Matrin-3 dysfunction in myopathy and motor neuron degeneration

Caroline Ward, Udai Bhan Pandey

The MATR3 protein was first identified as comprising the nuclear matrix, an essential part of preserving the skeletal framework of the nucleus, amongst other nuclear matrices. Composed mainly of intrinsically disordered regions, the protein is made up of 847 amino acids, creating 4 distinct functional domains: two zinc-finger domains (ZF1 and ZF2) and two RNA-recognition motifs (RRM1 and RRM2), as well as a highly acidic carboxy-terminal with histone-binding ability. This structural design allows MATR3 protein to interact with DNA and/or RNA/RNA-binding proteins, aiding in chromatin and genomic integrity regulation, RNA-binding mediated post-transcriptional mRNA regulation, and nuclear lamina association to maintain nuclear framework. An autosomal dominant Ser85Cys (SSBC) mutation in MATR3 was identified in a multigenerational family displaying vocal cord and pharyngeal weakness as well as distal and asymmetrical myopathy (Senderek et al., 2009). Intriguingly, a neurogenic or myopathic pattern was indicated by these patients neuropsychological and muscle biopsy-based examinations. They displayed several signs emblematic of upper motor neuron lesions such as a “split-hand” pattern, tongue fasciculations, brunt jaw-jerk, upper limb reflexes, and brisk knee. Due to this, SSBC patients in three independent families were reassessed and found to suffer progressive respiratory failure leading to death 15 years after onset (Johnson et al., 2014), in contrast to the typical 2–5 years. This led to a recategorization of SSBC-associated disorder to “slow progressive amyotrophic lateral sclerosis (ALS) with distal myopathy and is approximated at 0.5% frequency of all mutations. Initially, 3 cohorts containing unique missense MATR3 mutations associated with ALS were characterized; Phe115Cys (F115C) and Thr622Ala (T622A) were found in familial ALS patients, and Pro154Ser (P154S) in a sporadic ALS patient (Johnson et al., 2014). Subsequently, 3 additional MATR3 mutations including p.Ser610Phex (Xu et al., 2016), a missense mutation found in ALS patients from Chinese origin with 3 variants (p.Ala313Gly, p.Arg147lys, and p.Gln347lys). Secondly, a duplication of exon 15 referred to as MATR3 Variant 5 (Castro et al., 2020) was found in a patient presenting symptoms of frontotemporal dementia, lastly, a heterogeneous missense mutation called Ala727Thr was found in a Taiwanese ALS patient (Lin et al., 2015).

Recently, multiple cellular and animal models of MATR3 have been generated to investigate the molecular basis of disease-causing mutations associated with distal myopathy and ALS. Expression of MATR3 fusion protein (MATR3-YFP) in human neuroglia H4 cells and Chinese hamster ovary epithelial cells demonstrated through immunostaining and imaged fluorescently tagged proteins, that wildtype and mutant MATR3 proteins are restricted mainly to the nucleus in a punctate pattern even under stress (Gallego-iradi et al., 2015). While similar in structure and function to other RNA-binding proteins connected to ALS such as FUS and TDP-43 these proteins are largely recruited to stress granules under stressful conditions, MATR3 however, reacts differently. In an analysis of patient-derived muscle biopsy samples and fibroblasts containing SSBC mutation, MATR3 protein was not found to be incorporated in stress granules, however, mutant MATR3 perturbed stress granule formation as well as cellular viability; the analyzed SSBC fibroblasts had a significant decrease in stress granule formation (Aulas et al., 2015). This suggests that while MATR3 does not have a direct role in stress granule development, it may indirectly regulate stress response pathways, possibly through stress granule components. In another study, overexpression and knockdown of endogenous MATR3 in a rat primary neuronal model showed neurotoxic effects as evident from neuronal death, suggesting that a fine balance of MATR3 expression is required for maintaining neuronal homeostasis. Additionally, this cellular model also found that deletion of the ZF2 domain of MATR3 protein abrogated overexpression-related neurotoxicity and that RRM2 deletion induced phase separation of MATR3 into droplets, though no change in toxicity was observed. However, when MATR3-ΔRRM2 was sequestered inside these droplets, survival was increased when compared to MATR3-ΔRRM2 being dispersed in the neurons (Malik et al., 2018). This may imply a neuroprotective nature to formation of the droplets, supporting the theory that overexpressed MATR3 has a harmful gain-of-function.

