COMMUNICATION

DIVERSITY AND DISTRIBUTION OF FIGS IN TRIPURA WITH FOUR NEW ADDITIONAL RECORDS

Smita Debbarma, Biplab Banik, Biswajit Baishnab, B.K. Datta & Koushik Majumdar

26 August 2020 | Vol. 12 | No. 11 | Pages: 16548–16570
DOI: 10.11609/jott.4975.12.11.16548-16570
Diversity and distribution of figs in Tripura with four new additional records

Smita Debbarma 1, Biplab Banik 1, Biswajit Baishnab 1, B.K. Datta 4 & Koushik Majumdar 4

1 Department of Botany, Tripura University, Suryamaninagar, West Tripura 799022, India.
2 Centre for Bamboo Cultivation and Resources Utilization (BCRU), Department of Botany, Tripura University, Suryamaninagar, West Tripura 799022, India.
3 smita.botany@tripurauniv.in, 4 biplabbanik87@gmail.com, 5 biswajit.baishnab54@gmail.com, 6 dattabadal2008@gmail.com, 7 majumdark80@gmail.com (corresponding author)

Abstract: The genus Ficus L., commonly known as Fig plays an important role in the forest ecosystem, being a keystone species. Taxonomic revision, habitat assessment, and floristic study of the genus Ficus of northeastern region are scanty and still lacking. As the genus is rich in diversity, this region possesses tremendous scope for utilisation of its members, as many species belonging to this genus carry good properties for diverse uses for the benefit of mankind. Therefore, the present study has been undertaken for identification of the collected taxa, diversity assessment of the wild as well as planted species, distribution throughout the state and preparation of a comprehensive checklist along with measures of diverse functions and ecological role of the genus Ficus in Tripura, North-East India. Field survey was conducted between April 2017–August 2018 throughout Tripura and all the locations were marked with GPS which is given in the present distribution map of Ficus in Tripura. This study is based on extensive field survey and specimen collection. Key taxonomic description, both accepted and vernacular names, phenology, and diverse habitat function of all species have been provided. Based on the available literatures, distribution information of the present records were calculated. Evaluation of diverse ecological role were scored based on the published literature and field observations. In the present study, 23 taxa of Ficus have been reported from the study area including four new distribution records. Most of the Ficus species recorded in this study were from moist mixed deciduous and secondary forests. Out of 23 species of Ficus recorded in the present study, seven (7) species belong to evergreen small tree to shrub (F. benjamina, F. drupacea, F. elastica, F. micracarpa, F. racemosa, F. sarmentosa and F. semicordata); three (3) species recorded are large deciduous tree (F. carica, F. religiosa and F. rumphii). Fleshy fruited trees are the most preferable option for survival of frugivores over diverse habitats and thus, plays major role for entire ecosystem restoration. The present work will be useful to understand the critical interactions between plants and frugivore at different trophic levels. Further, Ficus groups tend to have multiple ecological roles, and as a result there exists huge scope to understand the mechanisms of plant functional traits for conservation of threatened frugivore diversity.

Keywords: Conservation, ecological roles, Ficus, frugivore, northeastern India.

Editor: K. Hanidasan, Palakkad, Kerala, India. Date of publication: 26 August 2020 (online & print)

Citation: Debbarma, S., B. Banik, B. Baishnab, B.K. Datta & K. Majumdar (2020). Diversity and distribution of figs in Tripura with four new additional records. Journal of Threatened Taxa 12(11): 16548–16570. https://doi.org/10.11609/jott.4975.12.11.16548-16570

Copyright: © Debbarma et al. 2020. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: DBT Sanction Order No.: BT/01/17/NE/TAX; 29th March, 2018; 3 years.

Competing interests: The authors declare no competing interests.

Author details: SMITA DEBBARMA, research scholar, Tripura University. Major thrust areas of her research are taxonomy, biodiversity, pollination ecology and conservation biology. BIPLAB BANIK, research scholar, Tripura University. He does research in forest ecology, conservation biology, plant systematics (taxonomy) and habitat modelling. BISWAJIT BAISHNAB, research scholar, Tripura University. Major thrust areas of his research are taxonomy, biodiversity, reproductive and conservation biology. B. K. DATTA, Professor of Botany, Tripura University. Major thrust areas of his research are taxonomy, biodiversity, ethno-botany, ecology, reproductive and conservation biology. KOUSHIK MAJUMDAR, currently working as a research associate (RA), Tripura University. He does research in forest ecology, wildlife habitat, conservation biology, ethno-botany and plant systematics (taxonomy).

Author contribution: All authors have contributed equally. This is a collaborative work and have been modified by authors from time to time wherever required.

Acknowledgements: We are grateful to the Department of Biotechnology (DBT), Govt. of India for grant received through DBT Network Project (BT/01/17/NE/TAX) and Implementing Agency Ashoka Trust for Research in Ecology and the Environment (ATREE). We would like to thank Sri Jitaditya Deb Nath and Sri Jewel Saha for their consistent supports during field survey. We are also thankful to Principal Chief Conservator of Forest (PCCF), Tripura Forest Department, Govt. of Tripura for cooperation.
INTRODUCTION

The genus *Ficus* L. (commonly known as Fig; Moraceae) or fig trees are being considered as keystone species and ecologically important because they sustain populations of the many seed-dispersing animals that feed on their fruits throughout the year (Chaudhary et al. 2012; Krishnan & Borges 2018). *Ficus* is considered the most conspicuous and elusive genus due to its minute flowers present inside the closed fleshy receptacle (scyconium). The genus comprises about 750 species throughout the world (Corner 1965; Berg 1989; Berg & Corner 2005; Ronsted et al. 2008; Pedemirnas et al. 2015). Furthermore, Adebayo et al. (2009) reported occurrence of 800 species in tropical and subtropical regions of the world and about 115 species in India (Chaudhary et al. 2012). *Ficus* is one of the largest genera of angiosperms comprising terrestrial trees (deciduous and evergreen trees), shrubs, semi-epiphytes, climbers, and creepers occurring in the tropics and subtropics of the world (Frodin 2004; Berg & Corner 2005).

The first systematic account of the Indian *Ficus* L. is available in King (1887–88,1888); therein he recorded 113 species and 47 infraspecific taxa from whole of the then British India out of which only 75 species and 16 infraspecific taxa were reported from present-day political boundary of the country. There are many published works on the genus by various authors who have contributed in the field of identification, classification, and nomenclature (Corner 1961, 1965, 1969, 1975, 1981; Berg 1986, 2003, 2006, 2007, 2010, 2012; Chantarasuwan & Kumton 2005; Whitfeld & Weiblen 2010; Kumar et al. 2011; Murugan et al. 2013; Dhunana et al. 2015) and new records from different regions of the world have contributed to the knowledge on taxonomy and distribution of this genus.

Ficus is readily distinguished by the highly characteristic fruits and has often been recognized by the milky juice, the prominent stipule that leaves a scar on falling and the minute unisexual flowers often arranged on variously shaped receptacles (Hutchinson & Dalziel 1958). *Ficus* includes a large number of indoor ornamental plants and garden and roadside trees such as *F. benjamina*, *F. elastica*, *F. pumila*, *F. religiosa*, and *F. microcarpa*. The genus has followed several curious lines of evolution (Weiblen 2001). The main concentration of the species lies in Asian-Australian region with about 500 species which is about 66% of the world species. *Ficus* is also considered one of the most diversified genera with regard to its habits and life forms (free standing tree, epiphytes, semi-epiphytes in the crevices, Rheophytes, and Lithophytes). Some of the species of Ficus are used as food (e.g., *F. auriculata*, *F. semicordata*), fodder (e.g., *F. hispida*), and as medicine (e.g., *F. elastica*, *F. religiosa*). Moreover, *F. religiosa* and *F. benghalensis* are considered sacred to Buddhists and Hindus (Wilson & Wilson 2013).

It was reported that globally biodiversity is changing at an unprecedented rate as a complex response to several human-induced changes (Vitousek et al. 1997) and forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates (Cottee-Jones et al. 2016). One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes. Ficus trees, which are considered to be critically important components of tropical ecosystems, may be particularly attractive to seed dispersers in that they produce large and nutritionally rewarding fruit crops (Cottee-Jones et al. 2016) and in case of forest restoration studies seed dispersal has been frequently referred (Cole et al. 2010; Holl et al. 2013; Zahawi et al. 2013).

Fleshy-fruited trees are believed to be the most effective species at attracting frugivores over disturbed habitats and thus prove to be more effective restoration nuclei than other species (Slocum 2001). *Ficus* in particular is believed to be a very important genus of fleshy-fruited tree for a wide range of frugivores (Leighton & Leighton 1983; Terborgh 1986; Janzen 1988; Lambert & Marshall 1991; Shanahan et al. 2001; Kinniard et al. 2005). Within intact forests, the unusual asynchronous fruiting cycle, large crop sizes, and pan-tropical availability of Ficus means that over 1,200 tropical birds and mammals have been recorded consuming Ficus fruit (Shanahan et al. 2001).

Taxonomic revision, habitat assessment, and floristic study of the genus *Ficus* of northeastern region are scanty and still lacking; however several studies were conducted from the region, viz.: Cottee-Jones et al. (2016) evaluated importance of Ficus trees for tropical forest restoration; medicinal uses *Ficus* by Sharma & Pregu (2011); figs as wild vegetables by Dutta (2012); a rare and lesser known species of India by Buragohain et al. (2012); and fig morphological characters and distribution by Dhunana et al. (2015). In Tripura such type of study and analysis was not done until date except for a few new reports (Majumdar et al. 2012a); however, efforts were made to quantify some Ficus tree species along with other trees in the forests of Tripura (Majumdar et al. 2012b; Majumdar & Datta 2014). As the genus is rich in diversity, this region possesses tremendous scope for utilisation of its members, as many species belonging to this genus carry good properties for
use for the benefit of mankind. Therefore, the present study has been undertaken for identification of the collected taxa, diversity assessment of the wild as well as planted species, distribution throughout the state and preparation of a comprehensive checklist along with measures of diverse functions and ecological role of the genus *Ficus* in Tripura, North-East India.

MATERIALS AND METHODS

Study area

Tripura is a state of northeastern India. It is the third-smallest state in the country bordered by Bangladesh to the north, south, west, and the Indian states of Assam and Mizoram to the east. There are five hill ranges in Tripura, these are, Baramura, Atharamura, Longtarai, Sakhan, and Jampui run north to south, parallel to each other. Forests cover more than half of the area, in which bamboo and cane tracts are common. Like most of the Indian subcontinent, Tripura lies within the Indo-Malaya eco-zone. According to the bio-geographic classification of India, the state is in the North-East bio-geographic zone (Champion & Seth 1968). The state has a geographical area of 10,491 km². As per the report of the Forest Survey of India (FSI 2015) total forest and tree cover in the state is 8,044 km², i.e., 76.71 % of the total state’s geographical area.

Field survey, data collection and species identification

Field survey was conducted between April 2017–August 2018 throughout Tripura and all the locations were marked with GPS which is given in the present distribution map of *Ficus* in Tripura (Fig. 1). Survey was also conducted in each locality including discrete forest area. The occurrences of the *Ficus* plants were recorded and specimens were collected from the field for taxonomical study as well as made into standard herbarium sheets following the standard procedure (Jain & Rao 1977). As far as possible, specimens were collected with reproductive parts for the morphological studies and preparation of herbarium sheets. Reproductive parts were preserved in FAA solution for further microscopic studies in the laboratory.

