Salmonella type III effector SopB modulates host cell exocytosis

Charlotte A Perrett and Daoguo Zhou

Salmonella enterica pathogenesis is dependent on its ability to enter and replicate inside host cells. Replication occurs inside the *Salmonella*-containing vacuole (SCV), a vacuolar compartment that is modified by bacterial effectors secreted through the two type III secretion systems (T3SS-1 and T3SS-2). Type III effectors interact with the host cell endocytic pathway to aid replication. We investigate whether *Salmonella* effector proteins may also interact with the host’s exocytic pathway. A secreted alkaline phosphatase (SEAP) assay indicated three *Salmonella* effectors inhibited the secretory pathway, although only *Salmonella* outer protein B (SopB) was confirmed to block exocytosis using a vesicular stomatitis virus glycoprotein-green fluorescent protein (VSVG-GFP) transport assay. The 4-phosphatase activity of SopB was crucial to its effect on exocytosis. The interaction with the secretory pathway could potentially be important for providing replicating *Salmonella* with nutrients, contributing membrane material necessary for SCV biogenesis, altering antibacterial peptide/protein secretion or manipulating cell surface proteins important in the host response to infection.

Keywords: Exocytosis; pathogenesis; *Salmonella*; SEAP; SopB; VSVG

INTRODUCTION

Salmonella enterica species are among one of the main bacterial causative agents of gastroenteritis in humans and animals, including livestock, and the cause of the systemic disease Typhoid fever. Recent *Salmonella* outbreaks in the United States were attributed to contaminated peanut butters, cantaloupes and raw vegetables. *Salmonella* is therefore a re-emerging zoonotic pathogen, with a considerable public health burden and economic cost to society. Consequently, much research has been conducted to understand *Salmonella* and its pathogenesis, and develop mechanisms by which to eliminate it and prevent transmission.

A characteristic of *Salmonella* infection is the uptake of the bacterium into non-phagocytic intestinal epithelial cells. Genes within a region of the *Salmonella* chromosome known as *Salmonella* pathogenicity island-1 (SPI-1) encode a type three protein secretion system (T3SS-1), which drives bacterial invasion. T3SS-1 translocates SPI-1-encoded effector proteins, and effectors encoded elsewhere in the *Salmonella* chromosome, into the host cell cytoplasm. The coordinated actions of these effector proteins, including SipA, SipC, SopB/ SigD, SopE, SopE2 and SptP, modulate the host cell actin cytoskeleton to promote internalisation of *Salmonella* into the non-phagocytic cell in a characteristic membrane ‘ruffle’.

Upon entrance to the host cell, *Salmonella* exists within a *Salmonella*-containing vacuole (SCV). *Salmonella* successively modifies the SCV using effectors secreted by T3SS-1 and the *Salmonella* pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS-2). These effector proteins facilitate interactions of the SCV with the host cell endocytic pathway leading to maturation of the SCV and also serve to position the SCV towards the Golgi where replication is initiated.

For successful invasion and replication inside host cells, *Salmonella* must spatially and temporally regulate its effector proteins. This is particularly important in the case of effectors, such as SopB, which perform more than one role. *Salmonella* outer protein B (SopB) is a phosphatidylinositol phosphatase, being composed of a C-terminus that possesses 4-phosphatase motifs and a synaptojanin-like 5-phosphatase domain. SopB uses its phosphatidylinositol phosphatase activity to (i) activate the Rho GTPases RhoG and Rho to mediate actin-dependent and myosin II-dependent bacterial invasion respectively; (ii) modulate the phosphatidylinositol composition of the plasma membrane to allow SCV formation; (iii) modulate the phosphatidylinositol composition of the SCV to allow maturation, in part through the recruitment of host proteins such as Rab5 and Vps34 and sorting nexins-1 and sorting nexins-3, and avoidance of SCV-lysosome fusion; (iv) activate myosin II to place the SCV in a juxtanuclear position; (v) activate serine protein kinase AKT to prevent host cell death via apoptosis; and (vi) regulate host cell chloride channel function.

