The First Korean Patient with Potocki-Shaffer Syndrome: A Rare Cause of Multiple Exostoses

Young Bae Sohn,1 Shin-Young Yim,2 Eun-Hae Cho,3 and Ok-Hwa Kim4

1 Department of Medical Genetics; 2 Department of Physical Medicine and Rehabilitation, Ajou University Hospital, Ajou University School of Medicine, Suwon; 3 Green Cross Genome, Yongin; 4 Department of Radiology, Woorisoa Children’s Hospital, Seoul, Korea

Received: 3 June 2014 Accepted: 25 September 2014

Address for Correspondence:
Ok-Hwa Kim, MD
Department of Radiology, Woorisoa Children’s Hospital,
15 Saemal-ro, Guro-gu, Seoul 152-862, Korea
Tel: +82.2-858-0100, Fax: +82.2-856-0033
E-mail: kimoh5828@gmail.com

Funding: This study was supported by the new faculty research fund of Ajou University School of Medicine.

INTRODUCTION

Potocki–Shaffer syndrome (PSS, OMIM #601224) is a rare contiguous gene deletion syndrome caused by heterozygous deletions within chromosome 11p11.2p12 (1, 2). Characteristic clinical features include craniofacial anomalies, multiple exostoses, bilateral parietal foramina, abnormalities of genitourinary system, hypotonia, developmental delay, and intellectual disability (1-3). Fewer than 40 cases have been reported in the literature (4), and there was no reported Korean patient.

Analyses of clinical and cytogenetic data from patients with various sizes of deletions in the 11p11.2p12 have demonstrated that the two genes within the interval, EXT2 and ALX4, are responsible to the phenotypes (5-7). EXT2 and ALX4 have been implicated in formation of exostoses and enlarged parietal foramina, respectively (1, 3-5). However, haploinsufficiency of these two genes can explain only skeletal abnormalities. Recently, PHA21F was suggested as a responsible gene of craniofacial abnormality and intellectual disability phenotype of patients with PSS (8). In addition, Montgomery et al. (4) reported a patient with developmental delay and hypotonia resulting from a 137-kb small deletion in PSS interval on 11p11.2 including PHA21F.

Through a chromosomal microarray approach combined with clinical manifestations and radiographic findings, we present a first Korean patient with PSS.

CASE DESCRIPTION

An 8-yr-old boy was referred to the department of medical genetics on February 25, 2014 for severe global developmental delay and multiple exostosis detected in radiologic check up. The patient was born to healthy nonconsanguineous Korean parents after 40 weeks gestation with birth weight of 2,400 g (< 3 percentile). He had no perinatal problem. His developmental delay was noted when he was 3 month of age because of incomplete eye contact and head control. Physical examination revealed hypotonia, ptosis, nystagmus and microcephaly with craniosynostosis. Given the child’s developmental delay and craniofacial dysmorphism, peripheral blood chromosome analysis was done and the karyotype was 46,XY. At the age of 8 month, He had expansion cranioplasty for craniosynostosis. His developmental delay became profound. At 45 months, he could neither sit alone nor saying a meaningful word. Surgery for strabismus was performed. When he was at age 5 yr, he received Korean-Wechsler Preschool and Primary Scale of Intelli-
gience (K-WPPSI) testing. His full-scale Intelligence Quotient (IQ) composit score of less than 30, considered severe intellectual disability. By Social Maturity Scale (SMS), his social quotient (SQ) was 17.8 and social age was measured as 0.91 yr. At 6 yr, protrusions of the right wrist and knee were noted. Skeletal survey revealed multiple exostoses throughout the long bones (Fig. 1). However, the underlying cause of the multiple exostoses was not found at that time. At 8 yr, the progression of multiple exostoses was noted and the patient had thoroughly re-evaluated the clinical data and radiographs taken from the age of 4 months. Initial skull radiographs and 3D reconstructed image showed premature craniosynostosis of the coronal suture and large biparietal foramina (Fig. 2A). Brain MRI revealed cortical atrophy with mild ventriculomegaly. Because of premature craniosynostosis, he received expansion cranioplasty of the coronal suture at age 6 months. Follow-up skull examination at age 8 yr showed persistent biparietal foramina but much decreased in size (Fig. 2B). Physical examination at age 6 yr, his growth was severely retarded, height was 96 cm (< 3 percentile), weight was 15.7 kg (< 3 percentile), and head circumference was 45 cm (< 3 percentile). Facial features showed sparse eyebrows, nystagmus, prominent nasal bridge, hypoplastic nare, down turned mouth and high arched palate. The patient was hypotonic. He could not sit or walk alone. Review of the chart, diagnosis was craniosynostosis and mental retardation only.

