Optimized Vivid-derived Magnets photodimerizers for subcellular optogenetics

Lorena Benedetti1,2,5, Jonathan S. Marvin3, Hanieh Falahati1,2, Andres Guillén-Samander1,2,

Loren L. Looger* and Pietro De Camilli1,2,4,5*

Affiliations:
1Department of Neuroscience and Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA.
2Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
3Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA.
4Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
5Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510 USA.

*current address: benedettil@janelia.hhmi.org

*Address correspondence to:
Pietro De Camilli: pietro.decamilli@yale.edu
Loren L. Looger: loogerl@janelia.hhmi.org
ABSTRACT

Light-inducible dimerization protein modules enable precise temporal and spatial control of biological processes in non-invasive fashion. Among them, Magnets are small modules engineered from the *Neurospora crassa* photoreceptor Vivid by orthogonalizing the homodimerization interface into complementary heterodimers. Both Magnets components, which are well-tolerated as protein fusion partners, are photoreceptors requiring simultaneous photoactivation to interact, enabling high spatiotemporal confinement of dimerization with a single-excitation wavelength. However, Magnets require concatemerization for efficient responses and cell preincubation at 28°C to be functional. Here we overcome these limitations by engineering an optimized Magnets pair requiring neither concatemerization nor low temperature preincubation. We validated these “enhanced” Magnets (eMags) by using them to rapidly and reversibly recruit proteins to subcellular organelles, to induce organelle contacts, and to reconstitute OSBP-VAP ER-Golgi tethering implicated in phosphatidylinositol-4-phosphate transport and metabolism. eMags represent a very effective tool to optogenetically manipulate physiological processes over whole cells or in small subcellular volumes.

Keywords: LOV domain, Light-dependent dimerizers, organelle contacts, VAP, Vivid, OSBP, PI4P, PI(4,5)P2, contact sites, OCRL
INTRODUCTION

Macromolecular interactions between and amongst proteins and organelles mediate a considerable amount of biochemical signaling processes. A principal method of testing the physiological significance of such interactions is to drive their association with a user-supplied stimulus such as light or drugs. Typically, two different components, each fused to a specific protein, come together (“heterodimerize”) to reconstitute a given protein-protein interaction following addition of a small molecule (DeRose et al., 2013; Putyrski and Schultz, 2012; Spencer et al., 1993) or upon light illumination (Losi et al., 2018; Rost et al., 2017). Light offers much greater spatial and temporal resolution than drugs, and as such, optogenetic dimerizers are generally used to probe phenomena at cellular and subcellular scales. At the organism scale, light is much less invasive but suffers from penetration issues.

Photodimerizers have been successfully used to manipulate a variety of cellular processes, including signaling networks (Gasser et al., 2014; Grusch et al., 2014; Guglielmi et al., 2015; Idevall-Hagren et al., 2012; Toettcher et al., 2011, 2013; Wu et al., 2009) organelle trafficking (Bergeijk et al., 2015; Duan et al., 2015), nuclear import/export (Lerner et al., 2018; Niopek et al., 2014, 2016), cytoskeletal dynamics (Haren et al., 2018), and phase separation (Bracha et al., 2018; Dine et al., 2018; Shin et al., 2017), among others.

Both natural and synthetic photoswitches (Guntas et al., 2014; Losi et al., 2018; Lungu et al., 2012; Rost et al., 2017; Strickland et al., 2012) have been used for these studies, each with its own advantages and drawbacks. Limitations of existing systems include necessity of adding exogenous cofactors (Levskaya et al., 2009), large size adversely affecting function of targeted proteins (Kaberniuk et al., 2016; Kennedy et al., 2010; Levskaya et al., 2009; Yazawa et al., 2009), non-trivial levels of basal dimerization in the dark (Guntas et al., 2014; Hallett et al., 2015; Nijenhuis et al., 2020; Zimmerman et al., 2016), poor light-dependent dimerization efficiency (Kawano et al., 2015; Strickland et al., 2012), and improper homo-, instead of heterodimerization (Bugaj et al., 2013; Che et al., 2015; Duan et al., 2017; Taslimi et al., 2016).

One popular photodimerizer pair is “Magnets”, engineered from the Neurospora crassa Vivid photoreceptor, which comprises an N-terminal Ncap domain responsible for homodimerization
and a C-terminal light-oxygen-voltage-sensing (LOV) domain (Kawano et al., 2015). Magnets employ the ubiquitous cofactor flavin adenine dinucleotide (FAD) as the light-sensing moiety. The Magnets pair was engineered from the Vivid homodimer by introducing complementary charges, giving rise to nMag (negative Magnet) and pMag (positive Magnet). The two Magnets components are quite small (150 aa) for photodimerizers, exhibit relatively fast association and dissociation kinetics, and function when fused to a broad range of proteins, including peripheral and intrinsic membrane proteins (Benedetti et al., 2018; Kawano et al., 2015, 2016).

Furthermore, heterodimerization of Magnets requires light-dependent activation of both components, rather than just one. This property results in low levels of background activity and allows induction of dimer formation with single-wavelength excitation in small cytoplasmic volumes (Benedetti et al., 2018).

However, the Magnets system has two prominent shortcomings. First, the low thermodynamic stability of the Magnets components precludes their proper expression and folding at 37°C. Thus, they cannot be used in mammals. When used in cultured mammalian cells they require a preincubation at low temperature (28°C) for 12 hours to allow expression and folding. Second, as the Magnets components heterodimerize with low efficiency, robust activation requires concatemerization (Furuya et al., 2017; Kawano et al., 2015), which may affect trafficking, motility and function of target proteins, create vector payload constraints, and give rise to recombination and/or silencing of the sequence repeats.

Here, we overcome these limitations of the Magnets by structure-guided protein engineering and validation by cellular assays. The resulting reagents, “enhanced Magnets” (eMags), have greater thermal stability and dimerization efficiency, as well as faster association and dissociation kinetics. We confirmed their effectiveness in a variety of applications including protein recruitment to different organelles, the generation/expansion of organelle contact sites, and the rapid and reversible reconstitution of VAP-dependent inter-organelle tethers that have key regulatory functions in lipid transport.
RESULTS

Optimization of the Magnets heterodimer interface

Optimal photo-heterodimerizer performance convolves together several parameters: i) Efficient, fast interaction of the two different components upon light stimulus, ii) little or no formation of homodimers – which would compete with productive heterodimer complexes, iii) low background before light stimulus; and ideally, iv) fast heterodimer dissociation following light offset. The existing Magnets systems, especially the Fast1 and Fast2 variants with fast dissociation kinetics (Kawano et al., 2015), have weak dimerization efficiency and thus perform poorly on the first criterion, necessitating the use of concatemers (usually 3 copies) of either or both monomers to achieve acceptable reconstitution in a number of settings (Benedetti et al., 2018; Furuya et al., 2017; Kawano et al., 2015).

A pair with greater dimerization efficiency would be desirable, ideally allowing single copies of the complementary Magnets to suffice. With the goal of engineering such a pair, we first established a robust screen for reconstitution of Magnets dimerization using light-dependent accumulation of a protein at the outer mitochondrial membrane (Benedetti et al., 2018) (Fig. 1A), which is readily visible and quantifiable. The nMagHigh1 monomer, tagged with the green fluorescent protein EGFP, was used as bait on the outer mitochondrial membrane by fusion to the transmembrane C-terminal helix from OMP25 (“nMag-EGFP-Mito”) (Supp. Fig. 1A and Supp. Table 1). The pMagFast2 monomer, tagged with the red fluorescent protein TagRFP-T (Shaner et al., 2008), was used as the cytoplasmic prey (“pMag-TagRFP-T”; Supp. Fig. 1A, Supp. Table 2). We co-expressed both constructs in HeLa cells by co-transfection, grew cells at 28°C for 24 hours, and tested light-dependent prey capture and release by the bait (Fig. 1B). Short (1 min of 200-ms light pulses every 2 s) irradiation with cyan light (488 nm; 3x10^3 W/cm^2) sufficed to recruit the prey from its diffuse cytoplasmic distribution (Fig. 1B, 2nd panel) to mitochondria (Fig. 1B, 3rd panel), resulting in a precise overlapping localization of prey and bait (Supp. Fig. 2A). This recruitment was reversible following light offset (Fig. 1B, 4th panel). Importantly, excitation light for TagRFP-T, as well as that for mCherry and the infrared fluorescent protein iRFP (Shcherbakova and Verkhusha, 2013), is well outside the action spectrum of LOV domain proteins (400-500 nm light excitation) (Losi et al., 2018); EGFP
excitation light is coincident with Magnets activation and is thus used sparingly in these experiments.

Next, we began the process of Magnets redesign by optimizing the placement of charge-complementing amino acids in the Vivid dimer interface, using the crystal structure of the light-activated dimer (PDB ID 3RH8) (Vaidya et al., 2011) (Supp. Fig. 3A-C) as a guide, and mitochondrial recruitment as the testbed. The original Magnets pair was built upon the mutations Ile52 and Met55 to Arg (positive Magnet) and Ile52 to Asp and Met55 to Gly (negative Magnet) within the Ncap domain (See Supp. Fig. 3A), which mediates dimerization. To achieve more efficient dimerization, we first sought to optimize charge placement at the interface. Substitution of Asp52 to Glu in nMag-Asp52Glu to modify the position of the negative charges somewhat disrupted heterodimerization, consistent with Kawano et al., 2015 (Kawano et al., 2015). We next tried to introduce two negative charges into nMag, at the same two sites where positive charges had been introduced into pMag. nMag-Gly55Glu completely inhibited heterodimerization, whereas nMag-Gly55Asp somewhat improved it (Supp. Fig. 3D). Adding a third positive charge to pMag at position 48 also completely disrupted heterodimerization. In the end, we left the charges alone and instead sought to improve heterodimer interface packing and helical preference with nMag-Gly55Ala, which indeed improved both heterodimerization efficiency and association kinetics – more so than nMag-Gly55Asp. In fact, the nMag-Gly55Ala mutation alone sufficiently improved mitochondrial recruitment after preincubation at 28°C so that it functioned well as a monomer (Supp. Fig. 3D).

