Ethnobotanical, phytochemical and pharmacological aspects of Bengal Pogostemon (*Pogostemon benghalensis*)

Sangeeta Dahiya1*, Daizy R. Batish1, Harminder Pal Singh2

1Department of Botany, Panjab University, Chandigarh 160014, India
2Department of Environment Studies, Panjab University, Chandigarh 160 014, India

Implication for health policy/practice/research/medical education:
This review represented the various useful pharmacological activities like anticancer, anti-inflammatory, antimicrobial and antioxidant activities of *Pogostemon benghalensis*. Further, the results of the present review revealed that essential oil and various extracts of *P. benghalensis* possess good pharmacological potential and have broad spectrum activities on various ailments such as cold, cough, pneumonia, diarrhoea, dysentery, skin diseases, and digestive problems as evident from the traditional knowledge and reported bioassays. It also provided basic information for further studies.

Please cite this paper as: Dahiya S, Batish DR, Singh HP. Ethnobotanical, phytochemical and pharmacological aspects of Bengal Pogostemon (*Pogostemon benghalensis*). J Herbmed Pharmacol. 2020;9(4):318-327. doi: 10.34172/jhp.2020.40.

ABSTRACT

Pogostemon benghalensis (Burmf.) Kuntze (Lamiaceae) is an important aromatic plant. Multiple classes of phytochemicals such as flavonoids, phenols, phytosteroids, carbohydrates, fatty acids, glycosides, sterols, terpenoids, tannins, essential oil, and alkaloids have been isolated from the title species. Different plant parts have been used as traditional remedies for various ailments. The present review aims to update and coherent the fragmented information on botanical aspects, phytochemistry, traditional uses, and pharmacological activities. An extensive review of the literature was carried out by using various search engines like PubMed, Scopus, Science Direct, Google Scholar, Google, Scinder for information. The articles were searched using the keywords "Pogostemon", "Parviflorus", "benghalensis". Chemical structures of the chemical compounds were drawn using software Chem Draw ultra 8.0. Most of the plant parts have been used for the treatment of various ailments. Phytochemistry reveals that the plant is a rich source of various biologically active compounds. *Pogostemon* extracts exhibited numerous pharmacological effects like anticancer, anti-inflammatory, antimicrobial and antioxidant activities. In sum, *P. benghalensis* is a promising aromatic and medicinal plant as depicted by its various traditional uses and pharmacological studies. Bioactive compounds, responsible for its various pharmacological activities at the molecular level, need further detailed investigations. Future clinical studies are also required to validate the various traditional uses of *P. benghalensis*.

Keywords: Traditional medicine, Bioactive principle, Phytochemical constituents, Pharmacological activities, Ethnobotany

Article History:
Received: 22 July 2019
Accepted: 29 September 2019

Introduction
Plants produce a diverse assortment of secondary metabolites that do not participate directly in the growth and development of the plant (1). Due to their complex chemical structure and biosynthetic pathways, these myriad natural products have received little attention from the biological scientists. However, humans have been using the herbs and their products as medicines to cure various ailments and diseases like cough, cold, fever, digestive disorders, food poisoning, etc. since time immemorial (2,3). Owing to their various traditional uses, researchers are showing more and more interest in re-evaluating and recognising various biological properties of natural plant products. Some of these natural plant products are essential oils, dyes, colouring agents, and pharmaceutical compounds. Now a day, essential oils are one of the most important secondary metabolites that are receiving considerable attention of the researchers. Because of various aromatic and therapeutic properties, these are widely used in food, flavour and fragrance, cosmetic, and other pharmaceutical industries (4).

Pogostemon benghalensis (Burmf.) Kuntze is an aromatic undershrub that grows in open riverine forest areas of tropical climates (5) and generally found in attitudes...
between 150–1300 m. It is native to South Asia and is widely distributed in India, Nepal, Bangladesh, Myanmar, Sri Lanka, China, Thailand, Vietnam and Bhutan (6, 7). The floral buds and leaves are rich in essential oil, which in turn is rich in sesquiterpenes. Various researchers have studied the chemical profile of the essential oil of *P. benghalensis*. The essential oil and the leaf extracts of *P. benghalensis* have been studied for their antioxidant (10), antibacterial (11-13), antifungal (11,13), antiviral (14), larvicidal (9) and anticancerous activities (15). Traditionally, its leaves and roots have been used to cure cold, cough, pneumonia, diarrhoea, dysentery, skin diseases, and digestive problems (16,17). The present review compiles the incomplete information on the phytochemistry, traditional uses, and other pharmacological properties of *P. benghalensis* and highlights that the plants are a rich source of phytochemical worth exploiting for human benefits.

Taxonomy and vernacular names

The plant *P. benghalensis* (=*P. fructescens* J. Garham, *P. indicus* (Roth) Kunzte and *P. pierpuricaulis* Dalzell., *Origanum benghalense* Burm.f., *O. indicum* Roth, *Mentha integra* Buch.-Ham. Ex Benth,) belong to Lamiaceae family of lamiales order (18). It is commonly known as Bengal Pogostemon, coxspur patchouli and has various vernacular names like Kala baising, Lujrya, raudera and Ishwar jata in Hindi, Jui-lata in Bengali, Sukloti in Assamese, Lamgi hoinding and Litiwo in Manipuri, Pangli in Marathi, Dumobadotoko and Poksunga in Oriya, Bhoothchedayan in Malyalam, Ariisskaai in Tamil, Naati pachhe thene in Kannada, Pedda tulasi, Gondripula and Kasurijang in Telugu, Niam nguang chaang in Thailand, Rudhilo and Rasangan, Basdam, Nampani (Chepang), Utajara (Danuwar), Rutli (Tamang), Kali-bant (Tharu) in Nepalese, and Kali suhali in Pakistan.

