Browser Forensic for Cyber Fraud Case on Facebook Messenger Services using National Institute of Standard Technology Method

Chelsea Sept. Thiani Puri
Department of Information System
Universitas Ahmad Dahlan
Yogyakarta of Indonesia

Imam Riadi
Department of Information System
Universitas Ahmad Dahlan
Yogyakarta of Indonesia

ABSTRACT
Technology in the field of communication has increased over time, advances in communication technology can make it easier for people to interact in real-time and online using instant message. Facebook Messenger is one of the instant messaging applications that is widely used, besides being able to provide good effects, it also cannot avoid bad effects as a medium for committing internet crimes, internet crimes that can be committed through the Facebook Messenger service include online fraud, bullying, extortion, the spread of pornography, and others. In this study using a scenario of online social gathering fraud cases through the Facebook Messenger service running on the Chrome web browser by applying the NIST stages consisting of Collection, Examination, Analysis, and Reporting and using tools forensic consisting of Belkasoft Live RAM Capturer, FTK Imager, Browser History Capturer, Browser History Examiner, and Browser History Viewer. The percentage of results that have been obtained from Capture RAM using the Belkasoft Live RAM Capturer forensic tool which is read using the FTK Imager tool is 80% successful in obtaining evidence of Email, Password, Conversation Text and Web Browser History. In the capture results from the Chrome browser using the tool Browser History Capturer which was read with the forensic tool Browser History Examiner 40% succeeded in obtaining evidence of Email and Web Browser History, and using the tool Browser History Viewer 40% succeeded in obtaining Images and Web Browser History. The results of this research succeeded in obtaining digital evidence from fraud cases using a forensic process.

Keywords
Forensics, Browser, Messenger, Cybercrime, NIST

1. INTRODUCTION
Advances in communication technology can make it easier for people to interact in real-time and online using instant messages that can be used as a communication medium to make it easier for an individual to send messages to other individuals with a wide range by utilizing the internet network. Facebook Messenger is one of the popular instant messaging applications used and can be accessed using a smartphone or website that is connected to an internet connection. Facebook Messenger in addition to being able to provide good effects for users, the application also cannot avoid the bad effects carried out by an individual by abusing it as a medium in committing criminal crimes. Criminal crimes committed by perpetrators by using social media as a medium for committing crimes in cyberspace such as online fraud, extortion, spreading pornography, drug trafficking, planning murder, or bullying [1].

1.1 Study Literature

1.1.1 Previous Study
This research refers to five previous studies, namely:

Anton Yudhana, Imam Riadi, Ikhwans Anshori (2018) entitled "Analysis of Digital Evidence for Facebook Messenger Using the NIST Method". This research was conducted using a Galaxy V + smartphone that has the Facebook Messenger application. This research was conducted to find digital evidence on the Facebook Messenger application using the Oxygen forensic tool. The results of this study collected digital evidence in the form of conversational texts, audio and images that could not be found were videos[2].

Mulia Fitriana, Khairan AR, Jwma Malem Marsya (2020) entitled "Application of the National Institute of Standards and Technology (NIST) Method in Digital Forensic Analysis for Cybercrime Handling". This study investigates pornographic cases conducted on the Whatsapp application to collect deleted digital evidence in the form of conversation texts, contact lists, profile photos, and others using the tool Whatsapp Viewer[3].

Rauhulloh Ayutulloh Khoemini Noor Bintang, Rusydi Umar, Anton Yudhana (2020) entitled "Analysis of Facebook Lite Social Media With Forensic Tools Using the NIST Method". This research was conducted using the Galaxy J2 Smartphone to make a post, in an investigation, to obtain digital evidence using the MOBILEdit Forensic tool. The results that have been obtained in this study are in the form of user ID, images, audio, and videos [4].

Moh. Riski Pandiy (2020) entitled "Forensic Investigation of Digital Evidence in Revealing Cybercrime". The research uses the static forensic method with the object of research is a USB flash disk. Different treatments performed on flash disks obtained different results by showing different hash values for each treatment. The results of the analysis of the first and second treatments, namely all experimental results and those that had been stored before reformatting were successfully detected or recovered, while in the third treatment they did not get any results[5].

