Multi-resolution remote sensing data in landslide activity inventory mapping

M R M Salleh 1,*, M Z A Rahman 1, Z Ismail 2, M F A Khanan 2 and K A Razak 3

1 TropicalMap Research Group, Department of Geoinformation, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
2 Photogrammetry & Laser Scanning Research Group, Department of Geoinformation, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
3 UTM Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, Jalan Semarak, Kuala Lumpur 54100, Malaysia

mohdradhe.gis@gmail.com

Abstract. This paper reviews an application of multi-resolution remote sensing data in landslide activity inventory mapping. Landslide activity is an important component for landslide study. On that basis, remote sensing technology become a standard method in getting and deriving the information related to landslide events. The capability of remote sensing technology in acquiring the geospatial data have accelerate the process of landslide activity inventory mapping. A general overview of several remote sensing techniques applied to landslides is given, followed by a review of landslide characteristics and landslide activity inventory mapping. This paper also emphasizes on the role of vegetation anomalies as bio-indicator for landslide activity inventory mapping. Five (5) indicators have been listed together with the findings from previous research. This kind of approach has opening a new perspective of landslide activity inventory mapping which integrating with multi-resolution remote sensing data that significantly increase the effectiveness of any landslide studies.

1. Introduction
Landslide events have significantly give an adverse impact to the world [1]. These including effects on civilians, properties, environment, and infrastructures [2][3]. Landslide can be characterized as the mass movement process on the natural and artificial slopes [4]. In the last decades, impact of climate change and increasing of urban areas or deforestation have led to an increase of landslide occurrences [5][6]. The slope-forming materials including rock soil may shift by falling, toppling, sliding, spreading, or flowing [1]. Region with steep slope are more likely to experience landslide especially when triggered by tectonic activities and presence of active faults [7]. Many studies have been made in investigating the landslide phenomenon. Advancement of remote sensing technology has opening up new perspective of landslide investigation with the capability of acquiring 3D information of the Earth’s surface [5] and may speed up the process of landslide inventory maps production [8]. Landslide investigation have through both of approaches i.e. qualitative and quantitative [7][9], and were discussed in many research papers [10]. The chosen method relies upon the extent of study area, knowledge, handy experience, monetary expenses and time limitations. [11]. Qualitative approaches depend on expert evaluation which carrying out the analysis [12] while quantitative approaches generate numerical assessments of the landslide occurrences in any hazard zone. Nowadays, the effectiveness of landslide studies increased rapidly due to the advancement of Earth Observation (EO).
techniques. Remote sensing technologies such as aerial photography, Interferometric Synthetic Aperture Radar (InSAR) and Light Detection and Ranging (LiDAR) represent a powerful tool for landslide investigation [5]. However, getting ready landslide maps is critical for landslide study. The use of LiDAR-derived product’s has proven an effective technique for landslide recognition and capturing [9]. Nevertheless, not so much effort have been put in studying or reviewing the advances of this technique on landslide events. Hence, this paper attempt to review the application of multi-resolution of remote sensing technique in landslide study which focussing on landslide activity inventory mapping.

2. Classification of Remote Sensing Methods for Landslide Studies
Remote sensing for landslide studies is broadly recorded in the recent literature [5]. As stated by Michoud et al. [13], three (3) types of remote sensing methods were divided i.e. passive optical sensors, active optical sensors, and active microwave sensors.

2.1 Passive optical sensors
Passive optical sensors exploit the visible region of the electromagnetic range, such as visible,Near Infrared (NIR), and shortwave infrared system which given by hyperspectral images [5]. In landslide studies, three (3) types of passive optical sensors data that mainly used including ground-based imaging, aerial photographs, and satellite imaging. Table 1 describes the advantages and disadvantages of these three techniques.

