Phases of Josephson Junction Ladders

Colin Denniston1 and Chao Tang2

1Department of Physics, Princeton University, Princeton, New Jersey 08544
2NEC Research Institute, 4 Independence Way, Princeton, New Jersey 08540

(November 6, 2018)

Abstract

We study a Josephson junction ladder in a magnetic field in the absence of charging effects via a transfer matrix formalism. The eigenvalues of the transfer matrix are found numerically, giving a determination of the different phases of the ladder. The spatial periodicity of the ground state exhibits a devil’s staircase as a function of the magnetic flux filling factor f. If the transverse Josephson coupling is varied a continuous superconducting-normal transition in the transverse direction is observed, analogous to the breakdown of the KAM trajectories in dynamical systems.

64.70.Rh, 05.20.-y, 74.50.+r
Two-dimensional arrays of Josephson junctions have attracted much recent theoretical and experimental attention [1]. Interesting physics arises as a result of competing vortex-vortex and vortex-lattice interactions. It is also considered to be a convenient experimental realization of the frustrated XY models. In this paper, we discuss the simplest such system, namely the Josephson junction ladder (JJL) [2–4] shown in the inset of Fig. 1.

To construct the system, superconducting elements are placed at the ladder sites. Below the bulk superconducting-normal transition temperature, the state of each element is described by its charge and the phase of the superconducting wave function [5]. In this paper we neglect charging effects, which corresponds to the condition that $4e^2/C \ll J$, with C being the capacitance of the element and J the Josephson coupling. Let $\theta_j(\theta'_j)$ denote the phase on the upper (lower) branch of the ladder at the j'th rung. The Hamiltonian for the array [6] can be written in terms the gauge invariant phase differences, $\gamma_j = \theta_j - \theta_{j-1} - (2\pi/\phi_0) \int_{j-1}^j A_x dx$, $\gamma'_j = \theta'_j - \theta'_{j-1} - (2\pi/\phi_0) \int_{j-1}^j A_x dx$, and $\alpha_j = \theta'_j - \theta_j - (2\pi/\phi_0) \int_{j}^{j+1} A_y dx$:

$$
\mathcal{H} = -\sum_j (J_x \cos \gamma_j + J_x \cos \gamma'_j + J_y \cos \alpha_j),
$$

where A_x and A_y are the components of the magnetic vector potential along and transverse to the ladder, respectively, and ϕ_0 the flux quantum. The sum of the phase differences around a plaquette is constrained by $\gamma_j - \gamma'_j + \alpha_j - \alpha_{j-1} = 2\pi(f - n_j)$, where $n_j = 0, \pm 1, \pm 2, ...$ is the vortex occupancy number and $f = \phi/\phi_0$ with ϕ being the magnetic flux through a plaquette. With this constraint, it is convenient to write Eq. (1) in the form

$$
\mathcal{H} = -J \sum_j \{2 \cos \eta_j \cos[(\alpha_{j-1} - \alpha_j)/2 + \pi(f - n_j)]
+ J_t \cos \alpha_j\},
$$

where $\eta_j = (\gamma_j + \gamma'_j)/2$, $J = J_x$ and $J_t = J_y/J_x$. The Hamiltonian is symmetric under $f \rightarrow f + 1$ with $n_j \rightarrow n_j + 1$, and $f \rightarrow -f$ with $n_j \rightarrow -n_j$, thus it is sufficient to study only the region $0 \leq f \leq 0.5$. Since in one dimension ordered phases occur only at zero temperature, the main interest is in the ground states of the ladder and the low temperature excitations. Note that in Eq. (2) η_j decouples from α_j and n_j, so that all the ground states
have \(\eta_j = 0 \) to minimize \(\mathcal{H} \). The ground states will be among the solutions to the current conservation equations \(\partial \mathcal{H} / \partial \alpha_j = 0 \):

\[
J_t \sin \alpha_j = \sin[(\alpha_{j-1} - \alpha_j)/2 + \pi(f - n_j)] - \sin[(\alpha_j - \alpha_{j+1})/2 + \pi(f - n_{j+1})].
\]

(3)

For any given \(f \) there are a host of solutions to Eq. (3). The solution that minimizes the energy must be selected to obtain the ground state.

