Title
Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the Chornobyl accident.

Permalink
https://escholarship.org/uc/item/67g5b1zp

Journal
British journal of cancer, 104(1)

ISSN
0007-0920

Authors
Zablotska, LB
Ron, E
Rozhko, AV
et al.

Publication Date
2011

DOI
10.1038/sj.bjc.6605967

Peer reviewed
Thyroid cancer risk in Belarus among children and adolescents exposed to radiiodine after the Chornobyl accident

LB Zablotska*,1, E Ron2, AV Rozhko3, M Hatch1, ON Polyanskaya3, AV Brenner2, J Lubin2, GN Romanov3, RJ McConnell4, P O’Kane5, VV Evseenko3, VV Drozdovitch2, N Luckyanov2, VF Minenko6, A Bouville6 and VB Masyakin3

BACKGROUND: Previous studies showed an increased risk of thyroid cancer among children and adolescents exposed to radioactive iodines released after the Chornobyl (Chernobyl) accident, but the effects of screening, iodine deficiency, age at exposure and other factors on the dose–response are poorly understood.

METHODS: We screened 11 970 individuals in Belarus aged 18 years or younger at the time of the accident who had estimated 131I thyroid doses based on individual thyroid activity measurements and dosimetric data from questionnaires. The excess odds ratio per gray (EOR/Gy) was modelled using linear and linear–exponential functions.

RESULTS: For thyroid doses <5 Gy, the dose–response was linear (n = 85; EOR/Gy = 2.15, 95% confidence interval: 0.81–5.47), but at higher doses the excess risk fell. The EOR/Gy was significantly increased among those with prior or screening-detected diffuse goiter, and larger for men than women, and for persons exposed before age 5 than those exposed between 5 and 18 years, although not statistically significant. A somewhat higher EOR/Gy was estimated for validated pre-screening cases.

CONCLUSION: 10–15 years after the Chornobyl accident, thyroid cancer risk was significantly increased among individuals exposed to fallout as children or adolescents, but the risk appeared to be lower than in other Chornobyl studies and studies of childhood external irradiation.

Keywords: thyroid neoplasms; iodine radioisotopes; Chernobyl nuclear accident; risk; iodine deficiency

Convincing evidence exists of an association between exposure to external radiation and an increased risk of thyroid cancer (Ron and Schneider, 2006), but risks from internally deposited radioactive iodines were not well studied until recently. The Chernobyl (Chernobyl) nuclear power plant accident resulted in exposure of populations in Ukraine, Belarus and the Russian Federation to large amounts of radionuclides (chiefly 131I, 133I and 137Cs) (UNSCEAR, 2000). Those exposed as children or adolescents received comparatively high radiation doses due to the small size of thyroid gland and high consumption of milk contaminated with radioactive iodines (Gavrilin et al, 2004).

An increase in thyroid cancer among exposed children and adolescents in the contaminated areas has been reported since the accident (Kazakov et al, 1992; Astakhova et al, 1998; Jacob et al, 1999). Questions, however, have been raised about the potential effects of screening and case ascertainment as well as modifying effects of iodine deficiency on risk estimates (Boice, 2005). The modifying effects of gender, age at exposure, and time since exposure (Ron, 2007) and their differences and similarities with the risks observed after external irradiation (Shore, 1992; Ron and Schneider, 2006) are not well understood.

We initiated two screening studies of children and adolescents exposed to Chernobyl fallout in Ukraine and Belarus using similar designs to clarify these unresolved issues (Stezhko et al, 2004). In the Ukrainian study, we estimated an excess odds ratio per gray (EOR/Gy) of 5.25 (95% confidence intervals (CIs): 1.70–27.5) for prevalent thyroid cancer detected during initial screening (Tronko et al, 2006). In this report, we evaluated the dose–response for prevalent thyroid cancers diagnosed during the first round of screening in Belarus. We also present an analysis of validated self-reported pre-screening cases.

MATERIALS AND METHODS

A detailed description of the study population and methods has been published previously (Stezhko et al, 2004). We identified 38 543 individuals aged 18 years or younger at the time of the Chernobyl accident on 26 April 1986 who had thyroid radioactivity measurements taken in Belarus within 2 months after the accident. We attempted to trace these individuals through local and regional
address bureaus, military registration offices, departments of education and public health, and medical establishments. Approximately 5% (n = 1804) of the potential study subjects were ineligible (incorrect age, died, incarcerated, moved out of the country, etc.) and 20 526 (53.3%) could not be traced. Of the 16 213 individuals who were traced and invited to participate in the study, 11 970 (73.8%) were screened for thyroid diseases (11 903 in 1996–2001 and 67 in 2002–2004). During screening, 202 individuals were determined to be ineligible due to incorrect age (n = 114), incorrect identification (n = 20), or lack of thyroid tissue due to primary thyroid gland aplasia (n = 10) or surgery for benign thyroid condition (n = 58). An additional 104 subjects were excluded because their doses could not be estimated adequately. For the main analysis, we also excluded the 53 subjects who had a prior thyroid cancer, leaving a total of 11 611 subjects.

