Polymorphisms of Genes in Neurotransmitter Systems Were Associated with Alcohol Use Disorders in a Tibetan Population

Yan Xu1*, Wan-jun Guo2, Qiang Wang3, Gongga Lanzi3, Ouzhu Luobu3, Xiao-hong Ma2, Ying-cheng Wang2, Puo Zhen3, Wei Deng2, Xiang Liu2, Basang Zhuoma3, Xie-he Liu2, Tao Li2*, Xun Hu1*

1 Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, 2 Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, 3 Tibet University Medical College, Lasha, Tibet, China

Abstract

Studies of linkage and association in various ethnic populations have revealed many predisposing genes of multiple neurotransmitter systems for alcohol use disorders (AUD). However, evidence often is contradictory regarding the contribution of most candidate genes to the susceptibility of AUD. We, therefore, performed a case-control study to investigate the possible associations of genes selected from multiple neurotransmitter systems with AUD in a homogeneous Tibetan community population in China. AUD cases (N = 281) with an alcohol use disorder identification test (AUDIT) score ≥ 10, as well as healthy controls (N = 277) with an AUDIT score ≤ 5, were recruited. All participants were genotyped for 366 single nucleotide polymorphisms (SNPs) of 34 genes selected from those involved in neurotransmitter systems. Association analyses were performed using PLINK version 1.07 software. Allelic analyses before adjustment for multiple tests showed that 15 polymorphisms within seven genes were associated with AUD (p < 0.05). After adjustment for the number of SNPs genotyped within each gene, only the association of a single marker (rs10044881) in HTR4 remained statistically significant. Haplotype analysis for two SNPs in HTR4 (rs17777298 and rs10044881) showed that the haplotype AG was significantly associated with the protective effect for AUD. In conclusion, the present study discovered that the HTR4 gene may play a marked role in the pathogenesis of AUD in addition, this Tibetan population sample marginally replicated previous evidence regarding the associations of six genes in AUD.

Introduction

Alcohol use disorders (AUD) — including alcohol dependence (AD) and alcohol abuse (AA) — are worldwide problems that induce complex clinical symptoms by damaging most organs in the human body, as well as the central and peripheral nervous systems [1,2]. The risk of AUD is explained by interactions among multiple environmental and genetic factors in which the ethanol metabolic system and most neurotransmitter systems are involved [3,4]. Although many study results support the effect of the genes encoding different alcohol and acetaldehyde dehydrogenase on risk of AUD [5,6], studies on the role of neurotransmitter genes have documented inconsistent results. For instance, although the associations of Taq1-A1 polymorphism of dopamine receptor D2 (DRD2) gene polymorphisms with AUD have been repeatedly reported in many studies [7,8,9], they have not been reported in numerous others [10].

There are two subgroups of gamma-aminobutyric acid (GABA) receptors (the GABAA receptors and the GABAB receptors). They both belong to the GABAergic system, which is a chief inhibitory neurotransmitter in the central nervous system. For this system, genetic investigators have focused on GABA_A receptors and have documented conflicting evidence of the contributing role of the GABA_A receptors on chromosome 4q (GABRA2, GABRB1, and GABRG1) and 5q33-34 (GABRA1, GABRA6, GABRB2, and GABRG2) in the development of AUD [11,12,13]. The association of the susceptibility, severity, and treatment response of AUD with some polymorphisms of serotonin transporter (5-HTT) and serotonin (5-HT) receptor genes had also been reported by several initial studies, and as a result, similar research in different populations has increased in recent years, but results are not conclusive [8,14,15].

Although animal models and imaging studies have suggested that some 5-HT receptors (such as HTR1A, HTR1B, and HTR3) might also play roles in the pathogenesis of AUD [16,17,18], only a limited number of genetic association studies were performed, yielding mixed results [19,20]. Similarly, genes from other neurotransmitter systems — such as the neuropeptide Y (NPY) gene of neuropeptide Y system [21]; the neuronal nicotinic acetylcholine receptor beta 2 (CHRNA2) gene of cholinergic system [22]; period circadian clock 1 (PER1); and period circadian clock 2 (PER2) of period family [23] — were also found to be associated.

