ON INSTABILITY OF RADIAL STANDING WAVES FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH INVERSE-SQUARE POTENTIAL

ABDELIWAB BENSOUILAH AND VAN DUONG DINH

Abstract. We show the strong instability of radial ground state standing waves for the focusing \(L^2 \)-supercritical nonlinear Schrödinger equation with inverse-square potential

\[
i\partial_t u + \Delta u + c|x|^{-2}u = -|u|^\alpha u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^d,
\]

where \(d \geq 3, u : \mathbb{R} \times \mathbb{R}^d \to \mathbb{C}, u_0 : \mathbb{R}^d \to \mathbb{C}, c \neq 0 \) satisfies \(c < \lambda(d) := \left(\frac{d-2}{2} \right)^2 \) and \(\frac{1}{2} < \alpha < \frac{2}{d-2} \). This result extends a recent result of Bensouilah-Dinh-Zhu [On stability and instability of standing waves for the nonlinear Schrödinger equation with inverse-square potential, arXiv:1805.01245] where the stability and instability of standing waves were shown in the \(L^2 \)-subcritical and \(L^2 \)-critical cases.

1. Introduction

In the last decade, there has been a great deal of interest in studying the nonlinear Schrödinger equation with inverse-square potential, namely

\[
i\partial_t u + \Delta u + c|x|^{-2}u = \mu|u|^\alpha u, \quad (t, x) \in \mathbb{R} \times \mathbb{R}^d,
\]

where \(d \geq 3, u : \mathbb{R} \times \mathbb{R}^d \to \mathbb{C}, u_0 : \mathbb{R}^d \to \mathbb{C}, c \neq 0 \) satisfies \(c < \lambda(d) := \left(\frac{d-2}{2} \right)^2, \mu \in \mathbb{R} \) and \(\alpha > 0 \). The nonlinear Schrödinger equation (1.1) appears in a variety of physical settings, such as quantum field equations or black hole solutions of the Einstein’s equations (see e.g. [9, 10, 24]). The mathematical interest in the nonlinear Schrödinger equation with inverse-square potential comes from the fact that the potential is homogeneous of degree \(-2\) and thus scales exactly the same as the Laplacian. Recently, the equation (1.1) has been intensively studied (see e.g. [1, 2, 3, 6, 7, 8, 14, 15, 26, 27, 28, 32, 33, 34, 35, 42, 43, 44, 45, 50] and references therein).

In this paper, we consider the \(L^2 \)-supercritical nonlinear Schrödinger equation with inverse-square potential, namely

\[
\begin{cases}
 i\partial_t u + \Delta u + c|x|^{-2}u = -|u|^\alpha u, & (t, x) \in \mathbb{R} \times \mathbb{R}^d, \\
 u(0) = u_0 \in H^1,
\end{cases}
\]

where \(d \geq 3, u : \mathbb{R} \times \mathbb{R}^d \to \mathbb{C}, u_0 : \mathbb{R}^d \to \mathbb{C}, c \neq 0 \) satisfies \(c < \lambda(d) \) and \(\frac{1}{2} < \alpha < \frac{2}{d-2} \). The main purpose of this paper is to study the instability of radial ground state standing waves for (1.2).

Before stating our result, let us recall known results related to the stability and instability of standing waves for the nonlinear Schrödinger-like equations. The stability of standing waves for the classical nonlinear Schrödinger equation (i.e. \(c = 0 \) in (1.2)) is widely pursued by physicists and mathematicians (see e.g. [17] or [30], for reviews). To our knowledge, the first work addressed the orbital stability of standing waves for the classical NLS belongs to Cazenave-Lions [11] via the concentration-compactness principle. Later, Weinstein in [46, 47] gave another approach to prove the orbital stability of standing waves for the classical NLS. Afterwards, Grillakis-Shatah-Strauss in [22, 23] gave a criterion based on a form of coercivity for the action functional (see (1.4)) to prove the stability of standing waves for a Hamiltonian system which is invariant under a one-parameter group of operators. Since then, a lot of results on the orbital stability of standing waves for nonlinear dispersive equations were obtained. For the nonlinear Schrödinger equation with a harmonic potential, Zhang [48, 49] succeed in obtaining the orbital stability of standing waves by the weighted compactness lemma. Recently, the orbital stability phenomenon was proved for the fractional nonlinear Schrödinger equation by establishing the profile decomposition for bounded sequences in \(H^s \) (see e.g. [13, 16, 41, 51, 52]). The instability of standing waves for the classical NLS was first studied by Berestycki-Cazenave [4] (see also [12]). Later, Le Coz in [29] gave an alternative, simple proof of the classical result of Berestycki-Cazenave. The key point is to establish the finite time blow-up by using the variational characterization of the ground states as minimizers of the action functional and the virial identity. For the Schrödinger equations with more
general nonlinearities, this method does not work due the the lack of virial identities. In such cases, one may use a powerful tool of Grillakis-Shatah-Strauss [22, 23] to derive the instability of standing waves. We also refer the reader to [18, 19, 20, 36, 25, 37, 38, 39, 40] for the instability of standing waves of other nonlinear dispersive equations.

Recently, the authors in [3] succeeded, using a profile decomposition theorem proved by the first author [1], to establish the stability of standing waves for (1.2) in the L^2-subcritical regime and the instability by blow-up in the L^2-critical regime. The main goal here is to extend these results to the L^2-supercritical case but only for radial ground state standing waves.

Throughout this paper, we call a standing wave a solution of (1.2) of the form $e^{ixt}\phi_\omega$, where $\omega \in \mathbb{R}$ is a frequency and $\phi_\omega \in H^1$ is a nontrivial solution to the elliptic equation

$$-\Delta \phi_\omega + \omega \phi_\omega - c|x|^{-2}\phi_\omega - |\phi_\omega|^{\alpha}\phi_\omega = 0.$$

(1.3)

Note that the existence of positive radial solutions to the elliptic equation

$$-\Delta \phi + \phi - c|x|^{-2}\phi - |\phi|^{\alpha}\phi = 0$$

was shown in [27, Theorem 3.1] and [15, Theorem 4.1]. By setting $\phi_\omega(x) := (\sqrt{\omega})^{\frac{d}{2}} \phi(\sqrt{\omega}x)$, it is easy to see that ϕ_ω is a solution of (1.3). This shows the existence of positive radial solutions to (1.3).

Note also that (1.3) can be written as $S'_\omega(\phi_\omega) = 0$, where

$$S_\omega(v) := E(v) + \frac{\omega}{2}\|v\|_{L^2}^2 = \frac{1}{2}\|v\|_{H^1}^2 + \frac{\omega}{2}\|v\|_{L^2}^2 - \frac{1}{\alpha + 2}\|v\|_{L^{\alpha+2}}^{\alpha+2}$$

is the action functional. Here

$$\|v\|_{H^1}^2 := \|\nabla v\|_{L^2}^2 - c\|x\|^{-1}\|v\|_{L^2}^2$$

is the Hardy functional.

We denote the set of non-trivial radial solutions of (1.3) by $A_{rad, \omega}$.

