Ultraviolet Irradiation Induces the Accumulation of Chondroitin Sulfate, but Not Other Glycosaminoglycans, in Human Skin

Benjamin Boegel Werth1,2, Muhammad Bashir1,2, Laura Chang1,2, Victoria P. Werth1,2*

1 Medical Research, Philadelphia Veterans Administration Medical Center, Philadelphia, Pennsylvania, United States of America, 2 Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Abstract

Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1\textalpha, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV.

Introduction

Ultraviolet light is a major environmental source of damage to skin. A hallmark of chronically photodamaged skin is the induction of glycosaminoglycans (GAGs) in the dermis [1]. GAGs are unbranched, polyanionic polysaccharide chains made up of repeating disaccharide units. The GAGs of normal skin include chondroitin sulfate (CS), hyaluronic acid (HA), dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate [2], each of which exerts distinct biologic actions. All GAGs, except HA, are covalently attached to a polypeptide backbone called a core protein, and the resulting protein-carbohydrate complex is called a proteoglycan (PG). Much of the GAG content within chronic solar elastotic lesions consists of CS linked to the versican core protein [3,4]. However, there has been no systematic study of the alterations to GAGs or PGs during the early stages of photodamage in human skin. The SKH-1 hairless mouse has been used to model the increase in cutaneous GAGs in response to UV exposure [5,6], but different published reports describe increases in CS [7], DS [8], HA [8], or HS without an increase in DS [9]. Moreover, two recent studies indicate that HA actually decreases in response to acute [10] and chronic [11] UV irradiation.

In the past, the function of GAGs and proteoglycans was characterized as important in storage of water and electrolytes [12,13]. Recent literature suggests that specific GAGs have roles in inflammatory processes [14,15].

In the current study, we re-examined the cutaneous response to UV by determining if short- and intermediate-term UV exposure of human skin induces accumulation of GAGs, as assessed by Hale stain, and then used specific antibodies and mRNA probes to characterize specific molecular species of GAGs and PGs. Importantly, the responses of human skin during these early periods have not been previously characterized, nor have the effects of specific wavelengths of light. Knowledge of the responses of specific GAGs and PGs to UV could further our understanding of the early events that lead to photodamage. Therefore, in the current study, we determined if short- and intermediate-term UV exposure induced accumulation of GAGs, as assessed by Hale stain, and then used specific antibodies and mRNA probes to characterize specific molecular species involved in the response to UV.

Results

Intermediate-term UVB irradiation increases total dermal GAG content of human skin in vivo

Four weeks of UVB exposure, delivered in five doses per week to healthy human volunteers, resulted in a striking increase in...
GAG content, indicated by blue staining by Hale, in irradiated relative to non-irradiated skin. Control skin shows localization of GAGs below the dermal-epidermal junction (Figure 1a). Epidermal GAG staining with Hale was substantially lighter than dermal staining in both control and UVB-exposed skin, and irradiation did not significantly change it. Quantitative image analyses showed that the dermis of UVB-irradiated skin stained 4.9 times more intensely for GAGs than the dermis of non-irradiated skin (Figure 1b,c). Visual inspection indicated that the distribution of dermal GAGs was altered by UVB exposure. In normal tissue, GAGs are concentrated in the upper dermis close to the dermal-epidermal junction (Figure 1a). UVB-irradiated skin exhibits GAGs deeper in the dermis, although they are still most densely localized directly below the epidermis (Figure 1b). There was no accumulation of elastosis seen in these intermediate-term irradiation experiments done on non sun-exposed skin (data not shown).

Intermediate-term UVB irradiation of human skin in vivo does not significantly alter dermal content of HA, DS, or HS

HA, a uronic acid-containing GAG, was visualized using biotinylated HA binding protein (HABP), visualized with a streptavidin horseradish peroxidase system. Normal human skin displayed HA throughout the dermis (Figure 2a). Dark staining was evident in the upper epidermis of non-exposed skin, but the basal layer did not contain much HA. UVB exposure resulted in HA occupying the basal layer as well as the rest of the epidermis, with no significant change in the total HA content of the epidermis (Figure 2b,c). HABP staining in the upper dermis of UVB-exposed skin was more diffuse than that in the upper dermis of normal skin, but UVB did not cause significant reduction in the overall dermal HA content (Figure 2b,c). IHC using a monoclonal anti-HS and anti-DS antibody showed no UVB induction of HS or DS (data not shown).