Citation: Xu Y, Guo W-j, Wang Q, Lanzi G, Luobu O, et al. (2013) Polymorphisms of Genes in Neurotransmitter Systems Were Associated with Alcohol Use Disorders in a Tibetan Population. PLoS ONE 8(11): e80206. doi:10.1371/journal.pone.0080206

Editor: Xiang Yang Zhang, Baylor College of Medicine, United States of America

Received July 18, 2013; Accepted September 30, 2013; Published November 27, 2013

Copyright: © 2013 Xu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funded by a grant from the National Nature Science Foundation of China (grant No. 30870889) and a grant from the Department of Science and Technology, Sichuan, China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xuntao26@hotmail.com (TL); hxhxu99@163.com (XH)

† These authors contributed equally to this work.
with AUD in some studies but failed to be replicated in other research [24]. In Chinese ethnic groups, relatively few studies have focused on the role of neurotransmitter genes in the pathogenesis of alcohol use disorders. Most of them studied populations in Taiwan, including Chinese Han and aboriginal minority groups [25–31], and a few studies recruited participants from Mainland Chinese populations [32,33,34]. These studies also documented inconclusive evidence for several genes in neurotransmitter systems, including DRD2, 5-HTT, and HTR1B [25,29,30,32].

Nonetheless, aforementioned association studies have suggested the implicated role of candidate genes from neurotransmitter systems, including dopaminergic, GABAergic, glutamatergic, opioid, cholinergic, and serotonergic systems. Some of these genes are located in or close to chromosomal regions (in chromosomes 1, 2, 4, 5, 7, 11, 13, and 17) indicated by linkage studies [35,36,37,38]. The inconsistent results for AUD studies were considered caused by multiple AUD vulnerable genes with small and diverse effect sizes in different populations [39]. Recently, several genome-wide association studies (GWAS) on AUD identified a number of modestly associated genes [40,41,42]. For example, Kendler et al. [43] found that the calcium-activated potassium channel subunit alpha-1 (KCNN4) gene was associated with alcohol dependence in European Americans. Nevertheless, the results of most of those studies proved inconclusive after the conservative statistical correction, which further confirmed that the effect size of each candidate gene is weak and may differ in different populations.

To overcome the limitations of small-number-marker studies and the expensive cost of GWAS, it is necessary to choose a compromised alternative strategy. The new strategy is to select candidate genes from multiple neurotransmitter systems in a focused array based on the neurobiology of addiction and previously documented evidence. In the present study, we thus performed a case-control study to detect the associations with AUD of 34 genes selected from multiple neurotransmitter systems by using a set of samples collected from a homogeneous Tibetan population in China [44].

Methods

Participants and Clinical Assessments

We performed an epidemiological survey in 3171 individuals selected by the stratified cluster-random sampling method from four suburban counties of Lhasa City in Tibet [44]. The Chinese interview version of the Alcohol Use Disorders Identification Test (AUDIT) [45] — the reliability and validity of which had been proven good for application in this population [44] — was used to assess alcohol use disorders of respondents in the survey. Using DSM-IV diagnostic criteria according to SCID-P assessment as the gold criteria, we identified that the best cut-off point of AUDIT for diagnosing AUD in this population is 10, with both sensitivity and specificity >0.85, although the cut-off point for alcohol use disorders should be 6 if all cases need to be included (sensitivity was 1.00, but specificity was only 0.59) [44]. All respondents with an AUDIT score ≥10 (n = 419) were defined as AUD cases and invited to participate in molecular genetic research. Among those invited to participate in the study, 383 respondents agreed to be involved and provided oral mucosa samples. Accordingly, 350 respondents matched by age, gender, and years of education, with AUDIT score ≤5, were appropriately recruited as healthy control subjects for the molecular genetic study [46,47]. After excluding poor-quality DNA samples which were not suitable for clip analysis, the present study included 281 cases and 277 healthy controls. Statistically significant deviation with p<0.01 between case group and control group was shown in AUDIT score (mean±SD for case group: 17.04±6.12; control group: 9.62±1.54). There was no significant difference (p>0.05) between the two groups in terms of sex ratios (case group: 164 males and 117 females; control group: 163 males and 114 females), age (case group: 47.70±12.19 years; control group: 47.89±13.73 years), and years of education (case group: 2.42±2.64 years; control group: 2.11±2.74 years). None of the control subjects had a family history of AUD or a lifetime history of any other psychiatric disorders. This study was approved by the Ethics Committee of West China Hospital, Sichuan University. The written informed consent forms were obtained from all participants.

