Screening of polymer precursors for preparation of nitrate imprinted polymer

Noorhidayah Ishak¹, Mohd Noor Ahmad², A K M Shafiqul Islam¹, Azalina Mohamed Nasir¹, Muhammad Syafie Ahmad² and Siti Fatimah Kamaruddin²

¹ Faculty of Engineering Technology, Universiti Malaysia Perlis, 02100 Sungai Chuchuh, Padang Besar, Perlis, Malaysia
² School of Material Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 2, Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia

Abstract. The molecular imprinting technique (MIT) has received considerable attention in the development of anion recognition materials which can be used in different applications. Major difficulty in molecular imprinting polymer is the selection of suitable polymer precursor such as template, type of monomer, amount of monomer and crosslinker that may influence the nitrate imprinted polymer (IIP) preparation. The main purpose of this study is to evaluate the optimum parameters (type of template, type of monomer, amount monomer and crosslinker) during polymerization process. The optimum polymer particles were prepared by bulk polymerization using sodium nitrate as a template, allylthiourea as functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross linker and acetonitrile and dimethylsulfoxide as solvent by heating in an oil bath at 60 °C for 20 hour. The non imprinted polymer (NIP) was synthesized using the same method but without template molecule. The optimal condition of nitrate imprinted polymer synthesis was 3 mmol of monomer, 20 mmol of cross linker and 6 ml of solvent used with adsorption capacity of 14.06 mg/g and 1.27 imprinting factor. The IIP and NIP were characterized using Fourier transform infrared (FTIR) spectroscopy. The FTIR analysis were showed that IIP and NIP were successfully synthesized. As conclusion from this research shows that the IIP produced has potential in to be used as nitrate adsorption in aqueous water.

1. Introduction
Nitrate is a highly soluble inorganic anion in water. This anion is chemically unreactive and occurs naturally within the nitrogen cycle. An excessive amount of nitrate ion in drinking water might cause the ‘blue baby syndrome’ or methaemoglobinemia illness among newborn children. This illness influences the capacity of blood cells to carry oxygen. Complication of pregnancy is another consequence towards high exposure of nitrate ion [1]. Nitrate require a host that has capability to selectively bind with itself due to its unique geometry configuration [2]. Therefore it is important to design a selective host that is compatible in size and shape of nitrate. In concern of the nitrate is ubiquitous in environment system and it is widely used in agricultural sector. Incessant application of this ion has raised concern on its potential toxicity towards human health. Therefore, controlling and monitoring the level of nitrate ion in water body is vital.
In order to produce a tailor-made adsorbent that has high selectivity towards the specific analytes, a common technique called Molecular imprinting technology can be applied. Throughout this technique, an ion imprinted polymer is synthesized with template, functional monomer, crosslinker, solvent and initiator that act as main component during polymerization process. A cavity with a complement shape and chemical functionality of the target analyte is formed through the polymerization process [3]. The template and functional monomer were surrounded by excess cross-linking monomers forming a pre-complex network of polymer before the polymerization begin. Once the polymerization completed, the template molecule located in the middle of three-dimensional polymer network was removed and form a complement shape of template. Therefore, it is important to highlight the crucial step of designing process which involve selection of chemical components in molecular imprinted polymer such as template, monomers and crosslinker. In fact, the binding capability, imprinting factor and selectivity performance are also affected by the amount of each chemical components [4].

In this research, type of templates, type of monomers, different ratio of template:monomers and different amount of crosslinker were studied using one factor at once (OFAT) method. All of these polymerization parameters were optimized and the performance of resultant polymers were compared in term of binding capacities and imprinting factor. The polymers were characterized with FT-IR and TGA in order to confirm the functionality of chemical components in the polymers for both IIP and NIP.

2. Experimental section

2.1 Material

Methacrylic acid (MAA), isobutynitrate (IBN), acrylic acid (AA) and ethylene glycol dimethacrylate (EGDMA), were purchased from Sigma-Aldrich. Acetonitrile (ACN), acrylamide (AM) and 2,2'-azobisisobutylnitrile (AIBN) were purchased from Fisher Scientific, R&M Chemicals and Acros Organic respectively. Allylthiourea (AT) and dimethylsulfoxide (DMSO) were purchased from Merck. Sodium nitrate (NaNO₃) and ammonia solution were purchased from HmbG Chemicals. All chemicals used were analytical reagent grade.