The study was approved by institutional review boards in Belarus and the United States. Informed consent was provided by the study participants or by accompanying guardians for minors.

The majority of study subjects resided in Minsk and Gomel oblasts (an oblast is an administrative subdivision similar in size to a state or province) and were screened at study centres in Minsk and Gomel cities or at local medical clinics by visiting mobile screening teams. The initial protocol called for biennial screening, but by decree of the Ministry of Health of Belarus, all persons under the age of 18 years at the time of screening (almost a third of the cohort) were recalled annually for screening examinations. Thyroid screening consisted of ultrasound examination and palpation by a sonographer and a clinical examination with independent palpation by an endocrinologist. Any discrepancies were resolved by a third examination conducted jointly by both doctors. At the time of screening, participants were administered questionnaires to ascertain demographic, residential, dietary and medical history, and blood and spot urine samples were collected.

Patients with thyroid nodules detected either on palpation or ultrasonogram that measured at least 10 mm and all nodules that measured 5–10 mm and were sonographically suspicious for malignancy (hypoechogenic, indistinct border, calcified inclusions, extension through the thyroid capsule or suspicious lymphadenopathy) or with diffusely abnormal thyroid tissue accompanied by unexplained cervical lymphadenopathy were referred to the Minsk and Gomel study centres for further evaluation and ultrasound-guided fine needle aspiration (FNA) biopsy.

Thyroid cancers were included in the analysis if they were surgically removed within 3 years of initial screening. Two study pathologists diagnosed thyroid cancers based on examination of tumour tissue. All diagnoses were confirmed by the Chornobyl Tissue Bank (CTB) or an ad hoc international panel of thyroid pathologists. Pre-screening thyroid cancers were defined as cases diagnosed after the accident and reported by subjects at initial screening. Cancers were validated by review of patients’ medical and pathology records.

131I represents about 95% of the thyroid dose (Minenko et al., 2006), and thyroid doses mainly came from intake of 131I-containing milk. Thyroid doses, estimated using methodology similar to that used in the Ukrainian study (Likhtarev et al., 2006), were based on: (1) direct thyroid measurements; (2) a radioecological model, which was used to assess the temporal variation of 131I in the thyroid and (3) personal interviews, which provided information on individual dietary and lifestyle habits that were used to adjust the radioecological model. The results of direct thyroid measurements in Belarus were corrected for contribution to the measured signal from external surface contamination of body and clothes as well as internal contamination of cohort member’s body with caesium isotopes. Additional data sources were used to update the parameters of the dosimetry model, including thyroid volume measurements from the Sasakawa Memorial Foundation to derive age-specific thyroid masses (Skryabin et al., 2010); measurements of 131I in soil to verify the validity of calculated 131I deposition density in each settlement; and 131I measurements in soil and grass samples to derive an interception factor of 131I by vegetation.

Statistical methods

We analysed the prevalence of thyroid cancer using models for the binomial odds (Breslow and Day, 1987). The dose categories were selected to evenly distribute cases. We fitted an EOR model to continuous doses to estimate the EOR/Gy where the disease odds is:

$$\exp(\alpha x + (1 + \beta d \exp(\gamma z))$$

where d represents radiation dose, x and z are covariate vectors representing confounding and effect modification variables, respectively, and α, β and γ are unknown parameters.

Past iodine deficiency was evaluated using proxy indicators, including place of residence at the time of the accident, self-reported history of diffuse goiter, diffuse goiter diagnosed during screening and enlarged thyroid (thyroid volume > 18 ml for women and > 25 ml for men) (Rasmussen et al., 2002). In addition, we evaluated gender, age at the time of the accident, and oblast of residence, urban/rural status and age at screening, history of nodular goiter, and urinary iodine concentration as risk factors and/or possible modifiers of the dose–response. We retained potential confounding variables in the model if they significantly improved the model fit or if the estimate of the EOR changed by more than 10%.

We analysed data using the EPICURE software package (Preston et al., 1993). All statistical tests were two-sided with a specified type I error of 0.05, and 95% CIs were estimated by maximum likelihood procedures. Linear trend test was based on the means of the dose categories.

