Comprehensive network analysis of integrin α_{11} expressed in human breast cancer

CURRENT STATUS: POSTED

Yun Fu
Shanghai First Maternity and Infant Hospital

Xiaoyin Sun
Shanghai First Maternity and Infant Hospital

Zhigang Zhuang zhuang_zg@163.com
Shanghai First Maternity and Infant Hospital

Corresponding Author
ORCiD: 0000-0002-7827-4402

DOI: 10.21203/rs.2.15539/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
TCGA database, breast cancer, co-expression, ITGA11
Abstract

Background: Breast cancer is the most common malignancy in women worldwide, but few genes have been reported to be involved in breast cancer development. Methods: We constructed a co-expression network to expand upon the knowledge of the various molecular biomarkers in breast cancer development. Transcriptome data for the tissues of all breast cancer and para-carcinoma types were retrieved from The Cancer Genome Atlas (TCGA) database. We performed a co-expression analysis of breast cancer transcriptome data using Pearson’s correlation coefficient (PCC) for inter-sequence mutual rank (MR)-based cutoffs using 11 guide genes and employed Kaplan-Meier survival analyses to assess the prognostic values of hub genes. Results: A co-expression network centered on the Integrin α 11 (ITGA11) of the extracellular matrix (including 11 guide genes and 72 edge genes) was extracted for breast cancer. The gene ontology (GO) analysis showed that various genes may also be included in the breast cancer network. Among them, CEMIP, COL11A1, CTHRC1, ITGA11, LUM and P4HA3 were negatively associated with the overall survival, and ADAMTS12 and LOXL1 were positively associated with the overall survival at early stage. However, there was no significant difference between the eight gene expressions and Disease-free survival. Conclusions: Our co-expression analysis includes the isolated transcriptome of breast cancer, which is a useful resource for breast cancer researchers, as it enables them to elucidate important and complex biological events to prevent and predict cancer.

Background

Breast cancer is one of the most common malignancies in women. There are approximately 1.2 million new breast cancer cases and 500,000 deaths worldwide each year[1]. The occurrence and development of breast cancer is a complex biological process
involving multi-gene participation, multi-factor action, and multi-stage progression, which depends on the interaction and regulation of multiple genes, transcripts, and proteins\[2\]. A promising strategy for the treatment of breast cancer and other cancers is molecular-targeted therapy, which requires a detailed understanding of the specific molecular events and different pathological pathways involved in the development and proliferation of breast cancer. In order to better classify and characterize tumors, it is necessary to predict breast cancer by seeking its associated biomarkers, which may contribute to the design of multimodal treatment options for designated individuals, and may also improve clinical efficiency and clinical outcome assessments\[3\].

To study candidate biomarkers in cancer, it is important to systematically analyze the interaction and functions of genes that exhibit similar expression patterns. For breast cancer, one of the most effective methods is to examine a co-expression network. Analysis of gene co-expression networks can calculate the correlation between gene expression through large-sample expression profiles, and incorporate highly-related genes into biologically meaningful regulatory networks to visually reveal the relationship between functional molecules in biological systems. It can be used to discover key target genes with important biological functions and significance\[4,5\]. To date, TCGA program has collected and offered a large amount of transcriptome data on breast cancer, which is valuable for seeking comprehensive understanding of new developments in transcriptional pathways and mining biomarker gene.

In this study, we searched the TCGA database for transcriptome data from the tissues of all breast cancers and para-carcinomas involved in the development of breast cancer. We analyzed each of the guide genes and extracted a network of structural components of the extracellular matrix (ECM) (11 guide genes and 72 edge genes). All genes obtained from the co-expression network of this study may act as resources when exploring candidate
biomarker genes in the further study of cancer prevention and control.

Methods

Microarray data

We searched the transcriptome data of breast cancer from the TCGA, including the gene profiles of all breast cancer and para-carcinoma tissues, for a total of 1,028 samples (see Table S1).

