Effect of Alcohol Extract of Zataria multiflora (Boiss), Satureja bachtiarica (Bunge) and Zaravschanica membranacea (Boiss) on Immuno-Hematologic Factors in Rats

Hamed Soleyman Dehkordi¹, Mohsen Jafarian Dehkordi², Milad Rezamand Chaleshtori³, Faham Khamesipour¹* and Simbarashe Katsande⁴

¹Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran, ²Department of Pathology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran, ³Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran, ⁴Para-Clinical Department of Veterinary Studies, Faculty of Veterinary Studies, University of Zimbabwe, Harare, Zimbabwe

*For correspondence: Email: Dr_Faham@yahoo.com, F.Khamesipour@iaushk.ac.ir; Tel/Fax: +989134132858

Received: 15 May 2015 Revised accepted: 4 October 2015

Abstract

Purpose: To determine the effect alcohol extract of Zataria multiflora, Satureja bachtiarica and Zaravschanica membranacea on immunohematologic factors in Wistar rats.

Methods: Wistar rats were randomly allocated to seven treatment groups which consisted of control group with water and feed only (1); 200 mg kg⁻¹ Z. membranacea (2); 400 mg kg⁻¹ Z. membranacea (3); 200 mg kg⁻¹ S. bachtiarica (4); 400 mg kg⁻¹ S. bachtiarica (5); 200 mg kg⁻¹ Z. multiflora (6) and 400 mg kg⁻¹ Z. multiflora (7). Erythrocyte counts (RBC), packed cell volumes (PCV), haemoglobin (Hb) concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), Translocation and Assembly Module (Tam) protein, IgM and albumin were measured after 29 days.

Results: Z. membranacea at 200 mg kg⁻¹ showed the highest level of Tam-protein content (p < 0.05). Z. multiflora boiss at 400 mg kg⁻¹ produced higher levels of immunoglobulin M (IgM) compared to S. bachtiarica and Z. multiflora (p < 0.05). Both Z. membranacea and S. bachtiarica at 200 mg kg⁻¹ caused a significant increase in albumin levels in the rats (p < 0.05). Z. multiflora at 400 mg kg⁻¹ had the highest effect on white blood cells (WBC) while S. bachtiarica produced the highest effect on neutrophils (Nut) (p < 0.05). Z. membranacea and Z. multiflora at 200 mg kg⁻¹ showed significantly higher levels of monocytes (Mon) % (p < 0.05). Z. multiflora and S. bachtiarica at 400 mg kg⁻¹ showed a significant effect on phagocytosis % (p < 0.05) whilst S. bachtiarica at 400 mg.kg⁻¹ had a significant effect on phagocytosis number (p < 0.05).

Conclusion: The alcohol extracts of Z. multiflora Z. membranacea and S. bachtiarica extracts are capable of stimulating the immune defense mechanism without causing undesirable effects on hematological parameters.

Keywords: Zataria multiflora, Satureja bachtiarica, Zaravschanica membranacea, Immunoglobulin, Serum albumen, Immunohematologic factors
INTRODUCTION

The immune system is defined as biological structures and processes responsible for protecting an organism against diseases by identifying and eliminating the pathogen, stemming the emergence of tumours and maintaining constant internal conditions [1]. Enhancement of the immune system is possibly the most vital step in achieving resistance to disease and reducing susceptibility to infections. Immuno-stimulants can be used to activate the immune system through increased secretion and recognition on immuno-hematologic factors. Immuno-stimulants can be plant, viral, bacterial or parasitic derivatives as well as some synthetic compounds [2, 3].

One class of immune modulators is recognized as herbal medicines [4]. Extensive efforts are being invested to identify chemical compounds that are present in herbal products which act as immunostimulant agents to combat infections as therapeutic or prophylactic or treatments, or to enhance host immune mechanisms [5]. Barbour et al [6], Wagner [7] and Wichtl [8] reported that different herbal products are efficient in treating irregularities of the immune system and enhancing immune function in cases of toxicosis and chronic infections.

Herbal plants of medicinal importance such as Zataria multiflora Boiss, Satureja bachtiarica and Zaravshanica membranacea (Boiss) modify the physiological functions of living organisms, and thus, they are supposed to be compatibility with the animal body [9]. However, the specific effects of these plant extracts on the immunohematologic factors in animals have not been studied in detail. Therefore, the objective of the study was to determine the effect of alcoholic extract Zataria multiflora Boiss, Satureja bachtiarica and Zaravshanica membranacea (Boiss) on immunohematologic factors of in rats.

