Clique minors in graphs with a forbidden subgraph

Matija Bucić

Institute for Advanced Study and Princeton University

joint work with Jacob Fox and Benny Sudakov
What can we say about a graph with no H-minor?
What can we say about a graph with no H-minor?

Conjecture (Hadwiger, 1943)

Every graph with no K_t-minor is $(t - 1)$-colorable.
What can we say about a graph with no H-minor?

Conjecture (Hadwiger, 1943)

Every graph with no K_t-minor is $(t - 1)$-colorable.

Wagner, 1937: $t = 5$ case is equivalent to the Four Color Theorem.
Hadwiger’s Conjecture

- What can we say about a graph with no H-minor?

Conjecture (Hadwiger, 1943)

Every graph with no K_t-minor is $(t - 1)$-colorable.

- Wagner, 1937: $t = 5$ case is equivalent to the Four Color Theorem.
- Robertson-Seymour-Thomas, 1993: true for $t = 6$.
Theorem (Kostochka; Thomason, 1980s)

*Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.***
Average degree

Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t^{\sqrt{\log t}})$.

- Bollobás, Catlin, Erdős 1980: this is tight.
Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.
- Every graph G has a subgraph of minimum degree $\chi(G) - 1$.
Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.

- Every graph G has a subgraph of minimum degree $\chi(G) - 1$. \implies
Average degree

Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.
- Every graph G has a subgraph of minimum degree $\chi(G) - 1$. \implies

 $\text{no } K_t \text{ minor } \implies \chi(G) \leq O(t\sqrt{\log t})$
Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.

- Every graph G has a subgraph of minimum degree $\chi(G) - 1$. \implies

 no K_t minor $\implies \chi(G) \leq O(t\sqrt{\log t})$

- Norin, Postle, Song: no K_t minor $\implies \chi(G) \leq t(\log t)^{1/4+o(1)}$
Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t \sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.
- Every graph G has a subgraph of minimum degree $\chi(G) - 1$. \implies
 $$\text{no } K_t \text{ minor } \implies \chi(G) \leq O(t \sqrt{\log t})$$
- Norin, Postle, Song: no K_t minor \implies $\chi(G) \leq t(\log t)^{1/4+o(1)}$
- Postle: no K_t minor \implies $\chi(G) \leq O(t(\log \log t)^6)$
Average degree

Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.

- Every graph G has a subgraph of minimum degree $\chi(G) - 1$. \implies

 no K_t minor $\implies \chi(G) \leq O(t\sqrt{\log t})$

- Norin, Postle, Song: no K_t minor $\implies \chi(G) \leq t(\log t)^{1/4+o(1)}$

- Postle: no K_t minor $\implies \chi(G) \leq O(t(\log \log t)^6)$

- Delcourt, Postle: no K_t minor $\implies \chi(G) \leq O(t \log \log t)$
Theorem (Kostochka; Thomason, 1980s)

Every graph with no K_t-minor has average degree $O(t\sqrt{\log t})$.

- Bollobás, Catlin, Erdős 1980: this is tight.

- Every graph G has a subgraph of minimum degree $\chi(G) - 1$. \Rightarrow

 no K_t minor \implies $\chi(G) \leq O(t\sqrt{\log t})$

- Norin, Postle, Song: no K_t minor \implies $\chi(G) \leq t(\log t)^{1/4+o(1)}$

- Postle: no K_t minor \implies $\chi(G) \leq O(t(\log \log t)^6)$

- Delcourt, Postle: no K_t minor \implies $\chi(G) \leq O(t \log \log t)$ also
 no K_t minor, K_r-free \implies $\chi(G) \leq O(t)$
Conjecture (Hadwiger, 1943)

Every graph G has a clique minor of size $\chi(G)$.

Corollary: Any n-vertex graph G has a clique minor of size $\frac{n}{\alpha(G)}$.

Duchet, Meyniel 1982: true for $n/\left(2\alpha(G) - 1\right)$.

Fox 2010: first improvement in the constant factor.

Balogh, Kostochka 2011: currently best bound $0.513 \frac{n}{\alpha(G)}$.

Matija Bucić (IAS and Princeton) Clique minors in graphs with a forbidden subgraph Oberwolfach, January 2022
Conjecture (Hadwiger, 1943)

Every graph G has a clique minor of size $\chi(G)$.

