RESEARCH ARTICLE

CRISPR Diversity in *E. coli* Isolates from Australian Animals, Humans and Environmental Waters

Maxim S. Sheludchenko1,2, Flavia Huygens3*, Helen Stratton1, Megan Hargreaves3

1 Smart Water Research Centre, Griffith University, Southport, Queensland, Australia, 2 University of the Sunshine Coast, Sippy Downs, Queensland, Australia, 3 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia

* f.huygens@qut.edu.au

Abstract

Seventy four SNP genotypes and 54 *E. coli* genomes from kangaroo, Tasmanian devil, reptile, cattle, dog, horse, duck, bird, fish, rodent, human and environmental water sources were screened for the presence of the CRISPR 2.1 loci flanked by *cas2* and *iap* genes. CRISPR 2.1 regions were found in 49% of the strains analysed. The majority of human *E. coli* isolates lacked the CRISPR 2.1 locus. We described 76 CRISPR 2.1 positive isolates originating from Australian animals and humans, which contained a total of 764 spacer sequences. CRISPR arrays demonstrated a long history of phage attacks especially in isolates from birds (up to 40 spacers). The most prevalent spacer (1.6%) was an ancient spacer found mainly in human, horse, duck, rodent, reptile and environmental water sources. The sequence of this spacer matched the intestinal P7 phage and the pO111 plasmid of *E. coli*.

Introduction

Current water quality research is predominantly focused on identifying sources of faecal contamination in environmental water. However, despite many advances, utilizing many different technologies, tracing faecal water contamination remains problematic. In this work we investigated diversity of CRISPR in isolates from animals, humans and environmental waters and the potential of using outcome of that studies for microbial source tracking. The CRISPR system is a recently discovered immune-like defence system of bacteria and archaea against phages and plasmids [1, 2]. Mechanisms of this defence system have been well studied, however CRISPR adaptation remains poorly understood [3, 4]. The system is based on the retention of specific sequences (proto-spacers) from mobile genetic elements during the first infection/integration. These are harboured (as spacers) within so-called CRISPR loci [5]. These spacers are transcribed with handles comprised of the repeats into short interfering CRISPR RNA molecules (crRNA), and are subsequently used to interfere (commonly referred to as 'silencing') with the known, or recognised, foreign DNA or RNA to cleave foreign nucleic acid in order to protect the cell [6]. Intriguingly, whilst about 96% of archaea contain CRISPR genes, only about 45%
of bacteria have them [7]. Nevertheless, the diversity of CRISPR arrays have been successfully utilized in bacterial genotyping mainly used for spoligotyping in *Mycobacterium tuberculosis* which is based on spacer variation detection [8].

CRISPR are characterised by multiple palindromic repeats of 30–60 bp length, with spacers of approximately the same size located between them (over 300 elements per CRISPR locus) [9]. The spacer located next to the first repeat, with respect to the AT-rich leader sequence (5), is considered to be the newest and likely targets the most recent plasmid and phage challenges. Importantly, the CRISPR associated (cas) genes that encode genes involved in the processing of crRNA and recognition of foreign DNA, vary in structure and function depending on the bacterial species in question [10]. For example in *E. coli* type systems Cas 1 and Cas 2 are shown to be essential for the acquisition of new spacers from phages [11, 12]. To our knowledge the only known spacer that matches well characterized enterobacteria phages from Genbank is P1 from *E. coli* [13]. Additionally, the role of old spacers, the last spacers in regards to leader location, is uncertain because the direct repeats which surround them are usually degenerated [14].

Currently, knowledge of CRISPR genes has been applied to: (i) typing activities such as spoligotyping in *M. tuberculosis* (8), *Corynebacterium diphtheriae* [15], subtyping of *Yersinia pestis* [16], *Campylobacter jejuni* [17] and *Salmonella enterica* [18]; (ii) industrial activities such as engineering of dairy starter cultures to be resistant to phage attack and (iii) versatile tool for genome engineering [19, 20].

Importantly, the spacers in bacterial genomes are considered to be potential sub-typing markers for both host cells and their viruses [21]. By using knowledge of the spacer sequences and their position in the pattern, the bacteriophage sequences that parasitised the host in the past could be identified.

