Tuning the correlation decay in the resistance fluctuations of multi-species networks

C Pennetta, E Alfinito and L Reggiani

Dipartimento di Ingegneria dell’Innovazione, Università del Salento and CNISM, Via Arnesano, I-73100, Lecce, Italy
E-mail: cecilia.pennetta@unile.it, eleonora.alfinito@unile.it and lino.reggiani@unile.it

Received 17 November 2008
Accepted 11 January 2009
Published 20 February 2009

Online at stacks.iop.org/JSTAT/2009/P02053
doi:10.1088/1742-5468/2009/02/P02053

Abstract. A new network model is proposed for describing the $1/f^\alpha$ resistance noise in disordered materials for a wide range of α values ($0 < \alpha < 2$). More precisely, we have considered the resistance fluctuations of a thin resistor with granular structure in different stationary states: from nearly equilibrium to far from equilibrium conditions. This system has been modeled as a network made up of different species of resistors, distinguished by their resistances, by their temperature coefficients and by the energies associated with thermally activated processes of breaking and recovery. The correlation behavior of the resistance fluctuations is analyzed as a function of the temperature and applied current, in both the frequency and time domains. For the noise frequency exponent, the model provides $0 < \alpha < 1$ at low currents, in the ohmic regime, with α decreasing inversely with the temperature, and $1 < \alpha < 2$ at high currents, in the non-ohmic regime. Since the threshold current associated with the onset of non-linearity also depends on the temperature, the proposed model qualitatively accounts for the complicated behavior of α versus temperature and current observed in many experiments. Correspondingly, in the time domain, the auto-correlation function of the resistance fluctuations displays a variety of behaviors which are tuned by the external conditions.

Keywords: percolation problems (theory), fluctuations (theory), heterogeneous materials (theory), current fluctuations

ArXiv ePrint: 0811.3565v1

1 Author to whom any correspondence should be addressed.
1. Introduction

The analysis of resistance fluctuations has proved to be a very powerful tool for probing various condensed matter systems [1]–[3], including nanostructures [4]–[10] and disordered materials, like conductor–insulator composites [11]–[13], granular systems [11,12,14], porous [11,15] or amorphous materials [16]–[19], organic conducting blends [20,21]. Therefore, many experimental and theoretical investigations have been devoted to studying the resistance noise as a function of temperature, bias strength and of the main material properties [1]–[30]. One of the most relevant features of the resistance noise lies in its dependence on frequency. Many condensed matter systems display the so called Lorentzian noise [1,2], which is characterized by a power spectral density of the resistance fluctuations scaling as \(1/f^2\) at high frequencies and becoming flat below a corner frequency \(f_c\) —a behavior associated in the time domain with an exponential decay of the correlations and thus with a well defined characteristic time, \(\tau\) (correlation time) [1,2].

On the other hand, it is well known [1,2] that many other condensed matter systems exhibit \(1/f\) resistance noise, i.e. a spectral density scaling at low frequencies as \(1/f^\alpha\) with \(\alpha \approx 1\), and thus a noise associated with a non-exponential decay of the correlations in the time domain. The ubiquitous presence of \(1/f\) noise in a large variety of phenomena of very different nature has given rise to many attempts to explain it in terms of a universal law [1]–[3]. Moreover the link between \(1/f\) noise and extreme value statistics has also been investigated [31,32]. A simple way to obtain a \(1/f\) spectrum is by superimposing a large number of Lorentzian spectra with an appropriate distribution of the correlation times [1,2]. In some cases, this distribution can be derived from the distribution of some variable on which the correlation times themselves depend, as in the case of the pioneering works of McWhorter [1,2] and Dutta et al [1,33]. In particular, these authors proposed [1,2,33] that the origin of the \(1/f\) noise could be attributed to a thermally activated expression for the correlation times, associated with a broad distribution of the corresponding activation energies, an assumption physically plausible for many systems [1,2,11,12].

In the last twenty years, many other important contributions have advanced the understanding of the \(1/f\) noise, showing that the presence of a \(1/f\) spectrum can also arise from other basic reasons [3,14,16], [34]–[45]. Thus, the conclusion, now largely accepted in the literature [1]–[3], [41], is that a unique, universal origin of \(1/f\) does not exist, even though classes of systems can share a common basic origin of \(1/f\) noise.

doi:10.1088/1742-5468/2009/02/P02053
For example, spin-glass models [1,34,35] provide a good explanation of the 1/f noise in conducting random magnetic materials. Dissipative self-organized criticality (SOC) models [36,37] clarify the origin of 1/f spectra in certain dissipative dynamical systems naturally evolving into a critical state. Avalanche models [38], clustering models [39] and percolative models [11]–[14], [16,40,41] represent other relevant classes of theoretical approaches explaining the appearance of 1/f noise in a variety of systems. In particular, the use of random resistor network (RRN) models [11,12], [46]–[48] has proved to be very fruitful. Within this approach, great attention has been devoted to the calculation of the noise exponents in two-component RRN, as for example in [49]–[52]. However these authors assumed a priori the existence of independent 1/f microscopic fluctuators, associated with small fluctuations of the local resistivity, and they studied the influence of the topology and disorder of the network on the resistance noise magnitude at a fixed frequency. The existence of microscopic Lorentzian fluctuators giving rise to 1/f noise at a macroscopic level instead has been proposed by Gingl et al [53]. The hypothesis of small local fluctuations has been released by Seidler et al [54], who have shown that when the local resistivity fluctuations are large, the dynamical redistribution of the current gives rise to long-range (space) correlations and non-Gaussian 1/f noise.

Finally, another important class of 1/f RRN models is represented by dynamical percolation models [16,17,41], introduced by Lust and Kakalios for describing Lorentzian spectra [17] and then modified to account for 1/f noise [16,41]. Within these models, 1/f noise arises from random jumps performed by some elemental component of the system between two states (like trapping and detrapping of charge carriers [16,17], or ON and OFF states in the switcher model [41]). Precisely, Lust and Kakalios considered a two-dimensional RRN with half of the resistors removed at random (percolation threshold). By focusing on the filamentary resistive structures connecting the electrodes, they allowed fluctuations only for the resistors at the nearest neighbor positions [16,17]. In this manner, a uniform distribution of the trapping times provides a Lorentzian spectrum [17], while a certain non-uniform distribution of these times gives rise to a 1/f noise spectrum [16]. Furthermore, Celasco and Eggenhöfner [41] have studied a binary RRN with links behaving as random switchers of resistances r, fluctuating between two ON and OFF states (associated with $r=0$ and $r \neq 0$, respectively). The time evolution of a single switcher is controlled by two parameters, p and q, respectively representing the probability for a switcher to be ON at the time t and the probability for the same switcher to be off at $t + \Delta t$ if it was ON at t. This model applies only to linear systems and it does not contain any direct link with the external conditions; however its nice and nearly unique feature is that it provides a resistance noise with power spectrum $1/f^\alpha$ with $0 < \alpha < 2$ depending on the values of p and q. Actually, many experiments report on α ranging between 0 and 2 in the same system depending on the external conditions [1]–[4], [18,23]. In particular, at high external biases, transitions from 1/f to Lorentzian noise are observed in many systems, as a consequence of the suppression of the plurality of characteristic times induced by extreme, far from equilibrium conditions [1,55].

