Defining severe obstructive lung disease in the biologic era: an endotype-based approach

Title character count (incl. spaces): 88/90

Richard J. Martin¹, Elisabeth H. Bel², Ian D. Pavord³, David Price⁴ and Helen K. Reddel⁵

Affiliations: ¹National Jewish Health and the University of Colorado, Denver, CO, USA. ²Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands. ³Respiratory Medicine Unit and NIHR Oxford Respiratory BRC, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom. ⁴Observational and Pragmatic Research Institute, Singapore and Centre of Academic Primary Care, University of Aberdeen, Aberdeen, United Kingdom. ⁵Woolcock Institute of Medical Research, University of Sydney, Sydney, Australia.

Correspondence: Professor Richard Martin, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA. Tel: 001 303-398-1545. E-mail: MartinR@NJHealth.org

Target journal: European Respiratory Journal

Based on ERJ author guidelines for a review manuscript:

Word count: 6210/5000 (including in-text citations in Eur Respir J format)

Tables/figures: 3/5 (+3 supplementary)

References: 153/200
Take-home message (252/256 characters)

A new definition of severe obstructive lung disease is needed for the biologic era. Investigators, companies and regulators must collaborate in a phenotype- and endotype-based approach to improve access to biologics for patients most likely to benefit.

ABSTRACT (236/250 WORDS)

Severe obstructive lung disease, which encompasses patients with asthma, chronic obstructive pulmonary disease (COPD) or features of both, remains a considerable global health problem and burden on healthcare resources. However, the clinical definitions of severe asthma and COPD do not reflect the heterogeneity within these diagnoses or the potential for overlap between them, which may lead to inappropriate treatment decisions. Furthermore, most studies exclude patients with diagnoses of both asthma and COPD. Clinical definitions can influence clinical trial design and are both influenced by, and influence, regulatory indications and treatment recommendations. Therefore, to ensure its relevance in the era of targeted biologic therapies, the definition of severe obstructive lung disease must be updated so that it includes all patients who could benefit from novel treatments and for whom associated costs are justified. Here, we review evolving clinical definitions of severe obstructive lung disease and evaluate how these have influenced trial design by summarising eligibility criteria and primary outcomes of phase III randomised controlled trials of biologic therapies. Based on our findings, we discuss the advantages of a phenotype- and endotype-based approach to select appropriate populations for future trials that may influence regulatory approvals and clinical practice, allowing targeted biologic therapies to benefit a greater proportion and range of patients. This calls for co-ordinated efforts between investigators, pharmaceutical developers and regulators to ensure biologic therapies reach their full potential in the management of severe obstructive lung disease.
Introduction

Although asthma and chronic obstructive pulmonary disease (COPD) have historically been treated as overlapping syndromes [1, 2], the emergence of apparent mechanistic differences meant that for many years, they were viewed as distinct diagnoses, with different approaches to assessment and management [3, 4]. However, the identification of multiple phenotypes of each condition (including a subset of patients with features of both, who are often excluded from studies [5, 6]), suggests that these diagnoses may more appropriately be viewed as a spectrum of conditions resulting from a range of pathobiological mechanisms [7]. As the heterogeneity of these conditions is especially apparent at the severe end of the spectrum [8-10], a personalised healthcare approach based on analysis of phenotypes and underlying molecular endotypes could be particularly beneficial in patients with severe asthma and/or COPD. We use the term ‘severe obstructive lung disease’ throughout this article to refer to patients with severe disease across both asthma and COPD diagnostic labels.

Despite continuous advancements in the diagnosis and treatment of obstructive lung disease, severe or uncontrolled asthma and COPD remain a considerable global health problem [11, 12]. In up to 45% of patients with asthma, symptoms and/or exacerbations remain uncontrolled [13], and severe refractory asthma (persistent symptoms and exacerbations despite adherence to high-intensity treatment [10, 14]) accounts for around 4% of the total global asthma population of 339 million people [12, 15]. Likewise, approximately half of patients with COPD receiving ‘triple therapy’ (long-acting β2-agonist [LABA], long-acting muscarinic antagonist [LAMA], and inhaled corticosteroid [ICS]) remain symptomatic [16, 17] and a third continue to experience exacerbations [17]. Patients with uncontrolled severe obstructive lung disease have a substantial impact on healthcare resources [18-20]. Therefore, identifying these patients and ensuring that they receive appropriate treatment to achieve and maintain control is an important goal, particularly considering the likely high cost of novel targeted biologic therapies [21]. Several such therapies (omalizumab, mepolizumab,
reslizumab, benralizumab and dupilumab) have received approval since the early 2000s for the
treatment of specific subgroups of patients with severe asthma [22-30], with more in the pipeline
(e.g. tezepelumab) [31, 32], and several studies have evaluated their utility in COPD [33, 34]. Due to
recent clinical experience and a growing body of trial data for biologic therapies, the scientific
community is now in a position to reassess how severe obstructive lung disease is defined in the
biologic era.

Clinical definitions and regulatory perspectives influence early-phase clinical trial design, which in
turn determines later-phase trial outcomes and subsequent regulatory indications, thus affecting
guideline recommendations. However, it is known that the highly restrictive eligibility criteria of
randomised controlled trials (RCTs) in obstructive lung disease [35, 36], including trials of biologic
therapies in severe disease [37], limit their generalisability to patients in real-world clinical practice.
In this article, we aim to evaluate current definitions of severe obstructive lung disease used in
clinical practice and by regulators, and those used in clinical trials of biologic therapies, in order to
inform the design of future studies and the approach to regulatory approval. We review evolving
definitions of severe obstructive lung disease in relation to anti-inflammatory therapy and how these
have influenced the populations included in randomised controlled trials (RCTs) of biologic
therapies. Based on this, we provide recommendations for future research, the regulatory approach
to obstructive lung disease and the use of biologics in clinical practice. We discuss an approach
based on phenotypes and molecularly defined endotypes, rather than existing, non-specific
diagnostic labels, to select appropriate populations for future RCTs that may influence drug
approvals and clinical practice.

Current management strategies for severe obstructive lung disease

Current management strategies for asthma and COPD commonly follow a ‘one-size-fits-all’ approach
[21], mandated by existing treatment algorithms that often recommend stepwise escalation of
therapy until adequate control is achieved [38-41]. This is inconsistent with the precision medicine approach that is increasingly being called for in respiratory medicine [5, 7, 21]. Of particular concern is the widespread use of high-dose ICS and/or oral corticosteroids (OCS) as long-term anti-inflammatory maintenance treatment in patients with persistent or refractory disease [42-44] (some of whom may also be receiving topical corticosteroid treatment for comorbidities such as nasal polyposis or atopic dermatitis [45, 46]). Irreversible dose- and duration-dependent adverse effects of OCS are well documented (mostly for maintenance OCS, but with increasing evidence for effects of intermittent OCS treatment) [43, 47-50], and high-dose ICS has been associated with systemic adverse effects [51-53], including increased pneumonia risk (particularly in patients with COPD) [54, 55] and clinically important local adverse effects [56]. Though ICS-induced effects may be less serious than OCS-related morbidity, they should be considered alongside the potential benefits of ICS treatment. The cost of future OCS-induced complications and/or treatment to prevent adverse effects [47, 48, 50] may offset the low purchase price for payers over the long term. Recently approved and emerging biologic therapies provide effective control [31] and reduce OCS dependence in severe or uncontrolled asthma [57-59]. Evidence supports the cost-effectiveness of biologic therapies (primarily due to improvements in symptom-related quality of life, and reductions in exacerbation-related hospitalisations and asthma-related mortality risk) if carefully targeted or with substantial discounts [60]. However, the current high purchase prices of biologics (USD 10,000–30,000 per patient per year [61, 62]) may be a barrier to widespread use.

Thus, to minimise avoidable and potentially costly adverse effects of long-term corticosteroid treatment, and to identify patients who could benefit most from alternative treatments, it is important to accurately define and diagnose severe obstructive lung disease and determine which patients are likely to respond to biologic therapies.
Clinical definitions of severe obstructive lung disease

To summarise current clinical definitions of severe obstructive lung disease, we reviewed recent consensus and guidelines publications on severe asthma [10, 14, 21, 63, 64], severe COPD [65] and asthma–COPD overlap [14, 66-70] (summarised in table 1).

Clinical definitions of severe asthma

Of five recent proposed clinical definitions of severe asthma [10, 14, 21, 63, 64] (table 1), all are partly based on the level of treatment, and most specify an ICS component and at least one additional controller (LABA, OCS or other). The World Health Organization (2010) and Innovative Medicine Initiative (IMI; 2011) definitions required asthma to be uncontrolled (with various thresholds for symptoms and exacerbations) on high-level treatment [63, 64]. The IMI definition additionally included patients dependent on OCS treatment for adequate asthma control, due to the risk of serious adverse effects with OCS treatment [64]. However, in recognition of the potential adverse effects of high-dose ICS, the definition in the more recent European Respiratory Society/American Thoracic Society (ERS/ATS) guidelines for severe asthma (2014) [10] and Global Initiative for Asthma (GINA; 2018) [14] also included dependence on high-dose ICS (for adults, equivalent to budesonide ≥1600 µg·day per ERS/ATS definition and budesonide >800 µg·day per GINA definition [supplementary table S1]) and/or OCS for asthma control. Furthermore, GINA includes risk factors for medication side effects in its recommendation for assessment of control [14].

The ERS/ATS guidelines for severe asthma recommended biologic therapy (then limited to omalizumab) for patients with severe allergic asthma [10]. These guidelines were subsequently adopted by GINA, which also recommends ICS dose escalation before considering biologic therapy [14]. Evidence shows limited or no incremental benefit at a group level for high-dose versus lower-dose ICS for improving airflow limitation, symptoms and health status in patients with asthma [71,
72], despite a significant dose-response for the frequency of oropharyngeal adverse effects [71]. This suggests that the current recommendation for escalating ICS dose in patients with severe asthma may only be effective in certain subgroups, such as those dependent on OCS [71]. The ERS/ATS guidelines highlight that there is individual variation in the dose-therapeutic efficacy of ICS [10], i.e. that limited benefit at a group level does not mean individual patients will not benefit from treatment; nevertheless, because of the risk of adverse effects, guidelines recommend only a short-term trial of high-dose ICS [14]. Otherwise, the clinical impact of adverse effects from high-dose ICS treatment [51, 52, 56] (though less severe than that of OCS-related morbidity [51]) may outweigh the limited benefit versus low-dose ICS, particularly in patients maintained on high-dose ICS in the long term.

The Lancet Commission (2017) addressed the concern about ICS-related adverse effects by lowering the ICS threshold in its definition of severe asthma to ‘moderate dose’ [21]. It stipulates that patients must have impaired lung function, variable airflow obstruction or airway eosinophilia while receiving moderate-dose ICS (with or without LABA or additional controllers, depending on the specific criterion) to be classified as having severe asthma [21]. It also includes a criterion that places greater emphasis on exacerbation risk, the rationale being that exacerbations are highly responsive to better control of lower airway inflammation with either ICS [73, 74] or targeted biologics [33]; thus, identifying patients at risk of exacerbations who do not respond to ICS but may respond to targeted biologics should be a priority [21]. Predictors of exacerbation risk, such as blood eosinophil count (in isolation or combination with other characteristics) [75-77], are already used to identify patients who could benefit from biologic therapies [14, 65]. Recent evidence for alternative clinical characteristics or biomarkers that may predict treatment response independently of eosinophil count, such as nasal polyposis [78] and fractional exhaled nitric oxide (FeNO) [79, 80], highlight a need for further investigation [77].
Clinical definitions of severe COPD

Unlike severe asthma, clinical gradations of COPD are not based on the required level of treatment.

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2019 report no longer defines COPD severity *per se*, but instead defines the severity of airflow limitation, requiring a post-bronchodilator forced expiratory volume in 1 s (FEV₁)/forced vital capacity of <0.7 as part of the definition of COPD itself, and defining airflow limitation as severe or very severe if FEV₁ is <50% predicted [65] (table 1). Although airflow limitation thresholds often determine trial eligibility, they are not intended to guide therapy. Instead, GOLD recommends basing treatment on symptom burden and exacerbation history, with combination therapy only recommended in patients meeting specific thresholds for both or with an inadequate response to initial monotherapy [65]. Evidence for predictors of frequent COPD exacerbations, including eosinophilia [81], suggests that such predictors could be used to guide treatment decisions. This is reflected in the most recent GOLD report, which recommends using blood eosinophil count to guide ICS therapy in patients with frequent exacerbations [65]. However, other characteristics that may affect prognosis and management strategies for patients with COPD in clinical practice, such as computed tomography scan findings [82, 83], are not incorporated into the GOLD assessment. These characteristics may represent particular phenotypes or comorbidities of COPD that are not necessarily correlated with lung function [83], but that nevertheless should be considered alongside other assessments as part of a more personalised treatment approach. Therefore, an improved approach to identifying patients with COPD who could benefit from modified or additional treatments, regardless of spirometric severity staging, is needed. In recent RCTs, severe COPD (in terms of eligibility for biologic add-on therapy) has been defined as COPD with two or more exacerbations in the past year despite maximal inhaled therapy (i.e. triple therapy with ICS, LABA and LAMA) [33], although at present this definition is not widely used in clinical practice.
Clinical definitions of severe asthma–COPD overlap

Asthma–COPD overlap refers to the heterogeneous group of patients who have features of both asthma and COPD [14]. It does not represent a single disease [14]. To date, such patients have been excluded from pharmacotherapy RCTs, and most mechanistic studies, so this population is poorly characterised. Several groups have attempted to define asthma–COPD overlap [14, 66-70] (table 1), each proposing various algorithms incorporating the evolving clinical definitions of asthma and COPD, as well as factors that may influence treatment strategies in these patients (such as allergic status and eosinophilia). However, many of these fail to recognise the heterogeneity within this group of patients. None of the definitions propose a means of assessing severity in patients with features of both asthma and COPD. This lack of clarity highlights the need to identify underlying mechanisms associated with differential long-term clinical outcomes across the whole spectrum of obstructive lung disease. Such investigations will help to understand which features of different phenotypic groups should be considered to represent ‘severe’ disease. This approach may also identify biomarkers that can guide targeted therapy in a manner that is not restricted by the conflicting treatment recommendations for asthma and COPD.

Current treatment guidelines for asthma and COPD, based on studies that excluded patients with features of both, have opposite recommendations regarding the use of LABA monotherapy and ICS [6, 14, 65]. Consequently, and in the absence of evidence about underlying mechanisms, treatment recommendations for patients with features of both asthma and COPD are interim and pragmatic, based primarily on safety considerations [14]: patients with COPD who also have a diagnosis of asthma are more likely to die or be hospitalised if treated with LABA only rather than ICS/LABA [84, 85]. Guidelines do not attempt to classify asthma–COPD overlap severity; however, similar concepts for severe asthma and severe COPD are used, in terms of persistent symptoms and/or exacerbations despite maximal inhaled therapy.
The increasing recognition of asthma–COPD overlap highlights an additional consideration around
the relevance of conventional criteria for the diagnosis of asthma (variable respiratory symptoms
with variable airflow limitation and reversibility [14]) and COPD (respiratory symptoms with a history
of risk factors and persistent airflow limitation [65]). Studies have identified populations of patients
who do not meet all of these criteria and thus have non-typical phenotypes, such as asthma with
non-reversible airflow limitation [9, 86, 87] and COPD with reversible airflow limitation [88].
Therefore, in defining severe asthma and COPD it is also important to consider the criteria used to
diagnose each condition, and whether a more endotype-focused approach is appropriate.

