Optimizing the health benefit of Indonesian plant medicine for cancer treatment

Suyatmi* and R N Pesik

1 Department of Histology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
2 Department of Pathology Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
*Corresponding author: suyatmi72@staff.uns.ac.id

Abstract. The increased incidence of cancer is one of the serious health problems related to climate change. The deterioration of the environment becomes one of the risk factors for cancer. In respond to that problem, the Indonesian health system makes a breakthrough to strengthen health resilience by encouraging the use of Indonesian plant medicine in adjunct with standard pharmaceutical therapy for cancer. The study aimed to investigate the potential of Indonesian plant medicine for the development of complementary medicine for cancer. This review is based on the original paper published on the last five years. The search found several Indonesian plant with high potency for anti-cancer activity, based on in vitro and in vivo study. The medicinal plant include Curcuma longa, Annona muricata, Morinda citrifolia, Elephantopus scaber, Zanthoxylum acanthopodium DC, and Caesalpinia sappan.

1. Introduction
Global warming generates climate changes that affect not only sea level, land, water, and crop production, but also human health. The change in the water cycle accounts for many catastrophic events. The increased frequency of floods declines the environment quality. On the other hand, drought in other parts of the world generates hunger and malnutrition. All of those conditions affect the quality of human life. World Health Organization (WHO) predicted that the social and environmental changes as a result of global warming will increase the health burden all over the world. Climate change influences the incidence of both infectious and non-infectious diseases. Flood result in an uncontrolled population of insects which plays a role as a disease vector. Infection spread by biological vectors such as dengue fever and malaria becomes more prevalent. In addition, bad air pollution increase the incidence of respiratory disease such as asthma bronchial and other infection of respiratory system [1].

The incidence of the non-infectious disease is also affected by the environmental condition. The increase in earth’s temperature and high ultraviolet radiation decreases the general quality of human life. Those factors are also related to the incidence of skin cancer. The increased incidence of cancer is one of the serious health problems related to climate change. Although the deterioration of the environment is not straightly initiated the growth of cancer, the quality of the environment becomes one of the risk factors for cancer. Deterioration of environmental quality gives rise to physical and psychological stress which in turn decreases the immune system. The impaired immune surveillance to detect and eliminate the initial changes of abnormal cells play a role in cancer development [2].

The increase in cancer incidence was predicted year by year, and hence it becomes a significant health problem [3]. The incidence of cancer in Indonesia is the second rank among non-infectious
disease [4]. The health problems faced by the Indonesian health system are not only the increasing number of cancer cases but also the dependency on the imported pharmaceutical product. In response to that problem, the Indonesian ministry of Health makes a policy to strengthen health resilience by encouraging the use of Indonesian plant medicine in adjunct with standard pharmaceutical therapy [5]. The biodiversity of Indonesian plant medicine offers potential resources for developing complementary therapy. The use of Indonesian plants with potential therapeutic properties is common in daily consumption among Indonesian. Many people in Indonesian society prefer to choose herbal remedies before taking medicine for alleviating their health problem [6]. The use of the herb in Indonesian daily life can also be seen in the cooking style. The cooking habit of using various herbs native to Indonesian plants is currently recognized as one of the valuable traditions to improve the health status of Indonesian society [7]. This paper will investigate the potential use of Indonesian herb commonly used as part of Indonesian cooking for cancer treatment. This review include Curcuma longa, Annona muricata, Morinda citrifolia, Elephantopus scaber, Zanthoxylum acanthopodium DC, and Caesalpinia sappan.

2. Method
Literature search for this systematic review was conducted on Pubmed and Googlescholar. The literature was restricted to the publication from 2016 until recent. The combination of key word , cancer and Curcuma longa, Cancer and Annona muricata, cancer and Morinda citrifolia, cancer and Elephantopus scaber L, cancer and Zanthoxylum acanthopodium, cancer and Caesalpinia sappan, were used . The search engine was set to exclude patent and citation. The search was also set to show article based on the relevancy. Among other herb search in this study, publication on Curcuma longa, is the most abundance, therefore the inclusion of original paper studying Curcuma longa on anti-cancer activities was restricted for those reporting both in vitro and in vivo studies. Original paper reported in vitro study with the finding of low potency of cancer cell growth inhibitory activities was excluded. Review article and publication in language other than English was also excluded.

