Physical exercise during exposure to 40-Hz light flicker improves cognitive functions in the 3xTg mouse model of Alzheimer’s disease

Sang-Seo Park1†, Hye-Sang Park2†, Chang-Ju Kim1, Hyun-Sik Kang3, Dong-Hyun Kim3, Seung-Soo Baek4 and Tae-Woon Kim1,4*

Abstract

Background: Exercise promotes brain health and improves cognitive functioning in the elderly, while 40-Hz light flickering through the visual cortex reduces amyloid beta (Aβ) by stabilizing gamma oscillation. We examined whether exercise was associated with hippocampus-mediated improvement in cognitive functioning in the 3xTg-Alzheimer’s disease (3xTg-AD) murine model following exposure to 40-Hz light flickering and exercise.

Methods: We subjected 12-month-old 3xTg-AD mice to exercise and 40-Hz light flickering for 3 months to investigate spatial learning, memory, long-term memory, Aβ levels, tau levels, mitochondrial functioning including Ca2+ retention and H2O2 emission, apoptosis, and neurogenesis in the hippocampus.

Results: Treatments had a positive effect; however, the combination of exercise and 40-Hz light flickering exposure was most effective in reducing Aβ and tau levels. Reducing Aβ and tau levels by combination of exercise and 40-Hz light flickering improves Ca2+ homeostasis and reactive oxygen species such as H2O2 in mitochondria and apoptosis including bax, bcl-2, cytochrome c, and cleaved caspase-3 and cell death, cell differentiation, and neurogenesis in the 3xTg-AD model of the hippocampus, resulting in improving cognitive impairment such as spatial learning, memory and long term memory.

Conclusion: Our results show that exercising in a 40-Hz light flickering environment may improve cognitive functioning by reducing Aβ and tau levels, thereby enhancing mitochondrial function and neuroplasticity.

Keywords: Alzheimer’s disease, Exercise, Amyloid beta, Tau, 40-Hz light flicker, Cognitive function, Mitochondria, Apoptosis, Neuroplasticity, Hippocampus
Background
Alzheimer’s disease (AD) is the most common degenerative brain disease. AD causes dementia, whose progressive onset leads to a gradual worsening of cognitive functioning, including memory. In the initial stages of AD, problems with memory related to recent events occur with alterations in cognitive function such as language ability and judgment, which eventually lead to the complete loss of motor function. AD accounts for >70% of all dementia cases [1]. AD is associated with various cellular changes in the brain, including synaptic alterations, mitochondrial structural and functional changes, abnormal inflammatory responses, extracellular amyloid beta (Aβ) accumulation, and intracellular neurofibrillary tangles [2–4]. In particular, it is known that Aβ is directly correlated with AD pathology and that longer isoforms with 42–43 residues (the smaller isoform has 40 residues) cause neurodegeneration and cognitive dysfunction, eventually progressing to dementia [5, 6]. Reduced Aβ clearance or Aβ overproduction may cause Aβ accumulation in subcellular compartments, including synapses and mitochondria, and may impair organelle and ultimately neuronal function [7–9].

AD is caused by hippocampal atrophy, which is involved in memory and learning, the presence of senile plaques, and the accumulation of hyperphosphorylated aggregates of tau protein [10, 11]. Overexpression or hyperphosphorylation of tau protein due to AD impairs axonal migration of organelles including the mitochondria [12, 13]. There is substantial evidence suggesting that mitochondrial dysfunction is associated with aging and neurodegenerative diseases. Reduced mitochondrial function has been demonstrated using AD transgenic mouse models as well as post-mortem brain tissue of patients with AD [14, 15], fibroblasts, and blood cells [16–18]. Mitochondrial dysfunction participates in the progression of AD and is present in all stages of the disease. It has been suggested that AD is not limited to the brain but could be a systemic disease [16].

In the brain, gamma oscillation occurs between 25 and 145 Hz, affecting various behavioral functions such as attention and memory [19]. This is disrupted in animal models and clinical studies of AD and other disorders [20–22]. Specifically, in the brains of AD patients, gamma rhythms are known to be interrupted and Aβ has been suggested as the potential cause, particularly in the hippocampus [23]. Aβ accumulation affects memory through the inhibition of electrical signaling such as gamma oscillations, which play an important role in cognitive functioning and sensory response [24–26]. The wavelength, duration, and intensity of light exposure regulate the cognitive tasks that the brain responds to, and these light responses have been observed in subcortical areas, such as the hypothalamus, the brain stem, and the thalamus, as well as in limbic areas including the amygdala and the hippocampus [27]. According to Naeser et al. [28], cognitive function is improved through light-emitting diode (LED) therapy in patients with chronic traumatic brain injury. In addition, previous studies have consistently reported that exercise is beneficial to brain functioning and is a primary method of preventing and treating AD in combination with drugs. However, unlike certain drugs that target localized causes, the positive effects of exercise mitigate or delay multiple aspects related to AD. In animal studies using familial AD gene mutations, exercise was reported to minimize neurotoxicity caused by AD neuropathy and stimulate neuronal regeneration, contributing to an improvement in cognitive functioning through a reduction in beta-secretase activity [29], decreased accumulation of amyloid plaques and soluble Aβ [30, 31], and decreased pTau [32]. Therefore, this study aimed to examine the effects of exercise training in a 40-Hz light flicker environment on Aβ accumulation in the hippocampus, Akt/tau, mitochondrial function, neuroplasticity, and cognitive functioning in an AD animal model.

Methods
Animals
All animal experiments were performed in accordance with the guidelines of the National Institutes of Health and the Korean Academy of Medical Science. The study protocol was approved by the KyungHee University Institutional Animal Care and Use Committee (approval number KHUASP [SE]-17-103). The mice were housed under conditions of controlled temperature (25 ± 1 °C) and lighting (7 am to 7 pm) with food and water ad libitum. Fifteen-month-old male wild-type and 3xTg mice were randomly divided into a wild-type control group (CON), a 3xTg-AD group (AD), a 3xTg-AD and Exercise group (AD+EX), and a 3xTg and exercise under 40-Hz light flickering group (AD+40+EX) (n = 10 in each group). We used the 3xTg-AD mice harboring APP Swe, PS1M146V, and tau P301L human transgenes. The genotype was confirmed by PCR analysis of DNA obtained by tail biopsies. BrdU (Sigma, St. Louis MO, USA) was administered intraperitoneally (i.p.) at 100 mg/kg/day for 7 days, and we sacrificed the mice 4 weeks after first day of BrdU injection to observe neurogenesis.

