Determining the Etiological Factors in Pleural Fluid by CRP, Albumin and Procalcitonin Levels

Hakan Celikhisar MD¹, Gulay Dasdemir Ilkhan MD²

¹Izmir Metropolitan Municipality Esrefpasa Hospital, Chest Diseases Clinic, Chest Diseases Specialist. Izmir University of Economics, Vocational School of Health Science, Gaziler Caddesi No:315, 35110; IZMIR- TURKEY.

²Okmeydanı Education and Research Hospital, Chest Diseases Clinic, Chest Diseases Specialist. Okmeydanı, Istanbul- TURKIYE

ARTICLE INFO

Corresponding Author: Hakan Celikhisar

Recieved article: 10-01-2020
Accepted article: 07-02-2020
Published article: 14-01-2020

DOI: https://doi.org/10.15520/jmrhs.v3i2.157

ABSTRACT

Aim: The Light criteria with a specificity of 72% and a sensitivity of 100% have led to further research into the detection of more specific diagnostic methods for transudate exudate separation. In this study, we aimed to evaluate whether pleural fluid and serum CRP, procalcitonin, on the other hand CRP / Albumin and Procalcitonin / Albumin ratios may be suggested as an alternative to Light criteria in the differential diagnosis of pleural effusions.

Material and Method: In this study, the pleural effusions of 121 patients who were aged ≥18 years were evaluated. The study was planned as a prospective cohort type study.

Results: Effusions were divided into two sub-groups as transudate (n:37) and exudate (n:84); and malignant (n:30) and non-malignant (n:91). Serum procalcitonin level of 0.035 was having a sensitivity of 0.726 and specificity of 0.964; on the other hand, pleural fluid procalcitonin level of 0.035 was having a sensitivity of 0.690 and specificity of 0.919. For serum procalcitonin /albumin ratio, 0.0104 value was having a sensitivity of 0.774 and specificity of 0.757 while for pleural fluid procalcitonin /albumin ratio of 0.019 value was having a sensitivity of 0.667 and specificity of 0.649.

Conclusion: Serum and pleural fluid procalcitonin levels and procalcitonin/ albumin ratio were having a significant role in differentiating transudate and exudate. However, procalcitonin, CRP or any other ratios obtained from these parameters were not useful in diagnosis of malignant effusions.

Keywords: Pleural fluid, C-Reactive Protein, Albumin, Procalcitonin.

Introduction

Pleura is the serous membrane that covers the mediastinum, diaphragm, lung parenchyma and the inner surface of the rib cage. There is a small amount of fluid in the potential space between the pleural leaves that allows the pleural surfaces to slide easily over each other during respiratory movements [1]. Increase in the amount of this liquid due to pulmonary, pleural or systemic diseases
result in increased pleural effusion. In evaluation of the etiology of pleural effusion, fluid obtained by thoracentesis should be examined with biochemical, bacteriological, and cytological tests. In the 1970s, Light et al established some criteria for practical application in differentiation of pleural fluids as exudate and transudate [2]. Since the sensitivity and specificity of the light criterions were 100% and 72%, some new parameters are required to increase the diagnostic value of these tests. C-reaction protein (CRP) is an acute phase reactant mainly produced by liver. Procalcitonin is an essential marker in the diagnosis of especially bacterial infections [3]. Pleural fluid CRP and procalcitonin levels are studied in especially infectious causes of pleural effusions [4,5,6,7]. In this study, we aimed to evaluate whether pleural fluid and serum CRP, procalcitonin, on the other hand CRP / Albumin and Procalcitonin / Albumin ratios may be suggested as an alternative to Light criteria in the differential diagnosis of pleural effusions.

Material and Method

This study was performed in İzmir Metropolitan Municipality Hospital and Okmeydanı Training and Research Hospital between 01.02.2019 and 30.09.2019. Ethical approval was obtained from the local ethics committee. In this study, the pleural effusions of 121 patients who were aged ≥18 years were evaluated. Informed consent was obtained from all participants. Thoracentesis were performed under local anesthesia and pleural fluid samples were immediately analyzed for total protein, glucose, and lactate dehydrogenase and total and differential cell counts, and cytological examination. Pleural fluid was collected in a serum-separating tube for CRP measurement and in a tube containing EDTA for procalcitonin measurement. Samples were centrifuged at 1200xg for 5 min at 4 °C, and the supernatants were stored at –30 °C until they were assayed. Concurrently, venous blood samples were obtained and analyzed for total protein, albumin, lactate dehydrogenase, CRP and procalcitonin levels.

