Electronic, NLO, and thermodynamic parameters and frontier molecular orbital investigation of pentafluoro phenol and pentachloro thiophenol with DFT approach

P Venkata Ramana Rao¹²*, K Srishailam¹² and Adla Rajesh³

¹Department of physics, SR University, Warangal-506371, Telangana, India
²Department of physics, S R Engineering College, Warangal-506371, Telangana, India
³Sumathi Reddy Institute of Technology for Women, Warangal, India

¹poladi.ramana@gmail.com

Abstract. UV-Visible spectra of Pentafluoro phenol (PFP) and Pentachloro thiophenol (PCTP) were estimated with the help of time-dependent density functional theory. Frontier molecular orbital (FMO) approach was used to understand origin of UV-Vis spectra of the molecules. Molecular electrostatic potential (MESP) surfaces were drawn for PFP and PCTP, to establish regions of charge accumulation. Non-linear optical (NLO) parameters (e.g. hyperpolarizability,) were computed. Thermodynamic parameters of these molecules were also calculated.

1. Introduction

We reported results of our investigations on substituted phenols [1, 2] in the past. At present we are engaged with addressing problems associated with structure, vibrational properties, electronic characteristics, frontier molecular orbital (FMO) utility, NLO behavior and thermodynamic parameters using both experimental and theoretical (DFT) tools [3, 4], in addition to anticancer activity. Recently we reported structural and vibrational properties for pentachlorophenol (PCP) [5] and pentabromophenol [6]. However, results of UV-Vis spectra, FMO, NLO and thermodynamic analysis for PFP and PCTP are yet to appear in literature. In this article we report such results.

2. Computational considerations

Necessary calculations were accomplished by employing DFT, incorporated in Gaussian 09 package [7-9]. 6-311++G(d,p) basis set was used. Ultraviolet absorption spectrum arising from electronic transitions was estimated by density functional formalism with suitable modification for time dependence, with 6-311++G(d,p) basis set. Polarizable continuum model (PCM) addressed the effect of solvent, with the integral equation method [10-12] implemented in Gaussian 09 suit of programs. FMO properties and MESP were estimated by using suitable expressions [13-18]. With the help of finite field method [19] and DFT, we calculated the NLO properties of the chosen molecules.

The thermodynamic parameters were computed for PFP and PCTP at the same level of theory. A rigid-rotator harmonic approximation was assumed [20].

3. Results and Discussion
3.1 Electronic Properties

Here we present FMO from the point of view of understanding UV-Visible spectra of both PFP and PCTP. We wish to include MESP also here. Structure of PCTP and PFP determined in earlier articles [5, 6] is made available as Figure 1.

![Figure 1. Optimized molecular structure of PFP and PCTP](image)

3.2 Frontier molecular orbitals (FMO)

FMO is concerned with one electron excitations. Such excitations, for PFP and PCTP are shown in Figure 2. This can conveniently be used to explain UV-Visible spectra of molecules.

3.2.1 Ultraviolet signal

Simulated Ultraviolet signals originating from relevant transition are shown in Figure 3, for PFP and PCTP. As per computations, PFP and PCTP should have one electronic transition each, at $\lambda_{\text{max}} = 238.68$ nm with f (strength of the oscillator) = 0.014, and $\lambda_{\text{max}} = 286.55$ nm with $f = 0.025$, respectively. Frontier molecular orbital study shows that the above simulated bands arise due to HOMO→LUMO transition. On analyzing molecular orbital coefficients, we find that HOMO→LUMO electronic transition corresponds to $n \rightarrow \pi^*$ excitation.

3.3 Molecular electrostatic potential (MESP) surface

MESP plots for both the molecules are shown in Figure 4. This reveals variations in charge distribution between different parts of the molecules. Following usual practice color code is used to indicate such differences. Red is employed to show relatively negative region and Green is used to mark relatively positive region. In PFP and PCTP negative regions occur mainly over F, Cl, O and S atomic sites, attributable to inherent lone pair electrons on them. Positive region is confined to the hydrogen atom.
Figure 2. Frontier molecular orbitals of PFP and PCTP.

Figure 3. Ultraviolet-Visible spectrum of PFP and PCTP

Figure 4. MESP plots for PFP and PCTP
3.4 NLO parameters
Interaction of electromagnetic radiation with NLO material results in a change of important propagation properties, of the incoming radiation (e.g. amplitude, phase, frequency), giving rise to new fields [21]. If these changes are significant then the NLO material may be used for optical-logic, switching, memory and frequency shifting [22 - 24]. NLO effects of a given material are decided by the value of its first order hyperpolarizability.

NLO behavior for a given compound is decided by comparing relevant quantities with those of Urea. For Urea β_0 is 372.8X10$^{-33}$ cm5/e.s.u and μ_0 is 1.3732 Debye; (β, hyper polarizability, μ, is dipole moment) calculated values of μ_0 are 1.0511 and 0.4147 Debye and those of β_0 are 92.3649 X10$^{-33}$ and 134.738747 X10$^{-33}$ cm5/e.s.u, respectively, for PFP and PCTP. These values are very low in comparison with those of Urea. Therefore, it can be concluded that PFP and PCTP are not useful as NLO compounds.

3.5 Thermodynamic parameters
Common thermodynamic parameters C_p, C_v and entropy S (38.81, 44.40; 36.83, 42.41 and 97.25, 112.44), for PFP and PCTP, were estimated, in cal mol$^{-1}$ K$^{-1}$. Zero point vibrational energy (39.99, 31.88 kcal mol$^{-1}$), total thermal energy (46.27, 39.57 kcal mol$^{-1}$) and self-consistent field energy (-803.85 and -2928.60 Hartree) were computed, for PFP and PCTP.