CRISPR system in *E. coli* contains two subtypes: I-E and I-F [22]. CRISPR I-E type consists of three cassettes: CRISPR 2.1, CRISPR 2.3 and CRISPR 2.2 loci [21]. Diversity in CRISPR 2.1 and CRISPR I-F is highest suggesting that these loci are intensively involved in cellular defence. The CRISPR 2.1 locus in *E. coli* is considered to be the result of the most recent attack events and therefore has the longest and most informative loci [23]. For this reason, and the lack of CRISPR I-F in the majority of *E. coli* genotypes [21], CRISPR 2.1 was selected as an appropriate locus for *E. coli* strain differentiation and as a potential tool for microbial source tracking. To our knowledge the macro-host specificity of *E. coli* spacers and the potential of these separately harboured spacers, remains to be investigated.

Recently, we reported development of a Single-Nucleotide Polymorphism Real-Time (SNP) genotyping method [24] for the purpose of determining host-specificity of *E. coli* isolated from water. Eight human-specific SNP profiles were identified and majority of them detected in environmental water samples [25]. However, more than half *E. coli* SNP profiles detected were unresolved because they were originated from ‘mixed’ sources being either human and/or animal isolates. For instance, SNP profile 18 included duck, horse, cattle and human *E. coli* isolates. From this work, we postulated that CRISPR genes might also prove useful in this context, to increase the discriminatory power of SNP–typing method developed previously.

A combination of SNP profiling based on conservative housekeeping genes and highly-variable areas of CRISPR loci was shown previously to be useful for the characterisation of a clinical population of *Campylobacter jejuni* [17]. The authors identified the specific clonal complexes using CRISPR loci, which dramatically increased the discrimination power of highly conservative SNP profiles of *C. jejuni*. Combination studies using CRISPR loci for dividing SNP profiles of *E. coli* isolates demonstrated a high level of differentiation, and should be at least as useful as was found in the case of the less variable clinical *C. jejuni* population.

The aim of this study was to identify spacer diversity within a collection of *E. coli* isolates. We successfully sequenced 45 individual CRISPR alleles from a set of SNP profiles detected in
a diverse number of *E. coli* isolates from Australian animals (indigenous and introduced), water samples (lake and rivers), commensal (faeces), and clinical (urine and blood) human samples. The analysis was also applied to *in silico* CRISPR sequences from Australian carnivorous marsupials, fish, Tasmanian devil, environmental water and human faeces (clinical and commensal) in an effort to assess, and potentially extend, the methods utility for such analyses.

Materials and Methods

E. coli isolate collection

E. coli isolates (N = 185), from a range of sources (animals, water and human) [24] and previously characterized using SNP analysis [24], were selected for CRISPR screening (see Table 1).

Source	Isolate/Strain code number*	CRISPR 2.1 Present (Y/N)
Human (N = 30)	hu7; hu12; hu15; hu18; hu24; hu31; hu34; hu43; hf2; hf4; hfs; hf19; hf20; hf21; hf22; hf28; hf33A; hf43; H001; H591; H299; H383; H386; H420; H454; H605; H617; FVEC1302; FVEC1412; FVEC1456	Y
Animal (N = 52)	dg97; dg99; dg100; dg101A; c67; c69; c70; du77; du79; du80; du82; du83; du89; du112; du147; du149; du151; hs2; hs3; hs5; hs9; hs12; hs14; hs15A; hs16A; hs17; hs18; k2; k3; k7; k8; k12; k126; k297; B921; B088; B367; B185; T426; TA143; MO56; TA447; TA144; TA255; TA271; TA054; M718; TA008; R424;	Y
Environmental/Unknown (N = 44)	3A3; 4A2; 4A3; 4A4; 4A7; 4A10; 4A10_100; 4A13; 4B3_100; 5A1; 5A2; 5A4; 5A4_50; 5A5; 5A5_50; 5A6; 5A6_50; 5A7_50; 5A8; 5A8_50; 5A9; 5A10; 5A11; 5A12; 5A13; 5A14; 5A15; 5A16; 5A17; 5A18; 5A19; 5A20; 5A21; 5B5A; 5B5B; B7_100; B14_100A; B14_100B; B16_100; E560; E267; E1002; E1114	Y
Human (N = 59)	hf1; hf3; hf6; hf8; hf9; hf10; hf12; hf14; hf15; hf16; hf17; hf18; hf23; hf24; hf30; hf31; hf32; hf34; hu1; hu2; hu3; hu4; hu5; hu6; hu8; hu9; hu10; hu11; hu13; hu14; hu17; hu19; hu20; hu21; hu22; hu23; hu25; hu26; hu27; hu28; hu29; hu30; hu32; hu33; hu35; hu37; hu38; hu40; hu41; hu42; hu44; hu46; H223; H586; H378; H413; H736	N
Animal (N = 27)	dg90; dg92; dg93; dg95; c32; c33; c35; hs10; hs110; k4; k6; k9; k11; k15; du81; du84; du88; du103; B587; TA249; TA280; TA464; M695; TA206; TA014; R527	N
Environmental/Unknown (N = 23)	4A1_100; 4A2_100; 4A4_100; 4A5_100; 4A6; 4A8; B3; 4B5; 5A9_50; 5A2_50; 5A3_50; 5B1; 5B2_50; 5B3; 5B6_100; 4B7_100; 5B8_100; 5B9_100; 4B10_100; 5B18; 5B19_50; E1118; E704	N

