Compartmental Organization of Golgi-specific Protein Modification and Vacuolar Protein Sorting Events Defined in a Yeast sec18 (NSF) Mutant

Todd R. Graham and Scott D. Emr
Division of Biology, 147-75, California Institute of Technology, Pasadena, California 91125

Abstract. The sec18 and sec23 secretory mutants of Saccharomyces cerevisiae have previously been shown to exhibit temperature-conditional defects in protein transport from the ER to the Golgi complex (Novick, P., S. Ferro, and R. Schekman. 1981. Cell. 25:461–469). We have found that the Sec18 and Sec23 protein functions are rapidly inactivated upon shifting mutant cells to the nonpermissive temperature (<1 min). This has permitted an analysis of the potential role these SEC gene products play in transport events distal to the ER. The sec-dependent transport of α-factor (af) and carboxypeptidase Y (CPY) biosynthetic intermediates present throughout the secretory pathway was monitored in temperature shift experiments. We found that Sec18p/NSF function was required sequentially for protein transport from the ER to the Golgi complex, through multiple Golgi compartments and from the Golgi complex to the cell surface. In contrast, Sec23p function was required in the Golgi complex, but only for transport of αf out of an early compartment. Together, these studies define at least three functionally distinct Golgi compartments in yeast. From cis to trans these compartments contain: (a) An α1→6 mannosyltransferase; (b) an α1→3 mannosyltransferase; and (c) the Kex2 endopeptidase.

Surprisingly, we also found that a pool of Golgi-modified CPY (p2 CPY) located in a compartment distal to the α1→3 mannosyltransferase does not require Sec18p function for final delivery to the vacuole. This compartment appears to be equivalent to the Kex2 compartment as we show that a novel vacuolar CPY-αf-invertase fusion protein undergoes efficient Kex2-dependent cleavage resulting in the secretion of invertase. We propose that this Kex2 compartment is the site in which vacuolar proteins are sorted from proteins destined to be secreted.

The Golgi complex plays an important role in the post-translational modification of glycoproteins and in the sorting of these proteins to their appropriate destination. In mammalian cells the Golgi complex is divided into at least four spatially and functionally distinct regions: cis, medial, trans, and the trans-Golgi network (TGN) (Palade, 1975; Farquhar, 1985; Pfeffer and Rothman, 1987). These Golgi compartments differ in their content of specific enzymes involved in the posttranslational modification of glycoproteins. In addition, lysosomal enzymes appear to be sorted from secreted proteins in the TGN, indicating that protein sorting reactions are also restricted to specific compartments of the Golgi complex (Griffiths and Simons, 1986; Dahms et al., 1989). Although Saccharomyces cerevisiae has become an important model organism for studying the secretory pathway, the compartmental organization of the yeast Golgi complex has not been extensively characterized. Reasons for this include: (a) The wild-type yeast Golgi has been difficult to identify by EM, possibly because it lacks the customary stacked cisternal morphology of the mammalian Golgi complex; (b) subcellular fractionation of yeast organelles has not yet resulted in the clean separation of Golgi enzyme activities; and (c) few mutants (sec7 and sec14) that affect protein transport through the yeast Golgi have been isolated (Esmen et al., 1981; Novick et al., 1981). Recently however, Franzusoff and Schekman (1989) have presented evidence that the enzyme(s) which catalyze α1→6 linked mannose addition to yeast glycoproteins appear to be sequestered in an early Golgi compartment that lacks α1→3 mannosyltransferase and Kex2 endopeptidase activities (Franzusoff and Schekman, 1989). In addition, Cunningham and Wickner (1989) have reported that membranes enriched for an α1→3 mannosyltransferase activity and Kex2 endopeptidase activity can be partially separated in a Percoll density gradient (Cunningham and Wickner, 1989). The implication from these studies is that, like the mammalian Golgi complex, the yeast Golgi complex may be composed of discrete cisternae with specific functions in glycoprotein modification and sorting.

1. Abbreviations used in this paper: αf, α factor; CPY, carboxypeptidase Y; maf, mature α factor; NSF, N-ethylmaleimide sensitive factor; TGN, trans-Golgi network; WiMP, Wickerman minimal proline media; WiMPY, WiMP yeast extract.

© The Rockefeller University Press, 0021-9525/91/07/207/12 $2.00
The Journal of Cell Biology, Volume 114, Number 2, July 1991 207–218

207
Both genetic and biochemical approaches are being used to study how proteins are transported through the secretory pathway. In yeast, a number of temperatureconditional secretory (sec) mutants have been isolated in which protein secretion is blocked at the nonpermissive temperature (Novick et al., 1980; Novick and Schekman, 1979). These sec mutants were classified into groups that exhibited defects either in protein transport from the ER, or from the Golgi complex, and those that accumulated 50-100-nm secretory vesicles (Esmann et al., 1981; Novick et al., 1981). Mutants defective in transport from the ER have been further divided into those that have accumulated 50-nm transport vesicles (class II, e.g. sec18) and those that did not (class I, e.g. sec23). The class I SEC gene products are thought to be required for budding transport vesicles from the ER and the class II gene products for catalyzing the transport and/or fusion of these vesicles with the target membrane (Kaiser and Schekman, 1990). Using an in vitro reconstitution assay, Rothman and colleagues (1989) have shown that protein transport between adjacent cisternae of the mammalian Golgi complex involves several obligate subreactions which appear to include: the budding of coated transport vesicles from the donor membrane, targeting and attachment of these vesicles to the appropriate acceptor compartment, uncoating of the vesicles, and the subsequent fusion of these vesicles with the acceptor compartment membranes (Orci et al., 1989). The first protein to be purified using this assay was called N-ethylmaleimide sensitive factor (NSF) and was found to act in the fusion stage of the reaction (Block et al., 1988; Malhotra et al., 1988). Subsequently, NSF was also found to be required in vitro for ER to Golgi protein transport and for fusion of endocytic vesicles with endosomes suggesting that NSF has a crucial role in many intercompartmental protein transport events (Beckers et al., 1989; Diaz et al., 1989). The genetic approach described above and this biochemical approach have recently converged. The SEC18 gene and NSF cDNA have been cloned, sequenced and found to encode proteins 48% identical in amino acid sequence (Eakle et al., 1988; Wilson et al., 1989). In addition, Sec18p can replace NSF in the mammalian intra-Golgi transport assay indicating that these two proteins share a common biochemical function (Wilson et al., 1989). In yeast, it is not known if Sec18p or any of the early SEC gene products are required for inter-compartmental protein transport events distal to the ER to Golgi transport step.

