Weekly Personal Ozone Exposure and Respiratory Health in a Panel of Greek Schoolchildren

Anna Karakatsani,1 Evangelia Samoli,2 Sophia Rodopoulou,2 Konstantina Dimakopoulou,2 Despina Papakosta,3 Dionisios Spyratos,4 Georgios Grivas,4 Sofia Tasi,2 Nikolaos Angelis,3 Athanasios Thririös,2 Anastasios Tsiotsios,3 and Klea Katsouyanni2,5

12nd Pulmonary Department, ATTIKON University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; 2Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; 3Pulmonary Department, G. Papanikolaou Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; 4School of Chemical Engineering, National Technical University of Athens, Athens, Greece; 5Department of Primary Care & Public Health Sciences and Environmental Research Group, King’s College, London, UK

BACKGROUND: The association of ozone exposure with respiratory outcomes has been investigated in epidemiologic studies mainly including asthmatic children. The findings reported had methodological gaps and inconsistencies.

OBJECTIVES: We aimed to investigate effects of personal ozone exposure on various respiratory outcomes in school-age children generally representative of the population during their normal activities.

METHODS: We conducted a panel study in a representative sample of school-age children in the two major cities of Greece, Athens and Thessaloniki. We followed 188, 10- to 11-y-old, elementary school students for 5 wk spread throughout the 2013–2014 academic year, during which ozone was measured using personal samplers. At the end of each study week, spirometry was performed by trained physicians, and the fractional concentration of nitric oxide in exhaled air (FNO) was measured using peak flow meters. Mixed models accounting for repeated measurements were applied.

RESULTS: An increase of 10 μg/m³ in weekly ozone concentration was associated with a decrease in FVC (forced vital capacity) and FEV1 (forced expiratory volume in 1 s) of 0.03 L [95% confidence interval (CI): −0.05, −0.01] and 0.01 L (95% CI: −0.03, 0.003) respectively. The same increase in exposure was associated with a 11.10% (95% CI: 4.23, 18.43) increase in days with any symptom. The effect estimates were robust to PM10 adjustment. No inverse association was found between ozone exposure and PEF.

CONCLUSIONS: The study provides evidence that airway inflammation and the frequency of respiratory symptoms increase, whereas lung function decreases with increased ozone exposure in schoolchildren. https://doi.org/10.1289/EHP635

Introduction

Ozone (O₃), a very reactive gas and strong oxidant, is found as a secondary pollutant in the troposphere. Although, its presence in the stratosphere is essential for life because it filters harmful ultraviolet radiation, increased concentrations of O₃ in the air we breathe have been linked to adverse health effects mainly concerning the respiratory system (WHO 2013). A number of controlled human exposure studies have demonstrated changes in FEV₁ and respiratory symptoms (Adams 2006; Horstman et al. 1990; Kim et al. 2011) as well as lung inflammation (Devlin et al. 1991; Kim et al. 2011), but those included healthy adults, not children. In an attempt to investigate the acute effects of ozone under real-world exposures several camp studies have been conducted involving sequential measurements of lung function and ambient ozone measurements on children attending summer camps (Burnett et al.1990; Higgins et al. 1990; Raizenne et al.1989; Spektor et al. 1988; Spektor et al. 1991). However, despite the evidence they provide of an association between daily outdoor O₃ concentrations and decreased lung function (Kinney et al. 1996), the lack of personal measurements, variations in data reporting and analysis as well as concerns about potential confounding by other pollutants that may co-vary with O₃, limit their use in risk assessment. Therefore, so far there is lack of studies conducted in children under real living conditions, at current concentrations of ozone, using personal exposure assessment.

Children’s lungs are considered to be more sensitive and vulnerable to air pollution as they have, even at rest, a larger surface area for body size compared with adults and are still growing. Children breathe more air per unit of body weight and have different breathing patterns than adults that alter the deposition and toxicity of inhaled gases and particles (Arcus-Arth and Blaisdell 2007; Bateson and Schwartz 2008; Warren et al. 1990). Moreover, because they spend more time outdoors and are more active, they have higher ventilation rates leading to increased intake and deposition of pollutants (Bateson and Schwartz 2008). So far, epidemiological studies on the effects of ozone on children’s lung function and respiratory symptoms have mainly focused on asthmatics and have reported inconsistent results (Castro et al. 2009; Declercq and Macquet 2000; Jalaludin et al. 2000; Just et al. 2002; Li et al. 2012; Mortimer et al. 2002; Scarlett et al. 1996). However, response to ozone exposure displays individual variability that cannot be explained by underlying morbidity (Schelegle et al. 2012; WHO 2013), and thus, from a public health point of view, it is critical to determine to what extent ambient O₃ exposure is responsible for adverse respiratory effects in the general population of children.

We conducted a panel study (Respiratory Effects of Ozone Exposure in children; RESPOZE) in a representative sample of the general population of schoolchildren in the two major cities of Greece, Athens (state capital) and Thessaloniki. Greece provides a unique opportunity to study O₃ health effects because of its sunny, warm weather as well as the high concentrations of precursor pollutant emissions encountered in some of its cities.
In this paper we examine the association of weekly personal ozone measurements with lung function parameters, airway inflammation, and respiratory symptoms.