Isolate source codes:

Human isolates and strains: hu, human urine; hf, human faeces; H, human commensal (*in silico*); FVEC, human pathogen

Animal isolates: c, cattle; dg, dog; hs, horse; k, kangaroo; du, duck;

Animal *in silico* strains: B, bird; T, fish; TA, Northern Quoll, Native mouse, Bettong, Bandicoot, Potoroo, Tasmanian Devil; R, Reptile

Environmental samples (primary source unknown): Various combinations of numbers and letters (format eg. 4A5_100); E, Environmental.

doi:10.1371/journal.pone.0124090.t001
Cultures were incubated overnight at 37°C in 5 mL nutrient broth (Oxoid, UK) followed by DNA extraction.

DNA extraction
Overnight broth culture of 500 μL was centrifuged at 10 000 × g for 1 min. Cell pellets were re-suspended in 180 μL DNase/RNase-free water and used for DNA extraction on the Corbett XtractorGene automated DNA extraction system (Corbett Robotics, Australia). Phenol extraction for sequencing was performed manually according to the “OpenWetWare protocol” [26]. Briefly, cells were re-suspended in a TE buffer pH 8.0, incubated with RNase A (25 mg mL⁻¹) for 30 min at 65°C and then with proteinase K (25 mg mL⁻¹) for 15 minutes at 37°C. After double extraction by phenol and chloroform, DNA was precipitated by ice-cold ethanol, and with 3M sodium acetate overnight with its final pellet washed with 70% ethanol and stored in DNase/RNase free water at −20°C until further use. The quantity and purity of DNA extracts were determined using a DU 730 spectrophotometer (Beckman Coulter, USA).

Screening of *E. coli* strain collection for CRISPR 2.1
To screen isolates for the CRISPR 2.1 locus, primers 5’-TGGTGAAGGAGTTGGCAAGG-3’ and 5’-AAAATGCTCCTCCGCGCTTACG-3’, annealing *iap* and *cas2* respectively [13] were used with TaqPol (Roche, Australia) in a modified touch-down PCR reaction with the following conditions: denaturation at 95°C for 5 min, then 15 cycles, 95°C for 15 sec, 68°C for 1 min with decreasing temperature for each cycle, 72°C for 2 min; finally 20 cycles 95°C for 15 sec, 60°C for 1 min, 72°C for 2 min; final extension 72°C for 10 min. The amplicons were visualised using a 1% agarose gel, run at 100V for 30 min and stained using SYBR-Safe (Invitrogen, USA), and captured using the Gel-doc system (Bio-Rad, USA). CRISPR 2.1 presence was determined by the presence of appropriately sized bands (500–2000 bp).

Cloning procedure and sequencing
Forty five isolates positive for CRISPR 2.1 loci were amplified using High Fidelity DNA polymerase (Bio-Rad, USA). The bands were excised from the gel, purified with QIAquick Kit (QIAGEN, USA) and ligated into a pGEM-3Z plasmid vector as described previously [27]. The plasmid DNA samples were submitted for sequencing to the Australian Genomic Research Facility, Brisbane. The sequences were annotated using ContigExpress, VectorNTI v.10 software (Invitrogen, USA) and were deposited in GenBank with accession numbers KF707494-KF707538.

CRISPR analysis
CRISPR sets from sequences of CRISPR 2.1 locus were identified using the CRISPRFinder web database [7]. In addition, CRISPR loci from 54 *E. coli* genomes sourced from the Broad Institute (http://www.broadinstitute.org/annotation/genome/escherichia_antibiotic_resistance/ GenomesIndex.html) were analysed in silico and 30 positive isolates carrying CRISPR loci were combined with our library.