In this work we have used a novel approach to examine the potential requirement for early SEC gene products in protein transport through compartments of the yeast secretory pathway in vivo. We found that protein transport through the yeast Golgi was rapidly and completely blocked when sec18 mutant cells were shifted to the nonpermissive temperature and that multiple steps in the biosynthesis and secretion of \(\alpha \) factor (af) were blocked. We also found that Sec18p was required for transport of carboxypeptidase Y (CPY) through the yeast Golgi complex but not for final delivery of CPY to the vacuole. On the other hand, Sec23p was only required for protein transport from an early Golgi compartment in addition to its requirement for ER to Golgi transport. Further, we show that vacuolar proteins are sorted from the secretory pathway at, or beyond a late Golgi compartment that contains Kex2p. We discuss these observations in terms of the compartmental organization of the yeast Golgi complex.
permisive temperature before labeling and the extent of posttranslational modification of the labeled secretory glycoproteins was determined (Esmon et al., 1981; Novick et al., 1981). In the case of an early sec mutant, like sec18, a requirement for this gene function in transport events late in the secretory pathway would be masked in such experiments because sec18 acts at the early event of protein transport out of the ER. We reasoned that if the mutant early sec gene products were susceptible to rapid thermal inactivation, we could test for a role of these gene products in transport events subsequent to protein transport out of the ER. By briefly labeling mutant cells first at the permissive temperature, then shifting the cells to the nonpermissive temperature, we could ask if labeled glycoprotein precursors present in the Golgi complex require SEC gene function to continue transport through the secretory pathway. We chose of and CPY as model secreted and vacuolar proteins, respectively, because both of these glycoproteins undergo specific modifications in the yeast Golgi complex (Fuller et al., 1988; Klionsky et al., 1990). These modifications can be easily monitored by electrophoretic mobility differences in the precursor forms of these proteins during SDS-PAGE and by using mannose linkage-specific antibodies (Fig. 1). This permitted us to determine the fate of of and CPY intermediate forms present in the Golgi complex in the experiments described below.

Requirement for Sec18p and Sec23p in the Processing and Secretion of of

We tested all of the early acting sec mutants for a rapid onset of the secretion defect by labeling mutant cells immediately after shifting the cultures to the nonpermissive temperature (see Table I for a list of sec mutant strains which were tested). Only the sec12-4, sec18-1, and sec23-1 mutants accumulated the ER form of CPY (pl CPY) exclusively. All of the other sec mutants displayed a slower phenotypic onset as judged by the appearance of mCPY in this experiment (data not shown). We found that these sec23-1 and secl8-1 mutants displayed the most rapid and tightest phenotypic onset (Figs. 2 and 3). These two mutants were chosen for further study.

To mark compartments of the secretory pathway with radiolabeled transport intermediates of of, we briefly labeled mutant (sec18 and sec23) and wild-type yeast cells at a permissive temperature (20°C) slightly below that which is normally used. The reduced rate of protein transport at this temperature allowed us to easily detect of biosynthetic intermediates and to follow multiple modification events simultaneously.

Figure 1. Transport and posttranslational modification of of and CPY. The proteins analyzed in this study, CPY, of, and invertase are subject to core glycosylation and signal sequence cleavage in the ER (Fuller et al., 1988; Klionsky et al., 1990). The core oligosaccharides are extended in the Golgi complex by the sequential addition of α1→6, α1→2, and α1→3 linked mannose residues (Esmon et al., 1981; Ballou, 1982). CPY receives only limited mannose extension which results in a discrete mobility shift when analyzed by SDS-PAGE (p1 CPY to p2 CPY transition). Invertase and of receive more extensive mannose addition due to elongation of branched α1→6 mannose chains. This results in the addition of 50–100 mannose residues per N-linked oligosaccharide (Ballou et al., 1990) and in these hyperglycosylated forms migrating as a heterogeneous smear in SDS–polyacrylamide gels. The pro-of polypeptide contains four repeated copies of the mature 13 amino acid peptide (Kurjan and Herskowitz, 1982). These peptides are excised from the precursor, presumably in the Golgi complex, by the concerted action of Kex2 endopeptidase (Kex2p), Kex1 carboxypeptidase, and dipeptidylaminopeptidase A (Stel3p) (Bussey, 1988; Fuller et al., 1988). While invertase and mof are secreted from the cell, CPY is efficiently removed from the secretory pathway and delivered to the vacuole where it is proteolytically processed by protease A (the PEP4 gene product) and protease B to the mature CPY (mCPY) (Meechler et al., 1987). The migration pattern of precursor and mature forms of of and CPY in SDS–polyacrylamide gels are shown. These proteins were immunoprecipitated from wild-type cells after a brief labeling period as described in Materials and Methods.
In addition, the kinetics of protein transport in wild-type (strains X2180 and SEY6210) and sec mutant (strains DKY6183, SEY5188, and SF 309-2C) cells were nearly identical at 20°C (data not shown). The relative abundance and electrophoretic mobility of the different offorms immunoprecipitated after the 20°C labeling period are shown in the first two lanes of each panel (A–C) in Fig. 2. Assuming that the modification reactions are rapid relative to protein transport, these precursor forms should mark the compartment in which the modification occurred (Balch et al., 1984) (Fig. 1). The cells were then chased at the nonpermissive temperature (37°C). In the case of wild-type cells (Fig. 2 A), the of precursors rapidly chased to mature of (mof) which was secreted from the cells. In contrast, further modification and processing of the ER and Golgi forms of of were completely blocked in sec18 mutant cells after shifting to 37°C (compare Fig. 2 B to A).

