Picturing Molecular Environmental Health from Mitochondria

Chun Zhou*

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA

Abstract

Environmental factors play an important role in the etiology of various human diseases, such as neurological disorders, cardiovascular diseases, diabetes, obesity and cancer. To design new strategies for disease prevention and therapy, it is crucial to understand the molecular mechanisms underlying the toxic effects of environmental factors to the cell, the building block of human. In the past decade, significant scientific progresses have been made in the biology of mitochondria, a key player in regulating cellular functions. Studies indicate that mitochondria play major roles in environment-caused diseases, and that mitochondria have versatile functions in addition to producing the chemical form of energy, adenosine triphosphate. These newly identified mitochondrial functions include regulating redox-sensitive signaling pathways and mediating innate immune responses, making mitochondria critical for a variety of cellular mechanisms under both physiological and pathological conditions. This essay reviews recent advances in mitochondrial functions and summarizes environmental factors that act on mitochondria for detrimental or protective effects. In addition, the essay provides a unified mitochondrial mechanism that may underlie the molecular interaction between environmental factors and the cell.

Keywords: Environmental health; Mitochondria; Adenosine triphosphate

Introduction

Human diseases are determined by both genetic and environmental risk factors. A recent investigation indicates that environmental factors contribute to about 80% of the 102 diseases and injuries listed by the World Health Organization (WHO) for the year 2002, and account for 24% of the global burden of disease [1]. These data clearly indicate a key role of environmental factors in human health. Modern molecular and cellular studies have revealed a great detail of normal and disease biological processes at the molecular level; however, the molecular mechanisms by which environmental risk factors cause human diseases are still not well understood. An in-depth understanding of these molecular mechanisms is the prerequisite for the design of new strategies of prevention and therapy, and requires intensive investigations in the cutting edge field - Molecular Environmental Health. In this essay, the author uses the organelle mitochondria as an example to connect Molecular Biology and Environmental Health from available literature, to demonstrate the level of clarity of scientific understanding we can achieve by studying environmental health at the molecular and cellular levels.

Recent Advances in Mitochondrial Biology

As an important cellular organelle, mitochondria are known for producing adenosine triphosphate (ATP), buffering calcium and participating apoptosis. Moreover, mitochondria host a variety of metabolic processes, such as the tricarboxylic acid (TCA) cycle, fatty acid beta-oxidation, and synthesis of lipid, steroid, heme and iron-sulfur clusters. In the past decades, several significant progresses have been made which have expanded our conventional understanding of the function and regulation of mitochondria.

One progress is that mitochondria modulate cellular signal pathways by generating reactive oxygen species (ROS). ROS are oxygen-containing, highly chemically reactive molecules, including superoxide anion, hydroxyl radical and hydrogen peroxide. Mitochondria generate superoxide from oxygen at the site of the mitochondrial electron transport chain as an intrinsic product of oxidative phosphorylation. Traditionally, ROS are considered toxic as high level of ROS causes oxidative damage: protein oxidation, lipid peroxidation and DNA mutation. However, numerous studies have demonstrated that moderate or low levels of ROS are an important cellular signaling transducer in cell proliferation, differentiation and migration [2-6]. In fact, mitochondria-generated superoxide is converted to hydrogen peroxide. Hydrogen peroxide is a signaling messenger that can travel for a distance within the cell to oxidize key protein residues such as cysteines, resulting in change of the conformation or activity of kinases, phosphatases or transcription factors in various cellular signaling pathways. These redox-sensitive signaling pathways, such as the mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/Erk), nuclear factor erythroid-derived 2-related factor 2 (Nrf-2), c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NFkB) pathways, in turn regulate important physiological cellular processes ranging from cell proliferation and death, to stress defense, and to immune response. Furthermore, mitochondrial ROS are required for the activation of the NACHT, LRR and PYD domains-containing protein 3 (NALP3) inflammasome, which is a protein complex that mediates release of interleukin-1β (IL-1β) and IL-18 for inflammation [7,8]. Finally, abnormal production of mitochondrial ROS is found to contribute to disease pathogenesis. For example, oncogenic Kras increases mitochondrial ROS that promote cancer cell growth via the MAPK/ERK pathway and the NFκB pathway [9,10]. Consistently, increased levels of ROS are observed in cancer cells compared to normal cells [11]. Thus, mitochondria-generated ROS serve as an important signaling transducer in both physiological and pathological conditions.

