Some agricultural practices for improving the productivity of moderately sodic soil II: wheat yield, nutrient status, and economic potentiality

Taha, M.B.1, Salleh, A. M.2 and Abd Elhamed, A. S.3

1Soils, Water and Environment (SWERI), Agricultural Research Center, Giza, Egypt
2Agricultural Engineering Research Institute, Agricultural Research Center, Giza, Egypt
3Agricultural Crop Research Institute, Agricultural Research Center, Egypt

Received: Nov 13, 2021 / Revised: Dec 04, 2021/ Accepted: Dec 6, 2021

Abstract

To evaluate the effect of some agricultural practices, namely, tillage systems (shallow and subsoiling), gypsum application (0.0, 4.76 and 9.52 t/ha), and farmyard manure (FYM) application (0.0, 11.9, 23.8 and 35.7 m³/ha) on grain and/or straw yields, nutrient status and economic potentiality of wheat grown on moderately sodic soil, two successive seasons of 2015/2016 and 2016/2017 were carried out at Agricultural Farm of Sids Station, ARC, Egypt. The main results can be summarized as follow: Highest values of grain and/or straw yields, N, P, and K concentrations, and uptake of both grain and straw were recorded under subsoiling tillage, 9.52 t/ha gypsum or 35.7 m³/ha FYM than other treatments. Considering the economic analysis, the treatment of zero or 4.76 t/ha gypsum plus 35.7 m³/ha FYM under subsoiling operation resulted in the highest net return of wheat production. Therefore, under moderately sodic soil, it could be concluded to use subsoiling tillage and add 4.76 t/ha gypsum and 35.7 m³/ha FYM to attain maximum economic productivity of wheat.

Keywords Agricultural practices, Farmyard manure, Straw yields, Wheat production

Introduction

After maize and rice, wheat is the third cereal crop all over the world, but in human dietary intake, it is the second after rice as the main food crop. It supplies about 20% of food calories for world people (Hamouda et al., 2015), whereas in Egypt it provides about 37 and 40% of total calories and protein for the people, respectively. Wheat is used for making bread, pastas as well as other bakery products, therefore it considers the main source of nutrients for the world population. Also in Egypt, wheat straw is the main source of animal feeding. The total grain yield of wheat reached about a million tons, which cover only about 60% of local consumption demand. Therefore, the policy of the Egyptian Governorate aimed to increase wheat production by increasing the lands cultivated by wheat as well as improving the cultural practices for maximizing wheat yield such as growing high yielding varieties, tillage process, fertilization, elimination soil problems such as salinity and alkalinity, etc. Tillage systems are a cultural practice widely used all over the world with several different modifications aimed to, prepare seedbeds that are elevated above the land surface of the field.

Tillage defined as mechanical operations of the soil for plant growing resulted in various purposes such as improving soil temperature, infiltration rate, soil salinity and pH, and soil organic matter (Strudley et al., 2008). There are many factors used to choose the kind of tillage, such as climate, crops, labor-intensive management, fertility, water management, water, and wind erosion control. Irshad et al. (2017) mentioned that tillage can classify into two types: conventional tillage and conservation tillage. They added conventional tillage aims to keep the plant residues and manures soil surface, however conservation tillage is concerned with the preparation of seedbed that contains residue mulch and enhanced the roughness of soil surface. Furthermore, Li et al. (2020) stated that due to subsoil compaction resulting from long-term conventional tillage which is harmful to soil properties and plant growth, the use of deep tillage has a beneficial effect on these problems. They pointed out that deep tillage improved soil bulk density and soil porosity, increased soil water capacity, and aboveground biomass. Many workers stated the positive effect of subsoiling
tillage on soil properties and crop production (Jiao et al., 2017; Soltanabadi et al., 2018; Tahir et al. 2018; Wang et al., 2019).

Due to its cheaper, gypsum considers the most important amendment for sodic soil. Abdel-Fattah (2011) reported that gypsum application improved physical soil properties, such as pH, EC, ESP, bulk density as well as increased hydraulic conductivity and infiltration ratio. Also, Genaidy (2011) mentioned that added gypsum before crops planting in slightly to moderately sodic soil resulted in a positive effect on crop production, which mainly due to its amelioration effect, e.g. improved various physicochemical characters and promotive nutrient uptake. Wong et al. (2009), Chaudhary et al. (2015), Genedy et al. (2018) El-Sheref et al. (2019), and Abbas and Hussain (2020) stated that gypsum application increased wheat productivity and nutrient absorption by plant roots.

Organic manure has a favorable effect in sustaining soil properties and fertility by supplying plants with nutrients and improving soil physical properties. Youssef et al. (2020) indicated that farmyard manure application has many advances, such as increases in nutrient uptake, enhancing soil biological activity as well as improved chemical and physical soil properties. In addition, Ayyat (2017) mentioned that farmyard manure as an organic application resulted in enhanced nutrient release, has a positive effect on microorganisms and earthworms activity, improved root growth, and can control some plant diseases. Many investigators stated the beneficial effect of treated wheat plant with organic manure on nutrient uptake and yields Ali et al. (2009a), Shah et al. (2013) and Galal et al. (2017) for nutrient status and yields as well as Ali et al. (2009b) Genedy et al. (2018), and Hussain (2020) for wheat productivity.

The objective of this work is aimed to evaluate the response of wheat yields, nutrient uptake, and some economic parameters of wheat productivity to the application of gypsum and farmyard manure under two tillage systems, i.e., shallow and subsoiling tillage and their interaction.

Materials and methods

Two field experiments were conducted at the Sids Agricultural Research Station Farm, ARC, Beni Suef Governorate, Egypt (Lat. 29°04’ N, Long. 31°6’ E and 30.4 m above sea level) in two successive seasons of 2015/2016 and 2016/2017 to study the effect of gypsum (0.0, 4.76 and 9.52 t/ha) and farmyard manure (0.0, 11.9, 23.8 and 35.7 m³/ha) under two tillage systems (shallow and subsoiling) on wheat yield, nutrient status, and some economic measurements. A surface soil sample (0-30 cm depth) was taken before planting to determine soil physical and chemical properties according to A.O.A.C. (1990) and listed in Table 1.