Exercise protocol and 40-Hz light flickering of exposure time
Exercise sessions began at age 12 months of 3xTg mice. The exercise groups exercised on a treadmill made for animal use once daily in the dark, 6 days per week for 12 consecutive weeks. For exercises of adaption, mice were allowed 5 min of warm up at a 0° inclination at 3 m/min,
30 min of the main exercise at 10 m/min, and 5 min of cool down at 3 m/min which were performed for the first 3 weeks. Subsequently, mice were subjected to 40 min of the main exercise at 11 m/min for weeks 4 to 6, 50 min of the main exercise at 12 m/min for weeks 7 to 9, and 50 min of the main exercise at 13 m/min for the final weeks 10 to 12. Exposure time of 40-Hz light flickering was the same as exercise time.

Behavioral tests

Morris water maze

The Morris water maze task was used to assess spatial learning and working memory. One day before training, the mice were habituated to swimming for 60 s in the pool without a platform. All mice were trained three times per day for five consecutive days. A probe trial was performed 24 h after the final training session. When a mouse found the platform, it was allowed to remain there for 30 s. If the mouse did not find the platform within 60 s, it was guided by hand to the platform. The mice underwent a 60-s retention probe test, after which the platform was removed from the pool. The data were automatically collected using the Smart Video Tracking System (Smart version 2.5, Panlab, Barcelona, Spain).

Step through avoidance test

The step through avoidance task was used to assess long-term memory. For the training period, the mouse was placed at the entrance identified by the halogen bulbs and the door of the box was opened. When the mouse entered the dark place, the door and the mouse were allowed to stay for 20 s. This training was repeated twice. Finally, during the third training session, when the mouse entered the dark place, the door closed at the same time and the mouse received a 1-mA scramble foot shock for 2 s. After 24 h of the foot shock, mice were placed back at the entrance identified by the halogen bulb, and when the door opened, the time taken for mice to enter the dark place was measured. A latency time > 300 s was counted as 300 s.

Preparation of tissue

The mice were euthanized immediately after the behavior test. To prepare the brain slices, the animals were fully anesthetized with ethyl ether, perfused transcardially with 50 mM phosphate-buffered saline (PBS), and then fixed with a freshly prepared solution of 4% paraformaldehyde in 100 mM phosphate buffer (pH 7.4). The brains were then removed, post-fixed in the same fixative overnight, and transferred into a 30% sucrose solution for cryoprotection. Coronal sections with a thickness of 40 μm were created using a freezing microtome (Leica, Nussloch, Germany). From each group of 10 animals, 5 were used for immunohistochemistry and 5 for western blot and mitochondrial function analysis. The hippocampal tissue for western blot analysis was immediately stored at −70°C until use. For immunohistochemistry, 2 sections from each group were analyzed, resulting in a total of 10 slices.

Immunohistochemistry

To visualize cell differentiation, immunohistochemistry was performed for DCX staining in the dentate gyrus (DG) and Aβ in CA1 to 3 and in the DG hippocampus. The sections were incubated in PBS for 10 min and then washed three times for 3 min in the PBS. The sections were then incubated in 1% H2O2 for 15 to 30 min. The sections were selected from each brain and incubated overnight with goat anti-DCX antibody (1:500; Santa Cruz) and mouse purified anti-β-amyloid antibody (1:200; Bioregen) and then with biotinylated rabbit secondary antibody (1:250; Vector Laboratories) for another 90 min. The secondary antibody was amplified with the Vector Elite ABC Kit (1100; Vector Laboratories). Antibody-biotin-avidin-peroxidase complexes were visualized using the 3,3-diaminobenzidine (DAB) substrate kit (Vector Laboratories). The slides were air-dried overnight at room temperature, and the coverslips were mounted using Permount®.

Immunofluorescence

BrdU/NeuN-positive cells in the DG were tested for immunofluorescence. In brief, the brain sections were permeabilized by incubation in 0.5% Triton X-100 in PBS for 20 min, incubated in 50% formamidine-2x standard saline citrate at 65°C for 2 h, denatured in 2 N HCl at 37°C for 30 min, and then rinsed twice in 100 mM sodium borate (pH 8.5), in that order. The sections were incubated overnight with rat anti-BrdU antibody (1:200; Abcam, Cambridge, UK) and mouse anti-NeuN antibody (1:200; Millipore, Temecula, CA). The brain sections were then washed in PBS and incubated with the appropriate secondary antibodies for 1 h. The secondary antibodies used were anti-mouse IgG Alexa Fluor-488 and anti-rat IgG Alexa Fluor-560. Images were captured using an FV3000 confocal microscope (Olympus, Tokyo, Japan).

TUNEL staining

To visualize DNA fragmentation, we performed TUNEL staining using an In Situ Cell Death Detection Kit (Roche Diagnostics, Risch-Rotkreuz, Switzerland) according to the manufacturer’s protocol. Sections were post-fixed in ethanol-acetic acid (2:1), rinsed, incubated with proteinase K (100 mg/mL), and then rinsed again. Next, they were incubated in 3% H2O2, permeabilized with 0.5% Triton X-100, rinsed again, and incubated in
the TUNEL reaction mixture. The sections were rinsed and visualized using Conjugate-POD with 0.03% DAB, counterstained with Cresyl violet, and mounted onto gelatin-coated slides. The slides were air-dried overnight at room temperature and cover-slipped using Permount mounting medium.

