研究の概要（和文）：培養粘膜上皮移植は難治性眼疾患に対する新しい再生医療として開発を行ってきた。角膜輪郭部や口腔粘膜上皮より幹細胞を抽出し、細胞分化を誘導することにより移植可能な重層上皮シートを作成でき治療に応用できる。両眼性疾患に対しては自家の眼表面上皮以外の口腔粘膜や鼻腔粘膜に注目することで免疫反応を惹起させずに眼表面機能を再構築することが可能となる。異所性に生着した細胞は眼組織特異的な遺伝子は誘導されずリネージュに基づく細胞特性を維持しながら分化する。眼表面における涙液・角膜実質細胞・角膜神経などの影響を受けながら角膜組織の代用となる組織構築を再生することができ、難治性眼表面疾患への新しい治療展開が可能となった。

研究の学術的意义や社会的意義
眼表面は視機能維持に重要な役割を果たしており、恒常性と機能は表面を構築する角結膜上皮により維持されている。さまざまな原因によるこれらの構築する上皮幹細胞が消失する角膜上皮幹細胞障害症では両眼性に角膜上皮が消失し、高度の視機能障害を来たす。これまでの移植治療では拒絶反応や合併症により十分な治療成果が得られず、培養粘膜上皮移植は再生医療を応用することで自家の角組織や他の粘膜組織から拒絶されない移植医療が可能となり難治性疾患の新しい治療法としての道を拓いている。本研究では眼表面に移植生着した上皮特性や維持メカニズムを解析することで眼表面組織の理解と新しい治療療法の開発に貢献する知見が得られた。

研究分野：眼科学

キーワード：角膜上皮 粘膜上皮 眼表面再建術 再生医療 培養口腔粘膜上皮移植 角膜幹細胞 難治性眼表面疾患 角膜移植
様式 C-19, F-19-1, Z-19（共通）
1. 研究開始当初の背景

眼表面は角膜および結膜の二つの異なる非角化性重層扁平上皮により構成され、その表面は涙液により被覆され安定した屈折機能と粘膜バリア機能を維持している。この役割を果たすためには、他の上皮系組織や粘膜組織と異なるさまざまな眼表面特有の細胞上皮特性と組織構築が必要となる。また角膜上皮の幹細胞は幹部基底部に存在し、結膜上皮幹細胞は結合膜や眼瞼部に広く存在することが知られ、継続的な細胞供給により組織の恒常性が維持されている。また角膜組織が視機能の役割を果たすための特異性として、透明性と無血管組織が維持される必要がある。眼表面はファーストディフェンスとして粘膜バリアとしても重要であり、その中でも上皮表面のレセプター因子や結膜杯細胞からのムチン関連因子が眼表面を感染などの攻撃因子から防御している。

重症の瘢痕性角結膜疾患である乾燥・化学外傷や乾燥性疾患であるスティープス・ジョンソン症候群や乾燥性大疱瘻は、眼科疾患の中でも極めて予後不良な失明に至る難治性疾患である。これらの疾患群では角結膜上皮幹細胞が消失し、さらに結膜上皮幹細胞の減少や結膜下組織の異常増殖による瘢痕化が病態として存在する。角膜上皮幹細胞が疲弊すると角膜表面は結膜上皮で被覆され高度の血管新生と角膜混濁を生じる。この病態の外科的治療としては、同種ドナーからの角膜上皮幹細胞を直接的に組織として移植する角膜移植方法や角膜上皮形成術が行われてきた。しかし、眼表面環境での免疫反応は全角膜移植術などに比較して強く、同種移植での角膜上皮移植は高率に拒絶反応を生じるため長期にわたり免疫抑制が必要となる。またドライアイや慢性炎症の環境下においても遷延性上皮欠損や角膜潰瘍などの合併症が問題となる。これらの問題点を克服する新規治療法として培養粘膜上皮移植を我々は確立し、画期的な再生医療として臨床治療に応用している。本研究では、培養角膜上皮移植や培養口腔粘膜上皮移植の問題点を改良し、多種粘膜上皮の応用の可能性や眼表面に異所性に着生した上皮特性について解析し、さらに新らしい新規治療の開発へと発展させている。

