Nuku, a family of primate retrocopies derived from \textit{KU70}

Paul A. Rowley*, Aisha Ellahi†, Kyudong Han‡§, Jagdish Suresh Patel*,**

James T. Van Leuven***, Sara L. Sawyer††

*Department of Biological Sciences, University of Idaho, Moscow, ID, 83844, USA
†Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78751, USA
‡Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
§Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
**Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, 83844, USA
††Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA

*Authors contributed equally

© The Author(s) (2021). Published by Oxford University Press on behalf of the Genetics Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Running title: Primate retrocopies derived from KU70

Key Words: Retrocopy, Ku70, Primates, NHEJ

Corresponding author: Paul A. Rowley
Department of Biological Sciences,
The University of Idaho,
132 Gibb Hall,
875 Perimeter Drive MS 3051,
Moscow, ID, 83844.
208-885-4160
prowley@uidaho.edu
Abstract

The ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of \textit{KU70} have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of \textit{KU70}-derived "NUKU" retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. \textit{NUKU} retrocopies show evidence of functional divergence away from \textit{KU70}, as evinced by their altered pattern of tissue expression and possible tissue specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several \textit{NUKU} retrocopies appear to have been degraded by mutation, \textit{NUKU2} shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of \textit{NUKUs} could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.
INTRODUCTION

Protecting the integrity of a cell’s genetic material is important for both survival as well as for ensuring the faithful transmission of genes to daughter cells. Thus, DNA repair genes are conserved throughout the evolutionary history of prokaryotes and eukaryotes, with homologs present in every major organismal clade. A prime example is the *KU70* gene, involved in DNA double-strand break repair mediated by non-homologous end-joining (NHEJ). Human Ku70p and Ku80p together form the Ku heterodimer, a well-established initiator of the NHEJ pathway for DNA double-strand break repair (Roth et al. 1985; Milne et al. 1996; Gu et al. 1997; Jin and Weaver 1997). In addition to its well-documented role in the NHEJ pathway, Ku70p is also involved in V(D)J recombination (Nussenzweig et al. 1996; Gao et al. 1998), telomere maintenance (Gravel et al. 1998; Hsu et al. 1999), Bax-mediated apoptosis (Subramanian et al. 2005), innate immune signaling (Zhang et al. 2011; Ferguson et al. 2012; Sui et al. 2017), and even cell-cell adhesion and extracellular matrix remodeling at the cell membrane (Monferran et al. 2004; Martinez et al. 2005; Chan et al. 2009). The *KU70* and *KU80* genes are present in eukaryotic and archaeal genomes, while in bacteria the role of the heterodimer is performed by a homodimer of the protein Ku (Aravind and Koonin 2001; Weller et al. 2002).

Gene duplication is an important mechanism by which new genes arise. After gene duplication, multiple possible fates await the new gene copy, depending on the selective forces at play: decay, purifying selection, subfunctionalization, or neofunctionalization.
Retrocopies (previously known as ‘processed pseudogenes’) are a type of gene duplication created when retrotransposons erroneously reverse transcribe a cellular mRNA and insert the cDNA copy of the gene back into the host genome (Kaessmann et al. 2009). As a result, retrocopies often lack introns (Long and Langley 1993; Schacherer et al. 2004; Benovoy and Drouin 2006). In addition, they can also be flanked by target-site duplications (TSDs), as is the case for mammalian LINE-1 mediated retrotransposition (Maestre et al. 1995; Esnault et al. 2000). Retrotransposition and the subsequent formation of retrocopies is cited as having had a singular effect on primate and human evolution, with a so-called “burst” in retrocopy formation during the last 63 million years having contributed to the emergence of many novel genes (Ohshima et al. 2003; Zhang et al. 2003). Approximately 3,771-18,700 retrocopies of human genes exist in the human genome, with about 10% of these found to express mRNA transcripts (Harrison et al. 2005; Sisu et al. 2014; Casola and Betrán 2017).

The main KU70-related gene duplication that is known is the ancient duplication that gave rise to KU70 and KU80, and thereby the eukaryotic Ku heterodimer. Here, we report the description of five KU70 retrocopies in the human genome, which we have named NUKU1 – NUKU5. Four of these retrocopies are present in all simian primate genomes, and therefore predate the split between Old World monkeys and New World monkeys over 30 million years ago. However, a newer retrocopy found on the human X chromosome, NUKU5, is specific to apes (human, gorilla, chimpanzee, and orangutan). KU70 has spawned an unusual number of retrocopy copies, as it is the only one out of
66 genes linked to DNA double-strand break repair to have five retrocopies in the human genome. While the original open reading frames (ORFs) appear to be disrupted by mutations and indels, there is evidence for expression of NUKU2, NUKU4, and NUKU5 and a spliced transcript that exists for NUKU2. NUKU2 has also evolved under positive selection, and functional tests of NUKU genes and molecular modeling simulations reveal that it has functionally diverged from KU70 in two ways. First, whereas KU70 is expressed in all tissues, NUKU2, NUKU4, and NUKU5 display a tissue-specific expression pattern and these transcripts are associated with ribosomes. Second, while Ku70p interacts with Ku80p, Nuku2p does not. Given the extensive functional characterizations of human KU70 and KU80 that have occurred over decades, it will now be of great interest to determine what potential role these additional KU70-like genes play in human biology.

Materials & Methods

Identification and classification of retrocopies. The KU70 coding sequence was used as a query in the UCSC genome browser against the human genome (http://genome.ucsc.edu/, March 2006 NCBI36/hg18 assembly). Six top hits of Blat scores were identified, the topmost of which matched with 100% sequence identity to the original KU70 gene. The next five hits appeared as retrocopies upon closer inspection. NUKU orthologs from chimpanzee, orangutan, and rhesus macaque were also obtained using this method. For inspection of insertion sites in the marmoset genome, the calJac1 and calJac3 assemblies were used. All other insertion sites were
interrogated using the current version of primate genomes found on the UCSC genome browser (https://genome.ucsc.edu). The phylogenetic trees of KU70 and NUKU sequences were built with MEGA v.7 (maximum likelihood method) (Hall 2013) from DNA alignments built using MUSCLE (v3.8) and manually curated to ensure accuracy. The GO term “double-strand break repair” was queried in the GO database (GO term ID 0006302). Because not all genes have been fully annotated and assigned to appropriate GO categories (leading to exclusion of certain relevant genes from this list), we combined genes assigned to this GO category in either Homo sapiens, Mus musculus, and Rat norvegicus. This resulted in a list of 66 genes (Table S1). cDNA coding sequences for all 66 hits were retrieved from NCBI. In the case of genes with multiple transcript variants or splicing variants, the longest transcript was used. To find retrocopies of each gene, cDNA sequences were used as queries in the UCSC human genome database (hg18). RetrogeneDB2 was also used in an attempt to identify KU70 retrocopies in primates, but failed to identify NUKU4 and was unable to identify any KU70 retrocopies in primates and so was not used further (Rosikiewicz et al. 2017). Retrocopies were defined as hits in the human genome that met the following two criteria: 1) they lack introns (RepeatMasker was used to differentiate introns from transposable element insertions), and 2) they match the parent gene in a reciprocal best hit analysis of the human genome. Reciprocal best hit analysis was performed by taking each putative retrocopy and using the BLAST server at NCBI to query the human RefSeq mRNA database.
Sequencing KU70 and NUKU orthologs. KU70 orthologs and NUKU2 ORF orthologs were sequenced from mRNA-derived cDNA for KU70 and from genomic DNA for NUKU2 from 12 primates: gorilla (Gorilla gorilla), agile gibbon (Hylobates agilis), colobus (Colobus guereza), crab-eating macaque (Macaca fascicularis), gibbon (Pongidae Hylobates syndactylus), leaf monkey (Trachypithecus francoisi), Borneo orangutan (Pongo pygmaeus), talapoin (Miopithecus talapoin), white-cheeked gibbon (Nomascus leucogenys), olive baboon (Papio anubis), black mangabey (Ophocebus albigena), and Wolf’s guenon (Cercopithecus wolfi) (Table S2). Genes were PCR-amplified using the strategy described in Table S3 and sequenced with primers shown in Table S4. The full structure of the NUKU2 transcript was determined with 5’ and 3’ RACE using the GeneRacer kit (Invitrogen), and testis total RNA (Ambion, catalog #7972). All nucleotide sequences are provided within File S3.

