Nationwide bowel cancer screening programme in England: cohort study of lifestyle factors affecting participation and outcomes in women

R G Blanks*,1, V S Benson1, R Alison1, A Brown1, G K Reeves1, V Beral1, J Patnick1,2 and J Green1

1Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK and 2NHS Cancer Screening Programmes, Public Health England, Fulwood House, Old Fulwood Road, Sheffield S10 3TH, UK

Background: In 2006, the National Health Service Bowel Cancer Screening Programme in England (NHSBCSP) began offering routine population-based biennial faecal occult blood testing (FOBt) at ages 60–69. There is, however, limited information on how characteristics of individuals affect participation and outcomes of screening, and we studied this association by linking NHSBCSP data to a large prospective cohort of women.

Methods: Electronic linkage of the NHSBCSP and Million Women Study records identified 899 166 women in the study cohort with at least one invitation for screening. NHSBCSP provided information on screening acceptance, FOBt results, screen-detected colorectal cancer and other outcomes. The Million Women Study provided prospectively collected information on personal and lifestyle factors. Multiple regression was used to estimate relative risks (RRs) of factors associated with acceptance and outcomes of screening.

Results: Overall, 70% of women (628 976/899 166) accepted their first invitation for bowel cancer screening, of whom 9133 (1.5%) were FOBt-positive, 743 (0.1%) had screen-detected colorectal cancer and 3056 (0.5%) had screen-detected colorectal adenoma. Acceptance was lower in women from the most than the least deprived tertile, in South Asians and in Blacks than in Whites, in current than in never smokers and in obese than in normal weight women: adjusted RRs (95% confidence interval) for acceptance vs not, 0.90 (0.90–0.90); 0.77 (0.75–79); 0.94 (0.92–0.96); 0.78 (0.77–0.78); and 0.88 (0.88–0.89), respectively; \(P < 0.001 \) for each. These factors were also associated with an increased risk of being FOBt-positive and of having screen-detected adenoma, but were not strongly associated with the risk of screen-detected colorectal cancer. Relative risks for screen-detected adenoma were 1.22 (1.12–1.34), 2.46 (1.75–3.45), 1.61 (1.05–2.48), 1.53 (1.38–1.68) and 1.77 (1.60–1.95), respectively (\(P < 0.001 \) for all, except for Blacks vs Whites \(P = 0.03 \)). Use of hormone therapy for menopause was associated with reduced risk of screen-detected adenoma, RR ever vs never use, 0.87 (0.81–0.93), \(P < 0.001 \) and colorectal cancer, 0.78 (0.68–0.91), \(P = 0.001 \).

Interpretation: Among women in England, socioeconomic and lifestyle factors strongly affect participation in routine bowel cancer screening, risk of being FOBt-positive and risk of having screen-detected colorectal adenoma. However, screen-detected colorectal cancer risk is not strongly related to these factors.

In 2006, a population-based nationwide organised screening programme, the National Health Service Bowel Cancer Screening Programme (NHSBCSP), began offering those aged 60–69 years routine biennial faecal occult blood testing (FOBt), with follow-up diagnostic testing for those positive for FOBt (www.cancerscreening.nhs.uk/bowel). Acceptance of bowel cancer screening in the

*Correspondence: Dr R Blanks; E-mail: roger.blanks@ceu.ox.ac.uk

Received 11 September 2014; revised 16 January 2015; accepted 27 January 2015; published online 5 March 2015

© 2015 Cancer Research UK. All rights reserved 0007 – 0920/15
NHSBCSP has been shown to increase with age, to be greater in women than in men and to be lower in populations more deprived than the average (von Wagner et al. 2011; Lo et al. 2014). Existing studies have largely used routinely collected screening data, with limited information on individual characteristics of the invited or screened population other than age, sex and residence. Little is known about how other characteristics of individuals affect participation in bowel screening, or how lifestyle and other factors affect FOBT positivity and the risk of having screen-detected colorectal cancer. Recent reviews point out that despite evidence, recommendations and availability of screening tests, uptake for screening is disappointingly low (The Lancet, 2014).

