Calculable $e^{-1/\lambda}$ Effects

I. Antoniadisa,b, B. Piolinea,b and T.R. Taylorb,c

aCentre de Physique Théorique, Ecole Polytechnique,† F-91128 Palaiseau, France
bTheory Division, CERN, 1211 Geneva 23, Switzerland
cDepartment of Physics, Northeastern University, Boston, MA 02115, U.S.A.

Abstract

We identify and evaluate a class of physical amplitudes in four-dimensional $N = 4$ superstring theory, which receive, in the weak coupling limit, contributions of order $e^{-1/\lambda}$, where λ is the type II superstring coupling constant. They correspond to four-derivative \tilde{F}_4 interaction terms involving the universal type II dilaton supermultiplet. The exact result, obtained by means of a one-loop computation in the dual heterotic theory compactified on T^6, is compared with the perturbation theory on the type II side, and the $e^{-1/\lambda}$ contributions are associated to non-perturbative effects of Euclidean solitons (D-branes) wrapped on $K3 \times T^2$. The ten-dimensional decompactification limit on the type IIB side validates the recent conjecture for the D-instanton–induced R^4 couplings.

*Research supported in part by the National Science Foundation under grant PHY–96–02074, and in part by the EEC under the TMR contract ERBFMRX-CT96-0090.
†Laboratoire Propre du CNRS UPR A.0014.

CERN–TH/97-179

July 1997
1. Introduction

The existence of non-perturbative string effects behaving like $e^{-1/\lambda}$ in the weak coupling limit $\lambda \to 0$ was predicted long ago by Shenker \cite{Shenker} by analyzing the large-order behavior of string perturbation theory. Recent developments in superstring duality give a new insight into the origin of non-perturbative effects, with membranes, five-branes and other solitons playing the central role in understanding non-perturbative dynamics. Although several possible sources of $e^{-1/\lambda}$ effects have already been identified \cite{2, 3, 4, 5, 6}, their direct analysis still remains beyond the reach of computational techniques. However, duality itself provides a very powerful tool for computing non-perturbative effects: the physical quantities that can be determined exactly by using perturbative expansion in one theory are often mapped to quantities receiving non-perturbative contributions in the dual description \cite{7}. By looking at the exact results obtained in this way, we can try to identify the sources of non-perturbative effects and hopefully learn how to compute them directly.

An important example is provided by the series of higher-derivative F-terms, F_g \cite{8}, which in four-dimensional $N = 2$ supersymmetric compactifications of the heterotic theory receive perturbative contributions and non-perturbative corrections; however, they originate entirely at genus g on the type II side \cite{9}. F_g's are holomorphic functions of $N = 2$ vector moduli, up to a holomorphic anomaly \cite{10}. In fact, F_1 that determines the R^2 couplings \cite{11}, appears already at the $N = 4$ level in type II compactifications on $K3 \times \mathcal{T}^2$, as well as in heterotic compactification on \mathcal{T}^6, where it receives only a tree-level and non-perturbative contributions. Recently, Harvey and Moore \cite{12} obtained an exact result for R^2 couplings in $N = 4$ theory by performing a one-loop computation on the type IIA side and compared it with the corresponding expression in the dual heterotic theory. They identified terms that behave like e^{-1/λ^2} in the weak coupling limit $\lambda \to 0$ of the heterotic coupling constant and associated them with the effects of gravitational instantons corresponding to Euclidean five-branes wrapped on \mathcal{T}^6. In this case, analyticity and discrete
Peccei–Quinn symmetry forbid the presence of $e^{-1/\lambda}$ effects.

There exists another class of higher-derivative terms, $\tilde{\mathcal{F}}_g$, which in the $N = 2$ context corresponds to $(2g+2)$-derivative couplings of the universal type II dilaton hypermultiplet (S, Z), where S and Z are the two $N = 1$ chiral supermultiplet components. S originates from the Neveu-Schwarz–Neveu-Schwarz (NS-NS) sector and determines the type II coupling constant λ: $\text{Im} S \equiv e^{-2\phi} = 8\pi/\lambda^2$; Z originates from the Ramond–Ramond (R-R) sector. The function $\tilde{\mathcal{F}}_1$ determines the four-derivative coupling

$$\tilde{I}_{\text{II}} = \frac{\tilde{\mathcal{F}}_1}{2(\text{Im} S)^2} (\partial_\mu \partial_\nu S \partial^\mu \partial^\nu \bar{S} + \partial_\mu \partial_\nu S \partial^\mu \partial^\nu S). \quad (1.1)$$

In type II perturbation theory, $\tilde{\mathcal{F}}_1$ is a harmonic function of the NS-NS hypermultiplet moduli (again up to a holomorphic anomaly), which is related to \mathcal{F}_1 by mirror symmetry. Unlike \mathcal{F}_1, which is a purely one-loop quantity, $\tilde{\mathcal{F}}_1$ can also receive non-perturbative corrections. These corrections break the mirror symmetry and allow a non-trivial dependence on the R-R hypermultiplet components, violating perturbative holomorphicity. For a type II model that admits a dual heterotic description, $\tilde{\mathcal{F}}_1$ can be computed exactly in the heterotic perturbation theory. There, it corresponds to a purely one-loop quantity because the heterotic coupling constant belongs to a vector multiplet that decouples from the hypermultiplet sector of the theory. Thus a one-loop heterotic computation yields the exact result.

Similarly to \mathcal{F}_1, $\tilde{\mathcal{F}}_1$ appears already for $N = 4$ compactifications. In this work, we obtain an exact answer for $\tilde{\mathcal{F}}_1$ in $N = 4$ theory by means of a one-loop computation in the heterotic theory compactified on \mathcal{T}^6. We examine the limit that corresponds to the weak coupling regime of the dual type II theory compactified on $K3 \times \mathcal{T}^2$. The result reproduces the perturbative type II expression and contains $e^{-1/\lambda}$ corrections that can be associated to type II Euclidean solitons (D-branes) wrapped on $K3 \times \mathcal{T}^2$. In this case, such corrections are possible because the corresponding couplings are not constrained to be holomorphic.
On the type IIB side, \(\tilde{F}_1 \) receives contributions from the D-instantons already present in ten dimensions. Their contribution can be isolated by decompactifying the internal space \(K3 \times T^2 \). In \(D = 10 \), \(\tilde{F}_1 \) determines the \(R^2(\partial\phi_{10})^2 \) coupling, where \(\phi_{10} \) is the ten-dimensional dilaton. This coupling is related by supersymmetry to \(R^4 \) couplings, for which an exact result has been conjectured in Ref. [5]. As a by-product of our analysis, starting from the exact four-dimensional expression for \(\tilde{F}_1 \), we will prove the validity of this conjecture.

We first review some basic features of \(N = 4 \) type II–heterotic duality in \(D = 4 \). Recall that in \(D = 6 \), the type IIA theory on \(K3 \) and the heterotic theory on \(T^4 \) are related by strong–weak coupling duality [14]. \(N = 4, D = 4 \) theories are obtained by further compactification on \(T^2 \). The global moduli space takes the form

\[
\left[\frac{Sl(2; \mathbb{R})}{U(1)} \right] \times \left[\frac{Sl(2; \mathbb{Z})}{O(6) \times O(22)} \right] / \left(O(6, 22) ; \mathbb{Z} \right) \,.
\]

Viewed from the type IIA side, the first factor is associated to the complexified Kähler modulus \(T_{II} \) of \(T^2 \), while the second factor, in the perturbative limit, decomposes into the product of the NS-NS moduli:

\[
\frac{O(6, 22)}{O(6) \times O(22)} \supset \frac{O(4, 20)}{O(4) \times O(20)} \times \frac{SU(1, 1)_S}{U(1)} \times \frac{SU(1, 1)_U}{U(1)} \,.
\]

where the three cosets are associated with the 80 \(K3 \) \(\sigma \)-model moduli, the IIA dilaton \(S_{II} \), and the complex structure modulus \(U_{II} \) of \(T^2 \), respectively. This product is extended to the l.h.s. of Eq. (1.3) when the Wilson lines \(Y_{II} \) of the 24 six-dimensional R-R gauge fields on \(T^2 \) are taken into account.