3. Result
The literature search for herb commonly used in Indonesia identified potent cancer cell growth inhibition activity on Curcuma longa, Annona muricata, morinda citrifolia, Elephantopus scaber, Zanthoxylum acanthopodium DC, and Caesalpinia sappan. The identification of anti-cancer potency was determined by the IC50 on in vitro study or the mass tumor reduction on in vivo study [6], [7]. Further investigation was made to identify the type of compound for each herb species.

3.1. Curcuma longa
Research for the anti-cancer potential of Curcuma longa was rigorously conducted worldwide. The phenolic compound of Curcuma longa showed high potency of anti-proliferative activity against the growth of various cancer cell lines. Curcuma longa contains many compounds with various ranges of pharmacologic activities. Among other compounds, curcumin was most widely studied for anti-cancer activities [7], [8], [9]. Studies on the subcellular activity of curcumin reveal many molecular targets involved in anti-cancer activities. Table 1 summarizes the anticancer activity of Curcuma longa.

3.2. Annona muricata
Annona muricata is one of Indonesia endemic plants. The use of Annona muricata leaf to treat cancer has become a self-treatment among cancer patients before they seek medical treatment [15]. Although those self-medical practices did not successfully treat cancer patients, the preclinical study showed a promising anti-cancer effect of active compounds extracted from Annona muricata leaf [16], [17], [18], [19]. Table 2 summarizes the result of recent studies on the anti-cancer activity of Annona muricata.

3.3. Morinda citrifolia
Indonesian people have consumed the leaf and fruit of Morinda citrifolia for their health benefit [23]. Various pharmacological properties of Morinda citrifolia have been identified and a formula for a
certain medical purpose has been offered in the market. Investigation on cytotoxic activity of compounds extracted from leaf, stem, fruit, and seed of *Morinda citrifolia* showed its potential for cancer treatment [24]–[27]. Several studies reveal the putative anticancer mechanism of *Morinda citrifolia* against cancer cell growth. Table 3 summarizes the anticancer mechanism of *Morinda citrifolia*.

Table 1. Anticancer activities of compound extracted from *Curcuma longa*.

Compound	Molecular target/ Anti-cancer mechanism	Reference
Diarylheptanoid Curcumin	MYC, reduce endogenous level	[10]
Curcumin	inhibit the TLR4/NF-κB signaling	[9]
Curcumin	supress AKT phosphorylation	[11]
Curcumin	supress inflammatory cytokine	[12]
Curcumol + Metformin	supress the Wnt/β-catenin signaling	[13]
Curcumin + gemcitabine	activate PARP/Caspase 3 signalling	[14]
Curcumin + docetaxel		

Table 2. Anticancer activities of compound extracted from *Annona muricata*.

Compound	Molecular target/ Anti-cancer mechanism	Reference
Aqueous concentrate	Increase intracellular ROS	[17], [18]
Methanolic Extract of twig, seed, and fruit	Induce cell cycle arrest	
	Induce intrinsic apoptosis	
	Decrease hedgehog signaling	
Ethyl acetate bark extract	Inhibit VEGF	[21]
Silver Nanoparticle of peel aqueous extract	Increase p53 cancer cell	[22]

Table 3. The anticancer activity of *Morinda citrifolia*.

