Research Article

Marta Urciuolo* and Lucas Vallejos

\(L^p(\cdot) - L^q(\cdot)\) boundedness of some integral operators obtained by extrapolation techniques

https://doi.org/10.1515/gmj-2018-0066
Received October 10, 2016; revised January 27, 2017; accepted August 24, 2017

Abstract: Given a matrix \(A\) such that \(A^M = I\) and \(0 \leq \alpha < n\), for an exponent \(p\) satisfying \(p(Ax) = p(x)\) for a.e. \(x \in \mathbb{R}^n\), using extrapolation techniques, we obtain \(L^p(\cdot) \rightarrow L^q(\cdot)\) boundedness, \(\frac{1}{q(\cdot)} = \frac{1}{p(\cdot)} - \frac{\alpha}{n}\), and weak type estimates for integral operators of the form

\[T_Af(x) = \int \frac{f(y)}{|x - A_1y|^{\alpha_1} \cdots |x - A_my|^{\alpha_m}} dy,\]

where \(A_1, \ldots, A_m\) are different powers of \(A\) such that \(A_i - A_j\) is invertible for \(i \neq j\), \(\alpha_1 + \cdots + \alpha_m = n - \alpha\). We give some generalizations of these results.

Keywords: Variable exponents, fractional integrals

MSC 2010: 42B25, 42B35

1 Introduction

Given a measurable set \(\Omega \subset \mathbb{R}^n\) and a measurable function \(p(\cdot) : \Omega \rightarrow (1, \infty)\), let \(L^{p(\cdot)}(\Omega)\) denote the Banach space of measurable functions \(f\) on \(\Omega\) such that for some \(\lambda > 0\),

\[\int_\Omega \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx < \infty,\]

with norm

\[\|f\|_{p(\cdot)} = \inf \left\{ \lambda > 0 : \int_\Omega \left(\frac{|f(x)|}{\lambda}\right)^{p(x)} dx \leq 1 \right\}.\]

These spaces are known as variable exponent spaces and are generalizations of the classical Lebesgue spaces \(L^p(\Omega)\). In the last years many authors have extended the machinery of classical harmonic analysis to these spaces, see [1, 2, 4]. The first step was to determine sufficient conditions on \(p(\cdot)\) for the boundedness on \(L^{p(\cdot)}(\Omega)\) of the Hardy–Littlewood maximal operator

\[M(f(x)) = \sup_B \frac{1}{|B|} \int_B |f(y)| dy,\]

where the supremum is taken over all balls \(B\) containing \(x\). Let \(p_- = \text{ess inf } p(x)\) and \(p_+ = \text{ess sup } p(x)\). In [2], Cruz-Uribe, Fiorenza and Neugebauer proved the following result.

*Corresponding author: Marta Urciuolo, FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina, e-mail: urciuolo@famaf.unc.edu.ar
Lucas Vallejos, FaMAF, Ciudad Universitaria, 5000 Córdoba, Argentina, e-mail: lucas.vallejos@hotmail.com
Theorem. Given an open set $\Omega \subset \mathbb{R}^n$, let $p(\cdot) : \Omega \to [1, \infty)$ be such that $1 < p_\ast \leq p_+ < \infty$. Suppose further that $p(\cdot)$ satisfies

$$|p(x) - p(y)| \leq \frac{c}{-\log|x - y|}, \quad x, y \in \Omega, \ |x - y| < \frac{1}{2},$$

(1)

and

$$|p(x) - p(y)| \leq \frac{c}{\log(e + |x|)}, \quad x, y \in \Omega, \ |y| \geq |x|. \quad (2)$$

Then the Hardy–Littlewood maximal operator is bounded on $L^{p(\cdot)}(\Omega)$.

We recall that a weight ω is a locally integrable and non-negative function. The Muckenhoupt class A_p, $1 < p < \infty$, is defined as the class of weights ω such that

$$\sup_Q \left(\frac{1}{|Q|^p} \int_Q |\omega|^p \, dx \right)^{1/p} \leq C,$$

where Q is a cube in \mathbb{R}^n. For $p = 1$, A_1 is the class of weights ω having the property that there exists $c > 0$ such that

$$M_\omega(x) \leq c \omega(x) \quad \text{for a.e. } x \in \mathbb{R}^n.$$

Theorem. Let A be an invertible $n \times n$ matrix such that $A^M = I$, and also suppose that M is such that if $A^M = I$ for some $N \in \mathbb{N}$, then $M \leq N$. Let $m \in \mathbb{N}$, $1 < m \leq M$. Let $0 \leq \alpha < n$. Let a_1, \ldots, a_m be real numbers such that

$$a_1 + \cdots + a_m = n - \alpha.$$

Let T_{a} be the integral operator given by

$$T_{a}f(x) = \int k(x, y) f(y) \, dy,$$

(3)

with

$$k(x, y) = \frac{1}{|x - A_i y|^{a_i} \cdots |x - A_m y|^{a_m}},$$

where, for $1 \leq i \leq m$, the matrices A_i are certain power of A, $A_i = A^{k_i}$, $k_i \in \mathbb{N}$, $1 \leq k_i \leq M$.