Materials and Methods

Study Design: Subjects

A panel study was conducted, in the two largest and most polluted cities of Greece, Athens and Thessaloniki (total population of about 4 million). The research was approved by the Ethics Committee of the National and Kapodistrian University of Athens, and it complied with all relevant national and local regulations. The study population consisted of all children in the fifth grade (age 10–11 y) in state elementary schools representative of the general population of students in that age group. State schools were chosen because all attending students are required to live in the school neighborhood. A two-stage sampling design was applied. First, state elementary schools located near a fixed monitoring site (within 2 km), were identified, and permission to implement the project was obtained from the Ministry of Education. In the second stage, the research team visited all schools and informed fifth grade school children in class about the project. Informed consent was obtained from the parents of children willing to participate and the final sample was formed. We had estimated that a sample of 200 school children (100 from Athens and 100 from Thessaloniki) would provide power >90% to detect a decrease in FEV_{1} (forced expiratory volume in 1 s) of 0.14% per 10 \mu g/m^{3} in O_{3} exposure, at the 5% significance level, considering that the overall proportion of variance explained would be 41%. In each city 60% of the sample was drawn from high-O_{3} areas (suburbs), to ensure that we had enough relatively highly exposed children, and 40% from low-O_{3} areas (city centers, where ozone is scavenged by primary pollutants). All field work was implemented during the academic year 2013–2014 and consisted of five weeks of intensive follow-up per study participant: two in the fall period, one in winter, two in spring/summer. During each period, we used a staged entry of the participants for practical reasons. As a result, the period of data collection was longer, and thus, the likelihood for uncontrolled factors or unexpected events to influence the association between air pollution and health decreased (Roemer et al. 2000). Before the start of the field work, trained interviewers visited the schoolchildren’s families at home to fill in an extensive questionnaire with information on demographic, life style, and residential characteristics and the medical history of the child. During this visit they also provided a peak flow meter (Mini-Wright, Clement Clarke International Ltd.) and trained the student on how to use it. A team of three field workers, including one pediatrician or pulmonologist, visited each school twice for each field work week. At the first visit an O_{3} personal sampler (Ogawa USA) and a time–activity diary (TAD) were given to the participating students. At the second visit, a week later (same weekday), the O_{3} personal sampler and completed TADS were collected, spirometry was performed, the fractional concentration of nitric oxide in exhaled air (F_{ENO}) was measured and a 24-h dietary recall questionnaire was filled in by interview. [See “TAD-PEF (Peak Expiratory Flow): Symptoms”; “Spirometry”; “FeNO”; “Ozone Exposure Assessment”].

TAD-PEF (Peak Expiratory Flow): Symptoms

Participating schoolchildren were instructed to complete a TAD collecting information on his or her location (at home, outdoors, indoors, but not at home and in transport) at 15-min intervals for each day of the field work period. In the TAD, they additionally recorded a total of nine PEF recordings per day, performed with the Mini-Wright peak flow meter three times every morning, afternoon, and night before the use of any medication. In addition, at the end of each day they were asked to record all their daily symptoms, namely cough, wheezing, breathing difficulties (dyspnea), fever, and stuffy nose; school absenteeism; and daily medication use (yes vs. no, as well as identification of medicine).

Spirometry

Spirometry was performed at school at the end of each of the five intensive field work weeks. Thus, a total of five spirometric assessments were available per schoolchild. All spirometry maneuvers were performed by the same pulmonologists or by the specially trained pediatrician in a separate office provided by each school that was quiet, well ventilated and had a standard temperature independent of season. Children were tested in a seated position and with nose clips in place. Portable spimeters (SpiroPalm, Cosmed Srl, Italy) compatible with ATS (American Thoracic Society) and ERS (European Respiratory Society) requirements were used (Miller et al. 2005). At least two technically satisfactory maneuvers had to be performed with a difference between the two highest values of FVC (forced vital capacity) and FEV_{1} of <5% of each other. The best FVC and FEV_{1} were recorded independently of the order of the maneuver, whereas the values for the other parameters were chosen from the maneuver having the largest sum of FVC and FEV_{1} (Miller et al. 2005). PEF and FEF_{25–75} were also recorded.

F_{ENO}

A measurement of F_{ENO} was performed at school at the end of each field study week just before spirometry in the same room where spirometry was performed (see above), thus, a total of five measurements were available per schoolchild. The NIOX MINO (Aerocrine, Solna, Sweden), an instrument that has also a scrubber to eliminate ambient NO from the subject’s sample, was used for all measurements according to American Thoracic Society (ATS) and European Respiratory Society (ERS) recommendations (ATS/ERS 2005).

Ozone Exposure Assessment

To assess O_{3} weekly exposure, each student was provided with a personal Ogawa O_{3} sampler (Ogawa & Co. USA Inc., Pompano Beach, FL) at the first visit of each field work week and was instructed on how to wear and handle it. The sampler was collected during the second visit at the end of the week. One sampler was placed in the outdoor space of each participating school also providing a weekly measurement. Additionally, concentrations of daily ambient O_{3} as well as PM_{10} (particulate matter with aerodynamic diameter ≤10 μm) and NO_{2} (nitrogen dioxide) were obtained by the nearest fixed monitoring site from the state network (http://www.ypeka.gr/).

Confounder Data

A possible learning or fatigue effect as well as a growth factor throughout the academic year was taken into account by including a time trend as a variable taking values 1–5 for each consecutive week (week ID). Additionally, all models were adjusted for sex, city (i.e., Thessaloniki vs. Athens) and area (high- vs. low-ozone area, as used in the sampling frame), father’s education (years) as socioeconomic index, outdoor ambient temperature (°C, weekly average and alternatively same day temperature), consumption of antioxidant foods (yes/no, in the corresponding 24-h recall), time spent outdoors (hours/day, from data recorded in the corresponding week TAD), and medication use (yes/no,
during the corresponding week). Height (cm) and weight (kg) were adjusted in models with lung function outcomes. Models were additionally adjusted for PM$_{10}$ levels from the nearest fixed monitoring site.

Quality Assurance and Quality Control

Standard operating procedures (SOPs) were applied for air pollution and health measurements. A training workshop for all field workers was organized before the start of the fieldwork. It should be noted that especially for the TAD, which are demanding on the subject’s time and accuracy, scrupulous data quality procedures were applied as well as controls with manual inspections of the data and cross references from the field workers’ progress diaries.

