The CCR2⁺ Macrophage Subset Promotes Pathogenic Angiogenesis for Tumor Vascularization in Fibrotic Livers

Matthias Bartneck,1 Peter L. Schrammen,1 Diana Möckel,2 Olivier Govaere,3 Anke Liepelt,1 Oliver Krenkel,1 Can Ergen,1 Misti Vanette McCain,4 Dirk Eulberg,5 Tom Luedde,1 Christian Trautwein,1 Fabian Kiessling,2 Helen Reeves,4 Twan Lammers,2 and Frank Tacke1

1Department of Medicine III, 2Institute for Experimental Molecular Imaging, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; 3Institute of Cellular Medicine, 4Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom; 5NOXXON Pharma AG, Berlin, Germany

SUMMARY
Hepatocellular carcinoma typically arises in livers affected by long-standing chronic injury, persistent inflammation, and tissue scarring (fibrosis). We herein define in human samples and in a fibrosis–cancer mouse model a specialized population of infiltrating inflammatory cells, termed macrophages, that constitute the tumor environment and provide molecular signals for blood vessel formation to support tumor growth, termed angiogenesis. Inhibiting the macrophage infiltration of fibrotic livers by blocking chemotactic signals may provide a new therapeutic strategy to suppress pathogenic angiogenesis.

BACKGROUND & AIMS: Hepatocellular carcinoma (HCC) typically arises in fibrotic or cirrhotic livers, which are characterized by pathogenic angiogenesis. Myeloid immune cells, specifically tumor-associated macrophages (TAMs), may represent potential novel therapeutic targets in HCC, complementing current ablative or immune therapies. However, the detailed functions of TAM subsets in hepatocarcinogenesis have remained obscure.

METHODS: TAM subsets were analyzed in-depth in human HCC samples and a combined fibrosis–HCC mouse model, established by i.p. injection with diethylnitrosamine after birth and repetitive carbon tetrachloride (CCl₄) treatment for 16 weeks. Based on comprehensively phenotyping TAM subsets (fluorescence-activated cell sorter, transcriptomics) in mice, the function of CCR2⁺ TAM was assessed by a pharmacologic chemokine inhibitor. Angiogenesis was evaluated by contrast-enhanced micro-computed tomography and histology.

RESULTS: We show that human CCR2⁺ TAM accumulate at the highly vascularized HCC border and express the inflammatory marker S100A9, whereas CD163⁺ immune-suppressive TAM accrue in the HCC center. In the fibrosis–cancer mouse model, we identified 3 major hepatic myeloid cell populations with distinct messenger RNA profiles, of which CCR2⁺ TAM particularly showed activated inflammatory and angiogenic pathways. Inhibiting CCR2⁺ TAM infiltration using a pharmacologic chemokine CCL2 antagonist in the fibrosis–HCC model significantly reduced pathogenic vascularization and hepatic blood volume, alongside attenuated tumor volume.

CONCLUSIONS: The HCC microenvironment in human patients and mice is characterized by functionally distinct macrophage populations, of which the CCR2⁺ inflammatory TAM subset has pro-angiogenic properties. Understanding the functional differentiation of myeloid cell subsets in chronically inflamed liver may provide novel opportunities for modulating hepatic angiogenesis.

EC-TAM colocalisation

TAM mRNA profiling

Human HCC

Liver tumors

Regional TAM subtypes

Blood vessel and tumor imaging
Liver cancer is the second leading cause of cancer-related death, with a dramatically increasing incidence in industrialized countries. Hepatocellular carcinoma (HCC) usually occur in patients with cirrhosis, in which persistent inflammation, hepatocyte cell death, and compensatory regeneration, as well as excessive fibrosis contribute to a tumor-promoting microenvironment. Enhanced angiogenesis with the formation of a pathogenic vasculature is a common feature of liver fibrosis and is considered a key component of a tumor-promoting or tumor-sustaining stroma. We previously showed that pathogenic angiogenesis in hepatic fibrosis is driven by liver-infiltrating, monocyte-derived macrophages that are being recruited to chronically injured livers via the C-C motif chemokine receptor 2 (CCR2). It therefore is conceivable that modulating hepatic macrophages could effectively remodel the tumor microenvironment, which may prevent HCC development or may enhance the efficacy of chemotherapy, immune checkpoint inhibition, or anti-angiogenic therapies.

The tumor microenvironment contains multiple myeloid cell types with overall immune-suppressive functions, including neutrophils, dendritic cells, and tumor-associated macrophages (TAMs). Analogous to the classification of Th1 and Th2 T-helper cell subsets, TAMs often are characterized as ‘alternatively activated’ M2 type macrophages because of their expression of CD163, T-cell suppression, and release of anti-inflammatory cytokines. However, experimental models of different types of solid tumors identified heterogeneous subpopulations of TAMs, some of which also express a ‘classically activated’ inflammatory M1 signature. Nonetheless, a high density of TAMs have been related consistently to poor patient prognosis in many types of cancer, including observations in human HCC. In line with this, high expression of the C-C motif chemokine ligand 2 (CCL2), the ligand for CCR2, in the tumor and its surrounding tissue has been linked to poor survival in a large cohort of patients with HCC, indicating that CCR2+ TAM may promote liver cancer. In experimental animal models of HCC, however, macrophages can exert protumoral as well as antitumoral functions during hepatocarcinogenesis. For instance, CCR2+ monocyte-derived macrophages can suppress early tumor formation by clearing senescent hepatocytes, although they may promote hepatocarcinogenesis in established tumors. Similarly, inhibiting CCR2+ macrophage recruitment reduced the tumor burden in models of subcutaneous implantation of hepatoma cells into mice. In agreement, inhibition of CCL2 by a neutralizing antibody also reduced the spontaneous development of liver tumors in microRNA122-deficient mice.

In this study, we set out to dissect the TAM subtypes involved in HCC progression with a particular focus on characterizing the role of CCR2+ monocyte-derived TAMs in the tumor-prone environment of fibrotic livers. We show that CCR2+ TAMs co-localize with inflammatory markers and pathogenic vasculature at the tumor border in human HCC, whereas suppressive CD163+ CCR2+ TAMs are found primarily within tumor nodes. We used a combined mouse model of endogenous liver cancer, which is initiated by diethylnitrosamine (DEN) exposure after birth and accelerated by repetitive injections of carbon tetrachloride (CCL4) causing liver fibrosis. We show that pharmacologic inhibition of the chemokine CCL2 reduced CCR2+ TAMs, alongside significantly reduced pathogenic vascularization, hepatic blood volume, and, subsequently, tumor volume. Detailed characterization of TAM subsets from the fibrosis–cancer model identified a functional heterogeneity among 3 major subsets, with angiogenesis-promoting features in the CCR2+ TAMs, thereby indicating the potential of targeting macrophage subsets to prevent or reduce hepatocarcinogenesis in patients suffering from liver fibrosis.