Ikhwans Anshori, Khaireina Eka Setya Putri, Umar Ghoni (2020) entitled "Analysis of Digital Evidence for the Facebook Messenger Application on Android Smartphones Using the NIJ Method". This research was conducted using...
the Galaxy V+ Plus Smartphone to obtain digital evidence from the Facebook Messenger application. The results of this study obtained evidence with a success rate of getting a 100% account, 55% chat, and 86% pictures using the MOBILIEdit Forensic Express and Magnet AXIOM tools while using the Oxygen Forensic tool we managed to get a 100% account, 5% chat, and 86% pictures[6].

1.1.2 Digital Forensics
Digital forensics is the science of the process of maintaining, collecting, validating, analyzing, interpreting, documenting, and presenting digital data from electronic devices[7]. Forensics is an activity in conducting investigations and determining facts related to criminal crimes and other legal matters[8]. Digital forensics performs the process of recovering and analyzing data originating from digital devices such as smartphones, tablets, or computers [9]. There are two techniques used in digital forensics, namely live forensics, namely techniques to obtain RAM data from systems that are running or live (volatile), and static forensics, namely techniques to obtain data from permanent (non-volatile) storage such as hard disks, flash drives, CDs, SSDs[10].

1.1.3 Web Browser
Web browser is a software that can be used to access websites on the internet to obtain detailed information. Web information resources are identified with the Uniform Resource Identifier (URI) and as web pages, images, videos, or other media[11]. Web browsers can store browser history activities used by users in the form of information on websites visited, stored data or images, search information, cookies, and other information[12]. Several types of popular browsers that are often used are Google Chrome, Internet Explorer, Mozilla Firefox, Safari[13].

1.1.4 Digital Evidence
Evidence is data that has been obtained or recovered from an electronic device[14]. Digital evidence is information and data that has value for the investigation that is stored, sent, or received through electronic media[15]. Digital evidence is susceptible to changes that can affect the authenticity of the data if not handled properly. If there is a change in digital evidence it can cause the results in it to be wrong or the evidence to be useless[16]. Evidence of a cybercrime case is divided into two types, namely electronic evidence that is tangible in physical form from digital storage or device, while digital evidence is document files, log files, or history files in the form of data obtained from the extraction of evidence files from cybercrime cases[17]. Criminals in eliminating traces of actions will hide or delete all data obtained in criminal crimes that have been committed[18].

1.1.5 Facebook Messenger
Facebook Messenger is an instant messaging application that can be used via a smartphone, tablet, or computer. The services available in this application are sending messages in the form of text or voice to communicate. Facebook Messenger has services in the form of text, voice, or video messages to communicate[19].

1.1.6 Cybercrime
Cybercrime is an act that is carried out by utilizing digital devices and internet networks as a medium in committing crimes to gain profits at the expense of other parties[20]. Cybercrime is a crime using computer equipment as a means of crime and digital forensics will provide answers related to digital crimes that occur with the questions of when, what, who, where, how, and why[21]. Cybercrime or cybercrime has a difference from crimes committed in person. The impact of crimes committed through social media is very influential on the victims[22]. Evidence of criminal crimes committed by users through social media can be identified by analyzing volatile data contained in RAM[23]. Cybercrime cases committed will leave a digital trace of the crime, the digital trace can be used as evidence[24].

1.1.7 Fraud
Fraud is a form of crime by committing various lies to gain individual or group benefits at the expense of other parties as described in Article 37 of the Criminal Code. One of the frauds committed is fraud in electronic transactions by utilizing electronic devices connected to an internet connection and carrying out various modes of fraud[25].

1.1.8 National Institute of Standard Technology
National Institute of Standard and Technology (NIST) is used to carry out the analytical steps of digital evidence or apply steps to obtain information data from digital evidence[26].