Western blotting
Hippocampal tissues were homogenized on ice and lysed in lysis buffer containing 50 mM Tris–HCl (pH 7.5), 150 mM NaCl, 0.5% deoxycholic acid, 1% Nonidet P40, 0.1% sodium dodecyl sulfate, 1 mM PMSF, and leupeptin 100 μg/mL. The protein content was measured using a colormetric protein assay kit (Bio-Rad, Hercules, CA). Thirty micrograms of protein was separated on sodium dodecyl sulfate, 1 mM PMSF, and leupeptin 100 mM NaCl, 0.5% deoxycholic acid, 1% Nonidet P40, 0.1% chromic C, β-actin, and GAPDH; anti-rabbit conjugated secondary antibodies were used for t-Akt, p-Akt, t-tau, and p-Tau, GAPDH; t-Akt and p-Akt (1:1000; Cell Signaling), t-GSK3β and p-GSK3β (ser 9) (1:1000; Cell Signaling), t-Tau and p-Tau (ser202/Thr205 (1:1000; Thermos Fisher), Bcl-2 and cytochrome C (1:1000; Santa Cruz Biotechnology), Bax (1:1000; Cell Signaling), cleaved caspase-3 (1:700; Cell Signaling), brain-derived neurotrophic factor (BDNF; 1:1000; Alomone), PSD95 (1:1000; Cell Signaling), and synaptophysin (1:1000; Abcam) primary antibodies. Horseradish peroxidase-conjugated secondary antibodies were used for Bcl-2, p-Tau, cytochrome C, β-actin, and GAPDH; anti-rabbit conjugated secondary antibodies were used for t-Akt, p-Akt, t-tau, p-tau, t-GSK3β, Bax, cleaved caspase-3, BDNF, PSD95, and synaptophysin.

Mitochondrial Ca^{2+} retention capacity
The mitochondrial calcium retention capacity was tested to assess the susceptibility of the permeability transition pore (PTP) to opening. Briefly, after grinding the hippocampal tissue, overlaid traces of changes in fluorescence induced by Calcium Green-5N were measured continuously (ΔF/min) at 37 °C during state 4 respiration using a Spex FluoroMax 4 spectrofluorometer (Horiba Scientific, Edison, NJ). After establishing the background ΔF (hippocampal tissue in the presence of 1 μM is Calcium Green-5N, 1 U/mL hexokinase, 0.04 mM EGTA, 1.5 mM thapsigargin, 5 mM 2-deoxyglucose, 5 mM glutamate, 5 mM succinate, and 2 mM malate), the reaction was initiated by addition of Ca^{2+} pulses (12.5 μM), with excitation and emission wavelengths set at 506 nm and 532 nm, respectively. The total mitochondrial Ca^{2+} retention capacity prior to PTP opening (i.e., release of Ca^{2+}) was expressed as pmol/mg tissue weight.

Mitochondrial H_{2}O_{2} emission
H_{2}O_{2} emission was measured at 37 °C (ΔF/min) during state 4 respiration (10 μg/ml oligomycin) by continuously monitoring oxidation of Amplex Red (excitation/emission λ = 563/587 nm) using a Spex FluoroMax 4 spectrofluorometer with the following protocol: 10 μM Amplex Red, 1 U/mL horseradish peroxidase, and 10 μg/mL oligomycin settings and 1 mM malate + 2 mM glutamate (complex I substrates), 3 mM succinate (complex II substrate), and 10 mM glycerol-3-phosphate (lipid substrate). The H_{2}O_{2} emission rate after removing the background value from each of the standard values (standard curve) was calculated from the ΔF/min gradient values and expressed as pmol/min/mg tissue weight.

Statistical analysis
Spatial learning was measured by two-way mixed analysis of variance to account for repeated measures (5 groups; between × 5 days repeated; within). Cell counting and optical density quantification for Aβ, TUNEL, DCX, and BrdU/NeuN-positive cells’ expression were performed using Image-Pro® Plus (Media Cybernetics Inc.) attached to a light microscope (Olympus, Tokyo, Japan). The data were analyzed with one-way ANOVA, followed by the Duncan post hoc tests. All values are expressed as the mean ± standard error of the mean (S.E.M.), and P values < .05 were considered significant.

Results
Effect of exercise under exposure to the 40-Hz light flickering on spatial working learning and memory and long-term memory
The Morris water maze and step through avoidance task were performed to assess spatial learning and memory and long-term memory. Spatial learning was assessed as the time spent on the platform. In the two-way mixed ANOVA accounting for the repeated measures of spatial learning, results are presented as the outcome of a multivariate test. During the Morris water maze task, there was a significant interaction between the repeated measure and group (day; p = .000, day × group; p = .000). Over time, the effect of repeated learning had differential effects on the groups. Particularly, significant decreases in the time taken to find the platform in spatial working learning and memory and long-term memory.

Statistical analysis
Spatial learning was measured by two-way mixed analysis of variance to account for repeated measures (5 groups; between × 5 days repeated; within). Cell counting and optical density quantification for Aβ, TUNEL, DCX, and BrdU/NeuN-positive cells’ expression were performed using Image-Pro® Plus (Media Cybernetics Inc.) attached to a light microscope (Olympus, Tokyo, Japan). The data were analyzed with one-way ANOVA, followed by the Duncan post hoc tests. All values are expressed as the mean ± standard error of the mean (S.E.M.), and P values < .05 were considered significant.

Results
Effect of exercise under exposure to the 40-Hz light flickering on spatial working learning and memory and long-term memory
The Morris water maze and step through avoidance task were performed to assess spatial learning and memory and long-term memory. Spatial learning was assessed as the time spent on the platform. In the two-way mixed ANOVA accounting for the repeated measures of spatial learning, results are presented as the outcome of a multivariate test. During the Morris water maze task, there was a significant interaction between the repeated measure and group (day; p = .000, day × group; p = .000). Over time, the effect of repeated learning had differential effects on the groups. Particularly, significant decreases in the time taken to find the platform in spatial learning and memory and long-term memory.
AD vs AD+40 ($P < .001$), AD vs AD+EX ($P = .003$), and AD vs AD+40+EX ($P < .001$). In the AD group, the implementation of exercise and 40-Hz light flickering was effective in the repetitive learning, especially the combination of 40-Hz light flickering and exercise. Spatial memory ($P < .001$) and long-term memory ($P < .001$) were significantly reduced in the AD group compared with the CON group. In contrast, spatial memory and long-term memory were enhanced by exposure to AD+40-Hz ($P = .008$, $P = .030$), AD+EX ($P = .001$, $P = .019$), and AD+40+EX ($P < .001$ respectively). Groups of treatment comparison revealed significant differences for spatial learning and long-term memory between AD+40+EX and AD+40 ($P < .001$, $P = .001$, respectively) and AD+EX ($P = .007$, $P = .002$, respectively) groups. AD+40 and AD+EX groups did not show a significant intergroup difference. Therefore, it is worth noting that exercise was most effective in improving cognitive functioning under the 40-Hz light flickering condition in AD and that the results were better than the normal aging group used as CON (Fig. 1, Table 1).

