Parameter constraints in a near-equipartition model with multi-frequency \textit{NuSTAR}, \textit{Swift} and \textit{Fermi-LAT} data from 3C 279

Dahai Yan1⋆, Li Zhang2†, Shuang-Nan Zhang1‡

1Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2Department of Astronomy, Yunnan University, Key Laboratory of Astroparticle Physics of Yunnan Province, Kunming, 650091, China

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Precise spectra of 3C 279 in the 0.5-70 keV range, obtained during two epochs of \textit{Swift} and \textit{NuSTAR} observations, are analyzed using a near-equipartition model. We apply a one-zone leptonic model with a three-parameter log-parabola electron energy distribution (EED) to fit the \textit{Swift} and \textit{NuSTAR} X-ray data, as well as simultaneous optical and \textit{Fermi-LAT} \textgamma-ray data. The Markov Chain Monte Carlo (MCMC) technique is used to search the high-dimensional parameter space and evaluate the uncertainties on model parameters. We show that the two spectra can be successfully fit in near-equipartition conditions, defined by the ratio of the energy density of relativistic electrons to magnetic field ζ_e being close to unity. In both spectra, the observed X-rays are dominated by synchrotron-self Compton photons, and the observed \textgamma rays are dominated by Compton scattering of external infrared photons from a surrounding dusty torus. Model parameters are well constrained. From the low state to the high state, both the curvature of the log-parabola width parameter and the synchrotron peak frequency significantly increase. The derived magnetic fields in the two states are nearly identical (~ 1 G), but the Doppler factor in the high state is larger than that in the low state (~ 28 versus ~ 18). We derive that the gamma-ray emission site takes place outside the broad-line region, at $\gtrsim 0.1$ pc from the black hole, but within the dusty torus. Implications for 3C 279 as a source of high-energy cosmic-rays are discussed.

Key words: galaxies: jets — gamma rays: galaxies — radiation mechanisms: non-thermal

1 INTRODUCTION
Blazar emission is generally dominated by non-thermal radiation over all frequencies ranging from radio to TeV \textgamma rays. By modeling blazar spectra, emission mechanisms and physical properties of the relativistic jets can be determined. The typical multi-wavelength spectral energy distribution (SED) of a blazar is characterized by two distinct humps. It is generally accepted that the first hump in the blazar SED is nonthermal synchrotron emission radiated by relativistic electrons in the jet. The origin of the emission in the \textgamma-ray hump is less certain. Leptonic and hadronic models have both been proposed to explain the formation of the second bump (see, e.g., Böttcher et al. 2012, for review). In general, both types of models are able to reproduce the SEDs well, but require quite different jet properties, with the hadronic models sometimes requiring super-Eddington jet powers (Böttcher et al. 2013; Zdziarski & Böttcher 2015). The leptonic models are more attractive by allowing much smaller jet powers, and by more readily explaining rapid blazar variability from highly radiative electrons in contrast to the more weakly radiating hadrons (cf. Cerruti et al. 2015).

All hadronic models are hybrid lepto-hadronic, because the synchrotron bump is believed to be radiated by directly accelerated electron/lepton primaries in the jet. Besides the leptonic synchrotron self-Compton (SSC) component, \textgamma rays in hadronic models can result from proton- or ion-synchrotron radiation (Aharonian 2000; Mücke et al. 2003) and $p\gamma$ interactions, including both photopion and Bethe-Heitler photopair production (Atoyan & Dermer 2001, 2003; Böttcher et al. 2009, 2013; Murase et al. 2014; Mastichiadis et al. 2013; Dimitrakoudis et al. 2014;
Weidinger & Spanier 2015; Yan & Zhang 2015). Interactions of ultra-relativistic protons and ions in the jet with photons induce cascades by the injection of extremely high-energy photons and leptons.

In leptonic models, γ rays are produced via inverse Compton (IC) scattering of the relativistic electrons, including SSC scattering (e.g., Maraschi et al. 1992; Tavecchio et al. 1998; Finke et al. 2008; Yan et al. 2014) and external Compton (EC) scattering (e.g., Dermer & Schlickeiser 1993; Sikora et al. 1994; Blazejowski et al. 2000; Dermer et al. 2009; Kang et al. 2014; Paliya et al. 2015). EC models seem to be required for flat-spectrum radio quasars (FSRQs; a subclass of blazars with intense broad-line radiation in the inner-jet). Depending on the emission site, the external seed photons could be dominated by radiation from accretion-disc (e.g., Dermer et al. 1992; Dermer & Schlickeiser 1993, 2002), broad-line region (BLR) (e.g., Sikora et al. 1994; Zhang et al. 2012), and dusty torus (e.g., Blazejowski et al. 2000). Many efforts have been made to locate the γ-ray emission regions of FSRQs (e.g., Liu & Bai 2006; Bai et al. 2009; Tavecchio et al. 2010; Yan et al. 2012; Dotson et al. 2012; Na Lewajko et al. 2014), but it is still an unresolved issue.

