Contributions to the distribution of Phallales in Turkey

Semiha YAKAR, Yasin UZUN, Abdullah KAYA
Karamanoğlu Mehmetbey University, Kamil Özdağ Science Faculty, Department of Biology, Karaman, Turkey
*yasinzun_61@hotmail.com

Abstract: New specimens of four previously reported members of the family Phallaceae, Clathrus ruber P.Micheli ex Pers., Mutinus caninus (Huds.) Fr., Phallus impudicus L., and Pseudocolus fusiformis (E. Fisch.) Lloyd, were collected from Eastern Black Sea region of Turkey. The samples were identified and brief descriptions were prepared. Current and newly determined localities of the collected species were provided together with the photographs related to their macro and micromorphologies.

Key words: Biodiversity, Phallaceae, stinkhorn fungi, Turkey.

1. Introduction
Phallales E.Fisch. is an order of fungi in the phylum Basidiomycota. According to Kirk et al., (2008) the order comprises 88 species belonging to 26 genera and 2 families, but Index Fungorum (accessed 10 June 2019) currently list 173 taxa within 39 genera. Phallaceae Corda is a well-known family of the order Phallales and commonly known as “stinkhorns”. Members of the family are generally characterized by a simple hollow pseudostipe and a slimy spore mass which is usually supported by a campanulate receptacle or spread over the pseudostipe surface (Gaona et al., 2017).

Until the end of 2018, 44 records, belonging to 7 species of the Phallaceae within the genera Anthurus Kalchbr. & MacOwan, Clathrus P.Micheli ex L., Colus Cavalier & Séchier, Mutinus Fr., Phallus Junius ex L. and Pseudocolus Lloyd have so far been presented from Turkey (Sesli and Denchev, 2014; Akata and Gürkanlı, 2018). These samples were collected from 30 different provinces of Turkey. During our routine field studies fruit bodies of stinkhorn species were collected from Eastern Black Sea Region of Turkey and determined as Clathrus ruber P. Micheli ex Pers., M. caninus (Huds.) Fr., P. impudicus L., and P. fusiformis (E. Fisch.) Lloyd.

The study aims to make a contribution to the mycobiota of Turkey by presenting new distributions for some stinkhorn fungi.

2. Materials and Method
Stinkhorn fungi samples were collected from Artvin, Giresun, Rize and Trabzon provinces during routine field studies between 2015 and 2018 within the Eastern Black Sea Region of Turkey. Required characteristics of the samples were recorded and they were photographed in their natural habitat. The samples were dried in air conditioned room and prepared as fungarium materials. Measuremental evaluations were performed in the fungarium. Micromorphological investigations were carried out under a Nikon eclipse Ci-S trinocular light microscope and the photographs related to micromorphology were taken by a DS-Fi2 digital camera aided by a Nikon DS-L3 displaying apparatus. The specimens were identified with the help of Bessette et al., (1995, 1997), Philips (2010), McKnight and McKnight (1987), Sterry and Hughes (2009), Buczacki (2012), Lincoff. (1981), Pegler et al., (1995), Roberts and Evans (2013), Watling (1973), Akata and Doğan (2011), Miller and Miller (1988), Jordan (1995), Breitenbach and Kränzlin (1986) and Ellis and Ellis (1990).

The specimens are deposited at Biology Department, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University.

3. Results
Basidiomycota R.T.Moore
Phallales E.Fisch.
Phallaceae Corda
Clathrus P.Micheli ex L.
Clathrus ruber P.Micheli ex Pers., Syn. meth. fung. (Göttingen) 2: [241] (1801).
[Syn]: Clathrus cancellatus Tourn. ex Fr., Clathrus cancellatus c albus Fr., Clathrus flavescens Pers., Clathrus kusanoi (Kobayasi) Dring, Clathrus ruber * columnatus Schwein., Clathrus ruber f. kusanoi Kobayasi, Clathrus ruber P. Micheli ex Pers. f. ruber, Clathrus ruber var. albus (Fr.) Quadr. & Lungnhi, Clathrus ruber var. flavescens (Pers.) Quadr. & Lungnhi, Clathrus ruber P. Micheli ex Pers. var. ruber]

