Universal quantum (semi)groups and Hopf envelopes: Erratum

Marco Andrés Farinati *

Keywords: Hopf Algebras; Quantum Groups; Universal bialgebra; FRT construction; Quantum determinant
e-mail: mfarinat@dm.uba.ar
Data availability statement: This manuscript has no associated data.

Abstract

In [F] there is a statement generalizing the results in [FG]. Unfortunately there is a mistake in a computation that affects the main result. I don’t know if the main result in [F] is true or not, but I propose an alternative statement (Theorem 3.7) that was actually the main motivation in [FG]. This statement answers in an affirmative way the question whether the localization of the FRT construction with respect to a quantum determinant is a Hopf algebra, in case the Nichols algebra associated to the braiding is finite dimensional.

1 Error in ”Universal quantum(semi)groups and Hopf envelopes”

For a bilinear form $b : V \times V \to k$ in a finite dimensional vector space V over a field k with basis x_μ, defined by $b_\mu\nu := b(x_\mu, x_\nu)$

Dubois-Violette and Launer [DV-L] define a Hopf algebra with generators $t_\lambda^\mu (\lambda, \mu = 1, \ldots , \dim V)$ and relations (sum over repeated indexes)

$$b_\mu\nu t_\lambda^\mu t_\rho^\nu = b_\lambda\rho 1$$

$$b^\mu\nu t_\lambda^\mu t_\rho^\nu = b^\lambda\rho 1$$

In [F] there is a Lemma 2.1 saying that equation (2) is redundant. Unfortunately the proof is incorrect. I thank Hongdi Huang and her collaborators Padmini Veerapen, Van Nguyen, Charlotte Ure, Kent Washaw and Xingting Wang for pointing me up the error. A lot of important consequences in [F] are derived from this lemma, mainly Sections 2 and 3:

* Dpto de Matemática FCEyN UBA - IMAS (Conicet). e-mail: mfarinat@dm.uba.ar. Partially supported by UBACyT 2018-2021 “K-theoría y bialgébras en álgebra, geometría y topología” and PICT 2018-00858 “Aspectos algebraicos y analíticos de grupos cuánticos”.

1
• Corollary 2.2 in [F], saying that \(A(b) \), the universal bialgebra associated to a bilinear form, is a Hopf algebra.

• Theorem 2.4 in [F], saying that a universal bialgebra associated to a specific bilinear form and a quotient of it is a Hopf algebra.

• And the main result: Theorem 3.10 of [F], that says that \(A(c) = \text{the FRT construction associated to a solution } c : V \to V \to V \otimes V \text{ of the braid equation in } V \text{ admitting a weakly graded-Frobenius algebra (WGF), becomes a Hopf algebra when localizing with respect to the quantum determinant associated that WGF algebra.} \)

On the other hand, the general universal constructions of Section 1 is independent of Lemma 2.1 and the following parts are still safe:

• The bialgebraic nature of the construction (Theorem 1.1)

• Its universal property (Proposition 1.3).

• Example of computation 1.4 and Remark 1.5.

• Section 4: the locally finite graded case and comments on other related works.

2 The mistake, and alternatives to Lemma 2.1 in [F]

The mistake in the proof of Lemma 2.1 in [F] relies in the confusion of the matrix \(t \) with entries \((t)_{ij} = t^j_i\) between the inverse of \(t \) and the inverse of the transposed matrix of \(t \). Even though I do not have a concrete counter-example, I think Lemma 2.1 is false in its full generality. However, one can still view Dubois-Violette and Launer’s Hopf algebra as a universal bialgebra construction. Recall briefly the universal construction in [F]:

Definition 2.1. Let \(V \) be a finite dimensional vector space with basis \(\{x_i\}_{i=1}^{\dim V} \) and \(f : V^\otimes n_i \to V^\otimes n_i : i \in I \) be a linear map. Consider free generators \(t^j_i \) \((i,j = 1, \ldots, \dim V)\) and using multi-index notation

\[
x_I := x_{i_1} \otimes x_{i_2} \otimes \cdots \otimes x_{i_\ell} \in V^\otimes \ell
\]

\[
t_I^j := t^j_{i_1} t^j_{i_2} \cdots t^j_{i_\ell} \in k\{t^j_i : i, j = 1, \ldots, \dim V\}
\]

write \(f(x_I) = \sum_J f_J^I x_J \) and define the two-sided ideal \(I_f := \langle \sum_J (t_J^I f_J^I - f_J^I t_J^I) : \forall I, K \rangle \) and the algebra

\[
A(f) := k\{t^j_i : i, j = 1, \ldots, \dim V\}/I_f
\]

with comultiplication induced by

\[
\Delta t^j_i = \sum_{k=1}^{\dim V} t^j_k \otimes t^j_i
\]

If \(F = \{f_i : V^\otimes n_i \to V^\otimes n_i : i \in I\} \) is a family of linear maps indexed by a set \(I \), define \(I_F := \sum_{i \in I} I_{f_i} \) and \(A(F) := k\{t^j_i : i, j = 1, \ldots, \dim V\}/I_F \)
2.1 Dubois-Violette and Launer’s Hopf algebra as a universal bialgebra

If \(b : V \times V \to k \) is a non-degenerate bilinear form and using the notation \(b_{ij} = b(x_i, x_j) \), we consider two linear maps

\[
b : V^2 \to V = V^0
\]

\[
x_i \otimes x_j \mapsto b_{ij}
\]

and

\[
i_b : k \to V^2
\]

\[
1 \mapsto \sum_{i,j} b_{ij} x_i \otimes x_j
\]

where \(b_{ij} \) are the \(ij \)-entries of the inverse of the matrix \((B)_{ij} = b_{ij}\).

If we denote \(H_{DV-L}(b) \) the Dubois-Violette and Launer’s Hopf algebra, one tautologically has that

\[
H_{DV-L} = A(b, i_b)
\]

(but not \(A(b) \)).

For reasons that will be clear soon, let us write \(t_{\mu\nu} := t_{\nu\mu}' \). Let us denote \(B \) the matrix with indices \((B)_{\mu\nu} = b_{\mu\nu} \), and keep the “up convention” for \(b_{\mu\nu} = (B^{-1})_{\mu\nu} \). Then the above equations are (sum over repeated indexes)

\[
\begin{align*}
b_{\mu\nu} t_{\lambda\mu} t_{\rho\nu} &= b_{\lambda\rho} 1 \\
b_{\mu\nu} t_{\mu\lambda} t_{\nu\rho} &= b_{\lambda\rho}' 1
\end{align*}
\]

We see that if \(t \) is the matrix with entries \((t)_{ij} = t_{ij} \) then the equations are

\[
\begin{align*}
t B t'^r &= B \\
t'^r B^{-1} t &= B^{-1}
\end{align*}
\]

where \(t'^r \) denotes the transposed matrix.

Equation (5) says that \(t \) has a right inverse (and \(t'^r \) has a left inverse), but it is not obvious that this single equation implies that \(t \) has a left inverse (or that \(t'^r \) has a right inverse). But clearly equation (6) says that \(t \) has an inverse from the other side. The key point when proving both axioms of the antipode is to prove that a given matrix has both left and right inverse. We formalize the statement in the following lemma:

Lemma 2.2. Assume \(H \) is a bialgebra generated by some group-like elements and a set \(\{ t_{ij}, i, j = 1, \ldots, n \} \) with \(\Delta(t_{ij}) = \sum_{k=1}^n t_{ik} \otimes t_{kj} \) and \(\epsilon(t_{ij}) = \delta_{ij} \). Denote \(t \in M_n(H) \) the \(n \times n \) matrix with entries \((t)_{ij} \). Then the bialgebra \(H \) is a Hopf algebra if and only there exist an anti-algebra morphism \(S : H \to H \) such that \(S(D) = D^{-1} \) for all group-like generators \(D \) and the matrix \(S(t) \) with coefficients \((S(t))_{ij} = S(t_{ij}) \) is the inverse of the matrix \(t \) in \(M_n(H) \).

