Clinical Study

Liver Transplantation for Hepatocellular Carcinoma: A Single Center Resume Overlooking Four Decades of Experience

Nikos Emmanouilidis,1 Rickmer Peters,1 Bastian P. Ringe,1 Zeynep Güner,1 Wolf Ramackers,1 Hüseyin Bektas,1 Frank Lehner,1 Michael Manns,2 Jürgen Klempnauer,1 and Harald Schrem1,3

1Department of General, Visceral and Transplant Surgery, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
2Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany
3IFB-TX Core Facility and HTA, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany

Correspondence should be addressed to Nikos Emmanouilidis; emmanouilidis.nikos@mh-hannover.de

Received 29 September 2015; Accepted 3 December 2015

Academic Editor: Gaetano Ciancio

Copyright © 2016 Nikos Emmanouilidis et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. This is a single center oncological resume overlooking four decades of experience with liver transplantation (LT) for hepatocellular carcinoma (HCC).

Methods. All 319 LT for HCC that were performed between 1975 and 2011 were included. Predictors for HCC recurrence (HCCR) and survival were identified by Cox regression, Kaplan-Meier analysis, Log Rank, and \(\chi^2 \)-tests where appropriate.

Results. HCCR was the single strongest hazard for survival (exp \(B \) = 10.156). Hazards for HCCR were tumor staging beyond the histologic MILAN (exp \(B \) = 3.645), bilateral tumor spreading (exp \(B \) = 14.505), tumor grading beyond G2 (exp \(B \) = 8.668), and vascular infiltration of small or large vessels (exp \(B \) = 11.612, exp \(B \) = 18.324, resp.). Grading beyond G2 (exp \(B \) = 10.498) as well as small and large vascular infiltrations (exp \(B \) = 13.337, exp \(B \) = 16.737, resp.) was associated with higher hazard ratios for long-term survival as compared to liver transplantation beyond histological MILAN (exp \(B \) = 4.533). Tumor dedifferentiation significantly correlated with vascular infiltration (\(\chi^2 \) p = 0.006) and intrahepatic tumor spreading (\(\chi^2 \) p = 0.016). Conclusion. LT enables survival from HCC. HCC dedifferentiation is associated with vascular infiltration and intrahepatic tumor spreading and is a strong hazard for HCCR and survival. Pretransplant tumor staging should include grading by biopsy, because grading is a reliable and easily accessible predictor of HCCR and survival. Detection of dedifferentiation should speed up the allocation process.

1. Introduction

The repertoire of treatment strategies for hepatocellular carcinoma (HCC) consists of liver resection (LR), chemotherapy (CTX), radio frequency ablation (RFA), transarterial chemoperfusion (TACP), selective internal radiation therapy (SIRT), transarterial chemoembolisation (TACE), percutaneous ethanol instillation (PEI), monoclonal antibody therapy (mAB), and liver transplantation (LT).

The first elective liver resections were performed in the late 19th century [1–3], but although Wendel [4] already performed a successful anatomic right hemihepatectomy for a HCC in 1911, it took another 50 years and a better understanding of the liver anatomy [5] before liver resections were performed on a larger scale by multiple centers worldwide [6–10]. The first liver transplantation for a “hepatoma” was the second LT that was published in the pioneering report by Starzl et al. in 1963 [11]. A decade later Cyclosporin [12] was introduced as a new immunosuppressant and in the following years larger series of liver transplantsations were accumulated [13, 14]. The early survival analyses of LT for HCC though were rather disappointing [15] with 2-year survival rates of 25–30% compared to 70% for benign diseases [16, 17]. Those disappointing results ignited the development
of nonsurgical treatment alternatives for HCC: starting with systemic chemotherapy and transarterial chemoperfusion [18] on an experimental scale in the early 1980s. A decade later SIRT [19], TACE [20, 21], and PEI [22] were introduced and another ten years later RFA [23] was added (Figure 1(c)). The latest development was the introduction of monoclonal antibody therapy in 2008 [24, 25].

Covariates which possibly affect HCC recurrence (HCCR) and survival after LT are underlying liver disease [26], tumor size [27], grading [28], tumor multifocality, vascular invasion [26, 29], α-fetoprotein [30], and adjuvant or neoadjuvant therapy [27, 31, 32]. But despite extensive and long experience with LT for HCC there are very few reports with follow-up data of more than a decade [13, 33–36]. Most long-term reports cover only 5 years of follow-up [27, 28, 32, 37–43].

Here we report our long-term single center experience of more than four decades with all consecutive patients (n = 319) who received LT for HCC between 19th November 1975 and 12th December 2010. The main focus of this study was the oncological long-term aspects and the value of liver transplantation for the treatment of HCC.

2. Patients and Methods

2.1. Patients. Diagnosis of HCC was verified before LT and/or at the histological examination of the explanted liver (n = 319). The mean follow-up was 6.4 years (median 4.8 years, range 0.2 to 30.9 years). Follow-up with respect to time from last contact to query in relation to time of LT to query was completed in 96% (median 100%, range 4 to 100%). Time span of last contact to query in living patients was 0.5 to 29.4 years (median 5.9 years). Table 2 summarizes the clinical data of the investigated cohort.

2.2. Immunosuppressive Therapy. Early transplantations were performed under protection with Azathioprine and Corticosteroids medication. Next step in immunosuppressive evolution was the introduction of the Calcineurin-inhibitor
Cyclosporin A (CsA). Combinations of CsA with Corticosteroids and even triple therapies with CsA, Azathioprine, and Corticosteroids were applied. Then FK-506—another Calcineurin-inhibitor—was introduced and added to the portfolio of immunosuppressants. The combination of FK-506 with Corticosteroids was a common replacement therapy for the standard protocol of CsA plus Corticosteroids. Azathioprine was only scarcely used, until it completely disappeared as a standard medication in solid organ transplantation. Another significant improvement was the introduction of Mycophenolate Mofetil, which was mainly used as a triple supplement in order to reduce the dosage of Calcineurin-inhibitor medications, because it was realized that the Calcineurin-inhibitor nephrotoxicity was a significant problem in the long run. Other additional immunosuppressants in recent years were the mTOR inhibitors sirolimus (Rapamycin) and everolimus (RAD-001) and the CTLA-4 antibody belatacept (LEA29Y). The latter ones were applied mainly as study drugs within multicenter trials and thus were not commonly used. Overall, the high level of diversity in applied immunosuppressive therapies in this cohort of patients not only is caused by the number of different immunosuppressants and their combinations but is even more diversified due to different dosages and even therapy changes in individual patients during follow-up.

Today’s standard treatments in liver transplantation at our facility consist of Corticosteroids (prednisolone, methylprednisolone), basiliximab (only perioperatively), Mycophenolate Mofetil, and the Calcineurin-inhibitor FK-506.

2.3. Tumor Morphology, UICC-7 Staging, and “Inside/Outside” hMILAN Categorization. All tumors were retrospectively restaged according to the pathohistological examination of the explanted liver and following the 7th edition of the UICC classification (UICC-7). For tumor morphology we also categorized each tumor into either nondetectable, uninnodular, multinodular/unilateral or multinodular/bilateral intrahepatic tumor spreading. This categorization as well as the categorization referring to MILAN criteria was done on the basis of the histopathological reports in order to circumvent the otherwise unavoidable bias by the technological development of imaging techniques during the last forty years. The retrospective classification either as “inside” or as “outside” MILAN was defined as histological MILAN (hMILAN). The preoperative MILAN classification, which is usually commonly applied for the listing of HCC patients and carried out by imaging technologies, is renamed iMILAN for discrimination purposes.

2.4. Survival Data und HCC Recurrence (HCCR). HCCR and survival were checked in close cooperation with the German national cancer registry and the German national address registry and by continued follow-up in our outpatient transplant clinics. Data were complemented by targeted interviews of referring physicians if necessary. Descriptive statistics related to HCC recurrence and HCC recurrence related deaths are summarized in Tables 3 and 4.

