A Simple Formula for Predicting the Maintenance Dose of Warfarin with Reference to the Initial Response to Low Dosing at an Outpatient Clinic

Masaaki Shoji1,2, Shinya Suzuki2, Takayuki Otsuka2, Takuto Arita2, Naoharu Yagi2, Hiroaki Semba2, Hirotaka Kano2, Shunsuke Matsuno2, Yuko Kato2, Tokuhisa Uejima2, Yuji Oikawa2, Minoru Matsuhama3, Junji Yajima2 and Takeshi Yamashita2

Abstract:
Objective The pharmacodynamic effect of warfarin varies among individuals, and its maintenance dose is widely distributed. Although many formulae for predicting the maintenance dose of warfarin have been developed, most of them are complex and not in practical use.

Methods and Materials Among 12,738 new patients visiting the Cardiovascular Institute between 2004 and 2009, we identified 127 patients (66.6±8.8 years, 89 men) with atrial fibrillation for whom warfarin was newly started with an initial dose of 2 mg/day and the international normalized ratio (INR) at 1 year after warfarin was started was within the therapeutic range. The prediction models for the maintenance dose were developed by an exponential equation and a first-order equation.

Results The initial response of the INR to the dose of 2 mg/day (initial INR) ranged from 1.00-3.24 (mean 1.43), while the maintenance dose of warfarin ranged from 0.5-14 mg (mean 3.8 mg). The maintenance dose showed an exponential correlation to the initial INR: (predicted maintenance dose) =5.522× (initial INR)−1.556 (R²=0.795, p<0.001). Excluding the patients with a poor response to the initial dose (initial INR <1.1, n=32) permitted a simple correlation with a first-order approximation: (predicted maintenance dose) =−2.009× (initial INR) +6.172 (R²=0.706, p<0.001).

Conclusion We developed a simple formula for predicting the maintenance dose of warfarin using the initial response of the INR to low-dose warfarin.

Key words: atrial fibrillation, anticoagulants, warfarin

(Intern Med Advance Publication) (DOI: 10.2169/internalmedicine.3415-19)

Introduction

Although novel oral anticoagulants (NOACs) have become widely used (1, 2), the improvement of warfarin usage remains a topic of concern in reference to atrial fibrillation (3, 4) and mechanical valves (5). The merits of warfarin include its strong and continuous anticoagulative effect, although this effect unfortunately has significant inter- and intra-individual differences (6, 7). Therefore, the continuous measurement of the intensity and adjustment of dosing of warfarin is necessary. To this end, the intensity of the effect of warfarin is measured by the prothrombin time with the international normalized ratio (INR) (8).

When warfarin is newly started, the optimal dose for the therapeutic range is explored through trial and error. At this time, fluctuation of the INR is frequently observed, especially in the early phase after the initiation of warfarin (4). Naturally, such fluctuations increase the risk of thromboembolism or bleeding (9).

1Department of Cardiovascular Medicine, National Cancer Center Japan, Japan, 2Department of Cardiovascular Medicine, The Cardiovascular Institute, Japan and 3Department of Cardiovascular Surgery, The Cardiovascular Institute, Japan
Received: May 31, 2019; Accepted: July 24, 2019; Advance Publication by J-STAGE: September 11, 2019
Correspondence to Dr. Masaaki Shoji, shoji.sgh@me.com
Empirically, the dose of warfarin is known to converge to a certain degree with an individual’s pharmacokinetic characteristics, called a maintenance dose (10). Numerous studies have searched for predictors of an individual’s maintenance dose of warfarin, including evaluations of the influence of environmental clinical factors, demographic variables, and variations in the CYP2C9 and VKORC1 genes (6, 11-14). In addition, algorithms for predicting the maintenance dose using these predictors have been developed (13-22). However, such algorithms have not been used in daily clinical practice because most of them are complex and require genetic testing. A simpler method for predicting the maintenance dose would therefore be helpful.

In line with this point of view, the initial response to warfarin should be focused on because it involves various individual characteristics related to the pharmacokinetics of warfarin (15, 18). Therefore we intended to develop a simple formula predicting the maintenance dose of warfarin through the initial response of the INR to a 2 mg dose.

