Simple and Effective
Retrieve-Edit-Rerank Text Generation

Nabil Hossain
University of Rochester
nhossain@cs.rochester.edu

Marjan Ghazvininejad
Facebook AI Research

Luke Zettlemoyer
Facebook AI Research
Overview

• Retrieve-and-edit
 • Generate text using retrieved examples from training set
 • Uses: Summarization, Machine Translation, Conversation Generation

• We apply post-generation ranking
 • Retrieve N examples, generate a candidate output with each
 • Rank these candidates

• Post-ranking improves results on:
 • 2 Machine Translation tasks
 • Gigaword Summarization task
Retrieve (Gigaword)

- 1st sentence of news article (x) -> title (y)
- **Retrieval**: given x, find closest x', then obtain its title y'
 - LUCENE (TF-IDF based)

Examples:

Article (x)	Best retrieved (y')	Title (y)
factory orders for manufactured goods rose #.# percent in september, the commerce department said here thursday.	u.s. factory orders rises #.# percent in october	us september factory orders up #.# percent
france, still high after their convincing ###-## win over new zealand have named the same team for the second test next saturday in paris.	france poised to make history in #nd test	french keep same team for #nd test
Edit (Generate)

- For each augmented input $x [\text{SEP}] y'_i$, generate \hat{y}_i
factory orders for manufactured goods rose #.# percent in September, the commerce department said here Thursday.

u.s. factory orders rises #.# percent in *October*

us *September* factory orders up #.# percent
Post-gen Rerank

Given: \(\{(x \ [\text{SEP}] y'_1; \hat{y}_1), \ldots, (x \ [\text{SEP}] y'_N; \hat{y}_N)\} \)

Estimate: \(\hat{y}^* = \arg \max_{\hat{y}_i} \text{similarity}(\hat{y}_i, y), 1 \leq i \leq N \)
Post-gen Rerank

Training Set

(x', y') → **Module 1: Retrieve**

$\{ y_1', y_2', y_3' \}$

Test Data

x → Augmented Input

Article (x)	Best retrieved (y')	Title (y)
factory orders for manufactured goods rose #.# percent in september, the commerce department said here thursday.	u.s. factory orders rises #.# percent in october	us september factory orders up #.# percent

Module 2: Generate

x [SEP] y_1' → \hat{y}_1

x [SEP] y_2' → \hat{y}_2

x [SEP] y_3' → \hat{y}_3

Module 3: Post-Gen Rerank

\hat{y}_1 → Candidate Outputs

\hat{y}_2 → \hat{y}_3

\hat{y}_3 → \hat{y}_1

\hat{y}_1

factory orders rises #.# percent in september

\hat{y}_2

us september factory orders rose #.# percent

\hat{y}_3

factory orders for good rose #.# percent in september
Model

- BPE
- Transformer base
- Segment Embeddings
- A [RANK] token similar to [CLS] token in BERT
 - to estimate salience of the retrieved y'
- Generate with beam = 5
Machine Translation

- **Data**: EN-NL (Dutch) and EN-HU (Hungarian), from EU meetings
- **SOTA is NFR**: Retrieval-based LSTM model
 - Uses SetSimilaritySearch for retrieval (retrieves top 3)

System	BLEU	
	EN-NL	EN-HU
LSTM	51.45	40.47
NFR	58.91	48.24
Transformer (Tr)	59.88	49.61
Tr + sss+ed (NFR equivalent)	62.86	52.74
Tr + Lucene + x [SEP] y'_1	64.92	55.16
Machine Translation

- **Data:** EN-NL (Dutch) and EN-HU (Hungarian), from EU meetings
- Current SOTA is NFR: Retrieval-based LSTM model
 - Uses SetSimilaritySearch for retrieval (retrieves top 3)
- Our ranker: Select highest scored output from the trained MT model

System	EN-NL	EN-HU
LSTM	51.45	40.47
NFR	58.91	48.24
Transformer (Tr)	59.88	49.61
Tr + sss+ed (NFR equivalent)	62.86	52.74
Tr + Lucene + x [SEP] y'_1	64.92	55.16
Tr + Lucene + pre-rank	65.20	55.36
Tr + Lucene + post-rank (ours)	**65.43**	**55.73**

- Post-generation ranking amounting to extended beam search

Bulté, Bram, and Arda Tezcan. "Neural Fuzzy Repair: Integrating Fuzzy Matches into Neural Machine Translation." In ACL 2019.
Gigaword Summarization

- Metric: Rouge F-scores
- Re³Sum model: LSTM, retrieve-and-edit, pre-ranking
 - uses 30 retrieved examples
- Our ranker: select the most frequent of the 30 candidate outputs

Method	Rouge-1	Rouge-2	Rouge-LCS
LSTM	35.01	16.55	32.42
Re³Sum	37.04	19.03	34.46
Transformer (Tr)	37.68	18.79	34.87
Tr + Lucene + X [SEP]y′	37.51	19.15	34.86
Tr + Lucene + pre-rank	36.46	18.01	33.85
Tr + Luc + post-rank	**38.23**	**19.58**	**35.60**
Gigaword oracle experiments

- Room for improvement with better post-ranking
Room for improvement with better post-ranking

- use x, x', y', \hat{y} in post-ranking

\[
\{(x \text{ [SEP]} y'_1; \hat{y}_1), \ldots, (x \text{ [SEP]} y'_N; \hat{y}_N)\}
\]

\[
\hat{y}^* = \arg \max_{\hat{y}_i} \text{similarity}(\hat{y}_i, y), 1 \leq i \leq N
\]
We extended the retrieve-and-edit framework with post-generation ranking:

1. Retrieve N training set outputs y' for input x
2. Edit each input $x[SEP]y'$ to produce N candidate outputs \hat{y}.
3. Re-rank \hat{y} to select best ranked output

- Simple post-ranking improved results on MT and summarization
- Interesting to explore better post-ranking using x, x', y', yhat

Questions: nhossain@cs.rochester.edu