2. 研究の目的

本研究では難治性眼表面疾患の治療の克服のために再生医療を応用した新しい培養粘膜上皮移植の開発と再生後の眼表面を解析することでより有効性の高い統合的な治療法の確立を目指している。特に再生後の生着上皮における細胞特性やその制御メカニズムを解析することで体性組織特異的幹細胞を代用として用いる有効性や問題点が明らかになると考えている。

異所性上皮幹細胞からの増殖分化機能の解明は再生医療に使用可能な上皮シート開発に重要であり、臨床的には安全性の高い培養システムが必要とされる。本研究ではフィーダー細胞や羊膜基質を用いた培養方法を基盤により安全性の高いゼノフリーシステムの開発と臨床応用を目的としている。また異所性上皮の分化状態や血管新生などの組織変化をとらえ、眼表面での制御機構を解明していく。さらに生着上皮の代償上皮としての役割として一致した分化制御や血管新生抑制方法を開発しより効果的な治療法の開発を最終目的としている。

3. 研究の方法

（1）粘膜上皮培養系の改良とゼノフリーによる新規培養法の確立
すでに開発してきた サイ・フィーダー細胞と羊膜基質を用いた培養角膜上皮システムを ワイヤーメッシュあるいは固体培養皿への改良と マルチオラバス培養法の改良として改良を行った。培養組成の調整により細胞増殖能の改良および分化誘導条件を設定した。

（2）角結膜上皮および粘膜上皮特性の解析比較
培養上皮はオリジナルの および上皮特性と免疫組織学的な形態比較および チップを使用した網羅的な遺伝子解析を行った。増殖能は サイや サイなどの幹細胞マーカーによる免疫学的検索と を用いて細胞形態と増殖能測定を行った。

（3）異所性生着上皮の形態解析
異所性上皮特性は形態的には共焦点顕微鏡と細隙顕微鏡により観察し、組織学的な検討を免疫染色や電子顕微鏡により観察した。共焦点顕微鏡では細胞形態、細胞密度、細胞重層化、さらに神経再生を観察評価した。

（4）異所性生着上皮による新生血管誘導と抑制方法の検索
生着後組織の血管新生および抑制効果の評価は写真撮影を用いた。血管抑制効果は抗 サイ抗体を中心とした生物製剤を用い、 サイおよび サイでの効果を血管および上皮増殖の測定と関連因子の定量により実施した。

4. 研究成果

（1）培養粘膜上皮移植におけるゼノフリーによる新規培養法の確立。
初期の我々の培養方法では上皮増殖と分化を効率的に行うためにフィーダー細胞との共培養系による上皮サポートと上皮基質として羊膜を採用してきた。また、培養液としてはコラーゲンの添加や患者血清を用いてきたが、より安全性が高くなり、均一化した培養方法が求められている。本研究では血清・フィーダー細胞・各種の促進因子・抑制因子による次世代の培養口腔粘膜上皮シート移植術術前・術中・術後の細胞脳死能や細胞特性について検討を行った。

培養方法の改良には従来の培養方法を基盤とした培養液に血清・フィーダー細胞・各種の促進因子・抑制因子を添加することで細胞の増殖能を高め、フィーダー細胞の状態が良好で、有効性の高い口腔粘膜上皮シートの作成が可能となる。形態的には従来の方法と同様の角巻組織構築に類似したコラーゲンの重層化した移植上皮シートが作成された。コレニーオーゼイで従来法と同様の細胞増殖能と上皮状細胞の含有維持が確認できた。臨床的に病的硬組織像では正常で高い増殖機能を有するため、コレニーオーゼイ形成効果で改良された方法が示されるとともに、表面細胞の増殖能が高まるため、多細胞品の比較においても有意に高い培養細胞数が可能となった。組織構築においても着生を左右するデズテーマを主体とした接着構造が子細胞増殖も観察された。免疫組織学的に観察においても、インドトラコンプ(hexagonal)側板であるコラーゲンや接着因子であるコラーゲンの発現が観察された。基底膜構成成分であるコラーゲンや繊維芽細胞特異性であるコラーゲンや角巻細胞特異性であるコラーゲンの発現が観察され、亜観角細胞の含有率の高い細胞シート作成が可能となった。さらに遺伝子を用いたriboチップによるGeneの遺伝子解析では従来の方法で得られた口腔粘膜上皮にこととなる遺伝子発現パターンが観察され、上皮上皮と口腔粘膜上皮の間質型として観察された。この新規培養方法の確立により今後の再生医療においてより安全な治療が可能となり現在の臨床治療に応用している。