2.5. Statistical Analysis. Statistical analyses were performed using SPSS v23 (PASSW Statistics Inc., IBM, Somers, NY, USA). p values and hazards for survival and HCC recurrence (HCCR) were calculated by multi- or univariate Cox regression. Covariate hazards of survival were underlying disease, UICC-7 staging, hMILAN status, vascular infiltration, neoadjuvant therapy, and grading. HCCR as a hazard for survival was included as a time-dependent covariate. Covariate hazards for HCCR were underlying disease, UICC-7 staging, hMILAN status, vascular infiltration, neoadjuvant therapy, and grading. p values below 0.05 were defined as significant. Hazards (exp(B)) > 1.0 indicated a higher risk and hazards (exp(B)) < 1.0 indicated lower risk for HCCR or death. Survival data and HCCR data were graphically plotted using Kaplan-Meier statistics. Comparison of cohort identifiers was performed using a χ²-test.

3. Results

3.1. Descriptive Statistics. Table 2 shows the descriptive statistics of the population of all N = 319 patients that had been transplanted with the diagnosis of HCC between 1975 and 2010. Mean age at time of LT was 51.0 years (±SD 12.5) with a median of 54.1 and a male-to-female ratio of 3:1. Predominant underlying diseases were hepatitis C (n = 86; 27%), hepatitis B (n = 85; 27%), hepatitis B with D (n = 15; 5%), hepatitis C with B (n = 12; 4%), alcohol (n = 47; 15%), and cryptogenic cirrhosis (n = 50; 16%). Neither NASH (nonalcoholic fatty liver disease) nor NASH (nonalcoholic steatohepatitis) was a standard terminology used for enlisting patients for LT at our transplant center. But it can be assumed that the group of cryptogenic cirrhosis also includes those forms of cirrhosis. Other underlying diseases or codiseases (n = 24; 8%) were juvenile hepatoblastoma, adenomatosis, hypertyrosinemia, Wilson’s disease, hemochromatosis, α1 antitrypsin deficiency, Budd Chiari syndrome, androgen therapy, biliary cirrhosis, autoimmune hepatitis, and chronic lead intoxication (Table 2). There was no significant change in the category of underlying diseases over time (Figure 1(a)). Most HCC tumors had a multinodular morphology (n = 166; 52%). This category of multinodular tumors was divided into multinodular/unilateral tumors (n = 79; 25%) and multinodular/bilateral tumors (n = 87; 27%). Uninodular HCCs were observed in n = 133 (42%) patients. There was also a significant proportion of pretreated patients in whom no HCC could be detected at the histological examination of the explanted recipients livers (n = 20; 6%). The largest tumor had a volume of 14137 cm³ and the smallest tumor had a volume of 2 cm³ (mean = 320 cm³, median = 31.4 cm³). AFP measured before LT had a range from 0 to 214975 ng/mL (mean = 2513 ng/mL, median = 21 ng/mL). Living related transplantations were performed in n = 12 (4%) recipients. Split-liver transplantations were performed in n = 19 (6%) patients and partial/reduced size transplantations in n = 13 (4%) patients. Cold ischemic time ranged from 100 to 1970 minutes (mean = 624 minutes, median = 611 minutes). Twenty-nine patients (9.1%) received a second LT and one patient received an additional third LT. Two patients
were retransplanted after diagnosis of intrahepatic HCCR, which occurred at 5.7 and 8.8 years after primary liver transplantation. Time from HCCR to retransplantations was 61 and 499 days, respectively. One patient is still alive with a tumor-free survival after second LT of 18.7 years. The second patient died at 2.2 years after second LT due to multilocal 2nd HCCRs at lungs, liver, and abdominal wall and with a peritoneal seeding.

All other retransplants were not related to HCCR. From 1975 to 2010 by and by several HCC pretreatments were developed (surgery (S), chemotherapy (CTX), transarterial chemoembolisation (TACE), percutaneous ethanol instillation (PEI), selective internal radiation therapy (SIRT), and monoclonal antibodies (mAB)) and the overall rate of patients who were pretreated before LT and the diversity of treatment combinations increased synchronously (Figure 1(c)). The number of advanced multinodular HCCs and tumors with intrahepatic bilateral spread declined significantly over the years in favour of singular node HCCs (Figure 1(b)) and the proportion of successfully pretreated HCC (tumor necrotic, no tumor detectable) increased (Figure 1(d)).

Figure 2: Development of waiting time (b) from 1975 to 2010 and prognostic impact of waiting time on HCC recurrence (b) and overall survival (c). Waiting time increased slightly from about 2-3 months in the early 1980s to an average of 411 days in 2010, but this increase had no significant prognostic impact on HCC recurrence (ROC AUC = 0.494; \(\chi^2 p = 0.319 \)) and overall survival (\(\sigma^2 p = 0.279 \)).
(Fisher's exact test $p = 0.439$). Therapy efficacy though was not comparable one-on-one because of a significant higher overall proportion of multinodular tumors in the TACE group and different proportions of multinodular/bilateral HCCs, which was three times as high for the TACE groups as compared to the PEI group (26% to 9%) (Figure 4(a)). Neoadjuvant therapy by surgery resulted in the highest rate of nondetectable tumors (45%) (10 of 19) (Figure 4(b)), but this difference was statistically not significant compared to the proportion of full-necrotic plus nondetectable tumors of the PEI group (Fisher's exact test $p = 0.099$). 178 patients (56%) were transplanted inside hMILAN and 141 (44%) were transplanted outside hMILAN. Prior to the introduction of MILAN criteria (1997) 82 patients (65%) had been transplanted outside and 43 patients (34%) inside hMILAN. After 1997 59 patients (30%) were transplanted outside and 135 (70%) inside hMILAN. 16 (38%) of the 42 survivors who lived longer than 10 years and 6 of the 9 recipients (67%) who lived longer than 20 years after LT were transplanted outside hMILAN. Only one of those patients died, but not due to HCCR.

In order to have a clear analysis on HCC recurrence relevant data we censored all patients with perioperative hospital mortality ($n = 68$; 21%) (Table 1), who as a matter of course did not survive long enough for developing any HCCR. Eighty-three ($n = 83$; 33%) of the remaining 251 patients were diagnosed with HCCR during follow-up. Most HCCRs were solely extrahepatic tumor recurrences ($n = 48$; 58%). In 15 patients (18%) HCCR was diagnosed as exclusive intrahepatic tumor recurrences. In 20 patients (24%) HCCR was synchronously found in intra- and extrahepatic locations. In 34 ($n = 30$) of HCC recurrence metastases were found in more than one anatomic location. Dominant site of extrahepatic HCCR was the lung ($n = 34$), followed by bone ($n = 13$), lymph nodes ($n = 9$), and brain ($n = 7$) (Table 3). Sixty-three ($n = 63$; 76%) of the patients with HCC recurrence died due to this tumor recurrence and $n = 52$ (21%) patients died due to non-HCCR related reasons (Tables 1 and 4). Cox regression analysis was performed in order to calculate the odds ratios ($exp(B)$) and significance levels of the tested covariates for their risk to be associated with HCC recurrence (Table 5). For a clear view on the prognostic oncological value of LT we had to purge the cohort of patients further by censoring any causes of death other than HCC recurrence related ones and analysed the cumulative survival rates of the remaining $n = 199$ patients with respect to the selected covariates (Tables 1 and 6; Figures 5(b), 7(a)–7(d), and 9(a)–9(f)). Thus, $n = 9$ patients with diagnosis of HCCR, but with mortality due to other reasons, were excluded from this analysis.

Table 1: In- and excluded subpopulations for the analysis of HCC recurrence and HCC recurrence related deaths.

Subpopulations (hospital mortality excluded)	Cox regression analysis for the risk of HCC recurrence (Table 5)	HCC recurrence related deaths (Table 6)	HCC recurrence
Alive, $n = 136$	Included	Included	Yes
Deaths caused by HCCR, $n = 63$	Included	Included	125
Deaths not caused by HCCR, $n = 52$	Excluded	43	
Overall	251	199	168

3.2. Survival and HCC Recurrence. Figure 5(a) shows the Kaplan-Meier plots for the cumulative survival of all patients ($n = 319$) (blue line), with hospital mortality excluded ($n = 251$) (green line) and with HCC recurrence related deaths only ($n = 199$) (red line).