Based upon the retrospective review of the clinical chart and radiographs, PSS was firstly suggested and chromosomal microarray analysis using CytoScan™ 750K (Affymetrix, USA) was performed. The array is characterized with > 750,436 CNV markers including 200,436 genotype-able SNP probes and 550,000 non-polymorphism probes. With informed consent, genomic DNA samples were extracted with Qiamp DNA Blood mini kit (Qiagen, USA) from peripheral blood. All data was visualized and analyzed with Chromosome Analysis Suite (ChAS) software Package (Affymetrix, USA) using genome build Hg 19. The chromosomal microarray revealed an 8.6 Mb deletion at 11p11.2p12 [arr 11p12p11.2 (Chr11:39,204,770-47,791,278) x 1] and confirmed the molecular diagnosis of PSS. This deletion resulted in haploinsufficiency for all three genes, included EXT2, ALX4, and PHA21F (Fig. 3). After diagnosis of PSS, the patient continued rehabilitation therapy for profound developmental delay. The progression of multiple exostosis or developing pain have been monitored by radiologic exam every 6 month for need of surgical intervention.

Fig. 1. Skeletal survey of long bones at age 6 yr. Multiple exostoses (arrows) of the metadiaphyseal portion of the humerus (A), wrists (B), and proximal femora (C) and at the distal femora and proximal tibia and fibula are evident.

Fig. 2. Serial changes of biparietal foramena in the skull. Frontal (A) and Lateral (B) radiographs taken at age 4 months. Large biparietal foramina are noted (arrows). 3-D reconstruction image (C) of the skull at age 4 months shows enlarged biparietal foramina acrossing midline (arrows). Follow up skull 3-D reconstruction image (D) at age 8 yr shows persistent biparietal foramena (arrows).
be expressed at the cell surface, which resulted in expression of late in the cytoplasm of the cell, instead of being transported to deletion, the heparan sulfate proteoglycans seem to accumulate for the cell surface and extracellular matrix. In multiple exostoses resulting from deletion of \textit{EXT1}, the exostosin-2 (\textit{EXT2}) is known to be involved heparan sulfate elongation in a heteroligomeric complex in the Golgi apparatus of most human cells (10-12). Heparan sulfate selenomethionine including \textit{PHF21A}

...in a heteroligomeric complex in the Golgi apparatus of most human cells (10-12). Heparan sulfate selenomethionine including \textit{PHF21A}, \textit{EXT2}, and \textit{ALX4}. As our patient had relatively large size of deletion comparing to the previously reported range of deletion size (4.48 to 8.64 Mb) (2), he might be presented with typical PSS phenotype requires deletion of at least 2.1 Mb, spanning form D11S1393 to D11S1319, including \textit{EXT1} and \textit{ALX4} (4, 7). Our PSS patient revealed a large deletion with 8.6 Mb (Chr11:39,204,770-47,791,278) extending to 11p12, which included all three responsible genes, \textit{EXT1}, \textit{ALX4}, and \textit{PHF21A}. As our patient had relatively large size of deletion comparing to the previously reported range of deletion size (4.48 to 8.64 Mb) (2), he might be presented with typical skeletal abnormalities, motor developmental delay, and severe intellectual disability.

Multiple exostoses is a condition characterized by multiple cartilage-capped boney protuberances, arising from the metaphyses of long bones (9). The majority of patients have mutations of \textit{EXT1} or \textit{EXT2}. Patients with PSS have multiple exostoses resulting from deletion of \textit{EXT2}. Together with the exostosin-1 (\textit{EXT1}), the exostosin-2 (\textit{EXT2}) is known to be involved heparan sulfate elongation in a heteroligomeric complex in the Golgi apparatus of most human cells (10-12). Heparan sulfate is one of the sugar chain that can be added to specific proteins headed for the cell surface and extracellular matrix. In multiple exostoses, in which \textit{EXT} expression is decreased by mutation or deletion, the heparan sulfate proteoglycans seem to accumulate in the cytoplasm of the cell, instead of being transported to be expressed at the cell surface, which resulted in expression of exostosis (13). Parietal foramina are the resulting from delayed or incomplete ossification of the parietal bones of the skull. Parietal foramina can occur as either an isolated autosomal dominant trait or as part of a syndrome (14). As \textit{ALX4} located in 11p11.2, deletion in this interval specifically were shown to be expressed in bones and involved in skull development, and thus haploinsufficiency of \textit{ALX4} resulted in biparietal foramina in patients with PSS (14).

Recently, Kim et al. (8) reported that disruption of \textit{PHF21A} by translocations in the PSS region is associated with intellectual disability adds to the growing list of ID-associated genes that emphasize the critical role of transcriptional regulation and chromatin remodeling in normal brain development and cognitive function. Moreover, Montgomery et al. (4) strengthened the role of \textit{PHF21A} in intellectual disability in PSS. Resulting from the large size of deletion including these three genes, our patients might have severe mental retardation and typical skeletal findings (multiple exostoses and bilateral parietal foramina).

In terms of clinical and radiologic findings, we could not diagnose him having PSS till his progressive multiple exostoses were noted when he was the age 8 yr. Among many etiologies of multiple exostoses including \textit{EXT} mutations, PSS would be a one of the rare cause presenting exostoses. Therefore, a patient with multiple exostoses accompanying syndromic features including craniofacial abnormalities and mental retardation, the diagnosis of PSS should be considered and should be assessed by chromosomal microarray.