From the heterotic point of view, the first factor of Eq. (1.2) is associated with the heterotic dilaton \(S_{HI} \), while the second factor is associated to \(T_{HI} \), \(U_{HI} \), the 80 moduli of the \(\Gamma_{4,20} \) Narain momentum lattice in \(D = 6 \), and the Wilson lines \(Y_{HI} \) of the 24 six-dimensional gauge fields on \(T^2 \). Type IIA–heterotic duality exchanges the dilaton \(S \) of one side with the \(T \) modulus of the other side while identifying \(U \) and \(Y \)’s in the two theories. Our goal
is to compute \(\tilde{F}_1 \) in the heterotic theory compactified on \(T^6 \) and to examine it in the limit of large Kähler modulus \(T_H \) (i.e. the large \(T^2 \) volume \(\sqrt{G_H} = \text{Im}T_H \rightarrow \infty \) limit), which will take us to the weak coupling regime \(\text{Im}S_{II} \rightarrow \infty \) on the type IIA side. In the following, we will always consider heterotic and type II fields in a well-defined context; from now on we therefore drop the subscripts \(H \) and \(II \).

This paper is organized as follows. In Section 2, we determine the one-loop perturbative \(\tilde{F}_1 \) coupling in type IIA theory on \(K3 \times T^2 \). In Section 3, we perform a one-loop computation in the dual heterotic string theory compactified on \(T^6 \), and obtain the exact result for \(\tilde{F}_1 \). In Section 4, we examine the large two-torus limit of the exact result and compare it with the perturbative result of Section 2. We also obtain subleading contributions of order \(e^{-1/\lambda} \). We associate them in Section 5 with the non-perturbative effects of Euclidean D-branes wrapping on \(K3 \times T^2 \). In Section 6, we examine the decompactification limit of the dual type IIB theory and relate our result to the ten-dimensional \(R^4 \) couplings.

2. One-Loop \(\tilde{F}_1 \) in Type II Theory

A class of four-derivative interaction terms in type II superstring theory compactified on \(K3 \times T^2 \) have recently been considered in Ref. [13] at the one-loop level. In particular, all terms quadratic in the dilaton \(\varphi \) and in the field-strength \(H \) of the NS-NS (two-index) antisymmetric tensor field have been obtained, with the result written in the Einstein frame as:

\[
\tilde{I} = -\frac{1}{12} \Delta(U) e^{-2\varphi} \partial_{\mu} H_{\nu\rho\sigma} \partial^\mu H^{\nu\rho\sigma} - 2\Delta(U) \partial_{\mu} \partial_{\nu} \varphi \partial^\mu \partial^\nu \varphi
+ \frac{1}{3} \Theta(U) e^{\mu\nu\rho\sigma} e^{-2\varphi} \partial_{\mu} \partial_{\alpha} \varphi \partial^\alpha H^{\nu\rho\sigma} + 16 e^{-2\varphi} e^{\mu\nu\rho\sigma} \partial_{\mu} \partial_{\alpha} \varphi H_{\nu\rho} \frac{\partial_{\sigma} \text{Re} U}{\text{Im}U}. \tag{2.1}
\]

In type IIA theory, the “threshold” functions are given by

\[
\Delta(T, U) = -24 \log(\text{Im}U|\eta(U)|^4), \quad \Theta(T, U) = -24 \text{Im} \log(\eta^4(U)), \tag{2.2}
\]
where η is the Dedekind function. The result for type IIB is obtained by applying the mirror symmetry $T \leftrightarrow U$ in the above equations.

The function \tilde{F}_1 can be obtained from Eqs. (2.1) and (2.2) in the following way. First, by using the standard dualization procedure, the antisymmetric tensor is replaced by a scalar axion: $\epsilon_{\mu\nu\rho\sigma} \partial^\sigma a = e^{-2\varphi} H_{\mu\nu\rho} + O(\partial^3)$. Then, the axion and the dilaton are combined into one complex scalar $S \equiv a + ie^{-2\varphi}$, which corresponds, from the $N = 2$ point of view, to the NS-NS component of the universal hypermultiplet. After rewriting Eq. (2.1) in terms of the new variables, we can extract the four-derivative coupling (2.1), with

$$\tilde{F}_1 = -24 \log \left(\text{Im} U |\eta(U)|^4 \right).$$

(2.3)

The above expression is manifestly invariant under the perturbative $\text{Sl}(2; \mathbb{Z})_U$ symmetry; however, it includes non-harmonic terms that are due to integration of massless particles. The full Wilsonian effective action \tilde{I}_W is obtained from Eq. (2.1) by subtracting non-analytic $\text{Im} U$ terms and reads:

$$\tilde{I}_W = -24 \log \eta^2(U) \frac{\partial_\mu \partial_\nu \bar{S} \partial^\mu \partial^\nu \bar{S}}{2(\text{Im} S)^2} + \text{c.c.}$$

(2.4)

It is not accidental that the function appearing in Eq. (2.3) is the same as F_1 that determines the R^2 couplings in $N = 4$ type IIA theory at one loop, for which the corresponding Wilsonian action is [12]:

$$I_W = -24 \log \eta^2(T) \left(R + i\tilde{R} \right)^2 + \text{c.c.}$$

(2.5)

This relation is due to the mirror symmetry, which exchanges T with U and maps the self-dual part of the Riemann tensor $R + i\tilde{R}$ to $(\partial \partial \bar{S})/\text{Im} S$ [8]. As mentioned before, the difference between the two functions appears only at the non-perturbative level: unlike F_1, the function \tilde{F}_1 does receive non-perturbative corrections. This has to be the case if the perturbative $\text{Sl}(2; \mathbb{Z})_U$ symmetry is promoted to the full $\text{SO}(6, 22; \mathbb{Z})$ duality, which also transforms the type II dilaton. We will discuss these corrections after deriving the exact result from a one-loop computation in the dual heterotic theory.
3. Heterotic Computation of \tilde{F}_1

We consider heterotic theory compactified on \mathcal{T}^6. We will extract \tilde{F}_1 from the interaction term

$$\frac{\partial_{\phi_1} \partial_{\phi_2} \tilde{F}_1}{4(\text{Im}T)^2} \partial_{\mu} \phi_1 \partial_{\mu} \phi_2 (\partial_{\nu} T \partial^{\nu} \bar{T} + \partial_{\nu} \bar{T} \partial^{\nu} T),$$

which follows from Eq. (1.1) after replacing \bar{S} by \bar{T} and integrating by parts. This term can be determined from the four-point amplitude

$$A_{\phi_1 \phi_2} \equiv \langle \phi_1(p_1) \phi_2(p_2) \bar{T}(p_3) \bar{T}(p_4) \rangle$$

involving two \bar{T} moduli of the two-torus and two moduli ϕ_1, ϕ_2 of $O(6,22) / O(6) \times O(22)$. The corresponding kinematical structure is $(p_1 p_2)(p_3 p_4)$.

