Non-linear Axial Vibrations of Composite Drill Strings Considering Interaction of Roller Cone Bit and Polycrystalline Diamond Compact Bit with Rock

M. Mohammadzadeh¹, M. Arbabtafti*, M. Shahgholi², J. Yang³

¹ Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran
² Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada

PAPER INFO

Abstract

Due to the world increasing energy demands, optimizing the drilling system parameters such as the weight on bit (WOB), and the structure of drill string and bit, also vibrations and dynamic behavior of drill strings are of significant interest to researchers and energy industries. Specially, to overcome limitations of drilling operations in oil and gas industry, composite drill strings as high-tech devices are under development. In this research, the fully coupled non-linear axial vibrations of composite drill strings due to the interaction of two common bits namely; Roller Cone (RC) and Polycrystalline Diamond Compact (PDC) with rock, considering the major non-linear terms, the drill string-wellbore contact, the different weight on bit (WOB) and the different composite configurations using the finite element method (FEM) and the Lagrangian approach were studied. This study proved that the different configurations of composite drill strings showed specific dynamic behavior at different conditions. Therefore, composite drill string can be designed for particular purposes. Also, the results imply the remarkable effects of weight on bit (WOB) and type of bits on the axial vibrations of composite drill strings.

doi:10.5829/ije.2021.34.04a.28

1. INTRODUCTION

A drill string is an ultra-slender rotor, which is suspended by a hoisting system on the surface, to connect the rotary drive system at the top to the bit at the bottom to dig through the rock. The drill string is put lower through the well to generate the compressional vibrations of drill strings started in past decades [1-3]. Yigit and Christoforo [4] studied the coupled axial and transverse vibrations of oilwell drillstrings. Optimizing the drilling parameters such as weight on bit, rate of penetration (ROP) and structure of drill string and bit are of great interest to researchers and energy industries, academically and practically [5-8]. The effects of downhole assembly and polycrystalline diamond compact (PDC) bit geometry on stability of drillstrings were studied by Elsayed et al. [9]. Jansen [10] analyzed the dynamic behavior of drill string considering the drilling fluid and drill string-wellbore contact. Jogi et al. [11] presented four programs to analyze vibrations. Spanos et al. [12] studied the drill string-wellbore contact using a nonlinear finite element dynamic model. Khulief and Al-Naser [13] analyzed dynamic of a finite element model of drill string. The system responses with the reduced-order and full-order models were compared. Ghasemloonia et al. [14] studied the coupled non-linear axial-transverse vibration of a drill string using the Bypassing PDE's method with the expanded Galerkin's method. Nowadays, the study on optimization of materials to improve their role in practical aspects are increasing [15-17]. In recent years, the use of new torsion shafts [18,19] and composite
rotors [20, 21] is expanding. Specially, to overcome limitations of drilling operations in oil and gas industry, composite drill strings as high-tech devices are under development.

The composite drill strings can be designed to meet specific requirements for specific applications, e.g. flexible enough to resist bending fatigue, but strong enough to carry high tensional and torsional loads, particularly in the ultra-deep directional drilling or the short radius directional drilling [20-22].

Mohammadzadeh et al. [22] furnished a basic fully coupled non-linear model of composite drill strings for the further development of a more comprehensive model. The approach presented on that work [22] has been adapted in recent study and has been extended to accommodate the important case of non-linear axial vibrations considering bit (RC/PDC)-rock interaction.

This research has aimed to study the fully coupled non-linear axial vibrations of vertical composite drill strings due to the interaction of two common bits namely; Roller-Cone (RC) bits and Polycrystalline Diamond Compact (PDC) with rock, considering the drill string-wellbore contact, the different weight on bit (WOB) and the different composite configurations. Also, the gyroscopic effect, and especially the geometric stiffening effect, the axial-torsional-lateral coupling of vibrations and the major non-linear terms have been taken into account. The full-order non-linear equations of the whole length of drill string including drill pipes and drill collars have been derived by the finite element method and the Lagrangian approach.

2. PROBLEM FORMULATION

The laminated composite drill string consists of the winded orthotropic layers.

