Scattering phases in the broken phase of the 4-d $O(4)$ non-linear σ-model

Jörg Westphalena,b, Frank Zimmermanna,b, Meinulf Göckelera,b and Hans A. Kastrupa

aInstitut für Theoretische Physik, RWTH Aachen, D-52056 Aachen, Germany
bHLRZ c/o KFA Jülich, P.O.Box 1913, D-52425 Jülich, Germany

Using Lüscher’s method we determine the elastic scattering phases in the broken phase of the 4-dimensional $O(4)$ non-linear σ-model from the two-particle energy spectrum in a Monte-Carlo study on finite lattices. In the isospin-0-channel we observe the σ-resonance and extract its mass and its width. In all scattering channels investigated the results are consistent with perturbative calculations.

1. INTRODUCTION

Lüscher established a relation between the energy spectrum of two-particle states in a finite box with periodic boundary conditions and elastic scattering phase shifts defined in infinite volume [1]. Since two-particle energy levels are calculable by Monte Carlo techniques, this relation opens the possibility to extract phase shifts from numerical simulations on finite lattices. We give a résumé of our results on the elastic scattering phases in the broken phase of the 4-dimensional $O(4)$ non-linear σ-model including the corrections to our preliminary results of the Lattice ’92 contribution [2]. For a more detailed discussion see ref. [3].

2. FROM THE TWO-PARTICLE SPECTRUM TO THE SCATTERING PHASES

We give the “pions” of our model a nonzero mass m_π by means of an external source J in the action:

$$ S = -2\kappa \sum_{x \mu=1}^{4} \Phi^\alpha_{x \mu} \Phi^\alpha_{x+\mu} + J \sum_{x} \Phi^4_{x} . \quad (1) $$

The scalar field is represented as a four-component vector Φ^α_{x} of unit length: $\Phi^\alpha_{x} \Phi^\alpha_{x} = 1$.

Two-pion states are classified according to cubic symmetry and have “isospin” $I = 0, 1, 2$. For their investigation we define the operator:

$$ O^a_{i} (t) = \sum_{\vec{n} \in \mathbb{Z}^4_L} \tilde{f}_i (\vec{n}) \, \tilde{\Phi}^a_{\vec{n}, t} \, \tilde{\Phi}^b_{\vec{n}, t} \quad (2) $$

where $\tilde{f}_i (\vec{n})$, $i = 1, 2, \ldots$ is some basis of wave functions with correct cubic symmetry and $\tilde{\Phi}^a_{\vec{n}, t}$ is the spatial Fourier transform of the field $\Phi^a_{x, t}$ on a lattice of spatial extent L:

$$ \tilde{\Phi}^a_{\vec{n}, t} = L^{-3} \sum_{x \in \mathbb{Z}^4_L} \Phi^a_{x, t} \, e^{2\pi i \vec{n} \cdot \vec{x} / L} . \quad (3) $$

The simplest choice of cubically invariant wave functions is a sum over plane waves:

$$ \tilde{f}_i (\vec{n}) = \delta_{i, n^2} , \quad i = 0, 1, 2, \ldots . \quad (4) $$

We also used another set of (Lüscher-) wave functions [1], which gave the same final results (see [3] for further details).

In the isospin-0 channel, where the σ-resonance is expected, we use operators $O_i (t)$ given by

$$ O_i (t) = \frac{1}{\sqrt{3}} \sum_{a=1}^{3} O^a_{i} (t) . \quad (5) $$

Additionally we have to take into account the σ field at zero momentum

$$ O_\sigma (t) = \tilde{\Phi}^4_{0, t} = \frac{1}{L^3} \sum_{\vec{x} \in \mathbb{Z}^4_L} \Phi^4_{\vec{x}, t} , \quad (6) $$

*speaker at the conference

†supported by the Deutsche Forschungsgemeinschaft
since it has the correct quantum numbers and is expected to create a state with energy below the inelastic threshold.

The two-particle energies \(W_\nu \) are extracted from the matrices of connected correlation functions \([4]\). For the different isospin channels these matrices are given by

\[
\begin{align*}
C_0^0(t) &= \langle O_i(t) O_j(0) \rangle_c, \\
C_{ij}^1(t) &= \langle \text{Im} \, O_i^{ab}(t) \, \text{Im} \, O_j^{ab}(0) \rangle_c, \\
C_{ij}^2(t) &= \langle \text{Re} \, O_i^{ab}(t) \, \text{Re} \, O_j^{ab}(0) \rangle_c - C_{ij}^0(t).
\end{align*}
\]

