A Wiener-Type Condition for Boundary Continuity of Quasi-Minima of Variational Integrals

Emmanuele DiBenedetto
Department of Mathematics, Vanderbilt University
1326 Stevenson Center, Nashville TN 37240, USA
email: em.diben@vanderbilt.edu

Ugo Gianazza
Dipartimento di Matematica “F. Casorati”, Università di Pavia
via Ferrata 1, 27100 Pavia, Italy
email: gianazza@imati.cnr.it

Abstract

A Wiener-type condition for the continuity at the boundary points of Q-minima, is established, in terms of the divergence of a suitable Wiener integral \((1.8) \) and Theorem 1.1.

AMS Subject Classification (2010): Primary 49K20, 35J25; Secondary 35B45

Key Words: Wiener criterion, Continuity, Capacity, DeGiorgi classes, Quasi-Minima

1 Introduction

Let \(E \) be a bounded, open subset of \(\mathbb{R}^N \) and let \(f : E \times \mathbb{R}^{N+1} \to \mathbb{R} \) be a Carathéodory function satisfying

\[
C_0 |Du|^p \leq f(x, u, Du) \leq C_1 |Du|^p,
\]

for constants \(0 < C_0 \leq C_1 \), and some fixed \(p > 1 \). A function \(u \in W^{1,p}_{\text{loc}}(\mathbb{R}^N) \) is a Q-sub(super)minimum for the functional

\[
J(u) = \int_E f(x, u, Du)dx
\]

*Supported by NSF grant DMS-1265548
The relative capacity δ for u with respect to the ball B_p is defined by
$$\delta_y(\rho) = \frac{c_p[E^c \cap \bar{B}_p(y)]}{\rho^{N-p}}, \quad (1 < p < N).$$

If $p = N$, and for $0 < \rho < 1$, the N-capacity of the compact set $E^c \cap \bar{B}_p(y)$, with respect to the ball $B_2(y)$, is defined by
$$c_N[E^c \cap \bar{B}_p(y)] = \inf_{\psi \in W^{1,N}_0(B_2(y)) \cap C_c(B_2(y))} \int_{B_2(y)} |D\psi|^N dx.$$

The relative capacity $\delta_y(\rho)$ can be formally defined by $c_N[E^c \cap \bar{B}_p(y)]$, for all $1 < p \leq N$: for $p = N$, $\delta_y(\rho) = c_N[E^c \cap \bar{B}_p(y)]$, as defined by (1.7).

For a positive parameter ϵ denote by $I_{p,\epsilon}(y, \rho)$ the Wiener integral of ∂E at $y \in \partial E$, i.e.,
$$I_{p,\epsilon}(y, \rho) = \int_0^1 [\delta_y(t)]^{\frac{1}{\epsilon}} \frac{dt}{t}.$$

The main result of this note is:

Theorem 1.1 Let u be a Q-minimum for the functional $J(u)$, for $1 < p \leq N$. Assume that u takes a continuous datum $u = g$ on ∂E in the sense of (1.4). There exists $\epsilon \in (0, 1)$, and $\gamma > 1$, that can be determined apriori, quantitatively only in terms of N, p, and Q, such that for all $y \in \partial E$, and all $\rho \in (0, 1)

$$\text{ess osc } u \leq \gamma \max \left\{ \text{osc}_{E \cap \bar{B}_\rho(y)} g; \left(\text{osc}_{E \cap \bar{B}_\rho(y)} u \right) \exp \left(-I_{p,\epsilon}(y, \rho) \right) \right\}.$$

Thus, when $1 < p \leq N$, a Q-minimum u, when given continuous boundary data g on ∂E, is continuous up to $y \in \partial E$, if the Wiener integral $I_{p,\epsilon}(y, \rho)$ diverges as $\rho \to 0$. If $p > N$ the continuity of u, is insured by the Sobolev embedding theorem.
1.1 Novelty and Significance

The celebrated Wiener criterion states that a harmonic function in E is continuous up to $y \in \partial E$ if and only if the Wiener integral $I_2(y, \rho)$ diverges as $\rho \to 0$ \cite{9}. Next, for a given $g \in W^{1,p}(\mathbb{R}^N) \cap C(\mathbb{R}^N)$ consider the boundary value problem

$$
\begin{align*}
u - g &\in W^{1,p}_a(E), \quad \text{for } p > 1, \\
\text{div } a(x, u, Du) &\equiv 0, \quad \text{weakly in } E, \quad (1.10)
\end{align*}
$$

where, the vector field a is subject to the structure conditions

$$
\begin{align*}
|a(x, u, Du)| &\leq C_1 |Du|^{p-1} \\
|a(x, u, Du) \cdot Du| &\geq C_0 |Du|^p
\end{align*}
$$

for constants $0 < C_0 \leq C_1$, and some fixed $p > 1$. The prototype is

$$
\begin{align*}
u - g &\in W^{1,p}_a(E), \quad \text{for } p > 1, \\
\text{div } |Du|^{p-2}Du &\equiv 0 \text{ weakly in } E. \quad (1.12)
\end{align*}
$$