The maximum cumulative rate for HCCR was 33% (83/251) and was reached at 10.4 years after LT. There were no time-dependent differences for appearance of extra-, intra-, or combined extrahepatic/intrahepatic HCCR (data not shown). HCCR as a time-dependent covariate was identified by Cox regression analysis as the single strongest hazard for survival ($p < 0.001$; $exp(B) = 10.156$), with no differences between extra-, intra-, or combined extrahepatic/intrahepatic locations (Figure 3(b)). Cumulative survival at 5, 10, and 30 years after LT was 80%, 67%, and 45% in HCC recurrence-free patients compared to 28%, 15%, and 10% irrespective of extra-, intra-, or combined extrahepatic/intrahepatic locations (Figure 3(b)). Univariate Cox regression analysis of hazards for HCCR (Table 5) revealed a significantly higher risk for HCCR if transplanted outside hMILAN ($p < 0.001$, $exp(B) = 3.645$) and a significantly higher risk for HCCR depending on UICC-7 staging ($p < 0.001$, Log Rank), vascular infiltration ($p < 0.001$, Log Rank), and tumor grading ($p < 0.001$, Log Rank). Underlying diseases had a significant impact neither on HCC recurrence ($p > 0.05$) (Table 5) and on HCC recurrence related deaths ($p > 0.05$) (Table 6) nor on hospital mortality ($p > 0.05$) and overall mortality ($p > 0.05$) (data not shown). Neoadjuvant therapy in general did not avoid HCC recurrence ($p > 0.05$) (Table 5) but proved to be significantly advantageous if the tumor had been turned into a complete necrosis (e.g., through PEI, TACE, or RF) or if the tumor had been resected prior to LT (Figures 8 and 9). Neoadjuvant therapy did improve survival significantly, if non-HCCR related deaths were excluded from the survival analysis ($p = 0.024$, $exp(B) = 0.562$) (Table 6 and Figure 9(e)). Figures 5 and 6 show that different monomodal/multimodal neoadjuvant treatments had different advantages in relation to the tumor anatomy of the HCC to be treated. Lowest HCC recurrence rates were observed in the group of nondetectable HCCs, which was significantly lower at any time as compared to any other group. Uninodular tumors and unilateral/multinodular tumors had the same cumulative rate of HCC recurrence up to five years after transplantation. Only the follow-up of more than five years revealed further and significant increase of HCC recurrences in unilateral/multinodular tumors as compared to the uninodular group. The highest rate of HCC recurrences was observed in multinodular/bilateral group, which was also
Underlying disease	Gender	Age [yr	LT #	Cit	Donor type	Tumor morphology	Tumor volume [cm³]	AFP [ng/mL]
Hepatitis B, HIV	1	14	50.6	3.66	8.96	9.78	418	16.3
Hepatitis B	7	78	50.7	60.7	91.2	65.4	205	64.9
Hepatitis C, HIV	2	10	50.2	53.1	60.2	6.3	34	53.1
Hepatitis B, HIV	7	66	54.2	5.47	66.7	25	20	69.3
Hepatitis C	3	1	14.8	11.3	1	3	43	1
Alcoholic cirrhosis	2	1	47.1	55.2	68.7	21.4	80	10.6
Hemochromatosis	1	1	43.8	—	—	—	—	—
Wilson’s disease	1	1	43.8	—	—	—	—	—
Alpha-1 antitrypsin deficiency	1	1	56.8	—	—	—	—	—
Budd-Chiari	1	1	14.4	19.4	9.3	2	—	3
Alcoholic cirrhosis	1	1	43.8	—	—	—	—	—
Hepatitis B, HIV	2	25	49.4	55.4	64.7	28.2	1	9
Hepatitis C, HIV	25	27	51	51.8	63	25	11	11
Alcoholic cirrhosis	3	2	43.8	—	—	—	—	—
Wilson’s disease	1	1	43.8	—	—	—	—	—
Hemochromatosis	1	1	43.8	—	—	—	—	—
Alcoholic cirrhosis	1	1	43.8	—	—	—	—	—
Hepatitis B, HIV	2	25	49.4	55.4	64.7	28.2	1	9
Hepatitis C, HIV	25	27	51	51.8	63	25	11	11
Alcoholic cirrhosis	3	2	43.8	—	—	—	—	—
Wilson’s disease	1	1	43.8	—	—	—	—	—
Hemochromatosis	1	1	43.8	—	—	—	—	—
Alcoholic cirrhosis	1	1	43.8	—	—	—	—	—
Hepatitis B, HIV	2	25	49.4	55.4	64.7	28.2	1	9
Hepatitis C, HIV	25	27	51	51.8	63	25	11	11
Alcoholic cirrhosis	3	2	43.8	—	—	—	—	—
Wilson’s disease	1	1	43.8	—	—	—	—	—
Hemochromatosis	1	1	43.8	—	—	—	—	—
Alcoholic cirrhosis	1	1	43.8	—	—	—	—	—
Hepatitis B, HIV	2	25	49.4	55.4	64.7	28.2	1	9
Hepatitis C, HIV	25	27	51	51.8	63	25	11	11
Alcoholic cirrhosis	3	2	43.8	—	—	—	—	—
Wilson’s disease	1	1	43.8	—	—	—	—	—
Hemochromatosis	1	1	43.8	—	—	—	—	—
Alcoholic cirrhosis	1	1	43.8	—	—	—	—	—
significantly higher as compared to the group of multinodular/unilateral HCC. Multinodular unilateral tumors benefited more from PEI whereas multinodular bilateral tumors more likely benefited from TACE. This correlation was found for HCC recurrences as well as for HCC recurrence related deaths (Figures 6(c), 6(d), 7(c), and 7(d)). Survival was also significantly related to the UICC-7 staging (Table 6 and Figure 9(b)), meaning that survival decreased with each step-up in UICC-7 staging—with the exception of UICC I and II staged tumors—which had a comparable survival to the reference category of "no or necrotic tumors" ($p = 0.688$, $\exp(B) = 0.746$; $p = 0.402$, $\exp(B) = 1.738$, resp.). If patients were transplanted outside the histologic MILAN criteria, then the HCC recurrence rate was significantly higher ($p < 0.001$, $\exp(B) = 4.701$) (Table 6 and Figure 9(c)). Vice versa, if transplanted inside hMILAN the cumulative survival rate was 72% at 14 years ($p < 0.001$, Log Rank) (Figure 9(c)). Small (V1) and large (V2) vascular infiltrations were significant hazards for HCC recurrence ($p < 0.001$, $\exp(B) = 9.050$; $p < 0.001$, $\exp(B) = 14.848$; resp.) (Table 5 and Figure 8(d)) and HCC recurrence related risks for survival ($p = 0.001$, $\exp(B) = 9.578$; $p < 0.001$, $\exp(B) = 14.066$; resp.) (Table 6 and Figure 9(d)).

