High mobility approaching the intrinsic limit in Ta-doped SnO$_2$ films epitaxially grown on TiO$_2$ (001) substrates

Michitaka Fukumoto1, Shoichiro Nakao1,2, Kei Shigematsu2, Daisuke Ogawa4, Kazuo Morikawa4, Yasushi Hirose1,2 & Tetsuya Hasegawa1,2

Achieving high mobility in SnO$_2$, which is a typical wide gap oxide semiconductor, has been pursued extensively for device applications such as field effect transistors, gas sensors, and transparent electrodes. In this study, we investigated the transport properties of lightly Ta-doped SnO$_2$ (Sn$_{1-x}$Ta$_x$O$_2$, TTO) thin films epitaxially grown on TiO$_2$ (001) substrates by pulsed laser deposition. The carrier density (n_e) of the TTO films was systematically controlled by x. Optimized TTO ($x = 3 \times 10^{-3}$) films with $n_e \approx 1 \times 10^{20}$ cm$^{-3}$ exhibited a very high Hall mobility (μ_H) of 130 cm2V$^{-1}$s$^{-1}$ at room temperature, which is the highest among SnO$_2$ films thus far reported. The μ_H value coincided well with the intrinsic limit of μ_H calculated on the assumption that only phonon and ionized impurities contribute to the carrier scattering. The suppressed grain-boundary scattering might be explained by the reduced density of the [101] crystallographic shear planes.

Tin dioxide (SnO$_2$) has been extensively studied as a practical transparent oxide semiconductor in various applications such as field-effect transistors1,2, gas sensors$^{3-5}$, and transparent electrodes$^{6-8}$. Hall mobility (μ_H) is a key parameter in determining the performance of such devices, and the μ_H values of bulk SnO$_2$ single crystals are in the range of 70 to 260 cm2V$^{-1}$s$^{-1}$ at room temperature$^{9-11}$. However, SnO$_2$ thin films show a rather low μ_H of less than 100 cm2V$^{-1}$s$^{-1}$ even in well-optimized epitaxial films12,13, which limits the practical use of SnO$_2$.

The lower μ_H in SnO$_2$ epitaxial thin films is primarily attributable to the lack of lattice-matched substrates. Thus far, corundum Al$_2$O$_3$ and rutile TiO$_2$ have been widely used as the substrates for the epitaxial growth14,15 of SnO$_2$. Particularly, Al$_2$O$_3$, with a high thermal and chemical stability, is suitable for the growth of SnO$_2$ thin films at high temperatures, but the SnO$_2$ thin films deposited on Al$_2$O$_3$ suffer from lowered crystallinity owing to the difference between the crystal structures of the film and substrate. For example, very low μ_H values are frequently observed for epitaxial SnO$_2$ films on Al$_2$O$_3$. TiO$_2$ shares the same rutile structure as SnO$_2$, but it has a relatively large lattice-mismatch with SnO$_2$, which is 3.1% and 7.7% for the a-axis and c-axis, respectively. Indeed, it was reported that μ_H of the undoped SnO$_2$ film with (001) orientation on TiO$_2$ (001) was limited to a rather small value16, that is, ≈ 40 cm2V$^{-1}$s$^{-1}$. To overcome the above-mentioned difficulty, very thick self-buffer layers12,13 have been employed to grow high-μ_H epitaxial SnO$_2$ films on Al$_2$O$_3$.

Another important factor for achieving high μ_H is to control the carrier density (n_e) because carriers play two competing roles in μ_H: an increase in n_e enhances the screening of the Coulomb scattering potential and thus increases μ_H, whereas an increased amount of dopants suppresses μ_H owing to impurity scattering. To date, much effort has been made to grow undoped13,18 or heavily doped$^{19-22}$ SnO$_2$ films on a wide variety of substrates. Heavily doped SnO$_2$ films, albeit practically important, show a low μ_H that is dominated by impurity scattering. Attempts to pursue high μ_H in undoped SnO$_2$ thin films have been unsuccessful owing to the significant carrier scattering by the grain boundary18,23 and dislocation13,24 induced by lattice-mismatched substrates. There is a

1Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. 2Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa, 243-0435, Japan. 3Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan. 4Tokyo Metropolitan Industrial Technology Research Institute (TIRI), 2-4-10 Aomi, Koto-ku, Tokyo, 135-0064, Japan. e-mail: nakao@chem.s.u-tokyo.ac.jp
possibility to realize a high mobility in the intermediate \(n_e \) region between undoped and heavily doped SnO\(_2\), but little attention has been paid to lightly doped\(^{12,23}\) SnO\(_2\) films.