For solutions of (1.12) Theorem 1.1 is due to Maz’ja \cite{6}, with the optimal value of the parameter $\epsilon = (p - 1)$. The proof is based on the comparison principle and the Harnack inequality. For solutions of (1.10)–(1.11) the result is due to Gariepy and Ziemer \cite{3}, still for optimal value of the parameter $\epsilon = (p - 1)$. For these quasi-linear equations there is not, in general, a maximum principle. Their proof is based on the Moser’s logarithmic estimates \cite{7} leading to the Harnack inequality for some proper convex functions of the solutions, near the boundary point $y \in \partial E$. In their approach, the structure of the p.d.e.’ in (1.10)–(1.11) is crucial.

Each such quasi-linear equation is the Euler equation of a functional J, for a suitable integrand $f(x, u, Du) \cite{4}$. The notion of Q-minimum is considerably more general as it includes almost minimisers, or even minimisers of functionals $J(u)$ which do not admit a Euler equation due to the possible lack of Gateaux differentiability of J.

Nevertheless Q-minima share several crucial properties of solutions of quasi-linear equations of the type (1.10)–(1.11). For example they are locally bounded and locally Hölder continuous in E. Their interior continuity carries at those boundary points where ∂E has positive geometric density \cite{4}. Moreover non-negative Q-minima satisfy the Harnack inequality \cite{2}. However Q-minima are not known to satisfy a maximum principle, nor Harnack inequalities near ∂E.

The significance of a Wiener condition for Q-minima, is that the structure of ∂E near a boundary point $y \in \partial E$, for u to be continuous up to y, hinges on minimizing a functional, rather than solving an elliptic p.d.e.

The only result, to date, in this direction, states that a Q-minimum u, with continuous boundary data $g \in C(\partial E)$, is continuous up to a boundary point $y \in \partial E$ if (1.10)

$$
\int_0^1 \exp \left(- \frac{1}{\delta_y(t)^{\frac{p-1}{p}}} \right) \frac{dt}{t} \to \infty \quad \text{as } \rho \to 0. \quad (1.13)
$$
Ziemer’s proof follows from a standard DeGiorgi iteration technique. The novelty of our Theorem 1.1 is in replacing the exponential decay (1.13) in the Wiener integral with a power-like decay. The technical novelty is in extending a weak Harnack inequality for quasi minima ([2]), to hold near the boundary, coupled with proper choices of test functions in (1.3) as indicated by Tolksdorf ([8]). The optimal value of the parameter \(\epsilon = (p - 1) \), remains elusive.

2 Main Tools in the Proof of Theorem 1.1

2.1 Q-Subminima and Test Functions

Proposition 2.1 Let \(y \in \partial E \) and let \(u \) be a non-negative \(Q \)-subminimum for \(J \), in \(B_\rho(y) \cap \bar{E} \), such that \(u = 0 \) on \(B_\rho(y) \cap \partial E \). There is a positive constant \(\gamma_o \) that can be determined apriori only in terms of \(N, p, Q \), such that

\[
\int_{B_\rho(y) \cap \bar{E}} |Du|^p |\varphi|^p dx \leq \gamma_o \int_{B_\rho(y) \cap \bar{E}} u^p |D\varphi|^p dx, \tag{2.1}
\]

for all non-negative \(\varphi \in W^{1,p}_o(B_\rho(y)) \).

Note that \(\varphi \) is not required to vanish on \(B_\rho(y) \cap \partial E \). The proof results from a minor variant of an argument of Tolksdorf [8]. From the property (1.1) of \(f \) and the definition (1.2)–(1.3) of \(Q \)-subminimum,

\[
\int_{B_\rho(y) \cap \bar{E}} |Du|^p dx \leq Q \frac{C_1}{C_o} \int_{B_\rho(y) \cap \bar{E}} |D(u - w\varphi)|^p dx, \tag{2.2}
\]

for all non-negative \(\varphi \in W^{1,p}_o(B_\rho(y)) \). The new observation here is that since \(u \) vanishes on \(B_\rho(y) \cap \partial E \), the test function \(w\varphi \) is admissible in (1.3) even if \(\varphi \) does not vanish on \(B_\rho(y) \cap \partial E \), provided it does vanish on \(\partial B_\rho(y) \). The remaining arguments leading to (2.1) starting from (2.2) are identical to those in [8].

