Recent outburst of the young star V1180 Cassiopeiae*

S. Antoniucci1, A. A. Arkharov2, A. Di Paola1, T. Giannini1, A. Harutyunyan3, E. N. Kopatskaya4, V. M. Larionov2,4, G. Li Causi1,5, D. Lorenzetti1, D. Morozova4, B. Nisini1, and F. Vitali1

1 INAF-Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monte Porzio Catone, Italy
e-mail: antoniucci@oa-roma.inaf.it
2 Central Astronomical Observatory of Pulkovo, Pulkovskoe shosse 65, 196140 St. Petersburg, Russia
3 Fundación Galileo Galilei – INAF, Telescopio Nazionale Galileo, 38700 Santa Cruz de la Palma, Tenerife, Spain
4 Astronomical Institute of St. Petersburg University, St. Petersburg, Russia
5 INAF-Istituto di Astrofisica e Planetologia Spaziali, via Fosso del Cavaliere 100, 00133 Roma, Italy

Received 8 April 2014 / Accepted 28 April 2014

ABSTRACT

Aims. We report on the ongoing outburst of the young variable V1180 Cas, which is known to display characteristics in common with EXors eruptive variables. We present results that support the scenario of an accretion-driven nature of the brightness variations of the object and provide the first evidence of jet structures around the source.

Methods. We monitored the recent flux variations of the target in the R_C, J, H, and K bands. New optical and near-IR spectra taken during the current high state of V1180 Cas are presented, in conjunction with H_2 narrow-band imaging of the source.

Results. Observed near-IR colour variations are analogous to those observed in EXors and consistent with excess emission originating from an accretion event. The spectra show numerous emission lines, which indicates accretion, ejection of matter, and an active disc. Using optical and near-IR emission features we derive a mass accretion rate of $\sim 3 \times 10^{-8} M_\odot yr^{-1}$, which is an order of magnitude lower than previous estimates. In addition, a mass loss rate of $\sim 4 \times 10^{-9}$ and $\sim 4 \times 10^{-10} M_\odot yr^{-1}$ are estimated from atomic forbidden lines and H_2, respectively. Our H_2 imaging reveals two bright knots of emission around the source and the nearby optically invisible star V1180 Cas B, clearly indicative of mass-loss phenomena. Higher resolution observations of the detected jet will help to clarify whether V1180 Cas is the driving source and to determine the relation between the observed knots.

Key words. stars: individual: V1180 Cassiopeiae – stars: pre-main sequence – stars: jets – accretion, accretion disks – stars: variables: general

1. Introduction

Variability is a common feature among young stellar objects (YSOs). Detected flux variations can be generally classified as periodic or recurrent (without any definite period). Hot or cold spots on a rotating stellar surface or a systematic obscuration by an intervening body belong to the first class, whereas episodic mass-accretion variations or the occurrence of unpredicted extinction in front of the YSO are typical of the second. To ascertain whether a non-periodic variation is accretion-driven is of great importance because accretion outbursts can substantially affect the circumstellar disc structure and evolution (disc fragmentation and planet formation). To investigate these flux variation modalities, we have recently started an observational programme dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring, Antoniucci et al. 2013a) to photometrically and spectrally monitor about 20 objects in the 0.5–2.5 μm range that are identified as known eruptive variables (EXor) or candidates. We recall that EXors are pre-main sequence sources that are characterised by outburst events (with typical flux variations of 3–4 mag) that last one year or shorter, with a recurrence time of months to years and present emission line spectra (e.g. Herbig 2008; Lorenzetti et al. 2009; Audard et al. 2014). One of the targets of the EXORCISM project is V1180 Cas, a young source that belongs to the L1340 star-forming cloud; it was first recognised to be a $H\alpha$ emitter by Kun et al. (1994) and was identified as [KOS94] HA11. The source is characterised by strong brightness variations ($\Delta I \sim 6$ mag) and was studied by Kun et al. (2011, K11), who concluded that it is an accretion-driven object although a certain periodicity recognisable in its light curve (I_C band) might indicate extinction-driven dips. Few months ago V1180 Cas has entered a new high-brightness phase, which we have been monitoring (Antoniucci et al. 2013b). We have collected evidence that the luminosity increase is due to an enhanced accretion event, in agreement with the interpretation of K11. In this Letter, we present new optical/near-IR spectroscopy and photometry of V1180 Cas in the outburst phase, together with imaging in the narrow-band H_2 2.12 μm filter, providing first evidence of a jet around the eruptive variable. We also derive estimates for the mass accretion rate ($\dot{M}_{\rm acc}$) and correlated mass-loss rate ($\dot{M}_{\rm loss}$), and compare them with previously obtained values.

