Assessing sub-grid variability within satellite pixels using airborne mapping spectrometer measurements

Wenfu Tang1,2, David P. Edwards2, Louisa K. Emmons2, Helen M. Worden2, Laura M. Judd3, Lok N. Lamsal4,5, Jassim A. Al-Saadi2, Scott J. Janz4, James H. Crawford3, Merritt N. Deeter2, Gabriele Pfister3, Rebecca R. Buchholz2, Benjamin Gaubert2, Caroline R. Nowlan6

1Advanced Study Program, National Center for Atmospheric Research, Boulder, CO, USA
2Atmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, CO, USA
3NASA Langley Research Center, Hampton, VA 23681, USA
4NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
5Universities Space Research Association, Columbia, MD 21046, USA
6Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

Abstract

Sub-grid variability (SGV) of atmospheric trace gases within satellite pixels is a key issue in satellite design, and interpretation and validation of retrieval products. However, characterizing this variability is challenging due to the lack of independent high-resolution measurements. Here we use tropospheric NO\textsubscript{2} vertical column (VC) measurements from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument with a spatial resolution of about 250 m × 250 m to quantify the normalized SGV (i.e., the standard deviation of the sub-grid GeoTASO values within the sampled satellite pixel divided by their mean of the sub-grid GeoTASO values within the sampled satellite pixel) for different satellite pixel sizes. We use the GeoTASO measurements over the Seoul Metropolitan Area (SMA) and Busan region of South Korea during the 2016 KORUS-AQ field campaign, and over the Los Angeles Basin, USA during the 2017 SARP field campaign. We find that the normalized SGV of NO\textsubscript{2} VC increases with increasing satellite pixel sizes (from ~10\% for 0.5 km × 0.5 km pixel size to ~35\% for 25 km × 25 km pixel size), and this relationship holds for the three study regions, which are also within the domains of upcoming geostationary satellite air quality missions. We also quantify the temporal variability of the retrieved NO\textsubscript{2} VC within the same satellite pixels (represented by the difference of retrieved values at two different times of a day). For a given satellite pixel size, the temporal variability within the same satellite pixels increases with the sampling time difference over SMA. For a given small (e.g., <=4 hours) sampling time difference within the same satellite pixels, the temporal variability of the retrieved NO\textsubscript{2} VC increases with the increasing spatial resolution over the SMA, Busan region, and the Los Angeles basin.

The results of this study have implications for future satellite design and retrieval interpretation, and validation when comparing pixel data with local observations. In addition, the
analyses presented in this study are equally applicable in model evaluation when comparing model grid values to local observations. Results from the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) model indicate that the normalized satellite SGV of tropospheric NO$_2$ VC calculated in this study could serve as an upper bound to the satellite SGV of other species (e.g., CO and SO$_2$) that share common source(s) with NO$_2$ but have relatively longer lifetime.

1. Introduction

Characterizing sub-grid variability (SGV) of atmospheric chemical constituent fields is important in both satellite retrievals and atmospheric chemical-transport modeling. The inability to resolve sub-grid details is one of the fundamental limitations of grid-based models (Qian et al., 2010) and has been studied extensively (e.g., Boersma et al., 2016; Ching et al., 2006; Denby et al., 2011; Pillai et al., 2010; Qian et al., 2010). Pillai et al. (2010) found that the SGV of column-averaged carbon dioxide (CO$_2$) can reach up to 1.2 ppm in global models that have a horizontal resolution of 100 km. This is an order of magnitude larger than sampling errors that include both limitations in instrument precision and uncertainty of unresolved atmospheric CO$_2$ variability within the mixed layer (Gerbig et al., 2003). Denby et al. (2011) suggested that the average European urban background exposure for nitrogen dioxide (NO$_2$) using a model of 50-km resolution is underestimated by ~44% due to SGV.

In contrast, much less attention has been paid to the sub-grid variability within satellite pixels (e.g., Broccardo et al., 2018; Judd et al., 2019; Tack et al., 2020). Indeed, some previous studies (e.g., Kim et al., 2016; Song et al., 2018; Zhang et al., 2019; Choi et al., 2020) used satellite retrievals to study SGV in models, and calculated representativeness errors of model results with respect to satellite measurements (e.g., Pillai et al., 2010). Even though satellite retrievals of atmospheric composition often have smaller uncertainties than model results, it has not been until recently that the typical spatial resolution of atmospheric composition satellite products has reached scales comparable to regional atmospheric chemistry models (<~10 km).

Until recently, accurate in-situ measurements with sufficient spatiotemporal coverage have not been available. As a result, it has been challenging to quantify satellite SGV, even though this is a key issue in designing, understanding and correctly interpreting satellite observations. This is especially important in the satellite instrument develop process, during which the required measurement precision and retrieval resolution need to be defined in order to meet the science goals. In addition, when validating and evaluating relatively coarse-scale satellite retrievals by comparing with in situ observations, SGV introduces large uncertainties. This work is partly motivated by validation requirements and considerations for the upcoming geostationary orbit (GEO) satellite constellation for atmospheric composition that includes the Tropospheric Emissions: Monitoring Pollution (TEMPO) mission over North America (Chance et al., 2013; Zöggmann et al., 2017), the Geostationary Environment Monitoring Spectrometer (GEMS) over Asia (Kim et al., 2020), and the Sentinel-4 mission over Europe (Courrèges-Lacoste et al., 2017).

The measurements of the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument provide a unique dataset for quantifying satellite SGV. GeoTASO is an airborne remote sensing instrument capable of high spatial resolution retrieval of
UV-VIS absorbing species like NO$_2$, formaldehyde (HCHO; Nowlan et al., 2018) and sulfur dioxide (SO$_2$; Chong et al., 2020), and with measurement characteristics similar to the GEMS and TEMPO GEO satellite instruments. The GeoTASO data used here were taken in gapless, grid-like patterns – or “rasters” – over the regions of interest, providing essentially continuous spatial coverage that was repeated up to four times a day in some cases. As such, the GeoTASO data provide a preview of the type of sampling that is expected from the GEO satellite sensors, making the data particularly suitable for our study. We focus on the GeoTASO measurements made during the Korea United States Air Quality (KORUS-AQ) field experiment in 2016. The measurements from KORUS-AQ have been widely used by researchers for various air quality topics, including quantification of emissions and model and satellite evaluation (e.g., Deeter et al., 2019; Huang et al., 2018; Kim et al., 2018; Miyazaki et al., 2019; Spinei et al., 2018; Tang et al., 2018, 2019; Souri et al., 2020, Gaubert et al., 2020). We further compare our findings from KORUS-AQ with flights conducted during the NASA Student Airborne Research Program (SARP) in 2017 over the Los Angeles (LA) Basin to test the general applicability of our findings. The KORUS-AQ mission took place within the GEMS domain, while the SARP in 2017 is within the domain of TEMPO. Given the similarity between the TEMPO and GEMS instruments in terms of spectral ranges, spatial and temporal resolution, and retrieval algorithms (Al-Saadi et al., 2014), such comparison is reasonable and useful in facilitating the generalization of the results from the study.

We use the tropospheric NO$_2$ vertical column (VC) retrieved by GeoTASO as a tool to assess satellite SGV. NO$_2$ is an important air pollutant that is primarily generated from anthropogenic sources such as emissions from the energy, transportation, and industry sectors (Hoesly et al., 2018). NO$_2$ is a reactive gas with a typical lifetime of a few hours in the planetary boundary layer (PBL), although it can also be transported over long distance in the form of peroxyacetyl nitrate (PAN) and nitric acid. NO$_2$ is a precursor of tropospheric ozone and secondary aerosols, and has a negative impact on human health and the environment (Finlayson-Pitts et al., 1997). The results from this paper’s analysis of NO$_2$ also have implications for other air pollutants that share common source(s) with NO$_2$, but that have somewhat longer lifetimes, for example, carbon monoxide (CO) and SO$_2$.