The experimental design was split-split in four replications in complete randomized blocks. The tillage treatments were located in the main plot. The gypsum levels were arranged in sub-plots, while farmyard manure treatments were applied in sub-sub plots. The conventional tillage (T1) for wheat was done by using two passes of a disc, while sub-soiler (about 90 cm depth) represented the subsoiling tillage (T2). Representative samples of farmyard manure used in the two seasons were taken to determine its chemical properties according to A.O.A.C. (1990) and listed in Table 2.

Table 1. Physico-chemical characteristics analysis of soil before sowing

Characteristics	1st season	2nd season
Particle size distributions (%):		
Coarse sand	0.36	0.55
Fine sand	18.73	15.17
Silt	29.12	31.09
Clay	51.79	53.19
Textural class	Clay	Clay
ESP (%)	14.70	14.35
Field capacity (%)	44.31	46.15
Available water (%)	22.72	21.22
Wilting point (%)	21.59	24.93
pH (1:2.5 soil-water suspension)	8.43	8.45
EC (dSm⁻¹), 1:5 soil-water extraction	1.42	1.49
Total carbonate (mg/g)	11.1	15.7
Organic matter (mg/g)	10.6	10.5
Available N mg/kg soil	19.35	21.27
Available P mg/kg soil	12.14	13.39
Available K mg/kg soil	176.4	186.1

Table 2. Some chemical analysis of FYM used in the experiments in both growing seasons

Chemical properties	2015/2016	2016/2017
EC (1:15, soil-water extraction)	5.90	6.20
Organic carbon (mg/g)	169.0	184.0
Organic matter (mg/g)	291.4	317.2
Total N (mg/g)	16.2	17.4
Total P (mg/g)	3.3	3.6
Total K (mg/g)	14.0	14.4
C/N ratio	10.1	11.1

Grains of Beni Suef 5 of wheat were planted on 15 and 20 November at rate of 142.8 kg/ha for the two studied seasons, respectively in plots (4 x 5.25 m = 21 m² = 1/476 ha) in 15 cm between rows. All plots fertilized with 178.5 kg N/ha as urea (46.0 % N), 54.74 kg P₂O₅/ha as mono-calcium superphosphate (15.5% P₂O₅) and 57.12 kg K/ha as potassium sulphate (48 % K₂O). The recommended cultural practices for wheat were done as in the district.

At harvest ten wheat plants were randomly taken to determine plant height, number of spikes/m², number of...
grains/spike, and 1000-grain weight. Also, grain and straw yields from grains and straw were randomly taken from each plot to determine N, P, and K concentrations in both grains and straw. N, P and K uptake in grains and/or straw were calculated by multiplying the nutrient concentration by grain or straw yields. Also, protein content in grains was calculated by multiplying nitrogen concentration by 5.70.

Some economic measurements, i.e., total gross parameters; total net return and beneficial cost ratio were estimated as follow:

- Total gross return (L.E/ha.) = Total grain or straw yield x its price.
- Total net return (L.E/ha.) = Total gross return – total cultivation cost.
- Beneficial cost ratio = \[
\frac{\text{Total gross return}}{\text{Total cultivation cost}}
\]

The total cultivation cost of wheat during the growing season was determined as the sum of land rent, land preparation; except tillage processes, irrigations, fertilizers, and cost of weed, insect, and fungi control as well as the cost of grains and straw harvest. Also, the cost of the studied factors, i.e., tillage, gypsum, and farmyard manure were estimated.

The results were subjected to statistical analysis according to the method described by Snedecor and Cochran (1980). The differences between the studied treatments were compared by using LSD at a 5% level of probability.

Results and discussion

Yield potentiality

The data of wheat yield potentiality in terms of grain yield, straw yield, and biological yield as affected by tillage system as well as gypsum and farmyard manure application were given Table 3. The main effect of tillage indicates that subsoiling tillage produced grain, straw and biological yields surpassed that due to shallow one by about 3.4, 3.9, and 3.7% in the first season. The corresponding increasing in the second season were 2.9, 2.5, and 2.7% in the abovementioned order. The promotive effect of deep tillage on wheat yields was mainly due to the positive effect of subsoiling on soil properties and soil fertility, which in turn improved wheat growth. These results are in line with those obtained by Hammel (1995) and Alam et al. (2014) who found that deeper tillage increased wheat grain and straw yields than a shallow one.

With regard to the main effect of gypsum, the data clearly show that wheat yields were gradually increased as gypsum levels increased. Comparing with no gypsum, added 9.52t gypsum/ha increased grain, straw and biological yields by about 8.5, 6.5 and 7.3% in the first season and 7.8, 7.5, and 7.7% in the second one. The beneficial effect of gypsum on wheat productivity is mainly due to its positive effect on improving physical and chemical soil properties, in turn, enhanced wheat growth (Table 6), consequently increasing grain and/or straw yields. These results were confirmed by many investigators such as Gelderman et al. (2004), Taha et al. (2010), Genaidy (2011), Bello (2012), Genedy et al. (2018), and El-Sheref et al. (2019) who reported that gypsum application had a positive effect on wheat productivity, especially under slightly or moderately saline soil. As for the main effect of farmyard manure, the obtained results show that wheat grain and/or straw were positively responded to FYM application. It is obvious to notice that wheat productivity was increased as FYM levels increased. The augmentation in wheat yields caused by organic manure application may be explained by the effect of organic manure on amelioration soil properties and fertility which enhanced wheat vegetative growth as discussed formerly. The results achieved from this research were confirmed to those established by many workers such as Ali et al. (2009a), Shah et al. (2010), Taha et al. (2010), Shah et al. (2013), Irshad et al. (2017), Galal et al. (2017) and Genedy et al. (2018) who stated that added FYM to wheat resulted in enhanced its grains and straw yields.

Concerning the response of wheat yields to the interaction between any two factors or among them, the data show that grain, straw, and biological yields were significantly affected by these interactions. Mixed gypsum with organic manure enhanced its effect on wheat productivity, especially under subsoiling tillage. In general, the maximum wheat productivity was produced for the treatment of subsoiling + 9.52 t/ha gypsum + 35.7 m³/ha FYM (7.081, 10.384, and 17.465 t/ha) in the first season and 7.363, 10.436, and 17.819 t/ha in the second one for grain, straw, and biological yields, respectively. On the other hand, the treatment of shallow tillage without both gypsum and FYM recorded the lowest abovementioned yield potentiality (5.238, 8.132, and 13.371 in the first season and 5.539, 8.249, and 13.818 t/ha in the second one, respectively). These results are similar to those obtained by Ghafoor et al. (2001), Choudhary et al. (2004), Wong et al. (2009), and Genedy et al. (2018) who mentioned that physical and chemical soil properties are improved due to mixed of gypsum with FYM as soil remediation for sustainable soil usage and crop production.