Proof. Assume \(H \) is a Hopf algebra. The antipode axiom says in particular

\[
m(\text{Id} \otimes S)\Delta(t_{ij}) = \epsilon(t_{ij}) = m(S \otimes \text{Id})\Delta(t_{ij})
\]
But because of the comultiplication and counit properties of the t_{ij} these equations translate into

$$\sum_{k=1}^{n} t_{ik} S(t_{kj}) = \delta_{ij} = \sum_{k=1}^{n} S(t_{ik}) t_{kj}$$

Denoting $S(t)$ the matrix with entries $S(t)_{ij} = S(t_{ij})$, the above equation for all ij is simply the entries of the single matrix equation

$$t \cdot S(t) = \text{Id}_{n \times n} = S(t) \cdot t$$

On the other hand, assume H is a bialgebra generated by group-like elements and a set $\{t_{ij} : i, j = 1, \ldots, n\}$ where the elements t_{ij} satisfy $\Delta(t_{ij}) = \sum_{k=1}^{n} t_{ik} \otimes t_{kj}$ and $\epsilon(t_{ij}) = \delta_{ij}$. If $S(t) = t^{-1}$ and $S(D) = D^{-1}$ for all group-like in the set of generators, then clearly S satisfies the antipode axiom on generators. Hence, S is the antipode for H and H is a Hopf algebra.

Recall the notation in [FRT]: $c: V^\otimes 2 \to V^\otimes 2$ is a solution of the braid equation and $A(c)$ is its universal bialgebra, that is the algebra with generators t_{ij} and relations

$$\sum_{k,\ell} c_{ij}^{k\ell} t_{kr} t_{\ell s} = \sum_{k,\ell} t_{ik} t_{j\ell} c_{k\ell}^{rs} \quad \forall 1 \leq i, j, r, s \leq n.$$

(7)

that coincides with the FRT construction [FRT]. Using the same idea as in the above lemma we have:

Lemma 2.3. Assume $D \in A(c)$ is a group-like element such that the matrix $t \in M_n(A(c)[D^{-1}])$ is invertible, then $A(c)[D^{-1}]$ is a Hopf algebra.

Proof. Assume t is an invertible matrix, call u its inverse and $u_{ij} := (u)_{ij}$. Let us prove that there exists a unique well-defined anti-algebra map

$$A(c) \to A(c)[D^{-1}]$$

$$t_{ij} \mapsto u_{ij}$$

Since $A(c)$ is freely generated by the t_{ij} with relations

$$\sum_{k,\ell} c_{ij}^{k\ell} t_{kr} t_{\ell s} = \sum_{k,\ell} t_{ik} t_{j\ell} c_{k\ell}^{rs} \quad \forall 1 \leq i, j, r, s \leq n.$$

(7)

one should check the opposite relation in $A(c)[D^{-1}]$

$$\sum_{k,\ell} c_{ij}^{k\ell} u_{\ell s} u_{kr} \overset{\Delta}{=} \sum_{k,\ell} u_{j\ell} u_{ik} c_{k\ell}^{rs} \quad \forall 1 \leq i, j, r, s \leq n.$$

But because the matrix t is invertible in $M_n(A[D^{-1}])$, we apply the operator

$$\sum_{r,s,i,j} t_{di} t_{cj} \left(-\right) t_{ra} t_{sb}$$
and we get the equivalent checking
\[
\sum_{k,\ell,r,s,i,j} t_{di} t_{cj} c_{ij}^{rs} t_{ra} t_{sb} = \sum_{k,\ell,r,s,i,j} t_{di} t_{cj} u_{ji} u_{ik} c_{kr}^{rs} t_{ra} t_{sb} \quad \forall \ 1 \leq i, j, r, s \leq n.
\]

Now using (on LHS) \(\sum_{r,s} u_{\ell s} u_{kr} t_{ra} t_{sb} = \delta_{\ell b} \delta_{ka}\) and (on RHS) \(\sum_{ij} t_{di} t_{cj} u_{j\ell} u_{ik} = \delta_{dk} \delta_{c\ell}\) we get
\[
\sum_{i,j} t_{di} t_{cj} c_{ij}^{ab} = \sum_{r,s} c_{kr}^{rs} t_{ra} t_{sb}
\]
and this is the same relation as \(7\), that is valid on \(A(c)\), hence, it is valid in \(A(c)[D^{-1}]\) as well.

