A Survey on Safety-Critical Scenario Generation for Autonomous Driving – A Methodological Perspective

Wenhao Ding, Chejian Xu, Haohong Lin, Bo Li, Ding Zhao

Abstract—Autonomous driving systems have witnessed a great development during the past years thanks to the advance in sensing and decision-making. One critical obstacle for their massive deployment in the real world is the evaluation of safety. Most existing driving systems are still trained and evaluated on naturalistic scenarios that account for the vast majority of daily life or heuristically-generated adversarial ones. However, the large population of cars requires an extremely low collision rate, indicating safety-critical scenarios collected in the real world would be rare. Thus, methods to artificially generate artificial scenarios becomes critical to manage the risk and reduce the cost. In this survey, we focus on the algorithms of safety-critical scenario generation. We first provide a comprehensive taxonomy of existing algorithms by dividing them into three categories: data-driven generation, adversarial generation, and knowledge-based generation. Then, we discuss useful tools for scenario generation, including simulation platforms and packages. Finally, we extend our discussion to five main challenges of current works – fidelity, efficiency, diversity, transferability, controllability – and the research opportunities lighted up by these challenges.

Index Terms—Autonomous Vehicle, Safety and Robustness, Deep Generative Models

1 INTRODUCTION

Artificial Intelligence (AI) has been widely used in software products such as facial recognition [1] and voice-print verification [2]. But as AI continues to grow and research has expanded to physical products like autonomous vehicles (AVs), the question of safety is now at the forefront of this cutting-edge field. The reason why intelligent physical systems are much harder to be deployed is that our world is complicated and long-tailed, causing too much uncertainty to the intelligent agents. The driving skills would take several months to learn even for us humans due to the complex traffic scenarios. Therefore, the AVs should be trained and evaluated on lots of different scenarios to demonstrate their safety and capability of dealing with diverse situations [3], [4].

According to the 2020 disengagement report from the California Department of Motor Vehicle [5], there were at least five companies (Waymo, Cruise, AutoX, Pony.AI, Argo.AI) that made their autonomous vehicles drive more than 10,000 miles without disengagement. These results are usually recorded in normal driving scenarios without risky situations. It is a great achievement that current AVs are successful in normal cases trained by hundreds of millions of miles training. However, we are still not sure whether AVs have enough safety and robustness in distinct scenarios. For example, when one AV driving on the road, a kid suddenly runs into the drive lane chasing a ball. This emergency case leaves the AV a very short time to react and even a subtle misbehave could cause vital damages. This kind of situation is named safety-critical scenarios and is usually extremely rare in the normal driving case, as shown in Figure 1.

To efficiently evaluate the safety of AVs, more and more people from government, industry, and academia, start to focus on the generation of safety-critical scenarios. National Highway Traffic Safety Administration (NHTSA), a government agency of the United States Department of Transportation, summarized driving system testable cases [6] and pre-crash scenarios [7] as well as published a review of simulation frameworks and standards related to driving scenarios [8]. Waymo, one of the leading companies in autonomous driving, released a safety report to illustrate how they reconstruct fatal crashes in simulations from collected data [9]. Meanwhile, academic research aiming to generate safety-critical scenarios [10], [11] surges by developing methods in deep generative models (DGMs) [12] and adversarial attack techniques [13]. With the upcoming massive deployment of self-driving cars, an overview that systematically summarizes existing works in safety-critical scenario generation is urgently demanded.

The objective of this survey is to thoroughly review the literature on safety-critical scenario generation from a methodological perspective and provide a panorama of the approaches developed so far. The key contributions are as follows:

- We built a taxonomy to categorize existing algorithms of safety-critical scenarios generation according to the information and general framework they leverage.
We summarized the tools used for scenario generation, including autonomous driving simulators and open-sourced packages for scenario design, as well as commonly used scenario datasets.

We identify five challenges of safety-critical scenario generation and proposed corresponding future directions to enhance current methods.

Organization of this survey. Section 2 briefly discusses the relationship between this work and previous survey papers. Section 3 gives an overview of safety-critical scenarios, including the definition, representation, and metrics used for selecting the scenarios. Then, we divide the generation methods into three types: Data-driven Generation (Section 4) purely samples collect dataset and uses density estimation models for generation; Adversarial Generation (Section 5) considers the ego vehicle during the generation and builds an adversarial learning framework. Knowledge-based Generation (Section 6) either uses pre-defined rules by experts or integrates external knowledge during the generation. We also summarize the traffic simulators, datasets, and open-sourced packages that can accelerate the development of driving scenarios in Section 7. In Section 8, we list five challenges of safety-critical scenario generation and discuss the potential research directions lighted up by these challenges. Section 9 closes this survey with general conclusions and lessons learned from the current stage.

2 RELATED WORKS

There are already existing surveys that summarize the scenario-based method for autonomous vehicle evaluation in a systematical way [3], [4]. These works provide a comprehensive introduction to the entire framework of evaluating autonomous driving systems, and they also mention the generation methods of driving scenarios. We want to emphasize that our work differs from them in that we particularly focus on the algorithms of safety-critical scenario generation, which is believed to be the core of evaluating safety and robustness. More importantly, we identify five challenges that limit the current generation method, which could inspire future directions.

Among these previous works, [4] give a clear and inspiring definition and categorization of traffic scenarios. Their framework divide the scenario generation problem into two processes: (1) scenario collection, where the scenarios either come from expert abstract knowledge or real-world collected dataset; (2) scenario selection, where the scenario is selected by sampling or feedback optimization. As end-to-end machine learning methods are emerging, especially adversarial generation methods, this categorization fails to cover lots of new algorithms.

A recent survey [3] about scenario-based testing algorithms for autonomous driving systems divides a scenario into five layers (Road level, Traffic infrastructure, Manipulation of previous two layers, object, environment) and discusses the parameters searching in each layer separately. In [14], the authors propose another perspective by categorizing traffic scenarios into three layers: functional, logical, concrete. This is a hierarchical structure since the abstracting level decreases from left to right and the number of scenarios increases at the same time. Both of these categorizations are reasonable and contribute to different perspectives of scenario-based testing. In this survey, our taxonomy is built according to the information the generation algorithms leverage. We focus more on how these generation methods deal with the structure of traffic participants in a scenario and how the autonomous vehicle interacts with surrounding objects. We hope this summary could benefit the development of new algorithms to tackle the safety-critical scenarios.

