DESIGNING POINCARÉ SERIES FOR NUMBER THEORETIC APPLICATIONS

AMY T. DECELLES

Abstract. The GL_2 Poincaré series giving the subconvexity results of Diaconu and Garrett is the solution to an automorphic partial differential equation, constructed by winding-up the solution to the corresponding differential equation on the free space. Generalizing this approach allows design of higher rank Poincaré series with specific number theoretic applications in mind: a Poincaré series for producing an explicit formula for the number of lattice points in an expanding region in a symmetric space, a Poincaré series producing moments of $GL_n \times GL_n$ L-functions, and a Poincaré series designed for applications involving pseudo-Laplacians.

1. Introduction

The subconvexity results of Diaconu and Goldfeld [11, 12] and Diaconu and Garrett [8, 9] and the Diaconu-Garrett-Goldfeld prescription for spectral identities involving second moments of L-functions [10], rely critically on a Poincaré series, whose data, in contrast to classical Poincaré series, is neither smooth nor compactly supported. The data was chosen to imitate Good’s kernel in [24], but in hindsight, can be understood as the solution to a differential equation, $(\Delta - \lambda) u = \theta_H$, on the free space, where λ is a complex parameter and θ_H the distribution that integrates a function along a subgroup H. The Poincaré series is then itself a solution to the corresponding automorphic differential equation and therefore has a heuristically immediate spectral expansion in terms of cusp forms, Eisenstein series, and residues of Eisenstein series. This provides motivation for constructing higher rank Poincaré series from solutions to differential equations of the form $(\Delta - \lambda)^\nu u = \theta$, where Δ is the Laplacian on a symmetric space, θ a distribution, $\lambda \in \mathbb{C}$, $\nu \in \mathbb{N}$.

A second motivation lies in constructing eigenfunctions for pseudo-Laplacians. Recall that Colin de Verdière’s proof of the meromorphic continuation of Eisenstein series used the fact that a function is an eigenfunction for the (self-adjoint) Friedrichs extension of a certain restriction Δ_a of the Laplacian on $SL_2(\mathbb{Z}) \backslash \mathbb{H}$ if and only if it is a solution to the differential equation $(\Delta - \lambda) u = T_a$, where T_a is the distribution that evaluates the constant term at height a [5, 16]. While it would be desirable to construct a self-adjoint Friedrichs extension for a suitable restriction of the Laplacian such that eigenfunctions for this pseudo-Laplacian would be solutions to $(\Delta - \lambda) u = \delta$, where δ is Dirac delta at a base point, the details of the Friedrichs construction make this impossible, as can be shown with global automorphic Sobolev theory [20]. Replacing δ with S_b, the distribution that integrates along a shell of radius b, avoids this technicality.

In this paper, we derive formulas for solutions of the differential equations $(\Delta - \lambda)^\nu u = \delta$ and $(\Delta - \lambda)^\nu u = S_b$ on G/K where G is an arbitrary semi-simple Lie group. A suitable global zonal spherical Sobolev theory, developed in this paper, ensures that the harmonic analysis of spherical functions produces solutions. To our knowledge, this is the first construction of Sobolev spaces of bi-K-invariant distributions; an introduction to positively indexed Sobolev spaces of bi-K-invariant functions can be found in [2]. We then describe the automorphic spectral expansions of the corresponding Poincaré series.

Classical Poincaré series producing Kloosterman sums were generalized by Bump, Friedberg, and Goldfeld for $GL_n(\mathbb{R})$ and by Stevens for $GL_n(\mathbb{A})$ [3, 23, 32]. Other higher rank Poincaré series include those constructed by Miatello and Wallach, the singular Poincaré series constructed by Oda and Tsuzuki, and Thillainatesan’s Poincaré series producing multiple Dirichlet series of cusp forms on $GL_n(\mathbb{R})$ [28, 29, 30, 33].
2. Spherical transforms, global zonal spherical Sobolev spaces, and differential equations on \(G/K \)

2.1. Spherical transform and inversion. Let \(G \) be a complex semi-simple Lie group with finite center and \(K \) a maximal compact subgroup. Let \(G = NAK, \ g = n + a + t \) be corresponding Iwasawa decompositions. Let \(\Sigma \) denote the set of roots of \(g \) with respect to \(a \), let \(\Sigma^+ \) denote the subset of positive roots (for the ordering corresponding to \(n \)), and let \(\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_{\alpha} \alpha, m_{\alpha} \) denoting the multiplicity of \(\alpha \). Let \(a_c^+ \) denote the set of complex-valued linear functions on \(a \). Let \(X = K\backslash G/K \) and \(\Xi = a^+ / W \cong a_+ \). The spherical transform of Harish-Chandra and Berezin integrates a bi-\(K \)-invariant against a zonal spherical function:

\[
\mathcal{F} f (\xi) = \int_G f(g) \overline{\varphi_{\rho + i\xi}}(g) \, dg
\]

Zonal spherical functions \(\varphi_{\rho + i\xi} \) are eigenfunctions for Casimir (restricted to bi-\(K \)-invariant functions) with eigenvalue \(\lambda_\xi = -(|\xi|^2 + |\rho|^2) \). The inverse transform is

\[
\mathcal{F}^{-1} f = \int_\Xi f(\xi) \varphi_{\rho + i\xi} |c(\xi)|^{-2} \, d\xi
\]

where \(c(\xi) \) is the Harish-Chandra \(c \)-function and \(d\xi \) is the usual Lebesgue measure on \(\mathbb{R}^n \). For brevity, denote \(L^2(\Xi, |c(\xi)|^{-2}) \) by \(L^2(\Xi) \). The Plancherel theorem asserts that the spectral transform and its inverse are isometries between \(L^2(X) \) and \(L^2(\Xi) \).

2.2. Characterizations of Sobolev spaces. We define positive index zonal spherical Sobolev spaces as left-\(K \)-invariant subspaces of completions of \(C_c^\infty(\mathbb{G}/K) \) with respect to a topology induced by seminorms associated to derivatives from the universal enveloping algebra, as follows. Let \(\mathcal{U} g^{\leq \ell} \) be the finite dimensional subspace of the universal enveloping algebra \(\mathcal{U} g \) consisting of elements of degree less than or equal to \(\ell \). Each \(\alpha \in \mathcal{U} g \) gives a seminorm \(\nu_\alpha(f) = \| \alpha f \|_{L^2(\mathbb{G}/K)}^2 \) on \(C_c^\infty(\mathbb{G}/K) \).

Definition 2.2.1. Consider the space of smooth functions that are bounded with respect to these seminorms:

\[
\{ f \in C_c^\infty(\mathbb{G}/K) : \nu_\alpha f < \infty \ \text{for all} \ \alpha \in \mathcal{U} g^{\leq \ell} \}
\]

Let \(H^\ell(\mathbb{G}/K) \) be the completion of this space with respect to the topology induced by the family \(\{ \nu_\alpha : \alpha \in \mathcal{U} g^{\leq \ell} \} \). The global zonal spherical Sobolev space \(H^\ell(X) = H^\ell(\mathbb{G}/K)^K \) is the subspace of left-\(K \)-invariant functions in \(H^\ell(\mathbb{G}/K) \).

Proposition 2.2.1. The space of test functions \(C_c^\infty(X) \) is dense in \(H^\ell(X) \).

Proof. We approximate a smooth function \(f \in H^\ell(X) \) by pointwise products with smooth cut-off functions, whose construction (given by [15], Lemma 6.1.7) is as follows. Let \(\sigma(g) \) be the geodesic distance between the cosets \(1 \cdot K \) and \(g \cdot K \) in \(G/K \). For \(R > 0 \), let \(B_R \) denote the ball \(B_R = \{ g \in G : \sigma(g) < R \} \). Let \(\eta \) be a non-negative smooth bi-\(K \)-invariant function, supported in \(B_{1/4} \), such that \(\eta(g) = \eta(g^{-1}) \), for all \(g \in G \). Let \(\sigma(R+1/2) \) denote the characteristic function of \(B_{R+1/2} \), and let \(\eta_R = \eta * \sigma \). As shown in [15], \(\eta_R \) is smooth, bi-\(K \)-invariant, takes values between zero and one, is identically one on \(B_R \) and identically zero outside \(B_{R+1} \), and, for any \(\gamma \in \mathcal{U} g \), there is a constant \(C_\gamma \) such that

\[
\sup_{g \in G} |(\gamma \eta_R)(g)| \leq C_\gamma
\]

We will show that the pointwise products \(\eta_R \cdot f \) approach \(f \) in the \(\ell \)-th Sobolev topology, i.e. for any \(\gamma \in \mathcal{U} g^{\leq \ell}, \nu_\gamma(\eta_R \cdot f - f) \to 0 \) as \(R \to \infty \). By definition,

\[
\nu_\gamma(\eta_R \cdot f - f) = \| \gamma(\eta_R \cdot f - f) \|_{L^2(\mathbb{G}/K)}^2
\]

Leibnitz’ rule implies that \(\gamma(\eta_R \cdot f - f) \) is a finite linear combination of terms of the form \(\alpha(\eta_R - 1) \cdot \beta f \) where \(\alpha, \beta \in \mathcal{U} g^{\leq \ell} \). When \(\deg(\alpha) = 0 \),

\[
\| \alpha(\eta_R - 1) \cdot \beta f \|_{L^2(\mathbb{G}/K)} \ll \| (\eta_R - 1) \cdot \beta f \|_{L^2(\mathbb{G}/K)} \ll \int_{\sigma(g) \geq R} |(\beta f)(g)|^2 \, dg
\]
Otherwise, $\alpha(\eta R - 1) = \alpha \eta R$, and
\[
\|\alpha(\eta R - 1) \cdot \beta f\|_{L^2(G/K)}^2 = \|\alpha \eta R \cdot \beta f\|_{L^2(G/K)}^2
\]
\[
\ll \sup_{g \in G} |\alpha \eta R(g)|^2 \cdot \int_{\sigma(g) \geq R} |(\beta f)(g)|^2 \, dg \ll \int_{\sigma(g) \geq R} |(\beta f)(g)|^2 \, dg
\]
Let B be any bounded set containing all of the (finitely many) β that appear as a result of applying Leibniz’ rule. Then
\[
\nu_{\alpha}(\eta R \cdot f - f) \ll \sup_{\beta \in B} \int_{\sigma(g) \geq R} |(\beta f)(g)|^2 \, dg
\]
Since B is bounded and $f \in H^2(X)$, the right hand side approaches zero as $R \to \infty$. \qed

Proposition 2.2.2. Let Ω be the Casimir operator in the center of $U\mathfrak{g}$. The norm $\| \cdot \|_{\mathcal{L}^2}$ on $C_c^\infty(G/K)^K$ given by
\[
\|f\|_{\mathcal{L}^2}^2 = \|f\|^2 + \|(1-\Omega) f\|^2 + \|(1-\Omega)^2 f\|^2 + \ldots + \|(1-\Omega)^n f\|^2
\]
where $\| \cdot \|$ is the usual norm on $L^2(G/K)$, induces a topology on $C_c^\infty(G/K)^K$ that is equivalent to the topology induced by the family $\{\nu_{\alpha} : \alpha \in U\mathfrak{g}^{\leq 2}\}$ of seminorms and with respect to which $H^2(X)$ is a Hilbert space.

Proof. Let $\{X_i\}$ be a basis for \mathfrak{g} subordinate to the Cartan decomposition $\mathfrak{g} = \mathfrak{p} + \mathfrak{t}$. Then $\Omega = \sum_i X_i X_i^*$, where $\{X_i^*\}$ denotes the dual basis, with respect to the Killing form. Let $\Omega_\mathfrak{p}$ and $\Omega_\mathfrak{t}$ denote the subsums corresponding to \mathfrak{p} and \mathfrak{t} respectively. Then $\Omega_\mathfrak{p}$ is a non-positive operator, while $\Omega_\mathfrak{t}$ is non-negative.