Gene ontology (GO) and expression coherence (EC)

The GO terminology was analyzed to obtain the genes associated with breast cancer and to classify their cellular components (CC), biological processes (BP), and molecular functions (MF). The GO terminology for the GO enrichment analysis and EC analysis was retrieved from DAVID (http://david.abcc.ncifcrf.gov/). For the GO enrichment analysis, the significant difference of GO enrichment in co-expressed genes was evaluated against a background set consisting of 15,438 genes, at least one of which was derived from a human co-expressed network dataset using hypergeometric distribution. Without multiple test correlations, the BP \(p \)-value <0.01 and MF \(p \)-value <0.1 were set as significance thresholds. EC analysis was performed as described by Aya K et al.[6]: Genes with the same GO term (containing 20-100 genes) were used as a set of predefined functional genes. To calculate the EC of the paired genes for each GO classification, Pearson’s correlation coefficient (PCC) was used to measure expression similarity. A threshold of 0.722 corresponded to the median of all PCC values, while >99% of the random PCC distribution was derived from 1,000 random genes (yielding approximately \(1,000 \times 999 \times 0.5 \) gene pairs). To calculate the random EC of the GO category, the random gene set was sampled to the same size as the survey category.
Co-expression analysis and hub genes validation

To construct a co-expression network, we calculated the PCC values for all combinations of the 60,488 unique genes present in the 1,028 downloaded samples obtained from the TCGA database. We estimated a PCC threshold of 0.722, corresponding to the median of all PCC values, which was >99th percentile of the random PCC distribution of 1,000 random genes (approximately 1,000 × 999 × 0.5 gene pairs). According to Obayashi’s report[7], we also calculated the mutual rank (MR) value between gene pairs as another value that indicated co-expression to further reduce the number of false positives. Only gene pairs with an absolute MR value <10 were considered to be important linkages to the co-expression network. Calculations were performed with R/Bioconductor. To extract the breast cancer subnet dataset, we took two steps out of the guide gene to extract the vicinity of the network, as described by Mutwil et al.[8]. The network is illustrated using the Cytoscape program. Overall survival and disease free survival of genes from co-expression network in breast cancer based on Kaplan Meier-plotter(www.kmplot.com)[9]. The patients were stratified into high-level group and low-level group according to different expression ratio.

Results

Biological significance of expression similarity

We first used the GO terminology for EC analysis to examine the biological significance of the similarity in the transcriptome datasets of the 1,028 samples downloaded in this study (Table S1). EC analysis is a statistical analysis method used to detect whether the transcriptional profiles of genes belonging to a predefined functional gene set are interrelated[10]. EC scores can measure expression similarity within a predefined functional genome[10]; therefore, when most genes with the same GO term are co-expressed with each other, a higher EC score is obtained. In our EC analysis, EC scores (biological processes [BP], molecular function [MF], and cellular components [CC]) were
higher in all three GO groups than in the random sampling (Fig 1). Among the three GO groups, CC showed the highest expression similarity, of which approximately 28.55% of the categories showed higher EC scores than random sampling at threshold EC score of 0.15, while approximately 25.86% and 25.62% did so in BP in MF, respectively (Fig 1 and Table S2).

Construction of the breast cancer network

Using the PCC method, the PCC threshold was 0.722, corresponding to median of all PCC values that were >99th percentile of the random PCC distribution obtained for 1,000 random genes. We determined the total number of human breast cancers generated from the 1,028 sample data points that we downloaded. The final dataset of the network used in this study contained 40,750 genes (guide) and 209,928 gene pairs (edges). From the entire dataset of the human breast cancer co-expression network, we were able to construct a network around the gene of interest, which served as a guide gene, and used MR-based truncation to obtain genes with very close expression profiles.

The ECM, glycoprotein, signal transduction, and secretion play important roles in tissue development, cancer formation, and invasion. To test whether our co-expression network analysis could identify useful transcriptional networks related to human breast cancer development, we selected 11 genes involved in these pathways or functional processes to find which genes were co-expressed in all samples. After screening by cutoff and MF, a complex network of 72 genes was obtained (Fig 2) and a co-expression network centered on Integrin α 11 (ITGA11) (guide gene; green circle in Fig 2) was constructed. The blue circle represents the remaining 10 guide genes. As can be seen from Fig 2 and Table S3, the remaining 10 guide genes share a highly positive correlation with ITGA11. These genes were counted according to the UniProtKB keyword enrichment analysis (Table 1). As
can be seen from the table, *ITGA11* shares similar functions with the 10 guide genes, and it can also be found in the same pathway.