The \mathcal{T}^2 moduli are parametrized as usual by

$$T = B_{12} + i\sqrt{G} \equiv T_1 + iT_2, \quad U = G_{12}/G_{22} + i\sqrt{G}/G_{22} \equiv U_1 + iU_2,$$

where G_{IJ}, $I, J = 1, 2$, is the \mathcal{T}^2 metric

$$G_{IJ} = \frac{T_2}{U_2} \begin{pmatrix} 1 & U_1 \\ U_1 & |U|^2 \end{pmatrix}$$

and B_{12} is the NS antisymmetric tensor field. The moduli vertex operators are given in the zero-ghost picture by

$$V_{\phi}(p, \bar{z}, z) = v_{IJ}(\phi) : [\partial X^J(z, \bar{z}) + ip_{\mu} \psi^\mu(z) \psi^J(z)] \bar{\partial} X^I(z, \bar{z}) e^{ip_{\mu} X^\mu(z, \bar{z})} :,$$

where z is the position of the vertex operator to be integrated on the world-sheet, X^{μ}, X^I are the spacetime and internal string coordinates, respectively, while ψ^μ, ψ^I are their left-moving fermionic superpartners; $v_{IJ}(\phi)$ are the moduli wave function “polarization tensors”, which for the two-torus moduli read:

$$v_{IJ}(\phi) = \partial_{\phi}(G_{IJ} - B_{IJ}), \quad I, J = 1, 2.$$
The presence of (4,0) world-sheet supersymmetry requires four fermionic contractions on
the left-moving side, so that the corresponding part of the moduli vertex operators (3.5) can
be restricted to its $p_\mu \bar{\psi}^\mu \psi^J$ fermionic part. This already provides four powers of momenta,
and it is therefore sufficient for our purposes to set $p_i = 0$ everywhere else. The contractions
of the internal fermions conserve the $U(1)$ charge of the internal superconformal theory.
Under this symmetry all chiral moduli have charge $+1$, while their complex conjugates have
charge -1. This imposes that both ϕ_1 and ϕ_2 should be chiral. At this point we restrict
ourselves to $\phi_1 = \phi_2 = U$, and shall discuss the general case later.

Then there are two possible contractions of internal fermions $\langle \psi(1)\psi(3)\rangle \langle \psi(2)\psi(4)\rangle -(3 \leftrightarrow 4)$ and three contractions of the four spacetime fermions. After expressing the
fermionic contractions in terms of the Szegö kernel, the Riemann identity can be used to
carry out the summation over (even) spin structures, and we find the usual result that the
left-bosonic determinant is precisely cancelled and that the dependence on the left-moving
positions of the vertices disappears. Taking into account the symmetry under exchange of
the two \bar{T} moduli, one sees that only one of the above three contractions survives, yielding
the desired $(p_1 p_2)(p_3 p_4)$ kinematical factor.

One is therefore left with the correlator of the right-moving part $\bar{\partial}X^I$ of the vertices
(3.5). Any contraction of these will yield a total derivative on the world-sheet, so that they
can be safely restricted to their zero-mode (classical) component $\bar{\partial}X^I_{cl}$. The integration on
the positions of vertex operators thus becomes trivial and yields a factor of $(\tau_2)^4$. After
Poisson resummation, which takes from Lagrangian to Hamiltonian representation, one
finds

$$\langle \bar{\partial}X^I \bar{\partial}X^J \bar{\partial}X^K \bar{\partial}X^L \rangle_{cl} = \langle P_R^I P_R^J P_R^K P_R^L \rangle - \frac{\pi}{\tau_2} G^{IJ} \langle P_R^K P_R^L \rangle + \left(\frac{\pi}{\tau_2} \right)^2 G^{IJ} G^{KL} + \text{permutations},$$

where P_R are the right-moving momenta of the Narain lattice $\Gamma_{6,22}$. The last two terms do
not contribute to the amplitude due to the first of the identities:

\[v_{IJ}(U)G^{IK}v_{KL}(\bar{T}) = v_{IJ}(U)G^{IK}v_{KL}(U) = 0 \quad (3.8) \]

\[v_{IJ}(U)G^{IJ}v_{KL}(\bar{T}) = \frac{2i}{T_2}v_{JK}(U) \quad , \quad (3.9) \]

which follow from the definition (3.6). The amplitude can be further simplified by using the second identity (3.9), and the final result reads:

\[A_{\phi_1\phi_2} = \frac{\pi^2}{(T_2)^2} \int_F d^2\tau \sum_{P_L,P_R\in\Gamma_{6,22}} x_{P_L}^{\text{I}}v_{IJ}(\phi_1)P_L^{\text{I}}x_{P_R}^{\text{I}}v_{IJ}(\phi_2)P_R^{\text{I}} e^{i\pi x_{P_L}^{\text{I}}}e^{-i\pi x_{P_R}^{\text{I}}} \bar{\eta}^{-24}(\bar{\tau}) \quad . \]

(3.10)

In the above equation, the integration extends over the fundamental domain of the Teichmüller parameter \(\tau = \tau_1 + i\tau_2 \), and the sum runs over the left- and right-moving momenta \(P_L \) and \(P_R \), respectively. The Dedekind function factor

\[\bar{\eta}^{-24}(\bar{\tau}) = \sum_{k\geq -1} C(k) e^{-2\pi ik\tau_1}e^{-2\pi k\tau_2} \quad (3.11) \]

represents the contribution of right-moving bosonic oscillators to the partition function, with the coefficients \(C(k) \) counting the number of degenerate states at level \(k \).

Let us now briefly discuss the generalization of Eq. (3.10) to moduli \(\phi_1, \phi_2 \) other than \(U \). Moduli of the \(\Gamma_{4,20} \) sublattice have wave functions \(v(\phi) \) orthogonal to \(v(\bar{T}) \) so that the corresponding amplitude vanishes. This is also the case for the Wilson line moduli of the four left-moving gauge fields in \(\Gamma_{4,20} \). On the other hand, chiral Wilson lines \(W^R_i = Y_{1i} + U Y_{2i} \) of the 20 right-moving gauge fields yield non-zero contractions, and Eq. (3.10) is still valid in that case, with the appropriate wave functions \(v(W_i) \). From now on, we will consider the case where \(\phi_1, \phi_2 \) denote \(U \) or \(W^R_i \) moduli.

4. Large-Volume Limit and Comparison with Type II Theory

In order to study the large \(T_2 \) behavior of the amplitude (3.10), we need to be more specific about the lattice decomposition of \(\Gamma_{6,22} \) into \(\Gamma_{2,2} \oplus \Gamma_{4,20} \). The momenta of the
The $\Gamma_{4,20}$ lattice are parametrized by the integer charges q^i, $i = 1, \ldots, 24$, with the left- and right-moving norms

$$
P_L^2 = \frac{1}{2} q^t (\hat{M} + \hat{L}) q^i, \quad P_R^2 = \frac{1}{2} q^t (\hat{M} - \hat{L}) q^i,
$$

where \hat{M} is the symmetric 24×24 matrix of moduli parametrizing the coset space $O(4,20)/O(4) \times O(20)$; \hat{M} is orthogonal with respect to the signature (4,20) metric \hat{L}: $\hat{M}^{-1} = \hat{L} \hat{M} \hat{L}$.

