INTRODUCTION

Guava (Psidium guajava Linn.), a part of Myrtaceae family, is a widespread tropical and subtropical plant with a long history of traditional usage. Several fragments of guava (P. guajava Linn.) have a lot of medicinal properties that were not only consumed as food but also traditional medicine to remedy various ailments [1].

There has been a long history in the utilization of traditional medicine in half of the world, and it circumscribes a simple, reachable, and affordable source of treatment [2]. Some researchers have revealed that the depletion of fruits, vegetables, and seed can be advantageous to prevent risk factors of several ailments related to the circumstance of chronic disorders, and for many other purposes due to their bioactive compounds [3,4]. Therapies have shown auspicious potential agents with several benefits in herbal products. However, many herbal medicine utilizations which remain untested are poorly monitored or worse are not monitored at all. The limited information of their action mechanism, potential harmful reactions, contraindications, and interactions with existing common pharmaceuticals encourage many researchers to promote the safety and rational utilization of these agents [5].

In pharmacology, it is very important to perform toxicity test for new drug candidates. The test was conducted to evaluate the safety or hazards of several substances including industrial chemicals, pharmaceutical, and consumer care products. The Organization for Economic and Development (OECD) introduced acute toxicity as the advance effect occurring in a short time of oral administration after a simple or multiple doses is given [6-8].

Up-and-Down Procedure (UDP) of OECD 425 is one of the methods for LD₅₀ acute toxicity test. UDP permits to reduce the number of animals substantially, which is required for determining LD₅₀ values as well as ED₅₀ values of a variety of other listings. Animals in the UDP methods are observed individually at least once during the first 30 min after dosing, and periodically during the first 24 h–14 days. All observations including toxic signs, body weight, and pathology are systematically recorded, with individual records being maintained for each animal [7,9]. The aim of our recent study is to know the phytochemical screening and histology appearance of acute oral toxicity, and sign and symptom of toxicity after P. guajava Linn. extract treatment to the mice.

MATERIALS AND METHODS

Preparation of plant extract

Fruit samples were collected from guava trees grown at Dukuh Waluh Village, Purwokerto, Central Java, Indonesia. Random ripe fruit samples were collected into plastic bags with appropriate labeling and were stored in an ice cooler box to be transported to the laboratory for extraction. The fruit samples were constituted by Central Laboratory of Universitas Padjadjaran.

Extraction methods for guava fruits

The fruit samples were washed in tap water and were placed into a blender to be grounded. 96% ethanol solvent was used for maceration extraction procedure. Then, the filtering was conducted using a funnel buncher. The filtral produced from the filtration was concentrated using a rotary evaporator at 40°C to obtain the result of concentrated extract and was suspended using distilled water as needed. The extract was afterward collected and stored at 4°C until use.

Phytochemical screening

Chemical test for the screening of bioactive chemical constituents in the guava was carried out with extracts using a guide of phytochemical methods as described by Harborne [10]. The extract was chemically

ABSTRACT

Objective: The main objectives of the research are to investigate the phytochemical screening, histology appearance, and safety of acute oral toxicity study on the extract of the fruit of Psidium guajava Linn. in mice.

Methods: Mice that were administered by oral feeding with different and controlled dose were divided into three groups, with dose limits of both 2000 and 5000 mg/kg b.w. We analyzed the P. guajava Linn. extract with specific methods before treating the subject. The methods were followed with acute oral toxicity study of Up-and-Down Procedure Organization for Economic and Development 425. The mice were then observed for signs and symptoms of toxicity. In addition, toxicity in the liver and kidney was analyzed through histology observation.

Results: Phytochemical screening revealed the presence of flavonoids, quinone, triterpenoid/steroid, tannins and saponins, and the absence of alkaloids. We found that the treatment with 2000 and 5000 mg/kg b.w. of the extract did not show any differences in body weight changes, number of hepatocyte in liver, and podocyte in kidney compared with control (*p>0.05). Moreover, we noticed all mice lived and were healthy during observation.

Conclusion: Our finding indicates that the extract of the fruit of P. guajava Linn. is safe and it was not toxic to the liver and kidney.

Keywords: Phytochemical screening, Histology, Acute toxicity, Psidium guajava Linn.
tested for the presence of flavonoids, quinone, triterpenoid/steroid, alkaloids, tannins, and saponins.

Experimental animals
A total of 12 healthy female albino mice of the Swiss Webster that weighed 20–30 g that were 8–12 weeks old and that were nulliparous and non-pregnant were selected as the subject. The mice were procured from the Laboratory of Pharmacology and Therapy, Universitas Padjadjaran. The mice were housed in cages in a temperature-controlled room (22±3°C) and were provided with conventional rodent laboratory fed an unlimited supply of drinking water ad libitum. The procedures taken passed the Ethical Clearance from Health Research Ethics Committee (No. 1104/UN6.C.10/PN/2017), Universitas Padjadjaran.

Acute oral toxicity test
The mice were divided into three sets that were administered by oral feeding to different sets, at dose limits of both 2000 and 5000 mg/kg b.w. and control. All mice were observed for toxic signs, body weight, and mortality for 14 days for qualitative data.

