On the taxonomic position of *Phaenomenella* Fraussen & Hadorn, 2006 (Neogastropoda, Buccinoidea) with description of two new species

Yuri KANTOR
Alisa KOSYAN
Pavel SOROKIN
Alexander FEDOSOV

A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences,
Leninski prospect 33, 119071 Moscow, Russian Federation (Russia)
kantor.yuri1956@gmail.com
kosalisa@yandex.ru
sorokin-p@yandex.ru
fedosovalexander@gmail.com

Submitted on 28 January 2019 | Accepted on 8 April 2019 | Published on 4 February 2020

ABSTRACT

This contribution provides novel information on the anatomy, radula and phylogeny of several species of *Phaenomenella* Fraussen & Hadorn, 2006, a genus of Buccinoidea Rafinesque, 1815 with unclear affinities. Molecular phylogenetic analysis based on sequences of mitochondrial COI and nuclear 28S rRNA genes of different representatives of Buccinoidea revealed close relationships of *Phaenomenella* with *Siphonalia* A. Adams, 1863 both taxa forming a clade with maximal support. The anatomy of two species of the latter genus was examined for the first time for comparative purposes. The subfamily Siphonaliinae Finlay, 1928 was erected for several Recent and fossil genera of Southern Hemisphere Buccinidae Rafinesque, 1815, and is still recognized by current taxonomists (Bouchet et al. 2017). Species of all Recent genera of Siphonaliinae were included in our analysis and the monophyly of the subfamily Siphonaliinae in its original scope is rejected. Molecular and morphological data revealed two still unnamed species of *Phaenomenella* from the lower bathyal zone of the South China Sea. These species, *Phaenomenella nicoi* n. sp. and *P. samadiae* n. sp. are described in the present study.
INTRODUCTION

The genus *Phaenomenella* Fraussen & Hadorn, 2006, with the type species *Manaria inflata* Shikama, 1971, was established for three species of “Buccinidae” Rafinesque, 1815 from Taiwan and South China Sea (Fraussen & Hadorn 2006). Several additional species were described since and presently the genus includes nine species, all except one from off Southeast Asia (Fraussen 2008; Fraussen & Stahlischmidt 2012; Fraussen & Stahlischmidt 2013). The anatomy of the genus has never been examined, but the radula was illustrated for two species, *Phaenomenella inflata* (Shikama, 1971) and *Phaenomenella angusta* Fraussen & Hadorn, 2006. The radula is of general buccinid appearance, which gives no clues of the relationships of *Phaenomenella* to other buccinid genera. The position of the genus within Buccinidae was not addressed in previous publications, probably due to still unresolved infrageneric classification of the family. The intrageneric shell variability of *Phaenomenella* is high that is hampering providing reliable generic diagnosis.

Among South-East Asian buccinids several genera bear some conchological resemblance to *Phaenomenella*, i.e., *Manaria* Smith, 1906, *Eosiphon Thiele, 1929, Gailllea Kantor, Puillandre, Fraussen, Fedosov & Bouchet, 2013* (all three genera generate on biogenic substrates; Kantor et al. 2013) and *Siphonalia A. Adams, 1863*, Buccinidae from biogenic substrates constitute a clade that is well-supported by molecular data, and are characterized by bicuspid lateral teeth (Bouchet & Warén 1986; Kantor et al. 2013), while the radula of both *Phaenomenella* and *Siphonalia* is similar and has tricuspid lateral teeth.

Relationships of *Siphonalia* with other Buccinidae are not clear. Its isolated position was recognized by Finlay (1928), who proposed a new subfamily Siphonaliinae in the newly established family Bucconulidae. Having been proposed without diagnosis or discussion, the subfamily originally included several Recent and fossil genera, which were later synonymized with *Penion* Fischer, 1884 (=*Austrosipho* Cossmann, 1906, *Verconella* Iredale, 1914, *Berylisma* Iredale, 1924), *Aeneator* (=*Ellicea* Finlay in Marwick 1928, †*Pitella* Marwick, 1928), as well as *Glaphyrina* Finlay, 1926 (presently attributed to Fasciolariidae Gray, 1853; Couto et al. 2016) and †*Pomahakia* Finlay, 1927. All genera except the type one are confined to southern hemisphere, mostly to Australian-New Zealand region. The validity and scope of the subfamily have not been revised, although it is recognized in the current taxonomy (Bouchet et al. 2017). A recent molecular phylogeny of some southern hemisphere Buccinulinae based on whole mitochondrial genome and nuclear ribosomal sequence data (Vaux et al. 2017) revealed that Recent genera included by Finlay into Siphonaliinae do not constitute a monophyletic group. But *Siphonalia* itself was not included in the analysis and therefore its relationships remained unresolved.

In the course of expeditions organized by the Muséum national d’Histoire naturelle, Paris (MNHN) to the South China Sea several specimens of different species of *Phaenomenella* and one species of *Siphonalia* were collected and preserved for DNA sequencing. The examination of this material revealed two still unnamed species. The purpose of the present paper is to provide formal description of the revealed new species, and to clarify relationships of *Phaenomenella* based both on anatomy and on molecular data of extended dataset of Buccinoida, including groups that are conchologically similar to *Phaenomenella*.

MATERIAL AND METHODS

The material was collected mostly in the research cruises in the South China Sea (DONGSHA 2014, ZHONGSHA 2015) and in the Philippines (AURORA 2007) that were organized respectively by the National Taiwan University and the Mu-
Specimens collected were processed with a microwave oven (Galindo et al. 2014): the living molluscs in small volumes of sea water were exposed to microwaves for 10-30 s, depending on specimen size. Bodies were immediately removed from shells and dropped in 96% ethanol. Specimens processed in this way are suitable for further anatomical studies after soaking them in 70% ethanol. Specimens are registered in the MNHN collection and specimens and sequences are deposited in BOLD (Barcode of Life Datasystem) and GenBank (Table 1).

Due to technical reasons, the sequenced specimens of Siphonalia spadicea (Reeve, 1847) were not available for anatomical examination and the material (not suitable for sequencing) on two other species of Siphonalia was used for anatomical study.

DNA EXTRACTION AND PCR

Total DNA was extracted from the piece of foot using either the DNeasy96 Tissue kit or Investigator Kit (Qiagen), following the manufacturer's recommendations. The barcode fragment of the Cytochrome Oxidase I (COI) gene (658 bp) and a 28S rRNA fragment were amplified using the universal primers LCO1490 and HCO2198 (Folmer et al. 1994) and C1 and D2 (Jovelin & Justine 2001), respectively. PCRs were performed in 20 µl final volume containing approximately 3 ng template DNA, 1.5 mM MgCl2, 0.26 mM of each nucleotide, 0.3 µl of each primer, 5% DMSO and 0.75 µl of either Taq Polymerase (Qbiogene) or BioHYtaq DNA polymerase (Dialat).