If one expands the inter-plaquette coupling term in Eq. (2), \(\cos[(\alpha_{j-1} - \alpha_j)/2 + \pi(f - n_j)] \), about it’s maximum, the discrete sine-Gordon model is obtained. A vortex \((n_j = 1) \) in the JJL corresponds to a kink in the sine-Gordan model. Kardar [2] used this analogy to argue that this system should show similar behavior to the discrete sine-Gordan model which has been studied by several authors [8–10]. This analogy is only valid for \(J_t \) very small so that the inter-plaquette term dominates the behavior of the system making the expansion about its maximum a reasonable assumption. However, much of the interesting behavior of the discrete sine-Gordan model occurs in regions of large \(J_t \) \((J_t \sim 1) \). Furthermore, much of the work by Aubry [8] on the sine-Gordan model relies on the convexity of the coupling potential which we do not have in the JJL.

In this Letter we formulate the problem in terms of a transfer matrix obtained from the full partition function of the ladder. The eigenvalues and eigenfunctions of the transfer matrix are found numerically to determine the phases of the ladder as functions of \(f \) and \(J_t \). We find that the spatial periodicity of the ground states goes through a devil’s staircase as a function of \(f \). We then study the properties of various ground states and the low temperature excitations. As \(J_t \) is varied, all incommensurate ground states undergo a superconducting-normal transition at certain \(J_t \) which depends on \(f \). One such transition will be analyzed. Finally we discuss the critical current.

The partition function for the ladder, with periodic boundary conditions and \(K = J/k_BT \), is
\[Z = \prod_i^N \int_{-\pi}^{\pi} d\alpha_i d\eta_i \exp \{ K(2 \cos \eta_i \cos[(\alpha_{i-1} - \alpha_i)/2 + \pi(f - n_i)] + J_t \cos \alpha_i) \} \]

(4)

The \(\eta_i \) can be integrated out resulting in a simple transfer matrix formalism for the partition function involving only the transverse phase differences:

\[Z = \prod_i^N \int_{-\pi}^{\pi} d\alpha_i P(\alpha_{i-1}, \alpha_i) = Tr \hat{P}^N. \]

The transfer matrix elements \(P(\alpha, \alpha') \) are

\[P(\alpha, \alpha') = 4\pi \exp[KJ_t(\cos \alpha + \cos \alpha')/2] I_0(2K \cos[(\alpha - \alpha')/2 + \pi f]), \]

(5)

where \(I_0 \) is the zeroth order modified Bessel function. Note that the elements of \(\hat{P} \) are real and positive, so that its largest eigenvalue \(\lambda_0 \) is real, positive and nondegenerate. However, since \(\hat{P} \) is not symmetric (except for \(f = 0 \) and \(f = 1/2 \)) other eigenvalues can form complex conjugate pairs. As we will see from the correlation function, these complex eigenvalues determine the spatial periodicity of the ground states.

The two point correlation function of \(\alpha_j \)'s is

\[\langle e^{i(\alpha_0 - \alpha_l)} \rangle = \lim_{N \to \infty} \left(\frac{\prod_i^N \int_{-\pi}^{\pi} d\alpha_i P(\alpha_{i-1}, \alpha_i)}{Z} \right) e^{i(\alpha_0 - \alpha_l)} \]

\[= \sum_n c_n \left(\frac{\lambda_n}{\lambda_0} \right)^l, \]

(6)

where we have made use of the completeness of the left and right eigenfunctions. (Note that since \(\hat{P} \) is not symmetric both right \(\psi_n^R \) and left \(\psi_n^L \) eigenfunctions are need for the evaluation of correlation functions.) The \(\lambda_n \) in Eq. (6) are the eigenvalues (\(|\lambda_n| \geq |\lambda_{n+1}| \) and \(n = 0, 1, 2, \ldots \)), and the constants \(c_n = \int_{-\pi}^{\pi} d\alpha' \psi_n^L(\alpha')e^{i\alpha' \psi_n^R(\alpha')} \int_{-\pi}^{\pi} d\alpha \psi_n^L(\alpha)e^{-i\alpha \psi_n^R(\alpha)} \).

