Associations between Green Tea Consumption and Coffee Consumption and the Prevalence of Coronary Artery Disease

Yoshimi KISHIMOTO1,2, Emi SAITA1, Chie TAGUCHI1, Masayuki AOYAMA2, Yukinori IKEYAMA2, Reiko OHMORI1, Kazuo KONDO1,4 and Yukihiko MOMIYAMA2

1Endowed Research Department “Food for Health”, Ochanomizu University, 2–1–1 Otsuka, Bunkyo-ku, Tokyo 112–8610, Japan
2Department of Cardiology, National Hospital Organization Tokyo Medical Center, 2–5–1 Higashigaoka, Meguro-ku, Tokyo 152–8902, Japan
3Faculty of Regional Design, Utsunomiya University, 7–1–2 Youtou, Utsunomiya, Tochigi 321–0904, Japan
4Faculty of Food and Nutritional Sciences, Toyo University, 1–1–1 Izumino, Itakura-machi, Ota-gun, Gunma 374–0193, Japan

(Received October 23, 2019)

Summary Green tea and coffee contain various bioactive compounds (e.g., polyphenols), and their consumption has been proposed to decrease the risk of cardiovascular diseases. Here, we investigated the associations between the consumption of green tea and that of coffee and the prevalence of coronary artery disease (CAD) in Japanese patients. The study group was 612 patients who underwent coronary angiography at Tokyo Medical Center between July 2008 and February 2017. CAD was confirmed in 388 of the patients: one-vessel disease (1-VD, n=166); two-vessel disease (2-VD, n=112); three-vessel disease (3-VD, n=110). Myocardial infarction (MI) was found in 138 patients. After adjustment for well-known atherosclerotic risk factors and other dietary habits, greater green tea consumption was significantly inversely associated with CAD prevalence (p for trend=0.044), and the patients who drank >3 cups/d had a lower prevalence of CAD compared to those who drank <1 cup/d (odds ratio [OR]: 0.54, 95% CI: 0.30–0.98). Greater green tea consumption (>3 cups/d) was also associated with a decreased prevalence of 3-VD (OR: 0.49, 95% CI: 0.24–0.98, p-trend=0.047) and MI (OR: 0.51, 95% CI: 0.27–0.97, p-trend=0.037). In contrast, coffee consumption was not associated with CAD or MI. In subgroup analyses, the inverse association between green tea consumption and CAD or MI was found in the high intake groups of vegetables or fruits but not in the low intake groups of vegetables or fruits. These results suggest a beneficial effect of green tea consumption, especially with a diet rich in vegetables and fruits, against coronary atherosclerosis in Japanese.

Key Words green tea, coffee, coronary artery disease, myocardial infarction, atherosclerosis, observational study

Cardiovascular disease (CVD) is a major health problem and a major cause of death worldwide. Epidemiological studies have demonstrated that polyphenol-enriched diets may have beneficial effects on the prevention of CVD (1–3). The activity provided by polyphenol-enriched diets might be associated not only with antioxidant properties, but also with additional mechanisms including anti-inflammatory, anti-hypertensive, vasculoprotective, and lipid-lowering properties (4).

Green tea and coffee are popular beverages in Japan and were confirmed to be major sources of dietary polyphenol (5–10). A Japan Public Health Center-based prospective study demonstrated that coffee consumption and green tea consumption were inversely associated with risk of stroke, but not the risk of coronary heart disease (CHD) (11). Other Japanese cohort studies reported that green tea consumption (12) and coffee consumption (13) were associated with reduced mortality due to all-causes and CVD. In addition, green tea consumption was reported to be inversely associated with angiographically confirmed coronary artery disease (CAD) (significant coronary stenosis) in two Japanese cross-sectional studies (14, 15), although our previous research found an inverse association between green tea intake and myocardial infarction (MI), but not with CAD (16, 17). The frequency of green tea and coffee consumption could be influenced by each other, and also related with subject’s dietary patterns. A recent study that examined 13-y trends in dietary patterns using data from the National Health and Nutrition Survey, Japan 2003–2015 suggested the continuous Westernization of the Japanese diet (18). Therefore, it is necessary to examine and confirm the relationship between green tea and coffee consumption and the prevalence of...
Table 1. Clinical characteristics of the patients with and without CAD.

