An Imported Case of *Brucella melitensis* Infection in South Korea

Jee Young Lee1, Yongduk Jeon1, Mi Young Ahn1, Hea Won Ann1, In Young Jung1, Wooyong Jung1, Moo Hyun Kim1, Jin Young Ahn1, Je Eun Song1, Yong Chan Kim1, Dong Hyun Oh1, Eun Jin Kim1, Su Jin Jeong1,2, Nam Su Ku1,2, Hyunsoo Kim3, Kyungwon Lee3,June Myung Kim1,2, and Jun Yong Choi1,2

1Department of Internal Medicine, 2AIDS Research Institute, 3Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea

Brucellosis is a zoonotic infection that is usually transmitted from cattle to humans through ingestion of animal milk, direct contact with animal parts, or inhalation of aerosolized particles. In Korea, brucellosis seems to be transmitted through close contact with blood, fetus, urine, and placenta of domestic cow that has been infected by *Brucella abortus*, or inhalation of *B. abortus* while examining or slaughtering cow. *Brucella melitensis* infection is rare in Korea and there have been no reported cases of *B. melitensis* originating from other countries until now. This report details a case of complicated brucellosis with infective spondylitis in a 48-year-old male construction worker recently returned from Iraq. Infection with *B. melitensis* was confirmed using 16s rRNA sequencing and omp31 gene analysis. The patient was successfully treated using a combination of rifampin, doxycycline, and streptomycin, in accordance with WHO guidelines. This is the first reported case of complicated brucellosis with infective spondylitis in Korea caused by *B. melitensis* originating from Iraq.

Key Words: *Brucella melitensis*; Brucellosis; Infective spondylitis; Middle East; Korea

Introduction

Brucellosis is a growing global health problem as a result of increased international travel that permits the spread of the infection from endemic areas to other parts of the world [1-3]. It is caused by *Brucella*, a small, slow growing, intracellular Gram-negative coccobacillus that is transmitted to humans by direct contact with infected animals or intake of contaminated raw animal products, such as unpasteurized milk [1, 4-7]. Brucellosis almost always causes fever, which may be associated with night sweats [5, 8]. Common treatment includes doxycycline and aminoglycosides, although complicated cases, such as brucellosis combined with endocarditis, osteoarticularitis, or neurobrucellosis, may require stronger medications administered for a longer duration [9-11]. Brucellosis is endemic to the Mediterranean basin, the Persian gulf, India,
Mexico, and South America [1]. In Korea, the first human case was reported in 2002 [12]. Brucellosis in Korea is normally caused by *Brucella abortus* from cattle [5]. There have been no reported cases of brucellosis resulting from *Brucella melitensis* in Korea until now [12]. This paper presents a case of spondylitis complicated by *B. melitensis* infection that resulted from ingesting contaminated sheep meat while in Iraq.

Case Report

A 48-year-old male Korean construction worker with no medical history developed fever and back pain while working in Karbala, Iraq. The patient went to a local hospital, where he received an intravenous steroid injection and oral antibiotics. After his fever spiked to 40°C and his back pain worsened, the patient received 4 days of intravenous antibiotics. When the fever and back pain failed to improve, the patient returned to Korea for further evaluation. The patient was transported to a tertiary hospital in Seoul, Korea that was in the midst of an outbreak of Middle East Respiratory Syndrome (MERS). Due to the patient's fever and recent travel to Iraq, he was isolated for 72 hours until a sputum test for MERS-CoV came back negative. On admission, the patient's vitals were as follows: blood pressure 138/92 mmHg, pulse rate 84 beats per minute, respiratory rate 18 breaths per minute, and body temperature 39°C. Laboratory tests showed a white blood cell count of 9,900/mm³ with 60% neutrophils, hemoglobin level of 14.2 g/dL, platelet count of 176,000/mm³, erythrocyte sedimentation rate (ESR) of 24 mm/hr, and C-reactive protein level of 116.7 mg/L (normal range, 0-8 mg/L).