Selection and Genotyping of Candidate SNPs

The criteria of candidate genes selection in this study were based on molecular pathway or previously reported evidence from linkage, association, or high-throughput analyses that were indicated to be related to AUD [22,43,49,48]. The 34 genes selected from several systems — including serotonin, dopamine, GABA, opioid, NMDA, and stress (HPA axis and neuropeptide Y) — were assessed in the study. Genomic regions containing 4 kb upstream and 4 kb downstream of each candidate gene were screened for tagger SNPs using the University of California Santa Cruz (UCSC) Genome Bioinformatics database (http://genome.ucsc.edu) and the Broad Institute tagger tool (www.broadinstitute.org/mpg/tagger/server.html). After the linkage disequilibrium (LD) patterns were calculated (r²≥0.8), selected tagger SNPs were assessed using the criterion of Illumina GoldenGate Custom Panels Design Score >0.6. The Illumina 384 GoldenGate Array Matrix (Illumina, Inc.) for 366 SNPs of 34 genes was designed and used in the present study (Table 1).

Oral mucosa samples were obtained from all participants, and genomic DNA was extracted according to standard procedures. DNA concentrations were quantified by NanoDrop 8000 spectrophotometer and normalized to 50 ng/µL for the chip. All samples (5 µL) were genotyped using the custom panel individually, according to the manufacturer’s protocol, on an Illumina BeadStation 500 G GoldenGate genotyping platform at Sichuan University.

Data Analysis

Allelic and haplotype association analyses were performed using PLINK version 1.07 software [http://pngu.mgh.harvard.edu/~purcell/plink] for all genotyping data. Samples with genotyping rates and SNPs with minor allele frequency of ≤0.05 were excluded; Hardy-Weinberg equilibrium (HWE) was tested (p>0.001).

For haplotype association analysis, the LD was calculated between the pair of markers. Because each gene included in this study was selected using candidate-gene strategy rather than through random selection, statistical adjustments for multiple tests were performed for the number of SNPs genotyped within each gene [50,51].

Results

Sixty-six of the 558 participants were excluded for low genotyping (MIND>0.05). After frequency and genotyping pruning, 336 SNPs remained, and the total genotyping rate in the remaining participants was 0.9728. Before adjusting for multiple tests, statistically significant deviations with p<0.05 between the case group and control group were observed in 15 polymorphisms within seven genes (Table 2). Among them, five
SNPs, including two (rs17777298 and rs10044881) with p<0.01, were in HTR4 gene, and one and two SNPs were in GABRA1 and GABRB2, respectively (all three genes were located in chromosome 5q31-34). The other seven polymorphisms were in KCNMA1, SLC6A4, COMT, and GABRG1, located in chromosomes 10, 17, 22, and 4, respectively.

After adjustment for the number of SNPs within each gene, a single significant deviation (rs10044881, adjusted p value = 2.122 × 10^-2) in HTR4 remained, which was observed in allelic frequencies of any examined single marker.

We then nominated the two polymorphisms with p<0.01 in HTR4 (rs17777298 and rs10044881, D’ = 0.69) to perform a haplotype association analysis. The result showed that the haplotype AG carried by 20.6% of AUD cases, versus 29.6% of the controls, was associated with the protective effect for AUD.

The association remained statistically significant even after correction for multiple tests (Table 3).

