INTRODUCTION
Rheumatoid arthritis (RA) is a systemic autoimmune multisystem disease characterized by pain, synovial membrane inflammation, peripheral joint inflammation, morning stiffness, destruction of articular tissues, and restricted joint movement [1-3]. The pathology and etiology of RA are complex and unknown. Destructive changes in the cartilage and bone and outgrowths of bones restrict the mobility of the joints [4]. Arthritis can cause severe disability and ultimately affects a person’s ability to carry out everyday tasks, restricts the quality of life, and causes premature death [5]. RA is the most common inflammatory disorder affecting about 1% of the global adult population; females are three times more prone to RA than males [6-8]. Conventional treatment of RA with NSAIDs, corticosteroids, immune suppressants, and anti-rheumatic drugs tumor necrosis factor (TNF-α and monoclonal antibodies) have limitations [9-11]. Chronic treatment with above agents produces serious adverse effects such as GIT ulcers, cardiovascular, hematological, and renal toxicities [12,13]. Patients suffering from chronic autoimmune disorders are advised for alternative methods for symptomatic relief [14,15]. *Amaranthus roxburghianus* Nevski (Family: Amaranthaceae) is a wild plant whose leaves and tender shoots can be edible and are commonly used as a leafy vegetable [16]. It is commonly known as chiri kura in Telugu language and is used as an abortifacient by tribes of Chittoor district, Andhra Pradesh state of India [17]. Used as iron tonic [18], its extracts in grinder, and passed through # Sieve No. 40 (ASTM). The dried powder was thoroughly washed with tap water, and air dried in the shade, powdered in a rotary evaporator (Heidolph Instruments, Laborota 4000, Germany) under reduced pressure. The hydroalcoholic extract was concentrated under reduced pressure. The dried crude hydroalcoholic extract (HARE) was collected and preserved in an airtight glass container at 4–8°C until final use.

**Materials and Methods:** *A. roxburghianus* dried aerial parts were extracted with ethyl alcohol:water (70:30) ratio, respectively, by the hot Soxhlet method. Hydroalcoholic *A. roxburghianus* extract (HARE) was further concentrated to obtain a semisolid residue. Two doses 200 and 400 mg/kg of HARE were tested against formaldehyde-induced acute non-immunological and Freund’s complete adjuvant (FCA)-induced chronic immunological arthritis in albino Wistar rats. Arthritis assessment was done by morphological studies (paw volume, paw diameter, and body wt.) and hematological parameters radiological, histopathological, and organ wt. studies were also done on the 28th day after animals were sacrificed.

**Objective:** Evaluation of anti-arthritic activity of hydroalcoholic extract of *Amaranthus roxburghianus* Nevski aerial parts in albino Wistar rats.

**Materials and Methods:** *A. roxburghianus* dried aerial parts were extracted with ethyl alcohol:water (70:30) ratio, respectively, by the hot Soxhlet method. Hydroalcoholic *A. roxburghianus* extract (HARE) was further concentrated to obtain a semisolid residue. Two doses 200 and 400 mg/kg of HARE were tested against formaldehyde-induced acute non-immunological and Freund’s complete adjuvant (FCA)-induced chronic immunological arthritis in albino Wistar rats. Arthritis assessment was done by morphological studies (paw volume, paw diameter, and body wt.) and hematological parameters radiological, histopathological, and organ wt. studies were also done on the 28th day after animals were sacrificed.

**Results:** Dose-dependent significant inhibition of edema were observed in both acute as well as chronic models. The extract at dose 400 mg/kg showed most potent and significant (p<0.05) paw edema inhibition which is supported by the results of paw volume and diameter, hematological parameters, in FCA-induced arthritis model. Treatment with HARE also decreased the histopathological alterations induced by FCA model.

**Conclusion:** HARE protects synovial membrane by improving the health status exhibits promising anti-arthritic activity. This finding thus supports the traditional use of *A. roxburghianus* for arthritis. However, further studies are needed to carry out the isolation of active constituents of the fraction responsible for the activity.

