarrow A \quad R : M \rightarrow N
\]

In this case we identify morphism of \((id, R) \) representations of \(\mathfrak{A} \)-algebra and map \(R \). We will use diagram

\[
\begin{array}{c}
M \\
\downarrow f(a) \quad \downarrow g(a) \\
N \\
\downarrow g(a) \quad \downarrow g(a) \\
A
\end{array}
\]

to represent morphism \((id, R) \) of representations of \(\mathfrak{A} \)-algebra. From diagram it follows

\[R \circ f(a) = g(a) \circ R \]

By analogy with definition 2.2.11. we give following definition.

Definition 2.2.19. We define category \(T \star \mathfrak{A} \) \(T \star \)-representations of \(\mathfrak{A} \)-algebra \(A \). \(T \star \)-representations of \(\mathfrak{A} \)-algebra \(A \) are objects of this category. Morphisms \((id, R) \) of \(T \star \)-representations of \(\mathfrak{A} \)-algebra \(A \) are morphisms of this category. \(\square \)
2.3. Automorphism of Representation of \mathfrak{g}-Algebra

Definition 2.3.1. Let $$ f : A \to ^*M $$ be representation of \mathfrak{g}-algebra A in \mathfrak{h}-algebra M. The morphism of representations of \mathfrak{g}-algebra $$(r : A \to A, R : M \to M)$$ such that r is endomorphism of \mathfrak{g}-algebra and R is endomorphism of \mathfrak{h}-algebra is called **endomorphism of representation** f. \hfill \Box

Definition 2.3.2. Let $$ f : A \to ^*M $$ be representation of \mathfrak{g}-algebra A in \mathfrak{h}-algebra M. The morphism of representations of \mathfrak{g}-algebra $$(r : A \to A, R : M \to M)$$ such that r is automorphism of \mathfrak{g}-algebra and R is automorphism of \mathfrak{h}-algebra is called **automorphism of representation** f. \hfill \Box

Theorem 2.3.3. Let $$ f : A \to ^*M $$ be representation of \mathfrak{g}-algebra A in \mathfrak{h}-algebra M. The set of automorphisms of the representation f forms loop $\mathfrak{A}(f)$.

Proof. Let $(r, R), (p, P)$ be automorphisms of the representation f. According to definition 2.3.2 maps r, p are automorphisms of \mathfrak{g}-algebra A and maps R, P are automorphisms of \mathfrak{h}-algebra M. According to theorem II.3.2 ([12], p. 57), the map rp is automorphism of \mathfrak{g}-algebra A and the map RP is automorphism of \mathfrak{h}-algebra M. From the theorem 2.2.10 and the definition 2.3.2, it follows that product of automorphisms (rp, RP) of representation f is automorphism of the representation f.

Let (r, R) be an automorphism of the representation f. According to definition 2.3.2 the map r is automorphism of \mathfrak{g}-algebra A and the map R is automorphism of \mathfrak{h}-algebra M. Therefore, the map r^{-1} is automorphism of \mathfrak{g}-algebra A and the map R^{-1} is automorphism of \mathfrak{h}-algebra M. The equation (2.2.4) is true for automorphism (r, R). Assume $a' = r(a), m' = R(m)$. Since r and R are automorphisms then $a = r^{-1}(a'), m = R^{-1}(m')$ and we can write (2.2.4) in the form

$$ (2.3.1) \quad R(f(r^{-1}(a'))(R^{-1}(m'))) = g(a')(m') $$

Since the map R is automorphism of \mathfrak{h}-algebra M, then from the equation (2.3.1) it follows that

$$ (2.3.2) \quad f(r^{-1}(a'))(R^{-1}(m')) = R^{-1}(g(a')(m')) $$

The equation (2.3.2) corresponds to the equation (2.2.4) for the map (r^{-1}, R^{-1}). Therefore, map (r^{-1}, R^{-1}) of the representation f. \hfill \Box

2.2. Look [6], p. 24, [5] for definition of loop.
Remark 2.3.4. It is evident that the set of automorphisms of \mathcal{G}-algebra A also forms loop. Of course, it is attractive to assume that the set of automorphisms forms a group. Since the product of automorphisms f and g is automorphism fg, then automorphisms $(fg)h$ and $f(gh)$ are defined. However, it does not follow from this statement that

$$(fg)h = f(gh)$$

\[\square \]

2.4. Basis of T-representation

Definition 2.4.1. Let

$$f : A \to ^*M$$

be representation of \mathcal{G}-algebra A in \mathcal{H}-algebra M. The set $N \subset M$ is called stable set of representation f, if

$$f(a)(m) \in N$$

for each $a \in A$, $m \in N$.

We also say that the set M is stable with respect to the representation f.

Theorem 2.4.2. Let

$$f : A \to ^*M$$

be representation of \mathcal{G}-algebra A in \mathcal{H}-algebra M. Let set $N \subset M$ be subalgebra of \mathcal{H}-algebra M and stable set of representation f. Then there exists representation

$$f_N : A \to ^*N$$

such that $f_N(a) = f(a)|_N$. Representation f_N is called subrepresentation of representation f.

Proof. Let ω_1 be n-ary operation of \mathcal{G}-algebra A. Then for each $a_1, \ldots, a_n \in A$ and each $b \in N$

$$\omega_1(f_N(a_1), \ldots, f_N(a_n))(b) = \omega_1(f(a_1), \ldots, f(a_n))(b)$$

$$= f(\omega_1(a_1, \ldots, a_n))(b)$$

$$= f_N(\omega_1(a_1, \ldots, a_n))(b)$$

Let ω_2 be n-ary operation of \mathcal{H}-algebra M. Then for each $b_1, \ldots, b_n \in N$ and each $a \in A$

$$\omega_2(f_N(a)(b_1), \ldots, f_N(a)(b_n)) = \omega_2(f(a)(b_1), \ldots, f(a)(b_n))$$

$$= f(a)(\omega_2(b_1, \ldots, b_n))$$

$$= f_N(a)(\omega_2(b_1, \ldots, b_n))$$

We proved the statement of theorem. \[\square \]

From the theorem 2.4.2, it follows that if f_N is subrepresentation of representation f, then the map $(id : A \to A, id_N : N \to M)$ is morphism of representations.

Theorem 2.4.3. The set of all subrepresentations of representation f generates a closure system on \mathcal{H}-algebra M and therefore is a complete lattice.

2.3 This definition is similar to definition of the lattice of subalgebras ([12], p. 79, 80)
The proof is as follows:

Let \((K_{\lambda})_{\lambda \in \Lambda}\) be the set of subalgebras of \(H\)-algebra \(M\) that are stable with respect to representation \(f\). We define the operation of intersection on the set \(B_f\) according to rule

\[
\bigcap fK_{\lambda} = f \cap K_{\lambda}
\]

We defined the operation of intersection of subrepresentations properly. \(\cap K_{\lambda} \) is subalgebra of \(H\)-algebra \(M\). Let \(m \in \cap K_{\lambda}\). For each \(\lambda \in \Lambda\) and for each \(a \in A\), \(f(a)(m) \in K_{\lambda}\). Therefore, \(f(a)(m) \in \cap K_{\lambda}\). Therefore, \(\cap K_{\lambda}\) is the stable set of representation \(f\).

We denote the corresponding closure operator by \(J_f\). Thus \(J_f(X)\) is the intersection of all subalgebras of \(H\)-algebra \(M\) containing \(X\) and stable with respect to representation \(f\).

Theorem 2.4.4. Let \(f : A \to \ast M\) be representation of \(H\)-algebra \(A\) in \(H\)-algebra \(M\). Let \(X \subset M\). Define a subset \(X_k \subset M\) by induction on \(k\).

\[
X_0 = X
\]
\[
x \in X_k \Rightarrow x \in X_{k+1}
\]
\[
x_1, \ldots, x_n \in X_k, \omega \in \mathcal{H}(n) \Rightarrow \omega(x_1, \ldots, x_n) \in X_{k+1}
\]
\[
x \in X_k, a \in A \Rightarrow f(a)(x) \in X_{k+1}
\]

Then

\[
\bigcup_{k=0}^{\infty} X_k = J_f(X)
\]

Proof. If we put \(U = \bigcup X_k\), then by definition of \(X_k\), we have \(X_0 \subset J_f(X)\), and if \(X_k \subset J_f(X)\), then \(X_{k+1} \subset J_f(X)\). By induction it follows that \(X_k \subset J_f(X)\) for all \(k\). Therefore, \(U \subset J_f(X)\).

If \(a \in U^n, a = (a_1, \ldots, a_n)\), where \(a_i \in X_k\), and if \(k = \max\{k_1, \ldots, k_n\}\), then \(\omega(a_1, \ldots, a_n) \in X_{k+1} \subset U\). Therefore, \(U\) is subalgebra of \(H\)-algebra \(M\).

If \(m \in U\), then there exists such \(k\) that \(m \in X_k\). Therefore, \(f(a)(m) \in X_{k+1} \subset U\) for any \(a \in A\). Therefore, \(U\) is stable set of the representation \(f\).

Since \(U\) is subalgebra of \(H\)-algebra \(M\) and is a stable set of the representation \(f\), then subrepresentation \(f_U\) is defined. Therefore, \(J_f(X) \subset U\).

From \((2.4.1)\), \((2.4.2)\), it follows that \(J_f(X) = U\). \(\square\)

\(J_f(X)\) is called subrepresentation generated by set \(X\), and \(X\) is a generating set of subrepresentation \(J_f(X)\). In particular, a generating set of representation \(f\) is a subset \(X \subset M\) such that \(J_f(X) = M\).

2.4 The statement of theorem is similar to the statement of theorem 5.1, [12], p. 79.
Definition 2.4.5. Let $X \subset M$ be generating set of representation $f : A \to *M$

Let the map

$$(h : A \to A, H : M \to M)$$

is endomorphism of the representation f. Let the set $X' = HX$ be the image of
the set X under the map H. Endomorphism (h, H) of representation f is called
regular on generating set X, if the set X' is the generating set of representa-
tion f. Otherwise, endomorphism of representation (h, H) is called singular on
generating set X.

Definition 2.4.6. Endomorphism of representation f is called regular, if it is
regular on every generating set.

It is easy to see that the definition of generating set of representation does not
depend on whether representation is effective or not. For this reason hereinafter
we will assume that the representation is effective and we will use convention for
effective $T*$-representation in remark 2.1.9.

From theorem 2.4.4, it follows next definition.

Definition 2.4.7. Let $X \subset M$. For each $x \in J_f(X)$ there exists \mathfrak{H}-word defined
according to following rule.

1. If $m \in X$, then m is \mathfrak{H}-word.
2. If m_1, \ldots, m_n are \mathfrak{H}-words and $\omega \in \mathfrak{H}(n)$, then $m_1 \ldots m_n \omega$ is \mathfrak{H}-word.
3. If m is \mathfrak{H}-word and $a \in A$, then am is \mathfrak{H}-word.

\mathfrak{H}-word $w(m, f, X)$ that represent given element $m \in J_f(X)$ is called coordinates
of element m relative to set X. Denote $W(f, X)$ the set of coordinates of
representation $J_f(X)$.

Representation of $m \in M$ in form of \mathfrak{H}-word is ambiguous. If m_1, \ldots, m_n
are \mathfrak{H}-words, $\omega \in \mathfrak{H}(n)$ and $a \in A$, then \mathfrak{H}-words $am_1 \ldots m_n \omega$ and $am_1 \ldots am_n \omega$
describe the same element of \mathfrak{H}-algebra M. It is possible that there exist equations
related to specific character of representation. For instance, if ω is operation of
\mathfrak{H}-algebra A and operation of \mathfrak{H}-algebra M, then we require that \mathfrak{H}-words $a_1 \ldots a_n \omega x$
and $a_1 x \ldots a_n x \omega$ describe the same element of \mathfrak{H}-algebra M. Listed above equations
determine equivalence $r_\mathfrak{H}$ on the set of \mathfrak{H}-words $M_\mathfrak{H}$.

Theorem 2.4.8. Endomorphism (r, R) of representation

$$f : A \to *M$$

generates the map of coordinates

$$w(f, r, R, X) : W(f, X) \to W(f, X') \quad X \subset M \quad X' = R(X)$$

such that

1. If $m \in X$, $m' = R(m)$, then $w(f, r, R, X)(m) = m'$
2. Representation of \mathfrak{F}-Algebra

(2) If
\[m_1, \ldots, m_n \in W_f(X) \]
\[m'_1 = w(f, r, R, X)(m_1) \quad \ldots \quad m'_n = w(f, r, R, X)(m_n) \]
then for operation $\omega \in \mathfrak{F}(n)$ holds
\[w(f, r, R, X)(m_1 \ldots m_n \omega) = m'_1 \ldots m'_n \omega \]

(3) If
\[m \in W(f, X) \quad m' = w(f, r, R, X)(m) \]
\[a \in A \quad a' = r(a) \]
then
\[w(f, r, R, X)(am) = a' m' \]

Proof. Statements (1), (2) of the theorem are true by definition of the endomorphism R. The statement (3) of the theorem follows from the equation (2.2.4). □

Theorem 2.4.9. Let
\[f : A \to ^* \mathcal{M} \]
be representation of \mathfrak{F}-algebra A in \mathcal{M}-algebra \mathcal{M}. Let map
\[r : A \to A \]
be endomorphism of \mathfrak{F}-algebra A. For given sets $X \subset \mathcal{M}$, $X' \subset \mathcal{M}$ let map
\[R_1 : X \to X' \]
agree with the structure of \mathfrak{F}-algebra \mathcal{M}, i. e. for given operation $\omega \in \mathfrak{F}(n)$, if
\[x_1, \ldots, x_n, x_1 \ldots x_n \omega \in X \]
then $R_1(x_1 \ldots x_n \omega) = R_1(x_1) \ldots R_1(x_n) \omega$. Let us consider the map of coordinates
\[w(r, R_1, X) : W(f, X) \to W(f, X') \]
that satisfies conditions (1), (2), (3) of theorem 2.4.8. There exists endomorphism
\[R : \mathcal{M} \to \mathcal{M} \]
defined by rule
\[(2.4.3) \quad R(m) = w(f, r, R_1, X)(w(m, f, X)) \]
and the map (r, R) is morphism of representations $J_f(X)$ and $J_f(X')$.

Proof. We prove the theorem by induction over complexity of \mathfrak{F}-word.
If $w(m, f, X) = m$, then $m \in X$. According to condition (1) of theorem 2.4.8,
\[R(m) = w(r, R_1, X)(w(m, X)) = w(r, R_1, X)(m) = R_1(m) \]
Therefore, maps R and R_1 coincide on the set X, and the map R agrees with structure of \mathfrak{F}-algebra.
Let $\omega \in \mathfrak{F}(n)$. Let the statement of induction be true for $m_1, \ldots, m_n \in J_f(X)$. Let $w_1 = w(m_1, X)$, \ldots, $w_n = w(m_n, X)$. If $m = m_1 \ldots m_n \omega$, then according to condition (2) of definition 2.4.7,
\[w(m, f, X) = w_1 \ldots w_n \omega \]
According to condition (2) of theorem 2.4.8,
\[R(m) = w(r, R_1, X)(w(m, X)) = w(r, R_1, X)(w_1...w_n\omega) \]
\[= w(r, R_1, X)(w_1)...w(r, R_1, X)(w_n)\omega \]
\[= R(m_1)...R(m_n)\omega \]
Therefore, the map \(R \) is endomorphism of \(\mathcal{H} \)-algebra \(M \).

Let the statement of induction be true for \(m \in J_f(X), \ w(m, X) = w_m \). Let \(a \in A \). According to condition (3) of definition 2.4.7,
\[w(am, X) = aw_m \]
According to condition (3) of theorem 2.4.8,
\[R(am) = w(r, R_1, X)(w(am, X)) = w(r, R_1, X)(aw_m) \]
\[= r(a)w(r, R_1, X)(w_m) = r(a)R(m) \]
From equation (2.2.4) it follows that the map \((r, R)\) is morphism of the representation \(f \).

\textbf{Theorem 2.4.10.} Automorphism \((r, R)\) of representation
\[f : A \rightarrow \ast M \]
is regular endomorphism.

\textbf{Proof.} Let \(X \) be generating set of representation \(f \). Let \(X' = R(X) \).

According to theorem 2.4.8 endomorphism \((r, R)\) forms the map of coordinates \(w(f, r, R, X) \).

Let \(m' \in M \). Since \(R \) is automorphism, then there exists \(m \in M, \ R(m) = m' \).
According to definition 2.4.7, \(w(m, X) \) is coordinates of \(m \) relative to generating set \(X \).
According to theorem 2.4.9,
\[w(m', X') = w(f, r, R, X)(w(m, X)) \]
is coordinates of \(m' \) relative to generating set \(X' \). Therefore, \(X' \) is generating set of representation \(f \).
According to definition 2.4.6, automorphism \((r, R)\) is regular.

If the set \(X \subset M \) is generating set of representation \(f \), then any set \(Y, X \subset Y \subset M \) also is generating set of representation \(f \). If there exists minimal set \(X \) generating the representation \(f \), then the set \(X \) is called basis of representation \(f \).

\textbf{Theorem 2.4.11.} The generating set \(X \) of representation \(f \) is basis iff for any \(m \in X \) the set \(X \setminus \{m\} \) is not generating set of representation \(f \).

\textbf{Proof.} Let \(X \) be generating set of representation \(f \). Assume that for some \(m \in X \) there exist word
\[w = w(m, f, X \setminus \{m\}) \]
Consider element \(m' \) such that it has word
\[w' = w(m'; f, X) \]
that depends on \(m \). According to the definition 2.4.7, any occurrence of \(m \) into word \(w' \) can be substituted by the word \(w \). Therefore, the word \(w' \) does not depend on \(m \), and the set \(X \setminus \{m\} \) is generating set of representation \(f \).
Therefore, \(X \) is not basis of representation \(f \).
Remark 2.4.12. The proof of the theorem 2.4.11 gives us effective method for constructing the basis of the representation f. Choosing an arbitrary generating set, step by step, we remove from set those elements which have coordinates relative to other elements of the set. If the generating set of the representation is infinite, then this construction may not have the last step. If the representation has finite generating set, then we need a finite number of steps to construct a basis of this representation.

As noted by Paul Cohn in [12], p. 82, 83, the representation may have inequivalent bases. For instance, the cyclic group of order six has bases $\{a\}$ and $\{a^2, a^3\}$ which we cannot map one into another by endomorphism of the representation.

Theorem 2.4.13. Automorphism of the representation f maps a basis of the representation f into basis.

Proof. Let the map (r, R) be automorphism of the representation f. Let the set X be a basis of the representation f. Let $X' = R(X)$.

Assume that the set X' is not basis. According to the theorem 2.4.11 there exists such $m' \in X'$ that $X' \setminus \{x'\}$ is generating set of the representation f. According to the theorem 2.3.3 the map (r^{-1}, R^{-1}) is automorphism of the representation f. According to the theorem 2.4.10 and definition 2.4.6, the set $X \setminus \{m\}$ is generating set of the representation f. The contradiction completes the proof of the theorem. □

2.5. Few Applications of Basis of Representation

Example 2.5.1. Consider the vector space V over the field F. Given the set of vectors $\overline{e}_1, ..., \overline{e}_n$, according to algorithm of construction of coordinates over vector space, coordinates include such elements as $\overline{e}_1 + \overline{e}_2$ and $a\overline{e}_1$. Recursively using rules, contained in the definition 2.4.7, we conclude that the set of vectors $\overline{e}_1, ..., \overline{e}_n$ generates the set of linear combinations

$$a^1\overline{e}_1 + ... + a^n\overline{e}_n$$

According to the theorem 2.4.11, the set of vectors $\overline{e}_1, ..., \overline{e}_n$ is a basis if for any i, $i = 1, ..., n$, vector \overline{e}_i is not linear combination of other vectors. This requirement is equivalent to the requirement of linear independence of vectors. □

Example 2.5.2. Let G be Abelian group, and M be a set. Let us consider effective representation of group G on the set M. For given $a \in G, A \in M$ we assume $A \rightarrow A + a$. We also use notation $a = \overrightarrow{AB}$ if $B = A + a$. Then we can represent action of group as $B = A + \overrightarrow{AB}$. We can select for basis of the representation the set of points such that one and only one points belongs to each orbit. □
CHAPTER 3

Tower of Representations of \mathfrak{g}-Algebras

3.1. Tower of Representations of \mathfrak{g}-Algebras

Let us consider set of \mathfrak{g}_i-algebras A_i, $i = 1, ..., n$. Assume $\mathfrak{A} = (A_1, ..., A_n)$. Assume $\mathcal{F} = (f_{1,2}, ..., f_{n-1,n})$.

Definition 3.1.1. Let us consider set of \mathfrak{g}_i-algebras A_i, $i = 1, ..., n$. Set of representations $f_{i,i+1}$, $i = 1, ..., n-1$, of \mathfrak{g}_i-algebra A_i in \mathfrak{g}_{i+1}-algebra A_{i+1} is called tower $(\mathfrak{A}, \mathcal{F})$ of representations of \mathfrak{g}-algebras.

Let us consider the following diagram for the purposes of illustration of definition 3.1.1.

\[
\begin{array}{c}
\uparrow f_{i,i+1} \\
A_i \\
\rightarrow A_{i+1} \\
\downarrow f_{i,i+1} \\
A_{i+1} \\
\rightarrow A_{i+2} \\
\downarrow f_{i,i+2} \\
A_{i+2} \\
\end{array}
\]

$f_{i,i+1}$ is representation of \mathfrak{g}_i-algebra A_i in \mathfrak{g}_{i+1}-algebra A_{i+1}. $f_{i+1,i+2}$ is representation of \mathfrak{g}_{i+1}-algebra A_{i+1} in \mathfrak{g}_{i+2}-algebra A_{i+2}.

Theorem 3.1.2. Map $f_{i,i+2} : A_i \rightarrow ^{**}A_{i+2}$ is representation of \mathfrak{g}_i-algebra A_i in \mathfrak{g}_{i+1}-algebra $^*A_{i+2}$.

Proof. Automorphism $f_{i+1,i+2}(a_{i+1}) \in ^*A_{i+2}$ corresponds to arbitrary $a_{i+1} \in A_{i+1}$. Automorphism $f_{i,i+1}(a_i) \in ^*A_{i+1}$ corresponds to arbitrary $a_i \in A_i$. Since $f_{i,i+1}(a_i)(a_{i+1}) \in A_{i+1}$ is image of $a_{i+1} \in A_{i+1}$, then element $a_i \in A_i$ generates transformation of \mathfrak{g}_{i+1}-algebra $^*A_{i+2}$ which is defined by equation

\[
f_{i,i+2}(a_i)(f_{i+1,i+2}(a_{i+1})) = f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1}))
\]
Let ω be n-ary operation of \mathfrak{F}_1-algebra. Because $f_{i,i+1}$ is homomorphism of \mathfrak{F}_1-algebra, then
\begin{equation}
(3.1.3)
 f_{i,i+1}(\omega(a_{i,1}, ..., a_{i,n})) = \omega(f_{i,i+1}(a_{i,1}), ..., f_{i,i+1}(a_{i,n}))
\end{equation}
For $a_i, ..., a_n \in A_i$ we define operation ω on the set $\ast A_{i+2}$ using equations
\begin{equation}
(3.1.4)
 \begin{align*}
 \omega(f_{i,i+2}(a_{i,1}))(f_{i+1,i+2}(a_{i+1})), ..., f_{i,i+2}(a_{i,n})(f_{i+1,i+2}(a_{i+1})) &= \\
 f_{i+i+2}(\omega(f_{i,i+1}(a_{i,1}), ..., f_{i,i+1}(a_{i,n}))(a_{i+1})) &= \end{align*}
\end{equation}
First equation follows from equation (3.1.2). We wrote second equation on the base of demand that map $f_{i+1,i+2}$ is homomorphism of \mathfrak{F}_2-algebra. Therefore, we defined the structure of \mathfrak{F}_2-algebra on the set $\ast A_{i+2}$.

From (3.1.4) and (3.1.3) it follows that
\begin{equation}
(3.1.5)
 \begin{align*}
 \omega(f_{i,i+2}(a_{i,1}))(f_{i+1,i+2}(a_{i+1})), ..., f_{i,i+2}(a_{i,n})(f_{i+1,i+2}(a_{i+1})) &= \\
 f_{i+i+2}(\omega(f_{i,i+1}(a_{i,1}), ..., f_{i,i+1}(a_{i,n}))(a_{i+1})) &= \end{align*}
\end{equation}
Therefore, the map $f_{i,i+2}$ is homomorphism of \mathfrak{F}_2-algebra. Therefore, the map $f_{i,i+2}$ is $T\ast$-representation of \mathfrak{F}_2-algebra A_i in \mathfrak{F}_2-algebra $\ast A_{i+2}$.

Theorem 3.1.3. $(id, f_{i+1,i+2})$ is morphism of $T\ast$-representations of \mathfrak{F}_1-algebra from $f_{i,i+1}$ into $f_{i,i+2}$.

Proof. Let us consider diagram (3.1.1) in more detail.

![Diagram](image)

The statement of theorem follows from equation (3.1.2) and definition 2.2.2. □

Definition 3.1.4. Let us consider the tower of representations
\[(A_1, A_2, A_3), (f_{1,2}, f_{2,3})\]
The map $f_* = (f_{1,2}, f_{1,3})$ is called representation of \mathfrak{F}_1-algebra A_1 in representation $f_{2,3}$.

Definition 3.1.5. Let us consider the tower of representations $(\overline{A}, \overline{f})$. The map
\[f_* = (f_{1,2}, ..., f_{1,n})\]
is called representation of \mathfrak{F}_1-algebra A_1 in tower of representations
\[\overline{(A_1), \overline{f}} = ((A_2, ..., A_n), (f_{2,3}, ..., f_{n-1,n}))\]
3.2. Morphism of Tower of $T\star$-Representations

Definition 3.2.1. Let us consider the set of \mathfrak{g}_i-algebras A_i, B_i, $i = 1, ..., n$. The set of maps $(h_1, ..., h_n)$ is called **morphism from tower of $T\star$-representations** (A, f) into tower of $T\star$-representations (B, g), if for any i, $i = 1, ..., n - 1$, the tuple of maps (h_i, h_{i+1}) is morphism of $T\star$-representations from f_i, f_{i+1} into g_i, g_{i+1}.

For any i, $i = 1, ..., n - 1$, we have diagram

\[
\begin{array}{ccc}
A_{i+1} & \xrightarrow{h_{i+1}} & B_{i+1} \\
\downarrow{f_{i,i+1}(a_i)} & & \downarrow{g_{i,i+1}(h_i(a_i))} \\
A_i & \xrightarrow{h_i} & B_i
\end{array}
\]

Equations

\[
(3.2.2) \quad h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1}
\]

\[
(3.2.3) \quad h_{i+1}(f_{i,i+1}(a_i)(a_{i+1})) = g_{i,i+1}(h_i(a_i))(h_{i+1}(a_{i+1}))
\]

express commutativity of diagram (1). However for morphism (h_i, h_{i+1}), $i > 1$, diagram (3.2.1) is not complete. Assuming similar diagram for morphism (h_i, h_{i+1}), this diagram on the top layer has form

\[
\begin{array}{ccc}
A_{i+2} & \xrightarrow{h_{i+2}} & B_{i+2} \\
\downarrow{f_{23}(f_{12}(a_i)a_{i+1})} & & \downarrow{g_{23}(g_{12}(a_i)h_{i+1}(a_{i+1}))} \\
A_{i+2} & \xrightarrow{h_{i+2}} & B_{i+2} \\
\downarrow{f_{i,i+2}(a_i)} & & \downarrow{g_{i,i+2}(h_i(a_i))} \\
A_{i+2} & \xrightarrow{h_{i+2}} & B_{i+2} \\
\downarrow{f_{23}(a_{i+1})} & & \downarrow{g_{23}(h_{i+1}(a_{i+1}))} \\
A_{i+2} & \xrightarrow{h_{i+2}} & B_{i+2}
\end{array}
\]

Unfortunately, the diagram (3.2.4) is not too informative. It is evident that there exists morphism from $^\star A_{i+2}$ into $^\star B_{i+2}$, mapping $f_{i,i+2}(a_i)$ into $g_{i,i+2}(h_i(a_i))$. However, the structure of this morphism is not clear from the diagram. We need consider map from $^\star A_{i+2}$ into $^\star B_{i+2}$, like we have done this in theorem 3.1.3.
Theorem 3.2.2. Since T^\star-representation $f_{i+1,i+2}$ is effective, then (h_i, h_{i+2}) is morphism of T^\star-representations from T^\star-representation $f_{i,i+2}$ into T^\star-representation $g_{i,i+2}$ of \mathfrak{F}_i-algebra.

PROOF. Let us consider the diagram

\[\begin{array}{ccc}
A_{i+1} & \overset{h_{i+1}}{\longrightarrow} & B_{i+1} \\
\downarrow f_{i,i+1}(a_i) & & \downarrow g_{i,i+1}(h_i(a_i)) \\
\downarrow f_{i+1,i+2} & & \downarrow g_{i+1,i+2} \\
* A_{i+2} & \overset{h_{i+2}}{\longrightarrow} & * B_{i+2} \\
\downarrow f_{i,i+2}(a_i) & & \downarrow g_{i+1,i+2} \\
\downarrow f_{i+1,i+2} & & \downarrow g_{i,i+1}(h_i(a_i)) \\
A_{i+1} & \overset{h_{i+1}}{\longrightarrow} & B_{i+1}
\end{array} \]

From commutativity of diagram (3) it follows that

\[f_{i+1,i+2} \circ f_{i,i+1}(a_i) = f_{i,i+2}(a_i) \circ f_{i+1,i+2} \]

From equation (3.2.5) it follows that

\[h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} \]

From commutativity of diagram (3) it follows that

\[h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \]

From equation (3.2.7) it follows

\[h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) \]

From equations (3.2.6) and (3.2.8) it follows that

\[h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) \]

From commutativity of the diagram (5) it follows that

\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) = g_{i,i+2}(h_i(a_i)) \circ g_{i+1,i+2} \]

From equation (3.2.10) it follows that

\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) = g_{i,i+2}(h_i(a_i)) \circ g_{i+1,i+2} \circ h_{i+1} \]

From commutativity of the diagram (2) it follows that

\[h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1} \]

From equation (3.2.12) it follows that

\[g_{i+1,i+2}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ h_{i+1} \]

From equations (3.2.11) and (3.2.13) it follows that

\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ h_{i+1} \]

From equations (3.2.11) and (3.2.13) it follows that

\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ h_{i+1} \]

From equations (3.2.11) and (3.2.13) it follows that

\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ h_{i+1} \]

From equations (3.2.11) and (3.2.13) it follows that

\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ h_{i+1} \]
3.2. Morphism of Tower of T^\ast-Representations

External diagram is diagram (3.2.1) when $i = 1$. Therefore, external diagram is commutative

\[h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1} \]

From equation (3.2.15) it follows that

\[g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) = g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1}(a_{i+1}) \]

From equations (3.2.9), (3.2.14) and (3.2.16) it follows that

\[*h_{i+2} \circ f_{i,i+2}(a_i) = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2}(a_i) \]

Because the map $f_{i+1,i+2}$ is injection, then from equation (3.2.17) it follows that

\[*h_{i+2} \circ f_{i,i+2}(a_i) = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2}(a_i) \]

From equation (3.2.18) commutativity of the diagram (1) follows. This proves the statement of theorem.

\[\square \]

Theorems 3.1.3 and 3.2.2 are true for any layer of tower of T^\ast-representations. In each particular case we need properly show sets and direction of the map. Meaning of given theorems is that all maps in tower of T^\ast-representations act coherently.

Theorem 3.2.2 states that unknown map on the diagram (3.2.4) is the map $*h_{i+2}$.

Theorem 3.2.3. Let us consider the set of \mathfrak{g}_i-algebras $A_i, B_i, C_i, i = 1, \ldots, n$. Given morphisms of tower of representations

\[\overline{\tau} : (\overline{A}, \overline{f}) \rightarrow (\overline{B}, \overline{g}) \]

\[\overline{\tau} : (\overline{B}, \overline{g}) \rightarrow (\overline{C}, \overline{h}) \]

There exists morphism of representations of \mathfrak{g}-algebra

\[\overline{\tau} : (\overline{A}, \overline{f}) \rightarrow (\overline{C}, \overline{h}) \]

where $r_k = q_k p_k$, $k = 1, \ldots, n$. We call morphism $\overline{\tau}$ of tower of representations from \overline{f} into \overline{h} product of morphisms $\overline{\tau}$ and $\overline{\tau}$ of tower of representations.

Proof. For each $k, k = 2, \ldots, n$, we represent statement of theorem using diagram
Map r_{k-1} is homomorphism of \mathfrak{S}_{k-1}-algebra A_{k-1} into \mathfrak{S}_{k-1}-algebra C_{k-1}. We need to show that tuple of maps (r_{k-1}, r_k) satisfies to (3.2.2):

$$r_k(f_{k-1,k}(a_{k-1})a_k) = q_k p_k(f_{k-1,k}(a_{k-1})a_k) = q_k(g_{k-1,k}(p_{k-1}(a_{k-1}))p_k(a_k)) = h_{k-1,k}(g_{k-1}p_{k-1}(a_{k-1}))q_k p_k(a_k) = h_{k-1,k}(r(a_{k-1}))r_k(a_k)$$

\[\square\]

3.3. Endomorphism of Tower of Representations

Definition 3.3.1. Let (A, \mathcal{F}) be tower of representations of \mathfrak{S}-algebras. The morphism of tower of representations $(h_1, ..., h_n)$ such that for each $k, k = 1, ..., n$, h_k is endomorphism of \mathfrak{S}_k-algebra A_k is called endomorphism of tower of representations f.

Definition 3.3.2. Let (A, \mathcal{F}) be tower of representations of \mathfrak{S}-algebras. The morphism of tower of representations $(h_1, ..., h_n)$ such that for each $k, k = 1, ..., n$, h_k is automorphism of \mathfrak{S}_k-algebra A_k is called automorphism of tower of representations f.

Theorem 3.3.3. Let (A, \mathcal{F}) be tower of representations of \mathfrak{S}-algebras. The set of automorphisms of the representation \mathcal{F} forms loop.\(^\text{3.1}\)

Proof. Let φ, ψ be automorphisms of the tower of representations \mathcal{F}. According to definition 3.3.2, for each $k, k = 1, ..., n$, maps r_k, p_k are automorphisms of \mathfrak{S}_k-algebra A_k. According to theorem II.3.2 ([12], p. 57), for each $k, k = 1, ..., n$, the map $r_k p_k$ is automorphism of \mathfrak{S}_k-algebra A_k. From the theorem 3.2.3 and the definition 3.3.2, it follows that product of automorphisms $\varphi \psi$ of the tower of representations \mathcal{F} is automorphism of the tower of representations \mathcal{F}.

Let φ be an automorphism of the tower of representations \mathcal{F}. According to definition 3.3.2 for each $i, i = 1, ..., n$, map r_i is automorphism of \mathfrak{S}_i-algebra A_i. Therefore, for each $i, i = 1, ..., n$, the map r_i^{-1} is automorphism of \mathfrak{S}_i-algebra A_i. The equation (3.2.3) is true for automorphism φ. Assume $a_i' = r_i(a_i), i = 1, ..., n$. Since $r_i, i = 1, ..., n$, is automorphism then $a_i = r_i^{-1}(a_i')$ and we can write (3.2.3) in the form

\[
(3.3.1) \quad h_{i+1}(f_{i+1}(h_i^{-1}(a_i'))(h_{i+1}(a_{i+1}')))) = g_{i+1}(a_i')(a_{i+1}')
\]

Since the map h_{i+1} is automorphism of \mathfrak{S}_{i+1}-algebra A_{i+1}, then from the equation (3.3.1) it follows that

\[
(3.3.2) \quad f_{i+1}(h_i^{-1}(a_i'))(h_{i+1}(a_{i+1}')))) = h_{i+1}^{-1}(g_{i+1}(a_i')(a_{i+1}'))
\]

The equation (3.3.2) corresponds to the equation (3.2.3) for the map φ^{-1}. Therefore, map φ^{-1} is automorphism of the representation \mathcal{F}.\[\square\]

\[\text{3.1}\]Look [6], p. 24, [5] for definition of loop.
3.4. Basis of Tower of Representations

Definition 3.4.1. Tower of T^*-representations $(\mathcal{A}, \mathcal{F})$ is called effective, if for any i the representation $f_{i,i+1}$ is effective.

Theorem 3.4.2. Let us consider the tower of T^*-representations $(\mathcal{A}, \mathcal{F})$. Let representations $f_{i,i+1}, \ldots, f_{i+k-1,i+k}$ be effective. Then representation $f_{i,i+k}$ is effective.

Proof. We will prove the statement of theorem by induction.