3 OVERVIEW OF SAFETY-CRITICAL SCENARIOS

3.1 Definitions

There exist many definitions of scenarios with slightly different components. In this survey, we define a scenario with the static and dynamic contents in it, and also consider the behavior of dynamic objects. Formally, we have the following definition:

Definition 3.1 (Driving Scenario).

The driving scenario is defined by a combination of three sets $x \in X = \{S, D, B\}$. S represents the static environment including road shape, traffic sign, and other static objects. D represents the initial condition and properties of dynamic objects. B represents the sequential behaviors of dynamic objects.

Separating the static and dynamic contents benefits the representation and generation of scenarios and has shown
We have multiple choices to represent the scenario and with these two problems in the next two parts, respectively. This optimization problem is not easy to solve mainly because of two aspects. The first one is the representation of high-dimensional sensing data, such as image and LiDAR point cloud. Directly generating high-fidelity sensing data is quite difficult and there are an increasing number of works focused on this area [38]. An alternating method is leveraging density estimation to generate high-dimensional data with ray casting algorithms. If we want to evaluate a motion planning or control system, we can turn to lower dimensions. We can use either trajectories or policy models of dynamic objects.

Representation of Scenario

We have multiple choices to represent the scenario and generally, the selection depends on the system to be evaluated. If the target system is a perception module, we use high-dimensional sensing data, such as image and LiDAR point cloud. Directly generating high-fidelity sensing data is quite difficult and there are an increasing number of works focused on this area [38]. An alternating method is leveraging density estimation to generate high-dimensional data with ray casting algorithms. If we want to evaluate a motion planning or control system, we can turn to lower dimensions. We can use either trajectories or policy models of dynamic objects. Using a trajectory is less flexible than using a policy model, but the scenarios with trajectory representation are more controllable.

3.3 Metrics for Generation

To generate safety-critical scenarios, the most important factor is the risk of the scenario. The level of risk is mainly reflected by the interaction between the autonomous vehicle and objects in the scenario, which can be naturally described by the distance – a small distance means the risk of collision is high. This intuition can also be converted to other metrics such as Time-to-Collision (TTC) [88]:

\[
TTC_F(t) = \frac{X_L(t) - X_F(t) - l_L}{X_F(t) - \dot{X}_L(t)}, \forall \dot{X}_F(t) > \dot{X}_L(t),
\]

where \(X\) denotes the position, \(\dot{X}\) denotes the derivative of \(X\) with respect to time or the speed, and \(l_L\) denotes the leading vehicle’s length; \(L\) and \(F\) as subscripts refer to leading and following vehicles in a car-following process. To measure the risk from a probabilistic perspective, there are also other metrics, for example, Value at Risk (VaR) [89] and Conditional Value at Risk (CVaR) [90], which are widely used in the economy. Intuitively, VaR gives an answer to the question What value of a given portfolio is at risk? and CVaR answers If things go bad, what could the expected loss be?.

However, only measuring the risk is not enough for safety-critical scenario generation. We need to ensure that the scenarios are realistic and able to happen in the physical world. We also want to discover as many as possible scenarios rather than a single one. In fact, these kinds of constraints make the generation of scenarios a much harder task. We will discuss this topic more in Section 8.

4 Data-driven Generation

In this section, we consider the algorithms that only leverage information from the collected datasets to generate scenarios. These methods are mainly divided into two parts. The first part directly samples from the dataset \(x \sim \mathcal{D}\) to reproduce the real-world log, which usually suffers from the problem of rareness. The second part is using density estimation models (e.g. deep generative models) \(p_\theta(x)\) parameterized by \(\theta\) to learn the distribution of scenarios, which enables...
the generation of unseen scenarios. Usually, the learning objective of these models is maximizing the log-likelihood

$$\hat{\theta} = \arg \max_x \sum \log p_\theta(x),$$

and the sampling process is conducted by $$x \sim p_\theta(x)$$ from random noises.

4.1 Direct Sampling

An intuitive way of generation is directly sampling from a collected dataset which reproduces the scenario from the road test log. According to different technics used before and during the sampling, we summarize the following three groups.

4.1.1 Data Replay

Most autonomous driving companies maintain scenario bases to store the scenarios they recognized as important [91]. During this process, one crucial step is the tools that can automatically convert the scenario from log to virtual simulations [17]. In addition, efficiently selecting the critical scenario from a huge number of scenarios is another problem. [16] extracts useful scenarios according to the cooperative actions for cooperative maneuver planning evaluation. In [15], the authors developed a method to select testing ground to accelerate the performance estimation of AVs’ performance on public streets, where the main contribution is describing the risk intensities of the traffic system in an area of interest with Non-Homogeneous Poisson Process model [92].

4.1.2 Clustering

To better categorize the collected scenario, [20] and [21] propose to use unsupervised clustering methods to put similar scenarios into groups, which helps improve the efficiency of testing AVs on a specific type of scenario. However, clustering the entire scenario might be inefficient and inaccurate since the scenarios are usually complex and composed of finite building blocks. The concept of Traffic Primitive is proposed in [22] to represent those blocks. They use HDP-HMM [93], a non-parametric Bayesian learning method, to unsupervised extract primitives from scenarios to better cluster similar scenarios.

4.1.3 Random Perturbation

The main obstacle of direct conversion is that the diversity of scenarios is limited. Therefore, recent works from some leading companies start to use random perturbation to augment the number of scenarios. Baidu creates a physical-based LiDAR model [18] to transfer a dense point cloud to match the line-style output of the LiDAR sensor. By randomly placing the Computer-aided design (CAD) model of vehicles and pedestrians, their algorithms can generate a huge number of scenarios. Similarly, Uber builds a more precise LiDAR model [19] using neural network (NN) techniques to mimic the reflection details of the real-world sensors. Besides the high-dimensional representation, Waymo tries to reconstruct more fatal crashes from collected data by randomly perturbing important parameters [9].

4.2 Density Estimation Methods

Consider the driving scenarios following a distribution, then we can use collected data to learn a density model to approximate this distribution. We divide this type of algorithm into three categories according to the density model they use.

