Supporting information for:

Mechanistic insights into the C_{55}-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures

Thomas M. Wood,\(^{a,b,†}\) Matthieu R. Zeronian,\(^{c,†}\) Ned Buijs,\(^{a}\) Kristine Bertheussen,\(^{a}\) Hanieh K. Abedian,\(^{a}\) Aidan V. Johnson,\(^{a}\) Nicholas M. Pearce,\(^{c}\) Martin Lutz,\(^{c}\) Johan Kemmink,\(^{d}\) Tjalling Seirma,\(^{e}\) Leendert W. Hamoen,\(^{a}\) Bert J. C. Janssen,\(^{c,⁎}\) Nathaniel I. Martin\(^{a,⁎}\)

\(^{a}\)Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. \(^{b}\)Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands. \(^{c}\)Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. \(^{d}\)Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands. \(^{e}\)Bacterial Cell Biology and Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.

\(^{†}\)These authors contributed equally to this work

Corresponding Authors
b.j.c.janssen@uu.nl
n.i.martin@biology.leidenuniv.nl
Table of Contents

Page
S3 Reagents and General Methods
S3-4 Instrumentation for Compound Characterization
S5-6 Solid Phase Peptide Synthesis
S6 Abbreviations
S7-8 Antibacterial Assays
S9-12 UDP-MurNAc-pentapeptide Accumulation Assay
S13-42 Characterization of Synthetic Lipopeptides
S43 Crystallization, Data collection, and Structure Solution/Refinement
S44-46 Supplementary Tables/Figures for Crystallographic Studies
S47-51 Supplementary Tables/Figures for Bacterial Cytological Profiling
S52 Literature References
Reagents and General Methods

All reagents employed were of American Chemical Society (ACS) grade or finer and were used without further purification unless otherwise stated. D-amino acids and 2-chlorotriyl resin was obtained from Iris Biotech GmbH, Egg PG and 0:6 PA was obtained from INstruchemie BV. C$_{10}$-P lithium salt was obtained from Sigma Aldrich and lyophilized from warm 1BuOH:H$_2$O (1:1) to obtain a white powder with increased aqueous solubility.

Instrumentation for Compound Characterization

2D NMR experiments were performed on a 850 MHz instrument. HSQC, TOCSY and NOESY spectra were recorded for all peptides (5 mM in DMSO$_{d6}$) and the parent compound laspartomycin C matched pervious recorded spectra reported by our group.

HRMS analysis was performed on a Shimadzu Nexera X2 UHPLC system with a Waters Acquity HSS C18 column (2.1 × 100 mm, 1.8 µm) at 30 °C and equipped with a diode array detector. The following solvent system, at a flow rate of 0.5 mL/min, was used: solvent A, 0.1 % formic acid in water; solvent B, 0.1 % formic acid in acetonitrile. Gradient elution was as follows: 95:5 (A/B) for 1 min, 95:5 to 15:85 (A/B) over 6 min, 15:85 to 0:100 (A/B) over 1 min, 0:100 (A/B) for 3 min, then reversion back to 95:5 (A/B) for 3 min. This system was connected to a Shimadzu 9030 QTOF mass spectrometer (ESI ionisation) calibrated internally with Agilent's API-TOF reference mass solution kit (5.0 mM purine, 100.0 mM ammonium trifluoroacetate and 2.5 mM hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine) diluted to achieve a mass count of 10000.

Purity of the peptides was confirmed to be ≥ 95% by analytical RP-HPLC using a Shimadzu Prominence-i LC-2030 system with a Dr. Maisch ReproSil Gold 120 C18 column (4.6 × 250 mm, 5 µm) at 30 °C and equipped with a UV detector monitoring at 214 nm. The following solvent system, at a flow rate of 1 mL/min, was used: solvent A, 0.1 % TFA in water/acetonitrile, 95/5; solvent B, 0.1 % TFA in water/acetonitrile, 5/95. Gradient elution was as follows: 95:5 (A/B) for 2 min, 95:5 to 0:100 (A/B) over 55 min, 0:100 (A/B) for 2 min, then reversion back to 95:5 (A/B) over 1 min, 95:5 (A/B) for 2 min.
The compounds were purified via preparative HPLC using a BESTA-Technik system with a Dr. Maisch Reprosil Gold 120 C18 column (25 × 250 mm, 10 µm) and equipped with a ECOM Flash UV detector monitoring at 214 nm. The following solvent system, at a flow rate of 12 mL/min, was used: solvent A, 0.1 % TFA in water/acetonitrile 95/5; solvent B, 0.1 % TFA in water/acetonitrile 5/95. Gradient elution was as follows: 95:5 (A/B) for 2 min, 95:5 to 0:100 (A/B) over 55 min, 0:100 (A/B) for 2 min, then reversion back to 95:5 (A/B) over 1 min, 95:5 (A/B) for 2 min.
General Procedure for the Preparation of Laspartomycin C and Other Analogue

Scheme S1 (i) Fmoc SPPS; (ii) Pd[(C₆H₅)₃P]₄, C₆H₅SiH₃, CH₂Cl₂, 1 h; (iii) HFIP, CH₂Cl₂, 1 h; (iv) BOP, DIPEA, CH₂Cl₂, 16 h; (v) TFA, TIS, H₂O, 1 h