Techniques	Advantages	Disadvantages
Ground-based imaging	• High resolution for both spatial and temporal	• Limited coverage on gentle slope area
	• Large coverage on hilly area	• Inter-visibility is required
	• Low cost technique	• Environmental impacts (shadows in the pictures, not working in night)
	• More flexible (i.e. easy data acquisition and high portability)	
Aerial photographs	• Very high coverage especially on gentle slope area	• Limited temporal resolution
	• Availability of historical record	• Inter-visibility is required
	• Very high spatial resolution	• Others: low coverage in steep slopes and cliffs area
Satellite imaging	• Very large spatial coverage	• Low spatial resolution of historical images
	• Low cost data especially for low resolution images (Landsat, ASTER)	• Low temporal resolution for some sensors
	• Availability of historical record	• The accuracy of data depending on the sensor
		• Inter-visibility is required
		• Low coverage in steep slopes and cliffs area
		• Present of atmospheric effect
		• Expensive for commercial satellites
		• Geometric distortions

2.2 Active optical sensors
Unlike passive remote sensing technique, active optical sensors have their own particular radiation source. It collects three-dimensional coordinate data from reflected objects that useful for many applications. LiDAR is one of the technique that falls in this category. The basic concept of LiDAR measurement is fairly straightforward. LiDAR works by measuring the distance or range between a sensor and objects which is always based on precise time measurement. Travelling time is measured and the 3D coordinates (i.e. latitude, longitude, and elevation) of the reflected objects are registered. The result from the measurement procedure is a point cloud with randomly distributed laser points in elevation and position which depend on the scanning pattern. As mentioned by Zhong et al. [14] cited
from Starek et al. [15], LiDAR technology has been filled with various platforms such as airborne LiDAR also known as Airborne Laser Scanning (ALS), terrestrial LiDAR, mobile LiDAR, and indoor LiDAR. Airborne LiDAR uses a laser sensor attached on an aircraft or helicopter in order to get the distance of object from sensor. This technique able to gather three-dimensional (3D) data of objects in a large area [14][16]. However, only top of objects covered by airborne platform and lack of corresponding façade information [14]. Meanwhile, terrestrial LiDAR also called Terrestrial Laser Scanning (TLS) works in local scale area [5][17]. TLS provide shorter ranges and produce very high density of point clouds rather than airborne LiDAR. The combination of these two (2) platforms will gather full picture or information of object surfaces, both on the top side and façade side [14]. This combination was applied in many field of studies: (a) disaster such as landslide studies, flood studies (b) forestry applications such as biomass estimation [18], and (c) 3D object reconstruction [19].

3. Landslide Characteristics
Landslide is the movement of a mass of rock, debris, or earth down a slope, under the influence of gravity [20]. Landslide happen when part of a natural slope is fail in supporting its own weight [21][22]. The event of landslide is the result of a complex field of forces towards the mass of rock or soil on the slope area. Two (2) determinative parameters that cause the landslide: (i) an increase of shear stress, and (ii) a decrease of material strength [23]. The different kinds of landslides can be classified by the sorts of material involved and the type of movement [1]. It can move by falls, topplings, slides, flows, spread, and combinations of these movements. Varnes’ 1978 was produced which classify the landslide types based on material involved and mode of movements where have been globally used in landslide studies. Another broadly recognized landslides classification is based on the velocity of the movement material [20]. Besides that, landslides also can be categorized regarding their state of activity [24]. As mentioned by Cruden and Varnes [20] which revised by Jones and Lee [25], eight (8) groups of mass movements have been established which are active, suspended, dormant, inactive (i.e. abandoned, stabilized, anchored, and ancient) (Table 2). Besides that, classification of activity based on vegetation cover also produced by Evans et al. [26] i.e. (i) totally bare of vegetation (2 – 3 years old); (ii) partially bare of vegetation (between 2 – 3 and 30 years old); (iii) completely covered in grasses (more than 15 years old); and (iv) covered in shrubs and/or trees (more than 25 years old).