These data show that in addition to the rapid and complete block in ER to Golgi protein transport, proteins in the Golgi complex are also susceptible to the sec18 transport block. Multiple steps in the posttranslational modification of of could not occur in the absence of SEC18 gene product function. In addition, most mof was retained with the cell over the 60-min chase period indicating secretion of mof also required Sec18p function. Four distinct steps in of biosynthesis were observed to require Sec18p function: (a) Conversion of core glycosylated pro-of to the of →6 mannosylated form; (b) conversion of of →6 modified pro-of to the of →3 mannosylated form; (c) proteolytic processing of the of →3 modified pro-of by Kex2 endopeptidase to the mature form (mof); and (d) secretion of mof into the media (See Fig. 1 and the legend to Fig. 2 for a description of the of precursor forms). If these Golgi-associated reactions occurred in the same compartment, we would have expected these modifications to continue after the temperature shift and all of the hyper-glycosylated pro-of forms would have been converted to mof. Because this was not the case, and because Sec18p/NSF has previously been shown to function in the cytoplasm to promote the transfer of proteins from one compartment to another (Wilson et al., 1989), we suggest these processing reactions occur in separate compartments of the Golgi complex.

We considered the possibility that protein transport through the yeast Golgi complex was somehow coupled to ER to Golgi transport such that the apparent requirement for Sec18p in the Golgi complex was an indirect consequence of its requirement in protein transport from the ER. Results with the sec23 mutant make this unlikely. In this mutant, we found that core glycosylated and the of →6 mannosylated form of of were blocked from receiving further modification, but proteolytic processing of the of →3 mannosylated form and the secretion of mof appeared unaffected (Fig. 2 C). The data shown in Fig. 2 C and the results of others (Baker et al., 1988; Franzusoff and Schekman, 1989) indicate that of →6 linked mannose addition to of does not occur in the ER, but appears to be restricted to an early Golgi compartment. Therefore, the data shown in Fig. 2 C indicate that Sec23p is required early within the yeast Golgi complex but not for steps distal to the of →6 linked mannose addition to pro-of. In addition, it appears that intercompartmental protein transport events within the Golgi complex and beyond can occur efficiently in the absence of ER to Golgi transport. Therefore, the requirement for Sec18p at multiple transport steps in the secretory pathway is unlikely to be a secondary consequence of its requirement in ER to Golgi protein transport.

Table 1. Strains Used

Yeast strains	Genotype	Source
SEY6210	MATa ura3-52 leu2-3,112 his3-Δ200 trp1-Δ901 lys2-801 suc2-Δ9	Robinson et al., 1988
SEY5188	MATa sec18-1 sec2-Δ9 leu2-3,112 ura3-52	This study
DKY6183	MATa sec18-1 Δpep4::LEU2 ura3-52 leu2-3,112 his3-Δ200 ade2-10	D. Kilonsky (University of California, Davis, CA)
DKY6224	MATa ura3-52 leu2-3,112 trp1-Δ901 his3-Δ200 ade2-101 suc2-Δ9 Δpep4::LEU2	Kilonsky et al., 1988
X2180 IB	MATa gal2	Novick et al., 1980
SF274-3A	MATa gal2 sec12-4	C. Field and R. Schekman (University of California, Berkeley, CA)
SF276-6C	MATa gal2 sec13-1	C. Field and R. Schekman
SF280-3C	MATa gal2 sec16-2	C. Field and R. Schekman
SF281-1C	MATa gal2 sec17-1	C. Field and R. Schekman
SF284-2A	MATa gal2 sec20-1	C. Field and R. Schekman
SF286-4B	MATa gal2 sec21-1	C. Field and R. Schekman
SF303-1A	MATa gal2 sec22-3	C. Field and R. Schekman
SF309-2C	MATa gal2 sec23-1	C. Field and R. Schekman
XMC36-10d	MATa kex2-1 ura3-52 leu2-3,112 his4-580 trp1-289 gal	J. Thorner (University of California, Berkeley, CA)
CBO18	MATa can1-100 ade2-1Δ his3-11,15 leu2-3,112 trp1-1 ura3-1 Δpep4::HIS3 Δprb1::hisG Δprc1::hisG	R. Fuller (Stanford University, Palo Alto, CA)
E. coli strain		
DH5α	F−Ω80lacZΔM15 Δ(lacZYA−argF)U169 endA1 recA1 hisD17(rkΔm617) deoR thi-1 supE44X-gyrA96 relA1	Bethesda Research Laboratories, Inc. (Gaithersburg, MD)
Figure 2. Immunoprecipitation of αf from cells pulse labeled at 20°C and then shifted to 37°C. (A) Wild-type (DKY6183 harboring the centromeric vector pTG-SEC18), (B) sec18 (DKY6183), or (C) sec23 (SF309-2C) cells were labeled at 20°C for 7.5 min as described in Materials and Methods. To initiate a chase at the nonpermissive temperature, an equal volume of media containing 5 mM methionine and 2 mM cysteine, prewarmed to 42°C, was added to the cultures which were then incubated at 37°C. Equal aliquots of cells were removed at the indicated time points, centrifuged briefly (20 sec) in a microfuge to separate the cells (C) from the media (M), and the chase was stopped by the addition of TCA. αf was recovered from the samples by immunoprecipitation and was subsequently eluted from the primary antibody by boiling in 1% SDS. The eluates were divided into three fractions, one fraction was saved for electrophoresis (lanes 1-6) while the other two fractions were diluted with IP buffer (Materials and Methods) and subjected to a second immunoprecipitation either with antisera specific to α1-6 linked mannose (lanes 7-9), or specific to α1-3 linked mannose (lanes 10-12). The α1-6 linkage specific antisera immunoprecipitates all hyperglycosylated αf forms, including those forms that have subsequently been modified with α1-2 and α1-3 mannose residues. For clarity, we have described the material that reacts with the α1-6 but not α1-3 linkage specific antisera as the α1-6 mannosylated αf form. The α1-3 linkage specific antisera only recognizes the fully hyperglycosylated form that contains α1-3 linked mannose. The mature αf peptide is not glycosylated so the media samples were not subjected to the second immunoprecipitation. The positions of unglycosylated (20 kD), core glycosylated (26 kD), α1-6 mannosylated (28-90 kD), α1-3 mannosylated (90-150 kD), and mature αf (~2 kD) forms are noted. The exposure time of lanes 7-12 was 2.5× that of lanes 1-6 in C. All other exposure times were equivalent. The hyperglycosylated material shown in lane 6 of C was not fully recovered in the second immunoprecipitation with α1-6 linkage specific antibodies (lane 9 of C). Longer exposure of the primary immunoprecipitates (lanes 1-6), and other experiments not shown, indicate that the majority of the α1-6 mannosylated form is blocked from further transport in sec23 cells at 37°C. Results with the wild-type strain isogenic to SF309-2C are not shown because the data were very similar to that shown in panel A. αf is prone to rapid degradation, particularly at 37°C; therefore, a sec18 strain deficient in many vacuolar protease activities (DKY6183) was used to help stabilize the peptide.

