15d-PGJ$_2$ inhibits cell growth and induces apoptosis of MCG-803 human gastric cancer cell line

Yun-Xian Chen, Xue-Yun Zhong, Yan-Fang Qin, Wang Bing, Li-Zhen He

Abstract

AIM: To investigate the influence of peroxisome proliferator-activated receptor γ (PPARγ) ligand, 15-deoxy-α,12, 14-prostaglandin J$_2$(15dPGJ$_2$) on the proliferation and apoptosis of MCG-803 human gastric cancer cell lines.

METHODS: Cell proliferation was measured by 3H-TdR assay. Apoptosis was determined by ELISA and TUNEL staining. Protein and mRNA level of bcl-2 family and COXs were measured by Western blotting and Northern blotting respectively. PGE$_2$ production was examined by RIA.

RESULTS: 15dPGJ$_2$ inhibited cell growth and induced apoptosis of MCG-803 cells. The COX-2 and bcl-2/bax ratios were decreased following 15dPGJ$_2$ treatment. The PGE$_2$ production in supernatants was also decreased. These changes were in a dose-dependent manner.

CONCLUSION: 15dPGJ$_2$ may be a useful therapeutic agent for the treatment of gastric cancer.

INTRODUCTION

Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor, provided a strong link between lipid metabolism and the regulation of gene transcription$^{[1,2]}$. Recent studies showed that PPARγ was expressed at high levels in human colon cancer cells$^{[3-5]}$. Ligand activation of PPARγ in human colon cancer cells caused a reduction of growth$^{[6,7]}$. In contrast, two independent groups demonstrated that activation of PPARγ promoted the development of colon tumors in mice$^{[8,9]}$. Thus the roles of PPARγ activation in the growth of colon tumors are controversial. In addition to colon cancer, PPARγ activation induced growth arrest in human liposarcoma, prostate cancer and breast cancer$^{[10]}$. These results suggest that PPARγ activation may be implicated in the proliferation and apoptosis of malignant tumor cells.

Gastric cancer is the most common malignant tumor of gastrointestinal tract in the world. The survival rate in gastric cancer is poor. Although PPARγ expression has been studied in various epithelial cancer cell lines such as colon, prostate and breast, no information is available as to whether PPARγ is involved in the regulation of gastric cancer cell survival. In the present study, we investigated the effect of natural PPARγ ligand, 15dPGJ$_2$ on the growth and apoptosis of gastric cancer cell lines. We have further examined the role of bcl-2 family in the regulation of 15dPGJ$_2$-induced apoptosis. In addition, the change of cyclooxygenase (COXs) and the rate-limiting enzyme in the synthesis of prostaglandins (PGs) have been investigated in the process since COXs is recently considered as a promoter of human gastrointestinal cancer.

MATERIALS AND METHODS

Cell line and reagents

MCG-803 gastric cancer cell was kindly provided by Cancer Institute, Zhongshan University. Cells were maintained in RPMI-1640 medium and supplemented with 10% new fetal bovine serum. Antibodies used in this study were obtained from Santa Cruz Biotech. The apoptosis ELISA kit and RIA kit were purchased from Sigma.

[H] Thymidine incorporation

Cells were planted in 96-well plates and grown for 24 h after they were serum starved for 48 h. They were treated with 15dPGJ$_2$ for 48 h and pulsed with 5 µCi of [H] thymidine for 4 h. We counted the radioactivity in Beckman L5 counter after washing the cells and stopping the reaction with 5% trichloacetic acid and solubilizing the cells in 0.5% of 0.25 N sodium hydroxide. Each experiment was done in quadruplicates and repeated at least three times.