The $\Gamma_{6,22}$ lattice is now constructed by supplementing the 24 $\Gamma_{4,20}$ charges q_i with two momentum numbers m_I and two winding numbers n^I on $\Gamma_{2,2}$, and including 2×24 Wilson lines Y_{Ii}, which boost a general $\Gamma_{6,22}$ lattice back to $\Gamma_{2,2} \oplus \Gamma_{4,20}$. Following Ref. [15], we write the left- and right-moving momentum norms as

$$
P_L^2 = \frac{1}{2} p^t_L G^{-1} p_L + \frac{1}{2} Q^t (\hat{M} + \hat{L}) Q^i, \quad P_R^2 = \frac{1}{2} p^t_R G^{-1} p_R + \frac{1}{2} Q^t (\hat{M} - \hat{L}) Q^i,
$$

where

$$
p_{L,I} = m_I + Y_{ik} q^k - \frac{1}{2} Y_{ii} \hat{L}^{ij} Y_{jj} n^J + B_{IJ} n^J + G_{IJ} n^J,
$$

$$
p_{R,I} = m_I + Y_{ik} q^k - \frac{1}{2} Y_{ii} \hat{L}^{ij} Y_{jj} n^J + B_{IJ} n^J - G_{IJ} n^J,
$$

are the boosted momentum components on the \mathcal{T}^2 torus, and the charges are given by

$$
Q^i = q^i - \hat{L}^{ij} Y_{ij} n^J.
$$

In terms of the 28 charges $Q \equiv (m_I, n^I, q^i)$, Eq. (4.2) can be recast into the standard form:

$$
P_L^2 = \frac{1}{2} Q^t (M + L) Q, \quad P_R^2 = \frac{1}{2} Q^t (M - L) Q,
$$

where now L is the signature (6,22) metric

$$
L = \begin{pmatrix}
0 & 1_2 & 0 \\
1_2 & 0 & 0 \\
0 & 0 & \hat{L}
\end{pmatrix}.
$$
and M is the symmetric $O(6,22)$ moduli matrix:

$$M = \begin{pmatrix}
G^{-1} & G^{-1}C & G^{-1}Y^t \\
C^tG^{-1} & C^tG^{-1}C + Y^t\hat{M}^{-1}Y & C^tG^{-1}Y^t - Y^t\hat{L}\hat{M} \\
YG^{-1} & YG^{-1}C - \hat{M}\hat{L}Y & \hat{M} + YG^{-1}Y^t
\end{pmatrix}, \quad (4.7)$$

with

$$C_{IJ} = B_{IJ} - \frac{1}{2} Y_{iI}^t\hat{L}_{ij}Y_{jJ}^t. \quad (4.8)$$

The amplitude (3.10) can be now written as

$$\mathcal{A}_{\phi_1,\phi_2} = \pi^2 (T_2)^2 \int d^2\tau_2 \sum_{Q\in\Gamma_{6,22}} \left[P^I_{Rv_{I,I}(\phi_1)} P^J_{Rv_{J,J}(\phi_2)} \right] e^{-\pi\tau_2 Q^tMQ + i\pi\tau_1 Q^tLQ} \eta^{-24}(\tau). \quad (4.9)$$

In the large T_2 limit, with the other moduli being fixed, the T^2 metric G_{IJ} (3.4) scales uniformly as T_2, so that $Q^tMQ \to n^tGn + O(1)$. The contributions of states with non-vanishing winding numbers n^I to the amplitude (4.9) are therefore exponentially suppressed as e^{-T_2}. In the first approximation, we can neglect all winding states; from Eq. (4.3) it follows that the remaining ones satisfy $P_{L;I} = P_{R;I}$. Then we can use the identity

$$\sum_{P_L,P_R\in\Gamma_{6,22}} P^I_{Lv_{I,I}(\phi)} P^J_{Rv_{J,J}(\phi)} e^{i\pi P^2_L e^{-i\pi P^2_R}} = \frac{1}{\pi T_2} \partial_\phi \sum_{P_L,P_R\in\Gamma_{6,22}} e^{i\pi P^2_L e^{-i\pi P^2_R}} \quad (4.10)$$

to rewrite Eq. (4.9) as

$$\mathcal{A}_{\phi_1,\phi_2} \approx \frac{1}{(T_2)^2} D_{\phi_1} D_{\phi_2} \int d^2\tau_2 \sum_{m_I,q^I} e^{-\pi\tau_2 Q^tMQ + i\pi\tau_1 Q^tLQ} \eta^{-24}(\tau), \quad (4.11)$$

where now

$$Q^tMQ = m^tG^{-1}m + 2m^tG^{-1}Y^tq + q^t(\hat{M} + YG^{-1}Y^t)q, \quad (4.12)$$

$$Q^tLQ = q^t\hat{L}q. \quad (4.13)$$

In Eq. (4.11), D_ϕ denotes the Kähler covariant derivative, which for $\phi = U$ coincides with the usual $SL(2;\mathbb{Z})$ modular covariant derivative. In this case, $D_U D_U = \left(\partial_U - \frac{1}{U_2} \right) \partial_U$. The covariantizing term is due to one-particle reducible diagrams, involving massless states that have to be subtracted in order to obtain the (1PI) effective action. We recall that
Eq. (4.11) only holds for U and W_i^R moduli, whereas $A_{\phi_1\phi_2}$ vanishes for $\Gamma_{4,20}$ moduli and for remaining Wilson lines. Integrability therefore occurs only in the large T_2 limit, when the winding states are suppressed, and for the U, W_i^R moduli only. For the latter, the scattering amplitude can be integrated to:

$$\bar{F}_1 = \int d^2 \tau \frac{d^2 \tau}{\tau_2} \sum_{m_1,q^i} e^{-\pi \tau_2 Q^i M Q + i \pi \tau_1 Q^i L Q} \eta^{-24} \eta^{-24} (\tau),$$

(4.14)

where the other moduli are treated as constant background fields. Note that the above expression displays $O(4,20; \mathbb{Z}) \times SL(2; \mathbb{Z})_U$ invariance only, since the \bar{F}_1 coupling singles out the \bar{T} modulus.

After performing a Poisson resummation $m_1 \to \bar{m}^I$, we can rewrite

$$\sum_{m_1} e^{-\pi \tau_2 Q^i M Q + i \pi \tau_1 Q^i L Q} = \frac{T_2}{\tau_2} \sum \bar{m}^I \tilde{G} \tilde{m} \tilde{q} - 2 \pi i \bar{m}^I Y^j q + \pi i \bar{m}^I \hat{L} q$$

(4.15)

The term with $\bar{m}^I = 0$ gives back the partition function of $\Gamma_{4,20}$. This term depends neither on U nor on the Wilson lines, and thus does not contribute to Eq. (4.11). We shall therefore ignore it in the following. On the other hand, terms with $(\bar{m}^1, \bar{m}^2) \neq (0,0)$ contribute only in the region of large τ_2, for which $\tau_1 \in [-\frac{1}{2}, \frac{1}{2}]$. The integral over τ_1 imposes the level matching condition $k = q^I \hat{L} q / 2$, so that

$$\bar{F}_1 = T_2 \int_0^{\infty} \frac{d \tau_2}{(\tau_2)^2} \sum' C \left(\frac{q^I \hat{L} q}{2} \right) e^{-\pi \tau_2 \bar{m}^I \tilde{G} \tilde{m} - \pi \tau_2 q^I (\tilde{M} + \hat{L}) q - 2 \pi i \bar{m}^I Y^j q + \pi i \bar{m}^I \hat{L} q} + O(e^{-T_2})$$

(4.16)

where the coefficients $C(k)$ are defined in Eq. (3.11) and the primed sum runs over $(\bar{m}^1, \bar{m}^2) \neq (0,0)$ and unrestricted q's. We set the lower bound of the integral to 0, thereby neglecting terms of the same order as the winding-state contributions.

