Surprising Conformers of the Biologically Important A·T DNA Base Pairs: QM/QTAIM Proofs

Ol’ha O. Brovarets’1,2†, Kostiantyn S. Tsiupa’1 and Dmytro M. Hovorun1,2*

1 Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine, 2 Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

For the first time novel high-energy conformers—A·T(WC) (5.36), A·T(wWC) (5.97), A·T(H) (5.78), and A·T(wH) (ΔG = 5.82 kcal·mol⁻¹) (See Graphical Abstract) were revealed for each of the four biologically important A·T DNA base pairs—Watson-Crick A·T(WC), reverse Watson-Crick A·T(rWC), Hoogsteen A·T(H) and reverse Hoogsteen A·T(rH) at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ε = 4 under normal conditions. Each of these conformers possesses substantially non-planar wobble (w) structure and is stabilized by the participation of the two anti-parallel N6H/N6H’…O4/O2 and N3H…N6 H-bonds, involving the pyramidalized amino group of the A DNA base as an acceptor and a donor of the H-bonding. The transition states – TS_A·T(WC)→A·T(wWC), TS_A·T(rWC)→A·T(wrWC), TS_A·T(H)→A·T(wH), and TS_A·T(rH)→A·T(wrH), controlling the dipole-active transformations of the conformers from the main plane-symmetric state into the high-energy, significantly non-planar state and vice versa, were localized. They also possess wobble structures similarly to the high-energy conformers and are stabilized by the participation of the N6H/N6H’…O4/O2 and N3H…N6 H-bonds. Discovered conformers of the A·T DNA base pairs are dynamically stable short-lived structures [lifetime τ = (1.4–3.9) ps]. Their possible biological significance and future perspectives have been briefly discussed.

Keywords: A·T DNA base pairs, Watson-Crick, reverse Watson-Crick, Hoogsteen, reverse Hoogsteen, wobble structure, DNA breathing, DNA pre-melting

INTRODUCTION

Investigation of the dynamics of the isolated DNA base pairs by both the experimental and especially theoretical methods is urgent biophysical task of exceptional importance (Keepers et al., 1982; Pechenaya and Volkov, 1984; Volkov, 1995; Auffinger and Westhof, 1999). At this, the researchers are convinced that exactly the intrinsic conformational dynamics of the DNA base pairs largely determines the functionally important dynamical behavior of DNA and this approach has no reasonable alternatives.

Spontaneous thermal fluctuations or breathing of DNA enables the opening of the DNA base pairs, making reactive their chemical groups, that are normally hidden inside the DNA double helix, available for hydrogen exchange involving imino and amino groups, chemical modification (e.g., by formaldehyde, that is a toxic, mutagenic and carcinogenic compound leading to fatal consequences
For the first time it was revealed novel high-energy conformers A·T(w WC) (5.36), A·T(wrWC) (5.97), A·T(wH) (5.78) and A·T(wrH) (ΔG = 4.98 kcal/mol under normal conditions) at the MP2/aug-cc-pVDZ/B3LYP/6-311++G(d,p) level of quantum-mechanical theory in the continuum with ε = 4.

or mutagenesis) and important protein-DNA interactions by the participation of the regulatory proteins (Lazurkin et al., 1970; Frank-Kamenetskii and Lazurkin, 1974; Lukashin et al., 1976; Chay, 1979; Frank-Kamenetskii, 1981, 1983, 1985; Guéron et al., 1987; Guéron and Leroy, 1995; von Hippel et al., 2013; Frank-Kamenetskii and Prakash, 2014). Notably, that reactions of the hydrogen exchange and formaldehyde interaction with DNA were the first documented cases evidencing the opening of the DNA base pairs (Lazurkin et al., 1970; Frank-Kamenetskii and Lazurkin, 1974; Lukashin et al., 1976; Chay, 1979; Guéron et al., 1987).

Moreover, it is believed that opening of the DNA base pairs with a defined probability ∼10^{-5} (Lazurkin et al., 1970; Frank-Kamenetskii and Lazurkin, 1974; Lukashin et al., 1976; Frank-Kamenetskii, 1981, 1985; Guéron et al., 1987; Guéron and Leroy, 1995; von Hippel et al., 2013; Frank-Kamenetskii and Prakash, 2014) precedes the melting of DNA, that is represent the two-state model according to which each base pair is suggested to stay in the closed or open states (Frank-Kamenetskii and Lazurkin, 1974; Lukashin et al., 1976; Chay, 1979; Frank-Kamenetskii, 1981, 1983; Guéron et al., 1987; Singh and Singh, 2017). Exactly this model could quantitatively explain in details the melting of DNA processing in the multistate way due the different length and heterogeneous sequence (Vologodskii et al., 1984; Wartell and Benight, 1985; Wada and Suyama, 1986; SantaLucia, 1998). At this, predicted lifetimes of the open state of the base pairs lie in the sub microsecond range (∼10^{-5} s) (Craig et al., 1971; Porschke and Eigen, 1971; Frank-Kamenetskii, 1971; Frank-Kamenetskii, 2011). However, according to the literature data it remains unknown, what the nature of the open state of the DNA base pairs is and whether there is a barrier on the potential energy surface for providing its existence (Lavery, 1994; Stofer et al., 1999; Yang et al., 2015).

It was also demonstrated by NMR experiment (Nikolova et al., 2011, 2013) a Hoogsteen breathing consisting in the flipping of the Watson-Crick DNA base pair from the usual anti-conformation to the less favorable syn-conformation with probability ∼10^{-2}, representing another pathway for the reaction of formaldehyde attack on DNA (Bohnud et al., 2012).

Since the model of two states—H-bonded base pair and opened base pair—is not able to describe in details the dynamical behavior of DNA, which experimentally manifests itself in a number of its physico-chemical properties (Lazurkin et al., 1970; Craig et al., 1971; Porschke and Eigen, 1971; Frank-Kamenetskii and Lazurkin, 1974; Lukashin et al., 1976; Chay, 1979; Frank-Kamenetskii, 1981, 1983; Guéron et al., 1987; Singh and Singh, 2017), the searching of new conformational states of the DNA base pairs near their Watson-Crick global minima has been intensified (Keepers et al., 1982; Pechenaya and Volkov, 1984; Volkov, 1995; Giudice et al., 2003; Coman and Russu, 2005; Nikolova et al., 2011, 2013; Bohnud et al., 2012; von Hippel et al., 2013; Frank-Kamenetskii and Prakash, 2014; Yang et al., 2015; Singh and Singh, 2017), the modeling of the conformational heterogeneity of the Watson-Crick A·T DNA base pair allowing the existence of the semiopen states in DNA, which is associated with the presence...
of the weak C2H…O2 H-bond in it, and their support by the semi-empirical quantum-chemical MNDO/H (Hovorun, 1997) and PM3 (Kryachko and Volkov, 2001) methods presented in the papers (Hovorun, 1997; Kryachko and Volkov, 2001) seems attractive. Moreover, none of these interesting ideas has been confirmed by ab initio methods.