4.2.1 Bayesian Networks

Bayesian Networks is a probabilistic graphical model that uses nodes to represent objects and edges to represent the relation between nodes. This structured model can naturally describe the objects in the scenario. [30] uses a Dynamic Bayesian Network to model the complex traffic scenarios and [31] uses factor graphs to model driving behaviors between multiple vehicles. In [32], Importance Sampling (IS) is used to sample driving scenarios represented by Bayesian Networks. In [33], the authors try to find as many risky scenarios as possible and cluster them. They first uniformly sample from the clusters and then use IS to sample the specific scenarios represented by factor graphs. Besides using DBN and factor graphs to model the structures of traffic participants, Gaussian Process is a powerful non-parametric method to model the distribution of sequential scenarios [26]. Following this direction, [27] combines Gaussian Process (GP) and Dirichlet Process (DP) to build a DP-GP model with an infinite number of clusters to discover traffic primitives, which can be combined to create new scenarios. [38] generates point cloud sequential datasets via minimizing the gap between real-world LiDAR and simulation data. Similarly,
Meta-sim \cite{39} and Meta-Sim2 \cite{40} try to minimize the sim-to-real gap to reconstruct traffic scenarios for automatic labeling. Their main contribution is that they use a scene graph to represent the scenario, which is a hierarchical structure that makes the generation more efficient. In \cite{41}, the scene graph is also used to generate image scenarios.

4.2.2 Deep Learning Models

Deep learning (DL) models are also introduced into the generation in \cite{28} and \cite{29}. \cite{28} inputs the current state of the AV and a high-definition map to a Long Short Term Memory (LSTM) \cite{44} module to sequentially generate the trajectory of surrounding vehicles and pedestrians. They train their model with normal traffic data since their target is to generate naturalistic scenarios. \cite{29} proposes a quite complex system to generate scenarios in a simulator, which uses Convolution Neural Network (CNN) \cite{95} as a selector to generate agents surrounding the AV. In \cite{96}, both Gated Recurrent Unit and CNN are used to learn the behaviors of multi-agents from real-world data. This TrafficSim method can generate realistic multi-agent traffic scenarios.

4.2.3 Deep Generative Models

Recently, Deep Generative Models (DGMs) show great successes in generating image and voice data. There are five types of modern generative models: Generative Adversarial Nets (GAN) \cite{97}, Variational Auto-encoder \cite{98}, Autoregressive Models \cite{99, 100}, Flow-based model \cite{101, 102}, Diffusion model \cite{103, 104}. The readers can find more details about deep generative models in this survey \cite{12}.

With the power of VAE, \cite{23} learns a latent space of the covariance matrix, \cite{25} learns a latent space of the observation, \cite{26} learns a latent space of the object. Since we consider the influence of AV, \cite{27} divides the generation process into two steps: (1) Learn the latent space \(\theta(x) \) to represent the scene, \(Q(x, \pi) \) is a quantitative function to indicate the performance of the policy \(\pi \) taken by the AV. We notice that the adversarial generation will mainly focus on a specific small set of scenarios, therefore it would be good to consider the diversity by adding constraint or entropy of the distribution \(s(x) \). Since we consider the influence of AV, this type is also named Vehicle-in-the-loop (VIL) testing in previous work \cite{105}. Since the autonomous driving system consists of multiple modules, we divide these methods according to the type of victim models. When the model is used for single frame inputs, e.g., object detection and segmentation, we only need to generate static scenarios. When the victim model requires a sequential testing case, we generate dynamic scenarios which contain the motion of all objects.

5.1 Static Scenarios Generation

Under the adversarial framework, directly generating high-dimensional data could be challenging. Thus most methods generate the poses of objects then use render to get the final output. \cite{42} learns the poses of vehicles and uses a differentiable render to get the first-point-view images to attack object detection algorithms. \cite{46} and \cite{47} extend the original Domain Randomization methods \cite{106} to the adversarial generation. \cite{46} proposes Structured Domain Randomization, which uses a BN to actively generate the poses of vehicles. \cite{47} proposes Adversarial Domain Randomization, which targets the scenario of parking lots.

All of the above methods focus on image generation, but some works generate point cloud scenarios. \cite{43} puts an adversarial object on the top of a vehicle and optimizes the shape of the object to make the vehicle disappear in LiDAR detection algorithms. Similarly, \cite{44} shares the same idea but uses both the LiDAR and image information. After the optimization of the shape of the object, \cite{45} use 3D print to build the object in the real world. The experiment shows that the object on the road is indeed ignored by the detection algorithms. In addition to using renders, \cite{48} tries to directly add new points to the existing point cloud to attack segmentation algorithms.

5.2 Dynamic Scenario Generation

When the target is to evaluate planning and control modules, the scenarios are required to be dynamic and sequential. For these kinds of algorithms, we further divide current works into two types according to the flexibility of the scenario.

5.2.1 Initial Condition

The first type is controlling the initial conditions of the scenario (e.g., initial velocity and spawn position) or providing the entire trajectory at the beginning. The advantage is the low dimension of search space and the little computational resource required. In \cite{41} and \cite{49}, the authors generate the initial poses of a cyclist to attack the AV. \cite{49} approximates the parameters with a Gaussian distribution, which limits the model, i.e., the AV. Then the targeted generation process can be formulated as

\[
\hat{\theta} = \arg \min \mathbb{E}_{p(x)} [Q(x, \pi)]
\]

where \(Q(\cdot, \pi) \) is a quantitative function to indicate the performance of the policy \(\pi \) taken by the AV. We notice that the adversarial generation will mainly focus on a specific small set of scenarios, therefore it would be good to consider the diversity by adding constraint or entropy of the distribution \(s(x) \). Since we consider the influence of AV, this type is also named Vehicle-in-the-loop (VIL) testing in previous work \cite{105}. Since the autonomous driving system consists of multiple modules, we divide these methods according to the type of victim models. When the model is used for single frame inputs, e.g., object detection and segmentation, we only need to generate static scenarios. When the victim model requires a sequential testing case, we generate dynamic scenarios which contain the motion of all objects.
the diversity of generated scenario. As a remedy, [49] use normalizing flow models to learn a multi-modal distribution. It also uses the distribution of real-world data as a constraint to improve fidelity. Parallel work [51] generates a set of possible driving paths and identifies all the possible safe driving trajectories that can be taken starting at different times. Similarly, [59] directly optimize existing trajectories to perturb the driving paths of surrounding vehicles. They use Bayesian Optimization [107] for the optimization and the scenario is represented with point cloud. Besides controlling the dynamic objects, some works also focus on searching the weather parameters (e.g., sun and rain) to create different scenarios. [50] searches the type of weather using REINFORCE [108] algorithm. [52] uses Generative Adversarial Imitation Learning (GAIL) [109] to generate parameters of weather and uses cross-entropy method for efficient scenario searching.