Botanical description

Pogostemon benghalensis is an undershrub to shrub with a strong, solid, angular and tomentose stem. The leaves are ovate with double dentate margin and acuminate apex, pubescent and bear epidermal hairs and secretary structures, arranged in opposite phylloaxy (19). It bears purple or pinkish-white bilipped flowers with strong aroma in verticillaster inflorescence; stamens are exerted with long violet purple hairs on filaments; the ovary is glabrous with slender style and bilobed stigma (20, 21). Fruits are trigonous, reddish brown and composed of four nutlets.

Phytochemistry

A little work has been done on the photochemistry of *P. benghalensis*. As per studies done using GC-MS (gas chromatography- mass spectrometer), the plant has a rich profile of phytochemicals like phenolics, steroids, tannins, flavonoids, terpenoids, and essential oils. The crude extracts and essential oils are mainly composed of sesquiterpenes, but also have terpene derivatives, aromatic alcohols and other organic compounds (5,6,8,9). In a study performed by Chanotiya et al, Elemol (11.6-20.5%), β-caryophyllene (8.1-12.5%), β-bisabolene (3.6%-18%), α-humulene (4.0-8.7%), β-ocimene (3.6-3.7%), germacrene B (2.5-4.8%), were reported as the major components in *Pogostemon* oil extracted from leaves and inflorescence of the plant (8). Moreover, the presence of these components was also confirmed by Bhuiyan et al (6). In a similar study of the phytochemistry of *Pogostemon*, Anjana and Thoppil (9) reported dehydronane (26.66%) as major component followed by δ-cadinol (23.06%) whereas, in contrast, Dhakal et al (5) reported 7-Isopropyl-1,4-dimethyl-azulen-2-ol (41.72%) as the major component followed by α-gurjunene isomer (9.23%). The variations observed in the chemical profile of *P. benghalensis* could have been possibly due to differences in geographical location, climatic conditions, harvesting methods, the growth stage of the target plant at the time of harvesting, plant parts used for oil extraction, soil profile etc. Some of the important components detected in the essential oil of *P. benghalensis*, along with their known pharmacological properties are given in Table 1 (22-63).

Nutritive value

Nutrient analysis of the leaves of *P. benghalensis* by Unni et al revealed the presence of approximately 0.25 ± 0.1% carbohydrates, 6.175 ± 0.2% fatty acids, 4.59 ± 0.1% proteins, 7.10 ± 0.1% fibre, 1.6 ± 0.2% tannin, 84.77 ± 2.4% moisture, and 75.01 ± 1.6% nutritive value. The investigators also determined the fatty acid composition through GC analysis after converting lipids into methyl esters which ensured the presence of methyl ester of palmitic acid (0.75%) and a mixture of oleic, linoleic and linolenic acids (3.75%), of which linoleic and linolenic are the essential fatty acids for human beings (64).

Ethnobotanical uses

Different parts of *P. benghalensis* have been traditionally used by different ethnic groups in India and other countries for domestic and therapeutic purposes. Generally, genus *Pogostemon* was used by tribal people for its roots and leaves (65). Different plant parts were used in formulations like decoction, fresh extract, poultice, and infusion etc. to get rid of health ailments. The plant is used as an antidepressant, antiasthmatic, aphrodisiac and to cure skin problems in aromatherapy (64). It has been widely used in folk medicine for the treatment of intestinal disorder and intermittent fever (66). Tribal people also used the plant as an antidote to snakebite. The paste of soft leaves and fresh roots was applied to the snake bites. Boiled root extract was orally given to the patient (67). Traditionally, leaf and root juice have been given to cure cough and cold (11,68), haemorrhage (69), malaria,
Table 1. List of chemical components of essential oil of *Pogostemon benghalensis* with their known pharmacological activities

