Supplementary Figures

GATA4-driven miR-206-3p signatures control orofacial bone development by regulating osteogenic and osteoclastic activity

Shuyu Guo2, 3, 4*, Jiawen Gu3, 4*, Junqing Ma2, 3, 4*, Rongyao Xu3, 4, Li Meng3, 4, Haojie Liu3, 4, Qingheng Wu3, 4, Lu Li1, 3, 4 & Yan Xu1, 3, 4 ✉

1 Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
2 Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
3 Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China.
4 Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.

*These authors contributed equally to this work.

✉ Correspondence author: Yan Xu, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, China. E-mail: yanxu@njmu.edu.cn, Fax: 0086-25-85031976
Figure S1. Exosomes derived from OMSCs promote osteoclastic differentiation and function.

(A) Images of OMSCs stained with DAPI to identify nuclei, and immunostained for the mesenchymal stem cell-associated markers (CD73 and SCA1). Scale bar: 200 µm.

(B) The size and the nuclei numbers of TRAP-positive multinucleated cells (TRAP⁺MNCs) in Figure 2A were measured (n = 5).

(C) M-CSF and RANKL treated bone marrow-derived macrophages (BMMs) from Gata4fl/fl (WT) mice and Wnt1-cre;Gata4fl/fl (cKO) mice, and then the cells were stained for TRAP. The size and the nuclei numbers of TRAP⁺MNCs were measured (n = 5). Scale bar: 200 µm.

(D) OMSCs infected with lentivirus was assessed by fluorescence microscopy. Scale bar: 200 µm.

(E) Efficiency of GATA4 knockdown in the protein and mRNA level after infection with lentivirus and quantitative analysis of western blotting and
qRT-PCR analysis (n = 5). (F) The size and the nuclei numbers of TRAP⁺MNCs in Figure 2G were measured (n = 5). (G) RAW264.7 cells were cultured in a medium with exosomes isolated from shCtr or shGATA4 OMSCs (OMExo-Ctr, OMExo-G4). After 24 h, cell viability was measured by CCK-8 assay (n = 5). (H) RAW264.7 cells were cultured in osteoclastogenic medium in the presence of OMExo-Ctr or OMExo-G4. Cell mobility was measured by wound healing assay. Scale bar: 200µm. Two-tailed Student’s t test. Each experiment was repeated at least three times with the same conditions. Data are shown as mean ± SD. **P < 0.01; ns, not significant.
Figure S2. GATA4-miR-206-3p-Bmp3 signaling in regulating osteogenic differentiation of OMSCs.

(A) The ALP activity and the number of mineral nodules of OMSCs from Gata4^{lo/lo} (WT) mice or Wnt1-cre;Gata4^{lo/lo} (cKO) mice were accessed by ALP and ARS assay (n = 5). Two-tailed Student’s t test. (B) Indicated osteogenic gene expression analysis of shGATA4-transfected OMSCs as compared with shCtr OMSCs after 5 days following mineralization induction (n = 5). Two-tailed Student’s t test. (C) Protein expression levels of several osteogenic markers in shGATA4-transfected OMSCs were detected by western blotting as compared with shCtr OMSCs after 5 days following mineralization induction (n = 5). Two-tailed Student’s t test. (D) qRT-PCR analysis showed the knockdown and over expression efficiency of miR-206-3p in OMSC-derived osteoblasts (n = 5). Ordinary one-way ANOVA. (E) The ALP activity
and semi-quantitative estimation of calcium from Figure 4A were measured (n = 5). Ordinary one-way ANOVA. (F) OMSCs were co-transfected with shGATA4 and miR-206-3p mimic, the mRNA levels of *Opn*, *Ocn*, *Runx2*, *Alp* and *Osx* in the indicated cells were detected using qRT-PCR analysis (n = 5), and (G) ALP and ARS staining to detect osteogenic induction (n = 5). Ordinary one-way ANOVA. (H) miR-206-3p control inhibitor /inhibitor/ control mimic/ mimic transfected OMSCs were subjected to qRT-PCR analysis to detect the mRNA levels of Bmp3 (n = 5). Ordinary one-way ANOVA. (I) Protein and mRNA levels of Bmp3 from OMSCs of WT and cKO mice were examined by using western blotting and qRT-PCR analysis (n = 5). Two-tailed Student’s t test. (J) OMSCs were co-transfected with miR-206-3p inhibitor and siBmp3, the mRNA levels of *Bmp3*, *Opn*, *Ocn*, *Runx2*, *Alp* and *Osx* in the indicated cells were detected using qRT-PCR analysis (n = 5). Ordinary one-way ANOVA. control inhibitor, Ctr-inhi; inhibitor, inhi; control mimic, Ctr-mimic. Each experiment was repeated at least three times with the same conditions. Data are shown as mean ± SD. *P < 0.05, **P < 0.01.
Figure S3. Exosomal miR-206-3p from OMSCs regulates osteoclast activity by targeting NFATc1.

