Abstract: Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys(48)-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.

DOI: https://doi.org/10.1074/jbc.M113.514745

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-86269
Journal Article
Accepted Version

Originally published at:
Zemoura, Khaled; Schenkel, Marisa; Acuña, Mario A; Yévenes, Gonzalo E; Zeilhofer, Hanns Ulrich; Benke, Dietmar (2013). Endoplasmic reticulum-associated degradation controls cell surface expression of 3-aminobutyric acid, type b receptors. Journal of Biological Chemistry, 288(48):34897-34905.
DOI: https://doi.org/10.1074/jbc.M113.514745
Neurobiology: Endoplasmic Reticulum Associated Degradation (ERAD) Controls Cell Surface Expression of GABA B Receptors

Khaled Zemoura, Marisa Schenkel, Mario A. Acuna, Gonzalo E. Yevenez, Hanns Ulrich Zeilhofer and Dietmar Benke

J. Biol. Chem. published online October 10, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.514745

Find articles, minireviews, Reflections and Classics on similar topics on the JBC Affinity Sites.

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/early/2013/10/01/jbc.M113.514745.full.html#ref-list-1
Endoplasmic Reticulum Associated Degradation (ERAD) Controls Cell Surface Expression of GABA\textsubscript{B} Receptors

Khaled Zemoura1,2, Marisa Schenkel1,3, Mario A. Acuña1,2, Gonzalo E. Yévenes1, Hanns Ulrich Zeilhofer1,2,3 and Dietmar Benke1,2

1From the Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; the 2Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland; and the 3Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland

*Running title: ERAD controls GABA\textsubscript{B} receptor cell surface expression

To whom correspondence should be addressed: Dietmar Benke, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, Tel.: 41-44-635-5930, Fax.: 41-44-635-6874, E-mail: benke@pharma.uzh.ch

Keywords: GABA\textsubscript{B} receptor, endoplasmic reticulum (ER), ER-associated degradation (ERAD), proteasome, ubiquitination, neurons

Background: The amount of cell surface GABA\textsubscript{B} receptors determines the strength of GABA\textsubscript{B}-mediated inhibition of neuronal excitability.

Results: GABA\textsubscript{B} receptors are K48-linked polyubiquitinated and degraded by proteasomes via ERAD.

Conclusion: ERAD constitutively degrades GABA\textsubscript{B} receptors and thereby determines the number of functional receptors available for signaling.

Significance: Modulation of ERAD activity may be a mechanism to adjust the level of functional GABA\textsubscript{B} receptors.

SUMMARY

Metabotropic GABA\textsubscript{B} receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. While the mechanisms of GABA\textsubscript{B} receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABA\textsubscript{B} receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABA\textsubscript{B} receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABA\textsubscript{B} receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required K48-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABA\textsubscript{B2} subunit. Inactivation of these ubiquitination sites increased receptor levels and GABA\textsubscript{B} receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum (ER)-associated degradation (ERAD) as shown by the accumulation of receptors in the ER upon inhibition of proteasomes, by the increase of receptor levels as well as receptor signaling upon blocking ERAD function and by the interaction of GABA\textsubscript{B} receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABA\textsubscript{B} receptor available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.

Signaling strength of neurotransmitter receptors is significantly controlled by the number of receptors in the plasma membrane. Protein synthesis, cell surface trafficking, endocytotic
removal from the plasma membrane and degradation of the receptors need to be precisely balanced to maintain an appropriate level of cell surface receptors. These mechanisms thus provide means for adapting receptor numbers in response to plastic changes in neurons. There is accumulating evidence that regulated protein degradation via the ubiquitin-proteasome system plays an important integrative role in synaptic plasticity (1-3). Proteasomal degradation at the endoplasmic reticulum (ER) is crucial for the quality control of newly synthesized receptors. Incorrectly folded and misassembled receptor proteins are efficiently eliminated from the endoplasmic reticulum via the ER-associated degradation (ERAD) (4). Defective receptor proteins are polyubiquitinated, exported from the ER membrane and degraded by proteasomes in the cytoplasm. There is evidence that ERAD may also be involved in the regulation of the number of functional receptors in response to physiological stimuli. Prolonged activation of IP$_3$ receptors, which release Ca$^{2+}$ from the ER, down-regulates the expression of the receptors in ER membranes via ERAD-dependent proteasomal degradation (5). This is thought to be a homeostatic response to counterbalance excessive accumulation of Ca$^{2+}$ in the cytoplasm. However, it is currently unclear whether the ERAD machinery contributes to the regulation of the cell surface density of neurotransmitter receptors.

GABA$_B$ receptors are G protein-coupled receptors assembled from the two subunits GABA$_B1$ and GABA$_B2$. They mediate slow inhibitory neurotransmission in the CNS and are thought to be involved in a variety of neurological disorders (6). It is meanwhile well established that GABA$_B$ receptors are endocytosed from the plasma membrane via the classical dynamin and clathrin-dependent pathway and are eventually degraded in lysosomes (7). Lysosomal targeting appears to be mediated by the ESCRT (endosomal sorting complex required for transport) machinery (8) that sorts mono- and K63-linked polyubiquitinated proteins to lysosomes (9). It is currently unclear whether proteasomal degradation contributes to the regulation of GABA$_B$ receptors available for signal transduction. Therefore, we tested in this study the hypothesis that cell surface levels of GABA$_B$ receptors might be controlled by proteasomal degradation.