Intermediate-term UVB irradiation increases dermal CS content of human skin in vivo

Chondroitin sulfate was detected using monoclonal antibody CS-56, which recognizes C4S and C6S, but not dermatan sulfate. In normal skin, epidermal staining was variable but typically present (Figure 3a). The great majority of CS is localized in the dermis, in a dense band directly below the dermal-epidermal junction. With chronic UVB exposure, epidermal CS content is variable and not induced (Figure 3b). UVB irradiation results in CS content deeper in the dermis, and quantification of dermal stain intensity shows an increase to nearly three times the unirradiated controls (Figure 3c). CS staining intensity data for the epidermis was not included because epidermal staining was...
faint and variable, and did not change with UVB. Because CS accumulates in the same locations where blue Hale staining increases, but HA, HS, and DS do not, CS appears to be largely responsible for the UVB-induced increase in GAG content of human skin.

Intermediate-term irradiation of human skin in vivo with different UV wavelengths increases dermal content of total GAGs and CS

To determine wavelength specificity, we repetitively exposed subjects to UVA, UVA1, PUVA, and SSR as well as UVB. UVB caused the greatest increase over control in total dermal GAG content as detected by Hale stain, and PUVA was the only other irradiation method that also produced a significant increase (Figure 4a). UVB was previously shown to be more effective than UVA at inducing GAG accumulation in SKH1 hairless mouse skin [16]. To examine specific GAG species, we found that the HA content of human dermis was not significantly altered by any treatment (Figure 4b). UVA, UVA1, and PUVA significantly reduced epidermal HA (Figure 4b). UVB and SSR caused significant increases of HA in the basal layer of the epidermis. The amount of dermal CS was significantly increased over non-irradiated skin by UVB and by SSR (Figure 4c). CS staining in the epidermis was generally faint and variable, and did not change significantly with any UV treatment (Figure 4c).

Single-dose UVB irradiation in vivo alters the HA content of human skin

Healthy human volunteers were given a single dose of 2X MED of UVB radiation on the back. Biopsies were taken before (control) and at 1, 2, and 3 days after irradiation. Sections were stained with biotinylated HABP (Figure 5). At all three time-points after irradiation, the epidermis stained more extensively. In particular, the basal layer of the epidermis, which was unstained in control skin (Figure 5a), showed substantial accumulation of HA after single-dose UVB (Figures 5b,c,d). In the dermis, HA appears to decrease temporarily at 48 hours (Figure 5c) and then returned to baseline levels by 72 hours (Figure 5d).

Single-dose UVB irradiation induces CS accumulation in human dermis in vivo

In unexposed skin, dermal CS is located only in the region just below the dermal-epidermal junction and in the endothelium of dermal venules (Figures 3a, 6a). After single-dose UVB exposure, the quantity of dermal CS increases throughout the 24, 48, and 72 hour time-points, localized largely just below the dermal-epidermal junction (Figure 6b-d).

Single-dose UVB irradiation of human skin in vivo induces accumulation of the CS isoforms C4S and C6S, but in different distributions

In mammals, CS exists most commonly as the 4-sulfated isoform or the 6-sulfated isoform [17]. Here, we performed...
immunohistochemistry for the C4S isoform on skin sections using the 2B6 anti-D di-4S monoclonal antibody. We found that C4S was distributed throughout the upper dermis in normal skin (Figure 7a). From 24 to 72 hours after exposure to single-dose UVB, C4S accumulated in both the upper and lower dermis (Figure 7b–d). The other CS isoform, C6S, was detected using the 3B3 anti-D di-6S monoclonal antibody. In unexposed control skin, C6S is present just below the dermal-epidermal junction (Figure 7e). Following single-dose UVB, C6S accumulated in the upper dermis and on endothelium, with peak staining at 48 hours post-irradiation (Figure 7f–h). Studies have indicated that CS-56 antibody has a higher affinity for C6S than C4S, and also binds to only certain epitopes of CS [18,19], providing an explanation for differential staining seen with the C4S antibody and CS-56 (Figure 6).

