Spin–orbit torque driven skyrmion motion under unconventional spin Hall effect

Yang Zhao, Dongying Guo, Zhongming Zeng, Maokang Shen, Yue Zhang, Riccardo Tomasello, Giovanni Finocchio, Ruilong Wang and Shiheng Liang

1 Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, People’s Republic of China
2 Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, People’s Republic of China
3 School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105, People’s Republic of China
4 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
5 Department of Electrical and Information Engineering, Politecnico di Bari, I-70125 Bari, Italy
6 Department of Mathematical and Computer Sciences, Physical Science and Earth Sciences, University of Messina, Messina 98166, Italy

* Authors to whom any correspondence should be addressed.
E-mail: shihengliang@hubu.edu.cn and gfinocchio@unime.it

Keywords: spintronics, skyrmion, spin–orbit torque, spin Hall effect, charge-to-spin conversion

Abstract
The effective control of skyrmion motion is a critical aspect for realizing skyrmion-based devices. Among the potential directions, the use of current induced spin–orbit torque (SOT) is energetically efficient. However, the conventional heavy metals with high crystal symmetry limit the charge-to-spin conversion to the orthogonal configuration, which causes the skyrmions to deflect from the electrical current direction with a finite skyrmion Hall angle. Here, we investigate the SOT driven skyrmion motion under unconventional spin Hall effect. We systematically study the effect of a noncollinear low-symmetry spin source layer with spin moments mixed by Rashba-like S_y, Dresselhaus-like S_x and out-of-plane like S_z on skyrmion features (velocity, diameter and Hall angle) stabilized in a ferromagnet/WTe$_2$ heterostructure. Our results may provide a new degree of freedom for controlling the skyrmion Hall angle, and can open the way for the discovery of new ferromagnetic multilayer where the skyrmion Hall angle is suppressed by the proper design of different SOT driven forces.

1. Introduction

Magnetic skyrmions are topologically protected magnetic configurations that can be stable even at nanometer sizes and can be manipulated electrically [1–8]. In this respect, skyrmions offer a platform for realizing next-generation spin-based information processing devices with proposals in storage [9–14] and computing [15–21]. Recently, current-induced magnetization dynamics through spin–orbit torques (SOTs) [22–24] have shown an effective and efficient technique in the fast-developing field of spin-orbitronics [25], as well as in driving skyrmion motion [26–30]. However, in ferromagnets, the skyrmion motion is characterized by a deflection angle with respect to the electrical current direction, i.e., the skyrmion Hall angle [27, 28, 31]. The control of the skyrmion Hall angle is crucial for skyrmion applications where skyrmions, coding the information, are unavoidably driven toward the sample edges with a subsequent annihilation. This aspect also limits the maximum applicable current and hence the maximum velocity achievable for the skyrmion. Several strategies have been considered in recent years to solve this issue, such as the use of coupled skyrmions with opposite skyrmion numbers in compensated ferrimagnets [32], synthetic antiferromagnets [33–37], antiferromagnets [38–43], and the use of tracks with engineered anisotropy [44–46]. Here, we propose to exploit an ‘unconventional’ SOT [47, 48] driving source, by
considering the noncollinear low-symmetry spin source layer with spin moments mixed by Rashba-like S_z, Dresselhaus-like S_x, and out-of-plane like S_y.