RESULTS

Analysis of prevalent cases detected during screening

Of the 595 subjects referred for FNA at the first screening cycle, the referral was cancelled for 18 subjects (3.0%) who did not meet the FNA criteria and FNA was performed for 553 subjects for a compliance rate of 95.8%. Of the 167 subjects referred for surgery, 152 complied (91.0%). Additional three surgeries were performed outside the study, but their pathology slides were reviewed by the study pathologists. All but one of the 87 thyroid cancers were papillary carcinomas (1 was follicular carcinoma). Nine cases had two or more separate thyroid cancers in different locations and thirteen cases had simultaneous diagnoses of thyroid cancer and follicular adenoma. Of the 87 cases, 5 were discovered during surgery for benign thyroid conditions.

Adjusting for radiation dose, background thyroid cancer ORs were non-significantly higher for women compared to men (OR = 1.40, P = 0.12) and older ages at screening (P = 0.19; Table 1). The prevalence rate was significantly higher for individuals with a self-reported history of nodular (OR = 23.21, P < 0.001) or diffuse goiter (OR = 5.15, P < 0.001), or with nodular and diffuse goiter diagnosed at screening (ORs = 19.79 and 3.16, P < 0.001). Subjects with a family history of nodular goiter had an increased OR (OR = 3.54, P < 0.001). Oblast of residence at the time of screening, urban/rural status and current urinary iodine concentration levels were not associated with thyroid cancer after adjustment for radiation dose. Gender, age at screening and oblast of residence at the time of screening were independent risk factors of the background thyroid cancer risks and were retained in all further models.
Thyroid doses among the 11,611 subjects ranged from nearly 0 to 32.80 Gy (Figure 1) with an arithmetic mean of 0.56 (s.d. = 1.18), and differed significantly between cases and non-cases (1.08 vs 0.56 Gy, \(P < 0.001 \)). Increasing thyroid doses were significantly associated with increased risk of thyroid cancer (\(P \) linear trend \(< 0.001 \), not shown). When the highest category was split at 5 Gy to reflect a changing dose–response pattern, the linear trend remained highly significant (\(P \) linear trend \(< 0.01 \); Table 2). A linear model did not fit the data over the full range of doses and the test of no departure from linearity was rejected (\(P = 0.05 \)). A linear–exponential model provided an improved fit to the data (Figure 2; estimates \(b = 3.11 \) and \(c = 0.15 \) for an OR at 1 Gy of 3.68).

For doses \(< 5 \) Gy (omitting 118 non-cases, 2 cases), linearity was not rejected (\(P = 0.90 \)) and the estimated EOR/Gy was 2.15 (95% CI: 0.81–5.47, \(P < 0.001 \)). Further restriction to subjects with doses \(< 1 \) Gy (omitting an additional 23 cases, 1,534 non-cases) resulted in a linear dose–response with an EOR/Gy of 4.92 (95% CI: 1.32–17.12). We limited remaining analyses to subjects with doses \(< 5 \) Gy. We observed non-significantly higher dose–response estimates for men (\(P = 0.08 \); Table 3). Age at exposure did not significantly modify the radiation dose and thyroid cancer association (\(P = 0.48 \)), although risk estimates decreased with increasing age. There was a suggestion of increased dose effects for subjects residing in Gomel oblast at the time of the accident (\(P = 0.07 \)). The EOR/Gy was larger in subjects with history of goiter.

Table 1: Descriptive characteristics of prevalent thyroid cases and non-cases

Variable	Cases	Non-cases	Odds ratio*	95% CI	P-valueb
Gender	37 (42.53)	5602 (48.61)	1	0.91–2.15	0.12
	50 (57.47)	5922 (51.40)	1.40		
Age at screening, years					
10–14	13 (14.90)	1379 (12.00)	1		0.19
15–17	14 (16.10)	2161 (18.80)	0.89	0.41–1.91	
18–20	12 (13.80)	2010 (17.40)	1.03	0.46–2.32	
21–23	8 (9.20)	1891 (16.40)	0.71	0.29–1.75	
24–26	19 (21.80)	1840 (16.00)	1.75	0.83–3.67	
27–29	15 (17.20)	1533 (13.30)	1.73	0.79–3.79	
30–34	6 (6.90)	708 (6.10)	1.61	0.59–4.43	
History of nodular goiter					
No	55 (63.20)	11297 (98.00)	1		<0.001
Yes	32 (36.80)	227 (2.00)	232.1	14.34–37.57	
History of diffuse goiter					
No	78 (89.70)	11277 (97.90)	1		<0.001
Yes	9 (10.30)	247 (2.10)	5.15	2.49–10.67	
Nodular goiter diagnosed during screening					
No	39 (44.83)	10895 (94.54)	1		<0.001
Yes	48 (55.17)	629 (5.46)	19.79	12.65–30.96	
Diffuse goiter diagnosed during screening					
No	54 (62.07)	9750 (84.61)	1		<0.001
Yes	33 (37.93)	1774 (15.39)	3.16	2.02–4.94	
Family history of nodular goiter					
No	67 (77.01)	10649 (92.40)	1		<0.001
Yes	20 (22.99)	875 (7.60)	3.54	2.13–5.89	
Oblast of residence at screening					
Minsk	16 (18.40)	3147 (27.30)	1		0.54
Gomel	61 (70.10)	7110 (61.70)	1.12	0.63–2.01	
Other	10 (12.50)	1267 (10.80)	1.29	0.58–2.87	
Urban status					
Urban	39 (44.83)	7007 (60.80)	1		0.12
Rural	48 (55.17)	4517 (39.20)	1.44	0.91–2.29	
Urinary iodine concentration, \(\mu g/l \)					
0–19	10 (11.50)	1266 (11.00)	0.79	0.38–1.63	0.47
20–49	19 (21.80)	2988 (25.90)	0.65	0.37–1.17	
50–99	30 (34.50)	3236 (28.10)	1		
100–299	25 (28.70)	3426 (29.70)	0.83	0.49–1.43	
300+	3 (3.40)	455 (3.90)	0.75	0.23–2.48	
Unknown	0 (0.00)	153 (1.30)			