The multiple roles of SopB are permitted by regulating its activity through its N-terminal domain and its half-life. Ubiquitination of the N-terminal leads to translocation of SopB from the plasma membrane to the SCV, potentially switching the role of SopB from invasion to intracellular survival. SopB can also bind Cdc42 through its N-terminal and this too appears to be important for SopB localisation to the SCV and its spatial regulation. Although, only translocated by T3SS-1, SopB is detected in cells for up to 12 h post-invasion. This relatively long half-life for an effector protein allows SopB to extend its role from the early stages of invasion through to the intracellular phase of *Salmonella* survival.
Table 1 Bacterial strains and plasmids used in this study

Strain or plasmid	Relevant characteristics	Source or reference
Strains		
S. Typhimurium		
SL1344	Wild type	43, 44
ZP18	ΔassAν	22
SB923	ΔsopB	10
Plasmids		
pRCS2-EGFP		Clontech
pEGFP-N2		Clontech
pZP0216	PI4K Ii	
pZP0219	SKIP-GFP Heather Piscatelli	
pZP0217	PTEN-RFP Heather Piscatelli	
pZP0218	piCS2-sopB This paper	
pZP0219	piCS2-sopB This paper	
pZP0220	piCS2-sopB This paper	
pZP0221	piCS2-sopB This paper	
pZP0222	piCS2-sopB This paper	
pZP0223	piCS2-sopB This paper	
pZP0224	piCS2-sopB This paper	
pZP0225	piCS2-sopB This paper	
pZP0226	piCS2-sopB This paper	
pZP0227	piCS2-sopB This paper	
pZP0228	piCS2-sopB This paper	
pZP0229	piCS2-sopB This paper	
pZP0230	piCS2-sopB This paper	
pZP0231	piCS2-sopB This paper	
pZP0232	piCS2-sopB This paper	
pZP0233	piCS2-sopB This paper	
pZP0234	piCS2-sopB This paper	
pZP0235	piCS2-sopB This paper	
pZP0236	piCS2-sopB This paper	
pZP0237	piCS2-sopB This paper	
pZP0238	piCS2-sopB This paper	
pZP0239	piCS2-sopB This paper	
pZP0240	piCS2-sopB This paper	
pZP0241	piCS2-sopB This paper	
pZP0242	piCS2-sopB This paper	
pZP0243	piCS2-sopB This paper	
pZP0244	piCS2-sopB This paper	
pZP0245	piCS2-sopB This paper	
pZP0246	piCS2-sopB This paper	
pZP0247	piCS2-sopB This paper	
pZP0248	piCS2-sopB This paper	
pZP0249	piCS2-sopB This paper	
pZP0250	piCS2-sopB This paper	
pZP0251	piCS2-sopB This paper	
pZP0252	piCS2-sopB This paper	
pZP0253	piCS2-sopB This paper	
pZP0254	piCS2-sopB This paper	
pZP0255	piCS2-sopB This paper	
pZP0256	piCS2-sopB This paper	
pZP0257	piCS2-sopB This paper	
pZP0258	piCS2-sopB This paper	
pZP0259	piCS2-sopB This paper	
pZP0260	piCS2-sopB This paper	
pZP0261	piCS2-sopB This paper	
pZP0262	piCS2-sopB This paper	
pZP0263	piCS2-sopB This paper	
pZP0264	piCS2-sopB This paper	
pZP0265	piCS2-sopB This paper	
pZP0266	piCS2-sopB This paper	
pZP0267	piCS2-sopB This paper	
pZP0268	piCS2-sopB This paper	
pZP0269	piCS2-sopB This paper	
pZP0270	piCS2-sopB This paper	
pZP0271	piCS2-sopB This paper	
pZP0272	piCS2-sopB This paper	
pZP0273	piCS2-sopB This paper	
pZP0274	piCS2-sopB This paper	
pZP0275	piCS2-sopB This paper	
pZP0276	piCS2-sopB This paper	
pZP0277	piCS2-sopB This paper	
pZP0278	piCS2-sopB This paper	
pZP0279	piCS2-sopB This paper	
pZP0280	piCS2-sopB This paper	
pZP0281	piCS2-sopB This paper	
pZP0282	piCS2-sopB This paper	
pZP0283	piCS2-sopB This paper	
pZP0284	piCS2-sopB This paper	
pZP0285	piCS2-sopB This paper	
pZP0286	piCS2-sopB This paper	
pZP0287	piCS2-sopB This paper	
pZP0288	piCS2-sopB This paper	
pZP0289	piCS2-sopB This paper	
pZP0290	piCS2-sopB This paper	
pZP0291	piCS2-sopB This paper	
pZP0292	piCS2-sopB This paper	
pZP0293	piCS2-sopB This paper	
pZP0294	piCS2-sopB This paper	
pZP0295	piCS2-sopB This paper	
pZP0296	piCS2-sopB This paper	
pZP0297	piCS2-sopB This paper	
pZP0298	piCS2-sopB This paper	
pZP0299	piCS2-sopB This paper	

