ABSTRACT

The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, alpha-synuclein and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments (CTFs). Trehalose also reduced the secretion of the amyloid β-peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP-CTFs in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport.

Alzheimer disease (AD) is characterized by the accumulation of extracellular amyloid plaques that contain aggregates of the amyloid β-peptide (Aβ). Aβ derives from the amyloid precursor protein by sequential proteolytic processing by β- and γ-secretases (1,2). The initial cleavage of APP by β-secretase results in the secretion of the soluble ectodomain and the generation of a membrane-tethered C-terminal fragment (APP-CTFβ). Subsequently, APP-CTFβ can be cleaved by γ-secretase to liberate Aβ from cellular membranes (2). In an alternative pathway, APP can also be cleaved by α-secretase within the Aβ domain thereby generating CTFα. The subsequent cleavage of APP-CTFα by γ-secretase results in secretion of a small peptide called p3 (2). It is important to note that APP is also metabolized by additional pathways including proteasomal and lysosomal degradation (3-5).

The metabolism of APP is also regulated by macroautophagy (herein referred to as autophagy), a lysosome-dependent degradative pathway for long-lived proteins, organelles and nutrient recycling (6,7). Autophagy starts with the formation of double-membrane vesicles, the so-called autophagosomes, which further fuse with lysosomes to become autolysosomes for degradation of autophagosome contents by

Keywords: trehalose, autophagy, amyloid precursor protein, Alzheimer’s disease, subcellular trafficking, endosome, lysosome.
Trehalose alters trafficking of APP

Lysosomal hydrolases (8). Autophagy is an essential pro-survival pathway induced by a variety of stress factors, including nutrient deprivation, growth factor withdrawal, oxidative stress, infection, and hypoxia (9). These factors contribute to the etiology of multiple diseases such as cancer, stroke, heart disease, and infection (10). Eukaryotic cells have a basal autophagic activity under normal physiological conditions. Cells deficient in autophagy show diffuse abnormal protein accumulation and mitochondria disorganization (11,12), suggesting that cells use autophagy to maintain cellular homeostasis by eliminating protein aggregates and damaged organelles. Basal autophagy is particularly important and active in the liver and non-dividing cells such as neurons and myocytes (11,13,14). Dysfunction in autophagy is implicated in the pathogenesis of many human diseases, including different types of neurodegeneration (15,16). Incompletely degraded autophagic vacuoles contain both amyloid precursor protein (APP) and γ-secretase complex, and could thus, contribute to enhanced processing of APP into toxic amyloid-beta (Aβ) peptides (17-19).

Trehalose (α,α-trehalose) is a natural non-reducing disaccharide containing two D-glucose residues connected via an α,α-1,1 linkage. It functions not only as an energy source, but is also used to protect cells against heat, cold, oxidation or dehydration (20). Trehalose is considered to enhance autophagic activity (21). It has been shown to promote the cellular clearance of pathogenic proteins like mutant huntingtin, α-synuclein (21,22), and phosphorylated-tau (22-24) that are associated with Huntington (HD), Parkinson (PD) and Alzheimer disease (AD), respectively. However, the role of trehalose in the cellular metabolism of the AD-associated APP remains to be investigated.

In this study, we analyzed the role of trehalose on the cellular metabolism of APP. Interestingly, trehalose strongly decreased the degradation of APP and its CTFs. By biochemical and cell biological approaches we demonstrate that trehalose interferes with endocytic vesicular trafficking, indicated by decreased processing of cathepsin D (Cat D), redistribution of LAM2, and accumulation of the autophagy related proteins microtubule-associated protein 1 light chain 3 (LC3) and p62. The combined data demonstrate that trehalose exerts complex effects on vesicular trafficking thereby decreasing the metabolism of APP and the secretion of Aβ.

EXPERIMENTAL PROCEDURES

Antibodies, constructs and reagents - APP-CT (C1/6.1) antibody has been described in (25). Human cathepsin D-CT antibody was a generous gift from Dr. S. Höning (University of Cologne, Germany). Anti-LAMP2 antibody was purchased from the Iowa Hybridoma Bank. Other antibodies were purchased from the indicated companies: anti-EEA1 and anti-LC3 (MBL International Corporation; Nanotools), anti-beclin-1, anti-mTOR, and anti-phospho-mTOR (S2448) antibodies (Cell Signaling); 6E10 antibody (Biolegend) anti-rab9 and anti-calnexin (Santa Cruz Biotech), anti-tau (BD BioSciences), anti-α-synuclein (Rockland), anti-β-actin, anti-TGN46, anti-mouse, anti-rabbit and anti-goat IgG-peroxidase (Sigma-Aldrich), anti-mouse, rabbit and goat Alexa Flour 488 and 546 antibodies (Invitrogen).

RFP-GFP-LC3 construct has been described previously (26), and was generously provided by Dr. Jörg Höhfeld (University of Bonn, Germany). Trehalose, maltose, glucose and 4′,6-Diamidino-2-phenyindole (DAPI) were obtained from Sigma-Aldrich. Bafilomycin A1 and chloroquine were purchased from Enzo Life Sciences. Cycloheximide as obtained from Sigma-Aldrich, DMEM, Earle’s balanced salt solution (EBSS), fetal calf serum (FCS), penicillin, streptomycin, ampicillin, puromycin were purchased from Invitrogen.

Cell lines and cell culture - Human neuroglioma H4, human neuroblastoma SH-SY5Y, human embryonic kidney 293 (HEK-293) cells and human hepatocellular carcinoma cells (Hep-G2) were obtained from ATCC. Mouse embryonic fibroblasts—wild type (Mef-WT) and Presenilin 1 and 2 double knock-out (Mef-PSdKO) were a generous gift from Dr. De Strooper (VIB, Belgium) and described previously (27). Mouse embryonic fibroblasts of control wild-type (Mef-WT) and Atg5 knock-out (Mef-Atg5KO) were obtained from the Riken Cell Bank.

Cells were cultured in DMEM supplemented with 10% FCS and 1% penicillin/streptomycin. H4-mCherry-GFP-LC3 stable clones were generated from transfection of
Trehalose alters trafficking of APP

H4 cells with mCherry-GFP-LC3 constructs. The protocol was performed with Lipofectamine (Invitrogen) according to the manufacturer’s instructions. Clones were selected with 25 µg/ml puromycin.

Immunocytochemistry - Cells were processed for immunocytochemistry as described previously (28). Briefly, cells were cultured in poly-L-lysine–coated coverslips and fixed with 4% PFA for 20 min. Subsequently, cells were kept in blocking solution (PBS 90%, FCS 10%, Triton X-100 0.1%) at room temperature (RT) for 1 h, incubated with primary antibodies at 4°C overnight or at RT for 1-2 h, and then with secondary antibodies for 1 h at RT. Cells were imaged with Carl Zeiss Axio Imaging 2 ApoTome Fluorescence Microscope for optical sectioning. Signal intensity and co-localization was analyzed with AxioVision software. For quantification, randomly selected images (n=10) were used. Signals were quantified in two randomly chosen boxes (150 µm²) per cell. Values represent means ± S.D.

Cell lysis, isolation of cellular membranes and Western immunoblotting - For lysis, cells were incubated in RIPA buffer (150 mM NaCl, 10 mM Tris pH 8.0, 1% NP-40, 0.5% Na-DOC, 0.1% SDS, 5 mM EDTA) supplemented with 1% phosphatase inhibitor and 1% proteinase inhibitor (Roche) for 15 minutes. Particulate materials were removed by centrifugation at 13,200 rpm for 15 minutes, and supernatants were used for further analyses.

To isolate cellular membranes, cells were incubated in hypotonic buffer D (Tris HCl 10 mM pH 7.5, NaCl 10 mM, EGTA 0.1 mM, Glycerol 2-Phosphate 25 mM and DTT 1 mM) supplemented with 1% proteinase inhibitor on ice for 10 minutes. Cells were then homogenized by using 21 gauge needles and centrifuged at 1000 rpm for 10 minutes to pellet nuclei. The supernatant was then centrifuged at 13,200 rpm for 30 minutes to obtain the membrane fraction as a pellet.

Membrane fractions or cellular lysates were separated by sodium deoxycholate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes (Schleicher & Schuell). Membranes were blocked in 5% non-fat milk for 1 h, incubated with primary antibodies overnight and appropriate secondary antibodies for 1 h. Proteins were detected by enhanced chemiluminescence (ECL) using ECL reagent (GE Healthcare) and an ECL imaging station (Chemidoc XRS, Bio-Rad). Quantification of signals was done by the Quantity One software package (Bio-Rad).