Because PSS is an incurable genetic disease, treatment is conservative. For the health maintenance, multidisciplinary approach and continuous monitoring of growth and development is essential. Early childhood intervention of development delay at the time of diagnosis is needed. A full skeletal survey is recommended at the time of diagnosis or by age 3 yr (2). Surgical intervention should be considered in case of pain or deformity of bones. As the prognosis of patient depends on the severity of developmental delay and neurologic deficit, the follow up of clinical manifestation is warranted in our patient.

DISCLOSURE

All of the authors have nothing to disclose.

AUTHOR CONTRIBUTION

Sohn YB and Yim SY contributed to drafting of paper. Cho EH performed the chromosomal microarray analysis and result interpretation. Kim OK contributed to the drafting and critical review of paper, and approval of the submitted paper. All authors have read and approved the final manuscript.

Fig. 3. Result of chromosomal microarray. The red bar indicates an 8.6 Mb deletion at 11p11.2p12 including\textit{EXT2}, \textit{ALX4}, and \textit{PHF21A}.
ORCID

Young Bae Sohn http://orcid.org/0000-0002-4664-1941
Shin-Young Yim http://orcid.org/0000-0002-8521-6331
Eun-Hae Cho http://orcid.org/0000-0003-3056-0001
Ok-Hwa Kim http://orcid.org/0000-0001-5502-8746

REFERENCES

1. Bartsch O, Wuyts W, Van Hul W, Hecht JT, Meinecke P, Hogue D, Werner W, Zabel B, Hinkel GK, Powell CM, et al. Delineation of a contiguous gene syndrome with multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation, caused by deletions in the short arm of chromosome 11. Am J Hum Genet 1996; 58: 734-42.

2. Swarr DT, Bloom D, Lewis RA, Elenberg E, Friedman EM, Glotzbach C, Wissman SD, Shaffer LG, Potocki L. Potocki-Shaffer syndrome: comprehensive clinical assessment, review of the literature, and proposals for medical management. Am J Med Genet A 2010; 152a: 565-72.

3. Potocki L, Shaffer LG. Interstitial deletion of 11p11.2: a newly described contiguous gene deletion syndrome involving the gene for hereditary multiple exostoses (EXT2). Am J Med Genet A 1996; 62: 319-25.

4. Montgomery ND, Turcott CM, Tepperberg JH, McDonald MT, Aylsworth AS. A 137-kb deletion within the Potocki-Shaffer syndrome interval on chromosome 11p11.2 associated with developmental delay and hypotonia. Am J Med Genet A 2013; 161a: 198-202.

5. Stickens D, Clines G, Burberr D, Ramos P, Thomas S, Hogue D, Hecht JT, Lovett M, Evans GA. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nat Genet 1996; 14: 25-32.

6. Hall CR, Wu Y, Shaffer LG, Hecht JT. Familial case of Potocki-Shaffer syndrome associated with microdeletion of EXT2 and ALX4. Clin Genet 2001; 60: 356-9.

7. Wakai K, Gregato G, Ballif BC, Glotzbach CD, Bailey KA, Kuo PL, Sue WC, Sheffield LJ, Irons M, Gomez EG, et al. Construction of a natural panel of 11p11.2 deletions and further delineation of the critical region involved in Potocki-Shaffer syndrome. Eur J Hum Genet 2005; 13: 528-40.

8. Kim HG, Kim HT, Leach NT, Lan F, Ullmann R, Silhataroglu A, Kurth I, Nowka A, Seong IS, Shen Y, et al. Translocations disrupting PHF21A in the Potocki-Shaffer syndrome region are associated with intellectual disability and craniofacial anomalies. Am J Hum Genet 2012; 91: 56-72.

9. Bovée JV. Multiple osteochondromas. Orphanet J Rare Dis 2006; 3: 3.

10. Busse M, Feta A, Presto J, Wilén M, Gunning M, Kjellén L, Kusche-Gullberg M. Contribution of EXT1, EXT2, and EXT13 to heparan sulfate chain elongation. J Biol Chem 2007; 282: 32802-10.

11. Feta A, Do AT, Rentzsch F, Technau U, Kusche-Gullberg M. Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis. Biochem J 2009; 419: 585-93.

12. Jones KB. Glycobiology and the growth plate: current concepts in multiple hereditary exostoses. J Pediatr Orthop 2011; 31: 577-86.

13. Hameetman L, David G, Yavas A, White SJ, Taminiau AH, Cleton-Janse AM, Hogendoorn PC, Bovée JV. Decreased EXT expression and intracellular accumulation of heparan sulphate proteoglycan in osteochondromas and peripheral chondrosarcomas. J Pathol 2007; 211: 399-409.

14. Wu YQ, Badano JL, McCaskill C, Vogel H, Potocki L, Shaffer LG. Haploinsufficiency of ALX4 as a potential cause of parietal foramina in the 11p11.2 contiguous gene-deletion syndrome. Am J Hum Genet 2000; 67: 1327-32.