Methods and Materials

Study population

Among 12,738 new patients visiting the Cardiovascular Institute between 2004 and 2009, we identified 434 patients for whom warfarin had been newly started (initial doses of 1 mg, 2 mg, 3 mg, and 4 mg for 20, 173, 227, and 14 patients, respectively). Among the 173 patients with an initial warfarin dose of 2 mg/day, we selected 127 with atrial fibrillation whose INR was controlled within the therapeutic range (1.6-2.6, regardless of age) (23-25) at 1 year after warfarin was started.

We collected the following patient information: (1) demographic characteristics (including the creatinine clearance [CrCl]; Cockcroft-Gault equation), (2) the primary indication for warfarin treatment, (3) dose of warfarin at 1 year after the initiation (the maintenance dose), (4) the initial response of the INR to the dose of 2 mg/day obtained at 2 to 4 weeks (initial response of the INR), (5) the INR under the maintenance dose, and (6) the use of concomitant drugs known to have clinically significant interactions with warfarin, including carbamazepine, phenytoin, rifampin, rifampicin, antibiotics, statins, and amiodarone. All subjects were Japanese.

Statistical analyses

First, we demonstrated the distribution of study patients according to the initial response of the INR and the maintenance dose of warfarin. We then displayed the relationship between the initial response of the INR and the maintenance dose using a scattergram, where we acquired a prediction formula that approximates the maintenance dose. Finally, we evaluated the correlation between the predicted maintenance dose and the actual dose using the coefficient of determination (R^2).

Statistical analyses were performed using the SPSS software program for Windows, version 19.0 (IBM Corp., Armonk, New York, USA). Statistical significance was set at a two-sided P-value of <0.05.

Results

Patient characteristics in the present study (n=127) are summarized in Table 1. The mean age was 66.6±8.8 years, and men accounted for 70.1% of the population (n=89). No patients were taking carbamazepine, phenytoin, rifampin, rifampicin, or antibiotics. Statins and amiodarone were prescribed for 13 patients (10.2%) and 1 patient (0.8%), respectively.

The initial response of the INR ranged from 1.00-3.24 (mean 1.43) (Fig. 1). A total of 95 patients (74.8%) were below the therapeutic range (<1.6), and 32 (25.2%) showed a low response (<1.1).

At 1 year after the initiation of warfarin, the maintenance dose ranged from 0.5-14 mg/day (mean 3.8 mg/day) (Fig. 2). The INR under the maintenance dose ranged from 1.61-2.58 (mean 1.94).

The relationship between the initial response of the INR and the maintenance dose of warfarin is shown in Fig. 3, where the scattergram did not show a linear relationship but an exponential one. Therefore, we first fitted an exponential curve with the following approximation formula (Fig. 3A): (predicted maintenance dose) = 5.522* (initial response of the INR)$^{1.576}$ (prediction formula 1). The coefficient of determination (R^2) between the predicted dose and the actual dose was 0.795 (95% confidence interval [CI]: 0.726-0.851, p<0.001).

When we excluded patients with a poor response to 2 mg/day (initial response of the INR <1.1, n=32), we found a linear relationship between the initial response of the INR and the maintenance dose and were able to fit it to a first-order approximation (n=95, Fig. 3B): (predicted maintenance dose) = -2.009* (initial response of the INR) + 6.172 (prediction formula 2). The coefficient of determination (R^2) was 0.706 (95% CI: 0.588 - 0.793, p<0.001). After excluding patients with a low initial response of the INR (n=95), we analyzed the relationship between various clinical variables and the maintenance dose of warfarin. The results of

Table 1. Characteristics of Study Subjects.
n=127
Male / Female, n
Age, years
Body height, cm
Body weight, kg
Maintenance dose of warfarin, mg
Primary reason for anticoagulation, n (%)
Atrial fibrillation, n (%)
Statin use, n (%)
Amiodarone use, n (%)
simple and multiple linear regression analyses for the maintenance dose are shown in Table 2. In simple linear regression models, the initial response of the INR, age, body weight, congestive heart failure, and CCr and statin use were significantly associated with the maintenance dose. In the multiple regression model, only the initial response of the INR was independently associated with the maintenance dose of warfarin.

The differences in the characteristics between the patients with a low initial response of the INR (<1.1) and others (≥1.1) are displayed in Table 3. Patients with a low initial response of the INR tended to be younger and have a higher body weight, higher creatinine clearance, and lower prevalence of congestive heart failure than others.

