Regulation of virus-triggered type I interferon signaling by cellular and viral proteins

Bo ZHONG, Yan-Yi WANG, Hong-Bing SHU (✉)

College of Life Sciences, Wuhan University, Wuhan 430072, China

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Abstract Host pattern recognition receptors (PRRs) recognize invading viral pathogens and initiate a series of signaling cascades that lead to the expression of type I interferons (IFNs) and inflammatory cytokines. During the past decade, significant progresses have been made to characterize PRRs such as Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) and elucidate the molecular mechanisms of TLR- and RLR-mediated signaling. To avoid excessive and harmful immune effects caused by over-activation of these signaling pathways, host cells adopt a number of strategies to regulate them. In addition, invading viruses also employ a variety of mechanisms to inhibit the production of type I IFNs, thereby evading the supervision and clearance by the host. In this review, we briefly summarize the TLR- and RLR-mediated type I IFN signaling and then focus on the mechanisms by which host cellular and viral components regulate the expression of type I IFNs.

1 Introduction

Organisms, from unicellular bacteria to human, are exposed to invading pathogens all the time. To protect themselves from pathogenic effects caused by the invaders, hosts have evolved immune system to detect and prevent infection by pathogens. The immune system in mammals is traditionally divided into two branches: innate immunity and adaptive immunity. The adaptive immunity, which is able to generate specific immune responses mediated by antibodies and effector T cells, is highly specific. However, it is evolved only in higher organisms and there is usually a delay of 4–7 days before the initial adaptive immunity takes effects. In contrast, the non-specific innate immunity is evolutionally conserved and begins to work minutes to hours after infection. Therefore, the innate immunity constitutes the first line for defense against pathogens such as viruses.

There are wide spectrums of viral pathogens that are known to infect humans, which have been a great threat to human health. The early events of innate immunity against invading viruses include the recognition of viral components, initiation of signaling pathways and transcriptional induction of type I IFNs and other cytokines (Akira et al., 2006). The type I IFNs bind to IFN receptor (IFNR) in both autocrine and paracrine manners to initiate a series of signaling events leading to the expression of hundreds of downstream genes, collectively referred to as interferon stimulated genes (ISGs). Proteins encoded by the ISGs inhibit viral replication or cause apoptosis of infected cells, and therefore result in an antiviral effect (Sadler and Williams, 2008).

Because type I IFNs play a central role in antiviral immunity, great efforts have been made during the past decade to elucidate the mechanisms of virus-triggered type I IFN induction. However, over-produced type I IFNs cause excessive and harmful immune effects to the host (Theofilopoulos et al., 2005). As a result, the production of these cytokines should be tightly regulated. On the other hand, viruses have also evolved a variety of mechanisms to inhibit the production of type I IFNs, thereby evading the supervision and elimination by the innate immunity. In this review, we first briefly summarize the virus-triggered type I IFN signaling and then focus on the regulatory mechanisms exerted by cellular and viral proteins.

2 Viral infection-triggered type I IFN signaling: a brief introduction

As mentioned above, virus-triggered type I IFN signaling is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) generated during viral infection and replication. So far there are at least five kinds of viral PAMPs that have been characterized, including
double-stranded RNA (dsRNA), 5′-triphosphorylated single-stranded RNA (5′pppsRNA), viral envelope glycoprotein, unmethylated CpG DNA (CpG DNA), and AT-rich double-stranded DNA (the analog Poly dA:dT) (Kumar et al., 2009; Takeuchi and Akira, 2009). These PAMPs are recognized by host pathogen-recognition receptors (PRRs), which include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs including RIG-I and MDA5), NOD-like receptors (NLRs), and the recently identified cytoplasmic DNA sensors DNA-dependent activator of interferon-regulatory factors (DAI), absent in melanoma 2 (AIM2) and RNA polymerase III (Pol-III) (Ablasser et al., 2009; Chiu et al., 2009; McCartney and Colonna, 2009). The PRRs, each specific for a distinct ligand set, and the PRRs-mediated signaling pathways have been extensively reviewed in several previous publications (Akira et al., 2006; Kawai and Akira, 2009; Kumar et al., 2009; Takeuchi and Akira, 2009; Yoneyama and Fujita, 2009) (Table 1).

Here, we choose TLR3, TLR7/8, TLR9, RLRs, DAI and Pol-III-mediated signaling for discussion because they all recognize the viral nucleic acids but induce the production of type I IFNs via three representative adaptor proteins. These pathways converge at the activation of several transcription factors such as interferon-regulated factor 3/7 (IRF3/7) and NF-κB which collaborate to regulate transcription of type I IFNs (Maniatis et al., 1998; Honda et al., 2006).

2.1 TRIF-dependent pathway

TLR3 is the first characterized mammalian PRR and TLR3-mediated signaling has been extensively studied. Upon stimulation of viral dsRNA or its synthetic analog poly(I:C), the intracellular domain of TLR3 recruits the adaptor protein Toll/interleukin receptor (TIR) domain-containing adaptor-inducing IFN-β (TRIF). TRIF has an N-terminal domain, a middle TIR domain and a C-terminal domain called receptor-interacting protein (RIP) homotypic interaction motif (RHIM) (Sato et al., 2003; Yamamoto et al., 2003). The adaptor protein TRIF undergoes oligomerization through its TIR and RHIM domains, and recruits the TRAF family-member-associated NF-κB activator (TANK) binding kinase 1 (TBK1) via its N-terminal domain to activate IRF3/7. It is also suggested that NF-κB activating kinase (NAK)-associated protein 1 (NAP1) and tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) are involved in TRIF-mediated activation of IRF3/7 by facilitating TRIF and TBK1 interaction (Oganesyan et al., 2006; Saha et al., 2006; Ryzhakov and Randow, 2007). Collectively, dsRNA induces activation of IRF3/7 through TLR3-TRIF-NAP1/TRAF3-TBK1 pathway.

TRIF mediates NF-κB activation through two distinct pathways. TRIF contains a consensus TRAF6-binding motif in the N-terminal region and mutation of this motif impairs TRIF-mediated NF-κB but not IRF3 activation (Han et al., 2004; Jiang et al., 2004). However, TLR3 signaling in TRAF6-deficient macrophages is not affected (Gohda et al., 2004), which indicates the existence of functional redundancy. It has been demonstrated that TRIF is also capable of activating NF-κB through its C-terminal RHIM, which is responsible for recruitment of RIP (Meylan et al., 2004). It has been shown that poly(I:C)-induced NF-κB activation is completely blocked in RIP-deficient MEFs (Cusson-Hermance et al., 2005). In addition, overexpression of TRIF induces apoptosis by interacting with RIP1 through a RIP1/Fas-associated death domain (FADD)/caspase 8-dependent and mitochondria-independent apoptotic pathway (Han et al., 2004). Collectively, the TLR3-triggered TRIF-dependent pathways activate IRF3/7 and NF-κB and induce apoptosis via TBK1, RIP1 and RIP1/FADD/caspase 8, respectively.

2.2 MyD88-dependent pathway

In contrast to the TRIF-dependent signaling triggered by TLR3, TLR7/8 and TLR9-mediated signaling depends exclusively on another adaptor protein MyD88 (myeloid differentiation primary response protein-88) (Akira and Takeda, 2004; Akira et al., 2006; Yoneyama and Fujita, 2009). The MyD88-dependent pathway includes a number of signaling molecules: the adapter protein MyD88, IL-1R-associated kinase 4/1 (IRA4K/1), transforming growth factor-β-activated kinase (TAK1), TRAF6 and TAK1 binding protein-1/2 (TAB1/2). Upon binding to their respective ligands, TLR7/8 and TLR9 recruit MyD88 and IRAK4 (Honda et al., 2004; Kawai et al., 2004). IRAK4 further recruits IRAK1 and TRAF6 and thereby phosphorylates and activates IRAK1 (Uematsu et al., 2005). The IRAK1-TRAF6 complex then disassociates from the receptor (Akira and Takeda, 2004). On one hand, the complex interacts with Iκκα, TRAF3 and osteopontin, leading to phosphorylation and activation of IκκB (Hoshino et al., 2006; Shinozaki et al., 2006). On the other hand, it interacts with another complex consisting of TAK1, TAB1 and TAB2, followed by the phosphorylation and activation of TAK1. The activated TAK1 subsequently phosphorylates the IκκB kinases (IKKs), leading to ubiquitination and degradation of IκκB and activation of NF-κB (Akira and Takeda, 2004). Activation of TAK1 also results in the activation of MAPKs, including c-Jun N-terminal kinase (JNK), leading to activation of AP-1 (Akira and Takeda, 2004).

2.3 VISA-dependent pathway

RLR- and Pol-III-mediated signaling requires the mitochonrdial adaptor protein virus-induced signaling adaptor (VISA, also called MAVS, IPS-1 and Cardif) (Kawai et al., 2005; Meylan et al., 2005; Seth et al., 2005; Shinozaki et al., 2005; Xu et al., 2005). Upon binding of dsRNA or
pppssRNA, RLRs undergo conformational changes and are recruited to the adaptor protein VISA located on the mitochondrial outer-membrane. VISA interacts with TRAF6 and TRAF3 and further activates the canonical and noncanonical IKK protein kinase family members, respectively (Xu et al., 2005; Oganesyan et al., 2006; Saha et al., 2006). The canonical IKK complex IKKα/β/γ is essential for virus-triggered RLR-mediated NF-κB activation, and the noncanonical IKK family members TBK1 and IKKε are responsible for phosphorylation and

Table 1 Detection of pathogens by TLRs and RLRs

PRRs	pathogens or RNAs	references
TLR3	double-stranded RNA, poly(I:C)	Alexopoulou et al., 2001
	West Nile virus	Wang et al., 2004
	encephalomyocarditis virus	Wang et al., 2004
	influenza A virus	Le Goffic et al., 2006
	herpes simplex virus	Zhang et al., 2007
	short interfering RNA (siRNA)	Kawai and Akira, 2008; Kleinman et al., 2008;
TLR7/8	Imiquimod (R-837), Resiquimod (R-838), Loxoribine guanosine and uridine-rich ssRNA	Diebold et al., 2004; Heil et al., 2004
	human immunodeficiency virus	Diebold et al., 2004; Heil et al., 2004
	influenza A virus	Diebold et al., 2004; Heil et al., 2004
	short interfering RNA	Hornung et al., 2005
TLR9	bacterial and viral genomic DNA with CpG-DNA motif	Hemmi et al., 2000; Krieg, 2002
	mouse cytomegalovirus	Krug et al., 2004a
	herpes simplex virus-1	Krug et al., 2004b
	herpes simplex virus-2	Lund et al., 2003
RIG-I	Poly(I:C)	Yoneyama et al., 2004
	short dsRNA, Reovirus (short fragment of genomic dsRNA), Poly(I:C)(< 1 kb)	Kato et al., 2008
	5’pppsRNA	Hornung et al., 2006; Pichlmair et al., 2006
	5’triphosphate RNA with a panhandle structure at 5’ end	Schlee et al., 2009
	in vitro transcribed RNA	Kato et al., 2006; Yoneyama and Fujita, 2009
	influenza A virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	vesicular stomatitis virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Newcastle disease virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Sendai virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Japanese encephalitis virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	hepatitis C virus	Saito et al., 2008; Yoneyama and Fujita, 2009
	respiratory syncytial virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Dengue virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	West Nile virus	Kato et al., 2006; Yoneyama and Fujita, 2009
MDA5	Long dsRNA, poly(I:C) (about 2 kb)	Kato et al., 2008
	Reovirus (long fragment of genomic dsRNA)	Kato et al., 2006; Yoneyama and Fujita, 2009
	encephalomyocarditis virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Theiler’s encephalomyelitis virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Mengo virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	Dengue virus	Kato et al., 2006; Yoneyama and Fujita, 2009
	West Nile virus	Kato et al., 2006; Yoneyama and Fujita, 2009
DAI	B-DNA, poly(dA:dT)	Takaoka et al., 2007
RNA polymerase III	AT-rich dsDNA	Ablasser et al., 2009; Chiu et al., 2009
	Legionella pneumophila	Chiu et al., 2009
	herpes simplex virus, Epstein-Barr virus	Ablasser et al., 2009; Chiu et al., 2009

TLR: Toll-like receptor; RLR: RIG-I-like receptor; PRRs: pattern recognition receptors; DAI: DNA-dependent activator of interferon-regulatory factors.
activation of IRF3 and IRF7. Other studies have also demonstrated the involvement of several other signaling components in virus-induced activation of NF-κB and/or IRF3, including TANK, TRADD, FADD and RIP (Kawai et al., 2005; Guo and Cheng, 2007; Michallet et al., 2008).

