Teaching Math with the help of Virtual Reality

Marco Simonetti1 ORCID:0000−0003−2923−5519
Damiano Perri1 ORCID:0000−0001−6815−6659
Natale Amato2 ORCID:0000−0001−5104−9494
Osvaldo Gervasi3 ORCID:0000−0003−4327−520X

1 University of Florence, Dept. of Mathematics and Computer Science, Florence, Italy
2 University of Bari, Bari (Italy)
3 University of Perugia, Dept. of Mathematics and Computer Science, Perugia, Italy

Abstract. In the present work we intend to introduce a system based on VR (Virtual Reality) for examining analytical-geometric structures that occur in the study of mathematics and physics concepts in the last high school classes.

In our opinion, an immersive study environment has several advantages over traditional two-dimensional environments (such as a book or the simple screen of a PC or tablet), such as the spatial understanding of the concepts exposed, more peripheral awareness and moreover an evident decreasing in the information dispersion phenomenon. This does not mean that our pedagogical approach is a substitute for traditional pedagogical approaches, but is simply meant to be a robust support. In the first phase of our research we have tried to understand which mathematical objects and which tools to use to enhance mathematical teaching, to demonstrate that the use of VR techniques significantly increase the level of understanding of the mathematical subject investigated by the students.

The system which provides for the integration of two machine levels, hardware and software, was subsequently tested by a representative sample of students who returned various food for thought through a questionnaire.

Keywords: Virtual Reality, Unity3D, Blender

1 Introduction

Much progress has been made in the field of VR since it was introduced in the early 70s of the last century and in many fields it has found innumerable applications such as entertainment1, teaching2, tourism34, manufacturing industry56, networking and communications78, microelectronic and hi-performances hardware industries910, e-commerce11, medicine1213.

Today, we have reached a certain maturity of VR techniques and in this work we
intend to deepen some themes concerning simple VR and even AR (Augmented Reality) experiences in the teaching of mathematics. During our work, we were struck several times by a precise thought: the possibility of giving real form to the ideal objects of mathematics has always been a dream caressed by the mind of man who felt the need to convey his ideas to others without losing their purity and meaningfulness. From the primitive cave representations of simple arithmetic objects, to the elegant structures of the symbolic algebra of the seventeenth century, through the imposing constructions of mathematical analysis and modern geometry, to get to the current and amazing views of numerical analysis through computer graphics. So, we set out to investigate the possibility of extending students’ understanding of the concept of link between an algebraic-set structure and its geometric representation on an orthogonal Cartesian space (function).

Obviously, in the first phase of the work, the attention was focused on a limited number of functions, significant for the students of the terminal classes, some representing trajectories in the Cartesian plane, others as surfaces in the three-dimensional space.

The very first proposed functions are as follows:

- \(y = \sin x \)
 The **sine function** is well known by students who are currently using it to solve analytical and geometric problems, as well as is commonly used in physics to model periodic phenomena such as sound and light waves or even changes in average temperature during the day or the year \[14\]. As showed in fig.1

- \(z = x^2 - y^2 \)
 This function is a classical example of a **saddle surface** that it is a smooth surface containing one or more saddle points. Saddle surfaces have negative Gaussian curvature which distinguish them from convex/elliptical surfaces which have positive Gaussian curvature.

![Fig. 1. sinewave](image-url)
and are very important in the study of non-Euclidean geometry and in the theory of general relativity\cite{15}. As showed in fig.2

- $z = xy$
 This function is an example of hyperbolic paraboloid\cite{15}. As showed in fig.2

![Fig. 2. Saddle Surface (left) and Hyperbolic Paraboloid (right)](image)

Real and Imaginary part respectively of the function $f(z) = z^2$

- $z = \ln(x^2 + y^2)$
 This function is an example of bi-dimensional logarithm, useful to describe astrophysical objects. As showed in fig.3

![Fig. 3. Bi-dimensional Natural Logarithm](image)

- $z = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$
 This function is an example of bi-dimensional dumped sine, useful to describe objects in fluid dynamics, electronics and telecommunications. As showed in fig.4
2 Related works

Stimulating multiple sensory dimensions during the learning process of a concept or idea makes the result particularly incisive; our mind needs to experience the reality that surrounds it through multiple experiential levels: looking, listening, touching allow us to build a complex conceptual structure that founds and strengthens our knowledge\[16\][17].