As described in [1], for each lattice extent \(L \) and each two-particle energy level \(W_\nu < 4m_\sigma \) we get one value of the scattering phase shifts \(\delta_0^0, \delta_1^0, \) and \(\delta_2^0 \), respectively, in the elastic region \(0 < k_\nu / m_\sigma < \sqrt{3} \). It is computed from the key relation

\[
\delta_k^l(k_\nu) = -\phi\left(\frac{k_\nu L}{2\pi}\right) \text{ mod } \pi, \tag{8}
\]

where \(\phi \) is a continuous function defined in [1], see also [2,3] \((l=\text{angular momentum}). \) The momentum \(k_\nu \) corresponding to \(W_\nu \) has to be calculated with the help of the (lattice) energy momentum relation

\[
(2 \sinh^{1/2}(\frac{W_\nu}{2}))^2 = m_\sigma^2 + k_\nu^2. \tag{9}
\]

This relation does not determine \(k_\nu \) uniquely, since \(k_\nu \) depends not only on \(k_\nu \) but also on the direction of \(k_\nu \). We include this small ambiguity in the error estimate for \(k_\nu \).

3. NUMERICAL RESULTS

The data points in figs. 1-3 show the momenta extracted from the energy levels and the corresponding phase shifts \(\delta_k^0, \delta_k^1, \delta_k^2 \) at \((\kappa = 0.315, J = 0.01) \).

How do our results compare with one-loop perturbation theory if we insert the renormalized coupling constant and masses as determined by our simulations? The dashed curves are the perturbative predictions based on an estimate \(\bar{m}_\sigma \) of the resonance mass \(m_\sigma \), which was obtained from a fit to the non-resonance \(\sigma \)-propagator in momentum space. We consider \(\bar{m}_\sigma \) to be an estimate only, since the \(\sigma \) particle is unstable. Fig. 1 shows that indeed \(m_\sigma \) lies below \(\bar{m}_\sigma \).

In figs. 2, 3 we observe no significant deviation from perturbation theory: For isospin 1 and 2 the perturbative predictions depend on \(m_\sigma \) only weakly.

In order to determine the resonance mass \(m_\sigma \) and the decay width \(\Gamma_\sigma \) from the measured scattering phases we have employed different methods:

A. Perturbative Fit

The one-loop perturbative formula for \(\delta_k^0 \) [5] (see [3] for details) as function of \(k_\nu, m_\sigma, \Gamma_\sigma \) can be used as a fit ansatz for all points in the elastic region. This leads to \(m_\sigma = 0.691(3) \) and \(\Gamma_\sigma = 0.112(7) \) in good agreement with the results from the Breit-Wigner fit below.

B. Breit-Wigner Fit

Fitting to the (relativistic) Breit-Wigner formula

\[
\tan \left(\delta_k^0 - \frac{\pi}{2} \right) = \frac{W^2 - m_\sigma^2}{m_\sigma \Gamma_\sigma} \tag{10}
\]

has the major advantage of being free of additional assumptions, but can only be applied near
the resonance at $\delta_0^0 = \pi/2$, so only few data points are used. Nevertheless we get for the resonance mass m_σ and width Γ_σ: $m_\sigma = 0.706(2)$ and $\Gamma_\sigma = 0.130(9)$. These numbers have to be compared with the estimate $\tilde{m}_\sigma = 0.720(1)$ and the perturbative prediction $\bar{\Gamma}_\sigma = \Gamma_\sigma(\bar{m}_\sigma, \ldots) = 0.121(1)$.

4. DISCUSSION AND CONCLUSIONS

The results for the decay width agree reasonably well with the perturbative predictions, while the resonance masses m_σ lie systematically (about 5\%) below the estimates \tilde{m}_σ from the fit to the propagator in momentum space. However, this discrepancy should not be too surprising, because the width of the σ-resonance for our choice of parameters is rather large: $\Gamma_\sigma \approx 0.15 m_\sigma$.

Once again, renormalized perturbation theory has turned out to be very reliable in the four-dimensional Φ^4-theory. Furthermore, we have demonstrated the applicability of Lüscher's method for studying particle scattering processes in massive quantum field theories on finite lattices – at least for this model.

ACKNOWLEDGEMENT

Helpful discussions with M. Lüscher and C. Frick are gratefully acknowledged. Furthermore we wish to thank the Rechenzentrum at the RWTH Aachen and the HLRZ Jülich for providing the necessary computer time on their SNI S600/20 and CRAY Y-MP, respectively.

REFERENCES

1. M. Lüscher, Nucl. Phys. B354 (1991) 531; Nucl. Phys. B364 (1991) 237.
2. F. Zimmermann, J. Westphalen, M. Göckeler and H.A. Kastrup, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 879.
3. M. Göckeler, H.A. Kastrup, J. Westphalen and F. Zimmermann, in preparation.
4. M. Lüscher and U. Wolff, Nucl. Phys. B339 (1990) 222.
5. M. Lüscher, private notes.