Cryptococcosis is a leading invasive fungal infection in immunocompromised patients. Considering the high prevalence and severity of these infections in immunocompromised patients attended at HC-FMRP-USP, the present research aimed to characterize the clinical isolates of *Cryptococcus* strains by biochemical and molecular methods and evaluate antifungal susceptibility of clinical isolates. Fifty isolates from 32 HIV-positive patients were obtained at HC-FMRP-USP. Most of the isolates (78.1%) were identified as *C. neoformans*, and 100% of *C. neoformans* and *C. gatti* strains were susceptible to amphotericin B, ketoconazole and fluconazole. All isolates were classified as serotype A (*grubii* variety) by PCR and most of them were characterized in mating type MATα. PCR analysis of specific M13 microsatellite sequence revealed that VNI type was predominant among *C. neoformans*, while VGII was predominant among *C. gatti*. The strains did not show a significant resistance to the antifungals tested, and Canavanine-Glycine-Bromthymol Blue Agar (CGB) proved to be a reliable test presenting a good correlation with the molecular characterization. *C. neoformans* isolated from disseminated infections in the same patient showed molecular identity when different anatomical sites were compared; besides, the studied strains did not present a significant increase in resistance to antifungal agents. In addition, the homogeneity of the molecular types and detection of the mating types suggested a low possibility of crossing among the strains.

KEYWORDS: *Cryptococcus neoformans*; Serotyping; Genotyping; Fingerprinting; Antifungal agents; Mating type; HIV-patients.

INTRODUCTION

Cryptococcus sp is a saprophyte encapsulated yeast that exhibits single or multiple asynchronous buds, and has five serotypes, A, B, C, D and AD. It is subdivided into two varieties known as *C. grubii* (serotype A) and *C. neoformans* (serotypes D and AD), while the serotypes B and C are grouped into *C. gatti* species. However, there is a new nomenclature classifying *C. neoformans* as the strains considered var. *grubii* (serotype A) and *C. deneoformans* as the var. *neoformans* (serotype D). In addition, *C. gatti* will comprise five species: *C. gatti*, *C. bacillisporus*, *C. deuterogatti*, *C. tetrugatti* and *C. decagatti*. Representatives of this genus grow at 37°C, hydrolyze starch, produce urease and do not ferment lactose. Cryptococcal infections occur worldwide in undefined endemic areas. However, the environmental serotype distribution shows some differences, presenting *C. gatti* as the prevalent species in tropical and subtropical areas.

Routinely, *C. neoformans* and *C. gatti* cultures are distinguished in CGB-Agar, an enriched medium, which inhibits *C. neoformans* growth and favors *C. gatti* development. The color change from yellow-green to blue-cobalt indicates serotypes B and C.

Another important identification method for this species is the sexual mating type analysis. The mating locus MAT of *C. neoformans* serotype A and D is unique. It is characterized by different regions with very similar structures and functions, which can be also found in other fungi. MAT locus has an average size of 100 Kb, comprising more than 20 genes.
some being present in both alleles MAT_a and MAT_α, and other genes present in only one of these alleles$^{11-15}$. Although diploid or aneuploidy strains are rare, they have already been isolated in nature16,17.

In $C. gattii$, it is only possible to determine the sexual type using oligonucleotides flanking the genes $\text{MF}_\alpha\text{t}_1$ and $\text{MF}_\alpha\text{t}_2$. On the other hand, the serotype B/C is identified by PCR using a primer pair specific for $C. gattii$ superoxide dismutase gene$^{18-20}$.

Serotypes A and D, mating type α, are the most common variety causing infections in humans. Although studies with serotypes A, D, B, B, and C have not demonstrated differences in the susceptibility to antifungal agents, the higher incidence of serotypes A, D, and AD in HIV-infected patients have suggested a pattern behavior that is demonstrated by clinical and epidemiological studies$^{20-23}$.

$C. neoformans$ is the major cause of cryptococcosis affecting millions of people worldwide. In patients with the acquired immunodeficiency syndrome (AIDS) or immunosuppressive conditions, such as organ transplantation or submitted to chemotherapy treatment, cryptococcosis represents the most common fungal infection. During the disease, various strategies are employed to treat these infections, including amphotericin B alone or in combination with 5-flucytosine and azoles, as fluconazole, itraconazole or voriconazole, which are the standard reference drugs nowadays24,25. Considering the high frequency of cryptococcosis in HIV-infected patients attended at the University Hospital of Ribeirão Preto Medical School, University of Sao Paulo (HC-FMRP-USP), the present investigation aimed to characterize the clinical isolates of $Cryptococcus$ strains by biochemical and molecular methods. The molecular typing, serotyping and mating type identification by molecular biology techniques were used to identify and distinguish the isolates. In addition, the strains were characterized regarding the sensitivity profile to the antifungal agents, amphotericin B, ketoconazole, itraconazole, fluconazole and 5-fluorocytosine.

