There is no $[21, 5, 14]$ code over \mathbb{F}_5

Makoto Araya* and Masaaki Harada†

May 1, 2014

Abstract

In this note, we demonstrate that there is no $[21, 5, 14]$ code over \mathbb{F}_5.

1 Introduction

Let \mathbb{F}_q denote the finite field of order q, where q is a prime power. An $[n, k]_q$ code C is a k-dimensional vector subspace of \mathbb{F}_q^n, where n and k are called the length and the dimension of C, respectively. The weight $\text{wt}(x)$ of a codeword x is the number of non-zero components of x. The minimum non-zero weight of all codewords in C is called the minimum weight of C. An $[n, k, d]_q$ code is an $[n, k]_q$ code with minimum weight d.

It is a fundamental problem in coding theory to determine the following values:

1. the largest value $d_q(n, k)$ of d for which there exists an $[n, k, d]_q$ code.

2. the smallest value $n_q(k, d)$ of n for which there exists an $[n, k, d]_q$ code.

A code which achieves one of these two values is called optimal. For $q \leq 9$, the current knowledge on the values $d_q(n, k)$ can be obtained from [3] (see

*Department of Computer Science, Shizuoka University, Hamamatsu 432–8011, Japan. email: araya@inf.shizuoka.ac.jp

†Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan, and PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332–0012, Japan. email: mharada@sci.kj.yamagata-u.ac.jp
also [2] and [7]). However, much work has been done concerning optimal

codes for \(q = 2, 3 \) and \(4 \) only. In this note, we consider optimal codes for

\(q = 5 \). The smallest length \(n \) for which \(d_5(n, k) \) is not determined is 21, more

precisely, \(d_5(21, 5) = 13 \) or 14.

In this note, we demonstrate that there is no \([21, 5, 14]_5\) code. The non-

existence is established by classifying codes with parameters \([18 + t, 2 + t, 14]_5 \) \((t = 0, 1, 2)\). The non-existence of a \([21, 5, 14]_5\) code deter-

mines the following values.

Proposition 1. \(d_5(21 + t, 5 + t) = 13 \) for \(t = 0, 1, \ldots, 4 \).

Remark 2. The above proposition yields that \(n_5(5 + t, 14) = 22 + t \) for

\(t = 0, 1, \ldots, 4 \).

The punctured code of an \([n, k, d]_5\) code with \(d \geq 2 \) is an \([n - 1, k, d']_5\)
code with \(d' = d - 1 \) or \(d \). If there is an \([n, k, d]_5\) code then there is an

\([n - d, k - 1, d']_5\) code with \(d' \geq d/5 \) (see [2] p. 302]). Hence, as a consequence

of the above proposition, we have the following:

Corollary 3. There is no code with parameters

\([22 + t, 5 + t, 15]_5 \) \((t = 0, 1, \ldots, 4)\),

\([87 + t, 6, 66 + t]_5 \) \((t = 0, 1)\),

\([88 + t, 7, 66 + t]_5 \) \((t = 0, 1)\),

\([89 + t, 8, 66 + t]_5 \) \((t = 0, 1)\).

Generator matrices of all codes given in this note can be obtained elec-

tronically from

\[http://yuki.cs.inf.shizuoka.ac.jp/codes/index.html\]

All computer calculations in this note were done by programs in MAGMA [1]

and programs in the language C.

2 Results

2.1 Method

The covering radius of an \([n, k]_5\) code \(C \) is the smallest integer \(R \) such that

spheres of radius \(R \) around codewords of \(C \) cover the space \(\mathbb{F}_5^n \). A shortened
code C' of a code C is the set of all codewords in C which are 0 in a fixed coordinate with that coordinate deleted. A shortened code C' of an $[n, k, d]_5$ code C with $d \geq 2$ is an $[n-1, k, d]_5$ code if the deleted coordinate is a zero coordinate and an $[n-1, k-1, d']_5$ code with $d' \geq d$ and covering radius $R \geq d-1$ otherwise.

Two $[n, k]_5$ codes C and C' are equivalent if there exists an $n \times n$ monomial matrix P over \mathbb{F}_5 with $C' = C \cdot P = \{xP \mid x \in C \}$. To test equivalence of codes by a program in the language C, we use the algorithm given in [5, Section 7.3.3] as follows. For an $[n, k]_5$ code C, define the digraph $\Gamma(C)$ with vertex set $C \cup \{(1, 2, \ldots, n) \times (\mathbb{F}_5 - \{0\})\}$ and arc set $\{(c, (j, c_j)), ((j, c_j), c) \mid c = (c_1, \ldots, c_n) \in C, 1 \leq j \leq n\} \cup \{((j, y), (j, 2y)) \mid 1 \leq j \leq n, y \in \mathbb{F}_5 - \{0\}\}$. Then, two $[n, k]_5$ codes C and C' are equivalent if and only if $\Gamma(C)$ and $\Gamma(C')$ are isomorphic. We use Nauty [6] for digraph isomorphism testing. It can be also done by the function IsIsomorphic in Magma to test equivalence of codes.