Statistical Analyses

Random effects models, incorporating a random intercept, Stata Statistical Software (Release 12; StataCorp LP), were used to account for the repeated measurements, for each child. We applied multiple linear regression models when we investigated O$_3$ effects on continuous variables: PEF measurements from the Mini-Wright (taken as the average of seven daily values calculated as the mean of the three maximum values from the morning, afternoon, and evening measurements), spirometry indices FVC, FEV$_1$, PEF, and FEF$_{25-75}$% (forced expiratory flow at 25–75%) as well as FENO measurements, which were log-transformed because the distribution was skewed. Poisson models were used for counts: the number of days per week when any symptom occurred and the number of days when the child was absent from school. In all models, we adjusted for all the potential confounders mentioned above. Because ozone concentrations are higher in spring–summer, we repeated the analysis for this period only. In addition, because asthmatic children may present special characteristics, we repeated the analysis excluding this subgroup using two alternative definitions. The first definition was based on parents’ reporting a doctor-diagnosed asthma. The second definition further included those students having FEV$_1$/FVC and/or FEF$_{25-75}$% < LLN (lower limit of normal) at least once during the study period (provided that all spirometry maneuvers were performed according to the project’s protocol), which provides evidence of obstructive ventilatory defect (Loughheed et al. 2012: Lum and Stocks 2010) and may denote (undiagnosed) asthma. We also conducted additional sensitivity analyses in healthy children only, excluding alternatively the two groups (asthmatic and asthmatic plus those presenting obstructive ventilatory defect) according to the definitions above.

Results are presented per 10-µg/m3 increase in O$_3$ levels, representing approximately an interquartile range of the weekly measurements and thus, allowing comparability with previously published results based on measurements from fixed sites monitors. In sensitivity analyses we tested for heterogeneity between children, which included adding random slopes to our models.

Results

The final sample included 188 school-age children (97 in Athens and 91 in Thessaloniki). Table 1 shows personal, medical, socioeconomic characteristics, and respiratory health indices of the study population, by city and ozone concentration area (as used for the sampling scheme), during the academic year 2013–2014. Based on demographic data children residing in the two cities were similar. Parents reported a doctor-diagnosed asthma for 21 schoolchildren (7 in Athens and 14 in Thessaloniki). Of the remaining 167 children without a reported history of asthma, 22 (10 in Athens and 12 in Thessaloniki) had FEV$_1$/FVC and/or FEF$_{25-75}$% < LLN (lower limit of normal) for at least once during the study period.

In Table 2 descriptive characteristics of the air pollutants and temperature by city and high- or low- O$_3$ area (as used in the sampling scheme) are presented. O$_3$ personal measurements were much lower than outdoor measurements at schools or fixed sites, reflecting the amount of time spent indoors, where ozone concentrations are lower. Furthermore, O$_3$ as well as PM$_{10}$ concentrations and temperature were higher in Athens than in Thessaloniki. Personal ozone and outdoor school ozone concentrations were in a range of 25–40% higher in high-versus low-ozone areas in both cities. In Athens, PM$_{10}$ concentrations were lower by 20% in high-compared with low-ozone areas but, in contrast, in Thessaloniki they were 5% higher in high-ozone compared with low-ozone areas. Therefore, in Athens there was a larger contrast in both O$_3$ and PM$_{10}$ concentrations between high- and low-ozone areas. In additional, contrasts were higher in outdoor school measurements compared with personal measurements.

Concerning the assessment of health effects, a negative association between weekly O$_3$ exposure and FVC was observed (both in the one and two pollutants models including PM$_{10}$). An increase of 10 µg/m3 in weekly O$_3$ concentration was associated with a decrease in FVC of 0.05 L or 30 ml (95% CI: −0.05 L, −0.01 L). When we restricted the analyses to the spring–early summer period the negative effect of O$_3$ on FVC persisted. The results concerning the weekly O$_3$ effect on FEV$_1$ were similar. A 10-µg/m3 increase in weekly O$_3$ concentration was associated with a decrease in FEV$_1$ of 0.01 L or 10 ml (95% CI: −0.03 L, 0.003 L). Peak expiratory flow, as assessed by spirometry, and FEF$_{25-75}$% were not associated with weekly O$_3$ exposure in any period of analyses (Table 3). Weekly averages from daily values of PEF, taken with the Mini-Right flow meter, were positively associated with O$_3$ and this association remained when we restricted the analyses to the spring–early summer period (Table 3). Inclusion of PM$_{10}$ did not change the above-mentioned results.

Analysis of the association of FENO with O$_3$ showed that a 10-µg/m3 increase in weekly personal O$_3$ concentration was associated with an increase in FENO values by 11.10% (95% CI: 4.23%, 18.43%). The direction of the effect and the magnitude of the association was practically the same after adjusting for PM$_{10}$ (9.5% (95% CI: 2.46%, 16.98%)) (Table 3). Associations with FENO remained significant when we restricted the analysis in the spring–early summer study period 11.79% (95% CI: 2.54%, 21.82%).

An increase of 19% (95% CI: −0.53%, 42.75%), (21%, 95% CI: 0.42%, 45.66%), after adjusting for PM$_{10}$ in the number of days with at least one symptom within each of the five weeks was associated with a 10-µg/m3 increase in weekly ozone exposure (Table 4). The association was smaller and nonsignificant when only the spring–summer period was considered (data not shown). No association between weekly O$_3$ personal exposure with “any absenteeism” (i.e., the number of days the student was absent from school during each of the five weeks) was observed (Table 4). In sensitivity analyses, the direction of the effects remained unchanged when the groups of asthmatic, asthmatic plus those having obstructive ventilatory defect, or healthy children were analyzed separately. We observed no significant heterogeneity in the effects between children when we allowed for random slopes in our models (data not shown). Results remained unchanged when the same day temperature was included in the models. In addition, no effect modification by area (high or low ozone) or city (Athens or Thessaloniki) was detected.

Discussion

In this panel study, we found consistent associations between increased weekly O$_3$ personal exposure and a decrease mainly in
FVC and also FEV₁, in 10-y-old school children following their normal daily schedules not modified by their participation in the study. We also observed corresponding increases in the number of days that any respiratory symptom occurred and in FENO, a marker of airway inflammation. Our sample included asthmatic children (about 7%), but separate analyses by asthmatic and non-asthmatic children did not show a modification in the effect estimates. The students were sampled from low- and high-O₃ areas and from two major cities, but no effect modification by area or city was detected.