	CAD(−) (n=224)	p CAD(−) vs. CAD(+)	Overall (n=388)	p	MI(−) (n=250)	p	MI(+) (n=138)	p	CAD(+) vs. CAD(−)
Age (y)	65±12	0.011	68±11	<0.001	65±12	0.721			
BMI (kg/m²)	24±12	0.581	24±4	0.851	24±5	0.696			
Gender (male)	141 (63%)	<0.001	304 (78%)	0.629	110 (80%)	0.001			
Hypertension	140 (63%)	0.002	289 (74%)	0.058	95 (69%)	0.220			
SBP (mmHg)	131±21	0.511	133±26	0.291	135±32	0.268			
Diabetes mellitus	31 (14%)	<0.001	135 (35%)	0.074	40 (29%)	<0.001			
Hyperlipidemia	91 (41%)	<0.001	222 (57%)	0.202	73 (53%)	0.023			
Statin	57 (25%)	<0.001	155 (40%)	0.004	42 (30%)	0.301			
LDL-C (mg/dL)	112±29	0.022	118±34	0.015	124±35	0.001			
HDL-C (mg/dL)	58±15	<0.001	49±12	<0.001	46±11	<0.001			
Smoking	69 (31%)	0.007	162 (42%)	0.573	55 (40%)	0.078			

Data represent the mean±SD or the number (%) of patients.

Table 2. Consumptions of green tea, coffee and foods in patients with and without CAD.

	CAD(−) (n=224)	p CAD(−) vs. CAD(+)	Overall (n=388)	p	MI(−) (n=250)	p	MI(+) (n=138)	p	CAD(+) vs. CAD(−)
Green tea (cups/d)									
<1	39 (17%)	0.086	92 (24%)	0.237	39 (28%)	0.021			
1–3	122 (55%)		211 (54%)	73 (53%)					
>3	63 (28%)		85 (22%)	26 (19%)					
Coffee (cups/d)									
<1	82 (37%)	0.502	124 (32%)	0.163					
1–3	125 (56%)		233 (60%)	81 (59%)					
>3	17 (8%)		31 (8%)	17 (12%)					
Alcohol (glasses/wk)									
<1	104 (46%)	0.200	201 (52%)	0.083					
≥1	120 (54%)		187 (48%)	61 (44%)					
Fish (times/wk)									
<3	71 (32%)	0.435	143 (37%)	0.313					
3–4	122 (54%)		195 (50%)	64 (46%)					
>4	31 (14%)		50 (13%)	21 (15%)					
Soybean products (times/wk)									
<3	62 (28%)	0.118	139 (36%)	0.181					
3–4	93 (42%)		143 (37%)	50 (36%)					
>4	69 (31%)		106 (27%)	37 (27%)					
Vegetables (times/wk)									
<3	29 (13%)	0.005	85 (22%)	0.004					
3–4	70 (31%)		132 (34%)	50 (36%)					
>4	125 (56%)		171 (44%)	55 (40%)					
Fruits (times/wk)									
<3	47 (21%)	0.006	125 (32%)	0.007					
3–4	55 (25%)		96 (25%)	35 (25%)					
>4	122 (54%)		167 (43%)	55 (40%)					

Data represent the number (%) of patients.
CAD including MI in recent Japanese populations. We thus conducted the present study to determine whether green tea consumption and coffee consumption are associated with CAD in Japanese patients who have undergone coronary angiography.

PATIENTS AND METHODS

The patient population. A total of 739 consecutive patients who underwent coronary angiography (CAG) for suspected CAD at Tokyo Medical Center during the period from July 2008 to February 2017 participated in this study, which was approved by the Institutional Ethics Committees of Tokyo Medical Center (approval no. R07-054/R15-056) and Ochanomizu University (approval no. 2016-1) and conform to the Declaration of Helsinki. All of the patients gave their written informed consent prior to participating in the study. We excluded patients with a history of percutaneous coronary intervention or cardiac surgery. Of the 739 patients, 70 patients with missing data in lipid levels and 57 with missing data regarding the intakes of analyzed foods and beverages were excluded from the present study. As a result, 612 patients were included and analyzed in the present study.

Blood samples were taken several days before admission or on admission from patients undergoing elective coronary angiography. However, from patients undergoing emergent coronary angiography, such as patients with MI, blood samples were taken on admission or the next morning after admission. Serum lipid levels were measured by standard laboratory methods. Hyperlipidemia was defined as a low-density lipoprotein (LDL) cholesterol (LDL-C) level >140 mg/dL or being on medication for hyperlipidemia. Low HDL (high-density lipoprotein) cholesterol (HDL-C) was defined as an HDL-C level <40 mg/dL. Diabetes mellitus was defined as a fasting plasma glucose level ≥140 mg/dL or being on medication for diabetes mellitus. Hypertension was defined as blood pressures of ≥140/90 mmHg or being on medication for hypertension.

Coronary angiograms were recorded on a cineangiogram system (Philips Electronics Japan, Tokyo).

Table 3. Clinical characteristics of the patients according to their green tea or coffee consumption.