UVB and IL-1α paradoxically suppress chondroitin sulfate synthase mRNAs in cultured human dermal fibroblasts

Chondroitin polymerization is achieved by combinations of the three chondroitin sulfate synthases, CSS1, CSS2, CSS3, and chondroitin-polymerizing factor [20]. To investigate their regulation, we simulated the effects of UVB irradiation in vivo by co-stimulating cultured dermal fibroblasts with UVB (30 mJ/cm²) and IL-1α (1 ng/mL), a cytokine that is released from keratinocytes and inflammatory cells in skin upon exposure to UVB. RNA was extracted 3, 6, and 24 hours after treatment. Levels of mRNA for the CSS enzymes were quantified with real-time PCR. Despite the increase in dermal CS seen after UVB irradiation in vivo, CSS1 mRNA expression was significantly decreased at 3, 6, and 24 hours post-treatment, to 20-40% of control (Figure 8a). CSS2 mRNA showed modest, but significant, suppression at all time-points 3 and 24 hours post-treatment (Figure 8b). Real-time PCR revealed a steady decrease in CSS3 mRNA over the time course, with the treatment suppressing mRNA by 87% at the 24-hour time point (Figure 8c).

Single-dose UVB irradiation induces dermal serglycin, but not decorin or versican, and UVB and IL-1α together induce serglycin mRNA in cultured human dermal fibroblasts

We next examined the core proteins of CSPGs known to be present in normal skin, to determine which ones might be responsible for UVB-induced CS accumulation. Stains for two major CSPGs of skin, decorin and versican, revealed no significant changes as a result of intermediate-term UVB irradiation (data not shown). In unirradiated control skin (Figure 9a), the monoclonal anti-serglycin antibody stained the epidermis, the endothelium of dermal venules, and hematopoietic cells. After single-dose UVB exposure, diffuse upper-dermal staining for serglycin steadily increased from 24 to 72 hours post-irradiation (Figure 9b–d).
Dermal venule endothelium staining intensified at 24 hours post-irradiation and returned to baseline by 72 hours after exposure. The number of serglycin-expressing cells in the dermis increased with time, peaking 48 hours after exposure. The darkly stained dermal cells correspond to inflammatory cells detected by hematoxylin and eosin staining. Dermal fibroblasts were co-stimulated with UVB and IL-1α, as above, and serglycin mRNA was quantified at 3, 6, and 24 hours after treatment. Treatment significantly induced serglycin mRNA at 6 and 24 hours post-exposure, with a more than 2-fold upregulation at the 24 hour time point (Figure 9e).

Discussion

We found that intermediate-term and single-dose UV irradiation induced highly specific responses in the glycosaminoglycans and proteoglycan core proteins of human skin. Intermediate-term UV irradiation, before the development of solar elastosis, caused dermal accumulation of CS, but not of HA, DS, or HS. We found that single-dose UV irradiation also induced dermal accumulation of CS, and two CS isoforms, C4S and C6S, were induced in distinct distributions. C4S accumulated largely in the dermis, and C6S largely in the endothelium. Regarding CS
Figure 5. Time course for changes in HA content of UVB-irradiated skin. Normal human volunteers were exposed to 2X MED of UVB. Biopsies were taken 1, 2, and 3 days after irradiation. HA was labeled with biotinylated HABP and visualized using a peroxidase system. Shown are stains of (a) control tissue and tissue taken (b) 24, (c) 48, and (d) 72 hours post-irradiation. The images in this figure are of tissue from the same patient. (size bars = 62.5 μm).

doi:10.1371/journal.pone.0014830.g005

Figure 6. Time course for changes in CS in human skin following single-dose UVB irradiation. Normal human volunteers were exposed to 2X MED of UVB. Biopsies were taken 1, 2, and 3 days after irradiation. CS was labeled with the CS-56 anti-CS antibody and visualized using a biotin-peroxidase system. Shown are stains of (a) control tissue and tissue taken (b) 24, (c) 48, and (d) 72 hours post-irradiation. The images in this figure are of tissue from the same patient. (size bars = 62.5 μm).