Corollary 2.1 Let \(u \) satisfy the same assumptions as Proposition 2.1. Then for all constants \(h > 0 \)

\[
\int_{B_\rho(y) \cap \bar{E}} |D(u + h\varphi)|^p dx \leq \gamma_o \int_{B_\rho(y) \cap \bar{E}} (u + h\varphi)^p |D\varphi|^p dx, \tag{2.3}
\]

for all non-negative \(\varphi \in W^{1,p}_o(B_\rho(y)) \). The constant \(\gamma_o \) is the same as in (2.1) and is independent of \(h \).

2.2 Q-Superminima and the Weak Harnack Inequality

Proposition 2.2 Let \(y \in \partial E \) and let \(v \in W^{1,p}(B_{2\rho}(y)) \) be non-negative and satisfying

\[
\int_{B_{\rho}(\cdot)} |D(v - k)|^p dx \leq \frac{2_1}{p} \int_{B_{2\rho}(\cdot)} (v - k)^p dx \tag{2.4}
\]
for all balls $B_{2r}(z) \subset B_{2r}(y)$ and all $k > 0$, for a constant γ_1 independent of k, z and r. Then, there exist constants $C > 1$ and $\epsilon \in (0, 1)$, that can be determined apriori only in terms of N, p, and the constants γ_0 and γ_1 in (2.1) and (2.4), such that

\[
\left(\frac{1}{|B_{\rho}(y)|} \int_{B_{\rho}(y)} v^{+} dx \right)^{\frac{1}{p}} \leq C \text{ess inf} v. \quad (2.5)
\]

The weak Harnack inequality (2.5) is a sole consequence of the family of inequalities (2.4), and as such, disconnected from the notion of Q-superminimum ([2]). However, if v is a Q-superminimum in E, for balls $B_{2\rho}(y) \subset E$, inequalities (2.4) are satisfied by v ([4]).

3 Proof of Theorem 1.1

3.1 Estimating the Oscillation About a Point $y \in \partial E$ by the Weak Harnack Inequality

Having fixed $y \in \partial E$ assume without loss of generality that $y = 0$ and write $B_{\rho}(0) = B_{\rho}$, and continue to denote by g the boundary datum of u, in the sense of (1.4). We may assume that at least one of the following two inequalities holds true:

\[
\begin{align*}
\text{ess sup}_{B_{2r} \cap E} u - \frac{1}{4} \text{ess osc}_{B_{2r} \cap E} u & > \text{ess sup}_{B_{2r} \cap \partial E} g; \\
\text{ess inf}_{B_{2r} \cap E} u - \frac{1}{4} \text{ess osc}_{B_{2r} \cap E} u & < \text{ess inf}_{B_{2r} \cap \partial E} g.
\end{align*}
\]

Indeed if both are violated one has

\[
\text{ess osc}_{B_{2r} \cap E} u \leq 2 \text{ess osc}_{B_{2r} \cap \partial E} g,
\]

and the assertion of the theorem follows. Assuming then that the first holds, the function

\[
\left(u - \left(\text{ess sup}_{B_{2r} \cap E} u - \frac{1}{4} \text{ess osc}_{B_{2r} \cap E} u \right) - (1 - k)\frac{1}{4} \text{ess osc}_{B_{2r} \cap E} u \right)^{+}
\]

is a non-negative Q-subminimum, for J, in $B_{2\rho} \cap \bar{E}$, for all $0 < k \leq 1$, vanishing on $B_{2\rho} \cap \partial E$. As such it satisfies (2.4) of Proposition 2.1 over $B_{2\rho}$, which we rewrite as

\[
\begin{align*}
\int_{B_{2r} \cap E} |D(w - (1 - k))^{+}|^p |\varphi|^p dx \\
\leq \gamma_0 \int_{B_{2r} \cap E} (w - (1 - k))^\frac{p}{2} |D\varphi|^p dx,
\end{align*}
\]