The taxonomic identification of tree species and their geographic distribution ranges were based on the information of Hooker (1890), Kanjilal et al. (1940), Haridasan & Rao (1987), and Deb (1981). The identity of collected specimens was also determined by study of detailed taxonomic descriptions in different e-floras. The voucher specimens were deposited in the herbarium of the Department of Botany, Tripura University.

Species distribution

Based on the available literatures, distribution information of the present records were calculated on a scale of 1–6 (smaller to larger) to derived geographic distribution ranges score from numerical scale by slightly modified methods of Spitzer et al. (1993), i.e., (1) Eastern Himalaya, Yunnan and northern Indochina, (2) Bangladesh, northeastern India and northern Myanmar, (3) Indo-Burma (India including Andaman Island, Burma, Thailand and up to Vietnam), (4) Indo-Australian (India including Western Ghats, Sri Lanka, Indonesia and up to Australasian tropics), (5) Paleotropic (up to Baluchistan), (6) Cosmopolitan (Majumdar et al. 2012a).

Data analysis

Local occurrence and distribution in different forest habitat as well as non-forest land was typically recorded based on Frequency classes (Raunkiaer 1934), indicates the number of sampling units in which a given species occurs (Mishra 1968). Frequency of *Ficus* species in different locations of refers to the degree of dispersion of individual species in an area and is usually expressed in terms of percentage of occurrence.

Frequency and relative frequency of species in the study area are measured by using the formulae of Curtis & McIntosh (1950), which are given below.

\[
\text{Frequency} = \frac{(\text{No. of occurrences of a species} \times 100)}{\text{Total No. of site samples taken}}
\]

\[
\text{Relative Frequency} = \frac{(\text{No. of occurrence of particular species} \times 100)}{\text{Total no. of occurrences of all the species}}
\]

The values of relative frequency are calibrated on a 10-point scale to assign a status to the species in each region, however in this study we have not laid any quadrat and in this concern availability of a species was ranked based on their occurrence throughout the state Tripura. Four distinct groups are derived from this 10-point scale and each group in each region is designated as follows: 7–10 Very Frequent, 5–7 Frequent, 3–5 Less Frequent, <3 Rare.

Evaluation of diverse ecological role

Major uses of *Ficus* species found in Tripura were scored based on the published literature and field observations, which were prioritized for their various medicinal uses and diverse ecological role.
Figure 1. The location of field study and distribution of 23 Ficus species in Tripura.
RESULTS

Taxonomic treatment and species enumeration

Ficus auriculata Lour.

Fl. Cochinch. 2: 666. 1790; Kanjilal et al. Fl. Assam 4: 263. 1940; Deb, Fl. Tripura State 1:217.1981. (Image 1; F001).

Vernacular name: Durumpui (Kokborok), Elephant Ear Fig, Theibal.

Trees small, evergreen, young parts pubescent. **Leaves** 7.8–22 × 2.7–7.7 cm, elliptic or ovate-elliptic, serrate, subcoriaceous, glabrescent, lateral nerves 3–7 on each side, base subcuneate, 3–5 nerved; petiole 2.5–7.5 cm long; stipule ovate-lanceolate. Figs peduncled, subglobose, pyriform, red when ripe. Male flowers: perianth segments 3, stamens 2. Gall flowers: perianth segments 3, stamens 2. Gall flowers: perianth 3 toothed, style short, stigma dilated. Female flowers: perianth 3 toothed, style long, stigma clavate.

Flowering & fruiting: August–March.

Global distribution: India, Bangladesh, Malesia, Myanmar, Pakistan to southern China, Thailand.

Distribution in India: Outer Himalaya ascending up to 2,000m, Arunachal Pradesh, Assam, Bihar, Jammu & Kashmir, Jharkhand, Maharashtra, Manipur, Meghalaya, Mizoram, Odisha, Sikkim, southern India, West Bengal

Distribution in Tripura: Taidu, Simla, G.B. Bazar, Paschim Kalajari R.F. part, Jatanbari, Dumbur, and scattered throughout the state.

Uses: Wood moderately hard, used as timber for miscellaneous purposes (Deb 1981). *F. benghalensis* is considered greatly sacred to Hindu as well as to the Buddhists and worshiped in diverse ways at a variety of occasions. *F. benghalensis* is also reported to cure many diseases ethnomedicinally such as leucorrhoea, antiemetic, cutsand wounds, joint pains.

Ecology: Naturally scattered in the state and planted on road side as an avenue tree. The aerial root is styptic and aphrodisiac. Tips of the hanging roots are given for obstinate vomiting.

Ficus benghalensis L.

Sp. Pl. 1059. 1753; Kurz, For. Fl. Brt. Burma 2:440. 1877; King in Ann. Roy. Bot. Gard. Calcutta 1: 18, t. 13 & 81c.1887 & in Hook. f., Fl. Brit. India 5: 499. 1888; Brandis, Indian Trees 600. 1906; Kanjilal et al., Fl. Assam 4:240.1940; Corner, Gard. Bull. Singapore 17: 381. 1960; Deb, Fl. Tripura State 1:211. 1981; Harridasan & Rao,For. Fl. Megh.2:820. 1987; (Image 1; F002).

Vernacular name: Bargad, Banyan, Bor.

Trees large, evergreen. Leaves 12–20 × 7–12 cm elliptic to ovate, apex mucronate, coriaceous, base rounded, sub-cordate or slightly narrowed at the base, green and glossy above, glabrescent or pubescent beneath, lateral nerves 4–7 on each side, looped near the margin, base 3–7 nerved, petiole 1.2–5 cm long; stipules deltoid. Figs in auxiliary pairs, 1.5cm, with three large rounded basal bracts, red when ripe. Male flowers: numerous near the mouth of the receptacle; perianth segments 3; stamen one. Gall flowers: similar with a short style. Female flower: with smaller perianth and longer style.

Flowering & fruiting: April–July.

Global distribution: Bangladesh, India, Malaysia, Nepal, Pakistan, Sri Lanka, widely cultivated in tropics.

Distribution in India: Throughout India, northeastern region, sub-Himalayan forest, Andaman Islands

Distribution in Tripura: Tripura University Campus, G.B. Bazar, Paschim Kalajari R.F. part, Jatanbari, Dumbur, and scattered throughout the state.

Uses: Wood moderately hard, used as timber for miscellaneous purposes (Deb 1981). *F. benghalensis* is considered greatly sacred to Hindu as well as to the Buddhists and worshiped in diverse ways at a variety of occasions. *F. benghalensis* is also reported to cure many diseases ethnomedicinally such as leucorrhoea, antiemetic, cutsand wounds, joint pains.

Ecology: Naturally scattered in the state and planted on road side as an avenue tree. The aerial root is styptic and aphrodisiac. Tips of the hanging roots are given for obstinate vomiting.

Ficus benjamina L.

Mant. Pl. 1: 129. 1767; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 43, t. 52, 83h. 1887 & in Hook. F., Fl. Brit. India 5: 508. 1888; Brandis, Indian Trees 604. 1906; Deb, Fl. Tripura State 1:212. 1981. (Image 1; F003).

Vernacular name: Biripang topsi (kokborok), Golden Fig, Weeping Fig, Java Fig, Pukar.

Trees large, main branches producing aerial roots which can develop into new trunks. Leaves 3.7–10 × 1.3–5 cm, leaf blade ovate to broadly elliptic, entire, coriaceous, glabrous, lateral nerves numerous, slender, anastomosing into an intramarginal nerve; petiole 1–2 cm long; stipules lanceolate. Figs axillary, often in pairs, globose or ovoid, about 2.2 cm across. Male flowers few, scattered, pedicellate. Perianth segments 2, spathulate. Gall flowers: perianth 3–4 segmented. Female flowers: sessile. Perianth spathulate, stigma enlarged.

Flowering & fruiting: January–March

Global distribution: India (cultivated, avenue plants), China, Malaysia to the Solomon Islands and northern Australia.

Distribution in India: Throughout the north-eastern region, sub-Himalayan forest, Andaman Islands.

Distribution in Tripura: Balipur chhara, Tirthamukh, Dumboor; Purba Kalajhari R.F.

Uses: Milky juice and leaves are medicinal and trees are ceremonial and used as fodder (Rijal 1994; Thapa et al. 1997; Panthi & Chaudhary 2002).

Ecology: Sacred tree and mostly occurs on the roadside.
Ficus curtipes Corner

Gard. Bull. Singapore 17: 397. 1960 & 21 (1): 22. 1965; Roy et al., J. Econ. Taxon. Bot. Vol 22: 49-63. 1998; Deb, Fl. Tripura State 1:212. 1981; (Image 1; F006).

Vernacular name: Eastern Laurel Fig

Trees large, epiphytic when young. Branchlets green, glabrous. Leaves 6.2–19 × 3–3.7 cm oblong-elliptic or obovate-elliptic, entire, obtuse, coriaceous, lateral nerves 10–12 on each side; base 3–7 nerved, cuneate; petiole 0.8–1.7 cm long, stout; stipules ovate-lanceolate, acuminate. Figs axillary on leafy branchlets, paired, dark red to purplish red when mature, globose to depressed globose, 1–1.5 cm across, inside without bristles. Male flowers: numerous, scattered, perianth segments 3; Gall flowers: perianth segments; style subterminal. Female flowers: sessile, style lateral, stigma funnel shaped.

Flowering & fruiting: August–October

Global distribution: Bangladesh, Bhutan, India, Indonesia, Malaysia, Malay Peninsula (Langkawi Island), Myanmar, Nepal, Sikkim, Thailand, Vietnam.

Distribution in India: Northern and northeastern India.

Distribution in Tripura: Hmonpui, Thakchi, Tlangsang, Jampui Hills, Kamalpur.

Uses: Yields an inferior rubber (Deb, 1981), used as an ornamental tree.

Ecology: Found in moist deciduous forest.

Ficus drupacea Thunb.

Diss. Ficus 6, 11. 1786; Miq., Ann. Mus. Bot. Lugd.-Bat. 3: 286. 1867; Corner, Gard. Bull. Singapore 17: 380. 1960 & 21 (1): 13. 1965; Deb, Fl. Tripura State 1:213. 1981; (Image 1; F005).

Vernacular name: Mysore Fig, Brown Woolly Fig, Paras Peepal.

Trees large. Bark grayish-white. Branches without aerial roots; densely yellowish-brown woolly. Leaves 14.8–25 × 6–13 cm elliptic to ovate-elliptic, entire bluntly acuminate, coriaceous, glabrous, dotted above, glabrescent beneath, lateral nerves 12–20 on each side, anastomosing into an intramarginal nerve, tertiaries very finely reticulate, base slightly cordate or rounded, 3–7 nerved, petiole 2–3.5 cm long; stipules deltoid, rusty tomentose. Figs axillary, 3.5cm across, globose, rusty tomentose when young, glabrous, orange when ripe. Male flowers: long pedicellate, perianth segments 4, stamen 1. Gall flowers: with 4 perianth lobes. Female flowers: perianth lobes 4, style lateral.

Flowering & fruiting: January–March.

Global distribution: India, Bangladesh, China, Indonesia, Malesia, Myanmar, Nepal, Sri Lanka, Thailand, Vietnam, Laos, Bhutan.