Clinical trials of biologic therapies in severe obstructive lung disease

To evaluate definitions of severe obstructive lung disease used in RCTs, we performed a PubMed
search to identify publications on RCTs of biologic therapies in asthma or COPD that included the
terms ‘severe’, ‘moderate-to-severe’, ‘uncontrolled’ or ‘poorly/inadequately controlled’ in the title
and/or abstract (articles in English, published through 22 May 2019; supplementary figure S1).
Results were manually screened to identify primary publications from phase III RCTs in patients with
a primary diagnosis of asthma and/or COPD.

The search returned 176 results, from which 26 relevant publications were identified, reporting trials
of omalizumab [89-97], mepolizumab [33, 57, 98-100], reslizumab [101-103], benralizumab [34, 58,
104, 105], lebrikizumab [106], dupilumab [59, 107] and tralokinumab [108, 109]. Selected eligibility
criteria and primary end-points for each trial are summarised in table 2. As only two publications
reporting phase III COPD trials were identified, published phase II RCTs of biologic therapies in COPD
are also discussed (summarised in supplementary table S2) [110-113].
Design of existing clinical trials

Target population and disease characteristics

In 24 of 26 publications identified, the trials had a target population of patients with severe and/or uncontrolled asthma [57-59, 89-109]. The remaining publications had target populations of patients with eosinophilic COPD (despite triple therapy) [33] or moderate-to-very severe COPD with a history of exacerbations [34]; the latter reporting two trials that failed to meet their primary end-points of exacerbation reduction [34]. Four publications reporting phase II trials of patients with moderate to severe or very severe COPD were identified [110-113].

Most of the asthma trials required patients to have ≥12% bronchodilator reversibility, one of several conventional asthma diagnostic criteria commonly used when the patient first presents [14]. Conversely, all of the phase II and phase III COPD trials required persistent, moderate-to-severe airflow limitation as per past COPD severity staging criteria [65]. Age was also consistently used to select patients with COPD, with all of the phase II and phase III COPD trials excluding patients <40 years of age (<45 years in one trial) [33, 34, 110-112].

All of the asthma trials had at least one criterion to select patients with uncontrolled disease, except SIRIUS, LIBERTY ASTHMA VENTURE and TROPOS, which all required maintenance OCS use at entry and incorporated asthma control into the OCS dose-reduction criteria [57, 59, 109]. Criteria for asthma control in RCTs have evolved, with earlier trials enrolling patients based on symptom control [89, 90, 93], and an increasing focus more recently on the number and severity of exacerbations as inclusion criteria [33, 57, 58, 91, 92, 94-105, 108, 114] (except LAVOLTA I/II [106]). This was also the case in the phase II and phase III COPD trials, with all except the oldest study [110] having an inclusion criterion for exacerbations. Requiring a history of exacerbations as an inclusion criterion had the effect of enriching study populations for patients who were more likely to have an exacerbation during the study.
Current treatment

In line with the clinical definitions discussed above, all of the phase III trials included one or more criteria for current treatment. All of the asthma trials specified either medium- to high-dose or high-dose ICS according to GINA definitions (GINA definitions of low-, medium- and high-dose ICS are shown in supplementary table S1). The majority also specified LABA and/or additional controllers. The phase III COPD trials required either triple therapy with high-dose ICS, LABA and LAMA [33], or double or triple therapy with LABA plus LAMA and/or ICS [34]. Many asthma trials explicitly allowed OCS use in their inclusion criteria, but only ZONDA, SIRIUS, LIBERTY ASTHMA VENTURE and TROPOS (all designed to evaluate OCS sparing) mandated it [57-59, 109]. Seven asthma studies excluded patients with chronic or maintenance OCS use at baseline, either at all or at various dose thresholds [90-93, 102, 103, 106, 108].

Phenotype

Most of the trials were restricted to a specific phenotype appropriate to the molecular target of the treatment. Thus, all trials of omalizumab (anti-IgE) only enrolled patients with evidence of IgE-mediated allergic asthma [89-97], whereas trials of mepolizumab or reslizumab (anti-interleukin-5 [anti-IL-5]) or benralizumab (anti-IL-5 receptor [IL-5R]) enrolled or performed primary analyses on patients with sputum or blood eosinophil counts above a specific threshold [33, 34, 57, 58, 98-102, 104, 105, 111] (with the exception of Corren et al [103]). Only the DREAM trial of mepolizumab (a goal of which was to identify characteristics, including biomarkers, that predicted response) had an inclusion criterion for FeNO [98]. The LAVOLTA trials of lebrikizumab (anti-IL-13) performed primary analyses on patients with a ‘biomarker-high’ phenotype of higher concentrations of the Type 2 (T2) inflammatory marker periostin and/or blood eosinophilia [106]. The two trials of dupilumab (which blocks IL-4 and IL-13 signalling via the IL-4 receptor) did not restrict eligibility based on T2 inflammatory markers [59, 107]. The STRATOS 2 trial of tralokinumab (anti-IL-13) specified a primary
analysis population of patients with FeNO ≥37 ppb, which was identified as the preferred ‘biomarker-high’ population in the all-comers trial, STRATOS 1 [108].

Comorbidities

Most of the asthma trials excluded patients with lung disease other than asthma, including COPD; this was most consistent among the more recent trials [57-59, 97, 99-109]. Additionally, most studies excluded patients with features more characteristic of COPD [14], such as a history of smoking [57, 92, 96, 98-100, 108, 109] or lack of bronchodilator reversibility [57-59, 89-92, 94, 97-99, 101-109]. Conversely, all of the COPD trials excluded patients with a current or primary diagnosis of asthma, and most excluded non-smokers or patients with <10 pack-years [34, 110-112].

Primary end-points

Primary end-points varied between trials. The majority of trials specified exacerbation reduction as a primary end-point. Six trials evaluated lung function (one as a co-primary end-point with exacerbation reduction) [93, 97, 102, 103, 107, 113], two evaluated quality of life (one as a co-primary end-point with exacerbation reduction) [91, 100], four evaluated OCS sparing [57-59, 109] and one evaluated target-specific biomarker expression [96]

Biomarkers for predicting response to biologic therapy

In addition to their primary analyses, several of the phase III trials included pre-specified or post-hoc sub-analyses that identified biomarkers that predicted treatment response [33, 59, 80, 98, 100, 103-109, 115, 116] (summarised in table 3). In a post-hoc analysis of INNOVATE for omalizumab, higher baseline IgE predicted a greater reduction in clinically significant exacerbations than in patients with lower baseline IgE [115], but this was not confirmed in a separate analysis [117]. A pre-specified post-hoc analysis of T2 biomarkers in EXTRA found that higher FeNO, blood eosinophil count and periostin all predicted a greater exacerbation rate reduction with omalizumab than their respective
low-biomarker subgroups [80], although potential suppression of eosinophils by corticosteroids [74] suggests that eosinophil count should be assessed in light of OCS and ICS exposure. In patients with asthma taking high-dose ICS, blood eosinophil count predicted response to mepolizumab for several endpoints based on exploratory modelling in DREAM and MUSCA [98, 100] and a pooled post-hoc analysis of DREAM and MENS[A [116], and blood eosinophil count similarly predicted response to mepolizumab in patients with COPD in a meta-analysis of METREX and METREO [33]. Likewise, blood eosinophil count predicted responses to reslizumab [103] and benralizumab [104, 105] in patients with asthma, except for exacerbation rate in CALIMA, potentially due to a large ‘placebo’ response that may have resulted from background ICS being supplied to patients [104]. However, pre-specified subgroup analyses of the GALATHEA and TERRANOVA trials showed no association between blood eosinophil count and response to benralizumab in patients with COPD [34]. In the LAVOLTA trials for lebrikizumab, both ‘eosinophil high’ patients and a ‘biomarker high’ group with eosinophilia and high periostin showed greater exacerbation reduction than the respective ‘low’ groups, while stratifying by eosinophilia alone showed the greatest difference in exacerbation rate [106]. In LIBERTY ASTHMA QUEST and LIBERTY ASTHMA VENTURE, dupilumab efficacy for exacerbation reduction, FEV₁ improvement or OCS sparing was greatest in patients with higher baseline blood eosinophil counts and/or FeNO [59, 107]. Similarly, higher FeNO predicted significant exacerbation reduction with tralokinumab in STRATOS 1, although this was not replicated in STRATOS 2 [108] and there was no difference in OCS sparing based on FeNO levels in TROPOS [109]. Though not a complete review of biomarker studies in the biologic era, the findings described above suggest that several biomarkers specific to T2 inflammation mechanisms can predict response to biologic therapies that target components of the T2 pathway. Although the most appropriate cut-points are yet to be determined, this supports the concept that establishing molecularly defined endotypes will enable better characterisation of patients with severe obstructive lung disease to inform treatment decisions.
Limitations of the current approach to trial design

Our review of phase III RCTs of biologic therapies demonstrates that these trials have narrow and sometimes conflicting eligibility criteria that exclude certain phenotypes of interest (summarised in box 1). For example, most required bronchodilator reversibility at screening, despite this being more difficult to demonstrate once patients are taking maintenance treatment [14]. Such a requirement is illogical, as it requires patients with long-standing, chronic disease to continue to satisfy criteria by which the disease is diagnosed at the time of initial presentation. Many severe asthma trials excluded patients with another pulmonary disease (such as COPD), even though patients with asthma–COPD overlap comprise 15–30% of patients with chronic airways disease [5, 118]. Asthma trials also excluded current smokers and patients with ≥10 pack-years’ smoking history, who represent approximately 26–32% of the severe asthma population [37, 119], whereas most COPD trials (including all of the phase II trials identified) excluded patients with <10 pack-years [34, 110-112]. Some patients with COPD display T2-high and/or eosinophilic phenotypes [120, 121], and those with eosinophilic COPD have been shown to respond to mepolizumab for moderate-to-severe exacerbations [33], albeit to a lesser extent than patients with eosinophilic asthma [116]. This suggests that significant subsets of patients with severe obstructive lung disease, who could potentially benefit from biologic therapies, are excluded from trials that inform regulatory decisions and thus influence treatment options in clinical practice. A recent analysis of patients with severe asthma found that only 3.5%–17.5% would have been eligible for enrolment in 14 phase III trials of biologic therapies in severe asthma [37]. Furthermore, comorbidity is an important contributor to disease burden in both asthma [122] and COPD [123, 124], and excluding patients with comorbidities from RCTs limits the evidence available to support treatment approaches that target multi-morbidity via underlying mechanisms. Additionally, although patients with severe, uncontrolled disease are the focus of most RCTs to date, evidence of benralizumab efficacy for pre-bronchodilator FEV₁ in a short-term study in patients with milder but persistent asthma [125]
suggests that earlier intervention with biologic therapy may prevent early structural damage that contributes to the development of severe disease in some patients [125, 126].
BOX 1 Eligibility criteria that may exclude populations of interest from phase III RCTs of biologic therapies in severe obstructive lung disease

- **Bronchodilator reversibility**
 - May exclude patients in whom reversible airflow limitation is no longer apparent due to treatment
 - Inappropriately requires patients with chronic disease to continue to satisfy criteria for initial diagnosis
 - May exclude patients with asthma–COPD overlap, including patients with asthma and non-reversible airflow limitation or COPD and reversible airflow limitation

- **Comorbidities (respiratory and/or non-respiratory)**
 - Excludes patients with asthma–COPD overlap
 - Excludes patients with persistent airway infection or other lung diseases
 - Precludes research to identify endotypes in patients with multi-morbidity

- **Smoking history**
 - Excludes smokers with asthma and patients with COPD who have limited/no smoking history
 - May exclude patients with asthma–COPD overlap
 - Excludes patients with COPD with a phenotype/endotype that is relevant to a specific mechanism of action (*e.g.* eosinophilic phenotype)

- **Disease severity/control**
 - Precludes investigation of the potential benefits of earlier intervention or treatment of milder disease
 - Excludes patients whose obstructive lung disease appears less severe, but who depend on high-dose ICS or maintenance OCS for adequate control
Recommendations for future research and regulatory indications of biologic therapies

The importance of accurately defining severe obstructive lung disease

As long-term treatment with OCS or high-dose ICS can have potentially costly long-term adverse effects [47, 48, 50-52, 54], treatment with alternative controllers and/or targeted biologics (despite high acquisition costs) may be the preferred approach in patients with asthma who fail to achieve control with lower doses [21]. This is reflected in more recent clinical definitions of severe asthma, which include patients dependent on medium- to high-dose ICS/LABA with or without OCS to maintain control (i.e. asthma is uncontrolled on a medium dose) (table 1). However, most RCTs of biologic therapies in severe obstructive lung disease enrol patients whose asthma is uncontrolled on medium- to high-dose ICS, with or without additional controllers (table 2). This, together with the high acquisition costs [21], has led some regulators and payers to restrict the approved indications of such medications to patients whose asthma is inadequately controlled despite high-dose ICS plus LABA or additional controllers [22, 25, 27], thereby missing the opportunity to reduce long-term high-dose ICS and maintenance OCS use in patients who have achieved control with such treatment.

An endotype-based approach to future RCTs

The use of highly specific eligibility criteria in existing RCTs of biologic therapies in severe obstructive lung disease may exclude patients with clinically relevant phenotypes (box 1), thereby limiting the generalisability of such trials to patients in clinical practice. In countries with fewer restrictions for prescribing biologic therapies for obstructive lung disease, real-world studies may reveal the extent to which RCT findings can be generalised to patients who do not fulfil typical inclusion criteria. To aid exploratory analyses and identify additional potentially responsive populations, we believe that trial populations (particularly for earlier phase studies) should include groups that are currently excluded, such as patients with persistent or latent airway infection or other lung diseases (e.g. bronchiectasis), patients with asthma and non-reversible airflow limitation, patients with
cardiovascular and other co-morbidities, and patients who have normal interval lung function but nonetheless experience symptoms and exacerbations. Also, trials should include assessments that may help to elucidate responsive phenotypes or endotypes, such as bronchoscopic evaluation. There is also increasing interest in breathomics, which in a recent validation study identified clusters of patients with asthma/COPD that differed by ethnicity, systemic eosinophilia and neutrophilia, FeNO, body mass index, atopy and exacerbation rate, regardless of the diagnostic label [127]. In addition to identifying molecular biomarkers for targeted biologic therapies, such an approach could also be applied to RCTs of emerging non-pharmacological treatments, such as bronchoscopic lung reduction in patients with emphysema-predominant COPD [65] and bronchial thermoplasty (BT) in patients with severe asthma [14]. For example, although the mechanism of clinical benefit from BT is currently not well defined, it has been suggested that structural features measured by high resolution imaging, e.g. airway smooth muscle mass, could be used to characterise severe asthma phenotypes and predict response [128]. Future studies to identify biological predictors of response to such treatments could enable a wider array of treatment options to be included in the personalised healthcare repertoire for severe obstructive lung disease. Ultimately, for the maximum number of patients to gain access to the most appropriate treatment, a paradigm shift is likely to be required in patient selection for trials: moving away from conventional diagnostic labels and control criteria (clinical approach), towards recruitment and stratification of clinically broader populations predicted to respond based on an underlying, biologically defined disease mechanism (endotype-based approach).