Requirement for Sec18p and Sec23p in the Transport and Maturation of CPY

Consistent with in vitro observations (Wilson et al., 1989; Beckers et al., 1989; Diaz et al., 1989), our data indicate that Sec18p is a general transport factor required for most, if not all, intercompartmental protein transport steps along the secretory pathway in vivo. To test whether Sec18p also acts in protein transport to the vacuole, we briefly labeled mutant and wild-type yeast cells at the permissive tempera-
Figure 3. Immunoprecipitation of CPY from cells pulse labeled at 20°C and then shifted to 37°C. Wild-type (SEY5188 harboring pSEY8-SEC18), sec18(SEY5188), or sec23(SF309-2C) cells were labeled for 10 min and then chased for 6 min at 20°C. The cultures were shifted to 37°C and aliquots of cells were removed after the indicated time and stopped by the addition of TCA. The samples were subjected to immunoprecipitation with CPY antisera as described in Materials and Methods. The position of p1, p2, and mCPY are noted.

Figure 4. The percentage of p2 CPY blocked from maturation in sec18 cells depends on the age of the enzyme. Strain SEY5188 (sec18) was labeled for 8 min and then chased at 20°C. (A) At the time points indicated two aliquots were removed, one was immediately stopped with TCA, the other aliquot was shifted to 37°C, and incubated an additional 20 min before stopping with TCA. CPY was quantitatively recovered from each sample by immunoprecipitation and was subjected to SDS-PAGE. After autoradiography and quantitation by laser densitometry, the amount of p2 CPY present in the 37°C sample was divided by that amount in the corresponding 20°C sample. (B) The closed boxes represent the percentage of p2 CPY present in the 20°C sample blocked from maturation during the 37°C chase. The open boxes represent the percentage of p2 CPY that is converted to mCPY during the 37°C chase.
One way to explain these data is to propose that p2 CPY exists in at least two compartments in the cell. Sec18p may be required for transport of p2 CPY from the compartment in which it is formed to a later compartment, but not for transport of p2 CPY from this second compartment to the vacuole. This predicts that newly formed p2 CPY would require Sec18p function for transport to the vacuole, but as p2 CPY moved to a later compartment(s) it would become independent of Sec18p for continued transport. To test this model, an experiment was done with sec18 cells similar to that shown in Fig. 3, except the chase times at the permissive temperatures were varied from 8–28 min. This was done to generate labeled pools of p2 CPY corresponding to newly synthesized p2 CPY as well as kinetically older p2 CPY. At the time points indicated in Fig. 4A, two equal aliquots of cells were removed. One aliquot was immediately stopped with TCA to mark the progression of CPY and the other was shifted to 37°C for 20 min and then stopped with TCA. After immunoprecipitation, electrophoresis, and autoradiography, the amount of p2 CPY in these two samples was quantitated by densitometry and compared. As an internal control, the amount of p1 CPY in each pair of samples showed that the temperature conditional block was established efficiently at each time point and that the recovery of CPY from the TCA pellets was nearly equivalent for each sample. We found that the small amount of p2 CPY formed by the first time point (new p2 CPY) was almost completely blocked from maturation upon temperature shift to 37°C. However, as the chase continued at permissive temperature, a greater percentage of p2 CPY was recovered after the culture was shifted to the nonpermissive temperature. These results indicate that there were two pools of p2 CPY in these cells. One pool of newly formed p2 CPY required Sec18p for entry into the second pool. This second pool of p2 CPY, kinetically distal to the first pool, was independent of Sec18p for continued transport to the vacuole. As suggested above, it is likely that these two pools of p2 CPY represent residence in at least two compartments; one that contains the a1→3 mannosyltransferase which is required for the formation of p2 CPY, and a later compartment that may act as a donor for transport to the vacuole.

Intercompartmental Transport to the Vacuole Is Sec18p Independent

Our data suggest that all intercompartmental protein transport events in the biosynthetic pathway, except for transport to the vacuole, require Sec18p function. This interpretation is based on the assumption that the conversion of p2 CPY to mCPY is indicative of intercompartmental transport to the vacuole. This appears to be the case for wild-type cells (Stevens et al., 1982; Mechler et al., 1987; Vida et al., 1990), but we were concerned about uncovering proteolytic processing events in sec18 cells not normally seen in wild-type cells. We needed to show a physical difference in the compartments that contain p2 CPY and mCPY to demonstrate that an intercompartmental transport event can occur in the absence of Sec18p function. When yeast spheroplasts are diluted into a hypotonic medium, cells efficiently lyse as do their vacuoles, yet most ER and Golgi vesicles remain intact such that the soluble luminal constituents of these organelles can be sedimented with the membranes (Eakle et al., 1988; Vida et al., 1990). If p2 CPY was being transported to the vacuole in sec18 cells at the nonpermissive temperature then we would expect the p2 CPY present at time 0’ (Fig. 3) to be in a compartment stable to hypotonic stress, but after conversion to mCPY it would be in a hypotonically fragile compartment. Yeast spheroplasts were labeled at permissive temperature as described for Fig. 3 and then chased at 37°C for 10 min. Equal aliquots of cells were taken at 0 and 10 min of chase (37°C) and were lysed in a hypotonic medium. The lysates were then centrifuged at 100,000 g to divide the sample into a sedimentable fraction and soluble fraction. We found that >90% of p1 and p2 CPY was recovered in the pellet fraction both before (0 min at 37°C) and after (10 min at 37°C) the temperature conditional block suggesting that little, if any, of these precursors were in the vacuole (Table II). In contrast, ~65% of the mCPY formed under these conditions was in the soluble fraction. This suggests that p2 CPY was rapidly processed to mCPY when it reached this osmotically sensitive compartment, and that maturation was not occurring in the same compartment that initially contained the Sec18p-independent pool of p2 CPY. No difference was seen between mutant or wild-type cells in this experiment (Table II). The experiment was also done with a sec18 pep4 strain in which p2 CPY cannot be processed to mCPY even though vacuolar transport is not affected (Hemmings et al., 1981; Stevens et al., 1982; Zubenko et al., 1983). At 10 min after shifting to 37°C, ~65% of p2 CPY was in the soluble fraction as would be expected if this amount had been transferred to the vacuole. This shows that p2 CPY does not appreciably interact with the vacuolar membrane and therefore should have been released into the supernatant.