Linkage of the NHSBCSP and an ongoing large population-based UK cohort, the Million Women Study, offers the opportunity to study individual lifestyle factors affecting participation and outcomes of routine bowel cancer screening. Here we investigate the associations between prospectively collected personal characteristics recorded in study participants. Approval for linkage was given by the Cambridge South Research Ethics Committee and by the NHS Bowel Cancer Screening Programme Research Committee.

Statistical analysis. All analyses refer to the first invitation sent by NHSBCSP. Multiple regression methods were used. To study factors associated with acceptance of screening, we calculated adjusted risk ratios, referred to here as relative risks (RRs), and 95% confidence intervals (CIs) for acceptance (that is, returning a completed FOBT test kit) vs not (mostly by not returning a completed FOBT kit, but sometimes by declining to participate after receiving the initial letter of invitation). For study factors associated with FOBT positivity, with undergoing subsequent diagnostic testing and with clinical diagnoses we calculated adjusted RRs and 95% CIs among those who returned a completed FOBT kit; had a positive FOBT test result; or had undergone diagnostic testing, as appropriate.

Analyses were adjusted as appropriate by socioeconomic status (tertiles of the Townsend deprivation index (Townsend et al., 1988); ethnicity (White, Black and South Asian); smoking status (never, past and current), body mass index (BMI; <25, 25–29.9, 30 + kg m$^{-2}$), parity (nulliparous and parous), past use of oral contraceptives (never and ever), use of hormone therapy (HT) for the menopause (never and ever), strenuous exercise (<1, 1–19, 20 g per week), alcohol intake (< 20 g, ≥ 20 g per week), region of residence, age at invitation (< 61.9, 62–63.9, 64–65.9, 66–67.9 and 68 + years) and year of birth (1930–1944 and 1945–1959). Women with missing values for any of the adjustment variables (<2% in all categories other than ethnicity, which was unknown for 9% of women invited to screening) were assigned to a separate category for that variable. Information on variables was as reported at the Million Women Study recruitment except for ethnicity, which was derived from the ethnic group self-reported by women responding to a resurvey questionnaire sent ~3 years after recruitment, and/or ethnicity as recorded for hospital admissions, as previously described (Gathani et al., 2014). Scores for the Townsend Index of Deprivation were assigned by postcode at recruitment according to Enumeration District (ED) of the 1991 Census; EDs contain on average some 200 households/500 people, and are the smallest available area for which a measure of deprivation is available in England (http://www.ons.gov.uk/ons/guide-method/census/census-2001/glossary/a–g/index.html).

Role of the funding source.
Funders did not influence the contents of the paper or its submission.

RESULTS

A total of 899 166 Million Women Study participants received at least one invitation from the NHSBSP for screening. We report results for the first invitation to screening only. Invited women had been sent their first invitation for routine bowel cancer screening between 7 December 2006 and 28 March 2012. Their mean age at first invitation was 65.3 (s.d. 3.6) years. Of the 899 166 women invited, 628 976 (70%) accepted the invitation by completing a FOBT test. Of the 270 190 women who did not accept, 17 851 declined to receive a FOBT kit after the initial invitation letter, 250 748 were sent a kit but did not return it and 1591 returned at least one kit but did not complete the process (spoilt kit, technical failure, failure to respond to further kits and did not complete the process for other reason). Characteristics of the women who accepted or did not accept bowel cancer screening are shown in Table 1; and Table 2 shows adjusted RRs for acceptance of bowel cancer screening vs nonacceptance. Acceptance was significantly
Table 1. Characteristics of Million Women Study participants by acceptance of first invitation for screening by the NHS Bowel Cancer Screening Programme in England