2.1. Finite Element Discretization

Using a number of two-node elements with six degrees of freedom per node, the element displacement vector \(\{e\} \) can be defined by Equation (1):

\[
\{e\}_{12x1} = [u_1 \ v_1 \ w_1 \ \theta_{x1} \ \theta_{y1} \ \theta_{z1} \ u_2 \ v_2 \ w_2 \ \theta_{x2} \ \theta_{y2} \ \theta_{z2}]^T
\]

(1)

Figure 2 shows the translational displacements \(u, v, w \), the torsional displacements \(\theta_x \), and the rotational displacements \(\theta_y \) and \(\theta_z \) in their directions. The nodal displacement functions can be expressed below:

\[
u_a(x,t) = N_u(x) \ e(t) \\
v_i(x,t) = N_v(x) \ e(t) \\
w_i(x,t) = N_w(x) \ e(t)
\]

\[
\theta_{x_i}(x,t) = N_{\theta_x}(x) \ e(t) \\
\theta_{y_i}(x,t) = N_{\theta_y}(x) \ e(t) \\
\theta_{z_i}(x,t) = N_{\theta_z}(x) \ e(t)
\]

(2)

where \(N \) is the shape function based on Timoshenko beam theory [23-25].

2.1. Kinetic Energy of the Composite Drill String

The kinetic energy of an element can be written as follows:

\[
T = \frac{1}{2} \int_0^L (m V^T V + \dot{\omega}^{TR} [I] \omega^{TR}) \ dx
\]

(3)

where \(m \) is the mass per unit length, \(V \) is translation velocity vector of the cross section, \(\omega \) is angular
velocity vector in the fixed reference system and $[I]$ is the matrix of mass moment of inertia stated as follows:

$$m = \frac{\pi}{4} \sum_{k=1}^{n} \rho_k (D_{ak}^2 - D_{Ak}^2), \quad \psi = \left(\frac{\partial u}{\partial t}, \frac{\partial v}{\partial t}, \frac{\partial w}{\partial t} \right)^T$$

$$\omega = \left(\omega_x, \omega_y, \omega_z \right)^T, \quad [I] = \text{Diag} \begin{bmatrix} I_P & I_D & I_D \end{bmatrix}$$

Where

$$a_k = \left(\frac{\partial \phi}{\partial t} + \frac{\partial \theta_k}{\partial t} \right)$$
$$a_y = \frac{\partial \theta_k}{\partial t} \cos(\phi + \theta_k) - \frac{\partial \phi}{\partial t} \sin(\phi + \theta_k)$$
$$a_z = \frac{\partial \phi}{\partial t} \sin(\phi + \theta_k) + \frac{\partial \theta_k}{\partial t} \cos(\phi + \theta_k)$$

That I_P and I_D are the polar and diametrical mass moment of inertia. After some algebraic manipulations, the total kinetic energy of an element can be written as follows:

$$T = \frac{1}{2} \sum_{k=1}^{n} \left(\sum_{i=1}^{4} \rho_k (D_{ak}^2 - D_{Ak}^2) \left(\frac{\partial u_i}{\partial t} \right)^2 + \sum_{i=1}^{4} \rho_k (D_{ak}^2 - D_{Ak}^2) \left(\frac{\partial v_i}{\partial t} \right)^2 \right)$$

$$+ \sum_{i=1}^{4} \rho_k (D_{ak}^2 - D_{Ak}^2) \left(\frac{\partial w_i}{\partial t} \right)^2 + \sum_{i=1}^{4} \rho_k (D_{ak}^2 - D_{Ak}^2) \left(\frac{\partial (\phi + \theta_i)}{\partial t} \right)^2$$

$$+ \left(\frac{\partial \phi}{\partial t} \right)^2 + \left(\frac{\partial \theta_i}{\partial t} \right)^2$$

That accounts for the translational inertia, the torsional inertia, the rotational inertia, and the coupling term comprise the non-linear terms and the gyroscopic moments. Also, n is the number of the layers, ρ_k is the material density of the k-th layer. As shown in Figure 3, D_{ak} and D_{Ak} are the external and internal diameter of the k-th layer, respectively.

