A New Lizard Species in the Genus *Xantusia* from Arizona

By

THEODORE J. PAPENFUSS¹, J. ROBERT MACEY² AND JAMES A. SCHULTE II³

¹Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720

asiaherp@uclink4.berkeley.edu

² Department of Comparative Genomics, Joint Genome Institute and Lawrence Berkeley National Laboratory, 2800 Mitchell Drive, Walnut Creek, CA 94598-1631

jrmacey@lbl.gov

³ Department of Biology, Box 1137, Washington University, St. Louis, MO 63130

schulte@biology.wustl.edu

CONTENTS

ABSTRACT

INTRODUCTION

ACKNOWLEDGMENTS

MATERIALS AND METHODS

DESCRIPTION OF NEW SPECIES

MOLECULAR VARIATION AMONG *XANTUSIA*

LITERATURE CITED
ABSTRACT Three species of lizards in the genus Xantusia occur in Arizona. These species are X. vigilis, X. arizonae and a new species described here, X. bezyi. Previous workers have suggested that only a single species of Xantusia is found in Arizona with some populations living in yucca-type plants and others specializing in granite rock habitats. Recognition of the three Xantusia species is based on previously reported allozyme data, new mitochondrial DNA sequence data (1716 aligned sites, 59 parsimony informative), and morphological differences. Phylogenetic analysis of mitochondrial DNA sequences among the three species of Xantusia that occur in Arizona indicate that X. arizonae and X. vigilis are sister taxa with the exclusion of X. bezyi. Genetic differentiation between mitochondrial DNA sequences suggests that species in Arizona are 5—6 million years old.

Key Words: Reptilia, Squamata, systematics, phylogenetics, mitochondrial DNA

Arizona, new species, Xantusia.

INTRODUCTION

The lizard genus Xantusia currently consists of five species: X. bolsonae in Durango, Mexico, X. henshawi in southern California and Baja California Norte, Mexico, X. riversiana on three of the California Channel Islands, X. sanchezi in southwestern
Zacatecas, Mexico, and *X. vigilis* with seven subspecies occurring in California, Nevada, Utah, and Arizona in the United States and in Baja California, Sonora, Durango, and Zacatecas in Mexico (Bezy and Flores Villela, 1999).

Xantusia arizonae was described by Klauber (1931) from the vicinity of Yarnell in Yavapai County, Arizona. The lizards were found under flakes of granite boulders in a habitat similar to that of *X. henshawi* in southern California. *Xantusia arizonae* was diagnosed as being similar in lepidosis and partly in color and pattern to *X. vigilis* but with a body form more like that of *X. henshawii* with relatively longer limbs and a more flattened head and body than *X. vigilis*. At the time of Klauber’s (1931) discovery, the nearest known localities for *Xantusia* were for *X. vigilis*, some 250 km northwest in the eastern Mojave Desert.

For the next 35 years *X. arizonae* was treated as a full species (Savage, 1963; Stebbins, 1954, 1966). Stebbins (1954) in his key to the species of *Xantusia*, distinguished *X. arizonae* from *X. vigilis* with the former having more subdigital lamallae on the fourth toe (25—28 versus 18—21) and more dorsal granular scales at midbody (43—50 versus 33—40).

Additional populations of granite-adapted lizards have been found in Arizona along the southwestern edge of the Colorado Plateau across a 300 kilometer region from near Valentine in Mojave County to the Superstition Mountains in Pinal County. Yucca-dwelling populations assigned to *X. vigilis* are also known from Arizona. Populations of
X. vigilis and X. arizonae have been found within 50 kilometers of each other in Yavapai County, Arizona. At one site near Tonto National Monument in Gila County, Arizona, Bezy (1967b) found both granite and yucca-dwelling Xantusia together. There is an ecologically based morphological gradient from a “granitoform” to a “yuccaform” morphotype (Bezy, 1967b).

