ALMOST BI-HYPERIDEALS AND THEIR FUZZIFICATION
OF SEMIHYPERGROUPS

PATCHAREE MUANGDOO, THITIPON CHUTA, WARUD NAKKHASEN∗

Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In this paper, we introduce the concept of almost bi-hyperideals of semihypergroups which is a generalization of bi-hyperideals, and we give some properties of them. Moreover, we consider the connections between almost bi-hyperideals and their fuzzification of semihypergroups.

Keywords: bi-hyperideal; almost bi-hyperideal; fuzzy almost bi-hyperideal; semihypergroup.

2010 AMS Subject Classification: 03E75, 20M12, 20N20.

1. INTRODUCTION

The concepts of left, right, two-sided almost ideals of semigroups were introduced by Grosek and Satko [7] in 1980. They studied the characterization of these ideals when a semigroup contains no proper left, right, two-sided ideals. Later in 1981, Bogdanovic [1] introduced the notion of almost bi-ideals in semigroups as a generalization of bi-ideals. The concept of fuzzy subsets was first introduced by Zadeh [18] as a function from a nonempty set X to the unit interval $[0, 1]$. The fuzzy subset theory is a generalization of traditional mathematics set theory. In 2018, Wattanatripop, Chinram and Changphas [17] introduced the notion of fuzzy almost

∗Corresponding author

E-mail address: warud.n@msu.ac.th

Received February 26, 2021
bi-ideals in semigroups and discussed some relationships between almost bi-ideals and fuzzy almost bi-ideals of semigroups. Then, Simuen, et al. [14] investigated some properties of fuzzy almost bi-Γ-ideals of Γ-semigroups.

Algebraic hyperstructure was introduced in 1934, by Marty [10], as the 8^{th} Congress of Scandinavian Mathematicians. In a classical algebraic structure, composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a nonempty set. There are many authors expanded the concept of hyperstructure, see, e.g., [3], [4], [6], [11], [12], [16]. In this work, the authors focus on semihypergroups. Semihypergroups are studied by many authors, for instance, [2], [5], [8], [9], [13]. In 2020, Suebsung, Kaewnoi and Chinram [15] studied the concept of almost hyperideals in semihypergroups and gave some interesting properties.

In this paper, we introduce the concept of almost bi-hyperideals of semihypergroups as a generalization of bi-hyperideals and investigate some properties of them. Then, we discuss the connections between almost bi-hyperideals and fuzzy almost bi-hyperideals of semihypergroups.

2. Preliminaries

Let H be a nonempty set. A hyperoperation on H is a mapping $\circ : H \times H \rightarrow \mathcal{P}^*(H)$, where $\mathcal{P}^*(H)$ denotes the set of all nonempty subsets of H. Then, the structure (H, \circ) is called a hypergroupoid. If $A, B \in \mathcal{P}^*(H)$ and $x \in H$, then we denote

$$A \circ B = \bigcup_{a \in A, b \in B} a \circ b, \quad A \circ x = A \circ \{x\} \quad \text{and} \quad x \circ B = \{x\} \circ B.$$

A hypergroupoid (H, \circ) is called a semihypergroup if for every $x, y, z \in H$, $(x \circ y) \circ z = x \circ (y \circ z)$, which means that

$$\bigcup_{u \in x \circ y} u \circ z = \bigcup_{v \in y \circ z} x \circ v.$$

A nonempty subset A of a semihypergroup (S, \circ) is called a subsemihypergroup of S if $A \circ A \subseteq A$. A subsemihypergroup B of a semihypergroup (S, \circ) is called a bi-hyperideal of S if $B \circ S \circ B \subseteq B$. For more convenient, we write S instead of a semihypergroup (S, \circ) and AB instead of $A \circ B$, for any nonempty subsets A and B of S.
A fuzzy subset \cite{18} of a nonempty set \(X \) is a mapping \(f : X \to [0, 1] \). Let \(f \) and \(g \) be any two fuzzy subsets of a nonempty set \(X \). Then, \(f \subseteq g \) if and only if \(f(x) \leq g(x) \) for all \(x \in X \). The intersection and the union of two fuzzy subsets \(f \) and \(g \) of a nonempty set \(X \), denoted by \(f \cap g \) and \(f \cup g \), respectively, are defined by letting \(x \in X \),

\[
(f \cap g)(x) = \min\{f(x), g(x)\},
\]

\[
(f \cup g)(x) = \max\{f(x), g(x)\}.
\]

Let \(X \) be a nonempty set. For a fuzzy subset \(f \) of \(X \), the support of \(f \) is defined by \(\text{supp}(f) := \{x \in X \mid f(x) \neq 0\} \). Let \(A \) be a nonempty subset of \(X \). The characteristic mapping \(\chi_A \) of \(A \) is a fuzzy subset of \(X \) defined by

\[
\chi_A(x) = \begin{cases}
1 & \text{if } x \in A, \\
0 & \text{otherwise},
\end{cases}
\]

for all \(x \in X \).

