Supporting Information

Whole-Genome Shotgun Sequencing of Two β-Proteobacterial Species in Search of the Bulgecin Biosynthetic Cluster

Mark E. Horsman,†# Daniel R. Marous,†# Rongfeng Li,§ Ryan A. Oliver,§ Byungjin Byun,† Scott J. Emrich,‡ Bill Boggess,¶ Craig A. Townsend,* and Shahriar Mobashery†*

†Departments of Chemistry and Biochemistry, and ‡Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
§Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA

These authors contributed equally
Methods:

Classification of draft genome taxonomy. 16S rRNA sequence comparisons were conducted on RDP1 using the “RDP Naive Bayesian rRNA Classifier (v2.11)” classifier and the “RDP 16S rRNA training set 16” Taxonomical Hierarchy. The detected 16S sequences in the ATCC31363 and ATCC31433 assemblies were both categorized as genus \textit{Burkholderia} in origin with 100% confidence. (Note: this system also files \textit{Paraburkholderia graminis},2 the type species of \textit{Paraburkholderia},3 as \textit{Burkholderia} at 100% confidence) Broad genomic typing of ATCC 31363 and ATCC31433 were performed using RAST’s nearest neighbor genome tool4 and MASH genome distance estimates.5 RAST compares the SPAdes assembly annotations of candidate genomes against unduplicated and universal proteins within published genomes.

Table S1. RAST nearest neighbor bacterial genomes found on the RAST database

ATCC 31433		
Genome name	RAST Score	RAST Genome ID
Burkholderia vietnamiensis G4	509	269482.11
Burkholderia vietnamiensis strain G4	449	269482.4
Burkholderia cenocepacia J2315	437	216591.1

ATCC 31363		
Genome name	RAST Score	RAST Genome ID
Burkholderia sp. Ch1-1	523	243261.3
Burkholderia xenovorans LB400	515	266265.5
Burkholderia phymatum STM815	437	391038.7

\textit{Burkholderia vietnamiensis} G4, \textit{Burkholderia vietnamiensis} strain G4, and \textit{Burkholderia cenocepacia} J2315 are \textit{Burkholderia} species found in the \textit{Burkholderia cenocepacia} complex. \textit{Burkholderia sp. Ch1-1}, \textit{Burkholderia xenovorans} LB400, and \textit{Burkholderia phymatum} STM815 are listed as members of the recently proposed \textit{Paraburkholderia} genus.

In order to compare the draft genomes against custom subsets of the RefSeq genome set, the draft genome sequences were reduced to MASH sketches and compared against Ondov \textit{et al.}’s NCBI reference set of 54,118 NCBI RefSeq genomes.5

For ATCC 31433, the comparison identified similarities to \textit{Burkholderia ubonensis} strain MSHR3999 (Bunnell \textit{et al.}, GenBank: JRFO00000000.1), \textit{Burkholderia ubonensis} MSMB226 (Los Alamos Lab, GenBank: PRJNA239258), and \textit{Burkholderia ubonensis} Bu. (NZ_ABBE00000000).7 After creating individual sketches of each of these reference genomes and generating a table of pairwise MASH distances from ATCC 31433, MSHR3999 was selected as a close reference genome (MASH distance of 0.05), and Loveridge \textit{et al.}’s taxonomical assignment of ATCC 31433 as \textit{Burkholderia}8 was cross-validated. We propose the novel subspecies \textit{Burkholderia ubonensis} subsp. \textit{mesacidiphila}.

When ATCC 31363 was compared with the RefSeq genome sketch, it displayed larger MASH distances from all included reference sequences. ATCC 31363 showed moderate similarity to \textit{Burkholderia} sp. 9120 (Baltrus \textit{et al.}, GenBank: JQNA00100001.1), \textit{Paraburkholderia} CCGE1004, \textit{Paraburkholderia graminis} C4D1M, and \textit{Paraburkholderia} Ch1-1. Pairwise MASH distances demonstrated \textit{Burkholderia} sp. 9120 as a moderately similar genome reference for ATCC 31363 (MASH distance 0.164, two-way ANI 81.98\%). Due to the composition of the \textit{Burkholderia} sp. 9120 genome, we suggest that both sp. 9120 and ATCC 31363 are also members of the newly formed Paraburkholderia genus. As such, we propose the designation of ATCC 31363 as \textit{Paraburkholderia acidiphila}.