Discussion

In this case-control study, we investigated markers selected from 34 genes in neurotransmitter systems to evaluate the role of potential candidate genes in the pathogenesis of AUD in the Tibetan population. Some markers in HTR4 are detected to be associated with AUD, and it is especially noteworthy that the association remained statistically significant after adjustment for multiple tests — not only for the single locus, but also for the haplotype. This finding positively echoes the finding in a GWAS study in a Korean population, which suggested that four interesting genes — the cholinergic receptor/muscarinic 3 (CHRM3) gene; the phosphodiesterase 4D/cyclicAMP-specific

Systems	Candidate genes	Number of selected SNPs
Dopamine system	DRD2	10
	DRD3	5
	COMT	12
	MAOA	8
	MAOB	6
	SLC6A3	11
Gamma-aminobutyric acid (GABA) system	GABRA1	10
	GABRA2	10
	GABRA4	3
	GABRA5	8
	GABRA6	4
	GABRB2	32
	GABRB3	24
	GABRG1	6
	GABRG2	18
	GABRG3	33
Serotonin system	SLC6A4	4
	HTR1A	1
	HTR1B	6
	HTR2C	4
	HTR3A	6
	HTR3B	7
	HTR3E	2
	HTR4	17
	HTR6	7
	HTR7	12
Period family	PER1	3
	PER2	16
Neuropeptide Y	NPY	6
Diacylglycerol kinases	DGKZ	2
Ca2+-activated potassium channels	KCNMA1	53
Adenosine receptor	ADORA2A	4
Cholinergic system	CHRNB2	2
Guanine nucleotide binding protein (G protein)	GNAS	14

Table 1. Selection of candidate genes and SNPs.

doi:10.1371/journal.pone.0080206.t001
protein 3 (NPAS3) polymorphisms of HTR4 pathogenesis of AUD, which result in the association of AUD with HTR4 and GABA [61,62], it is possible that the genetic polymorphism of release of neurotransmitters (acetylcholine, dopamine, serotonin, disorder [57,58,59,60]. Because the 5-HT4 receptor can modulate AUD was strongly associated with both ADHD and bipolar hyperactivity disorder (ADHD) and bipolar disorder [55,56], while that anxiety and cognitive function [54]. Several studies have shown system. The gene thus had been proposed to be implicated in fulfills the role of modulating various neurotransmitters’ release [53]. Its product is a glycosylated transmembrane protein that might be associated with amount of alcohol consumption from additive-model analyses with pooled data [52].

The human HTR4 gene was mapped to chromosome 5q31–33 [53]. Its product is a glycosylated transmembrane protein that fulfills the role of modulating various neurotransmitters’ release and enhancing synaptic transmission in the central nervous system. The gene thus had been proposed to be implicated in anxiety and cognitive function [54]. Several studies have shown that HTR4 polymorphisms could predispose to attention deficit hyperactivity disorder (ADHD) and bipolar disorder [55,56], while AUD was strongly associated with both ADHD and bipolar disorder [57,58,59,60]. Because the 5-HT4 receptor can modulate release of neurotransmitters (acetylcholine, dopamine, serotonin, and GABA) [61,62], it is possible that the genetic polymorphism of HTR4 influences the interaction of neurotransmitters in the pathogenesis of AUD, which result in the association of AUD with polymorphisms of HTR4.

In our study, in addition to the uniquely associated SNP, seven among the 14 SNPs marginally associated with AUD were located in the chromosome region 5q31-34, including four within HTR4 and three within the GABA_A receptor gene family (rs4263535 of GABRA1, rs17059393 and rs17059409 of GABRB2). Previous research has shown that four strong AUD candidate GABA_A receptor genes (GABRA1, GABRA6, GABRB2, and GABRG2)-clustered together on locus 5q33-34 and are associated with AUD and its related traits [11,12,13]. It is thus possible that the association of markers in the HTR4 gene with AUD may reflect an indication on the chromosome region surrounding HTR4, rather than by HTR4 itself, due to linkage disequilibrium among markers on HTR4 and its surrounding region.

Nevertheless, there is evidence against this possibility. For example, the distance from HTR4 to either GABRA1 or GABRB2 was more than 10 Mb. Furthermore, our pair-wise LD analyses for rs10044881 (the unique associated SNP of HTR4) with rs4263535 (the marginally associated SNP of GABRA1), rs17059393, and rs17059409 (the two marginally associated SNPs

Table 2. Allelic frequencies of the markers with unadjusted \(p < 0.05 \).