The aim of this paper is to present a new model able to describe within a unified framework both Lorentzian and 1/f noises, together with the transitions between these two kinds of spectra [1,2]—thus, connecting the differences in the power spectral density not only with the parameters intrinsic to a given system but also with the different external conditions: ranging from nearly equilibrium conditions (very low biases), to non-
equilibrium stationary states, to failure conditions. Correspondingly, in the time domain this means tuning the decay of correlations from a long-term decay (power law scaling of the two-point auto-correlation function) to an exponential decay.

The model that we propose belongs to the dynamical percolation class \cite{16, 17, 41}. To be precise, we consider a network made up of several species of resistors, where each species is characterized by the values of the elementary resistance, of the temperature coefficient and of two activation energies, which control the probabilities of breaking and recovery processes of that species. For this reason we call this model the ‘multi-species network’ (MSN) model. The states, either stationary or non-stationary, of the MSN result from the stochastic competition between the breaking and recovery processes of the different species. Like Dutta et al \cite{1, 2, 33}, we take the activation energies distributed in a broad range of values, as discussed in section 2. As a consequence, the resistance fluctuations of the MSN exhibit a $1/f^\alpha$ power spectrum, where the value of α in the range 0–2 depends on temperature and current.

The paper is organized as follows. In section 2 we illustrate the MSN model, in section 3 we report the results and finally in section 4 we draw the conclusions of this study.

2. Model

The multi-species network can be considered as a generalization of the single-species network (SSN) \cite{29, 30, 56–59}. The SSN model describes a RN whose resistance fluctuates over a single timescale. In such a network the correlations relax exponentially (with small deviations from a single-exponential decay at high biases) and the power spectral density of the resistance fluctuations is Lorentzian-like ($\alpha \approx 2$) at all temperatures and currents \cite{29, 58, 59}, as will be discussed in the following. The two models, MSN and SSN, share some technical features that the reader can find with more details in \cite{29, 57, 58}.

As usual for RRN models \cite{11, 12, 46, 47}, a conducting thin film with granular structure is described as a two-dimensional $N \times N$ resistor network with a square lattice, where N is the linear size of the network\footnote{Actually, two-dimensional resistor networks of sizes $N_1 \times N_2$ with $N_1 \neq N_2$, or networks with different lattice structures, can be easily considered.}. The RN is biased by an external constant current, I, applied through perfectly conducting bars placed at the left-hand and right-hand sides and it is in contact with a thermal bath at a temperature T. In the MSN model proposed here the network is made up of N_{spec} different species of resistors, whose resistances are denoted by $r_{n,i}$, where n is the index of the elementary resistor specifying its position within the network and $i = 1, \ldots, N_{\text{spec}}$ labels the species. The elementary resistances are taken linearly dependent on temperature: $r_{n,i} = r_{0,i}[1 + \alpha_{T,i}(T_n - T)]$, where $r_{0,i}$, $\alpha_{T,i}$ are respectively the resistance at the thermal bath temperature and the temperature coefficient of the ith species, while T_n is the local temperature. By neglecting time dependent effects in the heat diffusion \cite{60} we account for the local Joule heating of the nth resistor and its neighbors by expressing the local temperature as \cite{56} $T_n = T + A \Delta_n$, where A describes the heat coupling of the elementary resistor with the thermal bath and Δ_n depends on the local currents \cite{29}.

Each resistor can be in two states: regular (with resistance $r_{n,i}$) or broken (with resistance $r_{\text{OP}} = 10^9 r_{n,i}$). Resistors in the broken state are called defects. The transition
from the two states is stochastic: the transition from the regular state to the broken one (breaking process) occurs with probability \(W_{D, i} \), while the reverse transition (recovery process) occurs with probability \(W_{R, i} \), where \(i \) is the species index defined above. Both processes are thermally activated, thus their probabilities are \(W_{D, i} = \exp(-E_{D, i}/k_B T) \) and \(W_{R, i} = \exp(-E_{R, i}/k_B T) \), where \(E_{D, i} \) and \(E_{R, i} \) are the activation energies of the \(i \)-species and \(k_B \) is the Boltzmann constant.

The initial state of the network (equal or different fraction of each species, ordered or randomly distributed within the network, values of \(r_{0, i} \) and \(\alpha_{T, i} \)) has an important role in the network evolution, and thus both on the actual achievement of stationary states and on the features of the resistance fluctuations. The initial conditions that we have considered in this work are the following.

(i) We have taken the values of \(r_{0, i} \) and \(\alpha_{T, i} \) uniformly distributed inside a given range of values: respectively \(r_{0, i} \in [r_{\min}, r_{\max}] \) and \(\alpha_{T, i} \in [\alpha_{\min}, \alpha_{\max}] \). This choice has been adopted for the sake of simplicity, while other options are reasonable as well.

(ii) We have assumed a random distribution of the species within the network. Though special patterns for the space distribution of the species within the network can be of interest in many situations, the choice adopted here is the simplest one.

(iii) We have taken the activation energies \(E_{D, i} \) and \(E_{R, i} \) of the different species uniformly distributed inside the ranges of values \([E_{D, i}^{\min}, E_{D, i}^{\max}] \) and \([E_{R, i}^{\min}, E_{R, i}^{\max}] \). This choice, taken analogously to that of Dutta et al [1, 2, 33], is physically justified in many disordered systems, like granular and amorphous materials, composites, etc, where the orientational disorder present inside these materials can give rise to different energy barriers for the electron flow along the different conducting paths [1, 2, 11, 12, 34].

(vi) The energies \(E_{D, i} \), \(E_{R, i} \) have been coupled by imposing the condition that the difference \(E_{D, i} - E_{R, i} \) is approximately the same for the different species: \(E_{D, i} - E_{R, i} \approx \Delta E^\ast \). The reasons for making this assumption will be explained below. However, we anticipate that on defining \(p_i \) as the fraction of defects belonging to the \(i \)th species: \(p_i \equiv N_{\text{brok}, i}/N_{\text{tot}, i} \), and \(\tau_i \) as the correlation time which characterizes its fluctuations, the conditions (iii) and (vi) imply a logarithmic distribution of the correlation times of the different species.

(v) The association between the resistance \(r_{0, i} \) of the \(i \)th species and the corresponding activation energies \(E_{D, i} \) and \(E_{R, i} \) has been achieved by adopting the criterion that increasing values of \(\tau_i \) are paired with increasing values of \(r_{0, i} \). Alternative choices are of course possible.

The physical meaning and the implications of the assumptions (iii) and (iv) can be understood by the following arguments, which also provide theoretical grounds for the numerical results reported in section 3.

