Antibody Binding Alters the Characteristics and Contents of Extracellular Vesicles Released by *Histoplasma capsulatum*

Ludmila Matos Baltazar,a,b* Ernesto S. Nakayasu,c,d Tiago J. P. Sobreira,d Hyungwon Choi,e Arturo Casadevall,f Leonardo Nimrichter,g Joshua D. Nosanchuk,a,b

Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USAa; Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USAb; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USAc; Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USAf; Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazilg

* Present address: Ludmila Matos Baltazar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.

ABSTRACT *Histoplasma capsulatum* produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of *H. capsulatum* cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind *H. capsulatum* heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion.

IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has been no study reporting the impact of antibody binding to the fungal cell on extracellular vesicle release. In the present work, we observed that treatment of *H. capsulatum* cells with Hsp60-binding MAbs significantly changed the size and cargo of extracellular vesicles, as well as the enzymatic activity of certain virulence factors, such as laccase and phosphatase. Furthermore, this finding demonstrates that antibody binding can directly impact protein loading in vesicles and fun-
gal metabolism. Hence, this work presents a new role for antibodies in the modification of fungal physiology.

KEYWORDS: *H. capsulatum*, Hsp60, monoclonal antibodies, vesicles

Histoplasma capsulatum, a dimorphic fungus, is the etiologic agent of histoplasmosis, a systemic mycosis with a worldwide distribution. *H. capsulatum* infections are common in North America, mainly in the United States (1, 2), and are also highly prevalent in some Latin American countries, such as Brazil, Venezuela, Ecuador, Paraguay, and Argentina (3, 4). Infection occurs after inhalation of microconidia or hyphal fragments from the environment by a susceptible host, and the lung is the primary organ of infection (5, 6). Containment of the infection involves the activation of cell-mediated immunity with uptake of fungi by phagocytic cells such as neutrophils and macrophages (5, 7). Interestingly, *H. capsulatum* yeast cells subvert the intraphagosomal milieu, maintaining an environment that is permissive to fungal multiplication (5, 8). Although the role of humoral immunity in the pathogenesis of histoplasmosis is uncertain, monoclonal antibodies (MAbs) have been shown to significantly improve survival after a lethal challenge in a murine infection model (9, 10). Interestingly, we previously demonstrated that two competing MAbs to heat shock protein 60 (Hsp60) of different subtypes had dramatically different effects on disease pathogenesis, with MAb 6B7 (IgG1) producing a protective response and MAb 7B6 (IgG2b) enhancing the disease (9).

Over the past decade, several studies have shown that fungi produce extracellular vesicles. This remarkable process involves the transport of macromolecule-containing vesicles across the complex fungal cell wall, a secretory machinery that is utilized by diverse ascomycetes and basidiomycetes, including *H. capsulatum*, *Candida albicans*, *Cryptococcus neoformans*, *Malassezia sympodialis*, *Paracoccidioides brasiliensis*, and *Alternaria infectoria* (11–16). Analyses of the contents of vesicles from these different fungi have revealed the presence of lipids, phospholipids, polysaccharides, nucleic acid, proteins, and virulence factors, such as laccase and urease (11, 17, 18). In *H. capsulatum*, the extracellular vesicles contain important proteins involved in fungal pathogenesis and stress responses, including Hsp60, which suggest the participation of fungal extracellular vesicles in the establishment and progression of disease (15).

It is notable that several of the described virulence factors of *H. capsulatum* that have been identified in the secreted vesicles are unconventional cell wall components. For example, the chaperone Hsp60 is a major ligand involved in phagocytosis by mediating the attachment of *H. capsulatum* cells to macrophage/monocyte integrin CR3 (CD11b/CD18), whereas M antigen, another surface antigen, is a catalase involved in the protection of fungal cells from oxidative stress (9, 19). In addition, phosphatase and laccase are enzymes involved in protein dephosphorylation and melanin synthesis, respectively (19, 20). Given the finding that MAbs can modify disease pathogenesis, we determined the effects of a protective MAb and a nonprotective MAb on the production and contents of extracellular vesicles from *H. capsulatum*.

RESULTS

DLS analysis of extracellular vesicles released after treatment of *H. capsulatum* cells with a protective (6B7) or nonprotective (7B6) antibody. Dynamic light scattering (DLS) was used to evaluate the vesicle sizes in each sample (Fig. 1A and B). The results show that incubation of *H. capsulatum* cells with MAbs 6B7 and 7B6 significantly changed the size of the vesicles released by the fungal cells in comparison with that of vesicles released by untreated yeast cells (Fig. 1A and B). Vesicles collected from untreated control cells were found to occur in two distinct size ranges: a small population varying between 40 and 60 nm and those of a larger size ranging between 170 and 250 nm in diameter. After treatment with MAb 6B7, the sizes of both vesicle populations increased compared with those of the control. The sizes of small and large vesicles ranged between 60 and 80 nm and 240 and 350 nm, respectively. Cells treated
with MAb 7B6 produced small vesicles that varied between 55 and 100 nm and larger vesicles that varied between 200 and 300 nm.

Protein and sterol content quantification after treatment of *H. capsulatum* cells with protective (6B7) and nonprotective (7B6) antibodies. The total protein and sterol concentrations of extracellular vesicles were determined with the Bradford assay and an Amplex Red kit, respectively (Fig. 2A and B; see Table S1 in the supplemental material). The structural differences between fungal and mammalian sterols do not interfere with the kit’s detection activity (14). Analysis of the total protein from extracellular vesicles shows that treatment of *H. capsulatum* with either MAb 6B7 or 7B6 results in a significant increase in protein compared with that in vesicles from untreated control yeast cells (Fig. 2A). The total protein in vesicles collected from *H. capsulatum* incubated with MAbs 6B7 and 7B6 increased 6- and 9.5-fold, respectively,

![FIG 1](image1.png) Distribution of extracellular vesicle dimensions obtained from control *H. capsulatum* yeast cells compared to vesicle size ranges obtained from yeast cells treated with MAb 6B7 (A) or 7B6 (B). Control: *H. capsulatum* cells not treated with MAbs.

![FIG 2](image2.png) Total protein analysis and sterol content quantification in vesicles from *H. capsulatum* yeast cells with or without treatment with MAb 6B7 or 7B6. (A) Bradford assay for protein quantification. (B) Sterol content quantification. *H. capsulatum* cells were grown in Ham’s F12 medium for 7 days. The vesicles were collected and suspended in 0.5 ml of PBS. All of the analyses were performed in duplicate. **, *P* < 0.05 compared to the untreated control (*H. capsulatum* cells not treated with MAbs); ##, *P* < 0.05 compared to MAb 6B7.
in comparison with that in untreated control vesicles. In addition, the amount of protein in vesicles from *H. capsulatum* treated with MAb 7B6 was greater than that of protein in vesicles from *H. capsulatum* treated with MAb 6B7 (Fig. 2A). Interestingly, the amount of fungal sterol in the vesicles did not change after treatment with MAbs 6B7 and 7B6 compared to that in the untreated control (Fig. 2B).

Enzymatic assay of vesicles derived from *H. capsulatum* cells with or without MAb treatment. To detect urease, phosphatase, laccase, and catalase activities, suspensions of vesicles were added to an enzyme reaction solution specific to each enzyme evaluated. The activities of these enzymes were detected in extracellular vesicles isolated from *H. capsulatum* yeasts with or without MAb treatment (Fig. 3A and B). Although the urease activity levels were similar in control and antibody-treated vesicles (Fig. 3A), phosphatase, laccase, and catalase activities were modified by antibody treatment (Fig. 3B to D). Both MAbs 6B7 and 7B6 significantly decreased the phosphatase activity in vesicles compared to that in the untreated control (Fig. 3B). Laccase activity was significantly lower in vesicles from cells incubated with MAb 6B7 than in either untreated control (Fig. 3C). There was also a trend toward lower laccase and catalase activities in vesicles isolated from cells treated with MAb 7B6 than in vesicles isolated from the untreated control. In addition, the catalase activity levels were similar in control and MAB 6B7-treated vesicles.