Discussion

Major findings

In the present study, we developed a simple exponential formula that was able to predict the maintenance dose through the initial INR under 2 mg/day dosing of warfarin. When patients with a poor response to the initial dose (initial INR <1.1) were excluded, a first-order approximation formula could be developed. In the multivariate analysis, the initial INR was the only independent predictor of the main-
The initial response of the INR with 2 mg/day dosing of warfarin did not reach the therapeutic range in 74.8% of subjects in the present study. This rate was similar to that in a previous report at a European outpatient clinic (62.2%) (26). The patients with a low initial response of the INR (<1.1) tended to be younger with a higher body weight, better kidney function, and lower prevalence of congestive heart failure than others, which would have been responsible for the high clearance and consequent low plasma concentration of warfarin. Furthermore, the low response of the INR may also have been affected by a low adherence, interaction of food or drugs, and genetic variants of the CYP2C9 and VKORC1 genes. Of note, the low initial response of the INR likely involves all factors that affect the plasma concentration of warfarin and its effect on the activity of vitamin K.

In a nationwide registry in Japan (J-RHYTHM Registry), the maintenance dose of warfarin was reported to be 2.9±1.2 mg (mean INR 1.9) (23). Two other reports in a single-hospital database also showed similar maintenance dosages of 2.68±0.95 mg (range, 1.0-6.0 mg) (27) and 3.05±1.20 mg (range, 0.5-7.0 mg) (21). The maintenance dose in our study (3.76±1.83 mg/day) was a little bit higher than those in the previous studies, presumably due to the younger age of the present study population.

Figure 3. The relationship between the initial response of the INR and the maintenance dose of warfarin. (A) Total patients (n=127), where the prediction formula was expressed as an exponential approximation. (B) After excluding patients with a low initial response of the INR (<1.1) (n=95), where the prediction formula was expressed as a first-order approximation.

Distribution of the INR and maintenance dose of warfarin

The initial response of the INR with 2 mg/day dosing of warfarin did not reach the therapeutic range in 74.8% of subjects in the present study. This rate was similar to that in a previous report at a European outpatient clinic (62.2%) (26). The patients with a low initial response of the INR (<1.1) tended to be younger with a higher body weight, better kidney function, and lower prevalence of congestive heart failure than others, which would have been responsible for the high clearance and consequent low plasma concentration of warfarin. Furthermore, the low response of the INR may also have been affected by a low adherence, interaction of food or drugs, and genetic variants of the CYP2C9 and VKORC1 genes. Of note, the low initial response of the INR likely involves all factors that affect the plasma concentration of warfarin and its effect on the activity of vitamin K.

In a nationwide registry in Japan (J-RHYTHM Registry), the maintenance dose of warfarin was reported to be 2.9±1.2 mg (mean INR 1.9) (23). Two other reports in a single-hospital database also showed similar maintenance dosages of 2.68±0.95 mg (range, 1.0-6.0 mg) (27) and 3.05±1.20 mg (range, 0.5-7.0 mg) (21). The maintenance dose in our study (3.76±1.83 mg/day) was a little bit higher than those in the previous studies, presumably due to the younger age of the present study population.

The comparison with previous prediction formulas

The first report predicting future warfarin dose requirements based on early INR values was published over 40 years ago (28). Since then, several reports have shown a re-
relationship between the initial response to warfarin and the required maintenance dose (29-33). Lazo-Langner et al. (31) constructed a three-staged formula that predicts the maintenance warfarin dose in an exponential formula using the INR at days 3, 5, and 8 with an initial dose of 10 mg. In addition, Le Cal et al. (32) reported a rather simple linear predicting formula that included the INR at days 5 and 8 with an initial dose of 10 mg. The predictive accuracy in the study of Lazo-Langner et al. \(R^2=0.417 \) (31) was lower than that of Le Cal et al. \(R^2=0.643 \) and 0.774 for days 5 and 8, respectively) (32). Although these multiple-staged formulas may be methodologically appropriate, they cannot be simply applied to daily clinical practice because of racial differences in the drug response (34) or differences in the medical circumstances. Therefore, in the present study, we developed a single-staged predicting formula that showed an acceptable predicting accuracy \(R^2=0.706 \).

Recently, a pharmacogenetics-based approach has emerged (13-22, 26). Although genetic variants of the CYP2 C9 and VKORC1 genes are associated with the maintenance dose of warfarin, the predictive value of such variants was shown to be relatively low (0.28-0.47) (18, 21). Regardless of the convenience of obtaining a response of the INR to the initial warfarin dosing, such evaluations should include differences in race, age, BMI, smoking, renal function, history of venous thrombosis, the use of drugs such as amiodarone, and any genetic variants.