In a heavy metal/ferromagnet (HM/FM) conventional system, the HM high crystal symmetry limits the charge-to-spin conversion to the orthogonal configuration. The corresponding SOT is then related to the spin moments of Rashba-like S_y in the generated spin current only, and the current-driven skyrmion motion exhibits a nonzero skyrmion Hall angle. Figure 1(a) shows the charge-to-spin mechanism diagram of a conventional HM. The charge current J flows in the HM along the x-direction, and generates a spin current J_S flowing along the z-direction with a spin moment S_z along the y-direction. Due to the requirement by symmetry in a conventional HM, for example Pt [49], the charge current can only be converted into a spin current with Rashba-like spin moment S_y, and there is no spin moment along the x or z-direction. Therefore, the spin-Hall conductivities $\sigma^{y}_{xz} (i, j, k$ are spin current, charge current, and spin moment directions, respectively) follow the conditions of $\sigma^{y}_{xz} = 0$ but $\sigma^{y}_{zx} \neq 0$. The nonzero S_z gives rise to damping-like (DL) τ_y,DL and field-like (FL) τ_y,FL torques on the magnetization m in the adjacent FM layer [50], with τ_y,FL $\propto m \times S_y$ and τ_y,DL $\propto m \times (m \times S_y)$, as shown in figure 1(b). Their corresponding effective magnetic fields are indicated by B_y,DL and B_y,FL, respectively.

On the other hand, materials with low-symmetry crystals support unusual spin-to-charge conversion, leading to the unconventional spin Hall effect, which has been reported experimentally in Weyl semimetal MoTe$_2$ [51, 52] and WTe$_2$ [53, 54]. It was found that the charge current can induce spin current with the spin moment along both the z-direction (S_z) and y-direction (S_y), as shown in figure 1(c), where $\sigma^{y}_{zx} \neq 0$ and $\sigma^{y}_{zx} \neq 0$ are achieved by the unique broken in-plane symmetry [51]. The corresponding generated unconventional SOTs linked to S_z on the adjacent FM layer are shown in figure 1(d). Since τ_z,FL $\propto m \times S_z$ and τ_z,DL $\propto m \times (m \times S_z)$, τ_z,DL can efficiently manipulate the out-of-plane magnetization component m_z. In the case of a skyrmion, this allows for the control of the skyrmion size. In addition, with the further lowering of the symmetry, the generated spin current can also include the Dresselhaus-like S_x [48, 55] spin moment, as shown in figure 1(e). The corresponding generated unconventional spin torques on the adjacent FM layer are shown in figure 1(f). Therefore, we expect the magnetization dynamics driven by the previous unconventional SOT to be unique and different from the conventional HM/FM bilayer systems [47]. A potential application of these torques is skyrmion velocity enhancement by controlling the skyrmion Hall angle [56].

With this in mind, here, we explore, by means of a systematic study carried out with micromagnetic simulations, the effect of different unconventional SOTs on the current-driven skyrmion motion with noncollinear spin moments mixed by Rashba-like S_y, Dresselhaus-like S_z, and out-of-plane like S_x. We analyze their effects on skyrmion features such as the diameter, velocity, and Hall angle. We observe that the unconventional SOT can effectively reduce the skyrmion Hall angle and, for a particular combination of spin moments, it can be completely suppressed. Our results provide a direction for controlling skyrmion motion by a noncollinear spin source with the potential to realize skyrmion long-distance motion along ferromagnetic track as well as for stimulating the exploration of new ferromagnetic systems where the skyrmion Hall angle is zero thanks to the unconventional SOT.
2. Micromagnetic modeling

We perform micromagnetic simulations by using the Mumax3 program [57], which numerically integrates the following Landau–Lifshitz–Gilbert equation:

$$\frac{\partial \mathbf{m}}{\partial t} = \gamma \frac{1}{1 + \alpha^2} \left(\mathbf{m} \times \mathbf{B}_{\text{eff}} + \alpha \mathbf{m} \times (\mathbf{m} \times \mathbf{B}_{\text{eff}}) \right) + \mathbf{\tau}_{\text{SOT}},$$

(1)

where γ is the gyromagnetic ratio and α is the Gilbert damping coefficient. \mathbf{B}_{eff} is the effective magnetic field which, and includes the magnetostatic $\mathbf{B}_{\text{demag}}$, magnetic anisotropy \mathbf{B}_{ani}, exchange \mathbf{B}_{exch} and Dzyaloshinskii–Moriya interaction (DMI) effective field \mathbf{B}_{DMI} [57]. We consider zero temperature and an external field.

