Prognostic impact of chronological age on efficacy of immune checkpoint inhibitors in non-small-cell lung cancer: Real-world data from 86 173 patients

Shinkichi Takamori1 | Mototsugu Shimokawa2,3 | Takefumi Komiya4

Abstract
Immune checkpoint inhibitors (ICIs) have become standard pharmacological therapies in patients with non-small-cell lung cancer (NSCLC). Because elderly patients with NSCLC are often excluded from clinical trials as a result of lower functional capacity or comorbidities, the prognostic impact of chronological age on the efficacy of ICIs is unclear. The National Cancer Database was queried for stage IV NSCLC patients between 2014 and 2015. Associations between ICI therapy and clinical characteristics were assessed using chi-squared tests. Kaplan–Meier curves were compared using the log-rank test. A Cox proportional hazards model was used to identify clinical characteristics predictive of overall survival (OS). This study included 24 136 patients with stage IV NSCLC aged ≥75 years and 62 037 patients with stage IV NSCLC aged <75 years. Patients aged ≥75 years treated with ICIs had significantly longer OS than those not treated with ICIs (hazard ratio [HR] 0.61, 95% confidence interval [CI] 0.58–0.64, p < 0.0001). The corresponding HR in patients aged <75 years was 0.67 (95% CI 0.65–0.68, p < 0.0001). Cox modeling confirmed the survival benefit of ICI therapy in patients aged ≥75 years (HR for patients not receiving ICIs 1.63 [95% CI: 1.55–1.71], p < 0.0001). The corresponding HR in patients aged <75 years was 1.47 (95% CI 1.43–1.51, p < 0.0001). Chronological age does not appear to negatively impact the survival benefit of ICI therapy in patients with stage IV NSCLC according to this large real-world database analysis.

KEYWORDS
age, immune checkpoint inhibitor, non-small-cell lung cancer, programmed cell death-1, survival

INTRODUCTION
Lung cancer has one of the highest case-fatality rates of all malignancies, and non-small-cell lung cancer (NSCLC) accounts for 85% of lung cancers. Immune checkpoint inhibitors (ICIs) targeting programmed cell death-1 (PD-1) or programmed cell death-ligand 1 (PD-L1) have been widely adopted for therapy of NSCLC. Because the small number of elderly patients with NSCLC included in the clinical trials of these drugs, the efficacy of ICIs among elderly patients with NSCLC remains unclear. The age-dependent loss of immune function is called immune senescence and is associated with decreased immune surveillance functions of both innate and adaptive immunity. Aging is associated with decreased antigen presentation by dendritic cells, decreased numbers of naïve CD8+ T cells, and reduced chemotaxis by neutrophils and macrophages. Given the potential for immune senescence, the efficacy of ICIs in elderly patients remains controversial. The aim of the current study was to clarify whether chronological age was a significant prognostic factor in patients with advanced NSCLC treated with ICIs using real-world data from the National Cancer Database (NCDB).
METHODS

NCDB

The NCDB is a joint project between the Commission on Cancer (CoC) of the American College of Surgeons and the American Cancer Society. The CoC NCDB and the participating hospitals were the sources of the de-identified data used herein. These organizations have not verified the data and are not responsible for the statistical validity of the data analysis nor the conclusions derived by the authors.