Effusions were divided into two sub-groups as transudate and exudate regarding the Light’s criteria; and malignant and non-malignant. Serum and pleural fluid parameters were analyzed in differentiation of transudate and exudate, or malign and non-malign effusions.

Statistical Analyses

Statistical analyses were performed using SPSS version 21.0 software package (SPSS Inc, Chicago IL, United States). The distribution of data was analyzed with Kolmogorov-Smirnov test. Continuous variables with normal distribution were presented as mean ± SD. Categorical data are reported as number (frequency). Student’s t-test and chi square test were performed to compare the data. ROC curves were constructed to evaluate the role of serum and pleural fluid CRP and procalcitonin levels and pleural fluid /serum CRP ratio, pleural fluid /serum procalcitonin ratio, pleural fluid CRP/albumin ratio, pleural fluid procalcitonin /albumin ratio, serum CRP/albumin ratio, serum procalcitonin /albumin ratio in differentiation of transudate and exudate, or malign and non-malign effusions. A p-value < 0.05 was considered statistically significant.

Results

In a total of 121 patients (90 male and 31 female) were included in the study. Among pleural effusions obtained from these patients, 37 were transudate and 84 were exudate. The mean age of the patients with transudate was significantly older than that of the patients with exudate (p:0.001) (Table 1).

Age (years)	Transudate (n:37)	Exudate (n:84)	p
	59.13 ±9.74	51.45 ±9.05	0.001
Gender (Male/Female)	29/8	61/23	0.652

Laboratory data obtained from the serum and pleural effusions of the study participants are compared between patients having exudate or transudate and summarized in Table 2.
Table 2. Comparison of laboratory data between patients having transudate or exudate

	Transudate (n:37)	Exudate (n:84)	p
Pleural fluid total protein (mg/dl)	2.10 ±0.98	3.75 ± 0.71	0.001
Serum total protein (mg/dl)	6.37 ± 0.57	6.72± 0.55	0.002
Pleural fluid LDH (U/l)	79.13±20.68	125.83±29.85	0.001
Serum LDH (U/l)	207.10±35.67	198.20±38.75	0.22
Pleural fluid albumin (g/dl)	1.31 ± 0.45	1.89 ± 0.56	0.001
Serum albumin (g/dl)	2.76 ± 0.87	3.06± 0.56	0.027
Pleural fluid - serum albumin gradient (g/dl)	-1.45 ± 0.65	-1.17 ± 0.41	0.002
Pleural fluid CRP (mg/dl)	2.06 ±1.95	3.85 ±2.23	0.002
Serum CRP (mg/dl)	3.34± 2.28	4.22± 3.12	0.121
Pleural fluid Procalcitonin (ng/dl)	0.02 ±0.01	0.66±1.15	0.001
Serum Procalcitonin (ng/dl)	0.02± 0.01	0.52 ± 0.93	0.001

Among those pleural effusions analyzed, 30 were malignant and 91 were non-malignant. Some ratios are calculated from those laboratory data and compared between patients having transudate and exudate or malignant and non-malignant effusions (Tables 3 and 4). Serum and pleural fluid procalcitonin/albumin ratio were significantly different between patients having transudate or exudate and on the other hand, serum and pleural fluid CRP/albumin ratio, and serum and pleural fluid procalcitonin /albumin ratio were all significantly different between patients having malignant or non-malignant pleural effusions.

Table 3. Comparison of different ratios obtained from laboratory tests between patients having transudate or exudate

	Transudate (n:37)	Exudate (n:84)	p
Pleural fluid /serum total protein ratio	0.32±0.13	0.56± 0.10	0.001
Pleural fluid /serum LDH ratio	0.38±0.07	0.64±0.15	0.001
Pleural fluid /serum albumin ratio	0.50±0.17	0.61±0.12	0.002
Pleural fluid /serum CRP ratio	0.57±0.19	0.78±0.38	0.001
Pleural fluid /serum Procalcitonin ratio	1.25 ±1.12	1.45±1.24	0.381
Serum CRP/Albumin ratio	1.53±1.44	1.42±1.13	0.654
Pleural fluid CRP/Albumin ratio	1.54±1.23	2.21±1.58	0.142
Serum Procalcitonin /Albumin ratio	0.010 ±0.004	0.18 ± 0.13	0.001
Pleural fluid Procalcitonin /Albumin ratio	0.018 ±0.012	0.38 ± 0.26	0.001