4. Conclusions
Estimated values of UV-Visible spectra, FMO parameters and thermodynamic functions are now available for PFP and PCTP.

5. References
[1] Venkata Ramana Rao P, Ramana Rao G 2002 Vibrational analysis of substituted phenols: Part I. Vibrational spectra, normal coordinate analysis and transferability of force constants of some formyl-, methoxy-, formylmethoxy-, methyl- and halogeno-phenols Spectrochim. Acta A 58 3039 - 3065
[2] Venkata Ramana Rao P, Ramana Rao G 2002 Vibrational analysis of substituted phenols: Part II. Transferability of valence force constants Spectrochim. Acta A 58 3205-3221
[3] Srishailam K, Venkatram Reddy B, Ramana Rao G 2019 Investigation of torsional potentials, hindered rotation, molecular structure and vibrational properties of some biphenyl carboxaldehydes using spectroscopic techniques and density functional formalism J. Mol. Struct. 1196 139-161
[4] Ramaiah K, Srishailam K, Laxma Reddy K, Venkatram Reddy B, Ramana Rao G 2019 Synthesis, crystal and molecular structure, and characterization of 2-((2-aminopyridin-3-yl)methylene)-N-ethylhydrazinecarbothioamide using spectroscopic (1H and 13C NMR, FT-IR, FT-Raman, UV-Vis) and DFT methods and evaluation of its anticancer activity J. Mol. Struct. 1184 405-417
[5] Srishailam K, Venkata Ramana Rao P, Ravindranath L, Venkatram Reddy B, Ramana Rao G 2019 Experimental and theoretical determination of structural and vibrational properties of pentachlorophenol and pentachlorothiophenol J. Mol. Struct. 1178 142-154
[6] Venkata Ramana Rao P, Srishailam K, Ravindranath L, Venkatram Reddy B, Ramana Rao G 2019 Structural and vibrational properties of pentabromophenol and pentachlorophenol: A spectroscopic investigation using density functional theory. J. Mol. Struct. 1180 665-675
[7] Gaussian 09, Revision B.01, M.J. Frisch M. J et al 2010 Gaussian, Inc., Wallingford CT
[8] Becke A. D 1993 Density-functional thermochemistry. III. the role of exact exchange J. Chem. Phys. 98 5648-5652
[9] Lee C, Yang W. T, Parr R. G 1988 Development of the collet-salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785-790
[10] Scalmani G, Frisch M. J 2010 Continuous surface charge polarizable continuum models of solvation. I. General formalism J. Chem. Phys. 132 1-15

[11] Improta R, Barone V, Scalmani G, and Frisch M. J 2006 A state-specific polarizable continuum model time dependent density functional method for excited state calculations in solution J. Chem. Phys. 125 1-9

[12] Improta R, Scalmani G, Frisch M. J, and Barone V 2007 Toward effective and reliable fluorescence energies in solution by a new State Specific Polarizable Continuum Model Time Dependent Density Functional Theory Approach, J. Chem. Phys. 127 1-9

[13] G. Gece G 2008 The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci. 50 2981–2992

[14] Parr R. G, Szentpaly L. V, Liu S 1999 Electrophilicity Index, J. Am. Chem. Soc. 121 1922-1924

[15] Ö zdemira N, Erenb B, Dincêra M and Bekdemir Y 2010 Experimental and ab initio computational studies on 4-(1H-benzo[d]imidazol-2-yl)-N,N-dimethylaniline, Mol. Phys. 108 13-24

[16] Politzer P, Murray J. S 2002 The fundamental nature and role of the electrostatic potential in atoms and molecules Theor. Chem. Acc. 108 134–142

[17] Buckingham A. D 1967 Permanent and induced molecular moments and long-range inter molecular forces. Adv. Chem. Phys. 12 107-142

[18] McQuarrie D. A 1973 Thermodynamics Harper and Row, New York

[19] Sun Y-X, Hao Q-L, Wei W-X, Yu Z-X, Lu L-D, Wang X, Wang Y-S 2009 Experimental and density functional studies on 4-(3,4-dihydroxybenzylideneamino) antipyrine and 4(2,3,4-trihydroxybenzylideneamino)antipyrine J. Mol. Struct. Theocem 904 74-82

[20] Nakano M, Fujita H, Takahata M, Yamaguchi K 2002 Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure-Property Relation in NLO Responses of Fractal Antenna Dendrimers J. Am. Chem. Soc. 124 9648-9655

[21] Andraud C, Brotin T, Garcia C, Pell F, Goldner P, Bigot B, Collet A 1994 Theoretical and experimental investigations of the nonlinear optical properties of vanillin,polyenovanillin, and bisvanillin derivatives J. Am. Chem. Soc. 116 2094-2102

[22] Geskin V, Lambert C, Bredas J. L 2003 Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyneswitterions: the remarkable role of polarized aromatic groups J. Am. Chem. Soc. 125 15651-15658

[23] Sajan D, Joe H, Jayakumar V. S, Zaleski J 2006 Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate J. Mol. Struct. 785 43-53

[24] Padmaja G, Devarajulu G, Deva Prasad Raju B, Turpu G R, Srishailam K, Venkatram Reddy B, Pavan Kumar G 2020 Synthesis of Sr1-xBaxBi2B2O7 glass ceramics: A study for structure and characterization using experimental techniques and DFT method J. Mol. Struct. 1220 128660

Acknowledgements
P.V.R. Rao and Srishailam thank management of SR University, Warangal, India, for encouraging this research work.