The PCR profile for the COI started with 5 min at 95°C followed by 40 cycles with the denaturation at 95°C (35 sec), annealing at 50°C (35 s) and elongation at 72°C (1 min), with final elongation phase at 72°C (10 min). Similar PCR profiles were set for 28S (annealing at 56°C). COI and 28S genes were sequenced in both directions to confirm accuracy of each sequence. The sequencing was performed by Eurofins or in the SIEE RAS molecular facility on an ABI 3500 Genetic analyser.

MORPHOLOGY AND RADULA

Radulae were cleaned using diluted bleach (NaOCl), air-dried, coated with gold and examined by scanning electron microscope TeScan TS5130MM in the Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow (IEE RAS). Anatomy was examined on manual dissections.

PHYLOGENETIC ANALYSIS

COI and 28S sequences were aligned using ClustalW implemented in BioEdit v. 7.0.9.0 (Hall 1999); the accuracy of each alignment was checked by eye and if needed modified. COI and 28S sequences of additional 32 buccinoidae taxa, mainly from the datasets of Kantor et al. (2013) and Vaux et al. (2017) were accessed from GenBank.

Three datasets were analyzed, a single-gene COI dataset (57 taxa) with three codon positions coded as three independent partitions, a nuclear 28S (45 taxa) as single partition, and a concatenated COI–28S dataset (45 taxa), where four partitions corresponded to three codon positions of COI and to the 28S fragment respectively. The single gene datasets were mainly used to evaluate primary species hypotheses (PSHs), proposed based on the shell morphology, whereas the analysis of concatenated dataset allowed us to estimate relationships of Siphonalia and remaining genera originally included in Siphonalinidae. The lineage comprising buccinids from the biogenic substrates (Kantor et al. 2013) was used to root the tree based on the topology of Buccinidae tree recovered by Galindo et al. (2016). In the RAxML analyses (Stamatakis 2006) robustness of nodes was assessed using the Thorough Bootstrapping algorithm (Felsenstein 1985) with 1000 iterations. The Bayesian inference analyses (BI) were performed using MrBayes (Huelsenbeck & Ronquist 2001), running two parallel analyses, consisting each of six Markov chains of 20 000 000 generations with default parameters. Parameters of the substitution model were estimated during the analysis (six substitution categories, a gamma-distributed rate variation across sites approximated in four discrete categories and a proportion of invariable sites). The trees from the first 5 000 000 generations (25% from total number of generations) were discarded as burn-in prior to the calculation of consensus trees. Convergence of each analysis was evaluated using Trace 1.4.1 (Rambaut et al. 2014) to check that all ESS values exceeded 200 (with default burning). All analyses were performed on the Cipres Science Gateway (http://www.phylo.org/portal2), using MrBayes on XSEDE (3.2.6) and RAxML-HPC2 on XSEDE (8.2.10) (Miller et al. 2010). The matrix of K2P pairwise genetic distances for COI, was calculated for the Phaenomenella and Siphonalia taxa in MEGA 6 (Tamura et al. 2013) (Table 2).

ABBREVIATIONS AND CONVENTIONS

- adg: opening of anterior duct of digestive gland
- ao: anterior aorta
- aoe: anterior oesophagus
- ba: buccal artery
- bm: buccal mass
- bn: buccal nerves
- cep.t: cephalic tentacles
- cg: capsule gland
- cm: columellar muscle
- ct: ctenidium
- dd: dead shell
- dg: digestive gland
- el: eye
- ft: foot
- gl: gland of Leiblein
- gon: gonad
- hd: head
- hg: hypobranchial gland
- int: intestine
- kd: kidney
- lfl: longitudinal fold on inner stomach wall
- lv: live collected specimen
- mrr: medial retractor of radula
- n: nerves
- nr: nerve ring
- od: odontophore
- odn: odontophore nerves
- odr: odontophore retractors
- oeo: oesophageal opening
Table 1

