SUBCLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY SĂLĂGEAN TYPE \(q \)- DIFFERENCE OPERATOR

G. MURUGUSUNDARAMOORTHY\(^1,\ast\) AND K. VIJAYA\(^2\),

* Corresponding Author
\(^1,2\)School of Advanced Sciences,
VIT University,
Vellore - 632014, India.
E-mail: gmsmoorthy@yahoo.com,kvijaya@vit.ac.in

ABSTRACT. In this paper, we introduce and investigate a new subclass of the function class \(\Sigma \) of bi-univalent functions defined in the open unit disk, which are associated with the Sălăgean type \(q \)- difference operator and satisfy some subordination conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients \(|a_2|\) and \(|a_3|\) for functions in the new subclass introduced here. Several (known or new) consequences of the results are also pointed out. Further we obtain Fekete-Szegő inequality for the new function class.

2010 Mathematics Subject Classification: 30C45,30C50,30C80
Keywords and Phrases: Univalent, bi-univalent, starlike and convex functions, coefficient bounds,Fekete-Szegő inequality

1. INTRODUCTION

Let \(A \) denote the class of analytic functions of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

normalized by the conditions \(f(0) = 0 = f'(0) - 1 \) defined in the open unit disk

\[\Delta = \{ z \in \mathbb{C} : |z| < 1 \}.\]

Let \(S \) be the subclass of \(A \) consisting of functions of the form (1.1) which are also univalent in \(\Delta \). Let \(S^\ast(\alpha) \) and \(K(\alpha) \) denote the subclasses of \(S \), consisting of starlike and convex functions of order \(\alpha \), \(0 \leq \alpha < 1 \), respectively. An analytic function \(f \) is subordinate to an analytic function \(g \), written \(f(z) \prec g(z) \), provided there is an analytic function \(w \) defined on \(\Delta \) with \(w(0) = 0 \) and \(|w(z)| < 1 \) satisfying \(f(z) = g(w(z)) \). Ma and Minda [11] unified various subclasses of starlike and convex functions for which either of the quantities

\[
\frac{z f'(z)}{f(z)} \quad \text{or} \quad 1 + \frac{z f''(z)}{f'(z)}
\]

is subordinate to a more general superordinate function. For this purpose, they considered an analytic function \(\varphi \) with positive real part in the unit disk \(\Delta \), \(\varphi(0) = 1 \), \(\varphi'(0) > 0 \) and \(\varphi \) maps \(\Delta \) onto a region starlike with respect to 1 and symmetric with respect to the...
real axis. In the sequel, it is assumed that such a function has a series expansion of the form
\[\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots, \quad (B_1 > 0). \]
(1.2)

In particular for the class of strongly starlike functions of order \(\alpha (0 < \alpha \leq 1) \), the function \(\phi \) is given by
\[\phi(z) = \left(\frac{1 + z}{1 - z} \right)^\alpha = 1 + 2\alpha z + 2\alpha^2 z^2 + \cdots \quad (0 < \alpha \leq 1), \]
(1.3)

which gives \(B_1 = 2\alpha \) and \(B_2 = 2\alpha^2 \) and on the other hand, for the class of starlike functions of order \(\beta (0 \leq \beta < 1) \),
\[\phi(z) = \frac{1 + (1 - 2\beta) z}{1 - z} = 1 + 2(1 - \beta) z + 2(1 - \beta)^2 z^2 + \cdots \quad (0 \leq \beta < 1), \]
(1.4)
we have \(B_1 = B_2 = 2(1 - \beta) \).

The Koebe one quarter theorem \[5\] ensures that the image of \(\Delta \) under every univalent function \(f \in \mathcal{A} \) contains a disk of radius \(\frac{1}{4} \). Thus every univalent function \(f \) has an inverse \(f^{-1} \) satisfying \(f^{-1}(f(z)) = z \), \((z \in \Delta) \) and \(f(f^{-1}(w)) = w \) \((|w| < r_0(f), \ r_0(f) \geq \frac{1}{4}) \). A function \(f \in \mathcal{A} \) is said to be bi-univalent in \(\Delta \) if both \(f \) and \(f^{-1} \) are univalent in \(\Delta \). Let \(\Sigma \) denote the class of bi-univalent functions defined in the unit disk \(\Delta \). Since \(f \in \Sigma \) has the Maclaurian series given by \([1,1]\), a computation shows that its inverse \(g = f^{-1} \) has the expansion
\[g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 + \cdots. \]
(1.5)

Several authors have introduced and investigated subclasses of bi-univalent functions and obtained bounds for the initial coefficients (see \([2,3,6,10,8,16,19,21]\)).

