The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality

António M. Jordão 1,2 and Fernanda Cosme 2,3,*

1 Escola Superior Agrária, Instituto Politécnico de Viseu, 3504-510 Viseu, Portugal; antoniojordao@esav.ipv.pt
2 Chemistry Research Centre—Vila Real (CQ-VR), 5000-801 Vila Real, Portugal
3 Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
* Correspondence: fcosme@utad.pt

Abstract: Aging wine is a usual practice in winemaking, as the wine quality improves due to the compounds extracted from wood barrels or chips, cubes, blocks, or staves used. The wood species used are traditionally oak, namely from *Quercus petraea*, *Q. alba*, or *Q. robur* species. In the last years, the increasing request for oak wood has caused a significant increase in environmental and production costs. Therefore, heartwood from several alternative species has been considered a potential wood source for winemaking and aging. Thus, the main purpose of this review is the application of these alternative wood species on wine production and to discuss the advantages and disadvantages of its use compared with the traditional wood species, namely oak wood. In addition, a brief chemical characterization of several wood species with possible application in enology is also discussed in this review.

Keywords: wood species; oak; wine; aging; volatile compounds; phenolic compounds; sensory characteristics

1. Introduction

Over the centuries, numerous wood species were used to manufacture wood barrels with mahogany, chestnut, pine, and false acacia wood as the most used species [1]. Nevertheless, oak has been one of the key wood species for this purpose, as it has diverse characteristics, which differentiate it from the other wood species, such as flexibility, ease to handle, resistance, and it has low permeability [2]. However, it is essential to remind that in the mid-twentieth century, there was a strong rejection of wood for enological purposes due to the incremented application of materials like concrete and stainless steel. From the 1990s onwards, the application of wood for cooperages, mainly from diverse oak species, reemerged rather significantly and became one of the main choices, for example, in aging wine [3,4].

The most oak wood species employed by cooperages are *Quercus alba*, *Q. garryana*, *Q. macrocarpa*, and *Q. stellate* in the U.S.A., while other different oak species, specifically *Quercus petraea* and *Q. robur*, but also other oak species, such as *Quercus cerris*, *Q. suber*, *Q. lyrata*, *Q. bicolor* and *Q. lanuginose* are used in Europe [5,6]. However, are *Quercus alba*, *Q. petraea*, and *Q. robur*, the key oak species employed in the wine sector. Currently, several studies also described the application of other European and non-European oak species with remarkable use in winemaking, such as *Quercus faginea* [7,8], *Q. pubescens* [9,10], *Q. pyrenaica* [11–20], and also *Q. humboldtii* from Colombia [21,22].

Actually, chestnut and oak wood species are permitted only by the Resolution OENO 4/2005 of Organization of Vine and Wine for enological use [23]. Nevertheless, in recent years, heartwood from other species has been considered for winemaking, especially for the aging process, such as false acacia, cherry, European and American ash, and mulberry.
Additionally, scarce studies described the possible application of other wood species in enology like *Juglans regia* [24].

The main purpose of the wood barrels in enology is to enhance the wine with compounds extracted from the wood (such as phenolic compounds), stimulate reactions between wine and wood compounds, allow the air diffusion through the wood barrels’ pores, and improve chemical reactions that happen gradually in wines and therefore increase wine’s quality [25,26]. Thus, in the last decades, the scientific literature contains a considerable quantity of study associated with the employment of oak wood barrels in enology, mainly its effect on wine chemical and sensory characteristics. The majority of research has focused on red wine, the use of oak barrels [15,16,20,27–31], or the application of oak fragments, like chips, staves, blocks, or powders [10,14,28,31–35]. Moreover, for rosé wines, a few recent works report results about using diverse wood species, comprising oak, false acacia, and cherry [36,37]. Finally, for white wines, there are also several works published concerning the application of diverse wood species, especially from oak and false acacia [38–45].

A comparative analysis between oak and non-oak wood species on wine chemical composition and sensory characteristics was the key objective of this review work. The chemical composition of diverse wood species with potential application in enology and the main factors determining their composition were also addressed. The review will be particularly useful for wine producers and winemakers, and all those who study this subject, as it shows a large amount of data on the use of different woods in enology, summarizing much of the information that has been published in the last twenty years.

2. Chemical Composition of Wood Species

A high quantity of studies has been published concerning oak wood chemical composition. The extractable wood compounds, ellagitannins, ellagic acid, gallic acid, several aldehydes, and aromatic compounds are the key compounds with interest for wine production and the aging process. According to several works [46–49], volatile phenols and benzoic aldehydes play a very important role in the wines sensory profile. Other authors [48–51] describe hydrolysable tannins as having particular importance as they give astringency, as well as being involved in the stabilization of wine compounds and demonstrating important antioxidant properties. According to Vivas and Glories [52,53], ellagitannins have a significant role in the wine oxidation processes because they quickly absorb dissolved oxygen and facilitate the hydroperoxidation of wine compounds. In addition, they also demonstrate an essential role in the proanthocyanidin and anthocyanins condensation rate, avoiding their degradation and precipitation.

For oak wood species studied with enological use, in general, the content of these extractives compounds is influenced by several factors, namely, the forest origin [11,13,54–56], species [11,13,54,56–58], heartwood age [59,60], and most importantly, heat treatment which happens in cooperage during barrel and wood fragment production [11–13,58,60,61]. Several works [13,53,57,58,61–63] also describe that European and American species contain dissimilar levels of ellagitannin, with lower levels for American oak (*Q. alba*) compared to European species (*Q. robur*, *Q. petraea*, and *Q. pyrenaica*).

Table 1 shows examples of several individual phenolic compounds detected in untoasted and toasted wood species (oak, cherry, and false acacia). Generally, the ranges for the most individual phenolic compounds, especially for ellagitannins in the same oak species, are broad due to factors such as the toasting process that occurs in cooperage and also variability within the species. According to several authors, false acacia and cherry do not contain ellagitannins in their composition [64–68].

Alañón et al. [69] detected in *Castanea sativa* Mill (chestnut) a very low quantity of the two main ellagitannins, vescalagin and castalagin. The outcomes also show that its heartwood has the greatest comparable polyphenolic profile to oak wood. Nevertheless, there were also some dissimilarities. Thus, in agreement to Comandini et al. [70], 1-O-galloyl castalagin, which was for the first time detected in chestnut wood samples, might
originate from the esterification of castalagin or vescalagin with a gallic acid residue. For Vivas et al. [53], *Q. frainetto* is distinguished particularly from the other species by its greater concentration of pentosylated dimers and a monomer level that is similar to the rest of the *Quercus* species, which makes it the species designated with the high concentration in ellagitannins. Ellagic acid could also be detected in diverse wood species, including oak, cherry, false acacia, and chestnut [68,71].

According to several authors [65,67,72], cherry wood is characterized by a richness of procyanidins and (+)-catechin. This species also contains some phenolic acids and their esterification products (*p*-hydroxybenzoic acid, *p*-coumaric acid, benzoic acid, methylsyringate, 3,4,5-trimethylphenol, and methylvanillate), and flavonoids (naringenin, isosakuranetin, aromadendrin, and taxifolin). Jordão et al. [68] detected low values of naringenin for cherry woods. However, Chatonnet [73] also reported the existence of an extremely low content of procyanidins in oak woods.

Fernández de Simón et al. [74] showed that the false acacia heartwood enclosed a greater quantity of flavonoids, namely, robinetin and dihydorobinetin at values up to 100 µmol/g. These compounds are specific markers of false acacia wood as they have not been found in other woods used for cooperage, such as oak, chestnut, cherry, and mulberry. On the other hand, Jordão et al. [68] detected several compounds characteristic of false acacia wood, like fustin, robbinetin, and butin, that were not found in the cherry and oak woods. Other researchers described only a few procyanidins and no hydrolysable tannins [65,66,74]. Other wood species with very limited enological applications, such as ash wood, the occurrence of phenylethanoid glycosides, secoiridoids, or di- and oligolignols could be a good identifier for the application of this wood species. [65,66]. Lastly, for mulberry wood, mainly for the two species that have been studied by Kozlovi et al. [75], high antioxidant activity and polyphenolic concentration were achieved in wood extracts from *Morus nigra* L. and *Morus alba* L. in contrast with the phenolic concentration achieved for extracts of *Robinia pseudoacacia* L and *Quercus robur*.

Table 1. Individual phenolic compounds are found in different wood species.

Phenolic Compounds	Wood Species	Reference				
	Quercus	*Fabaceae*	*Cherry*			
	petraea	*alba*	*pyrenaica*	*pseudoacacia*	*Prunus*	*avium*
Total polyphenols	1269	–	786	898	[76]	
Total polyphenols	61.39	61.51	65.03	51.23	[77,78]	
Protocatechuic aldehyde	nd	nd	nd	1.40	nd	
Gallic acid	1.25	nd	1.44	nd		
Vanillic acid	0.14	0.33	0.128	nd		
Syringic acid	0.44	0.83	0.22	nd		
(+)-Catechin	nd	nd	nd	118.94	nd	
Robinetin	nd	nd	nd	0.86	nd	
Fustin (5)	nd	nd	nd	3.52	nd	
Butin (5)	nd	nd	nd	3.52	nd	
p-Coumaric acid	153.4	nd	84.3	nd	172.5	
Quercetin	5.45	5.49	2.48	nd		
Naringenin	nd	nd	nd	nd	5.54	
Vescalagin (6)	19.21	6.21	25.74	nd		
Castalagin (6)	24.97	5.43	32.45	nd		
Ellagic acid	3.49	1.17	4.91	0.049	0.72	
Vescalagin (8)	9.87–10.6	5.41–8.24	–	–	–	
Castalagin (8)	12.56–19.8	2.34–3.54	–	–	–	
Ellagic acid	6.91–12.56	2.34–3.42	–	–	–	
Table 1. Cont.

Phenolic Compounds	Wood Species	Reference				
	Oak Species	Fabaceae	Cherry			
	Quercus petraea	Quercus pyrenaica Willd.	Robinia pseudoacacia L.	Prunus avium L.		
Vescalagin (8)	12.6–17.6	1.23–5.28	11.3–14.6	–	–	[13] (9)
Castalagin (8)	20.1–22.7	0.37–0.44	15.2–19.7	–	–	
Ellagic acid	2.60–4.42	1.90–3.62	3.9–20.5	–	–	
Total ellagitannins (10)	–	–	–	–	nd-0.04	[64,66,69]
Gallic acid (11)	70.75	–	–	9.61	nd	
Vanillic acid (11)	2.34	–	–	nd	1.86	
Syringic acid (11)	3.78	–	–	0.82	3.05	
Ellagic acid (11)	32.68	–	–	nd	nd	
Protocatechuic (11) aldehyde	nd	–	–	0.19	7.90	

(1) (+)-catechin equivalents; (2) mg/L and data obtained after 30 extraction days by the use of model wine solutions 12 % with 60 g/L of wood chips without toasting process; (3) gallic acid equivalents; (4) protocatechuic acid equivalents; (5) naringenin equivalents; (6) ellagic acid equivalents; (7) mg/L and data obtained after 30 extraction days by the use of model wine solutions 12% with 4 g/L of wood chips; (8) mg/g dry wood gallic acid equivalents; (9) obtained after 160 min by the use of extraction solution (water/acetone); (10) mg/g untoasted wood and the sum of castalagin, vescalagin, granidin, and A, B, C, D, and E roburins; (11) mg/L of toasted wood and data obtained after 35 extraction days by the use of model wine solutions.

