Prevalence estimates of Helicobacter species infection in pancreatic and biliary tract cancers

Takako Osaki1 | Yingsong Lin2 | Naoki Sasahira3 | Makoto Ueno4 | Hideo Yonezawa1 | Fuhito Hojo5 | Masumi Okuda6 | Masato Matsuyama3 | Takashi Sasaki3 | Satoshi Kobayashi4 | Shun Tezuka4 | Kei Tanaka7 | Naoaki Dan7 | Sawako Kuruma8 | Naoto Egawa9 | Shigeru Kamiya1 | Shogo Kikuchi2

1Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
2Department of Public Health, Aichi Medical University School of Medicine, Aichi, Japan
3Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
4Division of Hepatobiliary and Pancreatic Medical Oncology, Kanagawa Cancer Center, Yokohama, Japan
5Graduate School of Medicine, Institute of Laboratory Animals, Kyorin University, Tokyo, Japan
6Department of Pediatrics, Hyogo College of Medicine, Hyogo, Japan
7Department of Internal Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
8Department of Internal Medicine, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
9Department of Internal Medicine, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan

Correspondence
Takako Osaki, Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.
Email: osaki@ks.kyorin-u.ac.jp

Funding information
the Ministry of Education, Culture, Sports, Science and Technology, Grant/Award Number: 21H0318, 17H04127 and 26293145

Abstract

Background: Helicobacter pylori infection is a well-established risk factor for gastric cancer and has been linked to other gastrointestinal diseases, including pancreatic and biliary tract cancers; however, the relevance of enterohepatic non-\textit{H. pylori} helicobacters to the pathophysiology of these diseases remains unclear.

Materials and Methods: We estimated the prevalence of two enterohepatic non-\textit{H. pylori} helicobacters (\textit{Helicobacter hepaticus} and \textit{Helicobacter bilis}) in the framework of a hospital-based case-control study involving 121 patients with biliary tract cancer, pancreatic cancer, or other gastrointestinal diseases. Bile and blood samples were collected from the patients undergoing endoscopic retrograde cholangiopancreatography. The presence of \textit{H. bilis}, \textit{H. hepaticus}, and other \textit{Helicobacter} spp. was examined using bacterial culture, PCR-based detection, and serological tests.

Results: Culture of \textit{Helicobacter} spp. from biliary brush samples was unsuccessful. Approximately 13.0\% (15/115) of the bile samples collected from patients with a variety of gastrointestinal cancers, including pancreatic and biliary tract cancers, tested positive for one of the enterohelical non-\textit{H. pylori} helicobacter species as determined by PCR. Specifically, \textit{H. bilis} and \textit{H. hepaticus} DNA were detected in 11 and 4 bile samples, respectively. Approximately 20\%–40\% of the patients tested positive for serum non-\textit{H. pylori} helicobacter IgG antibodies. The seroprevalence of \textit{H. bilis} and \textit{H. hepaticus} in the patients without evidence of \textit{H. pylori} infection appeared to be higher in the pancreatic cancer group than in the control group.

Conclusion: Our findings suggest a role for \textit{Helicobacter} spp., especially \textit{H. bilis} and \textit{H. hepaticus}, in the etiology of pancreatic and biliary tract cancers.

Keywords
biliary tract cancer, enterohelical helicobacters, \textit{Helicobacter bilis}, \textit{Helicobacter hepaticus}, \textit{Helicobacter pylori}, pancreatic cancer
INTRODUCTION

In 2019, a total of 36,356 Japanese men and women died from pancreatic cancer, making it the fourth leading cause of cancer-related death. For biliary tract cancer, both its incidence and mortality rates are higher in Japan than in other developed countries. Common challenges for these two cancers include their largely unknown etiologies, a lack of screening methods in the general population, and a dismal 5-year survival rate. Therefore, identifying modifiable environmental risk factors and improving early detection are crucial for easing the burdens of these two cancers.

Mounting evidence suggests a role of infection in the etiology of gastrointestinal (GI) cancers, including gastric, pancreatic, and biliary tract cancers. The discovery of Helicobacter pylori, a gram-negative bacterium colonizing the human stomach, has led to a paradigm shift in understanding the central role of H. pylori infection in the cascade of gastric carcinogenesis. In addition to H. pylori, an increasing number of Helicobacter bacteria have been isolated from the stomachs, intestinal tracts, and livers of mammals and birds, with at least 59 species being listed as of June 2021 according to the NCBI Taxonomy database. Among them, Helicobacter bilis and Helicobacter hepaticus were detected in human bile samples and have been associated with the risks of chronic active hepatitis, gallstone formation, and biliary tract cancer. However, the true prevalence of these enterohepatic non-\textit{H. pylori} helicobacters in human populations and their roles in disease pathophysiology remain to be determined. Furthermore, attempts to culture \textit{H. hepaticus} and \textit{H. bilis} from human biospecimens have been unsuccessful and have hampered the understanding of their pathogenicity.

