Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases

Regina Larionova, K. Byvaltsev, Olga Kravtsova, Elena Takha, Sergei Petrov, Gevorg Kazarian, Anna Valeeva, Eduard Shuralev, Malik Mukminov, Yves Renaudineau, Marina Arleevskaya

PII: S2589-9090(22)00015-6
DOI: https://doi.org/10.1016/j.jtauto.2022.100154
Reference: JTAUTO 100154

To appear in: Journal of Translational Autoimmunity

Received Date: 19 February 2022
Accepted Date: 31 March 2022

Please cite this article as: R. Larionova, K. Byvaltsev, O. Kravtsova, E. Takha, S. Petrov, G. Kazarian, A. Valeeva, E. Shuralev, M. Mukminov, Y. Renaudineau, M. Arleevskaya, SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases, Journal of Translational Autoimmunity (2022), doi: https://doi.org/10.1016/j.jtauto.2022.100154.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.
SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases

Regina Larionova1,2; K. Byvaltsev3; Olga Kravtsova2; Elena Takha1; Sergei Petrov1,4; Gevorg Kazarian1; Anna Valeeva1; Eduard Shuralev1,4,5; Malik Mukminov1,4; Yves Renaudineau1,6; Marina Arleevskaya1,2

1Central Research Laboratory, Kazan State Medical Academy, Kazan, Russia
2Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
3Institute of Fundamental Medicine, Kazan (Volga Region) Federal University, Kazan, Russia
4Institute of Environmental Sciences, Kazan (Volga Region) Federal University, Kazan, Russia
5Kazan State Academy of Veterinary Medicine Named After N.E. Bauman, Kazan, Russia
6Laboratory of Immunology, CHU Purpan Toulouse, INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France

E-mail addresses: reginalarionova1993@mail.ru (R. Larionova); pcketfllofstars@gmail.com (K. Byvaltsev); okravz@yandex.ru (O. Kravtsova); miwutka@yandex.ru (E. Takha), seregapetrov96@yandex.ru (S. Petrov), gevorg.kazarian@mail.ru (G. Kazarian), anna-valeeva@mail.ru (A. Valeeva), eduard.shuralev@mail.ru (E. Shuralev), malik-bee@mail.ru (M. Mukminov), renaudineau.y@chu-toulouse.fr (Y. Renaudineau), marleev@mail.ru (M. Arleevskaya)
Corresponding author: Dr Renaudineau Yves: renaudineau.y@chu-toulouse.fr. Institut Fédératif de Biologie, Laboratoire d’immunologie, CHU Purpan, 330 avenue de Grande Bretagne, 31000 Toulouse.

Conflict of interest: none

Funding: This study was supported by research funding from the “Russian science foundation” (N◦17-15-01099).

Acknowledgements: We are thankful to Dr. Wesley H. Brooks (University of South Florida, USA) for editorial assistance.
Abstract

The clinical and immunological spectrum of acute and post-active COVID-19 syndrome overlaps with criteria used to characterize autoimmune diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Indeed, following SARS-Cov2 infection, the innate immune response is altered with an initial delayed production of interferon type I (IFN-I), while the NF-kappa B and inflammasome pathways are activated. In lung and digestive tissues, an alternative and extrafollicular immune response against SARS-Cov2 takes place with, consequently, an altered humoral and memory T cell response leading to breakdown of tolerance with the emergence of autoantibodies. However, the risk of developing severe COVID-19 among SLE and RA patients did not exceed the general population except in those having pre-existing neutralizing autoantibodies against IFN-I. Treatment discontinuation rather than COVID-19 infection or vaccination increases the risk of developing flares. Last but not least, a limited number of case reports of individuals having developed SLE or RA following COVID-19 infection/vaccination have been reported. Altogether, the SARS-Cov2 pandemic represents an unique opportunity to investigate the dangerous interplay between the immune response against infectious agents and autoimmunity, and to better understand the triggering role of infection as a risk factor in autoimmune and chronic inflammatory disease development.

Keywords: SARS-Cov2, infection, rheumatoid arthritis, systemic lupus erythematosus, risk factors, inflammation.

Highlights:

- SARS-Cov2 leads to a dysregulated immune response that mimics systemic autoimmune diseases.
- Sera from acute and post-active COVID-19 syndrome may contain SLE and RA associated autoantibodies.
- COVID-19 infection and vaccination impact on SLE and RA (incidence, flare) is limited.
Abbreviations:

ACE2: angiotensin converting enzyme 2; ACPA: anti-cyclic citrullinated peptide autoAb; ANA: antinuclear autoAb; aPL: antiphospholipid; AutoAb: autoantibodies; BAFF/BlySS: B-cell-activating factor/B lymphocyte stimulator; CCL: chemokine ligand; COVID-19: coronavirus disease 2019; DMARDs: disease-modifying anti-rheumatic drugs; E: envelope; HEp-2: human epithelioma cell line 2; IFN-I: interferon type I; IFNAR: IFN-alpha receptors; Ig: immunoglobulin; IL: interleukin; IRF: interferon regulatory factor; ISGs: IFN-stimulated genes; ITP: immune-thrombocytopenic purpura; Jak: Janus kinase; LDH: lactate dehydrogenase; M: membrane; mAb: monoclonal Ab; MDA-5: melanoma differentiation-associated protein; MERS-Cov: Middle East respiratory syndrome coronavirus; MIS-C: multisystem inflammatory syndrome in children; N: nucleocapsid; NET: nuclear extracellular traps; NF-κB: nuclear factor-kappa B; NK: natural killer; NLRP3: NOD-like receptor family, pyrin domain containing 3; ORF: open reading frame; PACS: post-active COVID-19 syndrome; PAD-4: peptidylarginine deiminase 4; PAMPs: pathogen-associated molecular patterns; pDC: plasmacytoid dendritic cells; PMN: polymorphonuclear leukocytes; PRRs: pattern recognition receptors; RA: rheumatoid arthritis; RBD: receptor binding domain; RF: rheumatoid factor; RIG-I: retinoic acid-inducible gene I; ROS: reactive oxygen species; rt-PCR: reverse transcription polymerase chain reaction; S: spike; SAD: systemic autoimmune disease; SARS-Cov2: severe acute respiratory coronavirus 2; SjS: primary Sjögren’s syndrome; SLE: systemic lupus erythematosus; SSC: systemic sclerosis; ssRNA: single-stranded ribonucleic acid; STAT: signal transducer and activator of transcription; TCR: T cell receptor; TLR: Toll-like receptor; TMPRSS2: transmembrane serine protease 2; TNF: tumor necrosis factor; Treg: regulatory T cells; VDJ: variable, diversity and joining Ig genes
1. **SARS-Cov2 characteristics and infection**

Our knowledge regarding SARS-Cov2 (severe acute respiratory coronavirus 2) infection, in COVID-19 (coronavirus disease 2019) patients, is largely based on research data obtained from SARS-Cov and MERS-Cov (Middle East respiratory syndrome coronavirus), two other representatives of the betacoronavirus family. This analogy can be done as the three human betacoronavirus share common characteristics: (i) similar genomes (80% homology between SARS-Cov2 and SARS-Cov; and 50% with MERS-Cov); (ii) an elevated rate and similar mode of transmission; and (iii) a severe clinical infection spectrum with lung damage and the development of a cytokine storm (Zawawi et al., 2021) (Petrosillo et al., 2020) (Liu et al., 2020). Of course, differences exist between them, which is beyond the scope of this review (Abdelrahman et al., 2020).

Members of the coronaviridae family share characteristics of being large, enveloped, and to possess a long ssRNA (single-stranded ribonucleic acid) genome, ranging from 25 to 32 kb (kilobases). The genome of coronaviridae contains four main structural proteins known as spike (S), envelope (E), membrane (M), and nucleocapsid (N) plus proteins implicated in RNA replication and non structural proteins that interfere with the host innate immune response (Sariol and Perlman, 2020a), (de Wit et al., 2016). Viral entry into host cells requires two steps, initially the RBD (receptor binding domain) present in the S1 part of the spike protein of SARS-Cov and SARS-Cov2 binds host cells using ACE2 (angiotensin converting enzyme 2) as a receptor. Next, the S2 part of spike is proteolytically activated for cellular fusion, which can be done at the S1/S2 boundaries by human proteases such as the TMPRSS2 (transmembrane serine protease 2), and by lysosomal cathepsins. In mature viruses, the three-dimensional structure of spike is also important in the mature virus with a spike protein present either in a “standing-up” position comprising the three receptor RBD/S1 heads sitting on the top of a trimeric structure, or else as a “lying-down” position for immune evasion (Yuan et al., 2017). ACE2 receptor expression presents an ubiquitous distribution with a high expression reported in epithelial cells of the respiratory (alveoli, mucous membrane of the oral cavity, nose, nasopharynx), digestive (stomach, intestines) and cardio-renal tracts, while a a limited expression characterizes the brain and lymphoid tissues (lymph nodes, thymus, spleen, liver, and blood cells) (Harmer et al., 2002) (Sariol and Perlman, 2020a), (Ziegler et al., 2020).
Accordingly, SARS-Cov2 can potentially infect all cell types, except those cells that do not express or express low amounts of ACE2 such as immune and red blood cells. Consequently, and since the mouth is the primary route of SARS-Cov2 infection and transmission, microbiological swabs from the nasopharynx are recommended to analyze the possible routes of viral transmission and infection (Lamers et al., 2020).

ACE2 expression and activity are promoted by cigarette smoking, chronic obstructive pulmonary disease, diabetes, heart diseases, and SLE (systemic lupus erythematosus), an autoimmune disease, and with the magnitude of response varying with sex and age. In SLE, the beginning of this phenomenon comes from a defective DNA methylation of the X chromosome in CD4+ T cells (Sawalha et al., 2020); (Bost et al., 2022). ACE2 serum concentrations are reported to be low in connective tissue diseases such as SLE, RA (rheumatoid arthritis), SjS (primary Sjögren’s syndrome), and SSc (systemic sclerosis), while an elevated ACE2 level predicts the COVID-19 severity (X. Tang et al., 2021); (Fagyas et al., 2022). The presence of autoAb (autoantibodies) targeting ACE2 in SLE patients with vasculopathies has been reported (Takahashi et al., 2010). Moreover, anti-TNFα (tumor necrosis factor) and Jak (Janus kinase)-inhibitors used in RA are effective for controlling ACE2 expression, which may contribute to prevention of infections and/or severe forms induced by COVID-19 (Keewan et al., 2021); (X. Zhang et al., 2020).

Typically, the SARS-Cov2 viral load from upper respiratory tract samples (nasopharyngeal or throat swabs) peaks in the first week after the onset of infection and decreases rapidly over the next 2-4 weeks (Sun et al., 2020). The mean duration of virus isolation from sputum samples (34 days) is longer than from nasopharynx (19 days). It’s of further importance to note that viral load is positively correlated with severe acute respiratory symptoms and the viral clearance is delayed when age is over 65 years old (Néant et al., 2021). In rare cases of viral pneumonia, viral ssRNA detection from oropharyngeal swabs remain positive for more than 4 months, usually in relation to a delayed or defective humoral immune response against SARS-Cov2 (Li et al., 2021) (Agarwal et al., 2020). Moreover, viral RNA is also revealed in fecal samples but only in the mild cases of the infection (Y. Chen et al., 2020). After the first negative airway test, SARS-Cov2 can be detected in various organs, including intestines, kidney, heart, and brain several months after resolution of acute infection.
when using a rt-PCR (reverse transcription polymerase chain reaction) or a histological approaches (Yang et al., 2020) (Rizzo et al., 2021). Thus, its supports the concept that inflammation associated with SARS-Cov2 in reservoir organs contributes to PACS (post-active COVID-19 syndrome), which may be important in triggering autoimmune/inflammatory diseases (Neurath et al., 2021); (Proal and VanElzakker, 2021).