TUNEL

TUNEL assay was performed using the apoptosis detection system.15dPGJ$_2$ (0, 10, 30 µM) was added to the culture medium for 48 h. Cells were fixed with 4% paraformaldehyde in PBS overnight at 4°C. The samples were washed three times in PBS and permeabilized by 0.2% Triton X-100 in PBS for 15 min on ice. After washed twice, cells were equilibrated at room temperature for 15-30 min in equilibration buffer (200 mmol/L potassium cacodylate, 0.2 mmol/L dithiothreitol, 0.25 g/L bovine serum albumin, and 2.5 mmol/L cobalt chloride in 25 mmol/L Tris-HCL, pH 6.6) and incubated in the presence of 5 µmol/L fluorescein-12-dUTP, 10 µmol/L dATP, 100 µmol/L ethylenediaminetetraacetic acid (EDTA), and terminal deoxynucleotidyl transferase at 37°C for 1.5 h in dark. The tailing reaction was terminated by 2xstandard saline citrate (SSC). The samples were washed three times in PBS and analyzed by fluorescence microscopy. At least 1000 cells were counted, and the percentage of TUNEL-positive cells was determined.

Detection of apoptotic DNA fragmentation

MCG-803 cells were grown in 96-well culture plates. The cells were serum starved for 48 h, treated with 15dPGJ$_2$ for 48 h, and pulsed with 5 µCi of [H] thymidine for 4 h. The samples were washed three times in PBS and permeabilized by 0.2% Triton X-100 in PBS for 15 min on ice. After washed twice, cells were equilibrated at room temperature for 15-30 min in equilibration buffer (200 mmol/L potassium cacodylate, 0.2 mmol/L dithiothreitol, 0.25 g/L bovine serum albumin, and 2.5 mmol/L cobalt chloride in 25 mmol/L Tris-HCL, pH 6.6) and incubated in the presence of 5 µmol/L fluorescein-12-dUTP, 10 µmol/L dATP, 100 µmol/L ethylenediaminetetraacetic acid (EDTA), and terminal deoxynucleotidyl transferase at 37°C for 1.5 h in dark. The tailing reaction was terminated by 2xstandard saline citrate (SSC). The samples were washed three times in PBS and analyzed by fluorescence microscopy. At least 1000 cells were counted, and the percentage of TUNEL-positive cells was determined.

World J Gastroenterol 2003;9(10):2149-2153
were incubated with various doses of 15dPGJ2 for 24 h. Apoptotic DNA fragmentation was determined using a commercially available enzyme-linked immunosorbent assay (ELISA) kit from Sigma. This assay was based on a quantitative Sandwich enzyme-immunoassay directed against cytoplasmic histone-associated DNA fragments. Briefly, the cells were incubated in 200 µL lysis buffer provided with the kit, the lysates were centrifuged, and 20 µL supernatant containing cytoplasmic histone-associated DNA fragments were reacted overnight at 4°C in streptavidin-coated microtiter wells with 80 µL immunoreagent mixture containing biotinylated anti-histone antibody and peroxidase-conjugated anti-DNA antibody. After washing, the immunocomplex-bound peroxidase was probed with 2, 2'-azino-di [3-ethylbenzthiazoline sulfonate] for spectrophotometric detection at 405 nm.

RIA for PGE2

The amounts of immunoreactive PGE2 in supernatants were determined by radioimmunoassay (RIA) using a commercially available RIA kit according to the manufacturer’s instructions. Briefly, to each polypropylene RIA tube were added 100 µL each of anti-PGE2, 125I-PGE2, and PGE2 or the sample. Immune complexes were precipitated 24 h later with 1 ml of 16 % polyethylene glycol solution, and a gamma counter determined the radioactivity in the precipitate. There was no nonspecific interference of the assay by the components of the sample. Determinations were carried out in triplicate and the means and standard deviations were obtained.

Western blot analysis

The cells were lysed in lysis buffer containing 25 mM Hepes, 1.5 % Triton X-100, 1 % sodium deoxycholate, 0.1 % SDS, 0.5 M NaCl, 5 mM EDTA, 50 mM NaF, 0.1 mM sodium vanadate, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 0.1 g/L eupeptic (pH7.8) at 4°C with sonication. The lysates were centrifuged at 15 000g for 15 min and the concentration of the protein in each lysate was determined with Coomassie brilliant blue G-250. Loading buffer (42 mM Tris-HCl, 10 % glycerol, 2.3 % SDS, 5 % 2-mercaptoethanol and 0.002 % bromophenol blue) was then added to each lysate, which was subsequently boiled for 3 min and then electrophoresed on a SDS-polyacrylamid gel. Proteins were transferred to nitrocellulose and incubated respectively with antibodies against COX-1, COX-2, PPARγ, Bcl-2, bax, bcl-2, and β-actin, and then with peroxidase-conjugated secondary antibodies. Detection was performed with enhanced chemiluminescence reagent.