In the case where \(\lambda_1 \) is real and \(|\lambda_1| > |\lambda_2| \), Eq. (6) simplifies for large \(l \) to

\[\langle e^{i(\alpha_0 - \alpha_l)} \rangle = c_0 + c_1 \left(\frac{\lambda_1}{\lambda_0} \right)^l, \quad |\lambda_1| > |\lambda_2|. \]

In the case where \(\lambda_1 = \lambda_2^* = |\lambda_1|e^{i2\pi \xi} \), Eq. (6) for large \(l \) is

\[\langle e^{i(\alpha_0 - \alpha_l)} \rangle = c_0 + \left(c_1 e^{i2\pi \xi} + c_2 e^{-i2\pi \xi} \right) \left| \frac{\lambda_1}{\lambda_0} \right|^l, \quad \lambda_1 = \lambda_2^*. \]

Note that while the correlation length is given by \(\xi = [\ln |\lambda_0/\lambda_1|]^{-1} \) the quantity \(\Xi = Arg(\lambda_1)/2\pi \) determines the spatial periodicity of the state. Calculating \(\lambda_n \) numerically \[7\],...
we found that for f smaller than a critical value f_{c1} which depends on J_t, both λ_1 and λ_2 are real. These two eigenvalues become degenerate at f_{c1}, and then bifurcate into a complex conjugate pair. Ξ as a function of f is shown in Fig. [1] for several different values of J_t. The shape of the curves in Fig. [1] is generally referred to as a devil’s staircase. The steps of the staircase are at $\Xi = p/q$, where p and q are integers. These are commensurate states with p vortices in each unit cell which consists of q plaquettes. For small J_t, the flat steps are connected by smooth differentiable curves; most states on the $\Xi - f$ curve are incommensurate states. As J_t increases, more and more steps appear and grow at the expense of the smooth regions. At $J_t = J_t^c \approx 0.7$ the staircase becomes complete, i.e. there is a step for every rational Ξ and the set of f which correspond to irrational Ξ has zero measure. For $J_t > J_t^c$, the staircase becomes over-complete, i.e. steps of lower order rationals grow and steps of higher order rationals disappear [11]. Another important characterization of a state is the phase density $\rho(\alpha)$: $\rho(\alpha)d\alpha$ is the average fraction of all sites in the ladder with $\alpha < \alpha_i < \alpha + d\alpha$. If $\rho(\alpha)$ is a smooth function and $\rho(\alpha) > 0$ for $\alpha \in (-\pi, \pi]$ at $T = 0$, the ground state energy is invariant under an adiabatic change of α’s. Consequently, there is no phase coherence between upper and lower branches of the ladder and hence no superconductivity in the transverse direction. In this case, we say that the α’s are unpinned. If there exist finite intervals of α on which $\rho(\alpha) = 0$, there will be phase coherence between the upper and lower branches and we say that the α’s are pinned. In term of the transfer matrix, the phase density is the product of the left and right eigenfunctions of λ_0 [12],
\[\rho(\alpha) = \psi^L_0(\alpha)\psi^R_0(\alpha). \]

We first discuss the case where $f < f_{c1}$. These are the “Meissner” states in the sense that there are no vortices ($n_i = 0$) in the ladder. The ground state is simply $\alpha_i = 0$, $\gamma_j = \pi f$ and $\gamma'_j = -\pi f$, so that there is a global screening current $\pm J_x \sin \pi f$ in the upper and lower branches of the ladder [3]. The phase density $\rho(\alpha) = \delta(\alpha)$. Fig. [1](c) shows that at $J_t = 1$, the Meissner state extends all the way from $f = 0$ to $f = f_{c1} \approx 0.28$. The properties of the Meissner state can be studied by expanding Eq. (4) around $\alpha_i = 0$:
\[\mathcal{H}_M = (J/4) \sum_j [\cos(\pi f) (\alpha_{j-1} - \alpha_j)^2 + 2J_t \alpha_j^2]. \] The current conservation Eq. (3) becomes

\[\alpha_{j+1} = 2 \left(1 + \frac{J_t}{\cos \pi f} \right) \alpha_j - \alpha_{j-1}. \] (7)

