Bearbeitung von Forschungsfragen zur wissenschaftlichen Qualifizierung von Studierenden - ein Lehr- und Lernkonzept für das Blockpraktikum Allgemeinmedizin

Zusammenfassung

Hintergrund: Zukünftige Ärzte sollen zu Evidenz-basierter Medizin (EbM) ausgebildet werden. Deswegen ist neben der Ausbildung von medizinischen Kompetenzen auch zunehmend eine wissenschaftliche Basisausbildung wichtig. Möglichkeiten und Konzepte, die auf die Entwicklung von Forschungskompetenzen und wissenschaftlicher Qualifizierung von Studierenden abzielen, sind jedoch bisher spärlich. Ziel des vorliegenden Artikels ist es, aus ersten Erfahrungen im Blockpraktikum Allgemeinmedizin ein didaktisch-methodologisches Konzept abzuleiten für forschungsorientiertes Lernen und Lehren.

Methoden: Verknüpfung von Bausteinen medizin-didaktischer Methodologie mit jenen des klassischen Bildungscontrolling (Wissens-, Akzeptanz- und Transferevaluation, Prozessevaluation und Ergebnisevaluation).

Ergebnisse: Vorgestellt werden die Schritte zur Implementierung einer Forschungsaufgabe in das Blockpraktikum. Gleichzeitig wird auf die Notwendigkeit der Entwicklung von lehrdidaktischem Material und der Einführung von strukturellen Veränderungen abgehoben. Des Weiteren findet die Verzahnung mit den einzelnen Bildungscontrolling-Schritten statt. Eine Übersicht dient der Veranschaulichung des Lehr- und Lernkonzepts (Blockpraktikum plus).

Schlussfolgerung: Die Konzeptionalisierung des „Blockpraktikum plus“ in Allgemeinmedizin stellt eine Veränderung des Lehr- und Lernalltags dar. Das Konzept ist prinzipiell übertragbar auf andere Lehrveranstaltungen und kann als Instrument für Lehrende im Rahmen einer longitudinalen Kompetenzvermittlung wissenschaftlicher Basisfertigkeiten eingesetzt werden.

Schlüsselwörter: wissenschaftliche Qualifikation, medizinische Ausbildung, Allgemeinmedizin

Einleitung

Evidenz-basierte Medizin (EbM) ist als grundlegendes Denk- und Handlungskonzept zunehmend anerkannt. Somit besteht die Notwendigkeit, zukünftige Ärzte in EbM auszubilden. Dies hat zur Folge, dass neben der Ausbildung von medizinischen Kompetenzen auch eine wissenschaftliche Basisausbildung wichtig wird. Möglichkeiten und Konzepte, die auf die Entwicklung von Forschungskompetenzen und wissenschaftlicher Qualifizierung von Studierenden abzielen, sind bisher selten umgesetzt [1]. Dabei sehen Studierende durchaus den Nutzen und die Notwendigkeit von wissenschaftlicher Qualifizierung während ihres Studiums [1, 2]; bildet diese doch die Basis für ein kritisches Urteilen von Studien und deren Ergebnissen im Rahmen einer individuellen, patientenzentrierten Versorgung.

Die wissenschaftliche Qualifizierung von Studierenden kann durch die Bearbeitung spezieller, praxisrelevanter Forschungsfragen gefördert werden [3]. Denn Studierende erlernen bei der Beantwortung konkreter Forschungsfragen wissenschaftliche Herangehensweisen und erlangen gleichzeitig Fachwissen [4]. Solche Ansätze finden in der medizinischen Ausbildung in Deutschland im Gegensatz zum Ausland bisher jedoch keine Anwendung [5], [6], [7], obwohl sie für die Beteiligten eine typische „win-win-situation“ darstellen können: Studierende qualifizieren sich wissenschaftlich, und Hausärzte oder Versorgungsforscher gelangen dadurch an praxisrelevante Daten. Eine solche „win-win-situation“ ist jedoch nur dann gegeben, wenn sowohl wissenschaftlich-methodologische als auch lehrdidaktische Elemente [8] berücksichtigt werden. Vor diesem Hintergrund ist das Ziel des vorliegenden Artikels, ein didaktisch-methodologisches Konzept abzuleiten – aufbauend auf den ersten Erfahrungen mit der Einbeziehung von Studierenden in wissenschaftliche...
Datenerhebung während ihres Blockpraktikums an der Universität Tübingen in einer hausärztlichen Praxis. Dieses Konzept soll forschungsorientiertes Lernen und Lehren im Blockpraktikum Allgemeinmedizin beschreiben und übertragbar sein.

Methode

Setting

Studierende an der Universität Tübingen absolvieren im 10. Semester ein zweiwöchiges Blockpraktikum im Fach Allgemeinmedizin in Lehrarztpraxen bei Hausärzten. Pro Semester durchlaufen ca. 140 Studierende ihr Praktikum in rund 200 Lehrarztpraxen. Alle 140 Studierenden wurden im Wintersemester 2008 in einem ca. zweistündigen, einführenden Seminar für das Blockpraktikum in zwölf ca. gleich große Seminargruppen auf die Zeit in der Lehrarztpraxis und ihre neue Aufgabe im Rahmen des Pilotprojekts vorbereitet. Die Seminare wurden von sechs Lehrärzten (Fachärzte für Allgemeinmedizin), die alle langjährige Erfahrungen mit Studierendenumritt hart haben, geleitet. Die Seminarleiter wurden zuvor vom Lehrbereich Allgemeinmedizin in einem gemeinsamen, ca. einstündigen Seminar über die Einführung und Information der Studierenden bezüglich des Pilotprojekts unterrichtet.

Die Ethikkommission gab ihr positives Votum für das Pilotprojekt.