Abbreviation: CI = confidence interval. *Model adjusted for thyroid dose, age at risk, gender and oblast of residence (Minsk, Gomel, Other). bP-value from the likelihood ratio test evaluating statistical significance of adding corresponding variables to the model.
diffuse goiter or diagnosed with diffuse goiter or enlarged thyroid volume at screening compared with those without these conditions ($P<0.01$). Dose effects were unrelated to current urinary iodine concentration ($P=0.30$). Tumours ranged in size from 1 to 47 mm (mean = 11 mm, median = 9 mm). The estimated dose effects did not differ by tumour size (EOR/Gy = 1.35 and 3.40 for 5–10 and ≥10 mm, respectively, $P=0.30$; Table 3).

Analysis of pre-screening cases

Self-reported diagnosis of pre-screening thyroid cancer was confirmed for 53 subjects. The majority of the pre-screening thyroid cancers were diagnosed among men (54.7 vs 42.5%), and among persons exposed at a younger age (mean age 5.5 years vs 8.7) and with a higher mean dose (mean dose 1.77 vs 1.08 Gy). They were more likely to live in rural areas, both at the time of the accident and at the time of screening (not shown). Both pre-screening and screening-detected cases had a similar family history of nodular goiter (17.0 and 23.0%), but different self-reported history of diffuse goiter (0 and 10.3%). Similar to the analysis of screening-detected cases, the linear–exponential model provided the best fit to the data on pre-screening cases (estimates $\hat{\beta} = 12.87$ and $\hat{\gamma} = -0.12$ for an OR at 1 Gy of 12.41; not shown). Exclusion of 118 non-cases and 5 pre-screening thyroid cancer cases with doses 5 Gy and above resulted in the linear EOR/Gy of 8.18 (95% CI: 2.11–72.71), $P<0.001$ and the exponential term was no longer significant ($P=0.43$; Table 4). There was no significant effect modification by gender ($P=0.88$), age at exposure ($P=0.32$) or place of residence at the time of the accident ($P=0.15$).

Combined analysis of pre-screening and screening cases

When we combined pre-screening cases with cases diagnosed during regular screening, the EOR/Gy estimate from the linear model based on doses <5 Gy was 3.16 (95% CI: 1.49–6.95, $P<0.001$; Table 4). The linear slope did not differ significantly between the pre-screening and screening cases ($P=0.58$; not shown). Although there was no significant difference in radiation effects according to gender and age at exposure in the combined cases, the EOR/Gy for those living in Gomel oblast in 1986 was four times the value for those from other oblasts (EOR/Gy = 3.93 and 1.00 respectively, $P=0.04$).

DISCUSSION

Our results from the first screening in the cohort of Belarusian children and adolescents exposed to radioactive iodine fallout from the Chornobyl accident showed a significant dose–response relationship between 131I thyroid dose and thyroid cancer, which was linear–exponential across the full range of doses, but consistent with linearity below 5 Gy (EOR/Gy = 2.15, 95% CI: 0.81–5.47). There was some indication that men and those exposed at younger ages had larger radiation-associated risks, as measured by EOR/Gy, but they were not statistically significant. Proxy indicators of iodine deficiency enhanced radiation-associated risks of thyroid cancer. Similar effects with higher-point EOR/Gy estimates were observed for pre-screening thyroid cancer cases confirmed through medical records.