EXPERIMENTAL PROCEDURES

Antibodies – The following primary antibodies were used: rabbit GABA$_B1ab$ (10, 11) directed against the C terminus of GABA$_B1$ (affinity-purified, 1:500 for in-cell Western assay and immunofluorescence), rabbit GABA$_B2N$ (10, 11) directed against the N terminus of GABA$_B2$ (affinity-purified, 1:250 for in-cell Western assay and immunofluorescence, 1:50 for in situ PLA), guinea pig GABA$_B2$ (1:1000 for immunofluorescence in neurons and 1:4000 in HEK 293 cells, 1:1000 for Western blotting, Chemicon International), mouse PDI (1:1000 for immunofluorescence, Santa Cruz Biotechnology), mouse ubiquitin (P4D1, 1:50 for Western blotting, Santa Cruz Biotechnology), mouse ubiquitin Lys48-specific (clone Apu2, 1:50 for in situ PLA; Millipore), mouse VCP (p97) (1:50 for in situ PLA, 3E8DC11, Abcam), mouse actin (1:1000 for in-cell Western assay, Chemicon International), mouse HA (1:500 for immunofluorescence, Santa Cruz Biotechnology), mouse ubiquitin directed against the N terminus of GABA$_B2$, rabbit SYVN1/Hrd1 (1:50 for in situ PLA, Bios), Secondary antibodies were coupled either to horseradish peroxidase (1:5000, Jackson ImmunoResearch), Alexa Fluor 488 (1:1000, Invitrogen), Cy-3 (1:500, Jackson ImmunoResearch), IRDye680 (1:400, Li-COR Biosciences) or IRDye800CW (1:400, Li-COR Biosciences).

Drugs – Baclofen (50 μM, Tocris Bioscience), betulinic acid (20 μg/ml, Sigma-Aldrich), bicucullin (4 μM, Tocris Bioscience), Eeyarestatin I (5 μM, Chembridge), CNX (2 μM, Tocris Bioscience), lactacystin (50 μM, Sigma Aldrich), MG132 (10 μM, Sigma-Aldrich), pyrenebutyric acid (50 μM, Sigma-Aldrich), SM13 (5 μM, BostonBiochem), TTX (0.5 μM, Tocris Bioscience).

Plasmids – The following cDNAs in the appropriate expression vectors were used: GABA$_B2(ab)$ (12) (pcDNA1), GABA$_B2$ (13) (pc1) (pcDNA1, GABA$_B$ plasmids were kindly provided by Dr. B. Bettler, University of Basle and Dr. K. Kaupmann, Novartis, Basle), ubiquitin and ubiquitin (K48R) (14) (pRK5-HA, Addgene plasmids 17604, 17608), VCP/p97-EGFP and VCP/p97(DKO)-EGFP (15) (pEGFP-N1, Addgene plasmids 23971, 23974).

Mutation of GABA$_B2$ – Lysines 767 and 771 in GABA$_B2$ were mutated to arginines using the Quick change II XL site directed mutagenesis kit
from Stratagene according to the manufacturers instructions.

Culture and transfection of cortical neurons –
Primary neuronal cultures of cerebral cortex were prepared from E18 embryos of time-pregnant Wistar rats as described previously (10,11). Neurons were kept in culture for 12 to 17 days before used. Neurons were transfected with plasmid DNA using magnetofection as detailed by Buerli et al. (16).

Culture and transfection of HEK 293 cells –
HEK (Human Embryonic Kidney) 293 cells were cultured in minimum essential medium (MEM, Invitrogen) containing 10% fetal calf serum (Invitrogen), 2 mM glutamine (Q, Invitrogen) and 4% gentamicin (Invitrogen). HEK 293 cells were transfected with plasmids using the calcium phosphate precipitation method.

Proteasome activity assay –
Neurons cultured in 96-well plates were incubated for 12 h with either 10 μM MG132, 50 μM lactacystin or 20 μM betulinic acid followed by determination of proteasome activity using the Proteasome Glo Chymotrypsin-like cell based assay (Promega) according to the manufactures instructions.

Immunoprecipitation and Western blotting –
Immunoprecipitation of GABA_B receptors from deoxycholate extracts of rat brain membranes and Western blotting for the detection of GABA_{B2} and ubiquitin was done as described previously (10,17).

Immunocytochemistry and confocal laser scanning microscopy –
Double labeling immunocytochemistry was performed with cortical neurons cultured on coverslips as described previously (10,11,17). Neurons were analyzed by confocal laser scanning microscopy (LSM510 Meta; Zeiss, 100x plan apochromat oil differential interference contrast objective, 1.4 NA) at a resolution of 1024 x 1024 pixels in the sequential mode. Quantification of fluorescence signals and image processing was done as detailed in (11). Images shown represent a single optical layer.

In-cell Western assay –
The in-cell Western assay was exactly done as in (11). Neurons cultured in 96-well plates were treated with the drug to be tested for the indicated time at 37 °C and 5% CO₂. After fixation and permeabilization, the neurons were incubated simultaneously with GABA_B receptor and actin antibodies. Non-specific GABA_B receptor antibody binding was determined in parallel cultures by competition using the respective peptide-antigen (10 μg/ml).

After incubation with the appropriate secondary antibodies the fluorescence was measured with the Odyssey Infrared Imaging System (LI-COR Biosciences). Specific GABA_B signals were normalized to the actin signal determined in parallel.

In situ proximity ligation assay (in situ PLA) –
The in situ PLA technology is a highly sensitive antibody-based method for the microscopic detection of protein-protein interactions and posttranslational protein modifications in cultured cells and tissue section (18,19). For in situ PLA we used Duolink PLA probes and detection reagents according to the manufactures instructions (Olink Bioscience). The specificity of the PLA signal was validated for each pair of antibodies in HEK 293 cells expressing or not expressing GABA_B receptors. In addition, in neurons omitting one of the primary antibodies did not generate PLA signals.

For signal quantification, cells were imaged for GABA_B receptor expression and PLA signals by confocal microscopy (LSM510 Meta; Zeiss, 100x plan apochromat oil differential interference contrast objective, 1.4 NA, resolution 1024 x 1024 pixels, sequential mode). GABA_B receptors fluorescence intensities, PLA spots and the cell area were quantified using ImageJ (http://rsbweb.nih.gov/ij/). PLA signals were normalized to the GABA_B receptor signal and the cell area.