The spin torque term of $\mathbf{\tau}_{\text{SOT}}$ is expressed as equation (2).

$$\mathbf{\tau}_{\text{SOT}} = \frac{\beta \theta_{\text{SH}}}{2(1 + \alpha^2)}(\mathbf{m} \times (\mathbf{s} \times \mathbf{m}) - \alpha (\mathbf{s} \times \mathbf{m})),

(2)

where θ_{SH} is the spin–Hall angle and $\beta = \frac{\hbar}{m_{\text{sat}}^* \tau_{\text{rel}}} I$ is the charge current density, t_{FM} is the FM thickness, \hbar is the reduced Planck constant, and e is the electron charge. The FM material CoPt is used with the following parameters: saturation magnetization $m_{\text{sat}} = 0.58$ MA m$^{-1}$, DMI parameter $D = 3$ mJ m$^{-2}$, exchange stiffness $A = 15$ pJ m$^{-1}$, perpendicular anisotropy constant $K_u = 0.9$ MJ m$^{-3}$, and $\alpha = 0.3$ [56]. We consider a racetrack geometry with length 200 nm, width 80 nm, and thickness 0.8 nm. The cell size was 1 nm \times 1 nm \times 0.1 nm. While in the paper we present the results for this set of parameters, we wish to highlight that qualitatively similar results can be achieved with other combinations of parameters that stabilize the skyrmion. For unconventional SOT, the spin Hall angle is defined as θ_{SH}^i, where i, j, k are the directions \mathbf{J}_i, \mathbf{J}_j and \mathbf{S}_k, respectively. In our simulations, the current is applied along the x-direction, and the generated spin current is along the z-direction [as shown in figures 1(a)–(c)]. Therefore, the spin hall angle is expressed as

$$\theta_{\text{SH}}^x = \frac{\hbar J_{\text{Sx}}}{2e^* I},

(3)

where J_{Sx} is the spin current density with the spin moment along the k axis ($k = x, y, \text{or} z$). We consider an absolute value of spin Hall angle $\theta_{\text{SH}} = \sqrt{\theta_{\text{Sx}}^2 + \theta_{\text{Sx}}^2 + \theta_{\text{Sx}}^2} = 0.3$ [58] in the first set of simulations.

3. Results and discussions

We start our discussion by examining the effect of the SOT on the velocity v, skyrmion Hall angle ϕ, and skyrmion diameter d [see figure 2(a)], when S_x, S_y, and S_z act separately. The presence of only S_x [see figure 2(b)] does not provide any motion, but only a change in d [59] which is defined as the diameter of the circular region enclosed by $M_z = 0$ indicated by the dashed line in the inset of figure 2(b) [see also supplemental note 1 (https://stacks.iop.org/NJP/24/053053/mmedia)]. S_x promotes a well-known [11] skyrmion motion with velocity of approximately 90 m s$^{-1}$ [see figure 2(c), red curve], $\phi = 165^\circ$ [see figure 2(d), green curve] and $d = 31$ nm [see figure 2(d), orange curve] for $J = 10$ MA cm$^{-2}$ (see also supplemental note 2). The motion provided by only S_x is similar to the previous one ($v \approx 90$ m s$^{-1}$, and $d = 31$ nm) but with $\phi = 77^\circ$ (see also supplemental note 2).

Now, we study the combined effect of S_x, S_y, and S_z. We start from the combination of S_y, and S_z. When fixing θ_{Sx}^x and increasing θ_{Sy}^y, no significant change is observed for the skyrmion velocity [see figure 2(c), red curve], while the skyrmion Hall angle results from the trade-off between the effect S_y and S_z. In particular, ϕ linearly decreases up to $\theta_{\text{Sx}}^x/\theta_{\text{Sy}}^y = 1.5$. Beyond that value, it starts to saturate approximately 80$^\circ$ [see figure 2(d), green curve], which, as expected, coincides with the skyrmion Hall angle when only S_x acts. The observed reduction in the skyrmion Hall angle due to S_y and S_z seems promising for realizing zero skyrmion Hall angle devices, as we will show later.