Nowadays in the literature it does not present the data confirming the presence of the stable conformational states in the isolated Watson-Crick DNA base pairs, except canonical ones (Lavery, 1994; Stöfer et al., 1999). It is obviously connected with the lack of the new ideas according as the structural features of the complementary foundations, so the nature of the intermolecular interactions, first of all of the H-bonds responsible for the presence of the conformers, which differs from the classical ones.

In present work basing on our previous data (Brovarets’ and Hovorun, 2014a,b,c, 2015a,b; Glushenkov and Hovorun, 2016), we adhere to the idea that the pyramidalized amino group of the adenine (A) DNA base can simultaneously form two antiparallel N6H/N6H’…O4/O2 and N3H…N6 H-bonds with thymine (T) DNA base, thus supporting high-energy non-planar conformers of the biologically important A-T DNA base pairs. We succeeded to localize the transition states (TSs) connecting the main plane-symmetrical conformers of the A-T base pairs (global minimum) with the established significantly non-planar high-energy conformers. On the basis of the obtained data, we expressed the assumption according the possible biological importance of the discovered conformers of the canonical A-T DNA base pairs.

We chose as the object of the investigation of the biologically-important A-T DNA base pairs, in particular—Watson-Crick A-T(WC), reverse Watson-Crick A-T(rWC), Hoogsteen A-T(H) and reverse Hoogsteen A-T(rH) base pairs (Donohue and Trueblood, 1960; Haschemeyer and Sobell, 1963; Hoogsteen, 1963; Tchurikov et al., 1989; Liu et al., 1993; Parvathy et al., 2002; Sührnel, 2002; Zagryadskaya et al., 2003; Brovarets’, 2013a,b; Alvey et al., 2014; Nikolova et al., 2014; Yang et al., 2015; Poltev et al., 2016; Zhou, 2016; Sathyamoorthy et al., 2017; Szabat and Kierzek, 2017; Ye et al., 2017).

Thus, the reverse A-T(rWC) Watson-Crick or so-called Donohue DNA base pair (Donohue and Trueblood, 1960), which is formed by the rotation of one of the bases according to the other by 180° around the N1–N3 axis of the Watson-Crick A-T(WC) DNA base pair, has been registered in the bioactive parallel-stranded DNA (Tchurikov et al., 1989; Parvathy et al., 2002; Brovarets’, 2013a,b; Poltev et al., 2016; Szabat and Kierzek, 2017; Ye et al., 2017).

The A-T(H) Hoogsteen base pair (Hoogsteen, 1963) is formed due to the rotation on 180° of the A DNA base relative to the T DNA base around the C9–N9 axis from the anti (WC) to syn (H) conformation, representing itself alternative DNA conformation that is involved into a number of biologically important processes such as recognition, damage induction, replication and has been actively investigated in the literature (Hoogsteen, 1963; Brovarets’, 2013a,b; Alvey et al., 2014; Nikolova et al., 2014; Yang et al., 2015; Zhou, 2016; Sathyamoorthy et al., 2017). In particular, in the canonical DNA double helix Watson–Crick base pairs exist in a dynamic equilibrium with sparsely populated (~0.02–0.4%) and short-lived (lifetimes ~0.2–2.5 ms) Hoogsteen base pairs (Zhou, 2016).

At this, the reverse A-T(rH) Hoogsteen or so-called Haschemeyer–Sobell base pair (Haschemeyer and Sobell, 1963), that is formed by the rotation of one of the bases by 180° around the N7–N3 axis of the base pair according the other base (Brovarets’, 2013a,b), also plays important biological role (Liu et al., 1993; Sührnel, 2002; Zagryadskaya et al., 2003).

Computational Methods

Density Functional Theory Calculations of the Geometry and Vibrational Frequencies

Geometries of the main and high-energy conformers and transition states (TSs) of their mutual conformational transformations, as well as their harmonic vibrational frequencies have been calculated at the B3LYP/6-311++G(d,p) level of theory (Hariharan and Pople, 1973; Krishnan et al., 1980; Lee et al., 1988; Parr and Yang, 1989; Tirado-Rives and Jorgensen, 2008), using Gaussian’09 package (Frisch et al., 2010). Applied level of theory has proved itself successful for the calculations of the similar systems (Brovarets’ and Hovorun, 2010a,b, 2015c; Matta, 2010; Brovarets’ et al., 2015b). A scaling factor that is equal to 0.9668 has been applied in the present work for the correction of the harmonic frequencies of all conformers and TSs of their conformational transitions (Palafox, 2014; Brovarets’ and Hovorun, 2015c; Brovarets’ et al., 2015b; El-Sayed et al., 2015). We have confirmed the local minima and TSs, localized by Synchronous Transit-guided Quasi-Newton method (Peng et al., 1996), on the potential energy landscape by the absence or presence, respectively, of the imaginary frequency in the vibrational spectra of the complexes. We applied standard TS theory for the estimation of the activation barriers of the tautomerisation reaction (Atkins, 1998).

All calculations have been carried in the continuum with ε = 4, that adequately reflects the processes occurring in real biological systems without deprivation of the structurally functional properties of the bases in the composition of DNA and satisfactorily models the substantially hydrophobic recognition pocket of the DNA-polymerase machinery as a part of the replisome (Bayley, 1951; Dewar and Storch, 1985; Petrushka et al., 1986; Garcia-Moreno et al., 1997; Mertz and Krishtalik, 2000; Brovarets’ and Hovorun, 2014d,e).

Single Point Energy Calculations

We continued geometry optimizations with electronic energy calculations at the single point at the MP2/aug-cc-pVDZ level of theory (Frisch et al., 1990; Kendall et al., 1992).

The Gibbs free energy G for all structures was obtained in the following way:

\[G = E_{el} + E_{corr}, \]

where \(E_{el} \) — electronic energy, while \(E_{corr} \) — thermal correction.