As the SCV locates to a juxtanuclear position, close to the Golgi, it has been proposed that the SCV may also interact with the host’s exocytic/secretory pathway,15 as this occurs with several intracellular pathogens, e.g., Legionella, Brucella and Chlamydia.9,10 Kuhle et al.40 found that intracellular Salmonella could indeed recruit secretory vesicles from the trans-Golgi network (TGN) to the SCV in a SPI-2-dependent manner; the SPI-2-secreted effectors SseF, SseG and SifA play pivotal roles in post-Golgi vesicle recruitment.40 The interaction of the SCV with the secretory pathway could potentially be important for providing replicating Salmonella with nutrients and/or to provide membrane material to the growing SCV. However, fusion between secretory vesicles and the SCV was not detected by Kuhle et al., although it has now been shown that secretory carrier membrane protein 3 (SCAMP3), which is typically located on the TGN, is also located on Salmonella-induced filaments and Salmonella-induced SCAMP3 tubules, dynamic structures which extend from the SCV membrane.41 However, it is not yet clear how SCAMP3 is recruited to the SCV and whether the exocytic, endocytic or both pathways are used in this process. Additionally, it has been found that enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC), gastrointestinal pathogens that like Salmonella utilize a T3SS for pathogenesis, both reduce the efficiency of host cell secretion through effector protein Non-LEE-encoded effector A (NleA) which inhibits coat protein II complex (COPII)-dependent protein export from the endoplasmic reticulum.42 Thus, interaction of bacterial pathogens, like Salmonella, with the host cell secretory system may not necessarily be important for maintenance of their replication niche inside the cell but by manipulating the cell’s ability to secrete antibacterial peptides/proteins or by manipulating cell surface expression of proteins important in the host response to infection, be important for their survival once they leave the cell or to their extracellular counterparts.

This study examined how Salmonella may interact with the exocytic pathway during the intracellular phase of survival, specifically looking at whether any Salmonella type III effectors were capable of inhibiting secretion. Three Salmonella effectors were identified with the potential to inhibit the host cell secretory pathway. SopB, as one of these effectors, was studied in further detail to determine its mode of action.

MATERIALS AND METHODS

Bacterial strains

Bacterial strains are listed in Table 1.10,22,43,44 Salmonella serovar Typhimurium strains were routinely cultured in Luria–Bertani broth. For invasion experiments overnight cultures of Salmonella were diluted 1:30 in Luria–Bertani broth with 0.3 M NaCl and grown for 3 h with aeration on a rotating wheel. Antibiotics were used at the following concentrations: ampicillin at 120 μg/mL, streptomycin at 25 μg/mL, kanamycin at 40 μg/mL.

Construction of plasmids

Plasmids used in this study are listed in Table 1. Each Salmonella effector gene was cloned into the eukaryotic expression vector pRCS-EGFP either by subcloning the gene from another plasmid or by amplifying the gene from the Salmonella genome by polymerase chain reaction using Deep Vent DNA polymerase (NEB). All plasmids were verified by restriction digests and sequencing.