Recently, we and others identified a new adapter protein called mediator of IRF3 activation (MITA, also known as STING), which plays a critical role in virus-induced type I IFN expression (Ishikawa and Barber, 2008; Zhong et al., 2008). MITA has been found to localize to the outer-membrane of mitochondria or endoplasmic reticulum (ER). It has been demonstrated that MITA acts as an adapter to recruit TBK1 and IRF3 to the VISA-associated complex after viral infection. In this complex, TBK1 first phosphorylates MITA at Ser358, which is critical for subsequent phosphorylation of IRF3 (Zhong et al., 2008).

There is also evidence that a number of molecules involved in protein transportation are also required for virus-triggered type I IFN production (Ishikawa and Barber, 2008; Ishikawa et al., 2009).

Viral DNA-triggered type I IFN production is mediated through at least three pathways. First, two recent publications reported that in transformed cells, AT-rich double-stranded DNA (poly(dA:dT)) and cytoplasmic viral or bacterial DNA is transcribed into RNA by Pol-III and the transcribed RNA, which probably contains 5’triphosphate structure and is then recognized by RIG-I and signals through VISA (Ablasser et al., 2009; Chiu et al., 2009). Second, in primary or low passage cells, transfection of dsDNA regardless of its sequences or infection by DNA viruses also triggers Pol-III-independent signaling, leading to the expression of type I IFNs. The signaling pathway requires the signaling complex MITA-TBK1-IRF3 but not DAI or VISA (Chiu et al., 2009; Ishikawa et al., 2009). However, future studies are needed to characterize the sensors and adaptors that function upstream of MITA in the Pol-III-independent pathway. Third, DAI senses invading DNA to induce type I IFNs in L929 cells, which depends on TBK1 and IRF3 but not VISA (Takaoka et al., 2007). The adaptor protein for this process is currently unknown.

3 Regulation of PRR-triggered type I IFNs by cellular proteins

It is commonly observed that PRR-mediated signaling is rapidly activated after viral infection, leading to the production of type I IFNs and other cytokines. However, the overproduction of type I IFNs can cause unwanted or excessive immune responses that may lead to allergy, necrosis, autoimmune diseases and other harmful effects (Theofilopoulos et al., 2005). Therefore, PRR-mediated type I IFN signaling must be tightly regulated. For example, the C-terminus of RIG-I contains a repressor domain (RD) which masks the CARD domain and RNA helicase domain of RIG-I, thereby inhibiting the activation of RIG-I in uninfected cells (Cui et al., 2008; Takahasi et al., 2008; Yoneyama and Fujita, 2009). In addition to the autonomous inhibitory mechanism, the host has evolved several mechanisms to prevent unnecessary activation in steady-state cells or excessive signaling under viral infection conditions (Table 2).

Table 2	Cellular regulators of TLRs/RLRs signaling			
regulators	type of regulation	target(s)	proposed mechanisms	references
LGP2	negative feedback	RIG-I	sequestration of RIG-I from RNA ligands	Yoneyama et al., 2005; Saito et al., 2007; Venkataraman et al., 2007
RIG-I-SV	negative feedback or dominant negative	MDA5	competitive binding to dsRNA	Pippig et al., 2009
DAK	inhibition of steady-state cells	MDA5	competitive binding to dsRNA	Saito et al., 2007; Venkataraman et al., 2007
Atg5-Atg12	inhibition of steady- or activated state cells	RIG-I, MDA5, VISA	sequestration of RLRs from VISA	Jounai et al., 2007
TBK1s	negative feedback	RIG-I	sequestration of RIG-I from VISA and TBK1	Deng et al., 2008
NLRX1	inhibition of steady-state cells	VISA	sequestration of VISA from activation	Moore et al., 2008
gC1qR	negative feedback	VISA	disruption of RLR-VISA interaction	Xu et al., 2009
MyD88s	negative feedback	MyD88	disruption of IRAK1/4-MyD88 association	Burns et al., 2003
TRAF1	negative feedback	TRIF	sequestration of TRIF by the cleaved N-terminus of TRAF1 by TRIF-activated caspases	Su et al., 2006
Regulator	Type of Regulation	Target(s)	Proposed Mechanisms	References
-----------	-------------------	-----------	---------------------	------------
ISG56	Negative feedback	MITA	Sequestration of MITA from VISA and TBK1	Li et al., 2009
SIKE	Inhibition of steady-state cells	TBK1, IKKε	Sequestration of the targets from TRIF and IRF3	Huang et al., 2005
IRAK-M	Negative feedback	IRAK1	Inhibition of IRAK1-MyD88 association	Kobayashi et al., 2002
FLN29	Negative feedback	TRIF, VISA, TRAF3/6	Possible sequestration of its targets	Mashima et al., 2005; Sanada et al., 2008
SHP-2	Negative feedback	TBK1	Possible dephosphorylation of TBK1 substrates	An et al., 2006

Destabilization of Key Signaling Molecules

Regulator	Type of Regulation	Target(s)	Proposed Mechanisms	References
ISG15	Negative feedback	RIG-I	Destabilization of RIG-I with UBE1L and Ubch8	Zhao et al., 2005; Lu et al., 2006
RNF125	Negative feedback	IRF3	Protection of IRF3 from degradation	Arimoto et al., 2007
RNF5	Negative feedback	MITA	Proteosomal degradation of MITA	Zhong et al., 2009
A20	Negative feedback	RIP1, TRAF6, TRIF	Ubiquitination or deubiquitination of targets	Saitoh et al., 2005; Lin et al., 2006
RBCK1	Negative feedback	TAB2/3, IRF3	Proteosomal degradation of targets	Tian et al., 2007; Zhang et al., 2008
Trim30α	Negative feedback	TAB2, TAB3	Lysosomal degradation of TAB2 and TAB3	Shi et al., 2008
Triad3A	Inhibition of steady-state conditions	TLR9	Proteosomal degradation of certain TLRs	Chuang and Ulevitch, 2004

Cleavage of the Polyubiquitin Chains from Signaling Molecules

Regulator	Type of Regulation	Target(s)	Proposed Mechanism	References
DUBA	Negative feedback	TRAF3	Deubiquitination of TRAF3	Kayagaki et al., 2007
CYLD	Inhibition of steady- or activated state	RIG-I, NEMO	Deubiquitination of targets	Friedman et al., 2008; Zhang et al., 2008

Others

Regulator	Type of Regulation	Target(s)	Proposed Mechanism	References
Pin1	Negative feedback	IRF3	Conformational change-dependent degradation	Saitoh et al., 2006
GSK3β	Positive regulation	p65, CREB	Phosphorylation of p65 inhibition of phosphorylation of CREB	Martin et al., 2005; Hu et al., 2006
Nrdp1	Inhibition of steady- or activated state	MyD88, TBK1	Degradation of MyD88 by K48-linked ubiquitination activation of TBK1 by K63-linked ubiquitination	Wang et al., 2009
SHP-1	Negative feedback	IRAK1	Inhibition of proinflammatory cytokines expression enhancement of type I IFN production	An et al., 2008
WDR34	Negative feedback	TAK1	Unclear	Gao et al., 2009
Caspase 8	Negative feedback	TRIF, VISA	Cleavage of the targets	Rebsamen et al., 2008
TRIM21	Negative feedback	IRF3	Proteosomal degradation of IRF3 inhibition of Pin1-induced degradation of IRF3 and sustaining activation of IRF3	Higgs et al., 2008; Yang et al., 2009
TANK	Positive regulation	TRAF3, TRK1, IRF3	Scaffolding TRAF3-TBK1-IRF3 interaction	Guo and Cheng, 2007; Gatot et al., 2007; Kawagoe et al., 2009
SARM	Negative feedback	TRIF	Sequestration of TRIF unclear/restriction of viral infection in brain region	Carty et al., 2006; Kim et al., 2007; Szretter et al., 2009
IRF4	Negative feedback	IRF5	Competition with IRF5 for MyD88	Tamura et al., 2008
3.1 Sequestering the interaction between signaling molecules

3.1.1 Sequestration of PRRs

Laboratory of genetics and physiology (LGP2) Compared to RIG-I and MDA5, LGP2 contains an RNA helicase domain and an RNA binding domain but lacks the CARD domain. Therefore, LGP2 binds to dsRNA competitively with RIG-I but does not initiate signaling. It has been shown that overexpression of LGP2 negatively regulates Sendai virus (SeV) and Newcastle disease virus (NDV)-triggered induction of type I IFNs, and RNAi-mediated knockdown of LGP2 can enhance expression of antiviral genes (Yoneyama et al., 2005). In addition, LGP2 interacts with RIG-I and inhibits oligomerization of RIG-I which is important for activation of the latter. LGP2 also disrupts VISA-TBK1/IKKε interaction to inhibit RLR-mediated type I IFN signaling (Saito et al., 2007). However, the LGP2-/- mice are resistant to NDV infection which is sensed by RIG-I but sensitive to EMCV infection which is sensed by MDA5, suggesting that LGP2 differentially regulates RIG-I and MDA5-mediated signaling (Kato et al., 2006; Venkataraman et al., 2007). Recently, a study revealed the crystal structure of the repressor domain of LGP2, which suggests that LGP2 inhibits RIG-I-mediated signaling by competitively binding to dsRNA, while it positively regulates MDA5-mediated signaling by facilitating recognition of dsRNA by MDA5 (Pippig et al., 2009).

RIG-I splice variant (RIG-I-SV) It has been demonstrated that the full activation of RIG-I depends on its K63-linked ubiquitination at K172 by TRIM25 or RNF135 (Gack et al., 2008; Gao et al., 2009; Oshiumi et al., 2009). TRIM25 firstly interacts with RIG-I and then catalyzes the ubiquitination of RIG-I (Gack et al., 2007). The Thr55 of RIG-I is critical for its binding with TRIM25. Compared to the full-length RIG-I, RIG-I-SV lacks the aa36-80 region. Thus, RIG-I-SV does not interact with TRIM25 to initiate signaling (Gack et al., 2008). However, RIG-I-SV contains the intact RNA binding and helicase domain and interacts with RIG-I but not MDA5. Therefore, RIG-I-SV inhibits RIG-I-mediated signaling by competitively binding to dsRNA and VISA with RIG-I and inhibiting the oligomerization of RIG-I.