Lemma 2.2.1. For any non-negative integer r, let Σ_r denote the finite set of possible K-types of γf, for $\gamma \in U\mathfrak{g}^{S^r}$ and $f \in C_c^\infty(G/K)^K$, and let C_r be a constant greater than all of the finitely many eigenvalues λ_σ for $\Omega_\mathfrak{t}$ on the K-types $\sigma \in \Sigma_r$. For any $\varphi \in C_c^\infty(G/K)$, of K-type $\sigma \in \Sigma_m$ and $\beta = x_1 \ldots x_n$ a monomial in $U\mathfrak{g}$ with $x_i \in \mathfrak{p}$,
\[
\langle \beta \varphi, \beta \varphi \rangle \leq \langle (-\Omega + C_{m+n-1})^n \varphi, \varphi \rangle
\]
where \langle , \rangle is the usual inner product on $L^2(G/K)$.

Proof. We proceed by induction on $n = \deg \beta$. For $n = 1$, $\beta = x \in \mathfrak{p}$. Let $\{X_i\}$ be a self-dual basis for \mathfrak{p} such that $X_1 = x$. Then,
\[
\langle x \varphi, x \varphi \rangle \leq \sum_i \langle X_i \varphi, X_i \varphi \rangle = - \sum_i \langle X_i^2 \varphi, \varphi \rangle = \langle -\Omega_\mathfrak{p} \varphi, \varphi \rangle = \langle (-\Omega + \Omega_\mathfrak{t}) \varphi, \varphi \rangle
\]
For $n > 1$, write $\beta = x_1 \gamma$, where $x = x_1$ and $\gamma = x_2 \ldots x_n$. Then the K-type of $\gamma \varphi$ lies in Σ_{m+n-1}, and by the above argument,
\[
\langle x_1 \gamma \varphi, x_1 \gamma \varphi \rangle \leq \langle (-\Omega + C_{m+n-1}) \gamma \varphi, \gamma \varphi \rangle
\]
Let $C_c^\infty(G/K)_{\Sigma_r}$ be the subspace of $C_c^\infty(G/K)$ consisting of functions of K-type in Σ_r and $L^2(G/K)_{\Sigma_r}$ be the corresponding subspace of $L^2(G/K)$. For the moment, let $\Sigma = \Sigma_{m+n-1}$ and $C = C_{m+n-1}$. Then, by construction, $-\Omega + C$ is positive on $C_c^\infty(G/K)_\Sigma$, thus $-\Omega + C = -\Omega_\mathfrak{p} + \Omega_\mathfrak{t} + C$ is a positive densely defined symmetric operator on $L^2(G/K)_\Sigma$. Thus, by Friedrichs [13, 14], there is an everywhere defined inverse R, which is a positive symmetric bounded operator on $L^2(G/K)_\Sigma$, and which, by the spectral theory for bounded symmetric operators, has a positive symmetric square root \sqrt{R} in the closure of the polynomial algebra $\mathbb{C}[R]$ in the Banach space of bounded operators on $L^2(G/K)_\Sigma$. Thus $-\Omega + C$ has a symmetric positive square root, namely $(\sqrt{R})^{-1}$, defined on $C_c^\infty(G/K)_{\Sigma_r}$, commuting with all elements of $U\mathfrak{g}$, and
\[
\langle (-\Omega + C) \gamma \varphi, \gamma \varphi \rangle = \langle \gamma \sqrt{-\Omega + C} \varphi, \gamma \sqrt{-\Omega + C} \varphi \rangle
\]
Now the K-type of $\sqrt{-\Omega + C} \varphi$, being the same as that of φ, lies in Σ_m, so by inductive hypothesis,
\[
\langle \gamma \sqrt{-\Omega + C} \varphi, \gamma \sqrt{-\Omega + C} \varphi \rangle \leq \langle (-\Omega + C_{m+n-2})^{n-1} \sqrt{-\Omega + C} \varphi, \sqrt{-\Omega + C} \varphi \rangle = \langle (-\Omega + C_{m+n-2})^{n-1}(-\Omega + C_{m+n-1}) \varphi, \varphi \rangle \leq \langle (-\Omega + C_{m+n-1})^n \varphi, \varphi \rangle
\]
and this completes the proof of the lemma.
Let $\alpha \in U_{\mathfrak{g}}^{\leq 2\ell}$. By the Poincaré-Birkhoff-Witt theorem we may assume α is a monomial of the form $\alpha = x_{1} \ldots x_{n} y_{1} \ldots y_{m}$ where $x_{i} \in \mathfrak{p}$ and $y_{i} \in \mathfrak{t}$. Then, for any $f \in C_{c}^{\infty}(G/K)^{K}$,

$$
\nu_{\alpha}f = \langle \alpha f, \alpha f \rangle_{L^{2}(G/K)} = \langle x_{1} \ldots x_{n} f, x_{1} \ldots x_{n} f \rangle_{L^{2}(G/K)} \quad (x_{i} \in \mathfrak{p})
$$

By the lemma, there is a constant C, depending on the degree of α, such that $\nu_{\alpha}(f) \ll \langle -\Omega + C^{\deg \alpha} f, f \rangle$ for all $f \in C_{c}^{\infty}(G/K)^{K}$. In fact, for bi-$K$-invariant functions, $\langle -\Omega + C^{\deg \alpha} f, f \rangle = \langle -\Omega_{\mathfrak{p}} + C^{\deg \alpha} f \rangle$. Since $\Omega_{\mathfrak{p}}$ is positive semi-definite, multiplying by a positive constant does not change the topology. Thus, we may take $C = 1$. That is, the subfamily $\{\nu_{\alpha} : \alpha = (1 - \Omega)^{k}, k \leq \ell\}$ of seminorms on $C_{c}^{\infty}(G/K)^{K}$ dominates the family $\{\nu_{\alpha} : \alpha \in U_{\mathfrak{g}}^{\leq 2\ell}\}$ and thus induces an equivalent topology. \hfill \qed

It will be necessary to have another description of Sobolev spaces. Let

$$
W^{2,\ell}(G/K) = \{ f \in L^{2}(G/K) : \alpha f \in L^{2}(G/K) \text{ for all } \alpha \in U_{\mathfrak{g}}^{\leq \ell} \}
$$

where the action of ν_{α} on f is given by the seminorms $\nu_{\alpha}f = \|\alpha f\|_{L^{2}(G/K)}^{2}, \alpha \in U_{\mathfrak{g}}^{\leq \ell}$. Let $W^{2,\ell}(X)$ be the subspace of left K-invariants.

Proposition 2.2.3. These spaces are equal to the corresponding Sobolev spaces:

$$
W^{2,\ell}(G/K) = H^{\ell}(G/K) \quad \text{and} \quad W^{2,\ell}(X) = H^{\ell}(X)
$$

Proof. It suffices to show the density of test functions in $W^{2,\ell}(G/K)$. Since G acts continuously on $W^{2,\ell}(G/K)$ by left translation, mollifications are dense in $W^{2,\ell}(G/K)$; see 2.1 by Urysohn’s Lemma, it suffices to consider mollifications of continuous, compactly supported functions. Let $\eta \in C_{c}^{\infty}(G)$ and $f \in C_{c}^{0}(G/K)$. Then, $\eta \cdot f$ is a smooth vector, and for all $\alpha \in U_{\mathfrak{g}}$, $\alpha \cdot (\eta \cdot f) = (L_{\alpha} \eta) \cdot f$. For $X \in \mathfrak{g}$, the action on $\eta \cdot f$ as a vector is

$$
X \cdot (\eta \cdot f) = \frac{\partial}{\partial t_{0}} \bigg|_{t_{0}=0} e^{t_{0}X} \cdot \int_{G} \eta(g) \ g \cdot f \ dg = \frac{\partial}{\partial t_{0}} \bigg|_{t_{0}=0} \int_{G} \eta(g) \ (e^{t_{0}X}g) \cdot f \ dg
$$

Now using the fact that f is a function and the group action on f is by translation,

$$
(X \cdot (\eta \cdot f))(h) = \frac{\partial}{\partial t_{0}} \bigg|_{t_{0}=0} \int_{G} \eta(g) \ f(g^{-1} e^{-t_{0}X} h) \ dg = \frac{\partial}{\partial t_{0}} \bigg|_{t_{0}=0} (\eta \cdot f)(e^{-t_{0}X} h)
$$

Thus the smoothness of $(\eta \cdot f)$ as a vector implies that it is a genuine smooth function. The support of $\eta \cdot f$ is contained in the product of the compact supports of η and f. Since the product of two compact sets is again compact, $\eta \cdot f$ is compactly supported. \hfill \qed

Remark 2.2.1. By Proposition 2.2.2 $H^{2\ell}(X) = W^{2,2\ell}(X)$ is a Hilbert space with norm

$$
\|f\|_{2\ell}^{2} = \|f\|^{2} + \| (1 - \Omega) f \|^{2} + \ldots + \| (1 - \Omega)^{\ell} f \|^{2}
$$

where $\|\cdot\|$ is the usual norm on $L^{2}(G/K)$, and $(1 - \Omega)^{k}$ is a distributional derivative.

2.3. Spherical transforms and differentiation on Sobolev spaces.

Proposition 2.3.1. For $\ell \geq 0$, the Laplacian extends to a continuous linear map $H^{2\ell+2}(X) \to H^{2\ell}(X)$; the spherical transform extends to a map on $H^{2\ell}(X)$; and

$$
\mathcal{F}((1 - \Delta) f) = (1 - \lambda_{\xi}) \cdot \mathcal{F} f \quad \text{for all } f \in H^{2\ell+2}(X)
$$

Proof. By the construction of the Sobolev topology, the Laplacian is a continuous map

$$
\Delta : C_{c}^{\infty}(G/K) \cap H^{2\ell+2}(G/K) \to C_{c}^{\infty}(G/K) \cap H^{2\ell}(G/K)
$$

Since the Laplacian preserves bi-K-invariance, it extends to a (continuous linear) map, also denoted Δ, from $H^{2\ell+2}(X)$ to $H^{2\ell}(X)$. The spherical transform, defined on $C_{c}^{\infty}(G/K)^{K}$ by the integral transform of Harish-Chandra and Berezin, extends by continuity to $H^{2\ell}(X)$. This extension agrees with the extension to $L^{2}(X)$ coming from Plancherel. By integration by parts, $\mathcal{F}(\Delta \varphi) = \lambda_{\xi} \cdot \mathcal{F} \varphi$, for $\varphi \in C_{c}^{\infty}(G/K)^{K}$, so, by continuity $\mathcal{F}((1 - \Delta)f) = (1 - \lambda_{\xi}) \cdot \mathcal{F} f$ for all $f \in H^{2\ell+2}(X)$. \hfill \qed
Let μ be the multiplication map $\mu (v)(\xi) = (1 - \lambda_\xi) \cdot v(\xi) = (1 + |\rho|^2 + |\xi|^2) \cdot v(\xi)$ where ρ is the half sum of positive roots. For $\ell \in \mathbb{Z}$, the weighted L^2-spaces $V^{2\ell} = \{ v \text{ measurable} : \mu^\ell (v) \in L^2(\mathbb{Z}) \}$ with norms
\[
\|v\|^2_{V^{2\ell}} = \|\mu^\ell (v)\|^2_{L^2(\mathbb{Z})} = \int_{\mathbb{Z}} (1 + \rho|^2 + |\xi|^2)^{2\ell} \cdot |v(\xi)|^2 \cdot |\xi(\xi)|^{-2} \, d\xi
\]
are Hilbert spaces with $V^{2\ell+2} \subset V^{2\ell}$ for all ℓ. In fact, these are dense inclusions, since truncations are dense in all $V^{2\ell}$-spaces. The multiplication map μ is a Hilbert space isomorphism $\mu : V^{2\ell+2} \rightarrow V^{2\ell}$, since for $v \in V^{2\ell+2}$,
\[
\|\mu (v)\|_{V^{2\ell}} = \|\mu^{\ell+1} (v)\|_{L^2(\mathbb{Z})} = \|v\|_{V^{2\ell+2}}
\]
The negatively indexed spaces are the Hilbert space duals of their positively indexed counterparts, by integration. The adjoints to inclusion maps are genuine inclusions, since $V^{2\ell+2} \hookrightarrow V^{2\ell}$ is dense for all $\ell \geq 0$, and, under the identification $(V^{2\ell})^* = V^{-2\ell}$, the adjoint map $\mu^* : (V^{2\ell})^* \rightarrow (V^{2\ell+2})^*$ is the multiplication map $\mu : V^{-2\ell} \rightarrow V^{-2\ell-2}$.