For any element \(s \) of \(X \) and \(t \in (0, 1] \), a fuzzy point \(s_t \) of \(X \) defined by

\[
s_t(x) = \begin{cases}
t & \text{if } x = s, \\
0 & \text{otherwise},
\end{cases}
\]

for all \(x \in X \).

Lemma 2.1. Let \(A \) and \(B \) be nonempty subsets of a nonempty set \(X \) and let \(f \) and \(g \) be fuzzy subsets of \(X \). Then the following statements hold:

(i) \(\chi_{A \cap B} = \chi_A \cap \chi_B \);

(ii) \(A \subseteq B \) if and only if \(\chi_A \subseteq \chi_B \);

(iii) \(\text{supp}(\chi_A) = A \);

(iv) if \(f \subseteq g \), then \(\text{supp}(f) \subseteq \text{supp}(g) \).

Proof. The proof is straightforward. \(\square \)

Let \(f \) and \(g \) be fuzzy subsets of a semihypergroup \(S \). A product \(f \circ g \) is defined by

\[
(f \circ g)(x) = \begin{cases}
\sup_{x \in yz} \{\min\{f(y), g(z)\}\} & \text{if } \exists y, z \in S \text{ such that } x \in yz, \\
0 & \text{otherwise},
\end{cases}
\]
for all $x \in S$.

Lemma 2.2. If A and B are subsets of a semihypergroup S, then $\chi_A \circ \chi_B = \chi_{AB}$.

Proof. Let $x \in S$. If $\chi_{AB}(x) = 0$, then $x \notin AB$. This means that $x \notin ab$ for all $a \in A$ and $b \in B$. Thus, $(\chi_A \circ \chi_B)(x) = 0$. That is, $\chi_{AB}(x) = (\chi_A \circ \chi_B)(x)$. If $\chi_{AB}(x) = 1$, then $x \in AB$. This implies that $x \in ab$ for some $a \in A$ and $b \in B$. Hence, $(\chi_A \circ \chi_B)(x) = \sup_{x \in ab} \{\min\{\chi_A(a), \chi_B(b)\}\} = 1$. So, $\chi_{AB}(x) = (\chi_A \circ \chi_B)(x)$. Therefore, $\chi_A \circ \chi_B = \chi_{AB}$. □

3. Almost Bi-Hyperideals

In this section, we introduce the concept of almost bi-hyperideals of semihypergroups and give some of its properties.

Definition 3.1. A nonempty subset B of a semihypergroup S is called an almost bi-hyperideal of S if $BxB \cap B \neq \emptyset$ for all $x \in S$.

Example 3.2. Let $S = \{a, b, c\}$. Define a hyperoperation \cdot on S by the following table:

\cdot	a	b	c
a	$\{a\}$	$\{b,c\}$	$\{b,c\}$
b	$\{b,c\}$	$\{b,c\}$	$\{b,c\}$
c	$\{c\}$	$\{c\}$	$\{c\}$

Then, (S, \cdot) is a semihypergroup. Let $B = \{b, c\}$. Hence,

$$BxB \cap B = \{b, c\} \neq \emptyset,$$

$$BbB \cap B = \{b, c\} \neq \emptyset,$$

$$BcB \cap B = \{b, c\} \neq \emptyset.$$

Therefore, B is an almost bi-hyperideal of S.

Proposition 3.3. Every bi-hyperideal of a semihypergroup S is an almost bi-hyperideal.

Proof. Let B be a bi-hyperideal of a semihypergroup S. Then, $BSB \subseteq B$. It follows that for any $x \in S$, $BxB \subseteq BSB \subseteq B$. That is, $BxB \cap B = BxB \neq \emptyset$ for all $x \in S$. Hence, B is an almost bi-hyperideal of S. □
In general, an almost bi-hyperideal of a semihypergroup need not to be a bi-hyperideal as the following example.

