Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes

Mohammed Gagaoua*, Kahina Hafid, Naouel Hoggas
Equipe Maquav, INATAA, Université Frères Mentouri Constantine, Route de Ain El-Bey, 25000 Constantine, Algeria

A R T I C L E I N F O
Article history:
Received 3 November 2015
Received in revised form 31 December 2015
Accepted 8 January 2016
Available online 16 January 2016

Keywords:
Three Phase Partitioning
Zingibain
Purification

ABSTRACT
This paper describes data related to a research article titled “Three Phase Partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes” (Gagaoua et al., 2015) [1]. Zingibain (EC 3.4.22.67), is a coagulant cysteine protease and a meat tenderizer agent that have been reported to produce satisfactory final products in dairy and meat technology, respectively. Zingibains were exclusively purified using chromatographic techniques with very low yield purification. This paper includes data of the effect of temperature, usual salts and organic solvents on the efficiency of the three phase partitioning (TPP) system. Also it includes data of the kinetic activity characterization of the purified zingibain using TPP purification approach.

© 2016 Elsevier Inc. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology, Chemistry
More specific subject area	Protein purification, Three Phase Partitioning, Enzymology
Type of data	Table, text file, figure

* Corresponding author.
E-mail addresses: gmer2001@yahoo.fr, mgagaoua@inataa.org (M. Gagaoua).

http://dx.doi.org/10.1016/j.dib.2016.01.014
2352-3409/© 2016 Elsevier Inc. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
How data was acquired
Extraction, Three Phase Partitioning, Electrophoresis, Zymography, Enzyme kinetic
Data format Raw and processed data
Experimental factors Protein extraction, purification factors, pH, temperature, thermal and storage stability, molecular weight and purity.
Experimental features Zingibain was first recovered using an optimized Three Phase Partitioning protocol and then characterized.
Data source location Maquav Team, INATAA Institute, Constantine, Algeria
Data accessibility Data is with this article

Value of the data
- Data for high purity purification of zingibain using Three Phase Partitioning (TPP) system are given.
- The protocol and data described provide optimized parameters for TPP tool for an efficient recovery of zingibain from ginger rhizomes.
- Values of optimal factors affecting TPP system are provided.
- Kinetic characterizations of the purified zingibain are given for the first time.

1. Data
Zingibain (EC 3.4.22.67), is an extensively used protease in food industry for cheese-making or meat tenderization, and therefore its fast and efficient purification is highly required. In the present work, we provide data of the optimal parameters for an efficient purification tool, the Three Phase Partitioning system for high purity and recovery yield of zingibain. A table containing the effect of usual salts and organic solvents on partitioning of zingibain by TPP is given (Table 1). In addition a flow sheet of the workflow employed to purify zingibain from fresh Zingiber officinale Roscoe rhizomes followed by the Kinetics (Michaelis-Menten and Lineweaver-Burk plot) of the purified zingibain are shared (Figs. 1 and 2).

2. Experimental design, materials and methods

2.1. Zingibain extraction and TPP purification

Fresh fully ripened ginger rhizomes (Z. officinale Roscoe) were purchased from a local market in Khenchela region (North–East) of Algeria. As summarized in Fig. 2, an approximate of 200 g of the rhizomes were washed and cut into fine pieces (~2.5 mm thickness) before homogenization in a blender with 450 mL of 50 mM sodium phosphate buffer (pH 7.0) containing 10 mM L-cysteine. The obtained homogenate was then left to stand under a continuous stirring (150 rpm) for 45 min at 4 °C before filtration through a double-layered cheesecloth. The insoluble residual debris was discarded and the supernatant was filtered through Whatman paper no. 1. The obtained ginger juice was spun

Salt	Relative enzyme activity (%)	Organic solvent	Relative enzyme activity (%)
Ammonium sulfate	100	t-butanol	100
Potassium sulfate	42	n-butanol	68
Sodium sulfate	31	n-propanol	62
Sodium chloride	32	Iso propanol	45
Magnesium sulfate	28	Petroleum ether	15
Potassium chloride	29	Ethanol	11
in a centrifuge at 4000 rpm for 15 min at 4 °C to collect the supernatant, which was concentrated using ammonium sulfate up to 80% saturation. After an overnight dialysis (membrane molecular weight cut off (MWCO): 14 kDa) of the precipitate against two changes of 5 L of 50 mM sodium phosphate buffer, pH 7.0 at 4 °C, the crude clarified and dialyzed enzyme extract was subjected to TPP purification system.