Proposition 2.3.2. For $\ell \geq 0$, the spherical transform is an isometric isomorphism $H^{2\ell}(X) \rightarrow V^{2\ell}$.

Proof. On compactly supported functions, the spherical transform \mathcal{F} and its inverse \mathcal{F}^{-1} are given by integrals, which are certainly continuous linear maps. The Plancherel theorem extends \mathcal{F} and \mathcal{F}^{-1} to isometries between $L^2(X)$ and $L^2(\mathbb{Z})$. Thus \mathcal{F} on $H^{2\ell}(X) \subset L^2(X)$ is a continuous linear L^2-isometry onto its image.

Let $f \in H^{2\ell}(X)$. By Proposition 2.2.3, the distributional derivatives $(1 - \Delta)^k f$ lie in $L^2(X)$ for all $k \leq \ell$. By the Plancherel theorem and Proposition 2.3.1,
\[
\| (1 - \Delta)^k f \|_{L^2(X)} = \| \mathcal{F}((1 - \Delta)^k f) \|_{L^2(\mathbb{Z})} = \| (1 - \lambda_\xi)^k \cdot \mathcal{F} f \|_{L^2(\mathbb{Z})}
\]
Thus $\mathcal{F}(H^{2\ell}(X)) \subset V^{2\ell}$. The following claim shows that $\mathcal{F}^{-1} (V^{2\ell}) \subset H^{2\ell}(X)$ and finishes the proof.

Claim. For $v \in V^{2\ell}$, the distributional derivatives $(1 - \Delta)^k \mathcal{F}^{-1} v$ lie in $L^2(X)$, for all $0 \leq k \leq \ell$.

Proof. For test function φ, the Plancherel theorem implies
\[
(1 - \Delta) \mathcal{F}^{-1} v (\varphi) = \mathcal{F}^{-1} v ((1 - \Delta) \varphi) = v (\mathcal{F} (1 - \Delta) \varphi)
\]
By Proposition 2.3.1 and the Plancherel theorem,
\[
v (\mathcal{F} (1 - \Delta) \varphi) = v ((1 - \lambda_\xi) \cdot \mathcal{F} \varphi) = (1 - \lambda_\xi) \cdot v (\mathcal{F} \varphi) = \mathcal{F}^{-1} ((1 - \lambda_\xi) \cdot v) \varphi
\]
By induction, we have the following identity of distributions: $(1 - \Delta)^k \mathcal{F}^{-1} v = \mathcal{F}^{-1} ((1 - \lambda_\xi)^k v)$. Since \mathcal{F} is an L^2-isometry and $(1 - \lambda_\xi)^k v \in L^2(\mathbb{Z})$ for all $0 \leq k \leq \ell$, $(1 - \Delta)^k \mathcal{F}^{-1} v$ lies in $L^2(X)$ for $0 \leq k \leq \ell$.

Remark 2.3.1. This Hilbert space isomorphism $\mathcal{F} : H^{2\ell} \rightarrow V^{2\ell}$ gives a spectral characterization of the 2ℓth Sobolev space, namely the preimage of $V^{2\ell}$ under \mathcal{F}.
\[
H^{2\ell}(X) = \{ f \in L^2(X) : (1 - \lambda_\xi)^\ell \cdot \mathcal{F} f (\xi) \in L^2(\mathbb{Z}) \}
\]

2.4. **Negatively indexed Sobolev spaces and distributions.** Negatively indexed Sobolev spaces allow the use of spectral theory for solving differential equations involving certain distributions.

Definition 2.4.1. For $\ell > 0$, the Sobolev space $H^{-\ell}(X)$ is the Hilbert space dual of $H^{\ell}(X)$.

Remark 2.4.1. Since the space of test functions is a dense subspace of $H^\ell(X)$ with $\ell > 0$, dualizing gives an inclusion of $H^{-\ell}(X)$ into the space of distributions. The adjoints of the dense inclusions $H^\ell \hookrightarrow H^{\ell+1}$ are inclusions $H^{-\ell+1}(X) \hookrightarrow H^{-\ell}(X)$, and the self-duality of $H^0(X) = L^2(X)$ implies that $H^\ell(X) \hookrightarrow H^{-\ell}$ for all $\ell \in \mathbb{Z}$.

Proposition 2.4.1. The spectral transform extends to an isometric isomorphism on negatively indexed Sobolev spaces $\mathcal{F} : H^{-2\ell} \rightarrow V^{-2\ell}$, and for any $u \in H^{2\ell}(X)$, $\ell \in \mathbb{Z}$, $\mathcal{F}((1 - \Delta) u) = (1 - \lambda_\xi) \cdot \mathcal{F} u$.
Proof. To simplify notation, for this proof let \(H^{2\ell} = H^{2\ell}(X) \). Propositions 2.3.1 and 2.3.2 give the result for positively indexed Sobolev spaces, expressed in the following commutative diagram,

\[
\begin{array}{cccccccc}
\ldots & (1-\Delta) & H^4 & (1-\Delta) & H^2 & (1-\Delta) & H^0 & \\
\downarrow & f \approx & \downarrow & f \approx & \downarrow & f \approx & \\
\ldots & \mu & V^4 & \mu & V^2 & \mu & V^0 & \\
\end{array}
\]

where \(\mu(v)(\xi) = (1 - \lambda_\xi) \cdot v(\xi) \), as above. Dualizing, we immediately have the commutativity of the adjoint diagram.

\[
\begin{array}{cccccccc}
\ldots & (1-\Delta)^* & (H^2)^* & (1-\Delta)^* & (H^4)^* & (1-\Delta)^* & \\
\downarrow & f^* \approx & \downarrow & f^* \approx & \downarrow & f^* \approx & \\
\ldots & \mu^* & (V^2)^* & \mu^* & (V^4)^* & \mu^* & \\
\end{array}
\]

The self-duality of \(L^2 \) and the Plancherel theorem allow the two diagrams to be connected.

\[
\begin{array}{cccccccc}
\ldots & (1-\Delta) & H^4 & (1-\Delta) & H^2 & (1-\Delta) & H^0 & (1-\Delta)^* & H^{-2} & (1-\Delta)^* & H^{-4} & (1-\Delta)^* & \ldots \\
\downarrow & f \approx & \downarrow & f \approx & \downarrow & f \approx & \downarrow & f^{-1} & \approx & f^* \approx & \downarrow & f^* \approx & \\
\ldots & \mu & V^4 & \mu & V^2 & \mu & V^0 & \mu & V^{-2} & \mu & V^{-4} & \mu & \ldots \\
\end{array}
\]

Since \(V^{2\ell+2} \) is dense in \(V^{2\ell} \) for all \(\ell \in \mathbb{Z} \), and \(H^{2\ell} \approx V^{2\ell} \) for all \(\ell \in \mathbb{Z} \), \(H^{2\ell+2} \) is dense in \(H^{2\ell} \) for all \(\ell \in \mathbb{Z} \). Thus test functions are dense in all the Sobolev spaces. The adjoint map \((1-\Delta)^* : H^{-2\ell} \to H^{-2\ell-2}\) is the continuous extension of \((1-\Delta)\) from the space of test functions, since, for a test function \(\varphi \), identified with an element of \(H^{-2\ell}\) by integration,

\[
((1-\Delta)^* \Lambda_\varphi)(f) = \Lambda_\varphi((1-\Delta)f) = \langle \varphi, (1-\Delta)f \rangle = \langle (1-\Delta)\varphi, f \rangle = \Lambda_{(1-\Delta)^*}(f)
\]

for all \(f \in H^{2\ell+2}\) by integration by parts, where \(\Lambda_\varphi \) is the distribution associated with \(\varphi \) by integration and \(\langle \cdot, \cdot \rangle \) denotes the usual inner product on \(L^2(G/K)\). The map \((F^*)^{-1} \) on \(H^{-2\ell}\) is the continuous extension of \(\mathcal{F} \) from the space of test functions, since for a test function \(\varphi \),

\[
(F^* \Lambda_{F\varphi})(f) = \Lambda_{F\varphi}(Ff) = \langle F\varphi, Ff \rangle_{V^{2\ell}} = \langle \varphi, f \rangle_{H^{2\ell}} = \Lambda_\varphi(f)
\]

for all \(f \in H^{2\ell}\). Thus, the following diagram commutes.

\[
\begin{array}{cccccccc}
\ldots & (1-\Delta) & H^4 & (1-\Delta) & H^2 & (1-\Delta) & H^0 & (1-\Delta)^* & H^{-2} & (1-\Delta)^* & H^{-4} & (1-\Delta)^* & \ldots \\
\downarrow & f \approx & \\
\ldots & \mu & V^4 & \mu & V^2 & \mu & V^0 & \mu & V^{-2} & \mu & V^{-4} & \mu & \ldots \\
\end{array}
\]

In other words, the relation \(\mathcal{F}((1-\Delta)u) = (1 - \lambda_\xi) \cdot \mathcal{F}u \) holds for any \(u \) in a Sobolev space. \(\square \)

Recall that, for a smooth manifold \(M \), the positively indexed local Sobolev spaces \(H^{\ell}_{\text{loc}}(M) \) consist of functions \(f \) on \(M \) such that for all points \(x \in M \), all open neighborhoods \(U \) of \(x \) small enough that there is a diffeomorphism \(\Phi : U \to \mathbb{R}^n \) with \(\Omega = \Phi(U) \) having compact closure, and all test functions \(\varphi \) with support in \(U \), the function \((f \cdot \varphi) \circ \Phi^{-1} : \Omega \to \mathbb{C} \) is in the Euclidean Sobolev space \(H^{\ell}(\Omega) \). The Sobolev embedding theorem for local Sobolev spaces states that \(H^{\ell+k}_{\text{loc}}(M) \subset C^k(M) \) for \(\ell > \text{dim}(M)/2 \).

Proposition 2.4.2. For \(\ell > \text{dim}(G/K)/2 \), \(H^{\ell+k}(X) \subset H^{\ell+k}(G/K) \subset C^k(G/K) \).
Proof. Since positively indexed global Sobolev spaces on G/K lie inside the corresponding local Sobolev spaces, $H^s_{loc}(G/K) \subset C^k(G/K)$ by local Sobolev embedding.

This embedding of global Sobolev spaces into C^k-spaces is used to prove that the integral defining spectral inversion for test functions can be extended to sufficiently highly indexed Sobolev spaces, i.e. the abstract isometric isomorphism $\mathcal{F}^{-1} \circ \mathcal{F} : H^s(X) \to H^s(X)$ is given by an integral that is convergent uniformly pointwise, when $\ell > \dim(G/K)/2$, as follows.

