Nanosilver microalgae biosynthesis: cell appearance based on SEM and EDX methods

Hermin Pancasakti Kusumaningrum¹, Muhammad Zainuri², Indras Marhaendrajaya³ and Agus Subagio⁴

¹Biotechnology Laboratory, Biology Department, Sciences and Mathematic Faculty, University of Diponegoro, Jl. Prof. Sudharto SH. Tembalang Semarang 50275, Indonesia
²Oceanography Laboratory, Fisheries and Marine Science Faculty, University of Diponegoro, Jl. Prof. Sudharto, SH, Semarang 50275, Indonesia
³Physics Laboratory, Sciences and Mathematic Faculty, University of Diponegoro, Jl. Prof. Sudharto, SH, Semarang 50275, Indonesia

E-mail: herminpk@undip.ac.id

Abstract. Microbial contamination has caused public health problems in the world population. This problem has spurred the development of methods to overcome and prevent microbial invasion. The extensive use of antibiotics has facilitated the continued emergence and spread of resistant organisms. Synthesized of silver nanoparticle (AgNPs) on microalgae Chlorella pyrenoidosa offer environmentally safe antimicrobial agent. The present study is focused on the biosynthesis of AgNPs using microalgae C. pyrenoidosa. The research methods was conducted by insertion of nanosilver particle into microalgae cells with and without agitation to speed up the process of formation nanosilver microalgae. The formation of microalgae SNP was analyzes by UV-Vis spectrophotometer, Scanning Electron Micrograph (SEM) and Energy-dispersive X-ray spectroscopy (EDX) methods. The research result showed that nanosilver microalgae biosynthesis using the agitation treatment was exhibited better performance in particle insertion and cell stability, comparing with no agitation treatment. However, synthesis of nanosilver microalgae tend to reduce the cell size.

1. Introduction
The development of bionanotechnology in microalgae has shown that integration of microalgae with nano silver to produce AgNPs had increased the potency of microalgae as antifungal, antimicrobial, and anticancer accomplishing with their advantages characters in electrical conductivity, stability, and activity of catalysis [1-9]. Natural nanoparticles have advantages especially in compatibility with pharmaceuticals over physical, chemical and microbial synthesis. High cost, inefficient treatment, contamination of toxic chemicals were leading to several effects when silver nanoparticles was used for medical and pharmaceutical purposes [5,10]. This organic silver nanoparticles also proven as an alternative way to develop new antimicrobial agents in overcoming the problem of resistance [3]. Moreover, Chlorella as one of a primary producer on aquatic environment is commonly used for natural supplement on pharmaceutical and cosmetics attempt [7-12]. This microalgae and its extracts have produced an enormous amount of interest for the pharmaceutical industry as a bioactive compounds with immense medicinal potential. Although synthesis and characterization of Silver nanoparticles on
microalgae *C. vulgaris* had been conducted [13], there are no reports concerning synthesis of AgNPs on *C. pyrenoidosa* in higher concentration of silver using agitation treatment, their effect to the cell and how much concentration of silver in cell of microalgae.

2. Materials and Methods

2.1. Microalgae material

C. pyrenoidosa microalgae were obtained from Brackishwater Aquaculture Development Centre (BBPBAP) on Jepara Indonesia. The microalgae were cultivated using sea water enriched with Walne media in Oceanography Laboratory on Diponegoro University.

2.2. Microalgae Media

The microalgae was grown and cultivated on Walne media. The media were dissolved in 200 mL of distilled water and bring to 1 L on the pH 7.6. The medium was using by adding 0.1 mL steril solution to each 10 mL of seawater [14,15].

2.3. Preparation of 1 mM AgNO₃ solution

The solution of 1 mM AgNO₃ was prepared by dissolving 0.169 mg AgNO₃ (169.87 g/mol) in 1000 ml distilled water and keep from auto oxidation of Silver.