Die Forschungsfrage wurde aus dem Bereich „Impfen“ gewählt, da Hausärzte hier eine zentrale Rolle einnehmen. Die Studierenden sollten anhand von zwei Fragebögen den Impfstatus erheben

1. basierend auf den Angaben der Patienten und (Fragebogen 1)
2. basierend auf den Angaben in der Praxisdokumentation (Fragebogen 2)

Die Akzeptanz der Studierenden für die Teilnahme am Projekt war mit 84 Prozent hoch. Es zeigte sich, dass die erste der beiden Aufgaben – die Durchführung der Patientenbefragung – von den Studierenden bewerkstelligt werden konnte. Dies äußerte sich in der fast lückenlosen Dokumentation der Fragebögen. Erfreulicherweise konnten diese von den Studierenden erhobenen Daten in Fachzeitschriften veröffentlicht werden [9], [10]. Die zweite Aufgabe – Schluss zu folgen über vorliegenden Impfschutz anhand der Praxisdokumentation – ging jedoch mit mangelnder Dokumentation der Fragebögen mit sehr vielen fehlenden Werten einher (je nach Impfung bis zu 80% fehlende Werte). Allerdings waren die Antwortmöglichkeiten zu dieser Fragestellung dichotomisiert worden (vorliegender Impfschutz Ja/Nein), und die Antwortmöglichkeit „Weiß nicht“ fehlte. Trotz geplanter Unterstützung durch die medizinischen Fachangestellten bei der Auswertung der Praxisdokumentation konnte die Beurteilung von Impfschutz also vermutlich nur unzureichend gelöst werden. Außerdem waren die Studierenden vor Ort erstmalig mit Praxisdokumentation-Software konfrontiert.

Auf weitere Daten zur Evaluation des Lernaspektes bezüglich empirischer Forschung kann leider nicht zurückgegriffen werden, da im Pilotprojekt das Hauptaugenmerk auf die Erhebung der beiden obigen Endpunkte gerichtet worden war.

Vorgehen bei der Ableitung des Lehr- und Lernkonzepts

Entlang dieser ersten Erfahrungen und Problemanalysen des Pilotprojekts soll im Sinne von „lessons learnt“ die Gesamtkonzeption eines Blockpraktikums, welches die wissenschaftliche Qualifizierung von Studierenden durch die Bearbeitung von Forschungsfragen beinhaltet, abgeleitet werden.

Das Prinzip des „Constructive Alignments“ verbindet selbst geleitetes Lernen der Studierenden mit der Stellung relevanter (Lern-)Aufgaben. Die Aufgabe besteht also in der Schaffung einer Lernumgebung, in der die Studierenden anhand relevanter und realitätsnaher Aufgaben die vorgesehenen Lernziele (wissenschaftliches Arbeiten) erreichen können [3]. Hier besteht eine Verbindung mit den klassischen Bildungscontrolling-Schritten (BCS) Wissens-, Akzeptanz- und Transferevaluation, Prozessevaluation und Ergebnisevaluation, als Bausteine bei der Entwicklung des vorgelegten Lernkonzeptes [11]. Im vorliegenden Fall soll die Prozessevaluation auf der Ebene der Forschungsfrage und der Ebene des curriculären Gesamtablaufs durchgeführt werden (siehe unten 4a und 4b). Damit kann die Verzahnung von wissenschaftsmethodologischer und didaktischer Fragestellung gewährleistet werden. Das hier angewandte methodologische Vorgehen soll zu Fachwissen, zur wissenschaftlichen Qualifizierung und zur Erweiterung der Handlungskompetenz bei den Studierenden führen [12].

Im Folgenden werden die Bildungscontrolling-Schritte konkretisiert:

1. **Wissenskontrolle nach dem vorbereitenden Unterricht bezüglich Fach- und Methodenwissen**

Im vorbereitenden Unterricht werden die Studierenden spezifisch methodisch-didaktisch und fachlich auf die Forschungsaufgaben(n) vorbereitet und dieses Wissen überprüft.

Zentrale Frage: „Haben die Studierenden das für die Forschungsaufgabe nötige Fach- und Methodenwissen?“

2. **Akzeptanzkontrolle bei den Studierenden bzw. Lehren- den**

Es sollten alle Lehrärzte im Vorfeld (z. B. bei einer Info- Veranstaltung) über das Vorhaben informiert werden. Um die Akzeptanz zu steigern, sollte die Forschungsfrage von den Projektplanern unter Einbeziehung der Lehrärzte entwickelt werden. Betroffene werden somit am Entwicklungsprozess beteiligt.
Die Studierenden werden im einführenden Unterricht auf die Zeit in der Lehrarztpraxis und ihre Forschungsaufgabe vorbereitet. Hierbei ist die Lernchance bei der Bearbeitung der Forschungsfrage zu verdeutlichen. Zentrale Frage: „Werden Forschungsthematik und Bearbeitungs- bzw. Betreuungsaufwand angenommen?“

3. Transferkontrolle vor Ort bei der Bearbeitung der Forschungsfrage bezüglich der Anwendung des Fach- und Methodenwissens

Lehrärzte beobachten vor Ort, ob die Studierenden das im einleitenden Unterricht Gelernte richtig anwenden. Beispielsweise soll gezeigt werden, dass die Durchführung einer Patientenbefragung durch die Studierenden anhand von Fragebögen richtig bewerkstelligt werden kann. Zentrale Frage: „Wird das Fach- und Methodenwissen richtig angewendet?“

4a. Prozesskontrolle bezüglich Forschungsaufgabe

Die von den Studierenden erhobenen Daten sollen für wissenschaftliche Zwecke verwendet werden können. Dieser Verwertungszusammenhang soll jedoch nicht alleiniges Hauptanliegen des Konzepts sein, gleichermaßen soll der Lernprozess bezüglich empirischer Forschung (und patientenzentrierter hausärztlicher Versorgung) im Vordergrund stehen. Zentrale Fragen: „Ist der Forschungsprozess frei von Selektions- und Informationsbias?“ und „Wird dieser auf potenzielle Stögrößen kontrolliert?“. „Entwickeln die Studierenden die definierten Kompetenzen?“

4b. Prozesskontrolle bezüglich des curriculären Gesamttableaus

Zentrale Frage: „Funktioniert die Integration der Forschungsaufgabe in den Gesamttableau?“

