Manufacturing of New Welding Fluxes Using Silicomanganese Slag

To cite this article: Roman E Kryukov et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 253 012007

View the article online for updates and enhancements.

Related content

- Use of barium-strontium carbonatite for flux welding and surfacing of mining machines
 R E Kryukov, N A Kozyrev and A A Usoltsev

- Production of Welding Fluxes Using Waste Slag Formed in Silicomanganese Smelting
 N A Kozyrev, R E Kryukov, O E Kozyreva et al.

- New welding fluxes based on silicomanganese slag for deposition and welding of canopies and crib bed of mine support
 R E Kryukov, N A Kozyrev, A A Usoltsev et al.
Manufacturing of New Welding Fluxes Using Silicomanganese Slag

Roman E Kryukov 1, Nikolay A Kozyrev 1, Olga A Kozyreva 2, Aleksander A Usoltsev 1

1 Siberian Industrial State University
654007, Russia, Kemerovo region, Novokuznetsk, Kirova street, 42
2 Kemerovo State University, 6, Krasnaya street, Kemerovo, 650000

E-mail: 3 Kozyrev_na@mtsp.sibsiu.ru

Abstract. There were developed the composition and manufacturing technology of new welding flux using industrial products such as slag of silicomanganese production. The effect of fractional composition on welding and fabrication characteristics was studied. It was found that using of small-sized fracture of welding flux at a rate of 30-40% decreases the oxide non-metallic impurity rating of the weld and herewith doesn’t affect its constituents.

To increase technical-and-economic indexes it was suggested to mix small-sized fracture and water glass. The use of ceramic flux made by mixing the dust fraction of silicomanganese slag with fraction size less than 0.45 mm and water glass provides the decrease of non-metallic impurity rating of the weld. Herewith the increase of its content from 15 to 40% doesn’t have a significant influence on the non-metallic impurity rating of the weld and its constituents.

Introduction

Great attention in the world is paid to the issues of production, research and development of new welding fluxes [1 – 18]. It was proposed to use the slag of silicomanganese production for welding flux manufacturing [19, 20], the technology is protected by patents [21, 22]. The possibility of effective use of slag of silicomanganese production for welding flux manufacturing is considered in this paper.

Methods and materials

For the flux manufacturing was used the slag of silicomanganese production which chemical composition is presented in table 1. Also in the first series of experiments the possibility of use of different slag fractions ratio was examined (table 2). Double-sided flux plain butt welding was carried out on the samples of 500×75 mm size and 16 mm thick made of sheet and plate steel type 09G2S. The welding process was performed with wire Sv-08GA with the use of welding machine ASAW-1250 in modes: I_weld = 700 A; U_arc = 30 V; V_weld = 35 m/h.

Table 1 – Chemical composition of the slag of silicomanganese production

Content, %	Al2O3	CaO	SiO2	FeO	MgO	MnO	F	Na2O	K2O	S	P
6.91-9.62	22.85-31.70	46.46-48.16	0.27-0.81	6.48-7.92	8.01-8.43	0.28-0.76	0.26-0.36	0.62	0.15-0.17	0.01	
Samples were cut of the welded plates and the X-rays pectrometry of weld chemistry and metallographical tests of weld metal were conducted. Chemical composition of welding fluxes is presented in table 3. Chemical composition of slag crust is presented in table 4, chemical composition of weld metal is presented in table 5.

Table 2 – Fraction and component composition of fluxes in question

Sample	Ratio, %, of fractions, mm
1	100 % of fraction 0.45 – 2.5
2	95 % of fraction 0.45 – 2.5 + 5 % of fraction 0.45 + 5 % of fraction < 0.45
3	90 % of fraction 0.45 – 2.5 + 10 % of fraction 0.45
4	85 % of fraction 0.45 – 2.5 + 15 % of fraction 0.45
5	80 % of fraction 0.45 – 2.5 + 20 % of fraction 0.45
6	70 % of fraction 0.45 – 2.5 + 30 % of fraction 0.45
7	60 % of fraction 0.45 – 2.5 + 40 % of fraction 0.45
8	60 % silicomanganese slag + 40 % water glass
9	70 % silicomanganese slag + 30 % water glass
10	80 % silicomanganese slag + 20 % water glass
11	85 % silicomanganese slag + 15 % water glass