Bezy (1967b) noted that the “granitoform” occurred in two widely separated places, the southwestern edge of the Mogollon Rim of Arizona and the western foothills of the southern Sierra Nevada of California. The latter had just been described as X. vigilis sierrae (Bezy, 1967a). Bezy (1967b) found extensive morphological gaps between the most divergent populations of “granitoform” versus “yuccaform”, but in all characters examined, these gaps were spanned by the ranges of variation of morphologically intermediate populations. He recommended that X. arizonae be treated as a subspecies of X. vigilis. This taxonomic arrangement was generally accepted (Crother et al., 1986; Stebbins, 1985; Webb, 1970).

In their discussion on species relationships Bezy and Sites (1987:288) concluded: “Before phylogenetic relationships among the species of Xantusia can be fully assessed with allozymes, additional data for populations of X. vigilis are needed, as the genetic and cladistic diversity within this apparently paraphyletic taxon is at least as great as among the presently recognized species units.” Bezy and Sites (1987) reported data for three
presumptive populations of *X. vigilis arizonae* which consistently appeared in three separate positions on their phylogenetic trees.

We present new mitochondrial DNA evidence and examine previously reported allopzyme data (Bezy and Sites, 1987) to examine phylogenetic relationships and the extent of differentiation among Arizona populations of *Xantusia* occurring in different ecological habitats. Under the phylogenetic species concept (Cracraft, 1989) these data are suggestive of the occurrence of more than one species in Arizona. We conclude that three species of *Xantusia* occur in Arizona. They are *X. vigilis, X. arizonae,* and the new species described here. This new species lives in crevices in granite boulders (Fig. 1). It was previously regarded as a population of *X. arizonae* (Bezy and Sites, 1987).

ACKNOWLEDGMENTS

Scientific collecting permits were issued by the California Department of Fish and Game and the Arizona Game and Fish Department. David B. Wake provided useful advice and discussions on the use of mitochondrial DNA sequence data as an important diagnostic character in species’ descriptions. Karen Klitz made figures 5, 6, and 7. This work is LBNL-48468 and was partially performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC03-76SF00098. This work was supported by grants from the National Science Foundation (DEB-9726064 to Allan Larson, J.R.M and T.J.P.; predoctoral fellowship to J.A.S.).
MATERIALS AND METHODS

Museum numbers and localities for voucher specimens from which DNA was extracted, and GenBank accession numbers are presented below. Museum numbers and localities for voucher specimens examined morphologically are listed in the species description. Acronyms are KU for the University of Kansas Natural History Museum and MVZ for the Museum of Vertebrate Zoology, University of California at Berkeley. Localities of voucher specimens are reported exactly as recorded in museum records and therefore maybe expressed either in English or metric units. Measurements were taken using dial calipers (to the nearest 0.1 mm). The description of scale characters follows the standard terminology used by Savage (1963) and Bezy and Flores Villela (1999). Photos of live Xantusia were taken on granite from the localities where they were collected.

Tissues were collected and directly stored in freezers (-80 C) until used. Four samples of Xantusia were sequenced: X. henshawi, MVZ 229092, AF404750, elev. 3000 ft., NW 1/4 Sec. 36, T. 6 S., R. 5 E., junction of Carrizo Rd. and Hwy 74, 12.2 miles south of Palm Desert on Hwy 74, Riverside Co., California; X. bezyi, MVZ 232604, AF404751, elev. 914 m, 33° 49.48’ N, 111° 28.55’ W, NE1/4 Sec. 31, T. 6 N., R. 9 E., 5.7 km south (by Hwy 87) of Sunflower, Maricopa Co., Arizona; X. arizonae, MVZ
230599, AF404752, 1.5 miles south (airline) of Yarnell, Yavapai Co., Arizona; *X. vigilis*, MVZ 228254, U71328 (Macey et al., 1997), elev. 5800 ft., SW 1/4 Sec. 14, T. 8 N., R. 12 E., Granite Mountains Plateau, Granite Mountains, San Bernardino Co., California.

