INTRODUCTION

Packaging is very essential to promote the safety of the food products and facilitate their shipping and marketability. Petroleum-based plastics are the major materials used in the food packaging sector. However, due to the global concerns regarding the negative effects of plastics on the environment or the presence of micro-plastics in food, the demand for developing new edible/biodegradable films has increased (Hashemi & Khaneghah, 2017). Proteins and polysaccharides are generally recognized as safe.
(GRAS) for using in human and animal foods and the edible films and coatings manufactured from these biopolymers exhibit considerable mechanical and barriers properties (Khodaei et al., 2020). Moreover, these film-forming materials can be used as carriers for delivering active ingredients such as flavors, colorants, probiotics, and essential oils on the surface of food products (Khodaei & Hamidi-Esfahani, 2019).

Basil (Ocimum basilicum L.) is an aromatic and pharmaceutical plant which is widely grown in some regions of Iran and India, and it is broadly used in traditional medicine to heal the colic ulcer, dyspepsia, diarrhea, and inflammations (Khazaee et al., 2014). During the soaking of basil seeds in water, the outer pericarp of the seeds swells and the viscous mass of basil seed gum (BSG) forms. BSG is composed of hydrophobic (glucomannan and highly branched arabinoxogalactan) and hydrophilic (xylan) fractions (Gahruie et al., 2017; Hashemi et al., 2017). BSG is a biodegradable, heat resistant, and hydrophilic biopolymer with a considerable rheological properties that makes it an excellent candidate as a natural hydrocolloid in food industry (Hosseini-Parvar et al., 2010; Karimi & Kenari, 2016). The film-forming properties of BSG have been confirmed in previous studies (Gahruie et al., 2017; Hashemi & Khaneghah, 2017; Hashemi et al., 2017).

Essential oils are natural biocompounds extracted from plants, and they have a wide application in the food industry as a flavoring and antimicrobial agents (Hashemi et al., 2017; Tavakolpour et al., 2017). However, the direct incorporation of EOs into food systems due to their possible negative effects on the organoleptic properties of the food or their interactions with the food components and also the low water solubility of EOs is limited (Gahruie et al., 2017). Therefore, some new methods such as encapsulation, emulsion, and using edible films have been proposed to protect the EOs during the processing and storage and also reduce the negative organoleptic effects of these oils on food. Chemical composition, the specific parts of the plant used, methods of extraction, harvesting season are some of the factors influencing the biological activities of essential oils (Vitoratos et al., 2013).

Achillea santolina is one of the 115 known species of Achillea L. (Asteraceae) genus that it is widely distributed in the northern regions of Europe and Asia (Al-Snafi, 2013; Ebadi, 2006). Antimicrobial, anti-inflammatory, antidiabetic, antioxidant, and cardiovascular activities are some of the pharmacological properties attributed to essential oils from A. santolina (Al-Snafi, 2013).

Artemisia sieberi (Artemisia herba-alba) is another medicinal plant from Compositae family growing in Spain, North Africa, and the Middle East. This herbal plant is shown to have considerable antimicrobial activity, and it is commonly used in Iran as a herbal remedies for treating colds, coughing, intestinal disturbances, intestinal parasites infection, and wound healing (Maboubi & Farzin, 2009).

The effect of incorporation of essential oils on the physicochemical properties of edible films has been reported in various studies. However, to the authors’ knowledge, there are no reports on the active edible films loaded with EOs from A. santolina and A. sieberi. Thus, the main aim of this research was to formulate active BSG-based films containing different ratios of A. santolina and A. sieberi EOs and evaluate the physical, antioxidant, and antibacterial properties of the prepared films.

2 | MATERIALS AND METHODS

2.1 | Plant materials

Artemisia sieberi and Achillea santolina (14% MC d.b.) leaves were purchased from a local market in Shiraz city, Fars province, Iran. Basil seeds were purchased from a local market in Fasa city, Fars province, Iran.

2.2 | Essential oils extraction

Approximately, 50 g of each plant was hydrodistillated for 3–3.5 hr by an all-glass Clevenger tool. About, 550-ml distilled water was utilized (Pharmacopoeia, 1980). The obtained EOs were dried using anhydrous sodium sulfate and stored in sealed vials at 4°C. The EO yield was determined based on the volume of essential oil relative to the dry weight of the plant. The yield of extraction for A. sieberi and A. santolina EOs were 3.6% and 3.2% (v/w), respectively.

2.3 | Essential oil analysis

GC-MS (6890N, Agilent Technologies, Palo Alto, CA, USA) was applied for EOs analysis. An HP-5MS capillary column (30-m length, 0.25-mm internal diameter, and 0.25-μm film thickness) with a split ratio of 1:30 and helium as a carrier gas (1.3 ml/min) were used. The injector was set at 265°C, and the EOs were diluted with n-hexane (1:10 v/v). Oven temperature was regulated to 60°C for 6 min, accordingly enhanced to 280°C at 3°C/min. Semi-quantitative data were obtained from FID area percentages without the use of correction factors. Retention indices (RI) were determined by using retention times of n-alkanes (C6–C24) and the compounds were recognized by comparing their mass spectral fragmentation patterns with those of similar compounds from the database (Wiley/NBS library) (Hashemi & Khaneghah, 2017).