GO analysis and KEGG pathway analysis of the breast cancer network

The good association between the 11 guide genes in the primary expression cluster indicates that the genes involved in breast cancer can be strictly co-regulated at the expression level; thus, the breast cancer development event may be an appropriate subject for co-expression analysis. The results of the GO analysis also support this (Fig 3). During biological process analysis, terms related to collagen catabolism (e.g. “collagen catabolic process”, “collagen fibril organization”, and “skeletal system development”), terminology related to the structural components of the ECM (e.g. “extracellular matrix organization”, “cell adhesion”, “extracellular matrix disassembly”, “cell-matrix adhesion”, and “integrin-mediated signaling pathway”) appear in the genes of breast cancer collagen catabolism and in the structural components of the ECM, respectively (Fig 3a). The cellular components of those genes obtained in the breast cancer networks were mainly associated with the ECM (e.g., “extracellular matrix”, “proteinaceous extracellular matrix”, “collagen trimer”, “extracellular region”, and “extracellular space”; Fig 3b). Additionally, The molecular functions of the obtained genes are primarily related to binding (e.g. “collagen binding”, “integrin binding”, “heparin binding”, and “calcium ion binding”; Fig 3c).

Furthermore, from the GO analysis (Fig 3), it seems various other genes can be included in the breast cancer network (white circles, Fig 2). This suggests how some genes that have not been reported in breast cancer can be mined from the existing data, and new interactions between these genes can also be identified from connections in the network (Fig 2). Cancer development is a very specific biological event; as such, co-expression
network analysis may have the greatest success in identifying genetic interactions in breast cancer.

In addition, we performed a KEGG pathway analysis of the genes obtained from breast cancer co-expression networks. Through the above GO analysis, the pathway related to ECM receptor interaction, focal adhesion, and protein digestion and absorption is constant. We were surprised to find that pathways for infectious diseases, such as amoebiasis, were involved in the pathway enrichment of those genes obtained by co-expression analysis in this study (Table S4). All of these results support our co-expression analysis of gene predictions for breast cancer, which may be useful for subsequent studies and in the design of various medical treatments.

Identification and validation of hub genes

Based on the UniProtKB keyword enrichment analysis, 62 genes with high correlation with ITGA11 were identified as hub genes (Table 1). Survival analysis of hub genes were performed using Kaplan Meier-plotter[9]. The patients were stratified into high-level group and low-level group according to different expression ratio. The customized cutoff-high and cutoff-low of the eight genes is ADAMTS12 (72:28), CEMIP (43:57), COL11A1 (51:49), CTHRC1 (25:75), ITGA11 (54:46), LOXL1 (50:50), LUM (73:27) and P4HA3(76:24). Among them, CEMIP, COL11A1, CTHRC1, ITGA11, LUM and P4HA3 were negatively associated with the overall survival, while ADAMTS12 and LOXL1 were positively associated with the overall survival at early stage (Fig 4). However, there was no significant difference between the eight gene expressions and Disease-free survival (Fig S1).

Discussion

The aim of this study was to identify the various gene interactions involved in the biological events associated with breast cancer using the 1,028 datasets from TCGA,
specifically exploring human breast cancers and normal tissues. The combined application of these valuable microarray data allows us to build high-resolution networks (Fig 2) that contain useful information to detect gene regulatory networks in biological processes[7]. This suggests that we can perform co-expression screening using reliable network datasets and an effective human cancer database to track the genes involved in specific biological events[11]. In this study, 62 genes with high correlation with ITGA11 were identified as hub genes based on the UniProtKB keyword enrichment analysis. We searched for 11 important genes involved in breast cancer or in other cancer development (COL8A1, COL10A1, COL11A1, COL12A1, ITGA11, AEBP1, CORIN, HSD17B6, THBS2, ANTXR1, and FN1) to construct a gene co-expression network. Furthermore, among them, CEMIP, COL11A1, CTHRCl, ITGA11, LUM and P4HA3 were negatively associated with the overall survival, ADAMTS12 and LOXL1 were positively associated with the overall survival at early stage. The ECM receptor interaction pathway, the focal-adhesion pathway, and the PI3K-AKT pathway were shown to be involved in the progression of breast cancer[12,13].