Activity	Description
Active	Currently moving, or a currently unstable site such as an eroding sea-cliff or a site which displays a cyclical pattern of movement with a periodicity of up to 5 years.
Suspended	Landslides and sites displaying the potential for movement, but not conforming to the criteria for ‘Active’ status.
Dormant	A landslide or site that remains stable under most conditions but may be reactivated in part or by extreme conditions.
Inactive	A landslide or site of instability which is stable under prevailing conditions as follow:
Abandoned: A landslide which no longer affected by its original cause and is no longer likely to be reactivated. For example, the toe of the slide has been protected by a build up of material, such as floodplain or beach;
Stabilized: A landslide which has been protected from its original causes by remedial measures;
Anchored: A landslide that has been stabilized by vegetation growth; and
Ancient: An inactive landslide developed under climatic, environmental or geomorphological conditions different from those prevailing at present. |

4. Landslide Inventory Mapping
Generally, a landslide inventory map provides basic information such as location of mass movements and the date of occurrences. Preparation of landslide inventory map is an imperative procedure of
landslide hazard study. As stated by Singroy [27], majority of landslide study accomplished by remote sensing technology to date falls into the category of inventory mapping. In general, the scale of landslide inventory map based on user requirement. The scale of map i.e. small-scale, medium scale, and large-scale was summarized in Table 3:

Table 3. Summarization of the landslide inventory component based on different scale

Type	Source of information	Attribute
Small-scale	Compile landslide archives (public or private organisations, journals, interviewing experts) [28]	Location of landslides
	Aerial photograph analysis [29]	
Medium-scale	Systematic interpretation of aerial photograph with integrating of field check data	Location of landslides, Original mass, volume and averaged velocity is recorded
		Data about damages (i.e. minor, major)
		Minor and lateral scarps may be distinguished
Large-scale	Interpretation of high resolution imageries, DTM, and local field data [30]	Mapped landslides may be divided into its components: scarp, rupture surface and mass or deposit
	Combining of high resolution data and analysis of literature [31]	Mass volume and average velocity is estimated and recorded
		Total area of each landslide type
		State of activity
		Detail data about damages
		Historical data
		Volume
		Travel distance
		Date of occurrence

5. Landslide Activity Inventory Mapping in Vegetated Area
As studied by number of authors, mapping of landslide in high dense vegetation is difficult. Large number of research were conducted by utilizing the data derived from ALS or TLS in landslide studies (i.e. landslide detection, susceptibility, hazard, risk) integrating with other remotely sensed data. This section describes the use of multi-resolution remote sensing data as landslide bio-indicator specifically for landslide activity inventory mapping. Soeters and Van Western [32] have identified landslide types based on vegetation characteristics. Rockfall movement normally characterized by linear scars in vegetation along frequent rock-fall paths while rotational slide has clear vegetation contrast with surroundings. This paper further reviews the related vegetation anomalies as indicator of landslide activity from previous findings as shown in Table 4.

According to Table 4, five (5) vegetation anomalies have been identified. Each anomaly consists of related vegetation variables. The first type of vegetation anomaly is tree irregularities or disrupted trees [40][33]. As investigated by Razak et al. [33], High Density Airborne LiDAR (HDAL) data was used in extracting the related vegetation variables (i.e. tree position, tree height, and inclination angle). These variables were successfully used for parameterizing tree growth anomalies such as tree dissimilarities and tree inclinations. They conclude that tree height is much lower in landslide area rather than stable areas. The tree inclination also more inclined in landslide area. Wang et al. [34] used Random Sample Consensus (RANSAC) based robust stem reconstruction method in identifying the tree inclination angle. Good accuracies obtained when compared to reference data that
measured manually. The second type of vegetation anomaly is tree crown gap. Gap indicator function (refer Table 4) was used in deriving tree crown gap [6].