States with non-zero q^i charges have strictly positive $q^I (\tilde{M} + \hat{L}) q$; they are therefore exponentially suppressed with respect to the $q^I = 0$ neutral states. Hence the dominant contribution to \bar{F}_1 therefore picks states with $C(q^I \hat{L} q / 2 = 0) = 24$:

$$\bar{F}_1 = 24 T_2 \int_0^{\infty} \frac{d \tau_2}{(\tau_2)^2} \sum' e^{-\pi \tau_2 |\bar{m}^1 + U \bar{m}^2|^2} + \delta \bar{F}_1 + O(e^{-T_2})$$

(4.17)

\[\text{1} \text{However, this term will be important for our discussion of the } \langle TT\bar{T} \rangle \text{ amplitude } A_{TT} \text{ in Section 6.}\]
where $\delta \tilde{F}_1$ denotes the contribution of the $q^i \neq 0$ charged states to the integral of Eq. (4.16). The integral in Eq. (4.17) was evaluated before in Ref. [16] with the result:

$$\int_0^\infty d\tau_2 \left(\frac{1}{\tau_2} \right)^2 T_2 \sum_{\tilde{m}_1, \tilde{m}_2} e^{-\pi \frac{\eta T_2}{\tau_2} |\tilde{m}_1 + U \tilde{m}_2|^2} = -4 \Re \log \eta(U) - \log(U_2 T_2),$$

(4.18)

up to a moduli-independent, logarithmic divergence. This divergence, together with the log T_2 term, do not contribute to the amplitude (4.11) and can be ignored. We therefore obtain, in the leading $T_2 \to \infty$ approximation,

$$\tilde{F}_1 = -24 \log \left(U_2 |\eta(U)|^4 \right) + \ldots$$

(4.19)

in agreement with the one-loop type IIA result (2.3).

We now turn to the next-to-leading corrections $\delta \tilde{F}_1$, due to subleading terms in Eq. (4.16). They originate from states with non-vanishing q^i charges, but still satisfying the level matching condition $k = q^i \tilde{L} q/2$. The main contribution comes from the saddle point $
abla_2^* = \sqrt{\tilde{m}^t G \tilde{m}}/q^t (\tilde{M} + \tilde{L}) q \sim \sqrt{T_2}$. The integral can be expressed in terms of the Bessel function K_1, with the result:

$$\delta \tilde{F}_1 = 2 T_2 \sum_{\tilde{m}_1, \tilde{m}_2} n^\prime C \left(\frac{q^t \tilde{L} q}{2} \right) \left[\frac{q^t (\tilde{M} + \tilde{L}) q}{\tilde{m}^t G \tilde{m}} \right]^{1/2} K_1 \left(2 \pi \sqrt{\tilde{m}^t G \tilde{m}} \cdot \frac{q^t (\tilde{M} + \tilde{L}) q}{2} \right) e^{-2\pi i \tilde{m}^t Y^t q},$$

(4.20)

where the double-primed sum runs over $(\tilde{m}_1, \tilde{m}_2) \neq (0, 0)$, $q^i \neq 0$. In the saddle-point approximation, $K_1(z) = \sqrt{\frac{\pi}{2z}} e^{-z}[1 + O(1/z)]$, we obtain:

$$\delta \tilde{F}_1 \approx 2 T_2 \sum_{\tilde{m}_1, \tilde{m}_2} n^\prime C \left(\frac{q^t \tilde{L} q}{2} \right) \left[\frac{q^t (\tilde{M} + \tilde{L}) q}{2 \tilde{m}^t G \tilde{m}} \right]^{1/4} e^{-2\pi \sqrt{\tilde{m}^t G \tilde{m}} \cdot \frac{q^t (\tilde{M} + \tilde{L}) q}{2} - 2\pi i \tilde{m}^t Y^t q},$$

(4.21)

up to power-suppressed $O(T_2^{-\frac{3}{2}} e^{-\sqrt{T_2}})$ terms.

The final result, rewritten in terms of type IIA variables, becomes

$$\tilde{F}_1 = -24 \log \left(U_2 |\eta(U)|^4 \right) + 2 S_2^{1/4} \sum_{\tilde{m}_1, \tilde{m}_2} n^\prime C \left(\frac{q^t \tilde{L} q}{2} \right) \left[\frac{q^t (\tilde{M} + \tilde{L}) q}{2 \tilde{m}^t G \tilde{m}} \right]^{1/4} \left(\frac{|\tilde{m}_1 + U \tilde{m}_2|^2}{U_2} \right)^{-3/4}$$

$$\times e^{-2\pi \sqrt{\frac{S_2}{U_2} |\tilde{m}_1 + U \tilde{m}_2|^2} \cdot \frac{q^t (\tilde{M} + \tilde{L}) q}{2} - 2\pi i \tilde{m}^t Y^t q} + \ldots,$$

(4.22)
where the neglected terms include the subleading saddle-point contributions $O(S_2^{-\frac{3}{2}} e^{-\sqrt{S_2}})$ as well as the contributions of the heterotic winding states $O(e^{-S_2})$. The above equation explicitly shows the violation of harmonicity already at order $O(e^{\sqrt{S_2}})$, by non-perturbative type IIA corrections.

5. $e^{-1/\lambda}$ Effects and D-Brane Instantons in Type IIA Theory

As we argued in the Introduction, the heterotic one-loop amplitude (4.9) gives the exact result for the \tilde{F}_1 coupling (3.1). Viewed from the type IIA side, the result contains, in addition to the one-loop contribution (2.3), a sum of non-perturbative terms $\delta \tilde{F}_1$, Eq. (4.20), of order $e^{-\sqrt{S_2}} \sim e^{-1/\lambda}$, as well as subleading contributions of order $e^{-S_2} \sim e^{-1/\lambda^2}$.

In the following, we will trace the origin of these terms to the effects of Euclidean solitons of type IIA superstring.

All ten-dimensional superstrings have in common a NS 5-brane [17], a 5+1 extended object magnetically charged under the NS antisymmetric two-form. In type IIA, the 5-brane is described by a chiral (5+1)-dimensional world-volume theory with (2,0) supersymmetry, while the IIB and heterotic 5-branes are non-chiral. The presence of additional R-R gauge potentials in type II superstrings allows the existence of further soliton configurations charged under these gauge fields, known as Dirichlet Dp-branes [18]. Type IIA superstring possesses a one-form and a three-form R-R gauge potential, and consequently Dp-branes with $p = 0, 2, 4, 6, 8$. These solitons preserve one-half of the ten-dimensional supersymmetry, while they break the other half, generating fermionic zero-modes. Upon compactification, branes with a Euclidean world-volume can be wrapped on the compact manifold to yield instanton configurations in lower dimensions. These configurations can correct the low-energy effective action, but owing to supersymmetry only solitons with a definite number of fermionic zero modes can correct terms with a given number of derivatives.
In the case at hand, the coupling $\bar{F}_1(\partial \partial \bar{S})^2$ is related by supersymmetry to an eight-fermion coupling, so that only instantons with at most eight zero-modes, breaking one-half of $N = 4$ supersymmetry, can contribute. These instantons can be obtained by wrapping D0-, D2-, D4-branes or the NS 5-brane on $K3 \times T^2$, but only on minimal cycles of the compactification manifold, under penalty of further breaking supersymmetry and thereby generating extra zero-modes. The D-branes therefore have to wrap one of the 24 even cycles of $K3$ times a circle S_1 in T^2, while the NS 5-brane has to wrap $K3 \times T^2$. The latter ones are known to generate e^{-1/λ^2} effects for R^2 couplings in four-dimensional toroidal compactification of the heterotic string [12]. In our case, the $O(e^{-1/\lambda^2})$ corrections due to heterotic winding states are similarly generated by the chiral IIA 5-brane wrapping on $K3 \times T^2$. Here we will show that D-branes wrapping on $K3 \times S_1$ have the required classical action to account for the $e^{-1/\lambda}$ effects found in \bar{F}_1.