5. Ergebniskontrolle

Die Lernziele müssen in Bezug auf die Forschungsaufgaben transparent gemacht und operationalisiert werden, um den Grad ihrer Erreichung messbar zu machen (z. B. Zuwachs an Lern- und Handlungskompetenz hausärztlicher Problemstellungen oder Zuwachs an Fachwissen). Beispielsweise kann dies mit einer Vorher-Nachher- Erhebung erfolgen. Zentrale Frage: „Haben die Studierenden die definierten Fach- und Sozialkompetenzen ausgebildet?“

Ergebnisse

Im Folgenden werden die Schritte zur Implementierung der Forschungsaufgabe in das Blockpraktikum vorgestellt. Gleichzeitig wird deutlich gemacht, welches lehrdidaktische Material entwickelt werden muss und welche strukturellen Veränderungen eingeführt werden müssen. Des Weiteren wird die Verzahnung mit den einzelnen Bildungscontrolling-Schritten dargestellt (Wissens-, Akzeptanz-, Transfer-, Prozess- und Ergebniskontrolle). Blockpraktikum plus, siehe Tabelle 1.

In Tabelle 2 ist die Struktur des Pilotprojekts dargestellt.

Diskussion und Schlussfolgerung

Ziel der vorliegenden Arbeit war es, entlang der ersten Erfahrungen im Pilotprojekt ein Lehr- und Lernkonzept weiterzuentwickeln, welches die wissenschaftliche Qualifizierung von Studierenden durch die Bearbeitung einer Forschungsfrage im Blockpraktikum Allgemeinmedizin ermöglichen soll (Blockpraktikum plus). Dies geschah auf der Basis von klassischen Bildungscontrolling-Schritten. Die Beteiligung von Studierenden an Forschungsprozessen kann als essentieller Schritt angesehen werden, die Kultur der Evidenz-basierten Medizin auszubauen [13]. Allerdings bringt die Durchführung des Blockpraktikum plus für alle Beteiligten (Studierende, Lehrkörper und Lehrarztpraxis) einen zusätzlichen (organisatorischen) Aufwand mit sich. Hinzu kommt, dass für jede neue Forschungsaufgabe entsprechendes Material für den Unterricht, die Wissens- und Transferkontrollen, die Datenerhebung etc. (siehe Tabelle 1) entwickelt werden muss.

Bei dem vorliegenden Gesamtkonzept ist die Kompatibilität von Forschungsfrage und zu entwickelndem Kompetenzbereich von zentraler Bedeutung. Lautet zum Beispiel die Forschungsfrage: „Liegt Impfschutz laut Praxisdokumentation vor?“, dann entspricht der zu entwickelnde Kompetenzbereich für die Studierenden „Beurteilen und entscheiden“, ob Impfschutz vorliegt oder nicht (Entscheidungs- oder Urteilskompetenz [14]). Zusätzlich wird deutlich, dass durch die Implementierung einer Forschungsaufgabe sowohl Sozialkompetenz (z. B. sich einzufinden in den Praxisablauf, kommunizieren mit dem Fachpersonal, kommunizieren mit den Patienten bei der Datenerhebung) als auch Fachkompetenz entwickelt werden können. Wichtig dabei ist, dass je nach Forschungsaufgabe diese Kompetenzen spezifiziert, definiert und überprüft werden. Hierbei sind die Definition exakter Zielvariablen, die Vermeidung von Informations- oder Selektionsbias oder die Berücksichtigung von Stögrößen zu beachten. Nach dem Grundsatz der kommunikativen Validierung wird die Forschungsfrage in einem dialogischen Prozess durch die Beteiligten Lehrärzte, Studierende und Forscher festgelegt. Durch die Möglichkeit, eigene Frage- und Problemstellungen einzubringen, werden Lehrärzte und Studierende von Anfang an in den Forschungsprozess eingebunden und die Akzeptanz solcher Projekte erhöht [15]. Bereits in diesem Prozess kann Sozial- und Fachkompetenz entwickelt werden.

Herausforderungen und Ansätze zur Optimierung für die Implementierung des Blockpraktikums plus

Da die Implementierung in starkem Maße von der Unterstützung der Lehrärzte abhängt, ist es wichtig, diese vorab gut zu informieren und in den Prozess einzubinden. Im Pilotprojekt führten sich einige Lehrärzte über gangen,
Was? (v)	Wer? (v)	Wie? (v)	Kennzeichnung der BCS
1. Identifizierung von Forschungsbedarf	Projektplaner, Lehrärzte, Studierende	z. B. durch Befragungen, Experteninterviews, Reflexion des Praxisalltags, persönliche Interessen (z. B. „Welche wichtigen Bereiche/Anliegen bedürfen der Forschung?” [13])	AK
2. Identifizierung von Kooperationspartnern	Projektplaner	z. B. durch Recherche, ggf. bereichs- oder fachübergreifend	Außerhalb der BCS
3. Identifizierung der Forschungsfrage	Projektplaner, Kooperationspartner, Lehrärzte, Studierende	z. B. durch Beurteilung von Machbarkeit und Aktualität, durch Recherche	AK
4. Spezifizierung von Kompetenzbereichen, die von den Studierenden entwickelt werden sollen	Projektplaner, Lehrärzte, Studierende	z. B. workshop	AK
5. Definition der Forschungsfrage und der zu entwickelnden Kompetenzbereiche der Studierenden	Projektplaner	z. B. entlang des PICO-Schemas (patient-intervention-controll-outcome) bzw. SMART-Schemas (specific-measurable-attainable-relevant-“time-adequat”).	PK
6. Festlegung des Studiendesign	Projektplaner	- Wahl und Entwicklung der Erhebungsmethoden (für Forschungsfrage(n))	PK
		- Entwicklung von Messinstrumenten für die definierten Kompetenzbereiche	
		- Wahl des zu untersuchenden Kollektivs	
		- Festlegung der Kriterien für die Stichprobenziehung	
		- Vorlage des Studiendesign bei der Ethikkommission	
7. Definition der Lernziele	Projektplaner	z. B. entlang von Niveaustufen nach Miller [14] mit Definition operativer Verben; Kompatibilität von Forschungsfrage und der zu entwickelnden Kompetenzbereiche beachten/herstellen	PK
8. Entwicklung des didaktischen Materials für die Schulungen	Projektplaner	Entlang gängiger Lehr- und Lernmethoden [15]	PK
Was? (✓)	Wer? (✓)	Wie? (✓)	Kennzeichnung der BCS
----------	----------	----------	---------------------
9. Entwicklung des Wissenstests und der Transferkontrollinstrumente Identifizierung und Modifikation von Projektevaluationsinstrumenten	Entlang der Fachliteratur bzw. anhand von Bildungscontrolling-Instrumenten	PK	
10. Schulting der Lehärzte - Fachlich - methodisch - didaktisch	z. B. durch Seminar, Training		
- Fachlich	- Experten (z. B. Fachärzte, Sachverständige)		
- methodisch	- Experten der qualitativ/quantitativen Forschung		
- didaktisch	- Experten in Didaktik		
11. Schulting der Studierenden inklusive Wissenskontrolle Seminarleitende Lehrärzte Anhand von entwickeltem Material (Wissenstest zu Fach- und Methodenwissen)	WK		
12. Transferkontrolle - bezüglich Anwendung von Schulungsinhalten - bezüglich Bearbeitung der Forschungsfrage (vor Ort in der Praxis)	anhand der entwickelten Transferkontrollinstrumente anhand der entwickelten Transferkontrollinstrumente	TK	
- Lehrarzt vor Ort	- Lehrarzt vor Ort		
13. Ergebniskontrolle Projektplaner, Studierende, Lehrärzte durch Auswertung, Präsentation und Interpretation der Erhebungsergebnisse	durch Auswertung, Präsentation und Interpretation der Erhebungsergebnisse		
- durch Erhebungsergebnisse	- durch Auswertung, Präsentation und Interpretation der Erhebungsergebnisse		
- Auswertung der Rückmeldungen	- z. B. durch Rückmeldung von Lehrärzten		
- Auswertung der Selbsteinschätzungen	- z. B. durch Selbsteinschätzungen der Studierenden		
14. Schlussfolgerung Projektplaner Reflexion der Prozesskontrolle PK			
15. Publikation der Daten Studierende mit Unterstützung der Projektplaner Verfassen von Artikeln für Fachzeitschriften [17] [18] [19]	EK		