doi:10.1371/journal.pone.0014830.g006
proteoglycan core proteins, UV irradiation induced the accumulation of serglycin, but not of decorin or versican, and the effect on serglycin could be mimicked in vitro by exposing human dermal fibroblasts to UVB in combination with IL-1α, a UV-induced cytokine. Serglycin was reported to have C4S side-chains when expressed by lymphocytes, platelets, and monocytes [21], and fibroblasts [22] have serglycin, but it has C6S side-chains when expressed by endothelial cells [22]. Thus this molecule could contribute to the accumulation of both C4S in dermis and C6S in endothelium after UVB exposure.

Figure 7. Effect of a single UVB dose on C4S and C6S in the dermis. Normal human volunteers were exposed to 2X MED of UVB. Biopsies were taken 1, 2, and 3 days after irradiation. Following enzymatic digestion, C4S was labeled using the 2B6 anti-Di-4S antibody, and C6S was labeled with the 3B3 anti-Di-6S antibody. The stains were developed using a biotin-peroxidase system. Shown are stains of C4S in (a) control tissue and tissue taken (b) 24, (c) 48, and (d) 72 hours post-irradiation, and of C6S in (e) control tissue and tissue taken (f) 24, (g) 48, and (h) 72 hours post-irradiation. The images in this figure are of tissue from the same patient. (size bars = 62.5 μm).

doi:10.1371/journal.pone.0014830.g007
Recent work indicates that CS may ameliorate the responses to other inflammatory stimuli [23,24]. There is evidence that CS mitigates the inflammatory effects of osteoarthritis [25]. This may be because it inhibits interleukin-1β induced pro-inflammatory cascades, as shown in cultured rabbit and human chondrocytes [26,27]. Moreover, C4S blunts cellular activation by endotoxin [23] and by small HA fragments [28]. One study that examined C4S in the absence of other stimuli found activation of immune cells [14], suggesting that the function depends on the context.

Regarding structural effects, recent studies demonstrated that CS can inhibit elastogenesis [29,30]. Proteins involved in elastic fiber synthesis, including fibrillin and DANCE, are strongly decreased after addition of C4S and after addition of C6S to cultured fibroblasts [30]. Because CS accumulates after intermediate-term UV exposure (Figure 3), short-term UV exposure (Figure 6), and in late-stage, solar elastotic lesions [4], its early and sustained induction may contribute to the lack of normal elastic fibers in chronically irradiated skin.

Surprisingly, although UVB increased CS in human skin, we found that mRNA levels for CSS1, CSS2, and CSS3 were paradoxically suppressed by UVB with IL-1α treatment of fibroblasts in vitro. The same stimuli increased mRNA for the core protein serglycin, suggesting that CS accumulation is due in part to increased CS core protein expression. It has been shown that the overexpression of a PG’s core protein can lead to an increase in side chain generation, as overexpression of ryudocan, an HS PG, led to increased HS production [31].

Until recently, serglycin expression was thought to be limited to hematopoietic cells. Serglycin is secreted by monocytes and macrophages in response to inflammatory stimuli [21], and serglycin may also regulate the release of histamine and serotonin from mast cell granules [32]. Nevertheless, serglycin expression has been described in chondrocytes [33], and low levels of serglycin were detected in fibroblasts [22]. In the current study, we found considerable levels of serglycin expression in dermal fibroblasts after UV irradiation, suggesting that fibroblast-synthesized serglycin may be a participant in dermal inflammation. In endothelial cells, serglycin mRNA is induced by the inflammatory cytokines TNF-α and IL-1α, suggesting that it may participate in vascular inflammation as well [22].

