Stopping-power ratio of mouthpiece materials for charged-particle therapy in head and neck cancer

Hiroaki Ikawa (ikawa.hiroaki@qst.go.jp)
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Taku Inaniwa
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Masashi Koto
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Tapesh Bhattacharyya
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Takashi Kaneko
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Hirotoshi Takiyama
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Makoto Shinoto
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Shigeru Yamada
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Hiroshi Tsuji
QST: Kokuritsu Kenkyu Kaisatsu Hojin Ryoshi Kagaku Gijutsu Kenkyu Kaisatsu Kiko

Research

Keywords: particle therapy, carbon-ion radiation therapy, head and neck cancer, custom made mouthpiece, stopping power ratio, bite block, intraoral stent

DOI: https://doi.org/10.21203/rs.3.rs-96691/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: In charged-particle therapy treatment planning, CT numbers of a patient’s body are converted into stopping power ratios (SPRs) using a CT-number-to-SPR conversion table constructed for standard human tissues. Since artificial devices used in treatments of head and neck cancer, such as mouthpieces, do not fit into the CT-number-to-SPR conversion table, they may deteriorate treatment accuracy. In this study, the SPRs of five mouthpiece materials were measured, and the error in predicted SPRs based on the conversion table was investigated.

Methods: SPRs of five mouthpiece materials were predicted from their CT numbers using a calibrated conversion table. Independently, the SPRs of the materials were measured by the Bragg-peak shift of a carbon-ion beam passing through the materials. The errors in SPR of the materials were determined as the difference between the predicted and measured SPRs.

Results: The SPRs (error) of the ethylene-vinyl acetate copolymers (EVAs), Nipoflex 710™ and Bioplast™, were 0.997 (0.023) and 0.982 (0.007), respectively. The SPRs (error) of the vinyl silicon impression material (Exafine putty type™), the light curable resin (Clear Photoreactive Resin for Formlabs 3D printers™), and the bis-acrylic resin (Tempsmart™) were 1.517 (0.134), 1.161 (0.068), and 1.26 (0.101), respectively.

Conclusions: The EVA Bioplast™ had the minimum SPR error among the five tested materials, indicating the highest human-tissue equivalency. If other artificial materials such as Exafine putty type™ are used as mouthpieces, it is recommended that their SPRs be overwritten by the correct values in treatment planning processes.

Introduction

In external beam radiation therapy (RT) for head and neck cancer, a mouthpiece has been used to improve positional accuracy and obtain better reproducibility [1, 2]. Doi et al. [1] reported that the use of a mouthpiece in photon-based RT for head and neck cancer patients resulted in a significant reduction in setup errors. The mouthpiece should be effective to reduce the setup errors also in head and neck cancer treatments of charged-particle therapy [3, 4]. Moreover, the mouthpiece can be used to reduce side effects [5–10]. Verrone et al. [7] reported that the use of a mouthpiece during intensity modulated radiation therapy (IMRT) for oral cancer was effective in reducing the dose to normal tissues such as the maxilla and parotid gland. The reduced side effects with custom-made mouthpieces have also been reported in proton [11] and carbon-ion (C-ion) RT [3, 4, 12].

Particle beams have unique physical characteristics distinct from those of photons. The superiority of particle beams is attributed to their low entrance dose, finite range and extremely steep increase in dose in the range of the beams known as the Bragg peak enabling improved target coverage and better sparing of organs at risk (OAR) in close proximity to the target [13, 14]. The range in a patient is, however,
associated with considerable uncertainties due to imaging, patient setup, beam delivery and dose calculation. This range error may cause underdose to the target and overdose to OARs leading to decreased local control and unexpected side effects. Hence accuracy of the beam range in patients is of utmost importance and needs to be calculated as accurately as possible in the treatment planning to utilize the full potential of particle therapy.

In charged-particle therapy, CT images are used for treatment planning and patient dose calculations. For CT-based planning, the CT number is converted to stopping power ratio (SPR) of tissues with respect to water using a CT-number-to-SPR conversion table constructed for standard human tissues [15]. In charged-particle therapy for head and neck cancer, particles can traverse through the mouthpiece in some cases. As the mouthpiece is made of artificial materials, the SPR of the mouthpiece is not necessarily determined correctly from its CT number via the conversion table. Therefore, the mouthpiece may cause range errors of particle beams in patients.

