Event-Triggered Tracking Control of Networked Multi-Agent Systems

Wei Ren, and Dimos V. Dimarogonas, Senior Member, IEEE

Abstract—This paper studies the tracking control problem of networked multi-agent systems under both multiple networks and event-triggered mechanisms. Multiple networks are to connect multiple agents and reference systems with decentralized controllers to guarantee their information transmission, whereas the event-triggered mechanisms are to reduce the information transmission via the networks. In this paper, each agent has a network to communicate with its controller and reference system, and all networks are independent and asynchronous and have local event-triggered mechanisms, which are based on local measurements and determine whether the local measurements need to be transmitted via the corresponding network. To address this scenario, we first implement the emulation-based approach to develop a novel hybrid model for the tracking control of networked multi-agent systems. Next, sufficient conditions are derived and decentralized event-triggered mechanisms are designed to guarantee the desired tracking performance. Furthermore, the proposed approach is applied to derive novel results for the event-triggered observer design problem of networked multi-agent systems. Finally, two numerical examples are presented to illustrate the validity of the developed results.

Index Terms—Event-triggered control, Lyapunov functions, networked multi-agent systems, observer design, tracking control.

I. INTRODUCTION

In the era of the Internet of Things, smart devices are able to interconnect and interplay to link the physical world to the digital world [1]. The sensing, communication, computation and control are integrated into different levels of operations and information. In particular, the introduction of wired/wireless networks to connect multiple agents leads to networked multi-agent systems (MAS). The presence of networks improves efficiency and flexibility of integrated applications, and reduces installation and maintenance time and costs [2]–[4]. Since multiple agents are physically distributed and interconnected to coordinate their tasks and to achieve overall specifications, cooperative control of MAS has attracted numerous attention from various communities [5], [6]. The main challenge in cooperative control is how to design control schemes to limit transmission delays and packet dropouts to avoid the deterioration of the desired performances and to achieve an agreement for multiple agents by exploiting information from each agent and its neighbors. One attractive approach in this context is periodic event-triggered control (PETC) [7]–[9], combining time-triggered control (TTC) (where the information is transmitted at discrete-time instants [10], [11]) and event-triggered control (ETC) (where the information is transmitted only when the triggering condition is satisfied [12]–[14]). In the PETC, the triggering condition is evaluated with a predefined sampling period to decide the information transition, thereby resulting in a balance between TTC and ETC to avoid the continuous evaluation of the triggering condition [7], [9].

Many existing results on cooperative control of (networked) MAS focus mainly on consensus to a common point. Both TTC and ETC/PETC have been addressed [13]–[15]. However, tracking control, as a fundamental problem in control theory [16], [17], received few attention [18]–[20]. The main objective of the tracking control is to design controllers such that multiple agents can track the given reference trajectories as close as possible [21], [22]. In the tracking control, the controller consists of two parts [23]: the feedforward part to induce the reference trajectories for the agents, and the feedback part to drive the agents to converge to the reference trajectories. In MAS, each agent only has the local information from its neighbor agents, while being able to take actions independently without having to wait for a central control signal. These properties affect many system performances including the tracking performance, and thus may result in some challenges for the tracking control. Besides, as opposed to the traditional tracking problem, another main challenge of the tracking control of networked MAS is that only local/partial information is transmitted to the agents due to the limited capacity of communication networks. The information transmission via networks may be an error source affecting the tracking performance [23]. From the above discussion, both network-induced errors and local interaction rules need to be considered simultaneously, which results in the main difficulties in tracking performance analysis.

In this paper, we study the event-triggered tracking control problem for networked MAS. To this end, we implement an emulation-like approach as in [3], [16], [17] and develop a novel hybrid model using the formalism in [24], [25] to address the tracking control for networked MAS, which is our first contribution. Specifically, a general scenario is considered: multiple independent and asynchronous networks are applied to ensure the communication among different components. Such setting is reasonable due to the connection among sensors, controllers and actuators via different communication channels, and allows to recover the architectures in [16], [17], [23] for networked control systems (NCS) and [19], [20] for MAS as particular cases. Based on this setting, a general hybrid model is developed to incorporate all cases caused by multiple network and decentralized event-triggered mechanisms (ETMs), which further lead to different types of...
jumps in the developed hybrid model. To investigate these types of jumps and the network-induced errors, a novel Lyapunov function is proposed for the tracking performance analysis. Furthermore, both Lyapunov-based conditions and decentralized ETMs are derived. The tradeoff between the maximally allowable sampling period (MASP) and the maximally allowable delay (MAD) is derived to guarantee the convergence of the tracking errors with respect to the external disturbance and the network-induced errors.

Since the controller design is usually based on the state estimation [26]–[28] and the observer design can be connected with the tracking control in terms of synchronization [17], [29], our second contribution is to apply the derived results to the event-triggered observer design for networked MAS. To show this, we address the following two cases: an independent observer is designed for each agent based on the local information from this agent; multiple observers are designed for an agent (group) based on the partial information from the agent (group). In these two cases, the agents are not required to be stable (as in [30]) due to their own nature, and the robust decentralized estimation is ensured under the derived decentralized ETMs and MASP bounds. In particular, we envision a hybrid model similar to [31], which however is linear time-triggered case. Therefore, the obtained results are novel in the context of robust distributed estimation, in which case the estimation is based on either TTC/ETC or the centralized fashion [17], [26], [28], [32].

The remainder of this paper is organized below. Preliminaries are given in Section II. The tracking problem is formulated in Section III, and the hybrid model is developed in Section IV. The main results are derived in Section V. The obtained results are applied to the event-triggered observer design in Section VI. Numerical examples are presented in Section VII. Conclusions and further research are stated in Section VIII.

II. PRELIMINARIES

\(\mathbb{R} := (-\infty, +\infty); \mathbb{R}_{\geq 0} := [0, +\infty); \mathbb{R}_{> 0} := (0, +\infty); \mathbb{N} := \{0, 1, 2, \ldots\}; \mathbb{N}_+ := \{1, 2, \ldots\} \). Given two sets \(A \) and \(B, B \setminus A := \{x : x \in B, x \notin A\}. \) \(\cdot \) \(\cdot \) denotes the Euclidean norm. Given two vectors \(x, y \in \mathbb{R}^n, (x, y) := (x^\top, y^\top)^\top \) for simplicity of notation, and \(\langle x, y \rangle \) denotes the usual inner product. \(E \) denotes the vector with all components being 1. \(I \) denotes the identity matrix of appropriate dimension, and \(\text{diag}(A, B) \) denotes the block diagonal matrix made of the matrices \(A \) and \(B \). Given a function \(f : \mathbb{R}_{\geq 0} \to \mathbb{R}^n, f(t^+) := \lim_{s \to t^+} f(t + s) \). A function \(\alpha : \mathbb{R}_{> 0} \to \mathbb{R}_{\geq 0} \) is of class \(K \) if it is continuous, \(\alpha(0) = 0, \) and strictly increasing; it is of class \(K_{\infty} \) if it is of class \(K \) and unbounded; it is of class \(\mathcal{L} \) if it is continuous, strictly decreasing, and \(\lim_{s \to \infty} \alpha(s) = 0 \). A function \(\beta : \mathbb{R}_{\geq 0}^2 \to \mathbb{R}_{\geq 0} \) is of class \(K\mathcal{L} \) if \(\beta(s, t) \in K \) for fixed \(t \geq 0 \) and \(\beta(s, t) \in \mathcal{L} \) for fixed \(s \geq 0 \). A function \(\beta : \mathbb{R}_{> 0}^2 \to \mathbb{R}_{\geq 0} \) is of class \(K\mathcal{L} \) if \(\beta(r, s, t) \in K\mathcal{L} \) for fixed \(s \geq 0 \) and \(\beta(r, s, t) \in K \mathcal{L} \) for fixed \(t \geq 0 \).

A. Hybrid System

The basic concepts of hybrid systems are introduced below; see [24] for the details. Consider the following hybrid system

\[
\begin{aligned}
\dot{x} &= F(x, w), & (x, w) &\in C, \\
x^+ &= G(x, w), & (x, w) &\in D,
\end{aligned}
\]

where \(x \in \mathbb{R}^n \) is the system state, \(w \in \mathbb{R}^m \) is the external input, \(F : C \to \mathbb{R}^n \) is the flow map, \(G : D \to \mathbb{R}^m \) is the jump map, \(C \) is the flow set and \(D \) is the jump set. For the hybrid system (1), the following basic assumptions are presented: the sets \(C, D \subset \mathbb{R}^n \times \mathbb{R}^m \) are closed; \(F \) is continuous on \(C; \) and \(G \) is continuous on \(D \). In (1), \(x \in \mathbb{R}^n \) is defined on hybrid time domain, which is denoted by \(\text{dom} x \subset \mathbb{R}_{> 0} \times \mathbb{N} \) with the following structure: for each \((T, J) \in \text{dom} x \), \(\text{dom} x \cap ([0, T] \times \{0, \ldots, J\}) \) can be written as \(\bigcup_{0 \leq j \leq J-1} \{(t_j, t_{j+1}, j)\} \) for some finite sequence of times \(0 = t_0 \leq t_1 \leq \ldots \leq t_J \). Given \((t_1, j_1), (t_2, j_2) \in \mathbb{R}_{> 0} \times \mathbb{N}, \) we denote by \((t_1, j_1) \preceq (t_2, j_2) \) (or \((t_1, j_1) \prec (t_2, j_2) \)) if \(t_1 + j_1 \leq t_2 + j_2 \) (or \(t_1 + j_1 < t_2 + j_2 \)). A solution \((x, w) \) to (1) is a function on the hybrid time domain satisfying the dynamics in (1) with the following property: \(\text{dom} x = \text{dom} w; x(\cdot, j) \) with fixed \(j \) is absolutely continuous; and \(w(\cdot, j) \) with fixed \(j \) is Lebesgue measurable and locally essentially bounded. A solution \((x, w) \) is maximal if it cannot be extended. Define \(\|w\|_{(t, j)} := \max \{\text{ess. sup} \|w(t', j')\| \}
\]

\[
\sup_{(t, j)_{t', j'} \in \text{dom} w} \sup_{(t, j)_{t', j'} \in \text{dom} w} \|w(t', j')\| \}
\]

where \(\Xi(w) := \{(t, j)_{t', j'} \in \text{dom} w: (t, j + 1)_{t', j'} \in \text{dom} w\}. \) \(\text{dom} w(x_0) \) denotes the set of all maximal solutions to (1) with \(x_0 = x(0, 0) \in C \cup D \) and finite \(\|w\| := \sup_{(t, j)_{t', j'} \in \text{dom} w} \|w(t, j)_{t', j'}\| \).

Definition 1 ([24]): The hybrid system (1) is input-to-state stable (ISS) from \(w \) to \(x \), if there exist \(\beta \in \mathcal{KL} \) and \(\gamma \in \mathcal{K}_\infty \) such that \(\|x(t, j)_{t', j'} \| \leq \beta(\|x(0, 0)\|_0), t, j + \gamma(\|w\|_{(t, j)})) \) for all \((t, j)_{t', j'} \in \text{dom} w \) and all \((x, w) \in \mathcal{G}_w(x_0) \).

B. Graph Theory

A directed graph is defined as \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \), where \(\mathcal{V} = \{1, 2, \ldots, N\} \) is the set of nodes and \(\mathcal{E} \subset \mathcal{V} \times \mathcal{V} \) is the set of edges. Each edge directly links two nodes. An edge from node \(i \) to node \(j \) is denoted by \((i, j) \), and implies that node \(i \) can receive information from node \(j \). The adjacency matrix is denoted by \(A = [a_{ij}]_{N \times N} \), where \(a_{ij} = 1 \) if \((i, j) \in \mathcal{E} \) and \(a_{ij} = 0 \) otherwise. The neighbor set of node \(i \) is denoted by \(\mathcal{N}_i = \{j \in \mathcal{V} : (i, j) \in \mathcal{E}\}. \) The directed graph \(\mathcal{G} \) is undirected if \(a_{ij} = a_{ji} \) for all \(i, j \in \mathcal{V} \) and \(\mathcal{G} \) is connected if for all \(i, j \in \mathcal{V}, \) there exists a path connecting \(i \) and \(j \), which is an ordered list of edges, i.e., \((i, k_1), (k_1, k_2), \ldots, (k_n, j) \) with finite \(n \in \mathbb{N}_+. \) A directed graph is all-to-all connected if two distinct nodes are connected by a unique edge.

III. PROBLEM FORMULATION

In this section, we first state the tracking control problem for networked MAS studied in this paper, and then present the detailed information transmission among all agents, references and controllers via multiple networks.
A. Tracking Problem of Networked MAS

Consider the nonlinear MAS with $N \in \mathbb{N}^+$ agents, whose
dynamics is described ... by the ETM.
Hence, the information transmissions via multiple networks
are independent and may not be synchronous.

where $x_i^t \in \mathbb{R}^{n_i}$ is the reference state, $u_i^t \in \mathbb{R}^{n_i}$ is the feedforward control input of the reference system, $u_t \in \mathbb{R}^{n_2}$ is the external disturbance, and $y_i^t \in \mathbb{R}^{n_i}$ is the reference output.

