CO ISOTOPOLOGUES IN THE PERSEUS MOLECULAR CLOUD COMPLEX:
THE X-FACTOR AND REGIONAL VARIATIONS

JAIME E. PINEDA
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138; jpineda@cfa.harvard.edu

PAOLA CASELLI
School of Physics and Astronomy, University of Leeds, LS2 9JT, UK; INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy; p.caselli@leeds.ac.uk

AND

ALYSSA A. GOODMAN
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-42, Cambridge, MA 02138; agoodman@cfa.harvard.edu

Received 2007 July 2; accepted 2008 January 30

ABSTRACT

We use data gathered by the COMPLETE survey of star-forming regions to find new calibrations of the “X-factor” and 13CO abundance within the Perseus molecular cloud. We divide Perseus into six subregions, using groupings in a dust temperature vs. LSR velocity plot. The standard X-factor, $X = N(H_2)/W(^{12}$CO), is derived both for the whole Perseus complex and for each of the six subregions with values consistent with previous estimates. However, the X-factor is heavily affected by the saturation of the emission above $A_V \sim 4$ mag, and variations are also found between regions. Linear fits to relate $W(^{12}$CO) and A_V using only points below 4 mag of extinction yield a better estimate of the A_V than the X-factor. Linear relations of $W(^{13}$CO), $N(^{13}$CO), and $W(C^{18}O)$ with A_V are derived. The extinction thresholds above which 13CO(1–0) and $C^{18}O$(1–0) are detected are about 1 mag larger than previous estimates, so that a more efficient shielding is needed for the formation of CO than previously thought. The 12CO and 13CO lines saturate above 4 and 5 mag, respectively, whereas $C^{18}O$(1–0) never saturates in the whole A_V range probed by our study (up to 10 mag). Approximately 60% of the positions with 12CO(1–0) emission have subthermally excited lines, and almost all positions have excitation temperatures below the dust temperature. PDR models, using the Meudon code, can explain the 12CO(1–0) and 13CO(1–0) emission with densities ranging between 10^3 and 10^4 cm$^{-3}$. In general, local variations in the volume density and nonthermal motions (linked to different star formation activity) can explain the observations. Higher densities are needed to reproduce CO data toward active star-forming sites, such as NGC 1333, where the larger internal motions driven by the young protostars allow more photons from the embedded high-density cores to escape the cloud. In the most quiescent region, B5, the 12CO and 13CO emission appears to arise from an almost uniform thin layer of molecular material at densities around 10^4 cm$^{-3}$, and in this region the integrated intensities of the two CO isotopologues are the lowest in the whole complex.

Subject headings: dust, extinction — ISM: abundances — ISM: individual (Perseus) — ISM: molecules

1. INTRODUCTION

Although H$_2$ is the most abundant molecule in the interstellar medium (by about 4 orders of magnitude), it cannot be used as a tracer of the physical conditions in a molecular cloud. In fact, being a homonuclear species, H$_2$ does not have an electric dipole moment and even the lowest (electric quadrupole) rotational transitions require temperatures and densities well above those found in typical molecular clouds. The next most abundant molecule is 12CO, and since its discovery by Wilson et al. (1970) it has been considered the best tracer of H$_2$ and the total mass of molecular clouds (e.g., Combes 1991). Because of its relatively large abundance and excitation properties, the 12CO(1–0) line is typically optically thick in molecular clouds, so rarer CO isotopologues (in particular 13CO) have also been used to trace the cloud mass in the most opaque regions. However, previous attempts to derive cloud masses from the thinner isotopologues present a large scatter (factor of 10), indicating that 13CO line strength is not an entirely straightforward indicator of gas column. In particular, the following points should be taken into account to derive less uncertain conversions: (1) preferential photodissociation of 13CO at low optical extinctions, A_V; (2) active chemical fractionation in the presence of 13C$^+$ ions, enhancing the relative abundance of 13CO in cold gas (Watson 1977); and (3) variations in the 12CO/13CO abundance ratio across the Galaxy.

The conversion between 12CO(1–0) integrated intensity [$I_{12CO}^0]$ and H$_2$ column density [$N(H_2)$] is usually made using the so-called X-factor, defined as

$$X = \frac{N(H_2)}{I_{12CO}^0}. \quad (1)$$

In order to calibrate this ratio one needs to measure the column of H$_2$, which is difficult to do reliably.

One method to derive this ratio uses only the 12CO emission and the assumption that molecular clouds are close to virial equilibrium. Solomon et al. (1987) found a tight relation between the molecular cloud virial mass and the 12CO luminosity [$M_{VT} = 39(L_{12CO})^{0.8}$]. This relation enabled them to derive a ratio of 3.0×10^{20} cm$^{-2}$ K$^{-1}$ km s$^{-1}$ for the median mass of the sample (104 M_\odot). In this case, the main source of uncertainty is the assumption of virial equilibrium for the molecular clouds.

Another method uses the generation of gamma rays by the collision of cosmic rays with H and H$_2$. The H$_2$ abundance is calculated using (assumed optically thin) 21 cm observations of
H I and gamma-ray observations in concert. Bloemen et al. (1986), using COS-B data, derived a value of $(2.8 \pm 0.4) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s for the X-factor, while Strong & Mattox (1996) derived $(1.9 \pm 0.2) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s using the EGRET data. Uncertainties in gamma-ray-derived estimates of the X-factor stem from coarse resolution (0.5° and 0.2° for COS-B and EGRET, respectively) and from the assumption that there are no point sources of gamma rays.

An alternative method to derive the column density of H$_2$ makes use of the IRAS 100 μm data to estimate the total column density of dust, which can then be used, assuming a constant dust-to-gas ratio (≈0.01, value adopted here also), to estimate the total column density of hydrogen [$N(H) = N(H I) + 2N(H_2)$] and derive the conversion factor X. Using this method Dame et al. (2001) derived a value of $(1.8 \pm 0.3) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s for the disk of the Milky Way, while de Vries et al. (1987) derived $(0.5 \pm 0.3) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s for the high-latitude far-infrared “circus” clouds in Ursa Major. Frerking et al. (1982) find no correlation at all between $W(12CO)$ and $N(H_2)$ in Taurus, where the 12CO(1\rightarrow0) integrated intensity is roughly constant above 2 mag of visual extinction, while in ρ Ophiuchus they derive $(1.8 \pm 0.1) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s.

More recently, Lombardi et al. (2006) studied the Pipe Cloud using an extinction map derived using the Near Infrared Color Excess Revisited (NICER) technique on 2MASS and 13CO(1\rightarrow0) data. They derived an X-factor of $(2.91 \pm 0.05) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s, similar to what is found in cloud core regions and dark nebulae (see compilation by Young & Scoville 1982). However, the factor derived by Lombardi et al. (2006) includes a correction for helium and uses the nonstandard expression $N(H) = N(H I) + N(H_2)$, while using the standard definition of $N(H) = N(H I) + 2N(H_2)$ they would derive $(1.06 \pm 0.02) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s.

Frerking et al. (1982) studied the relation between visual extinction and 13CO data, and found that the number of H$_2$ molecules per 13CO molecule, $[H_2]/[^{13}$CO], is 3.7×10^5 in Taurus and 3.5×10^5 in Ophiuchus, with extinction thresholds (below which no 13CO is detected) of 1.0 and 1.6 mag, respectively. To make these estimates, Frerking et al. (1982) derived pencil-beam extinctions along the line of sight toward a handful of positions with background stars, by using near-infrared (NIR) spectroscopy from Elias (1978) to estimate the spectral type and derive the extinction. However, pencil-beam observations do not trace the same material probed by the molecular line emission observations, and this can introduce large uncertainties. In fact, Arce & Goodman (1999) compared spectroscopically determined extinction and IRAS-derived extinction in a stripe through Taurus, finding a 1σ dispersion of 15% when the extinctions are compared between 0.9 $< A_V < 3.0$ mag. This unavoidable dispersion is likely to affect previous column density derivations, such as those of Frerking et al. (1982), as well.

