Phellodendron is a small genus of aromatic deciduous trees in family Rutaceae distributed in eastern Asia. It consists of two recognized species, *P. chinense* Schneid. and *P. amurense* Rupr. (Ma et al. 2006). *Phellodendron chinense* is endemic to Anhui, Hubei, Hunan, Sichuan and Yunnan provinces, southern China, scattering in subtropical broad-leaved forests or mixed forests (Zhang et al. 2019). This species is best known for its bark (cortex) which was used as one of the most famous Chinese traditional medicines (Tang et al. 2016). Due to its high medicinal value, it was listed as one of the 237 species of national Endangered and key protected wild plants in China (Yu 1999). In the past decades, wild populations of *P. chinense* have declined significantly, suggesting that urgent conservation measures need to be taken (Shen et al. 2009; Tang et al. 2016; Zhang et al. 2019). In this study, we assembled the complete chloroplast genome of *P. chinense* using next-generation sequencing to provide a gene source for further genetic and conservation studies.

Fresh young leaves of *P. chinense* were collected from Tianquan County, Sichuan Province, China (N 29°59′19.61″, E 102°38′34.13″). Voucher specimen (collection numbers: BJFUZLC061) was deposited in the Herbarium of Beijing Forestry University (BJFC). The total genome DNA was extracted using a modified protocol (Chen et al. 2014) and sent to Majorbio (http://www.majorbio.com, China) for next-generation sequencing using Illumina Hiseq Xten. About 2.5 Gb high quality, 2 × 150 bp pair-end reads were obtained from High-throughput sequencing. The chloroplast genome of *P. amurense* (Genbank accession no. MT916287) was a circular molecule with a size of 1,585,37 bp in length, comprising a large single copy (LSC) region of 86,250 bp and a small single copy (SSC) region of 18,287 bp, which were separated by a pair of 27,000 bp inverted repeat regions (IRs). The sequence contains 114 unique genes, including 30 tRNA, 4 rRNA, and 80 protein-coding genes. The overall GC content of the chloroplast genome is 38.4% and those in the LSC, SSC, and IR regions are 36.6, 33.2, and 42.9%, respectively. The phylogenetic analysis based on reported chloroplast sequences of Rutaceae showed that *P. chinense* is sister to *P. amurense*, consisting a monophyletic group, and that *Phellodendron* is closely related to *Zanthoxylum*.
obtained from NCBI and *Canarium album* (Burseraceae) was used as the outgroup. All sequences were aligned, and a phylogenetic tree was constructed using the maximum likelihood method by MAGE-X (Kumar et al. 2018; Katoh et al. 2019). Bootstraps were calculated for 1000 replicates to confirm the bootstrap value of each node, and the Tamura-Ne model operation was selected to obtain the tree (Figure 1). The phylogenetic results showed that *P. chinense* is sister to *P. amurense*, consisting a monophyletic group. Then *Phellodendron* is closely related to *Zanthoxylum*, which is consistent with the phylogenetic relationship between the two genera based on plastid and nuclear markers (Poon et al. 2007; Appelhans et al. 2018).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was funded by Beijing Forestry University “National Undergraduate Training Programs for Innovation and Entrepreneurship” [G201910022070] and Science & Technology Basic Resources Investigation Program of China [2017FY100100].

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MT916287.

References

Appelhans MS, Reichelt N, Groppo M, Paetzold C, Wen J. 2018. Phylogeny and biogeography of the pantropical genus *Zanthoxylum* and its closest relatives in the proto-Rutaceae group (Rutaceae). Mol Phylogenet Evol. 126:31–44.
Chen LY, Song MS, Zha HG, Li ZM. 2014. A modified protocol for plant genome DNA extraction. Plant Diversity Resour. 36:375–380.

Huang DI, Cronk QC. 2015. Plann: a command-line application for annotating plastome sequences. Appl Pl Sci. 3(8):1500026.

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4):1160–1166.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 35(6):1547–1549.

Ma JS, Cao W, Liu QR, Yu M, Han LJ. 2006. A revision of Phellodendron (Rutaceae). Edinb J Bot. 63(2–3):131–151.

Poon WS, Shaw PS, Simmons MP, But PH. 2007. Congruence of molecular, morphological, and biochemical profiles in Rutaceae: a cladistic analysis of the subfamilies. Syst Bot. 32(4):837–846.

Shen L, Fu SZ, Ma L, Chen XL, Yi DY. 2009. Investigation on the wild resources of cortex Phellodendron chinense. Chinese Wild Plant Resour. 28(4):25–28.

Tang ZY, Qiao L, Ruan ZY, Bai B. 2016. Research advances on Phellodendron chinense Schenid. Chinese Agric Sci Bullet. 32(02):82–86.

Yu YF. 1999. The national key protected wild plants in China. Plants. (5):3–11.

Zhang ZP, Wang XY, Zhang Z, Yao H, Zhang XM, Zhang Y, Zhang BG. 2019. The impact of genetic diversity on the accuracy of DNA barcoding to identify species: a study on the genus Phellodendron. Ecol Evol. 9(18):10723–10711.