Evaluation of the Interaction Energies

Electronic interaction energies \(\Delta E_{int} \) have been calculated at the MP2/6-311++G(2df,pd) level of theory as the difference between the total energy of the base pair and energies of the
Figure 1 | Reaction pathways of the discovered conformational transitions of the four biologically important A-T DNA base pairs. Electronic energies of the interaction ΔE_{int} (MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, in kcal mol$^{-1}$), relative Gibbs free energies ΔG and electronic energies ΔE (in kcal mol$^{-1}$), imaginary frequencies ν_i at the TSs of the conformational transitions (MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory in the continuum with $\varepsilon = 4$ at $T = 298.15$ K) are presented below pathways in brackets. Dotted lines indicate A-H···B H-bonds – their lengths are presented in angstroms (for more detailed physico-chemical characteristics of the H-bonds see Table 2); carbon atoms are in light-blue, nitrogen – in dark-blue, hydrogen – in gray and oxygen – in red.
monomers and corrected for the basis set superposition error (BSSE) (Boys and Bernardi, 1970; Gutowski et al., 1986) through the counterpoise procedure (Sordo et al., 1988; Sordo, 2001).

Estimation of the Kinetic Parameters

The time $\tau_{99.9\%}$ necessary to reach 99.9% of the equilibrium concentration of the reactant and product in the system of the reversible first-order forward (k_f) and reverse (k_r) reactions was estimated by the formula (Atkins, 1998):

$$\tau_{99.9\%} = \frac{ln10^3}{k_f + k_r}. \quad (2)$$

The lifetime τ of the conformers has been calculated using the formula $1/k_r$, where the values of the forward k_f and reverse k_r rate constants for the tautomerisation reactions were obtained as (Atkins, 1998):

$$k_{f,r} = \Gamma \cdot \frac{k_B T}{h} e^{-\frac{\Delta G_{f,r}}{RT}}, \quad (3)$$

where quantum tunneling effect has been accounted by Wigner's tunneling correction (Wigner, 1932), successfully used for the double proton reactions in DNA base pairs (Brovarets' and Hovorun, 2013, 2014c):

$$\Gamma = 1 + \frac{1}{24} \left(\frac{h v_f}{k_B T} \right)^2, \quad (4)$$

where k_B-Boltzmann's constant, h–Planck's constant, $\Delta G_{f,r}$–Gibbs free energy of activation for the conformational transition in the forward (f) and reverse (r) directions, v_f–magnitude of the imaginary frequency associated with the vibrational mode at the TSs.

QTAIM Analysis

Bader’s quantum theory of Atoms in Molecules (QTAIM) (Bader, 1990; Matta and Hernández-Trujillo, 2003; Matta et al., 2006a; Cukrowski and Matta, 2010; Matta, 2014; Lecomte et al., 2015), using program package AIMAll (Keith, 2010), was applied to analyse the electron density distribution. The presence of the bond critical point (BCP), namely the so-called (3,−1) BCP, and a bond path between hydrogen donor and acceptor, as well as the positive value of the Laplacian at this BCP ($\Delta \rho > 0$), were considered as criteria for the H-bond formation (Bader, 1990; Matta and Hernández-Trujillo, 2003; Matta et al., 2006a; Cukrowski and Matta, 2010; Matta, 2014; Lecomte et al., 2015). Wave functions were obtained at the level of theory used for geometry optimisation.

Calculation of the Energies of the Intermolecular H-bonds

The energies of the intermolecular uncommon H-bonds (Brovarets’ et al., 2013, 2015a) in the base pairs were calculated by the empirical Espinosa-Molins-Lecomte (EML) formula based on the electron density distribution at the (3,−1) BCPs of the specific contacts (Espinosa et al., 1998; Matta, 2006; Matta et al., 2006b; Mata et al., 2011; Brovarets’ et al., 2014a):

$$E = 0.5 \cdot V(r), \quad (5)$$

RESULTS AND THEIR DISCUSSION

For the first time we have detected on the potential (electronic) energy surface of each of the four biologically important A-T(WC), A-T(rWC), A-T(H) and A-T(rH) DNA base pairs the shallow local minima ($\Delta \Delta E < kT$ under normal conditions) corresponding to the dynamically stable A-T(WWC), A-T(wWC), A-T(wH) and A-T(wrH) conformers, correspondingly, with shifted, wobble (w) architecture (Figure 1). These conformers possess significantly non-planar structure (see Table 1 with the selected angles of the non-planarity) and C3 point group of symmetry. At this, the piramidalized amino group of the A DNA base is involved into the intermolecular H-bonding with T base through two anti-parallel N6H′...O4/O2 and N3H...N6 H-bonds in the A-T(WWC), A-T(wWC), A-T(wH) and A-T(wrH) DNA base pairs. In all conformers and TSs without exception the N3H...N6 H-bonds with significantly increased ellipticity are weaker than the N6H/N6H′...O4/O2 H-bonds (Table 2). These interactions should be attributed to the weak and medium H-bonds according to the existing classification (Saenger, 1984). Their most important characteristics are presented in Table 2. It should be noted that each of the four investigated A-T
Table 2 | Electron-topological, geometrical and energetic characteristics of the intermolecular H-bonds in the investigated conformers of the A-T DNA base pairs and TSs of their conformational transformations obtained at the B3LYP/6-311++G(d,p) level of theory (ε = 4) (see Figure 1).