This endotype-based approach is not yet recognised by regulators, and the consequent risk to pharmaceutical developers of failing to satisfy current approval requirements may deter them from conducting studies in this way. However, if there is sound scientific rationale underpinning the decision to target a specific population, based on endotype and drug mechanism of action rather than conventional labels (supported by robust early-phase clinical development), it seems
reasonable to predict that the probability of achieving successful treatment outcomes in phase III
RCTs would be high. An additional benefit of this exploratory approach is the potential to identify
reliable, lower-cost surrogates for exacerbations as the primary outcome. In our opinion,
pharmaceutical developers should be able to adopt this endotype-based approach when defining
eligibility criteria for future RCTs, to support regulatory approval and to provide evidence for clinical
practice guidelines. This requires recognition of the value of such an approach by regulators so that
more exploratory studies can meet approval requirements. Therefore, co-ordinated partnerships
between investigators, pharmaceutical developers and regulators are necessary to make meaningful
change and provide more patients with targeted treatment options.

In addition to this shift towards endotype-based enrolment, standardisation of eligibility criteria and
outcome measures will be important in evaluating the therapeutic benefit of new biologics in the
appropriate populations. To ensure the clinical benefit of such biologics, the targeted molecular
endotype should manifest as a clinically important outcome, such as exacerbations. Developing a
core outcome set could help to improve comparability between trials and ensure clinical relevance
of trial data [129].

Identifying novel endotypes in severe obstructive lung disease

Existing treatments for severe obstructive lung disease, especially corticosteroids, inhibit
inflammation via multiple targets and may have unwanted additional anti-inflammatory effects.
There is now extensive evidence that molecularly targeted biologic therapies improve outcomes in
patients with T2-high, inflammatory asthma that is inadequately controlled by medium- to high-dose
ICS [57, 58, 89-102, 104, 105, 130]. However, not all targets evaluated in phase III trials have proven
effective. For example, results for therapies targeting IL-13 have been mixed. Lebrikizumab
significantly reduced exacerbation rate among ‘biomarker high’ patients with uncontrolled asthma in
LAVOLTA I, but efficacy did not reach significance in LAVOLTA II [106].
In contrast, tralokinumab failed to significantly reduce exacerbation rate either in all-comers with severe asthma in STRATOS 1 [108] and TROPOS [109] or among FeNO-high patients in STRATOS 2 [108]; whereas in a recent phase 2 trial it significantly reduced FeNO and IgE levels, but not eosinophil counts, suggesting a non-eosinophil-mediated mechanism of action [131]. The anti-IL-5R therapy benralizumab has shown efficacy in severe eosinophilic asthma [58, 104, 105], but did not significantly reduce exacerbations in patients with eosinophilic COPD [34]. The failure of these phase III trials suggests that further research is needed to link phenotypes with molecularly defined, targetable endotypes, particularly in severe COPD and asthma–COPD overlap, where few data are available.

Despite mixed results for some therapies, trial success in patients with severe, T2-high asthma demonstrates that targeting specific endotypes could improve outcomes in other, less well-studied populations, such as patients with T2-low disease. Currently, all approved biologic therapies for severe obstructive lung disease target severe or moderate-to-severe asthma with T2 inflammation (either immunoglobulin E [IgE]-mediated, eosinophilic or OCS-dependent asthma) [22-30]. However, these patients may have one or more of various T2-high phenotypes, which may or may not include blood and/or airway eosinophilia [132, 133]. Furthermore, up to 50% of patients with severe asthma lack T2 inflammation [119, 134, 135], i.e. they have a T2-low phenotype (or their T2 inflammation is controlled by anti-inflammatory medication(s) [136]). Additionally, patients with lung disease other than asthma (e.g. COPD or asthma–COPD overlap) can also have uncontrolled disease despite high-level treatment [137-139]. This heterogeneity results in an unmet need for targeted therapies that address the underlying causes of disease for patients with T2-low severe asthma or other phenotypes of severe obstructive lung disease not currently catered for by available biologics.

Although our literature review focused on phase III trials, several non-T2-targeted biologic therapies have been investigated in earlier phases of clinical development. For example, a phase II trial of the anti-IL-17 receptor therapy brodalumab, which used similar eligibility criteria to most of the asthma
studies listed in table 2 but did not differentiate patients based on inflammatory phenotype, failed to meet its primary endpoint of clinically meaningful improvement in Asthma Control Questionnaire total score (although a prespecified subgroup analysis found a significant improvement among patients with high reversibility) [140]. Earlier trials of the anti-TNF-α therapies golimumab and etanercept were similarly unsuccessful [141, 142], but imatinib, an inhibitor of the stem cell factor receptor, KIT, has shown promise in an early, placebo-controlled, proof-of-principle trial [143]. One therapy currently in development for the treatment of uncontrolled asthma, tezepelumab, may also be effective in T2-low disease. Tezepelumab is a thymic stromal lymphopoietin-targeted therapy that demonstrated efficacy regardless of blood eosinophil count (<250 cells·μL versus ≥250 cells·μL) in a phase IIb severe asthma trial [144], leading to its being granted Breakthrough Therapy Designation by the US Food and Drug Administration [32]). Defining severe obstructive lung disease and designing future trials in a way that maximises the potential therapeutic impact of existing and future biologic therapies will be key to finding more therapies that fulfil this need. Furthermore, identification of novel endotypes of obstructive lung disease, including those not involving T2 inflammation, should be a key goal of future research.

The current high cost of biologic therapies (versus the relatively low cost of OCS/ICS) makes accurate prediction and monitoring of response necessary. Previous research shows that endotype-specific biomarkers of T2 inflammation can predict a patient’s response to biologic therapies that target these particular mechanisms. Future biomarkers identified and utilised for this purpose should, therefore, be appropriate to the endotype being treated, as recommended by previous cost-effectiveness studies [60]; however, substantial price discounts may be needed to achieve acceptable cost-effectiveness, even within biomarker-targeted populations [60].

To better understand mechanisms underlying obstructive lung disease and to identify specific endotypes that may be carried forward into interventional studies, large-scale studies in broad, real-world populations with standardised outcome measures are needed. Studies such as U-BIOPRED
in asthma and ECLIPSE [145], SPIROMICS [146] and COPDGene [147] in COPD have yielded important insights in their respective populations [148-152], with the caveat that these cohorts each focus primarily on a single diagnostic label (U-BIOPRED did not exclude patients with COPD, but required an asthma diagnosis and excluded patients with a primary diagnosis of severe emphysema or bronchiectasis [42]). NOVELTY (a NOVEL observational longiTudinal studY in patients with a diagnosis or suspected diagnosis of asthma and/or COPD) is an ongoing study that includes approximately 12000 patients across the spectrum of obstructive lung disease, with broad inclusion criteria and very few exclusion criteria to capture a broad patient population [153]. In NOVELTY, patients are required to have a diagnosis or clinically suspected diagnosis of asthma and/or COPD (according to the treating physician), be ≥12 years of age, and be able to provide informed consent. The only exclusion criteria are participation in an interventional respiratory clinical trial in the previous 12 months, low likelihood of completing 3 years of follow-up and a primary respiratory diagnosis other than asthma or COPD (though co-diagnoses of other respiratory diseases are allowed) [153]. NOVELTY is prospectively collecting data on a wide range of diagnosis-agnostic variables, with the aim of identifying phenotypes and endotypes through detailed clinical and biomarker characterisation [153]. Such large observational studies will complement the RCT evidence base and may help to identify novel endotypes that can inform the development and use of future targeted therapies.

Conclusions

Current treatment recommendations for severe obstructive lung disease, based on high-dose ICS with one or more add-on therapies, are inadequate in some patients and can have long-term adverse effects. OCS, previously the mainstay of severe asthma treatment and still used in frequent pulses for the treatment of severe exacerbations, has for some time been recognised as having serious, often permanent, adverse effects. Alternative, biologic therapies are currently only available for patients with T2-high phenotypes. Additionally, the narrow eligibility criteria used in existing
RCTs of these therapies mean that their generalisability is limited to patients with specific clinical phenotypes, leading to limited therapeutic reach due to regulatory restrictions. An unmet need, therefore, remains in two areas:

1. Studies of existing biologics in patients typically excluded from RCTs, including those whose asthma is well controlled on high-dose ICS and those with overlapping diagnostic labels (e.g. asthma and COPD), to provide evidence to support regulatory approval and reimbursement in such populations.

2. Targeted biologic therapies (and biomarkers to predict response) for patients with severe obstructive lung disease that is not, or is only partially, driven by T2 inflammation.

We therefore recommend a phenotype- and endotype-focused approach to future research on severe obstructive lung disease, in both clinical trials and exploratory studies, to identify novel biomarkers and potential targets. The success of this approach will depend on co-ordinated efforts between investigators, pharmaceutical developers and regulators to ensure biologic therapies reach their full potential in the treatment of patients with severe obstructive lung disease, irrespective of conventional diagnostic labels.
Acknowledgements: Medical writing support, under the direction of the authors, was provided by Nina Divorty, PhD, of CMC Connect, a division of McCann Health Medical Communications Ltd, Glasgow, UK, funded by AstraZeneca, Cambridge, UK, in accordance with Good Publication Practice (GPP3) guidelines (Ann Intern Med 2015;163:461-464). All authors contributed to the conception of the article, interpretation of the literature review and development of the manuscript, and approved the final draft.

Conflict of interest: The authors are members of the NOVELTY Study Scientific Committee. Dr Martin reports grants from NHLBI, MedImmune and Chiesi Farmaceutici SpA, and personal fees from AstraZeneca, PMD Healthcare, Regeneron and Boehringer Ingelheim, outside the submitted work. Dr Bel reports non-financial support from AstraZeneca during the conduct of the study; and personal fees from Boehringer Ingelheim, Sanofi/Regeneron, and Vectura, and grants and personal fees from AstraZeneca, GlaxoSmithKline, Novartis, and Teva, outside the submitted work. Dr Pavord reports personal fees from AstraZeneca, GlaxoSmithKline, Boehringer Ingelheim, Sanofi/Regeneron, Circassia, Merck, Novartis, Mundipharma, Teva, Knopp, and Roche/Genentech, and grants and personal fees from Chiesi and Afferent, outside the submitted work. Dr Price reports grants from AKL Research and Development Ltd, British Lung Foundation, Respiratory Effectiveness Group, personal fees from Almirall, Amgen, Cipla, GlaxoSmithKline, Kyorin, Merck, Skyepharma, grants and personal fees from Aerocrine, AstraZeneca, Boehringer Ingelheim, Chiesi, Mylan, Mundipharma, Napp, Novartis, Pfizer, Regeneron Pharmaceuticals, Sanofi Genzyme, Teva, Theravance, Zentiva (Sanofi Generics), and non-financial support from Efficacy and Mechanism Evaluation programme and Health Technology Assessment, outside the submitted work; stock/stock options from AKL Research and Development Ltd which produces phytopharmaceuticals; and owns 74% of the social enterprise Optimum Patient Care Ltd (Australia and UK) and 74% of Observational and Pragmatic Research Institute Pte Ltd (Singapore). Dr Reddel reports personal fees from Boehringer Ingelheim, Merck,
Novartis, Teva, and Mundipharma, and grants, personal fees and non-financial support from AstraZeneca and GlaxoSmithKline, outside the submitted work.
References

1. CIBA Guest Symposium. Terminology, Definitions, and Classification of Chronic Pulmonary Emphysema and Related Conditions: A Report of the Conclusions of a CIBA Guest Symposium. Thorax 1959; 14: 286-299.

2. Fletcher CM, Pride NB. Definitions of emphysema, chronic bronchitis, asthma, and airflow obstruction: 25 years on from the Ciba symposium. Thorax 1984; 39: 81-85.

3. American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease (COPD) and asthma. This official statement of the American Thoracic Society was adopted by the ATS Board of Directors, November 1986. Am Rev Respir Dis 1987; 136: 225-244.

4. American Thoracic Society. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1995; 152: S77-121.

5. Bateman ED, Reddel HK, van Zyl-Smit RN, Agusti A. The asthma-COPD overlap syndrome: towards a revised taxonomy of chronic airways diseases? Lancet Respir Med 2015; 3: 719-728.

6. Reddel HK. Treatment of overlapping asthma-chronic obstructive pulmonary disease: can guidelines contribute in an evidence-free zone? J Allergy Clin Immunol 2015; 136: 546-552.

7. Agusti A, Bel E, Thomas M, Vogelmeier C, Brusselle G, Holgate S, Humbert M, Jones P, Gibson PG, Vestbo J, Beasley R, Pavord ID. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J 2016; 47: 410-419.

8. Moore WC, Fitzpatrick AM, Li X, Hastie AT, Li H, Meyers DA, Bleecker ER. Clinical heterogeneity in the Severe Asthma Research Program. Ann Am Thorac Soc 2013; 10 Suppl: S118-S124.
9. Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, D'Agostino R, Jr., Castro M, Curran-Everett D, Fitzpatrick AM, Gaston B, Jarjour NN, Sorkness R, Calhoun WJ, Chung KF, Comhair SA, Dweik RA, Israel E, Peters SP, Busse WW, Erzurum SC, Bleecker ER, and NHL, Blood Institute’s Severe Asthma Research Program. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med 2010; 181: 315-323.

10. Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, Boulet LP, Brightling C, Chanez P, Dahlen SE, Djukanovic R, Frey U, Gaga M, Gibson P, Hamid Q, Jajour NN, Mauad T, Sorkness RL, Teague WG. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J 2014; 43: 343-373.

11. Quaderi SA, Hurst JR. The unmet global burden of COPD. Glob Health Epidemiol Genom 2018; 3: e4.

12. Global Asthma Network. The global asthma report 2018. http://globalasthmareport.org/Global%20Asthma%20Report%202018.pdf. Date last accessed: September 21, 2018.

13. Price D, Fletcher M, van der Molen T. Asthma control and management in 8,000 European patients: the REcognise Asthma and Link to Symptoms and Experience (REALISE) survey. NPJ Prim Care Respir Med 2014; 24: 14009.

14. Global Initiative for Asthma. Global strategy for asthma management and prevention (updated 2018). http://ginasthma.org. Date last accessed: March 29, 2018.

15. Hekking PP, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol 2015; 135: 896-902.
16. Price D, West D, Brusselle G, Gruffydd-Jones K, Jones R, Miravitlles M, Rossi A, Hutton C, Ashton VL, Stewart R, Bichel K. Management of COPD in the UK primary-care setting: an analysis of real-life prescribing patterns. *Int J Chron Obstruct Pulmon Dis* 2014; 9: 889-904.

17. Vestbo J, Papi A, Corradi M, Blazhko V, Montagna I, Francisco C, Cohuet G, Vezzoli S, Scuri M, Singh D. Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. *Lancet* 2017; 389: 1919-1929.

18. Sadatsafavi M, Lynd L, Marra C, Carleton B, Tan WC, Sullivan S, Fitzgerald JM. Direct health care costs associated with asthma in British Columbia. *Can Respir J* 2010; 17: 74-80.

19. Punekar YS, Shukla A, Müllerova H. COPD management costs according to the frequency of COPD exacerbations in UK primary care. *Int J Chron Obstruct Pulmon Dis* 2014; 9: 65-73.

20. Chen S, Golam S, Myers J, Bly C, Smolen H, Xu X. Systematic literature review of the clinical, humanistic, and economic burden associated with asthma uncontrolled by GINA Steps 4 or 5 treatment. *Curr Med Res Opin* 2018; 34: 2075-2088.

21. Pavord ID, Beasley R, Agustí A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly PD, von Mutius E, Wenzel S, Zar HJ, Bush A. After asthma: redefining airways diseases. *Lancet* 2018; 391: 350-400.

22. AstraZeneca UK Ltd. Fasenra (benralizumab) Summary of Product Characteristics. https://www.medicines.org.uk/emc/product/8918/smpc. Date last accessed: June 6, 2018.

