1. Introduction

The Asynchronous Transfer Mode (ATM) [1] comprises a network mechanism that is high in speed supports video, data, and voice data. In the asynchronous data transfer mode, voice data transfer a packet with the same medium, and data share the networks and burst data. Effective ATM data transmission requires an extensive array of designs, techniques used for control, and simulation methodologies. The congestions of the network are among the key challenges that lower the entire ATM performance during this procedure, in addition to the delay in cell and the overload of traffic. The congestions cause cell loss, and it requires expensive switches compared to the LAN. Consequently, in this current study, the application of an effective switching model together with a control mechanism that possesses multiple accesses is employed. The multiple access process and switching model are utilized to establish an effective data sharing process with minimum complexity. The switching model uses the synchronous inputs and output ports with buffering to ensure the data sharing process. The traffic in the network is decreased, and the loss of packets in the cells is efficiently kept to a minimum by the proposed technique. The system being discussed is employed through the utilization of software employed using OPNET 10.5 simulation, with the evaluation of the ATM along with the investigational outcomes accordingly. The system’s efficiency is assessed by throughput, latency, cell loss probability value (CLP), overhead network, and packet loss. Thus, the system ensures the minimum packet loss (0.1 %) and high data transmission rate (96.6 %).

Keywords: Asynchronous mode, delay, overload traffics, switching model and data transmission rate

How to Cite: Ali, S. M., Mshali, H., Elameer, A. S., Jaber, M. M., Khalil Abd, S. (2021). Applying switching and multiple access model for reducing packet loss and network overheads in WATM. Eastern-European Journal of Enterprise Technologies, 6 (9 (114)), 15–23. doi: https://doi.org/10.15587/1729-4061.2021.249474

Received date 04.11.2021
Accepted date 04.12.2021
Published date 29.12.2021

Copyright © 2021, Authors. This is an open access article under the reative Commons CC BY license
chronous processing. The service provider pre-configured the ATM connection for transmitting the data in the most convenient and demand-driven way. The wireless asynchronous transfer method (WATM) results from the integration of the ATM core with the wireless network. It comes with the assurance of high-speed mobile communication, which is utilized to meet consumer demand for wireless services worldwide. Furthermore, it offers phone, video, and information transmission guaranteed for the quality of service (QoS) [5]. The WATM switches perform the mobility process, convey data from the base station and mobile terminals during the data transmission process. The WATM performance is hampered by network congestion and delays in cell and traffic overloads. A lack of bandwidth often causes network congestion. In computing, bandwidth refers to the maximum pace at which data may be transmitted across a specific route. Network congestion occurs when there is not enough bandwidth to manage traffic volume on a given network. Fig. 1 depicts the (WATM) transmission interface architecture based on the discussion.

![Fig. 1. The architecture of ATM Network Interface](image)

Fig. 1 illustrated the WATM network interface architecture, which comprised permanent (PVC) [6] and switched (SVC) [7] virtual connections. The PVC procedure utilized leased lines employed by an operator, while SVC is built based on user requirements. Through the utilization of the UNI interface, users can engage with the connection towards developing the SVC connection. Meanwhile, for the data exchange during the running of the ATM procedure, the switches are utilized. Another public network's broadband inter-carrier interface [8] is used to establish the communication procedure. Two-bit rates such as constant and variable bits are utilized to support the capacity, real and non-real-time applications. Along with this, available bit rate – ABR (to guarantee fairness), unspecified bit rate - UBR (provision of optimal services), and ensures frame rate (ensuring throughput of multiple cells frames) are used to enhance the data transmission procedure. The information, video, and audio conveyance in a single traffic channel are optimized by the WATM using bit rates and interfaces.

Furthermore, it is simple to be integrated with the Wide Area Network-WAN, Metropolitan Area Network- MAN, and Local Area Network- LAN networks and set up quality high-speed service. Although ATM guarantees an effective communication procedure, it possesses various drawbacks such as QoS complexity, cell header overhead, cell losses, resulting in congestion in the network, overloading of the traffic, and packet loss. Packets are the smallest units of data that can be sent through a network, and a packet loss occurs when one or more of these packets do not arrive at their destination. The proposed system is applied utilizing various instruments like “OPNET 10.5” [9], where its effectiveness is assessed by utilizing a variety of performance indicators.