Clinical implications

The simple formula in the present study with Japanese patients showed a similar predictive accuracy to those in previous reports with Caucasian patients (29-33). The initial dose of 2 mg in the present study was much lower than those used in previous studies (4, 5, or 10 mg/day) (29-33), which may have helped prevent a rapid increase in the plasma concentration of warfarin. The appropriate timing for assessing the response to initial dosing in order to avoid thromboembolism should be further explored. Although the values of the maintenance dose calculated by our formula are presented to 4 decimal places, they should be rounded up to 0.5-mg values for easy calculation in order to be suited for practical use.

Limitations

Our study had several limitations. First, our formula cannot be easily adapted to patients with a low initial response of the INR (<1.1); such patients should be re-distributed based on the response to a higher dose of warfarin, which will require further investigations. Second, our formula cannot be used if the patient has an initial response of the INR >3.073 under 2 mg dosing, as 3.073 is an X-axis intercept with the formula in the present study (Fig. 3B). However, such an excessive response is rare presumably indicates that warfarin is not suited for the patient. In such cases, NOACs should be administered instead. Third, we retrospectively

Factors	\(\beta \) (per mg/day)	\(p \) value
Simple linear regression analysis		
Initial response of INR	-0.840	<0.001
Male	0.164	0.222
Age (years)	-0.197	0.056
Body weight (kg)	0.259	0.011
Congestive heart failure	-0.480	0.006
Creatinine clearance (mL/min)	0.263	0.021
AST (IU/L)	-0.147	0.204
ALT (IU/L)	-0.084	0.470
Statin use	-0.263	0.010
Amiodarone use	-0.102	0.327
Multivariate analysis		
Initial response of INR	-0.811	<0.001
Age (years)	-0.006	0.931
Body weight (kg)	0.021	0.767
Congestive heart failure	0.103	0.121
Creatinine clearance (mL/min)	0.017	0.840
Statin use	0.019	0.794

Table 2. Factors Associated with Maintenance Dose.

INR: International normalized ratio, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase

Initial response of INR<1.1 (n=32)	Initial response of INR ≥1.1 (n=95)	\(p \) value	
Male, n (%)	25 (78.1)	64 (67.4)	0.241
Age (years)	63.0±8.1	68.5±8.6	0.002
Body weight (kg)	65.8±11.3	60.6±11.1	0.023
Congestive heart failure (%)	3.1	27.4	<0.001
Creatinine clearance (mL/min)	84.5±19.4	65.8±21.6	<0.001
AST (IU/L)	25.9±8.5	28.4±34.6	0.685
ALT (IU/L)	27.0±13.2	25.5±28.1	0.796
Statin use, n (%)	2 (6.2%)	11 (11.6%)	0.367
Amiodarone use, n (%)	0 (0.0%)	1 (1.1%)	0.445

Table 3. Difference of Patient Characteristics between Those with Low Initial Response of INR (<1.1) and Others (≥1.1).

INR: International normalized ratio, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase
collected subjects who achieved a target INR of 1.6-2.6 at 1 year after the initiation of warfarin. Therefore, whether or not our formula can predict the maintenance dose of warfarin should be prospectively confirmed in the future.

Conclusion

We developed a simple formula for predicting the maintenance dose of warfarin using the initial response of the INR to 2 mg/day dosing of warfarin in Japanese patients. The predictive ability of this formula should be prospectively evaluated.

Author’s disclosure of potential Conflicts of Interest (COI).

Takeshi Yamashita: Honoraria, Daiichi-Sankyo, Bristol Myers Squibb, Bayer, Ono Pharmaceutical, Nippon Boehringer and Toa-Eiyo; Fees for promotional materials, Daiichi-Sankyo; Research funding, Bayer and Bristol Myers Squibb. Shinya Suzuki: Research funding, Daiichi-Sankyo and Mitsubishi-Tanabe.

References

1. Suzuki S, Otsuka T, Sagara K, Semba H, Kano H, Matsuno S, Takai H, Kato Y, Uejima T, Oikawa Y, Nagashima K, Kirigaya H, Kunihara T, Yajima J, Sawada H, Aizawa T, Yamashita T. Nine-Year Trend of Anticoagulation Use, Thromboembolic Events, and Major Bleeding in Patients With Non-Valvular Atrial Fibrillation-Shinken Database Analysis. Circ J **50**: 639-649, 2016.