Radio telescopes can partially resolve the structure of blazar jets. The observed connections between γ-ray flares and radio/millimeter flares are used to argue for gamma-ray emission arising at distance scales of \(\gtrsim 10 \) parsec or even \(\gtrsim 100 \) parsec (e.g., Jorstad et al. 2001, 2010; Agudo et al. 2011). However, Tavecchio et al. (2010) argued that the rapid variations on timescale of a few hours challenge the scenario in which γ-ray emission site is placed at tens of parsec from the black hole. Using the time lags of γ rays relative to broad emission lines, Liu, Bai & Wang (2011) argued that γ-ray emission may be produced in the regions of the jet at \(\lesssim 2 \) pc from the black hole.

Although blazar emission models have been constructed that accurately reproduce contemporaneous SED data, the number of free parameters in even the simplest SSC model can exceed the number of constraining observables. Therefore, blazar SED modeling generally yields degenerate parameter values, which makes it difficult to investigate correlations between model parameters.

Claims and explanations of correlations between model parameters have been made, for example, for statistical quantities like the blazar sequence (Fossati et al. 1998; Ghisellini et al. 1998), or for flux-flux or flux-index correlations between different spectral states of the same blazar. Due to many free and unconstrained parameters, it is difficult to establish robust correlations between model parameters using simple fitting methods.

Using the Markov Chain Monte Carlo (MCMC) technique, Yan et al. (2013) constrained parameter space in an SSC model for Mrk 421. The high-quality SEDs enable us to derive the confidence intervals of each model parameter using the MCMC method, and to do a comparison of model fits for different SEDs. In a series of papers (Yan et al. 2013; Peng et al. 2014; Zhou et al. 2014), we showed that fitting high-quality SEDs with the MCMC technique is a powerful approach to investigating the blazar jet physics. In a related modeling effort, Dermer et al. (2014) assumed that a three-parameter log-parabola function approximates the electron energy distribution (EED). Introducing the equipartition parameter \(\zeta_e = \frac{u_e}{u_B} \) as the ratio of the energy densities of electrons \(u_e \) and magnetic field \(u_B \), gives when \(\zeta_e \approx 1 \), the minimum synchrotron jet power. Besides \(\zeta_e \), the other three equipartition factors in this modeling approach (Cerruti et al. 2013; Dermer et al. 2014) are: (1) \(\zeta_B \), the ratio of the energy density of synchrotron radiation \(u_B \) to \(u_e \); (2) \(\zeta_B LR \), the ratio of the energy density of BLR radiation in comoving frame \(u_{B LR} \) to \(u_B \); and (3) \(\zeta_{dust} \), the ratio of the energy density of dust radiation in comoving frame \(u_{dust} \) to \(u_B \). In this approach, the physical parameters (e.g., fluid magnetic field \(B' \) and Doppler factor \(\delta_0 \)) are expressed in terms of observables (e.g., synchrotron peak frequency and synchrotron peak luminosity, and variability time scale).

With this formulation, GeV cutoffs in blazar spectra are explained under equipartition conditions by IC scattering broad-line region (BLR) radiation in Klein-Nishina regime (Cerruti et al. 2013). In SSC models, the equipartition modeling approach allows the complete set of parameters to be fully constrained, contingent on the underlying assumption that the electron distribution can be described, at least approximately, by a log-parabola function. Here, we constrain the parameters using the near-equipartition, log-parabola model for 3C 279. In our approach, we do not adopt \(\zeta_B LR \) and \(\zeta_{dust} \) to define the energy densities of the external radiations. Instead, we use the distance \(r \) from emitting region to super-massive black hole to deduce the energy densities of the external radiations via the standard scaling relations for BLR and dust torus radiations. We will give the details in Section 2.

The blazar 3C 279, at redshift \(z = 0.536 \), is classified as an FSRQ due to its strong prominent emission lines, and was one of the first γ-ray blazars discovered (Hartman et al. 1992). Its synchrotron peak frequency is \(< 10^{14} \) Hz, making it a low-synchrotron peaked object, like most FSRQs (Ackermann et al. 2011). Rapid variability is observed in 3C 279, the analysis in Paliya (2015) shows that the variability timescale for GeV emission of 3C 279 can be down to \(~1 - 2\) hour.

Using the near-equipartition leptonic model with a log-parabola electron energy distribution (EED), Dermer et al. (2014) satisfactorily explained four SEDs of 3C 279 reported in Hayashida et al. (2012). Since then, detailed simultaneous multiwavelength SED data of 3C 279 in 4 states of elevated activity that took place between 2013 December to 2014 April were analyzed by Hayashida et al. (2015). In particular, Hayashida et al. (2015) reported 0.5-70 keV X-ray spectra obtained from Swift-XRT and NuSTAR observations in two flaring periods, namely Period A, taking place from 16 – 19 December 2013, and Period C, from 31 December – 3 January 2014. Hayashida et al. (2015) argue that their one-zone leptonic models with a double-broken power-law EED fail to explain the Swift-XRT and NuSTAR X-ray spectra.