- Corollary: Any n-vertex graph G has a clique minor of size $n/\alpha(G)$.
Conjecture (Hadwiger, 1943)

Every graph G **has a clique minor of size** $\chi(G)$.

- **Corollary**: Any n-vertex graph G has a clique minor of size $n/\alpha(G)$.
- **Duchet, Meyniel 1982**: true for $n/(2\alpha(G) - 1)$.
Conjecture (Hadwiger, 1943)

Every graph G has a clique minor of size $\chi(G)$.

- Corollary: Any n-vertex graph G has a clique minor of size $n/\alpha(G)$

- Duchet, Meyniel 1982: true for $n/(2\alpha(G) − 1)$.

- Fox 2010: first improvement in the constant factor.
Conjecture (Hadwiger, 1943)

Every graph G has a clique minor of size $\chi(G)$.

- Corollary: Any n-vertex graph G has a clique minor of size $n/\alpha(G)$.
- Duchet, Meyniel 1982: true for $n/(2\alpha(G) - 1)$.
- Fox 2010: first improvement in the constant factor.
- Balogh, Kostochka 2011: currently best bound $0.513n/\alpha(G)$.
Theorem (Kuhn and Osthus; Krivelevich and Sudakov)

If G does not have a bipartite graph F as a subgraph then it has a clique minor of size $(n/\alpha(G))^{1+c}$ for some $c = c(F) > 0$.

True for average degree instead of Hall ratio as well.

Question (Dvořák and Yepremyan)
Do we get a similar improvement over what Hadwiger's conjecture implies for F-free graphs for any forbidden graph F?
Theorem (Kuhn and Osthus; Krivelevich and Sudakov)

If G does not have a bipartite graph F as a subgraph then it has a clique minor of size $(n/\alpha(G))^{1+c}$ for some $c = c(F) > 0$.

- True for average degree instead of Hall ratio as well.

What about non-bipartite forbidden graphs?

Theorem (Dvořák and Yepremyan)

Any triangle-free graph G has a clique minor of size $(n/\alpha(G))^{1+c_2}$.

Question (Dvořák and Yepremyan)

Do we get a similar improvement over what Hadwiger's conjecture implies for F-free graphs for any forbidden graph F?
Theorem (Kuhn and Osthus; Krivelevich and Sudakov)

If G does not have a bipartite graph F as a subgraph then it has a clique minor of size $(n/\alpha(G))^{1+c}$ for some $c = c(F) > 0$.

- True for average degree instead of Hall ratio as well.
- What about non-bipartite forbidden graphs?
Large clique minors due to forbidden subgraphs

Theorem (Kuhn and Osthus; Krivelevich and Sudakov)

If G does not have a bipartite graph F as a subgraph then it has a clique minor of size $(n/\alpha(G))^{1+c}$ for some $c = c(F) > 0$.

- True for average degree instead of Hall ratio as well.
- What about non-bipartite forbidden graphs?

Theorem (Dvořák and Yepremyan)

Any triangle-free graph G *has a clique minor of size* $(n/\alpha(G))^{1+\frac{1}{26}}$.
Theorem (Kuhn and Osthus; Krivelevich and Sudakov)

If G does not have a bipartite graph F as a subgraph then it has a clique minor of size $(n/\alpha(G))^{1+c}$ for some $c = c(F) > 0$.

- True for average degree instead of Hall ratio as well.
- What about non-bipartite forbidden graphs?

Theorem (Dvořák and Yepremyan)

Any triangle-free graph G has a clique minor of size $(n/\alpha(G))^{1+\frac{1}{26}}$

Question (Dvořák and Yepremyan)

Do we get a similar improvement over what Hadwiger’s conjecture implies for F-free graphs for any forbidden graph F?
Large clique minors due to forbidden subgraphs

Theorem (B., Fox and Sudakov)

Any F-free graph G has a clique minor of size $(n/\alpha(G))^{1+c}$, $c = c(F) > 0$.
Theorem (B., Fox and Sudakov)

Any F-free graph G has a clique minor of size $(n/\alpha(G))^{1+c}$, $c = c(F) > 0$

- We have $c(K_s) = \frac{1}{10(s-2)}$ which is tight up to an absolute constant factor.
Theorem (B., Fox and Sudakov)

Any F-free graph G has a clique minor of size $(n/\alpha(G))^{1+c}$, $c = c(F) > 0$

- We have $c(K_s) = \frac{1}{10(s-2)}$ which is tight up to an absolute constant factor.
- Simpler proof for $F = K_3$ with $c = \frac{1}{4}$.
Any F-free graph G has a clique minor of size $(n/\alpha(G))^{1+c}$, $c = c(F) > 0$.