EXPERIMENTAL

All animal experiments were carried out after approval from the ethical committee of the Islamic Azad University of Shahrekord Branch (no. IAUSHK/1393).

Extraction

The whole plant of Zataria multiflora Boiss, Satureja bachtiarica and Zaravshanica membranacea obtained from a herbarium in Tehran Iran were ground and dried under shade for 10 days and ground through a 1 mm sieve before the addition of 96 % ethanol solvent. The mixture was left for 72 h at 45 °C before the filtrate was removed through a filter and dried by rotary evaporator. The weighed extract was dissolved in water to make two doses of 200 mg kg⁻¹ and 400 mg kg⁻¹ for the investigation.

Animals

A total of 35 mature female white Wistar rats weighing 180 ± 20 g were randomly allocated to seven groups. The rats were kept under well-ventilated cages in an air-controlled room, fed with normal mice chow, and water was provided ad libitum over 28 days.

Group 1: control treatment with water and food only.
Group 2: rats on 200 mg/kg Z. membranacea.
Group 3: rats on 400 mg/kg Z. membranacea.
Group 4: rats on 200 mg/kg S. bachtiarica.
Group 5: rats on 400 mg/kg S. bachtiarica.
Group 6: rats on 200 mg/kg Z. multiflora Boiss.
Group 7: rats on 400 mg/kg Z. multiflora Boiss.

Anesthesiology and sampling

At the end of study (day 29), ketamine drug (100 mg kg⁻¹) Netherland Alpha sun and vezayla zin (10 mg kg⁻¹) Netherland Alpha sun were injected intramuscularly to anaesthetize the rats. Blood was collected directly from heart, 2 mL of blood into a tube with EDTA for hematology tests and 2 mL into a tube without any anticoagulant (separating serum and albumin biochemical factors, IgM and Tam-protein). Blood cell count was done by Gimsa coloring and PCV hematocrit by microhematocrit method (centrifuging microhematocrit tube in 12000 round for two minutes). The biofactors albumin, IgM and Tam protein, were analysed from blood without any anticoagulant material. The blood factors were measured spectrophotometrically using kits of Pars Azmoon Company with Italian BT3000 auto analyzer in Almehdi Clinical Laboratory.

Statistical analysis

Data were statistically analyzed using SPSS® software (version 19.0) and presented as mean ± standard deviation (SD). Differences were considered statistically significant at p < 0.05.
RESULTS

The results in Table 1 show the effect of alcoholic extract of Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea on Tam-protein, IgM and albumin. Significantly ($p < 0.05$) higher level of Tam-protein was observed in Z. membranacea treatment at 200 mg kg$^{-1}$ compared to the rest of the treatments. Higher levels of IgM were observed in Z. multiflora boiss treatment at 400 mg kg$^{-1}$ and it was statistically significant from the other treatments ($p < 0.05$). Both Z. membranacea and S. bachtiarica treatments at 200 mg kg$^{-1}$ showed a significant increase in albumin levels in rats ($p < 0.05$).

Table 2 shows effect of alcoholic extract of Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea on biofactors and hematologic indices in the rats. Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea showed no significant effect on erythrocyte counts (RBC), packed cell volumes (PCV), haemoglobin (Hb) concentration, mean corpuscular volumes (MCV) and mean corpuscular haemoglobin (MCH) ($p > 0.05$).

Table 3 shows effect of alcoholic extract of Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea on factors and hematologic indices in the rats. Z. multiflora boiss at 400 mg kg$^{-1}$ showed higher WBC and S. bachtiarica had the highest effect on Nut ($p < 0.05$). All the treatments had no significant effect on lymphocytes (Lymph) $\%$, eosinophils (Eos) and basophils (Baso) ($p > 0.05$). Z. membranacea and Z. multiflora at 200 mg kg$^{-1}$ showed significant effect on Mon $\%$ ($p < 0.05$). Table 4 shows effect of alcoholic extract of Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea on phagocytosis number and percent in rat. Z. multiflora boiss and S. bachtiarica at 400 mg kg$^{-1}$ showed a significant effect on phagocytosis $\%$ ($p < 0.05$) whilst, S. bachtiarica at 400 mg kg$^{-1}$ had a significant effect on phagocytosis number ($p < 0.05$).

