Microarray data on the comparison of transcript expression between normal and Pt-Delta RNAi embryos in the common house spider Parasteatoda tepidariorum

Hiroki Oda a, b, *, Yasuko Akiyama-Oda a, c

a Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
b Laboratory of Biohistory, Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
c Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka, Japan

ABSTRACT

We conducted a custom microarray experiment to detect the differences in the transcript expression levels between untreated (normal) and Pt-Delta-RNAi embryos at late stage 6 in the common house spider Parasteatoda tepidariorum. The array probes were designed based on accumulated EST and cDNA sequences. The microarray dataset has been deposited in the Gene Expression Omnibus (GEO) Database at the National Center for Biotechnology Information (NCBI) under the accession GSE113064. The expression of the transcripts selected based on the detected differences was examined in embryos by whole-mount in situ hybridization.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

Transcript expression was compared between untreated (normal) and Pt-Delta RNAi-treated (Pt-Delta RNAi) embryos at late stage 6 using a Combimatrix custom microarray in 12K format (Fig. 1), which was designed based on the accumulated Parasteatoda tepidariorum EST and cDNA sequences. The microarray dataset deposited in the GEO Database at NCBI under the accession GSE113064. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113064

The image data have been deposited in the Mendeley Data repository. https://doi.org/10.17632/r79vg2ctr2.3.

The dataset is useful for identifying the candidate genes whose expression is regulated by Delta-Notch signaling in P. tepidariorum embryos.

The dataset is useful for identifying the genes whose expression marks specific cell types or regions of P. tepidariorum embryos.

The dataset is useful for investigating the gene regulatory networks in the embryonic development of spider.

Fig. 1. Flowchart of the microarray experiment.
ratio of \([Pt-Delta \text{RNAi}] / [\text{normal}]\) for each array spot (Sample: GSM3095654). Values of the \([Pt-Delta \text{RNAi}] / [\text{normal}]\) ratio from control probes are shown in Table 1. EST clones that showed the ratio of \([Pt-Delta \text{RNAi}] / [\text{normal}]\) of <0.6 for at least one array probe are listed together with their details in Table 2. Whole-mount in situ hybridizations (WISHs) of stage 5–8 embryos showing expression of the transcripts related to these EST clones are displayed in Fig. 2. The original images, including high-magnification images showing the transcript expression patterns and nuclear stains, are available in a data repository [1].

2. Experimental design, materials and methods

The primary objective of this experiment was to identify the genes whose expression might be affected by parental RNA interference (pRNAi) against \(Pt-Delta\) in \(P. tepidariorum\) embryos [2]. Flow of the microarray experiment is schematically shown in Fig. 1.

2.1. Custom microarray design

40-mer oligonucleotide probes were designed based on the accumulated \(P. tepidariorum\) EST and cDNA sequences [2,3] using OligoArray 2.1 [4] and embedded in a custom microarray (CombiMatrix CustomArray 12K, CustomArray, Inc.). There were single or multiple probes designed from each EST or cDNA sequence. Four or three spot replicates of control probes (Table 1) were included to validate the experiment. The details of the microarray design, including the probe sequences, are available from the GEO database (GPL24882).

EST/cDNA clone	Gene product	Spot position numbers in MAa	Sequence accession	AUGUSTUS gene modelb	NCBI GenID	Ratio (mean ± s.d.)c
At_eW_003_D02	alpha-catenin	1719/4149/8989/11508	AB433907 g13984	LOC107439705	0.880 ± 0.039	
At_eW_003_D02	alpha-catenin	623/6036/6733/11968	AB433907 g13984	LOC107439705	0.950 ± 0.265	
eS7_003_G08	elongation factor 1-alpha	1697/2124/4972	AB433908 g27264	LOC107441347	1.163 ± 0.040	
eS7_003_G08	elongation factor 1-alpha	6130/9614/11011	AB433908 g27264	LOC107441347	1.061 ± 0.072	
eS7_SB_037_C01	histone H3	565/1580/1610/4874	AB433909 g1955	LOC107447866	0.965 ± 0.074	
eS7_SB_037_C01	histone H3	946/6236/6382/9005	AB433909 g1955	LOC107447866	0.834 ± 0.085	
At_O091	Delta	3003/6080/9491/10203	AB287420 g25248	LOC107456255	1.022 ± 0.099	
At_O091	Delta	3364/10373/10432/12130	AB287420 g25248	LOC107456255	1.164 ± 0.212	
At_OO34	caudal	4150/6419/9162/12485	AB096075 g12643	LOC107437910	0.379 ± 0.068	
At_OO34	caudal	6936/8225/8588/10344	AB096075 g12643	LOC107437910	0.355 ± 0.026	
At_OO35	caudal	3904/4818/8215/10264	AB096075 g12643	LOC107437910	0.150 ± 0.009	
At_OO45	twist	6351/7485/7754/9334	AB167807 g14287	LOC107440133	1.464 ± 0.098	
At_OO45	twist	1481/3243/73/4544/10872	AB167807 g14287	LOC107440133	1.058 ± 0.074	
At_OO46	twist	2538/3783/7509/8625	AB167807 g14287	LOC107440133	1.070 ± 0.095	
At_OO29	hedgehog	3925/5404/11012/11143	AB125742 g4322	LOC107451809	0.436 ± 0.037	
At_OO29	hedgehog	432/865/4950	AB125742 g4322	LOC107451809	0.623 ± 0.102	
At_OO30	hedgehog	2406/4772/4947/7704	AB125742 g4322	LOC107451809	0.905 ± 0.053	
At_OO32	orthodenticle	1941/5594/10660/11559	AB096074 g9172	LOC107457189	0.298 ± 0.040	
At_OO32	orthodenticle	838/3555/8545/9265	AB096074 g9172	LOC107457189	0.878 ± 0.155	
At_OO71	odd-paired	6865/9525/9551/11052	AB605264 g12202	LOC107437305	0.716 ± 0.023	
At_OO71	odd-paired	347/3228/4356/10492	AB605264 g12202	LOC107437305	1.021 ± 0.161	