In [6], Riveros and Urciuolo studied integral operators with kernels given by

$$k(x, y) = \frac{1}{|x - A_1 y|^{a_1} \cdots |x - A_m y|^{a_m}},$$

(4)

where A_1, \ldots, A_m are invertible matrices such that $A_i - A_j$ is invertible for $i \neq j$, $1 \leq i, j \leq m$. They obtained weighted (p, q) estimates, $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$, for weights $w \in A(p, q)$ such that $w(A_i x) \leq c w(x)$. We want to use extrapolation techniques to obtain $p(\cdot) - q(\cdot)$ and weak type estimates. In [7], Rocha and Urciuolo proved the following theorem that involves more general matrices A_i, with the additional hypothesis $p(A_i x) = p(x)$ for a.e. $x \in \mathbb{R}^n$.

Theorem (Strong type). Let $0 \leq \alpha < n$ and let T_{a} be the integral operator with kernel given by (4), with A_i orthogonal matrices such that $A_i - A_j$ is invertible for $i \neq j$, $1 \leq i, j \leq m$. Let $h : \mathbb{R} \to [1, \infty)$ be such that $1 < h_\ast \leq h_\ast < \frac{n}{\alpha}$ and satisfying (1) and (2). Let $p : \mathbb{R}^n \to [1, \infty)$ given by $p(x) = h(|x|)$. Then T_{a} is bounded from $L^{p(\cdot)}(\mathbb{R}^n)$ into $L^{q(\cdot)}(\mathbb{R}^n)$ for $\frac{1}{p(x)} - \frac{1}{q(x)} = \frac{\alpha}{n}$.
In this paper we prove a similar result using extrapolation techniques that allow us to replace the log-Hölder conditions about the exponent \(p(\cdot) \) by a more general hypothesis concerning the boundedness of the maximal function \(M \). We obtain the following result.

Theorem 1. Let \(T_\alpha \) be the integral operator given by (3) such that \(A_1 - A_j \) is invertible for \(i \neq j, 1 \leq i, j \leq m \). Let \(p: \mathbb{R}^n \to [1, \infty) \) be such that \(1 < p_- \leq p_+ < \frac{n}{n-2} \) and \(p(Ax) = p(x) \) for a.e. \(x \in \mathbb{R}^n \). Let \(q(\cdot) \) be defined by \(\frac{1}{p(x)} - \frac{1}{q(x)} = \frac{n}{2} \). If the maximal operator \(M \) is bounded on \(L^{(\frac{np}{2}-q(\cdot))'}(\mathbb{R}^n) \), then \(T_\alpha \) is bounded from \(L^{p(\cdot)}(\mathbb{R}^n) \) into \(L^{q(\cdot)}(\mathbb{R}^n) \).

In [7], Rocha and Urciuolo obtained weak type estimates with the additional hypothesis \(p(0) = 1 \).

Theorem (Weak type). Let \(0 \leq \alpha < n \), and let \(h: \mathbb{R} \to [1, \infty) \) be a function satisfying (1) and (2), with \(h(0) = 1 \) and \(h_+ < \infty \). Let \(p: \mathbb{R}^n \to [1, \infty) \) given by \(p(x) = h(|x|) \). Let \(T_\alpha \) be the integral operator with kernel given by (4), with \(A_1 \) orthogonal matrices such that \(A_1 - A_j \) is invertible for \(i \neq j, 1 \leq i, j \leq m \). If \(\frac{1}{p(x)} - \frac{1}{q(x)} = \frac{n}{2} \), then there exists \(C > 0 \) such that

\[
\sup_{\lambda > 0} \lambda \| |x|: T_\alpha f(x) : q(\cdot) \| = C \| f \|_{p(\cdot)}.
\]

We obtain a weak type estimate for the operator given by (3), without that additional hypothesis. Our result is the following.