1Baltrus, S., \textit{et al.} (2017) GenBank: JQNA00100001.1
2Los Alamos Lab, GenBank: PRJNA239258
3Los Alamos Lab, GenBank: PRJNA239258
4Ondov, B., \textit{et al.} (2014) GenBank: JRFO00000000.1
5Loveridge, C., \textit{et al.} (2017) GenBank: NZ_ABBE00000000
6Burkholderia ubonensis MSMB22: Los Alamos Lab, GenBank: PRJNA239258
7Burkholderia ubonensis Bu: (NZ_ABBE00000000)
8Burkholderia ubonensis subsp. mesacidiphila: loveridge, C., \textit{et al.} (2017) GenBank: NZ_ABBE00000000
9Burkholderia ubonensis subsp. mesacidiphila: loveridge, C., \textit{et al.} (2017) GenBank: NZ_ABBE00000000
Primary and Secondary metabolism gene annotation. The final contig sets of both genomes were annotated by PATRIC RASTtk, antiSMASH,\(^\text{10}\) and NCBI PGAP\(^\text{11}\) to characterize genes involved in primary and secondary metabolism. FASTA sequences of MTZU00000000 and MTZV00000000 were submitted for secondary metabolism annotation by antiSMASH v3.0.5.\(^\text{10}\) For genes specific to the putative bulgecin cluster, predicted protein functions were assigned based on antiSMASH homology predictions for bulC, D, F, G and sat1. Annotations for bulA, B, H, and sat2 were determined from close matches from NCBI BLAST searches.

The GenBank files submitted to NCBI contain the *ab initio* PGAP annotations and supports supplemented with manual references to the PATRIC and antiSMASH matches for the sulfazecin and bulgecin-type pathways.\(^\text{8}\)

Search for coding sequences uniquely conserved in genomes containing sulfazecin-type clusters. Two close reference genomes for ATCC 31433 (*Burkholderia* MSHR3999, NCBI accession PRJNA260165, and *Burkholderia ubonensis* MSMB22,\(^\text{6}\) determined from MASH distance) were searched for analogs of *sbnB*, which encodes an L-ornithine cyclodeaminase-type protein. A homolog of *sbnB*, *sulG* has been shown to be essential for sulfazecin biosynthesis in ATCC31433.\(^\text{12}\) With no similar hits detected, these two reference genomes were designated as close genome-scale matches of ATCC 31433 that are devoid of a complete sulfazecin cluster.

The inventory of genes unique to the reported bulgecin-producers, ATCC 31363 and ATCC 31433, was generated using the output from PATRIC’s proteome comparison tool; by comparing the ATCC 31363 genome against the two reference genomes (*B. MSHR3999* and *B. ubonensis* MSMB22) as well as two monobactam cluster-containing genomes (ATCC 31433 and *B. gladiola* ATCC 10248), a list of genes found uniquely in monobactam-positive genomes was compiled (Table S5). We inventoried genes that had a significantly higher identity percentage (+30%) with genes in ATCC 31433 and *B. gladiola* ATCC 10248 compared to the two *B. ubonensis* strains. Relatively few proteins met this criterion (70 of 6535), 58 of which did not cluster with other distinct genes based on the order of genes in ATCC 31363. One large block (7 singles and a contiguous block of 3 within 28 genes of the ATCC 31363 genome) of high identity proteins featured prominently, having genes adjacent to each other in the ATCC 31363 genome, and corresponded to many of the previously identified gene in the sulfazecin cluster as well as gene directly downstream.

Identification of possible promoter sites. The contig containing the monobactam cluster in ATCC 31433 was input to the genome2D webserver (PePPER: Prokaryote promoters, [http://pepper.molgenrug.nl/index.php/prokaryote-promoters]\(^\text{13}\)) to identify possible promoter sites within the cluster. The possible promoter sites are shown in Figure S1.

![Figure S1](http://pepper.molgenrug.nl/index.php/prokaryote-promoters)

Figure S1. Potential promoter sites within *sulD-sat1* of ATCC 31433.