(3.1)
for all non-negative $\varphi \in W^{1,p}_0(B_{2\rho})$, where

$$w \overset{\text{def}}{=} \left(\frac{u - \left(\text{ess sup}_{B_{2\rho} \cap E} u - \frac{1}{4} \text{ess osc}_{B_{2\rho} \cap E} u\right)}{\frac{1}{4} \text{ess osc}_{B_{2\rho} \cap E} u}\right)_+,$$

for all $0 < k \leq 1$. From the definitions one verifies that $0 \leq w \leq 1$, and it vanishes on $B_{2\rho} \cap \partial E$. We continue to denote by w and $(w - (1 - k))_+$ their extensions with zero on $B_{2\rho} \cap E^c$. By Corollary 2.1, inequalities (3.1) continue to hold for all $k \geq 0$. Set $v = 1 - w$ and rewrite (3.1) in the form

$$\int_{B_{2\rho}} |D(v - k)_-|^p |\varphi|^p dx \leq \gamma_o \int_{B_{2\rho}} (v - k)^p |D\varphi|^p dx,$$

(3.2)

for all non-negative $\varphi \in W^{1,p}_0(B_{2\rho})$, and for all $k \geq 0$. In what follows we denote by γ a generic, positive constant that can be quantitatively determined apriori only in terms of Q, N, p.

For a ball $B_{2\rho}(z) \subset B_{2\rho}$, in (3.2) choose φ as the standard, non-negative cutoff function in $B_{2\rho}(z)$ which equals 1 on $B(r)$ and such that $|D\varphi| \leq r^{-1}$. For such a choice $(v - k)_-$ satisfies the assumptions of Proposition 2.2. Hence there exists $\gamma > 1$ and $\epsilon \in (0, 1)$ that can be determined apriori only in terms of N, p, such that

$$\int_{B_{2\rho}} v^\epsilon dx \leq \gamma^\epsilon \left(\frac{\text{ess sup}_{B_{2\rho} \cap E} u - \text{ess sup}_{B_{2\rho} \cap E} u}{\frac{1}{4} \text{ess osc}_{B_{2\rho} \cap E} u}\right)^\epsilon$$

(3.3)

Remark 3.1 Whence the parameter ϵ has been identified, inequality (3.3) continues to hold for smaller ϵ, with the same constant γ.

3.2 Estimating the Oscillation About a Point $y \in \partial E$ by the Capacity of $E^c \cap \bar{B}_\rho(y)$

Continue to assume $y = 0$ and write $B_\rho(0) = B_\rho$.

Proposition 3.1 There exists $p_o \in (1, p)$, that depends only on the Q, N, p, such that for all $p_o \leq q < p$, and for all non-negative $\zeta \in W^{1,p}_0(B_{2\rho})$, there holds

$$\int_{B_{2\rho}} v^{-q} |Dv|^p |\zeta|^p dx \leq \gamma \int_{B_{2\rho}} v^{p-q} |D\zeta|^p dx$$

(3.4)

for a constant $\gamma > 1$ that depends only on N, p, Q, q, p_o.

Proof: Using an idea of [5], set $\varphi = v^\sigma \zeta$ in (3.2) where $\sigma \in (0, 1)$ is a parameter to be chosen and $\zeta \in W^{1,p}_0(B_{2\rho})$ is non-negative. For such choices (3.2) yields

$$\int_{B_{2\rho}} |D(v - k)_-|^p v^\sigma |\zeta|^p dx \leq \gamma \int_{B_{2\rho}} (v - k)^p v^{(\sigma-1)p} |Dv|^p |\zeta|^p + v^\sigma |D\zeta|^p$$

(3.3)
Choose $\sigma > 0$ and $1 < q < p$ so that $(1 - \sigma)p < q$, multiply both sides of this inequality by $k^{-\sigma p - q - 1}$ and integrate in dk over $(0, \infty)$. Interchanging the order of integration with the aid of Fubini’s theorem, the left-hand side equals

$$\int_0^\infty \int_{B_{2^p}} |D(v - k)|_p ^p v^p \zeta^p k^{-\sigma p - q - 1} dxdk = \frac{1}{\sigma p + q} \int_{B_{2^p}} |Dv|^p v^{-q} \zeta^p dx.$$

The right-hand side is transformed and estimated by

$$\int_0^\infty \int_{B_{2^p}} (v - k)^p \left[\sigma^p v^{(\sigma - 1)p} |Dv|^p \zeta^p + v^{\sigma p} |D\zeta|^p \right] k^{-\sigma p - q - 1} dxdk = \sigma^p \int_{B_{2^p}} v^{(\sigma - 1)p} |Dv|^p \zeta^p \left(\int_0^\infty k^{(1 - \sigma)p - q - 1} dk \right) dx + \int_{B_{2^p}} v^{\sigma p} |D\zeta|^p \left(\int_0^\infty k^{(1 - \sigma)p - q - 1} dk \right) dx = \frac{1}{q - (1 - \sigma)p} \int_{B_{2^p}} v^{(1 - \sigma)p - q} \left[\sigma^p v^{-(1 - \sigma)p} |Dv|^p \zeta^p + v^{\sigma p} |D\zeta|^p \right] dx.$$