Characteristic	Bowel-screening accepted (N = 628 976)	Bowel-screening not accepted (N = 270 190)	Total invited for screening (N = 913 166)
Mean age at first invitation to bowel screening, years (s.d.)	65.2 (3.6)	65.3 (3.8)	65.3 (3.6)
Socioeconomic group (% in upper third)			
Least deprived			
Current smoker, %	36	28	33
Body mass index \(\geq 30\, \text{kg}\,\text{m}^{-2},\) %	16	22	18
Ever had full-term pregnancy, %	90	89	90
Ever used oral contraceptives, %	66	62	65
Ever used HT, %	55	50	53
Strenuous physical activity \(\geq 1\) times per week, %	42	35	40
Alcohol intake \(\geq 20\) g per week, %	49	42	47

Abbreviation: HT = hormone therapy for menopause.

(P < 0.001) lower in women from the most deprived than the least deprived tertile of the population, RR 0.90, (95% CI 0.90–0.90); in South Asian and in Black than White women: RRs 0.77 (95% CI 0.75–0.79) and 0.94 (95% CI 0.92–0.96), respectively; in current than never smokers, 0.78 (95% CI 0.77–0.78); and in obese women than those with a normal BMI, 0.88 (95% CI 0.88–0.89).

Acceptance was slightly higher in parous women and in those who reported more frequent strenuous physical activity, drank more alcohol and had used HT for menopause.

Table 2. Adjusted* RRs and 95% CIs for acceptance of screening in 899 166 women invited to bowel cancer screening

Characteristic	n Cases accepted/invited	RR (95% CI)
Socioeconomic level (tertiles)		
Least deprived	225 928/299 952 (75%)	1.00
Medium	213 066/296 443 (72%)	0.98 (0.97–0.98)
Most deprived	185 246/296 097 (63%)	0.90 (0.90–0.90)
Ethnic group		
White	571 645/800 958 (71%)	1.00
Black	223 359/359 862 (62%)	0.94 (0.92–0.96)
South Asian	278 537/537 537 (52%)	0.77 (0.75–0.79)
Smoking status		
Never	319 603/430 627 (74%)	1.00
Past	176 156/240 928 (73%)	0.98 (0.98–0.98)
Current	99 159/176 939 (56%)	0.78 (0.77–0.78)
Body mass index \(\text{kg}\,\text{m}^{-2}\)		
< 25	294 132/462 658 (73%)	1.00
25–29	211 025/300 104 (70%)	0.97 (0.96–0.97)
30 +	95 471/151 090 (63%)	0.88 (0.88–0.89)
Full-term pregnancy		
Never	64 403/919 204 (68%)	1.00
Ever	563 797/803 588 (70%)	1.04 (1.03–1.04)
Oral contraceptive use		
Never	212 320/312 617 (68%)	1.00
Ever	411 766/579 068 (71%)	1.02 (1.02–1.02)
HT use		
Never	281 419/419 520 (68%)	1.00
Ever	341 919/474 460 (72%)	1.04 (1.04–1.05)
Strenuous exercise		
<1 Per week	353 722/522 151 (68%)	1.00
1+ Per week	257 287/346 552 (74%)	1.04 (1.04–1.04)
Alcohol (g per week)		
<20	321 029/474 789 (68%)	1.00
20 +	304 562/418 087 (73%)	1.04 (1.03–1.04)
Region		
South	302 043/428 801 (70%)	1.00
Midlands	141 596/198 368 (71%)	1.03 (1.02–1.03)
North	185 337/271 997 (68%)	0.99 (0.99–0.99)

Abbreviations: CI = confidence interval; HT = hormone therapy for menopause; RR = relative risk.

*Adjusted by age at invitation and calendar year categories, and all other factors listed above as appropriate.

