On Domination Number of Triangulated Discs

SHIN-ICHI TOKUNAGA\(^1,a)\)

Abstract: Let \(G \) be a 3-connected triangulated disc such that the boundary cycle \(C \) of the outer face is an induced cycle of \(G \) and \(G - C \) is a tree. In this paper we prove that \(\gamma(G) \leq \frac{3n}{4} \), which gives a partial solution for the conjecture that the same inequality holds for any 3-connected triangulated disc. We also show related conjectures.

Keywords: dominating set, domination number, planar graph, triangulated disc

1. Introduction

For a graph \(G = (V(G), E(G)) \) and \(v \in V(G) \), let \(N_G(v) \) denote the set of all the vertices which are adjacent to \(v \) in \(G \), and let \(\Delta(G) \) denote the maximum degree of \(G \). In 2013, Campos and Wakabayashi\(^1\) and Matheson and Tarjan\(^2\) holds for maximal planar graphs with a maximum degree 6. In 2016, Li, Zhu, Shao, and Xu improved the upper bound in Refs.\(^3\) by showing that there also exists a vertex outerplanar graph \(\gamma \) with \(\gamma(G) \leq \frac{4n}{5} \), where \(k \) is the number of pairs of consecutive 2-degree vertices with a distance of at least 3 on the outer cycle.

In 1996, Matheson and Tarjan\(^2\) proved that any triangulated disc \(G \) with \(n \) vertices satisfies \(\gamma(G) \leq \frac{k}{2} - 1 \). They also conjectured that \(\gamma(G) \leq \frac{k}{2} \) for every \(n \)-vertex maximal planar graph \(G \) with sufficiently large \(n \). Note that we need two vertices to dominate the six vertices of the octahedron graph, and there also exists a 11-vertex maximal planar graph with \(\gamma(G) = 3 > \frac{k}{2} \) (Fig. 1), therefore we cannot omit the condition that \(n \) is sufficiently large.

In 2010, King and Pelsmajer\(^7\) proved that the conjecture of Matheson and Tarjan holds for maximal planar graphs with a maximum degree 6. In 2013, Campos and Wakabayashi\(^1\) and Tokunaga\(^3\) independently proved \(\gamma(G) \leq \frac{4n}{5} \) for each \(n \)-vertex outerplanar graph \(G \) with \(n \geq 3 \) having \(k \) vertices of degree 2. In 2016, Li, Zhu, Shao, and Xu improved the upper bound in Refs.\(^1,3\) by showing \(\gamma(G) \leq \frac{4n}{5} \), where \(k \) is the number of pairs of consecutive 2-degree vertices with a distance of at least 3 on the outer cycle.

In Ref.\(^3\), the author gave a simple proof by showing that \(G \)

\[\gamma(G) \leq \frac{3n}{4} \]

has a proper 4-coloring such that each vertex except those with degree two is dominated by all the four colors, and a similar method is also applied to other related problems\(^4,5\). Moreover, the author conjectured as follows.

Conjecture 1 Suppose \(G \) is a 3-connected \(n \)-vertex triangulated disc, then \(\gamma(G) \leq \frac{3n}{4} \).

Figure 2 shows that the upper bound in Conjecture 1 is sharp. Note that the inner subgraph of the graph in Fig. 2 is a path. There are many graphs satisfying the equality in Conjecture 1 whose inner subgraphs are trees. In this paper, we prove the following theorem.

Theorem 1 Suppose \(G \) is an \(n \)-vertex triangulated disc such that \(\text{In}(G) \) is a tree and \(C(G) \) is an induced cycle of \(G \), then \(\gamma(G) \leq \frac{3n}{4} \).

2. Proof of Theorem 1

To prove Theorem 1, we show the following lemma.