2. Innate immune response against SARS-Cov2

Inhaled SARS-Cov2 particles infect nasal and alveolar epithelial cells, and a robust viral replication is promoted through a delayed production of IFN-I (interferon type I) leading enhancement of the cytopathic effect of the virus (Figure 1). In addition, and through ACE2 binding and internalization in epithelial cells, SARS-Cov2 exerts a robust activation leading to the release of monocyte chemoattractant (e.g. CCL [chemokine ligand]-2, CCL-7) and pro-inflammatory cytokines (e.g. IL [interleukin]-6, IL-1ß) (Birra et al., 2020), (Totura et al., 2015). Following their recruitment, circulating monocytes differentiate into pro-inflammatory macrophages through activation of the NF-κB (nuclear factor-kappa B) and inflammasome pathways that can lead, on one hand, to ACE2 overexpression to reinforce viral infection, and, on the other hand, to an exuberant inflammatory response known as a cytokine storm at the onset of tissue damage (Birra et al., 2020), (Sariol and Perlman, 2020b).

1.1 Delayed production of interferon type I

The critical event that determines the outcome of the disease is related to the capacity of SARS-Cov2 to delay the IFN-I/Jak-STAT (signal transducer and activator of transcription) response. This pathway is critical for controlling viral spread and possesses an immunomodulatory role on both the innate immune response through the control of macrophage phagocytosis and the NK (natural killer) cell response, and on the acquired immune response by acting on antigen-presenting cells for T cell activation, and on B cell maturation. Like other RNA viruses, viral proteins and the RNA component of the coronaviridae are detected by host sensors of PAMPs (pathogen-associated molecular patterns). Corresponding host sensors implicated in the IFN-I response and referred to as PRRs (pattern recognition receptors) include TLR (Toll-like receptor)-3 and TLR-4 located in the cell membrane, TLR-7 and TLR-8 located in endosomes, plus RIG-I (retinoic acid-inducible gene I) and MDA-5.
melanoma differentiation-associated protein) located in the cytoplasm (Manik and Singh, 2021). Among them, RIG-I/MDA-5 and TLR-7/8 are the main sensors in SARS-Cov2 recognition leading to the recruitment and activation of the IRF (interferon regulatory factor)-3, IRF-5, and NF-kB p65, which are necessary for the IFN-I response. Next, IFN-I binds in an autocrine and paracrine response to the cell surface IFNAR (IFN-alpha receptors)-1/2 that trigger activation of the Jak-STAT signaling pathway, which in turn drives the expression of hundreds of ISGs (IFN-stimulated genes). In order to control the IFN-I/Jak-STAT pathway, several non-structural proteins of SARS-Cov2 are described as interactors of host proteins at the different steps of this pathway (Han et al., 2021). Moreover, the presence of neutralizing autoAb directed against IFN-I and/or genetic polymorphisms (TLR-3, TLR-7 and IRF-7) influencing the IFN-I/Jak-STAT pathway are reported in severe COVID-19 patients (Bastard et al., 2020); (Q. Zhang et al., 2020) (Arleevskaya et al., 2020).

The presence of autoAb directed against IFN-I retrieved in SLE patients is suspected of being a risk for severe COVID19 (Gupta et al., 2020). This autoAb production results from an exacerbated IFN-I pathway that characterizes patients with systemic autoimmune diseases (SAD) (Bettacchioli et al., 2021) (Barturen et al., 2021) (Simon et al., 2021), and the presence of neutralizing anti-IFN-I autoAb lower disease activity as reported in SLE but not in RA (Morimoto et al., 2011); (Gupta et al., 2016). Moreover, polymorphisms causing activation of the IFN-I pathway result in a phenotype, known as interferonopathy, which recapitulates some of the manifestations of lupus (Gallucci et al., 2021). Due to the key role played by the IFN-I pathway in the physiopathology of SLE, the control of the circulating levels of IFN-I represents an interesting therapeutic option in SLE that could be exploited by targeting pDC (plasmacytoid dendritic cells) that secrete inappropriate levels of IFN-I (e.g. anti-BDCA2/BIIB059), by targeting IFN-I or IFNAR, by controlling IFN-I production (e.g. hydroxychloroquine), and downstream by controlling autoAb production and the formation of immune complexes with apoptotic nucleic acids (e.g. Belimumab) via the cytokine BAFF/BlySS (B-cell-activating factor/B lymphocyte stimulator), which contributes in an amplification loop to pDC hyperactivation (Chaichian et al., 2019); (Morand et al., 2020); (Cenac et al., 2022); (Wilkinson et al., 2020) (Figure 2). The use of mAb (monoclonal Ab) to target IFN-I or IFNAR in SLE
patients influences the innate immune response with a higher report of upper respiratory tract infections, nasopharynx, bronchitis and herpes reactivation (Koh et al., 2020).

1.2 Activation of the NF-kappaB pathway
The inhibitory effect of SARS-CoV 2 on the IFN-I pathway is counterbalanced by a hijacking the NF-κB pathway, which is responsible for upregulating the expression of inflammatory cytokines (e.g. IL-1β, IL-8, IL-6), chemokines (e.g. CXCL-10, CCL2), alarmins and inducible enzymes, which paves the pathway for a cytokine storm, ACE2 overexpression (see above), attraction of immune cells to the inflammatory sites, and as a consequence, organ damage (J. Wang et al., 2020), (W. Wang et al., 2020), (de Wit et al., 2016). The hijacked effect can be massive as seen in post-mortem investigations of deaths from COVID-19, an immune redistribution is reported that consists of the presence in tissues macrophages and monocytes supplemented with PMN (polymorphonuclear leukocytes), eosinophils and CD4+ T cells, while spleen and lymph nodes are decimated due to apoptosis in lymphoid organs (Fagyas et al., 2022); (Xiang et al., 2021). The inappropriately high blood level of proinflammatory cytokines is associated with lymphopenia, disease severity and higher morbidity. However, authors differ on biomarkers of poor prognosis: IL-6 and IL-10 (Luporini et al., 2021), IL-2R, IL-6, IL-10, TNF-α (G. Chen et al., 2020); IL-1B, IFN-γ, IFN-inducible protein 10, and monocyte chemoattractant protein 1 (Quirch et al., 2020)); and CXCL-10, CCL2 and proteins encoded by IFN-stimulated genes (de Wit et al., 2016).

1.3 Activation of the NRP3 inflammasome
SARS-CoV2 triggers NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome priming directly through viral protein (e.g., ORF [open reading frame]-3, envelope, nucleocapsid) and indirectly in response to various signals that include but are not limited to ion fluxing, protein aggregation, the NF-κB pathway, and ROS (reactive oxygen species). When assembled, the inflammasome starts to cleave and release the proinflammatory cytokines IL-1β and IL-18 into their mature forms and gasdermin D into its active fragment necessary to initiate the programmed cell death pyroptosis process (Birra et al., 2020). A moderate NLRP3 inflammasome activation is beneficial due to its capacity to eliminate microbial infection, to repair damaged tissues, and to induce T and B cell responses, but when the activation
becomes major this can lead to an excessive inflammation, tissue damage and pain. In COVID-19 patients, disease severity and mortality are correlated with IL-1β and IL-18 levels and the release of LDH (lactate dehydrogenase) by pyroptosis.

The NLRP3 inflammasome is overactivated in multiple autoinflammatory disorders including SLE and RA (Kong et al., 2022). In addition, NLRP3 inflammasome related polymorphisms are associated with susceptibility, disease severity and/or therapeutic responses in SAD (Li et al., 2020), and they are suspected of contributing to disease severity in COVID-19 (Grimaudo et al., 2021).

3. **Acquired immune response**

1.4 **Humoral response**

Anti-SARS-Cov2 seroconversion starts with a median of 9-21 days from onset of symptoms, and responsiveness broadens with participation of the three Ig (immunoglobulin) isotypes IgM/IgG/IgA (Hsueh et al., 2004). The most commonly produced Ab are those targeting the Spike glycoprotein and the highly conserved nucleocapsid protein. Neutralizing anti-SARS-Cov2 Ab are directed against the RBD/S1 domain and prevent the interaction between the coronavirus and the cellular receptors, Spike and ACE2, respectively. Regarding IgG neutralizing anti-spike Ab, the detection starts very early (at 5 days post-infection in severe COVID-19), the titer peaks at 15–20 days and with higher levels reported in severe COVID-19, reaching a plateau that starts to decline from 40 days post-onset, and next a rapid decline is reported (Oliveira-Silva et al., 2022); (Legros et al., 2021); (Woodruff et al., 2020). Qualitatively, the humoral response evolved into an IgG1 dominated response with a limited VDJ (variable, diversity and joining Ig genes) segment recombination and autoreactivity (e.g. 9G4 idiotope), which is consistent with an extrafollicular B cell response.

Plasma cell development is responsible for the production of protective anti-infectious Ab and traditionally this arises in secondary lymphoid organs through germinal center responses that control somatic hypermutation, class switching and autoreactivity. However, early production of elevated levels of neutralizing anti-SARS-Cov2 Ab can also occur from extrafollicular locations, a pathway chronically mobilized in SLE, and RA (Woodruff et al., 2020). Driven by the IFN-I pathway, the extrafollicular B
cell response is elevated in patients with severe COVID-19 (Hoehn et al., 2021). Extrafollicular B cells and plasmablasts have been reported in the thoracic, cervical, mediastinal and hilar lymph nodes missing germinal centers from severe COVID-19 patients, peripheral blood from SLE, and in synovium from RA patients (Kaneko et al., 2020); (Martinez-Gamboa et al., 2006).

1.5 T cell response
A common symptom in COVID-19 is lymphopenia with a reduction in the absolute number of CD4+ T cells, in particular ones expression IFN-γ, as well as CD8+ T cells and B cells (G. Chen et al., 2020), (F. Wang et al., 2020), (Kong et al., 2020). Lymphopenia gradually decreased as the severity of the infection increased, showing a negative correlation with the proinflammatory cytokine levels. Moreover, T cells presented reduced diversity in their TCR (T cell receptor) usage and a functional exhaustion was demonstrated in the severe infection cases (Zheng et al., 2020).

When regarding SARS-Cov/SARS-Cov2 CD4+ and CD8+ T cells, the memory T cell response is maintained for at least 4-6 years after infection in 70%–100% of patients, and is partially correlated with the infection severity (Fan et al., 2009), (Oh et al., 2011), (Tang et al., 2011). The T cell epitopes are more widely represented than those of B cells (Liu et al., 2017). Study of mouse models demonstrated that T cells alone may control SARS-Cov and depletion of CD4 T cells during SARS-Cov infection resulted in impaired viral clearance and reduced neutralizing Ab titers (Chen et al., 2010), (Zhao et al., 2010). Effector CD4+ T cells express IFN-γ and other cytokines, while CD8+ T cells producing IL-10 and Treg (regulatory T cells) protect against an excessive immune response (Sariol and Perlman, 2020b).

4. Tolerance breakdown
1.6 Autoantibodies
An elevated prevalence of autoAb is often reported in patients with acute COVID-19, and the most frequent associations are described with aPL (antiphospholipid) autoAb, ANA (antinuclear autoAb), RF (rheumatoid factor), and ACPA (anti-cyclic citrullinated peptide autoAb) (Lingel et al., 2021). Among patients hospitalized with COVID-19, more than half presented aPL autoAb including a positive lupus anticoagulant assay, anti-cardiolipin and/or anti-β2GPIs autoAbs predominantly of the
IgM isotype (Dotan et al., 2021) (Taha and Samavati, 2021). However, no association between aPL autoAb and thromboembolism outcomes were reported as explained by the analysis of the aPL epitopes recognized during COVID-19, which are outside the pathogenic epitopes retrieved in aPL syndrome (Borghi et al., 2020); (Arvieux et al., 2002) (Bettacchioli et al., 2019). The prevalence of ANA tested on HEP-2 (human epithelioma cell line 2) by immunofluorescence range from 30-50% in hospitalized patients with COVID-19 with the particularity to be weakly positive, to present a cytoplasmic rather than a nuclear pattern and, when related to SAD-associated antinuclear autoAb, a single nuclear target is reported (Lerma et al., 2020); (Gazzaruso et al., 2020). Regarding the relationship between severe COVID-19 and RA-associated autoAb, IgM RF is primarily present (20-60%) and few cases of ACPA are reported (Anaya et al., 2021) (Renaudineau et al., 2005). Such observations are not restricted to SARS-Cov2 infection as the level of natural and low affinity autoAb is typically retrieved during various infections and returns to normal when the infectious inflammation subsides (Litwin and Binder, 2016), (Bayry et al., 2005). Taken together, this implies that autoAb production associated with COVID-19 infection is predominantly associated with an immune system activation rather than driven by a specific SARS-Cov2 specific immunopathological process. However, based on the implication of infections as a risk-factor for autoimmune diseases (Arleevskaya et al., 2016), it could not be excluded that COVID-19 infection or vaccine can disturb self-tolerance and trigger an autoimmune response. This is is reported with both ITP (immune-thrombocytopenic purpura) and MIS-C (multisystem inflammatory syndrome in children), a pediatric autoimmune medium-vessel vasculitis (Zulfiqar et al., 2020) (Gracia-Ramos and Saavedra-Salinas, 2021); (Baimukhamedov et al., 2021); (Sharma et al., 2021). Autoimmunity induced by COVID-19 can be promoted through cross-reactivity with foreign antigens (molecular mimicry), or through direct activation by the emergence of new antigenic epitopes as a result of tissue damage (e.g. nuclear apoptotic antigens) and/or post-translational modifications of self-proteins (e.g., citrullination).