Specimen code	Genus	species	Collection data	BOLD	Genbank (COI)	Genbank (28S)	Source
IM-2007-32673	Siphonalia	spadicea	TAIWAN 2004, st. CP264	NEOGA544-10	MK67642	–	Present study
IM-2007-32674	Siphonalia	spadicea	TAIWAN 2004, st. CP264	NEOGA545-10	MK67658	–	Present study
IM-2007-32762		spadicea	TAIWAN 2001, st. CP79	NEOGA589-10	MK67634	–	Present study
IM-2007-32856		spadicea	TAIWAN 2004, st. CP244	NEOGA601-10	MK67646	–	Present study
IM-2007-32995		spadicea	TAIWAN 2001, st. CP109	NEOGA666-10	MK67652	–	Present study
IM-2007-32997		spadicea	TAIWAN 2001, st. CP109	NEOGA668-10	MK67664	–	Present study
IM-2007-32996		spadicea	TAIWAN 2001, st. CP109	NEOGA667-10	MK67656	MK67635	Present study
IM-2009-11271		spadicea	TAIWAN 2004 st. CH257	BUCC001-19	MK67649	–	Present study
IM-2013-41068	Phaenomenella	cf thachi	TAIWAN 2013 st. CP4090	BUCC007-19	MK67653	–	Present study
IM-2013-41072		inflata	TAIWAN 2013 st. CP4080	BUCC008-19	MK67650	–	Present study
IM-2013-41073		inflata	TAIWAN 2013 st. CP4090	BUCC009-19	MK67660	–	Present study
IM-2013-50012		cf thachi	DONGSHA 2014 st. CP4120	BUCC006-19	MK67654	MK67634	Present study
IM-2013-50023		insulaprataensis	DONGSHA 2014 st. CP4129	BUCC002-19	MK67648	MK67631	Present study
IM-2013-50024		insulaprataensis	DONGSHA 2014 st. CP4129	BUCC003-19	MK67661	–	Present study
IM-2013-50025		insulaprataensis	DONGSHA 2014 st. CP4129	BUCC004-19	MK67655	–	Present study
IM-2013-50260		cf callophorella	DONGSHA 2014 st. CP1430	BUCC005-19	MK67665	MK67639	Present study
IM-2013-61674		samadiae n. sp.	ZHONGSHA 2015 st. CP4131	BUCC013-19	MK67662	MK67638	Present study
IM-2013-61617		samadiae n. sp.	ZHONGSHA 2015 st. CP4133	BUCC015-19	MK67644	MK67628	Present study
IM-2013-34644		nicoi n. sp.	AURORA 2007 st. CP2685	NEOGA783-10	MK67659	–	Present study
IM-2013-59398		nicoi n. sp.	ZHONGSHA 2015 st. CP4157	BUCC016-19	MK67645	MK67629	Present study
IM-2013-61585		nicoi n. sp.	ZHONGSHA 2015 st. CP4132	BUCC014-19	MK67641	MK67627	Present study
IM-2013-61637		nicoi n. sp.	ZHONGSHA 2015 st. CP4133	BUCC010-19	MK67647	MK67630	Present study
IM-2013-61639		nicoi n. sp.	ZHONGSHA 2015 st. CP4133	BUCC011-19	MK67651	MK67633	Present study
IM-2013-61673		nicoi n. sp.	ZHONGSHA 2015 st. CP4134	BUCC012-19	MK67659	MK67637	Present study
IM-2007-34369	Calagrassor	aldermenensis	AURORA 2007 st. CP2673	–	–	–	–
IM-2007-32864	Manaria	clandestina	PANGLAO 2005 st. CP2389	–	–	–	–
IM-2007-32952	brevicauda	–	SALOMON 2 st. CP2219	–	–	–	–
IM-2009-7079	Enigmaticolus	monnieri	MIRIKY st. CP3279	–	–	–	–
20140783	Buccinum	undatum	Reykyavanaski, Iceland	–	–	–	–
KK12	Kelletia	kelleti	Santa Barbara, California, USA	–	–	–	–
KL2	lischkei	Kansai, Mie Prefecture, Japan	–	–	–	–	–
SFKH-TMP005	Pararetifusus	carinatus	Chatham Rise, NZ	–	–	–	–
M.190082/2	Penion	chatharmensis	Chatham Rise, NZ	–	–	–	–
M.190085	chatharmensis	–	Chatham Rise, NZ	–	–	–	–
M.183792/1	cuvierianus	–	Red Mercury Island, NZ	–	–	–	–
M.183927	cuvierianus	–	Coromandel, NZ	–	–	–	–
C.456980	mandanarius	–	Gabo Island, Victoria, Australia	–	–	–	–
C.487648	maximus	–	Terrigal, NSW, Australia	–	–	–	–
Phoenix1	Kellettalia	faedifolium	Otago Peninsula, NZ	–	–	–	–
Phoenix9	sulcatus	Auckland, NZ	–	–	–	–	–
M.274111	Aeneator	benthicola	Cape Palliser, NZ	–	–	–	–
SFKH-TMP015	elegans	–	Chatham Rise, NZ	–	–	–	–
M.279437	otaogensis	–	Tasman Bay, NZ	–	–	–	–
M.190119	recens	–	Cape Turnagain, NZ	–	–	–	–
SFKH-TMP013	valeauctus	–	TEN 616/83, NZ	–	–	–	–
M.183832	Antarcitoneatna benthicola	Chatham Rise, NZ	–	–	–	–	–
SFKH-TMP014	Austrosusus	glans	Island Bay, Wellington, NZ	–	–	–	–
M.302907/2	Buccinulum	fuscozonatum	Ariel Bank, Gisborne, NZ	–	–	–	–
M.25827/6	pallidum	–	Stewart Island, NZ	–	–	–	–
M.302870/2	peritaxa finlayi	–	Point Gibson, NZ	–	–	–	–
M.31475/4	robustum	–	Onora Bay, Bay of Islands, NZ	–	–	–	–
SFKH-TMP012	vittatum vittatum	–	Mahia Peninsula, NZ	–	–	–	–
SFKH-TMP009	Cominella	apsodesa	Urupukapuka Bay, NZ	–	–	–	–
SFKH-TMP010	virgata	–	Spirits Bay, NZ	–	–	–	–
SFKH-TMP004	Glaphyrina	caudata	Farwell Spit, Golden Bay, NZ	–	–	–	–
Phaenomenella callophorella (Fraussen, 2004), with some reservation. Two specimens (Fig. 1 (2), MNHN-IM-2013-50012 and MNHN-IM-2013-41068) are subadults (with shell length less than 15 mm) and have some resemblance to P. thachi Fraussen & Stahlschmidt, 2012. Although they may represent a different species, the limited material available to us prevents us presently from further taxonomic consideration of the species. Two MOTUs were represented by several well-preserved adult specimens and cannot be attributed to any existing species of Phaenomenella. They are described herein as new species, Phaenomenella samadiae n. sp. and P. nicoi n. sp. Finally one MOTU can be unambiguously identified as Siphonalia spadicea (Reeve, 1847).

The analysis of the COI–28S data set (Fig. 3) recovered a well-supported Phaenomenella-Siphonalia cluster consistent with the one in the COI tree, except for P. inflata, which was not represented in the concatenated data set. Whereas Phaenomenella cf. thachi, P. cf. callophorella and P. nicoi n. sp. formed a well-supported subclade (BI posterior probability = 0.97), P. samadiae n. sp. showed weakly supported affinity to Siphonalia spadicea (BI posterior probability = 0.75). This result questions monophyly of Phaenomenella in relation to Siphonalia. In the absence of the data on Siphonalia cassidariaformis, the type species of the genus, and bearing in mind the conchological differences between the genera, we accept the conservative approach and do not synonymize Phaenomenella with Siphonalia.

The two major clades of the Southern hemisphere buccinids included in the present study formed a weakly supported Buccinulum–Aeneator grouping (BI posterior probability = 1.00), and a weakly supported Penion-Kelletia-Antarctoneptunea clade (BI posterior probability = 0.73). This clade showed no supported relationship to the Phaenomenella-Siphonalia cluster. As mentioned above, Penion and Aeneator were originally included by Finlay (1928) in Siphonaliinae.

SYSTEMATIC ACCOUNT

Order NEOGASTROPODA Wenz, 1938
Family BUCGINIDAE Rafinesque, 1815

Genus Phaenomenella Fraussen & Hadorn, 2006

Type species. — Manaria (?) inflata Shikama, 1971 (OD).

REMARKS

The intrageneric shell variability of Phaenomenella is high and a few general characters can be mentioned – “broader than high protoconch with flattened tip and (...) a rather sharp angulation just above the suture. The upper teleoconch whorls are shouldered, a shape which is accentuated by the axial knobs or ribs, or have the appearance of being by the presence of obviously convex axial ribs” (Fraussen & Stahlschmidt 2013: 82). Radula with a tricuspid central tooth with rectangular base and laterals with 3 or 4 cusps. Anterior forcar with well-defined valve of Leiblein and large gland of Leiblein.
Table 2. — The matrix of K2P pairwise genetic distances in % (e.g. 133 = 0.133) for COI for the *Phaenomenella* Fraussen & Hadorn, 2006 and *Siphonalia* A. Adams, 1863 species. Within species: min = 0.000, mean = 0.018, max = 0.011. Between species: min = 0.072, mean = 0.157, max = 0.198.