Let us consider a network made up of a single species of resistors at equilibrium, in the vanishing current limit \(I \to 0 \) [57]. In this case, it is easy to derive the following expression for the average fraction of defects under stationary fluctuations [57]:

\[
\langle p \rangle = \frac{W_D(1 - W_R)}{W_D(1 - W_R) + W_R} = \frac{1}{1 + (W_R/W_D(1 - W_R))}
\]

where \(W_D \) and \(W_R \) are the probabilities of breaking and recovery processes (for a SSN these quantities are independent of the index \(i \) and, at equilibrium, they are also independent of the index \(n \) specifying the position within the network). Now, it is convenient to introduce...
Tuning the correlation decay in the resistance fluctuations of multi-species networks

the following definition: $\lambda \equiv \ln(W_R/W_D) = (E_D - E_R)/k_B T$. Since $W_R \ll 1$, equation (1) can be approximated as

$$\langle p \rangle \approx \frac{1}{1 + e^\lambda}. \quad (2)$$

Since λ controls the average fraction of defects at equilibrium, determining the ‘intrinsic’ disorder of the network, it can be called the intrinsic disorder parameter. Thus, the energy difference $E_D - E_R$ is the effective activation energy which sets the average defect fraction in the network. Furthermore, we note that a SSN can be considered as a network subjected to random telegraph noise (RTN) of the elemental resistors, where each resistor r fluctuates between two states, 1 (active) and 2 (broken), with the following transition rates: $W(1 \to 2) = W_D$ and $W(2 \to 1) = W_R/(1 - W_R)$. Thus, according to RTN theory [2], the power spectral density of the elemental fluctuator is given by

$$S_r(f) = \frac{4\langle p \rangle(1 - \langle p \rangle)\rho \tau_r}{1 + (2\pi f \tau_r)^2} \quad (3)$$

where ρ is the difference in resistance of the two states and τ_r is the correlation time of the elemental fluctuator, given by

$$\frac{1}{\tau_r} = W(1 \to 2) + W(2 \to 1) = W_D + \frac{W_R}{(1 - W_R)} = \frac{W_D}{\langle p \rangle}. \quad (4)$$

In [57] it has been shown that this expression holds also for the correlation time τ of the fluctuations of the global network resistance R, at least when the average fraction of defects $\langle p \rangle$ is sufficiently far from the percolation threshold [46]. Otherwise stated, under the last condition, we have $\tau = \tau_r$. On the other hand, it is well known that when a global quantity, like the network resistance, results from the superposition of several exponential relaxation processes with different correlation times, its spectral density can be written as [1,2]

$$S_R(f) = \int_0^\infty d\tau' g_R(\tau') \frac{4\tau'}{1 + (2\pi f \tau')^2} \quad (5)$$

where $g_R(\tau') d\tau'$ specifies the contribution to the fluctuations of the global quantity from the elemental processes whose correlation times lie in the interval between τ' and $\tau' + d\tau'$. In conclusion, since for a SSN at equilibrium $g_R(\tau') = \delta(\tau' - \tau)$, the power spectral density of the network resistance fluctuations takes the Lorentzian form of equation (3).

The study of non-equilibrium stationary fluctuations of a SSN [29,58] has shown that many of the effects of an external current can be approximately described within a mean field-like framework, by considering average transition probabilities, $\langle W_D \rangle$ and $\langle W_R \rangle$ [58], which depend on the bias through the average temperature: $\langle T \rangle I = T + \theta R_0 I^2$, where θ is the structure thermal resistance and R_0 is the network resistance in the vanishing current limit. Of course, at high external bias, the distribution of currents and temperatures within the network becomes strongly non-homogeneous, resulting in breaking and recovery probabilities, $W_D = \exp(-E_D/k_B T_n)$ and $W_R = \exp(-E_R/k_B T_n)$, strongly dependent on the position of the elemental resistor within the network. This effect, which gives rise to a filamented growth of the defect pattern, characteristic of biased percolation [29,58], also

$^3 p_c = 0.5$ for bond percolation on a square lattice network of size $N \times N$ in the limit $N \to \infty$. See for example [46].
implies different correlation times for the fluctuations of the elemental resistors. However, this difference in the correlation times is never so large as to modify significantly the shape of the power spectral density of the network resistance fluctuations, which remains Lorentzian-like at all currents compatible with stationary states of the network [29, 58]. In other terms, the density function $g_R(\tau)$ in equation (5) is different from zero only in a relatively small interval of τ values.

Coming back to a MSN, it is convenient to define for all the species i the quantities

$$\lambda_i \equiv (E_{D,i} - E_{R,i})/k_B T,$$

which control the average fraction of defects $\langle p_i \rangle$ at the equilibrium. Thus, the value of λ_i determines the contribution of the ith species to the ‘intrinsic’ disorder of the network. Then, by taking $\lambda_i \approx \text{cost} = \Delta E^*/k_B T$, $\forall i$, we are assuming an approximately equal concentration of the different species at equilibrium. In such a situation, we expect a mean field-like approach to work and that the energy ΔE^* plays the same role, of effective activation energy, as was played by the energy difference $E_D - E_R$ in the SSN at equilibrium. In other terms, ΔE^* controls the average defect fraction in the network. Furthermore, it must be noted that the conditions (iii) and (vi), coupled with equations (2) and (4), imply a logarithmic distribution of the correlation times $\tau_i \in [\tau_{\text{min}}, \tau_{\text{max}}]$, where τ_{min} and τ_{max} define the time interval in which the correlation times are distributed. Since $W_{D,i}$ and $W_{R,i}$ depend also on T_n (i.e. on the external temperature and on the local Joule heating) a logarithmic distribution of τ_i is obtained only at the equilibrium, in the vanishing current limit, when the local Joule heating is negligible, $\Delta \tau \approx 0$, and all the resistors are at the same temperature: $T_n = T$. Moreover, apart from this effect related to a non-homogeneous current distribution, in the non-linear regime there is an increase of the average temperature which modifies the average transition probabilities, changing τ_{min} and τ_{max}, according to equation (4). In conclusion, the values of τ_{min} and τ_{max} depend on the particular material $(E_{D,i}^{\text{min}}, E_{D,i}^{\text{max}}, E_{R,i}^{\text{min}}, E_{R,i}^{\text{max}})$ and on the external conditions $(T$ and $I)$.

The time evolution of the network is then obtained from Monte Carlo simulations which update the network resistance after a sweep of breaking and recovery processes, according to an iterative procedure detailed in [29]. The sequence of successive network configurations provides a resistance signal, $R(t)$, after an appropriate calibration of the timescale. Then, depending on the external conditions and on the network parameters, the network either reaches a steady state or undergoes an irreversible electrical failure [29, 30, 58, 59]. This latter possibility is associated with the condition that the global average defect fraction $\langle p \rangle = \sum_i \langle p_i \rangle$ reaches the percolation threshold, p_c. Therefore, for a given network at a given temperature, a threshold current value, I_B, exists above which electrical breakdown occurs [29]. For current $I \leq I_B$, the steady state of the network is characterized by fluctuations of the defect fraction, δp, and of the resistance, δR, around their respective average values $\langle p \rangle$ and $\langle R \rangle$.

