MARS: Mutation-Adjusted Risk Score for Advanced Systemic Mastocytosis

Mohamad Jawhar¹, Juliana Schwaab¹, Iván Álvarez-Twose²,³, Khalid Shoumariyeh⁴, Nicole Naumann¹, Johannes Lübke¹, Cecelia Perkins⁵, Javier I Muñoz-González²,⁶, Manja Meggendorfer⁷, Vanessa Kennedy³, Georgia Metzgeroth¹, Alice Fabarius¹, Dietmar Pfeifer⁴, Karl Sotlar⁸, Hans-Peter Horny⁹, Nikolas von Bubnoff⁸, Torsten Haferlach⁷, Nicholas C.P. Cross¹⁰,¹¹, Wolf-Karsten Hofmann¹, Wolfgang R. Sperr¹², Andrés C García-Montero²,⁶, Peter Valent¹², Jason Gotlib⁵, Alberto Orfao²,⁶, Andreas Reiter¹

¹ Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg, Germany
² Spanish Network on Mastocytosis (REMA), Toledo and Salamanca, Spain
³ Instituto de Estudios de Mastocitosis de Castilla La Mancha (CLMast) and CIBERONC, Virgen del Valle Hospital, Toledo, Spain
⁴ Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
⁵ Division of Hematology, Department of Medicine, Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
⁶ Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), CIBERONC, University of Salamanca, Salamanca, Spain; Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
⁷ MLL, Munich Leukemia Laboratory, Munich, Germany
⁸ Institute of Pathology, PMU Medical University of Salzburg, Salzburg, Austria
⁹ Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
¹⁰ Wessex Regional Genetics Laboratory, Salisbury, U.K.
¹¹ Faculty of Medicine, University of Southampton, U.K.
¹² Department of Internal Medicine I, Division of Hematology and Hemostaseology, and Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria

Corresponding author:
Mohamad Jawhar, MD
University Hospital Mannheim, Heidelberg University
Theodor-Kutzer-Ufer 1-3
68167 Mannheim, Germany
Tel. +49 621 383-4128
Fax +49 621 383-734128
E-Mail mohamad.jawhar@medma.uni-heidelberg.de

Running title: Mutation-Adjusted Risk Score for Advanced Systemic Mastocytosis

Word count abstract: 271/275
Word count text: 3369
Figure count: 2
Table count: 4
Reference count: 25
ABSTRACT

Purpose
To develop a risk score for advanced systemic mastocytosis (AdvSM) patients that integrates clinical and mutation characteristics.

Patients and Methods
The study included 383 AdvSM patients from the ‘German Registry on Disorders of Eosinophils and Mast Cells’ (training set, n = 231) and several centers for mastocytosis in the USA and Europe - all within the European Competence Network on Mastocytosis (ECNM) (validation set, n = 152). A Cox multivariable model was used to select variables that were predictive of overall survival (OS).

Results
In multivariable analysis, the following risk factors were identified regarding OS: age > 60 years, anemia (hemoglobin < 10 g/dL), thrombocytopenia (platelets < 100 x 10^9/L), presence of one high molecular risk gene mutation (ie, in SRSF2, ASXL1, and/or RUNX1), and of ≥ 2 high molecular risk gene mutations. By assigning hazard ratio (HR)-weighted points to these variables, three risk categories were defined: low-risk (median OS not reached), intermediate-risk (median OS 3.9 years, 95% CI 2.1 to 5.7 years), and high-risk (median OS 1.9 years, 95% CI 1.3 to 2.6 years) (P < .0001). The mutation-adjusted risk score (MARS) was independent of the World Health Organization (WHO) classification and was confirmed in the independent validation set. During a median follow-up of 2.2 years (range 0-23), 63/383 (16%) patients had a leukemic transformation to secondary mast cell leukemia (32%) or secondary acute myeloid leukemia (68%). The MARS was also predictive for leukemia-free survival (P < .0001).

Conclusion
The MARS is a validated five-parameter WHO independent prognostic score that defines three risk groups among patients with AdvSM and may improve upfront treatment stratification for these rare hematologic neoplasms.
INTRODUCTION

Systemic mastocytosis (SM) is characterized by expansion of clonal mast cells that infiltrate various organ systems. The extent of organ infiltration and subsequent organ damage serve as a basis for the World Health Organization (WHO) classification into indolent SM (ISM) and advanced SM (AdvSM). AdvSM compromises patients with SM and an associated hematologic neoplasm (SM-AHN), aggressive SM (ASM), and mast cell leukemia (MCL).1-4

SM-AHN (70-80\% of all AdvSM patients) is the most heterogeneous and clinically challenging subtype. The AHN usually resembles a myeloid neoplasm, e.g. chronic myelomonocytic leukemia (CMML), myelodysplastic/myeloproliferative neoplasm unclassifiable (MDS/MPN-U), chronic eosinophilic leukemia (CEL) or MDS. In the vast majority of the patients, the phenotypically most important somatic mutation - KIT D816V - is detectable in the clonal mast cell compartment as well as in cells derived from the AHN.5,6

The WHO classification is most widely used for prognostication and has been validated in multiple studies. In contrast to ISM, AdvSM has a poor prognosis.7 The overall survival (OS) of AdvSM patients ranges from few months to several years with a median OS of approximately 4 years.8,9

A number of clinical, serological, cytomorphological, immunological and molecular parameters have been reported to be of (WHO independent) prognostic significance in patients with AdvSM.10,11 Recent data, however, have highlighted that the molecular landscape of AdvSM is complex with at least one additional somatic mutation (e.g., in $ASXL1$, CBL, $JAK2$, $RUNX1$, $SRSF2$, or $TET2$) being present in >60\% of AdvSM patients.12,13 In more recent studies, several groups examined the prognostic impact of these mutations. The presence and number of additional molecular aberrations, notably in $SRSF2$, $ASXL$, and/or $RUNX1$ (S/A/R), have a strong adverse influence on progression (leukemic transformation) to secondary MCL and/or secondary AML, response to treatment and OS.8-10
To date, the independent prognostic value of most variables and proposed risk scores have been derived from relatively small sets of patients, and they have not been confirmed or validated. In this study, we evaluated a large cohort of clinically, morphologically, and genetically well characterized AdvSM patients who were enrolled within the ‘German Registry on Disorders of Eosinophils and Mast Cells’ with the aim to establish a risk score integrating both clinical and molecular characteristics. The proposed clinical risk score (CRS) and mutation-adjusted risk score (MARS) were subsequently validated in an independent cohort of AdvSM patients derived from several centers within the European Competence Network on Mastocytosis (ECNM).
PATIENTS AND METHODS

Patients

A total of 383 AdvSM patients were included. For the training set, 231 AdvSM patients were recruited within the ‘German Registry on Disorders of Eosinophils and Mast Cells’ between 2003 and 2018, with a final update performed in November 2018. The diagnosis of AdvSM (SM-AHN, ASM, and MCL) was established according to the WHO classification.1,4 For the training set, bone marrow (BM) biopsies and BM smears were evaluated by reference pathologists of the ECNM (H-PH and KS). The study design adhered to the tenets of the Declaration of Helsinki and was approved by the institutional review board of the Medical Faculty of Mannheim, Heidelberg University. All patients gave written informed consent.

