Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP

Chandra Shekhar, Ajaya K. Nayak, Yan Sun, Marcus Schmidt, Michael Nicklas, Inge Leermakers, Uli Zeitler, Yuri Skourski, Jochen Wosnitza, Zhongkai Liu, Yulin Chen, Walter Schnelle, Horst Borrmann, Yuri Grin, Claudia Felser and Binghai Yan

Recent experiments have revealed spectacular transport properties in semimetals, such as the large, non-saturating magnetoresistance exhibited by WTe₂ (ref. 1). Topological semimetals with massless relativistic electrons have also been predicted as three-dimensional analogues of graphene. These systems are known as Weyl semimetals, and are predicted to have a range of exotic transport properties and surface states, distinct from those of topological insulators. Here we examine the magneto-transport properties of NbP, a material the band structure of which has been predicted to combine the hallmarks of a Weyl semimetal with those of a normal semimetal. We observe an extremely large magnetoresistance of 850,000% at 1.85 K (250% at room temperature) in a magnetic field of up to 9 T, without any signs of saturation, and an ultrahigh carrier mobility of 5 × 10⁶ cm² V⁻¹ s⁻¹ that accompanied by strong Shubnikov-de Haas (SdH) oscillations. NbP therefore presents a unique example of a material combining topological and conventional electronic phases, with intriguing physical properties resulting from their interplay.

A Weyl semimetal (WSM) is a three-dimensional analogue of graphene, in which the conduction and valence bands cross near the Fermi energy. The band-crossing point, the so-called Weyl point, acts as a magnetic monopole (a singular point of Berry curvature) in momentum space and always comes in a pairs. Unusual transport properties and surface states such as Fermi arcs are predicted, stimulating strong interest in realizing the WSM state in real materials. If the time-reversal and inversion symmetries are respected, a pair of Weyl points can become degenerate in energy as a result of the crystal symmetry, forming another topological phase called a Dirac semimetal. WSMs and Dirac semimetals usually exhibit very high mobilities, possibly attributed to the high Fermi velocity of massless Dirac states, as observed in transport experiments (such as Cd₃As₂; refs 16,17). Generally, semimetals are new platforms to realize a huge magnetoresistance (MR) (refs 18,19), an effect that has been pursued intensively in emerging materials in recent years, because of its significant application in state-of-the-art information technologies. Electrical transport in a semimetal usually consists of two types of carriers (electrons and holes), leading to a large MR when a magnetic field is applied at an electron–hole resonance. In a simple Hall effect set-up, the transverse current carried by a particular type of carrier may be non-zero, although no net transverse current flows when the currents carried by the electrons and holes compensate for each other. These non-zero transverse currents will experience a Lorentz force caused by the magnetic field in the inverse-longitudinal direction. Such a back flow of carriers eventually increases the apparent longitudinal resistance, resulting in an extremely high MR that is much stronger than that in normal metals and semiconductors. Thus, it is crucial to obtain high-purity samples to realize a balance between electrons and holes and a high carrier mobility (μ) as well, both of which will enhance the MR effect.

Elemental Bi (refs 22–25) and WTe₂ (ref. 1) exhibit a high MR as typical examples of semimetals, in which electron and hole pockets coexist on the Fermi surface (Fig. 1a). There is a special type of semimetal whose conduction-band bottom and valence-band top touch the Fermi surface at the same point in momentum (k) space (Fig. 1b,c). Many such semimetals exhibit a high carrier mobility and relatively large MR, with a linear dependence on the magnetic field, such as zero-gap topological-insulator silver chalcogenides and Heuslers compounds, the Dirac semimetal Cd₃As₂ (μ = 9 × 10⁶ cm² V⁻¹ s⁻¹) at 5 K, MR = 1,500% at 1.5 K and

1 Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany. 2 Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany. 3 High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands. 4 Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany. 5 Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, UK. 6 Physics Department, Oxford University, Oxford OX1 3PU, UK. 7 Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany. e-mail: yan@cpfs.mpg.de

© 2015 Macmillan Publishers Limited. All rights reserved
The semimetal NbP combines the main features of the WTe$_2$-type (showing extremely large MR) and Cd$_3$As$_2$-type (showing ultrahigh mobility) semimetals in the band structure (Fig. 1d), exhibiting hole pockets from normal quadratic bands and electron pockets from linear Weyl bands. As we will see, NbP exhibits an ultrahigh carrier mobility, comparable to that of Cd$_3$As$_2$, and an extremely large MR, surpassing that of WTe$_2$.