In this study, we apply a satellite pixel random sampling technique and the spatial structure function analysis to GeoTASO data (described in Section 2) to quantify the SGV of satellite pixel NO$_2$ VC at a variety of spatial resolutions. We analyze the relationship between satellite pixel size and satellite SGV, and the relationship between satellite pixel size and the temporal variability of NO$_2$ observations (Section 3). We then discuss the implications for satellite design, satellite retrieval interpretation, satellite validation and evaluation, and satellite–in situ data comparisons (Section 4). Implications for general local observations and grid data comparisons are also discussed. Section 5 presents our conclusions.

2. Data and methods

In this section, we describe the GeoTASO instrument, campaign flights and the different analysis techniques used to characterize the satellite pixel SGV. We outline two approaches: satellite pixel random sampling to investigate separately both spatial variability and temporal variability, and the construction of spatial structure functions for an alternative measure of spatial variability.
2.1 GeoTASO instrument

In this study, we focus on GeoTASO retrievals of tropospheric NO\textsubscript{2} Vertical Column (VC). GeoTASO is a hyperspectral instrument (Leitch et al., 2014) that measures nadir backscattered light in the ultraviolet (UV; 290–400 nm) and visible (VIS; 415–695 nm). As one of NASA’s airborne UV–VIS mapping instruments, it was designed to support the upcoming GEO satellite missions by acquiring high temporal and spatial resolution measurements with dense sampling for optimizing and experimenting with new retrieval algorithms (Leitch et al., 2014; Nowlan et al., 2016; Lamsal et al., 2017; Judd et al., 2019). GeoTASO has a cross-track field of view of 45\degree (+/-22.5\degree from nadir), and the retrieval pixel size at nadir is approximately 250 m x 250 m from typical flight altitudes of 24,000–28,000 feet (7.3–8.5 km). The dense sampling of the GeoTASO datasets is a unique feature and provides the opportunity to study the expected spatial and temporal variability within the satellite NO\textsubscript{2} retrieval pixels at high resolution. The GeoTASO data used in this study are mostly cloud-free. Validation of GeoTASO NO\textsubscript{2} retrievals during KORUS-AQ with Pandora shows ~10\% difference on average. The uncertainty estimate is lower than that reported by Nowlan et al. [2016].

2.2 The 2016 KORUS-AQ field campaign

The KORUS-AQ field measurement campaign (Al-Saadi et al., 2014), took place in May–June 2016, to help understand the factors controlling air quality over South Korea. One of the goals of KORUS-AQ was the testing and improvement of remote sensing algorithms in advance of the launches of GEMS, TEMPO, and Sentinel-4 satellite missions. It is hoped that the high-quality initial data products from the GEO missions will facilitate their rapid uptake in air quality applications after launch (Al-Saadi et al., 2014; Kim et al., 2020). During KORUS-AQ, GeoTASO flew onboard the NASA LaRC B200 aircraft. We focus on the data taken over the Seoul Metropolitan Area (SMA) that is highly urbanized and polluted, and the greater Busan region, that is somewhat less urbanized and less polluted (Figure 1). Figure 2 shows the 12 GeoTASO data rasters (i.e., gapless maps) acquired over SMA. Figure S1 shows the 2 GeoTASO rasters acquired over the Busan region.

2.3 The 2017 SARP field campaign

During the NASA Student Airborne Research Program (SARP) flights in June 2017, (https://airbornescience.nasa.gov/content/Student_Airborne_Research_Program), GeoTASO was flown onboard the NASA LaRC UC-12B aircraft over the LA Basin (Figure S2, which also shows the landcover). A detailed description and analysis of these data can be found in Judd et al. (2018; 2019). In this study, we compare our analyses and findings from KORUS-AQ with those using the GeoTASO data over the LA Basin to test the general applicability of our findings.

2.4 Satellite pixel random sampling for spatial variability

GeoTASO provides continuous measurements in a gapless map pattern at high spatial resolution (Figures 2, S1, and S2). This dataset allows us to sample and study the SGV of coarser spatial resolution hypothetical satellite pixels sampling the same domain. To mimic satellite observations and quantify the satellite SGV, we randomly sample the GeoTASO data with hypothetical satellite pixels spanning 27 different pixel sizes (0.5 km x 0.5 km, 0.75 km x 0.75 km,
1 km×1 km, 2 km×2 km, up to 25 km×25 km). Because of the move to smaller pixel sizes in the future satellite missions, and the limitation in the maximum hypothetical satellite pixel size sampled using the random sampling method, the analysis of SGV only goes up to 25 km×25 km. This sampling process is conducted for each hour of each selected flight over the regions of interest during the KORUS-AQ and SARP campaigns. For every sampled satellite pixel, the mean (MEAN\textsubscript{pixel}) and standard deviation (SD\textsubscript{pixel}) of the GeoTASO tropospheric NO\textsubscript{2} VC data within the pixel are calculated to represent the satellite SGV. Normalized satellite SGV is calculated by the standard deviation of the GeoTASO data within the sampled satellite pixel divided by the mean of the GeoTASO data within the sampled satellite pixel (SD\textsubscript{pixel}/MEAN\textsubscript{pixel}).

We use a set of 10,000 hypothetical satellite pixels at each size to include all of the GeoTASO data in the analysis and to cover as many locations as possible. Our sensitivity test indicates that the results do not change by halving the sample size. Because the data are located closely in space but may be sampled at slightly different times for the same flight, we separate GeoTASO data into hourly bins for each flight before pixel sampling in order to reduce the impact of temporal variability of the GeoTASO data within a single satellite pixel sample.

As an illustration, we describe the procedure below for the May 17th afternoon flight (Figure 3) that was conducted from 13:00 to 17:00 local time: (1) the GeoTASO data during this flight were divided into four hourly groups according to the measurement time, i.e., 13:00-14:00, 14:00-15:00, 15:00-16:00, and 16:00-17:00; (2) for each of the 27 hypothetical satellite pixel sizes, we randomly generate 10,000 satellite pixel locations within each hourly group. Therefore, for each hour, we sample 270,000 satellite pixels (27 different satellite pixel sizes and 10,000 samples for each size), and for this example flight, we have a total of up to 1,080,000 possible satellite pixels in each of 4 hourly groups. Note that the actual samples used in the analysis are less than 1,080,000 because we discarded a sampled satellite pixel if it is not covered by GeoTASO data for at least 75% of its area.

We tested other choices of the coverage threshold in addition to 75% over SMA (not shown here). The results are similar for small pixels (< ~10 km2), as they are more likely to be covered by GeoTASO data regardless of the threshold value. For larger pixels (> ~15 km2), the satellite SGV is slightly lower when using 30% or 50% as the area coverage threshold, because larger pixels act like smaller pixels when only partially covered. The threshold of 75% was chosen as a trade-off between sample size and representation.

2.5 Satellite pixel random sampling for temporal variability

We also quantify the temporal variability of the retrieved NO\textsubscript{2} VC within the same satellite pixels for different satellite pixel sizes. To calculate temporal variability within a hypothetical satellite pixel, we need GeoTASO data to cover the hypothetical satellite pixel at different times during the day. During the KORUS-AQ and 2017 SARP campaigns, rasters were treated as single units (Judd et al., 2019). Each raster produces a contiguous map of data that we consider as roughly representative of the mid-time of the raster. Unlike the calculation of SGV, which is based on data separated into hourly bins (section 2.4) to reduce the impact of temporal variability in the calculated spatial variability, the satellite pixel random sampling to assess temporal variability is based on rasters, and only conducted for days with multiple rasters. This is to ensure that the
sampled hypothetical satellite pixels have multiple values at different times of the day, and hence maximize the sample size.

To assess temporal variability within the hypothetical satellite pixels, we randomly select 50,000 pixel locations for each of the 27 hypothetical satellite pixel sizes, and use this same set of pixel locations to sample the GeoTASO data for each raster across all flights for a given day. This process is repeated for all days with multiple rasters, and the 75% of area coverage threshold is also applied. When there are two or more raster values of MEAN\textsubscript{pixel} for a given pixel location separated by time Dt, the temporal mean difference (TeMD) within the satellite pixel is calculated as:

\[
\text{TeMD(Dt)} = \text{average}(|\text{MEAN}_{\text{pixel}}(t) - \text{MEAN}_{\text{pixel}}(t + \text{Dt})|)
\]

This procedure is repeated for each satellite pixel size.