Table 4. Comparison of different ratios obtained from laboratory tests between patients having malignant or non-malignant effusions

	Malign effusions (n:30)	Non-malign effusions (n:91)	p
Pleural fluid /serum total protein ratio	0.61±0.08	0.44±0.15	0.001
Pleural fluid /serum LDH ratio	0.71 ± 0.05	0.51±0.18	0.001
Pleural fluid /serum albumin ratio	0.62±0.08	0.56±0.16	0.023
Pleural fluid /serum CRP ratio	0.55±0.12	0.77±0.38	0.001
Pleural fluid /serum Procalcitonin ratio	1.40±0.74	1.39±0.87	0.963
Serum CRP/Albumin ratio	1.05 ± 0.43	1.59±0.97	0.001
Pleural fluid CRP/Albumin ratio	0.97± 0.49	2.34± 1.52	0.001
Serum Procalcitonin /Albumin ratio	0.02± 0.018	0.16±0.12	0.001
Pleural fluid Procalcitonin /Albumin ratio	0.034± 0.029	0.34 ± 0.24	0.001
Receiver operating characteristic (ROC) curves were drawn for serum and pleural effusion CRP and procalcitonin levels in differentiation of transudate and exudate (Figure 1). Areas under the curve for serum CRP, serum procalcitonin, pleural fluid CRP and pleural fluid procalcitonin levels were: 0.570, 0.849, 0.648 and 0.831, respectively. Some cut-off values for serum and pleural fluid procalcitonin levels are summarized in Table 5. Serum procalcitonin level of 0.035 was having a sensitivity of 0.726 and specificity of 0.964; on the other hand pleural fluid procalcitonin level of 0.035 was having a sensitivity of 0.690 and specificity of 0.919.

For pleural fluid /serum CRP ratio was 0.630 and for pleural fluid /serum procalcitonin ratio, it was 0.542, for pleural fluid CRP/albumin ratio it was 0.528, for serum CRP/albumin ratio it was 0.525, for pleural fluid procalcitonin /albumin ratio it was 0.748 (0.693-0.834) and for serum procalcitonin /albumin ratio it was 0.797 (0.717-0.878).

Some cut-off values were calculated for the sensitivity and specificity of serum and pleural fluid procalcitonin /albumin ratios (Table 6). For serum procalcitonin /albumin ratio, 0.0104 value was having a sensitivity of 0.774 and specificity of 0.757 while for pleural fluid procalcitonin /albumin ratio of 0.019 value was having a sensitivity of 0.667 and specificity of 0.649.

Table 5. Some cut-off values calculated for the sensitivity and specificity of serum and pleural fluid procalcitonin levels in differentiation of transudate and exudate

	Sensitivity	Specificity
Serum		
Procalcitonin	0.83	0.703
0.025	0.726	0.964
0.035	0.690	0.964
0.045		
Pleural fluid procalcitonin	0.869	0.405
0.015	0.810	0.676
0.025	0.690	0.919
0.035		

ROC curves were drawn for serum and pleural effusion CRP and procalcitonin levels in differentiation of malignant and non-malignant effusions (Figure 2). Areas under the curve for serum CRP, serum procalcitonin, pleural fluid CRP and pleural fluid procalcitonin were, 0.459, 0.726, 0.528 and 0.525, respectively.

Figure 2: ROC curves for CRP and procalcitonin levels in differentiation of malignant and non-malignant effusions

	Sensitivity	Specificity
Serum		
Procalcitonin /albumin ratio	0.798	0.649
0.0910	0.774	0.757
0.0104	0.762	0.865
0.0109		
Pleural fluid procalcitonin /albumin ratio	0.714	0.595
0.017	0.667	0.649
0.019	0.655	0.730
0.022		
Pleural fluid /serum CRP ratio was 0.306 and for pleural fluid /serum procalcitonin ratio it was 0.466, for serum CRP/albumin ratio it was 0.328, for serum CRP/albumin ratio it was 0.434, for pleural fluid procalcitonin /albumin ratio it was 0.463 and for serum procalcitonin /albumin ratio it was 0.483. Since in any of the parameters area under the curve could not reach the value of 0.50, we did not compute the sensitivity and specificity values.

