NONEXISTENCE RESULTS FOR A FULLY NONLINEAR EVOLUTION INEQUALITY

QIANZHONG OU

(Communicated by Igor Dolgachev)

Abstract. In this paper, a Liouville type theorem is proved for some global fully nonlinear evolution inequality via suitable choices of test functions and the argument of integration by parts.

1. Introduction

In the papers [7, 8], Phuc and Verbitsky deduced nonexistence results for the following Hessian inequality:

$$\sigma_k(-D^2u) \geq u^\alpha \quad \text{in } \mathbb{R}^n,$$

for $$\alpha \in (k, \frac{nk}{n-2k}]$$, where $$u \in C^2(\mathbb{R}^n)$$, $$u$$ is $$k$$-convex, and $$\sigma_k(-D^2u)$$ are the $$k$$-Hessian of $$(-D^2u)$$ as usual, i.e., the sum of all the $$k$$-th principle minors of $$(-D^2u)$$. They employed the potential theory developed by Trudinger-Wang [9, 10, 11] and Labutin [4], and they also showed that the power $$\alpha = \frac{nk}{n-2k}$$ is sharp. The nonexistence results were deduced in [7, 8] from sharp pointwise estimates of solutions in terms of Wolff potentials. Later in [6], the author reproved some of Phuc-Verbitsky’s results by a very different method – by using the argument of integration by parts via careful choices of the test functions.

In this paper, we will use the same method as in [6] and extend the results to the evolution case, namely, for the following fully nonlinear inequality:

$$u_t + \sigma_k(-D^2u) \geq u^\alpha \quad \text{in } (x,t) \in \mathbb{R}^n \times (0, +\infty),$$

with $$u \in C^2(\mathbb{R}^n)$$, $$u$$ is $$k$$-convex, and $$u(x,t) > 0 \ \forall \ (x,t) \in \mathbb{R}^n \times (0, +\infty)$$, and $$u_0 = u(x,0) \geq 0 \ \forall \ x \in \mathbb{R}^n$$. Denote $$k_* := k + \frac{2k}{n}$$. We will deduce a Liouville type theorem as follows:

Theorem 1.1. If $$2k < n$$, then (1.2) has no positive $$k$$-admissible solution $$u \in C^2(\mathbb{R}^n)$$ for any $$\alpha \in (k, k_*]$$.

Received by the editors January 24, 2015 and, in revised form, April 28, 2016.

2000 Mathematics Subject Classification. 35K55, 35R45.

Key words and phrases. Evolution inequality, Liouville theorem, integration by parts.

Research of the author was supported by NSFC (No.11061013, 11371360) and by Guangxi Science Foundation (2014GXNSFBA118028) and Guangxi Colleges and Universities Key Laboratory of Symbolic Computation and Engineering Data Processing.

The author would like to thank Professor Xi-Nan Ma for constant encouragement and useful discussions. He would also like to thank the referee for his (or her) careful reading and good suggestions on this paper.

©2016 American Institute of Mathematical Sciences
Note that according to Caffarelli-Nirenberg-Spruck [1], we say that u is k-admissible (or k-convex) with respect to $\sigma_k(-D^2u)$ if $u \in \Gamma_k$, where Γ_k is defined by

$$\Gamma_k = \{ u \in C^2(\mathbb{R}^n) : \sigma_s(-D^2u) \geq 0, s = 1, 2, \ldots, k \}.$$

Similar nonexistence results for some quasilinear evolution inequalities were proved by Mitidieri-Pohozaev [5]. In particular, in the case of equality for $k = 1$, the results of our Theorem 1.1 were proved by Fujita [2] and Hayakawa [3]. Therefore, Theorem 1.1 can be viewed as a generalization of their results to the fully nonlinear case.

2. Proof of Theorem 1.1

Assume that $u > 0$ is a k-admissible solution of (1.2). In the following, we write $\sigma_k(-D^2u)$ simply as σ_k.

First, we will construct a suitable test function.