MATERIAL AND METHODS

Cryptococcus isolates

Fifty isolates collected from 32 patients at HC-FMRP-USP and belonging to the Cryptococcus collection from the Mycology Laboratory - Department of Cell and Molecular Biology, and Pathogenic Bioagents (FMRP-USP) were selected for phenotypic and genotypic studies. The strains were maintained in $\text{Sabouraud Dextrose Agar}$ medium (SDA) at room temperature. The strains were previously identified as belonging to the genus Cryptococcus using the classical identification tests such as capsule observation using Indian ink stain and biochemical tests, such as urea degradation and sugars assimilation analysis26.

The isolates were divided into three groups as follow: Group I – strains isolated from different patients; Group II – strains isolated from the same patient at the same period, in different anatomical sites; and Group III – strains isolated from the same patient at different periods.

Biochemical characterization of Cryptococcus

The isolates were subcultured in CGB-Agar, pH 5.6, in which the fungi culture presents the typical greenish yellow color according to Kwon-Chung et al.30. Isolates were incubated at 37 °C for 48 hours and the reading was performed according to the growth characteristic in this medium: the maintenance of the original medium color is an indication of $C. neoformans$ (serotypes A, D, and AD), while the change to blue-cobalt shade characterizes $C. gattii$ (serotypes B and C). Simultaneously, Cryptococcus reference strains were used as experimental controls: A (CDC 9759), B (ATCC 32269), C (ATCC 24066), and D (ATCC 28958).

DNA isolation

The genomic DNA extraction method was based on the methodology described by Bolano et al.27.

Determination of mating type and serotype

The amplification reactions for sexual type and serotype characterization were performed with Taq DNA Polymerase (Fermentas, Thermo Fisher Scientific, Waltham, Massachusetts, USA), according to the manufacturer’s instructions in a PTC-200 thermal cycler (MJ Research, GMI Inc., Ramsey, Minnesota, USA), and it was established 32 cycles for the PCR. Table 1 presents the primer sequences, annealing temperatures and PCR product sizes according to each pair of pairs26,27. The amplification products were submitted to electrophoresis on 1% agarose gels in $1\times$ TAE (Tris-Acetate-EDTA) at 75 volts for 2 hours. Gels were stained with ethidium bromide, visualized under UV light and the images were captured by the Alpha-Innotech Image System (Alpha-Innotech Corp., San Leandro, CA, USA)29.

PCR-fingerprinting

The molecular typing of Cryptococcus isolates was performed according to the methodology described by Meyer$^{30-32}$, which is based on random amplification of DNA fragments generated by primers recognizing specific minisatellite sequences, allowing a molecular classification defined as VNI, VNII, and VNIII to $C. neoformans$, and VGI, VGII, and VGIII to VGI to $C. gattii$. The primers were M13 (5′-GAGGGTGCGGTCTTCT-3′) and (GACA)31. All reactions were performed in a final volume of 50μL containing 100 ng of genomic DNA, 10 pmol of each primer, 2 mM of MgCl_2, 2.5 U of Taq DNA polymerase, $1x$ PCR Buffer and 10 mM of each dNTP. Amplification conditions were: initial denaturation step at 94 °C for 5 minutes, followed by 35 cycles: denaturation at 94 °C for 1 minute, annealing at 49 °C for 1 minute, extension at 72 °C for 1 minute, followed by a final extension at 72 °C for 10 minutes. The generated amplification products were submitted to electrophoresis on 1% agarose gels as previously described, and the interpretation of results was based on the number and size of the amplification products.