Let $x_p := (x_1^{p}, \ldots, x_N^{p}) \in \mathbb{R}^{n_p}$ and $x_t := (x_1^{t}, \ldots, x_N^{t}) \in \mathbb{R}^{n_t}$ with $n_p := \sum_{i=1}^{N} n_i^p$ In (2)-(3), f_j^p (or f_j^t) is written as a function related to the overall vector x_p (or x_t), but it depends only on the states of the i-th agent (or reference) and its neighbor agents (or references); see Fig. 1. The physical coupling among all agents is characterized by a graph $G_p := (N, \mathcal{E}_p)$, whereas the physical coupling among all references is characterized by a graph $G_r := (N, \mathcal{E}_r)$.

Assumption 1: G_p and G_r are undirected and connected.

The graphs G_p and G_r are not necessarily the same, and will not play a central role in our results. To track the reference system (3), assume that in the absence of the network, the controller for the i-th agent is designed as

$$u_i = u_i^c + u_i^f,$$

where $u_i^c \in \mathbb{R}^{n_i}$ is the feedback control input, and is generated by the following feedback controller

$$\dot{x}_c^i = f_c^i(x_c^i, y_i^c, y_i^r, w_c), \quad u_i^c = g_c^i(x_i^c),$$

where $x_c^i \in \mathbb{R}^{n_i}$ is the controller state, and $w_c \in \mathbb{R}^{n_3}$ is the external disturbance. Therefore, in the absence of the network and under the controller (4), x_p^t should converge to x_i^c as close as possible. That is, the tracking goal is achieved, if

$$|x_p^t(t) - x_i^c(t)| \leq \beta(|x_p^t(0) - x_i^c(0)|, t) + \gamma(||w||),$$

where $\beta \in K\mathcal{L}$, $\gamma \in K_{\infty}$, and $w := (w_p, w_t, w_c) \in \mathbb{R}^{n_w}$ with $n_w := n_1 + n_2 + n_3$.

Remark 1: For each agent, the dynamics (2) is general and recovers the single/double integrators [13]–[15] and heterogeneous models [19], [33] as special cases. The controller (5) depends only on the corresponding agent and reference system, which implies that the controllers are not affected by other agents and reference systems. Such controller exists for both MAS [33], [34] and NCS [4], [35], [36].

We denote $x_p := (x_1^p, \ldots, x_N^p) \in \mathbb{R}^{n_p}$, $u := (u_1, \ldots, u_N) \in \mathbb{R}^{n_u}$, $u_t := (u_1^t, \ldots, u_N^t) \in \mathbb{R}^{n_u}$, $u_c := (u_1^c, \ldots, u_N^c) \in \mathbb{R}^{n_u}$, $y_p := (y_1^p, \ldots, y_N^p) \in \mathbb{R}^{n_p}$, and $y_t := (y_1^t, \ldots, y_N^t) \in \mathbb{R}^{n_p}$, where $n_1 := \sum_{i=1}^{N} n_i$, $n_2 := \sum_{i=1}^{N} n_i^p$, and $n_p := \sum_{i=1}^{N} n_i^p$.

Hence, the dynamics of all agents can be written unifedly as

$$\dot{x}_p = f_p(x_p, u, w_p), \quad y_p = g_p(x_p),$$

where $f_p := (f_1^p, \ldots, f_N^p) \in \mathbb{R}^{n_p}$ and $g_p := (g_1^p, \ldots, g_N^p) \in \mathbb{R}^{n_p}$. Accordingly, the reference system is given by

$$\dot{x}_t = f_p(x_t, u_t, w_t), \quad y_t = g_p(x_t).$$

Assume that the system (8) has a unique solution for any initial condition and any input. All controllers (4) are stacked as

$$u = u_c + u_t,$$

and the feedback control input $u_c \in \mathbb{R}^{n_u}$ comes from the following feedback controller

$$\dot{x}_c = f_c(x_c, y_p, y_t, w_c), \quad u_c = g_c(x_c).$$

We assume that f_p and f_c are continuous; g_p and g_c are continuously differentiable.

Our objective is to implement the designed controller (9) over both ETMs and multiple networks, and to demonstrate that the assumed tracking performance of the system (7)-(10) will be preserved approximately for the networked MAS under reasonable assumptions and the designed ETMs. To be specific, in the network-free case, the tracking performance in (6) for MAS is achieved under the controller (9). However, in the networked case, (6) may be not achieved due to network-induced constraints, which will be introduced in the next subsection. In addition, to mitigate the unnecessary waste of communication resources, the ETM is designed for each network to balance resource utilization and control performance. Therefore, our goal is to establish conditions on both the networks and the system (7)-(10) and to design decentralized ETMs to guarantee the approximate convergence of x_p towards x_t in the presence of the network-induced constraints and designed ETMs. Here, ‘approximate’ means that the convergence region depends not only on the external disturbance as in (6) but also on the network-induced errors.

B. Information Transmission over Multiple Networks

As shown in Fig. 1, the information is sampled via the sensors and then determined (by the ETM to be designed in Section V) to be transmitted via the network. For different agents and references, the information may be transmitted via different networks (e.g., wired/wireless networks [2], [4]), and is transmitted only when the information is needed. Whether the information is needed is evaluated by the ETM. Hence, the information transmissions via multiple networks are independent and may not be synchronous.
Assumption 2: In the case that the ETM is implemented, all sensors and actuators are connected via $N \in \mathbb{N}^+$ independent and asynchronous networks.

If some agents can be composed as a agent group sharing a common network, then the number of multiple networks can be reduced and be smaller than the number of the agents. The information to be transmitted is denoted by $z_i := (y_p, y_i, u_i, u_c) \in \mathbb{R}^{n_z}$ with $n_z := 2n_y + 2n_u$. From (2)-(5), the dynamics of $z_i \in \mathbb{R}^{n_z}$ can be written as
\[\dot{z}_i = f^i_z(z_i, x_p, x_i, x_c^i, w_p, w_i, w_c). \]

Stacking all z_i leads to $z := (z_1, \ldots, z_N) \in \mathbb{R}^{n_z}$ with $n_z := \sum_{i=1}^N n_z^i$, and we denote $\dot{z} := (f^1_z, \ldots, f^N_z) \in \mathbb{R}^{n_z}$. Because of the band-limited capacity of each channel and the spatial locations of its sensors and actuators, all sensors and actuators of each network are grouped into $t_i \in \mathbb{N}$ nodes to access to the network, where $i \in N$; see also [37, 38]. Correspondingly, z_i is partitioned into t_i parts. For the i-th network, its sampling time sequence is denoted by $t_{j}^i : i \in N, j \in \mathbb{N}_+$, which is strictly increasing. At the sampling time t_{j}^i, one and only one node is allowed to access to the i-th network, and this node is chosen by the time-scheduling protocol, which will be introduced in Section III-C. For the i-th network, the sampling intervals are defined as $h^i_j := t_{j+1}^i - t_j^i$, where $i \in N$ and $j \in \mathbb{N}_+$. Since it takes time to compute and transmit the information, each agent may not receive the transmitted information instantaneously. Hence, there exist transmission delays $r_j^i \geq 0$ such that the transmitted information is received at the arrival time $r_j^i = t_j^i + r_j^i$. For all networks, the following assumption is to bound sampling intervals and transmission delays.

Assumption 3: For the i-th network with $i \in N$, there exist constants $T_i \geq \Delta_i \geq 0$ and $\varepsilon_i \in (0, T_i)$ such that $\varepsilon_i \leq h^i_j \leq T_i$ and $0 \leq r_j^i \leq \min\{\Delta_i, h^i_j\}$ hold for all $j \in \mathbb{N}_+$.

In Assumption 3, T_i can be called the maximally allowable sampling period (MASP) for the i-th network, $\Delta_i \geq 0$ is called the maximally allowable delay (MAD), and $\varepsilon_i > 0$ is the minimal interval of two successive transmissions. Both MASP and MAD are the design parameters and will be upper bounded in Section V-C. $\varepsilon_i > 0$ is determined by the hardware constraints [3], and thus ensures the exclusion of Zeno phenomena. In the network-free case [9], $\varepsilon_i \equiv 0$ and $0 < h^i_j \leq T_i$. If $\varepsilon_i = 0$ in the networked case, the results derived in this paper are available for the periodic ETC case [9, 39]; otherwise, the ETM needs to be re-designed; see, e.g., [4] for the continuous ETC case.

To reduce the transmission frequency, a local ETM is implemented for each network. That is, at each sampling time t_j, only when the event-triggered condition for the i-th network is satisfied can the sampled information be transmitted via the i-th network. Denote by $\hat{z} := (y_p, y_i, u_c, u_t) \in \mathbb{R}^{n_z}$ the received measurement after the transmission, and thus the control input received by the agents is $\hat{u} := u_c + u_t$. The network-induced errors are defined as $e_p := y_p - y_i, e_i := y_i - y_t, e_c := u_c - u_t$ and $e_t := u_t - u_c$. From N networks, we denote $\hat{z} = (\hat{z}_1, \ldots, \hat{z}_N)$ and $e := z - \hat{z} = (e_1, \ldots, e_N) \in \mathbb{R}^{n_z}$.

In the arrival interval $[r_j^i, r_{j+1}^i]$, the received measurement \hat{z}_i is assumed to be implemented via the zero-order hold (ZOH) mechanism, that is,
\[\hat{z}_i(t) = 0, \quad \forall t \in [r_j^i, r_{j+1}^i]. \]

At the arrival time r_j^i, $j \in \mathbb{N}_+$, whether \hat{z}_i is updated via the latest information depends on the local ETM at t_j^i. Here, we assume that the event-triggered condition for the i-th network is given by $\Gamma_i \geq 0$, where the function $\Gamma_i : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ will be designed explicitly in Section V-B. $\Gamma_i \geq 0$ implies that the sampled measurement needs to be transmitted, and \hat{z}_i is updated with the latest measurement. That is, \hat{z}_i is updated by
\[\hat{z}_i(r_j^i +) = \begin{cases} z_i(r_j^i) + h_i^z(\kappa_i(t_j^i), e_i(t_j^i)), & \Gamma_i(t_j^i) \geq 0, \\ \hat{z}_i(r_j^i), & \Gamma_i(t_j^i) < 0, \end{cases} \]

where $\kappa_i : \mathbb{R}_{\geq 0} \rightarrow \mathbb{N}$ is a counter to record the number of the successful transmission events. That is, $\kappa_i(t_j^i +) = \kappa_i(t_j^i) + 1$ if $\Gamma_i(t_j^i) \geq 0$, and $\kappa_i(t_j^i +) = \kappa_i(t_j^i)$ otherwise. $h_i^z \in \mathbb{R}^{n_z}$ is the update function and depends on the protocol. Let $h_i^z := (h_i^p, h_i^z, h_i^t, h_i^c)$, and then we can rewrite (13) as
\[\hat{z}_i(r_j^i +) = \begin{cases} z_i(r_j^i) + \Psi_i(\Gamma_i(t_j^i))[z_i(r_j^i) + h_i^z(\kappa_i(t_j^i), e_i(t_j^i))], & \Gamma_i(t_j^i) \geq 0, \\ \hat{z}_i(r_j^i), & \Gamma_i(t_j^i) < 0, \end{cases} \]

where $\Upsilon : \mathbb{R} \rightarrow \{0, 1\}$ is defined as $\Upsilon(\Gamma_i) = 1$ if $\Gamma_i \geq 0$ and $\Upsilon(\Gamma_i) = 0$ otherwise. From (14), the error e_i is updated by
\[e_i(r_j^i +) = z_i(r_j^i) - \hat{z}_i(r_j^i +) = e_i(r_j^i) + \Psi_i(\Gamma_i(t_j^i))[h_i^z(\kappa_i(t_j^i), e_i(t_j^i)) - e_i(t_j^i)]. \]

C. Time-Scheduling Protocols

Since each network has ℓ_i nodes with $i \in N$, the time-scheduling protocol is introduced to determine which node to access to the network. Similar to the analysis and the terminology in [3], the function $h_i^0(\kappa_i, e_i) \in (14)$ is referred to as the protocol. Based on ℓ_i nodes for the i-th network, e_i is partitioned into $e_i = (e_1^i, \ldots, e_{\ell_i}^i)$. If the l_i-th node is granted to access to the i-th network, where $l_i \in \{1, \ldots, \ell_i\}$, then the corresponding component $e_{l_i}^i$ is updated and the other components are kept constant. In the literature [3, 38], many time-scheduling protocols can be modeled as $h_i^0(\kappa_i, e_i)$, and two classes of commonly-used protocols are recalled.