Distribution in India: Maharashtra, Goa, Karnataka, Kerala, Tamil Nadu, Andhra Pradesh, northeastern India.

Distribution in Tripura: Hmonpui, Sabual, Jampui Ranges.

Uses: The figs are edible but rather tasteless.

Ecology: Found mostly in evergreen and rarely in deciduous forests.

Ficus elastica Roxb.

(Hort. Beng. 65. 1814, nom. Nud.) ex Hornem., Hort. Bot. Hafn. Suppl. 7. 1819; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 45, t. 54. 1887 & in Hook. F., Fl. Brit. India 5: 508. 1888; Brandis, Indian Trees 603. 1906; Deb, Fl. Tripura State 1:213. 1981 (Image 1; F006).

Vernacular name: Indian Rubber Tree, Rabar Gach, Atha bor

Trees large, evergreen, epiphytic when young. Bark pale gray, smooth.

Leaves 12–28 × 5–14 cm elliptic to oblong, entire, coriaceous, caduate at apex, rounded at base, glabrous; lateral nerves many, inconspicuous, petiole 1.3–6 cm long; stipules large, lanceolate, flaccid, reddish. Figs axillary on leafless branchlets, paired, yellowish-green, ovoid-ellipsoid, about 1.2cm long, sub-sessile, involucral bracts hood like at an early stage, caducous, scar conspicuous. Male flowers: scattered among other flowers, pedicellate, perianth lobes, anther ovoid-ellipsoid. Gall flowers: perianth lobes 4; style subterminal. Female flowers: style long; stigma subcapitate.

Flowering & fruiting: Fl. March–April, Fr. June–October.

Global distribution: Bhutan, Indonesia, Myanmar, Nepal, native to tropical Asia, India, and Malaysia and has been introduced in several countries.

Distribution in India: Assam, Meghalaya, Sikkim, Tripura, Karnataka, eastern Himalayas, and also widely cultivated throughout the country.

Distribution in Tripura: Planted at MBB College garden, growth is luxuriant

Uses: Yields the India rubber of commerce. Bark is astringent and used as styptics for wounds. Latex used for parasitic worms. Decoction of aerial rootlets used for wounds, cuts and scores.

Ecology: Planted in garden and luxuriant growth was found to very prominent. The species is not wind-tolerant and tends to break apart in strong winds.

Ficus hederacea Roxb.

Fl. Ind., ed. 1832, 3: 538. 1832. F. scandens Roxburgh
Vernacular name: Climbing Fig, Ivy Fig, Dudhe lahari (Nepali).

Shrubs, scandent. Stems and branchlets with aerial roots at nodes. Stipules caducous, ovate. Leaves 5–7 × 3–4.8 cm, alternate, ovate or elliptic, thickly leathery, entire, acute at apex, rounded at base, scabrid above, pubescent beneath; lateral nerves 5–6 on each side,
base 3 nerved, petiole 0.8–1.2 cm long; stipules ovate, acuminate. Figs axillary on leafy or on leafless branchlets, solitary or paired, yellowish green to red when mature, globose, 0.8–1.2 cm across., with thick and short hairs when young, inside without bristles, apical pore navel-like, slightly convex. Male flowers: few, scattered, sessile; perianth lobes 4; lanceolate, style subterminal, stamens 2. Gall flowers: pedicellate; calyx lobes 4, lanceolate; ovary obovate, hard, black; style subapical, short; stigmas curved. Female flowers: flowers on separate figs, perianth 4, style elongate, stigma subcapitate, linear.

Flowering & fruiting: August–March.

Global distribution: Myanmar, India, southern China, Tonkin, Laos, Annam, and northern Thailand

Distribution in India: Northern India, Andaman Islands, Mizoram.

Distribution in Tripura: Uttar Unakuti R.F., Khasiamangal, Teliamura R.F. part.

Ficus heteropleura Blume

Bijdr. Fl. Ned. Ind. 9: 466. 1825 Kanjilal et al. Fl. Assam 4: 239. 1940; Deb, Fl. Tripura State 1:214.1981; (Image 1; F008).

Vernacular name: Unknown.

Erect Shrubs or small trees. Leaves 5–10.2 x 3–6.8 cm, elliptic or ovate, undulate, abruptly caudate, attenuated at the base, coriaceous, glabrous; lateral nerves 2–4 on each side, more prominent beneath; stipules minute, subulate. Figs pedunculate, axillary, subglobose, 0.5–8 cm, scabrid, reddish-yellow when ripe; peduncle short, hispid. Male flowers: perianth segments 4, stamens 2, joined to a pistilode. Female flowers: perianth 3 fid, style short.

Flowering & fruiting: January–August.

Global distribution: Bangladesh, Bhutan, Cambodia, China, India, Indonesia, Malaysia, Myanmar, Philippines, Thailand, Vietnam.

Distribution in India: Andaman & Nicobar Islands, Arunachal Pradesh, Assam, Bengal, Tripura.

Distribution in Tripura: Purba Kalajhari R.F., Suryamaninagar, Shilachari, Panisagar.

Uses: Unknown.

Ecology: Found in evergreen forest and hilly tract.

Ficus hirta Vahl

Enum. Pl. 2: 201. 1805; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 149, t. 188, 189. 1888 & in Hook. F., Fl. Brit. Ind. 5: 531. 1888; Brandis, Indian Trees 608. 1906; Deb, Fl. Tripura State 1:215. 1981; (Image 1; F009).

Trees or Shrubs, branches hollow; young parts pubescent. Leaves 12–30 x 10–20 cm, suborbicular, ovate or ovate-elliptic, serrate, acuminate, sometimes 3–5 lobed, scabrid above, hisrute or tomentose beneath, lateral nerves 4–7 on each side, base cordate or rounded, 3–7 nerved, petiole 2.4–16 cm long, hisrute, stipules ovate-lanceolate, acuminate. Figs axillary, in pairs, globose, 0.7–2.5 cm across, covered with long rufescent hairs. Male flowers: perianth segments 4; stamens 2. Gall flowers: perianth segments 4; style lateral, stigma funnel shaped. Female flowers: perianth segments 4, linear, lanceolate, style filiform.

Flowering & fruiting: August–September.

Global distribution: Asia: Bhutan, China, India, Indonesia, Myanmar, Nepal, Thailand, Vietnam.

Distribution in India: Arunachal Pradesh, Assam, Meghalaya, Sikkim, Tripura, West Bengal.

Distribution in Tripura: Betlingshib, Deo Reserve Forest part, Manu, Purba Simara.

Uses: Edible (Manandhar 2002).

Ecology: Scattered in moist deciduous mixed forest.

Ficus hispida L. f.

Suppl. Pl. 442. 1782; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 116, t. 154, 155. 1888 & in Hook. F., Fl. Brit. Ind. 5: 522. 1888; Brandis, Indian Trees 606. 1906; Kumar et al., American J. Pl. Sci. 2: 83, f. 4. 2011.Kanjilal et al. Assam 4:253.1940; Deb, Fl. Tripura State1:215.1981. (Image 2; F010).

Vernacular name: Domur, Daduri, Khohota dimoru, Hairy Fig, Devil Fig, Khampa (kokborok), Kagsha, Kala umbar, Kharvoti.

Trees small, with fistular branches. Leaves 10–28 x 5.4–10 cm, opposite, obovate, obovate-oblong, elliptic or oblong, acute or acuminate, serrate or dentate, subcoriaceous, scabrid above, hispid, pubescent beneath, lateral nerves 6–10 on each side, petiole hispid, 1.2–5 cm long; stipules ovate-lanceolate, pubescent outside. Figs in pairs or clusters on short tubercles from old wood or on long branches, obovoid or turbinate, narrowed to a short stalk, hispid, greenish yellow and faintly ribbed when ripe, basal bract 3. Male flowers: perianth lobes 3; stamens one. Gall flowers: pedicellate, perianth rudimentary, style short, stigma dilated. Female flowers: perianth rudimentary, style one, hairy.

Flowering & fruiting: April–September.

Global distribution: India, Bhutan, China, Indochina, Malesia, Nepal, Sri Lanka, Australia.

Distribution in India: Andaman Islands, throughout northeastern India.

Distribution in Tripura: Scattered throughout the state.

Uses: Leaves are used as fodder; immature
Inflorescence is used as a vegetable. Fruits are prescribed for diabetic patients. Ethno-medicinally, fruits, leaves and sticky latex are used for the treatment of liver ailments, urinary diseases and inflammatory conditions. In diabetes root exudates is taken even as for curing jaundice, curry prepared from leaf is taken (Borah et al. 2012). Young shoots, leaves and green fruits are eaten as vegetable and even the ripe receptacle is also eaten which is considered as food for liver (Dutta 2012). Fruits are also eaten cooked or pickled, leaves are used for making dishes and twigs are lopped for fodder (Chhetri 2010).

Ecology: Mostly found in deciduous forest.

Ficus ischnopoda Miq.

Ann. Mus. Bot. Lugd.-Bat. 3: 229, 294. 1867; Kurz, Fl. Burma 2: 456. 1877; Kanjilal et al. Assam 4:257.1940; Deb, Fl. Tripura State 1:216.1981. (Image 1; F011).
Trees small, bark gray, with winglike ridges. Branchlet internodes red, short. Leaves clustered apically on branchlets, base cuneate, margin entire, apex acuminate, lateral nerves 6–12 on each side, base 3 nerves, petiole hispid, 1.5–2.2 cm long, reddish-brown; stipules ovate-lanceolate, pubescent outside. Figs pedunculate, axillary, solitary, pyriform, 1–2 cm across, constricted at the base into a strip, reddish-brown when ripe. Male flowers: perianth segments 3; stamen 2. Gall flowers: pedicellate, perianth segments 4, style short, lateral. Female flowers: on separate figs, perianth segments 5, style long, , subterminal, persistent.

Flowering & Fruiting: May–August.

Global Distribution: India, Bangladesh, Bhutan, China, Indochina, Malesia, Myanmar, Thailand.

Distribution in India: Arunachal Pradesh, Assam, Meghalaya, Tripura, West Bengal.

Distribution in Tripura: Deb Bari, Silachari.

Ecology: River banks, scrub.

Ficus lamponga Miq.

Fl. Ind. Bat. Supple. 431. 1861 & Ann. Mus. Bot. Lugd.-Bat. 3: 294. 1867; Kurz, For. Fl. Brit. Burma 2: 451. 1877; (Image 2; F012).

Vernacular Name: Lampung Fig, Dimoru, Dieng-kajapo, Dieng-thalliang, Mumukichok

Tree. Bark brownish-grey, faintly reticulately fissured. Leaves ovate to ovate-elliptic, 10–24 by 4–12 cm long, margin entire, acute or acuminate at apex, membranous, glabrous above, lateral nerves 8–12 on each side, reticulation fine, distinct, petiole 1–2.5 cm long, stipules lanceolate. Figs axillary on leafless and leafy branchlets, solitary or paired, peduncled, ellipsoid, globose or sub-pyriform, reddish-orange when ripe about 1 cm across. Male flowers calyx lobes 4, stamens 1, filament adnate. Gall flowers ovary smooth, globose, style lateral, stigma tubular. Female flowers calyx lobes 4–5, style sub-terminal, stigma cylindrical. Female flowers: perianth segments 4, style short, lateral. Figs pedicellate, perianth segments 4, style short, lateral. Male flowers: on separate figs, perianth segments 5, style long, , subterminal, persistent.