The validation set included 152 patients derived from multiple centers of excellence for mastocytosis in the USA (Stanford, California, USA) and Europe (Spanish Network on Mastocytosis [REMA], Toledo and Salamanca, Spain; Vienna, Austria; Freiburg, Germany - all members of the ECNM).

Mutational and Cytogenetic Analyses

Molecular analyses were performed at diagnosis of AdvSM (prospectively or retrospectively). Targeted Next-Generation Sequencing (NGS) was either performed by 454 FLX amplicon chemistry (Roche, Penzberg, Germany) or library preparation based on the TruSeq Custom Amplicon Low Input protocol (Illumina, San Diego, CA) and sequencing on the MiSeq instrument (Illumina, San Diego, CA) to investigate mutation status of KIT and the following 32 genes: ASXL1, BCOR, CALR, CBL, CSNK1A1, DNMT3A, ETNK1, ETV6, EZH2, FLT3, GATA1, GATA2, IDHI, IDH2, JAK2, KRAS, MLL, MPL, NPM1, NRAS, PHF6, PIGA, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, ZRSR2, WT1.12 Subsequent to bcl2fastq and demultiplexing, alignment and variant calling were performed using JSI
SeqNext v4.4.0 (JSI Medical Systems, Kippenheim, Germany) software with default parameters. Only base calls with quality score > 30 were considered for further processing. A median of ~1800 reads were aligned to the target region. All regions below the minimal coverage of 400 reads were rejected and resequenced for higher depth. Variants were called with a variant allele frequency (VAF) cutoff of 3% and each assessed manually for pathogenicity. Mutation assessment was performed using COSMIC (v78), dbSNP (v150), ClinVar (2018-07), gnomAD (r2.0.2 and dbNSFP v3.5). Cytogenetic analysis and reporting were performed according to the International System for Human Cytogenetic Nomenclature criteria using standardized techniques.

Statistical Analyses

All statistical analyses considered clinical and laboratory parameters obtained at time of diagnosis or first referral to our center that in most instances coincided with time of BM biopsy and study sample collection. OS analysis was considered from the date of diagnosis to date of death or last visit. Leukemia-free survival (LFS) was considered from the date of diagnosis to date of death, last visit or progression (leukemic transformation) to secondary MCL or secondary SM-AML. As the MARS reflected the highest C-index, LFS analyses was examined for this score, only. OS probabilities and LFS were estimated with the Kaplan-Meier method and compared by the log-rank test in univariate analysis. For OS, a Cox proportional hazards model with a stepwise selection procedure was used to select covariates, based on their statistical significance (P <.05). Significant covariates were confirmed by forward-selection and backward-elimination techniques. Based on of the magnitude of the hazard ratios (HRs) obtained from multivariable analysis, a weighted score was assigned to each significant variable for OS in the learning set. Bonferroni adjustments were made to univariate analysis with no changes the multivariable models. The Wilcoxon-Mann-Whitney
U test was used to compare continuous variables and medians of distributions. Receiver operating characteristic (ROC) curve was used to dichotomize continuous variables to define optimal cut-off value for each variable used in univariate analyses. Harrell’s concordance index (C-index, on the basis of ROC) was used to evaluate the ability of the risk scores to predict outcome (C-index measures the goodness-of-fit of a model, with 0.5 indicating no discrimination and 1.0 indicating perfect prediction). For categorical variables, two patient groups were compared with the Fisher’s exact test. All tests were two-sided, retaining $P < .05$ as statistically significant.
RESULTS

Characteristics

The characteristics of the training set patients (n = 231) are listed in Table 1. The median age was 69 years with a male predominance (68%). The WHO diagnosis was ASM (n = 30, 13%), SM-AHN (n = 181, 78%), and MCL (± AHN) (n = 20, 9%), respectively. The four most common AHN subtypes were CMML, MDS/MPN-U, CEL, and MDS. The median leukocyte counts, hemoglobin level, and platelet counts were 8.3 x 10^9/L, 10.3 g/dL and 115 x 10^9/L, respectively, and the median serum tryptase level was 168 µg/L (normal value < 11.4). Treatment modalities included midostaurin, cladribine, and sequential midostaurin/cladribine or cladribine/midostaurin in 111 (48%) patients. During a median follow-up of 2.2 years (range 0-23), 118 (51%) patients died. Transformation to secondary MCL (43%) or secondary AML (57%) was observed in 35 (15%) patients (Table 1).

No significant differences were seen between the training and validation (n = 152) sets regarding e.g. gender, hemoglobin, platelets, alkaline phosphatase, leukemic transformation, median follow-up, and number of deaths, respectively (Table 1). Patients in the training set were significantly older (median 69 versus 65 years), ASM was less frequent (13% versus 30%) and SM-AHN was more frequent (78% versus 63%). More patients in the training set were treated with midostaurin or sequential midostaurin/cladribine or cladribine/midostaurin treatment regimens.

