Essential preanalytics in PD-L1 immunocytochemistry

T Hart, Nils A; van der Starre, Jose; Vonk, Judith M; Timens, Wim

Published in:
Histopathology

DOI:
10.1111/his.13717

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
T Hart, N. A., van der Starre, J., Vonk, J. M., & Timens, W. (2019). Essential preanalytics in PD-L1 immunocytochemistry. Histopathology, 74(2), 362-364. https://doi.org/10.1111/his.13717

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-09-2023
that the high percentage of HER2-positive DCIS by IHC may lack an underlying molecular basis. Therefore, we would encourage exercising caution when evaluating HER2 expression in DCIS by immunohistochemistry.

Conflicts of interest

All authors have no conflicts of interest to declare.

Yiang Hui
Shaolei Lu
Hai Wang
Murray B. Resnick
Yihong Wang

Department of Pathology, Rhode Island Hospital and Lifespan Medical Center, Providence, RI, USA

1. Slamon Dj, Clark GM, Wong SG et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.
2. Lodato RF, Maguire HCJ, Greene MI, Weiner DB, LiVolsi VA. Immunohistochemical evaluation of c-erbB-2 oncogene expression in ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Mod. Pathol. 1990; 3: 449–454.
3. Bartkova J, Barnes DM, Millis RR, Gullick WJ. Immunohistochemical demonstration of c-erbB-2 protein in mammmary ductal carcinoma in situ. Hum. Pathol. 1990; 21: 1164–1167.
4. Buerger H, Otterbach F, Simon R et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J. Pathol. 1999; 187: 396–402.
5. Buerger H, Otterbach F, Simon R et al. Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J. Pathol. 1999; 189: 521–526.
6. Zhao J, Wu R, Au A, Marquez A, Yu Y, Shi Z. Determination of HER2 gene amplification by chromogenic in situ hybridization (CISH) in archival breast carcinoma. Mod. Pathol. 2002; 15: 657–665.
7. Hammond ME, Hayes DF, Dowsett M et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Arch. Pathol. Lab. Med. 2010; 134: 907–922.
8. Wolff AC, Hammond EH, Hicks DG et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice guideline update. J. Clin. Oncol. 2013; 31: 3997–4013.
9. Latta EK, Tjan S, Par克斯 RK, O’Malley FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod. Pathol. 2002; 15: 1318–1325.
10. Karlsson E, Sandelin K, Appelgren J et al. Clonal alteration of breast cancer receptors between primary ductal carcinoma in situ (DCIS) and corresponding local events. Eur. J. Cancer 2014; 50: 517–524.
11. Park K, Han S, Kim HJ, Kim J, Shin E. HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry. Histopathology 2006; 48: 702–707.
12. Foukakis T, Astron G, Lindstrom L, Hatches T, Bergh J. When to order a biopsy to characterise a metastatic relapse in breast cancer. Ann. Oncol. 2012; 23(Suppl. 10): x349–x353.
13. Gerlinger M, Rowan AJ, Horsswell S et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012; 366: 883–892.
14. Burkhartl L, Grob TJ, Hermann I. Gene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res. Treat. 2010; 123: 757–765.
15. Ringberg A, Nordgren H, Thorstensson S et al. Histopathological risk factors for ipsilateral breast events after breast conserving treatment for ductal carcinoma in situ of the breast – results from the Swedish randomized trial. Eur. J. Cancer 2007; 43: 291–298.
16. Liao N, Zhang GC. Liu YH et al. HER2-positive status is an independent predictor for coexisting invasion of ductal carcinoma in situ of the breast presenting extensive DCIS component. Pathol. Res. Prac. 2011; 207: 1–7.
17. Agosto-Arroyo E, Isayeva T, Almeida JS, Harada S. Molecular pathology; SY18-1: molecular profiling of breast ductal carcinoma in situ. Pathology 2014; 46(Suppl. 2): S29.
18. Curigliano G, Disalvatore D, Espósito A et al. Risk of subsequent in situ and invasive breast cancer in human epidermal growth factor receptor 2-positive ductal carcinoma in situ. Ann. Oncol. 2015; 26: 682–687.
19. Siziopikou KP, Anderson SJ, Cobleigh MA et al. Preliminary results of centralized HER2 testing in ductal carcinoma in situ (DCIS); NSABP B-43. Breast Cancer Res. Treat. 2013; 142: 415–421.

Essential preanalytics in PD-L1 immunocytchemistry

DOI: 10.1111/his.13717
© 2018 The Authors. Histopathology Published by John Wiley & Sons Ltd

Sir: In non-small-cell lung cancer, higher programmed death-ligand 1 (PD-L1) expression by tumour cells is associated with a better response to immunotherapy.1 In routine clinical practice, a substantial number of thoracic oncologists tend to use cytological techniques such as fine needle aspiration (FNA) more often than biopsies. Cytopathological analysis of pleural fluid, trans-oesophageal or bronchial FNA specimens and bronchial washes is frequently performed, allowing tumour typing and a concise evaluation for treatment targets. Up to now, a limited number of studies have focused on histological versus cytological correlation of PD-L1 immunohistochemistry. PD-L1 immunocytchemistry is performed on formalin-fixed cytological material, and
Ilie et al. demonstrated, for example, a correlation coefficient of 0.898 on the Ventana Ultra platform. Routinely used fixatives in cytology are usually based on methanol instead of formalin, which might negatively affect PD-L1 staining intensity. To date, it remains unclear whether a methanol-based fixative without formalin fixation is suitable for predictive immunocytological PD-L1 tests.

