Cross-talk between 1,25-Dihydroxyvitamin D₃ and Transforming Growth Factor-β Signaling Requires Binding of VDR and Smad3 Proteins to Their Cognate DNA Recognition Elements*

Nanthakumar Subramaniam‡, Gary M. Leong, Terrie-Anne Cock, Judith L. Flanagan, Colette Fong, John A. Eisman, and Alexander P. Kouzmenko

From the Bone and Mineral Research Program, The Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia

1,25-Dihydroxyvitamin D₃ (vitamin D) and transforming growth factor-β (TGF-β) regulate diverse biological processes including cell proliferation and differentiation through modulation of the expression of target genes. Members of the Smad family of proteins function as effectors of TGF-β signaling pathways whereas the vitamin D receptor (VDR) confers vitamin D signaling. We investigated the molecular mechanisms by which TGF-β and vitamin D signaling pathways interact in the regulation of the human osteocalcin promoter. Synergistic activation of the osteocalcin gene promoter by TGF-β and vitamin D was observed in transient transfection experiments. However, in contrast to a previous report by Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science, 283, 1317–1321, synergistic activation was not detectable when the osteocalcin vitamin D response element (VDRE) alone was linked to a heterologous promoter. Inclusion of the Smad binding elements (SBEs) with the VDRE in the heterologous promoter restored synergistic activation. Furthermore, this synergy was dependent on the spacing between VDRE and SBEs. The Smad3-Smad4 heterodimer was found to bind in gel shift assay to two distinct DNA segments of the osteocalcin promoter: −1030 to −989 (SBE3) and −418 to −349 (SBE1). Deletion of SBE1, which is proximal to the VDRE, but not the distal SBE3 in this promoter reporter abolished TGF-β responsiveness and eliminated synergistic co-activation with vitamin D. Thus the molecular mechanism, whereby Smad3 and VDR mediate cross-talk between the TGF-β and vitamin D signaling pathways, requires both a VDRE and a SBE located in close proximity to the target promoter.

The biological actions of 1,25-dihydroxyvitamin D₃ (vitamin D)¹ are mediated through the vitamin D receptor (VDR), a member of the nuclear receptor superfamily (1). Although VDR homodimers may play some role, most VDR actions are thought to be mediated via VDR heterodimerization with the retinoid X receptor (RXR) (2). The VDR/RXR heterodimers bind to vitamin D response elements (VDREs) in the promoters of vitamin D target genes (3, 4). VDREs typically consist of at least two copies of the consensus motif, PuG(G/T)TCA, arranged as direct repeats with a three-nucleotide spacing (DR3) (5). In addition to spacing, small differences in the half-site sequence, and the sequence of the flanking extension of the response elements also appear to be important in determining receptor binding efficiency (Ref. 6 and references therein). Upon binding, these receptors can either stimulate or repress transcription of target genes (7), assisted by direct and indirect interaction with other transcriptional regulatory proteins. Such additional factors may be recruited by other regulatory signals, such as TGF-β, which has been shown to act in synergy with vitamin D (8, 9).

Transforming growth factor-β (TGF-β), like activin and bone morphogenetic protein (BMP), signals through the Smad family of intracellular transducing proteins (10). Among the Smads, Smad2 and Smad3 are known to permit signaling by TGF-β and activin ligands (11). Once phosphorylated, these Smad proteins heterodimerize with Smad4, the common mediator of TGF-β pathways. These complexes translocate to the nucleus where they regulate target genes either by interacting with DNA or with other transcription factors (11, 12). Though a palindromic Smad binding element (SBE), GTCTAGAC, was shown to interact with the Smad3 and Smad4 complex, the smaller 4-bp half-site of this SBE DNA sequence, GTCT or AGAC, has been shown to be sufficient to bind these proteins (12, 13).