2. Observations

Optical photometric observations in the R band were obtained at the 70 cm AZT-8 telescope of the Crimean Observatory (Ukraine) with a photometer based on ST-7XME SBIG CCDs that is equipped with an R_C filter. Near-IR photometry with the JHK broad-band filters was taken at the 1.1 m AZT-24 telescope located at Campo Imperatore (L’Aquila, Italy), with the imager/spectrometer SWIRCAM (D’Alessio et al. 2000). Frames were acquired using a dithering technique and were reduced through standard procedures for bad-pixel removal, dark
Table 1. R_c and near-IR photometry and colours of V1180 Cas.

JD-2450000.5	R_c	J	H	K	$J-H$	$H-K$
6506	...	15.64	13.69	12.06	1.95	1.63
6510	...	14.43	12.90	11.66	1.53	1.24
6511	...	14.68	13.08	11.77	1.60	1.31
6515	...	15.65	13.65	11.96	2.00	1.69
6517	...	15.68	13.65	12.03	2.03	1.62
6520	...	13.92	12.60	11.53	1.32	1.07
6539	...	16.26	14.00	...	2.26	...
6540	...	15.95	13.74	12.00	2.21	1.74
6558	...	13.60	12.21	11.13	1.39	1.08
6559	...	13.60	12.23	11.14	1.37	1.09
6561	...	13.50	12.15	11.04	1.35	1.11
6562	17.00	13.50	12.17	11.04	1.33	1.13
6563	16.96
6565	16.98
6575	16.74	13.48	12.06	10.82	1.42	1.24
6576	16.96
6577	...	13.55	12.18	...	1.37	...
6578	...	13.56	12.13	10.95	1.43	1.18
6579	...	13.66	12.19	11.04	1.47	1.15
6590	...	13.51	12.10	11.01	1.41	1.09
6591	...	13.51	12.12	11.03	1.39	1.09
6595	...	13.46	12.11	11.07	1.35	1.04
6614	...	13.46	12.21	11.13	1.25	1.08
6644	...	14.02	12.40	11.13	1.62	1.27
6650	...	13.88	12.35	11.14	1.53	1.21
6686	17.20
6670	16.94
6718	...	13.37	12.04	10.97	1.33	1.07
6719	...	13.46	12.14	11.04	1.32	1.10
6724	...	13.44	12.13	11.09	1.31	1.04
6737	...	13.42	11.97	10.94	1.45	1.03
6738	...	13.32	11.95	10.91	1.37	1.04

Notes. Typical errors are lower than 0.03 mag. (a) Photometry taken at TNG.

Our near-IR data represent the most numerous sample collected so far. They can be used to construct the first meaningful two-colour [$J - H$, $[H - K]$ plot for V1180 Cas. This is depicted in Fig. 1 by using both our data (solid circles) and those from 2MASS (Skrutskie et al. 2006) and K11 (solid triangles). The IR colours corresponding to the highest ($J \sim 13.5$ mag) and lowest ($J \sim 15.5$ mag) states are given in blue and red. As expected for accretion-driven bursts (Lorenzetti et al. 2012), the source becomes bluer (redder) while brightening (fading). Although the near-IR colour changes might be formally compatible with those produced by extinction, especially considering the Cardelli et al. (1989) law (see Fig. 2 in K11), this hypothesis is ruled out because it would imply an A_V variation of about 10 mag. This is totally incompatible with the optical colour fluctuations, which are consistent with a $\Delta A_V \sim 1$ (see Fig. 2 in K11). Using our DOLORES photometric dataset, we find that the current optical colours ($V - R$) and ($R - I$) agree well with those of a K0 star extincted by an A_V in the range 4–5 mag. As the near-IR colours of the low state are formally compatible with an $A_V \sim 10$ mag,
this indicates a strong near-IR excess in quiescence, suggesting the presence of a massive circumstellar disc. Although an extinction reduction due to the outburst is possible, it is hard to reconcile this scenario with the optical colour changes observed by K11.