Effects of exercise under exposure to 40-Hz light flickering on Aβ in the hippocampus
The number of Aβ-positive cells in the CA1, CA2–3, and DG of the hippocampus was significantly decreased in the AD group compared with the treatment groups; Aβ-positive cells were reduced in the AD+40 (CA1: $P < .001$, CA2–3: $P < .001$, DG: $P < .001$), AD+EX (CA1: $P < .001$, CA2–3: $P < .001$, DG: $P < .001$), and AD+40+EX (CA1: $P < .001$, CA2–3: $P < .001$, DG: $P < .001$) groups. When exercise alone was compared with exercise performed under the 40-Hz light flickering condition, the AD+40+EX group showed an intergroup difference when compared to AD+40 ($P < .001$) and AD+EX ($P < .001$) across all areas of the hippocampus (CA1, CA2–3, and DG); however, groups exposed to 40-Hz light flickering or exercise alone (AD+40 and AD+EX groups, respectively) did not show any significant intergroup difference. Therefore, each method was effective in removing Aβ, although performing exercise under the 40-Hz light flickering condition was the most efficacious. It is interesting to note that exercise during the 40-Hz light flickering condition reduced Aβ to CON levels in the CA2–3 and DG of the hippocampus (Fig. 2, Table 2).

Effects of exercise under exposure to the 40-Hz light flickering on Akt/tau in the hippocampus
Western blot was used to analyze the changes in expression of Akt/tau proteins in the hippocampus. For an intergroup comparison, the ratio of the CON group was...
set to 1 and a comparison was made with the relative value of each group. When the CON group was compared to the AD group, the p-Akt/Akt ratio ($P<.001$) and p-GSK3β/GSK3β ratio ($P<.001$) were reduced while the p-tau/tau ratio ($P<.001$) increased. In contrast, when the AD group was compared to the treatment groups, the p-Akt/Akt ratio and p-GSK3β/GSK3β ratio of protein expression were increased: AD+40 (p-Akt/Akt ratio: $P<.001$, p-GSK3β/GSK3β ratio: $P<.001$), AD+EX (p-Akt/Akt ratio: $P<.001$, p-GSK3β/GSK3β ratio: $P=.001$), and AD+40+EX (p-Akt/Akt ratio: $P<.001$, p-GSK3β/GSK3β ratio: $P<.001$). The p-Tau/tau ratio expression was significantly reduced in AD+40 ($P=.026$), AD+EX ($P=.001$), and AD+40+EX ($P<.001$). When a comparison was made among treatment groups, AD+40+EX showed an intergroup

Group	Spatial learning training (s)	SM (%)	LTM (s)
CON	45.00 ± 3.76	33.57 ± 1.97	203.60 ± 23.73
AD	60.00 ± 0.0*	16.93 ± 2.31	54.40 ± 16.90*
AD+40	51.93 ± 4.33	29.10 ± 1.42	161.20 ± 10.95*
AD+EX	58.00 ± 2.05*	31.08 ± 3.66*	168.40 ± 24.86*
AD+40+EX	52.56 ± 3.22	43.01 ± 2.05**	250.83 ± 28.29**

*$P<.05$ compared to the CON group, $P<.05$ compared to the AD group, $P<.05$ compared to the AD+40 and AD+EX. SM spatial memory, LTM long-term memory

Table 1 Effect of exercise under exposure to the 40-Hz light flickering on spatial learning and memory and long-term memory

Fig. 2 Effects of exercise under exposure to the 40-Hz light flicker on Aβ in the hippocampus. Photomicrographs and data of Aβ-positive cells. The scale bar represents 50 μm. AD: 3Tg-AD, AD+40: 3Tg-AD and 40-Hz light flickering, AD+EX: 3Tg-AD and exercise, and AD+40+EX: 3Tg-AD and exercise in the 40-Hz light flickering. Data are expressed as the mean ± standard error of the mean (SEM). $*P<.05$ compared to the AD group. $+P<.05$ compared to the AD+40+EX.
difference with AD+40 (P = .026) and AD+EX (p < 0.001), while there was no difference between AD+40 and AD+EX groups. In other words, 40-Hz light flickering and exercise were both effective in reducing the Akt/tau protein ratio when administered alone, but exercise under the exposure to 40-Hz light flickering was even more effective, reducing the level to that of the CON group. The p-Akt/Akt and p-GSK3β/GSK3β ratios were also significantly increased compared to the CON group (Fig. 3, Table 3).

Effects of exercise under exposure to the 40-Hz light flickering on Ca^{2+} retention and H_{2}O_{2} production in the hippocampus

Mitochondrial Ca^{2+} retention capacity in the hippocampus was reduced in the AD group when compared with the CON group (P < .001). In contrast, when the AD group was compared to the treatment groups, AD+40 (P = .006), AD+EX (P < .001), and AD+40+EX (P < .001) showed increased mitochondrial Ca^{2+} retention capacity. An intergroup comparison revealed an intergroup difference between the AD+40 (P < .001) and AD+EX (P < .001) groups, while the AD+40 and AD+EX groups did not show any significant difference. The mitochondrial H_{2}O_{2} production rate was calculated using the complex I substrate (glutamate + malate, GM), the complex 2 substrate (succinate, GMS), and the lipid substrate (glycerol-3 phosphate, GMSG3P). The mitochondrial H_{2}O_{2} production rate in the hippocampus was significantly increased compared with the CON group (GM: P = .007, GMS: P < .001, GMSG3P: P < .001). In contrast, when the AD group was compared to the treatment groups, H_{2}O_{2} production was significantly reduced in the AD+40 (GM: P = .027, GMS: P < .001, GMSG3P: P = .005), AD+EX (GM: P = .034, GMS: P < .001, GMSG3P: P = .003), and AD+40+EX (GM: P = .019, GMS: P < .001, GMSG3P: P < .001) groups. In the intergroup comparisons, the GM did not show a difference among the treatment groups, but a significant difference was observed for GMS and GMSG3P expression between the AD+40+EX and AD+40 (P = .025, P = .005, respectively) and AD+EX groups (P = .012, P = .009, respectively). However, AD+40 and AD+EX groups did not show any significant difference. Thus, exercise under exposure to 40-Hz light flickering appeared to be the most effective in improving

Table 2 Effect of exercise under exposure to the 40-Hz light flickering on Aβ in the hippocampus

Group	CA1 (mm²)	CA2–3 (mm²)	DG (mm²)
AD	720.32 ± 36.70	450.88 ± 11.23	376.24 ± 29.76
AD+40	362.66 ± 28.02*	209.51 ± 14.34*	216.23 ± 20.14*
AD+EX	379.40 ± 29.47*	191.92 ± 10.67*	223.64 ± 12.01*
AD+40+EX	180.35 ± 7.68*	95.32 ± 7.87*	91.87 ± 4.49*

*P < .05 compared to the AD group, *P < .05 compared to the AD+EX and AD+ 40 group

![Fig. 3](image-url)
mitochondrial function in the hippocampus by maintaining mitochondrial Ca\(^{2+}\) retention and reducing ROS. These levels were recovered to normal levels as in the CON group (Fig. 4, Table 4).