Let representations $f_{i,i+1}, f_{i+1,i+2}$ be effective. Assume that transformation $f_{i,i+1}(a_i)$ is not identity transformation. Than there exists $a_{i+1} \in A_{i+1}$ such that $f_{i,i+1}(a_i)(a_{i+1}) \neq a_{i+1}$. Because the representation $f_{i+1,i+2}$ is effective, then transformations $f_{i+1,i+2}(a_{i+1})$ and $f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1}))$ do not coincide. According to construction in theorem 3.1.2, the transformation $f_{i,i+2}(a_i)$ is not identity transformation.

Assume the statement of theorem is true for $k - 1$ representations. Let $f_{i,i+1}, \ldots, f_{i+k-1,i+k}$ be effective. According to proven above, the representation $f_{i,i+k}$ is effective.

We will write elements of tower of representations $(\mathcal{A}[1], \mathcal{F})$ as tuple (a_2, \ldots, a_3), where $a_i \in A_i$, $i = 2, \ldots, n$. We can interpret this record as $(a_2, a_3) = f_{2,3}(a_2)(a_3)$

At the same time this record has additional meaning. For instance, in affine space, a_3 is a point of space, a_2 is a vector that determine the transformation of parallel transfer. Thus, we can interpret a tuple (a_2, a_3) either as vector a_2 with tail in point a_3, or as head of this vector.

Definition 3.4.3. Let $(\mathcal{A}, \mathcal{F})$ be tower of representations. The tuple of sets

$$\mathcal{N}[1] = (N_2 \subset A_2, \ldots, N_n \subset A_n)$$

is called tuple of stable sets of tower of representations \mathcal{F}, if

$$f_{i-1,i}(a_{i-1})(a_i) \in N_i \quad i = 2, \ldots, n$$

for every $a_1 \in A_1$, $a_2 \in N_2$, ..., $a_n \in N_n$. We also will say that tuple of sets

$$\mathcal{N}[1] = (N_2 \subset A_2, \ldots, N_n \subset A_n)$$

is stable relative to tower of representations \mathcal{F}.

Theorem 3.4.4. Let \mathcal{F} be tower of representations. Let set $N_i \subset A_i$ be subalgebra of \mathfrak{g}_i-algebra A_i, $i = 2, \ldots, n$. Let tuple of sets

$$\mathcal{N}[1] = (N_2 \subset A_2, \ldots, N_n \subset A_n)$$

be stable relative to tower of representations \mathcal{F}. Than there exists representation

$$(A_1, N_2, \ldots, N_n), (f_{N_2,1,2}, \ldots, f_{N_n,n-1,n})$$

such that

$$f_{N_i,i-1,i}(a_{i-1}) = f_{i-1,i}(a_{i-1})|_{N_i} \quad i = 2, \ldots, n$$

The tower of representations (3.4.1) is called tower of subrepresentations.
PROOF. Let \(\omega_{i-1,1} \) be \(m \)-ary operation of \(\mathcal{F}_{i-1} \)-algebra \(A_{i-1} \), \(i = 2, ..., n \). Then for any \(a_{i-1,1}, ..., a_{i-1,m} \in N_{i-1} \)\(^{3.2} \) and any \(a_i \in N_i \)
\[
\omega_{i-1,1}(f_{N_i,i-1,i}(a_{i-1,1}), ..., f_{N_i,i-1,i}(a_{i-1,m}))(a_i)
= \omega_{i,1}(f_{i-1,i}(a_{i-1,1}), ..., f_{i-1,i}(a_{i-1,m}))(a_i)
= f_{i-1,i}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i)
= f_{N_i,i-1,i}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i)
\]
Let \(\omega_{i,2} \) be \(m \)-ary operation of \(\mathcal{F}_i \)-algebra \(A_i \), \(i = 2, ..., n \). Then for any \(a_{i,1}, ..., a_{i,n} \in N_i \) and any \(a_{i-1} \in N_{i-1} \)
\[
\omega_{i,2}(f_{N_i,i-1,i}(a_{i-1}))(a_{i,1}), ..., f_{N_i,i-1,i}(a_{i-1}))(a_{i,n})
= \omega_{i,2}(f_{i-1,i}(a_{i-1}))(a_{i,1}), ..., f_{i-1,i}(a_{i-1}))(a_{i,n})
= f_{i-1,i}(a_{i-1})(\omega_{i,2}(a_{i,1}, ..., a_{i,n}))
= f_{N_i,i-1,i}(a_{i-1})(\omega_{i,2}(a_{i,1}, ..., a_{i,n}))
\]
We proved the statement of theorem. \(\square \)

From theorem 3.4.4, it follows that if map \((f_{N_2,i-1,2}, ..., f_{N_n,i-1,n}) \) is tower of subrepresentations of tower of representations \(\mathcal{F} \), then map
\[
(id : A_1 \rightarrow A_1, id_2 : N_2 \rightarrow A_2, ..., id_n : N_n \rightarrow A_n)
\]
is morphism of towers of representations.

Theorem 3.4.5. The set\(^{3.3} \) \(\mathcal{B}_\mathcal{F} \) of all towers of subrepresentations of tower of representations \(\mathcal{F} \) generates a closure system on tower of representations \(\mathcal{F} \) and therefore is a complete lattice.

PROOF. Let for given \(\lambda \in \Lambda \), \(K_{\lambda,i} \), \(i = 2, ..., n \), be subalgebra of \(\mathcal{F}_i \)-algebra \(A_i \) that is stable relative to representation \(f_{i-1,i} \). We determine the operation of intersection on the set \(\mathcal{B}_\mathcal{F} \) according to rule
\[
\bigcap f_{K_{\lambda,i-1,i}} = f_{\cap K_{\lambda,i-1,i}}, \quad i = 2, ..., n
\]
\[
\bigcap K_\lambda = (K_1 = A_1, K_2 = \bigcap K_{\lambda,2}, ..., K_n = \bigcap K_{\lambda,n})
\]
\(\cap K_{\lambda,i} \) is subalgebra of \(\mathcal{F}_i \)-algebra \(A_i \). Let \(a_i \in K_{\lambda,i} \). For any \(\lambda \in \Lambda \) and for any \(a_{i-1} \in K_{i-1} \),
\[
f_{i-1,i}(a_{i-1})(a_i) \in K_{\lambda,i}
\]
Therefore,
\[
f_{i-1,i}(a_{i-1})(a_i) \in K_i
\]
Repeating this construction in the order of increment \(i \), \(i = 2, ..., n \), we see that \((K_1, ..., K_n) \) is tuple of stable sets of tower of representations \(\mathcal{F} \). Therefore, we determined the operation of intersection of towers of subrepresentations properly. \(\square \)

\(^{3.2}\) Assume \(N_1 = A_1 \).

\(^{3.3}\) This definition is similar to definition of the lattice of subalgebras ([12], p. 79, 80)
We denote the corresponding closure operator by $\overline{J(f)}$. If we denote \overline{X}_{1} the tuple of sets $(X_2 \subset A_2, ..., X_n \subset A_n)$ then $\overline{J(f, X_1)}$ is the intersection of all tuples $(K_1, ..., K_n)$ stable with respect to representation f and such that for $i = 2, ..., n$, K_i is subalgebra of \mathfrak{g}_i-algebra A_i containing X_i.\footnote{For $n = 2$, $J_2(f_{1, 2}, X_2) = J_{f_{1, 2}}(X_2)$. It would be easier to use common notation in sections 2.4 and 3.4. However I think that using of vector notation in section 2.4 is premature.}

Theorem 3.4.6. Let \overline{f} be the tower of representations. Let $X_i \subset A_i$, $i = 2, ..., n$. Assume $Y_1 = A_1$. Step by step increasing the value of i, $i = 2, ..., n$, we define a subsets $X_{i,m} \subset A_i$ by induction on m.

\[X_{i,0} = X_i \]
\[x \in X_{i,m} \Rightarrow x \in X_{i,m+1} \]
\[x_1 \in X_{i,m}, ..., x_p \in X_{i,m}, \omega \in \mathfrak{g}_i(p) \Rightarrow \omega(x_1, ..., x_p) \in X_{i,m+1} \]
\[x_i \in X_{i,m}, x_i-1 \in Y_{i-1} \Rightarrow f_{i-1,i}(x_{i-1})(x_i) \in X_{i,m+1} \]

For each value of i, we assume

\[Y_i = \bigcup_{m=0}^{\infty} X_{i,m} \]

Then

\[\overline{Y} = (Y_1, ..., Y_n) = \overline{J(f, X_1)} \]

PROOF. For each value of i the proof of the theorem coincides with the proof of theorem 2.4.4. Because to define stable subset of \mathfrak{g}_i-algebra A_i we need only certain stable subset of \mathfrak{g}_{i-1}-algebra A_{i-1} we have to find stable subset of \mathfrak{g}_{i-1}-algebra A_{i-1} before we do this in \mathfrak{g}_i-algebra A_i. \square

$\overline{J(f, X_1)}$ is called tower of subrepresentations of tower of representations f generated by tuple of sets X_{1}, and X_{1} is a tuple of generating sets of tower subrepresentations $\overline{J(f, X_1)}$. In particular, a tuple of generating sets of tower of representations f is a tuple $(X_2 \subset A_2, ..., X_n \subset A_n)$ such that $\overline{J(f, X_1)} = A$.

Definition 3.4.7. Let $(X_2 \subset A_2, ..., X_n \subset A_n)$ be tuple of generating sets of tower of representations f. Let map \overline{h} be endomorphism of tower of representations f. Let the tuple of sets $\overline{X}_{1} = h(X_{1})$ be image of tuple of sets X_{1} under the map \overline{h}. Endomorphism \overline{h} of tower of representations f is called regular on tuple of generating sets X_{1}, if the tuple of sets \overline{X}_{1} is tuple of generating sets of tower of representations f. Otherwise, endomorphism \overline{h} is called singular on tuple of generating sets X_{1}. \square

Definition 3.4.8. Endomorphism of tower of representations f is called regular, if it is regular on any tuple of generating sets.

It is easy to see that definition of the tuple of generating sets of tower of representations does not depend on whether tower of representations is effective or not. For this reason hereinafter we will assume that the tower of representations is effective and we will use convention for effective f-representation in remark 2.1.9.

From theorem 3.4.6, it follows next definition.
Definition 3.4.9. Let \((X_2 \subset A_2, ..., X_n \subset A_n)\) be tuple of sets. For each tuple of elements \(x, \bar{x} \in \mathcal{J}(X, X[1])\), there exists tuple of \(\mathcal{F}\)-words defined according to following rule.

1. If \(a_1 \in A_1\), then \(a_1\) is \(\mathcal{F}\)-word.
2. If \(a_i \in X_i\), \(i = 2, ..., n\), then \(a_i\) is \(\mathcal{F}\)-word.
3. If \(a_{i_1}, ..., a_{i_p}\) are \(\mathcal{F}\)-words, \(i = 2, ..., n\), and \(\omega \in \mathcal{F}(\mathcal{F})\), then \(a_{i_1}...a_{i_p}\omega\) is \(\mathcal{F}\)-word.
4. If \(a_i\) is \(\mathcal{F}\)-word, \(i = 2, ..., n\), and \(a_{i-1}\) is \(\mathcal{F}\)-word, then \(a_{i-1}a_i\) is \(\mathcal{F}\)-word.

Tuple of \(\mathcal{F}\)-words

\[
\mathcal{W}(\bar{x}, X[1]) = (w_1(a_1, \bar{x}, X[1]), ..., w_n(a_n, \bar{x}, X[1]))
\]

that represents given element \(\bar{x} \in \mathcal{J}(\bar{x}, X[1])\) is called tuple of coordinates of element \(\bar{x}\) relative to tuple of sets \(X[1]\). Denote \(\mathcal{W}(\bar{x}, X[1])\) the set of tuples of coordinates of tower of representations \(\mathcal{J}(\bar{x}, X[1])\).

Representation of \(a_i \in A_i\) as \(\mathcal{F}\)-word is ambiguous. If \(a_{i_1}, ..., a_{i_p}\) are \(\mathcal{F}\)-words, \(\omega \in \mathcal{F}(\mathcal{F})\), and \(a_{i-1} \in A_{i-1}\), then \(\mathcal{F}\)-words \(a_{i-1}a_{i_1}...a_{i_p}\omega\) and \(a_{i-1}a_{i_1}...a_{i_p}\omega\) represent the same element of \(\mathcal{F}\)-algebra \(A_i\). It is possible that there exist equations related with a character of a representation. For instance, if \(\omega\) is the operation of \(\mathcal{F}\)-algebra \(A_{i-1}\) and the operation of \(\mathcal{F}\)-algebra \(A_i\), then we can request that \(\mathcal{F}\)-words \(a_{i-1}a_{i_1}...a_{i_p}\omega\) and \(a_{i-1}a_{i_1}...a_{i_p}\omega\) represent the same element of \(\mathcal{F}\)-algebra \(A_i\). Listed above equations for each value \(i\), \(i = 2, ..., n\), determine equivalence \(r_i\) on the set of \(\mathcal{F}\)-words \(W_i(\bar{x}, X[1])\). According to the construction, equivalence \(r_i\) on the set of \(\mathcal{F}\)-words \(W_i(\bar{x}, X[1])\) depends not only on the choice of the set \(X_i\), but also on the choice of the set \(X_{i-1}\).

Theorem 3.4.10. Endomorphism \(\varphi\) of tower of representations \(\bar{x}\) forms the map of coordinates

\[
\mathcal{W}(\bar{x}, X[1]) : \mathcal{W}(\bar{x}, X[1]) \to \mathcal{W}(\bar{x}, X[1])
\]

such that for any \(i\), \(i = 2, ..., n\),

1. If \(a_i \in X_i\), \(a'_i = r_i(a_i)\), then

\[
w_i(\bar{x}, X[1])(a_i) = a'_i
\]

2. If \(a_{i_1}, ..., a_{i_n} \in W_i(\bar{x}, X[1])\)

\[
a'_{i_1} = w(\bar{x}, X[1])(a_{i_1}) \quad a'_{i_p} = w(\bar{x}, X[1])(a_{i_p})
\]

then for operation \(\omega \in \mathcal{F}(\mathcal{F})\) holds

\[
w_i(\bar{x}, X[1])(a_{i_1}...a_{i_p}\omega) = a'_{i_1}...a'_{i_p}\omega
\]

3. If \(a_i \in W_i(\bar{x}, X[1])\)

\[
a'_i = w_i(\bar{x}, X[1])(a_i)
\]

\(a_{i-1} \in W_{i-1}(\bar{x}, X[1])\)

\[
a'_{i-1} = w_{i-1}(\bar{x}, X[1])(a_{i-1})
\]

then

\[
w_i(\bar{x}, X[1])(a_{i-1}a_i) = a'_{i-1}a'_i
\]
Proof. Statements (1), (2) of the theorem are true by definition of the endomorphism h_i. The statement (3) of the theorem follows from the equation (3.2.3). □

Theorem 3.4.11. Let \overline{f} be tower of representations. Let map
\[r_1: A_1 \to A_1 \]
be endomorphism of \mathfrak{g}_1-algebra A_1. For given sets $X_i \subset A_i$, $X'_i \subset A_i$, $i = 2, \ldots, n$, let map
\[R_i: X_i \to X'_i \]
agree with the structure of \mathfrak{g}_1-algebra A_i, i.e., for given operation $\omega \in \mathfrak{g}_i(p)$, if
\[x_{i,1}, \ldots, x_{i,p}, x_{i,1} \ldots x_{i,p} \omega \in X_i \]
then
\[R_i(x_{i,1} \ldots x_{i,p} \omega) = R_i(x_{i,1}) \ldots R_i(x_{i,p}) \omega \]
Let us consider the map of coordinates
\[w(f, (r_1, R_2, \ldots, R_n), X_{[1]}): W(f, X_{[1]}) \to W(f, X'_{[1]}) \]
that satisfies conditions (1), (2), (3) of theorem 3.4.10. For each i, $i = 2, \ldots, n$, there exists endomorphism
\[r_i: A_i \to A_i \]
defined by rule
\[r_i(a_i) = w_i(f, (r_1, R_2, \ldots, R_n), X_{[1]})(w_i(a_i, f, X_{[1]})) \]
and the map \overline{r} is morphism of towers of representations $\overline{f}(f, X_{[1]})$ and $\overline{f}(f, X'_{[1]})$.

Proof. If $n = 1$, then tower of representations \overline{f} is representation of \mathfrak{g}_1-algebra A_1 in \mathfrak{g}_2-algebra A_2. The statement of theorem is corollary of theorem 2.4.9.

Let the statement of theorem be true for $n - 1$. We do not change notation in theorem when we move from one layer to another because a word in \mathfrak{g}_{n-1}-algebra A_{n-1} does not depend on word in \mathfrak{g}_n-algebra A_n. We prove the theorem by induction over complexity of \mathfrak{g}_n-word.

If $w_n(a_n, f, X_{[1]}) = a_n$, then $a_n \in X_n$. According to condition (1) of theorem 3.4.10,
\[r_n(a_n) = w_n(f, (r_1, R_2, \ldots, R_n), X_{[1]})(w_n(a_n, f, X_{[1]})) \]
\[= w_n(f, (r_1, R_2, \ldots, R_n), X_{[1]})(a_n) \]
\[= R_n(a_n) \]
Therefore, maps r_n and R_n coincide on the set X_n, and the map r_n agrees with structure of \mathfrak{g}_n-algebra.

Let $\omega \in \mathfrak{g}_n(p)$. Let the statement of induction be true for
\[a_{n,1}, \ldots, a_{n,p} \in J_n(f, X_{[1]}) \]
Let
\[w_{n,1} = w_n(a_{n,1}, f, X_{[1]}) \quad \ldots \quad w_{n,p} = w_n(a_{n,p}, f, X_{[1]}) \]
If
\[a_n = a_{n,1} \ldots a_{n,p} \omega \]
then according to condition (3) of definition 3.4.9,

\[w_n(a_n, \overline{f}, \overline{X}_i) = w_n(a_{n,1} \ldots w_{n,p}) \]

According to condition (2) of theorem 3.4.10,

\[
\begin{align*}
 r_n(a_n) &= w_n(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)[w_n(a_n, \overline{f}, \overline{X}_i)] \\
 &= w_n(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)[w_n(a_{n,1} \ldots w_{n,p})] \\
 &= w_n(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)(w_{n,1} \ldots w_{n,p}) \omega \\
 &= r_n(a_{n,1}) \ldots r_n(a_{n,p}) \omega
\end{align*}
\]

Therefore, the map \(r_n \) is endomorphism of \(\mathfrak{R}_n \)-algebra \(A_n \).

Let the statement of induction be true for

\[a_n \in J_n(\overline{f}, \overline{X}_i), \quad w_n(a_n, \overline{f}, \overline{X}_i) = w_n \]

\[a_{n-1} \in J_{n-1}(\overline{f}, \overline{X}_i), \quad w_{n-1}(a_{n-1}, \overline{f}, \overline{X}_i) = w_{n-1} \]

According to condition (4) of definition 3.4.9,

\[w_n(a_{n-1}a_n, \overline{f}, \overline{X}_i) = w_{n-1}w_m \]

According to condition (3) of theorem 3.4.10,

\[
\begin{align*}
 r_n(a_{n-1}a_n) &= w_n(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)(w_n(a_{n-1}a_n, \overline{f}, \overline{X}_i)) \\
 &= w_n(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)(w_{n-1}w_n) \\
 &= w_{n-1}(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)(w_{n-1}w_n)(\overline{f}, (r_1, R_2, \ldots, R_n), \overline{X}_i)(w_n) \\
 &= r_{n-1}(a_{n-1})r_n(a_n)
\end{align*}
\]

From equation (3.2.3) it follows that the map \(\overline{r} \) is morphism of the tower of representations \(\overline{f} \).

\[\square \]

Theorem 3.4.12. Automorphism \(\overline{r} \) of tower of representations \(\overline{f} \) is regular endomorphism.

Proof. Let \(\overline{X}_i \) be tuple of generating sets of tower of representations \(\overline{f} \). Let \(\overline{X}_i = \overline{r}_i(\overline{X}_i) \).

According to theorem 3.4.10 endomorphism \(\overline{r} \) forms the map of coordinates \(\overline{r}(\overline{f}, \overline{r}, \overline{X}_i) \).

Let \(\overline{r}' \in \overline{A} \). Since \(\overline{r} \) is automorphism, then there exists \(\overline{r}' \in \overline{A} \), \(\overline{r}(\overline{r'}) = \overline{r}' \).

According to definition 3.4.9, \(\overline{r}(\overline{X}_i) \) is coordinates of \(\overline{r} \) relative to tuple of generating sets \(\overline{X}_i \). According to theorem 3.4.11,

\[\overline{r}(\overline{r}', \overline{X}_i) = \overline{r}(\overline{f}, \overline{r}, \overline{X}_i)(\overline{r}(\overline{r}', \overline{X}_i)) \]

is coordinates of \(\overline{r}' \) relative to tuple of sets \(\overline{X}_i \). Therefore, \(\overline{X}_i \) is generating set of representation \(\overline{f} \). According to definition 3.4.8, automorphism \(\overline{r} \) is regular. \(\square \)

If the tuple of sets \(\overline{X}_i \) is tuple of generating sets of tower of representations \(\overline{f} \), then any tuple of sets \(\overline{X}_i \), \(X_i \subset Y_i \subset A_i, i = 2, \ldots, n \), also is tuple of generating sets of tower of representations \(\overline{f} \). If there exists tuple of minimal sets \(\overline{X}_i \) generating the tower of representations \(\overline{f} \), then the tuple of sets \(\overline{X}_i \) is called **basis of tower of representations** \(\overline{f} \).
Theorem 3.4.13. We define a basis of tower of representations by induction over \(n \). For \(n = 2 \), the basis of tower of representations is the basis of representation \(f_1, 2 \). If tuple of sets \(\overrightarrow{X}_{[1, n]} \) is basis of tower of representations \(\overrightarrow{f}_1 \), then the tuple of generating sets \(\overrightarrow{X}_{[n]} \) is basis of tower of representations \(\overrightarrow{f}_n \) if for any \(a_n \in X_n \) the tuple of sets \((X_1, \ldots, X_{n-1}, X_n \setminus \{a_n\}) \) is not tuple of generating sets of tower of representations \(\overrightarrow{f}_n \).

Proof. For \(n = 2 \), the statement of the theorem is corollary of the theorem 2.4.11.

Let \(n > 2 \). Let \(\overrightarrow{X}_{[1]} \) be tuple of generating sets of tower of representations \(\overrightarrow{f} \). Let tuple of sets \(\overrightarrow{X}_{[1, n]} \) be basis of tower of representations \(\overrightarrow{f}_{[n]} \). Assume that for some \(a_n \in X_n \) there exist word

\[
\overrightarrow{w}_n = \overrightarrow{w}_n(a_n, \overrightarrow{f}, (X_1, \ldots, X_{n-1}, X_n \setminus \{a_n\}))
\]

Consider \(\overrightarrow{a}'_n \in A_n \) such that it has word

\[
\overrightarrow{w}'_n = \overrightarrow{w}_n(\overrightarrow{a}'_n, \overrightarrow{f}, \overrightarrow{X}_{[1]})
\]

that depends on \(a_n \). According to the definition 2.4.7, any occurrence \(a_n \) into word \(\overrightarrow{w}'_n \) can be substituted by the word \(\overrightarrow{w}_n \). Therefore, the word \(\overrightarrow{w}'_n \) does not depend on \(a_n \), and the tuple of sets \((X_2, \ldots, X_{n-1}, X_n \setminus \{a_n\}) \) is the tuple of generating sets of tower of representations \(\overrightarrow{f}_n \). Therefore, \(\overrightarrow{X}_{[1]} \) is not basis of the tower of representations \(\overrightarrow{f} \).

The proof of the theorem 3.4.13 gives us effective method for constructing the basis of tower of representations \(\overrightarrow{f} \). We start to build a basis in the most low layer. When the basis is constructed in layer \(i, \ i = 2, \ldots, n-1 \), we can proceed to the construction of basis in layer \(i + 1 \).

Theorem 3.4.14. Automorphism of the tower of representations \(\overrightarrow{f} \) maps a basis of the tower of representations \(\overrightarrow{f} \) into basis.

Proof. For \(n = 2 \), the statement of theorem is corollary of the theorem 2.4.13.

Let the map \(\overrightarrow{T} \) be automorphism of the tower of representations \(\overrightarrow{f} \). Let the tuple of sets \(\overrightarrow{X}_{[1]} \) be a basis of the tower of representations \(\overrightarrow{f} \). Let \(\overrightarrow{X}_{[1]} = \overrightarrow{T}_{[1]}(\overrightarrow{X}_{[1]}) \).

Assume that the tuple of sets \(\overrightarrow{X}_{[1]} \) is not basis. According to the theorem 3.4.13 there exist \(i, \ i = 2, \ldots, n \), and \(\overrightarrow{a}'_i \in X'_i \) such that the tuple of sets \(\overrightarrow{X}'_{[i]} \) is tuple of generating sets of the tower of representations \(\overrightarrow{f} \). According to the definition 2.4.8, the tuple of sets \(\overrightarrow{X}'_{[i]} \) is tuple of generating sets of the tower of representations \(\overrightarrow{f} \). The contradiction completes the proof of the theorem.

3.5. Examples of Basis of Tower of Representation

Affine space is effective representation of vector space in Abelian group. We consider this example in chapter 6.

\[X''_{[i]} = X'_i, \ j \neq i, \ X''_{[i]} = X_i \setminus \{x'_i\} \]

\[X'''_{[i]} = X_j, \ j \neq i, \ X'''_{[i]} = X_i \setminus \{x_i\} \]
Example 3.5.1. Let A_2 be free algebra over field A_1. Considering the algebra A_2 as a ring, we can determine free vector space A_3 over the algebra A_2. Let $\cdot 32\bar{\mathfrak{e}}$ be basis of algebra A_3 over algebra A_2. A vector $a_3 \in A_3$ has representation

(3.5.1) \[a_3 = a_j^i \cdot 32\bar{\mathfrak{e}}_j = (a_3^1 \ldots a_3^n) \begin{pmatrix} \cdot 32\bar{\mathfrak{e}}_1 \\ \vdots \\ \cdot 32\bar{\mathfrak{e}}_n \end{pmatrix} \]

Let $\cdot 21\bar{\mathfrak{e}}$ be basis of algebra A_2 over field A_1. Because $a_j^i \in A_2$, we can write their coordinates relative to basis $\cdot 21\bar{\mathfrak{e}}$

(3.5.2) \[a_j^i = a_j^i \cdot 21\bar{\mathfrak{e}}_i = (a_j^1 \ldots a_j^m) \begin{pmatrix} \cdot 21\bar{\mathfrak{e}}_1 \\ \vdots \\ \cdot 21\bar{\mathfrak{e}}_m \end{pmatrix} \]

From equations (3.5.1), (3.5.2) it follows

(3.5.3) \[a_3 = a_j^i \cdot 21\bar{\mathfrak{e}}_i \cdot 32\bar{\mathfrak{e}}_j = \begin{pmatrix} a_3^{11} & \ldots & a_3^{1m} \\ \vdots & \ddots & \vdots \\ a_3^{n1} & \ldots & a_3^{nm} \end{pmatrix} \begin{pmatrix} \cdot 21\bar{\mathfrak{e}}_1 \\ \vdots \\ \cdot 21\bar{\mathfrak{e}}_m \end{pmatrix} \begin{pmatrix} \cdot 32\bar{\mathfrak{e}}_1 \\ \vdots \\ \cdot 32\bar{\mathfrak{e}}_n \end{pmatrix} \]

Equation (3.5.3) shows the structure of coordinates in vector space A_3 over field A_1. It is easy to see that vectors $\cdot 31\bar{\mathfrak{e}}_{ij} = \cdot 21\bar{\mathfrak{e}}_i \cdot 32\bar{\mathfrak{e}}_j$ are linear independent over field A_1. Therefore, we build the basis $\cdot 31\bar{\mathfrak{e}}$ of vector space A_3 over field A_1. Therefore, we can rewrite equation (3.5.3) as

(3.5.4) \[a_3 = a_j^i \cdot 31\bar{\mathfrak{e}}_{ij} = \begin{pmatrix} a_3^{11} & \ldots & a_3^{1m} \\ \vdots & \ddots & \vdots \\ a_3^{n1} & \ldots & a_3^{nm} \end{pmatrix} \begin{pmatrix} \cdot 31\bar{\mathfrak{e}}_{11} \\ \vdots \\ \cdot 31\bar{\mathfrak{e}}_{1m} \\ \cdot 31\bar{\mathfrak{e}}_{n1} \\ \vdots \\ \cdot 31\bar{\mathfrak{e}}_{nm} \end{pmatrix} \]

It is easy to see that we can identify vector $\cdot 31\bar{\mathfrak{e}}_{ij}$ with tensor product $\cdot 21\bar{\mathfrak{e}}_i \otimes \cdot 32\bar{\mathfrak{e}}_j$. \qed
CHAPTER 4

Geometry of Division Ring

4.1. Center of Division Ring

Definition 4.1.1. Let D be a ring.\(^{4.1}\) The set $Z(D)$ of elements $a \in D$ such that
\begin{equation}
ax = xa
\end{equation}
for all $x \in D$, is called center of ring D. □

Theorem 4.1.2. The center $Z(D)$ of ring D is subring of ring D.

Proof. The statement follows immediately from definition 4.1.1. □

Theorem 4.1.3. The center $Z(D)$ of division ring D is subfield of division ring D.

Proof. According to theorem 4.1.2 it is enough to verify that $a^{-1} \in Z(D)$ if $a \in Z(D)$. Let $a \in Z(D)$. Repeatedly using the equation (4.1.1) we get chain of equations
\begin{equation}
(aa^{-1})x = x = x(aa^{-1}) = axa^{-1}
\end{equation}
From (4.1.2) it follows
\begin{equation}
a^{-1}x = xa^{-1}
\end{equation}
Therefore, $a^{-1} \in Z(D)$. □

Definition 4.1.4. Let D be a ring with unit element e.\(^{4.2}\) The map
\begin{equation}
l : Z \rightarrow D
\end{equation}
such that $l(n) = ne$ is a homomorphism of rings, and its kernel is an ideal (n), generated by integer $n \geq 0$. We have canonical injective homomorphism
\begin{equation}
Z/nZ \rightarrow D
\end{equation}
which is an isomorphism between Z/nZ and subring of D. If nZ is prime ideal, then we have two cases.

- $n = 0$. D contains as subring a ring which isomorphic to Z, and which is often identified with Z. In that case, we say that D has characteristic 0.
- $n = p$ for some prime number p. D has characteristic p, and D contains an isomorphic image of $F_p = Z/pZ$. □

Theorem 4.1.5. Let D be ring of characteristic 0 and let $d \in D$. Then every integer $n \in Z$ commutes with d.\(^{4.3}\)

\(^{4.1}\)[1], page 89.
\(^{4.2}\)I made definition according to definition from [1], pages 89, 90.
Proof. We prove statement by induction. The statement is evident for \(n = 0 \) and \(n = 1 \). Let statement be true for \(n = k \). From chain of equation
\[
(k + 1)d = kd + d = dk + d = d(k + 1)
\]
evidence of statement for \(n = k + 1 \) follows. \(\square \)

Theorem 4.1.6. Let \(D \) be ring of characteristic 0. Then ring of integers \(\mathbb{Z} \) is subring of center \(\mathbb{Z}(D) \) of ring \(D \).

Proof. Corollary of theorem 4.1.5. \(\square \)

Let \(D \) be division ring. If \(D \) has characteristic 0, \(D \) contains as subfield an isomorphic image of the field \(\mathbb{Q} \) of rational numbers. If \(D \) has characteristic \(p \), \(D \) contains as subfield an isomorphic image of \(\mathbb{F}_p \). In either case, this subfield will be called the prime field. Since the prime field is the smallest subfield of \(D \) containing 1 and has no automorphism except identity, it is customary to identify it with \(\mathbb{Q} \) or \(\mathbb{F}_p \) as the case may be.

Theorem 4.1.7. Let \(D \) be division ring of characteristic 0 and let \(d \in D \). Then for any integer \(n \in \mathbb{Z} \)
\[
(4.1.3) \quad n^{-1}d = dn^{-1}
\]

Proof. According to theorem 4.1.5 following chain of equation is true
\[
(4.1.4) \quad n^{-1}dn = nn^{-1}d = d
\]
Let us multiply right and left sides of equation (4.1.4) by \(n^{-1} \). We get
\[
(4.1.5) \quad n^{-1}d = n^{-1}dn^{-1} = dn^{-1}
\]
(4.1.3) follows from (4.1.5). \(\square \)

Theorem 4.1.8. Let \(D \) be division ring of characteristic 0 and let \(d \in D \). Then every rational number \(p \in \mathbb{Q} \) commutes with \(d \).

Proof. Let us represent rational number \(p \in \mathbb{Q} \) as \(p = mn^{-1}, m, n \in \mathbb{Z} \). Statement of theorem follows from chain of equations
\[
pd = mn^{-1}d = n^{-1}dn = dmnn^{-1} = dp
\]
based on the statement of theorem 4.1.5 and equation (4.1.3). \(\square \)

Theorem 4.1.9. Let \(D \) be division ring of characteristic 0. Then field of rational numbers \(\mathbb{Q} \) is subfield of center \(\mathbb{Z}(D) \) of division ring \(D \).

Proof. Corollary of theorem 4.1.8. \(\square \)

4.2. Geometry of Division Ring over Field

We may consider division ring \(D \) as vector space over field \(F \subset \mathbb{Z}(D) \). We will use following conventions.

1. We do not use standard notation for vector when we consider element of division ring \(D \) considering it as vector over field \(F \). However we will use another color for index for notation of coordinates of element of division ring \(D \) as vector over field \(F \).
2. Because \(F \) is field, we can write all indexes on right side of root letter. However we will use the same conventions, that we use for division ring.
Let \(\mathcal{F} \) be basis of division ring \(D \) over field \(F \). Then we may present any element \(a \in D \) as
\[
(4.2.1) \quad a = a^i i e^i
\]
where \(a^i \in F \). When dimension of division ring \(D \) over field \(F \) infinite, then basis may be either countable, or its power is not less than power of continuum. If basis is countable, then we put constraints on coefficients \(a^i \) of expansion (4.2.1). If power of the set \(I \) is continuum, then we assume that there is measure on the set \(I \) and sum in expansion (4.2.1) is integral over this measure.

Since we defined product in the division ring \(D \), we consider the division ring as algebra over field \(F \). For elements of basis we assume
\[
(4.2.2) \quad i e^i j e^j = i j B^k k e^k
\]
Coefficients \(i j B^k \) of expansion (4.2.2) are called \textit{structural constants of division ring} \(D \) over field \(F \). From equations (4.2.1), (4.2.2), it follows
\[
(4.2.3) \quad ab = a^i b^j i j B^k k e^k
\]
From equation (4.2.3) it follows that
\[
(4.2.4) \quad (ab)c = (ab)^i c^j i j B^k k e^k = a^m b^n m n B^i i j B^k k e^k
\]
\[
(4.2.5) \quad a(b c) = a^i (b c)^j i j B^k k e^k = a^i b^m c^n m n B^i i j B^k k e^k
\]
From associativity of product
\[
(a b) c = a(b c)
\]
and equations (4.2.4) and (4.2.5) it follows that
\[
(4.2.6) \quad a^m b^n m n B^i i j B^k k e^k = a^i b^m c^n m n B^i i j B^k k e^k
\]
Because vectors \(a, b, c \) are arbitrary, and vectors \(k e^k \) are linear independent, then from equation (4.2.6) it follows that
\[
(4.2.7) \quad i m B^j j n B^k = m n B^j i j B^k
\]
\textbf{Theorem 4.2.1.} \textit{Coordinates} \(a^j \) \textit{of vector} \(a \) \textit{are tensor}
\[
(4.2.8) \quad a^j = a^n i A^n j
\]
\textbf{Proof.} Let \(\mathcal{F}' \) be another basis. Let
\[
(4.2.9) \quad i e^i = i A^n j e^n
\]
be transformation, mapping basis \(\mathcal{F} \) into basis \(\mathcal{F}' \). Because vector \(a \) does not change, then
\[
(4.2.10) \quad a = a^n i e^n = a^n i A^n j e^n
\]
From equations (4.2.9) and (4.2.10) it follows that
\[
(4.2.11) \quad a^n j e^n = a^n i e^n = a^n i A^n j e^n
\]
Because vectors \(j e^n \) are linear independent, then equation (4.2.8) follows from equation (4.2.11). Therefore, coordinates of vector are tensor. \(\square \)

\textbf{Theorem 4.2.2.} \textit{Structural constants of division ring} \(D \) \textit{over field} \(F \) \textit{are tensor}
\[
(4.2.12) \quad n A^{-1} i m A^{-1} j i j B^k k A^l = m n B^l
\]
PROOF. Let us consider similarly the transformation of product. Equation (4.2.3) has form
\[(4.2.13) \quad ab = a^i b^j i_j B^k_{k\ell} \bar{v}^\ell\]
relative to basis \bar{v}'. Let us substitute (4.2.8) and (4.2.9) into (4.2.13). We get
\[(4.2.14) \quad ab = a^n b^m A^{-1}_i b^m_{m} A^{-1}_j i_j B^k_{k\ell} A^l_{l\ell} \bar{v}^\ell\]
From (4.2.3) and (4.2.14) it follows that
\[(4.2.15) \quad a^n b^m A^{-1}_i b^m_{m} A^{-1}_j i_j B^k_{k\ell} A^l_{l\ell} \bar{v}^\ell = a^n b^m A^{-1}_i b^m_{m} B^l_{l\ell} \bar{v}^\ell\]
Because vectors a and b are arbitrary, and vectors \bar{v} are linear independent, then equation (4.2.12) follows from equation (4.2.15). Therefore, structural constants are tensor. □
CHAPTER 5

Quadratic Map of Division Ring

5.1. Bilinear Map of Division Ring

Theorem 5.1.1. Let D be division ring of characteristic 0. Let F be field which is subring of center of division ring D. Let \mathcal{B} be basis in division ring D over field F. Standard representation over field F of bilinear map of division ring has form

$$f(a, b) = (1)f_{ij}^{jk} a^i b^j k + (2)f_{ik}^{jk} a^i b^j c + c^k e$$

Expression $(1)f_{ij}^{jk}$ in equation (5.1.1) is called standard component over field F of bilinear map f.