![Figure 3. The external and internal diameter of the k-th layer](image)

2.2 Strain Energy of the Composite Drill String

The generalized Hooke’s law for fiber-reinforced composite materials in the cylindrical coordinate system can be expressed as follows:

$$\{ \sigma \} = [C] \{ \varepsilon \}, \quad \{ \varepsilon \} = [I] \{ \dot{\varepsilon} \}$$

Where $\{ \sigma \}$ and $\{ \varepsilon \}$ are the stress and strain fields, and $[C]$ is the transformed stiffness matrix of a layer [26].

The strain energy of an element in the cylindrical coordinate system is given below:

$$U = \frac{1}{2} \int \{ \sigma \} \cdot \{ \varepsilon \} \, dV$$

Since the length of drill string is very bigger than the lateral dimensions, therefore:

$$\sigma_{rr} \cdot \varepsilon_{r\theta} \cdot \tau_{r\theta} \geq 0 \quad \text{and} \quad \varepsilon_{rr} \cdot \varepsilon_{\theta\theta} \cdot \varepsilon_{r\theta} \geq 0$$,

thus:

$$U = \frac{1}{2} \int \pi \sum_{k=1}^{n} \left(C_{11k} (D_{ak}^4 - D_{Ak}^4) \left(\frac{\partial u}{\partial x} \right)^2 + \sum_{i=1}^{4} C_{64k} (D_{ak}^4 - D_{Ak}^4) \left(\frac{\partial v_i}{\partial x} \right)^2 \right)$$

$$+ \sum_{i=1}^{4} C_{64k} (D_{ak}^4 - D_{Ak}^4) \left(\frac{\partial w_i}{\partial x} \right)^2 + \sum_{i=1}^{4} C_{64k} (D_{ak}^4 - D_{Ak}^4) \left(\frac{\partial (\phi + \theta_i)}{\partial x} \right)^2$$

$$+ \left(\frac{\partial \phi}{\partial x} \right)^2 + \left(\frac{\partial \theta_i}{\partial x} \right)^2$$

Which accounts for the axial, the torsional, the bending and the non-linear shearing deformations. The last three terms represent other major non-linear low-order terms. The lateral stiffness of drill strings varies when they are subjected to high axial loads, this phenomenon is called the geometric stiffening effect [22, 27], the strain energy due to geometric stiffening effect is denoted by U_{gs}:
where the term \(\sum_{k=1}^{n} C_{k}l_{k} (B_{ak}^2 - D_{ak}^2) \) is the net axial force \(F_{A}(x) \) [27], then:

\[
U_{gr} = \frac{1}{2} \int_{0}^{L} \{ F_{A}(x)(\frac{\partial u}{\partial t}) + (\frac{\partial u}{\partial x})^2 + (\frac{\partial w}{\partial x})^2 \} \, dx + \sum_{k=1}^{n} C_{k}l_{k} (B_{ak}^2 - D_{ak}^2) \tag{9}
\]

\[
+ \frac{3\pi}{64} \sum_{k=1}^{n} C_{k}l_{k} (B_{a}^2 - D_{a}^2) y(\frac{\partial w}{\partial x})^2 + (\frac{\partial w}{\partial x})^2) \, dx \tag{10}
\]

The net axial force \(F_{A}(x) \) in a point is the resultant of \(W(x) \) the downward drill string weight and \(F_{bot} \) the upward reaction force between the bit and the bottom of the well formation. The upper parts of the drill string operate under axial tension, while the upward reaction force causes the lower parts operate under axial compression. There is a neutral point in drill strings, in which \(F_{A}(x)=0 \). So, \(F_{A}(x) \) and \(U_{gr} \) must be defined for compression and tension fields (Figure 4).

2.3. Drill String-wellbore Contact The contact loads between the drill string and wellbore at each point can be modeled by \(F_{n} \) the concentrated forces along normal and \(F_{t} \) the tangential directions and \(M_{f} \) the frictional concentrated torque, so:

\[
F_{n} = \begin{cases}
0 & \text{for } (\gamma \leq g) \\
-k_{c} (\gamma - g) & \text{for } (\gamma > g)
\end{cases}
\]

\[
F_{t} = \mu F_{n} \text{ sign} \left(\frac{\partial \Phi}{\partial t} \right) \quad \text{and} \quad M_{f} = 0.5 D_{a} F_{t} \tag{11}
\]

Where \(\gamma = \sqrt{v^2 + w^2} \), \(g = 0.5(D_{ch} - D_{w}) \).

