Regulation of Gonadotropin-Releasing Hormone-(1–5) Signaling Genes by Estradiol Is Age Dependent

Bradley M. Bauman1, Weiling Yin2, Andrea C. Gore2 and T. John Wu1*

1 Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, 2 Division of Pharmacology and Toxicology, Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States

Gonadotropin-releasing hormone (GnRH) is a key regulatory molecule of the hypothalamus–pituitary (PIT)–gonadal (HPG) axis that ultimately leads to the downstream release of estradiol (E2) and progesterone (P). These gonadal steroids feed back to the hypothalamus and PIT to regulate reproductive function and behavior. While GnRH is thought to be the master regulator of reproduction, its metabolic product GnRH-(1–5) is also biologically active. Thimet oligopeptidase 1 (also known as EP24.15) cleaves GnRH to form GnRH-(1–5). GnRH-(1–5) is involved in regulation of the HPG axis, exerting its actions through a pair of orphan G protein-coupled receptors, GPR101 and GPR173. The physiological importance of GnRH-(1–5) signaling has been studied in several contexts, but its potential role during reproductive senescence is poorly understood. We used an ovariectomized (OVX) rat model of reproductive senescence to assess whether and how GnRH-(1–5) signaling genes in hypothalamic subnuclei change in response to aging and/or different estradiol replacement regimens designed to model clinical hormone replacement in women. We found that Gpr101 and Gpr173 mRNA expression was increased with age in the arcuate nucleus, while expression of Gpr173 and EP24.15 increased with age in the medial preoptic area. Treatment with E2 in younger OVX animals increased expression of Gpr101, Gpr173, and EP24.15. However, older animals treated with E2 showed decreased expression of these GnRH-(1–5) signaling genes, displaying an age-related decline in responsiveness to E2. To our knowledge, this is the first study to systematically assess the effects of age and different clinically relevant regimens of E2 replacement on GnRH-(1–5) signaling genes.

Keywords: gonadotropin-releasing hormone, gonadotropin-releasing hormone (1–5), GPR101, GPR173, EP24.15, aging, estradiol

INTRODUCTION

Gonadotropin-releasing hormone (GnRH) is a key regulatory molecule of the hypothalamus–pituitary (PIT)–gonadal (HPG) axis. Neurons in the hypothalamus release GnRH which acts downstream on the PIT to stimulate transcription and secretion of luteinizing hormone (LH) and follicle stimulating hormone (FSH) (1). In turn, LH and FSH stimulate follicular maturation and release of the steroids estradiol (E2) and progesterone (P). These steroids feed back to the HPG axis to maintain homeostatic regulation of reproductive function and behavior. While GnRH is thought to be the master regulator of reproduction, its metabolic product GnRH-(1–5) is also shown to be biologically active. GnRH-(1–5) is produced after thimet oligopeptidase 1 (also known as EP24.15) cleaves the covalent bond linking the fifth and sixth amino

This article was submitted to Experimental Endocrinology, a section of the journal Frontiers in Endocrinology

Received: 13 July 2017
Accepted: 09 October 2017
Published: 27 October 2017

Citation: Bauman BM, Yin W, Gore AC and Wu TJ (2017) Regulation of Gonadotropin-Releasing Hormone-(1–5) Signaling Genes by Estradiol Is Age Dependent. Front. Endocrinol. 8:282. doi: 10.3389/fendo.2017.00282
acids of GnRH (2, 3). GnRH-(1–5), like its parent peptide, is involved in the regulation of the HPG axis. Both GnRH gene expression (4) and secretion (5) are stimulated by GnRH-(1–5). Additionally, the facilitation of lordosis by GnRH is mediated by its metabolism to GnRH-(1–5) (6). However, GnRH-(1–5) binds to alternative receptors than its parent GnRH peptide (6, 7). The actions of GnRH-(1–5) are mediated through a pair of orphan G protein-coupled receptors, GPR101 and GPR173 (8–10). The downstream signaling actions of GnRH-(1–5) occur through traditional G-protein signaling pathways (GPR101) and non-canonical pathways in which β-arrestin 2 is rapidly recruited (GPR173) (8, 11).

It is thought that during aging, changes in the hypothalamic GnRH system, as well as PIT and ovarian processes, are key components that contribute to reproductive senescence (12). The hypothalamic changes include decreased GnRH release and neural activation, as well as diminution of the preovulatory GnRH/LH surge. The subsequent PIT and ovarian changes result in diminished E2 and P secretion and changes in the positive feedback system on GnRH-induced LH surge [reviewed in Ref. (13)]. Additionally, GnRH cleavage enzyme (EP24.15) immunoreactivity within the median eminence where GnRH axons terminate is sensitive to hormonal changes, as its expression decreases from the early proestrous period (high circulating E2 and low LH) to the late proestrous period (low circulating E2 and high LH) (3). It is possible that GnRH-(1–5) may have additional peripheral effects (14). However, whether and how the GnRH-(1–5) signaling pathway changes during reproductive aging within the brain is unknown.