Northern blot

Total mRNA was isolated and stored at -80°C until use. The synthetenic DNA oligonucleotide probes complemented to COX-1, COX-2, PPARγ, Bcl-2, bax, bcl-2, and β-actin mRNA were labeled using terminal deoxynucleotidyltransferase (Boehringer). Thirty mg of RNA per sample was separated on 1% agarose-formaldehyde gels and transferred to nylon membranes. The blots were hybridized overnight at 42°C, washed in 0.2×SSC containing 0.1 % SDS at 50°C for 10 min, and subjected to autoradiography.

Statistical analysis

Data were presented as the mean ± standard error of the mean, unless otherwise indicated. Multiple comparisons were made for significant differences using analysis of variance, followed by individual comparisons with the Bonferroni post-test. Comparisons between two groups were made with the Student t test. A P<0.05 was considered significant.

RESULTS

15dPGJ2 inhibited growth of MCG-803 cells

To evaluate the effect of 15dPGJ2 on the growth of MCG-803 cells, 15dPGJ2 (1,10,30 µM) was added to the culture medium for 48 h. Cell growth was determined by H-thymidine incorporation assay. (Figure 1). 15dPGJ2 inhibited MCG-803 cell growth in a dose-dependent manner.

Figure 1 Effect of 15d-PGJ2 on cell growth by H-thymidine incorporation assay (48 h). MCG-803 cells were incubated with various concentrations of 15d-PGJ2 for 48 h. The data are presented as the mean ± SEM (n=3), *P*<0.05, *P*<0.01 versus control group.

15dPGJ2 induced apoptosis in MCG-803 cells

There are several methods to evaluate apoptosis. In this study, we used ELISA and TUNEL to check for apoptosis of MCG-803 cells after 24 h treatment with 15dPGJ2. The percentage of TUNEL-positive cells increased from 13.7±1.5 % to 48.3±2.9 % (Table 1). The same results were obtained by ELISA. The effect of 15dPGJ2 at concentrations from 1 µmol/L to 30 µmol/L on DNA fragmentation in MCG-803 cells is shown in Figure 2. 15dPGJ2 was found to significantly induce DNA fragmentation after the onset of incubation and this effect was in a dose-dependent manner.

Table 1 TUNEL assay performed using apoptosis detection system

15d-PGJ2 (µM)	Control	10	30
Percentage of TUNEL-positive cells	13.7±1.5 %	34.9±2.7 %	48.3±2.9 %

15dPGJ2 (0, 10, 30 µM) was added to the culture medium for 48 h. The percentage of TUNEL-positive cells was determined. *P*<0.05, *P*<0.01 compared with respective controls. The value is represented as mean±SEM (n=3), *P*<0.01 versus corresponding control groups.

Figure 2 Effect of 15d-PGJ2 on DNA fragmentation in MCG-803 cells. Cytoplasmic histone-associated DNA fragments were determined using a commercial ELISA kit. Culture of MCG-803 cells for 24 h in the presence of 15d-PGJ2 resulted in dose-dependent DNA fragmentation (A405) and 3H-thymidine uptake (cpm).
dependent DNA fragmentation. \(\ast P < 0.05, \ast \ast P < 0.01 \) compared with the controls. The value is represented as mean±SEM \((n=3) \).

PPAR mRNA and protein expression in MCG-803 cells increased by 15dPGJ2

Since 15dPGJ2 is a potent PPAR agonist in the events leading to cell apoptosis, we have investigated its effects on the expression of PPARγ mRNA and protein. MCG-803 cells were treated with 15dPGJ2 in the range of 1-30 \(\mu M \) for 6 h. Figure 4 shows that PPARγ mRNA expression was significantly increased in a dose-dependent manner. A Western blot analysis further showed that the mRNA levels encoding PPARγ upon treatment with 15dPGJ2 could be related to the variation of the corresponding protein (Figure 3).

