Fluctuations in fluid invasion into disordered media

Martin Rost¹, Lasse Laurson², Martin Dubé³, Mikko Alava²

¹ Theoretische Biologie, IZMB, Universität Bonn, 53115 Bonn, Germany
² Physics Laboratory, Helsinki University of Technology, P.L. 1100, 02150 HUT, Espoo, Finland
³ CIPP, Université de Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Québec, G9A 5H7 Canada

The dynamics of interfaces, domain-walls and fronts in disordered systems has attracted tremendous attention not only because of practical applications but also for the general interest in the emerging equations of motion and scaling laws. The presence of randomness is felt through both frozen (or “quenched”) noise and “thermal” fluctuations. Experimentally tested scenarios include fire fronts in combustible media [1], cracks propagating in solids [2, 3, 4], domain walls in magnets [2, 5, 6, 7, 8, 9], and interfaces in multi-phase flows (“imbibition” or “capillary rise” phenomena) [10, 11, 12, 13, 14], to name a few.

In these examples the fluctuations of the fronts can generally be described via self-affine fractals, with dynamics exhibiting critical correlations. For time-independent randomness, such as the pore structure in fluid invasion, it is possible to concentrate on the zero-temperature phase-transition which separates moving interfaces from pinned ones. The situation is then represented in terms of an order parameter, the velocity of the interface, and a control parameter, the driving force. The interface is described by a height $h(x, t)$, at position $x \in \mathbb{R}^d$ and time t, with its dynamics given by a Langevin equation $\partial_t h = \mathcal{L}(\{h\}, \alpha(\{h\}, x, t))$. The kernel \mathcal{L} contains the deterministic contribution of the interface and the random contribution of the noise configuration $\alpha(\{h\}, x, t)$. Both may depend non–locally on the entire interface configuration, denoted by $\{h\}$.

The scaling exponents of $h(x, t)$ are often studied but are by no means the only interesting feature of this problem. It is also possible to study the amplitude of the various correlation functions, together with the persistence properties of the interface [15], or the scaling of probability distributions of quantities such as deviations of the interface from its average position or velocity.

Here, we study the velocity fluctuations of driven fluid interfaces in disordered porous media in an imbibition situation, where a viscous fluid displaces air or a less viscous fluid. It is an important problem in the general field of fluid flow in porous media, with many engineering and technological applications. Fluid invasion and multi-phase flows are often analyzed via lattice models of pore networks (e.g. for oil industry applications), or via “upscaling techniques”, which summarize the physics on a coarse-grained (volume element) scale. One often studied aspect is the averaging of the scale-dependent permeability $\kappa(r)$, from the smallest pore scale up to geological scales [16, 17, 18, 19]. It is not trivial to arrive to a coarse-grained description of these systems, since the physics is governed by the (conserved) fluid flow in the porous bulk coupled to microscopic interfaces, menisci, between the two fluids.

We report on the behavior of the spatially averaged interface velocity $v(t)$, directly related to the liquid intake under an externally controlled pressure. We first show that there exists a scaling relation between the velocity fluctuations Δv and the average velocity $\bar{v} = \langle v(t) \rangle$. This scaling is also reflected in the power spectrum of $v(t)$ as we discuss in detail. The scaling arguments are backed with numerical simulations of a phase-field model for imbibition [20]. We also study the interface velocity fluctuations for non-conserved, “local” dynamics, where we find a different scaling relation, again backed by simulations of the appropriate model [21]. Both the average flux as well as its fluctuations are experimentally well accessible so our theoretical approach allows for an easy assessment of the type of dynamics. The detailed experiments of the Barcelona group and others point into that direction [10, 11, 12, 13, 14], and the main result extends to other systems where the front invasion depends on a conserved quantity.

The interface advances because fluid is transported from the reservoir through the medium. By Darcy’s law, fluid flow is proportional to a pressure gradient,

$$j = \frac{\kappa}{\eta} \nabla P. \quad (1)$$

Here η is the viscosity of the liquid and κ the permeability of the medium. Deviations from Eq. 1 are known to arise for microscopic reasons, such as, e.g., inertial effects when a meniscus enters a pore, clogging by advected particles as in the case of a dye, and the partial wetting of capillaries. Nevertheless, the linear form already leads to rich phenomena [22].

For an incompressible fluid, a Laplace–equation...
imposes another length scale experimentally \([10, 13]\). The ratio of disorder strengths \(v/\kappa\) is shorter than separating regimes of different roughness. On scales

![Image](https://via.placeholder.com/150)

FIG. 1: \textbf{Left}: Interfaces \(h(x,t)\) in a system of width \(L = 500\) and average separation \(\bar{h} = 320\) from the reservoir. The configurations are separated by time intervals \(\Delta t = 500\) at 240 different times. Interface propagation is made visible by adding the constant shift velocity \(\bar{v}\). The sequence of 20 black interfaces shows pinned and moving regions. \textbf{Right}: time series of \(v(t)\), the velocity for \(L = \bar{h} = 40, 80, 160 \ldots 1280\) from top to bottom, logarithmic scale in \(v(t)\).