Evolutionary analysis of KU70 retrocopies. Sequences of the human KU70/NUKU paralogs were collected from the UCSC genome browser and aligned using ClustalX. Sequences were analyzed under the free-ratio model implemented in the codeml program of PAML 3.14. In order to determine whether dN/dS > 1 on the NUKU2 branch, we made a pairwise comparison between the Anc sequence (generated by codeml) and NUKU2. K-estimator (Comeron 1999) was used to run Monte Carlo simulations of neutral evolution of these sequences, creating a null distribution from which a p-value could be derived.

The branch-site test allows identification of positive selection that might be limited to a
subset of codons along only a subset of the branches being analyzed (Zhang et al. 2005). To implement this test, multiple alignments were fitted to the branch-sites models. Model A (positive selection model, codon values of dN/dS along background branches are fit into two site classes, one (ω_0) between 0 and 1 and one (ω_1) equal to 1, on the foreground branches a third site class is allowed (ω_2) with $dN/dS > 1$), and Model A with fixed $\omega_2 = 1$ (null model, similar to Model A except the foreground ω_2 value is fixed at 1).

$NUKU^2$ branches (back to their last common ancestor) were defined as the “foreground” clade, with all other branches in the tree being defined as background branches. The likelihood of Model A is compared to the likelihood of the null model with a likelihood ratio test.

$NUKU$ expression in human tissues. Total RNA from human tissues was purchased from Clontech (catalog number 636643). Most of these samples represent pooled RNA from multiple individuals (between 2 and 63 individuals). First-strand cDNA was produced with the NEB Protoscript II kit (E6400S), using a dT_{23} primer that anneals indiscriminately to poly-A tails on mRNA molecules. First-strand reactions were carried out twice in parallel for each tissue, one with reverse transcriptase (RT), and one with water added instead of RT (indicated by +/- RT on Figure 5). First-strand cDNA was then amplified with $KU70$- and $NUKU$-specific primers using Invitrogen PCR Supermix HiFi (cat 10790020). In order to increase specificity, two successive PCRs were performed. In the first round of PCR, 20 cycles were performed using primers specific to that gene, along with 2 μL of first-strand cDNA as template. In the second cycle, 0.5 μL of the first round PCR reaction was used as template, and one of the gene-specific
primers was substituted with a nested primer (F2 or R2 in Figure 5B). In this round, amplification was performed for 40 cycles, and 2 μL of the final product was then run on a 2% agarose gel for separation. Primers used were: SS004 (Nuku F), SS011 (Nuku R1), SS009 (Nuku R2), SS030 (Ku70 F1), SS031 (Ku70 F2), and SS032 (Ku70 R) (Table S4). The KU70-specific primers span an intron so that cDNA can be differentiated from the product that would be produced from genomic DNA. There are no introns in NUKU. Products were sequenced to confirm that they unambiguously represent KU70 or NUKU.

Molecular modeling of NUKU2 using FoldX. To understand the effect of single missense variation on Ku70p stability (i.e. folding) and its binding with Ku80p, we estimated both folding and binding ΔΔG values (difference of free energies between wild-type and the mutant) using FoldX software (Schymkowitz et al. 2005). To run FoldX calculations, the X-ray crystal structure of the human Ku heterodimer was first downloaded from Protein Data Bank (PDB id: 1JEQ) (Walker et al. 2001). The file was modified to remove all but the two chains of Ku70p and Ku80p. There were several residues that were missing in both the chains of the protein complex. These missing residues were not modeled to complete the structure of the complex before running FoldX calculations for the following two reasons: 1) Missing residues were either at the terminal ends or in the disordered region hence they are difficult to build using the molecular modeling software and, 2) the gaps in the input X-ray structure does not affect the performance of the FoldX software as it relies on rotamer libraries to model any mutation at a particular site and semi-empirical scoring function to estimate ΔΔG.
values [35]. The clean starting structure of Ku70p-Ku80p complex was then used to create mutant models and subsequently estimate both binding $\Delta \Delta G$ and folding $\Delta \Delta G$ values. We started by performing 6 rounds of minimization of the protein complex using the RepairPDB command to obtain convergence of the potential energy. All 19 possible single amino acid mutations at each site on Ku70 (548 amino acid residues \times 19 possible substitutions) were then generated using BuildModel. Finally, folding $\Delta \Delta G$ values were estimated using Stability command on Ku70 and AnalyseComplex command was used to estimate the effect of each modeled mutation on Ku70p-Ku80p binding i.e. binding $\Delta \Delta G$ values.

Yeast two-hybrid assay. We used the LexA-Gal4 yeast two-hybrid system, which employs the LexA DNA-binding domain (DBD) and the Gal4-activation domain (Gal4-AD) with the yeast strain EAY1098 ($His3, Leu2, Trp1$, genotype). If the candidate proteins interact, the DNA-binding domain and activation domain will be in close proximity and will be able to drive the transcription of a $HIS3$ reporter gene downstream of the LexA promoter. The Clontech pGADT7 plasmid, which creates an N-terminal fusion protein between a gene of interest and the Gal4 activation domain, was engineered to carry the full 1,830 bp coding sequence of human $KU70$. Another pGADT7 vector was engineered to carry the full 654 bp $NUKU2$ ORF. The full-length coding sequence of human $KU80$ (2,199 bp) was cloned into the LexA expression vector pBTM116, which creates an N-terminal fusion protein between the inserted gene and the LexA DNA binding domain. All cloning was done with TA-vectors and plasmids compatible with the Gateway system (Invitrogen). EAY1098 was transformed using the
standard lithium-acetate PEG transformation protocol with the following plasmid pairs:
pGADT7-Ku70 and pLexA-Ku80; pGADT7-Nuku and pLexA-Ku80; pGADT7 and pLexA-
Ku80; and pGADT7 and pLexA. Transformants were selected on leucine and
tryptophan drop-out media to select for and stimulate expression of plasmids. After two
days growth at 30°C, saturated cultures at an OD$_{600}$ of 2.7-2.8 were diluted and plated
onto media lacking histidine in addition to leucine and tryptophan to stimulate HIS3
gene reporter expression. Growth was observed three days post-plating.

Western blots. 30 μg of denatured protein lysate was loaded onto 10% Tris-HCl
polyacrylamide gels and then transferred onto a nitrocellulose membrane. Membrane
was blocked overnight in 5% milk-TBS + 1% Tween and incubated the next day with a
primary antibody directed against the Gal4-activation domain (1:5,000 dilution;
Clontech, cat # 630402) or against human Ku70p (1:1,000 dilution; GeneTex, cat #
GTX101820). The secondary antibody for Gal4 probes was goat anti-mouse-HRP
(1:1,500; Fisher, cat #32430), and for Ku70p probes was goat anti-rabbit-HRP (1:1,500
dilution; Fisher cat. #32460). Signal was detected using ECL plus reagents (VWR cat
#95040-056). For analysis of two-hybrid constructs, total protein from yeast strains were
prepared using the glass-bead disruption method. 50 mL yeast cultures were grown to
OD$_{600}$ 0.5-0.7 and were pelleted. This pellet was suspended in disruption buffer: 20 mM
Tris-HCl, pH 7.9, 10 mM MgCl$_2$, 1 mM EDTA, 5% glycerol, 0.3 M (NH$_3$)$_2$SO$_4$, with 1 mM
DTT, 1 mM PMSF, and Protease inhibitor cocktail (Roche). Acid-washed glass beads
were added, and cells were vortexed for a total of 10 minutes.
Western Blot analysis of Ku70 retrocopies. Human brain and testis tissue total protein lysates were purchased from ProSci Incorporated (catalogue numbers 1303 and 1313, respectively). HEK293T cells were grown in standard DMEM with 10% fetal bovine serum in 75 cm2 tissue culture flasks. Total protein was prepared using the reagents and protocol described in the Qiagen Mammalian Protein preparation kit. Protein was quantified using Pierce Coomassie Bradford Assay reagent. About 30 µg of protein was separated using polyacrylamide gel electrophoresis on a Tris-HCl gel and transferred to a nitrocellulose membrane. Membranes were blotted with 1:1000 dilution of the Ku70p antibody raised in rabbit (GeneTex XRCC6 antibody, Cat.# GTX101820).

