For robust big data analyses: a collection of 150 important pro-metastatic genes

Yan Mei, Jun-Ping Yang and Chao-Nan Qian

Abstract
Metastasis is the greatest contributor to cancer-related death. In the era of precision medicine, it is essential to predict and to prevent the spread of cancer cells to significantly improve patient survival. Thanks to the application of a variety of high-throughput technologies, accumulating big data enables researchers and clinicians to identify aggressive tumors as well as patients with a high risk of cancer metastasis. However, there have been few large-scale gene collection studies to enable metastasis-related analyses. In the last several years, emerging efforts have identified pro-metastatic genes in a variety of cancers, providing us the ability to generate a pro-metastatic gene cluster for big data analyses. We carefully selected 285 genes with in vivo evidence of promoting metastasis reported in the literature. These genes have been investigated in different tumor types. We used two datasets downloaded from The Cancer Genome Atlas database, specifically, datasets of clear cell renal cell carcinoma and hepatocellular carcinoma, for validation tests, and excluded any genes for which elevated expression level correlated with longer overall survival in any of the datasets. Ultimately, 150 pro-metastatic genes remained in our analyses. We believe this collection of pro-metastatic genes will be helpful for big data analyses, and eventually will accelerate anti-metastasis research and clinical intervention.

Keywords: Pro-metastatic gene, Big data analysis, Renal cancer, Liver cancer

Background
Cancer metastasis is the greatest cause of death in almost all types of malignancies [1]. Multiple factors from the tumor and the host contribute to the formation and progression of distant secondary tumors [1, 2], and most of the mechanistic studies to date have mainly focused on the metastatic potential of tumor cells. It is believed that the metastasis of single cancer cells begins with the cells gaining the ability to migrate and invade. The cancer cells can gain motility in several ways, including epithelial-mesenchymal transition (EMT) and fusion of cancer cells to highly mobile bone marrow-derived cells [3, 4]. In the metastases formed by clusters of tumor cells, EMT may not be necessary [5]; however, the layer of endothelial cells enveloping the entire tumor cluster/embolus seems critical for the survival of tumor clusters [6].

The ability to identify cancer patients with a high risk of metastasis is essential in the era of precision medicine. In addition to applying clinicopathologic parameter combination, also known as clinical prognostic classifiers in some circumstances, molecular profiling based on high-throughput technologies is expected to allow for a more accurate and robust prognostic prediction of metastatic potential in patients. How to effectively analyze big data generated from high-throughput screening is an emerging issue for many bioinformaticians. We hypothesize that, with optimal weighting on the impact of each individual gene, a collection of key pro-metastatic genes could be useful to generate a prognostic tool to identify the metastatic potential of a specific tumor and novel signaling pathways underlying metastasis.

Main text
The increased investigation of cancer metastasis in recent years has identified over 200 pro-metastatic genes. In this review, we aim to identify a group of key pro-metastatic
genes with in vivo functional evidence and reasonable clinical relevance for application to big data analyses.

Figure 1 summarizes the analytic procedure of this review. First, we carefully selected 285 genes from the literature through searching PubMed based on the following criteria: (1) author-provided evidence of promoting migration and/or invasion of cancer cells; (2) author-provided evidence of promoting metastasis in vivo using animal models; (3) when a gene has been reported as pro-metastatic in several articles, all articles reporting the link were reviewed, and the most convincing studies are listed as the key references in Table 1. In addition, we applied survival analyses as validation tests using the publicly available TCGA datasets (threshold = 0.05). For analyses of clear cell renal cell carcinoma (ccRCC), the mRNA expression data of 72 non-cancerous kidney tissues and 539 tumors [clear cell kidney carcinoma (KIRC) in the TCGA database] were downloaded. For analyses of hepatocellular carcinoma (HCC), the mRNA expression data of 50 non-cancerous liver tissues and 374 tumors [liver hepatocellular carcinoma (LIHC) in the TCGA database] were used. Normalization was performed using the DESeq method (Version 1.26.0). For each individual gene, the median expression level was used as a cut-off value to separate the patients into high and low expression groups. Genes were excluded if their elevated expression significantly associated with better patient

