Economic analysis of the solar thermal and air source heat pump combined system for energy demand of buildings in China

Feifei Fu *
School of Physics and Technology, University of Jinan, Jinan 250022, China
*Corresponding author’s e-mail: sps_fuff@ujn.edu.cn

Abstract. This study focuses on the economy of the solar thermal and air source heat pump combined system supplying the same demand of SH and DHW for a city household at different locations in China, namely; Beijing, Xi’an and Nanjing. These three locations represent the climatic conditions variety in China with different outdoor temperatures and solar radiation. At each location, the optimized simulations are carried out to recognize the most economical configurations. The results show that, for a 15-year running time, the system comprising 10m² solar collectors and 5 kW air source heat pump is the best configuration having the minimum cost for all three cities, but the minimum cost of which is different for each location. At Nanjing, the system has the lowest cost of all the three cities, and the payback time of which is also the shortest. However, the payback time of the optimum system in Beijing is 15.9 years exceeding its running time, due to the lowest central heating fee included in the cost of the traditional heating method.

1. Introduction
Recently, utilization multi renewable energy sources synthetically based on the system integration, which is stable, reliable and efficient, is a direction of energy science and has a great prospect. And just so, the solar thermal and air source heat pump combined system for SH and DHW in buildings is increasingly being designed and studied [1-6]. The climate conditions can affect the performance and economy of the solar thermal and air source heat pump combined system. At present, there is little relevant literature that simultaneously discuss the effect of climate on the economy of the system, with a specific focus on Chinese mainland. Therefore, the aim of this study was to fill this gap by comparing the cost and payback time of the solar thermal and air source heat pump combined system for a vast range of China with different climatic conditions, which is of great significance to China energy conservation, cost saving and environmental protection. China has a vast geographical environment, so climate conditions vary widely. According to accumulative temperature, it is divided into five temperature regions[7]. In this paper, three representative cities with different climatic conditions have been considered, which are Beijing (warm temperate zone; very rich irradiation), Xi’an (warm temperate zone; rich irradiation), and Nanjing (subtropical zone; rich irradiation). So, in the present study, economy analysis of using the system to meet the same demand of SH and DHW for a city family house in these three regions of China is carried out. Firstly, different sizes of the main components (solar collectors or air source heat pump) lead to different configurations of the system. Each configuration should meet the energy demand and the one that has the minimum cost is taken as the optimum configuration. Secondly, the optimal simulation results of the system are explained in
detail for a city family house in Beijing. And the simulations are repeated for the other two different locations namely; Nanjing and Xi’an. Thirdly, the optimal simulation results in three regions are summarized, in order to compare the system at different locations in terms of the economy. Finally, the payback period of the optimal system with respect to local traditional heating method is calculated to determine economic feasibility.

2. Mathematical model in Polysun

The optimization of the solar thermal and air source heat pump combined systems are achieved by Polysun software. In the simulation, the area of solar collectors or the capacity of the heat pump is increased until there is no shortage of the power supply to the energy demand of DHW and SH. Difference in area of solar collectors or capacity of the air source heat pump lead to various system configurations. In Polysun, the best optimal configuration is the lowest total cost as well as meeting the energy demand of SH and DHW.

The total cost of a system (CS) is defined as:

$$CS = ICS + RCS$$ \(1\)

Where ICS is investment cost of all system components. RCS is the running cost of the system in project life time.

$$ICS = C_{solar collector} + C_{air heat pump} + C_{tank} + C_{other components}$$ \(2\)

Where $C_{solar collector}$, $C_{air heat pump}$, C_{tank}, and $C_{other components}$ are the sum of present value of the solar collectors, air pump, water tank, and other needed components(such as water pumps and pipes), respectively, during the system lifetime. Considering a mid-sized single-family house has less initial investment, ICS is to invest funds at one time, without definition the annuity payment.

$$RCS = E_{elec} \times N + MCS$$ \(3\)

Where E_{elec} is the annual total electricity consumption of the system. N is the project lifetime in years. MCS is the maintenance cost of system, which is calculated as 1% of their ICS. The present local market price used for the CS are all listed in Table. 1.

The contribution of the solar energy or air energy to the system can be respectively evaluated by the solar fraction(SF) and air fraction(AF). SF is percentage of energy to the system supplied by the sun, which is expressed as:

$$SF = \frac{Q_{solar}}{Q_{use}}$$ \(4\)

Where Q_{solar} is annual air energy to the system. Q_{use} is annual total energy consumed for DHW and SH. AF is percentage of energy to the system supplied by the air source, which is expressed as:

$$AF = \frac{Q_{air}}{Q_{use}}$$ \(5\)

Where Q_{air} is annual air energy to the system.

