Exotic Four Quark Matter: $Z_1(4475)$

Li Ma1, Xiao-Hai Liu1, Xiang Liu2,3 and Shi-Lin Zhu1,4

1Department of Physics and State Key Laboratory of Nuclear Physics and Technology and Center of High Energy Physics, Peking University, Beijing 100871, China
2Research Center for Hadron and CSR Physics, Lanzhou University and Institute of Modern Physics of CAS, Lanzhou 730000, China
3School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
4Collaborative Innovation Center of Quantum Matter, Beijing 100871, China

(Dated: August 21, 2014)

Motivated by the LHCb’s recent confirmation of $Z_1(4475)$ as the $J^P = 1^+$ resonance, we investigate various exotic interpretations of $Z_1(4475)$, which may be an axial vector tetraquark state, the P-wave excitation of the S-wave $D_1^0 D^*$ or $D_2^0 D^*$ molecule, the S-wave molecule composed of a D or D^* meson and a D-wave vector D meson, or the cousin molecular state of $Z(3900)$ and $Z(4020)$ composed of a D or D^* meson and their radial excitations. With the help of the heavy quark symmetry, we predict the typical radiative and hidden-charm and open-charm strong decay patterns of $Z_1(4475)$, which are crucial to further identify the molecular state assignment of $Z_1(4475)$.

PACS numbers: 14.40.Rt, 13.20.Jf, 13.25.Jx

I. INTRODUCTION

As a great achievement in the understanding of matter, Quantum Chromodynamics (QCD) is established as the theory of the strong interaction. However, QCD is highly non-perturbative in the infrared region and the color confinement issue remains one of the most challenging problems in 21st-century science. It is well known that a nucleon is composed of three quarks and a meson is composed of a pair of quark and anti-quark. Besides the above conventional hadrons, QCD may allow the existence of the subatomic particles with the other quark/gluon configurations such as hybrid hadrons, hadronic molecules or tetraquarks etc. The experimental and theoretical investigations of these exotic states will shed light on the non-perturbative dynamics of QCD.

Very recently, the LHCb experiment has confirmed the existence of the exotic hadrons [1]. $Z_1(4475)$ is the first charged charmonium-like state discovered by the Belle Collaboration in the $\psi'\pi$ mode in the B decays [2]. Later, the measurement indicates that the spin parity 1^+ was favored over other assignments $0^+, 1^-, 2^+$ and 2^- by 3.4σ, 3.7σ, 4.7σ and 5.1σ, respectively [3]. Recently, the LHCb Collaborations confirmed $Z_1(4475)$ as the $J^P = 1^+$ state with a significance of 13.9σ and ruled out the other quantum numbers with less significance [1]. Its mass and width are measured to be 4475 MeV and 172 MeV, respectively. From now on, we will denote this charged state as $Z_1(4475)$. The obtained Argand diagram for the $Z_1(4475)$ amplitude is consistent with the resonance behavior. Moreover, LHCb observed a second charged state $Z_0(4239)$ with $J^P = 0^-$ with a significance of 6σ and a width around 220 MeV.

Since its observation, $Z_1(4475)$ was first considered to be a good candidate of the loosely bound S-wave molecular state composed of the $D_1^0 D^*$ meson pair [4,5]. In particular, it was pointed out in Ref. [7] that there exists only the $J^P = 0^-$ molecular state for the S-wave $D_1 D^*$ system. However, there exist the S-wave $D_1^0 D^*$ molecule with $J^P = 0^-, 1^-, 2^-$ [7]. The authors pointed out that the broad width of $D_1(2460)$ and $D^*(2010)$ is and is slightly above the $D_1(2420)D^*$ threshold. The confirmation of its spin parity as $J^P = 1^+$ leads to very puzzling new challenges, which are also a good opportunity to demystify $Z_1(4475)$ as the four quark matter.

There are several interesting schemes of the underlying structure of $Z_1(4475)$. The first possibility is that $Z_1(4475)$ may be the $J^P = 1^+$ hidden-charm tetraquark candidate. The axial-vector charmonium-like tetraquark mass spectrum are discussed extensively in Ref. [10]. As a tetraquark candidate, $Z_1(4475)$ should decay into the $J/\psi\pi$ mode more easily with a larger partial width than that of the discovery mode $\psi'\pi$. Moreover, $Z_1(4475)$ should also decay into the open-charm modes DD^* and D^*D^* very easily via S-wave. Then, $Z_1(4475)$ should be a very broad state with the total width much larger than 172 MeV, which seems not compatible with the Belle and LHCb’s precise measurement of its width.