Definition 1.1 (Radial ground states). A function $\phi \in A_{rad, \omega}$ is called a radial ground state for (1.3) if it is a minimizer of S_ω over the set $A_{rad, \omega}$. The set of radial ground states is denoted by $\mathcal{G}_{rad, \omega}$. In particular,

$$\mathcal{G}_{rad, \omega} = \{\phi \in A_{rad, \omega} : S_\omega(\phi) \leq S_\omega(v), \forall v \in A_{rad, \omega}\}.$$

We have the following result on the existence of radial ground states for (1.3).

Proposition 1.2. Let $d \geq 3$, $c \neq 0$ be such that $c < \lambda(d)\frac{d}{2} < \alpha < \frac{d}{d-2}$ and $\omega > 0$. Then the set $\mathcal{G}_{rad, \omega}$ is not empty, and it is characterized by

$$\mathcal{G}_{rad, \omega} = \{v \in H^1_{rad}\{0\} : S_\omega(v) = d(rad, \omega), K_\omega(v) = 0\},$$

where

$$K_\omega(v) := \partial_\lambda S_\omega(\lambda v)_{|\lambda=1} = \|v\|_{H^1_{\omega}}^2 + \omega\|v\|_{L^2}^2 - \|v\|_{L^{\alpha+2}}^{\alpha+2}$$

is the Nehari functional and

$$d(rad, \omega) := \inf \{S_\omega(v) : v \in H^1_{rad}\{0\}, K_\omega(v) = 0\}.$$

(1.6)

We refer the reader to Section 2 for the proof of the above result.

Remark 1.3. Recently, Fukaya-Ohta in [20] studied the instability of standing waves for the nonlinear Schrödinger equation with an attractive inverse power potential, namely

$$i\partial_t u + \Delta u + \gamma|x|^{-\alpha}u = -|u|^{p-1}u,$$

where $\gamma > 0$, $0 < \alpha < \min\{2, d\}$ and $\frac{2}{p} < p - 1 < \frac{d}{d-2}$ if $d \geq 3$ and $\frac{2}{p} < p - 1 < \infty$ if $d = 1$ or $d = 2$. The potential $V(x) = \gamma|x|^{-\alpha}$ belongs to $L^r(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$ for some $r > \min\{1, d/2\}$. This special property allows them to use the weak continuity of the potential energy (see e.g. [31, Theorem 11.4]) to prove the existence of non-radial ground states. In our case, the inverse-square potential $V(x) = c|x|^{-2}$ does not belong to $L^2(\mathbb{R}^d) + L^\infty(\mathbb{R}^d)$, so the weak continuity of potential energy is not applicable to our potential. At the moment, we do not know how to show the existence of non-radial ground states for (1.3). We hope to consider this problem in a future work.

Let us now recall the definition of the strong instability.
Definition 1.4 (Strong instability). We say that the standing wave \(e^{i \omega t} \phi_{\omega} \) is strongly unstable if for any \(\epsilon > 0 \), there exists \(u_0 \in H^1 \) such that \(\| u_0 - \phi_{\omega} \|_{H^1} < \epsilon \) and the solution \(u(t) \) of (1.2) with initial data \(u_0 \) blows up in finite time.

Our main result of this paper is the following:

Theorem 1.5. Let \(d \geq 3, \epsilon \neq 0 \) be such that \(c < \lambda(d), \frac{1}{d-2} < \alpha < \frac{d}{d-2}, \omega > 0 \) and \(\phi_{\omega} \in \mathcal{G}_{\text{rad}, \omega} \). Then the standing wave solution \(e^{i \omega t} \phi_{\omega} \) of (1.2) is strongly unstable.

To our knowledge, the usual strategy to show the strong instability of standing waves is to use the characterization of ground states combined with the virial identity. However, in the presence of the inverse-square potential, it is not known that the ground states \(\phi_{\omega} \) belongs to the weighted space \(\Sigma := H^1 \cap L^2(|x|^2 \, dx) \) in order to apply the virial identity. This is a reason why we only consider the instability of radial ground state standing waves in this paper. If one can show that \(\phi_{\omega} \in \Sigma \), then using the argument of Ohta (see e.g. [20, 39, 40]), one can show the instability of ground state standing waves under the assumption \(\partial_t^2 S_{\omega}(\phi_{\omega}) \big|_{t=1} \leq 0 \).

The proof of Theorem 1.5 is based on the characterization of the radial ground states and the localized virial estimates. Thanks to the radial symmetry of the ground state, we are able to use the localized virial estimates derived by the second author in [15] to show the finite time blow-up. We refer the reader to Section 3 for more details.

The rest of the paper is organized as follows. In Section 2, we give the proof of the existence of radial ground states for (1.3) given in Proposition 1.2. The proof of our main result-Theorem 1.5 will be given in Section 3.

2. Existence of radial ground states

In this section, we give the proof of the existence of radial ground states for (1.3) given in Proposition 1.2. The proof of Proposition 1.2 follows from several lemmas. Let us denote the \(\omega \)-Hardy functional by

\[
H_{\omega}(v) := \|v\|_{H^1}^2 + \omega \|v\|_{L^2}^2.
\]

Using the sharp Hardy inequality

\[\lambda(d) \|x|^{-1}v\|_{L^2}^2 \leq \|\nabla v\|_{L^2}^2,\]

we see that for \(c < \lambda(d) \) and \(\omega > 0 \) fixed,

\[H_{\omega}(v) \sim \|v\|_{H^1}^2.\]

By using the fact

\[
S_{\omega}(v) := \frac{1}{2} K_{\omega}(v) + \frac{\alpha}{2(\alpha + 2)} \|v\|_{L^{\alpha+2}}^{\alpha+2} = \frac{1}{\alpha + 2} K_{\omega}(v) + \frac{\alpha}{2(\alpha + 2)} H_{\omega}(v),
\]

the minimizing problem (1.6) can be written as

\[
d(\text{rad}, \omega) = \inf \left\{ \frac{\alpha}{2(\alpha + 2)} \|v\|_{L^{\alpha+2}}^{\alpha+2} : v \in H^1_{\text{rad}} \setminus \{0\}, K_{\omega}(v) = 0 \right\},
\]

\[
d(\text{rad}, \omega) = \inf \left\{ \frac{\alpha}{2(\alpha + 2)} H_{\omega}(v) : v \in H^1_{\text{rad}} \setminus \{0\}, K_{\omega}(v) = 0 \right\}.
\]

Lemma 2.1. If \(v \in H^1_{\text{rad}} \setminus \{0\} \) is such that \(K_{\omega}(v) < 0 \), then

\[
d(\text{rad}, \omega) < \frac{\alpha}{2(\alpha + 2)} \|v\|_{L^{\alpha+2}}^{\alpha+2}, \quad d(\text{rad}, \omega) < \frac{\alpha}{2(\alpha + 2)} H_{\omega}(v).
\]

Proof. Set

\[
\lambda_0 := \left(\frac{H_{\omega}(v)}{\|v\|_{L^{\alpha+2}}^{\alpha+2}} \right)^{\frac{1}{2}}.
\]

Since \(K_{\omega}(v) = H_{\omega}(v) - \|v\|_{L^{\alpha+2}}^{\alpha+2} < 0 \), we see that \(\lambda_0 \in (0, 1) \). Moreover, for \(\lambda > 0 \), we have

\[
K_{\omega}(\lambda v) = \lambda^\alpha H_{\omega}(v) - \lambda^{\alpha+2} \|v\|_{L^{\alpha+2}}^{\alpha+2}.
\]

This shows that \(K_{\omega}(\lambda_0 v) = 0 \). Thus, by (2.3),

\[
d(\text{rad}, \omega) \leq \frac{\alpha}{2(\alpha + 2)} \|v\|_{L^{\alpha+2}}^{\alpha+2} = \lambda_0^{\alpha+2} \frac{\alpha}{2(\alpha + 2)} \|v\|_{L^{\alpha+2}}^{\alpha+2} < \frac{\alpha}{2(\alpha + 2)} \|v\|_{L^{\alpha+2}}^{\alpha+2}.
\]

Similarly, by (2.4),

\[
d(\text{rad}, \omega) \leq \frac{\alpha}{2(\alpha + 2)} H_{\omega}(\lambda_0 v) = \lambda_0^{\alpha} \frac{\alpha}{2(\alpha + 2)} H_{\omega}(v) < \frac{\alpha}{2(\alpha + 2)} H_{\omega}(v).
\]
The proof is complete. \qed

Lemma 2.2. \(d(\text{rad}, \omega) > 0\).

