On the Role of Electricity Storage in Capacity Remuneration Mechanisms

Christoph Fraunholz, Dogan Keles, Wolf Fichtner | IAEE Online Conference – 8 June 2021
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Regulatory framework

- Capacity mechanisms are used around the world to secure sufficient firm capacity.
- Formally, technology neutrality is a requirement in Europe and the US (European Commission, 2013; Sakti, Botterud, and O’Sullivan, 2018).
- In practice, rules for storage participation differ:
 - PJM: like conventional units (Chen et al., 2017)
 - CAISO: full output for 4 h (Usera et al., 2017)
 - Ireland & UK: derating factors (National Grid, 2017; Single Electricity Market Committee, 2016; Single Electricity Market Committee, 2018).

⇒ In what way does the parametrization of capacity mechanisms affect the future technology mix and long-term generation adequacy?
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Central buyer mechanism with reliability options (used in, e.g., Italy, Ireland)

Characteristics
- Regulator determines firm capacity requirement and other parameters
- Successful participants are rewarded with the marginal capacity price of the auction
- Capacity derating factors may be used, e.g., for storage units
- Combination with call options
 - Price cap on the day-ahead market
 - Regulator collects peak energy rent
 - Implicit penalty for non-availability during scarcity periods

Bidding strategy
Capacity remuneration should cover the difference costs DC:

$$DC = \max (-NPV, 0)$$

With some simplifications follows the indifference bid price p^{CRM}:

$$p^{CRM} = \frac{k_1}{f^{derate}} \cdot \max \left(k_2 \cdot c^{invest} - CM(p^{limit}), 0 \right)$$

The resulting technology mix is driven by the relation of
- investment expenses c^{invest},
- contribution margin CM (indirectly: strike price p^{limit}),
- derating factor f^{derate}.

⇒ Focus of this talk: Combination with call options and variation of the strike price
Combination with Call Options

Contribution margins in a stylized example of the day-ahead market in the future

Under some reasonable assumptions, storage units counterintuitively benefit from a strike price:

$$CM^{stor} > CM^{conv} \iff \begin{cases} p^{\text{high}} (1 - \eta^{stor}) < c^{\text{var}}_{\text{CONE}}, \text{ for Cases 1/2a} \\ p^{\text{limit}} (1 - \eta^{stor}) < c^{\text{var}}_{\text{CONE}}, \text{ for Case 2b} \end{cases}$$

where p^{limit} is the strike price of call option, $c^{\text{var}}_{\text{CONE}}$ is the variable cost of new entry, CM is the contribution margin, and η^{stor} is the storage efficiency.
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Agent-Based Electricity Market Simulation Model PowerACE

- **Selected characteristics**
 - Time horizon 2020–2050 with 8760 h/a
 - Day-ahead market simulation (daily)
 - Investment decisions (yearly)

- **Input**
 - Power plant fleets of the base year
 - Fuel and carbon prices
 - Hourly electricity demand
 - Hourly renewable feed-in
 - Transfer capacities between market areas

- **Output**
 - Hourly day-ahead market prices
 - Hourly dispatch (power plants, storages)
 - Investment decisions (power plants, storages)
Model Assumptions and Scenario Setup

Some key assumptions

- Simulation period: 2020–2050 at hourly resolution (8760 h/a)
- Regional scope: Selection of ten European countries with diverse electricity market designs
- Renewable share in electricity demand reaching 80% by 2050
- Carbon prices increasing to 150 EUR/tCO₂ in 2050

Scenario	Electricity market designs	Strike price
EOM	European EOM	n/a
CRM	National CRM policies	none
CRM-limit_high	National CRM policies	$1.5 \cdot \var{CONE}$
CRM-limit_low	National CRM policies	\var{CONE}

\(\var{CONE}\) – variable cost of new entry, CRM – capacity remuneration mechanism, EOM – energy-only market
Reference Scenario (European Energy-Only Market)

Simulated development of conventional power plant and storage capacities in France

⇒ Fuel switch towards gas-fired power plants and expansion of utility-scale storages
Capacity Auctions Bundled with Call Options

Simulated development of conventional power plant and storage capacities in France

- CCGT —combined cycle gas turbine
- OCGT —open cycle gas turbine
- Electric thermal storage
- Li-ion battery
- Total storage
- Total conventional