Secondary antibody of Goat anti-rabbit conjugated to horseradish peroxidase at 1:1500 dilution was used (Cat. #32460 Thermo Scientific Pierce Goat anti-Rabbit IgG, Peroxidase Conjugated). Maltose binding protein/hemagglutinin-tagged Nuku proteins were detected using an anti-HA peroxidase-conjugated monoclonal rat antibody (3F10; 12013819001 (Roche)).

Virus infection assays. Human HEK293T (4 × 105) and HeLa (4 × 104) cells were seeded in 12-well dishes (DMEM growth medium with 10% fetal bovine serum) and grown at 37°C with 5% CO$_2$ for 24 hours until reaching a confluency of ~75%. Each well was transiently transfected with 800 ng of plasmid encoding either human NUKU5, NUKU2 or rhesus macaque NUKU2 in addition to a transfection control plasmid expressing RFP. After 24 hours incubation, each well was trypsinized and the HEK293T (2 × 105) and HeLa (4 × 104) cells used to seed three wells of a 24-well dish. After 24 hours of incubation at 37°C (5% CO$_2$) monolayers with a confluency of ~50% were
infected with VSV-G pseudotyped HIV, FIV, or MLV containing a GFP reporter gene as described previously (Stabell et al. 2016). After 48 hours, cells were trypsinized and fixed with 1% paraformaldehyde by incubating for 1 hour at 4°C. GFP and RFP positive transduced cells were detected by flow cytometry using appropriate compensation controls to account for spectral overlap of fluorophores.

Ribo-seq analysis. Raw sequencing data was downloaded from Wand et al. (Wang et al. 2020). The reads were quality filtered and trimmed using fastp v0.20.0 using default parameters then mapped to KU70 and retrocopies from the respective species using bwa mem v0.7.17 with default parameters. Alignments were processed using Samtools v1.10 (-F 4). Reads mapping to more than one reference sequence were further investigated and removed by parsing the ‘XA’ tags from the alignment files using scanBam from the Rsamtools v2.4.0 package in R v4.03. Plotting was done in ggplot v3.3.3.

Results

Five KU70 Retrocopies in the Human Genome

Five ORFs with high similarity to KU70 were identified on four different human chromosomes (Figure 1A). Unlike the human KU70 gene locus, each of the five copies lack introns. TSDs characteristic of LINE-1 mediated insertion were identified flanking each of the retrocopies, as were 3' poly-A tails that are relics of the mRNA from which these genes arose (Figure 1A and 1B). All human retrocopies are between 89-97%
identical to the parent KU70 processed mRNA transcript and have been named $\text{NUKU1} \text{– NUKU5}$. Each of the five TSDs is unique, confirming that these copies represent five independent retrotransposition events, and did not arise from segmental duplication of an existing retrocopy-containing region. Thus, the human genome contains one KU70 gene and five LINE-1 mediated NUKU retrocopies (Table S5).

We then analyzed several primate genomes for the presence of KU70 retrocopies (Table S1). Phylogenetic analysis (Figure 2A and S1) and inspection of pre-insertion target sites (as in Figure 1B and S2) defines the order in which these retrocopies arose, and places them at distinct positions in the tree of primate speciation (Figure 2B). These data show that four of the KU70 retrocopies arose before the split between Old World and New World monkeys, over 30 million years ago (MYA), consistent with a burst of retrocopy formation that has been reported in this time frame (Ohshima et al. 2003; Zhang et al. 2003; Marques et al. 2005). Remnants of NUKU2 and NUKU3 are present in the marmoset and squirrel monkey genomes, although they have experienced large subsequent deletions (Figure 2A and S2). We were unable to identify NUKU1 in either the marmoset or squirrel monkey genomes (Figure S2).

Comparing the syntenic location of NUKU1 in both marmoset and squirrel monkeys to the human genome reveals large indels that prevents the reconstruction of the evolutionary history of the locus in New World monkeys (Figure S2). Since NUKU1 is the most basally branching retrocopy, we predict that it also predates the last common ancestor of the species being analyzed. Interestingly, the genomes of both marmoset
and squirrel monkeys have acquired many additional KU70 retrocopies that are not found in any of the other primate genomes investigated, meaning that these arose after the last common ancestor of New World and Old World monkeys (30-40 MYA) (Figure 2 and S1). The human genome contains one new retrocopy, NUKU5, that is found in the genomes of chimpanzee and orangutan, but not in rhesus or marmoset. The pre-insertion site in the syntenic location in the rhesus macaque, snub-nosed monkey, and sabaeus monkey genomes are perfectly preserved (Figure 1B), confirming that this retrocopy post-dates the split between Old World monkeys and hominoids that occurred approximately 20 MYA. Analysis of the genome of golden snub-nosed monkey also reveals the birth of a new KU70 retrocopy (NUKU6) with a TSD, remnants of a poly-A tail, which is absent from other Old World monkeys and humans (Figure S3). This suggests that NUKU6 is a unique retrocopy of KU70. Thus, KU70 retrocopies have been consistently birthed over a period lasting more than 30 million years, with evidence of continued retrocopy birth in extant primate species (Table S5).

None of the ORFs in any of the primate NUKU retrocopies have been conserved in their full-length form as compared to KU70, and at first glance they all appear to be retropseudogenes. NUKU3, located on chromosome 10, has acquired two Alu insertions (AluSp and AluSq elements) and a 251 bp insertion of non-KU70 related sequence in the middle of the coding region (Figure 1A). The ORF in NUKU5 is
approximately 75% the length of KU70, although NUKU ORFs are smaller, and the
putative start codon of all of them is downstream of the KU70 start codon.

KU70 has an unusually large number of retrocopies

We were interested in determining whether the presence of five retrocopies of
KU70 in the human genome is typical for a gene involved in double-stranded break
repair. Because some gene families might be more or less prone to retrocopy formation
and retention than others, we compared the number of retrocopies formed from KU70 to
other genes involved in DNA double-strand break repair. A list of all genes in the
“double-strand break repair” biological process category (GO: 0006302) was compiled
using the Gene Ontology (GO) database. Each was used as a query to identify
retrocopy copies elsewhere in the human genome. A retrocopy was defined as any
sequence match that 1) contains no introns, and 2) returns the parent gene when it itself
is used to query the human genome (i.e. the gene and retrocopy are reciprocal “best
hits”). No criteria for conservation of the ORF was included, and some retrocopies
appear to be degraded by mutation. In total, 51 double-strand break repair genes had
no discernable retrocopies. Eleven genes (MRE11, RAD21, FEN1, TRIP13, UBE2V2,
PIR51 (RAD51AP1), SHFM1 (SEM1), BRCC3, RNF168, OBFC2B (NABP2), and
RTEL1) had one retrocopy. Two genes (SOD1 and FAM175A) had two retrocopies, and
one gene (UBE2N) had four retrocopies. KU70, with five retrocopy copies, is the only
one out of 66 with five retrocopy copies (Figure 3). Expression patterns of these genes
in the ovary and testis indicates that the expression of KU70 is the highest of all 66
genomes in the testis and second highest in the ovary (after SOD1) (Figure S4). High
expression of genes does not always lead to retrocopies as *CIB1*, *VCP*, and *KU80* all have high expression in the testis and ovary without the creation of retrocopies (Figure S4).

NUKU2 has evolved under positive selection

There are three fates for any duplicated gene. A newly copied gene may be preserved by purifying selection if there is an adaptive advantage to having a second copy of the original gene. If the new gene copy is not expressed or confers no selective advantage, it will undergo neutral decay and accumulate point mutations and stop codons. Finally, if one of the duplicated genes is selected to evolve a novel function, this will occur through positive selection for advantageous mutations that arise and result in a period of relatively rapid sequence evolution in one of the copies. Each of these three fates can be read within the DNA sequence of duplicated genes after they have diverged. Looking at the evolutionary signatures recorded may offer clues as to the potential function of the retrocopy and how it may relate to the parent gene’s function. Specifically, patterns of accumulation of non-synonymous versus synonymous mutational accumulation can be analyzed. Conserved genes like *KU70* would be expected to accumulate fewer non-synonymous changes than synonymous changes (dN/dS < 1). If a retrocopy does not contribute to the fitness of the organism, it will accumulate these two types of changes at an equal rate (dN/dS = 1). However, if a
retrocopy acquires a new function and is selected for optimization of this function, it
would bear the signature of increased non-synonymous mutation accumulation (dN/dS
> 1).