2. Literature review and problem statement

Several researcher perspectives and work on the (WATM) data broadcasting technique is discussed and reviewed in this section. The asynchronous mode transmission is recommended in [10]. During this procedure, packet switching was accomplished using cells fixed in size, and activities were carried out under the slotted process. The ATM chose broadband integrated services as the switch, while the choice of bandwidth depended on demand. It matters how technological selection can help to improve the whole transference process of information involving data, voice, and video at the optimal level. Switching is employed to address the problems of data loss and network overhead. The proposed method effectively reduces network traffic and packet loss in cells. WATM uses a switching model that constantly computes SI and SC to minimize packet loss and overheads during data broadcast. A multi-access routing system reduces WATM's traffic congestion and increases the network's overall throughput.

In [11], the evolving signal information transmission is discussed. This paper investigated the next-generation network – NGN challenges like the worth in service quality, the complicatedness in-network, and single load in the signaling procedure. To address this problem, dependable and forward signaling transmission techniques were developed. Typically, this procedure checks the signal strength and needs, which aids in optimizing the general signaling transmission.

In [12] recommending the WATM to transfer the controlled area network (CAN) message. Encapsulation methods were employed to map the information throughout this process. The numerous CAN messages that were carried by the system were capable of resolving the quality of service issues concurrently conveying data on time as well. The system under consideration was analyzed.

A study that employed a scanning algorithm and handover latency improvement to analyzing packet loss within a wireless network was executed in [13]. The fundamental goal of the algorithm, as mentioned above, was to minimize packet loss while maximizing latency. First, the nearest access points were assessed to establish the connection. While the scanning algorithm operates in the background, the packets were conveyed from the source to the destination to ascertain the next access point upon identifying the link. This technique significantly reduces packet loss while minimizing handover latency. Furthermore, the packet transmission rate is optimized by the system.

Through the employment of the buffer, the scheduling technique had developed an efficient, effectual delay-toler-
The presented procedure aims to reduce the network overhead and improve the overall throughput in the 5G wireless network. To ensure data security, copy or archive files to be recovered in the case of a loss of information. It’s a way to safeguard data by storing it in a different location. A firewall, a security device, monitors both incoming and outgoing data. An intermediary between a trustworthy internal network and an external network is needed to ensure data security. To ensure the security of data, encryption and decryption software is essential. This program can be used to encrypt data objects, files, and even network packets or applications.

The loss distribution of loss probability in the asynchronous network [16], this paper intention is to resolve the probability time computation complexity applying by the channel switching concept. This process analyzes the subnetwork switching to transmitting data in the asynchronous network. Here the mathematical analysis is applied to compute the loss likelihood value to transmit the information with minimum data loss. This effective arrangement algorithm optimizes the total packet broadcast rate (PTR) while minimizing overhead. Based on viewpoints from numerous researches, diverse routing protocols enabled the resolution of packet loss, transferred rate, and congestion difficulties. Taking their ideas into account, this study presented a switching access control mechanism is presented in this study to optimize the overall data and transmission procedure, reducing packet loss and lessening the overload of traffic. The performance and dependability of the Internet are greatly influenced by the routing protocols that are used. Current IP routing protocols don’t consider traffic load in network structure and setup. The network operators and management systems oversee modifying the paths to the present traffic flow. Intradomain routing protocols use link weights to compute the shortest pathways.

Software-defined networks’ (SDNs') adaptability in managing a vehicular ad hoc network (VANET). Vehicles and their end-users benefit from a smooth horizontal handover using the SDN principle. SDN designs are presented for two distinct levels of softwarization, with one architecture analysing the influence of the other. The assessment technique uses a combination of real-world vehicle hardware and simulated mobility conditions. As a result of this, the SDN solution provides a higher performance in terms of delays, packet losses, and network overhead when it comes to handovers in a VANET.