Compound, Molecular formula, M. weight, nature	Chemical structure	Structure ID	Pharmacological properties
Benzaldehyde \(\text{C}_7\text{H}_6\text{O}\) 106.124 g/mol Aromatic aldehyde	![Chemical structure of Benzaldehyde](image)	PubChem CID 240	Larvicidal (22)
\(\alpha\)-Pinene \(\text{C}_{10}\text{H}_{16}\) 136.238 g/mol Monoterpane	![Chemical structure of \(\alpha\)-Pinene](image)	PubChem CID 6654	Anti-inflammatory (23), antibacterial, antitumor (24), antioxidant (25), fumigant (26), analgesic (27)
\(p\)-Cymene \(\text{C}_{10}\text{H}_{14}\) 134.222 g/mol Monoterpane	![Chemical structure of \(p\)-Cymene](image)	PubChem CID 7463	Anti-inflammatory (28), antioxidant (25), antitumor (28), analgesic (29)
\(\beta\)-Ocimene \(\text{C}_{10}\text{H}_{16}\) 136.238 g/mol Monoterpane	![Chemical structure of \(\beta\)-Ocimene](image)	PubChem CID 5281553	Antioxidant (25), nematicidal (30)
\(\gamma\)-Terpinene \(\text{C}_{10}\text{H}_{16}\) 136.238 g/mol Monoterpane	![Chemical structure of \(\gamma\)-Terpinene](image)	PubChem CID 7461	Anti-inflammatory (28), antioxidant (25), insecticidal (31)
Linalool \(\text{C}_{10}\text{H}_{18}\text{O}\) 154.253 g/mol Monoterpane alcohol	![Chemical structure of Linalool](image)	PubChem CID 6549	Antitumor (32), anti-inflammatory (33), fumigant (34), anesthetic and sedative agents (35), analgesic (36)
Borneol \(\text{C}_{10}\text{H}_{18}\text{O}\) 154.253 g/mol Monoterpane alcohol	![Chemical structure of Borneol](image)	PubChem CID 439569	Antitumor (37, 38), analgesic (39), antioxidant (25), fumigant (40), trypanocidal (41)
\(\beta\)-Elemene \(\text{C}_{15}\text{H}_{24}\) 204.357 g/mol Sesquiterpene	![Chemical structure of \(\beta\)-Elemene](image)	PubChem CID 6918391	Anti-inflammatory (42), apoptotic (43)
Cyclosativene \(\text{C}_{15}\text{H}_{24}\) 204.357 g/mol Sesquiterpene	![Chemical structure of Cyclosativene](image)	PubChem CID 519960	Antioxidant (44)
\(\alpha\)-Copaene \(\text{C}_{15}\text{H}_{24}\) 204.357 g/mol Sesquiterpene	![Chemical structure of \(\alpha\)-Copaene](image)	PubChem CID 25245021	Analgesic and anti-inflammatory (45), antigenotoxic (46)
\(\beta\)-Caryophyllene \(\text{C}_{15}\text{H}_{24}\) 204.357 g/mol Sesquiterpene	![Chemical structure of \(\beta\)-Caryophyllene](image)	PubChem CID 5281515	Leishmanicidal (47), Anti-endemic, Anti-tumor, Anti-oxidant, Anti-microbial and Anti-inflammatory (48), Antioxidant (46)
\(\alpha\)-Humulene \(\text{C}_{15}\text{H}_{24}\) 204.357 g/mol Sesquiterpene	![Chemical structure of \(\alpha\)-Humulene](image)	PubChem CID 23204	Anti-inflammatory (49), Antioxidant (25)
Table 1. Continued

Compound, Molecular formula, M. weight, nature	Chemical structure	Structure ID	Pharmacological properties
Alloaromadendrene \(\text{C}_{15}\text{H}_{24} \) 204.357 Sesquiterpene	PubChem CID 91746537	Antiproliferative (50)	
Germacrene D \(\text{C}_{15}\text{H}_{24} \) 204.357 Sesquiterpene	PubChem CID 5373727	Aphid repellent (51), Mosquitocidal (52)	
Valencene \(\text{C}_{15}\text{H}_{24} \) 204.357 Sesquiterpene	PubChem CID 9855795	Antioxidant (25)	
\(\alpha \)-Bulnesene \(\text{C}_{15}\text{H}_{24} \) 204.357 Sesquiterpene	PubChem CID 94275	Antiplatelet aggregation agent (53)	
\(\delta \)-Cadinene \(\text{C}_{15}\text{H}_{24} \) 204.357 Sesquiterpene	PubChem CID 12306054	Antimicrobial (54), Mutagenic and Carcinogenic (55)	
\(\gamma \)-Cadinene \(\text{C}_{15}\text{H}_{24} \) 204.357 Sesquiterpene	PubChem CID 92313	Mutagenic and Carcinogenic (56)	
Guaiol \(\text{C}_{15}\text{H}_{26}\text{O} \) 222.372 Sesquiterpene alcohol	PubChem CID 227829	Antioxidant (25); Insecticidal (57)	
\(\alpha \)-Cadinol \(\text{C}_{15}\text{H}_{26}\text{O} \) 222.372 Sesquiterpene alcohol	PubChem CID 519662	Anti-mite activity (57)	
Caryophyllene oxide \(\text{C}_{15}\text{H}_{24}\text{O} \) 220.356 Sesquiterpene	PubChem CID 1742210	Analgesic, Anti-inflammatory (58), Antifungal (59), Anaesthetic (60)	
Phytol \(\text{C}_{20}\text{H}_{40}\text{O} \) 296.539 g/mol Diterpene alcohol	PubChem CID 296.539	Antioxidant (25), Anticancerous (61)	
Spathulenol \(\text{C}_{15}\text{H}_{26}\text{O} \) 220.356 g/mol Sesquiterpene alcohol	PubChem CID 92231	Antifungal (62)	
Viridiflorol \(\text{C}_{15}\text{H}_{26}\text{O} \) 222.372 Sesquiterpene alcohol	PubChem CID 11996452	Anti-inflammatory, Antimycobacterial, Antioxidant (63)	
pneumonia, tuberculosis (70), fever (71,72), vomiting, food poisoning, stomach problems (17) and respiratory tract infections (68). Leaves are used to cure scabies and ringworms (73) and burning (74). Its leaves are also used as vegetable (75). A decoction of fresh leaves is given orally to cure dyspepsia (76). Bhattachar et al reported that the decoction of roots of Pogostemon plant along with the root of the plant of Ageratum conyzoides was used to cure typhoid by the local people of Nawalparasi district, Nepal (77). Fresh leaves of P. benghalensis are used in Southern Assam for the herbal preparation known as “Shuktani”, which is used for the treatment of diarrhoea, dysentery, and indigestion, and also used by women for lactation and body strength after parturition (16). The young leaves are also used as a vegetable, and used to prepare pancake with powdered rice (78). The essential oil of P. benghalensis is used in the perfumery industry, and its dried leaves are used to scent cloth (79). Leaves and shoots of this plant are also used to extract natural colour and dyes (80), which are further used to decorate the wall of the houses (81). Various traditional uses of P. benghalensis are summarized in Table 2.

Pharmacological activities

Various pharmacological properties have been studied in plant P. benghalensis. Some of such activities like antibacterial, antiviral, antioxidant, antifungal, anti-inflammatory of the plant are given in Table 3 and discussed below.