Compound	Molecular target/ Anti-cancer mechanism	Reference
aqueous ethanol leaf extract	upregulating anti-cancer genes: CSF3, IL10,	[24]
	upregulating anti-inflammatory genes: IL4,	
	SOCS1,TRP53	
Nordamnacanthal (isolated from root of *Morinda citrifolia*)	downregulated pro-cancer genes: AKT1, BCL2,	[26]
Morinda citrifolia essential oil of dried seed Fermented noni fruit juice	BCR, BIRC5, CDK1, IL3, JAK2, MAPK2,	
	MDM2, mTOR, NF-κB, PTEN, Raf1, STAT3,	
	STAT5A, and VEGFA.	
Dammanacanthal	Increase T helper, cytotoxic T, and NK cell activity	[25]
Nordamnacanthal	Increase intracellular ROS production	[25]
	Increase mitochondrial membrane damage	
	decrease anti apoptotic protein (BCL-2) and proliferating gene Ki67, PCNA	[28]
	inhibition of AKT/NF-κB signaling pathway	
	increase intrinsic apoptotic pathway	
3.4. *Elephantopus scaber*

The Indonesian name of *Elephantopus scaber* is tapak liman. This plant medicine was studied for many pharmacological activities. Research on its activity to inhibit cancer cell growth suggests its potential use for cancer treatment [30–36]. The anti-cancer activity of this medicinal plant from the currently reported study was summarized in Table 4.

3.5. *Caesalpinia sappan*

Caesalpinia sappan is known as Secang for its Indonesian name. The wood of *Caesalpinia sappan* is commonly used as an ingredient of traditional beverages in central Java and some other parts of Indonesia. The pharmacological activity of *Caesalpinia sappan* has been widely investigated including its potential anticancer activities [37], [38]. The anticancer activity of *Caesalpinia sappan* is summarized in Table 4.

Table 4. The anticancer activity of *Elephantopus scaber* and *Caesalpinia sappan*.

Compound	molecular target/ Anti-cancer mechanism	Reference
Elephantopus scaber		
Deoxyelephantopin	induced apoptosis via ROS production Inhibit vascular permeability	[31,32]
Chloroform fraction	increased the expressions of caspase-8, caspase9, and caspase3	[33]
Isodeoxyelephantopin	activation of the JNK signaling pathway Activating protective autophagy	[30,36]
Caesalpinia sappan		
Wood and leaf extract	inhibited lactate production Inhibit phosphorylation of pyruvate dehydrogenase increased mitochondrial ROS levels	[37]
Cassane diterpenoids isolated from the seed of *caesalpinia sappan*	induce apoptosis via the increase of PARP cleavage, p53, and Bax/BCL2	[38]

4. **Discussion**

Climate change affects the quality of human health. High carbon dioxide emission accounts for the decline of the quality of the environment. Although direct causative correlation cannot be clearly explained, air pollution and high ultraviolet radiation might play a role in the increase of some cancer cases [2]. In addition, the increase of physical and psychological stress due to the increase in the earth's temperature negatively affects the function of the immune system. Immune surveillance plays a crucial role to prevent the development of cancer. The recognition of cellular changes in the early transformation of a normal cell into a cancer cell by the immune system is required to eliminate cancer cells. The impaired immune system to detect and eliminate the abnormal cell is part of the risk of cancer development [39].

Cancer is a life-threatening disease that contributes to the health burden of Indonesia health system. The expensive cost of cancer treatment put this disease in the group of catastrophic disease. Cancer not only decreases the quality of a patient’s life, but also the quality of their family life. The low survival rate among cancer patients makes cancer a life-threatening disease. Aside from its psychological impact, the cost of cancer treatment becomes one constraint for most cancer patients to seek immediate proper therapy [40]. The economic burden result from cancer therapy affects the behavior in choosing immediate therapy. The use of alternative therapy is quite common among cancer patients. Some cancer patients prefer to choose the use of complementary medicine including herbal medicine for the first-line treatment for the disease [15], [41]. However, the lack of standardized complementary therapy for cancer might lead to failure in cancer therapy. Considering patient preference to choose complementary medicine as the first-line treatment [15], [42], the establishment of standard complementary therapy for...
the cancer patient is urgent. In 2014 committee for cancer prevention as part of the Ministry of Health issued a guideline to encourage the use of Jamu (traditional Indonesian herb) as a remedy complement to standard medicine used to prevent and treat cancer [5].