DISCUSSION

Z. multiflora boiss showed significant effect on WBS, IgM, monocytes (Mon) and phagocytosis percent. This effect caused by Z. multiflora boiss might be due to the presence of carvacrol, thymol as main phenolic compounds and p-cymeneas main non-phenolic compounds in the plant extract [10].

Table 1: Effect of alcoholic extract of Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea on Tam protein, IgM and albumin in rat

Groups	Dosage	Tam protein (SD ± Mean)	IgM (SD ± Mean)	Albumin (SD ± Mean)
1 Control	-	7.1 ± 2b	0.24 ± 0.16b	2.9 ± 0.60b
2 (Z. membranacea)	200mg. kg$^{-1}$	10.3 ± 0.96a	0.27 ± 0.07b	3.7 ± 0.20a
3 (Z. membranacea)	400 mg. kg$^{-1}$	6.7 ± 0.83b	0.39 ± 0.07b	3 ± 0.43b
4 (S. bachtiarica)	200 mg. kg$^{-1}$	8.4 ± 0.39b	0.34 ± 0.08b	3.7 ± 0.15a
5. (S. bachtiarica)	400 mg. kg$^{-1}$	6.06 ± 0.50b	0.039 ± 0.10b	3.4 ± 0.30b
6 (Z. multiflora boiss)	200mg. kg$^{-1}$	6.8 ± 1.6b	0.31 ± 0.19b	3.4 ± 0.30b
7 (Z. multiflora boiss)	400mg. kg$^{-1}$	8.1 ± 1b	0.50 ± 0.12a	3 ± 0.15b

In each column numbers that have similar letters the difference is not significant ($p > 0.05$)

Table 4: Effect of alcoholic extract of Zataria multiflora boiss, Satureja bachtiarica and Zaravschanica membranacea on number and phagocytosis percent in rat

Groups	Dosage	Phagocytosis (%) (SD ± Mean)	Phagocytosis number (SD ± Mean)
1 Control	-	16.8 ± 5.5b	12.8 ± 2.8b
2 (Z. membranacea)	200 mg. kg$^{-1}$	20.5 ± 7.1b	15.7 ± 5.8b
3 (Z. membranacea)	400 mg. kg$^{-1}$	2.5 ± 1.9b	17.2 ± 2.8a
4 (S. bachtiarica)	200 mg. kg$^{-1}$	19.2 ± 1.9a	15.8 ± 4.4a
5. (S. bachtiarica)	400 mg. kg$^{-1}$	27.2 ± 4.5a	23.5 ± 6.8b
6 (Z. multiflora boiss)	200 mg. kg$^{-1}$	228 ± 4.2b	19.5 ± 3.3b
7 (Z. multiflora boiss)	400 mg. kg$^{-1}$	28.2 ± 2.9a	15.8 ± 12.7b

In each column numbers that have similar letters the difference is not significant ($p > 0.05$)
Table 2: Effect of alcoholic extract of *Zataria multiflora boiss*, *Satureja bachtiarica* and *Zaravshanica membranacea* on hematologic indices in rat