IM-2013-41072	Ph. inflata	000
IM-2013-50203	Ph. insulapratensis	133 133
IM-2013-50204	Ph. insulapratensis	133 133 000
IM-2013-50205	Ph. insulapratensis	139 139 006 006
IM-2013-41068	Ph. cf thachi	127 127 127 127 002
IM-2013-50012	Ph. cf thachi	130 130 120 120 123 077 080
IM-2013-50260	Ph. cf thachi	130 130 120 120 123 077 080
IM-2007-34639	Ph. nicoi n. sp.	140 140 130 130 136 072 072 079
IM-2007-34644	Ph. nicoi n. sp.	140 140 130 130 136 072 072 079 000
IM-2013-59398	Ph. nicoi n. sp.	140 140 131 131 136 081 082 079 011 011
IM-2013-61585	Ph. nicoi n. sp.	140 140 131 131 136 081 082 079 011 011 000
IM-2013-61637	Ph. nicoi n. sp.	140 140 130 130 136 076 077 079 004 004 006 006
IM-2013-61639	Ph. nicoi n. sp.	143 143 133 133 139 079 079 077 009 009 002 002 004 004
IM-2013-61673	Ph. nicoi n. sp.	143 143 133 133 139 079 079 077 009 009 002 002 004 004 000
IM-2007-32673	S. spadicea	195 195 194 194 191 171 174 165 172 172 170 170 169 173 173
IM-2007-32674	S. spadicea	195 195 194 194 191 171 174 165 172 172 170 170 169 173 173 000
IM-2007-32762	S. spadicea	195 195 194 194 191 171 174 165 172 172 170 170 169 173 173 000
IM-2007-32856	S. spadicea	185 185 185 185 182 168 168 171 162 162 169 169 166 166 166 166 169 169 006 006 006 006
IM-2007-32995	S. spadicea	198 198 198 198 194 194 174 174 178 178 168 176 176 173 173 173 176 176 002 002 002 002 009
IM-2007-32996	S. spadicea	192 192 191 191 188 188 168 171 162 162 169 169 167 167 166 167 160 170 002 002 004 004 004 004
IM-2009-11271	S. spadicea	195 195 194 194 191 171 174 165 172 172 170 170 169 173 173 000 000 000 000 006 002 002 002
IM-2007-32997	S. spadicea	192 192 191 191 188 188 168 171 162 162 169 169 167 167 166 167 160 170 002 002 004 004 004 004 000 002
IM-2013-61674	Ph. samadiae n. sp.	157 157 157 157 163 172 171 156 176 176 173 173 179 176 176 186 186 186 186 182 183 186 183
IM-2013-61617	Ph. samadiae n. sp.	160 160 159 159 166 169 168 152 167 164 164 164 170 167 167 179 179 179 179 170 183 183 176 179 176 006
Fig. 1. — Phylogenetic tree of a dataset of Buccinoidea Rafinesque, 1815 obtained with Bayesian analysis of COI gene sequences. Support values shown for the supported nodes with posterior probability values between 0.70 and 1.00 only. The numbers in brackets following the species names correspond to illustrated specimens at the bottom of the figure.
Phaenomenella samadiae n. sp.
(Figs 4; 5A, B; 6)

Material Examined. — **Holotype.** South China Sea • MNHN-IM-2013-61617 (sequenced, Figs 4A-C; 5A; 6A, B, E-G); S.W. off Dong Sha, ZHONGSHA 2015; st. CP4134; 19°50’N, 116°27’E; 1128-1278 m • 2 lv; MNHN-IM-2013-50260 (Fig. 4D), MNHN-IM-2013-59393 (Fig. 4G); ZHONGSHA; st. CP4157; 19°48’N, 116°29’E; 1205-1389 m.

Other sequenced material. — South China Sea • 1 lv; MNHN-IM-2013-61674 (Figs 4E, F; 5B; 6C, D); S.W. off Dong Sha, ZHONGSHA 2015; st. CP4134; 19°50’N, 116°27’E; 1128-1278 m.

Other studied material. — South China Sea • 1 lv; MNHN-IM-2013-61670; S.W. off Dong Sha, ZHONGSHA 2015; st. CP4134; 19°50’N, 116°27’E; 1128-1278 m • 2 lv; MNHN-IM-2013-59393 (Fig. 4D), MNHN-IM-2013-59665 (Fig. 4G); ZHONGSHA; st. CP4157; 19°48’N, 116°29’E; 1205-1389 m.

Etymology. — Named in honour of Sarah Samadi, professor at MNHN, for her leadership in the France-Taiwan research programme in the context of which research cruises in the South China Sea discovered the present new species.

Diagnosis. — Shell large for genus, up to 58.2 mm, broad fusiform with truncated base, short and strongly left reclined siphon canal. Spiral sculpture of distinct cords, more than 20 on last whorl. Radula

Fig. 2. — Phylogenetic tree of a dataset of Buccinoidea Rafinesque, 1815 obtained with Bayesian analysis of 28S gene sequences. Support values shown for the supported nodes with posterior probability values between 0.70 and 1.00 only.
Taxonomic position of Phaenomenella

with tricuspate central teeth with short rectangular basal part and tricuspate lateral teeth with longest outermost cusp.

Distribution. Presently the species was recorded only in the South China Sea at 1205–1389 m.

Description (Holotype)

Shell

Shell broad fusiform with truncated base (Fig. 4A–C), strong, white under periostracum. Spire high, siphonal canal very short, strongly inclined to left. Protoconch and upper teleoconch whorls eroded, remaining teleoconch whorls 6½ in number. Teleoconch whorls convex, last and penultimate whorls less convex than upper ones. Suture distinct, adpressed. Spiral sculpture of distinct rounded on top spiral cords, on first not eroded teleoconch whorl (3rd remaining) 9 cords, on penultimate 11, on last whorl 24 cords, of which 4 on canal. Cords differing twice in width, the broader ones indistinctly subdivided by shallow spiral groove and with indistinct spiral striation, not visible on most narrow cords. Interspaces between cords from ¼ to more than cord’s width. On shell base and canal cords more broadly spaced. Upper teleoconch whorls with axial ribs, disappearing on last and penultimate
whorls. Ribs nearly orthocline, broadly spaced, 12 on first preserved whorl, 14 on antepenultimate.

Aperture broad ovate, white inside, angulated posteriorly, outer lip thick, slightly reflected. Parietal wall and columella with narrow but thick glossy callus with yellowish band along edge. Shell covered with light olive adhering periostracum, forming densely spaced low axial lamellae, obsolete on cords, but visible in interspaces.