The first protocol is the Round-Robin (RR) protocol, which is a periodic protocol [38]. The period of the RR protocol is T_i, and each node has one and only chance to access to the i-th network in a period. The function h_i^0 is given by
\[h_i^0(\kappa_i, e_i) := (I - \Psi_i(\kappa_i))e_i(t_j^i), \]

where, $\Psi_i(\kappa_i) = \text{diag} (\Psi_1^i(\kappa_i), \ldots, \Psi_{\ell_i}^i(\kappa_i))$ and $\Psi_{\ell_i}^i(\kappa_i) \in \mathbb{R}^{n_z \times n_z}$. $\Psi_{\ell_i}^i(\kappa_i) = I$ if $\kappa_i = l_i + j\ell_i$ with $j \in \mathbb{N}$ and $l_i \in \{1, \ldots, \ell_i\}$; otherwise, $\Psi_{\ell_i}^i(\kappa_i) = 0$.

The second protocol is Try-Once-Discard (TOD) protocol, which is a quadratic protocol [37]. For the TOD protocol, the node with a minimum index where the norm of the local network-induced error is the largest is allowed to access to the network. The function h_i^0 is given by
\[h_i^0(\kappa_i, e_i) := (I - \Psi_i(\kappa_i))e_i(t_j^i), \]

(16)
where, $\Psi_i(e_i) = \text{diag}\{\Psi_{i1}(e_i), \ldots, \Psi_{i\ell_i}(e_i)\}$, and $\Psi_{i\ell_i}(e_i) = I$ if $\min\{\arg\max_{1 \leq k \leq \ell_i} |e_{ik}|\} = \ell_i$; otherwise, $\Psi_{i\ell_i}(e_i) = 0$.

Remark 2: Beside RR and TOD protocols, the TOD-tracking protocol was introduced in [17] by refining the TOD protocol. If u_i^t is generated by the controller [23], then h_i^t is associated to $(e_{ip}^t, e_{ic}^t + e_{it}^t)$ instead of e_i. If $y_i^t - y_i^s$ is transmitted via the network [16], then h_i^t is related to $(e_{ip}^t - e_{ip}^s, e_{ic}^t - e_{it}^s)$. □

IV. DEVELOPMENT OF HYBRID MODEL

After the detailed analysis in previous section, we construct the hybrid model for the event-triggered tracking control of networked MAS in this section. To this end, our objective is to guarantee the convergence of x_p towards x_t in the presence of ETMs and multiple networks. To measure the convergence of x_p towards x_t, define the tracking error $\eta := x_p - x_t \in \mathbb{R}^{n_p}$, and the variable $e_a := (e_a, e_c) := (e_p - e_i, e_c) \in \mathbb{R}^{n_a}$ with the network-induced errors e_p, e_c defined in Section III, where $n_a = n_p + n_c$. Combining all variables and analyses in Section III, we derive the following impulsive model:

\[
\begin{align*}
\dot{\eta} &= F_\eta(\delta, \eta, x, e, m, \kappa), \\
\dot{x} &= F_x(\delta, \eta, x, e, m, \kappa), \\
\dot{e}_a &= F_{e_a}(\delta, \eta, x, e, m, \kappa), \\
\dot{e}_c &= F_{e_c}(\delta, \eta, x, e, m, \kappa), \\
e_a^{(r_j^+)} &= e_a^{(r_j^-)} + \gamma(\Gamma_i(t_j^+))[-e_a^{(r_j^-)}] + h_a^i(\kappa_i(t_j^+), e_a^{(r_j^-)}, e_c^{(r_j^-)}, e_t^{(r_j^-)}), \\
e_c^{(r_j^+)} &= e_c^{(r_j^-)} + \gamma(\Gamma_i(t_j^+))[-e_c^{(r_j^-)}] + h_c^i(\kappa_i(t_j^+), e_a^{(r_j^-)}, e_c^{(r_j^-)}, e_t^{(r_j^-)}), \\
e_t^{(r_j^+)} &= e_t^{(r_j^-)} + \gamma(\Gamma_i(t_j^+))[-e_t^{(r_j^-)}] + h_t^i(\kappa_i(t_j^+), e_a^{(r_j^-)}, e_c^{(r_j^-)}, e_t^{(r_j^-)}), \\
\end{align*}
\]

(17a)

(17b)

defined as a timer to keep track of both sampling intervals and transmission delays for the i-th network; $b := (b_1, \ldots, b_N) \in \mathbb{R}^N$, where $b_i \in \{0, 1\}$ is a logical variable to show whether the next event is a sampling event or an update event. That is, for the i-th network, $b_i = 0$ means that the next event will be the sampling event, while $b_i = 1$ means that the next event will be the update event. Denote $\mathcal{X} := \{x, e, m, \delta, \tau, \kappa, b\} \in \mathcal{B} := \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^N \times \mathbb{R}^N \times \mathbb{R}^N \times \{0, 1\}^N$, and the hybrid system is developed below.

\[
\begin{align*}
\dot{x} &= F(\mathcal{X}, w), \\
\dot{\mathcal{X}} &= G(\mathcal{X}), \\
&\mathcal{X} \in C, \\
&\mathcal{X} \in D,
\end{align*}
\]

(18)

where

\[
C := \bigcup_{i=1}^N C_i, \\
D := \bigcup_{i=1}^N (D_{1i} \cup D_{2i}),
\]

(19)

\[
C_i := \{\mathcal{X} \in \mathcal{B} : (b_i, \tau_i) \in \{(0) \times [0, \Delta_i]\} \cup \{(1) \times [0, \Delta_i]\}\}, \\
D_{1i} := \{\mathcal{X} \in \mathcal{B} : (b_i, \tau_i) \in \{(0) \times \{\tau_i\}\}\}, \\
D_{2i} := \{\mathcal{X} \in \mathcal{B} : (b_i, \tau_i) \in \{1\} \times [0, \Delta_i]\},
\]

with $\tau_i > 0$ and $\Delta_i \geq 0$ from Assumption 3. The map F is

\[
F(\mathcal{X}, w) := (f(\delta, x, e, w), g(\delta, x, e, w), 0, 0, 0, 0),
\]

(20)

where $f := (F_\eta, F_x, F_{e_a}, F_{e_c})$ and $g := (G_1, G_2, G_3)$ are derived from (17a). The mapping G in (18) is defined as

\[
G(\mathcal{X}) := \begin{cases}
G_1(\mathcal{X}), & \mathcal{X} \in D_1, \\
G_2(\mathcal{X}), & \mathcal{X} \in D_2,
\end{cases}
\]

(21)

with

\[
\begin{align*}
G_1(\mathcal{X}) &= \bigcup_{i=1}^N G_{1i}(\mathcal{X}), \\
G_2(\mathcal{X}) &= \bigcup_{i=1}^N G_{2i}(\mathcal{X}),
\end{align*}
\]

(22)

A. Hybrid Model of Networked MAS

To facilitate the analysis afterwards, the impulsive model (16) is further transformed into a formal hybrid model in the formalism of [25]. For the sake of convenience, define $x := (\eta, x, e) \in \mathbb{R}^{n_x}$ and $e := (e_a, e_c, e_t) \in \mathbb{R}^{n_e}$ with $n_a = n_p + n_c + n_e$ and $n_e = n_a + n_y + n_u$. Define $m := (m_1, \ldots, m_N) \in \mathbb{R}^{n_m}$ with $m := h_i(\kappa_i, e_i) - e_i \in \mathbb{R}^{n_i}$ storing the information for the update, where $e_i := (e_{ip}^t, e_{ic}^t, e_{it}^t)$ and $h_i := (h_{ip}^t, h_{ic}^t, h_{it}^t)$ are defined in (17). Let $\kappa := (\kappa_1, \ldots, \kappa_N) \in \mathbb{R}^N$ with $\kappa_i \in \mathbb{N}$ defined in (13); $\tau := (\tau_1, \ldots, \tau_N) \in \mathbb{R}^N$ with $\tau_i \in \mathbb{R}$.
where $\Lambda_i := \text{diag}\{\Lambda_{1i}, \ldots, \Lambda_{Ni}\} \in \mathbb{R}^{N \times N}$ with $\Lambda_{ii} = 0$ if $i \neq j \in N$ and $\Lambda_{ij} = 1$ otherwise, and

$$
M_{1i}(x, e, m, \ldots) := \Phi_i m + \Gamma_i(x, e, m),
$$

$$
E_i(x, e, m, \ldots) := \Phi_i m + \Gamma_i(x, e, m).
$$

Here, $\Phi_i := \text{diag}\{\Phi_{1i}, \ldots, \Phi_{Ni}\} \in \mathbb{R}^{n \times n}$, $M_{1i} := (M_{11i}, \ldots, M_{Ni}) \in \mathbb{R}^{n \times n}$, and $E_i := (E_{1i}, \ldots, E_{Ni}) \in \mathbb{R}^{n \times n}$. If $k = i$, then $\Phi_{ii} = 0$, $M_{11} = \Gamma_i(x, e, m)$, and $E_i = \Phi_i m + \Gamma_i(x, e, m)$; otherwise, $\Phi_i = \Phi_i$ and $M_{1i} = M_{1i} = E_i = 0$.

For the hybrid model (18), the sets C and D are closed. Since f_t, f_c, g_t and g_c are assumed to be continuous in Section III-A, f and g in (20) are continuous, and thus the flow map F in (20) is continuous. The jump map G in (21) is continuous and locally bounded from the continuity of G_1 in (22) and G_2 in (23). As a result, we can verify easily that the hybrid model (18) satisfies the basic assumptions introduced in Section II.

V. Tracking Performance Analysis

In this section, the main results are established. We first present some necessary assumptions, then design the event-triggered condition for each network, and finally establish the convergence of the tracking error.

A. Assumptions

Two types of assumptions are presented for the system (18). The first type shows the properties of the e_i-subsystem in the jump and flows, whereas the second type implies the stabilization property of the x-subsystem under the designed controller. We first present the first type of assumptions.

Assumption 4: There exist a function $W_i : \mathbb{R}^{n_i} \times \mathbb{R}^{n_i} \times N \times \{0, 1\} \rightarrow \mathbb{R}_{\geq 0}$ which is locally Lipschitz in (e_i, m_i) for all $\kappa_i \in N$ and $b_i \in \{0, 1\}$, $\sigma_{ji} \in K_{\infty}$, $j \in \{1, \ldots, 6\}$, and $\lambda_i \in [0, 1]$ such that for all $(e_i, m_i, \kappa_i, b_i) \in \mathbb{R}^{n_i} \times \mathbb{R}^{n_i} \times N \times \{0, 1\},$

$$\alpha_i(|e_{i1}|) \leq W_i(e_i, m_i, \kappa_i, b_i) \leq \alpha_{2i}(e_i),$$

(24)

$$W_i(e_i, m_i, \kappa_i, b_i) \leq \lambda_i W_i(e_i, m_i, \kappa_i, b_i) + \lambda_i W_i(e_i, m_i, \kappa_i, b_i),$$

(25)

$$W_i(e_i, m_i, \kappa_i, b_i) \leq W_i(e_i, m_i, \kappa_i, b_i),$$

(26)

$$W_i(e_i, m_i, \kappa_i, b_i) \leq W_i(e_i, m_i, \kappa_i, b_i) + \alpha_{3i}(|e_i|) + \alpha_{4i}(|e_i|).$$

(27)

Assumption 5: There exist a continuous function $H_{ib_i} : \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \rightarrow \mathbb{R}_{\geq 0}$, $\sigma_{ib_i}, \sigma_{2ib_i}, \sigma_{3ib_i} \in K_{\infty}$ and $L_{ib_i} \in \mathbb{R}_{\geq 0}$ such that for all $(x, w, \kappa_i, b_i) \in \mathbb{R}^{n_x} \times \mathbb{R}^{n_w} \times \mathbb{N} \times \{0, 1\}$ and almost all $(e_i, m_i) \in \mathbb{R}^{n_i} \times \mathbb{R}^{n_i}$,

$$\left\langle \frac{\partial W_i(e_i, m_i, \kappa_i, b_i)}{e_i}, g_t(\delta, x, e, w) \right\rangle \leq L_{ib_i} W_i(e_i, m_i, \kappa_i, b_i) + H_{ib_i}(x, e) + \sigma_{ib_i}(|e_i|) + \sigma_{2ib_i}(|e_i|) + \sigma_{3ib_i}(|w|).$$

(28)

Assumptions 4-5 are on the e_i-subsystems, whose properties are described via the function W_i. Assumption 4 is to estimate the jumps of W_i at the discrete-time instants. Specifically, (25) is for the successful transmission jumps (i.e., $\Gamma_i \geq 0$) at t_j, (26) is for the failure transmission jumps (i.e., $\Gamma_i < 0$) at t_j, and (27) is for the update jumps at t_j. Assumption 5 is to estimate the derivative of W_i in the continuous-time intervals, and the coupling is shown via the function H_{ib_i}. Since Assumptions 4-5 are applied to the e_i-subsystem, (25)-(27) hold with respect to the additional items e_i and γ_i, which are parts of e_i and treated as the internal disturbances caused by the network. Similar conditions have been considered in existing works [16], [17], where however only a common communication network and TTC are studied. In addition, σ_{ib_i} and σ_{2ib_i}, σ_{3ib_i} in Assumption 4 can be the same. For instance, (25)-(27) hold with $\sigma_{3i}(|e_i|) = \sigma_{5i}(|e_i|) := \max\{\sigma_{3i}(e_i), \sigma_{5i}(e_i)\}$ and $\sigma_{3i}(|e_i|) = \sigma_{6i}(|e_i|) := \max\{\sigma_{4i}(e_i), \sigma_{6i}(e_i)\}$.

