Effects of tachyplesin on proliferation and differentiation of human hepatocellular carcinoma SMMC-7721 cells

Gao-Liang Ouyang, Qi-Fu Li, Xuan-Xian Peng, Qing-Rong Liu, Shui-Gen Hong

Abstract

AIM: To investigate the antitumor activities of tachyplesin on human hepatocellular carcinoma (HCC) cells.

METHODS: Tachyplesin, isolated from acid extracts of Chinese horseshoe crab (Tachyplesus tridentatus) hemocytes, was used to treat the human HCC cell line SMMC-7721. Effects of tachyplesin on the proliferation of SMMC-7721 cells were measured with trypan blue dye exclusion test and HE staining. The morphology and ultrastructure of the cells were examined by light microscopy and transmission electron microscopy, respectively. The activities of γ-glutamyltransferase (γ-GT) and tyrosine aminotransferase (TAT) were assayed with biochemical methods. The levels of alpha fetoprotein (α-FP), proliferating cell nuclear antigen (PCNA), p21WAF1/CIP1 and c-myc were examined by immunocytochemistry.

RESULTS: After treatment with tachyplesin 3.0 mg/L, the proliferation of SMMC-7721 cells was inhibited significantly, with the cell growth inhibitory rate amounted to 55.57 % and the maximum cell mitotic index declined by 43.68 %. The morphology and ultrastructure underwent restorational alteration. The activity of γ-GT declined while TAT activity increased obviously, and the levels of α-FP and PCNA decreased. Moreover, the expression of p21WAF1/CIP1 protein was up-regulated and that of c-myc protein was down-regulated.

CONCLUSION: Tachyplesin could effectively inhibit the proliferation of hepatocarcinoma cells, reverse the malignant morphological and ultrastructural characteristics, alter the levels of enzymes and antigens, regulate the expression of differentiation-associated oncogene and tumor suppressor gene, and induce hepatocarcinoma cell differentiation.

Ouyang GL, Li QF, Peng XX, Liu QR, Hong SG. Effects of tachyplesin on proliferation and differentiation of human hepatocellular carcinoma SMMC-7721 cells. World J Gastroenterol 2002; 8(6): 1053-1058
Determination of cell growth curve and cell mitotic index

SMMC-7721 cells (5x10^5/mL) were seeded in small culture flasks or in little penicillin bottles with cover slips respectively. Tachyplesin treatment was performed after cells being subcultured for 24 hours. From the first to seventh day, three flasks of untreated or tachyplesin-treated cells were harvested every day, and the viable cells were counted by the trypan blue dye exclusion test. Meanwhile, the cover slips with untreated or tachyplesin-treated cells were also taken out every day, fixed in Bouin-Hollande fixative, and stained with Hematoxylin-Eosin (HE) staining. The mitotic cells in 1000 cells on each cover slip were counted.

Sample preparation for the light microscopy

SMMC-7721 cells and the cells treated with 3.0 mg/L tachyplesin for 5 days were seeded in little penicillin bottles with cover slips, and grown in the normal culture medium or in the medium containing 3.0 mg/L tachyplesin for 48 hours, respectively. The cells on cover slips were rinsed with D-Hank’s solution twice at 37 °C, fixed in Bouin-Hollande fixative, stained with Hematoxylin-Eosin staining, and observed under light microscope.

Sample preparation for transmission electron microscopy

SMMC-7721 cells and the cells treated with 3.0 mg/L tachyplesin for 7 days were rinsed with D-Hank’s solution twice at 37 °C, shaved into centrifuge tubes with plastic scraper. Cells were centrifuged at 2000 rpm for 15 min, and the supernatants were removed. The precipitates were prefixed in 2.5 % glutaraldehyde for 2 hours and postfixed in 1 % osmian tetroxide for 2 hours, dehydrated in ethanol series, embedded in epoxy resin 618, stained with lead citrate and uranyl acetate, and observed under the JEM-100CX [1] transmission electron microscope.