Utilizing a reproductive aging female rat model (15, 16), we sought to determine the impact of age and hormone treatment duration and timing on genes crucial for GnRH-(1–5) signaling, particularly in the medial preoptic area (mPOA) and arcuate nucleus (ARC) of the hypothalamus. The mPOA is of interest as GnRH cell bodies are mainly found here, and it is a major site for the regulation of reproductive function (17–19). The ARC is responsible for regulating the negative feedback response to E2, as well as assisting in generation of the pulsatile release of GnRH (20, 21). Importantly, Gpr101, Gpr173, and EP24.15 are all expressed within these regions (22–24). In addition, gene expression within motor cortex (MC) and PIT were used as comparisons to the hypothalamus. Our goal is to provide mechanistic insights into GnRH and GnRH-(1–5) signaling pathway regulation by E2 deficiency and treatment during reproductive aging.

MATERIALS AND METHODS

Tissue samples assayed in this study were previously generated and utilized for separate publications (15, 16). This study utilized the cDNA generated by these previous publications.

Animals

Female Sprague-Dawley rats (Harlan, Indianapolis, IN, USA) were purchased at 3–4 months [reproductively mature (MAT); virgin] and 10–11 months old [reproductively aging (AG); retired breeder]. Upon arrival, rats were pair housed at random with same-age partners in a controlled room temperature (22°C) and light cycle (12-h light, 12-h dark, lights on at 7 a.m.). Food and water were available ad libitum. All animal experiments were conducted following protocols approved by the Institutional Animal Care and Use Committee at the University of Texas at Austin and in accordance with The Guide for the Care and Use of Experimental Animals.

The animal procedures were previously described (15, 16). Briefly, animals were acclimated to the new housing environment for 1 week prior to 2 weeks of estrous cycle monitoring by vaginal lavage with sterile saline. Females age 3–4 months with regular 4–5 days cycles were used for the MAT group. Females age 10–11 months with regular cycles (50%), irregular estrous cycles (30%), or persistent estrus (20%) were randomly assigned to different treatments for the AG groups (Figure 1). Upon

![Figure 1](https://www.frontiersin.org)
determination of estrous cyclicity, all animals underwent bilateral ovariectomy (OVX) under isoflurane inhalation anesthesia, and each animal was administered a non-steroidal anti-inflammatory drug (Rimadyl; 5 mg/kg) at the beginning of surgery for analgesia. Animals were randomly assigned to one of eight treatment groups (Figure 1, groups 1–8), allowing for the examination of different temporal regimens of hormone treatment (16). Animals within the same cage always received the same treatment.

At the time of surgery, Silastic capsules containing either 100% cholesterol (VEH) or 5% 17β-estradiol/95% cholesterol (E2) were implanted subcutaneously between the shoulder blades. Delivery or VEH followed by E2 for 3 months each (group 8, AG-V3/E3). Animals treated with VEH or E2 for 6 months, respectively (AG-V3 and AG-E3). Groups 5 and 6 consisted of AG animals treated with VEH or E2 for 6 months, respectively (AG-V6 and AG-E6). Groups 7 and 8 consisted of AG animals treated with E2, followed by VEH for 3 months each (group 7, AG-E3/V3) or VEH followed by E2 for 3 months each (group 8, AG-V3/E3).

Tissue Collection

After 3 or 6 months of hormone treatment, animals were euthanized by rapid decapitation between 1 and 3 p.m. (4–6 h before lights off at 7 p.m.). Brains were quickly extracted and briefly cooled on ice. Coronal brain sections (eight total) were taken at −0.26 to −1.80 and ARC (bregma −2.12 to −4.52) (26) were micropunched using a 1.2-mm diameter punch (cat. no. 57399, Stoelting, Wood Dale, IL, USA). As a control (non-hypothalamic) region, MC was punched, using a 1.2-mm diameter punch, from regions related to motor control of the forelimbs and forepaws. The entire PIT was used for extraction of RNA. Total RNA, from all regions and the PIT, was extracted using the RNeasy Mini Kit (cat. no. 74104, Qiagen, Valencia, CA, USA) according to the manufacturer’s protocol. DNase digestion was performed on-column using the RNease-Free DNase Set (cat. no. 79254, Qiagen). RNA was eluted in 30 μL. RNase-free water, and RNA quality and concentration were determined with the Agilent RNA 6000 Nano kit (cat. no. 5067-1511, Agilent Technologies, Santa Clara, CA, USA) on the bioanalyzer. For each region, 200 ng of total RNA was reverse-transcribed to single-stranded cDNA using a high capacity cDNA reverse transcription kit (cat. no. 4374966, Applied Biosystems, Foster City, CA, USA).