Solid Phase Peptide Synthesis

Chlorotrityl resin (5.0 g, 1.60 mmol/g) was loaded with Fmoc-Pro-OH. Resin loading was determined to be 0.41-0.62 mmol/g⁻¹. Linear peptide encompassing Pro11 to Asp1 were assembled manually via standard Fmoc solid-phase peptide synthesis (SPPS) (resin bound AA:Fmoc-AA:BOP:DiPEA, 1:4:4:8 molar eq.) on a 0.1 mmol scale. DMF was used as solvent and Fmoc deprotections were carried out with piperidine:DMF (1:4 v:v). Amino acid side chains were protected as follows: tBu for Asp, Alloc for DAP, and DMB for Gly6 and Gly8. D-allo-Thr was introduced without side chain protection. Following coupling and Fmoc deprotection of Asp1, N-terminal acylation was achieved by coupling (E)-13-methyltetradec-2-enoic acid using the same coupling conditions used for SPPS. The resin-bound, Alloc protected intermediate was next washed with CH₂Cl₂ and treated with Pd(PPh₃)₄ (30mg, 0.03 mmol) and PhSiH₃.
(0.30 mL, 3.0 mmol) in CH₂Cl₂ (ca. 7 mL) under argon for 1 hour. The resin was subsequently washed with CH₂Cl₂ (5x10 mL), followed by a solution of diethylthiocarbamic acid trihydrate sodium salt (5 mg mL⁻¹ in DMF, 5x10 mL), and DMF (5x10 mL). The resin was treated with (CF₃)₂CHOH:CH₂Cl₂ (1:4, 10 mL) for 1 hour and rinsed with additional (CF₃)₂CHOH:CH₂Cl₂ and CH₂Cl₂. The combined washings were then evaporated to yield the linear protected peptide with free C- and N-termini. The residue was dissolved in CH₂Cl₂ (150 mL) and treated with BOP (0.22 g, 0.5 mmol) and DiPEA (0.17 mL, 1.0 mmol) and the solution was stirred overnight after which TLC indicated complete cyclization. The reaction mixture was concentrated and directly treated with TFA:TIS:H₂O (95:2.5:2.5, 10 mL) for 90 minutes. The reaction mixture was added to MTBE:hexanes (1:1) and the resulting precipitate washed once more with MTBE:hexanes (1:1). The crude cyclic peptide was lyophilized from tBuOH:H₂O (1:1) and purified with reverse phase HPLC. Pure fractions were pooled and lyophilized to yield the desired cyclic lipopeptide products in >95% purity as white powders, typically in 10-45 mg quantities (4.2-30 % yield based on resin loading).

Abbreviations:

Abbreviation	Definition
AA	Amino acid
Alloc	Allyloxycarbonyl
tBu	tert-butyl
tBuOH	tert-butanol
BOP	(benzotriazole-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate
Dap	2,3-Diaminopropionic acid
DiPEA	N,N-diisopropylethylamine
DMB	2,4-dimethoxybenzyl
DMF	N,N-dimethylformamide
Fmoc	Fluorenylmethyloxycarbonyl
MTBE	Methyl tert-butyl ether
TFA	Trifluoroacetic acid
TIS	Tris(isopropyl)silane
Antibacterial Assays

Minimum inhibitory concentrations (MICs) were determined by broth microdilution according to CLSI guidelines. Blood agar plates were inoculated with glycerol stocks of MRSA and S. simulans 22 followed by incubation for 16 hours at 37°C and 30°C respectively. Cation adjusted Mueller-Hinton broth (MHB) containing 10 mg L⁻¹ Mg²⁺ was inoculated with individual colonies of MRSA and S. simulans and incubated for 16 hours at 220 RPM. The peptides were dissolved in MHB (10 mg L⁻¹ Mg²⁺) and serially diluted on polypropylene microtiter plates with a volume of 50 µL per well. Inoculated MHB (2x10⁵ CFU.mL⁻¹) containing 10 mg L⁻¹ Mg²⁺ and varying concentrations of Ca²⁺ was added to reach a total volume of 100 µL per well. The microtiter plates were sealed with an adhesive membrane and after 16 hours of incubation at 37°C or 30°C and 220 RPM the wells were visually inspected for bacterial growth. All reported MIC values result from three or more measurements. The following strains were obtained from BEI Resources, NIAID, NIH: S. aureus Strain 880 (BR-VRSA), NR-49120; S. aureus Strain LIM 2 (VISA), NR-45881.

Table S1. MIC values (µg mL⁻¹) against MRSA and S. simulans at various Ca²⁺ concentrations.

Compound	0 mM	1.0 mM	2.5 mM	5 mM	10 mM	0 mM	1.0 mM	2.5 mM	5 mM	10 mM
MRSA USA 300										
1 (LaspC)	>128	8	4	4	2	>128	4	4	4	2
6	>128	8	4	2	1	>128	8	8	4	2
7	>128	16	8	4	2	>128	4	4	4	1
Friulimicin	>128	8	4	2	1-2	>128	2	2	1	1
Daptomycin	>128	0.5	0.25	0.25	0.125	>128	1	0.063	0.031	0.031
S. simulans 22										

S7
Table S2. MIC values (µg mL$^{-1}$) against VRSA and VISA at various Ca$^{2+}$ concentrations.

Compound	0 mM	1.0 mM	2.5 mM	5 mM	10 mM	0 mM	1.0 mM	2.5 mM	5 mM	10 mM
1 (LaspC)	>128	4	4	4	2	>128	8-16	4	4	2
6	>128	8	4	2	1	>128	8-16	4	2	1
7	>128	8	2	1	0.5	>128	8	4	2	2
Friulimicin	>128	2	2	2	1	>128	4	4	4	2
Daptomycin	>128	0.5	0.25	0.25	0.125	>128	1	0.5	0.125	0.125

Table S3. MIC values (µg mL$^{-1}$) against *E. faecium* E7128 (daptomycin resistant) and VRE 155 at various Ca$^{2+}$ concentrations.