*Corresponding author: Chun Zhou, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, Room 1107C, New York, NY 10032, USA. Tel: 212-305-6708; E-mail: cz2132@columbia.edu

Received October 21, 2013; Accepted November 25, 2013; Published November 27, 2013

Citation: Zhou C (2013) Picturing Molecular Environmental Health from Mitochondria. Health Care Current Reviews 1: 109. doi: 10.4172/2375-4273.1000109

Copyright © 2013 Zhou C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Except for regulating cellular signaling by releasing ROS, mitochondria are found to directly serve as a platform for protein complex assembly and activation to initiate cytosolic signaling machineries. A typical example is the mitochondrial antiviral signaling protein (MAVS) which mediates the innate immune response against virus [12]. Upon viral infection, viral RNA is recognized by the cytosolic sensors such as retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which then bind to mitochondrial surface-localized MAVS. This initial protein interaction is followed by recruitment of multiple cytosolic proteins to the surface of mitochondria to form a MAVS multi-protein complex. The outcome of the propagation of the MAVS anti-viral signaling pathway is the induction of gene expression of type I interferons (IFNs) and pro-inflammatory cytokines, which facilitate clearance of virus. Together, the conventional and newly identified functions of mitochondria are summarized in Figure 1.

Given the crucial role of mitochondria in cellular functionality, how mitochondrial function is regulated becomes pivotal. In this aspect, the discovery of mitochondrial dynamics has established a major regulatory mechanism for mitochondrial function. Instead of being static organelles as perceived in the past, recent studies show that mitochondria are actually highly dynamic organelles that constantly change their morphology, motility and intracellular distribution [13]. This mitochondrial dynamics, broadly defined, is a well-balanced homeostasis of interconnected mitochondrial morphological change, fusion and fission, movement, biogenesis and degradation. For example, mitochondrial movement is driven by motility motors and cooperated by the mechanisms that control mitochondrial morphology and fusion/fission. As a key component of mitochondrial dynamics, the fusion and fission machinery mediates two opposite processes: fusion of two or more mitochondria into one mitochondrion by fusion of the mitochondrial outer and inner membranes, and fission of a mitochondrion into two or more mitochondria by fission of the outer and inner membranes. A balanced fusion and fission is crucial for normal mitochondrial functioning and can be altered under pathophysiological conditions. Collectively, these mitochondrial dynamic machineries distribute mitochondria to appropriate subcellular locations. Failure of proper mitochondrial distribution leads to cellular malfunction. For instance, impairment in the mitochondrial fusion and fission machinery results in loss of mitochondria and mitochondria-generated ATP at the synapses, which lead to defective neurotransmission [14]. Similarly, without mitochondrial movement to the immune synapses, the interface between an antigen-presenting cell or target cell and a lymphocyte such as T cell, the T cell activation is dampened [15]. Importantly, mitochondrial dynamics also regulates mitochondrial functional status. In fact, increased mitochondrial

![Figure 1: Major mitochondrial functions.](image-url)
fission or downregulation of fission reduces mitochondrial oxidative phosphorylation [16,17]. Mitochondrial fission is also an upstream causal factor for the mitochondrial ROS production induced by high glucose and ionizing radiation, and perturbation of mitochondrial fission reduced such ROS production [18-22]. Accordingly, the treatment that increases mitochondrial fission in oncogenic K-ras-transformed cells reduces ROS production [23]. How mitochondrial fragmentation affects ROS production is unknown, but evidence suggests that mitochondrial fission results in ultra structure change of the mitochondrial inner membrane where the mitochondrial respiratory chain resides [24]. Interestingly, elevated ROS can also cause mitochondrial fragmentation [25,26], suggesting a vicious cycle of mitochondrial morphology change and ROS production.

Finally, mitochondria biogenesis and degradation machineries ensure an appropriate number of functional mitochondria. Mitochondria cannot be synthesized de novo. Instead, a mitochondrion grows in length and divides into two or more daughter mitochondria via the fission process. When mitochondria are impaired, such as having decreased membrane potential, they are separated from health mitochondria and undergo autophagic degradation. Together, mitochondrial dynamics is a highly efficient mechanism that the cell uses to determine where, when and how mitochondria function and to maintain a healthy status and appropriate amount of mitochondria.

Environment Factors that Act on Mitochondria

Coherent to the important roles of mitochondria in cellular function, it becomes clear that mitochondrial impairment is a key component of the pathogenesis of a broad variety of human diseases including neurological disorders, cardiovascular diseases, diabetes, obesity and cancer. At the same time, environmental factors also play a role in the etiology of these diseases. Logically, one would suggest that mitochondria may be a common target of these environmental risk factors. In fact, that is the case; that is, a large number of environmental factors have a deleterious effect on mitochondria.