The mitochondrial gene region of ND1 (subunit one of NADH dehydrogenase), tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI (subunit one of cytochrome \textit{c} oxidase) was sequenced. Sequencing protocols follow Macey et al. (1997) except that cycle-sequencing reactions were run on an ABI Prism Big Dye Terminator DNA Sequencing Kit (Perkin-Elmer) with a denaturation at 95°C for 15 sec, annealing at 50°C for 1 sec, and extension at 60°C for 4 min for 35-40 cycles. Sequencing reactions were run on Long Ranger sequencing gels for 5-12 hours at 38-40°C and ABI 373 or MJ Research Basestation sequencers. The four sequences were aligned as 1716 sites (59 parsimony informative). A single gap was placed after the following positions in each sequence to obtain the alignment used in phylogenetic analyses: *X. henshawi*, 84, 1344, 1496, 1608; *X. bezyi*, 1544; *X. arizonae*, 1543; and *X. vigilis*, 1543.

Phylogenetic relationships were estimated using PAUP beta 4.0b3a (Swofford, 2001). Bootstrap resampling was used to assess support with 1000 replicates using exhaustive searches. The decay index was calculated by running searches that retained suboptimal trees using exhaustive searches. Alternative phylogenetic hypotheses were
evaluated with the Wilcoxon signed-ranks test using the two-tailed probabilities (Felsenstein, 1985; Templeton, 1983).

The alolzyme analysis on the number of fixed differences between *Xantusia* samples was derived from Table 2 in Bezy and Sites (1987).

DESCRIPTION OF NEW SPECIES

Xantusia bezyi, new species

Holotype.—Museum of Vertebrate Zoology, MVZ 232604. An adult male from elev. 948 m, 33° 49.48’ N, 111° 28.55’ W, NE1/4 Sec. 31, T. 6 N., R. 9 E., 5.6 km S (by Hwy 87) of Sunflower, Maricopa Co., Arizona. Found under an exfoliating granite slab on November 3, 2000 by Theodore J. Papenfuss.

Paratypes.—Ten specimens. MVZ 232605—232607; from the type locality. MVZ 232608—232611, 232571; KU TP- 26498—26499 from elev. 1085 m, 33° 51.10’ N, 111° 28.28’ W, NW 1/4 Sec. 29, T. 6 N., R. 9 E., 2.9 km S (by Hwy 87) of Sunflower, Maricopa Co., Arizona.

Diagnosis.—A moderately large (to about 58 mm snout-vent length) species of *Xantusia* that is similar in size and morphology to *X. arizonae*. It differs from the latter in alolzymes, mitochondrial DNA, and color pattern. The dorsal blotches of adults (Fig. 2) are more similar to the pattern in *X. henshawi* (Fig. 3) than to the pattern in *X. arizonae*.
The individual large dark dorsal blotches contain 3—28 granular scales versus 4—12 in *X. arizonae* (Fig. 5) and there is a proportionally greater distance from the anterior margin of the eye to the tip of the snout (Fig 6). The new species differs from *X. vigilis* by its larger size, mottled coloration, more than 41 rows of dorsal granular scales and more than 26 fourth toe lamallae. It differs from *X. bolsonae, X. riversiana*, and *X. henshawi* in having 12 longitudinal rows of ventral scales rather than 14—16 rows. These characters are in addition to substantial differences in allozymes and mitochondrial DNA.

Description of holotype.—Measurements (in mm): Snout-vent, 54; tail, 68 (complete); head length from tip of snout to gular fold, 19.8; head width, 8.2; fourth toe length, 7.4. Dorsal surface of head: rostral broader than high, followed in order by two nasals in contact medially, two prefrontals, a median, two frontals in contact, large interparietal separating parietals, and two post parietals in contact. Lateral surface of head: Nostral bordered by rostral, first supralabial, nasal, and postnasal; anterior loreal, posterior loreal, three loreolabials, four preoculars, four suboculars, five supraoculars, four postoculars, six supralabials, and three pretemporals. Ventral surface of head: Mental followed by six pairs of infralabials, four pairs of post mentals, and first pair in contact; gular scales 35 along midline between first pair of post mentals and gular fold. Body surface: Dorsal granular scales around body at the 16th transverse row of ventrals, 43; ventral scales in 12 longitudinal rows at midbody; transverse rows of ventral scales
between gular fold and vent, 33; femoral pores on right leg, 9; on left leg 11; fourth toe lamallae, 26.