Table 3 summarises the outcome of the screening FOBT in those who accepted. Of the 628 976 women who completed the FOBT test, 9133 (1.5%) had a positive FOBT result and were referred for further diagnostic tests. Most of those referred attended for diagnostic testing (87%; 7911 out of 9133), and diagnostic test results were recorded for all but 17 women. Colonoscopy was the sole diagnostic test in 91% of those tested. Colorectal cancer was diagnosed in 743 women (0.1% of all women screened, 8% of those who were FOBT-positive and 9% of those who had a diagnostic test) and 3056 were diagnosed with colorectal adenoma (0.5% of all women screened, 33% of those who were FOBT-positive and 39% of those who completed a diagnostic test). Only 13 women with colorectal cancer also had reported screen-detected adenoma, and they are included just in analyses relating to cancer. Of those who had a diagnostic test result, 2214 (28%) had only a condition other than neoplasia recorded; the most common specific other diagnoses were diverticular disease and haemorrhoids. In almost a quarter of those who were FOBT-positive (1881, 24%), the diagnostic test record identified no abnormality.

Table 4 shows the RRs and 95% CIs for being FOBT-positive, and for having a diagnosis of colorectal cancer or colorectal adenoma, in those screened. FOBT positivity was most strongly associated with deprivation, Non-White ethnicity, smoking and obesity. These factors were also associated with an increased risk of having screen-detected adenoma. Relative risks in the most vs least deprived tertile, South Asian and Black vs White ethnicity, current vs never smokers and obese vs not, for screen-detected adenoma were 1.22 (1.12–1.34), 2.46 (1.75–3.45), 1.61 (1.05–2.48), 1.53 (1.38–1.68) and 1.77 (1.60–1.95), respectively. Being physically active, parous and having used menopausal HT were associated with small reductions in the risk of having a screen-detected adenoma.

Risk factors for screen-detected colorectal cancer were often not the same as for screen-detected adenoma. There was no significant association with deprivation, smoking or obesity (numbers in subgroups by ethnicity were too small to allow reliable analysis). The only statistically significant association was a decreased risk associated with ever use of menopausal HT: RR 0.78 (0.68–0.91), P = 0.001.

The 13% of women (1222 out of 9133) who were FOBT-positive but had no further diagnostic tests within the screening programme were more likely than those who had diagnostic tests to be current smokers or of South Asian ethnicity (Table 5). Some of these women are known to have refused further tests; however, for over half, the reason for not having diagnostic tests is not
Our results illustrate the potential of using linked routinely collected and cohort study data in investigating associations between lifestyle factors and participation in a national cancer-screening programme. Women who were obese, current smokers, of non-White ethnicity and from more deprived areas were less likely to take part in bowel cancer screening in England; these factors were also associated with an increased risk of FOBt positivity and of having screen-detected colorectal adenoma, but not of screen-detected colorectal cancer. While not strongly related to acceptance or FOBt positivity, ever use of menopausal HT was associated with a decreased risk of adenoma and of colorectal cancer.

Our findings for factors affecting participation in bowel cancer screening add to the evidence currently available. Studies of

Bowel-screening outcome	Number of women (%)
Screening test outcome	
FOBt-positive	9133
FOBt-negative	619843
Attendance for further investigations of 9133 who were FOBt-positive	
Attended for diagnostic test	7911
Did not attend diagnostic test	1222
Diagnostic test results for 7911 who attended for further investigation	
Colorectal cancer	743
Colorectal adenoma	3056
Non-neoplastic condition only*	2214
No abnormality recorded	1881
No result from diagnostic tests	17

*That is, recorded abnormalities other than cancer or adenoma; includes diverticular disease, haemorrhoids, inflammatory bowel disease, and so on.