Results

CCR2+ TAMs Accumulate in the Stroma of Human HCC and Co-localize With Pathogenic Vascularization

The relevance of TAM for the progression of human HCC has been proposed from studies linking the accumulation of stromal macrophages, activated monocytes, and the expression of the chemotactrant CCL2 to a decreased survival rate in patients with HCC. Given the heterogeneity of TAMs in experimental cancer models, we first analyzed TAM subsets in sections of resected human HCC by staining for the chemokine receptor CCR2, the inflammatory marker S100 calcium binding protein A9 (S100A9), the anti-inflammatory marker CD163, and the pan-macrophage marker CD68 (see Table 1 for patient characteristics). CCR2+ TAMs significantly accumulated at the interface between tumor and surrounding tissue, and were found to infiltrate the epithelial tumor tissue (Figure 1A). The CCR2+ cells at the tumor border showed a round monocyte-like morphology, and a substantial fraction of them expressed S100A9, indicating an inflammatory polarization. Fewer CCR2 or S100A9 expressing TAMs were found at the tumor border; MoMF, monocyte-derived macrophage; mRNA, messenger RNA; μ-CT, micro-computed tomography; TAM, tumor-associated macrophage; 3D, 3-dimensional.

Abbreviations used in this paper: CCL2, C-C motif chemokine ligand 2; CCL2i, inhibitor for C-C motif chemokine ligand 2; CCR2, C-C motif chemokine receptor 2; DEN, diethylnitrosamine; HCC, hepatocellular carcinoma; KC, Kupffer cell; MHCII, major histocompatibility complex class II; Mi, myeloid infiltrate; MoMF, monocyte-derived macrophage; mRNA, messenger RNA; μ-CT, micro-computed tomography; TAM, tumor-associated macrophage; 3D, 3-dimensional.

Most current article
© 2019 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Table 1. Characterization of the Study Cohort Comprising Human HCC Patients

Parameters	HCC patients
Number, n	10
Sex, male/female, n	8/2
Age, median (range), y	63 (57–79)
Body mass index, median (range), kg/m²	27.8 (20–35)
Type 2 diabetes, n (%)	3 (30)
Cirrhosis, n (%)	9 (90)
Child score, median (range), points	5 (5–10)
Disease etiology	
Alcoholic liver disease, n (%)	3 (30)
Nonalcoholic steatohepatitis, n (%)	1 (10)
Viral hepatitis (HBV/HCV), n (%)	5 (50)
Genetic or cryptogenic, n (%)	2 (20)
BCLC stage A/B/C, n (%)	A 7 (70)/B 0 (0)/C 3 (30)

HBV, hepatitis B virus; HCV, hepatitis C virus; BCLC, Barcelona Clinic Liver Cancer.

CCL2 Inhibition Reduces Hepatic Blood Volume and Tumor-Supporting Pathogenic Angiogenesis

To study the role of CCR2⁺ TAMs in tumor progression, we used a mouse model for autochthonous liver cancer in fibrotic liver, in which multifocal tumor formation was initiated by DEN and accelerated by fibrosis induction as a result of repetitive injections of CCl₄.²⁴ Inhibition of the CCR2-dependent TAMs was achieved by the RNA aptamer-based inhibitor for CCL2 (CCL2i), mNOX-E36, over 16 weeks, which we have used before in models of chronic liver injury.⁵ The vascularization of the liver (and other organs) was assessed by contrast-enhanced micro-computed tomography (μ-CT)–based methodology. CCL2 inhibition led to a remarkable reduction in the vascular bed of the liver and, consequently, the hepatic blood volume, as clearly visible in 3-dimensional (3D) reconstructions of the in vivo imaging (Figure 3A, Supplementary Videos 1–5 provide 3D reconstructed livers). Quantification of the hepatic blood volume showed that the liver volume remained similar, whereas the hepatic blood volume was reduced significantly by pharmacologic CCL2 inhibition (Figure 3B). These observations were confirmed by high-resolution ex vivo μ-CT scans of tumor-bearing fibrotic livers, by which livers from DEN-CCl₄–treated mice were able to preserve the vascular structure upon CCL2 inhibition (Figure 3C). Measurement of CCL2 serum levels confirmed strong target engagement of the inhibitor by significantly increased CCL2 in serum (Figure 3D), which consists of inactive CCL2/mNOX-E36 complexes.²⁵ In agreement with reduced hepatic blood volume, the staining pattern for CD31⁺ endothelial cells was partially abrogated in CCL2i-treated mice (Figure 3E), corresponding to significantly reduced numbers of hepatic endothelial cells (Figure 3F). Importantly, CCL2 inhibition does not affect proliferation of primary hepatic endothelial cells directly or angiogenic sprouting of blood vessels in vitro,⁵ indicating that CCR2⁺ TAMs promote pathogenic angiogenesis.

Inhibition of CCL2 Affects Tissue Remodeling and Tumor Volume in the Combined Fibrosis–Cancer Model

Macroscopic analysis of livers from mice subjected to the combined fibrosis–HCC model showed that CCL2 inhibition led to a slight reduction in the number of hepatic tumors (Figure 4A). Treatment with CCl₄ alone did not induce tumors, and the inactive control substance (reverse sequence, revmNOX-E36, revCCL2i) did not affect tumor number (Figure 4A). Histologic analysis based on H&E staining showed a less disturbed tissue architecture in the CCL2i-exposed animals compared with DEN and CCl₄ or revCCL2i (Figure 4B). Staining of collagen I (indicative for fibrosis) and collagen IV (strongly expressed in liver tumors) showed reduced extracellular matrix fibers by CCL2 inhibition (Figure 4C), although these differences did not reach statistical significance (Figure 4D). Macroscopic evaluation further showed a tendency toward reduced tumor burden (Figure 4D).

Most interestingly, contrast-enhanced μ-CT–based evaluation of intrahepatic tumors of 2 representative animals showed that CCL2 inhibition led to tumor nodules with central necrosis (Figure 5A, Supplementary Videos 6–10 show representative CT scans through the livers), alongside reduced central tumor perfusion compared with DEN-CCl₄– or revCCL2i–treated mice. This corresponded to an overall reduced volume of radiologically measured intrahepatic tumors (Figure 5B), which was based on 3D reconstructions of conventional 2-dimensional CT scans (transversal, coronal, and sagittal) (representative pictures are shown in Figure 5C). Collectively, these data indicate that CCR2⁺ TAMs remodel liver tissue and their inhibition leads to liver tissue preservation and reduced tumor progression.
Impact of CCL2 Inhibition on TAM Composition in the Fibrosis–Cancer Model

To link the effects of CCL2 inhibition on tissue remodeling, tumor volume, and angiogenesis to specific TAM populations, we analyzed the hepatic immune cell composition in the fibrosis–HCC model in peritumoral tissue. Immunohistochemical staining of the pan-macrophage marker F4/80 showed a clear increase in hepatic macrophages induced by CCl4, DEN-CCl4, and the respective revCCL2i mice compared with healthy livers. In contrast, F4/80+ cells were strongly reduced by CCL2i treatment (Figure 6A and B). When hepatic macrophages were classified as CD45+ Ly6G− cells according to their expression of F4/80 and CD11b by flow cytometry,26 CD11b+ F4/80+ monocyte-derived macrophages (MoMFs) were reduced significantly by CCL2i, whereas CD11b−/− F4/80+ Kupffer cells (KCs) remained unaffected by CCL2 inhibition (Figure 6B). Because different subsets of myeloid cells, including neutrophils, are functionally important in the tumor microenvironment, we applied a different flow-cytometric gating strategy that differentiated CD45+ CD11b+ myeloid cells further by their expression of Gr1 (Ly6C/G) and major histocompatibility complex class II (MHCII).27,28 This analysis identified a myeloid infiltrate