Antifungal susceptibility testing

The susceptibility of $C. neoformans$, $C. gattii$ and the control strains to antifungal agents was determined by the microdilution plate method, with some modifications based on the protocol recommended by the National Committee for Clinical Laboratory Standards, document (CLSI M27-A2). The drugs used here were amphotericin B (Fungizon, Bristol-Myers-Squibb, Brazil), ketoconazole (Janssen Cilag, Brazil), itraconazole (Janssen Cilag, Brazil), fluconazole (Pfizer, Brazil) and 5-fluorocytosine (Roche, Brazil). The stock solution of
Each drug was prepared with sterilized water for amphotericin B, fluconazole and 5-fluorocytosine, and DMSO (dimethyl sulfoxide) for ketoconazole and itraconazole, divided in aliquots in sterilized microcentrifuge tubes and stored at -80°C until used. Two serial dilutions of each antifungal agent were prepared with RPMI 1640 medium (Sigma Chemical Co., Saint Louis, Missouri, USA) with L-glutamine and without sodium bicarbonate, and buffered to pH 7.0 with 0.165 M MOPS (morpholinopropanesulfonic acid). The final concentrations ranged from 0.0312 to 16 µg/mL for amphotericin B; 0.0312 to 16 µg/mL for itraconazole; 0.0625 to 32 µg/mL ketoconazole; 0.25 to 128 µg/mL for 5-fluocytosine and 0.25 to 128 µg/mL fluconazole. The microdilution assay was performed in 96-well microdilution plates. Results were visually evaluated after 72 hours of incubation for *C. neoformans* isolates and 48 hours for *Candida parapsilosis* standard sample. In order to validate the test, the standard sample used in all reactions showed minimal inhibitory concentrations (MIC) for each antifungal, within known ranges. The MIC determined for ketoconazole, itraconazole, fluconazole and 5-fluorocytosine corresponded to the concentration that inhibited more than 50% of the fungal growth, compared with the positive control, and for amphotericin B the MIC was considered the concentration showing 100% of growth inhibition. Isolates were considered susceptible or resistant to the tested antifungal agents in accordance to breakpoint values defined by Clinical and Laboratory Standards Institute (CLSI), 2002, 2003, 2005.

RESULTS

The strains collected from 32 HIV-positive patients comprised 50 isolates, from which 78.1% were phenotypically identified as *C. neoformans* and 21.9% corresponded to *C. gattii* species according to biochemical tests. Serotype and sexual type (mating type) characterizations were simultaneously performed by PCR, showing that every sample from group I was classified as MaTα type. From the seven isolates biochemically identified as *C. gattii*, only one sample (number 46) was positive for the MFa2 primer pair, which is specific for *C. gattii* sexual type “a”. The amplifications for MFa1 and MFa2 showed that this sample is diploid α/a, serotype B/C. The remaining *C. gattii* isolates were compatible with serotype B/C which are sexual type α. The presence of bands for the gene SXI1α in the tested isolates, compared with bands for the genes STE20αD, STE20αA and SXI2Da in the positive controls showed that all isolates in group I were classified as serotype A and mating type α, which is characteristic of *C. neoformans* variety *grubii* (Fig. 1).

Table 1

Primer name	Sequences “Forward and Reverse”	Annealing T°C	Product size (bp)	Reference
STE20αA	5’-TCCACTGGCAACCTCGGGAG-3’ 5’-ATCAGAGACAGAAGCAAGAC-3’	55	865	[28]
SXI2αD	5’-GGGTCGACTGTTGAAGTGTG-3’ 5’-GGCGTACCGAGCGATGCT-3’	61	1420	Lin; Heitman, Personal Contact
SXI1αA	5’-GGTGGCCATCCTGTTG-3’ 5’-GGCGTCGTTGTTAGCGG-3’	55	1150	Lin; Heitman, Personal Contact
STE20αD	5’-GATTATCTCAAGCCACCG-3’ 5’-AAATCGGCTACGGCAGGC-3’	61	443	[28]
SOD1 B/C	5’-GTACCTACGCCATTACG-3’ 5’-GAATGATGCGCTTTG-3’	52	1000	[20]
MFa1 – universal	5’-ACACCGCTGTTAAATGGAC-3’ 5’-CAGGTTTTGAAGATGAC-3’	57.5	213	[17]
MFa2–B/C	5’-AAGTGGCGTACGAGGACAGGC-3’	55	101	

![Fig. 1 - Group I *Cryptococcus* isolates. Agarose gel of PCR reactions used for determination of sexual type and serotype. PCR products were obtained using specific primer pairs (MFa1, MFa2 B/C, SOD1 B/C, αA, Δα, ΔA and ΔDa). Molecular weight markers are shown on the left side; the lane on the right side indicates the (+) control of each reaction. The remaining lanes represent the studied isolates, identified at the top of the figure by numbers.](image-url)
Using the same primers mentioned above, for the sexual typing and serotyping characterization, identical behavior was observed for the Groups II (strains isolated from the same patient in different anatomical sites) and III (strains isolated from the same patient at different periods of observation), all the isolates were characterized as MATα serotype A variety C. grubbi. Indeed, amplification with the SOD1/BC primers was not observed, corroborating the expectations of our previous characterization using the CGB method (Fig. 2).

The technique with the specific microsatellite sequence M13, allowed the molecular typing of all the strains and revealed that the VNI molecular type predominated, occurring in 55% of the C. neoformans strains. Concerning C. gattii strains, the VGII molecular type was the most frequent, appearing in 71% of the strains (Table 2). Moreover, for almost all the patients that presented a new disease episode, even after one year without symptoms, the molecular typing results suggested an endogenous reactivation, due to the persistency of the original strain.