Table 4. Adjusted* RRs and 95% CIs for FOBt-positive result and screen-detected colorectal cancer and adenoma in screened women

Socioeconomic level (tertiles)						
Least deprived	2850	1.00	274	1.00	942	1.00
Medium	3028	1.08 (1.03–1.14)	237	0.90 (0.75–1.07)	1028	1.11 (1.01–1.21)
Most deprived	3202	1.21 (1.14–1.27)	229	0.98 (0.82–1.17)	1067	1.22 (1.12–1.34)

Ethnic group						
White	8595	1.00	722	1.00	2910	1.00
Black	75	1.86 (1.49–2.33)	3	Insufficient data	21	1.61 (1.06–2.49)
South Asian	149	3.45 (2.94–4.05)	2	Insufficient data	34	2.49 (1.74–3.50)

Smoking status						
Never	4216	1.00	367	1.00	1364	1.00
Past	2744	1.16 (1.11–1.22)	231	1.15 (0.97–1.35)	907	1.18 (1.09–1.29)
Current	1649	1.29 (1.22–1.37)	110	1.03 (0.83–1.28)	621	1.53 (1.38–1.68)

Body mass index (kg m\(^{-2}\))						
<25	3292	1.00	312	1.00	1120	1.00
25–29	3164	1.31 (1.24–1.37)	261	1.12 (0.95–1.33)	1124	1.37 (1.26–1.49)
30 +	2172	1.93 (1.83–2.04)	130	1.22 (0.99–1.50)	665	1.77 (1.61–1.95)

Full-term pregnancy						
Never	1014	1.00	86	1.00	356	1.00
Ever	8105	0.88 (0.82–0.93)	654	0.85 (0.68–1.07)	2698	0.84 (0.75–0.94)

Oral contraceptive use						
Never	3290	1.00	280	1.00	1159	1.00
Ever	5741	0.99 (0.95–1.04)	445	1.02 (0.87–1.19)	1875	0.93 (0.86–1.01)

HT use						
Never	3983	1.00	367	1.00	1442	1.00
Ever	5049	1.02 (0.98–1.06)	369	0.78 (0.68–0.91)	1583	0.87 (0.81–0.93)

Strenuous exercise (per week)						
<1	5542	1.00	448	1.00	1850	1.00
1 +	3241	0.89 (0.85–0.93)	276	0.87 (0.74–1.01)	1099	0.89 (0.83–0.96)

Alcohol (g per week)						
<20	4885	1.00	381	1.00	1550	1.00
20 +	4170	1.01 (0.97–1.05)	353	1.05 (0.91–1.22)	1484	1.13 (1.05–1.22)

Region						
South	4550	1.00	360	1.00	1526	1.00
Midlands	2007	0.92 (0.87–0.97)	175	1.03 (0.86–1.23)	634	0.86 (0.78–0.94)
North	2576	0.92 (0.87–0.96)	208	0.97 (0.82–1.16)	896	0.94 (0.86–1.02)

*Adjusted for age at invitation and calendar year categories, and all other factors listed above as appropriate.

Abbreviations: CI = confidence interval; FOBt = faecal occult blood testing; HT = hormone therapy for menopause; RR = relative risk.

Table 3. Outcome of screening (FOBt) and diagnostic tests for 628 976 women who accepted bowel cancer screening

Bowel-screening outcome	Number of women (%)
FOBt-positive	9133
FOBt-negative	619843

Attendance for further investigations of 9133 who were FOBt-positive	
Attended for diagnostic test	7911
Did not attend diagnostic test	1222

| Diagnostic test results for 7911 who attended for further investigation | |
|---|---|---|---|
| Colorectal cancer | 743 |
| Colorectal adenoma | 3056 |
| Non-neoplastic condition only* | 2214 |
| No abnormality recorded | 1881 |
| No result from diagnostic tests | 17 |

Abbreviation: FOBt = faecal occult blood testing. *That is, recorded abnormalities other than cancer or adenoma; includes diverticular disease, haemorrhoids, inflammatory bowel disease, and so on.