Regarding HA, a study by Averbeck et al demonstrated that UVB increased epidermal HA and decreased dermal HA, and microdialysis revealed an accompanying accumulation of HA degradation products in the dermis [10]. Likewise, the reduced dermal staining we observed at 48 hours post-irradiation could be due to degradation of HA. Of note, fragmented HA has different biologic effects than high molecular weight HA. High molecular weight HA protects against inflammatory and apoptotic signaling in UVB-exposed corneal epithelial cells [34], and protects against angiogenesis and immune response [15]. In contrast, fragmented HA is potently pro-inflammatory and pro-angiogenic. HA fragments bind to Toll-like receptor 2 and Toll-like receptor 4 on macrophages, stimulating the expression of pro-inflammatory genes [35], as well as mediating signaling through CD44 in tissue inflammation [36]. Fragmented HA can also activate immunocompetent keratinocytes through TLR-2 and TLR-4, causing the release of beta-defensin [37]. Intermediate-term and single-dose UVB exposure and intermediate-term SSR irradiation induce HA accumulation in the basal layer of the epidermis (Figures 2, 4, and 5). Further study on the molecular weight and etiology of the HA that is induced in the basal layer could elucidate its function.

Overall, our findings provide a more complete picture of the cutaneous response to ultraviolet light, where specific glycosaminoglycans and proteoglycan core proteins are likely contributors to cutaneous photodamage and photoaging.

Materials and Methods

Chemicals

Control, non-immune mouse IgG1 antibody was from Becton Dickinson. All other chemicals were obtained from Fisher (Pittsburgh, PA) and Sigma (St. Louis, MO).
Light Sources and Radiometry

In vivo irradiation was performed using an 150-watt xenon arc solar simulator (Model #16S, Solar Light Company, Phil, PA.) with a UVB band-pass filter. For in vitro work, the UVB source was a bank of two FS-40 sunlamps (Lights of America, Walnut, CA), with a peak irradiance of 313 nm, equipped with a cellulose triacetate filter to remove wavelengths below 290 nm, as previously described [38,39]. The light source for UVA and SSR treatments was a 1000-Watt xenon lamp solar simulator (Solar Light, Philadelphia, PA), which was used with a UG5 internal filter and an external UG11 filter to remove long wavelengths and a 3-mm WG335 Schott (UVA) filter to allow only longer UV wavelengths [39]. UVB doses were measured with an International Light UV IL-443 UVB meter. UVA and UVA1 doses were verified with an IL 1400 A Research Radiometer (International Light, Inc., Newburyport, MA). The filtered UVB light source measured by spectroradiometric measurement at the time of the experiments showed 0.64% UVC, 44.51% UVB, 19.43% UVA, and 33.42% visible and near infrared (Vis + NIR). The solar simulator with WG335 Schott filter showed 0.0036%
UV, 0.016% UVB, 96.63% UVA (11.28% UVA2 and 88.72% UVA1), 3.35% Vis + NIR.

UV Exposure Protocols

For investigation of chronic irradiation, five human volunteers with type II skin received UVB, UVA, UVA1, SSR, PUVA, and sham irradiation to 1 cm² spots of sun-protected back skin five days a week for four weeks. For PUVA treatment, 0.005% psoralen gel was applied topically, followed by 1X MED of UVA fifteen minutes later. Skin was biopsied 24 hours after the last irradiation, and fixed in formaldehyde. A single-dose time course was also conducted. Each patient was given a panel of eight 1 cm² spots of UVB radiation in increasing increments of 25% to determine the MED, the smallest amount of UVB radiation needed to produce confluent erythema. MED testing was performed on photoprotected areas of the mid to lower back. Volunteers were exposed to a single 2X MED dose of UVB, and skin was sampled and fixed with formaldehyde 24, 48, and 72 hours post-irradiation. Fixed tissue was embedded in paraffin wax, and sections were cut onto slides for chemical stains and IHC. Human skin fibroblasts were irradiated with UVB (30 mJ/cm²), or sham, ± IL-1α (1 ng/ml).