In the first transgenic MATR3 mouse model, F115C and SSBC mutations and human MATR3 wildtype were expressed in the spinal cord and muscles. While SSBC expressed poorly in both tissues, F115C mice exhibited significant expression in muscles, but not in spinal cords. By 2 months, wildtype and F115C mice displayed basic muscle pathology, which advanced substantially after 10 months with F115C mice developing partial and full paralysis (Moloney et al., 2018). It should be noted that homozygous MATR3 mice were used in this study, whereas the MATR3 patients harbor autosomal dominant mutations, making it difficult to compare these mice with human patients. A more recent model utilized the CRISPR/Cas9 system to create transgene mice with SSBC MATR3 knock-in (Kao et al., 2020). In this study, MATR3 was effectively expressed in the spinal cord and the brain, resulting in neuropathological and behavioral changes such as neuroinflammation in the spinal cord and cerebellum, muscle atrophy, motor impairment, neuromuscular junction defects, and Purkinje cell degeneration. These transgene mice showed similarities to early-stage ALS, helping path to the way forward research.

The organism Drosophila melanogaster is a model system useful for the low cost to maintain, many offspring, short lifespan, and simple genetic tracking. The Drosophila genome has functional homologs of over 70% of human disease-causing genes. We engineered the first Drosophila models of human MATR3 wildtype, ALS- and S85C associated mutations F115C and SSBC, and deletion variants in functional domains ΔRRM1, ΔRRM2, ΔZNF1 and ΔZNF2 (Ramesh et al., 2020). Targeted expression of MATR3 in Drosophila motor neurons and muscles results in muscle degeneration and atrophy, motor defects, and a shortened lifespan, particularly in muscles. Similar results of an age-related dependent disease were seen in transgenic mice expressing the F115C mutant (Moloney et al., 2018). These findings suggest that pathogenic mutations causing a gain-of-function in MATR3 exert their adverse effects through a potential gain of function mechanism. However, the mutations could be working in cis with the functional domains which impacts MATR3 function negatively, because none of the disease-associated mutation in MATR3 are found in known functional domains of the protein. To investigate this, transgenic lines were developed with deletion mutations in all functional domains of the protein, which elucidated that RNA-binding domain deletions are non-functional in vivo. We used our MATR3 fly model to perform a candidate genetic screen, which allowed us to identify rumpestiltskin (rump), a fly homologue of human heterogenous nuclear ribonucleoprotein M (hnRNPM), as a dominant modifier of MATR3 toxicity (Ramesh et al., 2020). hnRNPs are a group of varied RNA-binding proteins implicated in gene regulation, alternative splicing, stress granule formation, cell cycle regulation, and axonal transport (Low et al., 2020). They have also been linked to spinal muscular atrophy, Alzheimer’s disease, ALS, frontotemporal dementia, and other neurological diseases (Low et al., 2020). Intriguingly, hnRNPM interacts with MATR3 in an RNA-dependent fashion in mammalian cells. Further, hnRNPM and MATR3 commonly share RNA targets to perform essential biological processes for the health and survival of neurons. In parallel, another study also identified rump as a genetic modifier of MATR3 toxicity independently (Mori et al., 2013). Rump was shown to substantially ameliorate SSBC toxicity when knocked down, as demonstrated in egg-to-adult survival in SSBC flies. Rump knock down also substantially increased lifespan in adult SSBC flies, but did not have an effect on wildtype flies (Ramesh et al., 2020). This suggests a disease relevant genetic interaction between MATR3 and hnRNPM, combined with rump knock down decreasing SSBC insolubility in muscles, this may propose a possible mechanism for mitigating MATR3 toxicity in vivo (Figure 1).