2.4 | Bacterial strains

Staphylococcus aureus PTCC 1784, Bacillus cereus PTTC 1015, Listeria monocytogenes PTCC 1299, Shigella dysenteriae PTCC 1188, Salmonella Typhi PTCC 1609, and Pseudomonas aeruginosa PTCC 1430 were obtained from the culture collection at Iran Institute of Industrial and Scientific Research (Tehran, Iran). Each lyophilized pathogen was reactivated in Soybean casein digest medium (Oxoid,
UK) at 25–37°C for 20 hr. All microbial strains were grown in broth medium three times prior to the tests.

2.5 Extraction of basil seed gum

After sieving, basil seeds (Esfahan variety; 13% MC d.b.) were washed with ethanol (75% w/v) for 10 min, and then ethanol was eliminated from seeds using filtering and drying. Basil seeds were steeped in distilled water (12:1 v/w) at 37°C for 7 hr. Subsequently, seed–water slurry was stirred using a blender at 1,000 rpm for 20 min to separate the gum layer. Final extraction of BSG from the seeds was done by using a cheese cloth filter and the insoluble residue if any was filtered out, exit a concentration of 18% (w/w). The drying process of the extracted gum was carried out by vacuum oven at 50°C (Hashemi & Khaneghah, 2017).

2.6 Preparation of film solution

An aqueous hydrocolloid solution containing 6% basil seed gum and proper amount of glycerol (30% w/w) was mixed and heated to 36 ± 1°C under continuous stirring at 500 rpm for 20 min. Then, Tween-20 (15% v/v) was added and the solution mixed for 15 min. The control film was named “F1” which is BSG film. The EO–loaded films were prepared by the addition of 3% (v/v) of the oils to the film forming solutions (F2: BSG film incorporated with A. santolina EO; F3: BSG film incorporated with A. sieberi EO; F4: BSG film incorporated with A. santolina EO + A. sieberi EO (1:1 v/v); F5: BSG film incorporated with A. santolina EO + A. sieberi EO (2:1 v/v); F6: BSG film incorporated with A. santolina EO + A. sieberi EO (1:2 v/v)). Afterward, the solutions were degassed by a vacuum pump and the films were cast by pouring the film forming solutions onto petri dishes followed by drying at 35°C for 48 hr. Then, the dried films were peeled off from the petri dishes and conditioned at ambient temperature and 53% RH in chambers containing saturated solutions of Mg(NO₃)₂ for 5 days prior to the tests.

2.7 Film thickness

The thickness of the films was measured using a digital micrometer (Mitutoyo, Tokyo, Japan). Determinations were made at five different locations for each film.

2.8 Opacity of films

The opacity of films analyzed according to the method by Khodaei et al. (2020). The films were prepared into rectangular pieces (10 × 40 mm), and the absorbance was read at 550 nm using a Cary 60 UV-VIS spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). The opacity of the films was measured using the equation below where higher opacity values indicates lower transparency (Kanmani & Lim, 2013):

\[
\text{Opacity} = \frac{A_{550}}{\text{thickness}}
\]

2.9 Swelling index

Approximately, 0.0001 g of the film’s cuts left in petri dishes and 35 ml of distilled water was added. Then, they were stored at relative humidity of 50%–55% and 25°C ± 1°C for 24 hr. Afterward, excess water was removed from the films using filter paper and the mass of the film was determined using a microbalance (Mayachiew & Devahastin, 2010). The swelling degree was calculated by the percentage increase in weight of film samples relative to the initial weight of the film.

2.10 Water contact angle measurements

Approximately, 5 μl of water drop were placed on the surface of films (5.0 × 5.0 cm), and the contact angles were recorded using an optical goniometer (Kruss G10, Germany; RH: 30%, 25°C). The angle of the tangent to the basis of the droplet was calculated (Ojagh et al., 2010).

2.11 Moisture content

Moisture content of the films was calculated by determination of weight loss of films in an oven at 90°C for 24 hr (Hashemi & Khaneghah, 2017).

2.12 Water vapor permeability, water absorption capacity, and water solubility

The water vapor permeability of the films was recorded gravimetrically using the ASTM E96-00 method with some modification. The film samples were kept in glass penetration cups with silica gel and the cells were held in desiccator by means of distilled water at 30°C. The cups were weighed at interval of 1 hr through 24 hr time and water vapor permeability (WVP) of the films were determined (Khodaei, Oltrogge, et al., 2020). The water absorption capacity and solubility of the films in water was measured according to the technique of Sadegh-Hassani and Nafchi (2014).

2.13 Antimicrobial activity

A suspension (0.1 ml of 6 log CFU/ml) of each pathogen was spread on the petri dishes containing Soybean casein digest medium. The films discs (10-mm diameter) were aseptically placed on the center of mediums. The petri dishes were kept at 25°C–37°C and the
diameters of the inhibition zones were calculated using caliper after 24 hr of incubation (Hashemi & Khaneghah, 2017).

2.14 | Antioxidant assays

2.14.1 | DPPH assay of films

Approximately, 3 ml of methanol were added to 25 mg of each film. Afterward, 2.8 ml of films’ extracted solution were added to 0.2 ml of 1-mM DPPH (Sigma-Aldrich) in methanol. After adequate shaking of the solutions in dark condition, the absorbance at 517 nm was read using Cary 60 UV-VIS spectrophotometer (Agilent Technologies, Santa Clara, CA, USA) (Siripatrawan & Harte, 2010).

2.14.2 | ABTS assay of films

Approximately, 150 µg of each film sample was blended with 2,850 µl of ABTS (Sigma-Aldrich) solution and kept at room temperature for 2 hr. Then, the absorbance of the solutions was read at 734 nm (Cary 60 UV-VIS spectrophotometer, Agilent Technologies, USA), using methanol as a blank (Arnao et al., 2001).