2.4. Bit-rock Interaction The main process of drilling in oil and gas industries is the creation of borehole by a rock-cutting tool called a bit. Traditional bits consist of a steel body equipped with three rotating conical cylinder with steel teeth that crush the rock, Roller-Cone (RC) bits. Modern bits often consist of a steel body without rotating parts, covered with artificial diamond cutters that shear the rock, Polycrystalline Diamond Compact (PDC) bits (Figures 5).

The frequency of contact force between PDC bit and rock is equal to the angular velocity of rotary table, while the frequency of contact force between RC bit and rock is three times the angular velocity of rotary table [9]. So, the two continuous forces, which are applied in the axial direction at the end of the bit, have been assumed to simulate the interaction of these bits and rock, respectively. The forces are expressed as follow:

\[
F_{RC-bit} = WOB \sin(3\Omega t) \tag{12}
\]

\[
F_{PDC-bit} = WOB \sin(\Omega t) \tag{13}
\]

2.5. Dynamic Equation of Motion The dynamic equation of motion can be derived using the Lagrange's equation, which can be given below:

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = Q
\]

where \(L = (T - U) \) is the Lagrangian function, \(q \) and \(Q \) are the vectors of generalized coordinates and
generalized forces, respectively. The expressions of the component terms of Equation (1) have been integrated into computational scheme to obtain the results.

3. SIMULATION AND RESULTS ANALYSIS

The full-order non-linear dynamic equations of composite drill string were solved using a computational plan in MATLAB. The drill string was discretized into 240 elements to achieve results convergence. Table 1 shows the two 16-orthotropic-layer cases with different configurations to show major trends. Also, Table 2 displays the used data in simulation.

It is assumed that the lateral translations and the lateral rotations are zero at the top. The lateral translations at the bit are also zero. The vertical drill string at the top node is subjected to the constant angular velocity about the x-axis and then WOB is applied. The general scheme of loads has been displayed in Figure 4.

The WOB values have been assumed 10 and 30% of the drill collars weight. Figures 6-13 show the axial vibrations of end point of drill collar, which is located at 200 m above the bit.

Figures 6 and 7 show the axial deflections, when WOB is 10% of the drill collars weight for PDC bits in cases 1 and 2, respectively.

The axial deflections, when WOB is 10% of the drill collars weight for RC bits in cases 1 and 2 are displayed in Figures 8 and 9, respectively.

When the ply angle decreases, due to increase of axial stiffness, firstly; the maximum amplitudes of responses decrease; secondly, the capability of drill string to transmit the axial vibrations increases, and the drill string become more sensitive to excitations, so the drill string experience the denser axial vibrations at a point above the bit, as shown in Figures 6 and 7.

Table 1. The under investigation cases
Case
Configuration

Table 2. The used data in simulation
Drill string length = 1200 m
Drill pipes length = 1000 m
Drill pipes OD/ID = 0.1524/0.127 m
Drill collars length = 200 m
Drill collars OD/ID = 0.2324/0.1062 m
Wellbore diameter = 0.3524 m
Contact stiffness = 10e8 N/m
Frictional coefficient = 5e-4

Constant angular velocity = 6 Rad/s
The first stabilizer location = 50 m above the bottom,
The second stabilizer location = 150 m above the bottom

Figure 6. Axial deflection at 200 m above the bit, WOB is 10% of the drill collars weight, PDC bit, (Case 1)
As displayed in Figures 8 and 9, Case 2 shows the denser axial vibrations with less amplitudes at a point above the bit. Also, the comparison between these figures with Figures 6 and 7 show that using RC bit intensify the density of axial vibrations.

Figures 10 and 11 show the axial deflections when WOB is 30% of the drill collars weight for PDC bits in cases 1 and 2, respectively.
As shown in Figures 12 and 13, when the RC bits are used, the axial responses in a point above the bit are denser than PDC bits.

