Improving Compound Activity Classification via Deep Transfer and Representation Learning

(Supplementary Materials)

Vishal Dey,† Raghu Machiraju,†‡¶ and Xia Ning*,†‡¶

†Department of Computer Science and Engineering, The Ohio State University, Columbus, OH
‡Biomedical Informatics, The Ohio State University, Columbus, OH
¶Translational Data Analytics Institute, The Ohio State University, Columbus, OH

E-mail: ning.104@osu.edu

1 Directed Message Passing Neural Networks

dmpn incorporates atom features a_u for each atom $u \in A_c$ and bond features e_{uv} for each bond $(u, v) \in E_c$, and captures molecular substructures by propagating messages along directed edges in G_c. dmpn initializes atom features a_u using the atom’s physicochemical properties including mass, formal charge, chirality, type, number of connected bonds, etc. dmpn initializes bond features e_{uv} using bond type, stereo configuration, etc.

In particular, in G_c, each bond (u, v) is associated with two messages m_{uv} and m_{vu} encoding messages from atom u to v and vice versa. Each message $m_{uv}^{(t+1)}$ in the $(t + 1)$-th
iteration of dmpn is aggregated as follows,

\[m_{uv}^{(t+1)} = \sum_{k \in \mathcal{N}(u)v} h_{ku}^{(t)} \]

(1)

where \(\mathcal{N}(u) \) is the set of atoms connected to \(u \), \(h_{ku}^{(t)} \) is the hidden state of edge \((k, u)\) in the \(t \)-th iteration. In the \((t + 1)\)-th iteration of message passing, the hidden state \(h_{uv}^{(t+1)} \) for each edge \((u, v)\) is updated as follows,

\[h_{uv}^{(t+1)} = \text{ReLU}(h_{uv}^{(0)} + W m_{uv}^{(t+1)}), \]

(2)

where \(W \) is a learnable parameter matrix, and \(h_{uv}^{(0)} \) is the initial hidden state of edge \((u, v)\) initialized as follows,

\[h_{uv}^{(0)} = \text{ReLU}(W_0[a_u, e_{uv}]) \]

(3)

where \(a_u \) and \(e_{uv} \) are atom and bond feature vectors, respectively, \([a_u, e_{uv}]\) is the concatenation of \(a_u \) and \(e_{uv} \) and \(W_0 \) is a learnable parameter.

After the final iteration of message passing, the hidden states for edges incident to an atom \(u \) are aggregated to generate an intermediate representation \(h_u \) for that atom as follows,

\[h_u = \sum_{k \in \mathcal{N}(u)} h_{ku}^{(\tau)}, \]

(4)

where \(\tau \) is the total number of message passing iterations. These intermediate atom representations are then used to generate another atom representation that also incorporates atom features \(a_u \) as follows,

\[s_u = \text{ReLU}(W_e[a_u, h_u]), \]

(5)

where \(W_e \) is a learnable parameter and \([a_u, h_u]\) is the concatenation of \(a_u \) and \(h_u \). Thus, the atom representation \(h_u \) captures structural information about atom \(u \)’s \(\tau \)-hop neighbors, thereby enhancing the representation power. Given the representation \(h_u \) for each atom in
c, $dmpn$ produces an embedding for c using mean pooling over all the atom representations as follows,

$$r_c = \frac{1}{|A_c|} \sum_{u \in A_c} s_u,$$

where $|A_c|$ is the number of atoms in c.

2 Supplementary Materials

2.1 Assay Information

Table S1 presents the assay statistics of 93 processed bioassays with their associated target protein accession IDs in PubChem; their number of total, active and inactive compounds, and the corresponding protein family for each associated target.

protacxn	total	active	inactive	Protein family
NP_001017535	380,711	5,152	375,559	Nuclear hormone receptor family
AAH18745	374,923	1,230	373,693	Peptidase family
NP_005021	349,900	10,198	339,702	Protein kinase superfamily
NP_004196	336,578	238	336,340	Peptidase family
NP_057051	292,415	97	292,318	Protein-tyrosine phosphatase family
NP_000903	292,382	151	292,231	G-protein coupled receptor 1 family
NP_005292	292,044	207	291,837	G-protein coupled receptor 1 family
NP_004081	290,998	1,674	289,324	Protein-tyrosine phosphatase family
NP_001121649	275,994	116	275,878	Nuclear hormone receptor family
NP_997055	208,843	2,526	206,317	G-protein coupled receptor 1 family
NP_002736	182,123	1,207	180,916	Protein kinase superfamily

Continued on next page
protacxn	#total	# active	# inactive	Protein family
NP_542155	112,687	906	111,781	Protein-tyrosine phosphatase family
NP_775180	96,456	153	96,303	Nuclear hormone receptor family
P55210	71,790	77	71,713	Peptidase family
NP_150634	70,986	61	70,925	Peptidase family
NP_000483	10,100	179	9,921	ABC transporter superfamily
ABB72139	6,968	64	6,904	Nuclear hormone receptor family
ADZ17337	6,738	86	6,652	Nuclear hormone receptor family
NP_000762	7,759	1,163	6,596	Cytochrome P450 family
EAW77416	7,131	626	6,505	Cytochrome P450 family
ADZ17384	6,425	55	6,370	Nuclear hormone receptor family
NP_000760	7,676	1,713	5,963	Cytochrome P450 family
NP_000752	7,670	4,008	3,662	Cytochrome P450 family
AAF64255	2,728	1,107	1,621	Bcl-2 family
NP_002084	2,285	682	1,603	Protein kinase superfamily
NP_063937	2,390	823	1,567	Protein kinase superfamily
AAI28575	1,824	305	1,519	Nuclear hormone receptor family
AAB26273	1,669	276	1,393	G-protein coupled receptor 1 family
NP_000947	1,350	139	1,211	G-protein coupled receptor 1 family
NP_036559	1,260	109	1,151	Peptidase family
NP_065717	1,630	661	969	Protein kinase superfamily
AAI27629	1,065	160	905	G-protein coupled receptor 1 family
P51449	978	138	840	Nuclear hormone receptor family
NP_004040	824	91	733	Bcl-2 family