Proposition 2.4.3. For $f \in H^s(X)$, $s > k + \dim(G/K)/2$,

$$ f = \int_{\Xi} \mathcal{F}f(\xi) \varphi_{\rho+i\xi} |c(\xi)|^{-2} d\xi \quad \text{in } H^s(X) \text{ and } C^k(X) $$

Proof. Let $\{\Xi_n\}$ be a nested family of compact sets in Ξ whose union is Ξ, χ_n be the characteristic function of Ξ_n, and f_n be given by the following $C^\infty(X)$-valued Gelfand-Pettis integral (see 2.4.4)

$$ f_n = \int_{\Xi} \chi_n(\xi) \mathcal{F}f(\xi) \varphi_{\rho+i\xi} |c(\xi)|^{-2} d\xi $$

Since $\chi_n(\xi) \mathcal{F}f(\xi)$ is compactly supported, $f_n = \mathcal{F}^{-1}(\chi_n \cdot \mathcal{F}f)$. Thus, by Propositions 2.3.2 and 2.4.1

$$ \|f_n - f\|_{H^s(X)} = \|\chi_n - \chi_m\|_{C^\infty} \cdot \|\mathcal{F}f\|_{V^s} $$

Since $\mathcal{F}f$ lies in V^s, these tails certainly approach zero as $n, m \to \infty$. Similarly,

$$ \|f_n - f\|_{H^s(X)} = \|\chi_n - 1\|_{C^\infty} \cdot \|\mathcal{F}f\|_{V^s} \to 0 \quad \text{as } n \to \infty $$

By Proposition 2.4.2, f_n approaches f in $C^k(X)$.

The embedding of global Sobolev spaces into C^k-spaces also implies that compactly supported distributions lie in global Sobolev spaces, as follows.

Proposition 2.4.4. Any compactly supported distribution on X lies in a global zonal spherical Sobolev space. Specifically, a compactly supported distribution of order k lies in $H^{-s}(X)$ for all $s > k + \dim(G/K)/2$.

Proof. A compactly supported distribution u lies in $(C^\infty(G/K))^\ast$. Since compactly supported distributions are of finite order, u extends continuously to $C^k(G/K)$ for some $k \geq 0$. Using Proposition 2.4.2 and dualizing, u lies in $H^{-(\ell+k)}(X)$, for $\ell > \dim(G/K)/2$. \qed

Remark 2.4.2. In particular, this implies that the Dirac delta distribution at the base point $x_0 = 1 \cdot K$ in G/K lies in $H^s(X)$ for all $\ell > \dim(G/K)/2$.

Proposition 2.4.5. For a compactly supported distribution u of order k, $\mathcal{F}u = u(\varphi_{\rho+i\xi})$ in V^{-s} where $s > k + \dim(G/K)/2$.

Proof. By Proposition 2.4.4, a compactly supported distribution u of order k lies in H^{-s} for any $s > k + \dim(G/K)/2$. Let f be any element in $H^s(X)$. Then,

$$(\mathcal{F}f, \mathcal{F}u)_{V^s \times V^{-s}} = (f, u)_{H^s \times H^{-s}} = u(f)$$

Since the spectral expansion of f converges to it in the $H^s(X)$ topology by Proposition 2.4.3

$$ u(f) = u \left(\lim_n \int_{\Xi_n} \mathcal{F}f(\xi) \varphi_{\rho+i\xi} |c(\xi)|^{-2} d\xi \right) = \lim_n u \left(\int_{\Xi_n} \mathcal{F}f(\xi) \varphi_{\rho+i\xi} |c(\xi)|^{-2} d\xi \right) $$

Since the integral is a $C^\infty(X)$-valued Gelfand-Pettis integral (see 2.4.4) and u is an element of $(C^\infty(X))^\ast$,

$$ u \left(\int_{\Xi_n} \mathcal{F}f(\xi) \varphi_{\rho+i\xi} |c(\xi)|^{-2} d\xi \right) = \int_{\Xi_n} \mathcal{F}f(\xi) u(\varphi_{\rho+i\xi}) |c(\xi)|^{-2} d\xi $$

The limit as $n \to \infty$ is finite, by comparison with the original expression which surely is finite, and thus

$$(\mathcal{F}f, \mathcal{F}u)_{V^s \times V^{-s}} = \int_{\Xi} \mathcal{F}f(\xi) u(\varphi_{\rho+i\xi}) |c(\xi)|^{-2} d\xi = (\mathcal{F}f, u(\varphi_{\rho+i\xi}))_{V^s \times V^{-s}}$$

Thus, $\mathcal{F}u = u(\varphi_{\rho+i\xi})$ as elements of V^{-s} \qed

Remark 2.4.3. This implies that the spherical transform of Dirac delta is $\mathcal{F}\delta = \varphi_{\rho+i\xi}(1) = 1$.

2.5. **Gelfand-Pettis integrals and mollification.** We describe the vector-valued (weak) integrals of Gelfand [22] and Pettis [31] and summarize the key results; see [21]. For X, μ a measure space and V a locally convex, quasi-complete topological vector space, a Gelfand-Pettis (or weak) integral is a vector-valued integral $C^\infty_c(X,V) \to V$ denoted $f \to I_f$ such that, for all $\alpha \in V^*$, $\alpha(I_f) = \int_X \alpha \circ f \, d\mu$, where this latter integral is the usual scalar-valued Lebesgue integral.

Remark 2.5.1. Hilbert, Banach, Frechet, LF spaces, and their weak duals are locally convex, quasi-complete topological vector spaces; see [21].

Theorem 2.5.1. (i) Gelfand-Pettis integrals exist, are unique, and satisfy the following estimate:

$$I_f \in \mu(spt.f) \cdot (\text{closure of compact hull of } f(X))$$

(ii) Any continuous linear operator between locally convex, quasi-complete topological vector spaces $T : V \to W$ commutes with the Gelfand-Pettis integral: $T(I_f) = I_{Tf}$.

For a locally compact Hausdorff topological group G, with Haar measure dg, acting continuously on a locally convex, quasi-complete vector space V, the group algebra $C^\infty_c(G)$ acts on V by averaging:

$$\eta \cdot v = \int_G \eta(g) g \cdot v \, dg$$

Theorem 2.5.2. (i) Let G be a locally compact Hausdorff topological group acting continuously on a locally convex, quasi-complete vector space V. Let $\{\psi_i\}$ be an approximate identity on G. Then, for any $v \in V$, $\psi_i \cdot v \to v$ in the topology of V.

(ii) If G is a Lie group and $\{\eta_i\}$ is a smooth approximate identity on G, the mollifications $\eta_i \cdot v$ are smooth. In particular, for $X \in \mathfrak{g}$, $X \cdot (\eta \cdot v) = (L_X\eta) \cdot v$. Thus the space V^∞ of smooth vectors is dense in V.

Remark 2.5.2. For a function space V, the space of smooth vectors V^∞ is not necessarily the subspace of smooth functions in V. Thus Theorem 2.5.2 does not prove the density of smooth functions in V.

3. **Free Space Solutions**

3.1. **Fundamental Solutions.** We determine a fundamental solution for the differential operator $(\Delta - \lambda z)^\nu$ on the Riemannian symmetric space G/K, where G is any complex semi-simple Lie group and K is a maximal compact subgroup. The presence of a complex (eigenvalue) parameter z in the differential operator makes the fundamental solution suitable for further applications, and the simple, explicit nature of the fundamental solution allows relatively easy estimation of its behavior in the eigenvalue parameter, proving convergence of the associated Poincaré series in L^2 and, in fact, in a Sobolev space sufficient to prove continuity [6]. Further, this makes it possible to determine the vertical growth of the Poincaré series in the eigenvalue parameter.

For a derivation of the fundamental solution in the case $G = SL_2(\mathbb{C})$, assuming a suitable global zonal spherical Sobolev theory, see [17, 19]. Our results for the general case are sketched in [18]. After having submitted an initial version of this paper, it was brought to our attention that Wallach derives a similar, though less explicit, formula in Section 4 of [35].

Let G be a complex semi-simple Lie group with finite center and K a maximal compact subgroup. Let $G = NAK$, $\mathfrak{g} = \mathfrak{n} + \mathfrak{a} + \mathfrak{k}$ be corresponding Iwasawa decompositions. Let Σ denote the set of roots of \mathfrak{g} with respect to \mathfrak{a}, let Σ^+ denote the subset of positive roots (for the ordering corresponding to \mathfrak{n}), and let $\rho = \frac{1}{2} \sum_{\alpha \in \Sigma^+} m_\alpha \alpha$, m_α denoting the multiplicity of α. Since G is complex, $m_\alpha = 2$, for all $\alpha \in \Sigma^+$, so $\rho = \sum_{\alpha \in \Sigma^+} \alpha$. Let $\mathfrak{a}^\ast_\mathbb{C}$ denote the set of complex-valued linear functions on \mathfrak{a}. Consider the differential equation on the symmetric space $X = G/K$:

$$(\Delta - \lambda z)^\nu u_z = \delta_{1,K}$$

where the Laplacian Δ is the image of the Casimir operator for \mathfrak{g}, λz is $z^2 - |\rho|^2$ for a complex parameter z, ν is an integer, and $\delta_{1,K}$ is Dirac delta at the basepoint $x_0 = 1 \cdot K \in G/K$. Since $\delta_{1,K}$ is also left-K-invariant, we construct a left-K-invariant solution on G/K using the harmonic analysis of spherical functions.

Proposition 3.1.1. For integral $\nu > \dim(G/K)/2$, u_z is a continuous left-K-invariant function on G/K with the following spectral expansion:

$$u_z(g) = \int_{\mathfrak{a}^\ast_\mathbb{C}} \frac{(-1)^{\nu}}{(|\xi|^2 + z^2)^\nu} \varphi_{\rho+i\xi}(g) |c(\xi)|^{-2} \, d\xi$$
Proposition 3.1.2. The fundamental solution c function, π form. Since the function u is unique in Sobolev spaces, since any u'_1 satisfying the differential equation must necessarily satisfy $F(u'_1) = F(\delta_{\lambda_1})/(\lambda_1 - \lambda_2)^\nu = (-1)^\nu/((\xi^2 + \zeta^2)^\nu)$. For $\nu > \dim(G/K)/2$, the solution is continuous by Proposition 2.4.2 and by Propositions 2.4.3 and 3.1.1 on the right hand side.

Proof. Since δ_{λ_1} is a compactly supported distribution of order zero, by Proposition 2.4.4 it lies in the global zonal spherical Sobolev spaces $H^\ell(X)$ for all $\ell > \dim(G/K)/2$. Thus there is a solution $u_\ell \in H^{\ell+2\nu}(X)$. The solution u_ℓ is unique in Sobolev spaces, since any u'_ℓ satisfying the differential equation must necessarily satisfy $F(u'_\ell) = F(\delta_{\lambda_1})/(\lambda_1 - \lambda_2)^\nu = (-1)^\nu/((\xi^2 + \zeta^2)^\nu)$. For $\nu > \dim(G/K)/2$, the solution is continuous by Proposition 2.4.2 and by Propositions 2.4.3 and 3.1.1 on the right hand side.

Remark 3.1.1. As the proof shows, the condition on ν is necessary only if uniform pointwise convergence of the spectral expansion is desired. In general, there is a solution, unique in global zonal spherical Sobolev spaces, whose spectral expansion, given above, converges in the corresponding Sobolev topologies.