In this paper, we fit the two simultaneous SEDs that include NuSTAR data reported in Hayashida et al. (2015) using the near-equipartition blazar model with a log-parabola EED. Using the MCMC technique, we derive the best-fit results and the uncertainties on parameters. The implications of the results on the acceleration processes in the jet of 3C 279 are discussed. Supposing that 3C 279 is a high-energy cosmic-ray (CR) source, we discuss its implied CR luminos-
\[\gamma^2 N'_\gamma(\gamma') \sim \left(\frac{\gamma'}{\gamma_{pk}} \right)^{-b} \log (\gamma' / \gamma_{pk}) \],

where \(\gamma' \) is the electron Lorentz factor, \(b \) is the spectral curvature parameter, and \(\gamma_{pk} \) is the peak Lorentz factor in the \(\gamma'^2 N'_\gamma(\gamma') \) distribution. Emission from the blob is strongly boosted due to the beaming effect. Besides SSC emission, EC components for low-energy target photons from the broad-line region (BLR; EC-BLR) and the dusty torus (EC-dust) are included.

As mentioned in Section 1, we do not use the equipartition relations \(\gamma_{BLR} \) and \(\gamma_{dust} \) (Cerruti et al. 2013; Dermer et al. 2014) to normalize the energy densities of the external radiations. We take the distance \(r \) from the central black hole to the emitting blob as an input parameter. The energy densities of BLR radiation (\(u_{BLR} \)) and dust radiation (\(u_{dust} \)) can be expressed as functions of \(r \) (Sikora et al. 2009; Hayashida et al. 2012).

\[u_{BLR}(r) = \frac{\tau_{BLR} L_{BLR}}{4\pi r^2_{BLR} c^2 [1 + (r/r_{BLR})^3]} \]

\[u_{dust}(r) = \frac{\tau_{dust} L_{dust}}{4\pi r^2_{dust} c^2 [1 + (r/r_{dust})^3]} \]

The size of BLR is related to the disk luminosity \(L_{disk} \):

\[L_{disk} = 10^{17}(L_{disk}/10^{45} \text{ erg s}^{-1})^{1/2} \text{ cm} \]

(Ghisellini & Tavecchio 2009; Ghisellini et al. 2014). We assume a dust torus with the size of \(r_{dust} = 10^{18}(L_{disk}/10^{45} \text{ erg s}^{-1})^{1/2} \text{ cm} \). This size of dust torus is half of the size used in Ghisellini et al. (2014), which enhances the energy density of dust radiation. Using the scalings between \(L_{disk} \) and \(r_{BLR}/r_{dust} \), we can rewrite Eqs. (2) and (3) as

\[u_{BLR}(r) \approx \frac{0.3 T_{BLR}}{1 + (r/r_{BLR})^3} \text{ erg cm}^{-3} \]

\[u_{dust}(r) \approx \frac{0.003 T_{dust}}{1 + (r/r_{dust})^3} \text{ erg cm}^{-3} \]

where \(T_{BLR} \) and \(T_{dust} \) are the fractions of the disk luminosity reprocessed into BLR radiation and into dust radiation, respectively. We adopt the typical values of \(T_{BLR} = 0.1 \) (e.g., Ghisellini et al. 2014) and \(T_{dust} = 0.3 \) (e.g., Hao et al. 2005; Malmrose et al. 2011). Using Eqs. (4) and (5), one can obtain \(u_{BLR}(\text{erg cm}^{-3}) \leq 0.3 T_{BLR} \), and \(u_{dust}(\text{erg cm}^{-3}) \leq 3 T_{dust} \times 10^{-5} \). The two energy densities are limited by \(T_{BLR} \) and \(T_{dust} \), respectively. When \(r \) is smaller than \(r_{dust} \), \(u_{dust} \) varies by a factor of at most 2. Moreover, the energy density of the IR dust radiation should be lower than the energy density of a blackbody with the temperature of \(T_{dust} \), namely \(u_{dust} < u_{bb}(T_{dust}) \approx 3 \times 10^{-4}(T_{dust}/440 \text{ K})^4 \).