Theorem 2. Let \(T_\alpha \) be the integral operator given by (3) such that \(A_1 - A_j \) is invertible for \(i \neq j, 1 \leq i, j \leq m \). Let \(p: \mathbb{R}^n \to [1, \infty) \) be such that \(1 \leq p_- \leq p_+ < \frac{n}{n-2} \) and \(p(Ax) = p(x) \) a.e. \(x \in \mathbb{R}^n \). Let \(q(\cdot) \) be defined by \(\frac{1}{p(x)} - \frac{1}{q(x)} = \frac{n}{2} \). If the maximal operator \(M \) is bounded on \(L^{(\frac{np}{2}-q(\cdot))'}(\mathbb{R}^n) \), then there exists \(C > 0 \) such that

\[
\| T_\alpha f(x) : q(\cdot) \| = C \| f \|_{p(\cdot)}.
\]

We will also show that this technique applies in the case when each of the matrices \(A_j \) is either a power of an orthogonal matrix \(A \) or a power of \(A^{-1} \).

2 Proofs of the results

Proof of Theorem 1. We denote \(q_0 = \frac{np}{2} - q \). In [6], Riveros and Urciuolo obtained a weighted \((p_-, q_0)\) estimate for weights \(w \in A(p, q) \) such that \(w(Ax) \leq cw(x) \). We let \(\overline{q}(x) = \frac{q(x)}{q_0} \) and define

\[
\mathcal{R}h(x) = \sum_{k=0}^{\infty} \frac{M^k h(Ax)}{2^k \| M^\frac{k}{q(\cdot)} \|_{q(\cdot)'}} + \cdots + \sum_{k=0}^{\infty} \frac{M^k h(A^M x)}{2^k \| M^\frac{k}{q(\cdot)} \|_{q(\cdot)'}}.
\]

(5)

It is easy to check that

1. for all \(x \in \mathbb{R}^n \), \(|h(x)| \leq \mathcal{R}h(x) \),
2. \(\mathcal{R} \) is bounded on \(L^{\overline{q}(\cdot)'}(\mathbb{R}^n) \) and \(\| \mathcal{R}h \|_{q(\cdot)'} \leq 2 M \| h \|_{q(\cdot)'} \),
3. \(\mathcal{R} h \in A_1 \) and \(\| \mathcal{R} h \|_{A_1} \leq 2 CM \| h \|_{\overline{q}(\cdot)'} \),
4. \(\mathcal{R}h(Ax), x \in \mathbb{R}^n \).

Indeed, (1) is evident; (2) is verified as follows. Let \(l \in \mathbb{N}, l \leq M \). Then

\[
\| M^k h(A^{l'} \cdot) \|_{q(\cdot)'} = \inf_{r > 0} \left\{ \lambda > 0 : \left(\frac{M^k h(A^{l'} x)}{\lambda} \right)^{\overline{q}(\cdot)'} dx \leq 1 \right\}.
\]

But

\[
\int_{\mathbb{R}^n} \left(\frac{M^k h(A^{l'} x)}{\lambda} \right)^{\overline{q}(\cdot)'} dx = \int_{\mathbb{R}^n} \left(\frac{M^k h(y)}{\lambda} \right)^{\overline{q}(A^{-l'} y)'} dy = \int_{\mathbb{R}^n} \left(\frac{M^k h(y)}{\lambda} \right)^{\overline{q}(y)'} dy,
\]

where the first equality follows from a change of variables, using that \(|\det A| = 1 \). The second equality holds because \(q(A^{l'} x) = q(x) \) for a.e. \(x \in \mathbb{R}^n \). Then we conclude that

\[
\| M^k h(A^{l'} \cdot) \|_{q(\cdot)'} = \| M^k h \|_{\overline{q}(\cdot)'}.
\]
Thus, we obtain (2) by subadditivity of the norm:
\[\|M h(A(\cdot))\|_{q} \leq \sum_{k=0}^{\infty} \left(\frac{M^{k} h(A(\cdot))}{2^{k} \|M\|_{q}} + \cdots \right) \leq 2 M \|h\|_{q}. \]

Now, it is easy to check that there exists \(C > 0 \) such that for \(f \in L_{\text{loc}}^{1}(\mathbb{R}^{n}) \), \(M(f \circ A)(x) \leq CM f(Ax) \). So, (3) follows as in [3, p. 157]:
\[\mathcal{M}(\mathbb{R}h)(x) \leq C \left(\sum_{k=0}^{\infty} \frac{M^{k+1} h(Ax)}{2^{k} \|M\|_{q}} + \cdots \right) \leq 2 C \|\mathbb{R}h\|_{q}. \]

and (4) follows by definition. So, \(\mathbb{R}h \) is a weight in \(A_{1} \) such that \(\mathbb{R}h(A_{1}x) \leq \mathbb{R}h(x), \ x \in \mathbb{R}^{n} \).