**Keywords:** *Amaranthus roxburghianus*, Freund’s complete adjuvant-induced arthritis, Formaldehyde-induced arthritis, Morphological, Hematological, Radiological, Histopathological and organ wt. studies.

© 2020 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2020.v13i6.36994
Venkateshwar Enterprises, Bengaluru, India. All the protocols of animal experiments were approved by the Institutional Animal Ethics Committee of Sree Vidyanikethan College of Pharmacy, Tirupati, Chittoor Dist., A.P., India (Approval No: SVCP/AEC/R-001/2018-19 dated on 01/04/2019) in accordance to the guidelines of Committee for the Purpose of Control and Supervision of Experiments on Animals, Ministry of Social Justice and Empowerment, Govt. of India, New Delhi. The animals were housed in polypropylene cages and maintained at 24°C±2°C under 12 h light/dark cycle and were fed with standard pellet diet and had free access to water. The animals were given a standard diet supplied by Sree Venkateshwar Enterprises, Bengaluru, India. The composition of the diet is energy 3615 (kcal/kg), crude protein 22.05%, crude oil 4.5%, crude fiber 4.10%, ash 11.10%, and sand silica 0.75%.

Experimental design
A total of 30 male albino Wistar rats weighing 180–200 g were selected and allocated to five groups of six rats in each group (n=6). Group I was used as normal control. Group 2–5 were RA-induced and treated for Freund's complete adjuvant (FCA)-induced arthritis and similarly for formaldehyde-induced arthritis, as given in Table 1.

Dose selection
Acute toxicity studies were not conducted on the HARE as its safety up to 2000 mg/kg has been reported in an earlier study [19]. The two doses 200 and 400 mg/kg were selected based on earlier studies which have reported better response at doses above 400 mg/kg regarding analgesic and nephroprotective activities [20,21].

Evaluation of anti-arthritic activity
FCA-induced arthritic rats
FCA contains heat-killed dead Mycobacterium tuberculosis bacteria in liquid paraffin in a concentration of 10 mg/mL. All the rats, except those in the normal control group, were injected intradermally with 0.1 mL of FCA into the left hind paw on day “0.” An interval of 7 days was given for arthritis to develop. All the animals developed the signs of arthritis such as swelling, redness, and restricted movement during this period [22]. The treatment was ended on day 28.

Morphological studies

Table 1: Experimental design

| Group | Treatment                  |
|-------|----------------------------|
| Group 1 | Normal control             |
| Group 2 | Arthritis control         |
| Group 3 | Diclofenac 10 mg/kg       |
| Group 4 | HARE 200 mg/kg            |
| Group 5 | HARE 400 mg/kg            |

Hematological studies
Three milliliter blood samples was collected by retro-orbital puncture on 28th day; for the estimation of serum parameters (serum glutamate oxaloacetate transaminase [SGOT], serum glutamic pyruvic transaminase [SGPT], alkaline phosphatase [ALP], and total protein) and blood parameters (erythrocyte sedimentation rate [ESR] and %HB) by various diagnostic kits and standard procedures.

Later, rats were sacrificed with a high dose of halothane on 28th day and the ankle joints were used for further radiological, histological, and organ wt. studies.

Radiological studies
On the 28th day, X-ray images (Siemens, HeloPhos D X-ray machine) of the hind limbs were taken and the changes at joints were assessed based on joint space and soft tissue swelling.

Histopathological studies
On the 28th day, ankle joints were removed and fixed in 10% buffered formalin. The bones were decalcified in 5% formic acid, processed for paraffin embedding, sectioned at 5 μm thickness, and subsequently stained with hematoxylin-eosin for examination under a light microscope for the presence of changes in synovium, cartilage, and joint space.

Organ wt. studies
On the 28th day, the spleen and thymus were removed, and weight of the organs were recorded and corrected for 100 g body wt.

