Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
BRIEF ORIGINAL

Effects of the COVID-19 pandemic on a cohort of patients with vein occlusion*

J.D. García Palacios a,*, N. Puente Ruiz a, J.J. Napal Lecumberri a, J.L. Hernández Hernández a,b

a Servicio de Medicina Interna, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Cantabria, Spain
b Universidad de Cantabria, Santander, Cantabria, Spain

Received 28 March 2021; accepted 3 June 2021
Available online 20 September 2021

Abstract
Background and objectives: A new coronavirus disease in humans, COVID-19, caused by SARS-CoV-2, emerged in December 2019. It has been associated with the development of thrombotic phenomena. Retinal vein occlusion (RVO) is mainly a consequence of vascular risk factors (VRF). This study aimed to analyze cases of COVID-19 in a cohort of patients with RVO (Valdecilla cohort).

Patients and methods: Between December 2008 and December 2020, 429 patients with RVO were attended to in our clinic. Ten patients had COVID-19, one of which did not have VRF or thrombophilia. The remaining nine patients had RVO prior to the infection and VRF, six had carotid atherosclerosis, and four had antiphospholipid syndrome. The infection did not cause thrombotic phenomena in any of them.

Conclusions: RVO is a rare manifestation of COVID-19. In our cohort of patients with RVO, COVID-19 disease did not lead to thrombotic events.
© 2021 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

KEYWORDS
COVID-19; Retinal vein occlusion; Vascular risk factors; Thrombophilia

PALABRAS CLAVE
COVID-19; Obstrucción venosa retiniana; Factores de riesgo vascular; Trombofilia

Efectos de la pandemia por SARS-CoV-2 en una cohorte de pacientes con obstrucción venosa retiniana

Resumen
Antecedentes y objetivos: En diciembre de 2019 surgió una nueva enfermedad por coronavirus en humanos causada por el virus SARS-CoV-2, la COVID-19, que se ha asociado con fenómenos trombóticos. La obstrucción venosa retiniana (OVR) es principalmente una consecuencia de

* Please cite this article as: García Palacios JD, Puente Ruiz N, Napal Lecumberri JJ, Hernández Hernández JL. Efectos de la pandemia por SARS-CoV-2 en una cohorte de pacientes con obstrucción venosa retiniana. Rev Clín Esp. 2021;221:587-591.
* Corresponding author.
E-mail address: jdavidgarciapalacios@gmail.com (J.D. García Palacios).

2254-8874/© 2021 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.
Introduction

Retinal vein occlusion (RVO) is a consequence of vascular risk factors (VRF) and, to a lesser extent, thrombophilia\(^1,2\). Locally, glaucoma is a factor that favors onset of RVO in a central localization\(^1\).

The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, a pandemic in March 2020. The disease’s spectrum varies widely, from asymptomatic patients to others with severe pneumonia and respiratory distress syndrome\(^3,4\). As a result of the hyperinflammatory response which develops in severe cases, COVID-19 has also been associated with thromboinflammation and thrombosis, causing artery and vein occlusion, microinfarcts, and multiple organ failure\(^5\). Retinal vascular involvement due to COVID-19 is rare, with five cases described in the literature\(^6,7\); one of these cases was in Spain\(^8\).

Aim

This work aims to analyze cases of SARS-CoV-2 infection in a cohort of patients with RVO during the first and second waves of the pandemic (March to December 2020).

Patients and methods

All patients in our healthcare area who were diagnosed with RVO were referred to the internal medicine clinic for study (Valdecilla cohort), where diagnosis, optimization, treatment, and follow-up on VRF and thrombophilia were conducted.

The Valdecilla cohort study was conducted in the Marqués de Valdecilla University Hospital in Santander, Spain, a tertiary hospital with a reference population of 350,000 inhabitants. The Ethics Committee of Cantabria (2019.340) approved the study and subjects signed informed consent forms in order to participate.

From December 2008 to December 2020, 429 patients with RVO were treated. Forty of them died before the start of the pandemic (March 2020). From the first cases of SARS-CoV-2 infection to the end of the second wave, ten patients from the Valdecilla cohort had COVID-19.

Clinical variables

The clinical variables recorded were differentiation between central or branch RVO (temporal or nasal); presence of hypertension (blood pressure ≥ 140 and/or 90 mmHg or receiving antihypertensive drug treatment); diabetes mellitus (according to the American Diabetes Association criteria)\(^9\); dyslipidemia (total cholesterol or triglycerides >230 and >150 mg/dL, respectively, in at least two measurements after a 24 h fasting period or receiving lipid-lowering treatment); and presence of genetic or acquired thrombophilia.