	Green tea consumption (cups/d)	Coffee consumption (cups/d)						
	<1 (n=131)	1–3 (n=333)	>3 (n=148)	p	<1 (n=206)	1–3 (n=358)	>3 (n=48)	p
Age (y)	62±11	67±12	70±10	<0.001	70±11	66±11	59±10	<0.001
Gender (male)	108 (82%)	242 (73%)	95 (64%)	0.003	142 (69%)	260 (73%)	43 (90%)	0.015
Hypertension	88 (67%)	236 (71%)	105 (71%)	0.712	152 (74%)	244 (68%)	33 (69%)	0.364
Diabetes mellitus	39 (30%)	89 (27%)	38 (26%)	0.238	53 (26%)	94 (26%)	19 (40%)	0.128
Hyperlipidemia	63 (48%)	173 (52%)	77 (52%)	0.733	92 (45%)	191 (53%)	30 (63%)	0.036
Statin	40 (31%)	116 (35%)	56 (38%)	0.438	70 (34%)	125 (35%)	17 (35%)	0.968
LDL-C (mg/dL)	116±30	117±34	114±32	0.665	109±31	118±32	126±36	<0.001
HDL-C (mg/dL)	52±13	53±15	52±14	0.754	54±14	52±14	49±15	0.169
Smoking	60 (46%)	125 (38%)	46 (31%)	0.040	62 (30%)	143 (40%)	26 (54%)	0.003
CAD	92 (70%)	211 (63%)	85 (57%)	0.086	124 (60%)	233 (65%)	31 (65%)	0.502
Number of stenotic coronary vessels	1.2±1.1	1.2±1.1	1.1±1.1	0.130	1.1±1.1	1.2±1.1	1.3±1.2	0.646
1-VD	38 (29%)	93 (28%)	35 (24%)	0.536	51 (25%)	106 (30%)	9 (19%)	0.182
2-VD	24 (18%)	64 (19%)	24 (16%)	0.734	34 (17%)	66 (18%)	12 (25%)	0.389
3-VD	30 (23%)	54 (16%)	26 (18%)	0.238	39 (19%)	61 (17%)	10 (21%)	0.738
MI	39 (30%)	73 (22%)	26 (18%)	0.048	40 (19%)	81 (23%)	17 (35%)	0.058
Green tea (≥1 cup/d)	97 (74%)	223 (67%)	86 (58%)	0.018	172 (83%)	280 (78%)	29 (60%)	0.002
Coffee (≥1 cup/d)	78 (60%)	163 (49%)	66 (45%)	0.036	101 (49%)	180 (50%)	26 (54%)	0.812
Alcohol (≥1 glass/wk)	70 (53%)	210 (63%)	118 (80%)	<0.001	146 (71%)	225 (63%)	27 (56%)	0.065
Fish (≥3 time/wk)	58 (44%)	226 (68%)	127 (86%)	<0.001	136 (66%)	246 (69%)	29 (60%)	0.472
Soybean products (≥3 times/wk)	95 (73%)	275 (83%)	128 (86%)	0.008	167 (81%)	296 (83%)	35 (73%)	0.262
Vegetables (≥3 times/wk)	72 (55%)	244 (73%)	124 (84%)	<0.001	156 (76%)	259 (72%)	25 (52%)	0.004

Data represent the mean±SD or the number (%) of patients.
CAD was defined as at least one coronary artery having $\geq 50\%$ luminal diameter stenosis on an angiogram. The severity of CAD was represented as the number of $\geq 50\%$ stenotic coronary vessels. Each MI was confirmed by the documentation of coronary artery stenosis plus either elevation of cardiac enzymes or diagnostic electrocardiogram changes. All angiograms were evaluated by a single cardiologist (Y.M.) who was blinded to the patients’ clinical and laboratory data.

We obtained the patients’ data on their green tea and coffee consumption by using a quantitative questionnaire that we modified slightly from that used in earlier research (16,17). Briefly, the frequencies of green tea consumption and coffee consumption were classified into three categories (≤ 1 cup/d, 1–3 cups/d, and ≥ 3 cups/d). We did not collect the type of coffee (decaffeinated or caffeinated), because decaffeinated coffee is not commonly consumed in Japan. The patients’ intakes of fish, soybean products, vegetables, and fruits were also determined and classified into three categories (≤ 3 times/wk, 3–4 times/wk, and ≥ 4 times/wk). Since fish intake was reported to be associated with a decreased risk of CAD in a middle-aged Japanese population (19), we also assessed fish intake whose data were not collected in our previous studies (16,17). Categorical variables were converted to dummy variables and inserted into the multiple regression models. Tests for trends were assessed by using the ordinal categorical variables of 1, 2, and 3 for each category of consumption (green tea and coffee). All statistical analyses were conducted with the SPSS software package (IBM SPSS ver. 25, Japan). A p-value ≤ 0.05 was considered significant.