Thermostabilization of the Magnets proteins

Having improved the system to allow single-copy use at 28°C, we next sought to improve the temperature stability of the proteins to allow experiments at 37°C. As before, recruitment to the mitochondrial membrane in HeLa cells was used as the cellular assay: nMagHigh1-Gly55Ala-EGFP-OMP25 and pMagFast2-TagRFP-T were co-expressed on the outer mitochondrial membrane and in the cytoplasm, respectively, of HeLa cells by co-transfection. Identical amounts of DNA, in the same plasmid ratio, were used, to allow side-by-side quantification of expression level, background association in the dark, heterodimerization efficiency, and kinetics of association and dissociation. Cells were preincubated at 28°C, 33°C, 35°C, or 37°C for 12-24
hours and then imaged at 37°C to quantify mitochondrial accumulation. We made and tested a number of mutants (Supp. Fig. 3A, Supp. Table 3) in the assay.

Mutations were designed according to multiple criteria: removal of potential ubiquitination sites, improvement in secondary structure preference, and mutations based on the homologous Vivid domains of the thermophilic ascomycetes *Thielavia terrestris, Myceliophthora thermophila, Chaetomium thermophile, Rhizomucor pusillus, Rhizomucor miehei, Thermomucor indicae*, and *Thermotheelomyces thermophilus* (Supp. Fig. 4), which have optimal growth temperatures around 50°C [https://link.springer.com/chapter/10.1007/978-3-030-19030-9_3]. Mutations were introduced into both nMagHigh1-Gly55Ala and pMagFast2 components. A number of single mutations improved dimerization efficiency and/or kinetics upon preincubations at 28°C and higher temperatures (Supp. Table 3). Of the individual mutations tested, Thr69Leu, Met179Ile, and Ser99Asn (all from thermophilic homologues) each improved dimerization efficiency at 28°C, and the latter allowed it at 33°C. Thr69Leu is in the interface and improves hydrophobic interactions (Supp. Fig. 5A,B), Met179Ile is in the hydrophobic core and improves packing (Supp. Fig. 5C,D), and Ser99Asn is surface-exposed and optimizes hydrogen bonding and secondary-structure preference (Supp. Fig. 5E,F). Combining these three mutations substantially increased dimerization at both 28°C and 33°C, and all further variants were tested on top of this combination. Mutations of Asn133 to lysine or phenylalanine (the latter from thermophiles) both enhanced dimerization at 33°C, with Asn133Phe facilitating it at 35°C, but with slower dissociation kinetics. The additional Tyr94Glu mutation (from thermophiles, improves helical preference) permitted weak dimerization at 37°C with dissociation kinetics comparable to the original Magnets molecules. The adjacent mutations Asn100Arg/Ala101His (from thermophiles, improves helical preference) allowed stronger 37°C dimerization. Finally, Tyr126Phe (from thermophiles, improves helical preference) and Arg136Lys (from thermophiles, improves helical preference, improves electrostatics with FAD cofactor; Supp. Fig. 5G,H) further increased dimerization efficiency.

We selected a pair of variants, eMags, with these nine mutations (Thr69Leu, Tyr94Glu, Ser99Asn, Asn100Arg, Ala101His, Tyr126Phe, Asn133Phe, Arg136Lys, and Met179Ile) added to nMagHigh1-Gly55Ala and pMagFast2. eMags supports dimerization upon growth at 37°C without preincubation at a lower temperature, while the original Magnets variants were
completely nonfunctional after these growth conditions (Fig. 1C,D and Supp. Fig. 6). eMags show greater dimerization efficiency (~4-5x), as judged by greater prey accumulation on mitochondria (p=0.0004, Kruskal-Wallis and Dunn’s multiple comparison post hoc tests; Fig. 1D) and faster association and dissociation kinetics (τON = 3.6 ± 0.3 s, τOFF = 23.1 ± 0.6 s) than original Magnets in cells preincubated at 28°C (τON = 7.6 ± 0.3 s, τOFF = 32.0 ± 1.3 s; p < 0.0001 for both τON and τOFF, unpaired Student’s t-test; Fig. 1C). Omission of the Tyr126Phe mutation in eMags produced eMagsF, with similar but slightly lower dimerization efficiency as eMags, but significantly faster association and dissociation kinetics (τON = 2.8 ± 0.3 s, τOFF = 14.0 ± 0.6 s; p < 0.0001 for both τON and τOFF, unpaired t-test; Fig. 1C). A 3x prey concatemer (i.e. nMagHigh1-EGFP-OMP25 and pMagFast2(3x)-TagRFP-T) – still requiring preincubation at 28°C – is needed to bring the prey recruitment of original Magnets in line with that of monomeric eMags and eMagsF (Fig. 1D). This concatemerized original Magnets also suffers from slower dissociation kinetics (τON = 5.6 ± 0.5 s, τOFF = 45.9 ± 1.4 s; p = < 0.0001 for both τON and τOFF, unpaired t-test; Fig. 1C,D). We refer to nMagHigh1-Gly55Ala and pMagFast2 with these nine mutations as eMagA (Acidic heterodimerization interface) and eMagB (Basic heterodimerization interface), respectively.

eMags enables rapid, local and reversible control of protein recruitment to subcellular compartments

We then sought to establish performance of the new eMags constructs in a variety of experimental contexts. In the first, we used eMags to conditionally recruit cytosolic proteins to intracellular organelles other than mitochondria. For the endoplasmic reticulum (ER), we selected the N-terminal transmembrane domain of cytochrome P450 (Szczesna-Skorupa and Kemper, 2000), which displays on the cytoplasmic face of the ER, as bait (fused to EGFP). Co-expression of this construct, ER-EGFP-eMagA, with eMagB-TagRFP-T (prey) in COS7 cells showed large, rapid, reversible accumulation of prey to the ER upon whole-cell illumination (Fig. 2A, Supp. Fig. 2B) (See Supp. Fig. 1A,B, Supp. Tables 1,2, Methods for a complete list and detailed information on bait and prey constructs used in these experiments). With focal illumination, robust prey accumulation occurred only in the irradiated ER region (Fig. 2B), in spite of the known rapid diffusion of proteins within the ER network (Nehls et al., 2000).
For recruitment to lysosomes, we used the N-terminal transmembrane sequence of Late Endosomal/Lysosomal Adaptor, MAPK and mTOR Activator 1 (p18/LAMTOR1), the principal lysosomal surface anchor protein for the mTOR pathway (Nada et al., 2014). We co-expressed this bait, Lys-eMagA-EGFP, prey eMagB-TagRFP-T, and lysosomal marker Lamp-1-iRFP in primary mouse hippocampal neurons (14 DIV); focal illumination of single lysosomes drove prey recruitment selectively to these isolated organelles (Fig. 2C), demonstrating the excellent spatial precision of eMag photoactivation.

Finally, for recruitment to the plasma membrane (PM), we targeted eMagA-F-EGFP bait to the cytoplasmic PM face with the CAAX-box membrane-targeting sequence from N-ras (Choy et al., 1999). As bait, we used mCherry-eMagBr for fluorescence visualization, and also fused the catalytic domain from the inositol 5-phosphatase OCRL (Pirruccello and Camilli, 2012), which dephosphorylates phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). To monitor the degradation of PI(4,5)P2 by the recruited OCRL, we expressed a third fluorescent protein, iRFP, fused to the Pleckstrin homology (PH) domain of phospholipase-Cδ1 (PHPLCδ), which selectively binds PI(4,5)P2 over other lipid head groups (Hammond and Balla, 2015) and thus serves as a localization sensor for PI(4,5)P2. All three constructs were co-expressed in primary hippocampal neurons (7 DIV). Blue-light irradiation of cells induced rapid accumulation of TagRFP-T signal at the PM (reflecting OCRL recruitment) and subsequent iRFP signal loss from the PM (reflecting OCRL activity converting PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI4P) and subsequent PHPLCδ release to the cytoplasm; Fig. 2D-G). iRFP signal rapidly decayed (τON = 18.1 ± 4.6 s) to half its initial level (~30 s) indicating rapid eMag binding, OCRL activity, and PHPLCδ unbinding. Upon interruption of blue light irradiation, the iRFP signal quickly recovered (τOFF = 23.4 ± 1.6 s), indicating fast eMag unbinding, PI(4,5)P2 resynthesis, and PHPLCδ binding (yielding iRFP signal recovery). Importantly, multiple cycles of illumination produced essentially identical waveforms of iRFP signal and recovery to initial levels, showing that both eMag binding and unbinding, and PI(4,5)P2 generation, are readily reversible with little drift from baseline.
Optogenetic regulation of inter-organelar contacts

In another set of applications, we validated the efficiency of eMags to induce organelle contacts ([Fig. 3A, Supp. Fig. 1D](#)). Conditional induction or expansion of such contacts may help elucidate the contribution of inter-organelle contacts and signaling to a variety of biochemical pathways.

We first designed a light-inducible ER-lysosome tethering system. Using the targeting sequences above ([Fig. 2](#)), ER-mCherry-eMagA and Lys-eMagB-iRFP were co-transfected into COS7 cells. Before blue light activation, ER-lysosome overlap, as detected by mCherry and iRFP overlap, was minimal ([Fig. 3B](#)); during 1 min. irradiation, colocalization rapidly increased by ~50% ($\tau_{ON} = 7.5 \pm 0.8$ s, N=14 cells, 3 independent experiments), most likely through expansion of pre-existing contacts or by stabilization and expansion of new contacts. Following light offset, ER-lysosome colocalization declined quickly to baseline ($\tau_{OFF} = 35.9 \pm 1.7$ s; **Fig. 3B**). The longer time courses of organelle association-dissociation (tens of seconds), relative to cytoplasmic protein recruitment (seconds), is consistent with a combination of slower mobility of organelles than free protein and the processive assembly and disassembly of membrane contacts.