Nutrients status

The data in Tables 4, 5, and 6 represent the effect of tillage systems, gypsum, and FYM application on nutrients status of wheat expressed as N, P, and K uptake and protein yield in wheat grains; N, P, and K uptake in wheat straw and total N, P and K. As for the main effect of tillage, the data reveal that N, P and K uptake in grains and/or straw, as well as total N, P and K uptake, were significantly affected by tillage operation, where subsoiling tillage recorded the highest values of it. The increments in N, P and K uptake and protein yield in grains and total N, P and K in wheat plant were 7.0, 7.9, 5.4 and 7.0 and 7.1, 11.4 and 5.6% due to deep tillage when compared with shallow one in the first season, respectively. Same trends were obtained in the second season.
Table 3. Yield measurements of wheat as affected by gypsum and FYM application under different tillage systems

Treatments	2015/2016	2016/2017						
	Grain yield (t/ha)	Straw yield (t/ha)	Biogical yield (t/ha)	Grain yield (t/ha)	Straw yield (t/ha)	Biogical yield (t/ha)		
Gypsum (t/ha)	FYM (m³/ha)	Gypsum (t/ha)	Mean	Gypsum (t/ha)	Mean	Gypsum (t/ha)	Mean	
Shallow	Gypsum (0.0)	0.0	5.238	8.132	13.370	5.569	8.249	13.818
		11.9	5.883	9.189	15.072	5.986	8.811	14.796
		23.8	6.029	9.234	15.263	6.326	9.127	15.453
		35.7	6.178	9.384	15.562	6.474	9.947	15.946
Mean			6.382	9.895	14.817	6.089	8.915	15.004
Gypsum (0.1)	0.0	5.798	8.844	14.642	5.876	8.739	14.615	
		11.9	6.021	9.201	15.222	6.309	9.418	15.727
		23.8	6.321	9.446	15.767	6.712	9.882	16.593
		35.7	6.619	9.556	16.175	7.083	10.039	17.122
Mean			6.190	9.262	15.452	6.495	9.519	16.014
Gypsum (0.5)	0.0	5.857	9.092	14.949	5.952	8.832	14.784	
		11.9	6.010	9.444	15.454	6.488	9.665	16.153
		23.8	6.402	9.572	15.974	7.104	9.879	16.153
		35.7	6.712	9.906	16.618	7.166	10.044	17.210
Mean			6.245	9.503	15.748	6.678	9.605	16.283
Gypsum (1.0)	0.0	5.548	8.454	14.002	5.838	8.594	14.432	
		11.9	5.933	9.294	15.227	6.226	9.044	15.270
		23.8	6.119	9.558	15.677	6.628	9.342	15.970
		35.7	6.233	9.599	15.382	6.902	9.741	16.643
Mean			5.958	9.226	15.184	6.399	9.180	15.579
Gypsum (1.5)	0.0	5.926	9.130	15.056	5.869	9.044	14.913	
		11.9	6.086	9.551	15.637	6.495	9.532	16.027
		23.8	6.507	9.891	16.398	6.907	9.903	16.810
		35.7	7.004	10.272	17.276	7.319	10.353	17.672
Mean			6.381	9.711	16.092	6.648	9.708	16.356
Gypsum (2.0)	0.0	5.988	9.199	15.187	5.976	9.282	15.258	
		11.9	6.355	9.765	16.120	6.676	9.665	16.341
		23.8	6.771	10.213	16.984	7.095	10.046	17.141
		35.7	7.081	10.384	17.465	7.383	10.436	17.819
Mean			6.549	9.890	16.439	6.783	9.857	16.640
Mean of gypsum (t/ha)	0.0	5.895	9.106	15.001	6.244	9.048	15.291	
	4.76	6.285	9.486	15.771	6.571	9.614	16.185	
	9.52	6.397	9.697	16.094	6.730	9.731	16.461	
Mean of FYM (m³/ha)	0.0	5.726	8.808	14.534	5.847	8.790	14.637	
	11.9	6.048	9.407	15.545	6.363	9.356	15.719	
	23.8	6.358	9.652	16.010	6.795	9.697	16.492	
	35.7	6.638	9.850	16.488	7.054	10.014	17.069	
L.S.D at 0.05	A	0.014	0.068	0.082	0.022	0.089	0.068	
	B	0.027	0.052	0.081	0.011	0.060	0.068	
	AB	0.038	0.074	0.116	0.016	0.084	0.096	
	C	0.015	0.048	0.052	0.016	0.069	0.065	
	AC	0.021	0.068	0.074	0.022	0.097	0.092	
	BC	0.025	0.084	0.090	0.028	0.118	0.113	
	ABC	0.036	0.118	0.127	0.039	0.167	0.160	
The positive effect of deep tillage in nutrient uptake may be due to subsoiling operations reduced the penetration resistance in soil, consequently improved root growth and nutrient absorption by crops (Rusu et al., 2011) and Moraru and Rusu (2012). Moreover, Alam et al. (2014) reported that deep tillage improved nutrient uptake of wheat by increasing the root mass density of wheat. These results are in line with those obtained by Taha et al. (2010) and Alam et al. (2014).

season. Similar trends were obtained for the second season and wheat straw. The decline in soil pH resulting from gypsum application and the enhancement in soil fertility due to gypsum is a good explanation for its beneficial effect on the nutrient status of wheat. These findings are in harmony with those obtained by Genaidy (2011), Genedy et al. (2018), and El-Shereif et al. (2019) who stated that gypsum application to wheat plants enhanced its nutrient content in both grains and straw.

As for organic manure, the results show that irrespective of tillage and gypsum treatments, farmyard manure had a positive effect on nutrient adsorption in both grains and straw. The maximum nutrient uptake was recorded under using 35.7 t/ha FYM, where it enhanced N, P, and K uptake and protein in grains as well as total N, P, and K by about 22.6, 37.3, 32.5 and 22.6 and 23.0, 40.0 and 22.0 % over without manure, respectively in the first season. The same trends were obtained in the second season and wheat straw. The improvement in nutrient status could be attributed to chelated compounds resulting by FYM decomposition (Ali et al., 2009b). These results confirmed by many authors such as Mekail et al. (2006), Shah et al. (2013), and Galal et al. (2017).