TABLE 1	Clinical characteristics of patients with stage IV non-small-cell lung cancer aged <75 and ≥75 years (n = 86 173)									
Factors	<75 years old (n = 62 037)	≥75 years old (n = 24 136)								
Immune checkpoint inhibitor	Yes (n = 8968)	No (n = 53 069)		Yes (n = 2241)	No (n = 21 895)					
Sex							p value			p value
Male	4645 (14%)	28 309 (86%)	0.0067	1222 (10%)	11 211 (90%)	0.0027				
Female	4323 (15%)	24 760 (85%)	1019 (9%)	10 684 (91%)	0.0272					
Race							0.3131			0.1877
Whites	7424 (15%)	42 528 (85%)	<0.0001	1973 (9%)	18 910 (91%)					
Others	1544 (13%)	10 541 (87%)	268 (8%)	2985 (92%)						
Institution										
Others	5916 (15%)	34 715 (85%)	1560 (9%)	15 535 (91%)	0.1877					
Academic	3052 (14%)	18 354 (86%)	681 (10%)	6360 (90%)						
Charlson–Deyo score										
≥2	909 (12%)	6791 (88%)	<0.0001	342 (8%)	3753 (92%)	0.0247				
≤1	8059 (15%)	46 278 (85%)	1899 (9%)	18 142 (91%)						
Year of diagnosis										
2014	3754 (12%)	27 238 (88%)	<0.0001	786 (7%)	11 155 (93%)	<0.0001				
2015	5214 (17%)	25 831 (83%)	1455 (12%)	10 740 (88%)						
Histology										
Others	2430 (10%)	21 293 (90%)	<0.0001	694 (7%)	12 826 (93%)	<0.0001				
Adenocarcinoma NOS	6538 (17%)	31 776 (83%)	1547 (12%)	9069 (88%)						
Nodal status										
N0	2211 (13%)	15 375 (87%)	<0.0001	719 (8%)	8308 (92%)	<0.0001				
≥N1	6757 (15%)	37 694 (85%)	1522 (10%)	13 587 (90%)						
Brain metastasis										
Yes	709 (9%)	7295 (91%)	<0.0001	89 (5%)	1682 (95%)	<0.0001				
No	8259 (15%)	45 774 (85%)	2152 (10%)	20 213 (90%)						
Bone metastasis										
Yes	1403 (14%)	8520 (86%)	0.3343	303 (8%)	3337 (92%)	0.0301				
No	7565 (15%)	44 549 (85%)	1938 (9%)	18 558 (91%)						
Liver metastasis										
Yes	464 (11%)	3692 (89%)	<0.0001	97 (6%)	1448 (94%)	<0.0001				
No	8504 (15%)	49 377 (85%)	2144 (9%)	20 447 (91%)						
Surgery for primary lesion										
Yes	225 (11%)	1773 (89%)	<0.0001	38 (8%)	418 (92%)	0.5155				
No	8743 (15%)	51 296 (85%)	2203 (9%)	21 477 (91%)						
Radiation										
Yes	4479 (14%)	28 430 (86%)	<0.0001	865 (9%)	8314 (91%)	0.5680				
No	4489 (15%)	24 639 (85%)	1376 (9%)	13 581 (91%)						
Chemotherapy										
Yes	7398 (17%)	34 928 (83%)	<0.0001	1444 (13%)	9752 (87%)	<0.0001				
No	1570 (8%)	18 141 (92%)	797 (6%)	12 143 (94%)						

Abbreviation: NOS, not otherwise specified.
Statistical analyses

Clinical characteristics were summarized using contingency tables. The associations between ICI (yes vs. no) and clinical demographics were compared using the chi-squared test. Survival curves were evaluated using the Kaplan–Meier method and compared between the two groups using the log-rank test. The hazard ratios (HR) for survival between groups with 95% confidence intervals (CI) were estimated using Cox proportional hazards models. A Cox proportional hazards model was used to identify the independent prognostic factor. All Cox proportional hazards analyses were performed using JMP 14.0 (SAS Institute Inc.). \(p < 0.05 \) was considered statistically significant.

RESULTS

Patient characteristics

A total of 86,173 patients with stage IV NSCLC were selected for the analysis. Among patients aged <75 years, 8,968 of 62,037 (14.5%) received ICIs, whereas 2,241 of 24,136 (9.3%) patients aged \(\geq 75 \) years received ICIs. The relationships between administration of ICIs and clinical factors, stratified by chronological age (\(\geq 75 \) vs. <75 years), are shown in Table 1.

Univariate survival analyses of patients with stage IV NSCLC treated with or without ICIs stratified by chronological age

Kaplan–Meier curves of OS among patients with stage IV NSCLC stratified by chronological age are shown in Figure 1. Among patients aged <75 years, those who received ICIs had significantly longer OS than those who did not receive ICIs (median OS 14.5 vs. 7.8 months, HR 0.67 [95% CI 0.65–0.68], \(p < 0.0001 \); Figure 1(a)). Similarly, among patients aged \(\geq 75 \) years, those who received ICIs had significantly longer OS than those who did not receive ICIs (median OS 11.9 vs. 5.4 months, HR 0.61 [95% CI 0.58–0.64], \(p < 0.000 \); Figure 1(b)).