Figure 1. Hepatic tumor-associated macrophages and colocalization with endothelial cells in human liver cancer. Human HCC resection specimens were stained for CCR2, S100A9, CD163 (subsets of macrophages), and CD31 (endothelial cells). (A) Representative sections of human HCC with surrounding noncancerous tissue showing the different localizations of TAMs. Dashed line indicates border between tumor (Tu) and surrounding tissue (ST). (B) Representative example of TAMs in tumor center regions. (C) Statistical evaluation of TAM locations in stromal and cancerous regions. (D) Colocalization of CCR2+ and CD31+ cells at the tumor border. Data represent means ± SD of N = 10. *P < .05, **P < .01, ***P < .001, calculated for intraregion analysis (HCC or stroma) (1-way analysis of variance). ST, surrounding tissue; Tu, tumor.
containing Ly6C⁺ monocytes and Ly6G⁺ neutrophils (R1) as well as 2 populations of TAMs (R2 and R3) (Figure 6C). The Gr1_{low}MHCII_{high} TAM population, herein termed TAM1, contained MoMF and KCs as per a traditional gating strategy and was reduced upon CCL2 inhibition (R2) (Figure 6C). The Gr1_{low}MHCII_{low} TAM population, herein termed TAM2, differed from conventional macrophages in non–tumor-containing livers and was only slightly affected by CCL2 inhibition (R3) (Figure 6C). The fibrosis–tumor model leads to a general induction of monocytes in blood and bone marrow. In contrast, the CCL2i specifically reduced myeloid populations in the liver, but did not affect blood and bone marrow monocytes (Figure 6D).

We further analyzed the myeloid cells directly from the tumor tissue (Figure 6E). Quantifications of the cellular subsets showed that, compared with the peritumoral tissue, the MoMF, TAM1, and TAM2 were reduced, whereas the KCs and myeloid infiltrate (MI) were increased in the tumor regions. However, the changes induced in the cell populations triggered by CCL2i and revCCL2i were similar to the peritumoral tissue (Figure 6F).

Interestingly, already after 6 weeks of treatment with CCl₄, before tumors became visible (Figure 7A), the myeloid cell populations (Figure 7B), but not the lymphoid cells, were increased significantly compared with the 16-week time point (Figure 7C), corroborating the central role of myeloid cells during fibrogenesis and early stages of tumor development.

CCR2⁺ TAMs Show an Inflammatory and Angiogenic Phenotype

To classify the functionality of the TAM subsets in more detail, we subjected highly purified populations of MI, TAM1, and TAM2 after fluorescence-activated cell sorting from livers of the fibrosis–cancer mouse model to Nanostring (Seattle, WA) arrays including 561 immunology-related messenger RNA (mRNA) transcripts. The different myeloid cell subsets significantly differed in their mRNA expression of typical macrophage markers (summarized in Figure 8A). Using unbiased gene set enrichment analysis, the pathways most strongly regulated in the TAM1 subset included mRNAs involved in angiogenesis signaling and monocyte differentiation, whereas the MI (which also express Ccr2⁺) prominently up-regulated mRNAs involved in antigen processing and presentation (Figure 8B). In detail,
the MI significantly up-regulated mRNA associated with the immunologic synapse such as H2-ab1 and Cd83, and highly up-regulated the pleiotropic marker macrophage migration inhibitory factor. Key mRNA up-regulated by TAM1 were inflammatory mediators such as S100a9 and Il1b, but also Vegfa and matrix metalloproteinase 9 (Mmp9), which are associated with initiating angiogenesis in carcinogenesis. TAM2 expressed the Ccl6 chemokine, which is involved in immune cell recruitment, and nuclear factor-κB inhibitor α (NfκBia), which negatively regulates the important nuclear factor-κB pathway that is associated with many inflammatory processes (Figure 8C). These data suggest that each myeloid subset in liver cancer is involved in specific biological processes. Interestingly, the CCL2i had a stronger effect on the TAM1 and TAM2 subsets than on the MI, despite the fact that the MI also express high levels of CCR2, the ligand of CCL2. In particular, it was noted that the CCL2i-induced down-regulation of specific markers including S100a9 and Vegfa were down-regulated by the CCL2i in TAM1, but up-regulated these in the TAM2 subset by the CCL2i (Figure 8D).

Detailed analyses illustrate the strong differences in the expression of mRNA by the different myeloid cells: although the MI and TAM1 highly expressed Ccr2/Ccl2, the TAM2 expressed very low levels of Ccr2/Ccl2. In addition to strong Ccr2 and Cd14 expression, another hallmark of the TAM1 subset was high Clec5a expression. Notably, the TAM2 subset expressed many myeloid markers (Ccr2, Ccl2, Il4r, Cd64) at a very low level (Figure 9A), but showed markers of a mature, rather immune-suppressive phenotype such as...
Mannose receptor-1 (Mrc1) or Arginase-1 (Arg1) (Figure 9A). Venn diagrams reflect summaries on the mRNA regulation in the different myeloid subsets and the effects of the CCL2i (Figure 9B and C). Only very few changes occurred in the MI by the CCL2i, but unexpectedly, some mRNAs in TAM2 also were affected (Tables 2 and 3). However, hierarchical clustering analysis (based on the similarity of mRNA expression) identified the most striking changes induced by CCL2i to the TAM1 populations (Figure 10). Key pathways of TAM2 cells that were affected by CCL2i related to inflammatory pathways (Figure 11). These data indicate that CCL2 inhibition promotes characteristic changes in the TAM2 population, too, which could be a compensatory response of TAM2 caused by reduced TAM1 cells or a direct result of CCL2 inhibition (eg, by reducing the cellular precursors of TAM2 from the TAM1 population).

Figure 4. Effects of CCL2 inhibition on the progression of liver cancer. Mice received vehicle (corn oil) and were left either untreated for 24 weeks, or received 16 weeks of twice-weekly injections of CCl4; received DEN at 14 days of age and were challenged with CCl4 for 16 weeks; were treated with DEN and CCl4 and received CCL2i mNOXE36 3 times/wk subcutaneously; or received DEN, CCl4, and revCCL2i. Mice were killed 48 hours after the last injection of oil or CCl4. (A) Representative macroscopic analysis of the different conditions (valid for all subfigures). (B) H&E staining. (C) Immunofluorescence staining of collagen I and IV. (D) Quantification of the collagen I and IV area fraction and of the cumulative tumor diameter from macroscopy. Data represent means ± SD of N = 6.
Discussion

Tumor-associated macrophages increasingly are recognized as emerging targets to improve anticancer therapies.29 For instance, the reprogramming of TAM toward inflammatory cells via CD40 stimulation and colony-stimulating factor 1 receptor inhibition boosted antitumor immunity in mice.30,31 Such findings support the notion that myeloid targeting interventions have the potential to augment current cytoreductive approaches such as chemotherapy, radiation, or local ablation, as well as to complement immune checkpoint-inhibitor therapies in many solid tumors.30 HCCs arise almost exclusively in chronically inflamed and fibrotic