Antibacterial activity

Taylor et al reported that methanolic extracts of the aerial parts of P. benghalensis possessed antibacterial activity and inhibited the growth of bacteria Bacillus subtilis and Staphylococcus aureus at 2 g/mL (11). Later on, Bhattachar et al reported that the methanolic extract of P. benghalensis from Nepal inhibited the growth of two gram-positive (Bacillus subtilis, Staphylococcus aureus) and two gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), but was found inactive against bacteria Bacillus subtilis and Staphylococcus aureus (12). Thoppil et al studied the antibacterial activity of leaf essential oil of three species of genus Pogostemon (P. benghalensis, P. purpurascens, P. vestitus) against seven strains of bacteria. All three species of Pogostemon showed promising antibacterial activities against all the tested seven bacterial strains. However, the essential leaf oil of P. benghalensis was found to be the most effective in inhibiting bacterial growth. It inhibited the growth of Staphylococcus aureus with the highest inhibition zone (39.33±1.53 mm) as compared to the standard drug gentamycin sulphate with inhibition zone of diameter 35±1.0 mm (13). The methanolic extracts have been demonstrated to inhibit the growth of pathogenic bacteria, Bacillus subtilis and Salmonella typhi (66) thus, validating the traditional use of P. benghalensis as an antibacterial agent in the treatment of various ailments like typhoid, tuberculosis, dysentery, and wounds.

Antiviral activity

The traditional application of P. benghalensis for treatment of cold, cough, dysentery implies an antiviral activity of the plant. Taylor et al screened 21 species of medicinal plants including P. benghalensis for their antiviral activities against three mammalian viruses (Polio virus, Sindbis virus, Herpes simplex virus) and reported that methanolic extracts of the aerial parts of P. benghalensis had considerable antiviral activity. At 200 µg/ml, it effectively inhibited the growth of Sindbis virus (14).

Antifungal activity

Traditionally, leaves of P. benghalensis have been used by local people of Panchthar district (Nepal) to cure scabies, ringworms, thus, implicating the antifungal property of the plant. Various extracts of P. benghalensis were reported to possess antifungal activity. The methanolic extracts of the aerial parts of this aromatic plant showed antifungal activity against Microsporum gypseum and Trichophyton mentagrophytes (11). Similarly, Thoppil et al (13) revealed the antifungal potential of crude essential oil of three species of genus Pogostemon including P. benghalensis against eight fungal strains, and reported that P. benghalensis inhibited the growth of Fusarium solani and Candida albicans with maximum inhibition zone of 32.33±0.08 mm and 32.33±0.52 mm, respectively over the standard antibiotic nystatin (inhibition zone; 30.33±1.53).

Antioxidant activity

In a study conducted by Singh et al, the antioxidant activity of crude essential oil of ten species of family Lamiaceae including P. benghalensis was evaluated through 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity and total antioxidant activity (TAA). The essential oil of P. benghalensis exhibited DPPH scavenging activity and TAA with an EC50 (Half-maximal Effective Concentration) value of 171.3±5.74 µg/mL, 89.5±2.33 µg/mL, respectively whereas, the EC50 value of standard butylated hydroxytoluene (BHT) for DPPH scavenging activity and standard ascorbic acid for TAA were 156.4 and 165.7 µg/mL. The EC50 value of Pogostemon oil was nearly close to the standard value for DPPH scavenging activity, and the EC50 for TAA was lower than the standard value (10).

Larvicidal activity

Anjana and Thoppil evaluated the larvicidal potential of essential oil of four species of genus Pogostemon including P. benghalensis against the fourth instar larvae of Aedes albopictus Skuse. P. benghalensis essential oil showed 100% larval mortality at 100 and 200 ppm concentrations and the activity was attributed to sesquiterpene rich essential oil (9). Several reports have confirmed the larvicidal
Table 2. Traditional uses of *Pogostemon benghalensis*

Place	Local name	Part used	Administration	Traditional uses	References
Uttra Pradesh, India	Maspindi	Leaves	Juice	It is applied on the cut and injuries to stop bleeding.	82
Assam, India	Rujanto	Leaves	Leaf	As leafy vegetable to cure stomach problems	83
Nawalparasi District, Central Nepal	Bhati	Whole plant	Decoction	To cure cold, cough and typhoid	12
Udhampur district, Jammu and Kashmir, India	Kali suaali	Leaves	Decoction	To cure cold, cough and dyspepsia	76
Kumaun, Uttrakhand, India	Pacholi	Leaves	-	Used to scent linen, shawls etc.	79
Assam, India	Rujanto	Leaves	Paste	To make Shuktani (ethno-medico recipe) along with other 34 angiosperms.	16
Panchthar district, Nepal	-	Leaves	-	To cure scabies and ringworms	73
Western Chitwan, Nepal	Rudhilo	Leaves and young shoot	Dye	Used for decoration of house wall	81
Una, Himachal Pradesh, India	Kalibausti	Leaves	Chewing	as anti-diabetic remedy	84
Ahmednagar (Western Ghat), Maharashtra, India	Phangala	Root	Juice and paste	Boiled root juice is given orally and paste is applied on snake bite site	67
Chepang community, Chitwan District, Nepal	Rudilo	Leaves, root	-	To cure fever, malaria, pneumonia, tuberculosis	70
Bhilla tribe, Maharshtra, India	Phangala	Leaves	Juice	Leaf juice along with the dried gums of *Sturculia urens* fried in til oil, is taken orally to cure piles.	85
Bagata tribe, Visakhapatnam district, Andhra Pradesh, India	Gondri poolu	Leaves, roots	-	To cure fever, digestive disorders,	72
Tehrathum district, Eastern Nepal	Rudilo	Roots, leaves	-	To cure haemorrhage	69
Assam, India	Sukloti	Leaves	Juice	To stop bleeding	86
Salem district, Tamil Nadu	Aistributori	Fruits	-	Edible	87
Chitwan, Nepal	Rudhilo	Leaves	-	To cure typhoid, sinusitis	80
Nawarangpur district, Odisha, India	Gonda-dulia, Ishwarjata, Puka-sunga	Leaves	Paste	To cure spondylitis	88
Maharshtra, India	-	Leaves	Fumigation	To repel insect	89
Uttarakhand, India	Lojad	Leaves	Paste	To cure boils and blisters	90
Rangamati District, Bangladesh	Lomboi Shak	Leaves	-	As leafy vegetable	91
activity of sesquiterpenes (92-94).