Electrophysiology –
Cortical neurons at 13-15 days in vitro were recorded in the whole-cell voltage-clamp configuration at room temperature. Total spontaneous postsynaptic currents (sPSCs) were recorded at a holding potential of -60 mV. Baclofen-evoked potassium currents were elicited using a 1 second pulse of 50 μM baclofen at -90 mV. Baclofen-evoked potassium currents were elicited using a 1 second pulse of 50 μM baclofen at -90 mV. Patch electrodes were filled with 120 mM CsCl / KCl, 10 mM EGTA, 10 mM HEPES (pH 7.4), 4 mM MgCl₂, 0.5 mM GTP and 2 mM ATP. Spontaneous PSCs recordings were performed using intracellular CsCl, whereas the potassium currents were recorded using an intracellular solution containing KCl. The external solution contained 140 mM NaCl, 10 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 10 mM HEPES pH 7.4 and 10 mM glucose. Potassium currents were recorded in the presence of TTX (0.5 μM), CNQX (2 μM) and bicuculline (4 μM). To enhance the amplitude of the baclofen-evoked currents, the potassium concentration of the extracellular solution was increased to 30 mM and the sodium concentration...
was reduced to 120 mM (to keep osmolarity constant) before the application of the GABA_B agonist. All the synaptic events displaying amplitudes above the background noise (5-12 pA) were identified and analyzed off-line using MiniAnalysis 6.0.7 software (Synaptosoft). Mean amplitudes and frequency values were obtained from 1 min epoch’s recordings on each experimental condition and normalized to the control condition of the individual neuron.

Statistical analysis – Data are presented as mean ± S.E.M.. The statistical analysis of data was performed with the GraphPad Prism 5 software. Unpaired t-test was used for comparing two conditions and one way ANOVA followed by Dunnett’s post-hoc test for analysis of multiple conditions. The level of significance and n values are indicated in the figure legends. Differences were considered statistically significant when p<0.05.

RESULTS

The expression level of GABA_B receptors is controlled by proteasomal degradation – It is currently unknown whether the ubiquitin-proteasome system contributes to the regulation of GABA_B receptor expression levels in neurons. To gain evidence for a potential degradation of GABA_B receptors by proteasomes, we treated cultured cortical neurons for 12 h with the proteasome inhibitors MG132 or lactacystin and determined the GABA_{B1} and GABA_{B2} protein expression levels. Under these conditions, MG132 and lactacystin decreased proteasomal activity to 31±2% and 17±1% of untreated controls, respectively (Fig. 1A). Both drug treatments increased total GABA_B receptor expression levels (MG132, GABA_{B1}: 131±2 %, GABA_{B2}: 143±5 %; lactacystin, GABA_{B1}: 142±4 %, GABA_{B2}: 147±2 % of control; Fig. 1B), suggesting that under basal conditions GABA_B receptors were constitutively degraded to a certain extent by proteasomes.

Prolonged inhibition of proteasomes depletes the pool of free ubiquitin (20,21), which might also affect ubiquitin-dependent processes unrelated to proteasomal degradation. There is some evidence that GABA_B receptors are sorted to lysosomes via the ubiquitin-dependent ESCRT (endosomal sorting complex required for transport) machinery (8). Hence, prolonged inhibition of proteasomes might indirectly compromise lysosomal degradation of the receptors. However, an indirect contribution of lysosomal degradation could be ruled out. Pharmacologically increasing proteasome activity by treating cortical neurons for 12 h with the proteasome activator betulinic acid (22), which enhanced proteasomal activity to 143±17% of control (Fig. 1A), significantly decreased GABA_B receptor levels (GABA_{B1}: 69±2%, GABA_{B2}: 64±3% of control; Fig. 1C).

It has recently been shown that inhibition of the proteasome-associated deubiquitinating enzyme USP14 enhanced the degradation of proteasome substrates (23). Inhibition of USP14 by incubation of cortical neurons with SMI-USP14 (small molecule inhibitor of USP14) strongly reduced GABA_B receptor levels (GABA_{B1}: 49±4%, GABA_{B2}: 29±2% of control, Fig. 1D), further supporting the view that GABA_B receptors are degraded by proteasomes.

Finally, we assessed the functional consequences of decreased GABA_B receptor levels after enhancing proteasomal activity with betulinic acid by measuring spontaneous synaptic activity in electrophysiological experiments. Activation of GABA_B receptors with the selective agonist baclofen considerably decreased the amplitude as well as the frequency of spontaneous postsynaptic currents (sPSCs) to 43±4% and 56±7%, respectively (Fig. 1E). Treatment of cultures for 12 h with betulinic acid diminished baclofen-induced inhibition of sPSCs (amplitude: from 43±4% to 90±12% of control, frequency: from 56±7% to 94±15% of control; Fig. 1E), supporting the hypothesis that enhanced proteasomal activity leads to reduced levels of functional GABA_B receptors available for neuronal inhibition.

GABA_B receptors undergo K48-linked polyubiquitination – K48-linked polyubiquitination of proteins serves as a signal for proteasomal degradation. Consistent with polyubiquitination, GABA_B receptors immunoprecipitated from deoxycholate extracts of crude rat brain membranes exhibited on Western blots ubiquitin immunoreactivity in the high molecular range (Fig. 2A). This suggests that GABA_B receptors are ubiquitinated under basal conditions to a certain extent. Likewise, using the in situ proximity ligation assay (PLA), we found that GABA_B receptors in cultured cortical neurons display K48-linked polyubiquitination, which was considerably increased upon inhibition of
proteasomal activity with MG 132 (172±11% of control, Fig. 2B). This indicates the accumulation of K48-linked polyubiquitinated GABA_B receptors destined for proteasomal degradation.