2.14.3 | FRAP assay of films

Approximately, 150 µg of the film samples were mixed with 2,850 µl of FRAP (Sigma-Aldrich) solution and held for 30 min in dark condition. The absorbance was read at 593 nm (Cary 60 UV-VIS spectrophotometer, Agilent Technologies, USA). The absorbance of blank was obtained by replacing FeCl3 from FRAP solution with distilled water (Benzie & Strain, 1996).

2.15 | Statistical analysis

Statistical analyses were performed with ANOVA and significant differences at \(p < 0.05 \) were performed by Duncan's multiple range tests using SPSS package program. All measurements were made by triplicate and the data are presented as mean ± standard deviation of each treatment.

3 | RESULTS AND DISCUSSION

3.1 | Essential oils composition

The chemical composition of A. sieberi and A. santolina EOs were carried out by GC-MS, and the results are listed in Table 1. As can be seen, a total of 21 components were determined in the EO of A. sieberi and the principal component observed was 1,8-cineole (48.4%), followed by camphor (30.5%) and camphene (8.9%). Other studies have also shown that the EOs of A. sieberi from the northern regions of Iran including Tehran and Semnan were contained camphor, 1,8-Cineole as the major constituents (Sefidkon et al., 2002; Weyerstahl et al., 1993) while the samples from northern east part of Iran such as Khorasan province contained α-thujone, β-thujone, and camphor as the major compounds (Farzaneh et al., 2006). Khosravi et al. (2011) reported that β-thujone (23%), camphor (19.5%), α-thujone (15%), Verbenol (9.7%), 5-dien-8-ol (6.4%), and Davanone (5.8%) were the major components in the oil of A. sieberi from Qom province in Iran.

However, the EO from A. santolina exhibited more complex composition (48 identified components) and as it is shown in Table 2 the main components were camphor (18%), isoborneol (13.12%), 1,8-cineole (12.44%), Caryophyllene oxide (7.3%), β-eudesmol (4.72%), and terpinen-4-ol (4.27%). Different studies have shown that the EO composition of A. santolina depends on the region and extraction techniques. MotavaliZadehkhakky et al. (2013) reported that 1,8-cineole, camphor, terpinene-4-ol, fragranol, fragranyl acetate, α-terpinyl acetate, Caryophyllene oxide, and α-muurolol were the principal compounds observed in the oils of A. santolina collected from Khorasan province of Iran. 1,8-cineole, camphor, 4-terpineol, and trans-carveol were the major compounds of the EO of A. santolina collected from Jordan (Bader et al., 2003). Ahmed et al. (2020) reported that the EO of A. santolina from Jordan was rich in monoterprenoids with the eucalyptol as the principal component. In another study, 1-methyl 1-vinyl 2-isopropenylcyclobutane (28.23%) and 1,8-Cineole

Table 1: Essential oil composition of A. sieberi

Component	Retention index	%
tricyclene	921	0.4
α-pinene	933	1.5
camphene	948	8.6
Sabinene	969	1.1
β-pinene	973	1.2
Dehydro-1,8-cineol	988	0.5
α-terpinene	1,014	0.1
p-cymene	1,022	1.8
1,8-cineole	1,028	48.4
cis-arbusculone	1,050	0.4
γ-terpinene	1,054	0.3
cis-sabinene hydrate	1,067	0.4
Trans-arbusclone	1,068	0.1
chrysanthenone	1,025	0.5
Camphor	1,143	30.5
cis-chrysanthenol	1,161	0.3
pinocarvone	1,162	1.2
Terpinen-4-ol	1,174	1.2
α-terpineol	1,186	0.7
Myrtenol	1,193	0.2
HASHEMI AND KHODAEI

TABLE 2 Essential oil composition of A. santolina

Component	Retention index	%
α-thujene	923	0.10
α-pinene	930	2.13
Exo-2-norborneol	944	1.49
Sebinene	970	0.17
β-pinene	972	0.37
α-terpinene	1,014	0.92
p-cymene	1,022	0.71
1,8-cineole	1,031	12.44
γ-terpinene	1,057	1.79
cis-linalool oxide	1,071	0.22
terpinolene	1,086	0.73
α-terpinolene	1,097	1.34
Linalool	1,099	0.66
cis-linalool	1,102	1.18
cis-p-menth-2-en-1-ol	1,119	0.19
α-campholenal	1,124	1.13
Camphor	1,146	18.0
dill ether	1,157	0.51
pinocarvone	1,160	0.63
Isoborneol	1,169	13.12
trans-pinocamphone	1,173	0.53
terpinen-4-ol	1,179	4.27
1-phenyl ethyl acetate	1,184	0.22
α-terpinol	1,191	1.62
Mytenol	1,195	0.50
Verbenol	1,206	0.50
trans-carveol	1,218	0.60
isobornylformate	1,226	0.29
carvotanacetone	1,241	0.2
trans-carvone oxide	1,255	0.30
cis-chrysanthel acetate	1,260	0.62
isobornyl acetate	1,284	0.60
Thymol acetate	1,293	0.65
α-thymol acetate	1,302	0.2
cis-caryl acetate	1,337	2.0
Eugenol	1,355	0.11
cis-caryl acetate	1,362	0.12
e-jasmone	1,395	0.15
(2)-caryophyllene	1,418	0.30
Neryl acetone	1,451	0.20
1-mthoxy-naphthalene	1,475	0.20
germacrene B	1,481	0.13
(E)-β-ionone	1,484	0.15
cis-eudesma-6,11-diene	1,486	0.22
bicyclergancrene	1,496	0.25