Formaldehyde-induced arthritic rats
Rats were injected with 0.1 mL of 2% v/v of formaldehyde solution in the plantar surface of the left foot, on the 1st and 3rd day of the test. Drug treatment was started from the initial day, i.e., from the day of formaldehyde injection (0 day) and continued until the 10th day. The rat paw volume was recorded daily by using Plethysmometer (UGO Basile 7140, Italy) [23].

Statistical analysis
The values were expressed as mean±SEM (n=6). The statistical significance was assessed using student t-test or one-way analysis of variance (ANOVA) followed by Dunnett’s test and p<0.05, p<0.01, and p<0.001 were considered to be statistically significant.

RESULTS
FCA-induced arthritic rats
Morphological studies

Table 1: Experimental design

| Group | Treatment                  |
|-------|----------------------------|
| Group 1 | Normal control             |
| Group 2 | Arthritis control         |
| Group 3 | Diclofenac 10 mg/kg       |
| Group 4 | HARE 200 mg/kg            |
| Group 5 | HARE 400 mg/kg            |

Paw volume and diameter studies
Effect of HARE on paw volume and diameter in FCA-induced arthritic rats was tabulated in Table 2. Challenge with FCA (0.1 mL) shows the development of paw edema which reached peak edema on the 21st day of injection. Diclofenac treated group shows significant inhibition of paw edema on day 7th (p<0.05), 14th (p<0.01), 21st (p<0.001), and day 28th (p<0.001). HARE (200 mg/kg) shows significant inhibition of paw edema on day 21st and day 28th with (p<0.01). Furthermore, rats treated with HARE (400 mg/kg) show significant inhibition of paw edema on day 7th (p<0.05), 14th (p<0.05), 21st (p<0.01) and day 28th (p<0.01). Paw diameter was increased up to 21st day of adjuvant induction and after that it slightly decreased. Diclofenac treated group shows significant increase.
inhibition of paw diameter on day 14th (p<0.01), 21st (p<0.001), and day 28th (p<0.001). HARE (200 mg/kg) shows significant inhibition of paw diameter on day 21st and day 28th with (p<0.01). Furthermore, rats treated with HARE (400 mg/kg) show significant inhibition of paw diameter on day 21st and day 28th (p<0.01). Morphological observation of the rat paws was shown in Fig. 2.

Body wt. studies
Effect of HARE on body wt. in FCA-induced arthritic rats was tabulated in Table 3 indicates the increased body wt. during the treatment of standard drug and HARE.

Table 3: Effect of HARE on body wt. in Freund’s complete adjuvant-induced arthritic rats

| Groups            | Mean body wt. (g) | Mean difference in body wt. |
|-------------------|-------------------|----------------------------|
|                   | Before induction | After induction              |
| Normal control    | 179±1.23          | 179±1.23                    |
| Arthritis control | 165±3.13          | 176±2.4                     |
| Diclofenac 10 mg/kg | 173±2.24          | 178±1.38                    |
| HARE 200 mg/kg    | 170±1.12          | 202±3.21                    |
| HARE 400 mg/kg    | 181±4.65          | 217±5.02                    |

Values are expressed as mean±SEM (n=6); *p<0.05, **p<0.01 as compared with control followed by student’s t-test. HARE: Hydroalcoholic Amaranthus roxburghianus extract

Fig. 2: Morphological observations of the rat paws (a) normal control (b) arthritis control (c) diclofenac (10 mg/kg) (d) hydroalcoholic Amaranthus roxburghianus extract (HARE) (200 mg/kg) (e) HARE (400 mg/kg) treated rats