2.2 Instrumentation

UV spectroscopy (Varian Cary 50) was used to quantify the concentration of nitrate solution. The FTIR (Perkin Elmer) spectroscope and TGA (Perkin Elmer pyris diamond TGA/DTA) were used to characterize the functional group presence in the imprinted polymer. Thermo Heraeus Megafuge 16R centrifuge was used to centrifuge during binding test. Shaker-Daihan Scientific: SHO-1D was used during binding analysis.

2.3 Screening of different template and monomer for polymer preparation

The IIPs were prepared separately for two set different templates with different monomers as stated in Table 1. First the template was dissolved in specified solvent containing functional monomers. Then EGDMA that act as crosslinker (20mmol) and initiator, AIBN were added into mixture. The solution was then sonicated and purged with nitrogen gas for 10 minutes to remove oxygen. It was then heated in oil bath for 22 hour at 60 °C for the polymerization process. The resultant polymer obtained was ground with a mechanical mortar and sieved to yield a powder particle size between ranges of 25μm - 75μm. A mixture of 500 ml of methanol: (1.0M) ammonia solution (4:1, v/v) was used to remove the template and methanol solution was used to rinse any residue in the polymer particle. Nitrate removal was controlled by UV-Vis spectroscopy. Preparation of NIP for both polymers were also made using the same synthesis procedure except no template was added during the polymerization process.

| Table 1. Preparation of imprinted polymer with different functional monomer and template |
|-----------------|-----------------|-----------------|-----------------|
Polymer	Template	Functional monomer	Solvent

2
2.5 Screening of different template:monomer ratio for polymer preparation
The IIPs were prepared by applying the same method except different amount of allylthiourea (functional monomer) were varied for each polymer as stated in Table 2. The NIPs were synthesized along using the same procedure but without template being added during polymerization process.

Polymer	Template	Functional monomer	Solvent
IIP1	IBN	MAA	ACN
IIP2	IBN	AA	
IIP3	IBN	AM	ACN
IIP4	IBN	AT	
IIP5	IBN	MAA	ACN:DM
IIP6	NaNO₃	AA	
IIP7	NaNO₃	AM	ACN:DM
IIP8	AT		

2.6 Screening of different template:crosslinker ratio for polymer preparation
The IIPs were prepared by applying the same method except different amount of ethylene glycol dimethacrylate (EDGMA) were varied for each polymer as stated in Table 3. The NIPs were synthesized along using the same procedure but without template being added during polymerization process.

Polymer	Template	Functional monomer	Crosslinker	Solvent
IIP9	AT	AT (1mmol)	EGDMA (10mmol)	ACN:DM
IIP10	AT	AT (2mmol)	EGDMA (20mmol)	ACN:DM
IIP11	NaNO₃	AT (3mmol)	EGDMA (30mmol)	ACN:DM
IIP12	AT	AT (4mmol)		

2.7 Characterization of IIP and NIP
FTIR spectra of imprinted and non-imprinted polymer were obtained by using FTIR spectrophotometer. The polymer particles (about 0.1 g) were thoroughly mixed with KBr and pressed into a pellet and FTIR spectrum was recorded.

2.8 Binding capacity analysis
The adsorption of NO₃⁻ ion in aqueous solution was investigated by batch experiment. 20mg of polymer with 5ml of known concentration of standard nitrate ion in aqueous solution were added into 15ml centrifuge tube. Then, the tube was oscillated for 1 hour with speed 130rpm at room temperature.
using Shaker-Daihan Scientific. In order to analyse the remaining concentration of nitrate, the solution was centrifuged for 5 minutes at 5000rpm to separate the mixture. UV-vis spectroscopy was used to determine the absorbance of nitrate at 301nm [5]. The amount of binding capacity was calculated using the following equation:

\[Q = \frac{V(C_i - C_f)}{m} \]

(1)

where \(V \) represent volume of standard solution (ml), \(C_i \) represents initial concentration of nitrate, \(C_f \) represent final concentration of nitrate solution and \(m \) is mass of polymer particle [6]. The binding capacities of ion imprinted polymers were compared with those non imprinted polymers to determine the imprinting factor (IF) according to equation below [7]:

\[IF = \frac{Q_{IIP}}{Q_{NIP}} \]

(2)