Color pattern in life: Dorsal surface of the body with black blotches consisting of 3-28 individual granular scales on a background of cream to tan granular scales; tail coloration similar with black blotches consisting of one to 10 annuli; dorsal surface of head brown with black spots; sides of body similar to dorsal with white speckling mixed in extending to the base of tail; ventral surface of head, body, and tail cream to tan. Color pattern in preservative is like that in life except the background color of the head is dark and light gray as opposed to brown.

Variation in paratypes.—The paratypes approximate the holotype in general morphology, pattern, and coloration. Femoral pores average 8.9 per leg (7—11). One specimen (MVZ 26415) lacks femoral pores. Dorsal granular scales around the body at the 16th transverse row of ventrals average 44.1 (41—47). Fourth toe lamallae average 27.0 (26—28).

Habitat and distribution.—The two localities of X. bezyi are in the vicinity of Sunflower at the edge of the Sub-Mogollon Colorado Plateau in an ecotone between the Arizona Upland Subdivision of the Desert Scrub Formation and the Semidesert Grassland of the Grassland Formation (Brown and Lowe, 1980). All individuals were found under pieces of exfoliating rock in granite outcrops (Fig. 1). Suitable habitat is present for some 30 km southwest of Sunflower along Highway 87 towards the Rio Verde. The type
locality for *X. arizonae* is 125 km northwest of Sunflower (Fig. 7). Bezy (1967b) reported “granitoform” *Xantusia* from 30 km southeast of Sunflower in the vicinity of Tonto National Monument.

Etymology.—This species is named for Robert L. Bezy in recognition of his lifelong studies on lizards of the family Xantusiidae.

MOLECULAR VARIATION AMONG XANTUSIA

Allozymic variation.—The 28 variable allozymic loci reported by Bezy and Sites (1987) among species of *Xantusia* and *Lepidophyma* are reexamined. Three populations that Bezy and Sites (1987) referred to as *X. vigilis arizonae* belong to three distinct species. The northwestern population (Mojave County) is *X. vigilis* and has only two fixed differences from other *X. vigilis* populations. The sample of *X. arizonae* from the type locality (Yarnell, Yavapai County) has eight fixed differences from *X. bezyi* (Maricopa County) and five to seven from *X. vigilis* populations (Table 1). *Xantusia bezyi* has nine to ten fixed differences from *X. vigilis* populations. These differences suggest genetic discontinuity between groups of populations here suggested to represent distinct species on the level typically observed between recognized species (for examples in lizards see de Queiroz, 1992; Macey et al., 2000; Sites et al., 1988).
Mitochondrial DNA sequence data.— The mitochondrial gene region of ND1 (subunit one of NADH dehydrogenase), tRNA^{Ile}, tRNA^{Gln}, tRNA^{Met}, ND2, tRNA^{Trp}, tRNA^{Ala}, tRNA^{Asn}, tRNA^{Cys}, tRNA^{Tyr}, and COI (subunit one of cytochrome c oxidase) is reported (Table 2). A single most parsimonious tree (length = 371 steps) is produced from phylogenetic analysis of mitochondrial DNA sequences using PAUP beta 4.0b3a (Swofford, 2001; Fig. 8) showing *X. vigilis* and *X. arizonae* as monophyletic with the exclusion of *X. bezyi* when rooted with *X. henshawi*. When this overall shortest tree is compared to the shortest alternative tree showing *X. vigilis* and *X. arizonae* as non-monophyletic, this alternative is rejected using the Wilcoxon signed-ranks test with the two-tailed probabilities [Felsenstein, 1985; Templeton, 1983; \(n = 45; T_s = 345, P < 0.025; \) alternative tree (*X. henshawi, ((X. bezyi, X. arizonae), X. vigilis)), \(L = 386 \)]. This indicates that the overall shortest tree is significantly shorter than the shortest alternative tree.