Complex	AH–B H-bond	ρa	Δρb	100−c	dA...Bd	dh...Be	AH...Bf	EAH...Bg	μh
A·T(WC)	N6H...O4	0.026	0.092	4.69	2.945	1.928	174.6	4.70	2.47
	N3H...N1	0.036	0.090	6.74	2.919	1.878	178.4	7.22	
	C2H...O2	0.004	0.013	3.31	3.746	2.932	131.9	0.68*	
TS A·T(WC)→A·T(WC)	N6H...O4	0.023	0.081	1.95	2.981	1.996	162.2	4.19	3.98
	N3H...N6	0.007	0.021	82.90	3.498	2.685	137.2	2.63	
A·T(WrWC)	N6H...O4	0.020	0.072	1.98	3.000	2.049	154.6	3.85	3.71
	N3H...N6	0.010	0.030	31.69	3.337	2.484	141.1	2.35	
A·T(rH)	N6H′...O4	0.025	0.091	4.04	2.944	1.938	169.0	4.46	7.91
	N3H...N7	0.037	0.095	6.07	2.895	1.857	177.0	7.03	
	C8H...O2	0.004	0.014	3.16	3.728	2.910	132.3	0.68*	
TS A·T(rH)→A·T(rH)	N6H′...O4	0.022	0.079	2.05	2.989	2.004	168.3	4.18	3.88
	N3H...N6	0.006	0.019	97.29	3.546	2.753	135.2	2.35	
A·T(H)	N6H′...O4	0.021	0.075	2.64	2.983	2.033	154.4	4.01	8.29
	N3H...N6	0.009	0.028	34.33	3.370	2.527	140.1	1.55	
TS A·T(H)→A·T(H)	N6H′...O4	0.022	0.079	1.90	2.979	2.009	158.7	4.00	8.57
	N3H...N6	0.006	0.019	138.66	3.562	2.761	136.0	2.53	
A·T(H)	N6H′...O2	0.024	0.089	4.98	2.958	1.963	169.3	4.21	7.14
	N3H...N7	0.037	0.094	6.12	2.899	1.860	178.2	6.96	
	C8H...O2	0.004	0.014	10.97	3.607	2.936	120.4	0.68*	
TS A·T(H)→A·T(H)	N6H′...O2	0.022	0.079	1.17	2.983	2.012	159.0	3.78	8.75
	N3H...N6	0.006	0.018	139.56	3.639	2.866	133.5	2.57	
A·T(H)	N6H′...O2	0.020	0.069	2.88	2.998	2.072	150.5	3.71	8.26
	N3H...N6	0.010	0.032	21.42	3.308	2.455	141.1	1.55	

aThe electron density at the (3, −1) BCP of the H-bond, a.u.
bThe Laplacian of the electron density at the (3, −1) BCP of the H-bond, a.u.
cThe ellipticity at the (3, −1) BCP of the H-bond.
dThe distance between the A (H-bond donor) and B (H-bond acceptor) atoms of the AH…B H-bond, Å.
eThe distance between the H and B atoms of the AH…B H-bond, Å.
fThe H-bond angle, degree.
gThe energy of the H-bonds, calculated by logansen’s or Espinose-Molins-Lecomte (marked with an asterisk) formulas, kcal mol⁻¹.
hThe dipole moment of the complex, D.

DNA base pairs in the basic plane-symmetric conformation is stabilized by the participation of the three intermolecular H-bonds, one of which, namely, the C2H/C8H…O4/O2 is non-canonical (Brovarets’ et al., 2013, 2015a). For all A-T DNA base pairs without exception the middle N3H…N1/N7 H-bonds are the strongest (∼7 kcal mol⁻¹). At this, the total energy of the intermolecular H-bonds in each complex consists only some part of the total electronic energy of the interaction between the bases (Figure 1, Table 2). The same regularity is observed for the other DNA base pairs (Brovarets’ et al., 2014b; Brovarets’ and Hovorun, 2015d,e,f,g, 2016b). For all conformers without exception the amino H or H’ atom of the A DNA base, that directly takes part in the H-bonding with T DNA base, significantly deviates from the plane of the purine ring in comparison with the other H’ or H hydrogen atom (Table 1). In all cases the high-energy conformers of the biologically important A·T base pairs are more polar than main conformers (Table 2).

We have also localized the non-planar transition states of the A·T(WC)↔A·T(wWC), A·T(rWC)↔A·T(wrWC),...
TABLE 3 | Energetic and kinetic characteristics of the discovered conformational transitions of the four biologically important A-T DNA base pairs obtained at the MP2/E-311++G(2df,pd)/B3LYP/E-311++G(d,p) (marked by the asterisk) and MP2/aug-cc-pVDZ/B3LYP/E-311++G(d,p) (marked by the double asterisk) levels of theory in the continuum with \(\varepsilon = 4 \).

Conformational transition	\(\tau^a \)	\(\Delta G^b \)	\(\Delta E^c \)	\(\Delta \Delta G^d_{TS} \)	\(\Delta \Delta E^e_{TS} \)	\(\Delta G^f \)	\(\Delta \Delta G^g \)	\(k^h \)	\(k^i \)	\(\tau^j \) \%	\(\tau^k \)
A-T(WC) ↔ A-T(WWC)**	7.1	4.45	6.41	6.13	6.63	1.68	0.22	1.98 \(10^6 \)	3.62 \(10^{11} \)	1.91 \(10^{-11} \)	2.76 \(10^{-12} \)
A-T(WC) ↔ A-T(WWC)**	7.1	5.36	7.32	7.13	7.63	1.77	0.31	3.64 \(10^7 \)	3.11 \(10^{11} \)	2.22 \(10^{-11} \)	3.22 \(10^{-12} \)
A-T(WC) ↔ A-T(WWC)**	11.4	5.06	6.35	6.26	6.64	1.20	0.29	1.60 \(10^6 \)	8.16 \(10^{10} \)	8.47 \(10^{-10} \)	1.23 \(10^{-10} \)
A-T(WC) ↔ A-T(WWC)**	11.4	5.97	7.26	7.26	7.64	1.29	0.38	2.96 \(10^7 \)	7.03 \(10^{10} \)	9.83 \(10^{-10} \)	1.42 \(10^{-10} \)
A-T(WC) ↔ A-T(WWC)**	9.4	4.98	6.94	6.76	7.29	1.78	0.35	6.85 \(10^7 \)	3.06 \(10^{10} \)	2.26 \(10^{-11} \)	3.27 \(10^{-11} \)
A-T(H) ↔ A-T(WWC)**	9.4	5.78	7.75	7.67	8.21	1.89	0.45	1.46 \(10^7 \)	2.55 \(10^{10} \)	2.71 \(10^{-11} \)	3.92 \(10^{-12} \)
A-T(H) ↔ A-T(WWC)**	14.6	5.04	6.85	6.46	7.72	1.42	0.87	1.13 \(10^8 \)	5.81 \(10^{11} \)	1.23 \(10^{-11} \)	1.78 \(10^{-12} \)
A-T(H) ↔ A-T(WWC)**	14.6	5.82	7.63	7.44	8.89	1.62	1.07	2.16 \(10^7 \)	4.01 \(10^{11} \)	1.72 \(10^{-11} \)	2.49 \(10^{-12} \)

\(a \) The imaginary frequency at the TS of the conformational transition, cm\(^{-1}\).
\(b \) The Gibbs free energy of the product relatively the reactant of the conformational transition (\(T = 298.15 \) K), kcal mol\(^{-1}\).
\(c \) The electronic energy of the product relatively the reactant of the conformational transition, kcal mol\(^{-1}\).
\(d \) The Gibbs free energy barrier for the reverse conformational transition, kcal mol\(^{-1}\).
\(e \) The electronic energy barrier for the reverse conformational transition, kcal mol\(^{-1}\).
\(f \) The electronic energy barrier for the forward conformational transition, kcal mol\(^{-1}\).
\(g \) The electronic energy barrier for the forward conformational transition, kcal mol\(^{-1}\).
\(h \) The electronic energy barrier for the forward conformational transition, kcal mol\(^{-1}\).
\(i \) The electronic energy barrier for the reverse conformational transition, kcal mol\(^{-1}\).
\(j \) The electronic energy barrier for the reverse conformational transition, kcal mol\(^{-1}\).
\(k \) The electronic energy barrier for the reverse conformational transition, kcal mol\(^{-1}\).