TPP experiments were carried out as described in our paper published in International Journal of Biological Macromolecules 73 (2015) 245–252 [1]. Prior the TPP process, different usual salts (Ammonium sulfate, potassium sulfate, sodium sulfate, sodium chloride, magnesium sulfate, and potassium chloride) and organic solvents (t-butanol, n-butanol, n-propanol, Iso propanol, petroleum ether and ethanol) were assayed as shown in Table 1. The results showed that tert-butanol and ammonium sulfate give the best results for the TPP process. After the optimization of the parameters (pH, ammonium sulfate, tert-butanol and temperature) affecting the TPP process, three repetitions were conducted to confirm the overall results using 50% ammonium sulfate, 1:10 ratio crude extract to t-butanol at a pH of 7.0 and allowed to stand for 1 h at a temperature of 5 °C. The temperature of the system was varied from 5 °C to 40 °C to determine the best value leading to obtain the best partitioning behavior of the system (Fig. 3). Afterwards, the mixture was centrifuged at 4500 rpm for 10 min to facilitate the separation of the three phases. The upper t-butanol phase was removed by a Pasteur pipette. The lower aqueous phase and the interfacial phase were separated carefully and analyzed for enzyme activity and protein content. The interfacial precipitate was dissolved in 50 mM, pH 7.0 sodium phosphate buffer. The aqueous phase always containing the higher zingibain activity was collected, dissolved in 50 mM, pH 7.0 sodium phosphate buffer, dialyzed overnight against the same buffer containing 100 mM EDTA and concentrated by ultrafiltration using Amicon Ultra device with a 10 kDa MWCO. The concentrated enzyme was stored at +4 °C or −20 °C until use for further characterization studies in order to determine the general biochemical properties.

2.2. Enzyme characterization

The protein concentration was quantified by the dye binding method of Bradford [2] using the Bio-Rad Protein Assay (Bio-Rad Laboratories Inc.). The protein content was calculated from the bovine serum albumin (BSA) standard curve.

Zingibain activity was assayed at 40 °C using bovine casein (1% w/v) as substrate in a 50 mM sodium phosphate buffer pH 7.0 containing 250 mM EDTA and 1 mM DTT at enzyme concentrations of 0.20 mg/mL. The hydrolyzing activity of zingibain was based on the method described by Kunitz using denatured bovine casein as a substrate [3,4]. In activity measurements, 0.12 mL enzyme was incubated at 37 ± 1 °C for 15 min prior to the assay. The reaction was stopped by the addition of 1.8 mL of 5% trichloroacetic acid (TCA). For the blank, the substrate was added after the enzyme was
200 g of fresh ginger rhizomes (Zingiber officinale) were washed and cut into fine pieces.

Homogenization in 50 mM sodium phosphate buffer pH 7.0 containing 10 mm L-cysteine

Continuous stirring (150 rpm) for 45 min at 4°C

Filtration and centrifugation at 4000 rpm for 15 min at 4°C to collect the supernatant

Saturation using (NH₄)₂SO₄ up to 80% saturation

Overnight dialysis (4°C) of the precipitate against 50 mM sodium phosphate buffer pH 7.0

Add 50% (w/v) (NH₄)₂SO₄

Add 1.0:1.0 t-butanol and vortex gently
Incubate at room temperature for 1 h
Centrifugation at 4500 rpm for 10 min at 4°C

Formation of three phases
Upper organic, lower aqueous and interfacial precipitate

Remove upper organic layer (t-butanol)
Remove interfacial precipitate containing the contaminating proteins

Aqueous phase
Dissolve in 50 mM, pH 7.0 phosphate buffer
Dialysis overnight against 50 mM, pH 7.0 sodium buffer containing 100 mM EDTA
Concentration using Amicon Ultra device (10 kDa MWCO)
Storage at -20°C

Fig. 2. Diagrammatic representation of the workflow employed to purify zingibain from fresh Zingiber officinale Roscoe rhizomes using three phase partitioning (TPP) system.
first inactivated by TCA. The resulting precipitate was removed by centrifugation at 4500 rpm for 15 min, and the absorbance of TCA soluble peptides in the supernatant was measured at 280 nm. One unit of activity is defined as the amount of enzyme that increases the absorbance by 0.01 min\(^{-1}\) under given assay conditions.

\(K_m\) and \(V_{max}\) of the purified zingibain were determined by measuring the enzymatic activity using different concentration of bovine casein substrate (Fig. 4). The activity was measured under the standard assay conditions as discussed above. Michaelis-Menten and Lineweaver-Burk (Reciprocal) plots were acquired using SigmaPlot 12 software to determine \(K_m\) and \(V_{max}\).
Conflict of interest

The authors declare they have no conflict of interest.

Acknowledgments

The authors would like to express their sincere thanks to INATAA Institute and Université Frères Mentouri Constantine for financial support. Authors also thank Dr. Brigitte PICARD and Dr. Ahmed OUALI, INRA Institute – Theix, France for some chemical products supply.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.01.014.

References

[1] M. Gagaoua, N. Hoggas, K. Hafid, Three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes, Int. J. Biol. Macromol. 73 (2015) 245–252.
[2] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.
[3] M. Kunitz, Crystalline soybean trypsin inhibitor: II. General properties, J. Gen. Physiol. 30 (4) (1947) 291–310.
[4] M. Gagaoua, et al., Three-phase partitioning as an efficient method for the purification and recovery of ficin from Mediterranean fig (Ficus carica L.) latex, Sep. Purif. Technol. 132 (0) (2014) 461–467.