Assumption 6: There exist a locally Lipschitz function $V : \mathbb{R}^{n_x} \rightarrow \mathbb{R}_{\geq 0}$, $\alpha_{1V}, \alpha_{2V}, \alpha_{3i}, \alpha_{4i}, \alpha_{5i}, \alpha_{6i} \in K_{\infty}$, and $\mu, \theta_{ib_i}, \gamma_{ib_i} > 0$, $L_{ib_i} \in \mathbb{R}$ such that

$$\alpha_{1V}(|\eta|) \leq V(x) \leq \alpha_{2V}(|x|), \quad \forall x \in \mathbb{R}^{n_x},$$

(29)

and for all $(e_i, m_i, \kappa_i, b_i) \in \mathbb{R}^{n_i} \times \mathbb{R}^{n_i} \times N \times \{0, 1\}$ and almost all $x \in \mathbb{R}^{n_x}$,

$$\langle \nabla V(x), f(\delta, x, e, w) \rangle \leq -\mu V(x) + \sum_{i=1}^{N} \left[-H_{ib_i}^{2}(x, e) + \alpha_{2ib_i}^{2}(e_i) + \alpha_{4ib_i}^{2}(e_i) + \alpha_{6ib_i}^{2}(e_i) \right] + \gamma_{ib_i}(x_i) + K_{ib_i}(x_i, e, m, w) + H_{ib_i}^{2}(x, e) + \sigma_{ib_i}(e_i) + \sigma_{2ib_i}(e_i) + \sigma_{3ib_i}(e_i) + \sigma_{5ib_i}(e_i) + \sigma_{6ib_i}(e_i).$$

(30)

where H_{ib_i} is defined in Assumption 4, $\sigma_{ib_i} : \mathbb{R}^{n_x} \rightarrow \mathbb{R}_{\geq 0}$ is a locally Lipschitz function with $\sigma_{ib_i}(0) = 0$, and $K_{ib_i} : \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_w} \times \mathbb{R}^{n_x} \rightarrow \mathbb{R}_{\geq 0}$ is a continuous function.

Assumption 6 is on the x-subsystem, whose properties are described via the function V. Under the designed controller (9)-(10), (29)-(30) imply that the η-subsystem satisfies the ISS-like property from $(\sum_{i=1}^{N} W_i(e_i, e_i, w) \rightarrow \eta$ and the L_{2}-stability property from $(\sum_{i=1}^{N} W_i(e_i, e_i, w) \rightarrow 0)$. This assumption is reasonable due to the implementation of the emulation-based approach, where the controller is assumed to be known a priori to ensure the tracking performance robustly in the network-free case. Hence, in the presence of the networks, $(\sum_{i=1}^{N} W_i(e_i, e_i, w) \rightarrow \eta$ and the L_{2}-stability property from $(\sum_{i=1}^{N} W_i(e_i, e_i, w) \rightarrow 0$) is treated as a whole disturbance from the interior and exterior of the agents. Moreover, (31) provides the growth bound on the derivative of the function φ_{ib_i} on the flow. Note that the information of multiple networks is not required in Assumption 6, and that φ_{ib_i} will be applied to design the ETMs.

Remark 3: Assumptions 4-6 depend on the existence of the functions W_i and V, which were investigated in [3], [16], [17], [39] in the context of stabilization. In particular, Assumptions 4-6 are reformulated into linear matrix inequalities in the linear case [39]; W_i and V were constructed explicitly in [4] for the event-triggered stabilization problems. On the other hand, in Assumptions 4-6, the parameters λ_i, L_{ib_i}, \bar{L}_{ib_i} are to facilitate the design and analysis afterwards. If the time-scheduling protocols are specified, then λ_i can be computed explicitly; see [3], [16], [17], [38]. \bar{L}_{ib_i} is applied to design decentralized ETMs, and L_{ib_i} is used to determine the MASPs and MADs.
In (30), the term $\mu V(x)$ can be relaxed into $\alpha(V(x))$ with $\alpha \in K_\infty$ [39], and the following analysis is still valid. The existence of these parameters has been extensively studied for different cases; see, e.g., [3], [4], [9], [16], [17], [37]-[39].

B. Decentralized Event-Triggered Mechanisms

With Assumptions 4-6, we next show how to design the ETM for each network. For this purpose, the function Γ_i in (13) is defined as a mapping from $\mathbb{R}^{n_i} \times \mathbb{R}^{l_i} \times \mathbb{R}^{n_i} \times \mathbb{N} \times \{0, 1\}$ to \mathbb{R}, and given explicitly by

$$\Gamma_i(z_i, e_i, m_i, \kappa_i, b_i) := (1 - 2b_i)\gamma_i \theta_i W^{2}_i(e_i, m_i, \kappa_i, b_i) - (1 - b_i)\lambda_i \varphi_i \psi_i(z_i),$$

where W_i and φ_i are from in Assumptions 4 and 6, respectively. $\rho_i \in [0, \tilde{\rho}_i)$ and

$$\tilde{\rho}_i := \max \left\{ \lambda_i, \left(\frac{\rho_i \tau_i}{1 - \rho_i \bar{L}_{10}} \right)^{-1} \right\},$$

with λ_i from Assumption 4 and γ_i, \bar{L}_{10} from Assumption 6. With the function (32), the event-triggered condition is $\Gamma_i(z_i, e_i, m_i, \kappa_i, b_i) \geq 0$. The proposed event-triggered condition is similar to those in [12], [14], [39] for the ETC in different contexts. Not that the function Γ_i is related to the local measurements and thus only for the single network, which in turn leads to the decentralized ETC setting in this paper. One difference between (32) and the existing ones lies in the local logical variable b_i, which leads to two cases in (32). Since the case $b_i = 1$ implies that the update event will occur at the arrival instant, the ETM is not needed and $\Gamma_i(z_i, e_i, m_i, \kappa_i, 1) = -\gamma_i \theta_i W^{2}_i(e_i, m_i, \kappa_i, 1) < 0$, which thus implies that the ETM will not be implemented in this case. In contrast, for the case $b_i = 0$, the next event is the transmission event, and the ETM is implemented to determine whether the sampled measurement will be transmitted. Hence, $\Gamma_i(z_i, e_i, m_i, \kappa_i, 0) = \gamma_i \theta_i W^{2}_i(e_i, m_i, \kappa_i, 0) - \rho_i \lambda_i \varphi_i \psi_i(z_i) \geq 0$ will be verified in this case. As a result, the parameters in (33)-(34) only depend on the case $b_i = 0$, and all designed event-triggered conditions are consistent with the transmission setup and decentralized since only local information is involved in each event-triggered condition.

Remark 4: In (32), if $\rho_i = 0$ for some $i \in N$, then Γ_i is always positive, and thus the proposed ETC is reduced to the TTC as in [16], where T_i is called the maximally allowable transmission interval. Since all networks are independent, both TTC and ETC can be combined by allowing that some networks perform the TTC while the others perform the ETC, which is a potential extension of this paper.

To establish the tradeoff between the MASP T_i and the MAD Δ_i, consider the following differential equation

$$\dot{\phi}_{ib} = -2L_{ib} \varphi_{ib} - \gamma_{ib} [1 + g_{ib}] \phi_{ib}^{2} + 1],$$

where $i \in N$, $L_{ib} \geq 0$ is given in Assumption 5, and $\gamma_{ib} > 0$ is given in Assumption 6. In (35), $g_{ib} \in (0, \bar{\lambda}^{-2} \varphi_{ib}^{2}(0) - 1)$, and thus the initial values $\phi_{ib}(0) \in (1, \bar{\lambda}^{-1})$, where $\bar{\lambda}$ is given in (33). From Claim 1 in [40] and Claim 1 in [17], the solutions to (35) are strictly decreasing as long as $\phi_{ib} \geq 0$.

C. Tracking Performance Analysis

Now we are ready to state the main results of this section. Theorem 1: Consider the system (18) and let Assumptions 1-6 hold. If the MASP T_i and the MAD Δ_i satisfy

$$\gamma_i \theta_0 \phi(\tau_i) \geq (1 + g_1)\lambda_i^{2} \gamma_i 0 \phi(\tau_i), \quad \tau_i \in [0, T_i],$$

$$\gamma_i \theta_1 \phi(\tau_i) \geq (1 + g_0)\gamma_i \theta_0 \phi(\tau_i), \quad \tau_i \in [0, \Delta_i],$$

where ϕ_{ib} is the solution to (35) satisfying $\phi_{ib}(0), \phi_{ib}(T_i) > 0$, then the system (18) is ISS from (e_i, e_j, w) to (η_i, η_j). That is, there exist $\beta \in K\mathcal{L}$ and $\varphi_1 \in K_{\infty}$ such that for all $(t, j) \in \mathbb{R}_{\geq 0} \times \mathbb{N}$,

$$\left(\eta(t, j), e_i(t, j)\right) \leq \beta(\|X(0, 0), e_j(t, j)\) + \varphi_1(\|e_i(t, j)\) + \varphi_2(\|e_j(t, j)\) + \varphi_3(\|w(t, j)\).

The proof is presented in Appendix B. In particular, a novel Lyapunov function is proposed to investigate the effects of the sampling, the designed ETMs and time delays on the tracking performance. Comparing with existing works [4], [16], [17], [39] on NCS and [18], [19] on MAS, the event-triggered tracking control problem is studied here for networked MAS under both decentralized ETMs and network constraints. Theorem 1 implies the convergence of the tracking error to a region around the origin, and the size of the convergence region depends on the network-induced error (e_i, e_j) and the external disturbance w. If the external disturbance is not considered here, then the convergence region is only related to (e_i, e_j). If the feedforward control inputs are transmitted directly to the agents and reference system, then $e_i = 0$ and $\varphi_1 \equiv 0$, and thus the convergence region can be further smaller.

Remark 5: From Theorem 1, the conservativeness is from the ISS gains φ_1, φ_2 in (37). Since the ZOH mechanism is applied, the bounds on $\|e_j(t, j)\|, \|e_j(t, j)\|\) can be obtained via a step-by-step sampling approach [23], and the upper bounds on φ_1, φ_2 can be derived. From [16], [17], φ_1, φ_2 can be the functions of the MASP, the MAD and ε_i. Since ε_i is from the hardware constraints of the networks, the effects of ε_i are inevitable but can be limited by choosing appropriate networks, thereby leading to the lower bounds on φ_1, φ_2.

Next, the special case of a single network is addressed, that is, $N = 1$ and only a common network is implemented for all agents. The following theorem shows how to ensure the tracking performance under the designed centralized ETM.

Theorem 2: Consider the system (18) and let Assumptions 1-3 hold. If the following holds:

i) For all $e \in \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{N} \times \{0, 1\}$,

$$\alpha_{1W}(\varepsilon_i) \leq W(e, m, \kappa, b) \leq \alpha_{2W}(\|e\|),$$

$$W(e, h(\kappa, e) - e, \kappa + 1, 1) \leq \lambda W(e, m, \kappa, 0) + \alpha_{1W}(\|e\|) + \alpha_{2W}(\|e\|),$$

$$W(e + m, e, \kappa, 0) \leq W(e, m, \kappa, 0) + \alpha_{3W}(\|e\|) + \alpha_{4W}(\|e\|).$$

The proof of this theorem is similar to that of Theorem 1.
\[\frac{\partial W(e, m, \kappa, b)}{\partial e}, g_e(\delta, x, e, w) \leq L_b W(e, m, \kappa, b) + ... F_\theta(\eta, x, e, w) = f_\eta(\eta + x, g_\delta(x, \eta + x) - g_\eta(\eta + x) - e_a) - f_p(x, w), F_p(x, w) = f_p(x, w), G_\eta(\eta, x, e, w) = \]

\[\text{for all } (x, \kappa) \in \mathbb{R}^{n_x} \times \mathbb{N} \text{ and almost all } e \in \mathbb{R}^{n_e}, \]

\[\langle \nabla V(x), f(\delta, x, e, w) \rangle \leq -\mu V(x) - H_2^2(x, e) + (\gamma_0^2 - \theta) W^2(e, m, \kappa, b) + \zeta_1\|e\|^2 + \zeta_2\|\sigma\| W(e, m, \kappa, b); \]

\[\text{iv) consider the following equation} \]

\[\dot{\phi}_b = -2L_b \phi_b - \gamma_b(1 + \theta) \phi_b^2 + 1, \quad b \in \{0, 1\}, \]

and the MASP \(T \) and MAD \(\Delta \) satisfy

\[\gamma_0 \phi_0(\tau) \geq (1 + \rho) \lambda^2 \gamma_1 \phi_1(0), \quad \tau \in [0, T], \quad \gamma_1 \phi_1(\tau) \geq (1 + \rho) \gamma_0 \phi_0(\tau), \quad \tau \in [0, \Delta], \]

then the system (18) is ISS from \((e_t, e, w)\) to \((\eta, e_a)\) under the ETM designed below:

\[\Gamma(x, e, m, \kappa, b) = (1 - 2b) \gamma_b W^2(e, m, \kappa, b) - (1 - b) \rho \lambda V(x), \quad \gamma \leq \lambda \max\{1, \gamma_0 \gamma_1^{-1}\} \text{ and } \rho < \bar{\rho} = \min\{1, \mu \gamma_1^{-1}\}. \]

The proof of Theorem 2 is given in Appendix B. In Theorem 2, the assumptions and the upper bounds in (44) are simplified and similar to those in [3], [16]. Although Theorem 2 is treated as a special case of Theorem 1, (45) is based on the agent states and is different from (32) based on the agent outputs. In addition, Theorem 2 extends the results in [3], [16], [17] from the TTC case to the ETC case.