* Blockpraktikum mit Implementierung einer Forschungsaufgabe. BCS – Bildungscontrolling-Schritte WK – Wissenskontrolle, AK – Akzeptanzkontrolle, TK – Transferkontrolle, PK – Prozesskontrolle, EK – Ergebniskontrolle

u.a. auch, weil sie nicht in die Entwicklung der Aufgabenstellung bzw. der Forschungsfrage eingebunden waren. Dies sollte zukünftig verbessert werden. Die Tatsache, dass im Pilotprojekt sensible, praxisinterne Daten erhoben wurden (Dokumentation des Impfstatus in der Praxis-EDV), löste bei einigen Lehrärzten das Gefühl aus, kontrolliert zu werden. Diesbezügliche potentielle
Tabelle 2: Übersicht des Lehr- und Lernkonzepts zur wissenschaftlichen Qualifizierung von Studierenden im Blockpraktikum Allgemeinmedizin

Studierende im Blockpraktikum	Projektplaner, Forschergruppe
Bisheriges Blockpraktikum	Identifizierung von Forschungsbedarf
Ausbildung in patienten-zentrierter, hausärztlicher Versorgung	Wissenschaftliche Qualifizierung der Studierenden
Problemorientierte und patientenzentrierte Herangehensweise	Entwicklung von Forschungsinstrumenten und des didaktischen Materials für Lehrkräfte, Qualifizierung der Lehrkräfte
Symptombezogene Qualifizierung	Fachliche Qualifizierung bezüglich der Forschungsfragen
z. B. Anamnese, Diagnostik, Therapie durchführen (teils unter Anleitung)	Projekt-Controlling bzgl. Einhaltung wissenschaftlicher Standards (z. B. Validität, Vermeidung von Bias)

Problemfelder sollten rechtzeitig thematisiert und geklärt werden.

Eine weitere Herausforderung stellt die Transferkontrolle innerhalb der Praxis, d.h. die Kontrolle, ob die Aufgabenstellung "richtig" umgesetzt wurde. Hier könnten zukünftig auch die medizinischen Fachangestellten in die Planung einbezogen werden, was im Pilotprojekt nicht bzw. nicht ausreichend durchgeführt wurde. Zusammenfassend sind folgende Maßnahmen für die Implementierung im Routinebetrieb wichtig:

- Rechtzeitige und umfassende Information der Lehrärzte über das Vorhaben (z. B. im Rahmen von regelmäßigen, lehrdidaktischen Semester-Veranstaltungen).
- Vorbereitung aller Studierenden des Blockpraktikums auf ihre neue Aufgabe (z. B. in einem einführenden Seminar für das Blockpraktikum inklusive Prä-Test).
- Überprüfung der sachgerechten Durchführung der neuen Aufgabe sowie der Datenerhebung in der Praxis (z. B. durch Transferkontrollinstrumente oder durch die Lehrkräfte).
- Überprüfung des Kompetenzerwerbs (z. B. Feedback in einem abschließenden Seminar bzw. zweiter Teil einer Prä-Post-Erhebung)
- Auswertung und weitere Aufbereitung des Datennmaterials sowie dessen Präsentation (z. B. in workshops).

Das erweiterte Blockpraktikum in Allgemeinmedizin (Blockpraktikum plus) bringt eine wesentliche Veränderung des Lehr- und Lernalltags mit sich. Das Modell lässt sich prinzipiell auf andere Praktika im Medizinstudium übertragen und kann als Instrument für Lehrende im Rahmen einer longitudinalen Kompetenzvermittlung wissenschaftlicher Basisfertigkeiten genutzt bzw. eingesetzt werden. Auf einen angemessenen zeitlichen Rahmen bei der Bearbeitung der Forschungsaufgabe ist zu achten, damit die klinische Ausbildung nicht in den Hintergrund gerät.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenskonflikte in Zusammenhang mit diesem Artikel haben.