The single crystal of NbP used for the present study and the respective X-ray diffraction patterns are shown in Fig. 2a. The crystal structure of NbP is non-centrosymmetric space group I4, md (Fig. 2b). No indication of twinning was found in the diffraction experiments. Both atom types have the same coordination number of six, and the same coordination environment in the form of a trigonal prism. A detailed overview of the structural characterization is presented in the Supplementary Information. A measurement of the temperature dependence of the resistivity, $\rho_\alpha(T)$, is a simple way to identify the electronic states of a material. On the basis of our high-quality single crystals of NbP grown via chemical vapour transport reactions, $\rho_\alpha(T)$ is measured under various transverse magnetic fields ranging from 0 to 9 T, as shown in Fig. 2c. At zero field, we observe metallic behaviour with $\rho_\alpha(300\,\text{K}) = 73\,\mu\Omega\,\text{cm}$ and a residual resistivity $\rho_\alpha(2\,\text{K}) = 0.63\,\mu\Omega\,\text{cm}$. This results in a residual resistivity ratio $[\rho_\alpha(300\,\text{K})/\rho_\alpha(2\,\text{K})] = 115$, which is directly related to the metallicity and quality of the crystal. Compared to other similar materials at low temperature (2 K), NbP exhibits a resistivity that is about 30 times lower than that of WTe$_2$ (ref. 1) but 30 times higher than that of Cd$_3$As$_2$ (ref. 16). NbP does not become superconducting for temperatures above 0.10 K. After applying a magnetic field, we observe a remarkable change in the resistivity, $\rho_\alpha(T)$ changes from a positive slope (metallic) to a negative slope (semiconducting) at a very small field of 0.1 T, and becomes completely semiconducting at a field of 2 T. This may be due to the opening of a gap at the Weyl point. In general, a conventional semimetal does not exhibit such behaviour, whereas some small-gap or gapless semimetals (for example, WTe$_2$ (ref. 1) and Cd$_3$As$_2$ (ref. 16)) exhibit a similar trend, usually at very high fields and low temperature. Another important fact observed in the present material is that $\rho_\alpha(T)$ also increases markedly owing to the application of magnetic fields at room temperature (300 K).