4. CONCLUSION

In this study, the fully coupled non-linear axial vibrations of composite drill strings due to the interaction of two common bits namely; Roller-Cone (RC) bits and Polycrystalline Diamond Compact (PDC) with rock, considering the drill string-wellbore contact, the different weight on bit (WOB) and the different composite configurations were investigated. The gyroscopic effect, and especially the geometric stiffening effect, the axial-torsional-lateral coupling of vibrations and the major non-linear terms have been taken into account. The full-order non-linear equations of the whole length of drill string including drill pipes and drill collars were derived by the finite element method and the Lagrangian approach.

This study proved that the different configurations of composite drill strings showed specific dynamic behavior in different conditions; therefore, composite drill string can be designed for particular purposes. Also, the results imply the remarkable effects of weight on bit and type of bits on the axial vibrations of composite drill strings.

As discussed, when the ply angle decreases, due to increase of axial stiffness, firstly; the maximum amplitudes of responses decrease; secondly, the capability of drill string to transmit the axial vibrations increases, and the drill string become more sensitive to excitations, so the drill string experience the denser axial vibrations at the point above the bit. Also, using RC bit intensifies the density of axial vibrations and the increase of weight on bit leads to more axial vibrations.

5. REFERENCES

1. Finnie, I. and Bailey, J.J., "An experimental study of drillstring vibration", Journal of Engineering for Industry, ASME Transaction Vol. 82, No. 2, (1960), 129-135, doi: 10.1115/1.3663020.
2. Bailey, J.J. and Finnie, I., "An analytical study of drillstring vibration", Journal of Engineering for Industry, ASME Transaction Vol. 82, No. 2, (1960), 122-128, doi: 10.1115/1.3663017.
3. Wolf, S.F., Zackshenhouse, M. and Arian, A., "Field measurements of downhole drillstring vibrations", Proceedings of the Annual Technical Conference & Exhibition, Las Vegas, (1985), 32-42, doi: 10.2118/14330-MS.
4. Yigit, A.S. and Christoforou, A.P., "Coupled axial and transverse vibrations of oilwell drillstrings", Journal of Sound and Vibration, Vol. 195, No. 4, (1996), 617-627, doi: 10.1006/jsvi.1996.0450.
5. Wu, X., Paez, L.C., Partin, U.T. and Agnighotri, M., "Decoupling stick-slip and whirl to achieve breakthrough in drilling performance", Proceedings of the IADC/SPE Drilling Conference and Exhibition, Society of Petroleum Engineers (2010), doi: 10.2118/128767-MS.
6. Bailey J.R. and Remmert, S.M., "Managing drilling vibrations through BHA design optimization", Drilling and Completion, Vol. 25, No. 40, (2010), 458-471, doi: 10.2118/139426-PA.
7. Dvoynikov, M., Syzrant sevab, V. and Syzrant sevab, K., "Designing a high resistant, high-torque downhole drilling motor", International Journal of Engineering, Transactions A: Basics, Vol. 30, No. 10, (2017), 1615-1621, doi: 10.5829/ije.2017.30.10a.24.
8. Wang, H., Guan, Z.C., Shi, Y.C., Liu, Y.W. and Liang D.Y., "Drilling Trajectory Prediction Model for Push-the bit Rotary Steerable Bottom Hole Assembly", International Journal of Engineering, Transactions B: Applications, Vol. 30, No. 11, (2017), 1800-1806, doi: 10.5829/ije.2017.30.11b.23.
9. Elseayed, M.A., Dareing, D.W. and Dupuy, C.A., "Effect of downhole assembly and polycrystalline diamond compact (PDC) bit geometry on stability of drillstrings", Journal of Energy Resources Technology, Vol. 119, (1997), 159-163, doi: 10.1115/1.2794984.
10. Jansen, J.D., "Nonlinear rotor dynamics as applied to oilwell drillstring vibrations", Journal of Sound and Vibration, Vol. 147 No. 1, (1991), 115-135, doi: 10.1016/0022-460X(91)90687-F.
11. Jogi, P.N., Macpherson, J.D. and Neubert, M., "Field verification of model-derived natural frequencies of a drill string", Journal of Energy Resources Technology, Vol. 124, No. 3, (2002), 154-162, doi: 10.1115/1.1460618.
12. Spanos, P.D., Chevallier, A.M. and Politis, N.P., "Nonlinear stochastic drill-string vibrations", Journal of Applied Mechanics, ASME Transactions, Vol. 124, (2002), 512-518, doi: 10.1115/1.1502669.
13. Khulief, Y.A. and Al-Naser, H., "Finite element dynamic analysis of drillstrings", Finite Element in Analysis and Design Vol. 41, (2005), 1270–1288, doi: 10.1016/j.finel.2005.02.003.
14. Ghaseemloonia, A., Rideout, D.G. and Butt, S.D., “Analysis of multi-mode nonlinear coupled axial-transverse drillstring vibration in vibration assisted rotary drilling”, Journal of Petroleum Science and Engineering, Vol. 116, (2014), 36-49, doi: 10.1016/j.petrol.2014.02.014.
15. Trang, G.T.T., Linh, N.H., Linh, N.T.T. and Kien, P.H., “The study of dynamics heterogeneity in SiO2 liquid”, High Tech and Innovation Journal, Vol. 1, No. 1, (2020), 1-7, doi: 10.28991/HJI-2020-01-01-01.
چکیده
رشته حفاری به عنوان یک تجهیز استراتژیک در صنایع نفت و گاز شناخته می‌شود. در این بحث، تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز به بررسی می‌پردازیم.

