Space-QUEST
Experiments with quantum entanglement in space

Rupert Ursin,1,2 Thomas Jennewein,2 Johannes Kofler,1,2 Josep M. Perdigues,3 Luigi Cacciapuoti,3 Clovis J. de Matos,3 Markus Aspelmeyer,2 Alejandra Valencia,4 Thomas Scheidl,2 Alessandro Fedrizzi,2 Antonio Acin,4 Cesare Barbieri,5 Giuseppe Bianco,6 Caslav Brukner,1,2 José Capmany,7 Sergio Cova,8 Dirk Giggenbach,9 Walter Leeb,10 Robert H. Hadfield,11 Raymond Laflamme,12 Norbert Lütkenhaus,12 Gerard Milburn,13 Montchil Peev,14 Timothy Ralph,13 John Rarity,15 Renato Renner,16 Etienne Samain,17 Nikolaos Solomos,18,19 Wolfgang Tittel,20 Juan P. Torres,4 Morio Toyoshima,21 Arturo Ortizgoza-Blanch,7 Valerio Pruneri,4,22 Paolo Villoresi,23,24 Ian Walmsley,25 Gregor Weis,12 Harald Weinfurter,26 Marek Zukowski,27 and Anton Zeilinger1,2

1 Faculty of Physics, University of Vienna, Austria
2 Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Austria
3 European Space Research and Technology Centre (ESTEC), European Space Agency (ESA), The Netherlands
4 Institute of Photonic Sciences (ICFO), Spain
5 Dipartimento di Astronomia, University of Padova, Italy
6 Matera Space Geodesy Center, Agenzia Spaziale Italiana (ASI), Italy
7 Institute of Telecommunications and Multimedia Applications (ITEAM), Universidad Politécnica de Valencia, Spain
8 Dip. Elettronica e Informazione, Politecnico di Milano, Italy
9 Institut für Kommunikation und Navigation, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany
10 Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology, Austria
11 School of Engineering and Physical Sciences, Heriot-Watt University, UK
12 Department of Physics & Astronomy, Institute for Quantum Computing, University of Waterloo, Canada
13 Department of Physics, University of Queensland, Australia
14 Smart Systems, ARC - Austrian Research Centers GmbH, Austria
15 Department of Electrical and Electronic Engineering, University of Bristol, UK
16 Swiss Federal Institute of Technology (ETH Zürich), Switzerland
17 Observatoire de la Cote d’Azur, France
18 Pure and Applied Physics Laboratories, Hellenic Naval Academy, Piraeus, Greece
19 EUDOXOS Observatory, Kefalinia, Greece
20 Institute for Quantum Information Science, University of Calgary, Canada
21 Space Communication Group, National Institute of Information and Communications Technology (NICT), Japan
22 Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain
23 Department of Information Engineering (DEI), University of Padova, Italy
24 Istituto Nazionale per la Fisica della Materia - Consiglio Nazionale delle Ricerche (INFM-CNR), Italy
25 Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, UK
26 Department für Physik, Ludwig-Maximilians-Universität (LMU), Munich, Germany
27 Institute for Theoretical Physics and Astrophysics, University of Gdansk, Poland

(Dated: June 5, 2008)

The European Space Agency (ESA) has supported a range of studies in the field of quantum physics and quantum information science in space for several years, and consequently we have submitted the mission proposal Space-QUEST (Quantum Entanglement for Space Experiments) to the European Life and Physical Sciences in Space Program. We propose to perform space-to-ground quantum communication tests from the International Space Station (ISS). We present the proposed experiments in space as well as the design of a space based quantum communication payload.

SCIENTIFIC BACKGROUND

Quantum entanglement is, according to Erwin Schrödinger in 1935 [1], the essence of quantum physics and inspires fundamental questions about the principles of nature. By testing the entanglement of particles we are able to ask fundamental questions about realism and locality in nature [2, 3]. Local realism imposes certain constraints in statistical correlations of measurements on multi-particle systems. Quantum mechanics, however, predicts that entangled systems have much stronger than classical correlations that are independent of the distance between the particles and are not explicable with classical physics.

It is an open issue whether quantum laws, originally established to describe nature at the microscopic level of atoms, are also valid in the macroscopic domain such as long distances. Various proposals predict that quantum
entanglement is limited to certain mass and length scales [4, 5] or altered under specific gravitational circumstances [6]. Testing the quantum correlations over distances achievable with systems placed in the Earth orbit or even beyond [7] would allow to verify both the validity of quantum physics and the preservation of entanglement over distances impossible to achieve on ground.

Using the large relative velocity of two orbiting satellites, one can perform experiments on entanglement where—due to special relativity—both observers can claim that they have performed the measurement on their system prior to the measurement of the other observer. In such an experiment it is not possible anymore to think of any local realistic mechanisms that potentially influence one measurement outcome according to the other one.

Moreover, quantum mechanics is also the basis for emerging technologies of quantum information science, presently one of the most active research fields in physics. Today’s most prominent application is quantum key distribution (QKD) [8], i.e. the generation of a provably unconditionally secure key at distance, which is not possible with classical cryptography. The use of satellites allows for demonstrations of quantum communication on a global scale, a task impossible on ground with current optical fiber and photon-detector technology. Currently, quantum communication on ground is limited to the order of 100 of kilometers [9, 10]. Brining quantum communication into space is the only way to overcome this limit with state-of-the-art technology.

