Rapid detection of gelatin in dental materials using attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR)

N Irfanita¹, I Jaswir¹, M E S Mirghani¹, S Sukmasari², Y D Ardini² and W Lestari³ *

¹ International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur, Malaysia
² Department of Paediatric Dentistry, Kulliyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
³ Department of Oral Biology, Kulliyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia

E-mail: drwidya@iium.edu.my

Abstract. The presence of gelatin is not limited to food products but has also been found in pharmaceuticals. Most dental materials available in Malaysia are imported from other countries and might contain gelatin which is a protein derived either from porcine, bovine or other animal sources. Authentication of gelatin is crucial due to religious and health concerns. Therefore, this study aimed to detect gelatin in dental materials using ATR-FTIR. Forty two samples of dental material were purchased from dental suppliers and detection was done using ATR-FTIR. The spectrum from each sample was compared against standard bovine and porcine gelatin. Experimental dental paste containing bovine and porcine gelatin at concentrations of 5, 10, 15 and 20% were also prepared for quantification analysis. The results showed that gelatin was present in nine out of forty two samples of dental materials but the species of origin was not confirmed. Meanwhile, in the experimental bovine and porcine dental paste, it was seen that as the concentration increased, the intensity of the absorption of Amide group also increased. Thus, ATR-FTIR can be utilized as a reliable tool to detect gelatin in dental materials and other pharmaceuticals.

1. Introduction

In the recent years, Muslims are seeking halal integrity not only with meat-based products but also with a wide range of products. This has also spread to a growing awareness about cosmetics, personal care products and pharmaceuticals including dental products where a research has cited that more than 20% of Muslim consumers are concerned about the Halal status of products they are using [1]. The basic principle in Islam is that all things created by God (Allah) are permitted, with few exceptions that are specifically prohibited (non halal or haram). The basis for the prohibition of anything in Islam is purely and strictly Quranic guidance (The divine book) from Allah (The Creator) to the Prophet Mohammed S.A.W. for all mankind. This is clear in Chapter II, verse 172-173, Chapter V, verse 3-5 and Chapter VI, verse 145 of the Quran. Muslims of all ethnic and geographic origins strictly observe these laws. Besides that, the Jewish community also
has their own dietary laws called Kosher law which prohibits them from consuming porcine-derived products while Hindus abstain from the use of bovine or cow-based products [2].

Dental materials are materials used in both laboratory and practical dentistry and can be categorised as preventive materials, restorative materials or auxiliary materials. Preventive dental materials are materials which contain antibacterial, fluoride or other therapeutic agents against dental caries. Restorative dental materials can be applied in repairing or replacing tooth structure and mainly consists of synthetic components. Meanwhile, materials which are used in fabricating dental prostheses are known as auxiliary dental materials. One example of these materials includes impression material [3].

Most dental materials available in Malaysia are imported from other countries and might contain gelatin. The labelling of these products is not clear since the label does not mention the excipients used, which could include gelatin. Gelatin is a protein derived from hydrolysed collagen of bones, hides and skins from various animals such as cattle and pig. It was reported that gelatin derived from porcine (pig) skin is more abundant compared to gelatin derived from other animals [4]. Authentication of gelatin is crucial not only due to religious reasons but also includes health concerns such as the outbreak of Bovine Spongiform Encephalopathy (BSE) or mad cow disease which is transmitted through infected cattle [5].

Analytical methods to detect the presence of gelatin have been carried out by researchers. These methods include amino acid analysis [6-7], spectroscopic analysis [8-10], and DNA analysis [2, 11-14].

The use of Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy has been reported to be useful since it produces reliable, accurate and rapid results as it requires less than 2 minutes per sample analysis. This method is also known to be non-destructive and requires simple sample preparation to obtain information on the chemical and molecular properties of various substances [15]. Most of the studies reported focus on detection of raw gelatin, or gelatin in processed foods or capsules and not in dental materials. Hence, the present study was aimed to detect gelatin in dental materials using ATR-FTIR spectroscopy.

2. Materials and Methods
2.1 Samples
Porcine skin gelatin and bovine skin gelatin were purchased from Sigma-Aldrich (St. Louis, MO, USA). 42 samples of dental materials used in Polyclinic, Kulliyah of Dentistry were purchased from various legal dental suppliers in Malaysia.