Figure 1. Stages of the National Institute of Standard and Technology
Figure 1 shows the stages of NIST which consist of several stages, namely as follows[27]:
1. Collection
 Stage Collection is a series of data collection processes that include the process of identification, labeling, documentation, data retrieval from relevant data sources by protecting data integrity.
2. Examination
 Stage Examination is the stage of examining data that has been collected using a forensic process automatically or manually by ensuring that the data obtained are genuine.
3. Analysis
 Stage Analysis is the stage of analyzing data from the results of previous examinations, the data results will be analyzed in detail and thoroughly using methods that are justified by techniques and laws in proving the data.
4. Reporting
 Stage Reporting is the stage of reporting the final results after obtaining digital evidence from the examination process and the results of the analysis of the investigated case are used as acceptable evidence.

2. METHODOLOGY
2.1 Research Scenario
Scenarios are needed to explain the stages of the forensic process in analyzing and obtaining evidence from web-based Facebook Messenger. In this research scenario, the evidence found is a notebook that will be investigated. The flow of this research case scenario can be seen in Figure 2.
Figure 2. Flow of the Research Scenario

Figure 2 shows the flow of the case scenario of this research which started from the perpetrator accessing Facebook Messenger through the Chrome browser. The perpetrator sends a message to the victim by offering an online social gathering slot, after the victim is interested in joining the social gathering then the perpetrator will ask the victim to send money to the perpetrator's account, the victim who feels disadvantaged because he does not get the results of the gathering then reports the incident to the police. The police will carry out the process of investigating the crime by securing evidence in the form of a laptop used by the perpetrator and submitting it to the investigator to investigate the evidence of the crime.

2.2 Research Stages

In the implementation stage, an investigator will carry out a series of search and data collection processes to obtain information related to the crime. The evidence was carried out through a web-based Facebook Messenger using a laptop by applying the NIST stage. The stages to be carried out consist of Collection, Examination, Analysis, Reporting.

2.2.1 Collection

The Collection stage is the initial stage of a series of data collection processes to support the investigation process in obtaining digital evidence. The evidence obtained was a laptop used by the perpetrators of the crime with the condition turned on and a charging cable. Information on the evidence belonging to the perpetrator can be seen in Table 1.

No	Evidence	Picture	Description
1	Laptop of the perpetrator	![Laptop of the perpetrator](image)	Laptop of the perpetrator, Asus was found at the scene in a condition that is turned on and connected to an internet connection
2	Charger	![Charger](image)	The cable charging used by the perpetrator

Table 1: Evidence Found at the Crime Scene

Figure 3 shows RAM data capture has been successfully carried out, the results of RAM data acquisition will be stored on partition D in the SKRIPSI/Research/RAM 4 folder with the RAM data size of 5872 MB. The result obtained from the acquisition of RAM is a file named 20211001 in .mem format with a size of 6,012,928 KB.

2.2.2 Examination

This stage is carried out by acquiring data contained in the perpetrator's laptop. The data acquisition process will be carried out using forensic tools to obtain activity history data from RAM storage and activity history from the web browser used by criminals while maintaining the authenticity of the data.

2.2.2.1 Belkasoft RAM Capturer

Belkasoft Live RAM Capturer is a forensic tool used to capture memory or RAM data acquisition from a criminal's laptop. The duration of the acquisition time depends on the RAM storage capacity of the criminal's laptop.

Figure 4 shows the imaging process carried out from the acquisition of RAM with the 20211001.mem file in partition D with the SKRIPSI\Penelitian\RAM 4\2021001.mem folder which will be stored in another storage in partition E with the Penelitian\Hasil folder.
Figure 5. Hash Value Results

Figure 5 shows the hash value of the imaging results, there are two hash values, namely MD5 Hash and SHA1 Hash which are verified to match the original file. The same hash value indicates that the imaging process performed on the file has been successful with no changes.

2.2.2.3 Browser History Capturer

Browser History Capturer is a forensic tool used to retrieve data from web browsers used by perpetrators to commit crimes. Browser History Capturer can retrieve data from web browsers Chrome, Edge, Firefox, Internet Explorer & Legacy and the data can be obtained in the form of history, cache, and deleted history.

