Effect of maternal lysine supplementation on the performance of growing rabbits. Preliminary results

Szilvia Metzger, Antonella Dalle Zotte, Edit Biró-Németh, István Radnai & Zsolt Szendrő

To cite this article: Szilvia Metzger, Antonella Dalle Zotte, Edit Biró-Németh, István Radnai & Zsolt Szendrő (2005) Effect of maternal lysine supplementation on the performance of growing rabbits. Preliminary results, Italian Journal of Animal Science, 4:sup3, 39-42, DOI: 10.4081/ijas.2005.3s.39

To link to this article: https://doi.org/10.4081/ijas.2005.3s.39

© 2005 Taylor & Francis

Published online: 02 Mar 2016.

Submit your article to this journal

Article views: 38
COMMUNICATION

Effect of maternal lysine supplementation on the performance of growing rabbits. Preliminary results

Szilvia Metzger¹, Antonella Dalle Zotte², Edit Biró-Németh¹, István Radnai¹, Zsolt Szendrö¹

¹Faculty of Animal Science, University of Kaposvár, Hungary
²Dipartimento di Scienze Animali. Università di Padova, Italy

ABSTRACT

The experiment studied the effect of dietary lysine supplementation to rabbit does on the performance and on meat's protein and lysine content of their offspring. Half of the does (n=43) fed control diet (C; Lys: 0.68%), while the other half a lysine supplemented diet (L; Lys: 0.80%) from 3 days before AI until weaning. After kindling, half of the litters of C does were put under C does, while the other half under L does. The same procedure was followed for offspring of L does. After weaning, rabbits fed the same diet (0.68% Lys). Does' dietary treatment significantly affected the weaning weight, however, only lysine supplementation during suckling age had negative effect (340 g vs 315 g for C and L does, respectively; P<0.01). The kit's milk intake, measured at 3rd and 7th day of age, nursed by L does was significantly lower. Other productive and carcass traits did not differ significantly.

Key words: Rabbits, Lysine, Production, Meat.

Introduction

Researchers have paid attention to the threonine, methionine and lysine requirements of does and growing rabbits as well as on the effects on their performance (Colin and Allain, 1978; Maertens and De Groote, 1988; Taboada et al., 1994, 1996; De Blas et al., 1996). Meat production is determined by the muscle development, which occurs at foetal and early postnatal ages (Ouhayoun and Dalle Zotte, 1993). Thus, increasing lysine supplementation at foetal and suckling ages could affect the carcass traits. The aim of the experiment was to study the effect of early lysine supplementation on the productive and carcass traits as well as on the meat quality of growing rabbits.

Material and methods

At the rabbit farm of the Kaposvár University multiparous does were divided into two groups 3 days before AI. One group (n=43) was fed control (C), while the other one (n=43) consumed lysine supplemented (L) diet (Table 1). Two days before AI previous litters were weaned, thus, none of the does were nursing during pregnancy. At the 31st day of pregnancy (30 C and 40 L does became pregnant) parturition was induced by oxiotocine. All kits were removed from the nests and new litters were formed equalized to 9 kits within doe's group (C or L) according to the kits weight. Then, half of the new litters of C does were put under C (CC), while the other half under L does (CL). The same procedure was followed for the litters of L does (LL and LC). Controlled lactation was per-
formed. At the 17th day nestboxes were opened and all rabbits consumed the same fattening diet (Table 1). At the 3rd, 7th and 14th days after parturition milk production was measured by weighing the litters before and after nursing (Table 2). At 21st day of age kits (n=541) were weighed and weaned. The kits’ mortality is shown in Table 2. The lightest and the heaviest rabbits were excluded, thus rabbits near to the average body weight in each group were used afterwards (n=343). From weaning to slaughter rabbits were fed fattening diet ad libitum (Table 1). Body weight and feed intake were measured weekly. Rabbits were slaughtered at 11 wk of age.

Slaughtering and dissection procedure were done according to Blasco and Ouhayoun (1996). Meat samples of hindleg meat were collected from 15 average weight rabbits per group for meat quality analysis, performed at the Department of Animal Science of Padova. Protein content of hindleg meat was calculated, while its lysine content within protein was analytically determined.

Table 1. Chemical composition and nutritive value of the diets.

Chemical composition	Diet of does	Fattening diet	
	Control (C)	Lysine supplemented (L)	
	Lysine (%)	Lysine (%)	Lysine (%)
Crude protein %	18.1	18.1	16.0
Ether extract "	4.1	4.1	3.0
Crude fibre "	14.5	14.5	16.0
Lysine "	0.68	0.80	0.68
Methionine + Cystine	0.64	0.63	0.53
DE M/1kg	10.68	10.67	10.60

Chemical composition was analytically determined. The crude protein content was determined by Kjeldahl method, the crude fat content by Soxhlet extraction after hydrochloric acid digestion. Amino acid content was determined by gas-chromatography (MacKenzie, 1987).

Table 2. Effect of maternal lysine supplementation on the performance of offspring.