The region sequenced has been found to evolve in a clock-like manner among a wide range of vertebrates with a consistent rate of change per lineage per million years [Fish 0.65% (Bermingham et al., 1997); hynobiid salamanders 0.64% (unpublished date of the authors); frogs of the genus *Bufo* 0.69% (Macey et al., 1998b); lizards of the genus *Laudakia* 0.65% (Macey et al., 1998a); lizards of the genus *Teratoscincus* 0.57% (Macey et al., 1999b)].
Pairwise percent sequence divergence between *X. bezyi*, *X. arizonae*, and *X. vigilis* range from 6.47% to 7.70%. Using the pairwise rate of 1.3% change per million years, *X. bezyi*, *X. arizonae*, and *X. vigilis* are estimated to have diverged 5—6 million years ago. The amount of sequence divergence found between these three species of *Xantusia* is consistent with sequence divergences observed between other species of lizards, salamanders, and frogs (Table 3). Furthermore, we estimate that these three species diverged from *X. henshawi* at least 10 million years ago. This suggests that the genus dates at least to the Miocene.

LITERATURE CITED

Bermingham, E., S. S. McCafferty, and A. P. Martin. 1997. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. Pp, 113—118 in T. D. Kocher and C. A. Stepien, (eds.), *Molecular Systematics of Fishes*. San Diego: Academic Press.

Bezy, R. L. 1967a. A new night lizard (*Xantusia vigilis sierrae*) from the southern Sierra Nevada in California. Journal of the Arizona Academy of Science 4:163—167.

Bezy, R. L. 1967b. Variation, distribution, and taxonomic status of the Arizona night lizard (*Xantusia arizonae*). Copeia 1967:653—661.

Bezy, R. L., and J. W. Sites. 1987. A preliminary study of allozyme evolution in the lizard family Xantusiidae. Herpetologica 43:281—289.
Bezy, R. L. and O. Flores Villela. 1999. A new species of Xantusia (Squamata: Xantusiidae) from Zacatecas, Mexico. Herpetologica 55:174—184.

Brown, D. E., and C. H. Lowe. 1980. Biotic communities of the Southwest. General Technical Report RM-78. Rocky Mountain Forest and Range Experiment Station, USDA Forest Service Ogden, Utah USA. Map (1:1,000,000).

Cracraft, J. 1989. Speciation and its ontology: The empirical consequences of alternative species concepts for understanding patterns and processes of differentiation. Pp, 28—59 in D. Otte and J. A. Endler, (eds.) Speciation and Its Consequences. Sunderland, MA: Sinauer.

Crother, B. I., M. M. Miyamoto, and W. F. Presch. 1986. Phylogeny and biogeography of the lizard family Xantusiidae. Systematic Zoology 35:37—45.

de Queiroz, K. 1992. Phylogenetic relationships and rates of allozyme evolution among the lineages of sceloporine sand lizards. Biological Journal of the Linnean Society 45:333—362.

Felsenstein, J. 1985. Confidence limits on phylogenies with a molecular clock. Systematic Zoology 34:152—161.

Klauber, L. M. 1931. A new species of Xantusia from Arizona, with a synopsis of the genus. Transactions of the San Diego Society of Natural History 7:1—16.
Macey, J. R., A. Larson, N. B. Ananjeva, Z. Fang, and T. J. Papenfuss. 1997. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution 14:91—104.

Macey, J. R., J. A. Schulte II, A. Larson, B. S. Tuniyev, N. Orlov, and T. J. Papenfuss. 1999a. Molecular phylogenetics, tRNA evolution and historical biogeography in anguid lizards and related taxonomic families. Molecular Phylogenetics and Evolution 12:250—272.

Macey, J. R., Y. Wang, N. B. Ananjeva, A. Larson, and T. J. Papenfuss. 1999b. Vicariant patterns of fragmentation among gekkonid lizards of the genus *Teratoscincus* produced by the Indian Collision: A molecular phylogenetic perspective and an area cladogram for Central Asia. Molecular Phylogenetics and Evolution 12:320—332.