Discussion
In this study we analyzed the prognostic value of serum and pleural fluid CRP and procalcitonin levels and some ratios obtained from analyses of serum and pleural fluid laboratory data in differentiation of transudate or exudate and malignant or non-malignant pleural effusions. We determined that, especially serum and pleural fluid procalcitonin levels and procalcitonin /albumin ratios were having significant diagnostic value in differentiation of exudate and transudate; however any of the ratios were not having any significant diagnostic value in diagnosis of malignant effusions. To the best of our knowledge, this is the first study in literature evaluating the diagnostic role of those ratios in pleural effusions. Procalcitonin is a peptide precursor for calcitonine that is secreted from extra-thyroidal organs. In recent years, the diagnostic value of procalcitonin in describing infectious causes of pleural effusions has been studied. Wang et al reported that elevated procalcitonin levels in pleural fluid are associated with the empyema or para-pneumonic effusions [8]. Recently, Watanebe et al also reported that pleural fluid CRP and procalcitonin levels were useful in diagnosing infectious causes of pleural effusions [9]. Koshla et al reported that, procalcitonin was a novel biomarker for diagnosing infectious pleural effusion [10]. Yeo et al reported that, pleural fluid CRP levels were significantly different between transudate and exudate; but not the pleural fluid procalcitonin levels [11]. In this study we determined that, in differentiation of transudate and exudate; both serum and pleural effusion procalcitonin levels were useful as well as the procalcitonin/albumin ratio.

Identification of malignant pleural effusions is highly important to start the treatment immediately. Lee et al reported that both serum and pleural fluid procalcitonin levels were higher in differentiating para-pneumonic pulmonary effusions from tuberculosis pleurisy and malignant effusion [12]. Botana-Rial et al reported that pleural effusion CRP or procalcitonin levels were not useful for discriminating between benign and malignant pleural effusions [13]. Ji et al reported an optimal discrimination by combining pleural CRP, pleural carcinoembryonic antigen and serum procalcitonin may be performed in differentiation of malignant and non-malignant pleural effusions [14]. However we did not determine any significant role of serum or pleural fluid procalcitonin or CRP levels or different ratios obtained from those parameters in diagnosing malignant pleural effusions.

In some previous studies, serum and/or pleural fluid CRP levels were defined to be important in differentiating infectious pleural effusions from other etiologies [15,16,17]. However, we did not determine any significant role of CRP or CRP based ratios in defining transudate or exudate and malignant effusions. Ji et al reported that combination of prealbumin and CRP was having incrementally discriminating values for malignant effusions [18]. Pleural fluid CRP levels were reported to have a significant role in differentiating malign or benign pleural effusions [19]. However we did not determine any significant role of CRP or CRP based ratios in differentiation of transudate or exudate and malignant pleural effusions.

There are some limitations of this study that should be mentioned. The first is the less number of patients analyzed. Secondly, we did not analyze the serum or pleural fluid tumor marker levels which may be useful in differentiation of malignant effusions.

In conclusion, serum and pleural fluid procalcitonin levels and procalcitonin/albumin ratio were having a significant role in differentiating transudate and exudate. However, procalcitonin, CRP or any other ratios obtained from these parameters were not useful in diagnosis of malignant effusions. Further, larger prospective studies are warranted to determine the role of procalcitonin in differentiating transudate and exudate.

References:
[1] Porcel JM, Light RW. Diagnostic approach to pleural effusion in adults. Am Fam Physician. 2006 Apr 1; 73(7):1211-20.
[2] Light RW, Macgregor MI, Luchsinger PC, Ball WC Jr. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972 Oct; 77(4):507-13.
[3] Mehanic S, Baljic R. The importance of serum procalcitonin in diagnosis and treatment of serious bacterial infections and sepsis. Mater Sormed. 2013 Dec; 25(4):277-81.
[4] Yilmaz Turay U, Yıldırım Z, Türköz Y, Biber C, Erdoğan Y, Keyf A, Uğurman F, Ayaz A, Ergün P, Harputluoğlu M. Use of pleural fluid C-reactive protein in diagnosis of pleural effusions. Respir Med. 2000 May; 94(5):432-5.