Denote by D the gradient operator in the space directions only. Let $\varphi(x), \psi_0(s)$ be two C^2 cut-off function satisfying

$$\begin{cases}
\varphi \equiv 1 & \text{in } B_R, \\
0 \leq \varphi \leq 1 & \text{in } B_{2R}, \\
\varphi \equiv 0 & \text{in } \mathbb{R}^n \setminus B_{2R}, \\
|D\varphi| \lesssim \frac{1}{R} & \text{in } \mathbb{R}^n,
\end{cases} \quad (2.1)$$

and

$$\begin{cases}
\psi_0 \equiv 1 & \text{for } -1 \leq s \leq 1, \\
0 \leq \psi_0 \leq 1 & \text{for } 1 < |s| < 2, \\
\psi_0 \equiv 0 & \text{for } |s| \geq 2, \\
|\psi'_0| \lesssim 1 & \text{in } \mathbb{R}.
\end{cases} \quad (2.2)$$

Here and in the rest of the paper, B_R denotes a ball in \mathbb{R}^n centered at the origin with radius R, and we use “\lesssim”, “\gtrsim”, etc., to drop out some positive constants independent of R and u.

Take $\psi(t) = \psi_0\left(\frac{1}{R^{\rho+\tau}} \right)$ and let $\eta(x,t) = \varphi(x)\psi(t)$. Denote, as in [6], for $s = 1, \ldots, k$,

$$b_s = \frac{k + s}{s!2^s} \delta(\delta + 1) \cdots (\delta + s - 1),$$

$$B_s = \int_{\mathbb{R}^n} \sigma_{k-s}Du^{2s}u^{-\delta-s}\varphi^\theta dx,$$

where ρ, δ, θ are constants to be determined.

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Multiplying both sides of (1.2) by $u^{-\delta}\eta^\theta$ and integrating over $\mathbb{R}^n \times (0, +\infty)$, we have

$$\int_0^\infty \int_{\mathbb{R}^n} u^{-\delta}\eta^\theta dxdt \leq \int_0^\infty \int_{\mathbb{R}^n} u_t u^{-\delta}\eta^\theta dxdt + \int_0^\infty \int_{\mathbb{R}^n} \sigma_k u^{-\delta}\eta^\theta dxdt. \quad (2.3)$$

Consider the first integral on the right hand side of (2.3). Integrating by parts once, we get

$$\int_0^\infty \int_{\mathbb{R}^n} u_t u^{-\delta}\eta^\theta dxdt = \frac{1}{1-\delta} \int_0^\infty \int_{\mathbb{R}^n} \partial_t(u^{1-\delta})\eta^\theta dxdt$$