Literatur

1. Murdoch-Eaton D, Drewery S, Elton S, Emmerson C, Marshall M, Smith J, Stark P, Whittle S. What do medical students understand by research and research skills? Identifying research opportunities within undergraduate projects. Med Teach. 2010;32(3):e152-160. DOI: 10.3109/01421591003657493
2. Hren D, Lukic IK, Marusic A, Vodopivec I, Vujaklija A, Habarak M, Marusic M. Teaching research methodology in medical schools: students' attitudes towards and knowledge about science. Med Educ. 2004;38(1):81-86. DOI: 10.1111/j.1365-2923.2004.01735.x
3. Biggs J, Tang C, Teaching for Quality Learning at University. 3rd edition ed. Berkshire/England: Open University Press, McGraw-Hill Education, McGraw-Hill House; 2007.
4. Atteslander P. Methoden der empirischen Sozialforschung. Berlin, New York: de Gruyter; 1984.
5. Wallis AB, Chereches R, Oprescu F, Brinzaniu A, Dungy Cl. An international model for staffing maternal and child health research: the use of undergraduate students. Breastfeed Med. 2007;2(3):139-144. DOI: 10.1089/bfm.2006.0036
6. Magzoub M, Schmidt H. A taxonomy of community-based medical education. Acad Med. 2000;75(7):699-707. DOI: 10.1097/00001888-200007000-00011
7. Schmidt H, Neufeld V, Nooman Z, Gubnibode T. Network of community-oriented educational institutions for the health sciences. Acad Med. 1991;66(5):259-263. DOI: 10.1097/00001888-199105000-00004
8. Kern D, Thomas P, Howard D. Curriculum Development for Medical Education: A Six-Step Approach. 2nd ed. Baltimore/United States: The John Hopkins University Press; 2009.
9. Mooshammer D, Muhe R, Hermes J, Zollner I, Lorenz G. Factors associated with influenza vaccination information—a cross-sectional study in elderly primary care patients. Z Evid Fortbild Qual Gesundhwes. 2009;103(7):445-451.
10. Moßhammer D, Lorenz G. Eine Querschnittuntersuchung über die Angaben älterer hausärztlicher Patienten zu ihrem Impfschutz. Monitor Versorgungsforsch. 2009;5:27-31.

11. Pohlenz P. Lehrevaluation und Qualitätsmanagement. SuB. 2008:1:66-78.

12. Kronenthaler A. Zur Entwicklung interkultureller Handlungskompetenz. Landau: Verlag Empirische Pädagogik; 2008.

13. Metcalfe D. Involving medical students in research. J Royal Soc Med. 2008;101(3):102-103. DOI: 10.1258/jrsm.2008.070393

14. Bauer-Klebl A, Euler D, Hahn A. Förderung sozial-kommunikativer Handlungskompetenz durch spezifische Ausprägung dialogorientierter Lehrgespräche, in Lehren und Lernen in der beruflichen Erstausbildung. Opladen: Westdeutscher Verlag; 2001. S.163-186.

15. Bohnsack R. Rekonstruktive Sozialforschung. Einführung in Methodologie und Praxis qualitativer Forschung. Opladen: Westdeutscher Verlag; 2003.

16. Chien A, Coker T, Choi Lea. What do pediatric primary care providers think are important research questions? A perspective from PROS providers. Ambul Pediatr. 2006;6(6):352-355. DOI: 10.1016/j.ampb.2006.07.002

17. Miller G. Assessment of clinical skills/Competence/Performance. Acad Med. 1990;65(9):63-67. DOI: 10.1097/00001888-199009000-00045

18. Kremer H, Melke K, Sloane P. Fächer- und Lernortübergreifender Unterricht - Maßnahmen zur Förderung beruflicher Handlungskompetenz, in Lehren und Lernen in der beruflichen Erstausbildung. Opladen: Westdeutscher Verlag; 2001. S.95-114.

19. Stark R, Gruber H, Hinkofer L, Mandel H, Renkel A. Entwicklung und Optimierung eines beispielbasierten Instruktionsansatzes zur Überwindung von Problemen der Wissensanwendung, in Lehren und Lernen in der beruflichen Erstausbildung. Opladen: Westdeutscher Verlag; 2001. S.369-387.

20. DeMaria AN. How do I get a paper accepted? J Am Coll Cardiol. 2007;49(15):1666-1667. DOI: 10.1016/j.jacc.2007.03.017

21. Eldridge S. Good practice in statistical reporting for Family Practice. Fam Pract. 2007;24(2):93-94. DOI: 10.1093/fampra/cmm010

22. Rothwell PM, Bhatia M. Reporting of observational studies. BMJ 2007;335(7624):783-784. DOI: 10.1136/bmj.39351.581366.BE

Korrespondenzadresse:
Dr. med. Dirk Moßhammer, MPH
Universitätsklinikum Tübingen, Lehrbereich Allgemeinmedizin, Österbergstraße 9, 72074 Tübingen, Deutschland, Tel.: +49 (0)7071/29-80255, Fax: +49 (0)7071/29-5896
dirk.mosshammer@uni-tuebingen.de

Bitte zitieren als:
Moßhammer D, Roos MJ, Kronenthaler A, Lorenz G, Eissler M, Joos S. Bearbeitung von Forschungsfragen zur wissenschaftlichen Qualifizierung von Studierenden - ein Lehr- und Lernkonzept für das Blockpraktikum Allgemeinmedizin. GMS Z Med Ausbild. 2011;28(2):Doc24.
DOI: 10.3205/zma000736, URN: urn:nbn:de:0183-zma0007361

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2011-28/zma000736.shtml

Eingereicht: 14.07.2010
Überarbeitet: 14.10.2010
Angenommen: 23.11.2010
Veröffentlicht: 16.05.2011

Copyright
©2011 Moßhammer et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
Students' performing of practical research tasks for their scientific qualification - an approach within the family practice internship in undergraduate education

Abstract

Background: Future physicians should be educated in evidence-based medicine. So it is of growing importance for medical students to acquire both practical medical and basic research competencies. However, possibilities and concepts focusing on the acquisition of basic practical research competencies during undergraduate medical studies in Germany are rare. Therefore the aim of this article is to develop a didactic and methodological concept for research-based teaching and learning based on the initial results from the block placement in general practice.