The external radiation is assumed to be a dilute blackbody radiation, namely a blackbody spectral shape normalized to \(u_{BLR}/u_{dust} \). BLR radiation is dominated by Ly\(\alpha \) line photons. We adopt an effective temperature for the BLR radiation of \(T_{BLR} = 6.3 \times 10^4 \text{ K} \), so that the energy density of BLR radiation peaks at \(\approx 2.82\text{k} h T / h \approx 3.7 \times 10^{15} \text{ Hz in the u(\nu) distribution (Tavecchio & Ghisellini 2008).} \)

We consider IR dust radiation with \(T_{dust} = 800 \text{ K}, \) and there is no \(u_{dust} \) data in Period D. Therefore, we do not consider these SEDs. Note that the X-ray flux increased by a factor

\[\text{Parameter constraints in Modeling of 3C 279} \]
of ≈ 2 and the γ-ray flux increased by a factor of ≈ 3 from Period A to Period C.

The X-ray flux showed no intraday variations in Period A, but showed intraday variations in period C (Hayashida et al. 2015). Therefore, the variability timescale for Period A is taken to be $t_4 = 5$ which corresponds to an observed variability timescale of ~ 21 hours, and the variability timescale for Period C is set to be $t_4 = 1$ which corresponds to an observed variability timescale of ~ 4 hours.

There is no evidence for a thermal emission feature in the two SEDs, making it difficult to constrain the accretion disk luminosity L_{disk}. We adopt $L_{\text{disk}} = 1.5 \times 10^{45}$ ergs$^{-1}$, which is the maximum disk luminosity allowed by the optical-UV SED. Using this value, we derive $r_{\text{BLR}} \approx 0.04$ pc and $r_{\text{dust}} \approx 0.4$ pc.

By comparison, at a much earlier 3-week epoch between 1992 December and 1993 January, Pian et al. (1999) originally discovered the accretion disk-emission from 3C 279 during a low-state monitored with ROSAT, IUE, and EGRET, finding a νF_ν flux of $\approx 3 \times 10^{-14}$ erg s$^{-1}$ cm$^{-2}$ between ≈ 1 and 2×10^{15} Hz, corresponding to a UV luminosity $L_{\text{disk}} = 2.4 \times 10^{45}$ ergs$^{-1}$.

Due to the strong SSA below 10^{12} Hz, we fit only the optical, X-ray and γ-ray data, but not the 230 GHz SMA point.

Fig. 1 shows the best-fit to the SED of 3C 279 for Period A. The fit is satisfactory. The joint Swift and NuSTAR X-ray spectrum is successfully fit, and is dominated by the SSC component. The γ-ray emission is dominated by the EC-dust component.

In Fig. 2, we give the one-dimensional probability distributions and the two-dimensional contours of input and output parameters. The complete information on constraining parameters can be read from this figure. We note that ζ_γ is constrained in the range of [0.8 - 1.7] (the marginalized 95% confidence interval). The distance r is constrained in the range of [0.1 - 0.4] pc, namely the emitting blob is outside the BLR, but is still inside the dust torus ($r_{\text{BLR}} \approx 0.04$ pc and $r_{\text{dust}} \approx 0.4$ pc). The derived u_{dust} is in the range of [5 - 9] $\times 10^{-4}$ erg cm$^{-3}$, and u_{BLR} is in the range of [0.2 - 10] $\times 10^{-4}$ erg cm$^{-3}$. The magnetic field B' is in the range of [0.7 - 1.2] G, and δ_D is in the range of [17 - 20]. We summarise the marginalized 95% confidence intervals for input and output parameters in Table 1. We also notice that there is a correlation between r and ζ_γ; and B' is anti-correlated with δ_D (see the two-dimensional contours). These parameter correlations showed in Fig. 2 are caused by degeneracies of the leptonic model (e.g., Tavecchio et al. 1998; Sikora et al. 2009; Dermer et al. 2014). Nevertheless, all parameters except u_{BLR} are well constrained.

The fit to the SED from Period C is also satisfactory (Fig. 3). The Swift-NuSTAR X-ray spectrum from Period C shows a break at 3.7 keV with photon indices of 1.37 and 1.76, respectively, below and above the break energy, when fit by a broken power law (Hayashida et al. 2015). Our results show that the one-zone leptonic model can successfully fit the X-ray spectrum. The γ-ray emission in Period C is almost entirely attributed to SSC, and the spectral break is naturally explained. The γ-ray emission is again dominated by the EC-dust component.

The one-dimensional probability distributions and the two-dimensional contours of input and output parameters derived in the fitting to the SED for Period C are shown in Fig. 4. In this Period, the γ-ray emission site r is in the range of [0.1 - 0.4] pc, identical to that in Period A; but a larger ζ_γ of [3 - 5] and δ_D of [26 - 30] is required to explain the higher γ-ray flux. The magnetic field B' of [0.9 - 1.4] is nearly identical to that in Period A. From Period A to Period C, ζ_γ and r_{14} increase, respectively, from ~ 0.5 to 0.8, and from ~ 0.3 to 0.5; and b increases from ~ 1.2 to 1.5.

