Strategies in developing dimethyl sulfoxide (DMSO)-free cryopreservation protocols for biotherapeutics

Marlene Davis Ekpo, George Frimpong Boafo, Jingxian Xie, Xiangjian Liu, Chuanpin Chen and Songwen Tan*

Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China

KEYWORDS

cryopreservation, cryoprotectants, biobanking, dimethyl sulfoxide, DMSO-free, biotherapeutics

Introduction

Cryopreservation is a technology employed in long-term storage of biologics achieved by cooling to cryogenic temperatures (1, 2). This preservation technique has become increasingly relevant especially in the development and commercialization of cellular therapeutic products (3, 4). Conventional cryopreservation protocols involve the application of the permeating cryoprotectant; dimethyl sulfoxide (DMSO) due to its ability to restrict ice nucleation and promote post-thaw viability (4). Although DMSO effectively preserves biologics, it can impair functional recovery (5–7) and induce a variety of mild to severe toxic effects in patients which must be avoided at all cost when administering immunotherapeutic products (8, 9).

The situation is considerably more critical during vitrification; a freezing method that has attracted heightened recognition as a faster and economic substitute to slow freezing as the unorganized liquid state of water is rapidly transformed to a glassy solid state without ice crystallization (10). In vitrification, high cooling rates and high concentrations (4–8 M) of cryoprotectants are usually required (11); enforcing on the exigency of using non-toxic cryoprotectants because increasing DMSO concentration is not advisable.

Efficacious cryopreservation and biobanking requires the development of safe and consistent storage protocols (12, 13). Favorably, such procedures should be devoid of xenogeneic or toxic components and to this effect, many scientists have put forward for the replacement of DMSO. Several groups have discovered/developed safer alternative cryoprotectants with a range of potential cryoprotection mechanisms like ice
recrystallization inhibition, osmolality control, cell membrane stabilization and vitrification (14).

Numerous methods have since emerged to lessen the quantity of DMSO used (mostly by supplementation with other cryoprotectants) (15–20) or to completely eliminate DMSO application and these methods may also require special adjunct treatments, reagents or freezing protocols as would be discussed here in specifics. Attempts have also been made at preserving cellular products at non-freezing temperatures (21–25), advanceable by hypoxia and hypercapnia induced cytoprotection (26–28). Although highly beneficial to low-income countries where biobanking facilities are not obtainable, hypothermic storage is however limited to a few days thus fueling the need for safer freezing protocols.

But for the review by Weng et al. (29), studies on replacing DMSO are yet to be critically analyzed; a process that would track research accomplishments, expose novel supplementary techniques applied and encourage further research aimed at improving DMSO-free cryopreservation protocols for different biologicals. Through this article, we wish to draw the attention of researchers to possibility of a DMSO-free preservation era which is achievable in the nearest future. We provide prove of total exclusion of DMSO from cryopreservation solutions and summarize some of the supplementary techniques that have been applied to improve post-thaw viability and function. Our survey has also revealed the commercial availability of DMSO-free cryoprotectant solutions especially those used for cellular therapeutics, but there are limited studies to scrutinize or validate the potency of these products; which might be why most researchers are yet to largely patronizing products without DMSO as there is little to no evidence to back up these product claims. We therefore urge researchers to extend the application of these products to a wider range of biotherapeutics so as to speed up the availability of clinically approved products especially immunotherapeutics which is the answer to many complicated diseases like cancers.

Challenges in cryopreservation with DMSO

Cryopreservation is an important determinant of the stability and activity of biopharmaceutical formulations. Several studies have proven the hypothesis that the application of DMSO can induce temperature-, time-, and concentration-dependent toxicities (7, 30). DMSO causes mitochondrial damage to astrocytes (31), and impacts negatively on cellular membrane/cytoskeleton structure and integrity by interacting with proteins and dehydrating lipids (32) as evident in the increased membrane permeability of erythrocytes (33) and altered chromatin conformation in fibroblasts (30). Also, the presence of DMSO in culture medium can induce unwanted stem cell differentiation (34).