In order to evaluate this classical action, we note that the four-dimensional D-instantons can be constructed in two steps, first by wrapping p dimensions of the $(p + 1)$-dimensional brane world-volume on an even cycle of $K3$, thereby obtaining a point-like soliton configuration in six dimensions, and subsequently wrapping the soliton world-line on one cycle of T^2. The classical action can therefore be written as the product of the length ℓ of the world-line times the mass M of the soliton. A minimal world-line, winding \tilde{m}_1 times on the first circle and \tilde{m}_2 times on the second circle of the torus, has length

$$\ell = \sqrt{T_2 \left| \tilde{m}_1 U \tilde{m}_2 \right|^2 \over U_2}$$

(5.1)

in string units. On the other hand, the mass formula for six-dimensional BPS states can be easily obtained from the heterotic side. BPS states in the perturbative heterotic spectrum have no oscillator excitations ($N_L = 0$) on the (supersymmetric) left side, while the level-matching condition imposes $N_R - 1 = {1 \over 2}(P^2 - P_R^2) = {1 \over 2} q H_L q$ on the right side. Their mass squared is therefore

$$M^2_{\text{het}} = {1 \over 2} P^2_L + {1 \over 2} P^2_R + N_L + N_R - 1 = P^2_L + {1 \over 2} q (\tilde{M} + \tilde{L}) q ,$$

(5.2)
in heterotic string units. Using heterotic–type IIA strong–weak coupling duality in six dimensions, this result translates into

\[M^2 = e^{-2\varphi_6} \frac{q^i (\hat{M} + \hat{L}) q}{2} = \frac{S_2 q^i (\hat{M} + \hat{L}) q}{T_2^2} \]

(5.3)

in type IIA string units, with \(e^{-2\varphi_6} = \frac{S_2}{T_2} \), where \(\varphi_6 \) is the six-dimensional type IIA dilaton. This formula gives the mass of BPS states in \(D = 6 \) in terms of their charges \(q^i \) under the 24 R-R gauge fields. States with non-zero \(q^i \) are non-perturbative from the type IIA point of view, since their masses scale as \(M \sim 1/\lambda \), a characteristic feature of D-branes.

As a check on Eq. (5.3), recall that the mass of a D0-brane is (in string units) \(e^{-\varphi_{10}} \), where \(\varphi_{10} \) is the ten-dimensional dilaton. Similarly, the mass of a D4-brane wrapped on \(K3 \) is \(e^{-\varphi_{10} V} \), where \(V \) is the \(K3 \) volume. Using \(e^{-2\varphi_6} = V e^{-2\varphi_{10}} \), we find \(M^2(D0) = e^{-2\varphi_6}/V \), \(M^2(D4) = e^{-2\varphi_6}V \). This agrees with the decomposition of the moduli of \(K3 \),

\[\frac{O(4,20)}{O(4) \times O(20)} \supset \frac{O(3,19)}{O(3) \times O(19)} \times \mathbb{R}_V^+ , \]

(5.4)

analogous to Eq. (4.7). In this decomposition, \(\mathbb{R}_V^+ \) parametrizes the volume of \(K3 \), whereas \(\frac{O(3,19)}{O(3) \times O(19)} \) parametrizes the unit volume Ricci-flat metric [19].

Putting Eqs. (5.1) and (5.3) together, we obtain the classical Euclidean action of a four-dimensional D-instanton:

\[S_{cl} = \ell \cdot M = \sqrt{S_2 \frac{|\vec{m}^1 + U \vec{m}^2|^2}{U_2} \cdot \frac{q^i (\hat{M} + \hat{L}) q}{2}} . \]

(5.5)

These are precisely the exponential weights occurring in the expansion (4.22).

It now remains to interpret the phase factor \(e^{-2\pi i \vec{m}^i Y^i q} \). The charges \(q^i \) of D-branes wrapped on a cycle \(\gamma \) of \(K3 \) are determined by the expansion of \(\gamma \) in terms of a basis \(\gamma_i \) of the integer homology of \(K3 \): \(\gamma = \sum_i q^i \gamma_i \). Note that the (4,20) metric \(\hat{L} = \int_{K3} \gamma_i \wedge \gamma_j \) is the intersection matrix of the homology basis \(\gamma_i \). On the other hand, the Wilson lines \(Y_{i\bar{i}} \) correspond to the \(T^2 \) components of the six-dimensional gauge fields \(A_i \), obtained from the reduction of the ten-dimensional R-R gauge potential \(A_{RR} \) on \(K3 \): \(A_{RR} = \sum_i A_i \wedge \gamma_i \).
\(A_{RR} \) denotes the formal sum of the R-R gauge potentials, and similarly \(\gamma \) is a formal sum of integer homology cycles of \(K^3 \). The phase \(\tilde{m}'Y'^q \) can then be expressed as:

\[
\tilde{m}'Y'^q = \int_{S_1} q^i A_i = \int_{S_1 \times K^3} \gamma \wedge \gamma_i \wedge A_i = \int_{S_1 \times K^3} \gamma \wedge A_{RR} = \int_{S_1 \times \gamma} A_{RR}.
\]

Hence the phase originates from the minimal D-brane–gauge potential coupling.

A few remarks on the prefactors occurring in Eq. (4.22) are in order. The Dedekind function coefficient \(C(q^i \hat{L}q/2) \) can be interpreted as the degeneracy of BPS states with charges \(q^i \) (this holds for the perturbative heterotic BPS spectrum, and should remain valid for the complete spectrum also). On the other hand, in the type IIA description, \(\sigma = q^i \hat{L}q \) gives the the self-intersection number of the even cycle on which the D0-, D2- and D4-branes wrap. It must therefore be the case that \(C(\sigma/2) \) gives the number of supersymmetric cycles with self-intersection \(\sigma \) in \(K^3 \), as has already been argued in Ref. [20]. This could in principle be proved from the interpretation of the modular form \(1/\eta^{24} \) as the elliptic genus of \(K^3 \) [21]. The restrictions \(\sigma = 0 \) (mod 2) and \(\sigma \geq -2 \) are easily understood in the case of D2-branes wrapping a 2-cycle of \(K^3 \), since for a genus \(g \) algebraic curve, the self-intersection equals the Euler number \(2g - 2 \). That in turn confirms that BPS states are only obtained from such algebraic cycles, and not, say, from 2-cycles with boundaries. It would be interesting to geometrically understand the restriction \(\sigma \geq -2 \) for the case of bound states of D0-, D2- and D4-branes, where the D0- and D2-branes now appear as Yang-Mills instantons and fluxes on the \(K^3 \times \mathbb{R} \) world-volume of the D4-brane [22]. At present we do not know of any obvious explanation of the other prefactors, but we hope that they can provide a clue towards a consistent treatment of D-brane instantons.

Finally, it is interesting to examine the large \(T^2 \) decompactification limit of the type IIA coupling \(\tilde{F}_1 \) in Eq. (4.22). The four-dimensional dilaton is related to the six-dimensional one through \(S_2 = T_2 e^{-2\varphi_6} \). Sending \(T_2 \to \infty \), while keeping \(\varphi_6 \) and the other moduli fixed, eliminates all the \(O(e^{-1/\lambda}) \) corrections from \(\tilde{F}_1 \). This is in agreement with the fact that the (odd-dimensional) world-volume of the type IIA D-branes cannot be wrapped on the
(even-dimensional) cycles of $K3$. Thus, there are no D-brane instantons corrections to the type IIA theory compactified on $K3$ (nor NS 5-brane corrections). The type IIA one-loop contribution \((4.19)\) is furthermore suppressed by a power of the volume T_2 of the two-torus and disappears in $D = 6$. This is similar to the vanishing of the one-loop R^2 corrections in type IIB theory on $K3^{13}$. We conclude that there are no $(\partial \partial \varphi_6)^2$ interactions in $D = 6$ type IIA theory. As we show in the next Section, this is not the case in type IIB theory.