![Image](https://via.placeholder.com/150)

FIG. 2: Activity pattern in space (vertical) and time (horizontal). \(L = 256, \bar{h} = 160\), lateral periodic boundary conditions. High velocities dark, low velocities light, nonlinear grey–scale for better visibility. At any given time activity is restricted to \(n = L/\bar{h} \approx 2\) narrow avalanches of width \(\xi_c\).

The corresponding chemical potential \(\mu = \delta \mathcal{F}/\delta \phi\) (with the role of pressure in the context of imbibition) drives a current \(j = -\bar{v} \nabla \mu\) with a rescaled and possibly spatially varying mobility \(\bar{k}(r)\). By local conservation of \(\phi\) this yields the dynamical equation

\[
\partial_t \phi = -\nabla \cdot \bar{k}(r) \nabla \left[\nabla^2 \phi + \phi - \phi^3 + \alpha(r) \right].
\]

With this model, a Young–Laplace relation between the chemical potential at the interface and the curvature, \(\mu_{\text{int}} = K - \alpha\) arises naturally.

The numerical simulations are performed, in a way that mimics forced–flow imbibition, by continuously shifting the fields \(\phi(r, t), \bar{k}(r)\) and \(\alpha(r)\) downward at velocity \(\bar{v}\), as in the experiments of Ref. \([22]\). The stationary interface then has average height \(\bar{h} = \bar{a}/(2\bar{v})\). For the \(\text{Ca}\) at \(\bar{h}\) and the permeability disorder has no influence (see \([22]\)), nor have correlations between \(\bar{k}(r)\) and
\(\alpha (r) \). Only simulations with capillary disorder are thus discussed here. Fig. 1 shows examples of model interfaces in \(d+1=2 \) dimensions, together with timeseries of average velocity or liquid intake, \(v(t) \) exhibiting typical fluctuations. Fig. 2 shows a spatiotemporal activity pattern of the local interface velocities \(\partial_t h(x,t) \).

The dynamics of the roughening interface can be understood as a sequence of avalanches. At any given time only a small localized portion of the interface is moving fast. There the Laplacian pressure field drags liquid from a surrounding region of lateral size \(h^d \), which therefore remains pinned. Further away the interface is not affected and moves independently. Within this region, the moving part has maximal capillary forces \(p_c \). However, it eventually encounters disorder with lower \(p_c \) and gets pinned. At this point, another region elsewhere starts to move. Propagation by avalanches in imbibition and their size distribution with one fixed scale has been found and discussed in experiments [14]. It is visible in Figs. 1 and 2. The size of these moving avalanches is given by the cutoff lengthscale \(\xi = \xi_c \) or \(\xi_e \). The regime governed by capillary disorder has global roughness exponents \(\chi \approx 1.25 \) and a different local exponent \(\chi_{loc} = 1 \) in \(d+1=2 \) dimensions [20, 22, 28]. For higher \(\text{Ca} \) than those considered here, permeability disorder starts to play a role and the exponents are \(\chi = \chi_{loc} = 1 \) in \(d+1=2 \) dimensions [22, 23].

A key feature is the relation between an avalanche duration \(\tau \) and its volume \(s(\tau) \). In general, a scaling \(s(\tau) \sim \tau^\gamma \), may be expected, with exponent \(\gamma \) determined as follows. Consider a region of lateral size \(\ell \) swept over by an avalanche. Its vertical extent is related to \(\ell \) by the local roughness exponent, \(w \sim \ell^{\chi_{loc}} \) [22, 28], with volume \(s \sim \ell^{d+\chi_{loc}} \). The avalanche is driven by a higher capillary disorder in the moving region as compared to other parts of the front. Since locally the values of \(p_c \) are independent random quantities, the excess driving force (the difference of typical \(p_c \) and the large fluctuation) and velocity decrease with size as \(v \sim \ell^{-d/2} \). Therefore, the avalanche sweeping time scales as \(\tau = w/v \sim \ell^{\chi_{loc}+d/2} \) and leads to the relation \(s \sim \tau^{\gamma} \) with

\[
\gamma = \frac{\chi_{loc}+d}{\chi_{loc}+d/2}.
\]

For \(d=1 \) we have \(\chi_{loc} = 1 \) [20] and expect \(\gamma = 4/3 \). In \(d=2 \) we would expect using \(\chi_{loc} = \chi = 3/4 \) [22] \(\gamma = 11/7 \).

To see the scaling of velocity fluctuations \(\Delta v \) we first relate the average avalanche velocity \(\bar{v}_{ava} \) to the overall velocity \(\bar{v} \) by the relative size of moving parts, \(\bar{v}_{ava} \approx (h/\xi)^{d/2} \bar{v} \). Next, we assume a simple relation \(\Delta v_{ava} \sim \bar{v}_{ava} \) between the average avalanche velocity and its fluctuations, justified by the slow, intermittent motion. Thus

\[
\Delta v \approx \left(\frac{\bar{v}_{ava}}{\bar{v}} \right)^{d} \Delta v_{ava}
\]

by factors resulting from independence on scales larger than \(h \) and the relative fraction of moving parts on smaller scales. The relation between average avalanche velocity and fluctuations yields in general, both for spontaneous and forced imbibition

\[
\Delta v \sim \left(\frac{\bar{h}}{L} \right)^{\frac{d}{2}} \left(\frac{\xi}{h} \right)^d \bar{v}_{ava} \sim \left(\frac{\bar{h}}{L} \right)^{\frac{d}{2}} \bar{v}.
\]

In spontaneous imbibition with rising height \(\bar{v} \sim \bar{h}^{-1/2} \) and \(\Delta v \sim \bar{h}^{1-d/2} L^{-d/2} \). Eq. 8 thus predicts that the fluctuations depend on the geometry (via \(h \) and \(L \)) and on the average velocity.

