Wilson’s Disease in Finland: A Nationwide Population-Based Study

Jussi O.T. Sipilä, MD, PhD, BSocSci,1,2* ☏
Marja Hietala, MD, PhD,3,4
Ville Kytö, MD, PhD, MSocSci,5,6,7 and Valtteri Kaasinen, MD, PhD1

1Clinical Neurosciences, University of Turku and Turku University Hospital, Turku, Finland 2Department of Neurology, Siun Sote North Karelia Central Hospital, Joensu, Finland 3Department of Clinical Genetics, Turku University Hospital, Turku, Finland 4Institute of Biomedicine, University of Turku, Turku, Finland 5Heart Center, Turku University Hospital and University of Turku, Turku, Finland 6Center for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland 7Administrative Center, Hospital District of Southwest Finland, Turku, Finland

Wilson’s disease (WD) is a copper accumulation disorder affecting primarily the brain and the liver.1 It is inherited recessively and hundreds of different mutations, all in the gene ATP7B, have been reported as causative.2,3 However, there is an inadequately understood discrepancy between predicted genetic and actual clinical prevalence of the disease with the latter consistently reported to be lower than the former.3 Underdiagnosis has been suggested, but reduced penetrance may also be a contributing factor.4–8 Moreover, data on prognosis are scarce.9,10 Hepatolenticular degeneration was described in Finland among the first reports of the disease,11 but clinical prevalence data are not available. A recent meta-analysis reported that the Finnish population had the lowest predicted genetic WD prevalence among the 7 investigated specific populations.3 Here we aimed to investigate clinical WD in a nationwide, population-based setting.

Methods

Study Design and Data Source

We searched the Finnish Care Register for Health Care (CRHC), which contains information on all hospital discharges and outpatient visits in Finland, for patients treated with the diagnosis E83.0 in the 10th
revision of the *International Classification of Diseases* between January 1, 1998, and December 31, 2017. Individual patient records of the identified patients were obtained for review to confirm the diagnosis and to collect clinical and genetic data. The dates and causes of death were obtained from the mandatory national registry maintained by Statistics Finland. Statistics Finland also provided anonymized data on randomly selected control subjects (N = 6600) matched for year of birth and sex for the survival analysis. We also obtained individual information from Fimea, the Finnish Medicines Agency, on the use of penicillamine and trientine, the use of which requires an explicit approval (valid for 1 year at a time) by Fimea for each patient.

The diagnosis was accepted if the patient met The European Association for the Study of Liver criteria for WD (score 4 or more on the scoring system developed at the 8th international meeting on WD). We excluded 1 patient with rapid liver failure leading to transplantation who had been diagnosed with WD (fulfilling the criteria for established diagnosis) and treated as such but was found more than a decade later to harbor a mutation in the gene of DNA polymerase gamma, catalytic subunit (*POLG1*), leading to a revision of his diagnosis to mitochondrial recessive ataxia syndrome.

Statistical Analysis

Shapiro-Wilk and Kolmogorov-Smirnov tests were used to assess the distribution of continuous variables and subsequently Student’s *t* test, the Mann-Whitney *U* test, or independent-samples Kruskal-Wallis test as appropriate. A 2-source capture–recapture analysis was performed using the CRHC data (the primary source, a) and Fimea data (the secondary source, b) to evaluate the completeness of ascertainment: \(N = \frac{(a + 1) (b + 1)}{(c + 1)} - 1 \) (c, the number of cases common to both sources). Age-standardization was carried out using the direct method with the European Standard Population 2013 as reference. Poisson regression was used to analyze annual trends in the frequency of new diagnoses and linear correlation to analyze age-at-diagnosis trends. Survival from birth was analyzed using the Kaplan-Meier method and matched Cox regression. Median follow-up of survival was 32.3 years (interquartile range, 22.1–55.6 years). *P* values less than 0.05 were considered significant. IBM SPSS Statistics, version 25 (IBM, Armonk, NY) and SAS 9.4. (SAS Institute Inc., Cary, NC) were used for statistical analyses.