In search of the potential Indonesian plant medicine, there are some herbs which is already used in daily cooking with a potency as cancer chemo-preventive activity [23]. The available data gathered from publications in the last five years indicate some Indonesian plant medicine with promising potency for inhibiting the growth of cancer. Curcuma longa, Annona muricata, Morinda citrifolia, Elephantopus scaber, and Caesalpinia sappan are highly available in Indonesia [23]. Curcuma longa has been used as part of traditional medicine in Indonesia. Product of herb drink composed of Curcuma longa powdered can be easily found in the market. Consumption of Curcuma longa as cook seasoning, food additive, and herbal drink is common among Indonesian society. The in vitro and in vivo studies investigating the anti-cancer activity of Curcuma longa reveal scientific data to support its use as cancer therapy. Curcuma longa inhibits the Wnt/β-catenin signaling. Wnt/β-catenin signaling is not active in normal conditions. The disruption of Wnt/β-catenin signaling is responsible for the uncontrolled growth of cancer cells, therefore inhibition of this pathway will decrease the cancer cells aggressiveness [13]. Curcumin which is the most widely studied compound of curcuma longa also inhibits the expression of MYC protein. MYC is an oncogenic protein that also plays a part in cancer progression. The inhibition of MYC protein will slow down cancer cell growth [10].

Inflammation becomes one of the targets in cancer therapy. Inflammation in the cancer microenvironment plays role in the maintenance of cancer growth signal. Inflammation is considered an event that exaggerates cancer cell growth. The cancer inflammation pathway involves TLR4/NF-κB signaling. Suppressing this pathway will decrease cancer progression. Tian et al., reported the activity of curcumin to suppress the TLR4/NF-κB signaling [9]. Taken together, the inhibition of the cancer cell proliferation signal and the inflammatory signal will reduce the cancer progression. The biological activity of curcuma longa to potentiate standard chemotherapeutic drugs was also observed. The combination of curcumin with gemcitabine and docetaxel increases the PARP/caspase 3 signaling, thus increase cancer cell death.

The potential anti-cancer activity was also shown by Annona muricata. This plant medicine is widely spread across Indonesia. The investigations of the pharmacological activity of compounds extracted from Annona muricata give promising data for anti-cancer therapy. Compounds extracted from Annona muricata leaf, seed, or bark induce cancer cell death through the increase of intracellular oxidative stress on a cancer cell. Oxidative stress within cancer cell will affect mitochondrial membrane integrity which in turn induce activation of intrinsic programmed cell death [17,18]. Cancer cell death through the increase of intracellular oxidative stress was also shown by the compound extracted from Elephantopus scaber and Caesalpinia sappan [31], [32], [37].

The anti-cancer activity of Annona muricata also includes inhibition of development of new blood vessels through suppression of VEGF [22] and the increase of protein which act as the counterpart of MMP-2 and MMP9. The development of new blood vessel is part of cancer progression, therefore suppression of VEGF which act as a growth factor for new blood vessel development will reduce the cancer progression. Furthermore, the Inhibition of MMP-2 and MMP9 will reduce the cancer aggressiveness to migrate from the primary tumor site [20].

Morinda citrifolia also gives a promising anti-cancer activity. This plant medicine has been used by Indonesian society for many chronic diseases such as hypertension and hyperlipidemia. The anti-cancer activity of Morinda citrifolia was observed on compounds extracted from leaf, root, and fruit. Compounds extracted from the leaf showed suppression activity toward genes related to the cancer progression [24]. The active compound of Morinda citrifolia induces cancer cell death and improves the cytotoxic T cell activity to eliminate cancer cells. The activity of cytotoxic T has become an important target of cancer therapy. The cytotoxic T cell eliminate cancer cells by killing the cancer cells [43].