Next we tested whether preventing K48-linked polyubiquitination affects GABA_B receptor levels. Over-expression in neurons of a K48-chain elongation-defective ubiquitin mutant, in which lysine (K) 48 had been exchanged for an arginine (R) (Ub(K48R)), considerably increased the level of GABA_B receptors (GABA_B1: 166±7%, GABA_B2: 140±7% of control, Fig. 2C). This finding corroborates a K48-linked polyubiquitination site required for proteasomal degradation of GABA_B receptors.

The C-terminal domain of GABA_B2 contains a major K48-linked polyubiquitination site – An in silico analysis predicted two lysines in the C-terminal domain of GABA_B2 at position 767 and 771 as likely candidates for ubiquitination. We inactivated these potential ubiquitination sites by exchanging both lysines for arginines (GABA_B2(RR)) (Fig. 3A). Upon transfection into HEK 293 cells, GABA_B2(RR) displayed reduced K48-linked polyubiquitination (61±6% of wild type; Fig. 3B), indicating that K767/771 is a main site for K48-linked polyubiquitination in GABA_B2.

We then tested whether GABA_B1 is also a target for K48-linked polyubiquitination. However, HEK 293 cells transfected with GABA_B1 showed only marginal GABA_B1/K48-linked ubiquitination PLA signals as compared to HEK 293 cells expressing GABA_B1 and GABA_B2 (12±6%, Fig. 3C). In line with this finding, coexpression of GABA_B1 with GABA_B2(RR) yielded a similar reduction in GABA_B receptor/K48-linked polyubiquitination signals (56±8%, Fig. 3C) as observed for GABA_B2(RR) alone (61±6%, Fig. 3B). Thus, GABA_B2 appears to be the main target for K48-linked polyubiquitination of GABA_B receptors.

Over-expressing GABA_B2(RR) in cultured neurons increased GABA_B receptor levels to a similar level as observed after chronic proteasome inhibition (GABA_B1: 152±15%, GABA_B2: 146±9% of control; Fig. 3D). This suggests that K767/771 in GABA_B2 is the major K48-linked polyubiquitination site required for proteasomal degradation of GABA_B receptors.

The functional consequence of the increased GABA_B2 cell surface density after transfecting neurons with GABA_B2(RR) was analyzed by measuring baclofen-induced K^+ currents using whole-cell patch-clamp recordings. Transfection of GABA_B2(RR) in neurons resulted in 2.8±0.6-fold increased K^+ channel current amplitudes after activation of GABA_B receptors with baclofen as compared to neurons transfected with wild type GABA_B2 (Fig. 3E). Thus, preventing proteasomal degradation of GABA_B2 by over-expression of GABA_B2(RR) increased the number of functional cell surface GABA_B receptors available for signaling.

Cell surface expression of GABA_B receptors is regulated by ERAD – The most likely mechanism for proteasomal degradation of GABA_B receptors is the ER-associated degradation (ERAD). If GABA_B receptors are degraded by ERAD, inhibition of proteasomal activity should result in an accumulation of GABA_B receptors in the ER. Indeed, blocking proteasomal activity in neurons for 12 h with MG132 increased the number of GABA_B2 clusters (136±6% of control) as well as the clusters co-localizing with a marker protein for the ER (protein disulfide isomerase [PDI], 133±7% of control, Fig. 4A).

To further establish the role of ERAD in regulating cellular GABA_B receptor levels we tested the effect of directly inhibiting ERAD. Treatment of neurons for 12 h with the ERAD inhibitor Eeyarestatin I (EerI) (24, 25) increased both total GABA_B2 (183±15% of control, Fig. 4B) and cell surface levels of GABA_B2 (204±32% of control, Fig. 4C). Over-expression of GABA_B2(RR), which lack the main K48-linked polyubiquitination sites, did not further increase total (112±7% of control, Fig. 4D) or cell surface GABA_B receptor levels (93±15% of control, Fig. 4E). These observations indicate that K48-linked polyubiquitinated GABA_B receptors are degraded by ERAD.

GABA_B receptors interact with the ERAD E3 ubiquitin ligase Hrd1 – Hrd1 is one prototypical ERAD E3 ubiquitin ligases responsible for K48-linked polyubiquitination of ERAD substrates (26). Using in situ PLA, we further confirmed the potential degradation of GABA_B receptors via ERAD by showing that GABA_B receptors interact with Hrd1 (Fig. 5A). Inhibition of ERAD for 12 h with EerI increased the number of interactions (GABA_B2/Hrd1: 490±45%, GABA_B/Hrd1: 305±18% of control; Fig. 5A), indicating the
accumulation of GABA_B receptors at this central ERAD multiprotein complex. In line with this observation, blocking ERAD function for 12 h with EerI considerably increased the level of K48-linked polyubiquitinated GABA_B receptors (242±21% of control, Fig. 5B).

GABA_B receptors interact with the essential ERAD component p97 – The AAA-ATPase p97 is a central constituent of the ERAD machinery involved in the retrotranslocation of proteins to the cytoplasm for proteasomal degradation (27). Using in situ PLA, we found that GABA_B receptors interact with p97 (Fig. 6A). This finding further demonstrates the ERAD-mediated degradation of GABA_B receptors. Inhibition of p97 by EerI decreased the interaction of GABA_{B2} with p97 (40±8% of control; Fig. 6A), suggesting that the association is activity-dependent.

Inhibition of p97 function in neurons by overexpression of a dominant-negative mutant of p97 (p97[DKO]) considerably increased total (176±11% of control, Fig. 6B) as well as cell surface GABA_B receptor levels (143±11% of control; Fig. 6C) as compared to neurons overexpressing wild type p97. Over-expressing in addition GABA_{B2}(RR) did not further increase total (wild type p97: 100±6%, p97[DKO]: 104±6%, Fig. 6D) or cell surface GABA_B receptor levels (wild type p97: 100±12%, p97[DKO]: 100±11%, Fig. 6E), indicating that ubiquitination of GABA_{B2} is required for being recognized by the ERAD machinery.