Multiple metals, such as manganese, arsenic, lead, cadmium and mercury, accumulate in mitochondria and cause decreased mitochondrial membrane potential, increased ROS production and loss of ATP production [27-39]. Polycyclic aromatic hydrocarbons (PAHs) are another type of toxic environmental factor that is mainly produced from incomplete combustion of organic materials in the incidences such as forest fires, combustion of fossil fuels and wood. Structurally, PAHs are hydrocarbon compounds of fused aromatic rings and are highly lipophilic; the latter character makes PAHs enter the cell efficiently and accumulate in mitochondria as mitochondrial membranes have high lipid content [40]. PAHs result in dissipation of mitochondrial membrane potential, decreased ATP production, formation of aberrant mitochondrial morphology, and mitochondria-mediated apoptosis [41,42]. Another combustion-related air pollutant is particulate matter (PM). These tiny pieces of solid or liquid matter are derived from both natural sources such as volcanoes, dust storms and forest fires and human activities such as fossil fuel burning in vehicles and industrial plants. Studies have demonstrated that PMs cause mitochondrial damages, such as increased mitochondrial DNA copy number and structural changes [43-46]. Among environmental pollutants, some are known to directly inhibit the mitochondrial respiratory chain. For example, rotenone is a mitochondrial respiratory chain complex I inhibitor, and carbon monoxide and cyanide are complex IV inhibitors [47-49]. Environmental pollutants also affect mitochondria-mediated cell signaling. For instance, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a polychlorinated dibenzo-p-dioxin and usually formed as a side product in organic synthesis and burning. Studies have shown that TCDD disrupts mitochondrial membrane potential, increases mitochondrial ROS production, and activates mitochondria-mediated signaling pathways including the redox-sensitive NFκB pathway, causing cultured cells to gain invasive behavior and resistance to apoptosis [50].

Different from chemical pollutants, ionizing radiation is another type of environmental hazard that is known to cause nuclear DNA mutagenesis. Radiation also can cause mitochondrial DNA lesions, coherent with the fact that mitochondria are the only organelle containing DNA outside the nucleus [51]. In addition to causing DNA damages, radiation can result in non targeted toxicity, such as defects in survived progeny cells and bystander effects on non-irradiated cells [52,53]. Interestingly, radiation-caused late production of mitochondrial ROS has been suggested to be responsible for delayed nuclear DNA mutagenesis [21,54] and such delayed ROS production has been shown as a result of mitochondrial fragmentation [21].

Together, these studies of environmental toxic effects indicate that mitochondrial membrane potential dissipation, ROS production and morphological change are common damages caused by a variety of environmental factors, including those that are not discussed here such as the air pollutant ozone and the carcinogen asbestos [55,56]. Notably, excessive mitochondrial ROS can lead to the mitochondrial permeability transition (MPT) [57]. MPT refers to the opening of the mitochondrial permeability transition pore (mPTP), which is composed of multiple proteins including the mitochondrial matrix protein cyclophilin D, the mitochondrial inner membrane protein adenine nucleotide translocator (ANT) and the outer membrane protein voltage-dependent anion channel (VDAC). MPT results in free trafficking of ions and solutes up to 1.5 kDa into mitochondrial matrix, which in turn causes mitochondrial matrix swelling, loss of the mitochondrial membrane potential, disruption of calcium homeostasis, rupture of the outer membrane and release of cytochrome c, thereby leading to cell necrosis and/or apoptosis [58]. Finally, a large scale of loss of functional mitochondria can create a situation of low energy or even loss of energy of the cell. Hence, solid evidence indicates that mitochondria are a common target of environmental hazards and undergo several key and shared dysfunctions as a result of environmental toxicity, which can lead to cell malfunction or death.

Opposite to the above-mentioned toxins, nature also offers certain environmental factors that are beneficial to human health via modulating mitochondrial functions. One type of these protective environmental factors is natural antioxidant that can alleviate increased mitochondrial ROS production. For example, an active component of the extract of black cumin seeds which has been used as a medicine since ancient times, called thymoquinone, is an antioxidant [59]. When thymoquinone-like derivatives are targeted to mitochondria by conjugating with penetrating cations, they become more effective. This finding highlights the importance of mitochondrial ROS in the pathiology of certain diseases and the usefulness of developing natural or naturally derived protective therapeutics to restore normal level of mitochondrial ROS. Another type of protective factors functions by inducing cancer cell death via stimulating mitochondrial ROS production. Many anti-cancer foods belong to this category. For instance, extracted polysaccharides from certain edible mushrooms can cause cancer cell apoptosis in vitro by generating high level of...
mitochondrial ROS [60]. Other plant-derived environmental factors, such as sanguinarine and herbacetin, also are potent inducers of human cancer cell death via the ROS-mediated mitochondrial apoptotic pathway [61,62]. Finally, some environmental agents that are known to be toxic may also have beneficial effects in the aspect of inhibiting cancer cell growth. For example, danthron is a natural anthraquinone derivative that is considered to be a carcinogen in the U.S. Recently, studies show that danthron can induce mitochondria-mediated apoptosis in rat glioma cells [63].