1.7 Molecular mimicry
Molecular mimicry between COVID-19 viral epitopes and auto-epitope leading to autoAb production was initially suspected based on the use of bioinformatic models with linear sequence homology models, but with limited, if any, experimental
evidence (Kanduc, 2020). Indeed, cross-mimicry was not confirmed through competition experiments when using increased amounts of the autoantigen to test reactivity against SARS-Cov2, or vice versa when testing autoreactivity from a large panel of sera with organ and non-organ-specific autoimmune diseases in the presence SARS-Cov2 (Damoiseaux et al., 2021).

1.8 Post-translational modifications (new epitops)
An elevated citrullination process indicative of neutrophil extracellular trap formation, in response to neutrophil activation/NETosis (neutrophil extracellular trap releases), and PAD-4 (peptidylarginine deiminase 4) overexpression is reported in the lung from severe COVID-19 (Arisan et al., 2020); (Demoruelle et al., 2017). Citrullinated Histone-3 in COVID-19 was further shown to be associated with inflammation and neutrophil count (Zuo et al., 2020). The use of peripheral blood citrullinated nucleosomes levels as a biomarker has been proposed to follow severe COVID-19 (Cavalier et al., 2021). As a consequence, long term exposure to citrullinated proteins may lead to the formation of ACPA and/or anti-chromatin/nucleosome autoAb that characterize RA and SLE, respectively. This is in line with a recent report describing RA in a case of chronic-COVID-19 with development ACPA (Perrot et al., 2021).

5. SARS-COV-2/Covid19 vaccination and autoimmune and chronic inflammatory diseases: friends, foes or both
Based on the previous arguments that COVID-19 shares similarities with SLE and/or RA in terms of clinical manifestations, therapeutic management, pathogenic mechanisms and immune responses one may argue: (i) that patients with SAD are at higher risk of developing severe COVID-19; (ii) that drugs used to treat SAD control or exacerbate the inappropriate immune response to SARS-Cov2; (iii) that SAD severity increases following COVID-19 vaccination and/or exposure to SARS-Cov2 as reported with other respiratory viruses; and (iv) that PACS predispose to the emergence of SAD.

1.9 SAD, medications and severe COVID19 risk
Considering the pathological crosstalk between COVID-19 and SAD, the risk of developing COVID-19 and exacerbating COVID-19 outcomes was first suspected in
SLE and RA patients. However, data are now accumulating that counter this hypothesis since COVID-19 incidence in SLE and RA did not exceed that in the general population, and the hospitalization rate appears similar to that identified in the general population. However, such an association needs to be better understood since lupus nephritis represents a predictive risk factor of severe COVID-19 and a poor onset prognosis with long-term COVID-19 is also observed among SLE patients (Mageau et al., 2021); (Sakthiswary et al., 2021); (Holubar et al., 2020); (Zucchi et al., 2021); (Jung et al., 2021).

The use of DMARDs (disease-modifying anti-rheumatic drugs) in SLE and RA elicited a substantial effect on the innate and acquired immune response, supporting the idea that DMARDs used prior to SARS-Cov2 infection can influence COVID-19 outcome with three groups of responses (Saadoun et al., 2021); (Gianfrancesco et al., 2020). First, RA patients receiving anti-TNFα agents are at lower risk of hospitalization and death (Akiyama et al., 2020). Second, glucocorticoids (>10 mg/day), DMARDs when used in combinations, and the anti-B cell mAb rituximab increase the risk of COVID-19 outcomes in RA patients (Sparks et al., 2021). Third, patients treated with (hydroxy)chloroquine, conventional DMARDs in monotherapy, T cell co-stimulatory signal inhibitors (e.g. abatacept), IL-6 inhibitors, and non-steroidal anti-inflammatory drugs presented a similar occurrence and outcome of COVID-19 as occurred with the controls. Regarding hydroxychloroquine, the risk of adverse reactions increases when doses are higher than usual in hospitalized COVID-19 patients (Pileggi et al., 2021). Regarding Jak-inhibitors, conflicting results have been reported, which may be related to the dual effect of Jak-inhibitors in controlling both the innate immune response and the cytokine storm associated with severe COVID-19 (Kalil et al., 2021).

The presence of pre-existing neutralizing autoAb against IFN-I, first described in SLE and subsequently in patients treated with IFN (alpha or beta) has been demonstrated to account for at least 10-20% of severe COVID19 with pneumonia the anti-IFN-I autoAb are absent from asymptomatic/mild COVID-19 (Bastard et al., 2020). The prevalence increases in patients over 65 years old and predominates in men. Except for COVID-19, the presence of these neutralizing autoAb is generally considered to be clinically silent.
1.10 SAD activity in response to viral infections and vaccinations

Lessons from seasonal influenza infection in patients with SLE have established influenza infections as a trigger for SLE flares, through a suspected exacerbation of the IFN-I/Jak-STAT signaling pathway (Joo et al., 2021a), (Joo et al., 2021b), (Lee et al., 2020). In RA, complications evolved with the seasonal waves of influenza (Blumentals et al., 2012). We have further reported in RA patients that systemic herpes reactivation is associated with an exacerbation of disease activity (Larionova et al., 2019); (Arleevskaya et al., 2017), and that upper respiratory tract infections precede RA at the preclinical stage in a genetically predisposed population (Arleevskaya et al., 2018).

SLE flare risk was evaluated after SARS-Cov2 infection revealing that treatment discontinuation rather than COVID-19, usually mild, is at the origin of disease flares (Zucchi et al., 2021). As a consequence, drug withdrawal should be avoided or evaluated with caution on a case-by-case basis including during pregnancy (Smeele et al., 2021). When considering the risk of a flare following COVID-19 vaccination in SLE patients, the risk remains similar in pre- and post-vaccination (Izmirly et al., 2022); (Spinelli et al., 2022).

1.11 SAD risk after COVID19 infection

1.1.1 Clinical homology

Acute and PACS are characterized by a large panel of clinical manifestations ranging from asymptomatic symptoms to fatal respiratory failure, and are often associated with manifestations shared with SAD such as musculoskeletal, dermatological, pulmonary, digestive, cardiovascular, kidney injury, thromboembolic events and neurological symptoms (Moody et al., 2021); (Chen et al., 2021); (Crivelenti et al., 2021), (Zamani et al., 2021), (Slimani et al., 2021), (Mantovani Cardoso et al., 2020), (K.-T. Tang et al., 2021), (Gracia-Ramos and Saavedra-Salinas, 2021), (Slimani et al., 2021), (Bonometti et al., 2020), (Alivernini et al., 2021), (Talarico et al., 2020), (Derksen et al., 2021), (Joo et al., 2019), (Perrot et al., 2021), (Kanduc, 2020)).

Potential mechanisms contributing to SAD-associated clinical symptoms include direct virus replication in acute/chronic infection, inflammation, and immune changes in response to the infection (Nalbandian et al., 2021). In pediatric forms, overlapping features have been noted with Kawasaki disease, a pediatric autoimmune medium-
vessel vasculitis, such as coronary artery dilation or aneurysm, fever, gastrointestinal symptoms, skin rash, mucocutaneous lesions, toxic-shock syndrome, and neurological symptoms (Sharma et al., 2021).

1.1.1 COVID19 and SLE

SLE starts with an inappropriate innate and acquired immune response to nucleic-acid-containing apoptotic cellular components triggered by sustained production of IFN-I (Kaul et al., 2016). In this process, candidate environmental risk factors include UV light exposure and chronic virus exposition such as cytomegaloviruses (CMV), Epstein Barr viruses (EBV), parvovirus B19 and retroviruses, SARS-Cov2 was recently added to this list as ANA and aPL auto-Ab together with an IFN-I signature and inappropriate immune system activation characterize acute COVID-19 and PACS (see above). However and based on the low number of reports of SLE confirmed to be triggered by SARS-Cov2, the SLE-like immune profile associated with COVID-19 is not sufficient to trigger SLE, then SARS-Cov2 infection represents an ideal experimental model for understanding some aspects of SLE pathophysiology and to prevent the emergence of SLE in COVID-19 infected individuals.

1.1.2 COVID19 and RA pathophysiology

RA development occurs in genetically predisposed individuals exposed to environmental factors, which ultimately result in an inflammatory destructive synovial response (Smolen et al., 2018). As reported with tobacco smoking and air pollutants, COVID-19 can act on cells in mucosal sites (mouth, lung and gut) to promote the induction of PADI-4 and in turn to the formation of citrullinated histones (Ng et al., 2021); (Elliott et al., 2021). This process is suspected of becoming chronic in PACS since lung sensory neurons and the gut represent mucosal reservoirs for SARS-Cov2 (Su et al., 2022); (Hiroki et al., 2021); (Neurath et al., 2021). Moreover, COVID-19 infection is primarily a respiratory infection with 70-80% of patients presenting radiographic lung involvement that appear simultaneously with fever, in some cases, even precedes fever (Antonio et al., 2005), (Rainer, 2003). COVID-19 chest computed tomography images such as ground glass opacities may resemble rheumatologic SAD including SLE and RA with extensive lung involvement, making the diagnosis of viral infection challenging (Eslambolchi et al., 2021). Due to inflammation, bone erosion leading to rheumatoid nodules may be detected.
(Shimoyama et al., 2022), and viral SARS-Cov2 RNA retrieved in the synovial fluid (Kuschner et al., 2021) (Zeidler, 2021). The shift from reactive arthritis following COVID-19 infection to RA remains exceptional, which supports the possibility that additional genetic and environmental factors are required (Arleevskaya et al., 2021).

6. Conclusion
The new SARS-Cov2 infection that paralyzed the world presented a unique opportunity to investigate the unsolved problem of the interaction between an anti-infectious immune response and autoimmunity. For that, several key questions remain to be answered including: (i) the role played by transitory (e.g. vaccine) and chronic exposition; (ii) the location of the viral reservoir and its accessibility to the immune system; (iii) the capacity of SARS-Cov2 to initiate an autoreactive program; (iv) the predisposition and protective factors implicated in this shift; and (v) the complex characteristics of immune cells.
Figures

Figure 1: Following SARS-Cov2 infection, the initial immune response is altered with an activation of the NF-κB and inflammasome (NRLP3) pathways, while the production of interferon type I (IFN-I) is delayed. Activation of the NF-κB and inflammasome pathways lead to ACE2 (SARS-Cov2 receptor) overexpression that reinforces viral infection, and contributes to an exuberant inflammatory response known as a cytokine storm, at the onset of tissue damage, and the promotion of the autoreactive extrafollicular pathway. In contrast, IFN-I capacity to control the viral spread, innate and acquired immune response is affected.