6. $D = 10$ Decompactification Limit and Type IIB D-instantons

We will now discuss the exact result \((3.10)\) in terms of the type IIB perturbation theory. The type IIB theory is related to type IIA theory by T-duality that exchanges T and U. The type IIB perturbation theory is still organized as a large $S_{IIB} = T_{I1}$ expansion. Therefore the exact result can be rewritten as the weak type IIB coupling expansion:

$$\tilde{F}_1 = -24 \log \left(\frac{T_2 |\eta(T)|^4}{|\eta(T)|^4} \right) + 2 S_2 \sum_{\tilde{m}^1, q^1} '' C \left(\frac{q^1 \tilde{\lambda}}{2} \right) \left[\frac{T_2 q^1 (\tilde{M} + \tilde{L}) q}{S_2 |\tilde{m}^1 + T \tilde{m}^2|^2} \right]^{1/2} \times K_1 \left(\frac{2\pi}{S_2 |\tilde{m}^1 + T \tilde{m}^2|^2} \cdot \frac{q^1 (\tilde{M} + \tilde{L}) q}{2} \right) e^{-2\pi i \tilde{m}^1 \tilde{Y} \cdot q} + O(e^{-1/\lambda^2}) \quad (6.1)$$

obtained from Eq. \((4.22)\) by substituting U_{IIA} by T_{IIB}. The above result still exhibits $O(e^{-\sqrt{S_2}})$ corrections that should similarly be interpreted in terms of type IIB Euclidean D-instantons. Those can be obtained as D1-, D3-, D5-branes now wrapping around even cycles of $K3 \times T^2$, as well as D(-1)-instantons, which are already present in the ten-dimensional IIB theory. Here we will focus on the latter contributions, which can be isolated in the decompactification limit of the internal six-dimensional manifold: $T_2 \to \infty, V \to \infty$.

Taking first the large T_2 limit, we can restrict the summation in Eq. \((6.1)\) to $\tilde{m}^2 = 0, \tilde{m}^1 \neq 0$. In this limit, the contribution of the D5-brane and of the D1-strings wrapping on T^2 disappears (together with that of the NS 5-brane) and we obtain the following result
for the six-dimensional coupling $\tilde{F}^{(6)}_1(\partial \partial \varphi_6)^2$ (in string units):

$$\tilde{F}^{(6)}_1 \approx 8\pi + 2e^{-\varphi_6} \sum_{\tilde{m}, q \neq 0} C \left(\frac{q^t \hat{L} q}{2} \right) \sqrt{q^t(\hat{M} + \hat{L})q} \left| \frac{q^t(\hat{M} + \hat{L})q}{2} e^{-\varphi_6} \right| K_1 \left(2\pi|\tilde{m}|^{1/2} \left| \frac{q^t(\hat{M} + \hat{L})q}{2} e^{-\varphi_6} \right| \right) e^{-2\pi i\tilde{m}^aq}$$

(6.2)

where we extracted the T^2 volume. Note that the above equation involves only one-half of the four-dimensional “Wilson line” Y fields. This is consistent with the fact that in type IIB, half of the Y’s correspond to the R-R fluxes on $K3$, while the other half describes the internal B_{12} components of the 24 six-dimensional R-R antisymmetric tensors.

The large V limit can be studied by considering the decomposition (5.4) of the $O(4,20)/O(4)\times O(20)$ $K3$ moduli space. This corresponds to a block decomposition of the matrix \tilde{M}, similar to Eq. (4.7), in which the first diagonal block represents the zero-cycle charge with $\tilde{M}_{00} = 1/V$, the second represents the four-cycle charge with $\tilde{M}_{44} = V$, whereas the last 22×22 diagonal block describes the 22 two-cycle charges and is independent of the volume V. Therefore only $D(-1)$-instantons survive in the large $K3$ limit. In this case, $q^t \hat{L} q = 0$, and Eq. (6.2) becomes (in string units):

$$\tilde{F}^{(10)}_1 = 8\pi + 48e^{-\varphi_{10}} \sum_{\tilde{m}, q \neq 0} \left| \frac{q}{\tilde{m}} \right| K_1 \left(2\pi|\tilde{m}|^{1/2} \left| \frac{q^t(\hat{M} + \hat{L})q}{2} e^{-\varphi_{10}} \right| \right) e^{-2\pi i\tilde{m}^aq} ,$$

(6.3)

where we used $e^{-2\varphi_6} = V e^{-2\varphi_{10}}$ and denoted by a the remaining “Wilson line” modulus $Y_{1,i=0}$ that corresponds to the ten-dimensional R-R scalar. Together with the dilaton, they form a complex scalar $\rho = a + ie^{-\varphi_{10}}$ transforming as a modulus of the $Sl(2; Z)$ type IIB symmetry.

The above expression (6.3) coincides with the ten-dimensional $f(\rho, \bar{\rho}) R^4$ coupling conjectured in Ref. [3]:

$$\frac{12}{\pi} f(\rho, \bar{\rho}) = \frac{24\zeta(3)}{\pi} (\rho_2)^2 + 8\pi + 48\rho_2 \sum_{q \neq 0, \tilde{m} \neq 0} \left| \frac{q}{\tilde{m}} \right| K_1 \left(2\pi|\tilde{m}|^{1/2} \left| \frac{q^t(\hat{M} + \hat{L})q}{2} e^{-2\pi i\tilde{m}^aq} \right| \right)$$

(6.4)

This result should be exact in the six-dimensional limit without further $O(e^{-1/\lambda^2})$ corrections, because of the absence of NS 5-brane instantons.

In four dimensions, this symmetry is part of the full $O(6, 22; Z)$ symmetry.
up to the tree-level \((\rho^2)^2\) term which we discuss below. In fact, the \(R^4\) terms are accompanied under supersymmetry by other eight-derivative terms involving the NS dilaton, which can be simply obtained by replacing the Riemann tensor by [23]:

\[
\bar{R}^{\rho\sigma}_{\mu\nu} = R^{\rho\sigma}_{\mu\nu} - \frac{1}{4} \delta^{[\rho}_{[\mu} \nabla_{\nu]} \nabla^{\sigma]} \varphi_{10} + \ldots
\]

(6.5)

where we retained terms linear in the dilaton only. Upon compactification of type IIB string theory to six dimensions on \(K3\), the \(\bar{R}^4\) coupling yields

\[
\int_{K3} \bar{R}^4 \propto \chi \left(\partial \partial \varphi_{10} \right)^2,
\]

where \(\chi = 24\) is the Euler number of \(K3\). This validates the conjecture in Ref. [5] for the contribution of the D-instantons to the ten-dimensional \(R^4\) couplings.

On the other hand, the tree-level term \(\frac{24c(3)}{\pi}(\rho^2)^2\) in the \(R^4\) coupling (6.4) does not induce any four-derivative dilaton interaction in four dimensions, in agreement with the absence of the corresponding tree-level amplitude. This can also be checked by considering the \(\langle TTTT \rangle\) heterotic amplitude in the large \(T_H = S_H\) limit, which we discuss in the Appendix. However, \(\bar{F}_1\) is defined by Eqs. (4.11) and (4.14) up to a \(T\)-dependent integration constant which, as we show in the Appendix, reproduces in the large \(V\) limit the ten-dimensional \((\rho^2)^2\) tree-level term. This restores the \(SL(2; \mathbb{Z})_\rho\) invariance of the \(R^4\) couplings in \(D = 10\).

