Influence of graviton on top-antitop production at the LHC

To cite this article: K Smolek et al 2008 J. Phys.: Conf. Ser. 110 072040

View the article online for updates and enhancements.

Related content
- MSSM effects in top-antitop production at the LHC
 D.A. Ross and M. Wiebusch
- Multiple Parton Interactions, top-antitop and W production at the LHC
 Ezio Maina
- Top quark production and properties at DØ
 G J Otero y Garzón
Influence of graviton on top-antitop production at the LHC

Karel Smolek¹, Masato Arai², Nobuchika Okada³, and Vladislav Šimák⁴

¹ Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horská 3a/22, 128 00, Prague 2, Czech Republic
² High Energy Physics Division, Department of Physical Sciences, University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, 00014, Helsinki, Finland
³ Theory Division, KEK, Tsukuba, Ibaraki 305-0801, Japan
⁴ Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, 115 19, Prague 1, Czech Republic

E-mail: karel.smolek@utef.cvut.cz, masato.arai@helsinki.fi, okadan@post.kek.jp, simak@fzu.cz

Abstract. We examine the top quark production in the brane world scenario. We study two typical models - the model proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) and the model of Randall and Sundrum (RS). In addition to the Standard Model processes, there is a new contribution to the top-antitop pair production process mediated by graviton Kaluza-Klein modes in the s-channel. We calculated the density matrix for the top-antitop pair production including the new contribution. With a reasonable parameter choice, we find a sizable deviation of the top-antitop quark spin correlations from those in the Standard Model.

1. Introduction

During the past several decades the gauge hierarchy problem has been a guiding principle to propose beyond the standard model (SM), and many new physics models have been proposed to solve this problem. Brane world scenario recently proposed provides a possible solution for this problem. In this scenario whole space has more than three spatial dimensions and the SM fields are confined on a 4-dimensional hypersurface called “D3-brane”. There are two typical models based on this setup. One is the so-called ADD model proposed by Arkani-Hamed, Dimopoulos and Dvali (ADD) [1] and the model proposed by Randall and Sundrum (RS) [2]. In these models, effects of extra-dimensions are essentially encoded in graviton. We examined the effect of the virtual Kaluza-Klein (KK) graviton exchange process on the spin correlations of the top-antitop pairs produced at the LHC [3, 4] in the ADD and RS scenario.

2. Spin correlations

At hadron collider, the top-antitop quark pair is produced through the processes of quark-antiquark pair annihilation and gluon fusion:

\[i \rightarrow t + \bar{t}, \quad i = q\bar{q}, gg. \]

The former is the dominant process at the Tevatron, while the latter is dominant at the LHC.
The best way to analyze the top-antitop spin correlations is to see the angular correlations of two charged leptons produced by the top-antitop quark leptonic decays. The decay can be parametrized as

\[
\frac{d^2\sigma}{\sigma \, d \cos \theta_{t^+} \, d \cos \theta_{t^-}} = 1 - \frac{\mathcal{A} \kappa_{t^+} \kappa_{t^-} \cos \theta_{t^+} \cos \theta_{t^-}}{4},
\]

with \(\kappa_{t^+} = \kappa_{t^-} = 1 \) for leptons. Here \(\sigma \) denotes the cross section for the process of the leptonic decay modes, and \(\theta_{t^+}, (\theta_{t^-}) \) denotes the angle between the top (antitop) spin axis and the direction of motion of the antilepton (lepton) in the top (antitop) rest frame. The coefficient \(\mathcal{A} \) denotes the spin asymmetry between the produced top-antitop pairs with like and unlike spin pairs:

\[
\mathcal{A} = \frac{\sigma(t\bar{t}) + \sigma(t\bar{t}) - \sigma(t\bar{t}) - \sigma(t\bar{t})}{\sigma(t\bar{t}) + \sigma(t\bar{t}) + \sigma(t\bar{t}) + \sigma(t\bar{t})}.
\]

In the Standard Model (SM), at the lowest order of \(\alpha_s \), the spin asymmetry is \(\mathcal{A} = 0.319 \) for the LHC.

3. ADD scenario

In the ADD model, there are \(n \)-extra dimensions compactified on \(n \)-torus with common radius \(R \) and a D3-brane embedded in \((4 + n) \)-dimensional bulk is introduced on which the SM fields reside. This setup gives a relation \(M_{pl} = M_D(M_D R)^{n/2} \) between the 4-dimensional Planck mass \(M_{pl} \) and the Planck scale of \((4 + n) \)-dimensions \(M_D \). If the compactification radius is large enough (for instance, \(R \sim 0.1 \) mm for \(n = 2 \)), \(M_D \) can be \(\mathcal{O}(1 \text{ TeV}) \) and thus one obtains a solution to the gauge hierarchy problem.