Furthermore, repeated DMSO use even at sub-toxic levels can affect cellular epigenetic profile resulting in undesirable phenotypic disturbances (35). For instance, DMSO interferes with DNA methyltransferases and histone modification enzymes of human pluripotent stem cells causing epigenetic variations and reduction in their pluripotency (36, 37). Similarly, murine embryonic stem cells display disrupted mRNA expression levels of several markers following DMSO treatment (38).

Adverse reactions from cardiac, neurological, and gastrointestinal systems have been reported in patients receiving DMSO-containing cellular products (39, 40). These discoveries have led to the design of several washing procedures to ensure complete DMSO removal. However, the washing protocol usually involves agitation and osmotic/mechanical stresses which are to be avoided due to the fragile and sensitive nature of biologics post-thaw (40). The washing step can also be time consuming, expensive and resource wasting since a significant number of cells are loss in the process.

Strategies in DMSO-free cryopreservation of biotherapeutics

Potent and safe alternative cryoprotectants to DMSO are highly desirable in order to meet the demands in the development and manufacturing of cellular and genetic therapies. In numerous instances, the observed cryoprotective effect is derived from a combination of two or more strategies as discussed below. These strategies and their outcome are also summarized in Table 1.

Alternative cryoprotectants to DMSO

Replacing DMSO with other cryoprotectants is the typical approach in eradicating the use of DMSO in cryopreservation. Kuleshova et al. vitrified neural stem cells using a combination of ethylene glycol (EG) and sucrose. Post-storage evaluations revealed no substantial differences between fresh and vitrified cells in cell markers expression, proliferation or multipotent differentiation (51).

Osmolyte-based freezing solutions containing varying blends of sucrose, glycerol, creatine, isoleucine and mannitol have supported the recovery and survival of mesenchymal stromal cells when compared to conventional preservation with DMSO. These solutions conferred cryoprotection, retained cell differentiation capacity and modulated the cytosine-Phosphate-Guanine epigenome (54). StemCell Keep™ has been proven effective for the cryopreservation of human induced pluripotent stem cells
Material	Cryoprotectant	Additional strategy	Outcome/Conclusion	Ref
Human umbilical cord matrix MSCs	1,2-propanediol and 1.0 M EG	Thawing via magnetic induction heating of magnetic extracellular FeO nanoparticles	Suppressed devitrification and recrystallization with improved cell survival	(41)
Mesenchymal stromal cells	100–300 mM sucrose	Addition of using 10% platelet lysate to expansion medium	Improved cryopreservation	(42)
Human dermal MSCs	Mannitol, lactose, sucrose, trehalose or raffinose	24-hour sugar pretreatment prior to cryopreservation	Cryopreserved MSCs has retained attachment, proliferation and multilineage differentiation	(43)
Human umbilical cord MSCs	Sucrose, trehalose and raffinose	Electroporation-assisted pre-freeze delivery of cryoprotectants	Improved cryopreservation of MSCs	(44)
HiPSCs	StemCell Keep™	Nano-warming	Improved cryopreservation of HiPSCs	(45)
HESCs	StemCell Keep™	N/A	Higher recovery rates and cell attachment	(46)
Human bone marrow-derived MSCs	Polyampholyte cryoprotectant	N/A	High viability and do not affect the biological properties of the cells even after 24 months of cryopreservation at 80°C.	(47)
HiPSCs	EG	-Dissociation of iPSCs with Accutase in the presence of a ROCK inhibitor -Programmed freezing	Up to 6-fold improvement in comparison to the standard freezing in clumps without ROCK inhibitor.	(48)
Wharton’s Jelly Tissue	0.05 M glucose, 0.05 M sucrose, and 1.5 M EG in PBS	Programmed freezing	Higher post-thaw cell survivability	(49)
PDL cells and dental pulp tissues.	N/A	Programmed freezing using alternating magnetic field, “Cells Alive System”	Acceptable immediate autotransplantation results	(50)
Neural stem and progenitor cells	40% v/v EG and 0.6 M sucrose	N/A	Preserved expression of cell markers, proliferation and multipotent differentiation	(51)
HiPSCs	Sucrose, glycerol, isoleucine, and poloxamer 188	Controlled-rate freezing in a liquid nitrogen-based controlled-rate freezer	Improved cryopreservation of hiPSCs	(52)
Erythrocytes	0.1 wt% PVA	N/A	Significantly high post-thaw cell recovery	(53)
Mesenchymal Stromal Cells	Osmolyte-based freezing solutions	N/A	Comparable post-thaw recovery and improved post-thaw attachment	(54, 55)
MSCs	Amphiphilic Block Copolymer	N/A	Excellent MSC proliferation and multilineage differentiation properties	(56)
Human bone marrow-derived MSCs	2 M 1,2-EG, 2 M 1,2- propyl alcohol, and 0.5 M trehalose	Nano-warming with synthetic Pluronic F127-liquid metal nanoparticles (PLM NPs)	Threelfold increase in viability, and maintained attachment, proliferation, surface marker expression, and multilineage differentiation	(57)
Human MSC monolayers	6.5 M EG, 0.5 M sucrose, and 10% w/w COOH-PLL	Slow vitrification at rates of 4.9 and 10.8°C/min	Significantly improved viability with less apoptosis	(58)
Natural killer cells	Poly-L-lysine, Ectoine, dextran and sucrose	N/A	Maintained cells viability, morphology and cytotoxic activity following long-term cryopreservation up to 2 months.	(59)
Erythrocytes	Biomimetic Block Copolymer Worms with PVA	N/A	Improved cell recovery with no evidence of hemagglutination or abnormal cell morphologies.	(60)
Human ADSCs	1.0 M Trehalose and 20% glycerol	N/A	High preservation efficiency with acceptable outcomes	(12)
Human ADSCs	Trehalose	Nanoparticle-mediated intracellular delivery of trehalose	Eliminates multistep washing of the cryopreserved cells to remove toxic/penetrating cryoprotectants	(61)
HiPSCs	Trehalose-based cryosolutions containing EG or glycerol	N/A	High cell viability and high stability with retained their morphology, self-renewal, pluripotency and differentiation.	(36)
HSCs	HP01 (Macopharma)	N/A	Conserved full short- and long-term post-thaw cellular activity	(62)
HiPSCs	Sucrose, glycerol, L-isoleucine, poloxamer 188 (P188)	N/A	Highly viable and functional HiPSCs	(5, 63)