2.6 Spatial structure function

Structure functions have been applied to in situ measurements and model-generated tropospheric trace gases to analyze their spatial and temporal variability in previous studies (Harris et al., 2001). The Spatial Structure Function (SSF) (Fishman et al., 2011; Follette-Cook et al., 2015) is an alternative measure to the satellite pixel random sampling described above for quantifying spatial variability, and in this work, we apply the SSF to GeoTASO data to assist our analysis of satellite SGV. The main difference between the two measures is that the SSF is based on individual GeoTASO data points, while the results from satellite pixel random sampling are based on sampled satellite pixels. The SSF is defined here follows Follette-Cook et al. (2015):

\[
f(NO_{2,VC}, D) = \text{average}(|NO_{2,VC}(x + D) - NO_{2,VC}(x)|)
\]

where \(NO_{2,VC}\) is tropospheric \(NO_2\) VC. \(f(NO_{2,VC}, Distance)\) calculates the average of the absolute value of \(NO_{2,VC}\) differences across all data pairs (measured in the same hourly bin) that are separated by a distance \(D\). To calculate SSF, the first step is the same as the first step of the satellite pixel random sampling: we group GeoTASO data hourly for each flight to reduce the impact of temporal variability of the GeoTASO data, and we only pair each GeoTASO data point with all the other GeoTASO data in the same hourly bin. More details on structure functions can be found in Follette-Cook et al. (2015).

2.7 WRF-Chem simulation

To briefly demonstrate the application of this technique on model evaluation and other species, we show results of a WRF-Chem simulation (Weather Research and Forecasting model coupled to Chemistry) with a resolution of 3 km \(\times\) 3 km over SMA in the Discussion section. The simulation used NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids as initial and boundary conditions, and the model meteorological fields above the PBL were nudged 6-hourly. KORUS version 3 anthropogenic emissions and FINN version 1.5 fire emissions (Wiedinmyer et al., 2011) were used.
3. Results

In this section, we discuss the results for SGV over the different regions considered. Results are presented for the hypothetical satellite pixel random sampling for spatial variability and temporal variability, and for the spatial structure function analysis for spatial variability.

3.1 Sub-grid variability (SGV) within satellite pixels

SMA, the Busan region, and the LA Basin have different levels of pollution – the average values of the GeoTASO NO$_2$ VC data over the SMA, the Busan region, and the LA Basin are 2.3×10^{16} molecules cm$^{-2}$, 1.1×10^{16} molecules cm$^{-2}$, and 1.3×10^{16} molecules cm$^{-2}$, respectively. Over the three regions, the mean values (MEAN$_{\text{pixel}}$) and absolute values of standard deviation (SD$_{\text{pixel}}$) of the hypothetical satellite pixels sampled over GeoTASO NO$_2$ VC data are different (Figure S3). This is consistent with previous studies suggesting absolute values of SGV can vary regionally (Judd et al., 2019; Broccardo et al., 2018). However, we find that the normalized satellite SGV (calculated as the ratio of SD$_{\text{pixel}}$ to MEAN$_{\text{pixel}}$ for a sampled pixel) is similar over each of the areas, regardless of the absolute level of pollution as represented by MEAN$_{\text{pixel}}$ (Figure 4). Over SMA (Figure 4a), the mean normalized satellite SGV of tropospheric NO$_2$ VC increases smoothly from $\sim10\%$ for the pixel size of 0.5 km \times 0.5 km, to $\sim35\%$ for the pixel size of 25 km \times 25 km. The interquartile variation of the satellite SGV also increases with satellite pixel sizes. The patterns of the sampled satellite pixels over the Busan region (Figure 4b) and LA Basin (Figure 4c) are also found to be similar to those over SMA. Furthermore, Figures S4 and S5 show that even the individual flights over the three domains generally follow the same pattern, except in the case of the June 9 PM flight that is discussed below.

We also compare normalized satellite SGV for different levels of pollution, regardless of their regions (Figure S6). The normalized satellite SGV for the less polluted pixels (MEAN$_{\text{pixel}}$ being lower than the average value of all pixels, i.e., 2×10^{16} molecules cm$^{-2}$) also shows an overall similar pattern as for the more polluted pixels (MEAN$_{\text{pixel}}$ being higher than the average value of all pixels). We notice that at small pixel sizes, less polluted pixels have higher normalized satellite SGV, possibly contributed by relatively higher retrieval noise at lower pollution levels.

In addition to the comparison between different domains and pollution levels, we also compare this relationship in the morning and afternoon. The variation of normalized SGV and pixel size in the morning and afternoon are generally similar for the three regions (Figure S7), except for the large size pixels over SMA, where the normalized SGV is larger in the afternoon than in the morning. This difference is driven by the GeoTASO data from June 9 PM (Figure S4), as the normalized SGV pattern for the afternoon agrees well with the normalized SGV pattern for the morning when the June 9 PM data are excluded. Figure S1 shows that the June 9 PM NO$_2$ pollution level is higher than other days under meteorological conditions of light winds and moderate temperatures. The MEAN$_{\text{pixel}}$ values increases $\sim60\%$ going from 1 km \times 1 km to 25 km \times 25 km pixel size, while SD$_{\text{pixel}}$ dramatically increases ~7 times from 1 km \times 1 km to 25 km \times 25 km. This is higher than any other day, and results in the highest SGV encountered over SMA at the large pixel sizes. We also notice that the normalized SGV does not generally change significantly in the range of 20 km \times 20 km to 25 km \times 25 km. However, in the case of SMA for June 9 PM, the normalized SGV (as well as SD$_{\text{pixel}}$) increases significantly and monotonously with pixel size in the range of 20 km \times 20 km to 25 km \times 25 km.
We show the normalized SGV for individual rasters over SMA (Figure 5) to indicate the uncertainty range of the normalized SGV shown in Figure 4. The spread of SGV across different individual rasters represents the uncertainties of using the averaged normalized SGV for a specific case. Note that the variation of normalized SGV with pixel size for individual rasters generally follows the same pattern (i.e., increases with satellite pixel size), especially when the pixel size is small ($\leq 10 \text{ km} \times 10 \text{ km}$). The normalized SGV increases from $\sim 10\%$ to $\sim 25\%$, with the uncertainty range consistently being $\pm 5\%$ when the pixel size is smaller than $10 \text{ km} \times 10 \text{ km}$. When the pixel size is larger than $10 \text{ km} \times 10 \text{ km}$, the uncertainty range broadens with pixel sizes from $\pm 5\%$ (10 km \times 10 km) to $\pm 15\%$ (25 km \times 25 km). This means that when the satellite pixel size is large, using the mean normalized SGV in Figure 4 to represent specific cases may lead to larger uncertainties. Therefore, our analysis reveals a threshold for spatial resolution at about $10 \text{ km} \times 10 \text{ km}$. Below this resolution, SGV can be characterized by the mean value with relatively smaller uncertainty ($\pm 5\%$) and hence high confidence, even with large diurnal or day-to-day variations.

The spatial resolutions of TEMPO, GEMS, and TROPOMI (TROPOspheric Monitoring Instrument, Veefkind et al., 2012; Griffin et al., 2019; van Geffen et al., 2019) are within this $\leq 10 \text{ km} \times 10 \text{ km}$ range, while the resolution of OMI (Ozone Monitoring Instrument, Levelt et al., 2006; 2018) is not. This means that applying this study (e.g., Figure 4) to OMI for a specific case study (e.g., a specific day) requires extra caution.

We tested the sensitivity of the results over SMA to sampling GeoTASO data with hypothetical satellite pixels grouped by complete flight, rather than grouping the data by time in hourly bins. The resulting patterns and relationships are similar, except that the normalized satellite SGV increases $\sim 5\%$ for pixels of small sizes due to the inclusion of temporal variability (Figure S8a). We also tested the results for sampling satellite pixels by raster instead of within hourly bins. The results are again similar to Figure 4, except that the normalized satellite SGV increases $\sim 1\%$ for pixels of small sizes due to the inclusion of temporal variability (Figure S8b).