Macroscopic and microscopic features: Immature fruit body 30-60 mm in diam., egg-shaped (Figure 1a), sub-hypogeous to epigeous, consists of an olive-green gleba, a compressed lattice surrounding the gleba (Figure 1b), and a white to creamy and leathery outer membrane (exoperidium), enclosing the gleba and the lattice. Surface
smooth, marked by reticulations indicating the site of insertion of the lattice (Figure 1a), and rooted by a thick mycelial strand at the base (Figure 1b,c). Later on the peridium ruptures at the apex letting the lattice-shaped receptaculum rise (Figure 1c). Receptaculum 90-120 × 65-85 mm, hollow, spherical to globose or somewhat elongated lattice-like network of meshes (Figure 1c,d); arms about 15 mm thick with a spongy structure, salmon-pink to scarlet red, somewhat paler towards the base. The mature fruit body smells like a carrion. Basidia and cystidia not observed. Basidiospores 4.5-6 × 1.5-2 µm, cylindrical to bacilloid, hyaline to pale greenish, smooth, thin-walled (Figure 1e).

Clathrus ruber was reported to grow on soil amongst leaf litter in gardens, shrubberies and grassy places at the edge of woodlands (Breitenbach and Kränzlin, 1986; Jordan, 1995; Pegler et al., 1995).

Clathrus ruber is the only clathroid species of *Clathrus* known in Turkey.

Specimen examined: Rize, Ardeşen, Ortaalan village, roadside, on soil, 41°10′N-41°06′E, 340 m, 09.07.2017, Yuzun 5637; Güneyköy village, roadside and bean garden, on soil, 41°08′N-41°07′E, 860 m, 11.08.2017, Yuzun 5741; Pazar, Hasköy village, house garden, on soil, 41°06′N-40°51′E, 420 m, Yuzun 6968; Trabzon, Tonya, Hoşarlı village, around bean garden, on soil, 40°56′N-39°18′E, 740 m, 22.05.2016, Yuzun 5129; Karaağaçlı village, hazelnut garden, on soil, 40°55′N-39°17′E, 640 m, 20.06.2016, Yuzun 5147.

Clathrus ruber was reported previously from fourteen localities in Antalya, Aydın, İstanbul, İzmir, Kahramanmaraş, Kocaeli, Muğla, Osmaniye, Samsun, Sinop, Trabzon, Uşak, and Yalova province (Afyon and Yağız, 2004; Ali et al., 2007; Baydar and Sesli, 1994; Pekşen and Karaca, 2003; Güny and Demirel, 2006; Türkoğlu and Yağız, 2012; Akata et al., 2014, 2018; Solak and Yılmaz Ersel, 2005; Yılmaz Ersel and Solak, 2004; Solak et al., 2014; Kaya, 2009; Ünal et al., 2016; Ali et al., 2017; Güngör et al., 2016; Akata, 2017).

Mutinus Fr.

Mutinus caninus (Huds.) Fr., Summa veg. Scand., Sectio Post. (Stockholm): 434 (1849).
[Syn: Aedycia canina (Huds.) Kuntze, Cynophallus caninus (Huds.) Fr., Ithyphallus inodorus Gray, Mutinus caninus var. albus Zeller, Mutinus caninus (Huds.) Fr. var. caninus, Mutinus caninus var. levonensis Noell, Phallus caninus Huds., Phallus caninus Huds. var. caninus, Phallus caninus var. felina Schumach., Phallus inodorus Sowerby]

Macroscopic and microscopic features: Immature fruitbody 15–35 x 15–30 mm, elongate ovoid to pyriform or egg shaped, at first hypogeous then epigeous, white to dirty white or yellowish rubbery outer exoperidium encloses the gelatinous endoperidium in which the pale green embryonic spore mass (gleba) and the stalk (receptacle) are kept, basally attached by a white rhizomorph (Figure 2a,b). Following the rupture of the egg, the receptacle becomes volvate (Figure 2d). Receptacle 90-120 x 10-15 mm, cylindrical to tapering above, hollow, spongy, brick-red to orange-red, somewhat paler towards the base. Olive green to dark greyish and slimy-soft glebiferous dissapears in a short time and leaves the empty, orange-brown glebal chambers (Figure 2c,d). Basidia cylindrical, 6-spored. Cystidia not observed. Basidiospores 3.5-5 x 1-2 µm, cylindrical to ellipsoid, smooth, hyaline (Figure 2e).