Importantly, the median OS and LFS were not significantly different between the training and the validation sets (OS, 3.8 and 4.4 years; LFS 3.3 and 3.5 years; P = .8 and P = .9, respectively; supplementary Figure 1A). In addition, no differences were seen regarding OS within the four most common AHN’s (supplementary Figure 3A-B) and between KIT positive and KIT negative patients (supplementary Table 2).
Gene Mutations

In the training set, the KIT mutation status was as follows: KIT D816V (n = 214, 93%), other KIT mutations (n = 6, 2%), KIT mutation negative (n = 11, 5%). The status of additional mutations was assessed in 190/231 (82%) patients. At least one additional mutation was observed in 82% of all patients. The most frequently affected genes (in ≥ 5% of patients) were TET2 (n = 79, 42%), SRSF2 (n = 75, 39%), ASXL1 (n = 42, 22%), RUNXI (n = 34, 18%), JAK2 (n = 23, 12%), N/KRAS (n = 17, 9%), CBL (n = 17, 9%), IDH1/2 (n = 9, 5%), SF3B1 (n = 9, 5%), and EZH2 (n = 9, 5%). The presence of at least 1 and of ≥ 2 S/A/R mutation(s) was documented in 105 (55%) patients and 43 (23%) patient, respectively (Table 2, Figure 1A-D).

An aberrant karyotype was detected in 27/168 (16%) patients.

With the exception of different numbers of patients without KIT mutation (5% versus 12%, respectively), no significant differences were observed between the training and the validation sets (e.g., the number of S/A/R positive patients was comparable; Table 2).

Prognostic Impact of the WHO Classification

The WHO classification of AdvSM is of prognostic significance. In the training and the validation sets, the median OS for ASM, SM-AHN and MCL (± AHN) was not reached (training set) and 10.1 years (validation set), 3.6 and 2.9 years, and 0.8 and 0.5 years, respectively. The WHO defined intermediate-risk category of SM-AHN (n = 275, 72%) represents by far the largest group compared to the low-risk category of ASM (n = 77, 20%) and the high-risk category of MCL (n = 31, 8%) (supplementary Figure 1B, supplementary Figure 2A-B).

Prognostic Impact of the S/A/R Gene Panel
Stratification based on the presence and number of high molecular risk gene mutation(s) (i.e. S/A/R) was of significant prognostic impact. In the training and the validation sets, median OS was not reached and 10.1 years, 3.0 years and 4.3 years, and 1.5 years and 1.8 years for no mutation, 1 mutation, and ≥ 2 gene mutations in the S/A/R panel, respectively. The three S/A/R-based risk groups were balanced as followed: low-risk, 154 (47%); intermediate-risk 102 (31%); and high-risk 73 (22%) (Figure 2A-B; supplementary Figure 1C).

Development and Validation of Clinical Risk Score for Advanced SM: CRS

We applied a Cox proportional hazard model using the patients from the ‘German Registry on Disorders of Eosinophils and Mast Cells’ in the training set (n = 231). In univariate analyses, the model included the following variables: age > 60 years, sex, WHO subtype, hemoglobin < 10 g/dL, platelets < 100 x 10^9/L, mast cell infiltration in BM histology > 30%, serum tryptase > 150 µg/L, albumin < 35 g/dL, alkaline phosphatase > upper normal limit (UNL), and splenomegaly (palpable or radiographic, yes/no). The multivariable analysis identified four independent predictors of survival: age > 60 years (HR 3.2, confidence interval [CI] 1.8-5.9, P < .0001), hemoglobin < 10 g/dL (HR 2.0, CI 1.3-3.0, P = .002), platelets < 100 x 10^9/L (HR 1.7, CI 1.1-2.6, P = .01) and alkaline phosphatase > UNL (HR 1.8, CI 1.1-2.9, P = .03). For assignment of individual scores, we divided the HR value of each variable by the median value of the regression coefficients of all variables in the final model (rounded to nearest 0.5 point). Accordingly, a weighted score of 1 was assigned to hemoglobin < 10 g/dL, platelets < 100 x 10^9/L, and alkaline phosphatase > UNL, whereas a score of 1.5 was assigned to age > 60 years. On this basis, we generated the CRS: low-risk, 0 to 1.5; intermediate risk 2 to 2.5; high-risk, 3 to 4.5. The model was then applied to the validation cohort (Table 4).
The median OS for the training set and the validation set was not reached (training set) and 12.2 years (validation set), 3.8 and 4.3 years, 2.6 and 1.8 years, for low-risk (n = 98, 28%), intermediate-risk (n = 111, 32%), and high-risk (n = 136, 39%), respectively (Table 4, Figure 2C-D; supplementary Figure 1D).

Development and Validation of Mutation-Adjusted Risk Score: MARS

To appreciate the value of adding molecular information to the CRS, we applied a Cox proportional hazards model among patients for whom mutation status (including S/A/R gene status) was available (training set, n = 191). The model was started by considering the same variables using in developing the CRS and included the presence and number of high molecular risk gene mutations: zero, one or ≥ 2 S/A/R mutation(s).

Table 3 summarizes the results of univariate and multivariable analyses in the training set. The multivariable model identified five independent predictors of survival: age > 60 (HR 2.4, CI 1.4-5.0, P < .003), hemoglobin < 10 g/dL (HR 2.0, CI 1.3-3.0, P = .002), platelets < 100 x 10^9/L (HR 1.7, CI 1.1-2.5, P = .02), S/A/R 1 mutation (HR 2.5, CI 1.6-4.5, P < .0001), and S/A/R ≥ 2 mutations (HR 4.4, CI 2.1-7.3, P < .0001). For assignment of individual scores, we divided the HR value of each variable the median value of the regression coefficients of all variables in the final model (rounded to nearest 0.5 point). Accordingly, a weighted score of 1 was assigned to age > 60 years, hemoglobin < 10 g/dL, platelets < 100 x 10^9/L, and S/A/R 1 mutation, whereas a score of 2 was assigned to S/A/R ≥ 2 mutations. These weighted scores were used to generate three risk groups which comprise the MARS: low-risk, 0 to 1; intermediate risk, 2; high-risk, 3 to 5. The model was then applied to the validation cohort. Table 4 describes the OS of the combined training and validation sets for the CRS and the MARS.
The median OS for the training and the validation sets was not reached (training set) and 12.2 years (validation set), 3.9 years and 4.4 years, 1.9 years and 1.9 years, for low-risk (n = 103, 31%), intermediate-risk (n = 86, 26%), and high-risk patients (n = 140, 43%), respectively (Table 4, Figure 2E-F and Figure 2G).

The MARS was also predictive for LFS. The median LFS for the training and the validation sets was not reached (training set) and 11 years (validation set), 3.9 and 3.9 years, and 1.5 and 1.4 years, for low-risk, intermediate-risk, and high-risk, respectively (Figure 2H, supplementary Figure 2C-D, and supplementary Table 1).