Skin biopsy staining

Biopsies were stained for uronyl-containing acid mucopolysaccharides using a modification of Mowry’s colloidial iron stain (Hale stain). Staining to evaluate hyaluronan was done with biotinylated HABP (0.5 mg/mL, Associates of Cape Cod, East Falmouth, MA) used at a dilution of 1:100 for chronically irradiated skin samples and 1:250 for the single dose time course. Negative controls were achieved by pre-treatment of sections first with 100mM Na acetate buffer pH 5 for 15 minutes in a 37°C water bath and then with 100 TRU/ml Streptomyces hyalurolyticus hyaluronidase (Sigma, St. Louis, MO) in 100mM Na acetate buffer pH 5 prior to staining. A monoclonal mouse antibody for HS was purchased from Associates of Cape Cod (East Falmouth, MA) and used at a dilution of 1:400 to stain the intermediate-term irradiated skin sections and at a dilution of 1:200 to stain the intermediate-term irradiated skin sections and at a dilution of 1:1200 on the skin that had received a single dose of UVB. Note that a lower anti-CS antibody concentration was used for Trypan Blue staining of cells up to 72 hours after irradiation, and was always greater than 95%. After removal of medium, cells were washed with phosphate-buffered saline and total RNA was extracted by adding 1 ml Trizol (Invitrogen, Carlsbad, CA) directly to the dishes, followed by isopropanol precipitation and 70% ethanol wash. The RNA pellets were dissolved in DEPC-treated water. The RNA was quantified by measuring the optical density at 260 nm, and purity determined by 260/280 ratio (>1.8).

Quantitation of histology

Stain intensity was quantified using Image Pro Plus version 3.0 Software (MediaCybernetics, Bethesda, MD).

Cultured cells

Normal human fibroblasts were obtained from the American Type Culture Collection (ATCC, Rockville, MD, catalog no. 1828X-CRL) and grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum.

Quantitation of histology

Real-time PCR

Total RNA (2 g), from sham- or UVB-exposed human fibroblasts, with or without cytokine addition, was used for cDNA synthesis. cDNA was synthesized using SUPERSCRIPT First-Strand Synthesis for reverse transcription-PCR kit with random hexamers (Invitrogen Life Technologies, Carlsbad, CA). Real-time PCR was performed using Taqman primers for CSS1, CSS2, CSS3, and serglycin (product numbers Hs00208704_m1, Hs00226041_m1, Hs00545664_m1, and Hs010041391_m1 respectively from Applied Biosystems, Foster City, CA). Gene expression levels were measured by real time PCR using ABI Prism 7000 sequence detection system and normalized to GAPDH (Taqman assay: Hs99999905_m1) using ABI Prism SDS 7000 software, version 1.0 (Applied Biosystems). Each experiment was performed in triplicate in a 25 μl reaction volume in TaqMan Universal PCR Master Mix (Applied Biosystems). Each sample underwent initial denaturation for 2 minutes at 95°C and then 10 minutes at 95°C, followed by 40 cycles of denaturation at 95°C for 15 seconds and combined primer annealing and extension at 60°C for 1 minute.

Statistics

Comparisons of several groups simultaneously were performed by initially using analysis of variance (ANOVA). When the
ANOVA indicated differences amongst the groups, pairwise comparisons of each experimental group versus the control group were performed using the Dunnett q statistic. Unless otherwise indicated, summary statistics are reported as means ± SEM, n = 4. Absent error bars in graphical displays of summary statistics indicate SEM values smaller than the drawn symbols.

IRB approval
Detailed written informed consent was obtained from all patients, following the Declaration of Helsinki protocols. These studies were performed in accordance with a protocol that was approved by the University of Pennsylvania Institutional Review Board.

Author Contributions
Conceived and designed the experiments: BBW VPW. Performed the experiments: BBW MB LC. Analyzed the data: BBW. Contributed reagents/materials/analysis tools: VPW. Wrote the paper: BBW.