Table 2: Effect of HARE on paw volume and diameter in Freund’s complete adjuvant-induced arthritic rats

| Groups            | Paw volume (mL) | Day 0       | Day 7       | Day 14      | Day 21      | Day 28      |
|-------------------|-----------------|-------------|-------------|-------------|-------------|-------------|
| Normal control    | 0.16±0.03       | 0.16±0.02   | 0.16±0.04   | 0.17±0.03   | 0.17±0.01   |
| Arthritis control | 0.94±0.07       | 1.85±0.16   | 2.42±0.10   | 2.78±0.13   | 2.64±0.12   |
| Diclofenac 10 mg/kg | 0.93±0.06       | 1.94±0.10** | 1.86±0.11** | 1.58±0.11*** | 1.45±0.11*** |
| HARE 200 mg/kg    | 0.90±0.07       | 1.41±0.10   | 2.18±0.12   | 1.92±0.17   | 1.88±0.13** |
| HARE 400 mg/kg    | 0.92±0.06       | 1.90±0.11*  | 1.89±0.09*  | 1.77±0.19** | 1.68±0.16** |

Values are expressed as mean±SEM (n=6). *p<0.05, **p<0.01, ***p<0.001 as compared with control (one-way ANOVA followed by Dunnet’s test). HARE: Hydroalcoholic Amaranthus roxburghianus extract

Fig. 3: Radiological observation of the rat hind limbs (a) normal control (b) arthritis control (c) diclofenac (10 mg/kg) (d) hydroalcoholic Amaranthus roxburghianus extract (HARE) (200 mg/kg) (e) HARE (400 mg/kg) treated rats
Histopathological studies
Histopathological observations of the rat ankle joint tissues were shown in Fig. 4 indicate that show destructive lesions in connective tissue, vascularity into joint space, and granuloma formation in the arthritis control group. There was normal connective tissue structure with the absence of necrosis in the ankle joint of the normal control group. Diclofenac treatment showed normal connective tissue of ankle joint with the presence of lesser edema and absence of necrosis. HARE-treated rats produced knee joint protection compared to arthritis control group rats by reducing the inflammation and necrosis. Rats treated with HARE (200 mg/kg) showed granuloma formation along with edema and necrosis with few inflammatory cells. Rats treated with EABP (400 mg/kg) showed mild necrosis with edema, but granuloma was absent in ankle joint.

Organs wt. studies
There was a decrease in thymus wt. whereas the mean spleen wt. was increased in the FCA treated rats as compared to the NC group (Table 5). A rise in spleen wt. was significantly (p<0.01) inhibited in rats treated with HARE (200 and 400 mg/kg) and diclofenac (10 mg/kg) as compared to FCA treated rats. Only treatment with dose 400 mg/kg of HARE and diclofenac attenuated the decreased wt. of the thymus, significantly (p<0.01).

Formaldehyde-induced arthritic rats
Effect of HARE on paw volume in formaldehyde-induced arthritic rats was tabulated in Table 6. Sub-planter injection of 0.1 mL of 2% v/v formaldehyde shows increased in paw edema which reaches a peak on day 6th and after that it slightly decreased on day 10th. Diclofenac (10 mg/kg) treated rat shows significant changes in paw edema on the day 3rd (p<0.05), day 6th (p<0.001), and day 10th (p<0.001). HARE (200 mg/kg) shows significant changes in paw edema on day 6th (p<0.05) and day 10th (p<0.01). Furthermore, rats treated with HARE (400 mg/kg) show significant changes in paw edema on day 6th (p<0.01) and day 10th (p<0.001).

DISCUSSION
The FCA-induced arthritis model in rats is the most common model. This preclinical model predicted the activities of a number of compounds that are currently used in the treatment of RA are being tested in clinical trials. The basis on biochemical parameters, the 4 phases of arthritis, Phase 1: Acute local inflammation of liver and systemic effects (1–4 days); Phase 2: Remission of acute inflammation and periarthritis (7–12 days); Phase 3: Chronic inflammation, periarthritis and osteogenic activity (12–28 days); and Phase 4: Permanent articular deformity and minimal inflammation (35 days onward) [9]. The present study was carried out to see the efficiency of hydroalcoholic extract of aerial parts of indigenous herb, A. roxburghianus against arthritis. In the present study, male Wistar strain rats were selected to induce arthritis because they develop a chronic swelling in multiple joints due to the accumulation of inflammatory cells, erosion of joint cartilage, and bone destruction.