Although Smads can bind to DNA, Smad-DNA binding alone is not always sufficient for gene activation. There are now a growing number of examples in which Smads cooperate with DNA-binding partners to regulate transcription (14). This type of interaction has been demonstrated for the Mix.2, goosecoid and Xvent2 promoters where Smads interact with FAST-1, FAST-2, mixer, milk and OAZ transcription factors (12). DNA binding by Smad3, in conjunction with TFE3, PEBP2, and ATF-2 to their cognate sites, has been reported to be essential for TGF-β-dependent activation of the PAI-1, IgA, and collagenase A promoters respectively (12). Some of these cooperativities may be involved in mediating signals for other signaling pathways, as suggested by recent studies that described a physical interaction of liganded VDR, Smad3, and SRC-1/TIF2 mediating cross-talk between vitamin D and TGF-β signaling pathways (8, 9).

In the present study, we identified functional TGF-β-re-
spontaneous elements in the human osteocalcin (hOC) gene promoter; demonstrated cross-talk between vitamin D and TGF-β signaling pathways in regulation of this promoter; and determined the molecular mechanism for synergistic activation of the hOC promoter by vitamin D and TGF-β.

Experimental Procedures

Plasmid Constructs—Reporter plasmids pOSLUC2 (−1.3 kb) and pOSLUC1 (−344 bp), of the human osteocalcin gene promoter linked upstream of the luciferase reporter of pGL3basic have been described previously (15). pOSLUC3 (−1.3 kb to −1111 plus −905 to −833) was created by deletion of a StuI fragment from pOSLUC2. Deletion of the PacI and SacI fragment from pOSLUC2 resulted in pOSLUC4 (−1.3 kb to −833 plus −341). pOSLUC5 (−1.3 kb to −341 plus −191) was constructed by deletion of the SacI and ApaI fragment from pOSLUC2. pOSLUC6 was created by cloning in an osteocalcin promoter PCR fragment (forward primer −1337 to −1311 with MluI 5’ overhang and reverse primer −475 to −500 with XhoI 5’ overhang) into the pGL-3 promoter vector. The pTP-Lux reporter, which contains SBEs from the plasmogen activator inhibitor-1 (PAI-1) gene in front of the luciferase reporter, was a kind gift from Dr. J. Massague (16). Double-stranded oligonucleotides corresponding to human osteocalcin VDRE (−507 to −470 or −515 to −484) or rat osteocalcin VDRE (−515 to −484) were cloned upstream of the SV40 promoter of pG3-3 promoter vector to produce hVDREluc and rVDREluc respectively. hVDRE-3TPflux was created by inserting the hVDREs in front of the SBEs from the pTP-Lux plasmid. Insertion of 450 bp fragment, which do not contain known SBEs from pSG5 expression vector, between VDRE and SBEs of hVDRE-3TPflux into XhoI site resulted in the V450T reporter plasmid. VDR expression vector, mVDR-pSG5 and FLAG-Smad3,4/pcDNA3 plasmids that express Smad2,3, or 4 with N-terminal FLAG tags have been described elsewhere (15, 17). FLAG-SS (41–435) that expresses Smad3 with an N-terminal 41 amino acid deletion was a kind gift from Dr S. Kato (8).

Cell Culture and Transfections—COS-1 cells were grown in Dulbecco’s modified Eagle medium supplemented with 5% fetal calf serum, 2 mm l-glutamine, 100 IU/ml penicillin and 100 μg/ml streptomycin (all from Life Technologies, Inc.) at 37 °C in 5% CO₂. Cells were plated at ~30% confluence in 24-well plates and the following day were transfected using FuGENE-6 transfection reagent (Roche Molecular Bio- tech). DNA binding reactions of 20 μl of Smad3 and Smad4 proteins transcribed and translated in vitro, with the firefly luciferase assay kit (Promega, Madison, WI) and measured using a Berthold LB953 Autolumat luminometer (Berthold, Bad Wildbad, Germany). Each experimental condition was measured in triplicates, and the values given represent the mean ± S.D. from two to three experiments.