Previous studies of the 13CO abundance have also been carried out specifically in the portions of the Perseus molecular cloud complex we study here. Bachiller & Cernicharo (1986) used an extinction map derived from star counting on the Palomar Observatory Sky Survey (Cernicharo & Bachiller 1984). The angular resolution of their extinction map is 2.5′, which is smoothed to 5′ resolution for comparison with the 4.4′ resolution of their 13CO data, from which they derive an $[H_2]/[^{13}$CO] abundance and threshold extinction of 3.8×10^5 and 0.8 mag, respectively. Langer et al. (1989) compare 13CO data of 2′ resolution with the extinction map derived by Cernicharo & Bachiller (1984), obtaining $[H_2]/[^{13}$CO] = 3.6×10^5 and an extinction threshold of 0.5 mag. However, this study was done only in the B5 region. A summary of earlier measurements of the X-factor and 13CO abundances can be found in §§ 6.2 and 6.3.

The main disadvantage of previous calibrations done on Perseus is that they use optically based star counting to create extinction maps of regions with high visual extinction (Bachiller & Cernicharo 1986; Langer et al. 1989). For Ophiuchus, Schnee et al. (2005) find that the extinction derived using optical star counting (Cambresy 1999) is systematically underestimated by ~0.8 mag in comparison with NIR-based extinction mapping. The offset (and resulting inaccuracy) is caused by the difficulty in fixing the zero-point extinction level—in such a high extinction region—in the optical star-counting extinction map. In addition, the derived A_V from optical star counting in Perseus does not have a large dynamic range ($A_V < 5$ mag), while the NICER extinction map used in our work is accurate up to 10 mag with small errors ($\sigma_{A_V} < 0.35$ mag; see Ridge et al. 2006b).

The B5 region in Perseus is special, in that it has been the subject of an unusually high number of studies seeking to understand its basic physical properties. As shown in Figure 3, B5 is somewhat isolated from the rest of Perseus, and it is only forming a very small number of stars, making it an obviously good choice for detailed study. Young et al. (1982) used a large velocity gradient (LVG) model to derive an average density of 1.7×10^4 cm$^{-3}$ and kinetic temperatures $\sim 10–15$ K, but only for some stripes in the cloud. Bensch (2006) used 12CO and 13CO maps with C1 pointing observations of 12 positions in a north-south stripe from the central B5 region to model the emission with a photodissociation region (PDR) code. From this analysis he derives average densities $\sim 3 \times 10^3–3 \times 10^4$ cm$^{-3}$.

The Coordinated Molecular Probe Line Extinction Thermal Emission Survey of star-forming regions (COMPLETE) data set offers the unique opportunity to study the emission of various CO isotopologues across the whole Perseus complex with unprecedented sensitivity and spatial resolution. In the present paper, COMPLETE data are analyzed in detail to measure the 12CO excitation, the 13CO abundance, and the X-factor across the complex and study their variations. The observed changes in the measured quantities are then related to local properties of the gas and dust. Using PDR codes, we find that local variations in the volume density and nonthermal motions (linked to different star formation activity) can explain the observations.

The extinction map and molecular and IRAS data used in this paper are presented in § 2. The data selection is discussed in § 3. The six regions in which the Perseus molecular cloud complex is divided are identified in § 4. Section 5 contains the analysis of the data, including the 13CO column density determination and the curve of growth. Results can be found in § 6. The comparison between observations and PDR models is in § 7 and conclusions are listed in § 8.

2. DATA

2.1. Extinction Map

We use the Near-Infrared Color Excess Method Revisited (NICER) technique (Lombardi & Alves 2001) on the Two Micron All Sky Survey (2MASS) point source catalog to calculate K-band extinctions. To derive A_V, we use the relation $A_K = 0.112 A_V$ (Rieke & Lebofsky 1985). The resulting extinction map has a fixed resolution of 5′, and the pixel scale is 2.5′. The total size of the map is 9° × 12° and is presented in Ridge et al. (2006b; see J. Alves et al. [2007, in preparation] for more details).

1 See http://www.cfa.harvard.edu/COMPLETE/index.html.
to AV analysis. The NICER extinction map of Perseus is accurate up to 0.2 mag, while in the case of the extinction map derived by Cernicharo & Bachiller (1984) and used in Bachiller & Cernicharo (1986) and Langer et al. (1989) the typical error is ~0.5 mag.

While the improved accuracy offered by our new maps is significant, the increased dynamic range is even more critical to our analysis. The NICER extinction map of Perseus is accurate up to $A_V = 10$ mag, while the extinction map derived using star counting by Cernicharo & Bachiller (1984) dies out above ~4–5 mag of visual extinction.

2.2. Molecular Data

We use the line maps of the COMPLETE Survey (Ridge et al. 2006b) to estimate $^{12}\text{CO}(1-0)$ and $^{13}\text{CO}(1-0)$ column densities. Both lines were observed simultaneously using the FCRAO telescope. The line maps cover an area of ~6.25$\arcmin \times 3\arcmin$ with a 46\arcsec beam in a 23\arcmin grid, and the positions included in our analysis are shown in Figure 3. We correct the $^{12}\text{CO}(1-0)$ and $^{13}\text{CO}(1-0)$ maps for a main-beam efficiency assumed to be 0.45 and 0.49, respectively. The flux calibration uncertainty is assumed to be 15% (M. Heyer 2007, private communication).

In comparing the ^{12}CO integrated intensity presented in Dame et al. (2001) with the integrated intensity of our data smoothed to match the 0.125\arcmin beam resolution, we find the COMPLETE data and Dame’s measurements to be well fitted by a linear relation of slope 0.9 ± 0.1 and offset −2 ± 1 K km s$^{-1}$. We also compare the COMPLETE ^{13}CO integrated intensity with data from Bell Labs (Padoan et al. 1999), after smoothing our data to the 100\arcsec resolution and 1\arcmin grid of Bell Labs data. These data are fitted by a linear relation of slope 0.986 ± 0.003 and offset −0.53 ± 0.01 K km s$^{-1}$, where the small deviation from the 1 : 1 relation is most probably due to a small misalignment found between the images.

In addition, we use the C$^{18}\text{O}(1-0)$ data cube presented by Hatchell & van der Tak (2003; and converted into FITS using CLASS90; Hily-Blant et al. 2005), taken with FCRAO but with a smaller coverage and lower signal to noise.

We convolve all data cubes with a Gaussian beam to obtain the same 5\arcmin resolution as the NICER map, and then regrid them to the extinction map grid of 2.5\arcmin.

2.3. Column Density and Dust Temperature from IRAS

To estimate column density accurately from far-infrared (thermal) flux, one needs to also measure or calculate a temperature. Normally, this is accomplished by making measurements at two separated far-IR wavelengths, making assumptions about dust emissivity, and then calculating two “unknowns” (column density and temperature) from the two measurements of flux. In the happy case where extinction mapping offers an independent measure of column density over a wide region, the conversion of FIR flux ratios to column density and temperature can be optimized so as to minimize point-to-point differences in comparisons of extinction- and emission-derived column density. The column densities and temperatures derived from dust emission that we use in this paper and in A. A. Goodman et al. (2007, in preparation) come from the work of Schnee et al. (2005), who recalibrated IRAS-based maps by using the 2MASS/NICER extinction maps discussed above to constrain the column density conversions.

The “IRAS” data used in Schnee et al. (2005) come from the IRIS (Improved Reprocessing of the IRAS Survey; Miville-Deschênes & Lagache 2005) flux maps at 60 and 100 μm. The IRIS data have better zodiacal light subtraction, calibration and zero-level determinations, and destriping than the earlier ISSA IRAS survey release.

There are two important caveats to apply to the FIR-based column density and temperature measurements we use here (applicable to previous work as well). First, the column densities are only optimized to reduce scatter in a global (Perseus-wide) comparison of dust extinction and emission measures of column density; they are still calculated based on the measured FIR fluxes at each point, and are thus not constrained to be identical to the 2MASS/NICER values. Second, the dust temperatures derived by this method are uncertain due to (1) unavoidable line-of-sight temperature variations, which cause increased scatter in comparisons with extinction-based measures and cause a bias toward slightly higher temperatures (see Schnee et al. 2006); and (2) the effect of emission from transiently heated very small grains (see Schnee et al. 2008). That said, the column density and temperature estimates based on Schnee et al. (2005) and used in this paper do represent a dramatic improvement.

3. DATA EDITING FOR ANALYSIS

The total number of pixels with data in all maps is 3765. But in order to have high-quality data in every pixel of every map used in our analysis, we trim our maps to exclude particular positions where any data are not reliable. The procedure used in data editing is described in this section.