The in vitro sensitivity tests performed by microdilution assays showed that from all the studied groups, 100% of C. neoformans and C. gattii strains were susceptible to amphotericin B, ketoconazole and fluconazole. C. neoformans strains presented a dose-dependent sensitivity profile to the antifungal 5-fluorocytosine. A high frequency of MIC values for itraconazole was also observed, corresponding to a susceptible dose-dependent and resistance pattern (Table 3 and 4).

DISCUSSION

Cryptococcus is a cosmopolitan fungus, isolated from soil, animals and bird excrement. The mycosis caused by this fungus, cryptococcosis, is one of the main diseases affecting especially immunocompromised individuals. In this study, the species characterization of isolates from HIV-infected patients living in the city of Ribeirão Preto, state of São Paulo, Brazil, was performed by analyses of fungal growth in CGB-Agar and molecular characterization. There was a 100% agreement between these two methods for the species identification, showing that the CGB biochemical test is reliable and offers advantages because it is not expensive, is little laborious and provides fast results.

It was also observed that among the 32 patients, the majority of the isolates (78.1%) were identified as C. neoformans, and 21.9% were infected with C. gattii. In several studies in HIV patients, the isolation rate of C. neoformans is around 90%. Regarding C. gattii, overall rates of isolation from clinical material are around 11%, which is higher in immunocompetent patients than in patients with HIV. However, there is no definite explanation for this fact. The high C. gattii rate found in this work can be explained by the proximity with its natural reservoirs or by the fact that HC-FMRP-USP is a reference center for the treatment of this pandemic infection, which may concentrate more exotic cases of cryptococcosis.

Group	n (%)	C. neoformans (%)	Molecular type (%)	C. gattii (%)	Molecular type (%)
I	20 (62.5)	13 (65.0)	VNI = 10 (77.0)		
VNII = 3 (23.0)	7 (35.0)	VGII = 5 (71.4)			
VGIII = 2 (28.6)					
II	15 (21.9)	15 (100.0)	VNI = 13 (86.7)		
VNII = 2 (13.3)	0 (0)	0 (0)			
III	15 (15.6)	15 (100.0)	VNI = 1 (6.7)		
VNII = 14 (93.3)	0 (0)	0 (0)			
Total	50 (100.0)	43 (78.1)	VNI = 24 (55.8)		
VNII = 19 (44.2) | 7 (21.9) | VGII = 5 (71.4)
VGIII = 2 (28.6) |
Cryptococcus neoformans. Two molecular types were observed for C. neoformans. For serotype A, GI/II type is also common in nature. SDD 0.125 Figueiredo TP, Lucas RC, Cazzaniga RA, França CN, Segato F, Taglialegna R, Maffei CML. Antifungal susceptibility testing and genotyping characterization of Cryptococcus neoformans and C. gattii isolates from HIV-infected patients of Ribeirão Preto, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo. 2016;58:69.

C. gattii α was isolated only among patients from Group I, demonstrated by the positive amplification products of SOD1 sequence B/C. All of the groups (I, II and III) showed sexual type MATα prevalence (MFα1 recognition), which is consistent with reports of the literature for clinical isolates. Meanwhile, in this study, only one C. gattii isolate (number 46) was identified and was also recognized by specific primers for the gene MFα1-B/C, resulting in a 213 bp amplification product, thus characterizing the sample as a diploid (MATα/α). Reports on this behavior are rare, especially for serotypes B and C, since the occurrence of diploidy is preferably checked in the case of serotypes A, D and AD isolates (α/α). MATα and MATα cells are more pathogenic in the murine model, although the MATα type is also common in nature. Because of the mating gene locus that is not the same among MATα, MATα alleles and serotypes, the molecular characterization is a safer identification method and requires the use of various combinations of primers to determine the serotype, as well as the corresponding species and sexual type. Therefore, this methodology is important since it can indicate differences in virulence and shows differences in the antifungal medical treatment responses. Besides, the knowledge of these variations is essential to understand the infection source, recurrence cases or reinfection and the host immune response.

All the C. neoformans isolates (Groups I, II and III) were characterized as belonging to serotype A, MATα, a characteristic frequently observed in the literature. For serotype A (C. neoformans var. grubii), Lengeler and Keller suggested that MATα is becoming extinct, because these isolates are usually non fertile or because they belong to an ecological niche that has not yet been found. In the present study, the serotype D was not identified in any of the studied groups, regarding MATa or MATα.