Table 3 – Chemical composition of welding fluxes

Sample	Content, %									
	Al₂O₃	CaO	SiO₂	FeO	MgO	MnO	F	Na₂O	S	P
8	5.29	25.84	51.75	0.55	5.02	7.39	0.36	4.66	0.12	0.01
9	5.48	26.68	51.73	0.57	5.16	7.59	0.39	4.19	0.13	0.01
10	5.88	25.53	52.53	0.56	5.07	7.75	0.31	4.07	0.13	0.01
11	6.55	26.81	51.14	0.56	5.78	8.10	0.35	2.62	0.14	0.01

Table 4 – Chemical composition of slag crusts

Sample	Content, %										
	MnO	SiO₂	CaO	MgO	Al₂O₃	FeO	Na₂O	K₂O	F	S	P
1	7.90	46.04	23.38	6.77	10.08	2.07	0.37	0.65	0.73	0.13	0.01
2	7.87	45.58	31.82	6.62	6.77	1.35	0.26	absent	0.32	0.11	0.01
3	7.83	44.54	23.84	6.43	9.64	3.59	0.37	0.65	0.69	0.12	0.008
4	8.09	45.91	31.15	6.60	6.79	1.39	0.27	absent	0.29	0.11	0.01
5	7.93	45.67	23.84	6.54	9.87	2.86	0.37	0.65	0.72	0.12	0.008
6	8.16	45.74	29.39	6.22	6.93	1.99	0.26	absent	0.36	0.12	0.01
7	8.23	45.52	29.12	6.29	6.65	1.88	0.28	absent	0.26	0.12	0.01
8	8.19	48.79	24.42	4.82	5.14	2.45	3.64	absent	0.35	0.09	0.01
9	8.29	49.92	26.12	5.37	5.60	2.64	3.25	absent	0.37	0.10	0.01
10	8.16	48.25	26.32	5.22	6.02	2.17	2.12	absent	0.33	0.12	0.01
11	8.18	48.09	27.24	5.67	6.36	1.97	1.64	absent	0.34	0.12	0.01
Table 5 – Chemical composition of weld metal

Sample	C	Si	Mn	Cr	Ni	Cu	V	Nb	Al	S	P
1	0.09	0.71	0.51	0.03	0.10	0.11	0.001	0.014	0.023	0.018	0.012
2	0.08	0.54	1.33	0.04	0.05	0.08	0.003	0.014	0.015	0.008	0.008
3	0.09	0.61	1.49	0.04	0.11	0.11	0.01	0.013	0.018	0.016	0.010
4	0.07	0.45	1.24	0.02	0.05	0.07	0.002	0.014	0.014	0.006	0.007
5	0.08	0.66	1.42	0.03	0.10	0.11	0.002	0.015	0.023	0.018	0.012
6	0.08	0.61	1.42	0.02	0.06	0.08	0.003	0.014	0.029	0.010	0.011
7	0.08	0.59	1.39	0.02	0.02	0.05	0.004	0.018	0.091	0.014	0.009
8	0.05	0.52	1.25	0.02	0.04	0.05	0.003	0.017	0.020	0.005	0.007
9	0.03	0.51	1.23	0.02	0.04	0.06	0.002	0.017	0.017	0.007	0.008
10	0.06	0.53	1.31	0.02	0.04	0.06	0.004	0.016	0.018	0.012	0.009
11	0.09	0.52	1.31	0.02	0.04	0.06	0.003	0.015	0.013	0.010	0.008

Metallographical tests were conducted on micro sections without etching by means of optical microscope OLYMPUS GX-51 with optical magnification 100. Metallographical tests of metal structure in weld zone were conducted by means of optical microscope OLYMPUS GX-51 in a bright-field in the magnification range of 500 after the etching of the samples surface in 4% nitric acid solution. Grain size was determined in accordance with GOST 5639 – 82.

Results

The results of analysis for presence of non-metallic inclusions in the weld zone carried out in accordance with GOST 1778-70, are presented in the figure 1 and in the table 6.
Fig. 2. Microstructures of samples welds:
a – sample 1; b – sample 2; c – sample 3; d – 4; e – 5; f – 6; g – 7

Samples were cut of the welded plates and their mechanical properties were determined. The results obtained by investigation of mechanical properties show the increase of impact strength (Figure 3).

The analysis of samples’ mechanical properties shows that the optimal content of dust fraction with size less than 0.45 mm is 20-30%. This content of dust fraction with size less than 0.45 mm delivers the profitable set of mechanical properties of the samples cut of the welded plates.