Previous longitudinal studies investigating the effect of short-term exposure to O₃ on children’s respiratory health involved mainly asthmatic children and relied on fixed monitoring sites rather than on personal measurements (Li et al. 2012). Most studies used PEF as lung function parameter. Moreover, among the few panel studies concerning healthy children no one, to the best of our knowledge, combined inflammatory response and change in lung function with personal measurements of O₃ exposure (Barranza-Villarreal et al. 2008; Chen et al. 2015).

One very consistent and robust finding in our study is the increase in FENO that persisted after controlling for PM₁₀, probably reflecting the capacity of O₃ to induce airway inflammation (Madway and Kelly 2000) even in healthy children. Very few studies investigated exposure to O₃ and FENO levels. A panel study, involving school children living in Mexico City, demonstrated an association of FENO with acute exposure to traffic-related air pollutants in both asthmatics and nonasthmatics (Barranza-Villarreal et al. 2008). However, the 8-h moving average outdoor concentration of O₃ was associated with FENO in asthmatic children only. Another study investigated the effects of exposure to several pollutants on FENO in asthmatic children in the Mexican-U.S. border and found respiratory effects attributed to PM (several size fractions) and NO₂ but not of O₃ (Sarnat et al. 2012). Exposure assessment in these studies was based on fixed monitoring sites and passive samplers located in schools, resulting perhaps in less accurate assessment of O₃ exposure.

Furthermore, we found significant negative associations, robust after adjusting for potential confounders and more strongly during warmer days, between O₃ weekly personal exposure and FVC as well as FEV₁ (but of borderline significance).

Based on our results, the mean decrease found in FVC (0.03 L, per 10⁻⁶/m³ increase in personal O₃ exposure) may be of clinical significance if repeated exposures lead to a more permanent adverse effect. Moreover, the range of personal exposure measurements is about 40 μg/m³, depending not only on ambient concentrations but also on the child’s time spent outdoors, and in the highest exposure range the weekly decrease in FVC may be clinically relevant. Concerning our findings on FENO, it follows that a 20% increase in FENO is associated with 20 μg/m³ increase in O₃ personal exposure (an exposure contrast well within the range of measured exposures from 1 to 42 μg/m³) considered to indicate an effect that may have clinical importance (Dweik et al. 2011).

An unexpected finding of our study was the significant positive associations of O₃ with the weekly averages of daily PEF self-assessed values using Mini-Wright peak flow meters. PEF is the most usual measurement in panel studies evaluating the effect of air pollution on children’s lung function but results have been inconsistent across studies. Some panel studies reported PEF decrements in healthy (Declercq and Macquet 2000; Höppe et al. 2003; Li et al. 2012) and asthmatic school children (Just et al. 2002; Li et al. 2012; Mortimer et al. 2002; Romieu et al. 1997) as well as enhanced daily PEF variability in the asthmatics (Just et al. 2002; Li et al. 2012), whereas others found no effect (Peacock et al. 2003; Scarlett et al. 1996). Likewise, in the older studies of children attending summer camps in the United States and Canada, inconsistent results associating ambient O₃ exposure

Table 1. Personal, medical, socioeconomic characteristics, and respiratory health indices (presented as 5-wk averages) of the study population, by city and ozone concentration area.

Characteristic/respiratory health outcome	Athens Low (n = 37)	Athens High (n = 60)	Thessaloniki Low (n = 33)	Thessaloniki High (n = 58)
Boys [n (%)]	22 (59.5)	28 (46.7)	14 (42.4)	29 (50.0)
Age (y)	10.3 ±0.3	10.3 ±0.3	10.4 ±0.4	10.4 ±0.3
Height (cm)	147.2 ±6.7	143.5 ±7.7	145.9 ±9.5	144.3 ±7.3
BMI (kg/m²)	18.2 ±2.8	18.5 ±3.6	18.0 ±3.4	18.0 ±2.8
Father’s education (y)	14.0 ±2.8	15.2 ±3.7	15.3 ±3.4	14.1 ±3.3
Working father [yes; n (%)]	29 (78.4)	55 (91.7)	27 (81.8)	52 (89.7)
Asthma [n (%)]	2 (5.4)	5 (8.3)	4 (12.1)	10 (17.2)
FVC (L)	2.5 ±0.4	2.4 ±0.3	2.6 ±0.4	2.5 ±0.4
FEV₁ (L)	2.2 ±0.4	2.1 ±0.3	2.2 ±0.4	2.2 ±0.4
PEF (L/s)	4.7 ±0.8	4.8 ±0.8	4.9 ±0.9	4.8 ±0.9
FEF₂₅₋₇₅ (L/s)	2.6 ±0.7	2.5 ±0.5	2.6 ±0.8	2.5 ±0.6
PEF-Mini-Wright (L/min)	17.7 ±17.8	15.6 ±12.3	15.7 ±13.8	16.5 ±15.5
Students with any symptom during the study period [n (%)]	29 (78.4)	40 (66.7)	27 (84.4)	45 (79.0)
Students with at least 1 d absence during the study period [n (%)]	18 (48.7)	31 (51.7)	12 (37.5)	22 (38.6)

Note: Data are presented as mean ± SD or n (%), unless otherwise stated.

*aThis definition of high- and low-concentration areas was based on previous years and used as a basis for the sampling procedure.

*bWeekly averages from daily peak expiratory flow values (measured with the personal Mini-Wright peak flow meter) were used.

*At least one symptom during the study period.

Table 2. Weekly air pollution and temperature levels by city.