ITGA11 is a member of the integrin family, which is involved in various processes that affect the biological behavior of cells, such as metastasis, embryogenesis, hemostasis, the immune response, tissue repair, cancer growth, tumor angiogenesis, and resistance to treatment[14,15]. However, its expression has been shown to be upregulated under malignant conditions, such as in non-small cell lung cancer, which has been suggested to be associated with cancer-cell growth[16,17]. In addition, the high expression of ITGA11 is associated with the prognosis of breast cancer[18], glioblastoma[19], pancreatic cancer[20] and lung cancer[21]. Speculated from its gene ontology, ITGA11 can participate in the biological process of collagen binding and cancer-cell differentiation, indicating that it is involved in the pathological process of breast cancer.
He et al’s study[22] found that $COL1A1$, $COL3A1$, $COL4A1$, and $COL11A1$ significantly enriched in the focal-adhesion and ECM receptor interaction pathways. In this study, different gene expressions in the blue circles, including $COL8A1$, $COL10A1$, $COL11A1$, $COL12A1$, and $ITGA11$ in green circle, were identified as key genes located upstream of these three signaling pathways. The first four genes were reported to be members of the collagen (COL) family and are associated with breast cancer.

FN1 is a glycoprotein that exists as a dimer on the cell surface and in the ECM, involved in cell adhesion, cell migration, wound healing, and cell metastasis[23]. FN1 is upregulated in breast cancer, and it has also been identified as a central protein in previously constructed protein-protein interaction (PPI) networks[24]. A prior gene regulatory network analysis of breast cancer showed that FN1 is upregulated in invasive breast cancer cell lines and is associated with the aggressive behavior of breast cancer cells[25]. FN1 is associated with five significantly enriched KEGG pathways, including “sticky spots”, “protein digestion and absorption”, and “ECM receptor interactions” (Table S3).

ANTXR1 is a transmembrane protein that is highly expressed in breast cancer cells[26]. ANTXR1 interacts with lipoprotein receptor-associated protein(LRP)6 and vascular endothelial growth factor receptor(VEGF)2, respectively, and regulates Wnt and VEGF signaling pathway[27,28]. In addition, ANTXR1 selectively expresses tumor vasculature and promotes tumor angiogenesis[29]. $ANTXR1$ expression is predominantly observed in basal-like cell lines and a few luminal cell lines, which has a prognostic impact on ERα-negative/basal breast cancer. Further, Iyengar et al. recently confirmed that the adipocyte-derived carboxy terminal fragment of collagen VIα3 activates AKT and β-catenin and promotes breast cancer progression by acting as $ANTXR1$ expressed on cancer cells[30].

Conclusions
In summary, we have identified \textit{COL8A1, COL10A1, COL11A1, COL12A1, ITGA11, AEBP1, CORIN, HSD17B6, THBS2, ANTXR1, and FN1} as biomarkers in breast cancer. Among them, CEMIP, COL11A1, CTHRC1, ITGA11, LUM and P4HA3 were negatively associated with the overall survival, and ADAMTS12 and LOXL1 were positively associated with the overall survival at early stage. As such, co-expression microarray data analysis can be an effective tool for identifying more prognostic markers and therapeutic targets in breast cancer.

\textbf{List Of Abbreviations}

TCGA: the Cancer Genome Atlas
PCC: Pearson’s correlation coefficient
MR: mutual rank
ITGA11: Integrin \(\alpha 11\)
GO: gene ontology
ECM: extracellular matrix
EC: expression coherence
CC: cellular components
BP: biological processes
MF: molecular functions
COL: collagen
PPI: protein-protein interaction
LRP: lipoprotein receptor-associated protein
VEGF: vascular endothelial growth factor receptor

\textbf{Declarations}

\textit{Ethics approval and consent to participate}
Not applicable

Consent for publication

Not applicable

Availability of data and materials

The GO terminology for the GO enrichment analysis and EC analysis was retrieved from DAVID (http://david.abcc.ncifcrf.gov/c). Funding:

This work was supported by Shanghai Municipal Health Bureau (201640084), and the Fundamental Research Funds for the Central Universities (22120180407).

