Theoretical study for chromen azodyes derivative compounds as anti-corrosive

M Merdan¹, Dina Jalal Al-den Fakar Al-den², Yahya Al-khafaji³ and Ahmed S. Abbas³

¹Department of Physics, College of Science, University of Babylon, Hillah, Iraq
²Science department - College of Basic Education - University of Mustansiriyah, Baghdad, Iraq
³Department of Chemistry, College of Science, University of Babylon, Hillah, Iraq

Abstract. The anti-corrosive behaviour of some azo compounds derivatives, (a) 4,6,7-trimethyl-8-((2-nitrophenyl)diazenyl)-2H-chromen-2-one, (b) 2-((4,6,7-trimethyl-2-oxo-chromen-8-yl)diazenyl)benzoic acid, (c) 4,6,7-trimethyl-8-(phenyldiazenyl)-chromen-2-one, (d) 8-((2-hydroxyphenyl)diazenyl)-4,6,7-trimethyl-chromen-2-one and (e) 8-((2-methoxyphenyl)diazenyl)-4,6,7-trimethyl-chromen-2-one are investigated using density functional B3LYP/6-311G. Electronic properties such as; the highest occupied molecular orbital, the lowest unoccupied molecular orbital, the dipole moment, the softness, total energy and the total negative charge are calculated to find a relation between their structural properties and the inhibition efficiency. The calculated quantum chemical parameters correlated to the inhibition efficiency are measured. The results showed a good correlation between the experimental inhibition efficiency and the quantum chemical parameters.

1. Introduction
There are a wide range applications of azo compounds as: drugs delivery system [1–4], antibectrail agent [5–7], in solar cells application [8, 9] and as corrosion inhibitors for metals surface and alloy [10, 11]. Several studies; suggested that compounds such azocompounds containing oxygen, sulphur or nitrogen donor atoms, and a π-system show as active inhibitors [12–15]. It is evidenced that their activity toward corrosion inhibition increase by existence of heteroatoms and π system which easy to create in azocompounds. Interaction between metal surface and inhibitor agent is divided into two types; chemical or physical interactions. During the chemical adsorption, a coordination bond is formed when electrons of the organic inhibitors transferred to the vacant orbital of the metal. These compounds have the ability to generate new bond with metal surface by forming chemisorptions because they have electronegative group and conjugated bonds in the case of aromatic azo compounds, this lead to increase the ability of these material to form the chemisorption such as azoles [16–18]. Physicochemical feature of corrosion inhibitors plays an important role in the adsorption of the inhibitors on the metals surface [19–21]. The efficiency of inhibitors depend not only on functional groups of organic compounds and electrons density of donor atoms, but also, on the molecular electronic structure and ability of active site to form metallic complexes [22, 23]. The present work is aimed to investigate the calculations of structural properties of reported azocompounds with a view to relate structural properties of reported compounds to the inhibition efficiency [24].
2. Theorical method
The density functional theory (DFT) with the Becks three-parameter exchange functional along with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) is used to perform complete geometrical optimization for the inhibitors molecules [25, 26]. These inhibitor molecules have been optimized using Gaussian 09 software (G09) with implementing 6-311G basis set [27]. The adsorption centers of the inhibitor molecules are obtained from the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Due to Koopmans theorem [28], the absolute electronegativity, and absolute hardness are related to ionization potential and electron affinity of any chemical system by the following relations,

\[\chi = \frac{1}{2}(I + A). \]

(1)

The difference between the lowest unoccupied molecular orbital energy (\(E_{\text{LUMO}}\)) and the highest occupied molecular orbital energy (\(E_{\text{HOMO}}\)) is the separation energy (energy gap),

\[\Delta E = E_{\text{LUMO}} - E_{\text{HOMO}}. \]

(2)

The ionization energy and electron affinity are related to the HOMO and LUMO energies as,

\[I = -E_{\text{HOMO}}, \quad A = -E_{\text{LUMO}}. \]

(3)

The absolute hardness is given as

\[\eta = \frac{1}{2}(I - A), \]

(4)

and the softness \(\sigma\) is the inverse of the hardness

\[\sigma = \frac{1}{\eta}. \]

(5)

3. Results and Discussion
From the molecular structures Fig. (1), it is clear that the studied azo dyes compounds have the azo group (N=N) which has basic property due to the existence of lone pair of electrons on the two nitrogen atoms and the character of electron donating of the double bond. As mentioned azo compounds (a-e) have N=N group, subsequently, this group has ability to form complexes with metal ion.

M. Abdallah et al. have been investigated the experimental inhibition efficiency of the compounds a, b, c, d and e [24]. Their results are presented in Table. 1 with the results of the quantum chemical parameters obtained from our calculations. The inhibition efficiency of inhibitors (IE) can correlate with these quantum parameters such as separation energy (energy gap) \(\Delta E\), dipole moment \(\mu\), total negative charge TNC, total energy TE, softness \(\sigma\) and volume of molecules. The experimental results revealed that the inhibitors efficiency of azo dyes compounds will be in the order: Inhibitor e > Inhibitor d > Inhibitor c > Inhibitor b > Inhibitor a.