Gel Shift Assays—Oligonucleotides were endlabeled by T4 polynu- cleotide kinase using [γ-32P]ATP (3,000 Ci/mmol, Amersham Pharma- cia Biotech). DNA binding reactions of 20 μl were carried out in buffer containing 20 mM Tris-Cl, pH 8.0, 10% (v/v) glycerol, 1 mM EDTA, 1 mM dithiothreitol, 400 ng of poly(dI-dC) (Amersham Pharmacia Biotech), 50 ng of the VDR or Smad expression plasmid. After a 6-h incubation at 37 °C in 5% CO₂, 2% charcoal stripped fetal calf serum containing 50 ng of the VDR or Smad expression plasmid. After a 6-h incubation at 37 °C in 5% CO₂, 2% charcoal stripped fetal calf serum containing medium was added having either 10 nM 1,25-dihydroxy vitamin D₃ (Hoffman-LaRoche) or vehicle (4 nM HCl in distilled water). Medium was added having either 10 nM 1,25-dihydroxy vitamin D₃ (Hoffman-LaRoche) or vehicle (4 nM HCl in distilled water). Free and bound DNA were separated on 4% polyacrylamide (acrylamide/bisacrylamide, 29:0.5) gels, which were run at a constant voltage of 160 V. Free and bound DNA were separated on 4% polyacrylamide (acrylamide/bisacrylamide, 29:0.5) gels, which were run at a constant voltage of 160 V. The bands were detected with a PhosphorImager.

RESULTS

Vitamin D and TGF-β Synergistically Activated Human Osteocalcin Promoter Activity—The modulatory effects of 1,25-dihydroxyvitamin D₃ and TGF-β signaling on the human osteocalcin promoter were analyzed by transient transfections into COS1 cells using the pOSLUC2 reporter and VDR expression plasmid. 1,25-Dihydroxyvitamin D₃ transactivated the pOSLUC2 reporter activity by 6-fold whereas TGF-β alone augmented the reporter activity 2-fold (Fig. 1). Both ligands, produced a synergistic effect (10-fold induction). This synergy was specific to the pOSLUC2 reporter, because these two ligands together or singly did not significantly alter transcriptional activity of pOSLUC1, which lacks 960 bp of distal 5′ DNA sequence from the human osteocalcin promoter including the VDRE (15). Smad3 and Smad2, but not BMP Smads (Smad1 or Smad5), activated the osteocalcin promoter reporter (data not shown), both in the absence and presence of TGF-β. Augmentation of reporter activity was greater with Smad3, suggesting a putative Smad3 binding site conferred the TGF-β signal for this promoter. Overexpression of Smads 3 and 4 constitutively activated basal promoter activity mimicking TGF-β signaling, as has been reported for other well characterized TGF-β responsive promoters (11, 12).

TGF-β Did Not Augment 1,25-Dihydroxyvitamin D₃ Activation of VDRE-dependent Reporters—To investigate whether the synergistic activity observed in our previous experiment was in fact mediated through the VDRE (4), the hVDREluc reporter was co-transfected with a VDR expression plasmid into COS1 cells. Whereas 1,25-dihydroxyvitamin D₃ increased the reporter activity 10-fold, TGF-β did not affect reporter activity (Fig. 2A), nor were there any synergy between 1,25-dihydroxyvitamin D₃ and TGF-β, as observed in the case of the pOSLUC2 reporter. As the DR3 VDRE in the human osteocalcin promoter overlaps a DR6 VDRE and an AP1 site, testing of these overlapping elements (−515 to −484) was carried out in a luciferase reporter construct. This construct also responded to 1,25-dihydroxyvitamin D₃ but did not respond to TGF-β, and there was no synergy between 1,25-dihydroxyvitamin D₃ and TGF-β (Fig. 2B). Comparative experiments performed with the rVDREluc reporter had a similar 1,25-dihydroxyvitamin D₃ but no response to TGF-β and no synergy between 1,25-dihydroxyvitamin D₃ and TGF-β signals, irrespective of nucleotide differences in human and rat VDREs (Fig. 2C). These results suggest that VDRE alone is not sufficient to mediate the synergy.