Figure 2. Basidiocarps (a-d) and basidiospores (e) of Mutinus caninus (bar 10 µ).
Phallus impudicus was reported previously from Antalya, Aydın, Balıkesir, Bingöl, Bitlis, Bolu, Denizli, Elazığ, Gümüşhane, Hatay, İstanbul, İzmir, Kastamonu, Kayseri, Kocaeli, Malatya, Mersin, Muğla, Samsun, Trabzon and Uşak (Vlaev, 1915; Gücü, 1990; İşloğlu ve Öder, 1995a,b; Aşkun ve İşloğlu, 1997; İşloğlu, 1997; 2001; Kaya, 2000; Kaşık et al., 2002; Solak et al., 2002; Öztürk et al., 2003; Pekşen ve Karaca, 2003; Yılmaz Ersel and Solak, 2004; Yağız et al., 2006a; 2006b; Selili, 2007; Alli et al., 2017; Akata, 2017).
Pseudocolus fusiformis was reported previously from only one locality in Trabzon (Akata ve Doğan, 2011).

4. Discussions

New localities were added to the existing localities of four stinkhorn species within the boundaries of Artvin, Giresun, Rize and Trabzon provinces. Pseudocolus fusiformis was previously reported only from Yomra district of Trabzon province. Three new localities were also presented within Giresun, Rize and Trabzon provinces. Mutinus caninus have 9 previously presented localities in Turkey. Two new localities were added in Trabzon. Compared to previous two species, Clathrus ruber seems to have more distribution in Turkey. This species were previously reported from 13 provinces of Turkey. Five new distribution localities were also presented for it in Rize and Trabzon provinces. Phallus impudicus is the most cosmopolitan species in Turkey.
Figure 4. Basidiocarps (a-d) and basidiospores (e) of *Pseudocolus fusiformis* (bar 10 µ).
among the four taxa. This species has been cited in 3 studies carried out within the boundaries of 2 provinces of Turkey. Two new localities were also presented for this species from Artvin and Rize provinces from which it was not reported before.

Acknowledgments
Authors would like to thank Karamanoğlu Mehmetbey University Research Fund (Project No: 02-M-15 and 16-M-16) for its financial support.