Proteomic analysis of extracellular vesicles of *H. capsulatum* cells treated with MAb 6B7 or 7B6. Protein analysis was performed after vesicle purification and enzymatic digestion. Identification of individual peptides was achieved by searching
tandem mass spectra against a sequence database containing the *H. capsulatum* complete proteome set from the UniProt Knowledge Base and common contaminant sequences with the Paragon tool of the Protein Pilot software (AB Sciex). Complete proteomic analysis of the *H. capsulatum* extracellular vesicles isolated from each of the conditions examined led to the identification of a total of 1,125 proteins that were separated into 1,117 groups (see Tables S2 and S3 in the supplemental material), in which a protein group is defined by isoforms that have the same peptides. Of the 1,117 protein groups, 699 had peptide intensities above the limit of quantification (see Table S4 in the supplemental material) and 250 proteins in this subset were differentially abundant (Table 1; see Table S5 in the supplemental material). Figure 4 depicts the best-represented protein categories organized according to their biological processes. This classification based on biological processes shows that the most plentiful of the proteins are related to amino acid/protein metabolism (20%), followed by proteins associated with sugar metabolism (7.2%), nuclear proteins, and lipid metabolism (both 4%). In addition, 27.6% of the proteins were grouped together as miscellaneous and 12.4% were uncharacterized proteins.

Comparison of the proteomes of vesicles of *H. capsulatum* cells treated with MAbs 6B7 and 7B6. Treatment of *H. capsulatum* cells with MAb 6B7 or 7B6 changed the profile of proteins in the vesicles in relation to that in untreated control vesicles (Fig. 5A; see Table S5 in the supplemental material). After treatment with MAb 6B7, 46.8% of the proteins were reduced in quantity and about half (45.8%) were increased (Fig. 5B). Although MAb 7B6 treatment also changed the expression profile, there were increases in 31.2% of the proteins and 43.6% were reduced (Fig. 5C). Treatment with MAb 6B7 most significantly reduced proteins associated with amino acid/protein metabolism (22.2%), followed by sugar metabolism, nuclear, ribosomal, and lipid metabolism proteins (5.6%) and cell wall architecture proteins (4.2%). Among the proteins with higher abundance after treatment with MAb 6B7, 20.8% were associated with amino acid/protein metabolism, 10.4% were associated with sugar metabolism, and 8% were ribosomal proteins (Fig. 5B). Analyzing the set of proteins altered after treatment with MAb 7B6, we determined that the quantities were reduced 21.1% for proteins involved in amino acid/protein metabolism, 7.3% for sugar metabolism proteins, and 5.5% for nuclear proteins (Fig. 5C), and the quantities were increased 21.8% for proteins involved in amino acid/protein metabolism, 12.8% for sugar metabolism proteins, and 9% for ribosomal proteins (Fig. 5C). We also compared the abundance of proteins in vesicles isolated from yeast cells after treatment with MAb 7B6 in relation to that of proteins in vesicles from cells treated with MAb 6B7. The analysis showed that most proteins were increased (44.8%) in the MAb 7B6 vesicles compared to the MAb 6B7 vesicles, with proteins associated with amino acid/protein metabolism having the most abundance (21.4%), followed by sugar metabolism proteins (10.7%) and cytoskeleton proteins (7.1%) (Fig. 5D). This comparison also showed that treatment with MAb 7B6 reduced more proteins, with 20.6% of these proteins being associated with amino acid/protein metabolism and 14.7% being cell wall architecture-related proteins. Interestingly proteins related to cell wall architecture, such as cell wall remodeling protein, cell wall synthesis protein, and 1,3-β-glucananosyltransferase, were decreased in vesicles isolated from yeasts treated with MAb 6B7 and increased in MAb 7B6-treated vesicles. Furthermore, MAbs 6B7 and 7B6 changed the abundance of polyphenol oxidase and alkaline phosphatase enzymes in relation to that in untreated control vesicles, as both were increased according to proteomic analysis (see Table S5 in the supplemental material). Notably, alteration of the abundance of vesicle proteins also occurred after treatment with the Hsp60-binding control MAb 12D3, where 50% of the proteins were increased and 32.4% were reduced (see Table S5 in the supplemental material). MAb 12D3 produces biological and protective responses similar to those of MAb 6B7 (8) and was thus utilized to support our evidence that protective MAbs produce differential loading of vesicles compared to the one nonprotective MAb to Hsp60 that we currently have.
Protein type and hit no.	Accession no.	Identification	Function
Chaperone-like proteins			
1	C0NEZ9	Receptor-associated protein	Intracellular protein transport
2	CONS16	DnaK-type molecular chaperone BipA	Chaperone
3	CONBV8	Heat shock protein	Chaperone
4	CONYC6	Hsp70-like protein	Chaperone
5	COP0B3	Hsp60-like protein	Chaperone
6	COP152	Heat shock protein	Chaperone
Endocytic-route proteins			
7	C0NI41	VHS domain-containing protein	Intracellular protein transport
8	CONKH9	ADP-ribosylation factor	GTP binding
9	CONA79	Prenylated Rab accepter 1	Involved in transport between ER and Golgi complex
10	CONL9	Vacuolar-sorting-associated protein	Vesicular protein sorting
11	CONXJ2	Secretory pathway GDP dissociation inhibitor	Rab GDP-dissociation inhibitor activity
12	CONRE5	e-COP	Retrograde vesicle-mediated transport, Golgi to ER
Cytoskeleton/motility proteins			
13	COP0B4	Cofilin	Actin binding
14	CONA44	Coronin	Actin-associated protein
15	CONBZ7	F-actin-capping protein subunit β	Actin binding
16	CONMF2	Fimbrin	Protein binding
17	CONTH2	Septin	Cytokinesis
18	P53455	Actin	Cytoskeleton assembly
19	CONKB3	Tubulin β chain	Structural constituent of cytoskeleton
20	COP0S2	Tubulin α chain	Structural constituent of cytoskeleton
21	COP074	Tubulin α-1 subunit	Structural constituent of cytoskeleton
Cell growth/division proteins			
22	CONBG1	DNA damage checkpoint protein Rad24	DNA damage checkpoint
23	CONC23	dUTPase	
24	CONFW3	RNA polymerase Rpb1 C-terminal repeat domain-containing protein	Transcription of DNA
25	CONQN9	Septin	GTP binding
26	CONF61	Cell division control protein	ATP binding
27	CONXU1	Flap endonuclease 1	DNA binding
28	CONML9	Mitogen-activated protein kinase	MAP kinase activity
Cell signaling proteins			
29	CONFM9	Small G-β protein GPB	Protein binding
30	CONFNS	Ran-specific GTPase-activating protein	Intracellular transport
31	CONC1	PH domain-containing protein	Intracellular signaling
32	COP083	GTP-binding protein ypt3	Small GTPase-mediated signal transduction
Nuclear proteins			
33	CONC10	Uracil-DNA glycosylase	Uracil DNA N-glycosylase activity
34	CONRN4	Histone H2A	
35	CONZ94	Histone H2B	DNA binding
36	CONL60	Histone H3	DNA binding
37	COP057	RuvB-like helicase	DNA helicase activity
38	CONJ22	RuvB-like helicase 1	DNA helicase activity
39	COP170	Cap-binding protein	RNA metabolic process
40	CONQX1	DNA ATP-dependent helicase	DNA binding, ATP binding
41	CONP2	DNA damage-binding protein 1a	Nucleic acid binding
42	CONFM3	XPG I region protein	DNA repair
43	COP05	Woronin body major protein	Translation elongation factor activity
Cell wall architecture			
44	CONDA4	Cell wall synthesis protein	Cell wall synthesis
45	CONL12	Glucanoyltransferase	Cell wall assembly
46	CONK9	β-Glucosidase	Carbohydrate metabolic process
47	CONW75	Chitinase	Chitinase activity
48	CONSG6	Extracellular cell wall glucanase Crf1	Hydrolase activity, hydrolyzing O-glycosyl compounds
49	CONH39	1,3-β-Glucanotransferase	Carbohydrate metabolic process
50	CONIP3	GPI-anchored cell wall organization protein Ecm33	
Antioxidant proteins			
51	CONAP3	Polyphenoloxidase	Oxidoreductase activity
52	CON23	Glutathione peroxidase	Glutathione peroxidase activity
53	CONMI3	Thiol-specific antioxidant	Antioxidant activity