5.2.2 Adversarial Policy

The second type is using a policy model to sequentially control the dynamic objects, where the behaviors of objects are influenced by the AV. This type is usually formulated as a Reinforcement Learning (RL) problem [110], where the AV belongs to the environment and the generator is the agent we can control. Intuitively, we have much more flexibility under this setting, but the complexity also increases. Since the AV and objects in scenarios interact step-wise, this problem can be formulated in an RL framework and there are lots of works using RL methods. [66] and [67] use DQN to generate discrete adversarial traffic scenarios. [58] uses A2C [111] to control one surrounding vehicle in the car following scenarios. [55] uses DDPG [112] to generate adversarial policy to control surrounding agents to generate lane changes scenarios. [56] uses Multi-agent DDPG [113] to control 2 surrounding vehicles (which are called Non-player Characters) to attack the ego vehicle. This method also sets auxiliary goals for NPCs to avoid generating unrealistic scenarios. [60] proposes CriSGen that uses constraint-based optimization and [57] uses BO. In [53], [54], a certifiable evaluation method is proposed to search the parameters in car-following scenarios. They propose an important sampling method to increase learning efficiency.

Finally, there is a series of works named Adaptive Stress Testing (AST) that explores different ways to generate stress testing scenarios. [64] uses Monte Carlo tree search (MCTS) to search action of testing scenario, but this method does not target autonomous driving systems. [62] generates a scenario controlling a pedestrian to cross the road. [63] improves the last paper by using LSTM to generate initial conditions and actions in each step. Instead of defining heuristic reward functions, [64] leverage the Go-Explore framework to find failure cases. [65] extends previous works to high-fidelity simulation and changes the learning algorithm to PPO [114].

6 Knowledge-based Generation

In Section 4 and Section 5, we discussed methods that purely use data or interact with the AV to generate scenarios. However, we know that scenarios are constructed in the physical world, therefore, need to satisfy traffic rules and physical laws. The samples in the density we estimate or the adversarial examples we generate could easily violate these constraints. In addition, the domain knowledge we have also improved the efficiency of the generation. Therefore, in this section, we consider methods that incorporate external domain knowledge into the generation process. We will firstly explore rule-based methods that artificially design the structure and parameters of scenarios. Then, we turn to the learning-based methods that use explicit knowledge to guide the generation. Assume we can obtain certain domain knowledge K from experts, then we can augment the learning with

$$\hat{\theta} = \arg\max_x E_{x \sim p_{\theta}(x|K)} [f(x)]$$

where the scenarios are sampled from a conditional distribution $p_{\theta}(x|K)$. In addition, we can also use K as constraints to manipulate existing scenarios:

$$\hat{x} = \arg\max_x f(x) \quad s.t. \ K(x) > 0$$

6.1 Pre-defined Rules

Driving scenarios are very common in daily life, thus we humans can easily design scenarios with pre-defined rules and specific conditions to trigger events. [68] uses prior knowledge to design random risk scenarios with equations. The authors also conduct interventional experiments by training RL agents on different scenarios to get comparable results. [14] focuses on functional scenarios logical scenarios, which can be represented by natural language from human experts. [74] views ontologies as knowledge-based systems in the field of AV, and proposes a generation of traffic scenes in natural language as a basis for scenario creation.

There are also a large number of works that build the entire platform with pre-defined scenarios implemented. We categorize them under the knowledge-based generation method and will also discuss more details about these platforms in Section 7. A 2D platform named SMARTS is developed in [72] containing multiple diverse behavior models using both rule-based and learning-based models. [73] proposes MetaDrive, a 3D simulator that supports different road shapes defined by users or directly imported from existing real-world datasets (e.g. Argoverse [115]). SUMMIT is specifically designed for generating massive mixed traffic with an autopilot algorithm. To explore the causality between vehicles in the scenario, CausalCity [69] is developed for evaluating causal discovery algorithms. It builds an agency mechanism to define high-level behaviors.

6.2 Knowledge-guided Learning

6.2.1 Knowledge as Condition

Combining learning methods and domain knowledge is a popular trend in the machine learning area. One of the biggest obstacles is how to define the representation space of knowledge. This representation should be easily integrated into NN and still has interpretability. In [75], the authors assume that diversity and high-skill are important
for scenarios. They use RL methods to generate diverse scenarios and show improvement of the AV trained in their scenarios. [76] represent the explicit knowledge (e.g., the vehicles should not have overlap, the orientation of vehicles should follow the direction of the lane) as first-order-logic [119], which can be embedded into a tree structure. Then they search in the latent space of a VAE model and apply the knowledge to the tree encoder to constraint the searching process. They evaluate their scenarios on point cloud segmentation methods and show that their scenario can cause failure to some models that are not robust. In [77], the authors explore the fundamental reason of the safety-critical scenario, which can be represented by causality. This work assumes there is a causal graph that can represent the relationships between objects in a scenario. Then, they propose an autoregressive generative model that can use this graph to increase the efficiency of the generation.

6.2.2 Constraint Optimization
Another way of using explicit knowledge is resorting to the constraint optimization framework. We know that safety-critical scenarios are extremely rare in the real world and the random augmentation could be inefficient to generate safety-critical scenarios. One of the heuristic metrics of risk is the drivable area for the autonomous vehicle. [79] and [80] minimize the drivable area by controlling the surrounding vehicles with an evolutionary method and constrained optimization methods, respectively. To explore more different kinds of scenarios, [81] generate the motion of other traffic participants with a backtracking search. To make the scenarios diverse, [82] build a pipeline that introduces the road topology from OpenStreetMap [120]. Using the safety-critical scenarios from [82], [83] designs a comprehensive open-source toolbox to train and evaluate RL motion planners for autonomous vehicles with customized configuration from users. To obtain a robust trajectory prediction model, [78] generate adversarial trajectory by perturbing existing trajectory with feasible constraints.

7 Tools for Scenario Generation
In this section, we introduce the tools that are useful for safety-critical scenario generation. We firstly discuss the scenario datasets, then turn to the traffic simulators. Finally, we review existing platforms that support the function of scenario generation.

7.1 Scenario Dataset
For modern machine learning methods, datasets are crucial and necessary. Specifically, for the scenario generation task, there are also many published datasets by companies and academic organizations. In Table 7.1 we summarize and compare available scenario datasets in various aspects that we are especially interested in.