(Continued)
Pre-cryopreservation treatment

The pretreatment of biotherapeutics with cryoprotective and stabilizing agents prior to cryopreservation is largely becoming a viable approach to ensuring safe storage. Sugar pretreatment, supplementation of expansion medium with 10% platelet lysate and slow freezing is reportedly an effective protocol in DMSO-less cryopreservation of adipose-derived stromal cells (42). Similarly, sugar pretreatment increased survival, metabolic activity, attachment, proliferation and multilineage differentiation after recultivation of dermal MSCs (43). Improved results are also obtained when the sugars are positioned intracellularly as performed by Mutsenko and coworkers who explored electroporation-aided delivery of cryoprotective sugars in human umbilical cord MSCs (44). Also, pre-incubation of MSCs with osmolyte-based freezing solutions could foster effective cryopreservation (54). These results corroborate the potential advantages of pre-cryopreservation treatment(s).

Programmed freezing methods

Programmed freezing offers improved control over ice nucleation parameters. A technique involving a magnetic field driven freezer termed “Cells Alive System” has been used to prevent formation of intracellular ice for up to three months. The magnetic field vibration function prohibits water molecules from creating clusters during freezing. Although the optimal conditions needed for survival and viability of isolated human periodontal ligament cells (PDL), pulp tissue and tooth using CAS freezers were determined previously (71) (72) with DMSO, the technique proved equally effective without DMSO, promoting greater survival rates over that obtained with conventional freezers (50). Programmed freezing has also been used for cryopreservation of human Wharton’s Jelly Tissue, showing higher post-thaw cell survivability when used in conjunction with a freezing solution consisting of 0.05 M glucose, 0.05 M sucrose and 1.5 M EG in PBS (49).

Matsumura et al. reports a simple, novel slow vitrification method at 4.9 and 10.8°C/min for the cryopreservation of MSC monolayers using a polyampholyte based vitrification solution. Thermal analysis confirmed stable vitrification and post-thaw assessment revealed significantly improved viability and retained differentiation capacity (38).