(Continued on following page)
Protein type and hit no.	Accession no.	Identification	Function
Proteasome proteins			
54	C0NV29	Proteasome subunit α type	Endopeptidase activity
55	C0P150	Proteasome subunit β type	Endopeptidase activity
56	C0NYE5	26S proteasome regulatory subunit	Protein binding
Lipid metabolism proteins			
57	C0NMK6	Acyl-CoA dehydrogenase	Acyl-CoA dehydrogenase activity
58	C0NM0	3-Ketoacyl-CoA thiolase	Catalytic activity
59	C0NW7	3-Ketoacyl-CoA thiolase peroxisomal A	Catalytic activity
60	C0NY84	Glycerocephosphoryl diester phosphodiesterase	Glycolytic activity
61	C0NZ5	Enoyl-CoA hydratase/isomerase	Catalytic activity
62	C0NEL5	δ-9 fatty acid desaturase	Insertion of double bond at δ position of fatty acids
63	C0PO87	Long-chain fatty acid CoA ligase	Catalytic activity
64	C0NUX2	Oxyyster-binding protein	Ergosterol synthesis
65	C0NAZ6	Oxyyster-binding protein	Ergosterol synthesis
66	C0NTW1	Oxidosqualene:lanoster cyclase	Intramolecular transferase activity
Sugar metabolism proteins			
67	C0NP4	N-Glycosyltransferase	Catalysis of glycosyl group transfer
68	C0PO90	Citrate synthase	Citrate (Si)-synthase activity
69	C0NHJ7	Glucosidase I	Mannosyl-oligosaccharide glucosidase activity, catalytic activity
70	C0NGE0	Acetate hydratase	Tricarboxylic acid cycle
71	C0NRA2	Sugar transporter	Transporter activity
72	C0NB1	Phosphoglycerate kinase	Phosphoglycerate kinase activity
73	C0NR6	Ribose 5-phosphate isomerase A	Ribose-5-phosphate isomerase activity
74	C0NQ1	Fructose 1,6-biphosphatase aldolase	Fructose-bisphosphatase aldolase activity
75	C0NQ1	Fructose 1,6-bisphosphatase	Fructose 1,6-bisphosphatase 1-phosphatase activity
76	C0ND4	β-Glucosidase	Carbohydrate metabolic process
77	C0NF3	Triosephosphate isomerase	Glycolytic process
78	C0NR1	Glyceraldehyde-3-phosphate dehydrogenase	Glucose metabolic process
79	C0PO46	Malate dehydrogenase	Malate metabolic process
80	C0NDH1	Malate dehydrogenase	Malate metabolic process
81	C0NH60	Acetate	Tricarboxylic acid cycle
82	C0NAG1	Pyruvate carboxylase	Pyruvate metabolic process
83	C0NV40	N-Acetylglucosamine-phosphate mutase	Carbohydrate metabolic process
84	C0NH7	Isoctuate lyase	Isocitrate lyase activity
Ribosomal proteins			
85	C0NC9	60S acidic ribosomal protein P0	Structural constituent of ribosome
86	C0NE75	60S ribosomal protein L23	Structural constituent of ribosome
87	C0NK2	60S ribosomal protein L1	Structural constituent of ribosome
88	C0NL3	40S ribosomal protein S4	Structural constituent of ribosome
89	C0MA2	Ribosomal protein L19	Structural constituent of ribosome
90	C0RD6	60S ribosomal protein L5	Structural constituent of ribosome
91	C0ND0	40S ribosomal protein S3	Structural constituent of ribosome
92	C0NE9	40S ribosomal protein S12	Structural constituent of ribosome
93	C0HH49	Ribosomal protein L14	Structural constituent of ribosome
94	C0NP9	60S ribosomal protein L13	Structural constituent of ribosome
95	C0KWW	40S ribosomal protein S0	Structural constituent of ribosome
96	C0DC6	Large-subunit ribosomal protein L3	Structural constituent of ribosome
97	C0CE3	60S ribosomal protein L20	Structural constituent of ribosome
98	C0RHS	60S ribosomal protein L24	Structural constituent of ribosome
99	C0NC6	40S ribosomal protein S17	Structural constituent of ribosome
Amino acids/proteins involved in metabolism			
100	C0NQ9	Probable dipeptidyl-aminopeptidase B	Serine-type peptidase activity
101	C0NM4	Glutamate dehydrogenase	Cellular amino acid metabolic process
102	C0NXA3	Eukaryotic translation initiation factor 3 subunit C	Translation initiation factor activity
103	C0NAB3	Probable carbboxypeptidase HCBG_00059	Hydrolase activity
104	C0NAK7	Aspartyl aminopeptidase	Aminopeptidase activity
105	C0NWA2	Eukaryotic translation initiation factor 3 subunit I	Protein synthesis
106	C0NC9	Protein disulfide-isomerase	Protein folding
107	C0NE1	Fumarylacetoacetase	Aromatic amino acid family metabolic process
108	C0NIW4	Cobalamin-independent methionine synthase	Methionine biosynthetic process