- We have $c(K_s) = \frac{1}{10(s-2)}$ which is tight up to an absolute constant factor.
- Simpler proof for $F = K_3$ with $c = \frac{1}{4}$.
- Simpler proof for F bipartite as well.
Given a graph G we wish to construct a denser minor.
Given a graph G we wish to construct a denser minor.

1. Color every vertex red with probability p and blue with probability $1 - p$.
2. Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).

Gives rise to vertex disjoint stars with red centers and blue leaves. We obtain a random minor M by contracting the stars.
A random approach for generating minors

- Given a graph G we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability p and blue with probability $1-p$.

 Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).

 Gives rise to vertex disjoint stars with red centers and blue leaves.

 We obtain a random minor M by contracting the stars.
A random approach for generating minors

- Given a graph G we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability p
A random approach for generating minors

- Given a graph G we wish to construct a denser minor.
- Step 1: Color every vertex: **red** with probability p and **blue** with probability $1 - p$.

![Graph G example](image)
A random approach for generating minors

- Given a graph G we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability p and blue with probability $1 - p$.

\[G \]
A random approach for generating minors

- Given a graph \(G \) we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability \(p \) and blue with probability \(1 - p \).
- Step 2: Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).
A random approach for generating minors

- Given a graph G we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability p and blue with probability $1 - p$.
- Step 2: Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).
Given a graph G we wish to construct a denser minor.

Step 1: Color every vertex: red with probability p and blue with probability $1 - p$.

Step 2: Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).

Gives rise to vertex disjoint stars with red centers and blue leaves.
A random approach for generating minors

- Given a graph \(G \) we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability \(p \) and blue with probability \(1 - p \).
- Step 2: Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).
- Gives rise to vertex disjoint stars with red centers and blue leaves.
- We obtain a random minor \(M \) by contracting the stars.

\[G \]
A random approach for generating minors

- Given a graph G, we wish to construct a denser minor.

- **Step 1:** Color every vertex: red with probability p and blue with probability $1 - p$.

- **Step 2:** Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).

- Gives rise to vertex disjoint stars with red centers and blue leaves.

- We obtain a random minor \mathcal{M} by contracting the stars.

Matija Bucić (IAS and Princeton)

Clique minors in graphs with a forbidden subgraph

Oberwolfach, January 2022
A random approach for generating minors

- Given a graph G we wish to construct a denser minor.
- Step 1: Color every vertex: red with probability p and blue with probability $1 - p$.
- Step 2: Every blue vertex chooses one among its red neighbors uniformly at random (provided it exists).
- Gives rise to vertex disjoint stars with red centers and blue leaves.
- We obtain a random minor \mathcal{M} by contracting the stars.
Analysis

- # of vertices of \mathcal{M}
Analysis

- # of vertices of $\mathcal{M} = # \text{ of red vertices}$

A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1-p)^2$. We need to control the number of parallel edges.

A 3-path $vxyu$ is activated if:

- v, u are red, happens with probability $\Omega(1/d^2)$;
- x, y are blue, happens with probability p^2;
- x chose v and y chose u, happens with probability $\approx (1/pd)^2$.