Flowering & Fruiting: October–January.

Global Distribution: Bangladesh, Bhutan, India, Indonesia, Myanmar.

Distribution in India: Andaman Islands, Arunachal Pradesh, Assam, Manipur, Meghalaya, West Bengal.

Distribution in Tripura: Agartala, Suryamani nagar.

Remarks: This taxon was recorded as new distribution of extensions in Tripura based on specimens collected from the field. The detailed description of the species with photographs and collection number are provided here to authenticate the record.

Ficus microcarpa L. f.

Suppl. Pl. 442. 1782; Kanjilal et al. Fl. Assam 4 : 245. 1940; Deb, Fl. Tripura State 1:216.1981. (Image 2; F013).

Vernacular Name: Pakar, Laurel Fig, Chinese Banyan, Indian Laurel, Curtain Fig

A large evergreen tree. Leaves 3.7–13 x 2.2–6.1 cm, ovate or rhomboid, bluntly acute or obtuse at the apex, cuneate at the base, entire, coriaceous, glabrous; lateral nerves 8–10 on each side, 3 nerves at the base, stipules lanceolate. Figs 0.5–0.9 cm across, globose, sessile, in axillary pairs, yellowish when ripe. Male flowers numerous; perianth segments 3, stamen one. Gall flowers numerous; perianth segments 3, stamen one. Female flowers: perianth minute, style short, stigma clavate.

Flowering & Fruiting: February-March.

Global Distribution: India, Australia, Bhutan, China, Indochina, Japan, Malesia, Nepal, Sri Lanka, Taiwan.

Distribution in India: Andaman & Nicobar Islands, Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Peninsular region, Punjab, Rajasthan, Sikkim, Karnataka, Tamil Nadu, Kerala, Tripura, Assam.

Distribution in Tripura: Abicharan bazaar, Krishna Nagar, Agartala, Purba Simna, Jalaya Bazaar, Ichhachhari, Jolaibari.

Uses: Its figs are consumed by several frugivorous vertebrate species, primarily birds, but also bats, rodents, other small mammals, and ants, which act as secondary dispersal agents (Kaufmann et al. 1991; Shanahan et al. 2001).

Ecology: Mostly grown in roadside and designated as sacred tree, however it was also found in moist deciduous mixed forest with very low species density.

Ficus nervosa B. Heyne ex Roth in Nov. Pl. Sp. 388. 1821; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 53, t. 65A. 1887 p. p & in Hook. F., Fl. Brit. Ind. 5: 512. 1888 p. p.; Brandis, Indian Trees 600. 1906; Lakshminarasimhan & Roy, J. Econ. Taxon. Bot. 20: 373. 1996. (Image 2; F014).

Vernacular Name: Mai-hong, Nyaung-peinne

Trees. Branchlets wrinkled when dry. Leaves elliptic, oblong, or obovate-lanceolate, leathery, glabrous, abaxially dark coloured with small scattered tubercles, adaxially dark green but brown when dry and shiny, base rounded to cuneate and with two glands, margin entire, apex obtuse and mucronate; basal lateral veins short, with axillary glands, secondary nerves 7–12 on each side and abaxially prominent, petiole 1–2 cm. Figs axillary on normal leafy stem, paired or solitary, globose, 1–1.2 cm in diameters, tuberculate when young, base attenuate

Ecology: Mostly grown in roadside and designated as sacred tree, however it was also found in moist deciduous mixed forest with very low species density.

Uses: Its figs are consumed by several frugivorous vertebrate species, primarily birds, but also bats, rodents, other small mammals, and ants, which act as secondary dispersal agents (Kaufmann et al. 1991; Shanahan et al. 2001).

Ecology: Mostly grown in roadside and designated as sacred tree, however it was also found in moist deciduous mixed forest with very low species density.
into an apparent stalk, sessile, pubescent. Male, gall, and female flowers within same fig. Male flowers: near apical pore, pedicellate; calyx lobes 2, spatulate, unequal in size; stamen 1. Gall flowers: pedicellate or sessile; calyx lobes 3, elongated, apex acuminate; style lateral; stigma clavate.
Ficus diversity and distribution in Tripura

Flowering & fruiting: January–August.

Global distribution: China (Fujian, Guangdong, Guangxi, Guizhou, Sichuan, Yunnan), Taiwan, Bhutan, India, Myanmar (Bago, Kachin, Sagaing, Taninthayi), Sikkim, Sri Lanka, Vietnam, Nicobars, Nepal, Laos, Thailand.

Distribution in India: Andaman & Nicobar Islands, Arunachal Pradesh, Assam, Bihar, Jharkhand, Meghalaya, Peninsular region, Sikkim.

Distribution in Tripura: Mandai, Purba Kathalia and scattered in Dhalai District of Tripura.

Uses: Bark contains Secondary metabolites and they are responsible for therapeutic effects (Devi et al. 2013).

Ecology: Canopy trees in evergreen forests.

Remarks: This taxon was also recorded as new distribution in Tripura, Northeast India; based on specimens collected from the field. The detailed description of the species with photographs and collection number are provided here to authenticate the record.

Ficus obscura Blume.

Bijdr. Fl. Ned. Ind. 9: 474. 1825; King, Ann. i.t. 102, 103. *F. microtus* Miq. Var. *borneensis* Miq., Ann. Mus. Bot. Lugd.-Bat. 3: 273. 1867. *F. pisifera* Wall. Ex Voight, Hort. Suburb. Calc. 285. 1845; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 3, t. 1. 1887 & in Hook. F., Fl. Brit. India 5: 496. 1888. (Image 2; F015).

Small tree, branchlets rough with short stiff hairs and scales; leaves 3.4–25 x 2.7–8.8 cm thinly membranous, very unequal-sided, unequally serrate and rough with raised dots and minute stiff hairs, chiefly along the nerves; stipules 1.2–1.4 cm long. Figs 0.7–1.2 cm across, flower with 1 or 2 bract-like warts on the outer surface, reddish or orange when ripe.

Flowering & fruiting: May–September.

Global distribution: India and Myanmar.

Distribution in India: Northeastern India.

Distribution in Tripura: Betlingshig, Jampui Hills.

Ecology: Evergreen Forest and rare.

Remarks: This taxon was also recorded as new addition to the flora of Tripura by Majumdar et al. (2012a). The detailed description of the species with photographs and collection number are provided here to authenticate the record.

Ficus pumila L.

Sp. Pl. 1060. 1753; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 183. 1888; Deb, Fl.Tripura State 1:217.1981. (Image 2; F017).

Vernacular name: Cluster Fig, Gular Fig, Redwood Fig, Udumbara, Janja dumur.

A large deciduous tree; young parts pubescent, bark greyish brown. Leaves 10–17.5 x 3.8–8 cm, ovate-elliptic, ovate-oblong or oblong-lanceolate, entire, bluntly acuminate, membranous, glabrous, with minute dots on the lower surface; lateral nerves 4–10 on each side; base 3 nervet; petiole 1.4–2.4 cm long; stipules...
small ovate-lanceolate. Receptacles peduncled, in short panicked fascicles from the trunk and larger branches, sometimes axillary, subglobose or pyriform, 2.5–3.8 cm across, reddish when ripe; basal bracts 3. Male flowers: perianth 3–5 lobed; stamens of gall flowers pedicellate. Female flowers: perianth 4–5 toothed, style subterminal, stigma clavate.

Flowering & fruiting: March–May and again September–November.

Global distribution: India, Australia, Bangladesh, China, Indochina, Malesia, Myanmar, Nepal, Pakistan, Sri Lanka.

Distribution in India: Almost throughout from the outer Himalaya to plains and low hills.

Distribution in Tripura: Throughout the state.

Uses: The fruit is edible, the leaves are used as fodder (Chaudhary et al. 1999), and the bark is used for tanning. Latex is aphrodisiac and vulnerary, useful in inflammations, piles, diarrhea and in combination with sesamum oil in cancer. The mature fruits are astringent, stomachic and carminative. They are eaten by local communities. A decoction of the bark is used as a wash for wounds. Fruits are edible when ripe. Ethno-medicinally, boiled fruits are given in diabetes as a wash for wounds. Fruits are edible when ripe. They are eaten by local communities. A decoction of the bark is used as a wash for wounds. Fruits are edible when ripe.

Ecology: Moist areas, beside rivers and streams, and scattered throughout the state.

Ficus religiosa L.

Sp. Pl. 2: 1059. 1753; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 55. 1888; Hook f., Fl. Brit. India 5: 513. 1888; Kanjilal et al., Fl. Assam 4: 246. 1940; Brandis, Indian Trees 601. 1906; Deb, Fl. Tripura State 1: 218. 1981.

Vernacular name: Pipal Tree

A large deciduous tree; bark greyish with brownish specks. Leaves 10–18 x 8–12 cm, orbicular-ovate, undulate, caudate, long acuminate, coriaceous, glabrous, tubercled beneath, lateral nerves 6–8 on each side, tertiaries closely reticulate; base 5–7 nervèd, shallow cordate, rounded or truncate, petiole 7–10 cm long, slender, stipules minute. Receptacle sessile in axillary pairs, 1.3–1.5 cm across, subglobose, bark purple when ripe; basal bracts 3, pubescent. Male flowers very few, sessile, perianth segments 3, ovate, stamen one, filament short. Gall and female flowers: perianth segments 5, lanceolate, style short.

Flowering & fruiting: March–April, and again May–June.

Global distribution: India, Burma, Ceylon, Bangladesh, China, Myanmar, Pakistan and Thailand; introduced and cultivated in southeastern Asia, Middle East, northern Africa (Egypt, Libya), USA and elsewhere.

Distribution in India: Kerala, Assam, Tripura, Odisha.

Distribution in Tripura: Kunjaban, G.B. Bazar, Uttar Unakuti R.F., Kakraban and mostly scattered throught the state.

Uses: This is considered as a highly sacred tree in Hindu & Buddha religions since ancient time and worshiped in different ways at various occasions. The juice of bark is used for the treatment of ulcer, liver, spleen and skin diseases. The wood is moderately hard and durable so used in packing materials; the leaves are used as a fodder and it is planted as an avenue or road side tree.

Ecology: Roadside as sacred tree.

Ficus rumphii Blume

Bijdr. Fl. Ned. Ind. 437. 1825; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 54, t. 67b, 84t. 1887 & in Hook. F., Fl. Brit. India 3: 512. 1888; Watt., Dict. Ec. Prod. Ind. 3: 361. 1890; Brandis, Indian Trees 601. 1906; Deb, Fl. Tripura State 1: 218. 1981.

Vernacular name: Pilkhon, Khabar, Gajhar.

A large deciduous tree; bark greyish, smooth. Leaves 7.4–15 x 3.5–7.8 cm ovate or ovate-oblong, entire, shortly acuminate, glabrous, lateral nerves 3–6 on each side, base3-5b nervèd, cordate, truncate or narrowed into the petiole; petiole 3.8–7.5 cm long, jointed with the blade; stipules small, ovate-lanceolate, black when ripe, basal bracts 3, orbicular. Male flowers few near the osteole, perianth segments 3, stamen one. Gall and female flowers: perianth segments 3, lanceolate, style elongate, stigma clavate.