Groups	Dosage (mg. kg⁻¹)	PVC (SD ± Mean)	RBC (SD ± Mean)	Hb (SD ± Mean)	MCV (SD ± Mean)	MCH (SD ± Mean)	MCHC (SD ± Mean)	WBC (Mean)	Neutrophils (Nut)	Lymphocytes (Lym)	Monocytes (Mon)	Eosinophils (EOS)	Basophils (Baso)	Band (%)
1 Control	-	33.5 ± 2.4b	6.5 ± 0.93b	12.8 ± 1.2b	52.5 ± 1.5b	20 ± 0.87b	38.2 ± 1.3b	651.9b	275b	384b	33.5b	20.9 ± 1.1b	37.9 ± 1.1b	
2 (Z. membranacea)	200	31.2 ± 3.2b	6.4 ± 0.8b	12.1 ± 1.1b	49.9 ± 6.4b	17.9 ± 3.1b	38.9 ± 2.5b	10600	25.8 ± 1.9b	648.7 ± 2.5b	4.5 ± 1a	2.2 ± 1.5b	1.5 ± 1b	67 ± 0.82
3 (Z. membranacea)	400	35.8 ± 1.6b	6.8 ± 0.57b	13.7 ± 0.59b	56.9 ± 6.8b	20.5 ± 3.1b	38.1 ± 2.1b	11431 ± 2110b	25.8 ± 1.9b	648.7 ± 2.5b	4.5 ± 1a	2.2 ± 1.5b	1.5 ± 1b	1.2 ± 0.75
4 (S. bachtiarica)	200	36.8 ± 1.2b	6.8 ± 0.75b	14 ± 0.61b	55.1 ± 1.1b	20.9 ± 0.61b	37.9 ± 1.1b	11816.7 ± 384b	27.2 ± 1.2b	66.2 ± 2.8b	3.1 ± 0.75b	3.5b	0.83 ± 0.75b	0.33 ± 0.52
5 (S. bachtiarica)	400	33.5 ± 4.1b	6.6 ± 0.95b	13.4 ± 11b	52.1 ± 4b	20.9 ± 0.75b	40.2 ± 2.5b	10600 ± 651.9b	38.5 ± 8.5a	61.4 ± 3.3b	2.8 ± 0.75	1.2 ± 0.75	0.33 ± 0.51b	0.5 ± 0.54
6 (Z. multiflora boiss)	200	35.8 ± 1.5b	6.9 ± 0.61b	13.3 ± 0.61b	52.8 ± 0.56b	19.5 ± 0.96b	36.9 ± 1.6b	12133 ± 501b	26.8 ± 1.9b	648.7 ± 2.5b	4.5 ± 1a	2.2 ± 1.5b	1.5 ± 1b	1.2 ± 0.75
7 (Z. multiflora boiss)	400	37.1 ± 2.3b	6.9 ± 0.85b	13 ± 0.87b	54.8 ± 2.5b	19.1 ± 0.71b	34.8 ± 0.95b	13733.3 ± 889a	25.8 ± 1.9b	69.5 ± 1b	3.2 ± 1.5b	1.1 ± 1b	1.2 ± 1.2	0.67 ± 0.82

In each column numbers that have similar letters the difference is not significant (p > 0.05). Erythrocyte counts (RBC), packed cell volumes (PCV), hemoglobin (Hb) concentration, mean corpuscular volumes (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC).

Table 3: Effect of alcoholic extract of *Zataria multiflora boiss*, *Satureja bachtiarica* and *Zaravshanica membranacea* on factors and hematologic indices in rat

Groups	Dosage (mg. kg⁻¹)	WBC (SD ± Mean)	Nut (%) (SD ± Mean)	Lym (%) (SD ± Mean)	Mon (%) (SD ± Mean)	EOS (%) (SD ± Mean)	Baso (%) (SD ± Mean)	Band (%) (SD ± Mean)
1 Control	-	10766 ± 275b	26.5 ± b	69.2 ± 8.1b	2.2 ± 0.75b	2.2 ± 0.76b	0.5 ± 0.54b	0.5 ± 0.54b
2 (Z. membranacea)	200	11483 ± 740b	29.5 ± 1.9b	62.5 ± 5b	4.5 ± 1a	3 ± 1.7b	1.5 ± 2.3b	1.2 ± 1.2
3 (Z. embranacea)	400	11433 ± 2110b	29.5 ± 4.1b	63.8 ± 3.6b	2.5 ± 0.54b	3 ± 1.7b	1.5 ± 2.3b	1.2 ± 1.2
4 (S. bachtiarica)	200	11816.7 ± 384b	27.2 ± 1.2b	66.2 ± 2.8b	3.1 ± 0.75b	3.5b	0.83 ± 0.75b	0.33 ± 0.52
5 (S. bachtiarica)	400	10600 ± 651.9b	38.5 ± 8.5a	61.4 ± 3.3b	2.8 ± 0.75	1.2 ± 0.75b	0.33 ± 0.51b	0.5 ± 0.54
6 (Z. multiflora boiss)	200	12133 ± 501b	26.8 ± 1.9b	648.7 ± 2.5b	4.5 ± 1a	2.2 ± 1.5b	1.5 ± 1b	1.2 ± 0.75
7 (Z. multiflora boiss)	400	13733.3 ± 889a	25.8 ± 1.9b	69.5 ± 1b	3.2 ± 1.5b	1.1 ± 1b	1.2 ± 1.2	0.67 ± 0.82

In each column numbers that have similar letters the difference is not significant (p > 0.05). Leukocytes counts (WBC), neutrophils (Nut) and lymphocyte (Lym), monocytes (Mon), eosinophils (Eos), basophils (Baso).
The compounds present in *Z. multiflora* boiss have antioxidant properties and are able to inhibit linoleic oxidation [10,11]. *Z. multiflora* essential oil has also been used for antimicrobial purposes in food [12,13].