Univariate and multivariate analyses of OS among patients with stage IV NSCLC aged <75 and \(\geq 75 \) years

The results of univariate and multivariate analyses of OS among patients with stage IV NSCLC aged <75 and \(\geq 75 \) years are shown in Table 2. Multivariate analysis of OS among patients aged <75 years demonstrated that male sex, white race, uninsured status, nonacademic institution, Charlson-Deyo score \(\geq 2 \), diagnosis in 2014, nonadenocarcinoma not otherwise specified [NOS] histology, nodal status \(\geq N1 \), bone metastasis, liver metastasis, no surgery of the primary lesion, radiation, chemotherapy, and no ICI therapy were independent predictors of shorter OS (HR for patients not receiving ICIs 1.47 [95% CI 1.43–1.51], \(p < 0.0001 \); Table 2). Among patients aged \(\geq 75 \) years, multivariate analysis of OS showed that male sex, white race, nonacademic institution, Charlson-Deyo score \(\geq 2 \), diagnosis in 2014, nonadenocarcinoma NOS histology, nodal status \(\geq N1 \), brain metastasis, bone metastasis, liver metastasis, no surgery of the primary lesion, chemotherapy, and no ICI therapy were independent predictors of shorter OS (HR for patients not receiving ICIs 1.63 [95% CI 1.55–1.71], \(p < 0.0001 \); Table 2). In multivariate analyses, both no chemotherapy and no ICI therapy were independent predictors of shorter OS in patients with stage IV NSCLC aged <75 and \(\geq 75 \) years.
TABLE 2 Multivariate analyses of overall survival in patients with stage IV non-small-cell lung cancer aged <75 and ≥75 years

Factors	<75 years old (n = 62 037)	≥75 years old (n = 24 136)		
	Univariate	Multivariable	Univariate	Multivariable
	HR (95% CI)	p value	HR (95% CI)	p value
	HR (95% CI)	p value	HR (95% CI)	p value
Sex				
Male	1.27 (1.24–1.29)	<0.0001	1.17 (1.14–1.21)	<0.0001
Female				
Race				
Whites	1.13 (1.11–1.16)	<0.0001	1.16 (1.11–1.21)	<0.0001
Others				
Race				
Whites	1.14 (1.11–1.17)	<0.0001	1.16 (1.11–1.21)	<0.0001
Others				
Race				
Whites	1.14 (1.11–1.17)	<0.0001	1.16 (1.11–1.21)	<0.0001
Others				
Insurance status				
Uninsured	1.12 (1.07–1.18)	<0.0001	1.01 (0.80–1.25)	1.16 (0.94–1.46)
Insured		0.0118	0.9307	0.1906
Institution				
Others	1.20 (1.17–1.22)	<0.0001	1.18 (1.14–1.21)	<0.0001
Academic				
Charlson–Deyo score				
≥2	1.37 (1.33–1.40)	<0.0001	1.33 (1.28–1.38)	<0.0001
≤1	1.26 (1.23–1.30)	<0.0001	1.22 (1.18–1.27)	<0.0001
Year of diagnosis				
2014	1.05 (1.03–1.07)	<0.0001	1.04 (1.01–1.07)	0.91 (0.88–0.94)
2015		0.0088		
Histology				
Others	1.23 (1.21–1.25)	<0.0001	1.14 (1.11–1.17)	1.05 (1.02–1.08)
Adenocarcinoma not otherwise specified		<0.0001		
Nodal status				
≥N1	1.22 (1.19–1.24)	<0.0001	1.17 (1.14–1.21)	<0.0001
N0		0.2439		
Brain metastasis				
Yes	1.09 (1.06–1.12)	<0.0001	1.24 (1.18–1.31)	1.25 (1.18–1.32)
No		0.2439		
Bone metastasis				
Yes	1.24 (1.21–1.27)	<0.0001	1.17 (1.13–1.22)	1.20 (1.15–1.25)
No		0.2439		
Liver metastasis				
Yes	1.45 (1.40–1.50)	<0.0001	1.32 (1.25–1.39)	1.26 (1.19–1.33)
No		0.2439		
Surgery for primary lesion				
No	2.02 (1.90–2.14)	<0.0001	1.85 (1.66–2.08)	1.83 (1.64–2.06)
Yes		0.2439		
Radiation				
Yes	1.10 (1.08–1.12)	<0.0001	1.06 (1.03–1.09)	1.00 (0.98–1.04)
No		0.2439		
Chemotherapy				
No	2.19 (2.15–2.23)	<0.0001	2.11 (2.05–2.17)	2.18 (2.12–2.24)
Yes		0.2439		
(Continues)
In multivariate analyses, the HRs for patients not receiving chemotherapy were greater than those for patients not receiving ICI in patients with stage IV NSCLC aged <75 and ≥ 75 years. One of the explanations of this phenomenon is that cytotoxic chemotherapy is generally not suitable for frail patients and/or those with poor performance status due to their increased incidence of adverse events, but ICI may be a potential treatment option for such population. Therefore, patients receiving ICI may have included more frail patients compared with those treated with chemotherapy. Such bias arising from patients’ selection may potentially result in the greater HR for patients not receiving chemotherapy. In addition, NCDB lacks data about names of medications, dose, and number of cycles, so detailed subset analysis cannot be conducted. These points make it difficult to compare the HRs of patients who received chemotherapy and those with ICI. Further advanced analysis is needed to determine the clinical impact of chemotherapy and that of ICI.