The plasmids carrying sopB mutations were created by performing site-directed mutagenesis using the Pfu Turbo DNA polymerase (Stratagene) as per manufacturer’s instructions. The primer for creating the SopB R468A mutation was 5’ GTA AAA GCG GCA AAG ATC TGA AAA GCG GCA AAG TGG ATT CAG AA and for the K530A...
Mammalian cell culture and transfections

HeLa cells (CCL-2; ATCC, Manassas, VA, USA) and 293T cells were cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum. All cells were maintained at 37 °C and 5% CO₂. Cells were transfected with plasmids by using TransIT-express transfection reagent (Mirus) according to the manufacturer’s instructions. 24 h after transfection, cells were infected with *Salmonella* as indicated.

Secreted alkaline phosphatase (SEAP) assay

293T cells were plated in 24-well dishes at 1×10⁵ cells/well, allowing three wells per effector. After an overnight incubation, the cells were cotransfected with plasmids encoding corresponding proteins and the plasmid encoding the SEAP. 24 h later, cells were washed, and fresh serum-free tissue culture medium was added. SEAP activity was measured in triplicate wells 7 h later using the Phospha-Light System (Applied Biosciences, Grand Island, NY, USA) following the manufacturer’s instructions. Data are presented as a secretion index, which is the ratio of SEAP activity detected in the culture medium to the cell-associated SEAP activity. Total SEAP inside cells was not affected by coexpression of any of the effector plasmids.

Vesicular stomatitis virus glycoprotein (VSVG) transport assay

293T cells were plated in 100 mm dishes at 6.5×10⁵ cells/dish. After an overnight incubation, cells were cotransfected, using calcium phosphate, with plasmids encoding the indicated proteins and a plasmid encoding a dox45-VSVG-GFP plasmid. 4 h after transfection the cells were washed and placed overnight at 40 °C. Next, 100 μg/mL cycloheximide was added to each dish which was then transferred to 32 °C for the appropriate time period. Cells were then transferred to ice, and washed twice with ice-cold PBS before being collected. Cells were lysed with lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton, 1:100 protease inhibitor cocktail (Calbiochem, Billerica, MA, USA)) on ice for 10 min, before the lysate was collected in an Eppendorf tube. After protein concentration determination using the Bradford assay (Bio-Rad, Hercules, CA, USA), equal amounts of protein from all samples were treated or mock-treated with Endoglycosidase H (Roche, Indianapolis, IN, USA) according to the manufacturer’s instructions. Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) sample buffer was added to the samples, boiled for 10 min and subjected to electrophoresis on an 8% SDS–PAGE gel. Samples were transferred to nitrocellulose membrane for immunoblot analysis using anti-GFP and anti-actin antibodies.

Data analysis

All statistical tests were performed using GraphPad Prism version 6. One-way analysis of variance was performed with three or more data sets, with Dunnett’s multiple comparison test being applied post hoc.

RESULTS

Salmonella effectors inhibit the host cell secretory pathway

To determine whether *Salmonella*, like EHEC and EPEC which also use a T3SS in their virulence, may inhibit the host cell exocytic pathway during the infection process, known *Salmonella* effector proteins were screened for inhibition of the secretory pathway. A plasmid encoding a secreted form of human placental alkaline phosphatase (SEAP) was cotransfected into 293T cells with a plasmid encoding a *Salmonella* effector protein. The ratio of SEAP activity detected in the culture medium to the cell-associated SEAP activity (secretion index) was then measured for each *Salmonella* effector and for a *Legionella* effector (Lpg2556) known to inhibit exocytosis and which acted as a positive control (Dr Zhao-Qing Luo, personal communication). Of the 30 *Salmonella* effectors tested, SopB, PipB2 and SopH2 appeared to affect the secretion of SEAP (Figure 1).

