A Systematic Mapping Study of Cloud-native Application Design and Engineering

Isaac Odun-Ayo¹, Rowland Goddy-Worlu¹, Lydia Ajayi¹, Boma Edosomwan¹, Fiona Okezie¹

¹Department of Computer and Information Sciences, Covenant University, Ota, Nigeria

isaac.odun-ayo@covenantuniversity.edu.ng

Abstract.
Cloud computing is a desirable paradigm that is providing services to users in a convenient manner and ensuring that Cloud service providers have value for their infrastructure. Applications designed to run explicitly on the Cloud are usually referred to as Cloud-native applications. Determining a research focus in a particular field of study is sometimes challenging. A systematic mapping study gives an insight into the research level that is being conducted in any field of interest. The results generated from such study are presented using a map. The method used in this study was analyzing three facets categories namely, topics, research and contribution. Topics were retrieved from primary studies, while type of research such as evaluation and contribution such as tool, were used in the analysis. The objective of this study is to conduct a systematic mapping study of Cloud-native applications designs and engineering. This will provide an insight into the frequency of work that has been done in cloud-native applications area. The results showed that from publications relating to security in the field of metric (1.94%), more articles in the topic of application in terms of tool (13.59%), more work done on architecture in terms of model (15.53%), more papers published on Cloud migration in the area of method (10.68%). Furthermore, 11.82% publications were identified on applications in terms of evaluation research, more publication on implementation in the area of validation research (1.82%), more publications on implementation in solution research (6.36%), more publications on security and application with respect to philosophical research (1.82%) and more work done on applications in terms of experience research (6.36%). From the study, several gaps were identified which would be beneficial to researchers, practitioners and providers.

Keywords: Computing, Systematic mapping, Cloud native Applications, Cloud native designs, Cloud native engineering, Cloud migration.

1. Introduction
Cloud is a collection of interconnected and virtualized computers systems that are parallel and distributed. These systems are presented and provisioned dynamically as one or more unified computing resources based on service level agreement established through negotiation between the services provider and users [1]. Applications are utilized on both divides of the cloud. The Cloud Service Provider (CSP) provides the user with applications and the user has the leverage to design and
deploy applications. Native Cloud applications are built from scratch to completion for use on the Cloud framework. However, there are security concerns because of the process of cloud virtualization and multitenancy [2][3]. There are services at all layers of the Cloud referred to as Everything-as-a-Service, there are also three basic cloud service types namely, the Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS) and Software-as-a-Service (SaaS). The CSP provides applications that are custom built to users in SaaS; hence the user does not need to be concerned about license and installation issues. The CSP provides the infrastructure and the needed application-programming interface that enables a user design and deploy an application in PaaS. The CSPs have massive infrastructure and huge datacenters operated across several geographical borders providing computing and storage services to user in IaaS. Cloud computing is turning out to be very efficient and services are constantly improving and increasing due to the sound underlying architecture and cloud-based applications [4][5]. Furthermore, the Cloud has four models: private, public, community and hybrid Cloud. An organization can host a private Cloud on-premises or use a third party CSP, but in-house staff are utilized, making it more secure. An organization can also leverage on the state-of-the-art infrastructure available to CSP to host a public Cloud. Utilizing the Cloud in this manner implies that the customer does not expend resources on infrastructure. Communities of different kind with shared common interest can host a community Cloud. Hybrid Cloud provide flexibility in the outsourcing of data and utilization of the Cloud. Critical resources can be sustained on a private Cloud, while auxiliary data and services are outsourced to the public Cloud. Although the CSPs are striving to provide very effective and dependable services on the cloud, trust has been considered an issue [6][7].

To benefit from the Cloud, most applications need to be designed with a view to run on the cloud. Applications designed to run on the Cloud are commonly called cloud-native or cloud-ready applications, or occasionally called Cloud-aware [8]. Blueshift is a service for automated application transformation to a Cloud native architecture. Specifically, BlueMix, the IBM’s Cloud PaaS based on Cloud foundry open technology [9]. Blueshift automates an end-to-end transformation process including application discovery, analysis, artifact transformation and enablement of Cloud value-added service [9]. OpenWhisk is also a project from IBM that allows developers to benefit from server-less programming languages, enables composition of services using action sequence and availability of the entire OpenWhisk stack as open sources [10]. In [11], a redesign and deployment of a monolithic Security-as-a-Service (SecaaS) application using cloud native design pattern was carried out while considering appropriate layered security countermeasures at the application and Cloud networking layers. Cloud native applications frequently operate globally. While it is possible to access ordinary websites wherever the internet is unblocked, it is not a true global application. It involves replicating services and application data in local data centers in order to minimize interaction latencies [12].

Technical area of interest must be considered by a researcher when embarking on research or writing an article. Many studies are involved to get a grasp of the topic. This normally involves searching for various journals, books and conference proceedings. In addition, determining an area of interest may also require a lot of search on digital libraries, attending seminars, conferences and workshops [13]. Through the research process and the long hours spent reviewing the research of other people, researchers can often stumble on new and often unforeseen research ideas. In addition, many researchers are particularly interested in a particular observed phenomenon that serves as an impetus for a large amount of research across all fields of study. In summary, the fundamental curiosity of a researcher about an observed phenomenon typically provides enough motivation towards selecting a research topic.

It is obvious from the above that determining a topic for research is usually cumbersome at times. There are large numbers of research that has been undertaken in the area of Cloud native applications design and engineering as discussed in [12], hence it becomes imperative to summarize and provide an overview of some of the work that have been done in this field. A systematic mapping study offers a structured scheme for categorizing the research that has been carried out [14]. The method involves process of classification for relevant article to be sorted into schemes. There is process of extraction of
data for the determination of the different categories is done normally by utilizing a spreadsheet. Thereafter, the recurrence of distributions is utilized to make a systematic guide. The bubbles plots have sizes relating to the quantity of papers in such classifications in the different crossing points. The outcome of such work is presented visually using a map that provides a pictorial insight. The systematic mapping is done in facets depending on the review considerations. In this instance, three facets were utilized namely, the topic, research and contribution. The topic facet retrieves key issues relating to Cloud native applications, the research facet focuses on the research types. The contributions facet examines the nature of the research in terms of methods or models.

The aim of this paper is to conduct a systematic mapping study of cloud-native application designs and engineering. The rest of the paper is arranged as follows: section 2 discusses related work, description of the materials and methods used was covered in section 3. Section 4 presents the results and discussion while section 5 concludes the paper and suggests future work.

2. Literature review

In [15], while reviewing the systematic mapping study, emphasis was laid on the planning phase. The work identifies the patterns of software as evident throughout projects requirement-engineering stages, searching to understand the roles played by patterns based on fundamental factors needed during process of development. A protocol was established for the study with elementary phases to replicate such a work in the research community to validate of the research. Digital libraries utilized in the study includes ACM DL, IEEExplore, Web of Science, and Scopus. The laid down guidelines in [14] were adhered to for this work.

The work of [16] portrays the convention for a systematic mapping study, identifying domain-specific languages (DSL). The work is diverted in the direction of an upgraded perception of the DSL area of exploration with an attention on trends in research and the future heading. The study considered the time frame from July 2013 to October 2014, and it leverages on three rules for achieving efficient survey, this includes conducting the review, reporting, and planning.

The Study in [17] is grounded on investigating the use of computer Science idea maps for systematic mapping study. The resultant map is fixated on the gathering and appraisal of researches on idea maps in the field of Computer Science. Two seeking forms were utilized additionally, to be specific; in reverse snowballing and the manual methodologies. It showed broad concentration and nitty gritty examination of idea maps, utilizing learning and educating helps. Search strings of the study were used on SCOPUS, ScienceDirect, Compedex, IEEExplore, and ACM Digital Library.