3.1. Extinction Map

Regions with both high stellar density and high extinction are typically associated with embedded populations of young stellar objects (YSOs). Thus, in creating extinction maps, including these...
regions, it would be foolish to assume that stars are background to the cloud and have "typical" NIR colors. Among YSOs, the more evolved objects observable in J, H, and K bands could in principle still be used to measure the extinction, but the fact that they are not background objects still produces an underestimation of the extinction. This affects the precision of the method much more than the nonstellar IR colors (infrared excess) of YSOs. Therefore, we exclude all the regions with a stellar density larger than 10 stars per pixel from our analysis. This criterion removes 34 pixels from our maps. In addition to this editing, we exclude all the regions with a stellar density larger than 10 and 5 times the rms noise for 12CO and 13CO respectively. Since 12CO is more abundant than 13CO, and self-shielding is more effective for the 12CO$(1-0)$ transition than for the 13CO$(1-0)$ transition, 12CO emission is always more extended than 13CO, both spatially and kinematically. In addition, 12CO lines are more affected (broadened) by outflows and are optically thicker than 13CO. Thus, line widths for 12CO, $\sigma(12\text{CO})$, should always be larger than those of 13CO, $\sigma(13\text{CO})$. As a result, we keep only positions with

$$\sigma(12\text{CO}) > 0.8 \ \sigma(13\text{CO}),$$

where the 0.8 factor has been chosen to take into account the uncertainties in the line-width determination. The line widths and central velocities of the spectra are obtained through Gaussian fits. This filtering accounts for only 72 out of the 324 pixels edited out in this study.

3.2. Molecular Transitions

To remain in the analysis, lines must have positive integrated intensities in both 12CO and 13CO and peak brightness temperatures of at least 10 and 5 times the rms noise for 12CO and 13CO respectively. Since 12CO is more abundant than 13CO, and self-shielding is more effective for the 12CO$(1-0)$ transition than for the 13CO$(1-0)$ transition, 12CO emission is always more extended than 13CO, both spatially and kinematically. In addition, 12CO lines are more affected (broadened) by outflows and are optically thicker than 13CO. Thus, line widths for 12CO, $\sigma(12\text{CO})$, should always be larger than those of 13CO, $\sigma(13\text{CO})$. As a result, we keep only positions with

$$\sigma(12\text{CO}) > 0.8 \ \sigma(13\text{CO}),$$

where the 0.8 factor has been chosen to take into account the uncertainties in the line-width determination. The line widths and central velocities of the spectra are obtained through Gaussian fits. This filtering accounts for only 72 out of the 324 pixels edited out in this study.

3.3. Final Data Set

The result of our editing leaves us with 3400 pixels (shown in Fig. 3; see § 4 for details on color coding), out of an original 3724 pixels with 13CO detections. Note that our pixels are 2× oversampled (see § 2.2), so that 3400 pixels amounts to 3400/4 independent measures.

4. REGION IDENTIFICATION

In trying to study Perseus as one object, it became apparent that much of the scatter in both the X-factor and in 13CO abundance is caused by region-to-region variations (see §§ 6.2 and 6.3). So, we have divided the Perseus molecular cloud complex into six regions with the help of several plots comparing different parameters (e.g., 12CO line width, 12CO LSR velocity, dust and excitation temperature). Figure 2 is an example of such a plot, which shows the 12CO velocity, $V_{\text{LSR}}(^{12}\text{CO})$ (the V_{LSR} of 12CO and 13CO are very similar), as a function of dust temperature, T_D, for all the Perseus data. In this way, we avoid more arbitrary choices and minimize the data overlap among the different regions. As can be seen in Figure 2, the six regions cluster around characteristic values of V_{LSR} and T_D, so they are easily identified. Minor further refinements on the region definitions is done to keep the regions physically connected, as shown in Figure 3. This step is needed primarily because there are regions with two velocity components along the line of sight and the Gaussian fitting can spontaneously switch from one component to the other. The effect of the two components is clearly seen in the points below 2.5 km s$^{-1}$ in Figure 2, where points from three different geographical regions are merged into a single region of $V_{\text{LSR}}-T_D$ space. In Figure 3 we show the final defined regions: B5, IC 348, Shell, B1, NGC 1333, and Westend. The Shell region is essentially the same as the shell-like feature discussed in Ridge et al. (2006a). Westend encompasses L1448, L1455, and other dark clouds in the southwest part of Perseus. We would like to remark that the criteria adopted to identify the subregions in the Perseus molecular cloud has been chosen because it allow us to find (1) the minimum number of regions needed to improve the various correlations and (2) the maximum number of regions with a statistically significant number of data points.

In Figure 4 we present the average 12CO and 13CO spectra for the whole cloud and each region, while in Table 2 we show the main properties derived from the average spectra. The central velocity and velocity dispersion are computed from the average 12CO with a Gaussian fit. We can see how different the region averages are from each other and the whole cloud. The gradient in central velocity across the cloud and the multiple components of the emission are clearly seen.

5. ANALYSIS

5.1. Column Density Determination

To derive the H$_2$ column density, N(H$_2$), we assume that: (1) all the hydrogen traced by the derived extinction is in molecular form; (2) the ratio between N(H) and $E(B - V)$ is 5.8 \times 1020 cm$^{-2}$ mag$^{-1}$ as determined by Bohlin et al. (1978); and (3) $R_V = 3.1$, to obtain

$$\frac{N(\text{H}_2)}{A_V} = 9.4 \times 10^{20} \text{ cm}^{-2} \text{ mag}^{-1}. \quad (2)$$
Fig. 3.— Top: Extinction map derived using NICER. The green border is the region observed in 12CO and 13CO(1–0) by COMPLETE, while the red border is the region observed in C18O(1–0) by Hatchell & van der Tak (2003). Bottom: Regridded molecular data that fulfill the requirements detailed in §3 are shown as boxes. Each of the defined regions are presented in a different color. B5 is green, IC 348 is magenta, the Shell is cyan, B1 is orange, NGC 1333 is blue, and Westend is red.
In general, the intensity of an emission line, I_{line}, is

$$I_{\text{line}} = (S - I_0)(1 - e^{-\tau}),$$

where S is the source function and I_0 is the initial impinging radiation field intensity. The radiation temperature is defined as

$$T_R = \frac{I_\nu \nu^2}{2k},$$

where I_ν is the specific intensity and the filling factor is assumed to be unity. Assuming that the source function and initial intensity are blackbodies (with $I_\nu = B_\nu$) at T_{ex} and $T_{\text{bg}} = 2.7$ K, respectively, then we can write

$$T_R = T_0 \left(\frac{1}{e^{\frac{\nu}{T_{\text{ex}}} - 1}} - \frac{1}{e^{\frac{\nu}{T_{\text{bg}}} - 1}} \right) (1 - e^{-\tau}),$$

where $T_0 = h\nu/k$.

Assuming that the 12CO($1-0$) transition is optically thick, $\tau \to \infty$, and that $T_{\text{max}}(^{12}$CO) is the main beam brightness temperature at the peak of 12CO, we can derive the excitation temperature using equation (5),

$$T_{\text{ex}} = \frac{5.5}{\ln \{1 + 5.5 K \left[T_{\text{max}}(^{12}$CO) + 0.82 K \right] \}},$$

where 5.5 K $\equiv h\nu/\nu(^{12}$CO)$/k$, with $\nu(^{12}$CO) = 115.3 GHz, the frequency of the 12CO($1-0$) line.

Assuming that the excitation temperature of the 13CO($1-0$) line is the same as for the 12CO($1-0$) line, the optical depth of 13CO($1-0$) can be derived from equation (5),

$$\tau(^{13}$CO) = - \ln \left[1 - \frac{T_{\text{max}}(^{13}$CO)/5.3 K}{1/(e^{5.3 K/T_{\text{ex}}} - 1) - 0.16} \right],$$

where $T_{\text{max}}(^{13}$CO) is the main beam brightness temperature at the peak of 13CO.

The formal error for the excitation temperature, $\sigma(T_{\text{ex}})$, is

$$\sigma(T_{\text{ex}}) = \left\{ \frac{T_{\text{ex}} [T_{\text{max}}(^{12}$CO) + 0.82]}{1 + 5.5 \left[T_{\text{max}}(^{12}$CO) + 0.82 \right]} \right\}^{\frac{1}{2}} \sigma_{12},$$

where σ_{12} is the error in the 12CO peak temperature determination. We estimate that σ_{12} is 0.15$T_{\text{max}}(^{13}$CO) to account for the calibration uncertainty.