SNP	Gene	Chr	A1/A2	Case Frequency	Control Frequency	\(p \)	\(OR \)	\(p' \)
rs10044881	HTR4	5	G/A	0.225	0.318	1.248×10⁻⁶	0.623	2.122×10⁻⁶
rs4263535	GABRA1	5	G/A	0.444	0.359	6.992×10⁻⁴	1.429	6.992×10⁻²
rs17777298	HTR4	5	T/A	0.333	0.256	9.034×10⁻³	1.452	0.154
rs655797	KCNMA1	10	G/A	0.335	0.258	9.579×10⁻³	1.446	0.508
rs12782077	KCNMA1	10	A/G	0.116	0.174	1.157×10⁻²	0.625	0.613
rs7721747	HTR4	5	A/G	0.263	0.195	1.209×10⁻²	1.476	0.206
rs7712001	HTR4	5	A/C	0.337	0.267	1.912×10⁻²	1.392	0.325
rs547212	KCNMA1	10	G/A	0.121	0.174	2.021×10⁻²	0.651	1.071
rs10477387	HTR4	5	G/C	0.419	0.348	2.597×10⁻²	1.346	0.441
rs25528	SLC6A4	17	C/A	0.179	0.237	2.793×10⁻²	0.702	0.112
rs5993862	COMT	22	C/A	0.230	0.174	3.032×10⁻²	1.420	0.303
rs1504501	GABRG1	4	G/A	0.221	0.281	3.363×10⁻²	0.727	0.202
rs11080122	SLC6A4	17	A/G	0.172	0.227	3.398×10⁻²	0.708	0.136
rs17059393	GABRB2	5	A/G	0.185	0.135	3.511×10⁻²	1.454	1.124
rs17059409	GABRB2	5	A/G	0.187	0.139	4.450×10⁻²	1.425	1.424

Note: Chr, Chromosome; A, Allele; OR, odds ratio; \(p \), unadjusted \(p \) values, \(p < 0.05 \); \(p' \), adjusted \(p \) values, \(** p < 0.05 \).

doi:10.1371/journal.pone.0080206.t002

Table 3. Estimated haplotype frequencies in the case-control subjects.

Haplotype	rs17777298	rs10044881	Frequency	\(p \)	\(p' \)	
Case	Control					
1	T	G	0.027	0.019	0.442	>1
2	A	G	0.206	0.296	7.759×10⁻⁴	1.629×10⁻²
3	T	A	0.307	0.240	0.014	0.294
4	A	A	0.460	0.445	0.614	>1

Note: \(p \), unadjusted \(p \) values, \(p < 0.05 \); \(p' \), adjusted \(p \) values, \(** p < 0.05 \).

doi:10.1371/journal.pone.0080206.t003

(PDE4D) gene; the neuronal periodic acid Schiff (PAS) domain protein 3 (NPAS3) gene; and the HTR4 gene — might be associated with amount of alcohol consumption from additive-model analyses with pooled data [52].
of GABRB2), respectively, showed very weak LD (D' ≤ 0.12) between them.

