MULTIPLE HYPERGEOMETRIC SERIES – APPELL SERIES
AND BEYOND

MICHAEL J. SCHLOSSER

ABSTRACT. This survey article (which will appear as a chapter in the book “Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions”, Springer-Verlag) provides a small collection of basic material on multiple hypergeometric series of Appell-type and of more general series of related type.

1. INTRODUCTION

Hypergeometric series and its various generalizations, in particular such involving multiple series, appear in various branches of mathematics and its applications. This survey article features a small collection of selected material on multiple hypergeometric series of Appell-type and of more general series of closely related type.

These types of series appear very naturally in quantum field theory, in particular in the computation of analytic expressions for Feynman integrals (for which we kindly refer to other relevant chapters in this volume). Such integrals can be obtained and computed in different ways – which may lead to identities for Appell series (see e.g. M.A. Shpot [30]). On the other hand, the application of known relations for Appell series may lead to simplifications, help to solve problems or lead to more insight in quantum field theory. Therefore it is of importance that people working in this area have a basic understanding of the existing theory for such series. This survey is meant to provide a very digestible, easy introduction to Appell-type series. Besides of recalling some known results including various useful identities satisfied by the series, some of the standard mathematical techniques which are used to prove and derive these identities are illustrated. We highlight some of the most fundamental properties and relations for Appell hypergeometric series and further give hints of similar relations for the series which are (slightly) beyond the hierarchy of Appell series. All the series we consider admit very explicit series and integral representations.

1

Partially supported by FWF Austrian Science Fund grants S9607 & F50-08.

1Researchers working with Feynman integrals who are in demand of effective manipulation of Appell-type series including differential reductions and ε-expansions may find HYPERDIRE (located at https://sites.google.com/site/loopcalculations/) useful, which is a set of Wolfram Mathematica based programs for differential reduction of Horn-type hypergeometric functions, see V. Bytev et al. [9].
To warn the reader: There exist various different types of multivariate hypergeometric series which are not covered in this survey. In particular, here we do not treat multiple hypergeometric series associated with root systems \[[16, 20, 25, 29] \], hypergeometric series of matrix argument \[[15] \], and other types of multivariate hypergeometric series such as those which mainly appear in the study of orthogonal polynomials of severable variables (often also associated with root systems) \[[11, 22] \].

A very important extension of Appell-type series which is just beyond the scope of this basic survey article are the multivariate hypergeometric functions considered by I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky \[[14] \], developed in the late 1980’s. These \(A\)-hypergeometric functions (or GKZ-hypergeometric functions) are fundamental objects in the theory of integrable systems as they are the holonomic solutions of a (certain) \(A\)-hypergeometric system of partial differential equations. Natural questions regarding algebraic solutions and monodromy for \(A\)-hypergeometric functions have been recently addressed by F. Beukers \[[4, 5] \].

For basic (or \(q\)-series) analogues of Appell functions, see G. Gasper and M. Rahman’s text \[[13, \text{Ch. 10}] \].

2. Appell series

Appell series are a natural two-variable extension of hypergeometric series. They are treated with detail in Érdelyi et al. \([12] \), the classical reference for special functions.

In the following, we follow to great extent the expositions from the classical texts of W.N. Bailey \[[3] \], and L.J. Slater \[[31] \] (both contain a great amount of material on hypergeometric series).

For convenience, we use the Pochhammer symbol notation for the shifted factorial,

\[
(a)_n := \begin{cases} a(a + 1) \ldots (a + n - 1) & \text{if } n = 1, 2, \ldots, \\ 1 & \text{if } n = 0. \end{cases} \quad (1a)
\]

Accordingly, we have

\[
(a)_n = \frac{\Gamma(a + n)}{\Gamma(a)} \quad (1b)
\]

which is used as a definition for the shifted factorial in case \(n\) is not necessarily a nonnegative integer.

The goal is to generalize the Gauß hypergeometric function

\[
\begin{align*}
{2}F{1}(a, b ; c ; x) &= \sum_{n \geq 0} \frac{(a)_n (b)_n}{(c)_n n!} x^n
\end{align*}
\]

to a double series depending on two variables.
The easiest is to consider the simple product

\[2F_1\left(\frac{a}{c}; \frac{b}{c}; x \right) 2F_1\left(\frac{a'}{c'}; \frac{b'}{c'}; y \right) = \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_m (a')_n (b)_m (b')_n}{m! n! (c)_m (c')_n} x^m y^n, \]

where on the right-hand side the indices \(m, n \) appear uncoupled.

To consider a genuine double series instead (which does not factor into a simple product of two series), we now deliberately choose to replace one or more of the three products \((a)_m (a')_n, (b)_m (b')_n, (c)_m (c')_n\) by products of coupled type \((a)_{m+n}\) (other choices such as \((a)_{m-n}\) or \((a)_{2m-n}\), etc., instead, may be sensible as well; they lead to Horn-type series, see Subsection 3.1).

There are five different possibilities, one of which by application of the binomial theorem gives the series

\[\sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_m n (b)_{m+n}}{m! n! (c)_{m+n}} x^m y^n = 2F_1\left(\frac{a}{c}; x + y \right), \]

i.e., an ordinary hypergeometric series.