In the paper of [18], a systematic mapping examination showed how games related procedures was utilized in education and strategies of software engineering that support explicit software engineering learning spaces, with future heading and gaps in research recognized. The essential investigations of the work secured on the utilization and assessment of games in software engineering education. Total sum of 156 essential investigations were recognized in this examination based on publication from 1974 to 2016. The process of mapping in the work was carried out in tandem with [14].

The work in [19] focused on the system model by giving an examination of the power framework and applications utilizing the mapping procedure. It is utilized by European associations for breaking down modeling highlights and distinguishing modeling holes. More than 228 overviews were passed on to control pros to evoke data, leaving just 82 questionnaires to be accomplished and utilized in the mapping.

In [20], the systematic study of DSL was finished with fundamental enthusiasm in type of research, the focus area, and type of contribution. The work includes inquiry from respectable sources between 2006 and 2012, while the systematic mapping study carried out depends on the procedure characterizing questions for in research, ordering, conducting search, the data extraction and screening. The research materials for the work includes: papers, solution proposal, opinion papers, validation research materials and philosophical or conceptual papers.
In [21] a systematic mapping of the literature on legal core ontologies, based their work on the concepts of [22]. The work based its search more on “lawful theory” and “lawful concepts”. Also, studies selected were categorized based on contribution as reflected in tool, model, method, and language. Other processes comprised of recognizing existing lawful theories in legal core ontologies and process building, using two ontologies with clear references and lastly, the analysis of any research selected for cogent legal and ontological research deductions.

In [14], a systematic mapping study in software engineering was conducted, the work is a foundation to many systematic mapping studies. It provides guidelines for the conduct of systematic mapping studies and a comparison of systematic maps and reviews based on the analysis of existing systematic reviews. The work reveals that systematic maps and reviews are not the same, based on goals, breadth, validity measures, and implications and employ different analysis methods.

The work in [23] is a systematic mapping study that gives a representation of experimental research in software cloud-based testing during the time spent putting up a grouping plan. Practical and non-Practical testing techniques were researched; additionally, the uses of the strategies and their traits. The work used 69 essential investigations as found in 75 publications. Rigorous statistical analysis alongside quantitative results was brought about by a fraction of the study. Most of the studies used a unique experiment to evaluate their proposed result. From analyzed literature, no work centred explicitly around systematic mapping study of cloud-native application designs and engineering were found.

3. Materials and Methods

A systematic map presents an observable representation of the nature or extract of publications in a specific area of study. This study is in the area of Cloud-native application design and engineering. The study was done using formal rules for systematic mapping studies in [14][22]. It is an iterative process for retrieving and interpreting existing materials that are related to the objective of the research [24]. There are some essential or primary steps, which are used in a typical systematic mapping study as shown in [14]. First is the description and explanation of research question where the scope of the review is stated. Thereafter, papers are searched and screened to determine the ones relevant to the study. There is a process of key wording used on abstracts of the searched papers with a view to designing a classification scheme. Finally, is the process of data extraction, which is expected to result in the conception of the systematic map. These various steps for developing a systematic map were useful in the formation of a map on cloud native application design and engineering.

3.1. Definition of Research Questions

The essence of this survey is to have an overview of the quantity and type of research that has been done on mobile and energy efficient use of Cloud. It may also be essential to recognize places were the research has carried out and published. The relevant research questions are determined by these issues to the used for the study. This paper is guided by the following are the research questions:

RQ1: What areas of Cloud-native application design and engineering are discussed and how many articles do the various areas cover?

RQ2: What are the types of published papers in this field and what assessment and novelty do they constitute?

3.2. Conduct of Search for Primary Studies

The conduct of search for primary studies is usually done by exploring electronic databases. This can also be accomplished through manual search on conference and journals. Papers for this study were gotten by
searching for papers on different online databases available. All papers chosen for the primary studies are in cloud computing field, thus all the facets dealt with matters that relates to cloud computing. The principal concept of a systematic mapping study is keywording, which is usually done on the abstract of a peer-reviewed articles. Subsequently, articles from papers, interpersonal organizations and different sources are not reasonable for directing efficient examinations, consequently the need to use fitting advanced libraries. Four (4) noteworthy online libraries were the focus of the search because of the high impact factor of conferences and journals publications in the databases. The online libraries and their Unified Resource Locator (URL) given in Table 1 were utilized to carry out the search for primary studies in this paper.

Table 1 Digital libraries utilized for the systematic mapping study

Online Database	Uniform Resource Locator (URL)
ACM	www.dl.acm.org
Science Direct	www.sciencedirect.com
Springer	www.springer.com
IEEE	www.ieeexplore.iee.org

The search string utilized for this study was designed in terms of outcome, comparisons, population and intervention. The keywords used for the search was taken from every aspects of the structure of the title of this study. For this study on Cloud-native application design and engineering the search string utilized on the digital libraries in Table 1 is given below:

\[((\text{TITLE-ABS-KEY ("cloud-native")}) \text{ AND TITLE-ABS-KEY (applications)}) \text{ AND (ALL (design) OR ALL (engineering)))}\]

The above customized search string was used to perform searches on the metadata of the given document to guarantee that appropriate papers were not missed out. The results for this study on cloud native application from appropriate databases involving computer science and cloud computing were considered. In view of the paper choice criteria characterized based on the requirement of the goal of the examination and research questions, 110 papers were observed to be incorporated in this examination from a first output consisting of 1,009 publications papers from 2010 to 2018. These 110 selected studies are listed at the Appendix 3.2.

3.2. Screening of Papers for Inclusion and Exclusion

The selection criteria are used for the purpose of finding and including relevant papers pertaining to the review. In this study the inclusion and exclusion criteria were used to eliminate studies that were not relevant to Cloud native application design and engineering. It was also utilized to get rid of articles that that are not relevant to the research questions. Some abstract actually mention the primary focus without sufficient facts and such papers were also not considered. Papers on editorials, panel discussions, slides, presentation, summaries, tutorials and prefaces were excluded because they do not have abstracts.
The articles considered had the main focus and sufficient secondary details in terms of relevance. The primary focus of this study is on Cloud native application design and engineering have the inclusion and exclusion procedure was carried out using Table 2.

Table 2 Inclusion and Exclusion Criteria

Inclusion Criterion	Exclusion Criterion
The given abstract clearly references business implication and legal implications as it pertains to cloud computing. Furthermore, such legal and business implications directly influence the Cloud.	Non cloud-computing domain papers especially as it relates to cloud business and legal implications. The paper does not contribute in any way to legal and business aspects of the Cloud.

3.3. **Keywording of Abstracts**

Keywording is an essential activity in the systematic mapping study. A systematic process involving the growth of a classification scheme and keywording is essential to this systematic process. Keywording is necessary to reduce the timing needed to develop the classification scheme for the cloud native application design and engineering. In addition, keywording guarantees that all articles in line with the study were considered in the scheme. The systematic process involves studying the abstracts on each included paper to extract keywords and concepts that relates to this study. Keywords from the abstracts of the different articles are combined to provide needed comprehension of the kind and contributions of the research in the area of cloud native application. The outcome of this was used to produce the topics categories of this study. Nevertheless, it was pertinent to examine the introduction and conclusion of few papers to ensure suitable keywording of the included papers. A cluster of keywords was used applied to the categories used for the systematic map of this study. In this study on Cloud-native application design and engineering, three facets were used. The first facet focused on topics in terms of Cloud native applications. The second facets focused on contributions to the study in terms of metrics, tools, methods, processes and models as discussed in [22].