Continued on next page
protacxn	#total	# active	# inactive	Protein family
P00748	761	160	601	Peptidase family
ABD72211	1,164	605	559	ABC transporter superfamily
AAH04460	993	445	548	Peptidase family
NP_004950	954	456	498	Nuclear hormone receptor family
NP_000676	667	209	458	G-protein coupled receptor 1 family
NP_000466	489	55	434	Nuclear hormone receptor family
NP_005152	672	259	413	G-protein coupled receptor 1 family
NP_001391	729	345	384	G-protein coupled receptor 1 family
NP_005217	456	82	374	G-protein coupled receptor 1 family
NP_660205	1,167	795	372	Peptidase family
NP_000789	457	100	357	G-protein coupled receptor 1 family
NP_001027450	543	203	340	Peptidase family
NP_0004521	445	107	338	Peptidase family
NP_004960	387	61	326	Peptidase family
NP_005424	693	368	325	Protein kinase superfamily
P53779	362	57	305	Protein kinase superfamily
AAC63054	517	223	294	Peptidase family
AAF04852	973	683	290	Peptidase family
NP_004337	1,055	781	274	Peptidase family
AAA51985	366	105	261	Peptidase family
NP_004358	289	58	231	G-protein coupled receptor 1 family
NP_004221	276	69	207	G-protein coupled receptor 1 family
NP_000901	292	88	204	G-protein coupled receptor 1 family

Continued on next page
protacxn	#total	# active	# inactive	Protein family
NP_002522	349	156	193	G-protein coupled receptor 1 family
NP_644806	248	57	191	Peptidase family
EAW86722	539	350	189	G-protein coupled receptor 1 family
NP_000900	291	104	187	G-protein coupled receptor 1 family
AAI07736	242	59	183	Bcl-2 family
AAI29989	981	799	182	Peptidase family
BAH02301	462	317	145	Nuclear hormone receptor family
NP_000448	292	149	143	Nuclear hormone receptor family
NP_004841	229	88	141	Protein kinase superfamily
AAI14970	248	126	122	G-protein coupled receptor 1 family
NP_002721	190	71	119	Protein kinase superfamily
NP_003813	211	92	119	Nuclear hormone receptor family
AAH36651	210	92	118	Protein kinase superfamily
Q05397	210	110	100	Protein kinase superfamily
NP_004570	151	52	99	Protein kinase superfamily
NP_000918	189	102	87	ABC transporter superfamily
NP_112168	304	217	87	Protein kinase superfamily
NP_066285	233	173	60	Nuclear hormone receptor family
BAB91222	142	91	51	G-protein coupled receptor 1 family
NP_003605	232	181	51	G-protein coupled receptor 1 family
P28566	95	51	44	G-protein coupled receptor 1 family
NP_037457	331	290	41	Peptidase family
Q6L5J4	432	391	41	G-protein coupled receptor 1 family

Continued on next page
In this table, the columns protacxn, #total, #active and #inactive correspond to the target protein’s accession number from PubChem, number of total compounds, active compounds and inactive compounds in the bioassay, respectively. The column Protein family denotes the corresponding protein family for each target.