We want to choose a large family \mathcal{P} of 3-paths with not too many 3-paths between same pairs of vertices.
Analysis

- # of vertices of $\mathcal{M} = $ # of red vertices $\approx np$
Analysis

- # of vertices of $\mathcal{M} = \#$ of red vertices $\approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
Analysis

- \# of vertices of $\mathcal{M} = \#$ of red vertices $\approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
Analysis

- \# of vertices of \(\mathcal{M} \) = \# of red vertices \(\approx np \)

- A fixed edge of \(G \) gives rise to an edge of \(\mathcal{M} \) with probability \((1 - p)^2\)
Analysis

- # of vertices of $M = # \text{ of red vertices} \approx np$
- A fixed edge of G gives rise to an edge of M with probability $(1 - p)^2$
Analysis

- # of vertices of $\mathcal{M} = $ # of red vertices $\approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
- We need to control the number of parallel edges.
Analysis

- # of vertices of $\mathcal{M} = \#$ of red vertices $\approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
- We need to control the number of parallel edges.
Analysis

- # of vertices of $\mathcal{M} = # of red vertices \approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
- We need to control the number of parallel edges.
- A 3-path $vxyu$ is activated if:

![Diagram of a graph with vertices v, x, y, u and edges illustrating the activated conditions]
Analysis

- # of vertices of $\mathcal{M} = # \text{ of red vertices} \approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
- We need to control the number of parallel edges.
- A 3-path $vxyu$ is activated if:

![Diagram of a 3-path](attachment:image.png)
Analysis

- # of vertices of $\mathcal{M} = \#$ of red vertices $\approx np$
- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$
- We need to control the number of parallel edges.
- A 3-path $vxyu$ is activated if:
 - v, u are red,
Analysis

- \# of vertices of \(M \) = \# of red vertices \(\approx np \)
- A fixed edge of \(G \) gives rise to an edge of \(M \) with probability \((1 - p)^2 \)
- We need to control the number of parallel edges.

- A 3-path \(vxyu \) is activated if:
 - \(v, u \) are red,
 - \(x, y \) are blue,
Analysis

- # of vertices of $\mathcal{M} = \#$ of red vertices $\approx np$

- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$

- We need to control the number of parallel edges.

- A 3-path $vxyu$ is *activated* if:
 - v, u are red,
 - x, y are blue,
 - x chose v and y chose u.
of vertices of $\mathcal{M} = \#$ of red vertices $\approx np$

A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$

We need to control the number of parallel edges.

A 3-path $vxyu$ is *activated* if:

- v, u are red,
- x, y are blue,
- x chose v and y chose u.

We want to choose a large family \mathcal{P} of 3-paths with not too many 3-paths between same pairs of vertices.
Analysis

- \# of vertices of \(M = \# \) of red vertices \(\approx np \)

- A fixed edge of \(G \) gives rise to an edge of \(M \) with probability \((1 - p)^2 \)

- We need to control the number of parallel edges.

- A 3-path \(vxyu \) is *activated* if:
 - \(v, u \) are red, happens with probability \(p^2 \)
 - \(x, y \) are blue,
 - \(x \) chose \(v \) and \(y \) chose \(u \).

- We want to choose a large family \(\mathcal{P} \) of 3-paths with not too many 3-paths between same pairs of vertices.
Analysis

- The number of vertices of $\mathcal{M} = \# \text{ of red vertices} \approx np$

- A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$.

- We need to control the number of parallel edges.

- A 3-path $vxyu$ is activated if:
 - v, u are red, happens with probability p^2
 - x, y are blue, happens with probability $(1 - p)^2$
 - x chose v and y chose u.

- We want to choose a large family \mathcal{P} of 3-paths with not too many 3-paths between same pairs of vertices.
of vertices of $\mathcal{M} = \# \text{ of red vertices } \approx np$

A fixed edge of G gives rise to an edge of \mathcal{M} with probability $(1 - p)^2$

We need to control the number of parallel edges.

A 3-path $vxyu$ is *activated* if:
- v, u are red, happens with probability p^2
- x, y are blue, happens with probability $(1 - p)^2$
- x chose v and y chose u, happens with probability $\approx (1/pd)^2$

We want to choose a large family \mathcal{P} of 3-paths with not too many 3-paths between same pairs of vertices.
Analysis

- \# of vertices of \(\mathcal{M} = \# \) of red vertices \(\approx np \)

- A fixed edge of \(G \) gives rise to an edge of \(\mathcal{M} \) with probability \((1 - p)^2\)

- We need to control the number of parallel edges.