Compound	0 mM	1.0 mM	2.5 mM	5 mM	10 mM	0 mM	1.0 mM	2.5 mM	5 mM	10 mM
1 (LaspC)	>128	32	16	8	8	>128	8	4	4	2
6	>128	8	4	4	2	>128	8	2	1	0.5
7	>128	8	2	2	2	>128	8	1	1	0.5
Friulimicin	>128	4	4	4	2	>128	4	2	1	0.5
Daptomycin	>128	8	4	4	2	>128	0.5	0.25	0.25	0.125
UDP-MurNAc-pentapeptide Accumulation Assay

MRSA USA 300 was grown until $\text{OD}_{600} = 0.5$ in TSB supplemented with CaCl_2 (5.0 mM). Chloramphenicol (130 µg mL$^{-1}$) was added and after incubation for 15 minutes at 37°C, the culture was divided in 5 mL aliquots. Antibiotics were added at 10xMIC and one aliquot remained untreated. After 60 minutes, cells were separated from the medium and extracted with boiling d-H$_2$O (1 mL) for 15 minutes. The suspensions were spun down and the supernatant was lyophilized. The resulting material was analyzed by HPLC applying a gradient from 100% eluent A (50 mM NaHCO$_3$:5 mM Et$_3$N, pH = 8.3) to 75% eluent A over 15 minutes using a C18 column (eluent B: MeOH). Formation of UDP-MurNAc-pentapeptide was confirmed by comparison with authentic material by HPLC, and LC-MS analysis applying the same gradient with an adjusted eluent A (50 mM NH$_4$HCO$_3$:5 mM Et$_3$N, pH = 8.3).

Figure S1. Analytical HPLC trace (zoom) for UDP-MurNAc-pentapeptide accumulation assay. Treatment of MRSA USA 300 with laspartomycin C (1), and lipopeptides 6 and 7 results in accumulation of UDP-MurNAc-pentapeptide, an effect not observed with daptomycin. Vancomycin included as positive control.
Full analytical HPLC traces for UDP-MurNAc-pentapeptide accumulation assays

Untreated

Laspartomycin C

*
Characterization of Synthetic Peptides 1-15

Laspartomycin C (1)

Yield: 47.3 mg (18.7 umol, 15.3%)

HR-MS [M+H⁺]: Calc.: 1247.6479, found: 1247.6522

Analytical HPLC
Laspartomycin C (1) NMR Chemical Shifts

Residue	NH	$H_\alpha(C_\alpha)$	Sidechain
Tail	-	5.92 (123.7)	$C_\beta H$ (6.63, 143.8), $C_\delta H_2$ (2.12, 31.1), $C_\gamma H_2$ (1.37, 27.5), $C_\epsilon H_2$ (1.23-1.27, 28.7), $C_\iota H_2$ (1.23, 26.5), $C_\kappa H_2$ (1.12, 38.0), $C_\lambda H$ (1.49, 27.1), 2$C_\epsilon H_3$ (0.84, 22.4)
Asp-1	8.14	4.61 (48.9)	$C_\delta H_2$ (2.63/2.50, 35.9)
Dap-2	8.25	4.66 (48.5)	$C_\delta H_2$ (3.56/3.10, 39.5)
D-Pip-3	-	4.80 (55.9)	$C_\delta H_2$ (2.18/1.53, 26.4), $C_\gamma H_3$ (1.55/1.39, 20.1), $C_\epsilon H_3$ (1.51/1.22, 24.1), $C_\epsilon H_2$ (4.35/2.86, 39.6)
Gly-4	8.08	4.00/3.65 (41.9)	-
Asp-5	8.25	4.61 (49.7)	$C_\delta H_2$ (2.74/2.52, 35.8)
Gly-6	8.13	3.76 (41.9)	-
Asp-7	8.33	4.50 (49.8)	$C_\delta H_2$ (2.70/2.54, 35.6)
Gly-8	7.87	3.80/3.67 (41.9)	-
D-allo-Thr-9	7.88	4.28 (58.1)	$C_\delta H$ (3.81, 66.6), $C_\epsilon H_3$ (1.02, 19.3)
Ile-10	7.74	4.30 (54.0)	$C_\delta H$ (1.73, 35.8), $C_\epsilon H_2$ (1.50/1.07, 24.0), $C_\epsilon H_3$ (0.86, 14.5), $C_\epsilon H_2$ (0.78, 10.3)
Pro-11	-	4.18 (59.4)	$C_\delta H_2$ (2.00/1.74, 29.3), $C_\epsilon H_2$ (1.92/1.80, 24.3), $C_\epsilon H_2$ (3.77/3.50, 46.9)
Laspartomycin C (1) 2D NMR Spectra

TOCSY

NOESY

HSQC
Asn$_1$ containing lipopeptide (2)

Yield: 10.3 mg (8.3 umol, 3.3%)

HR-MS [M+H$^+$]: Calc.: 1246.6639, found: 1246.6605

Analytical HPLC
Asn₁ containing lipopeptide (2) NMR Chemical Shifts

Residue	NH Hα(Cα)	Sidechain	
Tail	-	5.95 (124.6)	C_αH (6.63, 143.6), C_αH₂ (2.12, 31.8), C_αH₂-C_αH₂ (1.25, 29.5), C_βH₂ (1.24, 27.3), C_γH₂ (1.14, 39.0), C_δH (1.50, 28.0), 2C_εH₂ (0.85, 22.9)
Asn-1	8.00	4.60 (50.1)	C_βH₂ (2.48/2.40, 37.7)
Dap-2	8.19	4.66 (48.9)	C_βH₂ (3.57/3.10, 40.3)
D-Pip-3	-	4.81 (56.6)	C_βH₂ (2.19/1.50, 27.3), C_αH₂ (1.56/1.42, 20.8), C_γH₂ (1.57/1.23, 24.8), C_εH₂ (4.37/2.87, 40.3)
Gly-4	8.07	3.98/3.66 (42.4)	-
Asp-5	8.26	4.58 (50.0)	C_βH₂ (2.75/2.53, 36.4)
Gly-6	8.11	3.77 (42.6)	-
Asp-7	8.32	4.50 (50.7)	C_βH₂ (2.70/2.55, 36.4)
Gly-8	7.89	3.79/3.70 (42.6)	-
D-allo-Thr-9	7.86	4.28 (58.9)	C_αH (3.83, 67.3), C_αH₂ (1.03, 20.5)
Ile-10	7.71	4.32 (54.8)	C_αH (1.76, 36.5), C_αH₂ (1.52/1.08, 24.8), C_βH₂ (0.88, 15.2), C_δH (0.79, 11.1)
Pro-11	-	4.20 (60.3)	C_αH₂ (2.02/1.74, 29.8), C_αH₂ (1.93/1.83, 25.0), C_δH₂ (3.77/3.53, 47.7)
Asn$_1$ containing lipopeptide (2) 2D NMR Spectra