[5] Izhakian S, Wasser WG, Fox BD, Vainselboim B, Kramer MR. The Diagnostic Value of the Pleural Fluid C- Reactive Protein in Parapneumonic Effusions. Dis Markers. 2016;2016:7539780.

[6] Fonseka D, Maskell NA. The role of procalcitonin in the management of pleural infection. Curr Opin Pulm Med. 2018 Jul;24(4):380-383.

[7] He C, Wang B, Li D, Xu H, Shen Y. Performance of procalcitonin in diagnosing parapneumonic pleural effusions: A clinical study and meta-analysis. Medicine (Baltimore). 2017 Aug;96(33):e7829.

[8] Wang CY, Hsiao YC, Jerng JS, Ho CC, Lai CC, Yu CJ, Hsueh PR, Yang PC. Diagnostic value of procalcitonin in pleural effusions. Eur J Clin Microbiol Infect Dis. 2011 Mar;30(3):313-8.

[9] Watanabe N, Ishii T, Kita N, Kanaji N, Nakamura H, Nanki N, Ueda Y, Tojo Y, Kadowaki N, Bandoh S. The usefulness of pleural fluid presepsin, C-reactive protein, and procalcitonin in distinguishing different causes of pleural effusions. BMC Pulm Med. 2018 Nov 23;18(1):1727-1735.

[10] Khosla R, Khosla SG, Becker KL, Nylen ES. Pleural fluid procalcitonin to distinguish infectious from noninfectious etiologies of pleural effusions. J Hosp Med. 2016 May;11(5):363-5.

[11] Yeo CD, Kim JW, Cho MR, Kang JY, Kim SJ, Kim YK, Lee SH, Park CK, Kim SH, Park MS, Yim HW, Park JY. Pleural fluid pentraxin-3 for the differential diagnosis of pleural effusions. Tuberc Respir Dis (Seoul). 2013 Dec;75(6):244-9.

[12] Lee SH, Lee EJ, Min KH, Hur GY, Lee SY, Kim JH, Shin C, Shin JJ, In KH, Kang KH, Lee SY. Procalcitonin as a diagnostic marker in differentiating parapneumonic effusion from tuberculous pleurisy or malignant effusion. Clin Biochem. 2013 Oct;46(15):1484-8.

[13] Botana-Rial M, Casado-Rey P, Leiro-Fernández V, Andrade-Olivié M, Represas-Represas C, Fernández-Villar A. Validity of procalcitonin and C-reactive protein measurement when differentiating between benign and malignant pleural effusion. Clin Lab. 2011;57(5-6):373-8.

[14] Ji M, Zhu X, Dong J, Qian S, Meng F, Gu W, Qiu W. Combination of procalcitonin, C-reactive protein and carcinoembryonic antigens for discriminating between benign and malignant pleural effusions. Oncol Lett. 2018 Aug;16(2):1727-1735.

[15] Daniil ZD, Zintzaras E, Kripoulos T, Papaioannou AI, Koutskokera A, Kastanis A, Gourgoulianis KI. Discrimination of exudative pleural effusions based on multiple biological parameters. Eur Respir J. 2007 Nov;30(5):957-64.

[16] Kapisyzi P, Argiri P, Mirte A, et al. The use of pleural fluid C-reactive protein level as a diagnostic marker for pleural effusions. International Journal of Scientific Research. 2015;4(3):206–213.

[17] Porcel JM, Bielsa S, Esquerra A, Ruiz-González A, Falguera M. Pleural fluid C-reactive protein contributes to the diagnosis and assessment of severity of parapneumonic effusions. Eur J Intern Med. 2012 Jul; 23(5):447-50.

[18] Ji Q, Huang B, Wang M, Ren Z, Zhang S, Zhang Y, Sheng L, Yu Y, Jiang J, Chen D, Ying J, Yu J, Qiu L, Wan R, Li W. Pleural fluid prealbumin and C-reactive protein in the differential diagnosis of infectious and malignant pleural effusions. Exp Ther Med. 2014 Apr;7(4):778-784.

[19] Park DS, Kim D, Hwang KE, Hwang YR, Park C, Seol CH, Cho KH, Kim BR, Park SH, Jeong ET, Kim HR. Diagnostic value and prognostic significance of pleural C-reactive protein in lung cancer patients with malignant pleural effusions. Yonsei Med J. 2013 Mar 1;54(2):396-402