A major strength of the study was the individual estimates of 131I thyroid doses based on thyroid radioactivity measurements performed within 2 months after the accident and on questionnaire data collected during screening and before diagnosis. Thus, although based on the prevalence data and cross-sectional by design, our study results were not affected by selection or recall bias. All subjects were screened using a standard protocol and screeners were masked to estimates of radiation dose, thus diminishing potential confounding effects of screening and

Table 2

Dose category, Gy	Mean dose, Gy	Cases (N = 87)	%	Non-cases (N = 11524)	%	Odds ratio*ab	95% CI
0.00–0.049	0.02	0	6	1985	17.2	1	0.51–3.98
0.05–0.14	0.09	11	12.6	2554	22.2	1.42	0.90–7.47
0.15–0.29	0.22	13	14.9	2053	17.8	2.09	0.76–5.75
0.30–0.44	0.37	10	11.5	1281	11.1	2.59	1.13–9.46
0.45–0.64	0.54	10	11.5	1034	9.0	3.27	1.13–9.46
0.65–1.24	0.90	16	18.4	1421	12.3	3.95	1.46–10.69
1.25–2.24	1.64	10	11.5	686	6.0	5.27	1.80–15.46
2.25–4.99	3.18	9	10.3	392	3.4	8.70	2.85–26.55
5.00–32.80	8.84	2	2.3	118	1.0	6.75	1.26–36.22

Abbreviations: CI = confidence interval; Gy = gray. *Model adjusted for age at risk, gender and oblast of residence (Minsk, Gomel, Other). abP-value of the test of linear trend based on mean values for dose categories = <0.01.
Table 3 Risk models and interaction terms for prevalent thyroid cancers

Modifying factor and its value	Cases	EOR/Gy*	95% CI	P-valueb
All subjects	85	2.15	0.81–5.47	0.08
Gender				
Men	36	5.89	1.36–52.72	0.08
Women	49	1.17	0.23–3.70	0.08
Age at the time of the accident, years				
0–4	26	4.02	0.98–15.07	0.48
5–11	30	1.95	0.41–6.17	0.12
12–18	29	1.40	NE–4.95	0.08
Oblast of residence at the time of the accident				
Minsk and other	9	2.06	<0–2.189	0.07
Gomel	76	2.51	0.99–5.98	0.08
History of diffuse goiter				
No	77	1.91	0.67–4.97	<0.01
Yes	8	1.450	4.44–39.03	<0.01
Diffuse goiter diagnosed at screening				
No	52	1.44	0.41–4.04	<0.001
Yes	33	7.83	3.50–17.49	<0.01
Urinary iodine concentration, µg/L				
0–19	10	2.40	1.91–7.55	0.30
20–49	19	1.14	NE–4.06	0.08
50–99	29	3.05	NE–7.82	0.08
100+	27	2.17	NE–6.05	0.08
Thyroid volume enlargement				
No	71	1.74	0.56–4.68	<0.01
Yes	14	9.10	3.18–22.43	<0.01
Max dimension of the tumor after thyroid pathomorphology				
<10 mm	44	1.35	0.22–5.26	0.30
10+ mm	41	3.40	1.00–13.11	0.08

Abbreviations: CI = confidence interval; EOR/Gy = excess odds ratio per gray; NE = not estimated. Data restricted to subjects with doses <5 Gy. *Model adjusted for age at risk, gender and oblast of residence (Minsk, Gomel, Other). P-value from the likelihood ratio test of homogeneity across categories. Excluding 150 subjects with missing urinary iodine concentration. Thyroid enlargement was defined as a thyroid volume >18 ml for women and >25 ml for men.

dose-related differential screening. Our findings were further strengthened by the high FNA and surgery compliance rates (95.8% and 91.0%, respectively) and the review of all cases by international pathology experts. Our estimate of EOR was robust and not affected by exclusion of one follicular carcinoma case, cases with simultaneous follicular adenoma or cases with incidental finding of cancer from analysis (EOR/Gy of 2.15, 2.74 and 2.55, respectively).

The study has several limitations. Because only 11 970 of the 36 739 individuals eligible to participate (32.6%) were screened, a possible non-participation bias is a concern. The major reason for non-participation was the difficulty in locating and tracing eligible subjects. Thus, slightly more than 50% of potential subjects could not be traced, primarily because of the high mobility of this young population in the period between the 1986 Chornobyl accident and the start of screening in 1997, and the limited identifying information in the thyroid activity logs through which eligibility was determined. Among those invited into the study, 73.8% participated, which is similar to other large cohort studies (Szkel, 1998) and to the participation rate observed in the parallel study in Ukraine (67.5%) (Tronko et al, 2006). About a quarter of those invited to participate did not come for screening, primarily because they lived far from screening centres. Although mobile
from the Cancer Registry of Belarus could be responsible for observed differences in risk estimates with our study (OR at 1 Gy = 3.68 from the linear–exponential model).