Effects of exercise under exposure to the 40-Hz light flickering on apoptosis and cell death in the hippocampus

In order to examine the changes in apoptosis in the hippocampus, we analyzed cell death using TUNEL-positive cells and the expression of Bax, Bcl-2, cytochrome C, and cleaved caspase-3 proteins. For intergroup comparison of apoptosis, the value of the CON group was set to 1 and compared with the relative value of each group. When the CON and AD groups were compared, the expression of Bax (\(P < .001\), cytochrome C (\(P = .001\)), and cleaved caspase-3 (\(P < .001\)) increased, while Bcl-2 (\(P < .001\)) was reduced. In contrast, when the AD group was compared with the treatment groups, significant differences were observed with the following treatment groups: AD+40 (Bax: \(P = .001\), Bcl-2: \(P = .009\), cytochrome C: \(P = .038\), cleaved caspase-3: \(P = .002\)), AD+EX (Bax: \(P = .001\), Bcl-2: \(P = .002\), cytochrome C: \(P = .013\), cleaved caspase-3: \(P < .001\)), and AD+40+EX (\(P < .001\) respectively). In the comparison among the treatment groups, AD+40+EX was significantly different from AD+40 (Bax, Bcl-2, cytochrome C, cleaved caspase-3, \(P < .001\) each) and AD+EX exposure (Bax, Bcl-2, cytochrome c, cleaved caspase-3, \(P < .001\) each), while AD+40 and AD+EX did not show an intergroup difference. When the TUNEL-positive cells of the hippocampus were compared, the AD group showed a significant increase compared to the CON group (\(P < .001\)). In contrast, when the AD group was compared with the treatment groups, a reduction was observed in the AD+40 (\(P < .001\), AD+EX (\(P < .001\), and AD+40+EX (\(P < .001\) treated groups. When the treatment groups were compared among themselves, an intergroup difference was observed for AD+40+EX from AD+40 (\(P = .001\) and AD+EX (\(P = .001\) while AD+40 and AD+EX groups did not show an intergroup difference. Therefore, exercise under the exposure to 40-Hz light flickering was the most effective in decreasing apoptosis and cell death in the hippocampus, and this was restored to levels observed in the CON group (Fig. 5, Table 5).

Effects of exercise under exposure to the 40-Hz light flickering on BDNF, PSD95, and synaptophysin in the hippocampus

To examine changes in synaptic proteins in the hippocampus, the expression of BDNF, PSD 95, and synaptophysin were examined. For intergroup comparison, the value of the CON group was set to 1, which was compared to the relative value of each group. When the CON group was compared with the AD group, the expression of BDNF, PSD 95, and synaptophysin was

Table 3 Effect of exercise under exposure to the 40-Hz light flickering on Akt/Tau in the hippocampus

Group	p-Akt/Akt ratio	P-GSK3b/GSK3b ratio	p-Tau/tau ratio
CON	1.00 ± 0.07	1.00 ± 0.13	1.00 ± 0.03
AD	0.57 ± 0.05*	0.48 ± 0.05*	2.15 ± 0.11*
AD+40	0.80 ± 0.15**	0.75 ± 0.04**	1.88 ± 0.09**
AD+EX	0.84 ± 0.04**	0.77 ± 0.05**	1.70 ± 0.10**
AD+40+EX	1.24 ± 0.04**	1.16 ± 0.07**	1.06 ± 0.04**

*\(P < .05\) compared to the CON group, \#\(P < .05\) compared to the AD group, \+\(P < .05\) compared to the AD+40 and AD+EX.
reduced ($P < .001$ respectively). In contrast, when the AD group was compared with the treatment groups, AD+40 (BDNF: $P = .024$, PSD95: $P = .002$, synaptophysin: $P < .001$), AD+EX (BDNF: $P = .005$, PSD95: $P = .001$; synaptophysin: $P < .001$), and AD+40+EX ($P < .001$ respectively) groups showed a significant increase. In the comparison among treatment groups, AD+40+EX showed a significant difference in AD+40 and AD+EX ($P < .001$, respectively), while AD+40 and AD+EX treatments did not show any significant differences. Therefore, exercise under the exposure to 40-Hz light flickering was the most effective in improving the level of proteins associated with hippocampal synapses. In particular, the level of expression of BDNF ($P = .007$) and synaptophysin ($P < .001$) was higher than that of the CON group (Fig. 6, Table 6).

Effects of exercise under exposure to the 40-Hz light flickering on cell differentiation and neurogenesis in the hippocampus

To examine cell differentiation and neurogenesis in the hippocampus, DCX-positive cells and NeuN/brdU-positive cells were examined. Compared with the CON group, DCX-positive cells and NeuN/brdU-positive cells ($P < .001$ respectively) in the hippocampus decreased in the AD group. In contrast, a significant increase was observed for the AD+40 (DCX-positive cells: $P = .006$, NeuN/brdU-positive cells: $P = .002$), AD+EX (DCX-

Table 4 Effect of exercise under exposure to the 40-Hz light flickering on Ca$^{2+}$ retention and H$_2$O$_2$ in the hippocampus

Group	Ca$^{2+}$ retention (pmol/mg)	H$_2$O$_2$ emission (pmol/min/mg)
CON	311.42 ± 17.52	3.07 ± 0.30
AD	158.41 ± 10.60*	4.80 ± 0.24*
AD+40	230.28 ± 6.39**	3.32 ± 0.26**
AD+EX	252.60 ± 14.34**	3.37 ± 0.48**
AD+40+EX	344.93 ± 16.99**	3.25 ± 0.38**

* $P < .05$ compared to the CON group, ** $P < .05$ compared to the AD group, *** $P < .05$ compared to the AD+40 and AD+EX.
positive cells: \(P = .001 \), NeuN/brdU-positive cells: \(P = .002 \), and AD+40+EX \((P < .001 \) respectively) groups. In the comparison of the treatment groups, AD+40+EX treatment showed a significant difference compared to AD+40 and AD+EX \((P < .001, \) respectively), while AD+40 and AD+EX treatments did not show any significant difference. It is interesting to note that the level in AD+40+EX was increased and exceed that of the CON group (DCX-positive cells: \(P = .004 \); NeuN/brdU-positive cells: \(P = .003 \)). Therefore, exercise under exposure to 40-Hz light flickering was the most effective in improving cell differentiation and neurogenesis in the AD hippocampus (Fig. 7, Table 7).