The mRNA expression of Gpr101, Gpr173, EP24.15, and the control gene Gapdh was assessed in each region by real-time PCR using the iQ SYBR Green Supermix (cat. no. 1708884, Bio-Rad, Hercules, CA, USA). Additionally, mRNA expression of Gnrh1 and Gnrhr were assessed in the mPOA using the CFX Connect Real-time System (Bio-Rad). Mature adult male rat hypothalamus was included in each assay as an intra- (0.281 ± 0.044%) and interassay (0.601 ± 0.084%) control. The following cycling parameters were used: initial denaturation and enzyme activation at 95°C for 3 min followed by 40 cycles of denaturation (95°C, 15 s), annealing (60°C, 30 s), extension (72°C, 30 s), and reading. Melt curve analysis was conducted after each real-time reaction to demonstrate the presence of a single amplicon. Amplified products were purified using the QiAquick PCR Purification Kit (cat. no. 28104, Qiagen) and verified post-purification by agarose gel analysis and sequenced with the ABI 3500xL Genetic Analyzer (Applied Biosystems). Sequences were verified using NCBI BLAST and comparing sequences to the Reference RNA sequences (refseq_rna) database. Primers specific for Gapdh, Gnrh1, Gnrhr, Gpr101, Gpr173, and EP24.15 are shown in Table 1. Relative expression of each gene was determined using the delta delta CΔt (ΔΔCt) method (27–29),

Gene	Accession number	Primer sequence	Amplicon size (bp)
Gapdh	NM_017008.4	(F) 5′-GTGCACAGCTCTGTTCTCATAG-3′	122
		(R) 5′-CGTGTGATGACAAACATTGC-3′	
Gnrh1	NM_012767.2	(F) 5′-GGCTTTGATACCAACAGAATG-3′	181
		(R) 5′-TGAATCTCCTCTCTGCGCAT-3′	
Gnrhr	NM_031038.3	(F) 5′-TCAAGGAACCACGCAACTAG-3′	182
		(R) 5′-CTGCTCTGGACACCTGTT-3′	
Gpr101	NM_001108258.1	(F) 5′-ATAGCCATCTGAGCTTCCGC-3′	167
		(R) 5′-CGGTGCCATGAGATGAAAGC-3′	
Gpr173	NM_022255.1	(F) 5′-CAGATGATGTCTGCACGGCAAAGA-3′	119
		(R) 5′-GACAAACACACTGACAGTTG-3′	
EP24.15	NM_172075.2	(F) 5′-GTGAACCTGAGGGTGCGTG-3′	142
		(R) 5′-TGATCTCTCTGTTCTGTC-3′	
normalizing each sample to Gapdh. In a previous publication
(15), additional brain regions from these animals were analyzed
and Gapdh was used as the housekeeping gene. In both that study
and the current study, there were no effects of age or E2 treatment
on the expression of Gapdh. Therefore, Gapdh was determined to
be a valid normalizing gene. All data were expressed relative to
the mature, vehicle-treated group (MAT-V3; Figure 1). For each
group, cDNA for up to seven animals was analyzed, and deviation
from this number in each figure is the result of lack of expression,
exhaustion of samples, or the removal of outliers after analysis via
Grubb’s test.

Statistical Analyses

Statistical analyses were conducted using GraphPad Prism 6 soft-
ware (GraphPad Software, Inc., La Jolla, CA, USA). Differential
tissue expression of Gpr101, Gpr173, and EP24.15 was compared
using a one-way ANOVA followed by a Bonferroni post hoc
test. Based on the study design (Figure 1), three different sets of
comparisons were performed: (1) The effects of age (MAT vs. AG)
and hormone (VEH vs. E2) were analyzed by two-way ANOVA
(groups 1–4; Figure 1). (2) The effects of treatment duration (3
vs. 6 months) and hormone (VEH vs. E2) were analyzed by two-
way ANOVA (groups 3–6; Figure 1). (3) The effect of the timing
of hormone treatment was analyzed by a one-way ANOVA with
a Bonferroni post hoc test (groups 5–8; Figure 1). Interactions
among variables were also analyzed for the two-way ANOVA
analyses. For each analysis, significant main or interaction effects
were followed by a Fisher least significant difference post hoc test.
A value of p < 0.05 was considered significant. Gnrh1 expression
data in the mPOA were transformed utilizing the ratio transform in
GraphPad. Prior to statistical analysis, these transformed data were
log-transformed for analysis. Assistance with statistical analyses
was provided by the USUHS Biostatistics Consulting Center.

RESULTS

Relative Abundance of GnRH-(1–5) Signaling Genes

The relative abundance of Gpr101, Gpr173, and EP24.15 within
the mPOA, ARC, PIT, and MC was first compared in mature
(MAT-V3) and aging (AG-V3) rats (Figure 2). Expression of each
gen is shown relative to levels in the mPOA. In both mature
and aging animals, Gpr101 expression was significantly greater
in the mPOA and ARC versus the PIT and MC (Figures 2A,B,
p < 0.05). In mature animals, the expression of Gpr173 in the
ARC was greater than in the PIT and MC (p < 0.05). However,
in mature animals, the expression of Gpr173 in the mPOA was
only significantly increased compared with the MC (Figure 2C,
p < 0.05). Among aging animals, the expression of Gpr173 was
greater in the ARC than in the mPOA (p < 0.05), and both regions
had higher expression than the PIT and MC (Figure 2D, p < 0.05).
There were no differences in EP24.15 expression levels among
tissues analyzed (Figures 2E,F). The average C values from the
MAT-V3 group were graphed to compare the relative expression
of each gene within the different tissues analyzed (Figures S1A–D
in Supplementary Material).