Comparison of WHO, CRS and MARS

On basis of ROC curve analyses, the C-index was 0.42 for the WHO classification, 0.73 for the CRS, and 0.81 for the MARS (Figure 1F). For better comparison of the C-index between the four stratification tools (WHO, S/A/R, CRS, and MARS), we included the same samples (with fully available data-set from the training set, n = 190) across all rules. We established a cross table illustrating the distribution of AdvSM patients in the new scoring system (rows Figure 1E) in comparison to the WHO classification (colors within each row in Figure 1E). Figure 1E illustrates significant risk redistributions when using MARS across the WHO classification. Particularly, the large SM-AHN (n = 237, 72% of all patients) cohort defined as intermediate-risk according to the WHO classification was reclassified as low-risk (n = 60, 25%), intermediate-risk (n = 64, 27%), and high-risk (n = 113, 48%) by the MARS. In ASM and MCL (± AHN), 38% (n = 24) and 83% (n = 25) were represented in the intermediate-risk or high-risk MARS categories, respectively. The significant advantages of MARS in comparison to CRS were i) the enhanced stratification regarding OS within all three risk groups, especially of the intermediate-risk and high-risk groups (Figure 2C-D, E-F and supplementary Figure 1D) and ii) the prediction of LFS since S/A/R positivity (included in
the MARS) at initial diagnosis is significantly associated with transformation to secondary
MCL and AML. Seventy percent (n = 42) of all patients with leukemic transformation and
available S/A/R status (n = 60) had at least one S/A/R mutation at initial diagnosis.
DISCUSSION

In clinical practice, the 2016 WHO classification of SM is widely used for prognostic purposes due to the lack of validated international risk scores. Although it robustly distinguishes indolent SM from AdvSM, its value for stratification within the various subtypes of AdvSM (OS: ASM > SM-AHN > MCL) remains suboptimal for three main reasons: i) the clinical and histological heterogeneity represented by the various subtypes of AdvSM, ii) the imbalance of the various subtypes, with SM-AHN representing 70-80% of patients, and ASM and MCL representing only 20-30% of individuals, and iii) the wide range of survival times within the subtypes of AdvSM, and particularly within the SM-AHN variant between a few months and several years. Therefore, the main goal of the current study was to devise and validate a new WHO independent risk score for patients with AdvSM which integrates objective clinical and mutation characteristics.

The current analysis corroborates the prognostic value of the previously identified high molecular risk gene mutations, especially the negative impact of S/A/R. The presence and number of gene mutations in the S/A/R panel had a strong adverse impact on OS in both the training set and the validation set. The three genes (S/A/R) are among the top five most frequent mutations observed in AdvSM (but also other myeloid neoplasms) and allow a balanced stratification into three risk cohorts.

Next, we established a clinical risk score (CRS) by defining four easily accessible and objective parameters based on multivariable analyses: age > 60 years, anemia (hemoglobin < 10 g/dL), thrombocytopenia (platelets < 100 x 10⁹/L), and elevated alkaline phosphatase (> UNL). As illustrated in Figure 2C-D and supplementary Figure 1D, LFS and OS were significantly different among the three risk groups. The prognostic impact of the CRS was confirmed in the validation set. The C-index was comparable with the S/A/R-based stratification (0.73 versus 0.74).
Finally, we combined the clinical and molecular data and generated the MARS. In multivariable analyses, age > 60 years, anemia (hemoglobin < 10 g/dL), thrombocytopenia (platelets < 100 x 10^9/L), 1 S/AR mutation, and ≥ 2 S/A/R mutations were independent predictors for OS. Based on these five parameters, a simple risk scoring system was established for OS. The MARS was confirmed in the validation set and categorizes AdvSM patients into three groups of significant size. OS was not reached, 4.3 and 1.9 years for AdvSM patients with low-risk, intermediate-risk, and high-risk, respectively. According to the C-index (0.81), the MARS improves the prediction of OS as compared to the WHO classification (C-index 0.42) and the CRS (0.73), especially for the intermediate-risk and high-risk groups, and uses clinical and molecular data which are now commonly available. S/A/R positivity at initial diagnosis, which is the backbone of the MARS, is significantly associated with secondary leukemic transformation (MCL and AML) and therefore the MARS is also predictive for LFS.

Some recently published risk scores from our own group and from others also included variables such as anemia, thrombocytopenia, elevated alkaline phosphatase and high molecular risk gene mutations. The pivotal strengths of the current analyses include i) indolent SM was excluded in the prognostic models as it has per se a nearly normal life expectancy, ii) the highest number of clinically, morphologically and genetically well characterized AdvSM patients ever reported, iii) most patients had access to targeted treatment modalities such as midostaurin, iv) the vast majority of patients of the training set were diagnosed through fully centralized pathology and genetic analyses, and v) the homogenous mutation profile (clinical and outcome characteristics) of the training set and the large and independent validation set (derived from centers with expertise in mastocytosis), particularly regarding the individual frequency of gene mutations in the S/A/R panel.
Although there are no data from clinical trials, the MARS may become useful for guiding selection of, and predicting response to therapies. Previous data have shown that the multikinase/KIT-inhibitor midostaurin has disease modifying activity in AdvSM with sustained responses and more favorable outcome in patients with absence of mutations in the S/A/R gene panel and at least 25% reduction of the \(\text{KIT} \) D816V expressed allele burden after 6 months of therapy.\(^9,16,23,24\) As the MARS low-risk cohort reflects the majority of these patients, midostaurin may be an optimal choice for these individuals. The generally poor prognosis of MARS intermediate- and high-risk patients may predict less robust responses with currently available therapies, including midostaurin monotherapy, highlighting the need for disease-modifying treatments in these higher risk cohorts.\(^9,16,23-25\) Because of the significantly higher rates of leukemic transformation and inferior survival, more intensive treatment, e.g. combination therapies with midostaurin that also target the AHN, or use more potent and selective second generation \(\text{KIT} \) D816V inhibitors, followed by allogeneic stem cell transplantation (SCT) in eligible candidates, should be taken into consideration in these patients. In the largest, yet reported cohort of 57 AdvSM patients undergoing allogeneic SCT, treatment-related mortality was generally similar to other hematological neoplasms. Important details included the superior outcome of myeloablative vs. dose-reduced conditioning and the heterogenous survival within AdvSM, being significantly better in SM-AHN as compared to ASM or MCL, respectively. However, more data is warranted, preferably generated in national and international registries upon the key questions regarding optimal timing, debulking and conditioning strategies.