Anticancerous activity
Patel et al reported the anti-tumour activity of *P. benghalensis* and reported that MST (Median Survival Time) of tumor-bearing mice significantly increased when treated with HEEPB (hydroethanolic extracts), AEPB (aqueous extracts) and 5-FU (5-Fluorouracil) over tumor control. After one month, reported tumor volume was ~1.90 ml ~1.67 and 1.62 ml for the mice groups treated with 5-FU (20 mg/kg), HEEPB (500 mg/kg) and AEPB (500 mg/kg), respectively, over the tumor control mice with ~3 ml of tumor volume (15).

Conclusions
The present review congerated information about the botanical aspects, ethnobotanical uses and recent studies on phytochemistry, and biological activities of different extracts of *P. benghalensis*. Essential oil is highly rich in sesquiterpenes. Various studies have evaluated the anticancerous, antibacterial, antifungal, antiviral, antioxidant and larvicidal properties of the essential oil and different extracts of *P. benghalensis*. It has been found that essential oil and various extracts of *P. benghalensis* possess good pharmacological potential and have broad spectrum activities on various ailments as evident from the traditional knowledge and reported bioassays. Despite ample traditional uses of *P. benghalensis*, only limited *in vivo* model studies have been conducted to evaluate its pharmacological properties. Therefore, there is an utmost need for *in vivo* clinical trials to confirm these pharmacological activities. To further strengthen the pharmacological profile of *P. benghalensis* for drug development, more rigorous research should be conducted on the extraction, identification and the mode of action of the bioactive components at the molecular level. Further, more investigations are required to elucidate the correlation between traditional uses and its pharmacological activities.

Acknowledgment
Sangeeta Dahiya is thankful to University Grant Commission (UGC-BSR), New Delhi, for the financial assistant.

Authors’ contributions
SD wrote the first draft of the paper. DRB and HPS did critical revision. All authors read and approved final version of the manuscript.

Conflict of interest
None to declare

Ethical considerations
Ethical issues have been observed by the authors.

Funding/Support
University Grant Commission (UGC-BSR), New Delhi supported the study.

References
1. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33(8):1582-614. doi: 10.1016/j.biotechadv.2015.08.001.
2. Mathew NS, Negi PS. Traditional uses, phytochemistry and pharmacology of wild banana (*Musa acuminate* Colla): a review. J Ethnopharmacol. 2017;196:124-40. doi: 10.1016/j.jep.2016.12.009.
3. Adhikari PP, Talukdar S, Borah A. Ethnomedicobotanical study of indigenous knowledge on medicinal plants used for the treatment of reproductive problems in Nalbari district, Assam, India. J Ethnopharmacol. 2018;210:386-407. doi: 10.1016/j.jep.2017.07.024.
4. Bakkali F, Averbeck S, Averbeck D, Idaoar M. Biological effects of essential oils—a review. Food Chem Toxicol. 2008;46(2):446-75. doi: 10.1016/j.fct.2007.09.106.

5. Dhalal D, Joshi S, Dhalal PD. Chemical composition of the essential oil of Pogostemon bengalensis (Burm.f.) Kuntze from Nepal. Nat Prod Commun. 2014;9:1-2.

6. Bhuiyan MNI, Varshney VK, Varshney SC, Tomar A, Akter F. Composition of essential oil of the leaf and inflorescence of Pogostemon benghalensis (Burm.f.) Kuntze. Int J Plant Sci. 2011;2(9):271-5.

7. Distribution of Pogostemon benghalensis in Bhutan. Available from: https://biodiversitybt.observation/show/54684?pos=*. Accessed March 12, 2019.

8. Chanotiya CS, Yadav A, Singh AK, Mathela CS. Composition of the leaf and inflorescence essential oil of Pogostemon benghalensis (Burm.f.) from Kumaon. Nat Prod Commun. 2007;2(9):941-4.

9. Anjana S, Thoppil JE. Chemical composition of essential oils of Pogostemon spp. and their larvicidal activity against Aedes albopictus Skuse (Diptera: Culicidae). Int J Environ Biol. 2013;3(3):26-31.

10. Singh S, Batish DR, Kohli RK, Singh HP. An evaluation of the antioxidant properties of some oil yielding lamiaceous plants from Morni hills (Haryana, India). Int J Pharm Sci Res. 2015;6(3):1078-82. doi: 10.13040/ijpsr.0975-8232.6(3).1078-82.

11. Taylor RS, Manandhar NP, Towers GH. Screening of selected medicinal plants of Nepal for antimicrobial activities. J Ethnopharmacol. 1995;46(3):153-9. doi: 10.1016/0378-8741(95)01242-6.