Using the definition of column density (Rohlfs & Wilson 1996) and expressions (6) and (7), we derive the 13CO column density as

$$N(^{13}$CO) = \frac{\tau(^{13}$CO)}{1 - e^{-\tau(^{13}$CO)}} \times 10^{14} \frac{W(^{13}$CO)}{1 - e^{-5.3/T_{\text{ex}}}} \text{ cm}^{-2},$$

where $W(^{13}$CO) is the integrated intensity along the line of sight in units of K km s$^{-1}$. This approximation is accurate to within 15% for $\tau(^{13}$CO) < 2 (Spitzer 1968), and always overestimates the column density for $\tau(^{13}$CO) > 1 (Spitzer 1968).

In the determination of the 13CO column density, we use the derived excitation temperature instead of the dust temperature because the dust and gas are only coupled at volume densities above $\approx 10^3$ cm$^{-3}$ (e.g., Goldsmith 2001), which are typically not traced by 12CO and 13CO($1-0$) data. Moreover, if the volume density of the gas falls below a few times 10^3 cm$^{-3}$ (the critical
density of the 1–0 transition), the 12CO lines are expected to be subthermally excited.

5.2. Curve of Growth

Assuming LTE, the photon escape probability for a slab as a function of optical depth, $\beta(\tau)$, can be written as (Tielens 2005)

$$\beta(\tau) = \begin{cases}
\frac{1 - \exp(-2.34\tau)}{4.68\tau} & \text{if } \tau < 7, \\
\frac{1}{4\tau} \left[\ln \left(\frac{\tau}{\sqrt{\pi}} \right) \right]^{1/2} & \text{if } \tau > 7,
\end{cases}$$

and the Doppler broadening parameter, b, is related to the atomic weight, A, and the gas temperature, T, by

$$b = \sqrt{\frac{2kT}{m}} = 0.1290 \sqrt{\frac{T}{A}} \text{ km s}^{-1},$$

where m is the mass of the observed molecule.

The curve of growth relates the optical depth and the Doppler broadening parameter, b, with the integrated intensity, W, by

$$W = \int T_{MB}d\nu = T_{MB}b\beta(\tau),$$

where

$$f(\tau) = 2\int_0^\tau \beta(\tilde{\tau})d\tilde{\tau}$$

in the Rayleigh-Jeans regime. In the above expressions T_{MB} is the main beam brightness temperature (which is equal to T_R for a filling factor of unity).

Assuming that 13CO emission is optically thin and that the ratio between 13CO and 12CO is constant in the region, we can write the optical depth as

$$\tau(^{12}\text{CO}) = aW(^{13}\text{CO}),$$

where a is the conversion between $W(^{13}\text{CO})$ and 12CO optical depth.

6. RESULTS

6.1. Curve of Growth Analysis

As shown by Langer et al. (1989) in B5, 12CO and 13CO integrated intensities are correlated and seem to be well described by the curve of growth (Spitzer 1978). In Figure 5 we show 12CO and 13CO integrated intensities for Perseus and the individual regions defined in § 4. We perform a fit of the 12CO integrated intensity with a growth curve

$$W(^{12}\text{CO}) = T_{MB}b \int_0^{aW(^{13}\text{CO})} 2/\beta(\tilde{\tau})d\tilde{\tau}$$

and present the fit results in Table 3 and Figure 5.

The fits for the growth curve are very good, considering the simplicity of the model. However, it is clear that the correlation is better in the individual regions than in the complex as a whole, with the exception of Westend, in which the fit is less good. Our
results for B5 nicely agree both in shape and amplitude with Langer et al. (1989; Fig. 5, red solid line).

From the fit results we see that for gas at 12 K (intermediate value between average excitation temperature and dust temperature) the derived Doppler parameters for B5, IC 348, B1, and Westend are in reasonable agreement with \(\sigma_\nu\) values listed in Table 2. In NGC 1333 and the Shell, a larger Doppler parameter is expected because the emission comes from multiple components, as seen in Figure 4.

6.2. The X-Factor: Using 12CO to Derive \(A_V\)

The integrated intensity along the line of sight of the 12CO(1–0) transition, \(W_\text{12CO}\), is often used to trace the molecular material. The conversion factor \(X\) is derived, and to compare with previous results (e.g., Dame et al. 2001) it is calculated as

\[
X = \frac{9.4 \times 10^{20} A_V}{W_\text{12CO}}.
\]

However, the 12CO emission saturates at \(A_V \sim 4\) mag in every region, as shown in Figure 6. Therefore, we perform the estimation of the X-factor in two ways: (1) for all the points, and (2) for only those points with \(A_V < 4\) mag, where the column density can still be traced.

Figure 6 also shows that there is a threshold value of extinction below which no 12CO emission is detected. To take this into account we fit the linear function

\[
A_V = A_{V12} + X_2 \frac{W_\text{12CO}}{9.4 \times 10^{20}},
\]

where \(A_{V12}\) is the minimum extinction below which there is no 12CO emission and \(X_2\) is the slope of the conversion (comparable to the X-factor). The linear fit is performed using the bivariate correlated errors and intrinsic scatter estimator (BCES), which takes into account errors in both axes and provides the least biased estimation of the slopes (Akritas & Bershady 1996). The results of the X-factor and the linear fits are presented in Table 4. In Figure 6, we show only the results for points with \(A_V < 4\) mag: a dotted line for the standard X-factor and a dashed line for the linear fit.

The values derived for \(X\) using all the points (as previously done in the galactic determinations of \(X\)) are in agreement with

Region	\(a\)	\(b\)
B5	0.61 ± 0.03	20.5 ± 0.5
IC 348	0.246 ± 0.007	33.5 ± 0.6
Shell	0.223 ± 0.009	40 ± 1
B1	0.33 ± 0.01	36.8 ± 0.7
NGC 1333	0.130 ± 0.006	67 ± 2
Westend	0.44 ± 0.03	24.7 ± 0.9
Perseus	0.260 ± 0.004	35.9 ± 0.4

![Figure 6](image-url)
the mean value of $(1.8 \pm 0.3) \times 10^{20}$ cm$^{-2}$ K$^{-1}$ km$^{-1}$ s derived by Dame et al. (2001) for the Milky Way. However, this fit is not good in the unsaturated regime ($A_V < 4$ mag). Performing a linear fit to all of the data, including the saturated emission, can give unreasonable solutions, such as a negative minimum extinction needed to produce 12CO(1--0) integrated intensity.

The linear fit performed to positions with $A_V < 4$ mag gives the best estimate for the extinction in the unsaturated regions but only provides a lower limit extinction estimate for the saturated regimes, while the standard X-factor provides a poor description of the data in both saturated and unsaturated regimes. The histograms of the errors associated with the conversions derived for positions with $A_V < 4$ mag (Fig. 6, bottom) show that the linear fit (open histogram) provides a more unbiased estimate of the extinction than the X-factor (filled histogram). This improvement in the precision of the extinction estimate goes along a reduction in the errors. The width of a Gaussian fitted to the histograms of the regions implies a typical error of 40% and 25% for the X-factor and the linear fit, respectively. Performing the same analysis on the histograms of the whole cloud gives an error of 59% and 38% for the X-factor and the linear fit, respectively.

However, as we can see from Figure 6 the linear relation is not very accurate for $A_V > 4$ mag. Therefore, following the simplest solution of radiative transfer

$$ I = I_0(1 - e^{-T}), $$

we fit it to our data with

$$ W(^{13}\text{CO}) = W_0(1 - e^{-\kappa(A_V - A_{12})}), $$

where W_0 is the integrated intensity at saturation, A_{12} is the minimum extinction needed to get 13CO emission, and κ is the conversion factor between the amount of extinction and the optical depth. We perform an unweighted fit of the nonlinear function to the data, which yield solutions that better follow the overall shape of the $W(^{13}\text{CO})$ as a function of A_V. Unfortunately, the best fits for Westend and Perseus are quite poor and should be regarded with caution. The best parameters are listed in Table 5 and are shown in Figure 6 as solid curves. We note that the threshold extinction shows a large scatter, even in the more accurate nonlinear fit. This suggests that different environmental conditions are causing the observed scatter (see § 7).