It is known that the mating type condition can influence the fungus virulence since there is a predominance of MATα cells in these patients. Furthermore, these cells are more pathogenic in the murine model, although the MATα type is also common in nature. Because of the mating gene locus that is not the same among MATα, MATα alleles and serotypes, the molecular characterization is a safer identification method and requires the use of various combinations of primers to determine the serotype, as well as the corresponding species and sexual type. Therefore, this methodology is important since it can indicate differences in virulence and shows differences in the antifungal medical treatment responses. Besides, the knowledge of these variations is essential to understand the infection source, recurrence cases or reinfection and the host immune response.

In this study, the molecular typing was performed using RAPD-PCR with the specific microsatellite sequences M13 and (GACA), according to the definition and molecular types standardization previously established by Meyert et al. Two C. neoformans molecular types were observed for the M13 specific primer, being the molecular type VNI the predominant, and for C. gattii two molecular types were detected, being the molecular
type VGII the most frequent. It is important to emphasize that the
C. neoformans serotype A (var. *grubii*) identification was confirmed, since
the VNI and VNII molecular types correspond precisely to this strain,
corroborating previous data\(^ {33,34}\). It was possible to observe that with this
analysis, four patients had recurrent episodes of cryptococcosis, and one
patient was re-infected by a new *C. neoformans*\(^ {33,34}\).

The MIC values observed for isolates from Groups I and II, regardless
of the species, was consistent with the values reported in the literature,
excepting for the values obtained for itraconazole\(^ {39,40}\). No difference
was observed between the MIC values for *C. neoformans and C. gattii*
regarding the five antifungal agents tested. They were all in agreement
with MIC values reported by Sorrel\(^ {41,42}\), but in disagreement with those
reported by Fernandes\(^ {43}\) that observed higher MIC values for *C. gattii*. For
group III (patients with recurrent episodes of the disease) a discrepancy
of MIC values was observed only for itraconazole, but for the other
four drugs, MICs values indicated that 90% of the isolates had the MIC
sensitivity profile defined for these drugs.

Amphotericin B alone or in combination with 5-fluorocytosine is the
regimen of choice for the treatment of cryptococcal meningitis.
This drug alone or the combination is used in the early stages of
therapy and is associated with high toxicity. Fluconazole is primarily
indicated for secondary prophylaxis of this disease, aiming to reduce
the risk of infection recurrence in patients that still maintain the status
of immunosuppression\(^ {41,42}\). Ketoconazole and itraconazole are not first-
line drugs for the treatment of this disease in Brazil, however, they were
included in this research only to investigate the strains behavior regarding
these antifungals and to evaluate possible cross-resistance among azoles.

Based on the results obtained in this study, it was possible to conclude
that the strains isolated from HIV-patients living in the city of *Ribeirão Preto*,
a region that did not present a significant increase in resistance to
the antifungal agents used in the clinical practice, and also that
the biochemical test CGB-Agar is reliable given the good correlation
between this method and the molecular characterization. Furthermore,
the homogeneity of the molecular and mating types detected in these
strains indicate a low probability of crossing among strains.

ACKNOWLEDGEMENTS

The authors are thankful for the technical support of Marly de
Castro, for the valuable help with the molecular characterization of
strains provided by Mateus Terceti and for the financial support from
the Coordination for the Improvement of Higher Education Personnel,
Brazil – (CAPES - Institutional Quota).

AUTHOR CONTRIBUTIONS

Design and development of the study: Thais P. Figueiredo; Rosymar
C. de Lucas. Analysis of the results: Rodrigo A. Cazzaniga and Carolina
N. França. Development of the manuscript: Fernando Segato, Rafael
Taglialegna & Claudia M. L. Maffeii.