RESULTS

Among the 612 study patients, CAD was detected in 388 patients: one-vessel disease (1-VD, $n=166$), two-vessel disease (2-VD, $n=112$), and three-vessel disease (3-VD, $n=110$). Of the 388 patients with CAD, 138 (36\%) had MI. Compared to 224 patients without CAD, 388 patients with CAD were significantly older, predominantly male, and had higher prevalence of hypertension, diabetes, smoking, hyperlipidemia, and statin use as well as higher LDL-C and lower HDL-C levels (Table 1). Moreover, we divided the 388 patients with CAD into

Table 4. Odd ratios (95\% confidence interval) for the prevalence of CAD, 3-VD, and MI according to daily green tea consumption.

Green tea consumption (cups/d)	≤ 1 ($n=131$)	1–3 ($n=333$)	≥ 3 ($n=148$)	p-trend
CAD				
Number of case	92	211	85	
OR (Model 1)	1	0.70 (0.44–1.09)	0.52 (0.31–0.88)	0.015
OR (Model 2)	1	0.66 (0.41–1.06)	0.48 (0.27–0.84)	0.010
OR (Model 3)	1	0.72 (0.44–1.18)	0.54 (0.30–0.98)	0.044
3-VD				
Number of case	30	54	26	
OR (Model 1)	1	0.55 (0.33–0.93)	0.54 (0.29–1.01)	0.062
OR (Model 2)	1	0.53 (0.31–0.91)	0.49 (0.25–0.93)	0.033
OR (Model 3)	1	0.55 (0.32–0.97)	0.49 (0.24–0.98)	0.047
MI				
Number of case	39	73	26	
OR (Model 1)	1	0.72 (0.46–1.15)	0.60 (0.33–1.07)	0.078
OR (Model 2)	1	0.67 (0.42–1.08)	0.52 (0.28–0.95)	0.031
OR (Model 3)	1	0.67 (0.41–1.09)	0.51 (0.27–0.97)	0.037

Model 1: adjusted for age and gender.
Model 2: adjusted for age, gender, hypertension, hyperlipidemia, statin use, low HDL-C (≤ 40 mg/dL), diabetes, smoking and alcohol use (≥ 1 glass/wk).
Model 3: adjusted for intake of coffee (≥ 1 cup/d), fish, soybean products, vegetables, and fruits (≥ 3 times/wk) in addition to the same covariates in model 2.

We performed a multiple logistic regression analysis to determine the independent associations between green tea or coffee consumption and CAD or MI. The adjusted covariates were as follows: (1) age (continuous as 10-y groups) and gender (model 1), (2) age, gender, hypertension (yes/no), hyperlipidemia (yes/no), low-HDL-C (≤ 40 mg/dL) (yes/no), statin use (yes/no), diabetes mellitus (yes/no), smoking (yes/no), and alcohol (yes/no) (model 2), (3) the covariates in model 2 plus the intake of green tea or coffee (≥ 1 cup/d), fish, soybean products, vegetables, and fruits (≥ 3 times/wk) (model 3).
Table 5. Odd ratios (95% confidence interval) for the prevalence of CAD, 3-VD, and MI according to daily coffee consumption.

Coffee consumption (cups/d)	p-trend	<1 (n=206)	1–3 (n=358)	≥3 (n=48)
CAD				
Number of case	124	233	31	
OR (Model 1)	1	1.36 (0.94–1.97)	1.35 (0.68–2.69)	0.144
OR (Model 2)	1	1.20 (0.81–1.78)	0.87 (0.42–1.84)	0.748
OR (Model 3)	1	1.25 (0.84–1.86)	0.76 (0.35–1.64)	0.823
3-VD				
Number of case	39	61	10	
OR (Model 1)	1	1.04 (0.66–1.65)	1.67 (0.73–3.84)	0.391
OR (Model 2)	1	0.98 (0.61–1.57)	1.36 (0.57–3.22)	0.700
OR (Model 3)	1	0.97 (0.60–1.57)	1.18 (0.49–2.84)	0.867
MI				
Number of case	40	81	17	
OR (Model 1)	1	1.13 (0.73–1.74)	1.83 (0.90–3.73)	0.156
OR (Model 2)	1	1.03 (0.65–1.61)	1.55 (0.73–3.28)	0.402
OR (Model 3)	1	1.01 (0.64–1.59)	1.37 (0.64–2.94)	0.561

Model 1: adjusted for age and gender.
Model 2: adjusted for age, gender, hypertension, hyperlipidemia, statin use, low HDL-C (<40 mg/dL), diabetes, smoking and alcohol use (≥1 glass/wk).
Model 3: adjusted for intakes of green tea (≥1 cup/d), fish, soybean products, vegetables, and fruits (≥3 times/wk) in addition to the same covariates in model 2.

Table 6. Odd ratios (95% confidence interval) for the prevalence of CAD, 3-VD, and MI according to weekly vegetables or fruits consumption.