Proof. Let \(v \in H^1_{\text{rad}} \setminus \{0\}\) be such that \(K_\omega(v) = 0\). By the Sobolev embedding, (2.1) and the fact \(H_\omega(v) = \|v\|_{L^{\alpha+2}}^{\alpha+2}\), we have

\[
\|v\|_{L^{\alpha+2}}^2 \leq C_1\|v\|_{H^1}^2 \leq C_2 H_\omega(v) = C_2\|v\|_{L^{\alpha+2}}^\alpha,
\]

for some \(C_1, C_2 > 0\). This implies that

\[
\frac{\alpha}{2(\alpha + 2)}\|v\|_{L^{\alpha+2}}^{\alpha+2} \geq \frac{\alpha}{2(\alpha + 2)}\left(\frac{1}{C_2}\right)^{\frac{\alpha+2}{\alpha}}.
\]

Taking the infimum over \(v \in H^1_{\text{rad}} \setminus \{0\}\), we obtain \(d(\text{rad}, \omega) > 0\). \qed

We now denote the set of all minimizers of (1.6) by

\[
\mathcal{M}_{\text{rad}, \omega} := \{v \in H^1_{\text{rad}} \setminus \{0\} : K_\omega(v) = 0, S_\omega(v) = d(\text{rad}, \omega)\}.
\]

Lemma 2.3. The set \(\mathcal{M}_{\text{rad}, \omega}\) is non-empty.

Proof. Let \((v_n)_{n \geq 1}\) be a minimizing sequence of \(d(\text{rad}, \omega)\), i.e. \(v_n \in H^1_{\text{rad}} \setminus \{0\}\), \(K_\omega(v_n) = 0\) and \(S_\omega(v_n) \to d(\text{rad}, \omega)\) as \(n \to \infty\). Since \(K_\omega(v_n) = 0\), we have \(H_\omega(v_n) = \|v_n\|_{L^{\alpha+2}}^\alpha\) for any \(n \geq 1\). Using (2.2), the fact \(S_\omega(v_n) \to d(\text{rad}, \omega)\) as \(n \to \infty\) implies that

\[
\frac{\alpha}{2(\alpha + 2)} H_\omega(v_n) = \frac{\alpha}{2(\alpha + 2)}\|v_n\|_{L^{\alpha+2}}^{\alpha+2} \to d(\text{rad}, \omega),
\]

as \(n \to \infty\). We infer that there exists \(C > 0\) such that

\[
H_\omega(v_n) \leq \frac{2(\alpha + 2)}{\alpha} d(\text{rad}, \omega) + C,
\]

for all \(n \geq 1\). It follows from (2.1) that \((v_n)_{n \geq 1}\) is a bounded sequence in \(H^1_{\text{rad}}\). Using the compact embedding \(H^1_{\text{rad}} \hookrightarrow L^{\alpha+2}\), there exists \(v_0 \in H^1_{\text{rad}}\) such that

\[
v_n \rightharpoonup v_0 \text{ weakly in } H^1 \text{ and strongly in } L^{\alpha+2} \text{ as } n \to \infty.
\]

Writting \(v_n = v_0 + r_n\), where \(v_n \to 0\) weakly in \(H^1\) as \(n \to \infty\). We have

\[
K_\omega(v_n) = H_\omega(v_n) - \|v_n\|_{L^{\alpha+2}}^{\alpha+2} = H_\omega(v_0) + H_\omega(r_n) - \|v_n\|_{L^{\alpha+2}}^{\alpha+2} + o_n(1),
\]

as \(n \to \infty\). Here \(o_n(1)\) means that \(o_n(1) \to 0\) as \(n \to \infty\). Since \(K_\omega(v_n) = 0\) and \(H_\omega(r_n) \geq 0\) for all \(n \geq 1\), we get

\[
H_\omega(v_0) \leq \|v_n\|_{L^{\alpha+2}}^{\alpha+2} + o_n(1),
\]

as \(n \to \infty\). Taking the limit \(n \to \infty\), we obtain

\[
H_\omega(v_0) \leq \frac{2(\alpha + 2)}{\alpha} d(\text{rad}, \omega).
\]

Since \(v_n \to v_0\) strongly in \(L^{\alpha+2}\), it follows that

\[
\|v_0\|_{L^{\alpha+2}}^{\alpha+2} = \lim_{n \to \infty} \|v_n\|_{L^{\alpha+2}}^{\alpha+2} = \frac{2(\alpha + 2)}{\alpha} d(\text{rad}, \omega).
\]

We thus get \(K_\omega(v_0) \leq 0\). Now suppose that \(K_\omega(v_0) < 0\), by Lemma 2.1,

\[
d(\text{rad}, \omega) < \frac{\alpha}{2(\alpha + 2)} H_\omega(v_0) \leq d(\text{rad}, \omega),
\]

which is absurd. Hence \(K_\omega(v_0) = 0\). Moreover, we have

\[
S_\omega(v_0) = \frac{\alpha}{2(\alpha + 2)} \|v_0\|_{L^{\alpha+2}}^{\alpha+2} = d(\text{rad}, \omega).
\]

This shows that \(v_0\) is a minimizer of \(d(\text{rad}, \omega)\). The proof is complete. \qed

Lemma 2.4. \(\mathcal{M}_{\text{rad}, \omega} \subset \mathcal{G}_{\text{rad}, \omega}\).
Proof. Let $\phi \in \mathcal{M}_{\text{rad,}\omega}$. Since $K_{\omega}(\phi) = 0$, we have $H_{\omega}(\phi) = \|\phi\|_{L^{4+2}}^{4+2}$. Since ϕ is a minimizer of $d(\text{rad, } \omega)$, there exists a Lagrange multiplier $\mu \in \mathbb{R}$ such that $S'_{\omega}(\phi) = \mu K'_{\omega}(\phi)$. We thus have
\[0 = K_{\omega}(\phi) = \langle S'_{\omega}(\phi), \phi \rangle = \mu (K_{\omega}(\phi), \phi) .\]

It is easy to see that
\[K'_{\omega}(\phi) = -2\Delta \phi + 2\omega \phi - 2c|x|^{-2}\phi - (\alpha + 2)|\phi|^\alpha \phi .\]