4. Materials and methods

The switch in wireless ATMs comprises a completely interconnected architecture comprising synchronous inputs and output ports with output buffering. A series of cell services comprises the switching model [18], and the operations are carried out under the allocated time. The interval spent serving the ATM cell is termed service interval (SI), while the slot termination is termed completion of services (SC).

Table 1 shows the nomenclature used later in the article.

Nomenclature	Description
A_n	Switching model
D_n	Output
m	n^{th} active input
P_{cell}	Cell emission probability
Q_n	Input or output synchronous port characteristics
a_0	Idle state
a_i	Active state
m_i	$(n-1)^{th}$ idle source
$p(i-a)$	Probability of a workload shift from idle to active
k	State of the source
$p(a-k)$	Likelihood of remaining active state at the nth SI
X_n	State descriptor
$X_n(r+1)$	Equation
X_{n-r}	Equation

d on this explanation, every switch has $N*N$ inize that has SC and SI characteristics and several functions $f(), g()$ and $h()$ for A_n, D_n and Q_n. The definition of the functions is as the following:

$$A_n = C_r^m * (P_{cell})^r * (1 - P_{cell})^{m-r}, \quad 0 \leq r \leq m$$ \hspace{1cm} (1)
In (1), the active inputs are examined in the nth SI are represented by \(n_i \). At active workload, the cell emission probability is denoted by \(P_{cell} \). In addition, \(A_n \) is the switching model that fully interconnects characteristics used to avoid internal blocking. \(D_n \) is the separate output port characteristics used to examine the feasibility of switch dimensions and \(Q_n \) is the input or output synchronous port characteristics used to eliminate the internal speedups. The \(n_i \) is computed using (2).

\[
\text{in} = \text{a}_0 + a_i, \quad (2)
\]

In (2) computation, the active input state has 1 value, and the idle input of \((n-1)\)th is 0. Then the idle \(a_0 \) and active states \(a_i \) occupied are is computed as follows:

\[
a_0 = c_i \left(p_i - a_i \right)^{\left(1 - p_i - a_i\right)} - 1, \quad 0 \leq k \leq m_i, \quad \ldots \quad (3)
\]

\[
a_i = c_j \left(p_{a_m} \right)^{\left(1 - p_{a_m}\right)} - 1, \quad 0 \leq k \leq N - m. \quad \ldots \quad (4)
\]

(4), the \((n-1)\)th idle sources are denoted by \(m_i \), and the probability of a workload shift from idle to active is denoted by \(p(i-a) \) indolent to active \(p 01 \). Meanwhile, the state of the sources is denoted by \(k \). The likelihood of remaining active state at the nth SI is denoted as \(p(a-a) \). The asynchronous mode procedure comprises the switching model, which is completely connected with the interconnection fabric, which is depicted \(D_n \) as the following:

\[
D_n = A_n - \left(Q_{max} - \left(Q_{max} - 1 \right) \right) - A_n > 0, \quad \ldots \quad (5)
\]

According to the interconnected switching model, the determination of the output queue number cells depends on the SI number fixed in the queue and the number of rejected and incoming calls. The calculation procedure is shown in the ensuing equation:

\[
Q_n = Q_{n+1} + A_n - D_n. \quad \ldots \quad (6)
\]

Following the definition of the fixed time slots of \(X(n+1) \) the asynchronous model, which is the state descriptor \(Xn \). Cell loss probability is calculated to avert packet loss when delivering data from the sender to the receiver. At time \(n \), the calculation of cell loss likelihood value (CLP) is based on the number of arriving cells that are rejected. The CLP is then calculated as the following:

\[
\text{CLP}_n = \frac{E(D_n)}{E(A_n)}. \quad \ldots \quad (7)
\]

The anticipation of state uses probabilities \(s \), where \(\pi_{ij}^{(a)} \) are indicated by equation (7), and the likelihood of the system is in \(Xn \) at the time \(n \) is denoted by \(Xn = (i, j, k) \). The CLP value \([19] \) is approximated by employing the limiting expectations as the following:

\[
\text{CLP} = \frac{\sum_j \pi_{i,j}}{p}. \quad \ldots \quad (8)
\]