All the results reported here concern networks of sizes 75×75 made up of $N_{\text{spec}} = 15$ resistor species. For the other parameters the following values have been used as representative of realistic cases: $r_{\text{min}} = 0.5$ Ω and $r_{\text{max}} = 1.5$ Ω, $\alpha_{\text{min}} = 10^{-4}$ K^{-1}, $\alpha_{\text{max}} = 10^{-1}$ K^{-1}. Moreover, we have taken $E_{D,i}^{\text{min}} = 58$ meV, $E_{D,i}^{\text{max}} = 375$ meV, $E_{R,i}^{\text{min}} = 37$ meV, $E_{R,i}^{\text{max}} = 346$ meV and $\Delta E^* \approx 25$ meV (to be precise, the average value of the difference between $E_{D,i}/k_B$ and $E_{R,i}/k_B$ is $\Delta E^*/k_B \approx 319.86$ K).

According to equation (4) and conditions (iii) and (iv), in equilibrium (or nearly equilibrium) at the reference temperature $T_{\text{ref}} = 300$ K, the above energy values imply

doi:10.1088/1742-5468/2009/02/P02053
Figure 1. Resistance evolution of a multi-species network (MSN model) calculated at 300 K. The resistance is expressed in ohms and the time in iterative steps. The inset highlights the resistance fluctuations on an enlarged timescale. In particular, the time units are divided by a factor of 10^{-5}.

$\langle p_i \rangle \approx 0.25 \forall i$, $\tau_{\text{min}} \approx 2$ and $\tau_{\text{max}} \approx 5 \times 10^5$ (where times are expressed in units of iterative steps). At $T > T_{\text{ref}}$, the interval defined by τ_{min} and τ_{max} becomes progressively narrower, while $\langle p_i \rangle$ increases. Of course, the opposite happens for $T < T_{\text{ref}}$. We underline that these values of $\langle p_i \rangle$, τ_{min} and τ_{max}, calculated from equation (4) are reported here just to give a qualitative idea of the network state and because they can be useful for the choice of the parameters E_D^{min}, E_D^{max}, E_R^{min}, E_R^{max}. However all the network properties, including the average defect fraction, the correlation time of the resistance fluctuations and the other results discussed in section 3, are obtained directly from the output of simulations. Finally, the auto-correlation functions and the power spectral densities of the resistance fluctuations are calculated by analyzing stationary $R(t)$ signals consisting of $1-2 \times 10^6$ records.

3. Results

Figure 1 reports the resistance evolution of a MSN calculated at 300 K in the vanishing current limit. The inset displays a small part of the same evolution over an enlarged timescale. Here we notice the coexistence of different characteristic timescales in the $R(t)$ signal. Indeed, the long relaxation time associated with the achievement of the steady state, τ_{rel}, coexists with the shorter times characterizing the resistance fluctuations, as displayed in the inset. For comparison, figure 2 reports the time evolution of the resistance of a SSN obtained at $T = 300$ K in the same bias conditions. In this case, the values of the activation energies ($E_D = 350$ meV and $E_R = 310$ meV) are chosen to give a relaxation time comparable with that of the signal in figure 1. Now, the resistance signal is controlled by a single timescale ($\tau \approx \tau_{\text{rel}}$) and it is essentially flat over timescales shorter...
than \(\tau \). This is emphasized by the inset in figure 2 where the stochastic signal resembles that of a few-level system (it must be noted that the vertical scale of the inset in figure 2 is significantly enhanced with respect to that of figure 1).

Figure 3 displays the auto-correlation functions of the resistance fluctuations in figures 1 and 2, corresponding to the MSN model (black triangles) and to the SSN model (black squares). A log–log representation is adopted for convenience. The solid and short dashed lines represent the best fits to the two auto-correlation functions carried out, respectively, with a power law and an exponential law. The fitting procedure confirms the exponential decay of the correlations in the resistance fluctuations of the SSN. Furthermore, it indicates the existence of long-term correlations in the resistance fluctuations of the MSN, characterized by a power law decay of the auto-correlation function:

\[
C_{\delta R}(t) \sim t^{-\gamma}
\]

with \(0 < \gamma < 1 \). In particular, here we have found a value \(\gamma = 0.22 \pm 0.01 \) for the correlation exponent. We stress that the above expression for the auto-correlation function implies a divergence of the correlation time, as can be easily seen by considering the following general definition of the correlation time [61]:

\[
\tau = \int_0^\infty \frac{C_{\delta R}(t)}{C_{\delta R}(0)} \, dt.
\]

Figure 4 shows the power spectral densities of the resistance fluctuations of a MSN and of a SSN calculated at 300 K by Fourier transforming the auto-correlations functions of figure 3.

doi:10.1088/1742-5468/2009/02/P02053
Tuning the correlation decay in the resistance fluctuations of multi-species networks

Figure 3. Auto-correlation functions of the resistance fluctuations calculated for a MSN (black triangles) and for a SSN (black squares). Both functions are obtained at 300 K. The solid and short dashed gray lines show the best fits respectively with a power law of exponent $\gamma = 0.22$ and with an exponential with correlation time $\tau = 5.8 \times 10^4$. The time is expressed in iterative steps.

Figure 4. Power spectral density of the resistance fluctuations at 300 K calculated for a MSN (solid line) and for a SSN (dotted line). The gray solid line shows the best fit to the MSN spectrum with a power law of slope -0.94. The gray dashed curve represents the best fit with a Lorentzian to the SSN spectrum.
Tuning the correlation decay in the resistance fluctuations of multi-species networks

Figure 5. Resistance evolution of a MSN at 400 and 600 K. The resistance is expressed in ohms and the time in iterative steps.

Here, the two gray solid lines represent the best fits with a power law of the MSN spectrum in the low and high frequency regions. We can see that the resistance fluctuations of the multi-species network exhibit at low frequencies a power spectral density scaling as $1/f^\alpha$, with a value $\alpha = 0.94$. We notice that this scaling behavior holds over several decades of frequency. This result is a consequence of the envelope of the different timescales associated with the different resistor species, described by equation (5). However, in the high frequency region, the slope of the spectrum is -1.53 (in fact, the slow relaxations are ineffective at such high frequencies). For contrast, the gray dashed curve in figure 4 is the best fit with a Lorentzian to the SSN spectrum. The corner frequency of the Lorentzian, $f_c = 4.0 \times 10^{-6}$ (arbitrary units), is consistent with the correlation time reported in figure 3 and obtained from the best fit of the corresponding auto-correlation function.

Now, we will discuss how the temperature of the thermal bath affects the resistance fluctuations of a multi-species network at equilibrium or nearly equilibrium conditions (low biases). In other words, we will analyze the properties of the fluctuations in the ohmic regime and for different temperatures. Figure 5 reports the resistance evolutions calculated at increasing temperatures: $T = 400$ K (lower curve) and $T = 600$ K (upper curve). Already this qualitative comparison between the $R(t)$ signals shows that a temperature increase implies a significant growth of both the average resistance and the variance of the resistance fluctuations (see also figures 1). Furthermore, this comparison indicates a drastic reduction of the relaxation time at increasing temperatures (more than one order of magnitude when T rises from 300 to 400 K).