In our opinion, an immersive study environment has several advantages over traditional two-dimensional environments (such as a book or the simple screen of a PC or tablet), such as the spatial understanding of the concepts exposed, more peripheral awareness or more useful information bandwidth and decreasing in the information dispersion phenomenon\[18\]. Several works have been proposed to achieve the purpose, especially in the natural sciences: chemistry\[19\], biology\[20\], physiology\[21\], physics\[22\].

The idea may therefore be to create digital environments to enhance skills, knowledge and competences in math, avoiding anxiety and bad results\[23\]. Mathematics can be considered one of the most difficult subjects for many students. A recent study asks questions about traditional way of learning and recommends more active and attractive learning approaches\[24\].

Studies have shown that immersion in a digital environment can improve education in several ways, because, as we said before, multiple perspectives are activated\[25\]; this fact has a significant value in all areas of mathematics\[26\].

In several works it has been seen that despite the mathematical simplicity of the concept of function\[27\], many students find it difficult to relate its analytical form to the relative graph, as if the intermediate layers existing between the set concept and the analytic-geometric one prevented a clear understanding of the bond\[28\][29].

It has recently been proven that the use of software capable of explicitly representing the analytic-geometric link existing in the functions can help students develop a positive attitude towards mathematics itself, in terms of attitude, mo-
ivation, interest and competence[30], but we believe that new researches need to be done to grasp the profound implications that exist.

3 The Architecture of the system

We have created two different user experiences. One uses the VR, while the other uses the AR. In both cases the graphic engine used is the same, Unity3D. This software allows the composition of virtual environments starting from basic elements called Assets which the scene is composed with. It also takes care of rendering, real-time lighting calculation and user interaction management. The fundamental tools that have been used are the following:

- the game objects, i.e. the basic elements that make up the scene you want the user to view.
- the scripts, code files written in C# language which you can execute predefined tasks by, such as managing the appearance of objects on the displayed scene, or the camera movement as a key on the keyboard gets pressed.
- the colliders, that prevent intersection or collision between the character user is controlling and the objects in the scene.

The generation of the shapes is realized with two C# scripts that allow to model any mathematical function in two or three dimensions. The first script generates the vertices. The second script receives in input a list of vertices, and generates a three-dimensional figure.

so, let us suppose we want to render a three-dimensional function, for example : $f(z) = x * y$. As we all know a standard mathematical function like this is defined in the continuum space, so if we wanted it to be represented we should need an infinite number of points: the aim is therefore to make the scenario as plausible as possible in a discreet environment, by appropriately choosing the points to be drawn. So to do that, it must be chosen a well-defined length along the X, Y and Z axis, and the number of points (i.e. the number of vertices) that compose the graph must be predetermined. In other words, we need to define a grid of points that will define the level of maximum detail we want to achieve. In addition, it must be kept in mind that the greater the level of detail, the more calculations the user’s device will have to perform to display the object on the screen. Defining a grid of points is equivalent to defining a sampling rate. This is the same as when you are processing an electronic signal (e.g. an audio signal) and want to convert from a continuous signal to its discrete representation. If the number of samples is too low we can in fact obtain Aliasing, obtaining an inaccurate representation of the mathematical function we want to show. It is possible to run the program already with the code just described. However, this requires to recalculate all forms at runtime each time. To improve performance we have therefore saved the forms generated with Unity3D inside the filesystem so that they can directly be reloaded at program start, with no need to recalculate all objects from the beginning. We then processed the shapes with Blender in order to reduce polygonal complexity without changing their information content. In
other words, the complexity of the figures in terms of vertices has been reduced but an user who observed them would not notice any difference. This is possible using Blender, a software made to process models and three-dimensional objects. Finally, we have included them again in the Unity3D project.

The VR environment has generated and compiled by WebGL technology. This means that the application is compatible with all devices (computers or smartphones) on the market since the environment is usable through a web browser. The graphic quality of the scene adapts according to the computational power of the device, while remaining undemanding in terms of hardware requirements. The scene can be observed through a virtual reality viewer, such as HTC Vive, or through a normal computer monitor. The user has the possibility to move around the virtual environment using mouse and keyboard. Inside the environment are visible three-dimensional geometric shapes that allow to understand some mathematical functions otherwise difficult to draw. The AR environment uses the Vuforia framework. The program created is an apk, installable on Android smartphones with 7.0+ operating system. Vuforia is an SDK that allows you to analyze the video stream recorded in real time by the phone camera. Vuforia allows you to create a database of markers (called Vumark). These have manually been associated to the game objects of the scene. When one of the markers present in the database is framed by the camera of the user’s device,
Vuforia tells Unity to show on the scene (and then on the user’s screen) the game object associated with the framed Vumark. Moreover, this SDK manages the spatial orientation of the object according to the user’s position with respect to the Vumark. If we frame a Vumark and move around it, the object associated with it will rotate as well, allowing us to appreciate it in a realistic way.