$$= -\frac{1}{1-\delta} \int_{\mathbb{R}^n} u_0^{1-\delta}\varphi^\theta dx - \frac{\theta}{1-\delta} \int_0^\infty \int_{\mathbb{R}^n} u^{1-\delta}\eta^{\theta-1}\eta_t dxdt. \quad (2.4)$$
By the choice of the test function, we have $|\eta| \lesssim R^{-\rho}$. Then inserting (2.4) into (2.3) we have
\[
\int_0^\infty \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt + \frac{1}{1-\delta} \int_{\mathbb{R}^n} u^{1-\delta} \phi^\theta dx \lesssim R^{-\rho} \int_{\mathbb{R}^n} u^{1-\delta} \phi^\theta dx + \int_0^{\infty} \int_{\mathbb{R}^n} \sigma_i u^{-\delta} \eta^\theta dx dt.
\] (2.5)
Now, for $\alpha \in (k, k_*)$ we split into two cases with suitable choice of δ respectively:
(i) Let $0 < \delta < \min\{1, \frac{\alpha-2k}{k_*-k}\}$ for $\alpha \in (k, k_*)$.
(ii) Let $\delta = 0$ first and then $0 < \delta < 1$ for $\alpha = k_*$.
In case (i), the following integral estimate had been deduced by the author (see (3.10) in [6]):
\[
\int_{\mathbb{R}^n} \sigma_k u^{-\delta} \varphi^\theta dx + \sum_{s=1}^k (b_s - \varepsilon) B_s \lesssim \frac{1}{R^{2k}} \int_{\mathbb{R}^n} u^{-\delta+k} \varphi^{-2k} dx,
\] (2.6)
where ε is a small positive constant which comes from Young’s inequality.
By the choice of δ, we see $b_s > 0$ for $s = 1, \ldots, k$. Taking ε small enough, we have
\[
k \int_{\mathbb{R}^n} \sigma_k u^{-\delta} \varphi^\theta dx \lesssim \frac{1}{R^{2k}} \int_{\mathbb{R}^n} u^{-\delta+k} \varphi^{-2k} dx.
\] (2.7)
Inserting this into (2.5), we get
\[
\int_0^\infty \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt + \frac{1}{1-\delta} \int_{\mathbb{R}^n} u^{1-\delta} \phi^\theta dx \lesssim R^{-\rho} \int_{\mathbb{R}^n} u^{1-\delta} \phi^\theta dx + \frac{1}{R^{2k}} \int_0^{\infty} \int_{\mathbb{R}^n} u^{-\delta+k} \eta^\theta dx dt.
\] (2.8)
Since $\frac{\alpha-\delta}{-\delta+k} > 1$, using Young’s inequality with exponent pair $(\frac{\alpha-\delta}{-\delta+k}, \frac{\alpha-\delta}{k-\alpha})$ in the last term in (2.8) we get
\[
\frac{1}{R^{2k}} \int_0^{\infty} \int_{\mathbb{R}^n} u^{-\delta+k} \eta^\theta dx dt \lesssim \varepsilon \int_0^{\infty} \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt + \frac{2k(\alpha-\delta)}{\alpha-k} \int_0^{\infty} \int_{\mathbb{R}^n} \eta^\theta dx dt.
\] (2.9)
Then, by choosing θ large enough, it follows that
\[
\int_0^{\infty} \int_{\mathbb{R}^n} \eta^\theta dx dt \lesssim R^{\alpha+\rho},
\] (2.10)
and then
\[
\frac{1}{R^{2k}} \int_0^{\infty} \int_{\mathbb{R}^n} u^{-\delta+k} \eta^\theta dx dt \lesssim \varepsilon \int_0^{\infty} \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt + R^{\alpha+\rho - \frac{2k(\alpha-\delta)}{\alpha-k}}.
\] (2.11)
Similarly, for the second-to-last term in (2.8), we have
\[
R^{-\rho} \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt \lesssim \varepsilon \int_0^{\infty} \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt + R^{\alpha+\rho - \frac{2k(\alpha-\delta)}{\alpha-k}}.
\] (2.12)
Combining (2.8) with (2.11) and (2.12), we get
\[
\int_0^{\infty} \int_{\mathbb{R}^n} u^{\alpha-\delta} \eta^\theta dx dt + \frac{1}{1-\delta} \int_{\mathbb{R}^n} u^{1-\delta} \phi^\theta dx \lesssim R^{\alpha+\rho} \frac{\alpha^\rho}{\alpha-k} + R^{\alpha+\rho - \frac{2k(\alpha-\delta)}{\alpha-k}}.
\] (2.13)
Since $0 < \delta < \min\{1, \frac{n-2k}{2k}(k_\ast - \alpha)\}$ and $\alpha \in (k, k_\ast)$, we see
\[
\frac{n(\alpha - 1)}{1 - \delta} < \frac{2k(\alpha - \delta)}{\alpha - k} - n.
\]
So we can take ρ such that
\[
n(\alpha - 1) \frac{1}{1 - \delta} < \rho < \frac{2k(\alpha - \delta)}{\alpha - k} - n,
\]
and hence $n + \rho - \frac{\rho \alpha}{\alpha - 1} < 0$, $n + \rho - \frac{2k(\alpha - \delta)}{\alpha - k} < 0$. Letting $R \to +\infty$ in (2.13), we deduce
\[
\int_0^\infty \int_{\mathbb{R}^n} u^{\alpha - \delta} \eta^\theta \, dx \, dt + \frac{1}{1 - \delta} \int_{\mathbb{R}^n} u_0^{1 - \delta} \varphi^\theta \, dx \leq 0. \tag{2.14}
\]
This is a contradiction, since $u > 0$ and $u_0 \geq 0$.