At the QST Hospital, in routine dose calculation of C-ion RT for head and neck cancer with a mouthpiece, the SPR of the mouthpiece is directly determined from its CT number using the calibrated CT-number-to-SPR conversion table. To the best of our knowledge, the dose-calculation procedure for mouthpieces has never been reported so far. In addition, the effects of the mouthpiece material on range of particle beams have never been investigated.

The purpose of this study was to measure the SPRs of five materials clinically used as mouthpieces in charged-particle therapy, and to investigate the SPR error of the materials caused by the CT number-to-SPR conversion. Moreover, to evaluate the effects of SPR error of a mouthpiece made of an ethylene-vinyl acetate copolymer (EVA) on patient dose distribution, we compared the dose distribution calculated from the SPR of the mouthpiece using the CT-number-to-SPR conversion table with the re-calculated dose distribution using the SPR obtained from the present study.

**Materials And Methods**

**Mouthpiece materials used**

We investigated five mouthpiece materials used in particle therapy for head and neck cancer to evaluate SPR error and its impact on dose distribution. The characteristics of the materials used in this study are summarized in Table 1. We have been routinely using Nipoflex 710™ (NIP) (Tosoh Corporation, Tokyo, Japan), which is an EVA resin. NIP and Bioplast™ clear soft plate (BIO) (SCHEU-DENTAL GmbH, Iserlohn, Germany) are thermoplastic EVA resins used in dentistry in the treatment of temporomandibular disorders and as protective mouth guards in contact sports. Exafine Putty Type™ (EXA) (GC Corporation, Tokyo, Japan) is a vinyl polysiloxane, and used as an impression material when making dentures. Clear Photoreactive Resin for Formlabs 3D printers™ (3DP) (Formlabs Inc., MA, USA) is a light-cured resin, and used in making 3D printed-oral stents for RT from diagnostic CT images. Tempsmart™ (TEM) (GC
Corporation, Tokyo Japan) is a dual-cured bis-acrylic composite material, and used for temporary crowns and bridges in dental procedures.

**Measurement of the stopping power ratio**

The SPRs of the mouthpiece materials were measured using 292.3 MeV/u monoenergetic carbon beams at a fixed horizontal port and at a rotating gantry port with 90-degree angulation. 1-mm-width ripple filters made of polymethyl-methacrylate and aluminum were used to mitigate the effect of range straggling due to intervening mouthpiece material at the fixed and rotating gantry ports, respectively. The SPRs of NIP and BIO were measured at the fixed port whereas SPRs of EXA, 3DP and TEM were measured at the rotating gantry port. An in-house parallel plate ionization chamber with a circular sensitive area of 150 mm in diameter was inserted into a motor-driven water tank, and one mouthpiece material was introduced at its upstream surface. The integral depth dose (IDD) of the C-ion beam was measured with and without the mouthpiece material.

The SPR ($\rho_s$) of the material was determined from the change in the water equivalent path length of C-ion beam due to insertion of the mouthpiece material. It is the ratio of $t_w$ (water equivalent thickness of mouthpiece material) and the geometrical thickness ($t_g$) of the mouthpiece material, expressed as

$$\rho_s = \frac{t_w}{t_g}. \ (1)$$

The $t$ was measured at five locations with Vernier calipers and the average was calculated as the thickness of the material. The $t_w$ was determined by the shift of the measured IDDs with and without the mouthpiece material by the least squares regression with spline interpolation. The uncertainty of the SPR was calculated on the assumption that the uncertainties of $t_g$ and $t_w$ were 0.5 mm and 0.1 mm, respectively.

**Measurement of CT numbers**

We measured CT numbers of five mouthpiece materials. In order to adapt the effect of beam hardening on CT imaging of actual head and neck cancer cases, CT imaging was performed in a water-filled cylindrical container with an outer diameter of 20 cm (inside diameter of 18 cm). All CT images were obtained with the CT scanner Aquilion ONE (Canon Medical Systems Corporation, Otawara, Japan). CT imaging parameters were matched to those usually used for head and neck planning (tube voltage, 120 kV; tube current 50 mA; field-of-view [FOV], 500 mm; reconstruction kernels [FC13], Adaptive Iterative Dose Reduction Three-Dimensional [AIDR3D], with a single-energy metal artifact reduction [SEMAR] algorithm).