Proof. The statement of theorem is corollary of theorem [7]-9.3.6. Here we have transpositions

$$\sigma_1 = \begin{pmatrix} a & b \\ a & b \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

Theorem 5.1.2. Let field F be subring of center $Z(D)$ of division ring D. Let \mathcal{B}_i be basis of division ring D over field F. We can represent bilinear function $g : D \times D \to D$ as D-valued bilinear form over field F

$$g(a, b) = a^i b^j i j g$$

where

$$a = a^i i \bar{e}$$
$$b = b^j j \bar{e}$$

and values ijg are coordinates of D-valued covariant tensor over field F.

Proof. The statement of theorem is corollary of theorem [7]-9.3.7.

The matrix $G = |ijg|$ is called matrix of bilinear function. If matrix G is nonsingular, then bilinear function g is called nonsingular.

Theorem 5.1.3. Bilinear map $g : D \times D \to D$

is symmetric iff the matrix G is symmetric

$$ijg = ji g$$
Proof. The statement of theorem is corollary of theorem [7]-9.3.8. □

Theorem 5.1.4. Bilinear map

\[g : D \times D \to D \]

is skew symmetric iff the matrix \(G \) is skew symmetric

\[i_j g = -j_i g \]

Proof. The statement of theorem is corollary of theorem [7]-9.3.9. □

Theorem 5.1.5. Components of bilinear map

\[g : D \times D \to D \]

and its matrix over field \(F \) satisfy to equation

(5.1.5) \(pq g = (1)_{ij k} s_j B^l _t q B^t _k B^r _r + (2)_{ij k} g^{s j} B^l _t B^r _t B^r _t B^r _r \) \(\cdot \) \(c \)

(5.1.6) \(pq g^r = (1)_{ij k} g^{i j k} s_j B^l _t q B^t _k B^r _r + (2)_{ij k} g^{i j k} s_j B^l _t B^r _t B^r _r \)

Proof. The statement of theorem is corollary of theorem [7]-9.3.10. To prove statement it is enough to substitute (5.1.2) into equations [7]-9.3.14, [7]-9.3.15. □

Theorem 5.1.6. Suppose bilinear map

\[g : D \times D \to D \]

has matrix \(G = \| i_j g \| \). Then there exists bilinear map

\[g' : D \times D \to D \]

with matrix \(G' = \| i_j g' \|, i_j g' = j_i g \).

Proof. Assume

(5.1.7) \((1)_{ij k} g^{i j k} = (2)_{ij k} g^{i j k} = (2)_{ij k} g^{i j k} = (1)_{ij k} g^{i j k} \)

From equations (5.1.6), (5.1.7) it follows that

\[
\begin{align*}
pq g^r &= (1)_{ij k} g^{i j k} s_j B^l _t q B^t _k B^r _r + (2)_{ij k} g^{i j k} s_j B^l _t B^r _t B^r _r B^r _r \\
&= (2)_{ij k} g^{i j k} s_j B^l _t B^r _t B^r _t + (1)_{ij k} g^{i j k} s_j B^l _t B^r _t B^r _r B^r _r \\
&= pq g^r
\end{align*}
\]

□

5.2. Quadratic Map of Division Ring

Definition 5.2.1. Let \(D \) be division ring. The map

\[h : D \to R \]

is called **quadratic**, if there exists bilinear map

\[g : D \times D \to D \]

such that

\[h(a) = g(a, a) \]

Bilinear map \(g \) is called map associated with the map \(h \). □
For given map \(h \) the map \(g \) is defined ambiguously. However according to theorem 5.1.6, we always can assume that bilinear map \(g \) is symmetric
\[
g(a, b) = g(b, a)
\]
Indeed, if bilinear map \(g_1 \), associated with map \(h \), is not symmetric, then we assume
\[
g(a, b) = \frac{g_1(a, b) + g_1(b, a)}{2}
\]
Because bilinear map is homogeneous of degree 1 over field \(R \) with respect to each variable, quadratic map is homogeneous of degree 2 over field \(R \).

Theorem 5.2.2. Let \(D \) be division ring of characteristic 0. Let \(F \) be field which is subring of center of division ring \(D \). Let \(\mathbf{p} \) be basis in division ring \(D \) over field \(F \). Standard representation of quadratic map of division ring over field \(F \) has form

\[
(5.2.1) \quad f(a) = f^{ijk} \mathbf{p}_i a^j \mathbf{p}_k
\]

Expression \(f^{ijk} \) in equation (5.2.1) is called **standard component of quadratic map** \(f \) over field \(F \).

Proof. The statement of theorem is corollary of theorem 5.1.1. \(\square \)

Theorem 5.2.3. Let field \(F \) be subring of center \(Z(D) \) of division ring \(D \). Let \(\mathbf{p} \) be basis of division ring \(D \) over field \(F \). We can represent quadratic map \(f \) as \(D \)-valued quadratic form over field \(F \)

\[
(5.2.2) \quad f(a) = a^i a^j i_j f
\]

where
\[
\mathbf{p} = a^i \mathbf{p}_i
\]

\[
(5.2.3) \quad i_j f = g(\mathbf{p}_i, \mathbf{p}_j)
\]

and \(g \) is associated bilinear map. Values \(i_j f \) are coordinates of \(D \)-valued covariant tensor over field \(F \).

Proof. For selected bilinear map \(g \) associated to map \(f \), the statement of theorem is corollary of theorem 5.1.2. We need to prove independence of coordinates of quadratic map from choice of an associated map \(g \).

Assume, \(g_1, g_2 \) are bilinear maps associated to the map \(f \). Than

\[
(5.2.4) \quad i_i f_1 = g_1(\mathbf{p}_i, \mathbf{p}_j) = g_2(\mathbf{p}_i, \mathbf{p}_j) = i_i f_2
\]

For arbitrary \(a \in D \),
\[
a^i a^j i_j f_1 = a^i a^j i_j f_2
\]

If for given \(i, j \) we consider \(a \in D \) such that \(a_i = a_j = 1 \), then we get

\[
(5.2.5) \quad i_i f_1 + i_j f_1 + j_i f_1 + j_j f_1 = i_i f_2 + i_j f_2 + j_i f_2 + j_j f_2
\]

From equations (5.2.4), (5.2.5) it follows that
\[
i_i f_1 + j_i f_1 = i_j f_2 + j_i f_2
\]

Therefore, if associated bilinear map is symmetric, then this map is determined unique. \(\square \)

The matrix \(F = [i_j f] \) is called **matrix of quadratic map**. If the matrix \(F \) is regular, then the quadratic map \(f \) is called **regular**. The rank of the matrix \(F \) is called **rank of quadratic map** \(f \).
Theorem 5.2.4. The quadratic over field F map

$$f : D \to D$$

is defined as map over division ring iff

$$(5.2.6) \quad pqf = f_{ijk}^ap_iB^a_{sj}B^l_{iq}B^r_{tk}r\overline{p}$$

$$(5.2.7) \quad pqf_{r} = f_{ijk}^ap_iB^a_{sj}B^l_{iq}B^r_{tk}r\overline{p}$$

Proof. Let us substitute $\overline{a} = a^i\overline{p}$ in equation (5.2.1). Than equation (5.2.1) gets form

$$f(a) = f_{ijk}^{pq}p_i^a\overline{p}_j^p\overline{q}_k^q\overline{r}_l^r$$

$$= a^p a^q f_{ijk}^{pq}p_i^p\overline{p}_j^p\overline{q}_q^q\overline{r}_k^k$$

$$= a^p a^q f_{ijk}^{pq}p_i^p j_j^p k_k^k$$

Equation (5.2.6) follows from comparison of equations (5.2.8) and (5.2.2).

From theorem 5.2.3, it follows that coordinates pqf form tensor. We described the structure of acceptable transformations in theorem [7].

Theorem 5.2.5. Let field F be subring of center $Z(D)$ of division ring D. Let \overline{a} be basis of division ring D over field F. Let ijB^k be structural constants of division ring D over field F. If

$$\det(a^i (ijB^k + jiB^k)) \neq 0$$

then equation

$$ax + xa = b$$

has the unique solution.

If determinant equal 0, then F-linear dependence of vector b from vectors $a^i (ijB^k + jiB^k)k\overline{p}$ is condition of existence of solution. In this case, equation (5.2.9) has infinitely many solutions. Otherwise equation does not have solution.

Proof. From equations (4.2.3), (5.2.9), it follows that

$$a^i x^j (ijB^k + jiB^k)k\overline{p} + x^i a^j (ijB^k + jiB^k)k\overline{p} = b^k k\overline{p}$$

Since vectors $k\overline{p}$ are linear independent, then from equation (5.2.10) it follows that coordinates x^j satisfy to the system of linear equations

$$x^j a^i (ijB^k + jiB^k) = b^k$$

Therefore, if determinant of the system (5.2.11) does not equal 0, then the system has unique solution.

Similarly, if determinant equal 0, then equality of the rank of the extended matrix and the rank of the matrix of the system of linear equations is the condition of existance of solution.

Theorem 5.2.6. Let field F be subring of center $Z(D)$ of division ring D. There exists a quadratic map f such that we can find a basis \overline{p} over field F such that map f is represented as sum of squares.
Proof. Reduction of quadratic form to diagonal representation is done the same way as is done in [4], p. 169 - 172. Considered transformations of variables are associated with the corresponding transformation of basis. We are not concerned in whether these transformations of basis are acceptable. The reason is that the basis chosen initially may not be connected with the canonical basis by acceptable transformation. But for us it is important that the final presentation of mapping f should be acceptable.

We will prove the statement by induction on number of variables in representation of quadratic map. For this we write the quadratic map f in the form of map of n variables $a^1, ..., a^n$

\[(5.2.12)\]

\[f(a) = f(a^1, ..., a^n) = a^i a^j \delta_{ij} f\]

Representation of quadratic map in the form \[(5.2.12)\] is called **quadratic form**.

The statement is evident, when quadratic form depends on one variable a^1, because in this case the quadratic form has form

\[f(a^1) = (a^1)^2 \delta_{11} f\]

Assume, the statement of the theorem is true for quadratic form of $n - 1$ variables.

(1) Let the quadratic form holds squares of variables. Without loss of generality, assume $\delta_{11} f \neq 0$. Let us consider the map

\[(5.2.13)\]

\[f_1(a^1, ..., a^n) = f(a^1, ..., a^n) - \delta_{11}^{-1} (a^j \delta_{jh})^2\]

We select values δ_{jh} so as to satisfy the equation

\[(5.2.14)\]

\[2 \delta_{1j} f = \delta_{jh} + \delta_{hj} \delta_{1h}\]

When $j = 1$, from equation \[(5.2.14)\] it follows that

\[(5.2.15)\]

\[\delta_{1h} = \delta_{11} f\]

When $j > 1$, from equations \[(5.2.14), (5.2.15)\] it follows that

\[(5.2.16)\]

\[2 \delta_{1j} f = \delta_{jh} + \delta_{hj} \delta_{1j} f\]

From theorem \[5.2.5\] it follows that if

\[(5.2.17)\]

\[\text{det}(\delta_{11} f^i (\delta_{ij} B^k + \delta_{jk} B^i)) \neq 0\]

then equation \[(5.2.16)\] has unique solution. We assume that condition \[(5.2.17)\] is satisfied and consider change of variables

\[b^1 = a^j \delta_{jh}\]

\[b^i = a^i \quad i > 1\]

Therefore, the map $f_1(a^1, ..., a^n)$ does not depend on b^1. According to definition \[(5.2.13)\], we represented the map $f(a^1, ..., a^n)$ as sum of square of variable b^1 and quadratic map that does not depend on b^1.

\[f(a^1, ..., a^n) = \delta_{11}^{-1} (b^1)^2 + f_1(b^2, ..., b^n)\]

Since form f_1 depends on $n - 1$ variable, we can find a transformation of variables that leads this form to the sum of squares of variables.
If $11f = \ldots = nnf = 0$, then we need an additional linear transformation that lead to appearance of squares of variables. Assume $12f \neq 0$. Let us consider the linear transformation

\[
\begin{align*}
a^1 &= b^1 - b^2 \\
a^2 &= b^1 + b^2 \\
a^i &= b^i \quad i > 2
\end{align*}
\]

As a result of this transformation term

\[2a^1a^2 12f\]

gets form

\[2(b^1)^2 12f - 2(b^2)^2 12f\]

We got quadratic form considered in case (1).

If all coefficients of the quadratic form in canonical representation are real, then $f(a) \in R$ for any $a \in D$.

Definition 5.2.7. Let D be division ring. Quadratic map

\[f : D \to D\]

is called **positive definite** when

\[f(a) \in R\]

for any $a \in D$ and following condition is true

\[f(a) \geq 0\]

\[f(a) = 0 = > a = 0\]

Positive definite quadratic map f is called **Euclidean metric on division ring** D. Symmetric associative bilinear map g is called **Euclidean scalar product on division ring** D.

If quadratic map f is not positive definite, then this map is called **pseudo-Euclidean metric on division ring** D. Symmetric associative bilinear map g is called **pseudo-Euclidean scalar product on division ring** D. Let \bar{e} be the basis such that form f is presented as sum of squares in this basis. There exist vectors of basis \bar{e}_i such that $f(\bar{e}_i) < 0$. For arbitrary $a = a^i \bar{e}_i$ let us define operation of conjugation using the equation

\[a^* = \text{sign}(f(\bar{e}_i))a^i \bar{e}_i\]

Expression a^* is called **hermitian conjugation**.

Let us consider biadditive map

\[g^*(a, b) = g(a, b^*)\]

\[f^*(a) = g^*(a, a)\]

The map $f^*(a)$ is positive definite and is called **hermitian metric on division ring** D. Symmetric associative bilinear map g^* is called **hermitian scalar product on division ring** D.

If the map

\[a \to a^*\]

is linear, then hermitian scalar product coincides with Euclidean scalar product. Similar statement is true for metric.
CHAPTER 6

D-Affine Space

6.1. D-Affine Space

Definition 6.1.1. Let us consider a set of points \mathcal{A} and a set of vectors \mathcal{A}. The set \mathcal{A} satisfies the following axioms.

1. There exists at least one point A.
2. One and only one vector is in correspondence to any tuple of points (A, B). We denote this vector as \overrightarrow{AB}.
3. For any point A and any vector \overrightarrow{a} there exists one and only one point B such that $\overrightarrow{AB} = \overrightarrow{a}$. We will use notation $B = A + \overrightarrow{a}$.

(4) (Axiom of parallelogram.) If $\overrightarrow{AB} = \overrightarrow{CD}$, then $\overrightarrow{AC} = \overrightarrow{BD}$.

Definition 6.1.2. Let \overrightarrow{a} and \overrightarrow{b} be vectors. Let $A \in \mathcal{A}$ be arbitrary point. Let $B \in \mathcal{A}$, $B = A + \overrightarrow{a}$. Let $C \in \mathcal{A}$, $C = B + \overrightarrow{b}$. Vector \overrightarrow{AC} is called sum of vectors \overrightarrow{a} and \overrightarrow{b}.

\[\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{AC} \]

Theorem 6.1.3. Vector \overrightarrow{AA} is zero with respect to addition and does not depend on point A. Vector \overrightarrow{AA} is called zero-vector and we assume $\overrightarrow{AA} = \overrightarrow{0}$.

Proof. We can write rule of addition (6.1.2) in form of equation

\[\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \]

If $B = C$, then from equation (6.1.3) it follows that

\[\overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} \]

If $C = A$, $B = D$, then from axiom (4) of definition 6.1.1 it follows that

\[\overrightarrow{AA} = \overrightarrow{BB} \]

The statement of theorem follows from equations (6.1.4) and (6.1.5).

6.1 I wrote definitions and theorems in this section according to definition of affine space in [3], pp. 86 - 93.
6.2 [13], p. 9.
Theorem 6.1.4. Let \(\overrightarrow{\alpha} = \overrightarrow{AB} \). Then

\[
\overrightarrow{BA} = -\overrightarrow{\alpha}
\]

and this equation does not depend on a point \(A \).

Proof. From equation (6.1.3) it follows that

\[
\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}
\]

Equation (6.1.6) follows from equation (6.1.7). Applying axiom (4) from definition 6.1.1 to equation \(\overrightarrow{AB} = \overrightarrow{CD} \) we get \(\overrightarrow{AC} = \overrightarrow{BD} \), or (this is equivalent) \(\overrightarrow{BD} = \overrightarrow{AC} \).

Based on axiom (4) of definition 6.1.1 again \(\overrightarrow{BA} = \overrightarrow{DC} \) follows. Therefore, equation (6.1.6) does not depend on point \(A \). \(\square \)

Theorem 6.1.5. Sum of vectors \(\overrightarrow{\alpha} \) and \(\overrightarrow{\beta} \) does not depend on point \(A \).

Proof. Let \(\overrightarrow{\alpha} = \overrightarrow{AB} = \overrightarrow{A'B'} \). Let \(\overrightarrow{\beta} = \overrightarrow{BC} = \overrightarrow{B'C'} \). Let

\[
\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}
\]

\[
\overrightarrow{A'B'} + \overrightarrow{B'C'} = \overrightarrow{A'C'}
\]

According to axiom (4) of definition 6.1.1

\[
\overrightarrow{A'A} = \overrightarrow{B'B} = \overrightarrow{C'C}
\]

Applying axiom (4) of definition 6.1.1 to to outermost members of equation (6.1.8), we get

\[
\overrightarrow{A'C'} = \overrightarrow{AC}
\]

From equation (6.1.9) the statement of theorem follows. \(\square \)

Theorem 6.1.6. Sum of vectors is associative.

Proof. Let \(\overrightarrow{\alpha} = \overrightarrow{AB}, \overrightarrow{\beta} = \overrightarrow{BC}, \overrightarrow{\gamma} = \overrightarrow{CD} \). From equation

\[
\overrightarrow{\alpha} + \overrightarrow{\beta} = \overrightarrow{AC}
\]

\[
\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}
\]

it follows that

\[
(\overrightarrow{\alpha} + \overrightarrow{\beta}) + \overrightarrow{\gamma} = \overrightarrow{AD}
\]

\[
\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}
\]

From equation

\[
\overrightarrow{\beta} + \overrightarrow{\gamma} = \overrightarrow{BD}
\]

\[
\overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BD}
\]

it follows that

\[
\overrightarrow{\alpha} + (\overrightarrow{\beta} + \overrightarrow{\gamma}) = \overrightarrow{AD}
\]

\[
\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}
\]

Associativity of sum follows from comparison of equations (6.1.10) and (6.1.11). \(\square \)

Theorem 6.1.7. The structure of Abelian group is defined on the set \(\overrightarrow{A} \).
Proof. From theorems 6.1.3, 6.1.4, 6.1.5, 6.1.6 it follows that sum of vectors determines group.

Let \overrightarrow{AB}, \overrightarrow{BC}.

(6.1.12) $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

According to axiom (3) of definition 6.1.1 there exists the point D such that $\overrightarrow{BC} = \overrightarrow{AD} = \overrightarrow{BC}$. According to axiom (4) of definition 6.1.1 $\overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{AB}$. According to definition of sum of vectors

(6.1.13) $\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$

commutativity of sum follows from comparison of equations (6.1.12) and (6.1.13).

\[\square\]

Theorem 6.1.8. The map

(6.1.14) \(\overrightarrow{A} \rightarrow \overrightarrow{A}^* \)

defined by equation (6.1.1), is an effective representation of Abelian group \overrightarrow{A}.

Proof. axiom (4) of definition 6.1.1 determines the map (6.1.14). From theorem 6.1.5, it follows that the map (6.1.14) is a representation. Efficiency of the representation follows from theorem 6.1.3 \[\square\]

Definition 6.2.1. D^*-affine basis $(\overrightarrow{e}, O) = (\overrightarrow{e}, O)$ is set of D^*-linear independent vectors $\overrightarrow{e}_i = \overrightarrow{OA}_i = (e^{i}_1, ..., e^{i}_n)$ with common start point $O = (O^1, ..., O^n)$.

Definition 6.2.2. D^*-Basis manifold $\mathcal{B}(D^*, A_n)$ of affine space is set of D^*-bases of this space.
We can represent the map of basis \((\mathbf{e}, O)\) into basis \((\mathbf{e}', O')\) as product of map of basis \((\mathbf{e}, O)\) into basis \((\mathbf{e}, O')\) and \(D^*\)-linear map of basis \((\mathbf{e}, O')\) into basis \((\mathbf{e}', O')\). Therefore, \(D^*\)-transformation has form
\[
\mathbf{e}' = A^* \mathbf{e}
\]
\[
O' = O + \overrightarrow{OO'}
\]
Introducing coordinates \(A^1, \ldots, A^n\) of a point \(A \in \mathcal{A}_n\) as coordinates of vector \(\overrightarrow{OA}\) relative to basis \(\mathbf{e}\) we can write a linear transformation as
\[
A'^i = A'^j P^i + R^i \quad \text{rank} \cdot P = n
\]
\[
A'^* \mathbf{e} = (A^* P + R)^* \mathbf{e}
\]
Vector \((R^1, \ldots, R^n)\) expresses displacement in affine space.

Theorem 6.2.3. Set of transformations (6.2.2) is the group Lie which we denote as \(GL(\mathcal{A}_n)\) and call affine transformation group.

Proof. Let us consider transformations \((P, R)\) and \((Q, S)\). Product of these transformations has the form
\[
A'^i = A'^j Q^j + S^i
\]
\[
A'' = (A'^* Q + S)^* \mathbf{e}
\]
\[
= (A^k P^j + R^j) Q^i + S^i
\]
\[
= (A^k P^i + R^j) Q^i + S^i
\]
Therefore, we can write product of transformations \((P, R)\) and \((Q, S)\) in form
\[
(P, R)^* (Q, S) = (P^* Q, R^* Q + S)
\]
An active transformation is called affine transformation. A passive transformation is called quasi affine transformation.

If we do not concern about starting point of a vector we see little different type of space which we call central affine space \(CA_n\). If we assume that the start point of vector is origin \(O\) of coordinate system in space then we can identify any point \(A \in CA_n\) with the vector \(a = \overrightarrow{OA}\). Now transformation is simply map
\[
a'^i = P^j a^j \quad \det P \neq 0
\]
and such transformations build up Lie group \(GL_n\).

Definition 6.2.4. Central affine basis \(\mathbf{f} = (\mathbf{f}_i)\) is set of linearly independent vectors \(\mathbf{f}_i\).

Definition 6.2.5. Basis manifold \(B(\mathcal{A}_n)\) of central affine space is set of bases of this space.
CHAPTER 7

Euclidean Space

7.1. Euclidean Space

Let \(\mathbb{V} \) be \(D \)-vector space. We can present bilinear map
\[
g : \mathbb{V} \times \mathbb{V} \to D
\]
as
\[
g(\mathbb{v}, \mathbb{w}) = g(v^i, w^j)
\]
where \(ijg \) are bilinear maps
\[
ijg : D^2 \to D
\]

Definition 7.1.1. Bilinear map
\[
g : \mathbb{V} \times \mathbb{V} \to D
\]
is called **symmetric** when
\[
g(\mathbb{w}, \mathbb{v}) = g(\mathbb{v}, \mathbb{w})
\]

Definition 7.1.2. Bilinear map
\[
g : \mathbb{V} \times \mathbb{V} \to D
\]
is called **Euclidean scalar product** in \(D \)-vector space \(\mathbb{V} \), if \(ii \) is Euclidean scalar product in division ring \(D \) and \(ijg = 0 \) for \(i \neq j \).

Definition 7.1.3. Bilinear map
\[
g : \mathbb{V} \times \mathbb{V} \to D
\]
is called **pseudo-Euclidean scalar product** in \(D \)-vector space \(\mathbb{V} \), if \(ii \) is pseudo-Euclidean scalar product in division ring \(D \) and \(ijg = 0 \) for \(i \neq j \).

If there exists hermitian conjugation in the division ring \(D \), then we can extend this operation to \(D \)-vector space \(\mathbb{V} \), namely for given vector \(\mathbb{v} = v^i \ i \mathbb{e} \) we define **hermitian conjugated vector**
\[
\mathbb{v}^* = (v^i)^* \ i \mathbb{e}
\]

Definition 7.1.4. Bilinear map
\[
g : \mathbb{V} \times \mathbb{V} \to D
\]
is called **hermitian scalar product** in \(D \)-vector space \(\mathbb{V} \), if \(ii \) is hermitian scalar product in division ring \(D \) and \(ijg = 0 \) for \(i \neq j \).
7. Euclidean Space

7.2. Basis in Euclidean Space

When we introduce a metric in a central affine space we get a new geometry because we can measure a distance and a length of vector. If a metric is positive defined we call the space Euclid \mathcal{E}_n otherwise we call the space pseudo Euclid \mathcal{E}_{nm}.

Transformations that preserve length form Lie group $SO(n)$ for Euclid space and Lie group $SO(n, m)$ for pseudo Euclid space where n and m number of positive and negative terms in metrics.

Definition 7.2.1. Orthonormal basis $\overline{\mathcal{E}} = (\overline{\tau}_i)$ is set of linearly independent vectors $\overline{\tau}_i$ such that length of each vector is 1 and different vectors are orthogonal. □

Definition 7.2.2. Basis manifold $\mathcal{B}(\mathcal{E}_n)$ of Euclid space is set of orthonormal bases of this space. □

A active transformation is called movement. An passive transformation is called quasi movement.
CHAPTER 8

Calculus in D-Affine Space

8.1. Curvilinear Coordinates in D-Affine Space

Let \vec{A} be D-affine space over continuous division ring D.\footnote{In this section, I explore curvilinear coordinates the way like it was done in \cite{3}, part V.}

Let $(\vec{e}, ..., \vec{e}, O)$ be D^{n*}-basis of affine space. For each i, $i = 1$, ..., $i = n$, we define map\footnote{There is no sum over index i in equation (8.1.1).}

\begin{equation}
\overline{x}_i : D \to \vec{A} \quad v^i \to O + v^i \vec{e}
\end{equation}

For arbitrary point $M(v^i)$ we can write vector \overrightarrow{OM} in form of linear combination

$\overrightarrow{OM} = \overline{x}_i(v^i)$

We consider the set of coordinates of affine space \vec{A} as homeomorphism

$f : \vec{A} \to D^n$

If homeomorphism

$f : \vec{A} \to D^n$

is an arbitrary map of an open set of D-affine space into an open subset of the set D^n, then we will say that image of point A under map f is \textbf{curvilinear coordinates of point} A, and map f is called the system of coordinates. If there are two systems of coordinates, f_1 and f_2, then map $f_1 f_2^{-1}$ is homeomorphism

$g : D^n \to D^n$

$x'^i = x'^i(x^1, ..., x^n)$

and is called coordinate transformation. We can consider as particular case the coordinate transformation caused by affine transformation.

\textbf{Remark 8.1.1.} Let us consider a surface S in affine space defined by equation

$f : D^n \to D$

$f(x^1, ..., x^n) = 0$

Let $M(x^i)$ be arbitrary point. A small change of coordinates of the point

$x'^i = x^i + \Delta x^i$

leads to a small change of function

$\Delta f = \partial f(\overline{x})(\Delta \overline{x})$
In particular, if neighboring points \(M(x^i) \) and \(L(x^i + \Delta x^i) \) belong to the same surface, then vector of increment \(\overrightarrow{ML} = \Delta \tau \) satisfies to differential equation
\[
\partial f(\tau)(\Delta \tau) = 0
\]
and is called vector tangent to surface \(S \).

Since the Gâteaux derivative of map \(f \) in point \(X \) is a linear map, then this derivative is 1-D-form. Let us consider the set of 1-D-forms
\[
 dx^i = \frac{\partial x^i}{\partial \tau}
\]
It is evident that
\[
dx^i(\tau) = \frac{\partial x^i}{\partial \tau}(\tau) = (x^i + a^i) - x^i = a^i
\]
We can represent the Gâteaux derivative of arbitrary function in form
\[
 \frac{\partial f(\tau)}{\partial \tau} = \frac{\partial f(\tau)}{\partial x^i} \left(\frac{\partial x^i}{\partial \tau} \right) = \frac{\partial f(\tau)}{\partial x^i}(dx^i)
\]
(8.1.2)
\[
 \frac{\partial f(\tau)}{\partial \tau}(\tau) = \frac{\partial f(\tau)}{\partial x^i} \left(\frac{\partial x^i}{\partial \tau} \right) = \frac{\partial f(\tau)}{\partial x^i}(dx^i(\tau)) = \frac{\partial f(\tau)}{\partial x^i}(a^i)
\]
Therefore, the Gâteaux derivative of function \(f \) is linear combination of 1-D-forms \(dx^i \). Let
\[
g : D^n \to D^n
\]
be coordinate transformation of affine space. From chain rule (theorem [10]-6.2.12), it follows
\[
dx^i = \frac{\partial x^i}{\partial \tau} = \frac{\partial x^i}{\partial \tau} \left(\frac{\partial x^i}{\partial \tau} \right) = \frac{\partial x^i}{\partial \tau}(dx^i)
\]
(8.1.3)
The coordinate line is a curve, along which changes only one coordinate \(x^i \). We consider the coordinate line as a curve with a tangent vector
\[
 \tau_i(\tau)(v) = \frac{\partial \tau}{\partial x^i}(v)
\]
Let the point \(O \) has coordinates \(\tau \). The set of vectors \(\tau_1, ..., \tau_n \) is the basis of affine space
\[
(\tau_1(\tau), ..., \tau_n(\tau), \tau)
\]
(8.1.4)
\[
\nu = \tau_i(\tau)(v^i)
\]
Let
\[
g : D^n \to D^n
\]
be coordinate transformation of affine space. From chain rule (theorem [10]-6.2.12), it follows
\[
 \tau_i(\nu)(v^i) = \frac{\partial \tau}{\partial x^i}(v^i) = \frac{\partial \tau}{\partial x^i} \left(\frac{\partial x^i}{\partial \tau} \right) = \tau_j(\tau) \left(\frac{\partial x^j}{\partial x^i} \right) (v^i)
\]
(8.1.5)
The rule of transformation of coordinates of vector
\[
v^j = \frac{\partial x^j}{\partial x^i}(v^i)
\]
follows from comparison of equations (8.1.4), (8.1.5).
Example 8.1.2. Let us consider linear coordinate transformation

\begin{align}
 x'^1 &= ax^1 + bx^2 \\
 x'^2 &= cx^1 + dx^2
\end{align}

Then

\begin{align}
 x^1 &= x'^2 - c x^2 \\
 x'^1 &= a(x'^2 - x^2) + bx^2 c = ax^2 b + ax^2 (c - b)
\end{align}

From equations (8.1.8), (8.1.9), it follows inverse transformation

\begin{align}
 x^2 &= a^{-1} x'^1 (c - b)^{-1} - x'^2 (c - b)^{-1} b \\
 x'^1 &= x'^2 - a^{-1} x'^1 (c - b)^{-1} + x'^2 (c - b)^{-1}
\end{align}

From equations (8.1.7), it follows rule of transformation of 1-D-forms

\begin{align}
 dx'^1 &= adx^1 b + adx^2 c \\
 dx'^2 &= dx^1 + dx^2
\end{align}

Rule of transformation of vector

\begin{align}
 v^1 &= - a^{-1} v'^1 (c - b)^{-1} + v'^2 (1 + b(c - b)^{-1}) \\
 v'^1 &= a^{-1} v'^1 (c - b)^{-1} - v'^2 b(c - b)^{-1}
\end{align}

follows from equations (8.1.6), (8.1.10).

8.2. Paralel Transfer

Let a vector \(\overrightarrow{v} \) have coordinates \(v_j^0 \) in the point \(M_0 \). Let the vector \(\overrightarrow{M_0M_1} \) be the vector of infinitesimal displacement. Let \(N_0 = M_0 + \overrightarrow{v} \), \(N_1 = M_1 + \overrightarrow{v} \). According to axiom 3 of definition 6.11 coordinates of vectors \(M_0 N_0 \) and \(M_1 N_1 \) equal. How this construction will look like in curvilinear coordinates?

We assume that functions \(v^i(\overrightarrow{v}) \) are continuously differentiable in the Gâteaux sense. Therefore, vectors of the local basis \(\overrightarrow{\pi}_i \) and coordinates of the vector \(v^i \) are functions continuously differentiable in the Gâteaux sense. The equation

\begin{align}
 \overrightarrow{v} = \overrightarrow{\pi}_i(\overrightarrow{v})(v^i(\overrightarrow{v}))
\end{align}

is true at the point \(M(\overrightarrow{v}) \). Since \(\overrightarrow{v} = \text{const} \), then differentiating the equation (8.2.1) with respect to \(\overrightarrow{v} \) we get

\begin{align}
 0 &= \frac{\partial \overrightarrow{\pi}_i(\overrightarrow{v})}{\partial \overrightarrow{v}} (v^i(\overrightarrow{v})) + \overrightarrow{\pi}_i(\overrightarrow{v}) \left(\frac{\partial v^i}{\partial \overrightarrow{v}}(\overrightarrow{v}) \right)
\end{align}

From equations (8.1.2), (8.2.2), it follows

\begin{align}
 0 &= \frac{\partial \overrightarrow{\pi}_i(\overrightarrow{v})}{\partial x^j} (v^i(\overrightarrow{a}^j)) + \overrightarrow{\pi}_i(\overrightarrow{v}) \left(\frac{\partial v^i}{\partial x^j}(\overrightarrow{a}^j) \right)
\end{align}

The expression \(\frac{\partial \overrightarrow{\pi}_i(\overrightarrow{v})}{\partial x^j} (v^i(\overrightarrow{a}^j)) \) is a vector of affine space and, in the local basis \(\overrightarrow{\pi}_i(\overrightarrow{v}) \), this expression has expansion

\begin{align}
 \frac{\partial \overrightarrow{\pi}_i(\overrightarrow{v})}{\partial x^j} (v^i(\overrightarrow{a}^j)) = \overrightarrow{\pi}_k(\overrightarrow{v}) (\Gamma^i_{jk}(v^i(\overrightarrow{a}^j)))
\end{align}
where Γ^k_{ji} are bilinear maps that we call connection coefficients in D-affine space. From equations (8.2.4), (8.2.3), it follows

$$
0 = \pi_k(\pi)(\Gamma^k_{ji}(v^i)(a^j)) + \pi_i(\pi) \left(\frac{\partial v^i}{\partial x^j}(a^j) \right)
$$

Because $\pi_k(\pi)$ is the local basis, then, from equation (8.2.5), it follows

$$
0 = \pi_k(\pi) \left(\Gamma^k_{ji}(v^i)(a^j) + \frac{\partial v^k}{\partial x^j}(a^j) \right)
$$

(8.2.6)

$$
0 = \Gamma^k_{ji}(v^i)(a^j) + \frac{\partial v^k}{\partial x^j}(a^j)
$$

Because π is an arbitrary vector, than we can write the equation (8.2.6) in the following form

(8.2.7)

$$
0 = \Gamma^k_{ji}(v^i) + \frac{\partial v^k}{\partial x^j}
$$

Theorem 8.2.1. In affine space

(8.2.8)

$$
\Gamma^k_{ji}(v^i)(a^j) = \Gamma^k_{ij}(v^i)(a^j)
$$

Proof. According to equation (8.1.3),

(8.2.9)

$$
\frac{\partial \pi_i(\pi)}{\partial x^j}(v^i)(a^j) = \frac{\partial^2 \pi}{\partial x^j \partial x^i}(v^i; a^j)
$$

According to theorem [10]-9.1.6

(8.2.10)

$$
\frac{\partial^2 \pi}{\partial x^j \partial x^i}(v^i; a^j) = \frac{\partial^2 \pi}{\partial x^i \partial x^j}(v^i; a^j)
$$

Equation (8.2.8) follows from equations (8.2.4), (8.2.10).