TOCSY

NOESY

HSQC
Asp₄ containing lipopeptide (3)

![Chemical Structure]

Yield: 20.0 mg (15.3 µmol, 6.1%)

HR-MS [M+H⁺]: Calc.: 1305.6578, found: 1305.6583

Analytical HPLC

![HPLC Graph]
Asp₄ containing lipopeptide (3) NMR Chemical Shifts

Residue	NH	H_α(C_α)	Sidechain
Tail	-	5.92 (124.4)	C₆H (6.63, 143.8), C_H (2.12, 31.8), C₆H₂-C_H (1.25, 29.5), C_H (1.24, 27.2), C₆H₂ (1.13, 39.0), C_H (1.49, 27.9), 2C_H (0.84, 23.0)
Asp-1	8.10	4.62 (49.9)	C₆H₂ (2.63/2.50, 36.7)
Dap-2	8.19	4.72 (48.7)	C₆H₂ (3.80/2.89, 40.3)
D-Pip-3	-	4.95 (55.7)	C₆H₂ (2.06/1.52, 26.4), C_H (1.53/1.39, 20.4), C₆H₂ (1.59/1.19, 24.8), C_H (4.28/2.93, 39.9)
Asp-4	8.64	4.41 (51.2)	C₆H₂ (2.71/2.56, 36.3)
Asp-5	8.29	4.56 (50.2)	C₆H₂ (2.75/2.52, 36.3)
Gly-6	7.96	3.72 (42.7)	-
Asp-7	8.35	4.47 (50.6)	C₆H₂ (2.81/2.47, 36.1)
Gly-8	7.74	3.96/3.71 (42.3)	-
D-<i>allo</i>-Thr-9	7.87	4.29 (58.7)	C₆H (3.83, 67.3), C_H (1.03, 20.0)
Ile-10	7.74	4.38 (54.7)	C₆H₂ (1.75, 36.8), C_H (1.47/1.07, 24.6), C_H (0.88, 15.3), C₆H (0.78, 11.1)
Pro-11	-	4.16 (59.3)	C₆H₂ (2.00/1.75, 29.5), C_H (1.88/1.80, 24.9), C₆H (3.74/3.50, 47.9)
Asp₄ containing lipopeptide (3) 2D NMR Spectra

TOCSY

NOESY

HSQC
D-Dap$_9$ containing lipopeptide (4)

Yield: 11.3 mg (9.1 umol, 3.6%)

HR-MS [M+H$^+$]: Calc.: 1232.6527, found: 1232.6531

Analytical HPLC
D-Dap₉ containing lipopeptide (4) NMR Chemical Shifts

Residue	NH	$H_a(C_\alpha)$	Sidechain
Tail	-	5.93 (124.1)	$C_\beta H \ (6.63, 143.3), C_\alpha H_2 \ (2.12, 31.3), C_\beta H_2 \ (1.38, 27.8), C_\gamma H_2$ (1.25, 29.0), $C_\delta H_2 \ (1.23, 26.8), C_\gamma H \ (1.49, 27.4), 2C_\delta H \ (0.84, 22.5)$
Asp-1	8.13	4.64 (49.4)	$C_\beta H_2 \ (2.63/2.51, 36.1)$
Dap-2	8.29	4.67 (48.5)	$C_\delta H_2 \ (3.54/3.03, 39.8)$
D-Pip-3	-	4.85 (55.9)	$C_\beta H_2 \ (2.16/1.56, 28.5), C_\gamma H_2 \ (1.56/1.40, 20.2), C_\delta H_5 \ (1.57/1.21, 24.3), C_\epsilon H_2 \ (4.34/2.83, 39.6)$
Gly-4	8.21	3.80/3.63 (42.0)	-
Asp-5	8.21	4.60 (49.5)	$C_\beta H_2 \ (2.73/2.57, 35.9)$
Gly-6	8.14	3.78 (42.1)	-
Asp-7	8.30	4.50 (50.0)	$C_\beta H_2 \ (2.71/2.48, 35.9)$
Gly-8	7.97	3.73 (42.1)	-
D-Dap-9	7.43	4.67 (48.5)	$C_\beta H \ (3.60/3.05, 39.7)$
Ile-10	7.45	4.26 (54.8)	$C_\beta H \ (1.81, 35.8), C_\gamma H_2 \ (1.46/1.06, 24.2), C_\delta H_3 \ (0.91, 14.7), C_\epsilon H_2 \ (0.80, 10.6)$
Pro-11	-	4.20 (59.7)	$C_\beta H_2 \ (2.02/1.72, 29.4), C_\delta H_2 \ (1.93/1.81, 24.5), C_\epsilon H_2 \ (3.74/3.53, 47.3)$
D-Dap₉ containing lipopeptide (4) 2D NMR Spectra

TOCSY

NOESY

HSQC
Asp$_4$, d-Dap$_9$ containing lipopeptide (5)

Yield: 12.3 mg (9.5 umol, 3.8%)

HR-MS [M+H$^+$]: Calc.: 1290.6582, found: 1290.6603

Analytical HPLC
Asp$_4$, D-Dap$_9$ containing lipopeptide (5) NMR Chemical Shifts