Remark 6: The derived conditions can be verified in different cases. For the linear case, these conditions can be transformed into linear matrix inequalities (LMIs) ([17], [39]) and checked by solving these LMIs. For the nonlinear case, the verification of these conditions depends on the considered system and the applied network. For instance, Assumption 4 involves the jumps of the function \(W \). If the network protocols are specified, then the jumps of the network-induced errors can be derived explicitly, and the jumps of \(W \) are established such that the corresponding parameters and functions can be determined [16], [17], [37]–[39]. In Assumptions 5-6, the derivatives of \(W \) and \(V \) are related to the considered system, and we present a relevant numerical example in Section VII-A to show the satisfaction of Assumptions 5-6.

VI. EVENT-TRIGGERED OBSERVER DESIGN

In this section, we apply the obtained results in the previous sections to the event-triggered observer design for networked MAS in the delay-free case. Consider the following MAS

\[\dot{x}_p = f_p(x_p, w), \quad y_p = g_p(x_p), \]

where \(x_p \in \mathbb{R}^{n_p} \) is the system state, \(w \in \mathbb{R}^{n_w} \) is the external disturbance, and \(y_p \in \mathbb{R}^{n_y} \) is the system output. The system (46) consists of \(N \) agents with the following form

\[\dot{x}_p = f_p(x_p, w), \quad y_p = g_p(x_p), \]

where \(x_p := (x_p^1, \ldots, x_p^N) \in \mathbb{R}^{n_p}, \) and \(y_p := (y_p^1, \ldots, y_p^N) \in \mathbb{R}^{n_y} \) with \(n_p := \sum_{i=1}^N n_p^i \) and \(n_y := \sum_{i=1}^N n_y^i. \)

To design the distributed event-triggered observers for the MAS (45), we consider the following two cases: the first case is that each observer only receives the information of the corresponding agent to estimate the state of this agent, and thus is called the decoupled observer design case; the second case is that multiple agents are treated as a whole plant as (45) and all observers only receive partial information and thus need to be coupled to construct the plant state, which is called the coupled observer design case.

A. Decoupled Observer Design

Assume that the observer is designed as

\[\dot{x}_o = f_o(x_o, y_o - y), \quad y_o = g_o(x_o), \]

where \(x_o \in \mathbb{R}^{n_p} \) is the observer state, and \(y_o \in \mathbb{R}^{n_y} \) is the output. Specifically, the observer for each agent is given by

\[\dot{x}_o = f_o(x_o^i, y_o^i - y), \quad y_o^i = g_o(x_o^i). \]

The designed observers are distributed and decoupled; see Fig. 2 for the general system structure.

Here we aim to guarantee the desired estimation precision, that is, the convergence of \(x_p \) towards \(x_o \) under the implementation of the designed observer (49) over multiple networks, which thus can be treated as a tracking problem with (46) being the reference system to be tracked by (48).

1) System Model: Define the estimation error \(\eta := x_o - x_p \in \mathbb{R}^{n_p}, \epsilon_p = y_p - y_o, \epsilon_o = y_o - y_o, \) and \(\epsilon_a = e_o - e_p. \)

Define \(x := (\eta, x_p) \in \mathbb{R}^{n_p} \) and \(e := (e_o, \epsilon_p) \in \mathbb{R}^{n_e}, \) where \(\epsilon_a := (\epsilon_a^1, \ldots, \epsilon_a^N), \epsilon_o := (\epsilon_o^1, \ldots, \epsilon_o^N), n_x = 2n_p \) and \(n_e = 2n_y. \) As a result, the impulsive model is given by

\[\dot{\eta} = F(\eta, x_p, e_o, w), \]

\[\dot{x}_o = F_o(x_o, w), \]

\[\dot{e}_o = G_o(x_o, e_o, w), \]

\[e_o^{i+1} = (1 - \gamma(\Gamma_i(t_{i+1}))) e_o^i + \gamma(\Gamma_i(t_{i+1}))) e_o^i + e_p^{i+1} + (1 - \gamma(\Gamma_i(t_{i+1}))) e_p^i, \]

\[e_p^{i+1} = (1 - \gamma(\Gamma_i(t_{i+1}))) e_p^i + \gamma(\Gamma_i(t_{i+1}))) e_p^i, \]

with \(F(\eta, x_p, e_o, w) := f_o(\eta + x_p, g_o(x_p) - g_o(\eta + x_p) - e_o) - f_p(x_p, w), F_o(x_o, w) := f_p(x_o, w), G_o(\eta, x_p, e_o, w) = \]
−(∇gf(xo), fo(η + xp, gp(xp) − g0(η + xp) − ea) + ⟨∇gf(xp), fp(xp, w)⟩ and Gp(η, xp, ea, w) = −⟨∇gp(xo), fo(η + xp, gp(xp) − g0(η + xp) − ea)⟩ + ⟨∇gp(xp), fp(xp, w)⟩

2) Observer Design: Since the controller and time delays are not considered here, uc, ud, ce do not exist and δ, m, b are not needed. Hence, etl = 0, zl := (yl, yl), el = epl = ep and el := (el, el). The following assumption is made for the el-subsystem, and is similar to Assumptions 4-5.

Assumption 7: There exist a function Wl : N × Rn× → R≥0 which is locally Lipschitz in el, a continuous function Hl : Rn× × Rn× → R≥0, α1l, α2l, α3l, σ1l, σ2l ∈ K∞ and λl ∈ [0, 1], l ≥ 0 such that for all (el, x, w) ∈ N × Rn× × Rnw,

- for all el ∈ Rn×, α1l(|el|) ≤ Wl(λl, el, el) ≤ α2l(|el|), and Wl(λl, el, el) ≤ λlWl(λl, el, el) + α3l(|el|);
- for almost all el ∈ Rn×, (Wl(λl, el, el), gi(x, e, w)) ≤ LlWl(λl, el, el) + Hl(x, e) + σ1l(|el|) + σ2l(|w|).

Similarly to Section V-B, the function Πl : Rn× × Rn× × N → R is defined explicitly below

\[Πl(zl, el, κl) = γlWl(κl, el, el) − pλlκlϕl(zl), \] (52)

where Wl is defined in Assumption 7, ϕl is the same as ϕ0 in Assumption 6, and pλlκl satisfy (33)-(34). With the event-triggered condition Πl ≥ 0, we next provide the bound on the MASP Tl. For any i ∈ N, consider the differential equation

\[\dot{ϕ}_i = -2L_i ϕ_i + γ_i \left(1 + g_i \right) ϕ_i^2 + 1, \] (53)

where Ll and γl are given in Assumptions 6-7, respectively; ϕl(0) ∈ (1, Ll−1), and γl ∈ (0, Ll−2ϕl−2(0) − 1). In the following, the convergence of the estimation error can be justified, which is stated in the following proposition.

Proposition 1: For the system (50)-(51), let Assumptions 1-3 and 7 hold. Let Assumption 6 hold with 𝛲i = 𝛲i ≡ 0. If the MASP Tl satisfies \(ϕ_i(T_l) > 0 \) with \(ϕ_i \) being the solution to (53), then the system (50)-(51) is ISS from \((e_p, w) \) to \((η, el) \).

The proof follows the similar fashion as that of Theorem 1, and thus is omitted here. In addition, we can derive the event-triggered observer design for the centralized case by adjusting Assumption 7 and the conditions (52)-(53) slightly.

B. Coupled Observer Design

In the coupled observer design case, each observer only receives partial information, and thus all observers need to exchange their information based on a pre-specified communication (di)graph [27], [31]. Assume that in the network-free case, the distributed observers for (46) are designed as

\[\dot{x}_i = f^i_p (x_i, 0) + \mathcal{H}_i (\vartheta_i), \quad y_i = g^i_p (x_i), \] (54)

If the observer receives the latest information, the update is

\[x_i = x_i, \quad \vartheta_i = \Theta_i (x_o, y_o, y_p), \] (55)

where \(x_o = (x_1, \ldots, x_n) \in \mathbb{R}^{n_N} \) and \(y_o = (y_1, y_n) \in \mathbb{R}^{n_N} \). In (54)-(55), θi is an auxiliary variable to store the estimation errors of the i-th observer and its neighbor observers. \(\mathcal{H}_i \) is a continuous mapping from \(\mathbb{R}^{n_N} \) to \(\mathbb{R}^{n_N} \). The function \(\Theta_i \) determines the update of the variable \(\vartheta_i \). Although \(\Theta_i \) is written as a function of the overall vectors \(x_o, y_o, y_p \), it depends only on the i-th observer and its neighbors. Fig. 3 shows the general structure for the event-triggered observer design in the coupled case. Here our objective is to guarantee the convergence of \(x_o^i \) towards \(x_o \) under multiple networks and ETMs, which is treated as another tracking problem with (46) being the reference system to be tracked by (54).

1) System Model: Define the estimation error \(\eta_i := x_o^i − x_p ∈ \mathbb{R}^{n_N}, e^i_p := \hat{y}_p^i − y_p, e^i := \hat{y}_o^i − y_o, e^i_p := \hat{y}_p^i − y_p \) and \(\psi_i := \Theta_i (x_o, y_o, y_p) \). Denote \(\eta := (\eta_1, \ldots, \eta_N) ∈ \mathbb{R}^{n_N} \), and \(e_p := (e^1_p, \ldots, e^N_p) ∈ \mathbb{R}^{n_N} \). Hence, the impulsive model for the i-th observer is given by

\[\begin{aligned}
\dot{\eta}_i &= F^i_p (\eta, x_p, \psi, w) \\
x_p &= F_p (x_p, w) = f_p (x_p, w) \\
\dot{e}^i_p &= G^i_p (\eta, x_p, \psi) \\
\psi_i &= G^i_p (\eta, x_p, \psi, e_p, w) \\
e^i_p (t^+) &= \Psi^i_i(t) \left(h^i_p (\kappa_i(t), e^i_p (t), c^i_p (t), \psi_i(t)) + (1 − \Psi^i_i(t)) e^i_p (t) \right) \\
\psi_i (t^+) &= \Psi^i_i(t) \left(h^i_p (\kappa_i(t), e^i_p (t), c^i_p (t), \psi_i(t)) + (1 − \Psi^i_i(t)) \psi_i(t) \right)
\end{aligned} \] (56)

with \(G^i_p (x_p, w) = −(\nabla g^i_p (x_p), f^i_p (x_p, w)) \) and

\[F^i_p (\eta, x_p, \psi, w) = f^i_p (\eta, x_p, 0) - f^i_p (x_p, w) + \mathcal{H}_i (\Theta_i (\eta, x_p, \psi, e^i_p) - \psi_i), \]

\[\begin{aligned}
G^i_p (\eta, x_p, \psi, e_p, w) &= (\nabla g^i_p (x_p), F^i_p (x_p, w)) \\
&= (\nabla g^i_p (x_p), f^i_p (\eta, x_p, 0)) \end{aligned} \]

\[+ \sum_{j ∈ N \cap \{ i \}} \left\langle \Theta_j (\eta, x_p, \psi, e^j_p), F^i_j (\eta, x_p, \psi, w) \right\rangle \] (57)
In this way, we can ensure the convergence of the estimation \(\Theta \). From Assumption 8, Assumption 6 holds with \(V \). From Assumption 8, \(V \) is measurable. Let \(\gamma_i \) be a local Lipschitz function with \(\gamma_i(0) = 0 \), and \(\gamma_i(\mathbf{x}_i) \leq \gamma_i(|\mathbf{x}_i|) \) for all \(\mathbf{x}_i \in \mathbb{R}^{n_2} \), and \(\mu_i \), \(\gamma_i \leq \mu_i \), and \(\mu_i \) are measurable. In addition, we define the function \(\Gamma_i \) as in (52), and bound the MASP \(T_i \) via (53).