For a complex semi-simple Lie group, the zonal spherical functions are elementary. The spherical function associated with the principal series I_χ with $\chi = e^{\rho + i\lambda}$, $\lambda \in \mathfrak{a}_c^*$ is

$$\varphi_{\rho+i\lambda} = \frac{\pi^+(\rho)}{\pi^+(i\lambda)} \sum_{w} \text{sgn}(w) e^{i\lambda}$$

where the sums are taken over the elements w of the Weyl group, and the function π^+ is the product $\pi^+(\mu) = \prod_{\alpha>0} \langle \alpha, \mu \rangle$ over positive roots, without multiplicities. The ratio of $\pi^+(\rho)$ to $\pi^+(i\lambda)$ is the c-function, $c(\lambda)$. The denominator can be rewritten

$$\sum_{w \in W} \text{sgn}(w) e^{i\lambda} = \prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha)$$

Proposition 3.1.2. The fundamental solution u_ℓ has the following integral representation:

$$u_\ell = \frac{\pi^+(\rho)}{\prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha)} \cdot \int_{\mathfrak{a}^*/W} \pi^+(\lambda) e^{i\lambda} d\lambda$$

Proof. In the case of complex semi-simple Lie groups, the inverse spherical transform has an elementary form. Since the function π^+ is a homogeneous polynomial of degree d, equal to the number of positive roots, counted without multiplicity, and is W-equivariant by the sign character,

$$\mathcal{F}^{-1} f = \int_{\mathfrak{a}^*/W} f(\lambda) \varphi_{\rho+i\lambda} |c(\lambda)|^{-2} d\lambda = \frac{(-1)^d}{\prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha)} \cdot \int_{\mathfrak{a}^*} f(\lambda) \pi^+(\lambda) e^{i\lambda} d\lambda$$

By Proposition 3.1.1 u_ℓ has the stated integral representation. \qed

Proposition 3.1.3. The integral in Proposition 3.1.2 can be expressed in terms of a K-Bessel function:

$$\int_{\mathfrak{a}^*} \pi^+(\lambda) e^{i(\lambda,\log a)} d\lambda = \prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha) \cdot \int_{\mathfrak{a}^*} e^{i(\lambda,\log a)} K_{\nu-1/2} \left(|\log| a|/z \right) d\lambda$$

where $n = \dim \mathfrak{a}$, d is the number of positive roots, counted without multiplicity, and $\nu > n/2 + d$.

Proof. Let $I(\log a)$ denote the integral to be evaluated. Using the Γ-function and changing variables $\lambda = \lambda/\sqrt{t}$,

$$I(\log a) = \frac{1}{\Gamma(\nu)} \cdot \int_{0}^{\infty} t^{\nu} e^{-t(|\lambda|^2 + |z|^2)} \pi^+(\lambda) e^{i\lambda} d\lambda dt$$

The polynomial π^+ is in fact harmonic. See, for example, Lemma 2 in [35] or, for a more direct proof, Theorem 5.0.3 below. Thus the integral over \mathfrak{a}^* is the Fourier transform of the product of a Gaussian and a harmonic polynomial, and by Hecke’s identity,

$$\int_{\mathfrak{a}^*} e^{-|\lambda|^2} \pi^+(\lambda) e^{-i(\lambda, -\log a/\sqrt{t})} d\lambda = i d \cdot e^{d/2 - d/2} \pi^+(\log a) e^{-|\log a|^2/2}$$

Returning to the main integral,

$$I(\log a) = \frac{i d \pi^+(\log a)}{\Gamma(\nu)} \cdot \int_{0}^{\infty} t^{\nu-d} e^{-t z^2} (t^{-n/2} e^{-|\log a|^2/2}) dt$$
Replacing the Gaussian by its Fourier transform and using the Γ-function identity again,

$$I(\log a) = i^d \pi^+ (\log a) \cdot \frac{\Gamma(\nu - d)}{\Gamma(\nu)} \cdot \int_{\mathbb{R}^d} \frac{e^{i(\lambda, \log a)}}{|\lambda|^2 + z^2}^{\nu-d} d\lambda$$

This integral can be written as a K-Bessel function (see Section 3) yielding the desired conclusion. \hfill \Box

The explicit formula for u_z follows immediately. Choosing ν to be the minimal integer required for C^0-convergence yields a particularly simple expression, as described in the following theorem.

Theorem 3.1.1. For an integer $\nu > \dim(G/K)/2 = n/2 + d$, where d is the number of positive roots, counted without multiplicities, and $n = \dim(a)$ is the rank, u_z can be expressed in terms of a K-Bessel function

$$u_z(a) = \frac{2(-1)^\nu}{\pi^+(\rho) \Gamma(\nu)} \cdot \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log a)}{2 \sinh(\alpha(\log a))} \cdot \left(\frac{|\log a|}{2z} \right)^{\nu-d-n/2} \cdot K_{\nu-d-n/2} (|\log a|)$$

In the odd rank case, with $\nu = m + d + (n-1)/2$, where m is any non-negative integer,

$$u_z(a) = \frac{(-1)^{m+d+(n+1)/2} \pi(n+1)/2}{\pi^+(\rho) \Gamma(d + (n+1)/2)} \cdot \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log a)}{2 \sinh(\alpha(\log a))} \cdot \frac{e^{-z|\log a|}}{z} \cdot P(|\log a|, z^{-1})$$

where P is a degree m polynomial in $|\log a|$ and a degree $2m$ polynomial in z^{-1}. In particular, choosing ν minimally, i.e. $\nu = d + \frac{n+1}{2}$,

$$u_z(a) = \frac{(-1)^{d+(n+2)/2} \pi n/2}{\pi^+(\rho) \Gamma(d + (n+2)/2 + 1)} \cdot \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log a)}{2 \sinh(\alpha(\log a))} \cdot \frac{|\log a|}{z} \cdot K_1 (|\log a|)$$

When G is of even rank, and ν is minimal, i.e. $\nu = d + \frac{n}{2} + 1$,

$$u_z(a) = \frac{(-1)^{d+(n)/2} \pi n/2}{\pi^+(\rho) \Gamma(d + (n)/2 + 1)} \cdot \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log a)}{2 \sinh(\alpha(\log a))} \cdot \sqrt{|\log a|/z} \cdot e^{-z|\log a|}$$

Remark 3.1.2. For fixed α, large $|z|$, and $\mu = 4\alpha^2$ (see [1], 9.7.2),

$$K_\alpha(z) \approx \sqrt{\frac{\pi}{2z}} e^{-z} \left(1 + \frac{\mu - 1}{8z} + \frac{(\mu - 1)(\mu - 9)}{2! (8z)^2} + \frac{\mu - 1)(\mu - 9)(\mu - 25)}{3! (8z)^3} + \ldots \right) \quad (|\arg z| < \frac{3\pi}{2})$$

Thus, for ν minimal, in the even rank case the fundamental solution has the following asymptotic:

$$u_z(a) \approx \frac{(-1)^{d+(n)/2} \pi n/2}{\sqrt{2} \pi^+(\rho) \Gamma(d + (n)/2 + 1)} \cdot \prod_{\alpha \in \Sigma^+} \frac{\alpha(\log a)}{2 \sinh(\alpha(\log a))} \cdot \sqrt{|\log a|/z} \cdot e^{-z|\log a|}$$

Remark 3.1.3. Recall from Proposition 3.1.1 that zonal spherical Sobolev theory ensures the continuity of u_z for ν chosen as in the theorem. For $G = SL_2(\mathbb{C})$, the continuity is visible, since fundamental solution is, up to a constant,

$$u_z(a_r) = \frac{r e^{-(2z-1)r}}{(2z-1) \sinh r} \quad \text{where} \quad a_r = \left(\begin{array}{cc} e^{r^2/2} & 0 \\ 0 & e^{-r^2/2} \end{array} \right)$$

3.1.1. Using Hall and Mitchell’s Intertwining Formula. The symmetric space fundamental solution can also be obtained by multiplying the Euclidean fundamental solution by $\prod_{\alpha \in \Sigma} \frac{\alpha}{\sinh(\alpha)}$, using Hall and Mitchell’s “intertwining” formula relating $\Delta = \Delta_{G/K}$ and Δ_p [25] as follows. (See also Helgason’s discussion of the wave equation on G/K in [27].)

Again, G is a complex semi-simple Lie group with maximal compact K. We identify G/K with \mathfrak{p} via the exponential mapping. Then

$$\Delta f = J^{-1/2} (\Delta_p - \|\rho\|^2) (J^{1/2} f)$$

where $\Delta = \Delta_{G/K}$ is the (non-Euclidean) Laplacian on G/K, $J^{-1/2} = \prod_{\alpha \in \Sigma} \frac{\alpha}{\sinh(\alpha)}$, where the product ranges over positive roots, f is a bi-K-invariant function on G, Δ_p is the (Euclidean) Laplacian on \mathfrak{p}. Thus,

$$(\Delta - \lambda z)^\nu f = J^{-1/2}(\Delta_p - z^2)^\nu J^{1/2} f$$
Let \(w_2 \) be a solution of the Euclidean differential equation \((\Delta_p - z^2)^{\nu} w_2 = \varphi\). Then the function \(u_z = J^{-1/2} w_z \) is a solution to the corresponding differential equation on \(G/K; (\Delta - \lambda_z)^{\nu} u_z = J^{-1/2} \varphi\), since
\[
(\Delta - \lambda_z)^{\nu} (J^{-1/2} w_z) = J^{-1/2}(\Delta_p - z^2)^{\nu} J^{1/2} (J^{-1/2} w_z) = J^{-1/2} (\Delta_p - z^2)^{\nu} w_z = J^{-1/2} \varphi
\]
If \(J^{-1/2} \equiv 1 \) on the support of \(\varphi \), as in the case at hand, \(\varphi = \delta \), the function \(u_z = J^{-1/2} w_z \) is the solution of \((\Delta - \lambda_z)^{\nu} u_z = \delta\). Thus, to obtain a formula for the fundamental solution for \((\Delta - \lambda_z)^{\nu}\) on \(G/K \), one can simply multiply the Euclidean fundamental solution for \((\Delta_p - z^2)^{\nu}\) by \(J^{-1/2} \). This does in fact yield the formula given in Theorem 3.1.1.

3.2. Integrating along Shells. Now we replace the Dirac delta distribution with \(S_b \), the distribution that integrates a function along a shell of radius \(b \) around the basepoint, by which we mean
\[
K \cdot \{ a = \exp(H) : H \in a_+ \text{ with } |H| = b \} \cdot K / K
\]
Note that, for \(SL_2(\mathbb{C}) \), this is a spherical shell of radius \(b \), centered at the basepoint \(1 \cdot K \), in hyperbolic 3-space. Arguing as in the previous case (see the proof of Proposition 3.1.1), since \(S_b \) is a compactly supported distribution, the differential equation \((\Delta - \lambda_z)^{\nu} v_z = S_b\) has a unique solution in global zonal spherical Sobolev spaces. The spherical inversion formula of Harish-Chandra and Bevezin gives an integral representation for \(\Lambda \), and
\[
\int_{G/K} \langle \varphi, \psi \rangle \, dH = \int_{a_+} \varphi(a) \psi(a) \, d\mu(a)
\]
In particular, for \(\nu > (n + 2d + 1)/4 \), the solution to \((\Delta - \lambda_z)^{\nu} v_z = S_b\) is
\[
v_z(a) = \frac{(-1)^{\nu} \pi^{n/2}}{2^{\nu-n/2-1} \Gamma(\nu) \prod \sinh(\alpha(\log a))} \int_{|H|=b} \frac{|\log a - H|}{z} \nu^{-n/2} K_{\nu-1/2}(z|\log a - H|) \prod_{\alpha \in \Sigma^+} \sinh(\alpha(H)) \, dH
\]
In particular, when \(n = \dim a^* \) is odd,
\[
v_z(a) = \frac{(-1)^{\nu} \pi^{n+1}}{\Gamma(\nu) \prod \sinh(\alpha(\log a))} \int_{|H|=b} \frac{P_{\nu-1/2}(z|\log a - H|) e^{-z|\log a - H|}}{z^{2\nu-n}} \prod_{\alpha \in \Sigma^+} \sinh(\alpha(H)) \, dH
\]
where \(P_{\ell}(x) \) is a degree \(\ell \) polynomial with coefficients given by \(a_k = \frac{(2\ell - k)!}{2^{\ell-k} \ell! (\ell-k)! k!} \).