Combining these estimates yields

$$\int_{B_{2^p}} v^{-q} |Dv|^p \zeta^p dx \leq \gamma \frac{\sigma p + q}{q - (1 - \sigma)p} \int_{B_{2^p}} v^{-q} |Dv|^p \zeta^p + \gamma \frac{\sigma p + q}{q - (1 - \sigma)p} \int_{B_{2^p}} v^{p - q} |D\zeta|^p dx.$$

To conclude the proof choose $\sigma \in (0, 1)$ such that

$$\gamma \frac{\sigma p + q}{q - (1 - \sigma)p} \frac{\sigma p}{\sigma p} = \frac{1}{2}, \quad \text{and} \quad (1 - \sigma)p < q < p.$$

One may first choose $p_o = (1 - \sigma^2)p \leq q < p$ and then σ so small that the first of these inequalities is in force.

We now conclude the proof of the Theorem, still following \[5\]. Fix $p_o \leq q < p$ where p_o is the parameter claimed in Proposition \[3\] and rewrite it as $q = p - \epsilon$. By virtue of Remark \[4\] this value of ϵ can be taken equal to the analogous in \[3\]. For such a choice, \[5\] gives

$$\int_{B_{2^p}} |D(v^\epsilon \varphi)|^p dx \leq \gamma(\epsilon) \int_{B_{2^p}} v^\epsilon |D\varphi|^p dx.$$

Next choose $\varphi \in W^{1,p}_o(B_{2p})$ to be the standard, non-negative cutoff function in B_{2p} which equals 1 on B_ρ and such that $|D\varphi| \leq \rho^{-1}$. For such a choice and ρ sufficiently small $v^\varphi = 1$ on $B_\rho \cap E^c$ and therefore,

$$c_p [E^c \cap B_\rho] \leq \frac{\gamma(\epsilon)}{\rho^p} \int_{B_{2p}} v^\epsilon dx.$$
Dividing by ρ^{N-p} and combining the resulting inequality with (5.3) gives

$$
\delta_\rho^+(\rho) \leq \frac{\text{ess sup } u - \text{ess sup } u}{\frac{1}{2} \text{ess osc } u}\frac{\text{ess sup } u - \text{ess sup } u}{B_{2\rho} \cap E}.
$$

This in turn implies

$$
\text{ess osc } u \leq \left(1 - \frac{1}{4\gamma} \delta_\rho(\rho)\right) \text{ess osc } u
$$

Iteration of this inequality over a sequence of balls of dyadic radii $\rho_{-n} = 2^{-n}\rho$ yields the Theorem.

References

[1] E. DeGiorgi, Sulla differenziabilità e l’analiticità degli integrali multipli regolari, *Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (3)*, t. 3, (1957) 25-43.

[2] E. DiBenedetto and N.S. Trudinger, Harnack inequalities for quasi-minima of variational integrals, *Ann. Inst. Henri Poincaré, Analyse Non Linéaire*, 1(4), (1984), 295–308.

[3] R. Gariepy and W.P. Ziemer, Behavior at the boundary of solutions of quasilinear elliptic equations, *Arch. Rational. Mech. Anal.*, 56 (1974/75), 372–384.

[4] M. Giaquinta and E. Giusti, Quasi-Minima, *Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 1*, (1984), 79–107. *Linear and Quasilinear Equations of Elliptic Type*, A.M.S. Transl. Math. Mono, #23, Providence RI (1968).

[5] J.H. Michael and W.P. Ziemer, Interior regularity for solutions to obstacle problems, *Nonlinear Anal.*, 10, (1986), 12, 1427–1448.

[6] V. Maz’ja, On the continuity at a boundary point of solutions of quasi-linear elliptic equations, *Vestnik Leningrad Univ. Math.* 3 (1976), 225–242.

[7] J. Moser, A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations, *Comm. Pure Appl. Math.*, 13, (1960), 457–468.

[8] P. Tolksdorf, Remarks on Quasi(sub)Minima, *Nonlinear Anal.* 10(2), (1986), 115–120.

[9] N. Wiener, Une condition nécessaire et suffisante de possibilité pour le problème de Dirichlet *Comptes Rendus, Acad. de Sci. Paris*, 178, (1924), 1050–1054.
[10] W.P. Ziemer, Boundary Regularity for Quasiminima, *Arch. Rational Mech. Anal.* 92 (1986), 4, 371–382.