The proof of Proposition 2 is similar to that of Theorem 1 and omitted here. The conditions derived in this section can be verified and discussed in Remark 6 is relevant here.

VII. NUMERICAL EXAMPLES

A. Tracking Control for Cooperative Manipulation

Consider two connected single-link robot arms, whose dynamics are presented as \(i = 1, 2 \)

\[
\dot{q}_i^1 = q_i^2, \\
\dot{q}_i^2 = -a_i \sin q_i^1 + \sum_{j=1}^2 b_{ij} (q_i^1 - q_j^2) + c_i u_i, \\
\tag{60}
\]

where \(q_i^1, q_i^2 \in \mathbb{R}^2 \) with the configuration coordinate \(q_i^1 \) and the velocity \(q_i^2 \), both of which are measurable, \(u_i \in \mathbb{R} \) is the input torque, and \(a_i, c_1 > 0, b_{ij} \in \mathbb{R} \) are certain constants. The references are given by

\[
\dot{q}_i^1 = q_i^2, \\
\dot{q}_i^2 = -a_i \sin q_i^1 + \sum_{j=1}^2 b_{ij} (q_i^1 - q_j^2) + c_i u_i, \\
\tag{61}
\]

where \(q_i^1, q_i^2 \in \mathbb{R}^2 \) are the measurable reference state, and \(u_i = c_i \sin(\theta_i) \) is the feedforward input. In the network-free case, the feedback controller is designed as \(u_i = -c_i^{-1} a_i (\sin(q_i^1) - \sin(q_i^2)) - (q_i^1 - q_i^2) - (q_i^1 - q_i^2) \) such that the tracking error is asymptotically stable.

Here we consider the case that the communication between the controller and the plant is via the ETMs and two communication networks. The controller is applied via the ZOH devices and the networks are assumed to have \(\ell = 3 \) nodes for \(q_i^1, q_i^2 \) and \(u_i \), respectively. In this case, the applied feedback controller is given by \(u_i = -c_i^{-1} a_i (\sin(q_i^1) - \sin(q_i^2)) - (q_i^1 - q_i^2) - (q_i^1 - q_i^2) \). \(u_i \) is assumed to be transmitted to (61) directly, and \(q_i^1, q_i^2 \) are implemented in the ZOH fashion. Hence, \(u_i \) knows but does not depend on \(q_i^1, q_i^2 \). In addition, we consider both the RR and TMD protocol cases. In the RR protocol case, the node order of the network 1 is \(1 \rightarrow 2 \rightarrow 3 \) and the node order of the network 2 is \(2 \rightarrow 3 \rightarrow 1 \). In the TMD protocol case, the node to access to each network is the one with a minimum index and the largest norm of the local network-induced error; see Section III-C.

Based on (60)-(61), we obtain that \(F_\eta = (F_1^1, F_2^2) \) with \(F_i^1 = (q_i^1 - \eta_i, -a_i \sin(q_i^1) - \sin(q_i^2)) \) and \(F_i^2 = (q_i^2 - \eta_i, a_i \sin(q_i^1) + \sin(q_i^2)) \). From [16], we choose the appropriate Lyapunov function \(W(e_i, m_i, \kappa_i, \tau_i, b_i) \). For instance, \(W_i(e_i, m_i, \kappa_i, \tau_i, b_i) := e_i^T \) for the TMD protocol. The networks \(\partial W(e_i, m_i, \kappa_i, \tau_i, b_i) / \partial e_i \) is ISS with \(M_i \) and \(M_i = \sqrt{3} \) for the RR protocol case and \(M_i = 1 \) for the TMD protocol case. Thus, Assumption 4 holds with \(\lambda_i = (E_i E_i) \) and \(\alpha_i = \alpha_i \in [0, 1) \). Assumption 5 holds with \(L_i = M_i D_i, L_{i+1} = M_i^2 D_i / \lambda_i, H_i(x, e) = H_{i+1}(x, e) = M_i(\eta_2 + \alpha_2 \alpha_3 \alpha_i = \alpha_i \in [0, 1) \).
By the detailed computation, we have that \(\eta_{11}(v) = c_1 M v, \eta_{20}(v) = \sigma_{21}(v) = 2 a_i M v, \) and \(\sigma_{30}(v) = \sigma_{31}(v) = 0 \) for \(v \geq 0. \)

To verify Assumption 6, define \(V(\eta) := \sum_{i=1}^{2} \phi_i \eta_i^2 + \phi_2 \eta_{11} \eta_{12} + \phi_3 \eta_{22}^2, \) where \(\phi_1, \phi_2, \phi_3 \) are chosen to make \(V \) satisfy (29). Assume that there exist time-varying parameters \(\bar{a}_i, \bar{a}_i \in [a_i, a_i] \) such that \(a_i [\sin(\eta_{11} + \eta_{11}) - \sin(\eta_{11} + \eta_{11}) - \sin(\eta_{11} + \eta_{11})] = \bar{a}_i [c_1 + c_1^2] \) and \(a_i [\sin(\eta_{11} + \eta_{11}) - \sin(\eta_{11} + \eta_{11})] = \bar{a}_i [c_1 + c_1^2] \). Thus, using twice the fact that \(2 x y \leq c x^2 + y^2 / c \) for all \(x, y \geq 0 \) and \(c > 0 \), we get that \(\langle \nabla V(\eta), F(\delta, x, e, w) \rangle \leq \sum_{i=1}^{2} [-\bar{a}_i \eta_i^2 + (2 \phi_i - 2 \phi_i - \phi_2 \eta_{11} \eta_{11} + \phi_2 \eta_{11} \eta_{11}) + \phi_1 \eta_{11} \eta_{11}] + 0.5 (\phi_i + \phi_i) [\phi_1 \eta_{11} \eta_{11} + 2 \phi_1 \eta_{11} \eta_{11}] + 0.5 \phi_0 D \left[\left(\begin{array}{c} c_1 + c_1^2 \\ c_1 + c_1^2 \end{array} \right) \right]^2, \) where \(\phi_0, \phi_i > 0 \) are defined in (35). Therefore, if \(\phi_1, \phi_2, \phi_3 \) are chosen such that (29) holds and \(-H \theta_2(x, e) - K \theta_2(x, e, w) - \varphi_{\theta_2}(z_i) \geq -\phi_1 \eta_i^2 + (2 \phi_i - 2 \phi_i - \phi_2 \eta_{11} \eta_{11} + \phi_2 \eta_{11} \eta_{11}) + \phi_1 \eta_{11} \eta_{11}] + 0.5 (\phi_i + \phi_i) [\phi_1 \eta_{11} \eta_{11} + 2 \phi_1 \eta_{11} \eta_{11}] + 0.5 \phi_0 D \left[\left(\begin{array}{c} c_1 + c_1^2 \\ c_1 + c_1^2 \end{array} \right) \right]^2, \) then Assumption 6 is verified with \(\theta_2_1, \theta_1 \) and \(\pi_1 < 0 \) is arbitrarily small.

To satisfy the aforementioned conditions, we choose \(\phi_1 = 8, \phi_2 = 12, \phi_3 = 6, \phi_2 = 5, \phi_2 = 7, \phi_2 = 9, a_1 = 98.81 \ast 0.2, a_2 = 98.81 \ast 0.3, c_1 = 2, c_2 = 4, \pi_1 = 0.005, \phi_0 = 20 \) and \(\phi_1 = \phi_0 M_i / \lambda_i. \) Thus, \(L_0 = 8.8860, L_1 = 18.8501, L_2 = 20, L_2 = 20, L_2 = 25.4558, \gamma_0 = 22.9436, \gamma_0 = 53.8629, \gamma_0 = 30.9839, \gamma_2 = 72.7386 \) for the RR protocol; and \(L_0 = 5.1303, L_1 = 10.8831, L_2 = 6.9282, L_2 = 14.0969, \gamma_0 = 22.9436, \gamma_1 = 31.0978, \gamma_2 = 30.9839, \gamma_2 = 41.9956 \) for the TOD protocol. By the detailed computation, we have that \(\eta_1 = 0.0501 \) and \(\eta_2 = 0.0371 \) for RR and TOD protocols. Hence, \(\rho_1, \rho_2 \in (0, \infty), \) and the event-triggered conditions are

\[
\Gamma_i(\eta_i, e_i) = \gamma_i |(\eta_i, e_i)|^2 - \rho_i \lambda_i |e_i|^2 \geq 0. \tag{62}
\]

Set \(\phi_0 = \phi_1 = \phi_2 = \phi_3 = 0.8774 \) for the RR protocol case, and we have \(T_1 = 0.0252, \Delta_1 = 0.0004, T_2 = 0.01605, \Delta_2 = 0.0029. \) Set \(\phi_0 = \phi_1 = \phi_2 = \phi_3 = 1.0419 \) for the TOD protocol case, and we have \(T_1 = 0.02795, \Delta_1 = 0.0067, T_2 = 0.0211, \) and \(\Delta_2 = 0.0049. \) To simplify the simulation, the transmission intervals and the transmission delays are constants. Under the designed event-triggered condition (62), Figs. 4-5 show the convergence and boundedness of the tracking errors for both RR and TOD protocol cases, respectively. In addition, different networks are allowed to have different time-scheduling protocols. If the time-scheduling protocol in the network 1 is the RR protocol and the time-scheduling protocol in the network 2 is the TOD protocol, then Fig. 6 shows the convergence of the tracking errors in this mixed protocol case.

B. Robust Distributed Estimation

Consider the following linear plant, which is borrowed from [31] and can be treated as the leader agent,

\[
\dot{x}_p = A x_p + B u, \tag{63}
\]

where \(x_p = (x_p^1, x_p^2, x_p^3) \in \mathbb{R}^3 \) is the plant state, and \(w \in \mathbb{R}^3 \) is the external disturbance. Assume that the plant (63) has the oscillatory dynamics for \((x_p^1, x_p^2) \in \mathbb{R}^2 \) and the trivial dynamics for \(x_p^3 \in \mathbb{R}. \) Therefore, we take \(A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \) and \(B = \operatorname{diag}(1, 0.5, -1). \) The outputs of (63) are \(y = (y_p, y_p) := (C_1 x_p, C_2 x_p) \) with \(C_1 = (1, 1, 0) \) and \(C_2 = (0, 0, 1). \)

According the outputs of the plant (63), we design two observers, which can be treated as the follower agents and assumed to be all-to-all connected, i.e., \(G_{i} = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}. \) These two observers are design as the following form (i = 1, 2)

\[
\dot{x}_i = A x_i + \varphi_i, \quad \varphi_i = 0, \quad \psi_i = C_i x_i, \tag{64}
\]

with the update of \(\psi_i \in \mathbb{R}^3 \) given by (k \(i \in N_i \))

\[
\psi_i = J_i (y_i^1 - y_i^1) + J_{ik} (y_i^1 - y_i^1) + \chi_i (x_i^1 - x_i^1). \tag{65}
\]

Since \((C_1, A) \) and \((C_2, A) \) are not detectable, each follower agent cannot estimate the full state of the plant by using an observer without using the information from the other follower agent. Hence, two observers in (64) are allowed to communicate with each other to reconstruct the state \(x_p. \)

To compare with [31], we choose the parameters in (65) as:

\[
J_1 = (-0.5, -0.2, -0.1), J_2 = (-0.2, -0.2, -0.5), J_3 = (-2, 0.3, 0.4), J_2 = (0.3, 0.1), J_3 = (0.5, 0.2), \text{ and } \chi_i = \chi = -0.4.
\]

Define \(\eta_i := x_i^1 - x_p^1, \psi_i := \psi_i^1 - \psi_i^1, e_i := \eta_i - \eta_i, \psi_i := J_i (y_i^1 - y_i^1) + J_{ik} (y_i^1 - y_i^1) + \chi_i (x_i^1 - x_i^1), \text{ and } e_i := \psi_i - \psi_i. \) Note that \(y_i, y_i \in \mathbb{R}, \) and thus \(e_i = e_i = 0 \) for the successful transmission. Hence, we define the functions \(V_i := \eta_i^2, W_i := \psi_i^2 \) and \(\varphi_i(y_i) = 0.5 \eta_i^2 \) for \(i = 1, 2. \) By the detailed computation, Assumption 4 is verified with \(\lambda_1 = \)
Fig. 7. The state trajectories of (63)-(64) under the designed ETM (66). Here,
\(x_p = (x_1^1, x_2^1, x_3^1) \) and \(x_i = (x_i^1, x_i^2, x_i^3) \), for \(i \in \{1, 2\} \).