In the weld metal structure of all samples’ welds there is a ferrite presented in the form of unequiaxed grains elongated along the line of heat removal. There can be seen the transition from ferrite-pearlite uniform structure to the Widmanstatten ferrite-pearlite structure. However, relevant variation of grain sizes on a grain-size scale was not observed (table 6, 7).

![Graph showing the relationship between dust content and impact strength](image)

Fig. 3. The effect of dust fraction content (fraction size less than 0.45 mm) in the flux on the impact strength

In these cond series of experiments the possibility of use of ceramic flux made of water-glass-bonded silicomanganese slug’s dust with fraction sizeless than 0.45 mm was studied. The production technique involved mixing silicomanganese slug and water glass in different proportions (table 2), drying, crush in gand size grading to get fractions 0.45-2.5 mm.
Table 6 – Non-metallic inclusions in weld zone

Sample	Non deflecting silicates	Brittle silicates	Spot oxides
1	4b; 3b; 4a	3b	1a
2	2b; 1b; 3a; 4a	absent	1a; 2a
3	4b; 2b	absent	1a; 2a
4	2b; 4b	absent	1a; 2a
5	4b; 5b; 3b	absent	1a; 2a
6	2b; 1b; 2a; 2,5a	absent	1a; 2a
7	2b; 2a; 2,5a	absent	1a; 2a
8	2b; 1b; 2a; 2,5a	absent	1a
9	2b; 1b; 2a; 2,5a	absent	1a
10	2b; 1b; 2a; 2,5a	absent	1a; 2a
11	2b; 2,5a	absent	1a; 2a

Table 7 – Welds’ grain size according to GOST 5639-82

Sample	Grain size on grain size scale
1	№4, №5
2	№5, №4
3	№4, №5, №6
4	№4
5	№5, №4
6	№4
7	№4
8	№5, №4
9	№4, №5
10	№4
11	№4, №5

The analysis of the mechanical properties of the samples cut of welded plates allowed to determine the optimal content of water glass in the flux (up to 20-30%) to achieve the profitable set of mechanical properties of the samples cut of the welded plates (figures 4, 5).

However, the examined fluxes are oxidizing fluxes and are created on the principles of silicon-manganese-oxidation-reduction reactions, therefore resultants of such reactions are oxidic compound of silicon and manganese. Consequently the non-metallic impurity rating of weld increases and hence the physical and mechanical properties decreases, especially at low temperatures. To decrease the impurity rating of weld and to increase mechanical properties we investigated the possibility of introduction of previously developed carbon and fluorine containing admixture FD–UFS in the new flux.
Fig. 4. The effect of water glass content in the flux on percentage elongation

Fig. 5. The effect of water glass content in the flux on the impact strength

In the experiments flux-admixture was added at the ratio of 2, 4, 6, 8 % accordingly. Chemical composition of examined mixtures is presented in Table 8, composition of slug crusts is presented in Table 9, chemical composition of welds’ metal is presented in Table 10.

Table 8 – Chemical composition of examined flux mixtures, %

FD–UFS content in the flux, %	FeO	MnO	Ca	SiO₂	Al₂O₃	MgO	Na₂O	K₂O	S	P	ZnO	F
2	0.40	8.01	15.80	50.08	11.55	7.39	0.77	0.63	0.22	0.008	0.002	1.30
4	0.91	7.90	17.72	46.63	10.32	6.63	1.10	0.68	0.24	0.01	absent	1.95
6	0.81	7.68	16.79	43.64	11.27	5.71	2.25	0.65	0.34	0.01	0.003	4.04
8	0.46	7.46	16.00	43.64	11.86	5.56	2.30	0.60	0.33	0.01	0.002	3.96

Table 9 – Chemical composition of slug crusts, %

FD–UFS content in the flux, %	FeO	MnO	Ca	SiO₂	Al₂O₃	MgO	Na₂O	K₂O	S	P	ZnO	F
2	2.21	7.25	15.55	38.09	9.39	8.63	0.49	0.57	0.12	0.006	0.002	0.94
4	2.28	7.39	16.90	42.00	9.76	5.77	0.76	0.62	0.15	0.008	0.002	1.12
6	2.24	7.20	16.06	39.94	11.15	7.14	1.09	0.60	0.17	0.008	0.002	1.53
8	2.36	7.14	14.70	42.87	12.40	5.57	1.34	0.57	0.20	0.008	0.002	1.88
Therefore, the metal of the weld which has been made with flux without admixtures has the highest non-metallic impurity rating. The introduction of admixture FD–UFS decreases the non-metallic impurity rating and also decreases the impurities’ size and number. Speaking of the examined ratio, the highest effect on the non-metallic impurity rating has the 8% amount of admixture.