7.1.1 Fidelity
In Table 7.1 we include datasets that are either collected from onboard sensors on public roads or synthetic virtual worlds simulated by traffic simulators. Collecting real-world data is very time-consuming, which requires humans to operate vehicles or drones to record data in the real world in a variety of environments. However, these data are more representative of real-world data distribution. Models developed with these realistic data can be directly applied to the real world. Synthetic datasets, on the other hand, are simple to collect. But they heavily rely on the authenticity of traffic simulators, which usually fail to accurately imitate and render real-world data.

7.1.2 Collect View
In addition to different levels of reality, we also present datasets with different views. For example, HighD, InD, and RounD datasets collect data in bird’s-eye view (BEV), which is recorded from drone cameras. KITTI and Argoverse datasets collect data in first-person view (FPV), which is captured by cameras in front of a car. The BEV data happens in a fixed region, therefore is more useful to analyze the behavior of objects in a fixed background. In contrast, FPV data is more suitable to train AV algorithms that take egocentric information.

7.1.3 Data Format
For each dataset, we examine whether it has the following data types: RGB image, stereo image, LiDAR data, and trajectory. All datasets included in the table have RGB images since RGB image is a common data type in traffic scenarios. These images are usually collected by a camera mounted on a vehicle or a drone, and they can be utilized for a variety of computer vision tasks such as object detection and image segmentation. The stereo image is captured by stereo cameras and LiDAR data is collected by LiDAR sensors. Both stereo image and LiDAR provide 3D information that is especially useful in 3D tasks such as 3D object detection. The trajectory data is either recorded by sensors such as GPS or converted from object detection results. This type of data is frequently used in trajectory prediction tasks for planning and control purposes.

7.1.4 Annotation Type
The availability of various types of annotations is crucial to each dataset, as it determines which tasks the dataset may be used for. We explore three forms of data annotations in Table 7.1: 3D object annotations, 2D object annotations, and lane annotations. 3D annotations can be divided into two categories: 3D bounding box annotations and 3D point cloud annotations. A 3D bounding box annotation describes a cube that exactly holds one specific object. 3D point cloud annotations assign point-wise labels to each point in the point cloud, indicating the point’s category. Many tasks in autonomous driving, such as 3D object detection and 3D segmentation, require 3D annotations. Similarly, 2D annotations include 2D bounding box annotations and pixel-wise 2D semantic annotations. Lane annotations describe different types of lanes in the data, as well as the boundaries of drivable regions. This lane information can be used to integrate map and traffic rule information into the algorithm of autonomous vehicles, enabling more efficient decision-making functions.
TABLE 1
Comparison of Scenario Datasets. We list existing datasets and different aspects that we are interested in. ✓/× in the weather column means the dataset contains/doesn’t contain data under various weather conditions. BEV: bird’s-eye view, FPV: first-person view. D: daytime, N: nighttime. H: highway, I: intersection, RA: roundabout, C: campus, U: urban, S: suburban, R: rural.

Dataset	Real	View	RGB Image	Stereo Image	LiDAR	Trajectory	Annotation	Traffic Condition
HighD [121]	✓	BEV	√	×	✓	✓	✓	D/N
InD [122]	✓	BEV	√	×	✓	✓	✓	D/N
RounD [123]	✓	BEV	√	×	✓	✓	✓	D/N
Stanford Drone [124]	✓	BEV	√	×	✓	✓	✓	D/N
Five Roundabouts [125]	✓	BEV	√	×	✓	✓	✓	D/N
INTERACTION [126]	✓	BEV	√	×	✓	✓	✓	D/N
Lyft Level 5 [127]	✓	BEV	√	×	✓	✓	✓	D/N
Cyclists [128]	✓	FPV	√	×	×	✓	✓	D/N
Udacity [129]	✓	FPV	√	×	×	✓	✓	D/N
TRAF [130]	✓	FPV	√	×	✓	✓	✓	D/N
Argoverse [131]	✓	FPV	√	×	✓	✓	✓	D/N
ApolloScape [132]	✓	FPV	√	×	✓	✓	✓	D/N
CamVid [133]	✓	FPV	√	×	×	✓	✓	D/N
KITTI [134]	✓	FPV	√	×	✓	✓	✓	D/N
Cityscapes [135]	✓	FPV	√	×	✓	✓	✓	D/N
Mapillary [136]	✓	FPV	√	×	×	✓	✓	D/N
BDD100K [137]	✓	FPV	√	×	✓	✓	✓	D/N
nuScenes [138]	✓	FPV	√	×	✓	✓	✓	D/N
KAIST [139]	✓	FPV	√	×	✓	✓	✓	D/N
H3D [140]	✓	FPV	√	×	✓	✓	✓	D/N
Waymo Open [141]	✓	FPV	√	×	✓	✓	✓	D/N
A*3D [142]	✓	FPV	√	×	✓	✓	✓	D/N
P.F.B. [143]	✓	FPV	√	×	✓	✓	✓	D/N
SYNTHIA [144]	✓	FPV	√	×	✓	✓	✓	D/N
Deepdrive [145]	✓	FPV	√	×	✓	✓	✓	D/N

7.1.5 Traffic Condition

The diversity of traffic conditions is one of the most essential criteria since we primarily focus on safety-critical scenarios. Datasets with a limited level of diversity in conditions and situations are skewed to redundant and highly safe scenarios, which leads to the long tail problem [146], [147]. In order to evaluate the performance of autonomous vehicles in various scenarios, a dataset must include data under a variety of settings. We mainly consider the following three key aspects: weather, time, and environment. The weather conditions change the entire world as well as the style of the data collected by sensors. For example, the nuScenes dataset [138] includes data from sunny, rainy, and cloudy conditions. As a result, the images have different appearances depending on the weather. The time condition specifies whether the data was obtained during the day or at night. The main distinction between these two scenarios is the lighting. Finally, the environment denotes the location from which the data is gathered. For example, the INTERACTION dataset [126] is collected at intersections and roundabouts, whereas the KITTI dataset [134] is collected in urban, rural, and highway settings.

7.2 Traffic Simulation Platforms

In Table 7.2 we summarize existing traffic simulators and compare them in different aspects that we are particularly interested in.

7.2.1 Open Source

Open-source simulators are easily customized, which enables users to design and evaluate various safety-critical scenarios easily, as these scenarios are typically rare and sophisticated and require a high level of customization. Therefore, whether the simulator is open source becomes one of our primary considerations. Most of the simulation platforms we list in Table 7.2 are open source. Simulators such as AirSim [151] and SMARTS [72], for example, release their source code to the public, making it easier for users to modify and enrich the testing environment.