Recall that the non-commutative localization \(A(c)[D^{-1}]\) is the algebra freely generated by \(A(c)\) and the symbol \(D^{-1}\) with (the same relations as in \(A(c)\) and)
\[
DD^{-1} = 1 = D^{-1} D
\]
Having defined an antialgebra map \(A(c) \to A(c)[D^{-1}]\) we extend to a map \(A(c)[D^{-1}] \to A(c)[D^{-1}]\) by sending \(D \mapsto D^{-1}\) and this define the desired map \(S\): the antipode axioms for \(S\) are easily checked on generators. \(\square\)

3 Nichols Algebras and an alternative to Theorem 3.10 of \([F]\)

We will use the following well-known facts from finite dimensional Nichols algebras. Assume \((V, c)\) a rigid solution of YBeq such that \(\mathcal{B}(V, c)\) is finite dimensional.

Fact 3.1. \(\mathcal{B}\) is a graded algebra and coalgebra. It is not a Hopf algebra in the usual sense, but it is a Hopf algebra in the category of Yetter-Drinfeld modules over some Hopf algebra \(H\).

For instance, \(H = H(c)\) the Hopf envelope of \(A(c)\) do the work.

Fact 3.2. Denoting \(\mathcal{B}^{top}\) the highest non-zero degree of \(\mathcal{B}\), one has \(\dim \mathcal{B}^{top} = 1\), say \(\mathcal{B}^{top} = kb\) for a choice of a non-zero element \(b \in \mathcal{B}^{top}\). The projection into the coefficient of \(b\)
\[
\mathcal{B} \ni \omega = \omega_0 + \omega_1 + \cdots + \omega_{top} = \omega_0 + \omega_1 + \cdots + \lambda b \quad \mapsto \quad \lambda \in k
\]
is an integral of the braided Hopf algebra \(\mathcal{B}\). Also, because of \(\dim \mathcal{B}^{top} = 1\), the \(A(c)\)-comodule structure gives a non trivial grouplike element \(D\) determined by
\[
\rho(b) = D \otimes b
\]

Fact 3.3. For each degree, the multiplication map induces a non-degenerate pairing
\[
m| : \mathcal{B}^p \otimes \mathcal{B}^{top-p} \to \mathcal{B}^{top}
\]
In particular, since \(\mathcal{B}^1 = V\), the restriction of the multiplication
\[
V \otimes \mathcal{B}^{top-1} \to \mathcal{B}^{top} = bk
\]
5
gives a non-degenerate pairing. In terms of basis, if \(\omega^i \) is a basis of \(B^{\text{top}}_{-1} \) and \(x_i \) is a basis of \(V \), then write

\[
\omega^i x_j = m_{ij} b, \quad m_{ij} \in k
\]

and the matrix \((m_{ij})\) is invertible, and one can choose a "dual basis" \(\hat{\omega}^i \) such that

\[
x_i \hat{\omega}^j = \delta_{ij} b
\]

Fact 3.4. If \((V, c)\) is rigid then so is \((V^*, c^*)\), and \(B(V^*, c^*) \) is the graded dual (as algebra and coalgebra) of \(B(V, c) \).