REFERENCES

1. Kwon-Chung KJ, Varma A. Do major species concepts support one, two or more species
within *Cryptococcus neoformans*? FEMS Yeast Res. 2006;6:574-87.
2. Lin X, Heitman J. The biology of the *Cryptococcus neoformans* species complex. Annu
Rev Microbiol. 2006;60:69-105.
3. Romeo O, Scordino F, Chillemi V, Cisero G. *Cryptococcus neoformans/Cryptococcus gattii*
species complex in southern Italy: an overview on the environmental diffusion of
serotypes, genotypes and mating-types. Mycopathologia. 2012;174:283-91.
4. Hagen F, Khayyan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of
seven species in the *Cryptococcus gattii/Cryptococcus neoformans* species complex.
Fungal Genet Biol. 2015;78:16-48.
5. Idnurm A, Lin X. Rising to the challenge of multiple *Cryptococcus* species and the
diseases they cause. Fungal Genet Biol. 2015;78:1-6.
6. Feder V, Knetzsch L, Stasas CC, Vidal-Figueiredo N, Ligabue-Braun R, Carlini CR, et
al. *Cryptococcus gattii* urease as a virulence factor and the relevance of enzymatic
activity in cryptococcosis pathogenesis. FEMS J. 2015;282:1406-18.
7. Calvo BM, Colombo AL, Fischman O, Santiago A, Thompson L, Lazer A, et al. Antifungal susceptibilities varieties and electrophoretic karyotypes of clinical isolates of *Cryptococcus neoformans* from Brazil, Chile and Venezuela. J Clin Microbiol. 2001;39:2348-50.
8. Halliday CL, Bui T, Krockenberger M, Malik R, Ellis DH, Carter DA. Presence of α and
a mating types in environmental and clinical collections of *Cryptococcus neoformans* var. *gattii* strains from Australia. J Clin Microbiol. 1999;37:2920-6.
9. Almeida F, Wolf JM, Casadevall A. Virulence-associated enzymes of *Cryptococcus neoformans*. Eukaryot Cell. 2015;14:1173-85.
10. Kwon-Chung KJ, Polacheck I, Benet JE. Improved diagnostic medium for separation of
Cryptococcus neoformans var. *neoformans* (serotypes A and D) and *Cryptococcus neoformans* var. *gattii* (serotypes B and C). J Clin Microbiol. 1982;15:535-7.
11. Wicks BR. The role of mating type and morphology in *Cryptococcus neoformans* pathogenesis. Int J Med Microbiol. 2002;292:313-29.
12. Wang L, Lin X. Mechanisms of unisexual mating in *Cryptococcus neoformans*. Fungal
Genet Biol. 2011;48:651-60.
13. Davidson RC, Nichols CB, Cox GM, Perfect JR, Heitman J. A MAP KINASE cascade
composed of cell type specific and non-especific elements controls mating and
differentiation of the fungal pathogen *Cryptococcus neoformans*. Mol Microbiol. 2003; 49:469-85.
14. Jones SK Jr, Bennett RJ. Fungal mating phenomones: choreographing the dating. Fungal
Genet Biol. 2011;48:668-76.
15. Sun S, Hsu YP, Heitman J. Gene conversion occurs within the mating-type locus of
Cryptococcus neoformans during sexual reproduction. PLoS Genet. 2012;8:e1002810.
16. Lengeler KB, Cox GM, Heitman J. Serotype AD strains of *Cryptococcus neoformans* are
diploid or aneuploid and are heterozygous at the mating-type locus. Infect Immun. 2001; 69:115-22.
17. Chaturvedi S, Rodegher B, Fan J, McClelland CM, Wicks BL, Chaturvedi V. Direct PCR
of *Cryptococcus neoformans* MATα and MATα phenomones to determine mating type,
plodiy, and variety: a tool for epidemiological and molecular pathogenesis studies.
J Clin Microbiol. 2000;3:2007-9.
18. Fraser JA, Subaran RL, Nichols CB, Heitman J. Recapitulation of the sexual cycle of the
primary fungal pathogen *Cryptococcus neoformans*, var. *gattii*: implications for an
outbreak on Vancouver island, Canada. Eucaryot Cell. 2003;2:1036-45.
19. Escandón PQ, Quintero E, Granados D, Huéfano S, Castañeda R E. Isolation of
Cryptococcus gattii serotype B from detritus of eucalyptus trees in Colombia.
Biomedica. 2005;25:390-7.
Cryptococcus neoformans var. lilliputianus from AIDS susceptibility of LR, Chowdhary A, Cordoba S, Figueiredo TP, Lucas RC, Cazzaniga RA, França CN, Segato F, Taglialegna R, Maffei CML. Antifungal susceptibility testing and genotyping characterization of Cryptococcus neoformans and C. gattii isolates from HIV-infected patients of Ribeirão Preto, São Paulo, Brazil. Rev Inst Med Trop Sao Paulo. 2016;58:69.

20. D’Souza CA, Hagen F, Boekhout T, Cos GM, Heitman J. Investigation of the basis of virulence in serotype A strains of Cryptococcus neoformans from apparently immunocompetent individuals. Curr. Genet. 2004;46:92-102.

21. Horta JA, Staats CC, Casali AK, Ribeiro ÂM, Schrank IS, Schrank A, Vainstein MH. Epidemiological aspects of clinical and environmental Cryptococcus neoformans isolates in the Brazilian state Rio Grande do Sul. Med Mycol. 2002;40:565-71.

22. Ogakagi LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, et al. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog. 2010;6:1-15.

23. Park SH, Choi SC, Lee KW, Kim MN, Hwang SM. Genotypes of clinical and environmental isolates of Cryptococcus neoformans var. gattii in Korea. Mycobiology. 2015;43:360-5.

24. Loyse A, Dromer F, Day J, Lortholary O, Harrison TS. Flucytosine and cryptococcosis: a 12-year longitudinal study. BMC Infect Dis. 2015;15:277.