Authors’ contributions:

Writing: Fu Yun

Data analysis and statistics: Sun Xiaoyin and Fu Yun

Editing: Zhuang Zhigang

Competing interests

All authors have no conflicts of interest.

References

1. Donepudi MS, Kondapalli K, Amos SJ, Venkanteshan P (2014) Breast cancer statistics and markers. J Cancer Res Ther 10 (3):506-511. doi:10.4103/0973-1482.137927

2. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, Wang X, Qiao JW, Cao S, Petralia F, Kawaler E, Mundt F, Krug K, Tu Z, Lei JT, Gatza ML, Wilkerson M, Perou CM, Yellapantula V, Huang KL, Lin C, McLellan MD, Yan P, Davies SR, Townsend RR, Skates SJ, Wang J, Zhang B, Kinsinger CR, Mesri M, Rodriguez H, Ding L, Paulovich AG, Fenyo D, Ellis MJ, Carr SA, Nci C (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534 (7605):55-62. doi:10.1038/nature18003
3. Hainaut P, Plymoth A (2013) Targeting the hallmarks of cancer: towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 25 (1):50-51. doi:10.1097/CCO.0b013e32835b651e

4. Geng R, Li Z, Yu S, Yuan C, Hong W, Wang Z, Wang Q, Yi Z, Fang Y (2018) Weighted gene co-expression network analysis identifies specific modules and hub genes related to subsyndromal symptomatic depression. World J Biol Psychiatry:1-23. doi:10.1080/15622975.2018.1548782

5. Gysi DM, Voigt A, Fragoso TM, Almaas E, Nowick K (2018) wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinformatics 19 (1):392. doi:10.1186/s12859-018-2351-7

6. Aya K, Suzuki G, Suwabe K, Hobo T, Takahashi H, Shiono K, Yano K, Tsutsumi N, Nakazono M, Nagamura Y, Matsuoka M, Watanabe M (2011) Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 6 (10):e26162. doi:10.1371/journal.pone.0026162

7. Obayashi T, Kinoshita K (2009) Rank of correlation coefficient as a comparable measure for biological significance of gene coexpression. DNA Res 16 (5):249-260. doi:10.1093/dnares/dsp016

8. Mutwil M, Ruprecht C, Giorgi FM, Bringmann M, Usadel B, Persson S (2009) Transcriptional wiring of cell wall-related genes in Arabidopsis. Mol Plant 2 (5):1015-1024. doi:10.1093/mp/ssp055

9. Lanczky A, Nagy A, Bottai G, Munkacsy G, Szabo A, Santarpia L, Gyorffy B (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat 160 (3):439-446. doi:10.1007/s10549-016-4013-7
10. Huang R, Wallqvist A, Covell DG (2006) Targeting changes in cancer: assessing pathway stability by comparing pathway gene expression coherence levels in tumor and normal tissues. Mol Cancer Ther 5 (9):2417-2427. doi:10.1158/1535-7163.MCT-06-0239

11. Wang Y, Zhang Y, Huang Q, Li C (2018) Integrated bioinformatics analysis reveals key candidate genes and pathways in breast cancer. Mol Med Rep 17 (6):8091-8100. doi:10.3892/mmr.2018.8895

12. Olex AL, Turkett WH, Fetrow JS, Loeser RF (2014) Integration of gene expression data with network-based analysis to identify signaling and metabolic pathways regulated during the development of osteoarthritis. Gene 542 (1):38-45. doi:10.1016/j.gene.2014.03.022

13. Chen J, Crawford R, Xiao Y (2013) Vertical inhibition of the PI3K/Akt/mTOR pathway for the treatment of osteoarthritis. J Cell Biochem 114 (2):245-249. doi:10.1002/jcb.24362

14. Bansal R, Nakagawa S, Yazdani S, van Baarlen J, Venkatesh A, Koh AP, Song WM, Goossens N, Watanabe H, Beasley MB, Powell CA, Storm G, Kaminski N, van Goor H, Friedman SL, Hoshida Y, Prakash J (2017) Integrin alpha 11 in the regulation of the myofibroblast phenotype: implications for fibrotic diseases. Exp Mol Med 49 (11):e396. doi:10.1038/emm.2017.213