The second possibility is that $Z_1(4475)$ is the P-wave excitation of the S-wave $D_1 D^*$ or $D_2 D^*$ molecule. If so, is $Z_0(4239)$ the ground state of the $D_1 D^*$ molecule? Then, the binding energy of $Z_0(4239)$ is as large as 190 MeV, which is in strong contrast with the tiny binding energy (around 2 MeV) of the deuteron. Generally one would expect that the strong interaction between two color-singlet hadrons leads to a binding energy around a few to several tens MeV instead of hundreds of MeV, although the very deeply bound hadronic molecules may also exist.

The third possibility is that $Z_1(4475)$ is the S-wave molecule composed of a D or D^* meson and a D-wave vector D meson in the $(1^-, 2^-)$ multiplet whose mass is around 2700 MeV.

*Electronic address: lima@pku.edu.cn
1Electronic address: luxiaohai@pku.edu.cn
2Electronic address: xiangliu@lzu.edu.cn
4Electronic address: zhuisl@pku.edu.cn
The fourth possibility is that \(Z_1(4475) \) is the S-wave molecule composed of a \(D \) or \(D^* \) meson and their radial excitations whose masses are around 2.6 GeV. In other words, \(Z_1(4475) \) may be the cousin of the charged states \(Z_1(3900) \) and \(Z_1(4025) \) observed by the BESIII Collaborations \([1,2]\), which are speculated to be molecular candidates composed of the \(D \) and \(D^* \) mesons.

The discovery mode \(\psi' \pi \) and non-observation of \(Z_1(4475) \) in the \(J/\psi \pi \) channel are also serious challenges to the second and third possibilities listed above. However, the situation is quite different for the last scheme. If \(Z_1(4475) \) contains the radial excitation of the \(D \) or \(D^* \) meson as its component, it may decay into the final state containing a radial excitation more easily, i.e., the \(\psi' \pi \) final state may be a more favorable decay mode of \(Z_1(4475) \) than \(J/\psi \pi \) within the fourth scheme.

In this work we will investigate the implications of the Belle and LHCb’s determination of the spin parity of \(Z_1(4475) \). With the help of heavy quark symmetry, we will study the electromagnetic, both hidden-charm and open-charm strong decay patterns of \(Z_1(4475) \) under various molecular assumptions. Some interesting features can be tested experimentally.

This paper is organized as follows. After the Introduction, we present the formalism and results in Sec. II. The last section is a short summary.

II. THE DECAY BEHAVIOR OF \(Z_1(4475) \)

The quantum number of the neutral component of \(Z_1(4475) \) is \(J^{PC} = 1^+ \). As a molecular state candidate, the possible flavor wave functions of \(Z_1(4475) \) are listed in Table I. Here, \(D(\frac{3}{2}, 1) \) is a D-wave charmed meson with the light spin \(S_l = \frac{3}{2} \) and \(J^P = 1^- \). \(D(2550) \) and \(D'(2600) \) were reported by BaBar \([3]\), which can be good candidates of \(2S_0 \) and \(2S_1 \) charmed mesons, respectively. \(Z_1(4475) \) can be a P-wave \(D_1 D' \) or \(D_1 D^* \) molecular state. \(Z_1(4475) \) may also be an S-wave molecular state containing a D-wave meson or a radially excited state.