Assays for the activities of γ-glutamyltransferase (γ-GT) and tyrosine aminotransferase (TAT)

SMMC-7721 cells and the cells treated with 3.0 mg/L tachyplesin for 7 days were harvested, counted, and sonicated in ice-cooled 0.1 mol/L PBS. The homogenates were centrifuged and the supernatants were subjected to assay of enzymatic activities. The γ-GT activity was determined with γ-GT reagent kit and the TAT activity was detected according to the method described by Marston et al[13]. The activities of γ-GT and TAT were valued as OD unit per 1×10^6 cells.

Immunocytochemistry analysis

SMMC-7721 cells and the cells treated with 3.0 mg/L tachyplesin for 5 days were seeded in little penicillin bottles with cover slips for 48 hours respectively. The cells grown on cover slips were fixed with cold acetone for 10 min, rinsed twice in PBS for 15 min. They were then immersed in 3 % hydrogen peroxide for 10 min, washed with distilled water and PBS for 15 min, blocked with 10 % normal goat serum for 10 min at room temperature, and incubated with the monoclonal mouse anti-human α-FP, PCNA, p21WAF1/CIP1, c-myc antibodies at 4 °C overnight. After incubation with primary antibodies, cover slips were rinsed twice in PBS for 15 min, incubated with biotin-labeled secondary antibody at 37 °C for 10 min, rinsed twice in PBS for 15 min, and then incubated in streptavidin-peroxidase at 37 °C for 10 min. The antigen-antibody complex was visualized with diaminobenzidine (DAB) substrate. Negative controls were incubated in the absence of primary antibodies.

Statistical analysis

Student’s t test was used to compare the difference between control group and tachyplesin treatment group. The data of cell growth, mitotic index and enzymatic activities were presented as mean with the corresponding standard deviation. P value of less than 0.05 is considered statistically significant.

RESULTS

Effects of tachyplesin on the proliferation of SMMC-7721 cells

Under concentration of 2.5, 3.0, 3.5 mg/L, tachyplesin significantly inhibited the proliferation of SMMC-7721 cells. The growth inhibitory rates on SMMC-7721 cells on the seventh day were 47.09 %, 55.57 % and 62.77 %, respectively (P<0.05) (Figure 1). According to the principle of induced differentiation treatment, we chose 3.0 mg/L tachyplesin for induced treatment. Cell mitotic index determination showed that SMMC-7721 cells had vigorous proliferation capability, reached to the divided peak on the fourth day, and the maximum mitotic index amounted to 35.19±2.17 %. However the mitotic index of the cells treated with 3.0 mg/L tachyplesin was only 19.82±1.89 % at the divided peak, declined by 43.68 % (P<0.05), and the divided peak was on the third day after tachyplesin treatment (Figure 2).

Figure 1 Effect of tachyplesin on the growth of SMMC-7721 cells

Figure 2 Effect of tachyplesin on the mitotic index of SMMC-7721 cells

Effects of tachyplesin on the morphology and ultrastructure of SMMC-7721 cells

SMMC-7721 cells showed typical malignant morphological and ultrastructural characteristics in SMMC-7721 cells like other epithelial cancer cells. Under light microscope, the volume of SMMC-7721 cells was relatively small, nuclei were...
large and irregular with several nucleoli in it, and cytoplasm volume was small (Figure 3A). And it was revealed by transmission electron microscope that the nucleo-cytoplasmic ratio of SMMC-7721 cells was relatively large, nuclei were irregular with many heterochromatins and few euchromatins and large nucleolus in it, while cell organelles were not well-developed in the cytoplasm (Figure 3C). However, after being treated with 3.0 mg/L tachyplesin, SMMC-7721 cells had undergone a significant morphological and ultrastructural changes and appeared as normal differentiated epithelial cells. The cells turned to be more spread and flat, the nucleo-cytoplasmic ratio was reduced, the shape of nuclei became regular, heterochromatin in nucleus decreased while euchromatin increased, the volume of nucleolus was reduced, and cytoplasm was abundant with well-developed cell organelles (Figure 3B,D).