Interestingly, some environmental factors have dual roles of promoting or inhibiting mitochondria-induced cell death. For instance, polyamines are the organic compounds that have two or more primary amino groups and are common metabolites in both prokaryotic and eukaryotic cells. Studies show that polyamines can either promote or inhibit MPT, dependent on their intracellular concentrations, cell types and cellular metabolic states [64]. Resveratrol, a polyphenol found in grape seed, also has dual effects on mitochondrial function. Studies have demonstrated that intravenous resveratrol treatment can restore mitochondrial dysfunctions, such as the activity of mitochondrial respiratory complexes, and reduce mitochondria-associated cell death in an animal model of cerebral ischemia [65]. Moreover, resveratrol has also been shown to stimulate expression of genes for oxidative phosphorylation and mitochondrial biogenesis, which is accompanied with its protective effects against metabolic disease in animal models [66]. Other studies, on the other hand, show that resveratrol and its derivatives can activate the mitochondrial apoptotic pathway in vitro in transformed human cells and in vivo in cancer animal models [67-69]. When applied by peritumor injection, resveratrol leads to a decrease of mitochondrial membrane potential in tumor cells [69]. Other natural polyphenolic compounds, such as quercetin, epigallocatechin-3-gallate (EGCG) and kaempferol, are also found to either restore mitochondrial dysfunctions or to result in tumor cell apoptosis via mitochondria-dependent pathways [70-72]. These studies indicate the complexity for natural or naturally derived environmental agents to serve as therapeutics. Further studies are needed to elucidate the mitochondria-involved molecular mechanisms of the therapeutic effects of environmental agents, which may be dose-, application approach-, and/or disease-dependent.

A Mitochondrial Model of the Molecular Interaction between Environmental Factors and the Cell

For molecular environmental health, it is important to elucidate the molecular cascades by which environmental factors cause cell malfunction and by which cells can protect themselves from environmental toxicity. As discussed above, broad environmental toxic factors have mitochondria as a common target and cause similar mitochondrial dysfunction. How do cells cope with such common environmental stress? Here, the author proposes a mitochondrial pathway that may have the potential to interpret the protective mechanisms against environment-caused mitochondrial impairment and the consequences if damaged mitochondria are not able to be repaired or removed. This testable mitochondrial model may be central to the deleterious effects of a variety of environmental factors.

Recent studies have demonstrated that ring-shape mitochondria are a means that the cell repairs damaged mitochondria. Normally, most mitochondria exhibit tubule morphology. Damaged mitochondria, however, undergo morphological transition from tubule-shape to ring-shape and the ring-shape mitochondria can be repaired back to normal tubules [73]. Moreover, studies have demonstrated that ring-shape mitochondria are induced by loss of the mitochondrial membrane potential and increase of mitochondrial ROS that are caused by the uncouplers chemicals carbonil cyanide p-triflouromethoxyphenylhydrazone (FCCP) or carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or the environmental complex I inhibitor rotenone, but not by loss of ATP caused by the ATP synthase inhibitor oligomycin [73-76]. The fact that PAHs, ozone and radiation all can induce formation of ring-shape mitochondria [41,77,78] suggests that ring-shape mitochondria may be a generic form of damaged mitochondria, rather than being specific to one environmental insult. Once ring-shape mitochondria change back to tubule, they recover from the membrane potential dissipation induced by rotenone, whereas those that cannot be recovered undergo further fragmentation to produce more ROS [73]. These findings have established that ring-shape mitochondria are damaged yet recoverable mitochondria as a result of environmental factors-caused mitochondrial membrane potential dissipation and increased ROS production.