The increased number of *NUKU* retrocopies is likely due in part to high
expression of *KU70*, but their retention could be rationalized if there is positive
selection. The codeml program in the PAML package (Yang 2007) was used to analyze
the selective pressures that have acted on each of the *NUKU* retrocopies since they
were formed. A tree of the human *KU70* and *NUKU* retrocopies was analyzed by the
branch-sites model (Figure 4A). The analysis of patterns of non-synonymous and
synonymous mutational accumulation can only be performed in ORFs, so a region at
the C-terminal end of the retrocopies was analyzed because it is an ORF in all of the
retrocopies except for *NUKU4*, which has experienced an *Alu* insertion in this region.

The free-ratio model uses maximum likelihood to estimate a dN/dS ratio for each branch
on the tree. As would be expected, the branch leading to *KU70* has a value of dN/dS =
0.45, indicating that non-synonymous changes have accumulated at a rate less than
half of the rate of synonymous changes (Figure 4A). Three of the pseudogenes,
NUKU1, *NUKU3*, and *NUKU5*, have a dN/dS signature not statistically different from 1,
indicating neutral evolution of these genes. However, the branch along which *NUKU2*
has been evolving shows a dN/dS value of 2.3. We retrieved the predicted ancestral
sequence from the node marked “Anc,” which is the prediction of the *NUKU2* sequence
as it looked at the time of retrotransposition (Figure 4A). Comparing this to the extant
NUKU2 sequence (Figure 4B) allowed us to determine that 17 non-synonymous
mutations and three synonymous mutations have occurred in this region of the retrocopy since it was formed more than 30 MYA. We used Monte Carlo simulation to determine that this rate of evolution is significantly greater than the neutral expectation of $dN/dS = 1$ ($p = 0.007$) (Figure 4).

To further analyze the evolution of NUKU2, we determined the genetic sequence of NUKU2 and KU70 from 12 simian primate genomes (Table S2). Because it is expressed in all tissue types and contains multiple introns, KU70 was amplified and sequenced from mRNA, whereas NUKU2 was amplified and sequenced from genomic DNA. These sequences were combined with those available from several primate species with sequenced genome projects (human, chimpanzee, orangutan, and rhesus macaque), and genes were also re-sequenced from these species where appropriate. Our analysis includes only Old World monkey and hominoid species as NUKU2 has been largely deleted in the marmoset and squirrel monkey genomes (Figure S2).

Interestingly, the predicted ORF in human NUKU2 (Figure 1A and 4C) was conserved in all hominoid species. In Old World monkeys, there was also a conserved NUKU2 ORF, but it was shorter due to an upstream stop codon leading to the potential use of an alternative ATG codon further downstream (Figure 4C). Since NUKU ORFs were predicted to be under positive selection and not KU70, we used the branch-sites model and specified all of the NUKU2 branches as the foreground clade (Zhang et al. 2005). This allows us to look for positive selection of codons specifically in these species. Two analyses were performed, one with all KU70 sequences and only the hominoid species
where the longer reading frame was analyzed (orange box in Figure 4C), and one with all species where the shorter ORF was analyzed (pink box in Figure 4C). When the larger ORF was analyzed in hominoids only, it was estimated that that 9% of the codons in *NUKU2* had a dN/dS of 7.05. Comparison to the null model shows the inference of positive selection to be statistically significant (*p* = 0.029; Table 1). Support is not as strong when the shorter ORF of *NUKU2* was analyzed across all species (*p* = 0.130), likely due to analyzing a shorter sequence of aligned DNAs.

The tissue-specific expression and loss of Ku80 interaction by Nuku2.

Two human mRNA transcripts (EU224311 and ENST00000435236.2) were identified in the GenBank and Ensembl databases that verify the transcription and splicing of *NUKU2* on the X chromosome (Figure 5A). While we were unable to detect the spliced transcript of EU224311 by PCR, potentially because it is lymphocyte-specific, we performed 5' and 3' RACE and were successful in characterizing the structure of the unspliced transcript of *NUKU2* (ENST00000435236.2) from total RNA isolated from the human testis (File S1). These transcripts are almost certainly derived from the transcription of the *NUKU2* locus due to 100% identity to the nucleotide sequence and putative translation products from *NUKU2* (File S1 and Table S1). To determine whether there were other *NUKU2* transcripts within other human tissues we designed PCR primers to specifically detect transcripts of the *NUKU2* retrocopy. We used nested PCR with *NUKU2*-specific primers, determined the genetic sequence of all products and confirmed that they were a perfect match only to the *NUKU2* retrocopy. As shown, *NUKU2* is expressed in uterus, brain, testis, placenta, prostate, fetal liver, fetal brain, kidney, and spinal cord (Figure 5B). We confirmed the absence of contaminating
genomic DNA by performing RT-PCR reactions in which the reverse transcriptase had been omitted. We also amplified *KU70* by a similar nested strategy, using primers located in two neighboring exons, to distinguish by size products of RT-PCR from PCR products that may be produced from contaminating genomic DNA. No genomic DNA was detected by this assay. This ubiquitous tissue expression pattern of *KU70* reflects its function as an essential housekeeping gene and is shown in other published datasets (Figure 5C) (GTex project version 7) (Consortium *et al.* 2017). We also found evidence for the tissue-specific expression of both *NUKU4* and *NUKU5* and a transcript from *NUKU4* in the Ensembl database (ENST00000420392.1) (Figure 5C and Table S1) (Consortium *et al.* 2017). These results confirm that *NUKU2*, *NUKU4*, and *NUKU5* are expressed in humans, expression is tissue-specific, and tissue-specificity has diverged from that of *KU70*, likely due to new regulatory signals at their new genomic location.

Ku70p is known to interact with *Ku80p*, thereby forming the Ku heterodimer that associates with broken ends of double-stranded DNA. To explore the potential biochemical function of a putative Nuku2 protein, compared to *Ku70p*, we examined the functional consequences of more than 10,000 mutational changes in *Ku70p* when bound to *Ku80p* using semi-empirical molecular modeling, as implemented by FoldX (Figure S5 and File S2) (Guerois *et al.* 2002; Schymkowitz *et al.* 2005). By comparing the amino acid changes between *Ku70p* and Nuku2p we individually modeled 27 non-synonymous mutations that are present in *NUKU2* onto the heterodimeric co-crystal of *Ku70p*-Ku80p (PDB:1JEY (Walker *et al.* 2001)) and measured the change in free
energy for binding ($\Delta \Delta G_{\text{bind}}$). The 11 mutations present in Nuku2p that were more than 5 Å from the Ku80p interface had an average $\Delta \Delta G_{\text{bind}}$ of 0.04 kcal/mol (SD +/- 0.17), indicating that these changes would not be expected to disrupt Ku80p binding (Figure S5). The majority (81%) of the remaining 16 NUKU2-specific mutations that are within 5 Å of the Ku70p-Ku80p interface are also predicted to have little impact upon the interaction of these proteins ($\Delta \Delta G_{\text{bind}} < 2$ kcal/mol; average 0.60 kcal/mol, SD +/- 0.74) (Figure 5D; green data points). However, four mutations at this interface (G349V, F410L, A494I, and T507I) had a $\Delta \Delta G_{\text{bind}} > 2$ kcal/mol (Figure 5D; red data points). This indicates that these mutations alone would be predicted to disrupt the binding of Ku70p to Ku80p, and therefore, in combination are likely to prevent binding of Nuku2p to Ku80p. In addition, because Nuku2p is predicted to be truncated relative to Ku70p, there would be a 39% reduction in the surface area available for Ku80p binding from ~9500 Å2 to ~5800 Å2, which would also reduce the likelihood of a Nuku2p-Ku80p interaction (PISA analysis (Krissinel 2015)). Analysis of disruptive mutations in hominoid NUKU2 shows the presence of the same G349V, A494I, and T507I mutations that are found in human NUKU2. Only T507I appears within the NUKU2 gene of Old World monkeys, in addition to a single disruptive mutation unique to colobus monkey (Y530C; $\Delta \Delta G_{\text{bind}} > 2$) (Figure 4). Finally, non-synonymous mutations in NUKU2 at sites under positive selection in primates have average $\Delta \Delta G_{\text{bind}}$ and $\Delta \Delta G_{\text{fold}}$ values of 0.33 (SD +/- 0.45) and 1.00 (SD +/- 1.46), respectively. This would suggest that these mutational changes were not driven by selection to disrupt Ku80p interaction or to alter Nuku2p folding.
Molecular modeling predicts that the truncation of NUKU2 and several non-synonymous mutations disrupt an interaction with Ku80p. To validate these in silico predictions we used the yeast two-hybrid in vivo protein interaction assay to test the interaction of either Ku70p or Nuku2p with Ku80p. Ku70p and Nuku2p were both fused to the Gal4 activation domain (AD), and each construct was co-transformed with a plasmid encoding the LexA-Ku80p fusion protein (Figure 5E). Co-transformants of AD-Ku70p and LexA-Ku80p were able to grow on media lacking histidine, signifying a positive interaction. AD-Nuku2p and LexA-Ku80p were unable to interact, and yeasts were unable to grow on histidine deficient plates. The LexA DNA binding-domain was also unable to interact with Ku80p or the AD (Figure 5F). Both the tissue-specific expression and inability to interact with Ku80p suggest that NUKU2 has diverged from its parent gene KU70 and potentially acquired new biological functions.