Group 1 served as a control and received distilled water. Group 2 received a dose limit of 2000 mg/kg b.w. of fruit extract (0.2 ml/kg b.w., p.o). Each mouse was given one dose test. If it survives, another four mice were given a dose sequentially. If three or more animal survives, the test was proceeded to a dose limit of 5000 mg/kg b.w. Group 3 received a dose limit of 5000 mg/kg b.w. of fruit (0.2 ml/kg b.w., p.o). If the mouse survives, another two mice were given a dose sequentially. If both mice survive, the LD

Histology analysis
The mice were sacrificed, and afterward, liver and kidney collection was conducted. The organs were fixed with 3% (w/v) paraformaldehyde and were processed as previously described. We performed hematoxylin-eosin (HE) staining according to the previous methods [11-13].

Statistical analysis
Quantitative data were expressed as mean±SD. The data were determined and analyzed using one-way ANOVA. The statistical significance was accepted if p<0.05.

RESULTS

Phytochemical analysis
Phytochemical screening is an early stage to give a scheme of compound classification in plant samples. Table 1 shows the summarized phytochemical screening of chemical constituents of *P. guajava* Linn.

Constituents	Qualitative tests	Result
Flavonoids	HCl 2M and Amyl alcohol	+
Quinone	NaOH 30%	+
Triterpenoid/steroid	Acetic acid anhydride and H₂SO₄	+
Alkaloid	Dragendorff	-
Tannins	ReCl₃	+
Saponins	H₂O	+

(+*) present and (-) absent

Table 2: Clinical observation

Group	Toxic Signs	Group	Toxic Signs	Group	Toxic Signs
Control	Cyanosis	-	Dose 1	Cyanosis	-
	Tremor	-		Tremor	-
	Salivation	-		Salivation	-
	Piloerection	-		Piloerection	-
	Feces	-		Feces	-
	Vomiting	-		Vomiting	-
	Death	-		Death	-

(-) normal. Control=distilled water; dose 1=2000 mg/kg b.w.; dose 2=5000 mg/kg b.w.
Fig. 1: Body weight observation

Fig. 2: Histology of the liver and kidney

Table 3: Statistical analysis of body weight

Treatment group	Mean±SD	p value
Control	27.60±2.69	
Dose 1	29.60±1.18	0.074
Dose 2	28.20±2.90	

Control=distilled water; dose 1=2000 mg/kg b.w.; dose 2=5000 mg/kg b.w.

Table 4: Anova test of hepatocytes number

Treatment group	Mean±SD	p value
Control	111.00±9.41	
Dose 1	123.40±24.92	0.630
Dose 2	20.67±16.92	

Control=distilled water; dose 1=2000 mg/kg b.w.; dose 2=5000 mg/kg b.w.
Table 5: Post hoc test of hepatocytes number

Treatment group	p value
Control versus dose 1	0.361
Control versus dose 2	0.527
Dose 1 versus dose 2	0.85

Control=distilled water; dose 1=2000 mg/kg b.w.; dose 2=5000 mg/kg b.w.

Table 6: ANOVA test of podocytes number

Treatment group	(Mean±SD)	p value
Control	39.75±19.20	0.793
Dose 1	46.20±5.16	0.527
Dose 2	37.33±3.05	0.527

Control=distilled water; dose 1=2000 mg/kg b.w.; dose 2=5000 mg/kg b.w.

Table 7: Post hoc test of podocytes number

Treatment group	p value
Control dose 1	0.432
Control dose 2	0.793
Dose 1 dose 2	0.327

Control=distilled water; dose 1=2000 mg/kg b.w.; dose 2=5000 mg/kg b.w.

CONCLUSION
Our finding indicates that the *Psidium guajava* Linn. fruit extract contains some bioactive compounds that have a medicinal effect. Toxicity test with a dose limit of 2000 and 5000 mg/kg b.w. of the extract administration showed that it is nontoxic.

ACKNOWLEDGMENT
The authors would like to thank the Internal Grant of Universitas Padjadjaran, NA, ACH, ARR; the Indonesia Endowment Fund for Education (LPDP), IM; and USAID through Sustainable Higher Education Research Alliances -Centre for Collaborative Research on Acute Respiratory Infections Program to NA.

AUTHORS' CONTRIBUTIONS
NA, IM, and DHD designed the experimental study and carried out the analysis. NA, IM, ARR, and AC contributed in preparing the manuscript and revision. All authors have read and approved the final manuscript.

CONFLICTS OF INTEREST
The authors have none declare.