Let

$$
g : D^n \rightarrow D^n
$$

$$
x^i = x^i(x^1, \ldots, x^n)
$$

be coordinate transformation of affine space. Let us differentiate the equation (8.1.5) with respect to x^j

(8.2.11)

$$
\pi_k(\pi) \left(\frac{\partial x^k}{\partial x^m}(v^r) \right) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) + \pi_k(\pi) \left(\frac{\partial^2 x^k}{\partial x^j \partial x^m}(v^r; a^j) \right)
$$

From equations (8.2.4), (8.2.11), it follows that

$$
\pi_p(\pi)(\Gamma^r_{ji}(v^i)(a^j))
$$

(8.2.12)

$$
= \pi_p(\pi) \left(\Gamma^r_{mk}(\frac{\partial x^k}{\partial x^l}(v^r)) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) \right) + \pi_p(\pi) \left(\frac{\partial^2 x^r}{\partial x^j \partial x^m}(v^i; a^j) \right)
$$

$$
= \pi_p(\pi) \left(\Gamma^r_{mk}(\frac{\partial x^k}{\partial x^l}(v^r)) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) \right) + \frac{\partial^2 x^r}{\partial x^j \partial x^m}(v^i; a^j)
$$
From equations (8.1.5), (8.2.12) it follows that

\[
\tilde{x}_p^\prime(\tilde{x})(\Gamma^p_{ji}(\nu^{i'})(a^{j'}))
\]

(8.2.13)

\[
=\tilde{x}_p^\prime(\tilde{x}) \left(\frac{\partial x^p}{\partial x^r} \left(\Gamma^r_{mk}(\nu_k^{i'}) \left(\frac{\partial x^m}{\partial x^{i'}}(a^{j'}) \right) + \frac{\partial^2 x^r}{\partial x^{i'} \partial x^{j'}}(\nu^{i'}; a^{j'}) \right) \right)
\]

From equation (8.2.13) it follows that

\[
\Gamma^p_{ji}(\nu^{i'})(a^{j'})
\]

(8.2.14)

\[
=\frac{\partial x^p}{\partial x^r} \left(\Gamma^r_{mk}(\nu_k^{i'}) \left(\frac{\partial x^m}{\partial x^{i'}}(a^{j'}) \right) + \frac{\partial^2 x^r}{\partial x^{i'} \partial x^{j'}}(\nu^{i'}; a^{j'}) \right)
\]
CHAPTER 9

Manifolds with D-Affine Connections

The main goal of this chapter is to give general presentation about problems that we need to solve in process of exploration the differential geometry.

9.1. Manifolds with D-Affine Connections

Definition 9.1.1. Fibered central D-affine space is called manifold with D-affine connections.

We assume that dimension of base equal to dimension of fiber. This allows us to identify fiber with tangent space of base. Let us consider subset U of manifold where homeomorphism
$$\mathfrak{T}: D^n \rightarrow U$$
is defined.

We assume that map between fibers is morphism of central D-affine space
$$d\mathfrak{T} = \Gamma(\mathfrak{T}) (dx)$$
where bilinear map Γ is called D-affine connection. In the local basis we can represent connection as the set of bilinear functions Γ^k_{ij}
$$\Gamma(\mathfrak{T})(\mathfrak{T}) = \mathfrak{T}_k(x)(\Gamma^k_{ji}(v^i)(a^j))$$
that we call D-affine connection coefficients. When we move from coordinate system \mathfrak{T} to coordinate system \mathfrak{T}' D-affine connection coefficients transform according to rule
$$\Gamma'^{p}_{ji}(v'^{i})(a'^{j}) = \partial x'^{p} \partial x^{r} \left(\Gamma^r_{mk} \left(\frac{\partial x^{k}}{\partial x'^{i}}(v'^{i}) \right) \left(\frac{\partial x^{m}}{\partial x'^{j}}(a'^{j}) \right) + \frac{\partial^2 x'^{r}}{\partial x'^{i} \partial x'^{j}}(v'^{i}, a'^{j}) \right)$$

Covariant derivative of vector field \mathfrak{v} has form
$$D(\mathfrak{v})(dx) = \partial(\mathfrak{v})(dx) - \Gamma(\mathfrak{v})(dx)$$
A vector field \mathfrak{v} is being parallel transported in given direction if
$$\partial(\mathfrak{v})(dx) = \Gamma(\mathfrak{v})(dx)$$
If $\mathfrak{T} = \mathfrak{T}(t)$ is map of real field into considered space, then this map determines geodesic if tangent vector is being parallel transported along geodesic
$$\partial(\partial(\mathfrak{T}))(dx) = \Gamma(dx)(dx)$$
Equation (9.1.1) is equivalent to equation
$$\partial^2(\mathfrak{T})(dx, dx) = \Gamma(dx)(dx)$$
CHAPTER 10

References

[1] Serge Lang, Algebra, Springer, 2002
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982), eprint http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html (The Millennium Edition)
[3] P. K. Rashevsky, Riemann Geometry and Tensor Calculus, Moscow, Nauka, 1967
[4] A. G. Kurosh, High Algebra, Moscow, Nauka, 1968
[5] A. G. Kurosh, Lectures on General Algebra, Chelsea Pub Co, 1965
[6] Lev V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic Publisher, 1999
[7] Aleks Kleyn, Lectures on Linear Algebra over Division Ring, eprint arXiv:math.GM/0701238 (2010)
[8] Aleks Kleyn, Fibered Correspondence, eprint arXiv:0707.2246 (2007)
[9] Aleks Kleyn, Morphism of T^*-Representations, eprint arXiv:0803.2620 (2008)
[10] Aleks Kleyn, Introduction into Calculus over Division Ring, eprint arXiv:0812.4763 (2010)
[11] John C. Baez, An Introduction to n-Categories, eprint arXiv:q-alg/9705009 (1997)
[12] Paul M. Cohn, Universal Algebra, Springer, 1981
[13] Paul Bamberg, Shlomo Sternberg, A course in mathematics for students of physics, Cambridge University Press, 1991
[14] Alain Connes, Noncommutative Geometry, Academic Press, 1994
affine transformation group 56
automorphism of representation of \(\mathfrak{f} \)-algebra 22
automorphism of tower of representations 34
basis manifold of central affine space 56
basis manifold of Euclid space 58
basis of representation 27
basis of tower of representations 40
category of \(T^* \)-representations of \(\mathfrak{f} \)-algebra 21
category of \(T^* \)-representations of \(\mathfrak{f} \)-algebra from category \(A \) 16
center of ring \(D \) 43
central affine basis 56
connection coefficients in \(D \)-affine space 62
coordinates of element \(m \) relative to set \(X \) 25
curvilinear coordinates of point in affine space 59
\(D \)-affine connection on manifold with affine connections 65
\(D \)-affine connection coefficients on manifold 65
\(D^* \)-affine basis 55
\(D^* \)-basis manifold of affine space 55
effective representation of \(\mathfrak{f} \)-algebra 10
effective tower of \(T^* \)-representations 35
endomorphism of representation of \(\mathfrak{f} \)-algebra 22
endomorphism of representation regular on generating set \(X \) 25
endomorphism of representation singular on generating set \(X \) 25
endomorphism of tower of representations 34
endomorphism of tower of representations regular on tuple of generating sets 37
endomorphism of tower of representations singular on tuple of generating sets 37
Euclidean metric on division ring 52
Euclidean scalar product in \(D \)-vector space 57
Euclidean scalar product on division ring 52
generating set of representation 24
generating set of subrepresentation 24
hermitian conjugated vector 57
hermitian conjugation in division ring 52
hermitian metric on division ring 52
hermitian scalar product in \(D \)-vector space 57
hermitian scalar product on division ring 52
isomorphism of representations of \(\mathfrak{f} \)-algebra 20
left-side representation of \(\mathfrak{f} \)-algebra \(A \) in \(\mathfrak{h} \)-algebra \(M \) 9
left-side transformation 9
loop of automorphisms of representation 22
manifold with \(D \)-affine connections 65
matrix of bilinear function 47
matrix of quadratic map 49
morphism from tower of \(T^* \)-representations into tower of \(T^* \)-representations 31
morphism of representations from \(f \) into \(g \) 11
morphism of representations of \(\mathfrak{f} \)-algebra in \(\mathfrak{h} \)-algebra 11
movement on basis manifold 58
nonsingular bilinear function 47
orthonormal basis 58
product of morphisms of representations of \(\mathfrak{f} \)-algebra 15
product of morphisms of tower of representations 33
pseudo-Euclidean metric on division ring 52
pseudo-Euclidean scalar product in D-vector space 57
pseudo-Euclidean scalar product on division ring 52
quadratic form in division ring 51
quadratic map of division ring 48
quasi affine transformation on basis manifold 56
quasi movement on basis manifold 58
rank of quadratic map of division ring 49
regular endomorphism of representation 25
regular endomorphism of tower of representations 37
regular quadratic map in division ring 49
representation of \mathfrak{F}-algebra A in \mathfrak{F}-algebra M 10
representation of \mathfrak{F}-algebra in representation 30
representation of \mathfrak{F}-algebra in tower of representations 30
right-side representation of \mathfrak{F}-algebra A in \mathfrak{F}-algebra M 9
right-side transformation 9
ring has characteristic 0 43
ring has characteristic p 43
set of coordinates of representation 25
set of tuples of coordinates of tower of representations 38
single transitive representation of \mathfrak{F}-algebra A 10
stable set of representation 23
standard component of quadratic map f over field F 49
standard component over field F of bilinear map f 47
standard representation of quadratic map of division ring over field F 49
standard representation over field F of bilinear map of division ring 47
$\star T$-representation of \mathfrak{F}-algebra A in \mathfrak{F}-algebra M 9
$\star T$-transformation 9
structural constants of division ring D over field F 45
subrepresentation generated by set X 24
subrepresentation of representation 23
symmetric bilinear map of D-vector space to division ring 57
tower of representations of \mathfrak{F}-algebras 29
tower of subrepresentations 35
tower of subrepresentations of tower of representations \mathfrak{T} generated by tuple of sets $\mathfrak{X}_{[1]}$ 37
transformation coordinated with equivalence 16
CHAPTER 12

Special Symbols and Notations

\begin{align*}
\overline{A} & \quad \text{affine space 55} \\
av & \quad \text{hermitian conjugation in division ring 52} \\
\mathfrak{A}(f) & \quad \text{loop of automorphisms of representation } f \quad 22 \\
\mathcal{B}(D^*_\mathbb{A}_n) & \quad \text{D*-basis manifold of affine space} \quad 55 \\
\mathcal{B}(C\mathbb{A}_n) & \quad \text{basis manifold of central affine space} \quad 56 \\
\mathcal{B}(\mathcal{E}_n) & \quad \text{basis manifold of Euclid space} \quad 58 \\
\mathcal{B}_f & \quad \text{lattice of subrepresentations of representation } f \quad 23 \\
\mathcal{B}_{\mathcal{F}} & \quad \text{lattice of towers of subrepresentations of tower of representations } f \quad 36 \\
j_{ij}B^* & \quad \text{structural constants of division ring } D \text{ over field } F \quad 45 \\
\mathbb{C}\mathbb{A}_n & \quad \text{central affine space} \quad 56 \\
(\mathbb{E}, O) = (\mathbb{F}, O) & \quad \text{affine basis} \quad 55 \\
\mathcal{E}_n & \quad \text{Euclid space} \quad 58 \\
\mathcal{E}_{nm} & \quad \text{pseudo Euclid space} \quad 58 \\
\mathbb{E} = (\mathbb{E}_1) & \quad \text{central affine basis} \quad 56 \\
\mathbb{E} = (\mathbb{E}_1) & \quad \text{orthonormal basis} \quad 56 \\
f^{ijk} & \quad \text{standard component of quadratic map } f \text{ over field } F \quad 49 \\
\text{GL}(\mathbb{A}_n) & \quad \text{affine transformation group} \quad 56 \\
\mathcal{J}_f & \quad \text{closure operator of representation } f \quad 24 \\
\mathcal{J}(\mathcal{F}) & \quad \text{closure operator of tower of representations } \mathcal{F} \quad 37 \\
\mathcal{J}(\mathcal{F}, \mathcal{X}[1]) & \quad \text{tower of subrepresentations of tower of representations } \mathcal{F} \text{ generated by tuple of sets } \mathcal{X}[1] \quad 37 \\
M^* & \quad \text{set of } \star T\text{-transformations of set } M \quad 9 \\
^*M & \quad \text{set of transformations of set } M \quad 10 \\
T \star \mathfrak{F} & \quad \text{category of } T\star\text{-representations of } \mathfrak{F}\text{-algebra } A \quad 21 \\
T \star \mathfrak{A} & \quad \text{category of } T\star\text{-representations of } \mathfrak{A}\text{-algebra from category } A \quad 16 \\
\mathfrak{F}^* & \quad \text{hermitian conjugated vector} \quad 57 \\
W(f, X) & \quad \text{set of coordinates of representation } J_f(X) \quad 25 \\
\mathfrak{W}(\mathcal{F}, \mathcal{X}[1]) & \quad \text{set of tuples of coordinates of tower of representations } \mathcal{F}(\mathcal{F}, \mathcal{X}[1]) \quad 38 \\
\mathfrak{w}(\mathfrak{F}, \mathcal{F}, \mathcal{X}[1]) & \quad \text{tuple of coordinates of element } \mathfrak{F}^* \text{ relative to tuple of sets } \mathcal{X}[1] \quad 38 \\
\mathbb{E}(\mathcal{F}) & \quad \text{local basis of affine space} \quad 60 \\
Z(D) & \quad \text{center of ring } D \quad 43 \\
\delta & \quad \text{identical transformation} \quad 9 \\
\Gamma^k_{ji} & \quad \text{connection coefficients in } D\text{-affine space} \quad 61 \\
\Gamma(\mathfrak{F})(d\mathfrak{F}) & \quad \text{connection in } D\text{-affine manifold} \quad 65 \\
\Gamma^k_{ji} & \quad \text{D-affine connection coefficients on manifold} \quad 65 \\
\end{align*}
Введение в геометрию над телом

Александр Клейн

E-mail address: Aleks_Kleyn@MailAPS.org
URL: http://sites.google.com/site/alekskleyn/
URL: http://arxiv.org/a/kleyn_a_1
URL: http://AleksKleyn.blogspot.com/
Аннотация. Теория представлений \mathfrak{g}-алгебры является естественным развитием теории \mathfrak{g}-алгебры. Изучение морфизмов представлений ведёт к понятию множества образующих и базиса представления. В книге рассмотрено понятие башни T^*-представлений \mathfrak{g}_i-алгебр, $i = 1, ..., n$, как множество согласованных T^*-представлений \mathfrak{g}_i-алгебр.

Рассматривается геометрия аффинного пространства как пример башни представлений. Изучение криволинейных координат позволяет понять как выглядят основные структуры в многообразии аффинной связности. Рассматривается геометрия эвклидова пространства над телом.
Оглавление

Глава 1. Предисловие ... 5
 1.1. Башня представлений 5
 1.2. Морфизм и базис представления 5
 1.3. D-аффинное пространство 6
 1.4. Соглашения .. 7

Глава 2. Представление F-алгебры 9
 2.1. Представление F-алгебры 9
 2.2. Морфизм представлений F-алгебры 11
 2.3. Автоморфизм представления F-алгебры 22
 2.4. Базис T*-представления 23
 2.5. Несколько примеров базиса представления 29

Глава 3. Башня представлений F-алгебр 31
 3.1. Башня представлений F-алгебр 31
 3.2. Морфизм башни T*-представлений 33
 3.3. Эндоморфизм башни представлений 36
 3.4. Базис башни представлений 37
 3.5. Примеры базиса башни представлений 44

Глава 4. Геометрия тела ... 47
 4.1. Центр тела ... 47
 4.2. Геометрия тела над полем 49

Глава 5. Квадратичное отображение тела 51
 5.1. Билинейное отображение тела 51
 5.2. Квадратичное отображение тела 52

Глава 6. D-аффинное пространство 59
 6.1. D-аффинное пространство 59
 6.2. Базис в D-аффинном пространстве 61

Глава 7. Евклидово пространство 65
 7.1. Евклидово пространство 65
 7.2. Базис в евклидовом пространстве 66

Глава 8. Математический анализ в D-аффинном пространстве 67
 8.1. Криволинейные координаты в D-аффинном пространстве 67
 8.2. Парааллельный перенос 69

Глава 9. Многообразие D-аффинной связности 73
 9.1. Многообразие D-аффинной связности 73
Глава 10. Список литературы ... 75
Глава 11. Предметный указатель 76
Глава 12. Специальные символы и обозначения 78
Глава 1

Предисловие

1.1. Башия представлений

Основная задача предлагаемой книги - это рассмотрение простейших геометрических конструкций над телом.

Однако я решил не ограничивать эту книгу описанием аффинной и эвклидовой геометрии. В процессе построения аффинной геометрии я обнаруживаю интересную конструкцию. Я сперва определяю D^*_\star-векторное пространство V. Это T^*-представление тела D в аддитивной группе. Затем я рассматриваю множество точек, в котором определено представление D^*_\star-векторного пространства \mathbb{V}. Эта многоярусная конструкция пробудила мой интерес и вернула меня к изучению T^*-представлений \mathfrak{s}-алгебры.

Таким образом возникла концепция башии T^*-представлений. Как только я начал рисовать диаграммы, связанные с башией T^*-представлений, я увидел узор, похожий на диаграммы, построенные в статье [11]. Хотя мне не удалось довести эту аналогию до конца, я надеюсь, что эта аналогия может привести к интересным результатам.

1.2. Морфизм и базис представления

Изучение теории представлений \mathfrak{s}-алгебры показывает, что эта теория имеет много общего с теорией \mathfrak{s}-алгебры. В [7, 8, 9] я изучал морфизмы представления. Это отображения, которые сохраняют структуру представления \mathfrak{s}-алгебры (или башии представлений).

Линейные отображения векторных пространств являются примерами морфизма представлений. Понятие базиса является важной конструкцией в теории линейных пространств. Понятие базиса непосредственно связано с тем, что группа морфизмов линейного пространства имеет два одно транзитивных представления. Основная функция базиса - это порождать линейное пространство.

Возникает естественный вопрос. Можно ли обобщить эту конструкцию на произвольное представление? Базис - это не единственное множество, которое порождает векторное пространство. Это утверждение является исходной точкой, от которой я начал изучение множества образующих представления. Множество образующих представления - это ещё одна интересная параллель теории представлений с теорией универсальной алгебры.

Не для всякого представления возможность найти множество образующих равносильна возможности построения базиса. Задача найти класс представлений, где возможно построение базиса является интересной и важной задачей. Мне интересно, можно ли найти эффективный алгоритм построения базиса квантовой геометрии.
1.3. \(D\)-аффинное пространство

Так же как и в случае \(D\)-векторных пространств, я могу начать с рассмотрения \(D^{**}\)-аффинного пространства и затем перейти к рассмотрению \(D\)-аффинных пространств. Однако на этом пути я не ожидал новых явлений. Так как меня интересуют операции, связанные с дифференцированием, я сразу начинаю с рассмотрения \(D\)-аффинного пространства.

С того момента, как я понял, что аффинное пространство является башней представлений, а линейные отображения аффинных пространств являются морфизмами башни представлений, я понял как будет выглядеть связность в многообразии \(D\)-аффинной связности. Тем не менее, прежде чем изучать многообразие аффинной связности, я решил исследовать криволинейные координаты в аффинном пространстве.

Хотя я хорошо представлял, что должно происходить при замене координат, увиденное превзошло мои ожидания. Я встретил две очень важные концепции.

Я начал с построения аффинного пространства как башни представлений. Оказалось, что существует ещё одна модель, в которой векторные поля представлены в виде множества отображений. Тем не менее эти две модели не противоречат друг другу, а скорее дополняют друг друга.

Второе наблюдение для меня не оказалось неожиданностью. Когда я начал изучать \(D\)-векторные пространства, я был готов рассмотреть линейную комбинацию векторов как полилинейную форму, однако я очень быстро пришёл к выводу, что это не изменит размерности пространства, и потому ограничился рассмотрением \(D^*\)-базиса.

Интересно наблюдать, как в процессе создания книги появляется новая концепция. Построения, выполненные в главе 8 снова вернули меня к линейной комбинации как сумме линейных форм. Однако на этот раз речь идёт о линейной зависимости 1-форм. При этом коэффициенты линейной зависимости находятся не вне 1-формы, а внутри. Если мы рассматриваем 1-формы над полем, то 1-форма прозрачна для скаляров поля и для нас не имеет значение находятся ли коэффициенты вне формы или внутри.

Линейная зависимость не является темой этой книги. Я рассмотрю этот вопрос в последующих работах. В этой книге я буду пользоваться этим понятием, полагая, что его свойства понятны из приводимых равенств.

Изучение криволинейных координат также позволило увидеть как преобразуются координаты \(D\)-аффинной связности при замене координат. Однако, то что мне удалось записать явный закон преобразования, на мой взгляд удача, связанная с тем, что связность имеет только один контравариантный индекс. У меня есть все основания полагать, что такая операция, как поднятие или опускание индекса тензора в римановом пространстве может иметь только неявную форму записи.

Многие годы для меня аффинная геометрия была символом самой простой геометрии. Я рад увидеть, что я ошибался. В нужную минуту аффинная геометрия оказалась источником вдохновения. Аффинная геометрия - это врата дифференциальной геометрии. И хотя, для того, чтобы погрузиться в дифференциальную геометрию, я должен хорошо освоиться с дифференциальными

\[1,1\text{Пока неясно, привёдет ли меня эта модель к геометрии, которую изучает Ален Конн в [14]. Ответ на этот вопрос требует дальнейшего исследования.}\]
1.4. Соглашения

(1) Функция и отображение - синонимы. Однако существует традиция соответствие между кольцами или векторными пространствами называть отображением, а отображение пола действительных чисел или алгебры кватернионов называть функцией. Я тоже следую этой традиции.

(2) Тело \(D \) можно рассматривать как \(D \)-векторное пространство размерности 1. Соответственно этому, мы можем изучать не только гомоморфизм тела \(D_1 \) в тело \(D_2 \), но и линейное отображение тел. При этом подразумевается, что отображение мультипликативно над максимально возможным полем. В частности, линейное отображение тела \(D \) мультипликативно над центром \(Z(D) \). Это не противоречит определению линейного отображения пола, так как для поля \(F \) справедливо \(Z(F) = F \). Если поле \(F \) отлично от максимально возможного, то я это явно указываю в тексте.

(3) Несмотря на некоммутативность произведения многие утверждения сохраняются, если заменить например правое представление на левое представление или правое векторное пространство на левое векторное пространство. Чтобы сохранить эту симметрию в формулировках теорем я пользовался симметричными обозначениями. Например, я рассматриваю \(D^* \)-векторное пространство и \(^*D \)-векторное пространство. Запись \(D^* \)-векторное пространство можно прочесть как \(D \)-star-векторное пространство либо как левое векторное пространство. Запись \(D^* \)-линейно зависимые векторы можно прочесть как \(D \)-star-линейно зависимые векторы либо как векторы, линейно зависимые слева.

(4) Мы будем рассматривать алгебру \(A \), которая является конечно мерным векторным пространством над центром. При разложении элемента алгебры \(A \) относительно базиса \(\mathbb{F} \) мы пользуемся одной и той же корневой буквой для обозначения этого элемента и его координат. Однако в алгебре не принято использовать векторные обозначения. В выражении \(a^2 \) не ясно - это компонента разложения элемента \(a \) относительно базиса или это операция возведения в степень. Для облегчения чтения текста мы будем индекс элемента алгебры выделять цветом. Например, \(a = a^i e_i \).

(5) При рассмотрении конечноомерной алгебры мы будем отождествлять вектор базиса \(e_0 \) с единицей алгебры.

(6) Так как число \(\mathbb{F} \)-алгебр в башне представлений переменно, то мы будем пользоваться векторными обозначениями для башни представлений. Множество \((A_1, ..., A_n) \) \(\mathbb{F} \)-алгебр \(A_i, \ i = 1, ..., n \) мы будем обозначать \(\mathbb{A} \). Множество представлений \((f_1, 2, ..., f_{n-1}, n) \) этих алгебр мы будем обозначать \(\mathbb{F} \). Так как разные алгебры имеют разных тип, мы также будем говорить о множестве \(\mathbb{F} \)-алгебр. По отношению к множеству \(\mathbb{A} \) мы также будем пользоваться матричными обозначениями, предложенными в разделе [7]-2.1. Например, символом \(\mathbb{A}_{[1]} \) мы...
будем обозначать множество \mathfrak{g}-алгебр (A_2, \ldots, A_n). В соответствующем обозначении $(A_{[1]}, \mathcal{F})$ башни представлений подразумевается, что $\mathcal{F} = (f_{2,3}, \ldots, f_{n-1,n})$.

(7) Так как мы пользуемся векторными обозначениями для элементов башни представлений, необходимо соглашение о записи операций. Предполагается, что операции выполняются покомпонентно. Например, $\mathfrak{T}(\mathcal{F}) = (r_1(a_1), \ldots, r_n(a_n))$

(8) Без сомнения, у читателя моих статей могут быть вопросы, замечания, возражения. Я буду признателен любому отзыву.
Глава 2

Представление \(\mathfrak{g} \)-алгебры

2.1. Представление \(\mathfrak{g} \)-алгебры

Определение 2.1.1. Пусть на множестве \(M \) определена структура \(\mathfrak{g} \)-алгебры \(([2, 12]) \). Мы будем называть гомоморфизм \(\mathfrak{g} \)-алгебры

\[
t : M \rightarrow M
\]

преобразованием \(\mathfrak{g} \)-алгебры \(M \).

Мы будем обозначать \(\delta \) тождественное преобразование.

Определение 2.1.2. Преобразование называется левосторонним преобразованием или \(T\star \)-преобразованием, если оно действует слева

\[
u' = tu
\]

Мы будем обозначать \(*M \) множество \(T\star \)-преобразований множества \(M \).

Определение 2.1.3. Преобразование называется правосторонним преобразованием или \(\star T \)-преобразованием, если оно действует справа

\[
u' = ut
\]

Мы будем обозначать \(M^* \) множество \(\star T \)-преобразований множества \(M \).

Определение 2.1.4. Пусть на множестве \(*M \) определена структура \(\mathfrak{g} \)-алгебры \(([2]) \). Пусть \(A \) является \(\mathfrak{g} \)-алгеброй. Мы будем называть гомоморфизм

(2.1.1)

\[
f : A \rightarrow *M
\]

левосторонним или \(T\star \)-представлением \(\mathfrak{g} \)-алгебры \(A \) в \(\mathfrak{g} \)-алгебре \(M \).

Определение 2.1.5. Пусть на множестве \(M^* \) определена структура \(\mathfrak{g} \)-алгебры \(([2]) \). Пусть \(A \) является \(\mathfrak{g} \)-алгеброй. Мы будем называть гомоморфизм

\[
f : A \rightarrow M^*
\]

правосторонним или \(\star T \)-представлением \(\mathfrak{g} \)-алгебры \(A \) в \(\mathfrak{g} \)-алгебре \(M \).

Мы распространим на теорию представлений соглашение, описанное в за-
мечания \([7]-2.2.14 \). Мы можем записать принцип двойственности в следующей форме

Теорема 2.1.6 (принцип двойственности). Любое утверждение, справедливое для \(T\star \)-представления \(\mathfrak{g} \)-алгебры \(A \), будет справедливо для \(\star T \)-представления \(\mathfrak{g} \)-алгебры \(A \).

\[^{2,1}\]Если множество операций \(\mathfrak{g} \)-алгебры пусто, то \(t \) является отображением.
Замечание 2.1.7. Существует две формы записи преобразования \(\mathfrak{H} \)-алгебры \(M \). Если мы пользуемся операторной записью, то преобразование \(A \) записывается в виде \(Aa \) или \(aA \), что соответствует \(T^\star \)-преобразованию или \(\star T \)-преобразованию. Если мы пользуемся функциональной записью, то преобразование \(A \) записывается в виде \(A(a) \) независимо от того, это \(T^\star \)-преобразование или \(\star T \)-преобразование. Эта запись согласована с принципом двойственности.

Это замечание является основой следующего соглашения. Когда мы пользуемся функциональной записью, мы не различаем \(T^\star \)-преобразование и \(\star T \)-преобразование. Мы будем обозначать \({}^* M \) множество преобразований \(\mathfrak{H} \)-алгебры \(M \). Пусть на множестве \({}^* M \) определена структура \(\mathfrak{H} \)-алгебры. Пусть \(A \) является \(\mathfrak{H} \)-алгеброй. Мы будем называть гомоморфизм

\[
f : A \rightarrow {}^* M
\]
представлением \(\mathfrak{H} \)-алгебры \(A \) в \(\mathfrak{H} \)-алгебре \(M \).

Соответствие между операторной записью и функциональной записью однозначно. Мы можем выбирать любую форму записи, которая удобна для изложения конкретной темы.

Диаграмма

\[
\begin{array}{c}
M \\
\downarrow f \\
A
\end{array}
\quad \begin{array}{c}
\rightarrow f(a) \\
\nearrow f \\
M
\end{array}
\]

означает, что мы рассматриваем представление \(\mathfrak{H} \)-алгебры \(A \). Отображение \(f(a) \) является образом \(a \in A \).

Определение 2.1.8. Мы будем называть представление \(\mathfrak{H} \)-алгебры \(A \) эффективным, если отображение (2.1.2) - изоморфизм \(\mathfrak{H} \)-алгебры \(A \) в \({}^* M \).

Замечание 2.1.9. Если \(T^\star \)-представление \(\mathfrak{H} \)-алгебры эффективно, мы можем отождествлять элемент \(\mathfrak{H} \)-алгебры с его образом и записывать \(T^\star \)-преобразование, порождённое элементом \(a \in A \), в форме

\[
v' = av
\]

Если \(\star T \)-представление \(\mathfrak{H} \)-алгебры эффективно, мы можем отождествлять элемент \(\mathfrak{H} \)-алгебры с его образом и записывать \(\star T \)-преобразование, порождённое элементом \(a \in A \), в форме

\[
v' = va
\]

Определение 2.1.10. Мы будем называть представление \(\mathfrak{H} \)-алгебры транзитивным, если для любых \(a, b \in V \) существует такое \(g \), что

\[
a = f(g)(b)
\]

Мы будем называть представление \(\mathfrak{H} \)-алгебры однотранзитивным, если оно транзитивно и эффективно.

Теорема 2.1.11. \(T^\star \)-представление однотранзитивно тогда и только тогда, когда для любых \(a, b \in M \) существует одно и только одно \(g \in A \) такое, что

\[
a = f(g)(b)
\]

Доказательство. Следствие определений 2.1.8 и 2.1.10.
2.2. Морфизм представлений \(\mathfrak{g} \)-алгебры

Теорема 2.2.1. Пусть \(A \) и \(B \) - \(\mathfrak{g} \)-алгебры. Представление \(\mathfrak{g} \)-алгебры \(B \) \(g : B \rightarrow \star M \) и гомоморфизм \(\mathfrak{g} \)-алгебры

(2.2.1) \[h : A \rightarrow B \]

определяют представление \(f \) \(\mathfrak{g} \)-алгебры \(A \)

\[A \xrightarrow{f} \star M \]

\[\downarrow h \]

\[\downarrow g \]

\[B \]

Доказательство. Отображение \(f \) является гомоморфизмом \(\mathfrak{g} \)-алгебры \(A \) в \(\mathfrak{g} \)-алгебру \(\star M \), так как отображение \(g \) является гомоморфизмом \(\mathfrak{g} \)-алгебры \(B \) в \(\mathfrak{g} \)-алгебру \(\star M \). □

Если мы изучаем представление \(\mathfrak{g} \)-алгебры в \(\mathfrak{h} \)-алгебрах \(M \) и \(N \), то нас интересуют отображения из \(M \) в \(N \), сохраняющие структуру представления.

Определение 2.2.2. Пусть \(f : A \rightarrow \star M \) представление \(\mathfrak{g} \)-алгебры \(A \) в \(\mathfrak{h} \)-алгебре \(M \) и \(g : B \rightarrow \star N \) представление \(\mathfrak{g} \)-алгебры \(B \) в \(\mathfrak{h} \)-алгебре \(N \). Пара отображений

(2.2.2) \((r : A \rightarrow B, R : M \rightarrow N) \)

таких, что

- \(r \) - гомоморфизм \(\mathfrak{g} \)-алгебры
- \(R \) - гомоморфизм \(\mathfrak{h} \)-алгебры

(2.2.3) \[R \circ f(a) = g(r(a)) \circ R \]

называется **морфизмом представлений из** \(f \) \(g \). Мы также будем говорить, что определён **мorfизм представлений \(\mathfrak{g} \)-алгебры в** \(\mathfrak{h} \)-алгебре. □

Для произвольного \(m \in M \) равенство (2.2.3) имеет вид

(2.2.4) \[R(f(a)(m)) = g(r(a))(R(m)) \]

Замечание 2.2.3. Мы можем рассматривать пару отображений \(r, R \) как отображение \[F : A \cup M \rightarrow B \cup N \]

такое, что \[F(A) = B \quad F(M) = N \]

Поэтому в дальнейшем мы будем говорить, что дано отображение \((r, R) \). □
Замечание 2.2.4. Рассмотрим морфизм представлений (2.2.2). Мы можем обозначать элементы множества B, пользуясь буквой по образцу $b \in B$. Но если мы хотим показать, что b является образом элемента $a \in A$, мы будем пользоваться обозначением $r(a)$. Таким образом, равенство

$$r(a) = r(a)$$

означает, что $r(a)$ (в левой части равенства) является образом $a \in A$ (в правой части равенства). Пользуясь подобными соображениями, мы будем обозначать $b \in B$, пользуясь буквой по образцу $b \in B$. Если мы хотим показать, что b является образом элемента $a \in A$, мы будем пользоваться обозначением $r(a)$. Таким образом, равенство

$$r(a) = r(a)$$

означает, что $r(a)$ (в левой части равенства) является образом $a \in A$ (в правой части равенства). Пользуясь подобными соображениями, мы будем обозначать элемент множества N в виде $R(m)$. Мы будем следовать этому соглашению, изучая соотношения между гомоморфизмами \mathfrak{A}-алгебр и отображениями между множествами, где определены соответствующие представления.

Мы можем интерпретировать (2.2.4) двумя способами

- Пусть преобразование $f(a)$ отображает $m \in M$ в $f(a)(m)$. Тогда преобразование $g(r(a))$ отображает $R(m) \in N$ в $R(f(a)(m))$.
- Мы можем представить морфизм представлений из f в g, пользуясь диаграммой

\[
\begin{array}{ccc}
M & R & N \\
\downarrow f & & \downarrow g(r(a)) \\
M & R & N \\
\downarrow f & & \downarrow g(r(a)) \\
A & r & B \\
\end{array}
\]

Из (2.2.3) следует, что диаграмма (1) коммутативна.

Теорема 2.2.5. Рассмотрим представление

$$f : A \rightarrow ^*M$$

\mathfrak{A}-алгебры A и представление

$$g : B \rightarrow ^*N$$

\mathfrak{A}-алгебры B. Морфизм

$$h : A \rightarrow B \quad H : M \rightarrow N$$

представлений из f в g удовлетворяет соотношению

(2.2.5) \hspace{1em} H \circ \omega(f(a_1),...,f(a_n)) = \omega(g(h(a_1)),...,g(h(a_n))) \circ H

для произвольной n-арной операции $\omega \mathfrak{A}$-алгебры.

Доказательство. Так как f - гомоморфизм, мы имеем

(2.2.6) \hspace{1em} H \circ \omega(f(a_1),...,f(a_n)) = H \circ f(\omega(a_1,...,a_n))

Из (2.2.3) и (2.2.6) следует

(2.2.7) \hspace{1em} H \circ \omega(f(a_1),...,f(a_n)) = g(h(\omega(a_1,...,a_n))) \circ H
Так как \(h \) гомоморфизм, из (2.2.7) следует

\[H \circ \omega(f(a_1), ..., f(a_n)) = g(\omega(h(a_1), ..., h(a_n))) \circ H \]

Так как \(g \) гомоморфизм, из (2.2.8) следует (2.2.5). \(\square \)

Теорема 2.2.6. Пусть отображение

\[h : A \rightarrow B \quad H : M \rightarrow N \]

является морфизмом из представлений

\[f : A \rightarrow \ast M \]

\(\mathfrak{F} \)-алгебры \(A \) в представление

\[g : B \rightarrow \ast N \]

\(\mathfrak{F} \)-алгебры \(B \). Если представление \(f \) эффективно, то отображение

\[\ast H : \ast M \rightarrow \ast N \]

определенное равенством

\[\ast H(f(a)) = g(h(a)) \]

является гомоморфизмом \(\mathfrak{F} \)-алгебры.

Доказательство. Так как представление \(f \) эффективно, то для выбранного преобразования \(f(a) \) выбор элемента в определён одномозначно. Следовательно, преобразование \(g(h(a)) \) в равенстве (2.2.9) определено корректно.