Flowering & fruiting: April–July and again December–January

Global distribution: Nepal, Bhutan, China, Myanmar, Indochina, Malaysia, India.

Distribution in India: North-west to north-east & central states, Andaman and Nicobar Island. From sub Himalayan tract and outer hills.

Distribution in Tripura: Bagafa, Bagma, Amarpur, Jirania, Maharani Bazar, Kalajhari Bazar, Pandachhara.

Uses: Used as fodder tree (Manandhar 2002). Foot and mouth disease of cattle is treated by feeding *F. rumphii* (Manandhar 1992, 2002). Ecologically, it is considered as an epiphytic while young.

Ficus sarmentosa Buch.-Ham. ex. J.E.Sm., Rees. Cyclop. 14: *Ficus* no. 45. 1810; King, Ann. Roy. Bot. Gard. (Calcutta) 1: 184. 1888(Img 2; F020).

Shrubs or woody vines. Branchlets grayish-white
when dry, rugose, glabrous, subglabrous, or densely white-hairy. Leaves 7.5–15 × 2.3–4.5 cm, distichous, subglabrous leaf blade ovate, ovate-elliptic, elliptic-lanceolate, both surfaces glabrous, base rounded to broadly cuneate, margin entire, apex acute to acuminate; secondary nerves 4–12 on each side of midvein, tertiary veins honeycomblike, petiole 1.2 cm long, hairy; stipules lanceolate-ovate. Figs axillary on leafy or on leafless branchlets, solitary, glabrous, sparingly pubescent, or densely covered with brown hairs, inside with bristles, apical pore slightly concave, sessile. Male flowers: pedicellate; calyx lobes 3 or 4, ob lanceolate; stamens 2; filaments very short; anthers mucronate. Gall flowers: pedicellate; calyx lobes 4, obovate-spatulate; ovary elliptic; style short; stigma shallowly funnelform. Female flowers: pedicellate; calyx lobes spatulate; ovary obovate; style subapical; stigma thin and long.

Flowering & fruiting: May–July.

Global distribution: Bangladesh, Pakistan, China, Bhutan, Indochina, Japan, Korea, Myanmar, Nepal, Taiwan.

Distribution in India: Arunachal Pradesh, Assam, Jammu & Kashmir, Himachal Pradesh, Mizoram, Meghalaya, Punjab, Sikkim, Tripura, Uttar Pradesh, West Bengal.

Distribution in Tripura: Gandhari, Dakshin Taidu, Sadhujan Para.

Ecology: This taxon naturally spread their branches along the ground, but readily takes advantage of any shrub or tree in their path over which they can ascend. Evergreen species and traced in several semi evergreen forest patches.

Ficus semicordata Buch.-Ham. ex J.E.Sm.

Rees Cyclop. 14: Ficus no. 71. 1810; Corner, Gard. Bull. Singapore 17: 449. 1960 & 21 (1): 62.1965; Deb, Fl. Tripura State 1:219. 1981; (Image 2; F021).

A small tree, young parts hirsute. Leaves 10–25 x 6–18 cm, alternate, oblong or elliptic-lanceolate, serrate or crenate, acute or acuminate, scabrid; nerves 7–14 on either side, base unequal semi-sagittate or subcordate; petiole short, 0.5–1.5 cm long, scabrid; stipules lanceolate. Receptacles in pairs or in clusters on drooping mostly leafless branches, sometimes near the base of the tree or from larger branches, 1-2 cm across, globose or pyriform, hispid, reddish brown when ripe. Male and gall flowers in short peduncled set.

Flowering & fruiting: May–September.

Global distribution: Nepal, Bhutan, China, Bangladesh, Myanmar, Thailand, Vietnam, Pakistan, Malaysia, India.

Distribution in India: Jammu & Kashmir, Uttar Pradesh, Jharkhand, Madhya Pradesh, Sikkim, Assam, Meghalaya, Manipur.

Distribution in Tripura: Atharamura R.F., Subal singh, Hawaiibari, Uttar Unakuti R.F., Tlangsang, Shakhan Sermon, Manu Chhailengta R.F., Longtarai R.F., Paschim Daluma, Dakshin Baramura Deotamura R.F., Uttar Debipur, Paschim Kalajari R.F. part.

Uses: The figs are sweet and eaten by locals as fruit. The juice from the roots is given in bladder complaints and visceral obstructions (Kirtikar & Basu 2001). The leaves are used as fodder for cattle.

Ecology: Characteristics species of semi evergreen forests and mostly occurring in hilly tract of Tripura. Furthermore moist mixed deciduous forest at comparatively higher elevation also supports this taxon.

Ficus squamosa Roxb.

Fl. Ind. 3: 531. 1832; Haridasan & Rao, 2:833.1987; Kanjilal et al., Fl. Assam 4:252.1940; Deb, Fl. Tripura State 1:220.1981. Joseph, Fl.Nongpoh Vicinity 251.1982; Image 2; F022).

Vernacular name: Dimoru, Jamynrei, Phukhu-jhola.

Shrubs bushy, young shoots rusty hirsute. Leaves 2.5–12 x 0.8–2.8 cm, opposite, crowded at the ends of branches, lanceolate or ob lanceolate, acuminate, entire or serrate along the upper half, membranous when young, subcoriaceous when mature, glabrous above, scabrid beneath, stigroge along midrib and nerves, lateral nerves 6–8 on each side, base acute, 3 nerv ed; petiole upto 2.5 cm long; stipules scarious, glabrous. Receptacles pedunculate, solitary, axillary or in cluster on old stem, pyriform, globose, 2–2.5 cm across, hispid, verrucose, ribbed, brown when ripe. Male flowers: perianth segments 3–4; stamen one. Gall flowers: perianth hyaline, style lateral. Female flowers: style hairy, long, slender.

Flowering & fruiting: Almost throughout the year.

Global distribution: India, Nepal, Bhutan, China, Myanmar, Thailand.

Distribution in India: Arunachal Pradesh, Assam, Bihar, Meghalaya, Odisha, Tripura, Uttarakhand, West Bengal.

Distribution in Tripura: Paschim Kalajari R.F. part, Dumbur, Debbari.

Ecology: Key species of riparian habitat and restricted in specific areas of Tripura.

Ficus virens Ait

Hort. Kew. 3: 451. 1789; Kanjilal et al. Fl. Assam 247.1980; Deb, Fl. Tripura State 1:216.1981. (Image 2; F023).

Distribution in India: Nepal, Bhutan, China, Bangladesh, Myanmar, Thailand, Vietnam, Pakistan, Malaysia, India.
Key to the species

1a. Male, female and gall flowers in the same receptacle, male flowers without rudimentary pistil
1b. Male, female and gall flowers not in the same receptacle, male flowers with a rudimentary pistil, monandrous

2a. Leaves coriaceous, 10–20 × 7–12 cm, ovate, base cordate, 3–7 nervéd
2b. Leaves 6–18 × 3–3.8 cm, coriaceous, elliptic or oblanceolate, glabrous; base 3 nervéd, cuneate; lateral nerves 10–12 on each side

3a. Receptacle globose, pubescent; lateral nerves 4–7 on each side of the leaf .. F. benghalensis
3b. Receptacle oblong or ovoid, tomentose; lateral nerves 12–20 on each side .. F. drupacea

4a. Bark smooth, leaves coriaceous, secondary nerve less than 12; figs warty, orange or reddish................................. F. curtipes
4b. Bark brownish-grey, fissured reticulate, inside yellowish-brown, leaves membranous, lateral nerves less than 14 on each side. Figs globose, smooth, red .. F. lampanga

5a. Leaves more or less coriaceous
5b. Leaves membranous on long slender petiole; leaves cordate, acuminate

6a. Lateral nerves closely parallel, inconspicuous, numerous, nearly at right angles to the midrib, anastomosing little except at the margin
6b. Lateral nerves conspicuous, 5–8 on each side of midvein, nervules and reticulations minute but distinct F. vires

7a. Stipules large, sub-persistent; receptacles greenish-yellow when ripe .. F. elastica
7b. Stipules small, caducous; receptacle yellow or red when ripe .. F. benjamina

8a. Leaves leathery, glabrous; basal veins conspicuously raised; base truncate or rounded, 3-5 nervéd; figs purplish-red when mature
8b. Leaves leathery, not glabrous; basal veins not raised; cuneate at the base; base 3 nervéd; figs yellow to lightly red when mature .. F. microcarpa

9a. Leaves 7.5–15 × 3.8–7.5, shortly acuminate .. F. rumphii
9b. Leaves 10–18 × 7–12, long acuminate .. F. religiosa

10a. Male flowers monandrous
10b. Male flowers diandrous

11a. Receptacles mostly axillary
11b. Receptacle mainly in fascicles from stem or branches

12a. Erect shrubs or trees; rooting branched fertile, stipule without hair, 4–8 nervéd; receptacles 7.5mm or more across
12b. Climber or scandent shrubs, rooting branchlets sterile, stipule with yellow brown silky hair; 3–4 nervéd .. F. pumila

13a. Leaves mostly opposite
13b. Leaves mostly alternate

14a. Leaves narrow, linear, oblanceolate, cuneate at the base .. F. squamosa
14b. Leaves ovate-oblong or elliptic-oblong; base sub-cordate rounded .. F. hispida

15a. Receptacle globose, glabrous, 1.5–2.5 cm across; leaves granulate beneath
15b. Receptacle hispid and verrucose when ripe, 1–1.8 cm across; leaves unequally subauriculate F. semicordata

16a. Receptacle mostly axillary
16b. Receptacles mostly in fascicles from stem or branches

17a. Erect shrubs or trees
17b. Creeping or epiphytic

18a. Young parts sparingly hairy; leaves entire or nearly so; receptacle pedunculate, lengthening out into a stalk, gradually constricted F. ischnopoda
18b. Young parts densely tomentose; leaves not entire; receptacle sessile with long rufescents hairs, globose F. hirta

19a. Leaves ovate .. F. hederacea
19b. Leaves oblong .. F. sarmentosa

20a. Leaves unequal at the base, margin serrate, style lateral, persistent, fruit orange ... F. obscura
20b. Leaves cuneate base margin entire, style terminal, caudacious, fruit reddish ... F. nervosa

21a. Leaves ovate-elliptic, serrate, subcoriaceous .. F. auriculata
21b. Leaves ovate, ovate-oblong, entire, membranous .. F. racemosa

22a. Stipules long, ovate-lanceolate; leaves unequilateral, lanceolate to elliptic ovate; female sepals 4
22b. Stipules minute; leaves broadly ovate or ovate elliptic; female sepals 3 .. F. heteropleura
Image 4: A—LS of fig of *F. lamponga* Miq. B–C—fig bearing twig and magnified view (LS) of fig of *F. racemosa* L. | D–E–F—Figs, LS of figs and magnified view (LS) of fig of *F. religiosa* L. | G—Figs of *F. rumphii* Blume | H-I-J—fig bearing twigs and TS of fig of *F. semicordata* Buch.-Ham. ex | K—LS of fig of *F. squamosa* Roxb. | L—Figs on twig of *F. virens* Aiton.
Vernacular name: White Fig, Sandpaper Fig, Pilkhan, Ching Heibong

Trees large, with buttress or prop roots, deciduous or semideciduous. Leaves 7.5–20 × 3.6–8 cm, leaf blade ovate to elliptic, oblong ovate or ovate narrowly, base bluntly rounded, cuneate, or cordate, margin entire, apex acuminate to shortly acuminate; lateral nerves 6–9 on each side, base 3 nervet, cuneate, petiole up to 7.8 cm long; stipules ovate, pubescent. Figs axillary on leafy branchlets, paired or solitary or in clusters on leafless older branchlets, subglobose, 6–8 cm across, with conspicuous interfloral bristles. Male flowers: few, near apical pore, sessile; perianth segments 4, lanceolate; stamen 1; filament short; anther broadly ovoid. Gall flowers: pedicellate; perianth segments 4; style lateral, shorter than ovary. Female flowers: similar to gall flowers; style longer than ovary.