23. AstraZeneca Pharmaceuticals LP. Fasenra (benralizumab) Prescribing Information. https://www.azpicentral.com/fasenra/fasenra_pi.pdf. Date last accessed: June 6, 2018.
24. Genentech USA Inc., Novartis Pharmaceuticals Corporation. Xolair (omalizumab) Prescribing Information. https://www.gene.com/download/pdf/xolair_prescribing.pdf. Date last accessed: October 16, 2018.

25. Novartis Pharmaceuticals UK Ltd. Xolair (omalizumab) Summary of Product Characteristics. https://www.medicines.org.uk/emc/product/4725/smpc. Date last accessed: June 6, 2018.

26. Teva Pharmaceutical Industries Ltd. Cinqair (reslizumab) Prescribing Information. https://www.cinqair.com/globalassets/cinqair/prescribinginformation.pdf. Date last accessed: June 6, 2018.

27. Teva Pharmaceuticals Ltd. Cinqaero (reslizumab) Summary of Product Characteristics. https://www.medicines.org.uk/emc/product/4370. Date last accessed: October 16, 2018.

28. GlaxoSmithKline. Nucala (mepolizumab) Prescribing Information. https://www.gsksource.com/pharma/content/dam/GlaxoSmithKline/US/en/Prescribing_Information/Nucala/pdf/NUCALA-PI-PIL.PDF. Date last accessed: June 6, 2018.

29. GlaxoSmithKline UK. Nucala (mepolizumab) Summary of Product Characteristics. https://www.medicines.org.uk/emc/product/1938. Date last accessed: October 16, 2018.

30. Sanofi-Aventis U.S. LLC, Regeneron Pharmaceuticals Inc. Dupixent (dupilumab) Prescribing Information. https://www.regeneron.com/sites/default/files/Dupixent_FPI.pdf. Date last accessed: October 25, 2018.

31. Wechsler ME. Current and emerging biologic therapies for asthma and COPD. Respir Care 2018; 63: 699-707.

32. AstraZeneca. Tezepelumab granted breakthrough therapy designation by US FDA. https://www.astrazeneca.com/media-centre/press-releases/2018/tezepelumab-granted-
33. Pavord ID, Chanez P, Criner GJ, Kerstjens HAM, Korn S, Lugogo N, Martinot JB, Sagara H, Albers FC, Bradford ES, Harris SS, Mayer B, Rubin DB, Yancey SW, Sciurba FC. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. *N Engl J Med* 2017; 377: 1613-1629.

34. Criner GJ, Celli BR, Brightling CE, Agusti A, Papi A, Singh D, Sin DD, Vogelmeier CF, Sciurba FC, Bafadhel M, Backer V, Kato M, Ramirez-Venegas A, Wei YF, Bjermer L, Shih VH, Jison M, O’Quinn S, Makulova N, Newbold P, Goldman M, Martin UJ, for the GALATHEA and TERRANOVA Study Investigators. Benralizumab for the prevention of COPD exacerbations. *N Engl J Med* Epub ahead of print May 22, 2019. doi: 10.1056/NEJMoa1905248

35. Travers J, Marsh S, Caldwell B, Williams M, Aldington S, Weatherall M, Shirtcliffe P, Beasley R. External validity of randomized controlled trials in COPD. *Respir Med* 2007; 101: 1313-1320.

36. Travers J, Marsh S, Williams M, Weatherall M, Caldwell B, Shirtcliffe P, Aldington S, Beasley R. External validity of randomised controlled trials in asthma: to whom do the results of the trials apply? *Thorax* 2007; 62: 219-223.

37. Brown T, Jones T, Gove K, Barber C, Elliott S, Chauhan A, Howarth P, Wessex Severe Asthma Cohort team. Randomised controlled trials in severe asthma: selection by phenotype or stereotype. *Eur Respir J* 2018: 1801444.

38. British Thoracic Society, Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. https://www.brit-thoracic.org.uk/quality-improvement/guidelines/asthma/. Date last accessed: March 27, 2019.

39. National Asthma Council Australia. Australian asthma handbook. http://www.asthmahandbook.org.au/. Date last accessed: May 24, 2018.
40. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2018 report).
http://www.goldcopd.org. Date last accessed: October 31, 2018.

41. Lung Foundation Australia. Stepwise management of stable COPD.
https://lungfoundation.com.au/wp-content/uploads/2018/09/Information-paper-Stepwise-Management-of-Stable-COPD-Aug2017.pdf. Date last accessed: May 24, 2018.

42. Shaw DE, Sousa AR, Fowler SJ, Fleming LJ, Roberts G, Corfield J, Pandis I, Bansal AT, Bel EH, Auffray C, Compton CH, Bisgaard H, Bucchione E, Caruso M, Chanez P, Dahlén B, Dahlén SE, Dyson K, Frey U, Geiser T, Gerhardsson de Verdier M, Gibeon D, Guo YK, Hashimoto S, Hedlin G, Jeyasingham E, Hekking PPW, Higenbottam T, Horváth I, Knox AJ, Krug N, Erpenbeck VJ, Larsson LX, Lazarinis N, Matthews JG, Middelveld R, Montuschi P, Musial J, Myles D, Pahus L, Sandström T, Seibold W, Singer F, Strandberg K, Vestbo J, Vissing N, von Garnier C, Adcock IM, Wagers S, Rowe A, Howarth P, Wagener AH, Djukanovic R, Sterk PJ, Chung KF, on behalf of the U-BIOPRED Study Group. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J 2015; 46: 1308-1321.

43. Price DB, Trudo F, Voorham J, Xu X, Kerkhof M, Ling Zhi Jie J, Tran TN. Adverse outcomes from initiation of systemic corticosteroids for asthma: long-term observational study. J Asthma Allergy 2018; 11: 193-204.

44. Price D, Yawn B, Brusselle G, Rossi A. Risk-to-benefit ratio of inhaled corticosteroids in patients with COPD. Prim Care Respir J 2013; 22: 92-100.

45. Bachert C, Zhang L, Gevaert P. Current and future treatment options for adult chronic rhinosinusitis: Focus on nasal polyposis. J Allergy Clin Immunol 2015; 136: 1431-1440.
46. Ring J, Alomar A, Bieber T, Deleuran M, Fink-Wagner A, Gelmetti C, Gieler U, Lipozencic J, Luger T, Oranje AP, Schafer T, Schwenes T, Seidenari S, Simon D, Stander S, Stingl G, Szalai S, Szepietowski JC, Taieb A, Werfel T, Wollenberg A, Darsow U, European Dermatology Forum, European Academy of Dermatology and Venereology, European Federation of Allergy, European Task Force on Atopic Dermatitis, European Society of Pediatric Dermatology, Global and Allergy Asthma European Network. Guidelines for treatment of atopic eczema (atopic dermatitis) part I. J Eur Acad Dermatol Venereol 2012; 26: 1045-1060.

47. Lefebvre P, Duh MS, Lafeuille MH, Gozalo L, Desai U, Robitaille MN, Albers F, Yancey S, Ortega H, Forshag M, Lin X, Dalal AA. Acute and chronic systemic corticosteroid-related complications in patients with severe asthma. J Allergy Clin Immunol 2015; 136: 1488-1495.

48. Sarnes E, Crofford L, Watson M, Dennis G, Kan H, Bass D. Incidence and US costs of corticosteroid-associated adverse events: a systematic literature review. Clin Ther 2011; 33: 1413-1432.

49. Sweeney J, Patterson CC, Menzies-Gow A, Niven RM, Mansur AH, Bucknall C, Chaudhuri R, Price D, Brightling CE, Heaney LG, British Thoracic Society Difficult Asthma Network. Comorbidity in severe asthma requiring systemic corticosteroid therapy: cross-sectional data from the Optimum Patient Care Research Database and the British Thoracic Difficult Asthma Registry. Thorax 2016; 71: 339-346.

50. Voorham J, Xu X, Price D, Golam S, Davis J, Ling Zhi Jie J, Kerkhof M, Ow M, Tran TN. Health care resource utilization and costs associated with incremental systemic corticosteroid exposure in asthma. Allergy 2018: 1-11.

51. Lipworth BJ. Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and meta-analysis. Arch Intern Med 1999; 159: 941-955.
52. Suissa S, Kezouh A, Ernst P. Inhaled corticosteroids and the risks of diabetes onset and progression. *Am J Med* 2010; 123: 1001-1006.

53. Price DB, Russell R, Mares R, Burden A, Skinner D, Mikkelsen H, Ding C, Brice R, Chavannes NH, Kocks JW, Stephens JW, Haughney J. Metabolic effects associated with ICS in patients with COPD and comorbid type 2 diabetes: a historical matched cohort study. *PLoS One* 2016; 11: e0162903.

54. Kew KM, Seniukovich A. Inhaled steroids and risk of pneumonia for chronic obstructive pulmonary disease. *Cochrane Database Syst Rev* 2014: CD010115.

55. Sonnappa S, Martin R, Israel E, Postma D, van Aalderen W, Burden A, Usmani OS, Price DB, Respiratory Effectiveness Group Small Airways Study Group. Risk of pneumonia in obstructive lung disease: A real-life study comparing extra-fine and fine-particle inhaled corticosteroids. *PLoS One* 2017; 12: e0178112.

56. Roland NJ, Bhalla RK, Earis J. The local side effects of inhaled corticosteroids: current understanding and review of the literature. *Chest* 2004; 126: 213-219.

57. Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, Ortega HG, Pavord ID, SIRIUS Investigators. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. *N Engl J Med* 2014; 371: 1189-1197.

58. Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL, Kuna P, Barker P, Sproule S, Ponnarambil S, Goldman M, ZONDA Trial Investigators. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. *N Engl J Med* 2017; 376: 2448-2458.

59. Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L, Zhu H, Hamilton JD, Swanson BN, Khan A, Chao J, Staudinger H, Pirozzi G, Antoni C, Amin N, Ruddy M, Akinlade B, Graham NMH, Stahl N, Yancopoulos GD, Teper A. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. *N Engl J Med* 2018; 378: 2475-2485.
60. McQueen RB, Sheehan DN, Whittington MD, van Boven JFM, Campbell JD. Cost-effectiveness of biological asthma treatments: a systematic review and recommendations for future economic evaluations. *Pharmacoeconomics* 2018; 36: 957-971.

61. Menzella F, Lusuardi M, Montanari G, Galeone C, Facciolongo N, Zucchi L. Clinical usefulness of mepolizumab in severe eosinophilic asthma. *Ther Clin Risk Manag* 2016; 12: 907-916.

62. Menzella F, Galeone C, Bertolini F, Castagnetti C, Facciolongo N. Innovative treatments for severe refractory asthma: how to choose the right option for the right patient? *J Asthma Allergy* 2017; 10: 237-247.

63. Bousquet J, Mantzouranis E, Cruz AA, Ait-Khaled N, Baena-Cagnani CE, Bleecker ER, Brightling CE, Burney P, Bush A, Busse WW, Casale TB, Chan-Yeung M, Chen R, Chowdhury B, Chung KF, Dahl R, Drazen JM, Fabbri LM, Holgate ST, Kauffmann F, Haahtela T, Khaltaev N, Kiley JP, Masjedi MR, Mohammad Y, O’Byrne P, Partridge MR, Rabe KF, Togias A, van Weel C, Wenzel S, Zhong N, Zuberbier T. Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. *J Allergy Clin Immunol* 2010; 126: 926-938.

64. Bel EH, Sousa A, Fleming L, Bush A, Chung KF, Versnel J, Wagener AH, Wagers SS, Sterk PJ, Compton CH, Unbiased Biomarkers for the Prediction of Respiratory Disease Outcome Consortium Consensus Generation. Diagnosis and definition of severe refractory asthma: an international consensus statement from the Innovative Medicine Initiative (IMI). *Thorax* 2011; 66: 910-917.

65. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2019 report).

http://www.goldcopd.org. Date last accessed: March 21, 2019.
66. Gibson PG, Simpson JL. The overlap syndrome of asthma and COPD: what are its features and how important is it? Thorax 2009; 64: 728-735.

67. Cosio BG, Soriano JB, Lopez-Campos JL, Calle-Rubio M, Soler-Cataluna JJ, de-Torres JP, Marin JM, Martinez-Gonzalez C, de Lucas P, Mir I, Peces-Barba G, Feu-Collado N, Solanes I, Alfrageme I, Casanova C, CHAIN Study. Defining the asthma-COPD overlap syndrome in a COPD cohort. Chest 2016; 149: 45-52.

68. Lopez-Campos JL, Peces-Barba G, Soler-Cataluna JJ, Soriano JB, de Lucas Ramos P, de-Torres JP, Marin JM, Casanova C, en Nombre del Grupo de Estudio CHAIN. Chronic obstructive pulmonary disease history assessment in Spain: a multidimensional chronic obstructive pulmonary disease evaluation. Study methods and organization. Arch Bronconeumol 2012; 48: 453-459.

69. Sin DD, Miravitlles M, Mannino DM, Soriano JB, Price D, Celli BR, Leung JM, Nakano Y, Park HY, Wark PA, Wechsler ME. What is asthma-COPD overlap syndrome? Towards a consensus definition from a round table discussion. Eur Respir J 2016; 48: 664-673.

70. Plaza V, Alvarez F, Calle M, Casanova C, Cosio BG, Lopez-Vina A, Perez de Llano L, Quirce S, Roman-Rodriguez M, Soler-Cataluna JJ, Miravitlles M. Consensus on the asthma-COPD overlap syndrome (ACOS) between the Spanish COPD Guidelines (GesEPOC) and the Spanish Guidelines on the Management of Asthma (GEMA). Arch Bronconeumol 2017; 53: 443-449.

71. Adams NP, Bestall JC, Jones P, Lasserson TJ, Griffiths B, Cates CJ. Fluticasone at different doses for chronic asthma in adults and children. Cochrane Database Syst Rev 2008: CD003534.

72. Ind PW, Dal Negro R, Colman NC, Fletcher CP, Browning D, James MH. Addition of salmeterol to fluticasone propionate treatment in moderate-to-severe asthma. Respir Med 2003; 97: 555-562.
73. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, Wardlaw AJ, Pavord ID. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. *Lancet* 2002; 360: 1715-1721.

74. Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C, Pizzichini E, Cartier A, Hussack P, Goldsmith CH, Laviolette M, Parameswaran K, Hargreave FE. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. *Eur Respir J* 2006; 27: 483-494.

75. Kerkhof M, Tran TN, van den Berge M, Brusselle GG, Gopalan G, Jones RCM, Kocks JWH, Menzies-Gow A, Nuevo J, Pavord ID, Rastogi S, Price DB. Association between blood eosinophil count and risk of readmission for patients with asthma: historical cohort study. *PLoS One* 2018; 13: e0201143.

76. Price D, Wilson AM, Chisholm A, Rigazio A, Burden A, Thomas M, King C. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. *J Asthma Allergy* 2016; 9: 1-12.

77. Ryan D, Blakey J, Chisholm A, Price D, Thomas M, Stallberg B, Lisspers K, Kocks JWH, Respiratory Effectiveness Group. Use of electronic medical records and biomarkers to manage risk and resource efficiencies. *Eur Clin Respir J* 2017; 4: 1293386.

78. Bleecker ER, Wechsler ME, FitzGerald JM, Menzies-Gow A, Wu Y, Hirsch I, Goldman M, Newbold P, Zangrilli JG. Baseline patient factors impact on the clinical efficacy of benralizumab for severe asthma. *Eur Respir J* 2018; 52: 1800936.