Figure 5. Effects of CCL2 inhibition on the tumor volume in the fibrosis–cancer model. Mice received DEN at 14 days of age and were challenged with CCl\textsubscript{4} for 16 weeks; treated with DEN and CCl\textsubscript{4} and received CCL2i mNOXE36 3 times/wk subcutaneously; or received DEN, CCL\textsubscript{4}, and revCCL2i. Mice were killed 48 hours after the last injection of oil or CCl\textsubscript{4}. (A) Two-dimensional coronal scans of 2 representative animals for intrahepatic tumor volume quantification, white circles label liver tumor nodules. (B) Quantifications of the tumor volumes calculated from \(\mu\)-CT data. (C) Conventional transversal, coronal, and sagittal CT scans of the liver tumors (representative pictures).
A Healthy liver at 24 weeks

F4/80 (liver)

B CD45^+ Ly6G^+ MoMF

CD45^+ CD11b^+ F4/80^+ area fraction [%]

CD11b

Kupffer cells

C CD45^+ CD11b^+ Gr1 (Ly6G/C)

Gr1 (Ly6G/C)

MHCII

D Blood monocytes

Bone marrow monocytes

E Peritumoral region

Tumoral region

F Tumor MoMF

Tumor Kupffer cells

Tumoral myeloid infiltrate

Tumor TAM-1

Tumor TAM-2
tissue, in which different macrophage subsets exert key roles in sustaining inflammation, promoting disease progression, and provoking tissue remodeling.\(^{17}\) Although myeloid cells in livers with established tumors typically are immune-suppressive and associated with a poor prognosis,\(^{21}\) the characteristic sequence of long-standing chronic liver disease, fibrosis, and, ultimately, HCC development, offers the potential for chemopreventive approaches by modulating hepatic macrophages.\(^{2,7}\) Hepatic macrophages, however, show a remarkable heterogeneity. The classic KCs derive from local precursors, whereas a large fraction of macrophages in inflamed liver are descendants of tissue-infiltrating monocytes of bone marrow origin.\(^{17}\) In the current work, we hypothesized that targeting the monocyte-derived macrophage fraction by inhibiting the chemokine CCL2 in a combined liver fibrosis–cancer model in mice would modify progression of primary liver tumors.

In line with previous reports from patient cohorts with HCC,\(^{14–16}\) we observed CR2\(^+\) macrophages at the interface of tumors and surrounding hepatic tissue in HCC resections. However, these macrophages expressed the inflammatory marker S100A9 rather than CD163, indicating that these TAMs do not belong to the typical suppressive M2-like myeloid population described in human HCC. Strikingly,

Figure 7. Myeloid and lymphoid cells at early stages of cancer development. Mice at 14 days of age received DEN and twice-weekly injections of CCl\(_4\) for 6 weeks. In addition, mice were treated with CCL2i mNOXE36 or revCCL2i 3 times/wk subcutaneously; or received DEN, CCl\(_4\), and revCCL2i. Mice were killed 48 hours after the last injection of oil or CCl\(_4\). (A) Macroscopic analysis of livers, showing no tumors at this time point. (B) Flow cytometric analysis of myeloid and (C) lymphoid liver leukocytes. Data represent means ± SD of N = 6. *P < .05 (1-way analysis of variance).
A

Gr1_{hi}MHCII_{lo}/_{int}

Myeloid infiltrate "MI"

Ccr2^{lo}, Ccl2^{lo}, CD14^{lo},
Ccr5^{lo}, CD64^{lo}, Arg1^{lo},
Clec5a^{lo}

Gr1_{lo}MHCII_{lo}

“TAM2”

Ccr2^{lo}, Ccl2^{lo}, CD14^{lo},
Ccr5^{lo}, IL4^{lo}, Clec5a^{lo},
CD64^{lo}

Gr1_{lo}MHCII_{hi}

“TAM1”

Ccr2^{hi}, Ccl2^{hi}, CD14^{hi},
Clec5a^{hi}, CD64^{int}, Ccr5^{lo}

B

Comparison of MI and TAM1

C

Characterization of myeloid subsets

Gene	MI	TAM1	TAM2
H2-ab1			
S100a9			
Ccl6	*		
Cd83			
Vegfa			
Mrc1			
Mif			
Mmp9			
Nfkbia			

D

Effects of CCL2i on myeloid subsets

Graph showing transcript count differences between MI, TAM1, and TAM2 with and without CCL2i treatment.
these CCR2⁺ TAMs co-localized with newly formed blood vessels, as identified by (pathogenic) CD31 expression. In a combined liver fibrosis–cancer model in mice, pharmacologic inhibition of monocyte recruitment via CCL2 strongly suppressed pathogenic angiogenesis. These data are well in agreement with earlier work showing a critical role of CCR2⁺ monocyte-derived macrophages for angiogenesis in liver fibrosis.⁵

Angiogenesis is considered a hallmark of cancer,³² but also is linked to fibrosis progression in the liver. Tumor-associated macrophages may promote pathogenic angiogenesis in many types of cancer,³³,³⁴ but conflicting data exist on the exact phenotype of angiogenesis-promoting macrophages. In vitro as well as after implantation into mice, M2-polarized macrophages had a higher angiogenic potential than their M1-polarized counterparts.³⁵ In a similar direction, CD163-expressing macrophages were associated with plaque-related angiogenesis in human and murine atherosclerosis,³⁶ and repolarization of TAMs toward an M1-phenotype normalized aberrant blood vessels in a murine melanoma model.³⁷ Our data corroborate that the traditional M1/M2 paradigm is not suitable to apprehend the heterogeneity and functional diversity of macrophages in the environment of a chronically injured liver. By comparing 3 major myeloid cell compartments from tumor-bearing fibrotic livers, based on surface characteristics proposed for TAMs,²⁸ it became apparent that functional pathways related to inflammation, angiogenesis, and immunity were regulated differentially between the 3 subsets. Although the CCR2-dependent TAM1 population activated pathways of angiogenesis as well as specific inflammatory markers (eg, S100a9 or Il1β), their antigen processing and presentation abilities appeared reduced, supporting the notion that TAM1 do not bear strong immunogenic and T-cell regulating properties. On the other hand, the CCR2⁺ TAM2 population showed many characteristics of immune-suppressive macrophages. Consequently, pharmacologic inhibition of CCL2, which mainly suppressed the numbers of CCR2⁺ TAM1 in the fibrosis–cancer model, inhibited pathogenic tumor vascularization in vivo.