3.2. Optical and near-IR spectroscopy

The flux-calibrated 0.5–2.4 μm spectrum of the source is displayed in Fig. 2. He I is the brightest feature, with an EW around −400 Å, to be compared with a maximum EW of −900 Å measured by K11 in Aug 2008. Other H I emission lines from the Paschen and Brackett series are also clearly visible. Other permitted transitions are the strong Ca II triplet (0.85–0.87 μm) and the He I line at 1.08 μm, which are usually associated with stellar winds (e.g. Edwards et al. 2006). We also detected many forbidden emission lines, which are typical tracers of shocks driven by jets (e.g. Giannini et al. 2008). In particular, we observe [O I] lines at 0.630 and 0.636 μm, the two [S II] lines at 0.67 μm, [Fe II] emission (0.715, 0.738, 0.745, and 1.25 μm), and the H I transition at 2.12 μm. The simultaneous detection of all these lines testifies to mass-loss phenomena from the source, which is presumably correlated to the ongoing accretion event. We also report the detection of CO(Δν = 2) bands in emission longward of 2.295 μm. CO in emission is usually associated with large amounts of warm gas (T ≲ 3000 K) in the inner regions of the circumstellar disc, which is indicative of an active phase of accretion (e.g. Najita et al. 1996; Lorenzetti et al. 2009; Kospál et al. 2011). The main emission features are listed in Table 2.

We computed the mass accretion rate by using the empirical relationships that connect the line and accretion luminosities (Lacc) recently derived by Alcalá et al. (2014) based on VLT/X-Shooter observations of a sample of young T Tauri stars in Lupus. Adopting the same stellar parameters as in K11 (M∗ = 0.8 M⊙, R∗ = 2 R⊙), a distance of 600 pc, and a visual extinction A⊙ = 4.3 mag, we derive an Macc in the range 1–6 × 10−8 M⊙ yr−1 from 13 emission lines both in the optical and in the near-IR (see Table 2), with a median value of 3 × 10−8 M⊙ yr−1. This accretion rate is about one order of magnitude lower than the one derived by K11 (Macc > 1.6 × 10−7 M⊙ yr−1) for the high state of V1180 Cas between 2008 and 2009, using the Ca II 8542 line and the relative relationship by Dahn (2008). However, this discrepancy must in part be ascribed to systematics of the employed relationship, because adopting the same Dahn’s calibration and the Ca II 8542 line we obtain Macc ∼ 1 × 10−7 M⊙ yr−1. We note that an extinction of A⊙ = 3.3 mag can be estimated from the ratio Paβ/Brγ, assuming that the emission is optically thin (e.g. Bary et al. 2008) and adopting Cardelli’s law. This yields a slightly lower median Macc value of 2 × 10−8 M⊙ yr−1. An estimate of the mass-loss flux can be derived from jet emission lines following the procedures described in Antoniucci et al. (2008). From the [S II] 0.671/0.673 line ratio we infer a density of 5 × 105 cm−3, while from the ratio 1.25/1.64 μm [Fe II] lines, which is theoretically expected to be around 1.1 (Giannini et al., in prep.), we estimate that AV ≃ 0 in the region where these

Table 2. Emission lines, unreddened fluxes, and derived accretion rates.