Effects of Age and Estradiol on GnRH-(1–5) Receptors mRNA Expression

To determine the mechanisms by which GnRH-(1–5) signaling
was altered after aging, ovarian hormone loss, and E2 treatment,
we quantified mRNA expression of its receptors, Gpr101 and
Gpr173, within the mPOA, ARC, and PIT (Figures 3 and 4).
We found no significant changes in Gpr101 mRNA expression
within the mPOA (Figure 3A). However, within the ARC, there
were significant effects of age [F(1,22) = 15.24, p < 0.05], hor-
mone [F(1,22) = 8.325, p < 0.05], and a significant interaction
between treatment duration and hormone [F(1,23) = 5.179,
p < 0.05]. There was a significant increase in Gpr101 expression
after 3 months of E2 treatment in the MAT-E3 rats (Figure 3B,
p < 0.05). Expression of Gpr101 consistently increased with age,
as AG-V3 rats showed greater expression than MAT-V3 rats, and
AG-V6 rats had greater expression than AG-V3 rats (Figure 3B,
p < 0.05). Additionally, AG-E3 rats showed greater Gpr101 mRNA
expression than MAT-E3 rats, demonstrating the age-related
increases in expression (Figure 3B, p < 0.05). Interestingly, treat-
ment with E2 for 6 months in the aged rats (AG-E6) decreased
the expression of Gpr101 within the ARC, relative to the AG-V6
group (Figure 3B, p < 0.05). There were no significant changes
in Gpr101 expression within the PIT (Figure 3C), and the MC
control also showed no significant changes (Figure 3D; Figure S2
in Supplementary Material).

Unlike Gpr101, Gpr173 displayed significant effects of age
and/or hormone replacement within both the mPOA and ARC
(Figures 4A,B). Within the mPOA, there was a significant effect
of age [F(1,22) = 8.485, p < 0.05] and a significant interaction
between treatment duration and hormone [F(1,24) = 8.12,
p < 0.05]. The mRNA expression of Gpr173 increased with
age between the AG-V3 and MAT-V3 rats (Figure 4A,
p < 0.05). There were no significant effects of E2 in younger
rats, however, those treated with E2 for 6 months (AG-E6)
displayed decreased Gpr173 expression relative to the AG-V6
rats (Figure 4A, p < 0.05). Additionally, there was no effect of
the order of E2 treatment in the aged rats, as both the AG-E3/
V3 and AG-V3/E3 rats displayed decreased Gpr173 expression
relative to the AG-V6 rats (Figure 4A, p < 0.05). Within the
ARC, Gpr173 expression displayed a significant interaction
between treatment duration and hormone [F(1,24) = 15.57,
p < 0.05; Figure 4B]. Rats treated with VEH for 6 months
(AG-V6) had greater Gpr173 expression than the AG-V3 rats
(Figure 4B, p < 0.05). Additionally, the aged rats treated with
E2 for 3 months (AG-E3) showed increased Gpr173 expression
compared to the AG-V3 group (Figure 4B, p < 0.05). As seen
in the mPOA, rats treated with E2 for 6 months (AG-E6) actu-
ally showed a decrease in Gpr173 relative to the AG-V6 group
(Figure 4B, p < 0.05). Interestingly, compared to the mPOA, the
timing and duration of E2 treatment appears to be important
in the ARC, as the AG-E3/V3 rats had higher Gpr173 expression
than the AG-E6 rats, while there was no difference from the
expression in the AG-V6 group (Figure 4B, p < 0.05). There
were no significant changes in Gpr173 expression within the
PIT (Figure 4C), and the MC control also showed no significant
changes (Figure 4D).
Figures 2

Relative mRNA expression of Gpr101 (a,b), Gpr173 (c,d), and EP24.15 (e,f) in three brain regions and the pituitary of mature (7–8 months; left column) and aging (14–17 months; right column) female Sprague-Dawley rats. (a–f) The tissues analyzed included the medial preoptic area (mPOA), arcuate nucleus (ARC), pituitary (PIT), and motor cortex (MC). (a,b) Expression of Gpr101 in mature and aging female Sprague-Dawley rats. (c,D) Expression of Gpr173 in mature and aging female Sprague-Dawley rats. (e,F) Expression of EP24.15 in mature and aging female Sprague-Dawley rats. Data shown are mean ± SEM (n = 3). *p < 0.05 versus mPOA and ARC unless otherwise specified.