The above mention data predicted the potential anti-cancer activity of studied plant medicine. However, the inhibiting effect is various among different types of cancer. In addition, the different methods in the preparation of plant extract also result in different anti-cancer effects. Standardization of
compounds for developing herbal medicine for cancer treatment is required. The optimization of the biological compound extracted from plant medicine should improve the bioavailability and selectivity to kill cancer cells. Selectivity is an important issue in developing anti-cancer agents. The increase of bioavailability of the anti-cancer compound should not be harmful to normal cells in the body.

5. Conclusion
The increase of disease prevalence including cancer as an impact of climate change created a health burden for the Indonesian health system. The Indonesian Ministry of Health encourages the use of plant medicine to increase health resilience. Indonesian plant medicine offers a high potential activity to develop an herbal remedy for complementary used to treat cancer. Furthermore, enhancing the use of native Indonesian natural sources will strengthen health independence toward a pharmaceutical product. Further improvement is required to develop a standardized formula to optimize the health benefit of the natural resources widely available in Indonesia.

6. Acknowledgment
This study is part of Research Project funded by Research Grant of Universitas Sebelas Maret under scheme “PU-UNS” 2020-2021

References
[1] Kasotia P 2021 The health effects of global warming developing countries are the most vulnerable united nations [Online] Available: https://www.un.org/en/chronicle/article/health-effects-global-warming-developing-countries-are-most-vulnerable
[2] Panchonli N J 2021 How does climate change impact cancer - American Association for Cancer Research (AACR) [Online] Available: https://www.aacr.org/blog/2021/03/04/how-does-climate-change-impact-cancer/
[3] Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A 2018 Global cancer statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries Ca Cancer j Clin p.394–424 [Online] Available: cacancerjournal.com
[4] Moeloek N F 2017 Indonesia national health policy in the transition of disease burden and health insurance coverage Med J Indone 26(1) 3–6
[5] Komite Penanggulangan Kanker Nasional 2020 Pedoman strategi & langkah aksi pemanfaatan jamu & herbal untuk kanker (Jakarta: Komite Penanggulangan Kanker Nasional (KPKN) Periode 2014 - 2019)
[6] Widayanti A W, Green J A, Heydon S, Norris P 2020 Health-seeking behavior of people in indonesia: A Narrative Review J Epidemiol Glob Health J Epidemiol Glob Health 10(1) 6-15
[7] Djati MS and Christina YI 2019 Traditional Indonesian rempah-rempah as a modern functional food and herbal medicine Funct Foods Heal Dis 9(4) 241–64
[8] López-lázaro M 2015 A simple and reliable approach for assessing anticaner activity in vitro Curr Med Chem. 22 1324–34
[9] Li M, Yue G G, Luo L, Tsui S K, Fung K, Ng S S, et al. 2021 Turmeric Is therapeutic in vivo on patient-derived colorectal cancer xenografts: inhibition of growth , metastasis , and tumor recurrence Front Oncol 10 1–16
[10] Chen T, Yang C, Xi Z, Chen F, Li H 2020 Reduced caudal type homeobox 2 (CDX2) promoter methylation is associated with curcumin’s suppressive effects on epithelial- mesenchymal transition in colorectal cancer Med Sci Monit 26 1–8
[11] Tian S, Liao L, Zhou Q, Huang X, Zheng P 2021 Curcumin inhibits the growth of liver cancer by impairing myeloid - derived suppressor cells in murine tumor tissues Oncol Lett 21(286) 1–10
[12] Mödlhammer A, Pfurtscheller S, Feichtner A, Hartl M, Schneider R 2021 Diarylheptanoid curcumin induces MYC inhibition and cross-links this oncoprotein to the coactivator TRRAP Front Oncol 11 1–14
[13] Zhou H, Ning Y, Zeng G, Zhou C, Ding X 2021 Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT Oncol Rep 45(11) 1–9