In case (ii), first we have, by taking $\delta = 0$ in (2.5),
\[
\int_0^\infty \int_{\mathbb{R}^n} u^{\alpha - \delta} \eta^\theta \, dx \, dt + \int_{\mathbb{R}^n} u_0 \varphi^\theta \, dx \lesssim R^{-\rho} \int_{\mathbb{R}^n} \sigma_k \eta^\theta \, dx + \int_0^\infty \int_{\mathbb{R}^n} \varphi^\theta \, dx. \tag{2.15}
\]
To deal with the last term in (2.15), we denote $U = \text{supp } |D\varphi| = B_{2R} \setminus B_R$ and
\[
V_s = R^{\frac{n-2k}{2} \delta - 2s} \int_U \sigma_{k-s} u^{(2s-1)\delta + s} \varphi^{-2s} \, dx
\]
and
\[
W_s = R^{\frac{n-2k}{2} \delta - 2s} \int_U \sigma_{k-s} u^s \varphi^{-2s} \, dx,
\]
where $0 < \delta < 1$ is fixed small enough. Then similar to lemma 3.2, 3.3 in [6], we have

Lemma 2.1. For $s = 1, \cdots, k - 1$,
\[
V_s \lesssim B_{s+1} + V_{s+1} + W_{s+1}, \tag{2.16}
\]
and
\[
W_s \lesssim B_{s+1} + V_{s+1} + W_{s+1}. \tag{2.17}
\]

By these, it is not difficult to deduce
\[
\int_{\mathbb{R}^n} \sigma_k \varphi^\theta \, dx \lesssim R^{-2k} \int_U u^k \varphi^{-2k} \, dx
\]
\[
+ R^{-\frac{n-2k}{2} \delta - 2k} \int_U u^{-\delta + k} \varphi^{-2k} \, dx + R^{(2k-1)\frac{n-2k}{2} \delta - 2k} \int_U u^{(2k-1)\delta + k} \varphi^{-2k} \, dx. \tag{2.18}
\]

Remark 2.2. For the details of the proof of (2.18), we refer the readers to [6] (see (3.30) combining with (3.15) in [6]). But here we must point out that the term $R^{-\frac{n-2k}{2} \delta} V_k$ had been left out in the inequality (3.26) (and hence (3.30)) in [6]), although the final result is still valid.
For the last term in (2.19), using the Hölder inequality we have
\[
\int_0^\infty \int_R^n u^\alpha \eta^\theta dx dt + \int_R^n u_0^{1-\delta} \varphi^\delta dx
\leq R^{-\rho} \int_{R^\rho} u \eta^{\theta - 1} dx dt + R^{-2k} \int_0^\infty \int_U U^k \eta^{\theta - 2k} dx dt
+ R^{-\frac{n+\alpha \delta - 2k}{\alpha}} \int_0^\infty \int_U u^{-\delta + k} \eta^{\theta - 2k} dx dt
+ R^{2(k-1) \frac{n+\alpha \delta - 2k}{\alpha}} \int_0^\infty \int_U (2k-1) \gamma + k \eta^{\theta - 2k} dx dt.
\] (2.19)

For the last term in (2.19), using the Hölder inequality we have
\[
R^{2(k-1) \frac{n+\alpha \delta - 2k}{\alpha}} \int_0^\infty \int_U (2k-1) \gamma + k \eta^{\theta - 2k} dx dt
\leq R^{2(k-1) \frac{n+\alpha \delta - 2k}{\alpha}} \left(\int_0^\infty \int_U u \eta^{\theta} dx dt \right)^{(2k-1) \frac{\gamma + k}{\alpha}}
\times \left(\int_0^\infty \int_U u \eta^{\theta} dx dt \right)^{-\frac{\gamma}{\alpha}}. \tag{2.20}
\]

Similarly, we have
\[
R^{-\rho} \int_{R^\rho} u \eta^{\theta - 1} dx dt \leq R^{\frac{n-k}{\alpha} (n+\rho - \frac{2k}{\alpha})} \left(\int_{R^\rho} u \eta^{\theta} dx dt \right)^{\frac{k}{n}}, \tag{2.21}
\]
\[
R^{-2k} \int_0^\infty \int_U u^k \eta^{\theta - 2k} dx dt \leq R^{\frac{n-k}{\alpha} (n+\rho - \frac{2k}{\alpha})} \left(\int_0^\infty \int_U u^\alpha \eta^\theta dx dt \right)^{\frac{k}{n}}, \tag{2.22}
\]
and
\[
R^{-\frac{n+\alpha \delta - 2k}{\alpha}} \int_0^\infty \int_U u^{-\delta + k} \eta^{\theta - 2k} dx dt \leq R^{\frac{n-k}{\alpha} (n+\rho - \frac{2k}{\alpha})} \left(\int_0^\infty \int_U u^\alpha \eta^\theta dx dt \right)^{\frac{k}{n}}. \tag{2.23}
\]