The heavy quark spin symmetry \([15]\) is very useful in the study of the heavy hadron properties. In the heavy quark limit, the heavy quark mass \(m_Q \rightarrow \infty \), the spin-flipping interaction is suppressed. Throughout the decay process, the heavy quark spin \(S_H \) is a conserved quantity, which is named as “heavy spin” for simplicity. The total angular momentum \(J \) of a hadron is also a conserved quantity. We can also define the conserved “light spin” \(S'_l \equiv \vec{J} - \vec{S}_H \), which includes both the light quark spin and the orbital angular momenta within a hadron. In the decays of a hadron, the heavy spin, light spin and total angular momentum are all good quantum numbers in the heavy quark limit, which are separately conserved. Therefore we can decompose the total angular momentum of the initial and final states according to their heavy spin and light spin, which was employed to study the radiative decays of \(XYZ \) states extensively in Ref. \([16]\). We borrow the same notations and formalism from Ref. \([16]\) to study the radiative and strong decay patterns of \(Z_1(4475) \). Since the charm quark is not very large, the heavy quark symmetry is not exact. In the following, we analyze the hidden-charm molecular systems in the heavy quark symmetry limit. One may naively expect the recoil corrections from the finite charm quark mass will not spoil the qualitative features outlined in this work. We focus on the P-wave \(D_1 D' \) or \(D_1 D^* \), S-wave \(D(\frac{3}{2}, 1)D \) or \(D(\frac{3}{2}, 1)D^* \), as well as S-wave \(D(2550)D' \) or \(D D'(2600) \) molecular systems in this work.

With the heavy quark spin symmetry \([15]\), the heavy and light spins of the molecular state can be re-coupled separately. We adopt the spin re-coupling formula with \(6-j \) or \(9-j \) symbols in analyzing the general spin structure. In the heavy quark limit, the final state charmonia can also be decomposed into the heavy spin and light spin. For the neutral component of \(Z_1(4475) \), there exists the radiative decay \(Z_1(4475) \rightarrow (c\bar{c}) + \gamma \), where the initial state is a hadronic molecule and final state is a charmonium. The photon is from the \(q\bar{q} \) annihilation. We can calculate the rearranged spin structures of the final states in the \(Z_1(4475) \rightarrow (c\bar{c}) + \gamma \) decays. The general expression is

\[
|\text{Charmonia} \otimes \gamma \rangle = \left\{ \left(\frac{L+Q}{L-Q} \right) K \otimes Q \right\} |(c\bar{c})\rangle |\gamma\rangle
\]

\[
= \sum_{h=|L-Q|}^{L+Q} (-1)^{L+Q+h} \left(\begin{array}{cc} 2K+1 & 2h+1 \\ L & Q \end{array} \right)^{1/2} \times \left\{ \left(\begin{array}{cc} L & g \\ J & K \end{array} \right) \otimes L \otimes Q \right\} |(c\bar{c})\rangle |\gamma\rangle,
\]

where the \(g \) and \(L \) denote the heavy and light spins of the charmonium, respectively. \(Q \) stands for the light spin of the photon. The indices \(c \), \(\bar{c} \) and \(\gamma \) in the square brackets represent the corresponding spin wave functions. Similarly, we present the rearranged spin structures of the final states in the
\[Z_1(4475) \rightarrow (c\bar{c}) \text{ + light meson decays}, \] i.e.,

\[
|\text{Charmonia} \rangle \otimes |\text{light meson} \rangle = \left[|(c\bar{c})_g \otimes L_k \otimes Q_j \rangle \right] |(c\bar{c})\rangle |(q\bar{q})\rangle = \sum_{h=|L-Q|}^{L+Q} (-1)^{s+L+Q+j} \left| (2K+1)(2h+1) \right|^{1/2} \times \left\{ \begin{array}{c}
L \ \ g \ \ K \\
J \ \ Q \ \ h
\end{array} \right\} \left[|(c\bar{c})_g \otimes [L \otimes Q]_h \rangle \right] |(c\bar{c})\rangle |(q\bar{q})\rangle,
\]

With the above preparation, we obtain the typical decay behavior of \(Z_1(4475) \) under different molecular state assignments, where these properties follow from the heavy quark symmetry and the presumed nature without employing a particular model, which is crucial to test and establish the exotic four quark matter.