How do mitochondria become ring-shape from tubule-shape? Available evidence points to a potential role of a protein called α-synuclein (α-syn). With a length of 140 amino acids (aa), α-syn is natively unfolded but acquires α-helical structures (either two α-helices or a single extended α-helix) upon binding to lipid membranes in vitro [79-82]. The affinity of α-syn to membranes appears due to the interaction between the negatively charged membrane lipids and the positively charged aa in the 11-mer imperfect repeats in the residues 1-95 of α-syn [83,84]. Coherently, studies indicate that α-syn may bind mitochondrial membranes via its N-terminal sequences [85]. Overexpressed α-syn has been known to produce cytotoxicity by forming protein oligomers and aggregates [82,86]. Recent evidence shows that overexpressed α-syn also breaks the tubule structure of mitochondria, a phenomenon known as mitochondrial fission or fragmentation [87]. Interestingly, overexpressed α-syn causes formation of ring-shape mitochondria in the muscle cells of C. elegans [88]. Moreover, the mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes formation of ring-shape mitochondria in α-syn transgenic mice of overexpressed α-syn, but not in control mice [89]. Given the intrinsic property of α-syn in generating lipid membrane curvature in vitro [90], these converging findings suggest that α-syn may mediate ring-shape mitochondrial formation from tubule mitochondria.

Interestingly, FCCP and CCCP are widely used to create mitochondrial damage in the studies of two proteins: PTEN-induced putative kinase 1 (PINK1) and parkin. PINK1 and parkin are known for initiating mitochondrial autophagy to degrade damaged mitochondria. A major breakthrough in the early molecular events of mitochondrial autophagy in human cells comes from a study that demonstrated that parkin, a cytosolic E3 ubiquitin ligase, is recruited specifically to impaired mitochondria and facilitates their autophagy [91]. At the same time, the author of the present essay proposed a PINK1-Parkin-Mitochondria pathway for mitochondrial surveillance at the 2008 Society for Neuroscience annual meeting (Figure 2). This model indicates that the kinase domain of PINK1, a mitochondrial serine/threonine kinase, interacts with the RING1 domain of parkin at the mitochondrial surface, leading to mitochondrial movement to the perinuclear area for autophagic degradation. The molecular cascades of these early steps of mitochondrial autophagy are further elucidated by major articles [92-95] in which PINK1 and parkin play the crucial role.
role to "label" damaged mitochondria for degradation [96]. The facts that FCCP and CCCP cause formation of ring-shape mitochondria and activate the PINK1/parkin-mediated mitochondrial autophagy imply that PINK1 and parkin may be responsible for the clearance of severely damaged ring-shape mitochondria. Together, these experimental data in recent years call for a novel unified mitochondrial molecular pathway that may underlie the cellular toxicity caused by a variety of environmental factors (Figure 3). It is worth noting that this model may also be useful for the identification of the environmental factors that are protective against various human diseases in which mitochondria play a role in their pathogenesis.

Perspective

Mitochondria are a key organelle for the physiological function of the cell and play a crucial role in the pathogenesis of a variety of human diseases in which environmental factors are part of the etiology. Research in the past decade has made groundbreaking discoveries of mitochondrial biology that have shifted our understanding of mitochondrial function. Moreover, mounting evidence indicates that mitochondria are a common target of multiple environmental toxic factors. Notably, some environmental agents have potential therapeutic benefits by modulating mitochondrial function. With analysis of the available literature on mitochondria, this review also provides a unified model of a mitochondrial pathway which may shed light to our understanding of the molecular mechanisms responsible for the toxic or beneficial effects of environmental factors. In summary, investigations on the molecular mechanisms through which the environmental toxic and protective factors act on mitochondria are pivotal to our understanding of environmental effects on human health and to the development of new strategies for disease prevention and therapy.

References

1. Pruss-Ustun A, Corvalan C (2007) How much disease burden can be prevented through environmental interventions? Epidemiology 19: 167-178.
2. Antunes F, Cadenas E (2001) Cellular titration of apoptosis with steady state concentrations of H2O2: submicromolar levels of H2O2 induce apoptosis through Fenton chemistry independent of the cellular thiol state. Free Radic Biol Med 30: 1008-1018.
3. Havens CG, Ho A, Yoshikawa N, Dowdy SF (2006) Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol 26: 4701-4711.
4. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194: 7-15.
5. D’Autreux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8: 813-824.
6. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312: 1882-1883.
7. Tschopp J (2011) Mitochondria: Sovereign of inflammation? Eur J Immunol 41: 1196-1202.
8. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140: 821-832.
9. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, et al. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788-8793.
10. Formentini L, Sanchez-Arago M, Sanchez-Cenizo L, Cuezva JM (2012) The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response. Mol Cell 45: 731-742.
11. Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227: 421-430.
12. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682.

13. Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11: 872-884.