Thawing protocol

Due to the low thermal conductivity of biological samples, the conventional approach of rewarming large-volume cryopreserved samples in a water bath heated at 37°C is associated with non-uniform distribution of temperature,
which can induce thermal stress (41). Preferably, a high heating rate is desirable during thawing, because devitrification and recrystallization may occur if the temperature cannot be elevated rapidly above the sample’s melting point (73). Therefore, both the heating rate and uniformity of heating during rewarming are important to cryopreservation especially vitrification. Nevertheless, attaining the optimal rewarming rate remains a major factor complicating effective vitrification.

Wang et al. proposes magnetic induction heating (MIH) of extracellular Fe3O4 magnetic nanoparticles also called nano-warming technology as a method to amplify rewarming. This technique was successfully applied to rewarming vitrified MSCs where the sample was thawed by plunging the straw into a 0.2 M trehalose supplemented culture medium heated to 37°C. Then, the system was subjected to MIH under alternating magnetic field at a medium frequency for a duration of 10 s. Results obtained reveals the prospective benefits of this technique holds as it significantly hindered ice recrystallization/devitrification during rewarming and improved cell viability (41). More recently, Ito et al. also employed the nano-warming technology for thawing of hiPSC using StemCell Keep as cryoprotectant. Similarly, nano-warming showed more uniform and rapid rewarming of vitrified samples, prevented devitrification/recrystallization and improved viability (45).

Another nanotechnology assisted thawing approach involves the utilization of soft liquid metal nanoparticles possessing reproducible photothermal stability, high photothermal conversion efficiency, low cytotoxicity and the ability to suppress ice formation. This technique promotes less ice nucleation during freezing and ultrarapid rewarming while thawing. Human bone marrow stromal cells have been successfully rewarmed with this technique (57).

These studies reveal that the advantages of nanotechnology can be capitalized on to promote safe rewarming post-cryopreservation after verifying the biocompatibility of the nanoparticles.

Conclusion

A critical step prior to the clinical application of biotherapeutics is the optimization of cryopreservation protocols that minimize post-thaw alterations in the stability and potency of preserved materials. Cryosolutions containing 10% of DMSO is a widely used cryopreservative but there is an increasing amount of evidence showing inconsistent results on its impact on post-cryopreservation performance of biologicals. This drawback forms the basis for the development of safer preservation protocols. DMSO-free strategies have the potential to alleviate the aforementioned obstacles as demonstrated by studies discussed in this article. The application of other cryoprotectants, combined with other techniques like programmed freezing, pretreatments and modified thawing protocols have shown good prospects.

In conclusion, the development of effective DMSO-free cryopreservation techniques that will provide high post-thaw viability and preserve original morphology and functioning remains key because this is essential to hastening the industrialization and clinical application of biotherapeutics. We are of the opinion that more research efforts should be put into the development and performance validation of trademarked DMSO-free products. In cases where DMSO elimination is unavoidable, only confirmed safe concentrations should be applied preferably in combination with non-toxic cryoprotectants and other potent strategies.

Author contributions

Conceptualization: ME, CC, ST. Writing—original draft preparation: ME, JX, XL, GB. Writing—review and editing: ME, XL, GB, CC and ST. Supervision and approval: ST. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Pomeroy KO, Comizzoli P, Rushing JS, Lersten IL, Nel-Themaat L. The ART of cryopreservation and its changing landscape. Fertil Steril (2022) 117(3):469–76. doi: 10.1016/j.fertnstert.2022.01.018

2. Betsy J, Kumar S. Cryopreservation: History and development. In: Betsy J, Kumar S, editors. Cryopreservation of fish gametes. Singapore: Springer Singapore (2020). p. 135–49.
3. Hunt CJ. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. *Transfus Med Hemother* (2019) 46(3):134–50. doi: 10.1055/s-0046-2004728.

4. Whaley D, Damary K, Witte RP, Mendoza A, Alexander M, Laley JR. Cryopreservation: an overview of principles and cell-specific considerations. *Cell Transplant* (2021) 30:96.10369721999617. doi: 10.1056/10369721999617.

5. Li R, Walsh B, Truong V, Petersen A, Dutton JR, Hubele A. Differentiation of human iPSCs into sensory neurons exhibits developmentally stage-specific cryopreservation challenges. *Front Cell Dev Biol* (2021) 9:796960. doi: 10.3389/fcell.2021.796960.