Apart from the novel finding of the association between AUD and HTR4, this study using a Tibetan sample also marginally replicated previous evidence regarding the associations of six genes (GABRA1, GABRB2, KCNA1, SLC6A4, COMT, and GABRG1) with AUD. In previous studies, all six of the genes were found to be associated with AUD and related traits, although revealed effect sizes all were small. For example, the GABRA receptor subunit genes on 5q33-34 have been found to be involved in psychological and behavioral disorders [63]. They demonstrated important roles in the acute and chronic effects of alcohol on the central nervous system [64]. In addition, various evidence has indicated that these four GABAA receptor genes may contribute to the pathogenesis of AUD in several populations, including that of East Asia [65,66,67]. For example, Park et al. [12] reported that polymorphisms of the GABRA1 and GABRA6 receptor gene were associated with the development of alcoholism, and the polymorphisms of GABRA1 receptor were associated with the onset of alcoholism and alcohol withdrawal symptoms in the Korean population. However, several studies using the data from the Collaborative Study on the Genetics of Alcoholism (COGA) showed a weak relationship between the chromosome 5 cluster of GABA receptor genes and AUD [13,68]. Nevertheless, more evidence has been presented on the association of chromosome 4 cluster of GABA receptor genes with AUD and related traits from investigators [69]. Kendler et al. [43] performed a GWAS for the symptoms of alcohol dependence in the European American and African American participants and discovered the most significant intragenic SNP of KCNA1 in the European American sample. Although results were inconsistent, many studies still suggested that the serotonin transporter gene (5-HTT) is an important candidate gene for AUD and related traits [70,14]. Extensive studies on a functional polymorphism (Val158Met) in the human catechol-O-methyltransferase (COMT) gene showed that the polymorphism (Val158Met) was one of the significant markers of genetic predisposition to AUD [71,72]. COGA studies had linked alcohol dependence with the GABA receptor gene family region that contains GABRG1 in the chromosome 4p [73,74]. Enoch et al. [11] found GABRG1 SNPs and haplotypes were significantly associated with AUD in both Plains Indians and Finnish Caucasians. In the present study, the marginal results of these genes suggest they may also play roles in the pathogenesis of AUD in the Tibetan population. Nevertheless, the statistical significance of the association between these genes and AUD was weakened after controlling for multiple tests. This may be due to the major limitation of the present study — i.e., the sample size is not large enough to detect those genes' small effect sizes after a conservative statistical correction. Therefore, our results need to be replicated in the larger and independent samples.

In conclusion, the present study discovered that the HTR4 gene may play a marked role in the pathogenesis of AUD. In addition, it marginally replicated previous evidence regarding the associations of six genes (GABRA1, GABRB2, KCNA1, SLC6A4, COMT, and GABRG1) with AUD in the Tibetan population. These findings enrich the knowledge regarding the genetic etiology of AUD.

Acknowledgments

We thank Jin Mei, Luo Dan, Sang Mu, Wang Mu, and Luosang Jancai from Tibet University Medical College for their assistance with data collection.

Author Contributions

Conceived and designed the experiments: YX WJG TL XHL. Performed the experiments: YX YCW. Analyzed the data: YX QW XL. Contributed reagents/materials/analysis tools: XHM WD QW. Wrote the paper: YX WJG TL XH. Collected the samples and information: WJG GL OL PZ BZ.

References

1. Baumberg B, Anderson P (2008) Trade and health: how World Trade Organization (WTO) law affects alcohol and public health. Addiction 103: 1952-1958.
2. Testino G (2008) Alcoholic diseases in hepato-gastroenterology: a point of view. Hepatogastroenterology 55: 371-377.
3. Schuckit MA, Smith TL (2006) An evaluation of the level of response to alcohol, externalizing symptoms, and depressive symptoms as predictors of alcoholism. J Stud Alcohol 67: 215-237.
4. Timberlake DS, Heffler CJ, Rhee SH, Friedman NP, Haberstock BC, et al. (2007) College attendance and its effect on drinking behaviors in a longitudinal study of adolescents. Alcohol Clin Exp Res 31: 1020-1030.
5. Higuchi S, Matsushita S, Kashima H (2006) New findings on the genetic influences on alcohol use and dependence. Curr Opin Psychiatry 19: 253-265.
6. Zintzaras E, Stefanidis I, Santos M, Vidal F (2006) Do alcohol-metabolizing enzyme polymorphisms affect the risk of alcoholism and alcoholic liver disease? Hepatology 45: 352-361.
7. Blum K, Noble EP, Sheridan PJ, Montgomery A, Ritchie T, et al. (1990) Allelic association of human dopamine D2 receptor gene in alcoholism. J Am Med Assoc 263: 2055-2060.
8. Foley PJ, Loh EW, Innes DJ, Williams SM, Tannenberg AE, et al. (2004) Association studies of neurotransmitter gene polymorphisms in alcoholic Caucasians. Ann N Y Acad Sci 1025: 39-46.
9. Noble EP, Zhang X, Ritchie TL, Sparkes RS (2000) Haplotypes at the DRD2 locus and severe alcoholism. Am J Med Genet 96: 622-631.
10. Heina A, Sander T, Harms K, Fenchl U, Kuhn S, et al. (1996) Lack of allelic association of dopamine D1 and D2(Taq1A) receptor gene polymorphisms with reduced dopaminergic sensitivity to alcoholism. Alcohol Clin Exp Res 20: 1109-1113.
11. Enoch MA, Hodgkinson CA, Yuan Q, Albaugh B, Virkkunen M, et al. (2009) GABRG1 and GABRA2 as independent predictors for alcoholism in two populations. Neuropsychopharmacology 34: 1245–1254.
12. Park CS, Park SY, Lee CS, Sohn JW, Hahn GH, et al. (2006) Association between alcoholism and the genetic polymorphisms of the GABAA receptor genes on chromosome 5q33-34 in Korean population. J Korean Med Sci 21: 533-538.
Guo WJ, Lanzi G, Lusob O, Ma X, Zhen P, et al. (2008) An epidemiological study of alcohol use disorders in a Tibetan population. Psychiatry Res 159: 56–63.