We now focus on the MR measurement in NbP. The MR is commonly calculated as the ratio of the change in resistivity due to the applied magnetic field (H), $[\rho(0) - \rho(H)]/\rho(0)] \times 100\%$. Figure 2d shows the MR measured in transverse magnetic fields up to 9 T at different temperatures. At low temperatures, we find that NbP exhibits an extremely large MR $= 8.5 \times 10^6\%$ at 1.85 K in a field of 9 T. This MR is five times as large as that measured for the same field in WTe$_2$ (ref. 1) and nearly twice as large as that of TaAs (ref. 34), another WSM predicted in the same family as NbP.
A large MR is usually associated with a high mobility. The carrier mobility and concentration are two important parameters of a material that can be derived from the Hall coefficient. We have performed Hall effect measurements in both temperature-sweep and field-sweep modes to improve the accuracy of our data. The field dependence of the Hall resistivity \(\rho_{xy}(H) \) exhibits a linear characteristic at high fields (see Supplementary Information). However, the nonlinear behaviour in low fields indicates the involvement of more than one type of charge carrier in the transport properties. As seen from the inset of Fig. 2e, NbP exhibits a negative Hall coefficient, \(R_y(T) \), up to 125 K, which changes sign for temperatures above 125 K. For the sake of simplicity, we use the single-carrier Drude band model, \(n_{sc}(T) = 1 / (e R_y(T)) \), to calculate the carrier density and \(\mu_{sc}(T) = R_y(T) / \rho_{xy}(T) \) to estimate the mobility, where \(n_{sc} \) and \(\mu_{sc} \) are the charge density and mobility of the electron (hole), respectively. We use the slope of \(\rho_{xy}(H) \) at high fields to calculate the Hall coefficient (Fig. 2e). The electron carrier concentration, \(n_e \), is found to be \(1.5 \times 10^{11} \) cm\(^{-2} \) at 1.85 K, and increases slowly with temperature, exhibiting a semimetal-like or very small gap-like behaviour. The mobility plays a major role in the charge transport in a material and consequently determines the efficiency of various devices. Here, NbP exhibits an ultrahigh mobility of \(5 \times 10^6 \) cm\(^2\) V\(^{-1}\) s\(^{-1} \) at 1.85 K. This value is close to that of Cd\(_3\)As\(_2\) (9 \times 10^6 cm\(^2\) V\(^{-1}\) s\(^{-1} \); ref. 16), one order magnitude higher than that of TaAs (ref. 34) at 2 K. We note that the current mobility is extracted from a simple one-band model that neglects anisotropy. This averaged mobility is below the record mobility measured in Bi (10^6 cm\(^2\) V\(^{-1}\) s\(^{-1} \); ref. 37). Furthermore, it has been shown that the mobility in Cd\(_3\)As\(_2\) scales with the residual resistivity. Hence, it can be proposed that materials with a low residual resistivity exhibit high mobilities, with the present case being a good example.

The field dependence of the Hall resistivity \(\rho_{xy}(H) \) is reported to exhibit a MR of 1.3 \% (ref. 1) and Bi (ref. 25) 10 \% at 1.85 K. As already indicated in the 9 T MR data depicted in Fig. 2d,f, SdH oscillations appear for \(T \leq 30 \) K. At the lowest temperature (1.85 K) the oscillations start for fields as low as 1 T. Because SdH oscillations appear only when the energy spacing between two Landau levels is larger than their broadening due to disorder, we can estimate a lower limit to the quantum mobility of the carriers involved, \(\mu_q > 10^6 \) cm\(^2\) V\(^{-1}\) s\(^{-1} \), in agreement with the large electron (transport) mobility extracted from the Hall effect.

The physical parameters of the charge carriers are derived from the Fermi surface that is measured by the oscillations observed in the transport properties. Both \(\rho_{xx} \) and \(\rho_{xy} \) measured up to 9 T exhibit very clear SdH oscillations starting from 1 T. This
indicates a very low effective mass, resulting in a high mobility. To obtain the amplitude of the SdH oscillations, $\frac{\Delta \rho_{xx}(T, B)}{\rho_{xx}(0)} = e^{-2\pi^2 k_B T_0/\beta} \frac{2\pi^2 k_B T/\beta}{\sinh(2\pi^2 k_B T/\beta)},$
where k_B is Boltzmann’s constant, $\beta = eB/2\pi m^* n$ and $T_0 = h/4\pi^2 x k_B$ are the fitting parameters, which directly result in the effective mass m^* and quantum lifetime τ of the charge carriers. The value of m^* calculated from the temperature-dependent SdH oscillations in a field of 8.2 T is 0.076 m_e, where m_e is the bare mass of the electron. This value is comparable to that reported for Cd$_3$As$_2$ (ref. 16). We also find a very large Fermi velocity $v_F = \hbar k_F /m^* = 4.8 \times 10^5$ m s$^{-1}$. The large Fermi velocity and low effective mass are responsible for the observed ultrahigh mobility in NbP.

The SdH oscillations at different temperatures obtained from the 30 T dc magnetic field measurements are plotted in Fig. 3c. At the lowest temperature, marked by arrows, the SdH maxima at 8 T (0.125 T$^{-1}$) and 11 T (0.091 T$^{-1}$) start to split into two distinct peaks, and the maximum at 16 T (0.0625 T$^{-1}$) develops into four peaks. This can be assigned to the lifting of the spin degeneracy and the degeneracy of the dual Weyl point.