3.4. **Research Type Facet with Category and Description**

The research type facet deals with the kind of research conducted in the included papers. This third facet is autonomous to the focus of this study because the approaches in research classification [25] was utilized. The approach includes these categories and their corresponding descriptions.

a. Validation Research: This process utilized are unique but not applied in terms of applications or lab experiments hence no proof of concepts.

b. Evaluation Research: The process used in the research have been applied and reviewed. The outcomes of the implementation exist in terms of advantages and disadvantages.

c. Solution Proposal: This procedure offers an exclusive remedy to an issue. The advantages and applications of such solution are verifiable.

d. Philosophical Papers: The procedure proposes new methods to examine a challenge in terms of frameworks and concepts.
e. Opinion Papers: This kind of research is independent of related work to any research methodology. It expresses the opinion of the researcher and describes how things could be done.

f. Experience Papers: Such research relates the experience of an author by also stating how things were completed.

These categories were considered sufficient and adequate for this study. All articles used for the study were all scrutinized on the basis of these categories in the classification scheme.

3.5. Data Extraction and Mapping of Study
Data extraction was a key feature of the classification process. The appropriate articles were arranged into the scheme through the process of classification, which enabled the extraction of data from the various papers included. During the extraction process, new categories were joined some categories were combined while others not considered relevant were removed. The process of data extraction was done using Microsoft Excel table. The Excel table contained data on the three facets used in this study, which represented the categories of classification scheme. The research and contribution categories were on separate tables. In terms of frequencies of publications, the overall frequencies of publications were combined on an Excel table containing either ‘topic/research’ or ‘topic/contribution’ types. The analysis was based on the results generated on the excel spreadsheet. The reason was to recognize the aspects of cloud-native application design and engineering were emphasized further in the study. This enables the identification of gaps, hence providing an avenue for recommending further studies.

To model the study a bubble plot was created and used to present the occurrence of the published articles on the basis of the results of the excel table. The systematic map was created utilizing a scatter plot of two x-y with bubble size which correspond to with the number of articles in that category. Two quadrants exist in this study in line with the number of facets used. A visual map is provided in each section based on the intersection of the categories of topics with either the research or contribution category. Hence, studying all the facets simultaneously was easy. Summary statistics were also added to the bubbles to improve understanding. Clearly, the map gives a quick overview of study in the area of Cloud native applications making it easy to identify gaps that can be utilized in further research as illustrated in Figure 1. The chosen primary studies that can be identified in the topics, the contribution facet and the research facet were demonstrated in table 3 and table 4 below. Furthermore, table 3 and table 4 treats the literature that fits within each class with a view to substantiating the percentages presented.

4. Results and Discussion
The primary focus of result analysis is to display the frequencies of publications in every category. This makes it likely to recognize which category has more emphasis in past work and thus indicating possibilities and gaps for further future research [26]. The main purpose of this systematic mapping study on Cloud native application design and engineering is on thematic analysis, classification and possible to identify publication. From the analysis, the map helped in identification of gaps, that showed the areas with shortage of publications. Furthermore, the map also indicated areas in terms of articles published that are covered. In this systematic study, advanced categories were utilized in assessing papers involved in summarizing the frequencies and creating the systematic map. The systematic map on Cloud native application, design and engineering is shown in Figure 1.

4.1. Contribution Category
The left quadrant of the x-axis in Figure 1 displays the result of the contribution facet. The facet indicates what kind of contribution to a study in terms of metrics, tools, models, methods and processes. The results portray that publications which covered models in relation to Cloud native application were 36.89% out
of the 103 topics included in this category. Also, metric contributed 3.88%, tool had 27.18%, method had 23.3% and process contributed 8.74%.

4.2. Research Types Category
The right quadrant of the x-axis is the result of the type of research conducted in the area of Cloud native applications. The result indicated that publications that discussed evaluation research in relation to Cloud native applications were 43.64% out of 110 papers reviewed. Also, validation research had 6.36%, solution research had 25.45%, philosophical research had 6.36% and experience research had 18.18%. There were no publications in the area of opinion research.

Contribution Facet Topic	Metric	Tool	Model	Method	Process
Architecture	PS99	PS15, PS103	PS18, PS24, PS32, PS47, PS52, PS53, PS61, PS73, PS75, PS85, PS89, PS90, PS94, PS102, PS109, PS110	PS33, PS34, PS38	PS11
Cloud Migrations	PS5, PS66, PS69, PS106, PS108	PS104	PS6, PS8, PS22, PS23, PS39, PS64, PS70, PS92, PS97, PS106, PS107	PS40, PS58, PS60, PS63	
Development	PS28, PS29, PS71	PS2, PS27, PS50, PS65, PS80, PS83, PS86, PS96, PS100	PS3, PS25, PS81, PS82	PS26, PS30	
Implementation	PS44, PS45	PS16, PS51, PS59, PS95, PS105	PS9, PS55, PS56, PS79, PS91, PS101	PS62, PS84	
Security	PS54, PS98	PS76, PS93	PS77, PS78		
Applications	PS49	PS1, PS4, PS7, PS10, PS12, PS13, PS14, PS17, PS19, PS41, PS72, PS74, PS87, PS88	PS20, PS21, PS31, PS48, PS57		

Table 3 Topics and Contribution facet Primary Studies

Topic	Metric	Tool	Model	Method	Process
Architecture	PS99	PS15, PS103	PS18, PS24, PS32, PS47, PS52, PS53, PS61, PS73, PS75, PS85, PS89, PS90, PS94, PS102, PS109, PS110	PS33, PS34, PS38	PS11
Cloud Migrations	PS5, PS66, PS69, PS106, PS108	PS104	PS6, PS8, PS22, PS23, PS39, PS64, PS70, PS92, PS97, PS106, PS107	PS40, PS58, PS60, PS63	
Development	PS28, PS29, PS71	PS2, PS27, PS50, PS65, PS80, PS83, PS86, PS96, PS100	PS3, PS25, PS81, PS82	PS26, PS30	
Implementation	PS44, PS45	PS16, PS51, PS59, PS95, PS105	PS9, PS55, PS56, PS79, PS91, PS101	PS62, PS84	
Security	PS54, PS98	PS76, PS93	PS77, PS78		
Applications	PS49	PS1, PS4, PS7, PS10, PS12, PS13, PS14, PS17, PS19, PS41, PS72, PS74, PS87, PS88	PS20, PS21, PS31, PS48, PS57		

Table 4 Topic and Research facet Primary Studies
Research Facet	Topic	Evaluation	Validation	Solution	Philosophical	Experience	Opinion
Architecture		PS18, PS24, PS32, PS47, PS61, PS73, PS85, PS89, PS90, PS102	PS11, PS99	PS52, PS53, PS75, PS95, PS94, PS109, PS110	PS15, PS33, PS34, PS38, PS103		
Cloud Migrations	PS18, PS24, PS32, PS47, PS61, PS73, PS85, PS89, PS90, PS102	PS11, PS99	PS52, PS53, PS75, PS95, PS94, PS109, PS110	PS15, PS33, PS34, PS38, PS103			
Development	PS2, PS27, PS50, PS65, PS80, PS83, PS86, PS96, PS100	PS26	PS30	PS28, PS29, PS71			
Implementation	PS9, PS101	PS55, PS56	PS16, PS44, PS45, PS51, PS59, PS95, PS105, PS79	PS62, PS84, PS91			
Security	PS54, PS76, PS98,	PS77	PS78, PS93	PS62, PS84, PS91			
Applications	PS1, PS4, PS7, PS10, PS12, PS13, PS14, PS17, PS19, PS41, PS74, PS87, PS88	PS20, PS21, PS31, PS35, PS36, PS37	PS49, PS72	PS42, PS43, PS46, PS48, PS57, PS67, PS68			
Percentage	43.64%	6.36%	25.45%	6.36%	18.18%	0%	

4.3. Topics and Contribution Facet

The key wording processes were used to extract high level topics during the classification process. The topics that were created in the classification scheme are:

- Architecture.
- Cloud migration.
- Development.
- Implementation.
- Security.
- Application.