In Table 1, we also give the jet powers for a two-sided jet in the form of radiation (P_ν), Poynting flux (P_B), where we assume that Doppler factor is related to the bulk Lorentz factor through $\delta_D = \Gamma$. The relativistic emitting electrons power P_e, which is not shown, is obtained from the relation $P_e = \zeta_\gamma P_B$. This is the minimum jet power, and the addition of hadrons will only increase this power. One can see that the radiation power P_ν is significantly greater than P_B and P_e in both cases.

4 DISCUSSION AND CONCLUSIONS

A one-zone leptonic model with a three-parameter log-parabola EED (Dermer et al. 2014) is used to fit the two SEDs of 3C 279 where joint NuSTAR and Swift data are available (the SEDs from Period A and Period C in Hayashida et al. 2015). Using the MCMC method, we obtained the best-fit results and the uncertainties on the input and output parameters. Our results show that the two SEDs can be successfully fit in near-equipartition conditions. In both cases, the γ-ray emission is dominated by the EC-dust component, and the EC-BLR component is essentially negligible; and the X-ray emission is dominated by SSC emission. The SSC origin of X-ray emission is expected to be highly polarized if the magnetic field is perpendicular to the line of sight (e.g., Krawczynski 2012). The X-ray measurements of the degree of polarization by future detectors such as X-ray
Figure 2. One-dimensional probability distribution of parameter values (left; the dashed curves are the mean likelihoods of samples and the solid curves are the marginalized probabilities) and two-dimensional contours of parameters (right; the regions enclosing 68% (95%) confidence level are shown) for Period A. The upper panel is for the input parameters, and the lower panel is for the output parameters.

Table 1. Input and output parameters values. The mean values and the marginalized 95% confidence intervals (CI) for interested parameters are reported.

Parameter	Mean	Lower CI	Upper CI
ζ_{s}	1.10	0.80	1.40
ρ	1.24	1.15	1.32
δ_{48}	0.18	0.17	0.19
σ_{14}	0.30	0.26	0.34
ξ_4	5.0	4.1	5.9
$\delta_{r\text{ (pc)}}$	0.47	0.41	0.52
T_{disk} (K)	0.2	0.1-0.4	
δ_{BLR} (erg cm$^{-3}$)	800	600	1000
δ_{BLR} (erg cm$^{-3}$)	0.15		

We take advantage of the MCMC technique to search the multi-dimensional parameter space, and to evaluate the uncertainties on the parameters. We have shown that all parameters except δ_{BLR} are constrained very well by the current data. The stringently constrained parameters enable us to investigate the important issues in blazar physics confidently.

We derive the energy density of BLR radiation $u_{\text{BLR}} < 0.002$ erg cm$^{-3}$ at 95% confidence level. Our results show that the EC-BLR component is essentially negligible in mod-
Yan et al. (2009) and Peng et al. (2014) found that the lower limit of r depends on the assumptions on r_{BLR} and r_{dust}. Compared with the previous works (e.g., Ghisellini & Tavecchio 2009; Hayashida et al. 2012; Nalewajko et al. 2014; Ghisellini et al. 2014), we adopted a smaller r_{dust}. In Appendix A, we show the fitting results with $r_{\text{dust}} = 2 \times 10^{18}(L_{\text{disk}}/10^{45})$ erg s$^{-1}$) $1/2$ cm (Ghisellini et al. 2014). We find that the lower limit of r derived in the fittings with the larger r_{dust} is still 0.1 pc; the upper limit is modified, but is still less than r_{dust}. Therefore, our conclusion on the γ-ray emission site is still tenable. Our result is consistent with the γ-ray emission site in 3C 279 derived by Dermer et al. (2014), and is also consistent with the result derived by Nalewajko et al. (2014) who used an independent method to constrain the γ-ray emission site. Pacciani et al. (2014) explored the emission zone in high-energy flares of 10 FSRQs, and also found the evidence of gamma-ray flares occurring outside the BLR.

The log-parabola EED can be generated by stochastic particle acceleration, for example, through systematic gyro-resonant acceleration of electrons with plasma waves (e.g., Becker et al. 2006; Tramacere et al. 2011; Asano et al. 2014; Kakuwa et al. 2015), and the correlations between the curvature b and the peak energy γ_{peak} of EED provide evidence about the acceleration process (e.g., Tramacere et al. 2011). By fitting the SEDs, the EEDs are inferred, which helps to identify acceleration processes in the jet (Yan et al. 2013; Peng et al. 2014; Zhou et al. 2014). Indeed, Yan et al. (2013) found that, because of the improved fits with curving rather than power-law EEDs, it is likely that stochastic acceleration is acting in the jet of Mrk 421 in the giant flare state in February 2010. The acceleration process is also revealed by dynamic changes of the SED, which implies changes in the EED. Yan et al. (2013) also found that for Mrk 421 as ν_{14} increased from ~ 1000 in the low state to ~ 10000 in the giant flare, the curvature of PLLP EED in $N'(\gamma'')$ distribution increased from ~ 1.7 to ~ 3.8. We discussed that the changes in ν_{14} and the curvature in Mrk 421 are not compatible with a purely acceleration-dominated scenario. The two states of 3C 279 that we have analyzed indicates that a changing EED in terms of a changing log-parameter width parameter b plays an important role in different spectral states.