2.2 Assay Pairs Information

Table S2 presents the compound statistics of all 120 pairs in P with their number of total, active and inactive compounds in each assay of every pair.
| target(P) | target(Q) | \(|\mathcal{X}_{B_P}|\) | \(|\mathcal{X}_{B_P}^+|\) | \(|\mathcal{X}_{B_P}^-|\) | \(|\mathcal{X}_{B_Q}|\) | \(|\mathcal{X}_{B_Q}^+|\) | \(|\mathcal{X}_{B_Q}^-|\) |
|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|
| NP_005021 | NP_004705 | 20,396 | 10,198 | 10,198 | 164 | 82 | 82 |
| NP_000903 | EAW86722 | 302 | 151 | 151 | 666 | 333 | 333 |
| NP_000903 | BAB91222 | 302 | 151 | 151 | 166 | 83 | 83 |
| NP_005292 | BAB91222 | 414 | 207 | 207 | 166 | 83 | 83 |
| NP_005292 | NP_004942 | 414 | 207 | 207 | 134 | 67 | 67 |
| NP_004081 | NP_002825 | 3,288 | 1,644 | 1,644 | 248 | 124 | 124 |
| NP_997055 | NP_004942 | 5,052 | 2,526 | 2,526 | 134 | 67 | 67 |
| NP_775180 | ADZ17337 | 306 | 153 | 153 | 170 | 85 | 85 |
| NP_000483 | ABD72211 | 356 | 178 | 178 | 1,188 | 594 | 594 |
| NP_000483 | NP_000918 | 358 | 179 | 179 | 204 | 102 | 102 |
| NP_000483 | NP_004818 | 358 | 179 | 179 | 178 | 89 | 89 |
| ADZ17337 | AAI28575 | 156 | 78 | 78 | 592 | 296 | 296 |
| ADZ17337 | NP_000448 | 172 | 86 | 86 | 298 | 149 | 149 |
| ADZ17337 | NP_066285 | 172 | 86 | 86 | 342 | 171 | 171 |
| NP_000762 | NP_000752 | 888 | 444 | 444 | 1,918 | 959 | 959 |
| NP_000760 | NP_000752 | 1,356 | 678 | 678 | 2,070 | 1,035 | 1,035 |
| NP_002084 | P53779 | 1,358 | 679 | 679 | 112 | 56 | 56 |
| AAI28575 | P51449 | 608 | 304 | 304 | 244 | 122 | 122 |
| AAI28575 | BAH02301 | 608 | 304 | 304 | 626 | 313 | 313 |
| AAI28575 | NP_000448 | 608 | 304 | 304 | 298 | 149 | 149 |
| AAI28575 | NP_066285 | 610 | 305 | 305 | 346 | 173 | 173 |
| AAB26273 | NP_000947 | 536 | 268 | 268 | 272 | 136 | 136 |
| AAB26273 | AAI27629 | 552 | 276 | 276 | 320 | 160 | 160 |
| target(P) | target(Q) | $|\mathcal{X}_{B_P}|$ | $|\mathcal{X}_{B_P}^+|$ | $|\mathcal{X}_{B_P}^-|$ | $|\mathcal{X}_{B_Q}|$ | $|\mathcal{X}_{B_P}^+|$ | $|\mathcal{X}_{B_Q}^-|$ |
|-----------|-----------|----------------|----------------|----------------|----------------|----------------|----------------|
| AAB26273 | NP_000676 | 552 | 276 | 276 | 416 | 208 | 208 |
| AAB26273 | NP_001391 | 548 | 274 | 274 | 688 | 344 | 344 |
| AAB26273 | NP_004358 | 552 | 276 | 276 | 116 | 58 | 58 |
| AAB26273 | NP_000901 | 552 | 276 | 276 | 174 | 87 | 87 |
| AAB26273 | EAW86722 | 552 | 276 | 276 | 700 | 350 | 350 |
| AAB26273 | NP_000900 | 552 | 276 | 276 | 206 | 103 | 103 |
| AAB26273 | AAH14970 | 552 | 276 | 276 | 252 | 126 | 126 |
| AAB26273 | BAB91222 | 552 | 276 | 276 | 182 | 91 | 91 |
| AAB26273 | NP_003605 | 552 | 276 | 276 | 360 | 180 | 180 |
| AAB26273 | NP_001516 | 552 | 276 | 276 | 542 | 271 | 271 |
| NP_000947 | AAI27629 | 278 | 139 | 139 | 318 | 159 | 159 |
| NP_000947 | EAW86722 | 278 | 139 | 139 | 700 | 350 | 350 |
| NP_000947 | BAB91222 | 278 | 139 | 139 | 182 | 91 | 91 |
| NP_000947 | NP_001516 | 278 | 139 | 139 | 308 | 154 | 154 |
| NP_036559 | P00748 | 168 | 84 | 84 | 274 | 137 | 137 |
| NP_036559 | AAC63054 | 184 | 92 | 92 | 410 | 205 | 205 |
| NP_036559 | AAF04852 | 218 | 109 | 109 | 1,362 | 681 | 681 |
| NP_036559 | NP_004337 | 218 | 109 | 109 | 1,556 | 778 | 778 |
| NP_036559 | AAA51985 | 174 | 87 | 87 | 180 | 90 | 90 |
| NP_036559 | AAI29989 | 218 | 109 | 109 | 1,592 | 796 | 796 |
| NP_036559 | AAH14460 | 202 | 101 | 101 | 120 | 60 | 60 |
| NP_065717 | NP_001387 | 1,028 | 514 | 514 | 278 | 139 | 139 |

Continued on next page
| target(P) | target(Q) | $|\mathcal{X}_{BP}|$ | $|\mathcal{X}^+_{BP}|$ | $|\mathcal{X}^-_{BP}|$ | $|\mathcal{X}_{BQ}|$ | $|\mathcal{X}^+_{BQ}|$ | $|\mathcal{X}^-_{BQ}|$ |
|-----------|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| NP_065717 | EAW70217 | 1,268 | 634 | 634 | 260 | 130 | 130 |
| AAI27629 | EAW86722 | 320 | 160 | 160 | 698 | 349 | 349 |
| AAI27629 | NP_004942 | 320 | 160 | 160 | 138 | 69 | 69 |
| P00748 | NP_660205 | 320 | 160 | 160 | 1,586 | 793 | 793 |
| P00748 | NP_004521 | 320 | 160 | 160 | 214 | 107 | 107 |
| P00748 | AAC63054 | 266 | 133 | 133 | 382 | 191 | 191 |
| P00748 | AAF04852 | 320 | 160 | 160 | 1,364 | 682 | 682 |
| P00748 | NP_004337 | 320 | 160 | 160 | 1,558 | 779 | 779 |
| P00748 | AAA51985 | 244 | 122 | 122 | 154 | 77 | 77 |
| P00748 | AAI29989 | 320 | 160 | 160 | 1,596 | 798 | 798 |
| P00748 | AAH14460 | 296 | 148 | 148 | 114 | 57 | 57 |
| ABD72211 | NP_000918 | 1,210 | 605 | 605 | 202 | 101 | 101 |
| ABD72211 | NP_004818 | 1,210 | 605 | 605 | 178 | 89 | 89 |
| AAH04460 | AAH14460 | 890 | 445 | 445 | 138 | 69 | 69 |
| NP_000676 | NP_005152 | 154 | 77 | 77 | 172 | 86 | 86 |
| NP_000676 | NP_000901 | 416 | 208 | 208 | 176 | 88 | 88 |
| NP_000676 | EAW86722 | 418 | 209 | 209 | 700 | 350 | 350 |
| NP_000676 | NP_001516 | 418 | 209 | 209 | 310 | 155 | 155 |
| NP_000676 | NP_004942 | 418 | 209 | 209 | 138 | 69 | 69 |
| NP_005152 | NP_004358 | 512 | 256 | 256 | 108 | 54 | 54 |
| NP_005152 | NP_001516 | 518 | 259 | 259 | 310 | 155 | 155 |
| NP_001391 | NP_000901 | 682 | 341 | 341 | 174 | 87 | 87 |
| NP_001391 | EAW86722 | 690 | 345 | 345 | 700 | 350 | 350 |
Table S2 – continued from previous page