The temperature is also found to affect the distribution of the resistance fluctuations by increasing its skewness, as shown in figure 6, which reports the probability density function (PDF) of the resistance fluctuations for several temperatures. A normalized
Figure 6. Normalized probability densities of the resistance fluctuations of a MSN calculated at 300 K (full diamonds), 400 K (open circles), 500 K (open upward-pointing triangles), 600 K (full downward-pointing triangles) and 700 K (stars). \(\sigma \) is the root mean square deviation from the average resistance. The solid black curve is the Gaussian distribution and the dashed one the BHP distribution (see the text).

A linear–log representation has been adopted here for convenience (\(\sigma \) is the root mean square deviation from the average resistance). The normalized Gaussian distribution is also reported for comparison. The figure shows a significant non-Gaussianity of the resistance fluctuations, which becomes stronger at high temperatures, when the system approaches failure conditions. This behavior is completely different from the behavior of the defect fraction fluctuations, shown in figure 7, which remains Gaussian at all temperatures. This different behavior can be easily understood. Actually, with increasing temperature, the local resistivity fluctuations become progressively larger. This emphasizes the dynamical redistribution of currents and brings about the emergence of long-range correlations inside the network [54]. Then, the violation of the validity conditions of the central limit theorem leads to a non-Gaussian resistance noise [1,2,19,54,62]. In other words, the results in figure 6 imply that the correlation length of the resistance fluctuations progressively increases with the temperature. A discussion of the distribution of the resistance fluctuations and the role played in the non-Gaussianity by the size, shape and disorder of a SSN is reported in [30,59], where the link with the universal distribution of the fluctuations of Bramwell, Holdsworth and Pinton (BHP) [63,64] is analyzed.

Figure 8 reports the auto-correlation functions of the resistance fluctuations of a MSN calculated at 400 and 600 K. To help the comparison, the auto-correlation function at 300 K (already shown in figure 3) has been drawn again in figure 8, together with its power law best fit (gray solid line). The dashed gray curves represent the best fit to the correlation functions at 400 and 600 K with the expression

\[
C_{\delta R}(t) = C_0 t^{-h} \exp(-t/u).
\]
Figure 7. Normalized probability densities of the defect fraction fluctuations calculated at 300 K (full diamonds), 400 K (open circles), 500 K (open upward-pointing triangles), 600 K (full downward-pointing triangles) and 700 K (stars). Here σ is the root mean square deviation from the average value of the defect fraction. The solid black curve is the Gaussian distribution.

The values of the best fit parameters are $C_0 = 1.13$, $h = 0.30$ and $u = 1.42 \times 10^4$ for $T = 400$ K and $C'_0 = 0.965$, $h' = 0.46$ and $u' = 5.57 \times 10^2$ for $T = 600$ K. The fit to C_{SR} with equation (8) is found to be very satisfactory. We conclude that at $T > 300$ K, the auto-correlation function of the resistance fluctuations of the MSN is well described by a power law with an exponential cut-off. Such kinds of mixed decays of the correlations, non-exponential and non-power law, are often found in the transition of a complex system from short-term correlated to long-term correlated regimes [35, 55], [65]–[70]. It should be noted that for $u \rightarrow \infty$, equation (8) becomes a power law, while for $h \rightarrow 0$, it describes an exponential decay. Actually, figure 8 highlights a strong reduction of the correlation time of the resistance fluctuations as the temperature increases. This result can be understood in terms of equation (4), by considering the thermally activated expressions of the breaking and recovery probabilities. Indeed, the increase of temperature above T_{ref} implies the reduction of the ratio $\tau_{\text{min}}/\tau_{\text{max}}$ and the corresponding narrowing of the interval $[\tau_{\text{min}}, \tau_{\text{max}}]$, where the τ_i are distributed. This trend tends to suppress the power law decay of correlations in favor of the exponential decay. For similar reasons, the temperature decrease below T_{ref} implies the opposite trend, with the correlations keeping their power law decay over wider timescales. For example, at $T = 200$ K the ratio $\tau_{\text{min}}/\tau_{\text{max}}$ becomes 7.5×10^7. Thus, we can define the transition temperature, T^*, as the temperature value which signals the crossing from a long-term correlated behavior (occurring for $T < T^*$) to a behavior characterized by a finite and relatively short correlation time (occurring for $T > T^*$).
Figure 8. Auto-correlation functions of the resistance fluctuations of a MSN calculated at different temperatures. The solid gray curve shows the best fit with a power law to the auto-correlation function at 300 K (the same one as in figure 3). The dashed gray curves display the best fit to the auto-correlation functions at 400 and 600 K with the function $C(t) = C_0 t^{-h} \exp[-t/u]$ (see the text for the values of the fit parameters). The time is expressed in iterative steps.

The correlation time of the resistance fluctuations can be directly estimated by making use of equations (7) and (8). In terms of the best fit parameters of the auto-correlation function, it is easy to derive the following analytical expression for τ:

$$\tau = u^{1-h} \Gamma(1-h)$$ \hspace{1cm} (9)

where Γ is the Gamma function. The values of τ calculated in this way increase at decreasing temperatures. In particular, τ exhibits a sharp increase when T approaches T^*, in agreement with the long-term decay of the correlation function at this temperature. We have found that the behavior of τ versus temperature is well fitted with the power law $\tau \sim (T - T^*)^{-\theta}$. Then, the fit procedure allows us to determine the value of the transition temperature. We have found $T^* = 306$ K and $\theta = 2.7$. Figure 9 reports the values of τ as a function of the difference $T - T^*$. The dashed straight line corresponds to the above mentioned power law. Therefore, we can conclude that $T^* \approx \Delta E^*/k_B$. Furthermore, as a result of the particular choice of the parameters adopted in the present calculations, the transition temperature is close also to the reference temperature, $T^* \approx T_{\text{ref}}$. However we remark that the temperature T_{ref} has been introduced in the model merely to help with the choice of the activation energies (to provide a sufficiently wide interval $[\tau_{\text{min}}, \tau_{\text{max}}]$), while ΔE^* is the relevant input parameter which determines T^*.