1,25-Dihydroxyvitamin D₃ Did Not Augment TGF-β Induction of a TRE-dependent Reporter—Possible effects of 1,25-
Synergy by VDR and Smad3 Requires Separate DNA Elements

Vitamin D and TGF-β1, 25-dihydroxyvitamin D₃ and TGF-β: importantly, hVDRE-3TPLux reporter responded synergistically to VDR expression plasmid in COS1 cells, and 1,25-dihydroxyvitamin D₃ (VD₃) and/or TGF-β-induced luciferase activity was measured and related to each uninduced reporter activity.

VDR Coupled to the TRE Sequence Restored Synergy by Vitamin D and TGF-β Signaling Pathways—To explore whether the synergy by 1,25-dihydroxyvitamin D₃ and TGF-β pathways required concomitant binding of both VDR and Smad to their separate cognate elements, the hVDRE-3TPLux reporter plasmid, which contains both respective response elements, was co-transfected with VDR expression plasmid in COS1 cells. 1,25-Dihydroxyvitamin D₃ or TGF-β alone activated the reporter approximately by 10-fold (Fig. 3B). Importantly, hVDRE-3TPLux reporter responded synergistically to 1,25-dihydroxyvitamin D₃ and TGF-β (45-fold), suggesting both binding sites are needed to mediate the synergy (Fig. 3B).

Smad3-Smad4 Heterodimer Binding to Osteocalcin Promoter—Sequence analysis of the human osteocalcin promoter identified three regions: −415 to −353 (SBE1); −313 to −228 (SBE2); and −1027 to −997 (SBE3); each of which contains three copies of GTCT or its reverse complement AGAC, an optimal target/binding site for Smad3 and Smad4 (13). Gel shift assays using Smad3 and Smad4 proteins, transcribed and translated in vitro in rabbit reticulocyte lysate, were used to examine DNA binding activity of these putative SBEs as well as the PE2 fragment of the PAI-1 promoter (13) as a positive Smad binding control. SBE1 and SBE3 formed complexes similar to PE2 (Fig. 4) whereas there was no complex formation with SBE2 (data not shown). Rabbit reticulocyte lysate alone did not form any complexes with these DNA probes (data not shown). DNA binding specificity of complexes formed with DNA probes, was examined using cold DNA probes as competitors. Both SBE1 and SBE3 inhibited complex formation. However the PE2 element (−586 to −551) from the PAI-1 promoter, which contained three AGAC motifs, moderately inhibited the complex formation with either SBE1 or SBE3.

Smad3-Smad4-mediated TGF-β-responsive Regions in the Osteocalcin Promoter—To determine functional significance of the Smad binding to the potential SBEs in the promoter, we made deletions of larger regions from the pOSLUC2 (−1.3 kb) that removed SBE2, SBE1, and/or SBE3 (pOSLUC3–6). Cotransfection of Smad3 and Smad4 expression vectors with reporter plasmids pOSLUC1-6 augmented basal and TGF-β-dependent activity (Fig. 5). The highest activation was observed with the wild-type promoter reporter, pOSLUC2. Deletion of SBE1 (pOSLUC4) greatly affected Smad3-mediated augmentation whereas a moderate reduction was observed with the deletion of SBE3 (pOSLUC3), both of which reflected the previous binding studies that SBE1 and SBE3 were capable of binding to Smad3 and Smad4. Deletion of SBE2 (pOSLUC5), which did not bind with Smad3 and Smad4 in the gel shift assay (data not shown), did not affect the reporter activity. Combined deletion of SBE1 and SBE3 (pOSLUC1) or SBE1 and SBE2 (pOSLUC6) also resulted in marked loss of reporter activity. These results suggest that the Smad-mediated activity was largely through the SBE1.