Effects of Age and Estradiol on GnRH-(1–5) Converting Enzyme, EP24.15, mRNA Expression

EP24.15 expression was assessed within the mPOA, ARC, and PIT (Figure 5). Within the mPOA, there was a significant interaction between treatment duration and hormone [F(1,24) = 6.867, p < 0.05]. EP24.15 expression increased with age in the AG-V6 versus AG-V3 rats and decreased with E2 treatment in the AG-E6 versus AG-V6 rats (Figure 5A, p < 0.05). Within the ARC, there was a significant effect of hormone [F(1,24) = 10.51, p < 0.05], as E2 replacement increased EP24.15 expression in the MAT-E3 versus MAT-V3 rats (Figure 5B, p < 0.05). As seen in the mPOA,
Effects of Age and Estradiol on \(Gpr101 \) and \(Gnhr1 \) Expression

In order to better understand the changes in key GnRH-(1–5) signaling genes, it was important to also assess whether there were changes in the expression of \(Gnhr1 \) and its receptor, \(Gnhr \), within this paradigm. Due to these molecules’ more limited expression, this study focused on the mPOA for \(Gnhr1 \) (where GnRH cell bodies are found) and the PIT for \(Gnhr \) (where GnRH exerts its effects on the HPG axis). Within the mPOA, there were no significant changes in the expression of \(Gnhr1 \) mRNA with age or E₂ treatment (Figure 6A). However, there were significant effects of age \([F(1,19) = 4.978, p < 0.05]\), hormone \([F(1,19) = 89.43, p < 0.05]\), and treatment duration.
DISCUSSION

This study analyzed the effects of aging and the timing and duration of E$_2$ treatment on the expression of key GnRH-(1–5) signaling genes in the OVX rat. Gene expression of receptors that GnRH-(1–5) binds to, Gpr101 and Gpr173, was affected by both age and E$_2$ in the mPOA (Gpr173) and ARC (Gpr101 and Gpr173). Additionally, gene expression of the enzyme that generates GnRH-(1–5), EP24.15, was affected by both age and E$_2$ in the mPOA and by E$_2$ alone in the ARC and PIT. To our knowledge, this is the first study to systematically assess the effects of age and different clinically relevant regimens of E$_2$ replacement on GnRH-(1–5) signaling genes.

![Figure 4](image.png)

FIGURE 4 Effects of age and estradiol on mRNA expression of Gpr173. (A–D) The expression of Gpr173 mRNA was analyzed within the (A) medial preoptic area (mPOA), (B) arcuate nucleus (ARC), (C) pituitary (PIT), and (D) motor cortex (MC). Comparisons of age were made between groups 1–4 (analysis 1), duration of hormone treatment between groups 3–6 (analysis 2), and timing of hormone treatment between groups 5–8 (Analysis 3). All comparisons were made as described in Section “Materials and Methods.” Data shown are mean ± SEM (n = 5–7). *p < 0.05 (analysis 1); #p < 0.05 (analysis 2); †p < 0.05 (analysis 3).
Aging Affects Relative Distribution of GnRH-(1–5) Signaling Genes

The present study showed tissue-specific expression of Gpr101, Gpr173, and EP24.15 mRNA. Presently, there is a paucity in quantitation of Gpr101 and Gpr173 expression in specific neural nuclei. Gpr101 mRNA is most highly expressed in the hypothalamus, specifically in the ARC (22, 30, 31) and mPOA (22, 30), across multiple species (22, 32–35). These mRNA findings have been supported by protein studies of GPR101 in the ARC and whole hypothalamus (35). Trivellin et al. also showed much higher expression of Gpr101 mRNA in whole mouse hypothalamus versus PIT by RT-qPCR (35), a finding consistent with our study, as our results show that the expression of Gpr101 is highest in the mPOA and ARC versus the PIT and MC. We also found that there was no apparent effect of aging on the relative distribution of Gpr101 between the mPOA, ARC, PIT, and MC.

Similar to Gpr101, Gpr173 mRNA has been detected in multiple species (23, 31, 33, 34, 36), with the highest expression in the hypothalamus compared with other central and peripheral regions (34). Gpr173 mRNA in particular is highly expressed in areas related to the control of reproductive function, including areas with dense expression of estrogen receptor-α and kisspeptin, both important regulators of reproduction (23). The present study is consistent with these studies, showing that expression of Gpr173 is highest in the hypothalamic regions we studied, including the ARC and mPOA, compared to the MC and the PIT. Detection of GPR173 protein has proven to be difficult, as effective antibodies have yet to be produced (23). Our results do show that there is an effect of age on the relative expression of...
Gpr173 mRNA between tissues. The mature animals (MAT-V3) show similar expression between the mPOA and ARC, however, the aging animals (AG-V3) have significantly higher expression in the ARC compared to the mPOA. This finding should be expanded on in future studies to determine whether there is a functional role for this shift in gene expression. EP24.15 has also been detected throughout the brain and across species (3, 24, 37–40), and consistent with our results, there are no tissue-dependent differences in expression reported. Future studies are needed to examine the connection between mRNA and protein expression in this model, to determine whether the effects of age translate to the protein level.

Aging and E₂ Alter Expression of GnRH-(1–5) Signaling Genes

Previous studies demonstrated that GnRH-(1–5) is biologically active and has important roles in the facilitation of lordosis (6) and regulating the amplitude of GnRH pulsatile release (5). Intracerebroventricular injection of GnRH-(1–5) into the third ventricle induced lordosis, and the effects were not blocked by EP24.15 antiserum or Antide, a potent GnRH receptor antagonist (6). Additionally, treatment of hypothalamic explants, dispersed primary cells from the hypothalamus, and GT1–7 cells using GnRH-(1–5) all increased the amplitude of GnRH pulsatile release (5). Based on these results, it was important to understand the control of GnRH-(1–5) signaling gene expression after ovarian hormone loss within the mPOA, ARC, and PIT, regions crucial for HPG axis signaling.