Using a similar targeting strategy, ER-mCherry-eMagA and eMagB-iRFP-Mito were used to drive ER-mitochondrial association ([Fig. 3C](#)). In HeLa cells, used for these experiments, ER and mitochondria form a closely interacting network even in control conditions. Upon 2 min. irradiation, however, overlap increased by ~20%, with kinetics ($\tau_{ON} = 28.0 \pm 1.9$ s, $\tau_{OFF} = 49.1 \pm 2.5$ s, N=14 cells, 3 independent experiments; **Fig. 3C**) on the order of that seen for ER-lysosome contacts.

Finally, for mitochondrion-lysosome manipulation, we used eMagA-mCherry-Mito and Lys-eMagB-iRFP. In HeLa cells, baseline colocalization was quite low ([Fig. 3D](#)); such contacts are typically transient and involve small contact area (Wong et al., 2018). Upon activation, increased associations between lysosomes and mitochondria were observed, revealing contact expansion ($\tau_{ON} = 40.1 \pm 2.6$ s, $\tau_{OFF} = 58.4 \pm 2.6$ s, N=17 cells, 3 independent experiments). In some cases, movement of lysosomes away from mitochondria resulted in the elongation of tubules from mitochondria, and even in their fission ([Fig. 3E](#)), indicating strong association.
Control of the PI4P Golgi pool by reconstitution of VAP (Opto-VAP)

In a final application, we tested eMags for acute manipulation of intracellular PI4P via reconstitution of an ER-transGolgi network (TGN) tether. Key components of this tether are the ER protein VAMP-associated protein (VAP) and Oxysterol-binding protein 1 (OSBP1). OSBP1, which binds VAP (via an FFAT motif) and membranes of the TGN (via a PI4P-binding PH domain), also contains an ORD domain (OSBP-related domain) that promotes exchange of TGN PI4P for ER cholesterol (Murphy and Levine, 2016). Following shuttling to the ER, PI4P is degraded by the phosphatidylinositide phosphatase Sac1 (Mesmin et al., 2013; Saint-Jean et al., 2011; Zewe et al., 2018). This model of ER-Golgi PI4P transport is supported by biochemical, pharmacological, and genetic studies (Dong et al., 2016; Mesmin et al., 2013; Strating et al., 2015). We sought to use the eMags tools to offer direct optogenetic control over this PI4P-cholesterol exchange through regulation of VAP-OSBP1 binding interactions.

The overall design strategy was to replace endogenous VAP with a split version, which could be reconstituted by eMag dimerization and would then associate with OSBP1 to drive transport. Unlike the earlier examples, this necessitated careful consideration of the domain architectures of VAP and OSBP1, to best ensure that 1) split-VAP would not reconstitute in the absence of light activation and 2) that the eMagA and eMagB fusions would not interfere with either VAP reconstitution or OSBP1 interaction. VAP is an integral membrane protein composed of a cytosolic major sperm protein (MSP) domain (which binds FFAT motif-containing proteins), a coiled-coil domain and a C-terminal membrane anchor (Kaiser et al., 2005; Kim et al., 2010) (Fig. 4A and Supp. Fig. 1E). Two distinct VAP genes exist in the vertebrate genome: VAPA and VAPB, which can form either homomers or heteromers with one another. OSBP1 has an N-terminal PH domain that preferentially binds PI4P (Mesmin et al., 2013; Murphy and Levine, 2016; Venditti et al., 2019), an internal FFAT motif, and a C-terminal ORD domain which binds in a competitive way PI4P and cholesterol.

Given this domain structure, we opted to convert VAPB into a cytosolic version through deletion of the C-terminal transmembrane helix (leaving VAPB(1-218)); we retained the MSP and coiled-coil domains as both may contribute to VAP dimerization (Kim et al., 2010) (Fig. 4B). We fused
TagRFP-T to the N-terminus of this cytosolic fragment, and eMagB to its C-terminus (TagRFP-T-VAPB(1-218)-eMagB; Fig. 4B, Supp. Fig. 1E and Table S2). We then used ER-eMagA-EGFP to recruit VAPB(1-218) to the ER upon blue light irradiation, where it could interact with OSBP1. We refer to this pair of constructs as “Opto-VAP”.

We first tested the efficiency of Opto-VAP by transfecting both components into HeLa cells and imaging them by confocal microscopy. The prey protein (TagRFP-T-VAPB(1-218)-eMagB) was imaged throughout the experiment, while ER-eMagA-EGFP was imaged only during optogenetic activation. Before blue light irradiation, the prey protein was homogeneously distributed throughout the cytosol, with focal accumulation around the Golgi (Fig. 4C). We interpret this observation as reflecting interaction of VAPB with endogenous OSBP1, which is abundant in the Golgi, where it binds the PI4P-rich TGN membranes via its PH domain (Mesmin et al., 2013). The cytosolic VAPB(1-218) prey, with its MSP domain, could compete with endogenous VAP for binding to the FFAT motif of OSBP1 (Fig. 4A,B). A robust presence of PI4P in the TGN under resting conditions was confirmed by strong colocalization with co-transfected PI4P reporter iRFP-P4C (Hammond and Balla, 2015; Luo et al., 2015) (Fig. 4C). Upon irradiation with blue light (50 ms blue-light pulses at 0.5 Hz for ~1 min.), there was a massive recruitment of TagRFP-T-VAPB(1-218)-eMagB to the ER (Fig. 4C-top, Supp. Fig. 7, 8A), consistent with VAP-OSBP1-based reconstitution of ER-TGN interactions. Concomitant with this was a rapid ($\tau_{on} = 22.8 \pm 2.4$ s) reduction of iRFP fluorescence in the Golgi (Fig. 4C-bottom), approaching a plateau of ~70% of resting in approximately 50 s. This suggests that optogenetic reconstitution of split-VAP indeed restores a VAP-OSBP1-dependent ER-TGN tether and resulting transport of PI4P from the Golgi to the ER. These changes were rapidly reversed after interruption of blue light, with the full regeneration of the PI4P signal to baseline occurring in approximately 5 minutes ($\tau_{off} = 143.8 \pm 3.8$ s).

To confirm that the observed PI4P transfer was indeed mediated by OSBP and Opto-VAP, cells were preincubated for 30 min with 10 μM itraconazole (ITZ), an antifungal and anticancer agent that occludes the lipid-transport domain of OSBP and thus blocks its lipid trafficking properties (Strating et al., 2015). After ITZ treatment, no change was detected in the accumulation of the PI4P probe (iRFP-P4C) at the Golgi (graph in Fig. 4C and Supp. Fig. 7, 8A), despite the
efficient recruitment of TagRFP-T-VAPB(1-218)-eMagB to the ER membrane (N=16 cells, 2 independent experiments).

We next tested the Opto-VAP system in gene-edited HeLa cells lacking both VAP genes (VAP double-KO cells). It was reported that in these cells the Golgi complex is partially disrupted, with formation of PI4P-enriched hybrid Golgi-endosome structures (Dong et al., 2016), a finding that we have confirmed in cells kept in the dark (Fig. 4D-bottom). Blue light activation led to rapid recruitment of TagRFP-T-VAPB(1-218)-eMagB to the ER (Supp. Fig. 8B), whose reticular appearance was less obvious in these cells (Fig. 4D-bait panel) due their greater thickness relative to the COS7 cells used in other experiments. Concomitant with VAPB(1-218) recruitment to the ER, rapid (τON = 15.7 ± 1.2 s) decrease in iRFP fluorescence from the Golgi and hybrid Golgi-endosome structures was observed (Fig. 4D), indicating PI4P loss. Thus, Opto-VAP is able to fully restore the activity of the deleted VAPA and VAPB genes in recruiting OSBP1 to perform PI4P-cholesterol exchange. After blue-light interruption, both Opto-VAP localization and PI4P levels reversed to baseline (τOFF = 93.7 ± 5.0 s) (Fig. 4D) (N=20 cells, 4 independent experiments). As before, ITZ completely inhibited PI4P transport but had no effect on Opto-VAP recruitment (N=16 cells, 3 independent experiments) (Fig. 4D and Supp. Fig. 8B). The time courses of Opto-VAP recruitment and recovery, and of PI4P loss and recovery, are similar between the wild-type and double-KO cells, suggesting that Opto-VAP assembly and function are largely independent of endogenous levels of VAPA and VAPB.

As a final verification of the necessity of the ORD domain in the observed PI4P transport, we constructed TagRFP-T-eMagB-PHOSBP, with the PH domain of OSBP1 but not the ORD domain (Fig. 4A, Supp. Fig. 1E, Supp. Fig. 9A and Table S2). In both wild-type or VAP-DKO HeLa cells, blue-light activation induced rapid prey recruitment to the ER, but with no accompanying changes in iRFP-P4C fluorescence (Supp. Fig. 9B,C; n=16 cells for HeLa, n=17 for VAP-DKO, 2 independent experiments). Thus, the ORD domain is critical for PI4P transport, with the PH domain alone having no effect.
CONCLUDING REMARKS

In this work, we have both engineered a dramatically improved photodimerizer pair and used it in a set of experiments elucidating details of organellar interactions and cellular lipid metabolism and transport. In a previous study (Benedetti et al., 2018), we had compared multiple optogenetic dimerizer reagents and found that the Magnets system, based on orthogonalization of the Vivid LOV domain homodimer (Kawano et al., 2015), offers major advantages over other systems in several different assays. Magnets have rapid association and dissociation kinetics and require both monomers to undergo blue-light activation to permit dimerization. These properties make the background activation of Magnets low, so that they are well-suited to optogenetic modulation of small volumes and sub-cellular organelles. However, the existing Magnets tools have two critical disadvantages, which preclude their wider adoption: 1) their weak dimerization efficiency necessitates the use of concatemers, which can perturb target proteins and slow kinetics, and 2) the low thermodynamic stability means that expression and maturation must occur at reduced temperatures, complicating cell culture experiments and ruling out mammalian in vivo work entirely.