3. Results and discussion

3.1 Screening template and functional monomer

Table 4 shows complex of polymer that used isobutylnitrate as template, it can be seen that two polymers with the highest binding capacities (IIP1 and IIP3) have lack of selectivity and their imprinting factors are below than one. The polymer of IIP4 shows both high capacity and selectivity toward nitrate ion in aqueous solution. Meanwhile, all four polymers (IIP5-IIP8) that used sodium nitrate as template, show selectivity towards nitrate ion with high binding capacity. The amount of binding capacities for IIP4 and IIP8 show that sodium nitrate has higher value as compared to isobutyl nitrate. This due to the same template has been used during the binding process, thus sodium nitrate was chosen for the further analysis. It can be seen that functional monomer of allylthiourea give a good result of binding capacity and imprinting factor. This can be supported with previous research reported by Herges.R that developed a thiourea macrocyclic ionophore that has high capability to bind with nitrate ion in polar solvents. The study indicated that the thiourea unit provide the correct hydrogen bond angels toward nitrate molecule [8]. Based on the result, the allylthiourea was selected as functional monomer for the further analysis.

Table 4. Imprinting factor of different functional monomers of nitrate imprinted polymer

Polymer	Template	Functional monomer	Binding capacities ±S.D (mg/g)	Imprinting factor
	IIP1	IBN	AM 22.50±0.22 24.22±0.22	0.93
	IIP2	IBN	AA 5.73 ± 0.66 5.31±0.90	1.09
	IIP3	IBN	MAA 16.35±0.44 18.59±0.22	0.88
	IIP4	IBN	AT 22.81±0.88 14.84±1.10	1.54
	IIP5	NaNO₃	AM 21.41±0.66 21.25±0.66	1.01
	IIP6	NaNO₃	AA 24.38±1.55 24.22±0.66	1.01
	IIP7	NaNO₃	MAA 23.44±1.10 22.50±0.88	1.04
	IIP8	NaNO₃	AT 25.31±0.88 22.50±1.10	1.13

3.2 Screening of different template-monomer ratio
Based on data in Table 5, IIP12 polymer with template–monomer ratio 1:3 exhibited high binding capability but less imprinting effect. However, IIP13 with template–monomer ratio 1:4 parameter was chosen for further examination using synthetic and analytical procedures. As the imprinting factor of IIP 13 was much higher than IIP 12 thus indicated higher selectivity. There are about six potential hydrogen bonding sites in nitrate ion. The interaction of template with allylthiourea was maximized and the quality of the imprinted sites in the polymer improved by adding sufficient amount of monomer to interact with all of those location [9].

Table 5. Imprinting factor of different ratio template: functional monomers of nitrate imprinted polymer

Polymer	Template	Ratio (template: monomer)	Binding capacities ±S.D (mg/g)	Imprinting factor
IIP10	NaNO₃	1:1	IIP: 10.16±0.44, NIP: 10.70±0.66	0.95
IIP11	NaNO₃	1:2	IIP: 1.46±0.65, NIP: 1.56±0.44	0.93
IIP12	NaNO₃	1:3	IIP: 15.23±0.88, NIP: 14.61±1.10	1.04
IIP13	NaNO₃	1:4	IIP: 14.06±0.44, NIP: 11.67±0.66	1.27

3.3 Screening of different template: crosslinker ratio

The formation of the cavity within the polymer network is influenced by the ratio of template-c crosslinker as the crosslinker contribute toward the rigidity of the cavity shape formed. From the result in Table 6 it can be observed a lower volume of EGDMA reduced the imprinting effect and binding capacity of the polymer probably due to less rigidity of the cavity. While excess amount of EGDMA would possibly non covalently interact with allylthiourea as well as sodium nitrate which contain functional group that could form hydrogen bond with EGDMA [10]. As a consequence, the interaction between template and monomer may reduce thus lower the volume of the cavities and affect the binding site of the polymers.