Effects of tachyplesin on the activities of γ-GT and TAT in SMMC-7721 cells

The human hepatocarcinoma SMMC-7721 cells had high γ-GT activity and low TAT activity. After treatment with 3.0 mg/L tachyplesin, the activity of γ-GT in SMMC-7721 cells were declined from 0.48±0.04 Unit to 0.30±0.02 Unit ($P<0.05$) while TAT activity increased from 0.44±0.04 Unit to 0.90±0.04 Unit ($P<0.05$) as shown in Figure 4.

![Figure 4](image_url) Effects of tachyplesin on the activities of γ-GT and TAT in SMMC-7721 cells

Effects of tachyplesin on α-FP, PCNA levels in SMMC-7721 cells

High level of α-FP was detected in the cytoplasm and nucleus of SMMC-7721 cells (Figure 5A). However, after being treated with 3.0 mg/L tachyplesin, the cells had a very low level of α-FP (Figure 5B). The PCNA level was also high and mainly distributed in the nucleus of SMMC-7721 cells, especially in the spherical cells, while the immunocytochemical signal was weak in the tachyplesin-treated cells (Figure 5C,D).

Effects of tachyplesin on protein p21WAF1/CIP1, c-myc levels in SMMC-7721 cells

To investigate the effects of tachyplesin on the expression of differentiation-associated tumor suppressor gene and oncogene, the levels of p21WAF1/CIP1 and c-myc proteins were also examined. Immunocytochemistry showed that the level of p21WAF1/CIP1 protein was low in the nucleus and cytoplasm of the untreated cells while it was very high in the cells treated with tachyplesin (Figure 5E,F). High level of c-myc was observed in SMMC-7721 cells and exposure of the cells to tachyplesin resulted in an obvious decrease of c-myc protein (Figure 5G,H).

![Figure 3](image_url) Effects of tachyplesin on the morphology and ultrastructure of SMMC-7721 cells. A: SMMC-7721 cells (×536); B: SMMC-7721 cells treated with tachyplesin (×536); C: The nucleo-cytoplasm ratio is large, the shape of nucleus is irregular and cell organelles are not well-developed in the cytoplasm of SMMC-7721 cell (×8800); D: The nucleo-cytoplasm ratio decreased, the shape of nucleus is regular and cell organelles are well-developed in the cytoplasm of tachyplesin-treated SMMC-7721 cell (×11000).
Figure 5 Effects of tachyplesin on the levels of α-FP, PCNA, p21WAF1/CIP1, c-myc proteins in SMMC-7721 cells (× 536).
A: The high level of α-FP in SMMC-7721 cells detected by immunocytochemistry; B: The level of α-FP in the tachyplesin-treated SMMC-7721 cells is decreased; C: The high level of PCNA in SMMC-7721 cells; D: The level of PCNA in the tachyplesin-treated SMMC-7721 cells is decreased; E: The low level of p21WAF1/CIP1 in SMMC-7721 cells; F: The level of p21WAF1/CIP1 in the tachyplesin-treated SMMC-7721 cells is increased; G: The high level of c-myc in SMMC-7721 cells; H: The level of c-myc in the tachyplesin-treated SMMC-7721 cells is decreased.
DISCUSSION

It is important to examine the changes of the main malignant characteristics of cancer cells in order to evaluate the malignant phenotype reversal. Continual division and constant proliferation are important characteristics of tumor cells. The proliferating activity of cells is inversely correlated with the degree of differentiation. Therefore, inhibiting the proliferation of tumor cells is a significant index in induction of differentiation[3][14]. In the present study, the results of the cell growth curve and mitotic index assay indicated that tachyplesin could inhibit the multiplicative activity of hepatocarcinoma cells effectively, with similar effects of growth inhibition as retinoic acid, HMBA and dimethyl sulphoxide on human hepatocarcinoma cells HepG2 and SMMC-7721[15-20]. It suggests that tachyplesin could suppress tumor cell growth as other differentiation inducers.