Direct screening of water samples and *E. coli* DNA for the known mobile genetic elements acquired from sequenced CRISPR arrays
Primers for the P7 phage were designed using Vector NTI (Invitrogen, USA) to target the corresponding spacer revealed from the *E. coli* CRISPR sequence analysis. A two litres water sample from the Brisbane River was filtered through a 0.33 μm filter. Genomic DNA (20 ng) from *E. coli* isolates were added as template for touch-down PCR reactions targeting 444 bp long
amplicon of P7 bacteriophage by primer pairs (F: 5’-TCAAAATCCCCTGTATCGT-3’ and R: 5’-TATTGTCTGAATGGTGCGG-3’) with the following conditions: denaturation at 95°C for 5 min, then 15 cycles, 95°C for 15 sec, 65°C for 1 min with decreasing temperature for each cycle, 72°C for 2 min; finally 20 cycles 95°C for 15 sec, 60°C for 1 min, 72°C for 2 min; final extension 72°C for 10 min. Positive PCR products were excised from the gel and sequenced as previously described.

Results

A set of 185 Australian E. coli isolates from different sources (animals, water and human) [24] was examined for the presence of CRISPR2.1 loci. Half of these were positive for the CRISPR 2.1 region (Table 1). Using the previously determined SNP profiles [24], 50 isolates were selected for sequencing from human and animal specific sources, and also mixed sources, which were positive for CRISPR 2.1. Isolates with identical SNP profiles and originated from the same plate and have similar/identical bands on the CRISPR 2.1 gel were excluded from current studies to minimize cloning and sequencing costs.

The sequences of these selected isolates and other Australian isolates downloaded from the Broad Institute website were analysed using CRISPRFinder, to detect direct repeats and spacers in these genomes. In order to sequence the CRISPR 2.1 regions, PCR products were cloned into pGEM-3Z vectors. Subsequently, the plasmid libraries were sequenced.

The spacers from all isolates tested and the aligned in silico strains, based on our library spacers’ sequences, are shown in Fig 1, together with their relevant SNP profiles. Each unique spacer array was assigned an allele number, and the primary source and SNP profiles were also included.

All spacer sequences were interrogated using the BLASTN algorithm in GenBank. This allowed for the extraction of specific proto-spacers which have been annotated thus far as mobile elements (plasmids, phages), in order to identify the influence of invading elements on E. coli diversity. The results of this BLASTN analysis, showing plasmids and phages, can be found in Table 2. This includes phage P7, E. coli plasmid pO111, pO157, amongst others.

Discussion

CRISPR diversity in human sourced E. coli isolates

Analysis of our mixed-source E. coli library revealed that CRISPR2.1 was present in some isolates from all the animals tested, however, the isolates from human sources tended to lack CRISPR 2.1 in general. About 75% of human isolates lack CRISPR 2.1 (53/71), in contrast to 30% (12/17) of in silico analysis of published Australian E. coli genomes. However, at least half of the in silico human-originating E. coli that lacked CRISPR 2.1 loci or where spacers were missing, were from the B2 phylogroup, which correlates with previously published data [21, 28] and low CRISPR presence in uropathogenic E. coli [29]. Indeed, the absence of CRISPR genes could be viewed as an indication of the presence of clinical and potentially pathogenic E. coli in water, as we found that the majority of our isolates from urine, blood and fecal clinical specimens also lacked CRISPR 2.1. Even if some strains could harbour CRISPR 2.1, the absence of the cas2 gene may further support dysfunction of the CRISPR defence mechanism in clinical E. coli [30].
CRISPR typing further resolves *E. coli* isolates with the same SNP and MLST profiles

We did not observe any consistent relationship between SNP profiles of our isolates or the Sequence Type (ST) of *in silico* strains and CRISPR alleles. Previously, evolutionary studies on CRISPR diversity of *Sulfolobus islandicus* demonstrated independent spacer acquisition in regards to genotype mutations in house-keeping genes [31]. This is due to the rapid CRISPR array evolution allowing different genotypes to acquire the same resistance to a common pool of viruses and plasmids [31], in contrast, house-keeping genes are more conserved.

Certain isolates with the same SNP profile were found to have different CRISPR alleles. For instance, SNP profile 23 comprises isolate profiles of kangaroo (k8); cattle (c67) and a water sample (5A2). These three isolates had completely different CRISPR alleles (CA) confirming that the three isolates were indeed from different sources, despite their common SNP profile.