（2）培養粘膜上皮および異所性に着生上皮の細胞特性比較

培養過程においてはオリアルの細胞特性に加え、さまざまな細胞発現誘導が観察される。ムチン遺伝子の変異のある上皮類似上皮は本来角巻特異的なムチンであるコンサートの遺伝子および血清白発現は観察されないが、培養過程において上皮上皮における培養誘導が観察される。この結果は培養粘膜シート環境においては細胞特性が口腔粘膜から角巻上皮分化変化が可能であることを示唆するのであろう。しかし移植後変異においてはその発現は消失し、オリアルの細胞特性に近い状態が観察される。この分化の一貫性はカルテラ発見では培養過程から着生上皮に共通して維持されており、細胞リネージを超えての細胞分化は我々の培養方法では誘導されないことが確認された。細胞特性としてはオリアルの発現パターンと同様にコラーゲンやコラーゲン発現が観察されたが、角巻上皮に特異的なコラーゲンは誘導されず、また表皮上皮に必須であるホモポックス遺伝子である9pの遺伝子は誘導されず、観察上皮分化の転換を示唆する因子は観察されなかった。この事実は今後細胞リネージを超えて細胞分化誘導させていくには角巻特異的なCoアラビア遺伝子などの上皮を導入することでダイレクトリプログラミングを誘導する方法へ発展させる必要があることが示唆された。

（3）異所性口腔粘膜上皮の幹細胞分布および血管誘導

培養粘膜上皮移植では長期着生後の上皮を回収および解析することで表細胞に異所性に着生した上皮特異性を解析できた。その結果、従来培養角巻上皮移植では非拒絶系では角巻特異的なカルテラ発現パターンをもつ上皮が長期に生存していることが確認され、我々の方法を用いることで長期的な上皮増殖が可能であるということが確認できた。また培養口腔粘膜上皮移植後ではコラーゲンの増殖細胞が角巻中央から広く基底層に分布することが確認され、細胞と異なるニッチ条件でコラーゲン細胞の特性が維持されていることが観察できた。再生医療での上皮シート移植でもニッチ条件が果たすとでも着生的に十分な増殖活性を維持した表細胞再建が可能ですことが示唆された。また表細胞に着生した口腔粘膜上皮は表層血管新生を輪部から誘導している。これの現象は術後早期から約2か月後の再建期間に特に著明に見られている。表細胞の表層血管は縦孔線におよぶことを視機能障害の原因になることが確認され、この血管新生には極度の差があり上皮特異性のみならず液中に含まれている新たなる血管新生関連のサイトカインが強く影響していることが診断された。この現象は抗VGEF点眼により抑制が可能であり再生医療による上皮面再建後の口腔粘膜組織の再構築という治療概念へと発展できる可能性が示唆された。また口腔粘膜上皮には血管新生抑制因子である一方向の発現が認められないと表層血管の存在の原因であることを捉ええたが一方向の発現されている角膜あるいはニッチ条件で口腔粘膜上皮の再生医療を抑制させることが確認できた。その後者より今後の再生医療では抗血管新生因子の添加および抑制基質を採用することでより現在の植え込み治療を改良させていく可能性が示唆された。