Vegetables consumption (times/wk)	p-trend	<3 (n=114)	3–4 (n=202)	≥4 (n=296)
CAD				
Number of case	85	132	171	
Multivariate adjusted OR	1	0.64 (0.36–1.14)	0.44 (0.24–0.81)	0.007
3-VD				
Number of case	20	40	50	
Multivariate adjusted OR	1	1.00 (0.52–1.91)	0.76 (0.38–1.52)	0.352
MI				
Number of case	33	50	55	
Multivariate adjusted OR	1	0.80 (0.46–1.41)	0.62 (0.34–1.13)	0.111

Fruits consumption (times/wk)	p-trend	<3 (n=172)	3–4 (n=151)	≥4 (n=289)
CAD				
Number of case	125	96	167	
Multivariate adjusted OR	1	0.79 (0.46–1.35)	0.51 (0.31–0.84)	0.005
3-VD				
Number of case	36	25	49	
Multivariate adjusted OR	1	0.66 (0.35–1.24)	0.55 (0.31–0.98)	0.046
MI				
Number of case	48	35	55	
Multivariate adjusted OR	1	0.87 (0.50–1.51)	0.67 (0.40–1.13)	0.123

Adjusted for age, gender, hypertension, hyperlipidemia, statin use, low HDL-C (<40 mg/dL), diabetes, smoking and alcohol use (≥1 glass/wk), intake of green tea and coffee (≥1 cup/d), fish, soybean products, and vegetables or fruits (≥3 times/wk).
Table 7. Subgroup analyses by vegetables and fruits intake categories of odds ratios (95% confidence interval) for the prevalence of CAD and MI according to daily green tea consumption.

Green tea consumption (cups/d)	p-trend	Number of case	Multivariate adjusted OR	p-trend	Number of case	Multivariate adjusted OR
<1		27/43	1		15/38	1
1–3		65/88	1		29/38	1
≥4		67/93	1		63/93	1

High intakes of vegetables (≥4 times/wk), n = 296

Low intakes of vegetables (≤4 times/wk), n = 316

Number of case 27/43 100/171 44/82

Multivariate adjusted OR 1 0.59 (0.25–1.38) 0.42 (0.16–1.11)

Number of case 14/43 31/171 10/82

Multivariate adjusted OR 1 0.35 (0.14–0.87) 0.18 (0.06–0.56)

Number of case 65/88 111/162 41/66

Multivariate adjusted OR 1 0.77 (0.41–1.47) 0.62 (0.28–1.40)

Number of case 29/38 41/162 16/66

Multivariate adjusted OR 1 0.86 (0.46–1.60) 0.87 (0.39–1.97)

Number of case 63/93 116/162 42/68

Multivariate adjusted OR 1 1.22 (0.65–2.33) 0.85 (0.43–1.74)

Adjusted for age, gender, hypertension, hyperlipidemia, low HDL-C, statin use, diabetes, smoking, alcohol, and intakes of coffee, fish, soybean products, vegetables, and fruits (Table 4).

Adjusted for age, gender, hypertension, hyperlipidemia, low HDL-C, statin use, diabetes, smoking, alcohol use (≥1 glass/wk), and intakes of coffee (≥1 cup/d), fish, soybean products, vegetables, and fruits (Table 4).
the subgroups with vegetables intake >4 times/wk and with fruits intake >4 times/wk but not in those with vegetables intake ≤4 times/wk or with fruit intake ≤4 times/wk.

DISCUSSION

The results of our analyses demonstrate that greater green tea consumption by Japanese adults was associated with decreased risks of CAD, especially 3-VD and MI, after adjustment for well-known atherosclerotic risk factors and other dietary habits. In contrast, there was no significant association between coffee consumption and CAD.

A few studies have investigated the relationship between green tea consumption and CAD. Sasazuki et al. reported an weak inverse association between green tea consumption and the prevalence of CAD in men (n=302), but not in women (n=210), who underwent coronary angiography at hospitals in Chiba Prefecture, Japan (14). Sano et al. stated that green tea consumption was associated with a lower incidence of CAD and that it was an independent factor for CAD in 203 patients who underwent coronary angiography at hospitals in Iwate Prefecture, Japan (15). Wang et al. reported that green tea consumption was inversely associated with the prevalence of CAD in Chinese male subjects (20). Our prior study of 725 patients who underwent coronary angiography in Saitama Prefecture found that green tea consumption was inversely associated with the prevalence of MI, but not with CAD (17). In the same line of the results of our prior study, our present study also demonstrated the inverse association between green tea consumption and MI.