REFERENCES

1. Biswas B, Rogers K, McLaughlin F, Daniels D, Yadav A. Antimicrobial activities of leaf extracts of guava (*Psidium guajava* L.) on two gram-negative and gram-positive bacteria. Int J Microbiol 2013;2013:746165.
2. Daswani PG, Gholar MK, Birdi T.J. *Psidium guajava*: A single plant for multiple health problems of rural Indian population. Pharmacogn Rev 2017;11:167-74.
3. Wu J, Wan Z, Yi J, Wu Y, Peng W, Wu J, et al. Investigation of the extracts from *Bidens pilosa* Linn. var. radiata Sch. Bip. For antioxidant activities and cytotoxicity against human tumor cells. J Nat Med 2013;67:17-26.
4. Párraga I, López-López J, Andrés F, Navarro B, del Campo JM, García-Reyes M, et al. Effect of plant sterols on the lipid profile of patients with hypercholesterolemia. Randomised, experimental study. BMC Complement Altern Med 2011;11:73.
5. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014;4:177.
6. Erkekoglu P, Giny BK, Basaran N. 3R principle and alternative toxicity testing method. Fahad J Pharm Sci 2011;36:101-17.
7. OECD. Test No. 425: Acute Oral Toxicity: Up-and-Down Procedure, OECD Guidelines for the Testing of Chemical. Sec. 4. Paris: OECD Publishing; 2008. Available from: https://www.oecd. org/10.1787/9789264070949-en. [Last accessed on 2017 Apr 03].
8. Subramaninan K, Sankaramourthy D, Gunasekaran M. Toxicity studies related to medicinal plants. In: Natural Products and Drug Discovery. USA: Elsevier; 2018. p. 491-505.
9. Lobo VC, Phatak A, Chandra N. Acute toxicity studies of some Indian medicinal plants. Pharmacogn J 2010;2:207-10.
10. Harborne JB. Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. 8th ed. London: Chapman and Hall Ltd.; 1998.
11. Avriyanti E, Atik N, Kunii M, Furumoto N, Iwano T, Yoshimura S, et al. Functional redundancy of protein kinase D1 and protein kinase D2 in neuronal polarity. Neurosci Res 2015;95:12-20.
12. Avriyanti E, Atik N, Kunii M, Furumoto N, Iwano T, Yoshimura S, et al. Functional redundancy of protein kinase D1 and protein kinase D2 in neuronal polarity. Neurosci Res 2015;95:12-20.
13. Alturkistani HA, Tashkandi FM, Michtimesaleh ZM. Histological stains: A Literature review and case study. Glob J Health Sci 2017;9:21.
14. Atik N, Munawir MD, Tarawifa S, Darmadjii HP. Effect of guava extract administration on megakaryocytes amount in mice femur. Indone J Clin Pharm 2017;9:167-74.
15. Atik N, Munawir MD, Tarawifa S, Darmadjii HP. Effect of guava extract administration on megakaryocytes amount in mice femur. Indone J Clin Pharm 2017;9:167-74.
16. Atik N, Munawir MD, Tarawifa S, Darmadjii HP. Effect of guava extract administration on megakaryocytes amount in mice femur. Indone J Clin Pharm 2017;9:167-74.
17. Venkatesan N, Thiyagarajan V, Sivakumar SG, et al. Anti-diarrhoeal potential of *Asparagus racemosus* wild root extracts. J Ethnopharmacol 2015;171:11-9.
18. Qadan F, Thewaide AJ, Ali DA, Athif R, Elkhawad A, Matalka KZ, et al. The antimicrobial activities of *Psidium guajava* and *Juglans regia* leaf extracts to acne-developing organisms. Am J Chin Med 2005;33:197-204.
19. Atik N, Munawir MD, Tarawifa S, Darmadjii HP. Effect of guava extract administration on megakaryocytes amount in mice femur. Indone J Clin Pharm 2017;9:167-74.
20. Anusarne K, Sankarapunam K, Ramakrishna M. Histological stains: A Literature review and case study. Glob J Health Sci 2017;9:21.
inhibitory activities of different parts of guava (*Psidium guajava* L.). Food Sci Biotechnol 2011;20:1095-100.

22. Yu K, Chen F, Li C. Absorption, disposition, and pharmacokinetics of saponins from Chinese medicinal herbs: What do we know and what do we need to know more? Curr Drug Metab 2012;13:577-98.

23. Muda I, Atik N. Profile of liver function in mice after high dose of *Psidium guajava* linn. extract treatment. Biomed Pharmacol J 2018;11:1397-401.

24. Atik N, Tarawifa S, Avriyanti E, Rahmadi AR, Hilmanto D. *Psidium guajava* L. extract increases platelet count through enhancement of stem cell factor expression in thrombocytopenic mice model. Int J Pharm Pharm Sci 2018;10:23-6.

25. Mohan M, Shashank B, Priya AV. Protective of *Psidium guajava* L. leaves ethanolic extract on doxorubicin-induced nephrotoxicity in rats. Indian J Nat Prod Resour 2015;5:129-33.

26. Lin CY, Yin MC. Renal protective effects of extracts from guava fruit (*Psidium guajava* L.) in diabetic mice. Plant Foods Hum Nutr 2012;67:303-8.

27. Zaltzman JS, Whiteside C, Cattran DC, Lopez FM, Logan AG. Accurate measurement of impaired glomerular filtration using single-dose oral cimetidine. Am J Kidney Dis 1996;27:504-11.

28. Askaripour MA, Tabatabaei SR, Hosseini F, Varzi IH. Effect of purslane (*Portulaca oleracea*) on renal ischemia/reperfusion injury in rat. Int J Pharm Pharm Sci 2015;7:467-71.