Table 6. Imprinting factor of different ratio template:crosslinker of nitrate imprinted polymer

Polymer	Template	Ratio (template:crosslinker)	Binding capacities ±S.D (mg/g)	Imprinting factor
IIP14	NaNO₃	1:10	IIP: 5.63±0.63, NIP: 5.00±0.36	1.13
IIP15	NaNO₃	1:20	IIP: 14.06±0.44, NIP: 11.09±0.66	1.27
IIP16	NaNO₃	1:30	IIP: 10.21±1.33, NIP: 9.06±0.94	1.13

3.4 Characterization of IIP and NIP

Figure 1 indicates that both leached IIP (the imprinted polymer has been washed with elution solvent and considered free from template molecule) and NIP have similar spectra backbones due to the same chemical functional group. Several functional groups can be seen in both spectra such as at 3454 cm⁻¹ can be assigned to NH group contributed from allylthiourea chemical functional. The hydrogen bonding caused a broad adsorption of this peak. While at 1150 cm⁻¹, the peak is contributed from O=C-C saturated ester stretching vibration. This suggests that copolymerization of EDGMA and AT due to the presence of EDGMA characteristic in the IR spectra. Other significant peaks were also observed,
carbonyl group stretch (~1730 cm\(^{-1}\)), and C-H vibrations (948.79 cm\(^{-1}\) and 2989 cm\(^{-1}\)) implied that these polymers were successfully synthesized [11].

Figure 1: FTIR spectrum for four different polymers allylthiourea, sodium nitrate, IIP and NIP

4. Conclusions

The experimental shows allylthiourea as functional monomer and sodium nitrate as template with 1:4:20 ratio templates:monomer:crosslinker gave higher imprinting factor and binding capability. The synthesized imprinted polymers exhibit capability to specifically recognize nitrate ions in aqueous solution with binding energy 14.06±0.44 mg/g and 1.27 imprinting factor. Generally, the results in this study have suggested that the proposed nitrate ion-imprinted polymer (IIP), has the potential to be further developed for exploitation in the wide field of anion synthetic receptor.

5. References

[1] Moore E, Matalon E, Balazs C, Clary J, Firestone L, Anda S.De and Guzman M 2011 The Human Cost of Nitrate-contaminated Drinking Water in the San Joaquin Valley

[2] Capitan-Valley L F, Arroyo-Guerrero E, Fernandez-Ramoz M D, and Santoyo-Gonzalez F 2005 Disposable Receptor-Based Optical Sensor for Nitrate *Analytical Chemistry* 77(14) 4459-4466

[3] Mitreva M, Dakova I and Karadjova I 2017 Iron (II) ion imprinted polymer for Fe(II)/Fe(III) speciation in wine *Microchemical Journal* 132 238-244

[4] Lim F K and Holdsworth C I 2018 Effect of formulation on the binding efficiency and selectivity of precipitation molecularly imprinted polymers *Molecules* 23 2996

[5] Zhang Y, Song X L, Huang S T, Geng B Y, Chang C H and Sung I Y 2014 Adsorption og Nitrate ions onto activated carbon prepared from rice husk by NaOH activation *Desalination and Water Treatment* 52(25-27) 4935-4941

[6] Li X, Zhou J, Tian L, Wang Y, Zhang B, Zhang H and Zhang Q 2017 Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microsphere with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition *Sensors and Actuators B: Chemical* 241 413-421

[7] Msaadi R, Ammar S, Chehimi M M and Yagci Y 2017 Diazonium-based ion-imprinted
polymer/clay nanocomposite for the selective extraction of lead (II) ions in aqueous media

European Polymer Journal 89 367-380

[8] Herges R, Dikmans A, Kohler F, Jones P G, Dix I, Fricks T and Konig B 2002 Design of a Neutral Macrocyclic Ionophore: Synthesis and Binding Properties for Nitrate and Bromide Anions European Journal of Organic Chemistry 17 3004-3014

[9] Tom, L. A., Schneck, N. A., & Walter, C. (2012). Improving the imprinting effect by optimizing template:monomer:cross-linker ratios in a molecularly imprinted polymer for sulfadimethoxine. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 909, 61–4.

[10] X. Li, J. Zhou, L. Tian, W. Li, Z. Ali, N. Ali, et al., "Effect of crosslinking degree and thickness of thermosensitive imprinted layers on recognition and elution efficiency of protein imprinted magnetic microspheres," Sensors and Actuators B: Chemical, vol. 225, pp. 436-445, 2016

[11] Y. Xiong, Y. Song, Q. Tong, P. Zhang, Y. Wang, Z. Lou, et al., "Adsorption-controlled preparation of anionic imprinted amino-functionalization chitosan for recognizing rhenium(VII)," Separation and Purification Technology, vol. 177, pp. 142-151, 2017

Acknowledgments
The author would like to thank to Faculty Engineering Technology, University Malaysia Perlis. Financial support from the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2019/TK05/UNIMAP/03/2) is gratefully acknowledged.