Так как \(f \) - гомоморфизм, мы имеем

\[\ast H(\omega(f(a_1), ..., f(a_n))) = \ast H(f(\omega(a_1, ..., a_n))) \]

Из (2.2.9) и (2.2.10) следует

\[\ast H(\omega(f(a_1), ..., f(a_n))) = g(h(\omega(a_1, ..., a_n))) \]

Так как \(h \) гомоморфизм, из (2.2.11) следует

\[\ast H(\omega(f(a_1), ..., f(a_n))) = g(h(\omega(a_1, ..., a_n))) \]

Так как \(g \) гомоморфизм,

\[\ast H(\omega(f(a_1), ..., f(a_n))) = \omega(g(h(a_1)), ..., g(h(a_n))) = \omega(\ast H(f(a_1)), ..., \ast H(f(a_n))) \]

следует из (2.2.12). Следовательно, отображение \(\ast H \) является гомоморфизмом \(\mathfrak{F} \)-алгебры. \(\square \)

Теорема 2.2.7. Если представление

\[f : A \rightarrow \ast M \]

\(\mathfrak{F} \)-алгебры \(A \) однотранзитивно и представление

\[g : B \rightarrow \ast N \]

\(\mathfrak{F} \)-алгебры \(B \) однотранзитивно, то существует морфизм

\[h : A \rightarrow B \quad H : M \rightarrow N \]

представлений из \(f \) в \(g \).
ДОКАЗАТЕЛЬСТВО. Выберем гомоморфизм h. Выберем элемент $m \in M$ и элемент $n \in N$. Чтобы построить отображение H, рассмотрим следующую диаграмму

\[
\begin{array}{ccc}
M & \xrightarrow{H} & N \\
\downarrow & & \downarrow \\
A & \xrightarrow{h} & B \\
\end{array}
\]

Из коммутативности диаграммы (1) следует

\[H(am) = h(a)H(m)\]

Для произвольного $m' \in M$ однозначно определён $a \in A$ такой, что $m' = am$. Следовательно, мы построили отображение H, которое удовлетворяет равенству (2.2.3).

Теорема 2.2.8. Если представление

\[f : A \to ^*M\]

Ф-алгебры A однотранзитивно и представление

\[g : B \to ^*N\]

Ф-алгебры B однотранзитивно, то для заданного гомоморфизма Ф-алгебры

\[h : A \to B\]

отображение

\[H : M \to N\]

такое, что (h, H) является морфизмом представлений из f в g, однозначно с точностью до выбора образа $n = H(m) \in N$ заданного элемента $m \in M$.

ДОКАЗАТЕЛЬСТВО. Из доказательства теоремы 2.2.7 следует, что выбор гомоморфизма h и элементов $m \in M$, $n \in N$ однозначно определяет отображение H.

Теорема 2.2.9. Если представление

\[f : A \to ^*M\]

Ф-алгебры A однотранзитивно, то для любого эндоморфизма Ф-алгебры A существует эндоморфизм

\[p : A \to A\]

представления f.

\[P : M \to M\]
ДОКАЗАТЕЛЬСТВО. Рассмотрим следующую диаграмму

Утверждение теоремы является следствием теоремы 2.2.7.

Теорема 2.2.10. Пусть

\[f : A \rightarrow {}^*M \]

представление \(F \)-алгебры \(A \),

\[g : B \rightarrow {}^*N \]

представление \(F \)-алгебры \(B \),

\[h : C \rightarrow {}^*L \]

представление \(F \)-алгебры \(C \). Пусть определены морфизмы представлений \(F \)-алгебры

\[p : A \rightarrow B \]
\[q : B \rightarrow C \]
\[P : M \rightarrow N \]
\[Q : N \rightarrow L \]

Тогда определён морфизм представлений \(F \)-алгебры

\[r : A \rightarrow C \]
\[R : M \rightarrow L \]

где \(r = qp \), \(R = QP \). Мы будем называть морфизм \((r, R)\) представлений из \(f \) в \(h \) произведением морфизмов \((p, P)\) и \((q, Q)\) представлений \(F \)-алгебры.

ДОКАЗАТЕЛЬСТВО. Мы можем представить утверждение теоремы, пользуясь диаграммой
Отображение \(r \) является гомоморфизмом \(\mathcal{F} \)-алгебры \(A \) в \(\mathcal{F} \)-алгебру \(C \). Нам надо показать, что пара отображений \((r, R)\) удовлетворяет (2.2.3):

\[
R(f(a)m) = QP(f(a)m) = Q(g(p(a))P(m)) = h(qp(a))QP(m) = h(r(a))R(m)
\]

Определение 2.2.11. Допустим \(A \) категория \(\mathcal{F} \)-алгебр. Мы определим категорию \(T \star A \) \(\mathcal{F} \)-представлений \(\mathcal{F} \)-алгебры из категории \(A \). Объектами этой категории являются \(T \star \)представления \(\mathcal{F} \)-алгебры. Морфизмами этой категории являются морфизмы \(T \star \)представлений \(\mathcal{F} \)-алгебры.

Теорема 2.2.12. Эндоморфизмы представления \(f \) порождают полугруппу.

Доказательство. Из теоремы 2.2.10 следует, что произведение эндоморфизмов \((p, P), (r, R)\) представления \(f \) является эндоморфизмом \((pr, PR)\) представления \(f \).

Определение 2.2.13. Пусть на множестве \(M \) определена эквивалентность \(S \). Преобразование \(f \) называется согласованным с эквивалентностью \(S \), если из условия \(m_1 \equiv m_2 \mod S \) следует \(f(m_1) \equiv f(m_2) \mod S \).

Теорема 2.2.14. Пусть на множестве \(M \) определена эквивалентность \(S \). Пусть на множестве \(*M \) определена эквивалентность \(S \). Если преобразования согласованы с эквивалентностью \(S \), то мы можем определить структуру \(\mathcal{F} \)-алгебры на множестве \(*(M/S) \).

Доказательство. Пусть \(h = \text{nat} S \). Если \(m_1 \equiv m_2 \mod S \), то \(h(m_1) = h(m_2) \). Поскольку \(f \in *M \) согласованно с эквивалентностью \(S \), то \(h(f(m_1)) = h(f(m_2)) \). Это позволяет определить преобразование \(F \) согласно правилу

\[
F([m]) = h(f(m))
\]

Пусть \(\omega \) - \(n\)-арная операция \(\mathcal{F} \)-алгебры. Пусть \(f_1, ..., f_n \in *M \) и

\[
F_1([m]) = h(f_1(m)) \quad \ldots \quad F_n([m]) = h(f_n(m))
\]

Мы определим операцию на множестве \(*(M/S) \) по правилу

\[
\omega(F_1, ..., F_n)|m| = h(\omega(f_1, ..., f_n)m)
\]

Это определение корректно, так как \(\omega(f_1, ..., f_n) \in *M \) и согласовано с эквивалентностью \(S \).

Теорема 2.2.15. Пусть

\[
f : A \rightarrow *M
\]

представление \(\mathcal{F} \)-алгебры \(A \),

\[
g : B \rightarrow *N
\]

представление \(\mathcal{F} \)-алгебры \(B \). Пусть

\[
r : A \longrightarrow B \quad R : M \longrightarrow N
\]

морфизм представлений из \(f \) в \(g \). Положим

\[
s = RP^{-1} \quad S = RR^{-1}
\]
Тогда для отображений r, R существуют разложения, которые можно описать диаграммой.

(1) $s = \ker r$ является конгруэнцией на A. Существует разложение гомоморфизма r

$$r = itj$$
$$j = \text{nat } s - \text{ естественный гомоморфизм}$$

(2.2.14) \[j(a) = j(a) \] t - изоморфизм

(2.2.15) \[r(a) = t(j(a)) \] i - вложение

(2.2.16) \[r(a) = i(r(a)) \]

(2) $S = \ker R$ является эквивалентностью на M. Существует разложение отображения R

$$R = ITJ$$
$$J = \text{nat } S - \text{ сюръекция}$$

(2.2.18) \[J(m) = J(m) \] T - биекция

(2.2.19) \[R(m) = T(J(m)) \] I - вложение

(2.2.20) \[R(m) = I(R(m)) \]

(3) $F - T\star$-представление \mathfrak{F}-алгебры A/s в M/S

(4) $G - T\star$-представление \mathfrak{F}-алгебры rA в RM

(5) (j, J) - морфизм представлений f и F

(6) (t, T) - морфизм представлений F и G

(7) (t^{-1}, T^{-1}) - морфизм представлений G и F

(8) (i, I) - морфизм представлений G и g
Существует разложение морфизма представлений

(2.2.21) \quad (r, R) = (i, I)(t, T)(j, J)

Доказательство. Существование диаграмм (1) и (2) следует из теоремы II.3.7 ([12], с. 74).
Мы начнём с диаграммы (4).
Пусть \(m_1 \equiv m_2 (\text{mod } S) \). Следовательно,

(2.2.22) \quad R(m_1) = R(m_2)

Если \(a_1 \equiv a_2 (\text{mod } S) \), то

(2.2.23) \quad r(a_1) = r(a_2)

Следовательно, \(j(a_1) = j(a_2) \). Так как \((r, R) \) - морфизм представлений, то

(2.2.24) \quad R(f(a_1)(m_1)) = g(r(a_1))(R(m_1))
(2.2.25) \quad R(f(a_2)(m_2)) = g(r(a_2))(R(m_2))

Из (2.2.22), (2.2.23), (2.2.24), (2.2.25) следует

(2.2.26) \quad R(f(a_1)(m_1)) = R(f(a_2)(m_2))

Из (2.2.26) следует

(2.2.27) \quad f(a_1)(m_1) \equiv f(a_2)(m_2) (\text{mod } S)

и, следовательно,

(2.2.28) \quad J(f(a_1)(m_1)) = J(f(a_2)(m_2))

Из (2.2.28) следует, что отображение

(2.2.29) \quad F(j(a))(J(m)) = J(f(a)(m))

определено корректно и является преобразованием множества \(M/S \).
Из равенства (2.2.27) (в случае \(a_1 = a_2 \)) следует, что для любого \(a \) преобразованием согласовано с эквивалентностью \(S \). Из теоремы 2.2.14 следует, что на множестве \(*(M/S) \) определена структура \(\mathfrak{A} \)-алгебры. Рассмотрим \(n \)-арную операцию \(\omega \) и \(n \) преобразований

\[F(j(a_i))(J(m)) = J(f(a_i)(m)) \quad i = 1, ..., n \]

пространства \(M/S \). Мы положим

\[\omega(F(j(a_1)), ..., F(j(a_n)))(J(m)) = J(\omega(f(a_1), ..., f(a_n)))(m) \]

Следовательно, отображение \(F \) является представлением \(\mathfrak{A} \)-алгебры \(A/s \).
Из (2.2.29) следует, что \((j, J) \) является морфизмом представлений \(f \) и \(F \) (утверждение 5 теоремы).
Рассмотрим диаграмму (5).
Так как \(T \) - биекция, то мы можем отождествить элементы множества \(M/S \) и множества \(MR \), причём это отождествление имеет вид

(2.2.30) \quad T(J(m)) = R(m)

Мы можем записать преобразование \(F(j(a)) \) множества \(M/S \) в виде

(2.2.31) \quad F(j(a)) : J(m) \to F(j(a))(J(m))
Так как T - биекция, то мы можем определить преобразование
\begin{equation}
(2.2.32) \quad T(J(m)) \to T(F(j(a))(J(m)))
\end{equation}
множества RM. Преобразование (2.2.32) зависит от $j(a) \in A/s$. Так как t - биекция, то мы можем отождествить элементы множества A/s и множества rA, причём это отождествление имеет вид
\begin{equation}
(2.2.33) \quad t(j(a)) = r(a)
\end{equation}
Следовательно, мы определили отображение
\begin{equation}
G : rA \to {}^*RM
\end{equation}
согласно равенству
\begin{equation}
(2.2.34) \quad G(t(j(a)))(T(J(m))) = T(F(j(a))(J(m)))
\end{equation}
Рассмотрим n-арную операцию ω и n преобразований
\begin{equation}
G(r(a_i))(R(m)) = T(F(j(a_i))(J(m))) \quad i = 1, ..., n
\end{equation}
пространства RM. Мы положим
\begin{equation}
(2.2.35) \quad \omega(G(r(a_1)), ..., G(r(a_n)))(R(m)) = T(\omega(F(j(a_1), ..., F(j(a_n))))(J(m)))
\end{equation}
Согласно (2.2.34) операция ω корректно определена на множестве *RM. Следовательно, отображение G является представлением \mathfrak{R}-алгебры. Из (2.2.34) следует, что (t, T) является морфизмом представлений F и G (утверждение 6 теоремы).

Так как T - биекция, то из равенства (2.2.30) следует
\begin{equation}
(2.2.36) \quad J(m) = T^{-1}(R(m))
\end{equation}
Мы можем записать преобразование $G(r(a))$ множества RM в виде
\begin{equation}
(2.2.37) \quad G(r(a)) : R(m) \to G(r(a))(R(m))
\end{equation}
Так как T - биекция, то мы можем определить преобразование
\begin{equation}
(2.2.38) \quad T^{-1}(R(m)) \to T^{-1}(G(r(a))(R(m)))
\end{equation}
множества M/S. Преобразование (2.2.38) зависит от $r(a) \in rA$. Так как t - биекция, то из равенства (2.2.33) следует
\begin{equation}
(2.2.39) \quad j(a) = t^{-1}(r(a))
\end{equation}
Так как по построению диаграмма (5) коммутативна, то преобразование (2.2.38) совпадает с преобразованием (2.2.31). Равенство (2.2.35) можно записать в виде
\begin{equation}
(2.2.40) \quad T^{-1}(\omega(G(r(a_1)), ..., G(r(a_n)))(R(m))) = \omega(F(j(a_1), ..., F(j(a_n))))(J(m))
\end{equation}
Следовательно, (t^{-1}, T^{-1}) является морфизмом представлений G и F (утверждение 7 теоремы).

Диаграмма (6) является самым простым случаем в нашем доказательстве. Поскольку отображение I является вложением и диаграмма (2) коммутативна, мы можем отождествить $n \in N$ и $R(m)$, если $n \in \operatorname{Im}R$. Аналогично, мы можем отождествить соответствующие преобразования.

\begin{align}
(2.2.41) \quad g'(i(r(a)))(I(R(m))) &= I(G(r(a))(R(m))) \\
\omega(g'(r(a_1)), ..., g'(r(a_n)))(R(m)) &= I(\omega(G(r(a_1)), ..., G(r(a_n)))(R(m)))
\end{align}
Следовательно, \((i, I)\) является морфизмом представлений \(G\) и \(g\) (утверждение 8 теоремы).

Для доказательства утверждения 9 теоремы осталось показать, что определённое в процессе доказательства представление \(g'\) совпадает с представлением \(g\), а операции над преобразованиями совпадают с соответствующими операциями на \(*N\).

\[
g'(i(r(a)))(I(R(m))) = I(G(r(a))(R(m)))
= I(G(t(j(a)))(T(J(m))))
= IT(F(j(a))(J(m)))
= ITJ(f(a)(m))
= R(f(a)(m))
= g(r(a))(R(m))
\]

согласно (2.2.41) согласно (2.2.15), (2.2.19) согласно (2.2.34) согласно (2.2.29) согласно (2.2.17) согласно (2.2.3)

\[
\omega(G(r(a_1)), ..., G(r(a_n)))(R(m)) = T(\omega(F(j(a_1)), ..., F(j(a_n)))(J(m)))
= T(F(\omega(j(a_1)), ..., j(a_n)))(J(m))
= T(F(j(\omega(a_1), ..., a_n)))(J(m))
= T(J(f(\omega(a_1), ..., a_n))(m))
\]

\[\square\]

Определение 2.2.16. Пусть

\[f : A \to ^*M\]

представление \(\mathcal{F}\)-алгебры \(A\),

\[g : B \to ^*N\]

представление \(\mathcal{F}\)-алгебры \(B\). Пусть

\[
r : A \longrightarrow B \\
R : M \longrightarrow N
\]

морфизм представлений из \(r\) в \(R\) такой, что \(f\) - изоморфизм \(\mathcal{F}\)-алгебры и \(g\) - изоморфизм \(\mathcal{F}\)-алгебры. Тогда отображение \((r, R)\) называется изоморфизмом представлений.

Теорема 2.2.17. В разложении (2.2.21) отображение \((t, T)\) является изоморфизмом представлений \(F\) и \(G\).

Доказательство. Следствие определения 2.2.16 и утверждений (6) и (7) теоремы 2.2.15. \[\square\]
Из теоремы 2.2.15 следует, что мы можем свести задачу изучения морфизма представлений \mathfrak{F}-алгебры к случаю, описываемому диаграммой

(2.2.42)

$\begin{array}{ccc}
M & \xrightarrow{J} & M/S \\
\downarrow f(a) & & \downarrow F(j(a)) \\
M & \xrightarrow{J} & M/S \\
\downarrow f & & \downarrow F \\
A & \xrightarrow{j} & A/s
\end{array}$

Теорема 2.2.18. Диаграмма (2.2.42) может быть дополнена представлением F_1 \mathfrak{F}-алгебры A в множестве M/S так, что диаграмма

(2.2.43)

$\begin{array}{ccc}
M & \xrightarrow{J} & M/S \\
\downarrow f(a) & & \downarrow F(j(a)) \\
M & \xrightarrow{J} & M/S \\
\downarrow f & & \downarrow F \\
A & \xrightarrow{j} & A/s
\end{array}$

коммутативна. При этом множество преобразований представления F и множество преобразований представления F_1 совпадают.

ДОКАЗАТЕЛЬСТВО. Для доказательства теоремы достаточно положить $F_1(a) = F(j(a))$

Так как отображение j - сюрьекция, то $\text{Im} F_1 = \text{Im} F$. Так как j и F - гомоморфизмы \mathfrak{F}-алгебры, то F_1 - также гомоморфизм \mathfrak{F}-алгебры.

Теорема 2.2.18 завершает цикл теорем, посвящённых структуре морфизма представлений \mathfrak{F}-алгебры. Из этих теорем следует, что мы можем упростить задачу изучения морфизма представлений \mathfrak{F}-алгебры и ограничиться морфизмом представлений вида

$id : A \rightarrow A \quad R : M \rightarrow N$
В этом случае мы можем отождествить морфизм \((id, R)\) представлений \(\mathcal{F}\)-алгебры и отображение \(R\). Мы будем пользоваться диаграммой

\[
\begin{array}{ccc}
M & \xrightarrow{R} & N \\
\downarrow & & \downarrow \\
A & \xrightarrow{g(a)} & N \\
\downarrow & & \downarrow \\
M & \xrightarrow{R} & N \\
\end{array}
\]

dля представления морфизма \((id, R)\) представлений \(\mathcal{F}\)-алгебры. Из диаграммы следует

\[R \circ f(a) = g(a) \circ R\]

Мы дадим следующее определение по аналогии с определением 2.2.11.

Определение 2.2.19. Мы определим категорию \(T \star \mathcal{F}\)-представлений \(\mathcal{F}\)-алгебры \(A\). Объектами этой категории являются \(T \star\)-представлениям \(\mathcal{F}\)-алгебры \(A\). Морфизмами этой категории являются морфизмы \((id, R)\) \(T \star\)-представлений \(\mathcal{F}\)-алгебры \(A\).

2.3. Автоморфизм представления \(\mathcal{F}\)-алгебры

Определение 2.3.1. Пусть

\[f : A \rightarrow *M\]

представление \(\mathcal{F}\)-алгебры \(A\) в \(\mathcal{F}\)-алгебре \(M\). Морфизм представлений \(\mathcal{F}\)-алгебры

\[(r : A \rightarrow A, R : M \rightarrow M)\]

такой, что \(r\) - эндоморфизм \(\mathcal{F}\)-алгебры и \(R\) - эндоморфизм \(\mathcal{F}\)-алгебры называется эндоморфизмом представления \(f\).

Определение 2.3.2. Пусть

\[f : A \rightarrow *M\]

представление \(\mathcal{F}\)-алгебры \(A\) в \(\mathcal{F}\)-алгебре \(M\). Морфизм представлений \(\mathcal{F}\)-алгебры

\[(r : A \rightarrow A, R : M \rightarrow M)\]

такой, что \(r\) - автоморфизм \(\mathcal{F}\)-алгебры и \(R\) - автоморфизм \(\mathcal{F}\)-алгебры называется автоморфизмом представления \(f\).

Теорема 2.3.3. Пусть

\[f : A \rightarrow *M\]

представление \(\mathcal{F}\)-алгебры \(A\) в \(\mathcal{F}\)-алгебре \(M\). Множество автоморфизмов представления \(f\) порождает лупу \(\mathfrak{A}(f)\).\(^2\)

\(^2\)Определение лупы приведено в [6], с. 24. [5], с. 39.
ДОКАЗАТЕЛЬСТВО. Пусть \((r, R), (p, P)\) - автоморфизмы представления \(f\).
Согласно определению 2.3.2 отображения \(r, p\) являются автоморфизмами \(F\)-алгебры \(A\) и отображения \(R, P\) являются автоморфизмами \(H\)-алгебры \(M\). Согласно теореме II.3.2 ([12], с. 60) отображение \(rp\) является автоморфизмом \(\tilde{F}\)-алгебры \(A\) и отображение \(RP\) является автоморфизмом \(\tilde{H}\)-алгебры \(M\). Из теоремы 2.2.10 и определения 2.3.2 следует, что произведение автоморфизмов \((rp, RP)\) представления \(f\) является автоморфизмом представления \(f\).

Пусть \((r, R)\) - автоморфизм представления \(f\). Согласно определению 2.3.2 отображение \(r\) является автоморфизмом \(\tilde{F}\)-алгебры \(A\) и отображение \(R\) является автоморфизмом \(\tilde{H}\)-алгебры \(M\). Следовательно, отображение \(r^{-1}\) является автоморфизмом \(\tilde{F}\)-алгебры \(A\) и отображение \(R^{-1}\) является автоморфизмом \(\tilde{H}\)-алгебры \(M\). Для автоморфизма \((r, R)\) справедливо равенство (2.2.4). Положим \(a' = r(a), m' = R(m)\). Так как \(r\) и \(R\) - автоморфизмы, то \(a = r^{-1}(a')\), \(m = R^{-1}(m')\) и равенство (2.2.4) можно записать в виде
\[
R(f(r^{-1}(a'))(R^{-1}(m'))) = g(a')(m')
\]
Так как отображение \(R\) является автоморфизмом \(\tilde{H}\)-алгебры \(M\), то из равенства (2.3.1) следует
\[
f(r^{-1}(a'))(R^{-1}(m')) = R^{-1}(g(a')(m'))
\]
Равенство (2.3.2) соответствует равенству (2.2.4) для отображения \((r^{-1}, R^{-1})\). Следовательно, отображение \((r^{-1}, R^{-1})\) является автоморфизмом представления \(f\).

ЗАМЕЧАНИЕ 2.3.4. Очевидно, что множество автоморфизмов \(\tilde{F}\)-алгебры \(A\) также порождает дуал. Конечно, заманчиво предположить, что множество автоморфизмов порождает группу. Так как произведение автоморфизмов \(f\) и \(g\) является автоморфизмом \(fg\), то определены автоморфизмы \((fg)h\) и \(f(gh)\). Но из этого утверждения не следует, что
\[
(fg)h = f(gh)
\]

2.4. Базис \(T\)-представления

ОПРЕДЕЛЕНИЕ 2.4.1. Пусть \(f : A \to \ast M\) представление \(\tilde{F}\)-алгебры \(A\) в \(\tilde{H}\)-алгебре \(M\). Множество \(N \subset M\) называется стабильным множеством представления \(f\), если \(f(a)(m) \in N\) для любых \(a \in A, m \in N\).

Мы также будем говорить, что множество \(M\) стабильно относительно представления \(f\).

ТЕОРЕМА 2.4.2. Пусть \(f : A \to \ast M\) представление \(\tilde{F}\)-алгебры \(A\) в \(\tilde{H}\)-алгебре \(M\). Пусть множество \(N \subset M\) является подалгеброй \(\tilde{H}\)-алгебры \(M\) и стабильным множеством представления \(f\). Тогда существует представление \(f_N : A \to \ast N\).
2. Представление \(\mathfrak{A} \)-алгебры

Представление \(f_N \) называется подпредставлением представления \(f \).

Доказательство. Пусть \(\omega_1 - n \)-арная операция \(\mathfrak{A} \)-алгебры \(A \). Тогда для любых \(a_1, \ldots, a_n \in A \) и любого \(b \in N \)

\[
\omega_1(f_N(a_1), \ldots, f_N(a_n))(b) = \omega_1(f(a_1), \ldots, f(a_n))(b) = f(\omega_1(a_1, \ldots, a_n))(b) = f_N(\omega_1(a_1, \ldots, a_n))(b)
\]

Пусть \(\omega_2 - n \)-арная операция \(\mathfrak{H} \)-алгебры \(M \). Тогда для любых \(b_1, \ldots, b_n \in N \) и любого \(a \in A \)

\[
\omega_2(f_N(a)(b_1), \ldots, f_N(a)(b_n)) = \omega_2(f(a)(b_1), \ldots, f(a)(b_n)) = f(a)(\omega_2(b_1, \ldots, b_n)) = f_N(a)(\omega_2(b_1, \ldots, b_n))
\]

Утверждение теоремы доказано.

Из теоремы 2.4.2 следует, что если \(f_N \) - подпредставление представления \(f \), то отображение \((id : A \to A, id_N : N \to M) \) является морфизмом представлений.

Теорема 2.4.3. Множество \(B_f \) всех подпредставлений представления \(f \) порождает систему замыканий на \(\mathfrak{H} \)-алгебре \(M \) и, следовательно, является полной структурой.

Доказательство. Пусть \((K_\lambda)_{\lambda \in \Lambda} \) - семейство подалгебр \(\mathfrak{H} \)-алгебры \(M \), стабильных относительно представления \(f \). Операцию пересечения на множестве \(B_f \) мы определим согласно правилу

\[
\bigcap fK_\lambda = f \cap K_\lambda
\]

Операция пересечения подпредставлений определена корректно. \(\cap K_\lambda \) - подалгебра \(\mathfrak{H} \)-алгебры \(M \). Пусть \(m \in \cap K_\lambda \). Для любого \(\lambda \in \Lambda \) и для любого \(a \in A \), \(f(a)(m) \in K_\lambda \). Следовательно, \(f(a)(m) \in \cap K_\lambda \). Следовательно, \(\cap K_\lambda \) - стабильное множество представления \(f \).

Обозначим соответствующий оператор замыкания через \(J_f \). Таким образом, \(J_f(X) \) является пересечением всех подалгебр \(\mathfrak{H} \)-алгебры \(M \), содержащих \(X \) и стабильных относительно представления \(f \).

Теорема 2.4.4. Пусть \(f : A \to ^*M \) представление \(\mathfrak{A} \)-алгебры \(A \) в \(\mathfrak{H} \)-алгебре \(M \). Пусть \(X \subset M \). Определим подмножество \(X_k \subset M \) индукцией по \(k \).

\[
X_0 = X
\]

\[
x \in X_k \Rightarrow x \in X_{k+1}
\]

\[
x_1, \ldots, x_n \in X_k, \omega \in \delta(n) \Rightarrow \omega(x_1, \ldots, x_n) \in X_{k+1}
\]

\[
x \in X_k, a \in A \Rightarrow f(a)(x) \in X_{k+1}
\]

1. Это определение аналогично определению структуры подалгебр ([12], стр. 93, 94)
2. Утверждение теоремы аналогично утверждению теоремы 5.1, [12], стр. 94.
Тогда

\[\bigcup_{k=0}^{\infty} X_k = Jf(X) \]

Доказательство. Если положим \(U = \bigcup X_k \), то по определению \(X_k \) имеют \(X_0 \subset Jf(X) \), и если \(X_k \subset Jf(X) \), то \(X_{k+1} \subset Jf(X) \). По индукции следует, что \(X_k \subset Jf(X) \) для всех \(k \). Следовательно,

(2.4.1)

\[U \subset Jf(X) \]

Если \(a \in U^n \), \(a = (a_1, ..., a_n) \), где \(a_i \in X_{k_i} \), и если \(k = \max\{k_1, ..., k_n\} \), то \(\omega(a_1, ..., a_n) \in X_{k+1} \subset U \). Следовательно, \(U \) является подалгеброй \(\mathcal{H} \)-алгебры \(M \).

Если \(m \in U \), то \(m \in X_k \) для некоторого \(k \). Следовательно, \(f(a)(m) \in X_{k+1} \subset U \) для любого \(a \in A \). Следовательно, \(U \) - стабильное множество представления \(f \).

Так как \(U \) - подалгеброй \(\mathcal{H} \)-алгебры \(M \) и стабильное множество представления \(f \), то определено подпредставление \(f_U \). Следовательно,

(2.4.2)

\[Jf(X) \subset U \]

Из (2.4.1), (2.4.2), следует \(Jf(X) = U \). □

\(Jf(X) \) называется подпредставлением, порождённым множеством \(X \), а \(X \) - множеством образующих подпредставления \(Jf(X) \). В частности, множеством образующих представления \(f \) будет такое подмножество \(X \subset M \), что \(Jf(X) = M \).

Определение 2.4.5. Пусть \(X \subset M \) - множество образующих представления

\[f : A \to {}^*M \]

Пусть отображение

\((h : A \to A, H : M \to M) \)

является эндоморфизмом представления \(f \). Пусть множество \(X' = HX \) является образом множества \(X \) при отображении \(H \). Эндоморфизм \((h, H) \) представления \(f \) называется **невырожденным на множестве образующих \(X \)**, если множество \(X' \) является множеством образующих представления \(f \). В противном случае, эндоморфизм представлений \((h, H) \) называется **вырожденным на множестве образующих X**. □

Определение 2.4.6. Эндоморфизм представления \(f \) называется **невырожденным**, если он невырожден на любом множестве образующих. □

Нетрудно видеть, что определение множества образующих представления не зависит от того, эффективно представление или нет. Поэтому в дальнейшем мы будем предполагать, что представление эффективно и будем опираться на соглашение для эффективного \(T^* \)-представления в замечании 2.1.9.

Из теоремы 2.4.4 следует следующее определение.

Определение 2.4.7. Пусть \(X \subset M \). Для любого \(x \in Jf(X) \) существует \(\mathcal{H} \)-слово, определённое согласно следующему правилу.

1. Если \(m \in X \), то \(m \) - \(\mathcal{H} \)-слово.
2. Если \(m_1, ..., m_n \) - \(\mathcal{H} \)-слова и \(\omega \in \mathcal{H}(n) \), то \(m_1...m_n\omega \) - \(\mathcal{H} \)-слово.
3. Если \(m \) - \(\mathcal{H} \)-слово и \(a \in A \), то \(am \) - \(\mathcal{H} \)-слово.
§-слово \(w(m, f, X) \), представляющее данный элемент \(m \in J_f(X) \), называется координатами элемента \(m \) относительно множества \(X \). Обозначим \(W(f, X) \) множество координат представления \(J_f(X) \). □

Представление \(m \in M \) в виде §-слова неоднозначно. Если \(m_1, \ldots, m_n \) - §-слова, \(\omega \in \mathfrak{F}(n) \) и \(a \in A \), то §-слова \(am_1\ldots m_n\omega \) и \(am_1x\ldots am_nx\omega \) описывают один и тот же элемент §-алгебры \(M \). Возможны равенства, связанные со спецификой представления. Например, если \(\omega \) является операцией §-алгебры \(A \) и операцией §-алгебры \(M \), то мы можем потребовать, что §-слова \(a_1\ldots a_n\omega x \) и \(a_1x\ldots a_nx\omega \) описывают один и тот же элемент §-алгебры \(M \). Перечисленные выше равенства определяют отношение эквивалентности \(r_\mathfrak{F} \) на множестве §-слов \(M_\mathfrak{F} \).

Теорема 2.4.8. Эндоморфизм \((r, R)\) представления

\[f : A \to ^*M \]

порождает отображение координат

\[w(f, r, R, X) : W(f, X) \to W(f, X') \quad X \subset M \quad X' = R(X) \]

такое, что

1. Если \(m \in X \), \(m' = R(m) \), то

\[w(f, r, R, X)(m) = m' \]

2. Если

\[m_1, \ldots, m_n \in W_f(X) \]
\[m'_1 = w(f, r, R, X)(m_1) \quad \ldots \quad m'_n = w(f, r, R, X)(m_n) \]

то для операции \(\omega \in \mathfrak{F}(n) \) справедливо

\[w(f, r, R, X)(m_1\ldots m_n\omega) = m'_1\ldots m'_n\omega \]

3. Если

\[m \in W(f, X) \quad m' = w(f, r, R, X)(m) \quad a \in A \quad a' = r(a) \]

то

\[w(f, r, R, X)(am) = a'm' \]

Доказательство. Утверждения (1), (2) теоремы справедливы в силу определения эндоморфизма \(R \). Утверждение (3) теоремы следует из равенства (2.2.4). □

Теорема 2.4.9. Пусть

\[f : A \to ^*M \]

представление §-алгебры \(A \) в §-алгебре \(M \). Пусть отображение

\[r : A \to A \]

является эндоморфизмом §-алгебры \(A \). Для заданных множеств \(X \subset M \), \(X' \subset M \) пусть отображение

\[R_1 : X \to X' \]
2.4. Базис T^*-представления

Согласовано со структурой \mathfrak{H}-алгебры M, т. е. для данной операции $\omega \in \mathfrak{H}(n)$, если

$$x_1, \ldots, x_n, x_1 \ldots x_n \omega \in X$$

to $R_1(x_1 \ldots x_n \omega) = R_1(x_1) \ldots R_1(x_n) \omega$. Рассмотрим отображение координат

$$w(r, R_1, X) : W(f, X) \to W(f, X')$$

удовлетворяющее условиям (1), (2), (3) теоремы 2.4.8. Существует энодоморфизм

$$R : M \to M$$

определённый правилом

(2.4.3) $R(m) = w(f, r, R_1, X)(w(m, f, X))$

и отображение (r, R) является морфизмом представлений $\mathcal{J}_f(X)$ и $\mathcal{J}_f(X')$.

Доказательство. Мы будем доказывать теорему индукцией по сложности \mathfrak{H}-слова.

Если $w(m, f, X) = m$, то $m \in X$. Согласно условию (1) теоремы 2.4.8,

$$R(m) = w(r, R_1, X)(w(m, X)) = w(r, R_1, X)(m) = R_1(m)$$

Следовательно, на множестве X отображения R и R_1 совпадают, и отображение R согласовано со структурой \mathfrak{H}-алгебры.

Пусть $\omega \in \mathfrak{H}(n)$. Пусть предположение индукции верно для $m_1, \ldots, m_n \in J_f(X)$. Пусть $w_1 = w(m_1, X), \ldots, w_n = w(m_n, X)$. Если $m = m_1 \ldots m_n \omega$, то согласно условию (2) определения 2.4.7,

$$w(m, f, X) = w_1 \ldots w_n \omega$$

Согласно условию (2) теоремы 2.4.8,

$$R(m) = w(r, R_1, X)(w(m, X)) = w(r, R_1, X)(w_1 \ldots w_n \omega)$$

$$= w(r, R_1, X)(w_1) \ldots w(r, R_1, X)(w_n) \omega$$

$$= R(m_1) \ldots R(m_n) \omega$$

Следовательно, отображение R является энодоморфизмом \mathfrak{H}-алгебры M.

Пусть предположение индукции верно для $m \in J_f(X)$, $w(m, X) = w_m$. Пусть $a \in A$. Согласно условию (3) определения 2.4.7,

$$w(am, X) = aw_m$$

Согласно условию (3) теоремы 2.4.8,

$$R(am) = w(r, R_1, X)(w(am, X)) = w(r, R_1, X)(aw_m)$$

$$= r(a)w(r, R_1, X)(w_m) = r(a)R(m)$$

Из равенства (2.2.4) следует, что отображение (r, R) является морфизмом представления f. □

Теорема 2.4.10. Автоморфизм (r, R) представления

$$f : A \to \ast M$$

является невырожденным энодоморфизмом.
Доказательство. Пусть X - множество образующих представления f. Пусть $X' = \mathcal{R}(X)$.

Согласно теореме 2.4.8 эндоморфизм (r, \mathcal{R}) порождает отображение координаит $w(f, r, \mathcal{R}, X)$.

Пусть $m' \in M$. Так как \mathcal{R} - автоморфизм, то существует $m \in M$, $\mathcal{R}(m) = m'$. Согласно определению 2.4.7 $w(m, X)$ - координаты m относительно множества образующих X. Согласно теореме 2.4.9,

$$w(m', X') = w(f, r, \mathcal{R}, X)(w(m, X))$$

координаты m' относительно множества образующих X'. Следовательно, X' - множество образующих представления f. Согласно определению 2.4.6, автоморфизм (r, \mathcal{R}) - невырожден.

Если множество $X \subseteq M$ является множеством образующих представления f, то любое множество Y, $X \subseteq Y \subseteq M$ также является множеством образующих представления f. Если существует минимальное множество X, порождающее представление f, то такое множество X называется базисом представления f.

Теорема 2.4.11. Множество образующих X представления f является базисом тогда и только тогда, когда для любого $m \in X$ множество $X \setminus \{m\}$ не является множеством образующих представления f.