Environmental indicator	Athens Low (n = 37)	Athens High (n = 60)	Thessaloniki Low (n = 33)	Thessaloniki High (n = 57)
O₃ personal measurements (μg/m³)	8.2 ±6.7	10.8 ±7.8	4.7 ±4.8	5.9 ±6.6
O₃ outdoor at schools (μg/m³)	45.9 ±14.7	64.3 ±20.1	35.2 ±20.7	45.6 ±19.4
O₃ at fixed sites (μg/m³)	24.6 ±13.8	63.8 ±16.4	36.3 ±16.7	41.3 ±18.5
PM₁₀ at fixed sites (μg/m³)	28.9 ±7.4	23.1 ±7.1	18.9 ±3.8	21.0 ±9.3
Temperature (°C)	17.6 ±2.5	17.6 ±2.5	14.6 ±3.9	13.7 ±3.8

Note: Data are presented as mean ± SD. The high- or low-O₃ concentration areas were used for the sampling scheme.

*aAverage of 24-h values.
with PEF were observed, with the largest study (at Pine Springs Ranch, east of Los Angeles) reporting a positive and statistically significant association (Kinney et al. 1996). In a Brazilian study, Castro et al. (2009) observed a protective effect of O₃ to school children’s PEF. Recently, Alzug et al. (2014) showed that PEF levels were negatively associated with weekly average O₃ levels only in children without upper respiratory tract complaints.

Two panel studies examined the effect of O₃ exposure on FEV₁ in asthmatic children and found no effect (Dales et al. 2009; Delfino et al. 2004). Both of them relied on self-measured FEV₁ by handheld electronic devices. More consistent findings have been observed in the few studies using spirometry performed by trained personnel. In a reanalysis of six summer camp studies, a consistent decrease in FEV₁ has been found associated with increased ambient exposure to O₃ (Kinney et al. 1996). In the Mexican study (Barraza-Villarreal et al. 2008), using fixed site outdoor measurements, the investigators report negative associations with FVC and FEV₁, although none reached the nominal level of significance. In a study in Taiwan (Chang et al. 2012), based also on fixed site measurements for the assessment of O₃ exposure, a significant negative association was observed with FVC and a nonsignificant negative association with FEV₁. The decrements, we observed mainly in FVC and also in FEV₁, are also consistent with previous experimental studies in young adults. The main reason for this O₃-induced decrease is believed to be impaired inspiration as a result of stimulation of airway receptors causing a reduction in the level of inflation achieved at full inspiration (Blomberg et al. 1999; Hazucha et al. 1989; Kjerpaaard et al. 2004). Based on all the above, our results support that ambient O₃ exposure affects inspiratory capacity and is related to airway inflammation.

In the present study, we also found a significant increase in respiratory symptoms after increased exposure to O₃. This is a consistent finding among studies that investigate O₃ effects at different time scales, mostly in asthmatic children. Thus, Declerq and Macquet (2000), Delfino et al. (2002), Escamilla-Nuñez et al. (2008), Just et al. (2002), Mortimer et al. (2002), and Schlink et al. (2002) found an association of O₃ exposure and increase in respiratory symptoms, but few others found no effect (Jalaludin et al. 2004; Ostro et al. 2001). In our study asthmatic children were not found to be more susceptible than nonasthmatic children and this has been reported by other studies as well (Ward et al. 2002).

Our study has certain limitations. Our sample included children who agreed to participate from randomly selected schools; however, they did not form a random sample from the students of their class. This may have introduced some selection bias because children from more educated families or families more sensitive to environmental problems may have been preferentially included. However, we think that this did not bias our results away from the null given that the students attending a specific school are socioeconomically comparable (they live in the neighborhood) and the percentage of asthmatic children in our sample is comparable to that reported for the population (Papadopoulos et al. 2004; Del Cid et al. 2004; Ostro et al. 2001). Based on all the above, our results support that ambient O₃ exposure affects inspiratory capacity and is related to airway inflammation.

Table 3. Mean change in lung function indices associated with weekly increase of 10 μg/m³ in O₃ exposure measured by personal monitors in 178 school children.

Health outcome	Models	O₃ effect per 10 μg/m³	All study periods	Spring–early summer period	
		β-coefficient (95% CI)	Wald statistic	β-coefficient (95% CI)	Wald statistic
Spirometry indices					
FVC (L)	Ozone only	−0.03 (−0.05, −0.01)	7.25*	−0.02 (−0.04, 0.003)	2.95
	Ozone + PM₁₀_a	−0.03 (−0.05, −0.004)	5.55*	−0.02 (−0.04, 0.01)	2.43
FEV₁ (L)	Ozone only	−0.01 (−0.03, 0.003)	2.65	−0.02 (−0.04, 0.01)	1.70
	Ozone + PM₁₀_a	−0.01 (−0.03, 0.01)	0.70	−0.01 (−0.04, 0.01)	1.26
PEF (L/s)	Ozone only	0.004 (−0.07, 0.08)	0.01	−0.05 (−0.14, 0.04)	0.71
	Ozone + PM₁₀_a	0.02 (−0.06, 0.10)	0.23	−0.05 (−0.14, 0.04)	0.62
PEF₂₅₋₇₅% (L/s)	Ozone only	0.01 (−0.04, 0.05)	0.07	0.03 (−0.04, 0.09)	0.39
	Ozone + PM₁₀_a	0.02 (−0.02, 0.07)	1.05	0.03 (−0.04, 0.10)	0.41
Self measured peak expiratory flow (Mini-Wright)	Ozone only	4.80 (1.17, 8.43)^a	6.73*	3.45 (−1.14, 8.05)	2.17
	Ozone + PM₁₀_a	5.34 (1.62, 9.06)^a	8.08*	3.37 (−1.39, 8.13)	2.03
Exhaled nitric oxide fraction (FₑNO) log-transformed	Ozone only	11.10 (4.23, 18.43)^a	10.43*	11.79 (2.61, 21.80)^a	6.49*
	Ozone + PM₁₀_a	9.48 (2.46, 16.98)^a	7.17*	11.77 (2.54, 21.82)^a	6.41*

Note: Results of mixed models adjusting for sex, height, weight, exposure area (low/high), study area (Athens/Tessaloniki), years of father’s education, air temperature (7-d average), mean time spent outdoors daily, citrus fruits consumption (yes/no), and week ID.