Results

WD was verified in 33 subjects (15 men). The capture–recapture analysis (25 patients found in both registries, 8 only in the CRHC and 3 only in the Fimea records) suggested a total WD population of 37 patients (95% confidence interval [CI], 36–38), indicating an ascertainment of 89%.

The point prevalence of diagnosed WD varied between the 0.25 (95% CI, 0.13–0.43) per 100,000 persons in 1998 and 0.45 (95% CI 0.29–0.67) in 2017. On December 31, 2017, there were 25 subjects alive with the diagnosis. The standardized prevalence was 0.46/100,000 persons. Because 7 of the living patients were immigrants (with permanent residence), the prevalence among native Finns was 0.35/100,000 (95% CI, 0.21–0.55).

TABLE 1. The genotypes (known for 17 patients) and observed neurological signs and symptoms at the time of diagnosis

Genotype	N	Symptom/Sign	No. (%)
Homozygote: c.3886G > A, p.(Asp1296Asn)	3	Tremor	4 (24)
Homozygote: c.3207C > A, p.(His1069Gln)	1	Dysarthria	3 (18)
Homozygote: c.4021G > C, p.(Gly1341Arg)	1	Walking impairment	3 (18)
Homozygote: c.1639delC, p.(Gln547Argfs*22)	1	Parkinsonism	2 (12)
Compound heterozygote: c.865C > T, p.(Gln289*) and c.1708-1G > A	2	Seizures	2 (12)
Compound heterozygote: c.3207C > A, p.(His1069Gln) and c.3818C > A, p.(Pro1273Leu)	1	Chorea or athetosis	1 (6)
Compound heterozygote: c.3207C > A, p.(His1069Gln) and c.3646G > A, p.(Val1216Met)	1	Cognitive impairment	1 (6)
Compound heterozygote: c.3207C > A, p.(His1069Gln) and c.2866-2A > G, p.(?9)	1	Dystonia	0
Compound heterozygote: c.3207C > A, p.(His1069Gln) and c.2336G > A, p.(Trp779)?	1	Myoclonus	0
Compound heterozygote: c.3207C > A, p.(His1069Gln) and c.2866-14T > G, p.(?)	1	Hyperreflexia	0
Compound heterozygotea	4	Autonomic dysfunction	0

aNo further data on mutation characteristics had been recorded.
A genetic analysis had been recorded in 17 patients (52%). The most frequently observed pathogenic mutation was c.3207C > A (p.His1069Gln) (Table 1).

Altogether, 17 new diagnoses had been made in Finland in 1998–2017 (Supplementary Fig. 1), yielding an annual incidence of 0.016/100,000 person-years (95% CI, 0.0093–0.026). The median age at the time of diagnosis was 15.8 years (interquartile range, 8.3–32.2; range, 3.8–48.1 years), with 10 patients diagnosed during the first 2 decades of life and none after 49 years of age. Upon presentation, liver damage was observed in 10 (58%) patients and neurological signs and symptoms (most often tremor and dysarthria; Table 1) in 7 (40%) patients. Five patients (32%) were asymptomatic and diagnosed through family screening.

Of the identified 33 patients, penicillamine had been used in 21 (64%), trientine in 10 (30%), and zinc in 21 (64%) patients. Liver transplantation had been performed for 5 patients (15%). The patients were usually followed-up primarily by paediatricians or gastroenterologists and seldom by neurologists. Patients with WD had poorer survival during the follow-up with a hazard ratio of 2.92 (95% CI, 1.39–6.15; \(P = 0.005 \)) for death compared with matched controls (Fig. 1). There was no survival difference between men and women with WD (\(P = 0.29 \)). Eight patients had died with a mean age of death at 49.5 years (standard deviation, 21.1). In 4 cases, the main cause of death was a malignancy (1 of each: liver, pancreas, bronchus, and breast).