6. Mizuno M, Matsuzaki T, Ozeki N, Kato H, Koga H, Takebe T, et al. Cell membrane fluidity and ROS resistance define DMSO tolerance of cryopreserved syngeneal MSCs and HUVECs. *Stem Cell Res Ther* (2022) 13(1):177. doi: 10.1186/s13287-022-02850-y.

7. Awan M, Burak I, Fleck R, Fuller B, Godtsev A, Kerby J, et al. Dimethyl sulfoxide: a mediator of the dawn of cryobiology, is efficacy balanced by toxicity? *Regener Med* (2020) 15(3):1463–91. doi: 10.2217/rme-2019-0145.

8. Ock SA, Rho GJ. Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCs). *Cell Transplant* (2011) 20(8):1231–9. doi: 10.3727/096368910x552835.

9. Slaugerd JD, Tkalchonbek MS, Haataerp EK, Munthe-Fog L, Clausen C, Hansen MB, et al. Pentaisomaltose, an alternative to DMSO. *Engraftment of cryopreserved human CD34(+) cells in immunodeficient NSG mice. Vitro Cells Dev Biol Anim* (2020) 56(7):1407–12. doi: 10.1007/s10925-020-00407-4.

10. Sharma A, Rao JS, Han Z, Gangwar L, Namasri B, Gao Z, et al. Vitrification and nanowarming of kidneys. *Adv Sci (Weinh)* (2021) 8(19):ea2101691. doi: 10.1002/advs.202101691.

11. Murray KA, Gibson MI. Chemical approaches to cryopreservation. *Nat Rev Chem* (2022) 6(9):579–93. doi: 10.1038/s41570-022-00407-4.

12. Zhang YX, Tan PC, Xie Y, Zhang XJ, Zhang PQ, Gao YM, et al. The combination of trehalose and glycerol: An effective and non-toxic recipe for nanowarming of kidneys. *Front Cell Dev Biol* (2021) 9:796960. doi: 10.3389/fcell.2021.796960.

13. Raju R, Bryant SJ, Wilkinson BL, Bryant G. The need for novel cryoprotectants and cryopreservation protocols: Insights into the importance of biophysical investigation and cell permeability. *Biochim Biophys Acta Gen Subj* (2021) 1865(1):129749. doi: 10.1016/j.bbagrm.2021.129749.

14. Arutyunyan IV, Kananykhina EY, Elchaninov AV, Fatkhudinov TK. Influence of sucrose on the efficiency of cryopreservation of human umbilical cord-derived multipotent stromal cells with the use of various penetrating biophysical investigation and cell permeability. *J Vis Exp* (2020) 42(22):440. doi: 10.3791/440.

15. Ilfignanova R, Ausclair KM, Hui A, Norris PJ, Muench MO. Reduced dimethyl sulfoxide concentrations successfully cryopreserve human hematopoietic stem cells with limited metabolic and long-term engagement ability in mice. *Cytotherapy* (2021) 23(2):1053–9. doi: 10.1016/j.jcyt.2021.07.007.

16. Jahan S, Kashaul R, Pasha R, Pinesault N. Current and future perspectives for the cryopreservation of cord blood stem cells. *Transfus Med Rev* (2021) 35(2):95–102. doi: 10.1016/j.mdr.2021.05.003.

17. Trummer T, Fox R, Koč JR, de Lima M, Ottegay F. Cryopreservation of hematopoietic cells using a pre-constituted, protein-free cryopreservative solution with 5% dimethyl sulfoxide. *Cytotherapy* (2020) 22(41):613–6. doi: 10.1016/j.jcyt.2020.05.006.

18. Ducher P, Chevalley J, Brunet de la Grange P, Vlaski M, Boiron JM, Wouters G, et al. Cryopreservation of hematopoietic stem and progenitor cells amplified ex vivo from cord blood CD34+ cells. *Transfusion* (2013) 53(9):2012–9. doi: 10.1111/tf.12355.