Given the diverse outcomes associated with \textit{H. pylori} infection, we hypothesized that enterohepatic non-\textit{H. pylori} helicobacters are also involved in driving carcinogenesis in the pancreas and biliary tract. To address this hypothesis, we employed several approaches, such as bacterial culture, polymerase chain reaction (PCR)-based detection, and serological tests, to examine the prevalence of enterohepatic non-\textit{H. pylori} helicobacters in a cohort of GI cancer patients. We focused on \textit{H. bilis} and \textit{H. hepaticus} because these two bacterial species are well characterized in animals and have been linked to several GI diseases in humans. Additionally, we attempted to culture \textit{H. bilis} and \textit{H. hepaticus} from biliary brush samples in hopes of providing corroborating evidence on their roles in the pathogenesis of GI cancers.

METHODS

Clinical sample preparation

We performed this research in the framework of a multi-institutional hospital-based case–control study that focuses on genetic variations and bacterial infections in the etiologies of pancreatic and biliary tract cancers. For the present study, a simple questionnaire was used to collect demographic and clinical data. Biospecimens, which included serum and bile samples, were collected from 35 patients with biliary tract cancer (extrahepatic bile duct, ampulla of Vater, and gallbladder), 59 patients with pancreatic cancer (pancreatic adenocarcinoma), and 27 control subjects. The control group comprised patients who were diagnosed with a variety of benign or malignant GI tract diseases, including cholecystitis, gastric cancer, colon cancer, and suspected cancers. Bile samples were collected when the patients underwent endoscopic retrograde cholangiopancreatography (ERCP). For the patients with gastric or colon cancer, bile samples were collected because they had malignant biliary obstruction due to lymph node metastases. The collected bile samples were stored at −80°C until analysis. Biliary brush samples were additionally collected for bacterial culture.

PCR-based assays for the detection of \textit{Helicobacter} spp.

Polymerase chain reaction was performed to detect the presence of \textit{Helicobacter} DNA. Briefly, DNA was extracted from the bile samples (500–800 μl) using a QIAamp DNA Blood Midi Kit (Qiagen; Hilden, Germany) and concentrated by ethanol precipitation. The precipitant was dissolved in 50 μl of TE (10 mM Tris-HCl, 1 mM EDTA, pH 7.4). Then, 1–2 μl of the bile DNA preparation was added to a 20-μl (final volume) reaction mixture. Nested PCR was performed to amplify \textit{Helicobacter} genus-specific 16S rRNA and \textit{cdtB} genes. Sequencing primers are listed in Table S1, and genomic DNA from \textit{H. bilis} ATCC 49314 strain, \textit{H. hepaticus} ATCC 51449 strain, and \textit{H. cinaedi} MRY08-1234 strain was used as positive controls. The full sequences of the PCR amplification products were subsequently subjected to direct sequencing. With the basic local alignment search tool (BLAST), we defined the presence of specific enterohepatic helicobacters of \textit{H. bilis} and \textit{H. hepaticus} as more than 97% sequence similarity between our sequencing results and known reference sequences and the confirmation of \textit{H. bilis}, \textit{H. hepaticus}, or \textit{H. pylori} among the top matches.

Bacterial culture and antigen preparation for whole-cell enzyme-linked immunosorbent assay (ELISA)

To prepare antigens, we incubated the \textit{H. bilis} ATCC 49314 strain and \textit{H. hepaticus} ATCC 51449 strain for 7 days using biphasic culture medium under microaerobic conditions (AnaeroPack Microbic, Mitsubishi Gas Chemical Company, Inc) with a H\textsubscript{2} gas generator (Sugiyamagen). Brain heart infusion (BHI) (Oxoid) agar with 7% sheep blood was used for the solid phase, and BHI with 5% fetal calf serum (FCS) was used for the liquid phase. Liquid cultures of the \textit{H. bilis} ATCC 49314 strain and \textit{H. hepaticus} ATCC 51449 strain were collected and centrifuged. In addition, the \textit{H. pylori} TK1402 strain was cultured on BHI agar with 5% sheep blood for 3 days under microaerobic conditions and collected in 0.01 M phosphate-buffered saline (PBS) (pH 7.4). The harvested whole organisms were suspended...
in PBS and sonicated with an ultrasonic Sonifier 250 (Branson Ultrasonics Co.) for 5 min at 20 kHz. The sonicate was centrifuged at 15,000 g for 15 min, and the supernatant was filtered through a 0.45 μm pore size membrane (Merck Millipore). The supernatant served as antigens in whole-cell ELISA.

2.4 | Serological assays

Serum antibody reactivity to H. bilis, H. hepaticus, and H. pylori was measured by the whole-cell ELISA protocol developed in our laboratory. Microtitration plates were coated at 4°C for 18–42 h with whole-cell antigen (5 μg/ml). After being coated with each antigen at 4°C overnight, they were washed with PBS twice. Each antigen was blocked with PBS containing 1% skim milk (PBS-S) at 37°C for 1 h. After washing with PBS 3 times, each serum sample was added to the plates after a 500-fold dilution with PBS and incubated at 37°C for 1 h. After washing with PBS containing 0.05% Tween (PBS-T) 3 times, an anti-human IgG horseradish peroxidase-labeled antibody (I2136, Sigma Aldrich Merck) was added at a dilution of 1:10000 in PBS-S and reacted at 37°C for 1 h. After washing with PBS-T three times, the plates were treated with TMB substrate solution (3,3′,5,5′-tetramethylbenzidine, BioFX® TMB). After incubation at room temperature for 5 min, the reaction was stopped by the addition of 2 N H₃SO₄. The optical density was measured at 450 nm using a microplate reader (model 550; Bio-Rad).