79. Price DB, Buhl R, Chan A, Freeman D, Gardener E, Godley C, Gruffydd-Jones K, McGarvey L, Ohta K, Ryan D, Syk J, Tan NC, Tan T, Thomas M, Yang S, Konduru PR, Ngantcha M, d'Alcontres MS, Lapperre TS. Fractional exhaled nitric oxide as a predictor of response to inhaled corticosteroids in
patients with non-specific respiratory symptoms and insignificant bronchodilator reversibility: a randomised controlled trial. *Lancet Respir Med* 2018; 6: 29-39.

80. Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, Lal P, Arron JR, Harris JM, Busse W. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. *Am J Respir Crit Care Med* 2013; 187: 804-811.

81. Kerkhof M, Freeman D, Jones R, Chisholm A, Price DB, Respiratory Effectiveness Group. Predicting frequent COPD exacerbations using primary care data. *Int J Chron Obstruct Pulmon Dis* 2015; 10: 2439-2450.

82. Martinez-Garcia MA, Miravitlles M. Bronchiectasis in COPD patients: more than a comorbidity? *Int J Chron Obstruct Pulmon Dis* 2017; 12: 1401-1411.

83. da Silva SM, Paschoal IA, De Capitani EM, Moreira MM, Palhares LC, Pereira MC. COPD phenotypes on computed tomography and its correlation with selected lung function variables in severe patients. *Int J Chron Obstruct Pulmon Dis* 2016; 11: 503-513.

84. Suissa S, Ernst P. Observational studies of inhaled corticosteroid effectiveness in COPD: lessons learned. *Chest* 2018; 154: 257-265.

85. Gershon AS, Campitelli MA, Croxford R, Stanbrook MB, To T, Upshur R, Stephenson AL, Stukel TA. Combination long-acting β-agonists and inhaled corticosteroids compared with long-acting beta-agonists alone in older adults with chronic obstructive pulmonary disease. *JAMA* 2014; 312: 1114-1121.

86. Konno S, Taniguchi N, Makita H, Nakamaru Y, Shimizu K, Shijubo N, Fuke S, Takeyabu K, Oguri M, Kimura H, Maeda Y, Suzuki M, Nagai K, Ito YM, Wenzel SE, Nishimura M, HiCARAT Investigators. Distinct phenotypes of smokers with fixed airflow limitation identified by cluster analysis of severe asthma. *Ann Am Thorac Soc* 2018; 15: 33-41.
87. Konstantellou E, Papaioannou AI, Loukides S, Patentalakis G, Papaporfyriou A, Hillas G, Papiris S, Koulouris N, Bakakos P, Kostikas K. Persistent airflow obstruction in patients with asthma: Characteristics of a distinct clinical phenotype. *Respir Med* 2015; 109: 1404-1409.

88. Muller V, Galffy G, Orosz M, Kovats Z, Odler B, Selroos O, Tamasi L. Characteristics of reversible and nonreversible COPD and asthma and COPD overlap syndrome patients: an analysis of salbutamol Easyhaler data. *Int J Chron Obstruct Pulmon Dis* 2016; 11: 93-101.

89. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, van As A, Gupta N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. *J Allergy Clin Immunol* 2001; 108: 184-190.

90. Soler M, Matz J, Townley R, Buhl R, O’Brien J, Fox H, Thirlwell J, Gupta N, Della Cioppa G. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. *Eur Respir J* 2001; 18: 254-261.

91. Vignola AM, Humbert M, Bousquet J, Boulet LP, Hedgecock S, Blogg M, Fox H, Surrey K. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. *Allergy* 2004; 59: 709-717.

92. Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J, Beek KM, Ramos S, Canonica GW, Hedgecock S, Fox H, Blogg M, Surrey K. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. *Allergy* 2005; 60: 309-316.

93. Ohta K, Miyamoto T, Amagasaki T, Yamamoto M, Study Group. Efficacy and safety of omalizumab in an Asian population with moderate-to-severe persistent asthma. *Respirology* 2009; 14: 1156-1165.
94. Lanier B, Bridges T, Kulus M, Taylor AF, Berhane I, Vidaurre CF. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. *J Allergy Clin Immunol* 2009; 124: 1210-1216.

95. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, Rosen KE, Eisner MD, Wong DA, Busse W. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. *Ann Intern Med* 2011; 154: 573-582.

96. Garcia G, Magnan A, Chiron R, Contin-Bordes C, Berger P, Taille C, Devouassoux G, de Blay F, Couderc LJ, Didier A, O’Callaghan DS, Girodet PO, Bourdeix I, Le Gros V, Humbert M. A proof-of-concept, randomized, controlled trial of omalizumab in patients with severe, difficult-to-control, nonatopic asthma. *Chest* 2013; 144: 411-419.

97. Li J, Kang J, Wang C, Yang J, Wang L, Kottakis I, Humphries M, Zhong N, China Omalizumab Study Group. Omalizumab improves quality of life and asthma control in Chinese patients with moderate to severe asthma: a randomized Phase III study. *Allergy Asthma Immunol Res* 2016; 8: 319-328.

98. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, Ortega H, Chanez P. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. *Lancet* 2012; 380: 651-659.

99. Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, Humbert M, Katz LE, Keene ON, Yancey SW, Chanez P, MENSA investigators. Mepolizumab treatment in patients with severe eosinophilic asthma. *N Engl J Med* 2014; 371: 1198-1207.

100. Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-Jairaj J, Nelsen LM, Trevor JL, Magnan A, Ten Brinke A. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers
of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. *Lancet Respir Med* 2017; 5: 390-400.

101. Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, Murphy K, Maspero JF, O’Brien C, Korn S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. *Lancet Respir Med* 2015; 3: 355-366.

102. Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Gerinaro M. Reslizumab for Inadequately Controlled Asthma With Elevated Blood Eosinophil Levels: A Randomized Phase 3 Study. *Chest* 2016; 150: 789-798.

103. Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 study of reslizumab in patients with poorly controlled asthma: effects across a broad range of eosinophil counts. *Chest* 2016; 150: 799-810.

104. FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, Ferguson GT, Busse WW, Barker P, Sproule S, Gilmartin G, Werkstrom V, Aurivillius M, Goldman M, Calima study investigators. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. *Lancet* 2016; 388: 2128-2141.

105. Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, Sproule S, Gilmartin G, Aurivillius M, Werkstrom V, Goldman M, Sirocco study investigators. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. *Lancet* 2016; 388: 2115-2127.
106. Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P, Paggiaro P, Yokoyama A, Olsson J, Gray S, Holweg CT, Eisner M, Asare C, Fischer SK, Peng K, Putnam WS, Matthews JG. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. *Lancet Respir Med* 2016; 4: 781-796.

107. Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, Busse WW, Ford L, Sher L, FitzGerald JM, Katelaris C, Tohda Y, Zhang B, Staudinger H, Pirozzi G, Amin N, Ruddy M, Akinlade B, Khan A, Chao J, Martinova R, Graham NMH, Hamilton JD, Swanson BN, Stahl N, Yancopoulos GD, Teper A. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. *N Engl J Med* 2018; 378: 2486-2496.

108. Panettieri RA, Jr., Sjobring U, Peterffy A, Wessman P, Bowen K, Piper E, Colice G, Brightling CE. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. *Lancet Respir Med* 2018; 6: 511-525.

109. Busse WW, Brusselle GG, Korn S, Kuna P, Magnan A, Cohen D, Bowen K, Piechowiak T, Wang MM, Colice G. Tralokinumab did not demonstrate oral corticosteroid-sparing effects in severe asthma. *Eur Respir J* 2019; 53: 1800948.

110. Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J, Mahler D, Saadeh C, Siler T, Snell P, Korenblat P, Smith W, Kaye M, Mandel M, Andrews C, Prabhu R, Donohue JF, Watt R, Lo KH, Schlenker-Herceg R, Barnathan ES, Murray J, COPD Investigators. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2007; 175: 926-934.
111. Brightling CE, Bleecker ER, Panettieri RA, Jr., Bafadhel M, She D, Ward CK, Xu X, Birrell C, van der Merwe R. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. *Lancet Respir Med* 2014; 2: 891-901.

112. Calverley PMA, Sethi S, Dawson M, Ward CK, Finch DK, Penney M, Newbold P, van der Merwe R. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. *Respir Res* 2017; 18: 153.

113. Eich A, Urban V, Jutel M, Vlcek J, Shim JJ, Trofimov VI, Liam CK, Kuo PH, Hou Y, Xiao J, Branigan P, O'Brien CD. A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease. *COPD* 2017; 14: 476-483.

114. Panettieri RA, Jr., Brightling C, Sjobring U, Péterffy A, Tornling G, Daoud SZ, Ranade K, Hollis S, Colice G. STRATOS 1 and 2: considerations in clinical trial design for a fully human monoclonal antibody in severe asthma. *Clin Invest (Lond)* 2015; 5: 701-711.

115. Bousquet J, Rabe K, Humbert M, Chung KF, Berger W, Fox H, Ayre G, Chen H, Thomas K, Blogg M, Holgate S. Predicting and evaluating response to omalizumab in patients with severe allergic asthma. *Respir Med* 2007; 101: 1483-1492.

116. Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, Brightling CE, Pavord ID. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. *Lancet Respir Med* 2016; 4: 549-556.

117. Wahn U, Martin C, Freeman P, Blogg M, Jimenez P. Relationship between pretreatment specific IgE and the response to omalizumab therapy. *Allergy* 2009; 64: 1780-1787.

118. Alshabanat A, Zafari Z, Albayan O, Dairi M, FitzGerald JM. Asthma and COPD overlap syndrome (ACOS): a systematic review and meta analysis. *PLoS One* 2015; 10: e0136065.
119. Schleich F, Brusselle G, Louis R, Vandenplas O, Michils A, Pilette C, Peche R, Manise M, Joos G. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). *Respir Med* 2014; 108: 1723-1732.

120. Christenson SA, Steiling K, van den Berge M, Hijazi K, Hiemstra PS, Postma DS, Lenzburg ME, Spira A, Woodruff PG. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2015; 191: 758-766.

121. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R, ECLIPSE investigators. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. *Eur Respir J* 2014; 44: 1697-1700.

122. Weatherburn CJ, Guthrie B, Mercer SW, Morales DR. Comorbidities in adults with asthma: Population-based cross-sectional analysis of 1.4 million adults in Scotland. *Clin Exp Allergy* 2017; 47: 1246-1252.

123. Lisspers K, Larsson K, Johansson G, Janson C, Costa-Scharplatz M, Gruenberger JB, Uhde M, Jorgensen L, Gutzwiller FS, Stallberg B. Economic burden of COPD in a Swedish cohort: the ARCTIC study. *Int J Chron Obstruct Pulmon Dis* 2018; 13: 275-285.

124. Vanfleteren LEGW, Spruit MA, Wouters EFM, Franssen FME. Management of chronic obstructive pulmonary disease beyond the lungs. *Lancet Respir Med* 2016; 4: 911-924.

125. Ferguson GT, FitzGerald JM, Bleecker ER, Laviolette M, Bernstein D, LaForce C, Mansfield L, Barker P, Wu Y, Jison M, Goldman M, BISE Study Investigators. Benralizumab for patients with mild to moderate, persistent asthma (BISE): a randomised, double-blind, placebo-controlled, Phase 3 trial. *Lancet Respir Med* 2017; 5: 568-576.
126. Coumou H, Westerhof GA, de Nijs SB, Zwinderman AH, Bel EH. Predictors of accelerated decline in lung function in adult-onset asthma. *Eur Respir J* 2018; 51: 1701785.

127. de Vries R, Dagelet YWF, Spoor P, Snoey E, Jak PMC, Brinkman P, Dijkers E, Bootsma SK, Elskamp F, de Jongh FHC, Haarman EG, in ’t Veen JCCM, Maitland-van der Zee AH, Sterk PJ. Clinical and inflammatory phenotyping by breathomics in chronic airway diseases irrespective of the diagnostic label. *Eur Respir J* 2018; 51: 1701817.

128. d’Hooghe JNS, Ten Hacken NHT, Weersink EJM, Sterk PJ, Annema JT, Bonta PI. Emerging understanding of the mechanism of action of bronchial thermoplasty in asthma. *Pharmacol Ther* 2018; 181: 101-107.

129. Kirkham JJ, Davis K, Altman DG, Blazeby JM, Clarke M, Tunis S, Williamson PR. Core Outcome Set-STAndards for Development: The COS-STAD recommendations. *PLoS Med* 2017; 14: e1002447.

130. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, Harris JM, Scheerens H, Wu LC, Su Z, Mosesova S, Eisner MD, Bohen SP, Matthews JG. Lebrikizumab treatment in adults with asthma. *N Engl J Med* 2011; 365: 1088-1098.

131. Russell RJ, Chachi L, FitzGerald JM, Backer V, Olivenstein R, Titlestad IL, Ulrik CS, Harrison T, Singh D, Chaudhuri R, Leaker B, McGarvey L, Siddiqui S, Wang M, Braddock M, Nordenmark LH, Cohen D, Parikh H, Colice G, Brightling CE, investigators Ms. Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. *Lancet Respir Med* 2018; 6: 499-510.

132. Good JT, Jr., Kolakowski CA, Groshong SD, Murphy JR, Martin RJ. Refractory asthma: importance of bronchoscopy to identify phenotypes and direct therapy. *Chest* 2012; 141: 599-606.
133. Wenzel SE. Emergence of Biomolecular Pathways to Define Novel Asthma Phenotypes. Type-2 Immunity and Beyond. *Am J Respir Cell Mol Biol* 2016; 55: 1-4.

134. Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. *J Allergy Clin Immunol* 2004; 113: 101-108.

135. Wenzel SE. Severe asthma in adults. *Exp Lung Res* 2005; 31 (Suppl. 1): 22.

136. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV. T-helper type 2-driven inflammation defines major subphenotypes of asthma. *Am J Respir Crit Care Med* 2009; 180: 388-395.

137. Mullerova H, Maskell J, Meeraus WH, Galkin D, Albers FC, Gait C. Characterization of COPD patients treated with inhaled triple therapy containing inhaled corticosteroids [ICS], long-acting beta2-agonists [LABA], and long-acting muscarinic antagonists [LAMA] in the UK. *Am J Respir Crit Care Med* 2017; 195:A4986.

138. Yancey S, Albers FC, Gunsoy N, Harris S, Keene O. Effect of mepolizumab on exacerbations in asthma patients with features common in COPD. *Am J Respir Crit Care Med* 2017; 195:A4683.

139. Chen S, Small M, Lindner L, Xu X. Symptomatic burden of COPD for patients receiving dual or triple therapy. *Int J Chron Obstruct Pulmon Dis* 2018; 13: 1365-1376.

140. Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, Lin SL. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. *Am J Respir Crit Care Med* 2013; 188: 1294-1302.

141. Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, Holgate ST, Meyers DA, Rabe KF, Antczak A, Baker J, Horvath I, Mark Z, Bernstein D, Kerwin E, Schlenker-Herceg R, Lo KH,
Watt R, Barnathan ES, Chanez P, T03 Asthma Investigators. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. *Am J Respir Crit Care Med* 2009; 179: 549-558.

142. Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, Hakulinen A, Paolozzi L, Wajdula J, Zang C, Nelson H, Raible D. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. *Eur Respir J* 2011; 37: 1352-1359.