Figure 2: The extrafollicular pathway generates both viral antibodies and autoantibodies following infection with SARS-Cov2, and similar to autoimmune diseases this pathway is enhanced during severe COVID-19. The cellular actors include tissular plasmacytoid dendritic cells (pDC), monocytoid dendritic cells (mDC), T helper 1 cells (TH1) which can activate B cells into autoimmune B cells (ABC), double negative memory B cells (DN2) and autoreactive plasma cells (PC). The extrafollicular pathway is driven by interferon type I and II, and the cytokines: BAFF, IL-21 and IL-6. Therapeutic targets used in autoimmune diseases and COVID-19 are indicated in red.
7. Bibliography

Abdelrahman, Z., Li, M., Wang, X., 2020. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front. Immunol. 11, 552909. https://doi.org/10.3389/fimmu.2020.552909

Agarwal, V., Venkatakrishnan, A.J., Puranik, A., Kirkup, C., Lopez-Marquez, A., Challener, D.W., Theel, E.S., O’Horo, J.C., Binnicker, M.J., Kremers, W.K., Faubion, W.A., Badley, A.D., Williams, A.W., Gores, G.J., Halama, J.D., Morice, W.G., Soundararajan, V., 2020. Long-term SARS-CoV-2 RNA shedding and its temporal association to IgG seropositivity. Cell Death Discov. 6, 138. https://doi.org/10.1038/s41420-020-00375-y

Akiyama, S., Hamdeh, S., Micic, D., Sakuraba, A., 2020. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: a systematic review and meta-analysis. Ann. Rheum. Dis. annrheumdis-2020-218946. https://doi.org/10.1136/annrheumdis-2020-218946

Alivernini, S., Cingolani, A., Gessi, M., Paglioniaco, A., Pasciuto, G., Tolusso, B., Fantoni, M., Greseme, E., 2021. Comparative analysis of synovial inflammation after SARS-CoV-2 infection. Ann. Rheum. Dis. 80, e91–e91. https://doi.org/10.1136/annrheumdis-2020-218315

Anaya, J.-M., Monsalve, D.M., Rojas, M., Rodríguez, Y., Montoya-García, N., Mancera-Navarro, L.M., Villadiegos-Santana, A.M., Rodríguez-Leguizamón, G., Acosta-Ampudia, Y., Ramírez-Santana, C., 2021. Latent rheumatic, thyroid and phospholipid autoimmunity in hospitalized patients with COVID-19. J. Transl. Autoimmun. 4, 100091. https://doi.org/10.1016/j.jtauto.2021.100091

Antonio, G.E., Ooi, C.G.C., Wong, K.T., Tsui, E.L.H., Wong, J.S.W., Sy, A.N.L., Hui, J.Y.H., Chan, C.Y., Huang, H.Y.H., Chan, Y.F., Wong, T.P., Leong, L.L.Y., Chan, J.C.K., Ahuja, A.T., 2005. Radiographic-Clinical Correlation in Severe Acute Respiratory Syndrome: Study of 1373 Patients in Hong Kong. Radiology 237, 1081–1090. https://doi.org/10.1148/radiol.2373041919

Arisan, E.D., Uysal-Onganer, P., Lange, S., 2020. Putative Roles for Peptidylarginine Deiminases in COVID-19. Int. J. Mol. Sci. 21, E4662. https://doi.org/10.3390/ijms21134662

Arleevskaya, M.I., Albina, S., Larionova, R.V., Gabdoukakhova, A.G., Lemerle, J., Renaudineau, Y., 2018. Prevalence and Incidence of Upper Respiratory Tract Infection Events Are Elevated Prior to the Development of Rheumatoid Arthritis in First-Degree Relatives. Front. Immunol. 9, 2771. https://doi.org/10.3389/fimmu.2018.02771

Arleevskaya, M.I., Kravtsova, O.A., Lemerle, J., Renaudineau, Y., Tsibulkin, A.P., 2016. How Rheumatoid Arthritis Can Result from Provocation of the Immune System by Microorganisms and Viruses. Front. Microbiol. 7, 1296. https://doi.org/10.3389/fmicb.2016.01296
Arleevskaya, M.I., Shafigullina, A.Z., Filina, Y.V., Lemerle, J., Renaudineau, Y., 2017. Associations between Viral Infection History Symptoms, Granulocyte Reactive Oxygen Species Activity, and Active Rheumatoid Arthritis Disease in Untreated Women at Onset: Results from a Longitudinal Cohort Study of Tatarstan Women. Front. Immunol. 8, 1725. https://doi.org/10.3389/fimmu.2017.01725

Arvieux, J., Renaudineau, Y., Mane, I., Perraut, R., Krilis, S.A., Youinou, P., 2002. Distinguishing features of anti-beta2 glycoprotein I antibodies between patients with leprosy and the antiphospholipid syndrome. Thromb. Haemost. 87, 599–605.

Baimukhamedov, C., Makhmudov, S., Botabekova, A., 2021. Seropositive rheumatoid arthritis after vaccination against SARS-CoV-2 infection. Int. J. Rheum. Dis. 24, 1440–1441. https://doi.org/10.1111/1756-185X.14220

Bastard, P., Rosen, L.B., Zhang, Q., Michailidis, E., Hoffmann, H.-H., Zhang, Y., Dorgham, K., Philippot, Q., Rosain, J., Béziat, V., Manry, J., Shaw, E., Haljasmägi, L., Peterson, P., Lorenzo, L., Bizien, L., Trouillet-Assant, S., Dobbs, K., de Jesus, A.A., Belot, A., Kallaste, A., Catherinot, E., Tandjaoui-Lambiotte, Y., Le Pen, J., Kerner, G., Bigio, B., Seeleuthner, Y., Yang, R., Bolze, A., Spaan, A.N., Delmonte, O.M., Abers, M.S., Aiuti, A., Casari, G., Lampasona, V., Piemonti, L., Ciceri, F., Bilguvar, K., Lifton, R.P., Vasse, M., Smadja, D.M., Migaud, M., Hadjadj, J., Terrier, B., Duffy, D., Quintana-Murci, L., van de Beek, D., Roussel, L., Vinh, D.C., Tangye, S.G., Haerynck, F., Dalmau, D., Martinez-Picado, J., Brodin, P., Nussenzweig, M.C., Boisson-Dupuis, S., Rodríguez-Gallego, C., Vogt, G., Mogensen, T.H., Oler, A.J., Gu, J., Burbelo, P.D., Cohen, J.L., Biondi, A., Bettini, L.R., D’Angio, M., Bonfanti, P., Rossignol, P., Mayaux, J., Rieux-Laucat, F., Husebye, E.S., Fusco, F., Ursini, M.V., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Castagnoli, R., Montagna, D., Licari, A., Marseglia, G.L., Duval, X., Ghosn, J., HGID Lab, NIAID-USUHS Immune Response to COVID Group, COVID Clinicians, COVID-STORM Clinicians, Imagine COVID Group, French COVID Cohort Study Group, Milieu Intérieur Consortium, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank, COVID Human Genetic Effort, Tsang, J.S., Goldbach-Mansky, R., KISand, K., Lionakis, M.S., Puel, A., Zhang, S.-Y., Holland, S.M., Gorochov, G., Jouanguy, E., Rice, C.M., Cobat, A., Notarangelo, L.D., Abel, L., Su, H.C., Casanova, J.-L., 2020. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585. https://doi.org/10.1126/science.abd4585

Bayry, J., Misra, N., Dasgupta, S., Lacroix-Desmazes, S., Kazatchkine, M.D., Kaveri, S.V., 2005. Natural autoantibodies: immune homeostasis and therapeutic intervention. Expert Rev. Clin. Immunol. 1, 213–222. https://doi.org/10.1586/1744666X.1.2.213

Bettacchioli, E., Le Gaffric, C., Mazeas, M., Borghi, M.O., Frostegard, J., Barturen, G., Makowska, Z., Babei, S., Lesche, R., PRECISESADS Clinical Consortium, Meroni, P.L., Alarcon-Riquelme, M.E., Renaudineau, Y., 2021. An elevated polyclonal free light chain level reflects a strong interferon signature in patients with systemic
autoimmune diseases. J. Transl. Autoimmun. 4, 100090. https://doi.org/10.1016/j.jtauto.2021.100090

Bettacchioli, E., Nafai, S., Renaudineau, Y., 2019. News and meta-analysis regarding anti-Beta 2 glycoprotein I antibodies and their determination. Clin. Immunol. Orlando Fla 205, 106–115. https://doi.org/10.1016/j.clim.2019.06.002

Birra, D., Benucci, M., Landolfi, L., Merchionda, A., Loi, G., Amato, P., Licata, G., Quartuccio, L., Triggiani, M., Moscato, P., 2020. COVID 19: a clue from innate immunity. Immunol. Res. 68, 161–168. https://doi.org/10.1007/s12026-020-09137-5

Blumentals, W.A., Arreglado, A., Napalkov, P., Toovey, S., 2012. Rheumatoid arthritis and the incidence of influenza and influenza-related complications: a retrospective cohort study. BMC Musculoskelet. Disord. 13, 158. https://doi.org/10.1186/1471-2474-13-158

Bonometti, R., Sacchi, M.C., Stobbione, P., Lauritano, E.C., Tamiazzo, S., Marchegiani, A., Novara, E., Molinaro, E., Benedetti, I., Massone, L., Bellora, A., Boverio, R., 2020. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur. Rev. Med. Pharmacol. Sci. 24, 9695–9697. https://doi.org/10.26355/eurrev_202009_23060

Borghi, M.O., Beltagy, A., Garrafa, E., Curreli, D., Cecchini, G., Bodio, C., Grossi, C., Blengino, S., Tincani, A., Franceschini, F., Andreoli, L., Lazzaroni, M.G., Piantoni, S., Masneri, S., Crisafulli, F., Brugnoni, D., Muiesan, M.L., Salvetti, M., Parati, G., Torresani, E., Mahler, M., Heilbron, F., Pregolato, F., Pengo, M., Tedesco, F., Pozzi, N., Meroni, P.L., 2020. Anti-Phospholipid Antibodies in COVID-19 Are Different From Those Detectable in the Anti-Phospholipid Syndrome. Front. Immunol. 11, 584241. https://doi.org/10.3389/fimmu.2020.584241

Bost, C., Arleevskaya, M.I., Brooks, W.H., Plaza, S., Guery, J.-C., Renaudineau, Y., 2022. Long non-coding RNA Xist contribution in systemic lupus erythematosus and rheumatoid arthritis. Clin. Immunol. Orlando Fla 236, 108937. https://doi.org/10.1016/j.clim.2022.108937

Cavalier, E., Guiot, J., Lechner, K., Dutsch, A., Eccleston, M., Herzog, M., Bygott, T., Schomburg, A., Kelly, T., Holdenrieder, S., 2021. Circulating Nucleosomes as Potential Markers to Monitor COVID-19 Disease Progression. Front. Mol. Biosci. 8, 600881. https://doi.org/10.3389/fmolb.2021.600881

Cenac, C., Ducatez, M.F., Guéry, J.-C., 2022. Hydroxychloroquine inhibits proteolytic processing of endogenous TLR7 protein in human primary plasmacytoid dendritic cells. Eur. J. Immunol. 52, 54–61. https://doi.org/10.1002/eji.202149361

Chaichian, Y., Wallace, D.J., Weisman, M.H., 2019. A promising approach to targeting type 1 IFN in systemic lupus erythematosus. J. Clin. Invest. 129, 958–961. https://doi.org/10.1172/JCI127101
Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, Xiaoyun, Chen, H., Yu, H., Zhang, Xiaoping, Zhang, M., Wu, S., Song, J., Chen, T., Han, M., Li, S., Luo, X., Zhao, J., Ning, Q., 2020. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 130, 2620–2629. https://doi.org/10.1172/JCI137244

Chen, J., Lau, Y.F., Lamirande, E.W., Paddock, C.D., Bartlett, J.H., Zaki, S.R., Subbarao, K., 2010. Cellular Immune Responses to Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection in Senescent BALB/c Mice: CD4 + T Cells Are Important in Control of SARS-CoV Infection. J. Virol. 84, 1289–1301. https://doi.org/10.1128/JVI.01281-09

Chen, Y., Chen, L., Deng, Q., Zhang, G., Wu, K., Ni, L., Yang, Y., Liu, B., Wang, W., Wei, C., Yang, J., Ye, G., Cheng, Z., 2020. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J. Med. Virol. 92, 833–840. https://doi.org/10.1002/jmv.25825

Chen, Y., Xu, Z., Wang, P., Li, X.-M., Shuai, Z.-W., Ye, D.-Q., Pan, H.-F., 2021. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology. https://doi.org/10.1111/imn.13443

Crivelenti, L.R. de M.P., Frazão, M.M.N., Maia, M.P. de M., Gomes, F.H.R., de Carvalho, L.M., 2021. Chronic arthritis related to SARS-CoV-2 infection in a pediatric patient: A case report. Braz. J. Infect. Dis. 25, 101585. https://doi.org/10.1016/j.bjid.2021.101585