Expression of NUKU2 and NUKU5 does not impact retrovirus transduction. Ku is known to be important for the replication of many different viruses, including mammalian retroviruses and retrotransposons (Daniel et al. 1999; Downs and Jackson 1999; Li et al. 2001; Suzuki et al. 2009; Zheng et al. 2011). We considered that Nuku proteins could act to antagonize viral replication by mimicking Ku70p and evidence of positive selection might suggest host-virus antagonism (Figure 4). To test whether the expression of NUKUs might disrupt the early stages of the retroviral lifecycle, we first confirmed the transient expression of NUKU2 (human and rhesus macaque) and NUKU5 (human) within the human HEK293T and HeLa cell lines (Figure S6). Twenty-
four hours post-transfection these cell lines were transduced with GFP using a single-
cycle VSV-G pseudotyped human immunodeficiency virus 1 (HIV-1), feline
immunodeficiency virus (FIV), and murine leukemia virus (MLV). Forty-eight hours post-
infection the percentage GFP-expressing cells was measured using flow cytometry, and
we found that NUKU expression did not affect retroviral transduction, relative to a
cell line expressing maltose binding protein (Figure S6).

Evidence of Nuku gene translation and Ku70-like proteins.

Since several NUKUs appear to be transcriptionally active, we wished to address
if these retrocopies were capable of producing proteins. Ribosome profiling (Ribo-seq)
data derived from large scale surveys of tissues from human and rhesus macaque were
first assessed for unique NUKU transcripts that could be unambiguously identified by
their sequence from KU70 and other NUKU transcripts (Wang et al. 2020). There is
evidence of transcripts from NUKU4 and NUKU5 associated with ribosomes in humans,
and all NUKU transcripts in rhesus macaque (Figure 6A). In both species, NUKU4
transcripts appeared to be more commonly associated with ribosomes in the three
tissues surveyed.

We assume that the two retrocopies most likely to be expressed as proteins are
Nuku2p and Nuku5p. The former has documented tissue-specific expression, a spliced
transcript, and positive selection, and the latter, which is the youngest retrocopy,
produces transcripts in many tissues, has the most intact ORF, and has evidence of
translation in humans from Ribo-seq data. We screened several anti-Ku70 polyclonal
antibodies for cross reactivity with Ku70p, Nuku2p, and Nuku5p. We used Gal4AD-
Ku70 or Gal4AD-Nuku fusion proteins expressed in yeast to test this, and we identified an antibody that specifically recognized all three constructs (Figure 6B). The protein band in HEK293T cell extracts shows the position of untagged Ku70p, and this antibody does not appear to cross-react with the endogenous copy of Ku70p in yeast. The tagged copy of human Ku70-AD is larger than the untagged version (Figure 6B, lane 2 versus lane 1). The tagged versions of Nuku2p and Nuku5p are shorter, due to the truncated ORFs in these two genes (Figure 1A).

We detected high levels of NUKU2 transcription in brain and testis among other tissues (Figure 5C). Therefore, we probed protein lysates from human brain tissue, testis tissue, and from HEK293T cells with our anti-Ku70p antibody (Figure 6C). Protein lysates from HEK293T cells show only a single strong band at ~70 kDa, the size of human Ku70p. This band is also evident in the testis and brain cell lysates. We did not detect a prominent band at ~25 kDa in any of the samples, the predicted molecular weight of Nuku2p based on the transcript that we amplified by RACE (File S1).

However, cell lysates from brain and testis tissues, but not HEK293T cells, show a second band at the predicted size of human Nuku5p (~50 kDa), with the band being more prominent in testis than in brain.

Discussion

KU70 is highly conserved across primates, which contrasts other genes that are required for DNA repair that have been found to be evolving rapidly within humans and yeasts, potentially in response to prior or current selective pressure from viruses and
retrotransposons (Sawyer and Malik 2006; Demogines et al. 2010; Lou et al. 2014; Abdul et al. 2018). Despite the conservation of KU70, we describe the accumulation and diversification of KU70-derived retrocopies within humans and non-human primates (NUKUs). The contribution of retrocopies to de novo gene formation and the evolution of novel gene functions has been extensively documented in different organisms (Long and Langley 1993; Courseaux and Nahon 2001; Wang et al. 2002; Betrán et al. 2002). KU70 appears to be unique regarding the number of retrocopies that it has birthed relative to other genes required for NHEJ in primates. In addition to the expansion of the NUKUs we have also detected the rapid evolution and functional divergence of these retrocopies during primate speciation. Evidence of transcription and the association of transcripts with ribosomes would suggest that these proteins are present within human and primate tissues.

NHEJ is an important mechanism for DNA double-strand break repair in cellular organisms and is also important for the replication of DNA viruses and retroviruses/retrotransposons that generate DNA intermediates during their lifecycles. There are examples of NHEJ DNA repair mechanisms helping or hindering viral replication (Weitzman et al. 2010). For example, lack of DNA-PK (DNA-dependent protein kinase holoenzyme, consisting of Ku70p, Ku80p, and DNA-PKcs) during HIV replication results in reduced viral integration and an increase in cellular apoptosis due to integrase-mediated DNA damage (Daniel et al. 1999; Li et al. 2001). Also, loss of Ku70p causes the proteasome-mediated degradation of the viral integrase (Zheng et al. 2011). Retrotransposons and adenovirus have also been shown to be sensitive to the
loss of Ku (Downs and Jackson 1999; Suzuki et al. 2009; Frost et al. 2017).

Bacteriophages encode Ku homologs that recruit other host DNA repair proteins and appear to protect phage DNA from degradation (Pitcher et al. 2006; Bhattacharyya et al. 2018). Furthermore, the hijack of NHEJ machinery is not specific to viruses as the bacterial pathogen Rickettsia conorii binds to cell surface-exposed Ku70p as its receptor for cell entry (Monferran et al. 2004; Martinez et al. 2005; Chan et al. 2009). In these cases, it is apparent that NHEJ machinery (including Ku70p) is aiding the replication and survival of viruses and bacteria. Conversely, there are many examples of DNA viruses that encode protein effectors that actively disrupt the function of NHEJ.