To overcome these limitations, we established a robust cell-culture screen that captures dimerization efficiency, association and dissociation kinetics, and folding and maturation. This screen allowed us to identify variants encompassing mutations across the whole protein with particular focus on the dimer interface. Mutations were selected based on sequence alignments with thermophilic fungal Vivid domains and structure-guided design. After several rounds of mutagenesis and screening, we selected final “enhanced Magnets” (eMag) variants with nine mutations over the starting scaffolds. The eMag reagents showed greater dimerization efficiency – allowing use as monomers instead of concatemers, full function after their folding and maturation at 37°C, and faster association and dissociation kinetics than the original Magnets. We thoroughly validated the eMag constructs in a range of cellular assays involving protein recruitment to different membranes, inter-organellar association, and bilayer lipid metabolism and trafficking. The success of the engineering effort validates the design strategy and shows that many mutations from thermophilic fungi grafted well to the scaffold of the Vivid photoreceptor of Neurospora crassa, a mesophilic fungus. These mutations improved packing, hydrogen
bonding, and secondary structure preference. These improved optogenetic dimerizers will be broadly applicable and useful for applications across diverse fields.

Acknowledgments: We thank Andrew S. Moore, Ben Johnson and Jesse Aaron for discussion and Moritoshi Sato, Tim Levine and Yuxin Mao for providing key reagents. We thank Frank Wilson, Louise Lucast, Heather Wheeler and Alice Dao from the De Camilli lab, and Kevin McGowan, Melissa Ramirez, and Jordan Towne from the Cell and Molecular Biology Shared Resources at Janelia Research Campus for excellent technical support. This work was supported by the NIH (Grants NS36251, P30DK045735 and DA018343) and by the Kavli Foundation to P.D.C., by a fellowship from the Jung Foundation for Science and Research to A.G.S., and by the Howard Hughes Medical Institute. H.F. is a HHMI Life Sciences Associate.

Authors contributions: L.B., P.D.C. and L.L.L. conceived the idea, design research and wrote the manuscript. L.L.L and J.S.M developed the photoreceptor optimization strategy and models. L.B. and A.G.S. performed experiments. L.B and H.F. analyzed the data.

Declaration of Interests: The authors declare no competing interests.
FIGURE LEGENDS

Figure 1: Development and validation of enhanced Magnets (eMags).

A. Schematic of the assay used to screen for light-dependent Magnets heterodimerization in living cells. The negative Magnet was anchored to the outer mitochondrial membrane (OMM), while the positive Magnet was cytosolic and recruited to mitochondria upon heterodimerization. IMS = Intermembrane space.

B. Representative example of reversible light-dependent recruitment of eMagB-TagRFP-T (prey) to mitochondria in HeLa cells expressing the mitochondrial bait Mito-EGFP-eMagA. Confocal images. Scale bar: 10 µm.

C. Left: schematic of experiment, with original Magnets being incubated at either 28°C or 37°C before assay. Right: prey depletion from the cytosol (due to its recruitment to mitochondria) for each regime (original Magnets (37°C): n = 13 cells, original Magnets (28°C): 17 cells, original Magnets 3x (28°C): 13 cells, eMags: 14 cells, eMagsf: 13 cells; from 3 independent experiments).

D. Amount of prey recruited to mitochondria after 60 s of blue light exposure.

Figure 2: eMags-dependent recruitment of soluble cytosolic proteins to intracellular organelles and modulation of PI(4,5)P2 at the plasma membrane.

A. Rapid, reversible accumulation of a soluble prey to an endoplasmic reticulum-anchored bait upon whole-cell illumination of a COS7 cell. In this and other examples in the figure, global cell blue-light irradiation was achieved with 200 ms blue-light pulses at 0.5 Hz. Time from the beginning of imaging given at the bottom. Scale bar: 2 µm.

B. Localized and global recruitment of a soluble prey to an ER-targeted bait in a HeLa cell. Localized activation was achieved by illuminating the cell within a 3 µm x 3 µm ROI with 200 ms blue-light pulses at 0.5 Hz for 60 seconds. The cell was then allowed to recover in the absence of blue light for 2 min prior to global illumination. Scale bar: 5 µm.

C. Recruitment of a soluble prey to lysosomes in a DIV14 primary hippocampal neuron. The left two fields show colocalization of the lysosomally anchored bait with the lysosomal marker Lamp1-iRFP. Recruitment of the prey to a single lysosome, or to all lysosomes, was achieved by local and global illumination, respectively. Following localized illumination delivered as in...
(B), the cell was allowed to recover in the absence of blue light for 1 min, and then globally illuminated. Scale bar: 5 µm.

D. Schematic representation of the strategy and constructs used to induce PI(4,5)P₂ depletion at the plasma membrane via the eMagF-dependent recruitment of an inositol 5-phosphatase. iRFP-PH₆L₅C₅ is a PI(4,5)P₂ probe.

E. PI(4,5)P₂ dephosphorylation and re-phosphorylation elicited in DIV7 primary hippocampal neurons expressing the constructs shown in (D) (N= 10 dephosphorylation and re-phosphorylation events, 3 neurons), as reflected by the dissociation of iRFP-PH₆L₅C₅ from the plasma membrane.

F. Representative trace of PI(4,5)P₂ level changes resulting from multiple brief illumination pulses of a single neuron.

G. Selected iRFP-PH₆L₅C₅ images of the neuron used for field (F) at the times indicated. Scale bar: 5 µm.

Figure 3: Optogenetic induction of organelle-organelle contacts

A. Graphical representation of the strategy used to establish contacts between membranes of intracellular organelles. Constructs encoding both components of the dimerization pair (eMagA and eMagB) were fused to a fluorescent protein (FP) and to an organelle-targeting sequence (OTS) to drive expression in specific organelles (Organelle A or B). Cells expressing, respectively: ER-Lysosomes (COS7) (B), ER-Mitochondria (HeLa) (C), or Mitochondria-Lysosomes (HeLa) (D). Cells shown before, during, and after blue-light illumination. Small arrows in (D) point to lysosomes. The overlap between the membranes of the two organelles increased during illumination, as illustrated by the white color in the fluorescence micrographs, quantified in graphs shown at right (ER-Lysosomes: n = 14, ER-Mitochondria: 14, Mitochondria-Lysosomes: 17; 3 independent experiments). Scale bar: 2 µm.

E. Fission of a mitochondrion correlating with pulling by a lysosome after light-dependent contact formation/expansion. Scale bar: 0.5 µm.

Figure 4: Light-dependent reconstitution of VAPB triggers PI4P transfer from the Golgi complex and endosomes to the ER
A. Domain organization of VAP and OSBP1, which together connect the ER to the PI4P-rich membranes of the Golgi complex (and an endosome subpopulation) to mediate PI4P transfer to the ER for degradation by the PI4P phosphatase Sac1. MSP: major sperm protein homology domain; CCD, coiled-coil domain; TM, transmembrane domain; PH, Pleckstrin homology domain; FFAT, FFAT motif; ORD, OSBP-related protein lipid-binding domain. In the experiment shown in the figure, OSBP represents the endogenous protein.

B. Schematic representation of reconstitution of a split VAP on the ER membranes using eMags (Opto-VAP). FP: fluorescent protein tags. The N-terminal portion of VAPB (VAPB(1-218)) fused to TagRFP-T and to eMagB (prey) was expressed together with ER-anchored eMagA fused to EGFP (bait) and with the PI4P reporter iRFP-P4C in HeLa cells. Upon blue-light illumination, eMags heterodimer formation results in reconstitution of the tether, allowing the ORD domain of endogenous OSBP to transfer PI4P to the ER for degradation, leading to PI4P loss from Golgi membranes.

C. Wild-type HeLa cell expressing TagRFP-T-MSP(VAPB(1-218))-eMagB, ER-EGFP-eMagA and the PI4P reporter iRFP-P4C, showing that blue-light dependent Opto-VAP activation results in the recruitment of the prey to the ER and concomitant dissociation of iRFP-P4C from the Golgi, reflecting PI4P loss. Scale bar: 5 µm. Insets show the Golgi complex area at higher magnification. Scale bar: 1 µm. The graph at bottom-right shows changes of normalized iRFP-P4C (PI4P) fluorescence in the Golgi complex before, during, and after Opto-VAP activation in wild-type HeLa cells, with or without ITZ treatment (N=16 and 24 cells, respectively; from 3 independent experiments).

D. VAP-DKO HeLa cell expressing the same constructs as in (C). As previously reported (Dong et al. 2016), in VAP-DKO HeLa cells, the Golgi complex is disrupted with an accumulation of PI4P-rich hybrid endosome-Golgi organelles. Blue-light dependent Opto-VAP activation results in the prey recruitment to the ER and concomitant dissociation of iRFP-P4C from these organelles. Scale bar: 5 µm. Insets of the iRFP-P4C images of Golgi-endosome elements at high magnification. The bright vesicular structure shown in the inset corresponds to the organelle indicated by an arrowhead in the low magnification image. Scale bar: 1 µm. The graph at bottom-right shows changes of normalized iRFP-PI4C (PI4P) fluorescence in endosomes before,
during, and after Opto-VAP activation, with or without ITZ treatment (N=20 and 16, respectively; from 3 independent experiments).

TABLES AND TABLES LEGENDS

Supp. Table 1: Constructs used to express wild-type or mutant Magnets on different subcellular compartments.

The Organelle-Targeting Sequences (OTS) used and their position, the fluorescent tag, and the original or mutant Magnets used in each construct are indicated.