SopB requires its 4-phosphatase activity to inhibit the secretory pathway

Among the three *Salmonella* type III effectors tested, SopB appeared to be the most potent in inhibiting SEAP secretion. We decided to test whether the phosphatidylinositol phosphatase activity of SopB was required for this effect. Point mutations were made in catalytic residues known to be essential for the phosphatase activity of SopB. Mutation of the 420 cysteine (C420S; C/S) or mutation of the 468 arginine (R468A; R/A), both of which are conserved between *E. coli* and Shigella IpgD proteins and human inositol phosphatase sequences, have been shown to be essential for 4-phosphatase activity.6,16 The lysine residue at position 530 lies within the putative synaptojanin-homology domain that is essential for the 5-phosphatase activity of SopB.33 When examined in the SEAP secretion assay, mutation of either C420 or R468 restores SEAP secretion to levels comparable to the empty vector indicating the 4-phosphatase region but not the 5-phosphatase domain is necessary for SopB inhibition of exocytosis (Figure 2).

Role of phosphatidylinositol 4-phosphate (PI(4)P) in SopB-mediated inhibition of exocytosis

Since the 4-phosphatase activity of SopB appears critical to its ability to inhibit exocytosis, we investigated whether overexpression of specific phosphoinositide kinases or phosphatases could restore SopB-mediated inhibition of exocytosis, and thereby aid identification of the pathways that may be used to inhibit secretion. Cells were cotransfected with pSEAP, vector or SopB and then one of the phosphoinositide kinases or phosphatases listed (Figure 3). Exocytosis in cells coexpressing SopB and phosphatidylinositol 4-kinase type IIβ (PI4K IIβ) was not statistically different to the control cells. PI4K IIβ is a 4-kinase which appears to regulate the PI(4)P synthesis required for several cellular processes, most notably secretion.45 Since SopB relies on its 4-phosphatase activity to inhibit exocytosis it may suggest 4-kinase activity can rescue the SopB-mediated defect. It is also interesting to note that PI4K IIβ significantly increases the secretion of cells transfected with the vector. Thus, it appears PI(4)P levels may be important in the control of exocytosis.

The phosphatidylinositol kinase PI3K had no affect on SopB-mediated inhibition, and therefore it is perhaps no surprise that PTEN, a 3-phosphatase, also had no affect since both enzymes play a role in the interconversion of phosphatidylinositol 4,5-biphosphate (PI(4,5)P₂) and phosphatidylinositol (3,4,5)-triphosphate (PI(3,4,5)P₃). The PI(3)P phosphatase, MTMI (myotubularin I), and the PI(3)P inhibitors wortmannin and LY294002 were also found to have no effect (data not shown) and therefore PI(3)P does not appear to be involved in exocytosis inhibition which may be expected since PI(3)P is typically associated with early endosomes. The 5-phosphatase, skeletal muscle and kidney enriched inositol phosphatase (SKIP), appeared to in part restore exocytosis but the result was not statistically significant. Since one of the reactions catalyzed by SKIP is the conversion of PI(4,5)P₂ to PI(4)P...
and PI4K IIβ, which also had an effect in this assay, regulates PI(4)P, it is possible that PI(4)P is the key intermediate in SopB-mediated exocytosis inhibition. This is more probable given that PI(4)P is a prominent phosphatidylinositol in the Golgi membrane, particularly the TGN, and plays an important role in the secretory pathway.

As regulation of PI(4)P concentrations at the TGN are used to regulate secretion, a FAPP1-PH-GFP probe, specific to PI(4)P, was used in HeLa cells during Salmonella infection to determine whether PI(4)P levels were altered and may explain the effect of SopB. No change in PI(4)P levels were detected (data not shown). However, since detecting phosphatidylinositols and their fluctuating concentrations is not always accurate by such probes, we cannot rule out that PI(4)P is one of the mediators of SopB secretion inhibition.