7.2.2 Realistic Perception

The realism and fidelity in the virtual simulation have a significant impact on AV algorithms. High-fidelity, photorealistic simulators provide data that is similar to the physical world, allowing for a more accurate assessment of AV performance in the real world. For example, SUMMIT [70] is able to simulate 3D towns with a large number of vehicles, pedestrians, and buildings. Besides, weather conditions can be further simulated, which include controlling the strength of precipitation, cloudiness, fog density, etc. Simple traffic simulators, on the other hand, are incapable of supporting such detailed simulations. However, they’re usually lightweight and easy to use (especially for RL algorithms), where algorithms can be tested quickly without complicated configurations. For example, Highway-env [148] is a 2D simulator that can be installed using only one command and
provide preliminary experimental results in a short amount of time. We provide screenshots of 6 typical simulators in Figure 4.

7.2.3 Customized Scenario

The freedom to customize scenarios is of great importance since we mainly focus on the generation and evaluation of safety-critical scenarios. The customization of scenarios usually involves the modification of vehicles' positions, speeds, and behaviors. For example, CARLA [116] offers a systematical way for users to define a scenario, through which users can specify the number of vehicles in a town as well as their own behaviors. Even weather and surrounding environment can be arbitrarily adjusted to create variations in the visual appearance of the scene. These functions provide higher flexibility for users and allow for more comprehensive testing of the reliability of AVs.

7.2.4 Back-end Engine

The simulator engines have a direct impact on the fidelity of the simulated vehicle dynamics and the rendered 3D environment. Most simulation platforms are built upon Unreal Engine 4 (UE4) or Unity, which are popular and professional game engines. Other less popular engines, such as Panda3D [163], are also considered. Some non-realistic environments, such as Highway-env [148], don't even need back-end engines due to the low requirement of rendering. A simple graphical user interface (GUI) is sufficient for such type of platform.

7.2.5 Map Source

Maps are critical components in AV testing systems. The maps in these traffic simulators are either created by humans or based on real-world data. For example, Learn-to-Race (L2R) [157] platform has three racetracks in its racing simulator, all of which are based on real-world racetracks. Human-designed maps can be further classified into two types: rule-based maps and procedurally generated maps. Highway-env [148] incorporates 11 rule-based maps including highway, parking, roundabout, etc., all of which...
are manually written by humans. MetaDrive indicates maintains several basic roadblocks and generates numerous maps in a procedural manner by randomly selecting one roadblock at one time.

7.2.6 API Support

API support for specific programming languages is crucial in large-scale automated evaluation since it allows users to run batches of scenarios. Popular programming languages like Python and C++ are supported by most simulation platforms. Some simulators like CARLA and LGSVL also provide support for ROS [3] allowing users to integrate other open-source modules developed by the ROS community.

7.3 Scenario Design Platform

There are some user-friendly platforms that support scenario design functions, which already implement a lot of rule-based scenarios that are normal or safety-critical. We list several popular platforms in this section.

- **CARLA Scenario Runner** [117] provides traffic scenario definitions and an execution engine for CARLA. Scenarios can be defined through a Python interface that allows users to easily describe sophisticated and synchronized maneuvers that involve multiple entities like vehicles, pedestrians, and other traffic participants. It also supports the OpenSCENARIO [164] standard file format for scenario descriptions, making it simple and efficient to incorporate a variety of existing traffic scenarios from the community.

- **DI-Drive Casezoo** [118] consists of a set of scenarios used to train and evaluate diving policy in a simulator. Similar to CARLA Scenario Runner, DI-drive Casezoo has a routing scenario and multiple single scenarios that can be triggered along the route. Route scenario is defined in an XML file with its corresponding scenarios. Trigger locations along the route are defined in JSON files. A single scenario is defined in a Python file, describing the behaviors of traffic participants. In the official codebase, there are 18 route scenarios and 8 types of single scenarios that can be triggered depending on the route definition.

- **SUMO NETEDIT** [165] is a graphical scenario editor which can be used to create traffic networks from scratch and to modify all aspects of existing networks including basic network elements (junctions, edges, and lanes), advanced network elements (e.g. traffic lights), and additional infrastructure (e.g. bus stops). This tool is specifically designed for SUMO [153], which mainly generates large-scale traffic conditions without high-fidelity rendering.

- **SMARTS Scenario Studio** [166] is a scenario design tool in the SMARTS platform that supports flexible and expressive scenario specification. Scenario definitions are written in the Domain Specific Language (DSL), which describes the traffic environment such as traffic vehicles, routes, and agent missions. Scenario Studio also supports configuration files from SUMO’s NETEDIT [165]. Maps edited by NETEDIT [165] can be easily included and reused in Scenario Studio, which enriches the training and testing environments in the SMARTS platform.

- **CommonRoad** [83] is a simulator and an open-source toolbox to train and evaluate RL-based motion planners for autonomous vehicles. Scenario configurations are written in XML files. Users can read, modify, visualize, and store their own traffic scenarios using the Python API provided by CommonRoad. In addition, CommonRoad also supports more scenario specifications, such as Lanelet2 [167] and OpenSCENARIO [164].

8 CHALLENGES AND POTENTIAL DIRECTIONS

In previous sections, we discussed the safety-critical scenario generation methods from three different views: data-driven, adversarial, and knowledge-based. We notice that generating safety-critical scenarios could be a hard problem due to the many constraints and required properties. In this section, we identify five main challenges that cover the difficulty of the generating process, as shown in Figure 5. Digging into the details of these challenges also helps us discover potential directions that can improve existing algorithms. The five challenges are as the following:

- **Fidelity.** Our ultimate goal is to develop safe AVs that can run in the real world. Therefore, it is useless to make AVs pass difficult but unrealistic scenarios. We need to ensure that generated scenarios have the chance to happen in real traffic situations.

- **Efficiency.** Safety-critical scenarios are extremely rare in the real world. The generation needs to consider the efficiency and increase the density of the scenarios we are interested in.

- **Diversity.** Safety-critical scenarios are also diverse. The generation algorithm should be able to discover and generate as many different safety-critical scenarios as possible.

- **Transferability.** Scenarios are dynamic due to interaction between the AVs and their surrounding objects. The scenarios we generate should be variable for different AVs rather than targeting one specific AV.

- **Controllability.** In most times, we want to reproduce or repeat specific scenarios rather than random ones. The generative model should be able to follow instructions or conditions to generate corresponding scenarios.