Name	Localization	OTS position	Origin	NCBI Accession Number	Fuse amino acid sequence	Fluorescent tag
nMagHigh1-EGFP-Mito	Mitochondria	C-ter	Outer membrane protein OMP25 or synaptojanin-2-binding protein (Homo sapiens)	NP_060843.2	VQNGPIGHREGDPSGIPFMVLPVFALTMAAWAFMRYRQQL	EGFP
eMagA-EGFP-Mito	Mitochondria	C-ter	Outer membrane protein OMP25 or synaptojanin-2-binding protein (Homo sapiens)	NP_060843.2	VQNGPIGHREGDPSGIPFMVLPVFALTMAAWAFMRYRQQL	EGFP
eMagA-EGFP-Mito	Mitochondria	C-ter	Outer membrane protein OMP25 or synaptojanin-2-binding protein (Homo sapiens)	NP_060843.2	VQNGPIGHREGDPSGIPFMVLPVFALTMAAWAFMRYRQQL	EGFP
ER-EGFP-eMagA	Endoplasmic reticulum	N-ter	Cytochrome P450 2C1 (Oryctolagus cuniculus)	AAA31436	MDPVVLGLCLSLWLQSYGGG	EGFP
Lys-eMagA-EGFP	Lysosomes	N-ter	Ragulator complex protein LAMTOR1 (Homo sapiens)	NP_060377.1	MGCCYSSENEDSDQDRERKLLLDDSPSPPTKALNGAEPY	EGFP
eMagA-EGFP-PM	Plasma membrane	C-ter	Isoform 2B of GTPase KRas (Homo sapiens)	P01116-2	KKKKKKSSTKCVIM	EGFP
ER-mCherry-eMagA	Endoplasmic reticulum	N-ter	Cytochrome P450 2C1 (Oryctolagus cuniculus)	AAA31436	MDPVVLGLCLSLWLQSYGGG	mCherry
Lys-eMagB-iRFP	Lysosomes	N-ter	Ragulator complex protein LAMTOR1 (Homo sapiens)	NP_060377.1	MGCCYSSENEDSDQDRERKLLLDDSPSPPTKALNGAEPY	iRFP670
eMagB-iRFP-Mito	Mitochondria	C-ter	Outer membrane protein OMP25 or synaptojanin-2-binding protein (Homo sapiens)	NP_060843.2	VQNGPIGHREGDPSGIPFMVLPVFALTMAAWAFMRYRQQL	iRFP670
eMagA-mCherry-Mito	Mitochondria	C-ter	Outer membrane protein OMP25 or synaptojanin-2-binding protein (Homo sapiens)	NP_060843.2	VQNGPIGHREGDPSGIPFMVLPVFALTMAAWAFMRYRQQL	mCherry
Supp. Table 2: Constructs encoding the soluble prey proteins used in this study.

Name	Intracellular Localization	Functional Domain and Position	Origin	NCBI Accession Number	Fluorescent tag
pMagFast2-TagRFP-T	Cytosolic	N/A			TagRFP-T
eMagBr -TagRFP-T	Cytosolic	N/A			TagRFP-T
eMagBr-TagRFP-T	Cytosolic	N/A			TagRFP-T
mCherry- eMagBr - 5ptaseOCRL	Cytosolic	C-term	OCRL inositol polyphosphate-5-phosphatase (OCRL), Homo sapiens	NM_001587.4	mCherry
TagRFP-T-VAPB(1-218)- eMagB	Cytosolic	Internal	VAMP associated protein B (VAPB 1-218), Homo sapiens	NM_004738.5	TagRFP-T
TagRFP-T-eMagB-PHosBP97-126	Cytosolic	C-term	Homo sapiens oxysterol binding protein (OSBP), mRNA	NM_002556.3	TagRFP-T

Supp. Table 3: Mutants tested

Amino acid substitutions introduced in both pMagFast2 and nMagHigh_{M55A}	Heterodimerization observed after preincubation of cells at various temperatures	NOTES												
	28°C	33°C	35°C	37°C										
WT	YES	NO	NO	NO										
G49A/Y50F	NO	NT	NT	NO										
G49A/Y50I	NO	NT	NT	NO										
Y94E/N100E	YES (+)	NO	NO	NO										
N130K/N133K	YES (+)	YES	NO	NO										
L64I/V67I/T69L	YES (+)	YES	NO	NO	Slower off kinetics (t_{1/2}=5.5 mins)									
L64I/V67I/T69M	NO	NT	NT	NO										
S99N	YES	YES	NO	NO										
S99N/R106K	NO	NO	NT	NO										
T123R/K125R/D128R/N130D	NO	NT	NT	NO										
N56T	NO	NO	NO	NO										
L64I	YES (-)	NO	NO	NO										
V67I	YES (+)	NO	NO	NO	Slower off kinetics									
Expression	F162I	F162L	M179I	T69L/S99N/M179I	pMagFast T69L/S99N/N133K/M179I + nMagHigh M55A/T69L/S99N/N133K/M179I	pMagFast T69L/S99N/N133F/M179I + nMagHigh M55A/T69L/S99N/N133F/M179I	pMagFast T69L/S99N/N133L/M179I + nMagHigh M55A/T69L/S99N/N133L/M179I	pMagFast T69L/S99N/D128A/N130/N133K/M179I + nMagHigh M55A/T69L/S99N/D128A/N133K/M179I	pMagFast T69L/S99N/D128E/N130/N133K/M179I + nMagHigh M55A/T69L/S99N/D128E/N133K/M179I	pMagFast T69L/S99N/N130Q/N133K/M179I + nMagHigh M55A/T69L/S99N/N130Q/N133K/M179I	pMagFast T69L/S99N/K125R/N130/M179I + nMagHigh M55A/T69L/S99N/K125R/N130/M179I	pMagFast T69L/S99N/V103I/M179I + nMagHigh M55A/T69L/S99N/V103I/M179I	pMagFast T69L/G94E/S99N/N133F/M179I + nMagHigh M55A/T69L/G94E/S99N/N133F/M179I	pMagFast T69L/S99N/M117S/N133F/M179I + nMagHigh M55A/T69L/S99N/M117S/N133F/M179I
--	-------	-------	-------	-----------------	---	---	---	---	---	---	---	---	---	
	NO	NO	NO	NO	YES (+)	YES (+)	YES (+)	NO	NO	NO	NO	NO	NT	
	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		
	YES (+)	YES	NO	NO	YES (+)	YES (+)	YES (+)	NO	NO	NO	NO	NO	NO	
	YES (+)	YES	YES	NO	YES (+)	YES (+)	YES (+)	NO	NO	NO	NO	NO	NO	
	YES (+)	YES	YES	NO	YES (+)	YES (+)	YES (+)	NO	NO	NO	NO	NO	NO	
	YES (+)	YES	YES	NO	YES (+)	YES (+)	YES (+)	NO	NO	NO	NO	NO	NO	
	YES (+)	YES	YES	NO	YES (+)	YES (+)	YES (+)	NO	NO	NO	NO	NO	NT	
	YES (+)	NT	NO	NO	YES (+)	NT	NO							
	YES (+)	NT	NO	NO	YES (+)	NT	NO							
Experiment	Outcome	NT	NO	NO	Notes									
------------------------------------	---------	----	----	----	---------------------									
pMagFast T69L/S99N/M117Y/ N133F/M179I + nMagHigh M55A/T69L/S99N/M117Y/N133F/M179I	YES (+)	NT	NO	NO										
pMagFast T69N/S99N/N133F/M179I + nMagHigh M55A/T69N/S99N/N133F/M179I	YES (-)	NT	NO	NO										
pMagFast T69L/S99N/N130K/N133F/M179I + nMagHigh M55A/T69L/S99N/N130K/N133F/M179I	YES (+)	NT	NO	NO	Slower off kinetics									
pMagFast T69L/S99N/N100D/N133F/M179I + nMagHigh M55A/T69L/S99N/N100D/N133F/M179I	YES (+)	NT	NO	NO										
pMagFast T69L/S99N/K125R/N133F/M179I + nMagHigh M55A/T69L/S99N/K125R/N133F/M179I	YES (+)	NT	NO	NO										
pMagFast T69L/Y94E/S99N/N133F/M179I + nMagHigh M55A/T69L/Y94E/S99N/N133F/M179I	YES (+++)	NT	YES (+++)	YES (+)										
pMagFast T69L/Y87F/Y94E/S99N/N133F/M179I + nMagHigh M55A/T69L/Y87F/Y94E/S99N/N133F/M179I	NO	NT	NO	NO										
pMagFast T69I/Y94E/S99N/N133F/M179I + nMagHigh M55A/T69I/Y94E/S99N/N133F/M179I	YES (-)	NT	YES (-)	NO										
pMagFast T69V/Y94E/S99N/N133F/M179I + nMagHigh M55A/T69V/Y94E/S99N/N133F/M179I	NO	NT	NO	NO										
pMagFast T69L/Y94E/S99N/N133Y/M179I + nMagHigh M55A/T69L/Y94E/S99N/N133Y/M179I	YES (++)	NT	YES (++)	YES (+)										
pMagFast T69L/Y94E/S99N/N133F/S178C/M179I + nMagHigh M55A/T69L/Y94E/S99N/N133F/S178C/M179I	YES (+)	NT	YES (+)	NO										
pMagFast T69L/Y94E/S99N/N133F/S178F/M179I + nMagHigh M55A/T69L/Y94E/S99N/N133F/S178F/M179I	NO	NT	NO	NO										
Mutations	pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	NO	NT	NO	NO									
---------------------------------	---	-----	-----	-----	-----									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+)	NT	YES (+)	NO										
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)										
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)										
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	YES (+)	Slower off kinetics									
pMagFast T69L/Y94E/S99N/M113F/M179I + nMagHigh	YES (+++)	NT	YES (+++)	NO	Slower off kinetics									
Method	NonLinearLeastSquares													
------------------------	-----------------------													
Robust	Off													
Algorithm	Trust-Region													
DiffMinChange	1.00E-08													
DiffMaxChange	0.1													
MaxFunEvals	600													
MaxIter	400													
TolFun	1.00E-06													
TolX	1.00E-06													