Considering the effect of the interaction between treatments, the results show that nutrient status in wheat plants were significantly affected by the interaction between the studied factors. Gypsum application has a synergistic effect on the enhancement of nutrient status caused by organic manure under deep tillage. The relative increasing of N, P and K uptake and protein in grains and total N, P and K uptake due to incorporated gypsum with FYM under subsoiling tillage reached to 43.0, 64.9, 72.0 and 43.0 and 45.8, 72.2 and 46.6 % when compared with the treatment of without both gypsum and farmyard manure under shallow tillage.

Economic analysis

Gross income, i.e., human labor costs (L.E./ha), machine labor costs (L.E./ha), variable costs (L.E./ha), total cultivation costs (L.E./ha), gross return (L.E./ha), net return (L.E./ha), return over variable costs (L.E./ha), beneficial cost ratio and product profit margin ratio (%) were calculated to represent the economic measurements for these studied factors. Table 7 represents the total cultivation cost of wheat production, whether the common costs or variable costs, put the main effect of gypsum into consideration, the data reveal that nutrient uptake was positively affected by gypsum application, where increasing gypsum levels resulted in a significant increase in nutrient status. The relative increments in N, P and K uptake and protein yield in grains as well as total N, P and K uptake in the wheat plant caused by 9.52 t/ha gypsum were 10.4, 12.7, 14.9 and 10.4 and 9.8, 11.4, and 8.2 % over without gypsum, respectively in the first while Tables 8 and 9 show the effect of the studied variables on this economic analysis. In general, the obtained results indicate that the subsoiling system enhanced the studied economic measurements than the shallow one. The values of the abovementioned parameters owing to deep tillage were 3631.9 (L.E.), 2582.3 (L.E.), 10598.9 (L.E.), 21701.6 (L.E.), 25315.7 (L.E.), 3614.1 (L.E.), 14716.8 (L.E.), 1.17 and 14.14 %, while these values due to shallow one were 3542.2 (L.E.), 2461.3 (L.E.), 10122.9 (L.E.), 21225.6 (L.E.), 24477.3 (L.E.), 3251.6 (L.E.), 14354.3 (L.E.), 1.15 and 13.20 % in the first season, respectively. Similar results were obtained by Megahed and Salleh (2014). As for gypsum, the data reveal that human labor costs (L.E./ha), machine labor costs (L.E./ha), variable costs (L.E./ha), total cultivation costs (L.E./ha), gross return (L.E./ha), net return (L.E./ha), return over variable costs (L.E./ha), beneficial cost ratio and product profit margin ratio (%) was increased as gypsum levels increased up to 9.52 t/ha. The relative increments of these measurements due to added 9.52 t/ha gypsum were 3.2, 7.9, 15.9, 7.4, 7.5, 12.8, 2.8, 0.9, and 4.4% over without gypsum in the first season, respectively. The same trend was observed in the second season. Also, the data indicate that increasing organic manure levels were positively affected all studied economic measurements. Comparing with no manuring added 35.7 m³/ha FYM increased these parameters by about 4.5, 8.0, 20.3, 9.3, 14.7, 37.5, 10.8, 4.4 and 37.3%, respectively in the first season. The corresponding increments in the second season were 4.5, 8.2, 18.6, 8.5, 18.5, 67.4, 19.0, 9.1 and 40.5%. The data of the interaction clearly show that mixed 4.76 t/ha gypsum with 35.7 m³/ha FYM recorded the highest net return under subsoiling tillage, where the difference between them did not reached to the significant value.

Moreover, the T-Test analysis of some economic measurements, i.e., human labor cost (L.E./ha), machine labor costs (L.E./ha), variable cost (L.E./ha), total cost (L.E./ha), gross return (L.E./ha), net return (L.E./ha), return over variable costs (L.E./ha), beneficial cost ratio and product profit % are given in Table 10. The data clearly confirmed the positive effect of subsoiling as well as gypsum and FYM application on these economic parameters. Similar results were obtained by Ghoname et al. (2014).
Table 4. N, P and K uptake (kg/ha) and protein yield (kg/ha) in grains as affected by gypsum and FYM application under different tillage systems

Treatments	2015/2016	2016/2017						
	N uptake	P uptake	K uptake	Protein yield	N uptake	P uptake	K uptake	Protein yield
Shallow								
Gypsum (0.0)	108.96	19.749	17.286	621.063	111.38	22.053	18.935	634.889
Gypsum (4.76)	108.96	19.749	17.286	621.063	111.38	22.053	18.935	634.889
Mean	126.35	24.233	22.367	720.184	137.20	27.255	24.561	782.021
Subsoiling								
Gypsum (0.0)	113.18	21.082	18.307	645.097	120.27	23.353	19.966	685.514
Gypsum (4.76)	126.90	24.021	25.501	711.924	138.42	27.266	24.010	789.003
Mean	126.90	24.021	25.501	711.924	138.42	27.266	24.010	789.003
Mean of gypsum (t/ha)	126.35	24.233	22.367	720.184	137.20	27.255	24.561	782.021
Mean of FYM (m³/ha)	126.35	24.233	22.367	720.184	137.20	27.255	24.561	782.021
L.S.D at 0.05								
A	1.875	0.577	0.685	6.210	1.840	0.630	0.141	8.543
B	0.771	0.452	0.218	2.546	0.937	0.297	0.169	5.849
AB	1.090	0.639	0.308	3.601	1.325	0.420	0.240	8.272
C	0.671	0.441	0.229	5.321	0.507	0.245	0.193	3.002
AC	0.950	0.623	0.325	7.525	0.717	0.346	0.272	4.424
BC	1.163	0.763	0.398	9.216	0.878	0.424	0.334	5.200
ABC	1.644	1.080	0.562	13.034	1.242	0.599	0.472	7.354
Table 5. N, P and K uptake (kg/ha) in straw as affected by gypsum and FYM application under different tillage systems