14. Verstrekken P, Ly CV, Venken KJ, Koh TW, Zhou Y, et al. (2005) Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47: 365-378.

15. Baixauli F, Martín-Cofreces NB, Morlino G, Carrasco YR, Calatobia-Linares C, et al. (2011) The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J 30: 1238-1250.

16. Pich S, Bach D, Briones P, Lisea M, Camps M, et al. (2005) The Charcot-Marie-Tooth type 2A gene product, Mnif2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14: 1405-1415.

17. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280: 26185-26192.

18. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103: 2653-2658.

19. Galloway CA, Lee H, Nejar S, Juhn BS, Yu T, et al. (2012) Transgenic control of mitochondrial fission induces mitochondrial uncoupling and relieves diabetic oxidative stress. Diabetes 61: 2093-2104.

20. Cameiro L, Allard C, Guissard C, Fioramonti X, Tourrel-Cuzin C, et al. (2012) Importance of mitochondrial dynamin-related protein 1 in hypothalamic glucose sensitivity in rats. Antioxid Redox Signal 17: 433-444.

21. Kobashigawa S, Suzuki K, Yamashita S (2011) Ionizing radiation accelerates mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124: 444-453.

22. Palorini R, De Rasmont D, Gavraghi M, Sala Danna L, Signorile A, et al. (2013) Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forosmin-reversible alterations of mitochondrial dynamics and respiration. Oncogene 32: 352-362.

23. Barsoucm MJ, Yuan H, Gerencser AA, Lit G, Kushnareva Y, et al. (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25: 3900-3911.

24. Lit G, Bossy B, Lubiz B, Kushnareva Y, Sejbuk N, et al. (2009) Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NDMA- and ROS-dependent pathway. Cell Death Differ 16: 899-909.

25. Jendrach M, Mai S, Pohl S, Voth M, Bereiter-Hahn J, et al. (2011) Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Perspect 111: 455-460.

26. Xia T, Kovochich M, Ne AL (2007) Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung disease. Front Biosci 12: 1238-1246.

27. Hou L, Zhu ZZ, Zhang X, Nordio F, Bonzini M, et al. (2010) Airborne particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 118: 455-460.

28. Golomb E, Matza D, Cummings CA, Schwab H, Kodavanti UP, et al. (2012) Myocardial mitochondrial injury induced by pulmonary exposure to particulate matter in rats. Toxicol Pathol 40: 779-788.

29. Li N, Ragheb K, Lawler G, Sturgis J, Rajwa B, et al. (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278: 8516-8525.

30. Alonso JR, Cardellach F, Lopez S, Casademont J, Miro O (2003) Carbon monoxide specifically inhibits cytochrome c oxidase of human mitochondrial respiratory chain. Pharmacol Toxicol 93: 142-146.

31. Nuskova H, Vrbaclay M, Drahota Z, Houstek J (2010) Cyanide inhibition and pyruvate-induced recovery of cytochrome c oxidase. J Bioenerg Biomembr 42: 395-403.

32. Biswas G, Srinivasan S, Andanadheethavarada HK, Avadhan NG (2008) Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling. Proc Natl Acad Sci USA 105: 186-191.

33. Rogovinovich TI, Sengao VA, Shimizu-Yoshida Y, Abrosimov AM, Lushnikov EF, et al. (2002) Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res 62: 7031-7041.

34. Dopp E, von Recklinghausen U, Hartmann LM, Stueckradt I, Pollok I, et al. (2008) Subcellular distribution of inorganic and methylated arsenic compounds in human urothelial cells and human hepatocytes. Drug Metab Dispos 36: 971-979.

35. Echaniz-Laguna A, Benoist A, Vinzio S, Fornecker LM, Lannes B, et al. (2012) Mitochondrial myopathy caused by arsenic trioxide therapy. Blood 119: 4272-4274.

36. Naranmandura H, Xu S, Sawata T, Hao WH, Liu H, et al. (2011) Mitochondria are the main target organelle for trivalent monomethylarsenous acid (MMA(III))-induced cytotoxicity. Chem Res Toxicol 24: 1094-1103.

37. Bellayeva EA, Sokolova TV, Emelyanova LV, Zakharova IO (2012) Mitochondrial electron transport chain in heavy metal-induced neurotoxicity: effects of cadmium, mercury, and copper. ScientificWorldJournal 2012: 136063.

38. Farina M, Avila DS, da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62: 575-594.

39. O'Hara MF, Clarlap JW, Craig RC, Knudsen TB (2002) Mitochondrial transduction of ocular teratogenesis during methylmercury exposure. Teratology 65: 131-144.