In this study, we focus on lightly doped SnO\(_2\) thin films to achieve a high \(\mu_H \). We investigated the electrical transport properties of lightly Ta-doped SnO\(_2\) (Sn\(_{1-x}\)Ta\(_x\)O\(_2\), TTO) films grown on TiO\(_2\) (001) substrates, which are isostructural to SnO\(_2\), with the smallest lattice mismatch. We found that the increase in \(n_e \) by Ta-doping dramatically enhanced \(\mu_H \), probably owing to a screening of the carrier scattering by the grain boundaries and dislocations. The TTO films with \(n_e \sim 1 \times 10^{20} \text{ cm}^{-3} \) exhibited \(\mu_H \) of 130 cm\(^2\)V\(^{-1}\)s\(^{-1}\), which is the highest among SnO\(_2\) films thus far reported. Moreover, this value is close to the intrinsic limit of \(\mu_H \) calculated by assuming that only phonon and ionized impurities contribute to the carrier scattering.

Results and Discussion

We first optimized the substrate temperature (\(T_s \)) for growth of the TTO film, where the Ta content \(x \) was fixed at \(3 \times 10^{-3} \). Figure 1(a) shows \(\omega-2\theta \) X-ray diffraction (XRD) patterns for the TTO films prepared at various \(T_s \). Only 002 diffraction peaks from SnO\(_2\) and TiO\(_2\) were observed in all the films, which indicated epitaxial growth of (001)-oriented SnO\(_2\) films on TiO\(_2\) (001) without any impurity phases. Epitaxial growth of the SnO\(_2\) films were further confirmed by off-specular \(\Phi \)-scan of 101 diffraction peaks from SnO\(_2\) and TiO\(_2\) substrates (see Supplementary Fig. S1 online). Figure 1(b) shows the reciprocal space map observed around the asymmetric 112 diffraction peaks for the TTO film grown at \(T_s = 600 \) °C. A cross represents the peak position for bulk SnO\(_2\). (c) \(T_s \) dependence of Hall mobility (\(\mu_H \), circles) and full width at half maximum of rocking curve (\(\omega \) scan) for 002 diffraction peak (FWHM\(_{002,\omega}\), diamonds) for the TTO (\(x = 3 \times 10^{-3} \)) films.

In this study, we focus on lightly doped SnO\(_2\) thin films to achieve a high \(\mu_H \). We investigated the electrical transport properties of lightly Ta-doped SnO\(_2\) (Sn\(_{1-x}\)Ta\(_x\)O\(_2\), TTO) films grown on TiO\(_2\) (001) substrates, which are isostructural to SnO\(_2\), with the smallest lattice mismatch. We found that the increase in \(n_e \) by Ta-doping dramatically enhanced \(\mu_H \), probably owing to a screening of the carrier scattering by the grain boundaries and dislocations. The TTO films with \(n_e \sim 1 \times 10^{20} \text{ cm}^{-3} \) exhibited \(\mu_H \) of 130 cm\(^2\)V\(^{-1}\)s\(^{-1}\), which is the highest among SnO\(_2\) films thus far reported. Moreover, this value is close to the intrinsic limit of \(\mu_H \) calculated by assuming that only phonon and ionized impurities contribute to the carrier scattering.