12. Bhattachar S, Chaudhary RP, Taylor RS, Ghimire SK. Biological activities of some Nepalese medicinal plants used in treating bacterial infections in human beings. Nepal J Sci Technol. 2009;10:83-90. doi: 10.3126/njst.v10i0.2830.

13. Thoppil JE, Tajo A, Minija J, Deena MJ, Sreeranjini K, Leeja L, et al. Antimicrobial activity of the essential oils of three species of Pogostemon. J Environ Biol. 2014;35(5):795-8.

14. Taylor RS, Manandhar NP, Hudson JB, Towers GH. Antiviral activities of Nepalese medicinal plants. J Ethnopharmacol. 1996;52(3):157-63. doi: 10.1016/0378-8741(96)01409-2.

15. Patel MS, Antala BV, Dowerah E, Senthilkumar R, Lahkar M. Antimutagenic activity of Pogostemon benghalensis Linn. on ehrlich ascites carcinoma tumor bearing mice. J Cancer Res Ther. 2014;10(4):1071-5. doi: 10.4103/0973-1482.138014.

16. Nath A, Maiti GG, Shuktiit – a new ethno-medico formula of the medicinal plant Pogostemon benghalensis (Lamiaceae). J Ethnopharmacol. 2012;173(3):2704-13. doi: 10.3390/molecules17032704.

17. Ruperto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000;69(2):167-74. doi: 10.1016/s0308-8146(99)00247-2.

18. Haselton AT, Acevedo A, Kavrulova E, Werner E, Kienan J, Dhar P. Repellency of alpha-pinene against the house fly, Musca domestica. Phytochemistry. 2015;117:469-75. doi: 10.1016/j.phytochem.2015.07.004.

19. Orhan I, Küpeii E, Aslan M, Kartal M, Yesilada E. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. J Ethnopharmacol. 2006;105(1-2):235-40. doi: 10.1016/j.jep.2005.10.023.

20. Bourgu S, Pichette A, Marzouk B, Legault J. Bioactivities of black cumin essential oil and its main terpenes from Tunisia. S Afr J Bot. 2010;76(2):210-6. doi: 10.1016/j.sajb.2009.10.009.

21. Santana MF, Quintans-Júnior LJ, Cavalcanti SC, Oliveira MG, Guimarães AG, Cunha ES, et al. p-Cymene reduces orofacial nociceptive response in mice. Rev Bras Farmacogn. 2011;21(6):1138-43. doi: 10.1590/s0102-814620110005000156.

22. Adefunke OK, Acharya R, Singh B. Toxicity of pure compounds isolated from Tagetes minuta oil to Melolontha incognita. Australas Plant Dis Notes. 2007;2(1):101-4. doi: 10.1071/DN07042.

23. Kordali S, Usanmaz A, Bayrak N, Çakir A. Fumigation of volatile monoterpene and aromatic compounds against adults of Sitophilus granarius (L.) (Coleoptera: Curculionidae). Rec Nat Prod. 2017;11(4):362-73.

24. Gu Y, Ting Z, Qiu X, Zhang X, Gan X, Fang Y, et al. Linalool preferentially induces robust apoptosis of a variety of leukemia cells via upregulating p53 and cyclin-dependent kinase inhibitors. Toxicology. 2010;268(1-2):194-20. doi: 10.1016/j.tox.2009.11.013.

25. Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MD. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytochemistry. 2002;9(8):721-6. doi: 10.1016/s0927-8507(01)00547-4.

26. Badawy ME, El-arami SA, Abdelgaleil SA. Acaricidal and quantitative structure activity relationship of monoterpenes against the two-spotted spider mite, Tetanychus urticae. Exp Appl Acarol. 2010;52(3):261-74. doi: 10.1007/s10878-010-9363-y.

27. Taheri Mirghaedi A, Ghelichpour M, Hoseini SM. Myrcene and linalool as new anesthetic and sedative agents in...
common carp, *Cyprinus carpio* - Comparison with eugenol. Aquaculture. 2016;464:165-70. doi: 10.1016/j.aquaculture.2016.06.028.

36. Barocelli E, Calcina F, Chiavarini M, Impicciatore M, Bruni R, Bianchi A, et al. Antinociceptive and gastrointestinal effects of inhaled and orally administered *Lavandula hybrida* Reverchon “Grosso” essential oil. Life Sci. 2004;76(2):213-23. doi: 10.1016/j.lfs.2004.08.008.

37. Slamenova D, Horvathova E, Wsoltova L, Sramkova M, Navarova J. Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat Res. 2009;677(1-2):46-52. doi: 10.1016/j.mrgen.2009.05.016.

38. Su J, Lai H, Chen J, Li L, Wong YS, Chen T, et al. Natural borneol, a monoterpenoid compound, potentiates selencristine-induced apoptosis in human hepatocellular carcinoma cells by enhancement of cellular uptake and activation of ROS-mediated DNA damage. PLoS One. 2013;8(5):e63502. doi: 10.1371/journal.pone.0063502.

39. Wang S, Zhang D, Hu J, Jia Q, Xu W, Su D, et al. A clinical and mechanistic study of topical borneol-induced analgesia. EMBO Mol Med. 2017;9(6):802-15. doi: 10.15252/emmm.201607300.

40. Choi WS, Park BS, Lee YH, Jang DY, Yoon HY, Lee SE. Fumigant toxicities of essential oils and monoterpenes against *Lycoriella mali* adults. Crop Prot. 2006;25(4):398-401. doi: 10.1016/j.cercop.2005.05.009.