Figure 6. The Browser Capture Process Has Been Completed

Figure 6 shows the data capture process from the web browser used by the perpetrator has been successful. The capture results will be saved on partition D in the SKRIPSI\Penelitian\Browser Capture folder.

Figure 7. Cache and History Folders in the Capture Folder

Figure 7 shows the browser capture results that have been saved under the name of the Capture folder. In the Capture folder, there are two other folders named Cache and History.

2.2.3 Analysis

Stage Analysis is the stage to analyze or read the results of the data that has been obtained from the previous process. The results of the data will be examined in detail and thoroughly to obtain information as needed while maintaining the integrity of the data.

2.2.3.1 Browser History Examiner

Browser History Examiner is a forensic tool used to analyze or read the captured results from the Chrome browser obtained from the Browser History Capturer at the Examination stage. The results obtained from this tool are Bookmarks, Browser Settings, Cached Files, Cached Images, Cached Web Pages, Cookies, Downloads, Email Addressed, Favicons, Form History, Logins, Searches, Session Tabs, Thumbnails, and Website Visits.

Figure 8. Load History from the Capture Folder

Figure 8 shows the load history menu display to select the data file to be used. In the “Select Capture Folder” section select the browser capture file located on partition D in the SKRIPSI\Penelitian\Browser Capture\Capture folder then click the “Load” button to continue the analysis process using the Browser History Examiner.

Figure 9. Display of the Browser History Examiner Tool

Figure 9 shows the results of data capture from the chrome browser which displays information on the type of artifacts you want to see from the chrome browser, browser history that has been accessed, graphs of browser access time, and search features to make it easier to search data using word filters, key, date, or web browser.
Figure 10. Perpetrator’s Email Used to Login Messenger

Figure 10 shows the email belonging to the perpetrator in logging in to the Facebook Messenger service with the email address percobaanpenipuan@gmail.com which was accessed via the chrome web browser on October 01, 2021.

2.2.3.2 Browser History Viewer

Browser History Viewer is a forensic tool used to view or read the capture results from the chrome browser that have been obtained from the Browser History Capturer at the Examination stage. The results obtained from this tool are Website History and Cached Images from the chrome web browser. This data can be used as digital evidence in court.

Figure 11. Website History Results in Browser History Viewer

Figure 11 shows the results from website history with the results of the history of messenger pages that have been accessed. The results of the history show that the perpetrator accessed Facebook Messenger on October 1, 2021 at 07:08:24 using the chrome web browser.

Figure 12. Cached Images Perpetrator’s Profile Photo

Figure 12 shows the results of Cached Images in the form of a profile photo of the perpetrator's messenger account which was successfully taken from the chrome browser on October 01, 2021 at 08:35:34.

Figure 13. Cached Images Victim's Profile Photo

Figure 13 shows the results of Cached Images in the form of a profile photo of the victim's Messenger account which was successfully taken from the chrome browser on October 1, 2021, at 08:35:33.

Figure 14. Cached Images of Payment Proofs

Figure 14 shows the results of Cached Images in the form of photos of proof of online social gathering payments sent by the victim to the perpetrator which were successfully taken from the chrome browser on October 1, 2021, at 08:35:35.

2.2.3.3 FTK Imager

The result of the RAM acquisition process using Belkasoft Live RAM Capturer produces a file named 20211001001 with .mem format. The file will be used to obtain digital evidence using the FTK Imager tool.

Figure 15. File from the Acquisition of RAM

Figure 15 displays files from the acquisition of RAM, the file will be analyzed and read the contents of the file to obtain information related to the crimes committed.

Figure 16. Results of Email Login Messenger Perpetrator’s

Figure 16 shows the search results with the parameter "Messenger". The email used by the perpetrator to log in to Messenger is percobaanpenipuan@gmail.com with the URL https://www.messenger.com/login/password.