Table 2 shows the content of some of the most typical volatile compounds quantified in oak, false acacia, and cherry wood species. In oak wood species existent, a high quantity of volatile compounds with a significant influence on the wine sensory profile, especially in olfactive wine characteristics and also in some descriptors of the wine taste profile. Generally, wood belonging to genus Quercus has β-methyl-γ-octalactones (cis and trans forms), frequently in higher quantities in American species, like Quercus alba. Nevertheless, also in European oak species, it is possible to find these compounds. The lactones are related to sensory descriptors such as coconut and fresh oak. The literature describes that the cis isomer is more aromatic than the trans isomer [11,80,81]. Rendering to numerous authors [82,83], the cis to trans-oak lactone ratio is specific to the wood’s source, where this ratio is greater for American oak wood species than European oak species. Jordão et al. [11] reported values of cis/trans ratio of 5.7, 4.2, and 0.63 for Q. alba, Q. petraea, and Q. pyrenaica, respectively. These authors also quantified twelve distinct volatile compounds, comprising cis- and trans-β-methyl-γ-octalactones, in toasted oak woods from these species and diverse geographical origins. Rendering to the outcomes achieved the highest concentration for β-methyl-γ-octalactones were detected in Q. alba, followed by Q. petraea. For all of these oak species, the cis form was the most abundant β-methyl-γ-octalactone. As shown in Table 2, generally, woods not belonging to genus Quercus do not have either cis or trans-β-methyl-γ-octalactone in their composition. Nevertheless, some researchers [68,84] already found very low concentrations of lactones in false acacia and cherry woods. Furthermore, Caldeira et al. [85] also detected small quantities of cis and trans forms in chestnut wood.

De Rosso et al. [76] investigated the chemical compounds extracted from oak, chestnut, false acacia, and mulberry woods used to manufacture barrels. According to these researchers, chestnut, false acacia, and oak extracted quantities between 1 and 10 µg/g wood of coniferaldehyde, while very low quantities for mulberry wood were found. Furthermore, higher quantities were quantified for syringaldehyde for the wood species considered (chestnut, false acacia, and oak). For cherry wood, only quantities between 1 and 10 µg/g wood were detected. Lastly, benzaldehyde was only found in cherry woods. These results follow an analogous trend showing by Fernández de Simón et al. [86]. According to these authors sinapaldehyde, coniferaldehyde, and syringaldehyde were found in false acacia, oak, and cherry woods (Table 2).
Table 2. Individual volatile compounds are found in different wood species.

Volatile Compounds	Wood Species	Reference			
	Quercus petraea	Quercus alba	Quercus pyrenaica Willd.	Robinia pseudoacacia L.	Prunus avium L.
Furanic aldehydes (1)	397.19	–	–	8.26	70.18
Volatile phenols (1)	941.58	–	–	197.84	334.63
Phenolic aldehydes (1)	1563.62	–	–	170.38	1208.42
Phenyl ketones (1)	55.53	–	–	57.04	72.21
Lactones (1)	14.77	–	–	nd	3.95
Guaiacol (5)	4.46	0.91	–	0.10	0.16
Eugenol (5)	1.05	3.44	–	0.92	0.11
Furfural (3)	12.09	5.79	–	0.56	nd
Vanillin (3)	45.69	70.37	–	4.70	4.68
Trans-β-methyl-γ-octalactone (2)	2.14	1.64	–	nd	nd
Cis-β-methyl-γ-octalactone (2)	6.12	39.37	–	nd	nd
Guaiacol (5)	2.41	4.89	3.98	5.36	1.71
Eugenol (5)	1.83	1.29	2.12	2.36	1.50
Furfural (3)	430	395	494	804	23.3
5-Hydroxymethylfurfural (3)	22.9	21.1	28.9	113	47.6
5-Methylfurfural (3)	35.1	38.3	56.3	94.2	31.3
Vanillin (3)	117	102	114	77.1	68.3
Trans-β-methyl-γ-octalactone (3)	14.6	3.36	9.77	nd	nd
Cis-β-methyl-γ-octalactone (3)	21.1	31.8	30.0	nd	nd
Benzaldehyde (3)	0.8	0.74	0.96	0.25	0.91
Syringaldehyde (3)	221	226	250	272	455
Coniferaldehyde (3)	106	96.2	174	227	145
Sinapaldehyde (9)	263	239	439	912	804
Guaiacol (4)	4.20 × 10⁻³	12.52 × 10⁵	4.12 × 10⁻³	12.8 × 10⁻³	8.22 × 10⁻³
Eugenol (4)	3.39 × 10⁻³	59.39 × 10⁴	12.01 × 10⁻³	0.60 × 10⁻³	1.29 × 10⁻³
Vanillin (4)	71.77 × 10⁻³	31.5 × 10⁶	169.45 × 10⁻³	120.8 × 10⁻³	1.64 × 10⁻³
Furfural (4)	134 × 10⁻³	20.69 × 10⁶	5.75 × 10⁻³	13.7 × 10⁻³	3.24 × 10⁻³
β-Methyl-γ-octalactones (4)	119.6 × 10⁻³	199.8 × 10⁵	521.8 × 10⁻³	16.5 × 10⁻³	18.12 × 10⁻³
Ethyl cinnamate (4)	nd	nd	nd	nd	1.77 × 10⁻³
Ethyl hexanoate (4)	nd	nd	nd	nd	2.21 × 10⁻³
Benzaldehyde	11.44	12.68	7.93	nd	nd
Coniferaldehyde (5)	1.42	1.35	0.90	nd	nd
Syringaldehyde (6)	0.109	nd	0.11	nd	nd

(1) mg/100 g toasted wood in 3-octanol equivalents and oak Quercus robur specie was studied; (2) µg/g of untoasted wood; (3) µg/g toasted wood and data obtained after 15 extraction days by the use of model wine solutions 12% with 4 g/L of wood chips; (4) average peak area expressed in relative peak area in relation of internal standard and data obtained after 30 extraction days by the use of model wine solutions 12% with 4 g/L of wood chips; (5) sinapaldehyde equivalents; (6) syringic acid equivalents; (7) data obtained after 30 extraction days by the use of model wine solutions 12% with 4 g/L of wood chips; nd—not detected.

False acacia could be defined by an important concentration of benzene aldehydes, oak, and chestnut, by a great concentration of eugenol, vanillin, methoxyeugenol, syringaldehyde, and α-terpineol [76]. Furthermore, chestnut is also characterized by a great number of fatty acids and volatile compounds. In addition, mulberry wood contains a very low number of volatile compounds.

Vanillin, eugenol, and guaiacol are compounds with a significant role in numerous wine sensory descriptors. These compounds are related to sensory descriptors such as vanilla, smoky, and cloves aromas, respectively. Generally, vanillin is existent in different oak, chestnut, cherry, false acacia, and ash species. Nevertheless, lower values are also found in false acacia and cherry woods [86–89]. For Martínez-Gil et al. [22], the guaiacol concentrations in medium-toasted ash woods are considerably higher than those found in the other toasted woods. Other researchers [68,86] revealed similar concentrations of eugenol detected between different toasted oak wood species and other wood species.
false acacia, cherry, and ash). Fernández de Simón et al. [86] described for false acacia, cherry, ash, and chestnut toasted woods average concentrations of eugenol between 1.50 and 3.21 µg/g.

After wood toasting, the main volatile compounds formed are furfural, 5-hydroxymethylfurfural, and 5-methylfurfural. They resulted in hemicellulose thermodegradation during the toasting process. These compounds are related to caramel, toasted and bitter almonds sensory descriptors. Some wood species are characterized by a few different profiles concerning these compounds. Therefore, *Quercus humboldtii* for toasted wood shows a higher level of 5-methylfurfural and lower furfural and 5-hydroxymethylfurfural than other oak wood species, such as *Quercus petraea* and *Q. alba* [22]. In addition, Martins et al. [84] described a low concentration of furfural, 5-methylfurfural, and 5-hydroxymethylfurfural in false acacia and cherry toasted woods when compared with oak and chestnut woods. Even for untoasted woods, other works described low concentration of 5-methylfurfural and furfural in false acacia, while for no toasted cherry, it was not detected furan derivatives [87,89].

In Table 3, through various examples, the contents found of some of the volatile compounds quantified from several oak wood species as a function of the toasting intensity are shown.

Volatile Compounds	Without Toasting	Light Toasting	Medium Toasting	Strong Toasting	Oak Species	References
Vanillin	1.6–2.5	nd	10.5–23.4	22.0–33.6	*Q. pyrenaica*	[11] (1)
	6.8–7.5	nd	24.1–34.5	7.5–8.8	*Q. alba*	[16] (2)
	2.0–3.4	nd	48.5–60.0	3.0–6.3	*Q. petraea*	[90] (3)
Syringaldehyde	14.9–16.5	nd	82.0–88.4	69.0–88.8	*Q. pyrenaica*	[11] (1)
	16.3–20.2	nd	24.1–34.5	20.5–31.5	*Q. alba*	[16] (2)
	12.5–14.8	nd	48.5–60.0	85.0–118.0	*Q. petraea*	[90] (3)
Furfural	3.9–4.5	nd	2176–2670	1635–2155	*Q. pyrenaica*	[11] (1)
	1.2–1.8	nd	357.5–960.0	353.5–787.5	*Q. alba*	[16] (2)
	3.4–7.0	nd	723.0–772.5	118.0–613.0	*Q. petraea*	[90] (3)
5-Hydroxymethylfurfural	0.0–1.3	nd	3344–5078	2306–2976	*Q. pyrenaica*	[11] (1)
	0.4–0.7	nd	1678–3221	781.9–922.3	*Q. alba*	[16] (2)
	0.3–0.5	nd	1203–1722	654.2–980.6	*Q. petraea*	[90] (3)
	nd	nd	74.5	30.2	*Q. alba*	[16] (2)
	nd	nd	58.3	44.2	*Q. petraea*	[90] (3)
	nd	nd	10.7	nd	*Q. alba*	[16] (2)
	5.73	7.9	6.13	12.66	*Q. petraea*	[90] (3)

In Table 3, through various examples, the contents found of some of the volatile compounds quantified from several oak wood species as a function of the toasting intensity are shown.
Table 3. Cont.

Volatile Compounds	Without Toasting	Light Toasting	Medium Toasting	Strong Toasting	Oak Species	References
Trans-β-methyl-γ-octalactone						
nd–8.3	nd	4.8–7.0	5.0–7.2	Q. pyrenaica		[11](1)
4.0–5.0	nd	6.4–7.4	4.2–7.4	Q. alba		
5.0–6.7	nd	5.4–11.3	5.3–11.5	Q. petraea		
nd	3.35	6.63	2.78	Q. alba		[16] (2)
nd	11.5	9.65	4.43	Q. petraea		
Cis-β-methyl-γ-octalactone						
5.3–10.0	nd	3.6–13.7	2.9–9.6	Q. pyrenaica		[11] (1)
22.3–23.1	nd	26.5–45.5	16.1–23.6	Q. alba		
14.0–21.3	nd	14.1–18.5	7.4–18.2	Q. petraea		
nd	24.9	31.1	14.6	Q. alba		[16] (2)
nd	11.4	12.1	7.59	Q. petraea		

(1) mg/g dried wood; (2) µg/g wood; (3) mg/100g wood; nd—not detected.