Operculum spanning most of aperture, with distinctly turned leftwards terminal nucleus and weakly angulate in upper part.
Radula (Fig. 5A, B) Examined in holotype and sequenced specimen MNHN-IM-2013-61674. Very similar in both specimens; central tooth with rather short rectangular basal part with weakly arcuate anterior margin and three short triangular broad cusps. Lateral teeth tricusperate with weakly curved basal side, attached to membrane. Outermost cusp recurved, medium long, inner cup weakly recurved, about ½ of outer cup length. Intermediate cusp shortest, situated slightly closer to inner cup.

Measurements
Holotype (largest studied specimen), shell length 58.2 mm, last whorl length 35.8 mm, aperture length (without canal) 23.2 mm, diameter 26.7 mm.

Anatomy
Two specimens studied — MNHN-IM-2013-61674, male, sequenced paratype; MNHN-IM-2013-61617, female, holotype. Soft body partly extracted from the shell. Head rather large, with two thick long tentacles. Eye lobes poorly defined, not pigmented in both examined specimens, eyes obviously absent. Mantle of female (Fig. 6B) approximately square in shape, with long siphon. Ctenidium comprises ¾ of mantle length and in average ½ of mantle width; bipectinate symmetric on top spiral cords, about 55 on last whorl. Radula with tricusperate central teeth with rectangular basal part and tricusperate lateral teeth with longest outermost cusp. Capsule gland medium large, covered by thick rectum and terminated by large vagina. In male’s mantle, prostate gland well-developed, situated parallel and equal in size to rectum. Penis (Fig. 6 C) flattened, terminating in seminal papilla shifted to left side and not surrounded by a circular fold.

Digestive system. Proboscis almost completely inverted into rhynchodaeum (Fig. 6E, pr). Several bands of proboscis retractors attached at middle part of both sides of rhynchodaeum (Fig. 6E, pr). Anterior oesophagus straight, along ventral side of rhynchodaeum (Fig. 6E, aoe). Valve of Leiblein medium large, situated immediately before nerve ring (Fig. 6G, vl). Salivary glands large (about half of Leiblein medium large, S-twisted, situated beneath salivary glands salivary ducts following along anterior oesophagus. Gland of Leiblein large, S-twisted, situated beneath salivary glands (Fig. 6E, gl) and following along posterior oesophagus and anterior aorta. Stomach small, occupying about 0.25 whorl (Fig. 6D). Posterior mixing area small, posterior oesophagus and intestine wide.

Remarks
The new species demonstrates some variability in shell shape with more inflated shell outline in smaller specimens. The new species is most similar in the shell shape to P. mokenorum Fraussen, 2008 from the Andaman Sea, differing in better pronounced spiral cords. Another somewhat similar species is P. insulapataensei (Okutani & Lan, 1994), which possesses smaller, more ovoid shell with faster incrementing teleoconch whors and a longer and more distinct canal.
Fig. 5. — Radulae of *Phaenomenella* spp. *A, B*, *Phaenomenella samadiae* n. sp.; holotype, MNHN-IM-2013-61617 (shell on Fig. 4A-C) (*A*); MNHN-IM-2013-61674 (shell on Fig. 4E, F) (*B*); *C-F*, *Phaenomenella nicoi* n. sp.; *C*, holotype, MNHN-IM-2013-61585 (shell on Fig. 7A-C); *D*, MNHN-IM-2013-59398 (shell on Fig. 7D); *E*, MNHN-IM-2013-61639 (shell on Fig. 7E); *F*, MNHN-IM-2013-61673 (shell on Fig. 7F). Scale bars: 100 μm.
Fig. 6. — Anatomy of Phaenomenella samadai n. sp.: A, B, E-G, holotype, MNHN-IM-2013-61617, female; C, D, MNHN-IM-2013-61674, male; A, cephalopodium, front view, mantle removed; B, mantle; C, uppermost part of penis; D, stomach, external view; E, foregut, ventral view; F, foregut, lateral view; G, valve of Leiblein. Abbreviations: see material and methods. Scale bars: 5 mm.
Fig. 7. — Shells of Phaenomenella nicoi n. sp.: A-C, holotype, MNHN-IM-2013-61585, SL 41.1 mm; D, ZHONGSHA 2015, st. CP4157, sequenced spm, MNHN-IM-2013-59398, SL 37.5 mm; E, ZHONGSHA 2015, st. CP4133, sequenced spm, MNHN-IM-2013-81639, SL 43.2 mm; F, AURORA 2007, st. CP2685, sequenced spm, MNHN-IM-2007-34639, SL 34.7 mm; G, AURORA 2007, st. CP2685, not-sequenced spm, MNHN-IM-2007-34644, SL 38.7 mm; H, ZHONGSHA 2015, st. CP4133, sequenced spm, MNHN-IM-2013-61637, SL 30.6 mm (anatomy studied); I, ZHONGSHA 2015, st. CP4134, sequenced spm, MNHN-IM-2013-61673, SL 42 mm; J, ZHONGSHA 2015, st. CP4133, not-sequenced spm, MNHN-IM-2013-61636, SL 40.2 mm (anatomy studied); K, L, ZHONGSHA 2015, st. CP4132, not-sequenced spm, MNHN-IM-2013-61592, 39.1 mm; L, enlarged protoconch. Scale bars: A-K, 20 cm; L, 1 mm.
Fig. 8. — Anatomy of *Phaenomenella* nicoi n. sp.: A-D, MNHN-IM-2013-61636, male; E-G, MNHN-IM-2013-61637, female: A, soft body removed from the shell; B, penis; C, proboscis, opened dorsally; D, foregut, right lateral view; E, foregut, right lateral view, right salivary gland displaced; F, foregut, right lateral view, right salivary gland in original position; G, stomach, outer view. Abbreviations: see material and methods. Scale bars: 5 mm.
penultimate whorl, on last whorl 55 cords, of which about 20 on canal. Cords differing slightly in width, with most narrow on subsutural ramp, interspaces between cords about 1/5–1/6 of cord’s width. Strong axial ribs present on entire shell, suture to suture on uppermost teleoconch whorls, gradually becoming obsolete on subsutural ramp and absent on ramp of last and penultimate whorls. On last whorl ribs distinct only on shoulder, producing its angulated appearance. Number of ribs stable, i.e., 15-16 per whorl.

Aperture ovate, white inside, angulated posteriorly, outer lip thin, evenly convex, concave at transition to canal. Parietal wall and columella with narrow and thin glossy callus.

Shell covered with very light olive adhering periostracum, forming densely spaced low axial lamellae visible in interspaces between cords.

Operculum partially abraded, when intact (Fig. 7 D) spanning most of aperture with distinctly turned leftwards terminal nucleus and rounded upper part.