Subcellular fractionation – For subcellular fractionation, cells were subjected to a hypotonic shock as described above. Post nuclear fractions (3800 rpm, 5min) were loaded onto a discontinuous gradient (30%, 20%, 17.5%, 15%, 12.5%, 10%, 7.5% 5%, 2.5% OptiPrep™, Sigma Aldrich, 1.2 ml each) and separated at 100000 x g at 4°C for 8 h without break. Single fractions were collected at a volume of 1ml and proteins were precipitated with trichloroacetic acid.

Measurement of Aβ variants – Cells were grown on 6-well culture plates until 70% confluency in DMEM as described above. For collection of Aβ, 750 µl of fresh medium was added over-night. Conditioned media were cleared by centrifugation. Cells were briefly washed and lysed in RIPA buffer (150 mM NaCl, 10 mM Tris pH 8.0, 1% NP-40, 0.5% Na-DOC, 0.1% SDS, 5 mM EDTA). Both cell lysates and conditioned medium was analyzed by electrochemiluminescence technology (MesoScale Discovery) for Aβ38, Aβ40 and Aβ42 according manufacturers protocol.

Metabolic radiolabeling and pulse-chase experiments - Cells were grown in petri dishes until 80% confluency. Cells were washed with PBS and incubated in serum and methionine-free medium for 30 min. Cells were then incubated with 20 µCi of [35S]-radiolabeled methionine/cystein for 30 min to pulse-label newly synthesized proteins. After pulse-labeling, cells were washed with label free-medium containing 10% serum and a five-fold excess of unlabeled methionine, and chased for the indicated time periods. Cells were then lysed, and proteins separated by SDS-PAGE. After transfer to PVDF membrane, radiolabeled proteins were quantified by phospho-imaging.

In vitro γ-secretase assay - The in vitro γ-secretase assay was carried out as described previously (18,29). Briefly, cells were lysed in hypotonic buffer D and membranes were isolated as described previously. The membrane pellet was then re-suspended in citrate buffer (sodium citrate 150 mM, dH₂O, pH 6.4 adjusted with citric acid) supplemented with 1% protease/phosphatase.
Trehalose alters trafficking of APP

inhibitors and incubated in the absence or presence of γ-secretase modulators at 37 °C for 2 h. Samples were centrifuged at 13,200 rpm for 1 h. The resulting pellets and supernatants were separated by SDS-PAGE and proteins were detected by Western-immunoblotting.

Data analysis and statistics - Statistical analyses were carried out by calculation of standard deviation (SD) and Student's t test. Significance is indicated by asterisks as follows: * for p<0.05, ** for p<0.01, *** for p<0.001 and n.s.: not significant.

RESULTS

Trehalose impairs the metabolism of APP and decreases the secretion of Aβ - The degradation of APP and its CTFs involves autophagic and lysosomal pathways (17-19,25,26). To assess the effect of trehalose on APP metabolism, human neuroglioma H4 cells that endogenously express APP were incubated with trehalose for different time periods, and APP levels were analyzed by Western immunoblotting. Cell treatment with trehalose strongly increased levels of APP-full length (FL) (Fig. 1A, B), and even more pronounced that of APP-CTFs (Fig. 1A, C, D). Trehalose also significantly increased the secretion of soluble APP derived from α-secretory processing (sAPPα) into conditioned media. (Fig. 1E, F), suggesting that the increased levels of cellular APP-FL were not caused by inhibition of APP secretion.

To test whether trehalose exerts similar effects in other cell types, we also used human neuroblastoma SH-SY5Y, liver Hep-G2, and embryonic kidney 293 cells. Trehalose induced accumulation of APP-FL and particularly of APP-CTFs in all tested cell lines (Fig. 1G), very similar to the effects observed in human H4 cells.

We next wanted to test whether the trehalose-dependent increase in APP-FL and APP-CTFs is due to altered degradation. To inhibit de novo protein biosynthesis, H4 cells were incubated with cycloheximide (CHX) and chased in the absence or presence of trehalose. In the absence of trehalose, levels of APP-FL and its CTFs declined within 2 h after block of de novo protein synthesis (Fig. 1F). In the presence of trehalose, levels of APP-FL also declined. Notably, levels of APP-CTFs were stabilized and even increased after 1 and 2 h of CHX treatment in the presence of trehalose (Fig. 1H). The increase in APP-CTFs after block of protein biosynthesis could be explained by the ongoing processing of APP-FL by α- and β-secretase. These data indicate that trehalose inhibits the degradation of APP-CTFs without inhibition of secretory processing of APP-FL.

Levels of Aβ derived from endogenous APP in the different cell lines were below the detection limit (not shown). Thus, we used previously described fibroblasts that express either wild-type APP (APP-WT) or the familial AD associated Swedish mutant variant of APP (APP-SW) (30). As expected, levels of Aβ in conditioned media from cells expressing the APP-SW variant were much higher than that in media from APP-WT expressing cells (Fig. 2A, B). Incubation of cells with trehalose reduced the secretion of the different length variants Aβ38, Aβ40, and Aβ42 from both APP-WT and APP-SW expressing cells (Fig. 2A, B). Levels of cell-associated or intracellular Aβ were very low. Only Aβ40 could be detected in lysates of APP-SW expressing cells. Here, levels were slightly increased upon cell treatment with trehalose (Fig. 2B). These data demonstrate that trehalose decreases the secretion of Aβ, and also impairs the degradation of APP-CTFs.

Trehalose does not inhibit γ-secretase activity or stimulate mTOR dependent autophagy - γ-Secretase is critically involved in the cleavage of APP-CTFs and Aβ generation. Thus, we next tested the potential effect of trehalose on γ-secretase activity. Purified membranes of H4 cells were incubated in the presence or absence of γ-secretase by the specific inhibitor DAPT efficiently reduced the generation of AICD (Fig. 3A, B). However, trehalose did not decrease the formation of AICD (Fig. 3A, B), demonstrating that trehalose does not inhibit γ-secretase activity. To further test whether trehalose induced accumulation of APP-CTFs independent on γ-secretase inhibition, we next
used fibroblasts from wild-type (WT) and presenilin-1/2 double knock-out (PSdKO) mice. PSdKO cells lack both catalytically active variants of presenilins and thus have no γ-secretase activity. Accordingly, basal levels of APP-CTFs were higher in PSdKO than in WT cells (Fig. 3C, D). Interestingly, trehalose further increased APP-CTF levels in PSdKO cells (Fig. 3C, D), indicating that the observed accumulation of APP-CTFs upon cell treatment with trehalose is not caused by inhibition of γ-secretase activity. The combined data demonstrate that trehalose decreases the degradation of APP-CTFs without inhibiting γ-secretase.

We next analyzed the effects of trehalose on LC3, which is widely used as a marker for autophagosomes. Upon induction of autophagy, LC3 is converted from a cytosolic form (LC3-I) to a phosphatidylethanolamine-conjugated form (LC3-II), and thereby recruited to membranes of autophagosomes (31). Consistent with previous findings (21,22), trehalose induced a strong increase of LC3-II levels over time (Fig. 4A), resulting in elevated LC3-II/LC3-I ratios (Fig. 4B). However, this result would indicate that trehalose either increases autophagosome formation or decreases autophagic flux. To further verify the effects of trehalose on autophagy, we assessed p62 levels by immunoblotting. P62 binds directly to LC3 and is also degraded during autophagy (32). Consistent with increased LC3-II, we detected a significant increase of p62 upon treatment with trehalose (Fig. 4A, C). Thus, the accumulation of p62 supports a decreased clearance capacity of trehalose-treated cells. Interestingly, immunocytochemistry revealed that accumulated LC3 - partially co-localized with APP positive vesicles upon trehalose treatment, while both proteins were segregated in control cells (Fig. 4D-F).

Although trehalose is commonly used to modulate autophagic activity, very little is known how it regulates the autophagic machinery. We next analyzed proteins involved in the induction of autophagy, including the mammalian target of rapamycin (mTOR) found in mTOR complexes and BECN1, a major regulator protein of the class III phosphatidyl-inositol-3-kinase (PI3K) (8,33). Western blot analyses revealed no significant changes in the levels of BECN1 (Fig. 5A, B), total mTOR and phosphorylated mTOR (S2448) (Fig. 5A, C, D) upon cell treatment with trehalose, suggesting that trehalose did not affect these proteins involved in the induction of autophagy. The results are consistent with previous findings showing that effects of trehalose are independent on mTOR activity (21).