Interestingly, the pharmacologic inhibition of CCL2 not only affected CCR2⁺ TAM1, but also induced changes in the CCR2⁻ TAM2 population. For instance, TAM2 up-regulated S100a9, an inflammatory molecule related to NK cell activation in tumors,³⁸ in tumor-bearing mice treated with the CCL2 inhibitor. These data imply a remarkable plasticity of the hepatic myeloid cells, including compensatory activation when suppressing distinct subsets. In studies based on 4T1 tumor cell line implantation in mice, TAM2 were shown to originate from TAM1, which were derived from infiltrating monocytes.²⁸ The close relationship between myeloid cell subsets in the liver and their partial functional redundancy may have major implications for chemopreventive or therapeutic strategies.⁷ As shown in our study, inhibiting CCL2-dependent macrophage accumulation affected fibrosis and angiogenesis in the DEN-CCl₄ model, and lead to reduced tumors sizes. The mouse model of multifocal autochthonous HCC development in a fibrotic liver investigated in our study substantially differed from the simple injection of hepatoma cells, in which CCR2-targeting approaches were reported to convey beneficial effects on tumor burden.¹⁵,¹⁹ It is noteworthy that the CCR2/CCR5 inhibitor cenicriviroc is currently under phase 3 clinical investigation in patients with nonalcoholic steatohepatitis and advanced fibrosis,²⁹ who represent a high-risk group for liver cancer. Based on the observation from our study, the immunologic changes induced by CCL2 inhibition already are present early in the fibrosis–cancer model (after 6 weeks of CCl₄, before tumors are apparent), beneficial effects of CCR2/CCR5 or CCL2 inhibition on tissue remodeling and angiogenesis could be anticipated in these patients. The clear link between CCR2⁺ macrophages and pathogenic tumor vascularization supports the exploration of combination therapies (eg, combining CCR2 or CCL2 inhibition with conventional HCC treatment modalities), and with novel programmed cell death protein 1-directed immunotherapies.

Material and Methods

Human Liver Cancer Specimens

Formalin-fixed, paraffin-embedded liver samples from HCC patients (resection specimens, n = 10; diagnostic needle biopsy specimens, n = 8) were analyzed as approved by the Newcastle and North Tyneside Regional Ethics Committee, the Newcastle Academic Health Partners Bioresource, and the Newcastle upon Tyne National Health Service Foundation Trust Research and Development department (10/H0906/41; Newcastle Academic Health Partners Bioresource project 48; REC 12/NE/0395; R&D 6579; and Human Tissue Act license 12534). Informed consent was obtained from all patients. Detailed information on patient characteristics is shown in Table 1. Sections were stained using antibodies directed against human CCR2 (ab176390; Abcam, Cambridge, UK), S100A9 (ab63818; Abcam), CD163 (760-4437, MRQ-26; Ventana Medical Systems, Inc, Tucson, AZ), CD68 (790-2931; Ventana), and CD31 (760-4378, JC70; Ventana). CCR2 and S100A9 stainings were performed manually using Envision Flex+ reagent.

Figure 8. (See previous page). Analysis of subpopulations of hepatic tumor–associated myeloid cell populations using cell sorting and mRNA profiling. Mice received vehicle (corn oil) and were left either untreated for 24 weeks; received 16 weeks of twice-weekly injections of CCl₄; received DEN at 14 days of age and were challenged with CCl₄ for 16 weeks; were treated with DEN and CCl₄ and received CCL2i mNOXE36 3 times/wk subcutaneously; or received DEN, CCl₄, and revCCL2i. Mice were killed 48 hours after the last injection of oil or CCl₄. (A) Gating strategy for subsets of peritumoral myeloid cells: a M1 composed of monocytes and neutrophils scoring Gr¹-high/MHCII-high/Il1β-high, proinflammatory TAM1 being Gr¹–high/MHCII-high, or anti-inflammatory TAM2, which are Gr¹–high/MHCII–low. (B) Unbiased quantitative analysis of inflammatory mRNA expression of TAMs. (C) Characteristic mRNA expressed by TAM1. (D) Changes in the mRNA profiles of TAM subsets induced by CCL2i. Data represent means ± SD of 2 independent experiments. *P < .05 (1-way analysis of variance), FDR, false discovery rate.
Figure 9. Expression of mRNA by TAM subsets and Venn diagram. Mice at 14 days of age received DEN and twice-weekly injections of CCl4 for 16 weeks. Peritumoral hepatic myeloid cells were isolated and subjected to quantitative analysis of mRNA expression (Nanostring immunology kit). (A) Changes are shown in selected mRNA of the 3 subsets of myeloid infiltrators, defined as Gr1+ MHCIIlow/int, TAM1 as Gr1low MHCIIhigh, and TAM2, which were classified as Gr1low MHCIIlow. The MI was defined as Gr1+ MHCIIlow/int, TAM1 as Gr1low MHCIIhigh, and TAM2 as Gr1low MHCIIlow. Three-fold changes in mean gene expression were used to characterize the subsets. (B) Summary of mRNA expression by the different subsets and (C) of the effects of CCL2i. Data in panel A represent means ± SD. *P < .05, **P < .01, calculated against DEN–CCl4 disease control (1-way analysis of variance).
Table 2. List of mRNA Up-regulated by the TAM2 Subset (Myeloid Cells Scoring Gr1lowMHCIIlow), but No Longer Up-regulated Upon Treatment With the CCL2i Subjected for Biocarta-Based Gene Group Analysis

Gene symbol	Full name
Abcb1a	ATP-binding cassette, subfamily B (MDR/TAP), member 1A
Bt1n1	Butyrophilin-like 1
C2	Complement component 2 (within H-2S)
C4bp	Complement component 4 binding protein
C7	Complement component 7
C8b	Complement component 8, β polypeptide
Ccl26	Chemokine (C-C motif) ligand 26
Ccr6	Chemokine (C-C motif) receptor 6
Cd209g	CD209 antigen
Cd27	CD27 antigen
Cd5	CD5 antigen
Cd53	CD53 antigen
Cd6	CD6 antigen
Cd96	CD96 antigen
Csf3r	Colony stimulating factor 3 receptor (granulocyte)
Cxc11	Chemokine (C-X-C motif) ligand 11
Cxcr1	Chemokine (C-X-C motif) receptor 1
Cxcr2	Chemokine (C-X-C motif) receptor 2
Eomes	Eomesodemin
Fas1	Fas ligand (TNF superfamily, member 6)
Follr4	IZUMO1 receptor, JUNO
Foxp3	Forkhead box P3
Frmpd4	FERM and PDZ domain containing 4
Gp1bb	Glycoprotein Ib, β polypeptide
Gzma	Granzyme A
H2-Q10	Histocompatibility 2, Q region locus 10
Icam4	Intercellular adhesion molecule 4, Landsteiner–Wiener blood group
Icam5	Intercellular adhesion molecule 5, telencephalin
Ilf1m1	Interferon-induced transmembrane protein 1
Ilfna1	Interferon α1
Il17a	Interleukin 17A
Il18r1	Interleukin 18 receptor 1
Il18rap	Interleukin 18 receptor accessory protein
Il1b	Interleukin 1β
Il1r1	Interleukin 1 receptor, type I
Il1r2	Interleukin 1 receptor, type II
Il1rap	Interleukin 1 receptor accessory protein
Il21	Interleukin 21
Il22	Interleukin 22
Il22ra2	Interleukin 22 receptor, α 2
Il23a	Interleukin 23, α subunit p19
Il2a	Interleukin 2 receptor, α chain
Il3	Interleukin 3
Il33	Interleukin 3

NOTE. Mice at 14 days of age received DEN and twice-weekly injections of CCL4 for 16 weeks. In addition, mice were treated with CCL2i mNOXE36 or control inhibitor (revCCL2i) 3 times/wk subcutaneously. Peritumoral hepatic myeloid cells were isolated and subjected to quantitative analysis of mRNA expression (Nanostring immunology kit). ATP, adenosine triphosphate; IZUMO1; Izumo sperm-egg fusion 1; JUNO, folate receptor 4, folate receptor delta or MDR, multidrug resistance; TNF, tumor necrosis factor.