^aWeekly averages from daily values (daily value is the average of three maximum values of morning, noon, and night measurements).

^bNumber of days within the week that any symptom occurred.

^cNumber of days with any respiratory symptom or absenteeism with weekly O₃ exposure measured with personal monitors in 178 school children.

Table 4. Association between the number of days with any respiratory symptom or absenteeism with weekly O₃ exposure measured with personal monitors in the panel of 178 school children.

Health outcome	Model	All study periods % change per 10 μg/m³ O₃ (95% CI)	Wald statistic
Number of days with any symptom^a	Ozone only	19.16 (−0.53, 42.75)	3.62
	Ozone + PM₁₀_b	20.94 (0.42, 45.66)^b	4.02*
Number of days of absenteeism^b	Ozone only	−28.95 (−55.25, 12.79)	2.10
	Ozone + PM₁₀_b	−31.32 (−56.88, 9.39)	2.50

Note: Results of Poisson models adjusting for sex, exposure area (low/high), study area (Athens/Tessaloniki), years of father’s education, air temperature (7-d average), mean time spent outdoors daily, citrus fruits consumption (yes/no), and week ID.

^aNumber of days within the week that any symptom occurred.

^bNumber of days with any respiratory symptom or absenteeism with weekly O₃ exposure measured with personal monitors in the panel of 178 school children.

^cNumber of days of absenteeism with weekly O₃ exposure measured with personal monitors in the panel of 178 school children.
et al. 2011). Another limitation of our project is the fact that assessment of exposure to pollutants other than O₃ was not based on personal measurements but was estimated using the nearest fixed site monitors. This might have led to residual confounding, especially taking into account exposure to PM. We believe that the probability of residual confounding is limited because the correlations of O₃ with PM₁₀ and NO₂ was not the same across the high- and low-O₃ areas and between the two cities. Furthermore, PM is more homogeneously distributed and penetrates indoors making the fixed site and personal measurements less different from those of O₃. Absenteeism might be a source of bias to the null for the estimated effects. During the field work, on each of the days our researchers visited the schools for spirometry, only a few children were absent from school (0–4 children each time, except during the last summer week in Thessaloniki when 17 children could not be found because specific schools had end-of-year activities), and it may be hypothesized that some of these children might have had a respiratory problem because the reason for the absence was not reported by the school. Another limitation of our study is the inability to study children during the hottest months of the year, July and August, because of school holidays. These months are also characterized by high-O₃ concentrations. We were not able to reach schoolchildren during the holidays, but it should be mentioned that most families in Greece take their holidays during this time and the population of children in the cities is greatly reduced.

An advantage of the present study is the use of personal O₃ monitoring. The higher contrast observed in outdoor school measurements compared with personal ones denotes the importance of relying on personal measurements when assessing O₃ exposure health effects on school children. Another advantage is the spirometry performed by physicians, which provides more accurate and valid results compared with self-monitoring. This may explain our findings associating ozone exposure with the weekly FVC and FEV₁, provided through spirometry, whereas an analysis of daily PEF measured by peak flow meters, handled by the same sample of students, did not provide significant results (Samoli et al. 2017).

Among the strengths of our study is the study design, as panel studies allow great flexibility in investigating multiple exposures and multiple outcomes; the location, as Greece is a warm, sunny country, with inhabitants exposed to high-O₃ concentrations; the large number of students and the relatively long period of follow-up; the limited number of participants lost to follow-up or with incomplete data; the personal O₃ monitoring; and the wealth of data collected over a variety of respiratory morbidity indices using standardized procedures. Moreover, our results were robust after controlling for particles and under several sensitivity/subgroup (e.g., after considering only the asthmatic schoolchildren) analyses.

Conclusion

The study provides evidence that airway inflammation and the frequency of respiratory symptoms increase while lung function decreases with increased O₃ exposure in school children generally representative of the population of children 10- to 11-y-old in two large Southern European cities, where high- ozone concentrations are observed. Schoolchildren should be considered at a moderate risk of suffering respiratory health adverse effects following short-term exposure to the current levels of ambient O₃, in line with what has been found in controlled human exposure studies at ambient concentrations. Focusing on asthmatic children may lead to an underestimation of the real burden of O₃ induced respiratory adverse events.

Acknowledgments

The work was confounded by the European Commission and the Greek government through the National Strategic Reference Framework 2007–2013 contract ref RESPOZE-children/2248.

References

Adams WC. 2006. Comparison of chamber 6.6-h exposure to 0.04–0.08 ppm ozone via square-wave and triangular profiles on pulmonary responses. Inhal Toxicol 18(2):127–136, PMID: 16383927, https://doi.org/10.1080/0895837050036107.

Altug H, Gaga EO, Dögeroğlu T, Brunekreef B, Hoek G, Doorn WV. 2014. Effects of ambient air pollution on respiratory tract complaints and airway inflammation in primary school children. Sci Total Environ 479:480–201–299, PMID: 24561926, https://doi.org/10.1016/j.scitotenv.2014.01.127.

Arcus-Arth A, Ablaisal RJ. 2007. Statistical distributions of daily breathing rates for narrow age groups of infants and children. Risk Anal 27(1):97–110, PMID: 17362403, https://doi.org/10.1111/j.1539-6924.2006.00862.x.

ATS/ERS (American Thoracic Society and the European Thoracic Society). 2005. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide. Am J Respir Crit Care Med 171(8):912–930, https://doi.org/10.1164/rccm.200406-1103ST.

Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramirez-Aguilar M, et al. 2008. Air pollution, airway inflammation, and lung function in a cohort study of Mexico City Schoolchildren. Environ Health Perspect 116(6):832–838, PMID: 18560490, https://doi.org/10.1289/ehp.10926.