Residue	NH	H$_\alpha$(C$_\Phi$)	Sidechain
Tail	-	5.94 (124.4)	C$_6$H (6.63, 143.8), C$_7$H$_2$(2.12, 31.8), C$_8$H$_2$(1.38, 28.2), C$_9$H$_2$C$_1$H$_2$ (1.25, 29.4), C$_{10}$H$_2$(1.24, 27.3), C$_{11}$H$_2$(1.13, 38.9), C$_{12}$H (1.49, 27.8), 2C$_{13}$H$_2$(0.84, 23.0)
Asp-1	8.11	4.62 (50.1)	C$_6$H$_2$(2.62/2.50, 36.6)
Dap-2	8.25	4.69 (48.9)	C$_6$H$_2$(3.21/3.06, 40.4)
D-Pip-3	-	4.95 (55.8)	C$_6$H$_2$(2.08/1.35, 28.2), C$_7$H$_2$(1.54/1.35, 20.4), C$_8$H$_2$(1.58/1.20, 24.8), C$_9$H$_2$(4.29/2.94, 39.8)
Asp-4	8.47	4.48 (50.7)	C$_6$H$_2$(2.68/2.60, 36.5)
Asp-5	8.28	4.49 (50.7)	C$_6$H$_2$(2.53, 36.6)
Gly-6	8.09	3.71 (43.6)	-
Asp-7	8.30	4.56 (50.4)	C$_6$H$_2$(2.72/2.55, 36.5)
Gly-8	8.20	3.74 (42.9)	-
D-Dap-9	7.34	4.74 (48.9)	C$_6$H(3.19/3.05, 40.4)
Ile-10	7.49	4.30 (55.1)	C$_6$H$_2$(1.83, 36.3), C$_7$H$_2$(1.46/1.05, 24.6), C$_8$H$_2$(0.92, 15.2), C$_9$H$_2$(0.79, 11.0)
Pro-11	-	4.23 (60.3)	C$_6$H$_2$(2.06/1.68, 29.8), C$_7$H$_2$(1.91/1.80, 25.0), C$_8$H$_2$(3.76/3.52, 47.9)
Asp$_4$, d-Dap$_9$ containing lipopeptide (5) 2D NMR Spectra

TOCSY

NOESY

HSQC
Asp₄, D-Dap₉, Val₁₀ containing lipopeptide (6)

Yield: 45 mg (32.9 umol, 32%)

HR-MS [M+H⁺]: Calc.: 1276.6380, found: 1276.6395

Analytical HPLC
Asp₄, D-Dap₀, Val₁₀ containing lipopeptide (6) NMR Chemical Shifts

Residue	NH	Hₓ(θ)	Sidechain
Tail	-	5.94 (124.5)	C₉H (6.63, 143.8), C₈H₂ (2.12, 31.7), C₃H₂ (1.38, 28.3), C₆H₂-C₃H₂ (1.25, 29.4), C₆H₂ (1.24, 27.3), C₃H₂ (1.13, 38.9), C₆H (1.49, 27.8), 2C₃H (0.84, 23.0)
Asp-1	8.11	4.89 (49.8)	C₈H₂ (2.61/2.49, 36.5)
Dap-2	8.23	4.73 (48.8)	C₈H₂ (3.76/3.77, 40.3)
D-Pip-3	-	4.99 (55.7)	C₇H₂ (2.06/1.36, 28.4), C₅H₂ (1.54/1.36, 20.3), C₄H₂ (1.60/1.20, 24.8), C₃H₂ (4.28/2.92, 39.8)
Asp-4	8.34	4.55 (50.5)	C₈H₂ (2.76/2.54, 36.2)
Asp-5	8.22	4.61 (50.0)	C₈H₂ (2.68, 36.3)
Gly-6	8.09	3.76 (43.4)	-
Asp-7	8.29	4.47 (50.6)	C₈H₂ (2.51, 36.3)
Gly-8	7.74	3.94/3.67 (42.3)	-
D-Dap-9	7.28	4.72 (48.8)	C₇H (3.81/2.80, 40.3)
Val-10	7.42	4.26 (56.6)	C₈H (2.05, 30.4), C₇H₂ (0.94, 19.4), C₆H₂ (0.82, 18.9)
Pro-11	-	4.20 (60.3)	C₇H₂ (2.09/1.67, 29.8), C₆H₂ (1.90/1.80, 24.9), C₅H₂ (3.75/3.53, 47.8)
Asp₄, D-Dap₉, Val₁₀ containing lipopeptide (6) 2D NMR Spectra

TOCSY NOESY HSQC
Asn$_1$, Asp$_4$, D-Dap$_9$, Val$_{10}$ containing lipopeptide (7)

Yield: 12.5 mg (9.8 umol, 9.8%)

HR-MS [M+H$^+$]: Calc.: 1275.6585, found: 1275.6585

Analytical HPLC
Asn₁, Asp₄, D-Dap₉, Val₁₀ containing lipopeptide (7) NMR Chemical Shifts

Residue	NH	$H_\alpha(C_\alpha)$	Sidechain
Tail	-	5.93 (124.6)	$C_\beta H$ (6.62, 143.6), C_3H_2 (2.12, 31.8), C_4H_2 (1.38, 28.4), C_5H_2 C_6H_2 (1.25, 29.5), C_7H_2 (1.24, 27.3), C_8H_2 (1.13, 40.0), C_9H (1.49, 27.9), $2C_9H_2$ (0.84, 23.0)
Asn-1	8.50	4.47 (50.9)	C_8H_2 (2.49/2.43, 37.7)
Dap-2	8.21	4.69 (48.7)	C_9H_2 (3.78/3.78, 40.3)
D-Pip-3	-	4.99 (55.7)	C_9H_2 (2.04/1.35, 28.3), C_9H_2 (1.54/1.36, 20.4), C_9H_2 (1.58/1.20, 24.8), C_9H_2 (4.28/2.91, 39.8)
Asp-4	8.34	4.55 (50.5)	C_9H_2 (2.68/2.60, 36.3)
Asp-5	8.00	4.60 (50.2)	C_9H_2 (2.68, 36.3)
Gly-6	8.12	3.73 (43.5)	-
Asp-7	8.29	4.45 (50.4)	C_9H_2 (2.51, 36.2)
Gly-8	7.77	3.93/3.69 (42.3)	-
D-Dap-9	7.29	4.71 (48.6)	C_9H (3.81/2.81, 40.3)
Val-10	7.43	4.26 (56.7)	C_9H (2.05, 30.4), C_9H_2 (0.94, 19.4), C_9H_2 (0.83, 19.1)
Pro-11	-	4.20 (60.4)	C_9H_2 (2.08/1.67, 29.8), C_9H_2 (1.90/1.80, 25.0), C_9H_2 (3.74/3.53, 48.0)
Asn₁, Asp₄, D-Dap₉, Val₁₀ containing lipopeptide (7) 2D NMR Spectra