(Continues)

Component	Retention index	%
Caryophyllene oxide	1,585	7.30
Humulene epoxide	1,609	0.42
epoxy-allo-alloarmadendrene	1,633	0.61
α-methyl jasmonate	1,647	0.27
β-eudesmol	1,653	4.72
α-caryophyl-4(14,8(15)-dien-5.ol	1,672	1.27
n-nonadecane	1,900	0.15
n-eicosane	2,000	0.12
n-octadecane	2,082	0.13
n-heneicosane	2,100	0.21
n-docosane	2,200	0.15
n-pentacosane	2,500	0.30

(13.34%), and Grandisol (10.49%) reported as the major constituents of A. santolina samples collected from Egypt (Ali & Abd El-Moaty, 2017). Fragnanyl acetate (27.3%), Fragranol (8.2%), cis-Thujone (8.4%), 1,8-Cineole (7.1%), and Camphor (6.7%) were the principle constituents of A. santolina from Egypt (Almadiy et al., 2016). Camphor, 1,8-cineole, and α-terpineol were the major constituents of EOs extracted from flowers, leaves, and stems of A. santolina from Algeria (Berramdane et al., 2018).

3.2 Physical properties of the BSG-based films containing different EOs

The effect of incorporation of A. sieberi and A. santolina EOs separately or in different combination ratios on the physical properties BSG films are presented in Table 3. The thickness of the films ranged from 0.07 to 0.08 mm the results showed that it was not influenced by the addition of EOs (p ≤ .05). This observation is in consistence with our previous study that the increase in oregano EO in BSG films did not alter the thickness of the films (Hashemi & Khaneghah, 2017). Other studies have also confirmed that the incorporation of EOs had no influence on the thickness of gelatin films (Martucci et al., 2015; Moradi et al., 2016).

The transparency is another important factor of edible films since it has a direct effect on the marketability, appearance, and acceptance of the final product by the consumers (Hashemi & Khaneghah, 2017). As can be seen in Table 3, incorporation of EOs into BSG-based films significantly increased the opacity compared to the control film (p ≤ .05). The lowest opacity value (2.23) observed for control BSG film (F1), followed by BSG film containing A. santolina (F2) with the opacity value of 2.86. Comparing the effect of both EOs on the opacity of the films revealed the greater effect of the oils of A. sieberi on the opacity of the film. This observation can be a result of the more complex composition of the EO from A. sieberi. The EO from A. santolina is composed of two major components and the
TABLE 3

Films	Thickness (mm)	Contact angle (°)	Moisture content (%)	Water vapor permeability (×10^-11 g/msPa)	Water solubility (%)	Water absorption capacity (g/g dried film)
F1	0.07 ± 0.01	50.1 ± 9.9	17.8 ± 4.7	4.29 ± 0.6	35.6 ± 0.8	3.21 ± 0.04
F2	0.07 ± 0.01	57.9 ± 4.7	17.6 ± 2.0	4.96 ± 0.4	30.5 ± 0.00	3.05 ± 0.00
F3	0.08 ± 0.01	61.1 ± 1.7	17.4 ± 0.6	4.77 ± 0.06	29.4 ± 0.07	2.94 ± 0.03
F4	0.08 ± 0.01	60.4 ± 1.8	17.5 ± 0.9	4.67 ± 0.02	27.1 ± 0.05	2.71 ± 0.04
F5	0.07 ± 0.01	58.6 ± 1.2	17.5 ± 0.5	4.75 ± 0.06	28.3 ± 0.05	2.83 ± 0.04
F6	0.07 ± 0.01	61.2 ± 1.9	17.1 ± 0.1	4.79 ± 0.06	35.6 ± 0.40	3.56 ± 0.70

Note: Values are represented as means ± standard deviations. Means within columns with different lowercase letters are significantly different at p < .05. F1: BSG film; F2: BSG film incorporated with A. santolina EO; F3: BSG film incorporated with A. sieberi EO; F4: BSG film incorporated with A. santolina EO + A. sieberi EO (1:2 v/v); F5: BSG film incorporated with A. santolina EO + A. sieberi EO (2:1 v/v); F6: BSG film incorporated with A. santolina EO + A. sieberi EO (1:2 v/v).

The water contact angle (WCA) is another important index showing the hydrophobic characterization of the film's surface (Phan et al., 2005). The results show a high WCA for control BSG film (50.1°) that it represents the hydrophobic nature of the BSG and loading EOs into the films significantly increased the WCA of the films' surface (p ≤ .05). Higher WCA for the films containing EOs from A. santolina and A. sieberi can be due to the hydrophobic nature of the oils. EOs by covering the functional and hydrophilic groups on the surface of the film, decrease the surface water wettability (Bahrami et al., 2014). Comparing the WCA of the films contained different ratios of EOs revealed a significant difference between the hydrophobicity of the oils from A. selberi and A. santolina and the film containing higher ratio of A. selberi (F3) exhibited the highest WCA (63.1°).

Swelling index (SI) % for the different films varied from 37% to 46% and incorporation of oils in different ratios into the BSG films had no influence on the SI of the films. A similar observation has been reported by Valderrama et al. (2015) that the incorporation of rosemary and thyme EOs had no effect on the SI of the chitosan edible films.