7. Concluding Remarks

In this work, we analyzed \(e^{-1/\lambda}\) non-perturbative corrections in the context of \(N = 4\) four-derivative couplings. These effects should also occur in higher \(\bar{F}_g\)'s in the case of \(N = 2\) compactifications. A simple counting based on hypermultiplet–vector multiplet decoupling shows that these functions are purely \(g\)-loop on the heterotic side. Furthermore, in contrast to the vector multiplet metric protected by the holomorphicity of the prepotential, the hypermultiplet metric, which corresponds to the \(\bar{F}_{g=0}\) coupling, can receive such corrections in type II (or type I) vacua [2, 3]. Finally, at the \(N = 1\) level, we also expect such corrections.
to appear in the Kähler potential, even in the heterotic theory.

Acknowledgements

We are grateful to E. Kiritsis and N. Obers for helpful discussions.

Appendix

Here we discuss the amplitude (3.2) with $\phi_1 = \phi_2 = T$. Following the same steps as in Section 3, and neglecting the windings of the two-torus in the large T_2 limit, it is easy to show that Eq. (4.11) still holds, so that the $\langle TTTT \rangle$ amplitude can still be derived from \tilde{F}_1 given in Eq. (4.14):

$$ A_{TT} \approx \frac{1}{(T_2)^2} \left(\partial_T - \frac{i}{2T_2} \right) \left(\partial_T + \frac{i}{2T_2} \right) \tilde{F}_1 = \frac{1}{(T_2)^2} \partial_T^2 \tilde{F}_1. \quad (A.1) $$

The large T_2 expansion of \tilde{F}_1 given in Eqs. (4.17), (4.19) and (4.20) still holds, up to one additional term coming from the contribution of the $\tilde{m}^I = 0$ terms in the Poisson resummed formula (4.13):

$$ T_2 \int_{\mathcal{F}} \frac{d^2 \tau}{(\tau_2)^2} \sum_q e^{-\pi \tau_2 q^I \tilde{M}_q + \pi i \tau_1 q^I \tilde{L}_q} \tilde{\eta}^{-24}(\tau). \quad (A.2) $$

This term, linear in T_2, would be mapped to a tree-level contribution proportional to $S_2 = e^{-2\phi_1}$ in type IIA and IIB theories. It is however annihilated by the derivative in Eq. (A.1), and therefore does not contribute to the physical $\langle TTTT \rangle$ amplitude. It merely corresponds to a choice of the integration constant in Eq. (4.11).

In order to study the large $K3$ volume limit of the above term, we again make use of the decomposition (5.4) of the $K3$ moduli matrix \tilde{M}. Terms with a non-zero 4-cycle charge q^4 are exponentially suppressed (as $O(e^{-V})$) and can be neglected. After Poisson resummation in the zero-cycle charge $q^0 \to \tilde{q}_0$, we can distinguish three types of contributions. States with $\tilde{q}_0 \neq 0$ and 22 two-cycle charges $q' \neq 0$ are still suppressed as $O(e^{-V})$. States with $\tilde{q}_0 = 0$ yield a divergent contribution of order $S_2 \sqrt{V} = e^{-2\phi_1} V^{3/2} T_2$ (in type II variables):

$$ S_2 \sqrt{V} \int_{\mathcal{F}} \frac{d^2 \tau}{(\tau_2)^{5/2}} \sum_{q'} e^{-\pi \tau_2 q'^I \tilde{M}_q' + \pi i \tau_1 q'^I \tilde{L}_q'} \tilde{\eta}^{-24}(\tau), \quad (A.3) $$
which depends only on the moduli of the unit volume Ricci-flat metric of $K3$, up to the overall factor $S_2 \sqrt{V}$. Finally, states with vanishing two-cycle charges q' and non-zero \tilde{q}_0 have $\tilde{M}_{00} = 1/V$ and yield

$$24S_2 \sqrt{V} \int_0^\infty \frac{d\tau_2}{(\tau_2)^{5/2}} \sum_{\tilde{q}_0 \neq 0} e^{-\pi \tau_2 (\tilde{q}_0)^2 / V} = 24 \frac{S_2 \Gamma(3/2)}{\pi^{3/2}} \sum_{\tilde{q}_0 \neq 0} \frac{1}{|\tilde{q}_0|^3} = \frac{24 \zeta(3) S_2}{\pi V}.$$ \hspace{1cm} (A.4)

Factorizing the T^2 volume and going to the ten-dimensional variable $(\rho_2)^2 = e^{-2\varphi_{10}} = S_2/(VT^2)$, we recover the type IIB tree-level $(\rho_2)^2$ term of Eq. (6.4). The above discussion also applies to the type IIA theory and, at the same time, we recover the tree-level $\frac{2\zeta(3)}{\pi} e^{-2\varphi_{10}} R^4$ term present in the $D = 10$ type IIA theory.

References

[1] S.H. Shenker, “The Strength of Non-Perturbative Effects in String Theory,” presented at the Cargèse Workshop on Random Surfaces, Quantum Gravity and Strings, Cargèse, France, May 1990, preprint RU-90-47 (1990).

[2] K. Becker, M. Becker and A. Strominger, Nucl. Phys. B 456 (1995) 130, hep-th/9507158.

[3] H. Ooguri and C. Vafa, Phys. Rev. Lett. 77 (1996) 3296, hep-th/9608079.

[4] E. Silverstein, Phys. Lett. B 396 (1997) 91, hep-th/9611195.

[5] M.B. Green and M. Gutperle, hep-th/9701093; M.B. Green and P. Vanhove, hep-th/9704145.

[6] E. Kiritsis and B. Pioline, hep-th/9707018.

[7] C. Bachas, C. Fabre, E. Kiritsis, N.A. Obers and P. Vanhove, hep-th/9707126.
[8] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B 413 (1994) 162, hep-th/9307158.

[9] I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Nucl. Phys. B 455 (1995) 109, hep-th/9507113.

[10] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Nucl. Phys. B 405 (1993) 279, hep-th/9302103; Commun. Math. Phys. 165 (1994) 311, hep-th/9309140.

[11] I. Antoniadis, E. Gava and K.S. Narain, Phys. Lett. B 283 (1992) 209, hep-th/9203071; Nucl. Phys. B 383 (1992) 93, hep-th/9204030.

[12] J.A. Harvey and G. Moore, hep-th/9610237.

[13] A. Gregori, E. Kiritsis, C. Kounnas, N. Obers, P.M. Petropoulos and B. Pioline, CERN-TH/97-103 (1997), hep-th/9708062.

[14] C.M. Hull and P.K. Townsend, Nucl. Phys. B 438 (1995) 109, hep-th/9410167.

[15] C. Kounnas and B. Rostand, Nucl. Phys. B 341 (1990) 641.

[16] L.J. Dixon, V. Kaplunovsky and J. Louis, Nucl. Phys. B 355 (1991) 649.

[17] M.J. Duff and J.X. Lu, Nucl. Phys. B 354 (1991) 141; C.G. Callan, J.A. Harvey and A. Strominger, Nucl. Phys. B 359 (1991) 611; Nucl. Phys. B 367 (1991) 60.

[18] J. Polchinski, Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017; for a review, see: J. Polchinski, hep-th/9611050.

[19] For a review, see: P.S. Aspinwall, hep-th/9611137.

[20] M. Bershadsky, C. Vafa and V. Sadov, Nucl. Phys. B 463 (1996) 420, hep-th/9511222.

[21] For a review, see: T. Kawai, hep-th/9710016.
[22] B. Pioline and E. Kiritsis, hep-th/9710078.

[23] D. Gross and J. Sloan, Nucl. Phys. B 291 (1987) 41.