Dihydroxyacetone kinase (DAK) The protein kinase DAK was found to interact with MDA5 in yeast two-hybrid assays (Diao et al., 2007). DAK is a member of the evolutionarily conserved family of dihydroxyacetone kinases from bacteria to humans (Bachler et al., 2005; Cabezas et al., 2005). Mammalian DAK displays dual activities as flavin adenine dinucleotide (FAD)-adenosine monophosphate (AMP) lyase and ATP-dependent Pha kinase. However, the physiological functions of DAK in innate antiviral response were unknown. In co-immunoprecipitation experiments, DAK interacts with MDA5 but not RIG-I in untransfected cells or overexpressed conditions, and the CARD domain-containing fragment of MDA5 is sufficient for the association. Expression of DAK inhibits MDA5- but not RIG-I- or VISA-mediated induction of IFN-β, while RNAi knockdown of DAK has an opposite effect. Endogenous interaction between MDA5 and DAK is decreased when the cells are infected with the Sendai virus, suggesting that the association is disrupted upon virus infection. It is possible that upon binding to dsRNA, the conformational change of MDA5 results in its higher affinity to the downstream adaptor VISA (Diao et al., 2007). Therefore, DAK keeps MDA5 inactive under steady-state conditions.

Atg5–Atg12 The Atg5–Atg12 conjugate plays a critical role in autophagic process. The autophagy has been implicated for defense against infections with intracellular bacteria and viruses (Gutierrez et al., 2004). However, autophagosomes have also been exploited by certain viruses as a place for viral replication. A recent study has demonstrated that VSV infection induces higher level of IRF3 phosphorylation and expression of IFN-β and IP10 in Ags5– than in wild-type MEFs (Jounai et al., 2007). Further investigation suggests that the Atg5–Atg12 conjugate associates directly with the CARD domains of RIG-I, MDA5 and VISA and viral infection can enhance the interaction. Therefore, Atg5–Atg12 disrupts the CARD interactions between RIG-I or MDA5 and VISA, preventing the formation of the RLR-VISA complex. Atg7 is a critical scaffold protein that facilitates Atg12 to conjugate with Atg5 (Komatsu et al., 2006). Accordingly, Atg7 deficient MEFs produce higher amount of type I IFNs in response to cytoplasmic poly(I:C) stimulation (Jounai et al., 2007). Collectively, these data suggest that Atg5–Atg12 conjugate acts as a suppressor of RLR signaling by blocking the interaction between RLRs and VISA.

TBK1s Compared to the full-length TBK1, the splice variant TBK1s lacks exons three to six. It has been shown that TBK1s is expressed 3–6 hours after viral infection (Deng et al., 2008). TBK1s interacts with RIG-I and disrupts the interaction between RIG-I and downstream molecules, thereby inhibiting RIG-I-mediated activation of IRF3. Interestingly, TBK1s does not inhibit VISA- or TBK1-mediated activation of IFN-β, suggesting that TBK1 functions at RIG-I level as a negative feedback regulator.

It should be noted that although DAK and TBK1s disrupt interaction between MDA5 or RIG-I and VISA, neither of them inhibits RLR-mediated NF-κB activation. The mechanisms for this process need further investigation.

3.1.2 Sequestration of adaptor proteins

NLRX1 NLRX1 belongs to a protein family containing nucleotide-binding domain (NBD) and leucine-rich repeat
MyD88s lack the intermediate amino acids 110-157 of MyD88 and TNFα, while knockdown of NLRX1 has an opposite effect. NLRX1 was found to reside at the outer membrane of mitochondria and associate with the CARD domain of VISA, thereby sequestering VISA from RLRs and inhibiting RLR-mediated signaling (Moore et al., 2008).

gC1qR Receptor for globular domain of complement component C1q (gC1qR) is located in mitochondria, nucleus, cytoplasm and on cell membrane (Xu et al., 2009). Overexpression of gC1qR inhibits RIG-I-mediated activation of IRF3 and NF-κB and production of IFN-β and other cytokines. Conversely, RNAi knockdown of gC1qR enhanced the production of type I IFNs. It is shown that mitochondrial gC1qR weakly interacts with VISA and SeV infection causes the translocation of gC1qR to mitochondria and enhances its association with VISA (Xu et al., 2009). Thus, it has been postulated that gC1qR plays a role as a negative feedback regulator in RLR-mediated signaling. MyD88s MyD88s is an alternatively spliced form of MyD88, lacking the intermediate amino acids 110–157 of MyD88. Unlike MyD88, MyD88s does not induce IRAK1 phosphorylation, despite its interaction with IRAK1. The expression of MyD88s can be detected in spleen and brain tissues and is upregulated by LPS stimulation. MyD88s forms dimer or oligomer with MyD88 and interacts with IRAK1, sequestering IRAK1 from IRAK4 and inhibiting IRAK4-induced phosphorylation of IRAK1 (Burns et al., 2003). Thus, MyD88s is a negative feedback regulator of TLR-induced MyD88-dependent signaling.

TRAF1 TRAF1 belongs to the TRAF family. All members of this family except for TRAF1 contain a RING domain that bears an E3 ubiquitin ligase activity (Bradley and Pober, 2001). In 293 cells that stably express TLR3, overexpressed TRAF1 interacts with TRIF and effectively induces poly(I:C)-induced activation of NF-κB and the IFN-β promoter. Further studies suggest that C-terminal part of TRAF1 and the TIR domain of TRIF are responsible for their interaction. Interestingly, TRIF induces caspase-dependent cleavage of TRAF1, and the cleaved N-terminal but not C-terminal fragment of TRAF1 shows inhibitory effect. Inhibition of the cleavage of TRAF1 by mutating of the cleavage site or addition of caspase inhibitor impairs its ability to inhibit TRIF-dependent signaling (Su et al., 2006). Therefore, TRIF-induced cleavage of TRAF1 is required for its inhibition of TRIF signaling.

ISG56 Interferon-stimulated gene 56 (ISG56) is one of the first identified proteins induced by virus and type I IFNs (Sadler and Williams, 2008). In immunoprecipitation and mass-spectrometry assays, ISG56 was identified as a MITA-interacting protein (Li et al., 2009). ISG56 negatively regulates virus-triggered signaling at MITA level by disrupting TBK1-MITA and VISA-MITA interactions. Consistent with these observations, inhibition of ISG56 by RNAi enhances cellular antiviral responses as well as the expression of type I IFNs. It has been reported that ISG56 acts as a suppressor of viral replication and protein translation (Wang et al., 2003; Terenzi et al., 2006; Wacher et al., 2007). In this context, ISG56 might have multiple functions and is an important integrator of inhibition of viral replication and control of excessive antiviral responses. It is also possible that the functions of ISG56 are temporally and spatially regulated during viral infection. However, more studies are required for the full understanding of these processes (Li et al., 2009).

3.1.3 Sequestration of kinases

SIKE Suppressor of IKKe (SIKE) contains no other recognizable domain but two coiled-coil domains. In yeast two-hybrid screens, SIKE was identified as an IKKe-interacting protein (Huang et al., 2005). Because TBK1 functions in most types of cells and shows highly homology with IKKe which functions in limited types of cells and is viral infection inducible, studies are focused on the interaction between SIKE and TBK1 (Hemmi et al., 2004; Perry et al., 2004). SIKE interacts with TBK1 in uninfected cells, sequestering TBK1 from IRF3, while viral infection or poly(I:C) stimulation disrupts the interaction, thereby releasing TBK1 to interact with and phosphorylate IRF3. Consistently, overexpression of SIKE inhibits TLR3- and RLR-mediated signaling and knockdown of SIKE has an opposite effect (Huang et al., 2005). Therefore, SIKE might sequester TBK1/IKKe in inactive forms under steady-state conditions to avoid unnecessary activation of these kinases.

IRAK-M IRAK-M belongs to the IRAK family (Ringwood and Li, 2008). However, it does not possess kinase activity like other IRAKs do. Unlike the ubiquitous expression profile of IRAK1/4, the expression of IRAK-M is limited to monocytes or macrophages. IRAK-M′ macrophages show increased cytokine production when stimulated with bacteria (Kobayashi et al., 2002) and further studies suggest that IRAK-M prevents the association of IRAK-1 and IRAK-4 with the MyD88 complex, thereby negatively regulating TLR-mediated signaling in macrophages.

FLN29 FLN29 is also an IFN-inducible protein. It contains a TRAF-type zinc finger domain at its N-terminus and a conserved TRAF6-binding motif which mediates its interaction with TRAF6. Overexpression of FLN29 inhibits TRIF-dependent NF-κB and MAPK activations (Mashima et al., 2005). FLN29 MEFs are highly resistant to VSV infection, and these cells produce more IFN-β than wild-type cells in response to poly(I:C). FLN29-deficient mice become more susceptible to poly(I:C)-induced septic shock compared with wild-type mice. Mechanistic studies show that FLN29 interacts with TRIF, VISA, TRAF3 and
TRAF6 and inhibits virus-triggered signaling at TRAF3/6 level (Sanada et al., 2008). However, the exact mechanism still needs further investigations.

SHP-2 The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP-2) is an evolutionarily conserved tyrosine phosphatase (Qu, 2000; Neel et al., 2003), which has been demonstrated to positively regulate the signaling triggered by some cytokines such as IL-1, and negatively regulate the signaling triggered by IFN-α (You et al., 1999; You et al., 2001). Studies with SHP-2 deficient cells suggest that SHP-2 suppresses TLR3- or TLR7- or TLR9-mediated production of type I IFNs and proinflammatory cytokines. The inhibitory function of SHP-2 depends on its phosphatase activity (An et al., 2006). Further investigations show that SHP-2 directly binds to TBK1, and the C-terminal domain of SHP-2 and the kinase domain of TBK1 are responsible for their interaction. It is possible that SHP-2 prevents TBK1-mediated phosphorylation of its substrates, thereby blocking TRIF-mediated signaling.

3.2 Modification of signaling molecules

3.2.1 Inducing ubiquitination and degradation of key signaling molecules

ISG15 ISG15 is one of the proteins extensively induced by viral infection (Theofilopoulos et al., 2005). The ubiquitin activating enzyme (E1) UBE1L and ubiquitin conjugating enzyme (E2) UbcH8 catalyze ISGylation of RIG-I by conjugating ISG15 to it, which is followed by ubiquitination and degradation of RIG-I (Zhao et al., 2005; Kim et al., 2008). Consistent with this observation, viral infection-induced expression of IFN-β is enhanced in UBE1L−/− mice than in wild-type MEFs. Also, the amount of RIG-I protein is more stable in UBE1L−/− mice than in wild-type MEFs (Kim et al., 2008). Collectively, these data suggest that the conjugation of ISG15 to RIG-I can inhibit RIG-I-mediated signaling by ubiquitination and degradation of RIG-I.

RNF125 UbcH8 has been demonstrated to be associated with ubiquitination and degradation of RIG-I (Zhao et al., 2005). To identify the E3 ubiquitin ligase in this process, yeast two-hybrid assays were performed with UbcH8 as a bait. This effort led to the identification of RNF125 (Arimoto et al., 2007). RNF125 functions as an E3 ubiquitin ligase to catalyze ubiquitination of RIG-I. Thus, overexpression of RNF125 inhibits the virus-triggered and RIG-I-mediated type I IFN expression, while knockdown of RNF125 has an opposite effect. Furthermore, RNF125 is induced by IFN-α stimulation or viral infection, suggesting a negative feedback role played by RNF125 in innate antiviral signaling.

RNF5 Ring-finger protein 5 is an E3 ubiquitin ligase that has been implicated in cell motility, protein quality control in the ER, cancer and degenerative myopathy (Kyushiki et al., 1997; Didier et al., 2003; Bromberg et al., 2007; Delaunay et al., 2008). In a yeast two-hybrid assay, RNF5 was identified as a MITA-interacting protein (Zhong et al., 2009). Overexpression of RNF5 inhibits virus-triggered expression of type I IFNs in 293, HeLa as well as primary monocyte-derived macrophages and dendritic cells, while knockdown of RNF5 potentiates the expression of type I IFNs upon viral infection. A further study suggests that RNF5 interacts with MITA and catalyzes K48-linked ubiquitination of MITA at K150 after viral infection, thereby inhibiting excessive type I IFN response.