The traffic intensity is given \(p \), and the switch achieves the CLP. Furthermore, the ATM process employs the tagged port to calculate the loss value. Packet loss has efficiently been averted the instance the switching and cell loss likelihood value (CLP) is known. Following the elimination of packet loss, traffic overload must be controlled to keep the entire WATM information transmission procedure to a minimum. The switching and multiple access routing protocols are used to attain this purpose. The conveyance of information between the source and target is the responsibility of the data link layer \([20]\). It performs two functions: data link control and multiple access control. The former sends data via the conveyance conduit, called the automatic repeat request in stop and wait \([21]\). The window dimensions are utilized to set up a communication type based on connection throughout this operation. Furthermore, to avoid network traffic overload, propagating delay, round trip time, time to live (TTL) and time out value (TO).

\[
\text{Round trop time (RTT)} = 2 * \text{propagation delay}, \quad \ldots \quad (9)
\]

\[
\text{Time out (TO)} = 2 * \text{RT}, \quad \ldots \quad (10)
\]

\[
\text{Time to live (TTL)} = 2 * \text{T0}. \quad \ldots \quad (12)
\]

By taking these features into account, the ARQ mechanism effectively averts data loss, delay, delay, and data failure sufficiently; the system conveys data with the sequence number 0 during this operation. The establishment of the corresponding acknowledgement with sequence number 1 is realized when the receiver receives the report. In this case, one represents the next packet or data frame number. This approach lowers data loss, ack loss, and delays. The transmission based on data link control is adequate because the ATM transmitted link is dedicated. Otherwise, the channel is accessible to numerous stations simultaneously. Multiple access control \([22]\) lowers network collisions and cross-talk. In this case, all stations have the same superior capability and the enablement of whatsoever that the station can transmit data founded on medium condition.

When the operation is being executed, the conduit possesses two features: the absence of a predetermined time for the conveyance of data and the absence of predetermined order of station data transmission. In the initial stage, the station senses the means to determine whether it is busy or idle, which subsequently aids in data transmission \([23-25]\). There is no collision once the channel is void and information is transferred smoothly and without any problem. The data is transmitted with a propagation delay. However, a head-on impact will occur if other stations detect the idle channel and attempt to transfer information concurrently. As a result, the data is only transferred after receiving consent from other stations entirely \([26, 27]\).

Three control access procedures are employed to avert the collision: reservation, polling, and token passing techniques. Before sending data, the station must be reserved in the reservation. The timeline, in this case, possesses two timing, like a fixed reservation interval and a variable data transmission duration. Assuming that the ATM consumes M stations, the arrangement interval is divided into M slots as every individual station is associated with a different niche. No other stations transmit when only one station sends a message in one slot. Following the data conveyance, the next ensuing proceeding will commence at the predetermined intermission. Fig. 2 depicts the reservation procedure based on the discussion.
Ensuring the station’s reservation, the data transmission is executed through the employment of the polling procedure, where the regulator is chosen to transmit the data to the subordinate station or additional stations. In this case, the full data is transmitted through the controller, which aids in granting access. The secondary station receives the message, forming appropriate acknowledgement to minimize undesired packet or data loss. Finally, the token system transfers data without generating data damage or control overload. In this instance, stations are linked via tokens employed to access the next station to communicate information. The stations are linked in a ring configuration to ensure data acceptance, and acknowledgement is supplied during the data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.

The switching model and multiple access processes have been utilized to establish an effective data sharing process with minimum complexity for Wireless Asynchronous Transfer Mode (WATM) to stream video, data, and voice data. The system being discussed is employed by utilizing software developed technology enables the removal of collisions, access control mechanism to transmit information. The stations are linked in a ring configuration to ensure data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.

The switching model and multiple access processes have been utilized to establish an effective data sharing process with minimum complexity for Wireless Asynchronous Transfer Mode (WATM) to stream video, data, and voice data. The system being discussed is employed by utilizing software developed technology enables the removal of collisions, access control mechanism to transmit information. The stations are linked in a ring configuration to ensure data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.