Laboratory determinations

A routine biochemistry profile, including a lipid panel, was conducted with an Advia® 2400 (Siemens) autoanalyzer. Antiphospholipid antibodies (lupus anticoagulant, anticardiolipin antibodies, and β_2-glycoprotein I) were measured in all patients. A diagnosis of antiphospholipid syndrome was established according to the guidelines of the International Society on Thrombosis and Haemostasis\(^5\). Whenever there was a positive antibodies result, a second measurement was performed at 12 weeks; if the lupus anticoagulant was positive and/or the anticardiolipin antibody and/or β_2-glycoprotein I titers were in intermediate or high ranges on the second measurement, it was considered positive. In those whose results were not conclusive, a third measurement was conducted 12 weeks later.

A genetic thrombophilia study (prothrombin gene, factor V Leiden, protein C, protein S, antithrombin) was conducted in all patients from December 2008 to December 2015. Later, given that this thrombophilia only plays an important role in subjects younger than 50 years of age or without VRF, it was only measured in this group of patients\(^1\).

Imaging tests

A Doppler ultrasound of the supra-aortic trunks was used to evaluate the presence of atheroma plaques and quantify the degree of vascular stenosis. The study was conducted with a B-mode, color Doppler, and spectral Doppler ultrasound...
Table 1 Principal epidemiological characteristics of patients with RVO and COVID-19.

Patient	Age (years)	Sex	Type of RVO (Involvement)	Date of diagnosis	VRF	Thrombophilia - APLA	Genetic thrombophilia - Negative	Carotid atheromatisis (Doppler SAT)	Associated diseases	Treatment
1	55	Woman	Temporal	May 2020	No	- Negative	- LA positive	No	Ankylosing spondylitis	Secukinumab
2	62	Woman	Central	October 2019	HT	- Negative	- LA positive	Yes	SAHS	ASA, atorvastatin, LMWH
3	74	Man	Central	June 2013	DLP	- Negative	- LA positive	Yes	Liver Disease	ASA, valsartan, amlodipine, atorvastatin, ezetimibe, LMWH
4	82	Man	Temporal	April 2014	No	- Negative	- Negative	Yes	No	ASA
5	83	Woman	Temporal	December 2018	HT	- Negative	- Negative	Yes	No	ASA, olmesartan, amlodipine, gliclazide, atorvastatin/ezetimibe
6	62	Man	Central	April 2017	DM	- NP				AF
										Enalapril, atorvastatin, apixaban
7	77	Woman	Temporal	July 2018	DLP	- NP	- Negative	Yes	Glaucoma RA	Olmesartan, atorvastatin
8	90	Woman	Temporal	October 2018	HT	- LA positive		Yes	Advanced renal neoplasm Hypothyroidism	Valsartan, ASA, atorvastatin, metformin, LMWH
9	62	Woman	Central	March 2015	DM	- NP	- LA positive	No	Severe adjustment disorder	Rosuvastatin, LMWH
10	59	Woman	Central	December 2019	HT	- Negative	- Negative	No	Osteopenia	Atorvastatin, ASA

AF: atrial fibrillation; APLA: antiphospholipid antibodies; ASA: acetylsalicylic acid; DLP: dyslipidemia; DM: diabetes mellitus; HT: hypertension; LA: lupus anticoagulant; LMWH: low-molecular-weight heparin (in prolonged bedrest); NP: not performed; RA: rheumatoid arthritis; RVO: retinal vein occlusion; SAHS: sleep apnea-hypopnea syndrome; SAT: supra-aortic trunks; VRF: vascular risk factors.
of the carotid and vertebral systems with a high-frequency linear probe (General Electric, Logiq® model).

Table 2: Characteristics of COVID-19 in patients with RVO.

Patient	Date of diagnosis	Diagnostic method	Manifestations	Hospital admission/reason	COVID-19 treatment	de novo RVO
1	04/15/2020	CRP	Fever, headache, dysgeusia, anosmia	No	No	Yes
2	04/16/2020	CRP	Fever, dyspnea	Yes/left basal pneumonia	Lopinavir/ritonavir, hydroxychloroquine, ceftriaxone, enoxaparin	No
3	03/20/2020	CRP	Fever	Yes/comorbidities	Hydroxychloroquine, enoxaparin	No
4	12/09/2020	CRP	Fever	No	Levofloxacin	No
5	03/16/2020	CRP	Fever, dysgeusia, changes in smell	No	No	No
6	05/10/2020	Antibodies (IgG+)	Asymptomatic	No	No	No
7	09/17/2020	CRP	Asymptomatic	Yes/neoplasm	No	No
8	10/06/2020	CRP	Asymptomatic	No	No	No
9	03/27/2020	CRP	Asymptomatic	No	No	No
10	09/18/2020	CRP	Fever, headache	No	No	No

RVO: retinal vein occlusion; PCR: polymerase chain reaction.