Radula (Fig. 5 C-F)
Examined in five specimens, including holotype. Rather similar in all specimens; central tooth with rectangular basal part with weakly arcuate anterior margin and three medium long triangular broad cusps, central one shorter and narrower than lateral ones. Lateral teeth normally tricuspidate with weakly curved basal side, attached to membrane. Outermost cusp recurved, medium long, inner cusp weakly recurved, about 2/3 of outer cusp length. Intermediate cusp shortest, situated slightly closer to inner cusp. In one sequenced specimen (MNHN-IM-2013-61673, Fig. 5F) intermediate cusps of the left lateral teeth of the radula paired, nearly equal in size, while lateral teeth on right side have broader intermediate cusp subdivided on top.

Measurements (holotype)
Shell length 41.3 mm, last whorl length 26.9 mm, aperture length (without canal) 16.0 mm, diameter 16.5 mm. In the largest specimen studied, shell length reaching 43 mm.

Anatomy
Two specimens examined: MNHN-IM-2013-61636, male, and MNHN-IM-2013-61637, female, sequenced paratype (similar in both studied specimens). Soft body partly extracted from the shell. Head medium large, with two long tentacles and large black eyes on lobes at bases of tentacles. Mantle similar to that of *Phaenomenella samadiae* n. sp. Penis flattened, with seminal papilla situated on its top and surrounded by circle fold of skin (Fig. 8B).

Digestive system. Proboscis almost completely inverted into rhynchodaeme (Fig. 8D, pr). Several bands of proboscis retractors muscles attached to middle part on both sides of rhynchodaeme (Fig. 8D-F, prr). Buccal mass slightly shorter than retracted proboscis (Fig. 8C, bm), attached to its walls by multiple odontophoral retractors (Fig. 8C, odr). Radula lying in middle of buccal mass and attached to proboscis walls by median retractor (Fig. 8C, mrr).

Anterior oesophagus straight, following along ventral side of proboscis (Fig. 8E, aoe). Valve of Leibl (Fig. 8D, E, vl) medium large, coniform, situated immediately before nerve ring (Fig. 8D, nr). Salivary glands medium-large (about 0.3 proboscis length), fused ventrally beneath nerve ring (Fig. 8E, F, sg), with very thin strongly convoluted salivary ducts following along anterior oesophagus. Gland of Leibl medium in size (Fig. 8D, E, gl), following along posterior oesophagus and anterior aorta. Stomach rather large, spanning about 0.4 whorl (Fig. 8G). Posterior mixing area (pma) twice larger than in *Phaenomenella samadiae*, posterior oesophagus and intestine medium wide.

Remarks
The new species is highly variable in shell shape. Some of the specimens are much more slender (Fig. 7D, I, G) and the axial ribs are either very weak or obsolete. The specimen with no axial ribs was collected at a maximal depth (1634-1683 m), but there is not clear correlation with depth, since syntopic specimens can have strong or weak axial ribs. Nevertheless the molecular data clearly indicates the conspecificity of “typical” angulated specimens with well-developed ribs and smooth ones. The specimens collected at greater depth have the protoconch and upper teleoconch whorls more eroded or missing. In general shape the new species has some resemblance to *P. mokenorum* Fraussen, 2008 from the Andaman Sea, differing in better pronounced axial ribs in later telecoconch whors and more attenuated narrow siphonal canal. Also *P. nicoi* n. sp. has smaller size (maximal shell length 42 mm versus 55.6 mm in *P. mokenorum*).

Genus Siphonalia A. Adams, 1863

Type species. — *Buccinum cassidariaeforme* Reeve, 1846 (Subsequent designation by Cossmann 1889).

Siphonalia cassidariaeformis (Reeve, 1846)
(Figs 9A-C; 10; 11A)

Buccinum cassidariaeformis Reeve, 1846: pl. 2, sp. 11..

Material examined. — Japan • 2 lots, 3 specimens: Off Hashima, Miyazaki Prefecture, Kyushu: 10.V.1996 (no. 1, Fig. 9A); Off Atsumi Peninsula, Aichi Prefecture: 30 m; 13.V.2001 (nos. 2, 3, Figs 9B, C).

Complement to description

Radula
Radula studied in three specimens. Rather similar in all specimens (Fig. 11A, B); central tooth with rectangular basal part and weakly arcuate anterior margin and three medium long triangular broad cusps, central one equal in length but slightly narrower than lateral ones. Lateral teeth tricuspidate with weakly curved, nearly straight basal side, attached to membrane. Outermost cusp recurved, medium long, inner cusp weakly recurved, about 2/3 of outer cusp length. Intermediate cusp shortest, situated closer to inner cusp.
Fig. 9. — Shells of studied Siphonala spp.: A-C, S. cassidariaeformis (Reeve, 1846): specimen no. 1 (A), specimen no. 2 (B), specimen no. 3 (C); D, E, S. pfefferi G. B. Sowerby III, 1900; D, specimen no. 1; E, specimen no. 2. Scale bar: 10 mm.
Fig. 10. — Anatomy of Siphonalia cassidariaeformis (Reeve, 1846): A, B, ventral (A) and dorsal (B) views of body of specimen no. 1, removed from the shell; C, cephalopodium of no. 2, front view; D, penis of no. 3; E, F, foregut of no. 1, with right salivary gland in original position (E) and removed (F); G, stomach of no. 2, external view; H, stomach of no. 1, opened dorsally; I, stomach of no. 2, opened dorsally. Abbreviations: see material and methods. Scale bars: A-F, 10 mm; G, I, 5 mm; H, 1 mm
Anatomy
Soft body (no. 1, female, Fig. 10A, B, E, F, no. 2, female, Fig. 10C) with approximately 3 whorls. Head short and broad, with short contracted tentacles. Eyes small, situated at small lobes in the middle of tentacles (Fig. 10B, C, eyes). Foot contracted, with very narrow propodium and large operculum with terminal nucleus. Penis of spm. no. 3 (Fig. 10D) medium long, flattened, contracted, with small (contracted) rounded seminal papilla at the top, surrounded by circular fold of skin. Mantle with very long siphon in dissected specimens (longer than half mantle width).

Digestive system. Proboscis half everted out of rhynchodaum, thick, contracted (Fig. 10E, F, pr). Proboscis retractors (prr) attached to rhynchodaum along both sides of anterior oesophagus (mostly on its right side), connecting rhynchodaum to lateral walls of body haemocoel. Anterior oesophagus short and wide, dorso-ventrally flattened, along ventral side of proboscis (Fig. 10E, F, aoe) into relatively small rounded valve of Leiblein (Fig. 10F, vl), situated immediately anterior to nerve ring (Fig. 10F, nr). Salivary glands medium small (about 0.25 proboscis length) (Fig. 10E, F, sg), with very thin strongly convoluted salivary ducts (Fig. 10F, sd) following along anterior oesophagus. Gland of Leiblein large (Fig. 10E, F, gl), following along thick, round in section posterior oesophagus (Fig. 10E, F, poe). Stomach spanning about 0.3 whorl (Fig. 10G). Posterior mixing area not large in spm. no. 1, large in spm. no. 2 (Fig. 10G, I, pma). Posterior oesophagus and intestine medium wide in both specimens. Opening of posterior duct of digestive gland (found in spm. no. 2) located near oesophageal opening (Fig. 10I, pdg), opening of anterior duct (found in spms. nos. 1 and 2) located near beginning.
of intestine. Inner stomach wall between two openings with longitudinal fold (Fig. 10H, llf), lined with low oblique folds, remaining part of inner and outer stomach walls lined with moderately high transverse folds.