The switching model and multiple access processes have been utilized to establish an effective data sharing process with minimum complexity for Wireless Asynchronous Transfer Mode (WATM) to stream video, data, and voice data. The system being discussed is employed by utilizing software developed technology enables the removal of collisions, access control mechanism to transmit information. The stations are linked in a ring configuration to ensure data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.

The switching model and multiple access processes have been utilized to establish an effective data sharing process with minimum complexity for Wireless Asynchronous Transfer Mode (WATM) to stream video, data, and voice data. The system being discussed is employed by utilizing software developed technology enables the removal of collisions, access control mechanism to transmit information. The stations are linked in a ring configuration to ensure data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.

The switching model and multiple access processes have been utilized to establish an effective data sharing process with minimum complexity for Wireless Asynchronous Transfer Mode (WATM) to stream video, data, and voice data. The system being discussed is employed by utilizing software developed technology enables the removal of collisions, access control mechanism to transmit information. The stations are linked in a ring configuration to ensure data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.

The switching model and multiple access processes have been utilized to establish an effective data sharing process with minimum complexity for Wireless Asynchronous Transfer Mode (WATM) to stream video, data, and voice data. The system being discussed is employed by utilizing software developed technology enables the removal of collisions, access control mechanism to transmit information. The stations are linked in a ring configuration to ensure data transmission process. While avoiding overload and cullification, data is conveyed from the source to the destination through the triad procedures; the complete WATM functioning method is explicated in the following algorithm phases, according to the discussion.
Fig. 3 demonstrated the obvious effect of the presented methodology with the lowest possible packet loss during data broadcasting from the origin to the target. The determination of the station’s status aids in reducing the overall packet loss because of the low CLP value. The technology ensures a 0.1 per cent packet loss across 120 transmissions for various traffics. The system’s low packet loss is immediately indicated by the system’s minimal delay and low CLP value. The individual result of the calculated overall network overhead value is shown in Fig. 4.

![Network Overhead Graph](image)

Fig. 4. Network Overhead

From Fig. 4, when contrasted with other methods such as packet switching (PS) [10], scanning (SC) [13], and buffer scheduling algorithm (BSAP) [14], the proposed switching model with multiple access control techniques yields low network overheads.

5.2. Analysis of Cell loss likelihood value (CLP)

As said, the Packet loss has efficiently been averted, the instance the switching along with cell loss likelihood value (CLP). The right formulation of the switching model and ATM cell depiction reduces cell loss likelihood value (CLP). Table 3 shows the CLP value that was obtained.

Table 2 shows how the inclusion of a switching multiple access control approach delivers the least cell loss likelihood value for diverse traffic in wireless ATMs. The system accurately computes the CLP value by identifying the number of reached and rejected cells used

\[CLP_n = \frac{E(D_n)}{E(A_n)} \]

Following the discussion, Fig. 4 illustrates the corresponding graphical analysis.

A CLP value of 0.0022 is achieved by the provided switching and multiple access control techniques when sending information from source to destination and is illustrated in Fig. 5. The method guarantees a small CLP value for a wide range of activity and traffic flow quantities. Because of the small CLP value, the system has a small data loss and delay worth. Fig. 6 displays the collected data delay value. During the data transmission phase, the technique analyses each station’s state to decrease network congestion. It also uses the token and registration criteria to transfer information with the least amount of delay.

![CLP Graph](image)

Fig. 5. Cell loss likelihood value

Transmissions	Traffic
0.1	0.023
0.2	0.018
0.3	0.028
0.4	0.026
0.5	0.021
0.6	0.018
0.7	0.017
0.8	0.027
0.9	0.026

Analysis of Cell loss likelihood value (CLP)

Number of Transactions	Proposed	PS	SC	BSAP
20	0.023	0.018	0.028	0.028
40	0.018	0.0167	0.0165	0.0176
60	0.027	0.025	0.021	0.027
80	0.028	0.021	0.028	0.028
100	0.022	0.026	0.0254	0.025
120	0.029	0.027	0.021	0.025

Table 2
Fig. 6 shows clearly that the suggested methodology has the shortest possible delay during the simultaneous broadcasting of information from the source to the destination. The determination of the station status aids in reducing the overall transmission time because of the low CLP value. The 120-transmission method ensures a 45.2 ms delay for various traffics.