6.3. Using 13CO to Derive H_2 Column Densities

We expect the 13CO(1--0) transition to be optically thin at low extinction. If this is the case, a simple linear relation between the integrated intensity of 13CO and A_V should fit the data,

$$ A_V = W(^{13}\text{CO})B_{13} + A_{W,13}. $$

The fit is done using the BCS algorithm for points with $A_V < 5$ mag because there is some saturation in the emission. The results are presented in Table 6 and in Figure 7. Once again, we find that the minimum extinction needed to detect 13CO and the slope of the linear relation changes between the regions, although the variation is smaller than with the 12CO data. From Figure 7 we can clearly see the effect of saturation around 5 mag of extinction in IC 348 and B1, similar to what was reported by Lada

REFERENCES

(1) Bloemen et al. 1986; (2) Frerking et al. 1982; (3) Dame et al. 2001; (4) Lombardi et al. 2006.

TABLE 4

LINEAR FITS TO 12CO

Region	$X/10^{20}$ (cm$^{-2}$ K$^{-1}$ km$^{-1}$ s)	A_{12} (mag)	$X_2/10^{20}$ (cm$^{-2}$ K$^{-1}$ km$^{-1}$ s)
B5..........	2 ± 1	0.0 ± 0.2	1.5 ± 0.1
IC 348......	3 ± 2	0.51 ± 0.08	1.61 ± 0.07
Shell........	2 ± 1	1.0 ± 0.1	1.09 ± 0.08
B1...........	1.4 ± 0.8	−0.6 ± 0.1	1.38 ± 0.09
NGC 1333....	0.9 ± 0.3	−0.5 ± 0.1	0.93 ± 0.07
Westend......	1.2 ± 0.5	−1.8 ± 0.3	1.8 ± 0.4
Perseus......	2 ± 1	−0.33 ± 0.07	1.38 ± 0.05

Fit performed to the whole data set

Fit performed to positions where $A_V < 4$

Galaxy (1).............. | 2.8 ± 0.4 | ... | ... |
ρ Oph (2).............. | 1.8 ± 0.1 | ... | ... |
Galaxy (3).............. | 1.8 ± 0.3 | ... | ... |
Pipe (4)............... | ... | 2.02 ± 0.02 | 1.06 ± 0.02 |

Previous works

Region	W_0 (K km s$^{-1}$)	k (mag$^{-1}$)	A_{12} (mag)
B5..........	30.92	0.553	1.063
IC 348......	39.27	0.350	1.374
Shell.......	73.31	0.139	0.851
B1..........	43.08	0.691	1.309
NGC 1333....	67.12	0.374	0.748
Westend....	30.45	0.529	−0.160
Perseus.....	42.29	0.367	0.580

where W_0 is the integrated intensity at saturation, A_{12} is the minimum extinction needed to get 13CO emission, and k is the conversion factor between the amount of extinction and the optical depth. We perform an unweighted fit of the nonlinear function to the data, which yield solutions that better follow the overall shape of the $W(^{13}$CO) as a function of A_V. Unfortunately, the best fits for Westend and Perseus are quite poor and should be regarded with caution. The best parameters are listed in Table 5 and are shown in Figure 6 as solid curves. We note that the threshold extinction shows a large scatter, even in the more accurate nonlinear fit. This suggests that different environmental conditions are causing the observed scatter (see § 7).

TABLE 5

PARAMETERS FOR 12CO FIT

Region	W_0 (K km s$^{-1}$)	k (mag$^{-1}$)	A_{12} (mag)
B5..........	30.92	0.553	1.063
IC 348......	39.27	0.350	1.374
Shell.......	73.31	0.139	0.851
B1..........	43.08	0.691	1.309
NGC 1333....	67.12	0.374	0.748
Westend....	30.45	0.529	−0.160
Perseus.....	42.29	0.367	0.580

TABLE 6

RESULTS OF LINEAR FIT TO $W(^{13}$CO)

Region	$A_{W,13}$ (mag)	B_{13} (mag K$^{-1}$ km$^{-1}$ s)	Reference
B5..........	1.56 ± 0.03	0.323 ± 0.009	1
IC 348......	1.99 ± 0.03	0.36 ± 0.01	1
Shell.......	1.90 ± 0.06	0.40 ± 0.02	1
B1..........	1.64 ± 0.03	0.296 ± 0.009	1
NGC 1333....	1.19 ± 0.03	0.26 ± 0.01	1
Westend....	0.75 ± 0.06	0.44 ± 0.02	1
Perseus.....	1.46 ± 0.02	0.345 ± 0.006	1

Previous works

Region	$A_{W,13}$ (mag)	B_{13} (mag K$^{-1}$ km$^{-1}$ s)	Reference
IC 5146.....	−2.6 ± 0.3	1.4 ± 0.1	2
B5..........	0.54 ± 0.13	0.39 ± 0.02	3

NOTES.—(1) This work, linear fit for $A_V < 5$; (2) Lada et al. (1994) linear fit for $A_V < 5$; (3) Langer et al. (1989).
et al. (1994) in the more distant IC 5146, with comparable linear resolution. When comparing our results with the linear fit derived by Lada et al. (1994) we see that the fit parameters are quite different, suggesting that the IC 5146 cloud is quite different from Perseus. The linear fit for IC 5146 would indicate that for a region without extinction there is molecular emission, suggesting that the linear fit has been affected by points with saturated emission or that the fit errors are largely underestimated. Comparing our result for B5 with Langer et al. (1989) we find that the slopes are slightly different, but this can be reconciled by performing the linear fit taking all the points ($B_{13} = 0.37 \pm 0.1, A_{V,13} = 1.45 \pm 0.04$) as done by Langer et al. (1989). However, the fit performed by Langer et al. (1989) was done using the extinction map derived by Bachiller & Cernicharo (1986) that is limited by A_V values below 5 mag of visual extinction (due to a lack of detectable background stars). Also, given that their molecular data has a better resolution (1.5,0') than the extinction map (2.5,0'), they interpolated the 13CO to the extinction positions instead of smoothing the data to the same resolution. Finally, the threshold extinction value differs from previous measurements mainly because it is hard to accurately define the zero point for extinction maps derived from optical star counting (as already mentioned, Schnee et al. [2005] reported a difference of \sim0.8 mag).

Following the column density determination shown in § 5.1, which takes into account the effect of optical depth and excitation temperature, we investigate the relation between $N(^{13}\text{CO})$ and A_V, fitting a linear function to the data,

$$A_V = N(^{13}\text{CO})c + A_{V,13},$$

(21)

where c and $A_{V,13}$ are the parameters of the fit. From the fit we can derive the ratio of abundances between H$_2$ and 13CO as

$$\left[\frac{\text{H}_2}{^{13}\text{CO}}\right] = 9.4 \times 10^{20}c.$$

(22)

The result for the fit over the whole cloud and by regions is shown in Figure 8, and in Table 7 we present the best-fit parameters. When performing the fit we estimate the error associated with the 13CO column density as 15%, due to the uncertainty in the calibration.

As shown in Figure 8, this relation presents a larger scatter, which is also present in individual regions (and it is consistent with previous work; see, e.g., Combes 1991). As already pointed out, selective photodissociation and/or chemical fractionation can alter the simple linear relation at low A_V values, whereas optical depth may start to be large at high A_V [see, e.g., the tendency of $N(^{13}\text{CO})$ to flatten out at $A_V > 5$ mag in B5, IC 348, and B1].

The 13CO abundances derived from the fit present significant variations from region to region (see Table 7). We do not find a correlation between the abundance and the threshold $A_{V,13}$. This
suggests that 13CO abundance variations are mainly due to different chemical/physical properties in the inner regions of the cloud at $A_V > A_{V13}$.

Comparing our results with those in Table 7, we see that the abundances agree very well, within the errors, with previous values reported in Perseus, taking also into account the ~0.8 mag difference found by Schnee et al. (2005). This difference is produced by the difficulty in defining the zero level of extinction, which is harder in the optical star-counting method than using NICER. The extinction threshold derived for Perseus is close to the one derived for ρ Oph by Frerking et al. (1982), but they do not have any data at A_V below 2.5 mag and their determination has been done only for points with $A_V > 4$ mag.

It is important to note that the numbers cited from previous works do not include the 10%-20% calibration uncertainty that we do include in our results, and therefore our results are more accurate than previous ones.