Quantum calculus is ordinary classical calculus without the notion of limits. It defines \(q\)-calculus. Here \(h \) ostensibly stands for Planck's constant, while \(q \) stands for quantum. Recently, the area of \(q\)-calculus has attracted the serious attention of researchers. This great interest is due to its application in various branches of mathematics and physics. The application of \(q\)-calculus was initiated by Jackson\([9]\). He was the first to develop \(q\)-integral and \(q\)-derivative in a systematic way. Later, geometrical interpretation of \(q\)-analysis has been recognized through studies on quantum groups. It also suggests a relation between integrable systems and \(q\)-analysis. A comprehensive study on applications of \(q\)-calculus in operator theory may be found in \([11]\). For the convenience, we provide some basic definitions and concept details of \(q\)-calculus which are used in this paper.

For \(0 < q < 1 \) the Jackson's \(q\)-derivative of a function \(f \in \mathcal{A} \) is, by definition, given as follows \([9]\)
\[D_q f(z) = \begin{cases} \frac{f(z) - f(qz)}{(1 - q)z} & \text{for} \quad z \neq 0, \\ f'(0) & \text{for} \quad z = 0, \end{cases} \]
(1.6)
and \(D_q^2 f(z) = D_q(D_q f(z)) \). From \([1,6]\), we have
\[D_q f(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1} \]
(1.7)
where \([n]_q = \frac{1 - q^n}{1 - q} \).
(1.8)
Sivasubramanian defined and discussed the Salagean q-differential operator \(z, w \) where \(n \) is sometimes called the basic number \(n \). If \(q \to 1^- \), \([n] \to n \). For a function \(h(z) = z^n \), we obtain \(D_q h(z) = D_q z^n = \frac{1}{1-q} z^{n-1} = [n] z^{n-1} \), and \(\lim_{q \to 1^-} D_q h(z) = \lim_{q \to 1^-} ([n] z^{n-1}) = n z^{n-1} = h'(z) \), where \(h' \) is the ordinary derivative. Recently for \(f \in \mathcal{A} \), Govindaraj and Sivasubramanian [15] defined and discussed the Salagean q-differential operator as given below:

\[
D_q^0 f(z) = f(z) \\
D_q^1 f(z) = z D_q f(z) \\
D_q^k f(z) = z D_q^k (D_q^{k-1} f(z)) \\
D_q^k f(z) = z + \sum_{n=2}^{\infty} [n]_q^k a_n z^n \quad (k \in \mathbb{N}_0, z \in \Delta) \tag{1.9}
\]

We note that \(\lim_{q \to 1^-} \)

\[
D_q^k f(z) = z + \sum_{n=2}^{\infty} n^k a_n z^n \quad (k \in \mathbb{N}_0, z \in \Delta) \tag{1.10}
\]

the familiar Salagean derivative[15].

In this paper, making use of the Salagean q-differential operator, for functions \(g \) of the form (1.5) we define

\[
D_q^k g(w) = w - a_2 [2]_q^k w^2 + (2 a_2^2 - a_3) [3]_q^k w^3 + \cdots \tag{1.11}
\]

and introduce two new subclass of bi-univalent functions to obtain the estimates on the coefficients \(|a_2| \) and \(|a_3| \) by Ma-Minda subordination. Further by using the initial coefficient values of \(a_2 \) and \(a_3 \) we also obtain Fekete-Szegő inequalities.