Macey, J. R., J. A. Schulte II, N. B. Ananjeva, A. Larson, N. Rastegar-Pouyani, S. M. Shammakov, and T. J. Papenfuss. 1998a. Phylogenetic relationships among agamid lizards of the *Laudakia caucasia* species group: Testing hypotheses of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Molecular Phylogenetics and Evolution 10:118—131.

Macey, J. R., J. A. Schulte II, A. Larson, Z. Fang, Y. Wang, B. S. Tuniyev, and T. J. Papenfuss. 1998b. Phylogenetic relationships of toads in the *Bufo bufo* species
group from the eastern escarpment of the Tibetan Plateau: A case of vicariance and dispersal. Molecular Phylogenetics and Evolution 9:80—87.

Macey, J. R., N. B. Ananjeva, Y. Wang, and T. J. Papenfuss. 2000. Phylogenetic relationships among Asian gekkonid lizards formerly of the genus *Cyrtodactylus* based on cladistic analyses of allozymic data: monophyly of *Cyrtopodion* and *Mediodactylus*. Journal of Herpetology 34:258—265.

Macey, J. R., J. L. Strasburg, J. A. Brisson, V. T. Vredenburg, M. Jennings, and A. Larson. 2001. Molecular phylogenetics of Western North American frogs of the *Rana boylii* species group. Molecular Phylogenetics and Evolution 19:131—143.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583—590.

Savage, J. M. 1963. Studies on the lizard family Xantusiidae. IV. The genera. Contributions in Science Los Angeles County Museum 71:1—38.

Sites, J. W., Jr., J. L. Camarillo, A. Gonzalez, F. Mendoza, L. Javier, M. Mancilla, and G. Lara-Gongora. 1988. Allozyme variation and genetic divergence within and between three cytotypes of the *Sceloporus grammicus* complex (Sauria: Iguanidae) in central Mexico. Herpetologica 44:297—307.

Stebbins, R. C. 1954. *Amphibians and Reptiles of Western North America*. New York: Mcgraw-Hill Book Company.
Stebbins, R. C. 1966. *A Field Guide to Western Amphibians and Reptiles*. Boston: Houghton Mifflin Company.

Stebbins, R. C. 1985. *A Field Guide to Western Amphibians and Reptiles*. 2nd Ed. Boston: Houghton Mifflin Company.

Swofford, D. L. 2001. PAUP*. Phylogenetic analysis using parsimony (*and other methods), Beta Version 4.0b3a. Sinauer, Sunderland, MA.

Templeton, A. R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with a particular reference to the evolution of humans and apes. *Evolution* 37:221—244.

Webb, R. W. 1970. Another new night lizard (*Xantusia*) from Durango, Mexico. *Contributions in Science Los Angeles County Museum* 194:1—10.

Weisrock, D. W., J. R. Macey, I. H. Ugurtas, A. Larson, and T. J. Papenfuss. 2001. Molecular phylogenetics and historical biogeography among salamandrids of the “true” salamander clade: Rapid branching of numerous highly divergent lineages with the rise of Anatolia in *Mertensiella luschani*. Molecular Phylogenetics and Evolution 18:434—448.
Table 1. Pairwise comparisons of Nei (1978) distances (above diagonal) and fixed allozymic differences (below diagonal) among six populations of *Xantusia* reported in Bezy and Sites (1987). In Bezy and Sites (1987), *X. henshawi* is population 2, *X. bezyi* is population 3 of *X. v. arizonae*, *X. arizonae* is population 1 of *X. v. arizonae*. The populations 1 and 2 of *X. vigilis* are numbered the same here as in Bezy and Sites (1987) as *X. v. vigilis*. Population 3 of *X. vigilis* is *X. v. arizonae* population 2 in Bezy and Sites (1987).