Mice

C57BL/6/J wild-type mice were housed in a specific pathogen-free environment. All experiments were approved by the appropriate authorities according to German legal requirements (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen, Germany). Reporting of animal studies is based on the Animal Research: Reporting of In Vivo Experiments guidelines. All mice were analyzed in a blinded and anonymized fashion.
Gene symbol	Full name
Aire	Autoimmune regulator (autoimmune polyendocrinopathy candidiasis ectodermal dysplasia)
Atm	Ataxia telangiectasia mutated
Blnk	B-cell linker
C1ra	Complement component 1, r subcomponent A
C1s	Complement component 1s
C2	Complement component 2 (within H-2S)
C4bp	Complement component 4 binding protein
C6	Complement component 6
C7	Complement component 7
Cci22	Chemokine (C-C motif) ligand 22
Ccl26	Chemokine (C-C motif) ligand 26
Ccl8	Chemokine (C-C motif) ligand 8
Ccr6	Chemokine (C-C motif) receptor 6
Ccr7	Chemokine (C-C motif) receptor 7
Ccr9	Chemokine (C-C motif) receptor 9
Cct1	C-C chemokine receptor type 11
Cd163	CD163 antigen
Cd19	CD19 antigen
Cd1d1	CD1d1 antigen
Cd209g	CD209g antigen
Cd22	CD22 antigen
Cd247	CD247 antigen
Cd28	CD28 antigen
Cd34	CD34 antigen
Cd3d	CD3 antigen, γ polypeptide
Cd4	CD4 antigen
Cd40lg	CD40 ligand
Cd7	CD7 antigen
Cd83	CD83 antigen
Cd8a	CD8 antigen, α chain
Cd96	CD96 antigen
Cdhn5	Cadherin 5
Cfd	Complement factor D (adipsin)
Csh	Cytokine inducible SH2-containing protein
Ctia4	Cytotoxic T-lymphocyte-associated protein 4
Cxcl1	Chemokine (C-X-C motif) ligand 1
Cxcl12	Chemokine (C-X-C motif) ligand 12
Cxcl15	Chemokine (C-X-C motif) ligand 15
Defb1	Defensin β 1
Eomes	Eomesodermin
Fasl	Fas ligand (TNF superfamily, member 6)
Fcer1a	Fc receptor, IgE, high-affinity I, α polypeptide
Foxp3	Forkhead box P3
Gata3	GATA binding protein 3
Gp1bb	Glycoprotein lb, β polypeptide
Gpr44	Prostaglandin D2 receptor 2
H2-Ob	Histocompatibility 2, O region β locus
H60a	Histocompatibility 60a
Hamp	Hepcidin antimicrobial peptide
Hcst	Hematopoietic cell signal transducer
Icam5	Intercellular adhesion molecule 5, telencephalin
Icos	Inducible T-cell co-stimulator
Iha1	Interferon α 1
Ikr2	IKAROS family zinc finger 2
Ikr3	IKAROS family zinc finger 3
Ikr4	IKAROS family zinc finger 4
Il10	Interleukin 10
Il12a	Interleukin 12a
Il12rb1	Interleukin 12 receptor, β 1
Il12rb2	Interleukin 12 receptor, β 2
Il13	Interleukin 13
Il17a	Interleukin 17A
Il17b	Interleukin 17B
Il17f	Interleukin 17F
Il1a	Interleukin 1 α
Il1r1	Interleukin 1 receptor, type I
Il1r1	Interleukin 1 receptor-like 1
Il21	Interleukin 21
Il23a	Interleukin 23, α subunit p19
Il28a	Interferon λ 2
Il2ra	Interleukin 2 receptor, α chain
Il4	Interleukin 4
Il7r	Interleukin 7 receptor
Ilga2b	Integrin α 2b
Ilga6	Integrin α 6
IlgaX	Integrin α X
Iltn1	Intelectin 1 (galactofuranose binding)
Kir3dl1	Killer cell immunoglobulin-like receptor, 3 domains, long cytoplasmic tail, 1
Kit	Kit oncogene
Kira21	Killer cell lectin-like receptor subfamily A, member 21
Kira5	Killer cell lectin-like receptor, subfamily A, member 5
Kirc1	Killer cell lectin-like receptor subfamily C, member 1
Kirc2	Killer cell lectin-like receptor subfamily C, member 2
Kirk1	Killer cell lectin-like receptor subfamily K, member 1
Lilra5	Leukocyte immunoglobulin-like receptor, subfamily A (with TM domain), member 5
Ltb4r2	Leukotriene B4 receptor 2
Marco	Macrophage receptor with collagenous structure
Masp1	Mannan-binding lectin serine peptidase 1
Masp2	Mannan-binding lectin serine peptidase 2
Ms4a1	Membrane-spanning 4-domains, subfamily A, member 1
Nos2	Nitric oxide synthase 2, inducible
Nox1	NADPH oxidase 1
Nox4	NADPH oxidase 4
Table 3. Continued

Gene symbol	Full name
Pddc1	Programmed cell death 1
Pdgfb	Platelet-derived growth factor, B polypeptide
Pdgfrb	Platelet-derived growth factor receptor, β polypeptide
Pecam1	Platelet/endothelial cell adhesion molecule 1
Pigr	Polymeric immunoglobulin receptor
Pla2g2a	Phospholipase A2, group IIA (platelets, synovial fluid)
Pparg	Peroxisome proliferator activated receptor γ
Prf1	Perforin 1 (pore-forming protein)
Prim1	DNA primase, p49 subunit
Psmb11	Proteasome (prosome, macropain) subunit, β type, 11
Ptk2	PTK2 protein tyrosine kinase 2
Rag1	Recombination activating gene 1
Rorc	RAR-related orphan receptor γ
Runx3	Run-related transcription factor 3
Sele	Selectin, endothelial cell
Sh2d1a	SH2 domain containing 1A
Slamf7	SLAM family member 7
Src	Rous sarcoma oncogene
Tbx21	T-box 21
Tcf7	Transcription factor 7, T-cell specific
Tfr	transferrin receptor
Tgfb2	Transforming growth factor, β
Thy1	Thymus cell antigen 1, θ
Tigit	T-cell immunoreceptor with Ig and ITIM domains
Trl3	Toll-like receptor 3
Tnafap3	Tumor necrosis factor, α-induced protein 3
Tnfrsf13c	Tumor necrosis factor receptor superfamily, member 13c
Tnfrsf17	Tumor necrosis factor receptor superfamily, member 17
Tnfrsf9	Tumor necrosis factor receptor superfamily, member 9
Tnfrsf10	Tumor necrosis factor (ligand) superfamily, member 10
Tnfrsf11	Tumor necrosis factor (ligand) superfamily, member 11
Tnfrsf14	Tumor necrosis factor (ligand) superfamily, member 14
Tnfrsf15	Tumor necrosis factor (ligand) superfamily, member 15
Tnfrsf8	Tumor necrosis factor (ligand) superfamily, member 8
Xcl1	Chemokine (C motif) ligand 1
Xcr1	Chemokine (C motif) receptor 1
Zap70	Z-chain (TCR)-associated protein kinase

NOTE. Mice at 14 days of age received DEN and twice-weekly injections of CCL4 for 16 weeks. In addition, mice were treated with CCL2i mNOX-E36 or control inhibitor (revCCL2i) 3 times/wk subcutaneously. Peritumoral hepatic myeloid cells were isolated and subjected to quantitative analysis of mRNA expression (Nanostring immunology kit). GATA, glutaminyl-tRNA synthase; ITIM, immunoreceptor tyrosine-based inhibition motif; NADPH, nicotinamide adenine dinucleotide phosphate; PTK2, protein tyrosine kinase 2; RAR, retinoic acid receptor; SH2, Src Homology 2; SLAM, signaling lymphocytic activation molecule; TCR, T-cell receptor; TM, transmembrane; TNF, tumor necrosis factor.