25. Okagaki LH, Strain AK, Nielsen JN, Charlier C, Baltes NJ, Chretien F, et al. Cryptococcal cell morphology affects host cell interactions and pathogenicity. PLoS Pathog. 2010;6:1-15.

26. Lacaz CS, Porto E, Martins JEC, Heins-Vaccari EM, Takahashi de Melo N. Tratado de micologia médica. 9 ed. São Paulo: Savier; 2002.

27. Bolano A, Stinchl S, Pezzoni R, Bistoni F, Allegrecchi M, Baldelli F, Martini A, Cardinalli G. Rapid methods to extract DNA and RNA from Cryptococcus neoformans. FEMS Yeast Res. 2001;1:221-4.

28. Okabayashi K, Kano R, Watanabe T, Hasegawa A. Serotypes and mating types of clinical isolates from feline Cryptococcosis in Japan. J Vet Med Sci. 2006;68:91-4.

29. Sambrook J, Fritsch E, Maniatis T. Molecular cloning: a laboratory manual. 3 ed. Cold Spring Harbor Laboratory Press; 2001.

30. Meyer W, Mitchell TG, Freedman EZ, Vilgalys R. Hybridization probes for conventional DNA fingerprinting used as single primers in the polymerase chain reaction to distinguish strains of Cryptococcus neoformans. J Clin Microbiol. 1993;31:2274-80.

31. Meyer W, Marszewska K, Amirmostofian M, Igreja RP, Hardtke C, Methling K, et al. Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA-a pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis. 1999;20:1790-9.

32. Meyer W, Castaneda A, Jackson S, Huynh M, Castaneda E, Iberger American Cryptococcal Study Group. Molecular typing of B. American Cryptococusses isolates. Emerg Infect Dis. 2003;9:189-95.

33. Chen YC, Chang TY, Liu JW, Chen FJ, Chien CC, Lee CH, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococciosis: a 12-year longitudinal study. BMC Infect Dis. 2015;15:277.

34. Smith KD, Achan B, Hullsiekh KH, McDonald TR, Ogakagi LH, Alhadab AA, et al. Increased antifungal drug resistance in clinical isolates of Cryptococcus neoformans in Uganda. Antimicrobial Agents Chemother. 2015;59:1797-204.

35. McClelland CM, Chang YC, Varma A, Kwon-Chung KJ. Uniqueness of the mating system in Cryptococcus neoformans. Trends in Microbiology. 2004;12:208-12.

36. Melo NT, Lacaz CS, Charbel CE, Pereira AD, Heins-Vaccari EM, Franca-Netto AS, et al. Quimiotipagem do Cryptococcus neoformans. Revisão de literatura. Novos dados epidemiológicos sobre a criptococose. Nossa experiência com o emprego do meio de C.G.B. no estudo daquela levedura. Rev Inst Med Trop Sao Paulo. 1993;35:469-78.

37. Mitchell TG, Perfect JR. Cryptococcosis in the era of AIDS: 100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev. 1995;8:515-48.

38. Pfäffer MA, Messer SA, Boyken L, Rice T, Tendolkar S, Hollis RI, et al. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol. 2005;43:2163-7.

39. Sorrel TC. Cryptococcus neoformans variety gattii. Med Mycol. 2003;39:155-68.

40. Fernandez FLO, Passos XS, Souza LK, Miranda AT, Cerqueira CH, Silva MR. In vitro susceptibility characteristics of Cryptococcus neoformans varieties from AIDS patients in Goiânia, Brazil. Mem Inst Oswaldo Cruz. 2003;98:839-41.

41. Tay ST, Haryanto TT, NG KP, Rohani MY, Hamimah H. In vitro susceptibility of Malaysian clinical isolates of Cryptococcus neoformans var. grubii and Cryptococcus gattii to five antifungal drugs. Mycoses. 2006;49:324-30.

42. Tewari A, Behera B, Mathur P, Xess I. Comparative analysis of the VICT 2 antifungal susceptibility system and E-test with the CLSI M27-A3 broth microdilution method for susceptibility testing of Indian isolates of Cryptococcus neoformans. Mycopathologia. 2012;173:5(6):427-33.

43. Bejar V, Tello M, García R, Guevara JM, Gonzales S, Vergaray G, et al. Molecular characterization and antifungal susceptibility of Cryptococcus neoformans strains collected from a single institution in Lima, Peru. Rev Iberoam Microl. 2013;32:88-92.

44. Mihara T, Iizumikawa K, Kakeya H, Ngamskulrungroj P, Umeyama T, Takazono T, et al. Multilocus sequence typing of Cryptococcus neoformans in non-HIV associated cryptococciosis in Nagasaki, Japan. Med Mycol. 2013;51:252-60.