No.	Vegetation Anomalies	Related Vegetation Variables	Previous Findings
1.	Tree irregularities and tree inclination	Three (3) related vegetation variables identified in the study[33]:	
1. Tree position,
2. Tree height, and
3. Inclination angle. | Tree height is lower and dissimilar in the landslide than in the stable areas. |
| | | Stem curve modelling and quantification using RANSAC based robust stem reconstruction method and a Frenet-Serret formulas [34]. | Trees are also more inclined in the landslide area than in the stable area. |
| 2. | Tree crown gap | The canopy gap identified by using gap indicator function, G [6]:
$$G(x, y) = \begin{cases}
\text{if } CHM(x, y) < a \\
\text{otherwise}
\end{cases}$$ (1) | The research introduced the method for assessing the inclination angle, curvature, and torsion along the tree stem for shallow landslide activity detection. |
| | | Three mapping methods [35]: i. thresholding,
ii. per-pixel, and
iii. per-object supervised classification. | The gaps between the trees are larger.
The shapes of canopy gaps varied depending on the landslide types:
i. Rock falls resulted in gaps that are elongated in the downslope direction, and
ii. Complex landslide (rotational landslide followed with earthflow) are likely to produce small gaps that are scattered over the area. |
| | | A novel method in classifying the shape of gaps using landscape indices and multivariate statistics [36]. | This research focused on the assessment of canopy gap derivation method. The performance of CHM-based thresholding was exceeded by that of other methods. |
| 3. | Root Strength Index | The root strength index was used in indicate the rate of landslide [37]:
$$RST = H \times \sqrt{D}$$ (2)
Where RST: the root strength index, H: estimated tree height, D: estimated tree density. | Canopy openings of gap type 3 (the largest gaps that were more regular in shape) were observed in the study area indicate that landslides or clear cutting were potential reasons for these areas. |
| 4. | Trunk characteristics | - Tree with curved trunks [38], and
- “Drunken trees” [33]. | Increase of the root strength index will decrease the rate of landslides. Root strength improved the prediction of shallow landslides. |
| | | | Curved trunks cause by soil creep activity. |
The finding clearly shows that landslide area always produces large gap between the trees. The pattern of the gap also varied based on the landslide types. Wu et al. [36] demonstrated a shape-based methodology for gap classification by using landscape indices and multivariate statistics from aerial photograph. They discovered that landslide was a potential reason for large canopy gap. This study can be improved by integrating the aerial photograph and LiDAR point cloud in determining the canopy gap. Next, root strength index was proposed by Iwahashi et al. [37] for predicting the rate of rainfall-induced landslides Hofu region, Japan. This index derived from tree parameters including tree height, tree diameter, and density of tree stands. They conclude that the rate of landslide decreased by increasing the root strength index. This index also highly significant in predict the shallow landslides. Besides that, trunk characteristics also associated with landslide activity. Razak et al. [33] and Menashe [38] found that curved trunk also known as “drunken trees” usually caused by slow or gradual soil creep. This anomaly was successfully parameterized from tree inclination angle by using HDAL. Menashe [38] has described several pattern of the trees as an indicator of landslide activity as shown in Table 4.

6. Conclusion
Landslides are among the most dangerous natural disasters. A lot of organisations including government and academic institutions have endeavored for quite a long time in assessing the landslide hazard and risk at any condition. This paper has reviewed a different method of remote sensing technique that can be applied for landslide study followed by description on landslides and landslides activity inventory mapping. The role of vegetation also cannot be indisputably. Vegetation anomalies can provide better understanding on landslide activity. The characteristics such as curved trunks and canopy gap need to be further explored especially in parameterize the indicator using multi-resolution remote sensing data.

Acknowledgement
This work is financed by Universiti Teknologi Malaysia, Ministry of Higher Education of Malaysia, GUP grant vot number Q.J130000.2527.19H43, and Zamalah/ Institutional Scholarship.