Proof. By Proposition 2.4.3, the solution \(v_z \) has the following integral representation,
\[
v_z(a) = \int_{a^*/W} (-1)^{\nu} \frac{F(S_b)(\xi)}{(|\xi|^2 + z^2)^{\nu}} \cdot \varphi_{p+i\xi}(a) \, |c(\xi)|^{-2} \, d\xi
\]
As in the derivation of the fundamental solution, we use the \(W \)-equivariance of \(\pi^+ \) to rewrite this as
\[
v_z(a) = \frac{(-1)^{\nu} (-i)^d}{\pi^+(\rho) \prod \sinh(\alpha(\log a))} \int_{a^*} \frac{F(S_b)(\xi)}{(|\xi|^2 + z^2)^{\nu}} e^{i\xi(\log a)} \pi^+(\xi) \, d\xi
\]
The spherical transform is
\[
F(S_b)(\xi) = S_b(\varphi_{p+i\xi}) = \int_{b \text{-shell}} \varphi_{p+i\pi}(g) \, dg
\]
Writing \(g \in G \) as \(g = k a k' = k \exp(H) k' \), we reduce to an integral over a Euclidean sphere in \(a \),
\[
F(S_b)(\xi) = \int_{|H|=b} \frac{\pi^+(\rho)}{\pi^+(i\xi)} \sum_{\alpha \in \Sigma^+} \frac{\text{sgn} w \, e^{-iw\xi(H)}}{\sum \text{sgn} w \, e^{w\rho(H)}} \prod_{\alpha \in \Sigma^+} \sinh^2(\alpha(H)) \, dH
\]
Using the fact that \(\sum_{w \in W} \text{sgn } w \, e^{w \rho(H)} = \prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha(H)) \) and Weyl group invariance,

\[
\mathcal{F}(S_b)(\xi) = i^d \frac{\pi^+(\rho)}{\pi^+(\xi)} \int_{|H|=b} e^{-i(\xi \cdot H)} \prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha(H)) \, dH
\]

Thus

\[
v_z(a) = \frac{(-1)^{\nu}}{\prod 2 \sinh(\alpha(\log a))} \int_{a^*} \int_{|H|=b} \frac{e^{i(\xi \cdot \log a - H)}}{(r)^2 + z^2) \nu} \prod_{\alpha \in \Sigma^+} 2 \sinh(\alpha(H)) \, dH \, d\xi
\]

The inner integral can be interpreted as an integral over \(\mathbb{R}^n \), where \(n = \dim a^* \), and can be expressed as a K-Bessel function to obtain the desired results. (See Section 6.)

Remark 3.2.2. For \(G = SL_2(\mathbb{C}) \), with \(\nu = 1 \), ensuring \(H^1 \)-convergence, the solution is

\[
v_z(a_r) = \begin{cases} -\sinh(b) \quad \text{if } r < b \\ \sinh(2b) e^{-2rz} \quad \text{if } r > b \end{cases}
\]

and, with \(\nu = 2 \), ensuring uniform pointwise convergence, the solution is

\[
v_z(a_r) = \frac{2 \sinh(b)}{z \sinh(r)} \begin{cases} e^{-2bz} \sinh(2rz) \quad \text{if } r < b \\ (1 + 2rz) \cosh(2rz) - 2rz \sinh(2rz) \quad \text{if } r > b \end{cases}
\]

Remark 3.2.3. In principle, one can also obtain a solution by convolution with the fundamental solution, \(u_z \), discussed above. For \(x = k'_x \cdot a_r \cdot k_x \) in \(G \) and \(g = k'_g \cdot a_b \cdot k_g \) on the \(b \)-shell in \(G/K \),

\[
u_z(g \cdot x^{-1}) = u_z(k'_g a_b k^{-1}_x a_{r^{-1}} (k'_g)^{-1}) = u_z(a_b k_k^{-1} a_{r^{-1}})
\]

and thus

\[
u_z(x) = (x \cdot S_b)(u_z) = \int_{b \text{-shell}} u_z(g \cdot x^{-1}) \, dg = \int_{K} u_z(a_b k^{-1}_x a_{r}) \, dk
\]

where \(dk \) is \(dg \), restricted to \(K \).

4. Poincaré Series and Automorphic Spectral Expansions

Let \(\Gamma \) be a discrete subgroup of \(G \). The averaging map

\[
\alpha = \alpha_\Gamma : C^0_c(G/K) \rightarrow C^0_c(\Gamma \backslash G)^K \quad \text{given by } \quad f \mapsto \sum_{\gamma \in \Gamma} \gamma \cdot f
\]

is a continuous surjection, as is its extension \(\alpha : \mathcal{E}(G/K) \rightarrow \mathcal{E}(\Gamma \backslash G)^K \), to the space of compactly supported distributions on \(G/K \). We call \(\text{Pé}_f = \alpha(f) \) the Poincaré series associated to \(f \).

Though the automorphic spectrum consists of disparate pieces (cusp forms, Eisenstein series, residues of Eisenstein series) it will be useful to have a uniform notation. We posit a parameter space \(\Xi \) with spectral distributions on \(G \) is a continuous surjection, as is its extension \(\alpha : \mathcal{E}(G/K) \rightarrow \mathcal{E}(\Gamma \backslash G)^K \), to the space of compactly supported distributions on \(G/K \). We call \(\text{Pé}_f = \alpha(f) \) the Poincaré series associated to \(f \).

The Poincaré series \(\text{Pé}_u \) associated to the fundamental solution \(u_z \) discussed above is used to obtain an explicit formula relating the number of lattice points in an expanding region in \(G/K \) to the automorphic spectrum. Further, the two-variable Poincaré series \(\text{Pé}_{u,k} \) produces identities involving moments of \(GL_n(\mathbb{C}) \times GL_n(\mathbb{C}) \) Rankin-Selberg L-functions. The arguments given in [6] generalize as follows.

For a given compactly supported distribution \(\theta \) on \(G/K \), let \(\theta^{\ac} = \alpha(\theta) \), and consider the automorphic differential equation \((\Delta - \lambda)^{\nu} v^{\ac} = \theta^{\ac} \). Since \(\theta^{\ac} \) is compactly supported modulo \(\Gamma \), it lies in a global automorphic Sobolev space. Thus there is a solution \(u^{\ac} \), unique in global automorphic Sobolev spaces, with an automorphic spectral expansion whose coefficients are obtained by \(\langle \theta, \Phi_\xi \rangle, \xi \in \Xi \). The spectral expansion is convergent (uniformly pointwise) for sufficiently large \(\nu \). If the corresponding free-space solution \(u \) is of sufficiently rapid decay, then, by arguments involving gauges on groups, the Poincaré series \(\text{Pé}_u \) converges.
to a continuous function that is square integral modulo \(\Gamma \). Thus it lies in a global automorphic Levi-Sobolev space, and by uniqueness, it must be pointwise equal to \(u^{\text{al}} \).

We now consider the Poincaré series associated to the solution to \((\Delta - \lambda_z)\nu \, v_z = S_b, \nu > (\dim(G/K) + 1)/4 \).

Theorem 4.0.2. If the solution \(v_z \) is of sufficient rapid decay, the Poincaré series \(\text{P} \hat{e}_z(g) = \sum_{\gamma \in \Gamma} v_z(\gamma \cdot g) \) converges absolutely and uniformly on compact sets, to a continuous function of moderate growth, square-integrable modulo \(\Gamma \). Moreover, it has an automorphic spectral expansion, converging uniformly pointwise:

\[
\text{P} \hat{e}_z = \int \frac{\pi^+(\rho)}{\pi^+-i\xi} \left(\int_{|H|=b} e^{-i\xi(H)} \prod_{\alpha \in \Sigma^+} \sinh(\alpha(H)) \, dH \right) \Phi_\xi(x_0) \cdot \Phi_\xi^{-1}
\]

where \(\{\Phi_\xi\} \) denotes a suitable spectral family of spherical automorphic forms (cusp forms, Eisenstein series, and residues of Eisenstein series) and \(\lambda_\xi = -(|\xi|^2 + |\rho|^2) \) is the Casimir eigenvalue of \(\Phi_\xi \).

Proof. Since \(v_z \) is of sufficient rapid decay the Poincaré series converges absolutely and uniformly on compact sets to a function that is of moderate growth and square integrable modulo \(\Gamma \), by Proposition 3.1.1 in [6].

The automorphic spectral expansion of \(\text{P} \hat{e}_z \) can be written as a Hilbert direct integral \(\int \frac{\pi^+(\rho)}{\pi^+-i\xi} \Phi_\xi^{-1} \). To determine the coefficients \(S_b^{\text{al}} \Phi_{\xi} \), we consider the effect of \(S_b \) on an automorphic spherical eigenfunction \(f \) for Casimir. The averaging map \(\alpha_\xi \) given by \(\alpha_\xi(f) = \int_K f(kg) \, dk \) maps \(f \) to a constant multiple of the zonal spherical function \(\varphi^\alpha_{\xi} \) with the same eigenvalue as \(f \). Since \(\alpha_\xi(f)(1) = f(x_0) \) and \(\varphi^\alpha_{\xi} \) is normalized so that \(\varphi^\alpha_{\xi}(1) = 1 \), \(\alpha_\xi(f) = f(x_0) \cdot \varphi^\alpha_{\xi} \).

\[
S_b^{\text{al}} f = \int_{|H|=b} \int_K f(k \exp H) \, dk \prod_{\alpha \in \Sigma^+} 4\sinh^2(\alpha(H)) \, dH = f(x_0) \cdot \int_{|H|=b} \varphi^\alpha_{\xi}(\exp(H)) \prod_{\alpha \in \Sigma^+} 4\sinh^2(\alpha(H)) \, dH
\]

Thus \(S_b^{\text{al}} \Phi_{\xi} \) is

\[
S_b^{\text{al}} \Phi_{\xi} = \Phi_{\xi}(x_0) \cdot \int_{|H|=b} \frac{\pi^+(\rho)}{\pi^+-i\xi} \sum_{\text{sgn} \cdot \text{exp}(H)} 4\sinh^2(\alpha(H)) \, dH
\]

and the spectral expansion of \(\text{P} \hat{e}_z \) is as stated. Global automorphic Sobolev theory ensures convergence. \(\square \)

Remark 4.0.4. In the case \(G = SL_2(\mathbb{C}), \Gamma = SL_2(\mathbb{Z}[i]) \), with \(\nu = 2 \), it is clear from Remark 3.2.2 that \(v_z \) is of sufficient rapid decay for \(\text{Re}(z) \gg 1 \). Thus its Poincaré series is:

\[
\text{P} \hat{e}_z(g) = \frac{2\sinh(b)}{z^3} \left(\sum_{\sigma(g)<b} \frac{((1+2bz)\cosh(2\sigma(g)z) - 2\sigma(g)z\sinh(2rz))e^{-2bz}}{\sinh(\sigma(g))} \right)
\]

where \(\sigma(g) \) is the geodesic distance from \(gK \) to \(x_0 = 1 \cdot K \). The Poincaré series has spectral expansion

\[
\sum_{f \in L_2 \cup \text{cusp}} \frac{\sin(2bt_f) \cdot \mathcal{F}(x_0) \cdot f}{2t_f \sinh(t_f^2 + z^2)^2} + \frac{\Phi_0(x_0) \cdot \Phi_0}{(z^2 - 4)^2} + \frac{1}{4\pi} \int_{-t}^{\infty} \frac{\sin(2bt) \cdot E_{\frac{3}{2}+it}(x_0) \cdot E_{\frac{1}{2}+it}}{2t \sinh(t(z^2 + z^2)^2) \, dt}
\]

where the sum ranges over an orthonormal basis of cusp forms, \(\Phi_0 \) denotes the constant automorphic form with \(L^2 \)-norm one, and \(-(t_f^2 + \frac{1}{4}) \) and \(-(t^2 + \frac{1}{4}) \) are the Casimir eigenvalues of \(f \) and \(E_{\frac{3}{2}+it} \), respectively.