5.3. Throughput Analysis
The successful detection of idle stations, the response process, and the switching model decrease the complication of data broadcast while growing throughput. The outcome is represented in Table 3.

Table 3 clearly shows that the proposed switching and multiple access control mechanisms deliver good throughput value for different traffic in wireless ATMs. With the efficient calculation of cell likelihood loss, station condition and station arrangement determination, it is possible to select the correct transmission medium effectively. In addition, the method predicts the interconnected switching layers, which assist in the effective transfer of data from the source to the target with a large data value. Fig. 7 illustrates the attained outcome.

6. Discussion of experimental results of applying switching and multiple access model
This section discusses the experimental results on the discussed switching and adopted multiple access protocol based data broadcast process in the WATM. The method uses effective access control mechanisms which ensures each user while transmitting data in the network search space. The data broadcast process method attains the minimize packet loss (0.1%), delay(45.2 ms) and high packet delivery rate (96.6 %) compared to the other methods. The detailed comparison of the introduced system with existing approaches is illustrated with many transactions and traffics in the previous section. However, the present study requires an optimized routing process to ensure a high packet delivery rate. Here, security measures are needed to be considered to improve further data transactions. Therefore, the optimized routing protocol with security establishment should be incorporated to improve the overall data transactions.

Performance and dependability of the Internet are greatly influenced by the routing protocols that are used. When it comes to network structure and setup, current IP routing protocols don’t take traffic load into consideration. The network operators and management systems oversee modifying
the paths to the present traffic flow. Intradomain routing protocols use link weights to compute shortest pathways.

To ensure data security, copy or archive files so that they can be recovered in the case of a loss of information. It’s a way to safeguard data by storing it in a different location. A firewall, a type of security device, monitors both incoming and outgoing data. An intermediary between a trustworthy internal network and an external network is needed to ensure data security. In order to ensure the security of data, encryption and decryption software is essential. This programme can be used to encrypt data objects, files, and even network packets or applications. Routing assaults disrupting route discovery are countered by secure routing algorithms on ad hoc networks.

In reality, the primary goal is to increase the use of limited wireless resources while maintaining the QoS of all traffic. Particularly noteworthy is the real-time variable bit-rate video service. So this research aims to improve QoS with relation to packet loss, average latency, and throughput by managing the video packets that are broadcast. Video traffic’s QoS can be improved by reducing packet loss and average latency.

Dynamic bandwidth is provided, making it ideal for traffic that comes and goes quickly. Data transmission is easy, consistent, and predictable since all data is encoded into identical cells. Because of the uniform packet size, mixed traffic can be handled with ease.

Complex procedures are utilised to achieve Quality of Service (QoS) in Asynchronous Transfer Mode (ATM). Compared to LAN hardware, an ATM switch is a lot more costly. Furthermore, ATM NICs cost more than ethernet NICs. As a transmission and switching fabric technology, ATM can theoretically accommodate a wide range of traffic types. Promised better integrated capabilities and services, as well as increased flexibility in using the network.

The WATM performance is hampered by network congestion, as well as delays in cell and traffic overloads. Network congestion is often caused by a lack of bandwidth. In computing, bandwidth refers to the maximum pace at which data may be transmitted across a specific route. Network congestion occurs when there is not enough bandwidth to manage the volume of traffic on a given network.

The disadvantage of WAMP is the overhead of cell header (5 bytes per cell), has complex mechanisms to achieve QoS. The congestion can cause cell loss. An ATM switch is very expensive compared with the LAN hardware. Since ATM technology is a connection oriented one, the setup time and tear down time is longer than the time to use it. The future work is to reduce the delay of network congestion.