HCCR and survival were both significantly influenced by tumor grading ($p < 0.001$, Log Rank). The risk for HCCR increased (G2: $p = 0.018$, $\exp(B) = 4.1$; G3-4: $p < 0.001$, $\exp(B) = 8.668$) (Table 5 and Figure 8(f)) and survival decreased significantly with each step of tumor dedifferentiation (G3-4: $p = 0.001$, $\exp(B) = 10.498$) (Table 6 and Figure 9(f)). Furthermore, we found a significant increase in numbers of

HCC	Counts/%	Neoadjuvant therapy	Neoadjuvant therapy	Neoadjuvant therapy	Neoadjuvant therapy												
	n	No	Yes	No	Yes												
HCC recurrence																	
No	230	19	95	53	83	55	80	25	68	32	76	22	49	24	57		
Yes	89	1	5	11	17	14	20	12	32	10	24	23	51	18	43		
Abdominal wall	2	2															
Adrenal	1																
Bone	5	2	1	2	1												
Bone + abdominal wall	2	1	1	1	1												
Bone + liver	1																
Brain	2	1	1	1	1												
Esophagus	1																
Liver	17	2	2	5	2	4	2										
Liver + abdominal wall	2	1	1	1	1												
Liver + adrenal	2																
Liver + diaphragm	1																
Liver + lung	5	1	2	2	2												
Liver + lung + bone	1																
Liver + lung + kidney	1																
Liver + lymph node	3	1	1	1	1												
Liver + peritoneum	1																
Lung	20	2	2	4	7	5											
Lung + bone	4	3	1	1	1												
Lung + bone + brain	1																
Lung + brain	4	2	2	2	2												
Lung + liver + lymph node + abdominal wall	1	1															
Lymph node	6	1	1	2	1	1	1										
Peritoneum	5	3	2														
Peritoneum + bone	1																

Table 3: Rate and anatomical sites of HCC recurrences with respect to tumor morphology and neoadjuvant therapy.
Tumor morphology	Neoadjuvant therapy	Vital tumor remnants	Response	No tumor detectable	HCC recurrence	HCC recurrence related death
No tumor						
	PEI	—	2	100%	2	100%
	TACE	—	2	100%	2	100%
	Surgery	—	9	100%	8	89%
	Surgery + TACE	—	2	100%	2	100%
	Surgery + TACE + CTX	—	1	100%	1	100%
Overall		0	0	16	15	1
	PEI	48	100%	—	37	77%
	TACE	22	73%	8	25	83%
	PEI + TACE	13	81%	3	12	75%
	Surgery	6	75%	2	7	88%
	CTX + TACE	3	75%	1	1	8
	RFA	2	100%	—	2	100%
	RFA + TACE	—	1	100%	1	100%
	PEI + RFA	—	1	100%	1	100%
Overall		96	17	0	88	25
Uninodular						
	None	25	100%	—	14	56%
	PEI	5	83%	1	6	100%
	TACE	6	86%	1	4	57%
	PEI + TACE	4	100%	—	4	100%
	Surgery	3	100%	—	1	33%
	CTX	4	100%	—	2	50%
	RFA	2	100%	—	2	100%
	RFA + TACE	—	1	100%	1	100%
	PEI + RFA	—	1	100%	1	100%
Overall		96	17	0	88	25
Multinodular, unilateral						
	None	34	100%	—	12	35%
	PEI	4	100%	—	4	100%
	TACE	7	100%	—	2	29%
	PEI + TACE	6	75%	2	5	63%
	Surgery	2	100%	—	2	100%
	CTX	2	100%	—	2	100%
	Surgery + TACE	2	100%	—	1	50%
	Surgery + TACE + CTX	3	100%	—	3	100%
Overall		63	2	0	27	38
Multinodular, bilateral						
	None	34	100%	—	12	35%
	PEI	4	100%	—	4	100%
	TACE	7	100%	—	2	29%
	PEI + TACE	6	75%	2	5	63%
	Surgery	2	100%	—	2	100%
	CTX	2	100%	—	2	100%
	Surgery + TACE	2	100%	—	1	50%
	Surgery + TACE + CTX	3	100%	—	3	100%
Overall		63	2	0	27	38
Total		214	21	16	166	85
Table 5: Identification of hazards for HCC recurrence by univariate Cox regression, n = 251 (hospital deaths excluded).

Univariate Cox regressions for HCC recurrence	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
Underlying disease					
Hepatitis B with D	12	0.176	Reference category		
Hepatitis B	64	0.405	1.667	0.5	5.555
Hepatitis C	75	0.847	1.126	0.336	3.777
Hepatitis C with B	9	0.419	0.394	0.041	3.784
Alcohol	33	0.131	2.603	0.752	9.003
Cryptogenic cirrhosis	38	0.375	1.76	0.505	6.128
Other	20	0.417	1.732	0.459	6.53
Tumor vitality					
Full-necrotic tumor	21	0.118	0.399	0.126	1.263
No tumor detectable	16	0.053	0.142	0.02	1.022
Tumor morphology					
Uninodular	113	0.192	3.789	0.313	27.971
Multinodular unilater	57	0.073	6.251	0.840	46.513
Multinodular bilateral	65	0.008	14.505	1.990	105.733
UICC-7					
No or necrotic tumor	37	<0.001	Reference category		
UICC I	69	0.646	0.75	0.219	2.563
UICC II	71	0.200	2.041	0.686	6.073
UICC IIIA	25	<0.001	7.428	2.513	21.959
UICC IIIB	32	<0.001	13.734	4.759	39.631
UICC IIIC	7	0.001	9.808	2.627	36.611
UICC IVA	7	<0.001	54.098	14.542	201.253
UICC IVB	3	<0.001	180.683	34.823	937.506
hMILAN					
Inside	148		Reference category		
Outside	103	<0.001	3.507	2.237	5.496
Vascular infiltration					
V0	148	0.254	1.829	0.648	5.161
V1	28	<0.001	9.05	3.042	26.92
V2	37	<0.001	14.848	5.206	42.353
Missing data	1	0.977	0	0	1.65E + 245
Neoadj. therapy					
No	107		Reference category		
Yes	144	0.071	0.676	0.441	1.035
Grading					
G1	35	0.272	1.937	0.596	6.299
G2	130	0.023	3.282	1.179	9.138
G3-4	43	<0.001	6.672	2.313	19.249
Missing data	6	0.008	6.550	1.636	26.214

HCC = hepatocellular carcinoma.
UICC-7 = 7th edition TNM classification of Unité International Contre Cancer.
hMILAN = histologic MILAN classification.
Vascular infiltration: V0 = none, V1 = small vessels, and V2 = large vessels.
Tumor grading: G1 = low, G2 = intermediate, and G3-4 = high to anaplastic.

vascular infiltrating tumors and an increase of large vessel infiltrations per step of tumor dedifferentiation (G1 → G2 → G3-4) ($\chi^2 p = 0.006$) (Figure 10).

Because long-term survival was mainly limited by HCCR ($p < 0.001$, exp(B) = 10.156; time-dependent Cox regression) and HCCRs were diagnosed as late as 10 years after LT, but not later than 10.4 years after LT, we aimed to determine the cohort identifiers with respect to this 10.4-year cut-off. Therefore we analysed the database and compared the group of patients with HCCR occurrence (below 10.4 years) with the group of patients who had HCCR-free follow-up of more than 10.4 years after LT (hospital deaths censored). We found that hMILAN, UIICC-7, vascular infiltration, and tumor grading were highly significant prognostic parameters ($\chi^2 p < 0.001$, Table 7), while neoadjuvant therapy and underlying diseases remained nonsignificant.
Table 6: Identification of hazards for HCC recurrence related deaths by univariate Cox regression, n = 199 (non-HCC recurrence related deaths excluded).

Underlying disease	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
Hepatitis B with D	11	0.348			
Hepatitis B	50	0.368	1.964	0.451	8.553
Hepatitis C	55	0.542	1.584	0.361	6.939
Hepatitis C with B	6	0.908	0.868	0.079	9.588
Alcohol	30	0.162	2.919	0.65	13.109
Cryptogenic cirrhosis	30	0.13	3.151	0.714	13.896
Other	17	0.433	1.93	0.373	9.979

Tumor vitality

Tumor vitality	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
Vital tumor	168	0.083			
Full-necrotic tumor	17	0.147	0.352	0.086	1.442
No tumor detectable	14	0.084	0.175	0.024	1.264

Tumor morphology

Tumor morphology	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
No tumor detectable	14	<0.001			
Uninodular	89	0.323	2.765	0.368	20.791
Multinodular unilateral	41	0.104	5.354	0.707	40.567
Multinodular bilateral	55	0.019	10.898	1.488	79.801

UICC-7

UICC-7	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
No or necrotic tumor	31	<0.001			
UICC I	54	0.688	0.746	0.178	3.124
UICC II	51	0.402	1.738	0.477	6.327
UICC IIIA	21	0.003	6.771	1.944	23.584
UICC IIIB	26	<0.001	12.792	3.791	43.16
UICC IIIC	6	0.006	8.066	1.800	36.142
UICC IVA	7	<0.001	226.972	46.041	1118.915
UICC IVB	3	<0.001	91.043	16.824	492.692

hMILAN

hMILAN	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
Inside	112				
Outside	87	<0.001	4.701	2.700	8.185