VDR and TRE Spacing Crucial for 1,25-Dihydroxyvitamin D₃ and TGF-β Synergy—The role of the spacing between VDRE and TRE in the 1,25-dihydroxyvitamin D₃ and TGF-β synergy was examined using V450T reporter plasmid. This construct, containing both VDRE and TRE separated by 450 bp, was co-transfected with VDR expression plasmid in COS1 cells. This reporter activation by 1,25-dihydroxyvitamin D₃ or TGF-β was reduced by a 4-fold compared with the control construct containing VDRE and TRE in the same orientation (V450).
alone or in combination was remarkably reduced (Fig. 6) in comparison to the parent hVDRE-3TPlux reporter plasmid (Fig. 3B). The level of reduced synergy conferred by V450T was comparable with pOSLUC6 reporter that has the VDRE and SBE3 at a similar 450-bp distance. This result demonstrated that synergy by 1,25-dihydroxyvitamin D3 and TGF-β signaling, conferred via their respective transducers VDR and Smad3, only occurred through binding to VDRE and TRE located in the close proximity in the target promoter.

Direct Interaction between VDR and Smad3 Also Required for Synergy—It was previously demonstrated that the 40-amino acid N-terminally truncated Smad3 did not physically interact with VDR in either GST pull-down assays or the mammalian two-hybrid system, whereas the 20-amino acid N-terminally truncated Smad3 retained such abilities (8). We examined whether these Smad3 mutants together with VDR were capable of synergistically activating the hVDRE-3TPlux reporter. The wild-type Smad3 and Smad3-(21–435), capable of transducing TGF-β signal, together with VDR synergistically transactivated this reporter (Fig. 7). Smad3-(41–345) failed to mediate TGF-β signaling, and with VDR, was unable to transactivate synergistically as Smad3, suggesting that a competent Smad3 in addition to separate and distinct binding sites is also required for the synergy.

DISCUSSION

DNA-binding nuclear factors interact with one another and with cofactors to form complex networks of DNA-protein-protein interactions for transcriptional regulation in eukaryotic cells (5, 8). Transcription regulatory regions of eukaryotic gene promoters generally consist of clusters of transcription factor-binding sites that coordinate responses to combinations of signaling molecules and different transcription factors utilize a variety of means to promote or repress target genes (19). Osteocalcin gene expression is facilitated by overlapping and contiguous regulatory elements including a functional VDRE in the distal promoter region (4, 20, 21). Regulatory factors, including VDR, Cbfa-1, AP-1 factors, and homeodomain proteins act directly, and BMPs and TGF-β act indirectly to mediate commitment to the osteoblastic cell lineage and regulation of the osteocalcin promoter (22, 23).

Only two reports to date describe transcriptional regulation through protein-protein interaction involving Smad3 and nuclear hormone receptors (8, 24). Whereas Yanagisawa et al. (8) reported that activation by VDR, but not other receptors (estrogen receptor α, androgen receptor, GR, retinoic acid receptor, and RXR), was affected by the treatment with TGF-β, Song et al. (24) found that Smad3 was the direct target for repression by the GR on a type-1 PAI-1 gene promoter. They provided evidence for GR-Smad3 interaction in vivo and in vitro, although they could not rule out the possibility that other proteins might have mediated the interaction.