Additionally, for the diagnosis of H. pylori infection, serum anti-H. pylori IgG antibodies were measured using a commercially available ELISA kit (E-Plate “Eiken” H. pylori antibody; Eiken Chemical) at the SRL laboratory. Since an antibody titer of 10 U/L was used as the cutoff threshold based on the commercial kit, this cutoff value was also used to determine seropositivity in the ELISAs employing whole-cell antigens (Figure S1A). The cutoff values for anti-H. pylori IgG antibodies were also applied to define seropositivity for anti-H. bilis antibodies and anti-H. hepaticus antibodies (Figure S1B,C).

Our study was conducted in accordance with the Declaration of Helsinki. All study subjects provided written informed consent, and the Ethics Committee at Aichi Medical University, Kyorin University, and all participating hospitals approved this study.

2.5 | Statistical analyses

Continuous variables are presented as the mean ± standard deviation, and categorical variables are presented as counts and percentages. Fisher’s exact test was used to compare the proportion of subjects who tested positive for anti-Helicobacter spp. antibodies between the two groups. All tests were two-sided, and P values less than 0.05 were considered statistically significant.

3 | RESULTS

The demographic characteristics of the study subjects are shown in Table 1. The majority of patients in the biliary tract cancer group and the control group were male, while the male-to-female ratio in the pancreatic cancer group was almost 1:1. The mean patient age was 72.4 years in the biliary tract cancer group, 68.8 years in the pancreatic cancer group, and 73.6 years in the control group. Serological tests using whole-cell antigens yielded a higher seroprevalence of anti-H. pylori antibodies (32.2%–44.0%) than did serological tests using the commercial ELISA kit (13.6%–40.0%).

3.1 | Bacterial culture

We attempted to culture H. bilis and H. hepaticus using seven biliary brush samples obtained during ERCP, but none of our attempts were successful. Instead, we isolated H. pylori in two brush samples as well as bacteria other than Helicobacter spp., such as Eikenella corrodens, Morganella morganii (phylum Proteobacteria), Lactobacillus plantarum, and Lactobacillus sp. (phylum Firmicutes), in a subset of brush samples. Furthermore, a mixed population of Enterobacteriaceae and other bacteria was cultured on the medium.

3.2 | PCR-based detection of Helicobacter spp. from bile samples

Table 2 shows the PCR-based detection results of enterohepatic non-H. pylori helicobacters from the bile samples. Two biliary tract diagnoses included cancers of extrahepatic bile duct, ampulla of Vater, and gallbladder

Table 1: Demographic characteristics of the study subjects

	Biliary tract cancer group	Pancreatic cancer group	Control group
Number	37	59	25
Men vs women	27 vs 10	28 vs 31	17 vs 8
Age (mean ± SD)	72.4±8.3	68.8±10.6	73.6±8.7
H. pylori seropositivity with the commercially available ELISA kit (Eiken E-plate)	8 (21.6%)	8 (13.6%)	10 (40.0%)
H. pylori positivity by the serological test employing whole-cell antigens	16 (43.2%)	19 (32.2%)	11 (44.0%)

Diagnoses included cholelithiasis, gastric cancer, colon cancer, and suspected cancers.
cancer patients and 4 control subjects were excluded because of invalid results. Of the remaining 115 patients, we detected the presence of *H. bilis* 16S rRNA and/or *cdtB* gene in 11 patients and *H. hepaticus* 16S rRNA and *cdtB* genes in 4 patients.

Furthermore, *H. pylori* DNA was detected in 13 patients (4 with biliary tract cancer and 9 with pancreatic cancer). Among them, *H. bilis*-specific *cdtB* gene was also detected in 3 patients (1 with biliary tract cancer and 2 with pancreatic cancer), and *H. hepaticus*-specific *cdtB* gene was not detected in any patient.

In addition, *Helicobacter* spp. or Campylobacterales was detected in 7 patients (1 with biliary tract cancer, 3 with pancreatic cancer, and 3 controls) and *H. bilis*-specific *cdtB* gene was also detected 4 of 7 patients (1 with biliary tract cancer, and 3 with pancreatic cancer). *H. hepaticus*-specific *cdtB* gene was detected in 2 of 3 controls, whereas none of the *H. cinaedi*-specific *cdtB* gene were detected in all of the 115 patients.

Specifically, the prevalence of enterohepatic helicobacters of *H. bilis* and *H. hepaticus* was 11.4% (4/35) in the biliary tract cancer group, 11.9% (7/59) in the pancreatic cancer group, and 19.0% (4/21) in the control group. No significant differences in these prevalence estimates were noted among the three groups. In addition, in the biliary tract cancer group, we observed no significant differences in prevalence estimates for either *H. bilis* or *H. hepaticus* by tumor location (data not shown).

3.3 Seroprevalence of anti-*Helicobacter* spp. antibodies

The proportion of patients who tested positive for anti-*H. hepaticus* and anti-*H. bilis* antibodies were higher in the biliary tract and pancreatic cancer groups than in the control group (Table 3), although the differences were not statistically significant.