References
[1] USGS 2004 Landslide Types and Processes *Highway Research Board Special Report* no. July pp 1-4
[2] Mia M T and Paul A 2015 Studies on the Causes, Impacts and Mitigation Strategies of Landslide in Chittagong city, Bangladesh *J. Environ. Sci. Nat. Resour* vol 8 no. 2 pp 1-5
[3] Kaur H Gupta S and Parkash S 2017 Comparative evaluation of various approaches for landslide hazard zoning: a critical review in Indian perspectives Spat. Inf. Res vol 25 no. 23 pp 389-398
[4] Gariano S L and Guzzetti F 2016 Landslides in a changing climate Earth-Science Rev. vol 162 pp 227-252
[5] Scaioni M, Longoni L, Melillo V, and Papini M 2014 Remote sensing for landslide investigations: An overview of recent achievements and perspectives Remote Sensing vol 6 no. 10 pp 9600-9652
[6] Razak K A 2014 Airborne laser scanning: for forested landslides investigation in temperate and tropical environments Utrecht University Repository
[7] Pirasteh S, Li J, and Chapman M 2017 Use of LiDAR-derived DEM and a stream length-gradient index approach to investigation of landslides in Zagros Mountains, Iran Geocarto Int vol 6049 no. May pp 1-15
[8] Casagli N, Tofani V, Morelli S, Frodella W, Ciampalini A, Raspini F, and Intrieri E 2017 Remote Sensing Techniques in Landslide Mapping and Monitoring, Keynote Lecture Advancing Culture of Living with Landslides, Advances in Landslide Technology pp 1–19
[9] Pirasteh S and Li J 2016 Landslides investigations from geoinformatics perspective: quality, challenges, and recommendations Geomatics, Nat. Hazards Risk vol 5705 no. December pp 1–18
[10] Saadatkhah N, Kassim A, and Lee L M 2014 Qualitative and quantitative landslide susceptibility assessments in Hulu Kelang area, Malaysia Electron. J. Geotech. Eng. vol 19C pp 545–563
[11] Vakhshoori V and Zare M 2016 Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods Geomatics, Nat. Hazards Risk vol 7 no 5 pp. 1731–1752
[12] Mandaglio M C, Gioffrè D, Pitasì A, and Moraci N 2016 Qualitative Landslide Susceptibility Assessment in Small Areas Procedia Eng. vol 158 pp 440–445
[13] Michoud C, Abellán A, Derron M H, and Jaboyedoff M 2012 SafeLand deliverable 4.1.: Review of Techniques for Landslide Detection, Fast Characterization, Rapid Mapping and Long-Term Monitoring, European Project Safe-Land
[14] Zhong L, Tong L, Chen Y, Y. Wang, Li M, and Cheng L 2013 An automatic technique for registering airborne and terrestrial LiDAR data Int. Conf. Geoinformatics, no 41001238
[15] Starek M, Mitasova H, Hardin E, Weaver K, Overton M, and Harmon R 2011 Modeling and analysis of landscape evolution using airborne, terrestrial, and laboratory laser scanning Geosphere vol 7 no. 6 p 1340
[16] Ismail Z, Rahman M Z A, Salleh M R M, Busu I, Amerudin S, and Kadir W H W 2015 An improved progressive morphological filtering algorithm based on spatially-distributed slope value over tropical vegetated regions J. Teknologi vol 77 no. 26 pp 87–93
[17] Muhadi N A, Abdullah A F, and Kassim M S M 2016 Quantification of terrestrial laser scanner (TLS) elevation accuracy in oil palm plantation for IFSAR improvement IOP Conf. Ser. Earth Environ. Sci. vol 37 no. 1
[18] Borkowski A, Jozkow G, and Ziaja M 2014 Accuracy of 3D Building Models Created Using Terrestrial and Airborne Laser Scanning Data FIG Congress 2014 no. June pp 1–10
[19] Cruden D M and Varnes D J 2013 Landslide Types and Processes Washington DC
[20] Sable P D, Shinde P S B, Mule S S, Pawar S S, and Tamboli J K 2016 Landslide Investigation in Bhor Tahsil: A Case Study of Mahadevwadi Int. J. Eng. Sci. Comput. vol 6 no 4 pp 3926–3930
[22] Sable P D, Gawande S M, Bangar L P, Wanare P B, and Sagar A T 2017 Landslide investigation in Mulshi Tehsil: A case study of Tamhini Ghat *Int. J. Inf. Futur. Res.* vol 4 no. 9 pp 7361–7368