3. Impact of Wood Species on Wine Chemical Composition

During the wine aging in wood, numerous chemical and physical changes occurred, such as transferring volatile and phenolic compounds from wood to wine to improve the wine’s quality [91]. However, reactions including only wine compounds and evaporation of volatile compounds can also take place. The key wood extractives are phenolic compounds [92], lactones (cis- and trans-β-methyl-γ-octalactones), aldehydes [76], and furfuryl compounds (5-methylfurural, furfural, and furfuryl alcohol) [90]. Moreover, wines aged in wood are also continually exposed to small quantities of atmospheric oxygen (for oak barrels, it has been estimated at 10–45 mg/L per year) through the stave pores. This natural micro-oxygenation enhanced the condensation and polymerization reactions between flavonoid compounds (tannin–tannin and tannin–anthocyanin), which positively influenced the evolution of wine phenolic composition, by the formation of new stable anthocyanin and tannin derivatives, with consequent color stabilization and loss of astringency [53,76,93]. On the other hand, the wine compounds can also be fixed on the wood and by wine lees [94,95], so this factor will also impact the volatile composition of wine. Therefore, the wine aged in wood undergoes important modifications that influence the wine volatile profile (a potential more complex aroma), color stability, and clarification; however, these changes are dependent on numerous factors, such as the wood species, initial wine composition, and the aging time.

The type and quantity of wood extractives are highly dependent on the aging time and on the number of compounds that are potentially extractable from the wood to the wine, which is influenced by the wood species employed [76], geographical origin, wood grain [13,15] drying and the toasting methods [16,96,97] and on barrel utilization time [43,98]. Nevertheless, the wine to be aged in wood needed to have a good initial structure and body to balance the adverse influence of oxygen.

Ortega-Heras et al. [99] studied the concentration of the volatile compounds removed from the wood, namely the syringaldehyde, cis- and trans-whisky lactones, vanillin, furfural, 5-methylfurural, guaiacol, eugenol, p-ethyl-phenol, and p-ethylguaicol in twelve red monovarietal wines aged in new American oak barrels. These authors conclude that the removal of these compounds was quicker during the first 4 or 9 months of aging time in wood. Moreover, the wine alcohol content influences the removal process of the compounds from the wood. Thus, Maga [100] studied the removal of cis- and trans-oak lactones, from American oak (Q. alba) in model wines with diverse ethanol levels (0%, 10%, 20%, 40%, and 60%), showing that the maximum levels of oak lactones were achieved in the samples with 40% ethanol. The removal of volatile compounds from wood barrels throughout the wine’s aging process with diverse alcohol content and pH (Cabernet Sauvignon, 12.3% v/v, pH, 3.45; Merlot, 13.6% v/v, pH, 3.7) was studied by Garde-Cerdán et al. [101]. These
authors described that in Merlot wine, with higher alcohol content, the removal of volatile compounds from wood barrels was higher than in Cabernet Sauvignon wine with lower alcohol content. These authors also observed that the alcohol degree has a higher effect on the removal process than the wine pH. Jordão et al. [11], using model wine solutions, studied the influence of temperature, pH, alcoholic level, and aging time on the removal of some ellagic tannins (castalagin, vescalagin, grandinin, roburin D and E) and ellagic acid from Q. pyrenaica wood chips (Quercus pyrenaica). In the removal conditions studied, the temperature was the key factor influencing ellagic acid and ellagic tannins evolution. The results suggest that a decrease/degradation of these compounds is less perceptible at low temperatures (12 °C).

Another factor to have in consideration is the number of barrel utilization, as the extraction decreases with the increased number of uses [83,102,103]. In the experiment performed by Towey and Waterhouse [102], fifteen barrels (7 American, 6 French, and 2 Hungarian) were used with Chardonnay wines in three successive vintages. These authors showed that the extraction rates were lesser in the one-year-old barrels than in the new barrels and lower in two-year-old barrels than in one-year-old barrels and that the levels of the compounds associated with toasting reduced significantly in the second year. Pérez-Prieto et al. [104] showed that the compounds removed from the wood, no significant differences were detected in furfuryl compounds and 4-methylguaicol, between new and 3 times used barrel (French or American oak); however, the number of lactones, which are essential compounds for the sensory wine characteristics, were significantly decreased in used barrels.

Moreover, Garde-Cerdán et al. [103] studied the effect of the barrels’ utilization time on the red wine volatile composition and showed that wood compounds such as syringaldehyde, vanillin, and trans-β-methyl-γ-octalactone, which are essential for the red wine aroma, were smaller than their perception threshold in barrel with 5 to 6 utilization times. This author also detected differences between the wines aged in used French and American oak barrels, so the wines aged in American oak presented levels of cis-β-methyl-γ-octalactone greater than its perception threshold, which was not observed in the wines aged in French oak. On the other hand, the wine aged in used French oak barrels presented a superior quantity of syringaldehyde, vanillin, acetovanillone, and ethyl lactate. Table 4 summarizes some results obtained by several authors on the volatile composition of some wines aged in French and American oak barrels, with different utilization times.

Volatile Compounds	Wine Characteristics	French Oak	American Oak	Reference
New oak barrels	Monastrell wine aged for 6 months	~325	~325	[104]
Alcohols $\times 10^{-3}$		~200	~200	
Acids $\times 10^{-1}$		~40	~40	
Esters $\times 10^{-2}$		~140	~120	
Furfuryl $\times 10^{-1}$		~10	~10	
Guaiacol		~10	~25	
4-Methyl guaiacol		~10	~25	
4-Ethyl phenol		~300	~320	
4-Ethyl guaiacol		~25	~10	
Trans-oak lactone		~40	~25	
Cis-oak lactone		~125	~400	
Vanillin		~200	~175	
Table 4. Cont.

Volatile Compounds	Wine Characteristics	French Oak	American Oak	Reference
Oak barrels used twice				
Furfural	771			
5-Methyl furfural	135			
5-Hydroxy methyl	0.02			
furfural	3714	79		[105]
Furfuryl alcohol	73	2.6		
Cis-oak lactone	49,930			
Trans-oak lactone	312			
γ-Nonalactone	40			
Coniferaldehyde	89	114		
Vanillin	0.06	1.6		[105]
Acetovanillone	15.52	656		
β-Ionone	0.19	87		
Eugenol	20	2051		
Guaiacol	8.8	206		
4-Methyl guaiacol	0.06	246		
Phenol	15.52	2051		
m-Cresol	0.8	246		
p-Cresol	0.19	246		
4-Ethyl phenol	656	246		
4-Ethyl guaiacol	87	246		
2-Phenyl ethanol	2051	246		
Ethyl butyrate	517	246		
Ethyl hexanoate	206	246		
Ethyl octanoate	246	246		
Ethyl decanoate	9	246		
Ethyl lactate	31,198	31,198		
Oak barrels used 3 times				
Alcohols × 10⁻³	~350	~325		
Acids × 10⁻¹	~240	~225		
Esters × 10⁻²	~40	~40		
Furfuryl × 10⁻¹	~125	~120		
Guaiacol	~10	~10		
Monastrell wine aged for 6 months	100–151	100–151		[106]
Cis-oak lactone	~75	~100		
Vanillin	~60	~75		
Oak barrels used 5 times				
Furfural	89–206	70–110		
5-Methyl furfural	4.0–5.0	5–13		
Furfuryl alcohol	516–620	115–447		
Cis-oak lactone	44–89	100–151		
Trans-oak lactone	28–51	20–37		
γ-Butyrolactone	18,200–19,300	17,900–18,100		
γ-Nonalactone	1.6–2.6	1.8–2.6		[103]
Ethyl butyrate	225–270	246–272		
Ethyl hexanoate	264–294	292–313		
Ethyl octanoate	349–353	345–355		
Ethyl decanoate	85–89	91–106		
Isoamyl acetate	276–296	245–338		
Ethyl lactate	26,200–34,500	14,700–17,500		
Vanillin	25–35	9–25		
Syringaldehyde	5–7	1–4		
Coniferaldehyde	17–20	15–18		
Table 4. Cont.

Volatile Compounds	Wine Characteristics	French Oak	American Oak	Reference
Acetovanillone	145–177	113–116		
β-Ionone	0.20–0.30	0.20–0.30		
Guaiacol	5–6	5–7		
4-Methyl guaiacol	0.030–0.030	0.04–0.05		
Eugenol	13–22	17–25		
4-Ethyl guaiacol	271–306	209–274		
4-Ethyl phenol	1540–1850	1160–1590		
2-Phenyl ethanol	3170–3470	2780–3320		

nd—not detected.

Besides oak wood, other species like cherry (*Prunus avium*), false acacia (*Robinia pseudoacacia*), mulberry (*Morus alba* L. and *Morus nigra* L.), or ash (*Fraxinus excelsior*) are increasingly considered for winemaking, and they are investigated in numerous studies [65,66,74,76,77], due to their lower costs, or due to their distinctive sensory contribution [85]. In the case of cherry wood, several authors reported that this wood species contribute to a faster red wine pigment stabilization, preserving the maximum red color intensity and the best wine chromatic characteristics [106]. On the other hand, the red wines aged in contact with mulberry wood barrels showed significant reductions in fruity-note ethyl esters and ethylguaiacol and also higher ethylphenol content. In addition, wines aged in cherry wood barrels presented higher polyphenol oxidation, being cherry wood not appropriate for long-time aging [76,77]. If the aging of the red wine in cherry wood chips is compared with the aging in oak wood chips, it seems to be a quicker evolution of the wine phenols [10,34]. During the wine aging in cherry wood barrels, a decrease in flavonols and flavanols was observed (involved in condensation phenomena capable of stabilizing wine color) [107]. Chinnici et al. [106] proposed that red wine aged in cherry wood barrels presented a high quantity of flavanols that may possibly be involved in acetaldehyde-mediated condensation, increasing pigments stabilization. As shown in Table 5, the wines aged in cherry wood barrels are distinct from the wine aged in oak wood barrels due to the existence of five additional phenolic compounds, namely, eriodictyol, a flavanone derivative, sakuranetin, pinocembrin, and chrysin [107]. For wines aged in contact with chestnut wood barrels, the presence of valoneic acid dilactone was observed, which could be considered a phenolic marker for a wine aged in contact with this wood species [74]. In these wines, a higher concentration of gallic and ellagic acids was also quantified [71,74,108]. Wines aged in contact with false accacia wood presented dihydrorobinetin, robinetin, and 2,4-dihydroxybenzaldehyde in higher concentrations, but also other compounds were identified in wines aged in contact with false accacia wood barrels such as 2,4-dihydroxybenzoic acid, pentahydroxydihydroflavonol, tetrahydroxydihydroflavonol, fustin, trihydroxymethoxy dihydroflavonol, robitin, butin, tetrahydroxyaurone, and butein [65,66,74], as shown in Table 5. Phenolic acids present in oak wood also have important functions in aged wines as they influence factors associated with an antioxidant capacity [69,109–113]. Wine increases its antioxidant capacity in contact with the wood due to an increase in the concentration of p-coumaric, gallic, caffeic acids, ferulic, protocatechuic, and protocatechuic aldehyde during wine wood aging [69,109,112]. Therefore, the wood composition in phenolic acids used in wine aging could determine the increase in antioxidant capacity of wood-aged wines [113], and consequently, it will be dependent on botanical species used in the wood aging process. Alañón et al. [69] observed that the minimum antioxidant capacity was found in extracts from *P. avium*, the extracts from *Q. pyrenaica*, *Q. alba*, and *Q. petraea* showed middle antioxidant capacity, and the maximum antioxidant capacity was found in extracts from *Q. robur* and *C. sativa*, these
authors also showed that the antioxidant capacity observed was related with the wood phenol composition of these species.

Table 5. Red wine (Sangiovese (85%) and Merlot (15%)) phenolic compounds (mg/L) aged in oak and cherry wood with 225 L capacity during 2 and 4 months Adapted from [107] and Syrah red wines aged in cherry, chestnut, false acacia, ash, and oak wood barrels with 225 L capacity (D.O. Cataluña aged 6 months) Adapted from [74].