The three regions investigated in this work have different levels of urbanization and air pollution (Figures 1 and S2). PBL conditions are also different in the morning and afternoon (Figure S9). The similarity of the relationships between the satellite pixel size and the normalized satellite SGV over these different regions (Figure 4) suggests that this relationship may be generalizable to NO$_2$ VC over regions with different levels of urbanization and air pollution, and different PBL conditions. Moreover, Figures 4 and 5 point to the possibility of developing a generalized look-up table for the expected normalized satellite SGV for NO$_2$ VC at different satellite pixel sizes, especially for small pixel sizes (e.g., TEMPO, GEMS, and TROPOMI). This would be useful in satellite design, satellite retrieval evaluation and interpretation, and satellite-in situ data comparisons. For example, the satellite pixel size of tropospheric NO$_2$ VC retrievals from GEMS, TEMPO, TROPOMI, and OMI are highlighted in Figure 4. Following Judd et al. (2019), we choose 3 km \times 3 km, 5 km \times 5 km, 7 km \times 8 km, and 18 km \times 18 km pixels to represent the expected area of the satellite pixels for TEMPO (2.1 km \times 4.4 km), TROPOMI (3.5 km \times 7 km), GEMS (7 km \times 8 km), and OMI (18 km \times 18 km), respectively. The expected normalized satellite SGV for TEMPO, TROPOMI, GEMS, and OMI are 15–20%, $\sim 20\%$, 20–25%, and $\sim 30\%$, respectively. Taking the TEMPO example, this implies that the satellite SGV could potentially lead to uncertainties of 15–20% in a validation exercise comparing a satellite retrieval with sub-satellite local ground measurements of NO$_2$ VC as might be obtained from a Pandora spectrometer.
As a result, we should caution that calculating a pixel mean bias when evaluating against local measurements within the pixel sometimes may be optimistic due to the cancellation of sub-grid positive and negative biases.

3.2 Temporal variability (TeMD) within the same satellite pixels

In addition to satellite spatial SGV, we also analyze the temporal variability (i.e., TeMD) within the same hypothetical satellite pixels. Figure 6 shows TeMD of satellite retrieved tropospheric NO2 VC over SMA as a function of hypothetical satellite pixel size and the separation time Dt between flight rasters as described in section 2.5. The results for 27 satellite pixel sizes analyzed are shown by different colors, while results for selected satellite pixel sizes are highlighted by thicker lines. For all the pixel sizes, TeMD increases monotonically with the time difference Dt between two sampled raster values within the same pixel. The TeMD of tropospheric NO2 VC is around 0.75×10^{16} molecules cm$^{-2}$ for a Dt of 2 hours over SMA for all the sampled satellite pixel sizes, and increases to 2×10^{16} molecules cm$^{-2}$ for Dt of 8 hours. This indicates that, along with improvements in the satellite retrieval spatial resolution with smaller pixels, improving the satellite retrieval temporal resolution with higher frequency measurements is also an effective way to enhance capability in resolving variabilities of NO2. This is expected because of NO2’s relatively short lifetime (~ a few hours) and strong diurnal cycle due to emission activities, chemistry and photolysis rate (Fishman et al., 2011; Follette-Cook et al., 2015). The diurnal cycle of the PBL also plays a large role because horizontal dispersion occurs as the PBL thickens during the day. Early in the morning, the PBL is low (~1400 m during 9:00-11:00 in SMA) and strong sources are evident such as traffic on major highways, etc. As the day progresses, the PBL height increases (~1800 m during 15:00-17:00; Figure S9) allowing for greater horizontal mixing to take place. By early afternoon, emissions from all the major sources in the central region have mixed together to form a wide area of high pollution over the urban center. Judd et al. (2018) point out that the topography over SMA also plays a role in the ability to mix horizontally as the PBL grows. Therefore, the TeMD can be large between morning and afternoon (i.e., for Dt larger than 6 hours).

For a small Dt (2 or 4 hours), TeMD increases when increasing the satellite retrieval spatial resolution (i.e., smaller pixel size). This is especially true for short time periods (e.g., 2 hours and 4 hours), which is more important for the GEO satellite measurements. For example, for Dt of 2 hours, TeMD for satellite pixels of 1 km x 1 km is about 0.80×10^{16} molecules cm$^{-2}$, while TeMD for satellite pixels of 25 km x 25 km is about 0.73×10^{16} molecules/cm2 (~9% lower); when Dt is 4 hours, TeMD for satellite pixels of 1 km x 1 km is about 1.3×10^{16} molecules cm$^{-2}$, while TeMD for satellite pixels of 25 km x 25 km is about 1.1×10^{16} molecules/cm2 (~15% lower). This indicates that when increasing the satellite retrieval spatial resolution (decreasing pixel size), the temporal variability of the retrieved values will increase, even though the normalized satellite spatial SGV decreases. Thus, temporal resolution should be increased in conjunction with the increase in spatial resolution in order to enhance the accuracy of the satellite products. This is expected because averaging over a larger region smooths out temporal variability so producing smaller hourly differences. Our finding here is consistent with that of Fishman et al. (2011).

GeoTASO data over the Busan region is limited. Given the fewer flights, we are not able to show how TeMD changes with Dt over the Busan region in this study. However, we are able to show the relationship between TeMD and satellite pixel sizes for a limited range of Dt. During KORUS-AQ, there were only two rasters sampled over Busan with a Dt of 2 hours (Figure S10).
For this Dt of 2 hours, TeMD increases slightly when increasing the satellite retrieval spatial resolution (smaller pixel size). More data over the Busan region would help significantly for this analysis. As for sampled hypothetical satellite pixels over the LA Basin, for a given Dt, TeMD increases when increasing the satellite retrieval spatial resolution (smaller pixel size) for Dt equal to 4 and 8 hours (Figure S11). We note that with only 2 flight days of flight data, the GeoTASO data over LA is also limited. Despite the limited sample sizes, TeMD increases when increasing the satellite retrieval spatial resolution over both the Busan region and the LA Basin, which is consistent with the relationships over the SMA for a small Dt.

3.3 Results from Spatial Structure Function (SSF)

In this section, we show the analysis of SSF over SMA (Figure 7) as a complement to our analysis in Section 3.1. As mentioned before, SSF and SGV are different measures of spatial variability and are not directly comparable. This is because SSF is calculated based on differences between a single GeoTASO measurement and all the other GeoTASO measurements on the map, while SGV is derived based on variation among all the GeoTASO measurements within a hypothetical satellite pixel unit. SSF measures the averaged spatial difference at a given distance, while SGV directly quantifies the expected spatial variability within a satellite pixel at a given size. As both SSF and SGV are related to spatial variability, we include SSF in this study as an extension to SGV.

Figure 7a shows that the SSF in SMA initially increases with the distance between data points, peaks at around 40-60 km during most flights, and then decreases with distance between 60 and 140 km. The number of paired GeoTASO data points when the distance is larger than 100 km is relatively small (Figure S12) therefore conclusions beyond this distance are not included in this analysis. The increases in SSF for distances in the range of 1-25 km (Figure 7b) are consistent with the relationship between pixel sizes and the normalized satellite SGV shown in Figure 4. For example, over the 1-25 km range, Fig 4a shows the median increases from around 8% to around 28%, an increase by a factor of 3.5, and the black line in Figure 7 shows an approximately similar factor (from 0.33 × 10¹⁶ molecules/cm² for 1 km to 1.5×10¹⁶ molecules/cm² for 25 km). This increase of SSF between 1-25 km is also seen over the Busan region and the LA Basin (Figure S13). We also notice that SSF shows a relatively strong dependence on the particular GeoTASO flight, while SGV is less sensitive, especially for small pixel sizes.