To remove the possible effects of cross-reactive antibody responses, we measured anti-*H. bilis* and anti-*H. hepaticus* IgG antibody titers in those patients without evidence of *H. pylori* infection by both the commercial ELISA kit and our own in-house serological tests (Table 4). No patients in the control group were found to be positive for either anti-*H. bilis* antibodies or anti-*H. hepaticus* antibodies. Compared with the control group, the pancreatic cancer group had a seemingly higher seropositivity of anti-*H. bilis* antibodies ($p = 0.044$).

Table 5 shows the number of subjects who tested positive by PCR-based detection as well as serological tests. Of the 6 PCR-confirmed positive samples for *H. bilis*, 4 were also positive for anti-*H. bilis* antibodies in pancreatic cancer patients.

4 DISCUSSION

We explored the role of *Helicobacter* spp. in biliary tract, pancreatic, and other GI tract cancers by employing several approaches, such as bacterial culture, PCR-based detection of bacterial DNA, and serological tests. Despite the unsuccessful culture of *H. bilis* and *H. hepaticus*, we demonstrated the presence of *H. bilis* and *H. hepaticus* in approximately 13.0% (15/115) of the bile samples collected from patients with various GI cancers. In particular, pancreatic cancer patients tended to have a higher prevalence of *H. bilis* infection, an intriguing finding that deserves further study.

Complete differentiation of various *Helicobacter* spp. with the detection of 16S rRNA gene remains challenging. For example, *H. bilis* and *H. cinaedi* share high similarity in DNA sequences and exhibit a close phylogenetic relationship, making it difficult to distinguish them solely based on 16S rRNA gene. Therefore, we performed a second PCR that may differentiate the *Helicobacter* spp. through the detection of *cdtB* gene, which encodes a subunit of cytolethal distending toxin (CDT). CDT is a bacterial virulence factor produced by Gram-negative pathogenic bacteria, and it has been shown to play an important role in *H. hepaticus* infection in mice model. *H. pylori* infection, and its non-*H. pylori* helicobacters. Using specific primer pairs, we were able to detect *cdtB* gene of the same species in most of the samples with the presence of 16S rRNA gene of *H. hepaticus* or *H. bilis*. Moreover, our results revealed that *cdtB* gene could be detected in the patients who were positive for *H. pylori* 16S rRNA gene, suggesting the advantage of using *cdtB* gene to detect enterohepatic non-*H. pylori* helicobacters present in patients infected with *H. pylori*. On the other hand...

Helicobacter spp.	**Biliary tract cancer group (N = 35)**	**Pancreatic cancer group (N = 59)**	**Control group (N = 21)**
H. bilis 16S rRNA	2 (5.7%)	6 (10.2%)	3 (14.3%)
cdtB	1 (2.9%)	4 (6.8%)	1 (4.8%)
H. hepaticus 16S rRNA	2 (5.7%)	1 (1.7%)	1 (4.8%)
cdtB	2 (5.7%)	1 (1.7%)	1 (4.8%)

Note: PCR amplification product was analyzed by direct sequencing. Sequence homology was determined with the basic local alignment search tool.

H. pylori DNA was detected in 13 patients (4 and 9 with biliary tract cancer and pancreatic cancer, respectively) and other *Helicobacter* spp. or Campylobacterales DNA was detected in 5 bile samples: 1 in the biliary tract cancer group, 3 in the pancreatic cancer group, and 1 in the control group.
TABLE 3 Seroprevalence of Helicobacter spp. in the study subjects

	Biliary tract cancer group (N = 37)	Pancreatic cancer group (N = 59)	Control group (N = 25)
Positive for anti-H. bilis antibodies	13 / 37 (35.1%)	24 / 59 (40.7%)	8 / 25 (32.0%)
Positive for anti-H. hepaticus antibodies	11 / 37 (29.7%)	19 / 59 (32.2%)	7 / 25 (28.0%)
Positive for anti-H. pylori antibodies	16 / 37 (43.2%)	20 / 59 (33.9%)	11 / 25 (44.0%)

Note: ELISA was performed using Helicobacter spp.-specific whole-cell antigens.

Cutoff values of seropositivity: 0.797 for anti-H. bilis antibodies, 0.598 for anti-H. hepaticus antibodies, and 0.984 for anti-H. pylori antibodies. None of the statistical tests were significant when comparing the proportions of study subjects in the pancreatic and biliary tract cancer groups with those in the control group positive for three Helicobacter spp.

TABLE 4 Seropositivity of Helicobacter spp. in patients who tested negative for H. pylori with the commercial serological test

	Biliary tract cancer group (N = 20)	Pancreatic cancer group (N = 37)	Control group (N = 13)
Positive for anti-H. bilis antibodies	3 / 20 (15.0%)	10 / 37 (27.0%)	0 / 13 (-)
Positive for anti-H. hepaticus antibodies	2 / 20 (10.0%)	6 / 37 (16.2%)	0 / 13 (-)

Note: ELISA was performed using Helicobacter spp.-specific whole-cell antigens.

Cutoff values of seropositivity: 0.797 for anti-H. bilis antibodies, 0.598 for anti-H. hepaticus antibodies. All other between-group comparisons were statistically nonsignificant.