Whole-cell patch-clamp recordings finally verified that inhibition of ERAD function by overexpression of p97[DKO] increased the level of functional cell surface GABA_B receptors (Fig. 6F). Neurons over-expressing p97[DKO] displayed considerably increased amplitudes of baclofen-induced K⁺ currents (control: 72±14 pA, p97[DKO]: 139±14 pA; Fig. 7 F). These experiments show that GABA_B receptors are degraded by ERAD, which affects the levels of total and cell surface GABA_B receptors.

DISCUSSION

Mechanisms controlling the cell surface density of GABA_B receptors are of pivotal importance for determining the level of GABA_B receptor-mediated neuronal inhibition. Because GABA_B receptors control glutamatergic neurotransmission (28) modulation of their cell surface density is presumed to significantly contribute to synaptic plasticity. However, the mechanisms that control cell surface expression of GABA_B receptors are largely unknown. In the present study, we identified proteasomal degradation via the ER-resident ERAD machinery as a mechanism that determines cell surface expression of GABA_B receptors.

Our data indicate that a fraction of GABA_B receptors in the ER is constitutively K48-linked polyubiquitinated and degraded by the ERAD machinery. This conclusion is based on the observation that blocking proteasomal activity, inhibiting ERAD function or interfering with GABA_B receptor K48-linked polyubiquitination increased the expression levels of GABA_B receptors in neurons. Lysines 767/771 in the C-terminal domain of GABA_{B2} appear to represent the main K48-linked polyubiquitination sites required for proteasomal degradation as their mutational inactivation rendered GABA_B receptors largely immune to degradation. It is currently unclear whether K48-linked polyubiquitination of both lysines or only of K767 or K771 serves as a tag for proteasomal degradation. A recent proteomic study analyzing the ubiquitination state of rat brain synaptic proteins identified K771 in GABA_{B2} as being ubiquitinated (29). This observation favors K771 as the main K48-linked polyubiquitination site in GABA_{B2}.

There are several lines of evidence that in particular GABA_{B2} receptors residing in the ER are degraded by proteasomes via ERAD. First, upon blocking proteasomal activity the receptors accumulated in the ER. Second, blocking ERAD function pharmacologically or by over-expressing a dominant-negative mutant of the AAA-ATPase p97, which mediates the retrotranslocation of proteins to the cytoplasm for proteasomal degradation (27), increased GABA_B receptor levels. Third, GABA_B receptors interacted with the ERAD proteins p97 and Hrd1. Hrd1 is the prototypical ERAD E3 ligase (26) and most likely one of the ubiquitin ligases that mediate ubiquitination of GABA_B receptors because stalling proteasomal degradation considerably increased its interaction with GABA_B receptors and the level of K48-linked polyubiquitinated GABA_B Receptors.

In all cases tested, GABA_{B1} and GABA_{B2} were concomitantly up- or down-regulated to a similar extent, suggesting that assembled GABA_B receptor complexes are degraded by ERAD. This notion is
ERAD controls GABA_B receptor cell surface expression

Further strengthened by the finding that 1) inactivation of the ubiquitination sites in GABA_{B2} increased the expression levels of GABA_{B1} and GABA_{B3} as well as GABA_B receptor-activated K⁺ current amplitudes, 2) that interfering with ERAD function increased GABA_B receptor function (baclofen-induced K⁺ currents) and 3) that both GABA_{B1} and GABA_{B2} generated in situ PLA signals with the ERAD E3 ubiquitin ligase Hrd1 although only K48-linked polyubiquitination of K767/771 in GABA_{B2} appears to be required for proteasomal degradation of the receptors.

What might be the physiological implications of this mechanism? The most firmly established function of ERAD is the degradation aberrant proteins in the ER (30). In addition, ERAD has been shown to rapidly degrade activated IP₃ receptors in the ER to prevent excessive elevation of cytosolic Ca²⁺ concentrations (5), indicating that ERAD may also contribute to the regulation of functional receptors. Because blocking ERAD increased the level of functional GABA_B receptors and ERAD appears to degrade assembled heterodimeric receptors it is rather unlikely that the role of ERAD is simply the degradation of un- or misfolded GABA_B receptor subunits. The constitutive degradation of GABA_B receptors suggests that ERAD controls the amount of receptors available for cell surface trafficking. This view is supported by recent studies on the regulation of cell surface GABA_A receptors. Chronic suppression of neuronal activity or inhibition of L-type voltage-gated calcium channels decreased the level of functional GABA_A receptors in the neuronal plasma membrane by a mechanism dependent on the ubiquitination of the GABA_A receptor β3-subunit and proteasome activity, most likely via the ERAD pathway (31,32). These findings imply that regulation of ERAD activity is a potential mechanism to adjust the level of functional GABA_B receptors to changing physiological condition. Our finding that modulation of proteasomal activity up- or down-regulates the level of functional GABA_B receptors supports this view. Interestingly, the level of proteasomal activity correlates with the activity state of neurons (33). We therefore hypothesize that the amount of functional GABA_B receptors inserted into the plasma membrane is regulated by neuronal activity via ERAD.