The shapes of the SSF are generally consistent with previous studies for modeled or in situ observations of NO₂ (Fishman et al., 2011; Follette-Cook et al., 2015). Previous studies also suggest that different aircraft campaigns may share the common shape of SSF but different magnitudes, which is strongly related to the fraction of polluted samples versus samples of background air in the campaign (Crawford et al., 2009; Fishman et al., 2011). Differences in the shape and size of particular cities also contribute to the differences in the SSF. For example, at a certain distance SSF may compare polluted areas within the same urban region, while over a different smaller city, the comparison at the same distance reveals the gradient between the polluted city and cleaner surrounding background air, so resulting in different peak values. Valin et al. (2011) found that the maximum in OH feedback in a NOx-OH steady-state relationship corresponds to a NO₂ e-folding decay length of 54 km in 5m/s winds. This may partially explain the peak between 40–60 km in SSF. As shown in Figures 2 and S7, the overall spatial variability over SMA is higher in the afternoon. Over SMA, the SSF in the morning is generally smaller than
in the afternoon, indicating higher spatial variability of tropospheric NO$_2$ VC in the afternoon (see also Judd et al., 2018). As described in Section 2.6, SSF discussed here (Figure 7) is calculated based on hourly bin. We also include SSF that is calculated within rasters in the supplement (Figure S14). The overall shapes of SSF (Figure S14) calculated on raster basis are similar to SSF calculated on hourly basis (Figure 7).

Previous studies (Fishman et al., 2011; Follette-Cook et al., 2015) used SSF values at a particular distance to indicate the satellite precision requirement at a corresponding resolution in order to resolve spatial structure over the pixel scale. For GEMS, the expected spatial differences over the scale of its pixel for the SMA and Busan regions are $\sim 7.5 \times 10^{15}$ molecules cm$^{-2}$ and $\sim 3.5 \times 10^{15}$ molecules cm$^{-2}$, respectively, taking the SSF values at 5 km to be representative. For TEMPO, the spatial difference is $\sim 2.8 \times 10^{15}$ molecules cm$^{-2}$ over LA Basin taking the SSF value at 3 km. Assuming the NO$_2$ measurement precision requirement to be 1×10^{15} molecules cm$^{-2}$ for both TEMPO and GEMS (Chance et al., 2013; Kim et al., 2020), the expected spatial differences over the three regions are considerably higher than the precision requirement and should be easily characterized by both the GEMS and TEMPO missions.

4. Discussions and implications

The relationship between satellite pixel sizes and the normalized satellite SGV is fairly robust over the different regions studied here, and Figure 4 points to the possibility of developing a generalized look-up table if more data were available in other regions. A generalized relationship between satellite pixel sizes and the temporal variability (Figure 6) is not as evident as the relationship between satellite pixel sizes and the normalized satellite SGV due to limited data. However, it is still useful for satellite observations over SMA, which is in the GEMS domain and should be helpful in satellite retrieval interpretation.

This study also has implications for satellite validation and evaluation, and satellite–in situ data comparisons of other trace gas species. Our initial motivation to study satellite SGV arose from our previous work on validation of MOPITT (Measurements of Pollution in the Troposphere) CO retrievals over urban regions (Tang et al., 2020). In that study, we compared the satellite retrievals with aircraft profiles, and realized that satellite SGV and representativeness error of aircraft profiles in the comparisons to MOPITT retrievals introduced uncertainties in the validation results. Previous studies have noticed the same issue for NO$_2$ (e.g., Nowlan et al., 2016, 2018; Judd et al., 2019; Pinardi et al., 2020; Tack et al., 2020), but this issue is difficult to address and quantify due to the limited spatial coverage of most aircraft observations. Even though only a few trace gas species are routinely retrieved, the gapless rasters datasets of GeoTASO are a possible way to address this problem. The normalized SGV of the GeoTASO tropospheric NO$_2$ VC might serve as an upper bound to the SGV of CO, SO$_2$ and other species that share common source(s) with NO$_2$ but have relatively longer lifetimes, even if their spatial distributions may have different patterns (e.g., Chong et al., 2020). For example, at the resolution of 22 km $\times 22$ km (resolution of MOPITT CO retrievals), the expected normalized satellite SGV of tropospheric NO$_2$ VC is $\sim 30\%$. Therefore, we might expect the normalized satellite SGV for tropospheric CO VC to be lower than this value.

To demonstrate this idea, we use the WRF-Chem regional model at an intermediary step. At the model resolution, if the SVG of the WRF-Chem model and GeoTASO NO$_2$ VC agree
reasonably well, then the model can be used to predict the SVG of other species that are chemically
constrained with NO$_2$ at the model resolution and at coarser resolutions. This is shown in Figure 8
which illustrates how SVG varies with satellite pixel size for NO$_2$ VC, CO VC, SO$_2$ VC, and
formaldehyde (HCHO) VC calculated from a WRF-Chem simulation. The modeled NO$_2$, CO, SO$_2$,
and HCHO concentrations are converted to VC, and are filtered to match the rasters of GeoTASO
measurements (Figure S15). As expected, SVG of modeled NO$_2$ VC is higher than SVG of
modeled CO VC, SO$_2$ VC, and HCHO VC. We also notice that SVG for modeled NO$_2$ VC, CO
VC, SO$_2$ VC, and HCHO VC increases with pixel size, which is similar to that for GeoTASO
measurements. The SVG for GeoTASO NO$_2$ shown in this figure (black lines) is calculated based
on GeoTASO data that are regridded to the WRF-Chem grid (3 km × 3 km), making it slightly
different from that in Figure 4. Note that a more comprehensive comparison requires further work
and ideally actual dense GeoTASO-type measurements of CO and other species to address
differences due to local sources on the background concentrations.

This study is also relevant to model comparison and evaluation with local observations. Whenever
local observations are compared to grid data (e.g., comparisons between satellite
retrievals and local observations, comparisons between grid-based model and local observations,
and data assimilation), SVG will introduce uncertainties that need to be quantified to better
interpret and understand the comparison results. For example, we note that at the resolution of 14
km×14 km (a typical resolution for the forward-looking Multi-Scale Infrastructure for Chemistry
and Aerosols Version 0; MUSICA-V0, https://www2.acom.ucar.edu/sections/multi-scale-
chemistry-modeling-musica; Pfister et al. [2020]), the expected normalized satellite SVG of
tropospheric NO$_2$ VC is ~25-30%. When comparing model simulations at a coarser resolution with
local observations for tropospheric NO$_2$ VC, a normalized SVG larger than ~25-30% may be
expected. If comparing for a specific vertical layer instead of vertical column, an even larger
normalized SVG may occur.

5. Conclusions

Satellite SVG is a key issue in interpreting satellite retrieval results. Quantifying studies
have been lacking due to limited high-resolution observations. In this study, we quantified likely
GEO satellite SVG by using GeoTASO measurements of tropospheric NO$_2$ VC over the urbanized
and polluted Seoul Metropolitan Area (SMA) and the less-polluted Busan region during KORUS-
AQ, and the Los Angeles (LA) Basin during the 2017 SARP campaigns. The main findings of this
work are the following:

(1) The normalized satellite SVG increases with hypothetical satellite pixel sizes based on satellite
pixel random sampling of hourly GeoTASO data, from ~10% (±5% for specific cases such as
an individual day/time of day) for a pixel size of 0.5 km × 0.5 km to ~35% (±10% for specific
cases such as an individual day/time of day) for the pixel size of 25 km × 25 km. This
conclusion holds for all the three study regions, despite their different levels of urbanization
and pollution, and for time of day, morning or afternoon.

(2) The normalized satellite SVG of tropospheric NO$_2$ VC could serve as an upper bound to
satellite SVG of CO, SO$_2$ and other species that share common source(s) with NO$_2$ but have
relatively longer lifetime, as supported by the high-resolution WRF-Chem simulation.