The moisture content (MC) % of the films represent the possible interaction of EOs and the biopolymers that may influence the affinity of the films to water molecules (Khodaei, Hamidi-Esfahani, et al., 2020). As shown in Table 3, the MC of the films significantly influenced by the addition of the EOs and their combinations (p ≤ .05). The highest MC (17.88%) observed in control film (F1) and it reduced by the incorporation of EOs in films. So that the lowest MC value observed in F3 film (17.44%) that it can explain the higher hydrophobic nature of oils from A. selberi compared to the oils of A. santolina. Hashemi et al. (2017) also reported an increase in the MC of BSG films by the addition of oregano EO.

Water vapor permeability (WVP) is another important physical property of the films that gives useful information about the mechanism of transferring water molecules from the surface of the films or the possible interactions between the polymers and EO (Bertuzzi et al., 2007). Control BSG film (F1) showed the lowest WVP among the other treatments (4.29 × 10^-11 g/msPa) and the addition of EOs into films, separately or in combined forms, significantly increased the WVP of the films. The higher WVP in the BSG films loaded with the oils can be explained by the destabilization of the matrix of biopolymer which results in increased diffusion rate of water molecules through the film surface (Reyes-Chaparro et al., 2015). The film contained the oils of A. selberi (F3) exhibited the highest WVP (4.77 × 10^-11 g/msPa). Bonilla et al. (2012) also reported that the presence of thyme and basil EOs increased the WVP of chitosan films.

The effect of EOs addition on the water absorption capacity (WAC) of the BSG-based films is shown in Table 3. As it is depicted, by the incorporation of EOs the WAC of the film reduced. The
highest WAC was observed for control film (F1) and the lowest was for F3 treatment.

The water solubility (WS) % of the films is presented in Table 3. It can be seen that the addition of EOs, significantly reduced the WS of the BSG films compared to the control (F1). The lowest WS observed for the F2 and F6 films which is in correlation with other physical parameters of A. santolina EO loaded films. The higher hydrophobic nature of the EOs from A. santolina compared to A. sieberi, reduces the affinity of BSG with water molecules and leads in a lower WS, WVP, MC, and WAC of the film compared to other samples.

3.3 | Antioxidant activity of films

Antioxidant characterization is one of the most important biological activities of the EOs that it is mainly attributed to the presence of phenolic compounds, terpenoids, and other volatile compounds. Studies have shown that the EOs can be used as a natural antioxidant agents into the active packaging or films to reduce the oxidation and extend the shelf life of food product (Amorati et al., 2013). The antioxidant activities of BSG-based film contained different combinations of A. sieberi and A. santolina EOs were evaluated using DPPH, ABTS, and FRAP radical scavenging assays.

DPPH radical scavenging activity of BSG-based films containing different amounts of EOs is depicted in Figure 1. Control BSG film exhibited no antioxidant activity and the addition of EOs significantly increased the antioxidant activity of the films (p ≤ .05). DPPH value for F2 and F3 films were 0.46 and 0.61 µmol/g, respectively, that it shows the higher antioxidant activity of A. sieberi EO compared to the EO from A. santolina. Films incorporated with the different combinations of both EOs exhibited a higher antioxidant activity that may explain the possible interaction between EOs and F6 which contains A. santolina EO + A. sieberi EO (1:2 v/v) showed the highest DPPH value among the others (0.94 µmol/g film). These results are in accordance with those of Hashemi and Khaneghah (2017) and Genskowsky et al. (2015) who reported that the EOs improved the antioxidant activity of BSG and chitosan edible films, respectively.

Similar pattern for ABTS assay was observed (Figure 2) and the antioxidant activity of the BSG films increased from 0.71 µmol/g film for control film to 45.0 µmol/g film for F6. These results suggest that the incorporation a mixture of the EOs can lead in more active films to scavenging free radicals such as DPPH and ABTS.

FRAP assay has a wide application to study the antioxidant activity in plant materials (Ruiz-Navajas et al., 2013). FRAP assay also confirmed a low ability of BSG film to reduce Fe^{3+} to Fe^{2+} (0.04 µmol/g of the film) and incorporation of the EOs significantly increased the antioxidant activity of the films (Figure 3). Similar to DPPH and ABTS assays, films containing both A. santolina and A. sieberi EOs exhibited the highest FRAP values and the highest antioxidant activity was observed for F6 film (4.1 µmol/g of the film). Hashemi and Khaneghah (2017) reported that the addition of oregano EO to BSG films significantly increased the antioxidant activity compared to control films. Addition of green tea extract to the gelatin films increased the antioxidant activity compared to control film (Dou et al., 2018). Ruiz-Navajas et al. (2013) also observed that the addition of T. moroderi and T. piperella EOs increased the antioxidant activity of chitosan films.

3.4 | Antibacterial activity

The antibacterial effects of BSG film containing A. santolina and A. sieberi EOs and their combinations, against three Gram-negative bacteria (S. Typhi, S. dysenteriae, and P. aeruginosa) and three Gram-positive bacteria (S. aureus, B. cereus, and L. monocytogenes) evaluated and the results are presented in Table 4. Control BSG films (F1), showed no antimicrobial activities against the selected bacteria. Other studies have shown no antimicrobial effects for the BSG films (Hashemi & Khaneghah, 2017), zein films (Moradi et al., 2016), and gelatin films (Martucci et al., 2015). BSG film loaded with A. santolina EO (F2) showed the highest antibacterial activity against B. cereus (24.4 mm) with no inhibitory effect on the P. aeruginosa. F3 film, which contained EO of A. sieberi, showed the highest (27.5 mm) and lowest (10.2 mm) antibacterial activity.
against *B. cereus* and *P. aeruginosa*, respectively. The higher antimicrobial activity for the *A. sieberi* EO can be attributed to the more complex compositional structure and the synergistic effects between camphor, isoborneol, 1,8-cineole, Caryophyllene oxide, β-eudesmol, and terpinen-4-ol as the major components of the oil. A notable antimicrobial activity against the selected bacteria observed with the combination of both EOs in BSG films that it confirms the synergism effect of the oils of *A. sieberi* and *A. santolina*.