45. Barreto de Oliveira MT, Boekhout T, Theelen B, Hagen F, Baromi FA, Lazera MS, et al. Cryptococcus neoformans shows a remarkable genotypic diversity in Brazil. J Clin Microbiol. 2004;42:1356-9.

46. Yan Z, Li X, Xu J. Geographic distribution of mating type alleles of Cryptococcus neoformans in four areas of the United States. J Clin Microbiol. 2002;40:965-72.

47. Keller SM, Viviani MA, Esposto MC, Cogliati M, Wickes BL. Molecular and genetic characterization of a serotype A MATA Cryptococcus neoformans isolates. Mycologia. 2003;149:131-42.

48. Barchiesi F, Cogliati M, Esposto MC, Spreghini E, Schimizzi AM, Wickes BL, et al. Comparative analysis of pathogenicity of Cryptococcus neoformans serotypes A, D and AD in murine cryptococcosis. J Infect. 2005;51:10-6.

49. Mlinaric-Missoni E, Hagen F, Chew HL, Vazic-Babic V, Boekhout T, Begovac J. In vitro antifungal susceptibilities and molecular typing of sequentially isolated clinical Cryptococcus neoformans strains from Croatia. J Med Microbiol 2011;60:1487-95.

50. Sullivan D, Haynes K, Moran G, Shanley D, Coleman D. Persistence, replacement, and microevolution of Cryptococcus neoformans strains in recurrent meningitis in AIDS patients. J Clin Microbiol. 1996;34:1739-44.

51. Liaw SJ, Wu HC, Hsuheh PR. Microbiological characteristics of clinical isolates of Cryptococcus neoformans in Taiwan: serotypes, mating types, molecular virulence factors, and antifungal susceptibility. Clin Microbiol Infect. 2010;16:696-703.

52. Bertout S, Drakulovski P, Kouanfack C, Krestava D, Ngouana T, Dunyach-Rémy C, et al. Genotyping and antifungal susceptibility testing of Cryptococcus neoformans isolates from Cameroonian HIV-positive adult patients. Clin Microbiol Infect. 2013;19:763-9.

53. Wu SY, Lei Y, Kang M, Xiao YL, Chen ZX. Molecular characterisation of clinical Cryptococcus neoformans strains and Cryptococcus gattii isolates from Sichuan province, China. Mycoses. 2015;58:280-7.

54. Kangogo M, Bader O, Boga H, Wanyoike W, Folba C, Worasilchai N, et al. Molecular types of Cryptococcus gattii/Cryptococcus neoformans species complex from clinical and environmental sources in Nairobi, Kenya. Mycoses. 2015;58:665-70.
55. Brito-Santos F, Barbosa GG, Trilles L, Nishikawa MM, Wanke B, Meyer W, et al. Environmental isolation of Cryptococcus gattii VGII from indoor dust from typical wooden houses in the deep Amazonas of the Rio Negro basin. PLoS One. 2015;10: e0115866.

56. Illnait-Zaragozi MT, Martínez-Machín GF, Fernández-Andreu CM, Perurena-Lancha MR, Hagen F, Meis JF. Cryptococcus and cryptococcosis in Cuba. A minireview. Mycoses. 2014;57:707-17.

57. Chen Y, Litvintseva AP, Frazzitta AE, Haverkamp MR, Wang L, Fang C, et al. Comparative analyses of clinical and environmental populations of Cryptococcus neoformans in Botswana. Mol Ecol. 2015;24:3559-71.

58. Badali H, Alia S, Fakhim H, Falahatinejad M, Moradi A, Mohammad Davoudi M, et al. Cryptococcal meningitis due to Cryptococcus neoformans genotype AFLP1/VNI in Iran: a review of the literature. Mycoses. 2015;58:689-93.

59. González GM, Casillas-Veja N, Garza-González E, Hernández-Bello R, Rivera G, Rodríguez JA, et al. Molecular typing of clinical isolates of Cryptococcus neoformans/ Cryptococcus gattii species complex from Northeast Mexico. Folia Microbiol (Praha). 2016;61:51-6.

60. Dou HT, Xu YC, Wang HZ, Li TS. Molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii in China between 2007 and 2013 using multilocus sequence typing and the DiversiLab system. Eur J Clin Microbiol Infect Dis. 2015;34:753-62.

61. Souza LK, Fernandez Ode F, Kobayashi CC, Passos, XS, Costa CR, Lemos JA, et al. Antifungal susceptibilities of clinical and environmental isolates of Cryptococcus neoformans in Goiânia city, Brazil. Rev Inst Med Trop Sao Paulo. 2005;47:253-6.