Now, we combine S_x and S_y, by fixing θ_{Sx}^x and increasing θ_{Sy}^y. The velocity linearly increases up to $\theta_{\text{Sx}}^x/\theta_{\text{Sy}}^y = 1.5$. Beyond that value, it starts to saturate approximately 70 m s$^{-1}$ [see figure 2(c), blue curve], which is very close to the velocity obtained when only S_x acts, as expected. We ascribed the velocity saturation to the behavior of the skyrmion diameter, which qualitatively follows the same trend, as shown in figure 2(e), orange curve. Such a behavior is due to the competition between S_x and S_y. The former tries to maintain a shorter diameter of approximately 24 nm, while, the latter, tries to increase the skyrmion size to 31 nm. Therefore, we obtain a saturation both in the diameter and in the velocity. However, no significant changes are observed for the skyrmion Hall angle [figure 2(e), green curve]. Similar results are obtained when S_z and S_y are combined, as shown in figure 2(f).
Figure 2. (a) SOT driven skyrmion motion under noncolinear spin Hall angles θ_{yz}. The skyrmion Hall angle is indicated by ϕ, and the skyrmion size is indicated by diameter d. The ferromagnetic film thickness is 2 nm. (b) The relation of stable skyrmion diameters versus current density and space distribution value of B_z in the out-of-plane direction (B_z), centered at the skyrmion. The skyrmion is marked by the black dashed circle. (c) The relation of skyrmion motion velocity versus θ_{xz}/θ_{zy}. (d) The relation of skyrmion Hall angle and diameter versus $\theta^x_{xz}/\theta^y_{xy}$. (e) The relation of skyrmion Hall angle and diameter versus $\theta^x_{xz}/\theta^y_{yz}$. (f) The relation of skyrmion Hall angle and diameter versus $\theta^y_{xy}/\theta^z_{yz}$.

The previous results gave us a fundamental understanding of the effect of the different spin moments, and, of course, confirmed that conventional SOTs drive the skyrmion with a finite Hall angle, which inevitably leads the skyrmion to meet the edge of a confined sample where it will be annihilated (see supplemental note 3). Therefore, in the following, we wish to analyze a realistic scenario where the skyrmion Hall angle can be strongly reduced thanks to the unconventional SOT. Recently, skyrmion motion in an FM/WTe$_2$ heterostructure has been experimentally observed [60], and unconventional SOTs have been found in WTe$_2$ [53, 54, 61], which satisfies $\sigma_{xz}^z \neq 0$ or/and $\sigma_{yz}^x \neq 0$ by the unique broken in-plane symmetry. Hence, the FM/WTe$_2$ heterostructure seems to be a promising system to achieve our aim. With this in mind, we investigate the skyrmion motion in an FM/WTe$_2$ by exploring SOTs generated from the spin source layer of WTe$_2$ by the spin moment along S_z and S_y with $\theta^x_{xz}/\theta^y_{xy} \sim 0.5$ [53]. Figures 3(a)–(e) show the results of the skyrmion motion after simulations 10 ns at different current densities J from 5×10^{10} A m$^{-2}$ to 2.5×10^{11} A m$^{-2}$. The white lines indicate the skyrmion motion trajectory. It is clear that the skyrmion Hall angle is not completely suppressed and motion occurs along the sample edges, where the skyrmion diameter decreases due to the simultaneous action of the unconventional SOT and repulsive force from the boundary. When the current reaches 3×10^{11} A m$^{-2}$, the skyrmion is expelled. The skyrmion velocity increases from 6 m s$^{-1}$ to 31 m s$^{-1}$ [figure 3(f)].