Effect of 15dPGJ2 on COXs expression and PGE2 production in MCG-803 cells

To assess the role of COXs in 15dPGJ2 induced apoptosis, we first examined the changes of COX-1 and COX-2 in MCG-803 cells treated with 15dPGJ2. As shown in Figures 3 and 4, the COX-2 protein increased 6 h after 15dPGJ2 treatment and no change was observed in protein expression of COX-1. In Northern blot analysis, similar results were obtained. The expression of COX-1 mRNA was not changed and COX-2 mRNA was not regulated by 15dPGJ2 in dose dependent manners. We used specific RIA to measure the production of PGE2 as COX2, catalyzed the rate-limiting step in the biosynthesis of prostaglandins. Parallel to the inhibition of COX-2, decrease of PGE2 was found in culture medium of HCG-803 cells stimulated by 15dPGJ2 (Figure 5). These results further confirmed that COX-2, not COX-1 activity was changed by 15dPGJ2.

DISCUSSION

Peroxisome proliferator-activated receptor (PPAR) \(\gamma \), a member of the steroid nuclear hormone receptor superfamily, has been known to trigger adipocyte differentiation and lipid storage by regulating the expression of genes critical for adipogenesis. PPARγ functioned as a ligand-dependent transcription factor, which upon heterodimerization with the retinoid X receptor (RXR), bound to specific response elements termed peroxisome proliferator response elements (PPRE). Activation of this receptor has been implicated in tumor promotion, cellular differentiation and apoptosis.

There are a number of naturally occurring agents that activate PPARγ. Some J-series prostaglandins have been found to bind to PPARγ in low micromolar range. The PGD2 derivative, 15-deoxy-12, 14-PGJ2 (15d-PGJ2) was a high affinity ligand \((K_d=300 \text{ nM}) \) that demonstrated anti-inflammatory and anti-neoplastic activity.

The anti-neoplastic activity of PPARγ ligand prompted us to determine whether 15dPGJ2 would trigger MCG-803 cells to undergo apoptosis. The results from Western blotting and Northern blotting have demonstrated that PPARγ gene and protein expression were clearly observed in MCG-803 cells. 15dPGJ2 stimulated the expression of PPARγ mRNA and its product. Coincubation of MCG-803 cells with 15dPGJ2 potently inhibited cell growth and induced apoptosis in a dose-
related fashion. The dose-dependent suppression of cell growth in cancer cells was also reported after a number of synthetic PPARγ ligands such as thiazolidinediones (TZDs) and non-steroidal anti-inflammatory drugs (NSAIDs) treatment[9]. These results suggest that activation of the PPARγ pathway by 15dPGJ2 induces MCG-803 cells to undergo apoptosis.

In this study, the well-known important mediator of apoptosis, bcl-2 family was examined in MCG-803 cells treated with 15dPGJ2. In bcl-2 family, bcl-2 and bcl-XL were anti-apoptotic, whereas bax, bad and bak were pro-apoptotic[23].

The ratio of anti-apoptotic factor to pro-apoptotic factor in the cells was assumed to be a critical mechanism in maintaining normal homeostasis. A higher concentration of bax compared with bcl-2 enhanced susceptibility to apoptosis. Nevertheless, the cell continued to survive if bcl-2 predominated over bax. One of the most significant problems in the treatment of cancer was the resistance of cancer cells to chemotherapy-induced apoptosis. Of gastric cancers, 72% bcl-2 overexpression and 33-40% bax frameshift mutation were observed[24-26]. A higher ratio of bcl/bax strongly blocked gastric cancer cell apoptosis by inhibiting cytochrome C release from mitochondria and Caspase-3 activation[27-31]. Our data indicated that 15dPGJ2 led to a dramatic decrease in bcl-2 and increase in bax. The bcl-XL remained unchanged after 15dPGJ2. In addition, the decreased ratio of bcl/bax was detected prior to commencement of cell apoptosis after 6 h treatment. These results suggested a direct effect of PPAR pathway on bcl/bax expression. Therefore we concluded that the change of bcl-2 family might play a key role in 15dPGJ2-induced apoptosis in MCG-803 cells.