Table 4: Effect of HARE on hematological parameters in Freund's complete adjuvant-induced arthritic rats

| Groups                  | Serum parameters | Blood parameters |
|-------------------------|------------------|------------------|
|                         | SGOT (IU/L)      | Total protein (g/dl) |
| Normal control          | 126.50±1.38      | 7.95±0.11         |
| Arthritis control       | 100.27±1.01      | 3.02±0.22         |
| Diclofenac 10 mg/kg     | 51.32±6.55**     | 7.93±0.10**       |
| HARE 200 mg/kg          | 75±8.81          | 6.84±0.45*        |
| HARE 400 mg/kg          | 67.93±4.41*      | 6.96±1.11         |

|                         | ESR (mm/hr)      | HB (g %)         |
|-------------------------|------------------|------------------|
| Normal control          | 278.36±20.13     | 13.17±1.35       |
| Arthritis control       | 51.63±4.35*      | 35.3±5.4         |
| Diclofenac 10 mg/kg     | 25.36±7.12       | 16.47±6.04**     |
| HARE 200 mg/kg          | 19.2±10.21*      | 19.2±10.21*      |
| HARE 400 mg/kg          | 212.00±1.06**    | 12.4±11.1**      |

Values are expressed as mean±SEM (n=6). *p<0.05, **p<0.01 as compared with control (one-way ANOVA followed by Dunnet’s test). HARE: Hydroalcoholic Amaranthus roxburghianus extract

Table 5: Effect of HARE on thymus and spleen wt. in Freund's complete adjuvant-induced arthritic rats

| Groups                  | Spleen wt. (mg/100 g b.wt.) | Thymus wt. (mg/100 g b.wt.) |
|-------------------------|------------------------------|-----------------------------|
| Normal control          | 185.5±4.09                   | 103.5±2.01                  |
| Arthritis control       | 249.1±6.27                   | 81.00±0.81                  |
| Diclofenac 10 mg/kg     | 209.8±4.20**                 | 91.00±0.96**                |
| HARE 200 mg/kg          | 231.5±1.56**                 | 84.5±0.76                   |
| HARE 400 mg/kg          | 212.0±1.06**                 | 89.50±1.33**                |

Values are expressed as the mean±SEM (n=6): *p<0.05, **p<0.01 as compared with control (one-way ANOVA followed by Dunnet’s test). HARE: Hydroalcoholic Amaranthus roxburghianus extract

Table 6: Effect of HARE on paw volume in formaldehyde-induced arthritic rats

| Groups                  | Paw volume (mL) |
|-------------------------|-----------------|
|                         | Day 0 | Day 3 | Day 6 | Day 10 |
| Normal control          | 0.16±0.03 | 0.16±0.02 | 0.16±0.04 | 0.17±0.03 |
| Arthritis control       | 0.92±0.09 | 1.48±0.32 | 1.97±0.44 | 1.7±0.21 |
| Diclofenac 10 mg/kg     | 0.90±0.07 | 1.22±0.24** | 1.19±0.13* | 1.09±0.27*** |
| HARE 200 mg/kg          | 0.94±0.11 | 1.59±0.21* | 1.36±0.20 | 1.23±0.42** |
| HARE 400 mg/kg          | 0.91±0.09 | 1.43±0.19** | 1.41±0.31 | 1.21±0.22** |