Our estimates of risk were somewhat lower than those reported from the study of the survivors of atomic bombings in Japan where risk at age 30 was ERR/Gy = 5.35 among those exposed younger than 10 and ERR/Gy = 4.28 among those exposed between 10 and 19 years old (Preston et al., 2007), and much lower compared to the estimate from the pooled analysis of risks after X-ray and γ-irradiation (ERR/Gy = 7.7, 95% CI: 2.1–28.7) (Ron et al., 1995).

Our CIs overlap suggesting compatibility of findings. In studies of external irradiation of the thyroid gland, younger age at exposure was significantly associated with increased risk and the evidence for gender was suggestive although not uniform across studies.

Iodine deficiency is thought to increase radioiodine uptake by the thyroid gland and to modify thyroid function after radiation exposure (Robbins et al., 2001). Two studies reported an inverse association between iodine deficiency, defined by low urinary iodine excretion levels (Shakhtarin et al., 2003) or levels of stable iodine in soil in areas of residence at the time of accident (Cardis et al., 2005), and increased risk of radiation-associated thyroid cancer. In the parallel Ukrainian study, place of residence and current iodine excretion did not modify the risk of thyroid cancer (Tronko et al., 2006) or the risk of benign follicular adenoma (Zablotska et al., 2008). The areas of the northern Ukraine where the study was conducted had more severe iodine insufficiency than the study areas in Belarus, where at the time of screening two-thirds of study participants were iodine deficient with urine levels < 100 μg l−1 (Table 1). We used four proxy indicators to describe past iodine deficiency and observed that history of diffuse goiter, and diffuse goiter and thyroid volume enlargement diagnosed during screening were significant modifiers of cancer risk.

Study participants exposed in Gomel oblast had higher risks compared to subjects from other oblasts (P = 0.07) and the difference in risk estimates was even more pronounced and significant in the combined analysis of pre-screening and prevalent cases (P = 0.04). This could be an indication of more severe past iodine deficiency in Gomel oblast. Although the prevalence of goiter at the time of screening in our study was comparable across oblasts, several reports (Kholodova and Fedorova, 1992; Gerasimov, 1993; Gembicki et al., 1997) have suggested that iodine deficiency in Gomel oblast around the time of the accident was comparable across cases (5–10 years) and estimated an EOR/Gy of 3.43 (95% CI: not estimated to 464) for the group of smaller nodules (N = 20 cases) and 1.85 (95% CI: 0.79–4.01) for the larger nodules (N = 53, P > 0.50; not shown). The clinical importance of small screening-detected cancers is not well understood and we could not evaluate it in this study based on the first round of screening.

Our findings indicate that in a cohort of children and adolescents from Belarus exposed to the fallout from the Chornobyl accident, thyroid cancer is associated with exposure to 131I. Future analyses of incident thyroid cancers identified during additional two screening cycles (2001–2007) should shed light on the clinical importance of screening-detected tumours and age at exposure and time trends effects.

ACKNOWLEDGEMENTS

We gratefully acknowledge the contributions of the late Dr Gilbert W Beebe and Dr Geoffrey R Howe to the original design of the study and the contributions of Dr Aaron B Brill, Dr Daniel J Fink, Dr Ellen Greenbaum, Dr Ihor J Masnyk, Dr Jacob Robbins, Dr Terry L Thomas and Dr Paul G Voilquelle to the setup and execution of the study over the years. We thank the BelAm study staff for their dedication and commitment to the success of this study. We express our deep appreciation of the work of the members of the International Pathology Panel of the Chornobyl Tumor Tissue Bank and the ad hoc international thyroid pathology panel: Dr Alexander Abrosimov, Dr Tatiana I Bogdanova, Dr Ronald A Ghessein, Dr Masahiro Ito, Dr Virginia LiVolsi, Dr Alexander M Neronvnya, Dr Juan Rosai, Dr Geraldine A Thomas Dr and E Dillwyn Williams. We also thank Dr Kiyohiko Mabuchi for careful review and helpful comments on the draft of the article. Funding for this study was provided by the National Cancer Institute, US Department of Health and Human Services. The US Department of Energy provided funding at the earlier stages of the study and the Nuclear Regulatory Commission provided the initial funds for purchase of equipment, but neither of the two agencies had any role in the design and analysis of the study.