A-T(H) ↔ A-T(wWC) and A-T(rH) ↔ A-T(wWC) conformational transitions - \(TS_{A-T(WC)} \rightarrow A-T(wWC) \), \(TS_{A-T(WC)} \rightarrow A-T(wRC) \), \(TS_{A-T(H)} \rightarrow A-T(wW) \) and \(TS_{A-T(H)} \rightarrow A-T(wW) \), respectively, with low values of imaginary frequency (7.1, 11.4, 9.4 and 14.6 \(i \) cm\(^{-1}\)). These wobble structures (Table 1) are supported by the couple of the anti-parallel intermolecular H-bonds - N6H...O4/O2 and N3H...N6 H-bonds (A-T(WC) ↔ A-T(wWC)) and A-T(rWC) ↔ A-T(wWC), respectively, N6H...O4/O2 and N3H...N6 H-bonds (A-T(H) ↔ A-T(WH) and A-T(rH) ↔ A-T(WH), respectively) (Figure 1, Table 2).

Characteristically, that all revealed conformational transitions without exception are dipole-active, since they are accompanied by the changing of the dipole moment of the initial and terminal base pairs. At this, TSs of each conformational transition have maximal value of the dipole moment (Table 2).

Main characteristics of the investigated conformational transitions are presented in Table 3. Analysis of these data points that short-lived conformers are dynamically-stable structures with the lifetimes (1.4–3.9) \(\cdot 10^{-12} \) s. Really, for all of them the energy of zero vibrations, which frequency become imaginary in the TS, is less than the electronic energy of the electronic energy barrier \(\Delta \Delta G \) for the reverse conformational transition and Gibbs free energy barrier for the reverse conformational transition \(\Delta \Delta G > 0 \) under normal conditions. Notably, the range of the low-frequency intermolecular vibrations of the discovered conformers is significantly shifted to the low-frequency region comparably with the main conformational states. These data points on the fact that revealed conformers are quite soft structures, that could be easily deformed under the influence of the external forces, in particular, caused by the stacking interactions with the neighboring DNA bases.

The methyl group of the T DNA base does not change its orientation during the process of the conformational transformations. Moreover, the heterocycles of the bases remain planar, despite their ability for the out-of-plane bending (Govorun et al., 1992; Hvorun et al., 1999; Nikolaenko et al., 2011).

Special attention should be payed to the characteristic specificities of the A-T(WC) ↔ A-T(wWC), A-T(rWC) ↔ A-T(wWC), A-T(H) ↔ A-T(wH) and A-T(rH) ↔ A-T(wH) conformational transformations. These reactions are non-dissociative, since they are accompanied by the transformation of the H-bonds and rupture of only some of them. Intermolecular N6H/N6H'...O4/O2 H-bonds exist along all intrinsic reaction coordinate opposite the N3H...N1/N7 H-bonds, that initially weaken and then rupture with a time delay in order to transform into the N3H...N6 H-bond. In other words, in the process of the conformational transformations the N3H group of the T DNA base as proton donor remain for some time free from the intermolecular H-bonding. This comes up with an opinion that discovered conformational transitions could be used for the explanation of the occurrence of the hydrogen-deuterium exchange in the A-T DNA base pairs. It is not excluded that revealed by us novel corridor of the spontaneous thermal fluctuations of the A-T DNA base pairs accompanied by the transformation of the base pair from the plane-symmetric geometry into the significantly non-planar wobble conformation could be useful for the explanation of the specificities of the blurriness of the transition at the DNA pre-melting enriched by the A-T DNA base pairs, that could not be explained in details in the framework of the two-states model.

We would continue to work in the direction of the elucidation of the biological importance of the revealed unusual
conformers of the biologically important A-T DNA base pairs.

CONCLUSIONS

In general, in this work at the MP2/aug-cc-pVDZ//B3LYP/6-311++G(d,p) level of theory in the continuum with ε = 4 for the first time we have revealed the A·T(WC) ↔ A·T(WWC), A·T(rWC) ↔ A·T(rWWC), A·T(H) ↔ A·T(WH) and A·T(rH) ↔ A·T(rWH) conformational transformations in the biologically important A-T DNA base pairs and characterized their structural, energetic, polar and dynamical features. These data open new perspectives for the understanding of the physico-chemical mechanisms of the opening of the base pairs preceding DNA melting and also to describe in details the breathing of DNA, that has been experimentally registered. Moreover, it is also the subject for the investigation by using modern spectroscopic techniques such as two-dimensional fluorescent spectroscopy (2DFS) (Widom et al., 2013), time-resolved single molecule fluorescence resonant energy transfer (smFRET) (Lee et al., 2013), single molecule fluorescent linear dichroism (smFLD) (Phipps et al., 2013) and THz spectroscopy (Alexandrov et al., 2013).

AUTHOR CONTRIBUTIONS

OB, performance of calculations, discussion of the obtained data, preparation of the text of the manuscript. DH, proposition of the task of the investigation, discussion of the obtained data, preparation of the text of the manuscript. KT, preparation of the numerical data for Tables and graphical materials for Figures, preparation of the text of the manuscript. All authors were involved in the proofreading of the final version of the manuscript.