[14] Li X, Ma S, Yang P, Sun B, Zhang Y 2018 Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. 6756 Oncol Lett 16:6756–62
[15] Ooko E, Kadioglu O, Greten H J, Efferth T 2017 Pharmacogenomic Characterization and isobologram analysis of the combination of ascorbic acid and curcumin — Two Main Metabolites of Curcuma longa — in Cancer Cells Front Pharmacol 8 1–17
[16] Liu P, Ying Q, Liu H, Yu SIQI, Bu L U P, Shao L, et al. 2020 Curcumin enhances anti-cancer efficacy of either gemcitabine or docetaxel on pancreatic cancer cells Oncol REPORTS 44 29–39
[17] Achyar K, Dewi S, 2018 Konsumsi obat herbal pada pasien kanker payudara di Rumah Sakit Umum Daerah Margono Soekarjo J Riset Kebidanan Indonesia 2(2):62–8
[18] Rahman H S A, Wan-ibrahim W S, Ismail N, Ismail T N N T, Mohd-salleh S F, Wong M P, et al. 2018 Phytochemicals of annona muricata leaves extract and cytotoxic effects on breast cancer cells Asian J Trop Med 11(12) 659–65
[19] Kim J Y, Dao T T P, Song K, Park S B, Jang H, Park M K, et al. 2018 Annona muricata leaf extract triggered intrinsic apoptotic pathway to attenuate cancerous features of triple negative breast cancer MDA-MB-231 Cells Evidence-Based Complement Altern Med 2018:7972916.
[20] Chamcheu J C, Rady I, Chamcheu R N, Bakar A, Id S, Bloch M B, et al. 2018 Graviola (Annona muricata) exerts anti-proliferative, anti-clonogenic and pro-apoptotic effects in human non-melanoma skin cancer UW-BCC1 and A431 cells in vitro: involvement of hedgehog signaling Int J Mol 19(1791)
[21] Sulistyoningerum E, Prasasti E, Rachman2 N, Baroro H N, Rujito L 2017 Annona muricata leaves extract reduce proliferative indexes and improve histological changes in rat’s breast cancer J appl pharm sci 7 (01)149-55
[22] Dhriisya G, Nambiar J, Shaji S, Vanuopadath M, Chuthan A A, Umar A B K, et al. 2020 RECK and TIMP-2 mediate inhibition of MMP-2 and MMP-9 by Annona muricata J Biosci 0123456789(45)
[23] Foster K, Oyenishi O, Rademan S, Erhabor J, Matsabisa M, Barker J, et al. 2020 Selective cytotoxic and anti-metastatic activity in DU-145 prostate cancer cells induced by Annona muricata leaf extract and phytochemical annonacin BMC Complement Med Ther 20(375) 1–15
[24] Jabir M S, Saleh Y M, Sulaiman G M, Yaseen N Y, Sahib U I, Dewir Y H, et al. 2021 Green synthesis of silver nanoparticles using annona muricata extract as an inducer of apoptosis in cancer cells and inhibitor for NLRP3 inflammasome via enhanced autophagy nanomateria Nanomaterials Basel 11(2) 384
[25] Ahmadi N, Mohamed S 2019 Epicatechin and scopoletin - rich Morinda citrifolia leaf ameliorated leukemia via anti-inflammatory, anti-angiogenesis, and apoptosis pathways in vitro and in vivo J Food Biochem 2868 1–12
[26] Rajivgandhi G, Saravanan K, Ramachandran G, Li J, Yin L. 2020 Enhanced anti-cancer activity of chitosan loaded Morinda citrifolia essential oil against A549 human lung cancer cells Int J Biol Macromol 164 4010–21
[27] Abu N, Zamberti N R, Yeap S K, Nordin N, Mohamad N E, Romli M F, et al. 2018 Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L BMC Complement Altermed Med 18(31) 1–10
[28] Agustina D W, Wawyningsih M D, Widarta S, Soewondo A, Tsuboi H. 2020. Noni Juice (Morinda citrifolia) to Prevent cancer progression in mice induced DMBA and cigarette smoke exposure Pharmacogn J 12(5) 946–51
[29] Ling-di M, Gui-bin L, Lu-bo Y, Jia-lin C, Jian W, Qiong-di C, et al. 2020. Morinda citrifolia (Noni) Juice Suppresses A549 human lung cancer cells via inhibiting AKT/Nuclear Factor-κB signaling pathway Chin J Integr Med (516002) 1–8
[30] Shaghayegh G, Alabsi AM, Ali-Saeed R, Ali AM, Vincent-Chong V K, Rosnah B Z, et al. 2016 Cell cycle arrest and mechanism of apoptosis induction in H400 oral cancer cells in response to Dammacanthal and Nordammacanthal isolated from Morinda citrifolia Cytotechnology 68(5) 2067–81