Number	Gene name	ccRCC cohort	HCC cohort	
1	ADAM9	NS	0.001	
2	ADORA2B	0.006	NS	
3	AGR2	<0.001	NS	
4	AKT1	NS	NS	
5	ANXA1	NS	NS	
6	APOBEC3G	0.045	NS	
7	ATF4	0.001	0.031	
8	AXL	0.005	NS	
9	BACH1	NS	NS	
10	BCL2L1	NS	NS	
11	BCL3	<0.001	NS	
12	BIRC5	<0.001	<0.001	
13	BSG	NS	0.004	
14	CSAR1	NS	NS	
15	CAV1	NS	NS	
16	CCL2	NS	NS	
17	CCR7	NS	0.002	
18	COX4	NS	NS	
19	COX4A	0.016	NS	
20	CDCP1	NS	NS	
21	CECAM6	0.004	NS	
22	CEBPD	0.022	NS	
23	CENPF	<0.001	0.008	
24	CHD1L	<0.001	0.007	
25	CHI3L1	NS	NS	
26	CLDN9	0.039	NS	
27	COL6A1	<0.001	NS	
28	COMP	0.040	NS	
29	CSNK2A2	NS	NS	
30	CT5B	NS	NS	
31	CT5Z	<0.001	NS	
32	CKL1	<0.001	0.001	
33	CKL10	NS	NS	
34	CXCL8	0.002	<0.001	
35	CXCR4	NS	NS	
36	EZF1	0.001	0.005	
37	EFS3A	<0.001	NS	
38	ELF5	NS	NS	
39	ENAH	NS	0.012	
40	ENP52	NS	NS	
41	ETV4	0.003	0.001	
42	EZH2	<0.001	<0.001	
43	FGFR1	NS	NS	
44	FLOT2	NS	NS	
45	FOGL1	<0.001	NS	
46	FOXC1	NS	NS	
47	FOXM1	<0.001	0.009	
48	FOXQ1	NS	NS	
49	FZD2	<0.001	NS	
50	GABRA3	NS	0.004	
Number	Gene name	ccRCC cohort	HCC cohort	
--------	-----------	--------------	------------	
51	GDF15	NS	NS	[59]
52	GHRF	<0.001	NS	[60]
53	GLI2	<0.001	NS	[61]
54	GOLM1	NS	0.049	[62]
55	GRK3	NS	NS	[63]
56	HMGB1	NS	NS	[64]
57	HMMR	0.003	<0.001	[65]
58	HOXB13	<0.001	NS	[66]
59	HOXB7	NS	NS	[67]
60	HOXB9	<0.001	NS	[68]
61	I1D	NS	NS	[69]
62	IDO1	NS	NS	[70]
63	IGBP2	NS	NS	[71]
64	IL32	NS	NS	[72]
65	ILS	NS	NS	[73]
66	IL6	<0.001	NS	[74]
67	IPK2	0.001	NS	[75]
68	ITGA3	NS	NS	[76]
69	ITGAS	0.018	0.011	[77]
70	ITGBL1	NS	NS	[78]
71	KISS1R	NS	NS	[79]
72	KLFB	NS	NS	[80]
73	L1CAM	0.007	NS	[81]
74	LAMB3	0.001	NS	[82]
75	LEF1	0.007	NS	[83]
76	LGALS1	<0.001	0.048	[84]
77	LGALS3	NS	NS	[85]
78	LOX	NS	0.047	[86]
79	LOXL2	0.033	NS	[87]
80	MBD4	NS	NS	[88]
81	MCA3	NS	NS	[89]
82	MET	NS	NS	[90]
83	MMP1	0.030	0.002	[91]
84	MMP16	NS	NS	[92]
85	MMP9	0.001	0.009	[93]
86	MTA1	0.015	NS	[94]
87	MTA2	0.001	NS	[95]
88	MYB	0.031	0.021	[96]
89	NFATC2	NS	NS	[97]
90	NRP2	NS	NS	[98]
91	NTRK3	NS	0.044	[99]
92	PARP1	NS	NS	[100]
93	PCDH7	NS	NS	[101]
94	PDGFRB	NS	NS	[102]
95	PDLN	0.034	NS	[103]
96	PELP1	0.011	NS	[104]
97	PHGDH	NS	NS	[105]
98	PHP	NS	NS	[106]
99	PLAUR	<0.001	NS	[107]
100	PLOC2	0.004	0.008	[108]
101	POSTN	NS	NS	[109]
prognosis in any patient cohort. Finally, 150 genes passed the tests and are listed in Table 1. Among them, 79 genes have significant prognostic values in the ccRCC patient cohort, 35 genes have significant prognostic values in the HCC cohort, and 23 genes have significant prognostic values in both cohorts.