Example 3.4. Consider \(S = \{a, b, c\} \) together with the hyperoperation \(\cdot \) on \(S \) defined in Example 3.2. Let \(B = \{a, b\} \). By routine computations, \(B \) is an almost bi-hyperideal of \(S \), but \(B \) is not a bi-hyperideal of \(S \) because \(BSB = S \nsubseteq B \).

Next, we discuss some properties of almost bi-hyperideals of semihypergroups.

Theorem 3.5. Let \(B \) be an almost bi-hyperideal of a semihypergroup \(S \). If \(A \) is any subset of \(S \) containing \(B \), then \(A \) is also an almost bi-hyperideal of \(S \).

Proof. Assume that \(A \) is a subset of \(S \) containing \(B \). Since \(B \) is an almost bi-hyperideal of \(S \) and \(B \subseteq A \), we have that \(BxB \cap B \neq \emptyset \) and \(BxB \cap B \subseteq AxA \cap A \) for all \(x \in S \). It turns out that \(AxA \cap A \neq \emptyset \) for all \(x \in S \). Hence, \(A \) is an almost bi-hyperideal of \(S \). \(\square \)

Corollary 3.6. The union of any two almost bi-hyperideals of a semihypergroup \(S \) is also an almost bi-hyperideal of \(S \).

Proof. Let \(A \) and \(B \) be any two almost bi-hyperideals of a semihypergroup \(S \). Since \(A \subseteq A \cup B \) and by Theorem 3.5, we get that \(A \cup B \) is an almost bi-hyperideal of \(S \). \(\square \)

Example 3.7. Let \(S = \{a, b, c\} \). Then the hyperoperation \(\cdot \) on \(S \) defined by the following:

\(\cdot \)	\(a \)	\(b \)	\(c \)
\(a \)	\(\{a\} \)	\(\{b, c\} \)	\(\{c\} \)
\(b \)	\(\{b, c\} \)	\(\{b, c\} \)	\(\{c\} \)
\(c \)	\(\{b, c\} \)	\(\{b, c\} \)	\(\{c\} \)

Hence, \((S, \cdot)\) is a semihypergroup. Let \(B_1 = \{a, b\} \) and \(B_2 = \{a, c\} \). By routine calculations, \(B_1 \) and \(B_2 \) are almost bi-hyperideals of \(S \). However, \(B = B_1 \cap B_2 = \{a\} \) is not an almost bi-hyperideal of \(S \) because \(BbB \cap B = \emptyset \).

By Example 3.7, we have that the intersection of any two almost bi-hyperideals of a semihypergroup \(S \) need not to be an almost bi-hyperideal of \(S \).
Theorem 3.8. Let S be a semihypergroup. Then S contains a proper almost bi-hyperideal if and only if there exists an element x of S such that $S \setminus \{x\}$ is an almost bi-hyperideal of S.

Proof. Assume that S contains a proper almost bi-hyperideal. Let A be a proper almost bi-hyperideal of S. Then, there exists $x \in S$ such that $x \notin A$. So, $A \subseteq S \setminus \{x\}$. By Theorem 3.5, $S \setminus \{x\}$ is an almost bi-hyperideal of S. Conversely, consider $S \setminus \{x\}$ for some $x \in S$. Then, $S \setminus \{x\}$ is a proper subset of S. By assumption, we have that $S \setminus \{x\}$ is an almost bi-hyperideal of S. Therefore, S contains a proper almost bi-hyperideal. \hfill \Box

Theorem 3.9. Let S be a semihypergroup and $|S| > 1$. Then S has no proper almost bi-hyperideals if and only if for every $x \in S$ there exists $a \in S$ such that $(S \setminus \{x\})a(S \setminus \{x\}) = \{x\}$.

Proof. Assume that S has no proper almost bi-hyperideals. Let $x \in S$. Then, $S \setminus \{x\}$ is not an almost bi-hyperideal of S. Thus, there exists $a \in S$ such that

$$[(S \setminus \{x\})a(S \setminus \{x\})] \cap (S \setminus \{x\}) = \emptyset.$$

We obtain that

$$(S \setminus \{x\})a(S \setminus \{x\}) \subseteq S \setminus (S \setminus \{x\}) = \{x\}.$$

This implies that $(S \setminus \{x\})a(S \setminus \{x\}) = \{x\}$.