A. \(Z_1(4475) \) as a P-wave molecular candidate

The decay pattern of \(Z_1(4475) \) as a candidate of the \(3P_1 \) or \(3P_1, 2D^* \) molecular state is very similar to that of the \(1P_1 \) or \(3P_1, 1D^* \) state. We focus on the latter. As a P-wave \(D^* \) or \(D_1^* \) molecular state, \(Z_1(4475) \) has three possible spin structures, corresponding to \(1P_1, 3P_1 \) and \(5P_1 \), respectively. Its neutral component can decay into \(\chi_{cJ}(J = 0,1,2) \) via the M1 transition. Except the \(3P_1 \) state \(\sqrt{4}(D_1^*D^* + D^*D_1^*) \), the other five \(D_1^*D^* \) or \(D^*D_1^* \) molecular states share the same reduced matrix elements for the M1 transition. These reduced matrix elements depend on the spin configuration \((1^+_H \otimes 0^+_l)_{j=1}^+, (1^+_H \otimes 1^+_l)_{j=1}^+ \) and \((1^+_H \otimes 2^+_l)_{j=1}^+ \).

We notice that both the \(3P_1 \) states \(D_1^*D^* \) and \(D^*D_1^* \) molecular states with \(R = 1 \) contain the spin configurations \((0^+_H \otimes 1^+_l)_{j=1}^+ \), \((0^+_H \otimes 1^+_l)_{j=1}^+ \) and \((1^+_H \otimes 1^+_l)_{j=1}^+ \). The recoupled final state \(\chi_{cJ_1}(1P_1) \gamma(J1) \) has the total angular momentum equal to 1 contains the component of \((1^+_H \otimes 0^+_l)_{j=1}^+ \), \((1^+_H \otimes 1^+_l)_{j=1}^+ \) and \((1^+_H \otimes 2^+_l)_{j=1}^+ \). So both \(D_1^*D^* \) and \(D^*D_1^* \) components with \(R = 1 \) can independently decay into \(\chi_{cJ_1}(1P_1) \gamma(J1) \). Unfortunately, these two components have the opposite relative phase for the component of \((1^+_H \otimes 1^+_l)_{j=1}^+ \). When they constitute the C-parity eigenstate \(\sqrt{2}(D_1^*D^* + D^*D_1^*) \), the radiative decay into \(\chi_{cJ_1}(1P_1) \gamma(J1) \) is suppressed in the heavy quark limit.

The discussed E1 transitions include \(\eta_1 \gamma(E1) \) and \(\eta_2 \gamma(1D_2) \gamma(E1) \). The states \(\sqrt{2}(D_1^*D^* + D^*D_1^*) \eta_1 \) and \(\sqrt{2}(D_1^*D^* + D^*D_1^*) \eta_2 \) don’t contain the spin configuration \((0^+_H \otimes 1^+_l)_{j=1}^+ \). These \(\eta_1 \gamma(E1) \) and \(\eta_2 \gamma(1D_2) \gamma(E1) \) modes are suppressed due to heavy quark symmetry. All the other configurations of \(Z_1(4475) \) can decays into \(\eta_1 \gamma(E1) \) and \(\eta_2 \gamma(1D_2) \gamma(E1) \) through the spin configuration \((0^+_H \otimes 1^+_l)_{j=1}^+ \).

The E2 decay of \(\sqrt{2}(D_1^*D^* + D^*D_1^*) \eta_1 \) is suppressed in the heavy quark symmetry limit. Both the \(D_1^*D^* \) and \(D^*D_1^* \) molecular states with \(J = 1 \) contain three spin configurations \((0^+_H \otimes 1^+_l)_{j=1}^+, (0^+_H \otimes 1^+_l)_{j=1}^+ \) and \((1^+_H \otimes 1^+_l)_{j=1}^+ \). The spin-rearranged final states \(\chi_{cJ_1}(1P_1) \gamma(E2) \) and \(\chi_{cJ_2}(1P_2) \gamma(E2) \) contain the components \((1^+_H \otimes 1^+_l)_{j=1}^+ \) and \((1^+_H \otimes 2^+_l)_{j=1}^+ \). Both \(D_1^*D^* \) and \(D^*D_1^* \) with \(R = 1 \) can independently decay into \(\chi_{cJ_1}(1P_1) \gamma(E2) \) or \(\chi_{cJ_2}(1P_2) \gamma(E2) \). But these two contributions have the opposite relative phase for the component \((1^+_H \otimes 1^+_l)_{j=1}^+ \). When they constitute the C-parity eigenstate \(\sqrt{2}(D_1^*D^* + D^*D_1^*) \chi_{cJ_1}(1P_1) \gamma(E2) \) is suppressed in the heavy quark limit. All the other states can decay into \(\chi_{cJ_1}(1P_1) \) or \(\chi_{cJ_2}(1P_2) \) via the E2 transition.