Damoiseaux, J., Dotan, A., Fritzler, M.J., Bogdanos, D.P., Meroni, P.L., Roggenbuck, D., Goldman, M., Landegren, N., Bastard, P., Shoenfeld, Y., Conrad, K., 2021. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun. Rev. 21, 103012. https://doi.org/10.1016/j.autrev.2021.103012

de Wit, E., van Doremalen, N., Falzarano, D., Munster, V.J., 2016. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534. https://doi.org/10.1038/nrmicro.2016.81

Demoruelle, M.K., Harrall, K.K., Ho, L., Purmalek, M.M., Seto, N.L., Rothfuss, H.M., Weisman, M.H., Solomon, J.J., Fischer, A., Okamoto, Y., Kelmenson, L.B., Parish, M.C., Feser, M., Fleischer, C., Anderson, C., Mahler, M., Norris, J.M., Kaplan, M.J., Cherrington, B.D., Holers, V.M., Deane, K.D., 2017. Anti-Citrullinated Protein Antibodies Are Associated With Neutrophil Extracellular Traps in the Sputum in Relatives of Rheumatoid Arthritis Patients. Arthritis Rheumatol. Hoboken NJ 69, 1165–1175. https://doi.org/10.1002/art.40066

Derksen, V.F.A.M., Kissel, T., Lamers-Karnebeek, F.B.G., van der Bijl, A.E., Venhuizen, A.C., Huizinga, T.W.J., Toes, R.E.M., Roukens, A.H.E., van der Woude, D., 2021. Onset of rheumatoid arthritis after COVID-19: coincidence or connected? Ann. Rheum. Dis. 80, 1096–1098. https://doi.org/10.1136/annrheumdis-2021-219859

Dotan, A., Muller, S., Kanduc, D., David, P., Halpert, G., Shoenfeld, Y., 2021. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun. Rev. 20, 102792. https://doi.org/10.1016/j.autrev.2021.102792

22
Elliott, W., Guda, M.R., Asuthkar, S., Teluguakula, N., Prasad, D.V.R., Tsung, A.J., Velpula, K.K., 2021. PAD Inhibitors as a Potential Treatment for SARS-CoV-2 Immunothrombosis. Biomedicines 9, 1867. https://doi.org/10.3390/biomedicines9121867

Eslambolchi, A., Aghaghazvini, L., Gholamrezanezhad, A., Kavosi, H., Radmard, A.R., 2021. Coronavirus disease 2019 (COVID-19) in patients with systemic autoimmune diseases or vasculitis: radiologic presentation. J. Thromb. Thrombolysis 51, 339–348. https://doi.org/10.1007/s11239-020-02289-z

Fagyas, M., Fejes, Z., Sütő, R., Nagy, Z., Székely, B., Pócsi, M., Ivády, G., Bíró, E., Bekő, G., Nagy, A., Kerekes, G., Szentkereszty, Z., Papp, Z., Tóth, A., Kappelmayer, J., Nagy, B., 2022. Circulating ACE2 activity predicts mortality and disease severity in hospitalized COVID-19 patients. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 115, 8–16. https://doi.org/10.1016/j.ijid.2021.11.028

Fan, Y.-Y., Huang, Z.-T., Li, L., Wu, M.-H., Yu, T., Koup, R.A., Bailier, R.T., Wu, C.-Y., 2009. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch. Virol. 154, 1093–1099. https://doi.org/10.1007/s00705-009-0409-6

Gallucci, S., Meka, S., Gamero, A.M., 2021. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 146, 155633. https://doi.org/10.1016/j.cyto.2021.155633

Gazzaruso, C., Carlo Stella, N., Mariani, G., Nai, C., Coppola, A., Naldani, D., Gallotti, P., 2020. High prevalence of antinuclear antibodies and lupus anticoagulant in patients hospitalized for SARS-CoV2 pneumonia. Clin. Rheumatol. 39, 2095–2097. https://doi.org/10.1007/s10067-020-05180-7

Gianfrancesco, M., Hyrich, K.L., Al-Adely, S., Carmona, L., Danila, M.I., Gossec, L., Izadi, Z., Jacobsohn, L., Katz, P., Lawson-Tovey, S., Mateus, E.F., Rush, S., Schmajuk, G., Simard, J., Strangfeld, A., Trupin, L., Wysham, K.D., Bhana, S., Costello, W., Grainger, R., Hausmann, J.S., Liew, J.W., Sirotich, E., Sufka, P., Wallace, Z.S., Yazdany, J., Machado, P.M., Robinson, P.C., COVID-19 Global Rheumatology Alliance, 2020. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann. Rheum. Dis. 79, 859–866. https://doi.org/10.1136/annrheumdis-2020-217871

Gracia-Ramos, A.E., Saavedra-Salinas, M.Á., 2021. Can the SARS-CoV-2 infection trigger systemic lupus erythematosus? A case-based review. Rheumatol. Int. 41, 799–809. https://doi.org/10.1136/rheumdis-2020-217871

Grimaudo, S., Amodio, E., Pipitone, R.M., Maida, C.M., Pizzo, S., Prestileo, T., Tramuto, F., Sardina, D., Vitale, F., Casuccio, A., Craxi, A., 2021. PNPLA3 and TLL-1 Polymorphisms as Potential Predictors of Disease Severity in Patients With COVID-19. Front. Cell Dev. Biol. 9, 627914. https://doi.org/10.3389/fcell.2021.627914

Gupta, S., Nakabo, S., Chu, J., Hasni, S., Kaplan, M.J., 2020. Association between anti-interferon-alpha autoantibodies and COVID-19 in systemic
Gupta, S., Tatouli, I.P., Rosen, L.B., Hasni, S., Alevizos, I., Manna, Z.G., Rivera, J., Jiang, C., Siegel, R.M., Holland, S.M., Moutsopoulos, H.M., Browne, S.K., 2016. Distinct Functions of Autoantibodies Against Interferon in Systemic Lupus Erythematosus: A Comprehensive Analysis of Anticytokine Autoantibodies in Common Rheumatic Diseases. Arthritis Rheumatol. Hoboken NJ 68, 1677–1687. https://doi.org/10.1002/art.39607

Hamming, I., Timens, W., Bulthuis, M., Lely, A., Navis, G., van Goor, H., 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637. https://doi.org/10.1002/path.1570

Han, L., Zhuang, M.-W., Deng, J., Zheng, Y., Zhang, J., Nan, M.-L., Zhang, X.-J., Gao, C., Wang, P.-H., 2021. SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5-MAVS, TLR3-TRIF, and cGAS-STING signaling pathways. J. Med. Virol. 93, 5376–5389. https://doi.org/10.1002/jmv.27050

Harmer, D., Gilbert, M., Borman, R., Clark, K.L., 2002. Quantitative mRNA expression profiling of ACE2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 532, 107–110. https://doi.org/10.1016/S0014-5793(02)03640-2

Hiroki, C.H., Sarden, N., Hassanabad, M.F., Yipp, B.G., 2021. Innate Receptors Expression by Lung Nociceptors: Impact on COVID-19 and Aging. Front. Immunol. 12, 785355. https://doi.org/10.3389/fimmu.2021.785355

Hoehn, K.B., Ramanathan, P., Unterman, A., Sumida, T.S., Asashima, H., Hafler, D.A., Kaminski, N., Dela Cruz, C.S., Sealfon, S.C., Bukreyev, A., Kleinsein, S.H., 2021. Cutting Edge: Distinct B Cell Repertoires Characterize Patients with Mild and Severe COVID-19. J. Immunol. Baltim. Md 1950 206, 2785–2790. https://doi.org/10.4049/jimmunol.2100135

Holubar, J., Le Quintrec, M., Letaif, H., Faillie, J.L., Pers, Y.-M., Jorgensen, C., 2020. Monitoring of patients with systemic lupus erythematosus during the COVID-19 outbreak. Ann. Rheum. Dis. annrheumdis-2020-217919. https://doi.org/10.1136/annrheumdis-2020-217919

Hsueh, P.-R., Huang, L.-M., Chen, P.-J., Kao, C.-L., Yang, P.-C., 2004. Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect. 10, 1062–1066. https://doi.org/10.1111/j.1469-0691.2004.01009.x

Izmirlı, P.M., Kim, M.Y., Samanovic, M., Fernandez-Ruiz, R., Ohana, S., Deonaraine, K.K., Engel, A.J., Masson, M., Xie, X., Cornelius, A.R., Herati, R.S., Haberman, R.H., Scher, J.U., Guttmann, A., Blank, R.B., Plotz, B., Haj-Ali, M., Banbury, B., Stream, S., Hasan, G., Ho, G., Rackoff, P., Blazer, A.D., Tseng, C.-E., Belmont, H.M., Saxena, A., Mulligan, M.J., Clancy, R.M., Buyon, J.P., 2022. Evaluation of Immune Response and Disease Status in Systemic Lupus Erythematosus Patients
Following SARS-CoV-2 Vaccination. Arthritis Rheumatol. Hoboken NJ 74, 284–294. https://doi.org/10.1002/art.41937

Joo, Y.B., Kim, K.-J., Park, K.-S., Park, Y.-J., 2021a. Influenza infection as a trigger for systemic lupus erythematosus flares resulting in hospitalization. Sci. Rep. 11, 4630. https://doi.org/10.1038/s41598-021-84153-5

Joo, Y.B., Lim, Y.-H., Kim, K.-J., Park, K.-S., Park, Y.-J., 2021b. Association of influenza infection with hospitalisation-related systemic lupus erythematosus flares: a time series analysis. Clin. Exp. Rheumatol. 39, 1056–1062.

Joo, Y.B., Lim, Y.-H., Kim, K.-J., Park, K.-S., Park, Y.-J., 2019. Respiratory viral infections and the risk of rheumatoid arthritis. Arthritis Res. Ther. 21, 199. https://doi.org/10.1186/s13075-019-1977-9

Jung, Y., Kwon, M., Choi, H.G., 2021. Association between previous rheumatoid arthritis and COVID-19 and its severity: a nationwide cohort study in South Korea. BMJ Open 11, e054753. https://doi.org/10.1136/bmjopen-2021-054753

Kalil, A.C., Patterson, T.F., Mehta, A.K., Tomashek, K.M., Wolfe, C.R., Ghazaryan, V., Marconi, V.C., Ruiz-Palacios, G.M., Hsieh, L., Kline, S., Tapson, V., Iovine, N.M., Jain, M.K., Sweeney, D.A., El Sahly, H.M., Branche, A.R., Regalado Pineda, J., Lye, D.C., Sandkovsky, U., Luethke, A.F., Cohen, S.H., Finberg, R.W., Jackson, P.E.H., Taiwo, B., Paules, C.I., Arguinchona, H., Erdmann, N., Ahuja, N., Frank, M., Oh, M.-D., Kim, E.-S., Tan, S.Y., Mularski, R.A., Nielsen, H., Ponce, P.O., Taylor, B.S., Larson, L., Rouphael, N.G., Saklawi, Y., Cantos, V.D., Ko, E.R., Engemann, J.J., Amin, A.N., Watanabe, M., Billings, J., Elie, M.-C., Davey, R.T., Burgess, T.H., Ferreira, J., Green, M., Makowski, M., Cardoso, A., de Bono, S., Bonnett, T., Proschank, M., Deye, G.A., Dempsey, W., Nayak, S.U., Dodd, L.E., Beigel, J.H., ACTT-2 Study Group Members, 2021. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N. Engl. J. Med. 384, 795–807. https://doi.org/10.1056/NEJMoa2031994

Kanduc, D., 2020. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies Basel Switz. 9, E33. https://doi.org/10.3390/antib9030033