（4）表細胞着生上皮の長期着生着上皮置換

本研究では表細胞異所的に移植着生着した上皮は長期経過において表細胞を変化させていく
くことが確認できました。移植早期の血管誘導後には上皮接着が安定し眼表面環境に対応した
上皮分化によりさらに安定化が可能となります。そのため表皮壊死がみられたに当たる細胞
が観察されていることが示唆されました。特に上皮重層化と表層上皮の
まわりで細胞が重層化していると推測されます。すなわち十分な浸透被覆状態では重層
化は角膜上皮に類似して4 - 6層に維持され表層上皮の分化状態を維持されて
います。しかし刺激のメカニズムの解明は今後の研究課題であり異
所着生上皮の分化制御機転につながる課題と考えられます。角膜上皮とことなり異所性上
皮を用いる事実臨床的には病的環境での長期生着やパリア機能の強化を生み出しおり、従
来での移植法では獲得できない再生医療特有のメリットが観察することができました。

（5）眼表面再建後の神経再生と細胞分化制御
生着環境により口腔粘膜上皮は多様性をもって細胞増殖分化誘導が生じます。この制御機構
は上皮恒常性の維持機構のさまざまな因子が関与していると推測できます。本研究では特に角
膜神経の関与について研究を行いましたが、再建角膜では表層基質として羊膜を用いるため本
来の環境とことなる神経障害状態となっていることが角膜知覚変動と共焦点顕微鏡検査により
解明できました。口腔粘膜からの神経誘導因子の発現は観察されず、羊膜基質を通した神経再
生も観察されませんでした。その結果、本来の角膜上皮に存在する
まわりで細胞が重層化していると推測されます。角膜上皮の幹細胞特性の維持やニッケ形成の変化に関
する研究が必要と考えられます。

（6）代償的再生医療の効果と新規培養粘膜上皮移植の探索
眼表面は角膜および粘膜上皮の2種類で構築維持されています。両眼球性疾患治療においては眼
外組織による代償性再生医療が治療選択の一つになっています。本研究では眼外粘膜としてアクセ
ス面や増殖能を考慮して口腔粘膜上皮および鼻腔粘膜上皮に注目して培養方法の確立と生物学
的特性の検索を実施しました。鼻腔粘膜上皮はマクロで培養分化させることが通常分
化誘導の困難である杯細胞を分化誘導することが可能となりました。杯細胞の機能解析では結
膜杯細胞との類似性が高く、分泌型ムチンである
まわりで細胞が重層化していると推測されます。角膜上皮の幹細胞特性の維持やニッケ形成の変化に関
する研究が必要と考えられます。このことは杯細胞疫症であるさまざまな眼表面疾患への応用が可
能となりムチン関連物質による粘膜パリアの再構築につながる結果と考えています。さらに分
泌物質の解析や着生後の杯細胞分化の維持機構の解明が重要と考えています。

（7）まとめ
難治性眼表面疾患の治療開発として再生医療にはさまざまな有効性が期待されています。現在の
アプローチとして我々が行ってきた組織特異的幹細胞を用いた上皮シート移植と
まわりで細胞が重層化していると推測されます。角膜上皮幹細胞での治療は可能性であり、より複合性の粘膜組織を用いた再生医療への発展が不
可欠となります。しかし単に培養系での増殖分化誘導だけでなく、異所性生着環境における細
胞の統合的な制御機構や分化機構が重要な課題となっています。本研究では細胞自体の
という分化増殖機転と角膜神経や浸透因子を介した統合的な制御機構へと研究を進めていま
す。国際的にも培養口腔粘膜上皮移植は画期的な新規治療法として注目が高く、臨床効果のみ
ならずより細胞生物学的な観点も高く評価され今後の難治性疾患の克服につながる成績
と考えています。
5．主な発表論文等
（雑誌論文） 計4件（うち査読付論文 3件 / うち国際共著 2件 / うちオープンアクセス 2件）