Pharmacologic CCL2 Inhibition

The RNA-aptamer (Spiegelmer) mNOX-E36 (abbreviated as CCL2i in this study), which specifically binds to murine CCL2, was kindly provided by NOXXON Pharma AG (Berlin, Germany). This 50-nucleotide L-RNA oligonucleotide (5'-GGCGACAUUGUUGGCAUGAGGCGAGGCCCCUUUGAUGAAUCGG CGCCA-3') inhibits the infiltration of CCR2-dependent monocytes and macrophages, as shown earlier. A control molecule with reverse nucleotide sequence was used as inactive control Spiegelmer, termed rev-mNOX-E36 (revCCL2i). The oligonucleotide part of both, the active drug and the control molecule, is linked covalently with 40-kilodalton polyethylene glycol at the 3'-end to prevent rapid renal elimination. The compounds were injected subcutaneously at a dose of 20 mg/kg body weight (diluted in 5% glucose solution) 3 times/wk. All mNOX-E36 (CCL2i) and revmNOX-E36 (revCCL2i) doses and concentrations refer to the oligonucleotide part of the molecules.

Liver Fibrosis–Cancer Model

Multifocal liver cancer development was induced by the carcinogen DEN, which was administered intraperitoneally into mice 14 days postpartum at 25 mg/kg body weight. Starting at the age of 8 weeks (6 weeks after DEN exposure), chronic liver injury was induced using repetitive intraperitoneal CCL4 (Merck, Darmstadt, Germany) applications twice weekly for 16 weeks. CCL4 (Merck) was mixed with corn oil at a dose of 0.6 mL/kg body weight. Mice were killed 48 hours after the last injection of CCL4 or corn oil (vehicle). CCL2 was inhibited using the CCL2i (or revCCL2i) over the whole 16-week period.

μ-CT

Mice were anesthetized with 1.5% isoflurane in oxygen-enriched air and received 100 μL eXIA160XL intravenously (Binitio Biomedical, Ottawa, Ontario, Canada). Animals were scanned via a dual-energy scan at 41 and 65 kV (at 0.5 and 1 mA), obtaining 2880 projections sized 1032 × 1024 over 6 minutes. A Feldkamp-type reconstruction algorithm was applied with a voxel size of 35 × 35 × 35 μm³, including ring artefact correction. Visualization of reconstructed data was performed with Imalytics (Aachen, NRW, Germany) Preclinical software. The relative blood volume was determined as published earlier, and liver and tumor volumes were quantified on cross-sectional images in transversal, coronal, and sagittal planes.

Ex Vivo μ-CT

Mice were perfused intracardially with Microfil (Flow Tech, Carver, MA), a lead-containing silicone rubber CT contrast agent for high-resolution 3D investigation of the microarchitecture of blood vessels in the liver. Microfil replaces the blood volume and polymerizes 20 minutes after application, resulting in vascular casting. The liver was excised, formalin-fixed, and scanned using a high-resolution SkyScan 1272 μ-CT system (SkyScan, Kontich, Belgium) as published earlier. After 3D volume rendering of reconstructed high-resolution μ-CT data sets, 3D
micromorphology of vessels were analyzed semi-
automatically, using Imalytics Preclinical software.41

Cell Isolation and Sorting

Single-cell suspensions of livers were generated by
mincing the organ into small pieces less than 1 mm and 30
minutes of digestion with collagenase type IV (Worthington,
Lakewood, NJ). Right ventricle blood was subjected to red
blood cell lysis using Pharm Lyse (Becton Dickinson,
Franklin Lakes, NJ), filtered using a 70-
m mesh, and
stained for flow cytometry using CD45, CD11b, Ly6G, Gr1,
F4/80, and MHCII (all BD Biosciences). Count beads (BD)
were added to single-cell suspensions to determine absolute
cell numbers in different organs.

**Gene Expression Profiling of Tumor-Associated
Macrophage Subsets**

Leukocytes were isolated from tumors as described
earlier, and CD11b− leukocytes were purified using
magnetic-assisted cell sorting (Miltenyi Biotec, Bergisch,
Gladbach, Germany). To further increase purity for sorting
using a BD Aria-II, lineage staining was performed using a
collection of common lymphoid cells (CD4, CD8, B220, and
NK1.1; all BD Biosciences). In each NanoString assay, 20,000
sorted cells were analyzed. Housekeeping mRNA was used
to normalize data and to generate transcript counts. Dif-
ferential gene expression was calculated using the R pack-
age DESeq2. A log2 fold change threshold ≥2 and an
adjusted P value of ≤.01 for comparison of TAM populations

![Figure 10. Hierarchical clustering analysis of gene expression of tumor-associated macrophages.](image-url)
or a P value ≤ 0.05 for comparison of CCL2i-treated against untreated TAM was used. Gene set enrichment analysis was performed using the Cytoscape plug-in BinGO, and the plugin Enrichment Map was used ($P < 0.05$, false discovery rate Q-value < 0.25, and a similarity with a Jaccard coefficient cut-off value of 0.5). Functional annotations of were performed using Gene Ontology and Biocarta from the Database for Annotation, Visualization and Integrated Discovery database. GO and Biocarta pathway terms then were analyzed for their frequency in the 2 gene sets. Three-fold expression was used for the Venn diagrams and hierarchical clustering analysis was based on the mean value of all experiments.

Statistical Analysis

All data are presented as means ± SD. Differences between groups were assessed using the appropriate statistical tests (GraphPad Prism 5, LaJolla, CA).

Figure 11. Analysis of the effects of CCL2 inhibition on the mRNA expression of anti-inflammatory hepatic tumor–associated macrophages. Mice at 14 days of age received DEN and twice-weekly injections of CCl4 for 16 weeks. In addition, mice were treated with CCL2i mNOXE36 or control inhibitor (revCCL2i) 3 times/wk subcutaneously. Peritumoral hepatic myeloid cells were isolated and subjected to quantitative analysis of mRNA expression (Nanostring immunology kit). (A) Unbiased clustered gene enrichment maps for analysis of the effects of CCL2 inhibition on the Gr1^{low}MHCII^{low} TAM2. (B) Changes in selected mRNA in the TAM2 subset.