(3) The temporal variability (TeMD) within the same hypothetical satellite pixels increases with
sampling time differences (Dt) over SMA. TeMD ranges from ~0.75×1016 molecules cm$^{-2}$ at
Dt of 2 hours to $\sim 2 \times 10^{16}$ molecules cm$^{-2}$ (about three times higher) at Dt of 8 hours. TeMD is likely impacted by the short lifetime and diurnal cycle of NO$_2$ due to emission activities and photolysis rate, and the meteorology and PBL evolution during the day. Improving the satellite retrieval temporal resolution is an effective way to enhance the capability of satellite products in resolving variabilities of NO$_2$.

(4) Temporal variability (TeMD) increases when increasing the satellite retrieval spatial resolution (i.e., smaller pixel size) in SMA. For example, when Dt is 2 hours, TeMD for satellite pixels with the size of 25 km \times 25 km is about 20% lower compared to TeMD for satellite pixels with the size of 1 km \times 1 km. Thus, temporal resolution should be increased along with any increase in spatial resolution in order to enhance the accuracy of satellite products.

(5) The spatial structure function (SSF) firstly increases with the distance between data points, peaks at around 40-60 km during most flight days, and then decreases with distance. This is generally consistent with previous studies.

(6) SSF analyses suggest that GEMS will encounter NO$_2$ VC pixel scale spatial differences of $\sim 7.5 \times 10^{15}$ and $\sim 3.5 \times 10^{15}$ molecules cm$^{-2}$ over the SMA and Busan regions, respectively. TEMPO will encounter NO$_2$ VC spatial differences at its pixel scale of $\sim 2.8 \times 10^{15}$ molecules cm$^{-2}$ over the LA Basin. These differences should be easily resolved at the stated measurement precision requirement of 1×10^{15} molecules cm$^{-2}$.

(7) These findings are relevant to future satellite design and satellite retrieval interpretation, especially now with the deployment of the high-resolution GEO air quality satellite constellation, GEMS, TEMPO, and Sentinel-4. This study also has implication for satellite product validation and evaluation, satellite–in situ data comparisons, and more general point-grid data comparisons. These share similar issues of sub-grid variability and the need for quantification of representativeness error.

We note that this study has some uncertainties and limitations. (1) The variability at a resolution finer than 250 m \times 250 m (i.e., GeoTASO’s resolution) may introduce uncertainties to the analysis here, although this is beyond the scope of this study. (2) Even though a large number of GeoTASO retrievals have been analyzed in this study, we would still benefit from more high-resolution measurements with a broader spatiotemporal coverage, particularly over the Busan region. More GeoTASO-type data over the Busan region will help testing the consistence in TeMD over different regions. (3) The KORUS-AQ campaign was conducted in Spring (May and June), and the 2017 SARP campaign was also conducted in June. More GeoTASO-type measurements over South Korea during different season(s) would be particularly helpful to understand and generalize the findings in this study.

This work demonstrates the value of continued flights of GeoTASO-type instruments obtaining continuous, high spatial resolution data several times a day, particularly for the upcoming validation exercises for the GEO air quality satellite constellation.

Acknowledgement

The authors thank the GeoTASO team for providing the GeoTASO measurements. The authors thank the KORUS-AQ and SARP team for the campaign data. We thank the DIAL-HSRL team...
for the mixing layer height data (available at https://www-air.larc.nasa.gov/cgi-bin/ArcView/korusaq). Tang was supported by a NCAR Advanced Study Program Postdoctoral Fellowship. Edwards was partially supported by the TEMPO Science Team under Smithsonian Astrophysical Observatory Subcontract SV3-83021. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation. The authors thank Ivan Ortega and Sara-Eva Martinez-Alonso for helpful comments on the paper.

Data availability

The KORUS-AQ and SARP data are available at https://www-air.larc.nasa.gov/cgi-bin/ArcView/korusaq and https://www-air.larc.nasa.gov/cgi-bin/ArcView/lmos, respectively.

Reference

Al-Saadi, Jassim, Gregory Carmichael, James Crawford, Louisa Emmons, Saewung Kim, Chang-Keun Song, et al. (2014). KORUS-AQ: An international cooperative air quality field study in Korea, the KORUS-AQ white paper, 2014 (https://espo.nasa.gov/korusaq/content/KORUS-AQ_White_Paper).

Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.: Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals, Geosci. Model Dev., 9, 875–898, https://doi.org/10.5194/gmd-9-875-2016, 2016.

Broccardo, S., Heue, K.-P., Walter, D., Meyer, C., Kokhanovsky, A., van der A, R., Piketh, S., Langerman, K., and Platt, U.: Intra-pixel variability in satellite tropospheric NO2 column densities derived from simultaneous space-borne and airborne observations over the South African Highveld, Atmos. Meas. Tech., 11, 2797–2819, https://doi.org/10.5194/amt-11-2797-2018, 2018.

Chance, K., Liu, X., Suleiman, R. M., Flittner, D. E., Al-Saadi, J., & Janz, S. J. (2013, September). Tropospheric emissions: monitoring of pollution (TEMPO). In Earth Observing Systems XVIII (Vol. 8866, p. 88660D). International Society for Optics and Photonics.

Ching, J., Herwehe, J., and Swall, J.: On joint deterministic grid modeling and sub-grid variability conceptual framework for model evaluation, Atmos. Environ., 40, 4935–4945, 2006.

Choi, S., Lamsal, L. N., Follette-Cook, M., Joiner, J., Krotkov, N. A., Swartz, W. H., Pickering, K. E., Loughner, C. P., Appel, W., Pfister, G., Saide, P. E., Cohen, R. C., Weinheimer, A. J., and Herman, J. R.: Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020, 2020.

Chong, H., Lee, S., Kim, J., Jeong, U., Li, C., Krotkov, N. A., ... & Ahn, M. H. (2020). High-resolution mapping of SO2 using airborne observations from the GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals. Remote Sensing of Environment, 241, 111725.

Courrèges-Lacoste, G. B., Sallusti, M., Bulsa, G., Bagnasco, G., Veihelmann, B., Riedl, S., ... & Maurer, R. (2017, September). The copernicus sentinel 4 mission: a geostationary imaging UVN
spectrometer for air quality monitoring. In Sensors, Systems, and Next-Generation Satellites XXI (Vol. 10423, p. 1042307). International Society for Optics and Photonics.

Crawford, J.H., et al., 2009. Assessing scales of variability for constituents relevant to future geostationary satellite observations and models of air quality. AGU, 90(52), Fall Meet. Suppl., Abstract A53Ae0237.

Denby, B., Cassiani, M., de Smet, P., de Leeuw, F., & Horálek, J. (2011). Sub-grid variability and its impact on European wide air quality exposure assessment. Atmospheric environment, 45(25), 4220-4229.

Deeter, M. N., Edwards, D. P., Francis, G. L., Gille, J. C., Mao, D., Martinez-Alonso, S., Worden, H. M., Ziskin, D., and Andreae, M. O.: Radiance-based retrieval bias mitigation for the MOPITT instrument: the version 8 product, Atmos. Meas. Tech., 12, 4561–4580, https://doi.org/10.5194/amt-12-4561-2019, 2019.

Finlayson-Pitts, B. J., & Pitts, J. N. (1997). Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276(5315), 1045-1051.

Fishman, J., Silverman, M. L., Crawford, J. H., & Creilson, J. K. (2011). A study of regional-scale variability of in situ and model-generated tropospheric trace gases: Insights into observational requirements for a satellite in geostationary orbit. Atmospheric environment, 45(27), 4682-4694.

Follette-Cook, M. B., Pickering, K. E., Crawford, J. H., Duncan, B. N., Loughner, C. P., Diskin, G. S., ... & Weinheimer, A. J. (2015). Spatial and temporal variability of trace gas columns derived from WRF/Chem regional model output: Planning for geostationary observations of atmospheric composition. Atmospheric Environment, 118, 28-44.

Friedl, M., Sulla-Menashe, D. (2015). MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006 [Data set]. NASA EOSDIS Land Processes DAAC. Accessed 2019-08-12 from https://doi.org/10.5067/MODIS/MCD12C1.006.