A20 A20 was initially found to negatively regulate TNF-α-mediated type I IFN production (Opipari et al., 1990). A20 contains an ovarian tumor (OTU) domain in its N-terminus which has deubiquitination activity, and a C-terminus with ubiquitination activity (Wertz et al., 2004). Both domains are required for inhibition of TNF-induced activation of NF-κB. Similarly, A20 also inhibits RLR-mediated activation of IRF3 (Wang et al., 2004). Interestingly, the C-terminal domain alone of A20 is sufficient for its inhibitory function, suggesting that A20 negatively regulates the signaling through its ubiquitination activity (Saitoh et al., 2005; Lin et al., 2006). Moreover, macrophages derived from A20 deficient mice are incapable of terminating TLR-induced NF-κB activation (Boone et al., 2005). Further investigations show that A20 functions to cleave the polyubiquitin chains of TRAF6, which is critical for termination of TLR-mediated activation of NF-κB (Boone et al., 2004).

RBCK1 RBCC protein interacting with PKC1 (RBCK1) belongs to the E3 ubiquitin ligase family (Marin and Ferrus, 2002). RBCK1 contains a ubiquitin-like (UBL) domain and a RING-IBR-RING (RBR) domain in its N- or C-terminus, respectively. RBCK1 interacts with the C-terminal ZNF domain of TAB2 and induces ubiquitination and degradation of TAB2, thereby inhibiting TNF-, IL-1- and RLR-induced activation of NF-κB (Tian et al., 2007). Further study also suggests that RBCK1 interacts with IRF3 and induces degradation of IRF3 after viral infection, indicating a negative feedback regulation of virus-triggered type I IFN signaling by RBCK1 (Zhang et al., 2008).

TRIM30α Tripartite motif (TRIM) family proteins are also known as “RBCC” proteins, as they contain an RBCC motif at their N-terminus consisting of a RING domain, one or two B-boxes and a coiled-coil region. TRIM family proteins have been demonstrated to function in the regulation of cell proliferation, differentiation, development, oncogenesis, apoptosis and antiviral responses (Nisole et al., 2005). In addition to the RBCC motif, TRIM30α also contains a SPRY domain at its C-terminus. The expression of TRIM30α is induced by the activation of NF-κB in various types of cells after stimulation with a variety of TLR ligands, such as poly(I:C) and CpG DNA. It has been shown that TRIM30α targets TAB2 and TAB3 for K63-linked ubiquitination and lysosome-dependent degradation and inhibits autoubiquitination of TRAF6,
contributing to the inhibition of TLR-mediated NF-κB activation. Further studies suggest that TRIM30α transgenic mice are more resistant to endotoxin shock, whereas in vivo knockdown of TRIM30α by siRNA reduces LPS-induced tolerance, which demonstrates that TRIM30α negatively regulated LPS-mediated signaling in vivo and functions as a negative modulator of the TLR signaling pathway (Shi et al., 2008).

3.2.2 Cleaving the polyubiquitin chains from signaling molecules

DUBA Like A20, DUBA is also a member of the deubiquitination (DUB) domain-containing protein family which contains an OTU domain. A screening of the RNAi library targeting DUB family proteins led to the identification of DUBA as a negative regulator of TLR3-mediated signaling (Kayagaki et al., 2007). Knockdown of DUBA potentiates poly(I:C)-induced expression of IFN-β. Conversely, overexpression of DUBA inhibits poly(I:C)-induced or RIG-I-mediated signaling. An unambiguous identification of DUBA-interacting proteins suggests that DUBA interacts with TRAF3, whose K63-linked polyubiquitination is required for TLR- and RLR-mediated signaling. DUBA cleaves the K63-linked polyubiquitin chains of TRAF3 and depletion of DUBA increases the level of ubiquinated TRAF3 both in steady-state cells and in ligands-stimulated cells. Furthermore, overexpression of DUBA also impairs interaction between TBK1 and IRF3, suggesting that ubiquitination of TRAF3 controls the activity of the TBK1-IRF3 complex.

CYLD CYLD is an OTU DUB family protein that has been identified to interact with IKKγ and deubiquitinate the K63-linked polyubiquitin chains of IKKγ, thereby negatively regulating TNF-activated NF-κB (Ea et al., 2006). Interestingly, two groups independently reported that CYLD functions as a negative modulator of RIG-I-mediated signaling (Zhang et al., 2008; Friedman et al., 2008). Knockdown of CYLD results in an enhancement of IRF3-βsecretion. Experiments using CYLD−/−MEFs and dendritic cells (DCs) show constitutive activation of TBK1/IKKe as well as hyper-induction of type I IFNs by VSV infection. Immuno precipitation experiments show that CYLD coprecipitates not only with RIG-I but also with TBK1 and IKKe. Interestingly, TBK1 or IKKe specifically causes CYLD to shift to higher molecular bands, suggesting phosphorylation of CYLD by these kinases. The data indicate that CYLD probably regulates the activities of IKK-family kinases and leads to inactivation of the signaling (Zhang et al., 2008).

Experiments from another group show that CYLD associates with the CARD domain of RIG-I and removes K63-linked ubiquitin from RIG-I. Loss of CYLD in DCs causes accumulation of ubiquitinated RIG-I. Furthermore, the accumulation of ubiquitinated RIG-I in CYLD-deficient cells is associated with constitutive activation of TBK1. The expression of CYLD can be induced by TNF treatment or viral infection (Friedman et al., 2008). These data together suggest a working model of the mechanisms by which CYLD negatively regulates the signaling. In uninfected cells, RIG-I undergoes ubiquitination-deubiquitination kinetically, making RIG-I inactive. Upon viral infection, the E3 ubiquitin ligases TRIM25 and/or RNF135 mediate K63-linked ubiquitination of RIG-I, which subsequently activates downstream kinase TBK1 (Gack et al., 2007; Gao et al., 2009; Oshiumi et al., 2009). However, as viral infection goes on, CYLD accumulates and cleaves the K63-linked ubiquitin chains of RIG-I, inhibiting virus-triggered type I IFN signaling. Thus, CYLD is most likely a negative regulator that inhibits RIG-I in both steady-state and activated state to prevent unnecessary signaling events. However, the precise mechanism that controls the balance between TRIM25/RNF135-mediated ubiquitination and CYLD-mediated deubiquitination of RIG-I and the phosphorylation of CYLD by TBK1 in its inhibitory function remains to be elucidated.

3.3 Others

In addition to the mechanisms mentioned above, several proteins have been described as regulators in TLR- and RLR-mediated signaling. For example, GSK3β regulates TLR- and IFNγ-mediated production of a subset of inflammatory cytokines and facilitates production of anti-inflammatory cytokines (Martin et al., 2005; Woodgett and Ohashi, 2005; Hu et al., 2006). Nrdp1 mediates K63-linked ubiquitination and activation of TBK1 as well as K48-linked ubiquitination and degradation of Myd88, thereby enhancing production of type I IFNs and suppressing production of pro-inflammatory cytokines (Wang et al., 2009). SHP-1 interacts with the kinase domain of IRAK1 and inhibits IRAK1 activation, which may explain why SHP-1 inhibits the expression of pro-inflammatory cytokines (An et al., 2008). However, the exact mechanisms are unclear. Pin1 recognizes and binds to the Ser336 phosphorylated IRF3, leading to considerable conformational change of IRF3. The conformational change makes IRF3 accessible for binding with E3 ubiquitin ligases such as RBCK1, which catalyze ubiquitination and degradation of IRF3 (Saitoh et al., 2006; Zhang et al., 2008). WD40 domain repeat protein 34 (WDR34) interacts with TAK1 and negatively regulates TLR3-induced NF-κB activation, although the mechanism is unclear at this moment (Gao et al., 2009). There is evidence suggesting that caspase 8 cleaves VISA at D249 and TRIF at both D281 and D289, indicating a crosstalk between the apoptosis pathway and TLR-/RLR-mediated signaling (Rebsamen et al., 2008). It is possible that these proteins function together in a temporal and spatial manner to control harmful excessive immune responses and protect host against autoimmune diseases.
There are controversies about the functions of several proteins involved in virus-triggered signaling. For example, ISG15 covalently binds to and stabilizes IRF3, counteracting its negative regulation of RIG-I (Lu et al., 2006; Kim et al., 2008). Ro52 (also called TRIM21) has been demonstrated to catalyze the ubiquitination of IRF3 and induce its degradation, while another report suggests that Ro52/TRIM21 interacts with Pin1 and IRF3 and prevents Pin1-induced conformational change and degradation of IRF3, thereby sustaining IRF3 activation during viral infection (Higgs et al., 2008; Yang et al., 2009).

TANK has been identified as a scaffold protein facilitating TRAF6-TBK1-IRF3 interaction and subsequent activation of IRF3 (Guo and Cheng, 2007; Gatot et al., 2007). However, experiments on TANK-deficient mice suggest that TANK is not involved in interferon responses but rather functions as a negative regulator of TLR-signaling and is critical for the prevention of autoimmune nephritis by regulating ubiquitination of TRAF6 (Kawagoe et al., 2009). SARM contains HEAT-armadillo motifs at its N-terminus, two sterile α motifs (SAM) in middle and a TIR domain at its C-terminus and is inducible by TLR ligands and acts as a negative regulator in TRIF- but not MyD88-dependent pathway (Carty et al., 2006). However, another study showed that SARM is not involved in TLR-mediated signaling, as evidenced by the equivalent production of TNF and MCP-1 by bone marrow-derived macrophages of SARM-deficient and wild-type mice in response to various TLR ligands. It is also reported that SARM functions to restrict viral infection and neuronal injury in a brain region-specific manner (Szentett et al., 2009). Further studies and more efforts are required to figure out these inconsistencies.

Table 3: Viral inhibitors of TLRs/RLRs signaling

viruses	inhibitors	target(s)	proposed mechanisms	references
encephalomyocarditis virus	VPg	viral RNA	sequestration of viral RNA from RIG-I	Flanegan et al., 1977; Lee et al., 1977
poliovirus				Hornung et al., 2004; Pichlmair et al., 2006
severe acute respiratory syndrome	Nsp14, Nsp16	viral RNA	addition of a m7Gppp structure to the 5'end of its RNA	von Grotthuss et al., 2003; Ogino and Banerjee, 2007; Chen et al., 2009
coronavirus	RDRP			
vesicular stomatitis virus	phosphatase	viral RNA	monophosphorylation of 5’end of viral RNA	Schneider et al., 2005; Habjan et al., 2008
Hantaan virus				
Crimean-Congo hemorrhagic fever virus				
Borna disease virus				
human immunodeficiency virus	unknown	viral RNA	using host RNA processing machinery to cap newly synthesized viral RNA	Furuichi and Shatkin, 2000
adenovirus				
influenza A virus	unknown	viral RNA	snatching 5’ capped cellular mRNA to 5’end of viral RNA	Plotch et al., 1981
Vaccinia virus	E3L	viral dsRNA	sequestration of viral dsRNA	Chang et al., 1992
Ebola virus	VP15	viral dsRNA, RIG-I	sequestration of viral dsRNA	Cardenas et al., 2006; Haasnoot et al., 2007
human immunodeficiency virus 1	Tat	viral dsRNA	sequestration of viral dsRNA	Weeks et al., 1990
Reovirus	Sigma3	viral RNA	sequestration of viral RNA	Olland et al., 2001

4 Regulation of PRR-triggered type I IFNs by viral proteins

Host and virus have mutually exerted powerful selective pressure to each other throughout their evolution. For example, the type I IFN system as a fast and primary defense against viral pathogenesis serves as a strong selective pressure for viral evolution (Akira and Takeda, 2004; Yoneyama and Fujita, 2009). On the other hand, various viral components, which play roles in viral replication, assembly and pathogenesis, also target the molecules involved in the system to evade host immunity against viruses (Bowie and Unterholzner, 2008). There is increasing evidence suggesting that viruses have evolved a number of strategies to evade the recognition by PRRs, to inhibit PRR-mediated signaling, and even to manipulate host signaling pathways for their own benefit (Table 3).