Compound	2 Months	4 Months	6 Months						
	Oak	Cherry	Oak	Cherry	Chestnut	False Acacia	Ash	Oak	
Protocatechuic acid	4.20	4.27	3.74	2.72	1.02	0.24	0.9	0.82	0.73
Vanillic acid	1.63	1.37	1.81	1.14	3.59	3.25	nq	4.88	3.62
Syringic acid	5.16	3.95	3.25	3.32	4.09	3.56			
Caffeic acid	6.72	6.46	6.16	5.82	22.66	15.62	20.21	21.28	24.82
p-Cumaric acid	1.46	1.34	0.89	1.08	0.82	0.32	0.33	0.38	0.41
Caftaric acid	38.8	36.9	36.6	36.3	0.07	0.54	0.71	0.41	0.07
GRP	7.08	6.92	6.17	5.96					
Cis p-Coumaric acid					4.01	1.27	4.31	4.2	4.25
Trans p-Coumaric acid					46.68	9.45	40.14	41.89	47.13
Ferulic acid					0.56	1.02	1.41	1.29	1.07
Cis-Coutaric acid	2.51	2.57	2.39	2.44	0.03	0.11	0.06	0.03	nd
Trans-Coutaric acid	7.90	7.82	7.97	7.63	0.04	0.36	0.17	0.13	nd
Ferulic acid	13.1	12.6	13.2	12.2	0.16	0.19	0.91	0.05	nd
Ethyl cumarate	0.10	0.12	tr	tr					
(Epi)catechin gallate					4.52	4.36	nq	4.06	5.12
(+)-Catechin	56.1	53.0	42.7	21.4	47.7	38.88	35.34	37.5	40.13
(−)-Epicatechin	52.0	45.2	38.6	20.5	10.81	9.81	9.32	9.17	10.35
Procyanidin B1	82.8	75.6	66.5	26.7					
Procyanidin B2	86.9	73.9	68.4	27.7	11.14	5.78	4.92	7.54	9.11
Isorhamnetin-3-glucoside	2.07	1.83	2.06	1.74	7.82	6.11	6.28	7.73	6.59
Syringetin-3-galactoside					nd	0.54	2.49	0.82	2.37
Isorhamnetin	1.20	1.16	1.40	1.21					
Kaempferol	1.33	1.43	1.60	1.28	1.05	1.02	0.67	0.56	0.56
Myricetin-3-glucoside	4.91	2.88	4.93	3.43	5.11	4.28	4.66	4.62	4.69
Myricetin	5.37	5.77	4.47	3.14	1.91	1.53	1.81	2.55	1.37
Quercetin	14.6	16.7	14.6	8.55	27.82	23.99	23.72	23.41	26.24
Quercetin-3-glucoside	1.39	1.23	0.79	0.64	3.48	4.38	3.14	2.97	2.93
Quercetin-3-glucuronide	7.28	6.57	6.75	4.44	0.84	1.39	0.74	0.72	0.57
Laricitrin-3-glucoside	13.70	11.96	12.62	13.07	13.42				
Tyrosol	57.1	49.4	55.5	52.6	0.82	0.73	0.84	1.01	0.84
Trans-Resveratrol	1.01	0.94	1.04	0.69	1.35	1.18	1.77	1.38	1.57
Trans-Resveratrol glucoside	4.10	5.01	5.49	5.33	1.72	1.45	2.35	1.61	2.01

cherry wood wines aged phenolic markers

Compound	2 Months	4 Months	6 Months	
Eriodictyol	nd	nd	0.09	0.63
Flavone derivative	nd	0.31	nd	0.51
Sakuranetin	nd	0.86	nd	2.21
Pinocembrin	nd	1.44	nd	1.72
Chrysirin	nd	0.11	nd	0.71
Taxifolin				3.64
Prunin				0.76
Aromadendrin				5.56
Naringenin				5.57
Isosakuranetin				3.98

chestnut wood wines aged phenolic markers

Compound	2 Months	4 Months	6 Months						
Gallic acid	66.7	64.1	68.0	64.7	21.38	43.91	33.09	27.77	30.46
Ellagic acid	4.53	1.39	7.66	3.44	5.94	20.41	4.54	5.54	11.61
Ethyl gallate	47.0	33.1	25.9	14.1	8.99	11.73	7.95	8.11	9.16
Valoneic acid dilactone									1.69
Table 5. Cont.

Compound	2 Months	4 Months	6 Months						
	Oak	Cherry	Oak	Cherry	Cherry	Chestnut	False Acacia	Ash	Oak
false acacia wood wines aged phenolic markers									
2,4-Dihydroxybenzoic acid							2.19		
2,4-Dihydroxybenzaldehyde							16.48		
Dihydrorobinetin							79.24		
Pentahydroxydihydroflavonol							1.75		
Tetrahydroxydihydroflavonol							5.69		
Fustin							4.33		
Trihydroxymethoxy dihydroflavonol							2.78		
Robitin							1.49		
Butin							3.41		
Robinetin							30.01		
Tetrahydroxyaurone							3.28		
Butein							2.63		

nd—not detected; tr trace; nq = not quantified, interference by other peaks.

Fernández de Simón et al. [114] also identified several volatile compounds that could be used as chemical markers for red wines aged in false acacia (2,4-dihydroxybenzaldehyde) and cherry wood barrels’ (ethyl-2-benzoate).

Regarding the evolution of bottled red wines with previous wood chips contact, Costa et al. [10] focused on the study, over a time of 18 months of aging, of several phenolic parameters of bottled Touriga Nacional red wines that had before been in contact with toasted wood chips from two oak species and cherry. Throughout 18 months of aging, the results indicated less reduction in the phenolic compounds and red color of wines which had previous interaction with oak chips, as well as a less developed brown color throughout bottle storage, compared to the wine previously in contact with cherry chips and the wine without contact with wood chips. Furthermore, wine previously in contact with cherry wood chips always presented an evolution similar to the wine without contact with wood chips. Previously, Tavares et al. [34] also reported the evolution of phenolic compounds of a Portuguese red wine aged for 90 days in contact with wood chips from false acacia (Robinia pseudoacacia), cherry (Prunus avium), and oak species. According to these authors, the diverse wood chip species studied had no clear effect on the evolution of the majority of the red wine phenolic compounds. Nevertheless, from a sensory point of view, the use of diverse wood species induced higher distinction, particularly for aroma descriptors.

Wood aging is also applied in some white wines, mostly by fermentation in barrels but also for aging to increase the quality of white wines [31,38–43,75,115–120]. Studies performed by Nunes et al. [43] to understand the effect of the application of diverse oak wood barrel sizes and utilization time on a white wine characteristic showed that the wines aged in new oak wood barrels presented a higher number of phenolic compounds, for instance, gallic and ellagic acid, independently of the oak wood barrel capacity. On the other hand, Sánchez-Palomo et al. [42] studied the influence of the application of wood chips at different stages of the vinification process on the volatile composition of Verdejo white wines. This study showed that higher concentrations of oak lactones, benzene compounds, and furanic compounds were presented in white wines in contact with oak chips. Moreover, in white wines, the application of other wood chip species, besides oak, was investigated in numerous studies such as cherry chips [44] and false acacia chips [44,75,88,89]. These innovations aim to enhance and improve white wines, searching for new sensory characteristics/sensations to satisfy the consumers. Tables 5 and 6 show several examples of compounds detected in wines aged in wood barrels from different wood species.
Table 6. Red wine (Syrah) aged 12 months in cherry, chestnut, false acacia, ash, and oak wood, white wine (Malvazija) aged in false acacia and oak wood, and Chardonnay aged in false acacia volatile compounds (µg/L) Adapted from [75,89,114].

Compound	Red wine (12 Months)	White Wine	False Acacia (12 Months)	Oak (12 Months)	False Acacia (1 to 4 Months)						
	Cherry	Chestnut	False Acacia	Ash	Oak	82.8–1236.3	740.2–1795.8	93–173.3	4.3–250.6	5.2–0.1	1.4–0.8
Furfural	101	509	238	66.2	39.8	82.8–1236.3	740.2–1795.8	93–173.3	4.3–250.6	5.2–0.1	1.4–0.8
5-Methyl furfural	31.8	241	450	57.8	842	4.3–250.6	5.2–0.1	1.4–0.8			
5-Hydroxymethylfurural	145	689	248	339	703	1.4–0.8	5.2–0.1	1.4–0.8			
5-Acetoxyethyl-2-furural	1.81	5.51	4.85	2.58	2.09	5.2–0.1	1.4–0.8				
2-Furanmethanol	1550	14,120	3415	878	6248	5.2–0.1	1.4–0.8				
Methyl-2-furoate	13.7	10.4	43.0	28.8	31.9	5.2–0.1	1.4–0.8				
Ethyl-2-furoate	28.3	53.4	54.9	48.1	57.0	5.2–0.1	1.4–0.8				
1-(2-Furanyl)-ethanone	62.1	299	161c	76.8	420	5.2–0.1	1.4–0.8				
1-Methoxy-2-ethoxyethyl-1-furan	38.7	169	39.3	24.8	20.5	5.2–0.1	1.4–0.8				
3-Ethylcycloptene	nd	1.22	6.73	26.3	8.28	5.2–0.1	1.4–0.8				
4,5-Dimethyl-2-cyclohexen-1-one	0.45	nd	10.5	14.7	10.0	5.2–0.1	1.4–0.8				
γ-Butyrolactone	4240	4419	4307	4007	4334	5.2–0.1	1.4–0.8				
Whisky lactone trans	nd	21.3	nd	99.4	0.2–0.3	5.2–0.1	1.4–0.8				
Whisky lactone cis	nd	31.2	nd	577	0.4–0.5	1.4–0.8					
Phenol	0.9	8.47	9.06	10.8	9.07	1.4–0.8	1.4–0.8				
o-Cresol	2.20	2.04	2.56	5.75	2.28	1.4–0.8	1.4–0.8				
p-Cresol	13.2	2.84	3.27	4.50	2.53	1.4–0.8	1.4–0.8				
m-Cresol	1.79	1.36	0.59	2.24	1.04	1.4–0.8	1.4–0.8				
4-Ethylphenol	431	415	48.1c	479	274	1.4–0.8	1.4–0.8				
Catechol	4.70	4.65	nd	nd	nd	1.4–0.8	1.4–0.8				
4-Methylcatehol	10.4	11.4	3.81	14.2	nd	1.4–0.8	1.4–0.8				
Guaiacol	42.8	59.3	59.8	75.1	43.8	1.4–0.8	1.4–0.8				
4-Methylguaiacol	24.6	51.5	14.1	34.8	31.5	1.4–0.8	1.4–0.8				
4-Ethylguaiacol	73.3	49.1	19.9	91.5	24.2	1.4–0.8	1.4–0.8				
Eugenol	10.5	118	19.3	128	101	1.4–0.8	1.4–0.8				
cis-isoegenol	0.5–1.6	0.6	1.4–0.8	1.4–0.8	0.9–0.6	1.4–0.8					
trans-isoegenol	8.6–33.1	3.6–7.9	1.4–0.8	1.4–0.8	0.9–0.6	1.4–0.8					
2,4-Dihydroxybenzaldehyde	nd	nd	1248	nd	nd	1.4–0.8	1.4–0.8				
p-Anisaldehyde	4.42	0.29	nd	nd	nd	1.4–0.8	1.4–0.8				
Vanillin	304	456	233	696	408	1.4–0.8	1.4–0.8				
Syringaldehyde	1877	1189	768	1090	1305	1.4–0.8	1.4–0.8				
Acetovanillone	75.1	92.4	61.3	111	62.4	1.4–0.8	1.4–0.8				
Methyl benzoate	94	nd	0.43	nd	nd	1.4–0.8	1.4–0.8				
Ethyl benzoate	29.16	nd	nd	nd	nd	1.4–0.8	1.4–0.8				

nd—not detected.