143. Cahill KN, Katz HR, Cui J, Lai J, Kazani S, Crosby-Thompson A, Garofalo D, Castro M, Jarjour N, DiMango E, Erzurum S, Trevor JL, Shenoy K, Chinchilli VM, Wechsler ME, Laidlaw TM, Boyce JA, Israel E. KIT inhibition by imatinib in patients with severe refractory asthma. *N Engl J Med* 2017; 376: 1911-1920.

144. Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, van der Merwe R. Tezepelumab in adults with uncontrolled asthma. *N Engl J Med* 2017; 377: 936-946.

145. Vestbo J, Anderson W, Coxson HO, Crim C, Dawber F, Edwards L, Hagan G, Knobil K, Lomas DA, MacNee W, Silverman EK, Tal-Singer R, Eclipse investigators. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). *Eur Respir J* 2008; 31: 869-873.

146. Couper D, LaVange LM, Han M, Barr RG, Bleeker E, Hoffman EA, Kanner R, Kleerup E, Martinez FJ, Woodruff PG, Rennard S, SPIROMICS Research Group. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). *Thorax* 2014; 69: 491-494.

147. Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK, Crapo JD. Genetic epidemiology of COPD (COPDGene) study design. *COPD* 2010; 7: 32-43.

148. Loza MJ, Adcock I, Auffray C, Chung KF, Djukanovic R, Sterk PJ, Susulic VS, Barnathan ES, Baribaud F, Silkoфф PE, ADEPT, U-BIOPRED Investigators. Longitudinally stable, clinically defined
clusters of patients with asthma independently identified in the ADEPT and U-BIOPRED asthma studies. *Ann Am Thorac Soc* 2016; 13 Suppl 1: S102-103.

149. Rennard SI, Locantore N, Delafont B, Tal-Singer R, Silverman EK, Vestbo J, Miller BE, Bakke P, Celli B, Calverley PM, Coxson H, Crim C, Edwards LD, Lomas DA, MacNee W, Wouters EF, Yates JC, Coca I, Agusti A, Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints. Identification of five chronic obstructive pulmonary disease subgroups with different prognoses in the ECLIPSE cohort using cluster analysis. *Ann Am Thorac Soc* 2015; 12: 303-312.

150. Hastie AT, Martinez FJ, Curtis JL, Doerschuk CM, Hansel NN, Christenson S, Putcha N, Ortega VE, Li X, Barr RG, Carretta EE, Couper DJ, Cooper CB, Hoffman EA, Kanner RE, Kleerup E, O’Neal WK, Paine R, 3rd, Peters SP, Alexis NE, Woodruff PG, Han MK, Meyers DA, Bleecker ER, SPIROMICS investigators. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. *Lancet Respir Med* 2017; 5: 956-967.

151. Lee JH, Cho MH, McDonald ML, Hersh CP, Castaldi PJ, Crapo JD, Wan ES, Dy JG, Chang Y, Regan EA, Hardin M, DeMeo DL, Silverman EK, COPDGene Investigators. Phenotypic and genetic heterogeneity among subjects with mild airflow obstruction in COPDGene. *Respir Med* 2014; 108: 1469-1480.

152. Castaldi PJ, Dy J, Ross J, Chang Y, Washko GR, Curran-Everett D, Williams A, Lynch DA, Make BJ, Crapo JD, Bowler RP, Regan EA, Hokanson JE, Kinney GL, Han MK, Soler X, Ramsdell JW, Barr RG, Foreman M, van Beek E, Casaburi R, Criner GJ, Lutz SM, Rennard SI, Santorico S, Sciurba FC, DeMeo DL, Hersh CP, Silverman EK, Cho MH. Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema. *Thorax* 2014; 69: 415-422.

153. Reddel HK, Gerhardsson de Verdier M, Agusti A, Anderson G, Beasley R, Bel EH, Janson C, Make B, Martin RJ, Pavord I, Price D, Keen C, Gardev A, Rennard S, Sveréus A, Bansal AT, Brannman
L, Karlsson N, Nuevo J, Nyberg F, Young SS, Vestbo J. Prospective observational study in patients with obstructive lung disease: NOVELTY design. *ERJ Open Res* 2019; 5: 00036-02018.
TABLE 1 Recent clinical definitions of severe asthma, COPD and asthma–COPD overlap

Source	Definition	Advantages/additions to previous definitions	Disadvantages
Asthma			
WHO (2010) [63]	**Treatment-resistant severe asthma**	- Differentiates treatment-resistant severe asthma from untreated or difficult-to-treat severe asthma, while recognising the importance of access to effective medications	- Potential for inappropriate escalation of ICS
	• Asthma for which control is not achieved despite the highest level of recommended treatment: refractory asthma and corticosteroid-resistant asthma		
	• Asthma for which control can be maintained only with the highest level of recommended treatment		
	o ‘Control’ is defined based on symptoms, activity limitation, night-time awakenings and SABA use in past 2–4 weeks; lung function and the number of exacerbations/year requiring OCS		
IMI (2011) [64]	**Severe refractory asthma**	- Excludes patients with alternative diagnoses that may mimic asthma and comorbidities that are untreated or inadequately treated and contribute to poor control	- Potential for inappropriate escalation of ICS dose
	When the patient has been followed and reassessed for ≥6 months:		- Requires ≥2 severe exacerbations in the previous year, exposing patients to a higher risk of OCS-related adverse effects
	• Uncontrolled asthma (ACQ score ≥1.5) and/or ≥2 severe exacerbations/year despite:		- Requires management of contributory factors before asthma can be classified as severe
	o Adherence to high-dose ICS (fluticasone ≥1000 µg·day or equivalent) and/or daily OCS + LABA or another controller		
	o Exclusion of alternative diagnoses and removal (if possible) of sensitising substances at work/home or drugs that may cause bronchoconstriction		
	o Optimally treated comorbidities		
ERS/ATS (2014) [10]

Severe asthma

- Asthma which requires treatment with guidelines-suggested medications for GINA steps 4–5 asthma (high-dose ICS and LABA or leukotriene modifier/theophylline) for the previous year or OCS for ≥50% of the previous year to prevent it from becoming ‘uncontrolled’ or which remains ‘uncontrolled’ despite this therapy
 - ‘Uncontrolled asthma’ is defined as (one or more of):
 - ACQ consistently >1.5, ACT <20 (or ‘not well controlled’ by NAEP/GINA guidelines);
 - ≥2 bursts of OCS (>3 days each) in the previous year;
 - ≥1 hospitalisation, ICU stay or mechanical ventilation in the previous year;
 - pre-bronchodilator FEV1 <80% predicted and FEV1/FVC <LLN
- Controlled asthma that worsens on tapering of these high doses of ICS or OCS (or additional biologics)

Advantages/additions to previous definitions

- Includes patients whose asthma is controlled but dependent on high-dose ICS/OCS (encouraging step-down to assess whether asthma becomes uncontrolled)
- Provides a detailed definition of ‘uncontrolled’, which balances symptom control with future risk
- Explicitly excludes patients who present with difficult asthma, in whom appropriate diagnosis and/or treatment of confounders (e.g. poor adherence or comorbidities) ‘vastly improves’ their current condition

Disadvantages

- Potential for inappropriate escalation of ICS dose
- A single pre-bronchodilator FEV1 <80% in the previous year is sufficient to categorise a patient as having uncontrolled severe asthma (even if they have had no exacerbations and have good symptom control)
- The criterion for exacerbations requires ≥2 bursts of OCS (of >3 days each) in the previous year, exposing patients to a higher risk of OCS adverse effects
- Requires management of contributory factors before asthma can be classified as severe

Lancet Commission (2017) [21]

Severe asthma

Asthma with any of:

- ≥1 severe attack (exacerbation or flare-up)
- Spirometry persistently below the normal range despite moderate-dose ICS plus one other controller
- Persistent variable airflow obstruction despite ICS/LABA
- Persistent airway eosinophilia despite moderate-dose ICS

Advantages/additions to previous definitions

- Recognises the need to reduce the risk of attacks as a priority, including addressing poor adherence and risk factors
- Avoids inappropriate escalation of ICS dose

Disadvantages

- The first criterion may include patients with ‘untreated severe asthma’, recognised as a separate population in the WHO definition [63]; i.e. in a patient with one severe attack while treated only with SABA, asthma may become controlled after commencing low-dose ICS
| Source | Definition | Advantages/additions to previous definitions | Disadvantages |
|--------|------------|---|---------------|
| GINA (2018) [14] | **Severe asthma (includes ‘refractory’ or treatment-resistant’ asthma)**
Asthma that requires high-dose ICS/LABA to prevent it from becoming ‘uncontrolled’, or asthma that remains ‘uncontrolled’ despite this treatment (after excluding poor inhaler technique/adherence, incorrect diagnosis and comorbidities and exposure to sensitising agents/irritants)
- ‘Uncontrolled asthma’ is defined based on symptom control and future risk of adverse outcomes, as per the GINA strategy report | • Includes patients whose asthma is well controlled but dependent on high-dose ICS/OCS (encouraging step-down)
• Provides a detailed definition of ‘uncontrolled’, which includes both symptom control and future risk | • Requires management of contributory factors before asthma can be classified as severe |
| COPD | **COPD with severe airflow limitation**
Post-bronchodilator FEV₁/FVC <0.7 and FEV₁ <50% predicted
- Patients are further stratified by exacerbation history and symptoms (mMRC or CAT score) using the ABCD assessment tool to guide treatment decisions | • Partly addresses heterogeneity by basing treatment decisions on exacerbations and symptoms | • Trial eligibility is often based on airflow limitation thresholds alone, without considering the ABCD group
• Excludes other important phenotypic features such as CT scan findings and low diffusion capacity |
| Asthma–COPD overlap | **Asthma and COPD overlap syndrome**
Symptoms of increased variability of airflow and incompletely | • Recognises the need to identify patients with features of both asthma and COPD | • The term ‘syndrome’ implies a single disease; does not recognise heterogeneity within the subset of |
| Source | Definition | Advantages/additions to previous definitions | Disadvantages |
|--------|------------|---|---------------|
| **Reversible airflow limitation, including (all of):**
• Symptoms of asthma and/or COPD
• FEV₁/FVC <0.7
• FEV₁ <80% predicted
• Airway hyper-responsiveness[#] | | | patients who meet the definition
• No recommendations for severity staging or treatment |
| **CHAIN study (2016) [67, 68]** | **Asthma and COPD overlap syndrome**
COPD (>40 years of age, with post-bronchodilator FEV₁/FVC <0.7 and exposure to cigarette smoke) plus at least one of:
• Previous history of asthma
• Bronchodilator response >15% and >400 mL
OR two of:
• IgE >100 IU
• History of atopy
• Reversibility >12% and >200 mL on 2 separate visits
• Blood eosinophils >5% | • Based on precise diagnostic criteria | • Excludes certain phenotypes, such as younger patients, early-onset disease and non-smokers
• The term ‘syndrome’ implies a single disease; does not recognise heterogeneity within the subset of patients who meet the definition
• No recommendations for severity staging or treatment |
| **Roundtable consensus definition (2016) [69]** | **Asthma–COPD overlap syndrome**
Three major criteria, including (all of):
• Persistent airflow limitation (FEV₁/FVC <0.7 or LLN)
• ≥10 pack-years’ smoking history OR equivalent air pollution exposure
• Documented history of asthma OR reversibility >400 mL | • Provides a straightforward algorithm to facilitate diagnosis and research | • The term ‘syndrome’ implies a single disease; does not recognise heterogeneity within the subset of patients who meet the definition
• No attempt to classify severity and limited recommendations for treatment |
Source | **Definition** | **Advantages/additions to previous definitions** | **Disadvantages**
--- | --- | --- | ---
GesEPOC/GEMA (2017) [70] | **Asthma–COPD overlap** Persistent airflow limitation (FEV₁/FVC <0.7) in a patient ≥35 years with ≥10 pack-years’ smoking history, who does not respond to ICS/LABA and/or OCS, with one of:
- A diagnosis of current asthma (including history and/or symptoms in addition to objective diagnostic confirmation [reversibility ≥12% and ≥200 mL; diurnal variability in PEF ≥20%; or FeNO ≥50 ppb])
- Positive bronchodilator response (≥15% and ≥400 mL) AND/OR eosinophil count of ≥300 cells/μL | • Provides basic treatment recommendations | • Excludes certain phenotypes, such as younger patients, early-onset disease and non-smokers
• No attempt to classify severity; treatment is based on safety considerations
GINA/GOLD (2018) [14] | **Asthma–COPD overlap** Persistent airflow limitation with several features usually associated with asthma and several features usually associated with COPD
- GINA and GOLD specifically recommend against attempting to define asthma–COPD overlap, because of its obvious heterogeneous nature and different underlying mechanisms; this is a description rather than a definition
- A diagnosis of asthma–COPD overlap is recommended if there are similar numbers of features of asthma and | • Highlights that asthma–COPD overlap does not represent a single entity
• Includes a wide range of potential clinical phenotypes
• Provides basic treatment recommendations based on safety | • Characteristics, underlying mechanisms and treatments for different clinical phenotypes of asthma–COPD overlap are currently undetermined
• No attempt to classify severity; treatment is based on safety considerations
Where publications state “systemic corticosteroid”, it is assumed for the purposes of this review that they refer mostly or entirely to OCS.

*: Provocation dose of hypertonic saline that induces a 15% fall in FEV₁ <12 mL.