Methods: Connecting medical didactic approaches with classic educational control measures (knowledge, acceptance and transfer evaluation, process evaluation, and outcome evaluation).

Results: We describe the steps for implementing a research task into the block placement in general practice. Also stressed is the need to develop didactic material and the introduction of structural changes. Furthermore, these steps are integrated with the individual educational control measures. A summary serves to illustrate the learning and teaching concept (Block Placement Plus).

Conclusion: The conceptualisation of the Block Placement Plus leads to changes in the daily life routine of medical education during the undergraduate block placement in general practice. The concept can in principle be transferred to other courses. It may serve as an instrument for teachers within the framework of a longitudinal curriculum for the scientific qualification of medical students.

Keywords: research competencies, undergraduate medical education, general practice

Introduction

Evidence-based medicine (EBM) as a fundamental thought concept and strategic concept is increasingly recognised. Thus there is a need to train future physician in EBM. As a result, apart from training in medical competences basic training in scientific skills is gaining in importance. Opportunities and concepts aimed at the development of research skills and academic qualifications of students have been rare to date [1], in spite of students indeed seeing the benefits and the need for scientific training during their studies [1], [2] as it forms the basis for critical evaluation of studies and their result within a framework of individualised, patient-centred health care provision.

The achievement of scientific qualifications by students can be promoted through special, practice-related research tasks [3]. By dealing with such concrete research tasks, students learn scientific working methods and technical knowledge at the same time [4]. Currently such approaches are not used to date in medical education in Germany in contrast to other countries [5], [6], [7] although they can represent a typical win-win situation for everyone involved: Students gain scientific skills and general practitioners (GPs) or health care researchers acquire practice-related data. But such a win-win situation is only the case if both scientific-methodological and didactic aspects are taken into account [8].

Against this background, the aim of this article is to derive a didactic-methodological concept based on the initial experiences with the involvement of students in scientific data collection during their block placement in general practice at the University of Tübingen. This concept will describe research-based learning and teaching in the block placement in general practice and be transferable.
Methods

Setting

During their 10th semester, students at the University of Tübingen absolve a two-week block placement in general practice with GPs. Each semester approx. 140 students take their placements spread over approx. 200 GPs. All 140 students in the Winter Semester 2008 were prepared for their placements and their new tasks within it in an approx. 2 hour introductory seminar on the block placement in about twelve roughly equally sized groups. The semesters were led by six lecturing physician (in GP) who have long term experience with teaching at tertiary level. The seminar leaders were previously instructed by the Division of General Practice regarding the student introduction and information to the pilot in a group seminar lasting approx. 1 hour. The ethics commission passed a positive vote on the pilot project. The research topic was picked from the vaccination domain as GPs play a central role in it. Students were to determine the vaccination status using two questionnaires,

1. based on information by the patient (Questionnaire 1) and
2. based on the office documentation database (office files) (Questionnaire 2)

At 84%, student acceptance of participation in this project was high. It was seen that students were capable of carrying out the first of the two tasks, gathering data from the patients. This was manifest in the almost seamless documentation of the questionnaires. We are pleased to note that the data gathered by the students was published in a scientific publication [9], [10]. The second task which involved having to deduce the current vaccination status based on the office documentation database resulted in gaps in the questionnaires and much missing data (depending on the vaccination, up to 80% of the data was missing). However, the answer options for this question had been dichotomised (i.e. is the patient currently vaccinated Yes/No) with no answer option of Unknown. It would therefore appear that in spite of the planned support by medical staff in evaluation the office documentation database the evaluation of the vaccination status could not be carried out fully. Students were also for the first time confronted with the documentation software used by GPs. It was not possible to apply additional data on the evaluation of the learning effect regarding empirical research as the pilot had placed emphasis on the two outcomes stated above.

Approach to Deriving the Teaching and Learning Concept

Along the lines of the first results and problem analyses of the pilot project in the sense of “lessons learnt” the overall concept of a block placement which includes scientific training of students through dealing with research tasks is to be derived. The principle of Constructive Alignment combines self-managed learning of students with the role of relevant (study) tasks. The task is therefore the creation of a learning environment in which students can achieve the desired learning goals (working scientifically) using relevant and realistic tasks [3]. There is a connection with the classic educational evaluation steps (EES) of knowledge, acceptance and transfer evaluation, process evaluation and results evaluation as building blocks in the development of the learning concept presented here [11]. In the present case process evaluation will be carried out at the level of a research task and the level of overall curricular activity (see 4a and 4b below). This permits the integration of scientific methodological and didactic questions. The methodological approach used here aims to lead to scientific knowledge, scientific qualification and the increase of decision-making skills in students [12].

In the following, the educational evaluation steps will be specified:

1. Knowledge check following preparatory teaching on technical knowledge and methods

The students receive specific methodological-didactic and technical preparation for the research tasks in preparatory teaching and are tested for such knowledge. The central question is: “Do the students have the technical and methodological knowledge for the research task?”

2. Acceptance control amongst students and teaching staff

All teaching physicians are to be informed prior to the event about the plans (for example at an information event). To increase the acceptance the research question should be developed by the project planners with input from the teaching physicians. The people affected are thereby included in the development process. Students are prepared for their trainee placement in the introductory teaching events. Here it is important to stress the opportunity for learning when dealing with the research question. The central question is: “Is the research topic, the work effort required and the tutoring effort required being accepted?”

3. Transfer control on site when working on the research question regarding the application of technical knowledge and methods

Teaching physician observe the students on site to see if they correctly apply what they have learned in the intro-
duction. For example, it will be evaluated if it is possible to have students correctly conduct the questioning of a patient using questionnaires. The central question is: “Are the technical knowledge and the methods being used correctly?”

4a. Process control regarding the research task
The data collected by the students is to be usable for scientific purposes. This usage combination should not be the sole emphasis of the concept but equally allow learning processes regarding empirical research (and patient-centred GP-based healthcare) to be in the focus. The central questions are: “Is the research process free of selection and information bias?” and “Is this process being controlled for potential interference (confounders)?”