The CT images were imported to the radiotherapy planning support software (MIM software TM, ver 6.8.4; MIM Software Inc., Cleveland, OH), and the mouthpiece material in the CT image was contoured as the region of interest (ROI). The CT number of the material was determined as the average of the CT number in the ROI. The error of CT numbers was calculated from the standard deviation of CT numbers in the mouthpiece.
**CT-number-to-SPR conversion table**

A CT-number-to-SPR conversion table was constructed for the CT scanner based on a stoichiometric calibration method developed by Kanematsu et al. [15], in which 11 ICRP body tissues were assumed as representative tissues for the human body [16]. The validity of the conversion method was demonstrated elsewhere [15], and has been clinically used in our institution.

**Error in SPR**

The SPRs of the mouthpiece materials were measured with a C-ion beam. Independently, the SPRs of the materials were predicted from their CT numbers via the CT-number-to-SPR conversion table. The errors in the SPR were determined as the difference between the predicted and measured SPRs.

**Clinical evaluation**

We evaluated the effect of mouthpiece-induced range error on dose distribution for clinical cases of head and neck cancer patients treated previously with C-ion RT at the QST Hospital using the NIP mouthpiece. We selected a hard palate mucosal malignant melanoma case treated with C-ion RT of four beams passing through thick mouthpiece materials.

In the patient dose calculation of C-ion RT, the SPR of the mouthpiece material has not been overwritten by either measured or nominal values, but directly derived from its CT number using a calibrated conversion table. The planned dose distribution was recalculated by overwriting the SPR of the mouthpiece by the measured SPR of the NIP in this study. The recalculated dose distribution was compared with the corresponding planned dose distribution, and analyzed by the differential dose distribution and a dose volume histogram (DVH). The original treatment plan and patient dose recalculation were made using the Xio -N™ treatment planning system (ELEKTA; Stockholm, Sweden; Mitsubishi Electric, Tokyo, Japan).

**Results**

The IDDs measured with and without the mouthpiece were compared to obtain the water equivalent thickness of each mouthpiece material ($t_w$). CT numbers, SPRs measured with $t_w$ and $t_g$, SPRs predicted from the CT numbers using the CT-number-to-SPR conversion table, and the errors of SPR for the five measured materials are shown in Table 2. Additionally, the SPRs of the five materials are plotted on the CT-number-to-SPR conversion table to evaluate their tissue equivalencies in Fig. 1. The measured CT values of both EVA resins were less than 0 and the measured SPRs were less than 1. All other materials had measured CT values greater than 0 and SPRs greater than 1. The SPR errors were 0.023 and 0.007 for the EVA resins of NIP and BIO, respectively. For EXA, 3DP and TEM, the SPR errors were 0.134, 0.068 and 0.101, respectively. EVA-based materials had smaller SPR errors than other materials.

Table 1. Characteristics of mouthpiece materials.
| Material                         | Classification of material | Composition                                                      | Thickness (mm) | Mass (g/cm³) |
|---------------------------------|----------------------------|-----------------------------------------------------------------|----------------|--------------|
| Nipoflex 710 (NIP)              | Thermoplastic resin       | Ethylene-vinyl acetate copolymer                                  | 37.1 ± 0.1     | 0.949        |
| Bioplast (BIO)                  | Thermoplastic resin       | Ethylene-vinyl acetate copolymer                                  | 35.3 ± 0       | 0.96         |
| Exafine Putty Type (EXA)        | Addition curing silicone impression material | Vinyl polysiloxane, silicon dioxide, and platinum catalysts | 47.4 ± 0.1     | 1.80         |
| Clear Photoreactive Resin for Formlabs 3D printers (3DP) | Light-cured resin | Methacrylated oligomer and methacrylated monomer               | 40.0 ± 0       | 1.09 – 1.12  |
| Tempsmart (TEM)                | Dual-cured bis-acrylic composite material | Silica filler and methacrylic acid ester                        | 32.9 ± 0.1     | 1.2 Base: Catalyst: 1.3 |