2.2 Sample Preparation
Samples of dental products were classified into 4 types such as powder, paste, gel and liquid. The powder sample was homogenized and dissolved in deionized water. The other samples were directly placed into the ATR surface area. Control samples of pure porcine and bovine gelatin powder were dissolved in deionized water and incubated at 50 °C for 10 minutes until a clear solution was obtained.

2.3 Experimental (home-made) dental paste preparation
Dental paste containing bovine and porcine gelatin at concentrations of 5%, 10%, 15% and 20% were prepared. Bovine gelatin dental paste was made by mixing bovine skin powder, sodium bicarbonate and sodium chloride. Meanwhile, porcine dental paste was prepared by mixing porcine skin powder, sodium bicarbonate and sodium chloride. The mixture was mixed until it achieved a paste-like texture.

2.4 Infrared spectroscopy measurements
Perkin Elmer spectrometer (PerkinElmer, Inc., USA) with an ATR detector was used in the measurements. All spectra were recorded within a range of 4000-400 cm⁻¹ with a 2 cm⁻¹ resolution and
16 scans. All measurements were performed at room temperature (25 ± 0.5 °C) in a dry atmosphere. A background of air spectrum was scanned before measurement of samples. The air background spectrum was subtracted from the spectra obtained from samples and the results were presented in absorbance units.

3. Results and Discussion

3.1 Results

3.1.1 Classification of dental materials

List of dental products used are shown in Table 1. Forty two samples of dental materials were classified based on type of material and batch number. Each sample was assigned product number BDM 01 until BDM 42. The dental materials were classified into haemostatic agent, restoration material, dental prophylaxis, oral surgery, impression material, dental anaesthetic agent, oral rinse, prosthetic material and preventive material.

Product number	Brief description on material	Type of material
BDM01	Haemostatic agent	Sponge
BDM02	Haemostatic agent	Sponge
BDM03	Haemostatic agent	Sponge
BDM04	Haemostatic agent	Liquid
BDM05	Haemostatic agent	Paste
BDM06	Restoration material	Liquid
BDM07	Restoration material	Liquid
BDM08	Restoration material	Powder
BDM09	Restoration material	Paste
BDM10	Restoration material	Powder
BDM11	Dental prophylaxis	Gel
BDM12	Restoration material	Paste
BDM13	Restoration material	Liquid
BDM14	Restoration material	Paste
BDM15	Dental anaesthetic agent	Liquid
BDM16	Dental prophylaxis	Paste
BDM17	Restoration material	Paste
BDM18	Oral surgery	Paste
BDM19	Restoration material	Paste
BDM20	Impression material	Paste
BDM21	Impression material	Gel
BDM22	Restoration material	Liquid
BDM23	Restoration material	Paste
BDM24	Restoration material	Paste
BDM25	Impression material	Paste
BDM26	Restoration material	Paste
BDM27	Dental anaesthetic agent	Gel
BDM28	Preventive material	Gel
BDM29	Dental anaesthetic agent	Gel
BDM30	Preventive material	Liquid
Table 1. Continued

Product number	Brief description on material	Type of material
BDM 31	Oral rinse	Liquid
BDM 32	Restoration material	Liquid
BDM 33	Prosthetic material	Powder
BDM 34	Periodontal dressing	Paste
BDM 35	Restoration material	Paste
BDM 36	Restoration material	Gel
BDM 37	Dental prophylaxis	Paste
BDM 38	Dental prophylaxis	Paste
BDM 39	Dental prophylaxis	Paste
BDM 40	Dental prophylaxis	Paste
BDM 41	Dental prophylaxis	Powder
BDM 42	Dental prophylaxis	Paste

3.1.2 Infrared spectrum of control samples
Figure 1 shows the infrared spectra of bovine and porcine gelatin acquired by means of ATR-FTIR. Based on Figure 1, both spectra of porcine and bovine gelatin showed similar patterns and four regions were observed; 3600-2300 cm⁻¹ (Amide A), 1656-1644 cm⁻¹ (Amide I), 1560-1335 cm⁻¹ (Amide II) and 1240-670 cm⁻¹ (Amide III).