SopB delays VSVG-GFP between the endoplasmic reticulum (ER) and Golgi

To determine at which stage of the secretory pathway SopB may act, we employed a temperature-sensitive variant of vesicular stomatitis virus glycoprotein tagged with green fluorescent protein (ts045-VSVG-GFP). At 40°C, ts045-VSVG-GFP misfolds and is retained in the ER, but upon

Figure 1 Salmonella effectors inhibit host cell exocytosis. A SEAP assay was performed on 293T cells transfected with plasmids encoding the indicated type III effectors. The protein secretion index is displayed. Values are the mean±SD for three independent experiments. Asterisks indicate a statistical significant difference compared to the empty vector.

Figure 2 The 4-phosphatase activity is necessary for SopB inhibition of exocytosis. SEAP assays were performed on 293T cells transfected with pEGFP-N2 plasmids encoding the indicated forms of SopB. sopB mutation abbreviations: C460S (C/S), R468A (R/A), and K530A (K/A). The protein secretion index is displayed. Values are the mean±SD for three independent experiments. Asterisks indicate a statistical significant difference compared to vector.
shifting cells to 32 °C, the protein refolds and resumes transport to the Golgi and then to the plasma membrane.48,49 Transport of VSVG from the ER to the Golgi is accompanied by a modification of glycosylation on the protein. The high-mannose glycosylation present on the ER form of ts045-VSVG-GFP is sensitive to the glycosidase Endoglycosidase H (Endo H), while glycan modification in the Golgi confers resistance to Endo H digestion.48 By measuring the sensitivity of VSVG to Endo H at certain time periods after a shift from 40 °C to 32 °C the localization of VSVG within the secretory pathway can be determined and whether it is affected by a protein/drug of interest.

To monitor the effect of SopB on VSVG trafficking, 293T cells were cotransfected with ts045-VSVG-GFP and either vector, SopB or SopBc/s. Cells were shifted to 40 °C overnight before cycloheximide was added to inhibit further protein synthesis and cells were shifted to 32 °C for various lengths of time to monitor VSVG transport. The vector- and SopBc/s-transfected cells exhibited similar behaviour, namely, that 1 h after the temperature shift the majority of the VSVG protein is Endo H-resistant and therefore has reached the Golgi (Figure 4). In contrast, cells transfected with SopB, show VSVG sensitivity to Endo H up to 2 h after the temperature shift, indicating that, in these cells, some of the VSVG protein remains localized to the ER (Figures 4B and 4C). Therefore, in the presence of SopB the transport of VSVG between the ER and Golgi is inhibited or delayed. The phosphatidylinositol phosphatase activity of SopB is important for this delay in transport between the ER and Golgi.

DISCUSSION

For a bacterium to have an intracellular lifestyle, it must have the ability to do two things. First, the bacterium must be able to hide from or combat any anti-microbial defences the host cell possesses. Second, it must utilize the available cellular resources to ensure survival, and if possible, replication. \textit{Salmonella} takes care of the first objective by using its T3SS-1 and T3SS-2 effectors to modulate the SCV membrane so that it avoids fusing with lysosomes or does so in a controlled fashion.50–52 It is currently less clear how \textit{Salmonella} supports its replication.
It is known that the SCV undergoes a series of interactions with the host endocytic pathway\(^{53,54}\) and this may in part account for the increase in SCV membrane and the way in which the nutrients required for bacterial replication are obtained. However, other intracellular bacterial pathogens favour the exocytosis pathway to obtain the materials they need for replication. For example, *Legionella* tethers host-derived transitional ER-derived vesicles to its vacuolar compartment (Legionella-containing vacuole), which subsequently fuse with the Legionella-containing vacuole.\(^{55,56}\) *Coxiella* employs a similar mechanism,\(^{57}\) while the intermediate Brucella-containing vacuoles of *Brucella* interact with and subsequently fuse with the actual ER to generate ER-derived, replicative Brucella-containing vacuoles.\(^{58,59}\)