Discussion

AD is an aging and neurodegenerative disorder characterized by deficits in learning, memory, and communication. AD accounts for 60 to 80% of dementia worldwide. The 3xTg AD animal model resembles the progression of cognitive and behavioral deficiencies seen in AD patients and is well suited for clinical studies of AD pathology. In this study, deficiencies in spatial learning, memory, and long-term memory were evaluated in the 3xTg AD group using the Morris Water maze and step through tests. In previous studies, 3xTg AD mice have shown loss of cognitive function and dementia-like behavioral and psychological symptoms along with in vivo long-term potentiation disorders, which are more severe in the older population [33]. This is particularly evident in the vulnerable areas of the brain, and the hippocampus is one of the most rapidly affected areas [34]. Signals that create our thoughts and memories are transmitted through nerve cells and the synapses between them. Aβ, an important protein for nerve cell growth and repair, is usually produced under physiological conditions and is excreted through the urine but when brain damage occurs, it is produced excessively and adheres to nerve cells and forms aggregates, blocking synapses, impeding the transmission of nerve signals, and causing inflammation and damage in neurons. When this occurs, memory...
dysfunction is a major symptom as the hippocampus and the temporal lobe are the first to develop abnormalities, which gradually spread to other areas of the brain. Altered cognitive function, including learning and memory deficits, are closely related to Aβ accumulation in the hippocampus. Aβ aggregation can cause synaptic dysfunction and neurodegeneration, which can impair cognitive function including spatial memory [35, 36]. In addition, Aβ stimulates glycogen kinase 3 (GSK3) to induce tau protein phosphorylation [37], and tau overexpression also causes an increased Aβ plaque accumulation [38]. GSK3, which promotes tau overexpression, is inhibited by phosphorylation of Ser21 by GSKα or Ser9 by GSK3β [39] and is increased in the absence of Akt activity [40]. Previous studies have shown that p-GSK3β (ser9) and p-Akt (ser473) were decreased while the expression of p-tau and Aβ increased simultaneously in the 3xTg-AD mouse [41, 42]. Aβ is closely associated with mitochondrial dysfunction, as evidenced by the accumulation of mitochondrial damage in the brains of AD patients [43], which may induce neuronal apoptosis [44], impair the movement of mitochondria, and cause synaptic degeneration by reducing mitochondrial length [45]. In the present study, the 3xTg-AD group with high Aβ expression also showed decreased mitochondrial function in the hippocampus such as decreased Ca2+ retention in hippocampal mitochondria and increased H2O2 production, a marker of reactive oxygen species (ROS). This deterioration led to an increase in cell death due to an increase in apoptosis and the expression of pro-apoptotic factors including Bax, cytochrome c, and caspase-3, as well as a decrease in the anti-apoptotic factor, Bcl-2. Cellular proliferation, neurogenesis, and synaptic markers BDNF, PSD95, and synaptophysin were also reduced in the hippocampus.

Table 6 Effect of exercise under exposure to the 40-Hz light flickering on BDNF, PSD95, and synaptophysin in the hippocampus

Group	BDNF	PSD95	Synaptophysin
CON	1.00 ± 0.03	1.00 ± 0.02	1.00 ± 0.04
AD	0.61 ± 0.04*	0.59 ± 0.05*	0.56 ± 0.07*
AD+40	0.78 ± 0.03*	0.77 ± 0.03*	0.75 ± 0.06*
AD+EX	0.82 ± 0.04*	0.81 ± 0.02*	0.81 ± 0.05*
AD+40+EX	1.19 ± 0.05*	1.02 ± 0.03*	1.29 ± 0.06*

*P < .05 compared to the CON group, **P < .05 compared to the AD group, ***P < .05 compared to the AD+40 and AD+EX

Fig. 7 Effects of exercise under exposure to the 40-Hz light flicker on cell differentiation and neurogenesis in hippocampal dentate gyrus. The data are shown as the photomicrographs and data of DCX- and BrdU/NeuN-positive cells. The scale bar represents 50 μm. Mean ± standard error of the mean (SEM). CON: wild-type, AD: 3xTg-AD, AD+40: 3xTg-AD and 40-Hz light flickering, AD+EX: 3xTg-AD and exercise, and AD+40+EX: 3xTg-AD and exercise in the 40-Hz light flickering. Data are expressed as the mean ± standard error of the mean (SEM). *P < .05 compared to the CON group, **P < .05 compared to the AD group. ***P < .05 compared to the AD+40+EX
Therefore, overexpression of Aβ and tau may decrease mitochondrial function, increase cell death, decrease neuron production, and reduce neuronal plasticity in the hippocampus. In previous studies, an increase in Aβ concentration resulted in increased secretion of H2O2, dysregulation of the cytosolic and mitochondrial Ca2+ homeostasis, and cytochrome c in the mitochondria [46, 47]. Particularly, mitochondrial Ca2+ overloading results in an increase of ROS production in mitochondria [48], the oxidative stress leads to abnormalities in the cell calcium storage, and the ability to control oxidative stress and respond to metabolic disorder links the AD-causing gene mutations to the disease process [49], while cell death was increased as were Bax levels with a concomitant decrease in Bcl-2 in the hippocampus of the 3xTg AD mouse, showing deficiencies in cognitive functions due to a decrease in BDNF, PSD95, and synaptophysin expression [50–52]. Aβ is an important pathological factor in AD. It is a neurotoxin, which can pathologically affect various brain cells. It seems that the decrease in cognitive function occurs due to inhibition of neuroplasticity following an alteration in mitochondrial function caused by excessive accumulation of Aβ and overexpression of tau in the hippocampus.