In Figure 1, the left quadrant shows the existing links that joins the topics and contribution category. It has been observed that model contributed 36.89% of the given papers reviewed, with a breakdown indicating that 4.85% was related to applications 1.94% on security, 4.85% in terms of development, 0.97% related to Cloud migration and 15.53% in terms of discussion on architecture in the area of native
Cloud applications. Other dimensions of the category relating to the contribution in terms of topics are shown on the left quadrant of Figure 1.

4.4. Topics and Research Facet
The quadrant on the right of Figure 1 illustrates connections among facet of the topic and the research category. From the analysis 43.64% of the papers reviewed on Cloud native application dealt with evaluation research. The breakdown showed that 9.09% was on the topic of architecture, 10% on Cloud migration, 8.18% on development, 1.82% on implementation, 2.73% on security, and 11.82% on applications. Other aspects of the review relating to topics and research types are in Figure 1.

4.5. Findings
The first quadrant of Figure 1 is bubble plot with two x-y axis indicating at the inter-section of contribution category and the topic category. While the second quadrant is a two x-y scatter plot with bubbles at the intersection of the topic and research category. As discussed earlier, the map created makes it easy to identify which category has more publication emphasis. From Figure 1, it can be observed that there were more publications in terms of security in the area of metric (1.94%), more articles on the topic of application in terms of tool (13.59%), more work done on architecture in terms of model (15.53%), more papers published on Cloud migration in the area of method (10.68%) and more articles in the area of Cloud migration with respect to process.

Similarly, in terms of topics and research category, 11.82% publications were identified on application in terms of evaluation research, more publication on implementation in the area of validation research (1.82%), more publications on implementation in solution research (6.36%), more publications on security and application with respect to philosophical research (1.82%) and more work done on application in terms of experience research (6.36%).

On the other hand, as far as our knowledge serves, there were no publications on implementation, development, and Cloud migration relating to metric. There was no work identified on security and applications as it relates to method and process. Furthermore, no articles were seen on security and application on Cloud native issues as it relates to validation research. Also, there were no papers identified on architecture with respect to philosophical research and no work on security as it relates to experience research. There were no articles at all on solution research. Generally, it can be seen that there were articles on all aspects of the topics extracted for this study in of terms tool, model, evaluation research and solution research. It is obvious that a lot of information can be gleaned from the systematic map depending on the interest of a researcher or practitioner.
The visual appeal of the systematic map has been used to summarize the categories of publication making results available to researchers. The essence is to generate interest in the gaps, based on shortages in publications identified and then encourage further research. The value of a systematic map even without a successive systematic evaluation cannot be over emphasized. Research gaps can be identified with ease, based on shortage of publications as shown in frequencies of articles published. In relation to cloud-native application designs and engineering, this paper has created a systematic mapping studies which have pointed out such gaps as it relates to the topic. The importance of is all researchers at every dimension as well as businesses specialists can utilize this as a beginning stage to direct additional future research. Six classes of topics were provided in this study namely: privacy issues and challenges, frameworks, cloud trust, techniques, design, data security in relation to security, trust, and privacy in cloud computing. Furthermore, discussion on these six classes of study can be either in terms of model, process, method, tool and metric or in terms of validation, evaluation, philosophical, solution and opinion research. These areas among others are subsequently prescribed for forthcoming and further research. Records of included essential studies would likewise help proposing researchers. From this study, the essential knowledge acquired is that all research work and study is a continuum and it is vast.

4. Discussion and conclusion
Cloud computing has continued to grow in scope, finding application in virtually all aspects of human endeavor. This has continued to stimulate research with a wide range of work that is done in the diverse areas of Cloud computing. A systematic mapping study is a veritable tool in helping to summarize and visually depict the frequencies of publications in an area of study. The mapping process was applied to Cloud native applications with the attendant results shown on the systematic map. The gaps identified in terms of model, metric, tool, method and process in relation to cloud-native application designs and engineering forms the result of this study. Also, gaps have been identified in the area of evaluation, validation, solution, philosophical and opinion research on cloud-native application designs and engineering. Furthermore, the topics of architecture, cloud migration,
development, implementation, security, application were extracted on cloud-native application designs and engineering. As far as authors' knowledge serves, there were no publications on implementation, development, and Cloud migration relating to metric. The-re were no work identified on security and applications as it relates to method and process. Furthermore, no articles were seen on security and application on Cloud native issues as it relates to validation research. Also, there were no papers identified on architecture with respect to philosophical research and no work on security as it relates to experience research. There were no articles at all on solution research. This systematic mapping study has discovered areas where there is less emphasis in terms cloud-native application designs and engineering based on the categories utilized in the analysis. The paper therefore contributes to know-ledge by indicating various areas of the study where there are gaps on cloud-native application designs and engineering. The gaps that have been identified are recommended for further studies. It is likely that it will indeed serve as a wide guide into topics that can be researched on in the area of cloud-native application designs and engineering. Further research could also be done to corroborate this study or resolve inconsistent issues.

5. Acknowledgement
In this study, we would like to express our deep appreciation for the support and sponsorship provided by Covenant University Centre for Research, Innovation and Discovery (CUCRID).

References

[1] Buyya, R., Broberg, J., & Goscinski, A. (2011). Cloud computing principles and paradigms. John Wiley and Son, pp. 4-10.
[2] Odun-Ayo, I., Misra, S., Abayomi-Alli, O., & Ajayi, O. (2017). Cloud multi-tenancy: Issues and developments. UCC ‘17 Companion. Companion Proceedings of the 10th International Conference on Utility and Cloud Computing. pp. 209 – 214.
[3] Odun-Ayo, I., Misra, S., Omoregbe, N., Onibere, E., Bulama, Y., & Damasevičius, R. (2017). Cloud-based security driven human resource management system, Frontiers in Artificial Intelligence and Applications. 295, 96 – 106. doi:10.3233/978-1-61499-773-3-96
[4] Odun-Ayo, I., Ananya, M., Agono, F., & Goddy-Worlu, R. (2018). Cloud computing architecture: A critical analysis”, In IEEE Proceedings of the 2018 18th International Conference on Computational Science and Its Applications (ICCSA 2018), pp. 1-7 doi: 10.1109/ICCSA.2018.8439638
[5] Odun-Ayo, I., Odede, B., & Ahuja, R. (2018). Cloud applications management- Issues and developments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (LNCS) (Vol.10963, pp. 683-694) Berlin, Germany: Springer.
[6] Odun-Ayo, I., Omoregbe, N., Odusami, M., & Ajayi, O. (2017). Cloud ownership and reliability -Issues and developments. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (LNCS) (Vol. 10658, pp. 231-240). Berlin, Germany: Springer.
[7] Odun-Ayo, I., Goddy-Worlu, R., Geteloma, V., & Grant, E. (2019). A Systematic Mapping Study of Cloud, Fog, and Edge/Mobile Devices Management, Hierarchy Models and Business Models. Advances in Science, Technology and Engineering Systems Journal, Vol 4, Issue 2, pp. 91-101
[8] Pozdmiukova, O., & Mazeika, D. (2017). Systematic Literature review of the Cloud ready software architecture. Baltic Journal of Modern Computing. 5(1), pp 124-135.
[9] Vukovic, M., Wang, J., Rofrano, J., & Anerousis, N. (2017). Blue Shift automated application transformation to Cloud native architectures. In IBM Research IFIP/IEEE International Symposium on integrated Network Management.
[10] Baldinin, I., Castro, P., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., & Suter, P. (2016). Cloud-native, extent based programming for mobile applications. In IEEE/ACM International Conference on Mobile software engineering and systems.