The locations of potential promoters, indicated by black lines, were determined using the genome 2D software.\(^\text{13}\) Promoters reading in the reverse direction are elevated above those reading left to right. Regions containing high densities of possible promoter sites are indicated by asterisks.
Identifying variants of gene-regions from sulI to sat2 in previously reported genomes. On the PATRIC database, all genomes containing at least one copy of “Gll3516 protein” (PATRIC global family ID PGF_00007735, sulN) and “Glycosyl transferase, group 2 family” (PATRIC global family PGF_00009528, bulH) were combined to form a genome group. This genome group was ranked by blast similarity score to the sulG to BulH region of ATCC 31363.

The ordered set of genomes was inspected at the genome region containing a PATRIC annotated SerC-type phosphoserine aminotransferase (PATRIC local family plf_32008_00003145, bulG), and the genome region was categorizes for the presence of sulG-sat1 gene orthologues and common alternate structures.

Phyre2 and I-Tasser Methods. Review of the predicted BulE protein sequence using protein-threading programs Phyre2 and I-Tasser gave indications that BulE may adopt the fold of an NADH-dependent dehydrogenase similar in structure to PDB 4PLC, 4ND4, and 3QVO.

![Figure S2](image)

Figure S2. Structural predictions for BulE (B) compared against documented apicomplexan dehydrogenase 4PLC (A).

Ordering of the contigs. After reference genomes were identified for ATCC 31433 and ATCC 31363, *B. ubonensis* MSHR3999 and *B. sp.* 9120, respectively, the sequencing reads for both bulgecin-producing species were reassembled in PATRIC BRC using the corresponding similar genome for each as a reference assembly. The contigs of both new assemblies were then ordered to the sequences of their reference genomes using Mauve. Genome annotation was performed in PATRIC MultiGenomeComparison tool. Figures S3 and S4 show the similarity between ATCC 31433 and ATCC 31363 and their corresponding reference genomes. The more prominent diagonal line in the ATCC 31433/*B. ubonensis* MSHR3999 comparison (Figure S3) indicates that these two genomes have a higher degree of similarity than ATCC 31363 and *B. sp.* 9120 (Figure S4).
Figure S3. Organization of ATCC 31433 contigs using the published contig order of B. ubonensis MSHR3999

The contigs of ATCC 31433 were reordered using Mauve and a comparison was made to the reference genome of B. ubonensis MSHR3999 using the RAST sequence-based comparison BlastDotPlot feature. Visual inspection confirmed that contig 10 (as numbered in NCBI submission) is sorted two contigs out of order and should be repositioned between contig 007 and 009. Additionally, contigs 24 and 45 should be inverted to complete the manual reorder process. Parts A and B show before and after reordering, respectively. The prominent diagonal line demonstrates the similarity of the overall architecture of the two genomes. The purple box highlights a unique monobactam pathway on ATCC 31433 contig 11.

Figure S4. Comparison of ATCC 31363 with Burkholderia sp. 9120

The contigs of ATCC 31363 were reordered using Mauve’s local collinear sequence DNA sequence block method; a comparison between the resulting assembly and the reference genome of B. sp. 9120 using the RAST MultiGenomeComparison DotBlot feature. The diagonal line highlights which sections of the genomes align well. The black oval highlights a unique monobactam pathway on ATCC 31363 contig 6, which is discussed below in section 3.5.

The draft genomes can also be compared to their reference genomes in a complementary coding sequence-based ranking system. The draft genome contigs can be scored by the number of bidirectional best matches of genes found in each portion of the reference genome.
Table S2. ATCC 31433 Genome contig association table.

The groups of ATCC 31433 contigs are suspected to co-localize based on gene identity with MSHR3999 RAST bidirectional gene matches. Assigned contigs must have at least 60% of bidirectional matches in cognate reference contig. The recent ATCC 31433 assembly by Loveridge et al. is used as an anchor.\(^8\)

ATCC 31433 Chromosome\(^8\)	ATCC 31433 contig (this study)	MSHR3999 contig
1	30-54, 79-132	2, 7
2	1-29, 69-75	1, 5, 6
3	55-65	3
Plasmid	67	4

This analysis also suggests the possible configuration of the contigs in MSHR3999.