Table II. Differential Sedimentation of Mature and Precursor Forms of CPY after Osmotic Lysis of sec18 or Wild-type Spheroplasts

Compartment	Percent in pellet	Percent in supr	
sec18			
0’	p1	95	5
	p2	96	4
	m		
10’	p1	96	4
	p2	91	9
	m	8	92
SEC18			
0’	p1	93	7
	p2	90	10
	m		
10’	p1	98	2
	p2	96	4
	m	10	90

Wild type (SEY5188 harboring pSEY8-SEC18) or sec18 (SEY5188) cells were converted to spheroplasts and then labeled for 10 min and chased for 6 min at 20°C as described in Materials and Methods. The cultures were shifted to 37°C and aliquots were removed at 0 and 10 min of nonpermissive chase and diluted 10-fold in a hypo-osmotic buffer as previously described (Eakle et al., 1988). Unbroken cells were removed by centrifugation at 2,000 g for 2 min and the resulting supernatant was subjected to centrifugation at 100,000 g for 40 min. Immunoprecipitations using CPY antisera were performed on the 100,000 g pellet and supernatant fraction. A portion of the starting material was also immunoprecipitated to control for recovery from the ultracentrifuge spin. Only experiments in which >90% of the CPY was recovered were included in the quantitation. After electrophoresis and autoradiography the amount of each CPY form recovered from the fractions was quantitated by laser densitometry. The values are averaged from three experiments and expressed as the percentage of the total CPY form present in the pellet or supernatant fraction (for example, (p1 CPY in pellet/p1 CPY in pellet + p1 CPY in supernatant) × 100).
if it were in the vacuole in the experiments using the PEP4 strain. We conclude from these experiments that p2 CPY is being transferred from an osmotically stable compartment(s) (characteristic of the Golgi vesicle) to an osmotically sensitive compartment (characteristic of the vacuole) be a Sec18/NSF independent mechanism.

Proteins Destined for the Vacuole Transit through a Compartment that Contains Kex2p

The compartmental organization of the yeast Golgi complex indicated by the above experiments raised the interesting question of where in the secretory pathway does protein sorting to the vacuole occur? Both CPY and of require the MNN1 gene product for α-1 mannosylation suggesting that sorting occurs after this event (Ballou, 1982; data not shown). Our data indicated that a distinct compartment housing Kex2p is distal to a compartment which catalyzes α-1 linked mannose addition (Fig. 2). We reasoned that a portion, if not all, of the Sec18p independent pool of p2 CPY may be localized to the same compartment as Kex2p. It is not known if vacuolar proteins are sorted from the secretory pathway before reaching the Kex2 endopeptidase because none of the vacuolar enzymes characterized to date are known to be a substrate for this endopeptidase (Klionsky et al., 1990). We have constructed a trimeric gene that encodes a vacular protein that is a substrate for Kex2p by cloning a 63-bp fragment of the MFαl gene into a previously characterized CPY-invertase chimera (Johnson et al., 1987; see Materials and Methods). The product of this new fusion gene (Cαl) contains the CPY vacuolar targeting signal at its amino terminus, separated from enzymatically active invertase at the carboxy terminus by a Kex2p cleavage site (LysArg) present in the of insert. We isolated trimeric constructs with the of fragment cloned in either direction (Cαl, Cαl). While both orientations maintain the open reading frame, only the proper orientation encodes a Kex2p cleavage site (Fig. 5 A). If the Cαl fusion protein transits through the Kex2p compartment, invertase should be cleaved free from the CPY vacuolar targeting signal. Furthermore, if this cleavage occurs before sorting and commitment of the Cαl fusion protein to the vacuole then the invertase fragment released from the triple fusion should be secreted.

As previously described (Johnson et al., 1987), the parent CPY-invertase fusion is efficiently sorted to the vacuole, therefore most of the invertase activity (>95%) is retained in the cell (CY, Fig. 5 B). The transit pathway for this fusion protein appears to be identical to intact CPY (Johnson et al., 1987). In contrast, 70% of invertase activity was secreted from cells expressing the triple fusion with the of fragment cloned in the proper orientation (Cαl). The action of Kex2 endopeptidase was required for the secretion of invertase expressed from the Cαl construct as invertase is not secreted from kex2 mutant cells expressing this construct. KEX2 cells expressing the Cαl construct also do not secrete invertase activity (Fig. 5 B). All of the strains expressing these constructs contain similar levels of invertase activity as determined by quantitative assays. The parent CPY-invertase fusion (CY) is secreted by vps mutant yeast which exhibit pleiotropic defects in vacuolar protein sorting (Bankaitis et al., 1986; Robinson et al., 1988; Rothman et al., 1989; Rothman and Stevens, 1986). Invertase is also secreted by vps cells expressing the Cαl fusion protein. This suggests that the insertion of 20 amino acids encoded by the of gene does not affect the vacuolar transit pathway of these fusion proteins (data not shown).