The calculation in this work suggested that the bond N_{15}=N_{16} in the compound (c) has (1.279 Å) bond length less than other bond length in the same compound which reveals azo double bond, in addition, C_{3−N_{15}} and C_{17−N_{16}} have bond lengths 1.411 Å and 1.428 Å respectively which further evidence to single bond. Same results observed in compounds a,b, d and e (see Table. 2). The \(\pi\) charge of the azo groups can enable the adsorption of the inhibitor in all cases.

The high values of densities on N_{15}, N_{16} and O_{14} of all compounds are shown in Table. 3 and they reveal that an adsorption center to the metal could be from the azo group and O atoms.

Inhibition efficiency is affected directly by the quantum parameters [29–32] such as the energies of frontier molecular orbitals \(E_{\text{HOMO}}\) and \(E_{\text{LUMO}}\). The electron providing ability of
Figure 1. Azo compounds derived from chromen-2-one.

Table 1. Presents theoretical parameters achieved from the calculations such as E_{HOMO}, E_{LUMO}, the separation energy, dipole moment, total energy, softness, volume of the molecules and the total negative charge. The Inhibition efficiency of mono azo dye compounds for corrosion of C-steel in 2M HCl solutions using weight loss method at 40 °C.

Quantum parameters	Inhibitor (a)	Inhibitor (b)	Inhibitor (c)	Inhibitor (d)	Inhibitor (e)
E_{HOMO} (eV)	-6.239	-6.010	-5.772	-5.603	-5.546
E_{LUMO} (eV)	-2.829	-2.633	-2.397	-2.289	-2.252
ΔE (eV)	3.410	3.376	3.374	3.314	3.293
μ (Debye)	10.783	2.574	5.800	5.397	6.008
σ (softness)	0.587	0.592	0.593	0.603	0.607
Volume ($\text{cm}^3\text{ mol}^{-1}$)	214.361	233.863	218.984	221.174	222.163
TNC	-4.223	-4.708	-3.891	-4.396	-4.514
IE*	55.37	61.4	65.18	68.95	71.63

*Experimental data of inhibition efficiency (IE) obtained from Ref. [24].

Table 2. The calculated bonds length of compounds a, b, c, d and e.

Inhibitor	$N_{15}=N_{16}$ Å	$C_{3}-N_{15}$ Å	$N_{16}-C_{17}$ Å
a	1.27704	1.41235	1.43096
b	1.27597	1.41157	1.43147
c	1.27930	1.41176	1.42876
d	1.28040	1.41196	1.41833
e	1.28090	1.41222	1.41805
Figure 2. The molecular structures of antipyrine azodyes compounds optimized in G09 using density functional theory along with (B3LYP) and with implementing 6-311G basis set.

The inhibition efficiency increases with the decrease in the energy gap. The calculation in this work suggests that the compound (e) with the ΔE is 3.293 eV,

compounds increase by the high value of E_{HOMO} because it evidence of molecules to donate the electron. In contrast, the E_{LUMO} indicates the ability of the compound to receive electrons density. Decrease energy gap, ΔE (interaction between the E_{HOMO} and E_{LUMO}) lead to decrease the ability of inhibitors due to deficient electron density that may transfer to the metals [33, 34].

It is obvious from the Table. 1, the inhibition efficiency increases with the decrease in the energy gap.
Table 3. Electron density on N_{15}, N_{16} and O_{14} atoms for a, b, c, d and e inhibitors.

Inhibitor	N_{15}	N_{16}	O_{14}
a	-0.254	-0.298	-0.399
b	-0.261	-0.272	-0.412
c	-0.276	-0.303	-0.410
d	-0.275	-0.286	-0.413
e	-0.275	-0.286	-0.414

literately this give evidence that compound (e) has highest reactivity and subsequently highest (IE). It is clear that the type of adsorption relay on the attraction between the metal and the electron on inhibitor. The sequence of increasing the inhibitors reactivity was as obey: compound (e) > compound (d) > compound (c) > Compound (b) > Compound (a). The reasons behind this are: (1) the presence of ortho methoxy group in compound (e) which an electron providing group will increase the electron density on this compound, compound (e) is more active than compound (d) due to the existence of hydroxyl group which behaves as donating group, but its donating ability is less than (O-CH$_3$). The compound (c) has no substitution on aromatic ring subsequentely, the value of (IE) for this compound is less than both compounds (e) and (d). Because of both compounds (b) and (a) have withdrawing group (carboxylic and nitro group) substituted on aromatic ring, these inhibitors show less reactivity due to the presence of these group which let to minimise the electron density on aromatic ring, subsequently, let to decrease the inhibition efficiency.