Tillage	Gypsum (t/ha)	FYM (m³/ha)	N Uptake	P uptake	K uptake	N uptake	P Uptake	K uptake
			2015/2016		2016/2017			
Shallow								
Gypsum (0.0)	0.0	40.662	10.979	121.987	49.494	13.942	131.985	
	11.9	49.621	14.704	142.433	54.627	15.507	145.378	
	23.8	53.560	15.698	147.750	54.764	16.612	150.600	
	35.7	56.306	16.891	154.843	56.834	17.429	156.295	
Mean		50.037	14.568	141.753	53.930	15.872	146.064	
Gypsum (4.76)	0.0	47.757	13.621	137.969	50.689	15.206	138.083	
	11.9	50.606	15.826	147.217	57.448	18.081	150.683	
	23.8	56.677	18.515	151.140	63.243	19.368	166.014	
	35.7	57.334	19.111	156.713	60.233	20.881	172.668	
Mean		53.094	16.768	148.259	57.903	18.384	156.862	
Gypsum (9.52)								
Mean		54.461	15.733	152.155	57.904	17.384	157.217	
Mean	52.531	15.690	147.389	56.579	17.214	153.381		
		46.496	13.526	130.188	48.988	15.125	135.788	
	11.9	52.976	15.801	148.702	51.551	16.460	146.513	
	23.8	55.436	17.204	157.707	57.917	17.188	154.135	
	35.7	59.433	18.821	163.442	60.262	20.288	165.719	
Mean		53.606	16.432	149.465	54.713	17.259	150.023	
Mean	51.127	14.607	142.424	54.264	15.917	144.704		
	11.9	55.395	16.810	152.815	59.098	17.919	156.323	
	23.8	61.325	20.773	162.216	61.399	22.382	168.354	
	35.7	62.660	20.955	172.571	65.224	21.120	178.072	
Mean		57.627	18.286	157.506	59.995	19.334	161.863	
Gypsum (9.52)								
Mean		57.918	18.222	160.190	59.212	18.914	161.601	
Mean	56.383	17.647	155.720	57.973	18.503	157.829		
Mean of gypsum (t/ha)		51.821	15.500	145.608	54.321	16.566	148.043	
	4.76	55.360	17.527	152.883	58.950	18.860	159.362	
	9.52	56.189	16.978	156.172	58.557	18.149	159.409	
Mean		51.080	13.332	136.011	51.408	14.964	139.159	
Mean of FYM (m³/ha)		52.857	15.971	149.752	56.290	17.127	152.330	
	23.8	57.299	18.148	156.577	60.477	19.269	162.308	
	35.7	59.591	19.221	163.879	60.928	20.073	168.623	
L.S.D at 0.05	A	1.976	0.285	3.330	0.869	1.113	0.961	
	B	1.473	0.135	1.002	0.556	0.053	1.100	
	AB	2.084	0.191	1.416	0.786	0.075	1.557	
	C	0.799	0.163	1.235	0.657	0.152	1.270	
	AC	1.130	0.232	1.746	0.929	0.215	1.795	
	BC	1.384	0.283	2.139	1.138	0.264	2.199	
	ABC	1.957	0.385	3.025	1.610	0.372	3.109	
Table 6. Total N, P and K (kg/ha) as affected by gypsum and FYM application under different tillage systems

Treatments	FYM (m^3/ha)	N Total	P Total	K Total	N Total	P Total	K Total
Gypsum (0.0)	0.0	149.621	30.728	139.273	160.878	35.995	150.921
	11.9	174.347	37.061	162.849	176.735	39.809	167.355
	23.8	176.541	39.813	171.262	188.876	43.814	175.778
	35.7	184.819	42.224	178.074	196.664	45.654	181.542
Mean	171.331	37.456	162.866	180.788	41.318	168.896	
Gypsum (4.76)	0.0	161.393	33.913	157.680	170.563	39.827	158.649
	11.9	175.851	39.911	168.894	193.732	44.580	174.659
	23.8	190.688	45.064	176.425	216.268	48.228	193.397
	35.7	195.005	47.572	181.865	211.807	51.762	200.645
Mean	180.734	41.615	171.216	198.092	44.100	181.837	
Gypsum (9.2)	0.0	167.147	33.815	160.248	175.920	36.880	159.500
	11.9	175.479	37.946	172.736	195.534	42.962	183.163
	23.8	191.246	41.882	177.486	217.547	50.425	194.036
	35.7	204.404	49.023	190.288	220.784	53.683	195.674
Mean	184.569	40.666	175.190	202.446	45.988	183.093	
Mean	178.879	39.312	169.756	193.775	44.468	177.942	
Gypsum (0.0)	0.0	159.669	34.608	148.495	169.254	38.477	155.754
	11.9	177.577	39.534	170.063	186.034	42.610	169.238
	23.8	187.606	42.292	179.735	206.391	45.690	179.322
	35.7	189.162	45.377	185.565	210.860	51.321	191.815
Mean	178.504	40.452	170.965	193.134	44.525	174.032	
Gypsum (4.76)	0.0	172.023	35.942	163.166	178.688	39.394	165.715
	11.9	184.410	41.762	176.184	201.988	44.549	182.563
	23.8	209.683	48.752	186.942	223.018	53.462	196.119
	35.7	219.557	52.475	197.086	235.013	54.785	205.516
Mean	196.418	44.732	180.845	209.678	48.048	187.474	
Gypsum (9.2)	0.0	174.590	37.887	163.239	179.602	41.024	167.243
	11.9	190.379	44.266	181.025	203.895	45.822	183.412
	23.8	215.657	49.542	195.924	228.892	50.694	199.634
	35.7	218.075	52.923	204.188	233.897	54.416	208.183
Mean	199.675	46.154	186.094	221.572	47.989	189.618	
Mean	191.532	43.780	179.301	201.794	46.854	183.710	
Mean of gypsum (t/ha)	0.0	174.918	38.954	166.914	186.961	42.421	171.464
	4.76	188.576	43.174	176.030	203.884	47.074	184.658
	9.52	192.122	43.410	180.642	207.009	46.988	186.355
Mean of FYM (m³/ha)	0.0	164.074	34.482	155.350	172.484	38.600	159.630
	11.9	179.674	40.080	172.958	192.986	43.889	176.730
	23.8	195.237	44.557	181.296	213.499	48.719	189.714
	35.7	201.837	48.265	189.511	218.171	51.937	197.229