Malignant morphology and ultrastructure are other important characteristics of tumor cells. Previous studies had revealed that lots of differentiation inducers could reverse the morphology and ultrastructure of tumor cells. Therefore, evaluating the changes of these two characteristics in tumor cells is important in determining the effects of exotic substances, especially differentiation inducers on tumor cells. Our results showed that tachyplesin could reverse the malignant morphological and ultrastructural characteristics of SMMC-7721 cells as it did on gastric carcinoma cells or other inducers on hepatocarcinoma cells and other tumor cells[10,18-19].

α-FP, an oncofetal antigen, is as an important tumor-specific marker for the diagnosis of hepatocellular carcinoma and has been widely used in clinical setting[21-23]. PCNA, the auxiliary protein of DNA polymerase δ, ε, plays an important role in DNA replication, repair and cell cycle control, and can be used as differentiation marker of hepatocarcinoma[26-30]. The increased levels of α-FP and PCNA are correlated with hepatocyte malignancy, and many differentiation inducers such as HMBA, retinoic acid and sodium butyrate could decrease their levels in hepatocarcinoma cells[18-20]. γ-GT and TAT also can be used as tumor markers of hepatocellular carcinoma[21-33]. The decreased activity of TAT and the increased levels of α-FP, PCNA and γ-GT activities are correlated with hepatocyte malignancy. Many differentiation inducers, such as retinoic acid and HMBA, could reduce the levels of α-FP and PCNA and γ-GT while increase the level of TAT in hepatocarcinoma cells[18,19,34]. Our results revealed that the levels of α-FP and PCNA and γ-GT were down-regulated and the activity of TAT was increased in the tachyplesin-treated cells, indicating that tachyplesin could alter the activities of differentiation-associated enzymes and decrease the levels of tumor-associated antigens as many differentiation inducers.

In addition, many tumor suppressor genes and oncogenes, which were correlative with the tumorigenesis and progression and prognosis of hepatocarcinoma, also could serve as index of induced differentiation. p21[\(^{WAF1/CIP1}\), the pioneer member of p21 family of cyclin-cdk inhibitor class of proteins, has been implicated as a growth arrest mediator in cell terminal differentiation and apoptosis[1,10,35]. Many inducers such as sodium butyrate could increase the expression of p21[\(^{WAF1/CIP1}\)] of hepatocarcinoma cells[36]. In the meantime, c-myc gene also plays an essential role in cell proliferation, differentiation, and apoptosis[36,37]. Down-regulation of c-myc expression induced by differentiation signals is regarded as a hallmark of cell terminal differentiation[16-40]. The expression of c-myc level was reduced in sodium butyrate-induced differentiation of human hepatoma U937 cells with an increase in p21[\(^{WAF1/CIP1}\)] expression[42]. Our results showed that tachyplesin could increase the expression of p21[\(^{WAF1/CIP1}\)] and down-regulate the levels of c-myc protein in SMMC-7721 cells, and induce the cells to terminal differentiation as other differentiation inducers[42,43].

Taken together, the results of the current study indicated that tachyplesin could effectively inhibit the proliferation of human hepatoma SMMC-7721 cells, reverse the malignant morphological and ultrastructural characteristics, alter the activities of differentiation-associated enzymes and the levels of tumor-associated antigens, adjust the expression of oncogenes and tumor suppressor gene correlate with hepatocellular carcinoma, and so induce hepatocarcinoma cell differentiation.