To further understand the transport properties and verify the Weyl physics of NbP, we have performed ab initio band-structure calculations. NbP crystallizes in a body-centred-tetragonal lattice with the non-symmorphic space group I4$_1$md. The lack of inversion symmetry of the lattice leads to the lifting of spin degeneracy in the band structure. Near the Fermi energy, twelve pairs of Weyl points lie aside the central planes in the Brillouin zone, consistent with recent calculations (ref. 17). Twelve pairs of Weyl points can be classified into two groups, labelled as W1 and W2 (Fig. 4b). The W1 pair that lies in the $k_z = 0$ plane is lower in energy that the W2 pair off the $k_z = 0$ plane. An important feature in the band structure is that the Fermi energy crosses the quadratic-type valence bands and also the linear Weyl-type conduction bands, leading to very small hole and electron pockets on the Fermi surface, respectively. Four equivalent hole pockets appear around the Z point (labelled as H in Fig. 4c). Four larger and eight smaller electron pockets exist near the Σ and N points, respectively, corresponding to W1 and W2 Weyl bands. This is consistent with multiple tiny Fermi surface areas with low effective masses extracted from SdH oscillations. We note that the specific shape of the Fermi surfaces relies sensitively on the position of the Fermi energy, which is determined by the dopant concentration of the sample. In Fig. 4c we set the Fermi energy as the ideal electron–hole compensation case. Furthermore, from the bulk to the surface, as a manifestation of topology, Fermi arcs exist between the projection of Weyl points with opposite chirality. Angle-resolved photoemission spectroscopy (ARPES) experiments are called for to verify NbP as a WSM by investigating the surface states.

As we have demonstrated here, NbP is an exotic semimetal with interesting transport properties. As seen in the band structure, it combines the electronic structures of a normal semimetal and a WSM together. Similar to normal semimetals such as WTe$_2$ and Bi, NbP exhibits both electron and hole pockets at different positions in the Brillouin zone; however, unlike WTe$_2$ and Bi, its electron pockets are relevant to the linear Weyl bands, from which the high mobility of the high-quality samples may originate. In contrast to Weyl semimetals (for example, TaAs) and Dirac semimetals (for example, Cd$_3$As$_2$), in which the Fermi energy may cross only one type of band (electron or hole), NbP naturally hosts both types of carriers and consequently exhibits a huge MR in an electron–hole resonance situation.

Methods

Methods and any associated references are available in the online version of the paper.
Received 16 March 2015; accepted 19 May 2015; published online 22 June 2015

References

1. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe₂. Nature 514, 205–208 (2014).
2. Pan, X. G., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
3. Novoselov, K. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
4. Turner, A. M. & Vishwanath, A. Beyond band insulators: Topology of semi-metals and interacting phases. Preprint at http://arxiv.org/abs/1301.0330 (2013).
5. Hosur, P. & Qi, X. L. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 14, 857–870 (2013).
6. Vafek, O. & Vishwanath, A. Dirac Fermions in solids: From high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Annu. Rev. Condens. Matter Phys. 5, 83–112 (2014).
7. Parameswaran, S. A., Grover, T., Abanin, D. A., Pesin, D. A. & Vishwanath, A. Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).
8. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
9. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3087 (2010).
10. Wang, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).
11. Huang, S-M. et al. An inversion breaking Weyl semimetal state in the TaAs material class. Preprint at http://arxiv.org/abs/1501.00755 (2015).
12. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).
13. Xu, G., Wu, J., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr₂Se₄. Phys. Rev. Lett. 107, 188806 (2011).
14. Wang, Z. et al. Dirac semimetal and topological phase transitions in A₃Bi (A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).
15. Wang, Z., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd₃As₂. Phys. Rev. B 88, 125427 (2013).
16. Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd₃As₂. Nature Mater. 14, 280–284 (2015).
17. Narayan, A. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd₃As₂. Phys. Rev. Lett. 114, 117201 (2015).
18. Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N. & Petroff, F. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
19. Binasz, G., Grünberg, R., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).
20. Parkin, S. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).
21. Singleton, J. Band Theory and Electronic Properties of Solids (Oxford Univ. Press, 2001).
22. Mangaz, J. H., Issi, J. P. & Heremans, J. Transport properties of bismuth in quantizing magnetic fields. Phys. Rev. B 14, 4381–4385 (1976).