Доказательство. Пусть X - множество образующих расслоения f. Допустим для некоторого $m \in X$ существует слово

$$(2.4.4) \quad w = w(m, f, X \setminus \{m\})$$

Рассмотрим элемент m', для которого слово

$$(2.4.5) \quad w' = w(m', f, X)$$

зависит от m. Согласно определению 2.4.7, любое вхождение m в слово w' может быть заменено словом w. Следовательно, слово w' не зависит от m, а множество $X \setminus \{m\}$ является множеством образующих представления f. Следовательно, X не является базисом расслоения f.

Замечание 2.4.12. Доказательство теоремы 2.4.11 даёт нам эффективный метод построения базиса представления f. Выбрав произвольное множество образующих, мы шаг за шагом исключаем те элементы множества, которые имеют координаты относительно остальных элементов множества. Если множество образующих представления бесконечно, то рассмотренная операция может не иметь последнего шага. Если представление имеет конечное множество образующих, то за конечное число шагов мы можем построить базис этого представления.

Как отметил Кон в [12], стр. 96, 97, представление может иметь неживые базисы. Например, циклическая группа шестого порядка имеет базисы $\{a\}$ и $\{a^2, a^4\}$, которые нельзя отобразить один в другой эндоморфизмом представления.

Теорема 2.4.13. Автоморфизм представления f отображает базис представления f в базис.
2.5. Несколько примеров базиса представления

ДОКАЗАТЕЛЬСТВО. Пусть отображение \((r, R)\) - автоморфизм представления \(f\). Пусть множество \(X\) - базис представления \(f\). Пусть \(X' = R(X)\).

Допустим множество \(X'\) не является базисом. Согласно теореме 2.4.11 существует \(m' \in X'\) такое, что \(X' \setminus \{x'\}\) является множеством образующих представления \(f\). Согласно теореме 2.3.3 отображение \((r^{-1}, R^{-1})\) является автоморфизмом представления \(f\). Согласно теореме 2.4.10 и определению 2.4.6, множество \(X \setminus \{m\}\) является множеством образующих представления \(f\). Полученное противоречие доказывает теорему. □

2.5. Несколько примеров базиса представления

Пример 2.5.1. Рассмотрим векторное пространство \(V\) над полем \(F\). Если дано множество векторов \(e_1, ..., e_n\) то, согласно алгоритму построения координат над векторным пространством, координаты включают такие элементы как \(e_1 + e_2\) и \(a e_1\). Рекурсивно применяя правила, приведенные в определении 2.4.7, мы придём к выводу, что множество векторов \(e_1, ..., e_n\) порождает множество линейных комбинаций

\[a^1 e_1 + ... + a^n e_n \]

Согласно теореме 2.4.11, множество векторов \(e_1, ..., e_n\) является базисом при условии, если для любого \(i, i = 1, ..., n\), вектор \(e_i\) не является линейной комбинацией остальных векторов. Это требование равносильно требованию линейной независимости векторов. □

Пример 2.5.2. Пусть \(G\) - абелевая группа, и \(M\) - множество. Рассмотрим эффективное представление группы \(G\) на множестве \(M\). Для заданных \(a \in G, A \in M\) положим \(A \rightarrow A + a\). Мы будем также пользоваться записью \(a = AB\), если \(B = A + a\). Тогда действие группы можно представить в виде \(B = A + AB\). В качестве базиса представления можно выбрать множество точек таким образом, что каждой орбите представления принадлежит одна и только одна точка. □
Глава 3

Башня представлений \mathfrak{F}-алгебр

3.1. Башня представлений \mathfrak{F}-алгебр

Рассмотрим множество \mathfrak{F}-алгебр A_i, $i = 1, \ldots, n$. Положим $A = (A_1, \ldots, A_n)$. Положим $\mathcal{F} = (f_{1,2}, \ldots, f_{n-1,n})$.

Определение 3.1.1. Рассмотрим множество \mathfrak{F}-алгебр A_i, $i = 1, \ldots, n$. Множество представлений $f_{i,i+1}$, $i = 1, \ldots, n - 1$, \mathfrak{F}-алгебры A_i в \mathfrak{F}_{i+1}-алгебре A_{i+1} называется башней $(\mathcal{A}, \mathcal{F})$ представлений \mathfrak{F}-алгебр.

Мы можем проиллюстрировать определение 3.1.1 с помощью диаграммы

(3.1.1)

$\mathfrak{f}_{i,i+1}$ - представление \mathfrak{F}-алгебры A_i в \mathfrak{F}_{i+1}-алгебре A_{i+1}. $f_{i,i+2}$ - представление \mathfrak{F}_{i+1}-алгебры A_{i+1} в \mathfrak{F}_{i+2}-алгебре A_{i+2}.

Теорема 3.1.2. Отображение

$$ f_{i,i+2} : A_i \rightarrow \mathfrak{F}_{i+2} $$

является представлением \mathfrak{F}-алгебры A_i в \mathfrak{F}_{i+1}-алгебре \mathfrak{F}_{i+2}.

Доказательство. Произвольному $a_{i+1} \in A_{i+1}$ соответствует автоморфизм $f_{i,i+2}(a_{i+1}) \in \mathfrak{F}_{i+2}$. Произвольному $a_i \in A_i$ соответствует автоморфизм $f_{i,i+1}(a_i) \in \mathfrak{F}_{i+1}$. Так как образом элемента $a_{i+1} \in A_{i+1}$ является элемент $f_{i,i+1}(a_i)(a_{i+1}) \in A_{i+1}$, то самым элемент $a_i \in A_i$ порождает преобразование \mathfrak{F}_{i+1}-алгебры \mathfrak{F}_{i+2}, определённое равенством

(3.1.2) $$ f_{i,i+2}(a_i)(f_{i,i+1}(a_i)(a_{i+1})) = f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1})) $$

31
Пусть ω — n-арная операция F_1-алгебры. Так как $f_{i,i+1}$ — гомоморфизм F_1-алгебры, то

(3.1.3) $f_{i,i+1}(\omega(a_{i,1}, \ldots, a_{i,n})) = \omega(f_{i,i+1}(a_{i,1}), \ldots, f_{i,i+1}(a_{i,n}))$

Для $a_1, \ldots, a_n \in A_i$ мы определим операцию ω на множестве $**A_{i+2}$ с помощью равенства

(3.1.4) $\omega(f_{i,i+2}(a_{i,1})(f_{i,i+2}(a_{i,1})), \ldots, f_{i,i+2}(a_{i,n})(f_{i,i+2}(a_{i,n}))) = f_{i,i+2}(\omega(a_{i,1}, \ldots, a_{i,n}) + 1)(a_{i+1}))$

Первое равенство следует из равенства (3.1.2). Второе равенство постулировано на основе требования, что отображение $f_{i,i+2}$ является гомоморфизмом F_1-алгебры. Следовательно, мы определили структуру F_1-алгебры на множестве $**A_{i+2}$.

Из (3.1.4) и (3.1.3) следует

(3.1.5) $\omega(f_{i,i+2}(a_{i,1})(f_{i,i+2}(a_{i,1})), \ldots, f_{i,i+2}(a_{i,n})(f_{i,i+2}(a_{i,n}))) = f_{i,i+2}(\omega(a_{i,1}, \ldots, a_{i,n}) + 1)(a_{i+1}))$

Из равенства (3.1.5) следует

$\omega(f_{i,i+2}(a_{i,1}), \ldots, f_{i,i+2}(a_{i,n})) = f_{i,i+2}(\omega(a_{i,1}, \ldots, a_{i,n}))$

Следовательно, отображение $f_{i,i+2}$ является гомоморфизмом F_1-алгебры. Следовательно, отображение $f_{i,i+2}$ является T^*-представлением F_1-алгебры A_i в F_{i+1}-алгебре A_{i+2}.

Теорема 3.1.3. $(id, f_{i,i+2})$ является морфизмом T^*-представлений F_1-алгебры из $f_{i,i+1}$ в $f_{i,i+2}$.

Доказательство. Рассмотрим более детально диаграмму (3.1.1).

![Diagram](image-url)

Утверждение теоремы следует из равенства (3.1.2) и определения 2.2.2.

Определение 3.1.4. Рассмотрим башню представлений

\[((A_1, A_2, A_3); (f_{1,2}, f_{2,3})) \]

Отображение $f_s = (f_{1,2}, f_{1,3})$ называется представлением F_1-алгебры A_1 в представлении $f_{2,3}$.
Определение 3.1.5. Рассмотрим башню представлений \((\overline{A}, \overline{f})\). Отображение
\(f_\ast = (f_{1,1}, \ldots, f_{1,n})\) называется представлением \(\mathfrak{g}_1\)-алгебры \(A_1\) в башне представлений
\((\overline{A}_1, \overline{f}) = ((A_2, \ldots, A_n), (f_{2,3}, \ldots, f_{n-1,n}))\) □

3.2. Морфизм башни \(T\ast\)-представлений

Определение 3.2.1. Рассмотрим множество \(\mathfrak{g}_1\)-алгебр \(A_i, B_i, i = 1, \ldots, n\). Множество отображений \((h_1, \ldots, h_n)\) называется морфизмом из башни \(T\ast\)-представлений \((\overline{A}, \overline{f})\) в башню \(T\ast\)-представлений \((\overline{B}, \overline{g})\), если для каждого \(i, i = 1, \ldots, n - 1\), пара отображений \((h_i, h_{i+1})\) является морфизмом \(T\ast\)-представлений из \(f_{i,i+1}\) в \(g_{i,i+1}\). □

Для любого \(i, i = 1, \ldots, n - 1\), мы имеем диаграмму

\[(3.2.1)\]

Равенства

\[(3.2.2)\] \(h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1}\)

\[(3.2.3)\] \(h_{i+1}(f_{i,i+1}(a_i)(a_{i+1})) = g_{i,i+1}(h_i(a_i))(h_{i+1}(a_{i+1}))\)

выражают коммутативность диаграммы (1). Однако уже для морфизма \((h_i, h_{i+1})\), \(i > 1\), диаграмма (3.2.1) неполна. Учитывая аналогичную диаграмму для морфизма \((h_i, h_{i+1})\) эта диаграмма на верхнем уровне приобретает вид

\[(3.2.4)\]
К сожалению, диаграмма (3.2.4) малоинформативна. Очевидно, что существует морфизм из A_{i+2} в B_{i+2}, отображающий $f_{i,i+2}(a_i)$ в $g_{i,i+2}(h_i(a_i))$. Однако структура этого морфизма из диаграммы неясна. Мы должны рассмотреть отображение из A_{i+2} в B_{i+2}, так же как мы это сделали в теореме 3.1.3.

Теорема 3.2.2. Если T^*-представления $f_{i+1,i+2}$ эффективно, то $(h_i, *h_{i+2})$ является морфизмом T^*-представлений из T^*-представления $f_{i,i+2}$ в T^*-представление $g_{i,i+2}$ \mathfrak{F}_t-алгебры.

Доказательство. Рассмотрим диаграмму

Существование отображения $*h_{i+2}$ и коммутативность диаграмм (2) и (3) следует из эффективности отображения $f_{i+1,i+2}$ и теоремы 2.2.6. Коммутативность диаграмм (4) и (5) следует из теоремы 3.1.3.

Из коммутативности диаграммы (4) следует

\[(3.2.5) \quad f_{i+1,i+2} \circ f_{i,i+1}(a_i) = f_{i,i+2}(a_i) \circ f_{i+1,i+2}\]

Из равенства (3.2.5) следует

\[(3.2.6) \quad *h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = *h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2}\]

Из коммутативности диаграммы (3) следует

\[(3.2.7) \quad *h_{i+2} \circ f_{i,i+1} = g_{i,i+1} \circ h_{i+1}\]

Из равенства (3.2.7) следует

\[(3.2.8) \quad *h_{i+2} \circ f_{i+1,i+2} \circ f_{i,i+1}(a_i) = g_{i,i+1} \circ h_{i+1} \circ f_{i,i+1}(a_i)\]

Из равенств (3.2.6) и (3.2.8) следует

\[(3.2.9) \quad *h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} = g_{i,i+1} \circ h_{i+1} \circ f_{i,i+1}(a_i)\]

Из коммутативности диаграммы (5) следует

\[(3.2.10) \quad g_{i,i+1} \circ h_{i+1}(a_i) = g_{i,i+2}(h_i(a_i)) \circ g_{i,i+1} \circ h_{i+1}\]

Из равенства (3.2.10) следует

\[(3.2.11) \quad g_{i,i+1} \circ h_{i+1}(a_i) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ g_{i,i+1} \circ h_{i+1}\]

Из коммутативности диаграммы (2) следует

\[(3.2.12) \quad *h_{i+2} \circ f_{i+1,i+2} = g_{i+1,i+2} \circ h_{i+1}\]
Из равенства (3.2.12) следует
\[g_{i,i+2}(h_i(a_i)) \circ h_{i+2} \circ f_{i+1,i+2} = g_{i,i+2}(h_i(a_i)) \circ g_{i+1,i+2} \circ h_{i+1} \]
Из равств (3.2.11) и (3.2.13) следует
\[g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2} \]
Внешняя диаграмма является диаграммой (3.2.1) при \(i = 1\). Следовательно, внешняя диаграмма коммутативна
\[h_{i+1} \circ f_{i,i+1}(a_i) = g_{i,i+1}(h_i(a_i)) \circ h_{i+1}(a_{i+1}) \]
Из равенства (3.2.15) следует
\[g_{i+1,i+2} \circ h_{i+1} \circ f_{i,i+1}(a_i) = g_{i+1,i+2} \circ g_{i,i+1}(h_i(a_i)) \circ h_{i+1} \]
Из равенств (3.2.9), (3.2.14) и (3.2.16) следует
\[*h_{i+2} \circ f_{i,i+2}(a_i) \circ f_{i+1,i+2} = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \circ f_{i+1,i+2} \]
Так как отображение \(f_{i+1,i+2}\) - инъекция, то из равенства (3.2.17) следует
\[*h_{i+2} \circ f_{i,i+2}(a_i) = g_{i,i+2}(h_i(a_i)) \circ *h_{i+2} \]
Из равенства (3.2.18) следует коммутативность диаграммы (1), откуда следует утверждение теоремы.

Теоремы 3.1.3 и 3.2.2 справедливы для любых уровней башни \(T^*-представлений\). В каждом конкретном случае надо правильно указывать множество, откуда и куда направлено отображение. Смысл приведенных теорем состоит в том, что все отображения в башне представлений действуют согласованно.

Теорема 3.2.2 утверждает, что неизвестное отображение на диаграмме (3.2.4) является отображением \(*h_{i+2} \).

Теорема 3.2.3. Рассмотрим множество \(\mathfrak{F}_i \)-алгебр \(A_i, B_i, C_i, i = 1, ..., n \).
Пусть определены морфизмы башни представлений
\[
\mathfrak{p} : (A, f) \to (B, g)
\]
\[
\mathfrak{q} : (B, g) \to (C, h)
\]
Тогда определён морфизм представлений \(\mathfrak{F}_i \)-алгебры
\[
\mathfrak{r} : (A, f) \to (C, h)
\]
где \(r_k = q_k p_k, k = 1, ..., n \). Мы будем называть морфизм \(\mathfrak{r} \) башни представлений из \(\mathfrak{f} \) в \(\mathfrak{h} \) произведением морфизмов \(\mathfrak{p} \) и \(\mathfrak{q} \) башни представлений.
Доказательство. Для каждого k, $k = 2, ..., n$, мы можем представить утверждение теоремы, пользуясь диаграммой

Отображение r_{k-1} является гомоморфизмом \mathfrak{F}_{k-1}-алгебры A_{k-1} в \mathfrak{F}_{k-1}-алгебру C_{k-1}. Нам надо показать, что пара отображений (r_{k-1}, r_k) удовлетворяет (3.2.2):

$$r_k(f_{k-1,k}(a_{k-1})a_k) = q_k p_k(f_{k-1,k}(a_{k-1})a_k) = q_k g_{k-1,k}(p_{k-1}(a_{k-1}))p_k(a_k) = h_{k-1,k}(p_{k-1}(a_{k-1}))q_k p_k(a_k) = h_{k-1,k}(r(a_{k-1}))r_k(a_k)$$

3.3. Эндоморфизм башни представлений

Определение 3.3.1. Пусть $(\mathcal{A}, \mathcal{F})$ башня представлений \mathfrak{F}-алгебр. Морфизм башни представлений $(h_1, ..., h_n)$ такой, что для любого k, $k = 1, ..., n$, h_k - эндоморфизм \mathfrak{F}_k-алгебры A_k, называется эндоморфизмом башни представлений \mathcal{F}.

Определение 3.3.2. Пусть $(\mathcal{A}, \mathcal{F})$ башня представлений \mathfrak{F}-алгебр. Морфизм башни представлений $(h_1, ..., h_n)$ такой, что для любого k, $k = 1, ..., n$, h_k - автоморфизм \mathfrak{F}_k-алгебры A_k, называется автоморфизмом башни представлений f.

Теорема 3.3.3. Пусть $(\mathcal{A}, \mathcal{F})$ башня представлений \mathfrak{F}-алгебр. Множество автоморфизмов представлений \mathcal{F} порождает лупу.\(^{3.1}\)

Доказательство. Пусть \mathcal{P}, \mathcal{N} - автоморфизмы башни представлений \mathcal{F}. Согласно определению 3.3.2 для любого k, $k = 1, ..., n$, отображения r_k, p_k являются автоморфизмами \mathfrak{F}_k-алгебры A_k. Согласно теореме П.3.2 ([12], с. 60) для любого k, $k = 1, ..., n$, отображение $r_k p_k$ является автоморфизмом \mathfrak{F}_k-алгебры A_k. Из теоремы 3.2.3 и определения 3.3.2 следует, что произведение

\(^{3.1}\)Определение лупы приведено в [6], с. 24, [5], с. 39.
автоморфизмов \(\mathcal{T} \) башни представлений \(\mathcal{T} \) является автоморфизмом башни представлений \(\mathcal{T} \).

Пусть \(\mathcal{T} \) - автоматизм башни представлений \(\mathcal{T} \). Согласно определению 3.3.2 для любого \(i, i = 1, \ldots, n \), отображение \(r_i \) является автоморфизмом \(\mathfrak{g} \)-алгебры \(A_i \). Следовательно, для любого \(i, i = 1, \ldots, n \), отображение \(r_i^{-1} \) является автоморфизмом \(\mathfrak{g} \)-алгебры \(A_i \). Для автоморфизма \(\mathcal{T} \) справедливо равенство (3.2.3). Положим \(a_i' = r_i(a_i), i = 1, \ldots, n \). Так как \(r_i, i = 1, \ldots, n \), - автоматизм, то \(a_i = r_i^{-1}(a_i') \) и равенство (3.2.3) можно записать в виде

(3.3.1) \[h_{i+1}(f_{i,i+1}(h_i^{-1}(a_i'))(h_{i+1}(a_i'+1))) = g_{i,i+1}(a_i')(a_i'+1) \]

Так как отображение \(h_{i+1} \) является автоморфизмом \(\mathfrak{g}_{i+1} \)-алгебры \(A_{i+1} \), то из равенства (3.3.1) следует

(3.3.2) \[f_{i,i+1}(h_i^{-1}(a_i')(h_{i+1}(a_i'+1))) = h_{i+1}(g_{i,i+1}(a_i')(a_i'+1)) \]

Равенство (3.3.2) соответствует равенству (3.2.3) для отображения \(\mathcal{T}^{-1} \). Следовательно, отображение \(\mathcal{T}^{-1} \) является автоморфизмом представления \(\mathcal{T} \). \(\square \)

3.4. Базис башни представлений

Определение 3.4.1. Башня \(T^{\ast} \)-представлений \((\mathfrak{A}, \mathcal{T})\), называется эффективной, если для любого \(i \) представление \(f_{i,i+1} \) эффективно. \(\square \)

Теорема 3.4.2. Рассмотрим башню \(T^{\ast} \)-представлений \((\mathfrak{A}, \mathcal{T})\). Пусть представления \(f_{i,i+1}, \ldots, f_{i+k-1,i+k} \) эффективны. Тогда представление \(f_{i,i+k} \) эффективно.

Доказательство. Мы докажем утверждение теоремы по индукции.

Пусть представления \(f_{i,i+1}, f_{i+1,i+2} \) эффективны. Предположим, что преобразование \(f_{i,i+1}(a_i) \) не является тождественным преобразованием. Тогда существует \(a_{i+1} \in A_{i+1} \) такой, что \(f_{i,i+1}(a_i)(a_{i+1}) \neq a_{i+1} \). Так как представление \(f_{i+1,i+2} \) эффективно, то преобразования \(f_{i+1,i+2}(a_{i+1}) \) и \(f_{i+1,i+2}(f_{i,i+1}(a_i)(a_{i+1})) \) не совпадают. Согласно построению, выполненному в теореме 3.1.2, преобразование \(f_{i,i+2}(a_i) \) не является тождественным преобразованием. Следовательно, представление \(f_{i,i+2} \) эффективно.

Предположим утверждение теоремы верно для \(k-1 \) представлений и пусть \(f_{i,i+1}, \ldots, f_{i+k-1,i+k} \) эффективны. Согласно предположению индукции, представление \(f_{i,i+k-1}, f_{i+k-1,i+k} \) эффективны. Согласно доказанному выше, представление \(f_{i,i+k} \) эффективно. \(\square \)

Мы строим базис представления башни представлений по той же схеме, что мы построили базис представления в секции 2.4.

Мы будем записывать элементы базиса представлений \((\mathfrak{A}_{[1]}, \mathcal{T})\) в виде кортежа \((a_2, \ldots, a_n)\), где \(a_i \in A_i, i = 2, \ldots, n \). Эту запись можно интерпретировать как

\((a_2, a_3) = f_{2,3}(a_2)(a_3) \)

В тоже время эта запись имеет дополнительный смысл. Например, в аффинном пространстве \(a_3 \) - это точка пространства, \(a_2 \) - вектор, определяющий преобразование параллельного переноса. Таким образом, мы можем интерпретировать кортеж \((a_2, a_3)\) либо как вектор \(a_2 \) с началом в точке \(a_3 \), либо как конец этого вектора.
Определение 3.4.3. Пусть \((A, f)\) - башня представлений. Кортеж множеств \(\overline{V}_1 = (N_2 \subseteq A_2, ..., N_n \subseteq A_n)\) называется кортежем стабильных множеств башни представлений \(\overline{f}\), если
\[
f_{i-1,i}(a_{i-1})(a_i) \in N_i \quad i = 2, ..., n
\]
для любых \(a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\). Мы также будем говорить, что кортеж множеств \(\overline{V}_1 = (N_2 \subseteq A_2, ..., N_n \subseteq A_n)\) стабилен относительно башни представлений \(\overline{f}\). □

Теорема 3.4.4. Пусть \(\overline{f}\) - башня представлений. Пусть множество \(N_i \subseteq A_i\) является подалгеброй \(\overline{F}_i\)-алгебры \(A_i\), \(i = 2, ..., n\). Пусть кортеж множеств \(\overline{V}_1 = (N_2 \subseteq A_2, ..., N_n \subseteq A_n)\) стабилен относительно башни представлений \(\overline{f}\). Тогда существует башня представлений
(3.4.1) \((A_1, N_2, ..., N_n), (f_{N_2,1,2}, ..., f_{N_n, n-1, n})\)
такая, что
\[
f_{N_i, i-1,i}(a_{i-1}) = f_{i-1,i}(a_{i-1})|_{N_i} \quad i = 2, ..., n
\]

Башня представлений (3.4.1) называется башней подпредставлений.

Доказательство. Пусть \(\omega_{i-1,1} - m\)-арная операция \(\overline{F}_i\)-алгебры \(A_{i-1}\), \(i = 2, ..., n\). Тогда для любых \(a_{i-1,1}, ..., a_{i-1,m} \in N_{i-1}\) и любого \(a_i \in N_i\)
\[
\omega_{i-1,1}(f_{N_i, i-1,i}(a_{i-1,1}), ..., f_{N_i, i-1,i}(a_{i-1,m}))(a_i)
=\omega_{i-1,1}(f_{i-1,i}(a_{i-1,1}), ..., f_{i-1,i}(a_{i-1,m}))(a_i)
=f_{i-1,i}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i)
=f_{N_i, i-1,i}(\omega_{i-1,1}(a_{i-1,1}, ..., a_{i-1,m}))(a_i)
\]
Пусть \(\omega_{i,2} - m\)-арная операция \(\overline{F}_i\)-алгебры \(A_i\), \(i = 2, ..., n\). Тогда для любых \(a_{i,1}, ..., a_{i,n} \in N_i\) и любого \(a_{i-1} \in N_{i-1}\)
\[
\omega_{i,2}(f_{N_i, i-1,i}(a_{i-1}), ..., f_{N_i, i-1,i}(a_{i-1}))(a_{i,1})
=\omega_{i,2}(f_{i-1,i}(a_{i-1}), ..., f_{i-1,i}(a_{i-1}))(a_{i,1})
=f_{i-1,i}(\omega_{i,2}(a_{i,1}, ..., a_{i,m}))(a_{i-1})
=f_{N_i, i-1,i}(\omega_{i,2}(a_{i,1}, ..., a_{i,m}))(a_{i-1})
\]
Утверждение теоремы доказано. □

Из теоремы 3.4.4 следует, что если отображение \((f_{N_2,1,2}, ..., f_{N_n,n-1,n})\) - башня подпредставлений башни представлений \(\overline{f}\), то отображение
\[
(id : A_1 \to A_1, id_2 : N_2 \to A_2, ..., id_n : N_n \to A_n)
\]
является морфизмом башен представлений.

3.4 Положим \(N_1 = A_1\).
Теорема 3.4.5. Множество \(B \) всех башен подпредставлений башни представлений \(\overline{f} \), порождает систему замыканий на башне представлений \(\overline{f} \) и, следовательно, является полной структурой.

Доказательство. Пусть для данного \(\lambda \in \Lambda, K_{\lambda,i}, i = 2, ..., n \) - подалгебра \(\mathfrak{g} \)-алгебры \(A_i \) стабильна относительно представления \(f_i, i = 2, ..., n \). Операцию пересечения на множестве \(B \) мы определим согласно правилу

\[
\bigcap fK_{\lambda,i-1,i} = f \cap K_{\lambda,i-1,i}, \quad i = 2, ..., n
\]

и

\[
\bigcap K_{\lambda,i} = \left(K_1 = A_1, K_2 = \bigcap K_{\lambda,2}, ..., K_n = \bigcap K_{\lambda,n} \right)
\]

\(\cap K_{\lambda,i} \) - подалгебра \(\mathfrak{g} \)-алгебры \(A_i \). Пусть \(a_i \in \bigcap K_{\lambda,i} \). Для любого \(\lambda \in \Lambda \) и для любого \(a_{i-1} \in K_{i-1} \),

\[
f_{i-1,i}(a_{i-1})(a_i) \in K_{\lambda,i}
\]

Следовательно, \(f_{i-1,i}(a_{i-1})(a_i) \in K_i \)

Повторяя приведенное построение в порядке возрастания \(i \), \(i = 2, ..., n \), мы видим, что \((K_1, ..., K_n) \) - кортеж стабильных множеств башни представлений \(\overline{f} \). Следовательно, операция пересечения башен подпредставлений определена корректно.

Определим соответствующий оператор замыкания через \(J(\overline{f}) \). Если мы обозначим через \(X_{[1]} \) кортеж множеств \((X_2 \subset A_2, ..., X_n \subset A_n) \) то \(J(\overline{f}, X_{[1]}) \) является пересечением всех кортежей \((K_1, ..., K_n) \), стабильных относительно представления \(\overline{f} \) и таких, что для \(i = 2, ..., n, K_i \) - подалгебра \(\mathfrak{g} \)-алгебры \(A_1 \), содержащая \(X_i \).

Теорема 3.4.6. Пусть \(\overline{f} \) - башня представлений. Пусть \(X_i \subset A_i, i = 2, ..., n \). Положим \(Y_1 = A_1 \). Последовательно увеличивая значение \(i \), \(i = 2, ..., n \), определим подмножества \(X_i, m \subset A_i \) индукцией по \(m \).

\[
X_{i,0} = X_i, \quad X_{i,m} \supset X_{i,m+1}
\]

\[
x_1 \in X_{i,m}, ..., x_p \in X_{i,m}, \omega \in \mathfrak{g}(p) \Rightarrow \omega(x_1, ..., x_p) \in X_{i,m+1}
\]

\[
x_i \in X_{i,m}, x_{i-1} \in Y_{i-1} \Rightarrow f_{i-1,i}(x_{i-1})(x_i) \in X_{i,m+1}
\]

Для каждого значения \(i \) положим

\[
Y_i = \bigcup_{m=0}^{\infty} X_{i,m}
\]

Тогда

\[
\overline{Y} = (Y_1, ..., Y_n) = J(\overline{f}, X_{[1]})
\]

\[3.3\] Это определение аналогично определению структуры подалгебр ([12], стр. 93, 94)

\[3.4\] При \(n = 2 \), \(J_2(f_1, X_2) = J_{f_1, 2}(X_2) \). Было бы проще использовать единые обозначения в разделах 2.4 и 3.4. Однако использование векторных обозначений в разделе 2.4 мне кажется несвоевременным.

\[3.5\] Утверждение теоремы аналогично утверждению теоремы 5.1, [12], стр. 94.
Доказательство. Для каждого значения \(i \) доказательство теоремы совпадает с доказательством теоремы 2.4.4. Так как для определения устойчивого подмножества \(A_{i-1} \)-алгебры \(A_i \) нас интересует только некоторое устойчивое подмножество \(A_{i-1} \)-алгебры \(A_{i-1} \), мы должны сперва найти устойчивое подмножество \(A_{i-1} \)-алгебры \(A_{i-1} \).

\(J(f, X_1) \) называется башней подпредставлений башни представлений \(f \), порождённой кортежем множеств \(X_1 \), а \(X_1 \) - кортежем множеств образующих башни представлений \(J(f, X_1) \). В частности, кортеж множеств образующих башни представлений \(f \) будет такой кортеж \((X_2 \subset A_2, ..., X_n \subset A_n) \), что \(J(f, X_1) = A \).

Определение 3.4.7. Пусть \((X_2 \subset A_2, ..., X_n \subset A_n)\) - кортеж множеств образующих башни представлений \(f \). Пусть отображение \(h \) является эндоморфизмом башни представлений \(f \). Пусть кортеж множеств \(X_1 = h(X_1) \) является образом кортежа множеств \(X_1 \) при отображении \(h \). Эндоморфизм \(h \) башни представлений \(f \) называется невырожденным на кортеже множеств образующих \(X_1 \); если кортеж множеств \(X_1 \) является кортежем множеств образующих башни представлений \(f \). В противном случае, эндоморфизм \(h \) называется вырожденным на кортеже множеств образующих \(X_1 \).

Определение 3.4.8. Эндоморфизм башни представлений \(f \) называется невырожденным, если он невырожден на любом кортеже множеств образующих.

Нетрудно видеть, что определение кортежа множеств образующих башни представлений не зависит от того, эффективна башня представлений или нет. Поэтому в дальнейшем мы будем предполагать, что башня представлений эффективна и будем опираться на соглашение для эффективного \(T^* \)-представления в замечании 2.1.9.

Из теоремы 3.4.6 следует следующее определение.

Определение 3.4.9. Пусть \((X_2 \subset A_2, ..., X_n \subset A_n)\) - кортеж множеств. Для любого кортежа элементов \(\pi, \bar{\pi} \in J(f, X_1) \), существует кортеж \(\bar{\pi} \)-слова, определённых согласно следующему правилу.

1. Если \(a_1 \in A_1 \), то \(a_1 - \bar{\pi}_1 \)-слово.
2. Если \(a_i \in X_i \) при \(i = 2, ..., n \), то \(a_i - \bar{\pi}_i \)-слово.
3. Если \(a_{i,1}, ..., a_{i,p} - \bar{\pi}_i \)-слова, \(i = 2, ..., n \), и \(\omega \in \bar{\pi}_i(p) \), то \(a_{i,1}...a_{i,p} \omega - \bar{\pi}_i \)-слово.
4. Если \(a_i - \bar{\pi}_i \)-слово, \(i = 2, ..., 3 \), и \(a_{i-1} - \bar{\pi}_{i-1} \)-слово, то \(a_{i-1}a_i - \bar{\pi}_i \)-слово.

Кортеж \(\bar{\pi} \)-слова

\[w(\bar{\pi}, f, X_1) = (w_1(a_1, f, X_1), ..., w_n(a_n, f, X_1)) \]

представляющий данный элемент \(\bar{\pi} \in J(f, X_1) \), называется кортежем координат элемента \(\bar{\pi} \) относительно кортежа множеств \(X_1 \). Обозначим \(\bar{W}(f, X_1) \) множество кортежей координат башни представлений \(J(f, X_1) \). □
Представление \(a_i \in A_i \) в виде \(\mathfrak{F}_1 \)-слова неоднозначно. Если \(a_{i,1}, ..., a_{i,p} \) - \(\mathfrak{F}_1 \)-слова, \(\omega \in \mathfrak{F}_1(p) \) и \(a_{i-1} \in A_{i-1} \), то \(\mathfrak{F}_1 \)-слова \(a_{i-1}a_{i,1}...a_{i,p}\omega \) и \(a_{i-1}a_{i,1}...a_{i-1}a_{i,p}\omega \) описывают один и тот же элемент \(\mathfrak{F}_1 \)-алгебры \(A_i \). Возможны равенства, связанные со спецификой представления. Например, если \(\omega \) является операцией \(\mathfrak{F}_1 \)-алгебры \(A_{i-1} \) и операцией \(\mathfrak{F}_1 \)-алгебры \(A_i \), то мы можем потребовать, что \(\mathfrak{F}_1 \)-слова \(a_{i-1,1}a_{i-1,p}a_i \) и \(a_{i-1,1}...a_{i-1,p}a_i \omega \) описывают один и тот же элемент \(\mathfrak{F}_1 \)-алгебры \(A_i \). Перечисленные выше равенства для каждого значения \(i \), \(i = 2, ..., n \), определяют отношение эквивалентности \(r_i \) на множестве \(\mathfrak{F}_1 \)-слов \(W_i(\mathcal{F}, X_1) \). Согласно построению, отношение эквивалентности \(r_i \) на множестве \(\mathfrak{F}_1 \)-слов \(W_i(\mathcal{F}, X_1) \) зависит не только от выбора множества \(X_i \), но и от выбора множества \(X_{i-1} \).

Теорема 3.4.10. Эндооморфизм \(\mathcal{F} \) башни представлений \(\mathcal{F} \) порождает отображение координат

\[\pi(\mathcal{F}, \mathcal{F}_1) : W_1(\mathcal{F}, X_1) \to W_1(\mathcal{F}, X_1) \quad X_1 \subset A_1 \quad X_1 = r_1(\mathcal{F}_1) \]

такое, что для любого \(i, i = 2, ..., n \),

1. Если \(a_i \in X_i \), \(a'_i = r_i(a_i) \), то
 \[w_1(\mathcal{F}, \mathcal{F}_1)(a_i) = a'_i \]

2. Если
 \[a_{i,1}, ..., a_{i,n} \in W_i(\mathcal{F}, X_1) \]
 \[a'_{i,1} = w_1(\mathcal{F}, \mathcal{F}_1)(a_{i,1}) \quad ... \quad a'_{i,p} = w_1(\mathcal{F}, \mathcal{F}_1)(a_{i,p}) \]
 то для операции \(\omega \in \mathfrak{F}_1(p) \) справедливо
 \[w_1(\mathcal{F}, \mathcal{F}_1)(a_{i,1}...a_{i,p}\omega) = a'_{i,1}...a'_{i,p}\omega \]

3. Если
 \[a_i \in W_i(\mathcal{F}, X_1) \]
 \[a_{i-1} \in W_{i-1}(\mathcal{F}, X_1) \]
 \[a'_{i-1} = w_{i-1}(\mathcal{F}, \mathcal{F}_1)(a_{i-1}) \]
 то
 \[w_1(\mathcal{F}, \mathcal{F}_1)(a_{i-1}a_i) = a'_{i-1}a'_i \]

Доказательство. Утверждения (1), (2) теоремы справедливы в силу определения эндооморфизма \(h_i \). Утверждение (3) теоремы следует из равенства (3.2.3).