We now take a bounded \(f \) with compact support. We will check later that \(\|T_{af}\|_{q} < \infty \), so, as in [3, Theorem 5.24],
\[\|T_{af}\|_{q}^{q} = \|(T_{af})^{q}\|_{q} = c \sup_{1h_{q+1} = 1} \int (T_{af})^{q}(x) h(x) dx \]
\[\leq c \sup_{1h_{q} = 1} \int (T_{af})^{q}(x) \mathbb{R}h(x) dx \]
\[\leq c \sup_{1h_{q} = 1} \int |f(x)|^{p} \mathbb{R}h(x) dx, \]

since \(\mathbb{R}h \in A(p_{+}, q_{0}) \). Hölder’s inequality gives
\[\|(T_{af})^{q}\|_{q} \leq c \left(\|f\|_{p}^{p} \sup_{1h_{q+1} = 1} \|\mathbb{R}h\|_{q} \right) \leq c \left(\|f\|_{p}^{q} \|\mathbb{R}h\|_{q} \right) \leq 2 M c \|\mathbb{R}h\|_{q} \|h\|_{q}. \]

where the last inequality follows as in [3, p. 211].

Now we show that \(\|T_{af}\|_{q} < \infty \). By [3, Proposition 2.12, p. 19], it is enough to check that \(\int_{\mathbb{R}^{n}} T_{af} < \infty \). We have
\[|Tf(x)|^{q} \leq |Tf(x)|^{q} \cdot 1_{x:T_{af}(x) > 1} + |Tf(x)|^{q} \cdot 1_{x:T_{af}(x) \leq 1}, \]

and now \(f \) is bounded and with compact support, so \(T_{af} \in L^{q}(\mathbb{R}^{n}) \) for \(\frac{n}{p-s} < s < \infty \), thus \(\int_{\mathbb{R}^{n}} |Tf(x)|^{q} dx < \infty \).

The theorem follows since bounded functions with compact support are dense in \(L^{p}(\mathbb{R}^{n}) \).

Proof of Theorem 2. We consider first the case \(p_{+} = 1 \). We denote \(q_{0} = \frac{n}{n-a} \) and \(q_{1} = \frac{1}{q_{0}} \). Theorem 3.2 of [6] implies that if \(\omega \in A(1, q_{0}) \) is such that \(\omega(Ax) \leq c \omega(x) \), then
\[\sup_{\lambda} \lambda^{q_{0}} \omega^{q_{0}}(x) \chi_{|f|^{q_{0}}(x)}(\lambda|x|^{q_{0}}(x)) \leq C \int |f(x)| \omega(x) dx^{q_{0}}. \]

Now, let \(F_{A} = \lambda^{q_{0}} \chi_{|f|^{q_{0}}(x)}(\lambda|x|^{q_{0}}(x)). \) Then
\[\|\chi_{|f|^{q_{0}}(x)}(\lambda|x|^{q_{0}}(x))\|_{q_{0}} \leq \|\chi_{|f|^{q_{0}}(x)}(\lambda|x|^{q_{0}}(x))\|_{q_{0}} = C \sup_{1h_{q} = 1} \int F_{A}(x) h(x) dx. \]

As in the previous theorem, we define \(\mathbb{R}h \) by (5). Since \(\mathbb{R}h \in A_{1} \), \(\mathbb{R}h \in A(1, q_{0}) \). So,
\[\|\chi_{|f|^{q_{0}}(x)}(\lambda|x|^{q_{0}}(x))\|_{q_{0}} \leq C \sup_{1h_{q} = 1} \int F_{A}(x) \mathbb{R}h(x) dx \]
\[\leq C \sup_{1h_{q} = 1} \int F_{A}(x) \mathbb{R}h(x) \mathbb{R}h(x|\mathbb{R}h|^{q_{0}}) \]
and, as in the previous theorem, we get
\[
\|\lambda_{\{x: T_\alpha f(x) > \lambda\}}\|_{L^q_p} \leq C\|f\|_{L^q_p} \sup_{|h|_{l^{q'}} = 1} \|\mathcal{R}h(\cdot)\|_{L^q_p}^{\frac{1}{q'}} \leq C\|f\|_{L^q_p} \sup_{|h|_{l^{q'}} = 1} \|\mathcal{R}h(\cdot)\|_{L^q_p}^{\frac{1}{q'}} \leq 2M\|f\|_{L^q_p} \sup_{|h|_{l^{q'}} = 1} \|h(\cdot)\|_{L^q_p} = 2M\|f\|_{L^q_p}.
\]

If \(p_- > 1 \), then we use that \(T_\alpha \) is of weak type \((p_-, q_0)\) and we proceed as before to get the statement of the theorem.