Vascular infiltration

Vascular infiltration	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
No or necrotic tumor	31	<0.001			
V0	117	0.371	1.733	0.52	5.779
V1	21	<0.001	9.578	2.769	33.128
V2	30	<0.001	14.066	4.221	46.866

Neoadj. therapy

Neoadj. therapy	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
No	82				
Yes	117	0.010	0.525	0.321	0.859

Grading

Grading	n	p	exp(B)/hazard	95.0% CI Lower	95.0% CI Upper
No or necrotic tumor	31	<0.001			
G1	26	0.26	2.179	0.562	8.442
G2	103	0.061	3.098	0.948	10.124
G3-4	36	0.001	7.909	2.357	26.542
Missing data	3	0.007	11.921	1.980	71.774

HCC = hepatocellular carcinoma.
UICC-7 = 7th edition TNM classification of Unité International Contre Cancer.
hMILAN = histologic MILAN classification.
Vascular infiltration: V0 = none, V1 = small vessels, and V2 = large vessels.
Tumor grading: G1 = low, G2 = intermediate, and G3-4 = high to anaplastic.

4. Discussion

The results of this study containing the complete data of our center since 1975 demonstrate that hepatocellular carcinoma can be cured by LT—even in advanced tumor stages. As expected, long-term survival was mainly limited by HCC recurrence (HCCR) (\(p < 0.001, \exp(B) = 10.156 \)); time-dependent Cox regression) and any covariate with high potency for HCC recurrence therefore was a significant negative predictor of survival as well. Vice versa, covariates that were not associated with a significantly higher rate of HCC recurrences (e.g., underlying diseases) had no significant impact on tumor-free survival. We were surprised though to find that not only intrahepatic HCCRs (some of which might have been de novo HCCs) but extrahepatic HCCR also can occur more than 10 years after LT—without synchronous intrahepatic HCC recurrences. We believe that these tumors must have been dormant metastatic HCC manifestations,
Table 7: Distribution of covariates and subcategories in HCCR versus HCCR-free postoperative episodes (cut-off time 10.4 years) (n = 115)

(hospital deaths and patients without HCCR within 10.4 years excluded).

Main category	Overall (n = 115) (%)	Subcategory	Follow-up	Follow-up			
			<10.4 years (n = 82)	>10.4 years (n = 33)	X²	p value	
Underlying disease	7 (6.1%)	Hepatitis B with D	3 (3.7%)	4 (12.1%)	10.4 years (n = 33)	1 (3.0%)	0.076
	35 (30.4%)	Hepatitis B	23 (28.0%)	12 (36.4%)	10 (30.3%)	0.076	
	30 (26.1%)	Hepatitis C	20 (24.4%)	10 (30.3%)	10 (30.3%)	0.076	
	3 (2.6%)	Hepatitis C with B	1 (1.2%)	2 (6.1%)	10 (30.3%)	0.076	
	15 (13.0%)	Alcohol	14 (17.1%)	1 (3.0%)	10 (30.3%)	0.076	
	16 (13.9%)	Cryptogenic	13 (15.9%)	3 (9.1%)	10 (30.3%)	0.076	
	9 (7.8%)	Other	8 (9.8%)	1 (3.0%)	10 (30.3%)	0.076	
UICC-7	9 (7.8%)	No or necrotic tumor	3 (3.7%)	6 (18.2%)	10 (30.3%)	0.076	
	19 (16.5%)	I	7 (8.5%)	12 (36.4%)	10 (30.3%)	0.076	
	27 (23.5%)	II	16 (19.5%)	11 (33.3%)	10 (30.3%)	0.076	
	18 (15.7%)	IIIA	18 (22.0%)	0	10 (30.3%)	0.076	
	27 (23.5%)	IIIB	25 (30.5%)	2 (6.1%)	10 (30.3%)	0.076	
	7 (6.1%)	IIIC	5 (6.1%)	2 (6.1%)	10 (30.3%)	0.076	
	5 (4.3%)	IVA	5 (6.1%)	0	10 (30.3%)	0.076	
	3 (2.6%)	IVB	3 (3.7%)	0	10 (30.3%)	0.076	
hMILAN	50 (43.5%)	Inside	27 (32.9%)	23 (69.7%)	10 (30.3%)	0.076	
	65 (56.5%)	Outside	55 (67.1%)	10 (30.3%)	10 (30.3%)	0.076	
Before treatment	64 (55.7%)	No	43 (52.4%)	21 (63.6%)	10 (30.3%)	0.076	
	51 (44.3%)	Yes	39 (47.6%)	12 (36.4%)	10 (30.3%)	0.076	
Vascular infiltration	9 (7.8%)	No or necrotic tumor	3 (3.7%)	6 (18.2%)	10 (30.3%)	0.076	
	55 (47.8%)	0	32 (39.0%)	23 (69.7%)	10 (30.3%)	0.076	
	19 (16.5%)	1	17 (20.7%)	2 (6.1%)	10 (30.3%)	0.076	
	32 (27.8%)	2	30 (36.6%)	2 (6.1%)	10 (30.3%)	0.076	
Grading (G)	9 (8.3%)	No or necrotic tumor	3 (2.8%)	6 (18.2%)	10 (30.3%)	0.076	
	20 (18.3%)	1	9 (8.3%)	11 (10.1%)	10 (30.3%)	0.076	
	52 (47.7%)	2	42 (38.5%)	10 (9.2%)	10 (30.3%)	0.076	
	28 (25.7%)	3-4	24 (22.0%)	4 (3.7%)	10 (30.3%)	0.076	

HCC = hepatocellular carcinoma.

UICC-7 = 7th edition TNM classification of Unité International Contre Cancer.

hMILAN = histologic MILAN classification.

Vascular infiltration: V0 = none, V1 = small vessels, and V2 = large vessels.

Tumor grading: G1 = low, G2 = intermediate, and G3-4 = high to anaplastic.

which existed probably at the time of LT. Thus, it seems that persistent HCC metastasis can reside in extrahepatic locations without being diagnosed or being clinically relevant for many years despite a constant immunosuppressive therapy after transplantation. HCC recurrence-free survival beyond the observed cut-off of 10.4 years’ follow-up is a very good prognostic sign independent of the initial tumor staging (e.g., hMILAN and UICC-7 staging) (Table 7). Few patients even were cured from HCCR with observed long-term survival; for example, one patient did survive more than 30 years after repeated resection of lung metastases at one and two years after LT and finally died by natural cause. These findings are only obtainable by long-term observational studies covering at least two decades of follow-up after LT. The fact that even patients with advanced HCCs and tumor stages beyond today’s listing criteria did survive for astonishingly long periods of time (as shown by this series of patients) demonstrates the outstanding role of LT in the treatment of HCC.

It is clear that the histologic MILAN has no pretransplant predictive value, because it is a histological posttransplantation parameter of the recipient's liver. In this context it is interesting to realize that there was significant proportion of patients who did survive up to 25 years after LT, despite the fact that their tumors had been falsely categorized inside the iMILAN classification.

When putting those information together with the knowledge that sensitivity and accuracy of modern imaging techniques have increased over the decades, then one might conclude that the commonly used iMILAN criteria need a revision based on contemporary data. Such an update of iMILAN criteria should take into account that there is—and probably always will be—an existing variance between preoperative iMILAN and postoperative hMILAN.
Cumulative survival (%)

0 5 10 15 20 25 30 35

All (n = 319)
No hospital deaths (n = 251)
With HCCR related deaths only (n = 199)

Figure 3: Survival with respect to hospital mortality and HCC recurrence. (a) Cumulative survival of all patients (n = 319, blue line), without hospital mortality (n = 251, green line) and with HCC recurrence related deaths only (n = 199, red line). (b) HCC recurrence-free survival (blue line, Cox regression analysis with HCC recurrence as time-dependent covariate) and with respect to extrahepatic (green line), intrahepatic (red line), or combined extrahepatic/intrahepatic HCC recurrences (orange line). HCC recurrence was highly significant hazard of survival (p < 0.001, exp(B) = 10.156), but it made no difference to survival whether HCC recurrences were at intrahepatic, at extrahepatic, or at combined intrahepatic/extrahepatic locations (σ² p > 0.05).