Table S3. Association table between the chromosomes of Burkholderia sp. 9120 and the contigs of ATCC 31363

Burkholderia sp. 9120 Chromosome	ATCC 31363 contig
1	3-8
2	-
Conflicted contigs	1, 2
Unassociated	9-11

Table S2 also outlines the possible configuration of MSHR3999. As shown in Table S3 and Figure S4, the gene order between 31363 and sp. 9120 varies to a larger extent than the relative gene order of MSHR3999 and ATCC 31433 (Table S2).

Table S4. Putative secondary metabolite pathways detected by antiSMASH. Sulfazecin/bulgecin cluster in bold.

	ATCC 31433	ATCC 31363
Arylpolyene	2	2
Bacteriocin	3	2
Blactam-Arylpolyene-Ectoine-Nrps		**1**
Butyrolactone	1	
Ectoine-Arylpolyene-Nrps	1	
Hserlactone-Terpene	1	
Lasso peptide	1	
Lantipeptide	1	
NRPS	9	5
Nrps-T1pks	2	
Nrps-T1pks-Transatpks	1	
Other	5	
Otherks-Nrps-T1pks-Hserlactone	1	
Phosphonate	1	1
Siderophore	1	
Terpene	3	3
TransAT PKS	2	
Total	**31**	**17**
Table S5. List of genes found uniquely in monobactam-positive genomes. Sulfazecin/bulgecin region in bold.

ATCC 31363 gene number	Annotated gene function (for ATCC 31363)
78	hypothetical protein
137	Putative transmembrane protein
190	2-Oxobutyrate oxidase, putative
203	probable ring-cleaving dioxygenase PA0880
221	FIG00454099: hypothetical protein
740	Methionine sulfoxide reductase-associated methionine-rich protein
890	Predicted membrane protein
1047	FIG00462729: hypothetical protein
1226	Glycine betaine/L-proline transport system permease protein ProW (TC 3.A.1.12.1)
1294	Lipase 1 (EC 3.1.1.3)
1428	Uncharacterized protein conserved in bacteria
1445	hypothetical protein
1719	FIG00455658: hypothetical protein
1753	cAMP-binding proteins - catabolite gene activator and regulatory subunit of cAMP-dependent protein kinases
1775	FIG00456194: hypothetical protein
1793	Superfamily I DNA and RNA helicases
1905	probable competence protein
1993	Lipase 1 (EC 3.1.1.3)
1996	hypothetical protein
2014	hypothetical protein
2112	Phosphoglycerate mutase family protein
2207	FIG00453291: hypothetical protein
2688	hypothetical protein
2852	Putative permease often clustered with de novo purine synthesis
3259	Arsenic resistance protein ArsH
3266	hypothetical protein
3719	FIG00454007: hypothetical protein
3996	Isoprenylcysteine carboxyl methyltransferase
4008	2-Oxobutyrate oxidase, putative
4124	hypothetical protein
4332	Hydroxyacylglutathione hydrolase (EC 3.1.2.6)
4643	Proline-rich region
4895	hypothetical protein
4905	L-ectoine synthase (EC 4.2.1.108)
4912	Glycosyl transferase, group 2 family
4915	FIG00453866: hypothetical protein
4918	FIG00453797: hypothetical protein
4919	FIG00454727: hypothetical protein
4920	FIG00454024: hypothetical protein
Gll3516 protein

FIG00454264: hypothetical protein

Peptide synthetase

putative membrane protein

Putative transporter

hypothetical protein

putative transmembrane anti-sigma factor

4-hydroxy-2-oxovalerate aldolase (EC 4.1.3.39)

Transcriptional regulator, AcrR family

FIG00454545: hypothetical protein

putative esterase

NAD synthetase (EC 6.3.1.5) / Glutamine amidotransferase chain of NAD synthetase

Superfamily I DNA and RNA helicases

PROBABLE LIPOPROTEIN

hypothetical protein

FIG00457602: hypothetical protein

Similar to Agmatine deiminase

Agmatine deiminase (EC 3.5.3.12)

Outer membrane protein

Xaa-Pro aminopeptidase (EC 3.4.11.9)