Results and Discussion

We first optimized the substrate temperature (\(T_s \)) for growth of the TTO film, where the Ta content \(x \) was fixed at \(3 \times 10^{-3} \). Figure 1(a) shows \(\omega-2\theta \) X-ray diffraction (XRD) patterns for the TTO films prepared at various \(T_s \). Only 002 diffraction peaks from SnO\(_2\) and TiO\(_2\) were observed in all the films, which indicated epitaxial growth of (001)-oriented SnO\(_2\) films on TiO\(_2\) (001) without any impurity phases. Epitaxial growth of the SnO\(_2\) films were further confirmed by off-specular \(\Phi \)-scan of 101 diffraction peaks from SnO\(_2\) and TiO\(_2\) substrates (see Supplementary Fig. S1 online). Figure 1(b) shows the reciprocal space map observed around the asymmetric 112 diffraction peaks for the TTO film grown at \(T_s = 600 \) °C. A cross represents the peak position for bulk SnO\(_2\). (c) \(T_s \) dependence of Hall mobility (\(\mu_H \), circles) and full width at half maximum of rocking curve (\(\omega \) scan) for 002 diffraction peak (FWHM\(_{002,\omega}\), diamonds) for the TTO (\(x = 3 \times 10^{-3} \)) films.
Ts = 700 °C in spite of the good crystallinity. We speculate that at such high Ts, interdiffusion of Sn and Ti atoms occurred at the film/substrate interface27, which might have caused impurity scattering and thus suppressed μH.

Hereafter we fixed Ts at 600 °C.

Next, we investigated the dependence of the transport properties of the TTO films on x. As shown in Fig. 2, the TTO film with the lowest x = 3 × 10^{-5} showed n_e = 4 × 10^{17} cm^{-3} and μ_H = 36 cm^{2}V^{-1}s^{-1}, which are close to those reported for undoped SnO_2 films on TiO_2 (001). Furthermore, n_e was proportional to x and lay on the line representing a 100% doping efficiency, which indicated that each Ta^{5+} ion generated one carrier electron. This implied that the lightly-doped TTO films were free from unfavourable defects such as clustered dopants28 and accepter-like defects29. Remarkably, μ_H dramatically increased with increasing x at x ≤ 3 × 10^{-5}. This behaviour was rationalized by assuming an enhanced screening of dislocations13 and/or grain boundaries18,23 owing to the increased n_e. The TTO films with x = 3 × 10^{-3} (n_e ~ 1 × 10^{20} cm^{-3}) exhibited the highest μ_H of 126–131 cm^{2}V^{-1}s^{-1}, which is the highest among the μ_H values reported for undoped and doped SnO_2 films so far. Further increase in x yielded a slight decrease in μ_H, possibly owing to the manifestation of ionized impurity scattering, as will be discussed later. The lowest resistivity, 2.5 × 10^{-4} Ωcm, and sheet resistance, 20.2 Ωsq.−1, were obtained for the TTO film with x = 1 × 10^{-5}, as shown in Fig. 2(a).

We now discuss the transport properties of the TTO films in comparison with the literature data. Figure 3 plots μ_H against n_e for thin films12,13,16,23, including ours, and bulk single crystals9,11 of SnO_2. The previously reported μ_H values for thin films were generally lower than those of bulk single crystals with similar n_e values. However, our TTO films with n_e ~ 1 × 10^{20} cm^{-3} exhibited a record-high μ_H (130 cm^{2}V^{-1}s^{-1}) for thin films, which is comparable to that for a bulk single crystal with a similar n_e value. Such an extremely high μ_H value suggests that the film contained a negligibly small amount of extrinsic sources of carrier scattering, such as neutral impurities, grain boundaries, and dislocations. In other words, intrinsic sources of carrier scattering, such as phonons and ionized impurities, supposedly dominated μ_H.

To test the above-mentioned hypothesis, we calculated the Hall mobility (μ_{lat}) taking only phonon and ionized impurity scattering into account, as

μ_{cal} = μ_{lat}^{-1} + μ_{iis}^{-1},

where μ_{lat} is the lattice mobility associated with phonon scattering and μ_{iis} is the Hall mobility limited by ionized impurity scattering. For μ_{lat}, we used a fixed value (260 cm^{2}V^{-1}s^{-1}) observed for undoped single crystals in the a-direction of SnO_2. The μ_{iis} value was calculated by using the Brooks–Herring–Dingle (BHD) formula30, which has