Conversely, suppose that S contains a proper almost bi-hyperideal B. Let $x \in S \setminus B$. By assumption, there exists $a \in S$ such that $(S \setminus \{x\})a(S \setminus \{x\}) = \{x\}$. Since $B \subseteq S \setminus \{x\}$ and by Theorem 3.5, we get that $S \setminus \{x\}$ is an almost bi-hyperideal of S. It follows that

$$\emptyset = \{x\} \cap (S \setminus \{x\}) = [(S \setminus \{x\})a(S \setminus \{x\})] \cap (S \setminus \{x\}) \neq \emptyset.$$

This is a contradiction. Therefore, S has no proper almost bi-hyperideals. \hfill \Box

4. Fuzzy Almost Bi-Hyperideals

In this section, we introduce the concept of fuzzy almost bi-hyperideals of semihypergroups, and we study the connections between almost bi-hyperideals and their fuzzification of semihypergroups.
Definition 4.1. Let f be a fuzzy subset of a semihypergroup S such that $f \neq 0$. Then f is called a *fuzzy almost bi-hyperideal* of S if for every fuzzy point s_t of S, $(f \circ s_t \circ f) \cap f \neq 0$.

Theorem 4.2. Let f be a fuzzy almost bi-hyperideal of a semihypergroup S. If g is a fuzzy subset of S such that $f \subseteq g$, then g is a fuzzy almost bi-hyperideal of S.

Proof. Assume that g is a fuzzy subset of S such that $f \subseteq g$. By assumption, $(f \circ s_t \circ f) \cap f \subseteq (g \circ s_t \circ g) \cap g$ and $(f \circ s_t \circ f) \cap f \neq 0$ for all fuzzy points s_t of S. It follows that $(g \circ s_t \circ g) \cap g \neq 0$ for all fuzzy points s_t of S. Hence, g is a fuzzy almost bi-hyperideal of S. □

Corollary 4.3. Let f and g be fuzzy almost bi-hyperideals of a semihypergroup S. Then $f \cup g$ is also a fuzzy almost bi-hyperideal of S.

Proof. It follows from Theorem 4.2. □

Example 4.4. Consider $S = \{a, b, c\}$ together with the hyperoperation \cdot on S defined in Example 3.7. Let f and g be fuzzy subsets of S defined by

$$f(a) = 0, \ f(b) = 0, \ f(c) = 0.3$$

and

$$g(a) = 0, \ g(b) = 0.7, \ g(c) = 0.$$

It not difficult to show that

$$[\ (f \circ s_t \circ f) \cap f](c) \neq 0 \ \text{and} \ \ [\ (g \circ s_t \circ g) \cap g](b) \neq 0$$

for all fuzzy points s_t of S. Then, f and g are fuzzy almost bi-hyperideals of S. Moreover, for a fuzzy point a_t of S, $f \cap g$ is not a fuzzy almost bi-hyperideal of S because $[\ ((f \cap g) \circ a_t \circ (f \cap g)) \cap (f \cap g)](x) = 0$ for all $x \in S$.

Theorem 4.5. Let B be a nonempty subset of a semihypergroup S. Then B is an almost bi-hyperideal of S if and only if χ_B is a fuzzy almost bi-hyperideal of S.

Proof. Assume that B is an almost bi-hyperideal of S. Then, $BsB \cap B \neq \emptyset$ for all $s \in S$. So, there exists $x \in S$ such that $x \in BsB$ and $x \in B$. Thus, $x \in b_1b_2$ for some $b_1, b_2 \in B$. It follows that

$$(\chi_B \circ s_t \circ \chi_B)(x) = \sup_{x \in b_1b_2} \{\min\{\chi_B(b_1), s_t(s), \chi_B(b_2)\}\} \neq 0 \ \text{and} \ \chi_B(x) = 1.$$
This implies that \((\chi_B \circ s_t \circ \chi_B) \cap \chi_B \neq 0\) for all fuzzy points \(s_t\) of \(S\). Hence, \(\chi_B\) is a fuzzy almost bi-hyperideal of \(S\).

