WNT signaling suppresses oligodendrogenesis via Ngn2-dependent direct inhibition of Olig2 expression

Min Jiang, Dan Yu, Binghua Xie, Hao Huang, Wenwen Lu, Mengsheng Qiu* and Zhong‑Min Dai*

Abstract
Olig2 transcription factor is essential for the maintenance of neural progenitor cells (NPCs) in the pMN domain and their sequential specification into motor neurons (MNs) and oligodendrocyte precursor cells (OPCs). The expression of Olig2 rapidly declines in newly generated MNs. However, Olig2 expression persists in later-born OPCs and antagonizes the expression of MN‑related genes. The mechanism underlying the differential expression of Olig2 in MNs and oligodendrocytes remains unknown. Here, we report that activation of WNT/β‑catenin signaling in pMN lineage cells abolished Olig2 expression coupled with a dramatic increase of Ngn2 expression. Luciferase reporter assay showed that Ngn2 inhibited Olig2 promoter activity. Overexpression of Ngn2‑EnR transcription repressor blocked the expression of Olig2 in ovo. Our results suggest that down‑regulation of WNT‑Ngn2 signaling contributes to oligodendrogenesis from the pMN domain and the persistent Olig2 expression in OPCs.

Keywords: WNT, β‑catenin, Oligodendrocyte, Ngn2, Olig2

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
from a few dorsally-derived [15–17] OPCs were generated (Fig. 1a), demonstrating that WNT activation promotes Ngn2 expression. To confirm that expression in the electroporated side at cE7 (Additional file 1: Fig. S1). However, the number of Ngn2-positive cells was dramatically increased within the ventral ventricular region in Olig2 expression (Fig. 1d), mimicking the effect of full-length Ngn2. This finding demonstrated that Ngn2 inhibits Olig2 expression by its transcriptional repressor activity.

In conclusion, our results suggest that WNT signaling up-regulates the expression of Ngn2, and Ngn2 in turn inhibits Olig2 expression and oligodendrogenesis during MN specification (Fig. 1e).

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13041-020-00696-0.

Additional file 1: Supplementary materials and results.

Acknowledgements

Not applicable.

Authors’ contributions

ZMD conceived the project. MJ, DY, BX, HH, WL and ZMD performed the experiments. MJ, DY, BX, HH, MQ, WL and ZMD analyzed the data. MQ and ZMD supervised the project. MJ, MQ and ZMD wrote the paper with input from the other authors. All authors read and approved the final manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31871480, 81771028, 31771621), the Natural Science Foundation of Zhejiang Province (Grant No. LY18C050009, LQ15C070001, LQ18C090005).

Availability of data and materials

All data generated during this study are included in this article.

Ethics approval and consent to participate

The use of animals was approved by the Committee on Laboratory Animals, Hangzhou Normal University.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Received: 30 July 2020 **Accepted:** 6 November 2020 **Published online:** 13 November 2020

References

1. Li H, de Faria JP, Andrew P, Nitarska J, Richardson WD. Phosphorylation regulates OLG2 cofactor choice and the motor neuron-oligodendrocyte fate switch. Neuron. 2011;69(5):918–29.
2. Lu QR, Sun T, Zhu Z, Ma N, Garcia M, Stiles CD, et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell. 2002;109(1):75–86.

3. Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, Yoshida S, et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron. 2001;31(5):757–71.

4. Novitch BG, Chen AL, Jessell TM. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron. 2001;31(5):773–89.

5. Zhou Q, Anderson DJ. The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell. 2002;109(1):61–73.

6. Lee SK, Lee B, Ruiz EC, Pfaff SL. Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 2005;19(2):282–94.

7. Zechner D, Fujita Y, Hulsen J, Muller T, Walther I, Taketo MM, et al. beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol. 2003;258(2):406–18.

8. Demireva EY, Shapiro LS, Jessell TM, Zampieri N. Motor neuron position and topographic order imposed by beta- and gamma-catenin activities. Cell. 2011;147(3):641–52.

9. Dai ZM, Sun S, Wang C, Huang H, Hu X, Zhang Z, et al. Stage-specific regulation of oligodendrocyte development by Wnt/beta-catenin signaling. J Neurosci. 2014;34(25):8467–73.

10. Sun S, Guo W, Zhang Z, Qiu M, Dai ZM. Dose-dependent regulation of oligodendrocyte specification by beta-catenin signaling. Neurosci Bull. 2015;31(2):271–3.

11. Sun S, Zhu XJ, Huang H, Guo W, Tang T, Xie B, et al. WNT signaling represses astrogligenesis via Ngn2-dependent direct suppression of astrocyte gene expression. Glia. 2019;67(7):1333–43.

12. Zhou Q, Wang S, Anderson DJ. Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron. 2000;25(2):331–43.

13. Wu S, Wu Y, Capeschi MR. Motoneurons and oligodendrocytes are sequentially generated from neural stem cells but do not appear to share common lineage-restricted progenitors in vivo. Development. 2006;133(4):581–90.

14. Zheng K, Li H, Zhu Y, Zhu Q, Qiu M. MicroRNAs are essential for the developmental switch from neurogenesis to gliogenesis in the developing spinal cord. J Neurosci. 2010;30(24):8245–50.

15. Cai J, Qi Y, Hu X, Tan M, Liu Z, Zhang J, et al. Generation of oligodendrocyte precursor cells from mouse dorsal spinal cord independent of Nkx6 regulation and Shh signaling. Neuron. 2005;45(1):41–53.

16. Vallstedt A, Klos JM, Ericson J. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron. 2005;45(1):55–67.

17. Fogarty M, Richardson WD, Kessaris N. A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development. 2005;132(8):1951–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.