Delta of capacities [GW]

- (a) no strike price
- (b) high strike price
- (c) low strike price

⇒ Technology composition affects both renewable integration and generation adequacy
Deterministic indicators describing generation adequacy level in France (2020–2050)

Scenario	Strike price	No market clearing	Energy not served
EOM	n/a	10.7 h/a	60.5 GWh/a
CRM	none	0.0 h/a	0.0 GWh/a
CRM-limit_high	$1.5 \cdot \frac{\text{var}}{\text{CONE}}$	1.6 h/a	3.7 GWh/a
CRM-limit_low	$\frac{\text{var}}{\text{CONE}}$	5.1 h/a	16.2 GWh/a

$c_{\text{var}}^{\text{CONE}}$ – variable cost of new entry, CRM – capacity remuneration mechanism, EOM – energy-only market

⇒ *Nameplate capacity of electricity storage should be adequately derated (for details see paper)*
Agenda

1. Storage Participation in Capacity Mechanisms
2. Theoretical Discussion on Relevant Design Parameters
3. Selected Results of a Large-Scale Simulation Study
4. Conclusion and Policy Implications
Conclusion and Policy Implications

Key take-aways of this talk

- Design of capacity remuneration mechanisms inevitably creates a bias towards one technology or the other
- Linking the capacity auctions with call options increases the competitiveness of storages against conventional power plants
- Determining the capacity credit of non-conventional resources is challenging and can strongly affect generation adequacy
- For additional details see paper on the right (open access)

Contact details – feel free to get in touch

Christoph Fraunholz
Karlsruhe Institute of Technology (KIT), Chair of Energy Economics
Mail: christoph.fraunholz@kit.edu, Phone: +49 721 608-44668

⇒ Thank you for the attention! Any questions or comments?

https://doi.org/10.1016/j.enpol.2020.112014
Literature I

Andreas Bublitz et al. “A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms”. In: *Energy Economics* 80 (2019), pp. 1059–1078. DOI: 10.1016/j.eneco.2019.01.030.

Hong Chen et al. “PJM Integrates Energy Storage: Their Technologies and Wholesale Products”. In: *IEEE Power and Energy Magazine* 15.5 (2017), pp. 59–67. ISSN: 1540-7977. DOI: 10.1109/MPE.2017.2708861.

European Commission. *Commission staff working document generation adequacy in the internal electricity market – guidance on public interventions: SWD(2013) 438 final*. Brussels, 2013. URL: https://ec.europa.eu/energy/sites/ener/files/documents/com_2013_public_intervention_swd01_en.pdf.

National Grid. *Duration-Limited Storage De-Rating Factor Assessment: Final Report*. 2017. URL: https://www.emrdeliverybody.com/Lists/Latest%20News/Attachments/150/Duration%20Limited%20Storage%20De-Rating%20Factor%20Assessment%20-%20Final.pdf.
Apurba Sakti, Audun Botterud, and Francis O’Sullivan. “Review of wholesale markets and regulations for advanced energy storage services in the United States: Current status and path forward”. In: *Energy Policy* 120 (2018), pp. 569–579. ISSN: 03014215. DOI: 10.1016/j.enpol.2018.06.001.

Single Electricity Market Committee. *Capacity remuneration mechanism (CRM) – 2019/20 T−1 capacity auction parameters and enduring de-rating methodology: Decision paper SEM-18-030*. 2018. URL: https://www.semcommittee.com/sites/semc/files/media-files/SEM-18-030%20CRM%20T-1%20CY201920%20Parameters%20%20Enduring%20De-rating%20Methodology%20Decision%20Paper_0.pdf.

Single Electricity Market Committee. *Capacity requirement and de-rating factor methodology – detailed design: Decision paper SEM-16-082*. 2016. URL: https://www.semcommittee.com/sites/semcommittee.com/files/media-files/SEM-16-082%20CRM%20Capacity%20Requirement%20De-rating%20Methodology%20Decision%20Paper.pdf.
Inés Usera et al. “The Regulatory Debate About Energy Storage Systems: State of the Art and Open Issues”. In: IEEE Power and Energy Magazine 15.5 (2017), pp. 42–50. ISSN: 1540-7977. DOI: 10.1109/MPE.2017.2708859.