\(\rho_i/\rho_i \)	0	0.1	0.2	0.3	0.4	0.5
\(T_1 \)	0.5344	0.4781	0.4208	0.6364	0.3067	0.2511
\(T_2 \)	0.7550	0.6418	0.5416	0.4518	0.3704	0.2962

From Table I, we choose \(\rho_i = 0.2 \rho_i \) and set the MASP \(T_i \), \(i = 1, 2 \).

Obviously, different choices of \(\lambda_i \) and \(\rho_i \) lead to different event-triggered conditions. Under different values of \(\rho_i \), the MASP \(T_i \) is computed and illustrated in Table I.

Fig. 8. The evolution of the norms of the estimation errors.

VIII. CONCLUSIONS

We presented a Lyapunov-based emulation approach for the event-triggered tracking control problem of networked MAS, where external disturbances are considered and the information communication is via multiple asynchronous networks. To deal with the considered problem, we proposed a new hybrid model, and then established sufficient conditions and designed decentralized event-triggered mechanisms. The trade-off between the MASP and the MAD was determined to guarantee the tracking performance. In addition, we showed the direct employment of these obtained results to derive new results for the event-triggered observer design problem for networked MAS. The effectiveness of the proposed approach was illustrated via two numerical examples.

Many extensions of the obtained results can be envisioned in different directions. The results can be extended to the case of LTI systems for the co-design of the event-triggering mechanisms and the decentralized controllers/observers. The event-triggered tracking control for MAS under limited data rate can be studied by modifying the derived model appropriately and then combining the techniques in [16] and this paper.

APPENDIX A

EXPLICIT EXPRESSION IN (17a)

The functions in (17a) are presented below in detail.

\[
\dot{\eta} = f_p(x_p, \bar{u}_c + \bar{u}_t, w_p) - f_p(x_t, \bar{u}_t, w_t) \\
\dot{e}_p = f_p(\eta + x_t, g_e(x_c) + e_c + u_t + e_t, w_p) \\
\dot{e}_p = f_p(x_t, u_t + e_t, w_t) \\
= F_\delta(\delta, \eta, x_t, x_c, e_a, e_r, e_t, w) \\
\]

where \(\delta \) is a variable related to \(u_t \) and/or it differential.

\[
\dot{x}_i = f_p(x_t, \bar{u}_t, w_t) - f_p(x, u_t + e_t, w_t) \\
= F_\delta(\delta, \eta, x_t, x_c, e_a, e_r, e_t, w) \\
\dot{x}_c = f_c(x_c, \bar{y}_p, \bar{y}_t, w_c) \\
= f_c(x_t, g_p(\eta + x_t) + e_p, g_e(x_t) + e_r, w_c) \\
= F_\delta(\delta, \eta, x_t, x_c, e_a, e_r, e_t, w) \\
\]

the designed event-triggered condition (66), the numbers of the event-triggering times are reduced, that is, 392 times for the first observer and 204 times for the second observer (in 100 units of time), whereas the corresponding event-triggering numbers are 500 and 250 in [31].
\[\dot{e}_\eta = \dot{\epsilon}_p - \dot{\epsilon}_r = -\langle \nabla g_p(x_p), f_p(\eta + x_r, g_c(x_c) + e_c + u_f + e_f, w_p) \rangle + \langle \nabla g_p(x_r), f_p(x_r, \hat{u}_c + \hat{u}_r, w_r) \rangle, \]
\[\dot{e}_c = -\langle \nabla g_c(x_c), f_c(x_c, g_p(\eta + x_r) + e_p, g_c(x_c) + e_c + u_f + e_f, w_c) \rangle, \]
\[\dot{e}_\tilde{r} = -\langle \nabla g_p(x_r), f_p(x_r, u_f + e_f, w_r) \rangle = G_d(\delta, \eta, x_r, e_c, e_f, e_f, w_r), \]
\[\dot{e}_r = -\dot{u}_r =: G_d(\delta, \eta, x_r, e_c, e_f, e_f, w_r). \]

APPENDIX B

Proofs of Main Results

A. **Proof of Theorem 1**

For \(X \in C \cup D \cup G_D \), define the function as

\[U(X) := V(x) + \sum_{i=1}^{N} W_i(X), \quad (B.1) \]

with \(W_i(X) := \max\{\gamma_{ib} \phi_{ib}(\tau_i) W_{i}^2(e_i, m_i, \kappa_i, b_i), (1 - b_i) \rho_i \varphi_{ib}(z_i)\} \) and \(i \in \mathcal{N} \), where \(\gamma_{ib}, W_i \) and \(\varphi_{ib} \) are given in Assumptions 3-4, and \(\rho_i \) is given in (32). In the following, we first show that \(U(X) \) is suitable Lyapunov function for the system (18) (i.e., Steps 1-3), and then derive the convergence of \(U(X) \) along the hybrid time line (i.e., Step 4).

Step 1: Positive Definiteness and Radial Unboundedness of \(U(X) \). If \(b_i = 1 \), then \(W_i(X) = \gamma_{i1} \phi_{i1}(\tau_i) W_{i1}^2(e_i, m_i, \kappa_i, 1) \) and thus from (24) and (35), one has

\[W_i(X) \geq \gamma_{i1} \bar{\lambda}_{i1} \alpha_{i1}^2(|e_i|). \quad \text{(B.2)} \]

If \(b_i = 0 \), then \(W_i(X) := \max\{\gamma_{i0} \phi_{i0}(\tau_i) W_{i0}^2(e_i, m_i, \kappa_i, 0), \rho_i \varphi_{ib}(z_i)\} \). From Assumption 6, \(\varphi_{ib} \) is locally Lipschitz and positive definite and \(\varphi_{ib}(0) = 0 \). In addition, \(z_i = (y_i^0, y_i^1, u_i^0, u_i^1) = (g_p(x_i^0), g_p(x_i^1), u_i^0, u_i^1) \), where \(g_p, \bar{g}_p \) and \(g_c, \bar{g}_c \) are continuous differential. Hence, there exists \(\bar{\alpha}_i \in \mathcal{K} \) such that \(\varphi_{ib}(z_i) \leq \bar{\alpha}_i(||(e_i, e_i)||) \), and from (24) and (36),

\[W_i(X) \leq \bar{\lambda}_{i1}^{-1} \gamma_{i0} \alpha_{i1}^2(|e_i|) + \rho_i \bar{\alpha}_i(||(e_i, e_i)||). \quad \text{(B.3)} \]

From (B.2)-(B.3) and (29), there exist \(\alpha_1, \alpha_2 \in \mathcal{K}_\infty \) such that

\[\alpha_1(||(e, u)||) \leq U(X) \leq \alpha_2(||X||), \quad \text{(B.4)} \]

where \(\alpha_1(v) := \alpha_{i1} V(v/2) + \sum_{i=1}^{N} \gamma_{i1} \bar{\lambda}_{i1} \alpha_{i1}^2(v/2) + \rho_i \alpha_1(v) \) and \(\alpha_2(v) := \alpha_{i1} V(v) + \sum_{i=1}^{N} \bar{\lambda}_{i1}^{-1} \gamma_{i0} \alpha_{i1}^2(v) + \rho_i \bar{\alpha}_1(v) \).

Step 2: Decreasing of \(U(X) \) on the Flow. From the definition of \(U(X) \), we consider the following two cases.

Case 1: \(\gamma_{ib} \phi_{ib}(\tau_i) W_{i}^2(e_i, m_i, \kappa_i, b_i) \geq \rho_i \varphi_{ib}(z_i) \). For the flow function \(F(x, w) \) in (20), we have

\[\langle \nabla F(X) \rangle + \sum_{i=1}^{N} \gamma_{ib} \phi_{ib}(\tau_i) W_{i}^2(e_i, m_i, \kappa_i, b_i) \]
\[+ 2\rho_i \varphi_{ib}(z_i) \leq -\mu V(x) + \sum_{i=1}^{N} [\Pi_i(X) - \partial \phi_{ib}(\tau_i) W_{i}^2(e_i, m_i, \kappa_i, b_i)], \quad \text{(B.5)} \]

where

\[\Pi_i(X) := \gamma_{ib}^2 W_{i}^2(e_i, m_i, \kappa_i, b_i) - H_{ib}^2(x, e) - K_i(x, e, m, w) \]
\[- \varphi_{ib}(z_i) + \zeta_{ib}(|e_i|) + \zeta_{ib}(|e_i|) + \zeta_{ib}(|w|) \]
\[+ \gamma_{ib} [-2 L_{ib} \phi_{ib}(\tau_i) - \gamma_{ib} ((1 + \theta_{ib}) \sigma_{ib}^2(\tau_i) + 2 \gamma_{ib} \phi_{ib}(\tau_i)) \]
\[\times W_{i}^2(e_i, m_i, \kappa_i, b_i) + 2 \gamma_{ib} \phi_{ib}(\tau_i) \]
\[\times W_{i}^2(e_i, m_i, \kappa_i, b_i) + H_{ib}(x, e) \]
\[+ \sigma_{ib}(|e_i|) + \sigma_{ib}(|e_i|) + \sigma_{ib}(|w|) \]
\[\leq -H_{ib}^2(x, e) + \zeta_{ib}(|e_i|) + \zeta_{ib}(|e_i|) + \zeta_{ib}(|w|) \]
\[+ \gamma_{ib} [-2 L_{ib} \phi_{ib}(\tau_i) - \gamma_{ib} ((1 + \theta_{ib}) \sigma_{ib}^2(\tau_i) + 2 \gamma_{ib} \phi_{ib}(\tau_i)) \]
\[\times W_{i}^2(e_i, m_i, \kappa_i, b_i) + 2 \gamma_{ib} \phi_{ib}(\tau_i) \]
\[\times W_{i}^2(e_i, m_i, \kappa_i, b_i) + H_{ib}(x, e) \]
\[+ \sigma_{ib}(|e_i|) + \sigma_{ib}(|e_i|) + \sigma_{ib}(|w|) \]
\[\leq \zeta_{ib}(|e_i|) + \zeta_{ib}(|e_i|) + \zeta_{ib}(|w|) + 3 \sigma_{ib}^{-1}(|e_i^1|) + \sigma_{ib}^{-1}(|e_i^1|) + \sigma_{ib}^{-1}(|w|), \quad \text{(B.6)} \]

where, the first “\(\leq \)” holds because of Assumptions 5-6, and the second “\(\leq \)” holds due to the fact that \(2ab \leq ca^2 + b^2/c \) for all \(a, b \geq 0, c > 0 \). From (B.5)-(B.6), we have

\[\langle \nabla U(X) \rangle + F(X, w) \leq -\mu V(x) - \theta_1 \sum_{i=1}^{N} W_i(e_i, m_i, \kappa_i, b_i) \]
\[+ \bar{\sigma}_1(|e_i|) + \bar{\sigma}_2(|e_i|) + \bar{\sigma}_3(|w|), \quad \text{(B.7)} \]

where \(\theta_1 := \min_{i \in \mathcal{N}} \gamma_{ib} \phi_{ib}(\tau_i) \) and \(\bar{\sigma}_k(v) := \sum_{i=1}^{N} \max\{\gamma_{ib} \phi_{ib}(\tau_i) + 3 \sigma_{ib}^{-1} \sigma_{ib}^2(v), \zeta_{ib}(v) + 3 \theta_{ib}^{-1} \sigma_{ib}^2(v)\} \) for \(k \in \{1, 2, 3\} \).

Case 2: \(\gamma_{i0} \phi_{i0}(\tau_i) W_{i0}^2(e_i, m_i, \kappa_i, b_i) \leq \rho_i \varphi_{ib}(z_i) \). In this case, the derivative of \(U(X) \) is given by

\[\langle \nabla U(X) \rangle + F(X, w) \]
\[= -\mu V(x) + \sum_{i=1}^{N} \Pi_i(X) - \theta_{ib} W_i^2(e_i, m_i, \kappa_i, b_i), \quad \text{(B.8)} \]

1. \(\langle \nabla U(X) \rangle + F(X, w) \) is used with a slight abuse of terminology since \(U \) is not differential almost everywhere. This is justified by \(\dot{\kappa}_i = \dot{b}_i = 0 \) in (20).
where
\[\bar{\Pi}_i(X) := \gamma_2 \bar{b}_i W_i^2(e_i, m_i, \kappa_i, b_i) - H_i^2 \bar{b}_i(x, e) - K_i \bar{b}_i(x, e, w) - \phi_i \bar{b}_i(z_i) + \zeta_1 \bar{b}_i(|e_i|) + \ldots \]

for all \(X \in C \cup D \cup G(D) \).

Case 2: \(b_i = 1 \). In this case, \(U(X) = V(x) + \sum_{i=1}^{N} \gamma_i \phi_i \cdot (\tau_i W_i^2(e_i, m_i, \kappa_i, b_i) - H_i^2 \bar{b}_i(x, e) - K_i \bar{b}_i(x, e, w) - \phi_i \bar{b}_i(z_i) + \zeta_1 \bar{b}_i(|e_i|) + \ldots - b \rho V(x)) \). Similar to the proof of Theorem 1, there exist \(\alpha_1, \alpha_2 \in K_\infty \) such that (B.4) holds for all \(X \in C \cup D \cup G(D) \).