6.4. Using 18O to Derive H$_2$ Column Densities

We fit a linear relation between the integrated intensity of C18O and A_V,

$$A_V = W(C^{18}O)B_{18} + A_{W18}. \quad (23)$$

The fit results are presented in Table 8 and in Figure 9. We find that, as in the case of 12CO and 13CO, both parameters (extinction threshold and slope) vary between regions. However, due to the fewer points available per region, the errors are larger than for previous fits.

Despite the small number statistics, we still can see that C18O is fairly linear up to at least 10 mag. When comparing our results with the linear fit derived by Lada et al. (1994) we see that the fit parameters are quite different. However, they performed the fit over a wider A_V range (up to 15 mag), and it is possible that despite their efforts the fit could have been affected by emission with higher optical depth.

Langer et al. (1989) derived a fit in B5. Unfortunately, we do not have coverage for B5, and therefore no direct comparison can be done. Nevertheless, we find that the threshold extinction value derived for B5 is systematically lower than the values derived here for other regions (similar to what is found in 13CO), while the slope is in agreement (within the error bars) with the parameters derived here.

6.5. 12CO(1–0) Excitation Temperature versus Extinction

Being collisionally excited, the excitation temperature of 12CO(1–0) is expected to increase as we move from the outskirts of the cloud, where the extinction and volume densities may be lower than the critical density for the 12CO(1–0) transition, to the most extinguished and densest regions, where 12CO(1–0) is in LTE and faithfully traces the gas kinetic temperature. The excitation temperature, derived using 12CO and equation (6), is shown as a function of the visual extinction in Figure 10. In addition, we plot the median dust temperature computed in bins of extinction as horizontal lines. When all the points are plotted (Fig. 10, left) there is a poor correlation between excitation temperature and extinction. This is a direct result of mixing very different environments.

Region	A_{W18} (mag)	B_{18} (mag K$^{-1}$ km$^{-1}$ s)	Reference
IC 5146	-0.7 ± 0.3	10 ± 1	2
B5	1.40 ± 0.22	1.8 ± 0.13	3

Notes.—(1) This work; (2) Lada et al. (1994) linear fit for $A_V < 15$; (3) Langer et al. (1989).
within the cloud in one plot. In fact, from the right panel of Figure 10, where the excitation temperature and visual extinction are plotted for individual regions, it is clear that the scatter is significantly lower and the excitation temperature rises from ~ 5 K at low A_V (~ 2 mag) up to a temperature close to the derived dust temperature in positions with $A_V > 4$. The more quiescent regions (B1 and B5) present a smaller dispersion, whereas more active regions (IC 348 and NGC 1333) present a larger spread in the excitation temperature, probably because of the larger variation of physical conditions along the line of sight and/or the multiple velocity components. The region labeled as “Westend” has a very low excitation temperature when compared with the rest of the cloud. As shown in the right panel, in individual regions the dust temperature does not change more than approximately one degree except in the “Shell,” which shows a steady increase with A_V, and in NGC 1333, where a peak of the dust temperature is present at $A_V \sim 8$ mag, probably due to the internal heating produced by the nearby embedded cluster. On the other hand, the 12CO excitation temperature ranges between 5 and 20 K.

It is important to note that almost all the points lie below the median dust temperature of the region, indicating that 12CO is tracing gas at volume densities well below 10^5 cm$^{-3}$, the lower limit to have dust and gas coupling (Goldsmith 2001). The average excitation temperature for points above 4 mag is 13.8 K, while the standard deviation is 2.3 K. We count the number of positions where the 12CO emission is subthermal ($T_{ex} < 11.5$ K), obtaining that it is $\sim 60\%$. Westend is a region with 12CO excitation temperature always below the dust temperature. This could be due to a lower fraction of high-density material compared to the other regions. It is interesting that in the regions in the northeast part of the cloud (B5, IC 348, and Shell) the dust temperature is closer to 17 K, while in the southwest part (B1, NGC 1333, and Westend) it is closer to 16 K, suggesting variations in the ISRF across the Perseus complex.

7. MODELING USING PDR CODE

To relate the observed variations in the 12CO and 13CO lines with changes in the physical properties of the regions, we use the Meudon PDR code (Le Petit et al. 2006). This code includes most physical effects by explicit calculation; in particular it calculates the 12CO shielding, unlike the majority of other codes available (e.g., Röllig et al. 2007), where fitting formulae are used instead.

We use the abundances derived by Lee et al. (1998; see Table 9) for clouds with high metal abundances (more appropriate for the material traced by 12CO and 13CO) a 12C/13C abundance ratio of 80 and a cosmic-ray ionization rate of $\zeta = 10^{-17}$ s$^{-1}$ (a ζ value 6 times larger than the adopted one has also been considered, but found not to change the results by more than 10%; see Appendix). To reproduce the observed $[\text{H}_2/^{12}$CO$]$ ratio we increased ζ 6 times larger than the adopted one has also been considered, but found not to change the results by more than 10%; see Appendix). To reproduce the observed $[\text{H}_2/^{12}$CO$]$ ratio we increased...
the 12C abundance by a factor of 1.8 compared to Lee et al. (1998). To create curves of integrated intensity as a function of A_V, we run PDR models with different extinctions ($A_V = 0.5$, 1, 1.5, 2, 2.5, 3, 4, 5, 8, 10 mag). Each PDR calculation is performed over a grid of parameters, assuming a slab of constant density illuminated on both sides. (1) The turbulent velocity is fixed to the Doppler parameter derived from the curve of growth fit assuming $T_R = 12$ K for each region (see Table 3 and § 6.1). (2) The volume density $n = 10^3$, 5×10^3, 10^4, 5×10^4 cm$^{-3}$. (3) The radiation field is $\chi = 1$ and 3 times the standard Draine’s radiation field (Draine 1978; other χ-values have been explored and reported in the Appendix).

The observed values of $W(12CO)$, $W(13CO)$, and $W(12CO)/W(13CO)$ as a function of A_V are compared with the models results in Figure 11. To perform this comparison, the PDR code output, $I = \int I_0 dv$, is converted using the definition of brightness temperature (eq. [4]):

$$W = \int T_R dv = \frac{I_c^2}{2v_0^2 k} = \frac{c^3}{2v_0^2 k} I,$$

and the ratio can be expressed as

$$\frac{W(12CO)}{W(13CO)} = \left[\frac{I(13CO)}{I(12CO)} \right]^3 R(12CO) / R(13CO).$$

First, we note that PDR models are reasonably good in reproducing 12CO and 13CO observations, if one allows for variations in densities along different lines of sight. One exception is NGC 1333, where the points with “excess” in 13CO emission are associated with positions just south of the NGC 1333 stellar cluster, where a second velocity component is observed. This produces less saturation in the 13CO emission. Second, in the case of 13CO, the Doppler parameter (shown in Fig. 11, bottom) does not affect the results of PDR models within 10%, whereas for 12CO, differences of $< 40\%$ are present above 2 mag of visual extinction. In fact, the 12CO line is optically thick; thus an increase in the line width produces a significant increase in the line brightness because of the optical depth reduction. The insensitivity of 13CO integrated intensity to variations of the turbulent line width leaves the density and radiation field as the two possible causes of the observed differences between the regions.

In Figure 11 we show only the effects of density with $\chi = 1$. Small variations (within a factor of 3) of the radiation field intensity slightly shift the curves to higher or lower A_V by 1 mag, if the radiation field is larger or smaller, respectively. The main conclusions for individual regions are listed below.

B5.—This is the most quiescent region in the whole Perseus complex. The best fit for the $W(12CO)$ is a PDR model of a cloud with a narrow range of density change, between 5×10^3 and 1×10^4 cm$^{-3}$, values consistent with previous analysis. A similar density range is found to reproduce $W(13CO)$ at $A_V < 4$ mag, whereas 5×10^3 cm$^{-3}$ is more appropriate for the emission at larger extinctions (higher density regions are mainly responsible for the 13CO emission at $A_V > 4$ mag). We note that the integrated intensities of the two CO isotopologues approach (with increasing A_V) the lowest values in the whole sample, suggesting

Element	Abundance
He	0.1
C$^+$	1.307×10^{-2}
12C$^+$	1.633×10^{-6}
N	2.14×10^{-5}
O	1.76×10^{-4}
S$^+$	8.00×10^{-6}
Fe$^+$	3.00×10^{-7}

TABLE 9

INITIAL CHEMICAL ABUNDANCES WITH RESPECT TO TOTAL HYDROGEN

Element	Abundance
He	0.1
C$^+$	1.307×10^{-2}
12C$^+$	1.633×10^{-6}
N	2.14×10^{-5}
O	1.76×10^{-4}
S$^+$	8.00×10^{-6}
Fe$^+$	3.00×10^{-7}
that denser material is hidden from view because of photon trapping in the narrow range of velocities observed in this region.