REFERENCES

1. Yoneda K, Yamamoto T, Ueta E, Osaki T. Induction of cyclin-dependent kinase inhibitor p21 in vesnnarione-induced differentiation of squamous cell carcinoma cells. Cancer Lett 1998; 133:35-45
2. Schwartzmann G, da-Rocha A B, Berlinck RGS, Jimeno J. Marine organisms as a source of new anticancer agents. Lancet O n c o l 2001; 2: 221-225
3. Schwartzmann G. Marine organisms and other novel natural sources of new cancer drugs. An n n O n c o l 2000; 11: 235-243
4. Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li SX, Battershill CN, Duckworth AR. The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 1999; 70: 15-25
5. Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem 1998; 123: 1-15
6. Kawabata S, Iwanaga S. Role of lectins in the innate immunity of horseshoe crab. Dev Comp Immunol 1999; 23: 391-400
7. Osaki T, Omotzeko M, Nagayama R, Hirata M, Iwanaga S, Kasahara J, Hattori J, Ito I, Sugiyama H, Kawabata S. Horseshoe crab hemocyte-derived antimicrobial polypeptides, tachystatins, with sequence similarity to spider neurotoxins. J Biol Chem 1999; 274: 2672-2678
8. Iwanaga S. The molecular basis of innate immunity in the horseshoe crab. Cur Opin Immunol 2002; 14: 87-95
9. Berkson J, Shuster CN. The horseshoe crab: the battle for a true multiple-use resource. Fisheries 1999; 24: 6-10
10. Li QF, Ouyang GL, Li CY, Hong SG. Effects of tachyplesin on the proliferation and expression of C-erbB-2 and p53 genes in human gastric carcinoma cell line BGC-823. Int J Molled Cancer Therapy 2000; 3: 30-33
11. Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao K, Shimonomi Y. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachyplus tridentatus), isolation and chemical structure. J Biol Chem 1988; 263: 16709-16713
12. Marston FA, Pogson CI. A simple and rapid assay for tyrosine aminotransferase. FEBS Lett 1977; 83: 277-280
13. Li QF, Wang DY. The differentiation of human gastric adenocarcinoma cell line MGC80-3 induced by dBcAMP in vitro. Chin J Cancer Res 1993; 3: 4-10
14. Li C, Wan YY. Differentiation and antiproliferation effects of retinoic acid receptor beta in hepatoma cells. Cancer Lett 1998; 124: 205-211
15. Falasca L, Marcellini P, Ara C, Rufo A, Devirgiliis LC. Growth inhibition and induction of specific hepatic phenotype expression by retinoic acid in HEPG2 cells. A n c r o l 1999; 19: 3283-3292
16. Vesey DA, Cunningham JM, Selden AC, Woodman AC, Hodgson HJ. Dimethyl sulphoxide induces a reduced growth rate, altered cell morphology and increased epidermal-growth-factor binding in Hep G2 cells. Biochem J 1991; 277: 773-777
18 **Ouyang GL, Li QF, Peng XX, Hong SG.** Differentiation of human hepatocarcinoma SMMC-7721 cells induced by HMBA. Shiyan Shengwu Xuebao 2001; 34: 269-273

19 **Zhang XW.** Recent advances in study of drugs that affects differentiation induction on hepatoma. Zhongguo Zhengliu Linchuan 1999; 26: 389-392

20 **Yamamoto H, Fujimoto J, Okamoto E, Furuyama J, Tamaoki T, Hashimoto-Tamaoki T.** Suppression of growth of hepatocellular carcinoma by sodium butyrate in vitro and in vivo. Int J Cancer 1998; 76: 897-902

21 **Wang XW, Xu B.** Several new targets of antitumor agents. Zhongguo Y aoli Xuebao 1997; 18: 289-292

22 **Lee KC, Crowe AJ, Barton MC.** p53-mediated repression of alpha-fetoprotein gene expression by specific DNA binding. Mol Cell Biol 1999; 19: 1279-1288

23 **Yoshida S, Kurokohchi K, Arima K, Masaki T, Hosomi N, Funaki T, Murota M, Kita Y, Watanabe S, Kuriyama S.** Clinical significance of lens culinaris agglutinin-reactive fraction of serum alpha-fetoprotein in patients with hepatocellular carcinoma. Int J Cancer 2002; 105: 111-115

24 **Jiang YF, Yang ZH, Hu JO.** Recurrence or metastasis of HCC: predictors, early detection and experimental antiangiogenic therapy. World J Gastroenterol 2000; 6: 61-65

25 **He P, Tang ZY, Ye SL, Liu BB.** Relationship between expression of alpha-fetoprotein messenger RNA and some clinical parameters of human hepatocellular carcinoma. World J Gastroenterol 1998; 4: 317-319