Bateson TF, Schwartz J. 2008. Children’s response to air pollutants. J Toxicol Environ Health Part A 71(3):228–243, PMID: 18097945, https://doi.org/10.1080/15222530701598234.

Blomberg A, Mudway IS, Nordenhäll C, Hedenström H, Kelly FJ, Frew AJ, et al. 1999. Ozone-induced lung function decrements do not correlate with early airway inflammatory or antioxidant responses. Eur Respir J 13(6):1418–1428, PMID: 10445622.

Burnett R, Raizenne ME, Krewski D. 1999. Acute health effects of transported air pollution: a study of children attending a residential summer camp. Can J Statistics 18(4):367–373, https://doi.org/10.2307/2315843.

Castro HA, Cunha MF, Mendonca GA, Junger WL, Cunha-Cruz J, Leon AP. 2009. Effect of air pollution on lung function in schoolchildren in Rio de Janeiro, Brazil. Rev Saude Publica 43(1):26–34, PMID: 19195753.

Chang YK, Wu CC, Lee LT, Lin RS, Yu YH, Chen YC. 2012. The short-term effects of air pollution on adolescent lung function in Taiwan. Chemosphere 87(1):26–30, PMID: 22193834, https://doi.org/10.1016/j.chemosphere.2011.11.049.

Chen CH, Chan CC, Chen BY, Cheng TJ, Guo YL. 2015. Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environ Res 137:40–48, PMID: 25486554, https://doi.org/10.1016/j.envres.2014.11.021.

Dales R, Chen L, Frescura AM, Liu L, Villeneuve PJ. 2009. Acute effects of outdoor air pollution on forced expiratory volume in 1 s: a panel study of schoolchildren with asthma. Eur Respir J 34:316–323, PMID: 19257810, https://doi.org/10.1183/09031936.0013809.

Declercq C, Macquet V. 2000. Short-term effects of ozone on respiratory health of children in Armentières, North of France [in French]. Rev Epidemiol Sante Publique 48(suppl 2):2537–2543.

Dellino RJ, Quintana PJ, Floro J, Castanaga VM, Samini BS, Kleinman MT. 2004. Association of FEV₁ in asthmatic children with personal and microenvironmental exposure to airborne particulate matter. Environ Health Perspect 112(9):932–941, PMID: 15175185, https://doi.org/10.1289/ehp.6815.

Dellino RJ, Zeiger RS, Seltzer JM, Street DH, McLaren CE. 2002. Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medication use. Environ Health Perspect 119(10): A607–A617, PMID: 12361942, https://doi.org/10.1289/ehp.02110567.

Devin RB, McDonnell WF, Mann R, Becker S, House DE, Koren HS. 1991. Exposure of humans to ambient levels of ozone for 6.6 hours causes cellular and biochemical changes in the lung. Am J Respir Cell Mol Biol 1(1):72–81, PMID: 1846079, https://doi.org/10.1165/ajccmb.1.1.72.

Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JD, et al. 2011. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FNO) for clinical applications. Am J Respir Crit Care Med 184(5):602–615, PMID: 21805636, https://doi.org/10.1164/rccm.2011-3012ST.

Escamilla-Nuñez NMC, Barraza-Villarreal A, Hernandez-Cadena L, Moreno-Macias H, Ramirez-Aguilar M, Sienna-Monge JJ, et al. 2008. Traffic-related air pollution and respiratory symptoms among asthmatic children, resident in Mexico City: the EVA cohort study. Respir Res 9:74, PMID: 19014608, https://doi.org/10.1186/1465-9921-9-74.

Hazarika MJ, Bates DV, Bromberg PA. 1988. Mechanism of action of ozone on the human lung. J Appl Physiol 67(4):1535–1541, PMID: 2793755.
Higgins ITT, D’Arcy JB, Gibbons DJ, Avol EL, Gross KB. 1996. Effect of exposure to ambient ozone on ventilatory lung function in children. Am Rev Respir Dis 154(5 pt 1):1136–1146, PMID: 2539636, https://doi.org/10.1164/ajrccm/141.5Pt_1.1136.

Höppe P, Peters A, Rabe G, Prami G, Lindner J, Jakobi G, et al. 2003. Environmental ozone effects in different population subgroups. Int J Hyg Environ Health 206(5):505–516, PMID: 14626896, https://doi.org/10.1074/1438-4639-00250.

Horstman DH, Folinsbee LJ, Ives PJ, Abdul-Salaam S, McDonnell WF. 1990. Ozone concentration and pulmonary response relationships for 6.6-hour exposure with five hours of moderate exercise to 0.08, 0.10 and 0.12 ppm. Am Rev Respir Dis 142(5):1158–1163, PMID: 2240838, https://doi.org/10.1164/ajrccm/142.5.1158.

Jalaludin BB, O'Toole BI, Smith WT, Capon AG, Leeder SR. 2000. Acute effects of low levels of ambient ozone on peak expiratory flow rate in a cohort of Australian children. Int J Epidemiol 29:549–557, https://doi.org/10.1093/ije/29.3.549.

Jalaludin BB, O’Toole BI, Leeder SR. 2004. Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children. Environ Res 95(1):32–42, PMID: 15068928, https://doi.org/10.1016/S0010-4278(03)00038-0.

Just J, Segala C, Sahraoui F, Priol G, Grimfeld A, Neukirch F. 2002. Short-term health effects of particulate and photochemical air pollution in asthmatic children. Eur Respir J 2004(899–908), PMID: 12412581.

Kim CS, Alexis NE, Rappold AG, Kehrl H, Hazucha MJ, Lay JC, et al. 2011. Lung function and inflammatory response in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours. Am J Respir Crit Care Med 183(9):1215–1221, PMID: 21216881, https://doi.org/10.1164/rccm.201011–183DC.

Kinney PL, Thurston GD, Raizenne M. 1996. The effects of ambient ozone on lung function in children: a reanalysis of six summer camp studies. Environ Health Perspect 104(2):170–174, PMID: 8205854.