IC 348.—In this cluster-forming region, the density spread is larger than in B5, with values ranging between few \(\times 10^3 \) and \(\approx 1 \times 10^4 \) cm\(^{-3} \). Similarly, the \(^{12}\)CO at low \(A_V \) (<4 mag) are reproduced by models with \(10^7 \) to \(10^8 \) cm\(^{-3} \), whereas densities larger than \(5 \times 10^3 \) cm\(^{-3} \) are needed above 4 mag. However, the points at \(A_V > 7 \) mag and \(W(13\text{CO}) > 12 \) K km s\(^{-1} \) lie next to the embedded cluster, so that local heating and enhanced turbulence are probably increasing the \(^{13}\)CO brightness [the flattening of the \(W(13\text{CO}) \) vs. \(A_V \) curve is in fact less pronounced than in the case of B5, suggesting less optical depth]. Thus, protostellar activity is locally affecting the \(^{13}\)CO emission, but not the \(^{12}\)CO.

Shell.—This region shows the largest spread in density for \(^{12}\)CO at all values of \(A_V \) from 1 to \(10^3 \) to about 3 to \(10^4 \) cm\(^{-3} \). At \(A_V > 5 \) mag the data groups around two separate values of \(W(12\text{CO}) \): \(\sim 35 \) and 55 K km s\(^{-1} \). The former group is associated with the (outer) shell reported in dust emission by Ridge et al. (2006a), whereas the latter is located in the inner part of the shell, maybe exposed to a larger radiation field causing more dissociation of CO molecules. The \(^{13}\)CO emission appears similar to IC 348, with the exception of points located at low \(W(13\text{CO}) \) (below 4 K km s\(^{-1} \)) and \(A_V > 4 \) mag, which are again associated with the inner part of the Shell. This also suggests some further destruction process for the \(^{13}\)CO.

B1.—The \(^{12}\)CO emission is consistent with material at densities between 5 to \(10^2 \) and 3 to \(10^4 \) cm\(^{-3} \). Compared with B5, the B1 region shows brighter \(^{12}\)CO lines at lower (as well as higher) extinction. This is probably related to the larger Doppler parameter of B1. Several data points at low \(W(13\text{CO}) \) (<2 mag) are well reproduced by PDR models of dense clouds. The need of high densities at low \(A_V \) also appears in the \(^{13}\)CO panel.

NGC 1333.—This is the most active star-forming site in the whole Perseus cloud, and the behavior of the \(^{12}\)CO and \(^{13}\)CO integrated intensities as a function of \(A_V \) is in fact significantly different when compared to the other regions. First of all, the densities required in the PDR code to match the data are mostly above \(10^5 \) cm\(^{-3} \), both for the \(^{12}\)CO and \(^{13}\)CO emission. Second, the saturation of the \(^{12}\)CO line becomes evident only at \(A_V > 6 \) mag (unlike \(\sim 4 \) mag, as in the other regions). Here, similarly to what is seen in B1, none of the motions driven by the embedded protostellar cluster are broadening the CO lines, allowing photons from deeper in the cloud to escape. The effect is more pronounced than in B1, consistent with the fact that NGC 1333 has the largest Doppler parameter among the six regions. We further note that, unlike in IC 348, the \(^{12}\)CO(1-0) integrated intensity is also affected by the internal star formation activity, significantly reducing the saturation and enhancing the brightness at large \(A_V \). Internal motions, likely driven by protostellar outflows, are thus more pronounced in NGC 1333 than in IC 348, likely because of the larger star formation activity.

Westend.—This is the only region where no data points are present at \(A_V > 6 \) mag, and the \(^{12}\)CO, as well as the \(^{13}\)CO, integrated intensity shows a large scatter between \(A_V \) of 1 and 6 mag. These two facts are consistent with an overall lower density and probably clumpy medium, where relatively small high-density clumps are located along some lines of sight, whereas a significant fraction of the data (19% of points in \(^{12}\)CO) can be reproduced by uniform PDR model clouds with densities below \(5 \times 10^3 \) cm\(^{-3} \).

In general, model predictions for \(^{13}\)CO(1-0) can only reproduce well the observed emission at low extinction (\(A_V < 3 \) mag). The complex structure of active star-forming regions, in particular density and temperature gradients as well as clumpiness along the line of sight (all phenomena not included in the PDR code), can of course contribute to the deviations from the uniform PDR models. We point out again that the largest Doppler parameters, i.e., the largest amount of nonthermal (turbulent?) motions, are present in active regions of star formation, so that their nature appears to be linked to the current star formation activity and not to be part of the initial conditions in the process of star formation.

The complex structure of active star-forming regions, in particular density and temperature gradients as well as clumpiness along the line of sight (all phenomena not included in the PDR code), can of course contribute to the deviations from the uniform PDR models. We point out again that the largest Doppler parameters, i.e., the largest amount of nonthermal (turbulent?) motions, are present in active regions of star formation, so that their nature appears to be linked to the current star formation activity and not to be part of the initial conditions in the process of star formation.

In the bottom panel of Figure 11, the \(W(12\text{CO})/W(13\text{CO}) \) ratio is shown as a function of \(A_V \) for the six regions. The PDR models appear to reproduce well the integrated intensity ratio, for a broad range of \(A_V \). As we just saw, the \(^{13}\)CO data preferentially trace higher density material than \(^{12}\)CO lines, so the black squares show the ratio between the \(^{12}\)CO and \(^{13}\)CO emission as predicted by PDR models with 5 to \(10^4 \) cm\(^{-3} \) for \(^{12}\)CO and 1 to \(10^4 \) cm\(^{-3} \) for \(^{13}\)CO lines. One thing to note in these plots is the large fraction of points at low \(A_V \) and low \(W(12\text{CO})/W(13\text{CO}) \) which lie below the PDR model curves, in particular for B5, NGC 1333, and Westend, but they lie above the black squares showing that the PDR model with different densities can reproduce all the emission. Another way to reproduce these data points is by decreasing the interstellar radiation field by a factor of a few. Alternatively, it is possible that these lines of sight intercept material where the \(^{12}\)C carbon is still partially in ionized form, so that the reaction \(^{12}\text{C}^+ + 12\text{CO} \rightarrow 12\text{C}^+ + 13\text{CO} + \Delta E \) (with \(\Delta E/k = 37 \) K; Watson 1977) can proceed and enhance the \(^{13}\)CO abundance relative to \(^{12}\)CO.

We finally note here that Bell et al. (2006) have theoretically investigated the variation of the \(X \)-factor using UCL...
at all A_V. This can be explained if a fraction ($\approx 60\%$) of the 12CO($1-0$) lines is subthermally excited, i.e., if the 12CO-emitting gas has volume densities below 3×10^3 cm$^{-3}$.

5. The column density of 13CO is derived taking into account the effect of optical depth and excitation temperature. We find that the threshold extinction above which 13CO($1-0$) is detected is larger than has previously been reported. However, the fractional abundances (with respect to H$_2$ molecules) are in agreement with previous determinations. The difference with previous works is due to the superior zero-point calibration and larger dynamic range of the NICER extinction map, as compared to those derived from optical star counting (see Fig. 8 and Table 7).

6. 13CO abundance variations between the regions do not correlate with the extinction threshold $A_{V_{113}}$, suggesting that the main cause of the variation is likely due to the chemical/physical properties of shielded molecular material deeper into the cloud. The 12CO($1-0$) and 13CO($1-0$) lines saturate at $A_V > 4$ and 5 mag, respectively, whereas C^{18}O($1-0$) lines do not show signs of saturation up to the largest A_V probed by our data (10 mag).