In the left panel of Fig. 3 we show the distributions \(P(v(t)) \) obtained in phase field simulations for several values of \(\bar{h} \), and \(\bar{v} \) and constant square aspect ratio \(L = h \). They can be scaled by an ansatz \(P(v) = \frac{1}{2} P\left(\frac{\bar{v}_{ava}}{\bar{v}} \right) \). The shape of \(P(v(t)) \) resembles a Gumbel distribution of extreme value statistics reflecting avalanches in regions of maximal capillary pressure, but our data are too scarce for a careful analysis.

\[\text{FIG. 3: Left: Rescaled distributions } P\left(\frac{\bar{v}_{ava}}{\bar{v}} \right) \text{ for various values of } 1/\bar{v} \propto h = L = 40, \ldots, 1280. \text{ Right: Power spectrum } S(\omega) = \langle |\hat{v}(\omega)|^2 \rangle \propto \omega^{-\alpha}. \text{ The exponent } \alpha \text{ may equal the exponent } \gamma \text{ discussed previously, if the avalanches have a self-affine fractal spatiotemporal structure } \beta \text{.} \]
the presence of a critical (zero–temperature, neglecting thermal creep) value F_c separating pinned and unpinned propagation a correlation length $\xi \sim \Delta F^{-\nu}$ ensues where $\Delta F = F - F_c$ and ν is the correlation length exponent. Meanwhile, the order parameter follows the generic scaling $\theta \sim \Delta F^{\theta}$. In the critical region, when ΔF is so small that $\xi \approx L$, the order parameter exponent θ takes a non-trivial value smaller than unity. For slightly larger driving forces, we have $L > \xi$. In the simulations here we considered $L/\xi = O(10)$, so we have $\theta \sim \Delta F$ or a trivial effective $\theta_{\text{eff}} = 1$.

In a system of lateral size L there are $N = (L/\xi)^d$ independent sub-volumes. Inside these, the fluctuating locally averaged velocities v_{i}^{loc} are independent random variables with mean \bar{v} and variance δv^2. Their average, the instantaneous velocity $v(t) = \sum_i v_{i}^{\text{loc}}/N$ then has fluctuations measured by

$$\Delta v \sim \delta v/\sqrt{N} \sim \bar{v}^{-\nu}d\nu/(2\nu - 2)/\sqrt{L^d}. \tag{9}$$

Numerical simulations are performed with a cellular automaton for the QEW equation 21, $\partial h/\partial t = \Gamma \nabla^2 h + F + \eta(x, h(x, t))$, where η is a quenched noise term with a bare correlator $\langle \eta(r)\eta(r') \rangle = D\delta(r-r')$ with strength D. Γ is a surface tension similar to γ.

The data are presented in the right panel of Fig. 4. They fit reasonably to the scaling ansatz of Eq. (9) with $1 - d\nu/(2\theta_{\text{eff}}) = 1/3$, derived from the known critical value $\nu = 4/3$ of the one-dimensional depinning transition 21 and $\theta_{\text{eff}} = 1$.

![Figure 4](image_url)

FIG. 4: *Left:* Fluctuations Δv vs. mean \bar{v} for constant width $L = 500$ (open circles) and $L = \bar{h}$ (full circles), follows $\Delta v \sim \bar{v}^a$ with $a = 1/2$ and 1 resp., cf. Eq. (8). Lines with slope $1/2$ and 1 resp. guide the eye. *Right:* Same for local model of 21, with system size $L = 10^7$. Line has slope $1/3$.

To summarize, we have presented a scaling theory for interface velocity fluctuations. Without detailed measurements of interface configurations but by the easily accessible fluctuations of the average interface propagation one obtains information about the universality class of the process. Our arguments show the difference between dynamics with and without a bulk conservation law behind the interface. This is also manifest in the power spectrum of $v(t)$, where the avalanche-like dynamics allows to understand the ensuing $1/f$-noise. The main argument applies to any dimensionality and is not dependent on the detailed model. A similar reasoning should extend to other systems where the global conservation of a quantity is important. One experimental possibility is vortex penetration dynamics in (high-T_c) superconductors, — for which there is no known coarse-grained description $31, 32$ — since the vortex density is conserved.

Acknowledgments. This work has been supported by Deutsche Forschungsgemeinschaft and the Academy of Finland. We thank Lorentz Centre (Leiden, NL) and NORDITA (Copenhagen, DK) for kind hospitality.