Case 2: \(b_i = 1 \). In this case, \(U(X) = V(x) + \sum_{i=1}^{N} \gamma_i \phi_i \cdot (\tau_i W_i^2(e_i, m_i, \kappa_i, b_i) - H_i^2 \bar{b}_i(x, e) - K_i \bar{b}_i(x, e, w) - \phi_i \bar{b}_i(z_i) + \zeta_1 \bar{b}_i(|e_i|) + \ldots - b \rho V(x)) \). Similar to the proof of Theorem 1, there exist \(\alpha_1, \alpha_2 \in K_\infty \) such that (B.4) holds for all \(X \in C \cup D \cup G(D) \).

Step 4: Convergence along the Hybrid Time Line. From Steps 2 and 3, we have

\[\langle \nabla U(X), F(X, w) \rangle \leq -\varepsilon U(X) + \zeta_1(|e_i|) + \zeta_2(|e_i|) + \zeta_3(|w|), \]

where \(\varepsilon := \min_{i \in X} \{\varepsilon_1, \varepsilon_2, \varepsilon_3| e_i \} \) and \(\zeta_i(|e_i|) \) is given in Assumption 3.

Step 4: Convergence along the Hybrid Time Line. From Steps 2 and 3, we have

\[\langle \nabla U(X), F(X, w) \rangle \leq -\varepsilon U(X) + \zeta_1(|e_i|) + \zeta_2(|e_i|) + \zeta_3(|w|), \]

where \(\varepsilon := \min_{i \in X} \{\varepsilon_1, \varepsilon_2, \varepsilon_3| e_i \} \) and \(\zeta_i(|e_i|) \) is given in Assumption 3.

Step 4: Convergence along the Hybrid Time Line. From Steps 2 and 3, we have

\[\langle \nabla U(X), F(X, w) \rangle \leq -\varepsilon U(X) + \zeta_1(|e_i|) + \zeta_2(|e_i|) + \zeta_3(|w|), \]

where \(\varepsilon := \min_{i \in X} \{\varepsilon_1, \varepsilon_2, \varepsilon_3| e_i \} \) and \(\zeta_i(|e_i|) \) is given in Assumption 3.

Step 4: Convergence along the Hybrid Time Line. From Steps 2 and 3, we have

\[\langle \nabla U(X), F(X, w) \rangle \leq -\varepsilon U(X) + \zeta_1(|e_i|) + \zeta_2(|e_i|) + \zeta_3(|w|), \]

where \(\varepsilon := \min_{i \in X} \{\varepsilon_1, \varepsilon_2, \varepsilon_3| e_i \} \) and \(\zeta_i(|e_i|) \) is given in Assumption 3.

Step 4: Convergence along the Hybrid Time Line. From Steps 2 and 3, we have

\[\langle \nabla U(X), F(X, w) \rangle \leq -\varepsilon U(X) + \zeta_1(|e_i|) + \zeta_2(|e_i|) + \zeta_3(|w|), \]

where \(\varepsilon := \min_{i \in X} \{\varepsilon_1, \varepsilon_2, \varepsilon_3| e_i \} \) and \(\zeta_i(|e_i|) \) is given in Assumption 3.

Step 4: Convergence along the Hybrid Time Line. From Steps 2 and 3, we have

\[\langle \nabla U(X), F(X, w) \rangle \leq -\varepsilon U(X) + \zeta_1(|e_i|) + \zeta_2(|e_i|) + \zeta_3(|w|), \]

where \(\varepsilon := \min_{i \in X} \{\varepsilon_1, \varepsilon_2, \varepsilon_3| e_i \} \) and \(\zeta_i(|e_i|) \) is given in Assumption 3.
Consider the evolution of $U(X)$ on the flow. If
\[\gamma_{b}\phi_{b}(\tau)W^{2}(e, m, \kappa, b) \geq \rho V(x),\]
then we have from (39)-(40) that
\[\langle \nabla U(X), F(x, w) \rangle \leq -\mu V(x) - \theta W^{2}(e, m, \kappa, b) + \Pi(X),\]
where
\[\Pi(X) := \gamma_{b}^{2}W^{2}(e, m, \kappa, b) - H_{a}^{2}(x, e) + \zeta_{h1}(|e_{1}|) + \zeta_{h2}(|e_{1}|) + \zeta_{h3}(|w|) + \gamma_{b}[-2L_{b}\phi_{b}(\tau)\gamma_{b}^{2}(1 + \phi_{b}(\tau) + 1)W^{2}(e, m, \kappa, b)] + 2\gamma_{b}\phi_{b}(\tau)W(e, m, \kappa, b)L_{a}W(e, m, \kappa, b) + H_{b}(x, e) + \sigma_{h1}(|e_{1}|) + \sigma_{h2}(|e_{1}|) + \sigma_{h3}(|w|) \leq -\gamma_{b}^{2}W^{2}(e, m, \kappa, b)\]
Since $\gamma_{b}\phi_{b}(\tau)W^{2}(e, m, \kappa, b) < \rho V(x)$, then $b = 0$ and for the flow equation,
\[\langle \nabla U(X), F(x, w) \rangle = (1 + \rho)\langle \nabla V(x), f(\delta, x, e, w) \rangle \leq (1 + \rho)\Pi(X) + \zeta_{h1}(|e_{1}|) + \zeta_{h2}(|e_{1}|) + \zeta_{h3}(|w|),\]
where
\[\Pi(X) := -\mu V(x) + (\gamma_{b}^{2} - \theta)W^{2}(e, m, \kappa, 0) - H_{a}^{2}(x, e) + \zeta_{h1}(|e_{1}|) + \zeta_{h2}(|e_{1}|) + \zeta_{h3}(|w|) \leq -\mu V(x) + (\gamma_{b}^{2} - \theta)W^{2}(e, m, \kappa, 0) + \zeta_{h1}(|e_{1}|) + \zeta_{h2}(|e_{1}|) + \zeta_{h3}(|w|).\]

Since $\gamma_{b}\phi_{b}(\tau)W^{2}(e, m, \kappa, 0) \leq \rho V(x)$, we obtain
\[\langle \nabla U(X), F(x, w) \rangle \leq -\omega U(X) + \zeta_{h1}(|e_{1}|) + \zeta_{h2}(|e_{1}|) + \zeta_{h3}(|w|),\]
where $\omega \in (0, \min \{\mu, \theta\})$, $\zeta_{h1}(v) := \max_{k \in \{1, 2, 3\}}\left\{\zeta_{h1}(v) + 3\gamma_{b}^{-1}\sigma_{h2}(v)\right\}$ with $\kappa \in \{1, 2, 3\}$. If $\gamma_{b}\phi_{b}(\tau)W^{2}(e, m, \kappa, b) < \rho V(x)$, then $b = 0$. For the case that $b = 1$, we have
\[U(G_{1}(X)) \leq V(x) + \gamma_{0}\phi_{0}(\tau)W(e, m, \kappa, 0) + \alpha_{S}W(|e_{1}|) + \alpha_{W}W(|e_{1}|)^{2} \leq V(x) + \gamma_{0}\phi_{0}(\tau)(1 + \phi_{1})\lambda^{4}W^{2}(e, m, \kappa, 0) + (1 + 2\gamma_{1}^{-1})(\alpha_{S}W(|e_{1}|) + \alpha_{W}W(|e_{1}|)) \leq V(x) + \gamma_{0}\phi_{0}(\tau)W^{2}(e, m, \kappa, 0) + \alpha_{3}W(|e_{1}|) + \alpha_{4}W(|e_{1}|) = U(X) + \alpha_{3}W(|e_{1}|) + \alpha_{4}W(|e_{1}|),\]
where, the second “\leq” holds due to the fact that $2ab \leq ca^{2} + b^{2}/c$ for all $a, b \geq 0, c > 0$, the third “\leq” holds from (44), $\alpha_{3}W(v) := \gamma_{1}\phi_{1}(0)(1 + 2\gamma_{1}^{-1})\alpha_{3}W(v)$, and $\alpha_{4}W(v) := \gamma_{1}\phi_{1}(0)(1 + 2\gamma_{1}^{-1})\alpha_{4}W(v)$. For the case $b = 1$,
\[U(G_{2}(X)) = (1 + \rho)V(x) = U(X).\]
[17] R. Postoyan, N. Van de Wouw, D. Nešić, and W. M. H. Heemels, “Tracking control for nonlinear networked control systems,” IEEE Trans. Autom. Control, vol. 59, no. 6, pp. 1539–1554, 2014.
[18] Y. Hong, J. Hu, and L. Gao, “Tracking control for multi-agent consensus with an active leader and variable topology,” Automatica, vol. 42, no. 7, pp. 1177–1182, 2006.
[19] Y. Cheng and V. Ugrinovskii, “Event-triggered leader-following tracking control for multivariable multi-agent systems,” Automatica, vol. 70, pp. 204–210, 2016.
[20] R. Postoyan, M. C. Bragagnolo, E. Galbrun, J. Daafouz, D. Nešić, and E. B. Castelan, “Event-triggered tracking control of unicycle mobile robots,” Automatica, vol. 52, pp. 302–308, 2015.
[21] P. Talapatra and N. Chopra, “On event triggered tracking for nonlinear systems,” IEEE Trans. Autom. Control, vol. 58, no. 9, pp. 2343–2348, 2013.
[22] J. B. Biemond, N. van de Wouw, W. H. Heemels, and H. Nijmeijer, “Tracking control for hybrid systems with state-triggered jumps,” IEEE Trans. Autom. Control, vol. 58, no. 4, pp. 876–890, 2013.
[23] N. van de Wouw, P. Naghshtabrizi, M. Cloosterman, and J. P. Hespanha, “Tracking control for sampled-data systems with uncertain time-varying sampling intervals and delays,” Int. J. Robust Nonlinear Control, vol. 20, no. 4, pp. 387–411, 2010.
[24] C. Cai and A. R. Teel, “Characterizations of input-to-state stability for hybrid systems,” Syst. Control Lett., vol. 58, no. 1, pp. 47–53, 2009.
[25] R. Goebel, R. Sanfelice, and A. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, Princeton University Press, Princeton, 2012.
[26] Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for leader-following control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, 2008.
[27] S. Park and N. C. Martins, “Design of distributed LTI observers for state omniscience,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 561–576, 2016.
[28] Y. Huang, J. Wang, D. Shi, and L. Shi, “Toward event-triggered extended state observer,” IEEE Trans. Autom. Control, vol. 63, no. 6, pp. 1842–1849, 2017.
[29] H. Nijmeijer and I. M. Mareels, “An observer looks at synchronization,” IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., vol. 44, no. 10, pp. 882–890, 1997.
[30] R. Postoyan and D. Nešić, “A framework for the observer design for networked control systems,” IEEE Trans. Autom. Control, vol. 57, no. 5, pp. 1309–1314, 2011.
[31] Y. Li, S. Phillips, and R. G. Sanfelice, “Robust distributed estimation for linear systems under intermittent information,” IEEE Trans. Autom. Control, vol. 63, no. 4, pp. 973–988, 2017.
[32] Y. Shoukry and P. Tabuada, “Event-triggered state observers for sparse sensor noise/attacks,” IEEE Trans. Autom. Control, vol. 61, no. 8, pp. 2079–2091, 2015.
[33] H. Kim, H. Shin, and J. H. Seo, “Output consensus of heterogeneous uncertain linear multi-agent systems,” IEEE Trans. Autom. Control, vol. 56, no. 1, pp. 200–206, 2010.
[34] X. Wang, Y. Hong, J. Huang, and Z.-P. Jiang, “A distributed control approach to a robust output regulation problem for multi-agent linear systems,” IEEE Trans. Autom. Control, vol. 55, no. 12, pp. 2891–2895, 2010.
[35] D. Freirich and E. Fridman, “Decentralized networked control of systems with local networks: A time-delay approach,” Automatica, vol. 69, pp. 201–209, 2016.
[36] G. Pola, P. Pepe, and M. D. Di Benedetto, “Decentralized supervisory control of networks of nonlinear control systems,” IEEE Trans. Autom. Control, vol. 63, no. 9, pp. 2803–2817, 2017.
[37] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of networked control systems,” IEEE Trans. Control Syst. Technol., vol. 10, no. 3, pp. 438–446, 2002.
[38] D. Nešić and A. R. Teel, “Input-output stability properties of networked control systems,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1650–1667, 2004.
[39] W. Wang, R. Postoyan, D. Nešić, and W. Heemels, “Periodic event-triggered control for nonlinear networked control systems,” IEEE Trans. Autom. Control, vol. 65, no. 2, pp. 620–635, 2019.
[40] D. Carnevale, A. R. Teel, and D. Nešić, “A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems,” IEEE Trans. Autom. Control, vol. 52, no. 5, p. 892, 2007.