Kaneko, N., Kuo, H.-H., Boucau, J., Farmer, J.R., Allard-Chamard, H., Mahajan, V.S., Piechocka-Trocha, A., Lefteri, K., Osborn, M., Bals, J., Bartsch, Y.C., Bonheur, N., Caradonna, T.M., Chevalier, J., Chowdhury, F., Diefenbach, T.J., Einkauf, K., Fallon, J., Feldman, J., Finn, K.K., Garcia-Broncano, P., Hartana, C.A., Hauser, B.M., Jiang, C., Kaplonke, P., Karpell, M., Koscher, E.C., Lian, X., Liu, H., Liu, J., Ly, N.L., Michell, A.R., Rassadkina, Y., Seiger, K., Sessa, L., Shin, S., Singh, N., Sun, W., Sun, X., Ticheli, H.J., Waring, M.T., Zhu, A.L., Li, J., Lingwood, D., Schmidt, A.G., Lichterfeld, M., Walker, B.D., Yu, X., Padera, R.F., Pillai, S., Massachusetts Consortium on Pathogen Readiness Specimen Working Group, 2020. The Loss of Bcl-6 Expressing T Follicular Helper Cells and
the Absence of Germinal Centers in COVID-19. SSRN 3652322. https://doi.org/10.2139/ssrn.3652322

Kaul, A., Gordon, C., Crow, M.K., Touma, Z., Urowitz, M.B., van Vollenhoven, R., Ruiz-Irastorza, G., Hughes, G., 2016. Systemic lupus erythematosus. Nat. Rev. Dis. Primer 2, 16039. https://doi.org/10.1038/nrdp.2016.39

Keewan, E., Beg, S., Naser, S.A., 2021. Anti-TNF-α agents Modulate SARS-CoV-2 Receptors and Increase the Risk of Infection Through Notch-1 Signaling. Front. Immunol. 12, 641295. https://doi.org/10.3389/fimmu.2021.641295

Koh, J.W.H., Ng, C.H., Tay, S.H., 2020. Biologics targeting type I interferons in SLE: A meta-analysis and systematic review of randomised controlled trials. Lupus 29, 1845–1853. https://doi.org/10.1177/0961203320959702

Kong, R., Sun, L., Li, H., Wang, D., 2022. The role of NLRP3 inflammasome in the pathogenesis of rheumatic disease. Autoimmunity 55, 1–7. https://doi.org/10.1080/08916934.2021.1995860

Kong, Y., Wang, Y., Wu, X., Han, J., Li, G., Hua, M., Han, K., Zhang, H., Li, A., Zeng, H., 2020. Storm of soluble immune checkpoints associated with disease severity of COVID-19. Signal Transduct. Target. Ther. 5, 192. https://doi.org/10.1038/s41392-020-00308-2

Kuschner, Z., Ortega, A., Mukherji, P., 2021. A case of SARS-CoV-2-associated arthritis with detection of viral RNA in synovial fluid. J. Am. Coll. Emerg. Physicians Open 2, e12452. https://doi.org/10.1002/emp2.12452

Lamers, M.M., Beumer, J., van der Vaart, J., Knoops, K., Puschkof, J., Breugem, T.I., Ravelli, R.B.G., Paul van Schayck, J., Mykytyn, A.Z., Duimel, H.Q., van Donselaar, E., Riesebosch, S., Kuijpers, H.J.H., Schipper, D., van de Wetering, W.J., de Graaf, M., Koopmans, M., Cuppen, E., Peters, P.J., Haagmans, B.L., Clevers, H., 2020. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54. https://doi.org/10.1126/science.abc1669

Larionova, R.V., Arleevskaya, M.I., Kravtsova, O.A., Validov, S., Renaudineau, Y., 2019. In seroconverted rheumatoid arthritis patients a multi-reactive anti-herpes IgM profile is associated with disease activity. Clin. Immunol. Orlando Fla 200, 19–23. https://doi.org/10.1016/j.clim.2019.01.004

Lee, J.S., Park, S., Jeong, H.W., Ahn, J.Y., Choi, S.J., Lee, H., Choi, B., Nam, S.K., Sa, M., Kwon, J.-S., Jeong, S.J., Lee, H.K., Park, S.H., Park, S.-H., Choi, J.Y., Kim, S.-H., Jung, I., Shin, E.-C., 2020. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5, eabd1554. https://doi.org/10.1126/sciimmunol.abd1554

Legros, V., Denolly, S., Vogrig, M., Boson, B., Siret, E., Rigail, J., Pillet, S., Grattard, F., Gonzalo, S., Verhoeven, P., Allatif, O., Berthelot, P., Pélissier, C., Thiery, G., Botelho-Nevers, E., Millet, G., Morel, J., Paul, S., Walzer, T., Cosset, F.-L., Bourlet, T., Pozzetto, B., 2021. A longitudinal study of SARS-CoV-2-infected patients reveals a high correlation between
neutralizing antibodies and COVID-19 severity. Cell. Mol. Immunol. 18, 318–327. https://doi.org/10.1038/s41423-020-00588-2

Lerma, L.A., Chaudhary, A., Bryan, A., Morishima, C., Wener, M.H., Fink, S.L., 2020. Prevalence of autoantibody responses in acute coronavirus disease 2019 (COVID-19). J. Transl. Autoimmun. 3, 100073. https://doi.org/10.1016/j.jtauto.2020.100073

Li, W., Huang, B., Shen, Q., Jiang, S., Jin, K., Ning, L., Liu, L., Li, L., 2021. Persistent SARS-CoV-2-positive over 4 months in a COVID-19 patient with CHB. Open Med. 16, 749–753. https://doi.org/10.1515/med-2021-0283

Li, Z., Guo, J., Bi, L., 2020. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed. Pharmacother. Biomedecine Pharmacother. 130, 110542. https://doi.org/10.1016/j.biopha.2020.110542

Lingel, H., Meltendorf, S., Billing, U., Thurm, C., Vogel, K., Majer, C., Prätsch, F., Roggenbuck, D., Heuft, H.-G., Hachenberg, T., Feist, E., Reinhold, D., Brunner-Weinzierl, M.C., 2021. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J. Autoimmun. 122, 102682. https://doi.org/10.1016/j.jaut.2021.102682

Litwin, C.M., Binder, S.R., 2016. ANA testing in the presence of acute and chronic infections. J. Immunoassay Immunochem. 37, 439–452. https://doi.org/10.1080/15321819.2016.1174136

Liu, J., Zheng, X., Tong, Q., Li, W., Wang, B., Sutter, K., Trilling, M., Lu, M., Dittmer, U., Yang, D., 2020. Overlapping and discrete aspects of the pathology and pathogenesis of the emerging human pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-nCoV. J. Med. Virol. 92, 491–494. https://doi.org/10.1002/jmv.25709

Liu, W.J., Zhao, M., Liu, K., Xu, K., Wong, G., Tan, W., Gao, G.F., 2017. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Res. 137, 82–92. https://doi.org/10.1016/j.antiviral.2016.11.006

Luporini, R.L., Rodolpho, J.M. de A., Kubota, L.T., Martin, A.C.B.M., Cominetti, M.R., Anibal, F. de F., Pott-Junior, H., 2021. IL-6 and IL-10 are associated with disease severity and higher comorbidity in adults with COVID-19. Cytokine 143, 155507. https://doi.org/10.1016/j.cyto.2021.155507

Mageau, A., Papo, T., Ruckly, S., Strukov, A., van Gysel, D., Sacre, K., Timsit, J.-F., 2021. Survival after COVID-19-associated organ failure among inpatients with systemic lupus erythematosus in France: a nationwide study. Ann. Rheum. Dis. annrheumdis-2021-221599. https://doi.org/10.1136/annrheumdis-2021-221599

Manik, M., Singh, R.K., 2021. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J. Med. Virol. https://doi.org/10.1002/jmv.27405

Mantovani Cardoso, E., Hundal, J., Feterman, D., Magaldi, J., 2020. Concomitant new diagnosis of systemic lupus erythematosus and COVID-
19 with possible antiphospholipid syndrome. Just a coincidence? A case report and review of intertwining pathophysiology. Clin. Rheumatol. 39, 2811–2815. https://doi.org/10.1007/s10067-020-05310-1

Martinez-Gamboa, L., Brezinschek, H.-P., Burmester, G.R., Dörner, T., 2006. Immunopathologic role of B lymphocytes in rheumatoid arthritis: rationale of B cell-directed therapy. Autoimmun. Rev. 5, 437–442. https://doi.org/10.1016/j.autrev.2006.02.004

Moody, R., Wilson, K., Flanagan, K.L., Jaworowski, A., Plebanski, M., 2021. Adaptive Immunity and the Risk of Autoreactivity in COVID-19. Int. J. Mol. Sci. 22, 8965. https://doi.org/10.3390/ijms22168965

Morand, E.F., Furie, R., Tanaka, Y., Bruce, I.N., Askanelse, A.D., Richez, C., Bae, S.-C., Brohawn, P.Z., Pineda, L., Berblinger, A., Tummala, R., TULIP-2 Trial Investigators, 2020. Trial of Anifrolumab in Active Systemic Lupus Erythematosus. N. Engl. J. Med. 382, 211–221. https://doi.org/10.1056/NEJMoa1912196

Morimoto, A.M., Flesher, D.T., Yang, J., Wolslegel, K., Wang, X., Brady, A., Abbas, A.R., Quarmby, V., Wakshull, E., Richardson, B., Townsend, M.J., Behrens, T.W., 2011. Association of endogenous anti-interferon-α autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 2407–2415. https://doi.org/10.1002/art.30399

Nalbandian, A., Sehgal, K., Gupta, A., Madhavan, M.V., McGruder, C., Stevens, J.S., Cook, J.R., Nordvig, A.S., Shalev, D., Sehrawat, T.S., Ahluwalia, N., Bikdeli, B., Dietz, D., Der-Nigoghossian, C., Liyane-Assouf, N., Rosner, G.F., Bernstein, E.J., Mohan, S., Beckley, A.A., Seres, D.S., Choueiri, T.K., Uriel, N., Ausiello, J.C., Accili, D., Freedberg, D.E., Baldwin, M., Schwartz, A., Brodie, D., Garcia, C.K., Elkind, M.S.V., Connors, J.M., Bilezikian, J.P., Landry, D.W., Wan, E.Y., 2021. Post-acute COVID-19 syndrome. Nat. Med. 27, 601–615. https://doi.org/10.1038/s41591-021-01283-z

Néant, N., Lingas, G., Le Hingrat, Q., Ghosn, J., Engelmann, I., Lepiller, Q., Gaymard, A., Ferré, V., Hartard, C., Plantier, J.-C., Thibault, V., Marlet, J., Montes, B., Bouiller, K., Lerouge, F.-X., Timsit, J.-F., Faure, E., Poissy, J., Chidiac, C., Raffi, F., Kimmoun, A., Etienne, M., Richard, J.-C., Tattevin, P., Garrot, D., Le Moing, V., Bachelet, D., Tardivon, C., Duval, X., Yazdanpanah, Y., Mentrez, F., Laouénan, C., Visseaux, B., Guedj, J., French COVID Cohort Investigators and French Cohort Study groups, 2021. Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. Proc. Natl. Acad. Sci. U. S. A. 118, e2017962118. https://doi.org/10.1073/pnas.2017962118

Neurath, M.F., Überla, K., Ng, S.C., 2021. Gut as viral reservoir: lessons from gut viromes, HIV and COVID-19. Gut 70, 1605–1608. https://doi.org/10.1136/gutjnl-2021-324622

Ng, H., Havervall, S., Rosell, A., Aguiler, K., Parv, K., von Meijenfeldt, F.A., Lismä, T., Mackman, N., Thällin, C., Phillipson, M., 2021. Circulating Markers of Neutrophil Extracellular Traps Are of Prognostic Value in
Patients With COVID-19. Arterioscler. Thromb. Vasc. Biol. 41, 988–994. https://doi.org/10.1161/ATVBAHA.120.315267

Oh, H.-L.J., Chia, A., Chang, C.X.L., Leong, H.N., Ling, K.L., Grotenbreg, G.M., Gehring, A.J., Tan, Y.J., Bertoletti, A., 2011. Engineering T Cells Specific for a Dominant Severe Acute Respiratory Syndrome Coronavirus CD8 T Cell Epitope. J. Virol. 85, 10464–10471. https://doi.org/10.1128/JVI.05039-11

Oliveira-Silva, J., Reis, T., Lopes, C., Batista-Silva, R., Ribeiro, R., Marques, G., Pacheco, V., Rodrigues, T., Afonso, A., Pinheiro, V., Araújo, L., Rodrigues, F., Antunes, I., 2022. Humoral response to the SARS-CoV-2 BNT162b2 mRNA vaccine: Real-world data from a large cohort of healthcare workers. Vaccine 40, 650–655. https://doi.org/10.1016/j.vaccine.2021.12.014