Fig 1. CRISPR allele types recorded from Australian *E. coli* isolates

Names of test isolates are written in lowercase and *in-silico* isolates in uppercase. Numbers and colors of spacers represent identical spacer sequences. Figure illustrates all spacer types found in this study, in chronological order from the oldest to the most recent, in position from left to right.

doi:10.1371/journal.pone.0124090.g001

Since one of the aims of this project was to further discriminate between *E. coli* isolates with common SNP profiles, and in this instance, we have proven this is true, however it is obvious that further work is required to discern whether more mixed-source SNP profiles may be discriminated using this approach.

doi:10.1371/journal.pone.0124090.l002
Another type of relationship was observed in ST10, a genotype common to three human E. coli isolates (H386, H454, H617), and one from water (E1002). These isolates had similar but not identical spacer sequences. However, the pattern was not followed with human isolate H383 (also ST10), which has a different CRISPR allele compared to the other ST10 isolates. Therefore, the use of CRISPR diversity may allow distinction between isolates from different host origins, which were previously combined in one ST and consequently in one SNP profile [24].

Identical E. coli CRISPR arrays indicate that isolates could be from the same geographical location

In contrast, other isolates had different SNP profiles but the same CRISPR allele pattern. For instance, E. coli isolate c69 originating from cattle- (SNP profile 2) had the same CRISPR allele (CA 40–42) as cattle isolate c72 (SNP profile 14) and kangaroo-originating k297 (SNP profile 4). The only identical spacers to be found in E. coli were from these three animal faecal samples originating from one farm site. As the likelihood of identical CRISPR 2.1 alleles in unrelated organisms is very low, we postulated that it was likely that these three isolates were identical because they were from the same geographical location. Since CRISPR spacer arrays, which are undergoing rapid horizontal gene transfer events, can change rapidly within a few generations of E. coli growth in a host, it is very probable that only those hosts sharing a food source, and in close physical proximity to each other, will have identical CRISPR spacer arrays. However, recent studies reported the conservative character of CRISPR alleles [28, 32]. According to these studies, E. coli strains which diverged about 250 000 years ago have identical CRISPR arrays compared to modern strains, indicating a surprisingly low level of diversity. Nevertheless, our CRISPR library shows a high diversity of spacers from a wide range of hosts and uniquely similar arrays only within those E. coli isolates which were sampled from one geographical location and at one time.

Identical alleles were also observed from in silico animal and human E. coli sequences: isolate R424 (ST34) from a common suburban garden skink and human E. coli H383 (ST10) (Fig 1). Another example of matching CRISPR alleles was observed in the group CA6-9, which combined human, reptile and medium-sized carnivorous marsupial E. coli isolates, as well as isolates from water. While the host source of these isolates is known, the geographical area in which the hosts were contained was not supplied, so it was not possible to verify the explanation tendered above.

Proto-spacers identified in Australian E. coli isolates

This study established that the enterobacterial P7 phage proto-spacer in E. coli was found in Australian animal and human isolates and also in isolates from environmental water sources. Mostly this proto-spacer was found in association with plasmid pO111_2, normally found in E. coli O111 EHEC (Table 2).

Previously, proto-spacers of P1 phage and F plasmid have been found in E. coli genotypes ECOR44 and 47 and ECOR 42 and 49 respectively [13]. This led to further analysis of our data in order to find the link between DNA phages/plasmids and proto-spacers in Australian E. coli isolates.

Of particular interest was the large number of isolates that had the proto-spacers P7 and pO111_2 [33]. This showed that these plasmids carry virulence genes which change non-virulent O157 E. coli into pathogenic O157 ETEC strains. Taking into account the large proportion of human isolates with spacers against P7/pO111, it can be seen that similar past attack events seemed to have occurred in many of the isolates analyzed here. The observed insertion of the
proto-spacer pO111 into the genome of past isolates may indicate the frequent interaction with genetic mobile elements.

Such strains either become resistant to the conjugative plasmid pO111 or become repressed by CRISPR immunity, if this plasmid is acquired. Resistance to plasmids was recently reported in *Staphylococcus aureus* livestock ST398-MRSA-V strains, which explains why such strains have less antimicrobial drug-resistant genes and phage-encoded virulence factors compared to other MRSA strains [34].