Values are expressed as mean±SEM (n=6): *p<0.05, **p<0.01, ***p<0.001 as compared with control (one-way ANOVA followed by Dunnet’s test). HARE: Hydroalcoholic Amaranthus roxburghianus extract
It has close similarities to human rheumatoid diseases [1]. The determination of paw swelling is apparently simple, sensitive, and quick procedure for evaluating the degree of inflammation and the therapeutic effects of drugs. The Freund’s adjuvant model is chosen as it develops chronic swelling in multiple joints with the involvement of inflammatory cells with erosion of joint cartilage and bone destruction. Chronic inflammation involves the release of the number of mediators such as cytokines (interleukin-1β and TNF-alpha), granulocyte macrophage-colony stimulating factor, interferon's, and PGDF. These mediators are responsible for the pain, destruction of bone, and cartilage that lead to severe disability [1,4]. However, standard drug and HARE extract can significantly suppress the swelling of the paws and also decreases the paw volume in both acute and chronic phase which may be due to the suppression of inflammatory mediators released due to induction of Freund's adjuvant. Although the actual mechanism of suppressing inflammation is not known, it can be correlated with the presence of alkaloids and flavonoids in suppressing the inflammation and antioxidant activity. As the incidence and severity of arthritis increased, the changes in the body weights of the rats also occurred during the course of the experimental period. Earlier findings suggest that absorption of 14C-glucose and 14C-urate in rat’s intestine was reduced in the case of inflamed rats [21-24]; but on the treatment with anti-inflammatory drugs, the decrease in absorption was nullified and it shows that the anti-inflammatory drugs correct the decreased/deranged absorption capacity of intestine during inflammation. The increased body weight during the treatment of standard drug, HARE extract, may be due to the restoration of the absorption capacity of intestine. The extract also shows a significant effect on various blood and serum parameters. Formaldehyde-induced arthritis is one of the most commonly used acute model for assessing anti-arthritic potential of plant extracts. The development of edema in the paw of the rat after injection of 0.1 mL of 2% v/v formaldehyde is due to the release of histamine, serotonin, and the prostaglandin like substances at the site of injection [23]. Inhibition of paw edema in formaldehyde-induced arthritis may be due to the significant anti-inflammatory potential of HARE.

CONCLUSION
On the basis of the results obtained in this study, we conclude and propose that possibly, the potent anti-arthritic effect of aerial parts of hydroalcoholic HARE may be through maintenance of synovial membrane, thereby inhibiting cytokines and leukotriene infiltration inhibition as evidenced in paw edema volume. In turn, protecting synovial membrane and improving health status through anti-inflammatory properties of HARE. Improvement in health parameters considers in this study, including HB, ESR, and body weight indicating its beneficial effects while recovery from arthritis. From the results observed from the current investigation, it is concluded that the HARE possesses potent anti-arthritic activity since it gives a positive result in controlling inflammation in acute and chronic arthritic models in Wistar’s strain albino rats.

ACKNOWLEDGMENTS
The authors are thankful to Padmashree, Dr. M. Mohan Babu, Chairman, and Visionary, Sri Vidyanikethan Educational Trust. Principal and Management of Sri Vidyanikethan College of Pharmacy, Tirupati, for providing necessary infrastructure and facilities to conduct this research work.

AUTHORS’ CONTRIBUTIONS
Ms. Radhika Chikatipalli Research scholar; conducted research work and consolidated results with discussion and conclusions.
Dr. K. Saravanakumar: Research supervisor; supervised the research work and guided to draft this research article as per the journal’s instructions.
Dr. Chandra Sekhar Kothapalli Bonnoth: Research co-supervisor; supervised the research work and guided to draft this research article as per the journal’s instructions.

CONFLICTS OF INTEREST
The authors have declared no conflicts of interest.

AUTHORS’ FUNDING
This work is a part of self-funded part-time research program under the affiliation of Jawaharlal Nehru Technological University, Ananthapur.