4b. Process control regarding the overall curricular activities
The central question is: “Is the integration of the research task into the overall activities working?”

5. Results control
The learning goals must be made clear in relation to the research tasks and operationalised for the degree of their achievement to be measurable (e.g. increase of solution and decision making skills regarding problems in a GP office or increase of technical knowledge). This can, for example, be done through before-and-after type questioning.

The central question is: “Have the students developed the stated technical and social skills?”

Results
In the following the steps for implementing the research task into the block placement are presented. At the same time it is explained, which didactic materials need to be developed for learning and which structural changes need to be introduced. The integration with the individual education evaluation steps is also illustrated (knowledge, acceptance, transfer, process and results control). Block Placement Plus, see Table 1. Table 2 shows the pilot project structure.

Discussion and Conclusion
The aim of the present endeavour was to further develop a learning and teaching concept based on the initial experiences of the pilot project to enable students to gain medical qualifications through dealing with a research topic in their block placement in general practice (Block Placement Plus). This was based on classic education evaluation steps. The participation of students in research processes can be seen as an essential step in further developing the culture of evidence-based medicine [13]. However, conducting the Block Placement Plus brings additional organisational work effort for all participants (students, teaching staff, teaching GPs). In addition, for each new research task appropriate material (for teaching, knowledge and transfer controls, data collection etc, see Table 1) must be developed.

The general concept presented here places its main emphasis on the compatibility of the research query and the competence areas that are to be developed. For example, if the research query was “Based on the GPs documentation database (office files), is there vaccination coverage?” then the competence area that is to be developed by the students would be “Evaluate and decide if vaccination cover is or is not present” (decision making or judgement competence [14]). In addition it is clear that by implementing a research task technical social competencies (for example finding your position within the GP’s routine, communicating with the technical staff, communicating with patients when collecting data) can also be developed. In doing so it is important that these competencies are specified, defined and checked depending on the type of research task. The definition of exact target variables, avoiding information or selection bias or accounting for disturbances (confounders) must be borne in mind. Following the principle of communicative validation, the research question is defined in a dialogical process by the involved teaching physicians, students and researchers. The ability to bring their own queries to the process, teaching physicians and students are involved in the research process from the beginning, increases the acceptance of such projects [15]. This aspect of the process itself can already develop social and technical competencies.

Challenges and approaches to the Optimisation of the Implementation of the Block Placement Plus
Because implementation is highly dependent on the support of the teaching physicians, it is important that they are well informed beforehand and integrated into the process. Some teaching physicians felt they had been left out in the pilot, amongst other reasons because they had not been included in the development of the problem or the research task. This will be improved in future.

Because the pilot project involved the collection of sensitive, internal GPs’ data (digital documentation of the vaccination status), some teaching physicians felt that they were being checked. Such potential problem areas should be brought up and clarified early. Another challenge was the transfer control within the GPs’ office, i.e. controlling if the research task was being handled “correctly”. In future, medical technical staff could also be included in the planning, something that was not or not sufficiently done in the pilot.

In summary, the following measures are important for the implementation into daily routines:
Table 1: Who does what how (v)? – Concept of the Block Placement Plus*

What? (v)	Who? (v)	How? (v)	EES marking
1. Identifying need for research	Project planner, teaching physician, students	For example through questionnaires, expert interviews, reflecting on daily routines, personal interests (e.g. “Which important areas/requests are in need of research?” [13])	AC
2. Identifying cooperation partners	Project planner	For example through literature search, if necessary across multiple areas or subjects	Outside EES
3. Identifying the research query	Project planner, Cooperation partner, teaching physician, students	For example through evaluating feasibility and actuality through literature search	AC
4. Specifying competence areas that the students are to develop	Project planner, teaching physician, students	For example a workshop	AC
5. Defining the research query and the competence areas that the students are to develop	Project planner	For example following the PICO scheme (patient-intervention-control-outcome) or SMART scheme (specific-measurable-attainable-relevant-“time-adequate”).	PC
6. Defining the study design	Project planner		PC
- Choice and development of the survey methods (for the research queries)		- Operationalisation of the research queries	
- Developing measurement tools for the stated competence areas		- Operationalisation of the competence areas	
- Choice of collective to be investigated		- regarding the research query	
- Stating the criteria for sampling		- For example consecutive, randomised	
- Submitting the study design to the ethics commission		- Apply for evaluation and permit	
7. Definition of learning goals	Project planner	For example following levels according to Miller [14] with a definition of operative verbs; compatibility with research query and maintain/relate to competence areas to be developed	PC
8. Developing the didactic material for training	Project planner	Following current teaching and learning methods [15]	PC
Table 1: Who does what how (v)? – Concept of the Block Placement Plus*

What? (v)	Who? (v)	How? (v)	EES marking
9. Developing the knowledge tests and the transfer control instruments	Following the literature or education evaluation instruments	PC	
Identifying and modifying project evaluation instruments	Following the current literature on project control [16]		
10. Training of teaching physicians	For example through seminars, training	PC	
- Technical	- Experts (for example specialists, subject experts)		
- methodological	- Experts in qualitative/quantitative research		
- didactical	- Experts in didactics		
11. Training of students including knowledge control	Teaching physicians leading the seminar	Using developed material (knowledge test on technical knowledge and methods)	KC
12. Transfer control	Teaching physician on site	- using the transfer control instruments developed	TC
- regarding application of training content	- Teaching physician on site	- using the transfer control instruments developed	
- regarding handling of research topic (on site at the office)	- Teaching physician on site		
13. Results control	Project planner, students, teaching physician	- through evaluation, presentation and interpretation of the results of the investigation	RC
- through results of the investigation	- for example through feedback from teaching physicians		
- evaluating the feedback	- for example through feedback from students		
- evaluating the self-assessments			
14. Conclusions	Project planner	Reflection of process control	PC
15. Publication of data	Students with support of project planners	Composing articles for specialist publications [17] [18] [19]	RC

* Block placement with implementation of a research task. EES – Education Evaluation Steps
AC – acceptance control, KC – knowledge control, PC – process control, RC – results control, TC – transfer control

- Informing teaching physicians in time and sufficiently about the plans (for example as part of regular didactic events each semester).
- Preparing all students of the block placement for their new tasks (for example in an introductory seminar for the block placement, including the preliminary test).
- Checking correct conduct of the new tasks and collecting the data in the office (for example through transfer control instruments or through the teaching physicians).
- Checking the acquisition of competencies (for example feedback in a final seminar or second part of a before-and-after test)
- Evaluation and further processing of data material and its presentation (for example in workshops).
The expanded block placement in general practice (Block Placement Plus) brings substantial change to the daily routine of teaching and learning. In principle, the model can be transferred to other placements in medicine and can be used as an instrument for teaching staff with the framework of longitudinal competence transfer in basic scientific skills. An adequate time frame for dealing with the research task is important so the clinical training does not slip into the background.