B. \(Z_1(4475) \) as a S-wave molecular candidate

The M1 decays of both \(\sqrt{2}(D_1^*D^* - D^*D_1^*) \) and \(\sqrt{2}(D_1^*1D_2^* + D^*D_1^*) \) state occur through the spin configuration \((1^+_H \otimes 0^+_l)_{j=1}^+ \). If \(Z_1(4475) \) is the \(\sqrt{2}(D(2550)D^* - D^*D(2550)) \) or \(\sqrt{2}(D^*(2600) - D^*(2600)D) \) molecule, their M1 transitions depend on the spin configuration \((1^+_H \otimes 0^+_l)_{j=1}^+ \). The S-wave states \(\sqrt{2}(D(2550)D^* - D^*D(2550)) \) and \(\sqrt{2}(D^*(2600) - D^*(2600)D) \) do not contain the spin configuration \((1^+_H \otimes 0^+_l)_{j=1}^+ \). Thus, their E2 decays into \(\chi_{cJ_1}(1P_1) \gamma(E2) \) and \(\chi_{cJ_2}(1P_2) \gamma(E2) \) are suppressed in the heavy quark symmetry limit.

We obtain some typical M1 transition ratios \(\Gamma(\chi_{cJ_1}(1P_1)) / \Gamma(\chi_{cJ_2}(1P_1)) \) and \(\Gamma(\chi_{cJ_1}(1P_2)) / \Gamma(\chi_{cJ_2}(1P_2)) \)

III. STRONG DECAYS OF \(Z_1(4475) \)

G-parity conservation constrains the hidden-charm decay modes of \(Z_1(4475) \): \(J/\psi \pi, \psi(1^3D_1)\pi, \eta_1 \rho \) and \(\eta_2(1^1D_2)\rho \). Since the radial excitation has the same spin decomposition as the ground state, their decay patterns are the same. For example, it’s understood throughout our discussion that the \(J/\psi \pi \) and \(\psi(1^3D_1)\pi \) modes are the same in our symmetry analysis.

For the \(1P_1 \) case, all the four hidden-charm decay modes are allowed if \(Z_1(4475) \) is a \(D_1^*D^* \) molecule. For example, the \(\eta_1 \rho \) and \(\eta_2(1^1D_2)\rho \) modes arise from the spin configuration \((0^+_H \otimes 1^+_l)_{j=1}^+ \). In contrast, the \(\sqrt{2}(D_1^*1D_2^* \chi_{cJ_1}(1P_1) \) molecule state doesn’t contain the spin configuration \((0^+_H \otimes 1^+_l)_{j=1}^+ \). Hence, its decays into \(\eta_1 \rho \) and \(\eta_2(1^1D_2)\rho \) are suppressed. Both \(D_1^*1D_2^* \chi_{cJ_1}(1P_1) \) states allow the decay modes \(J/\psi \pi \) and \(\psi(1^3D_1)\pi \), which depend on the spin configurations \((1^+_H \otimes 0^+_l)_{j=1}^+ \) and \((1^+_H \otimes 2^+_l)_{j=1}^+ \) respectively.
Since neither $D'_1 \bar{D}'_1$ nor $D^{*} \bar{D}'_1$ in the $3P_1$ state contains the component $(1_H \otimes 0_T)^{+}_{j_z=1}$, the decays of $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$ into $J/\psi \pi$ and $\psi(1^1D_1) \pi$ are suppressed. For the $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$ state, both $J/\psi \pi$ and $\psi(1^1D_1) \pi$ are allowed while they depend on the $(1_H \otimes 0_T)^{+}_{j_z=1}$ and $(1_H \otimes 2_T)^{+}_{j_z=1}$ components, respectively. Similar conclusions hold for the $3P_1$ $D_2 \bar{D}'_1$ molecular state. Both $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$ and $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$ can decay into $\eta_\rho \rho$ and $\eta_\rho(1^1D_2) \rho$ through the spin configuration $(0_{H} \otimes 1_T)^{+}_{j_z=1}$.