26 **Cao QJ, Hu XY, Xie M, Sun JY, Cheng H.** Expression of proliferating cell nuclear antigen and alpha-fetoprotein in hepatocellular carcinoma and its clinical significance. Shiyang Aizheng Zazhi 1998; 13: 105-107

27 **NaIO, Lai EC, Fan ST, Ng M, Chan AS, So MK.** Prognostic significance of proliferating cell nuclear antigen expression in hepatocellular carcinoma. Cancer 1994; 73: 2268-2274

28 **Jonsson ZO, Hindges R, Hubscher U.** Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J 1998; 17: 2421-2425

29 **Wang LQ, Yu YZ, Sel£ S.** p53 and PCNA as differentiation markers of hepatocellular carcinomas. J Tumor Marker Oncol 1998; 13: 5-13

30 **Qin LF, Ng IOL, Fan ST, Ng M, p21/ WAF1, p53 and PCNA expression and p53 mutation status in hepatocellular carcinoma.** Int J Cancer 1998; 78: 424-428

31 **Kang JH, Shi YM, Zheng RL.** Effects of ascorbic acid and DL-α-tocopherol on human hepatoma cell proliferation and redifferentiation. Zhongguo Y aoli Xuebao 2000; 21: 348-352

32 **Chen RC, Xie XC, Ouyang GL, Cai KX, Su JH, Fu YG.** Induction of differentiation in human hepatocarcinoma SMMC-7721 cell by natural antioxidant Isoverbascoside. Int J Modern Cancer Therapy 2000; 3: 29-33

33 **Chen RC, Su JH, Ouyang GL, Cai KX, Li QO, Xie XG.** Induction of differentiation in human hepatocarcinoma cells by Isoverbascoside. Planta Med 2002; 68: 370-372

34 **Wasserman L, Nordenberg J, Beery E, Deutsch AA, Novogrodsky A.** Differential effects of sodium butyrate and dimethyl sulfoxide on gamma-glutamyl transpeptidase and alkaline phosphatase activities in MCF breast cancer cells. Exp Cell Biol 1987; 55: 188-193

35 **Hui AM, Kanai Y, Sakamoto M, Tsuda H, Hirohashi S. Reduced p21(WAF1/CIP1) expression and p53 mutation in hepatocellular carcinomas.** Hepatology 1997; 25: 575-579

36 **Bartova E, Kozubek S, Kozubek M, Jirsova P, Lukasova E, Skalnikova M, Cafourkova A, Koutra I.** Nuclear topography of the c-myc gene in human leukemic cells. Gene 2000; 244: 1-11

37 **Heath VJ, Gillespie DAF, Crouch DH.** Inhibition of the terminal stages of adipocyte differentiation by cMyec. Exp Cell Res 2000; 254: 91-98

38 **He Y, Zhang JY, Jiang JY, Yuan YW. The role of c-myc in regulating mdr-1 gene expression in tumor cell line KB.** Chin Med J 2000; 113: 948-951

39 **Jiang N, Zhan FH, Cao L, Yao KJ, Li GY.** c-myc gene inactivation during inducing of nasopharyngeal carcinoma cells with retinoic acid. Chin Med J 2000; 113: 823-826

40 **Xu HY, Yang YL, Guan XL, Song G, Jiaw AM, Shi LJ.** Expression of regulating apoptosis gene and apoptosis index in primary liver cancer. World J Gastroenterol 2000; 6: 721-724

41 **Ebinuma H, Salto H, Salto Y, Wakabayashi K, Nakamura M, Kurose I, Ishii H.** Antisense oligodeoxynucleotide against c-myc mRNA induces differentiation of human hepatocellular carcinoma cells. Int J Oncol 1999; 15: 991-999

42 **Dimberg A, Bahram F, Karlberg I, Larson LG, Nilsson K, Oberg F.** Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cycle E and posttranscriptional up-regulation of p27(Kip1). Blood 2002; 99: 2399-2406

43 **Yuan SL, Huang RM, Wang XJ, Song Y, Huang GQ.** Reversing effect of Tanshinshone on malignant phenotypes of human hepatocarcinoma cell line. World J Gastroenterol 1998; 4: 317-319

Edited by Bo XN