Table 2. CT numbers and stopping power ratios (SPRs) for each material.

| Materials                            | CT numbers (HU)* | Measured SPRs | Predicted SPRs | Error |
|--------------------------------------|------------------|---------------|----------------|-------|
| Nipoflex 710 (NIP)                   | -66.85 ± 11.91   | 0.997 ± 0.014 | 0.974          | 0.023 |
| Bioplast (BIO)                       | -65.45 ± 10.35   | 0.982 ± 0.014 | 0.975          | 0.007 |
| GC Exafine Putty Type (EXA)          | 879.79 ± 31.16   | 1.517 ± 0.016 | 1.383          | 0.134 |
| Clear Photoreactive Resin for Formlabs 3D printers (3DP) | 131.94 ± 11.82   | 1.161 ± 0.015 | 1.093          | 0.068 |
| Tempsmart (TEM)                      | 324.15 ± 17.46   | 1.260 ± 0.019 | 1.159          | 0.101 |

* HU, Hounsfield Unit

In Fig. 2, the planned dose distribution is compared with the recalculated dose distribution determined in the present experiment by assigning the SPR of NIP as 1.00 (because the assignment function of Xio-N™ limits the resolution of the SPR to two decimal places, 0.997 was rounded to 1.00). The isodose line of the recalculated dose distribution was shifted by 1 mm proximal to the area where the particle beam passed through a distance of 5 cm or more of the mouthpiece. There was little difference in planning
target volume (PTV) dose coverage between the planned and recalculated dose distributions and DVHs of PTV in both distributions were almost overlapped with each other.

Discussion

In the photon and charged-particle therapy for head and neck cancer, the effectiveness of the mouthpiece as a spacer to reduce the dose to normal tissues has been reported [3–10, 12]. In charged-particle therapy, the beam may unavoidably pass through the mouthpiece or be stopped on the mouthpiece to spare surround normal tissue. However, the CT-number-to-SPR conversion table used in particle therapy has been constructed for standard human tissues [15]. It is not possible to calculate the accurate SPR of the artificial materials, e.g., mouthpieces, from their CT numbers using the CT-number-to-SPR conversion table. Therefore, the use of the beam passing through the artificial material may result in a range error and affect the treatment accuracy. Nevertheless, the SPR of the mouthpiece material has yet to be discussed. In this study, the SPR of five mouthpiece materials were measured. Materials other than EVA-based materials had low equivalence to human tissues. Among the materials evaluated, the EVA resins had high equivalence to human tissue, with the SPR error of within 2% as shown in Fig. 1 and Table 2. Therefore, the SPR of the EVA mouthpiece may acceptably be determined directly from its CT numbers using the CT-number-to-SPR conversion table in charged-particle therapy treatment planning, even if the particle beam passes through the EVA mouthpiece.

In order to evaluate the effect of the range error due to the insertion of the EVA mouthpiece on the patient dose distribution, we compared the planned dose distribution with the SPR of the mouthpiece directly predicted from the conversion table with the recalculated dose distribution with the SPR overwritten to the measured SPR value, i.e., \( \rho_s = 1.0 \). We confirmed that the dose difference was extremely small. Until now, there have been few reports on use of mouthpiece materials for charged-particle therapy, and the SPR of the mouthpiece material has not been reported. In C-ion RT, we have already reported the efficacy of a mouthpiece made of EVA to reduce the dose of surrounding normal tissues in patients with head and neck cancer [3, 4]. For proton beam therapy at MD Anderson Cancer Center, Aponte et al. [18] reported the effectiveness of a bolus-type stent for a combined intraoral/extraoral defect using heat-polymerized acrylic resin. At the same cancer center, the efficacy of the light-cured resin that can be shaped with a 3DP in the hospital without a professional dentist has been reported for head and neck radiotherapy [19]. Kawamura et al. [11] reported the usefulness of vinyl polysiloxane dental impression material as a proton beam stopper to save normal tissue such as the tongue during irradiation of the oral cavity. In the present study, we found that EVA had relatively high equivalence to human tissues, while the vinyl polysiloxane and the light-cured resin have low equivalence to human tissues, and there was a possible range error from 7 to 13% when particle beam passed through those mouthpiece materials. Dose heterogeneity within the PTV should be kept within \(-5 \) to \(+7\%\) of the prescribed dose, as recommended by the International Commission on Radiation Units and Measurements (ICRU) Reports 50 [20] and 62 [21]. In order to achieve this, the range error of the mouthpiece materials should be as low as possible. EVA resins are one of the most suitable mouthpiece materials for charged-particle therapy to fulfill the recommended...
dose accuracy. When materials other than EVA are used for a mouthpiece, a beam direction passing through the mouthpiece should be avoided. Alternatively, although the number of processes may increase, the SPR of the mouthpiece material should be overwritten by its correct value in treatment planning.