A new treatment method using LED has been recently suggested as a non-invasive therapy to treat AD. In particular, 40-Hz light flicker (LED flickers 40 times per second) is effective in stimulating the brain and restoring gamma rhythms. In an animal AD model, 40-Hz light flicker reduced p-tau and Aβ, which resolved memory, long-term memory, mitochondrial function, and neuroplasticity. This may suggest that the expression of tau and Aβ in the hippocampus was reduced by rescued gamma oscillations, which then led to an improvement in cognitive function. This may be due to the enhancement of mitochondrial function such as Ca2+ retention and ROS stabilization in the hippocampus, increased neuroplasticity such as the increase in proteins related to neurogenesis and synapses, and the inhibition of apoptosis.

Another non-invasive method to treat AD is exercise. Physical activity is known to promote brain health and improve cognitive functioning in the elderly; it has also been shown to increase hippocampal size and increase BDNF levels and neurogenesis [59, 60]. Exercise plays an important role in protecting against cognitive disorders due to dementia [61], and studies have reported low plasma Aβ and brain amyloid levels in people with low levels of physical activity [62]. In addition, in various AD animal models, exercise has been shown to delay or protect against the progression of AD by reducing Aβ and hyperphosphorylated tau protein [63–66], activating p-Akt and p-GSK3β, and reducing hyperphosphorylated tau levels [67]. As shown, exercise can play an important role in AD treatment including regulation of tau and Aβ in many of the previous studies. In addition, exercise-induced neuronal activity in the hippocampus requires increased mitochondrial capacity to produce ATP from oxidative phosphorylation of glucose. As a result, ROS may accumulate, but exercise may activate mitochondrial function and mitigate ROS-induced neurotoxins, and the protective effect of exercise against ROS production may be important in the hippocampus of patients with AD [68]. Exercise also improves hippocampal function by alleviating ROS such as H2O2 and inducing Ca2+ retention in hippocampal mitochondria under various neurotoxic conditions, and that mitochondrial function activated by exercise decreases apoptosis [69]. Furthermore, Aβ-dependent cell death is significantly suppressed after exercise in the hippocampus of an AD model [70]. In addition, exercise increases synaptic plasticity in the hippocampus, and Revilla et al. [71] found increased synaptophysin and PSD95 protein expression in the hippocampus of the 3xTg AD model.
In the present study, mitochondrial function and neuroplasticity were improved by Aβ and tau overexpression in an AD animal model through exercise as in the previous study. However, the therapeutic benefit of this in patients with AD remains controversial. Our study showed that exercise along with a non-invasive approach such as 40-Hz light flickering led to a significant improvement in AD patients, which was an important conclusion. Although much research on 40-Hz light flickering is still needed, Aβ and tau protein levels were suppressed, and the improvement in Aβ and tau expression caused by 40-Hz light flickering may have induced various positive cellular effects. Thus, under these circumstances, exercise may have a positive effect on this AD animal model as a complimentary therapy to 40-Hz light flickering.

Conclusion

Many previous studies have suggested that Aβ and tau are important pathological factors in AD pathogenesis. Abnormal expression of Aβ and tau in the hippocampus may induce a variety of changes such as decreased mitochondrial function, apoptosis, decreased neurogenesis, and reduced synaptic-related proteins, which may cause a decline in cognitive functioning. However, if gamma oscillation can be stabilized through the visual stimulation of 40-Hz light flickering, exercise may improve cognitive functioning, as these two non-invasive methods produced a synergistic effect, which improved mitochondrial function and neuroplasticity by reducing Aβ and tau levels. Further research is needed to determine the effectiveness of these non-invasive methods in various models and their clinical applications.

Abbreviations

3xTg-AD: Triple transgenic mouse model of Alzheimer’s disease; AD: Alzheimer’s disease; Aβ: Amyloid beta; BDNF: Brain-derived neurotrophic factor; BrdU: 5-Bromo-2′-deoxyuridine; DG: Dentate gyrus; GSK3β: Glycogen synthase 3 beta; LED: Light-emitting diode; PSD95: Postsynaptic density protein 95; ROS: Reactive oxygen species; TUNEL: Terminal deoxynucleotidyl transferase dUTP nick end labeling

Acknowledgements

Not applicable.

Authors’ contributions

S-S P and H-S P did the data acquisition, data analysis, writing of original draft, and project administration resources, C-J K and H-S K did the supervision, review, and editing. D-H K did the data acquisition. S-S B did the review and editing. T-W K did the conceptualization, data acquisition, funding acquisition, project administration resources, supervision, writing, review, and editing. The authors read and approved the final manuscript.

Funding

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea (NRF-2017S1-A5BSA02025250).

Availability of data and materials

All data analyzed or generated during current study are included in this published article and available from the corresponding author on reasonable request.

Ethics approval and consent to participate

All animal experiments were performed in accordance with the guidelines of the National Institutes of Health and the Korean Academy of Medical Science. The study protocol was approved by the KyungHee University Institutional Animal Care and Use Committee (approval number KHUASP-17-103).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Physiology, College of Medicine, KyungHee University, Seoul, Republic of Korea. 2Department of Kinesiology, College of Public Health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA. 3College of Sports science, Sungkyunkwan University, Suwon, Republic of Korea. 4Department of Exercise & Health Science, Exercise Rehabilitation Research Institute, Sangmyung University, Seoul, Republic of Korea.

Received: 18 November 2019 Accepted: 11 May 2020

Published online: 20 May 2020

References

1. Seshadri S, Beiser A, Selhub J, Jacques PF, Selkoe DJ, Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;347:476–83.
2. Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature. 2004;430(7000):63–9.
3. Swerdlow RH, Khachaturian AS, The AD disease mitochondrial cascade hypothesis: an update. Exp Neurol. 2009;218(2):308–15.
4. Kumar A, Ekavali SA. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):205–20.
5. Wilquet V, De Strooper B. Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol. 2004;14(5):582–8.
6. Tanal RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 2005;120(4):545–55.
7. Gouras GK, Almeida GG, Takahashi RH. Intersynaptic Abeta accumulation and origin of plaques in Alzheimer’s disease. Neurobiol Aging. 2005;26(9):1235–44.
8. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8(7):499–509.
9. Reddy PH, Beal MF. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med. 2008;14(2):45–53.
10. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387–403.
11. Arendt T. Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol. 2009;118(1):167–79.
12. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol. 2002;156(6):1051–63.
13. Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging. 2003;24(8):1079–85.
14. Gibson GE, Dheu RF, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neurol. 1998;1058(9):855–70.
15. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35):9057–68.
16. Parker WD Jr, Filley CM, Parks JK. Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology. 1990;40(8):1302–3.
17. Valla J, Schneider L, Niedziella T, Coon KD, Caselli R, Sabbagh MN, et al. Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion. 2006;6(6):323–30.
18. Wang X, Su B, Siedlik SL, Moreira PI, Fujioka H, Wang Y, et al. Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential...
modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A. 2008;105(49):19318–23.