Теорема 3.4.11. Пусть \(\mathcal{F} \) башня представлений. Пусть отображение

\[r_1 : A_1 \to A_1 \]

является эндооморфизмом \(\mathfrak{F}_1 \)-алгебры \(A_1 \). Для заданных множеств \(X_i \subset A_i \), \(X'_i \subset A_i \), \(i = 2, ..., n \), пусть отображение

\[R_i : X_i \to X'_i \]

согласовано со структурой \(\mathfrak{F}_1 \)-алгебры \(A_i \), т. е. для каждой операции \(\omega \in \mathfrak{F}_1(p) \), если

\[x_{i,1}, ..., x_{i,p}, x_{i,1}...x_{i,p}\omega \in X_i \]
3. Башни представлений \mathfrak{F}-алгебр

Рассмотрим отображение координат

$$F_\omega((f_1, f_2, \ldots, f_n), X_{[1]}) = W((f_1, f_2, \ldots, f_n), X_{[1]})$$

удовлетворяющее условиям (1), (2), (3) теоремы 3.4.10. Для каждого i, $i = 2, \ldots, n$, существует эндоморфизм

$$r_i : A_i \to A_i$$

определенным правилом

$$(3.4.2) \ r_i(a_i) = w_i((f_1, f_2, \ldots, f_n), X_{[1]})(w_1(a_i, f_1, X_{[1]}))$$

и отображение \mathfrak{F} является морфизмом башен представлений $\mathfrak{F}(f_1, X_{[1]})$ и $\mathfrak{F}(f_1, X_{[1]})$.

Доказательство. При $n = 1$ башня представлений \mathfrak{F} является представлением \mathfrak{F}_1-алгебры A_1 в \mathfrak{F}_2-алгебре A_2. Утверждение теоремы является следствием теоремы 2.4.9.

Пусть утверждение теоремы верно для $n - 1$. Обозначения в теореме не меняются при переходе от одного уровня к другому, так как слово в \mathfrak{F}_{n-1}-алгебре A_{n-1} не зависит от слова в \mathfrak{F}_n-алгебре A_n. Мы будем доказывать теорему индукцией по сложности \mathfrak{F}_n-слова.

Если $w_n(a_n, f_1, X_{[1]}) = a_n$, то $a_n \in X_n$. Согласно условию (1) теоремы 3.4.10,

$$r_n(a_n) = w_n((f_1, f_2, \ldots, f_n), X_{[1]})(w_1(a_n, f_1, X_{[1]}))$$

$$= w_n((f_1, f_2, \ldots, f_n), X_{[1]})(a_n)$$

$$= R_n(a_n)$$

Следовательно, на множестве X_n отображения r_n и R_n совпадают, и отображение r_n согласовано со структурой \mathfrak{F}_n-алгебры.

Пусть $\omega \in \mathfrak{F}_n(p)$. Пусть предположение индукции верно для

$$a_{n,1}, \ldots, a_{n,p} \in J_n(f_1, X_{[1]})$$

Пусть

$$w_{n,1} = w_n(a_{n,1}, f_1, X_{[1]}) \quad \ldots \quad w_{n,p} = w_n(a_{n,p}, f_1, X_{[1]})$$

Если

$$a_n = a_{n,1} \ldots a_{n,p} \omega$$

tо согласно условию (3) определения 3.4.9,

$$w_n(a_n, f_1, X_{[1]}) = w_{n,1} \ldots w_{n,p} \omega$$

Согласно условию (2) теоремы 3.4.10,

$$r_n(a_n) = w_n((f_1, f_2, \ldots, f_n), X_{[1]})(w_1(a_n, f_1, X_{[1]}))$$

$$= w_n((f_1, f_2, \ldots, f_n), X_{[1]})(w_1(a_n, f_1, X_{[1]}))$$

$$= r_n(a_{n,1}) \ldots r_n(a_{n,p}) \omega$$

Следовательно, отображение r_n является эндоморфизмом \mathfrak{F}_n-алгебры A_n.
43

3.4. Базис башни представлений

Пусть предположение индукции верно для

\[a_n \in J_n(\mathcal{J}, \mathcal{X}[1]) \]
\[a_{n-1} \in J_{n-1}(\mathcal{J}, \mathcal{X}[1]) \]
\[w_n(a_n, \mathcal{J}, \mathcal{X}[1]) = w_n \]
\[w_{n-1}(a_{n-1}, \mathcal{J}, \mathcal{X}[1]) = w_{n-1} \]

Согласно условию (4) определения 3.4.9,

\[w_n(a_{n-1}a_n, \mathcal{J}, \mathcal{X}[1]) = w_{n-1}w_n \]

Согласно условию (3) теоремы 3.4.10,

\[r_n(a_{n-1}a_n) = w_n(\mathcal{J}, (r_1, R_2, ..., R_n), \mathcal{X}[1])(w_n(a_{n-1}a_n, \mathcal{J}, \mathcal{X}[1])) \]
\[= w_n(\mathcal{J}, (r_1, R_2, ..., R_n), \mathcal{X}[1])(w_n-1w_n) \]
\[= w_{n-1}(\mathcal{J}, (r_1, R_2, ..., R_n), \mathcal{X}[1])(w_{n-1}w_n) \]
\[= r_{n-1}(a_{n-1})r_n(a_n) \]

Из равенства (3.2.3) следует, что отображение \(\mathfrak{p} \) является морфизмом башни представлений \(\mathcal{J} \).

Теорема 3.4.12. Автоморфизм \(\mathfrak{p} \) башни представлений \(\mathcal{J} \) является невырожденным эндоморфизмом.

Доказательство. Пусть \(\mathcal{X}[1] \) - кортеж множеств образующих башни представлений \(\mathcal{J} \). Пусть \(\mathcal{X}[1] = \mathfrak{p}[1] \).

Согласно теореме 3.4.10 эндоморфизм \(\mathfrak{p} \) порождает отображение координат \(\mathfrak{p}(\mathcal{J}, \mathfrak{p}, \mathcal{X}[1]) \).

Пусть \(\mathfrak{p}' \in \mathfrak{p} \). Так как \(\mathfrak{p} \) - автоморфизм, то существует \(\mathfrak{p} \in \mathfrak{p} \), \(\mathfrak{p}(\mathfrak{p}) = \mathfrak{p}' \).

Согласно определению 3.4.9 \(\mathfrak{p}(\mathfrak{p}, \mathcal{X}[1]) \) - координаты \(\mathfrak{p} \) относительно кортежа множеств образующих \(\mathcal{X}[1] \). Согласно теореме 3.4.11,

\[\mathfrak{p}(\mathfrak{p}', \mathcal{X}[1]) = \mathfrak{p}(\mathcal{J}, \mathfrak{p}, \mathcal{X}[1])(\mathfrak{p}(\mathfrak{p}, \mathcal{X}[1])) \]

координаты \(\mathfrak{p}' \) относительно кортежа множеств \(\mathcal{X}[1] \). Следовательно, \(\mathcal{X}[1] \) - множество образующих представления \(\mathcal{J} \). Согласно определению 3.4.8, автоморфизм \(\mathfrak{p} \) - невырожден.

Если кортеж множеств \(\mathcal{X}[1] \) является кортежем множеств образующих башни представлений \(\mathcal{J} \), то любой кортеж множеств \(\mathcal{Y}[1] \), \(X_i \subset Y_i \subset A_i, i = 2, ..., n \), также является кортежем множеств образующих башни представлений \(\mathcal{J} \). Если существует кортеж минимальных множеств \(\mathcal{X}[1] \), порождающих башню представлений \(\mathcal{J} \), то такой кортеж множеств \(\mathcal{X}[1] \) называется **базисом башни представлений \(\mathcal{J} \).**

Теорема 3.4.13. Базис башни представлений определин индукцией по \(n \). При \(n = 2 \) базис башни представлений является базисом представления \(f_{1,2} \). Если кортеж множеств \(\mathcal{X}[1,n] \) является базисом башни представлений \(f_{1,2} \), то кортеж множеств образующих \(\mathcal{X}[1] \) башни представлений \(\mathcal{J} \) является базисом тогда и только тогда, когда для любого \(a_n \in X_n \) кортеж множеств \((X_2, ..., X_{n-1}, X_n \setminus \{a_n\}) \) не является кортежем множеств образующих башни представлений \(\mathcal{J} \).
ДОКАЗАТЕЛЬСТВО. При \(n = 2 \) утверждение теоремы является следствием теоремы 2.4.11.

Пусть \(n > 2 \). Пусть \(\mathfrak{X}_1 \) - кортеж множеств образующих башни расслоений \(\mathcal{F} \). Пусть кортеж множеств \(\mathfrak{X}_{[1,n]} \) является базисом башни расслоений \(\mathcal{F}_{[n]} \).

Допустим для некоторого \(a_n \in \mathfrak{X}_n \) существует слово

\[
w_n = w_n(a_n, \mathcal{F}, (X_1, \ldots, X_{n-1}, X_n \setminus \{a_n\}))
\]

(3.4.3)

Рассмотрим \(a'_n \in A_n \), для которого слово

\[
w'_n = w_n(a'_n, \mathcal{F}, \mathfrak{X}_1)
\]

(3.4.4)

зависит от \(a_n \). Согласно определению 2.4.7, любое вхождение \(a_n \) в слово \(w'_n \) не зависит от \(a'_n \), а кортеж множеств \((X_2, \ldots, X_{n-1}, X_n \setminus \{a_n\}) \) является кортежем множеств образующих башни \(\mathcal{F} \). Следовательно, \(\mathfrak{X}_1 \) не является базисом башни представлений \(\mathcal{F} \).

Теорема 3.4.13 даёт нам эффективный метод построения базиса башни представлений \(\mathcal{F} \). Мы начинаем строить базис в самом нижнем слое. Когда базис построен в слое \(i \), \(i = 2, \ldots, n - 1 \), мы можем перейти к построению базиса в слое \(i + 1 \).

Теорема 3.4.14. Автоморфизм башни представлений \(\mathcal{F} \) отображает базис базисом представлений \(\mathcal{F} \) в базис.

ДОКАЗАТЕЛЬСТВО. При \(n = 2 \) утверждение теоремы является следствием теоремы 2.4.13.

Пусть отображение \(\pi \) - автоморфизм башни представлений \(\mathcal{F} \). Пусть кортеж множеств \(\mathfrak{X}_1 \) - базис башни представлений \(\mathcal{F} \). Пусть \(\mathfrak{X}_1 = \pi(\mathfrak{X}_1) \).

Допустим кортеж множеств \(\mathfrak{X}_1 \) не является базисом. Согласно теореме 3.4.13 существуют \(i, i = 2, \ldots, n \), и \(a'_i \in X'_i \) такие, что кортеж множеств \(\mathfrak{X}_1 \) является кортежем множеств образующих башни представлений \(\mathcal{F} \). Согласно теореме 3.3.3 отображение \(\pi^{-1} \) является автоморфизмом башни представлений \(\mathcal{F} \). Согласно теореме 3.4.12 и определению 3.4.8, кортеж множеств \(\mathfrak{X}_1 \) является кортежем множеств образующих представлений \(\mathcal{F} \). Полученное противоречие доказывает теорему.

3.5. Примеры базиса башни представлений

Аффинное пространство - это эффективное представление векторного пространства в абельевой группе. Этот пример рассмотрен в главе 6.

Пример 3.5.1. Пусть \(A_2 \) - свободная алгебра над полем \(A_1 \). Рассматривая алгебру \(A_2 \) как кольцо, мы можем определить свободное векторное пространство \(A_3 \) над алгеброй \(A_2 \). Пусть \(\mathfrak{a} \) - базис алгебры \(A_3 \) над алгеброй \(A_2 \). Вектор \(a_3 \in A_3 \) имеет представление

\[
a_3 = a'_3 \mathfrak{a} = (a_3^1 \ldots a_3^n)
\]

(3.5.1)

3.6. \(X'' = X'_i, j \neq i, X'' = X'_i \setminus \{x_i\} \)

3.7. \(X'' = X_j, j \neq i, X'' = X_i \setminus \{x_i\} \)
Пусть \(\cdot_{21}\overline{e} \) - базис алгебры \(A_2 \) над полем \(A_1 \). Так как \(a^j_3 \in A_2 \), то мы можем записать их координаты относительно базиса \(\cdot_{21}\overline{e} \):

(3.5.2) \[a^j_3 = a^{ji}_3 \cdot_{21}\overline{e}_i = \begin{pmatrix} a^{j1}_3 & \ldots & a^{jm}_3 \end{pmatrix} \begin{pmatrix} \cdot_{21}\overline{e}_1 \\ \cdot_{21}\overline{e}_m \end{pmatrix} \]

Из равенств (3.5.1), (3.5.2) следует

(3.5.3) \[a_3 = a^{ji}_3 \cdot_{21}\overline{e}_i \cdot_{32}\overline{e}_j = \begin{pmatrix} a^{11}_3 & \ldots & a^{1m}_3 \\ \cdot_{21}\overline{e}_1 \\ \cdot_{21}\overline{e}_m \\ \cdot_{32}\overline{e}_1 \\ \vdots \\ \cdot_{32}\overline{e}_n \end{pmatrix} \begin{pmatrix} a^{n1}_3 & \ldots & a^{nm}_3 \\ \cdot_{21}\overline{e}_1 \\ \cdot_{21}\overline{e}_m \\ \cdot_{32}\overline{e}_1 \\ \vdots \\ \cdot_{32}\overline{e}_n \end{pmatrix} \]

Равенство (3.5.3) показывает структуру координат в векторном пространстве \(A_3 \) над полем \(A_1 \). Нетрудно убедиться, что векторы

\(\cdot_{31}\overline{e}_{ij} = \cdot_{21}\overline{e}_i \cdot_{32}\overline{e}_j \)

линейно независимы над полем \(A_1 \). Следовательно, мы построили базис \(\cdot_{31}\overline{e} \) векторного пространства \(A_3 \) над полем \(A_1 \). Следовательно, мы можем переписать равенство (3.5.3) в виде

(3.5.4) \[a_3 = a^{ji}_3 \cdot_{31}\overline{e}_{ij} = \begin{pmatrix} a^{11}_3 & \ldots & a^{1m}_3 \\ a^{11}_3 & \ldots & a^{1m}_3 \\ \cdot_{31}\overline{e}_{1m} \\ \cdot_{31}\overline{e}_{1n} \\ \cdot_{31}\overline{e}_{nm} \end{pmatrix} \]

Нетрудно убедиться, что вектор \(\cdot_{31}\overline{e}_{ij} \) можно отождествить с тензорным произведением \(\cdot_{21}\overline{e}_i \otimes \cdot_{32}\overline{e}_j \). \(\square \)
Глава 4

Геометрия тела

4.1. Центр тела

Определение 4.1.1. Пусть D - кольцо. Множество $Z(D)$ элементов $a \in D$ таких, что

\begin{equation}
ax = xa
\end{equation}

dля всех $x \in D$, называется центром кольца D. □

Теорема 4.1.2. Центр $Z(D)$ кольца D является подкольцом кольца D.

Доказательство. Непосредственно следует из определения 4.1.1. □

Теорема 4.1.3. Центр $Z(D)$ тела D является подполем тела D.

Доказательство. Согласно теореме 4.1.2 достаточно проверить, что $a^{-1} \in Z(D)$, если $a \in Z(D)$. Пусть $a \in Z(D)$. Многократно применяя равенство (4.1.1), мы получим цепочку равенств

\begin{equation}
axa^{-1} = x = xaa^{-1} = axa^{-1}
\end{equation}

Из (4.1.2) следует $a^{-1}x = xa^{-1}$.

Следовательно, $a^{-1} \in Z(D)$. □

Определение 4.1.4. Пусть D - кольцо с единицей e. Отображение

$l : Z \rightarrow D$

dля которого $l(n) = ne$ будет гомоморфизмом колец, и его ядро является идеалом (n), порождённым целым числом $n \geq 0$. Канонический инъективный гомоморфизм

$Z/nZ \rightarrow D$

является изоморфизмом между Z/nZ и подкольцом в D. Если nZ - простой идеал, то у нас возникает два случая.

- $n = 0$. D содержит в качестве подкольца кольцо, изоморфное Z и часто отожествляемое с Z. В этом случае мы говорим, что D имеет характеристику 0.
- $n = p$ для некоторого простого числа p. D имеет характеристику p, и D содержит изоморфный образ $F_p = Z/pZ$.

\[\text{[1], стр. 84.}\]

\[\text{[2] Определение дано согласно определению из [1], стр. 84, 85.}\]
Теорема 4.1.5. Пусть D - кольцо характеристики 0 и пусть $d \in D$. Тогда любое целое число $n \in \mathbb{Z}$ коммутирует с d.

Доказательство. Утверждение теоремы доказывается по индукции. При $n = 0$ и $n = 1$ утверждение очевидно. Допустим утверждение справедливо при $n = k$. Из цепочки равенств

$$(k + 1)d = kd + d = dk + d = d(k + 1)$$

следует очевидность утверждения при $n = k + 1$. □

Теорема 4.1.6. Пусть D - кольцо характеристики 0. Тогда кольцо целых чисел \mathbb{Z} является подкольцом центра $Z(D)$ кольца D.

Доказательство. Следствие теоремы 4.1.5. □

Пусть D - тело. Если D имеет характеристику 0, D содержит в качестве подполя изоморфный образ поля \mathbb{Q} рациональных чисел. Если D имеет характеристику p, D содержит в качестве подполя изоморфный образ \mathbb{F}_p. В обоих случаях это подполя будет называться простым полем. Так как простое поле является наименьшим подполя в D, содержащим 1 и не имеющим автоморфизмов, кроме тождественного, его обычно отождествляют с \mathbb{Q} или \mathbb{F}_p, в зависимости от того, какой случай имеет место.

Теорема 4.1.9. Пусть D - тело характеристики 0 и пусть $d \in D$. Тогда поля рациональных чисел \mathbb{Q} является подполем центра $Z(D)$ тела D.

Доказательство. Следствие теоремы 4.1.8. □
4.2. Геометрия тела над полем

Мы можем рассматривать тело \(D \) как векторное пространство над полем \(F \subset \mathbb{Z}(D) \). При этом мы будем пользоваться следующими соглашениями.

1. Мы не будем для элемента тела \(D \) пользоваться стандартными обозначениями для вектора, если мы будем рассматривать этот элемент как вектор над полем \(F \). Однако мы будем пользоваться другим цветом для индекса при записи координат элемента тела \(D \) как вектора над полем \(F \).

2. Так как \(F \) - поле, то мы можем писать все индексы справа от корневой буквы. Однако мы будем пользоваться тем же соглашением, что мы пользуемся для тела.

Пусть \(\mathbf{\pi} \) - базис тела \(D \) над полем \(F \). Тогда произвольный элемент \(a \in D \) можно представить в виде

\[
a = a^i \mathbf{\pi}^i
\]

где \(a^i \in F \). Если размерность тела \(D \) над полем \(F \) бесконечна, то базис может быть либо счётным, либо его мощность может быть не меньше, чем мощность континуума. Если базис счётный, то на коэффициенты \(a^i \) разложения \((4.2.1)\) накладываются определённые ограничения. Если мощность множества \(I \) континуум, то предполагается, что на множестве \(I \) определена мера и сумма в разложении \((4.2.1)\) является интегралом по этой мере.

Поскольку в теле \(D \) определена операция произведения, то мы можем рассматривать тело как алгебру над полем \(F \). Для элементов базиса мы положим

\[
i^j \mathbf{\pi}^k = ij B^k \mathbf{\pi}^k
\]

Коэффициенты \(ij B^k \) разложения \((4.2.2)\) называются структурными константами тела \(D \) над полем \(F \). Из равенств \((4.2.1), (4.2.2)\) следует

\[
ab = a^i b^j ij B^k \mathbf{\pi}^k
\]

Из равенства \((4.2.3)\) следует

\[
(ab)c = (ab)^i c^j ij B^k \mathbf{\pi}^k = a^m b^n mn B^i c^j ij B^k \mathbf{\pi}^k
\]

\[
a(bc) = a^i (bc)^j ij B^k \mathbf{\pi}^k = a^i b^m c^n mn B^j ij B^k \mathbf{\pi}^k
\]

Из ассоциативности произведения

\[
(ab)c = a(bc)
\]

и равенств \((4.2.4)\) и \((4.2.5)\) следует

\[
a^m b^n mn B^i c^j ij B^k \mathbf{\pi}^k = a^i b^m c^n mn B^j ij B^k \mathbf{\pi}^k
\]

Так как векторы \(a, b, c \) произвольны, а векторы \(\mathbf{\pi} \) линейно независимы, то из равенства \((4.2.6)\) следует

\[
im B^j jn B^k = mn B^j ij B^k
\]

Теорема 4.2.1. Координаты \(a^j \) вектора \(a \) являются тензором

\[
a^j = a^i i A^j
\]
ДОКАЗАТЕЛЬСТВО. Пусть \overline{e}' - другой базис. Пусть (4.2.9) $i\overline{e}' = iA_j^e\overline{e}'$ преобразование, отображающее базис \overline{e} в базис \overline{e}'. Так как вектор a не меняется, то (4.2.10) $a = a^i_i\overline{e}' = a^j_j\overline{e}'$ Из равенств (4.2.9) и (4.2.10) следует (4.2.11) $a^i_i\overline{e}' = a^j_j\overline{e}' = a^i_iA^j_j\overline{e}'$

Так как векторы \overline{e}' линейно независимы, то равенство (4.2.8) следует из равенства (4.2.11). Следовательно, компоненты вектора являются тензором. □

Теорема 4.2.2. Структурные константы тела D над полем F являются тензором

(4.2.12) $nA^{-1}i^mAj^k_k = nmB^l_l$

ДОКАЗАТЕЛЬСТВО. Рассмотрим аналогичным образом преобразование произведения. Равенство (4.2.3) в базисе \overline{e}' имеет вид (4.2.13) $ab = a^i_i b^j_j i\overline{e}'$

Подставив (4.2.8) и (4.2.9) в (4.2.13), получим (4.2.14) $ab = a^i_i nA^{-1}i^mAj^k_k = nmB^l_l\overline{e}'$

Из (4.2.3) и (4.2.14) следует (4.2.15) $a^i_i nA^{-1}i^mAj^k_k = nmB^l_l\overline{e}'$

Так как векторы a и b произвольные, а векторы \overline{e}' линейно независимы, то равенство (4.2.12) следует из равенства (4.2.15). Следовательно, структурные константы являются тензором. □
Глава 5

Квадратичное отображение тела

5.1. Билинейное отображение тела

Теорема 5.1.1. Пусть D - тело характеристики 0. Пусть F - поле, которое является подкольцом центра тела D. Допустим \mathfrak{e} - базис тела D над полем F. Стандартное представление над полем F билинейного отображения тела имеет вид

$$f(a, b) = (1)f^{ijk} e_i a^j b^k e + (2)f^{ijk} e_i b^j a^k e$$

Выражение $(1)f^{ijk}$ в равенстве (5.1.1) называется стандартной компонентой над полем F билинейного отображения f.

Доказательство. Следствие теоремы [7]-9.3.6. Здесь даны перестановки

$$\sigma_1 = \begin{pmatrix} a & b \\ a & b \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$

\[\square\]

Теорема 5.1.2. Пусть поле F является подкольцом центра $Z(D)$ тела D. Пусть \mathfrak{e} - базис тела D над полем F. Билинейное отображение

$$g : D \times D \to D$$

можно представить в виде D-значной билинейной формы над полем F

$$g(a, b) = a^i b^j \ ijg$$

где

$$a = a^i e_i \quad b = b^j e_j$$

$$ijg = g(\mathfrak{e}, \mathfrak{e})$$

и величины ijg являются координатами D-значного ковариантного тензора над полем F.

Доказательство. Следствие теоремы [7]-9.3.7. \[\square\]

Матрица $G = |ijg|$ называется матрицей билинейной функции. Если матрица G невырождена, то билинейная функция g называется невырожденной.

Теорема 5.1.3. Билинейное отображение

$$g : D \times D \to D$$

симметрично тогда и только тогда, когда матрица G симметрична

$$ijg = jieg$$
ДОКАЗАТЕЛЬСТВО. Следствие теоремы [7]-9.3.8.

Теорема 5.1.4. Билинейное отображение

\[g : D \times D \to D \]

кожно симметрично тогда и только тогда, когда матрица \(G \) кожно симметрична

\[ijg = -ji g \]

ДОКАЗАТЕЛЬСТВО. Следствие теоремы [7]-9.3.9.

Теорема 5.1.5. Компоненты билинейного отображения

\[g : D \times D \to D \]

и его матрица над полем \(F \) связаны равенствами

(5.1.5) \[pq g = ((1)g^jik \ ip \ s j B^l \ tiq \ B^r \ tk B^v + (2)g^jik \ iq \ s j B^l \ tiq \ B^r \ tk B^v \) \]

(5.1.6) \[pq g^r = (1)g^jik \ ip \ s j B^l \ tiq \ B^r \ tk B^v + (2)g^jik \ iq \ s j B^l \ tiq \ B^r \ tk B^v \]

ДОКАЗАТЕЛЬСТВО. Следствие теоремы [7]-9.3.10. Для доказательства утверждения достаточно подставить (5.1.2) в равенства [7]-(9.3.14), [7]-(9.3.15).

Теорема 5.1.6. Если билинейное отображение

\[g : D \times D \to D \]

имеет матрицу \(G = \| ij g \| \), то существует билинейное отображение

\[g' : D \times D \to D \]

которое имеет матрицу \(G' = \| ij g' \| \), \(ij g' = j i g \).

ДОКАЗАТЕЛЬСТВО. Положим

(5.1.7) \[(1)g'^{ijk} = (2)g^{ijk} \]

(2)g^{ijk} = (1)g^{ijk}

Из равенств (5.1.6), (5.1.7) следует

\[pq g^r = (1)g^{jik} \ ip \ s j B^l \ tiq \ B^r \ tk B^v + (2)g^{jik} \ iq \ s j B^l \ tiq \ B^r \ tk B^v \]

\[= (2)g^{jik} \ ip \ s j B^l \ tiq \ B^r \ tk B^v + (1)g^{jik} \ ip \ s j B^l \ tiq \ B^r \ tk B^v \]

\[= pq g^r \]

5.2. Квадратичное отображение тела

Определение 5.2.1. Пусть \(D \) - тело. Отображение

\[h : D \to R \]

называется квадратичным, если существует билинейное отображение

\[g : D \times D \to D \]

такое, что

\[h(a) = g(a,a) \]

Билинейное отображение \(g \) называется отображением, ассоциированным отображению \(h \).
Отображение \(g \) определено неоднозначно для заданного отображения \(h \). Однако согласно теореме 5.1.6, мы всегда можем положить, что билинейное отображение \(g \) симметрично

\[
g(a, b) = g(b, a)
\]

Действительно, если билинейное отображение \(g_1 \), ассоциированное отображению \(h \), не симметрично, то мы положим

\[
g(a, b) = (g_1(a, b) + g_1(b, a))/2
\]

Так как билинейное отображение однородно степени 1 над полем \(R \) по каждой переменной, квадратичное отображение однородно степени 2 над полем \(R \).

Теорема 5.2.2. Пусть \(D \) - тело характеристики 0. Пусть \(F \) - поле, которое является подкольцом центра тела \(D \). Допустим \(\overline{F} \) - базис тела \(D \) над полем \(F \). Стандартное представление квадратичного отображения тела над полем \(F \) имеет вид

\[
f(a) = f_{ijk} \overline{p}_i a_j \overline{p}_k
\]

Выражение \(f_{ijk} \) в равенстве (5.2.1) называется стандартной компонентой квадратичного отображения \(f \) над полем \(F \).

Доказательство. Следствие теоремы 5.1.1. □

Теорема 5.2.3. Пусть поле \(F \) является подкольцом центра \(Z(D) \) тела \(D \). Пусть \(\overline{F} \) - базис тела \(D \) над полем \(F \). Квадратичное отображение \(f \) можно представить в виде \(D \)-значной квадратичной формы над полем \(F \)

\[
f(a) = a^i a^j f_{ij}
\]

где

\[
\overline{\pi} = a^i \overline{\pi}
\]

\[
ijf = g(i\overline{\pi}, j\overline{\pi})
\]

и \(g \) - ассоциированное билинейное отображение. Величины \(ijf \) являются координатами \(D \)-значного ковариантного тензора над полем \(F \).

Доказательство. Для выбранного билинейного отображения \(g \), ассоциированного отображению \(f \), утверждение теоремы является следствием теоремы 5.1.2. Нам надо доказать независимость координат квадратичного отображения от выбора ассоциированного отображения \(g \).

Допустим, \(g_1, g_2 \) - билинейные отображения, ассоциированные отображению \(f \). Тогда

\[
ii f_1 = g_1(i\overline{\pi}, i\overline{\pi}) = g_2(i\overline{\pi}, i\overline{\pi}) = ii f_2
\]

Для произвольного \(a \in D \)

\[
a^i a^j ijf_1 = a^i a^j ijf_2
\]

Если для данных \(i, j \) мы рассмотрим \(a \in D \), для которого \(a_i = a_j = 1 \), то мы получим

\[
ii f_1 + ij f_1 + ji f_1 + jj f_1 = ii f_2 + ij f_2 + ji f_2 + jj f_2
\]
Из равенств (5.2.4), (5.2.5) следует

\[ij f_1 + ji f_1 = ij f_2 + ji f_2 \]

Следовательно, если ассоциированное билинейное отображение симметрично, то оно определено однозначно. □

Матрица \(F = |ij f| \) называется матрицей квадратичного отображения. Если матрица \(F \) невырождена, то квадратичное отображение \(f \) называется невырожденным. Ранг матрицы \(F \) называется рангом квадратичного отображения \(f \).

Теорема 5.2.4. Отображение

\[f : D \rightarrow D \]

квадратичное над полем \(F \), определено как отображение над телом тогда и только тогда, когда

\[
\begin{align*}
 pq f &= f^i j k i p B^a s j B^i i q B^t t k B^r r p \bar{p} \\
 pq f^r &= f^i j k i p B^a s j B^i i q B^t t k B^r r p
\end{align*}
\]

\begin{align*}
 &\text{Доказательство. Подставим} \\
 &\pi = a^j j p \bar{p}
\end{align*}

в равенство (5.2.1). Тогда равенство (5.2.1) примет вид

\[
\begin{align*}
 f(a) &= f^i j k i p B^a s j B^i i q B^t t k B^r r p \bar{p} \\
 &= a^p a^q f^i j k i p B^a s j B^i i q B^t t k B^r r p \bar{p} \\
 &= a^p a^q f^i j k i p B^a s j B^i i q B^t t k B^r r p \bar{p}
\end{align*}
\]

Равенство (5.2.6) следует из сравнения равенств (5.2.8) и (5.2.2). □

Из теоремы 5.2.3 следует, что координаты \(pq f \) образуют тензор. В теореме [7]-9.2.11 описана структура допустимых преобразований.

Теорема 5.2.5. Пусть поле \(F \) является подкольцом центра \(Z(D) \) тела \(D \). Пусть \(\bar{p} \) - базис тела \(D \) над полем \(F \). Пусть \(ij B^k \) - структурные константы тела \(D \) над полем \(F \). Если

\[\det(a^i (ij B^k + ji B^k)) \neq 0 \]

tо уравнение

\[ax + xa = b \]

имеет единственного решения.

Если детерминант равен 0, то условием существования решения является \(F \)-линейная зависимость вектора \(b \) от векторов \(a^i (ij B^k + ji B^k) \). В этом случае, уравнение (5.2.9) имеет бесконечно много решений. В противном случае уравнение не имеет решений.

Доказательство. Из равенств (4.2.3), (5.2.9) следует

\[
\begin{align*}
 &a^i x^j ij B^k k \bar{p} + x^j a^i ij B^k k \bar{p} = b^k k \bar{p}
\end{align*}
\]

Так как векторы \(k \bar{p} \) линейно независимы, то из равенства (5.2.10) следует, что координаты \(x^j \) удовлетворяют системе линейных уравнений

\[
\begin{align*}
 &x^j a^i (ij B^k + ji B^k) = b^k
\end{align*}
\]
Следовательно, если определитель системы (5.2.11) не равен 0, то система имеет единственное решение.

Аналогично, если определитель равен 0, то условием существования решения является равенство ранга расширенной матрицы и ранга матрицы системы линейных уравнений.

Теорема 5.2.6. Пусть поле F является подкольцом центра $Z(D)$ тела D. Существует квадратичное отображение f такое, что можно найти базис \overline{P} над полем F, в котором отображение f представлено как сумма квадратов.

Доказательство. Приведение квадратичной формы к диагональному виду выполнено аналогично тому как это сделано в [4], с. 169 - 172. Рассматриваемые преобразования переменных связаны с соответствующими преобразованиями базиса. Нас не интересует, является ли эти преобразования базиса допустимыми. Причина состоит в том, что базис, выбранный вначале может быть не связан с каноническим базисом допустимым преобразованием. Однако для нас важно, чтобы окончательное представление отображения f было допустимым.

Мы докажем утверждение индукцией по числу переменных в представлении квадратичного отображения. Для этого мы будем записывать квадратичное отображение f в виде отображения от n переменных a^1, \ldots, a^n

$$f(a) = f(a^1, \ldots, a^n) = a^i a^j \overline{B}_{ij} f$$

Представление квадратичного отображения в виде (5.2.12) называется квадратичной формой.

Утверждение очевидно, если квадратичная форма зависит от одной переменной a^1, так как в этом случае квадратичная форма имеет вид

$$f(a^1) = (a^1)^2 \overline{B}_{11} f$$

Допустим утверждение теоремы справедливо для квадратичной формы от $n - 1$ переменной.

(1) Пусть квадратичная форма содержит квадраты переменных. Не нарушая общности, положим $\overline{B}_{11} f \neq 0$. Рассмотрим отображение

$$f_1(a^1, \ldots, a^n) = f(a^1, \ldots, a^n) - \overline{B}_{11} (a^1) f_1 (a^1, \ldots, a^n) = f_1 (a^1, \ldots, a^n)$$

Мы выбираем значения \overline{h} таким образом, чтобы удовлетворить равенство

$$2 \overline{B}_{11} \overline{f} \overline{1} = \overline{h} \overline{1}$$

Когда $\overline{j} = 1$, из равенства (5.2.14) следует

$$\overline{h} = \overline{B}_{11} f$$

Когда $\overline{j} > 1$, из равенств (5.2.13), (5.2.15) следует

$$2 \overline{B}_{11} \overline{f} \overline{1} = \overline{B}_{11} \overline{1}$$

Из теоремы 5.2.5 следует, что если

$$\det(\overline{B}_{11} \overline{f} \overline{1} (\overline{j} \overline{B}^k + \overline{j} \overline{B}^k)) \neq 0$$

Дополнительные заметки:

- Для каждой переменной a^i необходимо выполнить аналогичные преобразования, чтобы получилась диагональная форма.
- В результате получается система уравнений, которая может быть решена методом Гаусса.
- Использование базиса \overline{P} позволяет упростить процесс преобразования.
- Условие $\det(\overline{B}_{11} \overline{f} \overline{1} (\overline{j} \overline{B}^k + \overline{j} \overline{B}^k)) \neq 0$ гарантирует, что система имеет единственное решение.
то уравнение (5.2.16) имеет единственное решение. Мы предположим, что условие (5.2.17) выполнено, и рассмотрим замену переменных

\[b^1 = a^j h \]
\[b^i = a^i \quad i > 1 \]

Следовательно, отображение \(f_1(a^1, ..., a^n) \) не зависит от \(b^1 \). Согласно определению (5.2.13), мы представили отображение \(f(a^1, ..., a^n) \) в виде суммы квадрата переменной \(b^1 \) и квадратичного отображения от \(b^1 \) не зависящего.

\[f(a^1, ..., a^n) = 11 f^{-1} (b^1)^2 + f_1(b^2, ..., b^n) \]

Так как форма \(f_1 \) зависит от \(n - 1 \) переменной, то мы можем найти преобразование переменных, приводящее эту форму к сумме квадратов переменных.

(2) Если \(11 f = ... = n_n f = 0 \), то нам нужно дополнительное линейное преобразование, приводящее к появлению квадратов переменных. Положим \(12 f \neq 0 \). Совершим линейное преобразование

\[a^1 = b^1 - b^2 \]
\[a^2 = b^1 + b^2 \]
\[a^i = b^i \quad i > 2 \]

В результате этого преобразования слагаемое

\[2 a^1 a^2 12 f \]

примет вид

\[2 (b^1)^2 12 f - 2 (b^2)^2 12 f \]

Мы получили квадратичную форму, рассмотренную в случае (1).

Если все коэффициенты квадратичной формы в каноническом представлении действительны, то \(f(a) \in R \) для любого \(a \in D \).

Допустим, мы выбрали квадратичную форму \(f \), принимающую действительные значения.

Определение 5.2.7. Пусть \(D \) - тело. Квадратичное отображение

\[f : D \times D \to D \]

называется положительно определённым, если

\[f(a) \in R \]

для любого \(a \in D \) и при этом выполнены условия

\[f(a) \geq 0 \]
\[f(a) = 0 \Rightarrow a = 0 \]

Положительно определённое квадратичное отображение называется евклидовой метрикой на теле \(D \). Симметричное ассоциированное билинейное отображение \(g \) называется евклидовым скалярным произведением на теле \(D \). □
Если квадратичное отображение f не является положительно определённым, то это отображение называется **псевдоэвклидовой метрикой на теле** D. Симметричное ассоциированное билинейное отображение g называется **псевдоэвклидовым скалярным произведением на теле** D. Пусть \overline{e} - базис, относительно которого форма f представлена в виде суммы квадратов. Существуют вектора базиса \overline{e}_i, для которых $f(\overline{e}_i) < 0$. Для произвольного $a = a^i \overline{e}_i$ определим операцию сопряжения равенством

$$a^* = \text{sign}(f(\overline{e}_i))a^i \overline{e}_i$$

Выражение a^* называется **эрмитовым сопряжением**.