Line ID	λ (μm)	Flux (10−15 erg s−1 cm−2)	Macc (10−8 M⊙ yr−1)
He I	0.588	0.7 ± 0.2	...
[O I]	0.630	3.0 ± 0.1	...
[O I]	0.636	1.2 ± 0.1	...
Hα	0.656	0.02 ± 1.0	6
Hδ	0.668	0.3 ± 0.1	2
[S II]	0.671	0.5 ± 0.1	...
[Fe II]	0.673	0.9 ± 0.1	...
[S II]	0.715	0.6 ± 0.1	...
[Ca II]	0.729	0.4 ± 0.1	...
[O I] + [Ca II]	0.732	1.7 ± 0.2	...
[Fe II]	0.738	0.9 ± 0.1	...
Pa9	0.745	0.4 ± 0.1	...
Pa8	0.844	5.0 ± 0.6	3
Pa7	0.955	4.8 ± 0.5	2
Pa6	1.005	7.1 ± 0.5	1
He I	1.082	13.1 ± 0.5	2
Pa5	1.094	15.2 ± 0.5	3
O1	1.128	9.0 ± 0.5	...
[Fe II]	1.257	4.0 ± 0.5	...
Pa1	1.282	35.7 ± 1.0	2
Br12 + [Fe II]	1.642	3.6 ± 0.4	...
Br11	1.681	2.4 ± 0.4	...
Br10	1.737	2.8 ± 0.4	...
H2 1–0 S(1)	2.121	1.4 ± 0.2	...
Brγ	2.166	7.1 ± 0.3	1
CO(2–0)	2.294	1.3 ± 0.2	...
CO(3–1)	2.324	1.4 ± 0.2	...
lines originate. Assuming a gas temperature \(T = 10,000 \) K, a velocity of 100 km s\(^{-1}\), and a jet section of 1\(^{\circ}\) (i.e. filling the entire slit width), we obtain an \(\dot{M}_{\text{Gas}} \) of \(3 \times 10^{-9} \) and \(5 \times 10^{-10} \) \(\dot{M}_\odot \) yr\(^{-1}\) from the [O I] 0.630 \(\mu \)m and the [Fe II] 2.5 \(\mu \)m lines, which is about an order of magnitude lower than \(\dot{M}_{\text{Gas}} \) as expected from magneto-hydrodynamical jet-launching models (e.g. Ferreira et al. 2006). Using the \(\text{H}_2 \) 2.12 \(\mu \)m line, we derive a lower \(\dot{M}_{\text{Gas}} \) of \(4 \times 10^{-10} \) \(\dot{M}_\odot \) yr\(^{-1}\) for the molecular part of the jet.

3.3 Jet emission

The \(\text{H}_2 \) and \(K \)-band images of the field around \(\text{V1180 Cas} \) are shown in Fig. 3 (left and middle panels). The position of \(\text{V1180 Cas} \) and \(\text{V1180 Cas B} \) (a star at about 6\(^{\circ}\) NE of the target) are indicated. \(\text{V1180 Cas B} \) is an optically invisible star with a steep spectral energy distribution (\(\alpha_{24-24} = 1.9, \) K11). Photometry of \(\text{V1180 Cas B} \) from our datasets provides steady \(K = 14.6 \) mag and \(H > 15.1 \) mag values, revealing no significant variation with respect to 2MASS values (\(K = 14.7, \) \(H > 16.3 \)).

The angular distance between the two objects implies a projected separation of 3600 AU, therefore it is not certain that the two stars are physically related. A direct comparison of the \(\text{H}_2 \) and \(K \)-band images shows two bright \(\text{H}_2 \) emission regions, one located \(\sim 10^\circ \) north of the target (knot N) and one at \(\sim 45^\circ \) to the south (knot S). These knots will be named MHO 2964 in the MHO catalogue\(^1\) (see also Walawender et al., in prep.). The subtraction of the two images (after normalisation to bring the flux count of the stars at the same level) allowed us to remove the continuum emission from the \(\text{H}_2 \) image. Despite some residuals at the position of the bright stars in the field, the \(\text{H}_2 \) – \(K \) image (right panel of Fig. 3) shows, in addition to the bright \(\text{H}_2 \) knots N and S, the possible presence of a long (and curved) chain of knots that stretches from the region of the target to knot S. This morphology is definitely similar to that of other known precessing jets (e.g. Lorenzetti et al. 2002). Based on our imaging, it is difficult to understand how knots N and S are related and which is the driving source of the jet. The observed structure suggests that the red star \(\text{V1180 Cas B} \) might be the driving object, but because of the limited spatial resolution of the images we cannot provide a conclusive answer in this regard. In any case, inspection of the TNG spectral image reveals no \(\text{H}_2 \) emission outside the object position along the slit, which had been aligned at a PA = 0\(^{\circ}\).

Additional observations with higher resolution and sensitivity are definitely required to accurately characterise the detected jet.