2. Bi-Univalent Function Class \(\mathcal{M} \Sigma^k_q (\lambda, \phi) \)

In this section, due to Vijaya et al [18], we introduce a subclass \(\mathcal{M} \Sigma^k_q (\lambda, \phi) \) of \(\Sigma \) and find estimates on the coefficients \(|a_2| \) and \(|a_3| \) for the functions in this new subclass, by subordination. Throughout our study, unless otherwise stated, we let

\[0 \leq \lambda \leq 1; \quad 0 < q < 1; \quad k \in \mathbb{N}_0 \]

Definition 2.1. For \(0 \leq \lambda \leq 1 \), a function \(f \in \Sigma \) of the form (1.1) is said to be in the class \(\mathcal{M} \Sigma^k_q (\lambda, \phi) \) if the following subordination hold:

\[
(1-\lambda) \frac{D_q^{k+1} f(z)}{D_q^k f(z)} + \lambda \frac{D_q^{k+2} f(z)}{D_q^{k+1} f(z)} < \phi(z) \tag{2.1}
\]

and

\[
(1-\lambda) \frac{D_q^{k+1} g(w)}{D_q^k g(w)} + \lambda \frac{D_q^{k+2} g(w)}{D_q^{k+1} g(w)} < \phi(w), \tag{2.2}
\]

where \(z, w \in \Delta \) and \(g \) is given by (1.5).

Remark 2.2. Suppose \(f \in \Sigma \). If \(\lambda = 0 \), then \(\mathcal{M} \Sigma^k_q (\lambda, \phi) \equiv \mathcal{S} \Sigma^k_q (\phi) \); thus \(f \in \mathcal{S} \Sigma^k_q (\phi) \) if the following subordination holds:

\[
\frac{D_q^{k+1} f(z)}{D_q^k f(z)} < \phi(z) \quad \text{and} \quad \frac{D_q^{k+1} g(w)}{D_q^k g(w)} < \phi(w),
\]

where \(z, w \in \Delta \) and \(g \) is given by (1.5).
Remark 2.3. Suppose \(f \in \Sigma \). If \(\lambda = 1 \), then \(\mathcal{M} \Sigma^k_q(\lambda, \phi) \equiv \mathcal{K} \Sigma^k_q(\phi) \) : thus \(f \in \mathcal{K} \Sigma^k_q(\phi) \) if the following subordination holds:

\[
\frac{D_q^{k+2}f(z)}{D_q^{k+1}f(z)} \prec \phi(z) \quad \text{and} \quad \frac{D_q^{k+2}g(w)}{D_q^{k+1}g(w)} \prec \psi(w),
\]

where \(z, w \in \Delta \) and \(g \) is given by (1.5).

Remark 2.4. For \(0 \leq \lambda \leq 1 \) and \(k = 0 \) a function \(f \in \Sigma \) of the form (1.1) is said to be in the class \(\mathcal{M} \Sigma^k_q(\lambda, \phi) \) if the following subordination hold:

\begin{align*}
(1 - \lambda) \frac{z D_q f(z)}{f(z)} &+ \lambda \frac{D_q(z D_q f(z))}{D_q f(z)} \prec \phi(z) \quad \text{(2.3)} \\
(1 - \lambda) \frac{z D_q g(w)}{g(w)} &+ \lambda \frac{D_q(w D_q g(w))}{D_q g(w)} \prec \phi(w), \quad \text{(2.4)}
\end{align*}

where \(z, w \in \Delta \) and \(g \) is given by (1.5).

It is of interest to note that \(\mathcal{M} \Sigma^0_q(0, \phi) = \mathcal{S} \Sigma^1_q(\phi), \mathcal{M} \Sigma^0_q(1, \phi) = \mathcal{K} \Sigma_q(\phi) \) new subclasses of \(\Sigma \) associated with \(q \)— difference operator not yet discussed sofar.

In order to prove our main results, we require the following Lemma:

Lemma 2.5. If a function \(p \in \mathcal{P} \) is given by

\[p(z) = 1 + p_1 z + p_2 z^2 + \cdots \quad (z \in \Delta), \]

then

\[|p_i| \leq 2 \quad (i \in \mathbb{N}), \]

where \(\mathcal{P} \) is the family of all functions \(p \), analytic in \(\Delta \), for which

\[p(0) = 1 \quad \text{and} \quad \Re(p(z)) > 0 \quad (z \in \Delta). \]

Theorem 2.6. Let \(f \) given by (1.1) be in the class \(\mathcal{M} \Sigma^k_q(\lambda, \phi) \). Then

\[
|a_2| \leq \frac{B_1 \sqrt{B_1}}{\sqrt{|2(1 + 2\lambda)[3]^k_q - (1 + 3\lambda)[2]^{2k}_q|}} \quad \text{(2.5)}
\]

and

\[
|a_3| \leq \frac{B_1}{2(1 + 2\lambda)[3]^k_q} + \left(\frac{B_1}{(1 + \lambda)[2]^{k}_q} \right)^2 \quad \text{(2.6)}
\]

where \(0 \leq \lambda \leq 1 \).