There is growing evidence that *Salmonella* may also utilize the secretory pathway to maintain and expand its replicative niche. The first evidence came in 2003, when it was found that not only do SCV accumulate near to the Golgi apparatus but that inhibition of ADP-ribosylation factor 1, a small GTPase required for the formation of COPI-coated vesicles that traffic between the ER and Golgi, inhibited *Salmonella* replication.\(^{15}\) Kuhle *et al.*\(^{40}\) have since found secretory vesicles from the TGN recruited to the SCV in a SPI-2-dependent manner, and a protein, SCAMP3, typically located at the TGN has been identified on vesicles from the TGN recruited to the SCV in a SPI-2-dependent manner, and a protein, SCAMP3, typically located at the TGN has been identified on vesicles from the TGN recruited to the SCV in a SPI-2-dependent manner, while the intermediate Brucella-containing vacuoles appear likely that vesicles with the TGN still eludes visualisation, and thus while it is not determined. It has been reported that SopB affects the production of the cytokines that cause inflammation of the gut, a characteristic of *Salmonella* infection.\(^{7,60-62}\) Further studies are required to test whether SopB also plays a role in the secretion process.

Currently, the only other bacteria found to inhibit exocytosis are EHEC and EPEC, who use effector protein NleA to inhibit COPII-dependent protein export from the endoplasmic reticulum.\(^{42}\) The reason for this inhibition is, as yet, unknown. It is interesting that EHEC, EPEC and *Salmonella*, which all appear to inhibit exocytosis, all possess a T3SS, and this may perhaps allude to a unique mechanism used by these bacteria to manipulate the host cell. The activity of the EHEC and EPEC effector, NleA, was partially determined after examining its location in the cell after translocation by the T3SS.\(^{42,63}\) NleA was found to colocalize with mannosidase II and thus determined to localize to the Golgi.\(^{63}\) SopB has predominantly been studied at the plasma membrane and early SCV membrane but this does not preclude the ability of SopB to associate with other membranes, such as the ER or Golgi, at other time points, and given that the SCV eventually orientates towards the Golgi, it may not need to, to have an effect on the secretory pathway, especially if its effects are mediated by changes in phosphatidylinositol concentrations. SopB has a relatively long half-life\(^{38}\) and thus it could easily have multiple sites of activity during the infectious process, and which may play an important part in allowing *Salmonella* to successfully transition from its invasion to intracellular phase. This will require further study in the future to determine how exactly SopB affects exocytosis. To conclude, this work...
may reveal yet another important role of SopB in Salmonella infection and perhaps another layer to the carefully orchestrated manipulation of the cell, and the host, by this bacterium.

ACKNOWLEDGMENTS

We would like to thank Rajdeep Borman (Department of Biological Sciences, Purdue University, West Lafayette, IN, USA) for help with creating the plasmids carrying sopB mutations, and Heather Picatelli (Department of Biological Sciences, Purdue University, West Lafayette, IN, USA) for the phosphatidylinositol kinase and phosphatase plasmids. This work was supported by the NIH grant NO AI049978.

Supplementary Information for this article can be found on Emerging Microbes and Infections’s website (http://www.nature.com/EMI/).