The use of FNA on a lobectomy sent for histological examination allows fixation and processing of tumour cytology concurrently with histology and staining of PD-L1 of the same site. Paired FNA and standard histological processing was performed on 64 lobectomies with two routine immunohistochemical PD-L1 staining methods [22C3 (Agilent, Amstelveen, the Netherlands) laboratory-developed test (LDT) and SP263 CE-IVD assay (Roche, Almere, the Netherlands), both on Ventana Benchmark Ultra (Roche, Almere, the Netherlands)]. The 22C3 LDT using the Ventana platform was validated against the Dako Pharm Dx assay using the Dako Link 48 platform. During validation, the 22C3 LDT showed stronger staining than the SP263 assay, which is in contrast to the Blueprint results of Tsao et al. These differences in staining intensities are probably attributable to the platform used. In the Blueprint studies, 22C3 was stained on the appropriate Dako platform, and showed, just like SP263, a slightly less bright result than that obtained with 22C3 on a Ventana immunostainer. A further evaluation of the effects of different fixatives on cytology for PD-L1 staining can be performed with commercially available cell lines with a gradual increase in staining intensity (Histo-cyte, Newcastle upon Tyne, UK). Cell lines that are grown and fixed for extended time periods with different fixatives allow the detection of slight differences by fixing of cells for longer and beyond routinely used time periods.

PD-L1 expression was scored by two trained pathologists in three tumour proportion categories: <1%, 1–50% and >50% membranous staining of tumour cells. After consensus between both pathologists had been reached, the results were used to evaluate agreements between cytology and histology. Weighted Cohen’s kappa on the PD-L1 scores for histology and cytology of 64 lobectomy specimens was calculated. For the 22C3 method, Cohen’s kappa showed moderate agreement between PD-L1 staining scores of histology and cytology (0.53), whereas the SP263 method showed substantial agreement (0.67). A striking difference was found between a subgroup consisting of agar cell blocks fixed in 10% buffered formalin and a subgroup consisting of Cellient cell blocks (Hologic, Zaventem, Belgium) fixed in methanol-based CytoLyt/PreservCyt (Hologic) (Figure 1). PD-L1 staining in Cellient cell blocks showed fair to moderate agreement between cytology and histology, with weighted kappas of 0.36 for 22C3 (n = 38) and 0.60 for SP263 (n = 37). PD-L1 staining in agar cell blocks showed substantial agreement between cytology and histology [weighted kappa for 22C3 of 0.77 (n = 26), and weighted kappa for SP263 of 0.76 (n = 26)]. Further evaluation of fixation effects was performed with cell lines. A Cellient cell block

![Figure 1. Programmed death-ligand 1 (22C3 laboratory-developed test on Ventana Benchmark Ultra) staining, categorised in three bins comparing agar cell blocks (n = 28) and Cellient cell blocks (n = 39) with their histological counterparts.](Histopathology, 74, 358–367.)
containing cells that were fixed for Σ 2 h in CytoLyt showed lower staining intensity than formalin-fixed cells. Longer fixation times resulted in similar findings, with a further decrease in staining intensity after 48–72 h when methanol fixation was used instead of formalin (Figure 2).

In conclusion, our results indicate that cytology can be used reliably for determination of PD-L1 expression when formalin fixation is used. Moreover, PD-L1-expressing cell lines confirmed the deleterious effect of methanol fixation, making the routinely used CytoLyt/PreservCyt fixatives in the Cellient technique less appropriate for predictive testing for immunotherapy.

Acknowledgements

This study was supported by an unrestricted research grant from Roche.

Nils A t Hart1
Jose van der Starre-Gaal2
Judith M Vonk3
Wim Timens1

1Department of Pathology and Medical Biology
University Medical Centre Groningentshow, Groningen,
2Department of Pathology, Isala, Zwolle, and
3Department of Epidemiology, University Medical Centre
Groningen, Groningen, the Netherlands

1. Herbst RS, Baas P, Dong-Wan K et al. Pembrolizumab versus Docetaxel for previously treated, PD-L1 positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomized controlled trial. Lancet 2016; 387: 1540–1550.
2. Ilie M, Juco J, Huang L et al. Use of the 22C3 anti-programmed death-ligand 1 antibody to determine programmed death-ligand 1 expression in cytology samples obtained from non-small cell lung cancer patients. Cancer Cytopathol. 2018; 126: 264–274.
3. Wang H, Agulnik J, Kasymjanova G et al. Cytology cell blocks are suitable for immunohistochemical testing for PD-L1 in lung cancer. Ann. Oncol. 2018; 29: 1417–1422.
4. Adam J, Le Stang N, Rouquette I et al. Multicenter harmonization study for PD-L1 IHC testing in non-small-cell lung cancer. Ann. Oncol. 2018; 29: 953–958.
5. Tsao MS, Kerr KM, Kockx M et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of Blueprint phase 2 project. J. Thorac. Oncol. 2018; 13: 1302–1311.

Heterogeneity of programmed death-ligand 1 expression in thymic epithelial tumours between initial specimen and synchronous or metachronous metastases or recurrences

DOI: 10.1111/his.13750
© 2018 John Wiley & Sons Ltd

Sir: Thymic epithelial tumours (TET) are rare malignant neoplasms that have the potential to...