Cyclo-oxygenase (COX) was the rate-limiting enzyme that catalyzed the initial step in biosynthesis of prostaglandins (PG) from arachidonic[32,33]. COX is encoded by two separate genes, COX-1 and COX-2, both of which participate in formation of a variety of eicosanoids. COX-1 is expressed constitutively in most tissues and has been proposed to be a housekeeping gene involved in cytoprotection of gastric mucosa, vasodilation in the kidney, and control of platelet aggregation. In contrast, COX-2 is an inducible immediate early gene that is upregulated by various stimuli including mitogens, cytokines, growth factors, and tumor promoters. Accumulating evidence has shown that increased PGE2 levels via overexpression of the inducible COX-2 isofrom were important in the development of human cancer[34]. Previous studies have demonstrated that COX-2 expression was aberrantly increased in various human epithelial cancers, including those of colorectal[35,36], esophageal[37], gastric[38], lung[39] and bladder origin[40]. Data in this study also showed apparent COX-2 expression in MCG-803 cells. These findings suggest that cellular upregulation of COX-2 and PGE2 may be a common mechanism in epithelial carcinogenesis.

In gastrointestinal system, it has been reported that COX-2 overexpression led to the inhibition of apoptosis or altered cell cycle kinetics in epithelial cells[41,42]. Numerous epidemiological studies suggested that non-steroidal anti-inflammatory drugs (NSAIDs) decreased incidence of gastrointestinal cancers and COX-2 was recognized as a major target of NSAIDs. Inhibition of COX-2 by NSAIDs or COX-2-specific inhibitors caused cell death in cancer cells[43-49], indicating that COX-2 was an important molecular target for prevention and treatment in gastrointestinal cancers. In this study, a crucial issue yet to be resolved was whether COX-2 inhibition played a role in the induction of apoptosis by 15dPGJ2 in human gastric carcinoma. We found decreased expression of COX-2 mRNA and protein as well as PGE2 production in MCG-803 after 15dPGJ2 treatment. Our current study demonstrated that the decrease in COX-2 expression occurred prior to apoptosis, suggesting that down-regulation of COX-2 might be an upstream event of 15dPGJ2-induced apoptosis. These changes may imply that 15dPGJ2, interferes with the expression of COX-2 and PGE2 production, thereby contributing to induced apoptosis in MCG-803 cells.

The premise is that COX-2 inhibitor has antitumor effect is based on the assumption that prostaglandins and other COX-2 generated downstream mediators promote tumor cell proliferation, survival, and angiogenesis in an autocrine and/or paracrine manner[50-53]. It was also reported that selective cyclo-oxygenase-2 inhibitor induced apoptosis and down-regulated bcl-2 expression in cancer cells[54]. Sheng H also found modulation of apoptosis and Bcl-2 expression by PGE2 in human colon cancer cells[55]. However, Hsu AL reported that the cyclo-oxygenase-2 inhibitor celecoxib induced apoptosis by blocking Akt activation in human prostate cancer cells independent of Bcl-2[56]. In this study no data proved that Bcl-2 was one of the downstream mediators when COX-2 was inhibited by 15dPGJ2. The precise mechanisms on the molecular interaction of COX and bcl-2 expression in 15dPGJ2 induced gastric apoptosis should be established by more profound analysis.

In summary, our data demonstrate that 15dPGJ2 inhibited the growth of human gastric cancer cells (MCG803). It is proposed that the decrease of bcl-2/bax ratio and COX-2 be responsible for the apoptotic process in MCG803 cells. Furthermore, PPARγ ligand is a new strategic approach to provide new anticancer therapies.