A study carried out by Kozlovic et al. [75] indicated differences in the volatile composition between wines aged in contact with oak and false acacia wood barrels. These authors reported an increase in oak lactones, simple volatile phenol, furfural, 5-methylfurufural, eugenol, guaiacol, and trans-eugenol during 12 months of aging time. Moreover, Delia et al. [44] studied the influence of aging in an Encruzado white wine in contact with diverse wood chips species (false acacia, cherry, and oak) during 28 days. The results showed that the wine stored in contact with false acacia wood chips revealed a rise in total phenols, non-flavonoid and flavonoid phenolic compounds, and also color intensity. Alañón et al. [88,89] studied the volatile composition of young white wine from the V. vinifera grape variety Chardonnay aged in wood barrels of false acacia. After 4 months of barrels aging, it was observed that the quantity of vanillin, syringaldehyde, ferulic acid, and furfural reduced significantly. This reduction is related to the false acacia wood’s porosity that induced higher oxidation.

There have been studies on the use of different woods in rosé winemaking. Nunes et al. [37] investigated the influence of the application of cherry and oak wood chips
(throughout the alcoholic fermentation and aging process) on rosé wine characteristics. Rosé wines vinified and aged in contact with wood chips showed greater levels of colored anthocyanins, while also presenting an increase in color intensity compared to the rosé wine without wood chips contact. Moreover, Santos et al. [35] observed the influence of the application of diverse wood chip species (false acacia, cherry, and oak) in rosé wines throughout a short aging period. Costa et al. [24] also studied the potential use of toasted wood chips from walnut (*Juglans regia* L.) in enology. This study focused on comparative evolution during 30 days of the phenolic composition and sensory profile of a Touriga Nacional red wine kept in contact with toasted walnut (*Juglans regia* L.) chips and oak (*Quercus petraea* L.) wood chips. The results obtained in this research revealed that the wine stored in contact with *Quercus petraea* L. chips showed, in general, the highest concentration for the majority of the phenolic compounds studied. At the same time, the wine stored in contact with *Juglans regia* L. chips presented significantly higher concentrations for oligomeric proanthocyanidins.

4. Influence of Wood Species on the Wine Sensory Profile

Aged wines show a distinctive sensory feature that is acquired throughout the aging process. In the last years, winemakers from outside of Europe began to make wines with potential new sensory profiles, and therefore, the application of diverse wood species for wine aging constituted a potential increasingly valid and widespread option.

Wood barrel-aged wine is complex and its sensory perception results from the interaction of many compounds. However, only a few of the compounds extracted from the wood to the wine during barrel aging have a significant impact on the wine sensory characteristics (Table 7). The main volatile compounds released from wood with wine sensory impact are phenolic aldehydes and phenyl ketones, furanic compounds (furfural, hydroxymethylfurfural, furfuryl alcohol, and 5-methylfurfural), volatile phenols (guaiacol, 4-methylguaiacol, ethylguaiacol, vinylguaiacol, and eugenol), and β-methyl-γ-octalactones [121,122]. Phenolic aldehydes and ketones give the characteristic vanilla aroma of oak wood-aged wines, with vanillin being the main compound, characterized by low sensory thresholds (0.3 ppm) in wine [30,123]. Siringaldehyde, sinapaldehyde, and coniferaldehyde do not have a great sensory impact, although their perception thresholds are clearly higher and, therefore, at their usual concentration.

Furanic compounds are responsible for the characteristics and pleasant aromas of almonds and toasted almonds [122], with an olfactory detection threshold in red wines of 20 mg/L for furfural and 45 mg/L for 5-methylfurfural [123]. Maltol and other oxygenated heterocycles provide the aromas of caramel and notes of toast that also characterize wood-aged wines. Guaiacol contributes with a smell of toast and sweet smoke aroma, with an olfactory detection threshold as low as 0.05 ppm [124]; methyl-4-guaiacol and ethyl-4-guaiacol have the smell of burnt wood, while phenol has an ink odor. Eugenol is also of great importance for wine sensory characteristics as it gives a spicy aroma of clove with a sensory threshold of 0.5 ppm [124]; however, all the others give smoked/toasted notes [125]. β-methyl-γ-octalactones (*cis* and *trans* forms) are responsible for the coconut flavor, two isomers, *cis* (−) and *trans* (+), have been described [63,126]. It is necessary to point out that the *cis* isomer presents a perception threshold between 4 and 5 times less than the *trans* isomer making its contribution to coconut perception much more important [125], namely 460 µg/L for the *trans*-isomer and 92 µg/L for the *cis*-isomer [127]. Phenol has a medicinal smoky aroma but a slight sensory effect as its olfactory detection threshold is nearly 40,000 µg/L; o-cresol and p-cresol have a medicinal aroma, with an olfactory detection threshold of 300 and 60 µg/L, respectively [75,124]. Ethyl-4-phenol has an unpleasant animal smell, described as leather and even a horse odor. The presence of the latter compound is considered, as long as it exceeds its threshold perception, as a serious wine defect [124]. Wood also releases some nonvolatile compounds such as phenolic acids, coumarins, and especially ellagitannins into the wine [92], which contribute to wine texture and taste sensations, such as body and astringency [128].
Fernández de Simón et al. [114] showed that each wood species added a diverse intensity of aromatic and gustative descriptors, emphasizing the main intensity of caramel/almond, vanilla, and toasty notes in red wines aged in oak wood barrels, of smoky, spicy, and fruity notes in red wines aged in false acacia wood barrels, and of balsamic descriptors in the red wines aged in ash wood barrels. Moreover, Hale et al. [129] referred that throughout wine aging in a barrel, volatile compounds extracted from oak wood contribute with aromatic notes of smoke, vanilla, and spices.

Table 7. Wood compounds and their sensory descriptors and olfactory detection threshold (ODT).

Compounds	ODT (µg/L)	Sensory Descriptors	Reference
Furfural	15,000–20,000	Toasted nuts, burnt almonds, caramel, dried fruit	[122,129–131]
5-Methyl furfural	16,000–45,000	Toasted nuts, toasty, sweet, spicy	[123,129–131]
Vanillin phenols	60–320	Vanilla	[123,131]
Syringaldehyde	50,000	Vanilla	[123]
Eugenol	5–500	Spice cloves, cinnamon, smoke character	[123,129–131].
Guaiacol	15–75	Spicy, toasty, smoky/burnt	[123,131,132]
4-Methylguaiacol	65	Burnt	[123]
β-Methyl-γ-octolactones		Coconut	[123]
Isomer cis	35–46-92	Vanilla, oaky, clove, coconut	[125,130,131,133]
Isomer trans	122–460	Vanilla, oaky, clove, coconut	[127,130,131]
4-Ethylphenol	620	Horse sweat	[125]
4-Ethylguayacol	140	Toasted bread, smoky, clove, burnt	[125,130]
Acetovanillione	1000	Vanilla	[134]
Maltol	5000	Caramel, toasted	[135]

In the literature, several research works studied the impact of aging red wine in oak wood barrels on the wine sensory characteristics [14,32,33,96,104]. In this sense, it was shown that in the case of red wines aged for 12 months in oak wood barrels that the kind of oak wood barrels used and the barrel toasting process influenced the wine sensory characteristics [96]. The descriptors vanilla aroma, astringency sensation, and bitterness taste are significantly influenced by the barrel toasting process. These researchers also showed that the wood origin influenced the sensory characteristic of the wine, as it was shown that the concentration of the extractable compounds is different, mainly on whiskey lactone and eugenol concentration. Moreover, differences were observed if the wines were aged in new or used barrels. Pérez-Prieto et al. [104] showed that all sensory descriptors of wines aged in new oak barrels are significantly different from wines aged in used oak barrels. The wines aged in new barrels were higher scored in the descriptors woody, vanilla, spicy, and cedar notes, and the wines aged in used barrels were higher scored for the descriptors pharmaceutical, herbaceous and horsy notes.

Fernández de Simón et al. [74] assessed the sensory profile of Syrah wines aged twelve months in barrels from diverse wood species. It was shown that each wood species contributed with diverse intensities of practically all gustative and aromatic descriptors. Regarding the olfactory descriptors, these authors showed that the wines aged in oak barrels presented the highest intensity of vanilla (4.6), almond/caramel and toasty notes, wines aged in false acacia wood barrels of spicy, smoky, and fruity notes, and the wines aged in ash wood barrels of balsamic notes. The scores for a vanilla descriptor for the wines
aged in ash wood was 1.8 and for the wines aged in chestnut wood, 1.6. However, these authors pointed out that the levels of vanillin were higher in wines aged in ash, followed by those aged in chestnut and oak wood and those aged in cherry and false acacia wood barrels. According to these researchers, the results showed that the olfactory descriptors for vanilla need to be enriched by the existence of other compounds, such as whisky lactones, compounds that are only found in wines aged in oak wood barrels. Previously, Spillman et al. [136] showed that the olfactory descriptor vanilla in red wines correlated strongly with the level of cis-β-methyl-γ-octalactone. On the other hand, the wines aged in false acacia wood barrels showed higher spiced, toasted, and fruited notes [74], which could be, according to these authors, correlated to their high level in mono and dimethoxyphenols, acetosyringone, and ethyl vanillate [125]. Fernández de Simón et al. [74] also observed that wines aged in chestnut wood barrels presented middle scores of all olfactory descriptors, and the wines aged in cherry wood barrels presented the lowest scores for the olfactory descriptors toasty, almond, caramel, vanilla and smoky. The wines aged in oak wood were the higher scored wines regarding global wine valuation and the wines aged in the cherry wood barrels were the worst scored. Moreover, other researchers have previously shown that the cherry wood barrels are only suggested in red wines for short aging times [76,77,106].

More recently, Tavares et al. [34] studied the sensory characteristics of a red wine aged in contact with chips from cherry, false acacia, and oak woods. It was shown that the wine aged in contact with French oak chips presented significantly higher scores for the aroma descriptors (vanilla, boisé, and coconut), while the red wine aged with Portuguese oak wood chips presented significantly higher scores for other aroma descriptors such as sawdust. However, these last wines showed lesser scores for fruity and floral aroma descriptors. The red wines aged in false acacia and cherry wood chips showed lower scores for all aroma descriptors. These differences observed in the wines aged in contact with the different oak wood chips are related to greater extraction of β-methyl-γ-octalactone (mainly cis-β-methyl-γ-octalactone), furfural, vanillin, and 5-methylfurfural from oak chips [32,40].

Ortega-Heras et al. [137] observed that wine aged with wood chips would give a similar sensory characteristic of wines aged in a new oak wood barrel for a short aging period (about three months); however, if the aging in a new oak wood barrels will be for a long period of time, differences in the sensory characteristics were detected. Nevertheless, the application of oak wood chips could be a good option for the production of young red wines with few gustative and olfactory wood notes

For white wines, Herrero et al. [119] associated the volatile compounds removed from oak wood with diverse toasting degrees with the sensory characteristics of varietal wines from Chardonnay and Sauvignon Blanc grapes. For these researchers, guaiacol, eugenol, vanillin, 4-methylguaiiacol, furfuryl alcohol, and furfural were positively correlated to aroma quality perceived by specialists of Sauvignon Blanc wines. For Chardonnay wines, the highest aroma scores were positively correlated with the 4-vinylguaiacol and isoeugenol and negatively correlated with the existence of lactones and 4-vinylphenol in wines. Spillman et al. [122] established the role of some oak wood-extractable compounds in Chardonnay wines aged in new oak barrels, for example, the correlation between the volatile compounds of the wood manufactured during the toasting process and the “smoky” aroma. Herjavec et al. [117] reported a positive effect of the use of new Croatian oak barrels during the alcoholic fermentation on the sensory characteristics of Chardonnay and Sauvignon Blanc wines, in comparison with those fermented in stainless steel vats. Therefore, Gutiérrez-Afonso [138], also using white wines, considered the influence of wood (in the form of oak chips or in oak barrels) on the sensory proprieties during the fermentation. The outcomes indicated that American oak chips induce a higher intensity of coconut and vanilla notes and an increase in the degree of astringency and bitterness sensations than barrels.