Besides the ground state \(\alpha_j = 0 \), there are other two linearly independent solutions \(\alpha_j = e^{\pm j/\xi_M} \) of Eq. (7) which describe collective fluctuations about the ground state, where

\[\frac{1}{\xi_M} = \ln \left[1 + \frac{J_t}{\cos \pi f} + \sqrt{\frac{2J_t}{\cos \pi f} + \left(\frac{J_t}{\cos \pi f} \right)^2} \right]. \] (8)

\(\xi_M \) is the low temperature correlation length for the Meissner state. (Note that \(\xi_M < 1 \) for \(J_t \sim 1 \) making a continuum approximation invalid.) As \(f \) increases, the Meissner state becomes unstable to the formation of vortices. A vortex is constructed by patching the two solutions of Eq. (7) together using a matching condition. The energy \(\epsilon_v \) of a single vortex is found to be

\[\epsilon_v \approx \left[2 + \frac{\pi^2}{8} \tanh(1/2\xi_M) \right] \cos \pi f - (\pi + 1) \sin \pi f + 2J_t, \] (9)

for \(J_t \) close to one. The zero of \(\epsilon_v \) determines \(f_{c1} \) which is in good agreement with the numerical result from the transfer matrix. For \(f > f_{c1} \), \(\epsilon_v \) is negative and vortices are spontaneously created. When vortices are far apart their interaction is caused only by the exponentially small overlap. The corresponding repulsion energy is of the order \(J \exp(-l/\xi_M) \), where \(l \) is the distance between vortices. This leads to a free energy per plaquette of

\[F = \epsilon_v/l + J \exp(-l/\xi_M)/l \] [11]. Minimizing this free energy as a function of \(l \) gives the vortex density for \(f > f_{c1} \): \(\langle n_j \rangle = l^{-1} = [\xi_M \ln |f_{c1} - f|]^{-1} \) where a linear approximation is used for \(f \) close to \(f_{c1} \).

We now discuss the commensurate vortex states, taking the one with \(\Xi = 1/2 \) as an example. This state has many similarities to the Meissner state but some important differences. The ground state is

\[\alpha_0 = \arctan \left(\frac{2}{J_t} \sin(\pi f) \right), \quad \alpha_1 = -\alpha_0, \quad \alpha_{i+2} = \alpha_i; \]
\[n_0 = 0, \quad n_1 = 1, \quad n_{i+2} = n_i, \] (10)
so that there is a global screening current in the upper and lower branches of the ladder of \(\pm 2\pi J (f - 1/2)/\sqrt{4 + J_t^2} \). The existence of the global screening, which is absent in an infinite 2D array, is the key reason for the existence of the steps at \(\Xi = p/q \). It is easy to see that the symmetry of this vortex state is that of the (antiferromagnetic) Ising model. The ground state is two-fold degenerate. The low temperature excitations are domain boundaries between the two degenerate ground states. The energy of the domain boundary \(J \epsilon_b \) can be estimated using similar methods to those used to derive Eq. (9) for the Meissner state.

We found that \(\epsilon_b = \epsilon_b^0 - (\pi^2/\sqrt{4 + J_t^2}) |f - 1/2| \), where \(\epsilon_b^0 \) depends only on \(J_t \). Thus the correlation length diverges with temperature as \(\xi \sim \exp(2J \epsilon_b/k_B T) \). The transition from the \(\Xi = 1/2 \) state to nearby vortex states happens when \(f \) is such that \(\epsilon_b = 0 \); it is similar to the transition from the Meissner state to its nearby vortex states. All other steps \(\Xi = p/q \) can be analyzed similarly. For comparison, we have evaluated \(\xi \) for various values of \(f \) and \(T \) from the transfer matrix and found that \(\xi \) fits \(\xi \sim \exp(2J \epsilon_b/k_B T) \) (typically over several decades) at low temperature. The value of \(\epsilon_b \) as a function of \(f \) is shown in Fig. 2 for \(J_t = 1 \). The agreement with the above estimate for the \(\Xi = 1/2 \) step is excellent. The tips of the peaks in Fig. 2 for states with \(\Xi = 1/q \) fit the relationship \(\tau \sim \exp(-q/l_0) \) with \(l_0 \approx 0.77 \), which is in good agreement with \(\xi_M(f = 0) \approx 0.76 \) of Eq. (8).