Eventually, we wish to propose a scenario where the skyrmion Hall angle can be completely suppressed thanks to a proper combination of the unconventional SOTs. Usually, the motion of the skyrmion can be understood within the picture of the Thiele equation as used to describe the skyrmion Hall effect in rigid
Figure 3. (a)–(e) The unconventional SOT driven skyrmion motion by the spin moment along the z-direction (S_z) and y-direction (S_y) with an $\theta_{yx}/\theta_{zx} \sim 0.5$. The white dashed lines indicate the skyrmion motion trajectory, under different current densities J from 5×10^{10} A m$^{-2}$ to 2.5×10^{11} A m$^{-2}$. (f) The relation of skyrmion motion velocity versus current density.

skyrmion systems [11, 27, 62],

$$G \times \mathbf{v} - \alpha \mathbf{D} \cdot \mathbf{v} - 4\pi \mathbf{B} \cdot \mathbf{J} = 0,$$

(4)

where $G = (0, 0, -4\pi Q)$ is the gyromagnetic coupling vector. The topological charge Q can be written as

$$Q = \frac{1}{4\pi} \int \mathbf{m} \cdot \left(\frac{\partial \mathbf{m}}{\partial x} \times \frac{\partial \mathbf{m}}{\partial y} \right) \, dx \, dy,$$

(5)

where \mathbf{m} is the normalized magnetization. $\mathbf{v} = (v_x, v_y)$ is the drift velocity of the skyrmion along the x and y-axes, respectively. The dissipative force tensor \mathbf{D} is determined by the spin configuration in the skyrmion. The tensor \mathbf{B} represents the efficiency of the spin Hall torque over the skyrmion. \mathbf{J} is the electrical current density flowing in the heavy metal (WTe$_2$ in this letter). The Thiele equation of the Bloch skyrmion driven by unconventional SOT yields (see supplemental note 4)

$$v_x = -\frac{4\pi JB(4\pi Q\theta_{zx} + \alpha D\theta^y_{zx})}{\theta_{zx}(4\pi Q)^2 + (\alpha D)^2},$$

(6)

$$v_y = \frac{4\pi JB(4\pi Q\theta^y_{zx} - \alpha D\theta^x_{zx})}{\theta_{zx}(4\pi Q)^2 + (\alpha D)^2}.$$

(7)

Therefore, the skyrmion Hall angle can be calculated by

$$\phi = \arctan \left(-\frac{4\pi Q\theta^y_{zx}/\theta^x_{zx} + \alpha D}{4\pi Q + \alpha D\theta^y_{zx}/\theta^x_{zx}} \right).$$

(8)

When $\theta^y_{zx}/\theta^x_{zx} = \frac{\theta^y_{zx}}{4\pi Q}$, the skyrmion Hall angle is zero, that is, the skyrmion Hall effect can be completely suppressed. Figures 4(a)–(e) show a zero skyrmion Hall angle motion when $\theta^y_{zx}/\theta^x_{zx} = -0.46$ (θ^y_{zx} is zero because it controls the skyrmion size only), and figure 4(f) shows the relationship between skyrmion Hall angle and $\theta^y_{zx}/\theta^x_{zx}$ where the theoretical calculation results are consistent with the simulation results. The slight deviation mainly comes from the neglect of the boundary force which can depress the skyrmion Hall angle for simplicity in the theoretical calculation. Figure 4(g) depicts the achievement of a very high velocity up to 216 m s$^{-1}$. These results suggest that ferromagnetic systems with such a combination of unconventional SOTs should be designed.

4. Summary

By exploring the unconventional SOT with noncollinear spin moments mixed by Rashba-like S_y, Dresselhaus-like S_x, and out-of-plane like S_z of the low-symmetry spin source layer, we demonstrated, via micromagnetic simulations, an additional degree of freedom to control the skyrmion Hall angle in ferromagnetic systems.