Other research works studied the application of non oak wood species on the sensory profile of white wines. Thus, Young et al. [139] carry out the aging of Chardonnay wines in
contact with numerous diverse wood species from New Zealand, such as Feijoca, Matai, Cherry beech, Silver beech, Macrocarpa, Manuka, Pohutukawa, Radiata pine, Totara, Kahikatea, and Rimu, in comparison with American oak wood during 2 weeks. The outcomes found by these researchers showed that only Chardonnay wine aged in contact with Macrocarpa wood presented analogous flavors with oak white wine. Loupassaki et al. [140] reported results about a comparative study between the application of oak (*Q. petraea* and *Q. alba*) and false acacia wood barrels on the sensory characteristics of white wine aged for 9 months. The outcomes showed that wines aging in barrels manufactured with *Quercus alba* wood had the higher average scores, with more intense aromatic profiles and notes of “oak”. Kozlovic et al. [75] reported after 12 months of aging that Malvazija wines aged in false acacia barrels presented higher finer textures and with more marked vanilla and spicy character than the wines aged in oak barrels. Other authors [88,89] also indicate that wines aged in false acacia barrels may have new sensory descriptors related to nutty, honeyed, and toasted notes.

Délia et al. [44] reported the positive influence of false acacia wood chips on the sensory characteristics of aged white wines. The outcomes showed significantly higher persistence in white wines aged with false acacia and French oak wood chips compared to other wines aged with cherry and American oak chip species. Jordão et al. [141] studied likewise the influence of toasted oak and cherry wood chips on sensory properties of numerous monovarietal white wines produced from Viosinho, Alvarinho, Loureiro, and Sauvignon Blanc grape varieties. The results showed that the influence of the application of cherry wood chips was mainly detected by the tasters for the wine vinified from the grape variety Viosinho with a rise of fruity aroma.

Finally, Del Galdo et al. [45] considered the application of diverse blends of toasted oak and cherry wood chips to develop numerous sensory descriptors of white wine. The authors reported a significant reduction of scores attributed to the panel taste during the aging time, although the white wine aged with cherry wood chips alone and control wine presented not as much of a marked decrease.

5. Final Remarks

In the last two decades, for numerous wood species, including oak species, a diversity of chemical compounds has been identified and quantified. However, only oak and chestnut species are authorized by the O.I.V. for enological application. Consequently, these two wood species are usually applied throughout the winemaking and aging process. Nevertheless, it is important to note that according to the O.I.V., the option for the application of wood chips is only possible for the *Quercus* genus. Nevertheless, more recently, the increasing request for oak wood has triggered significant growth in manufacturing and environmental concerns. In this way, other wood species have been pointed for winemaking, especially in non-European countries. However, the understanding of the effect of the application of non-oak wood species on wine quality is still new. Thus, the application of diverse wood species to the wine may be an alternative to produce wines with different sensory profiles. In this context, additional investigation is needed to increase the understanding of the potential effect of the different non-oak wood species on wine quality.

Author Contributions: A.M.J. and F.C. contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by FCT-Portugal and COMPETE (grant number UIDB/00616/2020 and UIDP/00616/2020).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.
Acknowledgments: The authors would like to thank the Chemistry Research Center-Vila Real (CQ-VR) and Polytechnic Institute of Viseu for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Parodi, G. A proposito di barrique. *Vignevini* 2000, 3, 77–83.
2. Gautier, J.F. Le tonneau à travers les âges. *Rev. Oenol. Tech. Vitivin. Oenol.* 2003, 30, 13–15.
3. Vivas, N.; Saint-Criçq de Gaulejac, N. The useful lifespan of new barrels and risk related to the use of old barrels. *Aust. N. Z. Wine Ind. J.* 1999, 14, 37–45.
4. Singleton, V.L. Stockage des vins en barriques: Utilisation et variables significatives. *J. Sci. Tech. Tonnellerie* 2006, 2, 1–45.
5. Carvalho, A. Identificação anatômica e caracterização física e mecânica das madeiras utilizadas no fabrico de quartolas para produção de aguardentes velhas de qualidade-Denominação Lourinhã. *Cienc. Téc. Vitic.* 1998, 13, 71–105.
6. Vivas, N. *Manual de Toneleria. Destinado a Usuarios de Tonelos*; Mundi-Prensa Libros: Madrid, Spain, 2005; ISBN 84-8476-205-X.
7. Fernández de Simón, B.; Hernández, T.; Cadahía, E.; Dueñas, M.; Estrella, I. Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. *Eur. Food Res. Technol.* 2003, 216, 150–156. [CrossRef]
8. Fernández De Simón, B.; Cadahía, E.; Jalocha, J. Volatile compounds in a Spanish red wine aged in barrels made of Spanish, French, and American oak wood. *J. Agric. Food Chem.* 2003, 51, 7671–7678. [CrossRef]
9. Jordão, A.M.; Costa, F.; Fontes, L.; Correia, A.C.; Miljčić, U.; Jordão, A.M. Impact of the contact time of different oak wood chips on red wine phenolic composition evolution after bottling. In Proceedings of the 42th World Congress of Vine and Wine. BIO Web of Conferences, Geneva, Switzerland, 15–19 July 2019; Volume 15, p. 02019.
10. Costa, M.; Fontes, L.; Correia, A.C.; Miljčić, U.; Jordão, A.M. Impact of oak (*Q. pyrenaica* and (*Q. pubescens*) and cherry (*P. avium*) wood chip contact on phenolic composition and sensory profile evolution of red wines during bottle storage. *OENO One* 2020, 54, 1159–1181. [CrossRef]
11. Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Comparison of volatile composition of cooperage oak wood of different origins (*Quercus pyrenaica* vs. *Quercus alba* and *Quercus petraea*). *Mitt. Klosterneubg.* 2005, 55, 31–40.
12. Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O.; Adams, A.; Demytteenaere, J.; Verhe, R.; De Kimpe, N. Volatile composition analysis by solid-phase microextraction applied to oak wood used in cooperage (*Q. pyrenaica* and *Q. petraea*): Effect of botanical species and toasting process. *J. Wood Sci.* 2006, 52, 514–521. [CrossRef]
13. Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Ellagitannins from Portuguese oak wood (*Quercus pyrenaica* Willd.) used in cooperage: Influence of geographical origin, coarseness of the grain and toasting level. *Holforschung* 2007, 61, 155–160. [CrossRef]
14. Gonçalves, F.J.; Jordão, A.M. Changes in antioxidant activity and proanthocyanidin fraction of red wine aged in contact with Portuguese (*Quercus pyrenaica* Willd.) and American (*Quercus alba L.*) oak wood chips. *Ital. J. Food Sci.* 2009, 21, 51–64.
15. Fernández de Simón, B.; Cadahía, E.; del Álamo, M.; Neves, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in red wine treated with them. *Anal. Chim. Acta* 2010, 660, 211–220. [CrossRef] [PubMed]
16. Fernández de Simón, B.; Cadahía, E.; Muñoz, I.; del Álamo, M.; Neves, I. Volatile composition of toasted oak chips and staves and of red wine aged with them. *Am. J. Enol. Vitic.* 2010, 61, 157–165.
17. Gallego, L.; Del Alamo, M.; Neves, I.; Fernández, J.A.; De Simón, B.F.; Cadahía, E. Phenolic compounds and sensorial characterization of wines aged with alternative to barrel products made of Spanish oak wood (*Quercus pyrenaica* Willd.). *Food Sci. Technol. Int.* 2012, 18, 151–165. [CrossRef]
18. Castro-Vázquez, L.; Alaño, M.E.; Ricardo-da-Silva, J.M.; Pérez-Coello, M.S.; Laureanoof, O. Evaluation Portuguese and Spanish *Quercus pyrenaica* and *Castanea sativa* species used in cooperage as natural source of phenolic compounds. *Eur. J. Food Sci. Technol.* 2013, 237, 367–375. [CrossRef]
19. Sánchez-Gómez, R.; Neves, I.; Martínez-Gil, A.; del Álamo-Sanza, M. Oxygen consumption by red wines under different micro-oxygenation strategies and *Q. pyrenaica* chips. Effects on color and phenolic characteristics. *Beverages* 2018, 4, 69. [CrossRef]
20. McCallum, M.J.; López-Correia, T.; Ricardo-da-Silva, J.M. Chemical evaluation of Carcavelos fortified wine aged in Portuguese (*Quercus pyrenaica*) and French (*Quercus robur*) oak barrels at medium and high toast. *OENO One* 2019, 53, 561–572. [CrossRef]
21. Martínez-Gil, A.M.; Cadahía, E.; Fernández De Simón, B.; Gutiérrez-Gamboa, G.; Neves, I.; Alamo-Sanz, M. *Quercus Humboldtii* (Colombian Oak): Characterization of oak heartwood phenolic composition with respect to traditional oak woods in oenology. *Cienc. Tec. Vitivin.* 2017, 32, 93–101. [CrossRef]
22. Martínez-Gil, A.M.; del Álamo-Sanza, M.; Gutiérrez-Gamboa, G.; Moreno-Simuñovic, Y.; Neves, I. Volatile composition and sensory characteristics of Carmenère wines macerating with Colombian (*Quercus humboldtii*) oak chips compared to wines macerated with American (*Q. alba*) and European (*Q. petraea*) oak chips. *Food Chem.* 2018, 266, 90–100. [CrossRef]
23. Resolution OENO 4/2005 of Organization of Vine and Wine. Available online: https://www.oiv.int/public/medias/776/oeno-4-2005-en.pdf (accessed on 23 August 2021).
24. Costa, M.; Miglior, N.; Correia, A.C.; Ricardo-Da-Silva, J.M.; Jordão, A.M. Storage of a Touriga Nacional red wine in contact with *Fuglans regia* L. and *Quercus petraea* L. wood chip species: Comparative influence on phenolic and sensory characteristics. *Eur. Food Res. Technol.* 2021, 247, 3037–3052. [CrossRef]
25. Cerdán, T.G.; Ancín-Azpilicueta, C. Effect of oak barrel type on the volatile composition of wine: Storage time optimization. *LWT—Food Sci. Technol.* **2006**, *39*, 199–205. [CrossRef]

26. Izquierdo-Cañas, P.M.; Mena-Morales, A.; García-Romero, E. Malolactic fermentation before or during wine aging in barrels. *LWT—Food Sci. Technol.* **2016**, *66*, 468–474. [CrossRef]

27. Chatonnet, P.; Ricardo-da-Silva, J.M.; Dubourdieu, D. Influence de l’utilisation de barriques en chêne sessile européen (*Quercus petraea*) ou en chêne blanc américain (*Quercus alba*) sur la composition et la qualité des vins rouges. *Rev. Fr. D’œnologie* **1997**, *165*, 44–48.

28. Del Álamo, S.M.; Fernandez Escudero, J.A.; De Castro Torío, R. Changes in phenolic compounds and colour parameters of red wine aged with oak chips and in oak barrels. *Food Sci. Technol. Int.* **2004**, *10*, 233–241. [CrossRef]

29. Matejeck, D.; Mikes, O.; Klejdus, B.; Sterbova, D.; Kubán, V. Changes in contents of phenolic compounds during maturing of barrique red wines. *Food Chem.* **2005**, *90*, 791–800. [CrossRef]

30. Prida, A.; Chatonnet, P. Impact of oak-derived compounds on the olfactory perception of barrel-aged wines. *Am. J. Enol. Vitic.* **2010**, *61*, 408–413.