Therefore,
\[\langle K'_{\omega}(\phi), \phi \rangle = 2H_{\omega}(\phi) - (\alpha + 2)\|\phi\|_{L^{4+2}}^{\alpha+2} = -\alpha\|\phi\|_{L^{4+2}}^{\alpha+2} < 0.\]

This implies that $\mu = 0$, hence $S'_{\omega}(\phi) = 0$. In particular, we have $\phi \in \mathcal{A}_{\text{rad,}\omega}$. To prove $\phi \in \mathcal{G}_{\text{rad,}\omega}$, it remains to show that $S_{\omega}(\phi) \leq S_{\omega}(v)$ for all $v \in \mathcal{A}_{\text{rad,}\omega}$. To see this, let $v \in \mathcal{A}_{\text{rad,}\omega}$. We have
\[K_{\omega}(v) = \langle S'_{\omega}(v), v \rangle = 0.\]

By definition of $\mathcal{M}_{\text{rad,}\omega}$, we have $S_{\omega}(\phi) \leq S_{\omega}(v)$. The proof is complete. \qed

Lemma 2.5. $\mathcal{G}_{\text{rad,}\omega} \subset \mathcal{M}_{\text{rad,}\omega}$.

Proof. Let $\phi \in \mathcal{G}_{\text{rad,}\omega}$. Since $\mathcal{M}_{\text{rad,}\omega}$ is not empty, we take $\psi \in \mathcal{M}_{\text{rad,}\omega}$. By Lemma 2.4, $\psi \in \mathcal{G}_{\text{rad,}\omega}$. In particular, $S_{\omega}(\psi) = S_{\omega}(\phi)$. Since $\psi \in \mathcal{M}_{\text{rad,}\omega}$, we get
\[S_{\omega}(\phi) = S_{\omega}(\psi) = d(\text{rad, } \omega).\]

It remains to show that $K_{\omega}(\phi) = 0$. Since $\phi \in \mathcal{A}_{\text{rad,}\omega}$, we have $S'_{\omega}(\phi) = 0$, hence $K_{\omega}(\phi) = \langle S'_{\omega}(\phi), \phi \rangle = 0$. Therefore, $\phi \in \mathcal{M}_{\text{rad,}\omega}$ and the proof is complete. \qed

Proof of Proposition 1.2. Proposition 1.2 follows immediately from Lemmas 2.3, 2.4 and 2.5. \qed

Corollary 2.6. Let $d \geq 3$, $c \neq 0$ be such that $c < \lambda(d)$, $\frac{4}{d} < \alpha < \frac{4}{d-2}$, $\omega > 0$ and $\phi \in \mathcal{G}_{\text{rad,}\omega}$. If $v \in H^1_{\text{rad}} \setminus \{0\}$ satisfies $\|v\|_{L^{4+2}} = \|\phi\|_{L^{4+2}}$, then

- $K_{\omega}(v) \geq 0$;
- $S_{\omega}(v) \geq S_{\omega}(\phi)$.

Proof. For the first item, assume by contradiction that $K_{\omega}(v) < 0$. By Lemma 2.1,
\[d(\text{rad, } \omega) < \frac{\alpha}{2(\alpha + 2)}\|v\|_{L^{4+2}}^{\alpha+2} = \frac{\alpha}{2(\alpha + 2)}\|\phi\|_{L^{4+2}}^{\alpha+2} = d(\text{rad, } \omega),\]

which is absurd. For the second item, we use (2.2) and the first item to have
\[S_{\omega}(v) = \frac{1}{2}K_{\omega}(v) + \frac{\alpha}{2(\alpha + 2)}\|v\|_{L^{4+2}}^{\alpha+2} \geq \frac{\alpha}{2(\alpha + 2)}\|v\|_{L^{4+2}}^{\alpha+2} = \frac{\alpha}{2(\alpha + 2)}\|\phi\|_{L^{4+2}}^{\alpha+2} = S_{\omega}(\phi).\]

The proof is complete. \qed

3. Instability of radial standing waves

In this section, we give the proof of the instability of radial ground state standing waves given in Theorem 1.5. Let us start by recalling the local well-posedness in the energy space H^1 for (1.2) proved by Okazawa-Suzuki-Yokota [35].

Theorem 3.1 (Local well-posedness [35]). Let $d \geq 3$, $c \neq 0$ be such that $c < \lambda(d)$ and $\frac{4}{d} < \alpha < \frac{4}{d-2}$. Then for any $u_0 \in H^1$, there exists $T \in (0, +\infty]$ and a maximal solution $u \in C([0, T), H^1)$ of (1.2). The maximal time of existence satisfies either $T = +\infty$ or $T < +\infty$ and
\[\lim_{t \uparrow T} \|\nabla u(t)\|_{L^2} = \infty.\]

Moreover, the local solution enjoys the conservation of mass and energy
\[M(u(t)) = \int |u(t, x)|^2 \, dx = M(u_0),\]
\[E(u(t)) = \frac{1}{2} \int |\nabla u(t, x)|^2 \, dx - \frac{c}{2} \int |x|^{-2}|u(t, x)|^2 \, dx = \frac{1}{2} \int |u(t, x)|^{\alpha+2} \, dx = E(u_0),\]
for any $t \in [0, T)$.

We refer the reader to [35, Proposition 5.1] for the proof of the above result. Note that the existence of local solution is based on a refined energy method of the well-known energy method proposed by Cazenave [12, Chapter 3]. The uniqueness of local solutions follows from Strichartz estimates proved by Burq-Planchon-Stalker-Zadell [8].

Throughout this section, we denote the functional

$$Q(v) := \|v\|^2_{H^1} - \frac{d\alpha}{2(\alpha + 2)} \|v\|^{\alpha+2}_{L^{\alpha+2}}.$$

Note that if we take

$$v^\lambda(x) := \lambda^{\frac{\alpha}{2}} v(\lambda x),$$

then we have

$$\|v^\lambda\|_{L^2} = \|v\|_{L^2}, \quad \|\nabla v^\lambda\|_{L^2} = \lambda \|\nabla v\|_{L^2},$$

$$\|x^{-1} v^\lambda\|_{L^2} = \lambda \|x^{-1} v\|_{L^2}, \quad \|v^\lambda\|_{L^{\alpha+2}} = \lambda^{\frac{\alpha+2}{2}} \|v\|_{L^{\alpha+2}}.$$

Thus,

$$S_\omega(v^\lambda) = \frac{\lambda^2}{2} \|v\|^2_{H^1} + \frac{\omega}{2} \|v\|^2_{L^2} - \frac{\lambda \omega}{\alpha + 2} \|v\|^{\alpha+2}_{L^{\alpha+2}},$$

and

$$Q(v) = \partial_\lambda S_\omega(v^\lambda)|_{\lambda=1}.$$

Let $\phi_\omega \in G_{\text{rad}, \omega}$, we define

$$B_{\text{rad}, \omega} := \{v \in H^1_{\text{rad}} \setminus \{0\} : S_\omega(v) < S_\omega(\phi_\omega), \|v\|_{L^2} \leq \|\phi_\omega\|_{L^2}, \|v\|_{L^{\alpha+2}} > \|\phi_\omega\|_{L^{\alpha+2}}\},$$

and

$$C_{\text{rad}, \omega} := \{v \in B_{\text{rad}, \omega} : Q(v) < 0\}.$$

Lemma 3.2. Let $d \geq 3$, $c \neq 0$ be such that $c < \lambda(d), \frac{4}{d} < \alpha < \frac{4}{d-2}$ and $\omega > 0$. Then the set $B_{\text{rad}, \omega}$ is invariant under the flow of (1.2). It means that if $u_0 \in B_{\text{rad}, \omega}$, then the corresponding solution $u(t)$ to (1.2) with $u(0) = u_0$ satisfies $u(t) \in B_{\text{rad}, \omega}$ for any t as long as the solution exists.