2.4. Biosynthesis of microalgae Silver nanoparticles

The 100 mL microalgae extract was added to 250 mL AgNO₃ 2 mM solution. The half of reacting solutions were agitated for 6 hours with a stirrer at 120 rpm at room temperature, while the other was not. The colour change, UV-Vis absorption spectra, SEM and EDX performance indicate the formation of Silver nanoparticles.

2.5. Characterization of SNP microalgae

The optical properties of the microalgae silver nanoparticles and the optical density of microalgae *C. pyrenoidosa* cultures in solution supplemented with the particles were evaluated in 10 mm optical path length quartz cuvettes using a Spectroquant Pharo 300 UV–Vis spectrophotometer. Characterization of AgNPs was started by taking small aliquot of sample in to UV–Visible spectrophotometer absorption spectra at 200-600 nm using UV-Vis Spectrophotometer. The size and the morphology of the silver nanoparticles were observed by transmission electron microscopy (TEM). The sizing of the samples was measured on transmission electron micrographs using the software Image Tool for Windows (Version 2.0). Data analysis was conducted using the software Microcal Origin 6.0. The size and morphology of the microalgae AgNPs were examined by scanning electron microscopy (SEM) Jeol JSM 6510 LA model. Samples of the dry material of the silver nanoparticles (AgNPs) were done by centrifugation at 8,000 rpm for 5 min using Eppendorf microcentrifuge 5424. The SEM micrographs have been produced with magnifications 3000, 5000, 10000 and 20000 x (diameters). SEFs are equipped with x ray analytical capabilities to obtain topographic, crystallographic, and compositional information simultaneously from the same area. The EDX using X-ray excitation technique was used for analysis the element or chemical characterization.

3. Result and Discussion

3.1. UV-Visible spectra analysis

UV–Vis spectroscopy was performed to observe the formation of the microalgae silver nanoparticles. Confirmation of AgNPs formation in the aqueous solution of microalgae was monitored by UV-Vis absorption spectrum in the range of 200–600 nm. The plasmon band of *C. pyrenoidosa*-Ag colloid was observed at 400–411 nm (Figure 1) which is in agreement range with other experiment on different organisms [7]. Appropriate excitation by suitable radiation would made by nano-sized silver showed a strong absorption caused by the collective oscillation of the conduction electrons which was known as localized surface plasmon resonance. The fact that the surface plasmon absorption maximum was found
with the wavelength around 410 nm confirmed the nanoessence of the manufactured silver particles. This process was deponent dominantly on the size and shape of the nanoparticles [7]. Some studies have indicated that nutrient in microalgae not only supported on the capping of the nanoparticles, but also decreased the ions into the nano size [16,17]. The addition of silver nitrate solution into microalgae solution was changed the reaction mixture into brown, caused by the excitation of the surface plasma vibrations, was one of the indicator of AgNPs formation.

Characterization of nanosilver microalgae were primarily performed by UV-Visible spectroscopy, which is proved to be a very useful technique for the analysis of these nanoparticles. The UV-Vis absorption spectra are known to be quite sensitive to the formation of nanosilver microalgae. Thus the presence of nanosilver microalgae characterized by using a UV-Vis spectrum showed that they presented a maximum absorption at 410-411 nm. A single broad peak was observed at 410 nm for C. pyrenoidosa as a control 410 nm for C. pyrenoidosa with agitation and 411 for C. pyrenoidosa without agitation. This peak was corresponds to plasmon excitation of the nanosilver microalgae as illustrated on Figure 1. Several investigators have observed absorption maxima of colloidal silver solution between 410 to 440 nm, which is assigned to surface plasmon of various metal nanoparticles [13,18,19].