[11] Tortura, L.A., Sukmana, M.I.H., Cheng, & F., Meinel, C. (2017). Leveraging Cloud native designs patterns for security as a service applications. In IEEE International conference on Smart Cloud, 2017.

[12] Ganon, D, Borga, R., Sundaresan, & N. (2017). Cloud – native applications. In IEEE Cloud Cloud, 2017.

[13] Odun-Ayo, I., Ajayi, O., Goddy-Worlu, R., Yahaya, J. (2019). A Systematic Mapping Study of Cloud Resources Management and Scalability in Brokering, Scheduling, Capacity Planning and Elasticity. Asian Journal of Scientific Research. Vol 12, Issue 2, pp. 151-166. doi: 10.3923/ajsr.2019.151.166

[14] Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic Mapping Studies In Software Engineering. EASE'08 Proceedings of the 12th international conference on Evaluation and Assessment in Software Engineering, Italy, pp. 68-77.

[15] Barros-Justo, J.L., Cravero-Leal, A.L., Benitti, F. B., & Capilla-Sevilla, R. (2017). Systematic mapping protocol: the impact of using software patterns during requirements engineering activities in real-world settings, Cornell University Library, arXiv:1701.05747v1 [cs.SE].

[16] Kosar, T., Bohra, S., & Mernik, M.A. (2016). Protocol of a systematic mapping study for domain-specific languages, Journal of Information and Software Technology 21(C). pp. 77-91.

[17] Santos, V., Souza. E.F., Felizardo, K.R., & Vijaykumar. N.L. (2019). A Systematic Mapping Study of activities in real-world settings, mapping protocol: the impact of using software patterns during requirements engineering activities in real-world settings, Cornell University Library, arXiv:1701.05747v1 [cs.SE].

[18] Souza, M., Veado, L., Moreira, R.T., Figueiredo, E.,& Costa, H. (2018). A systematic mapping study on game-related methods for software engineering education. Information and Software Technology 95, pp. 201-218.

[19] Fernandez-Blanco, C.R., Careri,F., Kavvadias, K., Hidalgo Gonzalez, I., Zucker, A., & Peteves, E. (2017). Systematic mapping of power system models: Expert survey, EUR 28875 EN, Publications Office of the European Union, Luxembourg, 2017, ISBN 978-92-79-76462-2, doi:10.2760/422399, JRC109123.

[20] Mernik, M. (2017). Domain-specific languages: A systematic mapping study, International Conference on Current Trends in Theory and Practice of Informatics, Lecture Notes in Computer Science, (Vol. 10139, pp. 464-472) Berlin, Germany: Springer.

[21] Griffo, C., Almeida, J.P.A., & Guizzardi, G. (2015). A systematic mapping of the literature on legal core ontologies, In Brazilian Conference on Ontologies, ONTOBRAS 15, CEUR Workshop Proceedings,1442.

[22] Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature review in software engineering. Version 2. 2007-01.

[23] Ahmad, A., Brereton, P., & Andras, P. (2017). A systematic mapping study of empirical studies on software cloud testing methods. In IEEE International Conference on Software Quality, Reliability and Security Companion, pp. 555-562.

[24] Muhammed, A.B., & Muhammed, A.C. (2014). A systematic Mapping study of software architectures for Cloud based systems. IT University Technical Report Series, TR- [2014-175]. Copenhagen.

[25] Wieringa, R., Maiden, N.A., Mead, N.R., & Rolland, C. (2006). Requirement engineering paper classification and evaluation criteria. A proposal and a discussion. Requirement Engineering. 11(1), pp. 102-107.
[26] Odun-Ayo, I., Goddy-Worlu, R., Ajayi, O., & Grant, E. (2018). A systematic mapping study of High-Performance Computing and the Cloud. *ARPN Journal of Engineering and Applied Sciences*, 13 (24), pp. 9686-9700.

[27] Odun-Ayo, I., Goddy-Worlu, R., Yahaya, J., & Geteloma, V. (2019) A systematic mapping study of cloud policy languages and programming models, Journal of King Saud University – Computer and Information Sciences, https://doi.org/10.1016/j.jksuci.2019.05.003

Appendix: List of Primary Studies

PS1 Adersberger, J., Siedersleben, J. The cloud native stack: Building cloud applications as google does (2017) Digital Marketplaces Unleashed, pp. 711-723.

PS2 Andrikopoulos, V., Strauch, S., Fehling, C., Leymann, F. CAP-Oriented Design for Cloud-Native Applications (2013) Communications in Computer and Information Science, 367 CCIS, pp. 215-229.

PS3 Almurayh, A., Semwal, S. Controlling Xen Cloud platform via smart phones (2013) Proceedings of the 2013 IEEE 14th International Conference on Information Reuse and Integration, IEEE IRI 2013, art. no. 6642533, pp. 676-683.

PS4 Alwasel, K., Li, Y., Jayaraman, P.P., Garg, S., Calheiros, R.N., Ranjan, R. Programming SDN-Native Big Data Applications: Research Gap Analysis (2017) IEEE Cloud Computing, 4 (5), art. no. 8125557, pp. 62-71.

PS5 Anandlal, S.S., Arjun, J., Sandeep, A., Sreekumar, K. A collaborative analysis and comparison of diverse virtualization models on multiple platforms (2018) International Journal of Pure and Applied Mathematics, 119 (10 Special Issue A), pp. 545-556.

PS6 Andrikopoulos, V., Strauch, S., Fehling, C., Leymann, F. CAP-Oriented Design for Cloud-Native Applications (2013) Communications in Computer and Information Science, 367 CCIS, pp. 215-229.

PS7 Andrikopoulos, V., Fehling, C., Leymann, F. Designing for CAP: The effect of design decisions on the CAP properties of cloud-native applications (2012) CLOSER 2012 - Proceedings of the 2nd International Conference on Cloud Computing and Services Science, pp. 365-374.

PS8 Atif, M., Kobayashi, R., Menadue, B.J., Lin, C.Y., Sanderson, M., Williams, A. Breaking HPC Barriers with the 56GbE Cloud (2016) Procedia Computer Science, 93, pp. 3-11.

PS9 Auler, R., Millani, C.E., Brighello, A., Linhares, A., Borin, E. Handling IoT platform heterogeneity with COISA, a compact OpenISA virtual platform (2017) Concurrency Computation, 29 (22), art. no. e3932.

PS10 Andrikopoulos, V., Fehling, C., Leymann, F. Designing for CAP: The effect of design decisions on the CAP properties of cloud-native applications (2012) CLOSER 2012 - Proceedings of the 2nd International Conference on Cloud Computing and Services Science, pp. 365-374.

PS11 Balalaie, A., Heydarnoori, A., Jamshidi, P. Migrating to Cloud-Native architectures using microservices: An experience report (2016) Communications in Computer and Information Science, 567, pp. 201-215.

PS12 Baldini, I., Castro, P., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P. Cloud-native, event-based programming for mobile applications (2016) Proceedings - International Conference on Mobile Software Engineering and Systems, MOBILESofT 2016, pp. 287-288.