A structure/function analysis of the hOC promoter was initiated to explore its synergistic activation by vitamin D and TGF-β (Fig. 1). Recently it has been reported that Smad3, a downstream component of the TGF-β signaling pathway, acts
dihydroxyvitamin D₃ and TGF-β signals, with activation by vitamin D comparable with the induction of hVDREluc reporter (Fig. 2A), and TGF-β-stimulated activation comparable with that of the standard TGF-β responsive reporter p3TP-Lux (Fig. 3A). Of three potential SBE clusters in the osteocalcin promoter, two (SBE1 and SBE3) bound to Smad3 and Smad4 proteins in a gel shift assay (Fig. 4). Deletion of these two putative regions separately or together reduced TGF-β-mediated reporter activity confirming their functional role (Fig. 5). Taken together, these results suggest that the convergence of TGF-β and vitamin D signaling does not take place in the absence of either VDRE or TRE. In agreement with these data, a Smad3-Smad4 complex and an AP-1 complex have been reported to synergize in transcriptional activation of the c-jun promoter by binding to separate sites 120 bp apart (26). Similarly, transcriptional cooperativity between c-Jun and Smad3 at the AP-1 binding site of the collagenase I promoter also required the interaction of c-Jun and Smad3 with DNA (27). Several other recent reports point to cross-talk between Smad proteins and transcription factors such as TFE3, FAST-1, SP1, CREB, and Tinman in the expression of various TGF-β-inducible genes (Ref. 13 and references therein). It has been proposed that the number of SBEs as well as discrete spacer segments between SBEs and/or Smad-partner transcription factor binding site(s) will also be critical for the specificity of TGF-β-induced transcription of these promoters (13). Our study also found that the synergy by vitamin D and TGF-β was reduced when the spacing between VDRE and TRE was extended (Fig. 6).

The promoter studies further indicate that simultaneous binding of VDR and Smad3 to their cognate sequences (Fig. 3B) and possibly a direct interaction between these two proteins (Fig. 7), are both required for the convergence of the vitamin D and TGF-β signals. The Smad3-(41–345) construct failed to mediate TGF-β signaling through the 3TPlux reporter (data not shown) suggesting that this Smad3 mutant is functionally inert. The same N-terminal deletion mutant failed to interact with VDR (8). Our study also found that this mutant was unable to transactivate synergistically with VDR through hVDRE-3TPlux reporter, therefore we could not positively conclude that a direct VDR-Smad3 interaction was involved in the cross-talk between these regulatory pathways.

In the present study we demonstrated that the VDRE-containing hOC gene promoter contains two functional Smad3 binding elements through which the TGF-β and vitamin D signaling pathways converge. Our data thus strongly suggest that cross-talk between these two signaling pathways requires the presence in the promoter of both respective response elements in close proximity. These data support the concept of specific response elements being required to transduce both single agents and to integrate the synergistic activation of hormone responsive genes.

Acknowledgments—p3TP-Lux luciferase reporter plasmid was a kind gift from Dr. J. Massague, and FLAG-Smad2,3,4/pcDNA3 plasmids that express Smad2,3 or 4 with N-terminal FLAG tags have been kindly provided by Drs. K. Miyazono and T. Imamura. FLAG-S3-(41–435) was a kind gift from Dr. S. Kato. We also thank Dr. S. Kato for encouragement and valuable discussions and Drs. E. M. Gardiner, G. Thomas, R. Daly, and M. Henderson for valuable comments on the manuscript.
REFERENCES