It is known that X-ray spectra of several high-synchrotron-peak (HSP) BL Lac objects can be described by a log-parabola function (e.g., Massaro et al. 2004a,b). Using a large data set of X-ray observations for several HSPs with $\nu_{14} > 10$, Tramacere et al. (2007, 2009) and Massaro et al. (2008) find that the synchrotron peak frequency is anti-correlated with the curvature parameter obtained by fitting the X-ray spectrum. Chen (2014) finds that the synchrotron peak frequency is anti-correlated with the curvature parameter of the synchrotron spectrum for a sample of Fermi blazar.

Tramacere et al. (2011) discussed the $\nu_{14} - b$ trends in an SSC model with stochastic acceleration. They showed that the anti-correlation between ν_{14} and b for HSPs could be explained in the stochastic acceleration SSC model by a change in the diffusion process rather than by a change of magnetic field that affects the cooling. The radiative cooling of electrons in FSRQs is more efficient than that in HSPs, which may lead to the different $\nu_{14} - b$ trend from that for HSPs. Our results show that both ν_{14} and b significantly increase from period A to period C. More high-quality SEDs are needed to confirm the $\nu_{14} - b$ trend for FSRQs. Moreover, our results indicate that the γ-ray emission region is in the dust torus, in contrast to Zhang et al. (2013), who assumed a absence of the dust torus. The unknown γ-ray emission site may complicate the $\nu_{14} - b$ trend for FSRQs. Because of the larger photon energy density in the BLR, radiative cooling of electrons is stronger than in the dust torus. On the other hand, the relatively inefficient radiative cooling of electrons in the dust torus allows the electrons to be accelerated to higher energies by the inefficient stochastic mechanism.

In our model, the radiation power is much greater than the magnetic-field and relativistic electron power, assuming that the baryon-loading (the ratio of the energy density of hadrons to electrons, η_{bl}) is low, and will not have an impact on the total jet power ($P_t + P_h + P_e + P_b$, where P_b is the power carried by hadrons) as long as $\eta_{\text{bl}} \lesssim 10$. Assuming $\eta_{\text{bl}} = 1$, we derive $P_b = \eta_{\text{bl}} P_e = 0.3 \times 10^{46}$ erg s$^{-1}$ and 0.2×10^{46} erg s$^{-1}$ for Period A and Period C, respectively. 3C 279 has a black hole with mass ($3-8) \times 10^8 M_\odot$ (e.g., Gu et al. 2001; Woo & 2002). The Eddington luminosity is therefore in the range $(4-10) \times 10^{46}$ erg s$^{-1}$. For low baryon loading, the total jet powers in our model are comfortably below the Eddington luminosity of 3C 279.

Blazars are usually considered as cosmic-ray (CR) sources. Using the near-equipartition-log-parabola model, Dermer et al. (2015) gave the following expression for maximum escaping proton energy

$$E_{\text{max}}(eV) = 1.4 \times 10^{20} L_{48}^{5/16} \left(\frac{f_b}{\nu_{14}}\right)^{1/8} \left(\frac{f_1}{\nu_{14}}\right)^{1/8} \left(\frac{f_2}{\nu_{14}}\right)^{1/8} \zeta_{11/16}^{1/8} \zeta_{11/16}^{-1/8}$$

with $f_0 = 1/3$, $f_1 = 10^{-1/48}$, and $f_2 = 10^{1/8}$. Using the
Figure 4. One-dimensional probability distribution of parameter values (left; the dashed curves are the mean likelihoods of samples and the solid curves are the marginalized probabilities) and two-dimensional contours of parameters (right; the regions enclosing 68%(95%) confidence level are shown) for Period C. The upper panel is for the input parameters, and the lower panel is for the output parameters.

best-fit values for Period C (Table 1), we derive $E_{\text{max}} \sim 10^{20} - 2 \times 10^{20}$ eV. However, it should be noted that 3C 279 cannot contribute to the CRs with energy $\gtrsim 10^{20}$ eV at the Earth, because of the significant energy losses during the CRs traveling to us.

Besides E_{max}, the other key quantity of a blazar is its CR luminosity L_{CR}. Secondary γ rays are produced when high-energy CRs propagate towards us (e.g., Kalashev et al. 2009, 2013), which depends primarily on the values of L_{CR} and E_{max}. Such kinds of non-variable secondary emission (variable on timescale of years; Prosekin et al. 2012) have been proposed to explain the steady VHE ($\gtrsim 100$ GeV) emission from distant blazars (e.g., Essey et al. 2010, 2011; Murase et al. 2012; Aharonian et al. 2013; Takami et al. 2013; Yan et al. 2015).