Рассмотрим биаддитивное отображение

$$g^*(a, b) = g(a, b^*)$$

$$f^*(a) = g^*(a, a)$$

Отображение $f^*(a)$ положительно определено и называется **эрмитовой метрикой на теле** D. Симметричное ассоциированное отображение g^* называется **эрмитовым скалярным произведением на теле** D.

Если отображение

$$a \rightarrow a^*$$

линейно, то эрмитово скалярное произведение совпадает с эвклидовым скалярным произведением. Аналогичное утверждение верно для метрики.
Глава 6

\textit{D}-аффинное пространство

6.1. \textit{D}-аффинное пространство

Определение 6.1.1. Рассмотрим множество точек \(\mathcal{A} \) и множество векторов \(\mathcal{F} \). Множество \(\mathcal{A} \) удовлетворяет следующим аксиомам

1. Существует по крайней мере одна точка
2. Каждой паре точек \((A, B)\) поставлен в соответствие один и только один вектор. Этот вектор мы будем обозначать \(\overrightarrow{AB} \). (Аксиома параллелограмма.) Если \(\overrightarrow{AB} = \overrightarrow{CD} \), то \(\overrightarrow{AC} = \overrightarrow{BD} \).
3. Для каждой точки \(A \) и любого вектора \(\overrightarrow{\pi} \) существует одна и только одна точка \(B \) такая, что \(\overrightarrow{AB} = \overrightarrow{\pi} \). Мы будем также пользоваться записью (6.1.2)

\[B = A + \overrightarrow{\pi} \]

(4) (Аксиома параллелограмма.) Если \(\overrightarrow{AB} = \overrightarrow{CD} \), то \(\overrightarrow{AC} = \overrightarrow{BD} \).

Определение 6.1.2. Пусть даны векторы \(\overrightarrow{\pi} \) и \(\overrightarrow{b} \). Пусть \(A \in \mathcal{A} \) - произвольная точка. Пусть \(B \in \mathcal{A}, \overrightarrow{A} + \overrightarrow{\pi} \). Пусть \(C \in \mathcal{A}, C = B + \overrightarrow{b} \). Вектор \(\overrightarrow{AC} \) называется суммой векторов \(\overrightarrow{\pi} \) и \(\overrightarrow{b} \)

\[\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{AC} \]

Теорема 6.1.3. Вектор \(\overrightarrow{AA} \) является нулём по отношению к операции сложения и не зависит от выбора точки \(A \). Вектор \(\overrightarrow{AA} \) называется нуль-вектором и мы полагаем \(\overrightarrow{AA} = \overrightarrow{0} \).

Доказательство. Мы можем записать правило сложения (6.1.2) в виде

\[\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \]

Если \(B = C \), то из равенства (6.1.3) следует

\[\overrightarrow{AB} + \overrightarrow{BB} = \overrightarrow{AB} \]

Если \(C = A, B = D \), то из аксиомы (4) определения 6.1.1 следует

\[\overrightarrow{AA} = \overrightarrow{BB} \]

Я написал определения и теоремы в этом разделе согласно определению аффинного пространства в [3], с. 86 - 93.

[6.2][13], p. 9.
Утверждение теоремы следует из равенств (6.1.4) и (6.1.5).

Теорема 6.1.4. Пусть $\vec{\pi} = \vec{AB}$. Тогда

(6.1.6) \[\vec{BA} = -\vec{\pi} \]

и это равенство не зависит от выбора точки A.

Доказательство. Из равенства (6.1.3) следует

(6.1.7) \[\vec{AB} + \vec{BA} = \vec{AA} = \vec{0} \]

Равенство (6.1.6) следует из равенства (6.1.7). Применяя аксиому (4) определения 6.1.1 к равенству $\vec{AB} = \vec{CD}$ получим $\vec{AC} = \vec{BD}$, или, что то же, $\vec{BD} = \vec{AC}$.

В силу аксиомы (4) определения 6.1.1 снова следует $\vec{BA} = \vec{DC}$. Следовательно, равенство (6.1.6) не зависит от выбора точки A. □

Теорема 6.1.5. Сумма векторов $\vec{\pi}$ и \vec{b} не зависит от выбора точки A.

Доказательство. Пусть $\vec{\pi} = \vec{AB} = \vec{A'B'}$. Пусть $\vec{b} = \vec{BC} = \vec{B'C'}$. Пусть

\[\vec{AB} + \vec{BC} = \vec{AC} \]
\[\vec{A'B'} + \vec{B'C'} = \vec{A'C'} \]

Согласно аксиоме (4) определения 6.1.1

(6.1.8) \[\vec{A'A} = \vec{B'B} = \vec{C'C} \]

Применяя аксиому (4) определения 6.1.1 к крайним членам равенства (6.1.8), получаем

(6.1.9) \[\vec{A'C'} = \vec{AC} \]

Из равенства (6.1.9) следует утверждение теоремы. □

Теорема 6.1.6. Сложение векторов ассоциативно.

Доказательство. Пусть $\vec{\pi} = \vec{AB}$, $\vec{b} = \vec{BC}$, $\vec{\tau} = \vec{CD}$. Из равенства

\[\vec{\pi} + \vec{b} + \vec{\tau} = \vec{AD} \]

следует

(6.1.10) \[\vec{AC} + \vec{CD} = \vec{AD} \]

Из равенства

\[\vec{b} + \vec{\tau} = \vec{BD} \]

следует

(6.1.11) \[\vec{AB} + \vec{BD} = \vec{AD} \]
Из сравнения равенств (6.1.10) и (6.1.11) следует ассоциативность сложения.

Теорема 6.1.7. На множестве \overrightarrow{A} определена структура абелевой группы.

Доказательство. Из теорем 6.1.3, 6.1.4, 6.1.5, 6.1.6 следует, что операция сложения векторов определяет группу.

Пусть $\overrightarrow{a} = \overrightarrow{AB}, \overrightarrow{b} = \overrightarrow{BC}$.

(6.1.12)

\[
\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{AC} \quad \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}
\]

Согласно аксиоме (3) определения 6.1.1 существует точка D такая, что $\overrightarrow{b} = \overrightarrow{AD} = \overrightarrow{BC}$. Согласно аксиоме (4) определения 6.1.1 \(\overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{\pi} \).

(6.1.13)

\[
\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC} \quad \overrightarrow{\pi} + \overrightarrow{\pi} = \overrightarrow{AC}
\]

Из сравнения равенств (6.1.12) и (6.1.13) следует коммутативность сложения.

Теорема 6.1.8. Отображение

(6.1.14)

\[\overrightarrow{A} \rightarrow \overrightarrow{A}^* \]

определённое равенством (6.1.1), является эффективным представлением абелевой группы \overrightarrow{A}.

Доказательство. Аксиома (4) определения 6.1.1 определяет отображение (6.1.14). Из теоремы 6.1.5 следует, что отображение (6.1.14) является представлением. Эффективность представления следует из теоремы 6.1.3.

Определение 6.1.9. Пусть D - тело характеристики 0. Эффективное представление тела D в абелевой группе \overrightarrow{A} порождает башню представлений

(6.1.15)

\[\overrightarrow{A} = ((D, \overrightarrow{A}, \overrightarrow{A}), (\overrightarrow{\pi} \rightarrow d \overrightarrow{\pi}, A \rightarrow A + \overrightarrow{\pi})) \]

Башня представлений (6.1.15) называется D-аффинным пространством.

6.2. Базис в D-аффинном пространстве

Так как D-аффинное пространство является башней представлений (6.1.15), то мы будем пользоваться кортежем

\[(\overrightarrow{a} \in \overrightarrow{A}, B \in \overrightarrow{A}) \]

для представления элемента аффинного пространства.

Мы выбираем точку $O \in \overrightarrow{A}$ как начальную точку аффинного пространства \overrightarrow{A}. Вектор $\overrightarrow{OA} \in \overrightarrow{A}$ является координатой точки A. Однако, так как мы можем определить D^*-базис $\overrightarrow{\pi}$ в векторном пространстве \overrightarrow{A}, мы можем отождествить координаты $A^1, ..., A^n$ вектора \overrightarrow{OA} с координатами точки A относительно базиса ($\overrightarrow{\pi}, O$).
Определение 6.2.1. D^*-аффинный базис $(\vec{r}, O) = (\vec{e}, O)$ - это множество D^*-линейно независимых векторов $\vec{e}_i = \overrightarrow{OA}_i = (e_1^i, ..., e_n^i)$ с общей начальной точкой $O = (O^1, ..., O^n)$.

Определение 6.2.2. Многообразие D^*-базисов $B(D^*A_n)$ аффинного пространства - это множество D^*-базисов этого пространства.

Отображение базиса (\vec{e}, O) в базис (\vec{e}', O') можно представить как композицию отображения базиса (\vec{e}, O) в базис (\vec{e}', O') и D^*-линейного отображения базиса (\vec{e}', O') в базис (\vec{r}, O'). Следовательно, D^*-преобразование имеет вид

$$\vec{r}' = A^* \vec{r},$$

$$O' = O + \overrightarrow{OO'}.$$

Вводя координаты $A^1, ..., A^n$ точки $A \in A_n$ как координаты вектора \overrightarrow{OA} относительно базиса \vec{e}_i, мы можем записать линейное преобразование как

(6.2.1) $A^i = A'^i \ P^i + R^i$, rank $P = n$

(6.2.2) $A'^i, \overrightarrow{e} = (A'^* P + R)^* \overrightarrow{e}$

Вектор $(R^1, ..., R^n)$ выражает смещение в аффинном пространстве.

Теорема 6.2.3. Множество преобразований (6.2.2) - это группа Ли, которую мы обозначим $GL(A_n)$ и будем называть группой аффинных преобразований.

Доказательство. Рассмотрим преобразования (P, R) и (Q, S). Последовательное выполнение этих преобразований имеет вид

$$A'^i = A'^j Q^j + S^i$$

(6.2.3) $$(P, R)^* (Q, S) = (P^*, Q, R^*, Q + S)$$

Мы будем называть активное преобразование аффинным преобразованием. Мы будем называть пассивное преобразование квазиаффинным преобразованием.

Если мы не заботимся о начальной точке вектора, мы получим несколько отличный тип пространства, которое мы будем называть центро-аффинным пространством CA_n. Если мы предположим, что начальная точка вектора - это начало O координатной системы в пространстве, то мы можем отождествить любую точку $A \in CA_n$ с вектором \overrightarrow{OA}. Теперь преобразование - это просто отображение $a'^i = P'^i a^j$ и такие преобразования порождают группу Ли GL_n.

Определение 6.2.4. Центро-аффинный базис $\vec{r} = (\vec{e}_i)$ - это множество линейно независимых векторов \vec{e}_i.
Определение 6.2.5. Многообразие базисов $B(CA_n)$ центро-аффинного пространства - это множество базисов этого пространства.
Глава 7

Евклидово пространство

7.1. Евклидово пространство

Пусть V - D-векторное пространство. Билинейное отображение $g : V \times V \to D$ можно представить в виде

$g(v, w) = \sum_{ij} g^{ij}(v^i, w^j)$

где ijg - билинейное отображение

$ijg : D^2 \to D$

Определение 7.1.1. Билинейное отображение $g : V \times V \to D$ называется симметричным, если

$g(v, w) = g(w, v)$

Определение 7.1.2. Билинейное отображение $g : V \times V \to D$ называется евклидовым скалярным произведением в D-векторном пространстве V, если $ii g$ - евклидово скалярное произведение в теле D и $ijg = 0$ для $i \neq j$.

Определение 7.1.3. Билинейное отображение $g : V \times V \to D$ называется пseвдеввкливдовым скалярным произведением в D-векторном пространстве V, если $ii g$ - пseвдевкливдово скалярное произведение в теле D и $ijg = 0$ для $i \neq j$.

Если в теле D определена операция эрмитова сопряжения, то мы можем эту операцию распространить на D-векторное пространство V, а именно для данного вектора v, мы определим эрмитов сопряжённый вектор

$v^* = (v^i)^* i\bar{v}$

Определение 7.1.4. Билинейное отображение $g : V \times V \to D$ называется эрмитовым скалярным произведением в D-векторном пространстве V, если $ii g$ - эрмитово скалярное произведение в теле D и $ijg = 0$ для $i \neq j$.

65
7.2. Базис в евклидовом пространстве

Когда мы определяем метрику в центро-аффинном пространстве, мы получаем новую геометрию потому, что мы можем измерять расстояние и длину вектора. Если метрика положительно определена, мы будем называть пространство евклидовым \(\mathcal{E}_n \), в противном случае мы будем называть пространство псевдоевклидовым \(\mathcal{E}_{nm} \).

Преобразования, которые сохраняют длину, образуют группу Ли \(SO(n) \) для евклидова пространства и группу Ли \(SO(n, m) \) для псевдоевклидова пространства, где \(n \) и \(m \) числа положительных и отрицательных слагаемых в метрике.

Определение 7.2.1. Ортонормальный базис \(\mathcal{P} = (e_i) \) - это множество линейно независимых векторов \(e_i \) таких, что длина каждого вектора равна 1 и различные векторы ортогональны.

Определение 7.2.2. Многообразие базисов \(B(\mathcal{E}_n) \) евклидова пространства - это множество ортонормальных базисов этого пространства.

Мы будем называть активное преобразование движением. Мы будем называть пассивное преобразование квазидвижением.
Глава 8

Математический анализ в D-аффинном пространстве

8.1. Криволинейные координаты в D-аффинном пространстве

Пусть \mathbf{A} - D-аффинное пространство над непрерывным телом D. \footnote{В этом разделе я изучаю криволинейные координаты аналогично тому, как это сделано в [3], глава V.}

Пусть $(\mathbf{e}_1, \ldots, \mathbf{e}_n, \mathbf{O})$ - D^*-базис аффинного пространства. Для каждого i, $i = 1, \ldots, i = n$, определим отображение $\mathbf{x}_i: D \to \mathbf{A}$ $\mathbf{v}_i \to O + \mathbf{v}_i \mathbf{e}_i$ \footnote{В равенстве (8.1.1) нет суммы по индексу i.}

Для произвольной точки $M(\mathbf{v}_i)$ мы можем записать вектор \mathbf{OM} в виде линейной комбинации $\mathbf{OM} = \mathbf{x}_i(v_i)$

Мы можем рассматривать множество координат аффинного пространства \mathbf{A} как гомеоморфизм $f: \mathbf{A} \to D^n$

Если гомеоморфизм $f: \mathbf{A} \to D^n$ является произвольным отображением открытого подмножества D-аффинного пространства в открытое подмножество множества D^n, то мы будем говорить, что образ точки A при отображении f является криволинейными координатами точки A, а отображение f будем называть системой координат. Если даны две системы координат, f_1 и f_2, то отображение $g = f_1f_2^{-1}$ является гомеоморфизмом $g: D^n \to D^n$

и называется преобразованием координат. Преобразование координат, порождённое аффинным преобразованием, можно рассматривать как частный случай.

Замечание 8.1.1. Рассмотрим поверхность S в аффинном пространстве, определённую уравнением

$$f: D^n \to D$$

$$f(x^1, \ldots, x^n) = 0$$
Пусть $M(x^i)$ - произвольная точка. Малое изменение координат точки

$$x'^i = x^i + \Delta x^i$$

приводит к малому изменению функции

$$\Delta f = \partial f(\overline{x})(\Delta \overline{x})$$

В частности, если бесконечно близкие точки $M(x^i)$ и $L(x^i + \Delta x^i)$ лежат на одной поверхности, то вектор приращения $\overrightarrow{ML} = \Delta \overline{x}$ удовлетворяет дифференциальному уравнению

$$\partial f(\overline{x})(\Delta \overline{x}) = 0$$

и называется вектором, касательным к поверхности S.

Так как производная Гато отображения f в точке X является линейным отображением, то эта производная является 1-1D-формой. Рассмотрим множество 1-D-форм

$$dx^i = \frac{\partial x^i}{\partial \overline{x}}$$

Очевидно, что

$$dx^i(\overline{a}) = \frac{\partial x^i}{\partial \overline{x}}(\overline{a}) = (x^i + a^i) - x^i = a^i$$

Производную Гато произвольной функции можно представить в виде

$$\frac{\partial f(\overline{x})}{\partial \overline{x}} = \frac{\partial f(\overline{x})}{\partial x^i} \left(\frac{\partial x^i}{\partial \overline{x}} \right) = \frac{\partial f(\overline{x})}{\partial x^i} (dx^i)$$

(8.1.2)

$$\frac{\partial f(\overline{x})}{\partial \overline{x}}(\overline{a}) = \frac{\partial f(\overline{x})}{\partial x^i} \left(\frac{\partial x^i}{\partial \overline{x}}(\overline{a}) \right) = \frac{\partial f(\overline{x})}{\partial x^i}(dx^i(\overline{a})) = \frac{\partial f(\overline{x})}{\partial x^i}(a^i)$$

Следовательно, производная Гато функции f является линейной комбинацией 1-D-форм dx^i. Пусть

$$g : D^n \rightarrow D^n$$

$${x'}^i = x^i(1, ..., x^n)$$

преобразование координат аффинного пространства. Из правила дифференцирования сложной функции (теорема [10]-6.2.12) следует

$$dx'^i = \frac{\partial x'^i}{\partial \overline{x}} = \frac{\partial x'^i}{\partial x^j} \left(\frac{\partial x^j}{\partial \overline{x}} \right) = \frac{\partial x'^i}{\partial x^j}(dx^j)$$

(8.1.3)

$$\overline{x}_i(\overline{x})(v) = \frac{\partial \overline{x}}{\partial x^i}(v)$$

Пусть точка O имеет координаты \overline{x}. Множество векторов $\overline{x}_1, ..., \overline{x}_n$ является базисом аффинного пространства

$$\langle \overline{x}_1, ..., \overline{x}_n, \overline{x} \rangle$$

(8.1.4)

$$\overline{v} = \overline{x}_i(\overline{x})(v^i)$$

Пусть

$$g : D^n \rightarrow D^n$$

$${x'}^i = x^i(1, ..., x^n)$$
8.2. Параллельный перенос

Пусть в точке M_0 вектор $\mathbf{\pi}$ имеет координаты v_i^0. Пусть вектор $M_0 \mathbf{M}_1$ является вектором бесконечно малого смещения. Пусть $N_0 = M_0 + \mathbf{\pi}$, $N_1 = M_1 + \mathbf{\pi}$.

Из аксиомы 3 определения 6.1.1 координаты векторов M_0N_0 и M_1N_1 равны. Как это построение будет выглядеть в криволинейных координатах?

Мы полагаем функцию $v^i(\mathbf{\pi})$ непрерывно дифференцируемыми в смысле Гато. Следовательно, вектора локального репера $\mathbf{\pi}_i$ и координаты вектора v^i являются непрерывно дифференцируемыми в смысле Гато функциями. В точке $M(\mathbf{\pi})$ справедливо равенство

$$
\mathbf{\pi} = \mathbf{\pi}_i(\mathbf{\pi})(v^i(\mathbf{\pi}))
$$

Так как \(\overline{v} = \text{const} \), то, дифференцируя равенство (8.2.1) по \(\overline{\mathbf{x}} \), получим

\[
(8.2.2) \quad 0 = \frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x}}(v^i)(\overline{\mathbf{x}}) + \overline{\mathbf{x}}(\overline{\mathbf{x}}) \left(\frac{\partial v^i}{\partial \mathbf{x}}(\overline{\mathbf{x}}) \right)
\]

Из равенств (8.1.2), (8.2.2) следует

\[
(8.2.3) \quad 0 = \frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x}}(v^i)(\mathbf{a}^j) + \overline{\mathbf{x}}(\mathbf{x}) \left(\frac{\partial v^i}{\partial \mathbf{x}}(\mathbf{a}^j) \right)
\]

Выражение \(\frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x}}(v^i)(\mathbf{a}^j) \) является вектором аффинного пространства и в локальном базисе \(\overline{\mathbf{x}}(\mathbf{x}) \) это выражение имеет разложение

\[
(8.2.4) \quad \frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x}}(v^i)(\mathbf{a}^j) = \overline{\mathbf{x}}(\mathbf{x})(\Gamma^k_{ij}(v^i)(\mathbf{a}^j))
\]

где \(\Gamma^k_{ij} \) - билинейные отображения, называемые коэффициентами связности в \(D \)-аффинном пространстве. Из равенств (8.2.4), (8.2.3) следует

\[
(8.2.5) \quad 0 = \overline{\mathbf{x}}(\mathbf{x})(\Gamma^k_{ij}(v^i)(\mathbf{a}^j)) \quad + \quad \overline{\mathbf{x}}(\mathbf{x}) \left(\frac{\partial v^i}{\partial \mathbf{x}}(\mathbf{a}^j) \right)
\]

Так как \(\overline{\mathbf{x}}(\mathbf{x}) \) - локальный базис, то из равенства (8.2.5) следует

\[
0 = \overline{\mathbf{x}}(\mathbf{x})(\Gamma^k_{ij}(v^i)(\mathbf{a}^j)) \quad + \quad \frac{\partial v^k}{\partial \mathbf{x}}(\mathbf{a}^j)
\]

(8.2.6) \[0 = \Gamma^k_{ij}(v^i)(\mathbf{a}^j) \quad + \quad \frac{\partial v^k}{\partial \mathbf{x}}(\mathbf{a}^j) \]

Так как \(\overline{\mathbf{v}} \) - произвольный вектор, то равенство (8.2.6) можно записать в виде

\[
(8.2.7) \quad 0 = \Gamma^k_{ij}(v^i) \quad + \quad \frac{\partial v^k}{\partial \mathbf{x}}(\mathbf{a}^j)
\]

Теорема 8.2.1. В аффинном пространстве

\[
(8.2.8) \quad \Gamma^k_{ij}(v^i)(\mathbf{a}^j) = \Gamma^k_{ij}(v^i)(\mathbf{a}^j)
\]

Доказательство. Согласно равенству (8.1.3)

\[
(8.2.9) \quad \frac{\partial \overline{\mathbf{x}}}{\partial \mathbf{x}}(v^i)(\mathbf{a}^j) = \frac{\partial^2 \overline{\mathbf{x}}}{\partial \mathbf{x}^j \partial \mathbf{x}^i}(v^i; \mathbf{a}^j)
\]

Согласно теореме [10]-9.1.6

\[
(8.2.10) \quad \frac{\partial^2 \overline{\mathbf{x}}}{\partial \mathbf{x}^j \partial \mathbf{x}^i}(v^i; \mathbf{a}^j) = \frac{\partial^2 \overline{\mathbf{x}}}{\partial \mathbf{x}^i \partial \mathbf{x}^j}(v^i; \mathbf{a}^j)
\]

Равенство (8.2.8) следует из равенств (8.2.4), (8.2.10). \(\square \)

Пусть \(g: D^n \rightarrow D^n \)

\[
x'^i = x'^i(x^1, ..., x^n)
\]
преобразование координат аффинного пространства. Продифференцируем равенство (8.1.5) по x^j

$$\frac{\partial x^r(\bar{x}^i)}{\partial x^j}(v^i)(a^j)$$

(8.2.11)

$$\bar{x}_k(\bar{x}) \left(\frac{\partial x^k}{\partial x^j}(v^i) \right) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) + \bar{x}_k(\bar{x}) \left(\frac{\partial^2 x^k}{\partial x^j \partial x^i}(v^i; a^j) \right)$$

Из равенств (8.2.4), (8.2.11) следует

$$\bar{x}_p(\bar{x})(\Gamma^p_{ji}(v^i)(a^j))$$

(8.2.12)

$$= \bar{x}_p(\bar{x}) \left(\Gamma^r_{mk} \left(\frac{\partial x^k}{\partial x^i}(v^i) \right) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) \right) + \bar{x}_r(\bar{x}) \left(\frac{\partial^2 x^r}{\partial x^j \partial x^i}(v^i; a^j) \right)$$

Из равенств (8.1.5), (8.2.12) следует

$$\bar{x}_p(\bar{x})(\Gamma^p_{ji}(v^i)(a^j))$$

(8.2.13)

$$= \bar{x}_p(\bar{x}) \left(\frac{\partial x^p}{\partial x^r} \left(\Gamma^r_{mk} \left(\frac{\partial x^k}{\partial x^i}(v^i) \right) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) \right) + \frac{\partial^2 x^r}{\partial x^j \partial x^i}(v^i; a^j) \right)$$

Из равенства (8.2.13) следует

$$\Gamma^p_{ji}(v^i)(a^j)$$

(8.2.14)

$$= \frac{\partial x^p}{\partial x^r} \left(\Gamma^r_{mk} \left(\frac{\partial x^k}{\partial x^i}(v^i) \right) \left(\frac{\partial x^m}{\partial x^j}(a^j) \right) \right) + \frac{\partial^2 x^r}{\partial x^j \partial x^i}(v^i; a^j)$$
Глава 9

Многообразие D-аффинной связности

Основная задача этой главы - дать общее представление о тех задачах, которые необходимо будет решать в процессе изучения дифференциальной геометрии.

9.1. Многообразие D-аффинной связности

Определение 9.1.1. Расслоенное центральное D-аффинное пространство называется многообразием D-аффинной связности.

Мы полагаем, что размерность базы равна размерности слоя. Это позволяет отождествить слой с касательным пространством к базе. Рассмотрим область U многообразия, в которой определён гомеоморфизм

$$\varphi : D^n \to U$$

Так же как и в случае аффинного пространства мы в каждом слое определим локальный базис

$$\varphi_k : \frac{\partial \varphi}{\partial x^k}$$

Мы полагаем, что отображение между слоями является морфизмом центрального D-аффинного пространства

$$d\varphi = \Gamma(\varphi)(d\varphi)$$

где билинейное отображение Γ называется D-аффинной связностью. В локальном базисе связность можно представить как множество билинейных функций Γ_{ij}^k

$$\Gamma(\varphi)(\varphi) = \varphi_k(\varphi)(\Gamma_{ij}^r(v^i)(a^j))$$

которые называются коэффициентами D-аффинной связности. При переходе от системы координат φ к системе координат φ' коэффициенты D-аффинной связности преобразуются согласно правилу

$$\Gamma_{ij}^p(v^i)(a^j) = \frac{\partial x^p}{\partial x^{r'}(v^i)(a^j)}\left[\Gamma_{mk}^r \left(\frac{\partial x^k}{\partial x^{r'}(v^i)}(a^j)\right) + \frac{\partial^2 x_r}{\partial x^{a'}\partial x^{a'}}(v^i)(a^j)\right]$$

Ковариантная производная векторного поля φ имеет вид

$$D(\varphi)(d\varphi) = \partial(\varphi)(d\varphi) - \Gamma(\varphi)(d\varphi)$$

Векторное поле φ параллельно переносится в данном направлении, если

$$\partial(\varphi)(d\varphi) = \Gamma(\varphi)(d\varphi)$$
Если $\pi = \pi(t)$ - отображение поля действительных чисел в рассматриваемое пространство, то это отображение определяет геодезическую, если касательный вектор параллельно переносится вдоль геодезической

$$\partial(\partial\pi(\pi))(\pi) = \Gamma(\pi)(\pi)$$

Уравнение (9.1.1) эквивалентно уравнению

$$\partial^2\pi(\pi, \pi) = \Gamma(\pi)(\pi)$$

(9.1.2)
Список литературы

[1] Серж Ленг, Алгебра, М. Мир, 1968
[2] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag (March, 1982),
eprint http://www.math.uwaterloo.ca/~snburris/htdocs/ualg.html
(The Millennium Edition)
[3] П. К. Рашевский, Риманова геометрия и тензорный анализ,
М., Наука, 1967
[4] А. Г. Курош, Курс высшей алгебры, М., Наука, 1968
[5] А. Г. Курош, Общая алгебра, (лекции 1969 - 70 учебного года), М.,
МГУ, 1970
[6] Lev V. Sabinin, Smooth Quasigroups and Loops, Kluwer Academic Publisher,
1999
[7] Александр Клейн, Лекции по линейной алгебре над телом,
eprint arXiv:math.GM/0701238 (2010)
[8] Александр Клейн, Расслоенное соответствие,
eprint arXiv:0707.2246 (2007)
[9] Александр Клейн, Морфизм $T\star$-представлений,
eprint arXiv:0803.2620 (2008)
[10] Александр Клейн, Введение в математический анализ над телом,
eprint arXiv:0812.4763 (2010)
[11] John C. Baez, An Introduction to n-Categories,
eprint arXiv:q-alg/9705009 (1997)
[12] П. Кон, Универсальная алгебра, М., Мир, 1968
[13] Paul Bamberg, Shlomo Sternberg, A course in mathematics for students
of physics, Cambridge University Press, 1991
[14] Alain Connes, Noncommutative Geometry,
Academic Press, 1994
Глава 11

Предметный указатель

D-аффинная связность на многообразии
аффинной связности 73
D^*-аффинный базис 62
*T-представление \mathfrak{g}-алгебры A в \mathfrak{g}-алгебре M 9
*T-преобразование 9
T^*-представление \mathfrak{g}-алгебры A в \mathfrak{g}-алгебре M 9
T^*-преобразование 9
автоморфизм базы представлений 36
автоморфизм представления \mathfrak{g}-алгебры 22
база базы представлений 43
база представления 28
башня под представлений 38
башня представлений T, порождённая кортежом множеств $X_{[1]}$ 40
башня представлений \mathfrak{g}-алгебры 31
группа аффинных преобразований 62
движение на многообразии базисов 66
изоморфизм представлений \mathfrak{g}-алгебры 20
категория T^*-представлений \mathfrak{g}-алгебры A 22
категория T^*-представлений \mathfrak{g}-алгебры
из категории A 16
квадратичная форма на теле 55
квадратичное отображение тела 52
квазиаффинное преобразование на многообразии базисов 62
квазиморфизм на многообразии базисов 66
кольцо имеет характеристику 0 47
кольцо имеет характеристику p 47
координаты элемента m относительно множества X 26
кортеж координат элемента π
относительно кортежа множеств $X_{[1]}$ 40
кортеж множеств образующих базы
представлений 40
кортеж множество образующих базы
представлений 40
кортеж стабильных множеств базы
представлений 38
коэффициенты D-аффинной связности
на многообразии 73
коэффициенты связности в D-аффинном
пространстве 70
криволинейные координаты точки
аффинного пространства 67
левостороннее представление \mathfrak{g}-алгебры A в \mathfrak{g}-алгебре M 9
левостороннее преобразование 9
лупа автоморфизмов представления 22
матрица билинейной функции 51
матрица квадратичного отображения 54
многообразие D-аффинной связности 73
многообразие D^*-базисов аффинного
пространства 62
многообразие базисов евклидова
пространства 66
многообразие базисов центро-аффинного
пространства 63
множество координат представления 26
множество кортежей координат базши
представлений 40
множество образующих
представлений 25
множество образующих представлений 25
морфизм из базы T^*-представлений в
базу T^*-представлений 33
морфизм представлений \mathfrak{g}-алгебры в \mathfrak{g}-алгебре 11
морфизм представлений из f в g 11
невырожденная билинейная функция 51
невырожденный эндоморфизм представления 25
однотранзитивное представление \(\mathfrak{S} \)-алгебры \(A \) 10
ортонормальный базис 66
подпредставление представления 24
подпредставление, порождённое множеством \(X \) 25
правостороннее представление \(\mathfrak{S} \)-алгебры \(A \) в \(\mathfrak{S} \)-алгебре \(M \) 9
правостороннее преобразование \(\mathfrak{S} \)-алгебры \(A \) в \(\mathfrak{S} \)-алгебре \(M \) 10
представление \(\mathcal{F} \)-алгебры в башне представлений 33
представление \(\mathcal{F} \)-алгебры в представлении 32
преобразование \(\mathcal{S} \)-алгебры 9
преобразование, согласованное с эквивалентностью 16
произведение морфизмов башни представлений 35
произведение морфизмов представлений \(\mathfrak{S} \)-алгебры 15
псевдоквадратичная метрика на теле 57
псевдоквадратичное скалярное произведение в \(D \)-векторном пространстве 65
псевдоквадратичное скалярное произведение на теле 57
ранг квадратичного отображения тела 54
симвметричное билинейное отображение \(D \)-векторного пространства в теле 65
стабильное множество представления 25
стандартная компонента квадратичного отображения \(f \) над полем \(F \) 53
стандартная компонента над полем \(F \) билинейного отображения \(f \) 51
стандартное представление квадратичного отображения тела над полем \(F \) 53
стандартное представление над полем \(F \) билинейного отображения тела 51
структуры константы тела \(D \) над полем \(F \) 49
транзитивное представление \(\mathfrak{S} \)-алгебры \(A \) 10
центр кольца \(D \) 47
центр-аффинный базис 62
невырожденный эндоморфизм башни представлений 40
эвклидова метрика на теле 56
эвклидово скалярное произведение на теле 56
эндоморфизм башни представлений 36
эндоморфизм башни представлений, вырожденный на кортеже множеств образующих 40
эндоморфизм башни представлений, невырожденный на кортеже множеств образующих 40
эндоморфизм представления \(\mathfrak{S} \)-алгебры 22
эндоморфизм представлений, вырожденный на множестве образующих \(X \) 25
эндоморфизм представлений, невырожденный на множестве образующих \(X \) 25
эрмитова метрика на теле 57
эрмитово скалярное произведение в \(D \)-векторном пространстве 65
эрмитово скалярное произведение на теле 57
эрмитово сопряжение в теле 57
эрмитово сопряжённый вектор 65
эффективная башня \(T^* \)-представлений 37
эффективное представление \(\mathfrak{S} \)-алгебры \(A \) 10
Глава 12
Специальные символы и обозначения

\(\tilde{A} \) аффинное пространство 61
\(a^* \) эрмитово сопряжение в теле 57
\(\mathfrak{A}(f) \) лупа автоморфизмов представления \(f \) 22

\(\mathcal{B}(D^*, A_n) \) многообразие \(D^* \)-базисов аффинного пространства 62
\(\mathcal{B}(C(A_n)) \) многообразие базисов центро-аффинного пространства 63
\(\mathcal{B}(\mathcal{E}_n) \) многообразие базисов евклидова пространства 66
\(B_f \) структура всех подпредставлений представления \(f \) 24
\(B_f^* \) структура башен подпредставлений башни представлений \(\mathcal{J} \) 39
\(i^j B_k^* \) структурные константы тела \(D \) над полем \(F \) 49

\(CA_n \) центро-аффинное пространство 62

\((\tilde{\mathfrak{r}}, O) = (\mathfrak{r}, O) \) аффинный базис 62
\(\mathcal{E}_n \) евклидово пространство 66
\(\mathcal{E}_{nn} \) псевдоевклидово пространство 66

\(\mathfrak{r} = (\mathfrak{r}_1) \) центро-аффинный 62
\(\tilde{\mathfrak{r}} = (\tilde{\mathfrak{r}}_1) \) ортонормальный базис 66

\(f^{ijk} \) стандартная компонента квадратичного отображения \(f \) над полем \(F \) 53

\(GL(A_n) \) группа аффинных преобразований 62
\(J_f \) оператор замыкания представления \(f \) 24
\(\mathcal{J}(\mathcal{J}) \) оператор замыкания башни представлений \(\mathcal{J} \) 39

\(\mathfrak{T}(\mathcal{J}, X_{[1]}) \) башня подпредставлений башни представлений \(\mathcal{J} \), порождённая кортежем множеств \(X_{[1]} \) 40

\(M^* \) множество \(\mathcal{T}^* \)-преобразований множества \(M \) 9
\(*M \) множество преобразований множества \(M \) 10
\(*M \) множество \(\mathcal{T}^* \)-преобразований множества \(M \) 9

\(T \) категория \(\mathcal{T}^* \)-представлений \(\mathfrak{g} \)-алгебры \(A \) 22
\(T \) категория \(\mathcal{T}^* \)-представлений \(\mathfrak{g} \)-алгебры из категории \(A \) 16

\(\mathfrak{e}^* \) эрмитово сопряжённый вектор 65

\(W(f, X) \) множество координат представления \(J_f(X) \) 26
\(W(\mathcal{J}, X_{[1]}) \) множество кортежей координат башни представлений \(\mathcal{J}(\mathcal{J}, X_{[1]}) \) 40
\(\mathfrak{r}(\mathcal{J}, X_{[1]}) \) кортеж координат элемента \(\mathfrak{r} \) относительно кортежа множеств \(X_{[1]} \) 40

\(\mathfrak{r}(\mathfrak{r}) \) локальный базис аффинного пространства 68

\(Z(D) \) центр кольца \(D \) 47
\(\delta \) тождественное преобразование 9
\(\Gamma_{ji}^k \) коэффициенты связности в \(D \)-аффинном пространстве 70
\(\Gamma(\mathfrak{r})(\mathfrak{e}) \) связность в \(D \)-аффинном пространстве 73
\(\Gamma_{ji}^k \) коэффициенты \(D \)-аффинной связности на многообразии 73