Figure 3. The HOMO of the inhibitors.
4. Conclusion

We performed theoretical calculations of chromen azodyes derivative compounds as anti-corrosive for carbon steel based on density functional theory (DFT) with the Lee-Yang-Parr nonlocal correlation functional (B3LYP) method. The molecular structures have been optimized by using Gaussian 09 software with 6-311G basis set. These calculations are achieved to obtain a relation between the effect of electron characteristic and the inhibition activity. Quantum chemical calculations approve that the substitute of ortho group on the phenol ring by electron donor group lead to increase of the inhibition efficiency of the inhibitor. We concluded from the calculations the most controlling quantum parameters to influence the inhibition efficiency of antipyrine inhibitors are the energy gap ΔE and the softness σ. The inhibitor efficiency of azo dyes compounds according to these quantum parameters will be in the order: Inhibitor (e) > Inhibitor (d) > inhibitor (c) > inhibitor (b) > inhibitor (a).
References

[1] Roldo M, Barbu E, Brown J F, Laight D W, Smart J D and Tsibouklis J 2007 Expert opinion on drug delivery 4 547–560
[2] 1997 Journal of Pharmaceutical Sciences 86 1321 – 1327 ISSN 0022-3549
[3] Shaikh A and Meshram J S 2015 Cogent Chemistry 1 1019809
[4] Roldo M, Barbu E, Brown J F, Laight D W, Smart J D and Tsibouklis J 2007 Expert Opinion on Drug Delivery 4 547–560 pMID: 17880276
[5] Shaki H, Gharanjig K and Khosravi A 2015 Biotechnology progress 31 1086–1095
[6] Gaffer H, Gouda M and Abdel-Latif E 2013 Journal of Industrial Textiles 42 392–399
[7] Tamokou J, Tsemeugne J, Sopnène F, Sarkar P, Kuiate J, Djintchui A, Sondengam B and Bag P 2016 Pharmacologia 7 182–192
[8] Mahmoud A, Tahir M H, Irfan A, Al-Sehemi A G and Al-Assiri M 2015 Computational and Theoretical Chemistry 1066 94 – 99 ISSN 2210-271X
[9] Qi J H, Li Y, Duong T T, Choi H J and Yoon S G 2013 Journal of Alloys and Compounds 556 121 – 126 ISSN 0925-8388
[10] Abboud Y, Abourriche A, Saffaj T, Berrada M, Charrouf M, Bennamara A and Hannache H 2009 Desalination 237 175–189
[11] El-Haddad M N and Fouda A 2013 Chemical Engineering Communications 200 1366–1393
[12] El Ouali I, Chetouani A, Hammouti B, Aouniti A, Touzani R, El Kadiria S and Nlated S 2013 Portugaliae Electrochimica Acta 31 53–78
[13] Babic-Samardzija K, Lupu C, Hackerman N and Barron A R 2005 Journal of Materials Chemistry 15 1908–1916
[14] Szcs E, Vastag G, Shaban A and Klmn E 2005 Corrosion Science 47 893 – 908 ISSN 0010-938X
[15] Kumar C S, Rao V, Raja V, Sharma A and Mayanna S 2002 Corrosion Science 44 387 – 393 ISSN 0010-938X
[16] Ajmal M, Mideen A and Quraishi M 1994 Corrosion Science 36 79–84
[17] Fung J and Li J 2002 Journal of Molecular Structure: THEOCHEM 593 179–185
[18] Al-Mayout A, Al-Suhbybani A and Al-Ameery A 1998 Desalination 116 25 – 33 ISSN 0011-9164
[19] El Achouri M, Infante M R, Izquierdo F, Kertit S, Gouttaya H and Nciri B 2001 Corrosion Science 43 19–35
[20] Ituen E, Akaranta O and James A 2017 Journal of King Saud University-Engineering Sciences
[21] Prajila M, Ammal P R and Joseph A 2017 Egyptian Journal of Petroleum ISSN 1110-0621
[22] Mernari B, El Attari H, Traisnel M, Bentiss F and Lagrene M 1998 Corrosion Science 40 391–399
[23] Abd El-Maksoud S A Materials and Corrosion 54 106–112
[24] Abdallah M, Fouda A, Shama S and Afifi E 2008 African Journal of Pure and Applied Chemistry 2 083–091
[25] Becke A D 1992 The Journal of chemical physics 96 2155–2160
[26] Becke A D 1993 The Journal of chemical physics 98 1372–1377
[27] Frisch M J, Trucks G, Schlegel H B, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G et al. 2009 Gaussian Inc. Wallingford CT 27 34
[28] Issa R, Awad M and Atlam F 2010 Materials and corrosion 61 709–714
[29] Özcan M, Dehri I and Erbil M 2004 Applied surface science 236 155–164
[30] Al-Baghdadi S B, Hashim F G, Salam A Q, Abed T K, Gaaiz T S, Al-Amiery A A, Kadhum A A H, Reda K S and Ahmed W K 2018 Results in Physics 8 1178 – 1184 ISSN 2211-3797
[31] Ismaily A K, El Hajjaji F, Azaroual M, Taleb M, Chetouani A, Hammouti B, Abirgach F, Khoutoul M, Abboud Y, Aouniti A et al. 2014 J Chem Pharm Res 6 63–81
[32] Yadav M, Behera D, Kumar S and Sinha R R 2013 Industrial & Engineering Chemistry Research 52 6318–6328
[33] Özcan M, Dehri and Erbil M 2004 Applied Surface Science 236 155 – 164 ISSN 0169-4332
[34] Zaafarany I 2009 Portugaliae Electrochimica Acta 27 631–643