An $[n, k, d]_5$ code C gives n shortened codes and at least k codes among them are $[n-1, k-1, d']_5$ codes with $d' \geq d$. Hence, by considering the inverse operation of shortening, any $[n, k, d]_5$ code with $d \geq 2$ is constructed from some $[n-1, k-1, d']_5$ code with $d' \geq d$ and covering radius $R \geq d-1$ as follows. Let C' be an $[n-1, k-1, d']_5$ code with $d' \geq d$. Up to equivalence, we may assume that C' has a generator matrix of the form $(I_{k-1} \ A)$, where I_{k-1} denotes the identity matrix of order $k-1$. Then, up to equivalence, an $[n, k, d]_5$ code, which is constructed from C' by considering the inverse operation of shortening, has the following generator matrix

$$
\begin{pmatrix}
I_{k-1} & 0 \\
\vdots & \vdots
\end{pmatrix}
\begin{pmatrix}
A \\
0 \\
0 \\
1 \\
b_1 & \cdots & b_{n-k}
\end{pmatrix},
$$

where $b = (b_1, b_2, \ldots, b_{n-k}) \in \mathbb{F}_5^{n-k}$ with $\text{wt}(b) \geq d - 1$.

2.2 Non-existence of a $[21, 5, 14]_5$ code

We remark that there is no code with parameters $[19 + t, 3 + t, d \geq 15]_5$ for $t = 0, 1$ and $[18, 2, d \geq 16]_5$ (see [3]). Thus, any $[19, 3, 14]_5$ code is constructed by [11] from some $[18, 2, 14$ or $15]_5$ code C with covering radius $R \geq 13$, and
any $[20 + t, 4 + t, 14]_5$ code is constructed by (1) from some $[19 + t, 3 + t, 14]_5$ code C with $R \geq 13$ ($t = 0, 1$).

In order to determine whether there is a $[21, 5, 14]_5$ code or not, we classified codes with parameters $[18, 2, 14]_5$ and $[18 + t, 2 + t, 14]_5$ ($t = 0, 1, 2$). It is easy to see that there is a unique $[18, 2, 14]_5$ codes, and there are ten $[18, 2, 14]_5$ codes, up to equivalence. Using generator matrices in form (1) of inequivalent $[18, 2, 14]_5$ codes and $[18, 2, 15]_5$ codes, we constructed all $[19, 3, 14]_5$ codes which must be checked further for equivalences. Similarly, from inequivalent $[19, 3, 14]_5$ codes, we constructed all $[20, 4, 14]_5$ codes which must be checked further for equivalences. By checking equivalences among these codes, we completed a classification of $[19 + t, 3 + t, 14]_5$ codes ($t = 0, 1$).

For the above parameters, the number # of inequivalent codes is listed in Table 1. The number $\#W$ of different weight enumerators and the number $\#R$ of inequivalent codes with covering radius R are also listed. Then we have the following:

Proposition 4. Every $[20, 4, 14]_5$ code has covering radius 12 and there is no $[21, 5, 14]_5$ code.

Proposition 4 completes the proof of Proposition 1.

Parameters	#	$\#W$	$\#_{\geq 13}$	$\#_{12}$
$[18, 2, 14]_5$	10	9	10	0
$[18, 2, 15]_5$	1	1	1	0
$[19, 3, 14]_5$	572	90	572	0
$[20, 4, 14]_5$	3564	727	0	3564
$[21, 5, 14]_5$	0	–	–	–

Acknowledgments. In this work, the supercomputer of ACCMS, Kyoto University was partially used. The authors would like to thank Markus Grassl for useful comments [4]. This work was supported by JST PRESTO program and JSPS KAKENHI Grant Number 23340021.
References

[1] W. Bosma, J.J. Cannon, C. Fieker and A. Steel, *Handbook of Magma Functions (Edition 2.17)*, 2010, 5117 pages.

[2] A.E. Brouwer, “Bounds on the size of linear codes,” in Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam, 1998, pp. 295–461.

[3] M. Grassl, Code tables: Bounds on the parameters of various types of codes, Available online at “http://www.codetables.de/”.

[4] M. Grassl, private communication, May 21, 2012.

[5] P. Kaski and P.R.J. Östergård, *Classification Algorithms for Codes and Designs*, Springer, Berlin, 2006.

[6] B.D. McKay, nauty user’s guide (version 2.4), Available online at “http://cs.anu.edu.au/people/bdm/nauty/”.

[7] W.C. Schmid, and R. Schürer, MinT, Available online at “http://mint.sbg.ac.at/”.