L.S.D at 0.05

	A	0.736	0.668	3.948	2.650	0.568	1.096
	B	1.351	0.478	0.901	0.853	0.334	1.151
	C	1.911	0.676	1.274	1.206	0.473	1.629
	AB	1.236	0.446	1.300	0.809	0.279	1.355
	AC	1.747	0.631	1.839	1.144	0.279	1.917
	BC	2.140	0.773	2.253	1.402	0.383	2.348
	ABC	3.027	1.093	3.173	1.982	0.684	3.321
Table 7. Estimating guide of wheat crop costs

Common Cost:	1st season	2nd season
Land rent	11102.7	11900
Land preparation	535.5	595
Seeds	714	833
Planting	357	476
Irrigation	1071	1190
Fertilizers	1666	1904
Weed Control	357	357
Harvesting	2023	2261
Threshing	952	1190
Total	18778.2	20706

Costs of Variables:

Tillage system	1st season	2nd season
Shallow	714	833
Subsoiling	833	952
Gypsum (t/ha)	0.0	0.0
	4.76	785.4
	9.52	1523.2

Farmyard manure (m³/ha)	1st season	2nd season
0.0	0.0	0.0
11.9	666.4	690.2
23.8	1285.2	1428
35.7	1904	1927.8
Table 8. Some economic measurements of wheat production as affected by tillage system as well as gypsum and FYM application during 2015/2016

Treatments	FYM (m3/ha)	Human labor costs (L.E./ha)	Machine labor costs (L.E./ha)	Variable costs (L.E./ha)	Total cultivation cost (L.E./ha)	Gross return (L.E./ha)	Net Return over variable costs (L.E./ha)	Return on investment (%)	Beneficial cost ratio	Productive margin ratio (%)
Tillage										
Gypsum (0.0)	0.0	3391.5	2261.0	8389.5	19492.2	21173.4	1681.2	12783.9	1.09	7.94
	11.9	3462.9	2321.4	9055.9	20158.6	23824.8	3666.2	14766.9	1.18	13.59
	23.8	3510.5	2380.0	9674.7	20777.4	24267.4	3490.0	14592.7	1.17	14.38
	35.7	3558.1	2451.4	10293.9	21396.2	24807.2	3410.0	14513.7	1.16	13.75
Mean	3480.8	2356.2	9353.4	20456.1	23518.2	3062.1	14166.8	1.12	15.27	
Shallow										
Gypsum (0.67)	0.0	3351.5	2251.4	9147.6	20277.6	23308.8	3031.2	14139.9	1.15	13.00
	11.9	3434.3	2451.4	9841.3	20944.0	24220.8	3276.8	14379.5	1.16	13.53
	23.8	3581.9	2499.0	10461.0	21562.8	25256.6	3639.8	14796.5	1.17	14.63
	35.7	3629.5	2570.4	11078.9	22181.6	26179.0	3997.4	15001.0	1.18	15.27
Mean	3552.2	2472.5	10138.6	21241.5	24741.3	3499.8	14602.5	1.11	14.11	
Subsoiling										
Gypsum (9.32)	0.0	3351.5	2251.4	9147.6	20277.6	23308.8	3031.2	14139.9	1.15	13.00
	11.9	3434.3	2451.4	9841.3	20944.0	24220.8	3276.8	14379.5	1.16	13.53
	23.8	3581.9	2499.0	10461.0	21562.8	25256.6	3639.8	14796.5	1.17	14.63
	35.7	3629.5	2570.4	11078.9	22181.6	26179.0	3997.4	15001.0	1.18	15.27
Mean	3552.2	2472.5	10138.6	21241.5	24741.3	3499.8	14602.5	1.11	14.11	
Mean of Gypsum (t/ha)	0.0	3525.8	2418.7	9591.4	20994.1	23791.2	3097.1	14499.8	1.15	12.91
	4.76	3596.6	2537.7	10376.8	21479.5	25188.1	3708.6	14813.7	1.17	16.63
	9.52	3638.8	2609.1	11114.6	22217.3	25710.2	3492.9	14595.6	1.16	13.48
Mean of FYM (m3/ha)	0.0	3500.0	2423.6	9397.0	20499.7	23079.2	2579.4	13682.1	1.13	11.12
	11.9	3570.7	2499.0	10063.4	21166.1	24515.7	3349.6	14452.3	1.16	13.68
	23.8	3619.0	2546.6	10682.2	21784.6	25524.9	3739.9	14842.6	1.17	14.63
	35.7	3658.6	2618.0	11301.8	22403.7	26466.2	4062.5	15165.2	1.18	15.27
Mean	3631.9	2582.3	10589.8	21701.6	25315.7	3614.1	14716.8	1.17	14.14	
Mean of Yields	A	7.66	54.70	123.39	123.39	7.58	122.29	122.29	0.007	0.55
L.S.D. at 0.05	B	6.31	30.45	202.00	202.00	4.96	202.41	202.41	0.011	0.84
	AB	8.92	43.10	285.67	285.67	7.02	286.25	286.25	0.016	1.18
	C	7.79	20.81	104.50	104.50	3.84	104.82	104.82	0.008	0.44
	AC	11.03	29.43	147.79	147.79	5.43	148.24	148.24	0.010	0.62
	BC	13.51	36.05	181.00	181.00	6.65	181.55	181.55	0.014	0.76
	ABC	19.10	50.98	255.97	255.97	9.41	256.76	256.76	0.015	1.08
Table 9. Some economic measurements of wheat production as affected by tillage system as well as gypsum and FYM application during 2016/2017

Treatments	2016/2017									
	FYM (m²/ha)	Gypsum (t/ha)	FYM (L.E./ha)	Gypsum (L.E./ha)	Total cultivatio (L.E./ha)	Gross return (L.E./ha)	Net Return (L.E./ha)	Return over variable costs (L.E./ha)	Beneficial cost ratio (%)	Product profit margin ratio (%)
Shallow		0.0	1418.8	3975.0	4236.4	4188.8	4284.0	4379.2	4295.9	
Subsoiling		0.0	3154	3107	3792	3579	4030	4450	4287	
Mean		0.0	2424	2257	3457	3579	4287	4450	4287	
Mean of Gypsum (t/ha)	0.0	2424	2257	3457	3579	4287	4450	4287	4287	
Mean of FYM (m³/ha)	0.0	2424	2257	3457	3579	4287	4450	4287	4287	
L.S.D. at 0.05	0.0	2424	2257	3457	3579	4287	4450	4287	4287	
Table 10. T-Test between and shallow and subsoiling systems as well as between without and with high level of gypsum or farmyard manure application for some economic easements