![Figure 1. FTIR spectra of bovine and porcine gelatin](image)

3.1.3 Detection of gelatin in dental material using FTIR
Detection of gelatin in various dental materials is shown in Table 2. Nine out of forty two samples were found to contain gelatin from either porcine or bovine sources. Four of them were categorized under haemostatic agents, two samples under restorative material and one sample each under dental prophylaxis, impression material and oral rinse.
Table 2. Detection of gelatin in dental materials using ATR-FTIR

Sample	Category	Presence of Gelatin
BDM 01	Haemostatic agent	+
BDM 02	Haemostatic agent	+
BDM 03	Haemostatic agent	+
BDM 04	Haemostatic agent	-
BDM 05	Haemostatic agent	+
BDM 06	Restoration material	-
BDM 07	Restoration material	-
BDM 08	Restoration material	-
BDM 09	Restoration material	-
BDM 10	Restoration material	-
BDM 11	Dental prophylaxis	-
BDM 12	Restoration material	-
BDM 13	Restoration material	-
BDM 14	Restoration material	+
BDM 15	Dental anaesthetic agent	-
BDM 16	Dental prophylaxis	+
BDM 17	Restoration material	-
BDM 18	Oral surgery	-
BDM 19	Restoration material	-
BDM 20	Impression material	-
BDM 21	Impression material	-
BDM 22	Restoration material	-
BDM 23	Restoration material	-
BDM 24	Restoration material	-
BDM 25	Impression material	-
BDM 26	Restoration material	-
BDM 27	Dental anaesthetic agent	-
BDM 28	Preventive material	+
BDM 29	Dental anaesthetic agent	-
BDM 30	Preventive material	-
BDM 31	Oral rinse	+
BDM 32	Restoration material	-
BDM 33	Prosthetic material	-
BDM 34	Periodontal dressing	-
BDM 35	Restoration material	-
BDM 36	Restoration material	+
BDM 37	Dental prophylaxis	-
BDM 38	Dental prophylaxis	-
BDM 39	Dental prophylaxis	-
BDM 40	Dental prophylaxis	-
BDM 41	Dental prophylaxis	-
BDM 42	Dental prophylaxis	-
3.1.4 Spectra of dental materials

Figure 2 shows the spectra for haemostatic agents (BDM 01, BDM 02, BDM 03 BDM 04 and BDM 05) compared against standard bovine and porcine gelatin. In the range of 3700-3100 cm\(^{-1}\) and 1700-1600 cm\(^{-1}\), all samples showed similar patterns to both bovine and porcine gelatin. Therefore, all samples (BDM 01, BDM 02, BDM 03 BDM 04 and BDM 05) contained gelatin.

The ATR-FTIR spectra for other samples compared to standard bovine and porcine gelatin are illustrated in Figure 3. BDM 14, BDM 16, BDM 28, BDM 31 and BDM 36 showed a similar peak at the area between 1700 and 1600 cm\(^{-1}\) when compared to standard bovine and porcine gelatin.

![Figure 2](image2.png)

Figure 2. Spectra of haemostatic agents (BDM 01, BDM 02, BDM 03, and BDM 05) compared with standard bovine and porcine gelatine

![Figure 3](image3.png)

Figure 3. Spectra of other dental materials (BDM 14, BDM 16, BDM 28, BDM 31 and BDM 36) compared with standard bovine and porcine gelatin
3.1.5 FTIR spectra for dental paste containing gelatin

Figure 4 (a) and 4 (b) show FTIR spectra of dental paste containing bovine gelatin and porcine gelatin. It is seen that as the concentration increases, the intensity of the absorption of Amide I and Amide II also increased. Thus, FTIR-ATR can be utilized to detect gelatin at different concentrations.

![Figure 4 (a)](image)

Figure 4 (a). Concentration-dependent FTIR spectra of dental bovine paste (5%, 10%, 15% and 10%)

![Figure 4 (b)](image)

Figure 4 (b). Concentration-dependent FTIR spectra of dental porcine paste (5%, 10%, 15% and 10%)