| target(P) | target(Q) | $|\mathcal{X}_B^P|$ | $|\mathcal{X}_{B^P}^+$| | $|\mathcal{X}_{B^P}^-$| | $|\mathcal{X}_{B^Q}^+$| | $|\mathcal{X}_{B^Q}^-|$ |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| NP_001391 | NP_000900 | 682 | 341 | 341 | 206 | 103 | 103 |
| NP_001391 | BAB91222 | 690 | 345 | 345 | 182 | 91 | 91 |
| NP_001391 | NP_001516 | 690 | 345 | 345 | 308 | 154 | 154 |
| NP_0060205 | NP_004337 | 914 | 457 | 457 | 642 | 321 | 321 |
| NP_0060205 | AAI29989 | 986 | 493 | 493 | 642 | 321 | 321 |
| NP_005424 | NP_001387 | 736 | 368 | 368 | 540 | 270 | 270 |
| NP_005424 | NP_003984 | 736 | 368 | 368 | 166 | 83 | 83 |
| NP_005424 | NP_004705 | 736 | 368 | 368 | 164 | 82 | 82 |
| NP_005424 | NP_004062 | 736 | 368 | 368 | 176 | 88 | 88 |
| AAC63054 | AAF04852 | 446 | 223 | 223 | 1,364 | 682 | 682 |
| AAC63054 | NP_004337 | 446 | 223 | 223 | 1,558 | 779 | 779 |
| AAC63054 | AAA51985 | 402 | 201 | 201 | 182 | 91 | 91 |
| AAC63054 | AAI29989 | 446 | 223 | 223 | 1,594 | 797 | 797 |
| AAC63054 | AAI29989 | 446 | 223 | 223 | 1,594 | 797 | 797 |
| AAC63054 | AAA51985 | 402 | 201 | 201 | 182 | 91 | 91 |
| AAA51985 | AAI29989 | 446 | 223 | 223 | 1,594 | 797 | 797 |
| AAA51985 | AAI29989 | 446 | 223 | 223 | 1,594 | 797 | 797 |
| AAA51985 | AAA14460 | 438 | 219 | 219 | 130 | 65 | 65 |
| AAF04852 | NP_004337 | 654 | 327 | 327 | 718 | 359 | 359 |
| AAF04852 | AAI29989 | 682 | 341 | 341 | 696 | 348 | 348 |
| NP_004337 | AAI29989 | 804 | 402 | 402 | 758 | 379 | 379 |
| AAA51985 | AAI29989 | 210 | 105 | 105 | 1,598 | 799 | 799 |
| AAA51985 | AAA14460 | 194 | 97 | 97 | 118 | 59 | 59 |
| NP_004358 | NP_000901 | 116 | 58 | 58 | 176 | 88 | 88 |
| NP_004358 | EAW86722 | 116 | 58 | 58 | 700 | 350 | 350 |
| NP_004358 | NP_000900 | 116 | 58 | 58 | 208 | 104 | 104 |
| NP_004358 | AAH14970 | 116 | 58 | 58 | 244 | 122 | 122 |

Continued on next page
| target(P) | target(Q) | $|X_{B_P}|$ | $|X_{B_P}^+|$ | $|X_{B_P}^-|$ | $|X_{B_Q}|$ | $|X_{B_Q}^+|$ | $|X_{B_Q}^-|$ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| NP_004358 | BAB91222 | 116 | 58 | 58 | 182 | 91 | 91 |
| NP_004358 | NP_001516| 116 | 58 | 58 | 312 | 156 | 156 |
| NP_004221 | EAW86722 | 138 | 69 | 69 | 700 | 350 | 350 |
| NP_004221 | NP_001516| 138 | 69 | 69 | 312 | 156 | 156 |
| NP_004221 | NP_004942| 138 | 69 | 69 | 138 | 69 | 69 |
| NP_000901 | EAW86722 | 174 | 87 | 87 | 700 | 350 | 350 |
| NP_000901 | BAB91222 | 176 | 88 | 88 | 182 | 91 | 91 |
| NP_000901 | NP_001516| 176 | 88 | 88 | 312 | 156 | 156 |
| EAW86722 | AAH14970 | 700 | 350 | 350 | 250 | 125 | 125 |
| EAW86722 | BAB91222 | 700 | 350 | 350 | 182 | 91 | 91 |
| EAW86722 | NP_001516| 700 | 350 | 350 | 312 | 156 | 156 |
| NP_000900 | BAB91222 | 208 | 104 | 104 | 182 | 91 | 91 |
| NP_000900 | NP_001516| 208 | 104 | 104 | 312 | 156 | 156 |
| NP_000900 | NP_004942| 208 | 104 | 104 | 138 | 69 | 69 |
| AAH14970 | BAB91222 | 252 | 126 | 126 | 182 | 91 | 91 |
| AAH14970 | NP_001516| 252 | 126 | 126 | 310 | 155 | 155 |
| AAH14970 | NP_004942| 252 | 126 | 126 | 138 | 69 | 69 |
| NP_002721 | NP_001387| 142 | 71 | 71 | 540 | 270 | 270 |
| NP_002721 | NP_003984| 142 | 71 | 71 | 166 | 83 | 83 |
| NP_002721 | NP_004705| 142 | 71 | 71 | 164 | 82 | 82 |
| NP_002721 | NP_004062| 142 | 71 | 71 | 176 | 88 | 88 |
| BAB91222 | NP_004942| 182 | 91 | 91 | 138 | 69 | 69 |
| NP_003605 | NP_004942| 362 | 181 | 181 | 138 | 69 | 69 |