Figure 10 displays the spectral densities of the resistance fluctuations calculated at 400 and 600 K. The gray lines represent the best fits with a power law of the MSN spectra.
Tuning the correlation decay in the resistance fluctuations of multi-species networks

Figure 9. Correlation time of the resistance fluctuations of a MSN as a function of the difference $T - T^*$. The time is expressed in iterative steps and the temperature in K. The value of T^* is reported in the figure. The dashed line shows the fit with a power law of exponent $\theta = 2.7$.

in the low and high frequency regions. To be precise, at low frequencies, the slopes of the lines are -0.87 and -0.78 respectively for $T = 400$ and 600 K. However, at high frequencies the respective slopes are -1.31 and -1.02. Thus, in both frequency regions, low and high, the slopes of the spectra are reduced when the temperature increases. We conclude that at $T > T^*$ the power spectrum keeps the $1/f^\alpha$ form with the value of α significantly decreasing below unity. This decrease is pointed out in figure 11, which reports α as a function of the temperature. The dashed line in figure 11 is the best fit with a linear law. We notice that such a decrease of the exponent, from $\alpha \approx 1$ to $0.8-0.5$, is frequently observed in the experiments at intermediate temperatures [1]–[4], [18]. On the other hand, many experiments have indicated a strong dependence of the detailed behavior of $\alpha(T)$ also on the particular material [1]–[3], [18]. In this respect, we remark that in this work we are focusing our attention on the general features of the spectra, related to the terms of correlations, rather than on the interpretation of a particular set of experiments. Actually, in our model the quantity ΔE^* (determining the transition temperature T^*) is the input parameter which can be adjusted for a quantitative fit of experiments. Furthermore, we stress that the monotonic decrease of α for $T > T^*$ is obtained here in the linear regime of currents, i.e. neglecting Joule heating effects. Actually, these effects, whose importance also depends on the temperature, can give rise to more complicated behaviors of α versus T, which are outside the range of interest of this research but can be implemented with minor effort.

Now, to complete the analysis of the MSN model, we consider the dependence on the temperature of the average resistance, $\langle R \rangle$, and of the variance of the resistance...
fluctuations, \(\langle (\Delta R)^2 \rangle\), for a multi-species network in nearly equilibrium conditions. This dependence has already been qualitatively depicted in figures 1 and 5. However here we want to quantify these behaviors, also with the purpose of checking by means of numerical results the validity of the mean field-like approach discussed in section 2. Figure 12 displays \(\langle R \rangle\) as a function of the temperature, while the inset shows the dependence on the temperature of the average defect fraction. We have performed a one-parameter best fit of the numerical values of \(\langle p \rangle\) with the expression \(\langle p \rangle = c_p/(1 + e^{\Delta E^*/K_B T})\). We have found \(c_p = 0.93 \pm 0.03\), a value compatible with the expression \(\langle p \rangle \approx 1/(1 + e^{\Delta E^*/K_B T})\). Thus, equation (2) qualitatively accounts for the behavior of the average defect fraction versus temperature.

As regards the dependence on temperature of the average resistance, in percolation theory [46] the following scaling relation between the network resistance and the defect fraction is well known: \(R \sim |p - p_c|^{-\mu}\). We note that in the present model at the vanishing current limit [57], the percolation is uncorrelated and the exponent \(\mu\) takes the universal value [46] \(\mu = 1.303\), while \(p_c = 0.5\) [46] (see footnote 3). The dashed curve in figure 12 shows the best fit of the numerical data for the average resistance with the expression \(\langle R \rangle = c_R\langle p \rangle - p_c|^{-\mu}\). In the best fit procedure the values of \(\mu\) and \(p_c\) have been taken fixed to their theoretical values, while we have taken \(\langle p \rangle = c_p/(1 + e^{\Delta E^*/K_B T})\). The values found for the fitting parameters are \(c_R = 0.42 \pm 0.01\) \(\Omega\) and \(c_p = 0.80 \pm 0.03\). Thus, the dependence on temperature of the average resistance of a MSN in the linear regime is well described by the usual scaling relation coupled with the mean field-like expression for \(\langle p \rangle\).
Figure 11. Noise exponent α as a function of the temperature. The dashed line refers to a linear best fit of the calculated values of the exponent.

Figure 13 reports the variance of the resistance fluctuations as a function of the temperature. This behavior can be easily understood by considering first the power law relation between the variance of the resistance fluctuations and the average resistance\cite{46,49}: $\langle(\Delta R)^2\rangle \sim \langle R \rangle^\eta$, often written in terms of the relative variance, as

$$\frac{\langle(\Delta R)^2\rangle}{\langle R \rangle^2} \sim \langle R \rangle^s$$

(10)

where $s = \eta - 2$. On reporting on a log–log plot the relative variance $\langle(\Delta R)^2\rangle/\langle R \rangle^2$ versus $\langle R \rangle$, the calculated slope provides for the exponent s the value $s = 2.6 \pm 0.01$, as shown in figure 14. We note that this value of the relative noise exponent agrees with the value reported in\cite{57}. This agreement is consistent with the fact that the MSN model generalizes the results of\cite{57} to networks characterized by $1/f^\alpha$ noise. Now, we can use the information on the exponent $\eta = s + 2 = 4.6$ to check the consistency among the dependence on temperature of $\langle(\Delta R)^2\rangle$, the equation (2), the scaling relations between $\langle R \rangle \sim \langle p \rangle$ and those between $\langle(\Delta R)^2\rangle \sim \langle R \rangle$. The solid curve in figure 13 shows the best fit to the variance of the resistance fluctuations considered versus temperature, with the following expression: $\langle(\Delta R)^2\rangle = c_\Delta c_R^2 \langle p \rangle - p_c^{-\mu p}$ where the fitting parameters take the values $c_\Delta = (4.42 \pm 0.04) \times 10^6$, $c_R = 1.0 \pm 0.04$ and $c_p = 0.74 \pm 0.03$. Thus, a mean field-like framework is overall able to account for the dependence on temperature of the lowest two moments of the resistance fluctuation distribution.

So far we have analyzed the resistance fluctuations of the network in equilibrium or in nearly equilibrium conditions, in the ohmic regime, and for different temperatures. Now, we will briefly discuss the non-equilibrium properties of the fluctuations at high biases, in the non-linear regime, and for a given temperature. Figure 15 shows the auto-correlation functions of the resistance fluctuations of a MSN for increasing values of the external current. All the functions are calculated at 300 K. The open squares represent the
Tuning the correlation decay in the resistance fluctuations of multi-species networks

Figure 12. Variation of the average resistance (full circles) and average defect fraction (stars, in the inset) as a function of the temperature. The resistance is expressed in ohms and the temperature in K. The solid and dashed straight lines are the best fits with the expressions reported in the figure (see the text for the values of the fit parameters).

Figure 13. Variance of the resistance fluctuations as a function of the temperature. The variance is expressed in Ω^2 and the temperature in K. The dashed straight line shows a best fit with the expression reported in the figure (see the text for the values of the fit parameters).
Tuning the correlation decay in the resistance fluctuations of multi-species networks

Figure 14. Relative variance of the resistance fluctuations as a function of the average resistance (this latter expressed in ohms). The dashed line shows a best fit with a power law of exponent $s = 2.6$.