Average value of variables	2015/2016	2016/2017										
	Tillage	Gypsum (t/ha)	FYM (m³/ha)	Tillage	Gypsum (t/ha)	FYM (m³/ha)						
	Shallow (1)	Subsoiling	The amount of change (L.E)	T-Test between them	Without	9.52 ton/ha	The amount of change (L.E)	T-Test between them	Without	35.7 m³/ha	The amount of change (L.E)	T-Test between them
Human labor cost (L.E/ha)	3542.2	3631.9	90	4.89(**)(2)	3525.5	3638.8	113.3	5.17(**)(2)	3500.0	3658.6	158.6	7.17(**)(2)
Machine labor costs (L.E/ha)	2461.3	2582.3	121	4.52(**)(2)	2418.7	2609.1	190.4	6.31(**)(2)	2423.6	2618.0	194.4	5.25(***)(2)
Variable cost (L.E/ha)	10122.9	10598.9	476	2.07(***)(2)	9591.4	11114.6	1523.2	6.73(***)(2)	9397.0	11301.0	1904	8.05(***)(2)
Total cost (L.E/ha)	21225.6	21701.6	476	2.07(***)(2)	20694.1	22217.3	1523.2	5.83(***)(2)	20499.7	22403.7	1904	8.05(***)(2)
Gross return (L.E/ha)	24477.3	25315.7	838.4	2.28(***)(2)	23791.2	25710.2	1919	6.73(***)(2)	23079.2	26466.2	3387	8.63(***)(2)
Net return (L.E/ha)	3251.6	3614.1	362.5	2.08(***)(2)	3097.1	3492.9	395.8	1.89(***)(2)	2579.4	4062.5	1483.1	6.78(***)(2)
Return over variable costs (L.E/ha)	14354.3	14716.8	362.5	2.08(***)(2)	13961.8	14357.6	395.8	1.89(***)(2)	13682.1	15165.2	1483.1	6.98(***)(2)
Beneficial cost ratio	1.15	1.17	0.02	1.70(***)(2)	1.15	1.16	0.01	0.84(***)(2)	1.13	1.18	0.05	6.08(***)(2)
Product profit margin ratio % (2)	13.20%	14.32%	1.12%	4.80(***)(2)	12.91%	13.48%	0.57	0.82(***)(2)	11.11%	15.27%	4.16%	6.10(***)(2)

1- The amount of change between the two levels= Subsoiling- Shallow.
2- Product profit% = (Net return / Total return) x 100.
Conclusions

From the results of this investigation, it could be recommended to use subsoiling tillage and apply 9.52 t/ha gypsum + 35.7 m³/ha farmyard manure to maximizing yields of wheat grown in moderately sodic soil. In economic view, it could be recommended to add 4.76 t/ha gypsum + 35.7 m³/ha FYM under subsoiling tillage to attain the highest net return of wheat productivity grown in moderately sodic soil.

Conflict of Interest

The author hereby declares no conflict of interest.

Funding support

The author declares that they have no funding support for this study.

References

Abbas, M. M., & Hussain, W. S. (2020). Bio stimulants of Pepper and Eggplant by using plants aqueous extract. Plant Cell Biotechnology and Molecular Biology, 21(65&66), 78-82.

Abdel-Fattah, M. K. (2011). Some biological and chemical methods for salt affected soils reclamation (Doctoral dissertation, PhD thesis, Faculty of Agriculture, Zagazig University, Zagazig, Egypt).

Alam, M., Islam, M., Salahin, N., & Hasanzuaman, M. (2014). Effect of tillage practices on soil properties and crop productivity in wheat-mungbean-rice cropping system under subtropical climatic conditions. The Scientific World Journal, 2014.

Ali, M. E., Ismael, S. A., El-Husseiny, O. H. M., & AM, A. E. H. (2009). Effect of organic manure and some macro and micro nutrients on wheat grown on a sand soils i. yield potentiality. Journal of Soil Sciences and Agricultural Engineering, 34(3), 2397-2407.

Ali, M. E., Ismael, S. A., El-Husseiny, O. H. M., & AM, A. E. H. (2009). Effect of organic manure enriched with macro and micronutrients: II. Nutrients uptake by wheat and their availability in sand soil. Journal of Soil Sciences and Agricultural Engineering, 34(3), 2409-2424.

A.O.A.C. (1990). Official Method of Analysis “Association Official Analytical Chemists” 10th Ed., Washington, D.C., USA.

Ayyat, A. M. M. (2017). Response of fennel (Foeniculum vulgare Mill) plants to mineral, organic and bio-fertilization, as well as royal jelly treatments (Doctoral dissertation, Ph. D. Thesis, Fac., of Agric., Minia Univ. Egypt).

Bello, B. W. (2012). Influence of gypsum application on wheat (Triticum aestivum) yield and components on saline and alkaline soils of Tigray region, northern Ethiopia. Master's Thesis, Gadar University, Gadar, Ethiopia, 2012. 132 pages.

Chaudhary, S. K., Kumar, R., Singh, A. K., & Kumar, R. (2015). Effect of acidulated rock phosphate on growth yield attributes and yield of wheat (Triticum aestivum L.). Indian Journal of Agricultural Research, 49(6), 574-576.

Choudhary, O. P., Josan, A. S., Bajwa, M. S., & Kapur, M. L. (2004). Effect of sustained sodic and saline-sodic irrigation and application of gypsum and farmyard manure on yield and quality of sugarcane under semi-arid conditions. Field crops research, 87(2-3), 103-116.

El-Sheref, G. F. H., Awadalla, H. A. and Mohamed, G. A. (2019). Use of gypsum and sulphur for improving rock P efficiency and their effect on wheat productivity and soil properties. Alex. J. Soil and Water Sci. (Fac. Agric. Saba Basha), 3(2): 50-67.

Galal, O., Sarhan, M., and El-Hafez, A. (2017). Evaluation of the Effect of Amino Acids, Sulphur and Farmyard Manure Along with Phosphorus Fertilization on Wheat Production. Nutrient Status and Soil Properties. Journal of Soil Sciences and Agricultural Engineering, 8(4), 139-147.