Item	Value	Unit
Flat-plate collector	600	CNY/m²
Water tank (500L)	2800	CNY
Other needed components	1200	CNY
Electricity price	0.5	CNY/kWh
Air source heat pump(5kW)	15,000	CNY
Air source heat pump(10kW)	25,000	CNY

3. results and analysis

3.1. Simulation results
Solar(air) energy resource is used through solar collectors(air source heat pump) to supply energy for DHW and SH demand of a mid-sized single-family house located in city of Beijing (east longitude: 116.4°E, northern latitude: 39.93°N), China. The DHW need is 200 L/d of water at 45°C. The heated area of the building is 150 m². The indoor heating set temperature is 19°C during the day and night in the heating period from Nov 1st until Mar 1st next year. The project lifetime of each system is 15 years. Fig. 1 shows a schematic diagram of this system. The area of solar collectors varies from 10 m² to 34 m², and the power of the air heat pump varies from 5 kW to 35 kW. Among these configurations, the one that has the minimum cost of the system (CS) in project lifetime is to be considered. Fig. 2 and Fig. 3 respectively shows the energy balance and the CS variation under different areas of solar collectors, when the capacity of the heat pump is 5 kw. It is clear that, with the increasing of solar collectors’ area, air energy supply and electricity consumption are both decreased, while the CS is increased. An orthogonal method was used to find the optimal configuration. The configuration comprising 10 m² solar collectors and 5 kW heat pump, is determined to be the optimizing one. It has the minimum CS of 61,730 CNY. More details about the optimum system is shown in Tab.2.

![Figure 1: Schematic diagram](image1)

![Figure 2: Energy consumption of the system](image2)

![Figure 3: The CS of the system](image3)

Solar collector areas /m²	capacity of heat pump /kW	SF	AF	CS /CNY	ICS /CNY	RICS
10	5	0.34	0.38	61,730	25,000	0.405

The system is now considered at different cities of China. Tab.3 shows the annual average solar irradiation and outdoor temperature of the three considered cities. The climate condition (solar irradiation and outdoor temperature) vary from location to location. Beijing and Xi’an are belong to a typical north temperate zone semi-humid continental monsoon climate, which has four seasons, dry and windy spring, hot summer and rainy, cool quickly in the fall, winter cold and less snow. 60-80%
of the annual precipitation is concentrated in summer (from Jun to August). Annual average outdoor temperature of Beijing is lower than Xi’an. Due to sitting in the midwest region of China, Xi’an has lower rainfall and is dryer than Jinan and Beijing. Nanjing has a subtropical monsoon climate with abundant rainfall. In summer, it is hot and rainy. In the winter, it is wet and warm, while it seldom snows. Its average outdoor temperature is higher than the other two cities. Optimal simulations were repeated to carry out, in order to find the optimum configuration of each system in each location. Note that all discussions are based on the optimum configurations in the following subsections. Table 4 shows details of the optimal simulation results of three systems in Beijing, Xi’an, and Nanjing, respectively. For the results, we can see that: the optimal configuration of the combsystem in each city is the same, which has 10^2 solar collectors and a 5kW heat pump. Beijing has the minimum cost (41,963 CNY), mainly because of the sum of AF and SF is the largest.

Table. 3 Annual average solar irradiation and outdoor temperature

City	Latitude /° N	Longitude /° E	Sum of solar irradiation kWh/m²/year	Average outdoor temperature /°C
Beijing	39.93	116.4	1481	12.9
Xi’an	34.27	108.9	1263	14.5
Nanjing	32.05	118.78	1278	16.2

Table. 4 Optimal simulation results in three cities

City	Solar /m²	Air /kW	SF	AF	CS /CNY	ICS /CNY
Beijing	10	5	0.34	0.38	61,730	25000
Xi’an	10	5	0.32	0.41	57,006	25000
Nanjing	10	5	0.32	0.42	50,194	25000

3.2. **Comparing the payback period of the renewable systems**

The payback time of each optimization system with respect to local traditional heating method is also counted in this study. Since 1950s, the central heating supply policy has been performed in cities north of the Huai River, which divides China into north and south regions [9-10]. Among the three cities, two cities have central heating, which are Beijing, and Xi’an. In Nanjing located in the south of China, there is no nonperformance of central-heating. Although the lowest temperatures is around 0°C, it’s still a bit cold in winter due to its high humidity. So, more and more family houses install gas hanging stoves to meet the demand of SH and DHW.