[31] Hong L, Chen J, Wu F, Wu F, Shen X, Zheng P. 2020 Isodeoxyelephantopin Inactivates thioredoxin reductase 1 and activates ROS-mediated JNK Signaling pathway to exacerbate cisplatin effectiveness in human colon cancer cells Front Cell Dev Biol 8 1–13.

[32] Zou J, Zhang Y, Sun J, Wang X, Tu H, Geng S, et al. 2017 Deoxyelephantopin Induces reactive oxygen species-mediated apoptosis and autophagy in human osteosarcoma cells Cell Physiol Biochem 42 1812–21.

[33] Pandey V, Tripathi A, Rani A, Dubey P K. 2020 Deoxyelephantopin, a novel naturally occurring phytochemical impairs growth, induces G2/M arrest, ROS-mediated apoptosis and modulates IncRNA expression against uterine leiomyoma Biomed Pharmacother 110751

[34] Nurkhasanah M, Sulistyani N, Revamia R, Putri A. 2019 Elephantopus scaber linn extract inducing apoptosis and activate caspase cascade in T47D Cancer Cell Line Iran J Pharm Sci 15(2):75–82.

[35] Cvetanova B, Li M, Yang C, Hsiao P, Yang Y, Feng J. 2021 Sesquiterpene lactone deoxyelephantopin isolated from elephantopus scaber and its derivative DETD-35 suppress BRAF V600E mutant melanoma lung metastasis in Mice Int J Mol Sci 22(3226)

[36] Sulistyani N, Nurkhasanah N. 2017 The cytotoxic effect of elephantopus scaber linn extract against breast cancer (T47D) cells. In: IIOC Conf Ser: Mater Sci Eng p. 259

[37] Kabeer F A, Rajalekshmi D S, Nair M S, Prathapan R. 2019 In vitro and in vivo antitumor activity of deoxyelephantopin from a potential medicinal plant Elephantopus scaber against Ehrlich ascites carcinoma Biocatal Agric Biotechnol 101106

[38] Kim B S, Chung T ae-W, Choi H J, Bae S J, Cho H R, Lee S, et al. 2021 Caesalpinia sappan induces apoptotic cell death in ectopic endometrial 12Z cells through suppressing pyruvate dehydrogenase kinase 1 expression Exp Ther Med 21(357) 1–10

[39] Bao H, Zhang L, Liu Q, Feng L, Ye Y, Lu J, et al. 2016 Cytotoxic and pro-apoptotic effects of cassane diterpenoids from the seeds of caesalpinia sappan in cancer cells Molecules 21(791)

[40] Bae Y, Shin E, Bae Y, Eden W Van. 2019 Editorial: Stress and immunity Front Immunol 10 1–2

[41] Deliana M, Suza D E, Tarigan R. 2019 Advanced stage cancer patients treatment in medan, indonesia experience in seeking MJMS 7(13) 2194–203

[42] Ryamizard R, P Nawangsih C, Margawati A. 2018 Gambaran penggunaan pengobatan tradisional, komplementer dan alternatif pada pasien kanker yang menjalani radioterapi. J Kedokt Diponegoro 7(2) 1568–84

[43] Almasdy D, Eptiyeni E, Khamri D, Kurniasih N. 2018 Use of complementary and alternative medicine (CAM) among breast cancer patients in a public hospital in Padang, Indonesia Journal of Young Pharmacists 10(2) 145–7