The other four remaining possibilities are classified as \(F_1\), \(F_2\), \(F_3\), and \(F_4\)-series (cf. P. Appell [1] and P. Appell & M.-J. Kampé de Fériet [2]):

\[F_1(a; b, b'; c; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_{m+n} (b)m (b')_n}{m! n! (c)_{m+n}} x^m y^n, \quad |x|, |y| < 1. \quad (2a) \]

\[F_2(a; b, b'; c, c'; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_{m+n} (b)m (b')_n}{m! n! (c)_{m+n}} x^m y^n, \quad |x| + |y| < 1. \]

\[F_3(a, a'; b, b'; c; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_{m+n} (b)m (b')_n}{m! n! (c)_{m+n}} x^m y^n, \quad |x|, |y| < 1. \quad (2c) \]

\[F_4(a; b, c, c'; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_{m+n} (b)m (b')_n}{m! n! (c)_{m+n}} x^m y^n, \quad |x|^{\frac{1}{2}} + |y|^{\frac{1}{2}} < 1. \quad (2d) \]

One immediately observes the following simple identities:

\[F_1(a; b, b'; c; x, y) = \sum_{m \geq 0} \frac{(a)_{m+n} (b)m}{m! (c)_{m+n}} x^m y^n 2F_1\left(\frac{a + m}{c + m}; \frac{b'}{c + m}; y \right). \quad (3) \]

\[F_1(a; b, b'; c; x, 0) = F_2(a; b, b'; c, c'; x, 0) = F_3(a, a'; b, b'; c; x, 0) = F_4(a; b; c, c'; x, 0) = 2F_1\left(\frac{a}{c}; \frac{b}{c}; x \right). \]

\[F_1(a; b, 0; c; x, y) = F_2(a; b, 0; c, c'; x, y) = F_3(a, a'; b, 0; c; x, y) = F_4(a, a'; b, 0; c; x, y) = 2F_1\left(\frac{a}{c}; x \right). \]

(4a) (4b) (5a) (5b)
Using ideas of N.Ja. Vilenkin [32], W. Miller, Jr. [24] has given a Lie theoretic interpretation of the Appell functions \(F \). In particular, he showed that \(sl(5, \mathbb{C}) \) is the dynamical symmetry algebra for the \(F \).

2.1. **Contiguous relations and recursions.** All contiguous relations for the \(F_1 \) function can be derived from these four relations:

\[
(a - b - b') F_1(a; b, b'; c; x, y) - a F_1(a + 1; b, b'; c; x, y) \\
+ b F_1(a; b + 1, b'; c; x, y) + b' F_1(a; b, b' + 1; c; x, y) = 0,
\]

\[
(6a)
\]

\[
c F_1(a; b, b'; c; x, y) - (c - a) F_1(a; b, b'; c + 1; x, y) \\
- a F_1(a + 1; b, b'; c + 1; x, y) = 0,
\]

\[
(6b)
\]

\[
c F_1(a; b, b'; c; x, y) + c(x - 1) F_1(a; b + 1, b'; c; x, y) \\
- (c - a)x F_1(a; b + 1, b'; c + 1; x, y) = 0,
\]

\[
(6c)
\]

\[
c F_1(a; b, b'; c; x, y) + c(y - 1) F_1(a; b, b' + 1; c; x, y) \\
- (c - a)y F_1(a; b, b' + 1; c + 1; x, y) = 0.
\]

\[
(6d)
\]

Similar sets of relations exist for the other Appell functions, see R.G. Buschman [8].

Recently, X. Wang [35] has used contiguous relations and induction to derive various recursion formulae for all the Appell functions \(F_1, F_2, F_3, F_4 \). (Some of the recursions for \(F_2 \) were previously given by S.B. Opps, N. Saad and H.M. Srivastava [26].) For \(n = 1 \) these recursions reduce to equivalent forms of the known contiguous relations.

In particular, for \(F_1 \) we have

\[
F_1(a + n; b, b'; c; x, y) = F_1(a; b, b'; c; x, y) + \frac{bx}{c} \sum_{k=1}^{n} F_1(a + k; b + 1, b'; c + 1; x, y)
\]

\[
+ \frac{by}{c} \sum_{k=1}^{n} F_1(a + k; b, b' + 1; c + 1; x, y),
\]

\[
(7a)
\]

\[
F_1(a - n; b, b'; c; x, y) = F_1(a; b, b'; c; x, y) - \frac{bx}{c} \sum_{k=1}^{n-1} F_1(a - k; b + 1, b'; c + 1; x, y)
\]

\[
- \frac{by}{c} \sum_{k=1}^{n-1} F_1(a - k; b, b' + 1; c + 1; x, y),
\]

\[
(7b)
\]

\[
F_1(a; b + n, b'; c; x, y) = F_1(a; b, b'; c; x, y) + \frac{ax}{c} \sum_{k=1}^{n} F_1(a + 1; b + k, b'; c + 1; x, y),
\]

\[
(7c)
\]

\[
F_1(a; b - n, b'; c; x, y) = F_1(a; b, b'; c; x, y) - \frac{ax}{c} \sum_{k=1}^{n-1} F_1(a + 1; b - k, b'; c + 1; x, y),
\]

\[
(7d)
\]
\[F_1(a; b, b'; c - n; x, y) = F_1(a; b, b'; c; x, y) + abx \sum_{k=1}^{n} \frac{F_1(a + 1; b + 1, b'; c - k + 2; x, y)}{(c - k)(c - k + 1)} + ab'y \sum_{k=1}^{n} \frac{F_1(a + 1; b, b' + 1; c - k + 2; x, y)}{(c - k)(c - k + 1)}. \] (7e)