Table 10 – Chemical composition of welds’ metal

FD–UFS content in the flux, %	Mass fraction of the element %									
	C	Si	Mn	Cr	Ni	Cu	Nb	Al	S	P
2	0.09	0.62	1.40	0.02	0.06	0.09	0.014	0.023	0.020	0.008
4	0.10	0.60	1.34	0.02	0.07	0.08	0.010	0.013	0.023	0.009
6	0.12	0.66	1.43	0.02	0.06	0.10	0.011	0.012	0.027	0.008
8	0.13	0.65	1.36	0.03	0.06	0.09	0.013	0.013	0.024	0.008

The results of analys is for presence of non-metallic inclusions in the weld zone carried out in accordance with GOST 1778 – 70 are presented on figure 6 and in the table 11.

![Fig. 6](image)

Fig. 6. Non-metallic inclusions in the weld zone of the samples with admixture ratio, %: a) 2; b) 4; c) 6; d) 8

Table 11 – Non-metallic inclusions in weld zone

FD–UFS content in the flux, %	Non-deflecting silicates	Brittle silicates	Spot oxides
2	2b, 4b, 5a	absent	1a, 2a
4	2b, 4b	absent	1a, 2a
6	2b, 4b, 1b	absent	1a, 2a
8	2b	absent	1a, 2a

Microstructure of samples’ welds is presented on figure 7. It was found out that introduction of admixture at a rate no more than 8% has no effect on the size and morphology of constituents.

![Fig. 7](image)

Fig. 7. Microstructure of welds of the samples with admixture ratio, %: a) 2; b) 4; c) 6; d) 8

The examination of mechanical properties has shown that as the amount of admixture increases the level of properties also increases (figure 8). The conducted researches formed the basis for RF patents [21, 22].
Fig. 8. Effect of admixture FD–UFS ratio in the flux on the impact strength (KCV at T=−20 °C)

Conclusions
1. The possibility in principle of use of slag of silicomanganese production for welding flux manufacturing was shown.
2. It is possible to use in the fluxes up to 30% of small-sized fracture (less than 0.45 mm). This content of dust fracture in the flux is optimal to achieve the profitable set of mechanical properties of the samples cut of the welded plates.
3. The optimal content of water glass in the flux allows to achieve the profitable set of mechanical properties is 20–30%.
4. To decrease the non-metallic impurity rating of weld and to increase mechanical properties of the weld it was suggested to introduce in the fluxes carbon-fluorine containing admixture FD–UFS at the ratio 2–8%. The introduction of admixture decreases the non-metallic impurity rating and also decreases the impurities’ size.