Remark 4.0.5. Regardless of the convergence of the Poincaré series, the solution \(v_z^{\text{al}} \) to the automorphic differential equation exists, is unique in global automorphic Sobolev spaces, and has the given spectral expansion, converging in a global automorphic Sobolev space. If desired, uniform pointwise convergence of the spectral expansion can be obtained by choosing \(\nu \) sufficiently large, as mentioned above. The difficulty, even in the simplest possible higher rank cases, namely \(G \) complex of odd rank, of ascertaining whether \(v_z \) is of sufficiently rapid decay along the walls of the Weyl chambers, where \(\prod \sinh(\alpha(\log a)) \) blows up, is reason
to question whether the explicit “geometric” Poincaré series representation of \(v^{\text{afc}} \) is actually needed in a given application or whether the automorphic spectral expansion suffices.

5. Appendix: The harmonicity of \(\pi^+ \)

Let \(G \) be complex semi-simple Lie group. We will give a direct proof that the function \(\pi^+: \mathfrak{a}^* \to \mathbb{R} \) given by \(\pi^+(\mu) = \prod_{\alpha > 0} (\alpha, \mu) \) where the product is taken over all positive roots, counted without multiplicity, is harmonic with respect to the Laplacian naturally associated to the pairing on \(\mathfrak{a}^* \). (See also [3], Lemma 2, where this result is obtained as a simple corollary of the less trivial fact that \(\pi^+ \) divides any polynomial that is \(W \)-equivariant by the sign character.) It is this property that enables us to use Hecke’s identity in the computations above. We will use the following lemma.

Lemma 5.0.1. Let \(I \) be the set of all non-orthogonal pairs of distinct positive roots, as functions on \(\mathfrak{a} \). Then \(\pi^+ \) is harmonic if \(\sum_{(\beta, \gamma) \in I} \frac{\langle \beta, \gamma \rangle}{\beta \gamma} = 0 \).

Proof. Considering \(\mathfrak{a}^* \) as a Euclidean space, its Lie algebra can be identified with itself. For any basis \(\{ x_i \} \) of \(\mathfrak{a}^* \), the Casimir operator (Laplacian) is \(\Delta = \sum_i x_i x_i^* \). For any \(\alpha, \beta \) in \(\mathfrak{a} \) and any \(\lambda \in \mathfrak{a} \)

\[
\Delta \langle \alpha, \lambda \rangle \langle \beta, \lambda \rangle = \sum_i x_i \left(\langle \alpha, x_i^* \rangle \langle \beta, \lambda \rangle + \langle \alpha, \lambda \rangle \langle \beta, x_i^* \rangle \right)
\]

\[
= \sum_i \left(\langle \alpha, x_i^* \rangle \langle \beta, x_i \rangle + \langle \alpha, x_i \rangle \langle \beta, x_i^* \rangle \right) = 2\langle \alpha, \beta \rangle
\]

Thus

\[
\Delta \pi^+ = \sum_i x_i x_i^* \pi^+ = \sum_i x_i \sum_{\beta > 0} \alpha(x_i^*) \cdot \frac{\pi^+}{\beta} = \sum_i \sum_{\beta > 0} \beta(x_i^*) \cdot \frac{\pi^+}{\beta} = \left(\sum_{\beta \neq \gamma} \frac{\langle \beta, \gamma \rangle}{\beta \gamma} \right) \cdot \pi^+
\]

and \(\pi^+ \) is harmonic if the sum in the statement of the Lemma is zero. \(\square \)

Remark 5.0.6. When the Lie algebra \(\mathfrak{g} \) is not simple, but merely semi-simple, i.e. \(\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2 \), any pair \(\beta, \gamma \) of roots with \(\beta \in \mathfrak{g}_1 \) and \(\gamma \in \mathfrak{g}_2 \) will have \(\langle \beta, \gamma \rangle = 0 \), so it suffices to consider \(\mathfrak{g} \) simple.

Proposition 5.0.1. For \(\mathfrak{g} = \mathfrak{sl}_3, \mathfrak{sp}_2, \) or \(\mathfrak{g}_2 \), the following sum over all pairs \((\beta, \gamma) \) of distinct positive roots is zero: \(\sum_{\beta \neq \gamma} \frac{\langle \beta, \gamma \rangle}{\beta \gamma} = 0 \).

Proof. The positive roots in \(\mathfrak{sl}_3 \) are \(\alpha, \beta, \) and \((\alpha + \beta) \) with \(\langle \alpha, \alpha \rangle = 2, \langle \beta, \beta \rangle = 2, \langle \alpha, \beta \rangle = -1 \). In other words, the two simple roots have the same length and have an angle of \(2\pi/3 \) between them. The pairs of distinct positive roots are \((\alpha, \beta), (\alpha, \alpha + \beta) \) and \((\beta, \alpha + \beta) \), so the sum to compute is

\[
\frac{\langle \alpha, \beta \rangle}{\alpha \beta} + \frac{\langle \alpha, \alpha + \beta \rangle}{\alpha (\alpha + \beta)} + \frac{\langle \beta, \alpha + \beta \rangle}{\beta (\alpha + \beta)}
\]

Clearing denominators and evaluating the pairings,

\[
\langle \alpha, \beta \rangle \cdot (\alpha + \beta) + \langle \alpha, \alpha + \beta \rangle \cdot \beta + \langle \beta, \alpha + \beta \rangle \cdot \alpha = -(\alpha + \beta) + \beta + \alpha = 0
\]

For \(\mathfrak{sp}_2 \), the simple roots have lengths 1 and \(\sqrt{2} \) and have an angle of \(3\pi/4 \) between them: \(\langle \alpha, \alpha \rangle = 1, \langle \beta, \beta \rangle = 2, \langle \alpha, \beta \rangle = -1 \). The other positive roots are \((\alpha + \beta) \) and \((2\alpha + \beta) \). The non-orthogonal pairs of distinct positive roots are \((\alpha, \beta), (\alpha, 2\alpha + \beta), (\beta, \alpha + \beta), \) and \((\alpha + \beta, 2\alpha + \beta) \). So the sum we must compute is

\[
\frac{\langle \alpha, \beta \rangle}{\alpha \beta} + \frac{\langle \alpha, 2\alpha + \beta \rangle}{\alpha (2\alpha + \beta)} + \frac{\langle \beta, \alpha + \beta \rangle}{\beta (\alpha + \beta)} + \frac{\langle \alpha + \beta, 2\alpha + \beta \rangle}{(\alpha + \beta)(2\alpha + \beta)}
\]

Again, clearing denominators,

\[
\langle \alpha, \beta \rangle \cdot (\alpha + \beta)(2\alpha + \beta) + \langle \alpha, 2\alpha + \beta \rangle \cdot \beta(\alpha + \beta) + \langle \beta, \alpha + \beta \rangle \cdot \alpha(2\alpha + \beta) + \langle \alpha + \beta, 2\alpha + \beta \rangle \cdot \alpha \beta
\]

and evaluating the pairings,

\[
-(\alpha + \beta)(2\alpha + \beta) + \beta(\alpha + \beta) + \alpha(2\alpha + \beta) + \alpha \beta
\]

\[
= -(2\alpha^2 + 3\alpha \beta + \beta^2) + \alpha \beta + \beta^2 + 2\alpha^2 + \alpha \beta + \alpha \beta = 0
\]
Finally we consider the exceptional Lie algebra g_2. The simple roots have lengths 1 and $\sqrt{3}$ and have an angle of $5\pi/6$ between them: $(\alpha, \alpha) = 1$, $(\beta, \beta) = 3$, $(\alpha, \beta) = -3/2$. The other positive roots are $(\alpha + \beta)$, $(2\alpha + \beta)$, $(3\alpha + \beta)$, and $(3\alpha + 2\beta)$. Notice that the roots α and $\alpha + \beta$ have the same length and have an angle of $3\pi/2$ between them. So together with their sum $2\alpha + \beta$, they form a copy of the \mathfrak{sl}_3 root system. The three terms corresponding to the three pairs of roots among these roots will cancel, as in the \mathfrak{sl}_3 case. Similarly, the roots $(3\alpha + \beta)$ and β have the same length and have an angle of $3\pi/2$ between them, so, together with their sum, $(3\alpha + 2\beta)$ they form a copy of the \mathfrak{sl}_3 root system, and the three terms in the sum corresponding to the three pairs among these roots will also cancel. The remaining six pairs of distinct, non-orthogonal positive roots are $(\alpha, 3\alpha + \beta)$, (α, β), $(3\alpha + \beta, 2\alpha + \beta)$, $(2\alpha + \beta, 3\alpha + 2\beta)$, $(3\alpha + 2\beta, \alpha + \beta)$, and $(\alpha + \beta, \beta)$. We shall see that the six terms corresponding to these pairs cancel as a group. After clearing denominators, the relevant sum is

\[
\langle \alpha, \beta \rangle \cdot (\alpha + \beta)(2\alpha + \beta)(3\alpha + \beta)(3\alpha + 2\beta) + \langle \alpha, 3\alpha + \beta \rangle \cdot \beta(\alpha + \beta)(2\alpha + \beta)(3\alpha + 2\beta) + \langle 3\alpha + \beta, 2\alpha + \beta \rangle \cdot \alpha(\alpha + \beta)(3\alpha + \beta) + \langle 3\alpha + 2\beta, \alpha + \beta \rangle \cdot \alpha(\alpha + \beta)(3\alpha + \beta)
\]

Evaluating the pairings and factoring out $(3/2)$, this is

\[
-\langle \alpha + \beta \rangle(2\alpha + \beta)(3\alpha + \beta)(3\alpha + 2\beta) + \beta(\alpha + \beta)(2\alpha + \beta)(3\alpha + 2\beta) + \alpha\beta(\alpha + \beta)(3\alpha + \beta) + \alpha\beta(2\alpha + \beta)(3\alpha + \beta) + \alpha(2\alpha + \beta)(3\alpha + \beta)
\]

Multiplying out,

\[
-18\alpha^4 - 45\alpha^3\beta - 40\alpha^2\beta^2 - 15\alpha\beta^3 - 2\beta^4 + 6\alpha^3\beta + 13\alpha^2\beta^2 + 9\alpha\beta^3 + 2\beta^4 + 3\alpha^3\beta + 5\alpha^2\beta^2 + 2\alpha\beta^3 + 3\alpha^3\beta + 4\alpha^2\beta^2 + \alpha\beta^3 + 6\alpha^3\beta + 5\alpha^2\beta^2 + \alpha\beta^3 + 27\alpha^3\beta + 13\alpha^2\beta^2 + 2\alpha\beta^3
\]

This sum is zero. \qed

Proposition 5.0.2. For any complex simple Lie algebra g, the following sum over all pairs (β, γ) of distinct positive roots is zero: $\sum_{\beta \neq \gamma} \langle \beta, \gamma \rangle_{\beta, \gamma} = 0$.

Proof. Let I be the indexing set $\{ (\beta, \gamma) \}$ of pairs of distinct, non-orthogonal positive roots. For each $(\beta, \gamma) \in I$, let $I_{\beta, \gamma}$ be the two-dimensional root system generated by β and γ. For such a root system I_R, let I_R be the set of pairs of distinct, non-orthogonal positive roots, where positivity is inherited from the ambient g. The collection $\{ I_R \}$ of all such I_R is a cover of I. We refine I to a subcover J' of disjoint sets, in the following way.

For any pair I_R and $I_{R'}$ of J in J with non-empty intersection, there is a two-dimensional root system R'' such that $I_{R''}$ contains I_R and $I_{R'}$. Indeed, letting (β, γ) and (β', γ') be pairs in I generating R and R' respectively, the non-empty intersection of I_R and $I_{R'}$ implies that there is a pair (β'', γ'') lying in both I_R and $I_{R'}$. Since R and R' are two-dimensional and β'' and γ'' are linearly independent, all six roots lie in a plane. Since all six roots lie in the root system for g, they generate a two-dimensional root system R'' containing R and R', and $I_{R''} \supset I_R, I_{R'}$. Thus we refine I to a subcover J': if I_R in J intersects any $I_{R'}$ in J, replace I_R and $I_{R'}$ with the set $I_{R''}$ described above. The sets I_R in J' are mutually disjoint, and, for any $(\beta, \gamma) \in I$, there is a root system R such that $(\beta, \gamma) \in I_R \in J'$, thus

\[
\sum_{(\beta, \gamma) \in I_R} \frac{\langle \beta, \gamma \rangle}{\beta \gamma} = \sum_{I_R \in J'} \sum_{(\beta, \gamma) \in I_R} \frac{\langle \beta, \gamma \rangle}{\beta \gamma}
\]

By the classification of complex simple Lie algebras of rank two, R is isomorphic to the root system of \mathfrak{sl}_3, \mathfrak{sp}_2, or \mathfrak{g}_2. Thus, by Proposition 5.0.1, the inner sum over I_R is zero, proving that the whole sum is zero.