Flowering & Fruiting: April–August.

Global distribution: Bhutan, Bangladesh, Pakistan, China, Cambodia, India, Indonesia, Japan, Laos, Malaysia, Myanmar, New Guinea, Philippines, Sikkim, Sri Lanka, Thailand, Vietnam; northern Australia.

Distribution in India: India (Throughout up to 1700 m, also frequently planted), Uttar Pradesh, Punjab.

Distribution in Tripura: Paschim Daluma, Amarpur Rangtang Bari, Ramthakur College, Agartala.

Uses: Foliage buds are eaten as vegetable and pickle.

Ecology: Roadside.

DISCUSSIONS

Most recently, 115 taxa of Ficus have been recorded from India out of which 89 are species and remaining 26 taxa fall under different infra-specific categories (six subspecies and 20 varieties), with maximum diversity in the north-east (61 spp.) and peninsular regions and Andman & Nicobar Islands with ca. 35 species each (Chaudhary et al. 2012). Kanjilal et al. (1940) reported 42 species of Ficus from undivided Assam in “Flora of Assam”. In Meghalaya alone about 43 species of Ficus are found and considered as the hotspot region for the genus in India (Chaudhary et al. 2012).

In the present study, 23 taxa of Ficus have been reported from the study area including four new distribution records (Table 1). The increase in the number of species has been observed in the present study when compared to the earlier report of 23 taxa including one variety in the “Flora of Tripura State” from the same geographical extent (Deb 1981), which was based on survey of literature, author’s own collection and consultation of herbaria, however, while working on the morpho-taxonomy of figs in Tripura, we could collect only 19 species out of 23 species reported by Deb (1981).

Out of 23 species of Ficus recorded in the present study, seven species belong to evergreen small tree to shrub (F. benghalensis, F. drupacea, F. elastica, F. microcarpa, F. racemosa, F. sarmentosa and F. semicordata); three (3) species recorded are large deciduous tree (F. racemosa, F. religiosa and F. rumphii). Among all species F. hispida and F. racemosa show a wide range of distribution in all the eight districts of the study area and variations in its habit which range from small shrub to medium-sized tree, however, F. hispida has been found more commonly especially in lowland and moist areas in mixed deciduous forest. The most common is the F. hispida which is present throughout except inside the deep forest. Apart from forest areas, F. benghalensis and F. religiosa are commonly visible on walls, temples and old buildings. F. benjamina, F. religiosa, F. curtipes, F. virens are epiphytic when young and free standing later. The Ficus species recorded occurs in mixed deciduous forest, moist deciduous forest, tropical semi-evergreen forest, and secondary forest.

Species distribution and conservation status

The information on geographic extensions of Ficus species is important from taxonomical and phytogeographical point of view and will also contribute towards the conservation of those restricted species. Although, it is difficult to quantify the total number of additional species that still exist in different forests of Tripura without comprehensive reassessments of the flora. Furthermore, present effort has been focussed on geographical distribution of collected species (Fig.2) with their regional distribution. Tripura possesses special significance in the biogeography of the northeastern region due to its unique location and habitat heterogeneity. This region is part of Indo-Burma hotspot which is one of the 35 biodiversity hotspots in the world (Myers et al. 2000). The undulating topography, high rainfall and varied altitudes are main factors that have contributed to its rich hilly ecosystem and habitat diversity (Majumdar et al. 2012b). Many Ficus species are fast declining in the wild due to habitat changes, forest fragmentation, road construction and clearance of virgin forests for shifting cultivation, plantation and due to other developmental activities. Out of the present checklist, F. drupacea was assigned as Least Concern (ver. 3.1) in the IUCN Red List of Threatened Species (https://www.iucnredlist.org). Besides Ficus
Table 1. Checklist of *Ficus* species along with their current status on availability, distribution ranking and collection number/field number deposited at Tripura University Herbarium (TUH) with their voucher specimens at Central National Herbarium (CAL).

Sp. Id.	Name of species	Species abbreviation	Species Code	Habit	Status	Distribution Range Score	Collection number (TUH)	Voucher specimens (CAL)
1.	*Ficus auriculata* Lour.	Fau	F001	Small evergreen tree	Less Frequent	5	Banik & Datta, TUH-2301	Deb 27103.
2.	*Ficus benghalensis* L.	Fbe	F002	Evergreen tree	Very Frequent	4	Banik & Datta, TUH-2000	–
3.	*Ficus benjamina* L.	Fben	F003	Large tree, with drooping branches.	Frequent	4	Banik & Datta, TUH-2302	Deb 1174.
4.	*Ficus curtipes* Corner	Fcu	F004	Large tree (epiphytic when young)	Rare	4	Banik & Datta, TUH-2074	Biswas 5047; Deb 1207; Deb 2336; Deb 2786
5.	*Ficus drupacea* Thunb.	Fdr	F005	Evergreen tree (sometimes epiphytic)	Less Frequent	5	Banik & Datta, TUH-2306	Biswas 5077.
6.	*Ficus elastica* Roxb. ex Hornem.	Fel	F006	Large evergreen tree (sometimes epiphytic when young)	NA (Cultivated)	3	Banik & Datta, TUH-2311	Deb Burman 832.
7.	*Ficus hederacea* Roxb.	Fhe	F007	Shrub scandent, often rooting at the nodes, sometimes climbing.	Rare	4	Banik & Datta, TUH-2317	Deb 2339; Deb 2582.
8.	*Ficus heteropleura* Blume	Fhet	F008	Shrub or small trees.	Less Frequent	4	Banik & Datta, TUH, 1995	Deb 2062.
9.	*Ficus hirta* Vahl	Fhir	F009	Tree/Shrub	Less Frequent	3	Banik & Datta, TUH-2318	Deb 2671; Deb 27302.
10.	*Ficus hispida* L.f.	Fhis	F010	Small tree with fistular branches.	Very Frequent	5	Banik & Datta, TUH-1999	Deb Burman 23,835 ; Deb 1968; Deb 2271.
11.	*Ficus ischnopoda* Miq.	Fis	F011	Small tree, young parts pubescent.	Frequent (restricted to riparian habitat)	4	Banik & Datta, TUH-1994	Deb 2059.
12.	*Ficus lampangana*	Fia	F012	Evergreen, climber.	Less Frequent	4	Debbarma & Datta, TUH2325	–
13.	*Ficus microcarpa* L.f.	Fmi	F013	Large evergreen tree	Less Frequent	3	Banik & Datta, TUH-2001	Deb 2095.
14.	*Ficus nervosa*	Fne	F014	Small tree	Less Frequent	4	Banik & Datta, TUH-2094	–
15.	*Ficus obscura* Blume	Fob	F015	Shrubby or subarborescent	Rare	2	Banik & Datta, TUH-1996	–
16.	*Ficus pumila*	Fpu	F016	Evergreen, climber.	NA (Cultivated)	3	Banik & Datta, TUH-2095	–
17.	*Ficus racemosa* L.	Fra	F017	Large deciduous tree	Very Frequent	6	Debbarma & Datta, TUH-1992	Deb 2447.
18.	*Ficus religiosa* L.	Fre	F018	Large deciduous tree	Very Frequent	5	Banik & Datta, TUH-1993	–
19.	*Ficus rumphii* Blume	Fru	F019	Large deciduous tree	Very Frequent	4	Banik & Datta, TUH-2326	Deb Burman 424.
20.	*Ficus sarmentosa* Buch.-Ham. ex Sm.	Fsa	F020	Evergreen shrub	Very Frequent	5	Debbarma & Datta, TUH-1997	Deb Burman 1152.
21.	*Ficus semicordata* Buch.-Ham. ex Sm.	Fse	F021	Small tree	Frequent	5	Banik & Datta, TUH-2327	Deb 1317; Deb 26895; Deb 27433
22.	*Ficus squamosa* Roxb.	Fsq	F022	Shrub	Rare (restricted in riparian habitat)	3	Banik & Datta, TUH-2334	Deb 1259; Deb 2009.
23.	*Ficus virens* Aiton	Fvi	F023	Large tree	Frequent	5	Banik & Datta, TUH-1998	Deb Burman 869.
drupacea, very recently few more species have been assigned as “Least Concern” and these are F. auriculata, F. benjamina, F. hispida, F. ischnopoda, F. microcarpa, F. racemosa, F. semicordata, and F. virens.

Distribution of species in different habitats reveals that forests ecosystems are the main habitat of recorded species broadly distributed in moist deciduous forest, riparian cover and semi-evergreen forest. In the recent exploration of Ficus species in Tripura, we did not find any occurrence of four species which may be due to the current rate of deforestation and habitat loss some of these species may have altered distribution and may no longer exist in a particular area (Krupnick & Kress 2003). The uneven distribution of these species and the absence of these species in many parts of the state can be attributed to various factors.

Review on potential ecological role by Ficus

Ficus is the most important plant genus for tropical frugivores. Ficus forms a uniquely important group within the subset of plants with bird-eaten fruit because of their numerical abundance, intra-crown synchrony of fruit ripening, relatively short intervals between fruiting, large crop sizes and intrapopulation fruiting asynchrony. These characteristics combined with their availability at times when other fruits are scarce, makes Ficus a most important keystone plant resource (Lambert & Marshall 1991). Worldwide, a large number of animals are known to feed on the syconia, including pigeons, parrots, hornbills, toucans, bats, monkeys, and squirrels (Shanahan et al. 2001). According to Shanahan et al. (2001) 1,274 bird and mammal species in 523 genera and 92 families are known to eat figs. Figs are known to be eaten by 54 species but feature especially heavily in the diet of Asian hornbills. Brockelman (1982) noted that hornbills were the only birds capable of eating Ficus drupacea figs whole. Ficus virens ranks as one of the top 10 Ficus species that attract the most number of frugivorous species (Shanahan et al. 2001) and further can lead to improve frugivore biodiversity (Lee et al. 2013). Figs are among the most important food of specialized frugivores in Africa, southeastern Asia and Australia (Snow 1981). Khan & Ahsan (2015) reported that Ficus benghalensis was the top most preferred food plant. This plant species supported the diet of 13 (44.8%) species of birds. The birds have been shown to make long-duration feeding visits to fruiting trees and defecate fig seeds intact (Compton et al. 1996). The pigeon family (Columbidae) has a worldwide distribution and, after the parrots, has more fig-eaters than any other frugivore family which comprises 125 species in 25 genera (Shanahan et al. 2001). Invertebrates, including ants, dung beetles, snails and hermit crabs are known to consume fig fruits or seeds, thereby having impacts on Ficus seed dispersal. About 750 species of Ficus and the pollinating wasps resulted significant ecological interactions to complete their life cycle (Wiebes 1979; Grison-Pige et al. 2002; Harrison 2003; Castro et al. 2015). The figs (syconia) are pollinated entirely by specific wasps from the family Agaonidae (Chalcidoidea), which in turn reproduce by laying eggs in the fig’s flowers, where the larvae feed and expand.
their life cycle (Cook & Segar 2010). Such mutualism is exploited by a number of other parasitic non-pollinating wasps (Wiebes & Compton 1990) and by numerous species of ants, Homoptera, Coleoptera, Lepidoptera and Diptera (Bain et al. 2012).