Figure 15. Auto-correlation functions of the resistance fluctuations of a MSN at room temperature for increasing value of the external current. Ohmic regime: $I = 5$ mA (open square), non-linear regime: $I = 200$ mA (black triangles), $I = 220$ mA (open circles) and $I = 250$ mA (gray diamonds). The dotted gray line is the best fit with a power law, the dashed lines are the best fit with the function: $C(t) = C_0 t^{-h} \exp[-t/u]$ (see the text for the values of the fit parameters).
Tuning the correlation decay in the resistance fluctuations of multi-species networks

Figure 16. Power spectral density of the resistance fluctuations of a MSN at room temperature for increasing value of the external current. Ohmic regime: curve (1) $I = 5 \text{ mA}$; non-linear regime: curve (2) $I = 200 \text{ mA}$, curve (3) $I = 220 \text{ mA}$ and curve (4) $I = 250 \text{ mA}$. The solid gray lines are the best fit with power laws; the resulting slopes in the different regions of the spectrum are reported in the figure. For visual reasons curve (2) has been multiplied by a factor of 2×10^2, curve (3) by a factor of 2×10^4 and curve (4) by 1×10^6.

auto-correlation of the resistance fluctuations in the ohmic regime: $I = 5 \text{ mA}$; the other three curves correspond to the non-linear regime. To be precise, we use black triangles: $I = 200 \text{ mA}$; open circles: $I = 220 \text{ mA}$; gray diamonds: $I = 250 \text{ mA} > I_B$. Thus, the last curve corresponds to failure of the network, i.e. non-stationary resistance fluctuations. In this case, the auto-correlation function has been calculated by considering only the nearly stationary portion of the $R(t)$ signal (after subtraction of a linear trend). The dotted gray line is the best fit with a power law of slope -0.22 ± 0.01, the dashed lines are the best fits with equation (8). The values of the parameter h corresponding respectively to $I = 200, 220, 250 \text{ mA}$ are the following: $h = 0.19, 0.17, 0.11$ (in all cases, the numerical error is estimated as ±0.01). The values of the parameter u corresponding to the same currents respectively are $(1.26 \pm 0.01) \times 10^5, (9.15 \pm 0.01) \times 10^4, (5.84 \pm 0.01) \times 10^3$. Thus, both h and u decrease with increasing biases and for high biases $h \to 0$. In other terms, with increasing currents, time correlations decay progressively faster, the long-term correlated behavior is destroyed and there emerges a trend towards a simple exponential decay.

The corresponding effect in the frequency domain of increasing biases is shown in figure 16, which reports the power spectral densities at 300 K. The curve (1) is obtained for the ohmic regime ($I = 5 \text{ mA}$); the other three curves display the spectra in the non-linear regime. The solid gray lines are the best fits with power laws in the low and high frequency regions of the spectrum. The slopes are specified in the figure. We note that: (i) the corner frequency between the two regions progressively moves towards lower
frequencies at increasing biases; (ii) the slopes in the high frequency region are $-1.56, -1.62, -1.66, -1.78$ respectively for $I = 5, 200, 220$ and 250 mA, i.e. the slopes increase with increasing currents (in all cases, the numerical error on the slope values is estimated as ± 0.01). Thus, at high biases, the spectral densities show a trend towards a transition from a $1/f$ to a Lorentzian behavior. However, we remark that for the present choice of the initial conditions and/or the numerical values of the parameters used in these calculations we do not have a pure Lorentzian spectrum.

4. Conclusions

We have developed a stochastic model for investigating the $1/f^\alpha$, with $0 < \alpha < 2$, resistance noise in disordered materials. More precisely, we have considered the resistance fluctuations of a thin resistor with granular structure in different stationary states: from nearly equilibrium up to far from equilibrium conditions. Furthermore we have also considered fluctuations in non-stationary states, associated with failure of the electric properties. This system has been modeled as a two-dimensional network made up of different species of elemental resistors. The steady state of this multi-species network is determined by the competition among different thermally activated and stochastic processes of breaking and recovery of the elementary resistors. The network properties have been studied by means of Monte Carlo simulations as a function of the temperature and applied current, in both ohmic and non-ohmic regimes. A mean field-like framework has also been used to qualitatively describe the dependence on temperature of the lowest two moments of the resistance fluctuation distribution. Furthermore, the correlation properties of the resistance fluctuations have been analyzed in both the time and the frequency domains. The model gives rise to resistance fluctuations with different power spectra, depending on the external conditions. Thus it provides a unified approach to the study of materials exhibiting either Lorentzian noise or $1/f^\alpha$ noise. By analyzing the correlations in the time domain, it has been found that the resistance fluctuations display a crossover from long-term correlations to intermediate-term correlations. Although a trend towards an exponential decay has been identified, for the present choice of the parameters/initial conditions, we do not have a single-exponential decay. However, the model proposed seems able to account for the complex interplay of effects exerted on the correlation properties of the resistance fluctuations by the external conditions and resulting in the complicated behavior of the noise exponent observed in many experiments. In future work, the roles of different initial conditions, such as unequal presence of species and/or non-uniform distribution inside the network, which can give rise to interesting spatio-temporal organization patterns, should be explored.

References

[1] Weissman M B, 1988 Rev. Mod. Phys. 60 537
Hooge F N, Kleinpenning T G M and Vandamme L K J, 1981 Rep. Prog. Phys. 44 479
Dutta P and Horn P M, 1981 Rev. Mod. Phys. 53 297
[2] Kogan Sh, 1996 Electronic Noise and Fluctuations in Solids (Cambridge: Cambridge University Press)
[3] Reggiani L, Pennetta C, Akinov V, Allinoto E and Rosini M (ed), 2005 Unsolved Problems of Noise and Fluctuations; AIP Conf. Proc. 800
González T, Mateos J and Parco D (ed), 2005 Noise and Fluctuations; AIP Conf. Proc. 780
Reza S, Huynh Q T, Bosman G, Sippel-Oakley J and Rinzler A G, 2006 J. Appl. Phys. 99 114309
Reza S, Bosman G, Islam M S and Kamins T I, 2006 IEEE Trans. Nanotechnol. 5 523

doi:10.1088/1742-5468/2009/02/P02053
Tuning the correlation decay in the resistance fluctuations of multi-species networks