Although different tumor types are believed to rely on different molecular mechanisms for metastasis, 23 common pro-metastatic genes have been identified in our analyses, associating with poor prognosis in both cancer types. Among them, we are most interested in 11 genes that are not only statistically significant in terms of prognostic impact but also associated with distinct overall survival curves in both cohorts, suggesting the genes’ profound biological impacts on tumor progression. For the other 12 genes, although their biological

Fig. 2 The survival curves of two cohorts of cancer patients comparing the miRNA expression levels of 11 genes. The data were retrieved from The Cancer Genome Atlas (TCGA) database. The survival curves were plotted using the Kaplan–Meier method and compared using the log-rank test. Consistently, among all 11 genes presented in this figure, elevated gene expression levels significantly associate with shorter overall patient survival ($P < 0.05$) in both tumor types. ccRCC clear cell renal cell carcinoma, HCC hepatocellular carcinoma
impact on tumor progression were found to be significant in log-rank tests in both cohorts, the survival curves of high versus low expression groups crossed at some time points. The 11 most interesting genes are BIRC5 (Survivin), CXCL1, CXCL8 (IL8), E2F1, ETV4, EZH2, MMP1, MMP9, MYB, PTG1, and YBX1. Figure 2 shows the survival curves of patients with either ccRCC or HCC expressing these 11 genes. Our findings suggest that different tumor types may partially share some common metastatic mechanisms, therefore strengthening the rationale of applying the list of 150 pro-metastatic genes to big data analyses. Interestingly, 4 of these 11 genes encode secreted proteins, namely, CXCL1, CXCL8, MMP1, and MMP9, which are ideal pharmaceutical targets for blocking cancer metastasis.

Although not covered in this review article, emerging data regarding the regulatory roles of non-coding RNA in metastasis have linked different pro-metastatic genes to forming signaling cascades [7–9]. Further investigation into the roles of non-coding RNA in metastasis is warranted.

Conclusions

In summary, we present here a collection of 150 important pro-metastatic genes for big data analyses. We expect more key molecules to be identified and validated in the near future to be included in the list, thereby accelerating the efforts in preventing and treating cancer metastasis.

Authors’ contributions

Study conception and design: CNQ; acquisition of data: YM and JPY; analysis and interpretation of data: YM and CNQ; drafting of manuscript: YM and CNQ. All authors read and approved the final manuscript.

Author details
1 State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510600, Guangdong, P. R. China. 2 Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510600, Guangdong, P. R. China.

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (No. 81272340, No. 81472386, No. 81672872), the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A501), the Science and Technology Planning Project of Guangdong Province, China (No. 2014B020210207, No. 2014B050500404 and No. 2015B050501005), and the Natural Science Foundation of Guangdong Province, China (No. 2016A030311011).

Competing interests

The authors declare that they have no competing interests.

Received: 19 October 2016 Accepted: 3 November 2016 Published online: 21 January 2017