The patient had recently undergone subgingival curettage, so a transthoracic echocardiography was performed to check for infective endocarditis. An MRI of the spine was also performed to evaluate the patient's back pain. No vegetation was seen during the echocardiography, but the MRI revealed pyogenic spondylitis involving L5 with phlegmon and showing posterior extension to the epidural space at the L5 and S1 levels (Fig. 1). Meanwhile, the *Brucella* spp. was isolated on three separate blood cultures using MacConkey, and *Brucella* agars (Fig. 2). As such, we concluded that our patient had brucellosis causing infectious spondylitis [3]. We did not perform the bone biopsy or standard tube agglutination test.

We subsequently took a thorough history in order to determine the route of infection while waiting for lab results regarding the brucellosis subspecies [2]. The patient reported attending barbeque parties that served sheep meat every 2-3 weeks during his 6-month stay in Iraq. The patient further reported consuming undercooked sheep meat and pasteurized milk on several occasions during these parties. Since brucellosis is usually transmitted from contaminated sheep and goat products, we concluded that this was the likely route of contamination [2]. The patient denied other contact with animals while in Iraq.

We initially began treatment with ceftriaxone (2 g/day) and vancomycin (45 mg/kg/day) until infective endocarditis was

Figure 1. T2 added sagittal magnetic resonance image (contrast) of the lumbar spine taken on the third hospital day, showing pyogenic spondylitis involving L5 with phlegmon as well as posterior extension to the epidural space at the L5 and S1 levels (arrows).

Figure 2. Gram stain of patient's blood culture on the third hospital day. On Gram stain, the organisms appeared as faintly stained, Gram negative coccobacilli (×400).
ruled out via echocardiograph. After blood cultures were positive for *Brucella* spp., we began rifampin (600 mg/day), doxycycline (100 mg PO, q12h), and streptomycin (1 g/day) to target complicated brucellosis with infective spondylitis in accordance with WHO guidelines [3, 9, 10]. While on this treatment, that patient’s CRP levels dropped to 19 mg/dL on the 16th hospital day. After the patient’s fever resolved, CRP levels decreased to 13.1 mg/dL on the 26th hospital day. After 5 months of treatment, CRP levels decreased to 1.0 mg/dL. We discontinued streptomycin on the 30th hospital day. Rifampin and doxycycline were discontinued on the 143th day since the initiation of treatment.

Analysis using 16s rRNA sequencing was used to confirm the presence of *Brucella* spp.. We used a forward primer of 5’-TTG-GAGAGGTGGCTGCTGTC-3’ and a reverse primer of 5’-GCGTGACTCTCCAGGTATCT-3’. Sequencing was commissioned by Macrogen. Blast and EzTaxon were used to analyze the sequence. According to Blast analysis, a 99.6% equivalence (720 of 723 bp) was found with several subspecies of *Brucella* (*B. abortus, Brucella suis, Brucella melitensis, Brucella canis*, and *Brucella pinnipedialis*, among others). EzTaxon analysis demonstrated a 99.86% equivalence (722 of 723 bp) with several subspecies of *Brucella* (*B. abortus, B. canis, Brucella ceti, B. melitensis, and Brucella microti*, among others). The *Brucella* subspecies was confirmed as *B. melitensis* by sequencing the omp31 gene. By PCR assay targeting the BCSP31 gene, *Brucella* spp. was confirmed. *B. melitensis* was confirmed by using PCR assay targeting the IS711 locus (Fig. 3).

Discussion

The incidence of brucellosis worldwide varies from less than 0.03 to 160 per 100,000 persons. Brucellosis has been practically eradicated in developed countries and is now mostly found in Mediterranean and Middle Eastern countries, especially Iraq, Jordan, and Saudi Arabia, as well as areas of Latin America, particularly Mexico and Argentina, the Polynesian islands of Wallis and Futuna, and the Mexico/United States border. It has lately also been found in some Central Asian countries, such as Kyrgyzstan and Azerbaijan. The spread of the disease is attributed to increasing travel between affected countries [13]. The first case of brucellosis in Korea was reported in 2002 [14]. The number of cases sharply increased between 2005-2008, with 158 cases in 2005, 215 cases in 2006, and 101 cases in 2007. As a result of improved treatment for affected persons and new vaccination programs for cows, the rate of cases declined, and there were only 7 cases of brucellosis diagnosed in 2016.