REFERENCES
1. Harris ED. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med 1990;322:1277-89.
2. Boissier MC. Rheumatoid arthritis: Direct and indirect costs. Joint Bone Spine 2004;71:518-24.
3. Chaudhary BR. Guidelines for the management of rheumatoid arthritis. Am Coll Rheumatol Subcomm Arthritis Rheum 2002;46:328-46.
4. Ahmed S, Anuntiyo J, Charles I, Haqui TM. Biological basis for the use of botanicals in osteoarthritis and rheumatoid arthritis: A review. Evid Based Complement Altern Med 2005;2:301-8.
5. Brunton LL, Lazo JS, Parker KL. Goodman & Gilman’s: The Pharmacological Basis of Therapeutics. 11th ed. New York: McGraw-Hill; 2006.
6. Feldmann M, Steinman L. Design of effective immunotherapy for human autoimmunity. Nature 2005;435:612-9.
7. Arend WP, Dyer JM. Inhibition of the production and effects of interleukin-1 and tumor necrosis factor alpha in rheumatoid arthritis. Arthritis Rheum 1995;38:151-60.
8. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: What have we learned? Annu Rev Immunol 2001;19:163-96.
9. Chitme HR, Patel NP. Antiarthritic activity of aristolochia bracteata extract in experimental animals. Open Nat Prod J 2009;2:6-15.
10. Baghai M, Osmun DR, Wolk DM, Wold LE, Haidukewych GJ, Matteson EL. Fatal sepsis in a patient with rheumatoid arthritis treated with etanercept. Mayo Clin Proc 2001;76:653-6.
11. Engel LW, Strass SE. Development of therapeutics: Opportunities within complementary and alternative medicine. Nat Rev Drug Discov 2002;1:229-37.
12. Jacobs JW, Rasker JJ, Bijlsma JW. Alternative medicine in rheumatology: Threat or challenge? Clin Exp Rheumatol 2001;19:117-9.
13. Kokate CK. Practical Pharmacognosy. 3rd ed. New Delhi: Vallabh Prakashan, 1994. p:107-11.
14. Lam FF, Wong HH, Ethel SK. Time course and substance B effects on the vascular and morphological changes in adjuvant-induced monarthritis rats. Int Immunopharmacol 2004;4:299-310.
15. Butler SH, Godefroy F, Bessen JM, Weil-Fagazzza J. A limited arthritic model for chronic pain studies in the rat. Pain 1992;48:73-81.
16. Kauthale V, Kulkarni D, Chavan L, Patil S, Nalawade A. Diversity of wild edible plants in Dhadgaon block of Nandurbar District in Maharashtra, India. Int J Curr Res Biosci Plant Biol 2017;4:62-73.
17. Vedavathy S, Sudhakar A, Mrdula V. Tribal medicinal plants of Chittoor. Anc Sci Life 1997;16:307-31.
18. Mary AD, Franco FM, Babu V. Assessing the contribution of local and traded biodiversity in community health care: A case study from Keelakadankulam Village, South India. Ethnobot Res Appl 2011;9:275-86.
19. Alves De Almeida AC, De-Faria FM, Dunder RJ, Manzo LP, Souza-Brito AR, Luiz-Ferreira A. Recent trends in pharmacological activity of alkaloids in animal colitis: Potential use for inflammatory bowel disease. Evid Based Complement Altern Med 2017;2017:1-24.
20. Nirmal SA, Ingle JM, Pattan SR, Bhawar SB. Amaranthus roushgarhianus root extract in combination with piperine as a potential treatment of ulcerative colitis in mice. J Integr Med 2013;11:206-12.
21. Available from: http://www.ausyushportal.nic.in/pdf/books/research%20publications%20in%20ayurvedic%20sciences.pdf.
22. Newbould BB. Chemotherapy of arthritides induced in rats by mycobacterial adjuvant. Br J Pharmacol Chemother 1963;21:127-36.
23. Bansod MS, Kagathara VG. Evaluation of analgesics and anti-inflammatory activity of Ammania baccifera linn. Int J Pharm Bio Sci 2010;1:1-7.

115