References

1. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16(4):201–18.
2. Li W, Shen L, Chen T, Sun XQ, Zhang Y, Wu M, et al. Overweight/obese status associates with favorable outcome in patients with metastatic nasopharyngeal carcinoma: a 10-year retrospective study. Chin J Cancer. 2016;35(1):75.
3. Pawelek JM. Fusion of bone marrow-derived cells with cancer cells: metastasis as a secondary disease in cancer. Chin J Cancer. 2014;33(3):133–9.
4. Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity. Curr Top Dev Biol. 2015;122:273–300.
5. Seton-Rogers S. Epithelial-mesenchymal transition: untangling EMT’s functions. Nat Rev Cancer. 2016;16(1):1.
6. Ding T, Xu J, Zhang Y, Guo RP, Wu WC, Zhang SD, et al. Endothelium-coated tumor clusters are associated with poor prognosis and micrometastasis of hepatocellular carcinoma after resection. Cancer. 2011;117(21):4878–89.
7. Jiang C, Li X, Zhao H, Liu H. Long non-coding RNAs: potential new biomarkers for predicting tumor invasion and metastasis. Mol Cancer. 2016;15(1):62.
8. Sun R, Qin C, Jiang B, Fang S, Pan X, Peng L, et al. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial-mesenchymal transition. Mol Biol Syr. 2016;12(3):952–62.
9. Sun Y, Guo F, Bagnoli M, Xue FX, Sun BC, Shmulevich I, et al. Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer. Chin J Cancer. 2015;34(1):28–40.
10. Lin CY, Chen HJ, Huang CC, Lai IJ, Lu TP, Tseng GC, et al. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-dependent pathway. Cancer Res. 2014;74(18):5229–43.
11. Mittal D, Sinha D, Barkauskas D, Young A, Kalmuth M, Stannard K, et al. Adenosine 2B receptor expression on cancer cells promotes metastasis. Cancer Res. 2016;76(15):4372–82.
12. Dumartin L, Whiteman HJ, Weeks ME, Hanraran D, Dmitrovic B, lacobuzio-Donahue CA, et al. A novel surface antigen that promotes the dissemination of pancreatic cancer cells through regulation of cathepsins B and D. Cancer Res. 2011;71(22):7091–102.
13. Cho JH, Robinson JP, Arave RA, Burnett WJ, Kircher DA, Chen G, et al. AKT1 activation promotes development of melanoma metastases. Cell Rep. 2015;13(5):898–905.
14. de Graauw M, van Miltenburg MH, Schmidt MK, Pont C, Lalai R, Kartopawiro J, et al. Annexin A1 regulates TGF-beta signaling and promotes metastasis formation of basal-like breast cancer cells. Proc Natl Acad USA. 2010;107(14):6340–5.
15. Ding Q, Chang CJ, Xie X, Xia W, Yang JY, Wang SC, et al. APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. J Clin Investig. 2011;121(11):4526–36.
16. Dey S, Sayers CM, Verginis I, Lehman SL, Cheng Y, Cerniglia GJ, et al. ATF4-dependent induction of heme oxygenase 1 prevents anoxia and promotes metastasis. J Clin Investig. 2015;125(7):2592–608.
17. Rankin EB, Fuh KC, Castellini L, Viswanathan K, Finger EC, Diep AN, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA. 2014;111(37):13373–8.
18. Yun J, Frankenberger CA, Kuo WL, Boelens MC, Eves EM, Chen N, et al. Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J. 2011;30(21):4500–14.
19. Choi S, Chen Z, Tang LH, Fang Y, Shin SJ, Panarelli NC, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384.
20. Wakefield A, Soukupova J, Montagne A, Ranger J, French R, Muller WJ, et al. Bcl-xL selectively promotes metastasis of ERBB2-driven mammary tumors. Cancer Res. 2013;73(2):745–55.
21. McKenzie JA, Liu T, Jung JT, Jones BB, Ekiz HA, Welm AL, et al. Survivin promotes melanoma metastases by upregulation of alpha5 integrin. Carcinogenesis. 2013;34(9):2137–44.
22. Kong LM, Liao CG, Zhang Y, Xu J, Li Y, Huang W, et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res. 2014;74(14):3764–78.
23. Vaidirev SK, Chintala NK, Sharma SK, Sharma P, Cleveland C, Rediger L, et al. Complement C5a receptor facilitates cancer metastasis by altering T-cell responses in the metastatic niche. Cancer Res. 2014;74(13):3454–65.
24. Thomas S, Overdevest JB, Nitz MD, Williams PD, Owens CR, Sanchez-Carbaryo M, et al. Src and caveolin-1 reciprocally regulate metastasis via a common downstream signaling pathway in bladder cancer. Cancer Res. 2011;71(3):832–41.

25. Bonapace L, Colleuex MM, Wyckoff J, Mertz KD, Varga Z, Junt T, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014;515(7525):130–3.

26. Yu S, Duan J, Zhou Z, Pang Q, Wuyang J, Liu T, et al. A critical role of CCR7 in invasiveness and metastasis of SW620 colon cancer cell in vitro and in vivo. Cancer Biol Ther. 2008;7(7):1037–43.

27. Overdevest JB, Knubel KH, Duex JE, Thomas S, Nitz MD, Harding MA, et al. CD24 expression is important in male urothelial tumorigenesis and metastasis in mice and is androgen regulated. Proc Natl Acad Sci USA. 2012;109(51):E3886–96.

28. Su J, Wu S, Wu H, Li L, Guo T. CD44 is functionally crucial for driving lung cancer stem cells metastasis through Wnt/beta-catenin-Foxn1-Twist signaling. Mol Cancer. 2015;12(1):1962–73.