To further analyze the role of trehalose in the autophagic process and the metabolism of APP, we used Atg5KO cells. Atg5 plays a role at early steps of autophagosome formation and is required for the lipidation of LC3 (31). Accordingly, cells deficient for Atg5 are defective in the formation of autophagosomes (34). Fibroblasts of WT and Atg5-KO mice were treated with trehalose, and LC3 and APP were analyzed by Western immunoblotting. In WT cells, trehalose induced an increase in LC3-II resulting in an increased LC3-II/LC3-I ratio (Fig. 5E, F). In contrast, LC3-II was not detected in Atg5 KO cells. Due to defective conversion of LC3-I to LC3-II, LC3-I levels were strongly elevated in Atg5-KO cells (Fig. 5E, F). Interestingly, the treatment of Atg5-KO cells with trehalose still led to accumulation of APP-FL and particularly of its CTFs (Fig. 5E, G). The response of Atg5 KO cells was very similar to that of WT cells, indicating that the effects of trehalose on APP metabolism are independent on Atg5-dependent induction of autophagy. Together with the unchanged levels of BECN1 and mTOR phosphorylation (S2448) in trehalose-treated cells, an increase in LC3-II, APP-CTFs as well as elevation of p62 strongly suggest alterations of vesicular transport and/or autophagic flux upon cell treatment with trehalose. Trehalose also decreased the degradation of long-lived proteins (Fig. 5H), further indicating an impairment of autophagic flux.

Inhibition of APP-CTF degradation is selective for the disaccharide trehalose - The intracellular pathways by which trehalose is metabolized and regulates cell signaling are still unknown. Since trehalose is a disaccharide composed of two D-glucose residues, it was tested whether supplementation of glucose induces similar effects on the metabolism of APP and LC3. H4 cells were incubated with trehalose or additional glucose in the culture media. As observed before, trehalose treatment led to strong accumulation of LC3-II, APP-FL, and APP-CTFs. In contrast, glucose treatment did not change the ratio of LC3-II/LC3-I (Fig. 6B, C). Similarly,
Trehalose alters trafficking of APP

glucose also did not alter the ratio of APP-CTFs/APP-FL (Fig. 6B, D). Together, the data indicate that the effects of trehalose on autophagy-lysosomal function did not involve increased generation of glucose.

Maltose is a disaccharide similar to trehalose that is also composed of two glucose molecules. The two disaccharides only differ in the type of the glycosidic linkage between the two glucose residues. While the glucose residues in maltose are coupled by an α-1,4 linkage, they are coupled by an α-1,1 glycosidic linkage in trehalose (35) (Fig. 6A). Therefore, we tested whether trehalose-induced effects could be mimicked by the disaccharide maltose. However, in contrast to trehalose, maltose did not affect the levels of LC3 and APP (Fig. 6E-G). These findings indicate that the inhibition of LC3 and APP degradation is specific for the disaccharide trehalose.

Trehalose alters the subcellular localization and degradation of APP-CTFs - The present data strongly suggest an inhibitory effect of trehalose on APP metabolism in endolysosomal compartments. To test whether direct inhibition of lysosomal degradation could mimic the effects of trehalose on LC3 and APP, H4 cells were treated with trehalose or different lysosomal inhibitors including bafilomycin A1 and chloroquine. Bafilomycin A1 is a specific inhibitor of the vacuolar-type H(+)-ATPase, which inhibits acidification and therefore protein degradation in lysosomes (36). Chloroquine is a lysosomotrophic compound that also elevates/neutralizes the intraluminal pH of endolysosomal compartments (37). Both bafilomycin A1 and chloroquine led to accumulation of LC3-II and APP-CTFs (Fig. 7A-C). However, the effects of bafilomycin A1 and chloroquine differed quantitatively from that of trehalose. While LC3-II showed strongest accumulation upon direct inhibition of lysosomal activity with bafilomycin A1 or chloroquine, APP-CTF showed strongest accumulation upon cell treatment with trehalose (Fig. 7A-C).

Cathepsin D (Cat D) is an abundant aspartic endopeptidase in lysosomes (38,39). The precursor form of Cat D is proteolytically processed to an intermediate during its transport from the Golgi to acidic endolysosomal compartments. In the lysosomes, the intermediate Cat D is further processed to generate the active fragment as the C-terminal heavy chain (40,41). Thus, we assessed the effect of trehalose on the proteolytic processing of Cat D. Interestingly, cell treatment with trehalose strongly decreased the processing of Cat D as indicated by elevated level of the Cat D intermediate form, with concurrent decrease of the catalytically active fragment of Cat D (Fig. 7A). Accordingly, ratios of fully processed active Cat D to precursor and intermediate forms were strongly reduced upon cell incubation with trehalose (Fig. 7D). Consistent with previous reports showing that Cat D processing is affected by lysosomal pH (40), bafilomycin A1 and chloroquine also decreased the levels of the active forms of Cat D (Fig. 7A, D).

GFP-LC3 is being widely used as a fluorescent marker of autophagosomes. However, GFP is acid-sensitive, and thus its fluorescence decreases in acidic compartments, i.e. when GFP-LC3 containing autophagosomes fuse with endosomes and lysosomes (26). In contrast, the monomeric red fluorescent protein mCherry is acid-stable. Therefore, a tandem fusion of the acid-insensitive red fluorescent protein (mCherry) and the acid-sensitive green fluorescent protein (GFP) at the N-terminus of LC3 is a useful tool to assess fusion of LC3-positive autophagic vesicles with lysosomes by microscopy (37). H4 cells stably expressing mCherry-GFP-LC3 were cultured in the absence or presence of trehalose. As additional controls, cells were also incubated with chloroquine or starved in EBSS medium. Signals for mCherry and GFP were analyzed by fluorescence microscopy. Control cells showed predominantly mCherry positive punctae, but very few GFP positive punctae (Fig. 8A). Quantification revealed that the number of mCherry positive punctae was approximately ten-times higher than that of GFP positive punctae (Fig. 8B). This is consistent with efficient quenching of the GFP fluorescence in acidic autolysosomes, while the mCherry fluorescence is not affected in these compartments. Interestingly, cell treatment with trehalose not only increased the number of GFP positive punctae as compared to control cells, but also led to a large overlap with mCherry positive structures (Fig. 8A, B), indicating inefficient quenching of the GFP signal. Cell incubation with chloroquine had very similar effects as trehalose (Fig. 8A, B). Cell incubation with EBSS increased both mCherry and GFP
positive punctae compared to control cells (Fig. 8A, B). However, the number of mCherry positive punctae was approximately three-time higher than the number of GFP-LC3 positive punctae (Fig. 8B). As the incubation with EBSS enhances the induction of autophagy, LC3-I is efficiently converted to LC3-II and associates with autophagosomes. However, the efficient acidification of lysosomes and autolysosomes could lead to quenching of the GFP signal, thereby explaining the higher number of mCherry positive vesicles as compared to that of GFP positive punctae. The combined data strongly indicate that trehalose impairs the delivery of LC3 to and its degradation in lysosomal compartments.

To further test alterations in the subcellular distribution of APP-CTFs upon cell treatment with trehalose, we performed fractionation of vesicular compartments. In control cells, mature full-length APP and CTFs were detected in LC3, Rab7, Rab9 and LAMP2 positive fractions (Fig. 9). The treatment with trehalose resulted in redistribution of APP-CTFs, Rab7, Rab9, and LAMP2. Cell incubation with Baf A1 also led to accumulation of APP-CTFs in fractions that clearly segregated from APP-CTF positive fractions from trehalose treated cells (Fig. 9). The combined treatment of cells with trehalose and Baf A1 resulted in APP-CTF distribution similar to that from cells treated with Baf A1 alone. Fractionation of marker proteins for the trans-Golgi network (TGN46), and endoplasmic reticulum (calnexin) was not affected by the treatment with trehalose or Baf A1. These data suggest that cell treatment with trehalose affects the subcellular distribution and/or trafficking of APP in late endosomal and lysosomal compartments.