Results

A total of 429 patients with RVO were treated in our clinic as of December 2020. Of them, 290 had peripheral RVO (284 temporal and six nasal) and 139 had central RVO. Of the 429, 40 had died before the start of the pandemic. Therefore, the study group comprised 389 patients.

The mean age was 67.9 ± 12.8 years. Nine patients in the cohort had already been diagnosed with RVO before the start of the pandemic and one developed peripheral RVO and glaucoma after COVID-19; the patient received treatment with oral deflazacort and timolol eye drops and progressed favorably. He presented with a fever of 38.5 °C for three days and headache, asthenia, and anosmia for one month. Laboratory tests were not performed. Vision changes appeared at three weeks following onset of fever. There were no changes observed in ophthalmologic follow-up appointments conducted after SARS-CoV-2 infection in the rest of the cases which had previously presented with RVO. In four cases, additional tests were conducted, including measurements of platelets (reference range: 150,000–450,000/μL), d-dimer (0–500 ng/mL), and fibrinogen (180–500 mg/dL); case 2: 109,000, 1302, and 541; case 3: 329,000, 2692, and 6000; case 4: 103,000, 487, and 766; and case 7: 279,000, 1327, and 815, respectively.

Table 1 shows the age, sex, RVO type, date of diagnosis, VRF (hypertension, dyslipidemia, diabetes mellitus), thrombophilia, presence of carotid atheromatosis, associated diseases, and prior treatment for each of the ten cases.

Table 2 shows the date of COVID-19 diagnosis, the diagnostic technique (PCR or antibodies), symptoms, need for admission, and treatment.

Discussion

We found one patient with COVID-19 who developed RVO. In addition, we observed an absence of vascular events (including recurrence of RVO) after COVID-19 infection in nine patients with prior RVO (Valdecilla cohort). Cantabria has been one of the autonomous communities with a lower incidence of COVID-19: it had 17,896 total cases as of December 2020 and a cumulative incidence of around 3%14,15.

The patient with RVO, which was probably a consequence of COVID-19, was young. She did not have VRF and the thrombophilia study was negative. Although she had ankyllosing spondylitis (AS) in treatment with secukinumab, the real effect of immunomodulators in COVID-19 is unknown; on the one hand, they can increase risk of infection, but on the other hand, they could protect against a hyperinflammatory storm. In a series of patients with AS treated with secukinumab, the majority presented with a mild form of COVID-1916.

Three of the five cases of RVO and COVID-19 described in the literature17-19 are similar to our case. They are young women (age: 33–55 years) without any VRF or thrombophilia who presented with unilateral RVO after COVID-19. The other two cases are bilateral RVO in patients between 30 and 40 years of age with VRF and severe COVID-19 pneumonia10,11.

It should be noted that in our cohort of patients with RVO, 90% had some VRF, 10% had antiphospholipid syndrome (APLS), 13% had genetic thrombophilia, and just 2% did not present with VRF or thrombophilia12,11.

In the nine patients who belong to the Valdecilla cohort, COVID-19 was not associated with the onset of new thrombotic phenomena and no new retinal abnormalities or worsening of RVO was observed on ophthalmologic follow-up appointments after SARS-CoV-2 infection. All had at least one VRF: six presented with carotid atheromatosis...
and four met the criteria for APLS. VRF were controlled in all subjects and in addition, six received treatment with acetylsalicylic acid, one with apixaban for atrial fibrillation, and low-molecular-weight heparin (LMWH) was recommended for the four diagnosed with APLS for whom prolonged bedrest was indicated. Although there are no randomized, controlled trials which demonstrate it, thromboembolic prophylaxis with LMWH has been used with COVID-19 and a decrease in thrombi and mortality has been observed.

In regard to the behavior of APLS in patients with RVO, it should be noted that this disease has special characteristics. It is mainly associated with manifestations of arteriosclerosis and not with onset of deep vein thrombosis or pulmonary embolism; antplatelet therapy is the treatment of choice for it. One of our patients presented with pneumonia and three required hospital admission.

COVID-19 has been associated with the onset of artery and vein occlusion, microinfarcts, and multiple organ failure as a result of the hyperinflammatory state and thrombosis generated by the host as a response to SARS-CoV-2 infection. These manifestations are more frequent in severe forms of the disease. RVO can occur with mild SARS-CoV-2 disease, as in our patient, and it has been recorded in the literature. The main limitations of this work are the small number of cases reported and the fact that the majority are mild forms of COVID-19.