In the Japanese population, the percentage of elderly people (≥65 y) is steadily increasing from 17% in 2000 to 23% in 2010 (https://www.stat.go.jp/english/data/handbook/pdf/2019all.pdf). Since the age of patients with MI is known to be younger than those with stable CAD (21), the incidence of MI is reported to decrease with an increase in elderly people from 2004 to 2011 in Kumamoto Prefecture (22). The incidence of MI in Iwate Prefecture also decreased with increased percentages of elderly people and statin use from 2006 to 2014 (23). In our prior study performed from 1999 to 2006 (17), the mean age of patients with CAD was 64±11 y, and 43% of CAD patients had MI. However, probably reflecting trends in the age composition and the MI incidence in Japanese population, in our present study from 2008 to 2017, the age of CAD patients was older (68±11 y), and the percentage of MI in CAD patients was lower (36%) than in our prior study. In spite of lower prevalence of MI, our present study confirmed the results of our prior study regarding that green tea consumption was inversely associated with MI. Moreover, our present study demonstrated that green tea consumption was inversely associated with CAD, especially 3-VD, as well as MI. These findings thus suggest that green tea consumption may play a protective role against not only the development of MI but also the progression of CAD in Japanese population.

It is noteworthy that the green tea drinkers in our patient population were more likely to consume traditional Japanese foods (i.e., fish and soybean products) and antioxidants-rich foods (i.e., vegetables and fruits), which are thought to be protective against CAD. In fact, the present study found that vegetables and fruits consumption was inversely associated with the prevalence of CAD. However, the prevalence of CAD and 3-VD as well as MI significantly decreased depending on green tea consumption even after the adjustment for these dietary factors. Interestingly, the inverse association between green tea consumption and CAD or MI was found in the high intake groups of vegetables or fruits but not in the low intake groups of vegetables or fruits. These findings thus suggest that green tea consumption may have synergistic effect on the protective role of vegetables and fruits against the development of CAD.

A meta-analysis including two cohorts and three case-control studies revealed a significant 28% reduction in the risk of CAD with the highest green tea consumption, and it demonstrated that an increase in green tea consumption of 1 cup/d was associated with a 10% decrease in the risk of developing CAD (24). Green tea content catechins, especially (−)-epigallocatechin-3-gallate (EGCG), are known to exert anti-atherosclerotic effects through multiple mechanisms. We reported that the daily consumption of green tea decreased serum malondialdehyde-modified (MDA)-LDL concentrations in healthy male volunteers (25), and that an acute intake of green tea catechins prevented LDL oxidation via their accumulation in LDL particles in healthy volunteers (26). Green tea catechins also reported to reduce blood cholesterol levels (27) and suppress the postprandial increase in plasma triacylglycerol levels after a fat load (28). Experimental and clinical studies suggested that green tea catechins improved endothelial function (29), thereby providing an additional beneficial effect against CAD.

In contrast to green tea, our present analyses did not detect any association between coffee consumption and the risk of CAD. The results of previous studies on coffee consumption and CHD-related outcomes have been largely inconsistent. A meta-analysis by Wu et al. of 21 independent cohort studies showed that coffee consumption was not associated with an increased risk of CHD and that habitual moderate coffee drinking was associated with a lower risk of CHD in women (30). On the other hand, a recent meta-analysis of six cohorts and 11 case-control studies by Mo et al. indicated that the consumption of >3 cups of coffee per day was associated with a significantly increased risk of MI compared with <1 cup, but this positive association was found only in men (31). These two meta-analyses did not include Japanese studies; therefore, our present study provides evidence of no association between coffee consumption and the prevalence of CAD among Japanese population. Moreover, our present study showed that patients with greater coffee consumption significantly had lower intakes of green tea and fruits. The gender differences in the association between coffee consumption and CHD.
risk may be partly explained by genders’ smoking status and the related lifestyle habits. Many studies have indicated that smoking is associated with other unhealthy habits (e.g., physical inactivity and alcohol abuse) and also strongly related to coffee drinking (31). Although most of those studies as well as our present study had made adjustment for smoking, not all smoking-related unhealthy habits cannot be adjusted. Further studies are needed to evaluate the impact of a smoking habit on the association between coffee consumption and the risk of CHD.

Our study has several limitations. First, angiography was used to evaluate coronary atherosclerosis. Angiography cannot visualize plaques and shows only lumen characteristics. Second, of the 739 patients, 70 with missing data in lipid levels and 57 with missing data in the intakes of foods and beverages were excluded from the present study, as done in our prior studies (16, 17). This may have affected the results of our study. Third, for patients undergoing emergent angiography, like patients with MI, blood samples were taken on admission or the next morning after admission. Although blood cholesterol levels were believed to decrease soon after acute MI, a recent study reported that the changes in cholesterol levels after acute MI were much smaller than those noted in older studies (32). However, the day of blood sampling in patients with MI may have affected the results of our study. Fourth, our study’s design was cross-sectional and thus could not establish causality, since it only showed some associations and led to some hypotheses. Finally, we studied only Japanese patients who underwent coronary angiography, and such individuals are generally considered to be a highly select population at high risk for CAD. Our results therefore may not be applicable to the general Japanese population or other ethnic populations.