1. Issa, L. L., Leong, G. M., and Eisman, J. A. (1998) Inflammation Res. 47, 451–475
2. Westin, S., Kurokawa, R., Nolte, R. T., Wisely, G. B., Mclnerney, E. M., Rose, D. W., Milburn, M. V., Rosenfeld, M. G., and Glass, C. K. (1998) Nature 395, 199–202
3. Aslam, F., McCabe, L., Frenkel, B., van Wijnen, A. J., Stein, G. S., Lian, J. B., and Stein, J. L. (1999) Endocrinology 140, 63–70
4. Morrison, N. A., Shine, J., Fragenas, J.-C., Verkest, V., M., M., and Eisman, J. A. (1989) Science 246, 1158–1161
5. Glass, C. K., and Rosenfeld, M. G. (2000) Genes Dev. 14, 121–141
6. Subramaniam, N., Cairns, W., and Okret, S. (1997) DNA Cell Biol. 16, 153–163
7. Sims, N. A., White, C. P., Sunn, K. L., Thomas, G. P., Drummond, M. L., Morrison, N. A., Eisman, J. A., and Gardiner, E. M. (1997) Mol. Endocrinol. 11, 1695–1708
8. Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Kawabata, M., Miyazono, K., and Kato, S. (1999) Science 283, 1317–1321
9. Yanagi, Y., Suzawa, M., Kawabata, M., Miyazono, K., Yanagisawa, J., and Kato, S. (1999) J. Biol. Chem. 274, 12971–12974
10. Piek, E., Heldin, C. H., and Ten Dijke, P. (1999) FASEB J. 13, 2105–2124
11. Wrana, J. L. (2000) Cell 100, 189–192
12. Massague, J., and Wotton, D. (2000) EMBO J. 19, 1745–1754
13. Hua, X., Miller, Z. A., Wu, G., Shi, Y. G., and Lodish, H. F. (1999) Proc. Natl. Acad. U. S. A. 96, 13130–13135
14. Attisano, L., and Wrana, J. L. (2000) Curr. Opin. Cell Biol. 12, 235–243
15. Issa, L. L., Leong, G. M., Barry, J. B., Sutherland, R. L., and Eisman, J. A. (2001) Endocrinology 142, 1606–1615
16. Massague, J., Hata, A., and Liu, F. (1997) Trends Cell Biol. 7, 187–192
17. Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K. (1997) Nature 389, 622–626
18. Collingwood, T. N., Urmov, F. D., and Wolfe, A. P. (1999) J. Mol. Endocrinol. 23, 255–275
19. Sugiyma, T., Scott, D. K., Wang, J. C., and Granner, D. K. (1998) Mol. Endocrinol. 12, 1487–1498
20. Ducy, P., and Karsenty, G. (1999) Endocrinologist 9, 32–35
21. Ducy, P., and Karsenty, G. (1999) Mol. Cell. Biol. 15, 1858–1869
22. Lian, J. B., Stein, G. S., Stein, J. L., and van Wijnen, A. J. (1998) J. Cell. Biochem. 30, Suppl. 31, 62–72
23. Rodan, G. A., and Harada, S. (1997) Cell 89, 677–680
24. Song, C. Z., Tian, X., and Gelehrter, T. D. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11776–11781
25. Ebihara, K., Masuhiro, Y., Kitamoto, T., Suzawa, M., Uematsu, Y., Yoshizawa, T., Ono, T., Harada, H., Matsuda, K., Hasegawa, T., Masushige, S., and Kato, S. (1999) Mol. Cell. Biol. 16, 3393–3400
26. Wong, C., Rougher-Chapman, E. M., Frederick, J. P., Datto, M. B., Liberati, N. T., Li, J. M., and Wang, X. F. (1999) Mol. Cell. Biol. 19, 1821–1830
27. Qing, J., Zhang, Y., and Derynck, R. (2000) J. Biol. Chem. 275, 38802–38812

Synergy by VDR and Smad3 Requires Separate DNA Elements
Cross-talk between 1,25-Dihydroxyvitamin D₃ and Transforming Growth Factor-β Signaling Requires Binding of VDR and Smad3 Proteins to Their Cognate DNA Recognition Elements

Nanthakumar Subramaniam, Gary M. Leong, Terrie-Anne Cock, Judith L. Flanagan, Colette Fong, John A. Eisman and Alexander P. Kouzmenko

J. Biol. Chem. 2001, 276:15741-15746.
doi: 10.1074/jbc.M011033200 originally published online February 5, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M011033200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 27 references, 12 of which can be accessed free at http://www.jbc.org/content/276/19/15741.full.html#ref-list-1