Unlike *Gpr101*, the expression of *Gpr173* displayed significant changes in the mPOA. Within the mPOA, *Gpr173* expression increased with age after ovarian hormone loss. However, there was no significant effect of E₂ replacement until after 6 months of treatment, at which time E₂ decreased the expression of *Gpr173*. *Gpr173* expression 6 months post-ovarian hormone loss was also repressed by E₂ treatment independent of the timing of treatment, as both the AG-E3/V3 and AG-V3/E3 groups had significantly lower expression than the AG-V6 animals. Similar to *Gpr173*, the expression of EP24.15 increased with age in the mPOA. Again, there was no significant effect of E₂ replacement until after 6 months of treatment, at which time E₂ decreased EP24.15 expression. Unlike the expression of *Gpr173*, there were no effects of the duration of hormone treatment on EP24.15.

It is within the ARC that our study identified the most significant changes in *Gpr101* mRNA expression. Our results demonstrate that as the rat ages after ovarian hormone loss, the expression of *Gpr101* mRNA increases within the ARC, and E₂ replacement increases expression in younger animals. The expression of *Gpr173* also increased within the ARC with age after ovarian hormone loss. A similar effect was seen in the ARC for *Gpr173* and EP24.15, as in both cases, treatment with E₂ in younger animals led to an increase in mRNA expression. Importantly, after 6 months of E₂ replacement, this effect is reversed; E₂ actually decreases expression of *Gpr101*, *Gpr173*, and EP24.15 within the ARC. These results are also similar to recently reported data that demonstrated a reversal in E₂-induced gene expression in castrated young and aging male rats (41).

Interestingly, the expression of *Gpr173* and EP24.15 within the ARC was found to be dependent on the duration of E₂ treatment after long-term ovarian hormone loss. Animals treated with E₂ then switched to VEH (AG-E3/V3) displayed a significant
increase in mRNA expression versus those treated with E2 for 6 months (AG-E6). This is an interesting result, as it differs from the effects in the mPOA for both genes. It appears that there are some similarities between Gpr101, Gpr173, and EP24.15 in the ARC, however, after prolonged ovarian hormone loss, the effects of E2 replacement on Gpr173 and EP24.15 are tissue dependent. Identifying the functional significance of this tissue-dependence will be crucial to future studies.

Serum hormone levels in the rats used in the present study were measured previously. Serum LH levels were lowered by E2 treatment, independent of age, consistent with expected estrogen negative feedback effects (16). Similarly, Gnrh expression in the pituitary was significantly decreased with E2 treatment, independent of age, as shown in previous studies (42, 43). By contrast, our current data on the expression of Gnrh mRNA in the mPOA demonstrated no significant changes in expression with E2 treatment or age; however, previous work (in intact female rats) has shown that Gnrh mRNA levels may change independently of transcription and secretion (44). Previous work in OVX animals undergoing E2 treatment has also shown either no change or a small, significant decrease in Gnrh mRNA expression between young and middle-aged OVX animals (45, 46). The finding of little change in Gnrh expression, in the context of significant decreases in Gnrh mRNA levels with E2 treatment, suggests the possibility of a reduced role for GnRH and an increased role for its metabolite GnRH-(1–5), as well as the potential for altered GnRH release at the median eminence.

This study assessed the effects of age, hormone, treatment duration, and the timing of treatment on the expression of key GnRH-(1–5) signaling genes. The serum E2 levels for the duration, and the timing of treatment on the expression of potential for altered GnRH release at the median eminence. The importance of the colocalization of EP24.15 and GPR173 with GnRH and Kiss1 neurons is slowly emerging as recent research suggests a more complex regulation of reproduction and GnRH release by a multitude of factors. Aside from cleaving GnRH to GnRH-(1–5), EP24.15 is responsible for the cleavage of Kiss1 (50) and Phoenixin (PNX) (52), both of which are peptides capable of stimulating LH secretion in vivo (23, 53). Immunohistochemical analysis has found PNX expressed in multiple regions of the hypothalamus, including the ARC and AVPV, both of which contain Kiss1 neurons (54). Further, these regions are particularly important for Kiss1 signaling in the female rat, as Kiss1 neurons in both the ARC and AVPV project to and modulate the negative and positive feedback effects of estrogen on GnRH neurons, respectively. Understanding the interplay between Kiss1, PNX, and GnRH-(1–5) within intact models of aging will be crucial to determining the role of each in the regulation of GnRH expression and secretion, and ultimately, their combined changes that lead to reproductive senescence.