TOCSY

NOESY

HSQC
Asp₄, Val₁₀ containing lipopeptide (8)

Yield: 41 mg (32.9 umol, 32%)

HR-MS [M+H⁺]: Calc.: 1291.6422, found: 1291.6483

Analytical HPLC
Asp₄, Val₁₀ containing lipopeptide (8) NMR Chemical Shifts

Residue	NH	H_α(C_α)	Sidechain
Tail	-	5.94 (124.5)	C_βH (6.63, 143.8), C_δH₂ (2.12, 31.7), C_γH₂ (1.38, 28.3), C_αH₂-C_βH₂ (1.25, 29.4), C_αH₂ (1.24, 27.3), C_εH₂ (1.13, 38.9), C_εH (1.49, 27.8), 2C_βH (0.84, 23.0)
Asp-1	8.11	4.89 (49.8)	C_βH (2.61/2.49, 36.5)
Dap-2	8.23	4.73 (48.8)	C_βH (3.76/3.77, 40.3)
D-Pip-3	-	4.99 (55.7)	C_βH (2.06/1.36, 28.4), C_γH₂ (1.54/1.36, 20.3), C_αH₂ (1.60/1.20, 24.8), C_αH (4.28/2.92, 39.8)
Asp-4	8.34	4.55 (50.5)	C_βH (2.76/2.54, 36.2)
Asp-5	8.22	4.61 (50.0)	C_βH (2.68, 36.3)
Gly-6	8.09	3.76 (43.4)	-
Asp-7	8.29	4.47 (50.6)	C_βH (2.51, 36.3)
Gly-8	7.74	3.94/3.67 (42.3)	-
D⁻allo-Thr-9	7.88	4.29 (58.7)	C_βH (3.83, 67.2), C_αH₂ (1.02, 20.1)
Val-10	7.43	4.26 (56.7)	C_βH (2.03, 30.5), C_αH₂ (0.94, 19.4), C_αH (0.82, 18.9)
Pro-11	-	4.20 (60.3)	C_βH (2.09/1.67, 29.8), C_αH (1.90/1.80, 24.9), C_αH (3.75/3.53, 47.8)
Asp$_4$, Val$_{10}$ containing lipopeptide (8) 2D NMR Spectra
d-Dap₉, Val₁₀ containing lipopeptide (9)

Yield: 38 mg (30.9 umol, 32%)

HR-MS [M+H⁺]: Calc.: 1218.6370, found: 1218.6385

Analytical HPLC
D-Dap\textsubscript{9}, Val\textsubscript{10} containing lipopeptide (9) NMR Chemical Shifts

Residue	NH	H\textsubscript{α}(C\textsubscript{α})	Sidechain
Tail	-	5.94 (124.5)	C\textsubscript{α}H (6.63, 143.8), C\textsubscript{α}H\textsubscript{2} (2.12, 31.7), C\textsubscript{α}H\textsubscript{2} (1.38, 28.3), C\textsubscript{α}H\textsubscript{2}-C\textsubscript{α}H\textsubscript{2} (1.25, 29.4), C\textsubscript{α}H\textsubscript{2} (1.24, 27.3), C\textsubscript{α}H\textsubscript{2} (1.13, 38.9), C\textsubscript{α}H (1.49, 27.8), 2C\textsubscript{α}H (0.84, 23.0)
Asp-1	8.11	4.89 (49.8)	C\textsubscript{α}H\textsubscript{2} (2.61/2.49, 36.5)
Dap-2	8.23	4.73 (48.8)	C\textsubscript{α}H\textsubscript{2} (3.76/3.77, 40.3)
D-Pip-3	-	4.99 (55.7)	C\textsubscript{α}H\textsubscript{2} (2.06/1.36, 28.4), C\textsubscript{α}H\textsubscript{2} (1.54/1.36, 20.3), C\textsubscript{α}H\textsubscript{2} (1.60/1.20, 24.8), C\textsubscript{α}H\textsubscript{2} (4.28/2.92, 39.8)
Gly-4	8.20	3.81/3.63 (42.0)	-
Asp-5	8.22	4.61 (50.0)	C\textsubscript{α}H\textsubscript{2} (2.68, 36.3)
Gly-6	8.09	3.76 (43.4)	-
Asp-7	8.29	4.47 (50.6)	C\textsubscript{α}H\textsubscript{2} (2.51, 36.3)
Gly-8	7.74	3.94/3.67 (42.3)	-
D-Dap-9	7.26	4.74 (48.9)	C\textsubscript{α}H (3.83/2.82, 40.1)
Val-10	7.42	4.25 (56.4)	C\textsubscript{α}H (2.04, 30.4), C\textsubscript{γ}1H\textsubscript{2} (0.95, 19.3), C\textsubscript{γ}2H\textsubscript{3} (0.81, 19.0)
Pro-11	-	4.20 (60.3)	C\textsubscript{α}H\textsubscript{2} (2.09/1.67, 29.8), C\textsubscript{α}H\textsubscript{2} (1.90/1.80, 24.9), C\textsubscript{α}H\textsubscript{2} (3.75/3.53, 47.8)
d-Dap$_9$, Val$_{10}$ containing lipopeptide (9) 2D NMR Spectra

TOCSY

NOESY

HSQC
Analytical Data for Laspartomycin C position 10 variants

Compound	AA 10	R	Chemical Formula	HR-MS	
				[M+H⁺]: Calc.	[M+H⁺]: Found
10	Gly	H	C₅₃H₈₂N₁₂O₁₉	1191.5892	1191.5886
11	L-Ala	CH₃	C₅₄H₈₄N₁₂O₁₉	1205.6049	1205.6050
12	L-Abu	H₂C	C₅₅H₈₆N₁₂O₁₉	1219.6205	1219.6198
13	L-Nval	CH₃	C₅₆H₈₈N₁₂O₁₉	1233.6362	1233.6360
14	L-Val	H₂C₂CH₃	C₅₆H₈₈N₁₂O₁₉	1233.6362	1233.6360
15	L-Phe		C₆₀H₈₈N₁₂O₁₉	1281.6362	1281.6360