While the mechanisms behind neuromuscular degeneration caused by MATR3 is largely unknown, it is currently suspected that MATR3 associated ALS and other distal myopathies are a result of multisystem proteinopathy, including dysregulated RNA metabolism, primarily splicing. More specifically, the RNA-binding protein hnRNPM, which regulates alternative splicing (Passacantilli et al., 2017), may be a key to determining the mechanism of MATR3, as it
were found to be necessary for mutator MAT3 to wield toxicity in Drosophila. These observations prompted us to examine how these two ALS-causing genes (C9orf72 and Matrin3) functional interact in vivo; we found that ectopic expression of MAT3 is sufficient to suppress neurodegenerative symptoms associated with expanded C9orf72 (Ramesh et al., 2020). Further, MAT3 positive cytoplasmic inclusions have been identified in an ALS patient known to carry the C9orf72 repeat expansion, suggesting a potential link between these two forms of ALS. MAT3 binds to the G4C2 in C9orf72 and the binding motif recognized by MAT3 has been found to be enriched in sporadic ALS patients’ alternative splicing cassette exons (Prudencio et al., 2015). We have demonstrated in patient neurons and tissues with C9orf72 mutation that MAT3 interacts with G4C2 RNA foci, as well as significant alleviation of in vivo G4C2 associated neurodegeneration by ectopic expression of MAT3, in an RRM-dependent manner (Ramesh et al., 2020). While this characterizes a novel aspect of MAT3 in G4C2 repeat RNA-mediated neurodegeneration, it remains to be seen if MAT3 has a direct effect in C9orf72 associated ALS. However, one possibility is MAT3’s role in regulating C9orf72 G4C2-HRE (hexanucleotide repeat expansion) containing transcripts transcriptionally and/or post-transcriptionally, although more research is needed to substantiate this theory, as well to understand the mechanism of C9orf72 associated ALS in general (Figure 1).

The availability of genetic models is crucial for uncovering mechanisms and genetic modifiers of pathogenic variants, as well as for developing model therapies. The Drosophila genetic model has allowed us to make discoveries of not only MAT3 associated ALS, but several other genetic causes of ALS, as well as other neurological disorders. MAT3 and genetic modifiers have not only been established in Drosophila models, but also mammalian models such as mice, helping set the groundwork for prospective primary and preclinical research. The increased availability of genetic models not only opens up avenues for mechanistic research but is also critical for identifying biological pathways that could be exploited to develop therapeutic interventions.

The present work was supported by the following funding sources: US National Institutes of Health (NH), National Institute on Neurological Disorders and Stroke (NINDS) and National Institute on Aging (NIH) R01 NS081303, R21 NS094921, R21 NS101661, R21 NS11768, R21 AG064940, R21 NS100055, Muscular Dystrophy Association, the ALS Association, and the Robert Packard Center for ALS at Johns Hopkins (to UB).

Caroline Ward, Udai Bhan Pandey
Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA (Ward C, Pandey UB) Department of Human Genetics, School of Public Health, School of Public Health, University of Pittsburgh; Center for Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA (Pandey UB)

Correspondence to: Udai Bhan Pandey, PhD, uddai@pitt.edu
https://orcid.org/0000-0002-6267-0179 (Udai Bhan Pandey)

Figure 1 | Mutations in MAT3 have been demonstrated to cause ALS, FTD, and distal myopathy by targeting multiple mechanisms.

- MAT3 expression is sufficient to cause motor neurons death and loss of motor function. While typically restricted to the nucleus, cytoplasmic MAT3 redistribution alleviated toxicity, suggesting that nuclear MAT3 determines toxicity. Knocking down axonal transport genes have been shown to enhance MAT3 toxicity in vivo.
- MAT3 is genetic modifier of C9orf72, the most common cause of ALS/FTD, in a drosophila model. ALS-amyotrophic lateral sclerosis, C9orf72: chromosome 9 open reading frame 72; FTD: frontotemporal dementia; FUS: fused in sarcoma; MAT3: matrin-3; TDP-43: TAR DNA-binding protein 43.
- Matrin-3 dysfunction in myopathy and motor neuron degeneration. Neurobiol Aging 36:2005.

https://doi.org/10.4103/1673-5374.320986

How to cite this article: Ward C, Pandey UB (2022) Matrin-3 dysfunction in myopathy and motor neuron degeneration. Neural Regen Res 17(3):S57-S76.

Copyright license agreement: The Copyright License Agreement has been signed by both authors before publication.

Plagiarism check: Checked twice by iThenticate.

Peer review: Externally peer reviewed.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewer: Sokol Tod, Wayne State University School of Medicine, USA.

References

Aulas A, Vande Velde C (2015) Alterations in stress granule dynamics driven by TDP-43: a link to pathologic inclusions in ALS? Front. Cell Neurosci 9:423.