41. Mulyaningsih S, Yousn M, El-Readi MZ, Ashour ML, Nibert E, Sporer F, et al. Biological activity of the essential oil of *Kadsura longipedunculata* (Schisandraceae) and its major components. J Pharm Pharmacol. 2010;62(8):1037-44. doi: 10.1111/j.2042-7158.2010.01119.x.

42. Fang Y, Kang Y, Zou H, Cheng X, Xie T, Shi L, et al. eta-bul-mene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/beta-catenin signaling pathway. Fitoterapia. 2018;102. doi: 10.1016/j.fitote.2017.10.015.

43. Chang ST, Chen PF, Wang SY, Wu HH. Antimite activity of essential oils and their constituents from *Taiwania cryptomerioides*. J Med Entomol. 2001;38(3):455-7. doi: 10.1603/022-2358-38.3.455.

44. Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of the sesquiterpene compound from *Annona reticulata* L bark. Nat Prod Res. 2016;30(16):1581-8. doi: 10.1080/14786419.2016.1211580.

45. Turkoglu T, Uysal T, Sancar U. Cytotoxic and cytogenetic effects of alpha-copaene on *Sarcophyton glaucum*. Nat Prod Commun. 2007;2(2):195-9. doi: 10.1002/nph.1049.

46. Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148(2):79-82. doi: 10.1007/s00436-007-0485-z.

47. Ghelardini C, Galeotti N, Di Cesare Mannelli L, Mazzanti A, Stefano M. Parasitic activity of *Sarcophyton glaucum* essential oil. J Ethnopharmacol. 2007;112(1-2):351-3. doi: 10.1016/j.ejphar.2007.04.059.

48. Dahiya SS, Tabana YM, Iqbal MA, Ahamed MB, Ezzat MO, Majid AS, et al. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene beta-caryophyllene from the essential oil of *Aquilaria crassna*. Molecules. 2015;20(7):11808-29. doi: 10.3390/molecules200711808.

49. Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, et al. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of *Coriandrum sativum*. Eur J Pharmacol. 2007;569(3):228-36. doi: 10.1016/j.ejphar.2007.04.059.

50. Sawant SS, Youssef DT, Sylvester PW, Wali V, El Sayed KA. Antiproliferative sesquiterpenes from the Red Sea soft coral *Sarcophyton glaucum*. Nat Prod Commun. 2007;2(2):1-3. doi: 10.1002/nph.1049.

51. Bruce TJ, Birkett MA, Blande J, Hooper AM, Martin JL, Khambay B, et al. Response of economically important aphids to compounds of *Hemizygia petiolata* essential oil. Pest Manag Sci. 2005;61(11):1115-21. doi: 10.1002/ps.1102.

52. Kiran SR, Devi PS. Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of *Chloroxylon swietenia* DC. Parasitol Res. 2007;101(2):413-8. doi: 10.1007/s00436-006-0485-z.

53. Hsu HC, Yang WC, Tsai WI, Chen CC, Huang HY, Tsai YC. Alpha-bulnesene, a novel PAF receptor antagonist isolated from *Pogostemon cablin*. Biochem Biophys Res Commun. 2006;345(3):1033-8. doi: 10.1016/j.bbrc.2006.05.006.

54. Perez-Lopez A, Corto AT, Rivas-Galindo VM, Aranda RS, de Torres NW. Activity against Streptococcus pneumoniae of the essential oil and delta-cadinene isolated from *Schinus molle* fruit. J Essent Oil Res. 2011;23(5):25-8. doi: 10.1080/10412905.2011.970477.

55. Balaji S, Champakam B. Mutagenicity and carcinogenicity prediction of compounds from cardamom (*Elettaria cardamomum*) Maton. Ethnobot Leaflets. 2008;12:682-9.

56. Liu T, Wang CJ, Xie HQ, Mu Q. Guaiol—a naturally occurring insecticidal sesquiterpene. Nat Prod Commun. 2013;8(10):1353-4.

57. Chang ST, Chen PF, Wang SY, Wu HH. Antimite activity of essential oils and their constituents from *Taiwania cryptomerioides*. J Med Entomol. 2001;38(3):455-7. doi: 10.1603/022-2358-38.3.455.

58. Chavan MJ, Wakte PS, Shinde DB. Analgesic and anti-inflammatory activity of caryophyllene oxide from *Annona squamosa* L. bark. Phytomedicine. 2010;17(2):149-51. doi: 10.1016/j.phymed.2009.05.016.

59. Yang D, Michel L, Chaumont JP, Millet-Clerc J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia. 1999;148(2):79-82. doi: 10.1023/a:1007178924408.

60. Sheeja L, Lakshmi D, Bharadwaj S, Parveen KS. Anticancer activity of phytol purified from *Gracilaria edulis* against human breast cancer cell line (MCF-7). Int J Curr Sci. 2016;19(4):36-46.

61. Hubert TD, Wiener DE. Ant-repellent terpenoids from *Melampodium divaricatum*. Phytochemistry. 1985;24(6):1197-8. doi: 10.1016/S0031-9422(00)81099-7.

62. Tresvian LNF, Nascimento KFD, Santos JA, Kassuya CAL, Cardoso CAL, Vieira MDC, et al. Anti-inflammatory,
antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. J Ethnopharmacol. 2016;192:510-5. doi: 10.1016/j.jep.2016.08.053.

64. Unni BG, Borah A, Wann SB, Singh HR, Devi B, Bhattacharjee M. Phytochemical and antibacterial study of traditional medicinal plants of north east India on Escherichia coli. Asian J Exp Sci. 2009;23(1):103-8.

65. Muthuraj K, Shalimol A, Sivapiyya KT, Nagarajan N. Screening of active phytocompounds by GC-MS analysis and in vitro antibacterial activity of endemic plant Pogostemon mollis. International Journal of Recent Advances in Multidisciplinary Research. 2015;2(7):534-9.