Proof. Let $u_0 \in B_{\text{rad}, \omega}$. By the conservation of mass and energy, we have $\|u(t)\|_{L^2} = \|u_0\|_{L^2} \leq \|\phi_\omega\|_{L^2}$ and

$$S_\omega(u(t)) = E(u(t)) + \frac{\omega}{2} \|u(t)\|^2_{L^2} = E(u_0) + \frac{\omega}{2} \|u_0\|^2_{L^2} = S_\omega(u_0) < S_\omega(\phi_\omega),$$

for any t in the existence time. Since $\|u_0\|_{L^{\alpha+2}} > \|\phi_\omega\|_{L^{\alpha+2}}$, the continuity of the solution $u(t)$ implies that $\|u(t)\|_{L^{\alpha+2}} > \|\phi_\omega\|_{L^{\alpha+2}}$ for any t in the existence time. Indeed, if it is not true, then there exists t_0 such that $\|u(t_0)\|_{L^{\alpha+2}} \leq \|\phi_\omega\|_{L^{\alpha+2}}$. By the continuity of the function $t \mapsto \|u(t)\|_{L^{\alpha+2}}$, there exists t_1 such that $\|u(t_1)\|_{L^{\alpha+2}} = \|\phi_\omega\|_{L^{\alpha+2}}$. By the second item of Corollary 2.6, we have $S_\omega(u(t_1)) \geq S_\omega(\phi_\omega)$. It contradicts with (3.3) and the proof is complete. □

Lemma 3.3. Let $d \geq 3$, $c \neq 0$ be such that $c < \lambda(d), \frac{4}{d} < \alpha < \frac{4}{d-2}$ and $\omega > 0$. Let $v \in H^1_{\text{rad}} \setminus \{0\}$ be such that

$$\|v\|_{L^2} \leq \|\phi_\omega\|_{L^2}, \quad \|v\|_{L^{\alpha+2}} \geq \|\phi_\omega\|_{L^{\alpha+2}}, \quad Q(v) \leq 0.$$

Then

$$\frac{Q(v)}{2} \leq S_\omega(v) - S_\omega(\phi_\omega).$$

In particular, the set $C_{\text{rad}, \omega}$ is invariant under the flow of (1.2), that is, if $u_0 \in C_{\text{rad}, \omega}$, then the corresponding solution $u(t)$ to (1.2) with $u(0) = u_0$ satisfies $u(t) \in C_{\text{rad}, \omega}$ for any t as long as the solution exists.

Proof. Set

$$\lambda_1 := \left(\frac{\|\phi_\omega\|_{L^{\alpha+2}}}{\|v\|^\alpha_{L^{\alpha+2}}}\right)^{\frac{\alpha}{\alpha+2}}.$$

Since $\|\phi_\omega\|_{L^{\alpha+2}} \leq \|v\|_{L^{\alpha+2}}$, we see that $\lambda_1 \in (0,1]$. We also have

$$\|v^{\lambda_1}\|_{L^2} = \|v\|_{L^2} \leq \|\phi_\omega\|_{L^2}, \quad \|v^{\lambda_1}\|_{L^{\alpha+2}} = \lambda_1^{\frac{\alpha}{\alpha+2}} \|v\|_{L^{\alpha+2}} = \|\phi_\omega\|_{L^{\alpha+2}}.$$

By Corollary 2.6, the second equality implies $S_\omega(\phi_\omega) \leq S_\omega(v^{\lambda_1})$. We next define for $\lambda \in (0,1]$,

$$f(\lambda) := S_\omega(v^{\lambda_1}) - \frac{\lambda^2}{2} Q(v).$$

Then
We claim that \(f(\lambda_1) \leq f(1) \). Using this claim and the fact \(Q(v) \leq 0 \), we have

\[
S_\omega(\phi_\omega) \leq S_\omega(v^{\lambda_1}) \leq S_\omega(v^{\lambda_2}) - \frac{\lambda_2^2}{2}Q(v) = f(\lambda_1) \leq f(1) = S_\omega(v) - \frac{Q(v)}{2}.
\]

This shows (3.4). We now prove the claim. Using the fact

\[
S_\omega(v^{\lambda_1}) = \frac{\lambda_1^2}{2}\|v\|_{H^2}^2 + \frac{\omega}{2}\|v\|_{L^2}^2 - \frac{\lambda_1^d}{\alpha + 2}\|v\|_{L^{\alpha+2}}^{\alpha+2},
\]

we rewrite

\[
f(\lambda) = \frac{\omega}{2}\|v\|_{L^2}^2 - \frac{1}{\alpha + 2}\left(\lambda_1^d - \frac{d\alpha}{4}\lambda_1^2\right)\|v\|_{L^{\alpha+2}}^{\alpha+2}.
\]

The condition \(f(\lambda_1) \leq f(1) \) is in turn equivalent to

\[
\frac{1}{\alpha + 2}\left(\lambda_1^d - \frac{d\alpha}{4}\lambda_1^2\right) \geq \frac{d\alpha}{4} + \frac{d\alpha}{4} \geq 0.
\]

Thus, to show \(f(\lambda_1) \leq f(1) \), it is enough to prove that

\[
g(\lambda_1) := \lambda_1^d - \frac{d\alpha}{4}\lambda_1^2 - 1 + \frac{d\alpha}{4} \geq 0,
\]

for all \(\lambda_1 \in (0, 1] \). Since \(\frac{d\alpha}{4} > 2 \), it is easy to see that

\[
g'(\lambda_1) = \frac{d\alpha}{2}\lambda_1(\frac{d\alpha}{4}\lambda_1 - 1) \leq 0.
\]

Since \(g(0) = -1 + \frac{d\alpha}{4} > 0 \) and \(g(1) = 0 \), it follows that \(g(\lambda_1) \geq 0 \) for all \(\lambda_1 \in (0, 1] \). The claim follows.

We now show that \(C_{rad,\omega} \) is invariant under the flow of (1.2). Let \(u_0 \in C_{rad,\omega} \). By Lemma 3.2, it remains to show \(Q(u(t)) \leq 0 \) for any \(t \) in the existence time. Assume by contradiction that there exists \(t_0 \) such that \(Q(u(t_0)) > 0 \). By the continuity of the function \(t \mapsto Q(u(t)) \), there exists \(t_1 \) such that \(Q(u(t_1)) = 0 \). Since \(u(t_1) \in B_{rad,\omega} \), we have

\[
S_\omega(u(t_1)) < S_\omega(\phi_\omega), \quad \|u(t_1)\|_{L^2} \leq \|\phi_\omega\|_{L^2}, \quad \|u(t_1)\|_{L^{\alpha+2}} > \|\phi_\omega\|_{L^{\alpha+2}}.
\]

The last two inequalities combined with \(Q(u(t_1)) = 0 \) yield (see (3.4)) that

\[
0 = \frac{Q(u(t_1))}{2} \leq S_\omega(u(t_1)) - S_\omega(\phi_\omega),
\]

or \(S_\omega(\phi_\omega) \leq S_\omega(u(t_1)) \). This contradicts with the first inequality in (3.5). The proof is complete. \(\square \)

The key ingredient in showing the strong instability of radial standing waves is to use localized virial estimates to establish the finite time blowup. Let us recall localized virial estimates related to (1.2). Let \(\theta : [0, \infty) \to [0, \infty) \) be such that

\[
\theta(r) = \begin{cases}
 r^2 & \text{if } 0 \leq r \leq 1, \\
 \text{const.} & \text{if } r \geq 2,
\end{cases}
\]

and \(\theta''(r) \leq 2 \) for \(r \geq 0 \).