Analytical HPLC traces

Compound 10
Compound 14

Compound 15
Crystallization and data collection

Lipopeptide 5 or 7 was solubilized in 5 mM HEPES pH 7.5, 10 mM CaCl$_2$ and mixed 1 : 2 with C$_{10}$P, to achieve a final concentration of 7.2 mM : 14.4 mM in presence of 10 % v/v PEG 200. Crystals were obtained by sitting drop vapour diffusion at 18 °C, by mixing 150 nL of the peptide solution with 150 nL of the reservoir solution, composed of 0.2 M sodium formate and 40 % v/v MPD for lipopeptide 5, or 0.2 M cadmium chloride and 40 % v/v MPD for lipopeptide 7, both supplemented by 10 % v/v PEG 200. Crystals were harvested without additional cryoprotectant and flash-cooled in liquid nitrogen. Datasets were collected at 100 K at the Diamond Light Source beamline I04-1 (lipopeptide 5) or I04 (lipopeptide 7).

Structure solution and refinement

The dataset of lipopeptide 5 was processed in the DIALS pipeline2, whereas autoPROC3 was used for lipopeptide 7. The crystal of lipopeptide 7 was initially indexed in a hexagonal setting but based on the merging R-values the true symmetry appeared to be Primitive monoclinic with $\beta = 120^\circ$. The reflection file was therefore re-indexed accordingly, and parameters for pseudo-merohedral twinning were included in the structure refinement. Additional anisotropic correction was done for the datasets of both analogues in STARANISO.3 Structures were solved by molecular replacement using PHASER,4 and one copy (lipopeptide 5) or one dimer (lipopeptide 7) of laspartomycin C in complex with geranyl phosphate (PDB: 5O0Z)5 was used as a search model. Models were manually improved in Coot,6 refinement was performed using REFMAC7 and Molprobity8 was used for validation. Structures of lipopeptides 5 and 7 in complex with Ca$^{2+}$ and C$_{10}$P were deposited to the Protein Data Bank under the accession codes 7AG5 and 7ANY, respectively.
Table S4. Data collection and refinement statistics. Highest resolution shell in parentheses.

	Lipopeptide 5 (PDB: 7AG5)	Lipopeptide 7 (PDB: 7ANY)
Data collection		
Space group	$P6_22$	$P2_1$
Cell dimensions		
a, b, c (Å)	40.43, 40.43, 31.03	40.13, 68.32, 40.13
α, β, γ (°)	90, 90, 120	90, 120, 90
Resolution (Å)	35.01 - 1.03 (1.12 - 1.03)	34.76 - 1.14 (1.27 - 1.14)
No. observed reflections	74114 (4481)	118460 (3464)
No. unique reflections	6321 (421)	36022 (1799)
R_{merge}	0.185 (1.584)	0.087 (0.373)
Mean I/σI	8.0 (1.5)	6.2 (2.8)
CC12	0.997 (0.726)	0.995 (0.852)
Completeness (spherical, %)	80.9 (26.4)	52.2 (9.1)
Completeness (ellipsoidal, %)	92.2 (53.1)	85.3 (31.6)
Ellipsoidal resolution limits (Å) [direction]	1.03 [a*]	1.14 [a*]
	1.03 [b*]	1.81 [b*]
	1.19 [c*]	1.20 [c*]
Redundancy	11.7 (10.5)	3.3 (1.9)
Refinement		
Resolution (Å)	35.01 - 1.04	34.76 - 1.14
R_{work}/R_{free} (%)	12.04 / 14.32	15.96 / 19.21
Average B-factors (Å²)		
Protein	12.3	12.6
Ligands/ions	26.5	18.3
Waters	26.7	21.4
R.M.S. deviations		
Bond lengths (Å)	0.019	0.017
Bond angles (°)	1.72	2.19
No. atoms		
Protein	178	1080
Ligands/ions	34	237
Waters	19	173
Figure S2. A) Structure of the ternary complex with lipopeptide 7 (green stick representation), two bound Ca2+ ions (orange spheres), a bound water molecule (red sphere), and the C\textsubscript{10}-P ligand (lipid in grey). B) Lipopeptide 7 adopts a saddle-shaped conformation when complexed with two Ca2+ ions and C\textsubscript{10}-P and forms a dimer in the crystal.

RMSD (Å)	Lipopeptide 5	Lipopeptide 7
Lipopeptide 7	0.100	X
Laspartomycin C	0.165	0.192

Figure S3: Lipopeptide 5 and Lipopeptide 7 dimers are similar to the Laspartomycin C dimer. Superposition of the dimer structures of lipopeptides 5 and 7 with that of laspartomycin C (PDB: 5O0Z).5 Asymmetric units are composed of one monomer for lipopeptide 5 (the dimer shown for lipopeptide 5 generated by applying two-fold crystallographic symmetry), six dimers for lipopeptide 7 and one dimer for laspartomycin C. RMSD between dimers is indicated in the table. Ca2+ ions are represented by orange spheres and water molecules are represented by red spheres, C\textsubscript{10}-P is also indicated.
Figure S4. In the crystal state lipopeptide 5 forms a higher-ordered assembly when complexed with Ca$^{2+}$ and C$_{10}$-P consisting of alternating hydrophobic (grey), peptidic (green), and hydrophilic (red) layers. A similar lattice is also observed for lipopeptide 7. Notably, this higher ordered assembly is not seen for laspartomycin C.
Bacterial cytological profiling

B. subtilis reporter strains were aerobically grown at 30 °C in LB supplemented with 2mM CaCl$_2$ and antibiotic (5 µg/ml chloramphenicol or 100 µg/ml spectinomycin). Overnight cultures were diluted 100x without antibiotics and GFP-fusion protein expression induced with xylose (% in Table S5). At an OD$_{600}$ of approximately 0.4 the cultures were diluted 10x in the same medium. At OD600 0.2-0.3 150 µl cells were incubated with 12.5 µg/ml laspartomycin C, 5 µg/ml lipopeptide 6, or 2 µg/ml lipopeptide 6. After 10 and 30 minutes 0.5 µl cells were immobilized on microscope slides covered with a 1% agarose film and imaged immediately.