Table 4
Models of EOR/Gy and interaction terms for pre-screening and a combined set of pre-screening and prevalent thyroid cancers

Modifying factor and its values	Pre-screening cases		Pre-screening and prevalent cases					
	Cases	EOR/Gy	95% CI	P-value	Cases	EOR/Gy	95% CI	P-value
All subjects	48	8.18	2.11–72.71	0.88	133	3.16	1.49–6.95	0.13
Gender								
Men	26	2.68	NE–74.59	0.32	49	2.82	1.04–7.27	0.92
Women	22	9.09	1.55–103.30	0.15	24	3.33	1.14–8.37	0.04
Age at exposure, years								
0–4	23	4.98	0.91–43.94	0.15	15	1.00	NE–4.19	0.04
5–7	12	10.44	2.56–76.99	0.15	118	3.93	1.85–8.65	0.04
8–18	13	12.24	1.88–109.40	0.15	118	3.93	1.85–8.65	0.04
Oblast of residence at the time of the accident								
Minsk and other	6	10.09	2.70–63.26	0.15	15	1.00	NE–4.19	0.04
Gomel	42	3.41	NE–35.40	0.15	118	3.93	1.85–8.65	0.04

Abbreviations: CI = confidence interval; EOR/Gy = excess odds ratio per gray; NE = not estimated. Data restricted to subjects with doses < 5 Gy. *Model adjusted for age at risk, gender and oblast of residence (Minsk, Gomel, Other). †P-value from the likelihood ratio test of homogeneity across categories.
REFERENCES

Astakhova LN, Anspaugh LR, Beeve GW, Bouville A, Droz dovich VV, Garber V, Gavrili N, Khrou ch VT, K u v shinnikov AV, Kuzmen kov YN, Minenko VP, Moschik KV, Nalivko AS, Robbins J, Shemiakina EV, Shinkarev S, Tochitskaya SI, Waclawiw MA (1998) Chernobyl-related thyroid cancer in children of Belarus: a case–control study. Radiat Res 150: 349–356

Boice Jr JD (2005) Radiation-induced thyroid cancer – what’s new? J Natl Cancer Inst 97: 703–705

Breslow NE, Day NE (1987) Statistical Methods in Cancer Research. Volume 2 – The Design and Analysis of Cohort Studies. International Agency for Research on Cancer: Lyon

Cardis E, Kes mini ane A, Ivanov V, Malak hova I, Shibaya Y, Khrou ch V, Droz dovich V, Mace i ka E, Zvonova I, Vlassov O, Bouville A, Goul kou G, Hoshi M, Abros imov A, Anoshko J, Astakhova L, Chekhin S, Demid chik E, Galanti R, Ito M, Kor obo v a E, Lushnikov M, Maks ivan Y, M vorov nia A, Par shin V, Par shiv kov E, Filip tsev i n F, F incher a C, Pol yakov S, Sh a beka N, S ionio E, Tenet V, Ts y b A, Yas h ma t a S, W illiams D (2005) Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 97: 724–732

CTB. Chernobyl Tissue Bank. Available at: http://www.chernobyltissuebank.com/research.html, Accessed 25 May 2010

Davis S, Stepanen kov V, Riv k in K, Ko pecky KJ, Voilleque P, Shaka rt rin VK, Par shkov E, Kulikov S, Lushnikov E, Abros imov A, T rowshin V, Roman o va G, Doroschenko V, Proshin A, Anspaugh L, Voilleque P, Luckyanov N (2004) Individual thyroid dose estimation for a case–control study of Chernobyl-related thyroid cancer among children of Belarus–part 1: 131I, short-lived radioisotopes (131I, 133I, 135I), and short-lived radiotetra i ums (131I-Me and 132Te). Health Phys 86: 565–585

Gembicki M, Stozharov AN, Arinchin AN, Moschik KV, Petrenko S, Khmara IM, Baverstock KF (1997) Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect 105(Suppl 6): 1487–1490

Gerasimov G (1993) Update on IDD in the former USSR.

Gavrilin Y, Khrouch V, Shinkarev S, Drozdovitch V, Minenko V, Shemiakina E, Ulansky AV, Bouville A, Anspaugh LR, Vlassov O, Goulko G, Hoshi M, Abrosimov A, Anoshko J, Astakhova L, Chekhin S, Demidchik E, Galanti R, Ito M, Korobova E, Lushnikov M, Maksyvan Y, Nervonina A, Parshin V, Parshkov E, Filipstevich N, Finchera C, Polyakov S, Shabeika N, Sionio E, Tenet V, Tsyb A, Yamashita S, Williams D (2005) Risk of thyroid cancer after exposure to 131I in childhood. J Natl Cancer Inst 97: 724–732

CTB. Chernobyl Tissue Bank. Available at: http://www.chernobyltissuebank.com/research.html, Accessed 25 May 2010

Davis S, Stepanenkov V, Rivkind N, Kopeczky KJ, Voilleque P, Shakhartin VK, Parshkov E, Kulikov S, Lushnikov E, Abrosimov A, Troschin V, Romanova G, Doroschenko V, Proshin A, Anspaugh L, Voilleque P, Luckyanov N (2004) Individual thyroid dose estimation for a case–control study of Chernobyl-related thyroid cancer among children of Belarus–part 1: 131I, short-lived radioisotopes (131I, 133I, 135I), and short-lived radiodetriliums (131I-Me and 132Te). Health Phys 86: 565–585