4.1 Evasion of recognition by PRRs

It has been demonstrated that RLR-mediated expression of type I IFNs in macrophages and cDCs represents the first line of defense against local viral infection (Kumagai et al., 2007). Experiments on RIG-I- or MDA5-deficient mice suggest that RIG-I and MDA5 recognize different RNA structures generated by distinct viruses (Kato et al., 2006). For example, RIG-I recognizes 5’pppssRNA, short dsRNA, Newcastle disease virus (NDV) and influenza A virus (IAV), while MDA5 recognizes long dsRNA and piconaviridae family such as encephalomyocarditis virus (EMCV). However, neither of them recognizes cellular mRNA which is protected by a methylguanosine cap (m7Gppp structure) or ribosomal RNA or tRNA which is...
viruses	inhibitors	target(s)	proposed mechanisms	references	
influenza A virus	NS1	RIG-I	sequestration of RIG-I from VISA	Mibayashi et al., 2007	
Picornavirus	V proteins	MDA5	sequestration of MDA5	Andrejeva et al., 2004	
human metapneumovirus	glycoprotein G	RIG-I	sequestration of RIG-I	Bao et al., 2008	
Vaccinia virus	A46R	MyD88, TRIF	sequestration of targets	Stack et al., 2005	
	A52R	IRAK2, TRAF6		Keating et al., 2007	
	N1L	TBK1		DiPerna et al., 2004	
	B14R	IKKβ		Chen et al., 2008	
	K7R	DDX3		Schroder et al., 2008	
	K1L	IκBα		Rahman and McFadden, 2006;	
				Roy and Mocarski, 2007	
Hepatitis C virus	NS3	TBK1	sequestration of TBK1 from its upstream or downstream signaling proteins	Otsuka et al., 2005	
Borna disease virus	phosphoprotein	TBK1		Unterstab et al., 2005	
Rabies virus	phosphoprotein	TBK1		Brzozka et al., 2005	
Hantavirus	G1 protein	TRAF3, TBK1	disruption of TRAF3-TBK1 interaction	Alff et al., 2006	
West Nile virus	NS1	NF-κB, IRF3	inhibition of translocation of NF-κB and IRF3 to nucleus	Wilson et al., 2008	
herpes simplex virus	ICP0	IRF3, CBP	inhibition of IRF3 binding to target promoters	Melroe et al., 2007	
mumps virus	V protein	TBK1, IKKe	competition with IRF3 for phosphorylation by TBK1/IKK	Lu et al., 2008	
Parainfluenza virus 5	V protein	TBK1, IKKe	competition with IRF3 for phosphorylation by TBK1/IKK	Lu et al., 2008	
human herpesvirus 8	vIRF1	IRF3, CBP, p300	disruption of IRF3/CBP/p300 association	Lin et al., 2001	
Kaposi’s sarcoma-associated herpesvirus	vIRF3	IRF7	inhibition of IRF7 DNA binding activity	Joo et al., 2003	
	K-bZIP	IRF3	competition with host IRF3 for DNA binding	Lefort et al., 2004	
cleavage or degradation of signaling proteins					
hepatitis C virus	NS3/4A	TRIF, VISA, MyD88	cleavage of targets	Li et al., 2005a; Li et al., 2005b;	
	NS5A	TRIF, VISA, MyD88	cleavage of targets	Meylan et al., 2005; Lin et al., 2006	
				Abe et al., 2007	
hepatitis A virus	3ABC	VISA	cleavage of VISA	Yang et al., 2007	
Flavivirus GB Virus B	NS3/4A	VISA	cleavage of VISA	Chen et al., 2007	
poliovirus	NS5A	MDA5	cleavage of MDA5 by caspases	Barral et al., 2007	
bovine herpesvirus	bICP0	IRF3	degradation of IRF3	Saira et al., 2007	
classical swine fever virus	Protease N	IRF3	degradation of IRF3	Bauhofer et al., 2007	
human immunodeficiency virus 1	Vpr and Vif	IRF3	degradation of IRF3	Okumura et al., 2008	
Rotavirus	NSP1	IRF3, IRF5, IRF7	destabilization of targets	Barro and Patton, 2007	
SARS-Coronavirus	PLpro	IRF3	proteasomal degradation of IRF3	Devaraj et al., 2007	
foot-and-mouth disease virus	Lpro	NF-κB	degradation of p65 and/or RelA	Roy and Mocarski, 2007	
Kaposi’s sarcoma-associated herpesvirus	RTA	IRF7	proteasomal degradation of IRF7	Mossman and Ashkar, 2005	
others	African swine fever virus	A238L, A224L	NF-κB, NF-κB	sequestration of NF-κB in cytoplasm activation of NF-κB and inhibition of caspases	Tait et al., 2000 Rodriquez et al., 2002
	Kaposi’s sarcoma-associated herpesvirus	K13	IKKα/β/γ complex	activation of NF-κB	Matta et al., 2007
monophosphated and/or modified with unusual bases (Hornung et al., 2006; Kato et al., 2006; Bowie and Unterholzner, 2008).

Viruses seem to be so smart that they are aware of the tricks by which the host distinguishes self and nonself RNA. A number of proteins encoded by viral genomes can process viral RNA and simulate the modifications of host RNA, thereby evading the supervision by PRRs (Furuiuchi and Furuichi, 2000). For example, picornaviruses such as EMCV protect the 5’ end of its RNA with the covalently linked protein VPg (Flanagan et al., 1977). The non-structural protein 14 (nsp14) of severe acute respiratory syndrome (SARS) coronavirus functions as an N7 methyltransferase that catalyzes to form an m7Gppp structure at the 5’ end of its RNA (von Grothuss et al., 2003; Chen et al., 2009). Genomic RNAs from Hantaan virus (HTNV), Crimean-Congo hemorrhagic fever virus (CCHFV) and Borna disease virus (BDV) are 5’ monophosphorylated (Schneider et al., 2005; Habjan et al., 2008). However, the exact mechanisms for these modifications are unknown. Human immunodeficiency virus (HIV) and adenovirus use host RNA processing machinery to cap newly synthesized viral RNA (Furuiuchi and Furuiichi, 2000). Poxviruses replicate in the cytoplasm and encode their own RNA capping machinery. In addition, IAV ‘snatches’ capped 5’ fragments from cellular mRNA to its own genomic RNA to mask its 5’ppp structure (Plotch et al., 1981).

Many viruses also produce dsRNA at some stage during their life cycle, which is recognized by host PRRs. To avoid innate immune responses that are initiated by RLRs, some viral genomes encode dsRNA-binding proteins, including vaccinia virus (VACV) E3L (Chang et al., 1992), Ebola virus VP35 (Cardenas et al., 2006; Haasnoot et al., 2007) and HIV 1 Tat (Weeks et al., 1990). These proteins shield the dsRNA structures generated during infection and replication from recognition by RLRs. It is also possible for these proteins to inhibit TLR3-mediated signaling in virus- and viral dsRNA-containing endosomes. Taken together, these studies suggest that many viruses inhibit PRR-mediated type I IFN signaling at the very beginning of PRR-mediated recognition of viral nucleic acids.

4.2 Disruption of the interactions of signaling molecules

As mentioned above, virus-triggered type I IFN signaling depends on the interactions of various signaling molecules. To block the signaling process, many viral proteins interact with the key molecules involved in the process and thereby prevent signal transduction leading to the expression of type I IFNs. For example, some viral proteins bind to RLRs directly, thereby inhibiting RLR-mediated signaling effectively. Nonstructural protein 1 of IAV which binds to RIG-I and V proteins of picornavirus which bind to MDA5 are two such examples (Andrejeva et al., 2004; Mibayashi et al., 2007). The Paramyxoviridae family human metapneumovirus (hMPV) G gene-encoded glycoprotein G specifically interacts with RIG-I and blocks RIG-I-mediated IFN-β induction (Bao et al., 2008). Recombinant hMPV lacking the G gene replicates efficiently in vitro but its virulence is highly attenuated in vivo. A46R of VACV is a multiple TIR domain-containing protein, which interacts with the adaptors TRIF and MyD88 and inhibits TLR-mediated production of type I IFNs. Consistent with the observation, the deletion of A46R attenuates but not abolishes viral virulence of VACV (Stack et al., 2005). N1L of VACV is associated with the kinase TBK1 (DiPerna et al., 2004). Other two VACV-encoded proteins, A52R which interacts with TRAF6 and IRAK2 and B14R which interacts with IKKβ inhibit production of type I IFNs and inflammatory cytokines (Chen et al., 2008; Schroder et al., 2008). Hepatitis C virus (HCV) NS3, rabies virus phosphoprotein and BDV phosphoprotein interact with TBK1, leading to sequestration of TBK1 from its upstream or downstream signaling proteins (Otsuka et al., 2005; Unterstab et al., 2005). The G1 protein of pathogenic Hantavirus can inhibit TBK1 function by disrupting the TRAF3-TBK1 interaction which is required for signaling (Alff P et al., 2006). Poxvirus protein N1L targets IKK complex and inhibits the activation of NF-κB and IRF3 by TLRs (DiPerna et al., 2004). Recent studies suggest that DEAD-box protein 3 (DDX3) is a critical component of the TBK1/IKKε complex in both RLRs and cytoplasmic DNA receptors-mediated signaling. K7R of VACV inhibits PRR-mediated induction of IFN-β by targeting DDX3, thereby preventing TBK1 or IKKε-mediated activation of IRFs (Schroder et al., 2008).

Several viral proteins inhibit signaling by targeting transcription factors. For example, NS1 of West Nile virus (WNV) inhibits TLR3-mediated induction of IFN-β by preventing the translocation of NF-κB and IRF3 to the nucleus (Wilson et al., 2008). Herpes simplex virus (HSV) infected cell protein 0 (ICP0) binds to IRF3 and sequesters IRF3 from binding host DNA (Melroe et al., 2007). There are also viral proteins homologous to host IRFs that inhibit IRF3 and IRF7 signaling. V proteins of mumps virus and parainfluenza virus 5 act as substrates of TBK1/IKKε and compete with IRF3 for phosphorylation by TBK1/IKKε (Lu et al., 2008). Human herpesvirus 8 encoded IRF homologue vIRF represses type I IFN induction by blocking the association of IRF3 with the coactivators CBP and p300 (Lin et al., 2001). Similarly, vIRF3, a Kaposi’s sarcoma-associated herpesvirus (KSHV) viral IRF homologue, dimerizes with the host IRF7 and inhibits its DNA binding activity (Joo et al., 2007). Another KSHV protein, K-bZIP, competes with the host IRF3 for binding sites in the promoters of ISG genes, thereby modulating the expression of antiviral genes (Lefort et al., 2007).

4.3 Cleavage or degradation of signaling proteins

Many viral genomes are translated into polypeptide
precursors which need to be cleaved into mature and functional proteins during viral replication. The cleavage activity depends on several non-structural proteins encoded by the viruses. For example, HCV genome is translated to a polypeptide and NS3/4A is one of such proteases and responsible for the cleavage. On the other hand, such activity of these proteases provides the possibility that they may cleave the host signaling molecules as well. Not surprisingly, the adaptors TRIF and VISA are cleaved by NS3/4A into two polypeptides that impair their ability to mediate PRR-induced expression of type I IFNs (Li et al., 2005a; Li et al., 2005b; Lin et al., 2006). Further studies suggest that the protease precursor protein 3ABC of Picornavirus hepatitis A virus (HAV) and NS3/4A of Flavivirus GB Virus B cleave VISA on the mitochondrial membrane, which disrupts RLR-mediated signaling (Chen et al., 2007; Yang et al., 2007). NS5A of poliovirus induces the cleavage of MDA5 by caspases, although the exact mechanism is unclear (Abe et al., 2007).