REFERENCES
1. Cajigas, I. J., Will, T., and Schuman, E. M. (2010) Protein homeostasis and synaptic plasticity. Embo J. 29, 2746-2752
2. Hegde, A. N. The ubiquitin-proteasome pathway and synaptic plasticity. Learn. Mem. 17, 314-327
3. Mabb, A. M., and Ehlers, M. D. (2010) Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol. 26, 179-210
4. Vembar, S. S., and Brodsky, J. L. (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944-957
5. Wojcikiewicz, R. J., Pearce, M. M., Sliter, D. A., and Wang, Y. (2009) When worlds collide: IP₃ receptors and the ERAD pathway. Cell Calcium 46, 147-153
6. Bettler, B., Kaupmann, K., Mosbacher, J., and Gassmann, M. (2004) Molecular structure and physiological functions of GABA_B receptors. Physiol. Rev. 84, 835-867.
7. Benke, D. (2010) Mechanisms of GABA_B receptor exocytosis, endocytosis, and degradation. Adv. Pharmacol. 58, 93-111
8. Kantamneni, S., Holman, D., Wilkinson, K. A., Correa, S. A., Feligioni, M., Ogden, S., Fraser, W., Nishimune, A., and Henley, J. M. (2008) GISP binding to TSG101 increases GABA_B receptor stability by down-regulating ESCRT-mediated lysosomal degradation. J. Neurochem. 107, 86-95
9. Raiborg, C., and Stenmark, H. (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445-452
10. Grampp, T., Notz, V., Broll, I., Fischer, N., and Benke, D. (2008) Constitutive, agonist-accelerated, recycling and lysosomal degradation of GABA_B receptors in cortical neurons. Mol. Cell. Neurosci. 39, 628-637
ERAD controls GABA_B receptor cell surface expression

11. Maier, P. J., Marin, I., Grampp, T., Sommer, A., and Benke, D. (2010) Sustained glutamate receptor activation down-regulates GABA_B receptors by shifting the balance from recycling to lysosomal degradation. *J. Biol. Chem.* **285**, 35606-35614

12. Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. (1997) Expression cloning of GABA_B receptors uncovers similarity to metabotropic glutamate receptors. *Nature* **386**, 239-246

13. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Flor, P. J., Bischoff, S., Kulik, A., Shigemoto, R., Karshin, A., and Bettler, B. (1998) GABA_B receptor subtypes assemble into functional heteromeric complexes. *Nature* **396**, 683-687

14. Lim, K. L., Chew, K. C., Tan, J. M., Wang, C., Chung, K. K., Zhang, Y., Tanaka, Y., Smith, W., Engelder, S., Ross, C. A., Dawson, V. L., and Dawson, T. M. (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. *J. Neurosci.* **25**, 2002-2009

15. Tresse, E., Salomons, F. A., Vesa, J., Bott, L. C., Kimonis, V., Yao, T. P., Dantuma, N. P., and Taylor, J. P. (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. *Autophagy* **6**, 217-227

16. Buerli, T., Pellegrino, C., Baer, K., Lardi-Studler, B., Chudotvorova, I., Fritschy, J. M., Medina, I., and Fuhrer, C. (2007) Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. *Nat. Protoc.* **2**, 3090-3101

17. Grampp, T., Sauter, K., Markovic, B., and Benke, D. (2007) \(\gamma\)-Aminobutyric acid type B receptors are constitutively internalized via the clathrin-dependent pathway and targeted to lysosomes for degradation. *J. Biol. Chem.* **282**, 24157-24165

18. Leuchowius, K. J., Jarvis, M., Wickstrom, M., Rickardson, L., Landegren, U., Larsson, R., Soderberg, O., Fryknas, M., and Jarvis, J. (2010) High content screening for inhibitors of protein interactions and post-translational modifications in primary cells by proximity ligation. *Mol. Cell Proteomics* **9**, 178-183

19. Soderberg, O., Gullberg, M., Jarvis, M., Ridderstrale, K., Leuchowius, K. J., Jarvis, J., Wester, K., Hydbring, P., Bahram, F., Larsson, L. G., and Landegren, U. (2006) Direct observation of individual endogenous protein complexes in situ by proximity ligation. *Nat. Methods* **3**, 995-1000

20. Melikova, M. S., Kondratov, K. A., and Kornilova, E. S. (2006) Two different stages of epidermal growth factor (EGF) receptor endocytosis are sensitive to free ubiquitin depletion produced by proteasome inhibitor MG132. *Cell Biol Int* **30**, 31-43

21. Patnaik, A., Chau, V., and Wills, J. W. (2000) Ubiquitin is part of the retrovirus budding machinery. *Proc Natl Acad Sci U S A* **97**, 13069-13074

22. Huang, L., Ho, P., and Chen, C. H. (2007) Activation and inhibition of the proteasome by betulinic acid and its derivatives. *FEBS Lett.* **581**, 4955-4959

23. Lee, B. H., Lee, M. J., Park, S., Oh, D. C., Elsasser, S., Chen, P. C., Gartner, C., Dimova, N., Hanna, J., Gygi, S. P., Wilson, S. M., King, R. W., and Finley, D. (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. *Nature* **467**, 179-184

24. Fiebiger, E., Hirsch, C., Vyas, J. M., Gordon, E., Ploegh, H. L., and Tortorella, D. (2004) Dissection of the dislocation pathway for type I membrane proteins with a small molecule inhibitor, eyarestatin. *Mol. Biol. Cell* **15**, 1635-1646

25. Wang, Q., Li, L., and Ye, Y. (2008) Inhibition of p97-dependent protein degradation by Eyarestatin I. *J. Biol. Chem.* **283**, 7445-7454

26. Smith, M. H., Ploegh, H. L., and Weissman, J. S. (2011) Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. *Science* **334**, 1086-1090

27. Wang, Q., Song, C., and Li, C. C. (2004) Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. *J. Struct. Biol.* **146**, 44-57