ACKNOWLEDGMENTS

The authors gratefully appreciate technical support and computational facilities of joint computer cluster of SSI “Institute for Single Crystals” of the National Academy of Sciences of Ukraine (NASU) and Institute for Scintillation Materials of the NASU incorporated into Ukrainian National Grid. This work was partially supported by the Grant of the NASU for young scientists (contract N 50/17), Grant of the President of Ukraine to support the research of young scientists (project N F 70/17906/2017; contract N F 70/189-2017) from the State Fund for Fundamental Research of Ukraine of the Ministry of the Education and Science of Ukraine and by the Scholarship of Verkhovna Rada (Parliament) of Ukraine for the talented young scientists in 2017 year given to OB. OB expresses sincere gratitude to organizers [Prof. Daniel Otzen (Chairman) (Denmark) and Prof. M. Madan Babu (UK)] for financial support of the participation in the “EMBO/FEBS Lecture Course Spetsai Summer School 2017 for Proteins and Organized Complexity” (September 24–October 1, 2017, Spetses, Greece), to Lawyers Association “AVER Lex” (Kyiv, Ukraine) for the sponsorship of the presenting the plenary lecture as invited speaker at the “EMN Meeting on Computation and Theory 2017” (November 6–10, 2017, Dubai, United Arab Emirates) and to Max Plank Institute of Molecular Plant Physiology (hosted by Prof. Yariv Brotman) for the kind invitation and financial support of the invited lecture (November 29, 2017, Potsdam, Germany).

REFERENCES

Ababneh, A. M., Large, C. C., and Georgiou, S. (2003). Solvation of nucleosides in aqueous mixtures of organic solvents: relevance to DNA open base pairs. Biophys. J. 85, 1111–1127. doi: 10.1016/S0006-3495(03)74548-2

Alexandrov, B. S., Phipps, M. L., Alexandrov, L. B., Booshehri, L. G., Erat, A., Zabolotny, J., et al. (2013). Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells. Sci. Rep. 3, 1184–1191. doi: 10.1038/srep01184

Alvey, H. S., Gottardo, F. L., Nikolova, E. N., and Al-Hashimi, H. M. (2014). Widespread transient Hoogsteen base-pairs in canonical duplex DNA with variable energetics. Nat. Comm. 5, 4786–4794. doi: 10.1038/ncomms5786

Atkins, P. W. (1998). Physical Chemistry. Oxford: Oxford University Press.

Auffinger, P., and Westhof, E. (1999). Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J. Mol. Biol. 292, 467–483. doi: 10.1006/jmbi.1999.3080

Bader, R. F. W. (1990). Atoms in Molecules: A Quantum Theory. Oxford: Oxford University Press.

Bayley, S. T. (1951). The dielectric properties of various solid crystalline proteins, amino acids and peptides. Trans. Faraday Soc. 47, 509–517. doi: 10.1039/tf5104700509

Bohnuud, T., Beglov, D., Nigan, C. H., Zerbe, B., Hall, D. R., Brenke, R., et al. (2012). Computational mapping reveals dramatic effect of Hoogsteen breathing on duplex DNA reactivity with formaldehyde. Nucl. Acids Res. 40, 7644–7652. doi: 10.1093/nar/gks519

Boys, S. F., and Bernardi, F. (1970). The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566. doi: 10.1080/00268977900101561

Bovarets’, O. O., Yurenko, Y. P., and Hovorun, D. M. (2015a). The significant role of the intermolecular CH···O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation. J. Biomol. Struct. Dynam. 33, 1624–1652. doi: 10.1080/07391102.2014.968623

Bovarets’, O. O., Zhurakivsky, R. V., and Hovorun, D. M. (2015b). DPT tautomerisation of the wobble guanine-thymine DNA base mispair is not mutagenic: QM and QTAIM arguments. J. Biomol. Struct. Dynam. 33, 674–689. doi: 10.1080/07391102.2014.974259

Bovarets’, O. O. (2013a). Under what conditions does G-C Watson-Crick DNA base pair acquire all four configurations characteristic for A-T Watson-Crick DNA base pair? Ukr. Biochem. J. 85, 98–103. doi: 10.15407/ubj85.04.098

Bovarets’, O. O. (2013b). Structural and energetic properties of the four configurations of the A-T and G-C DNA base pairs. Ukr. Biochem. J. 85, 104–110. doi: 10.15407/ubj85.04.104

Bovarets’, O. O., and Hovorun, D. M. (2010a). Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine. Ukr. Biochem. J. 82, 55–60. Available online at: http://ubj.biochemistry.org.ua/images/stories/pdf/ubj3_2010/Bovarets_82_3.pdf

Bovarets’, O. O., and Hovorun, D. M. (2010b). Quantum-chemical investigation of the elementary molecular mechanisms of pyrimidine-purine transversions.
Brovarets', O. O., and Hovorun, D. M. (2015g). A novel conception for...

Brovarets', O. O., and Hovorun, D. M. (2016b). By how many tautomerisation...

Brovarets', O. O., and Hovorun, D. M. (2015d). New structural hypotheses of...

Brovarets', O. O., and Pérez-Sánchez, H. E. (2016a). Whether the amino-

Brovarets', O. O., and Hovorun, D. M. (2014e). Why the tautomerisation of the G...

Brovarets', O. O., and Hovorun, D. M. (2014b). How the long G-G* Watson-

Brovarets', O. O., and Hovorun, D. M. (2013). Atomistic nature of the DPT...

Brovarets', O. O., and Pérez-Sánchez, H. E., and Hovorun, D. M. (2016). Structural grounds for the 2-aminopurine mutagenicity: a novel insight into the old problem of the replication errors. RSC Adv. 6, 99546–99557. doi: 10.1039/C6RA17787E

Brovarets', O. O., Voitenenko, I. S., Pérez-Sánchez, H. E., and Hovorun, D. M. (2017b). A QM/QTAIM research under the magnifying glass of the DPT tautomerisation of the wobble mispairs involving 2-aminopurine. New J. Chem. 41, 7232–7243. doi: 10.1039/C7TN00717E

Brovarets', O. O., Voitenenko, I. S., Pérez-Sánchez, H. E., and Hovorun, D. M. (2017a). A QM/QTAIM detailed look at the Watson-Crick-wobble tautomeric transformations of the 2-aminopurine-pyrimidine mispairs. J. Biomol. Struct. Dynam. doi: 10.1080/07391102.2017.1331864. [Epub ahead of print]

Brovarets', O. O., Yurenko, Y. P., and Hovorun, D. M. (2013). Intermolecular CH...O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study. J. Biomol. Struct. Dynam. 32, 993–1022. doi: 10.1080/07391102.2013.799439

Brovarets', O. O., Zhurakivsky, R. O., and Hovorun, D. M. (2014a). Is the DPT tautomerisation of the long A-G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question. J. Comput. Chem. 35, 451–466. doi: 10.1002/jcc.23515