References
[1] R. Q. Puchol, J. R. Blanco, L. P. Gonzalez, G. C. Hernández, C. R. Gómez Pérez. The influence of the air occluded in the deposition layer of flux during automatic welding: a technological aspect to consider in the quality of the bead//Welding International. 2009. Vol. 23. № 2. P. 132 – 140.
[2] A.C.Crespo, R.Q.Puchol, L.P.Goncalez, L.G.Sanchez, C.R.Gomez Perez, E.Cedre, T.O.Mendez and J.A. Pozol. Obtaining a submerged arc welding flux of the MnO–SiO2–CaO–Al2O3–CaF2 system by fusion //Welding International. 2007. Vol. 21. № 7. P. 502 – 511.
[3] A.C.Crespo, R.Q.Puchol, L.P.Goncalez, L.G.Sanchez, C.R.Gomez Perez, G.Castellanos, E.D.Cedre and T.Ortiz. Study of the relationship between the composition of a fused flux and its structure and properties //Welding International. 2009. Vol. 23. № 2. P. 120 – 131.
[4] Golovko V.V., Potapov N.N. Special features of agglomerated (ceramic) fluxes in welding //Welding International. 2011. Vol. 25. № 11. P. 889 – 893.
[5] VolobuevYu.S., Volobuev O.S., Parkhomenko A.G., Dobrozhela E.I., Klimenchuk O.S. Using a new general-purpose ceramic flux SFM-101 in welding of beams //Welding International. 2012. Vol. 26. № 8. P. 649 – 653.
[6] VolobuevYu.S., Surkov A.V., Volobuev O.S., Kipiani P.N., Shestov D.V., Pavlov N.V., Savchenko A.I. The development and properties of a new ceramic flux used for reconditioning rolling stock components //Welding International. 2010. Vol. 24. № 4. P. 298 – 300.
[7] Potapov N.N., Kurlanov S.A. A criterion for evaluating the activity of fused welding fluxes //Welding International. 1987. Vol. 1. № 10. P. 951 – 954.
[8] Babushkin P.L., Persits V.Yu. Determination of hydrogen in the form of moisture in basic electrode coatings and fluxing materials in metallurgical production //Welding International. 1991. Vol. 5. № 9. P. 741 – 742.
[9] Pavlov I.V., Oleinichenko K.A. Regulating generation of CO by varying the composition of ceramic fluxes // Welding International. 1995. Vol. 9. № 4. P. 329 – 332.
[10] Chigarev V.V., Kosenko A.A. Regulating the silicon-reduction process in welding under ceramic fluxes with an active deoxidising agent // Welding International. 1994. Vol. 8. № 10. P. 808 – 809.
[11] Kurlanov S.A., Potapov N.N., Natapov O.B. Relationship of physical and welding-technological properties of fluxes for welding low-alloy steels // Welding International. 1993. Vol. 7. № 1. P. 65 – 68.
[12] Bublik O.V., Chamov S.V. Advantages and shortcomings of ceramic (agglomerated) fluxes in comparison with fused fluxes used for the same applications // Welding International. 2010. Vol. 24. № 9. P. 730 – 733.
[13] Gur'ev S.V., Pletnev Yu.M., Murav'ev I.I. Investigation of the properties of welded joints produced by welding in a gas mixture and under a flux // Welding International. 2012. Vol. 26. № 8. P. 646 – 648.
[14] Parshin S.G. Using ultrafine particles of activating fluxes for increasing the productivity of MIG/MAG welding of steels // Welding International. 2012. Vol. 26. № 10. P. 800 – 804.
[15] A.C. Crespo, R.Q. Puchol, L.P. Gonzalez, C. R Gómez Pérez, L.G. Sanchez, G.E. Vielsa, A.C. Sánchez. Carbothermic reduction of pirolusite to obtain carbon-bearing ferromanganese and slag suited to the development of welding materials // Welding International. 2005. Vol. 19. № 7. P. 544 – 551.
[16] Barmin L.N. Effect of the composition of flux and welding wire on the properties of deposited metal of 05N4MYu type // Welding International. 1989. Vol. 3. № 2. P. 109 – 111.
[17] Kazakov Yu.V., Koryagin K.B., Potekhin V.P. Effect of activating fluxes on penetration in welding steels thicker than 8 mm // Welding International. 1991. Vol. 5. № 3. P. 202 – 205.
[18] Potapov N.N., Feklistov S.I., Volobuev Yu.S., Potekhin V.P. A method of selecting fused fluxes in welding pearlitic–ferritic steels // Welding International. 2009. Vol. 23. № 10. P. 800 – 803.
[19] Kozyrev N.A., Kryukov R.E., Kozyreva O.E., Lipatova U.I., Filonov A.V. Production of Welding Fluxes Using Waste Slag Formed in Silicomanganese Smelting // IOP Conference Series: Materials Science and Engineering. 2016. Vol. 125. P. 1 – 6: All-Russia Scientific and Practical Conference on Materials Treatment: Current Problems and Solutions 26 – 28 November 2015, Yurga, Russia.
[20] Kozyrev N.A., Kryukov R.E., Lipatova U.I., Kozyreva O.E. On the use of slag from silicomanganese production for welding flux manufacturing // IOP Conf. Series: Materials Science and Engineering. 2016. Vol. 150. P. 1 – 9.
[21] Kryukov N.E., Kryukov E.N., Kozyrev N.A., Kryukov R.E., Kozyreva O.A.; JSC «Novokuznetsk plant of reservoir metalware named after N.E. Kryukov»: «Welding flux», RF Patent 2576717, 05 June 2014.
[22] Kryukov N.E., Kryukov E.N., Kozyrev N.A., Kryukov R.E., Kozyreva O.A.; JSC «Novokuznetsk plant of reservoir metalware named after N.E. Kryukov»: «Welding flux», RF Patent 2579412, 05 June 2014.