(Continued on following page)
Accession no.	Identification Function
109	CONKL7 Peptidyl-prolyl cis-trans isomerase Leucine biosynthetic process
110	CONNC2b Aminopeptidase Metallopeptidase activity
111	COP0D5 Aminopeptidase Metallopeptidase activity
112	CONND5 Thioredoxin Protein disulfide oxidoreductase activity
113	CONJC3 Adenosylhomocysteinate Adenosylhomocysteinate activity
114	CONQ08 Saccharopine dehydrogenase (NAD\(^+\), \(\alpha\)-lysine forming) Activity
115	CONRP4 Peptidyl-prolyl cis-trans isomerase Peptidyl-prolyl cis-trans isomerase activity
116	CONS19 Carboxypeptidase Serine-type carboxypeptidase activity
117	CONSN4 Elongation factor 2 GTP binding, GTPase activity
118	CONSU0 Serine/threonine phosphatase Hydrolase activity
119	CONT48b A-pheromone-processing metalloproteinase Ste23 Catalytic activity, metal ion binding
120	CONUD2 Phosphoprotein phosphatase A Binding
121	CONNE2 3-Isopropylmalate dehydratase Leucine biosynthetic process
122	CONVD3 Kynureninase Hydrolyase activity
123	CONVD9b Eukaryotic translation initiation factor 3 subunit L Eukaryotic translation initiation factor 3 complex
124	CONBB3 Peptidyl-prolyl cis-trans isomerase Seryl-tRNA synthetase Aminoacyl-tRNA ligase activity
125	CONE91 Seryl-tRNA synthetase Aminoacyl-tRNA ligase activity
126	CONJ54 Elongation factor Tu Translational elongation factor activity during protein biosynthesis
127	CONPC9 Ubiquitin-activating enzyme Small-protein-activating enzyme activity
128	CONVW8 Peptidyl-prolyl cis-trans isomerase Protein folding
129	CONXH6b Ornithine aminotransferase Pyridoxal phosphate binding
130	CONXL8b Argininosuccinase lase Arginine biosynthetic process via ornithine
131	CONZA7 Cytosolic nonspecific dipeptidase Hydrolyase activity
132	CONZE4 d-Tyrosyl-tRNA(Tyr) deacylase Aromatic amino acid family biosynthetic process
133	CONN56 L-Leucine synthase Glutamate-ammonia ligase activity
134	P04911 Elongation factor 1-α Translational elongation factor activity during protein biosynthesis
135	CONAN2 ATP-dependent RNA helicase EIF4A Nucleic acid binding
136	CONZL2 Ketol-acid reductoisomerase Branched-chain amino acid biosynthetic process
137	CONEM8a 3-Isopropylmalate dehydrogenase Leucine biosynthetic process
138	CONX46a Carboxypeptidase Y homolog A Serine-type carboxypeptidase activity
139	CONL66 Isocitrate dehydrogenase, cytoplasmic Aminoacyl-tRNA ligase activity
140	CONJ5ua Saccharopine dehydrogenase Oxidoreductase activity
141	CONBP4a Aromatic amino acid aminotransferase Pyridoxal phosphate binding
142	CONG7y Aspartyl-tRNA synthetase tRNA aminoacylation for protein translation
143	CONLE3 Metalloproteinase MepB Metalloendopeptidase activity
144	CONXZ3 Serine/threonine-protein kinase DCLK1 Protein phosphorylation
145	CONQD6 Phospho-2-dehydro-3-deoxyheptonate aldolase Aromatic amino acid family biosynthetic process
146	CONB7a Calcium/calcimodulin-dependent protein kinase Phosphatase PP1 regulatory subunit sds22 Protein binding
147	CONFN7b α-1,2-Mannosyltransferase Kr6 Transferase activity, transferring phosphorus-containing groups
148	CONV96b Phospho-2-dehydro-3-deoxyheptonate aldolase Aromatic amino acid family biosynthetic process
149	COP028 DUF895 domain-containing protein Transmembrane transporter activity
150	COP096 Plasma membrane ATPase ATP biosynthetic process
151	CONDZ9 Pyridoxine biosynthesis protein PyrO Pyridoxine biosynthesis activity
152	CONDZ7 Probable Xaa-Pro aminopeptidase P Hydrolyase activity
153	CONB22b RNA-binding protein Nucleotide binding
154	CONB64b Short-chain dehydrogenase/reductase Oxidoreductase activity
155	CONBU6 Esterase S-Formylglutathione hydrolase activity
156	CONBV1a Cyclin-dependent protein kinase PhoA Transferase activity, transferring phosphorus-containing groups
157	CONCA6a Serine/threonine-protein phosphatase Hydrolyase activity
158	CONCC8a Phosphatase PP1 regulatory subunit sds22 Protein binding
159	CONQ2 Fumarate reductase flavoprotein subunit Succinate dehydrogenase activity
160	CONE90b Fibrillarin RNA binding
161	CONFD1b Armadillo repeat protein Protein binding
162	CONG75 ATP synthase subunit α ATP binding
163	CONIZ7b Nicotinate-nucleotide pyrophosphorylase (carboxylating) NAD biosynthetic process
164	CONHZ2b Prohibitin DNA synthesis inhibition
165	CONJV2 Aha1 domain family Chaperone binding
166	CONJV7 V-type proton ATPase subunit A Hydrogen ion transmembrane transporter activity

(Continued on following page)
Protein type and hit no.	Accession no.	Identification	Function
167	C0NLZ4	Isochorismatase domain-containing protein	Catalytic activity
168	C0P0E1	NADH-ubiquinone oxidoreductase	ATP synthesis-coupled electron transport
169	C0NP32a	DUF221 domain-containing protein	
170	C0NP52	Cytochrome b-c1 complex subunit Rieske, mitochondrial	Ubiquinol-cytochrome c reductase activity, oxidoreductase activity
171	C0NQQ6a	MYG1 protein	
172	C0NQX6	Alcohol dehydrogenase	Oxidoreductase activity
173	C0NR06b	Adenosine kinase	Adenosine kinase activity
174	C0NRW1	Endonuclease/exonuclease/phosphatase	
175	C0NT49	Cleavage- and polyadenylation-specific factor 5	mRNA binding
176	C0NSJ0	Vacuolar ATP synthase subunit B	ATP hydrolysis-coupled proton transport
177	C0NTN5	Nucleoside diphosphate kinase	Nucleoside diphosphate kinase activity
178	C0NUW2	Hydroxymethylglutaryl-CoA synthase	Hydroxymethylglutaryl-CoA synthase activity
179	C0NVG5	Sterigmatocystin 8-O-methyltransferase	O-Methyltransferase activity
180	C0NB0	Enolase	Phosphoenolpyruvate hydratase activity
181	C0NF22b	Oxidoreductase	Oxidoreductase activity
182	C0NLK3b	Glutathione-dependent formaldehyde dehydrogenase	
183	C0NSW3	Aldehyde dehydrogenase	
184	C0NTQ2	CRAL/TRIO domain-containing protein	
185	C0NH0	2-Methylcitrate dehydratase	2-Methylcitrate dehydratase activity
186	C0NX78	Phosphoribosylformylglycinamidine cyclo-ligase	Purine nucleobase biosynthetic process
187	C0NYQ7a	Xanthine phosphoribosyltransferase	Nucleoside metabolic process
188	C0NZ16a	FAD-dependent oxidoreductase superfamily	Oxidoreductase activity
189	C0NZ33	Choline sulfatase	Sulfuric ester hydrolase activity
190	C0P037b	NAD^{+}-dependent betaine aldehyde dehydrogenase	Oxidoreductase activity
191	C0P0C5	ATP synthase subunit β	ATP binding
192	C0P0H6	3-Methylcrotonyl-CoA carboxylase	Biotin carboxylase activity
193	C0NTZ5	RNA-binding protein Snd1	Transcription cofactor activity
194	C0N02	Transketolase	Transketolase activity
195	C0P141	Allergen Asp4	Allergen
196	C0NCZ4	Carnitine acetyltransferase	Transferase activity, transferring acyl groups
197	C0NP90	Alkaline phosphatase	Phosphatase activity
198	C0NB7	Alkaline phosphatase	Phosphatase activity
199	C0P0T3b	NADH-ubiquinone oxidoreductase	
200	C0NTA4	Farnesyl-pyrophosphate synthetase	Isoprenoid biosynthetic process
201	C0NN26	Calnexin	Calcium ion binding
202	C0NUH0	KH domain RNA-binding protein	Nucleic acid binding
203	C0NC54	ATP synthase subunit gamma	ATP synthesis-coupled proton transport
204	C0NH9b	Amidohydrolase	Nitrogen compound metabolic process
205	C0NZ24a	2-Nitropropane dioxygenase	Nitrate monoxygenase activity
206	C0NC22a	Pyridoxine kinase	Pyridoxal kinase activity
207	C0NKA1	Vacuolar ATP synthase subunit C	ATP hydrolysis-coupled proton transport
208	C0NQK3	Adenylosuccinate lyase	Purine ribonucleotide biosynthetic process
209	C0NTY6b	Serine/threonine-protein phosphatase	Hydrolase activity
210	C0NW72a	RNase T2-like protein	RNase T2 activity
211	C0NCF6	NADP-dependent mannitol dehydrogenase	Oxidoreductase activity
212	C0NA3	DUF757 domain-containing protein	
213	C0NK86b	DUF255 domain-containing protein	Catalytic activity
214	C0NF8b	Ribonucleotide reductase M2 B	Deoxyribonucleoside diphosphate metabolic process
215	C0NP11	Golgi apyrase	Hydrolase activity
216	C0NZS2	MOAT family protein	
217	C0NMY3	Ubiquitin	Protein binding
218	C0NBS0a	Indoleamine 2,3-dioxigenase	Heme binding
219	C0NZM7	S import receptor	Intracellular protein transport