Proof. Let \(f \in \mathcal{M} \Sigma^k_q(\lambda, \phi) \) and \(g = f^{-1} \). Then there are analytic functions \(u, v : \Delta \rightarrow \Delta \), with \(u(0) = 0 = v(0) \), satisfying

\begin{align*}
(1 - \lambda) \frac{D_q^{k+1} f(z)}{D_q^{k+1} f(z)} + \lambda \frac{D_q^{k+2} f(z)}{D_q^{k+1} f(z)} &= \phi(u(z)) \quad \text{(2.7)} \\
(1 - \lambda) \frac{D_q^{k+1} g(w)}{D_q^{k+1} g(w)} + \lambda \frac{D_q^{k+2} g(w)}{D_q^{k+1} g(w)} &= \phi(v(w)). \quad \text{(2.8)}
\end{align*}
Define the functions $p(z)$ and $q(z)$ by

$$p(z) := \frac{1 + u(z)}{1 - u(z)} = 1 + p_1 z + p_2 z^2 + \cdots$$

and

$$q(z) := \frac{1 + v(z)}{1 - v(z)} = 1 + q_1 z + q_2 z^2 + \cdots$$

or, equivalently,

$$u(z) := \frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \cdots \right]$$

and

$$v(z) := \frac{q(z) - 1}{q(z) + 1} = \frac{1}{2} \left[q_1 z + \left(q_2 - \frac{q_1^2}{2} \right) z^2 + \cdots \right].$$

Then $p(z)$ and $q(z)$ are analytic in Δ with $p(0) = 1 = q(0)$. Since $u, v : \Delta \to \triangle$, the functions $p(z)$ and $q(z)$ have a positive real part in Δ, $|p_1| \leq 2$ and $|q_1| \leq 2$.

Using (2.9) and (2.10) in (2.7) and (2.8) respectively, we have

$$(1 - \lambda) \frac{D_q^{k+1} f(z)}{D_q^k f(z)} + \lambda \frac{D_q^{k+2} f(z)}{D_q^{k+1} f(z)} = \phi \left(\frac{1}{2} \left[p_1 z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \cdots \right] \right)$$

and

$$(1 - \lambda) \frac{D_q^{k+1} g(w)}{D_q^k g(w)} + \lambda \frac{D_q^{k+2} g(w)}{D_q^{k+1} g(w)} = \phi \left(\frac{1}{2} \left[q_1 w + \left(q_2 - \frac{q_1^2}{2} \right) w^2 + \cdots \right] \right).$$

In light of (1.1) - (1.11), and from (2.11) and (2.12), we have

$$1 + (1 + \lambda)[2]_q^k a_2 z + [2(1 + 2\lambda)[3]_q^k a_3 - (1 + 3\lambda)[2]_q^{2k} a_2^2] z^2 + \cdots$$

$$= 1 + \frac{1}{2} B_1 p_1 z + \left[\frac{1}{2} B_1 (p_2 - \frac{p_1^2}{2}) + \frac{1}{4} B_2 p_1^2 \right] z^2 + \cdots$$

and

$$1 - (1 + \lambda)[2]_q^k a_2 w + \{(8\lambda + 4)[3]_q^k - (3\lambda + 1)[2]_q^{2k} a_2^2 - 2(1 + 2\lambda)[3]_q^k a_3\} w^2 + \cdots$$

$$= 1 + \frac{1}{2} B_1 q_1 w + \left[\frac{1}{2} B_1 (q_2 - \frac{q_1^2}{2}) + \frac{1}{4} B_2 q_1^2 \right] w^2 + \cdots$$

which yields the following relations:

$$(1 + \lambda)[2]_q^k a_2 = \frac{1}{2} B_1 p_1$$

$$-(1 + 3\lambda)[2]_q^{2k} a_2^2 + 2(1 + 2\lambda)[3]_q^k a_3 = \frac{1}{2} B_1 (p_2 - \frac{p_1^2}{2})$$

$$+ \frac{1}{4} B_2 p_1^2$$

$$(1 + \lambda)[2]_q^k a_2 = \frac{1}{2} B_1 q_1$$
and

\[(4(1 + 2 \lambda)[3]_q^k - (1 + 3 \lambda)[2]_q^{2k})a_3^2 - 2(1 + 2 \lambda)[3]_q^k a_3 = \frac{1}{2}B_1(q_2 - q_1^2) + \frac{1}{4}B_2q_1^2.\]

(2.16)

From (2.13) and (2.15) it follows that

\[p_1 = -q_1\]

(2.17)

and

\[8(1 + \lambda)^2[2]_q^{2k}a_2^2 = B_1^2(p_1^2 + q_1^2).\]

(2.18)

From (2.14), (2.16) and (2.18), we obtain

\[a_2^2 = \frac{B_1^2(p_2 + q_2)}{4\{2(1 + 2 \lambda)[3]_q^k - (1 + 3 \lambda)[2]_q^{2k}\}B_1^2 + (1 + \lambda)^2(B_1 - B_2)[2]_q^{2k}}.\]

Applying Lemma 2.5 to the coefficients \(p_2\) and \(q_2\), we have

\[|a_2| \leq \frac{B_1 \sqrt{B_1}}{\sqrt{\{2(1 + 2 \lambda)[3]_q^k - (1 + 3 \lambda)[2]_q^{2k}\}B_1^2 + (1 + \lambda)^2(B_1 - B_2)[2]_q^{2k}}}.\]

(2.20)

By subtracting (2.16) from (2.14) and using (2.17) and (2.18), we get

\[a_3 = \frac{B_1^2(p_1^2 + q_1^2)}{8(1 + \lambda)^2[2]_q^{2k}} + \frac{B_1(p_2 - q_2)}{8(1 + \lambda)[2]_q^{2k}}.\]

(2.21)

Applying Lemma 2.5 once again to the coefficients \(p_1, p_2, q_1\) and \(q_2\), we get

\[|a_3| \leq \frac{B_1}{2(1 + 2 \lambda)[3]_q^k} + \left(\frac{B_1}{(1 + \lambda)[2]_q^k}\right)^2.\]

(2.22)

\[\square\]

Remark 2.7. If \(f \in \mathcal{M}\Sigma_q^k(\lambda, \left(\frac{1 + \beta}{1 - z}\right)\alpha)\) then, we have the following estimates for the coefficients \(|a_2|\) and \(|a_3|\) :

\[|a_2| \leq \frac{2\alpha}{\sqrt{\{2(1 + 2 \lambda)[3]_q^k - (1 + 3 \lambda)[2]_q^{2k}\} \alpha + (1 - \alpha)(1 + \lambda)^2[2]_q^{2k}}}.\]

and

\[|a_3| \leq \frac{4\alpha^2}{(1 + \lambda)^2[2]_q^{2k}} + \left(\frac{\alpha}{(1 + \lambda)[2]_q^{2k}}\right)^2.\]

For functions \(f \in \mathcal{M}\Sigma_q^k(\lambda, \left(\frac{1 + (1 - 2\beta)\alpha}{1 - z}\right)\alpha)\), the inequalities (2.5) and (2.6) yields the following estimates

\[|a_2| \leq \sqrt{\frac{2(1 - \beta)}{2(1 + 2 \lambda)[3]_q^k - (1 + 3 \lambda)[2]_q^{2k}}}.\]

and

\[|a_3| \leq \frac{4(1 - \beta)^2}{(1 + \lambda)^2[2]_q^{2k}} + \left(\frac{1 - \beta}{(1 + 2 \lambda)[3]_q^k}\right)^2.\]

Remark 2.8. Consequently, when \(\lambda = 0\) and \(\lambda = 1\) one has the estimates for the classes \(\mathcal{S}\Sigma_q^k(\alpha)\), \(\mathcal{S}\Sigma_q^k(\beta)\) and \(\mathcal{K}\Sigma_q^k(\alpha)\), \(\mathcal{K}\Sigma_q^k(\beta)\) respectively. We note that, for \(\lim_{\eta \to 1^-}\) and for \(k = 0\) these estimates coincides with the results stated in [21].

