MEANS AND HERMITE INTERPOLATION

ALAN HORWITZ

Abstract. Let \(m_2 < m_1 \) be two given nonnegative integers with \(n = m_1 + m_2 + 1 \). For suitably differentiable \(f \), we let \(P, Q \in \pi_n \) be the Hermite polynomial interpolants to \(f \) which satisfy \(P^{(j)}(a) = f^{(j)}(a), j = 0, 1, \ldots, m_1 \) and \(P^{(j)}(b) = f^{(j)}(b), j = 0, 1, \ldots, m_2 \), \(Q^{(j)}(a) = f^{(j)}(a), j = 0, 1, \ldots, m_2 \) and \(Q^{(j)}(b) = f^{(j)}(b), j = 0, 1, \ldots, m_1 \). Suppose that \(f \in C^{m_1 + 2}(I) \) with \(f^{(m_1 + 1)}(x) \neq 0 \) for \(x \in (a, b) \). If \(m_1 - m_2 \) is even, then there is a unique \(x_0, a < x_0 < b \), such that \(P(x_0) = Q(x_0) \). If \(m_1 - m_2 \) is odd, then there is a unique \(x_0, a < x_0 < b \), such that \(f(x_0) = \frac{1}{2} (P(x_0) + Q(x_0)) \). \(x_0 \) defines a strict, symmetric mean, which we denote by \(M_{f,m_1,m_2}(a,b) \). We prove various properties of these means. In particular, we show that \(f(x) = x^{m_1 + m_2 + 2} \) yields the arithmetic mean, \(f(x) = x^{-1} \) yields the harmonic mean, and \(f(x) = \sqrt[m_1 + m_2 + 1]{x} \) yields the geometric mean.

Mathematics subject classification (2000): 26D10.

Key words and phrases: Mean, arithmetic mean, geometric mean, Hermite interpolation, Taylor polynomial mean.

REFERENCES

[1] RAVI P. AGARWAL & PATRICIA J. Y. WONG, Error inequalities in polynomial interpolation and their applications, Kluwer, 1993.
[2] ALAN HORWITZ, Means and Taylor Polynomials, Journal of Mathematical Analysis and Applications 149(1990), 220–235.
[3] ALAN HORWITZ, Means and Averages of Taylor Polynomials, Journal of Mathematical Analysis and Applications 176(1993), 404–412.
[4] E. ISAACSON AND H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966.
[5] E. B. LEACH AND M. C. SHOLANDER, Multi-variable Extended Mean Values, Journal of Mathematical Analysis and Applications 104(1984), 390–407.
[6] A. M. OSTROWSKI, Solution of Equations in Euclidean and Banach Spaces , 3rd ed., Academic Press, New York and London, 1973.
[7] JOSIP PECARIC & PATRICIA J. Y. WONG, Polynomial interpolation and generalizations of mean value theorem, Nonlinear Funct. Anal. Appl. 6 (2001), no. 3, 329–340.
[8] MARKO PETKOVŠEK, HERBERT WILF, DORON ZEILBERGER, A. K. PETERS, A=B, Massachusetts, 1996.
[9] A. SPITZBART, A Generalization of Hermite’s Interpolation Formula, American Mathematical Monthly, Vol. 67, No. 1. (Jan., 1960), pp. 42–46.