کامپوزیت‌ها به وسیله روش‌های بسیاری عمل می‌کنند. این روش‌ها شامل تکنولوژی‌های مختلفی هستند که شامل روش‌های متابولیسم، تکنولوژی‌های بیولوژیکال، تکنولوژی‌های بیومکانیکال، تکنولوژی‌های مکانیکال و تکنولوژی‌های الکترونیکال هستند. این روش‌ها به منظور بهینه‌سازی کاربرد بسیاری از فناوری‌های مختلف در صنایع نفت و گاز به کار می‌روند.

مطالب این بحث شامل تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز می‌باشد. دو نوع متدوال مته حفاری و سازه کف چاه مورد مطالعه قرار گرفته است. در نظر گرفتن وزن ه، حل می‌گردند. کامپوزیت متشکل از لایه‌های اورتوتروپ در نظر گرفته شده و برای بدست آوردن نتایج، معادلات دینامیک غیر خطی مطرح می‌شوند. هدف از این تحقیق تحلیل ارتعاشات کوپل شده غیر خطی محوری رشته حفاری RC با استفاده از نظریه و معادلات لاگرانژ و به کمک روش المان محدود استخراج شده است.

کامپوزیت‌ها به وسیله روش‌های بسیاری عمل می‌کنند. این روش‌ها شامل تکنولوژی‌های مختلفی هستند که شامل روش‌های متابولیسم، تکنولوژی‌های بیولوژیکال، تکنولوژی‌های بیومکانیکال، تکنولوژی‌های مکانیکال و تکنولوژی‌های الکترونیکال هستند. این روش‌ها به منظور بهینه‌سازی کاربرد بسیاری از فناوری‌های مختلف در صنایع نفت و گاز به کار می‌روند.

مطالب این بحث شامل تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز می‌باشد. دو نوع متدوال مته حفاری و سازه کف چاه مورد مطالعه قرار گرفته است. در نظر گرفتن وزن ه، حل می‌گردند. کامپوزیت متشکل از لایه‌های اورتوتروپ در نظر گرفته شده و برای بدست آوردن نتایج، معادلات دینامیک غیر خطی مطرح می‌شوند. هدف از این تحقیق تحلیل ارتعاشات کوپل شده غیر خطی محوری رشته حفاری RC با استفاده از نظریه و معادلات لاگرانژ و به کمک روش المان محدود استخراج شده است.

کامپوزیت‌ها به وسیله روش‌های بسیاری عمل می‌کنند. این روش‌ها شامل تکنولوژی‌های مختلفی هستند که شامل روش‌های متابولیسم، تکنولوژی‌های بیولوژیکال، تکنولوژی‌های بیومکانیکال، تکنولوژی‌های مکانیکال و تکنولوژی‌های الکترونیکال هستند. این روش‌ها به منظور بهینه‌سازی کاربرد بسیاری از فناوری‌های مختلف در صنایع نفت و گاز به کار می‌روند.