19. Bekada MA, Boumendil A, Blaise D, Chevallier P, Pogges KS, Salles G, et al. Non-cryopreserved hematopoietic stem cells in autograft patients with lymphoma: a matched-pair analysis comparing a single center experience with the use of cryopreserved stem cells reported to the European society for blood and marrow transplantation registry. *Cytotherapy* (2021) 23(6):483–7. doi: 10.1016/j.jcyt.2021.02.016.

20. Araito AB, Soares TB, Schmalfuss T, Angeli MH, Furlan JM, Salton GD, et al. Principles and protocols for post-cryopreservation quality evaluation of stem cells in novel biotechnologies. *Bone Marrow Transplant* (2020) 54(1):138–41. doi: 10.1038/s41409-018-0250-1.

21. Me2SO- and serum-free cryopreservation of human umbilical cord mesenchymal stem cells. *Cytotherapy* (2017) 19(9):826–7. doi: 10.1016/j.jcyt.2017.06.055-2.

22. Petrenko YA, Rogulska OY, Mutsenko VV, Petrenko AY. A sugar mixture for cryopreservation challenges. *Front Cell Dev Biol* (2021) 9:796960. doi: 10.3389/fcell.2021.796960.

23. Jennane S, Hasnaoui N, Mahtat EM, Merimi F, Bougar S, El Maarouf M, et al. Cryopreserved versus non-cryopreserved peripheral blood stem cells for autologous transplantation after high-dose melphalan in multiple myeloma: a bicentric study. *Bone Marrow Transplant* (2019) 54(1):138–41. doi: 10.1038/s41409-018-0250-1.

24. Bittencourt MCB, Mariano L, Moreira F, Schmidt-Filho J, Mendonêre JR, A Rocha V. Cryopreserved versus non-cryopreserved peripheral blood stem cells for autologous transplantation after high-dose melphalan in multiple myeloma: comparative analysis. *Bone Marrow Transplant* (2019) 54(1):138–41. doi: 10.1038/s41409-018-0250-1.

25. Jeanne M, Kovacevic-Filipovic M, Szpyrta M, Vlaski M, Hermitte F, Lafarge X, et al. Low-oxygen and high-carbon dioxide atmosphere improves the conservation of hematopoietic progenitors in hypothermia. *Transfusion* (2009) 49(8):1738–46. doi: 10.1111/j.1537-2995.2009.02191.x.

26. Vlaski M, Negroni L, Kovacevic-Filipovic M, Guibert C, Brunet de la Grande P, Rossignon R, et al. Hypoxia/hypercapnia-induced adaptation maintains functional capacity of cord blood stem and progenitor cells at 4°C. *J Cell Physiol* (2014) 229(12):2153–65. doi: 10.1002/jcp.24678.

27. Gerby S, Simplicien M, Duchêpe P, Chevaleyre J, Ivanovic Z, Vlaski-Lafarge M. Hypoxia/hypercapnia prevents iron-dependent cold injuries in cord blood stem and progenitor cells. *Cytotherapy* (2019) 21(4):460–7. doi: 10.1016/j.jcyt.2019.02.006.

28. Weng L, Beauschere PR. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. *Cytotherapy* (2020) 22(9):949–17. doi: 10.1016/j.cytob.2020.03.012.

29. Duchez P, Chevaleyre J, Brunet de la Grange P, Boiron JM, Vlaski M, Wouters G, et al. Cryopreservation of hematopoietic stem and progenitor cells amplified ex vivo from cord blood CD34+ cells. *Transfusion* (2013) 53(9):2012–9. doi: 10.1111/tf.12355.

30. Bokhari VA, Barlić A, Perić T, Dermol-Cerne J, Dovgan B, Sydskyv B, et al. Me2SO- and serum-free cryopreservation of human umbilical cord mesenchymal stem cells using electroporation-assisted delivery of sugars. *Cytobiology* (2019) 91:104–14. doi: 10.1016/j.cyto.2019.10.002.
Ekpo et al. 10.3389/fimmu.2022.1030965

59. Pasley S, Zyllberberg C, Matsosev S. Natural killer-92 cells maintain cytotoxic activity after long-term cryopreservation in novel DMSO-free media. *Immunol Lett* (2017) 192:35–41. doi: 10.1016/j.imlet.2017.09.012