Siphonalia pfefferi G. B. Sowerby III, 1900
(Figs 9D, E; 11C, D; 12)

Siphonalia pfefferi G. B. Sowerby III, 1900: 440, pl. 11, fig. 3.

COMPLEMENT TO DESCRIPTION

Radula
Radula rather similar in both specimens (Fig. 11C, D); central tooth with rectangular basal part and weakly arcuate anterior margin and three medium long triangular broad cusps, central one equal in length but slightly narrower than lateral ones. Lateral teeth tricuspidate with weakly curved basal side, attached to membrane. Outermost cusp recurved, medium long, inner cusp weakly recurved, about ⅔ of outer cusp length; inner cusp in right longitudinal row of specimen spm. no. 2 partially subdivided (Fig. 11D). Intermediate cusp shortest, situated closer to inner cusp; inner cusp of spm. no. 2 partially subdivided in left longitudinal row.

Anatomy (spm. no. 1, male, Fig. 12)
Head very short and broad, tentacles short, contracted, with small eyes at lobes. Foot contracted, propodium moderately wide, operculum oval with terminal nucleus. Penis rather large (Fig. 12C), flattened, with long narrow seminal papilla in deepening at the top. Mantle with medium long siphon. Large eyes at lobes. Foot contracted, propodium moderately wide, operculum oval with terminal nucleus. Penis rather large (Fig. 12C), flattened, with long narrow seminal papilla in deepening at the top. Mantle with medium long siphon.

DISCUSSION

Results of the phylogenetic analysis suggest close affinities of *Siphonalia* and *Phaenomenella* that remained unnoticed previously. Fraussen & Hadorn (2006), while describing *Phaenomenella*, compared it to *Manaria* and *Eosipho*, but not to *Siphonalia*. The shell outline of some *Phaenomenella* (e.g., *Phaenomenella insulapratensis*) is rather similar to *Siphonalia*: the shell is stout, with strongly convex whorls and a recurved siphonal canal. Species of *Phaenomenella* though have a much larger (about twice) protoconch in comparison with *Siphonalia*. The intragenic variability of shell shape in *Phaenomenella* in its current definition is very high (Fraussen & Stahlschmidt 2013) and in its extremes there is no resemblance between the two genera. It should also be born in mind that some of the most diverging species of *Phaenomenella* were not yet sequenced and may fall into other lineages.

Representatives of both genera are also anatomically similar, particularly in the digestive system characters. Both *Phaenomenella* and *Siphonalia* have a broad, medium long in the contracted state proboscis, medium large salivary glands and a large gland of Leiblein. It should be mentioned that despite these general similarities, there are no unique morphological characters uniting both genera. The radular morphology is very similar in both genera (radula of one more species, *S. murrayi* Parth, 1996 was illustrated in Zhang & Zhang 2018), however, as in the case with the body anatomy, it is of rather generalized buccinid appearance; similar radular morphology can be found in many unrelated genera – eg. *Latisipho* Dall, 1916 (Kosyan 2006), *Plicifusus* Dall, 1902 (Kosyan & Kantor 2012), *Aulacofusus* Dall, 1918 (Kosyan & Kantor 2013). Our molecular analysis did not recover *Phaenomenella* as monophyletic. In both COI and combined COI+28S analyses the internal relationships within *Phaenomenella – Siphonalia* clade are not resolved. *Siphonalia spadicea* cluster without significant support with *P. samadai* n. sp. We have only a single species of *Siphonalia* in our analyses so it is too preliminary to change the classification on the basis of the incomplete dataset. Therefore we presently retain the validity of *Phaenomenella*, although it is possible that *Phaenomenella* and *Siphonalia* can belong to a single genus. One of the distinctions between the genera is the depth range of known species. Generally, species of *Siphonalia* dwell at shallower depths – from 10 to 300 m (Okutani 2000), while *Phaenomenella* is recorded at 190-1389 m (Fraussen & Stahlschmidt 2013; herein). The new species are attributed to *Phaenomenella* based on stronger conchological similarity to other species of the genus rather than to species of *Siphonalia*. Unfortunately the protoconch of *P. samadai* n. sp. was decollated in all available specimens, but the protoconch of *P. nicoi* n. sp. is large globose, similar to other species of *Phaenomenella*. The analysis of a broader dataset of Buccinoidea rejected the monophyly of Siphonalia in its original scope. None of the Recent genera, originally included by Finlay (1928) in the subfamily, that are *Penion*, *Aenator* and *Glaphyrina*, are closely related neither to each other, nor to *Siphonalia*. The system of Buccinidae and Buccinoidea in general is still far
Fig. 12. — Anatomy of Siphonalia pfefferi G. B. Sowerby III, 1900, specimen no. 1: A, cephalopodium, ventral view; B, cephalopodium, dorsal view, mantle removed; C, penis; D, foregut, dorsal view; E, foregut, ventral view; F, proboscis opened dorsally; G, stomach, external view; H, stomach, opened dorsally. Abbreviations: see material and methods. Scale bars: A-F, 10 mm; G, H, 5 mm.
from being resolved, with many problematic buccinoidean lineages (see e.g. Couto et al. 2016; Harasewych 2018). Therefore the rank of the inferred clade Siphonalia + Phaenomenella can be resolved only after obtaining the robust phylogeny of the entire superfamily Buccinoidea.

Acknowledgements
The material was collected mostly in research cruises in the South China Sea and the Philippines Sea organized respectively by National Taiwan University (DONGSHA 2014; NANHAI 2014, ZHONGSHA 2015; PI Wei-Jen Chen), and Museum national d’Histoire naturelle, Paris (MNHN) with the Philippines Bureau of Fisheries and Aquatic Resources (BFAR) (AURORA 2007; PI Philippe Bouchet) The material in this paper originates from several deep sea cruises, conducted by MNHN, Institut de Recherche pour le Développement (IRD) and other partners as part of the Tropical Deep-Sea Benthos programme. The Taiwan and South China Sea cruises were supported by bilateral cooperation research funding from the Taiwan Ministry of Science and Technology, taiwan (grant number MOSt 102­2923–B–002–MY3) and the French National Research Agency (grant ANR 12-ISV7-0005-01). We thank Philippe Bouchet and others for their friendly and helpful assistance with the SEM facilities. The studies were supported by the grant from the Russian Science Foundation RSF 16–14–10118. This project was partly supported by the Service de Systématique et Taxonomie (Gastropoda: Buccinidae) with the description of a new species from Taiwan, Novapex 7: 103-109.