[23] Setiawan H, Takara K, Kyoji S, and Miyagi T 2015 Shear strength reduction in progress of shear displacement on the landslide near dam reservoir *Procedia Environ. Sci.* vol 28 pp 587–594

[24] Thiebes B 2012 *Landslide Analysis and Early Warning Systems: Local and Regional Case Study in the Swabian Alb, Germany* Springer Science & Business Media

[25] Jones D K C and Lee E M 1994 *Landsliding in Great Britain.* Stationery Office Books (TSO)

[26] Evans N C, Huang S W, and King J P 1997 The natural terrain landslide study—phases I and II. Special project report SPR5/97 *Geotech. Eng. Off. Hong Kong*

[27] Singroy V 2005 *Landslide Hazard and Risk*

[28] Taylor F and Brabb E E 1986 *Map showing landslides in California that have caused fatalities or at least $1,000,000 in damages from 1906 to 1984* Reston VA

[29] Cardinali M, Guzzetti F, and Brabb E E 1990 *Preliminary maps showing landslide deposits and related features in New Mexico* US Geological Survey no. 90-293

[30] Wieczorek G F 1984 Preparing a detailed landslide-inventory map for hazard evaluation and reduction *Bull. Assoc. Eng. Geol.* vol 21 no 3 pp 337–342

[31] Thierry Y, Malet J, Sterlacchini S, Puissant A, and Maquaire O 2007 Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment *Geomorphology* vol 92 no. 1-2 pp 38–59

[32] Soeters R and Van Westen C J 1996 Slope instability recognition, analysis, and zonation *Landslides, investigation and mitigation* (Transportation Research Board, National Research Council, Special Report; 247)

[33] Razak K A, Bucksch A, Damen M, Van Westen C J, Straatsma M, and De Jong S 2013 Characterizing tree growth anomaly induced by landslides using lidar *Landslide Sci. Pract. Landslide Invent. Susceptibility Hazard Zo.* vol 1 no. October pp 235–241

[34] Wang D, Hollaus M, Schmaltz E, Wieser M, Reifeltshammer D, and Pfeifer N 2016 Tree Stem Shapes Derived from TLS Data as an Indicator for Shallow Landslides *Procedia Earth Planet. Sci.* vol 16 no. 1 pp 185–194

[35] Bonnet S, Gaulton R, Lelhaire F, and Lejeune P 2015 Canopy Gap Mapping from Airborne Laser Scanning: An Assessment of the Positional and Geometrical Accuracy *Remote Sensing* vol 7 pp 11267–11294

[36] Wu C D, Cheng C C, Chang C C, Lin C, Chang K C, and Chuang Y C 2016 Gap Shape Classification using Landscape Indices and Multivariate Statistics *Sci. Rep.* vol 6 p 38217

[37] Iwahashi J, Okatani T, Nakano T, and Koarai M 2014 Landslide Susceptibility Analysis by Terrain and Vegetation Attributes Derived from Pre-event LiDAR data: a case study of granitic mountain slopes in Hofu *INTERPRAEVENT2014 Pacific Rim*, p 20

[38] Menashe E 1993 Vegetation management: A guide for Puget Sound bluff property owners *Shorelands Coast. Manag. Program, Washingt. Dep. Ecol. Publ.* pp 31–93

[39] Thorsen G W 1987 Soil bluffs+ rain= slide hazards *Washingt. Geol. Newsl.* vol 15 no. 3 pp 3–11

[40] Keck J, Hsiao C Y, Lin B S, Chan M H, and Wright W 2014 Spatiotemporal Landslide Activity Derived from Tree-Rings: The Tieliku Mingsui Landslide, Northern Taiwan *J. Chinese Soil Water Conserv.* vol 45 no. 1 pp 36–48