If 3C 279 emits high-energy cosmic rays, the secondary emission should be lower than its VHE emission, which puts an upper limit on L_{CR}. There are no recently reported VHE observations for 3C 279, so we use the sensitivity of MAGIC-II as the upper limit of secondary emission. In Fig. 5, we show the secondary gamma-ray spectrum calculated by using the code TransportCR (Arisaka et al. 2007; Gelmini et al. 2012; Kalashev & Kido 2014) and the EBL model of Franceschini et al. (2008) (see Finke et al. 2010, for detailed comparisons for various EBL models). In the calculation, we assume a log-parabola CR distribution with $b = 1.48$ and peak energy $E_{\text{pk}} = 5 \times 10^{18}$ eV, and let the intergalactic magnetic field strength $B_{\text{IGMF}} = 10^{-13}$ G (e.g., Essey, Ando & Kusenko 2011) and its coherence length $\lambda_{\text{coh}} = 1$ Mpc. To make the secondary emission lower than the sensitivity of MAGIC-II, the CR luminosity is required to be $< 6 \times 10^{46}$ erg s$^{-1}$, significantly lower than L_{syn} and the apparent gamma-ray luminosity ($\sim 10^{48}$ erg s$^{-1}$). The upper limit of the corresponding absolute CR power $P_{\gamma, \text{CR}}$ is $\sim 10^{44}$ erg s$^{-1}$ (adopting $D_0 = 28$ in Period C), a quarter of P_{γ} (P_{γ} is for a two-sided jet) in Period C. In Fig. 5, it can be seen that Cherenkov Telescope Array (CTA), having significantly improved sensitivity over the present imaging air Cherenkov arrays, will put stronger constraints on the CR luminosity. The upper limit assumes that ultra-high energy cosmic rays are not deflected and isotropized during transit, which is unlikely unless the blazar is found in structured regions, for example, clusters and filaments (Murase et al. 2012). Even if the UHECRs can freely escape from the source region, they can be deflected during transport across intergalactic space (Takami et al. 2014).
If the hadrons in the jet are relativistic cosmic rays, as discussed above, these protons could, before escaping from the emission region, lose energies and produce secondary radiations via synchrotron and photodissociation interactions with low-energy photons (e.g., Dermer, Murase & Inoue 2014; Murase et al. 2014). However, the emission made by the protons in the emission region is negligible compared to the observed data, because the proton power \(P_h \) in our model is 2 – 3 orders of magnitude below the proton power required by hadronic model interpretations of FSRQ SEDs \((10^{37} – 10^{39} \text{ erg s}^{-1}) \) and the magnetic field in our model is 1 – 2 orders of magnitude below that usually found in hadronic models (10-100 G) (Böttcher et al. 2013; Diltz et al. 2015).

In this paper, we fitted the SEDs for Period A and Period C reported by Hayashida et al. (2015) with our one-zone leptonic model. This model can also explain the SED in the bright flare state of Period D with \(F(>100 \text{ MeV}) \) of \(10^{-3} \) photons cm\(^{-2}\) s\(^{-1}\) and \(t_{\text{obs, var}} \sim 2 \) hours reported by Hayashida et al. (2015). In Fig. 6, we show our best-fit result for the SED of Period D in Hayashida et al. (2015). In this fit, we use \(t_4 = 0.5 \) and \(T_{\text{dust}} = 800 \) K. The best-fit model requires \(\zeta \sim 10 \) and \(r \sim 0.2 \) pc. The deduced parameters are \(B \sim 0.8 \) G, \(\delta_D \sim 42 \), \(\gamma_{\text{ph}} \sim 360 \) and \(R' \sim 6 \times 10^{15} \) cm (see the other parameters values in the caption in Fig. 6). The results of Period D, compared with those of Periods A and C, are consistent with \(b \) and \(\nu_{14} \) mutually increasing. In contrast, the HSP BL Lacs with large peak synchrotron frequencies have broader widths of the synchrotron SEDs (corresponding to smaller values of \(b \)) than FSRQs with smaller values of \(\nu_s \) (Chen 2014).

Because of the lack of X-ray spectrum and the poor data coverage of the synchrotron hump in Period B, we do not fit the SED in Period B. We found that the EC-dust emission in our model could account for the very hard \(\gamma \)-ray spectrum \((\Gamma_{\gamma} \simeq 1.7)\) in Period B with \(\nu_{14} \sim 2.6 \), \(L_{48} \sim 0.07 \), \(b \sim 1.7 \), \(\zeta \sim 3 \), \(t_4 \sim 0.5 \) and \(r \sim 0.3 \) pc; and we derived \(B \sim 0.3 \) G, \(\delta_D \sim 60 \), \(\gamma_{\text{ph}} \sim 950 \), and \(u_{\text{dust}} \sim 0.6 \times 10^{-3} \text{ erg cm}^{-3} \).