31. Laqui-Estaña, J.; López-Neira, Á.; Medel-Maraboli, M.; Obreque-Slier, E. Wines in contact with oak wood: The impact of the variety (*Carménère* and *Cabernet Sauvignon*), format (barrels, chips and staves), and aging time on the phenolic composition. *J. Sci. Food Agric.* **2019**, *99*, 436–448. [CrossRef]

32. De Coninck, G.; Jordão, A.M.; Ricardo-da-Silva, J.M.; Laureano, O. Evolution of phenolic composition and sensory properties in red wine aged in contact with Portuguese and French oak wood chips. *OENO One* **2006**, *40*, 25–34. [CrossRef]

33. Oberholster, A.; Elmendorf, B.L.; Lerno, L.A.; King, E.S.; Heymann, H.; Brenneman, C.E.; Boulton, R.B. Barrel maturation, oak alternatives and micro-oxygenation: Influence on red wine aging and quality. *Food Chem.* **2015**, *173*, 1250–1258. [CrossRef]

34. Tavares, M.; Jordão, A.M.; Ricardo-Da-Silva, J.M. Impact of cherry, acacia and oak chips on red wine phenolic parameters and sensory profile. *OENO One* **2017**, *51*, 329–342. [CrossRef]

35. Martínez-Gil, A.M.; del Álamo-Sanza, M.; Nevares, I.; Sánchez-Gómez, R.; Gallego, L. Effect of size, seasoning and toasting level of *Quercus pyrenaica* Willd. wood on wine phenolic composition during maturation process with micro-oxygenation. *Food Res. Int.* **2020**, *128*, 108703. [CrossRef] [PubMed]

36. Santos, F.; Correia, A.C.; Ortega-Heras, M.; García-Lomillo, J.; González-SanJosé, M.L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Acacia, cherry and oak wood chips used on a short aging period of rose wines: Effects on general phenolic parameters, volatile composition and sensory profile. *J. Sci. Food Agric.* **2019**, *99*, 3888–3893. [CrossRef] [PubMed]

37. Nunes, I.; Correia, A.C.; Jordão, A.M.; Ricardo-da-Silva, J.M. Use of oak and cherry wood chips during alcoholic fermentation and the maturation process of rose wines: Impact on phenolic composition and sensory profile. *Molecules* **2020**, *25*, 1236. [CrossRef] [PubMed]

38. Pérez-Coello, M.S.; González-Viñas, M.A.; García-Romero, E.; Cabezudo, M.D.; Sanz, J. Chemical and sensory changes in white wines fermented in the presence of oak chips. *Int. J. Food Sci. Technol.* **2000**, *35*, 23–32. [CrossRef]

39. Pérez-Coello, M.S.; Sánchez, M.A.; García, E.; González-Viñas, M.A.; Sanz, J.; Cabezudo, M.D. Fermentation of white wines in the presence of wood chips of American and French oak. *J. Agric. Food Chem.* **2000**, *48*, 885–889. [CrossRef]

40. Vivas, N.; Bourden Nonier, M.F.; Absalon, C.; Abad, V.L.; Jamet, F.; Vivas de Gaulejac, N.; Vitry, C.; Fouquet, É. Formation of flavanol-aldehyde adducts in barrel-aged white wine—Possible contribution of these products to colour. *S. Afr. J. Enol. Vitic.* **2008**, *29*, 98–108. [CrossRef]

41. Guchu, E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; González-Viñas, M.A.; Cabezudo, M.D.; Sanz, J. Chemical and sensory changes in white wines fermented in the presence of oak chips. *Int. J. Food Sci. Technol.* **2000**, *35*, 23–32. [CrossRef]

42. Sánchez-Palomo, E.; Alonso-Villegas, R.; Delgado, J.A.; González-Viñas, M.A. Improvement of Verdejo white wines by contact with oak chips at different winemaking stages. *LWT-Food Sci. Technol.* **2017**, *79*, 111–118. [CrossRef]

43. Nunes, P.; Muxagata, S.; Correia, A.C.; Nunes, F.M.; Cosme, F.; Jordão, A.M. Effect of oak wood barrel capacity and utilization time on phenolic and sensorial profile evolution of an Encruzado white wine. *J. Sci. Food Agric.* **2017**, *97*, 4847–4856. [CrossRef]

44. Délia, L.; Jordão, A.M.; Ricardo-da-Silva, J.M. Influence of different wood chips species (oak, acacia and cherry) used in a short period of aging on the quality of 'Encruzado' white wines. *Mitt. Klosterneubg.* **2017**, *67*, 86–94.

45. Del Galdo, V.; Correia, A.C.; Jordão, A.M.; Ricardo-da-Silva, J.M. Blends of wood chips from oak and cherry: Impact on the general phenolic parameters and sensory profile of a white wine during the aging process. *Vitis* **2019**, *58*, 159–169. [CrossRef]

46. Ibern-Gómez, M.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Luo-Luque, C.; Buxaderas, S.; De la Torre-Boronat, M.C. Differences in phenolic profile between oak wood and stainless steel fermentation in white Wines. *Am. J. Enol. Vitic.* **2001**, *5*, 159–164.

47. Canas, S.; Quaresma, H.; Belchior, A.P.; Spranger, M.I.; Bruno-de-Sousa, R. Evaluation of wine brandies authenticity by the relationships between benzoic and cinnamic aldehydes and between furanic aldehydes. *Ciênc. Téc. Vitic.* **2004**, *19*, 13–27. Available online: http://hdl.handle.net/10400.5/4879 (accessed on 3 September 2021).

48. Bautista-Oritz, A.B.; Martínez-Cutillas, A.; Ros-García, J.M.; Lopez-Roca, J.M.; Gomez-Plaza, E. Improving colour extraction and stability in red wines: The use of maceration enzymes and endogenous tannins. *Int. J. Food Sci. Technol.* **2005**, *40*, 867–878. [CrossRef]
75. Kozlovic, G.; Jeromel, A.; Maslov, L.; Pollnitz, A.; Orič, S. Use of acacia barrique barrels—Influence on the quality of malvazija from Istria wines. Food Chem. 2010, 120, 698–702. [CrossRef]

76. De Rosso, M.; Cancian, D.; Panighel, A.; Vedova, A.D.; Flamini, R. Chemical compounds released from five different woods used to make barrels for aging wines and spirits: Volatile compounds and polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [CrossRef]

77. De Rosso, M.; Panighel, A.; Vedova, A.D.; Stella, L.; Flamini, R. Changes in Chemical Composition of a Red Wine Aged in Acacia, Cherry, Chestnut, Mulberry, and Oak Wood Barrels. J. Agric. Food Chem. 2009, 57, 1915–1920. [CrossRef] [PubMed]

78. Jordão, A.M.; Lozano, V.; González-SanJosé, M.L. Influence of different wood chip extracts species on color changes and anthocyanin content in synthetic wine systems. Foods 2019, 8, 254. [CrossRef] [PubMed]

79. Soares, B.; García, R.; Freitas, A.M.C.; Cabrita, M.J. Phenolic compounds released from oak, cherry, chestnut and robinia chips into a synthetic wine: Influence of toasting level. Cienc. Tec. Vitivinic. 2012, 27, 17–26.

80. Schumacher, R.; Alaño, M.E.; Castro-vázquez, L.; Pérez-coello, M.S.; Díaz-Maroto, C. Evaluation of oak chips treatment on volatile composition and sensory characteristics of merlot wine. J. Food Qual. 2013, 36, 1–9. [CrossRef]

81. Setzer, W. Volatile components of oak and cherry wood chips used in aging of beer, wine, and spirits. Am. J. Essent. Oil Nat. Prod. 2016, 4, 37–40.

82. Gómez-Plaza, E.; Pérez-Prieto, L.J.; Fernández-Fernández, J.L.; López-Roca, J.M. The effect of successive uses of oak barrels on the extraction of oak-related volatile compounds from wine. Int. J. Food Sci. Technol. 2004, 39, 1069–1078. [CrossRef]

83. Garde-Cerdán, T.; Ancín-Azpilicueta, C. Review of quality factors on wine ageing in oak barrels. Trends Food Sci. Technol. 2006, 17, 438–447. [CrossRef]

84. Martins, N.; García, R.; Gomes da Silva, M.; Cabrita, M.J. Volatile compounds from oak, cherry, chestnut and acacia chips: Influence of toasting level. Cienc. Tec. Vitivinic. 2012, 27, 49–57.

85. Caldeira, I.; Climaco, M.C.; Bruno De Sousa, R.; Belchior, A.P. Volatile composition of oak and chestnut woods used in brandy aging: Modification induced by heat treatment. J. Food Eng. 2006, 76, 202–211. [CrossRef]

86. Fernández de Simón, B.; Estruelas, E.; Muñoz, A.M.; Cadahia, E.; Sanz, M. Volatile compounds in acacia, chestnut, cherry, ash and oak woods, with a view to their use in cooperage. J. Agric. Food Chem. 2009, 57, 3217–3227. [CrossRef] [PubMed]

87. Alaño, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Aromatic potential of Castanea sativa Mill. compared to Quercus species to be used in cooperage. Food Chem. 2012, 130, 875–881. [CrossRef]

88. Alarcón, M.E.; Díaz-Maroto, M.C.; Pérez-Coello, M.S.; Alaño, M.E. Isolation of natural flavoring compounds from cooperage woods by pressurised hot water extraction (PHWE). Holzforschung 2018, 73, 295–303. [CrossRef]

89. Alaño, M.E.; Marchante, L.; Alarcón, M.; Díaz-Maroto, I.J.; Pérez-Coello, S.; Díaz-Maroto, M.C. Fingerprints of acacia aging treatments by barrels or chips based on volatile profile, sensorial properties, and multivariate analysis. J. Agric. Food Sci. 2018, 98, 5795–5806. [CrossRef] [PubMed]

90. Garcia, R.; Soares, B.; Dias, C.B.; Freitas, A.M.C.; Cabrita, M.J. Phenolic and furanic compounds of Portuguese chestnut and French, American and Portuguese oak wood chips. Eur. Food Res. Technol. 2012, 235, 457–467. [CrossRef]

91. Jarauta, I.; Cacho, J.; Ferreira, V. Concurrent phenomena contributing to the formation of the aroma of wine during aging in oak wood: An analytical study. J. Agric. Food Chem. 2005, 53, 4166–4177. [CrossRef]

92. Zhang, B.; Cai, J.; Duan, C.-Q.; Reeves, M.J.; He, F. A Review of Polyphenolics in Oak Woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [CrossRef]

93. Cano-López, M.; López-Roca, J.M.; Pardo-Minguez, F.; Gómez Plaza, E. Oak barrel maturation vs. micro-oxygenation: Effect on the formation of anthocyanin-derived pigments and wine colour. Food Chem. 2010, 119, 191–195. [CrossRef]

94. Chassagne, D.; Guilloux-Benatier, M.; Alexandre, H.; Voilley, A. Sorption of wine volatile phenols by yeast lees. Food Chem. 2005, 91, 39–44. [CrossRef]

95. Coelho, E.; Teixeira, J.A.; Domingues, L.; Tavares, T.; Oliveira, J.M. Factors affecting extraction of adsorbed wine volatile compounds and wood extractives from used oak wood. Food Chem. 2019, 295, 156–164. [CrossRef]

96. Chira, K.; Teissedre, P.L. Chemical and sensory evaluation of wine matured in oak barrel: Effect of oak species involved and toasting process. Eur. Food Res. Technol. 2015, 240, 533–547. [CrossRef]

97. González-Centeno, M.R.; Chira, K.; Teissedre, P.L. Ellagitannin content, volatile composition and sensory profile of wines from different countries matured in oak barrels subjected to different toasting methods. Food Chem. 2016, 210, 500–511. [CrossRef] [PubMed]

98. Dimitrios, K.; Mas, A.; Portillo, M.C. High-Throughput Sequencing Approach to Analyze the Effect of Aging Time and Barrel Usage on the Microbial Community Composition of Red Wines. Front. Microbiol. 2020, 11, 21. [CrossRef]

99. Ortega-Heras, M.; González-SanJosé, M.L.; González-Huerta, C. Consideration of the influence of aging process, type of wine and oenological classic parameters on the levels of wood volatile compounds present in red wines. Food Chem. 2007, 103, 1434–1448. [CrossRef]

100. Maga, J.A. Formation and Extraction of cis-and trans-β-methyl-γ-octalactone from Quercus Alba; Piggot, J.R., Patterson, A., Eds.; Distilled beverage flavour: Recent developments; Ellis Horwood Ltd.: Chichester, UK, 1989; pp. 171–176.