Conclusions

RVO is a rare manifestation of COVID-19. However, it is advisable to take this entity into account when patients with COVID-19 report ocular symptoms such as a decline in visual acuity. In our prospective cohort of patients with RVO who receive treatment for controlling VRF and thrombophilia, SARS-CoV-2 infection did not seem to worsen RVO or favor the onset of new vascular events.

Funding

No funding of any kind has been received for this work.

Conflicts of interest

The authors declare that they do not have any conflicts of interest in regard to this work.

References

1. Napal JJ, Nellis S, Pérez-Montes R, Sierra I, Ruiz S, Hernández JL. The role of coagulation disorders in patients with retinal vein occlusion. QJM. 2016;109:97–102, doi:10.1093/qjmed/hcv088.
2. Lisa Gracia M, Córdoba Alonso A, Hernández Hernández JL, Pérez Montes R, Napal Lecumberry JJ. Factores de riesgo vascular, fibrilación auricular no valvular y obstruc-
ción venosa retiniana. Rev Clin Esp. 2017;217:188–92, doi:10.1016/j.rce.2016.10.013.
3. Xu K, Wu L, Ma Z, Liu Y, Quian F. Primary angle closure and primary angle closure glaucoma in retinal vein occlusion. Acta Ophthalmol. 2019;97:e364–72, doi:10.1111/aos.13879.
4. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–20, doi:10.1056/NEJMoa2002032.
5. Lai CC, Shih TP, Ko WC, Tang HJ, Hsuhe PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020;55:105924, doi:10.1016/j.ijantimicag.2020.105924.
6. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135:2033–40, doi:10.1182/blood.2020006000.
7. Sheth JU, Narayan N, Goyal J, Goyal V. Retinal vein occlusion in COVID-19: a novel entity. Indian J Ophthalmol. 2020;68:2291–3, doi:10.4103/jio.iJO_2380_20.
8. Yahalomi T, Pikkel J, Arnon R, Pesach Y. Central retinal vein occlusion in a young healthy COVID-19 patient: a case report. Am J Ophthalmol Case Rep. 2020;20:100992, doi:10.1016/j.ajoc.2020.100992.
9. Invernizzi A, Pellegriini M, Messenio D, Cereda M, Olivieri P, Brambilla AM, et al. Impending central retinal vein occlusion in a patient with coronavirus disease 2019 (COVID-19). Ocul Immunol Inflamm. 2020;28:1290–2, doi:10.1080/09273948.2020.1807023.
10. Gaba WH, Ahmed D, Al Nuaimi AK, Al Dhanhani AA, Eitmadhi H. Bilateral central retinal vein occlusion in a 40-year-old man with severe coronavirus disease 2019 (COVID-19) pneumonia. Am J Case Rep. 2020;21:e927691, doi:10.12659/AJCR.927691.
11. Rego Lorca D, Rouco Fernandez A, Jimenez Santos M, Sanz-Grances F, Burgos-Blasco B, Donate Lopez J. Bilateral retinal vein occlusion and diabetic retinopathy after COVID-19. Acta Ophthalmol. 2020, doi:10.1111/aos.14718.
12. Standards of Medical Care in Diabetes-2011. American Diabetes Association, Diabetes care 2011; 34 Supplement 1: S11–S61. https://doi.org/10.2337/dc11-S011.
13. Miyakis S, Lockshin MD, Atsumi T, Branch DW, Brey RL, Cervera R, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306, doi:10.1111/j.1538-7836.2006.01753.x.
14. Situación epidemiológica de la COVID-19 en Cantabria. Web Servicio Cántabro de Salud. [Accesado 15 December 2020]. Available from: https://www.scasalud.es/coronavirus.
15. Ministerio de Sanidad del Gobierno de España. Profesionales. Situación COVID-19 en España [Accesado 15 December 2020]. Available from: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/situacionActual.htm.
16. Coskun Benildiay I, Kurtaran B, Tirasci E, Guzel R. Coronavirus disease 2019 (COVID-19) in a patient with ankylosing spondylitis treated with secukinumab: a case-based review. Rheumatol Int. 2020;40:1707–16, doi:10.1007/s00296-020-04635-z.
17. Hernández JL, Sanlés I, Pérez-Montes R, Martínez-Taboada VM, Olmos JM, Salomón Z, et al. Antiphospholipid syndrome and antiphospholipid antibody profile in patients with retinal vein occlusion. Thromb Res. 2020;190:63–8, doi:10.1016/j.thromres.2020.04.005.