Figure 17. The perpetrator's Password Messenger

Figure 17 shows the findings in the form of a password from the perpetrator's Facebook Messenger account, namely penipuan.
Figure 18. Evidence of the First Conversation

Figure 18 shows the findings using the “arisan” parameter. The search results obtained a text conversation sent by the perpetrator to the victim containing an online social gathering offer with a certain total income.

Figure 19. Evidence of the Second Conversation

Figure 19 shows the findings in the form of a conversation text about the victim asking for an empty social gathering number slot.

Figure 20. Evidence of the Third Conversation

Figure 20 shows the findings in the form of a conversation text about the perpetrator agreeing and asking the victim which slot to follow.

Figure 21. Evidence of the Fourth Conversation

Figure 21 shows the findings in the form of a conversation text about the victim informing the perpetrator that the victim has sent the arisan money to the victim's account number.

Figure 22. Evidence of the Fifth Conversation

Figure 22 shows the findings in the form of a text conversation about the perpetrator asking the victim to send money to the account number listed.

Figure 23. Evidence of the Sixth Conversation

Figure 23 shows the findings in the form of a text conversation about the perpetrator reminding the victim to send proof of transfer of arisan money to the perpetrator's account.

Figure 24. Evidence of the Seventh Conversation

Figure 24 shows the findings in the form of a text conversation about the victim informing the perpetrator that the victim has sent the arisan money to the victim's account number.

Figure 25. Evidence of the Eighth Conversation

Figure 25 shows the findings in the form of a conversation text about the perpetrator informing the victim if the arisan disbursement will be accepted.

2.2.4 Reporting

Reporting is the last stage carried out by investigators after obtaining digital evidence. At this stage, the investigator will make a documentation report from the results of the analysis on the evidence found in detail. This Reporting stage explains the identification carried out, an explanation of the forensic process, and the data resulting from the use of forensic tools. The evidence found in this study will be compared with the evidence provided by the victim, which can be seen in Table 2.

Table 2. Findings Evidence from the perpetrator's laptop

Evidence of messenger conversations from the victim's smartphone	The results of evidence found from the perpetrator's laptop
Evidence of evidence conversations from the victim's smartphone	The results of evidence found from the perpetrator's laptop
Based on Table 2, the digital evidence found on the perpetrator's laptop in the form of a history of conversational texts sent via Facebook Messenger has similarities with the conversation evidence provided by the victim. In the table, it can be seen that the perpetrator is the person who communicated with the victim via Facebook messenger, the digital evidence found on the perpetrator's laptop has similarities with the evidence of the conversation history on Facebook Messenger on the victim's smartphone such as conversation text and images.

2.2.5 Results
Results of the analysis that have been carried out in this study using forensic tools to obtain digital evidence and carry out forensic processes on Facebook Messenger running on the Chrome web browser. The results of the analysis process using a forensic tool can be seen in Table 3.

No	Information	Forensic Tools
		Belkasoft + FTK Imager
		Browser History Capturer + Browser History Examiner
		Browser History Viewer
1	Email	✓
2	Password	✓
3	Images	
4	Text Conversation	✓
5	Browser History	✓

Table 3 shows the results of the analysis that has been carried out on the Facebook Messenger service running on the Chrome web browser using forensic tools. The results obtained after performing the RAM Capturer to see RAM activity whose results were analyzed using FTK Imager managed to obtain digital evidence in the form of an email used by the perpetrator to log in to Messenger (percobaanpenipuan@gmail.com) and password (fraud), conversation text, and history, browsers. The Browser History Capturer tool that is used to capture the browser to view the history or activity of the web browser will be analyzed using the Browser History Examiner and Browser History Viewer. The Browser History Capturer tool managed to obtain digital evidence in the form of the perpetrator's email and web browser history. The Browser History Viewer tool managed to obtain digital evidence in the form of Images and Web Browser History.