We found that the combination of S_y, S_x, and S_z can effectively reduce the skyrmion Hall angle, and we proved it in a realistic FM/WTe$_2$ scenario. We also proposed a proper combination of the unconventional SOTs to completely suppress the skyrmion Hall angle. Our results may provide a deeper understanding of
Figure 4. (a)–(e) The unconventional SOT driven skyrmion motion by the spin moment along the x-direction (S_x) and y-direction (S_y) with an $\theta_x \sim 0.46$. The white dashed lines indicate the skyrmion motion trajectory, under different current densities J from 5×10^{10} A m$^{-2}$ to 2.5×10^{11} A m$^{-2}$. (f) The relationship between skyrmion Hall angle and θ_x / θ_y, where the theoretical calculation results are consistent with the simulation results. (g) The relation of skyrmion motion velocity versus current density.

the current-induced SOT-driven skyrmion motion by a noncollinear spin source for the potential application of spintronics devices, and pave the way for exploring new material combinations to achieve a zero skyrmion Hall angle in ferromagnets.

Acknowledgments

This work is supported by the National Key Research and Development Program of China (2022YFE0103300), the National Natural Science Foundation of China (Nos. 11904088 and 51971098), Scientific Research Project of Education Department of Hubei Province (No. Q20191010), and Research Project of Wuhan Science and Technology Bureau (No. 2019010701011394).

Conflict of interest

The authors declare no conflicts of interest.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

ORCID iDs

Zhongming Zeng https://orcid.org/0000-0001-7240-2058
Giovanni Finocchio https://orcid.org/0000-0002-9218-5633
Shiheng Liang https://orcid.org/0000-0002-2133-2659

References

[1] Fert A, Reyren N and Cros V 2017 Magnetic skyrmions: advances in physics and potential applications Nat. Rev. Mater. 2 17031
[2] Jiang W et al 2016 Mobile Néel skyrmions at room temperature: status and future AIP Adv. 6 055602
[3] Soumyanarayanan A, Reyren N, Fert A and Panagopoulos C 2016 Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces Nature 539 309–17
[4] Everschor-Sitte K, Masell J, Reeve R M and Kläui M 2018 Perspective: magnetic skyrmions—overview of recent progress in an active research field J. Appl. Phys. 124 240901

[5] Zhang X et al 2020 Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications J. Phys.: Condens. Matter 32 143801

[6] Back C G et al 2020 The 2020 skyromics roadmap J. Phys. D: Appl. Phys. 53 363001

[7] Finocchio G, Büttner F, Tomasello R, Carpentieri M and Finocchio G 2016 Magnetic skyrmions: from fundamental to applications J. Phys. D: Appl. Phys. 49 423001

[8] Finocchio G and Panagopoulos C 2021 Preface Magnetic Skyrmions and Their Applications ed G Finocchio and C Panagopoulos (Sawston: Woodhead Publishing) pp 9–11

[9] Fert A, Crov V and Sampaio J 2013 Skyrmions on the track Nat. Nanotechnol. 8 152–6

[10] Sampaio J, Crov V, Rohart S, Thiaville A and Fert A 2013 Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures Nat. Nanotechnol. 8 839–44

[11] Tomasello R, Martinez E, Zivieri R, Torres L, Carpentieri M and Finocchio G 2014 A strategy for the design of skyrmion racetrack memories Sci. Rep. 4 6784

[12] Zhang X, Zhao G P, Fangohr H, Liu J P, Xia W X, Xia J and Morvan F J 2015 Skyrmion—skyrmion and skyrmion–edge repulsions in skyrmion-based racetrack memory Sci. Rep. 5 7643

[13] Zheng F et al 2018 Experimental observation of chiral magnetic bobbers in B20-type FeGe Nat. Nanotechnol. 13 451–5

[14] Mandru A-O, Yıldırım O, Tomasello R, Heistracher P, Penedo M, Giordano A, Suess D, Finocchio G and Hug H J 2020 Coexistence of distinct skyrmion phases observed in hybrid ferromagnetic/ferrimagnetic multilayers Nat. Commun. 11 6565