Continued on next page
In this table, the first two columns target(P) and target(Q) correspond to the accession numbers of the two target proteins corresponding to the two bioassays P and Q of the pair, respectively. The columns $|X_B^+_P|$, $|X_B^-_P|$, and $|X_B^-_Q|$ correspond to the number of total compounds, active compounds and inactive compounds in the bioassay A where $(A = \{P, Q\}$ of each pair).

3 Supplementary Results

3.1 Hyperparmeter Configurations

Table S3: Hyperparameter Configurations

parameter	values
α	0, 0.1, 0.5, 1, 2
λ	0.001, 0.01, 0.5, 1
dimension d	25, 50, 100
# message passing steps τ	2, 3, 4
hidden layer size in $f_a(\cdot)$	100
hidden layer size in L, G and S	100
batch size	10
learning rate	1e-3

Table S3 presents the hyperparameter configurations for all our methods. α and λ correspond to the trade-off parameter between the source and target classification losses as in
Equation 4) and the trade-off parameter between the classification and discriminator losses in Equation 13), respectively. α is only associated with TAc and TAc-fc; whereas λ is only associated with TAc-fc and its variants. We tried 3 different values for d which represents the dimension of the compound representation out of GNN and dmpna; and 3 different values for the number of message passing steps τ. Hence, these two hyperparameters are associated with all methods except FCN-morgan and FCN-morganc. The hidden layer size in the attention network denoted by $f_a(\cdot)$, the feature-wise discriminator denoted by L, and the compound-wise discriminator denoted by G is fixed to 100. We used a fixed batch size of 10 and an initial learning rate of 1e-3 with exponential decay every epoch from 1e-3 to 1e-4 at the end of training. We trained each model for 40 epochs with an early-stopping criteria based on the ROC-AUC performance on the validation set. Specifically, during training, we evaluated the ROC-AUC performance of each model on the validation set at every epoch; and we choose the trained model at some epoch k that gives the best performance on the validation set.

3.2 Prediction Analysis

Table S4 presents the pairwise similarity analysis for active compounds which were correctly classified by TAc-c, but incorrectly classified as inactive by TAc, TAc-fc and its variants.

source(S)	target(T)	#cor	#act	cor% sim($\hat{\chi}^{+}_{B_T}, \chi^{+}_{B_S}$) sim($\hat{\chi}^{+}_{B_T}, \chi^{+}_{B_T}$)	sdiff	e-sdiff	p-value
EAW86722	AAI27629	36	128	28.125 0.231 0.194 19.401 21.692 1.68e-05			
NP_004818	ABD72211	131	485	27.010 0.191 0.216 -12.557 -12.312 3.05e-20			
NP_000901	NP_001516	33	124	26.13 0.213 0.182 17.135 19.886 2.57e-05			
NP_000483	NP_000918	18	82	21.951 0.262 0.444 -41.090 -32.693 1.56e-05			
NP_004942	NP_003605	29	145	20.000 0.164 0.174 -5.916 -2.832 4.15e-01			
NP_004221	NP_001516	21	124	16.935 0.212 0.203 4.530 6.081 2.45e-01			
AAC63054	AAF04852	85	546	15.568 0.255 0.249 2.490 3.969 1.25e-01			