Furthermore, for a more accurate assessment of the long-term prognosis, it could be beneficial not only to classify the tumors according to size and numbers of tumors but to consider also the bilateral distribution of tumors on both liver lobes as a prognostic relevant cofactor (Figure 5, Tables 5 and 6).

Hence it is no surprise that several authors already have cast serious doubt [44, 45] on the concept of relying solely on the commonly used iMILAN status for the listing of patients and suggested the extension of the iMILAN criteria, which has already resulted in the definition of alternative listing criteria (e.g., the University of California San Francisco (UCSF) criteria) [46]. But these alternative allocation algorithms also rely solely on pretransplant imaging technology and lack long-term follow-up data that covers at least two decades after LT.

Neoadjuvant therapy in general was only slightly advantageous with respect to HCC recurrence but nevertheless did prolong survival significantly. Because the effect of different neoadjuvant treatment strategies in different patients by different specialists against different tumors of different numbers, sizes, gradings, and status of vascular infiltration is variant, the extent of induced tumor necrosis is completely variant as well. The bottom line is that lowest HCCR rates and best survival rates had been observed when all tumor mass was completely necrotic or missing (e.g., after resection) (Figures 5, 8(b), 8(d), 8(f), 9(b), 9(d), and 9(f)). In other words, the possibly advantageous effect of a neoadjuvant therapy depends on whether all tumor mass is transferred into a complete necrosis or not.

The data further demonstrate that tumor grading (G) is currently an underrated pretransplant prognostic parameter, which seems to be equally relevant for long-term prognosis after LT as compared to allocation algorithms such as iMILAN, which are susceptible for the underrating of relevant histological tumor parameters—for example, the status of vascular infiltration.

Our data also demonstrates the existing close correlation of tumor dedifferentiation with intrahepatic tumor spreading (Figure 10(a)) and the potency of tumor cell differentiation (grading, G) to predict vascular infiltration (Figure 10(b)). As tumor grading and vascular infiltration have a significant prognostic impact on HCC recurrence and patient survival, these cofactors should be routinely utilized for a better timing of LT in HCC patients.
Figure 4: HCC morphology per treatment group (a) and tumor response to pretreatments (b) as measured in numbers of nondetectable, full-necrotic, or vital tumors. Percutaneous ethanol instillation (PEI) \((n = 45)\), transarterial chemoembolisation (TACE) \((n = 39)\), and surgery \((n = 22)\) were most frequently applied. Another major treatment group were patients that had been treated by a combination of PEI and TACE \((n = 25)\). There were a significant higher number of uninodular tumors in the PEI group (71%) as compared to the TACE group (41%). The TACE group also had a significant higher proportion of multinodular tumors (52%) as compared to the PEI group (25%) and a higher proportion of multinodular/bilateral tumors, which was three times as high as compared to the PEI group (26% to 9%, resp.). The pretreatment group surgery had the highest rate (45%) \((10 of 22)\) of explanted livers without detectable tumor remnants, but this difference was statistically not significant as compared to the proportion of full-necrotic and nondetectable tumors \((n = 10 + 2)\) in the PEI group (Fisher’s exact test \(p = 0.099\)). The PEI group and TACE group were comparable in terms of remaining vital tumor tissue (Fisher’s exact test \(p = 0.439\)).

Figure 5: HCC recurrence (a) and survival (b) with respect to tumor morphology. HCC recurrence (hospital deaths excluded) (a) was significantly influenced by tumor morphology (Log Rank \(p < 0.001\)). Survival (hospital deaths and non-HCC recurrence related deaths excluded) (b) was significantly influenced by the intrahepatic tumor dissemination of the primary HCC (Log Rank \(p < 0.001\)).
Figure 6: HCC recurrence with respect to tumor morphology and neoadjuvant therapy. The effectiveness as estimated by rate of HCC recurrences was analysed with respect to different neoadjuvant therapy regimen and tumor morphology. Hospital deaths and treatment groups with $n < 5$ were excluded from analysis. Thus, only surgery remained for estimation of cumulative HCC recurrence in the group of non-detectable tumors (a). In the group of uninodular HCC (b) there was no significant difference in HCC recurrence rates comparing the mono- and multimodular pretreatments. Multinodular/unilateral HCC (c) had a significantly lower rate of HCC recurrence (Log Rank $p < 0.001$) if treated by PEI, while TACE did not make a difference for this group of tumors at all (Log Rank $p > 0.05$). In multinodular/bilateral tumors (d) TACE was significantly better as compared to PEI (Log Rank $p < 0.05$). The PEI group had the same cumulative rate of HCC recurrence as the no-treatment group.
Figure 7: Survival with respect to tumor morphology and neoadjuvant therapy. Hospital mortality and non-HCC recurrence related deaths as well as treatment groups with \(n < 5 \) were excluded. In the category of nondetectable tumors only surgery remained with \(n > 5 \). The cumulative survival in this subcategory was 80% (a). In the category of uninnodular HCC (b) there was no difference in survival comparing patients that had been pretreated by PEI or TACE. For the combination of PEI and TACE a significantly better survival was observed (Log Rank \(p < 0.05 \)) as compared to PEI or TACE alone. For multinodular/unilateral HCC (c) TACE did not make a difference, while pretreatment with PEI achieved a significant better survival (Log Rank \(p < 0.05 \)). In multinodular/bilateral tumors (d) survival was significantly better for the group of patients who were pretreated with TACE as compared to PEI or no pretreatment.
Figure 8: Continued.
Figure 8: Cumulative recurrence of HCC (hospital mortality excluded) ($n = 251$) (for statistics see Table 3). (a) Underlying disease had no significant impact on HCC recurrence. (b) UICC-7 staging had a significant impact on HCCR. Only UICC I and II staged tumors were comparable to the reference category of no or necrotic tumors, while tumors of UICC-7 IIIA-IVB had significantly higher rates of HCCR. (c) The group of patients transplanted outside the histologic MILAN (hMILAN) had a maximum cumulative HCC recurrence rate of almost 70% at 10.4 years after LT, while patients transplanted inside hMILAN (reference category) only had a maximum cumulative HCC recurrence rate of about 25% at 7 years after LT. (d) Vascular infiltration was a highly significant predictor of HCC recurrence, while tumors without vascular infiltration had a comparable HCC recurrence rate compared to the reference group of no or necrotic tumors. (e) Neoadjuvant therapy had no significant impact on HCC recurrence. (f) Tumor grading was a significant hazard for HCC recurrence. G1 staged tumors had a comparable risk for HCC recurrence to the reference category (no or necrotic tumors), while G2 and G3-4 staged tumors were strong significant hazards for HCC recurrence.

5. Conclusion

Our retrospective data analysis demonstrates the historical evolution in liver transplantation from the 1970s until today. We clearly show that the diagnosis of hepatocellular carcinoma can be survived for the long-term after liver transplantation (LT). Vascular infiltration is one decisive predictor of HCCR and a major hazard for survival but is not easily and reliably detectable before LT. Furthermore, the data shows that grading is closely related to vascular infiltration and a multinodular and bilateral tumor spreading. Grading can be easily and reliably determined prior to LT by biopsy. We believe that this observation should be taken into account in liver allocation and the timing of LT. Biopsies could be well acquired synchronously during RFA or PEI bridging interventions. Furthermore, due to the fact that needle tract seeding has a very low incidence of only 0.13% [47] and in face of the potential benefits we believe that repeated fine needle biopsies [48, 49] of HCC tumors should be considered while the patient is listed for LT. One thinkable scenario though might be that a detected dedifferentiation would trigger a drop-out from the waiting list due to expected poor prognosis and the implied ethical and judicial dilemma for patients who may remove themselves from the liver transplant waiting list by agreeing to the consequences of liver biopsy cannot be easily resolved. Vice versa, a consequence of more positive thinking could be a faster donor liver allocation process in case of detected progressive cellular dedifferentiation, hoping to perform LT before vascular infiltration and metastatic seeding of HCC have taken place. Of course, a single biopsy provides no complete picture of the entire tumor, especially not if the tumor has a multinodular morphology with different tumor gradings in each tumor nodule. However, our data show that every single detected dedifferentiation represents a significant risk increment for HCC recurrence and therefore should be considered accordingly, not only during the initial listing of patients, but also in patients who are already listed and waiting for a donor organ.