15. Nam K, Son SH, Oh S, Jeon D, Kim H, Noh DY, Kim S, Shin I (2017) Binding of galectin-1 to integrin beta1 potentiates drug resistance by promoting survivin expression in breast cancer cells. Oncotarget 8 (22):35804-35823. doi:10.18632/oncotarget.16208

16. Zhu CQ, Popova SN, Brown ER, Barsyte-Lovejoy D, Navab R, Shih W, Li M, Lu M, Jurisica I, Penn LZ, Gullberg D, Tsao MS (2007) Integrin alpha 11 regulates IGF2 expression in fibroblasts to enhance tumorigenicity of human non-small-cell lung
cancer cells. Proc Natl Acad Sci U S A 104 (28):11754-11759.
doi:10.1073/pnas.0703040104

17. Navab R, Strumpf D, To C, Pasko E, Kim KS, Park CJ, Hai J, Liu J, Jonkman J, Barczyk M, Bandarchi B, Wang YH, Venkat K, Ibrahimov E, Pham NA, Ng C, Radulovich N, Zhu CQ, Pintilie M, Wang D, Lu A, Jurisica I, Walker GC, Gullberg D, Tsao MS (2016)
Integrin alpha11beta1 regulates cancer stromal stiffness and promotes
tumorigenicity and metastasis in non-small cell lung cancer. Oncogene 35 (15):1899-1908. doi:10.1038/onc.2015.254

18. Pan Y, Liu G, Yuan Y, Zhao J, Yang Y, Li Y (2017) Analysis of differential gene
expression profile identifies novel biomarkers for breast cancer. Oncotarget 8
(70):114613-114625. doi:10.18632/oncotarget.23061

19. Schittenhelm J, Schwab EI, Sperveslage J, Tatagiba M, Meyermann R, Fend F,
Goodman SL, Sipos B (2013) Longitudinal expression analysis of alphav integrins in
human gliomas reveals upregulation of integrin alphavbeta3 as a negative prognostic
factor. J Neuropathol Exp Neurol 72 (3):194-210.
doi:10.1097/NEN.0b013e3182851019

20. Schnittert J, Bansal R, Mardhian DF, van Baarlen J, Ostman A, Prakash J (2019)
Integrin alpha11 in pancreatic stellate cells regulates tumor stroma interaction in
pancreatic cancer. FASEB J 33 (5):6609-6621. doi:10.1096/fj.201802336R

21. Fregni G, Quinodoz M, Moller E, Vuille J, Galland S, Fusco C, Martin P, Letovanec I,
Provero P, Rivolta C, Riggi N, Stamenkovic I (2018) Reciprocal modulation of
mesenchymal stem cells and tumor cells promotes lung cancer metastasis.
EBioMedicine 29:128-145. doi:10.1016/j.ebiom.2018.02.017

22. He P, Zhang Z, Liao W, Xu D, Fu M, Kang Y (2016) Screening of gene signatures for
rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol Med Rep
16 (2):1587-1593. doi:10.3892/mmr.2016.5423

23. Steffens S, Schrader AJ, Vetter G, Eggers H, Blasig H, Becker J, Kuczyk MA, Serth J (2012) Fibronectin 1 protein expression in clear cell renal cell carcinoma. Oncol Lett 3 (4):787-790. doi:10.3892/ol.2012.566

24. Liu X, Ma Y, Yang W, Wu X, Jiang L, Chen X (2015) Identification of therapeutic targets for breast cancer using biological informatics methods. Mol Med Rep 12 (2):1789-1795. doi:10.3892/mmr.2015.3565

25. Yang X, Jia M, Li Z, Lu S, Qi X, Zhao B, Wang X, Rong Y, Shi J, Zhang Z, Xu W, Gao Y, Zhang S, Yu G (2014) Bioinformatics analysis of aggressive behavior of breast cancer via an integrated gene regulatory network. J Cancer Res Ther 10 (4):1013-1018. doi:10.4103/0973-1482.137971