For $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$, $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$ and $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$, their $J/\psi \pi$ and $\psi(1^1D_1) \pi$ modes are similar to the 1^1P_1 case. However, these $5P_1$ states can also decay into $\eta_\rho \rho$ and $\eta_\rho(1^1D_2) \rho$. Since neither $D'_1 \bar{D}'_1$ nor $D^{*} \bar{D}'_1$ contains the component $(0_{H} \otimes 1_T)^{+}_{j_z=1}$, the $\eta_\rho \rho$ and $\eta_\rho(1^1D_2) \rho$ modes of $\frac{1}{\sqrt{2}} (D'_1 \bar{D}'_1 - D^{*} \bar{D}'_1)^{(3P_1)}$ are suppressed in the heavy quark symmetry limit.

The S-wave states $\frac{1}{\sqrt{2}} (D(3^2,1) \bar{D} - D(3^2,1))$ and $\frac{1}{\sqrt{2}} (D(3^2,1) \bar{D} + D^{*} \bar{D}(3^2,1))$, can decay into $\psi(1^1D_1) \pi$, $\eta_\rho \rho$ or $\eta_\rho(1^1D_2) \rho$ through the components $(1_H \otimes 0_T)^{+}_{j_z=1}$, $(0_{H} \otimes 1_T)^{+}_{j_z=1}$ and $(0_{H} \otimes 2_T)^{+}_{j_z=1}$, respectively. However, neither $\frac{1}{\sqrt{2}} (D(3^2,1) \bar{D} - D(3^2,1))$ nor $\frac{1}{\sqrt{2}} (D(3^2,1) \bar{D} + D^{*} \bar{D}(3^2,1))$ contains the spin configuration $(1_H \otimes 0_T)^{+}_{j_z=1}$. Therefore, the $J/\psi \pi$ or $\psi' \pi$ modes are suppressed in the heavy quark symmetry limit.

The S-wave states $\frac{1}{\sqrt{2}} (D(5250) \bar{D}^* - \bar{D}^*(5250))$ and $\frac{1}{\sqrt{2}} (D(5250) \bar{D}^* - D(5250) \bar{D})$ can decay into $J/\psi \pi$, $\eta_\rho \rho$ or $\eta_\rho(1^1D_2) \rho$. However, neither $\frac{1}{\sqrt{2}} (D(5250) \bar{D}^* - \bar{D}^*(5250))$ nor $\frac{1}{\sqrt{2}} (D(5250) \bar{D}^* - D(5250) \bar{D})$ contains the spin configuration $(1_H \otimes 0_T)^{+}_{j_z=1}$. The $\psi(1^1D_1) \pi$ mode is suppressed.

In addition, we notice that all the $D'_1 \bar{D}'_1$ ($P_1, 3 P_1, 5 P_1$) and $D'_1 \bar{D}'_1$ ($P_1, 3 P_1, 5 P_1$) states can decay into $\bar{D} \bar{D}$ and $D^{*} \bar{D}^{*}$ through either S-wave or D-wave. The S-wave molecule containing the radial excitation can decay into the DD^* and $D^{*} \bar{D}^{*}$ modes. Thus, $e^+ e^- \rightarrow \gamma(4660) \rightarrow Z(4475)$ is a suitable processes to search for $Z(4475)$.

IV. SUMMARY

Motivated by LHCb’s confirmation of the spin parity of $Z(4475)$ [1], we have investigated the implications of this measurement. Under the molecular assumption, we have considered three cases: (1) $Z(4475)$ as the P-wave excitation of the S-wave molecule composed of a D or D^* meson and a D-wave vector D meson, or (3) $Z(4475)$ as the coussin molecular state of $Z(3900)$ and $Z(4020)$ composed of a D or D^* meson and their radial excitations. With the help of the heavy quark symmetry, we have studied the radiative and strong decay patterns of $Z(4475)$.

In the heavy quark symmetry limit, the S-wave molecule composed of a D or D^* meson and a D-wave vector D meson does not decay into the $\psi \pi$ final state, which is the discovery mode of $Z(4475)$. Therefore, this molecule scheme seems unfavorable.