Overall, we believe that an updated and refined liver allocation score for HCC patients could be developed to gain...
Figure 9: Continued.
Figure 9: Cumulative survival after LT for HCC (HCC recurrence related deaths only) \(n = 199 \) (for statistics see Table 4). (a) With the exception of a better survival comparing the hepatitis C versus cryptogenic cirrhosis subcategories there were no other significant differences for survival related to underlying diseases. (b) Survival for UICC I and II staged tumors was comparable to the reference category (no or necrotic tumors), while the risk for HCC recurrence death increased significantly and equivalently with each step of UICC-7 staging above IIIA. (c) Tumors outside the histologic MILAN were significant hazards for survival. Nevertheless, even in the group of patients transplanted outside the histologic MILAN \((h \text{MILAN}) \) the cumulative survival was 30% at 25 years after liver transplantation. The cumulative survival of patients who were transplanted inside the histologic MILAN \((h \text{MILAN}) \) was 72% at 30 years after liver transplantation. (d) Small (V1) and large (V2) vascular infiltration were significant hazards for a HCC recurrence related death, while tumors without (V0) vascular infiltration were no significant hazards for survival compared to the reference category of no or necrotic tumors. (e) Neoadjuvant therapy in general decreased the HCC recurrence related death rate significantly. (f) Tumor grading was a significant predictor of survival. While G1 staged tumors had no increased risk for HCC recurrence related death compared to the reference category (no or necrotic tumors), G2 and G3-4 graded tumors were identified as significant hazards for HCC recurrence related deaths. The risk to die from HCC recurrence after liver transplantation was twice as high for G3-4 tumors as compared to G2 graded tumors.

a higher predictive power compared to the usual \textit{iMILAN} classification. Further refined biometrical studies on this issue are in progress.

Abbreviations

LT: Liver transplantation
HCC: Hepatocellular carcinoma
HCCR: Hepatocellular carcinoma recurrence
hMILAN: Histology-based MILAN
iMILAN: Imaging-based MILAN.

Conflict of Interests

The work of the author Harald Schrem was supported by a grant from the German Federal Ministry of Education and Research (reference number 01EO1302). Otherwise, this research did not receive any specific grant from any funding agency in the public, commercial, or nonprofit sector. All authors declare that there is no conflict of interests that could be perceived as prejudicing the impartiality of the research reported.

Authors’ Contribution

Nikos Emmanouilidis and Rickmer Peters contributed equally. Nikos Emmanouilidis and Rickmer Peters participated in research design, participated in the writing of paper, participated in the performance of the research, and participated in data analysis. Bastian P. Ringe participated in the writing of paper and participated in the performance of the research. Zeynep Güner, Wolf Ramackers, Hüseyin Bektas, Frank Lehner, Michael Manns, and Jürgen Klempnauer participated in the performance of the research. Harald
Schrem participated in the writing of paper, participated in the performance of the research, and participated in data analysis.

Acknowledgment

The authors are grateful for the database retrieval enabled by Karlheinz Heiringhoff.

References

[1] C. Langenbuch, “Ein Fall von Resektion eines linksseitigen Schnürlappens der Leber,” Berliner klinische Wochenschrift, vol. 25, no. 37, 1888.
[2] W. W. Keen IV, “Report of a case of resection of the liver for the removal of a neoplasm, with a table of seventy-six cases of resection of the liver for hepatic tumors,” Annals of Surgery, vol. 30, pp. 267–283, 1899.
[3] A. Lius, “Di un adenoma del fegato,” Gazz Clin, vol. 23, pp. 225, 1903.
[4] W. Wendel, “Beiträge zur chirurgie der leber,” Archiv für Klinische Chirurgie, vol. 95, article 887, 1911.
[5] C. Couinaud, “Intrahepatic distribution of hepatic artery,” Acta Anatomica, vol. 22, no. 1, pp. 49–81, 1954.
[6] J. L. Lortat-Jacob, H. G. Robert, and C. Henry, “Excision of the right lobe of the liver for a malignant secondary tumor,” Archives des Maladies de l'Appareil Digestif et des Maladies de La Nutrition, vol. 41, no. 6, pp. 662, 1952.
[7] I. Honjo and C. Araki, “Total resection of the right lobe of the liver; report of a successful,” The Journal of the International College of Surgeons, vol. 23, no. 1, part 1, pp. 23–28, 1955.
[8] A. Brunschwig and D. R. Morton, “Resection of abdominal carcinomas involving the liver and spleen secondarily,” Annals of Surgery, vol. 124, no. 4, pp. 746–754, 1946.
[9] S. C. Schiffman, C. E. Woodall, D. A. Kooby et al., “Factors associated with recurrence and survival following hepatectomy for large hepatocellular carcinoma: a multicenter analysis,” Journal of Surgical Oncology, vol. 101, no. 2, pp. 105–110, 2010.
[10] H. Lau, S. T. Fan, I. O. L. Ng, and J. Wong, “Long term prognosis after hepatectomy for hepatocellular carcinoma: a survival analysis of 204 consecutive patients,” Cancer, vol. 83, no. 11, pp. 2302–2311, 1998.
[11] T. E. Starzl, T. L. Marchioro, K. N. Vonkaulla, G. Hermann, R. S. Brittain, and W. R. Waddell, “Homotransplantation of the liver treated with cyclosporin A,” The Lancet, vol. 311, no. 8075, pp. 1183–1185, 1978.
[12] R. Y. Caline, D. J. G. White, K. Rolles, D. P. Smith, and B. M. Herbertson, “Prolonged survival of pig orthotopic heart grafts treated with cyclosporin A,” The Lancet, vol. 311, no. 8075, pp. 1183–1185, 1978.
[13] G. Tsoulfas, T. Kawai, N. Elias et al., “Long-term experience with liver transplantation for hepatocellular carcinoma,” Journal of Gastroenterology, vol. 46, no. 2, pp. 249–256, 2011.
[14] R. Y. Calne and R. Williams, “Orthotopic liver transplantation: the first 60 patients,” *British Medical Journal*, vol. 1, no. 6059, pp. 471–476, 1977.

[15] J. G. O’Grady, R. J. Polson, K. Rolles, R. Y. Calne, and R. Williams, “Liver transplantation for malignant disease. Results in 93 consecutive patients,” *Annals of Surgery*, vol. 207, no. 4, pp. 373–379, 1988.

[16] H. Bismuth, B. G. Ericzon, K. Rolles et al., “Hepatic transplantation in Europe. First report of the European liver transplant registry,” *The Lancet*, vol. 2, no. 8560, pp. 674–676, 1987.

[17] B. Kremer, “Liver transplantation in tumors,” *Langenbecks Arch Chir Suppl Il Verh Dtsch Ges Chir*, vol. 283, 1989.

[18] B. I. Carr, A. Zajko, K. Bron, P. Orons, J. Sammon, and R. Baron, “Phase II study of Spherex (degradable starch microspheres) injected into the hepatic artery in conjunction with doxorubicin and cisplatin in the treatment of advanced-stage hepatocellular carcinoma: interim analysis,” *Seminars in Oncology*, vol. 24, no. 2, supplement 6, pp. S6–S6, 1997.

[19] W. Y. Lau, E. C. H. Lai, and T. W. T. Leung, “Current role of selective internal irradiation with yttrium-90 microspheres in the management of hepatocellular carcinoma: a systematic review,” *International Journal of Radiation Oncology Biology Physics*, vol. 81, no. 2, pp. 460–467, 2011.