Conversely, assume that \(\chi_B\) is a fuzzy almost bi-hyperideal of \(S\). Let \(s \in S\). Then, \((\chi_B \circ s_t \circ \chi_B) \cap \chi_B \neq 0\). Thus, there exists \(x \in S\) such that \((\chi_B \circ s_t \circ \chi_B)(x) \neq 0\) and \(\chi_B(x) \neq 0\). Then, there exist \(b_1, b_2 \in B\) such that \(x \in b_1 s b_2\) and \(x \in B\). This means that \(x \in BsB\) and \(x \in B\). That is, \(BsB \cap B \neq \emptyset\). Therefore, \(B\) is an almost bi-hyperideal of \(S\).

\[\square\]

Theorem 4.6. Let \(f\) be a fuzzy subset of a semihypergroup \(S\). Then \(f\) is a fuzzy almost bi-hyperideal of \(S\) if and only if \(\text{supp}(f)\) is an almost bi-hyperideal of \(S\).

Proof. Assume that \(f\) is a fuzzy almost bi-hyperideal of \(S\). Let \(s \in A\) and \(s_t\) be a fuzzy point of \(S\). Then, \((f \circ s_t \circ f) \cap f \neq 0\). Thus, there exists \(x \in S\) such that \([\{(f \circ s_t \circ f) \cap f\}(x) \neq 0\). That is, \((f \circ s_t \circ f)(x) \neq 0\) and \(f(x) \neq 0\). We obtain that there exist \(y_1, y_2 \in S\) such that \(x \in y_1 s y_2\),

\[0 \neq (f \circ s_t \circ f)(x) = \sup_{x \in y_1 s y_2} \{\min\{f(y_1), s_t(s), f(y_2)\}\} \]

So, \(f(y_1) \neq 0\) and \(f(y_2) \neq 0\). Hence, \(x, y_1, y_2 \in \text{supp}(f)\). It follows that \((\chi_{\text{supp}(f)} \circ s_t \circ \chi_{\text{supp}(f)})(x) \neq 0\) and \(\chi_{\text{supp}(f)}(x) \neq 0\). Also, \((\chi_{\text{supp}(f)} \circ s_t \circ \chi_{\text{supp}(f)}) \cap \chi_{\text{supp}(f)} \neq 0\). This means that \(\chi_{\text{supp}(f)}\) is a fuzzy almost bi-hyperideal of \(S\). By Theorem 4.5, \(\text{supp}(f)\) is an almost bi-hyperideal of \(S\).

Conversely, assume that \(\text{supp}(f)\) is an almost bi-hyperideal of \(S\). By Theorem 4.5, \(\chi_{\text{supp}(f)}\) is a fuzzy almost bi-hyperideal of \(S\). Let \(s_t\) be any fuzzy point of \(S\). Then, \((\chi_{\text{supp}(f)} \circ s_t \circ \chi_{\text{supp}(f)}) \cap \chi_{\text{supp}(f)} \neq 0\). Thus, there exists \(x \in S\) such that \([\{(\chi_{\text{supp}(f)} \circ s_t \circ \chi_{\text{supp}(f)})(x) \neq 0\) and \(\chi_{\text{supp}(f)}(x) \neq 0\). That is, there exist \(y_1, y_2 \in S\) such that \(x \in y_1 s y_2\),

\[0 \neq (\chi_{\text{supp}(f)} \circ s_t \circ \chi_{\text{supp}(f)})(x) = \sup_{x \in y_1 s y_2} \{\min\{\chi_{\text{supp}(f)}(y_1), s_t(s), \chi_{\text{supp}(f)}(y_2)\}\}, \]

which implies that, \(\chi_{\text{supp}(f)}(y_1) \neq 0\) and \(\chi_{\text{supp}(f)}(y_2) \neq 0\). It turns out that \(f(y_1) \neq 0\), \(f(y_2) \neq 0\) and \(f(x) \neq 0\). Hence, \((f \circ s_t \circ f) \cap f \neq 0\). Consequently, \(f\) is a fuzzy almost bi-hyperideal of \(S\).

\[\square\]

An almost bi-hyperideal \(M\) of a semihypergroup \(S\) is minimal if for any almost bi-hyperideal \(A\) of \(S\) such that \(A \subseteq M\) implies that \(A = M\).
Definition 4.7. Let S be a semihypergroup. A fuzzy almost bi-hyperideal f of S is called *minimal* if for any fuzzy almost bi-hyperideal g of S such that $g \subseteq f$, we get $\text{supp}(f) = \text{supp}(g)$.

Next, we investigate the minimality of fuzzy almost bi-hyperideals of semihypergroups.

Theorem 4.8. Let B be a nonempty subset of a semihypergroup S. Then B is a minimal almost bi-hyperideal of S if and only if χ_B is a minimal fuzzy almost bi-hyperideal of S.