[15] Pinna D, Abreu Araujo F, Kim J V, Crov V, Querlioz D, Bassieri P, Droulez J and Grollier J 2018 Skyrmion gas manipulation for probabilistic computing Phys. Rev. Appl. 9 064018

[16] Pinna D, Bourianoff G and Everschor-Sitte K 2020 Reservoir computing with random skyrmion textures Phys. Rev. Appl. 14 054020

[17] Závorka J et al 2019 Thermal skyrmion diffusion used in a reshuffling device Nat. Nanotechnol. 14 658–61

[18] Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Magnetic skyrmion-based artificial neuron device Nanotechnology 28 31LT01

[19] Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y and Zhao W 2018 A compact skyrmionic leaky-integrate-fire spiking neuron device Nanoscale 10 6139–46

[20] Liang X, Zhang X, Xia J, Erazma M, Zhao Y, Zhao G and Zhou Y 2020 A spiking neuron constructed by the skyrmion-based spin torque nano-oscillator Appl. Phys. Lett. 116 122402

[21] Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S and Stiles M D 2020 Neuromorphic spintronics Nat. Electron. 3 360–70

[22] Manchon A, Zeleńczy J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garélo K and Gambardella P 2019 Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems Rev. Mod. Phys. 91 035004

[23] Fukami S, Anekawa T, Zhang C and Ohno H 2016 A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration Nat. Nanotechnol. 11 621–5

[24] Liu L, Pai C-F, Li Y, Teng H W, Ralph D C and Buhrman R A 2012 Spin-torque switching with the giant spin Hall effect of tantalum Science 336 555–8

[25] Hoffmann A and Bader S D 2015 Opportunities at the frontiers of spintronics Phys. Rev. Appl. 4 044071

[26] Woo S et al 2016 Beach, observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets Nat. Mater. 15 501–6

[27] Jiang W et al 2016 Direct observation of the skyrmion Hall effect Nat. Phys. 13 162–9

[28] Litzius K et al 2016 Skyrmion Hall effect revealed by direct time-resolved x-ray microscopy Nat. Phys. 13 170–3

[29] Litzius K et al 2020 The role of temperature and drive current in skyrmion dynamics Nat. Electron. 3 8–13

[30] Zeiessler K et al 2020 Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers Nat. Commun. 11 428

[31] Tomasello R et al 2018 Micromagnetic understanding of the skyrmion Hall angle current dependence in perpendicularly magnetized ferromagnets Phys. Rev. B 98 224418

[32] Woo S et al 2018 Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films Nat. Commun. 9 959

[33] Zhang X, Zhou Y and Erazma M 2016 Magnetic bilayer-skyrmions without skyrmion Hall effect Nat. Commun. 7 10293

[34] Tomasello R, Puliafito V, Martinez E, Manchon A, Ricci M, Carpentieri M and Finocchio G 2017 Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion J. Phys. D: Appl. Phys. 50 325302

[35] Legrand W, Maccariello D, Ajeas F, Collin S, Vecchiola A, Bouzouhane K, Beyren N, Crov V and Fert A 2020 Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets Nat. Mater. 19 34–42

[36] Dohi T, DuttaGupta S, Fukami S and Ohno H 2019 Formation and current-induced motion of synthetic antiferromagnetic skyrmions in GdFeCo films Nat. Commun. 10 5153

[37] Zhang X, Erazma M and Zhou Y 2016 Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks Phys. Rev. B 94 044406

[38] Barker J and Tretiak O A 2016 Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature Phys. Rev. Lett. 116 147203

[39] Velkov H, Gomonay O, Beens M, Schwiete G, Brataas A, Sinova J and Duine R A 2016 Phenomenology of current-induced skyrmions in antiferromagnets New J. Phys. 18 075016

[40] Zhang X, Zhou Y and Erazma M 2016 Antiferromagnetic skyrmion: stability, creation and manipulation Sci. Rep. 6 24795