The precise constant here is not important. For \(R > 1 \), we define the radial function

\[
\varphi_R(x) = \varphi_R(r) := R^2\theta(r/R), \quad r = |x|.
\]

We define the virial potential by

\[
V_{\varphi_R}(t) := \int \varphi_R(x)|u(t,x)|^2dx.
\]

Lemma 3.4 (Radial virial estimate [15]). Let \(d \geq 3 \), \(c \neq 0 \) be such that \(c < \lambda(d), \frac{4}{d} < \alpha < \frac{4}{d-2} \), \(R > 1 \) and \(\varphi_R \) be as in (3.6). Let \(u : I \times \mathbb{R}^d \to C \) be a radial solution to (1.2). Then for any \(t \in I \),

\[
\frac{d^2}{dt^2}V_{\varphi_R}(t) \leq 8\|u(t)\|_{L^2}^2 - \frac{4d\alpha}{\alpha + 2}\|u(t)\|_{L^{\alpha+2}}^{\alpha+2} + O\left(R^{-2} + R\frac{(d-1)\alpha}{d-2}\|u(t)\|_{H^2}^2\right)
\]

(3.8)

\[
= 8Q(u(t)) + O\left(R^{-2} + R\frac{(d-1)\alpha}{d-2}\|u(t)\|_{H^2}^2\right)
\]

(3.9)

\[
= 4d\alpha E(u(t)) - 2(d\alpha - 4)\|u(t)\|_{H^2}^2 + O\left(R^{-2} + R\frac{(d-1)\alpha}{d-2}\|u(t)\|_{H^2}^2\right).
\]

(3.10)
We refer the reader to [15, Lemma 5.4] for the proof of the above result.

We are now able to prove our main result.

Proof of Theorem 1.5. Let $\epsilon > 0$, $\omega > 0$ and $\phi_\omega \in G_{\text{rad},\omega}$. Since $\phi_\omega^0 \to \phi_\omega$ in H^1 as $\lambda \to 1$, there exists $\lambda_0 > 1$ such that $\|\phi_\omega - \phi_\omega^0\|_{H^1} < \epsilon$. By decreasing λ_0 if necessary, we claim that $\phi_\omega^0 \in \mathcal{C}_{\text{rad},\omega}$. To see this, we first notice that $Q(\phi_\omega) = 0$. This fact follows from the Pohozaev's identities related to (1.3):

$$
\omega\|\phi_\omega\|_{L^2}^2 = \frac{4 - (d - 2)\alpha}{2(\alpha + 2)} \|\phi_\omega\|_{L^{\alpha+2}}^{\alpha+2} = \frac{4 - (d - 2)\alpha}{2\alpha} \|\phi_\omega\|_{H^1}^2.
$$

(3.11)

On the other hand, a direct computation shows

$$
S_\omega(\phi_\omega^0) := \frac{\lambda^2}{2}\|\phi_\omega\|_{H^1}^2 + \omega^2 \frac{\|\phi_\omega\|_{L^2}^2}{2} - \lambda \frac{\lambda^2}{2(\alpha + 2)} \|\phi_\omega\|_{L^{\alpha+2}}^{\alpha+2},
$$

$$
\partial_\lambda S_\omega(\phi_\omega^0) := \lambda \|\phi_\omega\|_{H^1}^2 - \frac{d\alpha}{2(\alpha + 2)} \|\phi_\omega\|_{L^{\alpha+2}}^{\alpha+2} = \frac{Q(\phi_\omega^0)}{\lambda}.
$$

It is easy to see that the equation $\partial_\lambda S_\omega(\phi_\omega^0) = 0$ has a unique non-zero solution

$$
\left(\frac{\|\phi_\omega\|_{H^1}}{2(\alpha + 2)\|\phi_\omega\|_{L^{\alpha+2}}^{\alpha+2}} \right)^{\frac{1}{\alpha+1}} = 1.
$$

The last inequality comes from the fact $Q(\phi_\omega) = 0$. This implies in particular that

$$
\begin{cases}
\partial_\lambda S_\omega(\phi_\omega^0) > 0 & \text{if } \lambda \in (0, 1), \\
\partial_\lambda S_\omega(\phi_\omega^0) < 0 & \text{if } \lambda \in (1, \infty),
\end{cases}
$$

from which we get $S_\omega(\phi_\omega^\lambda) < S_\omega(\phi_\omega)$ for any $\lambda > 0$, $\lambda \neq 1$. Since $Q(\phi_\omega^0) = \lambda \partial_\lambda S_\omega(\phi_\omega^0)$, we also have

$$
\begin{cases}
Q(\phi_\omega^\lambda) > 0 & \text{if } \lambda \in (0, 1), \\
Q(\phi_\omega^\lambda) < 0 & \text{if } \lambda \in (1, \infty).
\end{cases}
$$

As an application of the above argument, we have

$$
S_\omega(\phi_\omega^0) < S_\omega(\phi_\omega), \quad Q(\phi_\omega^0) < 0.
$$

Moreover,

$$
\|\phi_\omega^0\|_{L^2} = \|\phi_\omega\|_{L^2}, \quad \|\phi_\omega^0\|_{L^{\alpha+2}} = \frac{d\alpha}{2(\alpha + 2)} \|\phi_\omega\|_{L^{\alpha+2}} > \|\phi_\omega\|_{L^{\alpha+2}}.
$$

This shows that $\phi_\omega^0 \in \mathcal{C}_{\text{rad},\omega}$ and the claim follows.

By Theorem 3.1, there exists a unique solution $u \in C([0, T), H^1)$ to (1.2) with initial data $u(0) = u_0 = \phi_\omega^0$, where $T > 0$ is the maximal existence time. Since $u_0 = \phi_\omega^0$ is radial, it is well-known that the corresponding solution is also radial. The rest of this note is to show that u blows up in finite time. It is done by several steps.

Step 1. We claim that there exists $a > 0$ such that $Q(u(t)) \leq -a$ for any $t \in [0, T)$. Indeed, since $G_{\text{rad},\omega}$ is invariant under the flow of (1.2), we see that $u(t) \in G_{\text{rad},\omega}$ for any $t \in [0, T)$. In particular, we have

$$
S_\omega(u(t)) < S_\omega(\phi_\omega), \quad \|u(t)\|_{L^2} = \|\phi_\omega\|_{L^2}, \quad \|u(t)\|_{L^{\alpha+2}} > \|\phi_\omega\|_{L^{\alpha+2}}, \quad Q(u(t)) < 0.
$$

By Lemma 3.3, we get

$$
Q(u(t)) \leq 2(S_\omega(u(t)) - S_\omega(\phi_\omega)) = 2(S_\omega(\phi_\omega^0) - d(\text{rad}, \omega)).
$$

This proves the claim with $a = 2d(\text{rad}, \omega) - S_\omega(\phi_\omega^0) > 0$.