For \(F_2 \) we have

\[F_2(a + n; b, b'; c, c'; x, y) = F_2(a; b, b'; c, c'; x, y) + b\frac{x}{c} \sum_{k=1}^{n} F_2(a + k; b + 1, b'; c + 1, c'; x, y) + b'\frac{y}{c'} \sum_{k=1}^{n} F_2(a + k; b, b' + 1; c, c' + 1; x, y), \] (8a)

\[F_2(a - n; b, b'; c, c'; x, y) = F_2(a; b, b'; c, c'; x, y) - b\frac{x}{c} \sum_{k=1}^{n-1} F_2(a - k; b + 1, b'; c + 1, c'; x, y) - b'\frac{y}{c'} \sum_{k=1}^{n-1} F_2(a + k; b, b' + 1; c, c' + 1; x, y), \] (8b)

\[F_2(a + n; b, b'; c, c'; x, y) = F_2(a; b, b'; c, c'; x, y) + \frac{ax}{c} \sum_{k=1}^{n} F_2(a + 1; b + k, b'; c + 1, c'; x, y), \] (8c)

\[F_2(a - n; b, b'; c, c'; x, y) = F_2(a; b, b'; c, c'; x, y) - \frac{ax}{c} \sum_{k=1}^{n-1} F_2(a + 1; b - k, b'; c + 1, c'; x, y), \] (8d)

\[F_2(a; b, b'; c - n, c'; x, y) = F_2(a; b, b'; c, c'; x, y) + abx \sum_{k=1}^{n} \frac{F_2(a + 1; b + 1, b'; c - k + 2, c'; x, y)}{(c - k)(c - k + 1)}. \] (8e)

For \(F_3 \) we have

\[F_3(a + n, a'; b, b'; c; x, y) = F_3(a, a'; b, b'; c; x, y) + b\frac{x}{c} \sum_{k=1}^{n} F_3(a + k, a'; b + 1, b'; c + 1; x, y), \] (9a)

\[F_3(a - n, a'; b, b'; c; x, y) = F_3(a, a'; b, b'; c; x, y) \]
\[-\frac{bx}{c} \sum_{k=1}^{n-1} F_3(a - k, a'; b + 1, b'; c + 1; x, y), \quad (9b)\]

\[F_3(a, a'; b, b'; c - n; x, y) = F_3(a, a'; b, b'; x, y) + abx \sum_{k=1}^{n} \frac{F_3(a + 1, a'; b + 1, b'; c - k + 2; x, y)}{(c - k)(c - k + 1)} + a'b'y \sum_{k=1}^{n} \frac{F_3(a, a' + 1; b, b' + 1; c - k + 2; x, y)}{(c - k)(c - k + 1)}. \quad (9c)\]

Finally, for \(F_4\) we have

\[F_4(a + n; b; c, c'; x, y) = F_4(a; b; c, c'; x, y) + \frac{bx}{c} \sum_{k=1}^{n} F_4(a + k; b + 1; c + 1, c'; x, y) + \frac{by}{c'} \sum_{k=1}^{n} F_4(a + k; b + 1; c, c' + 1; x, y), \quad (10a)\]

\[F_4(a - n; b; c, c'; x, y) = F_4(a; b; c, c'; x, y) - \frac{bx}{c} \sum_{k=1}^{n-1} F_4(a - k; b + 1; c + 1, c'; x, y) - \frac{by}{c'} \sum_{k=1}^{n-1} F_4(a - k; b + 1; c, c' + 1; x, y), \quad (10b)\]

\[F_4(a; b; c - n, c'; x, y) = F_4(a; b; c, c'; x, y) + abx \sum_{k=1}^{n-1} \frac{F_4(a + 1; b + 1; c - k + 1, c'; x, y)}{(c - k)(c - k - 1)}. \quad (10c)\]

Most of these recursions can be extended to elegant recursions involving more terms. For instance,

\[F_1(a + n; b, b'; c; x, y) = \sum_{i=0}^{n} \sum_{k=0}^{n-i} \binom{n}{i} \left(\frac{n - i}{k}\right) \frac{(b)_i (b')_k}{(c)_{k+i}} \times x^i y^j F_1(a + i + k; b + i, b' + k; c + i + k; x, y), \quad (11a)\]

\[F_1(a - n; b, b'; c; x, y) = \sum_{i=0}^{n} \sum_{k=0}^{n-i} \binom{n}{i} \left(\frac{n - i}{k}\right) \frac{(b)_i (b')_k}{(c)_{k+i}} \times (-x)^i (-y)^j F_1(a; b + i, b' + k; c + i + k; x, y), \quad (11b)\]
2.2. Partial differential equations. Let

\[z = F_1(a; b, b'; c; x, y) = \sum_{m \geq 0} \sum_{n \geq 0} A_{m,n} x^m y^n. \]

Then

\[A_{m+1,n} = \frac{(a + m + n)(b + m)}{(1 + m)(c + m + n)} A_{m,n}, \]

and

\[A_{m,n+1} = \frac{(a + m + n)(b' + n)}{(1 + n)(c + m + n)} A_{m,n}. \]

Denoting the partial differential operators by

\[\theta = x \frac{\partial}{\partial x} \quad \text{and} \quad \phi = y \frac{\partial}{\partial y}, \]

we readily see that \(z = F_1 \) satisfies the partial differential equations

\[\left[(\theta + \phi + a)(\theta + b) - \frac{1}{x} \theta (\theta + \phi + c - 1) \right] z = 0, \quad (13a) \]
\[\left[(\theta + \phi + a)(\phi + b') - \frac{1}{x} \phi (\theta + \phi + c - 1) \right] z = 0. \quad (13b) \]

Now let

\[p = \frac{\partial z}{\partial x}, \quad q = \frac{\partial z}{\partial y}, \quad r = \frac{\partial z}{\partial x} \frac{\partial z}{\partial y}, \quad s = \frac{\partial^2 z}{\partial x^2}, \quad t = \frac{\partial^2 z}{\partial y^2}. \]

Then \(z = F_1 \) satisfies the partial differential equations

\[x(1 - x) r + y(1 - x) s + [c - (a + b + 1)x] p - byq - abz = 0, \quad (14a) \]
\[y(1 - y) t + x(1 - y) s + [c - (a + b' + 1)y] q - b'xp - ab'z = 0. \quad (14b) \]