DISCUSSION

Our results illustrate the potential of using linked routinely collected and cohort study data in investigating associations between lifestyle factors and participation in a national cancer-screening programme. Women who were obese, current smokers, of non-White ethnicity and from more deprived areas were less likely to take part in bowel cancer screening in England; these factors were also associated with an increased risk of FOBt positivity and of having screen-detected colorectal adenoma, but not of screen-detected colorectal cancer. While not strongly related to acceptance or FOBt positivity, ever use of menopausal HT was associated with a decreased risk of adenoma and of colorectal cancer.

Our findings for factors affecting participation in bowel cancer screening add to the evidence currently available. Studies of

www.bjcancer.com | DOI:10.1038/bjc.2015.69

1565
population-level data from UK bowel-screening programmes have consistently found lower uptake of the FOB screening test among those living in more deprived and more ethnically diverse areas, in younger than in older people and in men than in women; in screening rounds later than the first, participation is also strongly lower than in older people and in men than in women; inadder to other findings (Lo et al., 2012; Ferrat et al., 2013); for screening rounds later than the first, screening history is associated with nonparticipation have been reported for FOBT-based bowel-screening programmes elsewhere in Europe (Frederikson et al., 2010; Blom et al., 2014) and in Australia (Weber et al., 2008) and in relation to uptake of screening for other cancer types. It is however noteworthy, and consistent with other findings (Lo et al., 2013), that even among this group, almost a third of those invited did not participate in the bowel cancer-screening programme. The higher uptake of screening in this study compared with the general population is, however, unlikely to affect comparisons within the cohort of factors affecting uptake of screening or its outcomes. Of the women in our study who attended for diagnostic testing, some 9% were diagnosed with colorectal cancer was reduced in ever users of menopausal hormone and in women who were physically active. This echoes findings from epidemiological studies of colorectal cancer (Green et al., 2012; Rosahm et al., 2013); however, we cannot easily interpret our findings for screen-detected cancer in terms of aetiology, as in these analyses potential risk factors can be related to screening test uptake and performance, and hence to the likelihood of undergoing a diagnostic test, as well as to the risk of underlying disease. Our analyses were also limited by the relatively small number of cases of screen-detected cancer in some subgroups. The prospective collection of exposure data is a strength of this study; a potential limitation is that information on exposure variables was collected several years before the invitation to bowel cancer screening.

We found that among those with a positive FOB test, smokers and those of South Asian ethnicity were somewhat less likely to go on to have a diagnostic test (usually colonoscopy) within the screening programme. Little is known about who chooses not to pursue diagnostic testing after a positive screening test, and why. Population-level studies do not show much variation by age, sex or deprivation (Morris et al., 2012; Ferrat et al., 2013); for screening rounds later than the first, screening history is associated with uptake of colonoscopy (Ferrat et al., 2013; Lo et al., 2014). In this study 13% of those with a positive FOBT did not receive diagnostic testing within the screening programme; this is consistent with rates of non-uptake of colonoscopy of 10–20% reported for FOBT-based bowel-screening programmes in the United Kingdom (Morris et al., 2012; Moss et al., 2012; Lo et al., 2014) and elsewhere, including in randomised trials (Hewitson et al., 2008).

Uptake of bowel cancer screening in our study population (70%) was greater than that reported by the screening programme for all women in England (54% Logan et al., 2012); this is not surprising, since Million Women Study participants were recruited via the NHS screening programme for breast cancer and would be expected to be more likely than average to take part in screening for other cancer types. It is however noteworthy, and consistent with other findings (Lo et al., 2013), that even among this group, almost a third of those invited did not participate in the bowel cancer-screening programme. The higher uptake of screening in this study compared with the general population is, however, unlikely to affect comparisons within the cohort of factors affecting uptake of screening or its outcomes. Of the women in our study who attended for diagnostic testing, some 9% were diagnosed with colorectal cancer, very similar to the national figure for women of 8%.

In summary, linkage of data from a large population-based bowel cancer-screening programme to prospectively collected personal data in a large cohort provides a powerful way of identifying factors associated with participation and outcomes of screening. Deprivation, South Asian and Black ethnicity, smoking and obesity were associated with reduced participation in the screening programme. These factors were also associated with an increased risk of being FOBT-positive and of having colorectal adenoma, but were not strong predictors of screen-detected colorectal cancer risk.