Fluorescence microscopy was carried out using a Zeiss Axiovert 200M equipped with a Zeiss Neofluar 100x/1.30 Oil Ph3 objective, a Lambda S light source (Shutter Instruments), a Photometrics Coolnap HQ2 camera, and Metamorph 6 software (Molecular Devices). Images were analyzed using ImageJ (National Institutes of Health) v.1.52a.

Table S5: B. subtilis strains used in this study ref PMID: 27791134.

Strain	genotype	induction
1049	amyE::spc Pxyl-rpsB-gfp	1% xylose
1048	cat rpoC-gfp Pxyl-rpoC	1% xylose
YK405	amyE::spc Pxyl-gfp-mreB	0.3% xylose
4056	amyE::spec Pxyl-gfp-pmut1-ftsZ	0.1% xylose
TB35	amyE::spc Pxyl-gfp-minD	0.25% xylose
BS23	atpA-gfp Pxyl-atpA cat	0.1% xylose
TNVS91	ΔamyE::specR-PxylR-PolC-4GS-msfGFP	0.03% xylose
TNVS175	amyE::spc-Pxyl-murG-msfgfp	0.05% xylose
Figure S5. Bacterial cytological profiling analysis of lipopeptide 6. The GFP-tagged marker proteins represent the following cellular activities: DNA polymerization (PolC), RNA polymerization (RpoC), protein synthesis (RpsB), F0F1 ATPase (AtpA), lateral cell wall synthesis regulation (MreB), cell division (FtsZ), cell division regulation (MinD) and peptidoglycan precursor synthesis (MurG). Left panels schematically show the normal localization patterns of the different GFP fusions. Strains were grown in LB medium supplemented with 2 mM CaCl₂ at 30 °C. 2x MIC concentration was added (0 min) and samples for microscopy were taken after 10- and 30-min incubation, respectively. Scale bars indicate 2 µm.
Figure S6. Daptomycin reference for the bacterial cytological profiling analyses. The figure was adapted from Müller et al. The GFP-tagged marker proteins represents the following cellular activities: DNA polymerization (PolC), RNA polymerization (RpoC), protein synthesis (RpsB), lateral cell wall synthesis regulation (MreB), cell division (FtsZ), cell division regulation (MinD) and peptidoglycan precursor synthesis (MurG). Left panels schematically show the normal localization patterns of the different GFP fusions. Strains were grown in LB medium supplemented with 1.25 mM CaCl₂ and treated with 2 µg/mL daptomycin at 30 °C. Samples for microscopy were taken before (0 min) and after 10 and 30 min incubation.
Figure S7. Large field phase contrast and fluorescent images showing the effect of 10 min incubation with 12.5 µg/ml laspartomycin C or with 5 µg/ml lipopeptide 6 on the localization of GFP-MreB. Strains were grown in medium supplemented with 2 mM CaCl₂ at 30 °C. Scale bars indicate 5 µm.
Figure S8. Large field images showing the effect of laspartomycin C (12.5 µg/ml) or daptomycin (2 µg/ml) on the localization of GFP-MinD after 30 min incubation with the antibiotics. Localization of MinD is unaffected by laspartomycin C, whereas this protein detaches from the membrane when treated with daptomycin. Strains were grown in medium supplemented with 2 mM CaCl$_2$ at 30 °C. Scale bars indicate 5 µm.
Literature References

1. Abmm, D.; Tamma, D.; Kirn, J.; Cullen, S. K. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 30th Ed. CLSI Suppl. M100 2020, 30.

2. Winter, G.; Waterman, D. G.; Parkhurst, J. M.; Brewster, A. S.; Gildea, R. J.; Gerstel, M.; Fuentes-Montero, L.; Vollmar, M.; Michels-Clark, T.; Young, I. D.; et al. DIALS: Implementation and evaluation of a new integration package. *Struct. Biol.* 2018, 74, 85–97.

3. Vonrhein, C.; Tickle, I.J.; Flensburg, C.; Keller, P.; Paciorek, W.; Sharff, A.; Bricogne, G. Advances in automated data analysis and processing within AutoPROC, combined with improved characterisation, mitigation and visualization of the anisotropy of diffraction limits Using STARANISO. *Acta. Cryst.* 2018, 74, 43537.

4. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. *J. Appl. Crystallogr.* 2007, 40, 658–674.

5. Kleijn, L. H. J.; Vlieg, H. C.; Wood, T. M.; Sastre Toraño, J.; Janssen, B. J. C.; Martin, N. I. A high-resolution crystal structure that reveals molecular details of target recognition by the calcium-dependent lipopeptide antibiotic laspartomycin C. *Angew. Chemie - Int. Ed.* 2017, 56, 16546–16549.

6. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Features and development of Coot. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2010, 66, 486–501.

7. Murshudov, G. N.; Skubák, P.; Lebedev, A. A.; Pannu, N. S.; Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A. REFMAC5 for the refinement of macromolecular crystal structures. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2011, 67, 355–367.

8. Chen, V. B.; Arendall, W. B.; Headd, J. J.; Keedy, D. A.; Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.; Richardson, D. C. MolProbity: all-atom structure validation for macromolecular crystallography. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 2010, 66, 12–21.

9. Müller, A.; Wenzel, M.; Strahl, H.; Grein, F.; Saaki, T. N. V; Kohl, B. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. *Proc. Natl. Acad. Sci. USA.* 2016, 113, E7077-E7086.