PS13 Bhattacharjee, A. MDE-based automated provisioning and management of cloud applications (2017) CEUR Workshop Proceedings, 2019, pp. 480-483.
PS14 Brunner, S., Blochlinger, M., Toffetti, G., Spillner, J., Bohnert, T.M. Experimental Evaluation of the Cloud-Native Application Design (2015) Proceedings - 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing, UCC 2015, art. no. 7431462, pp. 488-493.

PS15 Bagley, A., Fehringer, G., Jin, N., Cannish, S. Live video transmission over data distribution service with existing low-power platforms (2017) ACM International Conference Proceeding Series, art. no. a81.

PS16 Bahrami, M., Li, D., Singhal, M., Kundu, A. An Efficient Parallel Implementation of a Lightweight Data Privacy Method for Mobile Cloud Users (2017) Proceedings of DataCloud 2016: 7th International Workshop on Data-Intensive Computing in the Clouds - Held in conjunction with SC 2016: The International Conference for High Performance Computing, Networking, Storage and Analysis, art. no. 7845282, pp. 51-58.

PS17 Bai, X. Affordance of ubiquitous learning through cloud computing (2010) Proceedings - 5th International Conference on Frontier of Computer Science and Technology, FCST 2010, art. no. 5575671, pp. 78-82.

PS18 Balalaie, A., Heydarnoori, A., Jamshidi, P. Migrating to Cloud-Native architectures using microservices: An experience report (2016) Communications in Computer and Information Science, 567, pp. 201-215.

PS19 Baldini, I., Castro, P., Cheng, P., Fink, S., Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R., Suter, P. Cloud-native, event-based programming for mobile applications (2016) Proceedings - International Conference on Mobile Software Engineering and Systems, MOBILESof 2016, pp. 287-288.

PS20 Barać, D., Radenković, M., Jovanić, B. Mobile learning services on cloud (2015) Web-Based Services: Concepts, Methodologies, Tools, and Applications, pp. 1027-1052.

PS21 Barać, D., Radenković, M., Jovanić, B. Mobile learning services on cloud (2015) Mobile Computing and Wireless Networks: Concepts, Methodologies, Tools, and Applications, 1-4, pp. 81-106.

PS22 Barać, D., Radenković, M., Jovanić, B. Mobile learning services on cloud (2014) Handbook of Research on High Performance and Cloud Computing in Scientific Research and Education, pp. 147-172.

PS23 Benas, N., Finkensieper, S., Stengel, M., Van Zadelhoff, G.-J., Hanschmann, T., Hollmann, R., Meirink, J.F. The MSG-SEVIRI-based cloud property data record CLAAS-2 (2017) Earth System Science Data, 9 (2), pp. 415-434.

PS24 Benchab, Y., Secci, S., Phung, C.-D. Transparent cloud access performance augmentation via an MPTCP-LISP connection proxy (2015) ANCS 2015 - 11th 2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems, art. no. 7110140, pp. 201-202.

PS25 Bergamaschi, S., Guerra, F., Rota, S., Velegarakis, Y. Understanding linked open data through keyword searching: The KEYRY approach (2011) ACM International Conference Proceeding Series, pp. 34-35.

PS26 Bernard, E., Moulin, C., Ramon, D., Jolivet, D., Riedi, J., Nicolas, J.-M. Description and validation of an AOT product over land at the 0.6 µm channel of the SEVIRI sensor onboard MSG (2011) Atmospheric Measurement Techniques, 4 (11), pp. 2543-2565.

PS27 Beserra, D., Moreno, E.D., Endo, P.T., Barreto, J. Performance evaluation of a lightweight virtualization solution for HPC I/O scenarios (2017) 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference Proceedings, art. no. 7844970, pp. 4681-4686.

PS28 Beserra, D., Moreno, E.D., Endo, P.T., Barreto, J., Fernandes, S., Sadok, D. Performance analysis of Linux containers for high performance computing applications (2017) International Journal of Grid and Utility Computing, 8 (4), pp. 321-329.

PS29 Beserra, D., Moreno, E.D., Endo, P.T., Barreto, J., Sadok, D., Fernandes, S. Performance Analysis of LXC for HPC Environments (2015) Proceedings - 2015 9th International Conference
on Complex, Intelligent, and Software Intensive Systems, CISIS 2015, art. no. 7185212, pp. 358-363.

PS30 Besseron, X., Plugaru, V., Mahmoudi, A.H., Varrette, S., Peters, B., Bouvry, P. Performance evaluation of the XDEM framework on the openstack cloud computing middleware (2015) Civil-Comp Proceedings, 107.

PS31 Bhattacharjee, A. MDE-based automated provisioning and management of cloud applications (2017) CEUR Workshop Proceedings, 2019, pp. 480-483.

PS32 Bhatti, N., O'Brien-Strain, E., Liu, J. Cloud-based printing for mobile devices (2010) Proceedings of SPIE - The International Society for Optical Engineering, 7540, art. no. 75400A.

PS33 Biahmou, A., Emmer, C., Pfouga, A., Stjiæpandiæ, J. Digital master as an enabler for industry 4.0 (2016) Advances in Transdisciplinary Engineering, 4, pp. 672-681.

PS34 Bondi, A.B. Challenges with applying performance testing methods for systems deployed on shared environments with indeterminate competing workloads: Position paper (2016) ICPE 2016 Companion - Companion Publication for 7th ACM/SPEC International Conference on Performance Engineering, pp. 41-44.

PS35 Brenner, S., Hundt, T., Mazzeo, G., Kapitza, R. Secure cloud micro services using Intel SGX (2017) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10320 LNCS, pp. 177-191.

PS36 Brunner, S., Blochlinger, M., Toffetti, G., Spillner, J., Bohnert, T.M. Experimental Evaluation of the Cloud-Native Application Design (2015) Proceedings - 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing, UCC 2015, art. no. 7431462, pp. 488-493.

PS37 Chung, H., Park, J., Lee, S. Digital forensic approaches for Amazon Alexa ecosystem (2017) Digital Investigation, 22, pp. S15-S25.

PS38 Challa, N.R. Hardware based I/O virtualization technologies for hypervisors, configurations and advantages a study (2012) IEEE Cloud Computing for Emerging Markets, CCEM 2012 - Proceedings, art. no. 6354610, pp. 99-103.

PS39 Chapman, K., Hussein, A., Hosking, A.L. X10 on the single-chip cloud computer: Porting and preliminary performance (2011) Proceedings of the 2011 ACM SIGPLAN X10 Workshop, X10 ’11.

PS40 Chiu, R.K., Chen, R.Y., Wang, S.-A., Jian, S.-J. Intelligent systems on the cloud for the early detection of chronic kidney disease (2012) Proceedings - International Conference on Machine Learning and Cybernetics, 5, art. no. 6359637, pp. 1737-1742.

PS41 Choi, E., Song, H., Bae, C., Lee, J. The design and implementation of web application management on personal device (2012) Lecture Notes in Electrical Engineering, 107 LNEE, pp. 591-596.

PS42 Chrzeszczyk, J., Howard, A., Chrzeszczyk, A., Swift, B., Davis, P., Low, J., Tan, T.W., Ban, K. InfiniCloud 2.0: Distributing high performance computing across continents (2016) Supercomputing Frontiers and Innovations, 3 (2), pp. 54-71.

PS43 Desouza-Machado, S., Larraabee Strow, L., Tangborn, A., Huang, X., Chen, X., Liu, X., Wu, W., Yang, Q. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm (2018) Atmospheric Measurement Techniques, 11 (1), pp. 529-550.