In summary, we have systematically assessed the change in expression of genes crucial to GnRH-(1–5) signaling in response to aging and different estradiol replacement regimens designed to model clinical hormone replacement in women. Examining expression of GnRH-(1–5) signaling genes in the mPOA, ARC, and PIT is crucial as these regions are associated with regulation of GnRH (as well as LH and FSH) via the kisspeptin pathway [reviewed in Ref. (55)]. As the female rat ages, the E2-induced increases in GnRH-(1–5) signaling genes disappear, and E2 treatment eventually decreases the expression of Gpr101, Gpr173, and EP24.15 in both the mPOA and ARC. Use of this rat model may be clinically relevant, as the primary outstanding question of the Women’s Health Initiative is determination of the optimal
temporal E2 regimen to benefit health and well-being in women. Further studies are needed to determine the potential overlap between GnRH-(1–5) signaling, and other components of the reproductome, including Kiss1 and PNX.

ETHICS STATEMENT

This study was carried out in accordance with the recommendations of The Guide for the Care and Use of Experimental Animals. The protocol was approved by the Institutional Animal Care and Use Committee at the University of Texas at Austin.

AUTHOR CONTRIBUTIONS

Conception or design of the study: WY, AG, and TW. Data collection: BB, WY, and AG. Data analysis and interpretation: BB, WY, AG, and TW. Drafting and critical revision of the article: BB, WY, AG, and TW. Final approval of the version to be published: WY, AG, and TW.

REFERENCES

1. Clarke IJ, Cummins JT. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. *Endocrinology* (1982) 111(5):1737–9. doi:10.1210/endo-111-5-1737
2. Molinexàuz CJ, Lasdun A, Michaud C, Orlovski M. Endopeptidase-24.15 is the primary enzyme that degrades luteinizing hormone releasing hormone both in vitro and in vivo. *J Neurochem* (1988) 51(2):624–33. doi:10.1111/j.1471-4159.1988.tb00184.x
3. Wu TJ, Pierotti AR, Jakubowski M, Sheward WJ, Glucksman MJ, Smith AI, et al. Endopeptidase EC 3.4.24.15 presence in the rat median eminence and hypophysial portal blood and its modulation of the luteinizing hormone surge. *J Neuroendocrinol* (1997) 9(11):813–22. doi:10.1046/j.1365-2826.1997.00637.x
4. Wu TJ, Mani SK, Glucksman MJ, Roberts JL. Stimulation of luteinizing hormone-releasing hormone (LHRH) gene expression in GT1–7 cells by its metabolite, LHRH-(1–5). *Endocrinology* (2005) 146(1):280–6. doi:10.1210/en.2004-0560
5. Larco DO, Williams M, Schmidt L, Sabel N, Woller MJ, et al. Autoshortloop feedback regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by its metabolite, GnRH-(1–5). *Endocrine* (2015) 49(2):470–8. doi:10.1007/s12020-014-0492-7
6. Wu TJ, Glucksman MJ, Roberts JL, Mani SK. Facilitation of Lodosis in rats by a metabolite of luteinizing hormone releasing hormone. *Endocrinology* (2006) 147(5):2544–9. doi:10.1210/en.2005-1646
7. Roberts JL, Mani SK, Woller MJ, Glucksman MJ, Wu TJ, LHRH-(1–5): a bioactive peptide regulating reproduction. *Trends Endocrinol Metabol* (2007) 18(10):386–92. doi:10.1016/j.tem.2007.09.005
8. Cho-Clark M, Larco DO, Senszarzadeh NN, Vasta F, Mani SK, Wu TJ. GnRH-(1–5) transactivates EGFR in Ishikawa human endometrial cells via an orphan G protein-coupled receptor. *Mol Endocrinol* (2014) 28(1):80–98. doi:10.1210/me.2013-2013
9. Cho-Clark M, Larco DO, Zahn BR, Mani SK, Wu TJ. GnRH-(1–5) activates matrix metalloproteinase-9 to release epidermal growth factor and promote cellular invasion. *Mol Cell Endocrinol* (2015) 415:114–25. doi:10.1016/j.mce.2015.08.010
10. Larco DO, Senszarzadeh NN, Cho-Clark M, Mani SK, Wu TJ. The novel actions of the metabolite GnRH-(1–5) are mediated by a G protein-coupled receptor (GPCR). *Front Endocrinol* (2013) 4:83. doi:10.3389/fendo.2013.00083
11. Larco DO, Senszarzadeh NN, Cho-Clark M, Mani SK, Wu TJ. β-arrestin 2 is a mediator of GnRH-(1–5) signaling in immortalized GnRH neurons. *Endocrinology* (2013) 154(12):4726–36. doi:10.1210/en.2013-1286

ACKNOWLEDGMENTS

The authors thank Brian Pham for technical expertise on this project and Dr. Cara Olsen of the USUHS Biostatistics Consulting Center for her support in statistical analyses. The authors also thank Dr. Zhao Zhang Li of the USUHS Biomedical Instrumentation Center for her support in sequencing qPCR amplicons for primer verification.