So, the traditional heating methods in three cities have been summarized shown in Table 5. For Beijing and Xi’an, gas hanging stoves are used to meet the demand of DHW, so, the cost of traditional heating method contains central heating fee, cost of the gas hanging stoves and nature gas fee. For Nanjing, the cost of traditional heating method contains cost of the gas hanging stoves and nature gas fee. The central heating for SH is charged according to per square (floor area). The latest price is 18 CNY for per square meter in heating season in Beijing, while that is 23.2 CNY in Xi’an. A cubic natural gas burning would emit 8MJ(10.6kWh). The cost per cubic natural gas is about 3CNY. Mark price of gas hanging stoves (both for DHW and SH) is 10,000CNY. Based on these values and the total energy consumption for each system, the investment and running costs for the three cities were calculated (list in Table.6).

The investment and running cost of the optimal configuration in each city are summarized in Table.7, in which the payback periods relative to traditional heating method in the five cities are also illustrated. The payback period was calculated as follows:

$$\text{payback period} = \frac{\text{investment cost of renewable system} - \text{investment cost of traditional heating method}}{\text{running cost of traditional heating method} - \text{running cost of renewable system}}$$
It can be seen that, the investment cost of the system is higher than that of traditional heating method in three cities. But, their running costs are much lower. Beijing has the longest payback period (15.9 years).

Table.5 The local traditional heating method for the three cities

	Beijing	Xi’an	Nanjing
SH	central heating	central heating	natural gas
DHW	natural gas	natural gas	natural gas

Table.6 The cost of traditional heating methods for the three cities

	Beijing	Xi’an	Nanjing
Investment cost (CNY)	3,000	3,000	10,000
Running cost (CNY/year)	3,665	4,445	3,293

Table.7 Payback periods relative to local traditional heating method

	Beijing	Xi’an	Nanjing
ICS (CNY)	25,000	25,000	25,000
RCS (CNY/year)	2283	1967	1513
Payback period (Year)	15.9	8.8	8.4

4. Conclusions
Based on the analysis and comparison study, following conclusions are given. At Beijing, Xi’an and Nanjing, applied in a mid-sized single-family house to meet the energy demand of DHW and SH, the solar thermal and air source heat pump combined system comprising 10m² solar collectors and 5 kW air source heat pump is the best configuration having the minimum cost, but the minimum cost is different for each location. At Nanjing, the system gives the minimum cost of 50,194 CNY, meantime, has the shortest payback period for its lower running cost. While, the payback time of optimum system at Beijing is 15.9 years exceeding its running time, due to the lowest central heating fee included in the cost of the traditional heating method. Even so, its environmental protection can't be ignored.

Reference
[1] Li Y H, Kao W C. Taguchi optimization of solar thermal and heat pump combisystems under five distinct climatic conditions Applied Thermal Engineering 2018;133: 283–297.
[2] Zhao M, Gu Z L, Kang W B, Liu X, Zhang L Y, Jin L W, Zhang Q L. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source Applied Energy 2017; 185:2094–2105
[3] Qu S, Ma F, Ji R, Wang D, Yang L. System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage, EnergyBuild 2015; 105:294–301.
[4] Cai J, Ji J, Wang Y, Huang W. Numerical simulation and experimental validation of indirect expansion solar-assisted multi-functional heat pump. Renew. Energy 2016; 93: 280–290.
[5] Deng S, Dai Y J, Wang R Z. Performance optimization and analysis of solar combi-system with carbon dioxide heat pump, Sol. Energy 2013; 98: 212–225.
[6] Liu Y, Ma J, Zhou G, Zhang C, Wan W. Performance of a solar air composite heat source heat pump system, Renewable Energy 2016; 87:1053–1058.
[7] Li D, He J, Li L. A review of renewable energy applications in buildings in the hot-summer and warm-winter region of China Renewable and Sustainable Energy Reviews 2016;57: 327–336
[8] Dua M X, Wang X G, Peng C H, Shan Y L, Chen H, Wang M, Zhu Q. Quantification and scenario analysis of CO₂ emissions from the central heating supply system in China from 2006 to 2025. Applied Energy 2018;225:869–875.
[9] Chen Y, Ebenstein A, Greenstone M, Li H. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proc Natl Acad Sci 2013;110:12936.

[10] Ebenstein A, Fan M, Greenstone M, He G, Zhou M. New evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River Policy. Proc Natl Acad Sci 2017;114:10384.