PS44 Dey, S., Liu, Y., Wang, S., Lu, Y. Addressing response time of cloud-based mobile applications (2013) Proceedings of the International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 3-10.

PS45 Doke, P., Lobo, S., Shyama, V.S., Hirom, U., Basumotari, M. Modeling less-literate user’s choices of smartphone authentication modes (2017) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10516 LNCS, pp. 496-500.
PS46 Dong, B., Zheng, Q., Tian, F., Chao, K.-M., Ma, R., Anane, R. An optimized approach for storing and accessing small files on cloud storage (2012) Journal of Network and Computer Applications, 35 (6), pp. 1847-1862.

PS47 Emeneker, W., Apon, A. Characterising the performance of cache-aware placement of Virtual Machines on a multi-core architecture (2012) International Journal of Ad Hoc and Ubiquitous Computing, 10 (2), pp. 84-95.

PS48 Fortiș, T.-F., Munteanu, V.I. Topics in cloud incident management (2017) Future Generation Computer Systems, 72, pp. 163-164.

PS49 Gannon, D., Bargh, R., Sundaresan, N. Cloud-Native Applications (2017) IEEE Cloud Computing, 4 (5), art. no. 8125550, pp. 16-21.

PS50 García-Gómez, S., Jiménez-Gañán, M., Taher, Y., Momm, C., Junker, F., Biro, J., Menychtas, A., Andrikopoulos, V., Strauch, S. Challenges for the comprehensive management of cloud services in a PaaS framework (2012) Scalable Computing, 13 (3), pp. 201-213.

PS51 García-Gómez, S., Escriche-Vicente, M., Arozarena-Llopis, P., Lelli, F., Taher, Y., Momm, C., Spriestersbach, A., Vogel, J., Giessmann, A., Junker, F., Jiménez-Gañán, M., Biro, J., Le Jeune, G., Dao, M., Carrie, S.P., Niemoller, J., Mazmanov, D. 4CaaS: Comprehensive management of cloud services through a PaaS (2012) Proceedings of the 2012 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, ISPA 2012, art. no. 6280332, pp. 494-499.

PS52 Garriga, M. Towards a taxonomy of microservices architectures (2018) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10729 LNCS, pp. 203-218.

PS53 Inzinger, C., Nastic, S., Sehic, S., Vogler, M., Li, F., Dustdar, S. MADCAT: A methodology for architecture and deployment of cloud application topologies (2014) Proceedings - IEEE 8th International Symposium on Service Oriented System Engineering, SOSE 2014, art. no. 6825957, pp. 13-22.

PS54 Jambunathan, B., Kalpana, Y. Multi cloud deployment with containers (2016) International Journal of Engineering and Technology, 8 (1), pp. 421-428.

PS55 Leymann, F., Breitenbacher, U., Wagner, S., Wettinger, J. Native cloud applications: Why monolithic virtualization is not their foundation (2017) Communications in Computer and Information Science, 740, pp. 16-40.

PS56 Leymann, F., Fehling, C., Wagner, S., Wettinger, J. Native cloud applications why virtual machines, images and containers miss the point (2016) CLOSER 2016 - Proceedings of the 6th International Conference on Cloud Computing and Services Science, 2, pp. 7-15.

PS57 Li, X., Li, K., Pang, X., Wang, Y. An Orchestrated Based Cloud Auto-Healing Service Framework (2017) Proceedings - 2017 1st International Conference on Edge Computing, EDGE 2017, art. no. 8029274, pp. 190-193.

PS58 Mateljan, V., Čišić, D., Ogričović, D. Cloud Database-as-a-Service (DaaS) – ROI (2010) MIPRO 2010 - 33rd International Convention on Information and Communication Technology, Electronics and Microelectronics, Proceedings, art. no. 5533641, pp. 1185-1188.

PS59 Mesojedec, U., Levnajic, Z. Path to cloud-native applications, opportunities and challenges (2015) Towards Solving the Social Science Challenges with Computing Methods, p. 129133.

PS60 Mikkilineni, R., Morana, G., Keshan, S. Globally interoperable network of clouds and cognitive workload quality of service assurance (2017) Proceedings - 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2017, art. no. 8003799, pp. 113-118.

PS61 Pahl, C., Jamshidi, P., Zimmermann, O. Architectural principles for cloud software (2018) ACM Transactions on Internet Technology, 18 (2), art. no. 17.

PS62 Peinl, R., Holzschuher, F., Pfitzer, F. Docker Cluster Management for the Cloud - Survey Results and Own Solution (2016) Journal of Grid Computing, 14 (2), pp. 265-282.
PS63 Peinl, R., Holzschuh, F. The docker ecosystem needs consolidation (2015) CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science, Proceedings, pp. 535-542.
PS64 Pencheva, E., Atanasov, I., Kassev, K., Trifonov, V. Location service in mobile edge computing (2017) International Conference on Ubiquitous and Future Networks, ICUFN, art. no. 7993865, pp. 617-622.
PS65 Roussev, V., McCulley, S. Forensic analysis of cloud-native artifacts (2016) Digital Investigation, 16, pp. S104-S113.
PS66 Roussev, V., Barreto, A., Ahmed, I. API-based forensic acquisition of cloud drives (2016) IFIP Advances in Information and Communication Technology, 484, pp. 213-235.
PS67 Serrano, M., Shi, L., Foghlu, M.O., Donnelly, W. Cloud Services Composition Support by Using Semantic Annotation and Linked Data (2013) Communications in Computer and Information Science, 348, pp. 278-293.
PS68 Spillner, J., Toffetti, G., LópezM.R. Cloud-Native Databases: An Application Perspective (2018) Communications in Computer and Information Science, 824, pp. 102-116.
PS69 Suneja, S., Koller, R., Isci, C., De Lara, E., Hashemi, A., Bhattacharyya, A., Amza, C. Safe Inspection of live virtual machines (2017) VEE 2017 - Proceedings of the 2017 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 97-111.
PS70 Sharma, B., Prabhakar, R., Lim, S.-H., Kandemir, M.T., Das, C.R. MROrchestrator: A fine-grained resource orchestration framework for MapReduce clusters (2012) Proceedings - 2012 IEEE 5th International Conference on Cloud Computing, CLOUD 2012, art. no. 6253482, pp. 1-8.
PS71 Shuja, J., Gani, A., Rehman, M.H.U., Ahmed, E., Madani, S.A., Khan, M.K., Ko, K. Towards native code offloading based MCC frameworks for multimedia applications: A survey (2016) Journal of Network and Computer Applications, 75, pp. 335-354.
PS72 Singh, K., Krishnaswamy, V. Building communicating web applications leveraging endpoints and cloud resource service (2013) IEEE International Conference on Cloud Computing, CLOUD, art. no. 6676731, pp. 486-493.
PS73 Sirer, E.G., De Bruijn, W., Reynolds, P., Shieh, A., Walsh, K., Williams, D., Schneider, F.B. Logical attestation: An authorization architecture for trustworthy computing (2011) SOSP'11 - Proceedings of the 23rd ACM Symposium on Operating Systems Principles, pp. 249-264.
PS74 Songbin, B., Cuizhen, Z. A cloud learning environment for foreign language learners (2012) Advances in Information Sciences and Service Sciences, 4 (16), pp. 114-122.
PS75 Srivastava, V., Bond, M.D., McKinley, K.S., Shmatikov, V. A security policy oracle: Detecting security holes using multiple API implementations (2011) Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp. 343-354.
PS76 Steiner, D., Turlcea, C., Culea, C., Selinger, S. Model-driven development of cloud-connected mobile applications using DSLs with xtext (2013) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8112 LNCS (PART 2), pp. 409-416.
PS81 Sujitha, S., Jaganathan, S. Aggrandizing Hadoop in terms of node Heterogeneity & Data Locality (2013) 2013 IEEE International Conference on "Smart Structures and Systems", ICSSS 2013, art. no. 6623017, pp. 145-151.