Switching is employed to address the problems of data loss and network overhead. Effectively reducing network traffic and packet loss in cells is achieved by the proposed method. WATM uses a switching model that constantly computes SI and SC during data broadcast to minimise packet loss and overheads. A multi-access routing system is used to reduce WATM’s traffic congestion and increase the network’s overall throughput.

7. Conclusions

1. Thus, the system attains the data loss and network overheads issues by applying the switching model. The model computes the service interval and completeness values for every transaction. These computations help to process the data request with respectively defined time. The interval computation identifies the station idle and busy status; the information is transmitted according to the restricted criteria. This process helps to reduce network congestion, overheads and minimize packet loss (0.1 %), delay(45.2 ms).

2. Then, the system computes the cell emission probability value that reduces the packet loss during the data transmission. According to the probability value, the interconnected switching models are accounted for, which improves the further data transaction process.

3. The third objective is attained by using a multi-access routing protocol that improves the data transmission rate and avoids traffic. The routing process effectively considers the propagation delay parameters, TTL, TO and RTT values used to maintain the sequence number for every transaction, which helps improve the overall data transmission in WATM. Here let’s use the switching model for synchronous inputs and output ports with buffering to guarantee the data sharing process. The traffic in the network is decreased, and the loss of packets in the cells is proficiently kept to a minimum by the suggested method. In WATM, the system uses the switching model that continuously computed the SI and SC to minimize the packet loss and overheads during the data broadcasting. A multi-access routing protocol is applied to remove traffic overload in WATM and enhance the overall network throughput value.

References

1. Robertazzi, T. (2011). Asynchronous Transfer Mode (ATM). Basics of Computer Networking, 45–51. doi: https://doi.org/10.1007/978-1-4614-2104-7_5

2. Guide to ATM Technology for the Catalyst 8540 MSR, Catalyst 8510 MSR, and LightStream 1010 ATM Switch Routers. Customer Order Number: DOC-786275. Cisco Systems. Available at: http://www.cisco.com/univercd/cc/td/doc/product/routers/nasdoc/Cisco_ATM.pdf

3. Section "Operation of an ATM Switch". Guide to ATM Technology. Cisco Systems. Available at: https://indigothemes.com/wikipedia-contribution/techgld.pdf

4. ATM Cell Structure. Available at: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-2000-server/cc976978(v=technet.10)?redirectedfrom=MSDN

5. He, C., Xie, Z., Tian, C. (2019). Distributed Quality-Aware Resource Allocation for Video Transmission in Wireless Networks. Network and Parallel Computing, 56–63. doi: https://doi.org/10.1007/978-3-030-30709-7_5

6. Chapin, A. L. (1983). Connections and connectionless data transmission. Proceedings of the IEEE, 71 (12), 1365–1371. doi: https://doi.org/10.1109/proc.1983.12779