In conclusion, our findings demonstrated that greater green tea consumption was inversely associated with the prevalence of CAD, especially 3-VD and MI, independent of atherosclerotic risk factors and other dietary habits in Japanese patients. Green tea consumption, especially with a diet rich in vegetables and fruits, may play a protective role against not only the development of MI but also the progression of CAD.

Authorship
Research conception and design: RO, KK and YM; data curation: MA and YI; experiments: YK, ES and CT; statistical analysis of the data: YK and YM; interpretation of the data: YK and YM; writing of the manuscript: YK and YM; project administration: YM.

Disclosure of state of COI
Our study has no conflict of interest to disclose.

Acknowledgments
This study was supported in part by a grant from Honjo International Scholarship Foundation.

REFERENCES
1) Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007–1011.
2) Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Feskens EJM, Hollman PCH, Katan MB. 1995. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155: 381–386.
3) Tresserra-Rimbau A, Rimm EB, Medina-Remon A, Martínez-González MA, de la Torre R, Corella D, Salas-Salvado J, Gomez-Grau E, Lapetra J, Aros F, Fiol M, Ros E, Serra-Majem L, Pinto X, Saez GT, Basora J, Sorli JV, Martinez JA, Vinyoles E, Ruiz-Gutierrez V, Estruch R, Lamuela-Raventos RM, Investigators PS. 2014. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PRIDIMED study. Nutr Metab Cardiovasc Dis 24: 639–647.
4) Kishimoto Y, Tani M, Kondo K. 2013. Pleiotropic preventive effects of dietary polyphenols in cardiovascular diseases. Eur J Clin Nutr 67: 532–535.
5) Fukushima Y, Ohie T, Yonekawa Y, Yonemoto K, Aizawa H, Mori Y, Watanabe M, Takeuchi M, Hasegawa M, Taguchi C, Kondo K. 2009. Coffee and green tea as a large source of antioxidant polyphenols in the Japanese population. J Agric Food Chem 57: 1253–1259.
6) Fukushima Y, Tashiro T, Kumagai A, Ohyanagi H, Horiuchi T, Takizawa K, Sugihara N, Kishimoto Y, Taguchi C, Tani M, Kondo K. 2014. Coffee and beverages are the major contributors to polyphenol consumption from food and beverages in Japanese middle-aged women. Nutr Sci Vitaminol 56: 359–364.
7) Taguchi C, Fukushima Y, Kishimoto Y, Saita E, Suzuki-Sugihara N, Yoshida D, Kondo K. 2015. Polyphenol intake from beverages in Japan over an 18-year period (1996–2013): Trends by year, age, gender and season. J Nutr Sci Vitaminol 61: 318–344.
8) Taguchi C, Fukushima Y, Kishimoto Y, Suzuki-Sugihara N, Saita E, Takahashi Y, Kondo K. 2015. Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients 7: 10269–10281.
9) Taguchi C, Kishimoto Y, Fukushima Y, Saita E, Tanaka M, Takahashi Y, Masuda Y, Goda T, Kondo K. 2017. Dietary polyphenol intake estimated by 7-day dietary records among Japanese male workers: Evaluation of the within- and between-individual variation. J Nutr Sci Vitaminol 63: 180–185.
10) Taguchi C, Kishimoto Y, Kondo K, Tohyama K, Goda T. 2018. Serum gamma-glutamyltransferase is inversely associated with dietary total and coffee-derived polyphenol intakes in apparently healthy Japanese men. Eur J Nutr 57: 2819–2826.
11) Kokubo Y, Iso H, Saito I, Yamagishi K, Yatsuya H, Ishihara J, Inoue M, Tsugane S. 2013. The impact of green tea and coffee consumption on the reduced risk of stroke incidence in Japanese population: the Japan public health center-based study cohort. Stroke 44: 1369–1374.
12) Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsuibo Y, Tsuji I. 2006. Green tea consumption and mortality due to cardiovascular disease,
cancer, and all causes in Japan: the Ohsaki study. JAMA 296: 1255–1265.

13) Yamakawa M, Wada K, Goto Y, Mizuta F, Koda S, Uji T, Nagata C. 2019. Associations between coffee consumption and all-cause and cause-specific mortality in a Japanese city: the Takayama study. Public Health Nutr 22: 2561–2568.

14) Sasazuki S, Kodama H, Yoshimatsu K, Liu Y, Washio M, Tanaka K, Tokunaga S, Kono S, Arai H, Doi Y, Kawano T, Nakagaki O, Takada K, Koyanagi S, Hiyamuta K, Nii T, Shirai K, Ideishi M, Arakawa K, Mohri M, Takeshita A. 2000. Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol 10: 401–408.