From Remark 2.4, Theorem 2.6 yields the following corollary.
Corollary 2.9. Let f given by (1.1) be in the class $M_\Sigma(q, \lambda, \phi)$. Then

$$|a_2| \leq \frac{B_1\sqrt{B_1}}{\sqrt{|(2(1+2\lambda)[3]q-(1+3\lambda)[2]q)B_1^3+(1+\lambda)^2(B_1-B_2)[2]q|}}$$

(2.23)

and

$$|a_3| \leq \frac{B_1}{2(1+2\lambda)[3]q} + \left(\frac{B_1}{(1+\lambda)[2]q}\right)^2$$

(2.24)

In the following section due to Frasin and Aouf [4] and Panigarhi and Murugusundaramoorthy [14] we define the following new subclass involving the Sălăgean operator [15].

3. Bi-Univalent Function Class $F_\Sigma^q_k(\mu, \phi)$

Definition 3.1. For $0 \leq \mu \leq 1$, a function $f \in \Sigma$ of the form (1.1) is said to be in the class $F_\Sigma^q_k(\mu, \phi)$ if the following subordination hold:

$$(1-\mu)\frac{D_q^k f(z)}{z} + \mu (D_q^k f(z))' \prec \phi(z)$$

(3.1)

and

$$(1-\mu)\frac{D_q^k g(w)}{w} + \mu (D_q^k g(w))' \prec \phi(w)$$

(3.2)

where $z, w \in \Delta$, g is given by (1.5) and $D_q^k f(z)$ is given by (1.9).

Remark 3.2. Suppose $f(z) \in \Sigma$. If $\mu = 0$, then $F_\Sigma^q(0, \phi) \equiv H_\Sigma^q(\phi)$: thus, $f \in H_\Sigma^q(\phi)$ if the following subordination holds:

$$\frac{D_q f(z)}{z} \prec \phi(z) \quad \text{and} \quad \frac{D_q g(w)}{w} \prec \phi(w)$$

where $z, w \in \Delta$ and g is given by (1.5).

Remark 3.3. Suppose $f(z) \in \Sigma$. If $\mu = 1$, then $F_\Sigma^q(1, \phi) \equiv P_\Sigma^q(\phi)$: thus, $f \in P_\Sigma^q(\phi)$ if the following subordination holds:

$$(D_q^k f(z))' \prec \phi(z) \quad \text{and} \quad (D_q^k g(w))' \prec \phi(w)$$

where $z, w \in \Delta$ and g is given by (1.5).

It is of interest to note that $F_\Sigma^q(\mu, \phi) = F_\Sigma^q(\mu, \phi)$ if the following subordination hold:

$$(1-\mu)\frac{f(z)}{z} + \mu (D_q f(z)) \prec \phi(z)$$

(3.3)

and

$$(1-\mu)\frac{g(w)}{w} + \mu (D_q g(w)) \prec \phi(w)$$

(3.4)

where $z, w \in \Delta$, g is given by (1.5) and $D_q^k f(z)$ is given by (1.9).

Theorem 3.4. Let f given by (1.1) be in the class $F_\Sigma^q_k(\mu, \phi)$. Then

$$|a_2| \leq \frac{B_1\sqrt{B_1}}{\sqrt{|(1+2\mu)[3]qB_1^2+(1+\mu)^2[2]q^2(B_1-B_2)|}}$$

(3.5)
and
\[|a_3| \leq B_1 \left(\frac{B_1}{(1 + \mu)^2[2k]_q} + \frac{1}{(1 + 2\mu)[3k]_q^3} \right). \] (3.6)

Proof. Proceeding as in the proof of Theorem 2.6 we can arrive the following relations.