FUNDING

This research was supported by the National Institutes of Health R03HD078645 (to TW) and P01AG016765 (to AG) and the Uniformed Services University Intramural grant G1852488 (to TW).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://www.frontiersin.org/article/10.3389/fendo.2017.00282/full#supplementary-material.
Gpr173. Am J Physiol Regul Integr Comp Physiol (2016) 311(3):R489–96. doi:10.1152/ajpregu.00191.2016

24. Pierotti AR, Lasdun A, Ayala JM, Roberts JL, Molineaux CJ. Endopeptidase-24.15 in rat hypothalamic/pituitary/gonadal axis. Mol Cell Endocrinol (1991) 76(1–3):95–103. doi:10.1016/0303-7207(91)90264-5

25. Daniel JM, Hulst JL, Berbling IL. Estradiol replacement enhances working memory in middle-aged rats when initiated immediately after ovariectomy but not after a long-term period of ovarian hormone deprivation. Endocrinology (2006) 147(1):607–14. doi:10.1210/en.2005-0998

26. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates (2nd). New York: Academic Press (1986).

27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods (2001) 25(4):402–8. doi:10.1006/meth.2001.1262

28. Pfaff MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res (2001) 29(9):e45. doi:10.1093/nar/29.9.e45

29. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc (2008) 3(6):1101–8. doi:10.1038/nprot.2008.73

30. Nilaweera KN, Wilson D, Bell L, Mercer JG, Morgan PJ, Barrett P. G-protein-coupled receptor 101 mRNA expression in supraspinal and paraventricular nuclei in rat hypothalamus is altered by pregnancy and lactation. Brain Res (2008) 1193:76–83. doi:10.1016/j.brainsci.2007.11.048

31. Rønnekleiv OK, Fang Y, Zhang C, Mao P, Kelly MJ. Research resource: gene profiling of G protein-coupled receptors in the arcuate nucleus of the female. Mol Endocrinol (2014) 28(8):1362–80. doi:10.1210/me.2014-1103

32. Lee DK, Nguyen T, Lynch KR, Cheng R, Vanti WB, Arkhitko O, et al. Discovery and mapping of ten novel G protein-coupled receptor genes. Gene (2001) 275(1):83–91. doi:10.1016/S0378-1119(01)00651-5

33. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A (2003) 100(8):4903–8. doi:10.1073/pnas.0230374100

34. Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor 101 mRNA expression in supraoptic and paraventricular nuclei of the female. Mol Endocrinol (2001) 275(1):83–91. doi:10.1016/S0378-1119(01)00651-5

35. Trivellin G, Daly AF, Fauz CR, Yuan B, Rostomyan L, Larco DO, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med (2014) 371(25):2363–74. doi:10.1056/NEJMoa1408082

36. Matsumoto M, Saito T, Takasaki I, Kamohara M, Sugimoto T, Kobayashi M, et al. An evolutionarily conserved G-protein-coupled receptor family, SRER, expressed in the central nervous system. Biochem Biophys Res Commun (2000) 272(2):576–82. doi:10.1006/bbrc.2000.2829

37. Smith AI, Tetaz T, Roberts JL, Molineaux CJ. Endopeptidase-24.11. J Neuroendocrinol (1994) 64(2):684–8. doi:10.1095/biolreprod64.2.684

38. Treen AK, Luo V, Belsham DD. Phoenixin activates immortalized GnRH and kisspeptin neurons through the novel receptor GPR173. Mol Endocrinol (2016) 30(8):872–88. doi:10.1210/me.2016-1039

39. Treen AK, Luo V, Belsham DD. Phoenixin activates immortalized GnRH and kisspeptin neurons through the novel receptor GPR173. Mol Endocrinol (2016) 30(8):872–88. doi:10.1210/me.2016-1039

40. Woitowich NC, Philibert KD, Leitermann RJ, Wungjiranirun M, Urban JH, Glucksman MJ. EP24.15 as a potential regulator of kisspeptin within the neuroendocrine hypothalamus. Endocrinology (2016) 157(2):820–30. doi:10.1210/en.2015-1580

41. Kauffman AS, Gottsch ML, Roa J, Byquist AC, Crown A, Clifton DK, et al. Sexual differentiation of kiss1 gene expression in the brain of the rat. Endocrinology (2007) 148(4):1774–83. doi:10.1210/en.2006-1540

42. Glucksman M, Philibert K, Woitowich N, Urban J, DeJoseph G. Elucidating the reproductive: system-wide regulation of reproductive neuropeptides. FASEB J (2017) 31(1 Suppl):936.15.

43. Navarro VM, Castellano JM, Fernández-Fernández R, Barreiro ML, Roa J, Sanchez-Criado JE, et al. Developmental and hormonally regulated messenger ribonucleic acid expression of Kiss1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of Kiss1-1 peptide. Endocrinology (2004) 145(10):4565–74. doi:10.1210/en.2004-0413

44. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology (2004) 145(9):4073–7. doi:10.1210/en.2004-0431

45. Roseweir AK, Millar RP. The role of kisspeptin in the control of gonadotrophin secretion. Hum Reprod Update (2009) 15(2):203–12. doi:10.1093/humupd/dm058

Disclaimer: The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the Department of Defense or the Uniformed Services University of the Health Sciences.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Bauman, Yin, Gore and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.