[20] S. Kawai, J. Okamura, M. Ogawa et al., “Prospective and randomized clinical trial for the treatment of hepatocellular carcinoma—a comparison of lipiodol-transcatheter arterial embolization with and without Adriamycin (first cooperative study),” *Cancer Chemotherapy and Pharmacology*, vol. 31, no. 1, supplement, pp. S1–S6, 1992.

[21] A. Nicolini, P. Fasani, M. A. Manini et al., “Transarterial embolization with microspheres in the treatment of monofocal HCC,” *Digestive and Liver Disease*, vol. 41, no. 2, pp. 143–149, 2009.

[22] F. Branco, C. Bru, R. Vilana, L. Bianchi, and A. A. de Mattos, “Percutaneous ethanol injection before liver transplantation in the hepatocellular carcinoma,” *Annals of Hepatology*, vol. 8, no. 3, pp. 220–227, 2009.

[23] T. Livraghi, S. N. Goldberg, S. Lazzaroni, F. Meloni, L. Solbiati, and G. S. Gazelle, “Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection,” *Radiology*, vol. 210, no. 3, pp. 655–661, 1999.

[24] G. K. Abou-Alfa, D. Amadori, A. Santoro et al., “Safety and efficacy of sorafenib in patients with Hepatocellular Carcinoma (HCC) and Child-Pugh A versus B cirrhosis,” *Gastrointestinal Cancer Research*, vol. 4, no. 2, pp. 40–44, 2011.

[25] W. Sun, “Treatment of inoperable HCC after sorafenib: where will the new paradigm take us?” *Gastrointestinal Cancer Research*, vol. 2, no. 1, article 49, 2008.

[26] A. Bozorgzadeh, M. Orloff, P. Abt et al., “Survival outcomes in liver transplantation for hepatocellular carcinoma, comparing impact of hepatitis C versus other etiology of cirrhosis,” *Liver Transplantation*, vol. 13, no. 6, pp. 807–813, 2007.

[27] S. Roayaie, J. S. Frischer, S. H. Emre et al., “Long-term results with multimodal adjuvant therapy and liver transplantation for the treatment of hepatocellular carcinomas larger than 5 centimeters,” *Annals of Surgery*, vol. 235, no. 4, pp. 533–539, 2002.

[28] M. A. Zimmerman, J. F. Trotter, M. Wachs et al., “Predictors of long-term outcome following liver transplantation for hepatocellular carcinoma: a single-center experience,” *Transplant International*, vol. 20, no. 9, pp. 747–753, 2007.

[29] S. Iwatsuki, J. W. Marsh, and T. E. Starzl, “Survival after liver transplantation in patients with hepatocellular carcinoma,” *Princess Takamatsu symposia*, vol. 25, pp. 271–276, 1995.

[30] G. N. Ioannou, J. D. Perkins, and R. L. Carithers Jr., “Liver transplantation for hepatocellular carcinoma: impact of the MELD allocation system and predictors of survival,” *Gastroenterology*, vol. 134, no. 5, pp. 1342–1351, 2008.

[31] F. T. Lee Jr., “Treatment of hepatocellular carcinoma in cirrhosis: locoregional therapies for bridging to liver transplant,” *Liver Transplantation*, vol. 13, no. 11, pp. S24–S26, 2007.

[32] A. Bharat, D. B. Brown, J. S. Crippin et al., “Pre-liver transplantation locoregional adjuvant therapy for hepatocellular carcinoma as a strategy to improve longterm survival,” *Journal of the American College of Surgeons*, vol. 203, no. 4, pp. 411–420, 2006.

[33] D. Cherqui, A. Laurent, N. Mocellin et al., “Liver resection for transplantable hepatocellular carcinoma: long-term survival and role of secondary liver transplantation,” *Annals of Surgery*, vol. 250, no. 5, pp. 738–745, 2009.

[34] R. T. P. Poon, T. F. Sheung, M. L. Chung, L. L. Chi, and J. Wong, “Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation,” *Annals of Surgery*, vol. 235, no. 3, pp. 373–382, 2002.

[35] C. Zavaglia, L. De Carlis, A. B. Alberti et al., “Predictors of long-term survival after liver transplantation for hepatocellular carcinoma,” *The American Journal of Gastroenterology*, vol. 100, no. 12, pp. 2708–2716, 2005.

[36] A. Vitale, E. Gringeri, M. Valmasoni et al., “Long-term results of liver transplantation for hepatocellular carcinoma: an update of the University of Padova experience,” *Transplantation Proceedings*, vol. 39, no. 6, pp. 1892–1894, 2007.

[37] A. Norén, J. Urdzik, F. Duraj, C. E. Barbier, B.-M. Karlsson, and U. Haglund, “Longterm follow-up after transarterial chemotherapy for hepatocellular carcinoma in a Scandinavian centre,” *HPB*, vol. 12, no. 9, pp. 637–643, 2010.

[38] C. J. Gannon, F. Izzo, T. A. Aloia et al., “Can hepatocellular cancer screening increase the proportion of long-term survivors?” *Hepato-Gastroenterology*, vol. 56, no. 93, pp. 1152–1156, 2009.

[39] U. Baccarani, G. L. Adani, C. Avellini et al., “Comparison of clinical and pathological staging and long-term results of liver transplantation for hepatocellular carcinoma in a single transplant center,” *Transplantation Proceedings*, vol. 38, no. 4, pp. 1111–1113, 2006.

[40] A. Lautiero, S. Di Sandro, A. Slim et al., “Hepatocellular carcinoma in unrelated viral cirrhosis: long-term results after liver transplantation,” *Transplantation Proceedings*, vol. 42, no. 4, pp. 1212–1215, 2010.

[41] R. Cabrera, R. Dhanasekaran, J. Caridi et al., “Impact of transarterial therapy in hepatitis C-related hepatocellular carcinoma on long-term outcomes after liver transplantation,” *American Journal of Clinical Oncology: Cancer Clinical Trials*, vol. 35, no. 4, pp. 345–350, 2012.

[42] G. Collella, G. F. Rondinara, L. De Carlis et al., “Liver transplantation for hepatocellular carcinoma: prognostic factors associated long-term survival,” *Transplant International*, vol. 9, supplement 1, pp. S109–S111, 1996.
[44] D. Dubay, C. Sandroussi, L. Sandhu et al., “Liver transplantation for advanced hepatocellular carcinoma using poor tumor differentiation on biopsy as an exclusion criterion,” *Annals of Surgery*, vol. 253, no. 1, pp. 166–172, 2011.

[45] J. P. Duffy, A. Vardanian, E. Benjamin et al., “Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA,” *Annals of Surgery*, vol. 246, no. 3, pp. 502–511, 2007.

[46] N. Onaca, G. L. Davis, R. M. Goldstein, L. W. Jennings, and G. B. Klintmalm, “Expanded criteria for liver transplantation in patients with hepatocellular carcinoma: a report from the international registry of hepatic tumors in liver transplantation,” *Liver Transplantation*, vol. 13, no. 3, pp. 391–399, 2007.

[47] W.-C. Tung, Y.-J. Huang, S. W. Leung et al., “Incidence of needle tract seeding and responses of soft tissue metastasis by hepatocellular carcinoma postradiotherapy,” *Liver International*, vol. 27, no. 2, pp. 192–200, 2007.

[48] M. Caselitz, N. Masche, J. S. Bleck et al., “Increasing sensitivity of morphological diagnosis in hepatocellular carcinoma (HCC) by combination of cytological and fine-needle histological examination after ultrasound guided fine needle biopsy,” *Zeitschrift fur Gastroenterologie*, vol. 41, no. 6, pp. 559–564, 2003.

[49] J. Schölmerich, “Is ultrasound-guided fine-needle biopsy effective for diagnosis of early HCC in liver cirrhosis?” *Nature Clinical Practice Gastroenterology and Hepatology*, vol. 2, no. 1, pp. 16–17, 2005.