1 Takeuchi A. Electron microscope studies of experimental Salmonella infection. 1. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 1967; 50: 109–136.
2 Finlay BB, Falkow S. Comparison of the invasion strategies used by Salmonella choleraesuis, Shigella flexneri and Yersinia enterocolitica to enter cultured animal cells: endosome acidification is not required for bacterial invasion or intracellular replication. Biochimie 1988; 70: 1089–1099.
3 Galán JE, Curtis R 3rd. Cloning and molecular characterization of its genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 1989; 86: 6383–6387.
4 Groisman EA, Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J 1993; 12: 3779–3787.
5 Galán JE. Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 1996; 20: 263–271.
6 Zhou D, Chen LM, Hernandez L, Shears SB, Galán JE. A Salmonella insoluble polyphosphatase acts in concert with other bacterial effectors to promote host cell actin cytokoskeleton rearrangements and bacterial internalization. Mol Microbiol 2001; 39: 248–259.
7 Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galán JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 1998; 93: 815–826.
8 Kaniga K, Uraili J, Bliska JB, Galán JE. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol Microbiol 1996; 21: 633–641.
9 McGhie EJ, Hayward RD, Koronakis V. Cooperation between actin-binding proteins of the type III secretion system of Shigella flexneri and SseF and SseG interact and are required to establish an intracellular replication niche. EMBO J 2003; 22: 583–294.
10 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
11 McGhie EJ, Hayward RD, Koronakis V. Identification of a novel Salmonella invasion locus homologous to Shigella InvGc. J Bacteriol 1998; 180: 1793–1802.
12 Bertelsen LS, Paesold G, Marcus SL, Finlay BB, Eckmann L. Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. J Physiol Cell Physiol 2004; 287: C939–C948.
13 Bertelsen LS, Paesold G, Marcus SL, FINLAY BB. SigD affects actin cytoskeleton rearrangements and bacterial internalization. Proc Natl Acad Sci USA 2001; 98: 2256–2261.
14 McGhie EJ, Hayward RD, Koronakis V. Cooperation between actin-binding proteins of the type III secretion system of Shigella flexneri and SseF and SseG interact and are required to establish an intracellular replication niche. EMBO J 2003; 22: 583–294.
15 McGhie EJ, Hayward RD, Koronakis V. Identification of a novel Salmonella invasion locus homologous to Shigella InvGc. J Bacteriol 1998; 180: 1793–1802.
16 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
17 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
18 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
19 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
20 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
21 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
22 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
23 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
24 Bertelsen LS, Paesold G, Marcus SL, Finlay BB. Bacterial virulence and replication in macrophages. The bacterial virulence factor SopB modulates exocytosis VAMP8 to facilitate phagocytosis. Proc Natl Acad Sci USA 2001; 98: 875–879.
Drecktrah D, Knodler LA, Howe D, Steele-Mortimer O. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. *Traffic* 2007; 8: 212–225.

McGourty K, Thurston TL, Matthews SA, Pinaud L, Mota LJ, Holden DW. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. *Science* 2012; 338: 963–967.

Steele-Mortimer O, Meresse S, Gorvel JP, Toh BH, Finlay BB. Biogenesis of *Salmonella typhimurium*-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. *Cell Microbiol* 1999; 1: 33–49.

Meresse S, Steele-Mortimer O, Finlay BB, Gorvel JP. The Rab7 GTPase controls the maturation of *Salmonella typhimurium*-containing vacuoles in HeLa cells. *EMBO J* 1999; 18: 4394–4403.

Kagan JC, Roy CR. Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites. *Nat Cell Biol* 2002; 4: 945–954.

Robinson CG, Roy CR. Attachment and fusion of endoplasmic reticulum with vacuoles containing *Legionella pneumophila*. *Cell Microbiol* 2006; 8: 793–805.

Campoy EM, Zoppino FC, Colombo MI. The early secretory pathway contributes to the growth of the Coxiella-replicative niche. *Infect Immun* 2011; 79: 402–413.

Celli J, Salcedo SP, Gorvel JP. *Brucella* coopts the small GTPase Sar1 for intracellular replication. *Proc Natl Acad Sci USA* 2005; 102: 1673–1678.

Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP. *Brucella* evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. *J Exp Med* 2003; 198: 545–556.

Chen LM, Hobbie S, Galán JE. Requirement of CDC42 for *Salmonella*-induced cytoskeletal and nuclear responses. *Science* 1996; 274: 2115–2118.

Figueiredo JF, Lawhon SD, Gokulan K et al. *Salmonella enterica* Typhimurium SipA induces CXC-chemokine expression through p38MAPK and JUN pathways. *Microbes Infect* 2009; 11: 302–310.

Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinewinkel SH, Galan JE. *Salmonella* Typhimurium type III secretion effectors stimulate innate immune responses in cultured epithelial cells. *PLoS Pathog* 2009; 5: e1000538.

Gruenheid S, Sekirov I, Thomas NA et al. Identification and characterization of NleA, a non-LEE-encoded type III translocated virulence factor of enterohaemorrhagic *Escherichia coli* O157:H7. *Mol Microbiol* 2004; 51: 1233–1249.

This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0