The fusion protein initially expressed from the Cαl construct reacted with invertase antibodies and migrated in SDS-PAGE as a 63-kD protein after endo H treatment, consistent with the size calculated from its amino acid sequence

Figure 5. KEX2-dependent secretion of invertase from cells expressing a CPY-of-invertase trimeric fusion protein. (A) Schematic drawing of the fusion proteins. The amino acid sequence encoded by the of insert in the proper orientation (Cαl) and in the opposite orientation (Cαl) are shown. The amino acid sequence of the mature of peptide is boxed and the peptide bond that is cleaved by Kex2p endopeptidase is marked with an arrow. The hatched segment represents the first 50 amino acids of CPY which contains the signal sequence and the vacuolar targeting signal of CPY. The open box represents the full-length mature invertase segment. The positions of N-linked oligosaccharides are marked above the invertase segment. (B) Strain 6210 (KEX2, +) or XMC36-10d (KEX2, -) harboring plasmids expressing either the parent CPY-invertase fusion which lacks the of insert (CY) or the trimeric fusion proteins were patched onto YP fructose plates and were grown overnight. Invertase filter assays were performed as described (Klionsky et al., 1988) using filter replicas of the master plate before (Intact Cells) and after (CHC13 Lysed) chloroform vapor lysis of the yeast cells. Quantitative liquid invertase assays were done with the same strains grown to mid-logarithmic phase in YPD broth. The percent invertase secreted was calculated as previously described (Johnson et al., 1987). All strains expressed approximately the same level of invertase units per OD600 of cells as determined by quantitative liquid assay.
Graham and Emr

Compartmental Organization of the Yeast Golgi

proteins is shown (Cal) as is the relative molecular weight of the
in the periplasmic space of cells not converted to spheroplasts (8% in this experiment). The 59-kD invertase form found in the cellu-
ples by immunoprecipitation with invertase antibodies. The immu-
precipitated proteins were subsequently treated with endogly-
cosidase H as described (Johnson et al., 1987), and fractionated in
a 10% SDS-polyacrylamide gel. The position of the intact fusion
protein (63-kD form) presented after the chase period was only found inside the cells (lane 3) suggesting that the material not cleaved by Kex2p was sorted to the vacuole. In this experiment the fusion proteins were expressed in a pep4 strain because in earlier experiments we found that the proCPY portion of the fusion protein retained within the cell was unstable in PEP4 cells (data not shown and Johnson et al., 1987). This indicates that the intact CαI fusion proteins that were retained within the cell were localized to the vacuole with the PEP4-dependent proteases which cleave within the pro-CPY segment of the triple fusion (Mechler et al., 1987). The data shown in Fig. 2 demonstrates that pro-af can be blocked in the ER and early Golgi compartments for up to an hour without noticeable processing by Kex2p. In addition, when the labeled CαI fusion protein was trapped in the ER in sec18 cells for 45 min, no Kex2p-dependent processing occurred (data not shown). Therefore, the observed results cannot be explained by cleavage of the CαI fusion protein by newly synthesized Kex2p traversing the ER or early Golgi compartments en route to the late Golgi complex. These experiments suggest that vacuolar proteins transit through the Kex2p compartment before removal from the secretory pathway, and that sorting of vac-
ular proteins from secreted proteins occurs either within the Kex2p compartment or in a more distal compartment.

Discussion

In this work we have described a novel approach to analyzing the role of the early acting sec mutants in protein transport events distal to the primary block exhibited by these mutants. We have found that Sec18p and Sec23p are required for protein transport out of the ER as originally determined, but also for transport events distal to the ER (Figs. 2 and 3). Consistent with in vitro observations (Wilson et al., 1989; Beckers et al., 1989; Diaz et al., 1989), our data indicates that Sec18p/NSF performs a crucial function in most, if not all, intercompartmental protein transport events in the secretory pathway in vivo. We have demonstrated a requirement for Sec18p for the following events in af biosynthesis: (a) Addition of α1→6 linked mannose to the core glycosylated form; (b) addition of α1→3 linked mannose to the α1→6 mannosylated form; (c) Kex2p-dependent proteolytic processing of the α1→3 mannosylated form; and (d) the secretion of maf into the media (Fig. 2). Because Sec18p/NSF functions to catalyze the vesicle-mediated transfer of proteins from one compartment to another (Wilson et al., 1989), our results indicate that each of the events listed above require intercompartmental transfer of af. Fig. 7 depicts this information in a schematic drawing of the yeast secretory pathway. We present evidence for three functionally distinct Golgi compartments which contain, from cis to trans; an α1→6 mannosyltransferase, an α1→3 mannosyltransferase, and the Kex2 endopeptidase. Sec23p has also been shown to be required both in vivo and in vitro for intercompartmental protein transport (Hicke and Schekman, 1989). We have found that both core glycosylated and α1→6 mannosylated af precursors are blocked from continued transport in sec23 cells at the nonpermissive temperature, while pro-af modified with α1→3 linked mannose appears to be efficiently processed to maf and secreted from the cell (Fig. 2).