(A) The exosomes from OMSCs were treated with miR-206-3p inhibitor or mimic, respectively, and then co-cultured with RANKL-treated RAW264.7 cells. The knockdown and over expression efficiency of miR-206-3p in osteoclasts was examined by qRT-PCR (n = 5). Ordinary one-way ANOVA. (B) The size and the nuclei numbers of TRAP-positive multinucleated cells (TRAP+MNCs) in Figure 5A were measured (n = 5). Ordinary one-way ANOVA. (C) Protein and mRNA levels of NFATc1 of bone marrow-derived macrophages (BMMs) from Gata4fl/fl (WT) mice or
*Wnt1-cre;Gata4*0/β* (cKO) mice were examined by using western blotting and qRT-PCR analysis (n = 5). Two-tailed Student’s t test. (D) RANKL-treated RAW264.7 cells were co-transfected with miR-206-3p inhibitor and siNFATc1, mRNA levels of osteoclast related genes including NFATc1, Car2, Mmp9, Ctsk and TRAP were determined by using qRT-PCR assay. Ordinary one-way ANOVA. Each experiment was repeated at least three times with the same conditions. control inhibitor, Ctr-inhi; inhibitor, inhi; control mimic, Ctr-mimic. Data are shown as mean ± SD. *P < 0.05, **P < 0.01.
Gene	Primer	Sequence (5’-3’)
NFATc1	Forward	CGAGTTCACATCCACACAG
	Reverse	GACAGCCACATCTTTCTTC
Car2	Forward	ATCCCTTGCTCCCTTCTTC
	Reverse	ATCCAGGTCACACATTCC
Mmp9	Forward	TCACTTTCCTTCACCTTC
	Reverse	ATTTGCGCTCTTTATCGT
Ctsk	Forward	CCCATCTCTGTGTCCCATC
	Reverse	AGTGCTTGCTTTCCCTTCT
TRAP	Forward	CAGCAGCCAAGGAGGACTAC
	Reverse	ACATAGCCCAACACGTTCTC
Opn	Forward	ACCATGCAGAGAGGCCAGATT
	Reverse	GGGACATCGACTGTTAGGGACG
Ocn	Forward	ACTCTTGCTCTCGTCCACT
	Reverse	GGTCTCTTCACTACCTCGCT
Runx2	Forward	AGTTCCCAAGGCTTTCATC
	Reverse	GGCAGGTAGGTGGTAGT
Alp	Forward	CAGTGCGGTTCCAGACATAG
	Reverse	GAACAGAAACTGTGGTGAATAG
Osx	Forward	CTACCCATCTGACTTTGCTC
	Reverse	CACTATTCCCACCTGCTT
Rankl	Forward	AACAGGCCCTTTCAA GGAGCTGTGC
	Reverse	AAGAGGACAGACTCACTTTATGGGG
Bmp3	Forward	AACGATGCTGCCATTTTCT
	Reverse	CTTCCTCCTCTCAACCGA
GAPDH	Forward	GAAGGTGAAGGTCGGAGTC
	Reverse	GAGATGGTGATGGGATTTC
Table S2. Differential genes

Upregulated miRNAs	Downregulated miRNAs
miR-6908-5p	miR-409-3p
miR-711	miR-6970-5p
miR-6366	mir-5126
miR-2137	miR-6987-5p
miR-6349	miR-7081-5p
miR-7003-5p	miR-221-3p
miR-99b-5p	miR-652-3p
miR-8101	miR-1981-5p
miR-145a-5p	miR-8119
miR-674-5p	miR-714
miR-3102-5p,2-5p	miR-7653-5p
miR-7654-3p	miR-5100
miR-7046-5p	miR-7684-5p
miR-671-5p	miR-466f-5p
miR-425-5p	miR-16-1-3p
miR-5112	miR-1195
miR-30c-5p	miR-297a-5p
miR-3072-5p	miR-466h-5p
miR-7671-3p	miR-5129-3p
miR-3067-3p	miR-669a-5p
miR-34b-3p	miR-669p-5p
miR-574-3p	miR-669c-5p
miR-1249-5p	miR-574-5p
miR-151-3p	miR-3082-5p
miR-34c-3p	miR-669l-5p
miR-100-5p	mir-1194
miR-28a-3p	
miR-7687-5p	
miR-700-3p	
miR-6239	
miR-193b-3p	
miR-3473f	
miR-3104-5p	
miR-211-3p	
miR-423-5p	
miR-7221-3p	
miR-329-3p	
miR-6368	
miR-504-3p	
miR-222-3p	
miR-6910-5p	