19. Ferreira AC, Castellano JM. Leaving the lights on using gamma entrainment to protect against neurodegeneration. Neuron. 2019;102(5):901–2.

20. Ulhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron. 2006;52(1):155–68.

21. Verlet L, Mann EO, Hang GB, Barth AM, Colosio I, Ho K, et al. Inhibitory interneuron deficits links altered network activity and cognitive dysfunction in a mouse model of Alzheimer’s disease. Neuron. 2018;98(1):75–99.

22. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Mol Neurodegener. 2011;6:85.

23. Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain properties. Nature. 1989;338(6213):334–7.

24. Lipp S, et al. Amyloid-beta-induced action potential desynchronization and degradation of hippocampal gamma oscillations is prevented by interference with peptide conformation change and aggregation. J Neurosci. 2014;34(34):11416–25.

25. Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338(6213):334–7.

26. Buzsáki G. Rhythms of the brain. Oxford Univ Press. 2006.

27. Fries P, Nikolidis D, Singer W. The gamma cycle. Trends Neurosci. 2007;30(7):309–16.

28. Vandewalle G, Maquet P, Dijk DJ. Light as a modulator of cognitive brain function. Trends Cogn Sci. 2009;13(10):429–38.

29. Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, et al. Nav1.1 overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron. 2018;98(1):75–99.

30. Martinez-Losa M, Tracy TE, Ma K, Verret L, Clemente-Perez A, Khan AS, et al. Nav1.1 overexpressing interneuron transplants restore brain rhythms and cognition in a mouse model of Alzheimer’s disease. Neuron. 2018;98(1):75–99.

31. Nichol KE, Poon WW, Parachikova AI, Cribbs DH, Glabe CG, Cotman CW. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a chronic, traumatic brain injury: two case reports. Photonmed Laser Surg. 2011;29(50):351–8.

32. Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25(17):4217–21.

33. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis. 2009;35(3):426–32.

34. Nicolet MA, Saltamarche A, Krengel NH, Hamblin MR, Knight JA. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: a two case studies. Photomed Laser Surg. 2012;34(13):11416–25.

35. Leem YH, Lim HJ, Shim SB, Cho JY, Kim BS, Han PL. Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies. J Neurosci Res. 2009;87(11):2561–6.

36. Garcia-Mesa Y, Lopez-Ramos JC, Gimenez-Lloret L, Revilla S, Guerra R, Guerr A, et al. Physical exercise prevents against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis. 2011;24(3):421–54.

37. Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener. 2011;6:58.

38. Ho J, Whitcomb DJ, Olsen KM, Kerrigan TL, Olsen KM, et al. Alpha-2m increases amyloid load in a mouse model of Alzheimer’s disease. J Neurosci. 2005;25(17):4217–21.

39. Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, et al. Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis. 2009;35(3):426–32.

40. Kim D, Singer W. The gamma cycle. Trends Neurosci. 2007;30(7):309–16.

41. Hedberg MM, Clos MV, Ratia M, Gonzalez D, Singer W. Improved cognitive function after transcranial, light-emitting diode treatments in chronic, traumatic brain injury: two case reports. Photomed Laser Surg. 2011;29(50):351–8.

42. Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schüssel K, Müller WE. Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol. 2003;66(8):1627–34.

43. Du H, Fan SS. Mitochondrial permeability transition pore in Alzheimer’s disease: cyclophilin D and amyloid beta. Biochem Biophys Acta. 2010;1802(1):199–204.

44. Gibson GE. Interactions of oxidative stress with cellular calcium dynamics and glucose metabolism in Alzheimer’s disease. Free Radic Biol Mol Med. 2002;32(11):1061–70.

45. Calkins MJ, Reddy PH. Amyloid beta impairs mitochondrial anterograde transport and degrades synapases in Alzheimer’s disease neurons. Biochim Biophys Acta. 2011;1812(4):507–13.

46. Aleardi AM, Benard G, Augereau O, Malgat M, Talbot JC, Mazat JP, et al. Gradual alteration of mitochondrial structure and function by beta-amyloids: importance of membrane viscosity changes, energy deprivation, reactive oxygen species production, and cytochrome c release. J Bioenerg Biomembr. 2005;37(4):207–25.

47. Park et al. Alzheimer’s Research & Therapy (2020) 12:62
65. Zhang J, Guo Y, Wang Y, Song L, Zhang R, Du Y. Long-term treadmill exercise attenuates Aβ burdens and astrocyte activation in APP/PS1 mouse model of Alzheimer’s disease. Neurosci Lett. 2018;666:70–7.
66. Kim D, Cho J, Kang H. Protective effect of exercise training against the progression of Alzheimer’s disease in 3xTg-AD mice. Behav Brain Res. 2019;374:12105.
67. Kim D, Cho J, Lee I, Jin Y, Kang H. Exercise attenuates high-fat diet-induced disease progression in 3xTg-AD mice. Med Sci Sports Exerc. 2019;51(4):112105.
68. Intlekofer KA, Cotman CW. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol Dis. 2013;57:47–55.
69. Park HS, Kim CJ, Kwak HB, No MH, Heo JW, Kim TW. Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology. 2018;133:451–61.
70. Um HS, Kang EB, Koo JH, Kim HT, Jin-Lee KEJ, et al. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer’s disease. Neurosci Res. 2017;69(2):161–73.
71. Revilla S, Suñol C, García-Mesa Y, Giménez-Llort L, Sanfeliu C, Cristófol R. Physical exercise improves synaptic dysfunction and recovers the loss of survival factors in 3xTg-AD mouse brain. Neuropharmacology. 2014;81:55–63.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.