References
Afyon A, Yağız D (2004). Macrofungi of Sinop Province. Turkish Journal of Botany 28(4): 351-360.
Akata I (2017). Macrofungal Diversity of Belgrad Forest (İstanbul). Kastamonu Üniversitesi Orman Fakültesi Dergisi 17(1): 150-164.
Akata I, Çetin B, İşiloğlu M (2010). Macrofungal diversity of Ilgaz Mountain National Park and its environs (Turkey). Mycotaxon 113: 287-290.
Akata I, Doğan HH (2011). Pseudocolus fusiformis, an uncommon stinkhorn new to Turkish mycobiota. Mycotaxon 115: 259-262.
Akata I, Gürkanlı CT (2018). A New Genus Record For Turkish Clathroid Fungi. The Journal of Fungus 9(1): 36-38.
Akata I, Kabaktepe Ş, Sevindik M, Akgül H (2018). Macrofungi determined in Yuvacık Basin (Kocaeli) and its close environs. Kastamonu Üniversitesi Orman Fakültesi Dergisi 18(2): 152-163.
Akata I, Uzun Y, Kaya A (2014). Macromycetes determined in Yomra (Trabzon) district. Turkish Journal of Botany 38(5): 999-1012.
Akata I, Uzun Y, Kaya A (2016). Macrofungal diversity of Zıgana Mountain (Gümüşhane/Turkey). Biological Diversity and Conservation 9(2): 57-69.
Ali H, Candar SS, Akata I (2017). Macrofungal Diversity of Yalova Province. The Journal of Fungus 8(2): 76-84.
Ali H, İşiloğlu M, Solak H (2006). Aydın Yöresinin Yenen Mantarları. Selçuk Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi 28: 83-92.
Ali H, İşiloğlu M, Solak MH (2007). Macrofungi of Aydın Province, Turkey. Mycotaxon 99: 163-165.
Aşkun T, İşiloğlu M (1997). Macrofungi of Balya (Balıkesir) County. Turkish Journal of Botany 21(5): 279-284.
Baba H, Alkan S, Kaşık G (2013). Macrofungi of Antakya (Hatay) and Its Environment. The Journal of Fungus 4(1): 11-20.
Baba H, Alkan S, Kaşık G (2014). Macrofungi of Mustafa Kemal University Tayfur Sökmen Campus (Hatay- Turkey) and Environment. The Journal of Fungus 5(2): 1-8.
Baydar S, Sesli E (1994). The macromycetes determined in Akçaabat District of Trabzon Province. Turkish Journal of Botany 18: 99-101.
Bessette AE, Bessette AR, Fischer DW (1997). Mushrooms of Northeastern North America. Hong Kong: Syracuse University Press.
Bessette AE, Miller OK, Bessette AR, Miller HH (1995). Mushrooms of North America in Colour. A field Guide Companion to Seldom-Illustrated Fungi. Hong Kong: Syracuse University Press.
Breitenbach J, Kränzlin F (1986). Fungi of Switzerland, Volume 2: Non Gilled Fungi. Lucerne: Verlag Mykologia.
Buczacki S (2012). Collins Fungi Guide. The most complete field guide to the mushrooms and toadstools of Britain & Ireland. Hong Kong: Harper Collins Publishers.
Demirel K, Uzun Y (2004). Two new records of Phallales for the mycoflora of Turkey. Turkish Journal of Botany 28(1-2): 213-214.
Ellis MB, Ellis JP (1990). Fungi Without Gills (Hymenomycetes and Gasteromycetes). An Identification Handbook. London: Chapman and Hall.
Gaona MGC, Trierverlei-Pereira L, Cano YEM (2017). New records of Phallales from Paraguay. Mycotaxon 132: 361-372.
Gück F (1990). Elazığ Çevresinde Belirilen Makrofunguslar. Doga Türk Botanik Dergisi 14(3): 171-177.
Güner N, Demirel K (2006). Düziçi ve Bağbozucu (Osmaniye) Yöresinde Yetișen Makrofunguslar Üzerinde Taksonomik Bir Araştırma. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi 11(1): 17-24.
Güngör H, Solak MH, Allı H, İşiloğlu M, Kalmış E (2016). Contributions to the macrofungal diversity of Muğla Province (Turkey). Mycotaxon 131(1): 255-256.
Index Fungorum (2019). http://www.indexfungorum.org/Names/Names.asp. Accessed 10 June 2019.
İşiloğlu M (1997). Macrofungi of Sarıçkışık yaylası (Malatya). Turkish Journal of Botany 21(1): 63-65.
İşiloğlu M (2001). The macrofungi of Sandras mountain (Muğla). Selçuk Üniversitesi Eğitim Fakültesi Fen Bilimleri Dergisi 9: 127-136.
İşiloğlu M, Öder N (1995a). Macrofungi of Malatya Province. Turkish Journal of Botany 19: 321-324.
İşiloğlu M, Öder N (1995b). Contributions to the macrofungi of Mediterranean Turkey. Turkish Journal of Botany 19: 603-609.
Jordan M (1995). The Encyclopedia of Fungi of Britain and Europe. UK: David & Charles Book.
Yakar et al. – Contributions to the distribution of Phallales in Turkey.

Contributions to the distribution of Phallales in Turkey. Anatolian Journal of Botany 3(2): 51-58.

Kaşık G, Öztürk C, Türkoğlu A, Doğan HH (2002). Macrofungi flora of Yeşilhisar district (Kayseri). The Herb Journal of Systematic Botany 9(2): 123-134.

Kaya A (2000). Maş ve Bitlis Yörülerinde Tespit Edilen Yenen Makrofunguslar, Türkiye VI. Yemeklik Mantar Kongresi 2-22 Eylül 2000, Bildiri Kitapçığı: 112-115.

Kaya A (2009). Macromycetes of Kahramanmaraş province (Turkey). Mycotaxon 108: 31-34.

Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008). Dictionary of the Fungi. 10th ed. Wallingford, UK: CAB International.

Lincoff GH (1981). National Audubon Society Field Guide to North American Mushrooms (National Audubon Society Field Guides). New York: Alfred A. Knopf.

McKnight KH, McKnight VB (1987). A Field Guide to Mushrooms of North America. The Peterson Field Guide Series. New York: Houghton Mifflin Company.

Miller OK, Miller HH (1988). Gasteromycetes Morphological and Developmental Features with Keys to Orders, Families and Genera. Eureka: Mad River Press.

Öztürk C, Kaşık G, Doğan HH, Aktaş S (2003). Macrofungi of Alanya district. Turkish Journal of Botany 27(4): 303-312.

Pegler DN, Læssøe T, Spooner BM (1995). British Puffballs, Earthstars, and Stinkhorns. An Account of the British Gasteroid Fungi. Kew: Royal Botanic Gardens, Kew.

Peşen A, Karaca GH (2003). Macrofungi of Samsun Province. Turkish Journal of Botany 27(3): 173-184.

Philips R (2010). Mushrooms and Other Fungi of North America. Ontario: Firefly Books.

Roberts P, Evans S (2013). The Book of Fungi. A Life-Size Guide to Six Hundred Species from Around the World. UK: Ivy Press.

Sesli E (2007). Preliminary checklist of macrofungi of the East and Middle Black Sea regions of Turkey. Mycotaxon 99: 71-74.

Sesli E, Denchev CM (2014). Checklists of the myxomycetes, larger ascomycetes, and larger basidiomycetes in Turkey. 6th edn. Mycotaxon Checklists Online. (http://www.mycotaxon.com/resources/checklists/sesli-v106-checklist.pdf): 1-136.

Solak MH, Alli H, İşloğlu M, Güngör H, Kalmış E (2014). Contributions to the macrofungal diversity of Antalya Province. Turkish Journal of Botany 38(2): 386-397.

Solak MH, Yılmaz Ersel F (2005). Macrofungi of Muğla Province. Afyon Kocatepe University Journal of Science 5(1-2): 15-24.

Solak MH, Yılmaz Ersel F, Gücün F, İşloğlu M (2002). Macrofungi of Balıkesir Province from Turkey. Bio-Science Research Bulletin 18(2): 137-149.

Sterry P, Hughes B (2009). Collins Complete Guide to British Mushrooms and Toadstools. London: HarperCollinsPublishers Ltd.

Türkoğlu A (2008). Macrofungal diversity of Babadağ (Denizli, Turkey). African Journal of Biotechnology 7(3): 192-200.

Türkoğlu A, Yağız D (2012). Contributions to the macrofungal diversity of Uşak Province. Turkish Journal of Botany 36(5): 580-589.

Ünal G, Türkoğlu A, Yaratanakul Güngör M. 2016. Muğla Yöresindeki Eucalyptus Ormanlarında Yetişen Makrofunguslar Üzerine Taksonomik Çalışmalar. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi 4(3): 244-247.

Uzun Y, Acar İ, Akçay ME, Kaya A (2017). Contributions to the macrofungi of Bingöl, Turkey. Turkish Journal of Botany 41(5): 516-534.

Vlaev K (1915). Contribution to the higher fungus flora of Turkish Thrace. Travaux de la Société Bulgare des Sciences Naturelles 8: 199-207.

Watling R (1973). Identification of Larger Fungi. UK:Hulton Educational Publications Ltd.

Yağız D, Ayfon A, Konuk M, Helfer S (2006b). Contributions to the macrofungi of Kastamonu Province, Turkey. Mycotaxon 98:177-180.

Yağız D, Ayfon A, Konuk, Helfer S (2006a). Contributions to the macrofungi of Bolu and Düzce Provinces, Turkey. Mycotaxon 95: 331-334.

Yılmaz Ersel F, Solak MH (2004). Contributions to the macrofungi of İzmir Province. Turkish Journal of Botany 28(5): 487-490.

Cite this article: Yakar S, Uzun Y, Kaya A (2019). Contributions to the distribution of Phallales in Turkey. Anatolian Journal of Botany 3(2): 51-58.