7. Weik, M. H. (2000). Switched virtual circuit. Computer Science and Communications Dictionary, 1699–1699. doi: https://doi.org/10.1007/1-4020-0613-6_18688
8. García, M., Oberli, C. (2009). Intercarrier Interference in OFDM: A General Model for Transmissions in Mobile Environments with Imperfect Synchronization. EURASIP Journal on Wireless Communications and Networking, 2009 (1). doi: https://doi.org/10.1155/2009/786040
9. Opnet network simulator. Available at: https://opnetprojects.com/opnet-network-simulator/
10. Weik, M. H. (2000). Asynchronous transfer mode. Computer Science and Communications Dictionary, 71–71. doi: https://doi.org/10.1007/1-4020-0613-6_944
11. Baraković Husić, J., Barić, H., Baraković, S. (2012). Evolution of Signaling Information Transmission. ISRN Communications and Networking, 2012, 1–9. doi: https://doi.org/10.5402/2012/705910
12. Erturk, I. (2005). A new method for transferring CAN messages using wireless ATM. Journal of Network and Computer Applications, 28 (1), 45–56. doi: https://doi.org/10.1016/j.jnca.2004.04.001
13. Aswathy, K., Asok, P., Nandini, T., Nair, L. S. (2018). Handover Latency Improvement and Packet Loss Reduction in Wireless Networks Using Scanning Algorithm. Recent Findings in Intelligent Computing Techniques, 43–51. doi: https://doi.org/10.1007/978-981-10-8636-6_5
14. Wang, E., Yang, Y.-J., Wu, J., Liu, W.-B. (2016). A Buffer Scheduling Method Based on Message Priority in Delay Tolerant Networks. Journal of Computer Science and Technology, 31 (6), 1228–1245. doi: https://doi.org/10.1007/s11390-016-1694-7
15. Yu, H., Perla, M., Liu, F. (2021). A Multiple Access Protocol for Multimedia Transmission over 5G Wireless Asynchronous Transfer Mode Network. 2021 IEEE World AI IoT Congress (AIoT). doi: https://doi.org/10.1109/52608.2021.9454218
16. Sembiyev, O., Kenelbekova, Z., Umarova, Z. (2020). Load Distribution and Determination of Loss Probability in Asynchronous Network. Iranian Journal of Science and Technology: Transactions A: Science, 44 (3), 707–715. doi: https://doi.org/10.1007/s40995-020-00847-x
17. Afab, A. (2002). Data Communication Principles. For Fixed and Wireless Networks. Springer, 276. doi: https://doi.org/10.1007/b101863
18. Duque-Antón, M., Günsther, R., Karabek, R., Meuser, T., Wasel, J. (1998). Open switching for ATM networks. Services and Visualization Towards User-Friendly Design, 265–277. doi: https://doi.org/10.1007/bf0053511
19. Wang, J., Letaief, K. B., Handi, M. (2000). “Super-Fast” Estimation of Cell Loss Rate and Cell Delay Probability of ATM Switches. Broadband Communications, 667–675. doi: https://doi.org/10.1007/978-0-387-35579-5_56
20. Rayes, A., Salam, S. (2018). The Internet in IoT. Internet of Things From Hype to Reality, 37–65. doi: https://doi.org/10.1007/978-3-319-99516-8_2
21. Kim, B., Lee, B., Cho, J. (2017). ASRQ: Automatic Segment Repeat Request for IEEE 802.15.4-Based WBAN. IEEE Sensors Journal, 17 (9), 2925–2935. doi: https://doi.org/10.1109/jsen.2017.2676163
22. Choi, H.-H., Lee, J.-R. (2017). Multi-phased Carrier Sense Multiple Access with Collision Resolution. Quality, Reliability, Security and Robustness in Heterogeneous Networks, 223–232. doi: https://doi.org/10.1007/978-3-319-60717-7_22
23. Rachini, A. S., Jaber, M. M. (2019). Performance of FBMC in 5G Mobile Communications Over Different Modulation Techniques. 2019 International Symposium on Networks, Computers and Communications (ISNCC). doi: https://doi.org/10.1109/isncc.2019.8909111
24. Jaber, M. M., Abd, S. K., Shakeel, P. M., Burhanuddin, M. A., Mohammed, M. A., Yussof, S. (2020). A telemedicine tool framework for lung sounds classification using ensemble classifier algorithms. Measurement, 162, 107883. doi: https://doi.org/10.1016/j.measurement.2020.107883
25. Naseem, M. T. et. al. (2017). Preprocessing and signal processing techniques on genomic data sequences. Biomedical Research, 28 (22), 10205–10209. Available at: https://www.alliedacademies.org/articles/preprocessing-and-signal-processing-techniques-on-genomic-data-sequences.pdf
26. Abd Ghani, M. K., Mohamed, M. A., Mostafa, S. A., Mustapha, A., Aman, H., Jaber, M. M. (2018). The design of flexible telemedicine framework for healthcare big data. International Journal of Engineering & Technology, 7 (3.20), 246–253. Available at: https://www.sciencepubco.com/index.php/ijet/article/view/19096
27. Mohammed, M. A., Kadhhim, M. H., Fuad, A., Jaber, M. M. (2014). Follow up system for directorate of scholarship and cultural relations in Iraq. 2014 International Conference on Computer, Communications, and Control Technology (ICCT). doi: https://doi.org/10.1109/icct.2014.6914171