3.2 Discussion

Based on the results, it is seen that bovine and porcine gelatin exhibit similar patterns of spectra. Both bovine and porcine gelatin produced four regions which are 3600-2300 cm\(^{-1}\) (Amide A), 1660-1620 cm\(^{-1}\) (Amide I), 1560-1300 cm\(^{-1}\) (Amide II) and 1240-670 cm\(^{-1}\) (Amide III). These findings were in concordance with a previous study reported by Hashim *et al.* [9]. Amide I absorption
represents the stretching of carbonyl C=O (peptide bond) with less involvement of the stretching C-N bond. Meanwhile, Amide II absorption is due to N-H bond-bending mode and stretching vibration of C-N bond [16]. It is reported that secondary structure of protein could be determined based on Amide I absorption instead of Amide II. This is owing to the contribution of only one of the amide functional groups [17]. However, Amide III absorption could also be beneficial in determining the secondary structure of protein [17-18]. According to Bandekar [19], stretching vibrations of C-N combined with in plane bending vibrations of N-H with weak contributions from stretching of C-C bond and C=O in plane bending gave rise to Amide III absorption. For that reason, Amide III showed a less defined vibrational mode with varying protein vibration [16].

The present study showed that FTIR can be utilized as an analysis tool to screen the presence of gelatin. The detection is possible since Infrared (IR) spectrum was able to identify the functional groups present in each sample. However, we could not differentiate gelatin from different species because both gelatins produced indistinguishable spectra. Several studies reported that discrimination of gelatin from different species was successful by means of FTIR combined with chemometric analysis [8-10]. The analysis was continued further with the detection of gelatin without discriminating either bovine or porcine gelatin. Detection of gelatin in dental material was done by comparing the spectra of each sample with the standard bovine and porcine gelatin.

The present study indicates that nine out of forty two samples were identified to contain gelatin with most of samples being categorised as haemostatic agents. Haemostatic agents are applied to control bleeding due to tooth extraction, oral surgery and implants [20]. Some of the haemostatic agents used in dental treatment are derived from bovine and porcine gelatin [21]. These type of haemostatic agents are called mechanical haemostats which act as a first line agent and are beneficial in the control of minor bleeding [22]. It was reported that collagen derived from bovine is effective to control haemorrhage [23].

For the detection of gelatin in dental materials, it was found that gelatin was successfully detected using ATR-FTIR. However, we could not differentiate gelatin from different species. On the contrary, this technique was found to be effective in detecting adulteration of food products [24-27] as well as discrimination analysis of gelatin from different species as reported by Hashim et al. [9] and Cebi et al. [8].

4. Conclusion
In conclusion, ATR-FTIR technique can be utilized as a screening tool to detect gelatin in dental material. However, further studies need to be done in order to distinguish gelatin from different animal species.

Acknowledgement
This study was supported by MyRA Incentive Research Grant Scheme (MIRGS: 13-01-002-0005).

References
[1] Hunter M 2012 The emerging halal cosmetic. Personal Care. 3 37-41.
[2] Cai H, Gu X, Scanlan M S, Ramatlapeng D H and Lively C R 2012 Real-time PCR assays for detection and quantitation of porcine and bovine DNA in gelatin mixtures and gelatin capsules. J. Food, Compos. Anal. 25 83–7. http://doi.org/10.1016/j.jfca.2011.06.008.
[3] Anusavice K J, Ralph R W and Shen C 2013 Phillips’ Science of Dental Material. 12th Ed. (USA: El Sevier Saunders).
[4] GMIA 2012 Gelatin Handbook. Gelatin Manufacturers Institute of America (USA: GMIA) p.1-5.
[5] OIE 2011 Bovine Spongiform Encephalopathy (BSE). [cited September 27, 2016]. Available from: http://www.oie.int/doc/ged/D13944.PDF.
[6] Hafidz R and Yaakob C 2011 Chemical and functional properties of bovine and porcine skin gelatin. Int. Food Res. J. 817 813–7. Available from: http://ifrj.upm.edu.my/18 (02) 2011/48) IFRJ-2010-159.pdf.

[7] Rasraswati M A, Triyana K and Rohman A 2014 Differentiation of bovine and porcine gelatins in soft candy based on amino acid profiles and chemometrics. J. Food. Pharm. Sci. 2 1–6.

[8] Cebi N, Durak M Z, Toker O S, Sagdic O and Arici M 2016 An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food. Chem. 190 1109–15.

[9] Hashim D M, Man Y B C, Norakasha R, Shuhaimi M, Salmah Y and Syahariza Z A 2010 Potential use of Fourier transform infrared spectroscopy for differentiation of bovine and porcine gelatins. Food. Chem. 118 856–60.