Serological tests are widely used to estimate the prevalence of H. pylori infection in epidemiologic studies. In contrast to well-developed serological tests targeting H. pylori, the antibody responses to other Helicobacter spp. are poorly understood, with no commercially available ELISA kits. Based on whole-cell ELISA, we found that approximately 30%-40% of the pancreatic and biliary tract cancer patients were seropositive for H. bilis or H. hepaticus, indicating past or present infection. Furthermore, given that the cross-reactivity of antibodies against H. pylori may have biased the prevalence estimates for Helicobacter spp., we estimated the seroprevalence for H. bilis and H. hepaticus among those who tested negative for H. pylori by both the commercial ELISA kit and whole-cell ELISA. Notably, the proportion of pancreatic cancer patients that were positive for anti-H. bilis antibodies appeared to be higher than that of the control subjects. However, two issues emerged in our study. One issue is the inconsistent results from the two ELISAs. A higher seroprevalence of H. pylori was observed in whole-cell ELISA than in the commercial ELISA kit. We consider that the differences in antigens used and the cross-reactivity to H. hepaticus or H. bilis may have contributed to the discrepant results. Another issue is the difficulty of differentiating two Helicobacter spp. based solely on serological tests. As shown in our study, in the 13 cases negative for anti-H. pylori antibodies but positive for anti-H. bilis antibodies, 8 were also positive for anti-H. hepaticus antibodies (Table 4). Further to culture H. bilis or H. hepaticus from human biospecimens have been successful. We also failed to culture enterohepatic non-H. pylori helicobacters from the bile samples, although several types of Helicobacter-selective media and prolonged incubation times under microaerobic conditions were used. Several reasons may account for the unsuccessful culture. Some slower-growing Helicobacter spp. with low abundance may be overlooked when using standard microbiological techniques. Another reason is that some fastidious species require complex growth conditions. In addition, growing bacteria may be inhibited by microbial competition and compounds produced by other bacteria.

With direct sequencing of the PCR amplification products, we demonstrated the presence of any enterohepatic non-H. pylori helicobacter in 13.0% (15/115) of the bile samples collected from patients with various GI disorders. Previous studies based on PCR have documented a wide variation in the prevalence of Helicobacter spp. in biliary tract samples. While H. bilis was not detected in the biliary tract in a German study, 87% (13/15) of the samples were PCR-positive in a Japanese study. Of interest, the reported prevalence estimates were higher in countries with a high incidence of biliary tract cancer, such as Japan, than in other countries with a low incidence. The prevalence of PCR-confirmed enterohepatic non-H. pylori helicobacters observed in our study was lower than that in previous Japanese studies. This discrepancy could be attributable to differences in sample size, the quality of biological specimens, and the choice of sequencing primers. Specifically, one possible reason is DNA template contamination, with potential sources coming from the host genome or bacteria other than enterohepatic non-H. pylori helicobacters.

hand, we failed to detect H. cinaedi-specific cdtB gene. One possible reason is that cdtB gene is not essential for bacterial survival, and thus, its sequence may not be highly conserved compared with 16S rRNA gene.

Isolating and growing individual bacterial species in pure culture can inform physiological properties and virulence potential, thus providing important insights into their contributions to disease etiology. However, enterohepatic non-H. pylori helicobacters are notoriously difficult to culture. To date, none of the attempts

Positive for anti-H. bilis antibodies | 13 / 37 (35.1%) | 24 / 59 (40.7%) | 8 / 25 (32.0%) |
Positive for anti-H. hepaticus antibodies | 11 / 37 (29.7%) | 19 / 59 (32.2%) | 7 / 25 (28.0%) |
Positive for anti-H. pylori antibodies | 16 / 37 (43.2%) | 20 / 59 (33.9%) | 11 / 25 (44.0%) |

Note: ELISA was performed using Helicobacter spp.-specific whole-cell antigens.

Cutoff values of seropositivity: 0.797 for anti-H. bilis antibodies, 0.598 for anti-H. hepaticus antibodies, and 0.984 for anti-H. pylori antibodies. None of the statistical tests were significant when comparing the proportions of study subjects in the pancreatic and biliary tract cancer groups with those in the control group positive for three Helicobacter spp.

Serological tests are widely used to estimate the prevalence of H. pylori infection in epidemiologic studies. In contrast to well-developed serological tests targeting H. pylori, the antibody responses to other Helicobacter spp. are poorly understood, with no commercially available ELISA kits. Based on whole-cell ELISA, we found that approximately 30%-40% of the pancreatic and biliary tract cancer patients were seropositive for H. bilis or H. hepaticus, indicating past or present infection. Furthermore, given that the cross-reactivity of antibodies against H. pylori may have biased the prevalence estimates for Helicobacter spp., we estimated the seroprevalence for H. bilis and H. hepaticus among those who tested negative for H. pylori by both the commercial ELISA kit and whole-cell ELISA. Notably, the proportion of pancreatic cancer patients that were positive for anti-H. bilis antibodies appeared to be higher than that of the control subjects. However, two issues emerged in our study. One issue is the inconsistent results from the two ELISAs. A higher seroprevalence of H. pylori was observed in whole-cell ELISA than in the commercial ELISA kit. We consider that the differences in antigens used and the cross-reactivity to H. hepaticus or H. bilis may have contributed to the discrepant results. Another issue is the difficulty of differentiating two Helicobacter spp. based solely on serological tests. As shown in our study, in the 13 cases negative for anti-H. pylori antibodies but positive for anti-H. bilis antibodies, 8 were also positive for anti-H. hepaticus antibodies (Table 4). Further to culture H. bilis or H. hepaticus from human biospecimens have been successful. We also failed to culture enterohepatic non-H. pylori helicobacters from the bile samples, although several types of Helicobacter-selective media and prolonged incubation times under microaerobic conditions were used. Several reasons may account for the unsuccessful culture. Some slower-growing Helicobacter spp. with low abundance may be overlooked when using standard microbiological techniques. Another reason is that some fastidious species require complex growth conditions. In addition, growing bacteria may be inhibited by microbial competition and compounds produced by other bacteria.