Gaubert, B., L. K. Emmons, K. Raeder, S. Tilmes, K. Miyazaki, A. F. Arellano Jr, N. Elguindi, C. Granier, W. Tang, J. Barré, H. M. Worden, R. R. Buchholz, D. P. Edwards, P. Franke, J. L. Anderson, M. Saunois, J. Schroeder, J.-H. Woo, I. J. Simpson, D. R. Blake, S. Meinardi, P. O. Wennberg, J. Crounse, A. Teng, M. Kim, R. R. Dickerson, H. He, X. Ren, S. E. Pusede, and G. S. Diskin (2020), Correcting model biases of CO in East Asia: impact on oxidant distributions during KORUS-AQ, Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020.

Gerbig, C., Lin, J. C., Wofsy, S. C., Daube, B. C., Andrews, A. E., Stephens, B. B., Bakwin, P. S., and Grainger, C. A.: Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms, J. Geophys. Res.-Atmos., 108, 4756, doi:10.1029/2002JD003018, 2003.

Griffin, D., Zhao, X., McLinden, C. A., Boersma, F., Bourassa, A., Dammers, E., ... & Hayden, K. (2019). High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the Canadian oil sands. Geophysical Research Letters, 46(2), 1049-1060.
Harris, D., Foufoula-Georgiou, E., Droegemeier, K.K., Levit, J.J., 2001. Multiscale statistical properties of a high-resolution precipitation forecast. J. Hydrometeor. 2, 406–418.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitskanen, T., Seibert, J. J., Vu, L., Andres, R. J., Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-I., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P. R., and Zhang, Q.: Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS), Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, 2018.

Huang, M., Crawford, J. H., Diskin, G. S., Santanello, J. A., Kumar, S. V., Pusede, S. E., ... & Carmichael, G. R. (2018). Modeling Regional Pollution Transport Events During KORUS-AQ: Progress and Challenges in Improving Representation of Land-Atmosphere Feedbacks. Journal of Geophysical Research: Atmospheres, 123(18), 10-732.

Judd, L. M., Al-Saadi, J. A., Janz, S. J., Kowalewski, M. G., Pierce, R. B., Syzkmun, J. J., Valin, L. C., Swap, R., Cede, A., Mueller, M., Tiefengraber, M., Abuhasan, N., and Williams, D.: Evaluating the impact of spatial resolution on tropospheric NO2 column comparisons within urban areas using high-resolution airborne data, Atmos. Meas. Tech., 12, 6091–6111, https://doi.org/10.5194/amt-12-6091-2019, 2019.

Kim, H. C., Lee, P., Judd, L., Pan, L., and Lefer, B.: OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution, Geosci. Model Dev., 9, 1111–1123, https://doi.org/10.5194/gmd-9-1111-2016, 2016.

Kim, H., Zhang, Q., & Heo, J. (2018). Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ. Atmospheric Chemistry and Physics, 18(10), 7149-7168.

Kim, J., Jeong, U., Ahn, M. H., Kim, J. H., Park, R. J., Lee, H., ... & Jeong, M. J. (2020). New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS). Bulletin of the American Meteorological Society, (2020), 00.

Lamsal, L.N., Janz, S.J., Krotkov, N.A., Pickering, K.E., Spurr, R.J.D., Kowalewski, M.G., Loughner, C.P., Crawford, J.H., Swartz, W.H., Herman, J.R., 2017. High-resolution NO2 observations from the airborne Compact atmospheric mapper: retrieval and validation. J. Geophys. Res.: Atmospheres 122 (3), 1953–1970.

Leitch, J. W., Delker, T., Good, W., Ruppert, L., Murcray, F., Chance, K., Liu, X., Nowlan, C., Janz, S. J., Krotkov, N. A., Pickering, K. E., Kowalewski, M., and Wang, J.: The GeoTASO airborne spectrometer project, Earth Observing Systems XIX, 17–21 August 2014, San Diego, California, United States, Proc. SPIE, 9218, 92181H-9, https://doi.org/10.1117/12.2063763, 2014.

Levett, P. F., Oord, G. H. J. van den, Dobber, M. R., Malkki, A., Visser, H., Vries, J. de, Stammes, P., Lundell, J. O. V., and Saari, H.: The ozone monitoring instrument, IEEE T. Geosci. Remote, 44, 1093–1101, https://doi.org/10.1109/TGRS.2006.872333, 2006.
Levelt, P. F., Joiner, J., Tamminen, J., Veefkind, J. P., Bhartia, P. K., & Carn, S. (2018). The Ozone Monitoring Instrument: overview of 14 years in space. Atmospheric Chemistry and Physics, 18, 6569.

Miyazaki, K., Sekiya, T., Fu, D., Bowman, K. W., Kulawik, S. S., Sudo, K., ... & Eskes, H. (2019). Balance of Emission and Dynamical Controls on Ozone During the Korea-United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation. Journal of Geophysical Research: Atmospheres, 124(1), 387-413.

National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2015, updated daily. NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. https://doi.org/10.5065/D65Q4T4Z.

Nowlan, C. R., Liu, X., Leitch, J. W., Chance, K., González Abad, G., Liu, C., Zoogman, P., Cole, J., Delker, T., Good, W., Murcray, F., Ruppert, L., Soo, D., Follette-Cook, M. B., Janz, S. J., Kowalewski, M. G., Loughner, C. P., Pickering, K. E., Herman, J. R., Beaver, M. R., Long, R. W., Szykman, J. J., Judd, L. M., Kelley, P., Luke, W. T., Ren, X., and Al- Saadi, J. A.: Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013, Atmos. Meas. Tech., 9, 2647–2668, https://doi.org/10.5194/amt-9-2647-2016, 2016.

Nowlan, C. R., Liu, X., Janz, S. J., Kowalewski, M. G., Chance, K., Follette-Cook, M. B., Fried, A., González Abad, G., Herman, J. R., Judd, L. M., Kwon, H.-A., Loughner, C. P., Pickering, K. E., Richter, D., Spinei, E., Walega, J., Weibring, P., and Weinheimer, A. J.: Nitrogen dioxide and formaldehyde measurements from the GEOstationary Coastal and Air Pollution Events (GEOCAPE) Airborne Simulator over Houston, Texas, Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt11-5941-2018, 2018.

Pfister, G. G., Eastham, S. D., Arellano, A. F., Aumont, B., Barsanti, K. C., Barth, M. C., ... & Fiore, A. M. (2020). The Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA). Bulletin of the American Meteorological Society, 101(10), E1743-E1760.

Pillai, D., Gerbig, C., Marshall, J., Ahmadov, R., K Ret schmer, R., Koch, T., and Karstens, U.: High resolution modeling of CO2 over Europe: implications for representation errors of satellite retrievals, Atmos. Chem. Phys., 10, 83–94, https://doi.org/10.5194/acp-10-83-2010, 2010.

Pinardi, G., Van Roozendael, M., Hendrick, F., Theys, N., Abuhassan, N., Bais, A., Boersma, F., Cede, A., Chong, J., Donner, S., Drosoglou, T., Dzhola, A., Eskes, H., Frieß, U., Granville, J., Herman, J. R., Holla, R., Hovila, J., Irie, H., Kanaya, Y., Karagkiozidis, D., Kourbeti, N., Lambert, J.-C., Ma, J., Peters, E., Piters, A., Postylyakov, O., Richter, A., Remmers, J., Takashima, H., Tiefengraber, M., Valks, P., Vlemmix, T., Wagner, T., and Wittrock, F.: Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations, Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020, 2020.
Qian, Y., Gustafson Jr., W. I., and Fast, J. D.: An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling, Atmos. Chem. Phys., 10, 6917–6946, https://doi.org/10.5194/acp-10-6917-2010, 2010.

Song, H., Zhang, Z., Ma, P.-L., Ghan, S., and Wang, M.: The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models, Geosci. Model Dev., 11, 3147–3158, https://doi.org/10.5194/gmd-11-3147-2018, 2018.

Spinei, E., Whitehill, A., Fried, A., Tiefengraber, M., Knepp, T. N., Herndon, S., ... & Richter, D. (2018). The first evaluation of formaldehyde column observations by improved Pandora spectrometers during the KORUS-AQ field study. Atmospheric Measurement Techniques, 11(9), 4943–4961.