4 The Virtual World made on Unity3D, Blender and Vuforia

Suppose we want to represent a three-dimensional function within a virtual world created with Unity3D. The creation of the figures is done through two scripts. First of all it is defined the resolution, that is the level of detail, that the figure must have. If for example we set a resolution equal to 100, then we will have a matrix of 100x100 points. In this way we will scroll the variable X and the variable Y along the grid. Then the step is defined, i.e. how much space must elapse between one point and the next. The step variable has been fixed at 0.1f. By means of a nested double “for cycle”, where the first takes care of the X variable and the second the Z variable, we can calculate the Y value in the grid.

The code we made allows to obtain the list of points that makes up the figure. The next step is to calculate the list of triangles. Triangles are a fundamental element in computer graphics. They allow you to specify how the points are interconnected to each other and how they should be rendered on screen. Each “game object” and its figure have associated a script of this type. The difference among the various scripts therefore remains in ability to calculate the getY function. In fact every time it was necessary to change the graph to be represented, it would be sufficient to specify how to calculate the Y to obtain the change of the shown figure; in all cases the unique thing to be done would be to scan the grid (in our example a 100x100 matrix) and recalculate the correct values. The fundamental difference is in the case of two-dimensional functions, like the periodic sine function which is mentioned in chapter 2. In that case only one “for cycle” was sufficient and a depth fixed at 0.05f. In this way we can represent a two-dimensional function as if it were a tube, which allows us to observe it better when we move around it.

The next step is the generation of the three-dimensional mesh from the vertices and triangles calculated in the previous step. To do this, a generic script has been created, which can be recalled from all the codes present in the Unity3D project. Since a three-dimensional object has been generated inside the program, it is necessary to calculate how the light should behave in order to make it visible to the user’s camera.

The hard work would therefore seem how to illuminate the object in the right way: that means that it is necessary to calculate a light intensity value for each polygon which makes up the entire object structure.
Actually, this calculation, which seems very complex, is carried out very quickly in Unity3D. The calculation is carried out in two phases. At the beginning, a call to a function integrated in the Unity libraries doubles up triangles in the figure, so each of them has got a "specular twin", with the normal straight line to the surface with opposite direction to its homologous, so that flow of incident light can correctly be obtained.

Finally, a mesh object is created and vertices, normals and triangles are assigned to it. At the end of this operation the figure (also called mesh) is ready to be shown on screen.

We have then divided the following work into two different ramifications, involving Virtual Reality and Augmented Reality respectively. In first case a room has been created, and inside the room the three-dimensional figures have been positioned, as shown in figure 5.

The project has then been compiled in WebGL in order to be easily used by a web browser and not have any dependence on a specific operating system (Windows, Linux, Android, iOS, etc). As far as the use with augmented reality is concerned, Vuforia software has been used instead. Vuforia is a framework that integrates within Unity3D. Vuforia allows you to create projects that use augmented reality by providing all the functions essential for operation on mobile phones.

In particular we focused on smartphones with Android operating system.

5 Conclusions and future works

In the first phase of our research we tried to understand which mathematical objects and which tools to use to enhance mathematical teaching, having sensed that the use of VR techniques significantly increase the level of understanding of the subject studied by the students.

We would like to expand our research towards the field of immersive learning, in particular those applications that allow the user to be immersed in virtual worlds so that he can increase brain stimulation during the learning phase.

Our approach aims to give the student a wider environment of objects to study and deepen, by selecting among them the ones of greatest interest and didactic utility. Furthermore, we find it interesting to know the degree of interest and empathic response of students to the system: sensations, disturbances, emotions aroused; we do not intend to neglect any advice from them to make the environment more livable and attractive.

That’s why the next step we are considering is to allow high school students to evaluate the quality of the work done by filling out a questionnaire.