Similarly, \(z = F_2 \) satisfies the partial differential equations

\[x(1 - x) r - xys + [c - (a + b + 1)x] p - byq - abz = 0, \quad (15a) \]
\[y(1 - y) t - xys + [c' - (a + b' + 1)y] q - b'xp - ab'z = 0. \quad (15b) \]

Similarly, \(z = F_3 \) satisfies the partial differential equations

\[x(1 - x) r + ys + [c - (a + b + 1)x] p - abz = 0, \quad (16a) \]
\[y(1 - y) t + xs + [c - (a' + b' + 1)y] q - a'b'z = 0. \quad (16b) \]
Finally, \(z = F_4 \) satisfies the partial differential equations
\[
\begin{align*}
 x(1-x)r - y^2t - 2xys + cp - (a + b + 1)(xp + yq) - abz &= 0, \quad (17a) \\
 y(1-y)t - x^2r - 2xys + c'q - (a + b + 1)(xp + yq) - abz &= 0. \quad (17b)
\end{align*}
\]

2.3. Integral representations. Integral representations for Appell series are very useful. Substitution of variables in these integrals lead to equivalent integrals. This provides an effective and easy method to derive transformation formulae for Appell series, see Subsection 2.4.

Consider the integral
\[
I = \int \int u^{b-1}v^{b'-1}(1 - u - v)^{c-b-b'-1}(1 - ux - vy)^{-a} \, du \, dv,
\]
taken over the triangular region \(u \geq 0, \ v \geq 0, \ u + v \leq 1 \). (We implicitly assume suitable conditions of the parameters \(a, b, b', c \) such that the integral is well-defined and converges.)

Now, provided \(|vy/(1-ux)| < 1\), we have, by binomial expansion,
\[
(1 - ux - vy)^{-a} = (1 - ux)^{-a} \sum_{m \geq 0} \frac{(a)_m}{m!} \left(\frac{vy}{1 - ux} \right)^m
\]
\[
= \sum_{m \geq 0} \frac{(a)_m}{m!} v^m y^m (1 - ux)^{-a-m}
\]
\[
= \sum_{m \geq 0} \frac{(a)_m}{m!} v^m y^m \sum_{n \geq 0} \frac{(a+m)_n}{n!} u^n x^n.
\]

Thus,
\[
I = \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_{m+n}}{m! n!} x^m y^n \int \int u^{b-1+n}v^{b'-1+m}(1 - u - v)^{c-b-b'-1} \, du \, dv
\]
\[
= \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)_{m+n}}{m! n!} x^m y^n \Gamma \left[b + n, b' + m, c - b - b' \quad c + m + n \right],
\]
which yields
\[
I = \Gamma \left[b, b', c - b - b' \quad c \right] F_1(a; b, b'; c; x, y). \quad (18)
\]

While \(I \) is a double integral, a single integral for \(F_1 \) even exists, see (22).

Similarly,
\[
\int_0^1 \int_0^1 u^{b-1}v^{b'-1}(1 - u)^{c-b-b'-1}(1 - v)^{c'-b'-1}(1 - ux - vy)^{-a} \, du \, dv
\]
\[
= \Gamma \left[b, b', c - b, c' - b' \quad c, c' \right] F_2(a; b, b'; c, c'; x, y), \quad (19)
\]
and
\[\int \int u^{b-1}v^{b'-1}(1-u-v)^{c-b-b'-1}(1-ux)^{-a}(1-vy)^{-a'} \, du \, dv = \Gamma \left[b, b', c-b-b' \right] F_3(a, a'; b, b'; c'; x, y), \] (20)
the last integral taken over the triangular region \(u \geq 0, v \geq 0, u + v \leq 1 \).

The double integral for \(F_4 \) is more complicated:
\[\int_0^1 \int_0^1 u^{a-1}v^{b-1}(1-u)^{c-a-1}(1-v)^{c'-b-1}(1-ux)^{-b}(1-vy)^{-a} \times \left(1 - \frac{uwx}{(1-ux)(1-vy)} \right)^{c' - a - b - 1} \, du \, dv = \Gamma \left[a, b, c-a, c' - b \right] F_4(a; b; c, c'; x(1-y), y(1-x)). \] (21)

In 1881, É. Picard [27] discovered a single integral for \(F_1 \). Let
\[I' = \int_0^1 u^{a-1}(1-u)^{c-a-1}(1-ux)^{-b}(1-vy)^{-b'} \, du, \]
where \(\Re c > \Re a > 0 \). Then
\[I' = \sum_{m \geq 0} \sum_{n \geq 0} \int_0^1 u^{a-1}(1-u)^{c-a-1} \frac{(b)_m}{m!} u^m x^m \frac{(b')_n}{n!} u^n y^n \, du \]
\[= \sum_{m \geq 0} \sum_{n \geq 0} \frac{(b)_m(b')_n}{m!n!} x^m y^n \int_0^1 u^{a+m+n-1}(1-u)^{c-a-1} \, du \]
\[= \sum_{m \geq 0} \sum_{n \geq 0} \frac{(b)_m(b')_n}{m!n!} x^m y^n \Gamma \left[a+m+n, c-a \right] \]
\[= \Gamma \left[a, c-a \right] F_1(a; b, b'; c, c'; x, y). \] (22)