Table 4 Antibacterial activity of BSG films incorporated with different ratios of *A. santolina* and *A. sieberi* EOs

Films	S. Typhi	S. dysenteriae	*P. aeruginosa*	S. aureus	*B. cereus*	L. monocytogenes
F1	–	–	–		–	–
F2	13.7 ± 0.3^cC	12.1 ± 0.5^cC	–	20.2 ± 0.6^fA	24.4 ± 0.7^aB	21.3 ± 0.8^dB
F3	16.1 ± 0.5^dC	14.2 ± 0.3^dD	10.2 ± 0.6^fC	23.2 ± 0.7^fB	27.5 ± 0.8^dA	24.1 ± 0.6^dA
F4	18.2 ± 0.7^fD	16.3 ± 0.7^fE	12.5 ± 0.3^fC	26.1 ± 0.4^fB	30.4 ± 0.6^fB	26.1 ± 0.8^fB
F5	20.8 ± 0.8^eD	18.4 ± 0.6^eE	14.3 ± 0.4^fF	28.4 ± 0.5^eB	33.5 ± 0.9^eA	24.3 ± 0.6^eC
F6	23.4 ± 0.3^dD	20.2 ± 0.4^dE	16.7 ± 0.5^dF	31.2 ± 0.5^dA	35.4 ± 1.2^aA	27.6 ± 0.5^bC

Note: Values are represented as means ± standard deviations of inhibition zones. Means within a column with different lowercase letters are significantly different at *p* < .05 and means within a row with different uppercase letters are significantly different at *p* < .05. F1: BSG film incorporated with *A. santolina* EO; F3: BSG film incorporated with *A. sieberi* EO; F4: BSG film incorporated with *A. santolina* EO + *A. sieberi* EO (1:1 v/v); F5: BSG film incorporated with *A. santolina* EO + *A. sieberi* EO (2:1 v/v); F6: BSG film incorporated with *A. santolina* EO + *A. sieberi* EO (1:2 v/v).
on the bioactive characterization of BSG films. F6 which is incorporated with A. santolina EO + A. sieberi EO (1:2 v/v) exhibited the highest antibacterial activity against all selected bacteria. The EO-loaded films showed the highest antimicrobial activity against Gram-positive bacteria than Gram-negative (p ≤ .05). Other studies have also confirmed the higher prohibition efficiency of the EOs on the Gram-positive bacteria (Ahmad et al., 2012; Shojaee-Alibadi et al., 2013). Almadly et al. (2016) observed that the Gram-positive bacteria especially S. aureus were the most susceptible microorganisms to the antimicrobial effect of A. sieberi EO. The difference in the cell wall membrane of Gram-negative and Gram-positive bacteria may explain their difference in resistance to the antimicrobial agents. The hydrophobic lipopolysaccharides (LPS) in the external membrane of Gram-negative bacteria works as a blocking layer opposing the penetration of the antimicrobial components (Mirjana & Nada, 2004).

Hashemi and Khaneghah (2017) reported that the BSG films incorporated with oregano EO exhibited a higher antimicrobial activity against Gram-positive bacteria. Ruiz-Navajas et al. (2013) also observed that thymus EOs increased the inhibitory effect of chitosan films against different Gram-positive and negative bacteria.

The antibacterial properties of BSG films loaded with A. santolina and A. sieberi EOs could be a result of the presence of bioactive compounds in EOs such as camphor (Aigliannis et al., 2001; Prudent et al., 1993) and 1,8-cineole (Leung, 1980). Mahboubi and Farzin (2009) reported that the A. sieberi EO from the central part of Iran exhibited a high antimicrobial activity against Gram-positive bacteria and fungi and L. monocytogenes and B. cereus were reported as the most sensitive strains among others. Antibacterial activity of A. santolina against S. aureus, P. aeruginosa, and Candida albicans was confirmed by Khalil et al. (2009). Sattari et al. (2011) reported a high antibacterial activity of A. santolina EO against food pathogens such as S. aureus, while it had an intermediate effect on E. coli.

4 | CONCLUSION

In this study, active edible films were prepared by incorporating A. santolina and A. sieberi essential oils (EOs) into the basil seed gum (BSG) films. The results showed that the presence of EOs had no effect on the thickness and swelling of the films. However, the opacity, water vapor permeability and water contact angle increased. Addition of EOs improved the moisture content, water absorption capacity and water solubility of the BSG films. The film contained A. sieberi EO exhibited a higher antioxidant and antimicrobial activities compared to A. santolina EO loaded film (p ≤ .05). It can be concluded that the addition of EOs improved the antioxidant and antimicrobial activity and the incorporation of A. santolina + A. sieberi EOs (1:2 v/v) found to be the best combination showing the highest antioxidant and antibacterial activities among other films. The developed BSG active films containing a combination of A. santolina and A. sieberi EOs have a great potential to be utilized as a packaging material in order to enhance the storage life of packaged food.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS

Seyed Mohhammad Bagher Hashemi: Conceptualization; Formal analysis; Methodology; Visualization; Writing-original draft. Diako Khodaei: Data curation; Formal analysis; Methodology; Project administration; Supervision; Validation; Writing-review & editing.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Seyed Mohammad Bagher Hashemi https://orcid.org/0000-0002-3420-0057
Diako Khodaei https://orcid.org/0000-0001-8535-9829

REFERENCES

Ahmad, M., Benjakul, S., Prodpran, T., & Agustini, T. W. (2012). Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocolloids, 28(1), 189–199. https://doi.org/10.1016/j.foodhyd.2011.12.003
Ahmed, W., Aburaj, T., Hudaib, M., & Al-Karableh, N. (2020). Chemical composition of essential oils hydrodistilled from aerial parts of Achillea fragrantissima (Forssk). Sch. Bip. and Achillea santolina L. (Asteraceae) growing in Jordan. Journal of Essential Oil Bearing Plants, 23(1), 15–25.
Ali, E. M., & Abd El-Moaty, H. (2017). Antifungal activity of Achillea santolina L. and Calendula officinalis L. Essential oils and their constituents against fungal infection of liver as complication of cyclophosphamide therapy. Journal of Essential Oil Bearing Plants, 20(4), 1030–1043.
Aigliannis, N., Kalpoutzakis, E., Chinou, I., Mitakou, S., Gikas, E., & Tsaropoulos, A. (2001). Composition and antimicrobial activity of the essential oils of five taxa of Sideritis from Greece. Journal of Agricultural and Food Chemistry, 49(2), 811–815.
Almadly, A. A., Nenaah, G. E., Al Assiuty, B. A., Moussa, E. A., & Mira, N. M. (2016). Chemical composition and antibacterial activity of essential oils and major fractions of four Achillea species and their nanoemulsions against foodborne bacteria. LWT—Food Science and Technology, 69, 529–537. https://doi.org/10.1016/j.lwt.2016.02.009
Al-Snafi, A. E. (2013). Chemical constituents and pharmacological activities of Milfoil (Achillea santolina)—A review. International Journal of PharmTech Research, 5(3), 1373–1377.
Amorati, R., Foti, M. C., & Valgimighi, L. (2013). Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry, 61(46), 10835–10847. https://doi.org/10.1021/jf403496k
Arnau, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry, 73(2), 239–244. https://doi.org/10.1016/S0308-8146(00)00324-1
Bader, A., Flamini, G., Cioni, P. L., & Morelli, I. (2003). Essential oil composition of Achillea santolina L. and Achillea biebersteinii Afan. collected in Jordan. Flavour and Fragrance Journal, 18(1), 36–38.
Bahram, S., Rezaei, M., Soltani, M., Kamal, A., Ojagh, S. M., & Abdollahi, M. (2014). Whey protein concentrate edible film activated with cinnamon essential oil. Journal of Food Processing and Preservation, 38(3), 1251–1258. https://doi.org/10.1111/jfpp.12086
Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay.
Khodaei, D., & Hamidi-Esfahani, Z. (2019). Influence of bioactive edible coatings loaded with Lactobacillus plantarum on physicochemical properties of fresh strawberries. Postharvest Biology and Technology, 156, 110944. https://doi.org/10.1016/j.postharvbio.2019.110944

Khodaei, D., Hamidi-Esfahani, Z., & Lacroix, M. (2020). Gelatin and low methoxyl pectin films containing probiotics: Film characterization and cell viability. Food Bioscience, 36, 100660. https://doi.org/10.1016/j.foobio.2020.100660

Khodaei, D., Oltrogge, K., & Hamidi-Esfahani, Z. (2020). Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and Persian gum. LWT—Food Science and Technology, 117, 108617. https://doi.org/10.1016/j.lwt.2019.108617

Khosravi, A., Shokri, H., Kermani, S., Dakhili, M., Madani, M., & Parsa, S. (2011). Antifungal properties of Artemisia sieberi and Origanum vulgare essential oils against Candida glabrata isolates obtained from patients with vulvovaginal candidiasis. Journal de Mycologie Médicale, 21(2), 93–99. https://doi.org/10.1016/j.jymed.2011.01.006

Leung, A. Y. (1980). Encyclopedia of common natural ingredients used in drug, foods, and cosmetics. Wiley.

Mahboubi, M., & Farzin, N. (2009). Antimicrobial activity of Artemisia sieberi essential oil from central Iran. Iranian Journal of Microbiology, 1(2), 43–48.

Martucci, J. F., Espinosa, J. P., & Ruseckaitė, R. A. (2015). Physicochemical properties of films based on bovine gelatin cross-linked with 1, 4-butanediol diglycidyl ether. Food and Bioprocess Technology, 8(8), 1645–1656. https://doi.org/10.1007/s11991-015-1524-x

Mayachiew, P., & Devahastin, S. (2010). Effects of drying methods and conditions on release characteristics of edible chitosan films enriched with Indian gooseberry extract. Food Chemistry, 118(3), 594–601. https://doi.org/10.1016/j.foodchem.2009.05.027

Mirjana, S., & Nada, B. (2004). Chemical composition and antimicrobial variability of Satureja montana L. essential oils produced during Ontogenesis. Journal of Essential Oil Research, 16(4), 387–391.