Discussion

In this population-based nationwide study, we found that the prevalence of clinically diagnosed WD in Finland was 0.45/100,000, which is only a third of global pooled average of estimates.\(^3\) Moreover, the clinical prevalence was less than 20% of the predicted genetic prevalence of 2.37/100,000 (95% CI, 1.7–3.4) in Finland.\(^3\)

There has been marked discrepancy between the predicted genetic prevalence and the reported clinical prevalence of WD in all investigated areas.\(^4-7\) In all reported regions, the clinical prevalence has been clearly smaller than the generally predicted genetic prevalences.\(^3,8\) Underdiagnosis has routinely been suggested as the culprit, but reduced penetrance also appears probable.\(^8\) This is also suggested by the case of Sardinia, where the epidemiology of WD has been thoroughly studied. Although prevalence rates there have increased in successive clinical epidemiologic studies because of increased awareness and diagnostic activity, they remain much lower than genetic prevalence estimates.\(^7\) Although Sardinia can be considered a genetic isolate with an exceptionally high prevalence, recent results from Ireland and France also suggest similar clinical–genetic epidemiological discrepancies.\(^4,6\) Our results, drawn from data with complete nationwide coverage of more than 2 decades in a country with universal access to healthcare, are in line with these results. Furthermore, persons with 2 disease-causing mutations do not always display any alteration in their copper metabolism.\(^13\) Indeed, a third of the patients in the current study were diagnosed when asymptomatic. Thus, it seems necessary to be cautious in interpreting the molecular analysis results of \(ATP7B \), as suggested.\(^6,8,13\) It is also necessary to remember that the genetic prevalence is a “birth prevalence,” whereas all clinical prevalence estimates are limited by the time taken for diagnosis. Therefore, the genetic birth prevalence could be predicted to always overestimate the clinical prevalence for that reason.

Sardinia and Finland both are genetic isolates and outliers in European genetics.\(^14\) They also appear to represent the opposite ends of the continuum in the epidemiology of WD. The prevalence of the disease among native Finns was no more than 0.35/100,000, only a fifth of the 1.38/100,000 pooled global average of estimates reported recently.\(^3\) This marked difference is likely attributed to the unique genetic background of the population of Finland, which has caused an enrichment of some rare diseases, whereas others show decreased prevalence.\(^15\)

Hepatic disease is the most common form of presentation in WD, and our results show that this is also the case in Finland.\(^1\) We observed that 40% of Finnish patients had neurological signs or symptoms at disease onset, which is in line with the previous European reports.\(^5,9,16\) However, not all patients had been examined by a neurologist so this proportion, and particularly those of specific neurological signs, may be an underestimation.

Our data showed that patients with WD have poorer long-term outcomes compared with the general

FIG. 1. Survival of patients with Wilson’s disease (\(N = 33 \)) and age-matched and sex-matched controls (\(N = 6600 \)) from birth in Finland. [Color figure can be viewed at wileyonlinelibrary.com]
population with an almost 3-fold hazard of death compared with matched controls. A previous study from Austria also reported that the 20-year survival of WD patients was lower (92%) compared with matched controls (97%). A study from Hong Kong recently reported somewhat worse survival rates: 92.6% at 5 years and 89.5% at 10 years from diagnosis. It is therefore apparent that the risk of death is markedly increased in patients with WD compared with the rest of population. Our data suggest that this difference begins to emerge already before 40 years of age.

This was a retrospective study relying much on registry data. Although the CRHC has been shown to be reliable, some cases may have been missed because of erroneous coding. We also included only patients with a diagnosis of WD but were not able to capture those who may have deceased prior to clinical diagnosis. Thus, it is possible that our survival results underestimate the mortality of persons with the disease. The immortal time bias up to the time of diagnosis in patients with WD in our analysis also has the same effect. Medical records were unavailable for 8%, but a detailed assessment of the profile of registry entries suggested that only 1 of these may have had WD. The capture–recapture analysis also suggested an excellent ascertainment of 89%, indicating that very few diagnosed patients were missed. Nevertheless, the small number of patients in the final sample means that a small number of missed patients could have markedly changed the results. Lastly, because less than half of the diagnoses had been genetically confirmed, it is possible that non-WD patients were included, as exemplified by the mitochondrial recessive ataxia syndrome patient initially misdiagnosed as WD, but it is also possible that undiagnosed WD patients were missed from the analysis.