DISCUSSION

The present data demonstrate that trehalose decreases clearance of APP-CTFs and the secretion of Aβ. Cell biological experiments showed redistribution of APP-CTFs and other endosomal and lysosomal proteins upon trehalose treatment. Trehalose also led to accumulation of LC3-II and decreased the processing of Cat D. These data are consistent with impaired vesicular transport and fusion of endosomal and lysosomal compartments. The cleavage of APP by α- and β-secretases can occur at distinct cellular locations. While α-secretase could predominantly cleave APP in secretory vesicles and at the cell surface, β-secretase has an acidic pH optimum and shows preferential cleavage in acidic compartments, including late endosomes and lysosomes. The C-terminal fragments of APP generated by α- and β-secretase cleavage represent substrates for γ-secretase that resides predominantly in endolysosomal compartments or at the cell surface (42-46). Although trehalose led to strong accumulation of APP-CTFs, we observed rather decreased secretion of Aβ. Since trehalose did not inhibit γ-secretase, the findings suggest that trehalose rather decreases the delivery of the APP-CTFs to vesicular compartments containing γ-secretase activity. We also observed decreased proteolytic activation of cathepsin D that also occurs during endosomal transport and delivery to lysosomes upon cell treatment with trehalose. Subcellular fractionation indeed showed redistribution of APP-CTFs together with marker proteins of late endosomal (Rab7, Rab9) and lysosomal (LAMP2) compartments. The molecular mechanisms underlying these effects remain to be determined in more detail. However, the effects of trehalose on subcellular distribution differ from that induced by bafilomycin A1, suggesting that trehalose does not or at least not only alter lysosomal pH regulation.

Additional experiments using a tandem fusion mCherry-GFP tagged LC3 also demonstrated significant changes in the transport of LC3 to lysosomes upon trehalose treatment. While control cells showed predominantly mCherry punctae due to quenching of GFP in efficiently acidified autolysosomes, trehalose treatment increased the colocalization of mCherry and GFP. These data indicate inefficient delivery of LC3 to lysosomes.

Trehalose is a disaccharide composed two D-glucose molecules linked by an α-1,1 glycosidic linkage (35). Therefore, we tested whether trehalose-regulated effects might be caused by potential metabolites of trehalose or could be mimicked by other disaccharides. However, neither addition of glucose itself nor of the disaccharide maltose had overt effects on APP and LC3 levels, indicating that the observed effects are specific for trehalose, and not due to increased supply with glucose. Our data also indicate that the effects of trehalose are...
Trehalose alters trafficking of APP

independent on mTOR, BECN1 and Atg5. The data thus confirm and extend that trehalose induced effects do not involve changes in mTOR complex 1 activity (21).

The present findings are surprising, because trehalose has been shown to decrease cellular levels of the neurodegenerative disease-associated proteins huntingtin, α-synuclein and phosphorylated-tau in cellular and animal models (22-24), suggesting that trehalose promoted autophagy and lysosomal clearance of these proteins. A possible explanation for this contradiction might emerge from a recent study demonstrating the involvement of unconventional secretion of aggregated α-synuclein via exophagy in cases of impaired autophagosome-lysosome fusion or lysosomal function. Importantly, trehalose was shown to enhance α-synuclein secretion in PC12 catecholaminergic nerve cells (47). In addition, increased secretion of tau was also observed upon starvation and lysosomal inhibition in primary neurons, likely caused by release of autophagosomal contents into extracellular fluids (48). In our experiments cellular level of endogenously expressed tau and α–synuclein were not affected by trehalose (data not shown). Both proteins were not detected in conditioned media. However, we observed elevated levels of an overexpressed reporter protein for polyQ-containing aggregates upon cell treatment with trehalose (data not shown), suggesting that trehalose might increase the release of protein aggregates. Secretion of pathogenic polyQ protein from cultured cells has been reported previously (49).

Acknowledgments: We thank Drs. S. Höning and J. Höhfeld for providing Cathepsin D antibodies and mCherry-GFP-LC3 cDNA, respectively. We are also grateful to Dr. B. de Strooper and the RIKEN cell Bank for providing PS1/2 and Atg5 deficient cells, respectively.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contribution: NT and IK contributed equally to this study, performed and designed the experiments, and analyzed data. IYT also designed and analyzed the experiments. JW conceived the study, designed experiments, interpreted data and wrote the manuscript. All authors read and edited the manuscript.
REFERENCES

1. Selkoe, D. J. (2001) Alzheimer's disease: genes, proteins, and therapy. *Physiol. Rev.* **81**, 741-766
2. O'Brien, R. J., and Wong, P. C. (2011) Amyloid precursor protein processing and Alzheimer's disease. *Annu. Rev. Neurosci.* **34**, 185-204
3. Pasternak, S. H., Bagshaw, R. D., Guiral, M., Zhang, S., Ackerley, C. A., Pak, B. J., Callahan, J. W., and Mahuran, D. J. (2003) Presenilin-1, nicastrin, amyloid precursor protein, and gamma-secretase activity are co-localized in the lysosomal membrane. *J. Biol. Chem.* **278**, 26687-26694
4. Almeida, C. G., Takahashi, R. H., and Gouras, G. K. (2006) Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system. *J. Neurosci.* **26**, 4277-4288
5. Torres, M., Jimenez, S., Sanchez-Varo, R., Navarro, V., Trujillo-Estrada, L., Sanchez-Mejias, E., Carmona, I., Davila, J. C., Vizuete, M., Gutierrez, A., and Vitorica, J. (2012) Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic Abeta in transgenic APP/PS1 hippocampus. *Mol. Neurodegener.* **7**, 59
6. Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. (2008) Autophagy fights disease through cellular self-digestion. *Nature* **451**, 1069-1075
7. Klionsky, D. J. (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. *Nat. Rev. Mol. Cell Biol.* **8**, 931-937
8. Levine, B., and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. *Cell* **132**, 27-42
9. Kroemer, G., Marino, G., and Levine, B. (2010) Autophagy and the integrated stress response. *Mol. Cell* **40**, 280-293
10. Murrow, L., and Debnath, J. (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. *Annu. Rev. Pathol.* **8**, 105-137
11. Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migidishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., and Mizushima, N. (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. *Nature* **441**, 885-889
12. Ebato, C., Uchida, T., Arakawa, M., Komatsu, M., Ueno, T., Komiya, K., Azuma, K., Hirose, T., Tanaka, K., Kominami, E., Kawamori, R., Fujitani, Y., and Watada, H. (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. *Cell Metab.* **8**, 325-332
13. Komatsu, M., Wang, Q. J., Holstein, G. R., Friedrich, V. L., Jr., Iwata, J., Kominami, E., Chait, B. T., Tanaka, K., and Yue, Z. (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 14489-14494
14. Nakai, A., Yamaguchi, O., Takeda, T., Higuchi, Y., Hikoso, S., Taniike, M., Omiya, S., Mizote, I., Matsumura, Y., Asahi, M., Nishida, K., Hori, M., Mizushima, N., and Otsu, K. (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. *Nat. Med.* **13**, 619-624
15. Kundu, M., and Thompson, C. B. (2008) Autophagy: basic principles and relevance to disease. *Annu. Rev. Pathol.* **3**, 427-455
16. Jaeger, P. A., and Wyss-Coray, T. (2009) All-you-can-eat: autophagy in neurodegeneration and neuroprotection. *Mol. Neurodegener.* **4**, 16
17. Tian, Y., Chang, J. C., Fan, E. Y., Flajolet, M., and Greengard, P. (2013) Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. *Proc. Natl. Acad. Sci. U.S.A.* **110**, 17071-17076
18. Tamboli, I. Y., Hampel, H., Tien, N. T., Tolksdorf, K., Breiden, B., Mathews, P. M., Saftig, P., Sandhoff, K., and Walter, J. (2011) Sphingolipid storage affects autophagic metabolism of the amyloid precursor protein and promotes Abeta generation. *J. Neurosci.* **31**, 1837-1849
Trehalose alters trafficking of APP

19. Jaeger, P. A., Pickford, F., Sun, C. H., Lucin, K. M., Masliah, E., and Wyss-Coray, T. (2010) Regulation of amyloid precursor protein processing by the Beclin 1 complex. *PLoS One* 5, e11102

20. Richards, A. B., Krakowka, S., Dexter, L. B., Schmid, H., Wolterbeek, A. P., Waalkens-Berendsen, D. H., Shigoyuki, A., and Kurimoto, M. (2002) Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. *Food. Chem. Toxicol.* 40, 871-898

21. Sarkar, S., Davies, J. E., Huang, Z., Tunnaccliffe, A., and Rubinsztein, D. C. (2007) Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. *J. Biol. Chem.* 282, 5641-5652

22. Casarejos, M. J., Solano, R. M., Gomez, A., Peruco, J., de Yebenes, J. G., and Mena, M. A. (2011) The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. *Neurochem. Int.* 58, 512-520

23. Kruger, U., Wang, Y., Kumar, S., and Mandelkow, E. M. (2012) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. *Neurobiol. Aging* 33, 2291-2305

24. Schaeffer, V., Lavenir, I., Ozciliek, S., Tolnay, M., Winkler, D. T., and Goedert, M. (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. *Brain* 135, 2169-2177