Figure 2. Room temperature (a) resistivity, (b) carrier density (n_e), and (c) μ_H for the TTO films as a function of x. The inset of (a) shows sheet resistance of the films. The broken line is the expected n_e when all the doped Ta^{5+} ions substitute to the Sn^{4+} sites and generate one electron per Ta (100% doping efficiency).
been successfully used to analyze μ_{ii} for Sn-doped In$_2$O$_3$ [31], Al-doped ZnO [28, 29], and Nb-doped TiO$_2$ [32]. The BHD formula is written as

$$\mu_{ii} = \frac{24\pi^3(\varepsilon_0\varepsilon_r)^2\hbar^2n_i^2}{\varepsilon_m^2F_{ix}Zn_i},$$

where ε_0 is the permittivity of free space, ε_r is the relative static dielectric constant, \hbar is the reduced Planck's constant, e is the elementary charge, and m^* is the electron effective mass. Z and n_i are the charge and the density of the ionized impurity, respectively. The screening function F_{ix} is given by

$$F_{ix} = \ln(1 + 4/x) - (1 + x/4)^{-1}$$

with

$$\xi = \frac{e^2m^*}{\pi\varepsilon_0\varepsilon_r\hbar^2(2\pi^3)^{1/3}n_i^{1/3}}.$$

Considering the high doping efficiency, all the doped Ta was supposed to behave as singly charged ions (Ta$^{5+}$) substituting for Sn$^{4+}$. Although it was difficult to determine the valence state of Ta in TTO experimentally [33] (see Supplementary Fig. S3 online), theoretical calculations [34, 35] reported that Ta exists in the pentavalent state (Ta$^{5+}$) in TTO. Thus, we assumed $Z = 1$ and $n_i = n_e$. Because the films in this study were (001)-oriented, we used $\varepsilon_r = 13.5$ for ε_r. For m^*, we used experimentally determined m^*_e values as a function of n_i and their linear interpolation [37]. As shown in Fig. 3, μ_{cal} was higher than most of the experimental data, which indicated that the suppression of μ_{ii} arose from carrier scattering by extrinsic sources. Notably, however, the μ_{ii} values at $n_i \geq 9 \times 10^{17}$ cm$^{-3}$ ($x = 3 \times 10^{-3}$ and 1×10^{-2}) in the present study agreed well with μ_{cal}. This proved that in these high μ_{ii} films, carrier scattering by neutral impurities, dislocations, and grain-boundaries was negligibly small compared with that by ionized impurities and phonons, and that the reduced μ_{ii} at $n_i = 2.4 \times 10^{18}$ cm$^{-3}$ ($x = 1 \times 10^{-2}$) was attributed to the increased ionized impurity scattering.

To discuss the carrier scattering mechanisms in more detail, we measured temperature dependences of n_i and μ_{ii} in the TTO films with $x = 3 \times 10^{-3} - 1 \times 10^{-2}$. As shown in Fig. 4(a), the n_i values were independent of temperature, indicating that the TTO films in this study were in the degenerately-doped regime. Notably, the TTO films with $x \geq 1 \times 10^{-3}$ showed negative temperature coefficients of μ_{ii} (Fig. 4(b)) around room temperature, being the specific characteristic of phonon scattering. This implies that, at room temperature, the μ_{ii} values are dominated by phonon scattering, in consistence with the arguments based on the room temperature data (Fig. 3). At low temperature, phonon scattering is suppressed [4], and ionized impurities are supposed to be the intrinsic sources of carrier scattering. Remarkably, as shown in Fig. 4(c), μ_{ii} at 10 K for the TTO film with $x = 1 \times 10^{-2}$ ($n_i = 2.4 \times 10^{18}$ cm$^{-3}$) agrees well with μ_{cal}, which is known to be temperature-independent in degenerately-doped regime. This result supports the conclusion that μ_{ii} of the film is dominated by ionized impurity scattering and phonon scattering at room temperature (Fig. 3). As x and thus n_i decreased, μ_{ii} at 10 K started deviating downward from μ_{cal}. This behaviour indicates that the TTO films with $x < 1 \times 10^{-2}$ contain extrinsic