Moradi, M., Tajik, H., Rohani, S. M. R., & Mahmoudian, A. (2016). Antioxidant and antimicrobial effects of zin ed food impregnated with Zataria multiflora Boiss. essential oil and monolaurin. LWT—Food Science and Technology, 72, 37–43. https://doi.org/10.1016/j.lwt.2016.04.026

Motavalizadehkhakhy, A., Shafaghat, A., Zamani, H. A., Akhlaghi, H., Mohammadhosseini, M., Mehrzad, J., & Ebrahimi, Z. (2013). Compositions and the in vitro antimicrobial activities of the essential oils and extracts of two Achillea species from Iran. Journal of Medicinal Plants Research, 7(19), 1280–1292.

Ojaghi, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161–166. https://doi.org/10.1016/j.foodchem.2010.02.033

Phan, T. D., Debeaufort, F., Luu, D., & Volley, A. (2005). Functional properties of edible agar-based and starch-based films for food quality preservation. Journal of Agricultural and Food Chemistry, 53(4), 973–981. https://doi.org/10.1021/jf040309s

Pharmacopoeia, B. (1980). HMS Office. London, 2, 109–110.

Prudent, D., Perineau, F., Bessiere, J., Michel, G., & Bravo, R. (1993). Chemical analysis, bacteriostatic and fungistatic properties of the essential oil of the Atouma from Martinique (Alpinia speciosa K. Schum.). Journal of Essential Oil Research, 5(3), 255–264.

Reyes-Chaparro, P., Gutierrez-Mendez, N., Salas-Muñoz, E., Ayala-Soto, J. G., Chavez-Flores, D., & Hernández-Ochoa, L. (2015). Effect of the addition of essential oils and functional extracts of clove on physicochemical properties of chitosan-based films. International Journal of Polymer Science, 2015, 1–6. https://doi.org/10.1155/2015/714254

Ruiz-Navačas, Y., Viuda-Martos, M., Sendra, E., Perez-Alvarez, J., & Fernández-López, J. (2013). In vitro antibacterial and antioxidant activity of basil seed gum for deep fried potato strips. ACS Symposium Series, 1115, 1–6. https://doi.org/10.1021/bk-2013-1115.ch002

Ocimum basilicum L. plant parts growing in Algeria. Oriental Pharmacy and Experimental Medicine, 18(3), 265–269. https://doi.org/10.1016/j.orientpharm.2018.03.022
properties of chitosan edible films incorporated with Thymus morad-ieri or Thymus piperella essential oils. Food Control, 30(2), 386–392.
Sadegh-Hassani, F., & Nafchi, A. M. (2014). Preparation and characteri-
zation of bionanocomposite films based on potato starch/halloysite
nano clay. International Journal of Biological Macromolecules, 67, 458–
462. https://doi.org/10.1016/j.ijbiomac.2014.04.009
Sattari, M., Tabarraee, B., & Bigdeli, M. (2011). Identification of the
constituents of Achillea santolina essential oil and evaluation of the
anti-microbial effects of its extract and essential oil. Journal of Arak
University of Medical Sciences, 14(3), 1–10.
Sefidkon, F., Jalili, A., & Mirhaji, T. (2002). Essential oil composition
of three Artemisia spp. from Iran. Flavour and Fragrance Journal, 17(2),
150–152. https://doi.org/10.1002/ffj.1063
Shojaee-Allabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammad,
A., Ghasemlou, M., Ojagh, S. M., Hosseini, S. M., & Khaksar, R.
(2013). Characterization of antioxidant-antimicrobial κ-carrageenan
films containing Satureja hortensis essential oil. International Journal
of Biological Macromolecules, 52, 116–124. https://doi.org/10.1016/j.
ijbiomac.2012.08.026
Siripatrawan, U., & Harte, B. R. (2010). Physical properties and anti-
oxidant activity of an active film from chitosan incorporated with
green tea extract. Food Hydrocolloids, 24(8), 770–775. https://doi.
org/10.1016/j.foodhyd.2010.04.003
Tavakolpour, Y., Moosavi-Nasab, M., Niaziouzari, M., Haghhighi-Manesh,
S., Hashemi, S. M. B., & Mousavi Khaneghah, A. (2017). Comparison
of four extraction methods for essential oil from Thymus daenensis
Subsp. Lancifolius and chemical analysis of extracted essential oil.
Journal of Food Processing and Preservation, 41(4), e13046.
Valderrama, N., Albarracin, W., & Algecira, N. (2015). Physical and mi-
crobiological evaluation of chitosan films: Effect of essential oils and
storage. International Journal of Agriculture and Biological Engineering,
9, 262–269.
Vitoratos, A., Bilalis, D., Karkanis, A., & Efthimiadou, A. (2013). Antifungal
activity of plant essential oils against Botrytis cinerea, Penicillium italic-
um and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici
Cluj-Napoca, 41(1), 86–92. https://doi.org/10.15835/nbha4118931
Weyerstahl, P., Schneider, S., Marschall, H., & Rustaiyan, A. (1993).
Terpenes and Terpene Derivatives, XXXI. New Bisabolene
Derivatives and a Salsolene Ketone from Artemisia sieberi Bess.
Liebig’s Annalen der Chemie, 1993(2), 111–116.

How to cite this article: Hashemi SMB, Khodaei D. Basil seed
gum edible films incorporated with Artemisia sieberi and
Achillea santolina essential oils: Physical, antibacterial, and
antioxidant properties. J Food Process Preserv.
2021;45:e15645. https://doi.org/10.1111/jfpp.15645