Putative uncharacterized proteins

Protein type and hit no.	Accession no.	Identification	Function
220	C0NB0a	Putative uncharacterized protein	
221	C0NA95	Putative uncharacterized protein	
222	C0NBS0a	Putative uncharacterized protein	
223	C0NUB2	Putative uncharacterized protein	
224	C0NVK4	Putative uncharacterized protein	
225	C0NA87b	Putative uncharacterized protein	
Fungal extracellular vesicle orthologues. To understand whether or not 6B7 and 7B6 MAb treatments would differentially affect conserved functions, we additionally compared *H. capsulatum* extracellular vesicle proteins with orthologous proteins carried by vesicles from *P. brasiliensis*, *C. neoformans*, *Saccharomyces cerevisiae*, and *C. albicans* (Fig. 6). We assumed that the more conserved the functions is, the more

Protein type and hit no.	Accession no.	Identification	Function
226	C0NH90	Putative uncharacterized protein	Catalytic activity
227	C0NF7	Putative uncharacterized protein	Endo-DNase activity, producing 5’-phosphomonoesters
228	C0NS9	Putative uncharacterized protein	Protein binding
229	C0NJ6D	Putative uncharacterized protein	Protein binding
230	C0P165	Putative uncharacterized protein	Protein binding
231	C0NK6S	Putative uncharacterized protein	Endo-DNase activity, producing 5’-phosphomonoesters
232	C0NLZ9	Putative uncharacterized protein	Endocytosis
233	C0NG6S	Putative uncharacterized protein	Protein binding
234	C0NNW9S	Putative uncharacterized protein	Protein binding
235	C0NQ22	Putative uncharacterized protein	Transport
236	C0QA6	Putative uncharacterized protein	Structural constituent of ribosome
237	C0QQ6	Putative uncharacterized protein	Carbohydrate metabolic process
238	C0QA6	Putative uncharacterized protein	Nucleic acid binding
239	C0P1A8	Putative uncharacterized protein	Protein binding
240	C0NQ33	Putative uncharacterized protein	Protein binding
241	C0Q51S	Putative uncharacterized protein	Transport
242	C0NF6	Putative uncharacterized protein	Structural constituent of ribosome
243	C0NST1	Putative uncharacterized protein	Carbohydrate metabolic process
244	C0NUK9	Putative uncharacterized protein	Nucleic acid binding
245	C0NTJ9	Putative uncharacterized protein	Protein binding
246	C0P1A8	Putative uncharacterized protein	Structural constituent of ribosome
247	C0P1C6	Putative uncharacterized protein	Carbohydrate metabolic process
248	C0ND33	Putative uncharacterized protein	Nucleic acid binding
249	C0NS2	Putative uncharacterized protein	Protein binding
250	C0NW09	Putative uncharacterized protein	Protein binding

*Protein found in the *H. capsulatum* vesicles only after treatment of *H. capsulatum* with MAb 6B7.

*Protein found in the *H. capsulatum* vesicles only after treatment of *H. capsulatum* with MAb 7B6.

CoA, coenzyme A.

ER, endoplasmic reticulum.

FAD, flavin adenine dinucleotide.

FIG 4 Differentially abundant proteins in vesicles isolated from *H. capsulatum* yeast cells incubated with MAb 687 or 786 compared to those in vesicles isolated from untreated yeast cells.
FIG 5 Ranking of differentially abundant proteins in extracellular vesicles after treatment of *H. capsulatum* yeast cells with MAb 6B7 or 7B6.
commonly would protein orthologues related to these functions be found in more different species. The network layout was according to proteins commonly found in different species, with each subnetwork containing only proteins shared by common species (represented by yellow diamonds). Each rectangle represents a protein orthologue and is colored according to its differential abundance in vesicles released by cells treated with different MAbs. A total of 11 common protein orthologues were found in all of the species analyzed, and most of them were upregulated after treatment with MAb 7B6 (Fig. 6). Comparison of the etiologic agents of pulmonary fungal infections (H. capsulatum, P. brasiliensis, and C. neoformans) showed that 48 proteins were common to all three of these fungal species (see subnetworks of all species; H. capsulatum, P. brasiliensis, S. cerevisiae, and C. neoformans; and H. capsulatum, P. brasiliensis, and C. neoformans) (Fig. 6). In this case again, the protein orthologues common to the pulmonary pathogen species were differentially abundant in extracellular vesicles derived from cells treated with MAbs 6B7 and 7B6, reinforcing the idea that these antibodies differentially regulate conserved fungal pathways although they bear the same epitope.

DISCUSSION

We previously demonstrated that opsonization of H. capsulatum cells with Hsp60-binding MAbs 6B7 (IgG1, protective antibody) and 7B6 (IgG2b, nonprotective antibody) significantly altered their phagocytosis rate and survival within macrophages, as well as modified the course of infection in a murine disease model (9). In the present work, we observed that treatment of H. capsulatum cells with these MAbs also changed the size of the extracellular vesicles produced by the fungus. This study builds upon our prior description of extracellular vesicle production by H. capsulatum (15) and the information regarding vesicle production by other fungi by demonstrating that treatment with different MAbs significantly alters the size and content of these biologically important vesicles. Hence, this is a new role for antibodies in fungal pathobiology. Furthermore, the finding adds another dimension to the observation that some antibodies can have direct effects on the physiology of microbes (21, 22).

Fungal cells produce a heterogeneous population of extracellular vesicles that vary notably in size and content (23). Our analysis of the protein contents of vesicles isolated from H. capsulatum cells treated with or without MAb 6B7 or 7B6 reveals that MAb exposure significantly increases the protein loading of vesicles. Treated vesicles are larger and contain more proteins than untreated control vesicles. Thus, opsonization with these MAbs appears to change the quality and quantity of vesicle cargo loading.

The binding of MAbs to the surface of a microorganism can modify the complex relationship between a host and a pathogen (9). Interestingly, our results reveal that treatment of H. capsulatum with MAbs 6B7 or 7B6 results in differences in the activities of phosphatase, laccase, and catalase in vesicles, suggesting that these antibodies modulate the production, trafficking, and release into the extracellular space of important fungal virulence factors. The alteration of several proteins concomitantly is important, as modification of single proteins may not significantly impact pathogenicity. For example, the loss of the catalase CatB has no deleterious effect on Histoplasma virulence in vivo or in vitro (23), indicating that several enzymes are involved in the protection of the fungus from reactive oxygen species. Laccase catalyzes melanin synthesis, and the resultant pigment protects the fungal cells from oxidative stress, as well as from phagocytosis by macrophages. The reduction of laccase activity in vesicles from yeast cells treated with MAb 6B7 is an example of a specific factor whose presence is required for virulence, as best demonstrated in C. neoformans (24, 25), where smaller alterations in activity may translate to significant biological differences.

Figure Legend Continued

in relation to vesicles isolated from untreated control yeast cells. (A) Global profile of proteins present in vesicles after treatment with MAb 6B7 or 7B6 in relation to untreated control vesicles. Red, upregulated proteins; green, downregulated proteins. (B, C) Proteins down- or upregulated after treatment with MAb 6B7 (B) or 7B6 (C). (D) Comparison of regulated proteins in vesicles isolated from yeast cells treated with MAb 7B6 or 6B7. U.A., UniProt accession number; U.F. (unknown function), nonabundant proteins.
Proteomic analysis of the extracellular vesicles revealed a large and complex composition of proteins with diverse biological functions such as cell growth and signaling; protein, lipid, and sugar metabolism; cell wall architecture; the endocytic route; and antioxidant proteins. Interestingly, in contrast to the enzymatic assays, the proteomic analysis did not show differences in phosphatase, laccase, or catalase between the groups examined. This discrepancy could be impacted by several factors, such as (i) low sensitivity in the measurement of all cargo proteins, (ii) the possibility that the proteins identified are only a small fraction of the total proteins found in the vesicles, and (iii) an effect of antibody treatment (11, 17). As described by Albuquerque et al. (15) and Holbrook et al. (26), our data also show the presence of extracellular proteins involved in cell wall assembly (e.g., 1,3-β-glucanosyltransferase), and changes in the membrane environment could be involved in the reduction of enzymatic activity. In addition, there were also changes in the antioxidant proteins (e.g., a thiol-specific antioxidant protein) and chaperone and nucleus-associated proteins such as Hsp70 (15, 27).