In conclusion, WD is exceptionally rare in Finland. The hazard of death was nearly 3-fold higher in patients with the disease compared with healthy controls, indicating an unmet treatment need.

Data Availability

This article is based on third-party data. Access to data is regulated by Finnish law and the Finnish National Institute for Health and Welfare. The disclosure of data to third parties without explicit permission from the Finnish National Institute for Health and Welfare is prohibited. Only those fulfilling the requirements established by Finnish law and the Finnish National Institute for Health and Welfare for viewing confidential data can access the data. We confirm that the authors did not have any special access privileges that others would not have.

Ethics

This registry-based study was approved by the Finnish National Institute for Health and Welfare (1863/5.05.00/2017) and Statistics Finland (TK-52-1763-19). In addition, regional permits were required by some hospital districts, and they were obtained accordingly. Since the study involved no contact with patients, ethics committee approval was unnecessary. This was a retrospective register study, and thus no informed consent was required, and the participants were not contacted. The legal basis for processing personal data is public interest and scientific research (EU General Data Protection Regulation 2016/679, article 6 (1)(e) and article 9 (2)(j); Data Protection Act, sections 4 and 6).

References

1. Czólkowska A, Litwin T, Dusek P, et al. Wilson disease. Nat Rev Dis Primers 2018;4:21.
2. Coffey AJ, Durkie M, Hague S, et al. A genetic study of Wilson’s disease in the United Kingdom. Brain 2013;13:1476–1487.
3. Gao J, Brackley S, Mann JP. The global prevalence of Wilson disease from next-generation sequencing data. Genet Med 2019;21:1155–1163.
4. Poujois A, Woinant F, Samson S, Chaine P, Girardot-Tinant N, Tuppin P. Characteristics and prevalence of Wilson’s disease: a 2013 observational population-based study in France. Clin Res Hepatol Gastroenterol 2018;42:57–63.
5. O’Brien M, Reilly M, Sweeney B, Walsh C, Hutchinson M. Epidemiology of Wilson’s disease in Ireland. Mov Disord 2014;29:1567–1568.
6. Collet C, Laplanche JL, Page J, Morel H, Woinant F, Poujois A. High genetic carrier frequency of Wilson’s disease in France: discrepancies with clinical prevalence. BMC Med Genet 2018;19:143.
7. Sandahl TD, Laursen TL, Munk DE, Vilstrup H, Weiss KH, Ott P. The prevalence of Wilson’s disease: An Update. Hepatology 2020; 71:722–732.
8. Wallace DF, Dooley JS. ATP7B variant penetrance explains differences between genetic and clinical prevalence estimates for Wilson disease [published online ahead of print April 4, 2020]. Hum Genet. https://doi.org/10.1007/s00439-020-02161-3.
9. Behnhardt S, Leiss W, Stättermayer AF, et al. Long-term outcomes of patients with Wilson disease in a large Austrian cohort. Clin Gastroenterol Hepatol 2014;12:683–689.
10. Cheung KS, Seto WK, Fung J, Mak LY, Lai CL, Yuen MF. Epidemiology and natural history of Wilson’s disease in the Chinese: a territory-based study in Hong Kong between 2000 and 2016. World J Gastroenterol 2017;23:7716–7726.
11. Homén EA. Eine eigenthümliche bei drei Geschwistern auftretende typische Krankheit unter der Form einer progressiven Dementia in Verbindung mit ausgedehnten Gefässveränderungen (wohl Lues hereditaria tarda). Archiv für Psychiatrie und Nervenkrankheiten 1892;24:3–38.
12. European Association for Study of Liver. EASL clinical practice guidelines: Wilson’s disease. J Hepatol 2012;56:671–685.
13. Stättermayer AF, Entenmann A, Gschwantler M, Zoller H, Hofer H, Ferenci P. The dilemma to diagnose Wilson disease by genetic testing alone. Eur J Clin Invest 2019;49:e13147.
14. Cavalli-Sforza LL, Piazza A. Human genomic diversity in Europe: a summary of recent research and prospects for the future. Eur J Hum Genet 1993;1:3–18.
15. Kääriäinen H, Muilu J, Perola M, Kristiansson K. Genetics in an isolated population like Finland: a different basis for genomic medicine? J Community Genet 2017;8:319–326.
16. Merle U, Schaefer T, Ferenci P, Stremmel W. Clinical presentation, diagnosis and long-term outcome of Wilson’s disease: a cohort study. Gastroenterol Clin 2007;36:115–120.
ECHO-FOCUSING IN FOCUSED ULTRASOUND THALAMOTOMY