Competing interests

The authors declare that they have no competing interests.

References

1. Murdoch-Eaton D, Drewery S, Elton S, Emmerson C, Marshall M, Smith J, Stark P, Whittle S. What do medical students understand by research and research skills? Identifying research opportunities within undergraduate projects. Med Teach. 2010;32(3):e152-160. DOI: 10.3109/01421591003657493
2. Hren D, Lukic IK, Marusic A, Vodopivec I, Vujaklija A, Hrabak M, Marusic M. Teaching research methodology in medical schools: students' attitudes towards and knowledge about science. Med Educ. 2004;38(1):81-86. DOI: 10.1111/j.1365-2923.2004.01735.x
3. Biggs J, Tang C. Teaching for Quality Learning at University. 3rd edition ed. Berkshire/England: Open University Press, McGraw-Hill Education, McGraw-Hill House; 2007.
4. Atteslander P. Methoden der empirischen Sozialforschung. Berlin, New York: de Gruyter; 1984.
5. Wallis AB, Chereches R, Oprescu F, Brinzaniuc A, Dungy CI. An international model for staffing maternal and child health research: the use of undergraduate students. Breastfeed Med. 2007;2(3):139-144. DOI: 10.1089/bfm.2006.0036
6. Magzoub M, Schmidt H. A taxonomy of community-based medical education. Acad Med. 2000;75(7):699-707. DOI: 10.1097/00001888-200007000-00011
7. Schmidt H, Neufeld V, Noorman Z, Ogunbode T. Network of community-oriented educational institutions for the health sciences. Acad Med. 1991;66(5):259-263. DOI: 10.1097/00001888-199105000-00004
8. Kern D, Thomas P, Howard D. Curriculum Development for Medical Education: A Six-Step Approach. 2nd ed. Baltimore/United States: The John Hopkins University Press; 2009.
9. Moßhammer D, Muche R, Hermes J, Zollner I, Lorenz G. Factors associated with influenza vaccination information—a cross-sectional study in elderly care patients. Z Evid Fortbild. 2009;103(7):448-451.
10. Moßhammer D, Lorenz G. Eine Querschnittuntersuchung über die Angaben älterer hausärztlicher Patienten zu ihrem Impfschutz. Monitor Versorgungsforsch. 2009;5:27-31.
11. Metcalfe D. Involving medical students in research. J Royal Soc Med. 2008;101(3):102-103. DOI: 10.1258/jrsm.2008.070393
12. Kremer H, Melke K, Sloane P. Fächer- und Lernortübergreifender Unterricht - Maßnahmen zur Förderung beruflicher Handlungskompetenz, in Lehren und Lernen in der beruflichen Erstausbildung. Opladen: Westdeutscher Verlag; 2001. S.163-186.
13. Chien A, Coker T, Choi Lea. What do pediatric primary care providers think are important research questions? A perspective from PROS providers. Jamb 2005.6:352-355. DOI: 10.1016/j.ambp.2005.07.002
14. Miller G. Assessment of clinical skills/Competence/Performance. Acad Med. 1990;65(9):63-67. DOI: 10.1097/00001888-199009000-00004
15. Kremer H, Melke K, Sloane P. Fächerübergreifender Unterricht - Maßnahmen zur Förderung beruflicher Handlungskompetenz. Lehren und Lernen in der beruflichen Erstausbildung. Opladen: Westdeutscher Verlag; 2001. S.95-114.
19. Stark R, Gruber H, Hinkofer L, Mandel H, Renkel A. Entwicklung und Optimierung eines beispielbasierten Instruktionsansatzes zur Überwindung von Problemen der Wissensanwendung, in Lehren und Lernen in der beruflichen Erstausbildung. Opladen: Westdeutscher Verlag; 2001. S.369-387.

20. DeMaria AN. How do I get a paper accepted? J Am Coll Cardiol. 2007;49(15):1666-1667. DOI: 10.1016/j.jacc.2007.03.017

21. Eldridge S. Good practice in statistical reporting for Family Practice. Fam Pract. 2007;24(2):93-94. DOI: 10.1093/fampra/cmm010

22. Rothwell PM, Bhatia M. Reporting of observational studies. BMJ 2007;335(7624):783-784. DOI: 10.1136/bmj.39351.581366.BE

Corresponding author:
Dr. med. Dirk Moßhammer, MPH
University Hospital Tübingen, Division of General Practice, Österbergstraße 9, 72074 Tübingen, Germany, Tel.: +49 (0)7071/29-80255, Fax: +49 (0)7071/29-5896
dirk.mosshammer@uni-tuebingen.de

Please cite as
Moßhammer D, Roos MJ, Kronenthaler A, Lorenz G, Eissler M, Joos S. Bearbeitung von Forschungsfragen zur wissenschaftlichen Qualifizierung von Studierenden - ein Lehr- und Lernkonzept für das Blockpraktikum Allgemeinmedizin. GMS Z Med Ausbild. 2011;28(2):Doc24. DOI: 10.3205/zma000736, URN: urn:nbn:de:0183-zma0007361

This article is freely available from
http://www.egms.de/en/journals/zma/2011-28/zma000736.shtml

Received: 2010-07-14
Revised: 2010-10-14
Accepted: 2010-11-23
Published: 2011-05-16

Copyright ©2011 Moßhammer et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en). You are free: to Share — to copy, distribute and transmit the work, provided the original author and source are credited.