Another area of applications is in metrology, where quantum clock synchronization and quantum positioning [11] are studied. Furthermore, sources of quantum states in space may have applications in the new field of quantum astronomy [12].

THE PROPOSAL

We propose to perform these experiments in space by placing a quantum transceiver on the external pallet of the European Columbus module at the ISS. The entire terminal must not exceed the specifications given for pallet payloads as provided by ESA [13]. The requirements are: size $1.39 \times 1.17 \times 0.86$ m3, mass < 100 kg, and a peak power consumption of < 250 W, respectively. A preliminary design of a satellite-based quantum transceiver (including an entangled photon source, a weak pulse laser sources, single photon detection modules together with two transceiver telescopes) based on state-of-the-art optical communication terminals and adapted to the needs of quantum communication is already published in [14].

The entangled photons are transmitted to two distant ground stations via simultaneous down-links [15], allowing a test on entanglement and the generation of an unconditional secure quantum cryptographic key between stations separated by more than 1000 km.

Additionally, such a quantum transceiver in space is capable of performing two consecutive single down-links—using the entangled or the weak pulse laser on-board the satellite—establishing two different secure keys between the satellite and each of the ground stations (say, Vienna and Tokyo). Then a logical combination of the two keys (e.g. bitwise XOR) is sent publicly to one of the two ground stations. Out of that only unconditionally secure key between the two ground stations can be computed. Using such a scheme would allow for the first demonstration of global quantum key distribution. Furthermore an uplink scenario is published in [16].

An important step towards the applicability of quantum communication on a global scale, is to extend single QKD links to a quantum network by key relaying along a chain of trusted nodes [17, 18] using satellites as well as fiber-based systems. Furthermore, the efficiency of quantum networks can be improved employing quantum percolation protocols [19].

It would be favorable to include in parallel to the QKD down-link from the ISS a high-speed communication link providing several Gigabit per second bandwidth [20, 21].

PROOF-OF-PRINCIPLE EXPERIMENTS

As an important step towards quantum communication protocols using satellites various proof-of-principle
demonstrations of quantum communication protocols have already been performed over terrestrial free-space links [22, 23, 24, 25]. One experiment was carried out on the Canary islands using a 144 km free-space link, between the neighboring islands La Palma and Tenerife (Spain), where ESA’s 1-meter-diameter receiver telescope, originally designed for classical laser communication with satellites, was used [26, 27] to receive single photons.

In a second experiment the Matera-Laser-Ranging-Observatory (Italy) was used to establish a single photon down-link from a low-earth orbit satellite [28]. A satellite-to-Earth quantum-channel down-link was simulated by reflecting attenuated laser pulses off the optical retroreflector on board of the satellite Ajisai, whose orbit has a perigee height of 1485 km.

An important component in space based quantum communication is a source for entangled photons, that is suitable for space applications in terms of efficiency, mass and power consumption. A source fulfilling the payload requirements based on highly efficient down-conversion crystals which deliver the necessary numbers of photon pairs is published in [29].

TOPICAL TEAM

In 2007 the formation of a Topical Team for supporting the Space-QUEST experiment comprised of researchers from academia actively involved in relevant scientific fields was initiated by ESA and currently consists of 27 members from 10 countries. This team will support the proposal with their individual scientific and technical expertise and also aims to increase the research community’s interaction with industry. The present programmatic roadmap of Space-QUEST is compatible with a launch date by end of 2014 [30].

CONCLUSIONS

We emphasize that the space environment will allow quantum physics experiments with photonic entanglement and single photon quantum states to be performed on a large, even global, scale. The Space-QUEST proposal aims to place a quantum communication transceiver containing the entangled photon source, a weak pulsed (decoy) laser source and single photon counting modules in space and will accomplish the first-ever demonstration in space of fundamental tests on quantum physics and quantum-based telecom applications. The unique features of space offer extremely long propagation paths to explore the limits of the validity of quantum physics’s principles. In particular, this system will allow for a test of quantum entanglement over a distance exceeding 1000 km, which is impossible on ground.

ACKNOWLEDGMENTS

This work was supported by the European Space Agency under contract numbers 16358/02/NL/SFe, 17766/03/NL/PM and 18805/04/NL/HE as well as by the national space delegations. Additional funding was provided by the European Commission (QAP).

* Electronic address: Rupert.Ursin@univie.ac.at; URL: http://www.quantum.at/quest

[1] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften, 23:807–812; 823–828; 844–849, 1935.

[2] J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics, 1:195–200, 1964.

[3] A. J. Leggett. Nonlocal hidden-variable theories and quantum mechanics: An incompatibility theorem. Found. Phys., 33:1469–1493, 2003.

[4] G. C. Ghirardi, A. Rimini, and T. T. Weber. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D, 34:470, 1986.

[5] R. Penrose. On gravity’s role in quantum state reduction. Gen. Rel. Grav., 28:581, 1996.