Figure 3. Room temperature μ_{ii} as a function of n_i for SnO$_2$ bulk single crystals (squares) and thin films [circles (present study) and triangles (literature data)]. The data for undoped single crystals in the a-direction (μ_{a}) and Sb-doped single crystals in the c-direction (μ_{c}) are from refs. 5,11, respectively. The data for Ta-doped (110)-, undoped (001)-, Sb-doped (101)-, and undoped (101)-films are from refs. 23,16,12,13, respectively. A solid line with diamond symbols (μ_{cal}) represents calculated μ_{ii} assuming that only phonon (μ_{cal}, solid line) and ionized impurity (μ_{ii}, solid line) scattering contribute to μ_{ii} ($\mu_{cal}^{-1} = \mu_{cal}^{-1} + \mu_{ii}^{-1}$).
sources of carrier scattering, pronounced especially at low temperature. Thermal-activation-type behaviour of \(\mu_{H} \) was observed for the TTO film with \(x = 3 \times 10^{-4} \) (Fig. 4(d)), demonstrating that \(\mu_{H} \) is governed by grain boundary scattering in the film, although grain-boundary scattering in SnO\(_2\) epitaxial films has scarcely been studied so far. Dominguez et al. proposed that \{101\} crystallographic shear planes (CSPs) in SnO\(_2\) films, which are induced by misfit dislocations, may act like grain boundaries. Similarly, we speculated that the carrier scattering at \{101\} CSPs was responsible for the lower \(\mu_{H} \) than \(\mu_{iH} \) at \(n_e < 9 \times 10^{19} \) cm\(^{-3}\).

Judging from the complete screening by free carriers at \(n_e \geq 9 \times 10^{19} \) cm\(^{-3}\), the CSP-based grain-boundary scattering in the TTO films was supposed to be weak. We considered that lattice matching and growth orientation play an essential role in the CSP-based grain-boundary scattering as follows. Owing to the good lattice-matching to SnO\(_2\), the TiO\(_2\) (001) substrate would induce lower densities of misfit dislocations and thus CSPs in the films than other substrates. Furthermore, the angle between \{101\} CSPs and the basal plane of the SnO\(_2\) (001) film was approximately 34\(^\circ\), as shown in Fig. 5(a). The shallow angle would cause termination of the \{101\} CSPs at the early stage of the film growth. Indeed, as shown in Fig. 5(b), cross-sectional transmission electron microscopy (TEM) observations revealed that the TTO films on the TiO\(_2\) substrate had lower densities of CSPs than those on other substrates and that the CSPs did not reach the film surface, which supported the above-mentioned scenario. These structural characteristics can account for the lower contribution of carrier scattering at the CSP-based grain boundaries to the carrier transport in the TTO films on TiO\(_2\) (001). However, SnO\(_2\) epitaxial films on other substrates than TiO\(_2\) (001) have reportedly shown highly populated \{101\} CSPs inclined steeply to the basal planes, as schematically illustrated in Fig. 5(a). The CSPs in SnO\(_2\) epitaxial films are induced by misfit dislocations, and they are not energetically favorable in bulk crystal, unlike the CSPs induced by off-stoichiometry, as seen in oxygen-deficient rutile TiO\(_2\) crystals. Therefore, the density of CSPs decreased as the film thickness increases. Nevertheless, some of the CSPs in those films survived even near the surface of the films. These results suggest that the CSP-based grain-boundary scattering is more significant in the SnO\(_2\) epitaxial films on other substrates than TiO\(_2\) (001), which can account for the lower \(\mu_{H} \) than those for the TTO films on TiO\(_2\) (001), as depicted in Fig. 3.

To verify the proposed model, we investigated film thickness and growth orientation dependence of \(\mu_{H} \) for TTO films with \(x = 3 \times 10^{-3} \) grown on various substrates (001)-, (101)-, and (110)-planes of TiO\(_2\), and m-, r-, and c-planes of Al\(_2\)O\(_3\) substrates (see Supplementary Fig. S4 online). Figure 6 plots room temperature \(n_e \) and \(\mu_{H} \) for the TTO films with various film orientations as a function of the film thickness. With increasing film thickness, the \(\mu_{H} \) values increased probably owing to the synergistic effect of enlarged crystalline grains and reduced density of threading dislocations and \{101\} CSPs. The highest \(\mu_{H} \) was achieved for the
(001)-oriented TTO films, followed in order by the (101)-, the (110)-, and the (100)-oriented ones. This behaviour can be explained by the CSP-based grain-boundary scattering because the angle between the CSP and the basal planes of the films becomes small in the same order (Fig. 5(a)). Notably, the TTO films with the same orientation showed similar μ_H values even though different kinds of substrates were used. It was suggested that {101} CSPs play a significant role in the carrier transport in the TTO epitaxial thin films.
Summary