With direct sequencing of the PCR amplification products, we demonstrated the presence of any enterohepatic non-H. pylori helicobacter in 13.0% (15/115) of the bile samples collected from patients with various GI disorders. Previous studies based on PCR have documented a wide variation in the prevalence of Helicobacter spp. in biliary tract samples. While H. bilis was not detected in the biliary tract in a German study, 87% (13/15) of the samples were PCR-positive in a Japanese study. Of interest, the reported prevalence estimates were higher in countries with a high incidence of biliary tract cancer, such as Japan, than in other countries with a low incidence. The prevalence of PCR-confirmed enterohepatic non-H. pylori helicobacters observed in our study was lower than that in previous Japanese studies. This discrepancy could be attributable to differences in sample size, the quality of biological specimens, and the choice of sequencing primers. Specifically, one possible reason is DNA template contamination, with potential sources coming from the host genome or bacteria other than enterohepatic non-H. pylori helicobacters.

Serological tests are widely used to estimate the prevalence of H. pylori infection in epidemiologic studies. In contrast to well-developed serological tests targeting H. pylori, the antibody responses to other Helicobacter spp. are poorly understood, with no commercially available ELISA kits. Based on whole-cell ELISA, we found that approximately 30%-40% of the pancreatic and biliary tract cancer patients were seropositive for H. bilis or H. hepaticus, indicating past or present infection. Furthermore, given that the cross-reactivity of antibodies against H. pylori may have biased the prevalence estimates for Helicobacter spp., we estimated the seroprevalence for H. bilis and H. hepaticus among those who tested negative for H. pylori by both the commercial ELISA kit and whole-cell ELISA. Notably, the proportion of pancreatic cancer patients that were positive for anti-H. bilis antibodies appeared to be higher than that of the control subjects. However, two issues emerged in our study. One issue is the inconsistent results from the two ELISAs. A higher seroprevalence of H. pylori was observed in whole-cell ELISA than in the commercial ELISA kit. We consider that the differences in antigens used and the cross-reactivity to H. hepaticus or H. bilis may have contributed to the discrepant results. Another issue is the difficulty of differentiating two Helicobacter spp. based solely on serological tests. As shown in our study, in the 13 cases negative for anti-H. pylori antibodies but positive for anti-H. bilis antibodies, 8 were also positive for anti-H. hepaticus antibodies (Table 4). Further
| TABLE 5 Number of study subjects who tested positive for *Helicobacter* spp. based on PCR as well as serological tests |
|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|
| | Presence of *Helicobacter* spp. DNA based on PCR detection | Positive for serum anti-*H. bilis* IgG antibodies | Positive for serum anti-*H. hepaticus* IgG antibodies | Positive for serum anti-*H. pylori* IgG antibodies |
| Biliary tract cancer group | | | | |
| *H. bilis* | 2 | 0 | 0 | 2 |
| *H. hepaticus* | 2 | 1 | 1 | 2 |
| *H. pylori, Helicobacter sp., or Campylobacterales* | 5^b | 4 | 3 | 4 |
| Pancreatic cancer group | | | | |
| *H. bilis* | 6 | 4 | 2 | 2 |
| *H. hepaticus* | 1 | 1 | 1 | 0 |
| *H. pylori, Helicobacter sp., or Campylobacterales* | 12^b | 6 | 5 | 6 |
| Control group | | | | |
| *H. bilis* | 3 | 2 | 1 | 2 |
| *H. hepaticus* | 1 | 0 | 0 | 1 |
| *H. pylori, Helicobacter sp., or Campylobacterales* | 3^c | 0 | 0 | 1 |

^aPCR amplification product of 16S rRNA gene was analyzed by direct sequencing. Sequence homology was determined with the basic local alignment search tool (BLAST).

^bPresence of species-specific *cdtB* gene was also determined based on PCR. *H. bilis*-specific *cdtB* gene was detected in 2 of 5 biliary tract cancer cases, and 5 of 12 pancreatic cancer cases. Sequence homology was determined with BLAST.

^c*H. hepaticus*-specific *cdtB* gene was detected in 2 of 3 controls. Sequence homology was determined with BLAST.
efforts are needed to optimize serological tests so that epidemiological studies could provide more accurate estimates of the risk for GI cancers associated with enterohpatic non-\textit{H. pylori} helicobacters.