Fact 3.5. By duality (using Fact 3.3), denoting \(\text{coev} \) the comultiplication composed with projection

\[
B^{\text{top}} \xrightarrow{\Delta} B^{\text{top} \otimes p} \otimes B^p \xrightarrow{\pi} B^{\text{top} - 1} \otimes V,
\]

it is non degenerate, in the sense that if \(x_i, \hat{\omega}^i \) are bases of \(V \) and \(B^{\text{top} - 1} \) respectively, and

\[
\text{coev}(b) = \sum_{ij} \text{coev}_{ij} \hat{\omega}^i \otimes x_j, \quad \text{coev}_{ij} \in k
\]

then the matrix \((\text{coev}_{ij})\) is invertible. In particular, there exists a basis \(\hat{\omega}^i \) such that

\[
\text{coev}(b) = \sum_i \hat{\omega}^i \otimes x_i
\]

Fact 3.6. The maps in 3.3 and 3.5 are \(A(c) \)-colinear.

Now denote \(\rho : B \to A(c) \otimes B \) the comodule structure map and write \(\rho(\omega^j) = T_{jk} \otimes \omega^k \) and \(\rho(\hat{\omega}^j) = \hat{T}_{jk} \otimes \hat{\omega}^k \), where \(\{\omega^j\} \) and \(\{\hat{\omega}^j\} \) are basis of \(B^{\text{top} - 1} \) as in 3.3 and 3.5. By \(A(c) \)-colinearity we have

\[
D \otimes \delta_{ij} b = \rho(\delta_{ij} b) = \rho(x_i \omega^j) = t_{ik} T_{jl} \otimes x_k \omega^l = t_{ik} T_{jl} \otimes \delta^l_k b = t_{ik} T_{jk} \otimes b
\]

\[
\Rightarrow t_{ik} T_{jk} = D \delta_{ij}
\]

\[
\iff t \cdot T^{\text{tr}} = D \text{id}
\]

Now using the \(\hat{\omega}^j \)'s:

\[
\rho(\sum_i \hat{\omega}^i \otimes x_i) = \rho(\text{coev}(b)) = (1 \otimes \text{coev}) \rho(b)
\]

\[
= (1 \otimes \text{coev})(D \otimes b) = D \otimes \sum_i (\hat{\omega}^i \otimes x_i)
\]

but also

\[
\rho(\sum_i \hat{\omega}^i \otimes x_i) = \sum_{i,j,k} \hat{T}_{ij} t_{ik} \otimes \hat{\omega}^j \otimes x_k
\]

This proves

\[
\hat{T}_{ij} t_{ik} = D \delta_{jk} \Rightarrow \hat{T}^{\text{tr}} \cdot t = D \text{id}
\]

hence, \(D^{-1} \hat{T}^{\text{tr}} \) is a left inverse of \(t \), that is, \(t \) is invertible in \(M_n(A(c)[D^{-1}]) \).

Using 2.3 and observing that \(A(c) = A(qc) \) for any \(0 \neq q \in k \), one can conclude the following main result, that is an alternative to Theorem 3.10 in [1]:

6
Theorem 3.7. Let \(V \) be a finite dimensional vector space, \(c : V^\otimes 2 \to V^\otimes 2 \) a rigid solution of the braid equation and assume there is a non-zero scalar \(0 \neq q \in k \) such that \(\mathcal{B} := \mathcal{B}(V, cq) \) is finite dimensional. Denote \(D \) the associated group-like element in \(A(c) \) coming from \(\mathcal{B}^{\text{top}} \). Then \(A(c)[D^{-1}] \) is a Hopf algebra.

References

[DV-L] M. Dubois-Violette and G. Launer, *The quantum group of a non-degenerate bilinear form*, Physics Letters B, Volume 245, number 2 (1990) pp. 175-177.

[FRT] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, *Quantization of Lie groups and Lie algebras*, Leningrad Math. J. 1 (1990) 193.

[F] M. Farinati, *Universal quantum (semi)groups and Hopf envelopes*. Algebra and Rep. Theory (2022). https://doi.org/10.1007/s10468-022-10122-9.

[FG] M. Farinati and G. A. García, *Quantum function algebras from finite-dimensional Nichols algebras*, J. Noncommutative Geometry, 14(3), (2020), 879–911. https://doi.org/10.4171/jncg/381.