Proof. Assume that B is a minimal almost bi-hyperideal of S. By Theorem 4.5, χ_B is a fuzzy almost bi-hyperideal of S. Let g be a fuzzy almost bi-hyperideal of S such that $g \subseteq \chi_B$. By Lemma 2.1, $\text{supp}(g) \subseteq \text{supp}(\chi_B) = B$. By Theorem 4.6, $\text{supp}(g)$ is an almost bi-hyperideal of S. By the minimality of B, we have $\text{supp}(g) = B = \text{supp}(\chi_B)$. Therefore, χ_B is a minimal fuzzy almost bi-hyperideal of S.

Conversely, assume that χ_B is a minimal fuzzy almost bi-hyperideal of S. Then, B is an almost bi-hyperideal of S. Let A be any almost bi-hyperideal of S such that $A \subseteq B$. By Theorem 4.5, χ_A is a fuzzy almost bi-hyperideal of S such that $\chi_A \subseteq \chi_B$. Since χ_B is minimal, we get that $\text{supp}(\chi_A) = \text{supp}(\chi_B)$. We obtain that $A = \text{supp}(\chi_A) = \text{supp}(\chi_B) = B$ by Lemma 2.1. Consequently, B is a minimal almost bi-hyperideal of S. □

Corollary 4.9. Let S be a semihypergroup. Then S has no proper almost bi-hyperideals if and only if for every fuzzy almost bi-hyperideal f of S, $\text{supp}(f) = S$.

Proof. Assume that S has no proper almost bi-hyperideals. Let f be a fuzzy almost bi-hyperideal of S. By Theorem 4.6, $\text{supp}(f)$ is an almost bi-hyperideal of S. By assumption, we have that $\text{supp}(f) = S$. Conversely, let B be any almost bi-hyperideal of S. Then, χ_B is a fuzzy almost bi-hyperideal of S by Theorem 4.5. It follows that $B = \text{supp}(\chi_B) = S$. This shows that S has no proper almost bi-hyperideals. □

Let S be a semihypergroup. An almost bi-hyperideal P of S is *prime* if for any almost bi-hyperideals A and B of S such that $AB \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$. An almost bi-hyperideal P of S is *semiprime* if for any almost bi-hyperideal A of S such that $AA \subseteq P$ implies that $A \subseteq P$. An almost bi-hyperideal P of S is *strongly prime* if for any almost bi-hyperideals A and B of S such that $AB \cap BA \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$.
Definition 4.10. A fuzzy almost bi-hyperideal h of a semihypergroup S is called a fuzzy prime almost bi-hyperideal of S if for any two fuzzy almost bi-hyperideals f and g of S,
\[f \circ g \subseteq h \text{ implies that } f \subseteq h \text{ or } g \subseteq h. \]

Definition 4.11. A fuzzy almost bi-hyperideal h of a semihypergroup S is called a fuzzy semiprime almost bi-hyperideal of S if for any fuzzy almost bi-hyperideal f of S,
\[f \circ f \subseteq h \text{ implies that } f \subseteq h. \]

Definition 4.12. A fuzzy almost bi-hyperideal h of a semihypergroup S is called a fuzzy strongly prime almost bi-hyperideal of S if for any two fuzzy almost bi-hyperideals f and g of S,
\[(f \circ g) \cap (g \circ f) \subseteq h \text{ implies that } f \subseteq h \text{ or } g \subseteq h. \]

We note that every fuzzy strongly prime almost bi-hyperideal of a semihypergroup is a fuzzy prime almost bi-hyperideal, and every fuzzy prime almost bi-hyperideal of a semihypergroup is a fuzzy semiprime almost bi-hyperideal, but the converse is not true in general.

Finally, we study the relationships between prime (resp., semiprime, strongly prime) almost bi-hyperideals and their fuzzification of semihypergroups.

Theorem 4.13. Let P be a nonempty subset of a semihypergroup S. Then P is a prime almost bi-hyperideal of S if and only if χ_P is a fuzzy prime almost bi-hyperideal of S.