Supp. Table 4: Fit Parameters

Method
pMagFast T69L/Y94E/S99N/N133F/K153R/M179I + nMagHigh M55A/T69L/Y94E/S99N/N133F/K153R/M179I
YES (++)
NT
YES (++)
NO
Slower off kinetics

Method
pMagFast T69L/Y94E/S99N/V103I/N133F/K153R/M179I + nMagHigh M55A/T69L/Y94E/S99N/V103I/N133F/K153R/M179I
YES (+)
NT
YES (+)
NO
Slower off kinetics

Method
eMags
pMagFast T69L/Y94E/S99N/N100R/A101H/Y126F/N133Y/R136K/M179I + nMagHigh M55A/T69L/Y94E/S99N/N100R/A101H/Y126F/N133Y/R136K/M179I
YES (+++)
NT
YES (+++)
YES (+++)
High dimerization efficiency at 37°C without any preincubation and faster on and off kinetics than original Magnets

Method
eMagsr
pMagFast T69L/Y94E/S99N/N100R/A101H/N133Y/R136K/M179I + nMagHigh M55A/T69L/Y94E/S99N/N100R/A101H/N133Y/R136K/M179I
YES (+++)
NT
YES (+++)
YES (+++)
Slightly lower dimerization efficiency than (eMags) but faster on and off kinetics
MATERIALS AND METHODS:

Plasmids

Expression vectors encoding nMagHigh1-EGFP-CAAX, pMagFast2(3x)-iRFP and iSH2-pMag(3x)-iRFP were kind gifts from Moritoshi Sato (University of Tokyo, Tokyo, Japan). nMagHigh1-EGFP-Mito was generated through the PCR amplification of the nMagHigh1-EGFP coding sequence from nMagHigh1-EGFP-CAAX, and inserted into a pGFP-OMP25 (Nemoto and De Camilli, 1999) vector at NheI and XhoI sites. pMagFast2(1x)-TagRFP-T was generated through the PCR amplification of the third unit of pMagFast2(3x) and TagRFP-T in pMagFast2(3x)-TagRFP-T (Benedetti et al., 2018) and inserted in the same vector at HindIII and XbaI site. In order to recreate an optimal Kozak sequence Met and Gly were added before the initial His, at the N-term of pMagFast2 in this construct. All nMagHigh1 and pMagFast2 mutants tested in our screening were generated by site-directed mutagenesis (QuikChange II XL, Agilent technologies) following manufacturer instruction. ER-EGFP-eMagA, ER-mCherry-eMagA, eMagA-mCherry-Mito, eMagB-iRFP-Mito, Lys-eMagB-iRFP and TagRFP-T-VAPB(1-218) were generated by GeneScript and cloned into M18 pCAGGS WPRE electroporation vector (Gray et al., 2016). These constructs are described in Supp. Tables 1 and 2. Lys-eMagA-EGFP was generated replacing nMagHigh1 with eMagA in Lys-nMagHigh1-EGFP (Benedetti et al., 2018). Lamp1-iRFP was generated by PCR-amplifying the Homo sapiens lysosomal associated membrane protein 1 (LAMP1) coding sequence (NCBI Reference Sequence: NM_005561.3) synthetized as a gBlocks® Gene Fragment (Integrated DNA Technologies, IDT), which was inserted at EcoRI and BamHI sites of piRFP670-N1 (Addgene plasmid # 45457). eMagAr-EGFP-PM and eMagA-EGFP-PM were generated replacing nMagHigh1 in nMagHigh1-EGFP-CAAX with the engineered variants at HindIII and XbaI sites. mCherry-eMagBr-5ptasecrl was synthetized by digesting mCherry-pMagFast2(3x)-5ptasecrl (Benedetti et al., 2018) with NotI and PvuI, and then ligated with eMagBr amplified from eMagBr-TagRFP-T. iRFP-PHPLC8 plasmids were previously described (Idevall-Hagren et al., 2012). TagRFP-T-eMagB-PHOSBP coding sequence was synthetized as a gBlocks® Gene Fragment (Integrated DNA Technologies, IDT) and cloned into TagRFP-T-VAPB(1-218)-eMagB vector at NotI and HpaI cloning sites. PHOSBP sequence was obtained from GFP-PHOSBP (Tim Levine, UCL Institute of Ophthalmology). iRFP-P4C was cloned amplifying the iRFP coding.
sequence piRFP670-N1 (Addgene plasmid # 45457) and inserted at AgeI and BsrGI cloning sites in GFP-P4C_{Sia}C (kind gift of Yuxin Mao, Cornell). For all of these clones, PCR amplification of the fragments, and their subsequent ligation, was performed using the In-Fusion Cloning Kit and online tools (BD Clontech, Takara Bio, USA). All plasmids were verified by sequencing (Genewiz, South Plainfield, NJ, USA). They will be made available at Addgene.

Cell culture

Wild-type and VAP double KO (DKO) HeLa cells, as well as COS7 cells, were cultured at 37°C (5% CO₂) in phenol red-free Dulbecco’s Modified Eagle Medium (DMEM, Life Technologies), supplemented with 10% fetal bovine serum (Life Technologies), 1 mM sodium pyruvate (Life Technologies), 100 U/ml penicillin, 100 μg/ml streptomycin (Life Technologies), MEM-Non-Essential Amino Acids (Life Technologies), and 1 mM L-glutamine (Life Technologies). All lines were tested monthly and verified as being mycoplasma-free (MycoSensor PCR Assay Kit, Agilent Technologies).

Primary cultures of hippocampal neurons were generated from mouse brains. Hippocampi of P0-P2 C57BL/6J (Charles River) pups were dissected in cold Hank’s Balanced Salt Solution [HBSS 1x supplemented with 10 mM HEPES pH 7.4, 100 U/ml penicillin, 100 μg/ml streptomycin, and 1 mM sodium pyruvate (all reagents from Life Technologies)]. Cells were then dissociated by tissue trituration and papain treatment [20U/ml papain (Worthington Biochemical corporation), and 0.2 mg/ml L-cysteine (Sigma) in HBSS, pH 7.4] at 37°C for 15 minutes. Live, dissociated cells (Trypan Blue exclusion) were counted and seeded in plating medium [Neurobasal supplemented with 5% fetal bovine serum, 1% Glutamax, and 2% B27 (all reagents from Life Technologies)] at 3.4 x 10⁴ cells/cm² on poly-D-lysine-coated (Sigma), glass-bottomed Petri dishes (MatTek corporation). Three hours after transfection, the serum-based medium was replaced with serum-free neuronal medium, and cells were maintained in vitro at 37°C and 5% CO₂. Transient transfection was performed between 4 to 14 days in vitro (DIV). All experimental procedures involving the use of mice were performed in agreement with the Yale University Institutional Animal Care and Use Committee (IACUC).
Transient transfection and live cell imaging

For live-cell imaging experiments, cells were seeded on glass-bottomed dishes (MatTek corporation) coated with 0.005 mg/ml human plasma fibronectin (EMD Millipore) at 37°C for 30 minutes, and then washed three times with sterile water. Fibroblastic cells were seeded at a concentration of 10-15 x 10⁴ cells/cm² per dish and transfected after 24 hours with Lipofectamine 2000 (Life Technologies), following the manufacturer’s instructions.

To study prey-protein recruitment at mitochondria during mutant screening, cells were transfected with cDNAs encoding nMagHiEGFP-Mito (bait) and pMagFast2-TagRFP-T (prey) variants at a 1:1 ratio in OptiMEM-I (Thermo Fisher Scientific) (1:4 DNA: lipofectamine ratio). Cells were incubated with the transfection mix for 1 hour. Subsequently, the serum-free medium was replaced by complete DMEM, and cells were incubated at 28°C, 33°C, 35°C or 37°C for 12-24 hours before imaging. All imaging experiments were performed at 37°C in Live-cell imaging solution (Life Technologies). Single-lysosome prey recruitment was performed in 14 DIV hippocampal neurons transfected with Lys-eMagA-EGFP (bait), eMagB-TagRFP-T (prey), and Lamp1-iRFP (reporter) at a 3:2:1 ratio, with 1.5 µg total DNA (1:4 DNA: lipofectamine ratio). Plasma membrane modulation of PI(4,5)P₂ was tested in 7 DIV hippocampal neurons transfected with eMagAR-EGFP-PM (bait), mCherry-eMagBf-5ptaseOCL (prey), and iRFP-PHPLCδ (reporter) at a 3:2:1 ratio, with 1.5 µg total DNA (1:4 DNA: lipofectamine ratio). To study prey-protein recruitment at the ER, cells were transfected with cDNAs encoding ER-eMagA (bait) and eMagB-TagRFP-T (prey) at a 2:1 ratio in OptiMEM-I (Thermo Fisher Scientific) (1:4 DNA: lipofectamine ratio). Light-dependent VAPB reconstitution on ER membranes or PHOSBP-mediated tethering was performed by transfecting wild-type or VAP-DKO HeLa cells with ER-EGFP-eMagA (bait) and TagRFP-T-VAPB₁₋₂₁₈-eMagB or TagRFP-T-eMagB-PHOSBP (prey) and iRFP-P4C at a 3:2:1 ratio in OptiMEM-I (Thermo Fisher Scientific) (1:4 DNA: lipofectamine ratio). In this case, cells were incubated with the transfection mix for 1 hour. Subsequently, the serum-free medium was replaced by complete DMEM with no phenol red, and imaging was performed in the same medium between 16 and 28 hours after transfection. Itraconazole (Tocris, Cat. No. 5981) was dissolved in DMSO to generate a 2 mM solution right before the experiment and diluted in the cell medium at 10 µM.
Light-dependent induction of contacts between ER and lysosomes was achieve transfecting COS7 cells with ER-mCherry-eMagA and Lys-eMagB-iRFP at a 2:1 ratio in OptiMEM-I (1:4 DNA: lipofectamine ratio). ER-mitochondria contacts were elicited in HeLa cells transfect with ER-mCherry-eMagA and eMagB-iRFP-Mito at a 1:1 ratio in OptiMEM-I (1:4 DNA: lipofectamine ratio). Mitochondria-lysosome contacts were evoked in HeLa cells transfected with eMagA-mCherry-Mito and Lys-eMagB-iRFP. Cells were incubated with the transfection mix for 1 hour. Subsequently, the serum-free medium was replaced by complete DMEM with no phenol red, and imaging was performed in the same medium between 16 and 28 hours after transfection.