Brovarets', O. O., Zhurakivsky, R. O., and Hovorun, D. M. (2014b). Structural, energetic and tautomeric properties of the T-T*/T′-T DNA mismatch involving mutagenic tautomer of thymine: A QM and QTAIM insight. Chem. Phys. Lett. 592, 247–255. doi: 10.1016/j.cplett.2013.12.034

Chay, T. (1979). Mechanism for unwinding of double-helical polynucleotides by formaldehyde. Biopolymers 18, 1439–1464. doi: 10.1002/bip.1979.36018069

Coman, D., and Russu, I. M. (2005). A nuclear magnetic resonance investigation of the energetics of base pair opening pathways in DNA. Biophys. J. 89, 3285–3292. doi: 10.1529/biophysj.105.065763

Craig, M. E., Crothers, D. M., and Doty, P. (1971). Relaxation kinetics of dimer formation by self complementary oligonucleotides. J. Mol. Biol. 60, 383–401. doi: 10.1016/0022-2836(71)90434-7

Cukrowski, I., and Matta, C. F. (2010). Hydrogen–hydrogen bonding: a stabilizing interaction in strained chelating rings of metal complexes in aqueous phase. Chem. Phys. Lett. 499, 66–69. doi: 10.1016/j.cplett.2010.09.013

Dewar, M. J., and Storch, D. M. (1985). Alternative view of enzyme reactions. Proc. Natl. Acad. Sci. U.S.A. 82, 2225–2229. doi: 10.1073/pnas.82.8.2225

Donohue, J., and Trueblood, K. N. (1960). Base pairing in DNA. J. Mol. Biol. 2, 363–371. doi: 10.1016/0022-2836(60)80047-2

El-Sayed, A. A., Tamara Molina, A., Álvarez-Ros, M. C., and Alcolea Palafoux, M. (2015). Conformational analysis of the anti-HIV Nikavar prodru: comparisons with AZT and thymidine, and establishment of structure-activity relationships/trends in other 6-derivatives. J. Biomol. Struct. Dynam. 33, 723–748. doi: 10.1080/07391102.2014.909743

Espinosa, E., Molins, E., and Lecomte, C. (1998). Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 285, 170–173. doi: 10.1016/S0009-2614(98)00306-0

Frank-Kamenetski, M. D. (1981). Fluctuations in DNA. Ann. Rev. Biophys. Bioeng. 3, 127–150. doi: 10.1146/annurev.bb.03.060174.001015
Frank-Kamenetskii, M., and Prakash, S. (2014). Fluctuations in the DNA double helix: a critical review. *Phys. Life Rev.* 11, 153–170. doi: 10.1016/j.plrev.2014.01.005

Frisch, M. J., Head-Gordon, M., and Pope, J. A. (1990). Semi-direct algorithms for the MP2 energy and gradient. *Chem. Phys. Lett.* 166, 281–289. doi: 10.1016/0009-2614(90)80030-H

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2010). GAUSSIAN 09 (Revision B.01). Wallingford CT: Gaussian Inc.

Garcia-Moreno, D., Dwyer, J. J., Gittis, A. G., Lattman, E. E., Spencer, D. S., and Stites, W. E. (1997). Experimental measurement of the effective dielectric in the hydrophobic core of a protein. *Biophys. Chem.* 64, 211–224. doi: 10.1016/S0301-4622(96)00228-7

Giudice, E., Värnå, P., and Lavery, R. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. *Nucleic Acids Res.* 31, 1434–1443. doi: 10.1093/nar/gkg239

Giudice, E., Värnå, P., and Lavery, R. (2001). Energetic and conformational aspects of AT base-pair opening within the DNA double helix. *Chem. Phys. Chem.* 2, 673–677. doi: 10.1002/1439-7641(20011119)2:11<673::AID-CPHC673>3.0.CO;2-S

Gluschenkov, A. N., and Hovorun, D. M. (2016). Can nucleobase pairs offer the first-row atoms revisited. Systematic basis sets and wave functions. *Chem. Rev.* 116, 6796–6806. doi: 10.1021/acs.chemrev.6b00183

Govorun, D. M., Danchuk, V. D., Mishchuk, Y. R., Kondratyuk, I. V., Radomsky, K. A., Dunning, T. H. Jr., and Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. *J. Chem. Phys.* 69, 6796–6806. doi: 10.1063/1.462569

Krishnan, R., Binkley, J. S., Seeger, R., and Pope, J. A. (1980). Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.* 72, 650–654. doi: 10.1063/1.448955

Kryachko, E. S., and Volkov, S. N. (2001). Preopening of the DNA Base Pairs. *Int. J. Quantum Chem.* 82, 193–204. doi: 10.1002/qua.1040

Lavery, R. (1994). Modeling nucleic acids: fine structure, flexibility, and conformational transitions. *Adv. Comput. Biol.* 1, 69–145.

Lazurkin, Y. S., Frank-Kamenetskii, M. D., and Trifonov, E. N. (1970). Melting of DNA: its study and application as a research method. *Biopolymers* 9, 1233–1306. doi: 10.1002/bip.1970.36091102

Lecomte, C., Espinosa, E., and Matta, C. F. (2015). On atom–atom \textquoteleft short contact\textquoteright bonding interactions in crystals. *IUCrJ* 2, 161–163. doi: 10.1100/iucr/20150072

Lee, Y., Yang, W., and Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* 37, 785–789. doi: 10.1103/PhysRevB.37.7785

Lee, W., Jose, D., Phelps, C., Marcus, A. H., and von Hippel, P. H. (2013). A Single-molecule view of the assembly pathway, subunit stoichiometry, and unwinding activity of the bacteriophage T4 primosome (helicase–primase) complex. *Biochemistry* 52, 3171–3170. doi: 10.1021/bi400231s

Lindahl, V., Villa, A., and Hess, B. (2017). Sequence dependency of canonical base pair opening in the DNA double helix. *PLoS Comput. Biol.* 13:e1005463. doi: 10.1371/journal.pcbi.1005463

Liu, K., Miles, H. T., Frazier, J., and Sasisekharan, V. (1993). A novel DNA duplex. A parallel-stranded DNA helix with Hoogsteen base pairing. *Proc. Natl. Acad. Sci. U.S.A.* 90, 11802–11809. doi: 10.1073/pnas.90.22.11802

Lukashin, A. V., Vologodskii, A. V., Frank-Kamenetskii, M. D., and Lyubchenko, Y. L. (1976). Fluctuational opening of the double helix as revealed by theoretical and experimental study of DNA interaction with formaldehyde. *J. Mol. Biol.* 108, 665–682. doi: 10.1016/S0022-2836(76)80111-8

Mata, I., Alkorta, I., Espinosa, I., and Molins, E. (2011). Relationships between interaction energy, intermolecular distance and electron density properties in hydrogen bonded complexes under external electric fields. *Chem. Phys. Lett.* 507, 185–189. doi: 10.1016/j.cplett.2011.03.055

Matta, C. F. (2006). “Chapter 9: Hydrogen–hydrogen bonding: the non-electrostatic limit of closed-shell interaction between two hydrogen atoms. A critical review.” in *Hydrogen Bonding—New Insights*, ed S. J. Grabowski (Dordrecht: Springer), 337–375.