مطالب این بحث شامل تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز می‌باشد. دو نوع متدوال مته حفاری و سازه کف چاه مورد مطالعه قرار گرفته است. در نظر گرفتن وزن ه، حل می‌گردند. کامپوزیت متشکل از لایه‌های اورتوتروپ در نظر گرفته شده و برای بدست آوردن نتایج، معادلات دینامیک غیر خطی مطرح می‌شوند. هدف از این تحقیق تحلیل ارتعاشات کوپل شده غیر خطی محوری رشته حفاری RC با استفاده از نظریه و معادلات لاگرانژ و به کمک روش المان محدود استخراج شده است.

کامپوزیت‌ها به وسیله روش‌های بسیاری عمل می‌کنند. این روش‌ها شامل تکنولوژی‌های مختلفی هستند که شامل روش‌های متابولیسم، تکنولوژی‌های بیولوژیکال، تکنولوژی‌های بیومکانیکال، تکنولوژی‌های مکانیکال و تکنولوژی‌های الکترونیکال هستند. این روش‌ها به منظور بهینه‌سازی کاربرد بسیاری از فناوری‌های مختلف در صنایع نفت و گاز به کار می‌روند.

مطالب این بحث شامل تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز می‌باشد. دو نوع متدوال مته حفاری و سازه کف چاه مورد مطالعه قرار گرفته است. در نظر گرفتن وزن ه، حل می‌گردند. کامپوزیت متشکل از لایه‌های اورتوتروپ در نظر گرفته شده و برای بدست آوردن نتایج، معادلات دینامیک غیر خطی مطرح می‌شوند. هدف از این تحقیق تحلیل ارتعاشات کوپل شده غیر خطی محوری رشته حفاری RC با استفاده از نظریه و معادلات لاگرانژ و به کمک روش المان محدود استخراج شده است.

کامپوزیت‌ها به وسیله روش‌های بسیاری عمل می‌کنند. این روش‌ها شامل تکنولوژی‌های مختلفی هستند که شامل روش‌های متابولیسم، تکنولوژی‌های بیولوژیکال، تکنولوژی‌های بیومکانیکال، تکنولوژی‌های مکانیکال و تکنولوژی‌های الکترونیکال هستند. این روش‌ها به منظور بهینه‌سازی کاربرد بسیاری از فناوری‌های مختلف در صنایع نفت و گاز به کار می‌روند.

مطالب این بحث شامل تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز می‌باشد. دو نوع متدوال مته حفاری و سازه کف چاه مورد مطالعه قرار گرفته است. در نظر گرفتن وزن ه، حل می‌گردند. کامپوزیت متشکل از لایه‌های اورتوتروپ در نظر گرفته شده و برای بدست آوردن نتایج، معادلات دینامیک غیر خطی مطرح می‌شوند. هدف از این تحقیق تحلیل ارتعاشات کوپل شده غیر خطی محوری رشته حفاری RC با استفاده از نظریه و معادلات لاگرانژ و به کمک روش المان محدود استخراج شده است.

کامپوزیت‌ها به وسیله روش‌های بسیاری عمل می‌کنند. این روش‌ها شامل تکنولوژی‌های مختلفی هستند که شامل روش‌های متابولیسم، تکنولوژی‌های بیولوژیکال، تکنولوژی‌های بیومکانیکال، تکنولوژی‌های مکانیکال و تکنولوژی‌های الکترونیکال هستند. این روش‌ها به منظور بهینه‌سازی کاربرد بسیاری از فناوری‌های مختلف در صنایع نفت و گاز به کار می‌روند.

مطالب این بحث شامل تحقیقات علمی و تکنولوژی رشته حفاری کامپوزیت با توجه به ویژگی‌ها و نیروهای مورد نیاز در صنایع نفت و گاز می‌باشد. دو نوع متدوال مته حفاری و سازه کف چاه مورد مطالعه قرار گرفته است. در نظر گرفتن وزن ه، حل می‌گردند. کامپوزیت متشکل از لایه‌های اورتوتروپ در نظر گرفته شده و برای بدست آوردن نتایج، معادلات دینامیک غیر Line.