101. Garde-Cerdán, T.; Torreá-Goñi, D.; Ancín-Azpilicueta, C. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. [CrossRef]

102. Towey, J.P.; Waterhouse, A.L. The extraction of volatile compounds from French and American oak barrels in Chardonnay during three successive vintages. Am. J. Enol. Vitic. 1996, 47, 163–172.
103. Garde Cerdán, T.; Rodríguez Mozaz, S.; Ancín Azpilicueta, C. Volatile composition of aged wine in used barrels of French oak and of American oak. *Food Res. Int.* 2002, 35, 603–610. [CrossRef]

104. Pérez-Prieto, L.J.; López-Roca, J.M.; Martínez-Cutillas, A.; Pardo Minguez, F.; Gómez-Plaza, E. Maturing wines in oak barrels. Effects of origin, volume, and age of the barrel on the wine volatile composition. *J. Agric. Food Chem.* 2002, 50, 3272–3276. [CrossRef] [PubMed]

105. Garde-Cerdán, T.; Torrea-Góñi, D.; Ancín-Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. *Aust. J. Grape Wine Res.* 2008, 8, 140–145. [CrossRef]

106. Chinnici, F.; Natali, N.; Sonni, F.; Bellachioma, A.; Riponi, C. Comparative changes in color features and pigment composition of red wines aged in oak and cherry wood casks. *J. Agric. Food Chem.* 2011, 59, 6575–6582. [CrossRef]

107. Chinnici, F.; Natali, N.; Bellachioma, A.; Versari, A.; Riponi, C. Changes in phenolic composition of red wines aged in cherry wood. *LWT-Food Sci. Technol.* 2015, 60, 977–983. [CrossRef]

108. Cerezo, A.B.; Tesfaye, W.; Torija, M.J.; Mateo, E.; García-Parrilla, C.; Troncoso, A.M. The phenolic composition of red wine vinegar produced in barrels made from different woods. *Food Chem.* 2008, 109, 606–615. [CrossRef]

109. Alañón, M.E.; Castro-Vázquez, L.; Díaz-Maroto, M.C.; Gordon, M.H.; Pérez-Coello, M.S. A study of the antioxidant capacity of oak wood used in wine ageing and the correlation with polyphenol composition. *Food Chem.* 2011, 128, 997–1002. [CrossRef]

110. Madrera, R.R.; Valles, B.S.; García, Y.D.; del Valle Argüelles, P.; Lobo, A.P. Alternative woods for aging distillates—an insight into their phenolic profiles and antioxidant activities. *Food Sci. Biotechnol.* 2010, 19, 1129–1134. [CrossRef]

111. Del Alamo Sanza, M.; Nevares Domínguez, I.; Cerezo, A.B.; Tesfaye, W.; Torija, M.J.; Mateo, E.; García, Y.D.; del Valle Argüelles, P.; Lobo, A.P. Alternative woods for aging distillates—an insight into their phenolic profiles and antioxidant activities. *Food Sci. Biotechnol.* 2010, 19, 1129–1134. [CrossRef]

112. Lukic, I.; Jedrejcic, N.; Kovacevic-Ganic, K.; Staver, M.; Persuric, D. Phenolic and aroma composition of white wines produced by American oak. *J. Agric. Food Chem.* 2006, 54, 1889–1893. [CrossRef]

113. Tao, Y.; García, J.F.; Sun, D.W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. *Crit. Rev. Food Sci. Nutr.* 2004, 54, 817–835. [CrossRef] [PubMed]

114. Herrjavec, S.; Jerome, A.; Da Silva, A.; Orlic, S.; Redzepovic, S. The quality of white wines fermented in oak oak barrels. *Food Chem.* 2007, 100, 124–128. [CrossRef]

115. Liberatore, M.T.; Pati, S.; Del Nobile, M.A.; La Notte, E. Aroma quality improvement of Chardonnay white wine by fermentation and ageing in barrique on lees. *Int. Food Res. J.* 2010, 43, 996–1002. [CrossRef]

116. Aleixandre, J.L.; Padilla, A.L.; Navarro, L.L.; Suria, A.; García, M.; Alvarez, I. Optimisation of making barrel-fermented dry Muscatel wines. *J. Agric. Food Chem.* 2003, 51, 1889–1893. [CrossRef]

117. Garde Cerdán, T.; Torrea-Góñi, D.; Ancín-Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. *Aust. J. Grape Wine Res.* 2008, 8, 140–145. [CrossRef]

118. Lukic, I.; Jedrejcic, N.; Kovacevic-Ganic, K.; Staver, M.; Persuric, D. Phenolic and aroma composition of white wines produced by American oak. *J. Agric. Food Chem.* 2006, 54, 1889–1893. [CrossRef]

119. Herrjavec, S.; Jerome, A.; Da Silva, A.; Orlic, S.; Redzepovic, S. The quality of white wines fermented in oak oak barrels. *Food Chem.* 2007, 100, 124–128. [CrossRef]

120. Herrjavec, S.; Jerome, A.; Da Silva, A.; Orlic, S.; Redzepovic, S. The quality of white wines fermented in oak oak barrels. *Food Chem.* 2007, 100, 124–128. [CrossRef]

121. Garde Cerdán, T.; Torrea-Góñi, D.; Ancín-Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. *Aust. J. Grape Wine Res.* 2008, 8, 140–145. [CrossRef]

122. Garde-Cerdán, T.; Torrea-Góñi, D.; Ancín-Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. *Aust. J. Grape Wine Res.* 2008, 8, 140–145. [CrossRef]

123. Chinnici, F.; Natali, N.; Sonni, F.; Bellachioma, A.; Riponi, C. Comparative changes in color features and pigment composition of red wines aged in oak and cherry wood casks. *J. Agric. Food Chem.* 2011, 59, 6575–6582. [CrossRef]

124. Setzer, W.N. Lignin-derived oak phenolics: A theoretical examination of additional potential health benefits of red wine. *J. Mol. Model.* 2011, 17, 1841–1845. [CrossRef] [PubMed]

125. Taso, Y.; García, J.F.; Sun, D.W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. *Crit. Rev. Food Sci. Nutr.* 2004, 54, 817–835. [CrossRef] [PubMed]

126. Fernández de Simón, B.; Martínez, J.; Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M. Volatile compounds and sensorial characterisation of red wine aged in cherry, chestnut, false acacia, ash and oak wood barrels. *Food Chem.* 2014, 147, 346–356. [CrossRef]

127. Garde Cerdán, T.; Torrea-Góñi, D.; Ancín-Azpilicueta, C. Changes in the concentration of volatile oak compounds and esters in red wine stored for 18 months in re-used French oak barrels. *Aust. J. Grape Wine Res.* 2008, 8, 140–145. [CrossRef]

128. Setzer, W.N. Lignin-derived oak phenolics: A theoretical examination of additional potential health benefits of red wine. *J. Mol. Model.* 2011, 17, 1841–1845. [CrossRef] [PubMed]

129. wiping, K.; Larmie, E.; Newton, J.; Swan, J.S. The influence of oak seasoning and toasting parameters on the composition and quality of wine. *Am. J. Enol. Vitic.* 1999, 50, 495–502.
130. Zea, L.; Moyano, L.; Moreno, J.A.; Medina, M. Aroma series as fingerprints for biological ageing in fino sherry-type wines. *J. Sci. Food Agric.* 2007, 87, 2319–2326. [CrossRef]

131. Díaz-Maroto, M.C.; Guchu, E.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Aroma-active compounds of American, French, Hungarian and Russian oak woods, studied by GC-MS and GC-O. *Flavour Fragr. J.* 2008, 23, 93–98. [CrossRef]

132. Suna, M.; Ito, T.; Hiroshima, K.; Sato, M.; Uehara, T.; Ohno, T.; Watanabe, S.; Takahashi, H.; Hashizume, K. Analysis of volatile phenolic compounds responsible for 4-vinylguaiacol-like odor characteristics of sake. *Food Sci. Technol. Res.* 2016, 22, 111–116. [CrossRef]

133. Wilkinson, K.L.; Elsey, G.M.; Prager, R.H.; Tanaka, T.; Sefton, M.A. Precursors to oak lactone. Part 2: Synthesis, separation and cleavage of several 6-D glucopyranosides of 3-methyl-4-hydroxyoctanoic acid. *Tetrahedron* 2004, 60, 6091–6100. [CrossRef]

134. López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. *J. Chromatogr. A* 2002, 966, 167–177. [CrossRef]

135. Cutzach, I.; Chatonnet, P.; Dubourdieu, D. Study of the formation mechanisms of some volatile compounds during aging of sweet fortified wines. *J. Agric. Food Chem.* 1999, 47, 2837–2846. [CrossRef]

136. Spillman, P.J.; Pollnitz, A.P.; Liacopoulos, D.; Skouroumounis, G.K.; Sefton, M.A. Accumulation of Vanillin during Barrel-Aging of White, Red, and Model Wines. *J. Agric. Food Chem.* 1997, 45, 2584–2589. [CrossRef]

137. Ortega-Heras, M.; Pérez-Magarino, S.; Cano-Mozo, E.; Gonzalez-Sanjose, M.L. Differences in the phenolic composition and sensory profile between red wines aged in oak barrels and wines aged with oak chips. *LWT-Food Sci. Technol.* 2010, 43, 1533–1541. [CrossRef]

138. Gutiérrez Afonso, V.L. Sensory Descriptive Analysis Between White Wines Fermented With Oak Chips and In Barrels. *J. Food Sci.* 2006, 67, 2415–2419. [CrossRef]

139. Young, O.A.; Kaushal, M.; Robertson, J.D.; Burns, H.; Nunns, S.J. Use of species other than oak to flavor wine: An exploratory survey. *J. Food Sci.* 2010, 75, S490–S498. [CrossRef]

140. Loupassaki, S.; Abouzer, M.; Basalekou, M.; Fyssarakis, I.; Makris, D.P. Evolution pattern of wood-related volatiles during traditional and artificial ageing of commercial red and white wines: Association with sensory analysis. *Int. Food Res.* 2016, 23, 1459–1465.

141. Jordão, A.M.; Pina, A.; Montalbano, I.; Correia, A.C.; Ricardo-da-Silva, J.M. Sensory profile of varietal white wines submitted to a short period of aging in contact with oak and cherry wood chips. In *Book of Abstracts of Forty-First World Congress of Vine and Wine; OIV: Punta Del Este, Uruguay, 2018;* p. 979.