Loh EW, Lane HY, Chang YT, Chang CJ, Ko HC, et al. (2007) Association between the 5-HTT locus and alcohol dependence in Han Chinese populations. Psychiatr Genet 17: 136–142.

Boksa P, Warburton L, Kerner B, Brugman DL, Freimer NB (2007) Evidence of linkage to psychosis on chromosome 4 in Mexican-American pedigrees. Am J Med Genet B Neuropsychiatr Genet 144B: 74–78.

Borowska KE, Scott WF, Whitehouse AJ, Nassure J, Pointon JJ, et al. (2005) Genetic association studies of alcohol consumption in Korean men. Pharmacogenomics J 13:280–295.

Baik I, Cho NH, Kim SH, Han BG, Shin C, et al. (2006) Genome-wide association studies identify genetic loci related to alcohol consumption in Korean men. Am J Med Genet B Neuropsychiatr Genet 144B: 74–78.

Clayes J, Faye P, Sebbien M, Lemaire S, Bockaert J, et al. (1997) Cloning and expression of human 5-HT1A receptors. Effect of receptor density on their coupling to adenylyl cyclase. Neuropeptides 8: 519–536.

Kim MV, Marden CA, Fone KCF (2000) A role for the 5-HT1A and 5-HT1E receptors in learning and memory. Trends Pharmacol Sci 21: 492–498.

Lee J, Wang Y, Zhou R, Wang B, Zhang H, et al. (2006) Association of attention-deficit/hyperactivity disorder and serotonin 4 receptor gene polymorphisms in Han Chinese subjects. Neurosci Lett 404: 6–9.

Ohtsuki T, Ishiguro H, Detera-Wadleigh SD, Toyota T, Shimizu H, et al. (2002) Association between serotonin 4 receptor gene polymorphisms and bipolar disorder in Japanese case-control samples and the NIMH Genetics Initiative Bipolar pedigrees. Mol Psychiatry 7: 594–596.

August GJ, Winter CR, Asztalos B, Rieder ML, Birdsall NJ, et al. (2004) Prospective study of adolescent drug use among community samples of ADHD and non-ADHD participants. Am J Med Genet B Neuropsychiatr Genet 144B: 74–78.

Molina BS, Pelham WE, Gracy EM, Thompson AL, Marshal MP (2007) Attention-deficit/hyperactivity disorder risk for heavy drinking and alcohol use disorder is age specific. AlcohoL Clin Exp Res 31: 634–637.

Jacobs T, Waterman B, Heath A, Turner W, Bucholz KK, et al. (2000) Genetic and environmental effects on offspring alcoholism: new insights using an offsetting-offspring twin design. Archives of General Psychiatry 65: 1265–1272.

Hayden EP, Nurnberger JJr. (2006) Molecular genetics of bipolar disorder. Genes, Brain, and Behavior 5: 85–95.

Bianchi C, Rossi D, Marino S, Beani L, Sinaccheli A (2002) Dual effects of 5-HT1B receptor regulation of neurotransmitter release. Pharmacol Rev 59: 160–417.

Brunner K, Brugman RL, Finerbe N (2007) Evidence of linkage to psychosis on chromosome 3q34–35 in pedigrees ascertained for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 144B: 74–78.

Grobin AC, Matthews DB, Dervad LL, Morrow AL (1998) The role of GABA receptors in the acute and chronic effects of ethanol. Psychopharmacology 139: 2–19.