We conclude that the WHO classification remains the pivotal diagnostic tool for subtyping of SM into indolent SM and AdvSM. The MARS is a WHO independent and complementary tool for the heterogeneous cohort of patients with AdvSM by defining three risk groups based on a five-parameter risk score which may improve upfront treatment
stratification for these rare hematologic neoplasms.
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

AUTHOR CONTRIBUTIONS

Concept and design: Mohamad Jawhar, Andreas Reiter
Financial support: Mohamad Jawhar, Peter Valent, Jason Gotlib, Alberto Orfao, Andreas Reiter
Provision of study materials and patients: Mohamad Jawhar, Juliana Schwaab, Iván Álvarez-Twose, Khalid Shoumariyeh, Georgia Metzgeroth, Nikolas von Bubnoff, Wolfgang R. Sperr, Andrés C García-Montero, Peter Valent, Jason Gotlib, Alberto Orfao, Andreas Reiter
Collection and assembly of data: All authors
Data analysis and interpretation: Mohamad Jawhar, Khalid Shoumariyeh, Nicole Naumann, Manja Meggendorfer, Cecelia Perkins, Vanessa Kennedy, Alice Fabarius, Dietmar Pfeifer, Karl Sotlar, Hans-Peter Horny, Torsten Haferlach, Nikolas von Bubnoff, Nicholas C.P. Cross, Wolfgang R. Sperr, Peter Valent, Jason Gotlib, Alberto Orfao, Andreas Reiter
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of work: All authors

SUPPORT

MJ is supported by the ´Deutsche José Carreras Leukämie-Stiftung´ (DJCLS 01 R/2018) and the SEED program of the Mannheim Medical Faculty, Heidelberg University, Heidelberg, Germany; WRS and PV are supported by the Austrian Science Fund (FWF) grant SFB F4704-B20. IAT, JMG, AGM and AO are supported by grants from the Instituto de Salud Carlos III (ISCIII) and fondos FEDER (PI16/00642; CIBERONC, CB16/12/00400) Madrid, Spain. JG is supported by the Charles and Ann Johnson Foundation.

PRIOR PRESENTATION

Presented at the 60th Annual Meeting of the American Society of Hematology, San Diego, CA, December 1-4, 2018
REFERENCE

1. Valent P, Akin C, Metcalfe DD: Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood 129:1420-1427, 2017

2. Arber DA, Orazi A, Hasservian R, et al: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391-405, 2016

3. Pardanani A: Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol, 2018

4. Valent P, Horny HP, Escribano L, et al: Diagnostic criteria and classification of mastocytosis: a consensus proposal. Leuk Res 25:603-25, 2001

5. Jawhar M, Schwaab J, Schnittger S, et al: Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event. Leukemia 29:1115-22, 2015

6. Sotlar K, Colak S, Bache A, et al: Variable presence of KITD816V in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM-AHNMD). J Pathol 220:586-95, 2010

7. Valent P, Oude Elberink JNG, Gorska A, et al: The Data Registry of the European Competence Network on Mastocytosis (ECNM): Set Up, Projects, and Perspectives. J Allergy Clin Immunol Pract 7:81-87, 2019

8. Jawhar M, Schwaab J, Meggendorfer M, et al: The clinical and molecular diversity of mast cell leukemia with or without associated hematologic neoplasm. Haematologica 102:1035-1043, 2017

9. Jawhar M, Schwaab J, Naumann N, et al: Response and progression on midostaurin in advanced systemic mastocytosis: KIT D816V and other molecular markers. Blood 130:137-145, 2017

10. Jawhar M, Schwaab J, Hausmann D, et al: Splenomegaly, elevated alkaline phosphatase and mutations in the SRSF2/ASXL1/RUNX1 gene panel are strong adverse prognostic markers in patients with systemic mastocytosis. Leukemia 30:2342-2350, 2016

11. Lim KH, Tefferi A, Lasho TL, et al: Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 113:5727-36, 2009

12. Jawhar M, Schnittger S, Sotlar K, et al: Comprehensive mutational profiling in advanced systemic mastocytosis. Blood 122:2460-6, 2013

13. Munoz-Gonzalez JI, Jara-Acevedo M, Alvarez-Twose I, et al: Impact of somatic and germline mutations on the outcome of systemic mastocytosis. Blood Adv 2:2814-2828, 2018

14. Jawhar M, Schwaab J, Schnittger S, et al: Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis. Leukemia 30:136-43, 2016

15. Jawhar M, Dohner K, Kreil S, et al: KIT D816 mutated/CFB-negative acute myeloid leukemia: a poor-risk subtype associated with systemic mastocytosis. Leukemia, 2019

16. Gotlib J, Kluin-Nelemans HC, George TI, et al: Efficacy and Safety of Midostaurin in Advanced Systemic Mastocytosis. N Engl J Med 374:2530-41, 2016

17. Jawhar M, Schwaab J, Horny HP, et al: Impact of centralized evaluation of bone marrow histology in systemic mastocytosis. Eur J Clin Invest 46:392-7, 2016

18. Naumann N, Jawhar M, Schwaab J, et al: Incidence and prognostic impact of cytogenetic aberrations in patients with systemic mastocytosis. Genes Chromosomes Cancer 57:252-259, 2018

19. Guglielmelli P, Lasho TL, Rotunno G, et al: MIPSS70: Mutation-Enhanced International Prognostic Score System for Transplantation-Age Patients With Primary Myelofibrosis. J Clin Oncol 36:310-318, 2018

20. Tefferi A, Guglielmelli P, Lasho TL, et al: MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol 36:1769-1770, 2018
21. Itzykson R, Kosmider O, Renneville A, et al: Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol 31:2428-36, 2013

22. Pardanani A, Shah S, Mannelli F, et al: Mayo alliance prognostic system for mastocytosis: clinical and hybrid clinical-molecular models. Blood Adv 2:2964-2972, 2018

23. DeAngelo DJ, George TI, Linder A, et al: Efficacy and safety of midostaurin in patients with advanced systemic mastocytosis: 10-year median follow-up of a phase II trial. Leukemia 32:470-478, 2018