Step 2. We next claim that there exists $b > 0$ such that

$$
\frac{d^2}{dt^2}V_{\phi_\omega}(t) \leq -b,
$$

(3.12)

for any $t \in [0, T)$, where $V_{\phi_\omega}(t)$ is as in (3.7). Indeed, since the solution $u(t)$ is radial, we apply Lemma 3.4 to have

$$
\frac{d^2}{dt^2}V_{\phi_\omega}(t) \leq 4d\alpha E(u(t)) - 2(\alpha a - 4)\|u(t)\|_{H^1}^2 + O\left(R^{-2} + R^{-\frac{d-1}{2}}\|u(t)\|_{H^1}\right),
$$

for any $t \in [0, T)$ and any $R > 1$. The Young inequality implies for any $\epsilon > 0$,

$$
R^{-\frac{d+1}{2}}\|u(t)\|_{H^1}^2 \leq \epsilon \|u(t)\|_{H^1}^2 + \epsilon^{-\frac{2}{d-1}}R^{\frac{2(d+1)}{d-1}}.
$$

Note that in our consideration, we always have $0 < \alpha < 4$. We thus get

$$
\frac{d^2}{dt^2}V_{\phi_\omega}(t) \leq 4d\alpha E(u(t)) - 2(\alpha a - 4)\|u(t)\|_{H^1}^2 + C\epsilon\|u(t)\|_{H^1}^2 + O\left(R^{-2} + \epsilon^{-\frac{2}{d-1}}R^{\frac{2(d+1)}{d-1}}\right),
$$
for any $t \in [0, T)$, any $R > 1$, any $\epsilon > 0$ and some constant $C > 0$.

To see (3.12), we follow the argument of Bonheure-Castéras-Gou-Jeanjean [5]. Fix $t \in [0, T)$ and denote
$$\mu := \frac{4d\alpha|E(u_0)| + 2}{d\alpha - 4}.$$

We consider two cases.

Case 1.
$$\|u(t)\|_{H^1}^2 \leq \mu.$$

Since $4d\alpha E(u(t)) - 2(d\alpha - 4)\|u(t)\|_{H^1}^2 = 8Q(u(t)) \leq -8a$ for any $t \in [0, T)$, we have
$$\frac{d^2}{dt^2} V_{\varphi_R}(t) \leq -8a + C\epsilon \mu + O\left(R^{-2} + \epsilon^{-\frac{2}{\alpha}} R^{\frac{2(\alpha - 1)\mu}{2(\alpha - 1)\epsilon}}\right).$$

By choosing $\epsilon > 0$ small enough and $R > 1$ large enough depending on ϵ, we see that
$$\frac{d^2}{dt^2} V_{\varphi_R}(t) \leq -4a.$$

Case 2.
$$\|u(t)\|_{H^1}^2 > \mu.$$

In this case, we have
$$4d\alpha E(u_0) - 2(d\alpha - 4)\|u(t)\|_{H^1}^2 < -2 - (d\alpha - 4)\|u(t)\|_{H^1}^2.$$

Thus,
$$\frac{d^2}{dt^2} V_{\varphi_R}(t) \leq -2 - (d\alpha - 4)\|u(t)\|_{H^1}^2 + C\epsilon \|u(t)\|_{H^1}^2 + O\left(R^{-2} + \epsilon^{-\frac{2}{\alpha}} R^{\frac{2(\alpha - 1)\mu}{2(\alpha - 1)\epsilon}}\right).$$

Since $d\alpha - 4 > 0$, we choose $\epsilon > 0$ small enough so that
$$d\alpha - 4 - C\epsilon \geq 0.$$

This implies that
$$\frac{d^2}{dt^2} V_{\varphi_R}(t) \leq -2 + O\left(R^{-2} + \epsilon^{-\frac{2}{\alpha}} R^{\frac{2(\alpha - 1)\mu}{2(\alpha - 1)\epsilon}}\right).$$

We next choose $R > 1$ large enough depending on ϵ so that
$$\frac{d^2}{dt^2} V_{\varphi_R}(t) \leq -1.$$

Note that in both cases, the choices of $\epsilon > 0$ and $R > 1$ are independent of t. Therefore, the claim follows with $b = \min\{4a, 1\} > 0$.

Step 3. By Step 2, the solution $u(t)$ satisfies
$$\frac{d^2}{dt^2} V_{\varphi_R}(t) \leq -b < 0,$$

for any $t \in [0, T)$. The convexity argument of Glassey (see e.g. [21]) implies that the solution blows up in finite time. The proof is complete. \qed

Acknowledgments

V. D. Dinh would like to express his deep gratitude to his wife-Uyen Cong for her encouragement and support. The authors would like to thank the reviewers for their helpful comments and suggestions.

References

[1] A. Bensouilah, L^2 concentration of blow-up solutions for the mass-critical NLS with inverse-square potential, preprint arXiv:1803.05944, 2018. 1, 2
[2] A. Bensouilah, V. D. Dinh, Mass concentration and characterization of finite time blow-up solutions for the nonlinear Schrödinger equation with inverse-square potential, preprint arXiv:1804.08375, 2018. 1
[3] A. Bensouilah, V. D. Dinh, S. Zhu, On stability and instability of standing waves for the nonlinear Schrödinger equation with inverse-square potential, preprint, arXiv:1805.01245, 2018. 1, 2
[4] H. Berestycki, T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris 293 (1981), 489–492. 1
[5] D. Bonheure, J. B. Castéras, T. Gou, L. Jeanjean, Strong instability of ground states to a fourth order Schrödinger equation, Int. Math. Res. Not. 2017, No. 00, 1–17. 9
[6] J. M. Bouclet, H. Triadou, Uniform resolvent and Strichartz estimates for Schrödinger equations with critical singularities, to appear in Trans. Amer. Math. Soc. 2018. 1
[7] T. A. Bui, P. D’Ancona, X. T. Duong, J. Li, F. K. Ly, Weighted estimates for powers and smoothing estimates of Schrödinger operators with inverse-square potentials, J. Differential Equations 262 (2017), No. 3, 2771–2807. 1
10

[8] N. Burq, F. Planchon, J. G. Stalker, A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal. 203 (2003), No. 2, 519–549. 1, 6

[9] K. M. Case, Singular potentials, Physical Rev. 80 (1950), No. 2, 797–806. 1

[10] H. E. Camblong, L. N. Epele, H. Fanchiotti, C. A. Garcia Canal, Quantum anomaly in molecular physics, Phys. Rev. Lett. 87 (2001), No. 22, 220302. 1

[11] T. Cazenave, P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys. 85 (1982), No. 4, 549–561. 1

[12] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics 10, Courant Institute of Mathematical Sciences, AMS, 2003. 1, 6

[13] Y. Cho, M. M. Fall, H. Hajaiej, P. A. Markowich, S. Trabelsi, Orbital stability of standing waves of a class of fractional Schrödinger equations with Hartree-type nonlinearity, Anal. Appl. (Singap.) 15 (2017), No. 5, 699–729. 1