Discussion

In this work we have described a novel approach to analyzing the role of the early acting sec mutants in protein transport events distal to the primary block exhibited by these mutants. We have found that Sec18p and Sec23p are required for protein transport out of the ER as originally determined, but also for transport events distal to the ER (Figs. 2 and 3). Consistent with in vitro observations (Wilson et al., 1989; Beckers et al., 1989; Diaz et al., 1989), our data indicates that Sec18p/NSF performs a crucial function in most, if not all, intercompartmental protein transport events in the secretory pathway in vivo. We have demonstrated a requirement for Sec18p for the following events in af biosynthesis: (a) Addition of α1→6 linked mannose to the core glycosylated form; (b) addition of α1→3 linked mannose to the α1→6 mannosylated form; (c) Kex2p-dependent proteolytic processing of the α1→3 mannosylated form; and (d) the secretion of maf into the media (Fig. 2). Because Sec18p/NSF functions to catalyze the vesicle-mediated transfer of proteins from one compartment to another (Wilson et al., 1989), our results indicate that each of the events listed above require intercompartmental transfer of af. Fig. 7 depicts this information in a schematic drawing of the yeast secretory pathway. We present evidence for three functionally distinct Golgi compartments which contain, from cis to trans; an α1→6 mannosyltransferase, an α1→3 mannosyltransferase, and the Kex2 endopeptidase. Sec23p has also been shown to be required both in vivo and in vitro for intercompartmental protein transport (Hicke and Schekman, 1989). We have found that both core glycosylated and α1→6 mannosylated af precursors are blocked from continued transport in sec23 cells at the nonpermissive temperature, while pro-af modified with α1→3 linked mannose appears to be efficiently processed to maf and secreted from the cell (Fig. 2).
Surprisingly, Sec18p does not appear to be required for intercompartational protein transport to the vacuole (Fig. 3). We have found that p2 CPY is present in at least two compartments in the yeast cell. Kinetic experiments have indicated that Sec18p is required for transport of p2 CPY from the compartment in which it is formed (the αl→3 mannosyltransferase compartment) to a distal compartment. However, Sec18p is apparently not required for transport of p2 CPY from this later compartment to the vacuole (Fig. 4). All of p2 CPY is processed to mCPY in sec23 cells at 37°C (Fig. 3). This is consistent with the results obtained using of as the marker. Glycoproteins traversing the secretory pathway present within or beyond the αl→3 mannosyltransferase compartment seemingly do not require Sec23p function for continued transport. This result also shows that protein export from late Golgi compartments can occur efficiently in the absence of protein import from earlier compartments. Therefore, the portion of p2 CPY blocked in sec18 cells is not likely to be a secondary consequence of blocking earlier transport events. The difference in osmotic stability between the donor compartment containing the Sec18p-independent pool of p2 CPY and the processing compartment (the vacuole) allowed us to show that this pool of p2 CPY was in a distinct prevacuolar compartment and that CPY maturation was indicative of intercompartational transport to the vacuole (Table II). The action of Sec18p appears to be a basic requirement for intercompartational protein transport through the secretory pathway, yet this activity does not appear to be needed for protein transport to the vacuole. It is interesting to speculate that another protein may provide a Sec18p/NSF-like function in vacuolar protein transport, or that perhaps the cell has evolved an entirely different mechanism for intercompartational protein transport to the vacuole. Consistent with this model, many VPS genes have been identified that are required for vacuolar protein transport but not for protein secretion (Bankaitis et al., 1986; Robinson et al., 1988; Rothman et al., 1989; Rothman and Stevens, 1986).

We cannot rule out the possibility that Sec18p and Sec23p are required for all intercompartational transport events. If this is the case, then the thermal inactivation of the sec18-1 and sec23-1 gene products must affect only a subset of the transport events catalyzed by these proteins. This seems unlikely, as one would have to argue for a different mechanistic requirement for these proteins at different transport steps. For example, a thermally stable domain of the Sec18p protein may be required for vacuolar protein transport, or perhaps this protein is protected from thermal inactivation at this step because it resides in a different protein complex. Although these explanations are possible, the simplest interpretation of our data is that Sec18p is not required for Golgi compartment to vacuole transport and Sec23p is not required for transport events distal to the αl→6 mannosyltransferase compartment.

The diagram in Fig. 7 represents the minimal number of Golgi compartments for which we have obtained evidence. It is possible that other compartments exist. A 28-kD form of αf has been shown to be an intermediate between core glycosylated and αl→6 linked mannoside forms of αf in an in vitro ER to Golgi assay (Bacon et al., 1989). The chemical nature of this modification has not been demonstrated but it is formed within Golgi membranes and the YPP7 gene product is required for its subsequent modification with αl→6 linked mannoside in vitro (Groesch et al., 1990). Therefore, the portion of αf that has been tagged at the carboxyl terminus with the yeast ER retention signal HDEL apparently receives this modified modification in the Golgi compartment and is retrieved back to the ER (Dean and Pelham, 1990). This modification has been suggested to occur in a distinct compartment that may be analogous to the salvage compartment described for mammalian cells (Warren, 1990). Although a 28-kD form of αf appears to be blocked in sec23 cells at 37°C (Fig. 2) we cannot clearly differentiate it from the more extensively modified forms migrating just above it because all of these forms are recognized by the αl→6 linkage specific antisera used in this study. Thus, our results neither confirm nor deny the presence of this compartment. Yeast also contain an αl→2 mannosyltransferase that acts on N-linked oligosaccharides (Ballou, 1982). Others (Franzusoff and Schekman, 1989) have suggested that this enzyme is sequestered in a compartment distinct from the αl→6 mannosyltransferase and before the αl→3 mannosyltransferase. This was based on the partial resistance of pro-αf, glycosylated in an in vitro ER to Golgi transport assay, to endomannanase treatment (this enzyme cleaves αl→6 mannoside linkages on N-linked oligosaccharides that have not been substituted with αl→2 mannoside). Yet, the apparent complete endomannanase resistance of partially modified invertase accumulated in a sec7 mutant could argue that these mannosyltransferases are not sequestered to different compartments (Franzusoff and Schekman, 1989).