References
1. Bernstein EF, Uitto J (1996) The effect of photodamage on dermal extracellular matrix. Clinics in Dermatology 14: 143–51.
2. Willen MD, Sorrell JM, Lekan CC, Davis BR, Caplan AI (1991). Patterns of glycosaminoglycan/protein/lymphocytic immunostaining in human skin during aging. J Invest Dermatol 96: 968–74.
3. Bernstein EF, Fisher LW, Li K, LeBaron RG, Tan EM, Uitto J (1995). Differential expression of the versican and decorin genes in sun damaged and sun-protected skin. Comparison by immunohistochemical and chemical analyses. Lab Invest 72: 662–9.
4. Bernstein EF, Underhill CB, Hahn PJ, Brown DB, Uitto J (1996). Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br J Dermatol 135: 255–62.
5. Kligman LH (1989). The ultraviolet-irradiated hairless mouse: a model for in vivo studies. Photochem Photobiol 58: 481–6.
6. Menter JM, Pearl WS, Yadven MW, Willis I (1983). UV-induced elevation of skin glycosaminoglycan levels I: rapid measurement of skin glycosaminoglycans by titration with acridine orange. Photochem Photobiol 38: 631–45.
7. Schwartz E (1985). Connective tissue alterations in the skin of ultraviolet irradiated hairless mice. J Invest Dermatol 91: 150–61.
8. Koshiba I, Horikoshi E, Mitani H, Imanari T (1999). Quantitative approach (II): protein, glycosaminoglycan, water, and lipid content of normal, healthy and disease skin. Skin Res Technol 12: 145–54.
9. Monfort J, Pelletier JP, Garcia-Giralt N, Mantel-Pelletier J (2008). Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann Rheum Dis 67: 735–40.
10. Baudier C, Combescat JP, Boustred S, Malaise M (1998). Effects of chondroitin sulfates on interleukin-1 on human articular chondrocytes cultivated in clusters. Osteoarthrits Cartilage 6: 196–204.
11. Jomphe C, Gabrieli M, Hale TM, Heroux L, Trudeau LE, Deblois D, et al. (2008). Chondroitin sulphate inhibits the nuclear translocation of nuclear factor-kappaB in interleukin-1beta-stimulated chondrocytes. Clin Pharmacol&Therocol 102: 59–65.
12. Nabiati N, Bashir MM, Werth VP. Immunologic actions of glycosaminoglycans in cutaneous lupus erythematosus & dermatomyositis. J Invest Dermatol (abst), in press.
13. Hinek A, Mecham RP, Keeley F, Rabinoviitch M (1991). Impaired elastic fiber assembly related to reduced 67kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulphate. J Clin Invest 90: 2083–94.
14. Ibeda M, Naitoh M, Kubota H, Ishiko T, Yoshikawa K, Yamawaki S, et al. (2009). Elastic fiber assembly is disrupted by excessive accumulation of chondroitin sulphate in the human dermal fibrotic disease, keloid. Biochem Biophys Res Commun 390: 1221–8.
15. Shorak NW, Shirakawa M, Collier-Jonas S, Liu J, Mulligan RC, Birinyi LK, et al. (1994). Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate. J Biol Chem 269: 24941–45.
16. Ringqvist M, Ronnberg E, Wernersson S, Duelli A, Henningsson F, Abrink M, et al. (2008). Serotonin and histamine storage in mast cell secretory granules is dependent on serglycin proteoglycan. J Allergy Clin Immunol 121: 1020–26.
17. Zhang L, Yang M, Yang D, Carey V, Davidson P, Gibson G (2010). Molecular interactions of MMP-13 C-terminal domain with chondrocyte proteins. Connect Tissue Res 51: 230–9.
18. Pauloin T, Dutot M, Joly F, Warnet JM, Rat P (2009). Low molecular weight hyaluronic acid increases the self-defense of skin. Connect Tissue Res 58: 211–8.
19. Averbeck M, Gehlhar GD, Voigt S, Beilharz S, Anderegg U, Termee CC, et al. (2007). Differential regulation of hyaluronic acid metabolism in the epidermal and dermal compartments of human skin by UVB irradiation. J Invest Dermatol 127: 687–97.
20. Dai G, Freundungerher T, Zipper P, Melchor A, Grether-Beck S, Rabasch G, et al. (2007). Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol 171: 1451–61.