**Limitation**

The present study had a limitation. There are various types of EVA resins that differ according to the content of vinyl acetate and the CT-number-to-SPR conversion table may not be suitable for all of them. We conducted this study using two kinds of EVA resins. Analysis using various types of EVA resins is required in the future.

**Conclusion**

This study showed a high tissue equivalency of the EVA mouthpieces. We could directly determine the SPR of the EVA mouthpiece from its CT numbers using the CT-number-to-SPR conversion table, even if the particle beam passed through the EVA mouthpiece. We judged EVA was a suitable mouthpiece material for use in charged-particle therapy.

**Abbreviations**

3DP: Clear Photoreactive Resin for Formlabs 3D printers™

AIDR3D: Adaptive Iterative Dose Reduction Three-Dimensional

BIO: Bioplast™

C-ion: Carbon-ion

CT: Computed tomography

DVH: Dose volume histogram

EVA: Ethylene-vinyl acetate copolymer

EXA: Exafine Putty Type™

FOV: Field-of-view

HU: Hounsfield Unit

ICRP: International Commission on Radiological Protection

ICRU: IFnternational Commission on Radiation Units and Measurements
IDD: Integral depth dose
NIP: Nipoflex 710™
OAR: Organs at risk
PTV: Planning target volume
ROI: Region of interest
RT: Radiation therapy
SEMAR: Single-energy metal artifact reduction
SPR: Stopping power ratio
TEM: Tempsmart™

**Declarations**

**Ethics approval and consent to participate**
Not applicable

**Consent for publication**
Not applicable

**Availability of data and materials**
Not applicable

**Competing interests**
The authors declare that they have no competing interests.

**Funding**
No specific funding was disclosed.

**Authors’ contributions**
HI, TI and MK designed the study. HI and TI collected and analyzed the data, and TI performed the statistical analyses. HI, TI, MK and TB drafted the manuscript. TK, HT, MS, SY, and HT were involved in the general supervision of this study. All authors revised the manuscript and approved the final version.

**Acknowledgements**
We are grateful to Takuro Takekoshi of the Division of radiological technology at QST hospital. The authors also thank Hiroshi Fujihira and Wataru Furuichi of the Accelerator Engineering Corporation (Chiba, Japan) for technical support.

References

1. Doi H, Tanooka M, Ishida T, Moridera K, Ichimiya K, Tarutani K, et al. Utility of intraoral stents in external beam radiotherapy for head and neck cancer. Rep Pract Oncol Radiother. 2017;22:310–8.

2. Tryggestad E, Christian M, Ford E, Kut C, Le Y, Sanguineti G, et al. Inter- and intrafraction patient positioning uncertainties for intracranial radiotherapy: a study of four frameless, thermoplastic mask-based immobilization strategies using daily cone-beam CT. Int J Radiat Oncol Biol Phys. 2011;80:281–90.

3. Ikawa H, Koto M, Ebner DK, Takagi R, Hayashi K, Tsuji H, et al. A custom-made mouthpiece incorporating tongue depressors and elevators to reduce radiation-induced tongue mucositis during carbon-ion radiation therapy for head and neck cancer. Pract Radiat Oncol. 2018;8:e27–31.