15) Sano J, Inami S, Seimiyi K, Ohba T, Sakai S, Takano T, Mizuno K. 2004. Effects of green tea intake on the development of coronary artery disease. Circ J 68: 665–670.

16) Hirano R, Momiyama Y, Takahashi R, Taniguchi H, Kondo K, Nakamura H, Ohsuzu F. 2002. Comparison of green tea intake in Japanese patients with and without angiographic coronary artery disease. Am J Cardiol 90: 1150–1153.

17) Ohmori R, Kondo K, Momiyama Y. 2014. Antioxidant beverages: green tea intake and coronary artery disease. Clin Med Insights Cardiol 8: 7–11.

18) Murakami K, Livingstone MBE, Sasaki S. 2018. Thirteen-year trends in dietary patterns among Japanese adults in the National Health and Nutrition Survey 2003–2015: Continuous westernization of the Japanese diet. Nutrients 10: 994.

19) Iso H, Kobayashi M, Ishihara J, Sasaki S, Okada K, Kita Y, Kokubo Y, Tsugane S; JPHC Study Group. 2006. Intake of fish and n3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 113: 195–202.

20) Wang QM, Gong QY, Yan JJ, Zhu J, Tang JJ, Wang MW. Yang ZJ, Wang LS. 2010. Association between green tea intake and coronary artery disease in a Chinese population. Circ J 74: 294–300.

21) Yamaji K, Natsuaki M, Morimoto T, Ono K, Furukawa Y, Nakagawa Y, Kadota K, Ando K, Shirai S, Watanabe H, Shiomi H, Kimura T. 2015. Long-term outcomes after coronary stent implantation in patients presenting with versus without acute myocardial infarction (an observation from coronary revascularization demonstrating outcome study-Kyoto registry cohort-2). Am J Cardiol 116: 15–23.

22) Kojima S, Matsui K, Ogawa H. Kumamoto Acute Coronary Events Study Group. 2013. Temporal trends in hospitalization for acute myocardial infarction between 2004 and 2011 in Kumamoto, Japan. Circ J 77: 2841–2843.

23) Nakamura M, Tanaka F, Segawa T, Takahashi T, Matsumura Y, Sakai T, Nishiyama O, Niyama M, Onoda T, Koshiyama M. 2017. Temporal trends in the incidence and clinical features of acute myocardial infarction in a Japanese rural area from 2006 to 2014. Circ J 81: 1854–1861.

24) Wang ZM, Zhou B, Wang YS, Gong QY, Wang QM, Yan JJ, Gao W, Wang LS. 2011. Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. Am J Clin Nutr 93: 506–515.

25) Hirano-Ohmori R, Takahashi R, Momiyama Y, Taniguchi H, Yonemura A, Tumai S, Umegaki K, Nakamura H, Kondo K, Ohsuzu F. 2005. Green tea consumption and serum malondialdehyde-modified LDL concentrations in healthy subjects. J Am Coll Nutr 24: 342–346.

26) Suzuki-Sugihara N, Kishimoto Y, Saita E, Taguchi C, Kobayashi M, Ichitani M, Ukawa Y, Sagesaka YM, Suzuki E, Kondo K. 2016. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Nutr Res 36: 16–23.

27) Samavat H, Newman AR, Wang R, Yuan JM, Wu AH, Kurzer MS. 2016. Effects of green tea catechin extract on serum lipids in postmenopausal women: a randomized, placebo-controlled clinical trial. Am J Clin Nutr 104: 1671–1682.

28) Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K. 2005. Effect of tea catechins on postprandial plasma lipid responses in human subjects. Br J Nutr 93: 543–547.

29) Alexopoulou N, Vlachopoulou C, Azzanouridis K, Baou K, Vasiliadou C, Pietri F, Xaplanteris P, Stefanadis E, Stefanadis C. 2008. The acute effect of green tea consumption on endothelial function in healthy individuals. Eur J Cardiovasc Prev Rehabil 15: 300–305.

30) Wu JN, Ho SC, Zhou C, Ling WH, Chen WQ, Wang CL, Chen YM. 2009. Coffee consumption and risk of coronary heart diseases: a meta-analysis of 21 prospective cohort studies. Int J Cardiol 137: 216–225.

31) Mo L, Xie W, Xu P, Ouyang D. 2018. Coffee consumption and risk of myocardial infarction: a dose-response meta-analysis of observational studies. Oncotarget 9: 21530–21540.

32) Pitt B, Loscalzo J, Ycas J, Raichlen JS. 2008. Lipid levels after acute coronary syndromes. J Am Coll Cardiol 51: 1440–1445.