The abundance of the same set of proteins in the vesicles was differentially modified, depending upon the MAb used to treat the cells, indicating that these MAbs specifically change the total proteins and their profile of abundance in the extracellular vesicles. Under all of the conditions evaluated, amino acids/proteins involved in metabolism were the most abundant proteins in the vesicles, suggesting that the MAbs profoundly impact the metabolism and transport of proteins (28). However, some protein changes were detected only upon treatment with one isotype of MAB, suggesting specific alterations in fungal physiology. For instance, levels of saccharopine dehydrogenase and oxysterol-binding protein were modified only upon MAb 6B7 treatment. The former protein is involved in lysine metabolism and was found to be sensitive to decreasing iron levels (29). This modulation of metabolism might be

FIG 6 Analysis of orthologous proteins found in different fungal extracellular vesicles. Each subnetwork is rooted by the common species upon which the orthologous proteins were identified, represented by the yellow diamonds. Each subnetwork contains only proteins exclusively common to those species. The colors of the orthologous proteins (rectangles) represent differential abundances in extracellular vesicles treated with MAB 7B6 or 6B7. The orthologous proteins in gray were below the limit of quantification (LOQ).
advantageous for the survival of *H. capsulatum* cells in a nutritionally restricted environment such as the immune cell milieu (29). The latter, oxysterol-binding, protein plays a role in ergosterol synthesis, potentially impacting antifungal targets and membrane stability (30). In addition, downregulation of β-glucan proteins (such as 1,3-β-glucanosyltransferase) after MAB 6B7 treatment indicates modification of the synthesis of β-glucan, a structural constituent of the fungal cell wall and a target for host immune system cells (19). Indeed, changes in the profile of abundance of proteins related to protein metabolism and sterol and β-glucan synthesis suggests important modifications of the *H. capsulatum* cell wall upon MAB 6B7 treatment. Thus, these alterations may impact fungal virulence, the immune response, and treatment with antifungal agents that target sterol (1, 19).

Treatment with disease-enhancing MAb 7B6 induced more alterations in the magnitude of protein abundance than did treatment with protective MAb 6B7. Increases in the abundance of sugar metabolism proteins that were upregulated (such as malate dehydrogenase and aconitase) suggests that opsonization with MAb 7B6 enhances energy acquisition. This change was accompanied by an increase in the abundance of amino acid/proteins involved in metabolism that were upregulated, which is consistent with augmentation of protein metabolism. In addition, the increased abundance of cytoskeleton protein/motility-associated proteins indicates that opsonization with MAb 7B6 also enhances intracellular motility. Thus, the interaction of MAB 7B6 with cell surface Hsp60 may lead to a protective adaptation of fungal cells to stress responses and consequently change the loading of proteins in the secreted vesicles, enhancing cellular resistance to host defenses (9, 19).

The fungal species analyzed are from the phylum *Ascomycota*, and orthologue analyses demonstrate that they release common extracellular components to deliver diverse macromolecules to the extracellular space (13, 22). Heat shock proteins, the most highly evolutionarily conserved proteins, were found to be upregulated in all of the fungal species tested and in *H. capsulatum* vesicles after treatment with MAB 7B6. Heat shock proteins are generally produced in response to challenging conditions (e.g., high temperature, oxidative stress, radiation, and inflammation). The binding of MAB 7B6 to *H. capsulatum* appears to induce a stress situation in the yeast that may prime it for more effective survival of host-pathogen interactions. As previously shown, the proteins in *H. capsulatum* vesicles had many similarities to proteins identified in vesicles of *Saccharomyces cerevisiae* (15, 31) and treatment with MAbs 6B7 and 7B6 did not change the profile of the similar proteins, suggesting that regulation of the concentrations of many of these orthologous proteins may not be essential for survival in vivo. Interestingly among the etiologic agents of pulmonary infections, *H. capsulatum* had more proteins in common with *P. brasiliensis* than *C. neoformans*, suggesting that these endemic fungi share more characteristics than dimorphism, an infection route, and the capacity to cause disease in immunocompetent individuals.

In conclusion, our results reveal that treatment with MAbs 6B7 and 7B6 changes vesicle size and increases the protein loading of the vesicles. We found that urease, phosphatase, laccase, and catalase were present in vesicles isolated from yeast cells grown with or without these MAbs, confirming that *H. capsulatum* vesicles are involved in the delivery of virulence factors to the extracellular space and demonstrating that binding by MAbs can modify the quantity of biologically relevant proteins in vesicles. This finding is clearly in line with prior studies of *C. neoformans* showing that antibody binding can directly impact gene regulation and fungal metabolism (21, 32). Finally, analysis of orthologous proteins showed that different ascomycetes produce similar structures in extracellular supernatants with similar proteins in their milieu, corroborating the idea that vesicles are important effectors involved in the communication between intra- and extracellular spaces. Hence, further studies of modified vesicle production and function in the setting of antibodies may provide insights into novel approaches to modifying the pathobiology of these potentially lethal pathogens.
MAb Treatment Alters *H. capsulatum*-Released Vesicles

MATERIALS AND METHODS

Strain and media. *H. capsulatum* strain ATCC G2178 was cultivated in Ham’s F12 medium (supplemented with glucose [18.2 g/liter], glutamic acid [1 g/liter], HEPES [6 g/liter], cysteine [8.4 mg/liter], and a penicillin-streptomycin solution [1%] at 37°C in a rotary shaker (150 rpm) for 7 days (33)).

MAb production. The generation of MAbs in ascites fluid was approved by the Albert Einstein College of Medicine Institutional Animal Care and Use Committee. Briefly, IgG1 (6B7) and IgG2b (7B6) MAbs were produced by injecting 10⁷ hybridoma cells into the peritoneal cavities of ex-breeder BALB/c female mice (National Cancer Institute) that had previously been primed with Pristane (Sigma-Aldrich). The concentration of MAbs in the ascites fluid was determined by enzyme-linked immunosorbent assay with IgG1 and IgG2b standards at known concentrations (34). The same procedures were performed to generate MAB 12D3 (IgG2a), which binds a different region of *H. capsulatum* Hsp60 (8) and was used as a positive control in the proteomic analyses.

Vesicle purification. Vesicles were purified according to the protocol described by Rodrigues et al. (35), with minor modifications. *H. capsulatum* yeast cells (2.5 × 10⁶/ml in a volume of 30 ml) were incubated with MAbs 6B7, 7B6, or 12D3 at 6 μg/ml. To maintain the log phase, 10 ml of fresh medium was added to the cells every 48 h (final volume of 50 ml). After 7 days of growth, the yeast cells were removed by centrifugation at 3,000 rpm for 10 min at 4°C and then filtered with a 0.45-μm-pore-size filter (17). Cell-free supernatant was concentrated in an Amicon ultrafiltration system with a membrane with a 100-kDa cutoff. After filtration, the membrane was washed with filtered phosphate-buffered saline (PBS) to collect any remaining vesicles on the membrane surface. The collected vesicles were further centrifuged at 152,813 × g (60,000 rpm, with a TLA 100.3 rotor in a Beckman Coulter ultracentrifuge) for 1 h at 4°C. The supernatant was removed, and the pellets were suspended in 0.1 ml of filtered PBS, combined, and submitted to repeat ultracentrifugation. For proteomic analysis, the pellets were used, whereas vesicles were suspended in 0.5 ml of filtered PBS containing protease inhibitor cocktail (Roche) for DLS analysis, quantification, and enzymatic activity determination. All experiments were performed in duplicate.