References

1. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G. Hepatocellular carcinoma. Nat Rev Dis Primers 2016;2:16018.
2. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018;19:222–232.
3. Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int 2011;31:146–162.
4. Zhang DY, Friedman SL. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 2012;56:769–775.
5. Ehling J, Bartneck M, Wei X, Gremse F, Fech V, Mockel D, Baek C, Hittatiya K, Eulberg D, Luedde T, Kiessling F, Trautwein C, Lammers T, Tack F. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 2014;63:1960–1971.
6. Afik R, Zigmond E, Vugman M, Klepfish M, Shimshoni E, Pasmanik-Chor M, Shenoy A, Bassat E, Halpern Z, Geiger T, Sagi I, Varol C. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J Exp Med 2016;213:2315–2331.

7. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017;66:1300–1312.

8. Gerbes A, Zoulim F, Tilg H, Dufour JF, Bruix J, Paradis V, Salem R, Peck-Radosavljevic M, Galle PR, Greten TF, Nault JC, Avila MA. Gut roundtable meeting paper: selected recent advances in hepatocellular carcinoma. Gut 2018;67:380–388.

9. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008;8:618–631.

10. Schupp J, Krebs FK, Zimmer N, Trzeciak E, Schuppan D, Tuuttenberg A. Targeting myeloid cells in the tumor sustaining microenvironment. Cell Immunol 2017, Epub ahead of print.

11. Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013;144:512–527.

12. Bolli E, Movahedi K, Laoui D, Van Ginderachter JA. Novel insights in the regulation and function of macrophages in the tumor microenvironment. Curr Opin Oncol 2017;29:55–61.

13. Takeya M, Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe? Pathol Int 2016;66:491–505.

14. Ding T, Xu J, Wang F, Shi M, Zhang Y, Li SP, Zheng L. High tumor-infiltrating macrophage density predicts poor prognosis in patients with primary hepatocellular carcinoma after resection. Hum Pathol 2009;40:381–389.

15. Kuan DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, Zheng L. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med 2009;206:1327–1337.

16. Li X, Yao W, Yuan Y, Chen P, Li B, Li J, Chu R, Song H, Xie D, Jiang X, Wang H. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 2017;66:157–167.

17. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017;17:306–321.

18. Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverez J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 2016;30:533–547.

19. Yao W, Ba Q, Li X, Li H, Zhang S, Yuan Y, Wang F, Duan X, Li J, Zhang W, Wang H. A natural CCR2 antagonist relieves tumor-associated macrophage-mediated immunosuppression to produce a therapeutic effect for liver cancer. EBiomedicine 2017;22:58–67.

20. Teng KY, Han J, Zhang X, Hsu SH, He S, Wani NA, Barajas JM, Snyder LA, Frankel WL, Caligiuri MA, Jacob ST, Yu J, Ghoshal K. Blocking the CCL2-CCR2 axis using CCL2-neutralizing antibody is an effective therapy for hepatocellular cancer in a mouse model. Mol Cancer Ther 2017;16:312–322.

21. Wan S, Kuo N, Kryczek I, Zou W, Welling TH. Myeloid cells in hepatocellular carcinoma. Hepatology 2015;62:1304–1312.

22. Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepert A, Puengel T, Heymann F, Kalthoff S, Ellerbvre E, Eulberg D, Luedde T, Marx G, Strassburg CP, Roskams T, Trautwein C, Tacke F. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 2016;64:1667–1682.

23. Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, Ng KT, Forbes SJ, Guan XY, Poon RT, Fan ST, Man K. Antenatally activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 2015;62:607–616.

24. Papito DH, Mencin A, Gawk GY, Pradere JP, Jang MK, Mederacke I, Caviglia JM, Khabianian H, Adeyemi A, Battler R, Lefkowitch JH, Bower M, Friedman R, Sartor RB, Rabdan R, Schwabe RF. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012;21:504–516.

25. Kulkarni O, Eulberg D, Selve N, Zollner S, Allam R, Pawar RD, Pfieffer S, Segerer S, Klussmann S, Anders HJ. Anti-CCL2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Faslpr mice. J Pharmacol Exp Ther 2009;328:371–377.

26. Bartneck M, Fech V, Ehling J, Govaere O, Warzeca KT, Hittatiya K, Vucur M, Gautheron J, Luedde T, Trautwein C, Lammers T, Roskams T, Jahnendehnt W, Tacke F. Histidine-rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology 2016;63:1310–1324.

27. Georgoudaki AM, Prokopec KE, Boura VF, Hellqvist E, Sohn S, Ostling J, Dahan R, Harris RA, Rantalainen M, Klevebring D, Sund M, Brage SE, Fuxe J, Rolny C, Li F, Ravetch JV, Karlsson MC. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep 2016;15:2000–2011.

28. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In’t Veld P, De Baetselier P, Van Ginderachter JA. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research 2010;70:5728–5739.

29. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumor-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14:399–416.

30. Hoves S, Ooi CH, Wolter C, Sade H, Bissinger S, Schmittnaegel M, Ast O, Giusti AM, Wartha K, Runza V, Xu W, Kienast Y, Cannarile MA, Levitsky H, Romagnoli S, De Palma M, Ruttinger D, Ries CH. Rapid activation of tumor-associated macrophages boosts preexisting tumor immunity. J Exp Med 2018;215:859–876.
31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–674.

32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. J Exp Med 2018;215:877–893.

33. Abou-Elkacem L, Arns S, Brix G, Gremse F, Zopf D, Kiessling F, Lederle W. Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther 2013;12:1322–1331.

34. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity 2014;41:49–61.

35. Jetten N, Verbruggen S, Gijbels MJ, Post MJ, De Winther MP, Donners MM. Anti-inflammatory M2, but not pro-inflammatory M1 macrophages promote angiogenesis in vivo. Angiogenesis 2014;17:109–118.

36. Guo L, Akahori H, Harari E, Smith SL, Polavarapu R, Karmali V, Otuska F, Gannon RL, Braumann RE, Dickinson MH, Gupta A, Jenkins AL, Lipinski MJ, Kim J, Chhour P, de Vries PS, Jinnouchi H, Kutys R, Mori H, Kutyna MD, Torii S, Sakamoto A, Choi CU, Cheng Q, Grove ML, Sawan MA, Zhang Y, Cao Y, Kolodgie FD, Cormode DP, Arking DE, Boerwinkle E, Morrison AC, Erdmann J, Sotoodehnia N, Virmani R, Finn AV. CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest 2018;128:1106–1124.

37. Jarosz-Biej M, Kaminska N, Matuszczak S, Cichon T, Pamula-Pilat J, Czaplak J, Smolarczyk R, Skwarzyńska D, Kulik K, Szała S. M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 2018;13:e0191012.

38. Narumi K, Miyakawa R, Ueda R, Hashimoto T, Yoshida T, Aoki K. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J Immunol 2015;194:5548.

39. Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin Investig Drugs 2018;27:301–311.

40. Schneider C, Teufel A, Yevas T, Staib F, Hohmeyer A, Walenda G, Zimmermann HW, Vucur M, Huss S, Gassler N, Wasmuth HE, Lira SA, Zender L, Luedde T, Trautwein C, Tacke F. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut 2012;61:1733–1743.

41. Gremse F, Stark M, Ehling J, Menzel JR, Lammers T, Kiessling F. Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics 2016;6:328–341.

42. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005;21:3448–3449.

43. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57.