29. Liu H, Ong SE, Badu-Akansah K, Schindler J, White FM, Hynes RD. CUB-domain-containing protein 1 (CDCCP1) activates Src to promote melanoma metastasis. Proc Natl Acad Sci USA. 2011;108(4):1379–84.

30. Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM8 (Carcinomembranoy antigen). Cancer Res. 2005;65(19):9880–9.

31. Balamurugan K, Wang JM, Tsai HH, Sharan S, Anver M, Leighty R, et al. CHD1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with processes in human patients. J Clin Investig. 2010;120(4):1178–91.

32. Lin SC, Kao CY, Lee HJ, Creighton CJ, Ittmann MM, Tsai SJ, et al. Dysregulation of miR199-2-1/FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nat Commun. 2016;7:11418.

33. Chen L, Chan TH, Yuan YF, Hu L, Huang J, Ma S, et al. CDH1L promotes hepatocellular carcinoma progression and metastasis in mice and is associated with these processes in human patients. J Clin Investig. 2010;120(4):1178–91.

34. Ma B, Herzog EL, Lee CG, Peng X, Lee CM, Chen X, et al. Role of chitinase 3-like-1 and semaphorin 7a in pulmonary melanoma metastasis. Cell Res. 2012;22(9):1339–55.

35. Blanco MA, LeRoy G, Khan Z, Aleckovic M, Zee BM, Garcia BA, et al. Noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cancer Res. 2016;75(3):487–96.

36. Gujral TS, Chan M, Peshkin L, Sorger PK, Kirschner MW, MacBeath G. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci USA. 2013;110(13):E3056–51.

37. Du YC, Chou CK, Klimstra DS, Varmus H. Receptor for hyaluronan-mediated motility islet 1 (HMGB1) promotes osteolytic bone metastasis by enhancing cancer outgrowth and osteoclastogenesis. Cancer Res. 2011;71(20):6444–54.

38. Li C, Wang J, Kong J, Tang J, Wu Y, Xu E, et al. GDF15 promotes EMT and metastasis of prostate cancer. Proc Natl Acad Sci USA. 2011;108(40):16830–5.

39. Ni P, Zhang Y, Liu Y, Lin X, Su X, Lu H, et al. HMGB1 silence could promote breast cancer metastasis. Cancer Res. 2016;76(9):2675–86.

40. Liu Y, Amin EB, Mayo MW, Chudgar NP, Bucciarelli PR, Kadota K, et al. Synergistic antitumor effects of combined cathepsin B and cathepsin Z inhibition in a breast cancer model. Cancer Biol Ther. 2008;7(7):1037–43.

41. Lin TC, Liu YP, Chan YC, Su CY, Lin YF, Hsu SL, et al. Ghrelin promotes breast cancer metastasis by targeting BRMS1 nuclear export and degradation. Cancer Res. 2016;76(9):2675–86.

42. Ni P, Zhang Y, Liu Y, Lin X, Su X, Lu H, et al. HMGB1 silence could promote breast cancer metastasis. Cancer Res. 2016;76(9):2675–86.

43. Aytes A, Mitrofanova A, Kinkade CW, Lefebvre C, Lei M, Phelan V, et al. ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer. Proc Natl Acad Sci USA. 2013;110(37):E3056–51.

44. Tong ZT, Cai MY, Wang XG, Kong LL, Mai SJ, Liu YH, et al. EZH2 promotes histone H3 Lys27 trimethylation in breast cancer cells: a potential therapeutic target. Breast Cancer Res. 2016;18(5):474–6.

45. Fujimura K, Choi S, Wyse M, Strnad J, Wright T, Klemke R. Eukaryotic translation initiation factor 5A (eIF5A) regulates pancreatic cancer metastasis by modulating RhoA and Rho-associated kinase (ROCK) protein expression levels. J Biol Chem. 2015;290(50):29907–19.

46. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al. CXCL10 promotes prostate cancer metastasis. Cell. 2012;150(1):165–78.

47. Santiago-Medina M, Yang J. MENA promotes tumor-intrinsic metastasis through ECM remodeling and haptotaxis. Cancer Discov. 2016;6(5):474–6.

48. Leblanc R, Lee SC, David M, Bordet JC, Norman DD, Patil R, et al. Interaction of CCL2 inhibition with CXCL1 paracrine network links cancer chemoresistance and metastasis. Mol Cancer Res. 2015;13(12):e1002330.