25. Mathews, P. M., Guerra, C. B., Jiang, Y., Grbovic, O. M., Kao, B. H., Schmidt, S. D., Dinakar, R., Mercken, M., Hille-Rehfeld, A., Rohrer, J., Mehta, P., Cataldo, A. M., and Nixon, R. A. (2002) Alzheimer’s disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Abeta secretion: role for altered lysosomal hydrolase distribution in beta-amyloidogenesis. *J. Biol. Chem.* 277, 5299-5307

26. Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G., and Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. *J. Biol. Chem.* 282, 24131-24145

27. Nyabi, O., Pype, S., Mercken, M., Herreman, A., Saftig, P., Craessaerts, K., Serneels, L., Annaert, W., and De Strooper, B. (2002) No endogenous A beta production in presenilin-deficient fibroblasts. *Nat. Cell. Biol.* 4, E164

28. Tamboli, I. Y., Prager, K., Thal, D. R., Thelen, K. M., Dewachter, I., Pietrzik, C. U., St George-Hyslop, P., Sisodia, S. S., De Strooper, B., Heneka, M. T., Filippov, M. A., Muller, U., van Leuven, F., Lutjohann, D., and Walter, J. (2008) Loss of gamma-secretase function impairs endocytosis of lipoprotein particles and membrane cholesterol homeostasis. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 28, 12097-12106

29. Wunderlich, P., Glebov, K., Kemmerling, N., Tien, N. T., Neumann, H., and Walter, J. (2013) Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and gamma-secretase-dependent intramembranous cleavage. *J. Biol. Chem.* 288, 33027-33036

30. Karaca, I., Tamboli, I. Y., Glebov, K., Richter, J., Fell, L. H., Grimm, M. O., Haupenthal, V. J., Hartmann, T., Graier, M. H., van Echten-Deckert, G., and Walter, J. (2014) Deficiency of sphingosine-1-phosphate lyase impairs lysosomal metabolism of the amyloid precursor protein. *J. Biol. Chem.* 289, 16761-16772

31. Otomo, C., Metlagel, Z., Takaesu, G., and Otomo, T. (2013) Structure of the human ATG12–ATG5 conjugate required for LC3 lipidation in autophagy. *Nat. Struct. Mol. Biol.* 20, 59-66

32. Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. *J. Cell Biol.* 171, 603-614

33. Laplante, M., and Sabatini, D. M. (2009) mTOR signaling at a glance. *J. Cell Sci.* 122, 3589-3594
34. Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. *J. Cell Biol.* 152, 657-668

35. Venables, M. C., Brouns, F., and Jeukendrup, A. E. (2008) Oxidation of maltose and trehalose during prolonged moderate-intensity exercise. *Med. Sci. Sports Exerc.* 40, 1653-1659

36. Yoshimori, T., Yamamoto, A., Moriyama, Y., Futai, M., and Tashiro, Y. (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)–ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. *J. Biol. Chem.* 266, 17707-17712

37. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., Aguirre-Ghiso, J. A., Ahn, H. J., Ait-Mohamed, O., Ait-Si-Ali, S., Akematsu, T., Akira, S., Al-Younes, H. M., Al-Zeer, M. A., Albert, M. L., Albin, R. L., Alegre-Abarrategui, J., Aleo, M. F., Alirezaei, M., Almasan, A., Almonte-Becerril, M., Amano, A., Amaravadi, R., Amarnath, S., Amer, A. O., Andrieu-Abadie, N., Anantharam, V., Ann, D. K., Anoopkumar-Dukie, S., Aoki, H., Apostolova, N., Arancia, G., Aris, J. P., Asanuma, K., Asare, N. Y., Ashida, H., Askanas, V., Askew, D. S., Auburger, P., Baba, M., Backues, S. K., Baehrecke, E. H., Bahr, B. A., Bai, X. Y., Bailly, Y., Baiocchi, R., Baldini, G., Balduini, W., Ballabio, A., Bamber, B. A., Bampton, E. T., Banhegyi, G., Bartholomew, C. R., Basbaum, D. C., Bast, R. C., Jr., Batoko, H., Bay, B. H., Beau, I., Bechet, D. M., Bégley, T. J., Behl, C., Behrends, C., Bekri, S., Bellaire, B., Bendall, L. J., Benetti, L., Berliocchi, L., Bernardi, H., Bernassola, F., Besteiro, S., Bhatia-Kissova, I., Bi, X., Biard-Piechaczyk, M., Blum, J. S., Boise, L. H., Bonaldo, P., Boone, D. L., Bornhauser, B. C., Bortoluci, K. R., Bosss, I., Bost, F., Bourquin, J. P., Boya, P., Boyer-Guittaut, M., Bozhkov, P. V., Brady, N. R., Brancolini, C., Breech, A., Brennan, J. E., Brennand, A., Bresnick, E. H., Brest, P., Bridges, D., Bristol, M. L., Brooks, P. S., Brown, E. J., Brumell, J. H., Brunetti-Pierri, N., Brunk, U. T., Bulman, D. E., Bulmam, S. J., Bulynck, G., Burbulla, L. F., Bursch, W., Butchar, J. P., Buzgariu, W., Bydlowski, S. P., Cadwell, K., Cahova, M., Cai, D., Cai, D., Calabretta, B., Calvo-Garrido, J., Camougrand, N., Campanella, M., Campos-Salinas, J., Candi, E., Cao, L., Caplan, A. B., Carding, S. R., Cardoso, S. M., Carew, J. S., Carlin, C. R., Carmignac, V., Carneiro, L. A., Carra, S., Casari, G., Casas, C., Castino, R., Cebollero, E., Ceconi, F., Celli, J., Chaouchouay, H., Chae, H. J., Chai, C. Y., Chan, D. C., Chan, E. Y., Chang, R. C., Che, C. M., Chen, C. C., Chen, C. G., Chen, G. Q., Chen, M., Chen, Q., Chen, S. S., Chen, W., Chen, X., Chen, Y. G., Chen, Y., Chen, Y. J., Cheng, A., Cheng, C. H., Cheng, Y., Cheong, H., Cheong, J. H., Cherry, S., Chess-Williams, R., Cheung, Z. H., Chevet, E., Chiang, H. L., Chiarelli, R., Chiba, T., Chin, L. S., Chiu, S. H., Chisari, F. V., Cho, C. H., Cho, D. H., Choi, A. M., Choi, D., Choi, K. S., Choi, M. E., Chouaib, S., Choube, D., Choube, V., Chu, C. T., Chuan, H. T., Chueh, S. H., Chun, T., Chwae, Y. J., Chye, M. L., Ciarcia, R., Ciriolo, M. R., Clague, M. J., Clarke, R. S., Clarke, P. G., Clarke, R., Codogno, P., Coller, H. A., Colombo, M. I., Comincini, S., Condello, M., Condorelli, F., Cookson, M. R., Coombs, G. H., Coppens, I., Corbalan, R., Cossart, P., Costelli, P., Costes, S., Coto-Montes, A., Couve, E., Coxon, F. P., Cregg, J. M., Crespo, J. L., Cronje, M. J., Cuervo, A. M., Cullen, J. J., Czaja, M. J., D’Amelio, M., Darfeuille-Michaud, A., Davids, L. M., Davies, F. E., Del Felici, M., de Groot, J. F., de Haan, C. A., De Martino, L., De Milito, A., De Tata, V., Deb Nath, J., Degterev, A., Dehay, B., Delbridge, L. M., Demarchi, F., Deng, Y. Z., Dengjel, J., Dent, P., Denton, D., Deretic, V., Desai, S. D., Devenish, R. J., Di Gioacchino, M., Di Paolo, G., Di Pietro, C., Diaz-Araya, G., Diaz-Laviada, I., Diaz-Nido, M., Dikic, I., Dinesh-Kumar, S. P., Ding, W. X., Distelhorst, C. W., Diwan, A., Djavaheri-Mergny, M., Dokudovskaya, S., Dong, Z., Dorsey, F. C., Dosenko, V., Dowling, J. J., Dook, S., Drexel, M., Drew, M. E., Duan, Q., Duchosal, M. A., Duff, K., Dugail, I., Durbej, M., Duszenko, M., Edelstein, C. L., Edinger, A. L., Egea, G., Eichinger, L., Eissa, N. T., Ekmekcioglu, S., El-Deiry, W. S., Elazar, Z., Elgendy, M., Ellerby, L. M., Eng, K. E., Engelbrecht, A. M., Engelder, S., Erenpreisa, J., Esclatine, R., Esclatine, E. L., Espert, L., Espina, V., Fan, H., Fan, J., Fan, Q. W., Fan, Z., Fang, S., Fang, Y., Fanto, M., Fanzoni, A., Farkas, T., Farre, J. C., Faure, M., Fechheimer, M., Feng, C.
Trehalose alters trafficking of APP...
Trehalose alters trafficking of APP