28. Chalifoux, J. R., and Carter, A. G. (2011) GABA_B receptor modulation of synaptic function. *Curr. Opin. Neurobiol.* **21**, 1-6
29. Na, C. H., Jones, D. R., Yang, Y., Wang, X., Xu, Y., and Peng, J. (2012) Synaptic protein ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. J. Proteome Res. 11, 4722-4732
30. Brodsky, J. L. (2012) Cleaning up: ER-associated degradation to the rescue. Cell 151, 1163-1167
31. Saliba, R. S., Michels, G., Jacob, T. C., Pangalos, M. N., and Moss, S. J. (2007) Activity-dependent ubiquitination of GABA_A receptors regulates their accumulation at synaptic sites. J. Neurosci. 27, 13341-13351
32. Saliba, R. S., Gu, Z., Yan, Z., and Moss, S. J. (2009) Blocking L-type voltage-gated Ca^{2+} channels with dihydropyridines reduces \(\gamma \)-aminobutyric acid type A receptor expression and synaptic inhibition. J. Biol. Chem. 284, 32544-32550
33. Djakovic, S. N., Schwarz, L. A., Barylko, B., DeMartino, G. N., and Patrick, G. N. (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655-26665

FOOTNOTES
This study was supported by the Swiss National Science Foundation (grants 31003A_121963 and 31003A_138382 to D. B.). G. E. Y was supported by the Forschungskredit of the University of Zurich. We thank Dr. J.-M. Fritschy for his support in confocal microscopy and for providing E18 rat cortex, Corinne Sidler and Giovanna Bosshard for preparation of E18 rat cortex and Thomas Grampp for technical assistance.
The abbreviations used are: ER, endoplasmic reticulum; ERAD, ER-associated degradation; GABA, \(\gamma \)-aminobutyric acid; ESCRT, endosomal sorting complex required for transport; PLA, proximity ligation assay; sPSCs, spontaneous postsynaptic currents.

FIGURE LEGENDS
FIGURE 1. The expression level of GABA_B receptors is controlled by proteasomes.
A, Verification of drug effects on proteasome activity. Neurons were incubated for 12 h with the indicated drugs and tested for proteasome activity. n=12 cultures; **, \(p < 0.01 \), ANOVA.
B, Blocking proteasome activity increased the level of GABA_B receptors. Neurons were incubated for 12 h with drugs and GABA_B receptor levels were determined using the in-cell Western assay. Untreated neurons served as a control. n=40 cultures, **, \(p < 0.01 \); ***, \(p < 0.001 \), ANOVA.
C, Enhancing proteasome activity decreased the level of GABA_B receptors. Neurons were incubated for 12 h with betulinic acid, followed by determination of GABA_B receptor levels using the in-cell Western assay. n=40 cultures, ***, \(p < 0.0001 \), t-test.
D, Inhibition of the deubiquitinating enzyme USP14 decreased the expression level of GABA_B receptors. Neurons were incubated for 12 h with SMU-USP14 (USP14) and tested for GABA_B1 and GABA_B2 levels using the in-cell Western assay. n=20-27 cultures, ***, \(p < 0.0001 \), t-test.
E, Enhancing proteasome activity diminished baclofen-induced inhibition of spontaneous postsynaptic currents (sPSCs). Left: Representative current traces showing sPSCs recorded from untreated cultured cortical neurons or from neurons treated for 12 h with betulinic acid. Right: Normalized amplitude and frequency values of the sPSCs. Mean amplitudes and frequency values were normalized to the control condition of the individual neuron. Con.: control, bac.: baclofen, betu.: betulinic acid. n=6, *, \(p < 0.05 \), t-test.

FIGURE 2. K48-linked ubiquitination controls the expression level of GABA_B receptors.
A, Demonstration of ubiquitination of native GABA_B receptors. GABA_B receptors were immunoprecipitated from deoxycholate extracts of rat brain membranes using either GABA_B1a,b or GABA_B2N antibodies. The immunoprecipitate was subjected to Western blotting for detection of GABA_B2
and ubiquitin. The high molecular smear detected with the ubiquitin antibody is typical for polyubiquitinated proteins. The ubiquitin signal in the GABA_{B1} immunoprecipitate was considerably weaker than in the GABA_{B2} immunoprecipitate because the GABA_{B1a,b} antibody beads were less efficient in precipitating GABA_B receptors than the GABA_{B2} antibody beads. Specificity of the immunoprecipitation was verified with non-immune antibodies (control). IP, immunoprecipitate; Ab, antibody.

B. Inhibition of proteasomes enhanced K48-linked polyubiquitination of GABA_B receptors. Neurons were incubated for 12 h in the absence (control) or presence of MG132 and processed for in situ PLA using antibodies directed against GABA_{B2} and K48-linked polyubiquitin to detect K48-linked polyubiquitinated GABA_B receptors (white dots in images, left). Right: Quantification of in situ PLA signals. n=30 neurons, ***, p<0.0001; t-test. Scale bar: 5 μm.

C. Over-expression in neurons of a K48-chain elongation defective ubiquitin mutant up-regulated GABA_B receptors. Neurons were transfected with plasmids containing HA-tagged ubiquitin (Ub) or HA-tagged mutant ubiquitin (Ub(K48R)). Neurons were stained for GABA_{B1} or GABA_{B2} (red) and Ub (green). Top: representative images. Bottom: quantification of total GABA_{B1} and GABA_{B2} levels in neurons expressing Ub or Ub(K48R). n=28-40 neurons, ***, P<0.0001; t-test. Scale bar: 10 μm.

FIGURE 3. The C-terminal domain of GABA_{B2} contains a major K48-linked ubiquitination site.

A. Scheme depicting the location of mutated lysines in GABA_{B2}.

B. Decreased K48-linked polyubiquitination of a GABA_{B2} mutant in which lysines 767 and 771 had been changed to arginines (GABA_{B2}(RR)). HEK293 cells were transfected with plasmids containing either GABA_{B2} or GABA_{B2}(RR) together with HA-Ub plasmid. Cells were analyzed by in situ PLA using antibodies directed against GABA_{B2} and K48-linked polyubiquitin to detect K48-linked polyubiquitinated GABA_{B2} (left, white dots, scale bar: 5 μm). Right: quantification of PLA signals. n=30 cells, ***, p<0.0001, t-test.