24. Chandesris MO, Damaj G, Canioni D, et al: Midostaurin in Advanced Systemic Mastocytosis. N Engl J Med 374:2605-7, 2016

25. Ustun C, Reiter A, Scott BL, et al: Hematopoietic stem-cell transplantation for advanced systemic mastocytosis. J Clin Oncol 32:3264-74, 2014
Figure 1. Mutational profile, categorization of patients according to mutation-adjusted risk score (MARS) of advanced systemic mastocytosis versus the World Health Organization (WHO) classification, and the performance of the scores. Relative frequency distribution of (A) KIT mutations, (B) number of affected genes in addition to KIT, (C) mutations in addition to KIT, and (D) gene mutations in the \(^a\)SRSF2, ASXL1, RUNX1 (S/A/R) panel of the training set. (E) colored bars represent the WHO risk stratification (x-axis) in the context of the stratification based on the MARS (represented by the rows). (F) Shown is the C-index (to evaluate the ability of the prognostic scores to predict outcome, 0.5 indicating no discrimination and 1.0 indicating perfect prediction) of WHO based stratification, S/A/R mutation based stratification, clinical risk score (CRS), and MARS. ASM, aggressive SM; MCL, mast cell leukemia; SM-AHN; SM with an associated neoplasm. \(^b\) The MCL cohort included patients with MCL and MCL-AHN.

Figure 2. Overall survival (OS) for the training set (left) and the validation set (right) of advanced systemic mastocytosis (AdvSM) patients. Patients in both sets are grouped by (A-B) \(^a\)SRSF2, ASXL1, RUNX1 (S/A/R) mutation based stratification, (C-D) the clinical risk score (CRS), and (E-F) the mutation-adjusted risk score (MARS). (G-H) OS and leukemia-free survival of all AdvSM patients (training + validation) by MARS is shown.
Table 1. Baseline Clinical and Laboratory Characteristics in Training and Validation Sets of Patients With Advanced Systemic Mastocytosis (AdvSM)

Characteristics	Training (n = 231)	Validation (n = 152)	P
Age, years	Median 69	65	.003
	Range 24-90	22-92	
Sex, n (%)	156 (68)	92 (61)	.2
	75 (32)	60 (39)	
WHO diagnosis, n (%)	ASM 30 (13)	46 (30)	<.0001
	SM-AHN 181 (78)	95 (63)	.001
	MCL (± AHN) 20 (9)	11 (7)	.7
AHN subtypes, n (%)	CMML 57 (29)	22 (23)	.3
	MDS/MPN-U 50 (26)	12 (13)	.01
	CEL 34 (18)	11 (11)	.2
	MDS 30 (16)	17 (18)	.7
	Othersa 22 (11)	34 (35)	.001
Leukemic transformation, n (%)	35 (15)	28 (18)	.4
	Secondary MCL (± AHN) 15 (43)	5 (18)	.001
	Secondary SM-AML 20 (57)	23 (82)	
Time to transformation, years	Median 1.6	1.6	
	Range 0.2-5.9	0.1-11.1	
Hemoglobin, g/dL	Median 10.3	10.7	.3
	Range 5.7-20.5	4-18.1	
< 10 g/dL, n (%)	100 (46)	59 (40)	.4
Leukocytes, x 10⁹/L	Median 8.3	7.4	.4
	Range 1.3-124.0	0.6-191.0	
Platelets, x 10⁹/L	Median 115	125	.7
	Range 5-958	6-486	
< 100 x 10⁹/L, n (%)	94 (43)	62 (42)	.8
Mast cell infiltration in BM histology, (%)	Median 30	20	.7
	Range 5-100	5-90	
Serum tryptase, µg/L	Median 168	159	.7
	Range 15-1854	2-2036	
Albumin, g/L	Median 37	40	.6
	Range 16-48	26-57	
Alkaline phosphataseb, U/L	Median 180	155	.3
	Range 35-1928	28-1074	
> UNL, n (%)	128 (65)	85 (61)	.5
Splenomegalyc, n (%)	171 (74)	83 (60)	.007
Treatment modalities, n (%)	Midostaurin 56 (24)	17 (12)	.001
	Cladribine 20 (9)	23 (15)	.07
	Midostaurin + cladribine 35 (15)	8 (5)	.003
Follow-up, years	Median 2.2	2.1	.7
	Range 0-23	0-23	
Death, n (%)	118 (51)	76 (50)	

Abbreviations: AHN, associated hematologic neoplasm; ASM, aggressive systemic mastocytosis; BM, bone marrow; CEL, chronic eosinophilic leukemia; CMML, chronic myelomonocytic leukemia; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MDS/MPN-U, MDS/MPN unclassifiable; MCL, mast cell leukemia; UNL, upper normal limit; WHO, World Health Organization.

a acute myeloid leukemia, primary myelofibrosis, polychaemia vera, essential thrombocythemia, chronic myeloid leukemia, indolent lymphoma, and myeloma
b data available in n = 197 (training) and n = 140 (validation), respectively
c palpable or radiographic
d sequential midostaurin/cladribine or cladribine/midostaurin treatment
Table 2. Genetic Characteristics in Training and Validation Sets of Patients With Advanced Systemic Mastocytosis (AdvSM)

Characteristics	Training (n = 231)	Validation (n = 152)	P
Driver mutation, n (%)			
KIT D816V	214 (93)	126 (88)	.1
Other *KIT* mutations	6 (2)a	-	
No *KIT* mutations	11 (5)	18 (12)	.009
Additional somatic mutations², n (%)			
TET2	79 (42)	58 (42)	1.0
SRSF2	75 (39)	45 (32)	.2
ASXL1	42 (22)	24 (17)	.3
RUNX1	34 (18)	32 (23)	.3
JAK2	23 (12)	2 (9)b	1.0
N/*KRAS	17 (9)	5 (6)b	.6
CBL	17 (9)	8 (10)b	.8
IDH1/2	9 (5)	6 (7)c	.4
SF3B1	9 (5)	9 (8)c	.3
EZH2	9 (5)	8 (7)c	.4
S/A/R³ mutation(s), n (%)	105 (55)	70 (50)	.4
≥ 2 S/A/R mutations	43 (23)	30 (22)	.9
Aberrant karyotype⁴, n (%)	27 (16)	19 (22)	.2