Shokri *et al* [5] reported that *Z. multiflora* boiss has immuno-regulatory effects. The same result on the effect of *Z. multiflora* boiss on WBC observed in this study was also reported by Dehkordi *et al* [14]. *Z. multiflora* boiss is capable of increasing human mononuclear cells as well as Tam-protein and differential WBC count and endothelin level in blood which may confirm the immune-regulatory and anti-inflammatory effects of the plant [14].

In the present study, IgM in *Satureja bachtiarica* was significantly less than in *Z. multiflora*. Sturkie [15], observed an increase in lymphocytes percent and decrease in heterophils percent that indicates positive effect the on enhancement of body immune system by *Satureja bachtiarica*. In present study *Satureja bachtiarica* extract did not show a significant increase in IgM compared to control group. *Satureja bachtiarica* showed a significant increase in neutrophils and phagocytosis number and this relative increase can create increase in lymphatic immune system performance and phagocytes and overall cascade of immune system performance as observed by Khodadadi *et al* [16]. The increase in albumin observed in *Satureja bachtiarica* was also observed by Iranpour Mobarakeh *et al* [17], who concluded that the plant can lead to increase in blood serum proteins. Thomke and Elwinger [18] suggested that *Satureja bachtiarica* stimulates increase in liver performance marked by decrease in aminotransferase concentration. *Satureja bachtiarica* is capable of triggering increase in amount of complement system protein and as result a relative increase in complement system components were observed in the present study.

An experiment by Khodadadi *et al* [16] showed that *Z. membranacea* caused a relative increase in IgM when 200 and 400 mg kg^{-1} was fed to animals in two treatment groups for 30 days. However, no significant increase in IgM was observed at similar concentrations in this study whilst, significant increases were in Tam-protein, albumin, phagocytosis and Mon. *Z. membranacea* is known of increasing serum proteins as a result improving anticancer immune system and control pathogens growth [19, 20]. Bobadilla *et al* [21] conducted a study in fish and the results obtained showed that 50 % *Z. membranacea* boiss plant has significant effect on activity level of complement factor.

Shokri *et al* [5] observed that *Z. multiflora* boiss extract can significantly stimulate natural immunity function and it can be used as a treatment by itself or in concoction with other immune-stimulatory agents. *Satureja bachtiarica* has antidiabetic, antioxidant, anticoagulant and antibacterial property and is also responsible for triglyceride and weight reduction in animals [22]. Moreover, *Satureja bachtiarica* is used in treatment of spasms, colic, runny nose, otitis and sclerosis [23].

There was no significant effect of different concentrations of *Zataria multiflora* boiss, *Satureja bachtiarica* and *Zaravschanica membranacea* on erythrocyte counts (RBC), packed cell volumes (PCV), haemoglobin (Hb) concentration, mean corpuscular volumes (MCV) mean corpusular haemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC). All the plant extracts are capable of maintaining a stable condition and had no undesirable effects on hematological parameters. It is therefore possible that use of *Zataria multiflora* boiss, *Satureja bachtiarica* and *Zaravschanica membranacea* may not contribute to the risk for cardiovascular syndrome.

CONCLUSION

Zataria multiflora boiss, *Satureja bachtiarica* and *Zaravschanica membranacea* plant extracts improved the levels of lymphocytes, WBC, IgM, Mon, albumin, phagocytosis, neutrophils and Tam-protein indicating the stimulation of immune defense mechanism. They are also capable of maintaining haematological parameters in rat.

REFERENCES

1. Magnadottir B. Immunological Control of Fish Diseases. Mar Biotechnol 2010; 12: 361–379. doi: 10.1007/s10126-010-9279-x.
2. Robertsen B. Modulation of the non-specific defence of fish by structurally conserved microbial polymers. Fish Shellfish Immunol 1999; 9: 269-290.
3. Sakai M. Current research status of fish immunostimulants. Aquaculture 1999; 172: 63-92.
4. Sakhae, E, Abshenas J, Kheirandish R, Azari O, Mizabeigi F, Mostafavi A. Adverse effects of *Zataria multiflora* boiss on epididymal sperm quality, and testicular tissue following experimentally induced copper poisoning in mice. Basic Res J Med Clin Sci 2013; 2: 27-31.
5. Shokri H, Asadi F, Bahonar AR, Khosravi AR. The Role of *Zataria Multiflora* Essence (Iranian herb) on Innate Immunity of Animal Model. Iran J Immunol 2006; 3(4):164-168. doi: IJv34A3.
6. Barbour EK, Ghanem A, Hmadeh D, Eid S, Talhok A, Hilan R. Characterization of non-specificity in herbal immunopotentiators of the cell-mediated and humoral immune systems of chickens. J Am Holistic Vet Med Ass 1996; 15: 5-7.