Proto-spacers and CRISPR immunity

Extensive studies into the molecular mechanism of CRISPR immunity have shown that insertion of proto-spacers into the CRISPR array occurs in the next position after the first direct repeat, which locates them in close proximity to the leader sequence. Thus, spacers are stored strictly in chronological order with the oldest at the end (spacer 1, see Fig 1). The most intriguing matches were shown for spacer 270 of the duck isolate du151. *In silico* predictions revealed a potential linkage between this spacer and plasmids carrying virulence genes (Table 2). Interestingly, spacer 270 was not only predicted to target *E. coli* plasmids, but also plasmids of other enterobacteria such as *Shigella* and *Salmonella*. For instance, spacer 270 targets plasmid p666, which confers ETEC pathogenicity to *E. coli* H10407 [35]. Another plasmid pO83 (150 kB in length) [36], carries adhesive factors, which allow *E. coli* to become adherent and invasive *E. coli* (AIEC), which is associated with Crohn’s Disease. This plasmid has >85% identity with two other plasmids, pAPEC-01-ColBM and avian pathogenic *E. coli* (APEC), and also with the plasmid pCVM29188_146 of *Salmonella enterica* serovar Kentucky [37]. These plasmids share the common function of colicin M and D production. The same proto-spacer sequences were present in the large plasmid pEC_24 with 73.8Kb which was previously identified from a number of clinical isolates [38]. Interestingly, as well as carrying multiple-antibiotic resistance genes, this plasmid also harbours genes responsible for colicin production that Smet and co-authors had found never to have been reported before for such IncFII class [38]. *E. coli* uses these colicin toxins to compete with other strains of the same species, as acquisition of these plasmids can give an advantage to the host by killing the strains which do not produce colicins [38]. This may lead to the explanation of why the spacer was not commonly identified in the *E. coli* population. Particular duck *E. coli* isolate 240, which has a distinctive allele and could have an ecological niche. This isolate probably does not require colicin production due to lack of interaction with *E. coli* strains in the gut. Further detailed studies are needed to prove this assumption.

As noted earlier, the CRISPR system targets the most vital genes coding for key proteins in the replication process of the mobile elements’ replication, or the conjugation process [13, 39]. Using *in silico* predictions, we found that du151 spacer 270 targets: OriT nicking and unwinding protein, a type IV secretion-like conjugative transfer system pilin acetylase TraX of the *Shigella* species; a relaxase protein TraI of the same family in *Salmonella typhi* plasmid, and conjugal transfer nickase/helicase TraI in the *E. coli* F plasmid. Indeed, CRISPR interference with plasmids was initially discovered on plasmid nickase genes of *Staphylococcus epidermidis* [40] which is vital for self-replication. Thus, current results are further evidence of the universal nature of the CRISPR resistance mechanism in *E. coli*.

Interestingly, high numbers of old acquired spacers matched sequences that were flanked by aminopeptidases and some non-annotated conservative protein genes, from CRISPR sites of *E. coli* serotypes O111:H-, O113:H2 and O26:H11. Isolates from different sources had such spacers, which were, however, different from known mobile elements. This finding poses a question about the existence of such mobile elements that might not yet have been isolated. Alternatively, it may be that such elements have disappeared or have become degenerated, and can now be
found only as a part of the bacterial genome. Such spacers were identified in isolates from horses and water samples only, so they are poorly studied. These isolates, however, are identical to CRISPR arrays of pathogenic strains of *E. coli* in GenBank, suggesting that they are likely to have shared the same pool of mobile elements in the past. Future studies on host-virus interactions could reveal such conjugative plasmids and phages that remain unknown at present.

Conclusion

It was found in this study that CRISPR array analysis alone was not effective as a source tracking tool for *E. coli*, which led us to intensify the search for unknown phage sequences. The high diversity in *E. coli* CRISPR can be an advantage when the level of specificity is required to be high (for instance, in the case of proof of site identity). Such a tool may involve the combination of SNP genotyping and CRISPR allele identification based on a high resolution melt approach. The fact that isolates from two sources shared an allelic profile out of 50 isolates analyzed, led us to apply the preliminary results using a combination of methods for microbial source tracking. CRISPR spacers, harbouring sequences of phage and plasmids, may prove useful in investigating host-specificity of these invading elements. Analysis of *E. coli* CRISPR patterns showed a lack of host-specificity for all isolates sequenced in this study.

Acknowledgments

We thank S. Mureev and K. Alexandrov from Institute of Molecular Biosciences, University of Queensland, who provided technical and financial support for cloning and sequencing of CRISPR loci. Also I would like to thank F. Mojica and R. Nilsson for critical review of the manuscript. M.S.S. was in receipt of a postgraduate studentship from the Institute of Sustainable Resources, Queensland University of Technology. Note: The GenBank accession number for the CRISPR sequences are KF707494-KF707538. Laboratory work was conducted at Queensland University of Technology.

Author Contributions

Conceived and designed the experiments: MSS FH. Performed the experiments: MSS. Analyzed the data: MSS FH. Contributed reagents/materials/analysis tools: FH MH. Wrote the paper: MSS FH HS MH.