[14] E. Csoobo, F. Genoud, Minimal mass blow-up solutions for the L^2 critical NLS with inverse-square potential, Nonlinear Anal. 168 (2018), 110–129. 1

[15] V. D. Dinh. Global existence and blowup for a class of the focusing nonlinear Schrödinger equation with inverse-square potential, preprint arXiv:1711.04792, 2017. 1, 2, 3, 7, 8

[16] B. Feng, H. Zhang, Stability of standing waves for the fractional Schrödinger-Hartree equation, J. Math. Anal. Appl. 460 (2018), No. 1, 352–364. 1

[17] G. Fibich, The nonlinear Schrödinger equation: singular solutions and optical collapse, Springer, 2015. 1

[18] R. Fukuiizumi, Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential, Discrete Contin. Dyn. Syst. 7 (2001), 525–544. 2

[19] R. Fukuiizumi, M. Ohta, Instability of standing waves for nonlinear Schrödinger equations with potentials, Differential Integral Equations 16 (2003), 691–706. 2

[20] N. Fukaya, M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with attractive inverse power potential, preprint arXiv:1804.02127. 2018. 2, 3

[21] R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation, J. Math. Phys. 18 (1977), 1794–1797. 9

[22] M. Grillakis, J. Shatah, W. A. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987), 160–197. 1, 2

[23] M. Grillakis, J. Shatah, W. A. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990), 308–348. 1, 2

[24] H. Kalf, U. W. Schmincke, J. Walter, R. Wust, On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials, in: Spectral Theory and Differential Equations, 182-226, Lect. Notes in Math. 448, Springer, Berlin, 1975. 1

[25] H. Kikuchi, M. Ohta, Instability of standing waves for the Klein-Gordon-Schrödinger system, Hokkaido Math. J. 37 (2008), No. 4, 735–748. 2

[26] R. Killip, C. Miao, M. Visan, J. Zhang, J. Zheng, The energy-critical NLS with inverse-square potential, Discrete Contin. Dyn. Syst. 37 (2017), No. 7, 3831–3866. 1

[27] R. Killip, J. Murphy, M. Visan, J. Zheng, The focusing cubic NLS with inverse-square potential in three space dimensions, Differential Integral Equations 30 (2017), No. 3-4, 161–206. 1, 2

[28] R. Killip, C. Miao, M. Visan, J. Zhang, J. Zheng, Sobolev spaces adapted to the Schrödinger operator with inverse-square potential, Math. Z. 288 (2018), No. 3-4, 1273–1298. 1

[29] S. Le Coz, A note on Berestycki-Cazenave’s classical instability result for nonlinear Schrödinger equations, Adv. Nonlinear Stud. 8 (2008), 455–463. 1

[30] S. Le Coz, Standing waves in nonlinear Schrödinger equations, in: Analytical and Numerical Aspects of Partial Differential Equations, Walter de Gruyter, Berlin, 2009, 151–192. 1

[31] E. H. Lieb, M. Loss, Analysis, Second Edition, Graduate Studies in Mathematics 14, AMS, 2001. 2

[32] J. Lu, C. Miao, J. Murphy, Scattering in H^1 for the intercritical NLS with an inverse square potential, J. Differential Equations 264 (2017), No. 5, 3174–3211. 1

[33] H. Mizutani, Remarks on endpoint Strichartz estimates for Schrödinger equations with the critical inverse-square potential, J. Differential Equations 263 (2017), No. 7, 3832–3853. 1

[34] N. Okazawa, T. Suzuki, T. Yokota, Cauchy problem for nonlinear Schrödinger equations with inverse-square potentials, Appl. Anal. 91 (2012), No. 8, 1605–1629. 1

[35] N. Okazawa, T. Suzuki, T. Yokota, Energy methods for abstract nonlinear Schrödinger equations, Evol. Equ. Control Theory 1 (2012), 337–354. 1, 5, 6

[36] M. Ohta, T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with double power nonlinearity, SUT J. Math. 51 (2015), 49–58. 2

[37] M. Ohta, T. Yamaguchi, Strong instability of standing waves for nonlinear Schrödinger equations with a delta potential, in: Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, Kyoto University, B56(2016), 79–92. 2

[38] M. Ohta, Instability of standing waves for the generalized Davey-Stewartson system, Ann. Inst. H. Poincaré Phys. Théor. 62 (1995), 69–80. 2

[39] M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with harmonic potential, Funkcial. Ekvac. 61 (2018), 135–143. 2, 3

[40] M. Ohta, Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement, Commun. Pure Appl. Anal. 17 (2018), No. 4, 1671–1680. 2, 3

[41] C. Peng, Q. Shi, Stability of standing waves for the fractional nonlinear Schrödinger equation, J. Math. Phys. 59 (2018), 011508. 1

[42] T. Suzuki, Critical case of nonlinear Schrödinger equation with inverse-square potentials on bounded domains, Math. Bohem. 139 (2014), No. 2, 231–238. 1
[43] T. Suzuki, *Nonlinear Schrödinger equations with inverse-square potentials in two dimensional space*, Dynamical Systems and Differential Equations, AIMS Proceedings 2015, 1019–1024. 1

[44] T. Suzuki, *Virial identities for nonlinear Schrödinger equations with a critical coefficient inverse-square potential*, Differ. Equ. Appl. 9 (2017), No. 3, 327–352. 1

[45] G. P. Trachanas, N. B. Zographopoulos, *Orbital stability for the Schrödinger operator involving inverse-square potential*, J. Differential Equations 259 (2015), No. 10, 4989–5016. 1

[46] M. I. Weinstein, *Modulational stability of ground states of nonlinear Schrödinger equations*, SIAM J. Math. Anal. 16 (1985), 472–491. 1

[47] M. I. Weinstein, *Lyapunov stability of ground states of nonlinear dispersive evolution equations*, Comm. Pure Appl. Math. 39 (1986), 51–67. 1

[48] J. Zhang, *Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials*, Z. Angew. Math. Phys. 51 (2000), No. 3, 498–503. 1

[49] J. Zhang, *Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential*, Comm. Partial Differential Equations 30 (2007), 1429–1443. 1

[50] J. Zhang, J. Zheng, *Scattering theory for nonlinear Schrödinger equations with inverse-square potential*, J. Funct. Anal. 267 (2014), No. 8, 2907–2932. 1

[51] J. Zhang, S. Zhu, *Stability of standing waves for the nonlinear fractional Schrödinger equation*, J. Dynam. Differential Equations 29 (2017), No. 3, 1017–1030. 1

[52] S. Zhu, *Existence of stable standing waves for the fractional Schrödinger equations with combined nonlinearities*, J. Evol. Equ. 17 (2017), No. 3, 1003–1021. 1

Laboratoire Paul Painlevé (U.M.R. CNRS 8524), U.F.R. de Mathématiques, Université Lille 1, 59655 Villeneuve d’Ascq Cedex, France
E-mail address: ai.bensouilah@math.univ-lille1.fr

Institut de Mathématiques de Toulouse UMR5219, Université de Toulouse CNRS, 31062 Toulouse Cedex 9, France
E-mail address: dinhvan.duong@math.univ-toulouse.fr