If the number of students is high enough, we can draw objective conclusions and understand how much virtual reality can affect their perception of mathematics. We are therefore going to select a significant sample of them, homogeneous by social and cultural level, in order to obtain a set of coherent and indicative answers.
As far as the generation of functions is concerned, the current system is able to display objects that are only statically compiled at compiling-time: for the future we intend to design a dynamic system for the generation of mathematical functions that allows the mathematics teacher to draw arbitrarily any three-dimensional or two-dimensional graph without the need to print a new Vumark every time.

What we want to achieve is a dynamic platform that allows us to understand how far the freedom of choice of a function by the user, as well as a complete experience of immersion in the mathematical object itself and in its specific characteristics and properties, develops and increases in students a high level of understanding of the topics covered.

References

[1] Valentina Franzoni and Osvaldo Gervasi. “Guidelines for Web Usability and Accessibility on the Nintendo Wii”. In: *Transactions on Computational Science VI*. Ed. by Marina L. Gavrilova and C. J. Kenneth Tan. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 19–40. ISBN: 978-3-642-10649-1. DOI: 10.1007/978-3-642-10649-1_2 URL: https://doi.org/10.1007/978-3-642-10649-1_2.

[2] Gürkan Yıldırım, Mehmet Elban, and Serkan Yıldırım. “Analysis of Use of Virtual Reality Technologies in History Education: A Case Study”. In: *Asian Journal of Education and Training* 4 (Jan. 2018), pp. 62–69. DOI: [10.20448/journal.522.2018.42.62.69](http://www.sciencedirect.com/science/article/pii/S026151779500050X).

[3] Paul Williams and JS Perry Hobson. “Virtual reality and tourism: fact or fantasy?” In: *Tourism Management* 16.6 (1995), pp. 423–427. ISSN: 0261-5177. DOI: https://doi.org/10.1016/0261-5177(95)00050-X URL: http://www.sciencedirect.com/science/article/pii/026151779500050X.

[4] Ryan Yung and Catheryn Khoo-Lattimore. “New realities: a systematic literature review on virtual reality and augmented reality in tourism research”. In: *Current Issues in Tourism* 22.17 (2019), pp. 2056–2081. DOI: [10.1080/13683500.2017.1417359](https://doi.org/10.1080/13683500.2017.1417359) Eprint: https://doi.org/10.1080/13683500.2017.1417359 URL: http://www.sciencedirect.com/science/article/pii/136835001730286X.

[5] F. Doil et al. “Augmented Reality for Manufacturing Planning”. In: *Proceedings of the Workshop on Virtual Environments 2003*. EGVE ’03. Zurich, Switzerland: Association for Computing Machinery, 2003, pp. 71–76. ISBN: 1581136862. DOI: [10.1145/769953.769962](https://doi.org/10.1145/769953.769962) URL: https://doi.org/10.1145/769953.769962.

[6] T.S. Mujber, T. Szecsi, and M.S.J. Hashmi. “Virtual reality applications in manufacturing process simulation”. In: *Journal of Materials Processing Technology* 155-156 (2004). Proceedings of the International Conference on Advances in Materials and Processing Technologies: Part 2, pp. 1834–1838. ISSN: 0924-0136. DOI: https://doi.org/10.1016/j.jmatprot.2004.10.005.
[7] A. A. Lazar et al. “Exploiting virtual reality for network management”. In: [Proceedings] Singapore ICCS/ISITA ‘92. 1992, 979–983 vol.3. DOI: 10.1109/ICCS.1992.255116

[8] Russell M. Taylor et al. “VRPN: A Device-Independent, Network-Transparent VR Peripheral System”. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology. VRST ’01. Baniff, Alberta, Canada: Association for Computing Machinery, 2001, pp. 55–61. ISBN: 1581134274. DOI: 10.1145/505008.505019 URL: https://doi.org/10.1145/505008.505019

[9] O. Gervasi, D. Russo, and F. Vella. “The AES Implantation Based on OpenCL for Multi/many Core Architecture”. In: 2010 International Conference on Computational Science and Its Applications. 2010, pp. 129–134. DOI: 10.1109/ICCSA.2010.44

[10] Flavio Vella et al. “A Simulation Framework for Scheduling Performance Evaluation on CPU-GPU Heterogeneous System”. In: vol. 7336. June 2012. DOI: 10.1007/978-3-642-31128-4_34

[11] Panagiota Papadopoulou. “Applying virtual reality for trust-building e-commerce environments”. In: Virtual Reality 11 (June 2007), pp. 107–127. DOI: 10.1007/s10055-006-0059-x