Boehninger A, Garcia-Mansfeld K, Singh G, Bakker N, Pirroette P, Broman RO (2017) ALS-associated mutations in Matrin3 alter protein-protein interactions and impede mRNA nuclear export. Sci Rep 7:14529.

Cato J, Pannuti N, Peters ST, Dayle DR, Bower M, Koob MD, Bovee BF, Vossel K (2020) Case report: early-onset behavioral variant frontotemporal dementia in ALS: a case for neurological involvement. J Neurol Neurosurg Psychiatry 91:1216-1218.

Gallego-Itari MC, Clare AM, Brown HH, Janus J, Lewis J, Borchelt DR (2015) Subcellular localization of Matrin 3 containing mutations associated with ALS and frontotemporal dementia. PLoS One 10:e0120116.

Johnson JD, Piro EP, Boehning A, Chia R, Feit H, Renton AE, Pliner HA, Abramzon Y, Marangió G, Winborn B, Gibb JR, Martin MA, Morgan S, Shoai M, Hardy J, Fritsch A, Drachman D, Ruff RL, Malaspina A, Sidle KC, Fratta P, et al. (2014) Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat Neurosci 17:664-666.

Kao CS, van Bruggen R, Kim JR, Chen XXL, Chan C, Lee J, Cho WH, Zhao M, Arndt C, Makrisov K, Khan M, Tan Q, Willson MO, Park J (2020) Selective neuronal degeneration in MATR3 S85C knock-in mouse model of early-stage ALS. Nat Commun 11:5304.

Lin KP, Tsai PC, Liao YC, Chen WT, Tsai CP, Soong BW, Lee YC. (2015) Mutational analysis of MATR3 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol Aging 36:2005.

Low KY, Teo Y, Foti SC, Lashley T (2020) Heterogeneous nuclear ribonucleoprotein implications in neurological diseases. Mol Neurobiol 58:631-646.

Makki AM, Miguez RA, Lix, Ho YS, Feldman EL, Barmada MJ (2018) Matrin-3 dependent neurotoxicity is modified by nuclear acid binding and nucleocytoplasmic localization. Acta Neurosci 18:1175-1182.

Moloney C, Raya-prorlu S, Howard J, Fromholt S, Brown H, Collins M, Cabrera M, Duffy C, Siemerski J, Miller D, Borchelt DR, Lewis J (2018) Analysis of spinal and muscle pathology in transgenic mice overexpressing wild-type and a linked mutant matrin. Acta Neuropathol Commun 6:137.

Mori K, Lammich S, Mackenzie IR, Foroni I, Zilov S, Kretzschmar H, D_posts D, Jansens I, Kneschke J, Cuadrado-M, Herms J, Neumann M, Van Broeckhoven C, Arzberger T, Haass C (2013) hnRNP A3 bends to GGGGCC repeats and is a component of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol 125:413-423.

Passamonti I, Frisoni P, de Paola E, Fidaleo M, Paronetto MP (2017) hnRNPM guides an alternative splicing program in response to inhibition of the PI3K/AKT/mTOR pathway in Ewing sarcoma cells. Nucleic Acids Res 45:12270-12284.

Prudencio M, Belvi Y, Batta R, Ross CA, Gendron TP, Pioro EP, Li, Murray ME, Overstreet DK, Piazza-Johnston AE, Desaro P, Bieniek KF, Delcare M, Lee WC, Biendarra SM, Davis MD, Baker MC, Peterson RB, van Bitterswijck M, Stellet CJ, Radmaker ES, et al. (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS. Nat Neurosci 18:1175-1182.

Ramesh N, Dailey EL, Gleisener AM, Marn JR, Kour S, Mawrie D, Anderson EN, Kolfer J, Donnelly CJ, Kissink E, Pandey UB (2020) RNA-dependent suppression of C9orf72/FTD associated neurodegeneration by Matrin-3. Acta Neuropathol Commun 8:137.

Ramesh N, Kour S, Anderson EN, Rajasadaram D, Pandey UB (2020) RNA-recognition motif in Matrin-3 mediates neurodegeneration through interaction with hnrNPM. Acta Neuropathol Commun 8:138.

Sokol Tod, Wayne State University School of Medicine, USA.