49. Santiago-Medina M, Yang J. MENA promotes tumor-intrinsic metastasis through ECM remodeling and haptotaxis. Cancer Discov. 2016;6(5):474–6.

50. Rennhack J, Andrechek E. Conserved E2F mediated metastasis in mouse models of breast cancer and HER2 positive patients. Oncoconnexion. 2015;2(10):867–71.
66. Kim YR, Kim UI, Kang TW, Choi C, Kim KK, Kim MS, et al. HOXB13 downregulates intracellular zinc and increases NF-kappaB signaling to promote prostate cancer metastasis. Oncogene. 2014;33(37):4558–67.

67. Liu S, Jin K, Hui Y, Fu J, Jie C, Feng S, et al. HOXB7 promotes malignant progression by activating the TGFbeta signaling pathway. Cancer Res. 2015;75(4):709–19.

68. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62.

69. Gumireddy K, Li A, Kossenkov AV, Cai KQ, Liu Q, Yan J, et al. ID1 promotes breast cancer metastasis by S100A9 regulation. Mol Cancer Res. 2015;13(8):1334–43.

70. Smith C, Chang MY, Parker KH, Beury DW, DuHadaway JB, Flick HE, Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua YX, et al. IGFBP2 activates the NF-kappaB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res. 2016;76(2):6543–54.

71. Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua YX, et al. IGFBP2 activates the NF-kappaB pathway to drive epithelial-mesenchymal transition and invasive character in pancreatic ductal adenocarcinoma. Cancer Res. 2016;76(2):6543–54.

72. Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng WL, Tseng YH, et al. Interleukin-32 increases human gastric cancer cell invasion associated with tumor progression and metastasis. Clin Cancer Res. 2014;20(9):2276–88.

73. Zaynagtdinov R, Sherrill TP, Gleaves LA, McLoid AC, Saxon JA, Haberman AC, et al. Interleukin-5 facilitates lung metastasis by modulating the immune microenvironment. Cancer Res. 2015;75(8):1642–34.

74. Oh K, Moon HG, Lee DS, Yoo YB. Tissue transglutaminase-interleukin-6 axis facilitates peritoneal tumor spreading and metastasis of human ovarian cancer cells. Lab Anim Res. 2015;31(4):188–97.

75. Rao F, Xu J, Fu C, Cha JY, Gadalla MM, Xu R, et al. iNositrol pyrophosphates promote tumor growth and metastasis by antagonizing liver kinase B1. Proc Natl Acad Sci USA. 2015;112(6):1773–8.

76. Zhou B, Gibson-Corley KN, Herndon ME, Sun Y, Gustafson-Wagner E, Teoh-Fitzgerald M, et al. Integrin alpha3beta1 can function to promote spontaneous pulmonary metastasis and lung colonization of invasive breast carcinoma. Mol Cancer. 2014;12(1):143–54.

77. Valastyan S, Chang A, Benach N, Reinhardt F, Weinberg RA. Concurrent suppression of integrin alpha5, radixin, and RhoA phenocopies the effects of mir-31 on metastasis. Cancer Res. 2010;70(12):5147–54.

78. Li XQ, Du X, Li DM, Kong PZ, Sun Y, Liu PF, et al. ITGBL1 is a Runx2 transcriptional target and promotes breast cancer bone metastasis by activating the TGFbeta signaling pathway. Cancer Res. 2015;75(16):3302–13.

79. Cho SG, Wang Y, Rodriguez M, Tan K, Zhang W, Luo J, et al. Haploinsufficiency in the prometastasis Kiss1 receptor Gpr54 delays breast cancer progression. Cell. 2009;138(1):51–62.

80. Lu H, Hu K, Yu L, Wang X, Urvek AM, Li T, et al. KLFR8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene. 2014;33(22):2909–17.

81. Weinspach D, Seubert B, Schaten S, Honert K, Siebens S, Altevogt P, et al. Role of L1 cell adhesion molecule (L1CAM) in the metastatic cascade: promotion of dissemination, colonization, and metastatic growth. Clin Exp Metastasis. 2014;31(11):87–100.

82. Wang XM, Li J, Kong SC, Chang MY, Liao X, et al. Plecstrin homology domain-interacting protein (PHIP) as a marker and mediator of melanoma metastasis. Proc Natl Acad Sci USA. 2014;111(32):E7182–81.