Kjaergaard SK, Pedersen DF, Miller MR, Rasmussen TR, Hansen JC, Mathlave L. 2004. Ozone exposure decreases the effect of a deep inhalation on forced expiratory flow in normal subjects. J Appl Physiol 96(5):1651–1657, PMID: 14688031, https://doi.org/10.1152/japplphysiol.00567.2003.

Li S, Williams G, Jalaludin B, Baker P. 2012. Panel studies of air pollution on children’s lung function and respiratory symptoms: a literature review. J Asthma 49(9):895–910, PMID: 23016510, https://doi.org/10.3109/02770903.2012.724129.

Loughhead MD, Leniere C, Ducharme FM, Licisai C, Dell SD, Rowe BH, et al. 2012. Canadian Thoracic Society 2012 guideline update: diagnosis and management of asthma in preschoolers, children and adults: executive summary. Can Respir J 19(6):e81–e88, https://doi.org/10.1155/2012/214129.

Lum S, Stocks J. 2010. Forced expiratory manoeuvres. In: Paediatric Lung Function. Frey U, Merkus PJFM, eds. Lausanne, Switzerland: European Respiratory Society. 46–65.

Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. 2005. Standardisation of spirometry. Eur Respir J 26(2):319–338, PMID: 16058582, https://doi.org/10.1183/09031936.05.00048503.

Mortimer KM, Neas LM, Dockery DW, Rodine S, Teger IB. 2002. The effect of air pollution on inner-city children with asthma. Eur Respir J 19(4):699–705, PMID: 1199900.

Mudway IS, Kelly FJ. 2000. Ozone and the lung: a sensitive issue. Mol Aspects Med 21:1–48, PMID: 10804262.

Ostro B, Lipsett M, Mann J, Braxton-Owens H, White M. 2001. Air pollution and exacerbation of asthma in African-American children in Los Angeles. Epidemiology 12(1):202–208, PMID: 11246581.

Papadopoulou A, Hatzizagorou E, Matziou VN, Grigoropoulos DB, Panagiotakos DB, Tsanakas JN, et al. 2011. Comparison in asthma and allergy prevalence in the two major cities in Greece: the ISAAC phase II survey. Allergol Immunopathol (Madrid) 39(6):347–355, PMID: 21342745, https://doi.org/10.1016/j.aller.2010.10.003.

Peacock JL, Symonds P, Jackson P, Bremmer SA, Scarlett JF, Strachan DP, et al. 2003. Acute effects of winter air pollution on respiratory function in schoolchildren in southern England. Occup Environ Med 60(2):82–89, PMID: 12554833.

Raizenne ME, Burnett RT, Stern B, Franklin CA, Spengler JD. 1989. Acute lung function responses to ambient acid aerosol exposures in children. Environ Health Perspect 79:179–185, PMID: 2701197.

Romeyer H, Hoek G, Brunekreef B. 2000. Pollution effects on asthmatic children in Europe, the PEACE study. Clin Exp Allergy 30(8):1067–1075, PMID: 10931113.

Romieu I, Meneses F, Ruiz S, Huerta JJ, Sienna JJ, White M, et al. 1997. Effects of intermittent ozone exposure on peak expiratory flow and respiratory symptoms among asthmatic children in Mexico City. Arch Environ Health 52(5):368–376, PMID: 9546760, https://doi.org/10.1097/0003989970962213.

Samoli E, Dimakopoulou K, Evangelopoulos D, Rodopoulos S, Karakatsani A, Veneti L, et al. 2017. Is daily exposure to ozone associated with respiratory morbidity and lung function in a representative sample of schoolchildren? Results from a panel study in Greece. J Expo Sci Environ Epidemiol 27(3):346–351.

Sarnat SE, Raysoni AJ, UI WW, Holguin F, Johnson BA, Flores Luevano S, et al. 2012. Air pollution and acute respiratory response in a panel of asthmatic children along the U.S.-Mexico border. Environ Health Perspect 120(3):437–444, PMID: 21896396, https://doi.org/10.1289/ehp.1003169.

Scarlett JF, Abbott JK, Peacock JL, Strachan DP, Anderson HR. 1996. Acute effects of summer air pollution on respiratory function in primary school children in southern England. Thorax 51(1):1109–1114, PMID: 8858994.

Schegel ES, Adams WC, Walty WF, Marion MS. 2012. Modelling of individual subject ozone exposure response kinetics. Inhal Toxicol 24(7):401–415, PMID: 22942286, https://doi.org/10.3109/08958387.2012.683891.

Schlink U, Fritz GJ, Herbarth O, Richter M. 2002. Longitudinal modelling of respiratory symptoms in children. Int J Biometeorol 47(1):35–48, https://doi.org/10.1007/s00480-002-0142-2.

Spektor DM, Lippmann M, Liow PJ, Thurston GD, Citak K, James DJ, et al. 1988. Effects of ambient ozone on respiratory function in active, normal children. Am Rev Respir Dis 137(2):312–320, PMID: 3341625, https://doi.org/10.1164/ajrccm.137.2.313.

Spektor DM, Thurston GD, Mao J, He D, Hayes C, Lippman M. 1991. Effects of single- and multiday ozone exposures on respiratory function in active normal children. Environ Res 55(2):107–122, https://doi.org/10.1016/0013-9313(91)80167-7.

Ward DJ, Roberts KT, Jones N, Harrison RM, Ayres JG, Hussain S, et al. 2002. Effects of daily variation in outdoor particulates and ambient acid species in normal and asthmatic children. Thorax 57(4):402–408, PMID: 12337223.

Warren DW, Hairfield WM, Dalston ET. 1990. Effect of age on nasal cross-sectional area and respiratory mode in children. Laryngoscope 100(1):89–93, PMID: 2293706, https://doi.org/10.1289/ehp.0005537-19900100-000108.

WHO (World Health Organization). 2013. Review of Evidence on Health Aspects of Air Pollution – REVIAHP Project: Final Technical Report. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-reviahp-project-final-technical-report [accessed 22 May 2016].