66. Naise MG, Bhaadainge DG. In-vitro antibacterial activity of Pogostemon benghalensis (N. Burman) Kuntz. Lamiaceae plant from Melghat (M.S.) India. Int J Appl Res. 2017;x:228-9.

67. Khaye MS, Takate YA, Divekar MV. Plants used as an antitode against snakebite in Akole Taluka of Ahmednagar district (MS), India. J Nat Rem. 2011;11(2):182-92. doi: 10.18311/jnr/2011/443.

68. Saikia P, Khan ML. Diversity of medicinal plants and their uses in homegardens of upper Assam, Northeast India. Asian J Pharm Biol Res. 2011;1:296-309.

69. Rai MB. Medicinal plants of Tehrathum district, Eastern Nepal. Our Nature. 2003;1(1):42-8.

70. Magar DT, Regmi PP, Dutta JP, Pandit BH, Paudel IH, Subedi MS. Natural resources utilization: a case of non-timber forest products in Chepang community of Chitwan district, Nepal. Agric Dev. 2011;8:97-108.

71. Dangol DR. Traditional uses of plants of Commonl and habitats in Western Chitwan, Nepal. J Inst Agric Anim Sci. 2008;29:71-8.

72. Padal SB, Ramakrishna H, Devender R. Ethnomedicinal studies for endemic diseases by the tribes of Munchingiputtu Mandal, Visakhapatnam district, Andhra Pradesh, India. Int J Med Arom Plants. 2012;2(3):453-9.

73. Gautam TP. Indigenous uses of some medicinal plants in Panchhbar district, Nepal. Nepalese J Biosci. 2011;1:125-108.

74. Dutt B. Ethnobiology in Human Welfare. In: SK Jain, ed. Advances in Multidisciplinary Research. 2015;2(7):534-9.

75. Lokho K, Narasimhan D. Ethnobotany of Mao-Naga Tribe of Manipur, India. Pleione. 2013;7(2):314-24.

76. Bhattacharjee M, Borah A, Wann SB, Singh HR, Devi B, Bhattacharjee M. Phytochemical and antibacterial study of traditional medicinal plants of north east India on Escherichia coli. Asian J Exp Sci. 2009;23(1):103-8.

77. Mathur A, Joshi H. Ethnobotanical studies of the Tarai region of Kumaun, Uttarakhand, India. Ethnobot Res Appl. 2013;11:174-203.

78. Poudel M, Singh NB. Medical ethnobiology and indigenous knowledge system found in Darai ethnic group of Chitwan, Nepal. J Inst Sci Technol. 2016;21(1):103-11.

79. Dangol DR. Economic uses of forest plant resources in western Chitwan, Nepal. Banko Janakari. 2002;12(2):56-64.

80. Ali ZA, Ahmad S, Khan IA. Ethnopharmacological survey of Rampur district forests in Rohilkhand region of Uttar Pradesh. Hippo J Unani Med. 2012;7:93-100.

81. Nath A, Maiti GG. An ethnobotanical report on less-known leafy vegetables consumed by different communities of Barak valley, Assam, India. Ecobios. 2011;4:45-55.

82. Gupta S, Sidhu MC, Ahluwalia AS. Plant-based remedies for the management of diabetes. Curr Bot. 2017;8:34-40. doi: 10.19071/ch.2017.v8.3169.

83. Kamble SY, Patil SR, Savant PS, Savant S, Pawar SG, Singh EA. Studies on plants in traditional medicine by Bhilla tribe of Maharashrta. Indian J Tradit Know. 2010;9(3):591-8.

84. Purkayastha J, Dutta M, Nath S C. Ethnomedicinal plants from Dibru-Saikhowa biosphere reserve, Assam. Indian J Tradit Know. 2007;6(3):477-80.

85. Ranjithakani P, Geetha S, Lakshmi G, Murugan S. Preliminary survey of wild edibles of kollis hills of salem. Anc Sci Life. 1992;11(3-4):133-6.

86. Dhal NK, Panda SS, Muduli SD. Traditional uses of medicinal plants by native people in Nawarangpur district, Odisha, India. Asian J Plant Sci. Res. 2015;5(2):27-33.

87. Kulkarni S, Kulkarni DK, Deo AD, Pande AB, Bhagat RL. Use of ethno-veterinary medicines (EVM) from Vidarbha region (MS) India. Biocioscisco. 2014;5(2):180-6.

88. Sharma J, Gaur RD, Gairola S, Paimuli RM, Siddiqi TO. Traditional herbal medicines used for the treatment of skin disorders by the Gujar tribe of Sub-Himalayan tract, Uttarakhand. Indian J Tradit Know. 2013;12(4):736-46.

89. Khatun M, Hassan MA, Islam SN, Rahman MO. Taxonomy of the leafy vegetables in Bangladesh. Bangladesh J Plant Taxon. 2013;20(1):95-123.

90. Arriaga AMC, Malcher GT, Lima JQ, Magalhães FEA, Gomes TMBM, Da Conceição M, et al. Composition and larvicidal activity of the essential oil from Tephrlosa cinerea Pers. J Essent Oil Res. 2008;20(5):450-1. doi: 10.1080/10412905.2008.970056.

91. Lima MA, de Oliveira FFM, Gomes GA, Lavor PL, Santiago GM, Nagao-Dias AT, et al. Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol. 2011;10(55):11716-20. doi: 10.5897/ajb11.1102.

92. Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 2015;76:174-87. doi: 10.1016/j.indcrop.2015.06.050.