![Figure 1. The spectrum of UV-Visible absorption on nanosilver microalgae : (a) C. pyrenoidosa, (b) nanosilver C. pyrenoidosa with agitation, (c) nanosilver C. pyrenoidosa without agitation](image)

The results of the process of microalgae nanosilver formation the research based on the absorbance and wavelength values also show the synthesis of silver nanoparticles with agitation provide better stability comparing to the treatment without agitation. The agitation accelerates the process of forming silver nanoparticles. The absorbance value increases with the increasing contact reaction time. As the microalgae suspension was combined and homogenized with the aqueous solution of the silver ion complex it was changed from green to brown colour. This is due to the excitation of the surface plasma vibrations, which indicates the formation of the nanosilver microalgae. UV-Visible Spectrograph of nanosilver microalgae has been recorded as a function of time by using quartz cuvette with distilled water as the reference.

Formation of the nanosilver microalgae of C. pyrenoidosa monitored by UV–Vis spectroscopy showed a robust absorption due to the collective oscillation of the conduction electrons, after adequate excitation by sufficient radiation. This phenomenon is regarded as localized surface plasmon resonance, which is highly depend on the size and shape of the AgNPs.

3.2. SEM analysis

The SEM analysis showed morphological, cellular ultrastructural changes of C. pyrenoidosa cells after 160 hours of exposure with AgNPs which also accomplished by the differences in surface topography as the electron beam sweeps across the specimen. As showed in Figure 2-4, the morphology of C. pyrenoidosa cell without silver addition as a control unit maintained a smooth exterior, round and spherical shape with size 2.40-7.55 µm.
SEM microscopy was used to evaluate the surface morphology of both the agitated and non agitated microalgae AgNPs. The observation of the cell structure of *C. pyrenoidosa* exhibited that the cell was turned into distorted, shrunk and diminish cell after 160 h exposure with AgNPs. The size of the cell became 0.40-0.53 µm with agitation and 0.38-0.95 µm without agitation treatment respectively. Its also showed that agitation treatmen will caused greater effect on cell damaged caused by intense contact among AgNP particles and cells surface. This result was also supported by another researcher which was proven that nanoparticles can caused change in morphology and dimensions of green algae *Chlamydomonas reinhardtii* and *Dunaliella salina* [20]. Application of AgNPs on *Microcystis aeruginosa* showed inhibition on cell density and growth which is the inhibition reaches more than 95% [7]. In the *C. vulgaris*, the proteins of microalgae instead of caused Ag⁺ ion reduction, they also act as shape controlled synthesis of AgNPs [21].

The AgNP microalgae also revealed spherical and cuboidal nanoparticles with and without agitation treatment. The cells was forming clusters in specific area which was very difficult to found. The treatment also showed inhibition of cell growth that reduced the cell density. Images of SEM indicating toxicity of silver nanoparticles toward *C. pyrenoidosa* using 2 mg.l⁻¹ concentration. This result was in accordance with *M. aeruginosa* cell which is showed a shrunk and damaged cell wall indicating toxicity of silver nanoparticles in a lower concentration [7]. SEM microscopy also exhibited macroscopic aggregates composed of nanosized silver particles and dead microalgae cells. The other experiment with bacteria had reported that bacterial membrane undeliver nanoparticle treatment exhibits a significant increase in permeability, causing cells incapability of cells in proper transport regulation through the plasma membrane followed by cell death [22].
3.3. EDX analysis

Characterization the chemical composition and the location of AgNPs on cell surface was analysis using the combination of SEM accomplished with X-ray (EDX). The EDX analysis of the microalgae AgNPs samples showed that silver nanoparticles were incorporated into the membrane of the treated microalgae cells. The EDX analysis was performed for the confirmation of *C. pyrenoidosa* silver nanoparticles. Figure 6-9 showed the evidence of EDX analysis in the spot profile mode for control, with agitation and without agitation treatment. The chemical composition of AgNO₃ as illustrated the EDX analysis on Figure 6 was contained Ag dominantly characterized by the highest and sharp peak appearance in the XRD image that clearly confirmed the main raw material marked by green colour. The sharp diffraction patterns of the XRD spectra indicates a pure crystalline silver structure which is in good agreement with the earlier report [23]. The observation analysis using EDAX confirmed the incorporation of silver nanoparticles into the membrane structure of microalgae.
Figure 6. EDX analysis of AgNO₃