[12] Osvaldo Gervasi, Riccardo Magni, and Mauro Zampolini. “Nu!RehaVR: Virtual reality in neuro tele-rehabilitation of patients with traumatic brain injury and stroke”. In: Virtual Reality 14 (June 2010), pp. 131–141. DOI: 10.1007/s10055-009-0149-7

[13] Sheng Bin, Saleha Masood, and Younhyun Jung. “Chapter Twenty - Virtual and augmented reality in medicine”. In: Biomedical Information Technology (Second Edition). Ed. by David Dagan Feng. Second Edition. Biomedical Engineering. Academic Press, 2020, pp. 673–686. ISBN: 978-0-12-816034-3. DOI: https://doi.org/10.1016/B978-0-12-816034-3.00020-1 URL: http://www.sciencedirect.com/science/article/pii/B9780128160343000201

[14] Carl B. Boyer Uta C. Merzbach. A History of Mathematics. 3rd ed. John Wiley & Sons, 2011.

[15] R. Creighton Buck. Advanced Calculus. 3rd ed. Long Grove, IL: Waveland Press., 2003. ISBN: 1-57766-302-0.

[16] Michael Meehan et al. “Physiological measures of presence in stressful virtual environments”. In: Acm transactions on graphics (tog) 21.3 (2002), pp. 645–652.

[17] Dheva Raja et al. “Exploring the benefits of immersion in abstract information visualization”. In: Proc. Immersive Projection Technology Workshop. 2004, pp. 61–69.

[18] Doug A Bowman and Ryan P McMahan. “Virtual reality: how much immersion is enough?” In: Computer 40.7 (2007), pp. 36–43.
[19] J Georgiou, K Dimitropoulos, and A Manitsaris. “A virtual reality laboratory for distance education in chemistry”. In: International Journal of Social Sciences 2.1 (2007), pp. 34–41.

[20] Sandra Tan and Russell Waugh. “Use of virtual-reality in teaching and learning molecular biology”. In: 3D immersive and interactive learning. Springer, 2013, pp. 17–43.

[21] John Ryan et al. “A virtual reality electrocardiography teaching tool”. In: Proceedings of the Second International Conference, Biomedical Engineering, Innsbruck. 2004, pp. 250–253.

[22] Craig Savage et al. “Teaching physics using virtual reality”. In: AIP Conference Proceedings. Vol. 1263. 1. American Institute of Physics. 2010, pp. 126–129.

[23] Hyesang Chang and Sian L Beilock. “The math anxiety-math performance link and its relation to individual and environmental factors: a review of current behavioral and psychophysiological research”. In: Current Opinion in Behavioral Sciences 10 (2016). Neuroscience of education, pp. 33–38. issn: 2352-1546. doi: https://doi.org/10.1016/j.cobeha.2016.04.011 url: http://www.sciencedirect.com/science/article/pii/S2352154616300882

[24] Scott Freeman et al. “Active learning increases student performance in science, engineering, and mathematics”. In: Proceedings of the National Academy of Sciences 111.23 (2014), pp. 8410–8415. issn: 0027-8424. doi: 10.1073/pnas.1319030111 eprint: https://www.pnas.org/content/111/23/8410.full.pdf url: https://www.pnas.org/content/111/23/8410.

[25] Chris Dede. “Immersive Interfaces for Engagement and Learning”. In: Science 323.5910 (2009), pp. 66–69. issn: 0036-8075. doi: 10.1126/science.1167311 eprint: https://science.sciencemag.org/content/323/5910/66.full.pdf url: https://science.sciencemag.org/content/323/5910/66.

[26] Adriano Pasqualotti and Carla Maria dal Sasso Freitas. “MAT3D: a virtual reality modeling language environment for the teaching and learning of mathematics”. In: CyberPsychology & Behavior 5.5 (2002), pp. 409–422.

[27] Hatice Akkoç and David Tall. “The simplicity, complexity and complication of the function concept”. In: PME conference. Vol. 2. 2002, pp. 2–025.

[28] Daniel Breidenbach et al. “Development of the process conception of function”. In: Educational studies in mathematics 23.3 (1992), pp. 247–285.

[29] Hatice Akkoç and David Tall. “The function concept: Comprehension and complication”. In: Proceedings of the British Society for Research into Learning Mathematic 23.1 (2003), pp. 1–6.

[30] Alessandra King. “Using Desmos to Draw in Mathematics.” In: Australian Mathematics Teacher 73.2 (2017), pp. 33–37.