[41] Shen I, Li X, Zhao Y, Xia J, Zhao G and Zhou Y 2019 Current-induced dynamics of the antiferromagnetic skyrmion and skyrmionium Phys. Rev. Appl. 12 064033

[42] Salimath A, Zhuo F, Tomasello R, Finocchio G and Manchon A 2020 Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime Phys. Rev. B 101 024429

[43] Zhou S, Wang C, Zheng C and Liu Y 2020 Manipulating skyrmions in synthetic antiferromagnetic nanowires by magnetic field gradients J. Magn. Magn. Mater. 493 165740

[44] Yu G et al 2016 Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry Nano Lett. 16 1981–8

[45] Juge R et al 2021 Helium ions put magnetic skyrmions on the track Nano Lett. 21 2989–96
[46] Lai P, Zhao G P, Tang H, Ran N, Wu S Q, Xia J, Zhang X and Zhou Y 2017 An improved racetrack structure for transporting a skyrmion Sci. Rep. 7 45330

[47] Sun H, Cheng L, Xu J, Yu C, Xiao H, Wang R, Xu L, Zeng Z and Liang S 2021 Current-induced spin–orbit torque magnetization switching with considering unconventional staggered spin polarization J. Magn. Magn. Mater. 530 167906

[48] Nan T et al 2020 Controlling spin current polarization through non-collinear antiferromagnetism Nat. Commun. 11 4671

[49] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Spin–torque ferromagnetic resonance induced by the spin Hall effect Phys. Rev. Lett. 106 036601

[50] Nguyen M H, Ralph D C and Buhrman R A 2016 Spin torque study of the spin Hall conductivity and spin diffusion length in platinum thin films with varying resistivity Phys. Rev. Lett. 116 126601

[51] Safeer C K et al 2019 Large multidirectional spin-to-charge conversion in low-symmetry semimetal MoTe$_2$ at room temperature Nano Lett. 19 8758–66

[52] Liang S, Shi S, Hsu C–H, Cai K, Wang Y, He P, Wu Y, Pereira V M and Yang H 2020 Spin–orbit torque magnetization switching in MoTe$_2$/permalloy heterostructures Adv. Mater. 32 2002799

[53] MacNeill D, Stiehl G M, Guimarães M H D, Reynolds N D, Buhrman R A and Ralph D C 2017 Thickness dependence of spin–orbit torques generated by WTe$_2$ Phys. Rev. B 96 054450

[54] Shi S et al 2019 All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe$_2$/ferromagnet heterostructures Nat. Nanotechnol. 14 945–9

[55] Fang D et al 2011 Spin–orbit–driven ferromagnetic resonance Nat. Nanotechnol. 6 413–7

[56] Göbel B, Mook A, Henk J and Mertig I 2019 Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion Hall effect Phys. Rev. B 99 020405

[57] Vansteenkiste A, Lellaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 The design and verification of MuMax3 AIP Adv. 4 107133

[58] Gabor M S, Petrisor T, Mos R B, Mesaros A, Nasui M, Belmeguenai M, Zighem F and Tiusan C 2016 Spin–orbit torques and magnetization switching in W/Co$_2$FeAl/MgO structures J. Phys. D: Appl. Phys. 49 365003

[59] Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B and Carpentieri M 2015 Skyrmion based microwave detectors and harvesting Appl. Phys. Lett. 107 262401

[60] Wu Y et al 2020 Néel-type skyrmion in WTe$_2$/Fe$_3$GeTe$_2$ van der Waals heterostructure Nat. Commun. 11 3860

[61] MacNeill D, Stiehl G M, Guimarães M H D, Buhrman R A, Park J and Ralph D C 2017 Control of spin–orbit torques through crystal symmetry in WTe$_2$/ferromagnet bilayers Nat. Phys. 13 300–5

[62] Thiele A A 1973 Steady-state motion of magnetic domains Phys. Rev. Lett. 30 230–3