REFERENCES

1 Forman BM, Chen J, Evans RM. Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors alpha and delta. Proc Natl Acad Sci 1997: 94: 4312-4317
2 Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci 1997: 94: 4318-4323
3 Saffa F, Mueller E, Jones D, King F, DeAngelis DJ, Partridge JB, Holden SA, Chen LB, Singer S, Fletcher C, Spiegelman BM. Differential regulation and reversal of malignant changes in colon cancer through PPARgama. Nature M 1998; 4: 1046-1052
4 Brockman JA, Gupta RA, Dubois RN. Activation of PPARgamma leads to inhibition of anchorage-independent growth of human colon cancer cells. Gastroenterology 1998; 115: 1049-1055
5 Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J. The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 1997; 272: 18779-18789
6 Lefebvre AM, Chen I, Desreumaux P, Najib J, Fruchart JC, Geboes K, Briggs M, Heyman R, Auwerx J. Activation of the peroxisome proliferator-activated receptor g promotes the development of colon tumors in c57bl/6 j-acp/cac in/ + mice. Nature M 1998; 4: 1053-1057
7 Saez E, Tontonoz P, Nelson MC, Alvarez JGA, Ming T, Baird SM, Thomazy VA, Evans RM. Activators of the nuclear receptor PPARgama enhance colon polyp formation. Nat M 1998; 4: 1058-1061
8 Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Burn RP, Mueller E, Ailtok S, Oppenheim H, Evans RM, Spiegelman BM. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci U S A 1997; 94: 237-241
9 Kubota T, Koshizuka K, Willamson EA, Cuccurello S, Miyoshi I, Koe•er HP. Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer cells in vivo. Cancer Res 1996; 56: 3344-3352
10 Elstner E, Muller C, Koshizuka K, Willamson EA, Parke D, Asou H, Shintaku P, Said JW, Heber D, Koe•er HP. Ligands for peroxisome proliferator-activated receptor gamma and retinoic acid...
Chen YX et al. 15d-PGJ2 inhibits growth and induces apoptosis of MCG-803 cell line

receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BN Mice. Proc Natl Acad Sci U S A 1998; 95: 8806-8811

Evans RM. The steroid and thyroid hormone receptor superfamily. Science 1988; 240: 889-95

Spiegelman BM. PPAR gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507-514

Drayer C, Keller H, Mahfoudi A, Laude T, Krey G, Wahl W. Positive regulation of the peroxisome beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biol Cell 1993; 77: 67-76

Kliewer SA, Umesono K, Noonan D, Heyman R, Evans RM. Positive regulation of the peroxisome beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Nature 1992; 358: 771-774

Lempper T, Desvergne B, Wahl W. Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. Annu Rev Cell Dev Biol 1996; 12: 336-363

Tugwood JD, Issennann I, Andersen RG, Bundell KR, McPheat W, Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the S-flanking sequence of the rat acyl CoA oxidase gene. EMBO J 1992; 11: 433-439

Vanden Heuvel JP. Peroxisome proliferator-activated receptors (PPARs) and carcinogenesis. Toxicol Sci 1999; 47: 1-8

Yu K, Bayona W, Kaline CB, Harding HP, Ravera CP, McMahon G, Brown M, Lazar MA. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 1995; 270: 23975-23983

Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 2001; 21: 185-210

Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor gamma is a negative regulator of macrophage activation. Nature 1998; 391: 79-82

Jiang C, Ting A, Seed B. PPAR gamma agonists inhibit primary monocytic production of cytokines. Nature 1998; 391: 82-86

Ohta K, Endo T, Haraguchi K, Ghersi JM, Ona T. Ligands for peroxisome proliferator-activated receptor-g inhibit growth, and induce apoptosis of human papillary thyroid carcinoma cells. J Clin Endocrinol Metab 2001; 86: 2170-2177

Reed J. Mechanisms of Bcl-2 family protein function and dysfunction in health and disease. Behring Instr Mtt 1996: 97: 72-100

Susin SA, Lorenzo HK, Zamzami N. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446

Lavoie JN, Nguyen M, Marcelus RC, Branuto PE, Shore GC. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J Biol Chem 1998; 273: 637-645

Schiappacini R, Fontana A. Differential activity of bcl-2 and ICE (caspase-1) protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. J Cell Biol 1997; 139A: 159-180

Wolter KG, Hsu YT, Smith CL, Nechushan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997; 139A: 1281-1292

Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borneis H. Prolongs cell survival after Bax-induced release of cytochrome c. Nature 1998; 391: 496--499

Vaux DL. CED-4 the third horseman of apoptosis. Cell 1997; 90: 389-390

Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997; 90: 405-413

Pan G, Humke EW, Dixit V. Activation of caspases triggered by cytochrome c in vitro. FEBS Lett 1998; 426: 153--154

Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De, Putte LB. Cyclooxygenase in biology and disease. FASEB J 1998; 12: 1063-1073

Herschman HR. Prostaglandin synthase 2. Biochem Biophys Res Commun 1996; 1299: 125-140

Takei M. Cyclooxygenase-2 inhibitors in tumorigenesis (part II). Nat Cancer Inst 1996; 80: 1609-1620

Eberhart CE, Coffrey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107: 1183-1188

Hao X, Bishop AE, Wallace M, Wang H, Willcocks TC, Madouf J, Polak JM, Knight S, Talbot IC. Early expression of cyclooxygenase-2 during sporadic colorectal carcinogenesis. J Pathol 1999; 187: 295-301

Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 1998; 58: 2929-2934

Ristimaki A, Honkanen N, Jankala H. Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 1997; 57: 1276-1280

Wolff H, Suikkonen K, Anttila S, Karjalainen V, Vainio H, Ristimaki A. Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 1998; 58: 4997-5001

Mohammed SI, Knapp DW, Bostwick DG, Foster RS, Khan KN, Mafserre JL, Woerner BM, Snyder PW, Koki AT. Expression of cyclooxygenase-2 (COX-2) in human invasive transitional cell carcinoma (TCC) of the urinary bladder. Cancer Res 1999; 59: 5647-5650

Tsujii M, DuBois RN. Alterations in cell adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 1995; 83: 493-501

DuBois RN, Shao J, Tsujii M, Sheng H, Beauchamp RD. G1 delay in cells overexpressing prostaglandin endoperoxide synthase 2. Cancer Res 1996; 56: 733-737

Chan TA, Morin PJ, Vogelstein B, Kinzler KW. Mechanisms underlying nonsteroidal anti-inflammatory drug-mediated apoptosis. Proc Natl Acad Sci U S A 1998; 95: 661-666

Piazza GA, Rahm AL, Kruttsch M, Spei G, Paranka NS, Gross PH. Antinflammatory drugs salindic sulfide and sulfone inhibit cell growth by inducing apoptosis. Cancer Res 1995; 55: 3310-3316

Harf R, Pittas A, Feng Y, Koutsos ML, Qiao L, Staiio-Coio L. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by a prostaglandin-independent pathway. Biochem Pharmacol 1996; 52: 237-245

Thompson HJ, Jiang C, Lu, Mehta RG, Piazza GA, Paranka NS. Sulfone metabolite of sulindac inhibits mammalian carcinogenesis. Cancer Res 1997; 57: 267-271

Jones MK, Wang H, Peskar BM, Levin E, Itami RM, Sarfet I. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 1999; 5: 1418-1423

Williams CS, Tsujii M, Reese J, Dey SK, Dubois RN. Host cyclooxygenase-2 modulates carcinogenesis. J Clin Invest 2000; 105: 1599-1594

Zhang X, Morham SG, Langenbach R, Young DA. Malignant transformation and antineoplastic actions of nonsteroidal anti-inflammatory drugs (NSAIDs) on cyclooxygenase-null embryo fibroblasts. J Exp Med 1999; 190: 451-459

Hla T, Ristimaki A, Appleby S, Barriocanal JG. Cyclooxygenase gene expression in inflammation and angiogenesis. Annu N Y Acad Sci 1993; 696: 197-204

Takei MM. Cyclooxygenase-2 inhibitors in tumorigenesis (part III). Nat Cancer Inst 1998; 90: 1529-1536

Hla T, Bishop-Bailey D, Liu CH, Schaefer HJ, Trifan OC. Cyclooxygenase-1 and -2 inhibitors. J Clin Biol Cell Biol 1999; 31: 551-557

Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis. Biochem Biophys Res Commun 2000; 275: 1139-1140

Edited by MajY