Element	(keV)	Mass%	Sigma	Mol%	Compound	Mass%	Cation	K
C K	0.277	52.96	0.07	91.12	C	52.96	0.00	28.19
O	3.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Al K	1.486	0.71	0.05	0.27	Al2O3	1.35	2.68	0.8382
Cl K	2.621	8.07	0.04	4.71	Cl	8.07	0.00	16.67
Cr K	5.411	0.45	0.05	0.09	Cr2O3	0.66	0.88	0.7148
Fe K	6.398	1.37	0.05	0.51	FeO	1.76	2.48	2.2236
Cu K	8.040	0.75	0.07	0.25	CuO	0.94	1.20	1.2061
Ag L	2.983	31.89	0.15	3.06	Ag2O	34.26	29.95	50.15

Total 100.00 100.00 100.00 37.19

ZAF Method Standardless Quantitative Analysis (Oxide)
Fitting Coefficient : 0.0371
Total Oxide : 24.0

Figure 7. EDX analysis of C. pyrenoidosa

Element	(keV)	Mass%	Sigma	Mol%	Compound	Mass%	Cation	K
C K	0.277	60.92	0.08	74.86	C	60.92	0.00	40.94
N K	0.392	17.50	0.27	18.44	N	17.50	0.00	14.64
Na K	1.041	0.82	0.03	0.26	Na2O	1.10	2.50	1.827
Mg K	1.253	3.11	0.04	1.89	MgO	5.16	9.02	6.023
Al K	1.486	0.14	0.02	0.04	Al2O3	0.26	0.36	0.297
S K	2.307	1.42	0.04	0.65	SO3	3.54	3.11	4.069
Cl K	2.621	7.73	0.03	3.22	Cl	7.73	0.00	24.39
K K	3.312	1.04	0.02	0.20	K2O	1.25	1.87	2.81
Ca K	3.690	0.48	0.02	0.18	CaO	0.67	0.84	1.335
Fe K	6.398	0.37	0.02	0.10	FeO	0.48	0.47	0.957
Zr L	2.042	1.04	0.06	0.17	ZrO2	1.40	0.80	2.696

Total 100.00 100.00 100.00 18.97
Figure 8. EDX analysis of *C.pyrenoidosa* with agitation

Element	(keV)	Mass%	Sigma	Mol%	Compound	Mass%	Cation	K
C K	0.277	62.59	0.59	89.07	C	62.59	0.00	26.9555
O	5.30							
Na K	1.041	10.80	0.20	4.01	Na2O	14.55	34.04	21.0010
Mg K	1.253	0.22	0.05	0.15	MgO	0.36	0.65	0.2976
Al K	1.486	0.24	0.05	0.08	Al2O3	0.45	0.64	0.3998
Cl K	2.621	11.54	0.12	5.56	Cl	11.54	0.00	31.7873
Cu K	8.040	0.91	0.11	0.24	CuO	1.14	1.04	1.8707
Zn K	8.630	0.76	0.11	0.20	ZnO	0.94	0.84	1.6324
Zr L	2.042	0.74	0.08	0.14	ZrO2	0.99	0.58	1.5767
Ag L	2.983	6.92	0.15	0.55	Ag2O	7.44	4.65	14.3790
Total	100.00	100.00	100.00	100.00	100.00	42.44		