Continued on next page
Table S4 – continued from previous page

source(S)	target(T)	#cor	#act	cor% sim($\tilde{X}_{\beta_r}^+, X_{\beta_s}^+$) sim($\tilde{X}_{\beta_r}^+, X_{\beta_s}^+$)	sdiff% e-diff% p-value			
NP_001516 NP_000947	15	112	13.393	0.244	0.193	26.449	28.965	2.92e-04
EAW86722 NP_004358	6	46	13.043	0.239	0.144	66.156	66.256	5.06e-06
AAH04460 AAH14460	6	55	10.909	0.228	0.154	47.925	50.102	2.68e-05
P00748 NP_004521	8	85	9.412	0.227	0.209	8.621	11.614	2.38e-01
P00748 AAF04852	50	546	9.158	0.237	0.267	-11.053	-8.667	1.22e-04
P00748 NP_660205	57	634	8.991	0.243	0.242	0.662	1.593	6.55e-01
NP_004942 NP_000676	15	168	8.929	0.183	0.216	-15.296	-11.831	2.8e-03
EAW86722 NP_000947	10	112	8.929	0.240	0.208	15.663	17.138	1.41e-01
AAC63054 AAI29989	55	638	8.621	0.234	0.249	-6.064	-3.701	1.69e-02
NP_001391 NP_001516	10	123	8.130	0.269	0.201	33.649	34.022	1.13e-06
EAW86722 AAH14970	8	99	8.081	0.266	0.212	25.838	28.634	1.58e-02
AAI29989 AAF04852	22	273	8.059	0.315	0.213	48.214	50.797	3.80e-10
NP_036559 AAI29989	51	636	8.019	0.444	0.258	-5.124	-4.478	5.37e-03
BAB91222 AAH14970	8	101	7.921	0.175	0.165	5.943	8.653	3.60e-01
P00748 NP_036559	5	67	7.463	0.271	0.184	47.440	43.716	8.58e-02
NP_004358 AAH14970	7	98	7.143	0.207	0.167	24.161	23.704	9.37e-03
AAA51985 NP_036559	5	70	7.143	0.226	0.167	35.308	35.516	1.30e-03
BAB91222 NP_000901	5	71	7.042	0.252	0.166	51.322	52.216	2.77e-02
NP_004358 NP_001516	8	124	6.452	0.195	0.196	-0.357	2.666	9.42e-01
AAH14460 AAC63054	11	176	6.250	0.240	0.237	1.395	4.762	8.31e-01
NP_003984 EAW70217	7	112	6.250	0.176	0.207	-15.381	-10.736	2.51e-01
NP_001516 NP_000676	10	168	5.952	0.215	0.177	21.813	25.027	4.71e-02
NP_000900 NP_001391	16	273	5.861	0.207	0.187	10.512	13.962	5.45e-02
EAW86722 NP_000901	4	70	5.714	0.211	0.153	37.288	39.267	3.66e-04
NP_004062 NP_005424	16	294	5.442	0.178	0.191	-6.695	-4.963	1.83e-01

Continued on next page
source(S)	target(T)	#cor	#act	#cor sim(\tilde{X}_{B^T}, X_{B^T}^+) sim(\tilde{X}_{B^T}, X_{B^T}^+)	sdiff%	e-sdiff%	p-value		
NP_001516	AAB26273	12	222	5.405	0.192	0.173	11.478	13.326	2.22e-02
AAH14460	P00748	6	118	5.085	0.209	0.176	19.259	19.193	9.09e-03
ADZ17337	NP_000448	6	119	5.042	0.216	0.378	-42.872	-26.487	7.48e-02
EAW86722	AAB26273	11	222	4.955	0.171	0.172	-0.639	-0.201	9.25e-01
AAB26273	AAH14970	5	101	4.950	0.237	0.191	23.628	30.287	1.59e-01
AA128575	ADZ17337	3	62	4.839	0.195	0.122	59.508	59.696	6.99e-03
NP_004358	AAB26273	10	222	4.505	0.180	0.181	-0.222	1.167	9.65e-01
P00748	NP_004337	27	623	4.334	0.244	0.271	-9.934	-7.917	2.86e-03
AAB26273	NP_000901	3	70	4.286	0.200	0.158	26.692	33.966	1.20e-01
AAB26273	NP_000676	7	167	4.192	0.217	0.294	-26.226	-17.244	1.02e-01
AAA51985	P00748	4	98	4.082	0.254	0.185	37.324	38.576	3.26e-02
AAA51985	AA129989	26	639	4.069	0.227	0.243	-6.579	-5.651	1.71e-02
AAB26273	EAW86722	11	280	3.929	0.253	0.359	-29.579	-7.283	1.26e-01
NP_036559	AAF04852	21	545	3.853	0.224	0.237	-5.495	-3.310	2.10e-01
AAH14460	AAH04460	10	395	3.652	0.154	0.136	12.702	12.870	1.06e-04
NP_004358	NP_000900	3	83	3.614	0.211	0.181	16.860	15.934	1.37e-01
NP_000901	EAW86722	10	280	3.571	0.251	0.503	-50.099	-46.770	1.25e-04
NP_004818	NP_000483	5	143	3.497	0.205	0.190	8.065	8.009	1.57e-01
AAF04852	AAC63054	6	179	3.352	0.318	0.215	48.069	49.310	5.66e-04
AA129989	NP_660205	12	395	3.038	0.287	0.191	49.869	52.166	3.98e-05
NP_775180	ADZ17337	2	67	2.985	0.181	0.143	26.606	25.601	2.58e-01
NP_000448	ADZ17337	2	68	2.941	0.114	0.060	91.779	95.379	7.93e-02
ADZ17337	NP_066285	4	137	2.920	0.221	0.204	8.640	10.717	2.39e-01
AAC63054	NP_004337	18	623	2.889	0.264	0.271	-2.731	0.234	5.85e-01
NP_004358	NP_000901	2	71	2.817	0.154	0.123	25.345	26.218	3.06e-01