*: Response to 400 μg albuterol/salbutamol or equivalent.
TABLE 2 Design of existing phase III RCTs of biologic therapies in severe obstructive lung disease

Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point
Target population of patients with asthma									
Busse et al [89] (omalizumab)	Severe allergic asthma	Symptomatic (total daily symptom score ≥3)	ICS 420–840 µg·day (BDP or equivalent)⁹	≥12%	n/a	n/a	Positive skin-prick, IgE 30–700 IU·mL	n/a	Number of exacerbations (during ICS stable and ICS reduction phases)
Solèr et al [90] (omalizumab)	Allergic asthma	Symptomatic (total daily symptom score ≥3)	Medium- to high-dose ICS (BDP 500–1200 µg·day or equivalent) + β₂-agonist as needed or maintenance	≥12%	n/a	n/a	Positive skin-prick, IgE 30–700 IU·mL	Maintenance OCS use	Number of exacerbations (during ICS stable and ICS reduction phases)
SOLAR [91] (omalizumab)	Concomitant allergic asthma and PAR	Concomitant moderate-to-severe PAR ≥2 years; AQLQ total score >64 and RQLQ total score >54; ≥2 unscheduled visits for asthma in the past year or ≥3 in past 2 years	Medium- to high-dose ICS (budesonide ≥400 µg·day)	≥12%	n/a	n/a	Positive skin-prick, IgE 30–1300 IU·mL	OCS use	(Co-primary) Number of exacerbations and proportion of patients with improvement in both asthma and rhinitis quality-of-life scores
Table: Defining Severe Obstructive Lung Disease

Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point
INNOVATE [92] (omalizumab)	Severe persistent asthma	Daytime or night-time symptoms; ≥2 exacerbations requiring OCS in the past year or ≥1 severe exacerbation requiring hospitalisation or ER treatment in the past year	High-dose ICS (BDP >1000 µg·day or equivalent) + LABA ± OCS or other controllers	≥12%	n/a	n/a	Positive skin-prick, IgE 30–700 IU·mL	Maintenance OCS use >20 mg·day, (≤20 mg·day was permitted providing ≥1 exacerbation in the past year occurred on this therapy); smokers or former smokers with ≥10 pack-years	Rate of clinically significant asthma exacerbations
Ohta et al [93] (omalizumab)	Moderate-to-severe persistent asthma	Moderate-to-severe asthma as per GINA 2002; daytime and/or night-time symptoms	Medium- to high-dose ICS (BDP ≥800 µg·day or equivalent) + ≥1 LABA, OCS or other controllers	n/a	n/a	n/a	Positive skin-prick or in vitro reactivity, IgE 30–1300 IU·mL	Maintenance OCS use (>10 mg·day); complicated pulmonary disease considered to interfere with evaluation	Change from baseline in morning PEF
Lanier et al [94] (omalizumab)	Moderate-to-severe, uncontrolled allergic asthma (children)	Daytime or night-time symptoms; ≥2 exacerbations in the past year or ≥3 in past 2 years or ≥1 severe exacerbation requiring	Medium- to high-dose ICS (FP ≥200 µg·day or equivalent)	≥12%	n/a	n/a	Positive skin-prick, IgE 30–1300 IU·mL	OCS use for reasons other than asthma	Rate of clinically significant asthma exacerbations
Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point
------------------	--	-----------------	------------------	--	-------------------	-----------------	----------------------	-----------------	------------------
EXTRA [95]	Severe, uncontrolled allergic asthma	Daytime and night-time symptoms requiring SABA; ≥1 exacerbation in the past year	High-dose ICS (fluticasone ≥500 µg BID or equivalent) + LABA ± OCS or other controllers	n/a	n/a	n/a	Positive skin-prick or *in vitro* reactivity, IgE 30–700 IU·mL	Exacerbation requiring OCS or increase in baseline OCS in ≤30 days prior to screening; smokers or former smokers with ≥10 pack-years; active lung disease other than asthma	Rate of exacerbations
NCT00314574	Severe, persistent, uncontrolled, non-atopic asthma	Severe uncontrolled asthma as per GINA 2006; ≥2 exacerbations/year and/or ≥1 exacerbation requiring hospitalisation or ER treatment in the past year	High-dose ICS (BDP >1000 µg·day or equivalent) + LABA ± OCS	n/a	n/a	n/a	Negative Phadiatop, radioallergosorbent and skin-prick tests; IgE 30–700 IU·mL	Smokers or former smokers with ≥10 pack-years; uncontrolled other chronic diseases	Change from baseline in cell surface high-affinity IgE receptor (FcɛRI) expression on basophils and plasmacytoid dendritic cells
Garcia et al [96]	Severe, persistent, uncontrolled, non-atopic asthma	Severe uncontrolled asthma as per GINA 2006; ≥2 exacerbations/year and/or ≥1 exacerbation requiring hospitalisation or ER treatment in the past year	High-dose ICS (BDP >1000 µg·day or equivalent) + LABA ± OCS	n/a	n/a	n/a	Negative Phadiatop, radioallergosorbent and skin-prick tests; IgE 30–700 IU·mL	Smokers or former smokers with ≥10 pack-years; uncontrolled other chronic diseases	Change from baseline in cell surface high-affinity IgE receptor (FcɛRI) expression on basophils and plasmacytoid dendritic cells
NCT01007149	Moderate-to-severe asthma	Medium- to high-dose ICS (per GINA)	≥12%	n/a	n/a	A positive reaction to ≥1	Active lung disease other	Mean change from baseline in	

Omalizumab
Trial (treatment)

Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary endpoint
(omalizumab) NCT01202903	allergic asthma	per GINA 2014; ≥2 exacerbations in the past year or ≥3 in past 2 years	2014) + LABA	Bronchodilator reversibility requirement (see footnotes)	Any indicator of eosinophilic inflammation, including FeNO ≥50 ppb	n/a	n/a	Smokers or former smokers with ≥10 pack-years; clinically important lung condition other than asthma (including COPD)	Rate of clinically significant asthma exacerbations
DREAM [98] (mepolizumab) NCT01000506	Severe eosinophilic asthma	Refractory asthma per ERS/ATS definition; one of: ≥2 exacerbations in the past year, prompt deterioration of asthma control after ≤25% reduction in maintenance ICS or OCS, eosinophilia or elevated FeNO	High-dose ICS (FP ≥880 µg day or equivalent) ± OCS + additional controllers	Any indicator of eosinophilic inflammation, including FeNO ≥50 ppb	Positive radioallergosorbent test	Smokers or former smokers with ≥10 pack-years; substantial uncontrolled comorbidity	Rate of clinically significant asthma exacerbations		
MENSA [99] (mepolizumab) NCT01691521	Severe eosinophilic asthma	≥2 exacerbations requiring OCS or ≥2-fold increase in usual OCS dose in the past year	High-dose ICS (FP ≥880 µg day or equivalent) + an additional controller	≥12%	Blood eosinophil count of ≥300 cells·µL during the previous year or of ≥150 cells·µL during the previous year	n/a	n/a	Smokers or former smokers with ≥10 pack-years; clinically important lung condition other than asthma (including COPD)	Rate of clinically significant asthma exacerbations
Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point
------------------	--	------------------	------------------	---	--------------------	----------------	----------------------	------------------	-----------------
SIRIUS [57] (mepolizumab) NCT01691508	Severe eosinophilic asthma	n/a	High-dose ICS (FP ≥880 µg·day or equivalent) + an additional controller (for ≥3 months in previous 12 months) + OCS (equivalent to prednisone 5–35 mg·day, for past 6 months)	≥12% and 200 mL*	Blood eosinophil count of ≥300 cells·µL within 1 year of screening or of ≥150 cells·µL at screening	n/a	n/a	Smokers or former smokers with ≥10 pack-years; clinically important lung condition other than asthma (including COPD)	% reduction in daily OCS dose from optimisation phase to weeks 20–24§
MUSCA [100] (mepolizumab) NCT02281318	Severe eosinophilic asthma	Severe uncontrolled asthma per ERS/ATS definition; ≥2 exacerbations requiring OCS or ≥2x increase in usual OCS dose in the past year	High-dose ICS + ≥1 additional controller	n/a	Blood eosinophil count of ≥300 cells·µL within 1 year of screening or of ≥150 cells·µL at screening	n/a	n/a	Smokers or former smokers with ≥10 pack-years; concurrent respiratory disease	Mean change from baseline in SGRQ total score
Castro et al. Study 1 and Study 2 [101]	Inadequately controlled, moderate-	ACQ-7 score ≥1.5; ≥1 exacerbation requiring OCS in	Medium- to high-dose ICS (FP ≥440 µg·day or equivalent)	≥12%	Blood eosinophil count of	n/a	n/a	Current smokers; another confounding	Rate of clinically significant asthma exacerbations
Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary endpoint
------------------	---	------------------	------------------	--	-------------------	-----------------	------------------------	--------------------	------------------
(reslizumab)	to-severe eosinophilic asthma	the past year	± an additional controller (including OCS)	≥400 cells·µL	(reslizumab) NCT01287039; NCT01285323	underlying lung disorder (including COPD)			
Bjørner et al. [102]	inadequately controlled asthma with elevated blood eosinophils	ACQ-7 score ≥1.5	Medium- to high-dose ICS (FP ≥440 µg·day or equivalent), ± an additional controller	≥12%	Blood eosinophil count of ≥400 cells·µL	n/a	n/a	Maintenance OCS use; current smokers; other confounding lung disorders or pulmonary conditions	Change from baseline in pre-bronchodilator FEV₁
(reslizumab)	poorly controlled asthma	ACQ-7 score ≥1.5	Medium- to high-dose ICS (FP ≥440 µg·day or equivalent), ± an additional controller	≥12%	n/a	n/a	n/a	Maintenance OCS use; current smokers; underlying lung disorders or pulmonary conditions	Change from baseline in FEV₁
CALIMA [104]	Severe, uncontrolled eosinophilic asthma	ACQ-6 score ≥1.5; ≥2 exacerbations requiring OCS or increase in usual OCS dose in the past year	High-dose ICS (FP ≥500 µg·day or equivalent) + LABA ± OCS and additional controllers	≥12% and 200 mL	Blood eosinophil count of <300 cells·µL or of ≥300 cells·µL (≥300 cells·µL in primary analysis)	n/a	n/a	Clinically important pulmonary or eosinophilic disease other than asthma (including COPD)	AER ratio versus placebo for patients receiving fluticasone ≥500 µg or equivalent plus LABA with baseline blood eosinophils ≥300 cells·µL
Trial (treatment)

SIROCCO [105] (benralizumab)
- **Authors’ description of target population**: Severe, uncontrolled eosinophilic asthma
- **Severity/control**: ACQ-6 score ≥1; ≥2 exacerbations requiring OCS or increase in usual OCS dose in the past year
- **Current treatment**: High-dose ICS (FP ≥500 µg·day or equivalent) + LABA ± OCS and additional controller
- **Bronchodilator reversibility requirement (see footnotes)**: ≥12% and 200 mL
- **Eosinophilic status**: Blood eosinophil count of <300 cells·µL or of ≥300 cells·µL (≥300 cells·µL in primary analysis population)
- **FeNO requirement**: n/a
- **Allergy/atopy requirement**: n/a
- **Notable exclusions**: Clinically important pulmonary or eosinophilic disease other than asthma (including COPD)
- **Primary endpoint**: AER ratio versus placebo for patients with baseline blood eosinophils ≥300 cells·µL

ZONDA [58] (benralizumab)
- **Severity/eosinophilic asthma requiring oral corticosteroids**: ≥1 exacerbations in the past year
- **Current treatment**: High-dose ICS (fluticasone >500 µg·day or equivalent) + LABA + OCS (equivalent to prednisone 7.5–40 mg·day, for past 6 months)
- **Bronchodilator reversibility requirement (see footnotes)**: ≥12% and 200 mL or documented reversibility during past 2 years
- **Eosinophilic status**: Blood eosinophil count of ≥150 cells·µL
- **FeNO requirement**: n/a
- **Allergy/atopy requirement**: n/a
- **Notable exclusions**: Clinically important pulmonary or eosinophilic disease other than asthma (including COPD)
- **Primary endpoint**: % reduction in daily OCS dose from baseline to end of maintenance phase while maintaining asthma control##

LAVOLTA I and LAVOLTA II [106] (lebrikizumab)
- **Uncontrolled asthma**: ACQ-5 score ≥1.5; at least one of: symptoms ≥2 days/week, nighttime awakenings ≥1 night/week, SABA ≥2 days/week or
- **Current treatment**: High-dose ICS (FP 500–2000 µg·day or equivalent) + ≥1 additional controller
- **Bronchodilator reversibility requirement (see footnotes)**: ≥12%
- **Eosinophilic status**: Blood eosinophil count of <300 cells·µL or of ≥300 cells·µL (≥300 cells·µL)
- **FeNO requirement**: n/a
- **Allergy/atopy requirement**: n/a
- **Notable exclusions**: Maintenance OCS use within past 3 months; smokers or former smokers with ≥10 pack-years; clinically
- **Primary endpoint**: AER in biomarker-high patients (periostin ≥50 ng·mL and/or blood eosinophils ≥300 cells·µL)
Trial (treatment) Description of Target Population Severity/Control Current Treatment Bronchodilator Reversibility Requirement (See Footnotes) Eosinophilic Status FeNO Requirement Allergy/Atopy Requirement Notable Exclusions Primary Endpoint

Trial (treatment)	Description of Target Population	Severity/Control	Current Treatment	Bronchodilator Reversibility Requirement (see footnotes)	Eosinophilic Status	FeNO Requirement	Allergy/Atopy Requirement	Notable Exclusions	Primary Endpoint
LIBERTY ASTHMA QUEST [107] (dupilumab) NCT02414854	Moderate-to-severe, uncontrolled asthma	ACQ-5 score ≥1.5; ≥1 exacerbation in past year requiring hospitalisation, emergency medical care or OCS for ≥3 days	High-dose ICS (FP ≥500 µg·day or equivalent) + up to 2 additional controllers	≥12% and 200 mL	n/a	n/a	n/a	Current smokers, or former smokers with >10 pack-years; COPD or other lung disease that may impair lung function	(Co-primary) Severe AER and change from baseline in pre-bronchodilator FEV₁
LIBERTY ASTHMA VENTURE [59] (dupilumab) NCT02528214	Glucocorticoid-dependent severe asthma	n/a	High-dose ICS (FP >500 µg·day or equivalent) + up to two additional controllers + maintenance OCS (equivalent to prednisone 5–35 mg·day)	≥12% and 200 mL, or airway hyperresponsiveness	n/a	n/a	n/a	Current smokers, or former smokers with >10 pack-years; COPD or other lung disease that may impair lung function; clinically significant lung disease other than asthma	% reduction in OCS dose while maintaining asthma control
STRATOS 1 and Severe, ACQ-6 score ≥1.5;	High-dose ICS (FP ≥12% and ≥200)	n/a	≥37 ppb in	Regular OCS use	AER in all-comers				
Trial (treatment) Authors’ description of target population Severity/control Current treatment Bronchodilator reversibility requirement (see footnotes) Eosinophilic status FeNO requirement Allergy/atopy requirement Notable exclusions Primary endpoint

STRATOS 2 [108] (tralokinumab) NCT02161757; NCT02194699
uncontrolled asthma
≥2 exacerbations requiring OCS in the past year [114]
≥500 µg·day or equivalent) + LABA ± additional controllers excl. OCS
mL
STRATOS 2 primary analysis population
within past 3 months; current smokers, or former smokers with ≥10 pack-years; clinically important pulmonary disease other than asthma [114]

TROPOS [109] (tralokinumab) NCT02281357
Severe, uncontrolled asthma
Severe, uncontrolled asthma requiring maintenance OCS treatment plus inhaled corticosteroids/ LABAs
Medium- to high-dose ICS (FP ≥500 µg·day or equivalent) + LABA + maintenance OCS (equivalent to prednisone 7.5–30 mg·day)
≥12% or documented reversibility in the past 6 months
n/a
n/a
n/a
Current smokers, or former smokers with ≥10 pack-years; clinically important pulmonary disease other than asthma (including COPD)

Target population of patients with COPD

METREX and METREO [33] (mepolizumab) NCT02105948;
Eosinophilic COPD
FEV₁/FVC <0.7 and post-bronchodilator FEV₁ >20 and ≤80% predicted; ≥2
High-dose ICS (FP ≥500 µg·day or equivalent) + LABA + LAMA
n/a
METREX: no blood eosinophil threshold
n/a
n/a
Current diagnosis of asthma; any history of asthma in never smokers; Moderate/severe AER
In METREX, all patients and
Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary endpoint
NCT02105961	moderate or ≥1 severe exacerbations in past year	moderate or ≥1 severe exacerbations in past year	Bronchodilator	METREO: blood eosinophil count of ³300 cells·µL in previous 12 months or of ³150 cells·µL at screening	METREO: blood eosinophil count of ³300 cells·µL in previous 12 months or of ³150 cells·µL at screening	n/a	n/a	age <40 years	eosinophilic (³300 cells·µL in previous 12 months or ³150 cells·µL at screening) patients were analysed as separate groups
GALATHEA and TERRANOVA [34] (benralizumab)	Moderate-to-very severe COPD with exacerbation history	Moderate-to-very severe exacerbations in the past year	LABA + LAMA and/or ICS	n/a	No blood eosinophil threshold, but enrolment stratified/capped by blood eosinophil count (³220 cells·µL in primary analysis population)	n/a	n/a	Non-smokers or smoking history <10 pack-years; clinically important pulmonary disease other than COPD; asthma as a primary or main diagnosis; age <40 years	AER in patients with baseline blood eosinophils ³220 cells·µL
NCT02155660; NCT02138916									

ACQ-5: 5-item Asthma Control Questionnaire; ACQ-6: 6-item Asthma Control Questionnaire; ACQ-7: 7-item Asthma Control Questionnaire; AER: annual exacerbation rate; AQLQ: Asthma Quality of Life Questionnaire; ATS: American Thoracic Society; BDP: beclomethasone dipropionate; BID: twice daily; COPD: chronic obstructive pulmonary disease; ER: emergency room; ERS: European Respiratory Society; FeNO: fractional exhaled nitric oxide; FEV1: forced expiratory volume in 1 s; FP: fluticasone propionate; FVC: forced vital capacity; GINA: Global Initiative for Asthma; ICS: inhaled corticosteroid; IgE: immunoglobulin E; LABA: long-acting β2-agonist; LAMA: long-acting muscarinic antagonist; n/a: not applicable (not mentioned in inclusion/exclusion
Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point

criteria); OCS: oral corticosteroid; PAR: persistent allergic rhinitis; PEF: peak expiratory flow; RCT, randomised controlled trial; RQLQ: Rhinitis Quality of Life Questionnaire; SABA: short-acting β2-agonist; SGRQ: St George’s Respiratory Questionnaire.