References

1. Makarova K, Grishin N, Shabalina S, Wolf Y, Koonin E. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology Direct. 2006; 1(1):7. doi:10.1186/1745-6150-1-7

2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in Prokaryotes. Science. 2007; 315(5819):1709–12. doi:10.1126/science.1138140 PMID: 17379808

3. Barrangou R, Marraffini Luciano A. CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity. Molecular Cell. 2014; 54(2):234–44. http://dx.doi.org/10.1016/j.molcel.2014.03.011. doi: 10.1016/j.molcel.2014.03.011 PMID: 24766887

4. Heiler R, Marraffini LA, Bikard D. Adapting to new threats: the generation of memory by CRISPR-Cas immune systems. Molecular Microbiology. 2014:n/a-n/a. doi:10.1111/mmi.12640

5. Jansen R, van Embden JD, Gaastra W, Schouls LM. Identification of a novel family of sequence repeats among prokaryotes. Genomics. 2002; 6(1):23–33.

6. van Duijn E, Barbu IM, Barendregt A, Jore MM, Wiedenheft B, Lundgren M, et al. Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in CRISPR-associated protein complexes from *Escherichia coli* and *Pseudomonas aeruginosa*. Molecular & cellular proteomics: MCP. 2012. Epub 2012/08/25. doi: 10.1074/mcp.M112.020263 PMID: 22918226.
7. Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research. 2007; 35(suppl 2):W52–W7. doi: 10.1093/nar/gkm360

8. Goyal M, Saunders NA, van Embden JD, Young DB, Shaw RJ. Differentiation of Mycobacterium tuberculosis isolates by spoligotyping and IS6110 restriction fragment length polymorphism. Journal of Clinical Microbiology. 1997; 35(3):647–51. PMID: 9041405

9. Sorek R, Kunin V, Hugenholtz P. CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Micro. 2008; 6(3):181–6. PMID: 18157154

10. Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biology. 2007; 8(4):R61. doi: 10.1186/gb-2007-8-4-r61 PMID: 17442114

11. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun. 2012; 3:945. http://www.nature.com/ncomms/journal/v3/n7/suppinfo/ncomms1937_S1.html. doi: 10.1038/ncomms1937 PMID: 22781758

12. Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Research. 2012; 40(12):5569–76. doi: 10.1093/nar/gks216 PMID: 22402487

13. Mojica FJM, Díez-Villaseñor Cs, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution. 2005; 60(2):174–82. PMID: 15791728

14. Pougach K, Semenova E, Bogdanova E, Datsenko KA, Djordjevic M, Wanner BL, et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Molecular Microbiology. 2010; 77(6).

15. Mokrousov I, Limeschenko E, Vyazovaya A, Narvskaya O. Diversity of CRISPR loci in Escherichia coli. Microbiology. 2010; 156(5):1351–62. doi: 10.1099/mic.0.036046–0 PMID: 20860086

16. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. 2005; 151(3):653–63. doi: 10.1099/mic.0.27437–0

17. Price EP, Smith H, Huygens F, Giffard PM. High-resolution DNA melt curve analysis of the clustered, regularly interspaced short-palindromic-repeat locus of Campylobacter jejuni. Applied and Environmental Microbiology. 2007; 73(10):3431–6. PubMed PMID: IS1:000246680500037. PMID: 17400785

18. Fabre L, Zhang J, Guigon G, Le Hello S, Guibert V, Accou-Demartin M, et al. CRISPR typing and subtyping for improved laboratory surveillance Salmonella infections. PLoS ONE. 2012; 7(2):901–6. PMID: 17431853

19. Carroll D. A CRISPR Approach to Gene Targeting. Mol Ther. 2012; 20(9):1658–60. doi: 10.1038/mt.2012.171 PMID: 22945229

20. Mali P, Esvelt KM, Church GM. Cas9 as a versatile tool for engineering biology. Nat Meth. 2013; 10(10):957–63. doi: 10.1038/nmeth.2649

21. Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM. Diversity of CRISPR loci in Escherichia coli. Microbiology. 2010; 156(5):1351–61. doi: 10.1099/mic.0.036046–0 PMID: 20333361

22. Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Micro. 2011; 9(6):467–77. http://www.nature.com/nrmicro/journal/v9/n6/suppinfo/nrmicro2577_S1.html.