26. Chen D, Bhat-Nakshatri P, Goswami C, Badve S, Nakshatri H (2013) ANTXR1, a stem cell-enriched functional biomarker, connects collagen signaling to cancer stem-like cells and metastasis in breast cancer. Cancer Res 73 (18):5821-5833. doi:10.1158/0008-5472.CAN-13-1080

27. Hu K, Olsen BR, Besschetnova TY (2017) Cell autonomous ANTXR1-mediated regulation of extracellular matrix components in primary fibroblasts. Matrix Biol 62:105-114. doi:10.1016/j.matbio.2016.12.002

28. Verma K, Gu J, Werner E (2011) Tumor endothelial marker 8 amplifies canonical Wnt signaling in blood vessels. PLoS One 6 (8):e22334. doi:10.1371/journal.pone.0022334

29. Chaudhary A, Hilton MB, Seaman S, Haines DC, Stevenson S, Lemotte PK, Tschantz WR, Zhang XM, Saha S, Fleming T, St Croix B (2012) TEM8/ANTXR1 blockade inhibits pathological angiogenesis and potentiates tumoricidal responses against multiple cancer types. Cancer Cell 21 (2):212-226. doi:10.1016/j.ccr.2012.01.004

30. Alcala S, Martinelli P, Hermann PC, Heeschen C, Sainz B, Jr. (2019) The Anthrax Toxin
Receptor 1 (ANTXR1) Is Enriched in Pancreatic Cancer Stem Cells Derived from Primary Tumor Cultures. Stem Cells Int 2019:1378639. doi:10.1155/2019/1378639

Table

Gene ID	Gene Name	UniProtKB Keywords (-log10(P-value), Fold)	Extracellular matrix (27.29, 26.95)	Secreted (22.65, 5.94)	Signal (20.22, 3.54)
ADAM12	ADAM metalloproteinase domain 12	√	√	√	
ADAMTS12	ADAM metalloproteinase with thrombospondin type 1 motif 12	√	√	√	
ADAMTS2	ADAM metalloproteinase with thrombospondin type 1 motif 2	√	√	√	
*AEBP1	AE binding protein 1	√	√	√	
AXL	AXL receptor tyrosine kinase	√	√	√	
C1QTNF3	C1q and tumor necrosis factor related protein 3	√	√	√	
C1QTNF6	C1q and tumor necrosis factor related protein 6	√	√	√	
GPR1	G protein-coupled receptor 1	√	√	√	
HTRA1	HtrA serine peptidase 1	√	√	√	
NOX4	NADPH oxidase 4				
SPOCK1	SPARC/osteonectin, cwcw and kazal like domains proteoglycan 1	√	√	√	
ST6GAL2	ST6 beta-galactoside alpha-2,6-sialyltransferase 2				
TIMP2	TIMP metalloproteinase inhibitor 2	√	√	√	
WISP1	WNT1 inducible signaling pathway protein 1	√	√	√	
*ANTXR1	Anthrax toxin receptor 1	√	√	√	
ASPN	Asporin	√	√	√	
CDH11	Cadherin 11				
CEMIP	Cell migration inducing hyaluronan binding protein	√	√	√	
CERCAM	Cerebral endothelial cell adhesion molecule				
CHSY3	Chondroitin sulfate synthase 3				
CTHRC1	Collagen triple helix repeat containing 1	√	√	√	
COL1A1	Collagen type I alpha 1 chain	√	√	√	
COL1A2	Collagen type I alpha 2 chain	√	√	√	
COL3A1	Collagen type III alpha 1 chain	√	√	√	
COL5A1	Collagen type V alpha 1 chain	√	√	√	
COL5A2	Collagen type V alpha 2 chain	√	√	√	
COL6A3	Collagen type VI alpha 3 chain	√	√	√	
COL8A1	Collagen type VIII alpha 1 chain	√	√	√	
*COL8A2	Collagen type VIII alpha 2 chain	√	√	√	
*COL10A1	Collagen type X alpha 1 chain	√	√	√	
Gene	Description	√	√	√	
------------	--	---	---	---	
COL11A1	Collagen type XI alpha 1 chain	√	√	√	
*COL12A1	Collagen type XII alpha 1 chain	√	√	√	
*CORIN	Corin, serine peptidase	√	√	√	
FAP	Fibroblast activation protein alpha	√	√	√	
*FN1	Fibronectin 1	√	√	√	
FIBIN	Fin bud initiation factor homolog	√	√	√	
GXYLT2	Glucosid xylosyltransferase 2	√	√	√	
GLT8D2	Glycosyltransferase 8 domain containing 2	√	√	√	
*HSD17B6	Hydroxysteroid 17-beta dehydrogenase 6	√	√	√	
INHBA	Inhibin beta A subunit	√	√	√	
*ITGA11	Integrin subunit alpha 11	√	√	√	
ITGBL1	Integrin subunit beta like 1	√	√	√	
LRRC15	Leucine rich repeat containing 15	√	√	√	
LUM	Lumican	√	√	√	
LOXL1	Lysyl oxidase like 1	√	√	√	
LOX	Lysyl oxidase	√	√	√	
MMP11	Matrix metallopeptidase 11	√	√	√	
MMP14	Matrix metallopeptidase 14	√	√	√	
MMP2	Matrix metallopeptidase 2	√	√	√	
MXRA5	Matrix remodeling associated 5	√	√	√	
NTM	Neurotrimin	√	√	√	
NID2	Nidogen 2	√	√	√	
OMD	Osteomodulin	√	√	√	
POSTN	Periostin	√	√	√	
PLXNC1	Plexin C1	√	√	√	
P4HA3	Prolyl 4-hydroxylase subunit alpha 3	√	√	√	
SCARF2	Scavenger receptor class F member 2	√	√	√	
SFRP2	Secreted frizzled related protein 2	√	√	√	
SPARC	Secreted protein acidic and cysteine rich	√	√	√	
*THBS2	Thrombospondin 2	√	√	√	
TNFSF4	Tumor necrosis factor superfamily member 4	√	√	√	
VCAN	Versican	√	√	√	