We investigated the transport properties of Sn$_{1-x}$Ta$_x$O$_2$ (TTO) films with $x = 3 \times 10^{-2}$–1×10^{-2} epitaxially grown on TiO$_2$ (001) substrates. The n values for the TTO films were almost equal to the concentrations of Ta dopants, which demonstrated the very high doping efficiency of Ta. The μ_H values of the TTO films with $n_s \geq 9 \times 10^{19}$ cm$^{-3}$ ($x \geq 3 \times 10^{-3}$) agreed well with the intrinsic limit of μ_H assuming that only phonon and impurity contributions to carrier scatterings. Negligible contribution of the grain-boundary scattering to μ_H might arise from a reduced density of CSPs. The TTO films with $n_s \sim 1 \times 10^{20}$ cm$^{-3}$ ($x = 3 \times 10^{-3}$) exhibited a very high μ_H of 130 cm2V$^{-1}$s$^{-1}$, which is the highest among SnO$_2$ films thus far reported. The μ_H values for the TTO ($x < 3 \times 10^{-2}$) films rapidly decreased with a decrease of x, which suggested a weakened screening of dislocation and/or grain-boundary scatterings owing to the decreased n_s.

Methods

TTO films with a thickness of 100–120 nm, with $x = 3 \times 10^{-2}$–1×10^{-2}, were grown on TiO$_2$ (001) substrates by pulsed laser deposition (PLD) with a KrF excimer laser. TTO films with $x = 3 \times 10^{-3}$ were grown (011)-, (101)-, and (110)-planes of TiO$_2$, and m-, r-, and c-planes of Al$_2$O$_3$ substrates. The repetition rate and the fluence of the laser were set at 2 Hz and 1–2 J cm$^{-2}$, respectively. The typical growth rate was 0.14–0.17 Å per shot. Sintered pellets of TTO with $x = 3 \times 10^{-2}$–1×10^{-2} were used as PLD targets. TTO films with $x = 3 \times 10^{-3}$ were fabricated by alternating ablation of a commercial undoped SnO$_2$ (4 N purity, Toshima MFG) target and a TTO pellet with $x = 3 \times 10^{-4}$. In this study, nominal x values were used to represent the chemical compositions of the films because stoichiometric transfer of Ta from the targets to the films has been reported for TTO films grown under a similar condition. The base pressure of the PLD chamber was maintained at 3×10^{-9} Torr. Oxygen partial pressure and T_d during film growth were 1×10^{-1} Torr and 400–700 °C, respectively. Crystal structure and crystallinity were evaluated by XRD measurements using a four-circle diffractometer (Bruker AXS, D8 DISCOVER). The cross-sectional microstructure of the films was observed by using a transmission electron microscope (FEI, Titan Cubed G2 60-300) operated at 300 kV. Hall effect and resistivity were measured by using a standard six-terminal method. The Hall-bar width and the distance between voltage terminals for four-probe measurements were 1 mm and 2.4 mm, respectively. Ag or In electrodes were used for ohmic contacts. A laboratory constructed system equipped with a 2 T electromagnet was used for room temperature measurements. Current–voltage characteristics and Hall voltage–magnetic field characteristics were measured repeatedly (at least twice) to confirm the reliability and reproducibility of the measurements. Temperature dependence of the transport properties was measured with a commercially available system (Quantum design, physical properties measurement system (PPMS Model 6000)).

Data availability

The datasets during the current study are available from the corresponding author on reasonable request.

Received: 7 October 2019; Accepted: 1 April 2020;