60. Mitchell DE, Lovett JR, Armes SP, Gibson MI. Combining biomimetic block copolymer worms with an ice-inhibiting polymer for the solvent-free cryopreservation of red blood cells. *Angew Chem Int Ed* (2016) 55(8):2801–4. doi: 10.1002/anie.201511454

61. Rao W, Huang H, Wang H, Zhao S, Dumbleton J, Zhao G, et al. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. *ACS Appl Mater Interfaces* (2015) 7(8):5017–28. doi: 10.1021/acsami.5b06055

62. Ducker P, Rodriguez L, Chevaleyre J, de la Grange PB, Ivanovic Z. Clinical-scale validation of a new efficient procedure for cryopreservation of ex vivo expanded cord blood hematopoietic stem and progenitor cells. *Cytoteraphy* (2016) 18(12):1543–7. doi: 10.1016/j.jcyt.2016.08.004

63. Li R, Hornberger K, Dutton JR, Hubel A. Cryopreservation of human iPS cells in a DMSO-free solution—an optimization and comparative study. *Front Bioeng Biotechnol* (2020) 8:1. doi: 10.3389/fbioe.2020.00001

64. Gifanova R, Callegari A, Childs A, Yang G, Luuca M, Guterres AG, et al. A biomimicry and chemically defined alternative to dimethyl sulfoxide for the cryopreservation of human hematopoietic stem cells. *Bone Marrow Transplant* (2021) 56(11):2644–50. doi: 10.1038/s41409-021-01368-w

65. Kaushal R, Jahan S, McGregor C, Pineault N. Dimethyl sulfoxide-free cryopreservation solutions for hematopoietic stem cell grafts. *Cytoteraphy* (2022) 24(3):272–81. doi: 10.1016/j.jcyt.2021.09.002

66. Svalgaard JD, Haastrup EK, Reckzeh K, Holst B, Glovinski PV, Garlev JS, et al. Low-molecular-weight carbohydrate pentaisomaltose may replace dimethyl sulfoxide as a safer cryoprotectant for cryopreservation of peripheral blood stem cells. *Transfusion* (2016) 56(5):1088–95. doi: 10.1111/trf.13543

67. Vanichpol T, Pongsaakul N, Sirsala S, Apiwattanakul N, Chutipongtanat S, Hongeng S. Suppressive characteristics of umbilical cord blood-derived regulatory T cells after ex vivo expansion on autologous and allogeneic T effectors and various lymphoblastic cells. *J Immunother* (2019) 42(4):110–8. doi: 10.1097/JTI.0000000000002062

68. Matsumura K, Bae JY, Kim HH, Hyon SH. Effective cryopreservation of human induced pluripotent stem cells using 1% dimethyl sulfoxide nucleated e-poly-l-lysine. *Cryobiology* (2011) 63(2):76–83. doi: 10.1016/j.cryobiol.2011.05.003

69. Matsumura K, Hyon S-H. Polyampholytes as low toxic efficient cryoprotective agents with antifreeze protein properties. *Biomaterials* (2009) 30(27):4842–9. doi: 10.1016/j.biomaterials.2009.05.025

70. Matsumura K, Bae JY, Hyon SH. Polyampholytes as cryoprotective agents for mammalian cell cryopreservation. *Cell Transplant* (2010) 19(6):691–9. doi: 10.3727/096368910x508780

71. Abeini S, Kakuy T, Kawata T, Koski H, Kojima S, Sumi H, et al. Effects of cryopreservation with a newly-developed magnetic field programmer freezer on periodontal ligament cells and pulp tissues. *Cryobiology* (2011) 62(3):181–7. doi: 10.1016/j.cryobiol.2011.03.001

72. Kakuy M, Kamada H, Kawata T, Koski H, Abeini S, Kojima S, et al. Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. *Cryobiology* (2010) 61(1):73–8. doi: 10.1016/j.cryobiol.2010.05.003

73. Baboj J, Kilbridge P, Delahaye M, Milne S, Fonseca F, Blanco M, et al. The impact of varying cooling and thawing rates on the quality of cryopreserved human peripheral blood T cells. *Sci Rep* (2019) 9(1):3417. doi: 10.1038/s41598-019-39957-x