Lipase 1 (EC 3.1.1.3)

hypothetical protein

hypothetical protein

Citrate/H+ symporter of CitMHS family

Protein of unknown function DUF1446

Small uncharacterized protein Bpro_4170

hypothetical protein

Cyanate hydratase (EC 4.2.1.104)

Transcriptional regulator, AcrR family

Purine-cytosine permease
Table S6 Genomes indexed on PATRIC BRC to contain an equivalent to SulN, BulG, BulH, and SulG (SbnB)

Genome	Genome ID	Accession	PATRIC ID position of SbnB	Start	
Burkholderia gladioli NBRC 13700	1218079	BBJG01000047	fig	1218079.3.peg.4590	92490
Chromobacterium sp. F49	1777131	LQNP01000019	fig	1777131.3.peg.2509	38349
Chromobacterium subtsugae strain MWU2920	251747.1	LCWP01000016	fig	251747.14.peg.3426	97315
Chromobacterium subtsugae strain MWU2387	251747.2	LCWR01000011	fig	251747.15.peg.630	3820
Chromobacterium subtsugae strain MWU2576	251747.2	LCWQ01000021	fig	251747.16.peg.3875	51101
Chromobacterium subtsugae strain MWU3525	251747.2	LCWO01000019	fig	251747.17.peg.3501	38321
Chromobacterium subtsugae strain PRAA4-1	251747.2	JYKA01000020	fig	251747.20.peg.1992	38320
Chromobacterium subtsugae F49	251747.7	JWJN01000024	fig	251747.7.peg.3314	38340
Burkholderia gladioli strain ATCC 25417	28095.11	KN150849	fig	28095.11.peg.4179	4253427
Burkholderia gladioli strain ATCC 10248	28095.12	CP009323	fig	28095.12.peg.2978	3045230
Burkholderia gladioli strain SN82F6	28095.13	LAVN01000006	fig	28095.13.peg.3590	85952
Chromobacterium violaceum strain Cv017	536.13	LKIW01000108	fig	536.13.peg.2705	39312
Table S8: Extended comparison of bulA–H and sat1–2 in Table 1.

Gene Name	Similar function	Length	Identity/Similarity	Locus Tag					
		ATCC 31433	ATCC 31363	ATCC 10248	ATCC 31363	ATCC 10248	ATCC 31433	ATCC 31363	ATCC 10248
bulA	ATP-grasp family	259	265	267	85/90	84/88	BZL54_04205	BWP39_23675	BM43_2804
bulB	Sulfotransferase ThDP-dependent Transketolase, N-terminal thiamine diphosphate binding domain	341	340	313	77/85	67/76	BZL54_04210	BWP39_23670	BM43_2805
bulC	Transketolase, C-terminal pyrimidine binding domain	272	272	272	85/89	81/86	BZL54_04215	BWP39_23665	BM43_2806
bulD	Dehydrogenase (see SI)	308	302	317	85/88	83/88	BZL54_04220	BWP39_23660	BM43_2807
bulE	Acyltransferase 3 Phosphoserine transaminase Glycosyl transferase group 2 family	355	363	369	68/77	66/73	BZL54_04225	BWP39_23655	BM43_2808
bulF	Sulfate adenyllytransferase small subunit	375	375	376	76/86	80/88	BZL54_04230	BWP39_23650	BM43_2809
bulG	Sulfate adenyllytransferase large subunit	364	364	364	78/87	82/89	BZL54_04235	BWP39_23645	BM43_2810
bulH	Sulfate adenyllytransferase small subunit	270	299	270	84/91	80/88	BZL54_04240	BWP39_23640	BM43_2811
sat2	Sulfate adenyllytransferase large subunit	320	320	320	91/93	94/95	BZL54_13320	BWP39_23635	BM43_2812
sat1	Sulfate adenyllytransferase large subunit	438	437	438	85/90	88/92	BZL54_13325	BWP39_23630	BM43_2813
Supplemental References

1. Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, *Applied and Environmental Microbiology* 73, 5261-5267.

2. Viallard, V., Poirier, I., Cournoyer, B., Haurat, J., Wiebkin, S., Ophel-Keller, K., and Balandreau, J. (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of Pseudomonas phenazinium, Pseudomonas pyrocinia and Pseudomonas glathei as Burkholderia, *International Journal of Systematic Bacteriology* 48, 549-563.