Table 5. Adjusted* RRs and 95% CIs for acceptance of diagnostic test in 9133 women with positive FOBt

Socioeconomic level (tertiles)	n cases accepted/invited	RR (95% CI)
Least deprived	2484/2840 (88%)	1.00
Medium	2640/3028 (87%)	1.00 (0.98–1.02)
Most deprived	2735/3202 (85%)	0.99 (0.97–1.01)
Ethnic group		
White	7483/8559 (87%)	1.00
Black	66/75 (88%)	1.01 (0.93–1.10)
South Asian	120/149 (81%)	0.93 (0.86–1.01)
Smoking status		
Never	3693/4216 (88%)	1.00
Past	2377/2744 (87%)	0.99 (0.97–1.00)
Current	1391/1649 (84%)	0.96 (0.94–0.99)
Body mass index (kg m⁻²)		
<25	2848/3292 (87%)	1.00
25–29	2777/3164 (88%)	1.02 (0.99–1.04)
30+	1856/2172 (86%)	0.99 (0.97–1.01)
Full-term pregnancy		
Never	872/1014 (86%)	1.00
Ever	7026/8105 (87%)	1.01 (0.98–1.04)
Oral contraceptive use		
Never	2837/3290/ (86%)	1.00
Ever	4984/5741 (87%)	1.00 (0.98–1.02)
HT use		
Never	3448/3983 (87%)	1.00
Ever	4374/5049 (87%)	1.00 (0.98–1.02)
Strenuous exercise (per week)		
<1	4764/5542 (86%)	1.00
1+	2858/3241 (88%)	1.02 (1.00–1.04)
Alcohol (g per week)		
<20	4188/4885 (86%)	1.00
20+	3657/4170 (88%)	1.02 (1.01–1.04)
Region		
South	3949/4550 (87%)	1.00
Midlands	1738/2007 (87%)	1.00 (0.98–1.02)
North	2224/2576 (87%)	1.00 (0.97–1.03)

Abbreviations: CI = confidence intervals; FOBt = faecal occult blood testing; HT = hormone therapy; RR = relative risk.

*Adjusted by age at invitation and calendar year categories, and all other factors listed above as appropriate.
Blom J, Kilpeläinen S, Hultcrantz R, Törnberg S (2014) Five-year experience of organized colorectal cancer screening in a Swedish population—increased compliance with age, female gender, and subsequent screening round. J Med Screen 21(3): 144–150.

Ferrat E, Le Breton J, Veerabudun K, Bercier S, Brixi Z, Khoshnood B, Paailaud E, Attali C, Bastuji-Garin S (2013) Colorectal cancer screening: factors associated with colonoscopy after a positive faecal occult blood test. Br J Cancer 109(6): 1437–1444.

Frederiksen BL, Jørgensen T, Brasso K, Holten I, Osler M (2010) Socioeconomic position and participation in colorectal cancer screening. Br J Cancer 103(10): 1496–1501.

Gathani T, Ali R, Balkwill A, Green J, Reeves G, Beral V, Moser KA. Million Women Study Collaborators (2014) Ethnic differences in breast cancer incidence in England are due to differences in known risk factors for the disease: prospective study. Br J Cancer 110(1): 224–229.

Green J, Czanner G, Reeves G, Watson J, Wise L, Roddam A, Beral V (2012) Menopausal hormone therapy and risk of gastrointestinal cancer: nested case-control study within a prospective cohort, and meta-analysis. Int J Cancer 130(10): 2387–2396.

Hewitson P, Glassziou P, Watson E, Towler B, Irwig L (2008) Cochrane systematic review of colorectal cancer screening using the faecal occult blood test (hemoccult): an update. Am J Gastroenterol 103(6): 1541–1549.