2.3.1. Incomplete elliptic integrals. As immediate consequences of (22), it follows that the incomplete elliptic integrals \(F \) and \(E \) and the complete elliptic integral \(\Pi \) can all be expressed in terms of special cases of the Appell \(F_1 \) function:
\[F(\phi, k) := \int_0^\phi \frac{d\theta}{\sqrt{1-k^2 \sin^2 \theta}} = \sin \phi \, F_1 \left(\frac{3}{2}; \frac{1}{2}, \frac{1}{2}; \frac{3}{2}; \sin^2 \phi, k^2 \sin^2 \phi \right), \quad |\Re \phi| < \frac{\pi}{2}, \] (23a)
\[E(\phi, k) := \int_0^\phi \sqrt{1-k^2 \sin^2 \theta} \, d\theta \]
\[
\text{series.}
\]

\[
\text{For one may use the substitution of variables } u = F a, \quad b, b; x, y, \theta \quad \text{for the}
\]

\[
\text{Similarly, the substitution of variables } u = \frac{x}{1-x+y} \text{ can be used to prove}
\]

\[
F_1(a; b, b'; c; x, y) = (1 - x)^{-b}(1 - y)^{-b'}F_1\left(c - a; b, b'; c; \frac{x}{x - 1}, \frac{y - x}{y - 1}\right).
\]

For \(b' = 0\) this reduces again to the Pfaff–Kummer transformation for the \(2F_1\) series.

On the other hand, if \(c = b + b'\), then

\[
F_1(a; b, b'; b + b'; x, y) = (1 - x)^{-a}2F_1\left(a, b'\; y - x \atop b + b'; 1 - x\right)
\]

\[
= (1 - y)^{-a}2F_1\left(a, b\; x - y \atop b + b'; 1 - y\right).
\]

Similarly,

\[
F_1(a; b, b'; c; x, y) = (1 - y)^{-a}F_1\left(a; b, c - b - b'; c; \frac{x - y}{1 - y}, \frac{y}{y - 1}\right),
\]

\[
F_1(a; b, b'; c; x, y) = (1 - x)^{c-a-b}(1 - y)^{-b'}F_1\left(c - a; c - b - b', b'; c; \frac{x - y}{1 - y}\right),
\]

\[
F_1(a; b, b'; c; x, y) = (1 - x)^{-b}(1 - y)^{c-a-b'}F_1\left(c - a; b, c - b - b'; c; \frac{y - x}{1 - x}, y\right).
\]

Further,

\[
F_2(a; b, b'; c, c'; x, y) = (1 - x)^{-a}F_2\left(a; c - b, b', c', \frac{x}{x - 1}, \frac{y}{1 - x}\right),
\]
\[F_2(a; b, b'; c, c'; x, y) = (1 - y)^{-a} F_2\left(a; b, c' - b'; c, c'; \frac{x}{1 - y}, \frac{y}{y - 1}\right), \quad (31) \]

\[F_2(a; b, b'; c, c'; x, y) = (1 - x - y)^{-a} F_2\left(a; c - a, c' - b'; c, c'; \frac{x}{x + y - 1}, \frac{y}{x + y - 1}\right). \quad (32) \]

Also, quadratic transformations are known for Appell functions, see B.C. Carlson [10].

2.5. Reduction formulae. The transformations of Subsection 2.4 readily imply the following reduction formulae (typically a double series being reduced to a single series):

- **\(y = x \) in \(F_1 \):**
 \[F_1(a; b, b'; c; x, x) = (1 - x)^{c - a - b - b'} 2 F_1\left(c - a, c - b - b'; c; x\right). \quad (33a) \]
 By Euler’s transformation this is
 \[F_1(a; b, b'; c; x, x) = 2 F_1\left(a, b + b'; c; x\right). \quad (33b) \]

- **\(c = b + b' \) in \(F_1 \):**
 \[F_1(a; b, b'; b + b'; x, y) = (1 - y)^{-a} 2 F_1\left(a, b; \frac{x - y}{b + b'}; \frac{1}{1 - y}\right). \quad (34) \]

- **\(c = b \) in \(F_2 \):**
 \[F_2(a; b, b'; b, c'; x, y) = (1 - x)^{-a} 2 F_1\left(a, b'; \frac{y}{b' - 1}; x\right). \quad (35) \]

- **\(y = 1 \) in \(F_1 \):**
 Since
 \[F_1(a; b, b'; c; x, y) = \sum_{m \geq 0} \frac{(a)_m (b)_m}{m! (c)_m} x^m 2 F_1\left(a + m, b'; c + m; y\right) \]
 and
 \[2 F_1\left(a, b; c; 1\right) = \Gamma\left[c, c - a - b\right], \quad \Re(c - a - b) > 0, \]
 we have
 \[F_1(a; b, b'; c; x, 1) = \Gamma\left[c, c - a - b\right] 2 F_1\left(a, b; c - b'; x\right), \quad (36) \]
 for \(\Re(c - a - b') > 0 \).

- An \(F_1 \leftrightarrow F_3 \) transformation:
 Since
 \[F_1(a; b, b'; c; x, y) = \sum_{m \geq 0} \frac{(a)_m (b)_m}{m! (c)_m} x^m 2 F_1\left(a + m, b'; c + m; y\right) \]
 and
 \[2 F_1\left(a, b; c; y\right) = (1 - y)^{-b} 2 F_1\left(c - a, b; c; y - 1\right), \]
we have
\[
F_1(a; b, b'; c; x, y) = (1 - y)^{-b} \sum_{m \geq 0} \frac{(a)_m (b)_m}{m! (c)_m} x^m y^m 2F_1\left(\frac{c - a, b'}{y} ; \frac{c + m}{y - 1}\right)
\]
\[
= (1 - y)^{-b} F_3\left(a, c - a; b, b'; c; x, \frac{y}{y - 1}\right). \tag{37}
\]
Hence, any \(F_1 \) function can be expressed in terms of an \(F_3 \) function. The converse is only true when \(c = a + a' \).