Specifically, adenoviruses prevent the concatenation of their genomes by NHEJ machinery by producing the proteins E4-34 kDa and E4-11 kDa that bind DNA-PK and inhibit NHEJ (Boyer et al. 1999). Human T-cell leukemia virus type-1 proteins Tax and HBZ and the agnoprotein of JC virus bind and interfere with the function of DNA-PK, impairing DNA repair and aiding cellular transformation (Darbinyan et al. 2004; Durkin et al. 2008; Rushing et al. 2018). Viral proteins also block the activity of DNA-PK as a pattern recognition receptor that binds cytoplasmic DNAs triggering innate immune signaling mechanisms mediated by IFN regulatory factor 3 (IRF-3), TANK-binding kinase 1 (TBK1), and stimulator of interferon genes (STING) (Zhang et al. 2011; Ferguson et al. 2012; Sui et al. 2017). DNA-PK has been shown to be directly targeted by the vaccinia virus effectors C4 and C16 by binding Ku and preventing interaction with DNAs and triggering of innate immune signaling pathways (Peters et al. 2013; Scutts et al. 2018). The abundance of viruses and bacteria that subvert the function of DNA-PK suggests that the NUKUs could play a role as dominant-negative proteins that would
bind viral effectors. It has already been shown in higher eukaryotes that a dominant negative Ku80p with an N-terminal extension (Ku80/Ku86-autoantigen-related protein-1 (KARP-1)) interferes with DNA-PKcs activity causing X-ray hypersensitivity when expressed in cell lines (Myung et al. 1997). However, molecular modeling studies and empirical binding assays show that Nuku2p does not bind Ku80p and would therefore not be predicted to assemble as a component of DNA-PK. Furthermore, NUKU2 appears to have only maintained coding capacity within the C-terminal domain, which is required for binding to DNA, Mre11p, and Bax, whereas the N-terminal domain binds to DNA-PKcs and Ku80p (Figure 1) (Goedecke et al. 1999; Subramanian et al. 2005). Therefore, we would expect that NUKU2 would not influence DNA-PK function, V(D)J recombination, or telomere maintenance, but might still be competent as a transcription factor, or regulate apoptosis and NHEJ by binding Mre11p or Bax, respectively [9,65]. The observed expansion and maintenance of KU70 retrocopies and the rapid evolution of NUKU2 could have been driven by evolutionary conflict with viruses or other pathogenic microorganisms free from the constraints of maintaining DNA repair of innate signaling functions. Indeed, the retrotransposition of genes involved in innate immunity can create new host restriction factors to fight rapidly evolving viruses (Sayah et al. 2004; Brennan et al. 2008; Wilson et al. 2008; Yang et al. 2020). Although we do not observe any significant effect of NUKU expression upon retrovirus transduction in tissue culture, it remains plausible that other viruses known to interfere with DNA-PK or directly interact with Ku70p (i.e. JC virus agnoprotein or adenovirus E1A) might be sensitive to the presence of NUKUs (Darbinyan et al. 2004; Frost et al. 2017). Alternatively, as we have detected tissue-specific transcription from NUKUs it is also possible that they might
have a function in the regulation of *KU70* expression as antisense transcripts (Tam et al. 2008). Altogether, these data suggest that primate-specific *NUKUs* are significantly altered compared to *KU70* in their expression and protein-coding capacity. Our analyses suggest that their structure and function differ from *KU70* and that they have evolved rapidly during primate speciation. However, it remains to be further investigated the biological function of these retrocopies, which is complicated by the multifaceted role of Ku70 in the cell.

Data Availability Statement

The data underlying this article are available in the article and in its online supplementary material available at figshare: https://doi.org/10.25387/g3.14267312.

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number P20GM104420 (PAR, JVL, and JSP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. SLS is a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Disease.

Conflict of Interest

None declared
Abdul, F., F. Filleton, L. Gerossier, A. Paturel, J. Hall et al., 2018 Smc5/6 antagonism by hbx is an evolutionarily conserved function of hepatitis B virus infection in mammals. J Virol 92: e00769-18.

Aravind, L., and E. V. Koonin, 2001 Prokaryotic homologs of the eukaryotic DNA-end-binding protein Ku, novel domains in the Ku protein and prediction of a prokaryotic double-strand break repair system. Genome Res 11: 1365–1374.

Benovoy, D., and G. Drouin, 2006 Processed pseudogenes, processed genes, and spontaneous mutations in the Arabidopsis genome. J Mol Evol 62: 511–522.

Betrán, E., W. Wang, L. Jin, and M. Long, 2002 Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol Biol Evol 19: 654–663.

Bhattacharyya, S., M. M. Soniat, D. Walker, S. Jang, I. J. Finkelstein et al., 2018 Phage Mu Gam protein promotes NHEJ in concert with Escherichia coli ligase. Proc Natl Acad Sci USA 115: E11614–E11622.

Boyer, J., K. Rohleder, and G. Ketner, 1999 Adenovirus E4 34k and E4 11k inhibit double strand break repair and are physically associated with the cellular DNA-dependent protein kinase. Virology 263: 307–312.

Brennan, G., Y. Kozyrev, and S.-L. Hu, 2008 TRIMCyp expression in Old World primates Macaca nemestrina and Macaca fascicularis. Proc Natl Acad Sci USA 105: 3569–74.

Casola, C., and E. Betrán, 2017 The genomic impact of gene retrocopies: what have we learned from comparative genomics, population genomics and transcriptomic analyses? Genome Biol Evol 9: 1351-1373

Chan, Y. G. Y., M. M. Cardwell, T. M. Hermanas, T. Uchiyama, and J. J. Martinez, 2009 Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cellular Microbiol 11: 629–644.

Comeron, J. M., 1999 K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15: 763–764.

Consortium, Gte., L. Group Data Analysis &Coordinating Center (LDACC)—Analysis Working, S. M. groups—Analysis W. Group, E. Gte. (eGTex) groups, N. C. Fund et al., 2017 Genetic effects on gene expression across human tissues. Nature 550: 204–213.
Courseaux, A., and J. L. Nahon, 2001 Birth of two chimeric genes in the Hominidae lineage. Science 291: 1293–1297.

Daniel, R., R. A. Katz, and A. M. Skalka, 1999 A role for DNA-PK in retroviral DNA integration. Science 284: 644–647.

Darbinyan, A., K. M. Siddiqui, D. Slonina, N. Darbinian, S. Amini et al., 2004 Role of JC virus agnoprotein in DNA repair. J Virol 78: 8593–8600.

Demogines, A., A. M. East, J.-H. Lee, S. R. Grossman, P. C. Sabeti et al., 2010 Ancient and recent adaptive evolution of primate non-homologous end joining genes. PLoS genetics 6: e1001169.

Downs, J., and S. Jackson, 1999 Involvement of DNA end-binding protein Ku in Ty element retrotransposition. Mol Cell Biol 19: 6260–8.

Durkin, S. S., X. Guo, K. A. Fryrear, V. T. Mihaylova, S. K. Gupta et al., 2008 HTLV-1 Tax oncoprotein subverts the cellular DNA damage response via binding to DNA-dependent protein kinase. J Biol Chem 283: 36311–36320.

Esnault, C., J. Maestre, and T. Heidmann, 2000 Human LINE retrotransposons generate processed pseudogenes. Nature genetics 24: 363–367.

Ferguson, B. J., D. S. Mansur, N. E. Peters, H. Ren, and G. L. Smith, 2012 DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1: 1065–17.

Frost, J. R., O. Olanubi, S. K.-H. Cheng, A. Soriano, L. Crisostomo et al., 2017 The interaction of adenovirus E1A with the mammalian protein Ku70/XRCC6. Virology 500: 11–21.

Gao, Y. J., J. Chaudhuri, C. M. Zhu, L. Davidson, D. T. Weaver et al., 1998 A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9: 367–376.

Goedecke, W., M. Eijpe, H. H. Offenberg, M. van Aalderen, and C. Heyting, 1999 Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nature genetics 23: 194–198.

Gravel, S., M. Larrivee, P. Labrecque, and R. J. Wellinger, 1998 Yeast Ku as a regulator of chromosomal DNA end structure. Science 280: 741–744.

Gu, Y. S., S. F. Jin, Y. J. Gao, D. T. Weaver, and F. W. Alt, 1997 Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proc National Acad Sci 94: 8076–8081.
Guerois, R., J. E. Nielsen, and L. Serrano, 2002 Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320: 369–387.

Hall, B. G., 2013 Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30: 1229–1235.

Harrison, P. M., D. Zheng, Z. Zhang, N. Carriero, and M. Gerstein, 2005 Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res 33: 2374–2383.

Hsu, H. L., D. Gilley, E. H. Blackburn, and D. J. Chen, 1999 Ku is associated with the telomere in mammals. Proceedings of the National Academy of Sciences of the United States of America 96: 12454–12458.

Jin, S. F., and D. T. Weaver, 1997 Double-strand break repair by Ku70 requires heterodimerization with Ku80 and DNA binding functions. EMBO J 16: 6874–6885.

Kaessmann, H., N. Vinckenbosch, and M. Long, 2009 RNA-based gene duplication: mechanistic and evolutionary insights. Nature reviews Genetics 10: 19–31.

Krissinel, E., 2015 Stock-based detection of protein oligomeric states in jsPISA. Nucleic Acids Res 43: W314-9.

Li, L., J. M. Olvera, K. E. Yoder, R. S. Mitchell, S. L. Butler et al., 2001 Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20: 3272–3281.

Long, M., E. Betrán, K. Thornton, and W. Wang, 2003 The origin of new genes: glimpses from the young and old. Nature reviews Genetics 4: 865–875.