[6] T. C. Ralph, G. J. Milburn, and T. Downes. Gravitationally induced decoherence of optical entanglement. arXiv:quant-ph/0610093v1.

[7] R. Kaltenbaek, M. Aspelmeyer, M. Pfennigbauer, T. Jennewein, C. Brukner, W. R. Leeb, and A. Zeilinger. Proof-of-concept experiments for quantum physics in space. Proc. of SPIE, 5161:252–258, 2003.

[8] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74(1):145–195, 2002.

[9] E. Waks, A. Zeevi, and Y. Yamamoto. Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A, 65:052310, 2002.

[10] H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto. Differential phase shift quantum key distribution experiment over 105 km fibre. New Journal of Physics, 7:232, 2005.

[11] A. Valencia, G. Scarcelli, and Y Shih. Distant clock synchronization using entangled photon pairs. Appl. Phys. Lett., 85:2655, 2004.

[12] G. Naletto, C. Barbieri, T. Occhipinti, F. Tamburini, S. Billotta, S. Cocuzza, and D. Dravins. Very fast photon counting photometers for astronomical applications: from quanteye to aqueye. In Photon counting applications, Quantum Optics, and Quantum Cryptography. SPIE Proc. 6583, pp. 65830B-1/14, 2007.

[13] W. Carey, D. Isakeit, M. Heppener, K. Knott, and J. Feustel-Bechl. The international space station European users guide. Technical report, Tech. Rep., European Space Agency, ISS User Information Centre (MSM-GAU), ESTEC, 2001.

[14] M. Pfennigbauer, M. Aspelmeyer, W. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. Perdigues, H. Weinfurter, and A. Zeilinger. Satellite-based quantum communication terminal employing state-of-the-art technology. J. Opt. Netw., 4(9):549–560, 2005.
[15] M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger. Long-distance quantum communication with entangled photons using satellites. In *IEEE Journal of Selected Topics in Quantum Electronics* 15:41-1551, 2003.

[16] J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight. Ground to satellite secure key exchange using quantum cryptography. *New Journal of Physics*, 4:82, 2002.

[17] A. Poppe, M. Peav, and O. Maurhart. Outline of the secqc quantum-key-distribution network in vienna. *to appear in Int. J. Quant. Inf.*, 2008.

[18] A. Poppe, M. Peev, and O. Maurhart. Outline of the secqc quantum-key-distribution network in vienna. *to appear in Int. J. Quant. Inf.*, 2008.

[19] A. Acín, J. I. Cirac, and M. Lewenstein. Entanglement percolation in quantum networks. *Nature Physics*, 3:256-259, 2007.

[20] N. Perlot, M. Knapek, D. Giggenbach, J. Horwath, M. Brechtesbauer, Y. Takayama, and T. Jono. Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station oberpfaffenhofen (OGS-OP). In *Conference on Laser Communication and Propagation, Proc. of SPIE 6457A*, 2007.

[21] M. Toyoshima, T. Takahashi, K. Suzuki, S. Kimuraa, K. Takizawa, T. Kuri, W. Klaus, M. Toyoda, H. Kuzunimo, Y. T. Jono, Takayama, and K. Arai. Results from phase-1, phase-2 and phase-3 kirari optical communication demonstration experiments with the nict optical ground station (koden). In 24th *International Communications Satellite Systems Conference of AIAA, AIAA-2007-3228, Korea*, 2007.

[22] C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity. A step towards global key distribution. *Nature*, 419:450, 2002.

[23] R. J. Hughes, J. E. Nordholt, D. Derkacs, and G. Peterson. Practical free-space quantum key distribution over 10 km in daylight and at night. *New Journal of Physics*, 4:43, 2002.

[24] M. Aspelmeyer, H. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger. Long-distance free-space distribution of entangled photons. *Science*, 301:621-623, 2003.

[25] C. Z. Peng, T. Yang, X. H. Bao, J. Z. X. M. Jin and F. Y. Feng, J. Yang, J. Yin, Q. Zhang, N. Li, B. L. Tian, and J. W. Pan. Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13km. *Phys. Rev. Lett.*, 98:010504, 2007.

[26] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter. Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. *Phys. Rev. Lett.*, 98:010504, 2007.

[27] R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger. Entanglement-based quantum communication over 144 km. *Nature Physics*, 3:481 – 486, 2007.

[28] P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri. Experimental verification of the feasibility of a quantum channel between space and earth. *New J. Phys.*, 10:033038, 2008.

[29] A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger. A wavelength-tunable fiber-coupled source of narrowband entangled photons. *Opt. Express*, 15(23):15377–15386, 2007.

[30] J. Perdigues, B. Furch, C. de Matos, O. Minster, L. Cacciapuoti, M. Pfennigbauer, M. Aspelmeyer, T. Jennewein, R. Ursin, T. Schmitt-Manderbach, G. Baister, J. Rarity, W. Leeb, C. Barbieri, H. Weinfurter, and A. Zeilinger. Quantum communication at ESA: Towards a space experiment on the ISS. In *Coference Proceedings IAC2007 Hydarabath, India, accepted for publication in Acta Astronautica*, 2007.