4. Ikawa H, Koto M, Ebner DK, Hayashi K, Takagi R, Tonogi M, et al. The Efficacy of a Custom-Made Mouthpiece With Spacer to Reduce Osteoradionecrosis in Carbon-Ion Radiation Therapy for Tongue-Base Tumor. Adv Radiat Oncol. 2018;4:15–9.

5. Bodard AG, Racadot S, Salino S, Pommier P, Zrounba P, Montbarbon X. A new, simple maxillary-sparing tongue depressor for external mandibular radiotherapy: a case report. Head Neck. 2009;31:1528–30.

6. Nayar S, Brett R, Clayton N, Marsden J. The Effect of a Radiation Positioning Stent (RPS) in the Reduction of Radiation Dosage to the Opposing Jaw and Maintenance of Mouth opening after Radiation Therapy. Eur J Prosthodont Restor Dent. 2016;24:71–7.

7. Verrone JR, Alves FA, Prado JD, Marcicano Ad, de Assis Pellizzon AC, Damascena AS, et al. Benefits of an intraoral stent in decreasing the irradiation dose to oral healthy tissue: dosimetric and clinical features. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:573–8.

8. Kaanders JH, Fleming TJ, Ang KK, Maor MH, Peters LJ. Devices valuable in head and neck radiotherapy. Int J Radiat Oncol Biol Phys. 1992;23:639–45.

9. Verrone JR, Alves Fde A, Prado JD, Boccaletti KW, Sereno MP, Silva ML, et al. Impact of intraoral stent on the side effects of radiotherapy for oral cancer. Head Neck. 2013;35(7):E213–7.

10. Nguyen CT, Lee VS, Wu J. An Acrylic Immobilization Bite Block for Use During Radiation Therapy: Description of a New Technique. Int J Prosthodont. 2018;31:338–41.

11. Kawamura M, Maeda Y, Takamatsu S, Tameshige Y, Sasaki M, Asahi S, et al. The usefulness of vinyl polysiloxane dental impression material as a proton beam stopper to save normal tissue during irradiation of the oral cavity: basic and clinical verifications. Med Phys. 2013;40:081707.

12. Musha A, Saitoh JI, Shirai K, Kubota Y, Shimada H, Abe T, et al. Customized mouthpieces designed to reduce tongue mucositis in carbon-ion radiotherapy for tumors of the nasal and paranasal sinuses.
Phys Imaging Radiat Oncol. 2017;3:1–4.

13. Thariat J, Bolle S, Demizu Y, Marcy PY, Hu Y, Santini J, et al. New techniques in radiation therapy for head and neck cancer: IMRT, CyberKnife, protons, and carbon ions. Improved effectiveness and safety? Impact on survival? Anticancer Drugs. 2011;22:596–606.

14. Leeman JE, Romesser PB, Zhou Y, McBride S, Riaz N, Sherman E, et al. Proton therapy for head and neck cancer: expanding the therapeutic window. Lancet Oncol. 2017;18:e254–65.

15. Kanematsu N, Inaniwa T, Nakao M. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned with conventional x-ray CT systems. Phys Med Biol. 2016;61:5037–50.

16. ICRP. Adult Reference Computational Phantoms. Publication 110. Ottawa: ICRP; 2009.

17. Kanematsu N, Matsufuji N, Kohno R, Minohara S, Kanai T. A CT calibration method based on the polybinary tissue model for radiotherapy treatment planning. Phys Med Biol. 2003;21(8):1053–64.

18. Aponte Wesson R, Garden AS, Chambers MS. Fabrication of an unconventional bolus-type stent for a combined intraoral/extraoral defect treated with proton radiation therapy. J Prosthet Dent. 2017;117(4):563–5. doi:10.1016/j.prosdent.2016.07.032.

19. Wilke CT, Zaid M, Chung C, Fuller CD, Mohamed ASR, Skinner H, et al. Design and fabrication of a 3D-printed oral stent for head and neck radiotherapy from routine diagnostic imaging. 3D Print Med. 2017;3:12.

20. ICRU 50. (1993). Prescribing, recording and reporting photon beam therapy Maryland: International Commission on Radiation Units and Measurement.

21. ICRU 62. (1999). Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50) Maryland: International Commission on Radiation Units and Measurement.