Perrot, L., Hemon, M., Busnel, J.-M., Muis-Pistor, O., Picard, C., Zandotti, C., Pham, T., Roudier, J., Desplat-Jego, S., Balandraud, N., 2021. First flare of ACPA-positive rheumatoid arthritis after SARS-CoV-2 infection. Lancet Rheumatol. 3, e6–e8. https://doi.org/10.1016/S2665-9913(20)30396-9

Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., Petersen, E., 2020. COVID-19, SARS and MERS: are they closely related? Clin. Microbiol. Infect. 26, 729–734. https://doi.org/10.1016/j.cmi.2020.03.026

Pileggi, G.S., Ferreira, G.A., Reis, A.P.M.G., Reis-Neto, E.T., Abreu, M.M., Albuquerque, C.P., Araújo, N.C., Bacchiega, A.B., Bianchi, D.V., Bica, B., Bonfa, E.D., Borba, E.F., Brito, D.C.S.E., Duarte, Â.L.B.P., Santo, R.C.E., Fernandes, P.R., Guimarães, M.P., Gomes, K.W.P., Kakehasi, A.M., Klumb, E.M., Lanna, C.C.D., Marques, C.D.L., Monticielo, O.A., Mota, L.M.H., Munhoz, G.A., Paiva, E.S., Pereira, H.L.A., Provenza, J.R., Ribeiro, S.I.E., Junior, L.F.R., Sampaio, C.S.J.C., Sampaio, V.S., Sato, E.I., Skare, T., de Souza, V.A., Valim, V., Lacerda, M.V.G., Xavier, R.M., Pinheiro, M.M., 2021. Chronic use of hydroxychloroquine did not protect against COVID-19 in a large cohort of patients with rheumatic diseases in Brazil. Adv. Rheumatol. Lond. Engl. 61, 60. https://doi.org/10.1186/s42358-021-00217-0

Proal, A.D., VanElzakker, M.B., 2021. Long COVID or Post-acute Sequelae of COVID-19 (PASC): An Overview of Biological Factors That May Contribute to Persistent Symptoms. Front. Microbiol. 12, 698169. https://doi.org/10.3389/fmicb.2021.698169

Quirch, M., Lee, J., Rehman, S., 2020. Hazards of the Cytokine Storm and Cytokine-Targeted Therapy in Patients With COVID-19: Review. J. Med. Internet Res. 22, e20193. https://doi.org/10.2196/20193

Rainer, T.H., 2003. Evaluation of WHO criteria for identifying patients with severe acute respiratory syndrome out of hospital: prospective observational study. BMJ 326, 1354–1358. https://doi.org/10.1136/bmj.326.7403.1354

Rizzo, R., Neri, L.M., Simioni, C., Bortolotti, D., Occhionorelli, S., Zauli, G., Secchiero, P., Semprini, C.M., Lafone, I., Sanz, J.M., Lanza, G., Gafà, R.,
Passaro, A., 2021. SARS-CoV-2 nucleocapsid protein and ultrastructural modifications in small bowel of a 4-week-negative COVID-19 patient. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 27, 936–937. https://doi.org/10.1016/j.cmi.2021.01.012

Saadoun, D., Vieira, M., Vautier, M., Baraliakos, X., Andreica, I., da Silva, J.A.P., Sousa, M., Luís, M., Khmelinskii, N., Gracía, J.M.A., Castrejon, I., Gonzalez, J.C.N., Scirè, C.A., Silvagni, E., Bortoluzzi, A., Penn, H., Hamdulay, S., Machado, P.M., Fautrel, B., Cacoub, P., Resche-Rigon, M., Gossec, L., 2021. SARS-CoV-2 outbreak in immune-mediated inflammatory diseases: the Euro-COVIMID multicentre cross-sectional study. Lancet Rheumatol. 3, e481–e488. https://doi.org/10.1016/S2665-9913(21)00112-0

Sakthiswary, R., Chuah, H.Y., Chiang, K.S., Liew, Y.S., Muhammad Aizat, N.A., 2021. COVID-19 in systemic lupus erythematosus: A pooled analysis and systematic review of case reports and series. Lupus 30, 1946–1954. https://doi.org/10.1177/09612033211045057

Sariol, A., Perlman, S., 2020a. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 53, 248–263. https://doi.org/10.1016/j.immuni.2020.07.005

Sariol, A., Perlman, S., 2020b. Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity 53, 248–263. https://doi.org/10.1016/j.immuni.2020.07.005

Sawalha, A.H., Zhao, M., Coit, P., Lu, Q., 2020. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. Clin. Immunol. Orlando Fla 215, 108410. https://doi.org/10.1016/j.clim.2020.108410

Sharma, C., Ganigara, M., Galeotti, C., Burns, J., Berganza, F.M., Hayes, D.A., Singh-Grewal, D., Bharath, S., Sajjan, S., Bayry, J., 2021. Multisystem inflammatory syndrome in children and Kawasaki disease: a critical comparison. Nat. Rev. Rheumatol. 17, 731–748. https://doi.org/10.1038/s41584-021-00709-9

Shimoyama, K., Teramoto, A., Murahashi, Y., Takahashi, K., Watanabe, K., Iba, K., Yamashita, T., 2022. Surgically treated reactive arthritis of the ankle after COVID-19 infection: A case report. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. S1341-321X(21)00364-0. https://doi.org/10.1016/j.jiac.2021.12.028

Slimani, Y., Abbassi, R., El Fatoiki, F., Barrou, L., Chiheb, S., 2021. Systemic lupus erythematosus and varicella-like rash following COVID-19 in a previously healthy patient. J. Med. Virol. 93, 1184–1187. https://doi.org/10.1002/jmv.26513

Smeele, H.T., Perez-Garcia, L.F., Grimminck, K., Schoenmakers, S., Mulders, A.G., Dolhain, R.J., 2021. Systemic lupus erythematosus and COVID-19 during pregnancy. Lupus 30, 1188–1191. https://doi.org/10.1177/09612033211002270
Smolen, J.S., Aletaha, D., Barton, A., Burmester, G.R., Emery, P., Firestein, G.S., Kavanaugh, A., McInnes, I.B., Solomon, D.H., Strand, V., Yamamoto, K., 2018. Rheumatoid arthritis. Nat. Rev. Dis. Primer 4, 18001. https://doi.org/10.1038/nrdp.2018.1

Sparks, J.A., Wallace, Z.S., Seet, A.M., Gianfrancesco, M.A., Izadi, Z., Hyrich, K.L., Strangfeld, A., Gossec, L., Carmona, L., Mateus, E.F., Lawson-Tovey, S., Trupin, L., Rush, S., Katz, P., Schmajuk, G., Jacobsohn, L., Wise, L., Gilbert, E.L., Duarte-Garcia, A., Valenzuela-Almada, M.O., Pons-Estel, G.J., Isnardi, C.A., Berbotto, G.A., Hsu, T.Y.-T., D’Silva, K.M., Patel, N.J., Kearsley-Fleet, L., Schäfer, M., Ribeiro, S.L.E., Al Emadi, S., Tidblad, L., Scirè, C.A., Raffeiner, B., Thomas, T., Flipo, R.-M., Avouac, J., Seror, R., Bernardes, M., Cunha, M.M., Hasseli, R., Schulze-Koops, H., Müller-Ladner, U., Specker, C., Souza, V.A. de, Mota, L.M.H. da, Gomides, A.P.M., Dieudé, P., Nikiforou, E., Kronzer, V.L., Singh, N., Ugarte-Gil, M.F., Wallace, B., Akpabio, A., Thomas, R., Bhana, S., Costello, W., Grainger, R., Hausmann, J.S., Liew, J.W., Sirotich, E., Sufka, P., Robinson, P.C., Machado, P.M., Yazdany, J., COVID-19 Global Rheumatology Alliance, 2021. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry. Ann. Rheum. Dis. 80, 1137–1146. https://doi.org/10.1136/annrheumdis-2021-220418

Spinelli, F.R., Favalli, E.G., Garufi, C., Cornalba, M., Colafrancesco, S., Conti, F., Caporali, R., 2022. Low frequency of disease flare in patients with rheumatic musculoskeletal diseases who received SARS-CoV-2 mRNA vaccine. Arthritis Res. Ther. 24, 21. https://doi.org/10.1186/s13075-021-02674-w

Su, Y., Yuan, D., Chen, D.G., Ng, R.H., Wang, K., Choi, J., Li, S., Hong, S., Zhang, R., Xie, J., Kornilov, S.A., Scherler, K., Pavlovitch-Bedzyk, A.J., Dong, S., Lausted, C., Lee, I., Fallen, S., Dai, C.L., Baloni, P., Smith, B., Duvvuri, V.R., Anderson, K.G., Li, J., Yang, F., Duncombe, C.J., McCulloch, D.J., Rostomily, C., Troisch, P., Zhou, J., Mackay, S., DeGottardi, Q., May, D.H., Taniguchi, R., Gittelman, R.M., Klinger, M., Snyder, T.M., Roper, R., Wojciechowska, G., Murray, K., Edmark, R., Evans, S., Jones, L., Zhou, Y., Rowen, L., Liu, R., Chour, W., Algren, H.A., Berrington, W.R., Wallick, J.A., Cochran, R.A., Micikas, M.E., Petropoulos, C.J., Cole, H.R., Fischer, T.D., Wei, W., Hoon, D.S.B., Price, N.D., Subramanian, N., Hill, J.A., Hadlock, J., Magis, A.T., Ribas, A., Lanier, L.L., Boyd, S.D., Bluestone, J.A., Chu, H., Hood, L., Gottardo, R., Greenberg, P.D., Davis, M.M., Goldman, J.D., Heath, J.R., 2022. Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae. Cell S0092867422000721. https://doi.org/10.1016/j.cell.2022.01.014

Sun, J., Tang, X., Bai, R., Liang, C., Zeng, L., Lin, H., Yuan, R., Zhou, P., Huang, X., Xiong, Q., Peng, J., Cui, F., Ke, B., Su, J., Liu, Z., Lu, J., Tian, J., Sun, R., Ke, C., 2020. The kinetics of viral load and antibodies to SARS-CoV-2. Clin. Microbiol. Infect. 26, 1690.e1-1690.e4. https://doi.org/10.1016/j.cmi.2020.08.043
Taha, M., Samavati, L., 2021. Antiphospholipid antibodies in COVID-19: a meta-analysis and systematic review. RMD Open 7, e001580. https://doi.org/10.1136/rmdopen-2021-001580

Takahashi, Y., Haga, S., Ishizaka, Y., Mimori, A., 2010. Autoantibodies to angiotensin-converting enzyme 2 in patients with connective tissue diseases. Arthritis Res. Ther. 12, R85. https://doi.org/10.1186/ar3012

Talarico, R., Stagnaro, C., Ferro, F., Carli, L., Mosca, M., 2020. Symmetric peripheral polyarthritis developed during SARS-CoV-2 infection. Lancet Rheumatol. 2, e518–e519. https://doi.org/10.1016/S2665-9913(20)30216-2

Tang, F., Quan, Y., Xin, Z.-T., Wrammert, J., Ma, M.-J., Lv, H., Wang, T.-B., Yang, H., Richardus, J.H., Liu, W., Cao, W.-C., 2011. Lack of Peripheral Memory B Cell Responses in Recovered Patients with Severe Acute Respiratory Syndrome: A Six-Year Follow-Up Study. J. Immunol. 186, 7264–7268. https://doi.org/10.4049/jimmunol.0903490

Tang, K.-T., Hsu, B.-C., Chen, D.-Y., 2021. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front. Immunol. 12, 645013. https://doi.org/10.3389/fimmu.2021.645013

Tang, X., Geng, L., Feng, X., Sun, L., 2021. Decreased serum ACE2 levels in patients with connective tissue diseases. Rheumatol. Oxf. Engl. 60, 4401–4406. https://doi.org/10.1093/rheumatology/keaa898

Totura, A.L., Whitmore, A., Agnihothram, S., Schäfer, A., Katze, M.G., Heise, M.T., Baric, R.S., 2015. Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 6. https://doi.org/10.1128/mBio.00638-15

Wang, F., Hou, H., Luo, Y., Tang, G., Wu, S., Huang, M., Liu, W., Zhu, Y., Lin, Q., Mao, L., Fang, M., Zhang, H., Sun, Z., 2020. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight 5, e137799. https://doi.org/10.1172/jci.insight.137799