Confocal microscopy

All optogenetic experiments, with the exception of the experiments with Opto-VAP and its controls and the light-dependent induction of inter-organellar contacts, were performed using the Improvision UltraVIEW VoX system (Perkin Elmer), built around a Nikon Ti-E inverted microscope and controlled by the Volocity software (Improvision). Imaging was carried out at 37°C with a 63x PlanApo oil objective (1.45 NA). To prevent unwanted photoactivation of the optogenetic dimers, transfected cells were identified with the fluorescence emitted by red fluorescent proteins using a bandpass excitation filter ET 560/30. A 488 nm laser was used to excite EGFP, a 561 nm laser for mCherry and TagRFP-T, and a 640 nm laser for iRFP670. The fluorescence emitted was detected with 527/55nm, 615/70nm and 705/90nm filters, respectively. Whole-cell activation of the photoswitches was achieved by irradiating the field of view with 488 nm laser pulses of 100-200 ms (3x10⁻³ W/cm²). A built-in photo-perturbation unit was used to deliver 488 nm light (7.07 W/cm²) pulses with subcellular precision.

Confocal imaging of light-dependent VAPB reconstitution on ER membranes or PHOSBP mediated tethering and light-induced inter-organellar contacts was performed using a customized Nikon Ti-E inverted microscope outfitted with a Yokagowa CSU-X1 spinning disk. Illumination was generated using solid-state laser lines at 488 nm, 561 nm, or 647 nm passed through the pinhole array and into the back aperture of the objective using a quad-pass filter for the
appropriate lines (Semrock). Emission light was collected using a 100x Plan-Apochromat 1.49NA oil-immersion objective (Nikon) and focused on a DU-897 EMCCD (Andor) at a final pixel size of 133.3 nm. Specific settings for each color were as follows: 488 – 525/50 emission filter, 50 ms exposure time; 561—605/55 emission filter, 200 ms exposure time; 647—700/75 emission filter, 200 ms exposure time. Cells were imaged in DMEM without phenol red and incubated using a TokaiHit stage-top incubator at 37°C, 5% CO₂.

Image Analysis and Statistics

Association and dissociation rates for each dimerization system were calculated from changes in prey fluorescence inside a cytosolic ROI before, during, and after the photoactivation and recruitment of the prey protein to mitochondrial membranes. The change in average fluorescence inside the ROI was calculated using the software Fiji (ImageJ Version: 2.0.0-rc-69/1.52p, Wayne Rasband, National Institute of Health, USA, http://fiji.sc/wiki/index.php/Fiji), and the remainder of the quantification was carried out in MATLAB. The change in fluorescence associated with depletion of the cytosolic pool was calculated as \(\frac{\Delta f}{f_c} = \frac{f[t_i] - f[t_c]}{f[t_c]} \), where \(f[t] = \frac{F_{ROI}[t] - F_{bkg}[t]}{F_{cell}[t] - F_{bkg}[t]} \), where \(F_{ROI} \) is the mean fluorescence measured in the cytosolic ROI, \(F_{bkg} \) is the mean fluorescence intensity measured in an area of the background, \(F_{cell} \) is the mean fluorescence measured in the whole cell to normalize for photobleaching, and \(t_i \) denotes the point in time. Changes in iRFP-PHPLC\(\delta \) at the plasma membrane in neurons was calculated with the same equation but in this case, the region of interest for each time point was identified by manually drawing an ROI corresponding to the plasma membrane.

The fluorescence changes due to protein recruitment to mitochondria were calculated by measuring the fluorescence signal corresponding to mitochondria at each time point by generating a binary mask using the fluorescence signal associated with the mitochondrial bait. Fluorescence accumulation at mitochondria was measured by dividing the average background-subtracted fluorescence intensity at every time-point (\(F_t \)) by the fluorescence intensity of the first time point (\(F_0 \)) and subsequently normalized to \((F_t - F_0)/F_0 \).

The relative increase in organelle overlap for each time point upon light-dependent induction of membrane contact sites was performed by generating a binary mask using the fluorescence signal associated with lysosomes in ER-lysosome and mitochondria-lysosome
contacts, or with mitochondria in ER-mitochondria contacts. Then the fluorescent signal of the other organelle, corrected for background signal and photobleaching-corrected with the Bleach Correction function in Fiji, was calculated with the following equation \(f[t] = (F_{ROI}[t] - F_{bkg}[t]) \) and normalized to the fluorescence value measured at the beginning of the experiment.

To measure loss of PI4P from the Golgi complex and/or Golgi-endosome-hybrid organelles in experiments involving Opto-VAP, or PHOSBP mediated tethering, in iRFP-P4C expressing HeLa cells, an ROI was drawn around Golgi marker-positive regions. The fluorescence in the ROI at each time point was background-subtracted and photobleaching-corrected using this equation

\[
\frac{F_{ROI}}{F_{nucleus}} - \frac{F_{bkg}}{F_{bkg}} = \frac{F_{ROI} - F_{bkg}}{F_{nucleus} - F_{bkg}}.
\]

TagRFP-T-MSP\textsubscript{VAPB-eMagB} recruitment to the ER was calculated by measuring the fluorescence signal corresponding to the ER at each time point by generating a binary mask using the fluorescence signal associated with the ER bait acquired during the blue-light stimulation of the optogenetic system. Fluorescence accumulation at the ER was measured dividing the average fluorescence intensity at every time-point (\(F_t \)) background subtracted (\(F_{bkg} \)) by the fluorescence intensity of the first time point (\(F_0 \)) background subtracted according to the formula:

\[
\frac{F_t}{F_0} - \frac{F_{bkg}}{F_{bkg}}.
\]

Statistical analyses were carried out in GraphPad Prim 8.2.1 (Graph Pad Software).

Kinetics analysis

We found that the apparent kinetics of the Magnets variants reported in this study fit well to an exponential decay model. We used the curve-fitting tool (ctool) in MATLAB to determine the kinetic rate constants, \(\tau_{ON} \) and \(\tau_{OFF} \), by fitting the curve to the following equation:

\[
S[t] = S_0 + \Delta S \cdot e^{\frac{t-t_0}{\tau}}
\]

Where \(S = \frac{\Delta f}{f} \), \(t_0 \) is time at which the light is turned on or off (for on- or off-kinetics, respectively), \(S_0 \) is \(S \) at time \(t_0 \), and \(\Delta S = S_0 - S(\infty) \). During the fitting process, each point is given a weight proportional to

\[
\frac{1}{s.e.m^2}.
\]

The parameters of the fit can be found in Supplementary Table 4. For all the datasets acquired in this work, the \(R^2 \)'s obtained for exponential fits are always larger than 0.86 with a median of 0.98.
REFERENCES

Benedetti, L., Barentine, A.E.S., Messa, M., Wheeler, H., Bewersdorf, J., and Camilli, P.D. (2018). Light-activated protein interaction with high spatial subcellular confinement. Proc National Acad Sci 115, E2238–E2245.

Bergeijk, P. van, Adrian, M., Hoogenraad, C.C., and Kapitein, L.C. (2015). Optogenetic control of organelle transport and positioning. Nature 518, 111–114.

Bracha, D., Walls, M.T., Wei, M.-T., Zhu, L., Kurian, M., Avalos, J.L., Toettcher, J.E., and Brangwynne, C.P. (2018). Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds. Cell 175, 1467-1480.e13.

Bugaj, L.J., Choksi, A.T., Mesuda, C.K., Kane, R.S., and Schaffer, D.V. (2013). Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10, 249–252.

Che, D.L., Duan, L., Zhang, K., and Cui, B. (2015). The Dual Characteristics of Light-Induced Cryptochrome 2, Homo-oligomerization and Heterodimerization, for Optogenetic Manipulation in Mammalian Cells. Acs Synth Biol 4, 1124–1135.

Choy, E., Chiu, V.K., Silletti, J., Feoktistov, M., Morimoto, T., Michaelson, D., Ivanov, I.E., and Philips, M.R. (1999). Endomembrane Trafficking of Ras. Cell 98, 69–80.

DeRose, R., Miyamoto, T., and Inoue, T. (2013). Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflügers Archiv European J Physiology 465, 409–417.

Dine, E., Gil, A.A., Uribe, G., Brangwynne, C.P., and Toettcher, J.E. (2018). Protein Phase Separation Provides Long-Term Memory of Transient Spatial Stimuli. Cell Syst 6, 655-663.e5.

Dong, R., Saheki, Y., Swarup, S., Lucast, L., Harper, J.W., and Camilli, P.D. (2016). Endosome-ER Contacts Control Actin Nucleation and Retromer Function through VAP-Dependent Regulation of PI4P. Cell 166, 408–423.

Duan, L., Che, D., Zhang, K., Ong, Q., Guo, S., and Cui, B. (2015). Optogenetic control of molecular motors and organelle distributions in cells. Chem Biol 22, 671–682.

Duan, L., Hope, J., Ong, Q., Lou, H.-Y., Kim, N., McCarthy, C., Acero, V., Lin, M.Z., and Cui, B. (2017). Understanding CRY2 interactions for optical control of intracellular signaling. Nat Commun 8, 547.

Furuya, A., Kawano, F., Nakajima, T., Ueda, Y., and Sato, M. (2017). Assembly Domain-Based Optogenetic System for the Efficient Control of Cellular Signaling. Acs Synth Biol 6, 1086–1095.
Gasser, C., Taiber, S., Yeh, C.-M., Wittig, C.H., Hegemann, P., Ryu, S., Wunder, F., and Möglich, A. (2014). Engineering of a red-light-activated human cAMP/cGMP-specific phosphodiesterase. P Natl Acad Sci Usa 111, 8803–8808.