We now discuss the superconducting-normal transition in the transverse direction. For \(J_t = 0 \), the ground state has \(\gamma_i = \gamma'_i = 0 \) and

\[
\alpha_j = 2\pi f j + \alpha_0 - 2\pi \sum_{i=0}^{\gamma_i} n_i.
\]

(11)

The average vortex density \(\langle n_j \rangle \) is \(f \); there is no screening of the magnetic field. \(\alpha_0 \) in Eq. (11) is arbitrary; the \(\alpha \)'s are unpinned for all \(f \). The system is simply two uncoupled 1D XY chains, so that the correlation length \(\xi = 1/k_B T \). The system is superconducting at zero temperature along the ladder, but not in the transverse direction. As \(J_t \) rises above zero we observe a distinct difference between the system at rational and irrational values of \(f \). For \(f \) rational, the \(\alpha \)'s become pinned for \(J_t > 0 \) (\(\rho(\alpha) \) is a finite sum of delta functions) and the ladder is superconducting in both the longitudinal and transverse directions at zero
temperature. The behavior for irrational \(f \) is illustrated in the following for the state with \(\Xi = a_g \), where \(a_g \approx 0.381966 \cdots \) is one minus the inverse of the golden mean. Fig. 3 displays \(\rho(\alpha) \) for several different \(J_t \) at \(\Xi = a_g \). We see that the zero-frequency phonon mode (the smoothness of \(\rho(\alpha) \)) persists for small \(J_t > 0 \) until a critical value \(J_t^c(f) \approx 0.7 \) where the \(\alpha \)'s become pinned and the ladder becomes superconducting in the transverse direction. In the sine-Gordon model, the pinning transition of this state coincides with the devil’s staircase of Fig. 1 becoming complete \[8,9\] (If the \(\alpha_j \)'s are pinned in this state, then all incommensurate states should be pinned). The pinning transition of the incommensurate states can be also studied using Eq. (3) which can be viewed as a two-dimensional map. The disappearance of the zero-frequency phonon mode for irrational \(\Xi \)'s at finite small \(J_t^c(f) \) is equivalent to the breakdown of the Kolmogorov-Arnold-Moser (KAM) trajectories of the map \[13\].

We now turn to the subject of critical currents along the ladder. One can obtain an estimate for the critical current by performing a perturbation expansion around the ground state (i.e. \(\{n_j\} \) remain fixed) and imposing the current constraint of \(\sin \gamma_j + \sin \gamma'_j = I \). Let \(\delta \gamma_j, \delta \gamma'_j \) and \(\delta \alpha_j \) be the change of \(\gamma_j, \gamma'_j \) and \(\alpha_j \) in the current carrying state. One finds that stability of the ground state requires that \(\delta \alpha_j = 0 \), and consequently \(\delta \gamma_j = \delta \gamma'_j = I/2 \cos \gamma_j \). The critical current can be estimated by the requirement that the \(\gamma_j \) do not pass through \(\pi/2 \), which gives \(I_c = 2(\pi/2 - \gamma_{\text{max}}) \cos \gamma_{\text{max}} \), where \(\gamma_{\text{max}} = \text{max}_j(\gamma_j) \). In all ground states we examined, commensurate and incommensurate, we found that \(\gamma_{\text{max}} < \pi/2 \), implying a finite critical current for all \(f \).