In addition, a number of viral proteins destabilize IRFs and target them for degradation. For example, bICP0 of bovine herpesvirus targets IRF3 for degradation instead of temporarily sequestering it as ICP0 from HSV does (Barral et al., 2007). Flaviviridae family classical swine fever virus protease N (Npro) and HIV proteins Vpr and Vif also induce proteasomal degradation of IRF3, suggesting a common mechanism used by viruses to evade antiviral responses (Bauhofer et al., 2007; Okumura et al., 2008). Rotavirus NSP1 antagonizes the function of IRF3, IRF5 and IRF7 by inducing their degradation, thereby inhibiting the expression of type I IFNs (Barro and Patton, 2007).

4.4 Others

In contrast to evasion of the host recognition and inhibition of the signaling, it is proposed that viruses can ‘hijack’ and even subvert aspects of PRR-mediated signaling. Viruses use living cells as hosts, which means that while viral infection and replication causes dysfunction of the hosts, viruses have to prevent the hosts from apoptosis at the same time. Not only is NF-κB involved in the production of IFN-β, it also inhibits apoptosis and promotes proliferation of the host cells. Therefore, NF-κB is a key molecule to be regulated and used by viruses. Taking the control of NF-κB activity by African swine fever virus (ASFV) as an example, the ASFV protein A238L is an early expressed homologue to the inhibitor of κBα (IkBα) that sequesters NF-κB in the cytoplasm, thereby inhibiting NF-κB activity (Tait et al., 2000). However, as infection and replication progress, A224L is expressed, which activates NF-κB and inhibits caspases, preventing cells from apoptosis (Rodriguez et al., 2002). Similarly, the K13 protein from KAHV interacts with the canonical IKKα/β/γ complex to selectively activate NF-κB (Matta et al., 2007). There are other examples of viruses that use and manipulate PRR-signaling for their replication and survival. HIV employs DDX3 to export viral RNA from the nucleus to the cytoplasm (Yedavalli et al., 2004). WNV may use TLR3-mediated signaling to produce cytokines to create a microenvironment favored by the viruses, as evidenced by the fact that TLR3 deficiency mice are resistant to WNV infection (Wang et al., 2004). Collectively, viruses adopt different strategies to inhibit and manipulate PRR-mediated signaling. Although progresses have been made to elucidate the mechanisms in the past decade, we expect new insights into the strategies that are used by viruses to interfere with PRR-mediated signaling.

5 Perspectives

Just as host and virus exert selective pressure on each other, studies on hosts and investigations of viruses mutually facilitate our understandings about each other. Future studies will focus on systemic mechanisms by which hosts balance the expression of antiviral and inflammatory cytokines and the translation of viral evasion into benefit of human health. First, mice with deletion of some cellular negative regulators show resistance to viral infection and high viability, while mice defective in others are susceptible to viral infection-caused inflammatory responses. As a result, it is important to take a systemic view of the host regulators when using in vivo mouse models. Second, much more efforts are needed to direct in vivo studies relevant to humans. For example, TLR3 deficiency does not impair the host immune response to several viruses (Edelmann et al., 2004). Later, it was reported that TLR-deficient mice are more resistant to WNV infection (Wang et al., 2004). However, patients with mutations in TLR3 are related to HSV-associated encephalitis (Zhang et al., 2007). Finally, development of therapeutic drugs that targets cellular or viral inhibitors may provide new strategy to treat infection or immune dysfunction-caused diseases.

Acknowledgements We thank members of our laboratory for discussions and suggestions. The work in the authors’ laboratory was supported by the National Basic Research Program of China (No. 2006CB504301 and 2010CB911802), the National Natural Science Foundation of China (Grant Nos. 30630019, 30700431 and 30921001) and the Chinese National Science and Technology Major Project (No. 2008ZX10002-014).

References

Abe T, Kaname Y, Hamamoto I, Tsuda Y, Wen X, Tagawa S, Moriishi K, Takeuchi O, Kawai T, Kanto T, Hayashi N, Akira S, Matsuura Y (2007). Hepatitis C virus nonstructural protein 5A modulates the toll-like receptor-MyD88-dependent signaling pathway in macrophage cell lines. J Virol, 81(17): 8953–8966
Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald K A, Hornung V (2009). RG-I-dependent sensing of poly(dA:dT) through
the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol, 10(10): 1065–1072

Akira S, Takeda K (2004). Toll-like receptor signalling. Nat Rev Immunol, 4(7): 499–511

Akira S, Uematsu S, Takeuchi O (2006). Pathogen recognition and innate immunity. Cell, 124(4): 783–801

Alexopoulou L, Holt A C, Medzhitov R, Flavell R A (2001). Recognition of double-stranded RNA and activation of NF-κappaB by Toll-like receptor 3. Nature, 413(6857): 732–738

Alff P J, Gavrilovskaya I N, Gorbunova E, Endriss K, Chong Y, Geimonen E, Sen N, Reich N C, Mackow E R (2006). The Pathogenic NY-1 Hantavirus G1 Cytoplasmic Tail Inhibits RIG-I and TBK-1 Directed Interferon Responses. J Virol, 80(19): 9676–9686

An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, Yu Y, Liu S, Cao X (2008). Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol, 9(5): 542–550

An H, Zhao W, Hou J, Zhang Y, Xie Y, Zheng Y, Xu H, Qian C, Zhou J, Yu Y, Liu S, Feng G, Cao X (2006). SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity, 25(6): 919–928

Andrejeva J, Childs K S, Young D F, Carlos T S, Stock N, Goodbourn S, Cardenas W B, Luo Y M, Gale M Jr, Hartman A L, Kimberlin C R, Martinez-Sobrolo L, Saphire E O, Basler C F (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol, 80(11): 5168–5178

Carty M, Goodbody R, Schroder M, Stack J, Moynagh P N, Bowie A G (2006). The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol, 7(10): 1074–1081

Chang H W, Watson J C, Jacobs B L (1992). Thsse E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, double-stranded RNA-dependent protein kinase. Proc Natl Acad Sci U S A, 89(11): 4825–4829

Chen R A, Ryzhakov G, Cooray S, Randow F, Smith G L (2008). Inhibition of IkappaB kinase by vaccinia virus virulence factor B14. PLoS Pathog, 4(2): e22

Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D (2009). Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog, 5(4): e1000077

Barral P M, Morrison J M, Drahos J, Gupta P, Sarkar D, Fisher P B, Racaniello V R (2007). MDA-5 is cleared in poxvirus-infected cells. J Virol, 81(8): 3677–3684

Barro M, Patton J T (2007). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol, 81(9): 4473–4481

Bauhofer O, Summerfield A, Sakoda Y, Tratschin J D, Hofmann M A, Ruggli N (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteosomal degradation. J Virol, 81(7): 3087–3096

Boone D L, Turer E E, Lee E G, Ahmad R C, Wheeler M T, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsuo O, McNally E, Pickart C, Ma A (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol, 5(10): 1052–1060

Bowie A G, Unterholzner L (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol, 8(12): 911–922

Bradley J R, Pober J S (2001). Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 20(44): 6482–6491

Bromberg K D, Kluger H M, Delaunay A, Abbas S, DiVito K A, Krajewski S, Ronai Z (2007). Increased expression of the E3 ubiquitin ligase RNF5 is associated with decreased survival in breast cancer. Cancer Res, 67(17): 8172–8179

Brzozka K, Finke S, Conzelmann K K (2005). Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol, 79(12): 7673–7681

Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tsopp J (2003). Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med, 197(2): 263–268

Cabezis A, Costas M J, Pinto R M, Couto A, Cameselle J C (2005). Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases. Biochem Biophys Res Commun, 338(4): 1682–1689s

Cardenas W B, Luo Y M, Gale M Jr, Hartman A L, Kimberlin C R, Martinez-Sobrolo L, Saphire E O, Basler C F (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol, 80(11): 5168–5178

Randall R E (2004). The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A, 101(49): 17264–17269

Arimoto K, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K (2007). Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc Natl Acad Sci U S A, 104(18): 7500–7505

Bachler C, Flukiger-Bruhwiler K, Schneider P, Bahler P, Erni B (2005). From ATP as substrate to ADP as coenzyme: functional evolution of the nucleotide binding subunit of dihydroxyacetone kinases. J Biol Chem, 280(18): 18321–18325

Bao X, Liu T, Shan Y, Li K, Garofalo R P, Casola A (2008). Human metapneumovirus glycoprotein G inhibits innate immune responses. PLoS Pathog, 4(5): e1000077

Barral P M, Morrison J M, Drahos J, Gupta P, Sarkar D, Fisher P B, Racaniello V R (2007). MDA-5 is cleared in poxvirus-infected cells. J Virol, 81(8): 3677–3684

Barro M, Patton J T (2007). Rotavirus NSP1 inhibits expression of type I interferon by antagonizing the function of interferon regulatory factors IRF3, IRF5, and IRF7. J Virol, 81(9): 4473–4481

Bauhofer O, Summerfield A, Sakoda Y, Tratschin J D, Hofmann M A, Ruggli N (2007). Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteosomal degradation. J Virol, 81(7): 3087–3096

Boone D L, Turer E E, Lee E G, Ahmad R C, Wheeler M T, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsuo O, McNally E, Pickart C, Ma A (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol, 5(10): 1052–1060

Bowie A G, Unterholzner L (2008). Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol, 8(12): 911–922

Bradley J R, Pober J S (2001). Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene, 20(44): 6482–6491
Didier C, Broday L, Bhoumik A, Israeli S, Takahashi S, Nakayama K, Diebold S S, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004). Innate Edelmann K H, Richardson-Burns S, Alexopoulou L, Tyler K L, Flavell Ea C K, Deng L, Xia Z P, Pineda G, Chen Z J (2006). Activation of IKK

Gack M U, Shin Y C, Inn K S, Joo C H, Flavell 15661

Nature, 446(7138): 916–920

Gao D, Wang R, Li B, Wang Y, Zhai Z, Chen D Y (2009). WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway. Cell Mol Life Sci, 66(15): 2573–2584

Gao D, Yang Y K, Wang R P, Zhou X, Diao F C, Li M D, Zhai Z H, Jiang Z F, Chen D Y (2009). REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One, 4(6): e5760

Gatot J S, Gioia R, Chau T L, Patrascu F, Warnier M, Close P, Chapelle J P, Muraille E, Brown K, Siebenlist U, Piette J, Dejardin E, Chariot A (2007). Lipopolysaccharide-mediated interferon regulatory factor activation involves TBK1-IKKepsilon-dependent Lys(63)-linked polyubiquitination and phosphorylation of TANK1/TRAF. J Biol Chem, 282(43): 31131–31146

Gohda J, Matsumura T, Inoue J (2004). Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J Immunol, 173(5): 2913–2917

Guo B, Cheng G (2007). Modulation of the interferon antiviral response by the TBK1/IKKepsilon adaptor protein TANK. J Biol Chem, 282(16): 11817–11826

Gutierrez M G, Master S S, Singh S B, Taylor G A, Colomba M I, Deretic V (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 119(6): 753–766

Haasnoot J, de Vries W, Geutjes E J, Prins M, de Haan P, Berkhout B (2007). The Ebola virus VP35 protein is a suppressor of RNA silencing. PLoS Pathog, 3(6): e86