Until now, the major mode of transmission of brucellosis remains unclear. However, brucellosis of Korea seem to be transmitted through close contact with blood, fetus, urine, and placenta of domestic cow that has been infected by *B. abortus*, or inhalation of *B. abortus* while examining or slaughtering cow [15]. This case report details the first incidence of *B. melitensis* imported to Korea from a patient who recently visited Iraq that resulted in brucellosis and infective spondylitis. In this international era, brucellosis in Korea is no longer limited to *B. abortus*. In the future, more cases of imported brucellosis are expected due to the fact that many Korean businesses are located in the Middle East, leading to increased exposure to pathogens endemic to this area.

Physicians should consider brucellosis in all patients presenting with fever and a history of recent travel to brucellosis-endemic areas.

Acknowledgement

This work was supported by BioNano Health-Guard Research Center funded by the Ministry of Science, ICT, and Future Planning of Korea as a Global Frontier Project (Grant
H-GUARD_2013M3A6B2078953), and a grant from the Ministry of Health & Welfare, Republic of Korea (grant number: HI14C1324).

Conflicts of Interest
No conflicts of interest.

ORCID
Jee Young Lee https://orcid.org/0000-0003-4438-3405
Jun Yong Choi https://orcid.org/0000-0002-2775-3315

References
1. Ryu SY, Kim HA, Park J, Choe M, Kwon K. *Brucella* prostatitis: a first case report diagnosed in Korea. Korean J Pathol 2011;45 (Suppl 1):S66-9.
2. Pappas G, Akritidis N, Bosilkovski M, Tsianos E. Brucellosis. N Engl J Med 2005;352:2325-36.
3. Skalsky K, Yahav D, Bishara J, Pitlik S, Leibovici L, Paul M. Treatment of human brucellosis: systematic review and meta-analysis of randomised controlled trials. BMJ 2008;336:701-4.
4. Colmenero JD, Ruiz-Mesa JD, Plata A, Bermúdez P, Martín-Rico P, Queipo-Ortuño MJ, Reguera JM. Clinical findings, therapeutic approach, and outcome of brucellar vertebral osteomyelitis. Clin Infect Dis 2008;46:426-33.
5. Lim HS, Song YG, Yoo HS, Park MY, Kim JW. Brucellosis: an overview. Korean J Epidemiol 2005;27:26-36.
6. Guerra H. The brucellae and their success as pathogens. Crit Rev Microbiol 2007;33:325-31.
7. Jang Y, Kim H, Bang HA, Lee MJ, Che NH, Lee WC. Epidemiological aspects of human brucellosis and leptospirosis outbreaks in Korea. J Clin Med Res 2011;3:199-202.
8. Kim SH, Kim KP, Han S, Kim YR, Kang SH. A case of acute myeloid leukemia developing after treatment for brucellosis with pancytopenia. Lab Med Online 2015;5:157-60.
9. Ariza J, Bosilkovski M, Cascio A, Colmenero JD, Corbel MJ, Falagas ME, Memish ZA, Roushan MR, Rubinstein E, Sipsas NV, Solera J, Young EJ, Pappas G; International Society of Chemotherapy; Institute of Continuing Medical Education of Ioannina. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med 2007;4:e317.
10. Ablon G, Dayan S. A Randomized, Double-blind, Placebo-controlled, Multi-center, Extension Trial Evaluating the Efficacy of a New Oral Supplement in Women with Self-perceived Thinning Hair. J Clin Aesthet Dermatol 2015;8:15-21.
11. Solís García del Pozo J, Solera J. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS One 2012;7:e32090.
12. Yoon H, Moon OK, Lee SH, Lee WC, Her M, Jeong W, Jung SC, Kim DS. Epidemiology of brucellosis among cattle in Korea from 2001 to 2011. J Vet Sci 2014;15:537-43.
13. Rubach MP, Halliday JE, Cleaveland S, Crump JA. Brucellosis in low-income and middle-income countries. Curr Opin Infect Dis 2013;26:404-12.
14. Park MS, Woo YS, Lee MJ, Shim SK, Lee HK, Choi YS, Lee WH, Kim KH, Park MY. The first case of human brucellosis in Korea. Infect Chemother 2003;35:461-6.
15. Kim YS, Sill CY, Oh WS, Kwon KT, Lee H, Lee SH, Son JS, Kim SW, Chang HH, Jung SI, Ko KS, Park MY, Peck KR, Song JH. Clinical characteristics of human brucellosis in South Korea. Infect Chemother 2006;38:334-43.