\[(1 + \mu)[2k]_q a_2 = \frac{1}{2} B_1 p_1 \] (3.7)
\[(1 + 2\mu)[3k]_q a_3 = \frac{1}{2} B_1 (p_2 - \frac{p_1^2}{2}) + \frac{1}{4} B_2 p_1^2 \] (3.8)
\[-(1 + \mu)[2k]_q a_2 = \frac{1}{2} B_1 q_1 \] (3.9)

and
\[2(1 + 2\mu)[3k]_q a_2^2 - (1 + 2\mu)[3k]_q a_3 = \frac{1}{2} B_1 (q_2 - \frac{q_1^2}{2}) + \frac{1}{4} B_2 q_1^2. \] (3.10)

From (3.7) and (3.9) it follows that
\[p_1 = -q_1 \] (3.11)

and
\[8(1 + \mu)^2[2k]_q a_2^2 = B_1^2 (p_1^2 + q_1^2). \] (3.12)

From (3.8), (3.10) and (3.12), we obtain
\[a_2^2 = \frac{B_1^2 (p_2 + q_2)}{4[(1 + 2\mu)[3k]_q^3 + (B_1 - B_2)(1 + \mu)^2[2k]_q^3]}. \]

Applying Lemma 2.5 to the coefficients \(p_2 \) and \(q_2 \), we immediately get the desired estimate on \(|a_2| \) as asserted in (3.5).

By subtracting (3.10) from (3.8) and using (3.11) and (3.12), we get
\[a_3 = \frac{B_1^2 (p_1^2 + q_1^2)}{8(1 + \mu)^2[2k]_q^3} + \frac{B_1 (p_2 - q_2)}{4(1 + 2\mu)[3k]_q^3}. \]

Applying Lemma 2.5 to the coefficients \(p_1, p_2, q_1 \) and \(q_2 \), we get the desired estimate on \(|a_3| \) as asserted in (3.6).

Remark 3.5. Consequently, when \(\mu = 0 \) and \(\mu = 1 \) and by taking \(\phi \) as in (1.3) and (1.4) one can deduce the estimates for the classes \(\mathcal{K} \Sigma_q^*(\alpha), \mathcal{K} \Sigma_q^*(\beta) \) easily. We note that, for \(k = 0 \) and \(\lim_q \to 1^- \) these estimates coincides with the results stated in [4, 6, 16].

4. **Fekete-Szegő inequalities**

Making use of the values of \(a_2^2 \) and \(a_3 \), and motivated by the recent work of Zaprawa [23] we prove the following Fekete-Szegő result.

Theorem 4.1. Let the function \(f(z) \in M \Sigma_q^k(\lambda, \phi) \) and \(\tau \in \mathbb{C} \), then
\[
|a_3 - \tau a_2^2| \leq \begin{cases}
\frac{B_1}{2(1 + 2\lambda)[3k]_q^3}, & 0 \leq |\Theta(\tau)| < \frac{1}{8(1 + 2\lambda)[3k]_q^3}, \\
4B_1 |\Theta(\tau)|, & |\Theta(\tau)| \geq \frac{1}{8(1 + 2\lambda)[3k]_q^3}.
\end{cases}
\] (4.1)
Proof. From (2.21) we have $a_3 = a_2^2 + \frac{B_1(p_2 - q_2)}{8(1 + 2\lambda)[\frac{3k}{q}]}$. Using (2.19),

$$a_3 - \tau a_2^2 = \frac{B_1(p_2 - q_2)}{8(1 + 2\lambda)[\frac{3k}{q}]} + (1 - \tau)a_2^2$$

$$+ (1 - \tau)\left(\frac{B_3^2(p_2 + q_2)}{4[(2(1 + 2\lambda)[\frac{3k}{q}]} - (1 + 3\lambda)[\frac{1}{2}B_1^2]B_1^2 + (1 + \lambda)^2(B_1 - B_2)[\frac{2k}{q}]\right)$$

by simple calculation we get

$$a_3 - \tau a_2^2 = B_1\left[\left(\Theta(\tau) + \frac{1}{8(1 + 2\lambda)[\frac{3k}{q}]}\right)p_2 + \left(\Theta(\tau) - \frac{1}{8(1 + 2\lambda)[\frac{3k}{q}]}\right)q_2\right],$$

where

$$\Theta(\tau) = \frac{B_2^2(1 - \tau)}{4[(2(1 + 2\lambda)[\frac{3k}{q}]} - (1 + 3\lambda)[\frac{1}{2}B_1^2]B_1^2 + (1 + \lambda)^2(B_1 - B_2)[\frac{2k}{q}]}.$$