In conclusion, we have applied the MCMC technique developed for blazar studies by Yan et al. (2013) to the high-quality simultaneous data of 3C 279 (Hayashida et al. 2015), using a log-parabola EED (Dermer et al. 2014). We find that the \(\gamma \)-ray SED is dominated by the dusty torus radiation, whereas the contribution of the BLR radiation field is very weak. This allows us to place the \(\gamma \)-ray emission region outside the BLR, at \(\gtrsim 0.1 \) pc, but within the IR radiation field of the torus. The reasonable fits obtained with curving particle distributions are more simply expained with a stochastic acceleration mechanism. The allowed parameter range in 3C 279 is well constrained at different epochs, and shows a positive correlation of the log-parabola width parameter \(b \) with peak synchrotron frequency \(\nu_s \). Analysis of more FSRQ SEDs will be required to determine if this correlation is robust.

ACKNOWLEDGMENTS

We would like to give special thanks to Charles Dermer, who carefully edited the manuscript and gave us many valuable suggestions and comments. We thank Charles Dermer, J. Finke, Kin Wah Wu for discussions, and the anonymous referee for very helpful and constructive questions. We are grateful to Krzysztof Nakajima for providing us the data of 3C 279. This work is partially supported by the National Natural Science Foundation of China (NSFC 11433004) and Top Talents Program of Yunnan Province, China. DHY acknowledges partial funding support by China Postdoctoral Science Foundation under grant No. 2015M570152. SNZ acknowledges partial funding support by 973 Program of China under grant 2014CB845802, by the National Natural Science Foundation of China (NSFC) under grant Nos. 11133002 and 11373036, by the Qianren start-up grant 292012312D1117210, and by the Strategic Priority Research
We show the fitting results with a larger \(r_{\text{dust}} \), i.e., \(r_{\text{dust}} = 2 \times 10^{18} (L_{\text{disk}}/10^{45} \, \text{erg s}^{-1})^{1/2} \) cm (e.g., Ghisellini et al. 2014). We then have \(r_{\text{dust}} \approx 0.8 \) pc. Using \(\tau_{\text{dust}} = 0.3 \), we derive \(u_{\text{dust}} \lesssim 2 \times 10^{-4} \, \text{erg cm}^{-3} \).

Figure A1 shows the best-fit results with this larger \(r_{\text{dust}} \). One can see that the fit to the SED in Period A is comparable to the fit showed in Section 3; however, the fit to lowest \(\gamma \)-ray data in Period C is bad in the case of the larger \(r_{\text{dust}} \).

In Figs. A2 and A3, we show the one-dimensional probability distribution of parameter values. The mean values and the marginalized 95% confidence intervals of the model parameters are reported in Table A1. In Period A, a larger \(\zeta_e \) and \(r \) is required in fitting with the larger \(r_{\text{dust}} \). The other input parameters change little, compared with those given in Section 3. The change in \(\zeta_e \) leads to the significant changes in \(B' \) and \(\delta_D \). In Period C, the input parameters are nearly identical to those reported in Section 3.
Table A1. Input and output parameters values derived in the fittings with the larger r_{dust}. The mean values and the marginalized 95% confidence intervals (CI) for interested parameters are reported.

Input	ζ_e	b	L_{48}	ν_{14}	t_4	ζ_s	r (pc)	r_{dust} (K)	r_{dust} (10^{46} erg s^{-1})
Period A	3.25	1.19	0.19	0.27	5	0.48	0.7	800	0.15
(95% CI)	3.52-4.91	1.11-1.26	0.17-0.20	0.23-0.31	-	0.44-0.53	0.1-1.2	-	-
Period C	4.58	1.50	0.24	0.52	1	0.79	0.2	800	0.15
(95% CI)	3.13-4.98	1.43-1.56	0.22-0.25	0.48-0.55	-	0.71-0.87	0.1-0.3	-	-

Output	δ_D	γ_{BLR}	u_{dust}	u_{BLR}	N^r	r_B	r_e	u_{dust} (10^{-3} erg cm^{-3})	u_{BLR} (10^{-3} erg cm^{-3})	r^r	r_B	r_e
Period A	0.5	23	250	0.1	0.005	3	0.9	0.6	-	-	-	-
(95% CI)	0.3-0.8	19-26	260-320	0.04-0.25	0.001-0.3	-	-	-	-	-	-	-
Period C	1.0	29	300	0.21	0.6	0.8	1.0	0.5	-	-	-	-
(95% CI)	0.9-1.3	27-31	290-310	0.20-0.22	0.07-2	0.07-2	-	-	-	-	-	-

Figure A2. One-dimensional probability distribution of parameter values for Period A.

Figure A3. One-dimensional probability distribution of parameter values for Period C.