Note that the refinement is necessary, as there are copies of \mathfrak{sl}_3 inside \mathfrak{g}_2. Note also that the only time the root system of \mathfrak{g}_2 appears is in the case of \mathfrak{g}_2 itself, since, by the classification, \mathfrak{g}_2 is the only root system containing roots that have an angle of $\pi/6$ or $5\pi/6$ between them. \qed

Remark 5.0.7. See [26], Lemma 2, for a proof of Proposition 5.0.2 when G is not necessarily complex.
Theorem 5.0.3. For a complex semi-simple Lie group G, the function $\pi^+ : \mathfrak{a}^* \to \mathbb{R}$ given by $\pi^+(\mu) = \prod_{\alpha > 0}(\alpha, \mu)$ where the product is taken over all positive roots, counted without multiplicity, is harmonic with respect to the Laplacian naturally associated to the pairing on \mathfrak{a}^*.

Proof. This follows immediately from Lemma 5.0.1, Remark 5.0.6, and Proposition 5.0.2. \hfill \Box

6. APPENDIX: EVALUATING THE INTEGRAL

Proposition 6.0.3. For $\nu > n/2$, $\text{Re}(z) > 0$, $x \in \mathbb{R}^n$,

$$I_z(x) = \int_{\mathbb{R}^n} \frac{e^{i\langle \xi, x \rangle}}{(|\xi|^2 + z^2)^\nu} d\xi = \frac{\pi^{n/2}}{2^{\nu-n/2-1}\Gamma(\nu)} \left(\frac{|x|}{z} \right)^{\nu-n/2} K_{\nu-n/2}(|x|z)$$

In particular, when n is odd and $\nu = \frac{n+1}{2}$,

$$I_z(x) = \frac{\pi^{(n+1)/2}}{\left(\frac{n+1}{2}\right)!} \frac{e^{-|x|z}}{z} \quad (\nu = \frac{n+1}{2} \in \mathbb{Z})$$

and when n is even and $\nu = \frac{n}{2} + 1$,

$$I_z(x) = \frac{\pi^{n/2}}{\left(\frac{n}{2}\right)!} \frac{|x| K_1(|x|z)}{z} \quad (\nu = \frac{n}{2} + 1 \in \mathbb{Z})$$

Proof. Since the integral is rotation-invariant, we may assume $\langle \xi, x \rangle = |x| \xi_1$, where $\xi = (\xi_1, \ldots, \xi_n)$. Then, using the Gamma function, we may rewrite the integral as

$$\int_{\mathbb{R}^n} \frac{e^{i\langle \xi, x \rangle}}{(|\xi|^2 + z^2)^\nu} d\xi = \int_{\mathbb{R}^n} \frac{e^{-|x|\xi_1}}{(|\xi|^2 + z^2)^\nu} d\xi = \frac{\pi^{(n-1)/2}\Gamma(\nu - \frac{n-1}{2})}{\Gamma(\nu)} \int_{\mathbb{R}} \frac{e^{-|x|\xi_1}}{(\xi_1^2 + z^2)^{(n-1)/2}} d\xi$$

This integral can be expressed as a modified Bessel function:

$$\int_{\mathbb{R}} \frac{e^{iAt}}{(t^2 + z^2)^{s+1/2}} dt = \frac{\sqrt{2\pi}}{2^{s-1}\Gamma(s)} \left(\frac{A}{z} \right)^{s-1/2} K_{s-1/2}(Az) \quad (\text{Re}(s) > \frac{1}{2}, \text{Re}(z) > 0, A > 0)$$

In particular, when $s = \ell + \frac{1}{2}$ is a half-integer:

$$\int_{\mathbb{R}} \frac{e^{iAt}}{(t^2 + z^2)^{\ell+1/2}} dt = \frac{2 \cdot \ell!}{(2\ell)!} \left(\frac{A}{2z} \right)^\ell K_\ell(Az) \quad (\ell \in \mathbb{N}, \text{Re}(z) > 0, A > 0)$$

and, when $s = \ell + 1$ is an integer:

$$\int_{\mathbb{R}} \frac{e^{iAt}}{(t^2 + z^2)^{\ell+1}} dt = \frac{\pi}{z^{2\ell+1}} e^{-Az} P_\ell(Az) \quad (\ell \in \mathbb{Z}_{\geq 0}, \text{Re}(z) > 0, A > 0)$$

where $P_\ell(x)$ is a degree ℓ polynomial with coefficients given by

$$a_k = \frac{(2\ell - k)!}{2^{2\ell-k} \ell! (\ell-k)! k!}$$

Specializing to $\nu = \frac{n+1}{2}$ and $\nu = \frac{n}{2} + 1$ yields the desired conclusions. \hfill \Box

References

[1] M. Abramowitz and I. A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, 1964. MR 0167642 (29 #4914)

[2] J-P Anker, *Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces*, Duke Math J **65** (1992), no. 2, 257-285.

[3] D. Bump, S. Friedberg, and D. Goldfeld, *Poincaré series and Kloosterman sums for SL(3, Z)*, Acta Arith. **50** (1988), no. 1, 31–89. MR 945275 (89j:11047)

[4] J. W. Cogdell and I. Piatetski-Shapiro, *The arithmetic and spectral analysis of Poincaré series*, Perspectives in Mathematics, vol. 13, Academic Press Inc., Boston, MA, 1990. MR 1063847 (91h:11024)

[5] Y. Colin de Verdière, *Une nouvelle démonstration du prolongement méromorphe des séries d’Eisenstein*, C. R. Acad. Sci. Paris Sér. I Math. **293** (1981), no. 7, 361–363. MR 639175 (83a:10038)

[6] A. DeCelles, *An exact formula relating lattice points in symmetric spaces to the automorphic spectrum*, Illinois J. Math., To appear; see arXiv:1104.5406v2 [math.NT].

[7] A. DeCelles, *Automorphic partial differential equations and spectral theory with applications to number theory*, Ph.D. thesis, University of Minnesota, 2011.
[8] A. Diaconu and P. Garrett, Integral moments of automorphic L-functions, J. Inst. Math. Jussieu 8 (2009), no. 2, 335–382. MR 2485795
[9] ________, Subconvexity bounds for automorphic L-functions, J. Inst. Math. Jussieu 9 (2010), no. 1, 95–124. MR 2576799
[10] A. Diaconu, P. Garrett, and D. Goldfeld, Moments for L-functions for GL(r)×GL(r−1), To appear in Proc. of Patterson Festschrift. http://www.math.umn.edu/~garrett/m/v/10jan2011,GLn.pdf, 2011.
[11] A. Diaconu and D. Goldfeld, Second moments of quadratic Hecke L-series and multiple Dirichlet series. I. Multiple Dirichlet series, automorphic forms, and analytic number theory, Proc. Sympos. Pure Math., vol. 75, Amer. Math. Soc., Providence, RI, 2006, pp. 59–89. MR MR2279931 (2007k:11074)
[12] ________, Second moments of GL2 automorphic L-functions, Analytic number theory, Clay Math. Proc., vol. 7, Amer. Math. Soc., Providence, RI, 2007, pp. 77–105. MR MR2302195
[13] K. Friedrichs, Spektraltheorie halbbeschr¨ ankter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren, Math. Ann. 109 (1934), no. 1, 465–487. MR 1512905
[14] ________, Spektraltheorie halbbeschr¨ ankter Operatoren I. und II. Teil, Math. Ann. 110 (1935), no. 1, 777–779. MR 1512969
[15] R. Gangolli and V.S. Varadarajan, Harmonic analysis on spherical functions on real reductive groups, Ergebnisse der Mathematik un ihrer Grenzgebeite, vol. 101, Springer-Verlag, Berlin, Heidelberg, New York, 1988.
[16] P. Garrett, Colin de Verdi`ere’s meromorphic continuation of Eisenstein series, http://www.math.umn.edu/~garrett/m/v/cdv_eis.pdf. July 19, 2011 ver. Last accessed Sept 20, 2011.
[17] ________, Example computations in automorphic spectral theory, http://www.math.umn.edu/~garrett/m/v/newark.pdf Talk at Newark, May 2010.
[18] ________, Examples in automorphic spectral theory, http://www.math.umn.edu/~garrett/m/v/durham.pdf Talk in Durham, August 2010.
[19] ________, Primer of spherical harmonic analysis on SL(2, C), http://www.math.umn.edu/~garrett/m/v/SL2C.pdf. June 7, 2010 version. Last accessed April 21, 2011.
[20] ________, Pseudo-cuspforms, pseudo-laplacians, http://www.math.umn.edu/~garrett/m/v/pseudo-cuspforms.pdf. Aug 12, 2011 ver. Last accessed Sept 20, 2011.
[21] ________, Vector-valued integrals, http://www.math.umn.edu/~garrett/m/fun/Notes/07_vv_integrals.pdf. February 18, 2011 version. Last accessed April 21, 2011.
[22] I. M. Gelfand, Sur un lemme de la theorie des espaces lineaires, Comm. Inst. Sci. Math. de Kharkoff 13 (1936), no. 4, 35–40.
[23] D. Goldfeld, Automorphic forms and L-functions for the group GL(n,R), Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006, With an appendix by Kevin A. Broughan. MR 2254662 (2007k:11074)
[24] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), no. 2, 278–295 (1983). MR MR696884 (84f:10036)
[25] B. C. Hall and J. J. Mitchell, The Segal-Bargmann transform for noncompact symmetric spaces of the complex type, J. Functional Analysis 227 (2005), 338–371.
[26] B. C. Hall and M. B. Stenzel, Sharp bounds for the heat kernel on certain symmetric spaces of non-compact type, Contemp. Math. 317 (2003), 117–135.
[27] S. Helgason, Geometric analysis on symmetric spaces, Mathematical Surveys and Monographs, vol. 39, Americal Mathematical Society, Providence, RI, 1994.
[28] R. Mieltel and N. R. Wallach, Automorphic forms constructed from Whittaker vectors, J. Funct. Anal 86 (1989), no. 2, 411–487. MR 1021143 (91b:11065)
[29] ________, The resolvent of the Laplacian on locally symmetric spaces, J. Differential Geom. 36 (1992), no. 3, 663–698. MR 1189500 (93i:58160)
[30] T. Oda and M. Tsuzuki, Automorphic Green functions associated with the secondary spherical functions, Publ. Res. Inst. Math. Sci. 39 (2003), no. 3, 451–533. MR 2001185 (2004f:11046)
[31] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304. MR 1501970
[32] G. Stevens, Poincaré series on GL(r) and Kloostermann sums, Math. Ann. 277 (1987), no. 1, 25–51. MR 884644 (88m:11031)
[33] M. Thillaineates, A kernel for automorphic L-functions, J. Number Theory 128 (2008), no. 4, 759–780. MR 2400385 (2009j:11062)
[34] H. Urakawa, The heat equation on a compact Lie group, Osaka J. Math. 12 (1975), 285–297.
[35] N. R. Wallach, The powers of the resolvent on a locally symmetric space, Bull. Soc. Math. Belg. 42 (1990), no. 3, 777–795.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ST. THOMAS, 2115 SUMMIT AVE., ST. PAUL, MN 55105
E-mail address: adecelles@stthomas.edu
URL: http://personal.stthomas.edu/dece4515