* KIT D816H, n = 3; KIT D816Y, n = 2; KIT F522C, n = 1
* KIT status available in n = 144
² Most frequently affected genes (in ≥ 5% of patients); data available in n = 190 (training) and n = 139 (validation)
³ data available in n = 23
⁴ data available in n = 82
⁵ data available in n = 115
⁶ ≥ 1 gene mutation(s) in SRSF2, ASXL1 and/or RUNX1 (S/A/R) panel
⁷ data available in n = 168 (training) and n = 85 (validation)
| Characteristics | CRS Prognostic Points | MARS Prognostic Points | Category (n) (score range) | CRS Prognostic Points | MARS Prognostic Points | Category (n) (score range) | Median (range) OS (years) | Category (n) (score range) | Median (range) OS (years) |
|----------------------------------|-----------------------|------------------------|----------------------------|-----------------------|------------------------|----------------------------|----------------------------|--------------------------|----------------------------|
| Age > 60 years | 1.5 | 1 | Low (98) | N.R. | Low (103) | N.R. | | | |
| Hemoglobin < 10 g/dL | 1 | 1 | (0-1.5) | N.R. | Low (103) | N.R. | | | |
| Platelets < 100 x 10^9/L | 1 | 1 | Intermediate (111) | 3.9 | Intermediate (86) | 4.3 | | | |
| Alkaline phosphatase > UNL | 1 | - | (2-2.5) | 2.5 | High (140) | 1.9 | | | |
| S/A/R^a (1 mutation) | - | 1 | High (136) | 2.5 | High (140) | 1.9 | | | |
| S/A/R^b (≥ 2 mutations) | - | 2 | (3-4.5) | (1.8-3.1) | (3-5) | (1.6-2.3) | | | |

Abbreviations: N.R., not reached; UNL, upper normal limit
^a 1 gene mutation in SRSF2, ASXL1 and/or RUNX1 (S/A/R) panel
^b ≥ 2 gene mutations in the S/A/R panel
Table 3. Univariate and Multivariable Overall Survival (OS) Analysis in Training Set Based on Clinical and Molecular Characteristics (Mutation-Adjusted Risk Score, MARS) in Patients With Advanced Systemic Mastocytosis (AdvSM)

Characteristics	MARS	Univariate			Multivariable		
		HR	95% CI	P	HR	95% CI	P
Age > 60 years		3.4	2.0-5.8	< .0001	2.4	1.4-5.0	.003
Sex (men vs. women)		1.7	1.1-2.5	.02			
WHO							
SM-AHN vs. ASM		2.3	1.3-4.0	.004			
MCL vs. SM-AHN		2.9	1.5-5.8	.002			
MCL vs. ASM		3.4	2.0-5.9	< .0001			
Hemoglobin < 10 g/dL		2.4	1.6-3.5	< .0001	2.0	1.3-3.0	.002
Platelets < 100 x 10^9/L		2.4	1.6-3.5	< .0001	1.7	1.1-2.5	.017
Mast cell infiltration > 30%		1.3	0.8-1.9	.3			
Serum tryptase > 150 µg/L		1.7	1.1-2.5	.02			
Albumin < 35 g/L		1.9	1.3-3.0	.002			
Alkaline phosphatase > UNL		2.6	1.6-4.1	< .0001			
Splenomegaly		2.0	1.0-4.2	.05			
S/A/R\(^a\) (1 mutation)		4.3	2.7-6.9	< .0001	2.5	1.6-4.5	< .0001
S/A/R\(^b\) (≥ 2 mutations)		7.6	3.5-9.9	< .0001	4.4	2.1-7.3	< .0001
Aberrant karyotype		1.5	0.9-2.5	.1			

Abbreviations: AHN, associated hematologic neoplasm; ASM, aggressive systemic mastocytosis; BM, bone marrow; CI, confidence interval; MCL, mast cell leukemia; NR, not reached; vs., versus; UNL, upper normal limit; WHO, World Health Organization

\(^a\) Mast cell infiltration in bone marrow histology

\(^b\) 1 gene mutation in SRSF2, ASXL1 and/or RUNXI (S/A/R) panel

\(^c\) ≥ 2 gene mutations in the S/A/R panel
Figure 1

A

KIT mutation status
- KIT D816V
- other KIT mutations = no KIT mutation

![Pie chart showing KIT mutation status](chart)

- 93% KIT D816V
- 5% other KIT mutations
- 12% no KIT mutation

B

No. of affected genes (in addition to KIT)

- 0
- 1
- 2
- 3
- ≥4

![Pie chart showing number of affected genes](chart)

- 18% 0 affected genes
- 32% 1 affected gene
- 23% 2 affected genes
- 18% ≥3 affected genes

C

Frequency of affected genes

![Bar chart showing frequency of affected genes](chart)

- TET2
- SRSF2
- ASXL1
- RUNX1
- JAK2
- N/KRAS
- CBL
- IDH1/2
- SF3B1
- EZH2

D

No. of mutations in the S/A/Ra gene panel

- 0
- 1
- ≥2

![Pie chart showing number of mutations in the S/A/R gene panel](chart)

- 32% 0 mutations
- 37% 1 mutation
- 31% ≥2 mutations

E

MARS

WHO

- ASM
 - Low
 - (n = 62)
- SM-AHN
 - Intermediate
 - (n = 237)
- MCLb
 - High
 - (n = 30)

- Low
 - (n = 103)
 - 37%
 - 58%
 - 5%
- Intermediate
 - (n = 86)
 - 13%
 - 74%
 - 13%
- High
 - (n = 140)
 - 9%
 - 81%
 - 10%

F

C-index

- WHO: 0.42
- S/A/R: 0.74
- CRS: 0.73
- MARS: 0.81
Figure 2

Training

S/A/R²	Median	N.R.	\(P < .0001 \)	\(P = .006 \)
S/A/R (0)	3.0	1.5	\(P < .0001 \)	\(P = .0006 \)

At risk time	S/A/R (0)	S/A/R (1)	S/A/R (≥2)
Low	85	62	43
Intermediate	57	34	13
High	33	11	6

Validation

S/A/R²	Median	N.R.	\(P = .04 \)	\(P = .01 \)
S/A/R (0)	10.1	4.3	\(P = .04 \)	\(P = .01 \)