PS82 Suneja, S., Koller, R., Isci, C., De Lara, E., Hashemi, A., Bhattacharyya, A., Amza, C. Safe Inspection of live virtual machines (2017) VEE 2017 - Proceedings of the 2017 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 97-111.

PS83 Suresh, S., Kannan, M. A performance study of hardware impact on full virtualization for server consolidation in cloud environment (2014) Journal of Theoretical and Applied Information Technology, 60 (3), pp. 556-567.

PS84 Taibi, D., Lenarduzzi, V. On the Definition of Microservice Bad Smells (2018) IEEE Software, 35 (3), pp. 56-62.

PS85 Taibi, D., Lenarduzzi, V., Pahl, C. Processes, Motivations, and Issues for Migrating to Microservices Architectures: An Empirical Investigation (2017) IEEE Cloud Computing, 4 (5), art. no. 8125558, pp. 22-32.

PS86 Taibi, D., Lenarduzzi, V., Pahl, C., Janes, A. Microservices in agile software development: A workshop-based study into issues, advantages, and disadvantages (2017) ACM International Conference Proceeding Series, Part F129907, art. no. a23,

PS87 Taivalsaari, A., Mikkonen, T., Systä, K. Cloud browser: Enhancing the web browser with cloud sessions and downloadable user interface (2013) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7861 LNCS, pp. 224-233.

PS88 Tang, J., Matyas, C.J. Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing (2018) Computers and Geosciences, 111, pp. 159-166.

PS89 Tang, Y., Li, J., Huang, Y. VON/K: A fast virtual overlay network embedded in KVM hypervisor for high performance computing (2012) Journal of Information and Computational Science, 9 (5), pp. 1273-1280.

PS90 Thomas, P.Y. Cloud computing A potential paradigm for practising the scholarship of teaching and learning (2011) Electronic Library, 29 (2), pp. 214-224.

PS91 Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., Bohnert, T.M. Self-managing cloud-native applications: Design, implementation, and experience (2017) Future Generation Computer Systems, 72, pp. 165-179.

PS92 Toris, R., Shue, C., Chernova, S. Message authentication codes for secure remote non-native client connections to ROS enabled robots (2014) IEEE Conference on Technologies for Practical Robot Applications, TePRA, art. no. 6869141,

PS93 Torkura, K.A., Sukmana, M.I.H., Cheng, F., Meinel, C. Leveraging Cloud Native Design Patterns for Security-as-a-Service Applications (2017) Proceedings - 2nd IEEE International Conference on Smart Cloud, SmartCloud 2017, art. no. 8118424, pp. 90-97.

PS94 Truyen, E., Van Landuyt, D., Reniers, V., Rafique, A., Lagaisse, B., Joosen, W. Towards a container-based architecture for multi-tenant SaaS applications (2016) ARM 2016 - 15th Workshop on Adaptive and Reflective Middleware, colocated with ACM/IFIP/USENIX Middleware 2016, art. no. a6,

PS95 Taibi, D., Lenarduzzi, V. On the Definition of Microservice Bad Smells(2018) IEEE Software, 35 (3), pp. 56-62.

PS96 Taibi, D., Lenarduzzi, V., Pahl, C., Janes, A. Microservices in agile software development: A workshop-based study into issues, advantages, and disadvantages (2017) ACM International Conference Proceeding Series, Part F129907, art. no. a23,

PS97 Toffetti, G., Brunner, S., Blöchlinger, M., Spillner, J., Bohnert, T.M. Self-managing cloud-native applications: Design, implementation, and experience (2017) Future Generation Computer Systems, 72, pp. 165-179.
PS98 Torkura, K.A., Sukmana, M.I.H., Cheng, F., Meinel, C. Leveraging Cloud Native Design Patterns for Security-as-a-Service Applications (2017) Proceedings - 2nd IEEE International Conference on Smart Cloud, SmartCloud 2017, art. no. 8118424, pp. 90-97.

PS99 Truyen, E., Van Landuyt, D., Reniers, V., Rafique, A., Lagaisse, B., Joosen, W. Towards a container-based architecture for multi-tenant SaaS applications (2016) ARM 2016 - 15th Workshop on Adaptive and Reflective Middleware, colocated with ACM/IFIP/USENIX Middleware 2016, art. no. a6.

PS100 Umamaheshwaran, S., Hacker, T.J. Reliability guided resource allocation for large-scale systems (2015) Proceedings of the International Conference on Cloud Computing Technology and Science, CloudCom, 2015-February (February), art. no. 7037686, pp. 334-341.

PS101 Valenzuela, G., Neyem, A., Benedetto, J.I., Navon, J., Sanabria, P., Karmy, J.A., Balbontin, F. Towards Native Code Offloading Platforms for Image Processing in Mobile Applications: A Case Study (2017) Proceedings - 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems, MOBILESoft 2017, art. no. 7972815, pp. 221-222.

PS102 Varghese, B., Subba, L.T., Thai, L., Barker, A. DocLite: A Docker-Based Lightweight Cloud Benchmarking Tool (2016) Proceedings - 2016 16th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid 2016, art. no. 7515691, pp. 213-222.

PS103 Varrette, S., Plugaru, V., Guzek, M., Besseron, X., Bovry, P. HPC Performance and Energy-Efficiency of the OpenStack Cloud Middleware (2015) Proceedings of the International Conference on Parallel Processing Workshops, 2015-May, art. no. 7103480, pp. 419-428.

PS104 Verbitski, A., Gupta, A., Saha, D., Brahmanesam, M., Gupta, K., Mittal, R., Krishnamurthy, S., Maurice, S., Kharatishvili, T., Bao, X. Amazon aurora: Design considerations for high throughput cloud-native relational databases (2017) Proceedings of the ACM SIGMOD International Conference on Management of Data, Part F127746, pp. 1041-1052.

PS105 Vilk, J., Berger, E.D. DOPPIO: Breaking the browser language barrier (2014) Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pp. 508-518.

PS106 Vilk, J., Berger, E.D. DOPPIO: Breaking the browser language barrier (2014) ACM SIGPLAN Notices, 49 (6), pp. 508-518.

PS107 Virdis, A., Vallati, C., Nardini, G., Tanganelli, G., Stea, G., Mingozzi, E. D2D Communications for Large-Scale Fog Platforms: Enabling Direct M2M Interactions (2018) IEEE Vehicular Technology Magazine, 13 (2), pp. 24-33.

PS108 Vogel, A., Griebler, D., Schepke, C., Fernandes, L.G. An Intra-Cloud Networking Performance Evaluation on CloudStack Environment (2017) Proceedings - 2017 25th Euromicro International Conference on Parallel, Distributed and Network-Based Processing, PDP 2017, art. no. 7912689, pp. 468-472.

PS109 Vucina, D., Lozina, Z., Pehnec, I. Computational procedure for optimum shape design based on chained Bezier surfaces parameterization (2012) Engineering Applications of Artificial Intelligence, 25 (3), pp. 648-667.

PS110 Vukovic, M., Hwang, J., Rofrano, J., Anerousis, N. BlueShift: Automated application transformation to Cloud Native architectures (2017) Proceedings of the IM 2017 - 2017 IFIP/IEEE International Symposium on Integrated Network and Service Management, art. no. 7987377, pp. 778-792.