- A 3-path \(vxyu \) is activated if:
 - \(v, u \) are red, happens with probability \(\Omega(1/d^2) \)
 - \(x, y \) are blue, happens with probability \(p^2 \)
 - \(x \) chose \(v \) and \(y \) chose \(u \), happens with probability \((1 - p)^2 \)
 - \(x \) chose \(v \) and \(y \) chose \(u \), happens with probability \(\approx (1/pd)^2 \)

- We want to choose a large family \(\mathcal{P} \) of 3-paths with not too many 3-paths between same pairs of vertices.
Example: triangle-free case

Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
Example: triangle-free case

Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
• Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

• Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

• We may assume $d = O(t\sqrt{\log t})$
Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

We may assume $d = O(t\sqrt{\log t})$

We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
Example: triangle-free case

Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

We may assume $d = O(t\sqrt{\log t})$

We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$

$\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v

![Diagram](image-url)
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- \(\forall v\) we choose a family \mathcal{P}_v of 3-paths starting in v
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3 - o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- For all v we choose a family \mathcal{P}_v of 3-paths starting in v

```
\begin{tikzpicture}
  \node[shape=circle,draw=black] (v) at (0,0) {$v$};
  \node[shape=circle,draw=black] (Nv) at (1,1) {$N(v)$};
  \node[shape=circle,draw=black] (N2v) at (2,1) {$N_2(v)$};
  \node[shape=circle,draw=black] (N3v) at (3,1) {$N_3(v)$};
  \node[shape=circle,draw=black] (u) at (4,0) {$u$};

  \draw[-] (v) -- (Nv);
  \draw[-] (v) -- (N2v);
  \draw[-] (v) -- (N3v);

  \draw[-] (Nv) -- (N2v);
  \draw[-] (Nv) -- (N3v);

  \draw[-] (N2v) -- (N3v);

  \node[below=0.5cm] at (v) {$d$};
  \node[below=0.5cm] at (Nv) {$\geq \rho d$};
\end{tikzpicture}
```
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- For all v we choose a family \mathcal{P}_v of 3-paths starting in v
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t \sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v

\[|\mathcal{P}_v| \geq \rho^2 d \]
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v of size $|\mathcal{P}_v| \geq d\rho^2$:
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t \sqrt{\log t})$.
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$.
- $\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v of size $|\mathcal{P}_v| \geq d\rho^2$:

\[|\mathcal{P}_v| \geq d\rho^2 \]
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t \sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- For all v we choose a family \mathcal{P}_v of 3-paths starting in v of size $|\mathcal{P}_v| \geq d\rho^2$.
- We partition \mathcal{P}_v according to other endpoint u into families \mathcal{P}_{vu}.
Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

We may assume $d = O(t\sqrt{\log t})$

We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$

$\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v of size $|\mathcal{P}_v| \geq d\rho^2$:

We partition \mathcal{P}_v according to other endpoint u into families \mathcal{P}_{vu}

middle edges of \mathcal{P}_{vu} make a matching
Example: triangle-free case

Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

We may assume $d = O(t \sqrt{\log t})$

We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$

$\forall v$ we choose a family \mathcal{P}_v of 3-paths starting in v of size $|\mathcal{P}_v| \geq d \rho^2$:

We partition \mathcal{P}_v according to other endpoint u into families \mathcal{P}_{vu}

middle edges of \mathcal{P}_{vu} make a matching \implies probability some path in \mathcal{P}_{vu} activates is $\geq \Omega(|\mathcal{P}_{vu}|/d^2)$
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t \sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family P_v of 3-paths starting in v of size $|P_v| \geq d\rho^2$:
- We partition P_v according to other endpoint u into families P_{vu}
- middle edges of P_{vu} make a matching \implies probability some path in P_{vu} activates is $\geq \Omega(|P_{vu}|/d^2)$
- Expected degree of v in M is $\geq \Omega(|P_v|/d^2) \geq \Omega(\rho^2/d)$
Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

We may assume $d = O(t \sqrt{\log t})$

We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$

$\forall v$ we choose a family P_v of 3-paths starting in v of size $|P_v| \geq d\rho^2$:

We partition P_v according to other endpoint u into families P_{vu}

middle edges of P_{vu} make a matching \implies probability some path in P_{vu} activates is $\geq \Omega(|P_{vu}|/d^2)$