Lemma 1 Suppose \(G \) is an \(n \)-vertex triangulated disc such that \(\text{In}(G) \) is a tree and \(C(G) \) is an induced cycle of \(G \), and let \(v \) be a vertex of \(C(G) \) with \(\text{deg}_G(v) = 3 \). Then, \(G - v \) has a proper
In view of the assumption of Lemma 1. Therefore by induction hypothesis, the statement of Lemma 1 clearly holds for all cases except x'. We use induction on $n = |V(G)|$. Since the statement of Lemma 1 clearly holds for K_4, we assume $n \geq 5$. In view of $\deg_G(w) \geq 3$ and $\deg_G(u) \geq 3$, there are two cases as follows.

Case 1. $\deg_G(u) = 3$ or $\deg_G(w) = 3$.

We may assume $\deg_G(u) = 3$ without loss of generality. Let u' be the vertex of $N_G(u) \setminus \{u, w, x\}$ and let $G' = G - u'w$. Since $\operatorname{Int}(G') = \{u, w, x\}$ and $\operatorname{C}(G') = C - v + uw$ is an induced cycle of G', G' satisfies the assumption of Lemma 1. Thus the induction hypothesis, G' has proper 4-coloring f' such that each vertex of $G' - u$ is dominated by all the four colors except u', x, w. Here we define f' as follows: If $f''(u') \neq 0$, then let $f(u) = f''(u')$, and if $f''(u') = 0$, then let $f(u)$ be any value different from $f''(u')$ and $f(x)$. Furthermore, let $f(y) = f'(y)$ for $y \neq u$. Then, f satisfies the conclusion of Lemma 1.

Case 2. $\deg_G(u) \geq 4$ and $\deg_G(w) \geq 4$.

We divide this case into two subcases in view of $\deg_G(x)$.

Subcase 2.1. $\deg_G(x) = 1$

Let x' be the unique vertex of T which is adjacent to x, and let $G' = G - x$. By the assumption of Subcase 2 and Subcase 2.1, $\deg_{G'}(x) \geq 3$. Further, since $\operatorname{Int}(G') = \{u, w, x\}$ and $\operatorname{C}(G') = C - v + ux + xv$ is an induced cycle of G', G' satisfies the assumption of Lemma 1. Therefore by induction hypothesis, $G' - x$ has proper 4-coloring f'' such that each vertex of $G' - x$ is dominated by all the four colors except u', x', w. Here we define 4-coloring f' as follows: If $f''(x') \neq 0$, then let $f(x) = f''(x')$. If $f''(x') = 0$, then let $f(x)$ be any value different from $f''(u)', f''(w)'$, and $f''(w)$. Moreover, let $f(y) = f'(y)$ for $y \neq x$. Then, f satisfies the conclusion of Lemma 1.

Subcase 2.2. $\deg_{G'}(x) \geq 2$.

Let x_1 be the unique vertex of $V(T) \cap N_G(u) \cap N_G(x)$, and let u' be the vertex of $N_G(x_1) \cap N_G(x)$ satisfying $u' \neq u$. Let T_1 be a component of $T - x$ containing x_1 and let $T_2 = T - T_1$. Also, let $G_1 = (N_G[V(T_1)])_G$ and $G_2 = (N_G[V(T_2)])_G - u + x_1v$. Since T_1, T_2 are trees and $C(G_1), C(G_2)$ are induced cycles of G_1, G_2, respectively, both G_1 and G_2 satisfy the assumption of Lemma 1. Thus by induction hypothesis, $G_1 - x$ has proper 4-coloring f_1 such that each vertex of $G_1 - x$ is dominated by all the four colors except u, x_1, u', and $G_2 - v$ has proper 4-coloring f_2 such that each vertex of $G_2 - v$ is dominated by all the four colors except x_1, x, w. Let $j \in \{1, 2, 3, 4\}$ such that $x \notin V(G_1)$. Hence $x \notin V(G_2)$. Let $j \in \{1, 2, 3, 4\} - \{f_1(u), f_1(x_1), f_1(u')\}$, and let

$$k = \begin{cases} j & \text{when } f_1(x_1) = 0 \\ f_1(x_1) & \text{when } f_1(x_1) \neq 0. \end{cases}$$

We can make $f_1(y) = f_2(y)$ for $y \in V(G_1 - x) \cap V(G_2)\setminus \{x_1, u', w\}$ and $f_2(x) = k$ by exchanging colors. Now let $f(y) = f_2(y)$ for $y \in V(G_1) - x$ and let $f(y) = f_2(y)$ for $y \in (V(G_2) - v)$, then f satisfies the conclusion of Lemma 1.