Traits	Lys during pregnancy (P)	Lys during lactation (L)	SE	Significance (P<)				
	C	L	C	L	P	L	P*L	
Number of nursing does								
Milk consumption at 3rd day g/kit	11.2	9.3	0.42	0.021				
Milk consumption at 7th day "	21.2	18.9	0.51	0.026				
Milk consumption at 14th day "	26.8	25.8	0.72	0.507				
Kits’ mortality %	12.4	8.54	8.33	11.4	2.55	0.111	0.304	
Number of rabbits	171	172	167	176	-	-	-	
Body weight at 3 weeks of age g	328	326	340	315	2.68	0.973	0.001	0.291
Body weight at 11 weeks of age "	2560	2534	2571	2525	12.1	0.362	0.072	0.581
Weight gain between 3-11w g/day	39.8	39.3	39.8	39.4	0.20	0.259	0.290	0.773
Feed intake between 3-11w "	115	115	116	115	1.32	0.976	0.744	0.522
Feed conversion between 3-11w "	2.89	2.93	2.89	2.93	0.03	0.442	0.519	0.999
Dressing out percentage %	60.4	60.8	60.6	60.6	0.12	0.092	0.995	0.151

C, L: see Table 1
Data were evaluated by two-way ANOVA using the SPSS 10.0 programme package (SPSS for Windows, 1999). Mortality was evaluated by chi²-test. The contrasts “lysine during pregnancy” and “lysine during lactation” were tested.

Results and conclusions

Dietary treatment of does significantly affected the weaning weight, however, it seems only lysine supplementation during suckling age had negative effect (P=0.001; Table 2). This is proved by the milk intake of kits which was lower in rabbits nursed by L does. However, significant difference was found only at the 3rd and the 7th day of lactation (Table 2). Taboada et al. (1994) fed diets of different lysine supplementation (0.64→0.82%) to rabbit does. They found increasing weaning weight with increasing dietary lysine until 0.76%. No difference was found in kits’ mortality (Table 2).

No significant difference was found in the body weight at 11 wk of age (Table 2), thus rabbits nursed by L does could compensate during the fattening period. The weight gain was similar, and no significant differences were found in feed intake and feed conversion. Lysine supplementation during foetal age had positive influence on dressing out percentage (P=0.092; Table 2), while lysine supplementation during suckling age had no any effect on this trait. Protein content of hindleg meat was somewhat higher in rabbits born or nursed by L does (P<0.10; Figure 1) with a slight improvement on lysine concentration of hindleg meat (ns; Figure 2). The lysine content found in the present work is considerably higher than that reported in literature (6.5-7.0% protein; Moughan et al., 1988). Recent data report values close to those found in the present work (8.7% protein; INRAN, 2000). These discrepancy could derive from the sample (whole body tissue or edible parts for the literature cited and hindleg meat for the present work) or from the different analytical methodology.

In conclusion, it was shown that supplementing the maternal diet with lysine during suckling age (from 0.68 to 0.80%) decreased the kits’ weaning weight. Lysine supplementation during foetal or during suckling age had no effect on growth performance. However, maternal lysine supplementation could have a positive effect on some meat quality traits of the offspring, correlated to the protein content. To prove the positive effect of dietary lysine supplementation at early stage of body development further study have to be carried out.

Research supported by OTKA TS 044743 and by Hungarian – Italian Intergovernmental S & T Cooperation Programme.
REFERENCES

BLASCO, A., OUHAYOUN, J., 1996. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci., 4(2):93-99.

COLIN, M., ALLAIN, D., 1978. Etude du besoin en lysine du lapin en croissance en relation avec la concentration énergétique de l’aliment. Ann. Zootech. 27:17-31.

DE BLAS, C., TABOADA, E., NICODEMUS, N., CAMPOS, R., MÉNDEZ, J., 1996. The response of highly productive rabbits to dietary threonine content for reproduction and growth. In Proc.: 6th World Rabbit Congress, Toulouse, 139-144.

INRAN, 2000. Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione. Web: http://inn.ingrm.it/

MACKENZIE, S.L., 1987. Gas chromatographic analysis of amino acids as the N-Heptafluoributyryl Isobutyl Ester. J. Assoc. Off. Anal. Chem. 70:151-160.

MAERTENS, L., DE GROOTE, G., 1988. The effect of the dietary protein:energy ratio and the lysine content on the breeding results of does. Archiv für Geflugelkunde 52:89-95.

MOUGHAN, P.J., SCHULTZE, W.H., SMITH, W.C., 1988. Amino acid requirements of the growing meat rabbit. 1. The amino acid composition of rabbit whole-body tissue – a theoretical estimate of ideal amino acid balance. Anim. Prod. 47(2):297-301.

OUHAYOUN, J., DALLE ZOTTE, A., 1993. Muscular pH metabolism and related traits in rabbit. A Review. World Rabbit Sci. 1(3):97-108.

SPSS FOR WINDOWS, 1999. Version 10.0, Copyright SPSS INC.

TABOADA, E., MÉNDEZ, J., DE BLAS, C., 1996. The response of highly productive rabbits to dietary sulphur amino acid content for reproduction and growth. Reprod., Nutr. Develop. 36:191-203.

TABOADA, E., MÉNDEZ, J., MATEOS, G.G., DE BLAS, C., 1994. The response of highly productive rabbits to dietary lysine content. Livest. Prod. Sci. 40:329-337.