a Two or three 40-mer oligonucleotide sequences were designed from each EST/cDNA sequence for the microarray (MA). The spot position numbers in MA link the data in this report and those deposited in the GEO database.

b AUGUSTUS gene models (aug3) were described by Schwager et al. (2017) [6].

c The average value based on four or three spot replicates in a MA.
Table 2
List of EST clones selected based on the [Pt-Delta RNAi]/[normal] ratio (<0.6) in the microarray analysis.

EST clone	Spot position number in MA	Sequence accession	AUGUSTUS gene modelb	NCBI GeneId	Ratio	WISH probe	Exp.	cm, cumulus mesenchymal cells) and/or specific patterns (ptn, patterned) as revealed by WISH.
At_eW_000_A15	10599	FY216311 g9542	LOC107437620	0.597	At_eW_000_A15+	end		
eS7_SB_035_H06	7990	FY380468 g9542	LOC107437620	0.550	eS7_SB_035_H06+	ect (ptn)		
At_eW_000_E06	8245	FY216397 g15506	LOC107449884	0.453	At_eW_000_E06+	ect (ptn)		
At_eW_000_J22	11227	FY216533 g15506	LOC107449884	0.506	At_eW_000_J22+	ect (ptn)		
At_eW_000_J22	9441	FY216533 g15506	LOC107449884	0.519	At_eW_000_J22+	ect (ptn)		
At_eW_002_J21	4632	FY217255 g6063	LOC107445132	0.580	At_eW_002_J21+	ect (ptn)		
At_eW_007_I04	6439	FY218925 g18068	LOC107444715	0.498	At_eW_007_I04+	ect (ptn)		
eS7_008_B04	11074	FY378225 g8636	LOC107456533	0.579	eS7_SB_001_H07+	end ex		
eS7_008_B04	11074	FY378225 g15296	LOC107441456	0.553	eS7_SB_008_B12+	cm		
eS7_008_B04	9585	FY378241 g11817	LOC107436785	0.524	eS7_SB_008_D04+	cm		
eS7_008_G06	11640	FY380468 g5924	LOC107445132	0.535	eS7_SB_008_GO6+	cm		
eS7_008_B10	12337	FY380468 g18790	LOC107445841	0.565	eS7_SB_008_B10+	end		
eS7_008_B10	7166	FY380468 g18790	LOC107445841	0.535	eS7_SB_008_B10+	end		
eS7_SB_009_A02	12357	FY380468 g5847	LOC107456289	0.493	eS7_SB_009_A02+	end		
eS7_SB_028_A08	8536	FY380468 g4630	LOC107455614	0.536	eS7_SB_045_H12+	end		

n/a, not applicable.

a The spot position numbers in the microarray (MA) link the data in this report and those deposited in the GEO database.

b AUGUSTUS gene models (aug3) were described by Schwager et al. (2017) [6].

c EST clone used for the synthesis of RNA probes for whole-mount in situ hybridization (WISH). In some cases, a different EST clone including the MA probe sequence was used for WISH. The WISH data from EST clones indicated by asterisks are displayed in Fig. 1.

d Expression in specific cell types (end, endoderm; ex, extraembryonic tissue; mes, mesoderm; ect, ectoderm; cm, cumulus mesenchymal cells) and/or specific patterns (ptn, patterned) as revealed by WISH.
Fig. 2. Staining of stage 5–8 embryos for selected transcripts by WISH.
2.2. Microarray analysis