\(^1\) Catalogue of molecular hydrogen emission-line objects in outflows from young stars (Davis et al. 2010): http://www.astro.ljmu.ac.uk/HiCat

4. Conclusions

We presented new optical/near-IR photometry and spectra of the young eruptive variable \(\text{V1180 Cas} \), which is currently in a high-brightness state. Our results support the scenario of an accretion-driven nature of the brightness fluctuations: observed near-IR colour variations are similar to those seen in EXors and the spectra show numerous emission lines that typically trace accretion and the tightly related ejection of matter. Moreover, detection of the CO 2.3 \(\mu \)m bands in emission highly suggests large amounts of warm gas in the inner regions of an active accretion disc.

Using 13 optical and near-IR emission features, we derived a mass accretion rate of \(3 \times 10^{-8} \) \(\dot{M}_\odot \) yr\(^{-1}\), which is an order of magnitude lower than previous estimates. For the mass-loss rate, we inferred a value of \(4 \times 10^{-9} \) and \(4 \times 10^{-10} \) \(\dot{M}_\odot \) yr\(^{-1}\) from atomic forbidden lines ([OI], [Fe II] and \(\text{H}_2 \)).

By analysing \(\text{H}_2 \) narrow-band images, we provided the first evidence for a jet in the region of \(\text{V1180 Cas} \). The imaging reveals two bright knots of emission around the source and the optically invisible nearby star \(\text{V1180 Cas B} \), which are clearly indicative of intense mass loss. Higher resolution observations of the jet will help to clarify whether \(\text{V1180 Cas} \) is the driving source and to determine the relation between the detected knots.

References

Alcalí, J. M., Natta, A., Manara, C. F., et al. 2014, A&A, 561, A2
Antoniucci, S., Nisini, B., Giannini, T., & Lorenzetti, D. 2008, A&A, 479, 503
Antoniucci, S., Arkharov, A. A., Di Paola, A., et al. 2013a, in Protostars and Planets VI, Heidelberg, July 15–20, 2013. Poster #B2055, 55
Antoniucci, S., Arkharov, A. A., Efimova, N., et al. 2013b, ATel, 5421, 1
Audard, M., Abraham, P., Duman, M. M., et al. 2014 [arXiv:1401.3368]
Bary, J. S., Matt, S. P., Skrutskie, M. F., et al. 2008, ApJ, 687, 376
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Dahn, S. E. 2008, AJ, 136, 521
D’Alessio, F., Di Cianno, A., Di Paola, A., et al. 2000, in Optical and IR Telescope Instrumentation and Detectors, eds. M. Iye, & A. F. Moorwood, SPIE Conf. Ser., 4008, 748
Davis, C. J., Gell, R., Khanzadyan, T., Smith, M. D., & Jenness, T. 2010, VizieR Online Data Catalog, J/A+A/511/A24
Edwards, S., Fischer, W., Hillenbrand, L., & Kwan, J. 2006, ApJ, 646, 319
Ferreira, J., Doughados, C., & Cabrit, S. 2006, A&A, 453, 785
Giannini, T., Calzoletti, L., Nisini, B., et al. 2008, A&A, 481, 123
Herbig, G. H. 2008, AJ, 135, 637
Kóspál, A., Ábrahám, P., Goto, M., et al. 2011, ApJ, 736, 72
Kun, M., Obayashi, A., Sato, F., et al. 1994, A&A, 292, 249
Kun, M., Szegedi-Elek, E., Moór, A., et al. 2011, ApJ, 733, L8
Lorenzetti, D., Giannini, T., Vitali, F., Massi, F., & Nisini, B. 2002, ApJ, 564, 839
Lorenzetti, D., Larionov, V. M., Giannini, T., et al. 2009, ApJ, 693, 1056
Lorenzetti, D., Antonucci, S., Giannini, T., et al. 2012, ApJ, 749, 188
Meyer, M. R., Calvet, N., & Hillenbrand, L. A. 1997, AJ, 114, 288
Najita, J., Carr, J. S., Glassgold, A. E., Shu, F. H., & Tokunaga, A. T. 1996, ApJ, 462, 919
Rieke, G. H., & Lebofsky, M. J. 1985, ApJ, 288, 618
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163