Proof. Assume that P is a prime almost bi-hyperideal of S. By Theorem 4.5, χ_P is a fuzzy almost hyperideal of S. Let f and g be fuzzy almost bi-hyperideals of S such that $f \circ g \subseteq \chi_P$. Suppose that $f \not\subseteq \chi_P$ and $g \not\subseteq \chi_P$. Then, there exist $x, y \in S$ such that $f(x) \neq 0$ and $g(y) \neq 0$, but $\chi_P(x) = 0$ and $\chi_P(y) = 0$. It follows that $x \not\in P$ and $y \not\in P$. Since $f(x) \neq 0$ and $g(y) \neq 0$, we get that $x \in supp(f)$ and $y \in supp(g)$. Thus, $supp(f) \not\subseteq P$ and $supp(g) \not\subseteq P$. By Theorem 4.6, we have that $supp(f)$ and $supp(g)$ are almost bi-hyperideals of S. Since P is prime, $supp(f)supp(g) \not\subseteq P$. Then, there exists $t \in ab$ for some $a \in supp(f)$ and $b \in supp(g)$ such that $t \not\in P$. So, $\chi_P(t) = 0$, and then $(f \circ g)(t) = 0$ because $f \circ g \subseteq \chi_P$. Since $a \in supp(f)$ and $b \in supp(g)$, we have that $f(a) \neq 0$ and $g(b) \neq 0$. Hence, $\min\{f(a), g(b)\} \neq 0$, which implies that $(f \circ g)(t) = \sup_{t \in ab} \{\min\{f(a), g(b)\}\} \neq 0$. This is a contradiction to the fact that $(f \circ g)(t) = 0$. Therefore, $f \subseteq \chi_P$ or $g \subseteq \chi_P$. Consequently, χ_P is a fuzzy prime almost bi-hyperideal of S.
Conversely, assume that χ_P is a fuzzy prime almost bi-hyperideal of S. By Theorem 4.5, P is an almost bi-hyperideal of S. Let A and B be any two almost bi-hyperideals of S such that $AB \subseteq P$. By Lemma 2.1 and Lemma 2.2, we get that $\chi_A \circ \chi_B = \chi_{AB} \subseteq \chi_P$. Again by Theorem 4.5, χ_A and χ_B are fuzzy almost bi-hyperideals of S. By hypothesis, $\chi_A \subseteq \chi_P$ or $\chi_B \subseteq \chi_P$. That is, $A \subseteq P$ or $B \subseteq P$. Hence, P is a prime almost bi-hyperideal of S.

The proof of the following theorem is similar to Theorem 4.13.

Theorem 4.14. Let P be a nonempty subset of a semihypergroup S. Then P is a semiprime almost bi-hyperideal of S if and only if χ_P is a fuzzy semiprime almost bi-hyperideal of S.

Theorem 4.15. Let P be a nonempty subset of a semihypergroup S. Then P is a strongly prime almost bi-hyperideal of S if and only if χ_P is a fuzzy strongly prime almost bi-hyperideal of S.

Proof. Assume that P is a strongly prime almost bi-hyperideal of S. By Theorem 4.5, χ_P is a fuzzy almost bi-hyperideal of S. Let f and g be any two fuzzy almost bi-hyperideals of S such that $(f \circ g) \cap (g \circ f) \subseteq \chi_P$. Suppose that $f \not\subseteq \chi_P$ and $g \not\subseteq \chi_P$. Then, there exist $x, y \in S$ such that $f(x) \neq 0$ and $g(y) \neq 0$, but $\chi_P(x) = 0$ and $\chi_P(y) = 0$. So, $x \in supp(f)$ and $y \in supp(g)$ such that $x \not\in P$ and $y \not\in P$. It follows that $supp(f) \not\subseteq P$ and $supp(g) \not\subseteq P$. By Theorem 4.6 and the hypothesis, we have that $[supp(f)supp(g)] \cap [supp(g)supp(f)] \not\subseteq P$. Hence, there exists $t \in [supp(f)supp(g)] \cap [supp(g)supp(f)]$ such that $t \not\in P$. Also, $\chi_P(t) = 0$, and then $[(f \circ g) \cap (g \circ f)](t) = 0$ because $(f \circ g) \cap (g \circ f) \subseteq \chi_P$. Since $t \in supp(f)supp(g)$ and $t \in supp(g)supp(f)$, we have that $t \in a_1b_1$ and $t \in b_2a_2$ for some $a_1, a_2 \in supp(f)$ and $b_1, b_2 \in supp(g)$. It turns out that

$$(f \circ g)(t) = \sup_{t \in a_1b_1} \{\min\{f(a_1), g(b_1)\}\} \neq 0 \quad \text{and} \quad (g \circ f)(t) = \sup_{t \in b_2a_2} \{\min\{g(b_2), f(a_2)\}\} \neq 0.$$

This implies that $\min\{(f \circ g)(t), (g \circ f)(t)\} \neq 0$, that is, $[(f \circ g) \cap (g \circ f)](t) \neq 0$. This is a contradiction with the fact that $[(f \circ g) \cap (g \circ f)](t) = 0$. Hence, $f \subseteq \chi_P$ or $g \subseteq \chi_P$. Therefore, χ_P is a fuzzy strongly prime almost bi-hyperideal of S.