- \(a' = c - a \) and \(b' = c - b \) in \(F_3 \):

 Since by Equation \((34)\) the \(F_1 \) function reduces to an ordinary \(2F_1 \) function when \(c = b + b' \), we have

 \[
 F_3\left(a, c - a; b, c - b; c; x, \frac{y}{y - 1}\right) = (1 - x)^{-a} (1 - y)^{c - b} 2F_1\left(a, c - b; y - x; \frac{1}{1 - y}\right). \tag{38}
 \]

- \(c' = a \) in \(F_2 \):

 \[
 F_2(a; b, b'; c; a; x, y) = (1 - y)^{-b} F_1\left(b; a - b', b'; c; x, \frac{x}{1 - y}\right). \tag{39}
 \]

Conversely, any \(F_1 \) function can be expressed in terms of an \(F_2 \) function where \(c' = a \).

 If further \(c = a \), then

 \[
 F_2(a; b, b'; a; a; x, y) = (1 - x)^{-b} (1 - y)^{-b} 2F_1\left(b, b'; xy; \frac{x}{1 - x}; \frac{1}{1 - y}\right). \tag{40}
 \]

2.6. **An expansion of an \(F_4 \) series.** In 1940 and 1941, J.L. Burchnall and T.W. Chaundy [6, 7] gave the following expansion of an \(F_4 \) series in terms of products of two hypergeometric \(2F_1 \) series:

\[
F_4(a; b, c, c'; x(1 - y), y(1 - x)) = \sum_{m \geq 0} \frac{(a)_m (b)_m (1 + a + b - c - c')_m}{m! (c)_m (c')_m} x^m y^m
\times 2F_1\left(a + m, b + m; c + m; x\right) 2F_1\left(a + m, b + m; c' + m; y\right). \tag{41}
\]

This expansion has applications to classical orthogonal polynomials. It can also be used to deduce the double integral representation for \(F_4 \). Various special cases are interesting enough to state separately:

- \(c' = 1 + a + b - c \) in \(F_4 \):

 We have the product formula

 \[
 F_4(a; b, c, 1 + a + b - c; x(1 - y), y(1 - x)) = 2F_1\left(a, b; c; x\right) 2F_1\left(a, b; c'; y\right). \tag{42}
 \]

- \(c' = b \) in \(F_4 \):
Here we have the reduction formula
\[F_4(a; b; c, b; x(1 - y), y(1 - x)) = (1 - x)^{-a}(1 - y)^{-a} F_1 \left(a; 1 + a - c, c - b; \frac{xy}{(1 - x)(1 - y)}, \frac{x}{x - 1} \right). \] (43)

- \(c' = b \) and \(c = a \) in \(F_4 \):
Further specialization of (43) gives the quite attractive summation formula
\[F_4(a; b; a, b; x(1 - y), y(1 - x)) = (1 - x)^{1-b}(1 - y)^{1-a}(1 - x - y)^{-1}. \] (44a)

Written out in explicit terms, this is
\[
\sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)^m (b)^n}{m! n!} x^m y^n (1 - x)^{1-b}(1 - y)^{1-a}(1 - x - y)^{-1} = \frac{(1 - x)^{1-b}(1 - y)^{1-a}}{(1 - x - y)}. \] (44b)

For \(y = 0 \) this reduces to I. Newton’s binomial expansion formula
\[\binom{b}{-} ; x = (1 - x)^{-b}. \]

3. Related series and extensions of Appell series

3.1. Horn functions. In 1931, Jacob Horn [17] studied convergent bivariate hypergeometric functions \(\sum_{m,n} f_{m,n} x^m y^n \) with certain (degree and other) restrictions on the two ratios of consecutive terms
\[
\frac{f_{m+1,n}}{f_{m,n}}, \quad \frac{f_{m,n+1}}{f_{m,n}}.
\]

He arrived at a complete set of 34 different functions among which are the Appell functions \(F_1, F_2, F_3, F_4 \).

They include series such as
\[
G_1(a, b, b'; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)^m (b)^n (b')^n}{m! n!} x^m y^n, \] (45)

\[
H_3(a, b, c; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)^{2m+n} (b)^n}{(c)^{m+n} m! n!} x^m y^n, \] (46)

and
\[
H_7(a, b, b', c; x, y) := \sum_{m \geq 0} \sum_{n \geq 0} \frac{(a)^{2m-n} (b)^n (b')^n}{(c)^m m! n!} x^m y^n. \] (47)
3.2. Kampé de Fériet series. In 1937, J. Kampé de Fériet [18] introduced the following bivariate extension of the generalized hypergeometric series:

\[
F^{p,q}_{r,s} \left(a_1, \ldots, a_p : b_1, b'_1 ; \ldots ; b_q, b'_q ; \\
c_1, \ldots, c_r : d_1, d'_1 ; \ldots ; d_s, d'_s, x, y \right) \\
= \sum_{m_0 \geq 0} \sum_{n_0 \geq 0} \frac{(a_0)_m \cdots (a_p)_m (b_0)_m \cdots (b_q)_m (b'_0)_m \cdots (b'_q)_m \cdot m! \cdot n!}{(c_0)_m \cdots (c_r)_m (d_0)_m \cdots (d_s)_m (d'_0)_m \cdots (d'_s)_m \cdot m! \cdot n!} x^m y^n.
\] (48)

Numerous identities exist for special instances of such series. For illustration, we list three summation formulae.

- P.W. Karlsson [19], 1994:

\[
F_{1;1}^{0,3} \left(- : a, d - a; b, d - b; c, -c; 1, 1 \right) = \Gamma \left[e, e + d - a - b - c \right] / \Gamma \left[e - c, e + d - a - b \right].
\] (49)

where \(\Re(e) > 0 \) and \(\Re(d + e - a - b - c) > 0 \).