Expected degree of v in M is $\geq \Omega(|P_v|/d^2) \geq \Omega(\rho^2/d)$

Expected average degree in M is at least

$$\Omega \left(\frac{n \cdot \rho^2 / d}{np} \right)$$
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$
- $\forall v$ we choose a family P_v of 3-paths starting in v of size $|P_v| \geq d\rho^2$:
 - We partition P_v according to other endpoint u into families P_{vu}
 - middle edges of P_{vu} make a matching \implies probability some path in P_{vu} activates is $\geq \Omega(|P_{vu}|/d^2)$
- Expected degree of v in M is $\geq \Omega(|P_v|/d^2) \geq \Omega(\rho^2/d)$
- Expected average degree in M is at least

$$\Omega\left(\frac{n \cdot \rho^2/d}{np}\right) = \Omega\left(\frac{\rho^2}{pd}\right)$$
Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.

Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.

We may assume $d = O(t \sqrt{\log t})$

We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$

\[\forall v \text{ we choose a family } \mathcal{P}_v \text{ of 3-paths starting in } v \text{ of size } |\mathcal{P}_v| \geq d \rho^2: \]

We partition \mathcal{P}_v according to other endpoint u into families \mathcal{P}_{vu}

middle edges of \mathcal{P}_{vu} make a matching \implies probability some path in \mathcal{P}_{vu} activates is $\geq \Omega(|\mathcal{P}_{vu}|/d^2)$

Expected degree of v in \mathcal{M} is $\geq \Omega(|\mathcal{P}_v|/d^2) \geq \Omega(\rho^2/d)$

Expected average degree in \mathcal{M} is at least

\[\Omega\left(\frac{n \cdot \rho^2/d}{np} \right) = \Omega\left(\frac{\rho^2}{pd} \right) = \Omega\left(\frac{\rho^2}{\sqrt{d}} \right) \]
Example: triangle-free case

- Let G be a triangle-free, d-regular graph with $\alpha = \alpha(G)$ and $p = 1/\sqrt{d}$.
- Goal: show G has a K_t-minor with $t = (n/\alpha)^{4/3-o(1)}$.
- We may assume $d = O(t\sqrt{\log t})$.
- We may assume G is ρ-independent set expanding with $\rho := \Omega(n/\alpha)$.
- \forall v$ we choose a family P_v of 3-paths starting in v of size $|P_v| \geq d\rho^2$:
 - We partition P_v according to other endpoint u into families P_{vu}.
 - Middle edges of P_{vu} make a matching \implies probability some path in P_{vu} activates is $\geq \Omega(|P_{vu}|/d^2)$.
 - Expected degree of v in M is $\geq \Omega(|P_v|/d^2) \geq \Omega(\rho^2/d)$.
 - Expected average degree in M is at least

$$\Omega\left(\frac{n \cdot \rho^2/d}{np}\right) = \Omega\left(\frac{\rho^2}{pd}\right) = \Omega\left(\frac{\rho^2}{\sqrt{d}}\right) \geq \rho^{4/3+o(1)}$$
Open problems

Question

What is the max. $c(F)$ s.t. any F-free graph has a clique minor of size $(n/\alpha)^{1+c(F)-o(1)}$?
Open problems

Question

What is the max. $c(F)$ s.t. any F-free graph has a clique minor of size $(n/\alpha)^{1+c(F)-o(1)}$?

Question

For which graphs F does G being F-free implies G has a clique minor of size $(\chi(G))^{1+c}$ for some $c = c(F) > 0$?
Open problems

Question
What is the max. $c(F)$ s.t. any F-free graph has a clique minor of size $(n/\alpha)^{1+c(F)-o(1)}$?

Question
For which graphs F does G being F-free implies G has a clique minor of size $(\chi(G))^{1+c}$ for some $c = c(F) > 0$?

- True if F is bipartite
Open problems

Question

What is the max. $c(F)$ s.t. any F-free graph has a clique minor of size $(n/\alpha)^{1+c(F)-o(1)}$?

Question

For which graphs F does G being F-free implies G has a clique minor of size $(\chi(G))^{1+c}$ for some $c = c(F) > 0$?

- True if F is bipartite
- Not true if F contains a triangle.