2. Yamashita Y, Uozumi R, Hamatani Y, Esato M, Chun YH, Tsujii H, Wada H, Hasegawa K, Ogawa H, Abe M, Morita S, Akao M. Current Status and Outcomes of Direct Oral Anticoagulant Use in Real-World Atrial Fibrillation Patients- Fushimi AF Registry. Circ J **81**: 1278-1285, 2017.

3. Numao Y, Suzuki S, Arita T, Yagi N, Otsuka T, Sagara K, Semba H, Sasaki K, Kano H, Matsuno S, Kato Y, Uejima T, Oikawa Y, Nagashima K, Kirigaya H, Kunihara T, Yajima J, Aizawa T, Yamashita T. Predictors of International Normalized Ratio Variability in Patients With Atrial Fibrillation Under Warfarin Therapy. Circ J **82**: 39-45, 2017.

4. Razouki Z, Ozoiffon A, Zhao S, Jasuja GK, Rose AJ. Improving quality measurement for anticoagulation: adding international normalized ratio variability to percent time in therapeutic range. Circ Cardiovasc Qual Outcomes **7**: 664-669, 2014.

5. Puskas JD, Gerdisch M, Nichols D, Fermin L, Rheman B, Kapoor D, Copeland J, Quinn R, Hughes GC, Azar H, McGrath M, Wait M, Kong B, Martin T, Douville EC, Meyer S, Ye J, Jamieson WRE, Landvater L, Hagberg R, Trotter T, Armitage J, Askew J, Accola K, Levy P, Duncan D, Yanagawa B, Ely J, Graeve A, Investigators P. Anticoagulation and Antplatelet Strategies After On-X Mechanical Aortic Valve Replacement. J Am Coll Cardiol **71**: 2717-2726, 2017.

6. Ansell J, Hirsh J, Poller L, Bussey H, Jacobson A, Hylek E. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest **126**: 204S-233S, 2004.

7. Nutescu EA, Shapiro NL, Ibrahim S, West P. Warfarin and its interactions with foods, herbs and other dietary supplements. Expert Opin Drug Saf **8**: 433-451, 2006.

8. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M, Diener HC, Heitibuchel H, Hindricks J, Hindricks G, Manolits AS, Oldgren J, Popescu BA, Schotten U, Van Putte B, Vardas P, Group ESCSD. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J **37**: 2893-2962, 2016.

9. Wieloch M, Sjalander A, Frykman V, Rosenberg M, Eriksson N, Svensson PJ. Anticoagulation control in Sweden: reports of time in therapeutic range, major bleeding, and thrombo-embolic complications from the national quality registry Auricula. Eur Heart J **32**: 2282-2289, 2011.

10. Sharabiani A, Nutescu EA, Galanter WL, Darabi H. A New Approach towards Minimizing the Risk of Misdosing Warfarin Initiation Doses. Comput Math Methods Med **2018**: 5340845, 2018.

11. Gage BF, Lesko LJ. Pharmacogenetics of warfarin: regulatory, scientific, and clinical issues. J Thromb Thrombolysis **25**: 45-51, 2008.

12. Hirsh J, Fuster V, Ansell J, Halperin JL, American Heart A; American College of Cardiology F. American Heart Association/ American College of Cardiology Foundation guide to warfarin therapy. Circulation **107**: 1692-1711, 2003.

13. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, Rosenberg YD, Eby CS, Madigan RA, McBane RB, Ariel-Rahman SZ, Stevens SM, Yale S, Mohler ER 3rd, Fang MC, Shah V, Horenstein RB, Limoli NA, Muldowney JA 3rd, Gujral J, Delafontaine P, Desnick RJ, Ortel TL, Billlet HH, Pendleton RC, Geller NL, Halperin JL, Goldhaber SZ, Caldwell MD, Calif FM, Ellenberg JH, Investigators C. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med **369**: 2283-2293, 2013.

14. Pirmohamed M, Burnside G, Eriksson N, Jorgensen AL, Toh CH, Nicholson T, Kesteven P, Christerson C, Wahlstrom B, Staffberg C, Zhang JE, Leathart JB, Kohneke H, Maitland-van der, Zee AH, Williamson PR, Daly AK, Avery P, Kamali F, Wadelius M; Group E-P. A randomized trial of genotype-guided dosing of warfarin. N Engl J Med **369**: 2294-2303, 2013.

15. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, Kahn SF, May HT, Samuelson KM, Muleinhein JB, Carlight JS, Couma-Gen I. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation **116**: 2563-2570, 2007.

16. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langae T, Eby C, King CR, Brower A, Schmelzer JR, Glurich I, Vidalillet HJ, Yang SH, Qi Zhang K, Berg RL, Burmester J, CYP4F2 genetic variant alters required warfarin dose. Blood **111**: 4106-4112, 2008.

17. Caldwell MD, Berg RL, Zhang KQ, Glurich I, Schmelzer JR, Yang SH, Vidalillet HJ, Burmester JK. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res **5**: 8-16, 2007.

18. International Warfarin, Pharmacogenetics C, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med **360**: 753-764, 2009.

19. Millican EA, Lenzini PA, Milligan PE, Grosso L, Eby C, Dyech E, Grice C, Holisby JC, Barrack RL, Burnett RS, Voora D, Gatchel S, Tiemeier A, Gage BF. Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood **109**: 2563-2570, 2007.

20. Takeuchi F, Kashida M, Okazaki O, Tanaka Y, Fukuda S, Kashima T, Hasegawa K, Ogawa H, Abe M, Morita S, Akao M. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood **106**: 2329-2333, 2005.

21. Wu AH. Use of genetic and nongenetic factors in warfarin dosing algorithms. Pharmacogenomics **8**: 851-861, 2007.
23. Atarashi H, Inoue H, Okumura K, Yamashita T, Kumagai N, Origasa H, Investigators JRR. Present status of anticoagulation treatment in Japanese patients with atrial fibrillation: a report from the J-RHYTHM Registry. Circ J 75: 1328-1333, 2011.
24. Kodani E, Atarashi H, Inoue H, Okumura K, Yamashita T. Target intensity of anticoagulation with warfarin in Japanese patients with valvular atrial fibrillation - subanalysis of the J-RHYTHM Registry. Circ J 79: 325-330, 2015.
25. Yamashita T, Inoue H, Okumura K, Atarashi H, Origasa H. Warfarin anticoagulation intensity in Japanese nonvalvular atrial fibrillation patients: a J-RHYTHM Registry analysis. J Cardiol 65: 175-177, 2015.
26. Oates A, Jackson PR, Austin CA, Channer KS. A new regimen for starting warfarin therapy in out-patients. Br J Clin Pharmacol 46: 157-161, 1998.
27. Miura T, Nishinaka T, Terada T, Yonezawa K. Relationship between aging and dosage of warfarin: the current status of warfarin anticoagulant therapy for Japanese outpatients in a department of cardiovascular medicine. J Cardiol 53: 355-360, 2009.
28. Routledge PA, Davies DM, Bell SM, Cavanagh JS, and Rawlins. Predicting patients’ warfarin requirements. Lancet 2: 854-855, 1977.
29. Fennerty A, Dolben J, Thomas P, Backhouse G, Bentley DP, Campbell IA, Routledge PA. Flexible induction dose regimen for warfarin and prediction of maintenance dose. Br Med J (Clin Res Ed) 288: 1268-1270, 1984.
30. Garcia P, Ruiz W, and Loza, Munarriz C. Warfarin initiation nomograms for venous thromboembolism. Cochrane Database Syst Rev CD007699, 2016.
31. Lazo-Langner A, Monkman K, Kovacs MJ. Predicting warfarin maintenance dose in patients with venous thromboembolism based on the response to a standardized warfarin initiation nomogram. J Thromb Haemost 7: 1276-1283, 2009.
32. Le Gal G, Carrier M, Tierney S, Majeed H, Rodger M, Wells PS. Prediction of the warfarin maintenance dose after completion of the 10 mg initiation nomogram: do we really need genotyping? J Thromb Haemost 8: 90-94, 2010.
33. Siguret V, Gouin I, Debray M, Perret-Guillaume C, Boddaert J, Mahe I, Donval V, Seux ML, Romain-Pilotaz M, Gisselbrecht M, Verny M, Pautas E. Initiation of warfarin therapy in elderly medical inpatients: a safe and accurate regimen. Am J Med 118: 137-142, 2005.
34. Lindi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, Chen CH, Motsinger-Reif A, Sagleiga H, Liu N, Wu AH, Gage BF, Jorgensen A, Pirmohamed M, Shin JG, Suarez-Kurtz G, Kimmel SE, Wagner MJ; International Warfarin Pharmacogenetics C. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 115: 3827-3834, 2010.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).