[5] Bid A, Bora A and Raychaudhuri A K, 2006 Nanotechnology 17 152
[6] Soliveres S, Gyani J, Delseny C, Hoffmann A and Pascual F, 2007 J. Appl. Phys. 90 082107
[7] Tsaros M, Svensson J, Kuzmin L and Campbell E E B, 2007 J. Appl. Phys. 90 163503
[8] Tarsoff J, 2007 Nano Lett. 7 194
[9] Lin Y M, Appenzeller J, Knoch J, Chen Z and Avouris P, 2006 Nano Lett. 6 930
[10] Deville G, Leturcq R, L'Hôte D, Tourbot R, Mellor C J and Henini M, 2006 Physica E 34 252
[11] Leturcq R, L'Hôte D, Tourbot R, Mellor C J and Henini M, 2003 Phys. Rev. Lett. 90 076402
[12] Torquato S, 2002 Random Heterogeneous Materials, Microscopic and Macroscopic Properties (New York: Springer)
[13] Sahimi M, 1998 Phys. Rep. 306 213
[14] Mukherjee C D and Bardhan K K, 2003 Phys. Rev. Lett. 91 025702
Mukherjee C D, Bardhan K K and Heaney M B, 1999 Phys. Rev. Lett. 83 1215
Nandi U N, Mukherjee C D and Bardhan K K, 1996 Phys. Rev. B 54 12903
[15] Abderrahim M and Grier D G, 1996 Phys. Rev. B 54 2723
[16] Bloom I and Balberg I, 1999 Appl. Phys. Lett. 74 1427
[17] Lust L M and Kakalios J, 1994 Phys. Rev. E 50 3431
[18] Alers G B, Weissman M B, Averback R S and Shyu H, 1989 Phys. Rev. B 40 900
[19] Snyder G, Weissman M B, Hardner H T and Parman C, 1997 Phys. Rev. B 56 9205
[20] Planes J and Francois A, 2004 Phys. Rev. B 70 184203
[21] Carbone A, Kotowska B K and Kotowski D, 2005 Phys. Rev. Lett. 95 236001
[22] Chen K M, Huang G W, Chiu D Y, Huang H J and Chang C Y, 2002 Appl. Phys. Lett. 81 2578
[23] Kar S, Raychaudhuri A K, Ghosh A, Von Löhneysen H and Weiss G, 2003 Phys. Rev. Lett. 91 216603
[24] Chiteene C, McIntosh D S and Balberg I, 2003 Phys. Rev. B 67 024207
[25] Cemanov V, Ganesan G, Puzic A, Schulz S, Eizenberg M, Habermeier H U and Stoll H, 2004 Noise as a Tool for Studying Materials; Proc. SPIE 5112 271
[26] Garnier N and Ciliberto S, 2005 Phys. Rev. E 71 060101
[27] Andersen J V, Sorrentino D and Leung K T, 1997 Phys. Rev. Lett. 78 2140
Lamaignère L, Carmona F and Sorrentino D, 1996 Phys. Rev. Lett. 77 2738
[28] Bodineau T and Derrida B, 2004 Phys. Rev. Lett. 92 180601
[29] Pennetta C, Reggiani L, Trefán G and Alfinito E, 2002 Phys. Rev. E 65 066119
Pennetta C, 2002 Fluctuation Noise Lett. 2 R29
[30] Pennetta C, Allinito E, Reggiani L and Ruffo S, 2004 Physica A 340 380
[31] Antal T, Droz M, Györgyi G and Rácz Z, 2001 Phys. Rev. Lett. 87 240601
[32] Györgyi G, Moloney N R, Ozogány K and Rácz Z, 2007 Phys. Rev. E 75 021213
[33] Dutta P, Dimon P and Horne P M, 1979 Phys. Rev. Lett. 43 646
[34] Zhang Y and Liang S, 1993 Rev. Mod. Phys. 65 829
[35] Weisman M B, 1993 Rev. Mod. Phys. 65 829
[36] Bäk P, Tang C and Wiesenfeld K, 1987 Phys. Rev. Lett. 59 381
De Los Rios P and Zhang Y C, 1999 Phys. Rev. Lett. 82 472
[37] Laurson L, Alava M J and Zapperi S, 2005 J. Stat. Mech. L11001
[38] Wang J, Kadar S, Jung P and Showalter K, 1999 Phys. Rev. Lett. 82 855
[39] Manna S S and Khakhar D V, 1998 Phys. Rev. E 58 R6935
[40] Kaulakys B and Ruseckas J, 2004 Phys. Rev. E 70 020101
[41] Kiss L B and Svedlindh P, 1993 Phys. Rev. Lett. 71 2817
[42] Celasco M and Eggenhöﬁner R, 2001 Eur. Phys. J. B 23 415
[43] Rakhmanov A L, Kugel K I, Blanter Y M and Kagan M Y, 2001 Phys. Rev. B 63 174424
[44] Shklovskii B I, 2003 Phys. Rev. B 67 045201
[45] Skvortsov K A, 2004 Phys. Rev. B 67 165106
[46] Daviden J and Schuster H G, 2002 Phys. Rev. E 65 026120
[47] Stauffer D and Aharony A, 1992 Introduction to Percolation Theory (London: Taylor and Francis)
[48] Odor G, 2004 Rev. Mod. Phys. 76 663
[49] de Arcangelis L, Redner S and Coniglio A, 1986 Phys. Rev. B 34 4656
[50] Ramra A, Tannous C and Tremblay A M S, 1985 Phys. Rev. A 31 2662
Ramra A, Tannous C, Breton and Tremblay A M S, 1985 Phys. Rev. Lett. 54 1718
[51] Park Y, Harris A B and Lubensky T C, 1987 Phys. Rev. B 35 5048
[52] Bergman D J, 1989 Phys. Rev. B 39 4598

doi:10.1088/1742-5468/2009/02/P02053
Tuning the correlation decay in the resistance fluctuations of multi-species networks

[52] Tremblay R R, Albinet G and Tremblay A M S, 1991 Phys. Rev. B 43 11546
[53] Gingl Z, Pennetta C, Kiss L B and Reggiani L, 1996 Semicond. Sci. Technol. 11 1770
[54] Seidler G T, Solin S A and Marley A C, 1996 Phys. Rev. Lett. 17 3049
[55] Sornette D, 2004 Critical Phenomena in Natural Sciences, Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (Berlin: Springer)
[56] Pennetta C, Reggiani L and Trefsn G, 2000 Phys. Rev. Lett. 84 5066
[57] Pennetta C, Trefsn G and Reggiani L, 2000 Phys. Rev. Lett. 85 5238
[58] Pennetta C, Allinfino E, Reggiani L, Fantini F, De Munari I and Scorzoni A, 2004 Phys. Rev. B 70 174305
[59] Pennetta C, Allinfino E, Reggiani L and Ruffo S, 2004 Noise in Complex Systems and Stochastic Dynamics II, Proc. SPIE 5471 38
[60] Sornette D and Vanneste C, 1992 Phys. Rev. Lett. 68 612
Vanneste C and Sornette D, 1992 J. Physique I 2 16212
[61] Bunde A, Eichner J F, Havlin S and Kantelhardt J W, 2003 Physica A 330 1
[62] Vandewalle N, Ausloos M, Houssa M, Mertens P W and Heyns M M, 1999 Appl. Phys. Lett. 74 1579
[63] Bramwell S T, Holdsworth P C W and Pinton J F, 1998 Nature 396 552
Bramwell S T, Christensen K, Fortin J Y, Holdsworth P C W, Jensen H J, Lise S, López J M, Nicodemi M, Pinton J F and Sellitto M, 2000 Phys. Rev. Lett. 84 3744
[64] Clusel M, Fortin J Y and Holdsworth P C W, 2004 Phys. Rev. E 70 046112
[65] Franz S, Lecomte V and Mulet R, 2003 Phys. Rev. E 68 066128
[66] Franz S, 2006 Europhys. Lett. 73 492
[67] Pennetta C, 2006 Eur. Phys. J. B 50 95
[68] Caccioli F, Franz S and Marsili M, 2008 J. Stat. Mech. P07006
[69] Abete T, de Candia A, Del Gado E, Fierro A and Coniglio A, 2007 Phys. Rev. Lett. 98 088301
[70] Parisi G and Zamponi F, 2008 arXiv:0802.2180

doi:10.1088/1742-5468/2009/02/P02053