Where publications state “systemic corticosteroid”, it is assumed for the purposes of this review that they refer mostly or entirely to patients receiving OCS.

*: Published information does not state whether the dose range given for current treatment inclusion criterion was metered or delivered dose [89].

**: One of: ≥12% reversibility, positive results on methacholine or mannitol challenge or FEV₁ variability (≥20%) between two visits [58, 99].

***: One of: ≥12% and 200 mL reversibility, positive results on methacholine or mannitol challenge, FEV₁ variability (≥20%) between two visits, >20% diurnal variability in peak flow [64].

§: Dose reduction was mandatory unless patients had an exacerbation, met any criteria for loss of asthma control (PEF, night-time awakenings, rescue medication use and ACQ-5 score) or had symptoms of adrenal insufficiency [57].

###: Defined as the lowest dose that a patient could receive without having an increase in ACQ-5 score of ≥0.5, a severe exacerbation or any clinically significant event leading to an upward adjustment in the oral glucocorticoid dose [59].

**: Defined as the lowest dose that a patient could receive while meeting all reduction criteria (pre-bronchodilator FEV₁, PEF, night-time awakenings, rescue medication use, no exacerbations requiring OCS and investigator judgement of asthma control) [109].
TABLE 3 Biomarkers that predicted treatment response in phase III RCTs of biologic therapies in severe obstructive lung disease

Cut-off (greater response versus lesser/no response)	Outcome(s)	Trial (treatment)
Phase III RCTs in patients with severe asthma		
IgE		
≥274 IU·mL, 148–273 IU·mL and 76–147 IU·mL versus 0–75 IU·mL	Exacerbation rate, Emergency visits, FEV₁, AQLQ score	INNOVATE [115] (omalizumab)
Blood eosinophil count		
≥260 cells·μL versus <260 cells·μL	Exacerbation rate	EXTRA [80] (omalizumab)
Continuous modelling (higher blood eosinophil count = greater response)	Exacerbation rate	DREAM [98] (mepolizumab)
Continuous modelling (higher blood eosinophil count = greater response); identified a cut-off of ≥150 cells·μL versus <150 cells·μL	Exacerbation rate, Trends also noted for: FEV₁, SGRQ score, ACQ-5 score	DREAM/MENSA [116] (mepolizumab)
Continuous modelling (higher blood eosinophil count = greater response)	Exacerbation rate, FEV₁, ACQ-5 score	MUSCA [100] (mepolizumab)
≥400 cells·μL versus <400 cells·μL	FEV₁	Corren et al. [103] (reslizumab)
≥300 cells·μL versus <300 cells·μL	Exacerbation rate	LAVOLTA I and LAVOLTA II [106] (lebrikizumab)
≥300 cells·μL versus <300 cells·μL	FEV₁	CALIMA [104] (benralizumab)
≥300 cells·μL versus <300 cells·μL	Exacerbation rate	SIROCCO [105] (benralizumab)
≥300 cells·μL and ≥150–<300 cells·μL versus <150 cells·μL	FEV₁	LIBERTY ASTHMA QUEST [107] (dupilumab)
Defining severe obstructive lung disease (revised manuscript)

Cut-off (greater response versus lesser/no response)	Outcome(s)	Trial (treatment)
Phase III RCTs in patients with severe asthma		
≥300 cells·μL versus <300 cells·μL	OCS dose	LIBERTY ASTHMA VENTURE [59] (dupilumab)
	Exacerbation rate	
	FEV₁	
FeNO		
≥19.5 ppb versus <19.5 ppb	Exacerbation rate	EXTRA [80] (omalizumab)
≥50 ppb and ≥25–<50 ppb versus <25 ppb	FEV₁	LIBERTY ASTHMA QUEST [107] (dupilumab)
≥50 ppb and ≥25–50 ppb versus <25 ppb	OCS dose Exacerbation rate	LIBERTY ASTHMA VENTURE [59] (dupilumab)
	FEV₁	
≥37 ppb versus <37 ppb or all patients	Exacerbation rate	STRATOS 1 [108] (tralokinumab)
	FEV₁	
	AQLQ score	
	ACQ-6 score	
	Total asthma symptom score	
Periostin		
≥50 ng·mL versus <50 ng·mL	Exacerbation rate	EXTRA [80] (omalizumab)
Combined blood eosinophil count + periostin		
≥300 cells·μL or ≥50 ng·mL versus <300 cells·μL or <50 ng·mL	Exacerbation rate	LAVOLTA I and LAVOLTA II [106] (lebrikizumab)
Phase III RCTs in patients with severe COPD		
Blood eosinophil count		
≥500 cells·μL, ≥300–<500 cells·μL and ≥150–<300 cells·μL versus >150 cells/μL	Exacerbation rate	METREX/ METREO [33] (mepolizumab)

ACQ-5: 5-item Asthma Control Questionnaire; ACQ-6: 6-item Asthma Control Questionnaire; AQLQ: Asthma Quality of Life Questionnaire; COPD: chronic obstructive pulmonary disease; FeNO: fractional exhaled nitric oxide; FEV₁: forced expiratory volume in 1 s; IgE: immunoglobulin E; OCS: oral corticosteroid; RCT: randomised controlled trial; SGRQ: St George’s Respiratory Questionnaire.
SUPPLEMENTARY FIGURE S1 Search strategy to identify publications on clinical trials of biologic therapies in severe obstructive lung disease

1. Asthma (Title) OR COPD (Title) AND Biological therapy (MeSH Major Topic) OR biological therapy OR biological therapies OR biological treatment OR biological treatments OR benralizumab OR dupilumab OR lebrikizumab OR mepolizumab OR omalizumab OR reslizumab OR tralokinumab AND Clinical trial OR clinical study OR randomized OR randomised OR controlled study OR controlled trial OR trial OR clinical study (Publication Type) OR clinical trial (Publication Type) OR randomized controlled trial (Publication Type)

 - 662 records retrieved

2. Selection 1
 - Systematic review OR meta-analysis OR systematic literature OR chart review OR observational study OR subanalyses OR subanalysis OR post-hoc OR pooled analysis OR pooled analyses OR meta analysis (Publication Type) OR observational study (Publication Type) OR practice guideline (Publication Type) OR case reports (Publication Type) OR editorial (Publication Type) OR letter (Publication Type) OR review (Publication Type)
 - Filters: English
 - 395 records retrieved

3. Selection 2
 - Severe OR moderate-to-severe OR uncontrolled OR poorly controlled OR inadequately controlled
 - 176 records retrieved

 Screening
 - Reasons for exclusion: primary disease other than asthma and/or COPD; primary intervention not a biologic therapy; study not a RCT evaluating efficacy; study not a phase III study; publication not reporting primary data (i.e. methodology publication or post-hoc or secondary analyses)
 - 26 records selected

COPD: chronic obstructive pulmonary disease; MeSH: Medical Subject Headings; RCT: randomised controlled trial.
Search conducted in PubMed for articles published through 22 May 2019. All search terms were for Title/Abstract field unless otherwise stated in parentheses. For each specific biologic therapy, search also included all experimental and brand names.
Low dose ICS provides most of the clinical benefit for most patients. However, ICS responsiveness varies between patients, so some patients may need medium dose ICS if asthma is uncontrolled despite good adherence and correct inhaler technique with low dose ICS. High dose ICS is needed by very few patients, and its long-term use is associated with an increased risk of local and systemic side-effects.

This is not a table of equivalence, but estimated clinical comparability, based on available studies and product information.

Inhaled corticosteroid	Adults and adolescents	Children 6–11 years				
	Low	Medium	High	Low	Medium	High
Beclomethasone dipropionate (CFC)	200–500	>500–1000	>1000	100–200	>200–400	>400
Beclomethasone dipropionate (HFA)	100–200	>200–400	>400	50–100	>100–200	>200
Budesonide (DPI)	200–400	>400–800	>800	100–200	>200–400	>400
Ciclesonide (HFA)	80–160	>160–320	>320	80	80–160	>160
Fluticasone furoate (DPI)	100	n/a	200	100–200	>200–400	>400
Fluticasone propionate (DPI)	100–250	>250–500	>500	100–200	>200–400	>400
Fluticasone propionate (HFA)	100–250	>250–500	>500	100–200	>200–400	>400
Mometasone furoate	110–220	>220–440	>440	110	110–220	>220–<440
Triamcinolone acetonide	400–1000	>1000–2000	>2000	100–200	>200–400	>400

Note: The table provides estimated clinical comparability, based on available studies and product information. This is not a table of equivalence.
Triamcinolone acetonide	400–800	>800–1200	>1200

Doses are in μg. CFC: chlorofluorocarbon propellant; DPI: dry-powder inhaler; GINA: Global Initiative for Asthma; HFA: hydrofluoroalkane propellant; ICS: inhaled corticosteroid; n/a: not applicable.

*Included for comparison with older literature.

Reproduced with permission from GINA Pocket Guide for Asthma Management and Prevention 2019 [1].
SUPPLEMENTARY TABLE S2 Design of as-yet-unpublished phase III RCTs and published phase II RCTs of biologic therapies in severe COPD

Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point
Rennard et al [4] (infliximab [anti-TNF])	Moderate-to-severe COPD Post-bronchodilator FEV₁ ≥30% and <80% predicted (GOLD 2007 criteria [5]); ≥1 episode of COPD-related symptoms in past 2 months; CRQ score <120	n/a	n/a	<20%*	n/a	n/a	n/a	OCS use within 2 weeks of screening; smoking history <10 pack-years; asthma as the main component of obstructive airway disease; age <40 years	Change from baseline in CRQ total score
Brightling et al [6] (benralizumab) NCT01227278	Moderate-to-severe COPD with sputum eosinophilia Post-bronchodilator FEV₁ ≥30% and <80% predicted (GOLD 2014 criteria [7]); ≥1 exacerbation requiring OCS, antibiotics or hospitalisation in past year	n/a	n/a	Sputum eosinophil count of ≥3%	n/a	n/a	Smoking history <10 pack-years; additional clinically significant pulmonary disease or asthma; age <40 years	Moderate/severe AER	
Calverley et al [8]	Moderate-to-severe COPD	Post- Standard	n/a	n/a	n/a	n/a	Smoking history	Moderate/	
Defining severe obstructive lung disease (revised manuscript)

31 May 2019

Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point
(MEDI8968 [anti-IL-1R]) NCT01448850	very severe COPD	bronchodilator FEV₁ <80% predicted (GOLD 2011 criteria); ≥2 exacerbations requiring OCS, antibiotics, ER visit or hospitalisation in the past year; EXACT score ≥2 for 7 of the past 14 days	maintenance therapy	<10 pack-years; other significant pulmonary disease as primary diagnosis; current diagnosis of asthma; age <45 years	severe AER				
Eich et al [9] (CNTO 6785 [anti-IL-17A]) NCT01966549	Symptomatic moderate-to-severe COPD	Post-bronchodilator FEV₁ ≥40% and <80% predicted; ≥2 exacerbations requiring OCS or antibiotics in past 2 years; persistent COPD symptoms requiring repeated rescue medication; chronic bronchitis	LABA and/or LAMA ± ICS	n/a	n/a	n/a	n/a	Other pulmonary disease such as asthma; age <40 years	Change from baseline in pre-bronchodilator FEV₁

As-yet unpublished phase III RCTs were identified from clinicaltrials.gov. Published phase II RCTs were identified from PubMed.

AER: annual exacerbation rate; COPD: chronic obstructive pulmonary disease; CRQ: Chronic Respiratory Questionnaire; EXACT: EXAcerbations of Chronic pulmonary disease Tool; FeNO: fractional exhaled nitric oxide; FEV₁: forced expiratory volume in 1 s; GOLD: Global Initiative for Chronic Obstructive Lung Disease; ICS: inhaled corticosteroid; IgE: immunoglobulin E; IL-17A: interleukin-17A; IL-1R: interleukin-1 receptor; n/a: not applicable (not mentioned in inclusion/exclusion criteria); LABA: long-acting β₂-agonist; LAMA: long-acting muscarinic antagonist;
## Trial (treatment)	Authors’ description of target population	Severity/control	Current treatment	Bronchodilator reversibility requirement (see footnotes)	Eosinophilic status	FeNO requirement	Allergy/atopy requirement	Notable exclusions	Primary end-point

mMRC: modified Medical Research Council dyspnoea scale; OCS: oral corticosteroid; RCT, randomised controlled trial; TNF: tumour necrosis factor inhibitor.

*: <20% reversibility and FEV₁ variability ≤20% between screening and baseline visits.
References

1. Global Initiative for Asthma. Pocket guide for asthma management and prevention (updated 2019). http://ginasthma.org. Date last accessed: April 18, 2019.

2. AstraZeneca. Efficacy and safety of benralizumab in moderate to very severe chronic obstructive pulmonary disease (COPD) with exacerbation history (TERRANOVA). https://clinicaltrials.gov/ct2/show/NCT02155660. Date last accessed: March 1, 2019.

3. AstraZeneca. Benralizumab efficacy in moderate to very severe chronic obstructive pulmonary disease (COPD) with exacerbation history (GALATHEA). https://clinicaltrials.gov/ct2/show/NCT02138916. Date last accessed: March 1, 2019.

4. Rennard SI, Fogarty C, Kelsen S, Long W, Ramsdell J, Allison J, Mahler D, Saadeh C, Siler T, Snell P, Korenblat P, Smith W, Kaye M, Mandel M, Andrews C, Prabhu R, Donohue JF, Watt R, Lo KH, Schlenker-Herceg R, Barnathan ES, Murray J, COPD Investigators. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2007; 175: 926-934.

5. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J, Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. *Am J Respir Crit Care Med* 2007; 176: 532-555.

6. Brightling CE, Bleeker ER, Panettieri RA, Jr., Bafadhel M, She D, Ward CK, Xu X, Birrell C, van der Merwe R. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. *Lancet Respir Med* 2014; 2: 891-901.
7. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2014 report).

http://www.goldcopd.org. Date last accessed: February 7, 2014.

8. Calverley PMA, Sethi S, Dawson M, Ward CK, Finch DK, Penney M, Newbold P, van der Merwe R. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Respir Res 2017; 18: 153.

9. Eich A, Urban V, Jutel M, Vlcek J, Shim JJ, Trofimov VI, Liam CK, Kuo PH, Hou Y, Xiao J, Branigan P, O'Brien CD. A randomized, placebo-controlled phase 2 trial of CNTO 6785 in chronic obstructive pulmonary disease. COPD 2017; 14: 476-483.