3. Sawana, A., Adeolu, M., and Gupta, R. S. (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov harboring environmental species, *Frontiers in Genetics* 5.

4. Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., Edwards, R. A., Gerdes, S., Parrello, B., Shukla, M., Vonstein, V., Wattam, A. R., Xia, F., and Stevens, R. (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST), *Nucleic Acids Research* 42, D206-D214.

5. Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy, A. M. (2016) Mash: fast genome and metagenome distance estimation using MinHash, *Genome Biology* 17, 132.

6. Johnson, S. L., Bishop-Lilly, K. A., Ladner, J. T., Daligault, H. E., Davenport, K. W., Jaissle, J., Frey, K. G., Koroleva, G. I., Bruce, D. C., Coyne, S. R., Broomall, S. M., Li, P.-E., Teshima, H., Gibbons, H. S., Palacios, G. F., Rosenzweig, C. N., Redden, C. L., Xu, Y., Minogue, T. D., and Chain, P. S. (2015) Complete Genome Sequences for 59 Burkholderia Strains, Both Pathogenic and Near Neighbor, *Genome Announcements* 3, e00159-00115.

7. Mukhopadhyay, S., Thomason, M. K., Lentz, S., Nolan, N., Willner, K., Gee, J. E., Glass, M. B., Inglis, T. J. J., Merritt, A., Levy, A., Sozhamannan, S., Mateczun, A., and Read, T. D. (2010) High-Redundancy Draft Sequencing of 15 Clinical and Environmental Burkholderia Strains, *Journal of Bacteriology* 192, 6313-6314.

8. Loveridge, E. J., and Jones, C. (2017) Reclassification of the specialized metabolite producer Pseudomonas mesoacidiphila ATCC 31433 as a member of the Burkholderia cepacia complex, *Journal of Bacteriology*.

9. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., and Tiedje, J. M. (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities, *International Journal of Systematic and Evolutionary Microbiology* 57, 81-91.

10. Weber, T., Blin, K., Duddela, S., Krug, D., Kim, H. U., Bruccoleri, R., Lee, S. Y., Fischbach, M. A., Muller, R., Wohlleben, W., Breitling, R., Takano, E., and Medema, M. H. (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters, *Nucleic Acids Research* 43, W237-W243.

11. Tatusova, T., DiCuccio, M., Badretdin, A., Chetverin, V., Nawrocki, E. P., Zaslavsky, L., Lomsadze, A., Pruitt, K., Borodovsky, M., and Ostell, J. (2016) NCBI prokaryotic genome annotation pipeline, *Nucleic Acids Research* 44, 6614-6624.
12. Li, R. F., Oliver, R. A., and Townsend, C. A. (2017) Identification and Characterization of the Sulfazecin Monobactam Biosynthetic Gene Cluster, *Cell Chemical Biology* 24, 24-34.

13. Baerends, R. J. S., Smits, W. K., de Jong, A., Hameon, L. W., Kok, J., and Kuipers, O. P. (2004) Genome2D: a visualization tool for the rapid analysis of bacterial transcriptome data, *Genome Biology* 5.

14. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., and Sternberg, M. J. E. (2015) The Phyre2 web portal for protein modeling, prediction and analysis, *Nature Protocols* 10, 845-858.

15. Zhang, Y. (2008) I-TASSER server for protein 3D structure prediction, *BMC Bioinformatics* 9.

16. Yang, J. Y., and Zhang, Y. (2015) I-TASSER server: new development for protein structure and function predictions, *Nucleic Acids Research* 43, W174-W181.

17. Boucher, J. I., Jacobowitz, J. R., Beckett, B. C., Classen, S., and Theobald, D. L. (2014) An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases, *Elife* 3.

18. Darling, A. E., Mau, B., and Perna, N. T. (2010) progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement, *Plos One* 5.

19. Snauwaert, I., Stragier, P., De Vuyst, L., and Vandamme, P. (2015) Comparative genome analysis of Pediococcus damnosus LMG 28219, a strain well-adapted to the beer environment, *BMC Genomics* 16.