Remark 3. Theorems 1 and 2 still hold if \(m = 1 \) and \(\alpha > 0 \). In this case, if \(\frac{1}{p} - \frac{1}{q} = \frac{\alpha}{m} \) and \(\omega \in A(p, q) \) is such that \(\omega(Ax) \leq \omega(x) \) for a.e. \(x \in \mathbb{R}^n \), then
\[
T_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x - Ay|^n} dy = I_\alpha(f \circ A^{-1})(x),
\]
where \(I_\alpha \) is the classical fractional integral operator. Thus,
\[
\int_{\mathbb{R}^n} (T_\alpha f(x))^q \omega^q(x) dx = \int_{\mathbb{R}^n} (I_\alpha(f \circ A^{-1})(x))^q \omega^q(x) dx \\
\leq C\left(\int_{\mathbb{R}^n} (f \circ A^{-1})(x)^p \omega^p(x) dx \right)^{\frac{q}{p}} \leq C\left(\int_{\mathbb{R}^n} (f(x))^p \omega^p(A^{-1}x) dx \right)^{\frac{q}{p}} \leq C\left(\int_{\mathbb{R}^n} (f(x))^p \omega^p(x) dx \right)^{\frac{q}{p}}.
\]
So,
\[
\|T_\alpha f\|_{L^{q, \omega^q}} \leq C\|f\|_{L^{q, \omega^p}},
\]
In a similar way we obtain the corresponding weak type estimate and we proceed as in the previous theorems.

Remark 4. Let \(A \) be a orthogonal matrix and let \(T_\alpha \) be as in (3), where the matrix \(A_j \) is either a power of \(A \) or a power of \(A^{-1} \). If \(A_j - A_j \) is invertible and \(p(\cdot) \) is as in Theorem 2, we also obtain strong and weak type estimates. We simply define \(\mathcal{R} \) as follows:
\[
\mathcal{R}h(x) = \sum_{j=0}^{\infty} \frac{1}{2^j} \left(\sum_{k=0}^{\infty} \frac{M^k h(A^j x)}{2^k\|M\|_{l^{q'}}} \right) + \sum_{k=0}^{\infty} \frac{M^k h((A^{-1})^j x)}{2^k\|M\|_{l^{q'}}},
\]
and the proof follows as in the proofs of Theorems 1 and 2.

Example 5. We take \(r \) satisfying (1) and (2), with \(1 < r_- \leq r_+ < \frac{2}{\alpha} \) and
\[
A = \begin{pmatrix} 1 & 2 \\ -1 & -1 \end{pmatrix}.
\]
So, \(A^4 = I \) and \(A^i - A^j \) is invertible for \(1 \leq i, j \leq 4, i \neq j \). We let \(p(x) = \frac{1}{4}(r(Ax) + r(A^2 x) + r(A^3 x) + r(A^4 x)) \).

Example 6. We take an even function \(p \) satisfying (1) and (2), with \(1 < p_- \leq p_+ < \frac{2}{\alpha} \) and \(A = -I \).

Funding: Partially supported by CONICET and SECYTUN.
References

[1] C. Capone, D. Cruz-Uribe and A. Fiorenza, The fractional maximal operator and fractional integrals on variable L^p spaces, *Rev. Mat. Iberoam.* 23 (2007), no. 3, 743–770.

[2] D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer, The maximal function on variable L^p spaces, *Ann. Acad. Sci. Fenn. Math.* 28 (2003), no. 1, 223–238.

[3] D. V. Cruz-Uribe and A. Fiorenza, *Variable Lebesgue Spaces. Foundations and Harmonic Analysis*, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013.

[4] L. Diening, P. Harjulehto, P. Hästö and M. Růžička, *Lebesgue and Sobolev Spaces with Variable Exponents*, Lecture Notes in Math. 2017, Springer, Heidelberg, 2011.

[5] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, *Trans. Amer. Math. Soc.* 192 (1974), 261–274.

[6] M. S. Riveros and M. Urciuolo, Weighted inequalities for fractional type operators with some homogeneous kernels, *Acta Math. Sin. (Engl. Ser.)* 29 (2013), no. 3, 449–460.

[7] P. Rocha and M. Urciuolo, About integral operators of fractional type on variable L^p spaces, *Georgian Math. J.* 20 (2013), no. 4, 805–816.