Acknowledgements

This work was financially supported by the Deutsche Forschungsgemeinschaft DFG (Project No.EB 518/1-1 of DFG SPP 1666 ‘Topological Insulators’) and by the ERC Advanced Grant No. (291472) ‘Idea Heusler’. Y.C. acknowledge support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (no. N66001-11-1-4105). We acknowledge the support of the High Magnetic Field Laboratory Dresden (HLD) at HZDR and High Field Magnet Laboratory Nijmegen (HFML-RU/FOM), members of the European Magnetic Field Laboratory (EMFL).

Author contributions

B.Y. conceived the original idea for the project. C.S. performed the low-field PPMS measurement with the help of M.N. and W.S. C.L. and U.Z. performed the 30 T static magnetic field measurements. Y.Skourski, A.K.N. and J.W. performed the pulsed high magnetic field experiments. M.S. grew the single-crystal samples. Y.Sun and B.Y. supervised the project. A.K.N. wrote the manuscript with substantial contributions from all authors. C.F. and Z.L. calculated band structures. H.B. and Y.G. characterized the crystal structure. Z.L. and M.S. performed magnetoresistance measurements. B.Y. conceived the original idea for the project. C.S. performed the low-field PPMS measurement with the help of M.N. and W.S. C.L. and U.Z. performed the 30 T static magnetic field measurements. Y.Skourski, A.K.N. and J.W. performed the pulsed high magnetic field experiments. M.S. grew the single-crystal samples. Y.Sun and B.Y. supervised the project.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to B.Y.

Competing financial interests

The authors declare no competing financial interests.
Methods
High-quality single crystals of NbP were grown via a chemical vapour transport reaction using iodine as a transport agent. Initially, a polycrystalline powder of NbP was synthesized by a direct reaction of niobium (Chempur 99.9%) and red phosphorus (Heraeus 99.999%) kept in an evacuated fused silica tube for 48 h at 800 °C. Starting from this microcrystalline powder, the single crystals of NbP were synthesized by chemical vapour transport in a temperature gradient starting from 850 °C (source) to 950 °C (sink) and a transport agent with a concentration of 13.5 mg cm⁻³ iodine (Alfa Aesar 99.998%; ref. 38). The orientation and crystal structure of the present single crystal were investigated using the diffraction data sets collected on a Rigaku AFC7 diffractometer equipped with a Saturn 724+ charge-coupled device detector (monochromatic Mo Kα radiation, λ = 0.71073 Å). Structure refinement was performed by full-matrix least-squares on F using the program package WinCSD.

The transport measurements were performed in various physical property measurement systems (PPMS, Quantum Design, ACT option, home build adiabatic demagnetization stage). The 30 T static magnetic field measurements were performed at the High Field Magnet Laboratory HFML-RU/FOM in Nijmegen, and the pulsed magnetic field experiments were carried out at the Dresden High Magnetic Field Laboratory HLD-HZDR, both laboratories are members of the European Magnetic Field Laboratory (EMFL).

The ab initio calculations were performed within the framework of density functional theory (DFT), implemented in the Vienna ab initio simulation package. The core electrons were represented by the projector-augmented-wave potential and generalized gradient approximation (GGA) are employed for the exchange correlation functional. We interpolated the bulk Fermi surface using maximally localized Wannier functions (MLWFs; ref. 40).

References
38. Martin, J. & Gruehn, R. Zum chemischen Transport von Monophosphiden MP (M = Zr, Hf, Nb, Ta, Mo, W) und Diposphiden MP_2 (M = Ti, Zr, Hf). Z. Kristallogr. 182, 180–182 (1988).
39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
40. Mostofi, A. A. et al. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).