References
Bouchet P., Rocroi J.-P., Hausdorf B., Kaim A., Kano Y., Nützel A., Parkhaya P., Schrodi M. & Strong E. E. 2017. — Revised classification, nomenclator and typification of gastropod and molplopodarphan families. Malacologia 61: 1-526. https://doi.org/10.4002/040.061.0201
Bouchet P. & Warren A. 1986. — Mollusca Gastropoda: taxonomic notes on tropical deep water Bucinidae with descriptions of new taxa. Mémoires du Muséum national d’Histoire naturelle, Série A, Zoologie 133: 455-499.
Cossmann M. 1889. — Catalogue illustré des coquilles fossiles de l’Éocène des environs de Paris, 4. Annales de la Société royale malacologique de Belgique 24: 3-385, pls 1-12.

COUTO D. R., BOUCHET P., KANTOR Y. I., SIMONE L. R. L. & GIRIBET G. 2016. — A multilocus molecular phylogeny of Fasciolariidae (Neogastropoda: Bucinidae). Molecular Phylogenetics and Evolution 99: 309-322. https://doi.org/10.1016/j.ympev.2016.03.025
Felsenstein J. 1985. — Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
Finlay H. J. 1928. — The recent mollusca of the Chatham Islands. Transactions and Proceedings of the Royal Society of New Zealand 59: 232-286, pls 38-43.

Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. — DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Fraussen K. 2004. — Two new deep water Buccinidae (Gastropoda) from western Pacific. Novapex 5: 85-89.
Fraussen K. 2008 — A new Phaenomenella Fraussen & Hadorn, 2006 (Gastropoda: Bucinidae), from the Andaman Sea. Veliger 50: 48-50.
Fraussen K. & Hadorn R. 2006. — Phaenomenella, a new genus of deep-water buccinid (Gastropoda: Bucinidae) with description of a new species from Taiwan, Novapex 7: 103-109.

Fraussen K. & Stahlschmidt P. 2012. — Two new Phaenomenella (Gastropoda: Bucinidae) from Vietnam. Gloria Maris 51: 85-92.
Fraussen K. & Stahlschmidt P. 2013. — The extensive Indo-Pacific radiation of Phaenomenella Fraussen & Hadorn, 2006 (Gastropoda: Bucinidae) with description of a new species. Novapex 14: 81-86.

Galindo L. A., Puillandre P., Strong E. E. & Bouchet P. 2014. — Using microwaves to prepare gastropods for DNA Barcoding. Molecular Ecology Resources 14: 700-705. https://doi.org/10.1111/1755-0998.12231

Galindo L. A., Puillandre P., Utge J., Loizou P. & Bouchet P. 2016. — The phylogeny and systematics of the Nassariidae revisited (Gastropoda, Bucinoida). Molecular Phylogenetics and Evolution 99: 337-353. https://doi.org/10.1016/j.ympev.2016.03.019
Hall T. A. 1999. — BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Harasewych M. G. 2018. — The anatomy of Tudicla spirillus (Linnaeus, 1767) and the relationships of the Tudicidae (Gastropoda: Neogastropoda). The Nautilus 132: 35-44.

Hulsenbeck J. P. & Ronquist E. 2001. — MrBayes: bayesian inference of phylogeny. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
Jovelín R. & Justine J.-L. 2001. — Phylogenetic relationships within the Polyphysophoctylean monogeneans (Platyhelminthes) inferred from partial 28S rDNA sequences. International Journal of Parasitology 31: 393-401. https://doi.org/10.1016/ S0020-7519(01)00114-X

Kantor Y. I., Puillandre P., Fraussen K., Fedosov A. & Bouchet P. 2013. — Deep-water Bucinidae (Gastropoda: Neogastropoda) from sunken wood, vents and seeps: molecular phylogeny and taxonomy. Journal of the Marine Biological Association of the United Kingdom 93: 2177-2195. https://doi.org/10.1017/S0025551413000672

Kosyan A. R. 2006. — Anatomy and taxonomic composition of the genus Latisiphlo Dall (Gastropoda: Buccinidae) from the Russian waters. Ruthenica, Russian Malacological Journal 16: 17-42.
Kosyan A. R. & Kantor Y. I. 2012. — Revision of the genus Planofusus Dall, 1902 (Gastropoda: Buccinidae). Ruthenica, Russian Malacological Journal 22: 55-92.
Kosyan A. R. & Kantor Y. I. 2013. — Revision of the genus Aulacocthus Dall, 1918 (Gastropoda: Buccinidae). Ruthenica, Russian Malacological Journal 23: 1-33.

Miller M. A., Pfeiffer W. & Schwartz T. 2010. — Creating the CIPRES Science Gateway for inference of large phylogenetic
trees, in: Gateway Computing Environments Workshop (GCE), New Orleans: 1-8.

OKUTANI T. 2000. — Marine mollusks in Japan. Tokyo, Tokai University Press, 1221 p.

RAMBAUT A., SUCHARD M. A., XIE D. & DRUMMOND A. J. 2014. — Tracer v1.4. In, http://beast.bio.ed.ac.uk/Tracer

REEVE L. A. 1846. — Monograph of the genus Buccinum, in Conchologia Iconica or illustrations of the shells of molluscous animals. Volume 3. Reeve Brothers, London, plates 1-14.

SOWERBY III G. B. 1900. — New species of Mollusca of the genera Voluta, Conus, Siphonalia, and Eupidia. Annals and Magazine of Natural History series 7 5: 439-441.

STAMATAKIS A. 2006. — RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. https://doi.org/10.1093/bioinformatics/btl446

TAMURA K., STECHER G., PETERSON D., FILIPSKI A. & KUMAR S. 2013. — MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725-2729.

VAUX E., HILLS S. F. K., MARSHALL B. A., TREWICK S. A. & MORGAN-RICHARDS M. 2017. — A phylogeny of Southern Hemisphere whelks (Gastropoda: Buccinulidae) and concordance with the fossil record. Molecular Phylogenetics and Evolution 114: 367-381. https://doi.org/10.1016/j.ympev.2017.06.018

ZHANG S. & ZHANG S. 2018. — Three species of Siphonalia Adams, 1863 (Gastropoda, Buccinidae) from China seas, with descriptions of two new species. Journal of Oceanology and Limnology 36: 2333-2336. https://doi.org/10.1007/s00343-019-7218-x

Submitted on 28 January 2019; accepted on 8 April 2019; published on 4 February 2020.