7. Wagner H. 1999. Immunomodulatory agents from plants. Birkhauserverlag, Basel; pp. 365.

8. Wichtl M. 2001. Herbal Drug and Phytopharmaceuticals, English edition (N.G. Bisset, translated and edited), 2nd ed., Boca Raton, FL, CRC Press, Boca Raton pp. 140-142.

9. Khanna S, Gupta S, Grover J. Effect of long term feeding of tulsi (Ocimum sanctum Linn) on reproductive performance of adult albino rats. Indian J Exp Biol 1986; 24: 302.

10. Sharififar F, Moshafi MH, Mansouri SH, Khodashenas M, Khoshnoodi M. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 2007; 18: 800–805.

11. Shafiee A, Javidan K. Composition of essential oil of Zataria multiflora. Plant Med 1997; 63: 371-372.

12. Gandomi H, Misaghi A, Akhondzadeh Basti A, Bokaei S, Khorasavi A, Abbasifar A, Jebelli J. Effect of Zataria multiflora Boiss. Essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food Chem Toxicol 2009; 47: 2397–2400.

13. Rahnama A, Razavi Rouhani M, Tajik SM, Khalighi Siganoudi H, Rezae Zadeh Bari M. Effects of Zataria multiflora Boiss. Essential oil and nisin, alone and in combination against Listeria monocytogen in BHI broth. J. Med. Plants 2009; 8: 120-131. (In Persian).

14. Dehkordi SS, Rohani SMR, Tajik H, Moradi M, Aliakbarlou J. “Antimicrobial effects of lysozyme in combination with Zataria multiflora Boiss essential oil at different pH and NaCl concentrations on E. coli O157:H7 and Staphylococcus aureus. J Anim Vet Adv 2008; 7: 1458–1463.

15. Sturkie PD. 1995. Avian physiology. 4th ed. Springer Verlag, New York, pp. 486–487.

16. Khodadadi M, Dehkordi HS, Mobarakheh IH, Khamesipour F, Dehkordi MJ. Study Effect of Satureja bachtilicara Alcoholic Extract on Some Components of Complement System and IgM in Rat Serum. Int J Agricult Forestry 2014; 4: 207-210.

17. Iranpour Mobarakheh H, Soleyman Dehkordi H, Jafarian Dehkordi M, Khamesipour F. Assessing the Effect of the Savory (Satureja Hortensis L.) Essence on Some Biochemical Factors in Rat's Blood Serum. Adv Life Sc 2014; 4: 73-78. doi: 10.5923/j.als.20140402.06.

18. Thomke S, Elwinger K. Growth promotants in feeding pigs and poultry. III. Alternatives to antibiotic growth promotants. Annales de Zootechnie 1998; 47: 245-271.

19. Salehi Sarmaghi MH. 2010. Medicinal plants and phytotherapy. Vol. 1, Donyay Taghziah Press, Tehran, Iran.

20. Tajkarim MM, Ibrahim SA, Cliver DO. Antimicrobial herb and spice compounds in food. Food Control 2010; 21: 1199-1218.

21. Bobadilla AS, Lopis SP, Requeni PG, Medale F, Kushik S, Sanchez JP. Effect of fish meal replacement by plant protein source on non-specific defense mechanisms and oxidative stress in gilthead sea bream. Aquaculture 2005; 249: 378-400.

22. Nazari A, Delfan B, Shirhakhy Kyan AA. The effect of saturejakhozestanica on blood coagulation activity in rats. J Qazvin Univ medsci 2006; 9: 14-18. (Persian).

23. Raissy M, Yazdi F. Study of Some Medicinal Plants on Chemical Composition of Rainbow Trout Fillets after Exposure with Aeremonas hydrophila. World J Fish & Marine Sci 2014; 6: 350-354.