Consistent results from PCR-based and serological tests are thought to provide triangulation of evidence regarding persistent infection with enterohpatic non-\textit{H. pylori} helicobacters. Although previous studies have shown the presence of non-\textit{H. pylori} helicobacter DNAs, such as \textit{H. bilis}, \textit{H. hepaticus}, \textit{H. rappini}, and \textit{H. pullorum}, in patients with hepatobiliary or pancreatic diseases,

their causal roles in disease pathophysiology remain elusive. Our findings added to the evidence that enterohpatic non-\textit{H. pylori} helicobacters might be more relevant in driving the carcinogenesis of biliary tract and pancreatic cancers, among other GI cancers. Similar to our results, a previous study showed a significantly higher prevalence of \textit{H. bilis} in patients with bile duct and gallbladder cancers than in patients with gallstone and/or cholecystitis.

Mechanisms underlying the associations of \textit{H. bilis} with hepatobiliary cancers have been incompletely understood. Experimental evidence suggested that \textit{H. bilis} was involved in the formation of cholesterol gallstones and intrahepatic cholelithiasis, which are risk factors for hepatobiliary cancers.

In patients with hepatobiliary cancers, the biliary cell kinetics may be accelerated directly by \textit{Helicobacter} spp. Compared with hepatobiliary diseases, few studies have associated non-\textit{H. pylori} helicobacters with pancreatic diseases.

One notable finding of our study was a seemingly higher proportion of pancreatic cancer patients who tested positive for \textit{H. bilis}. Although there is no convincing evidence on the direct colonization of \textit{H. bilis} in the pancreas, previous studies have reported a high prevalence of \textit{Helicobacter} spp. ribosomal DNA, including \textit{H. pylori} and \textit{H. cinaedi}, by PCR in paraffin-embedded pancreatic cancer tissue samples.

Given the observed associations, it is likely that enterohpatic non-\textit{H. pylori} helicobacters colonize the pancreas through bacterial translocation, which is induced by either increased gut permeability and dysbiosis in the context of obesity and pancreatitis or environmental insults such as ERCP.

Further studies are needed to explore whether enterohpatic helicobacters play a causative role in the development of hepatobiliary and pancreatic diseases.

Our study does have several limitations. First, biospecimens from healthy control subjects were not available because invasive ERCP cannot be performed in those subjects. Thus, the prevalence of \textit{Helicobacter} spp. in the normal biliary tract remains to be determined. Second, although culture-independent techniques, such as direct sequencing, were used to detect \textit{Helicobacter} spp. DNA in bile samples from patients with GI cancers, the lack of confirmation by culture represents only the enterohpatic circulation of \textit{Helicobacter} spp. DNA. Determining a causative role for enterohpatic non-\textit{H. pylori} helicobacters needs evidence of triangulation, among which bacterial culture should constitute an important part. With a refocus on the role of culture in inferring causality, further attempts are warranted to culture the “unculturable” enterohpatic non-\textit{H. pylori} helicobacters. Third, while \textit{H. pylori}-associated disease risk may be determined by the interactions between bacterial virulence and host susceptibility, it remains unclear whether there exists a synergy between host and environmental factors for other enterohpatic non-\textit{H. pylori} helicobacters. Further molecular epidemiologic studies are needed to explore their synergistic effects in driving tumorigenesis. Finally, the performance of our serological tests needs to be improved by using high-throughput antibody assays that employ \textit{Helicobacter}-specific antigens.

In summary, our findings suggest a possible role of enterohpatic non-\textit{H. pylori} helicobacters, especially \textit{H. bilis} and \textit{H. hepaticus}, in the etiology of pancreatic and biliary tract cancers. With mounting evidence on the role of diverse \textit{Helicobacter} spp. in the pathogenesis of gastric and enterohpatic diseases, further studies are needed to address the interactions among bacteria, the host, and environmental factors that influence the host’s susceptibility and the clinical outcome of infection.

ACKNOWLEDGMENT

This work was supported by Grants-in-Aid for Scientific Research (B) (21H0318, 17H04127, 26293145) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT). We are grateful to Haruhsa Nakao, an outstanding physician scientist, for his contributions to the recruitment of the study subjects. Unfortunately, he passed away on December 31, 2020. We thank Dr. Emiko Rimbara for providing us with valuable \textit{H. cinaedi} genomic DNA.

CONFLICTS OF INTEREST

All other authors declare no conflicts of interest.

ORCID

Takako Osaki https://orcid.org/0000-0002-6430-4666

Yingsong Lin https://orcid.org/0000-0003-0214-3649

Hideo Yonezawa https://orcid.org/0000-0002-7989-9711

Fuhito Hojo https://orcid.org/0000-0001-7976-5927

Masumi Okuda https://orcid.org/0000-0001-5263-2868

Shogo Kikuchi https://orcid.org/0000-0001-9499-9668

REFERENCES

1. Cancer mortality, 1958-2019. Cancer Registry and Statistics. Cancer Information Service, National Cancer Center, Japan (Vital Statistics of Japan)

2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021.

3. Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193-2197.

4. Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology. 2009;136(6):1863-1873.