Long, M., and C. H. Langley, 1993 Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91–95.

Lou, D. I., R. M. McBee, U. Q. Le, A. C. Stone, G. K. Wilkerson et al., 2014 Rapid evolution of BRCA1 and BRCA2 in humans and other primates. BMC Evol Biol 14: 155.

Maestre, J., T. Tchénio, O. Dhellin, and T. Heidmann, 1995 mRNA retroposition in human cells: processed pseudogene formation. EMBO J 14: 6333–6338.

Marques, A. C., I. Dupanloup, N. Vinckenbosch, A. Reymond, and H. Kaessmann, 2005 Emergence of young human genes after a burst of retroposition in primates. PLoS biology 3: e357.
Martinez, J. J., S. Seveau, E. Veiga, S. Matsuyama, and P. Cossart, 2005 Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for *Rickettsia conorii*. Cell 123: 1013–1023.

Milne, G. T., S. F. Jin, K. B. Shannon, and D. T. Weaver, 1996 Mutations in two Ku homologs define a DNA end-joining repair pathway in *Saccharomyces cerevisiae*. Mol Cell Biol 16: 4189–4198.

Monferran, S., J. Paupert, S. Dauvillier, B. Salles, and C. Muller, 2004 The membrane form of the DNA repair protein Ku interacts at the cell surface with metalloproteinase 9. EMBO J 23: 3758–3768.

Myung, K., D. M. He, S. E. Lee, and E. A. Hendrickson, 1997 KARP-1: A novel leucine zipper protein expressed from the Ku86 autoantigen locus is implicated in the control of DNA-dependent protein kinase activity. EMBO J 16: 3172–3184.

Nussenzweig, A., C. H. Chen, V. D. Soares, M. Sanchez, K. Sokol *et al.*, 1996 Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382: 551–555.

Ohshima, K., M. Hattori, T. Yada, T. Gojobori, Y. Sakaki *et al.*, 2003 Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome biology 4: R74.

Peters, N. E., B. J. Ferguson, M. Mazzon, A. S. Fahy, E. Krysztofinska *et al.*, 2013 A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus. PLoS pathogens 9: e1003649-11.

Pitcher, R. S., L. M. Tonkin, J. M. Daley, P. L. Palmbos, A. J. Green *et al.*, 2006 Mycobacteriophage exploit NHEJ to facilitate genome circularization. Mol cell 23: 743–748.

Rosikiewicz, W., M. Kabza, J. G. Kosiński, J. Ciomborowska-Basheer, M. R. Kubiak *et al.*, 2017 RetrogeneDB—a database of plant and animal retrocopies. Database 2017: bax038.

Roth, D. B., T. N. Porter, and J. H. Wilson, 1985 Mechanisms of nonhomologous recombination in mammalian cells. Mol Cell Bio 5: 2599–2607.

Rushing, A. W., K. Hoang, N. Polakowski, and I. Lemasson, 2018 The human T-cell leukemia virus type 1 basic leucine zipper factor attenuates repair of double-stranded DNA breaks via nonhomologous end joining. J Virol 92: e00672-18.

Sawyer, S. L., and H. S. Malik, 2006 Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis. Proc Natl Acad Sci USA 103: 17614–17619.
Sayah, D. M., E. Sokolskaja, L. Berthoux, and J. Luban, 2004 Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430: 569–573.

Schacherer, J., Y. Tourrette, J. L. Souciet, S. Potier, and J. de Montigny, 2004 Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae. Genome Res 14: 1291–1297.

Schlötterer, C., 2015 Genes from scratch – the evolutionary fate of de novo genes. Trends Genet 31: 215–219.

Schymkowitz, J., J. Borg, F. Stricher, R. Nys, F. Rousseau et al., 2005 The FoldX web server: an online force field. Nucleic Acids Res 33: W382-8.

Scutts, S. R., S. W. Ember, H. Ren, C. Ye, C. A. Lovejoy et al., 2018 DNA-PK is targeted by multiple vaccinia virus proteins to inhibit DNA sensing. Cell reports 25: 1953-1965.e4.

Sisu, C., B. Pei, J. Leng, A. Frankish, Y. Zhang et al., 2014 Comparative analysis of pseudogenes across three phyla. Proc Natl Acad Sci USA 111: 13361–13366.

Stabell, A. C., J. Hawkins, M. Li, X. Gao, M. David et al., 2016 Non-human Primate Schlafen11 Inhibits Production of Both Host and Viral Proteins. PLoS Pathog 12: e1006066.

Subramanian, C., A. W. Opipari, X. Bian, V. P. Castle, and R. P. S. Kwok, 2005 Ku70 acetylation mediates neuroblastoma cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci USA 102: 4842–4847.

Sui, H., M. Zhou, H. Imamichi, X. Jiao, B. T. Sherman et al., 2017 STING is an essential mediator of the Ku70-mediated production of IFN-gimel 1 in response to exogenous DNA. Sci Signal 10: eaah5054.

Suzuki, J., K. Yamaguchi, M. Kajikawa, K. Ichiyanagi, N. Adachi et al., 2009 Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS genetics 5: e1000461.

Tam, O. H., A. A. Aravin, P. Stein, A. Girard, E. P. Murchison et al., 2008 Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453: 534–538.

Walker, J. R., R. A. Corpina, and J. Goldberg, 2001 Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412: 607–614.
Wang, W., F. G. Brunet, E. Nevo, and M. Long, 2002 Origin of sphinx, a young chimeric RNA gene in *Drosophila melanogaster*. Proc Natl Acad Sci USA 99: 4448–4453.

Wang, Z.-Y., E. Leushkin, A. Liechti, S. Ovchinnikova, K. Mößinger *et al.*, 2020 Transcriptome and translatome co-evolution in mammals. Nature 588: 642–647.

Weitzman, M. D., C. E. Lilley, and M. S. Chaurushiya, 2010 Genomes in conflict: maintaining genome integrity during virus infection. Annu Rev Microbiol 64: 61–81.

Weller, G. R., B. Kysela, R. Roy, L. M. Tonkin, E. Scanlan *et al.*, 2002 Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297: 1686–1689.

Wilson, S. J., B. L. J. Webb, L. M. J. Ylinen, E. Verschoor, J. L. Heeney *et al.*, 2008 Independent evolution of an antiviral TRIMCyp in rhesus macaques. Proc National Acad Sci 105: 3557–3562.

Yang, Z., 2007 PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.

Yang, L., M. Emerman, H. S. Malik, and R. N. McLaughlin, 2020 Retrocopying expands the functional repertoire of APOBEC3 antiviral proteins in primates. Elife 9: e58436.

Zhang, X., T. W. Brann, M. Zhou, J. Yang, R. M. Oguariri *et al.*, 2011 Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J Immunol 186: 4541–4545.

Zhang, Z. L., P. M. Harrison, Y. Liu, and M. Gerstein, 2003 Millions of years of evolution preserved: A comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13: 2541–2558.

Zhang, J., R. Nielsen, and Z. Yang, 2005 Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22: 2472–2479.

Zheng, Y., Z. Ao, B. Wang, K. D. Jayappa, and X. Yao, 2011 Host protein Ku70 binds and protects HIV-1 integrase from proteasomal degradation and is required for HIV replication. J Biol Chem 286: 17722–17735.

Dataseta	Branch-site model	Estimate of parametersb	Test 2
Analysis 1 hominoid NUKU2	Model A with ω2 fixed at 1	l = -1421.47 \(p_0 = 0.354 \) \(p_1 = 0.375 \) \(p_2 + p_3 = 0.271 \) \(\omega_0 = 0.000 \) \(\omega_1 = 1.000 \) \(\omega_2 = 1.000 \)	4.75 \(p = 0.029 \)
Model A	l = -1419.10 \(p_0 = 0.455 \) \(p_1 = 0.456 \) \(p_2 + p_3 = 0.089 \) \(\omega_0 = 0.000 \) \(\omega_1 = 1.000 \) \(\omega_2 = 7.054 \)	4.75 \(p = 0.029 \)	
Table 1. Molecular evolution of NUKU2 in primates.