Major uses of *Ficus* species found in Tripura were scored based on their earlier report and species were prioritized for their ecosystem services and medicinal uses (Fig. 3). Several species of Ficus, viz., *F. microcarpa*, *F. religiosa*, *F. auriculata*, *F. benjamina*, *F. racemosa*, *F. bengalensis* have been used in daily diet for nutrition as well as for medicinal usage and medicinal plants in the treatment of different diseases (Khan et al. 2011). Several species are indigenously used as food, fodder, fuel wood, vegetable, medicine, etc. They provide good fodder and various ecological services. They provide nectar, refuge habitat for several bird species and a wide variety of insects, and host orchids and mistletoes (Kunwar & Bussman 2006). *F. benghalensis*, *F. benjamina*, and *F. religiosa* have been reported as common host plants for orchids (Subedi & Paudyal 2001). *Ficus* is also important species in tropical forest restoration (Cottee-Jones et al. 2016). Higher species richness in Moraceae was recorded for all community types due to local availability of *Artocarpus chama*, *A. lacucha*, *Bombax ceiba*, *Garuga pinnata*, *Ficus glumerata*, and *Albizia lucida* during field study in *Shorea* dominated community. *Ficus* trees scored low in terms of economic value, and the main reason for them remaining in the landscape was because of religious attributes endowed upon them. Trees that had shrines were significantly larger than those that...

![Figure 3. Scoring of major uses and ecosystem services of selected *Ficus* species.](image-url)
did not. *Ficus* have been described as keystone species (Bleher et al. 2003; Eshiamwata et al. 2006) and provide connectivity for both tree and animal populations over a landscape scale (Manning et al. 2006). Further, figs often survive in human-dominated landscapes because of their cultural significance. *F. benghalensis, F. religiosa* have considerable religious associations in Hinduism and Buddhism and are also used as sites of worship (Barua 2009) and these cultural factors contribute to the safeguarding of mature trees. They may be considered sacred groves at very local scales, and are working examples of how cultural practices might influence the existence of biodiversity outside protected areas.

With agricultural intensification, however, the number of mature *Ficus* trees declined and people cut down trees when they interfered with their daily activities. Extensive conversion of forests for cash crop plantation in this region has resulted in the emergence of landscape tracts that are a heterogeneous mixture of agriculture, human-settlement and forest fragments. Increased structural complexity and habitat for animals at local scales, and connectivity for both tree and animal populations over a landscape scale may result in ecosystem stability. It has been suggested that the establishment of Ficus is a critical phase in the reassembly of forests. Thus, they are an important resource for maintaining biodiversity outside protected areas, and their loss may result in undesirable ecological regime shifts. This account of *Ficus* diversity and distribution in the forest ecosystem may provide knowledge to the researchers about wildlife occurrence and their resource utilization in these subtropical regions.

CONCLUSION

The present study highlighted the taxonomy and diversity of the genus *Ficus* L. in Tripura, northeastern India, based on extensive field survey and exploration. The increase in the number of species has been observed in the present study when compared to the earlier report of 23 taxa including one variety in the “Flora of Tripura State” from the same geographical extent. As the genus is rich in diversity, this region possesses tremendous scope of exploitation of its members, as many species belonging to this genus have carried good properties beneficial to mankind as well as sustaining wildlife. Their importance for sustaining wildlife and the stability of interactions with several biological groups is an issue of considerable concern for conservation.

REFERENCES

Adebayo, E.A., O.R. Ishola., O.S. Taiwo., O.N. Majolagbe & B.T. Adekeye (2009). Evaluations of the methanol extract of *Ficus* exasperate stem bark, leaf and root for phytochemical analysis and antimicrobial activities. *African Journal of Plant Science* 3(12): 283–287.

Bain, A., B. Chantarasuwnan, M. Hossuert-McKey, B. Schatz, F. Kjellberg & L.S. Chou (2012). A new case of ants nesting within branches of a fig tree: the case of *Ficus subpisocarpa* in Taiwan. *Sociobiology* 59: 415–434.

Barua, M. (2009). Ecological Basis of the Bihu Festival of Assam. *Folklore* 120: 213–223.

Berg, C.C. (1986). Subdivisions of *Ficus* subg. Urostigmaset. *Galoglychia* (Moraceae). *Proceeding Of The Koninklijke Nederlandse Akademie Van Wetenschappen* 89(2): 121–127.

Berg, C.C. (1989). Classification and distribution of *Ficus*. *Experientia* 45: 605–611.

Berg, C.C. (2003). Flora Malesiana precursor for the treatment of *Moraceae 1: The main subdivision of Ficus: The subgenera. Blumea* 48: 167–178.

Berg, C.C. & E.J.H. Corner (2005). *Moraceae* (Ficus). In: Nooteboom H.P. (ed.), *Flora Malesiana*, *Blumea* 45: 605–611.

Berg, C.C. (2012). Seven new Malesian species of *Ficus* (Moraceae). *Blumea* 55: 115–117.

Buragohain, R., P.R. Gajurel, P.R. Rethy & B. Singh (2012). Equations of the methanol extract of *Ficus* schwarzii and two new species of *Ficus* (Moraceae). *Blumea* 57: 147–157.

Chaudhary, L.B., J.V. Sudhakar, A. Kumar, O. Bajpai, R. Tiwari & G.V.S. Chhetri, R.B. (2010). *Ethnobotany of Moraceae in Meghalaya* North-
East India. Kathmandu University Journal of Science, Engineering and Technology 6(1): 5–10.

Cole, R.J., K.D. Holl & R.A. Zahawi (2010). Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecological Applications 20: 1255–1269.

Compton, S.G., A.J.F.K. Craig & I.L.W. Waters (1996). Seed dispersal in an African fig tree: birds as high quality, low quantity dispersers? Journal of Biogeography 23: 553–563.

Cook, J.M. & S.T. Segar (2010). Speciation in fig wasps. Ecology Entomology 35: 54–66.

Corner, E.J.H. (1961). Taxonomic notes on Ficus Linn., Asia and Australasia. Addendum. Gardens’ Bulletin Singapore 18: 83–97.

Corner, E.J.H. (1965). Check list of Ficus in Asia and Australasia with keys to identification. Gardens’ Bulletin Singapore 21: 1–186.

Corner, E.J.H. (1969). Ficus Sect. Adenosperma. Philosophical Transactions of The Royal Society London Biological Sciences 256: 319–355.

Corner, E.J.H. (1975). New taxa of Ficus (Moraceae). Blumea 22: 299–309.

Corner, E.J.H. (1981). Moraceae, 230–279. In: Dassanayake, M.D. (eds.), A Revised Handbook to The Flora of Ceylon Vol. 3. Oxford and IBH, New Delhi.

Cottee-Jones, H.E.W., O. Bajpai, L.B. Chaudhary & R.J. Whittaker (2016). The Importance of Ficus (Moraceae) Trees for Tropical Forest Restoration. Biotropica 48(3): 413–419.

Curtis, J.T. & R.P. McIntosh (1950). The interrelations of certain analytic and synthetic Physiogeographic characters. Ecology 31: 434–455.

Das J., S. Molur & W. Bleisch (2008). Trachypityceae pileatus. In. IUCN 2011. IUCN Red List of Threatened Species. Version 2011.1. Available at http://www.iucnredlist.org/. Downloaded on 12 September 2011.

Deb, D.B. (1981). The Flora of Tipura State. Todays & Tomorrows’ Printers & Publishers, New Delhi, 309pp.

Devi, B.A., G.S. Sushma, P. Sharaish, P. Harathi, M.R. Devi & N.S. Dhungana, P., P. Devi., & S.K. Borthakur (2015) Ten new additions of tree species to the Flora of Tripura state, North East India: Distributional range extension and geographic map. NeBIO 3(1): 17–24.

Devi, B.A., G.S. Sushma, P. Sharaish, P. Harathi, M.R. Devi & N.S. Dhungana (2015). Morphology and distribution of the genus Ficus Linnaeus (Moraceae) in Upper Assam, India. Pleione 9(1): 1–17.

Dutta, U. (2012). Wild Vegetables collected by the local communities from the Chirang ReserveForest of BTAD, Assam. International Journal of Advanced Science and Technology 2(4): 116–125.

Eshiamwata, G.W., D.G. Berens, B. Bleher, W.R.J. Dean & K. Böhning-Davies, B.A., G.S. Sushma, P. Sharaish, P. Harathi, M.R. Devi & N.S. Dhungana, P., P. Devi., & S.K. Borthakur (2015) Ten new additions of tree species to the Flora of Tripura state, North East India: Distributional range extension and geographic map. NeBIO 3(1): 17–24.

Fieg diversity and distribution in Tripura Debbarma et al.

Holl, K.D., V.M. Stout, J.L. Reid & R.A. Zahawi (2013). Seed dispersal: Adaptations for a two-phase seed dispersal system involving vertebrates and ants in a hemiepiphytic fig (Ficus microcarpa, Moraceae). American Journal of Botany 79: 971–977.

Khan, K.Y., M.A. Khan, R. Niama, M. Munir, H. Fazal, P. Mazarri, N. Seema, T. Bashir, A. Kanwal & S.N. Ahmed (2011). Element content analysis of plants of genus Ficus using atomic absorption spectrometer. African Journal of Pharmacy and Pharmacology 5(3): 317–321.

Khan, S.I. & M.F. Ahsan (2015). Frugivorous birds and fruit plants in a deciduous forest in Bangladesh: a case study in the Madhupur National park. Bangladesh Journal of Zoology 43(2): 173–187.

King, G., (eds.) (1887–1888). The species of Ficus of the Indo-Malayan and Chinese countries. Annals of the Royal Botanic Garden, Calcutta 1: 1–185 (+ i - xiii, i - vi, plates 1–232, 1–52, plates 1–5).

King, G., (1888). Ficus L. pp. 494–537. In. Hooker, J.D. (ed.). The Flora of British India, 5. J. Reeve and Co., London, UK, 1888pp.

Kinnaird, M.F. O’Brien & T.G. Ahsan (2005). Fast foods of the forest: The influence of figs on primates and hornbills across Wallace’s Line, 155–184. In. Dew, J.L. & J.P. Boubli (Eds.). Tropical Fruits and Frugivores: The Search for Strong Interactors. Springer, Dordrecht, the Netherlands, viii+208pp.

Kirkpatrick, K.R. & B.D. Baliu (2001). Indian Medicinal Plants. 2nd Edition, Oriental Enterprises, Uttaranchal, Volume 8, 2604pp.

Kishnan, A., & R.M. Borges (2018). A fig tree in a concrete jungle: fine-scale population genetic structure of the cluster fig Ficus racemosa in an urban environment. Urban Ecosystems 21(1): 171–181.

Krupnick, G.A. & W.J. Kress (2003). Hotspots and ecoregions: a test of conservation priorities using taxonomic data. Biodiversity and Conservation 12: 2237–2253.