Lo SH, Halloran S, Snowball J, Seaman H, Wardle J, von Wagner C (2014) Colorectal cancer screening uptake over three biennial invitation rounds in the English bowel cancer screening programme. Gut 64(2): 282–291.

Lo SH, Waller J, Wardle J, von Wagner C (2013) Comparing barriers to colorectal screening with barriers to breast and cervical screening: a population based survey of screening age women in Great Britain. J Med Screen 20: 73–79.

Logan RF, Patnick J, Nickerson C, Coleman L, Rutter MD, von Wagner C. English Bowel Cancer Screening Evaluation Committee (2012) Outcomes of the Bowel Cancer Screening Programme (BCSP) in England after the first 1 million tests. Gut 61(10): 1439–1446.

Million Women Study Collaborative Group (1999) The Million Women Study: design and characteristics of the study population. Breast Cancer Res 1(1): 73–80.

Million Women Study Collaborators (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362(9382): 419–427.

Morriss S, Baio G, Kendall E, von Wagner C, Wardle J, Atkin W, Halloran SP, Handley G, Logan RF, Obichere A, Rainbow S, Smith S, Snowball J, Raine R (2012) Socioeconomic variation in uptake of colonoscopy following a positive faecal occult blood test result: a retrospective analysis of the NHS Bowel Cancer Screening Programme. Br J Cancer 107(5): 765–771.

Moser K, Patnick J, Beral V. (2009) Inequalities in reported use of breast and cervical screening in Great Britain: analysis of cross sectional survey data. Br Med J 338: b2025.

Moss SM, Campbell C, Melia J, Coleman D, Smith S, Parker R, Ramsell P, Patnick J, Weller DP. (2012) Performance measures in three rounds of the English bowel cancer screening pilot. Gut 61(1): 101–107.

Robasahn TE, Aagnes B, Hjartåker A, Langseth H, Bray FI, Larsen IK. (2013) Body mass index, physical activity, and colorectal cancer by anatomical subsites: a systematic review and meta-analysis of cohort studies. Eur J Cancer Prev 22(6): 492–505.

Senore C, Armaroli P, Silvani M, Andreoni B, Bisanti L, Marai L, Castiglione G, Grazzini G, Taddei S, Gasperoni S, Giuliani O, Malfitana G, Marutti A, Genta G, Segnan N (2010) Comparing different strategies for colorectal cancer screening in Italy: predictors of patients’ participation. Am J Gastroenterol 105(1): 188–198.

Steele RJ, Kostourou I, McClements P, Watling C, Libby G, Weller D, Brewster DH, Black R, Carey FA, Fraser C. (2010) Effect of repeated invitations on uptake of colorectal cancer screening using faecal occult blood testing: analysis of prevalence and incidence screening. Br Med J 341: c5531.

The Lancet (2014) Toward better control of colorectal cancer. Lancet 383(9927): 1437.

Townsend P, Phillimore P, Beattie A (1988) Health and Deprivation: Inequality and the North. Croon Helm: London.

van Dam L, Korfage IJ, Kuipers EJ, Hol L, van Roos AH, Reijerink JC, van Ballegooijen M, van Leerdam ME (2013) What influences the decision to participate in colorectal cancer screening with faecal occult blood testing and sigmoidoscopy? Eur J Cancer 49(10): 2321–2330.

von Wagner C, Baio G, Raine R, Snowball J, Morris S, Atkin W, Obichere A, Handley G, Logan RF, Rainbow S, Smith S, Halloran S, Wardle J (2011) Inequalities in participation in an organized national colorectal cancer screening programme: results from the first 2.6 million invitations in England. Int J Epidemiol 40(3): 712–718.

Weber MF, Banks E, Ward R, Sitas F (2008) Population characteristics related to colorectal cancer testing in New South Wales, Australia: results from the 45 and Up Study cohort. J Med Screen 15(3): 137–142.