Habjan M, Andersson I, Klingstrom J, Schumann M, Martin A, Zimmermann P, Wagner V, Pichlmair A, Schneider U, Muhlberger, Mirazimi A, Weber F (2008). Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One, 3(4): e2032

Han K J, Xu S, Xu L G, Bin L H, Zhang J, Shu H B (2004). Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem, 279(15): 15652–15661

Heil F, Hemmi H, Hochrein H, Ammenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004). Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science, 303 (5663); 1529–1531

Higgs R, N Gabhann J, Ben Larbi N, Breen E P, Fitzgerald K A, Jefferys C A (2008). The E3 ubiquitin ligase Ro52 negatively regulates IFN-beta production post-pathogen recognition by poly-

Ronai Z (2008). The ER-bound RING finger protein 5 (RNF5/ RMA1) causes degenerative myopathy in transgenic mice and is deregulated in inclusion body myositis. PLoS ONE, 3(2): e1609

Deng W, Shi M, Han M, Zhong J, Li Z, Li W, Hu Y, Yan L, Wang J, He Y, Tang H, Deuble V, Luo X, Ning Q, Sun B (2008). Negative regulation of virus-triggered IFN-beta signaling pathway by alternative splicing of TBK1. J Biol Chem, 283(51): 35590–35597

Devaraj S G, Wang N, Chen Z, Chen Z, Tseng M, Barretto N, Lin R, Peters C J, Tseng C T, Baker S C, Li K (2007). Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J Biol Chem, 282(44): 32208–32221

Diao F, Li S, Tian Y, Zhang M, Xu L G, Zhang Y, Wang R P, Chen D, Zhai Z, Zhong B, Tien P, Shu H B (2007). Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proc Natl Acad Sci U S A, 104(28): 11706–11711

Didier C, Broday L, Bhounik A, Israeli S, Takahashi S, Nakayama K, Thomas S M, Turner C E, Henderson S, Sabe H, Ronai Z (2003). RNF5, a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol, 23(15): 5331–5345

Diebold S S, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 303(5663): 1529–1531

DiPerna G, Stack J, Bowie A G, Boyd A, Kotwal G, Zhang Z, Arvikan S, Latz E, Fitzgerald K A, Marshall W L (2004). Poxvirus protein N1L targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors, and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem, 279(35): 36570–36578

Ea C K, Deng L, Xia Z P, Pineda G, Chen Z J (2006). Activation of IKK by TNIalphain requires specific-site ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell, 22(2): 245–257

Edelmann K H, Richardson-Burns S, Alexopoulou L, Tyler K L, Flavell R A, Oldstone M B (2004). Does Toll-like receptor 3 play a biological role in virus infections? Virology, 322(2): 231–238

Flanagan J B, Petterson R F, Ambros V, Hewlett N J, Baltimore D (1977). Covalent linkage of a protein to a defined nucleotide sequence at the 5'-terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci U S A, 74(3): 961–965

Friedman C S, O'Donnell M A, Legarda-Addison D, Ng A, Cardenas W B, Yount J S, Moran T M, Basler C F, Komuro A, Horvath C M, Xavier R, Ting A T (2008). The tumour suppressor CYLD is a RING finger protein that regulates cell motility by targeting paxillin ubiquitination and altered localization. Mol Cell Biol, 23(15): 5331–5345

Furuchi Y, Furuchi A J (2000). Viral and cellular mRNA capping: past and prospects. Adv Virus Res, 55: 135–184

Gack M U, Kirchhofer A, Shin Y C, Inn K S, Liang C, Cui S, Myong S, Ha T, Hopfner K P, Jung J U (2008). Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A, 105(43): 16743–16748

Gack M U, Shin Y C, Joo C H, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung J U (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity.
ubiquitin-mediated degradation of IRF3. J Immunol, 181(3): 1780–1786
Honda K, Takaoka A, Taniguchi T (2006). Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity, 25(3): 349–360
Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh W C, Taniguchi T (2004). Role of a transcriptional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A, 101(43): 15416–15421
Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann K K, Schlee M, Endres S, Hartmann G (2006). 5’-Triphosphate RNA is the ligand for RIG-I. Science, 314(5801): 994–997
Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A, Endres S, Hartmann G (2005). Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med, 11(3): 263–270
Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M, Hemmi H, Ohara O, Akira S, Kaisho T (2006). IFN-α receptor-stimulated Jak-STAT signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol, 10(9): 965–972
Kawai T, Akira S (2008). STING is an endoplasmic reticulum transductional-transcriptional processor complex involving MyD88 and IKK epsilon/TBK1-associated suppressor of TLR3- and virus-activated IRF-3 activation pathways. Embo J, 24(23): 4018–4028
Kawai T, Sato S, Ishii K J, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IFR7 with MyD88 and TRAF6. Nat Immunol, 5(10): 1061–1068
Kawase T, Takeuchi O, Takabatake Y, Kato H, Isaka Y, Tsujimura T, Akira S (2009). TANK is a negative regulator of Toll-like receptor signaling and is critical for the prevention of autoimmune nephritis. Nat Immunol, 10(9): 965–972
Kawai T, Akira S (2008). Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci, 1143: 1–20
Kawai T, Akira S (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol, 21(4): 317–337
Kawai T, Sato S, Ishii K J, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004). Interferon-alpha induction through Toll-like receptors involves a direct interaction of IFR7 with MyD88 and TRAF6. Nat Immunol, 5(10): 1061–1068
Kawasaki T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii K J, Takeuchi O, Akira S (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol, 6(10): 981–988
Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke K M, Eby M, Pietras E, Cheng G, Buzan J F, Zhang Z, Arnott D, Dixit V M (2007). DUBA: a deubiquitinase that regulates type I interferon production. Science, 318(5856): 1628–1632
Keating S E, Maloney G M, Moran E M, Bowie A G (2007). IRAK-2 participates in multiple toll-like receptor signaling pathways to NF-kappaB via activation of TRAF6 ubiquitination. J Biol Chem, 282(46): 33435–33443
Kim M J, Hwang S Y, Imaizumi T, Yoo J Y (2008). Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol, 82(3): 1474–1483
Kim Y, Zhou P, Qian L, Chung J Z, Lee J, Li C, Iadecola C, Nathan C, Ding A (2007). MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med, 204(9): 2063–2074
Kleiman M E, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baff J Z, Albuquerque R J, Yamasaki S, Itaya M, Pan Y, Appukuttan B, Gibbs D, Yang Z, Kariko A, Ambrati V K, Wilgus T A, DiPietro L A, Kakurai E, Zhang K, Smith J R, Zhang Z, Arnott D, Ambati B K, Wilgus T A, Barchet W, Leib D A, Akira S, Colonna M (2004b). Recruitment of viral and cellular factors to autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7187): 591–597
Kobayashi K, Hernandez L D, Galan J E, Janeway C A Jr, Medzhitov R, Flavell R A (2002). IRAK-M is a negative regulator of Toll-like receptor signaling. Cell, 110(2): 191–202
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441(7095): 880–884
Krieg A M (2002). CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol, 20: 709–760
Krug A, French A R, Barchet W, Fischer J A, Dzinek A, Pingle J T, Orihuela M M, Akira S, Yokoyama W M, Colonna M (2004a). TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity, 21(1): 107–119
Krug A, Luker G D, Barchet W, Leib D A, Akira S, Colonna M (2004b). Herpes simplex virus type 1 activates murine natural interferon-
producing cells through toll-like receptor 9. Blood, 103(4): 1433–1437

Kumagai Y, Takeuchi O, Kato H, Kumar H, Matsui K, Morii E, Aozasa K, Kawai T, Akira S (2007). Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity, 27(2): 240–252

Kumar H, Kawai T, Akira S (2009). Pathogen recognition in the innate immune response. Biochem J, 420(1): 1–16

Kyushiki H, Kuga Y, Suzuki M, Takahashi E, Horie M (1997). Cloning, expression and mapping of a novel RING-finger gene (RNF5), a human homologue of a putative zinc-finger gene from Caenorhabditis elegans. Cytogeten Cell Genet, 79(1–2): 114–117

Le Goffic R, Balloy V, Lagranderie M, Alexeopoulos L, Escriou N, Flavell R, Chignard M, Si-Tahar M (2006). Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog, 2(6): e53

Lee Y F, Nomoto A, Detjen B M, Wimmer E (1977). A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci U S A, 74(1): 59–63

Lefort S, Soucy-Faulkner A, Grandvaux N, Flamand L (2007). Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-alpha producer in pulmonary infection with RNA viruses. Immunity, 27(2): 240

Lin R, Yang L, Nakhaei P, Sun Q, Sharif-Askari E, Julkunen I, Hiscott J (2007). Negative regulation of the retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol, 81(20): 10950–10960

Li K, Foy E, Ferreon J C, Nakamura M, Ferreon A C, Ikeda M, Ray S C, Ikeda M, Ray S C, Li X D, Sun L, Seth R B, Pineda G, Chen Z J (2005b). Hepatitis C virus NS3/4A protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A, 102(49): 17177–17172

Li Y, Li C, Xue P, Zhong B, Mao A P, Ran Y, Chen H, Wang Y Y, Yang F, Shu H B (2009). ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc Natl Acad Sci U S A, 106(19): 7945–7950

Lin R, Genin P, Mamane Y, Sgarbanti M, Battistini A, Harrington W J Jr, Barber G N, Hiscott J (2001). HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the RIG-I-like helicase antiviral pathway. Immunity, 28(2): 299–309

Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003). Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med, 198(3): 513–520

Maniatis T, Falvo J V, Kim T H, Kim T K, Lin C H, Parekh B S, Wathelet M G (1998). Structure and function of the interferon-beta enhanceosome. Cold Spring Harb Symp Quant Biol, 63: 609–620

Marin I, Ferrus A (2002). Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol, 19(12): 2039–2050

Martin M, Rehani K, Jope R S, Michaelle S M (2005). Toll-like receptor-mediated cytokine production is differentially regulated by glycogene synthase kinase 3. Nat Immunol, 6(8): 777–784

Mashima R, Saeki K, Aki D, Minoda Y, Takaki H, Sanada T, Kobayashi T, Aburatani H, Yamanashi Y, Yoshimura A (2005). FLN29, a novel interferon- and LPS-inducible gene acting as a negative regulator of toll-like receptor signaling. J Biol Chem, 280(50): 41289–41297

Matta H, Mazzacurati L, Schamus S, Yang T, Sun Q, Chaudhary P M (2007). Kaposi's sarcoma-associated herpesvirus (KHSV) oncprotein K13 bypasses TRAFs and directly interacts with the IKappaB kinase complex to selectively activate NF-kappaB without JNK activation. J Biol Chem, 282(34): 24858–24865

McCartney S A, Colonna M (2009). Viral sensors: diversity in pathogen recognition. Immunol Rev, 227(1): 87–94

Melroe G T, Silva L, Schaffer P A, Knipe D M (2007). Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: Potential role in blocking IFN-beta induction. Virology, 360(2): 305–321

Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F, Kellhuber M, Tschopp J (2004). RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol, 5(5): 503–507

Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 437 (7062): 1167–1172

Michallet M C, Meylan E, Ermolaeva M A, Vazquez J, Rebsamen M, Curran J, Poeck H, Bscheider M, Hartmann G, Konig M, Kalinke U, Pasparakis M, Tschopp J (2008). TRADD protein is an essential component of the RIG-I-like helicase antiviral pathway. Immunity, 28 (5): 651–661

Moore C B, Bergstrahl D T, Duncan J A, Lei Y, Morrison T E, Zimmermann A G, Accavitti-Loper M A, Madden V J, Sun L, Ye Z, Lich J D, Heise M T, Chen Z, Ting J P (2008). NLRX1 is a regulator of mitochondrial antiviral immunity. Nature, 451(7178): 573–577