Figure 9. EDX analysis of *C.pyrenoidosa* without agitation

Element	(keV)	Mass%	Sigma	Mol%	Compound	Mass%	Cation	K
C K	0.277	36.48	0.69	69.32	C	36.48	0.00	4.4427
O	8.80							
Na K	1.041	24.30	0.25	12.06	Na2O	32.76	46.12	38.8531
Mg K	1.253	0.30	0.05	0.28	MgO	0.50	0.54	0.2671
Cl K	2.621	28.15	0.17	18.12	Cl	28.15	0.00	53.8711
Ag L	2.983	1.97	0.09	0.21	Ag2O	2.11	0.80	2.5660
Total	100.00	100.00	100.00	100.00	100.00	47.46		
Some other chemical compounds are also found in AgNO₃ solution in very small quantities consisting of Chromium (Cr), Ferrum (Fe), Cuprum (Cu) and Aluminium (Al). The result of spectral processing of nanosilver microalgae as shown on Figure 6. had calculated the number of X-ray counts in the peak of AgNO₃ compared with the number of X-ray counts in AgNO₃ standard with concentration 31.8% of the element of interest, and from this derive the mass fraction of the element in the sample. The spectra obtained during EDX analysis were used for conducted the quantitative analysis by application of SEMQuant software and the ZAF procedure. Quantitative analysis proved lower silver contents in the examined samples comparing with 52% of control. This result was also in accordance with other report [24].

The number of X-ray counted in the peak of C. pyrenoidosa microalgae on Figure 7. showed zero concentration of AgNO₃ in the sample with 60.92% of carbon (C) mass concentration and 17.50% of nitrogen (N) mass concentration, respectively. This X-rays of C. pyrenoidosa were scattered by diffraction owing to the unique crystalline structure of the material analyzed. In the all standard EDX spectrum recorded on the examined sample were clearly several sharp peaks located between 0 kV and 3 kV. Those maxima are directly related to the silver characteristic lines K and L. The other way to obtain this type of detailed information would be more comprehensive using planar serial sections observation in the transmission electron microscope which will be improve in the next experiment.

4. Conclusion
The present study reveals that the microalga C. pyrenoidosa is good source for the synthesis of silver nanoparticles at a low silver concentration. The formation of silver nanoparticles was confirmed by characterization using UV-Vis, SEM, EDX and TEM techniques. The microalgae silver nanoparticles formed were quite stable in the solution. The agitation treatment act as the surface active stabilizing molecules and cell structure for the synthesis of silver nanoparticles. The method was fast and eco-friendly.

Acknowledgement
The authors gratefully thank to Directorate of Research and Public Services (Dirlitabmas), Indonesian Ministry of Research, technology and Higher Education according to Letter of Assignment of Hibah PUPT, Number : 344-43/UN7.5.1/PP/2017 date 5 May 2017 in funding this research.

References
[1] Devi, JS and Bhimba BV. 2012. Anticancer Activity of Silver Nanoparticles Synthesized by the Seaweed Ulva lactuca In vitro. 1: 242. doi:10.4172/scientifiereports.242
[2] Rajesh S, Patric RD, Rathi JM and Sahayaraj K. 2012. Biosynthesis of Ag nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. Malvacearum. J.Biopes, 5 (Supplementary): 119-128
[3] Sudha SS, Rajamanickam K, Rengaramanujam J. 2013. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J. of Exp Bio 52:393-399
[4] Anuradha G, Syama Sundar B, Sreekanth Kumar J and Ramana MV. 2014. Synthesis and Characterization of Silver Nanoparticles from Ocimum basilicum L. var.thrysiflorum. European J. of Acad. Essays.1(5):5-9
[5] Balashanmugam P and Kalaielvelan PT. 2015. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int. J. of Nanomedicine 10 (Suppl 1: Challenges in biomaterials research):87–97
[6] Patel V, Berthold D, P Puranik, and M. Gantar. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Report. Elsevier 5:112–119
[7] Duong TT, Le TS, Tran TTH, Nguyen TK, Ho CT, Dao TH, Le TPQ, Nguyen HC, Dang DK,
TTH Le and Ha PT. 2016. Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria. *Adv. Nat. Sci.: Nanosci. Nanotechnol.* 7.035018 (7pp)