83. Choi EB, Yang AT, Kim SC, Lee J, Choi JK, Choi C, et al. PARP1 enhances lung adenocarcinoma metastasis by novel mechanisms independent of DNArepair. Oncogene. 2016;35(35):4569–79.

84. Chen Q, Boire A, Jin X, Valiente M, Er EE, Lopez-Soto A, et al. Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533(7604):493–8.

85. Weissmueller S, Manchado E, Saborowski M, Morris JR, Wagenblast E, Davis CA, et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell. 2014;157(2):382–94.

86. Cueni LN, Hegyi I, Shin JW, Albinger-Hegyi A, Gruber S, Kunstfeld R, et al. Integrin alpha3beta1 can function to promote spontaneous pulmonary metastasis and lung colonization of invasive breast carcinoma. Mol Cancer. 2014;12(1):143–54.

87. Weissmueller S, Manchado E, Saborowski M, Morris JR, Wagenblast E, Davis CA, et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell. 2014;157(2):382–94.
108. Zhang M, Dai C, Zhu H, Chen S, Wu Y, Li Q, et al. Cyclophilin A promotes human hepatocellular carcinoma cell metastasis via regulation of MMP3 and MMP9. Mol Cell Biochem. 2011;357(1–2):387–95.

109. Takano S, Reichert M, Bakir S, Das KK, Nishida T, Miyazaki M, et al. Prrx1 isoform switching regulates pancreatic cancer invasion and metastatic colonization. Genes Dev. 2016;30(2):233–47.

110. Song ZB, Ni J, Wu P, Bao YL, Liu T, Li M, et al. Testes-specific protease 50 promotes cell invasion and metastasis by increasing NF-kappaB-dependent matrix metalloproteinase-9 expression. Cell Death Dis. 2015;6:e1703.

111. Luo YC, Ruan JW, Lua I, Mi MH, Chen WL, Wang JR, et al. Overexpression of HPTT1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling. Oncogene. 2012;31(25):3086–97.

112. Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, et al. Overexpression of paxillin induced by Mr-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis. 2013;34(4):803–11.

113. Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2014;111(31):E3234–42.

114. Teng Y, Qin H, Bahassan A, Bendzurka NG, Kennedy EJ, Cowell JK. The WAF3-NCKAP1-CYFIP1 complex is essential for breast cancer metastasis. Cancer Res. 2016;76(17):5133–42.

115. O’Connell MR, Forii JL, Xu M, Carter AD, Frank BP, Camilli TC, et al. The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene. 2010;29(1):34–44.

116. Mora N, Rosales R, Rosales C. R-Ras promotes metastasis of cervical cancer epithelial cells. Cancer Immunol Immunother. 2007;56(4):535–44.

117. Whittle MC, Izedenade K, Rani PG, Feng L, Carlson MA, DeliGiorno KE, et al. RUNX3 controls a metastatic switch in pancreatic ductal adenocarcinoma. Cell. 2015;161(6):1345–60.

118. Dahlmann M, Kobelt D, Walther W, Mudduluru G, Stein S. S100A4 in cancer metastasis: Wnt-signaling-driven interventions for metastasis restriction. Cancers (Basel). 2016;8(6):56.

119. Jiang L, Lai YK, Zhang J, Wang H, Lin MC, He ML, et al. Targeting S100P inhibits prostate cancer metastasis. Mol Cell Biochem. 2011;357(1–2):387–95.

120. Luchino J, Hocine M, Amoureux MC, Gibert B, Bernet A, Royet A, et al. Homeoprotein Six2 promotes breast cancer metastasis via transcription and proteomic analysis. Mol Med. 2011;17(7–8):709–16.

121. Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A, Kugel CH 3rd, et al. KLF4 promotes cell invasion and metastasis by increasing NF-kappaB-dependent matrix metalloproteinase-9 expression. Cell Death Dis. 2015;6:e1703.

122. Chen Y, Wang X, Huang Y, Chen Y, Zhao G, Yao Q, et al. Down-regulated SRPK1 as breast cancer metastasis determinant. J Clin Investig. 2015;125(4):1648–64.

123. Terzolola M, Jernigan DL, Liu Q, Siddiqui J, Fatatis A, Languino LR. Trop-2 promotes prostate cancer metastasis by modulating beta(1) integrin functions. Cancer Res. 2013;73(10):3155–67.