References

1. Yu, X., Marks, T. J. & Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016).
2. Wei Shih, C., Chin, A., Fu Lu, C. & Fang Su, W. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals. Sci. Rep. 6, 19023, https://doi.org/10.1038/srep19023 (2016).
3. Das, S. & Jayaraman, V. SnO$_2$: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–235 (2014).
4. Vallejos, S. Aerosol assisted chemical vapour deposition of gas sensitive SnO$_2$ and Au-functionalised SnO$_2$ nanorods via a non-catalysed vapour solid (VS) mechanism. Sci. Rep. 6, 28464, https://doi.org/10.1038/srep28464 (2016).
5. Palla Papavlu, A. et al. Highly sensitive SnO$_2$ sensor via reactive laser-induced transfer. Sci. Rep. 6, 25144, https://doi.org/10.1038/srep25144 (2016).
6. Ellner, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809–817 (2012).
7. Yang, J. K. et al. Reference of Temperature and Time during tempering process for non-stoichiometric FTO films. Sci. Rep. 5, 15001, https://doi.org/10.1038/srep15001 (2015).
8. Yu, S., Li, L., Lyu, X. & Zhang, W. Preparation and investigation of nano-thick FTO/Ag/FTO multilayer transparent electrodes with high figure of merit. Sci. Rep. 6, 20399, https://doi.org/10.1038/srep20399 (2016).
9. Fonstad, C. G. & Rediker, R. H. Electrical Properties of High-Quality Stannic Oxide Crystals. J. Appl. Phys. 42, 2911 (1971).
10. Galazka, Z. et al. Growth, characterization, and properties of bulk SnO$_2$ single crystals. Phys. Status Solidi A 211, 66–73 (2014).
11. Morgan, D. F. & Wright, D. A. Electrical properties of single crystals of antimony-doped stannic oxide. Br. J. Appl. Phys. 17, 337–340 (1966).
12. White, M. E., Bierwagen, O., Tsai, M. Y. & Speck, J. S. Electron transport properties of antimony doped SnO$_2$ single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106, 093704 (2009).
13. Mun, H., Yang, H., Park, J., Ju, C. & Char, K. High electron mobility in epitaxial SnO$_2$$_{1-x}$, in semiconducting regime. APL Mater. 3, 076107 (2015).
14. Semancik, S. & Cavicchi, R. E. The growth of thin, epitaxial SnO$_2$ films for gas sensing applications. Thin Solid Films 206, 81–87 (1991).
15. Rachut, K., Körber, C., Brötz, J. & Klein, A. Growth and surface properties of epitaxial SnO$_2$. Phys. status solidi A 211, 1997–2004 (2014).
16. Okude, M. et al. Effect of in situ annealed SnO$_2$ buffer layer on structural and electrical properties of (001) SnO$_2$/TiO$_2$ heterostructures. J. Phys. D 41, 125309 (2008).
17. Zhen, Y. et al. Investigations of growth kinetics of pulsed laser deposition of tin oxide films by isotope tracer technique. J. Appl. Phys. 108, 1–7 (2010).
18. Dominguez, J. E., Fu, L. & Pan, X. Q. Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films. Appl. Phys. Lett. 81, 5168–5170 (2002).
19. Kim, Y., Lee, S. W. & Chen, H. Microstructural evolution and electrical property of Ta-doped SnO$_2$ films grown on Al$_2$O$_3$ (0001) by metalorganic chemical vapor deposition. Thin Solid Films 405, 256–262 (2002).
20. Feng, X. et al. Highly thermal stable transparent conducting SnO2:Sb epitaxial films prepared on α-Al2O3 (0001) by MOCVD. Appl. Surf. Sci. 254, 6601–6604 (2008).
21. Luan, C., Zhu, Z., Mi, W. & Ma, J. Effect of Sn doping on structural, electrical and optical properties of epitaxial SnO2 films grown on r-cut sapphire. J. Alloys Compd. 586, 426–430 (2014).
22. Nakao, S. et al. High mobility exceeding 80 cm2 V−1 s−1 in polycrystalline Ta-Doped SnO2 thin films on glass using anatase TiO2 seed layers. Appl. Phys. Express 3, 033102 (2010).
23. Toyosaki, H., Kawasaki, M. & Tokura, Y. Electrical properties of Ta-doped SnO2 thin films epitaxially grown on TiO2 substrate. Appl. Phys. Lett. 93, 132109 (2008).
24. Vasheghani Farahani, S. K. et al. Influence of charged-dislocation density variations on carrier mobility in heteroepitaxial semiconductors: The case of SnO2 on sapphire. Phys. Rev. B 86, 245315 (2012).
25. Tsai, M. Y., White, M. E. & Speck, J. S. Plasma-assisted molecular beam epitaxy of SnO2 on TiO2. J. Cryst. Growth 310, 4256–4261 (2008).