Lotze, M. T., Low, P., Lu, B., Lu, Z., Luciano, F., Lukacs, N. W., Lund, A. H., Lynch-Day, M. A., Ma, Y., Macian, F., MacKeigan, J. P., MacLeod, K. F., Madeo, F., Maiuri, L., Maiuri, M. C., Malagoli, D., Malicdan, M. C., Malorni, W., Man, N., Mandelkow, E. M., Manon, S., Manov, I., Mao, K., Mao, X., Mao, Z., Maramboud, P., Marazziti, D., Marcel, Y. L., Marchbank, K., Marchetti, P., Marciniak, S. J., Marcondes, M., Mardi, M., Marfè, G., Marino, G., Markaki, M., Marten, M. R., Martin, S. J., Martinand-Mari, C., Martinez, W., Martinez-Vicente, M., Masini, M., Matarrese, P., Matsuo, S., Matteoni, R., Mayer, A., Mazure, N. M., McConkey, D. J., McConnell, M. J., McDermott, C., McDonald, C., McNerney, G. M., McKenna, S. L., McLaughlin, B., McLean, P. J., McMaster, C. R., McQuibban, G. A., Meijer, A. J., Meisler, M. H., Melendez, A., Melia, T. J., Melino, G., Mena, M. A., Menendez, J. A., Menna-Barreto, R. F., Menon, M. B., Menzies, F. M., Mercer, C. A., Merighi, A., Merry, D. E., Meschini, S., Meyer, C. G., Meyer, T. F., Miao, C. Y., Miao, J. Y., Michels, P. A., Michiel, C., Mijaljica, D., Milojkovic, A., Minucci, S., Miracco, C., Miranti, C. K., Mitroulis, I., Miyazawa, K., Mizushima, N., Mograbi, B., Mohseni, S., Molero, X., Mollereau, B., Molinero, F., Momoi, T., Monastyrski, I., Monick, M. M., Monteiro, M. J., Moore, M. N., Mora, R., Moreau, K., Moreira, P. I., Moriyasu, Y., Moscat, J., Mostowy, S., Mottram, J. C., Motyl, T., Moussa, C. E., Muller, S., Munger, K., Munz, C., Murphy, L. O., Murphy, M. E., Musaro, A., Mysorekar, I., Nagata, E., Nagata, K., Nahimana, A., Nair, U., Nakagawa, T., Nakahira, K., Nakano, H., Nakatogawa, H., Nanjundan, M., Naqvi, N. I., Narendra, D. P., Nandi, R., Narita, M., Navarro, M., Nawrocki, S. T., Nazarko, T. Y., Nemchenko, A., Netea, M. G., Neufeld, T. P., Ney, P. A., Nezis, I. P., Nguyen, H. P., Nie, D., Nishino, I., Nislow, C., Nixon, R. A., Noda, T., Noel, A. A., Nogalska, A., Noguchi, S., Nokshenov, L., Novak, I., Nozaki, T., Nukina, N., Nurnberger, A., Nyfeler, B., Obara, K., Oberley, T. D., Oddo, S., Ogawa, M., Ohashi, T., Okamoto, K., Oleinick, N. L., Oliver, F. J., Olsen, L. J., Olsson, S., Opata, O., Osborne, T. F., Ostrander, G. K., Otsu, K., Ou, J. H., Ouimet, M., Overholtzer, M., Ozpolat, B., Pagani, P., Pagnini, U., Pallet, N., Palmer, G. E., Palumbo, C., Pan, T., Panaretakis, T., Panayotou, U. B., Papackova, Z., Papassideri, I., Paris, I., Park, J., Park, O. K., Parys, J. B., Parzych, K. R., Patschan, S., Patterson, C., Pattingre, S., Pawelek, J. M., Peng, J., Perlmutter, D. H., Perrault, J. I., Perry, G., Pervaiz, S., Peter, M., Peters, G. J., Petersen, M., Petrovski, G., Phang, J. M., Piacentini, M., Pierre, P., Pierron, G., Pinkas-Kramarski, R., Pires, A., Piri, N., Platanias, L. C., Poggeler, S., Poir, M., Poletti, A., Pous, C., Pozuelo-Rubio, M., Pratapasius-Ibba, M., Prasad, A., Prescott, M., Priaule, M., Produit-Zengaffinen, N., Progulske-Fox, A., Proikas-Cezanne, T., Przedborski, S., Przyklenk, K., Puertoil, R., Puyal, J., Qian, S. B., Qin, L., Qiu, Z. H., Quaggin, S. E., Raben, N., Rabinowich, H., Rabkin, S. W., Rahman, I., Rami, A., Ramm, G., Rangell, G., Randow, F., Rao, V. A., Rathmell, J. C., Ravikumar, B., Ray, S. K., Reed, B. H., Reed, J. C., Reggiori, F., Regnier-Vigouroux, A., Reichert, A. S., Reiners, J. J., Reiter, R. J., Reitman, J. L., Rhodes, C. J., Ritik, K., Rizzo, E., Robbins, J., Roberge, M., Roca, H., Rocchi, M. C., Rodon, S., Rodemann, H. M., Rodriguez de Cordoba, S., Rohrer, B., Roninson, I. B., Rosen, K., Rost-Roszkowska, M. M., Rous, M., Rouschop, K. M., Rubert, B. P., Rubinshtein, D. C., Rudkevsciel, K., Rucker, E. B., 3rd, Rudich, A., Rudolf, E., Ruiz-Opazo, N., Russo, R., Rusten, T. E., Ryan, K. M., Ryter, S. W., Sabatini, D. M., Sadoshima, J., Saha, T., Salem, T., Sakagami, H., Sakai, Y., Salekdeh, G. H., Salomeno, P., Salavert, P. M., Salvesen, G., Salvioli, R., Sanchez, A. M., Sanchez-Alcacer, J. A., Sanchez-Prieto, R., Sandri, M., Sankar, U., Sandoval, P., Santambrogio, L., Saran, S., Sarkar, S., Sarwal, M., Sasakawa, C., Sasa, M., Sato, K., Sato, M., Schapira, A. H., Scharl, M., Schatzl, H. M., Scheper, W., Schaffino, S., Schneider, C., Schneider, M. E., Schneider-Stock, R., Schoenlein, P. V., Schorderet, D. F., Schuller, C., Schwartz, G. K., Scorrano, L., Sealy, L., Seglen, P. O., Segura-Aguilar, J., Seiiz, I., Seleverstov, O., Sell, C., Seo, J. B., Separovic, D., Setaluri, V., Setoguchi, T., Settembre, C., Shacka, J. J., Shammugam, M., Shapiro, I. M., Shaulian, E., Shaw, R. J., Shelhamer, J. H., Shen, H. M., Shen, W. C., Shen, Z. H., Shi, Y., Shibuya, K., Shidoji, Y., Shieh, J. J., Shih, C. M., Shimada, Y., Shimizu, S., Shintani, T., Shirihi, O. S., Shore, G. C., Sibirny, A. A., Sidhu, S. B.,
Trehalose alters trafficking of APP