Since all B_j are real and $B_1 > 0$, we have

$$|a_3 - \tau a_2^2| \leq 2B_1\left|\left(\Theta(\tau) + \frac{1}{8(1 + 2\lambda)[\frac{3k}{q}]}\right) + \left(\Theta(\tau) - \frac{1}{8(1 + 2\lambda)[\frac{3k}{q}]}\right)\right|,$$

which completes the proof. □

Proceeding as in above theorem one can easily prove the following result for $f(z) \in \mathcal{F}\Sigma^k_q(\mu, \phi)$ hence we state the following without proof.

Theorem 4.2. Let the function $f(z) \in \mathcal{F}\Sigma^k_q(\mu, \phi)$ and $\tau \in \mathbb{C}$, then

$$|a_3 - \tau a_2^2| \leq 2B_1\left|\left(\Phi(\tau) + \frac{1}{4(1 + 2\mu)[\frac{3k}{q}]}\right) + \left(\Phi(\tau) - \frac{1}{4(1 + 2\mu)[\frac{3k}{q}]}\right)\right|,$$

where

$$\Phi(\tau) = \frac{B_1^2(1 - \tau)}{4[(1 + 2\mu)[\frac{3k}{q}]}B_1^2 + (B_1 - B_2)(1 + \mu)^2[\frac{2k}{q}]}.$$

Concluding Remarks: Taking $\lambda = 0$ (and 1) in Theorem 4.1 we can state the Fekete-Szegö inequality for the function class $\mathcal{S}\Sigma^k_q(\phi).$ (and $\mathcal{K}\Sigma^k_q(\phi)$) respectively. Putting $\mu = 0$ (and 1) in Theorem 4.2 we can state the Fekete-Szegö inequality for the function class $\mathcal{H}\Sigma^k_q(\phi).$ (and $\mathcal{P}\Sigma^k_q(\phi)$) respectively.

Future Work: Making use of the values of a_2 and a_3, and finding a_4 we can calculate Hankel determinant coefficient for the function classes.

References

[1] A. Aral, V. Gupta and R. P. Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.

[2] D.A. Brannan, J. Clunie, W.E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22 (1970), 476–485.

[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 31(2), (1986), 70–77.
B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569–1573.

P.L. Duren, Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer, New York 1983.

E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, Journal of Classical Analysis, 2(1) (2013), 49–60.

M. Govindaraj, and S. Sivasubramanian, On a class of analytic function related to conic domains involving q–calculus, Analysis Math., 43 (3) (2017), no. 5, 475–487.

T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22(4), (2012), 15–26.

F. H. Jackson, On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46(1908), 253–281.

M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.

W.C. Ma, D. Minda, A unified treatment of some special classes of functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, 157–169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.

E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$. Arch. Ration. Mech. Anal. 32 (1969), 100–112.

Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.

T. Panigrahi and G. Murugusundaramoorthy, Coefficient bounds for bi-univalent functions analytic functions associated with Hohlov operator, Proc. Jangjeon Math. Soc, 16(1) (2013), 91–100.

G.S. Şalăgean, Subclasses of univalent functions, Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362–372.

H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(10) (2010), 1188–1192.

T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.

K. Vijaya, M. Kasthuri and G. Murugusundaramoorthy, Coefficient bounds for subclasses of bi-univalent functions defined by the Şalăgean derivative operator Boletin de la Asociacion Matematica Venezolana, Vol. XXI, 2, 2014.

Q.-H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and closed-to convex functions, Appl. Math. Lett. 24(2011), 396–401.

Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(2012), 990–994.

X-F. Li and A-P. Wang, Two new subclasses of bi-univalent functions, International Mathematical Forum, Vol. 7, 2012, no. 30, 1495–1504.

Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions associated with coefficient estimates problems, Appl. Math. Comput. 218(2012), 11461–11465.

P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin Volume 21, Number 1 (2014), 1–192.