[10] Hermanto S, Sumarlin L O and Fatimah W 2013 Differentiation of bovine and porcine gelatin based on spectroscopic and electrophoretic analysis. J. Food. Pharm. Sci. 1 68–73.

[11] Demirhan Y, Ulca P and Senyuva H Z 2012 Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication. Meat. Sci. 90 686–9.

[12] Sahilah A M, Fadly M L, Norrakiah A S, Aminah A, Wan Aida W, Ma’aruf A G and Khan M A 2012 Halal market surveillance of soft and hard gel capsules in pharmaceutical products using PCR and southern-hybridization on the biochip analysis. Int. Food. Res. J. 19 371–5.

[13] Shabani H, Meh dizadeh M, Mousavi S M, Dezfouli E A, Solgi T, Khodaverdi M, Alebouyeh M 2015 Halal authenticity of gelatin using species-specific PCR. Food Chem. 184 203–6.

[14] Tasara T, Schumacher S and Stephan R 2005 Conventional and real-time PCR-based approaches for molecular detection and quantitation of bovine species material in edible gelatin. J. Food. Prot. 68 2420–6.

[15] Smith B C 2011 Fundamentals of Fourier Transform Infrared Spectroscopy. 2nd Ed. (USA: Taylor & Francis Group, LLC).

[16] Vergoten G, Theophanides T 2012 Biomolecular Structure and Dynamics. Springer. Sci. Business. Media. 181-364.

[17] Barth 2007 Infrared Spectroscopy of proteins. Biochimia et Biophysica Acta (BBA) – Bioenergetics. 1767 1073-101.

[18] Srivastava A K, Iconomidou V A, Chryssikos G D, Gionis V, Kumar K and Hamodrakas S J 2011 Secondary structure of chorion proteins of the Lepidoptera Pericallia ricini and Ariadne merione by ATR FT-IR and micro-Raman spectroscopy. Int. J. Biol. Macromol. 49 317–22. http://doi.org/10.1016/j.ijbiomac.2011.05.006.

[19] Bandekar J 1992 Amides modes and protein conformation. Biochim. Biophys. Acta-Protein. Struct. Mol. Enzymol. 1120 123-43.

[20] Mani M, Ebenezer V and Balakrishnan R 2014 Impact of hemostatic agents in oral surgery. Biomed. Pharmacol. J. 7 215-9.

[21] Schreiber M A and Neveleff D J 2011 Achieving hemostasis with topical hemostats: Making clinically and economically appropriate decisions in the surgical and trauma settings. AORN J. 94 S1–20. http://doi.org/10.1016/j.aorn.2011.09.018.

[22] Corwin H L, Gettinger A, Pearl R G, Fink M P, Levy M M, Abraham E and Shapiro M J 2004. The CRIT Study: Anemia and blood transfusion in the critically ill--current clinical practice in the United States. Crit. Care. Med. 32 39–52.
[23] Spotnitz W D and Burks S 2010 State-of-the-art review: hemostats, sealants, and adhesives II: update as well as how and when to use the components of the surgical toolbox. *Clin. Appl. Thromb. Hemost.* 16 497-514.

[24] Che M Y B, Syahariza Z A, Mirghani M E S, Jinap S and Bakar J 2005 Analysis of potential lard adulteration in chocolate and chocolate products using Fourier transform infrared spectroscopy. *Food Chem.* 90 815–9. http://doi.org/10.1016/j.foodchem.2004.05.029.

[25] Muttaqien A T, Erwanto Y and Rohman A 2015 Determination of buffalo and pig "Rambak" crackers using ftir spectroscopy and chemometrics. *Asian. J. Anim. Sci.* 10 49–58.

[26] Nurrulhidayah A F, Che M Y B, Rohman A, Amin I, Shuhaimi M and Khatib A 2013 Authentication analysis of butter from beef fat using Fourier Transform Infrared (FTIR) spectroscopy coupled with chemometrics. *Int. Food. Res. J.* 20 1383–8.

[27] Suparman, Rahayu W S, Sundhani E and Saputri S D 2015 The use of Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography Mass Spectroscopy (GCMS) for “halal” authentication in imported chocolate with various variants. *J. Food. Pharm. Sci.* 2 6–11.