Analysis of extracellular vesicle size by DLS. The size distributions of extracellular vesicles suspended in PBS supplemented with a protein inhibitor cocktail (Roche) were measured by quasielastic light scattering in a 90Plus/Bi-MAS multianalyte particle sizing analyzer (Brookhaven Instruments). In solution, vesicles undergo Brownian motion that, after illumination by monochromatic laser, produces light scattering fluctuations (i.e., DLS) that provide information about size distribution (17). All experiments were performed in duplicate.

Protein and sterol quantification. Protein quantification was performed with Bradford reagent (Bio-Rad, Richmond, CA) by NanoDrop technology (ND-1000 spectrophotometer; Thermo Scientific). Sterol quantification was performed with an Amplex Red kit (Life Technologies).

Enzyme activity. To detect urease, phosphatase, and laccase activities in the vesicles, Vesicle suspension volumes of 30 μl with a protein concentration of 10 μg/ml were aliquoted to a 96-well plate (17). One hundred microliters of each enzyme reaction solution was added, and plates were stored at 37°C while protected from the light for 16 h and then read with a spectrophotometer (BioTek). Urease activity was evaluated with an enzyme reaction mixture containing 1% peptone, 0.1% dextrose, 0.5% NaCl, 0.2% KH₂PO₄, 2% urea, and 0.0012% phenol red. The plate was read at 540 nm. To evaluate phosphatase activity, the reaction buffer was prepared with p-nitrophenylphosphate at 1 mg/ml of 100 mM sodium acetate solution. The reaction was read at 405 nm. For laccase evaluation, the solution was prepared with 12.5 mM of L-3,4-dihydroxyphenylalanine in PBS and the plates were read at 450 nm. Finally, catalase activity (with a protein concentration of 10 μg/ml) was evaluated with a catalase assay kit (Cayman Chemical).

Sample preparation for proteomic analysis. *H. capsulatum* extracellular vesicle pellets, prepared in biological replicates, were suspended in 100 μl of 50 mM NH₄HCO₃ containing 5 mM dithiothreitol (DTT) and 8 M urea and incubated for 15 min at 37°C in order to reduce disulfide bonds. Free thiol groups were alkylated by adding iodoacetamide (IAA) to a final concentration of 10 mM and incubating the mixture for 30 min at room temperature. DTT was added to a final concentration of 20 mM to terminate the reaction. Samples were then diluted 8-fold with 50 mM NH₄HCO₃, and CaCl₂ was added to a final concentration of 1 mM. Proteins were digested overnight at 37°C with 2 μg of trypsin. Reagents and salts were removed from the samples with solid-phase extraction C₁₈ spin columns (Ultracisor spin columns, C₁₈ 3- to 30-μg capacity; Nest Group). Briefly, 100 μl of each solution was loaded and the column was washed twice with 100% methanol and then washed twice with 0.1% trifluoroacetic acid (TFA). Samples were then loaded and washed four times with 5% acetonitrile (ACN) containing 0.1% TFA before elution with 80% ACN–0.1% TFA. The resulting peptides were dried in a vacuum centrifuge and suspended in a 0.1% formic acid (FA) solution for liquid chromatography-tandem mass spectrometry (MS) analysis.

Global quantitative proteomic analysis. Peptides were loaded into a C₁₈ trap column (200 μm by 0.5 mm, ChromXP C₁₈-CL, 3 μm, 120 Å; Eksigent), and separation was carried out in a capillary C₁₈ column (75 μm by 15 cm, ChromXP C₁₈-CL, 3 μm, 120 Å) connected to a nanoHPLC system (Ekspert nanoLC 400; Eksigent). Elution was performed with the following gradient: 1 min in 5% solvent B (solvent A, 0.1% FA; solvent B, 80% ACN–0.1% FA), 5 to 35% solvent B in 60 min, 35 to 80% solvent B in 1 min, 6 min in 80% solvent B, 80 to 5% solvent B in 1 min, and holding at 5% solvent B for 11 min. The flow rate was constant at 200 nl/min over the whole gradient. Eluting peptides were directly analyzed in an electrospray ionization mass spectrometer (5600 TripleTOF; AB Sciex). Full MS spectra were collected in a range of 400 to 2,000 m/z, and the 50 most intense parent ions were submitted for fragmentation for 50 ms with rolling-collision energy.
Peptides were identified by searching tandem mass spectra against a sequence database containing the H. capsulatum complete proteome set from the UniProt Knowledge Base and common contaminant sequences (9,465 total sequences) with the Paragon tool of the Protein Pilot software (AB Sciex). For database searches, trypsin digestion, cysteine residue alkylation with IAA, and biological modifications were considered as factors. Peptides were filtered with a confidence score of >95, which resulted in a false-discovery rate (FDR) of <2% at the protein level on the basis of the reserve sequence database approach.

Peptide and protein quantification was done by extracting peak areas of identified peptides with Skyline (Maclean). For differential-expression (DE) analysis, we used the hierarchical Bayesian model proposed by Wei and Li (36) with the mapDIA software (http://mapdia.sourceforge.net). More importantly, mapDIA allows the analysis of repeated measurements in quantitative proteomic data analysis, such as intensity data from multiple peptides within a protein or transition intensity data acquired from data-independent acquisition MS. We used the peptide isotopic intensity data (M, M + 1, M + 2) as repeated measures of peptide abundance in mapDIA. In the model, two possible probability models of intensity data are proposed for each compound, namely, a DE model and a non-DE model, and the posterior probability of DE is calculated and these scores are used to derive the FDRs for the selection of DE proteins (37).

Statistical analyses. Statistical analyses were performed by one-way analysis of variance or the Newman-Keuls multiple-comparison test with GraphPad Prism software, depending on the data.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/mSphere.00085-15. Table S1, DOCX file, 0.01 MB. Table S2, XLSX file, 1.2 MB. Table S3, XLSX file, 0.2 MB. Table S4, XLSX file, 0.1 MB. Table S5, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS

L.M.B. was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) process no. 3226-13-1. J.D.N. and A.C. are partially supported by NIH 3R37AI033142-21S1. This work, including the efforts of Ludmila Matos Baltazar et al., was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (3226-13-1). J.D.N. and A.C. are partially supported by NIH 3R37AI033142-21S1. This work, including the efforts of Ernesto S. Nakayasu, was funded by HHS | National Institutes of Health (NIH) (R21 AI124797-01). This work, including the efforts of Joshua D. Nosanchuk, was funded by HHS | National Institutes of Health (NIH) (3R37AI033142-21S1). This work, including the efforts of Ludmila Matos Baltazar et al., was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (3226-13-1).