1．著者名	2．論文標題	3．雑誌名	4．巻	5．発行年	6．最初と最後の頁	検索リンク	検索の有無	オープンアクセス	
	Topical ganciclovir treatment post-Descemet's stripping automated endothelial keratoplasty for patients with bullous keratopathy induced by cytomegalovirus.	Br J Ophthalmol	2020	1293-1297		－	有	オープンアクセスではない、又はオープンアクセスが困難	
	Safety of retrocorneal plaque aspiration for managing fungal keratitis.	Jpn J Ophthalmol.	2020	228-233		－	有	オープンアクセスではない、又はオープンアクセスが困難	
	Risk Factors for Corneal Endothelial Cell Loss in Patients with Pseudoexfoliation Syndrome	Sci Rep.	2020	7260			－	有	オープンアクセスではない、又はオープンアクセスが困難
	Five-year follow-up outcomes after Descemet's stripping automated endothelial keratoplasty: a retrospective study.	BMJ Open Ophthalmol	2020	354			－	有	オープンアクセスではない、又はオープンアクセスが困難
							－	有	オープンアクセスではない、又はオープンアクセスが困難
							－	有	オープンアクセスではない、又はオープンアクセスが困難
巻	発行年	最初と最後の頁	雑誌名	オープンアクセス					
----	--------	----------------	--------	-----------------					
1	2018	2017-2018	眼科学年	有					
2	2018	2017-2018	眼科学年	有					
3	2018	2017-2018	眼科学年	有					
4	2018	2017-2018	眼科学年	有					
5	2018	2017-2018	眼科学年	有					
6	2018	2017-2018	眼科学年	有					

The existence of dead cells in donor corneal endothelium preserved with storage media.

Br J Ophthalmol 1725-1730

Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy.

N Engl J Med 995-1003

Moderately Long-Term Safety and Efficacy of Repeat Penetrating Keratoplasty.

Cornea 1255-1259

Topical non-steroidal anti-inflammatory drugs for the treatment of cystoid macular edema post Descemet's stripping automated endothelial keratoplasty.

Jpn J Ophthalmol 615-620

キタザワ K, イナトミ T, ツニオカ H, カワサキ S, ナカガワ H, ヒエダ O, フクオカ H, オコムラ N, コイズミ N, ユイカジス B, ソトゾノ C, キノシタ S.

キノシタ S, コイズミ N, ユエノ M, オコムラ N, イマイ K, チナカ H, ヤマモト Y, ナカムラ T, イナトミ T, ブッシュ J, ツオダ M, ハジヤ M, ヨコタ I, テラムウキ S, ソトゾノ C, ハムロ J.

キタザワ K, カヤウカワ K, ワキマス K, イナトミ T, ヒエダ O, モリ K, ソトゾノ C, キノシタ S.

キノシタ S, ユイカジス K, ワカマス K, イナトミ T, ヒエダ O, モリ K, ソトゾノ C, キノシタ S.
Novel Therapeutic Pathways to Overcome the Challenges of Ocular Surface Reconstruction.

Cell based Therapy for Ocular Surface Reconstruction.

Cystoid Macular Edema after Descemet's Stripping Automated Endothelial Keratoplasty.

Predictive clinical factors of cystoid macular edema in patients with Descemet's stripping automated endothelial keratoplasty.
	発表者名	発表タイトル
1.	Tsutomu Inatomi	Medical and Surgical Approach for the Treatment of Ocular Cicatricial Pemphigoid
2.		Corneal Endothelial Remodeling After DSAEK and DMEK
3.		The Importance of Donor Corneal Endothelial Cell Viability for Corneal Transplantation
4.		Application of Corneal Regenerative Medicine in Clinical Practice
1. 発表者名
（氏名）
（ローマ字氏名）

2. 発表標題
（発表内容）
（研究者番号）

3. 学会等名
（学会名）
（所属学会）

4. 発表年
（発表年）

（図書） 計1件
（産業財産権）
（その他）

6. 研究組織

氏名	所属研究機関・部門・職
中村 隆宏	京都府立医科大学・医学（系）研究科（研究院）・客員講師

備考
（備考）