Matta, C. F. (2010). How dependent are molecular and atomic properties on the electronic structure method? Comparison of Hartree-Fock, DFT, and MP2 on a biologically relevant set of molecules. *J. Comput. Chem.* 31, 1297–1311. doi: 10.1002/jcc.21417

Matta, C. F. (2014). Modeling biophysical and biological properties from the characteristics of the molecular electron density, electron localization and delocalization matrices, and the electrostatic potential. *J. Comput. Chem.* 35, 1165–1198. doi: 10.1002/jcc.23608

Matta, C. F., Castillo, N., and Boyd, R. J. (2006a). Atomic contributions to bond dissociation energies in aliphatic hydrocarbons. *J. Chem. Phys.* 125, 204103. doi: 10.1063/1.2378720

Matta, C. F., Castillo, N., and Boyd, R. J. (2006b). Extended weak bonding interactions in DNA: π-stacking (base-base), base-backbone, and backbone-backbone interactions. *J. Phys. Chem. B* 110, 563–578. doi: 10.1021/jp054986g

Matta, C. F., and Hernández-Trujillo, J. (2003). Bonding in polymeric aromatic hydrocarbons in terms of the electron density and of electron delocalization. *J. Phys. Chem. A* 107, 7496–7504. doi: 10.1021/jp034952d

Mertz, E. L., and Krishitalk, L. I. (2000). Low dielectric response in enzyme active site. *Proc. Natl. Acad. Sci. U.S.A.* 97, 2081–2086. doi: 10.1073/pnas.050316997

Nikolaenko, T. Y., Bulavin, L. A., and Hovorun, D. M. (2011). How flexible are DNA constituents? The quantum-mechanical study. *J. Biomol. Struct. Dynam.* 29, 89–92. doi: 10.1080/07391102.2011.570406

Nikolaev, E. N., Goh, G. B., Brooks, C. L., and Al-Hashimi, H. M. (2013). Characterizing the protonation state of cytosine in transient G-T base pairs in duplex DNA. *J. Am. Chem. Soc.* 135, 6766–6769. doi: 10.1021/ja40994ce

Nikolaev, E. N., Kim, E., Wise, A. A., O’Brien, P. J., Andricioaei, I., and Al-Hashimi, H. M. (2011). Transient Hoogsteen base pairs in canonical duplex DNA. *Nature* 470, 498–504. doi: 10.1038/nature09775
Sühnel, J. (2002). Beyond nucleic acid base pairs: from triads to heptads. Biopolymers 61, 32–51. doi: 10.1002/1097-0282(2001)61:1:32:AID-BIP10063>3.0.CO;2-B

Szabat, M., and Kierzek, R. (2017). Parallel-stranded DNA and RNA duplexes: structural features and potential applications. FEBS J. 284, 3986–3998. doi: 10.1111/febs.14187

Thurikov, N. A., Chernov, R. K., Golova, Y. B., and Nechipurenko, Y. D. (1989). Parallel DNA: generation of a duplex between two Drosophila sequences in vitro. FEBS Lett. 257, 415–418. doi: 10.1016/0014-5793(89)81585-6

Tirado-Rives, J., and Jorgensen, W. L. (2008). Performance of B3LYP Density Functional Methods for a large set of organic molecules. J. Chem. Theory Comput. 4, 297–306. doi: 10.1021/ct700248k

Volkov, S. N. (1995). Semi-open state of double-stranded spiral of DNA. Mol. Biol. 29, 1086–1094.

Vologodskii, A. V., Amirikyan, B. R., Lyubchenko, Y. L., and Frank-Kamenetski, M. D. (1984). Allowance for heterogeneous stacking in the DNA helix-coil transition theory. J. Biomol. Struct. Dynam. 2, 131–148. doi: 10.1016/07391102.1984.10507552

von Hippel, P. H., Johnson, N. P., and Marcus, A. H. (2013). Fifty years of DNA “breathing”: reflections on old and new approaches. Biopolymers 99, 923–953. doi: 10.1002/bip.22347

Wada, A., and Suyama, A. (1986). Local stability of DNA and RNA secondary structure and its relation to biological functions. Prog. Biophys. Mol. Biol. 47, 113–157. doi: 10.1016/0079-6107(86)90012-X

Wartell, R. M., and Benight, A. S. (1985). Thermal denaturation of DNA molecules: a comparison of theory with experiment. Phys. Rep. 126, 67–103. doi: 10.1016/0370-1573(85)90060-2

Widom, J. R., Johnson, N. P., von Hippel, P. H., and Marcus, A. H. (2013). Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS). New J. Phys. 15:025028. doi: 10.1088/1367-2630/15/2/025028

Wignier, E. (1932). Über das Überschreiten von Potentialsschwellen bei chemischen Reaktionen [Crossing of potential thresholds in chemical reactions]. Zeits. Physik. Chem. B 19, 203–216.

Yang, C., Kim, E., and Pak, Y. (2015). Free energy landscape and transition pathways from Watson–Crick to Hoogsteen base pairing in free duplex DNA. Nucl. Acids Res. 43, 7769–7778. doi: 10.1093/nar/gkv796

Ye, M. Y., Zhu, R. T., Li, X., Zhou, X. S., Yin, Z. Z., Li, Q., et al. (2017). Adaptively recognizing parallel-stranded duplex structure for fluorescent DNA polarity analysis. Anal. Chem. 89, 8604–8608. doi: 10.1021/acs.analchem.7b02467

Zagryadskaya, E. I., Doyon, F. R., and Steinberg, S. V. (2003). Importance of the helical pitch in the DNA–RNA hybrid. FEBS J. 267, 203–216. doi: 10.1016/S0014-5793(03)00771-8

Zhou, H. (2016). Occurrence and Function of Hoogsteen Base Pairs in Nucleic Acids. Ph.D. Thesis, Department of Biochemistry, Duke University.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Brovarets, Tsitupa and Hovorun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.