* Genes directly linked by ITGA11 in the co-expression network.

Supporting Figure Legend

Fig S1. Disease free survival analysis of the eight hub genes in breast cancer based on Kaplan Meier-plotter. The patients were stratified into high-level group and low-level.
group according to different expression ratio. (A) ADAMTS12. (B) CEMIP. (C) COL11A1. (D) CTHRC1. (E) ITGA11. (F) LOXL1. (G) LUM. (H) P4HA3.

Figures

Figure 1

EC analysis of the 1,028-microarray data of human breast cancers (BC). BP, MF, and CC represent the biological process, molecular function, and cellular component groups of GO, respectively. The total number of categories in each GO
group is indicated in parentheses. In the three GO groups (BP, blue; CC, red; and MF, gray), the EC score was calculated for each GO category (only gene numbers between 20 and 200) and compared with that of random sampling (orange) to estimate the statistically significant level. The fraction of categories (y-axis) indicates the ratio of the number of GO categories with a higher EC score than each threshold EC score (x-axis) to the total number of GO categories.

Figure 2

The BC co-expression network in humans. The co-expression subnetwork was constructed using 11 reported human breast cancer or other cancer genes as guide genes (blue circles). A link between two nodes indicates a direct interaction with PCC >0.722 and MR <10. The subnetwork vicinity is extracted by taking two steps out from each guide gene.
The GO term analysis of BP, MF, and CC for the breast cancer network genes. The GO analysis of BP (A), CC (B), and MF(C) for the genes in the breast cancer network was performed. The minus logarithm of the p-value (x-axis) indicates the significance of the gene set belonging to predefined categories under the 15,438-gene background. The y-axis represents each GO category. The gene number and EC value of the category in the subnetwork are shown in brackets.
Figure 4

Overall survival of the eight hub genes in breast cancer based on Kaplan Meier-plotter. The patients were stratified into high-level group and low-level group according to different expression ratio. (A) ADAMTS12. (B) CEMIP. (C) COL11A1. (D) CTHRC1. (E) ITGA11. (F) LOXL1. (G) LUM. (H) P4HA3.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Table.S1_sampleInfor(1028cases).xlsx
Fig S1.tiff
Table S2 EC scores of BP.docx
Table.S4.xlsx
Table.S3.xlsx