7. Using the Meudon PDR code we find that the observed variations among the different regions can be explained with variations in physical parameters, in particular the volume density and internal motions. Large Doppler parameters imply large values of the CO integrated intensities (as expected for very optically thick lines) and are typically found in active star-forming regions (the largest values of the Doppler parameter and $W(12\text{CO})$ being associated with NGC 1333, the most active site of star formation in Perseus). On the other hand, quiescent regions such as B5 appear less bright in CO and only show a narrow range of CO integrated intensities as a function of A_V. This is likely due to the fact that the photons emitted from the higher density regions located deep in the cloud have similar velocities relative to the outer cloud envelope traced by 12CO, so that they are more easily absorbed. Thus, turbulent (or, more generally, nonthermal) motions appear to be a byproduct of star formation, more than part of the initial conditions in the star formation process.

This work has shown that local variations in physical conditions significantly affect the relation between CO-isotopologue emission and A_V, contributing to the observed scatter. The use of a standard X-factor, 1.8×10^{20} cm$^{-2}$ K$^{-1}$ km$^{-1}$ s, produces an overestimation of the cloud’s mass by $\approx 45\%$ when compared to the mass derived from the extinction map, while the lower limit for the mass derived using the linear fit to the unsaturated points.

Fig. 12.—PDR results for the particular case of B5 and different values of χ and ζ (in units of 10^{-17} s$^{-1}$). Black solid, black dotted, gray solid, and gray dotted lines show the PDR model results for $\chi = 0.5$, 1.0, 5.0, and 10 times the standard Draine's radiation field, respectively. Variations in χ mainly affect the low A_V emission, whereas different ζ values slightly change the emission values at $A_V > 4$ mag.
underestimates the mass by a ~15%. The \(X\)-factor (as well as the \(^{13}\text{CO}\) fractional abundance) depends on the star formation activity, with lower values associated with the more active (and turbulent) regions. Extinctions measured by using \(^{13}\text{CO}\) and previous conversions from the literature are typically underestimated by ~0.8 mag, so that more shielding is needed to produce the observed \(^{13}\text{CO}\) compared to previous findings.

J. E. P. is supported by the National Science Foundation through grant AF002 from the Association of Universities for Research in Astronomy, Inc., under NSF cooperative agreement AST-9613615 and by Fundación Andes under project C-13442. This material is based on work supported by the National Science Foundation under grant AST-0407172. P. C. acknowledges support by the Italian Ministry of Research and University within a PRIN project.

APPENDIX

EFFECT OF \(\chi\) AND \(\zeta\) VARIATION

In § 7 we explored how changes in volume density and Doppler parameter affect the \(^{12}\text{CO}(1-0)\) and \(^{13}\text{CO}(1-0)\) integrated intensities \([W(1^{12}\text{CO}), W(1^{13}\text{CO})]\) predicted by the Meudon PDR code. Here we show the effects of variations in the interstellar radiation field intensity, in units of Draine’s field \(\chi\), and the cosmic-ray ionization rate \(\zeta\) on \(W(1^{12}\text{CO})\) and \(W(1^{13}\text{CO})\). Figure 12 shows the results of this parameter space exploration in the particular case of B5 and volume density of \(5 \times 10^4\ \text{cm}^{-3}\) (similar results apply to the other regions and different densities). The upper panels display the model results for \(\chi\) values of 0.5, 1, 5 and 10; the main change is visible at \(A_F < 4\) mag, with a shift of the threshold extinction for \(^{12}\text{CO}\) and \(^{13}\text{CO}\) emission from about 1 to 3 mag for an increase of \(\chi\) from 0.5 to 10, respectively.

The cosmic-ray ionization rate used in the PDR models described in § 7 is \(\zeta = 1 \times 10^{-17}\ \text{s}^{-1}\). This value is quite uncertain and Dalgarno (2006) suggests a higher rate of \(6 \times 10^{-17}\ \text{s}^{-1}\) for molecular clouds (see also van der Tak & van Dishoeck 2000). In the bottom panels of Figure 12, we show the predicted \(W(1^{12}\text{CO})\) and \(W(1^{13}\text{CO})\) curves for \(\zeta = 6 \times 10^{-17}\ \text{s}^{-1}\). The larger \(\zeta\) value does not affect the CO emission at \(A_F \leq 3\) mag, and only changes the integrated intensities by about 30%. Thus, the effect is not large enough to explain the largest \(W(1^{13}\text{CO})\) values.

REFERENCES

Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Arce, H. G., & Goodman, A. A. 1999, ApJ, 517, 264
Bachiller, R., & Cernicharo, J. 1986, A&A, 166, 283
Bell, T. A., Roueff, E., Viti, S., & Williams, D. A. 2006, MNRAS, 371, 1865
Bensch, F. 2006, A&A, 448, 1043
Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, ApJ, 224, 132
Cambrésy, L. 1999, A&A, 345, 965
Cernicharo, J., & Bachiller, R. 1984, A&AS, 58, 327
Combes, F. 1991, ARA&A, 29, 195
Dalgarno, A. 2006, Proc. Natl. Acad. Sci., 103, 12269
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792
de Vries, H. W., Thaddeus, P., & Heithausen, A. 1987, ApJ, 319, 723
Draine, B. T. 1978, ApJS, 36, 395
———. 2003, ARA&A, 41, 241
Duvert, G., Cernicharo, J., & Baudry, A. 1986, A&A, 164, 349
Elia, J. H. 1978, ApJ, 224, 453
Ferking, M. A., Langer, W. D., & Wilson, R. W. 1982, ApJ, 262, 590
Goldsmith, P. F. 2001, ApJ, 557, 576
Hatchell, J., & van der Tak, F. F. S. 2003, A&A, 409, 589
Hily-Blant, P., Pety, J., & Guilloteau, S. 2005, CLASS Evolution: I. Improved Off Support, Tech. rep. (Grenoble: IRAM)
Lada, C. J., Lada, E. A., Clemens, D. P., & Bally, J. 1994, ApJ, 429, 694
Langer, W. D., Wilson, R. W., Goldsmith, P. F., & Beichman, C. A. 1989, ApJ, 337, 355
Lee, H.-H., Roueff, E., Pineau des Forêts, G., Shalabiea, O. M., Terzieva, R., & Herbst, E. 1998, A&A, 334, 1047
Le Petit, F., Nehmé, C., Le Bourlot, J., & Roueff, E. 2006, ApJS, 164, 506
Lombardi, M., & Alves, J. 2001, A&A, 377, 1023
Lombardi, M., Alves, J., & Lada, C. J. 2006, A&A, 454, 781
Miville-Deschênes, M.-A., & Lagache, G. 2005, ApJS, 157, 302
Padoan, P., Bally, J., Billawala, Y., Juvela, M., & Nordlund, A. 1999, ApJ, 525, 318
Pineda, J. E. 2006, A&A, 448, 1043
Ride, J. A., Schnee, S. L., Goodman, A. A., & Foster, J. B. 2006a, ApJ, 643, 932
Ride, J. A., et al. 2006b, AJ, 131, 2921
Rieke, G. H., & Lebofsky, M. J. 1985, ApJ, 288, 618
Rohlfs, K., & Wilson, T. L. 1996, Tools of Radio Astronomy, XVI (Berlin: Springer)
Röllig, M., et al. 2007, A&A, 467, 187
Schnee, S., Bethell, T., & Goodman, A. 2006, ApJ, 640, L47
Schnee, S. L., Li, J. G., Goodman, A. A., & Sargent, A. I. 2008, submitted
Solomon, P. M., Rivolo, A. R., Barrett, J., & Yahil, A. 1987, ApJ, 319, 730
Spitzer, L. 1968, Diffuse Matter in Space (New York: Interscience)
———. 1978, Physical Processes in the Interstellar Medium (New York: Wiley)
Strong, A. W., & Mattos, J. R. 1996, A&A, 308, L21
Tielens, A. G. G. M. 2005, The Physics and Chemistry of the Interstellar Medium (Cambridge: Cambridge Univ. Press)
van der Tak, F. F. S., & van Dishoeck, E. F. 2000, A&A, 358, L79
Watson, W. D. 1977, in ASSL 67, CNO Isotopes in Astrophysics, ed. J. Audouze (Dordrecht: Reidel), 105
Wilson, R. W., Jeffers, K. B., & Penzias, A. A. 1970, ApJ, 161, L43
Young, J. S., Goldsmith, P. F., Langer, W. D., Wilson, R. W., & Carlson, E. R. 1982, ApJ, 261, 513
Young, J. S., & Scoville, N. 1982, ApJ, 258, 467