- S.N. Pitre and J. Van der Jeugt [28], 1996:

\[
F_{1;1}^{0,3} \left(- : a, d - a; b, d - b; c, d - c; 1, 1 \right) = \Gamma \left[e, e + d - a - b - c, e - d \right] / \Gamma \left[e - a, e - b, e - c \right].
\] (50)

where \(\Re(e - d) > 0 \) and \(\Re(d + e - a - b - c) > 0 \). Further

\[
F_{1;1}^{0,3} \left(- : a, d - a; b, d - b; c, e - c - 1; 1, 1 \right) \\
= \Gamma \left[1 - a, 1 - b, e, e - d, d + e - a - b - c \right] / \Gamma \left[1 - d, e - a, e - b, e - c, 1 + d - a - b \right],
\] (51)

where \(\Re(d + e - a - b - c) > 0 \), and \(d - a \) or \(d - b \) is a negative integer.

3.3. Lauricella series. In 1893, G. Lauricella [21] investigated properties of the following four series \(F^{(n)}_A \), \(F^{(n)}_B \), \(F^{(n)}_C \), \(F^{(n)}_D \), of \(n \) variables:

\[
F^{(n)}_A \left(a; b_1, \ldots, b_n; c_1, \ldots, c_n; x_1, \ldots, x_n \right) \\
= \sum_{m_1 \geq 0} \cdots \sum_{m_n \geq 0} \frac{(a)_m \cdots (a_n)_m (b_1)_m \cdots (b_n)_m \cdot m! \cdot n!}{(c_1)_m \cdots (c_n)_m \cdot m! \cdot n!} x_1^{m_1} \cdots x_n^{m_n},
\] (52)

where \(|x_1| + \cdots + |x_n| < 1 \).

\[
F^{(n)}_B \left(a_1, \ldots, a_n; b_1, \ldots, b_n; c; x_1, \ldots, x_n \right) \\
= \sum_{m_1 \geq 0} \cdots \sum_{m_n \geq 0} \frac{(a_1)_m \cdots (a_n)_m (b_1)_m \cdots (b_n)_m \cdot m! \cdot n!}{(c)_m \cdots \cdot m! \cdot n!} x_1^{m_1} \cdots x_n^{m_n},
\] (53)

where \(|x_1|, \ldots, |x_n| < 1 \).

\[
F^{(n)}_C \left(a; b_1, \ldots, b_n; x_1, \ldots, x_n \right)
\]
\[
\sum_{m_1 \geq 0} \cdots \sum_{m_n \geq 0} \frac{(a)_{m_1+\cdots+m_n} (b)_{m_1+\cdots+m_n}}{(c_1)_{m_1} \cdots (c_n)_{m_n} m_1! \cdots m_n!} x_1^{m_1} \cdots x_n^{m_n},
\]
where \(|x_1|^\frac{1}{n} + \cdots + |x_n|^\frac{1}{n} < 1.

\[
F_D^{(n)} (a; b_1, \ldots, b_n; c; x_1, \ldots, x_n) = \sum_{m_1 \geq 0} \cdots \sum_{m_n \geq 0} \frac{(a)_{m_1+\cdots+m_n} (b_1)_{m_1} \cdots (b_n)_{m_n} x_1^{m_1} \cdots x_n^{m_n}}{(c)_{m_1+\cdots+m_n} m_1! \cdots m_n!},
\]
where \(|x_1|, \ldots, |x_n| < 1.

Certainly, we have
\[
F_A^{(2)} = F_2, \quad F_B^{(2)} = F_3, \quad F_C^{(2)} = F_4, \quad F_D^{(2)} = F_1.
\]

Many properties for Lauricella functions, such as integral representations and partial differential equations, are given by Appell and Kampé de Fériet [2]. From the vast amount of material, we single out the following integral representation of the Lauricella \(F_D^{(n)}\) series as a specific example.

3.3.1. Integral representation of \(F_D^{(n)}\). The formula
\[
F_D^{(n)} (a; b_1, \ldots, b_n; c; x_1, \ldots, x_n) = \frac{\Gamma(c)}{\Gamma(a) \Gamma(c - a)} \int_0^1 u^{a-1} (1 - u)^{c-a-1} (1 - u x_1)^{-b_1} \cdots (1 - u x_n)^{-b_n} \, du,
\]
where \(\Re c > \Re a > 0\), is very useful for deriving relations for \(F_D\) series. It can be easily verified by Taylor expansion of the integrand, followed by termwise integration.

3.3.2. Group theoretic interpretations. A group theoretic interpretation of the Lauricella \(F_A^{(n)}\) functions corresponding to the most degenerate principal series representations of \(\text{SL}(n, \mathbb{R})\) was given by N.Ja. Vilenkin [33] (see also [34, Sec. 16.3.4]). Similarly, W. Miller, Jr. [23] has shown that the Lauricella \(F_D^{(n)}\) functions transform as basis vectors corresponding to irreducible representations of the Lie algebra \(\text{sl}(n+3, \mathbb{C})\) (by which he generalized his previous observation in [24] for the \(n=2\) case, corresponding to the Appell functions \(F_1\)).

Acknowledgement. I would like to thank Tom Koornwinder for pointing out references on group theoretic interpretations of Lauricella series.