21. Titze J, Shikhamari M, Schaffhauer M, Schuler-Tanzil G, Poret M, Schwind KH, et al. (2008). Glycosaminoglycan polymerization may enable osmotically inactive Na+ storage in the skin. Am J Physiol Heart Circ Physiol 289: H203–8.
22. Waller JM, Mailbaich HK (2006). Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content of normal, healthy and disease skin. Skin Res Technol 12: 145–54.
23. Rechciglewitz T, Tykociński ML (1998). Differential effects of chondroitin sulphates A and B on monocyte and B-cell activation: evidence for B-cell activation via a CD44-dependent pathway. Blood 93: 2323–30.
24. Stern R, Mailbaich HK (2006). Hyaluronan in skin: aspects of aging and its pharmacologic modulation. Clin Dermatol 26: 106–22.
25. Kligman LH, Akin EF, Kligman AM (1985). The contributions of UVA and UVB to connective tissue damage in hairless mice. J Invest Dermatol 84: 272–76.
26. Malacinski G, Mizumoto S, Karamanos N, Sugahara K (2006). Recent advances in the structural study of functional chondroitin sulphate and dermanatan sulphate in health and disease. Connect Tissue Res 49: 133–9.
27. Jomphe C, Gabrieli M, Hale TM, Trudeau LE, Deblois D, et al. (2008). Chondroitin-4-sulphate inhibits NF-kappaB translocation and caspase activation in collagen-induced arthritis in mice. Osteoarthrits Cartilage 16: 1474–83.
28. Toida T, Sakai S, Akiyama H, Linhardt RJ (2006). Immunological activity of chondroitin sulfate. Adv Pharmacol 53: 403–15.
29. Monfort J, Pelletier JP, Garcia-Giralt N, Mantel-Pelletier J (2008). Biochemical basis of the effect of chondroitin sulphate on osteoarthrits articular tissues. Ann Rheum Dis 67: 735–40.
30. Baudier C, Combescat JP, Boustred S, Malaise M (1998). Effects of chondroitin sulfates on interleukin-1 on human articular chondrocytes cultivated in clusters. Osteoarthrits Cartilage 6: 196–204.
31. Nabiati N, Bashir MM, Werth VP. Immunologic actions of glycosaminoglycans in cutaneous lupus erythematosus & dermatomyositis. J Invest Dermatol (abst), in press.
32. Hinek A, Mecham RP, Keeley F, Rabinoviitch M (1991). Impaired elastic fiber assembly related to reduced 67kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulphate. J Clin Invest 90: 2083–94.
33. Ibeda M, Naitoh M, Kubota H, Ishiko T, Yoshikawa K, Yamawaki S, et al. (2009). Elastic fiber assembly is disrupted by excessive accumulation of chondroitin sulphate in the human dermal fibrotic disease, keloid. Biochem Biophys Res Commun 390: 1221–8.
34. Shorak NW, Shirakawa M, Collier-Jonas S, Liu J, Mulligan RC, Birinyi LK, et al. (1994). Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate. J Biol Chem 269: 24941–45.
35. Ringqvist M, Ronnberg E, Wernersson S, Duelli A, Henningsson F, Abrink M, et al. (2008). Serotonin and histamine storage in mast cell secretory granules is dependent on serglycin proteoglycan. J Allergy Clin Immunol 121: 1020–26.
36. Zhang L, Yang M, Yang D, Carey V, Davidson P, Gibson G (2010). Molecular interactions of MMP-13 C-terminal domain with chondrocyte proteins. Connect Tissue Res 51: 230–9.
37. Pauloin T, Dutot M, Joly F, Warnet JM, Rat P (2009). High molecular weight hyaluronic acid decreases UVB-induced apoptosis and inflammation in human epithelial corneal cells. Mol Vis 15: 577–83.
38. Wang L, Zhang X, Oddoux F, Ralston SJ, Zeng J, Shi X (2003). Mechano-receptor transcription factors: Role in Extracellular Matrix Gene Expression. J Invest Dermatol 108: 290–94.
39. Werth VP, Zhang W (1999). Wavelength-specific synergy between ultraviolet radiation and interleukin-1 alpha in the regulation of matrix-related genes: mechanistic role for tumor necrosis factor-alpha. J Invest Dermatol 113: 196–201.

UV Modulates Cutaneous GAGs