We will discuss more details from the above five perspectives in the following sections, and we will show that the combination of the previous three types of generation methods could be very promising ways to solve those challenges.
8.1 Fidelity

The generation algorithm can create infinite scenarios, but not all of them are able to happen in the real world. Particularly, under the adversarial generation framework, the searched scenarios are likely to violate the basic traffic rules. The intuitive way to avoid this problem is adding constraints during the generation, but sometimes the constraints are not easy to define. Another promising direction is combining the real-world data and adversarial generation, where the real-world data can be used as a prior distribution or constraints. Metrics such as Kullback–Leibler divergence [168] and Wasserstein distance [169] can be used to minimize the gap between the generated and real-world scenarios.

The fidelity of the scenario is also reflected by the high-dimensional sensing data, which usually requires powerful deep generative models to generate. The state-of-the-art methods mainly focus on the generation of static images such as faces. Recently, Neural Radiance Fields (NeRF) [170] has been popular for visual scene generation. This method uses NN to learn the ray-casting functions then output different views of a scene. Extending this series of work to large-scale traffic scenario generation is also an interesting direction, which can build a purely data-driven simulator.

8.2 Efficiency

It is obvious that uniform sampling from collected data is quite inefficient due to the rareness of safety-critical scenarios. Therefore, previous methods propose to use importance sampling, which can focus on the region of the distribution that we are interested in. However, it is difficult to extend these methods to high-dimensional cases. In addition, even for the adversarial generation methods, the black-box property of victim AVs is still the biggest obstacle. Without access to the internal information of failure, the generation algorithms are unable to update their scenarios efficiently.

To solve this problem, one potential direction is leveraging the symbolic reasoning [171] and causal discovery [172] techniques. Instead of performing the optimization only in numerical space, using symbolic representation helps the generative model reason about the elements that make the scenario safety-critical. Causal discovery methods can uncover the underlying causality behind the safety-critical scenario, finding the mechanisms that cause the risk to the AV.

8.3 Diversity

Although safety-critical scenarios are rare they are also diverse. Most of the current generative methods focus on searching for the best scenario that satisfies the requirements but ignores the diversity. To comprehensively evaluate the performance of AV, we need a large range of scenarios. It is easy to fall into the risk of over-fitting if the testing scenarios are very similar. To increase the diversity of the scenario, there are generally two directions. One is from the optimization perspective. Use sampled-based methods, such as the evolutionary method or Bayesian Optimization to get feasible solutions from different modes. The other direction is applying regularization to the density model.

8.4 Transferability

In the safety and robustness areas, adversarial attack is considered as the common way to generate risky examples. The transferability, which means the generated samples are also applicable to other algorithms, is a crucial factor to evaluate the generation method. For example, the pixel-level adversarial attack only works for the target victim. It is believed that the attack should happen at group level [173] or semantic level [174] to achieve better transferability. One example in the safety-critical scenario is controlling one surrounding vehicle (SV) to hit the AV step by step. After the policy of the SV is trained, we change the target AV. The new AV shows a very different behavior and follows a route that the SV has never seen before. It is most likely that this scenario is not risky for the new AV. In this example, we should let the SV learn at a higher level, where contains the semantic meaning of risk. The SV can suddenly show up behind another vehicle, which leaves the AV a very short time to react. Essentially, we need to build a hierarchical scenario where the high level makes a plan for the risky scenario and the low level executes that plan with control commands.

8.5 Controllability

Controllability is useful in two cases. One is that we want to repeat one specific scenario with several parameters fixed, and the other is generating different scenarios with similar settings. For example, we want to test the performance in a highway environment, then we want to generate vehicles that approach the AV from different directions. Conditional generative models [175], [176] are widely used to generate controllable samples, which learn a joint distribution of the condition and the data. Sometimes, the condition could be simple as numerical values or complex as natural languages. The challenge is that current NN-based models have poor generalization, therefore, fail when the given unseen conditions during the generating. One promising direction could be to increase the generalizability under such a zero-shot setting.

8.6 Extension to Other Applications

Autonomous driving is essentially an application of mobile robots. To make the intelligent hardware widely used in the real-world, other types of applications should also be evaluated on safety-critical scenarios. For example, household robots and manipulation tasks. However, the generation of indoor scenarios could be much more difficult. The traffic scenario basically consists of dynamic objects on a 2D surface, but the indoor scenarios contain a large number of objects interacting in a 3D space. The relations between these objects are also diverse and complex. The direction of how to extend driving scenarios generation methods to these applications is still challenging.

9 Conclusion

In this survey, we summarize existing safety-critical scenario generation methods and categorize them into three types. We also review the simulation platforms and datasets that can be used for scenario generation. Most importantly, we
identify five challenges for this topic and point out potential directions to tackle these challenges. In the end, we want to emphasize that driving scenarios are created by the behaviors of objects and physical laws rather than being designed by the human mind. Purely relying on deep neural networks or optimization methods is not the ultimate solution. Instead, we should let the model use as much external knowledge or rules as possible to make the generated scenarios more practical.