5. Schoch CL, Ciufo S, Domrachev M, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020 Jan 1;2020:bbaa062 http://www.ncbi.nlm.nih.gov/ taxonomy

6. Maurer KJ, Ihrig MM, Rogers AB, et al. Identification of cholelitogenic enterohpatic helicobacter species and their role in murine cholesterol gallstone formation. Gastroenterology. 2005;128(4):1023-1033.
7. Segura-Lopez FK, Aviles-Jimenez F, Guitron-Cantu A, et al. Infection with Helicobacter bilis but not Helicobacter hepaticus was Associated with Extrahepatic Cholangiocarcinoma. *Helicobacter*. 2015;20(3):223-230.

8. Vartoukian SR, Palmer RM, Wade WG. Strategies for culture of 'un-culturable' bacteria. *FEMS Microbiol Lett*. 2010;309(1):1-7.

9. Shen Z, Sheh A, Young SK, et al. Draft genome sequences of six enterohelipic helicobacter species isolated from humans and one from rhesus macaques. * Genome Announc*. 2014;2(5).

10. Suerbaum S, Josenhans C, Sterzenbach T, et al. The complete genome sequence of the carinogenic bacterium Helicobacter hepaticus. *Proc Natl Acad Sci U S A*. 2003;100(13):7901-7906.

11. Lin Y, Ueda J, Yagyu K, et al. Association between variations in the fat mass and obesity-associated gene and pancreatic cancer risk: a case-control study in Japan. *BMC Cancer*. 2013;13:337.

12. On SLW, Miller WG, Houf K, Fox JG, Vandamme P. Minimal standards for describing new species belonging to the families Campylobacteraceae and Helicobacteraceae: Campylobacter, Arcobacter, Helicobacter and Wolinella spp. *Int J Syst Evol Microbiol*. 2017;67(12):5296-5311.

13. Bachran C, Hasikova R, Leysath CE, et al. Cytotoxic distending toxin B as a cell-killing component of tumor-targeted anthrax toxin fusion proteins. *Cell Death Dis*. 2014;5(1):e1003.

14. Pons BJ, Vignard J, Mirey G. Cytotoxic distending toxin subunit B: A review of structure-function relationship. *Toxins*. 2019;11(10).

15. Ge Z, Feng Y, Whary MT, et al. Cytotoxic distending toxin is essential for Helicobacter hepaticus colonization in outbred Swiss Webster mice. *Infect Immun*. 2005;73(6):3559-3567.

16. Zhao L. The gut microbiota and obesity: from correlation to causality. *Nat Rev Microbiol*. 2013;11(9):639-647.

17. Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. *Nat Rev Microbiol*. 2021;19(4):225-240.

18. de Martel C, Plummer M, Parsonnet J, van Doorn L-J, Franceschi S. Helicobacter species in cancers of the gallbladder and extrahepatic biliary tract. *Br J Cancer*. 2009;100(1):194-199. https://doi.org/10.1038/sj.bjc.6604780

19. Rudi J, Rudy A, Maiwald M, Stremmel W. Helicobacter sp. are not detectable in bile from German patients with biliary disease. *Gastroenterology*. 1999;116(4):1016-1017.

20. Matsukura N, Yokomuro S, Yamada S, et al. Association between Helicobacter bilis in bile and biliary tract malignancies: H. bilis in bile from Japanese and Thai patients with benign and malignant diseases in the biliary tract. *Jpn J Cancer Res*. 2002;93(7):842-847.

21. Shimoyama T, Takahashi R, Abe D, Mizuki I, Endo T, Fukuda S. Serological analysis of Helicobacter hepaticus infection in patients with biliary and pancreatic diseases. *J Gastroenterol Hepatol*. 2010;25(Suppl 1):S86-89.

22. Ochoa S, Collado L. Enterohelipic Helicobacter species - clinical importance, host range, and zoonotic potential. *Crit Rev Microbiol*. 2021;47(6):728-761.

23. Segura-López FK, Güitrón-Cantú A, Torres J. Association between Helicobacter spp. infections and hepatobiliary malignancies: a review. *World J Gastroenterol*. 2015;21(5):1414-1423.

24. Fukuda K, Kuroki T, Tajima Y, et al. Comparative analysis of Helicobacter DNAs and biliary pathology in patients with and without hepatobiliary cancer. *Carcinogenesis*. 2002;23(11):1927-1931.

25. Nilsson HO, Stenram U, Ihse I, Wadstrom T. Helicobacter species ribosomal DNA in the pancreas, stomach and duodenum of pancreatic cancer patients. *World J Gastroenterol*. 2006;12(19):3038-3043.

26. Sethi V, Vitiello GA, Saxena D, Miller G, Dudeja V. The role of the microbiome in immunologic development and its implication for pancreatic cancer immunotherapy. *Gastroenterology*. 2019;156(7):2097-2115.e2092.

27. Zhao L, Zhao N. Demonstration of causality: back to cultures. *Nat Rev Gastroenterol Hepatol*. 2021;18(2):97-98.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Osaki T, Lin Y, Sasahira N, et al. Prevalence estimates of Helicobacter species infection in pancreatic and biliary tract cancers. *Helicobacter*. 2022;27:e12866. doi: [10.1111/hel.12866](https://doi.org/10.1111/hel.12866)