Species	1	2	3	4	5	6
1. *X. henshawi*		0.32	0.40	0.32	0.38	0.36
2. *X. bezyi*	11		0.29	0.27	0.32	0.36
3. *X. arizonae*	11	8		0.19	0.31	0.28
4. *X. vigilis-1*	9	9	5		0.10	0.07
5. *X. vigilis-2*	10	10	7	2		0.07
6. *X. vigilis-3*	8	9	6	2	2	
Table. 2. Pairwise comparisons of DNA sequences between species of *Xantusia*.

Percentage sequence divergence is shown above the diagonal and the number of base substitutions between sequences is shown below the diagonal.

Species	1	2	3	4
1. *X. henshawi*	—	12.98%	13.91%	13.62%
2. *X. bezyi*	222	—	7.70%	7.59%
3. *X. arizonae*	238	132	—	6.47%
4. *X. vigilis*	233	130	111	—
Table 3. Comparative pairwise sequence divergences between species of amphibians and reptiles. Sequence divergences are calculated for the same segment of mitochondrial DNA spanning from the ND1 gene to the COI gene. Bufonid frogs include only the first half of this segment (from the ND1 gene to the ND2 gene).

Family	Genus	Taxa Compared	Pairwise Sequence Divergences	Reference
Bufonidae	Bufo	B. andrewsi and B. gargarizans	6.0—6.9%	Macey et al., 1998b
Ranidae	Rana	R. aurora, R. cascadae and R. muscosa	7.0—8.4%	Macey et al., 2001
Salamandridae	Salamandra	S. infraimmaculata and S. salamandra	7.4—7.5%	Weisrock et al., 2001
Agamidae	Laudakia	L. caucasia and L. erythrogastra	4.2—5.3%	Macey et al., 1998a
Gekkonidae	Teratoscincus	T. przewalskii and T. roborowski	6.5%	Macey et al., 1999b
Anguidae	Elgaria	E. kingii to the clade containing E. multicarinata, E. panamintina and E. paucicarinata	4.8—5.9%	Macey et al., 1999a
Fig. 1. Type locality for *X. bezyi*, elev. 948 m, 33° 49.48’ N, 111° 28.55’ W, NE 1/4 Sec. 31, T. 6 N., R. 9 E., 5.6 km S (by Hwy 87) of Sunflower, Maricopa Co., Arizona.

Fig. 2. Adult male *Xantusia bezyi*, MVZ 232608. Note that the color pattern is more similar to that of *X. henshawi* (Fig. 3) than to that of *X. arizonae*, (Fig. 4).

Fig. 3. *Xantusia henshawi*, MVZ TP-26539, from elev. 815 m, 33° 31.18’ N, 116° 52.18’ W, 3.2 km SSE (by Wilson Valley Rd.) of junction with Sage Rd., Riverside Co., California.

Fig. 4. *Xantusia arizonae*, MVZ 232578, from Yarnell, Yavapai Co., Arizona.

Fig. 5. Dorsal mid-body color pattern. Above- *Xantusia arizonae*, MVZ 73829. The dark blotches seen here and in figure 4 consist of 4—12 individual dark granular scales. Below- *X. bezyi* holotype, MVZ 232604. The dark blotches seen here and in figure 2 consist of 3-28 individual dark granular scales.

Fig. 6. Dorsal view of heads. Left- *Xantusia arizonae*, MVZ 73829. Right- *X. bezyi* holotype, MVZ 232604.

Fig. 7. Map of Arizona showing the type locality for *Xantusia arizonae* (solid circle) and the type locality for *X. bezyi* (triangle).

Fig. 8. The single most-parsimonious tree found from an exhaustive search of the 1716 (59 informative) aligned mitochondrial DNA sites showing the root relative to *Xantusia*
henshawi. The shortest alternative topology requires 15 extra steps (the decay index) and is statistically rejected (P < 0.025) applying the conservative two-tailed probability (Felsenstein, 1985) of the Wilcoxon signed ranks test (Templeton, 1983). The tree has a length of 371 steps. The bootstrap is above the branch and the decay index is below the branch in boldface type.