Wang, J., Li, Q., Yin, Y., Zhang, Y., Cao, Y., Lin, X., Huang, L., Hoffmann, D., Lu, M., Qiu, Y., 2020. Excessive Neutrophils and Neutrophil Extracellular Traps in COVID-19. Front. Immunol. 11, 2063. https://doi.org/10.3389/fimmu.2020.02063

Wang, W., Liu, X., Wu, S., Chen, S., Li, Y., Nong, L., Lie, P., Huang, L., Cheng, L., Lin, Y., He, J., 2020. Definition and Risks of Cytokine Release Syndrome in 11 Critically Ill COVID-19 Patients With Pneumonia: Analysis of Disease Characteristics. J. Infect. Dis. 222, 1444–1451. https://doi.org/10.1093/infdis/jiaa387

Wilkinson, C., Henderson, R.B., Jones-Leone, A.R., Flint, S.M., Lennon, M., Levy, R.A., Ji, B., Bass, D.L., Roth, D., 2020. The role of baseline BLyS levels and type 1 interferon-inducible gene signature status in determining belimumab response in systemic lupus erythematosus: a post hoc meta-analysis. Arthritis Res. Ther. 22, 102. https://doi.org/10.1186/s13075-020-02177-0
Woodruff, M.C., Ramonell, R.P., Nguyen, D.C., Cashman, K.S., Saini, A.S., Haddad, N.S., Ley, A.M., Kyu, S., Howell, J.C., Ozturk, T., Lee, S., Suryadevara, N., Case, J.B., Bugrovsy, R., Chen, W., Estrada, J., Morrison-Porter, A., Derrico, A., Anam, F.A., Sharma, M., Wu, H.M., Le, S.N., Jenks, S.A., Tipton, C.M., Staitieh, B., Daiss, J.L., Ghosn, E., Diamond, M.S., Carnahan, R.H., Crowe, J.E., Hu, W.T., Lee, F.E.-H., Sanz, I., 2020. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat. Immunol. 21, 1506–1516. https://doi.org/10.1038/s41590-020-00814-z

Xiang, Q., Feng, Z., Diao, B., Tu, C., Qiao, Q., Yang, H., Zhang, Y., Wang, G., Wang, H., Wang, Chenhui, Liu, Liang, Wang, Changsong, Liu, Longding, Chen, R., Wu, Y., Chen, Y., 2021. SARS-CoV-2 Induces Lymphocytopenia by Promoting Inflammation and Decimates Secondary Lymphoid Organs. Front. Immunol. 12, 661052. https://doi.org/10.3389/fimmu.2021.661052

Yang, Z., Yu, M., Li, Ganwen, Dai, X., Liu, G., Xie, J., Li, Gang, Jie, Y., 2020. A Convalescent of COVID-19 with RT-PCR Test Continues Positive in Stool. Clin. Lab. 66. https://doi.org/10.7754/Clin.Lab.2020.200623

Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X., Gao, G.F., 2017. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 15092. https://doi.org/10.1038/ncomms15092

Zamani, B., Moeini Taba, S.-M., Shayestehpour, M., 2021. Systemic lupus erythematosus manifestation following COVID-19: a case report. J. Med. Case Reports 15, 29. https://doi.org/10.1186/s13256-020-02582-8

Zawawi, A., Naser, A.Y., Alwafi, H., Minshawi, F., 2021. Profile of Circulatory Cytokines and Chemokines in Human Coronaviruses: A Systematic Review and Meta-Analysis. Front. Immunol. 12, 666223. https://doi.org/10.3389/fimmu.2021.666223

Zeidler, H., 2021. [Post-Corona-Virus-Disease-19 arthritis. Manifestation under the clinical picture of a reactive arthritis]. Z. Rheumatol. 80, 555–558. https://doi.org/10.1007/s00393-021-01045-9

Zhang, Q., Bastard, P., Liu, Z., Le Pen, J., Moncada-Velez, M., Chen, J., Ogishi, M., Sabli, I.K.D., Hodeib, S., Korol, C., Rosain, J., Bilguvar, K., Ye, J., Bolze, A., Bigio, B., Yang, R., Arias, A.A., Zhou, Q., Zhang, Y., Onodi, F., Korniotis, S., Karpf, L., Philippot, Q., Chibihi, M., Bonnet-Madin, L., Dorgham, K., Smith, N., Schneider, W.M., Razooky, B.S., Hoffmann, H.-H., Michailidis, E., Moens, L., Han, J.E., Lorenzo, L., Bizien, L., Meade, P., Neehus, A.-L., Ugurbil, A.C., Corneau, A., Kernier, G., Zhang, P., Rapaport, F., Seeleuthner, Y., Manry, J., Masson, C., Schmitt, Y., Schläuter, A., Le Voyer, T., Khan, T., Li, J., Fellay, J., Roussel, L., Shahrrooel, M., Alosaimi, M.F., Mansouri, D., Al-Saud, H., Al-Mulla, F., Almoufri, F., Al-Muhseen, S.Z., Alsohime, F., Al Turki, S., Hasanato, R., van de Beek, D., Biondi, A., Bettini, L.R., D’Angio’, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A.J., Tompkins, M.F., Alba, C., Vandernoot, I., Goffard, J.-C., Smits, G.,
Migeotte, I., Haerynck, F., Soler-Palacin, P., Martin-Nalda, A., Colobran, R., Morange, P.-E., Keles, S., Çölkesen, F., Ozcelik, T., Yasar, K.K., Senoglu, S., Karabela, Ş.N., Rodriguez-Gallego, C., Novelli, G., Hraiech, S., Tandjaoui-Lambiotte, Y., Duval, X., Laouénan, C., COVID-STORM Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-19 Biobank, COVID Human Genetic Effort, NIAID-USUHS/TAGC COVID Immunity Group, Snow, A.L., Dalgard, C.L., Milner, J.D., Vinh, D.C., Mogensen, T.H., Marr, N., Spaan, A.N., Boisson, B., Boisson-Dupuis, S., Bustamante, J., Puel, A., Ciancanelli, M.J., Meyts, I., Maniatis, T., Soumelis, V., Amara, A., Nussenzweig, M., García-Sastre, A., Krammer, F., Pujol, A., Duffy, D., Lifton, R.P., Zhang, S.-Y., Gorochov, G., Béziat, V., Jouanguy, E., Sancho-Shimizu, V., Rice, C.M., Abel, L., Notarangelo, L.D., Cobat, A., Su, H.C., Casanova, J.-L., 2020. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570. https://doi.org/10.1126/science.abd4570

Zhang, X., Zhang, Y., Qiao, W., Zhang, J., Qi, Z., 2020. Baricitinib, a drug with a potential effect to prevent SARS-CoV-2 from entering target cells and control cytokine storm induced by COVID-19. Int. Immunopharmacol. 86, 106749. https://doi.org/10.1016/j.intimp.2020.106749

Zhao, Jincun, Zhao, Jingxian, Perlman, S., 2010. T Cell Responses Are Required for Protection from Clinical Disease and for Virus Clearance in Severe Acute Respiratory Syndrome Coronavirus-Infected Mice. J. Virol. 84, 9318–9325. https://doi.org/10.1128/JVI.01049-10

Zheng, H.-Y., Zhang, M., Yang, C.-X., Zhang, N., Wang, X.-C., Yang, X.-P., Dong, X.-Q., Zheng, Y.-T., 2020. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 17, 541–543. https://doi.org/10.1038/s41423-020-0401-3

Ziegler, C.G.K., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N., Tzouanas, C.N., Cao, Y., Yousif, A.S., Bals, J., Hauser, B.M., Feldman, J., Muus, C., Wadsworth, M.H., Kazer, S.W., Hughes, T.K., Doran, B., Gatter, G.J., Vukovic, M., Taliaferro, F., Mead, B.E., Guo, Z., Wang, J.P., Gras, D., Plaisant, M., Ansari, M., Angelidis, I., Adler, H., Sucre, J.M.S., Taylor, C.J., Lin, B., Waghray, A., Mitsialis, V., Dwyer, D.F., Buchheit, K.M., Boyce, J.A., Barrett, N.A., Laidlaw, T.M., Carroll, S.L., Colonna, L., Tkachev, V., Peterson, C.W., Yu, A., Zheng, H.B., Gideon, H.P., Winchell, C.G., Lin, P.L., Bingle, C.D., Snapper, S.B., Kropski, J.A., Theis, F.J., Schiller, H.B., Zaragosi, L.-E., Barbry, P., Leslie, A., Kiem, H.-P., Flynn, J.L., Fortune, S.M., Berger, B., Finberg, R.W., Kean, L.S., Garber, M., Schmidt, A.G., Lingwood, D., Shalek, A.K., Ordovas-Montanes, J., Banovich, N., Barbry, P., Brazma, A., Desai, T., Duong, T.E., Eickelberg, O., Falk, C., Farzan, M., Glass, I., Haniffa, M., Horvath, P., Hung, D., Kaminski, N., Krasnow, M., Kropski, J.A., Kuhnemund, M., Lafyatis, R., Lee, H., Leroy, S., Linnarson, S., Lundeberg, J., Meyer, K., Misharin, A., Nawijn, M., Nikolic, M.Z., Ordovas-Montanes, J., Pe’er, D., Powell, J., Quake, S., Rajagopal, J., Tata, P.R., Rawlins, E.L., Regev, A., Reyfman, P.A., Rojas, M., Rosen, O., Saeb-Parsy, K., Samakovlis, C., Schiller, H.,
Schultze, J.L., Seibold, M.A., Shalek, A.K., Shepherd, D., Spence, J., Spira, A., Sun, X., Teichmann, S., Theis, F., Tsankov, A., van den Berge, M., von Papen, M., Whitsett, J., Xavier, R., Xu, Y., Zaragosi, L.-E., Zhang, K., 2020. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 181, 1016-1035.e19. https://doi.org/10.1016/j.cell.2020.04.035

Zucchi, D., Tani, C., Elefante, E., Stagnaro, C., Carli, L., Signorini, V., Ferro, F., Trentin, F., Fulvio, G., Cardelli, C., Di Battista, M., Governato, G., Figliomeni, A., Mosca, M., 2021. Impact of first wave of SARS-CoV-2 infection in patients with Systemic Lupus Erythematosus: Weighting the risk of infection and flare. PloS One 16, e0245274. https://doi.org/10.1371/journal.pone.0245274

Zulfiqar, A.-A., Lorenzo-Villalba, N., Hassler, P., Andrès, E., 2020. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N. Engl. J. Med. 382, e43. https://doi.org/10.1056/NEJMc2010472

Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J.A., Blair, C., Weber, A., Barnes, B.J., Egeblad, M., Woods, R.J., Kanthi, Y., Knight, J.S., 2020. Neutrophil extracellular traps in COVID-19. JCI Insight 5, 138999. https://doi.org/10.1172/jci.insight.138999
Figure 1

SARS-CoV-2

ACE2 overexpression:
- Viral load
- Viral reservoir

- Cytokine storm
- Reactive oxygen species
- Tissue damage
- Extrafollicular B cells
- Autoantibodies

- Antiviral macrophage activity
- Antiviral NK cell activity
- Germinal center B cell formation

ACE2

NF-κB
NRLP3
IFN-I
SARS-Cov2

pDC

IFNα

mDC

BAFF

B7-CD28

TH1

IL21

IFNγ

CD40L

ICOS

DN2

IL6

BAFF

PC

Pro-inflammatory cytokines (Be1)

(auto)antibodies
SARS-Cov2 acute and post-active infection in the context of autoimmune and chronic inflammatory diseases

Regina Larionova, K. Byvaltsev, Olga Kravtsova, Elena Takha, Sergei Petrov, Gevorg Kazarian, Anna Valeeva, Eduard Shuralev, Malik Mukminov, Yves Renaudineau, Marina Arleevskaya

Declarations of interest: none

Fundings: This study was supported by research funding from the “Russian science foundation” (№17-15-01099).

Corresponding author: Dr Yves Renaudineau, renaudineau.y@chu-toulouse.fr;
Laboratory of Immunology, Institut Fédératif de Biologie, University Hospital Purpan, 330 avenue de Grande Bretagne, 31000 Toulouse, France