Mossman K L, Ashkar A A (2005). Herpesviruses and the innate immune response. Viral Immunol, 18(2): 267–281

Neel B G, Gu H, Pao L (2003). The 'Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci, 28(6): 284–293

Nisole S, Stoye J P, Saib A (2005). TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol, 3(10): 799–808

Ogasanay S, Saha S K, Guo B, He J Q, Shahangian A, Zarnegar B,
Perry A, Cheng G (2006). Critical role of TRAF3 in the Toll-like receptor-dependent and-independent antiviral response. Nature, 439 (7073): 208–211

Ogino T, Banerjee A K (2007). Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell, 25(1): 85–97

Okumura A, Alce T, Lubyova B, Ezelle H, Strebel K, Pitha P M (2008). HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation. Virology, 373(1): 85–97

Olland A M, Jane-Valbuena J, Schiff L A, Nibert M L, Harrison S C (2001). Structure of the reovirus outer capsid and dsRNA-binding protein sigma3 at 1.8 Å resolution. Embo J, 20(5): 979–989

Opipari A W Jr, Boguski M S, Dixit V M (1990). The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem, 265(25): 14705–14708

Oishi H, Matsumoto M, Hatakeyama S, Seya T (2009). Riplet/ RNF135, aRING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem, 284(2): 807–817

Otsuka M, Kato N, Moriyama M, Taniguchi H, Wang Y, Dharel N, Oshiumi H, Matsumoto M, Hatakeyama S, Seya T (2009). Riplet/ TANK. Embo J, 26(13): 3180–3190

Ouyang P, Li Y, Wei G, Wang J, Chia B, Wu Y, Tang D, Shi J, Tan C P, Liljestrom P, Weber F, Sadler A, Williams B R (2008). Interferon-inducible antiviral effectors. Nat Rev Immunol, 8(7): 559–568

Sadler A, Williams B R (2008). Interferon-inducible antiviral effectors. Nat Rev Immunol, 8(7): 559–568

Saha S K, Pietras E M, He J Q, Kang J R, Liu S Y, Oghanesan G, Shahangan A, Zarnegar B, Shiba T L, Wang Y, Cheng G (2006). Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. Embo J, 25(14): 3257–3263

Sair A, Zhou Y, Jones C (2007). The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits beta interferon promoter activity. J Virol, 81(7): 3077–3086

Saito T, Hirai R, Loo Y M, Owen D, Johnson C L, Sinha S C, Akira S, Fujita T, Gale M Jr (2007). Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A, 104(2): 582–587

Saito T, Owen D M, Jiang F, Marcotrigiano J, Gale M Jr (2008). Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 454(7203): 523–527

Saitoh T, Tun-Kyi A, Ryo A, Yamamoto M, Finn G, Fujita T, Akira S, Yamamoto N, Lu K P, Yamaoka S (2006). Negative regulation of interferon-regulator-factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol, 7(6): 598–605

Saitoh T, Yamamoto M, Miyagishi M, Taira K, Nakanishi M, Fujita T, Akira S, Yamamoto N, Yamaoka S (2005). A2O is a negative regulator of IFN regulatory factor 3 signaling. J Immunol, 174(3): 1507–1512

Sanada T, Takaesu G, Mashima R, Yoshida R, Kobayashi T, Yoshimura A (2008). FNL29 deficiency reveals its negative regulatory role in the Toll-like receptor-TLR and retinoic acid-inducible gene I (RIG-I)-like helicase signaling pathway. J Biol Chem, 283(49): 33858–33864

Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T, Takeda K, Akira S (2003). Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J Immunol, 171(8): 4304–4310

Schelle M, Roth A, Hornung V, Hagmann C A, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald K A, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G (2009). Recognition of 5’ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity, 31(1): 25–34

Schneider U, Schwemmle M, Staeheili P (2005). Genome trimming: a unique strategy for replication control empirically employed by Borna disease virus. Proc Natl Acad Sci U S A, 102(9): 3441–3446

Schröder M, Baran M, Bowie A G (2008). Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J, 27(15): 2147–2157

Seth R B, Sun L, Ea C K, Chen Z J (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappab and IRF 3. Cell, 122(5): 669–682

Shi M, Deng W, Bi E, Mao K, Ji Y, Lin G, Wu X, Tao Z, Li Z, Cai X, Sun S, Xiang C, Sun B (2008). TRIM50 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation. Nat Immunol, 9(4): 369–377

Shinohara M L, Lu L, Bu J, Werneck M B, Kobayashi K S, Glimcher L...
H, Cantor H (2006). Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol, 7(5): 498–506

Stack J, Haga I R, Schroder M, Bartlett N W, Maloney G, Reading P C, Fitzgerald K A, Smith G L, Bowie A G (2005). Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med, 191(6): 1007–1018

Su X, Li S, Meng M, Qian W, Xie W, Chen D, Zhai Z, Shu H B (2006). TNF receptor-associated factor-1 (TRAF1) negatively regulates Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-mediated signaling. Eur J Immunol, 36(1): 199–206

Szretter K J, Samuel M A, Gilfillan S, Fuchs A, Colonna M, Diamond M S (2009). The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. J Virol, 83(18): 9329–9338

Tait S W, Reid E B, Greaves D R, Wileman T E, Powell P P (2000). Mechanism of inactivation of NF-kappa B by a viral homologue of human kappa b alpha. Signal-induced release of kappa b alpha results in binding of the viral homologue to NF-kappa B. J Biol Chem, 275 (44): 34656–34664

Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Szretter K J, Samuel M A, Gilfillan S, Fuchs A, Colonna M, Diamond M S (2009). The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis. J Virol, 83(18): 9329–9338

Tait S W, Reid E B, Greaves D R, Wileman T E, Powell P P (2000). Mechanism of inactivation of NF-kappa B by a viral homologue of human kappa b alpha. Signal-induced release of kappa b alpha results in binding of the viral homologue to NF-kappa B. J Biol Chem, 275 (44): 34656–34664

Takeuchi O, Akira S (2009). Innate immunity to virus infection. Immunol Rev, 227(1): 75–86

Tamura T, Yanai H, Savitsky D, Taniguchi T (2008). Tamura T, Yanai H, Savitsky D, Taniguchi T (2008). Annu Rev Immunol, 26: 535–584

Terenzi F, Hui D J, Merrick W C, Sen G C (2006). Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J Biol Chem, 281(45): 34064–34071

Theofilopoulos A N, Baccala R, Beutler B, Kono D H (2005). Type I interferons (alpha/beta) in immunity and autoimmunity. Annu Rev Immunol, 23: 307–336

Tian Y, Zhang Y, Zhong B, Wang Y Y, Diao F C, Wang R P, Zhang M, Chen D Y, Zhai Z H, Shu H B (2007). RBCK1 negatively regulates tumor necrosis factor- and interleukin-1-triggered NF-kappaB activation by targeting TAB2/3 for degradation. J Biol Chem, 282 (23): 16776–16782

Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H, Takeshita F, Matsuda M, Coban C, Ishii K J, Kawai T, Takeuchi O, Akira S (2005). Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)- and TLR9-mediated interferon- (alpha) induction. J Exp Med, 201(6): 915–923

Unterstab G, Ludwig S, Anton A, Pfanz O, Dauber B, Krappmann D, Heins G, Ehrhardt C, Wolff T (2005). Viral targeting of the interferon-(beta)-inducing Traf family member-associated NF-(kappa)B activator (TANK)-binding kinase-1. Proc Natl Acad Sci U S A, 102(38): 13640–13645

Venkataraman T, Valdes M, Elsby R, Kakuta S, Caceres G, Saijo S, Ivakura Y, Barber G N (2007). Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol, 178(10): 6444–6455

von Grothusss M, Wyrwicz L S, Rychlewski L (2003). mRNA cap-1 methyltransferase in the SARS genome. Cell, 113(6): 701–702

Wacher C, Muller M, Hofer M J, Getts D R, Zarbaras R, Ousman S S, Terenzi F, Sen G C, King N J, Campbell I L (2007). mRNA cap-1 methyltransferase in the SARS genome. J Virol, 81(2): 860–871

Wang C, Chen T, Zhang J, Yang M, Li N, Xu X, Cao X (2009). The E3 ubiquitin ligase Nrip1 'preferentially' promotes TLR-mediated production of type I interferon. Nat Immunol, 10(7): 744–752

Wang C, Pfugheber J, Sumpter R Jr, Sodora D L, Hui D, Sen G C, Gale M Jr (2003). Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J Virol, 77 (7): 3898–3912

Wang T, Town T, Alexopoulou L, Anderson J F, Fikrig E, Flavell R A (2004). Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med, 10(12): 1366–1373

Wang Y Y, Li L, Han K J, Zhai Z, Shu H B (2004). A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-kappaB and ISRE and IFN-beta promoter. FEBS Lett, 576(1–2): 86–90

Weeks K M, Ampe C, Schultz S C, Steitz T A, Crothers D M (1990). Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science, 249(4974): 1281–1285

Wertz I E, O'Rourke K M, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone D L, Ma A, Koonin E V, Dixit V M (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 430(7000): 694–699

Wilson J R, de Sessions P F, Leon M A, Scholle F (2008). West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. J Virol, 82(17): 8262–8271

Woodgett J R, Ohashi P S (2005). GSK3: an in-Toll-erant protein kinase? Nat Immunol, 6(8): 751–752

Xu L, Xiao N, Liu F, Ren H, Gu J (2009). Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proc Nat Acad Sci U S A, 106(5): 1530–1535

Xu L G, Wang Y Y, Han K J, Li LY, Zhai Z, Shu H B (2005). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 19(6): 727–740

Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003). Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science, 301(5633): 640–643

Yang K, Shi H X, Liu X Y, Shan Y F, Wei B, Chen S, Wang C (2009). TRIM21 is essential to sustain IFN regulatory factor 3 activation during antiviral response. J Immunol, 182(6): 3782–3792

Yang Y, Liang Y, Qu L, Chen Z, Yi M, Li K, Lemon S M (2007). Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci U S A, 104(17): 7253–7258

Yedavalli V S, Neuveut C, Chi Y H, Kleiman L, Jeang K T (2004). Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell, 119(3): 381–392

Yoneyama M, Kikuchi M, Matsumoto K, Imaiizumi T, Miyagishi M, Taira K, Foy E, Loo Y M, Gale M Jr, Akira S, Yonehara S, Kato A,
Fujita T (2005). Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol, 175(5): 2851–2858

Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol, 5(7): 730–737

Yoneyama M, Fujita T (2009). RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev, 227(1): 54–65

You M, Flick L M, Yu D, Feng G S (2001). Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J Exp Med, 193(1): 101–110

You M, Yu D H, Feng G S (1999). Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol Cell Biol, 19(3): 2416–2424

Zhang M, Tian Y, Wang R P, Gao D, Zhang Y, Diao F C, Chen D Y, Zhai Z H, Shu H B (2008). Negative feedback regulation of cellular antiviral signaling by RBCK1-mediated degradation of IRF3. Cell Res, 18(11): 1096–1104

Zhang M, Wu X, Lee A J, Jin W, Chang M, Wright A, Imaizumi T, Sun S C (2008). Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem, 283(27): 18621–18626

Zhang S Y, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, von Bernuth H, Ku C L, Casrouge A, Zhang X X, Barreiro L, Leonard J, Hamilton C, Lebon P, Heron B, Vallee L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova J L (2007). TLR3 deficiency in patients with herpes simplex encephalitis. Science, 317(5844): 1522–1527

Zhao C, Denison C, Huibregtse J M, Gygi S, Krug R M (2005). Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc Natl Acad Sci U S A, 102(29): 10200–10205