23. Mojica FJM, Díez-Villaseñor C. MicroCommentary: The on–off switch of CRISPR immunity against phages in Escherichia coli. Molecular Microbiology. 2010; 77(6):1341–5. doi: 10.1111/j.1365-2958.2010.07326.x PMID: 20860086

24. Sheludchenko MS, Huygens F, Hargreaves MH. Highly-discriminatory single nucleotide polymorphism interrogation of Escherichia coli using allele-specific Real-Time-PCR and eBURST analysis. Appl Environ Microbiol. 2010; 76(13):4337–45. doi: 10.1128/aem.00128-10 PMID: 20453128

25. Sheludchenko MS, Huygens F, Hargreaves MH. Human-Specific E.coli Single Nucleotide Polymorphism (SNP) Genotypes Detected in a South East Queensland Waterway, Australia. Environmental Science & Technology. 2011; 45(24):10331–6. doi: 10.1021/es201599u

26. Waldminghaus T. Chromosomal DNA isolation from E. coli: OpenWetWare; 2009. Available from: http://openwetware.org/wiki/Chromosomal_DNA_isolation_from_E._coli#Curators.

27. Sambrook J, Russell DW, editors. Molecular Cloning: A Laboratory Manual: Cold Spring Harbor Laboratory Press; 2001.

28. Touchon M, Charpentier S, Clermont O, Rocha EPC, Denamur E, Branger C. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J Bacteriol. 2011; 193(10):2460–7. doi: 10.1128/jb.01307-10 PMID: 21421763
29. Dang TND, Zhang L, Zöllner S, Srinivasan U, Abbas K, Mars CF, et al. Uropathogenic *Escherichia coli* are less likely than paired fecal *E. coli* to have CRISPR loci. Infection, Genetics and Evolution. 2013; 19 (0):212–8. http://dx.doi.org/10.1016/j.meegid.2013.07.017.

30. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet. 2010; 11(3):181–90. doi: 10.1038/nrg2749 PMID: 20125085

31. Held NL, Herrera A, Cadillo-Quiroz H, Whitaker RJ. CRISPR associated diversity within a population of *Sulfurolobus islandicus*. PLoS ONE. 2010; 5(9):e12988. doi: 10.1371/journal.pone.0012988 PMID: 20927396

32. Touchon M, Rocha EPC. The small, slow and specialized CRISPR and anti-CRISPR of *Escherichia coli* and *Salmonella*. PLoS ONE. 2010; 5(6):e11126. doi: 10.1371/journal.pone.0011126 PMID: 20559554

33. Ogura Y, Ooka T, Iguchi A, Toh H, Asadulghani M, Oshima K, et al. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic *Escherichia coli*. Proceedings of the National Academy of Sciences. 2009; 106(42):17939–44. doi: 10.1073/pnas.0903585106 PMID: 19815525

34. Golding GR, Bryden L, Levett PN, McDonald RR, Wylie J, et al. Livestock-associated methicillin-resistant *Staphylococcus aureus* sequence type 398 in humans, Canada. Emerg Infect Dis. 2010; 16(4):587–94. doi: 10.3201/eid1604.091435 PMID: 20350371

35. Crossman LC, Chaudhuri RR, Beaton SA, Wells TJ, Desvaux M, Cunningham AF, et al. A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic *Escherichia coli* strain H10407. J Bacteriol. 2010; 192(21):5822–31. doi: 10.1128/jb.00710-10 PMID: 20802035

36. Nash J, Villegas A, Kropinski A, Aguilar-Valenzuela R, Konczy P, Mascarenhas M, et al. Genome sequence of adherent-invasive *Escherichia coli* and comparative genomics analysis with other *E. coli* pathotypes. BMC Genomics. 2010; 11(1):667. doi: 10.1186/1471-2164-11-667

37. Fricke WF, McDermott PF, Mammel MK, Zhao S, Johnson TJ, Rasko DA, et al. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic *Escherichia coli* strains in *Salmonella enterica* serovar Kentucky isolates from poultry. Appl Environ Microbiol. 2009; 75(18):5963–71. doi: 10.1128/aem.00786-09 PMID: 19648374

38. Smet A, Van Nieuwerburgh F, Vandekerckhove TTM, Martel A, Deforce D, Butaye P, et al. Complete nucleotide sequence of CTX-M-15-Plasmids from clinical *Escherichia coli* isolates: insertional events of transposons and insertion sequences. PLoS ONE. 2010; 5(6):e11202. doi: 10.1371/journal.pone.0011202 PMID: 20585456

39. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009; 155(3):733–40. doi: 10.1099/mic.0.023960–0 PMID: 19246744

40. Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 2008; 322(5909):1843–5. doi: 10.1126/science.1165771 PMID: 19095942