Lysosomal enzymes in mammalian cells are thought to be sorted from secreted proteins in the TGN and transported to an endosomal compartment where they dissociate from the mannose-6-phosphate receptor (Griffiths and Simons, 1986; Dahms et al., 1989). The lysosomal enzymes are subsequently transferred from the endosome to lysosomes by an unknown mechanism. It is not known if yeast vacuolar proteins transit through an endosomal compartment before arrival in the vacuole. The compartmental nature of the yeast Golgi complex suggested by our data provided us with the opportunity to ask where within the Golgi complex vacuolar proteins are sorted from secreted proteins. Both CPY and pro-αf require the MNII gene product for αl→3 mannosylation suggesting that sorting occurs after this event (Ballou et al., 1990). Our data indicated that much of p2 CPY was in a compartment trans to the αl→3 mannosyltransferase compartment. It seemed likely that at least a portion of this Sec18p-independent pool was in the Kex2p compartment. To test if vacuolar proteins pass through this latter compartment en route to the vacuole, we constructed a CPY-of-invertase fusion gene to express a vacuolar protein that is a substrate for Kex2p. The efficient KEX2-dependent cleavage of the triple fusion protein in cells expressing this construct indicates that vacuolar proteins transit through the Kex2p compartment. Moreover, the KEX2-dependent secretion of invertase from these cells indicates that this cleavage event occurred before the intact fusion protein was sorted from the secretory pathway. Our data argue against this KEX2-dependent processing event occurring in secretory granules or in the vacuole. As previously suggested (Julius et al., 1984b), Kex2p must initially act in a late Golgi compartment before, or concomitant with, the vacuolar protein sorting event. As seen in Fig. 1, pro-αf can be blocked early in the secretory pathway in sec18 and sec23 cells for up to an hour without notice.
able conversion to mof. Thus, the small amount of newly synthesized Kex2p that is progressing through these early compartments is apparently inactive or at least is present in insufficient quantity to efficiently process αf. Therefore, proteolytic processing of the CPY-of-invertase fusion protein before this protein reached the Kex2 compartment cannot account for the secretion of invertase. The small fraction of the triple fusion protein not cleaved by Kex2p may have escaped processing due either to inefficient proteolysis of this unnatural substrate or to the active sorting of this protein from the secretory pathway before Kex2p could cleave it.

Our results suggest that vacuolar proteins transit through the Kex2p compartment en route to the vacuole and that vacuolar proteins are sorted from secreted proteins in this compartment or in a more distal compartment. Because we have no evidence for a more distal Golgi compartment at this stage and because mof is likely to be packaged into secretory vesicles at this step (Bresnahan et al., 1990; Fuller et al., 1989; Thomas et al., 1988; Julius et al., 1984b), we suggest that sorting occurs within the Kex2 compartment (Fig. 7). Consistent with this hypothesis, we have recently found that a subset of vps mutants which are defective in the sorting of vacuolar proteins also exhibit a defect in the processing of αf by Kex2p (Robinson, J. S., T. R. Graham, and S. D. Emr, unpublished results). This phenotype might be expected if the vps mutation adversely affects a Golgi compartment in which both events occur.

In conclusion, although the details of the morphological structure of the yeast Golgi complex are not yet known, the functional organization of this organelle seems to be remarkably similar to that of the multi-cisternal Golgi complex of mammalian cells. This makes yeast an attractive model system for studying how the compartmental organization of the Golgi complex is established, how specific proteins are sorted to and maintained within each Golgi compartment, and how secreted and vacuolar proteins are transported into and out of each of these compartments.

We would like to thank Randy Schekman for supplying antibodies against αf and specific carbohydrate linkages. We are particularly grateful to Bruce Horazdovsky, Jane Robinson, Jeff Stuck, Paul Herman, Tom Vida, Gerhard Paravicini, and Karl Köhrer for helpful discussion and critically reading this manuscript, and also to Nancy King for secretarial assistance. This work was supported by Public Health Service grant GM-32703 from the National Institutes of Health to S. D. Emr. T. R. Graham was supported by a postdoctoral research fellowship from the American Cancer Society.

Received for publication 24 January 1991 and in revised form 11 March 1991.
Novick, P., S. Ferro, and R. Schekman. 1981. Order of events in the yeast secretory pathway. *Cell.* 25:461–469.

Novick, P., C. Field, and R. Schekman. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. *Cell.* 21:205–215.

Novick, P., and R. Schekman. 1979. Secretion and cell surface growth are blocked in a temperature-sensitive mutant of *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. USA.* 76:1858–1862.

Orci, L., V. Malhotra, M. Amherdt, T. Serafini, and J. E. Rothman. 1989. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. *Cell.* 56:357–368.

Palade, G. 1975. Intracellular aspects of the process of protein synthesis. *Science (Wash. DC.)* 189:347–357.

Pfeffer, S. R., and J. E. Rothman. 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. *Annu. Rev. Biochem.* 56:829–852.

Robinson, J. S., D. J. Klionsky, L. M. Banta, and S. D. Emr. 1988. Protein sorting in *Saccharomyces cerevisiae*: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. *Mol. Cell. Biol.* 8:4936–4948.

Rothman, J. H., I. Howald, and T. H. Stevens. 1989. Characterization of genes required for protein sorting and vacuolar function in the yeast *Saccharomyces cerevisiae*. *EMBO (Eur. Mol. Biol. Organ.) J.* 8:2057–2065.

Rothman, J. H., and T. H. Stevens. 1986. Protein sorting in yeast: mutants defective in vacuole biogenesis mislocalization vacuolar proteins into the late secretory pathway. *Cell.* 47:1041–1051.

Sherman, F., G. R. Fink, and L. W. Lawrence. 1979. Methods in Yeast Genetics: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics.* 122:19–27.

Steven, T., B. Eason, and R. Schekman. 1982. Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole. *Cell.* 30:439–448.

Thomas, G., B. A. Thorne, L. Thomas, R. G. Allen, D. E. Hruby, R. Fuller, and J. Thonger. 1988. Yeast KEX2 endopeptidase correctly cleaves a neuropeptide prohormone in mammalian cells. *Science (Wash. DC.)* 241:226–230.

Vida, T. A., T. R. Graham, and S. D. Emr. 1990. In vitro reconstitution of intercompartmental protein transport to the yeast vacuole. *J. Cell Biol.* 111:2871–2884.

Warran, G. 1990. Salvage receptors: two of a kind? *Cell.* 62:1–2.

Wickerham, L. J. 1946. A critical evaluation of the nitrogen assimilation tests commonly used in the classification of yeasts. *J. Bacteriol.* 52:293–301.

Wilson, D. W., C. A. Wilcox, G. C. Flynn, E. Chen, W.-J. Kuang, W. J. Hengzel, M. R. Block, A. Ulrich, and J. E. Rothman. 1989. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. *Nature (Lond.)* 339:355–359.

Zubenko, G. S., F. J. Park, and E. W. Jones. 1983. Mutations in *PEF4* locus of *Saccharomyces cerevisiae* block final step in maturation of two vacuolar hydrolases. *Proc. Natl. Acad. Sci. USA.* 80:510–514.