References
[1] Appell, P.: Sur les séries hypergéométriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles. Comptes rendus hebdomadaires des séances de l’Académie des sciences 90, 296-298 & 731-735 (1880)
[2] Appell, P., Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques; Polynômes d’Hermite. Gauthier–Villars, Paris (1926)
[3] Bailey, W.N.: Generalized hypergeometric series, second edition. *Cambridge Mathematical Tract*, No. 32. Cambridge University Press, Cambridge (1964)

[4] Beukers, F.: Algebraic A-hypergeometric functions. Invent. Math. 180, 589–610 (2010)

[5] Beukers, F.: Monodromy of A-hypergeometric functions. preprint arXiv:1101.0493 (2011)

[6] Burchnall, J.L., Chaundy, T.W.: Expansions of Appell’s double hypergeometric functions, I. Quart. J. Math. (Oxford) 11, 249–270 (1940)

[7] Burchnall, J.L., Chaundy, T.W.: Expansions of Appell’s double hypergeometric functions, II. Quart. J. Math. (Oxford) 12, 112–128 (1941)

[8] Buschman, R.G.: Contiguous relations for Appell functions. J. Indian Math. Soc. 29, 165–171 (1987)

[9] Bytev, V.V., Kalmykov M.Yu., Kniehl B.A.: HYPERDIRE – HYPERgeometric functions Differential REduction MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: now with $_pF_{p-1}, F_1, F_2, F_3, F_4$. preprint arXiv:1105.3565 (2011)

[10] Carlson, B.C.: Quadratic transformations of Appell functions. SIAM J. Math. Anal. 7, 291–304 (1976)

[11] Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. *Encyclopedia of Mathematics and its Applications*, vol. 81. Cambridge University Press, Cambridge (2001)

[12] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher transcendental functions. Vol. I. Based on notes left by Harry Bateman. With a preface by Mina Rees. With a foreword by E.C. Watson. Reprint of the 1953 original. Robert E. Krieger Publishing Co. Inc., Melbourne, FL (1981)

[13] Gasper, G., Rahman, M.: Basic hypergeometric series, second edition. *Encyclopedia of Mathematics and its Applications*, vol. 96. Cambridge University Press, Cambridge (2004)

[14] Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Hypergeometric functions and toric manifolds, Funct. Anal. and its Appl. 23, 94–106 (1989).

[15] Gross, K.I., Richards, D.St.P.: Total positivity, spherical series, and hypergeometric functions of matrix argument. J. Approx. Th. 59 (2), 224–246 (1989)

[16] Heckman, G.J., Opdam, E.M.: Root systems and hypergeometric functions I. Compositio Math. 64, 329–352 (1987)

[17] Horn, J.: Hypergeometrische Funktionen zweier Veränderlichen. Math. Ann. 105, 381–407 (1931)

[18] Kampé de Fériet, J.: La fonction hypergéométrique. Gauthier–Villars, Paris (1937)

[19] Karlsson, P.W.: Two hypergeometric summation formulae related to 9-j coefficients. J. Phys. A 27 (20), 6943–6945 (1994)

[20] Koornwinder, T.H.K.: Special functions associated with root systems: a first introduction for non-specialists. pp. 10–24 in *Special functions and differential equations*, K. Srinivasan Rao, R. Jagannathan, G. Vanden Berghe and J. Van der Jeugt (eds.), Allied Publishers, New Delhi (1998)

[21] Lauricella, G.: Sulle funzioni ipergeometriche a più variabili. Rediconti del Circolo Matematico di Palermo 7 (S1), 111–158 (1893)

[22] Macdonald I.G.: Symmetric functions and orthogonal polynomials. *University Lecture Series* 12. Amer. Math. Soc., Providence, RI (1998)

[23] Miller, W.Jr.: Lie theory and the Lauricella functions F_D. SIAM J. Math. Anal. 4 (4), 638–655 (1973)

[24] Miller, W.Jr.: Lie theory and the Appell functions F_1. J. Math. Phys. 13 (9), 1393–1399 (1972)

[25] Milne, S.C.: Transformations of $U(n + 1)$ multiple basic hypergeometric series. pp. 201–243 in *Physics and Combinatorics: Proceedings of the Nagoya 1999 International Workshop* (Nagoya University, Japan, August 23–27, 1999), A.N. Kirillov, A. Tsuchiya, and H. Umemura, (eds.), World Scientific, Singapore (2001)
[26] Opps, S.B., Saad, N., Srivastava, H.M.: Recursion formulas for Appell’s hypergeometric function F_2 with some applications to radiation field problem. Appl. Math. Comput. 207, 545–558 (2009)

[27] Picard, É.: Sur une extension aux fonctions de deux variables du problème de Riemann relatif aux fonctions hypergéométriques. Annales scientifiques de l’É.N.S. 2e série 10, 305–322 (1881)

[28] Pitre, S.N., Van der Jeugt, J.: Transformation and summation formulas for Kampé de Fériet series $F_{1+1;1+1}^{0;3}(1,1)$. J. Math. Anal. Appl. 202 (1), 121–132 (1996)

[29] Rosengren, H.: Elliptic hypergeometric series on root systems. Adv. Math. 181, 417–447 (2004)

[30] Shpot, M.A.: A massive Feynman integral and some reduction relations for Appell functions. J. Math. Phys. 48 (12), 123512, 13pp. (2007)

[31] Slater, L.J.: Generalized hypergeometric functions. Cambridge University Press, Cambridge (1966)

[32] Vilenkin, N.Ja.: Special functions and the theory of group representations. Amer. Math. Soc. Transl. of Math. Monographs 22. Amer. Math. Soc., Providence, RI (1968)

[33] Vilenkin, N.Ja.: Hypergeometric functions of several variables, and degenerate representations of the group $SL(n,R)$. Izv. Vyssh. Uchebn. Zaved. Mat. 4 (95), 50–55 (1970)

[34] Vilenkin, N.Ja., Klimyk A.U.: Representation of Lie groups and special functions, vol. 3. Classical and quantum groups and special functions. Translated from the Russian by V.A. Groza and A.A. Groza. Mathematics and its Applications (Soviet Series) 75. Kluwer Academic Publishers Group, Dordrecht (1992)

[35] Wang, X.: Recursion formulas for Appell functions. Integral Transforms Spec. Funct. 23 (6), 421–433 (2012)

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Vienna, Austria
E-mail address: michael.schlosser@univie.ac.at