References

[1] I. Masi, Y. Wu, T. Hassner, and P. Natarajan, “Deep face recognition: A survey,” in 2018 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI). IEEE, 2018, pp. 471–478.
[2] Z. Saquib, N. Salam, R. F. Nair, N. Pandey, and A. Joshi, “A survey on automatic speaker recognition systems,” Signal Processing and Multimedia, pp. 134–145, 2010.
[3] Z. Zhong, Y. Yang, Y. Zhou, V. d. O. Neves, Y. Liu, and B. Ray, “A survey on scenario-based testing for automated driving systems in high-fidelity simulation,” arXiv preprint arXiv:2112.00964, 2021.
[4] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer, “Survey on scenario-based safety assessment of automated vehicles,” IEEE access, vol. 8, pp. 87 456–87 477, 2020.
[5] “California Department of Motor Vehicles Disengagement Report,” https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/disengagement-reports, 2022, [Online].
[6] E. Thor, S. C. Kimmel, M. Chaka, B. A. Hamilton et al., “A framework for automated driving system testable cases and scenarios,” United States. Department of Transportation. National Highway Traffic Safety Administration, Tech. Rep., 2018.
[7] W. G. Najm, J. D. Smith, M. Yanagisawa et al., “Pre-crash scenario typology for crash avoidance research,” United States. National Highway Traffic Safety Administration, Tech. Rep., 2007.
[8] S. C. Schnelle, K. M. Salaani, S. J. Rao, F. S. Barickman, D. Elsasser et al., “Review of simulation frameworks and standards related to driving scenarios,” United States. Department of Transportation. National Highway Traffic Safety Administration, Tech. Rep., 2019.
[9] J. M. Scanlon, K. D. Kusano, T. Daniel, C. Alderson, A. Ogle, and T. Victor, “Waymo simulated driving behavior in reconstructed fatal crashes within an autonomous vehicle operating domain,” 2021.
[10] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual classification,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1625–1634.
[11] W. Ding, B. Chen, M. Xu, and D. Zhao, “Learning to collide: An adaptive safety-critical scenarios generating method,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 2243–2250.
[12] G. Harshvardhan, M. K. Goursaria, M. Pandey, and S. S. Rautaray, “A comprehensive survey and analysis of generative models in machine learning,” Computer Science Review, vol. 38, p. 100285, 2020.
[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.
[14] T. Menzel, G. Bagschik, and M. Maurer, “Scenarios for development, test and validation of automated vehicles,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1821–1827.
[15] M. Arief, P. Glynn, and D. Zhao, “An accelerated approach to safely and efficiently test pre-production autonomous vehicles on public streets,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 2006–2011.
[16] C. Kries and F. Diermeyer, “Data-driven test scenario generation for cooperative maneuver planning on highways,” Applied Sciences, vol. 10, no. 22, p. 8154, 2020.
[17] L. van der Velden, M. Tiedeman, U. Lages, R. Katz, and M. Spencer, “Automated generation of virtual driving scenarios from test drive data,” in 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration, no. 15-0268, 2015.
[18] J. Fang, D. Zhou, F. Yan, T. Zhao, F. Zhang, Y. Ma, L. Wang, and R. Yang, “Augmented lidar simulator for autonomous driving,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1931–1938, 2020.
[19] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Szaranovich, S. Tan, B. Yang, W.-C. Ma, and R. Urtasun, “Lidarsim: Realistic lidar simulation by leveraging the real world,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11167–11176.
[20] F. Kruber, J. Wurst, and M. Botsch, “An unsupervised random forest clustering technique for automatic traffic scenario categorization,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018, pp. 2811–2818.
[21] F. Kruber, J. Wurst, E. S. Morales, S. Chakraborty, and M. Botsch, “Unsupervised and supervised learning with the random forest algorithm for traffic scenario clustering and classification,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2463–2470.
[22] W. Wang and D. Zhao, “Extracting traffic primitives directly from naturalistically logged data for self-driving applications,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1223–1229, 2018.
[23] W. Ding, W. Wang, and D. Zhao, “A new multi-vehicle trajectory generator to simulate vehicle-to-vehicle encounters,” arXiv preprint arXiv:1809.05680, 2018.
[24] M. Håkansson and J. Wall, “Driving scenario generation using generative adversarial networks,” Master Thesis, 2021.
[25] W. Ding, M. Xu, and D. Zhao, “Cmt: A conditional multi-trajectory sampler for generating safety-critical driving scenarios,” in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 4314–4321.
[26] Z. Huang, M. Arief, H. Lam, and D. Zhao, “Synthesis of different autonomous vehicles test approaches,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 2007–2015.
[27] Y. Guo, V. V. Kalidindi, M. Arief, W. Wang, J. Zhu, H. Peng, and D. Zhao, “Modeling multi-vehicle interaction scenarios using gaussian random field,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC), IEEE, 2019, pp. 3974–3980.
[28] S. Tan, K. Wong, S. Wang, S. Manivasagam, M. Ren, and R. Urtasun, “SceneGen: Learning to generate realistic traffic scenes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 892–901.
[29] M. Wen, J. Park, and K. Cho, “A scenario generation pipeline for autonomous vehicle simulators,” Human-centric Computing and Information Sciences, vol. 10, pp. 1–15, 2020.
[30] T. A. Wheeler, M. J. Kochenderfer, and P. Robbel, “Initial scene configurations for highway traffic propagation,” in 2015 IEEE 18th International Conference on Intelligent Transportation Systems. IEEE, 2015, pp. 279–286.
[31] T. A. Wheeler and M. J. Kochenderfer, “Factor graph scene distributions for autonomous safety analysis,” in 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2016, pp. 1035–1040.
[32] B. Wulfle, S. Chintakindi, S.-C. T. Choi, R. Hartong-Redden, A. Kodali, and M. J. Kochenderfer, “Real-time prediction of intermediate-horizon automotive collision risk,” arXiv preprint arXiv:1802.01532, 2018.
[33] T. A. Wheeler and M. J. Kochenderfer, “Critical factor graph situation clusters for accelerated automotive safety validation,” in 2019 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2133–2139.
[34] Z. Yang, Y. Chai, D. Angelov, Y. Zhou, P. Sun, D. Erhan, S. Rafferty, and H. Kretzschmar, “Surfelgan: Synthesizing realistic sensor data for autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11118–11127.
[35] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer, and R. Urtasun, “Geosim: Realistic video simulation via geometry-aware composition for self-driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 11118–11127.
[36] S. Ehrhardt, O. Groth, A. Monszpart, M. Engelage, I. Posner, N. Mitra, and A. Vedaldi, “Relate: Physically plausible multi-object scene synthesis using structured latent spaces,” arXiv preprint arXiv:2007.01272, 2020.
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 1672–1679.

[168] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[169] L. V. Kantorovich, “Mathematical methods of organizing and planning production,” Management science, vol. 6, no. 4, pp. 366–422, 1960.

[170] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in European conference on computer vision. Springer, 2020, pp. 405–421.

[171] J. Mao, C. Gan, P. Kohli, J. B. Tenenbaum, and J. Wu, “The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision,” arXiv preprint arXiv:1904.12584, 2019.

[172] P. Spirtes and K. Zhang, “Causal discovery and inference: concepts and recent methodological advances,” in Applied informatics, vol. 3, no. 1. SpringerOpen, 2016, pp. 1–28.

[173] K. Xu, S. Liu, P. Zhao, P.-Y. Chen, H. Zhang, Q. Fan, D. Erdogmus, Y. Wang, and X. Lin, “Structured adversarial attack: Towards general implementation and better interpretability,” arXiv preprint arXiv:1808.01664, 2018.

[174] C. Xiao, J.-Y. Zhu, B. Li, W. He, M. Liu, and D. Song, “Spatially transformed adversarial examples,” arXiv preprint arXiv:1801.02612, 2018.

[175] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.

[176] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep conditional generative models,” Advances in neural information processing systems, vol. 28, pp. 3483–3491, 2015.