26. White, M. E., Tsai, M. Y., Wu, F. & Speck, J. S. Plasma-assisted molecular beam epitaxy and characterization of SnO2 (110) on r-plane sapphire. J. Vac. Sci. Technol. A 26, 1300 (2008).
27. Palgrave, R. G., Bourlange, A., Payne, D. J., Foord, J. S. & Egdell, R. G. Interfacial diffusion during growth of SnO2 (110) on TiO2 (110) by Oxygen Plasma Assisted Molecular Beam Epitaxy. Cryst. Growth Des. 9, 1793–1797 (2009).
28. Ellmer, K. Resistivity of polycrystalline zinc oxide films: current status and physical limits. J. Phys. D 34, 3097–3108 (2001).
29. Na, J., Oka, N., Kusayanagi, M., Nakatomi, S. & Shigesato, Y. Origin of carrier scattering in polycrystalline Al-doped ZnO films. Appl. Phys. Express 7, 105802 (2014).
30. Dingle, R. B. Scattering of electrons and holes by charged donors and acceptors in semiconductors. Philos. Mag. 46, 831–840 (1955).
31. Shigesato, Y. & Paine, D. C. Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide. Appl. Phys. Lett. 62, 1268–1270 (1993).
32. Feneberg, M. Infrared absorption in single-crystal stannic oxide: Optical lattice-vibration modes. Thin Solid Films 40, 1256–1262 (2001).
33. Weidner, M., Brötz, J. & Klein, A. Sputter-deposited polycrystalline tantalum-doped SnO2 layers. Thin Solid Films 555, 173–178 (2014).
34. Behrta, M., Joo, P. H., Nazir, S. & Yang, K. Electronic structures and formation energies of pentavalent-ion-doped SnO2. First-principles hybrid functional calculations. J. Appl. Phys. 117, 175101 (2015).
35. Williamson, B. et al. Resonant Ta Doping for Enhanced Mobility in Transparent Conducting SnO2. Chem. Mater. 32, 1964–1973 (2020).
36. Summitt, R. Infrared absorption in single-crystal stannic oxide: Optical lattice- vibration modes. J. Appl. Phys. 39, 3762–3767 (1968).
37. Feneberg, M. et al. Anisotropy of the electron effective mass in rutile SnO2 determined by infrared ellipsometry. Phys. Status Solidi A 211, 82–86 (2014).
38. Bruneaux, J., Cachet, H., Froment, M. & Messad, A. Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping. Thin Solid Films 197, 129–142 (1991).
39. Nakabayashi, H., Suzuki, T., Iwazaki, T. & Fujimoto, M. Defect Structure of Heteroepitaxial SnO2 Thin Films Grown on TiO2 Substrates. Jpn. J. Appl. Phys. 40, 6081–6087 (2001).
40. Bursill, L. A. & Hyde, B. G. Crystallographic shear in the higher titanium oxides: structure, texture, mechanisms and thermodynamics. Prog. Solid State Chem. 7, 177–253 (1972).
41. Kim, D. H., Kim, W.-S., Lee, S. B. & Hong, S. H. Gas sensing properties in epitaxial SnO2 films grown on TiO2 single crystals with various orientations. Sensors Actuators B Chem. 147, 653–659 (2010).
42. Kim, D. H., Kwon, J.-H., Kim, M. & Hong, S. H. Structural characteristics of epitaxial SnO2 films deposited on a- and m-cut sapphire by ALD. J. Cryst. Growth 322, 33–37 (2011).
43. Agashe, C., Hüppkes, J., Schöpe, G. & Berginski, M. Physical properties of highly oriented spray-deposited fluorine-doped tin dioxide films as transparent conductor. Sol. Energy Mater. Sol. Cells 93, 1256–1262 (2009).
44. Ishikita, M. et al. Improving Mobility of F-Doped SnO2 Thin Films by Introducing Temperature Gradient during Low-Pressure Chemical Vapor Deposition. Jpn. J. Appl. Phys. 51, 095801 (2012).
45. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Acknowledgements
This work was supported by JSPS KAKENHI Grant Number 15K04687 and CREST, JST. S.N. gratefully acknowledges Ms. Reiko Nagashima of the University of Tokyo for her sincere encouragement. We thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author contributions
S.N. conceived the project. M.F. grew and characterized the films with the help of S.N., K.S. and Y.H. D.O. and K.M. performed the TEM observations. T.H. supervised the project. M.F., S.N., Y.H. and T.H. wrote the manuscript with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-63800-3.
Correspondence and requests for materials should be addressed to S.N.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020