Sikorska, B., Silva-Zacarin, E. C., Simmons, A., Simon, A. K., Simon, H. U., Simone, C., Simonsen, A., Sinclair, D. A., Singh, R., Sinha, D., Sinicrope, F. A., Sirko, A., Siu, P. M., Sivridis, E., Skop, V., Skulachev, V. P., Slack, R. S., Smaili, S. S., Smith, D. R., Soengas, M. S., Soldati, T., Song, X., Sood, A. K., Soong, T. W., Sotgia, F., Spector, S. A., Spies, C. D., Springer, W., Sriniivasula, S. M., Stefanis, L., Steffan, J. S., Stendel, R., Stenmark, H., Stephanou, A., Stern, S. T., Sternberg, C., Stork, B., Straffors, P., Subauste, C. S., Sui, X., Sulzer, D., Sun, J., Sun, S. Y., Sun, Z. J., Sun, J. K., Suzuki, K., Suzuki, T., Swanson, M. S., Swanton, C., Sweeney, S. T., Sy, L. K., Szabadkai, G., Tabas, I., Taegtmeyer, H., Tafani, M., Takacs-Vellai, K., Takano, Y., Takegawa, K., Takemura, G., Takeda, K., Takeda, H., Tanaka, K., Tang, D., Tanida, I., Tannous, B. A., Tavernarakis, N., Taylor, G. S., Taylor, G. A., Taylor, J. P., Terada, L. S., Terman, A., Tettamanti, G., Thevissen, K., Thompson, C. B., Thorburn, A., Thumm, M., Tian, F., Tian, Y., Vicencio, J. M., Vierstra, R. D., Vila, M., Vindis, C., Viol, G., Viscomi, M. T., Voitskhovskaja, O. V., von Haefen, C., Votrubka, M., Wada, K., Wade-Martins, R., Walker, C. L., Walsh, C. M., Walter, J., Wan, X. B., Wang, A., Wang, C., Wang, D., Wang, F., Wang, G., Wang, H., Wang, H. G., Wang, H. D., Wang, J., Wang, K., Wang, M., Wang, R. C., Wang, X., Wang, Y. J., Wang, Y., Wang, Z., Wang, Z. C., Wasink, D. G., Ward, D. M., Watada, H., Waters, S. L., Webster, P., Wei, L., Weihl, C. C., Weiss, W. A., Welford, S. M., Wen, L. P., Whitehouse, C. A., Whitton, J. L., Whitworth, A. J., Wileman, T., Wiley, J. W., Wilkinson, S., Willbold, D., Williams, R. L., Williams, P. R., Wouters, B. G., Wu, C., Wu, D. C., Wu, W. K., Wyttenbach, A., Xavier, R. J., Xi, Z., Xia, P., Xiao, G., Xie, Z., Xu, D. Z., Xu, J., Xu, L., Xu, X., Yamamoto, A., Yamashina, S., Yamashita, M., Yan, X., Yanagida, M., Yang, D. S., Yang, E., Yang, J. M., Yang, S. Y., Yang, W., Yang, W. Y., Yang, Z., Yao, M. C., Yao, T. P., Yeganeh, B., Yen, W. L., Yin, J. J., Yin, X. M., Yoo, O. J., Yoon, G., Yoon, S. Y., Yorimitsu, T., Yoshikawa, Y., Yoshimori, T., Yoshimoto, K., You, H. J., Youle, R. J., Younes, A., Yu, L., Yu, S. W., Yu, W. H., Yuan, Z. M., Yue, Z., Yun, C. H., Yuzaki, M., Zabirnyk, O., Silva-Zacarin, E., Zacks, D., Zackenhaus, E., Zaffaroni, N., Zakeri, Z., Zeh, H. J., Zed, T. S., Zeitlin, S., Zhang, H., Zhang, H. L., Zhang, J., Zhang, J. P., Zhang, L., Zhang, M., Zhang, Y. X., Zhao, M., Zhao, Y., Zhao, Z. J., Zheng, X., Zhivotovsky, B., Zhong, Q., Zhou, C. Z., Zhu, C., Zhu, W. G., Zhu, X. F., Zhu, X., Zhu, Y., Zoladek, T., Zong, W. X., Zorzano, A., Zschocke, J., and Zuckerbraun, B. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445-544

38. Benes, P., Vetvicka, V., and Fusek, M. (2008) Cathepsin D--many functions of one aspartic protease. Crit. Rev. Oncol. Hematol. 68, 12-28

39. Metcalf, P., and Fusek, M. (1993) Two crystal structures for cathepsin D: the lysosomal targeting signal and active site. EMBO J. 12, 1293-1302

40. Gieselmann, V., Hasilik, A., and von Figura, K. (1985) Processing of human cathepsin D in lysosomes in vitro. J. Biol. Chem. 260, 3215-3220

41. Richo, G. R., and Conner, G. E. (1994) Structural requirements of procathepsin D activation and maturation. J. Biol. Chem. 269, 14806-14812

42. Walter, J., Kaether, C., Steiner, H., and Haass, C. (2001) The cell biology of Alzheimer's disease: uncovering the secrets of secretases. Current opinion in neurobiology 11, 585-590

43. Walter, J., and van Echten-Deckert, G. (2013) Cross-talk of membrane lipids and Alzheimer-related proteins. Molecular neurodegeneration 8, 34

44. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. (1992) Targeting of cell-surface beta-amylloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500-503
45. De Strooper, B., Vassar, R., and Golde, T. (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. *Nat. Rev. Neurol.* 6, 99-107
46. Haass, C., Kaether, C., Thinakaran, G., and Sisodia, S. (2012) Trafficking and proteolytic processing of APP. *Cold Spring Harbor perspectives in medicine* 2, a006270
47. Ejlerskov, P., Rasmussen, I., Nielsen, T. T., Bergstrom, A. L., Tohyama, Y., Jensen, P. H., and Vilhardt, F. (2013) Tubulin polymerization-promoting protein (TPPP/p25alpha) promotes unconventional secretion of alpha-synuclein through exophagy by impairing autophagosome-lysosome fusion. *J. Biol. Chem.* 288, 17313-17335
48. Mohamed, N. V., Plouffe, V., Remillard-Labrosse, G., Planel, E., and Leclerc, N. (2014) Starvation and inhibition of lysosomal function increased tau secretion by primary cortical neurons. *Sci. Rep.* 4, 5715
49. Popiel, H. A., Takeuchi, T., Fujita, H., Yamamoto, K., Ito, C., Yamane, H., Muramatsu, S., Toda, T., Wada, K., and Nagai, Y. (2012) Hsp40 gene therapy exerts therapeutic effects on polyglutamine disease mice via a non-cell autonomous mechanism. *PLoS One* 7, e51069
50. Yu, W. H., Cuervo, A. M., Kumar, A., Peterhoff, C. M., Schmidt, S. D., Lee, J. H., Mohan, P. S., Mercken, M., Farmery, M. R., Tjernberg, L. O., Jiang, Y., Duff, K., Uchiyama, Y., Naslund, J., Mathews, P. M., Cataldo, A. M., and Nixon, R. A. (2005) Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer's disease. *J. Cell Biol.* 171, 87-98
51. Yu, W. H., Kumar, A., Peterhoff, C., Shapiro Kulnane, L., Uchiyama, Y., Lamb, B. T., Cuervo, A. M., and Nixon, R. A. (2004) Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for beta-amyloid peptide over-production and localization in Alzheimer's disease. *Int. J. Biochem. Cell Biol.* 36, 2531-2540
52. Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N. R., Doi, H., Kurosawa, M., Nekooki, M., and Nukina, N. (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. *Nat. Med.* 10, 148-154
53. Singer, M. A., and Lindquist, S. (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. *Mol. Cell* 1, 639-648
54. Magazu, S., Migliardo, F., and Telling, M. T. (2007) Study of the dynamical properties of water in disaccharide solutions. *Eur. Biophys. J.* 36, 163-171

The abbreviations used are: APP, amyloid precursor protein; Aβ, amyloid β-peptide; AICD, APP intracellular domain; ATG, autophagy related gene; BECN1, beclin-1; CTF, C-terminal fragment; EBSS, Earle’s balanced salt solution; FL, full-length; cat D, cathepsin D; LC3, microtubule-associated protein 1 light chain 3; NPC, Niemann-Pick type C; mTOR, mammalian target of rapamycin, PI3K, phosphatidylinositol 3 kinase; WT, wild-type; PS, presenilin.
FIGURE LEGENDS

FIGURE 1. Trehalose induces accumulation of APP and APP-CTFs. A, Western immunoblot of APP and APP-CTFs. H4 cells were incubated in the presence or absence of 100 mM trehalose (Tre) for the indicated time periods. Cell lysates were subjected to SDS-PAGE and Western immunoblotting. β-Actin was used as loading control. B-D, Quantification of APP-full length (FL) (B), APP-CTFs (C) and the ratios of APP-CTFs/FL (D) by ECL imaging. Values represent means ± S.D. of six biological replicates. (E) H4 cells were incubated in the presence or absence of 100 mM trehalose (Tre) for 24 hrs. Soluble APPα (sAPPα) in conditioned media, and APP-FL and APP-CTFs in cell lysates were analyzed by western immunoblotting. (F) Quantification of sAPPα in media by ECL imaging. Values represent means ± S.D. of three biological replicates. G, The indicated cell types (SH-SY5Y, HepG2, HEK293) were incubated in the presence or absence of 100 mM trehalose for 24 h. Cells were lysed and proteins detected by Western immunoblotting. (H) H4 cells were incubated in the presence or absence of 100 mM trehalose (Tre) for 2 hrs. After addition of cycloheximide (CHX, 20 µg/ml), cells were further incubated for the indicated time periods. Cellular membranes were isolated and APP-FL and APP-CTFs detected by Western immunoblotting.

FIGURE 2. Trehalose decreases the secretion of Aβ. Mouse embryonic fibroblast stably expressing APP-wild type (WT) (A) or APP-swedish (SW) (B) were incubated for 24 hrs in the absence or presence of trehalose. Levels of extracellular (medium) and intracellular (lysate) Aβ variants were determined by electrochemiluminescence. n.d., not detectable. Values represent means ± S.D. of three biological replicates.