Kumar, A., O. Bajpai, A.K. Mishra, N. Sahu, S.K. Behera, L.B. Chaudhary, A. (2011) Assessment of Diversity in the Genus Ficus L. (Moraceae) of Kaniaghat Wildlife Sanctuary, Uttar Pradesh, India. American Journal of Plant Sciences 2: 78–92.

Kunwar, R.M., & R.W. Bussmann (2006). Ficus (Fig) species in Nepal: a review of diversity and indigenous Us. Lyonia 11(1): 85–97.

Lambert, F.R. & A.G. Marshall (1991). Keystone characteristics of bird dispersed ficus in a Malaysian lowland rain forest. Journal of Ecology 79: 793–809.

Lee, S.H., A.B.C. Ng, R.C.J. Lim, R. Francisco, W.Q. Ng, X.Y. Ng, L. Neo, A.T.K. Yee, K.Y. Chong & H.T.W. Tan (2013). Status and distribution in Singapore of Ficus virens Alton (Moraceae). Nature in Singapore 6: 223–227.

Leighton, M. & D.R. Leighton (1983). Vertebrate responses to fruiting seasonality within a Bornean rain forest, 181–196. In. Sutton, S.L., T.C. Whitmore & A.C. Chadwick (eds.). Tropical Rain Forest: Ecology and Management. Blackwell, Oxford, UK, viii+498pp.

Majumdar, K., V.K. Datta & U. Shankar (2012a). Ten new additions of tree species to the Flora of Tripura state, North East India: Distributional range extension and geographic map. NeBIO 3(1): 17–24.

Majumdar, K., U. Shankar & B.K. Datta (2012b). Tree species diversity and stand structure along major community types in lowland primary and secondary moist deciduous forests in Tripura, Northeast India. Journal of Forestry Research 23(4): 553–568.

Majumdar, K. & B.K. Datta (2014). A quantitative checklist of woody angiosperm diversity, population structure and habitat grouping in Trisha Wildlife Sanctuary of Tripura, northeast India. Check List 10(5): 976–996.

Manandhar, N.P. (1992). Folklore medicine of Dhading District, Nepal. Fitoterapia 63(2): 163–177.

Manandhar, N.P. (2002). Plants and People of Nepal. Timbre Press, Oregon, USA. 599pp.

Manning, A.D., J. Fischer & D.B. Lindenmayer (2006). Scattered trees are keystone structures – implications for conservation. Biological
Fig diversity and distribution in Tripura

Debbarma et al.

Conservation 132: 311–321.
Mishra, R. (1968). Ecology Work Book Oxford and IBH Publishing Co, Calcutta 244pp.

Murugan, C., G.V.S. Murthy & J.V. Sudhakar (2013). Diversity, distribution and uses of Ficus L. (Moraceae) in Andhra Pradesh, India: a review. Journal of the Andaman Science Association. 18(2): 192–196.

Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. da Fonseca & J. Kent (2000). Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

Panthi, M.P. & R.P. Chaudhary (2002). Angiosperm flora of Arghakhanchi district and adjoining areas, West Nepal. Journal Natural History Museum 21(1–4): 7–32.

Pedemneiras, L.C., J.P.P. Carauta, S.R. Neto, & Vde. F. Mansano (2015). An overview of the infrageneric nomenclature of Ficus (Moraceae). Taxon 64(3): 589–594.

Raunkiaer, C. (1934). The Life Forms of Plants and Statistical Plant Geography. Clarendon Press, London 632pp.

Rijal, A. (1994). Ethnobotany of Padampur: an analysis of dependency and conflict. PhD Thesis, Agricultural University Norway, Norway.

Ronsted, N., G.D. Weiblen, W.L. Clement, N.J.C. Zerega & V. Savolainen (2008). Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis 45(1): 45–55.

Shanahan, M., S. So, S.G. Compton & R. Corlett (2001). Fig-eating by vertebrate frugivores: A global review. Biological Reviews 7: 529–572.

Sharma, U.K. & S. Pegu (2011). Ethnobotany of religious and supernatural beliefs of the Mising tribes of Assam with special reference to the ‘Dobur Uie’. Journal of Ethnobiology & Ethnomedicine 7: 16.

Slocum, M.G. (2001). How tree species differ as recruitment foci in a tropical pasture. Ecology 82: 2547–2559.

Snow, D.W. (1981). Tropical frugivorous birds and their food plants: A World Survey. Biotrop 13(1): 1–14.

Spitzer, K., V. Novotony, M. Tonner & J. Leps (1993). Habitat preferences, distribution and seasonality of the butterflies (Lepidoptera, Papilionoidea) in a montane tropical rain forest, Vietnam. Journal of Biogeography 20: 109–121.

Subedi, A. & G. Paudyal (2001). Some notable orchid of Pokhara valley and their habitats. Botanica Orientalis 2: 172–174.

Terborgh, J. (1986). Keystone plant resources in the tropical forest. In: Soule, M.E. (Ed.). Conservation biology: The science of scarcity and diversity. Sinauer Associates, Sunderland, MA. 330–344pp.

Thapa, B., D.H. Walker & F.L. Sinclair (1997). Indigenous knowledge of the feeding value of tree fodder. Animal Feed Science Technology 67: 97–114.

Vitousek, P.M., H.A. Mooney, J. Lubchenco & J.M. Melillo (1997). Human Domination of Earth’s Ecosystems. Science 277(5325): 494–499.

Whitfeld, T.J.S. & G.D. Weiblen (2010). Five new Ficus species (Moraceae) from Melanesia. Harvard Papers in Botany 15(1): 1–10.

Wiebes, J.T. (1979). Co-evolution of figs and their insect pollinators. Annu. Rev. Ecol. Syst. 10: 1–12.

Wiebes, J.T. & S.G. Compton (1990). Agaonidae (Hymenoptera Chalcidoidea) and Ficus (Moraceae): fig wasps and their figs, VI (Africa concluded). Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 93: 203–222.

Weiblen G.D. (2001). Phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus based on mitochondrial DNA sequences and morphology. Syst Biol. 50(2): 243–267.

Wilson, D. & A. Wilson (2013). Figs as a global spiritual and material resource for humans. Human Ecology 41(3): 459–464.

Zahawi, R.A., K.D. Holl, R.J & J.L.C. Reid (2013). Testing applied nucleation as a strategy to facilitate tropical forest recovery. Journal of Applied Ecology 50: 88–96.
Corrêa Andrew Rosenfield, Priscila Viau – Daniela Paes de Almeida Ferreira

Use of an embedded fruit by Nicobar Long-tailed Macaque Macaca fascicularis umbrosus: II. Demographic influences on choices of coconuts Cocos nucifera and pattern of forays to palm plantations

— Sanyantan Das, Rebekah C. David, Ashvita Anand, Saurav Harikumar, Rubina Rajan & Mewa Singh, Pp. 16407–16423

Communications

Habitat preference and current distribution of Chinese Pangolin (Manis pentadactyla L. 1758) in Dorokha Dungkhag, Samtse, southern Bhutan

— Dago Dorji, Jambay, Ju Lian Chong & Tshering Dorji, Pp. 16424–16433

A checklist of mammals with historical records from Darjeeling-Sikkim Himalaya landscape, India

— Thangsuanlian Naulak & Sunita Pradhan, Pp. 16434–16459

Golden Jackal Canis aureus Linnaeus, 1758 (Mammalia: Carnivora: Canidae) distribution pattern and feeding at Point Calimere Wildlife Sanctuary, India

— Nagarajan Baskaran, Ganesan Karthikeyan & Kamaraj Ramkumaran, Pp. 16460–16468

Suppression of ovariian activity in a captive African Lion Panthera leo after deslorelin treatment

— Daniela Paes de Almeida Ferreira Braga, Cristiane Schilbach Pizzuto, Derek Andrew Rosenfield, Priscila Viau Furtado, Cláudio A. Oliveira, Sandra Helena Ramiro Corrêa, Pedro Nacib Jorge-Neto & Marcelo Alcindo de Barros Vaz Guimarães, Pp. 16469–16477

Spatial aggregation and specificity of incidents with wildlife make tea plantations in southern India potential buffers with protected areas

— Tamanna Kalam, Tejeswini A. Futtaweerawamy, Rajeev K. Srivastava, Jean-Philippe Puyravaud & Priya Davdar, Pp. 16478–16493

Innovative way of human-elephant competition mitigation

— Sanjit Kumar Saha, Pp. 16494–16501

New locality records and call description of the Resplendent Shrub Frog Raorchestes resplendens (Amphibia: Anura: Rhacophoridae) from the Western Ghats, India

— Sandeep Das, K.P. Rajkumar, K.A. Sreejith, M. Royaltata & P.S. Easa, Pp. 16502–16509

First record of a morphologically abnormal and highly metal-contaminated Spotback Skate Atlantoraja castelnaui (Rajiformes: Arhynchobatidae) from southeastern Rio de Janeiro, Brazil

— Rachel Ann Hauser-Davis, Márcio L.V. Barbosa-Filho, Lucia Helena S. Pereira, J. Swamy, L. Rasingam, S. Nagaraju & Pooja R. Mane, Pp. 16510–16520

Butterfly diversity in an organic tea estate of Darjeeling Hills, eastern Himalaya, India

— Aditya Pradhan & Sarala Khaling, Pp. 16521–16530

Freshwater decapods (Crustacea: Decapoda) of Palair Reservoir, Telangana, India

— Sudipta Mandal, Deepa Jaiswal, A. Narahari & C. Shiva Shankar, Pp. 16531–16547

Diversity and distribution of figs in Tripura with four new additional records

— Smita Debbarma, Bipal Banik, Biswajit Baishnab, B.K. Datta & Koushik Majumdar, Pp. 16548–16570

Notes

The first record of Montagu’s Harrier Circus pygargus (Aves: Accipitridae) in West Bengal, India

— Suman Prathar & Niloy Mandal, Pp. 16620–16621

An account of snake specimens in St. Joseph’s College Museum Kozhikode, India, with data on species diversity

— V.J. Zacharias & Boby Jose, Pp. 16622–16627

Notes on the occurrence of a rare pufferfish, Chelonodontops leopards (Day, 1878) (Tetraodontiformes: Tetraodontidae), in the freshwaters of Payaswini River, Karnataka, India

— Priyankar Chakraborty, Subhendu Sekhar Mishra & Kranti Yardi, Pp. 16628–16631

New records of hoverflies of the genus Volucella Geoffroy (Diptera: Syrphidae) from Pakistan along with a checklist of known species

— Muhammad Asghar Hassan, Imran Bodla, Anjum Shehzad & Noor Fatima, Pp. 16632–16635

A new species of Dillenia (Angiosperms: Dilleniaceae) from the Eastern Ghats of Andhra Pradesh, India

— J. Swamy, L. Rasingam, S. Nagaraju & Pooja R. Mane, Pp. 16636–16640

Reinstatement of Pimpinella katrajensis R.S.Rao & Hemadri (Apiaceae), an endemic species to Maharashtra with notes on its taxonomy and distribution

— J. Deshpande, S.D. Kulkarni, R.B. More & K.V.C. Gosavi, Pp. 16641–16643

Puccinia duthiei Ellis & Tracy: a new host record on Chrysopogon velutinus from India

— Suhas Kundlik Kamble, Pp. 16644–16646