A mated female was injected with approximately 1.5 μl of Pt-Delta dsRNA solution (2 μg/μl) 4 times at 2–3 days intervals. Embryos derived from an egg sac produced by the female one day before (normal) and 25 days after (Pt-Delta RNAi) the first injection of Pt-Delta dsRNA were used for RNA extraction. The total RNA was extracted from approximately 250 embryos at late stage 6 using MagExtractor (Toyobo). The RNA integrity was examined with an Agilent Bioanalyzer 2100. cRNA labeled with Cy3 or Cy5 was prepared from 2 μg of total RNA using RNA Transcript SureLABEL Core Kit (Takara). The cRNA probes were hybridized to microarray using Hybridization buffer (5X SSC, 0.1% SDS, 10% formamide) at 42 °C for 16–20 h. The microarray slide was scanned using a GenePix 4000B Scanner (Molecular Devices). There were no biological replicates. The obtained image was analyzed using an Array-Pro Analyzer ver. 4.5 (Media Cybernetics, Inc.). The quantitative data were subjected to Loess normalization. The ratio of the normalized intensity values ([Pt-Delta RNAi]/[normal]) for each probe was calculated. The probes for alpha-catenin (GB_ACC: AB433907; GI: LOC107439705), elongation factor 1-alpha (GB_ACC: AB433908; GI: LOC107441347), and histone H3 (GB_ACC: AB433909; GI, LOC107447866) served as negative controls, and the probes for a homolog of Drosophila caudal, Pt-cad (GB_ACC: AB096075; GI: LOC107437910) [2], served as positive controls to validate the experiment (Table 1).

2.3. Embryo staining

EST clones that were selected based on the [Pt-Delta RNAi]/[normal] ratio (<0.6) were used for the synthesis of Digoxigenin-labeled RNA probes for WISH. Normal embryos at stages 5–8 were stained by WISH as described [5]. They were counter-stained with 4’,6-diamidino-2-phenylindole for visualization of the nuclei. The stained embryos were photographed using a stereomicroscope (SZX12, Olympus) equipped with a color CCD camera (C7780-10, Hamamatsu Photonics) and examined using a fluorescence microscope (Axiophot 2, Zeiss).

Acknowledgements

We thank Akiko Noda for technical assistance. This work was supported in part by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) awards to HO (18770215, 20570217, 23370095) and YA (20770189, 24870035).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] H. Oda, Y. Akiyama-Oda, Data for: microarray data on the comparison of transcript expression between normal and Pt-Delta RNAi embryos in the common house spider Parasteatoda tepidariorum, Mendeley Data (2019) v3, https://dx.doi.org/10.17632/r79vg2ctr2.3.

[2] H. Oda, O. Nishimura, Y. Hirao, H. Tarui, K. Agata, Y. Akiyama-Oda, Progressive activation of Delta-Notch signaling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum, Development 134 (2007) 2195–2205, https://doi.org/10.1242/dev.004598.

[3] M. Kanayama, Y. Akiyama-Oda, O. Nishimura, H. Tarui, K. Agata, H. Oda, Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation, Nat. Commun. 2 (2011) 500. https://doi.org/10.1038/ncomms1510.

[4] J.M. Rouillard, M. Zuker, E. Gulari, OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach, Nucleic Acids Res. 31 (2003) 3057–3062.

[5] Y. Akiyama-Oda, H. Oda, Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells, Development 130 (2003) 1735–1747. https://dx.doi.org/10.1242/dev.00390.
[6] E.E. Schwager, P.P. Sharma, T. Clarke, D.J. Leite, T. Wierschin, M. Pechmann, Y. Akiyama-Oda, L. Esposito, J. Bechsgaard, T. Bilde, A.D. Buffry, H. Chao, H. Dinh, H. Doddapaneni, S. Dugan, C. Eibner, C.G. Extavour, P. Funch, J. Garb, L.B. Gonzalez, V.L. Gonzalez, S. Griffiths-Jones, Y. Han, C. Hayashi, M. Hilbrant, D.S.T. Hughes, R. Janssen, S.I. Lee, I. Maeso, S.C. Murali, D.M. Muzny, R. Nunes da Fonseca, C.L.B. Paese, J. Qu, M. Ronshaugen, C. Schomburg, A. Schonauer, A. Stollewerk, M. Torres-Oliva, N. Turetzek, B. Vanthournout, J.H. Werren, C. Wolff, K.C. Worley, G. Bucher, R.A. Gibbs, J. Coddington, H. Oda, M. Stanke, N.A. Ayoub, N.M. Prpic, J.F. Flot, N. Posnien, S. Richards, A.P. McGregor, The house spider genome reveals an ancient whole-genome duplication during arachnid evolution, BMC Biol. 15 (2017) 62. https://doi.org/10.1186/s12915-017-0399-x.