The results for the spin asymmetry \(\mathcal{A} \) as a function of the scale \(M_D \) in the ADD model calculated from density matrix [3] are presented in Fig. 1 (the parameter \(\lambda = \pm 1 \) encodes the ambiguity of the regularization procedure for the contributions from the infinite number of KK gravitons). We can see sizable deviations from the SM at the scale below \(\sim 2 \) TeV.

4. RS scenario

The RS scenario is a 5-dimensional model, where one extra-dimension is compactified on a S\(^1\)/Z\(_2\) orbifold and a negative cosmological constant is introduced in the bulk. Two D3-branes are placed at fixed points of the orbifold \(\phi = 0 \) and \(\phi = \pi \) (\(\phi \) is an angle of S\(^1\)) with opposite brane tensions. A brane at \(\phi = 0 \) with a positive tension is called the hidden brane and the
other one at $\phi = \pi$ with a negative tension is called the visible brane on which the SM fields are confined. Solving the Einstein equation of this system, the 5-dimensional bulk geometry is found to be a slice of anti-de Sitter (AdS$_5$) space, $ds^2 = e^{-2\kappa r_c |\phi|} \eta_{\mu\nu} dx^\mu dx^\nu - r_c^2 d\phi^2$, where κ is the AdS curvature in five dimensions, and r_c is a compactification radius. This background geometry allows us to take the Planck scale as a fundamental scale. Indeed, in an effective 4-dimensional description an effective mass scale on the visible brane is warped down such as $\Lambda_\pi = \bar{M}_{pl} e^{-\pi \kappa r_c}$ due to effect of the warped geometry, where \bar{M}_{pl} is the reduced Planck mass. Therefore, with a mild parameter tuning, $\kappa r_c \simeq 12$, we can realize $\Lambda_\pi = O(1 \text{ TeV})$ and obtain a natural solution to the gauge hierarchy problem.

We study the top spin correlations in the RS scenario. The free parameters in the model are the mass of the lightest Kaluza-Klein graviton m_1 (we use $m_1 = 600 \text{ GeV}/c^2$) and κ/\bar{M}_{pl}, where κ is curvature in five dimensions and \bar{M}_{pl} is the reduced Plack mass.

We computed the density matrix describing the production of the top-antitop pairs in the RS model [4]. In Fig. 2, the spin asymmetry A as a function of the top-antitop invariant mass $M_{t\bar{t}}$ is presented. The resonant production of the Kaluza-Klein gravitons give rise to a remarkable enhancement of the deviations from the Standard Model. In Fig. 3, we show the spin correlations A as a function of κ/\bar{M}_{pl}. We can see a sizable deviation from the Standard Model.

![Figure 2](image1.png) ![Figure 3](image2.png)

Figure 2. Spin asymmetry A as a function of the top-antitop invariant mass $M_{t\bar{t}}$. The solid line corresponds to the SM, while the dashed lines correspond to the RS model with $\kappa/\bar{M}_{pl} = 0.01, 0.04, 0.07$ and 0.1 from up to down.

Figure 3. Spin asymmetry A as a function of κ/\bar{M}_{pl} at the LHC with $E_{CMS} = 14 \text{ TeV}$. As $\kappa/\bar{M}_{pl} \to 0$, A becomes the SM value, 0.319.

5. Conclusion
We studied the top-antitop pair production and the top spin correlations at the LHC in the ADD and RS model. With a reasonable parameter choice, we found a sizable deviation of the top-antitop spin correlations from those in the Standard Model.

Acknowledgments
This work has been supported by the Research Programs MSM6840770029, 1P04LA212 and by the grant RP2007-6c of the Ministry of Education, Youth and Sports of the Czech Republic.

References
[1] Arkani-Hamed N, Dimopoulos S and Dvali G 1998 Phys. Lett. B 429 263, (Preprint hep-ph/9803315)
[2] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370 (Preprint hep-ph/990522)
[3] Arai M, Okada N, Smolek K and Simak V 2004 Phys. Rev. D 70 115015 (Preprint hep-ph/0409273)
[4] Arai M, Okada N, Smolek K and Simak V 2007 Phys. Rev. D 75 095008 (Preprint hep-ph/0701155)