Loh EW, Smith I, Murray R, McLaughlin M, McNulty S, et al. (1999) Association between variants at the GABAB+eta2A, GABAaLapl6 and GABAaGama2 gene cluster and alcohol dependence in a Scottish population. Mol Psychiatry 4: 339–541.

Loh EW, Higuchi S, Matsushita S, Chen CK, et al. (2003) Association analysis of the GABA(A) receptor subunit genes at 5q33–34 and alcohol dependence in a Japanese population. Mol Psychiatry 5: 301–307.

Kadiel M, Vallejo RL, Iwata N, Aragon R, Long JC, et al. (2005) Haplotype-based localization of an alcohol dependence gene to the 5q34–35 region on chromosome 5. Neurosci Lett 401:6–9.

Jacobs T, Waterman B, Heath A, Turner W, Bucholz KK, et al. (2000) Genetic and environmental effects on offspring alcoholism: new insights using an offsetting-offspring twin design. Archives of General Psychiatry 65: 1265–1272.

Hayden EP, Nurnberger JJr. (2006) Molecular genetics of bipolar disorder. Genes, Brain, and Behavior 5: 85–95.

Bianchi C, Rossi D, Marino S, Beani L, Sinaccheli A (2002) Dual effects of 5-HT1B receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360–417.

Brunner K, Brugman RL, Finerbe N (2007) Evidence of linkage to psychosis on chromosome 3q34–35 in pedigrees ascertained for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 144B: 74–78.

Grobin AC, Matthews DB, Dervad LL, Morrow AL (1998) The role of GABA receptors in the acute and chronic effects of ethanol. Psychopharmacology 139: 2–19.

Loh EW, Smith I, Murray R, McLaughlin M, McNulty S, et al. (1999) Association between variants at the GABAB+eta2A, GABAaLapl6 and GABAaGama2 gene cluster and alcohol dependence in a Scottish population. Mol Psychiatry 4: 339–541.

Loh EW, Higuchi S, Matsushita S, Chen CK, et al. (2003) Association analysis of the GABA(A) receptor subunit genes at 5q33–34 and alcohol dependence in a Japanese population. Mol Psychiatry 5: 301–307.

Kadiel M, Vallejo RL, Iwata N, Aragon R, Long JC, et al. (2005) Haplotype-based localization of an alcohol dependence gene to the 5q34–35 region on chromosome 5. Neurosci Lett 401:6–9.

Jacobs T, Waterman B, Heath A, Turner W, Bucholz KK, et al. (2000) Genetic and environmental effects on offspring alcoholism: new insights using an offsetting-offspring twin design. Archives of General Psychiatry 65: 1265–1272.

Hayden EP, Nurnberger JJr. (2006) Molecular genetics of bipolar disorder. Genes, Brain, and Behavior 5: 85–95.

Bianchi C, Rossi D, Marino S, Beani L, Sinaccheli A (2002) Dual effects of 5-HT1B receptor regulation of neurotransmitter release. Pharmacol Rev 59: 360–417.

Brunner K, Brugman RL, Finerbe N (2007) Evidence of linkage to psychosis on chromosome 3q34–35 in pedigrees ascertained for bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 144B: 74–78.

Grobin AC, Matthews DB, Dervad LL, Morrow AL (1998) The role of GABA receptors in the acute and chronic effects of ethanol. Psychopharmacology 139: 2–19.

Loh EW, Smith I, Murray R, McLaughlin M, McNulty S, et al. (1999) Association between variants at the GABAB+eta2A, GABAaLapl6 and GABAaGama2 gene cluster and alcohol dependence in a Scottish population. Mol Psychiatry 4: 339–541.

Loh EW, Higuchi S, Matsushita S, Chen CK, et al. (2003) Association analysis of the GABA(A) receptor subunit genes at 5q33–34 and alcohol dependence in a Japanese population. Mol Psychiatry 5: 301–307.

Kadiel M, Vallejo RL, Iwata N, Aragon R, Long JC, et al. (2005) Haplotype-based localization of an alcohol dependence gene to the 5q34–35 region on chromosome 5. Neurosci Lett 401:6–9.