Proof of Theorem 1. Let G, v, f be as in Lemma 1 and let u, x, w be as in the proof of Lemma 1. Let G' be the $(n + 2)$-vertex graph such that $V(G') = V(G) \cup \{p, q\}$ and $E(G') = E(G) \cup \{pu, pe, pw, pq, qu, qw\}$. Further, we give a 4-coloring f' of G' satisfying $f'(v) = f(y)$ for $y \in V(G) - v$ and $f'(x), f'(u), f'(p), f'(q) = \{1, 2, 3, 4\}$. Then, each vertex of $V(G)$ is dominated by all the four colors, and hence we may assume $S = \{v \in V(G') \mid f'(v) = 1\}$ satisfies $|S| \leq \left[\frac{2n^2}{3}\right]$ without loss of generality. Finally, if we let

- $S' = \begin{cases} S & \text{when } S \cap \{p, q\} = \emptyset, \\ S - p + v & \text{when } p \in S, \\ S - q + v & \text{when } q \in S, \end{cases}$

then, S' is a dominating set of G satisfying $|S'| \leq \left[\frac{2n^2}{3}\right]$. □
3. Other Conjectures

If we weaken the assumption of 3-connectivity in Conjecture 1 to δ(G) ≥ 3, then the upper bound in Conjecture 1 appears to change as follows.

Conjecture 2 Suppose G is an n-vertex triangulated disc satisfying δ(G) ≥ 3, then γ(G) ≤ ⌊3n/11⌋.

Figure 6 shows that the upper bound in Conjecture 2 cannot be improved.

Though there is still a gap between Conjecture 1 and Theorem 1, if the following conjecture is true, then Conjecture 1 holds for 4-connected maximal planar graphs.

Conjecture 3 Suppose G is a 4-connected n-vertex maximal planar graph. Then V(G) can be divided into S₁, S₂ such that ⟨S₁⟩G, ⟨S₂⟩G are a maximal outerplanar graph and a tree, respectively.

Note that if we delete all the edges connecting two vertices of S₁ in the above conjecture, we get a graph satisfying the assumption of Theorem 1.

Acknowledgments The author would like to thank the referees for their many helpful comments and suggestions.

References

[1] Campos, C.N. and Wakabayashi, Y.: On dominating sets of maximal outerplanar graphs, *Discrete Appl. Math.*, Vol.161, pp.330–335 (2013).
[2] Matheson, L.R. and Tarjan, R.E.: Dominating sets in planar graphs, *European J. Combin.*, Vol.17, pp.565–568 (1996).
[3] Tokunaga, S.: Dominating sets of maximal outerplanar graphs, *Discrete Appl. Math.*, Vol.161, pp.3097–3099 (2013).
[4] Tokunaga, S., Jiarasuksakun, T. and Kaemawichanurat, P.: Isolation number of maximal outerplanar graphs, *Discrete Appl. Math.*, Vol.267, pp.215–218 (2019).
[5] Abe, T., Higa, J., Tokunaga, S.: Domination number of annulus triangulations, *Theory and Applications of Graphs*, Vol.7, No.1, Article 6 (online), DOI: 10.20429/tag.2020.070106 (2020).
[6] Li, Z., Zhu, E., Shao, Z. and Xu, J.: On dominating sets of maximal outerplanar and planar graphs, *Discrete Applied Math.*, Vol.198, pp.164–169 (2016).
[7] King, E.L. and Pelsmajer, M.J.: Dominating sets in plane triangulations, *Discrete Math.*, Vol.310, No.17–18, pp.2221–2230 (2010).