40. Meyer JN, Leung MC, Rooney JP, Sendoel A, Hengartner MO, et al. (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134: 1-17.

41. Zhu H, Li Y, Trush MA (1995) Characterization of benzo[a]pyrene quinone-induced toxicity to primary cultured bone marrow stromal cells from DBA/2 mice: potential role of mitochondrial dysfunction. Toxicol Appl Pharmacol 130-120.

42. Ko CB, Kim SJ, Park C, Kim BR, Shin CH, et al. (2004) Benzo[a]pyrene-induced apoptotic death of mouse hepatoma Hepa1c1c7 cells via activation of intrinsic caspase cascade and mitochondrial dysfunction. Toxicology 199: 35-46.

43. Li N, Sioutas C, Cho A, Schmitz D, Misra C, et al. (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111: 455-460.

44. Xia T, Kovochich M, Ne AL (2007) Impairment of mitochondrial function by particulate matter (PM) and their toxic components: implications for PM-induced cardiovascular and lung disease. Front Biosci 12: 1238-1246.

45. Hou L, Zhu ZZ, Zhang X, Nordio F, Bonzini M, et al. (2010) Airborne particulate matter and mitochondrial damage: a cross-sectional study. Environ Health 9: 48.

46. Nuskova H, Vrbaclay M, Drahota Z, Houstek J (2010) Cyanide inhibition and pyruvate-induced recovery of cytochrome c oxidase. J Bioenerg Biomembr 42: 395-403.

47. Biswas G, Srinivasan S, Andanadheethavarada HK, Avadhan NG (2008) Dioxin-mediated tumor progression through activation of mitochondria-to-nucleus stress signaling. Proc Natl Acad Sci USA 105: 186-191.

48. Rogovinovich TI, Sengao VA, Shimizu-Yoshida Y, Abrosimov AM, Lushnikov EF, et al. (2002) Large deletions in mitochondrial DNA in radiation-associated human thyroid tumors. Cancer Res 62: 7031-7041.

49. Hei TK, Zhou H, Ivanov VN, Hong M, Liebmann HB, et al. (2008) Mechanism of radiation-induced bystander effects: a unifying model. J Pharm Pharmacol 60: 943-950.

50. Hei TK, Zhou H, Chai Y, Ponnaya B, Ivanov VN (2011) Radiation induced non-targeted response: mechanism and potential clinical implications. Curr Mol Pharmacol 4: 96-105.

51. Dayal D, Martin SM, Limoli CL, Spitz DR (2008) Hydrogen peroxide mediates the radiation-induced mutator phenotype in mammalian cells. Biochem J 413: 185-191.
55. Chuang GC, Yang Z, Westbrook DG, Pomplius M, Ballinger CA, et al. (2009) Pulmonary osteozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis. Am J Physiol Lung Cell Mol Physiol 297: L209-216.

56. Huang SX, Partridge MA, Ghandhi SA, Davidson MM, Amundson SA, et al. (2012) Mitochondria-derived reactive intermediate species mediate asbestos-induced genotoxicity and oxidative stress-responsive signaling pathways. Environ Health Perspect 120: 840-847.

57. Davidson SM, Yellon DM, Murphy MP, Duchen MR (2012) Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 93: 445-453.

58. Juhászová M, Wang S, Zorov DB, Nuss HB, Gleichmann M, et al. (2008) The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann N Y Acad Sci 1123: 197-212.

59. Severina II, Severin FF, Kosruption GA, Sambatyan NV, Ilyasova TM, et al. (2013) In search of novel highly active mitochondria-targeted antioxidants: thymoquinone and its cationic derivatives. FEBS Lett 587: 2018-2024.

60. Shi X, Zhao Y, Jiao Y, Shi T, Yang X (2013) ROS-dependent mitochondrial molecular mechanisms underlying antitumor activity of Pleurotus abalonus acidic polysaccharides in human breast cancer MCF-7 cells. PLoS One 8: e64266.

61. Burgeiro A, Benito AC, Gajate C, Oliveira PJ, Molinredo F (2013) Rapid human melanoma cell death induced by sanguinarine through oxidative stress. Eur J Pharmacol 705: 109-118.

62. Qiao Y, Xiang Q, Yuan L, Xu L, Liu Z, et al. (2013) Herbacitin induces apoptosis in HepG2 cells: Involvements of ROS and PI3K/Akt pathway. Food Chem Toxicol 51: 426-433.

63. Chiu SM, Chiu CH, Yang ST, Yang JS, Huang HY, et al. (2012) Dantheron triggers ROS and mitochondria-mediated apoptotic death in C6 rat glioma cells through caspase cascades, apoptosis-inducing factor and endonuclease G multiple signaling. Neurol Res 37: 1790-1800.

64. Toninello A, Sahi M, Mondoni B (2004) Interaction of biologically active amines with mitochondria and their role in the mitochondrial-mediated pathway of apoptosis. Curr Med Chem 11: 2349-2374.

65. Youssif S, Alfi F, Ahmed M, Hoda N, Ihsrit T, et al. (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250: 42-50.

66. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, et al. (2006) Resveratrol improves mitochondrial function and protects against cigarette smoke toxicity. Proc Natl Acad Sci USA 103: 12841-12846.

67. Gossiaux A, Chen M, Ho CT, Chen KY (2005) A methoxy derivative of resveratrol analogue selectively induced activation of the mitochondrial apoptotic pathway in transformed fibroblasts. Br J Cancer 92: 513-521.

68. Ma X, Tian X, Huang X, Yan F, Qiao D (2007) Resveratrol-induced mitochondrial dysfunction and apoptosis are associated with Ca2+- and mCIcR-mediated MPT activation in HepG2 cells. Mol Cell Biochem 302: 99-109.

69. van Ginkel PR, Darjatmoko SR, Sareen D, Subramanian L, Bhattacharya S, et al. (2008) Vanadyl and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc Res 93: 445-453.

70. Ding WX, Li M, Jiang Q, Xu Y, Cui M, de Vries RL, et al. (2010) PINK1-Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12: 119-132.

71. Song D, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158-172.

72. Westphal CH, Chand S, Dubal BM, Harper R, et al. (2008) Mitochondrial fission. Cancer Res 73: 6700-6710.

73. Jao CC, Hegde BG, Chen J, Haworth IS, Langen R (2008) Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc Natl Acad Sci USA 105: 19666-19671.

74. Drescher M, Godschaik F, Veldhuis G, van Rooijen BD, Subramaniam V, et al. (2008) (2008) Spine-labeled EPR on alpha-synuclein reveals differences in the membrane binding affinity of the two antiparallel helices. Chembiochem 9: 2411-2416.

75. Georgieva ER, Ramil TF, Borbat PP, Freed JH, Eliezer D (2010) The lipid-binding domain of wild type and mutant alpha-synuclein: compactness and interconversion between the broken and extended helix forms. J Biol Chem 285: 28261-28274.

76. Zhou C, Przedborski S (2009) Intrabody and Parkinson's disease. Biochim Biophys Acta 1792: 634-642.

77. Eliezer D, Kultuay E, Russel R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. J Biol Chem 307: 1061-1073.

78. Davidson WS, Jonas A, Clayton DF, George JM (1998) Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273: 9443-9449.

79. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK (2008) Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 283: 9089-9100.

80. Zhou C, Emadi S, Sierks MR, Messer A (2004) A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol Ther 10: 1023-1031.

81. Nakamura K, Nemani VM, Azfaral B, Skibinski G, Levy JM, et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286: 20710-20726.

82. Kump F, Exner N, Lutz AK, Wender N, Hegermann J, et al. (2010) Inhibition of mitochondrial fission by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J 29: 3571-3589.

83. Song DX, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158-172.

84. Westphal CH, Chanda SS (2013) Mitochondrial synucleins generate membrane curvature. J Biol Chem 288: 1829-1840.

85. Narendra DP, Jin SM, Amundson SA, et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286: 20710-20726.

86.折木俊也, 咲生直樹, 岩瀬直樹, 深澤和男, 窪谷明文, 他 (2004). Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158-172.

87. Westphal CH, Chanda SS (2013) Mitochondrial synucleins generate membrane curvature. J Biol Chem 288: 1829-1840.

88. Narendra DP, Jin SM, Amundson SA, et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286: 20710-20726.

89. Song DX, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158-172.

90. Westphal CH, Chanda SS (2013) Mitochondrial synucleins generate membrane curvature. J Biol Chem 288: 1829-1840.

91. Narendra DP, Jin SM, Amundson SA, et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286: 20710-20726.

92. Song DX, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158-172.

93. Westphal CH, Chanda SS (2013) Mitochondrial synucleins generate membrane curvature. J Biol Chem 288: 1829-1840.

94. Narendra DP, Jin SM, Amundson SA, et al. (2011) Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein alpha-synuclein. J Biol Chem 286: 20710-20726.

95. Song DX, Shults CW, Sisk A, Rockenstein E, Masliah E (2004) Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158-172.