C. GABA_{B2} is the main target for K48-linked polyubiquitination. HEK 293 cells were transfected with plasmids containing cDNA for ubiquitin and either wild type GABA_{B2} or GABA_{B2}(RR) and stained for GABA_{B2} receptors. Neurons were incubated for 12 h in the absence (control) or presence of MG132 and processed for in situ PLA to detect K48-linked polyubiquitinated GABA_{B2} receptors (left, white dots, scale bar: 5 μm). Right: quantification of PLA signals. n=25-30 cells, **, p<0.001, ***, p<0.0001, ANOVA.

D. Increased GABA_B receptor expression levels in neurons over-expressing GABA_{B2}(RR). Neurons were co-transfected with plasmids containing GFP and GABA_{B2} or GFP and GABA_{B2}(RR) and stained for GABA_{B2} (left, upper panels) or GABA_{B1} (left, lower panels). Right: quantification of fluorescence signals. n=27 (GABA_{B1}) and 40 (GABA_{B2}) neurons, ***, p=0.0003; t-test. Scale bar: 10 μm.

E. Over-expression of GABA_{B2}(RR) in neurons increased GABA_B receptor-mediated K⁺ currents. Left: Representative traces of baclofen-induced K⁺ currents recorded in neurons transfected with wild type GABA_{B2} or GABA_{B2}(RR). Right: Normalized K⁺ current amplitudes. Current amplitude of GABA_{B2}(RR) transfected neurons were normalized to the mean of current amplitudes recorded from GABA_{B2} transfected neurons. bac.: baclofen. n=16 for GABA_{B2} and n=18 for GABA_{B2}(RR), *, p < 0.05, t-test.

FIGURE 4. GABA_B receptors are degraded via the ERAD pathway.

A. Blocking proteasomal activity increased the number of GABA_{B2} clusters co-localized with the ER marker protein PDI. Neurons were incubated for 12 h with MG132 and stained for GABA_{B2} (red) and PDI (green). The yellow clusters in the merged image indicate the co-localization of GABA_{B2} and PDI (scale bars: 5 μm, 1 μm for insets). Lower panels: quantification revealed enhanced co-localization of GABA_{B2} and PDI after proteasome inhibition. Control refers to the number of clusters in neurons not treated with MG132. n=25-30 neurons, ***, p<0.0001; t-test.

B-E. Blocking the ERAD pathway increased the level of GABA_B receptors. Neurons were transfected with plasmids containing EGFP (for detection of transfected neurons) and either wild type GABA_{B2} (B, C) or GABA_{B2}(RR) (D, E). After 48 h cultures were incubated for 12 h with or without (controls) the ERAD blocker Eyarestatin I (EerI). Total (B, D) and cell surface (C, E) GABA_B receptor levels were determined.
immunocytochemically using GABA_B2 antibodies (red, upper panels). Scale bars: 10 μm. Lower panels: quantification of GABA_B2 fluorescence signals. n=28-30 neurons; ***, p<0.0001, n.s., p>0.05; t-test.

FIGURE 5. GABA_B receptors interact with the ERAD E3 ligase Hrd1.
A, Demonstration of the interaction of GABA_B receptors with the ERAD E3 ligase Hrd1 using in situ PLA with Hrd1 and GABA_B2 antibodies (left, upper panels) or GABA_B1 antibodies in cortical neurons (left, lower panels). Treatment of neurons for 12 h with EerI strongly increased the number of interactions. Right: quantification of in situ PLA signals. n=21-27 neurons, ***, p<0.0001; t-test. Scale bar: 5 μm.
B, Inhibition of ERAD induced the accumulation of K48-linked polyubiquitinated GABA_B receptors. Neurons were incubated with EerI for 12 h and analyzed for K48-linked ubiquitination using in situ PLA (white dots in representative images, scale bar: 5 μm). Right: quantification of in situ PLA signals. n=32 cells, ***, p<0.0001, t-test.

FIGURE 6. GABA_B receptors interact with the ERAD AAA-ATPase p97.
A, Demonstration of the interaction of GABA_B receptors with the ERAD AAA-ATPase p97 in cortical neurons using in situ PLA. Treatment of neurons for 12 h with the p97 inhibitor EerI strongly reduced the interaction. Left: quantification of in situ PLA signals. n=18-21 neurons, ***, p<0.0001; t-test. Scale bar: 5 μm.
B-C, Disruption of ERAD function by over-expression of a dominant-negative mutant of p97 enhanced the level of total (B) and cell surface GABA_B2 receptors (C). Neurons were transfected with plasmids containing HA-tagged p97 or its dominant-negative mutant HA-tagged p97(DKO) and stained for GABA_B2 (red) and HA (green). Scale bars: 10 μm. Lower panels: quantification of GABA_B2 fluorescence signals. n=40-50 neurons, ***, p<0.0001; t-test.
D-E, Over-expression of GABA_B2(RR) in neurons transfected with wild type p97 or p97(DKO) did not result in an additional increase of total (D) or cell surface (E) GABA_B2 levels. Neurons were transfected with plasmids containing GABA_B2(RR) and either HA-tagged p97 or its dominant-negative mutant HA-tagged p97(DKO) and stained for GABA_B2 (red) and HA (green). Scale bars: 10 μm. Lower panels: quantification of GABA_B2 fluorescence signals. n=28-30 neurons; n.s., p>0.05; t-test.
F, Disruption of ERAD by over-expression of p97(DKO) in neurons increased GABA_B receptor-mediated K^+ currents. Neurons were transfected either with plasmids containing EGFP (control) or with plasmids containing p97(DKO). Left: Representative traces of baclofen-induced K^+ currents. Right: K^+ current amplitudes. n=10 for control and n=8 for p97(DKO), *, p < 0.05, t-test.
Fig. 1
Fig. 2
Fig. 3
Fig. 5
Fig. 6