If $Z(4475)$ could be the P-wave excitation of the $D_1 \bar{D}^*$ or $D_2 \bar{D}^*$ molecule, we can study their radiative and strong decay patterns together with their S-wave molecular ground states simultaneously, the radiative decays of which are presented in Ref. [10]. Within this scheme, the non-observation of $Z(4475)$ in the $J/\psi \pi$ mode is always a serious challenge. There exists no manifest symmetry forbidding this mode. The same challenge holds for the tetraquark interpretation. Moreover, if $Z(4475)$ is the P-wave molecule, where is the ground state? Is it $Z(4239)$? If so, can we find a natural framework to explain its large binding energy around 190 MeV?

If $Z(4475)$ happens to be the molecular cousin of $Z(3900)$ and $Z(4020)$ composed of a D or D^* meson and their radial excitations, it decays into $J/\psi \pi$ and $\psi' \pi$ easily. However, it will not decay into $\psi(1^1D_1) \pi$ in the heavy quark symmetry limit. The neutral component will also decay into χ_{c1} through the $M1$ transition. The resulting decay width ratio is 1:3.5. Since $Z(4475)$ contains one radial excitation as its molecular component, one may expect that $Z(4475)$ may decay into the final state containing a radial excitation more easily. Up to now, the puzzling charged state $Z(4475)$ remains very mysterious. Hopefully the present work will help us to understand its underlying structure better.

Acknowledgments

This project is supported by the National Natural Science Foundation of China under Grants No. 11225247, No. 11175073, No. 11035006, No. 11375240 and No. 11261130311, the Ministry of Education of China (FANEDD under Grant No. 200924, SRFDP under Grant No. 201202111000, and NCET), the China Postdoctoral Science Foundation under Grant No. 2013M530461, and the Fok Ying Tung Education Foundation (Grant No. 131006).

[1] R. Aaij et al. [LHCb Collaboration], arXiv:1404.1903 [hep-ex].
[2] S. K. Choi et al. [BELLE Collaboration], Phys. Rev. Lett. 100, 142001 (2008) [arXiv:0708.1790 [hep-ex]].
[3] K. Chilikin et al. [BELLE Collaboration], Phys. Rev. D 88, 074026 (2013) [arXiv:1306.4894 [hep-ex]].
[4] C. Meng and K.-T. Chao, arXiv:0708.4222 [hep-ph].
[5] X. Liu, Y.-R. Liu, W.-Z. Deng and S.-L. Zhu, Phys. Rev. D 77, 034003 (2008) [arXiv:0711.0494 [hep-ph]].
[6] G.-J. Ding, arXiv:0711.1485 [hep-ph].
[7] X. Liu, Y.-R. Liu, W.-Z. Deng and S.-L. Zhu, Phys. Rev. D 77, 094015 (2008) [arXiv:0803.1295 [hep-ph]].
[8] X. Liu, B. Zhang and S.-L. Zhu, Phys. Rev. D 77, 114021 (2008) [arXiv:0803.4270 [hep-ph]].
[9] S. H. Lee, A. Mihara, F. S. Navarra and M. Nielsen, Phys. Lett.
B 661, 28 (2008) [arXiv:0710.1029 [hep-ph]].

[10] W. Chen and S. -L. Zhu, Phys. Rev. D 83, 034010 (2011) [arXiv:1010.3397 [hep-ph]].

[11] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 110, 252001 (2013); Phys. Rev. Lett. 112, 132001 (2014); Phys. Rev. Lett. 111, 242001 (2013); Phys. Rev. Lett. 112, 022001 (2014).

[12] Z. Q. Liu et al. [Belle Collaboration], Phys. Rev. Lett. 110, 252002 (2013) [arXiv:1304.0121 [hep-ex]].

[13] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 82, 111101 (2010) [arXiv:1009.2076 [hep-ex]].

[14] Z. -F. Sun, J. -S. Yu, X. Liu and T. Matsuki, Phys. Rev. D 82, 111501 (2010) [arXiv:1008.3120 [hep-ph]].

[15] A. V. Manohar and M. B. Wise, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10, 1 (2000).

[16] L. Ma, Z. -F. Sun, X. -H. Liu, W. -Z. Deng, X. Liu and S. -L. Zhu, arXiv:1403.7907 [hep-ph].