124. D’Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane SR, Spoelstra NS, et al. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 2015;75(21):4651–64.

125. Bourry M, Suarez-Carmona M, Lambert J, Francant ME, Schroder H, Delinieux C, et al. Tissue factor induced by epithelial-mesenchymal transition triggers a procoagulant state that drives metastasis of circulating tumor cells. Cancer Res. 2016;76(14):4270–82.

126. Ma C, Rong Y, Radloff DR, Datto MB, Centeno B, Bao S, et al. Extracellular matrix protein beta3/TGFβ1 promotes metastasis of colon cancer by enhancing cell extravasation. Genes Dev. 2008;22(3):308–21.

127. Chen J, Chen Z, Chen M, Li D, QI, Z. Xiong Y, et al. Role of fibrillar Tenasin-C in metastatic pancreatic cancer. Int J Oncol. 2009;34(10):1029–36.

128. Trauzold A, Siegmund D, Schniewind B, Sipos B, Egberts J, Zorenkov D, et al. TRAIL promotes metastasis of human pancreatic ductal adenocarcinoma. Oncogene. 2006;25(56):7434–9.

129. Xu SH, Huang JZ, Xu ML, Yu G, Yin XF, Chen D, et al. AKCI promotes gastric cancer epithelial-mesenchymal transition and metastasis through AKT-POU2F1-EC5 signaling. J Pathol. 2015;236(1):175–85.

130. Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Furst K, et al. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGFR1/AKT/STAT3 signaling. Cancer Cell. 2013;24(4):512–27.

131. Wu Z, Wei D, Gao W, Yu X, Hu Z, Ma Z, et al. TPO-Induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating cells. Cell Stem Cell. 2015;17(1):47–59.

132. Addison JB, Koontz C, Fugget JH, Crgieghton CJ, Chen D, Farrugia MK, et al. KAP1 promotes proliferation and metastatic progression of breast cancer cells. Cancer Res. 2015;75(2):344–55.

133. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927–39.

134. Wu X, Zhang W, Font-Burgada J, Palmer T, Hamil AS, Biswas SK, et al. Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-gp38 MAP kinase cascade. Proc Natl Acad Sci USA. 2014;111(13):E13870–5.

135. Raziollo GL, Magnine C, Sletten AC, Hurley RM, Almada LL, Fernandez-Zapico ME, et al. Targeting pancreatic cancer metastasis by inhibition of Vav1, a driver of tumor cell invasion. Cancer Res. 2015;75(14):2907–15.

136. Yang X, Zhang Y, Hosaka K, Andersson P, Wang L, Tholander F, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a maker of poor prognosis for cancer patients. Proc Natl Acad Sci USA. 2015;112(22):E2900–9.

137. Zelenko Z, Gallagher EJ, Tobin-Hess A, Belardi V, Rostoker R, Blank J, et al. Silencing vimentin expression decreases pulmonary metastases in a pre-diabetic mouse model of monomyeloid tumor progression. Oncogene. 2016. doi:10.1038/onc.2016.305.

138. Yang Y, Ren MQ, Cheney R, Sharma S, Cowell JK. Inactivation of the WAF3 gene in prostate cancer cells leads to suppression of tumorigenicity and metastases. Br J Cancer. 2010;103(7):1066–75.

139. Qin L, Yin YT, Zheng FJ, Peng LX, Yang CF, Bao YN, et al. WNT5A promotes stemness characteristics in nasopharyngeal carcinoma cells leading to metastasis and tumorigenesis. Oncotarget. 2015;6(12):10239–52.
150. Cao J, Wang Y, Dong R, Lin G, Zhang N, Wang J, et al. Hypoxia-Induced WSB1 promotes the metastatic potential of osteosarcoma cells. Cancer Res. 2015;75(22):4839–51.

151. El-Naggar AM, Veinotte CJ, Cheng H, Grunewald TG, Negri GL, Somasekharan SP, et al. Translational activation of HIF-1alpha by YB-1 promotes sarcoma metastasis. Cancer Cell. 2015;27(5):682–97.

152. Si W, Huang W, Zheng Y, Yang Y, Liu X, Shan L, et al. Dysfunction of the reciprocal feedback loop between GATA3- and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell. 2015;27(6):822–36.