Continued on next page
Table S4 – continued from previous page

source(S)	target(T)	#cor	#act	cor%	sim $\tilde{X}_T^+ \cdot \tilde{X}_S^+$	sim $\tilde{X}_T^+ \cdot \tilde{X}_B^+$	sdiff	e-sdiff	% p-value
AAF04852 NP_004337	8	287	2.787	0.321	0.218	47.407	50.401	6.15e-03	
AAB26273 NP_000947	3	108	2.778	0.232	0.158	46.717	52.124	7.21e-02	
AAB26273 NP_003605	4	144	2.778	0.219	0.151	44.746	43.328	3.17e-02	
NP_000901 BAB91222	2	73	2.740	0.266	0.584	-54.493	-54.476	2.78e-02	
AAH14970 AAB26273	6	222	2.703	0.191	0.164	16.190	16.216	7.96e-02	
BAB91222 AAB26273	6	222	2.703	0.160	0.167	-4.540	-3.455	2.74e-01	
BAB91222 NP_000947	3	112	2.679	0.206	0.214	-3.745	-2.894	7.53e-01	
P00748 AAC63054	4	153	2.614	0.259	0.249	3.974	5.017	6.99e-01	
BAB91222 NP_001391	7	276	2.536	0.158	0.183	-13.803	-13.149	1.29e-02	
AAH14460 NP_036559	2	81	2.469	0.246	0.186	32.453	32.468	6.44e-02	
NP_004337 P00748	3	128	2.344	0.270	0.191	41.575	43.957	1.01e-02	
AA299989 NP_036559	2	87	2.299	0.227	0.150	52.107	51.804	3.36e-01	
NP_004337 AAC63054	4	179	2.235	0.283	0.197	43.357	42.784	4.74e-03	
NP_000760 NP_000752	17	828	2.053	0.265	0.197	34.518	40.100	4.00e-05	
AAA51985 AAC63054	3	160	1.875	0.263	0.212	24.034	24.481	8.67e-03	
NP_000903 EAW86722	5	267	1.873	0.236	0.507	-53.336	-52.539	9.66e-03	
NP_000900 AAB26273	4	222	1.802	0.192	0.172	11.874	21.471	5.88e-01	
NP_612200 AAB26273	4	222	1.802	0.205	0.192	7.035	12.079	6.27e-01	
NP_004705 EAW70217	2	112	1.786	0.176	0.153	15.465	15.582	3.20e-03	
AA299989 AAC63054	3	179	1.676	0.275	0.195	40.963	43.788	1.15e-01	
EAW86722 NP_000903	2	121	1.653	0.201	0.119	68.483	73.823	1.13e-02	
BAH02301 AA289575	4	243	1.646	0.199	0.155	28.479	30.254	2.86e-02	
AA299989 P00748	2	128	1.563	0.307	0.187	63.821	68.477	2.76e-01	
NP_600205 P00748	2	128	1.563	0.223	0.199	12.042	18.287	3.47e-01	
NP_000762 NP_000752	11	768	1.432	0.252	0.223	12.713	16.400	7.20e-02	
source(S)	target(T)	#cor	#act	cor%	sim(\tilde{X}_{B_T}^+, X_{B_S}^+)	sim(\tilde{X}_{B_T}^+, X_{B_T}^+)	sdiff%	e-sdiff%	p-value
-----------	-----------	------	------	------	------------------	------------------	--------	---------	---------
BAB91222	EAW86722	4	280	1.429	0.212	0.395	-46.403	-45.265	1.19e-02
NP_000918	NP_000483	2	143	1.399	0.181	0.167	8.313	8.153	2.06e-01
NP_066285	AAI28575	3	244	1.230	0.224	0.175	28.138	28.295	3.79e-02
P00748	AAI29989	7	638	1.097	0.234	0.325	-27.930	-17.446	1.11e-01
AAB26273	NP_001391	3	274	1.095	0.236	0.220	7.039	8.095	7.11e-01
NP_004942	NP_997055	192	0.941	0.174	0.233	-25.354	-24.636	1.43e-07	
NP_002721	NP_001387	2	216	0.926	0.157	0.262	-40.099	-15.747	5.69e-01
NP_001387	NP_065717	3	411	0.730	0.303	0.358	-15.284	-11.201	3.77e-01
AAF04852	AAI29989	2	278	0.719	0.233	0.190	22.866	23.111	5.88e-02
NP_000947	EAW86722	2	280	0.714	0.219	0.166	31.671	31.738	6.30e-04
NP_004337	AAI29989	2	303	0.660	0.272	0.211	28.856	28.826	6.91e-02
NP_004705	NP_005021	508	0.613	0.163	0.249	-34.671	-33.500	5.32e-14	
NP_000752	NP_000760	3	543	0.552	0.299	0.247	21.330	23.816	3.93e-01
NP_036559	NP_004337	2	622	0.322	0.252	0.246	2.153	3.971	8.75e-01
NP_002825	NP_004081	216	0.152	0.261	0.254	2.678	2.762	8.02e-03	

In this table, the columns source(S) and target(T) correspond to the protein accession numbers of the corresponding bioassays of source and target tasks, respectively. The columns #cor, #act and cor% have the count of correctly classified active compounds, total number of active compounds and the percentage of correctly classified active compounds, respectively. Such compounds are denoted by the set \(\tilde{X}_{B_T}^+\). The columns sim(\(\tilde{X}_{B_T}^+, X_{B_S}^+\)) and sim(\(\tilde{X}_{B_T}^+, X_{B_T}^+\)) present the average pairwise similarities of correctly classified compounds in \(\tilde{X}_{B_T}^+\) with their top-5 most similar active compounds from the source and target bioassay, respectively. The column sdiff% has the percentage difference of the average pairwise similarities from the source compounds over the target compounds. The column e-sdiff% has the average of element-wise percentage difference of similarities from the source active compounds over the target active compounds. The column p-value has the corresponding p-values for e-sdiff%.
3.3 Parameter Study: TAc-fc-dmpna

Figure S1: Parameter Study of TAc-fc-dmpna
Figure S1 presents the parameter study in \(\text{TAc-fc-dmpna} \) in terms of \(\text{PR-AUC, precision, sens, accuracy} \) and \(\text{F1} \) on \(\alpha \) (i.e., the trade-off parameter between the source and target classification losses as in Equation 4) and \(\lambda \) (i.e., the trade-off parameter between the classification and discriminator losses in Equation 13). The study was conducted over the tasks for which \(\text{TAc-dmpna} \) outperforms the other methods in respective metrics. The values in each cell in the figure represent the average of the best performance over the tasks with the optimal choice of other hyperparameters.