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Echo-Focusing in Transcranial Focused Ultrasound Thalamotomy for Essential Tremor: A Feasibility Study

Ryan M. Jones, PhD,1* Yuexi Huang, PhD,1 Ying Meng, MD,2,3 Nadia Scantlebury, PhD,2 Michael L. Schwartz, MD, MSc,2,3 Nir Lipsman, MD, PhD,2,3 and Kullervo Hynynen, PhD1,4,5

1Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada 2Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada 3Department of Surgery, University of Toronto, Toronto, Ontario, Canada 4Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada 5Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

ABSTRACT

Background: Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) systems currently employ computed tomography (CT)-based aberration corrections, which may provide suboptimal trans-skull focusing.

Objectives: The objective of this study was to evaluate a contrast agent microbubble imaging-based transcranial focusing method, echo-focusing (EF), during TcMRgFUS for essential tremor.

Methods: A clinical trial of TcMRgFUS thalamotomy using EF for the treatment of essential tremor was conducted (NCT03935581; funded by InSightec [Tirat Carmel, Israel]). Patients (n = 12) were injected with Definity (Lantheus Medical Imaging, North Billerica, MA) microbubbles, and EF was performed using a research feature add-on to a commercial TcMRgFUS system (ExAblate Neuro, InSightec). Subablative thermal sonications carried out using (1) EF and (2) CT-based aberration corrections were compared via magnetic resonance thermometry, and the optimal focusing method for each patient was employed for TcMRgFUS thalamotomy.

Results: EF aberration corrections provided increased sonication efficiency, decreased focal size, and equivalent targeting accuracy relative to CT-based focusing. EF aberration corrections were employed successfully for lesion formation in all 12 patients, 3 of whom had previously undergone unsuccessful TcMRgFUS thalamotomy via CT-based focusing. There were no adverse events related directly to the EF procedure.

Conclusions: EF is feasible and appears safe during TcMRgFUS thalamotomy for essential tremor and improves on the trans-skull focal quality provided by existing CT-based focusing methods. © 2020 International Parkinson and Movement Disorder Society

Key Words: echo-focusing; essential tremor; microbubble contrast agents; thalamotomy; transcranial focused ultrasound

Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) thermoablation has been approved by the US Food and Drug Administration for essential tremor (ET)1,2 and tremor-dominant Parkinson’s disease3 and is under clinical testing for neuropathic pain4 and psychiatric disorders5,6 among other indications.7 Despite the considerable progress made to date to enable transcranial treatments,8 the skull remains a major limiting factor because high focal temperatures are difficult to achieve in patients with unfavorable skull characteristics (eg, low skull density ratio [SDR = mean ratio of trabecular to cortical bone computed tomography (CT) Hounsfield intensity], large skull thickness)9,11. Benchtop studies have revealed considerable variability in human skull transmission efficiency,12-14 and a wide range of acoustic energy levels are required during clinical procedures.1,15

Although repeated high-energy low focal temperature sonications can promote lesion formation,16 lesioning is not always feasible with current TcMRgFUS technology, leading to the exclusion of some patients (eg, SDR < 0.40–0.45).2,9,10 In addition, peripheral targets (eg, capsulotomy) tend to be more difficult to treat than central targets (eg, thalamotomy) with clinical