At risk time	S/A/R (0)	S/A/R (1)	S/A/R (≥2)
Low	69	40	30
Intermediate	47	21	8
High	17	5	2

CRS

Low	Intermediate	High
48	63	85
33	41	89

At risk time	Low	Intermediate	High
50	48	51	
19	15	17	

MARS

Low	Intermediate	High
53	48	89
16	13	10

At risk time	Low	Intermediate	High
50	48	51	
16	13	10	
Figure 2

Training + Validation

![Graph L](image1)

At risk time

	Low	Intermediate	High
Survival (years)	103	86	140
Probability (%)	0.0	0.0	0.0

Median

	Low	Intermediate	High
Probability (%)	0.0	0.0	0.0

P < .0001

![Graph M](image2)

At risk time

	Low	Intermediate	High
Survival (years)	103	86	140
Probability (%)	0.0	0.0	0.0

Median

	Low	Intermediate	High
Probability (%)	0.0	0.0	0.0

P < .0001

Leukemia-free Survival (years)

![Graph M](image2)

At risk time

	Low	Intermediate	High
Survival (years)	103	86	140
Probability (%)	0.0	0.0	0.0

Median

	Low	Intermediate	High
Probability (%)	0.0	0.0	0.0

P < .0001
Supplementary Table 1. Clinical Characteristics and Outcome Stratified in Low-, Intermediate-, and High-risk According to the Mutation-Adjusted Risk Score (MARS) for Patients With Advanced Systemic Mastocytosis (Including Both, Training and Validation Sets)

Characteristics	Low-risk (1)	Intermediate-risk (2)	High-risk (3)	P (1 vs. 2)	P (1 vs. 3)	P (2 vs. 3)
WHO diagnosis, n (%)						
ASM	38 (37)	11 (13)	13 (9)	< .0001	< .0001	.5
SM-AHN	60 (58)	64 (74)	113 (81)	.02	< .0001	.3
MCL (± AHN)	5 (5)	11 (13)	14 (10)	.07	.02	.5
Mast cell infiltration*, (%)						
Median	20	30	30	.8	.6	.9
Range	5-100	5-100	5-95			
Serum tryptase, µg/L	105	168	188	.08	.001	.1
Median	2-1970	4-2036	5-1854			
Alkaline phosphatase, U/L	107	151	234	.046	< .0001	< .0001
Median	28-639	35-1928	35-1279			
Treatment modalities, n (%)						
Midostaurin	19 (18)	11 (13)	32 (23)	.3	.4	.08
Cladribine	13 (13)	12 (14)	14 (10)	.8	.5	.4
Midostaurin + Cladribine	6 (6)	11 (13)	24 (17)	.1	.01	.5
Death, n (%)	23 (22)	44 (51)	98 (70)			
Leukemia-free survival, years						
Median	12.4	3.9	1.4	< .0001	< .0001	< .0001
95% CI	2.4-5.5	1.1-1.7				
Overall survival, years						
Median	NR	4.3	1.9	< .0001	< .0001	< .0001
95% CI	3.2-5.4	1.6-2.3				

Abbreviations: AHN, associated hematologic neoplasm; ASM, aggressive systemic mastocytosis; BM, bone marrow; CI, confidence interval; MCL, mast cell leukemia; NR, not reached; vs., versus; UNL, upper normal limit; WHO, World Health Organization

a in bone marrow histology
b sequential midostaurin/cladribine or cladribine/midostaurin treatment
Supplementary Table 2. Comparison Between KIT Positive and KIT Negative Patients With Advanced Systemic Mastocytosis (AdvSM) Regarding Baseline Clinical, Laboratory, and Genetic Characteristics

Characteristics	KIT positive (n = 346)	KIT negative (n = 29)	P
Age, years			
Median	67	60	.001
Range	24-90	22-85	
Sex, n (%)			
Men	226 (65)	16 (55)	.3
Women	120 (35)	13 (45)	.3
WHO diagnosis, n (%)			
ASM	73 (21)	4 (14)	.5
SM-AHN	250 (72)	17 (59)	.1
MCL (± AHN)	23 (7)	8 (28)	.001
Leukemic transformation, n (%)			
Median	55 (16)	4 (14)	1.0
Hemoglobin, g/dL			
Median	10.4	11.0	.5
Range	4-20.5	7.4-15.1	
< 10 g/dL, n (%)	147 (44)	8 (30)	.2
Platelets, x 10^9/L			
Median	116	128	.9
Range	5-958	18-486	
< 100 x 10^9/L, n (%)	141 (43)	11 (41)	.8
Mast cell infiltration in BM histology, (%)			
Median	30	25	.8
Range	5-100	5-80	
Serum tryptase, µg/L			
Median	170	55	.06
Range	4-2036	2-926	
Alkaline phosphatase, U/L			
Median	179	91	.002
Range	28-1928	52-377	
Additional somatic mutations*, n (%)	242 (81)	11 (46)	<.0001
S/A/R mutation(s), n (%)	164 (55)	4 (17)	<.0001
Overall survival			
Median, years	3.9	4.3	
95% CI	3.1-4.6	3.1-5.4	

Abbreviations: AHN, associated hematologic neoplasm; ASM, aggressive systemic mastocytosis; BM, bone marrow; MCL, mast cell leukemia; WHO, World Health Organization.

* data available in n = 298 (KIT positive) and n = 24 (KIT negative)
Supplementary Figure 1. Overall survival (OS) and leukemia-free survival (LFS) of all advanced systemic mastocytosis (AdvSM) patients (training + validation sets) grouped by (A) AdvSM (comprises all AdvSM subtypes, aggressive SM [ASM], SM with an associated hematologic neoplasm [SM-AHN], and mast cell leukemia [MCL]), (B) World Health Organization (WHO) based stratification, (C) SRSF2, ASXL1, RUNX1 (S/A/R) mutation based stratification, and (D) the clinical risk score (CRS). a The MCL cohort included patients with MCL-AHN.
Supplementary Figure 2. Overall survival of 233 advanced systemic mastocytosis (AdvSM) patients with SM and an associated hematologic neoplasm (SM-AHN; myelodysplastic syndrome, MDS, n = 47; MDS/myeloproliferative neoplasm unclassifiable, MDS/MPN-U, n = 62; chronic myelomonocytic leukemia CMML, n = 79; chronic eosinophilic leukemia CEL, n = 45).