Gelderman, R.; A. Bly; J. Gerwing; H. Woodard and R. Berg (2004). Influence of gypsum on crop yields. Soil/ Water Research South Dakota State University, Progress Report. Soil Pr 04-13.

Gennaiy, S.A. M. (2011). “Research and Application Bases in Soil Chemistry and Fertilization of crops in Arabic Al-Dar Al-Arabia Lil Nashr Wa Al-Tawzeia . Nsr City; Cairo, Egypt.

Genedy, M., Ewis, A., & Gennaiy, S. (2018). Importance of gypsum, organic manure application and nitrogen, zinc fertilization for wheat crop in saline sodic soils. Journal of Productivity and Development, 23(2), 343-356.

Ghafoor, A., Gill, M. A., Hassan, A., Murtaza, G., & Qafdir, M. (2001). Gypsum: an economical amendment for amelioration of saline-sodic waters and soils and for improving crop yields. Int. J. Agric. Biol, 3(3), 266-275.

Ghoname, Sh. A.; M. Mobarak and W. Abd El-Farag (2014). Economical analysis study for the impact of technology on the productivity of agricultural mechanization and return for the rice crop in Gharbia Governorate. Agricultural economic Journal. 24(3): 995-997.

Hamnel, J. E. (1995). Long-term tillage and crop rotation effects on winter wheat production in northern Idaho. Agronomy Journal, 87(1), 16-22.

Hamouda, H. A., El-Dahshouri, M. F., Manal, F. M., & Thalooth, A. T. (2015). Growth, yield and nutrient status of wheat plants as affected by potassium and iron foliar application in sandy soil. Int. J. Chem. Tech. Res., 8(4), 1473-1481.

Hussain, W. S. (2020). Effects of spraying aqueous extracts of some crop plants on growth of four types of weeds. Plant Archives, 20(1), 1460-1464.

Irshad, S., Saleem, M., Anser, M., Ghafoor, M. A., & Rasheed, M. R. (2017). Interactive effect of different farmyard manure levels and tillage operations on yield attributes of cotton. Advances in Environmental Biology, 11(5), 44-49.

Jiao, Y., Yi, Y., Feng, L., Sun, Z., Yang, N., Yu, J., … & Zheng, J. (2017). Effects of subsoiling on maize yield and water-use efficiency in a semiarid area. Open Life Sciences, 12(1), 386-392.

Li, X., Wei, B., Xu, X., & Zhou, J. (2020). Effect of Deep Vertical Rotary Tillage on Soil Properties and Sugarcane Biomass in Rainfed-Land Regions of Southern China. Sustainability, 12(23), 10199.

Megahed, M., & Salleh, E. (2014). Economic study about appropriate mechanization of sugar beet production operations. Egyptian Journal of Agricultural Research, 92(2), 643-655.

Mekail, M. M., Hassan, H. A., Mohamed, W. S., Telep, A. M., & Abd El-Azeim, M. M. (2006). Integrated supply system of nitrogen for wheat growth in the newly reclaimed sandy soils of West El-Minia. Efficiency and economics of the system. Minia J. Agric. Res. and Dev, 26(1), 101-103.

Moraru, P. I., & Rusu, T. (2012). Effect of tillage systems on soil moisture, soil temperature, soil respiration and production of wheat, maize and soybean crops. Journal of Food, Agriculture & Environment, 10(2 Part 1), 445-448.

Rusu, T., Moraru, P. I., Ranta, O., Drocas, I., Bogdan, I., Pop, A. I., & Sopterean, M. L. (2011). No-tillage and minimum tillage-their impact on soil compaction, water dynamics, soil temperature and production on wheat, maize and soybean crop. Bulletin USAVSM Agriculture, 68(1), 318-323.

Shah, J. A., Depar, N., Memon, M. Y., Aslam, M., & Sial, N. A. (2013). Integration of organic and mineral nutrient sources enhances wheat growth and yield in the newly reclaimed sandy desert lands of East West-Minaia. Journal of experimental & Production Agriculture, 20(1), 65-71.

Shah, S. A., Shah, S. M., Wisal, M., Haq, N., Samreen, S., & Amir, M. (2010). Effect of integrated use of organic and inorganic nitrogen sources on wheat yield. Sarhad Journal of Agriculture, 26(4), 559-563.

Snedecor, G.W. and W.G. Cochran (1980). "Statistical Methods". (7th Ed.), Iowa State Univ. Iowa, U.S.A.

Soltanabadi, M. H., Miranizadeh, M., Karimi, M., Vaminakhasti, M. G., & Hemmat, A. (2008). Effect of subsoiling on soil physical properties and sunflower yield under conditions of conventional tillage. International Agrophysics, 22(4), 313-317.

Strudley, M. W., Green, T. R., & Ascough II, J. C. (2008). Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research, 99(1), 4-48.

Taha, M. B., Saied, H. S., and Ibrahim, S. E. (2010). Effect of gypsum and farmyard manure on the productivity of wheat grown on a clayey soil. Egypt, J. of Appl. Sci, 25(5), 297-307.

Tahir, H. T., Jeoo, N. H., & Karim, T. H. (2018). A comparative study of conventional and modified tine types of subsoiler and their effect on some performance characteristics. Tarum Makinalari Bilimi Dergisi, 14(1), 47-55.

Wang, S., Guo, L., Zhou, P., Wang, X., Shen, Y., Han, H., & Han, K. (2019). Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield. Plant, Soil and Environment, 65(3), 131-137.
Wong, V. N., Dalal, R. C., & Greene, R. S. (2009). Carbon dynamics of sodic and saline soils following gypsum and organic material additions: a laboratory incubation. *Applied Soil Ecology, 41*(1), 29-40.

Youssef, I. A., Ali, M. E., Noufal, E. H., Ismail, S. A., & Ali, M. Effect of Chemical Nitrogen Fertilizers under Organic and Bio-Fertilization on Fruit and Oil Yields of Fennel (*Foeniculum Vulgare Mill*).

How to cite this article

Taha, M.B., Salleh, A. M. and Abd Elhamed, A. S. (2021). Some agricultural practices for improving the productivity of moderately sodic soil II: wheat yield, nutrient status, and economic potentiality. *Science Archives, Vol. 2* (4), 298-311. http://dx.doi.org/10.47587/SA.2021.2405

This work is licensed under a Creative Commons Attribution 4.0 International License.

Publisher’s Note: MDIP stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.