[8] El-Sheekh MM and El-Kassas HY. 2016. Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. *J. of Gen. Eng. and Biotech.* 14: 299–310

[9] Rajeshkumar S, Kannan C and Annadurai G. 2012. Green synthesis of silver nanoparticles using marine brown algae *Turbinaria conoides* and its antibacterial activity. *Int. J. Pharm. Bio. Sci.* 3(4):502–510

[10] Ramirez-Merida LG, Zepka LQ, de Menezes CR and Jacob-Lopes E. 2015. Challenges and Perspectives in Medicine Microalgae as Nanofactory for Production of antimicrobial Molecules *J Nanomed Nanotechnol* S6:1-3

[11] Kholoud MM, El-Nour A, Eftaiha A, Al-Warthan A and Ammar RAA. 2010. Synthesis and applications of silver nanoparticles. Review article. *Arabian J. of Chem.* 3:135–140

[12] Kusumaninggrum HP and Zainuri M. 2015. Detection of bacteria and fungi associated with *Penaeus monodon* larvae mortality. *Int. J. Procedia Env. Sc.* PROENV2395, Elsevier, DOI 10.1016/j.proenv.01.048:329–337

[13] Kusumaninggrum HP and Zainuri M. 2016. Molecular Characterization of *Dunaliella salina* and *Chlorella vulgaris* Fusant Using 18SrDNA Gene. *J. Teknologi (Sciences & Engineering)*, 78 Issue 4–2:61–68

[14] McVey JP and Moore JR. 1983. Algal food cultures at the centre oceanoLogique du pacifique. In *Handbook of Mariculture: Crustacean Aquaculture*, 2nd ed., Vol. 1 McVey, JP. ed. CRC Press, Boca Raton, p. 43–69.

[15] Bidwell JP and Spotte S. 1985. Artificial Sea Water: Formulas and Methods. Boston, Massachusetts: Jones and Bartlett Publisher. 349 p.

[16] Merin DD, Prakash S and Bhimba BV. 2010. Antibacterial screening of silver nanoparticles synthesized by marine microalgae. *Asian Pacific J. of Trop. Med.* 797–799

[17] Annamalai J and Nallamuthu T. 2016. Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. *Appl Nanosci*:259–265

[18] Dahoumane S, Mechouet M, Alvarez FJ, Agathos SN and Jeffries C. 2017. Microalgae: An outstanding tool in nanotechnology. *Bionatura.*1(4):196–201

[19] Jyoti K, Baunthiyal M and Singh A. 2016.Characterization of silver nanoparticles synthesized using *Urtica dioica* Linn. leaves and their synergistic effects with antibiotics. *J. of Radiation Res. and Appl. Sc.*217-227

[20] Garcia CP, Burchardt AD, Carvalho RN, Gilliland D, Antonio DC, Rossi F and Lettieri T. 2014. Detection of Silver Nanoparticles inside Marine Diatom *Thalassiosira pseudonana* by Electron Microscopy and Focused Ion Beam. *PlosOne.* 9(5) Issue 5.e96078 :1-6

[21] Iravani S, Korbekandi H, Mirmohammadi SV and Zolfaghari B. 2014. Synthesis of silver nanoparticles: chemical, physical and biological methods. *Res.Pharm.Sci.* 9(6): 385–406.

[22] Sondi I and Salopek-Sondi B. 2004. Silver nanoparticles as antimicrobial agent: a case study on *E. coli* as a model for Gram-negative bacteria. *J. of Colloid and Interface Sc.* 275 :177–182

[23] Saif S, Tahir A and Chen Y. 2016. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications. Review. *Nanomaterials*.1:26

[24] Puchalski M, Dąbrowski P, Olejniczak W, Krukowski P, Kowalczyk P and Polański K. 2007. The study of silver nanoparticles by scanning electron microscopy, energy dispersive X-ray analysis and scanning tunnelling microscopy. *Materials Science-Poland*, 25(2):473-478