REFERENCES

1. Edwards JA, Rappleye CA. 2011. Histoplasma mechanisms of pathogenesis—one portfolio doesn’t fit all. FEMS Microbiol Lett 324:1–9. http://dx.doi.org/10.1111/j.1574-6968.2011.02363.x.
2. Knox KS, Hage CA. 2010. Histoplasmosis. Proc Am Thorac Soc 7:169–172. http://dx.doi.org/10.1513/pats.200907-069AL.
3. Wheat LJ. 2006. Histoplasmosis: a review for clinicians from non-endemic areas. Mycoses 49:274–282. http://dx.doi.org/10.1111/j.1439-0009.2006.01253.x.
4. Guimarães AJ, Nosanchuk JD, Zancopé-Oliveira RM. 2006. Diagnosis of histoplasmosis. Braz J Microbiol 37:1–13.
5. Allendoerfer R, Deepe GS, Jr. 1998. Infection with Histoplasma capsulatum: host-fungus interface. Rev Iberoam Micol 15:256–260.
6. Kauffman CA. 2007. Histoplasmosis: a clinical and laboratory update. Clin Microbiol Rev 20:115–132. http://dx.doi.org/10.1128/CMR.00027-06.
7. Mihu MR, Nosanchuk JD. 2012. Histoplasma virulence and host responses. Int J Microbiol 2012:268123. http://dx.doi.org/10.1155/2012/268123.
8. Guimarães AJ, Frases S, Pontes B, de Cerqueira MD, Rodrigues ML, Viana NB, Nimrichter L, Nosanchuk JD. 2011. Agglutination of Histoplasma capsulatum by IgG monoclonal antibodies against Hsp60 impacts macrophage effector functions. Infect Immun 79:918–927. http://dx.doi.org/10.1128/IAI.00673-10.
9. Guimarães AJ, Frases S, Gomez FJ, Zancopé-Oliveira RM, Nosanchuk JD. 2009. Monoclonal antibodies to heat shock protein 60 alter the pathogenesis of Histoplasma capsulatum. Infect Immun 77:1357–1367. http://dx.doi.org/10.1128/IAI.01443-08.
10. Nosanchuk JD, Steenbergen JN, Shi L, Deepe GS, Jr., Casadevall A. 2003. Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum. J Clin Invest 112:1164–1175. http://dx.doi.org/10.1172/JCI19361.
11. Rodrigues ML, Nimrichter L, Oliveira DL, Nosanchuk JD, Casadevall A. 2008. Vescicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules? Lipid Insights 2:7–40.
12. Gehrmann U, Qazi KR, Johansson C, Hultenby K, Karlsson M, Lundeborg L, Gabrielson S, Scheynius A. 2011. Nanostructures from Malassezia sympodialis and host exosomes induce cytokine responses—novel mechanisms for host-microbe interactions in atopic eczema. PLoS One 6:e21480. http://dx.doi.org/10.1371/journal.pone.0021480.
13. Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, Ganiko
L. Almeida IC, Puccia R. 2012. Vesicle andvesicle-free extracellular proteome of Paracoccidioides brasiliensis: a comparative analysis with other pathogenic fungi. J Proteome Res 11:1676–1685. http://dx.doi.org/10.1021/pr200872s.

14. Vargas G, Rocha JD, Oliveira DL, Albuquerque PC, Frases S, Santos SS, Nosanchuk JD, Gomes AM, Medeiros LC, Miranda K, Sobreira TJ, Nakayasu ES, Arlig EA, Casadevall A, Guimarães AJ, Rodrigues ML, Freire-de-Lima CG, Almeida IC, Nimrichter L. 2015. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol 17:389–407. http://dx.doi.org/10.1111/cmi.12374.

15. Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A, Zancopé-Oliveira RM, Almeida IC, Nosanchuk JD. 2008. Vesicular transport in Histoplasma capsulatum: an effective mechanism for transcell wall transfer of proteins and lipids in ascomycetes. Cell Microbiol 10:1695–1710. http://dx.doi.org/10.1111/j.1462-5822.2008.01160.x.

16. Silva BM, Prados-Rosas R, Espadas-Moreno J, Wolf JM, Luque-Garcia JL, Gonça vesicles. Med Mycol 52:202–210. http://dx.doi.org/10.1093/mmy/myt003.

17. Wolf JM, Espadas-Moreno J, Luque-Garcia JL, Casadevall A. 2014. Interaction of Cryptococcus neoformans extracellular vesicles with the cell wall. Eukaryot Cell 13:1484–1493. http://dx.doi.org/10.1128/EC.00111-14.

18. Peres da Silva R, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, César GV, Nimrichter L, Goldenberg S, Alves LR. 2015. Extracellular vesicle-mediated export of fungal RNA. Sci Rep 5:7763. http://dx.doi.org/10.1038/srep07763.

19. Guimarães AJ, de Cerqueira MD, Nosanchuk JD. 2011. Surface architecture of Histoplasma capsulatum. Front Microbiol 2:225. http://dx.doi.org/10.3389/fmicb.2011.00225.

20. Freitas-Mesquita AL, Meyer-Fernandes JR. 2014. Biochemical properties and possible roles of ectophosphatase activities in fungi. Int J Mol Sci 15:2289–2304. http://dx.doi.org/10.3390/ijms15022889.

21. McClelland EE, Nicola AM, Prados-Rosas R, Casadevall A. 2010. Antibinding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 120:1355–1361. http://dx.doi.org/10.1172/JCI38322.

22. Casadevall A, Nosanchuk JD, Williamson P, Rodrigues ML. 2009. Vesicular transport across the fungal cell wall. Trends Microbiol 17:158–162. http://dx.doi.org/10.1016/j.tim.2008.12.005.

23. Holbrook ED, Smolnicky KA, Youseff BH, Rappeleye CA. 2013. Redundant catalases detoxify phagocyte reactive oxygen and facilitate Histoplasma capsulatum pathogenesis. Infect Immun 81:2334–2346. http://dx.doi.org/10.1128/IAI.00173-13.

24. Kwon-Chung KJ, Polacheck I, Popkin TJ. 1982. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 150:1414–1421.

25. Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. 1996. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386. http://dx.doi.org/10.1084/jem.184.2.377.

26. Holbrook ED, Edwards JA, Youseff BH, Rappeleye CA. 2011. Definition of the extracellular proteome of pathogenic-phase Histoplasma capsulatum. J Proteome Res 10:1929–1943. http://dx.doi.org/10.1021/pr1011697.

27. Wang PY, Liu P, Weng J, Sontag E, Anderson RG. 2003. A cholesterol-regulated PP2A/HePTP complex with dual specificity ERK1/2 phosphatase activity. EMBO J 22:2658–2667. http://dx.doi.org/10.1093/emboj/cdf255.

28. Rodrigues ML, Franzen AJ, Nimrichter L, Miranda K. 2013. Vesicular mechanisms of traffic of fungal molecules to the extracellular space. Curr Opin Microbiol 16:414–420. http://dx.doi.org/10.1016/j.mib.2013.04.002.

29. Winters MS, Spellman DS, Chan Q, Gomez FJ, Hernandez M, Catron B, Smulian AG, Neubert TA, Deepe GS, Jr. 2008. Histoplasma capsulatum proteome response to decreased iron availability. Proteome Sci 6:36. http://dx.doi.org/10.1186/1477-5956-6-36.

30. Beh CT, McMaster CR, Kozinszki KG, Menon AK. 2012. A detergent for yeast oyster binding proteins. J Biol Chem 287:11481–11488. http://dx.doi.org/10.1074/jbc.R111.338400.

31. Oliveira DL, Nakayasu ES, Joffe LS, Guimarães AJ, Sobreira TJ, Nosanchuk JD, Cordero RJ, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML. 2010. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 5:e11113. http://dx.doi.org/10.1371/journal.pone.0011113.

32. McClelland EE, Casadevall A. 2012. Strain-related differences in antibody-mediated changes in gene expression are associated with differences in capsule and location of binding. Fungal Genet Biol 49:227–234. http://dx.doi.org/10.1016/j.fgb.2012.01.006.

33. Allendoerfer R, Biovin GP, Deepe GS, Jr. 1997. Modulation of immune responses in murine pulmonary histoplasmosis. J Infect Dis 175:905–914. http://dx.doi.org/10.1086/513989.

34. Yuan R, Casadevall A, Spira G, Scharf MD. 1995. Isotype switching from IgG3 to IgG1 converts a nonprotective murine antibody to Cryptococcus neoformans into a protective antibody. J Immunol 154:1810–1816.

35. Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell 6:48–59. http://dx.doi.org/10.1086/513989.

36. Wei Z, Li H. 2007. Modulation of immune responses in murine pulmonary histoplasmosis. J Infect Dis 175:905–914. http://dx.doi.org/10.1086/513989.

37. Newton MA, Noueiry A, Sarkar D, Ahluquist P. 2004. Detecting differential gene expression with a semiparametric hierarchichal mixture method. Biostatistics 5:155–176. http://dx.doi.org/10.1093/biostatistics/5.2.155.