Notice that \(\alpha = k + \frac{2}{n} k \), if we take \(\rho = (n+2)k - n \), then \(n+\rho - \frac{2k}{\alpha} = n+\rho - \frac{\rho_0}{\alpha} = 0 \). Hence (2.19) combining with (2.20)–(2.23) implies
\[
\int_0^\infty \int_R^n u^\alpha \eta^\theta dx dt + \int_R^n u_0^{1-\delta} \varphi^\delta dx
\leq \left(\int_{R^\rho} u^\alpha \eta^\theta dx dt \right)^{\frac{k}{n}} + \left(\int_0^\infty \int_U u^\alpha \eta^\theta dx dt \right)^{\frac{k}{n}}
+ \left(\int_0^\infty \int_U u^\alpha \eta^\theta dx dt \right)^{-\frac{\gamma}{\alpha}} \left(\int_0^\infty \int_U u^\alpha \eta^\theta dx dt \right)^{(2k-1) \frac{\gamma + k}{\alpha}}. \tag{2.24}
\]

Since \(0 < \frac{1}{\alpha}, \frac{k}{\alpha}, \frac{k-\delta}{\alpha}, \frac{(2k-1)\delta + k}{\alpha} \) < 1 (fixed \(\delta > 0 \) small enough), (2.24) shows that
\[
\int_0^\infty \int_R^n u^\alpha \eta^\theta dx dt \leq \text{constant} < \infty. \tag{2.25}
\]
This implies
\[
\int_{R^n} u^\alpha \eta^\beta dx \rightarrow 0, \quad \int_{U} u^\alpha \eta^\beta dx dt \rightarrow 0 \quad \text{as} \quad R \to +\infty. \quad (2.26)
\]
Returning to (2.24), we deduce
\[
\int_{U} u^\alpha \eta^\beta dx dt \rightarrow 0 \quad \text{as} \quad R \to +\infty. \quad (2.27)
\]
This is also a contradiction, and hence the proof of Theorem 1.1 is complete. \qed

References

[1] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math., 155 (1985), 261–301. MR 806416
[2] H. Fujita, On the blowing up of solutions of the Cauchy problems for \(u_t = \Delta u + u^{1+\alpha} \), J. Fac. Sci. Univ. Tokyo, Sect. I, 13 (1966), 109–124. MR 0214914
[3] K. Hayakawa, On the nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503–505. MR 0338569
[4] D. Labutin, Potential estimates for a class of fully nonlinear elliptic equations, Duke Math. J., 111 (2002), 1–49. MR 1876440
[5] E. Mitidieri and S. Pohozaev, Towards a unified approach to nonexistence of solutions for a class of differential inequalities, Milan J. Math., 72 (2004), 129–162. MR 2099130
[6] Q. Ou, Nonexistence results for Hessian inequality, Methods Appl. Anal., 17 (2010), 213–223. MR 2763578
[7] N. C. Phuc and I. E. Verbitsky, Quasilinear and Hessian equations of Lane-Emden type, Ann. of Math., 168 (2008), 859–914. MR 2456885
[8] N. C. Phuc and I. E. Verbitsky, Local integral estimates and removable singularities for quasilinear and Hessian equations with nonlinear source terms, Comm. Partial Differential Equations, 31 (2006), 1779–1791. MR 2273973
[9] N. Trudinger and X.-J. Wang, Hessian measures. I. Dedicated to Olga Ladyzhenskaya, Topo. Methods Nonlinear Anal., 10 (1997), 225–239. MR 1634570
[10] N. Trudinger and X.-J. Wang, Hessian measures. II, Ann. of Math. (2), 150 (1999), 579–604. MR 1726702
[11] N. Trudinger and X.-J. Wang, Hessian measures. III, J. Funct. Anal., 193 (2002), 1–23. MR 1920626

School of Science, Hezhou University, Hezhou, 542899, Guangxi Province, China
E-mail address: ouqzh@163.com