Our study had several limitations. First, the NCDB lacks several prognostic factors, including performance status, PD-L1 expression level, genetic mutation status, laboratory data, line of therapy, and immune-related adverse events. Analyses including these factors may further elucidate correlates of the safety and efficacy of ICIs in elderly NSCLC patients. Second, this was a retrospective study and potential biases associated with physician decisions and/or patient status cannot be ruled out. Our findings should be validated in future well-designed prospective studies.

In conclusion, the present study showed that chronological age does not appear to impact the survival benefit of ICIs in patients with stage IV NSCLC. These findings should be validated in future prospective studies.

ACKNOWLEDGMENTS

We thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript. The publication fee was supported by the Kaibara Morikazu Medical Science Promotion Foundation.

CONFLICT OF INTEREST

Takefumi Komiya received travel fees from Merck. All authors declare no conflicts of interest associated with this study.
REFERENCES

1. Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288–300.
2. Gandhi L, Rodriguez-Abreu D, Gadgeel S, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378(22):27–92.
3. West H, McLeod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37.
4. Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301.
5. Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30.
6. Paz-Ares L, Luft A, Vicente D, Tafreshi A, Gümüş M, Mazières J, et al. Pembrolizumab plus chemotherapy for squamous non-small-cell lung cancer. N Engl J Med. 2018;378(21):2040–51.
7. Carbone DP, Reck M, Paz-Ares L, Creetan B, Horn L, Steins M, et al. First-line Nivolumab in stage IV or recurrent non–small-cell lung Cancer. N Engl J Med. 2018;379(21):2040–51.
8. Nosaki K, Saka H, Hosomi Y, Baas P, de Castro G Jr, Reck M, et al. Safety and efficacy of pembrolizumab monotherapy in elderly patients with PD-L1-positive advanced non-small-cell lung cancer: pooled analysis from the KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 2019;135:188–95.
9. Yamaguchi O, Imai H, Minemura H, Suzuki K, Wasamoto S, Umeda Y, et al. Efficacy and safety of immune checkpoint inhibitor monotherapy in pretreated elderly patients with non-small cell lung cancer. Cancer Chemother Pharmacol. 2020;85(4):761–71.
10. Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19(1):10–9.
11. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol. 2012;24(5):331–41.
12. Kugel CH 3rd, Douglass SM, Webster MR, et al. Age correlates with response to anti-PD1, reflecting age-related differences in Intratumoral effector and regulatory T-cell populations. Clin Cancer Res. 2018;24(21):5347–56.
13. Kim HR, Park HJ, Son J, Lee JG, Chung KY, Cho NH, et al. Tumor microenvironment dictates regulatory T cell phenotype: upregulated immune checkpoints reinforce suppressive function. J Immunother Cancer. 2019;7(1):339.
14. Luciani A, Marra A, Toschi L, Cortinovis D, Fava S, Filipazzi V, et al. Efficacy and safety of anti-PD-1 immunotherapy in patients aged ≥75years with non–small-cell lung cancer (NSCLC): an Italian, multicenter, retrospective study. Clin Lung Cancer. 2020;21(6):e567–71.
15. Sun YM, Wang Y, Sun XX, Chen J, Gong ZP, Meng HY. Clinical efficacy of immune checkpoint inhibitors in older non–small-cell lung cancer patients: a meta-analysis. Front Oncol. 2020;10:558454.
16. Wu Q, Wang Q, Tang X, et al. Correlation between patients’ age and cancer immunotherapy efficacy. Oncoimmunology. 2019;8(4):e1568810.
17. Youn B, Trikalinos NA, Mor V, Wilson IB, Dahabreh IJ. Real-world use and survival outcomes of immune checkpoint inhibitors in older adults with non–small cell lung cancer. Cancer. 2020;126(5):978–85.
18. Takamori S, Sakata K, Shimokawa M, Matsubara T, Fujishita T, Ito K, et al. Clinical utility of pretreatment Glasgow prognostic score in non–small-cell lung cancer patients treated with immune checkpoint inhibitors. Lung Cancer. 2021;152:27–33.

How to cite this article: Takamori S, Shimokawa M, Komiya T. Prognostic impact of chronological age on efficacy of immune checkpoint inhibitors in non-small-cell lung cancer: Real-world data from 86 173 patients. Thorac Cancer. 2021;12:2943–8. https://doi.org/10.1111/1759-7714.14178