3. CONCLUSION
The forensic process carried out with fraud cases on the web-based Facebook Messenger service has succeeded in obtaining digital evidence of the perpetrator's messenger account email, the perpetrator's messenger account password, images sent by the victim, profile photos of the perpetrator, and the victim, the text of the conversation between the perpetrator and the victim, and history web browser using forensic tools. The results were obtained using the tool Belkasoft Live RAM Capturer which was read using the tool FTK Imager with a percentage of 80% obtained evidence of Email, Password, Conversation Text, and Web Browser History. The results of browser capture using the tool Browser History Capturer which is read with the tool Browser History Examiner with a percentage of 40% obtain evidence of Email and Web Browser History. The tool Browser History Viewer which is read with a percentage of 40% obtain evidence of Images and Web Browser History. This research applies the stages of the National Institute of Standard Technology (NIST), so that future research is expected to use different stages. This research using the Windows 10 operating system and using Chrome web browser, further research can be carried out on other operating systems, such as Linux and macOS by using other web browsers.

4. REFERENCES
[1] Y. N. Kunang and A. Khristian, "Implementation of Forensic Procedures for Whatsapp Artifact Analysis on
Analysis of Digital Forensics in Android Phones,” vol. 2, no. 1, pp. 59–68, 2016.

[2] A. Yudhana, I. Riadi, and I. Anshori, “Analysis of Digital Evidence for Facebook Messenger Using the Nist Method,” Int. J. Res. Dev., vol. 3, no. 1, pp. 13–21, 2018, doi: 10.25299/ijird.2018.vol3(1).1658.

[3] M. Fitriana, K. A. AR, and J. M. Marsya, “Application of the National Institute of Standards and Technology (Nist) Methods in Digital Forensic Analysis for Handling Cyber Crime,” Cybersp. J.PENDIDIK. TEKNOLOG. INF., vol. 4, no. 1, p. 29, 2020, doi: 10.22373/cj.v4i1.7241.

[4] R. A. Bintang, R. Umar, and A. Yudhana, “Analysis of Facebook Lite Social Media with Forensic tools using the NIST Method,” Techno (Jurnal Fak. Tek. Univ. Muhammadiyah Purwokerto), vol. 21, no. 2, p. 125, 2020, doi: 10.30955/techno.v21i2.8494.

[5] M. Riskiyyadi, “Forensic Investigation of Digital Evidence in Revealing Cybercrime,” Cyber Secur. dan Forensik Digit., vol. 3, no. 2, pp. 12–21, 2020, doi: 10.14421/security.2020.3.2.2144.

[6] I. Anshori, K. E. Setya Putri, and U. Ghoni, “Analysis of Digital Evidence on Facebook Messenger Applications on Android Smartphones Using the NII Method,” IT J. Res. Dev., vol. 5, no. 2, pp. 118–134, 2020, doi: 10.25299/ijitrd.2021.vol5(2).4664.

[7] N. Nasiruddin, S. Sunardi, and I. Riadi, “Forensic Analysis of Android Smartphones Using the NIST Method and the MOBILedit Forensic Express Tool,” J. Inform. Univ. Pamulang, vol. 5, no. 1, p. 89, 2020, doi: 10.32493/informatika.v5i1.4578.

[8] N. Anggraini et al., “Forensic Analysis of Whatsapp Messenger on Android Smartphones,” vol. XII, no. 1, pp. 83–100, 2020.

[9] M. Iqbal and I. Riadi, “Forensic WhatsApp based Android using National Institute of Standard Technology (NIST) Method,” Int. J. Comput. Appl., vol. 177, no. 8, pp. 1–7, 2019, doi: 10.5120/ijca2019919443.

[10] M. F. Sidiq and M. N. Faiz, “Review of Web Browser Forensics Tools to Support Digital Evidence Searching,” J. Edukasi dan Penelit. Inform., vol. 5, no. 1, p. 67, 2019, doi: 10.26418/jpi.v5i1.31430.

[11] T. Rochmadi, “Live Forensics for Anti-Forensic Analysis on a Web Browser Case Study Browzar,” Indones. J. Bus. Intell., vol. 1, no. 1, p. 32, 2019, doi: 10.21927/jiubri.v1i1.878.