Grusch, M., Schelch, K., Riedler, R., Reichhart, E., Differ, C., Berger, W., Inglés-Prieto, Á., and Janovjak, H. (2014). Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. Embo J 33, 1713–1726.

Guglielmi, G., Barry, J.D., Huber, W., and De Renzis, S. (2015). An Optogenetic Method to Modulate Cell Contractility during Tissue Morphogenesis. Dev Cell 35, 646–660.

Guntas, G., Hallett, R.A., Zimmerman, S.P., Williams, T., Yumerefendi, H., Bear, J.E., and Kuhlman, B. (2014). Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. P Natl Acad Sci Usa 112, 112–117.

Hallett, R.A., Zimmerman, S.P., Yumerefendi, H., Bear, J.E., and Kuhlman, B. (2015). Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide. Acs Synth Biol 5, 53–64.

Hammond, G.R.V., and Balla, T. (2015). Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta 1851, 746–758.

Haren, J. van, Charafeddine, R.A., Ettinger, A., Wang, H., Hahn, K.M., and Wittmann, T. (2018). Local control of intracellular microtubule dynamics by EB1 photodissociation. Nat Cell Biol 20, 252–261.

Heintzen, C., Loros, J.J., and Dunlap, J.C. (2001). The PAS Protein VIVID Defines a Clock-Associated Feedback Loop that Represses Light Input, Modulates Gating, and Regulates Clock Resetting. Cell 104, 453–464.

Idevall-Hagren, O., Dickson, E.J., Hille, B., Toomre, D.K., and Camilli, P.D. (2012). Optogenetic control of phosphoinositide metabolism. P Natl Acad Sci USA 109, E2316-23.

Kaberniuk, A.A., Shemetov, A.A., and Verkhusha, V.V. (2016). A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat Methods 13, 591–597.

Kaiser, S.E., Brickner, J.H., Reilein, A.R., Fenn, T.D., Walter, P., and Brunger, A.T. (2005). Structural Basis of FFAT Motif-Mediated ER Targeting. Structure 13, 1035–1045.

Kawano, F., Suzuki, H., Furuya, A., and Sato, M. (2015). Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun 6, 6256.

Kawano, F., Okazaki, R., Yazawa, M., and Sato, M. (2016). A photoactivatable Cre–loxP recombination system for optogenetic genome engineering. Nat Chem Biol 12, 1059–1064.
Kennedy, M.J., Hughes, R.M., Peteya, L.A., Schwartz, J.W., Ehlers, M.D., and Tucker, C.L. (2010). Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7, 973–975.

Kim, S., Leal, S.S., Halevy, D.B., Gomes, C.M., and Lev, S. (2010). Structural requirements for VAP-B oligomerization and their implication in amyotrophic lateral sclerosis-associated VAP-B(P56S) neurotoxicity. J Biological Chem 285, 13839–13849.

Lerner, A., Yumerefendi, H., Goudy, O., Strahl, B.D., and Kuhlman, B. (2018). Engineering Improved Photoswitches for the Control of Nucleocytoplasmic Distribution. Acs Synth Biol 7, 2898–2907.

Levskaya, A., Weiner, O.D., Lim, W.A., and Voigt, C.A. (2009). Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001.

Losi, A., Gardner, K.H., and Möglich, A. (2018). Blue-Light Receptors for Optogenetics. Chem Rev 118, 10659–10709.

Lungu, O.I., Hallett, R.A., Choi, E.J., Aiken, M.J., Hahn, K.M., and Kuhlman, B. (2012). Designing photoswitchable peptides using the AsLOV2 domain. Chem Biol 19, 507–517.

Luo, X., Wasilko, D.J., Liu, Y., Sun, J., Wu, X., Luo, Z.-Q., and Mao, Y. (2015). Structure of the Legionella Virulence Factor, SidC Reveals a Unique PI(4)P-Specific Binding Domain Essential for Its Targeting to the Bacterial Phagosome. Plos Pathog 11, e1004965.

Mesmin, B., Bigay, J., Moser von Filseck, J., Lacas-Gervais, S., Drin, G., and Antonny, B. (2013). A Four-Step Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether OSBP. Cell 155, 830–843.

Murphy, S.E., and Levine, T.P. (2016). VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome. Biochim Biophys Acta 1861, 952–961.

Nada, S., Mori, S., Takahashi, Y., and Okada, M. (2014). Methods in Enzymology. Methods Enzymol 535, 249–263.

Nehls, S., Snapp, E.L., Cole, N.B., Zaal, K.J.M., Kenworthy, A.K., Roberts, T.H., Ellenberg, J., Presley, J.F., Siggia, E., and Lippincott-Schwartz, J. (2000). Dynamics and retention of misfolded proteins in native ER membranes. Nat Cell Biol 2, 288–295.

Nijenhuis, W., Grinsven, M.M.P. van, and Kapitein, L.C. (2020). An optimized toolbox for the optogenetic control of intracellular transport. J Cell Biology 219.

Niopek, D., Benzinger, D., Roensch, J., Draebing, T., Wehler, P., Eils, R., and Ventura, B.D. (2014). Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. Nat Commun 5, 4404.
Niopek, D., Wehler, P., Roensch, J., Eils, R., and Ventura, B.D. (2016). Optogenetic control of nuclear protein export. Nat Commun 7, 10624.

Pirruccello, M., and Camilli, P.D. (2012). Inositol 5-phosphatases: insights from the Lowe syndrome protein OCRL. Trends Biochem Sci 37, 134–143.

Putyrski, M., and Schultz, C. (2012). Protein translocation as a tool: The current rapamycin story. Febs Lett 586, 2097–2105.

Rost, B.R., Schneider-Warme, F., Schmitz, D., and Hegemann, P. (2017). Optogenetic Tools for Subcellular Applications in Neuroscience. Neuron 96, 572–603.

Saint-Jean, M. de, Delfosse, V., Douguet, D., Chicanne, G., Payrastre, B., Bourguet, W., Antonny, B., and Drin, G. (2011). Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J Cell Biology 195, 965–978.

Shaner, N.C., Lin, M.Z., McKeown, M.R., Steinbach, P.A., Hazelwood, K.L., Davidson, M.W., and Tsien, R.Y. (2008). Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5, 545–551.

Shcherbakova, D.M., and Verkhusha, V.V. (2013). Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods 10, 751–754.

Shin, Y., Berry, J., Pannucci, N., Haataja, M.P., Toettcher, J.E., and Brangwynne, C.P. (2017). Spatiotemporal Control of Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell 168, 159-171.e14.

Spencer, D.M., Wandless, T.J., Schreiber, S.L., and Crabtree, G.R. (1993). Controlling signal transduction with synthetic ligands. Sci New York N Y 262, 1019–1024.

Strating, J.R.P.M., Linden, L. van der, Albulescu, L., Bigay, J., Arita, M., Delang, L., Leyssen, P., Schaar, H.M. van der, Lanke, K.H.W., Thibaut, H.J., et al. (2015). Itraconazole inhibits enterovirus replication by targeting the oxysterol-binding protein. Cell Reports 10, 600–615.

Strickland, D., Lin, Y., Wagner, E., Hope, C.M., Zayner, J., Antoniou, C., Sosnick, T.R., Weiss, E.L., and Glotzer, M. (2012). TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9, 379–384.

Szczesna-Skorupa, E., and Kemper, B. (2000). Endoplasmic Reticulum Retention Determinants in the Transmembrane and Linker Domains of Cytochrome P450 2C1. J Biol Chem 275, 19409–19415.

Taslimi, A., Zoltowski, B., Miranda, J.G., Pathak, G.P., Hughes, R.M., and Tucker, C.L. (2016). Optimized second-generation CRY2-CIB dimerizers and photoactivatable Cre recombinase. Nat Chem Biol 12, 425–430.
Toettcher, J.E., Gong, D., Lim, W.A., and Weiner, O.D. (2011). Light-based feedback for controlling intracellular signaling dynamics. Nat Methods 8, 837–839.

Toettcher, J.E., Weiner, O.D., and Lim, W.A. (2013). Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434.

Vaidya, A.T., Chen, C.-H., Dunlap, J.C., Loros, J.J., and Crane, B.R. (2011). Structure of a light-activated LOV protein dimer that regulates transcription. Sci Signal 4, ra50.

Venditti, R., Rega, L.R., Masone, M.C., Santoro, M., Polishchuk, E., Sarnataro, D., Paladino, S., D’Auria, S., Varriale, A., Olkkonen, V.M., et al. (2019). Molecular determinants of ER–Golgi contacts identified through a new FRET–FLIM system. J Cell Biol 218, 1055–1065.

Wong, Y.C., Ysselstein, D., and Krainc, D. (2018). Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 554, 382–386.

Wu, Y.I., Frey, D., Lungu, O.I., Jaehrig, A., Schlichting, I., Kuhlman, B., and Hahn, K.M. (2009). A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108.

Yazawa, M., Sadaghiani, A.M., Hsueh, B., and Dolmetsch, R.E. (2009). Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27, 941–945.

Zewe, J.P., Wills, R.C., Sangappa, S., Goulden, B.D., and Hammond, G.R. (2018). SAC1 degrades its lipid substrate PtdIns4P in the endoplasmic reticulum to maintain a steep chemical gradient with donor membranes. Elife 7, e35588.

Zimmerman, S.P., Hallett, R.A., Bourke, A.M., Bear, J.E., Kennedy, M.J., and Kuhlman, B. (2016). Tuning the Binding Affinities and Reversion Kinetics of a Light Inducible Dimer Allows Control of Transmembrane Protein Localization. Biochemistry-U55, 5264–5271.

Zoltowski, B.D., Schwerdtfeger, C., Widom, J., Loros, J.J., Bilwes, A.M., Dunlap, J.C., and Crane, B.R. (2007). Conformational Switching in the Fungal Light Sensor Vivid. Science 316, 1054–1057.