Gembicki M, Stozharov AN, Arinchin AN, Moschik KV, Petrenko S, Khmara IM, Baverstock KF (1997) Iodine deficiency in Belarusian children as a possible factor stimulating the irradiation of the thyroid gland during the Chernobyl catastrophe. Environ Health Perspect 105(Suppl 6): 1487–1490

Gerasimov G (1993) Update on IDD in the former USSR. IDD Newsletter 9: 43–48

Ito M, Yamashita S, Aashizawa K, Motomura T, Namba H, Hoshi M, Shibaya Y, Sekine I, Panasuyk G, Nagataki S (1997) Pediatric thyroid diseases around Chernobyl: morphological aspects of the Chernobyl Saskawa Health and Medical Cooperation Project. In: Chernobyl A Decade, Yamashita S, Shibata Y (eds). Elsevier: Netherlands

Jacob P, Kenigseg Y, Zvonova I, Goulko G, Buglova E, Heidenreich WF, Ron E (2007) Thyroid cancer incidence among people living in areas contaminated by radiation from the Chernobyl accident. Health Phys 93: 502–511

Ron E, Lubin JH, Shore RE, Nabuki B, Potter LM, Schneider AB, Tucker MA, Boice Jr JD (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141: 318–329

Ron E, Schneider AB (2006) Thyroid cancer. In: Cancer Epidemiology and Prevention, Schottenfeld D, Fraumeni Jr (eds). Oxford University Press: Oxford

Shakhartin VV, Tsyb AF, Stepanenkov VF, Orlov MY, Kopeczky KJ, Davis S (2003) Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int J Epidemiol 32: 584–591

Shore RE (1992) Issues and epidemiological evidence regarding radiation-induced thyroid cancer. Radiat Res 131: 98–111

Skryabin AM, Drozdovitch V, Belsky Y, Leshcheva SV, Mirkhaidarov AK, Voilleque P, Luckyanov N, Bouville A (2010) Thyroid mass in children and adolescents living in the most exposed areas to Chernobyl fallout in Belarus. Radiat Prot Dosimetry, e-pub ahead of print 7 September 2010, doi:10.1093/rpd/ncq209

Stezhko VA, Buglova EE, Danilova LI, Drozd VM, Krysenko NA, Lesnikova NR, Minenko VF, Ostashenko VA, Petrenko SV, Polysnyanka OS, Rzhuevski VA, Tronko MD, Bobylovaya RO, Bogdanova TI, Ephstein OV, Kairo IA, Kostin OV, Likhtariev IA, Markov VV, Oiliyka VN, Shpak VM, Terechenkov VP, Zarnatyeva GA, Beeve GW, Bouville AC, Brill AB, Burch JD, Fink DJ, Greenebaum E, Howe GR, Luckyanov NK, Masnyk IJ, McConnell RJ, Roberts J, Thomas TL, Voilleque PG, Zablotska LB (2004) A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: objectives, design and methods. Radiat Res 161: 481–492

Szklo M (1998) Population-based cohort studies. Epidemiol Rev 20: 81–90

Tronko MD, Howe GR, Bogdanova TI, Bouville AC, Epstein OV, Brill AB, Likhtariev IA, Fink DJ, Markov VV, Greenbaum EA, Oiliyka VN, Masnyk IJ, Shpak VM, McConnell RJ, Terechenkov VP, Robbins J, Zvinchuk OV, Zablotska LB, Hatch M, Luckyanov NK, Ron E, Thomas TL, Voilleque PG, Beeve GW (2006) A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid cancer in Ukraine detected during first screening. J Natl Cancer Inst 98: 897–903

UNSCEAR (2000) 2000 Report to the General Assembly, with Scientific Annexes. Volume II: Effects. United Nations: New York

VanMiddlesworth L (2002) Iodine nutrition in the Chernobyl area before and after the nuclear accident. Int Congr Series 1234: 163–168

Zablotska LB, Bogdanova TL, Ron E, Epstein OV, Robbins J, Likhtariev IA, Hatch M, Markov VV, Bouville AC, Oiliyka VN, McConnell RJ, Shpak VM, Brenner A, Terehenko GN, Greenbaum E, Terechenkov VP, Fink DJ, Brill AB, Zarnatyeva GA, Masnyk IJ, Howe GR, Tronko MD (2008) A cohort study of thyroid cancer and other thyroid diseases after the Chernobyl accident: thyroid follicular adenomas detected during first screening in Ukraine (1998–2000). Am J Epidemiol 167: 305–312

Risk of post-Chernobyl thyroid cancer in Belarus

Zablotska et al.

EBM