Conversely, assume that χ_P is a fuzzy strongly prime almost bi-hyperideal of S. Then, P is an almost bi-hyperideal of S by Theorem 4.5. Let A and B be any two almost bi-hyperideals of S such that $(AB) \cap (BA) \subseteq P$. By Theorem 4.5, χ_A and χ_B are fuzzy almost bi-hyperideals of S.
By Lemma 2.2, $\chi_{AB} = \chi_A \circ \chi_B$ and $\chi_{BA} = \chi_B \circ \chi_A$. By Lemma 2.1, we have that $(\chi_A \circ \chi_B) \cap (\chi_B \circ \chi_A) = \chi_{AB} \cap \chi_{BA} = \chi_{(AB)\cap(BA)} \subseteq \chi_P$. By assumption, we get that $\chi_A \subseteq \chi_P$ or $\chi_B \subseteq \chi_P$ implies that $A \subseteq P$ or $B \subseteq P$. Consequently, P is a strongly prime almost bi-hyperideal of S. □

ACKNOWLEDGEMENTS

The authors would like to express mention to the referees for the careful reading of this paper and their valuable comments and suggestions.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] S. Bogdanovic, Semigroups in which some bi-ideal is a group, Rev. Res. Fac. Sci. Univ. Novi Sad. 11 (1981), 261-266.
[2] T. Changphas, B. Davvaz, Properties of hyperideals in ordered semihypergroups, Italian J. Pure Appl. Math. 33 (2014), 425-432.
[3] P. Corsini, Prolegomena of hypergroup theory (2nd), Aviani Editore, Tricesimo, 1993.
[4] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers, Dordrecht, 2003.
[5] B. Davvaz, Some result on congruences on semihypergroups, Bull. Malays. Math. Sci. Soc. 23 (2000), 53-58.
[6] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, Palm Harbor, 2007.
[7] O. Grosek, L. Satko, A new notion in the theory of semigroups, Semigroup Forum. 20 (1980), 233-240.
[8] K. Hila, B. Davvaz, J. Dine, Study on the structure of Φ-semihypergroups, Commun. Algebra. 40 (2012), 2932-2948.
[9] K. Hila, B. Davvaz, K. Naka, On quasi-hyperideals in semihypergroups, Commun. Algebra. 39 (2011), 4183-4194.
[10] F. Marty, Sur une generalization de la notion de group, Proceeding of 8th Congress des Mathematician Scandinave. (1934), 45-49.
[11] W. Nakkhasen, B. Pibaljommee, Hyperideals in EL-semihyperrings, Thai J. Math. Spec. Iss., Ann. Meet. Math. 2017 (2018), 133–143.
[12] B. Pibaljommee, W. Nakkhasen, Connections of (m,n)-bi-quasi hyperideals in semihyperrings, Thai J. Math. Spec. Iss., Ann. Meet. Math. 2019 (2020), 39–48.
[13] M.D. Salvo, D. Freni, G.L. Faro, Fully simple semihypergroups, J. Algebra. 399 (2014), 358-377.

[14] A. Simuen, S. Abdullah, W. Yonthanthum, R. Chinram, Almost bi-Γ-ideals and fuzzy almost bi-Γ-ideals of Γ-semigroups, Eur. J. Pure Appl. Math. 13 (2020), 620-630.

[15] S. Suebsung, T. Kaewnoi, R. Chinram, A note on almost hyperideals in semihypergroups, Int. J. Math. Computer Sci. 15 (2020), 127-133.

[16] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Nonanum, 1994.

[17] K. Wattanatripop, R. Chinram, T. Changphas, Fuzzy almost bi-ideals in semigroups, Int. J. Math. Computer Sci. 13 (2018), 51-58.

[18] L.A. Zadeh, Fuzzy sets, Inform. Control. 8 (1965), 338-353.