In conclusion, we have studied the equilibrium behavior of a Josephson junction ladder in a magnetic field in the absence of charging effects. The screening current plays an important role in this system. For \(f < f_{c1} \), there is a “Meissner state” with no vortices. For \(f > f_{c1} \), the spatial periodicity of the ground state climbs a devil’s staircase as a function of \(f \). All incommensurate states undergo a superconducting-normal transition in the transverse direction as \(J_t \) is increased, so that for \(J_t > J_t^c \approx 0.7 \) the ladder is superconducting in both the longitudinal and transverse directions for all \(f \). The critical current along the ladder is found to be finite for all \(f \). Finally, although in one dimension there is no finite
temperature phase transition and no true long range order, our study showed that the correlation lengths in vortex states are extremely long for reasonably low temperatures. Thus it would be interesting to test these results experimentally. More extensive details of this system, including current carrying states will be presented elsewhere along with a similar analysis of the sine-Gordon model [7].

We thank Sue Coppersmith, Xinsheng Ling, and Qian Niu for many valuable discussions.
REFERENCES

[1] For a general review, see Physica B 152, 1-302 (1988).

[2] (a) M. Kardar, Phys. Rev. B 30, 6368 (1984); (b) M. Kardar, Phys. Rev. B 33, 3125 (1986).

[3] E. Granato, Phys. Rev. B 42, 4797 (1990).

[4] H. Eikmans, J. E. van Himbergen, H. S. J. van der Zant, K. de Boer, and J. E. Mooij, Physica B 165&166, 1569 (1990).

[5] P. W. Anderson, in Lectures on the Many Body Problem, edited by E.R. Caianiello (Academic Press, New York, 1964), Vol. 2, pp. 113.

[6] M. Tinkham, Introduction to Superconductivity, (McGraw-Hill, New York, 1975).

[7] C. Denniston and C. Tang, (to be published).

[8] (a) S. Aubry and G. André, in Group Theoretical Methods in Physics, edited by Horowitz and Ne’eman, Ann. Israel Phys. Soc. 3, 133 (1980); (b) S. Aubry, Ferroelectrics 24, 53 (1980); (c) S. Aubry, in The Riemann Problem, Complete Integrability and Arithmetic Applications, Vol. 925 of Lecture Notes in Mathematics (Springer-Verlag, 1982), pp. 221-245.

[9] S. N. Coppersmith and D. S. Fisher, Phys. Rev. B 28, 2566 (1983).

[10] V.L. Pokrovsky, A.L. Talapov and P. Bak, in Solitons, edited by Trullinger, Zakharov, and Pokrovsky, (Elsevier Science, 1986), pp. 71-127.

[11] It can be shown that in the limit of $J_t \to \infty$, only integer steps survive, so that $\Xi = 0$ for $f < 1/2$ and $\Xi = 1$ for $1/2 < f < 1$. We are grateful to S. Coppersmith for pointing this out to us.

[12] R. A. Guyer and M.D. Miller, Phys. Rev. Lett. 42, 718 (1979).
[13] For scaling analysis of the breakdown of KAM trajectories in the “standard map”, see L. P. Kadanoff, Phys. Rev. Lett. 47, 1641 (1981) and S. J. Shenker and L. P. Kadanoff, J. Stat. Phys. 27, 631 (1982).
FIGURES

FIG. 1. Periodicity, $\Xi = \text{Arg}(\lambda_1)/2\pi$ versus f for $k_B T/J = 0.005$ and, (a) $J_t = 0.3$, (b) $J_t = 0.7$, (c) $J_t = 1.0$. Inset: The Josephson junction ladder is formed by the arrangement of the superconducting islands. The field \mathbf{H} is out of the page and the arrows indicate the direction of the gauge invariant phase differences.

FIG. 2. Effective Ising coupling as a function of f for $J_t = 1$. The inset shows the statistical error for $2\epsilon_h$ in the fitting.

FIG. 3. $\rho(\alpha) = \psi^L_0(\alpha)\psi^R_0(\alpha)$ versus α at $k_B T/J = 0.004$ and $\Xi = 0.381966011\cdots$, and for (a) $J_t = 0.4$; (b) $J_t = 0.65$; (c) $J_t = 0.7$; and (d) $J_t = 0.9$. Note the smaller scale for the upper plots.
(a) $J_t = 0.4$

(b) $J_t = 0.65$

(c) $J_t = 0.7$

(d) $J_t = 0.9$