Both datasets included the KU70 sequences from seven hominoids: *Homo sapiens*, *Gorilla gorilla*, *Pongo pygmaeus* (Sumatran orangutan), *Pongo pygmaeus* (Borneo orangutan), *Hylobates syndactylus*, *Hylobates leucogenys*, *Hylobates agilis*, and from eight Old World monkeys: *Macaca mulatta*, *Macaca fascicularis*, *Lophocebus albigena*, *Papio anubis*, *Miopithecus talapoin*, *Cercopithecus wolfi*, *Colobus guereza*, *Trachypithecus francoisi*.

Both datasets also included NUKU2 from the seven hominoids listed above as well as from chimpanzee (*Pan troglodytes*). Analysis 2 also included NUKU2 from the eight Old World monkey species. In both analyses, the NUKU2 clade was defined at the foreground clade and the KU70 clade was defined at the background clade.

Models were run using the f61 codon frequency model.

*Twice the difference in the natural logs of the likelihoods (\(\Delta \ln \mathcal{L} \times 2\)) of the two models being compared. This value is used in a likelihood ratio test along with the degrees of freedom (1 in this case). In Test 2, Model A, which allows positive selection on the foreground clade, is compared to a null model (Model A with \(\omega_2\) fixed at 1). The p-value indicates the confidence with which the null model can be rejected.

Figure 1. Identification of Five KU70 Retrocopies in the Human Genome

A) A diagram of the KU70 parent gene locus and the loci of its five retrocopies. Exons are shown in thick blue boxes and introns appear as black lines. 3' and 5' UTR structures are shown in light gray. Target-site duplication (TSD) sequences are highlighted in red text. B) Insertion of NUKU5 in the human X chromosome compared to the syntenic locus of other Old World primates and evidence of LINE-1 mediated TSD.

Figure 2. Phylogenetics and insertion sites of KU70 derived retrocopies.

A) Once the five NUKU retrocopies had been identified in the human genome, orthologous retrocopies were identified in other available primate genome projects through inspection of the syntenic target sites. A tree of these sequences is shown. Unless indicated, none of the genes on the tree contain introns. Bootstrap values generated with the maximum likelihood method are shown. Marmoset NUKU3 was verified to be orthologous to the other NUKU3 sequences by target site analysis. NUKU2 and NUKU4 are apparent in the marmoset genome, but are almost completely deleted, and therefore they were not included in the alignment used to make the tree. We were unable to locate the syntenic region of NUKU1 in the Marmoset genome, indicating that this region may have been deleted (Figure S2). Marmoset-specific retrocopies were not named but are designated by the chromosome on which they are found. *Target site of NUKU5 and NUKU6 insertion is empty in Old World monkeys.* B) Based on the phylogenetic analysis and target site inspection, NUKU1 – NUKU4 predate the split between Old World monkeys, New World monkeys, and hominoids. NUKU5 is specific...
to the great ape genomes analyzed and \textit{NUKU6} appears to be unique to the snub-nosed monkey. The time of acquisition of \textit{NUKU6} is somewhat uncertain due to the low bootstrap support in the phylogenetic analysis. The marmoset genome has birthed 9 additional \textit{KU70}-like retrocopies.

\textbf{Figure 3. Prevalence of human retrocopies among double-strand break repair genes.} The GO database was used to compile a list of 66 genes involved in DNA double-strand break repair. The human genome was searched for retrocopy copies of each of these. The number if repair genes with 0, 1, 2, 3, 4, or 5 retrocopy copies is shown. None of the 66 genes had more than 5 retrocopy copies.

\textbf{Figure 4. Molecular evolution of \textit{KU70} retrocopies.} A) Human \textit{KU70} and four of the human \textit{NUKU} retrocopies were aligned in the region of a common ORF. The branch-sites model assigned dN/dS values to each branch on the tree. These values summarize the evolution that has occurred since each retrocopy was formed. “Anc” refers to the node representing the formation of \textit{NUKU2}, and the predicted sequence at this node was generated by codeml. B) \textit{NUKU2} is aligned to the “Anc” ancestral sequence in the region of the ORF which was analyzed in the analysis in panel A. Non-synonymous changes and synonymous changes are illustrated by gray and white boxes, respectively, in the alignment. C) \textit{KU70} sequences were gathered for a total of 14 simian primate species, and \textit{NUKU2} sequences were gathered from 15 species. All \textit{NUKU2} sequences contain an ORF that is shorter than the \textit{KU70} ORF, and it is even shorter in Old World monkeys than it is in hominoids. Two analyses of codon evolution were performed, one containing the sequences in the orange box (Analysis 1; longer ORF, \textit{KU70} sequences plus 7 hominoid \textit{NUKU2} sequence), and one containing the sequences in the pink box (Analysis 2; shorter ORF, \textit{KU70} sequences plus all \textit{NUKU2} sequences). The alignment shows the region that is an ORF in all genes. All \textit{NUKU2} sequences are shown, with human \textit{KU70} as an outgroup. In yellow are diverged sites, and numbers at the bottom indicate how many amino acid changes have occurred at those positions during \textit{NUKU2} evolution (only indicated where dN/dS is greater than 1). The \$ indicates a site that has changes from R to W three different times during \textit{NUKU2} evolution. Plus signs indicate sites found to be under positive selection in the Analysis 1 branch-sites calculation (posterior probability > 0.5).

\textbf{Figure 5. \textit{NUKU} retrocopies are functionally distinct from \textit{KU70}.} A) A lymphocyte-specific processed mRNA (EU224311) mapped to the human X chromosome with the insertion site of \textit{NUKU2} boxed in black. Predicted splice sites are indicated between exons with 100% identity to the X chromosome (pink boxes). A significant match to exon 2 was not identified within the X chromosome. B) RT-PCR was used to analyze the expression of \textit{NUKU2} and \textit{KU70} from total mRNA harvested from different human tissues. Nested primer pairs are shown to the right. The product of a first-round RT-PCR reaction (primers F – R1) was then amplified with a second set of primers (F and R2), where R2 sits interior to R1. All three primers were designed to be specific to transcripts from \textit{NUKU2}, as the ultimate base at the 3’ end of the primer placed such that it pairs with a base that is unique to \textit{NUKU2} relative to the other five retrocopies. \textit{NUKU2} does not have introns, but the \textit{KU70} primers span an intron. Nested PCR with specific
primers was also used to amplify the KU70 transcript, which is different in size from the product obtained from genomic DNA. C) Relative tissue-specific expression patterns of KU70, NUKU4, and NUKU5 measured in transcripts per million (TPM) (Consortium et al. 2017). D) For each Nuku2p mutation within 5 Å of Ku80p, ΔΔG_{bind} was plotted on the x-axis, whereas ΔΔG_{fold} was plotted on the y-axis. Mutations shown in green with x-axis values ΔΔG_{bind}<2 kcal/mol and y-axis values -3 < ΔΔG_{fold} < 3 kcal/mol are considered functional since they are likely to retain the ability to fold and bind. Mutations shown in red with x-axis values ΔΔG_{bind}>2 kcal/mol and y-axis values -3 < ΔΔG_{fold} < 3 kcal/mol are predicted to retain folding but disrupt Ku80p binding. E) Western blot confirming protein expression of each activation domain (AD) fusion construct in the yeast strains used for two-hybrid analysis. F) A yeast two-hybrid test assaying the interaction of Ku70p or Nuku2p with Ku80p. The Gal4 activation domain (AD) is either fused to Ku70p (top row), Nuku2p (second row), or expressed alone (third and fourth rows). LexA is a DNA binding domain and is either fused to Ku80p (top three rows) or expressed alone (bottom row). A positive interaction enables growth on complete media (CM) lacking histidine.

Figure 6. Detection of a putative KU70 retrocopy-encoded protein. A) A heat map representation of Ribo-seq data reveals probable translation of several NUKU retrocopies. Many of the short (~30bp) Ribo-seq reads identically match more than one gene and are classified as “not unique”. The remaining reads align uniquely to either KU70 or one retrocopy. The mean proportion of reads aligning to each gene in three tissues is shown (n = 3). B) Identification of an anti-Ku70 antibody that recognizes Nuku2p, Nuku5p and Ku70p. The ORFs of KU70, NUKU2, and NUKU5 were fused to the GAL4 activation domain (AD) and expressed in yeast. A Western blot of these proteins shows that a single polyclonal anti-Ku70 antibody recognizes all three Nuku fusion proteins (three independent transformants of Nuku5-AD are shown). C) Whole cell protein lysates from testis, brain, and HEK293T cells were purchased or cultured. The anti-Ku70 antibody characterized in panel A was used to probe these extracts.