Souri, A. H., Nowlan, C. R., Wolfe, G. M., Lamsal, L. N., Miller, C. E. C., Abad, G. G., ... & Diskin, G. S. (2020). Revisiting the effectiveness of HCHO/NO2 ratios for inferring ozone sensitivity to its precursors using high resolution airborne remote sensing observations in a high ozone episode during the KORUS-AQ campaign. Atmospheric Environment, 117341.

Tack, F., Merlaud, A., Iordache, M.-D., Pinardi, G., Dimitropoulou, E., Eskes, H., Bomans, B., Vreekind, P., and Van Roozendael, M.: Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2020-148, in review, 2020.

Tang, W., Arellano, A. F., DiGangi, J. P., Choi, Y., Diskin, G. S., Agusti-Panareda, A., Parrington, M., Massart, S., Gaubert, B., Lee, Y., Kim, D., Jung, J., Hong, J., Hong, J.-W., Kanaya, Y., Lee, M., Stauffer, R. M., Thompson, A. M., Flynn, J. H., and Woo, J.-H.: Evaluating high-resolution forecasts of atmospheric CO and CO2 from a global prediction system during KORUS-AQ field campaign, Atmos. Chem. Phys., 18, 11007–11030, https://doi.org/10.5194/acp-18-11007-2018, 2018.

Tang, W., Emmons, L. K., Arellano Jr, A. F., Gaubert, B., Knotke, C., Tilmes, S., ... & Blake, N. J. (2019). Source Contributions to Carbon Monoxide Concentrations During KORUS-AQ Based on CAM-chem Model Applications. Journal of Geophysical Research: Atmospheres, 124(5), 2796-2822.

Tang, W., Worden, H. M., Deeter, M. N., Edwards, D. P., Emmons, L. K., Martínez-Alonso, S., Gaubert, B., Buchholz, R. R., Diskin, G. S., Dickerson, R. R., Ren, X., He, H., and Kondo, Y.: Assessing Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide retrievals over urban versus non-urban regions, Atmos. Meas. Tech., 13, 1337–1356, https://doi.org/10.5194/amt-13-1337-2020, 2020.

Valin, L. C., Russell, A. R., Hudman, R. C., and Cohen, R. C.: Effects of model resolution on the interpretation of satellite NO2 observations, Atmos. Chem. Phys., 11, 11647–11655, https://doi.org/10.5194/acp-11-11647-2011, 2011.

Vreekind, J. P., Aben, I., McMullan, K., Förster, H., De Vries, J., Otter, G., ... & Van Weele, M. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of
the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120, 70-83.

van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Vreeken, J. P.: S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315-1335, https://doi.org/10.5194/amt-13-1315-2020, 2020.

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., & Soja, A. J. (2011). The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning. Geoscientific Model Development, 4(3), 625.

Zhang, Z., Song, H., Ma, P.-L., Larson, V. E., Wang, M., Dong, X., and Wang, J.: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models, Atmos. Chem. Phys., 19, 1077-1096, https://doi.org/10.5194/acp-19-1077-2019, 2019.

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., ... & Janz, S. J. (2017). Tropospheric emissions: Monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17-39.

Figure 1. Domain of the study over South Korea and the land cover. Boxes indicate location of the SMA (upper left) and the Busan region (lower right) domains. Land cover data are from MODIS Terra and Aqua MCD12C1 L3 product, version V006, annual mean at 0.05° resolution; Friedl et al., 2015.
Figure 2. GeoTASO data of tropospheric NO$_2$ vertical column (molecules cm$^{-2}$) measured during KORUS-AQ over the Seoul region. Each panel shows a separate raster. Panel titles show month, day, AM/PM, raster number on that date, and mean time of raster acquisition. There were nine flights sampling rasters over Seoul. The May 01 AM, May 17 AM, May 17 PM, May 28 PM, June 01 PM, and June 02 AM flights each sampled one raster. The June 05 AM, June 09 AM, and June 09 PM flights each sampled two rasters. As a result, there were two flights and two rasters on May 17th, one flight and two rasters on June 5th, and two flights and four rasters on June 9th.
Figure 3. Demonstration of the hypothetical satellite pixel random sampling method. Each subplot is an hour during May 17th PM flight. For each hour, we randomly sample 10000 hypothetical satellite pixels at each different pixel sizes (i.e., 0.5 km×0.5 km, 0.75 km×0.75 km, 1 km×1 km, 2 km×2 km, … , 25 km×25 km) over the GeoTASO data of tropospheric NO$_2$ vertical column (molecules cm$^{-2}$) every hour. The sampled pixel size (from 0.5 km×0.5 km to 25 km×25 km) are shown in the lower-left corner of each sub-plot. Only 100 samples for pixel size of 7 km×7 km (thick black box) and 100 samples for 18 km × 18 km are shown for demonstration purposes. Samples that fail to pass the 75% coverage threshold are not shown. Coastlines, Province/Metropolitan City boundaries are shown by gray solid lines. Main roads are shown by blue dashed lines (data are from http://www.diva-gis.org/gdata).
Figure 4. Boxplot (with medians represented by red bars, interquartile ranges between 25th and 75th percentiles represented by blue boxes, and the most extreme data points not considered outliers represented by whiskers) for the normalized satellite sub-grid variability (SGV) over the Seoul Metropolitan Area (a), the Busan region (b), and Los Angeles Basin (c). Normalized satellite SGV is calculated as the standard deviation of the GeoTASO data within the sampled satellite pixel divided by the mean of the GeoTASO data within the sampled satellite pixel. The black lines represent the mean of the normalized satellite SGV at a given size. The resolutions of TEMPO, TROPOMI, GEMS, and OMI are highlighted by the yellow shade in the Figure.
Figure 5. Average of the normalized satellite sub-grid variability (SGV) sampled individually from the twelve rasters (represented by the colored lines), and sampled from all the twelve rasters together (represented by the black line) over the Seoul Metropolitan Area during KORUS-AQ. Normalized satellite SGV is calculated by the standard deviation of the GeoTASO data within the sampled satellite pixel divided by the mean of the GeoTASO data within the sampled satellite pixel.
Figure 6. Temporal mean differences (TeMD) of hypothetical satellite pixel retrieved tropospheric NO$_2$ vertical column (molecules cm$^{-2}$) over the Seoul Metropolitan Area (y-axis) as a function of satellite pixel size time difference (Dt). Mean differences for the time difference of Dt are calculated by averaging absolute value of the differences across all sampled satellite pixels that have two values with time difference of Dt. Results for each pixel size are color-coded, with selected sizes shown with thicker lines for reference.
Figure 7. (a) Spatial Structure Function (SSF) for GeoTASO data of tropospheric NO$_2$ vertical column molecules cm$^{-2}$) over the Seoul Metropolitan Area (SMA) during KORUS-AQ and (b) the zoom-in version of panel (a) for distance range of 1-25 km. The SSF calculates average of absolute value of NO_2_{VC} differences (i.e., mean difference; y-axis) across all data pairs (measured in the same hourly bin) that are separated by different distance (x-axis). The SSF based on GeoTASO data measured during morning flights are in solid colored lines while the SSF based on GeoTASO data measured during afternoon flights are in dashed colored lines. The SSF based on all the data is in the black solid line.
Figure 8. Boxplot of hypothetical satellite normalized SGV of NO$_2$ vertical column (VC), SO$_2$ VC, CO VC, and formaldehyde (HCHO) VC derived from the WRF-Chem simulation with a resolution of 3 km \times 3 km (colored lines), and GeoTASO NO$_2$ VC that gridded to the WRF-Chem grid (black lines) over the Seoul Metropolitan Area. Medians are represented by red bars, interquartile ranges between 25th and 75th percentiles by blue boxes, and the most extreme data points not considered outliers by whiskers. The modeled NO$_2$, CO, SO$_2$, and HCHO are filtered to match the rasters of GeoTASO measurements.