[12] W. Sanjaya, B. Sugiantoro, and Y. Prayudi, “An Offline Forensic Method For Digital Artifact Analysis In TOR Browser On Linux Operating System,” JITU J. Inform. Technol. Commun., vol. 4, no. 2, pp. 41–51, 2020, doi: 10.36596/jitu.v4i2.345.

[13] D. Setiawan, R. Setiawan, R. Karunia, and I. W. S. Wicaksana, “Comparing Web Browser Performance,” Ilmu Komput. Univ. Guna Dharma, vol. 1, no. 1, pp. 1–6, 2007.

[14] B. Y. Prasetyo and I. Riadi, “Investigation Cyberbullying on Kik Messenger using National Institute of Standards Technology Method,” Int. J. Comput. Appl., vol. 174, no. 17, pp. 34–41, 2021, doi: 10.5120/ijca2019210606.

[15] A. P. Utami, “Mobile Forensics Analysis of Line Messenger on Illegal Drug Transaction Case using National Institute of Standard Technology (NIST) Method,” vol. 183, no. 32, pp. 23–33, 2021.

[16] R. Saputra and I. Riadi, “Forensic Browser of Twitter based on Web Services,” Int. J. Comput. Appl., vol. 175, no. 29, pp. 34–39, 2020, doi: 10.5120/ijca2020920832.

[17] I. Riadi, R. Umar, and I. M. Nasrullah, “Digital Forensic Analysis on Frozen Solid State Drive Using the National Institute of Justice (Nij),” Elinvo (Electronics, Informatics, Vocat. Educ.), vol. 3, no. 1, pp. 70–82, 2018, doi: 10.21831/elinvo.v3i1.19308.

[18] D. T. Yuwono and Y. W., “Comparative Analysis of File Carving with the Nist Method,” J. Sains Komput. dan Teknol. Inf., vol. 2, no. 2, pp. 1–6, 2020, doi: 10.33084/jsakti.v2i2.1472.

[19] T. D. Larasati, “Live Forensics Comparison of Instant Messenger Applications Live Forensics Analysis for Comparing Instant Messenger Applications (Line, Facebook, and Telegram) on Windows 10 Operating System. Live Forensics,” 2017.

[20] A. Fauzan, I. Riadi, and A. Fadilil, “Digital Forensics Analysis on Line Messenger for Cybercrime Handling,” Annu. Res. Semin., vol. 2, no. 1, pp. 159–163, 2017.

[21] V. R. G. Leri and I. Riadi, “Data Search for Pornographic Content on Twitter Services using National Institute of Standard and Technology (NIST) Method,” Int. J. Comput. Appl., vol. 183, no. 24, pp. 25–31, 2021, doi: 10.5120/ijca201921610.

[22] M. Jannah, “Forensic Browser on Line Messenger Services for Handling Cyberfraud using National Institute of Standard Technology Method,” vol. 183, no. 30, pp. 9–16, 2021.

[23] C. K. Herawati, “Forensic Browser on Facebook Services using National Institute of Standards Technology Method,” vol. 183, no. 30, pp. 17–24, 2021.

[24] W. Y. Sulistyo, I. Riadi, and A. Yudhana, “Application of SURF Techniques in Image Forensics for Digital Photo Engineering Analysis,” JUITA J. Inform., vol. 8, no. 2, p. 179, 2020, doi: 10.30595/juita.v8i2.6602.

[25] S. D. Utami, C. Carudin, and A. A. Ridha, “Application of NIST Methods Using Software,” Int. J. Comput. Appl., vol. 42, no. 6, 2021, doi: 10.5120/ijca2021921610.

[26] S. K. Saad, R. Umar, and A. Fadilil, “Live Forensic Analysis of Dropbox Applications on Android Using the NIST Method,” IT J. Res. Dev., vol. 5, no. 2, pp. 171–182, 2020, doi: 10.25299/ijitrd.2021.vol5(2).5731.