Figure S1 shows that \(\text{TAc-fc-dmpna} \) has the best performance in \(\text{PR-AUC} \) when \(\alpha = 0.5 \) and \(\lambda = 0.001 \) and 0.01. This aligns with our observations in the parameter study for \(\text{ROC-AUC} \). \(\text{TAc-fc-dmpna} \) has the best performance in \(\text{precision, sens, accuracy} \) and \(\text{F1} \) when \(\alpha = 0.1 \) and \(\lambda = 0.001 \) and 0.01. Although for the metrics except \(\text{ROC-AUC} \) and \(\text{PR-AUC} \), the best performance is achieved at a lower \(\alpha \) than 0.5, optimal \(\alpha \) values are still non-zero. This provides strong evidence that the target task benefits from the transferred information from the source task. Similar to our observed trends from the parameter study for \(\text{ROC-AUC} \), there is a significant performance drop for too high or too low \(\alpha \), regardless of what \(\lambda \) is; for optimal \(\alpha \), a \(\lambda = 0.001 \) or 0.01 gives the best performance; for a given \(\alpha \), higher \(\lambda \) values degrades the performance.

4 Compound Prioritization using \(\text{dmpna} \)

In this section, we develop a comprehensive learning-to-rank method for effective compound prioritization that jointly learns molecular graph representations via \(\text{GNN} \) and a scoring function \(\phi(\cdot) \) using the representations in an end-to-end manner. We denote our method as \(\text{gnnCP} \). We consider the compound prioritization problem to correctly rank compounds in terms of their activities with respect to a protein target. To achieve so, \(\text{gnnCP} \) represents compounds using latent features that are learned from molecular graphs via a new, attention directed message passing neural network (\(\text{dmpna} \)) (explained in Section 4.2). We use a linear
scoring function \(\phi(r_c) : \mathbb{R}^d \rightarrow \mathbb{R} \) to score the compounds as follows,

\[
\phi(r_c) = w^T r_c, \tag{7}
\]

where \(w \) is a learnable parameter. Our proposed method \textbf{gnnCP} will produce a ranking of compounds induced by their predicted scores (computed using \(\phi(r_c) \)). Compounds with higher predicted scores will be ranked higher than those with lower predicted scores. Higher scores will be assigned to more active compounds in order to achieve the best ranking quality.

To quantify the ranking quality, we use the popular metric non-concordance index (\(nCI \)). \(nCI \) measures the fraction of incorrectly ranked compound pairs as follows,

\[
nCI(r, \phi) = \frac{1}{|\{c_i, c_j | c_i >_r c_j \}|} \sum_{\{c_i, c_j | c_i >_r c_j \}} \mathbb{I}(c_i \preceq_\phi c_j), \tag{8}
\]

where \(\mathbb{I} \) is the indicator function. In equation 8, \(c_i >_r c_j \) represents a pair of compounds \(c_i \) and \(c_j \) such that \(c_i \) is ranked higher than \(c_j \) in the ground truth ranking \(r \), and \(c_i \preceq_\phi c_j \) represents that \(c_i \) is ranked lower than \(c_j \) in the predicted ranking structure induced by \(\phi \).

In essence, a lower \(nCI \) would indicate better ranking performance. Following the work,\(^1\) we use \(nCI \) over the predicted ranking structure induced by \(\phi \) as our loss function \(\mathcal{L}_{\text{rank}} \).

Since the indicator function in equation 8 is discontinuous, we use the logistic loss as a surrogate function\(^2\) as follows,

\[
\mathbb{I}(a \preceq b) \approx \log (1 + \exp (- (a - b))). \tag{9}
\]

The loss term \(\mathcal{L}_{\text{rank}} \) for the set of compounds in a given bioassay is defined as follows,

\[
\mathcal{L}_{\text{rank}} = \frac{1}{|\{c_i, c_j | c_i >_r c_j \}|} \sum_{\{c_i, c_j | c_i >_r c_j, c_i \preceq_\phi c_j \}} \log [1 + \exp (- (w^T z_{c_i} - w^T z_{c_j}))]. \tag{10}
\]
We solve the following optimization:

\[
\min_{\Theta} \mathcal{L}_{\text{rank}} + \lambda \|\Theta\|_2^2,
\]

(11)

where \(\lambda\) is the regularization parameter and \(\Theta\) is the set of trainable parameters. The above optimization encourages correct ranking of compound pairs and hence, higher scores being assigned to more active compounds.

References

(1) Liu, J.; Ning, X. Differential compound prioritization via bidirectional selectivity push with power. *J. Chem. Inf. Model.* 2017, 57, 2958–2975.

(2) Li, H. A short introduction to learning to rank. *IEICE Trans. Inf. Syst.* 2011, *E94-D*, 1854–1862.