FIGURE 3. Trehalose impairs degradation of APP CTFs without inhibition of γ-secretase activity. A, γ-Secretase in vitro assay. Isolated membranes of H4 cells were incubated in citrate buffer supplemented with either 10 µM DAPT or 100 mM trehalose at 37°C for 2 h and then centrifuged to separate pellets and supernatants. Proteins of the pellet and supernatant fractions were separated by SDS-PAGE. Subsequently, APP-CTFs and APP intracellular domain (AICD) were detected by immunoblotting in pellet and supernatant fractions, respectively. B, Quantification of the AICD/APP-CTFs ratio from the blot (A) (n=2). C, Immunoblotting of APP in lysates of wild-type (WT) and presenilin 1/2 double knock-out (PSdKO) MEFs after incubation in the absence or presence of 100 mM trehalose for 24 h. D, Quantification of the APP-CTFs/APP-FL ratio from (C). Values represent means ± S.D. of duplicate experiments.

FIGURE 4. Trehalose increases levels of autophagy markers. A, Western immunoblot analyses of the autophagosomal marker proteins LC3 and p62 in H4 cells treated with 100 mM Trehalose for indicated time periods. B-C, Quantification of the LC3-II/LC3-I ratio (B) and p62 (C) were performed by ECL imaging. Values represent means ± S.D. of triplicates. D, Immunocytochemical analyses of LC3 and APP in control and trehalose-treated cells. Cells were co-stained with anti-LC3 and anti-APP C-terminal specific primary antibodies, and Alexa Fluor 546 and Alexa Fluor 488-coupled secondary antibodies, respectively. Scale bar represents 10 µm. E, The colocalization of APP and LCe in control and trehalose-treated cells was estimated through the Pearson's correlation coefficient by using GraphPad Prism software. F, Quantification of LC3/APP punctae in control and trehalose-treated cells (n=20).
FIGURE 5. Effects of trehalose are independent on mTOR and Atg5. A, Western immunoblot of Beclin-1 (BECN1) and mTOR from lysates of H4 cells after cell incubation with or without trehalose for 24 h. B-D, Quantification of BECN1 (B), mTOR (C) and phosphorylated mTOR (S2448) (D) by ECL imaging. E, Western immunoblot of LC3 and APP from lysates of MEF wild-type (WT) and MEF Atg5 knock-out (Atg5KO). F-G, Quantification of the ratios LC3-II/LC3-I (F) and APP-CTFs/FL (G). Values represent means ± S.D of triplicate experiments. H, Trehalose reduces the degradation of long-lived proteins. H4 cells were pulse-labeled with 35Smethionine/cysteine, and then chased in the presence or absence of 100 mM trehalose for the indicated time periods as described under experimental procedures. Values represent means ± S.D. of triplicate experiments; p<0.001.

FIGURE 6. Selective effect of trehalose on the degradation of LC3 and APP-CTFs. A, Chemical structures of trehalose, characterized by an α-1,1 glycosidic linkage between two glucose (Gluc) residues (a) and maltose, characterized by an α-1,4 linkage between two glucose residues (b) (54). B, Western immunoblot of LC3 and APP from H4 cellular lysates after treatment in the absence or presence of 100 mM trehalose or 150 mM glucose for 24 h. C-D, Quantification of the ratios of LC3-II/LC3-I (C) and APP-CTFs/APP-FL (D). E, Western immunoblot of LC3 and APP from H4 cellular lysates after cell incubation in the absence or presence of 100 mM trehalose or 100 mM maltose for 24 h. F-G, Quantification of LC3-II/LC3-I (F) and APP-CTFs/APP-FL (G) ratios. Values represent means ± S.D of triplicate experiments.

FIGURE 7. Impairment of Cathepsin D processing upon Trehalose treatment or inhibition of lysosomal acidification-. A, H4 cells were incubated in the absence or presence of 100 mM trehalose for 24 h, 50 nM bafilomycin A1 (Baf) for 12 h, or 50 μM chloroquine (Chlo) for 12 h. Western immunoblot detection of LC3, APP and Cathepsin D (Cat D). B-D, Quantification of LC3 (B), APP (C) and Cat D (D). Values represent means ± S.D of duplicate experiments.

FIGURE 8. Altered trafficking of LC3 upon cell treatment with trehalose. A, H4 cells stably expressing mCherry-GFP-LC3 were treated with 100 mM trehalose for 24 h, 50 μM chloroquine (Chlo) for 12 h or starved in EBSS medium for 3 h. Images are representative maximum-intensity layers of Apotome optical sections. White arrowheads indicate mCherry- and GFP-positive vesicles. B, mCherry- and GFP-positive punctae were quantified as described in the experimental procedures. Scale bar 10 μm.

FIGURE 9. Trehalose alters subcellular localization of APP-CTFs. H4 cells were incubated in medium only (Ctr), with trehalose (Tre) or bafilomycin A1 (Baf A1), separately, or with a combination of trehalose and bafilomycin A1 (Tre+BafA1) for 24 hours, and subjected subcellular fractionation by density gradient centrifugation (see experimental procedures). The indicated proteins were detected by Western immunoblotting. Results are representative of two independent experiments.
Trehalose alters trafficking of APP

Figure 1

A

Tre [h]	0	24	48	96
APP-FL				
APP-CTFs				
β-Actin				

B

APP-FL levels [a.u.]

Tre [h] 0 24 48 96

C

APP-CTF levels [a.u.]

Tre [h] 0 24 48 96

D

APP-CTFs/FL ratio [a.u.]

Tre [h] 0 24 48 96

E

H4 cells

	Ctr	Tre
sAPPα		
APP-FL		
APP-CTFs		
β-Actin		

F

sAPPα (a.u.)

	Ctr	Tre
sAPPα		

G

SH-SY5Y

H

CHX [h] 0 1 2

	Ctr	Tre		
APP-FL				
APP-CTFs				
β-Actin				
Trehalose alters trafficking of APP

Figure 2

APP-WT

APP-SWE

A

B

by guest on July 10, 2020
http://www.jbc.org/
Downloaded from

Downloaded from
http://www.jbc.org/
Trehalose alters trafficking of APP

Figure 3

A. Western blot analysis of APP-CTFs and AICD in cells treated with different conditions.

B. Graph showing the ratio of AICD/APP-CTFs in different treatments.

C. Western blot analysis of APP-FL and APP-CTFs in WT and PSdKO cells.

D. Graph showing the ratio of APP-CTFs/FL in WT and PSdKO cells.
Trehalose alters trafficking of APP

Figure 4

A

Tre [h]	0	24	48	96
LC3-I				
LC3-II				
p62				
β-Actin				

B

LC3-II/LC3-I ratio [a.u.]

C

p62 levels [a.u.]

D

LC3 | APP | Merged

Ctrl

Tre

E

Pearson's correlation coefficient (R=0.171)

F

Pearson's correlation coefficient (R=0.341)

LC3/APP positive punctae/cell

Ctrl | Tre

Figure 5

A

B

C

D

E

F

G

H

Trehalose alters trafficking of APP
Trehalose alters trafficking of APP

Figure 6

A (a) Trehalose

(b) Maltose

B

C

D

E

F

G

β-Actin

15

37

kDa

kDa

Figure 6
Trehalose alters trafficking of APP

Figure 7

A

LC3-I
LC3-II
APP-CTFs
precursor
intermediate
active
β-Actin

Cat D

B

LC3-II/LC3-I ratio [a.u.]
Ctr Tre Baf Chlo

C

APP-CTFs expression [a.u.]
Ctr Tre Baf Chlo

D

Cat D-active/FL ratio [a.u.]
Ctr Tre Baf Chlo
Trehalose alters trafficking of APP

Figure 8

A

Ctr	Tre	Chlo	EBSS
mCherry-LC3	GFP-LC3	Merge	

B

![Bar graph showing numbers of GFP and mCherry-positive vesicles per cell](image)

- Ctr
- Tre
- Chlo
- EBSS

Figure 8

A

Ctr

Tre

Chlo

EBSS

Figure 8

A

Ctr

Tre

Chlo

EBSS

Figure 8

A

Ctr

Tre

Chlo

EBSS

Numbers of GFP and mCherry-positive vesicles/cell

n.s.

n.s.
Figure 9

Trehalose alters trafficking of APP
Trehalose alters subcellular trafficking and the metabolism of the Alzheimer-associated amyloid precursor protein
Nguyen T. Tien, Ilker Karaca, Irfan Y. Tamboli and Jochen Walter

J. Biol. Chem. published online March 8, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.719286

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts