This paper is a postscript-version (Authors Accepted Manuscript) of the paper accepted in Forest Ecology and Management
Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale

Yan Peng¹*, Inger Kappel Schmidt¹, Haifeng Zheng¹, Petr Heděnec¹, Luciana Ruggiero Bachega², Kai Yue³,⁴, Fuzhong Wu³, and Lars Vesterdal¹

1. Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg 1958, Denmark

2. Department of Environmental Science, Federal University of São Carlos (UFSCar), São Carlos, SP 13565-905, Brazil

3. State Key Laboratory for Subtropical Mountain Ecology, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

4. Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) and Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, NyMunkegade 114, DK-8000, Aarhus C, Denmark

*Corresponding author: Yan Peng

Email address: yape@ign.ku.dk

Full address: Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark
Abstract

Selection of appropriate tree species is an important forest management decision that may affect sequestration of carbon (C) in soil. However, information about tree species effects on soil C stocks at the global scale remains unclear. Here, we quantitatively synthesized 850 observations from field studies that were conducted in a common garden or monoculture plantations to assess how tree species type (broadleaf vs. conifer), mycorrhizal association (arbuscular mycorrhizal (AM) vs. ectomycorrhizal (ECM)), and N-fixing ability (N-fixing vs. non-N-fixing), directly and indirectly, affect topsoil (with a median depth of 10 cm) C concentration and stock, and how such effects were influenced by environmental factors such as geographical location and climate. We found that (1) tree species type, mycorrhizal association, and N-fixing ability were all important factors affecting soil C, with lower forest floor C stocks under broadleaved (44%), AM (39%), or N-fixing (28%) trees respectively, but higher mineral soil C concentration (11%, 22%, and 156 %) and stock (9%, 10%, and 6%) under broadleaved, AM, and N-fixing trees respectively; (2) tree species type, mycorrhizal association, and N-fixing ability affected forest floor C stock and mineral soil C concentration and stock directly or indirectly through impacting soil properties such as microbial biomass C and nitrogen; (3) tree species effects on mineral soil C concentration and stock were mediated by latitude, MAT, MAP, and forest stand age. These results reveal how tree species and their specific traits influence forest floor C stock and mineral soil C concentration and stock at a global scale. Insights into the underlying mechanisms of tree species effects found in our study would be useful to inform tree species selection in forest management or afforestation aiming to sequester more atmospheric C in soil for mitigation of climate change.
Keywords: forest floor, mineral soil, climate, soil property, meta-analysis, linear mixed model, global

1. Introduction

In the face of global climate change and elevated atmospheric carbon dioxide (CO\textsubscript{2}) concentrations, forest soils play an important role in global carbon (C) cycling and are potential terrestrial C sinks (Pan \textit{et al}., 2011). However, the degree to which forest soils can sequester C may vary significantly with forest management, and there is a lack of scientific consensus regarding the feasibility of management strategies aimed at promoting forest soil C sequestration (Vesterdal \textit{et al}., 2013; Jandl \textit{et al}., 2014). One important element of forest management strategies is the selection of tree species most conducive to C sequestration in biomass and soil (Mayer \textit{et al}., 2020). Several studies have assessed tree species effects on both forest floor and mineral soil C stocks (Vesterdal \textit{et al}., 2008; Mueller \textit{et al}., 2015; Cepáková \textit{et al}., 2016), however, our understanding of the quantitative response to tree species change and the drivers and underlying mechanisms of such effects remains limited (Mayer \textit{et al}., 2020). Therefore, more detailed and quantitative knowledge of tree species effects on soil C stocks is crucial for informing tree species selection strategies in the context of forest management or afforestation.

Tree species are known to affect soil C stocks through a variety of traits that are closely correlated with C sequestration and flux processes, such as the input of above- and belowground plant litter and the output of C mainly via heterotrophic respiration fluxes (Prescott and Vesterdal, 2013; Vesterdal \textit{et al}., 2013). Through differences in litter quality, tree species have the potential to impact the C concentrations, C stocks, and their distribution to forest floor and mineral soil
(Wardle et al., 2004; Bardgett and van der Putten, 2014). It is traditionally acknowledged that tree species with leaf litter traits driving slow rates of decomposition have been associated with accumulation of higher C stocks compared with tree species with fast litter decomposition rates (Berg, 2014; Lehmann and Kleber, 2015). This hypothesis has mainly been based on the observation of thick C-rich forest floors under coniferous tree species associated with ectomycorrhizae (ECM) (Keller and Phillips, 2019). However, a more recent hypothesis has suggested that tree species with foliar litter traits conducive to fast decomposition will lead to more pronounced microbial stabilization and transformation of plant litter C through greater production of microbial residues (Cotrufo et al., 2013), ultimately supporting greater mineral soil C stocks. The latter tree species are mainly deciduous and in a temperate climate, some of these are associated with arbuscular mycorrhizae (AM). Deciduous AM tree species have also been suggested to enhance deeper incorporation of C by higher belowground rates of litter input, either via roots or bioturbation by soil fauna (Vesterdal et al., 2013; Lin et al., 2017; Craig et al., 2018). A previous study also suggested that accumulation of forest floor C in conifer stands is mainly attributed to the adverse environmental conditions that retard decomposition, indicating the importance of environmental factors in regulating tree species effects on soil C stocks (Berger and Berger, 2012). Evidence of different nutrient economies in AM and ECM tree species (Phillips et al., 2013) further suggests that soil C dynamics could differ in contrasting soil environments. Despite that these two hypotheses related to driving tree species traits seem rather contrasting because of their different mechanisms and opposite direction of effects, both suggest that tree species type (broadleaf vs. conifer) and their mycorrhizal association (AM vs. ECM) are important traits driving tree species effects on C stocks and their vertical distribution. It remains to be
confirmed if one of these hypotheses has general validity or if they are valid within different contexts.

Although mycorrhizal association of tree species mainly relates to their phylogeny (Koele et al., 2012), the dominant mycorrhizal association of a forest community can also be influenced by climate and soil conditions (Barceló et al., 2019). In general, AM trees increase in dominance in subtropical and lowland tropical forests where nutrient mineralization processes are fast, nevertheless ECM-associated tree species tend to dominate in cooler environments where the decomposition of organic matter occurs at a slower rate (Read and Perez-Moreno, 2003; Soudzilovskaia et al., 2015), indicating that climate and location may indirectly affect tree species effects on soil C stocks. Climate may control soil C stock through its effect on forests microclimate (Berger and Berger, 2012), such as the more dry and cooler conditions under conifers as a result of greater interception of rain and less sunlight throughout the year. Besides, because geographical location is closely correlated with climate, soil properties such as soil respiration (Chen et al., 2014), nutrient availability, and physicochemical characteristics vary remarkably at different locations and thus may control soil C stock (Yue et al., 2016). Therefore, climate, location, and soil property may also influence the effects of tree species on soil C stocks, directly and/or indirectly. In addition, many AM tree species are also N-fixing, and the suggested effects on soil C may be related to this trait rather than the mycorrhizal association as such (Lin et al., 2017). Soil C stocks in the mineral soil are generally higher under N-fixing trees (Nave et al., 2009; Mayer et al., 2020), but the underlying mechanisms are not fully understood. Therefore, quantitative assessments of tree species effects and interactive drivers on soil C stocks are still scarce, especially at a global scale, which limits our understanding of targeted use of tree species to sequester soil C in existing forests and afforestation.
To examine tree species effects on soil C stocks, we comprehensively reviewed previously published articles and conducted a quantitative synthesis. Because different tree species in natural forest ecosystems usually follow certain gradients in soil physicochemical characteristics, climate, and forest successional stage that can also influence C stocks, comparing C stocks of natural forests would be a doubtful source of information on the true “tree species effects” (Vesterdal et al., 2013). We thus compiled a database with 850 observations collected from 143 articles that reported forest floor C stock and mineral soil C concentration and stock in common garden and monoculture plantation studies. The objective of this study was to explore the quantitative influence of tree species on soil C concentrations, stocks, and the underlying drivers. We asked (1) whether and how biotic factors e.g. tree species type, mycorrhizal association, and N-fixing ability of different tree species influence soil C stocks; and (2) how abiotic factors such as climate, spatial location, and soil characteristics modulate tree species effects on soil C concentrations and stocks.

2. Materials and methods

2.1. Data collection and compiling

Peer-reviewed journal articles published before 20 December 2018 were searched using the Web of Science, and Google Scholar with the search terms of “(tree species OR plant species) AND (soil carbon OR carbon cycling) AND (common garden OR plantation)” in English and Chinese. We extracted studies from our search that met the following criteria: (1) studies were carried out in forest ecosystems (i.e., laboratory mesocosm studies were excluded); (2) at least one response variable of C (i.e., forest floor C stock, mineral soil C stock, or mineral soil C concentration) or litter production was reported; (3) tree species were identified by the Latin name; (4) only common
garden or monoculture plantations with replicated plots within the same site were included in our database (i.e., mixed plantations and natural forests were excluded); (5) the means and sample sizes of the selected response variables were available or could be calculated from the related publications. If results from the same study sites and the same sampling year were reported in different articles, only one article was included in our database. After extraction, a total of 143 articles covering 850 observations matched these selection criteria and were thus included in our study (Fig. 1, Table S1, Appendix 1). The number of tree species across tree species type, mycorrhizal association, and N-fixing ability are shown in Table 1.

Table 1 The numbers of tree species within species groups included in analysis of forest floor C stock, mineral soil C concentration, and mineral soil C stock.

Soil layer	Tree species group	Species type	Mycorrhizal association	N-fixing ability			
		Broadleaf	Conifer	AM	ECM	N-fixing	non-N-fixing
Forest floor C stock	Broadleaf	30	-	17	13	5	25
	Conifer	15	0	15	0	4	13
	AM	17	-	-	1	27	
	ECM	-	28	1	5	-	5
	N-fixing non-N-fixing	-	-	-	-	-	
Mineral soil C concentration	Broadleaf	127	-	73	54	14	113
	Conifer	70	17	53	0	70	
	AM	90	-	-	11	79	
	ECM	-	107	3	104	-	
	N-fixing non-N-fixing	-	-	-	-	-	40
Mineral soil C stock	Broadleaf	102	-	57	45	16	86
	Conifer	53	11	42	0	53	
	AM	68	-	-	12	56	
	ECM	-	87	4	83	-	
	N-fixing	-	-	16	-	-	
	non-N-fixing	-	-	139			

From each common garden or monoculture plantation at each study site, we extracted mean values of forest floor and mineral soil C stocks, mineral soil C concentration, and/or litter production for each tree species, if any of them was available. When only C concentrations were reported for mineral soil, we calculated C stocks according to Eqn 1:

\[C_{\text{stock}} = C_{\text{concentration}} \times \text{bulk density} \times \text{soil depth} \]

(1)
if the information on soil bulk density and soil depth were available. For studies reporting several sampling depths, we only included the layer(s) from top of the mineral soil (i.e., 0 cm) to a certain depth (e.g., 0-5, 0-10, and 0-15 cm, and maximum sampling depth), which was needed as a covariate in our analysis of tree species effects. Across all the data points of our constructed database, soil depths ranged from 1 to 100 cm, with a median of 10 cm. Therefore, we mainly addressed topsoil, but will hereafter use “soil” for conciseness. Meanwhile, if information about soil total nitrogen (N) concentration, nitrate (NO$_3^-$), ammonium (NH$_4^+$), plant-available phosphorus (PAP), C:N ratio, microbial biomass C (MBC), microbial biomass N (MBN), microbial biomass phosphorus (MBP), soil physical characteristics (i.e., the particle size distribution and bulk density), soil pH, and soil basal respiration were reported for a specific soil depth, we also recorded such information along with soil C data. To determine mycorrhizal association type (i.e., AM vs. ECM) of each tree species, we searched the Web of Science for studies that reported such information (Brundrett, 2009; Koele et al., 2012). For tree species that have been reported to associate with both AM and ECM fungi (e.g., *Eucalyptus* and *Salix* spp.), we defined these trees as ECM because many ECM roots have very small amounts of AM fungi (Wagg et al., 2008). In addition, we also classified by the N-fixing ability (i.e., N-fixing vs. non-N-fixing) and tree species type (i.e., broadleaf vs. conifer) of different tree species according to the literature, and recorded the stand ages if available. All original data were extracted from the text, tables, figures, and appendices of the publications. When data were presented graphically, the figures were digitized to extract the numerical values using the free software Engauge Digitizer version 5.1 (http://digitizer.sourceforge.net). In addition, mean annual temperature (MAT) and mean annual precipitation (MAP) were obtained directly from the selected articles, or extracted
from the WorldClim version 2.0 (http://www.worldclim.org) using the information of latitude and longitude in case these data were not reported.

Fig. 1 Map showing the location of the study sites from the compiled 143 articles used in the present study. The sample size (number of observations) from each site is represented by symbol size, and more detailed information are shown in Table S1 in Supporting Information.

2.2. Statistical analysis

For the entire dataset including paired (with both broadleaf and conifer, AM and ECM, and/or N-fixing and non-N-fixing) and non-paired plots, we first compared forest floor litter mass, forest floor and mineral soil C stocks, and mineral soil C concentration within each group (i.e., between AM and ECM trees, N-fixing and non-N-fixing trees, and broadleaved and coniferous trees). We used linear mixed models to estimate the mean values for each group by adding tree species type, mycorrhizal association, or N-fixing ability as fixed factors, while soil depth and “study” (the identity of each primary study) as random-effect factors. The difference within each group was
assessed using a two-tailed Wilcoxon rank-sum test to account for small and uneven group size and/or non-normal error distribution. All these analyses were performed using R version 3.6.2 (R Core Team, 2019).

We then used structural equation models (SEMs) to further assess the relative importance of climate (i.e., MAT and MAP), spatial location (i.e., latitude, longitude, and altitude), tree species type (broadleaf and conifer), mycorrhizal association (i.e., AM and ECM), N-fixing ability, and soil properties (N stock (for forest floor) or N concentration (for mineral soil), C:N ratio, and pH) on soil C stocks and concentrations. We proposed an \textit{a priori} model of hypothesized relationships among predictor and response variables within a path diagram (Fig. 2) and tested the fit of the \textit{a priori} model against each sub-grouped dataset. This \textit{a priori} model also tested whether tree species effects on soil C were direct and/or indirect through changes in other soil properties. The same model was hypothesized for forest floor C stock, mineral soil C stock, and mineral soil C concentration. The overall impacts of “climate” and “location” on C stocks or concentration were modeled as exogenous categorical effects using dummy variables (Grace, 2006). For each predictor variable in the SEM, we conducted principal component analyses (PCA) to extract a reduced number of variables that captured most of the variance to avoid redundancy among correlated variables (Grace, 2006; Yue \textit{et al.}, 2018) and only used the first PCA axes with eigenvalues > 1 in the SEM. Also, a reduced number of predictor variables by using the first PCA axes can facilitate a good model fit (Grace, 2006). Tree species type, mycorrhizal association, and N-fixing ability were coded as binary variables for which “1” indicated the broadleaved, AM, or N-fixing trees, and “0” the coniferous, ECM, or non-N-fixing trees. The factors of study and soil depth were also treated as random-effect factors within each model to account for the potential non-independence among data from the same study and the influences of sampling depth,
respectively. We used Fisher’s C to test the overall goodness-of-fit of each model. The SEM analyses were performed in R using the piecewiseSEM package (Lefcheck, 2016). Because of the limited co-occurring data for NH$_4^+$, NO$_3^-$, PAP, MBC, MBN, MBP, and basal respiration along with soil C stock or concentration, we did not include these variables in the SEM analysis. Instead, we first assessed how tree species type, mycorrhizal type, and N-fixing ability affected these properties, by considering each of them as fixed factor and study and soil depth as random factors, and then tested the correlations between these soil properties and soil C stock and concentration based on Pearson correlation coefficients. Each soil property variable was assessed separately.

To further assess the effects of tree species type, mycorrhizal association, and N-fixing ability on soil C stocks and concentrations based on rigorous common garden or paired plot designs controlling for site effects, we conducted meta-analyses using data from paired plots within a common garden (e.g., one AM species and two ECM species in a common garden, would mean two effect sizes) in the case the initial soil properties were the same. For each paired study, the effect sizes of tree species type, mycorrhizal association, and N-fixing ability were calculated as the normalized effects using the natural log response ratio (lnRR) as:

$$\text{lnRR}_{\text{species type}} = \ln(\text{broadleaf/conifer}) \quad (2)$$

$$\text{lnRR}_{\text{mycorrhizal association}} = \ln(\text{AM/ECM}) \quad (3)$$

$$\text{lnRR}_{\text{N-fixing ability}} = \ln(\text{N-fixing/non-N-fixing}) \quad (4)$$

To conduct our meta-analyses, we initially ran intercept-only models to calculate the overall effect sizes (lnRR$_{++}$). These intercept-only models fitted lnRR as the response variable and included “study” as a random factor given that calculating effect sizes of all possible pairs from a single common garden may be non-independent. Meta-regression models, which included fixed effects,
were then run to explore the effects of climate zone (i.e., boreal, temperate, and subtropical/tropical), MAT, MAP, latitude, altitude, stand age, and soil depth on lnRR+ by fitting these variables as fixed factors. For aiding the interpretation of results, lnRR+ and its corresponding 95% confidence intervals (CIs) were transformed back to percentage change as $(e^{\text{lnRR}} - 1) \times 100\%$. If the 95% CIs of lnRR+ did not overlap zero, the effects were considered to be significant at $\alpha = 0.05$ for tree species type, mycorrhizal association, or N-fixing ability.

Fig. 2 The proposed *a priori* structural equation model (SEM) of the causal relationship among tree species (explained by species type, mycorrhizal association, N-fixing ability), soil properties (explained by N concentration, C:N ratio, and pH), location (explained by latitude, longitude, and altitude), climate (explained by MAT and MAP) and soil C stocks or concentrations. The single-headed arrows indicate a hypothesized causal effect of one variable on another. All the predictor variables in the model represent the first principal component analysis (PCA) axes with eigenvalues > 1.

3. Results
Globally, litter production, forest floor C stock, and mineral soil C concentration and stock all differed significantly according to tree species type, mycorrhizal association, and N-fixing ability (Fig. 3). Within the three tree species categories, broadleaves had a higher litter production than conifers, but ECM and non-N-fixing trees produced more litter than AM and N-fixing trees, respectively (Fig. 3a). Forest floor C stocks were higher under conifers despite lower litter production, whereas ECM and non-N-fixing trees were significantly highest in forest floor C in line with the higher rates of production (Fig. 3b). In contrast, mineral soil C concentrations and stocks were significantly higher under broadleaved, AM, and N-fixing trees, respectively (Fig. 3c-d).

Fig. 3 Means (± 1 SE) of litter production, forest floor carbon (C) stock, and mineral soil C concentration and stock under different tree species type (broadleaf vs. conifer), mycorrhizal association (AM vs. ECM), and N-fixing ability (N-fixing vs. non-N-fixing) across all data points as estimated from linear mixed models, in which the identity of primary study and soil depth (for mineral soil only) were treated as random
factors. Statistically significant differences are shown with asterisks (\(^* p < 0.05, ^{**} p < 0.01, ^{***} p < 0.001\)), and the number in parentheses are the number of data points.

Tree species type, mycorrhizal association, and N-fixing ability all significantly affected soil properties such as N concentration, MBC, and basal respiration (Table 2). By simultaneously assessing the effects of soil properties in combination with climate, location, and tree species using SEM analysis, we found that climate and tree species, the variances of which were mainly explained by MAP and tree species type, respectively, showed significant direct effects on forest floor C stock (Fig. 4). Specifically, the first PCA axis of climate had a negative effect on forest floor C stock and negatively correlated with MAP, indicating a positive effect of MAP on forest floor C stock (Fig. 4a). The first PCA axis of tree species, which was negatively correlated with tree species type and mycorrhizal association, showed a positive effect on forest floor C stock, suggesting that C stock was higher under coniferous or ECM trees because broadleaved and AM trees were coded as “1” and coniferous and ECM trees as “0” in the SEM analysis. In contrast, no significant effect of tree species or other variables on soil mineral C concentration or stock was found, and the marginal R\(^2\) of SEMs for C concentration and stock were only 0.03 and 0.08, respectively (Fig. 4b, c). Location and soil properties did not affect forest floor C stock or mineral soil C concentration and stock. The indirect effects of tree species were examined by first testing the differences in soil variables between the groups of tree species (Table 2) and next testing their correlations with mineral soil C concentration and stock (Table 3). Mycorrhizal association and N-fixing ability strongly affected MBC, with higher values under AM or non-N-fixing trees (Table 2, 3), and MBC was again significantly positively correlated with soil C concentration and stock.
Tree species type significantly affected MBN, with a higher value under broadleaved trees (Table 2, 3), and MBN was again tightly positively correlated with soil C concentration.

Fig. 4 Structural equation models (SEMs) for forest floor C stock (a), mineral soil C concentration (b) and mineral soil C stock (c) describing the influence of climate (mean annual temperature (MAT) and mean annual precipitation (MAP)), location (latitude, longitude, and altitude), tree species (tree species type, mycorrhizal association, N-fixing ability), and soil properties (N stock for forest floor, N concentration for mineral soil, C:N ratio and pH) on forest floor carbon (C) stocks and mineral soil C concentration stock for the entire dataset. Positive and negative coefficients indicate positive and negative effects of the first principal component analysis (PCA) axes. Values in brackets are the correlation coefficients between the first PCA axes and each variable. Significant effects are indicated by solid lines and non-significant effects by dashed lines. Arrow widths are proportional to path coefficient. The goodness-of-fit tests are shown at the bottom of each path diagram. The values of Fisher’s C are very small and all p-values >0.05, indicating very good fits of all the three models. *p < 0.05, **p < 0.01, ***p < 0.001.
Table 2 Effects of tree species type, mycorrhizal association, and N-fixing ability on mineral soil chemical and biotic properties as assessed using linear mixed models in which each of the tested variables was treated as fixed effect and study identity and soil depth were treated as random effects. Values are means ± 1SE, and p-values of tree species effects are also shown.

Soil property	Species type	Mycorrhizal association	N-fixing ability	
	Broadleaf	Conifer	AM	ECM
N (g kg⁻¹)	3.8 ± 0.63	3.4 ± 0.64	3.9 ± 0.64	3.5 ± 0.63
C:N	15.7 ± 1.4	19.5 ± 1.5	15.2 ± 1.6	18.5 ± 1.3
pH	5.4 ± 0.14	5.2 ± 0.14	5.5 ± 0.15	5.2 ± 0.15
NH₄⁺ (mg kg⁻¹)	214.8 ± 575.9	155.4 ± 0.262	309.1 ± 411.2	± 0.431
NO₃⁻ (mg kg⁻¹)	14.7 ± 5.7	13.2 ± 5.7	17.2 ± 5.6	11.9 ± 5.5
PAP (mg kg⁻¹)	312.1 ± 636.8	± 0.411	293.9 ± 447.8	± 0.401
MBC (mg kg⁻¹)	599.8 ± 577.7	± 0.54	684.8 ± 535.9	± 0.006
MBN (mg kg⁻¹)	211.7 ± 215.2		215.2 ± 208.1	
MBP (mg kg⁻¹)	85.7 ± 31.8	57.2 ± 32.9	76.4 ± 33.9	73.5 ± 33.7
Basal respiration (mg CO₂ g⁻¹ day⁻¹)	27.6 ± 12.1	29.4 ± 12.1	24.2 ± 12.5	29.7 ± 12.3

Table 3 Pearson correlations (ρ) between soil properties and mineral soil C concentration and C stock under different tree species.

Soil properties	C concentration	C stock		
	ρ	p-value	ρ	p-value
NH₄⁺	0.125	0.601	0.141	0.236
NO₃⁻	0.252	0.283	0.118	0.381
PAP	-0.011	0.923	0.061	0.453
MBC	0.444	**0.001**	0.270	**0.002**
MBN	0.253	0.194	0.282	**0.029**
MBP	0.949	< **0.001**	0.711	**0.021**
Basal respiration	0.217	0.357	0.093	0.536

PAP: plant available phosphorus; MBC: microbial biomass carbon; MBN: microbial biomass nitrogen; MBP: microbial biomass phosphorus; Data in bold indicate statistical significance.
By conducting a meta-analysis using data from paired plots, we found similar patterns as in results generated from the total dataset (shown in Fig. 3). Forest floor C stock was 43.9% lower under broadleaved trees than under coniferous trees at the global level (Fig. 5a). In contrast, mineral soil concentration and stock were significantly higher under broadleaf than conifer, with averages 12% and 9% higher, respectively, but no difference was found within climate zones. As to mycorrhizal association, forest floor C stock was 39% lower under AM than under ECM trees at the global scale (Fig. 5b). However, mineral soil C stock under AM trees was significantly higher than under ECM trees, with an average of 10% globally. A similar trend was also found for mineral soil C concentrations, which were 22% higher under AM trees at the global scale, and 22% and 23% higher under AM trees compared with ECM trees in temperate and in subtropical/tropical regions, respectively (Fig. 5b). Nitrogen-fixing trees tended to have lower forest floor C stocks at the global scale ($p = 0.056$) and in temperate zones ($p = 0.058$), but not in tropical zones (Fig. 5c), but both mineral soil C concentration and stock were significantly higher under N-fixing trees than under non-N-fixing trees (Fig. 5c). Meta-regressions revealed that the effects of tree species type and mycorrhizal association on forest floor C stock were negatively affected by latitude and forest stand age, but positively with effects of N-fixing ability (Table 4). Tree species type effects on mineral soil C concentration were positively related to MAT and MAP and negatively to stand age (Table 4). N-fixing ability effects on mineral soil C concentration and stock were positively related to latitude soil depth and stand age. These results suggested greater effects of species type and mycorrhizal association on soil C in younger (lower stand age) forests located in lower latitude and warmer climate, but greater effects of N-fixing ability on soil C in higher latitude mature (higher stand age) forests.
Fig. 5 Effects of (a) tree species type (broadleaf vs. conifer), (b) mycorrhizal association (AM vs. ECM), and (c) N-fixing ability (N-fixing vs. non-N-fixing) of tree species on C stocks of forest floor and mineral soil and C concentration of mineral soil at the global scale and within the different climate zones (boreal, temperate, and subtropical/tropical zones). Results are expressed as the percentage differences (%) between tree species type, mycorrhizal type, or N-fixing ability and based on paired plots. Values indicate the means with 95% confidence intervals (CIs) and the numbers of data points are shown. Dots in blue and red indicate significant difference, and dot size represents effect sizes across all variables or within subgroups. *p < 0.05, **p < 0.01, ***p < 0.001.
Table 4 The effects of latitude, altitude, mean annual temperature (MAT), mean annual precipitation (MAP), forest stand age, and soil depth on the natural log response ratios (lnRR) of tree species type (broadleaf vs. conifer), mycorrhizal association (AM vs. ECM), and N-fixing ability (N-fixing vs. non-N-fixing) generated from linear mixed models by adding each variable as fixed effect and study as a random effect. Soil depth was treated as a random effect when addressing latitude, altitude, MAT, MAP, and stand age for mineral soil, but as fixed effect when addressing itself. Direction of the estimates (in parentheses) and p-values are shown, and values in bold indicate statistical significance.

Tree species type	Mycorrhizal association	N-fixing ability				
	Forest floor C stock	Mineral C stock	Forest floor C stock	Mineral C stock	Forest floor C stock	Mineral C stock
Latitude	(+) 0.006	(+) 0.237	(+) 0.733	(+) 0.016	(+) 0.249	(+) 0.209
Altitude	(+) 0.624	(+) 0.090	(+) 0.631	(+) 0.750	(+) 0.217	(+) 0.271
MAT	(+) 0.115	(+) 0.009	(+) 0.469	(+) 0.387	(+) 0.310	(+) 0.211
MAP	(+) 0.364	(+) 0.025	(+) 0.433	(+) 0.697	(+) 0.295	(+) 0.107
Stand age	(+) 0.009	(+) 0.844	(+) 0.893	(+) 0.048	(+) 0.695	(+) 0.229
Soil depth	(-) 0.076	(+) 0.869	(-) 0.192	(-) 0.042	(-) 0.309	(+) 0.006

4. Discussion

Forest floor C stock was significantly higher in coniferous forests, but mineral soil C concentration and stock were higher in broadleaved forests. Generally, litter quality of broadleaved trees is higher than that of coniferous trees, resulting in a higher decomposition rate of broadleaf litter than conifer litter (Aerts, 1997; Augusto et al., 2015). For example, compared with conifer litter, broadleaf litter generally has lower C:N ratio, lignin:N ratio, and concentration of phenolics that can lead to rapid decomposition rate and faster and more efficient accumulation of mineral-associated organic matter (Cotrufo et al., 2013), resulting in a higher input of C from forest floor to mineral soil. Therefore, although litter production in broadleaf forests was larger than in conifer forests (Fig. 3a), forest floor C stock was lower whereas mineral soil C concentration and stock were higher in broadleaf forests compared with conifer forests. The difference in forest floor C stock between broadleaved and coniferous trees may also be attributed to the adverse microclimatic conditions,
such as soil moisture, that control litter decomposition (Berger and Berger, 2012). However, the lack of data on such microclimatic conditions in our study limited the assessment of its impact in regulating tree species effects on soil C. Our findings were partly in line with a previous meta-analysis suggesting that forest floor C stock was 38% higher under conifers, while mineral soil C stocks were similar between broadleaves and conifers (Boča et al., 2014). The inconsistency regarding mineral soil C may be attributed to different data and analysis methods between our study and that of Boča et al., (2014), in which they had less data points, and the issue of non-independence of collected data points as well as soil depth were not considered when calculating the overall mean effects.

Mycorrhizal association has recently been recognized as an important factor regulating forest ecosystem functions such as C and N cycling (Phillips et al., 2013; Lin et al., 2017). Our results showed that AM trees had significantly lower forest floor C stocks compared with ECM forests, which may partly be attributed to the lower litter production and higher litter decomposition rate compared with ECM forests (Keller and Phillips, 2019). Previous studies found that foliar litter from ECM trees usually had lower litter quality (i.e., higher C:N ratio and lignin:N ratios and lower base cation concentrations) than that from AM trees, which contributes to a slower litter decomposition rate (Hobbie et al., 2006; Lin et al., 2017). Previous research has indicated that ECM and AM fungi can have opposite effects on litter decomposition, which can contribute to a higher forest floor C stock under ECM trees than AM trees. Specifically, ECM fungi can indirectly decrease litter decomposition rate by competing with saprotrophic microorganisms for soil water and N (Gadgil and Gadgil, 1971), while AM fungi can promote litter decomposition via their positive effects on the activity of soil bacterial communities (Nuccio et al., 2013). Overall, the higher forest floor C stock in ECM forests supports the traditional hypothesis that tree species with
low litter quality driving slow decomposition rates have been associated with accumulation of higher C stocks compared with tree species with fast rates of litter decomposition (Berg, 2014; Lehmann and Kleber, 2015).

In contrast to the forest floor pattern, our results showed that mineral soil C concentration and stock were significantly higher under AM trees than ECM trees. Generally, litter from AM trees has higher quality, suggesting a higher content of labile C that would be easier leached into mineral soil (Lin et al., 2017). Our result supports the proposed hypothesis that tree species with foliar litter traits conducive to fast decomposition, such as in AM tree species, will lead to more pronounced microbial stabilization and transformation of plant litter C through greater production of microbial residues (Cotrufo et al., 2013). This hypothesized Microbial Efficiency-Matrix Stabilization framework suggested that labile plant constituents, which are utilized more efficiently by microbes, are the dominant source of microbial products, and these microbial products of decomposition would become the main precursors of stable soil organic C by promoting aggregation and via strong chemical bonding to the mineral soil matrix (Cotrufo et al., 2013; Tamura and Tharayil, 2014). The higher mineral soil C concentration under AM trees compared with ECM trees may also be attributed to a greater proportion of forest floor C incorporation into mineral soil contributed by soil fauna (Schelfhout et al., 2017; Walmsley et al., 2019) because litter C incorporated into soil aggregates by active soil fauna are more protected from decomposition (Frouz et al., 2013; Frouz, 2018). This potential mechanism was supported by studies that reported leaf litter quality was positively correlated with soil fauna abundance (Hobbie et al., 2006; Frouz et al., 2013), and this was particularly the case for AM species such as Acer pseudoplatanus and Fraxinus excelsior (Schelfhout et al., 2017).
The N-fixing ability of different tree species also had significant effects on forest floor and mineral soil C. The results of the linear mixed model using the total dataset and the meta-analysis using paired data both revealed that forest floor C stock was higher under non-N-fixing trees (although marginally significant \(p = 0.056 \) in the meta-analysis) while mineral soil C concentration and stock were higher in N-fixing trees. The non-significant results may be attributed to the small sample sizes that limited the statistical power of our analyses (Yue et al., 2017), but similar forest floor C stocks have also been reported in other studies (Bachega et al., 2016). Previous studies found that N-fixing trees are likely to promote mineral soil C accumulation by both retaining old C and accreting new C from plant litter (Resh et al., 2002), indicating higher soil C concentrations and stocks in N-fixing forests. On the other hand, N-fixing is often more likely to form symbiosis with AM fungi while non-N-fixing trees mainly associated with ECM fungi (Pawlowska et al., 1997), indicating that the possible effect of N-fixing species could be confounded with effects attributed to AM association. However, among the 102 AM tree species included in our dataset, only 14 were N-fixing trees, suggesting only limited possible confounding of mycorrhizal association with N-fixing ability effects on soil C.

It is noteworthy that the effects of tree species on mineral soil C concentration and stock were non-significant in our SEM analyses (Fig. 4b, c). Three potential mechanisms may explain the inconsistent findings between SEM analyses and meta-analysis: (1) tree species effects on soil C were not confounded with other factors such as microbial biomass and soil respiration in the meta-analysis, but this may be an issue in SEM because MBC and soil respiration, which could not be included in the model because of limited data points, could be confounded with tree species effects; (2) the marginal \(R^2 \) in these SEM were only 0.03 and 0.08, indicating very low interpretability of these models; and (3) the heterogeneity among the unpaired data used in the SEM limited the
detection of significant results. Nevertheless, the significant effects of tree species on soil C as assessed by linear mixed models using total dataset and by meta-analyses using pairwise datasets were quite similar, indicating that our results are robust across sites on a global scale.

In the meta-regressions, location, climate, or soil properties were found to be important moderators of the effects of tree species type, mycorrhizal association, and N-fixing ability on forest floor C stock and mineral soil C concentration and stock. Because spatial location, climate, and soil properties are directly and indirectly linked to plant physiology and ecology, such as plant functional traits, litter quality, and litter decomposition (Wright et al., 2005; García-Palacios et al., 2013), it is not surprising that they significantly moderated tree species effects on soil C. For example, ECM forests usually have much lower soil inorganic N concentrations compared with AM forests (Lin et al., 2017), which may be attributed to the ability of ECM fungi to directly mobilize N from soil organic matter via extracellular enzyme production (Mao et al., 2019). Ectomycorrhizal trees are therefore less dependent on saprotrophic microbes for N uptake (Lindahl and Tunlid, 2015), while AM fungi mainly take up inorganic N produced by saprotrophic microorganisms (Phillips et al., 2013; Lehmann and Kleber, 2015). Thus, the effects of tree species on soil C stocks can be exerted indirectly through the mediation of soil nutrient economies. The greater effects of tree species type and mycorrhizal association on soil C in lower latitude and warmer climate may be attributed to the fact that element cycling processes are faster, and effects may occur faster and be sooner detectable than in cooler environments where the inputs and decomposition of organic matter occur at a slower rate (Zhang et al., 2008). In addition to these tested moderator variables, soil texture may also be an important variable moderating tree species effects on soil C, as previous studies found that clay-rich soils have a greater capacity to accumulate soil C than soils with lower clay content (Laganiere et al., 2010). However, because
of limited soil texture data, we could not assess the moderating influence of soil texture on tree species effects on soil C in this study.

Microbial biomass C and N, which were significantly correlated with soil C concentration and stock, were significantly affected by tree species (Table 3). Soil microbes play an important role in soil structure and function such as soil organic matter decomposition and biogeochemical cycling (Douterelo et al., 2010). A recent study found that soil C stocks were positively correlated with MBC and MBN (Zhao et al., 2016), and the effects of microbes on soil C dynamics were mainly through controlling C fluxes such as soil organic matter degradation and soil CO$_2$ emission (Iqbal et al., 2010). In addition, soil fauna has an important role in mediating tree species effects on soil C (Frouz et al., 2013). Among soil fauna, earthworms are one of the most important organisms in forest ecosystems because they can incorporate organic materials into the soil and also affect the activities of other soil organisms (Lee, 1985). Moreover, earthworm communities were found to be significantly affected by tree species (Schelfhout et al., 2017), suggesting that tree species affect soil C stocks indirectly through their influence on earthworm communities. However, owing to the scarcity of such data, we were unable to assess how soil fauna communities under different tree species may modulate soil C dynamics at the global scale.

5. Conclusions

Our results from data syntheses and meta-analyses provided further evidence that tree species with specific functional traits have significant effects on forest floor C stock and mineral soil C concentration and stock at the global scale. Broadleaved, AM, and N-fixing trees had lower forest floor C stocks but higher mineral soil C concentrations and stocks than coniferous, ECM, and non-
N-fixing trees, respectively. Tree species type, mycorrhizal association, and N-fixing ability affected forest floor C stock and mineral soil C concentration and stock directly or indirectly via impacting soil properties such as MBC and MBN. In addition, tree species effects on soil C concentration and stock were mediated by latitude, MAT, MAP, or forest stand age, with higher effects of species type and mycorrhizal association on soil C in lower latitude, warmer climate, and young forests, but higher effects of N-fixing ability in higher latitude and mature forests. These results show how tree species groups differ in their influence on soil C concentration and stock at the global scale, and the insights into the underlying mechanisms of tree species effects found in our study contribute to informing tree species selection for forest management or afforestation. Future studies should focus more on the potential indirect tree species-mediated effects via soil fauna and belowground litter input on soil C dynamics.

Acknowledgments

We would like to thank the two anonymous reviewers for providing insightful comments and useful suggestions that significantly improved the quality of our study. We are grateful to all the researchers whose published data were used in this study. Yan Peng acknowledges China Scholarship Council for supporting a Ph.D. program grant (201606910045). Kai Yue was financially supported by the National Natural Science Foundation of China (31922052 and 31800373). Petr Hedênec was supported by the Marie Curie European Fellowship (747824-AFOREST-H2020-MSCA-IF-2016/H2020-MSCA-IF-2016). Luciana Ruggiero Bachega was supported by The São Paulo Research Foundation, Brazil (2015/14785-5, and 2017/26019-0).
References

Aerts, R., 1997. Climate, leaf litter chemistry, and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 439-449.

Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., Ranger, J., 2015. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biological Reviews 90, 444-466.

Bachega, L.R., Bouillet, J.-P., de Cássia Piccolo, M., Saint-André, L., Bouvet, J.-M., Nouvellon, Y., de Moraes Gonçalves, J.L., Robin, A., Laclau, J.-P., 2016. Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. For. Ecol. Manage. 359, 33-43.

Barceló, M., van Bodegom, P.M., Soudzilovskaia, N.A., 2019. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 107, 2564-2573.

Bardgett, R.D., van der Putten, W.H., 2014. Belowground biodiversity and ecosystem functioning. Nature 515, 505-511.

Berg, B., 2014. Decomposition patterns for foliar litter—a theory for influencing factors. Soil Biol. Biochem. 78, 222-232.

Berger, T.W., Berger, P., 2012. Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles. Plant Soil 358, 349-369.

Boča, A., Van Miegroet, H., Gruselle, M.-C., 2014. Forest overstory effect on soil organic carbon storage: a meta-analysis. Soil Sci. Soc. Am. J. 78, S35-S47.

Brundrett, M.C., 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320, 37-77.

Cepák, Š., Tošner, Z., Frouz, J., 2016. The effect of tree species on seasonal fluctuations in water-soluble and hot water-extractable organic matter at post-mining sites. Geoderma 275, 19-27.
Chen, S., Zou, J., Hu, Z., Chen, H., Lu, Y., 2014. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology 198, 335-346.

Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K., Paul, E., 2013. The Microbial Efficiency-M atrix S tabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biology 19, 988-995.

Craig, M.E., Turner, B.L., Liang, C., Clay, K., Johnson, D.J., Phillips, R.P., 2018. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Global Change Biology 24, 3317-3330.

Douterelo, I., Goulder, R., Lillie, M., 2010. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Applied Soil Ecology 44, 219-227.

Frouz, J., 2018. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma 332, 161-172.

Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., 2013. Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management 309, 87-95.

Gadgil, R.L., Gadgil, P., 1971. Mycorrhiza and litter decomposition. Nature 233, 133-133.

García-Palacios, P., Maestre, F.T., Kattge, J., Wall, D.H., 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology letters 16, 1045-1053.

Grace, J., 2006. Structural equation modeling and natural systems. Cambridge University Press, Cambridge.

Hobbie, S.E., Reich, P.B., Oleksyn, J., Ogdahl, M., Zytkowiak, R., Hale, C., Karolewski, P., 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288-2297.

Iqbal, J., Hu, R., Feng, M., Lin, S., Malghani, S., Ali, I.M., 2010. Microbial biomass, and dissolved organic carbon and nitrogen strongly affect soil respiration in different land uses: A case study at Three Gorges Reservoir Area, South China. Agriculture, Ecosystems & Environment 137, 294-307.
Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M.F., Bampa, F., van Wesemael, B., Harrison, R.B., Guerrini, I.A., deB Richter Jr, D., Rustad, L., 2014. Current status, uncertainty and future needs in soil organic carbon monitoring. Science of the total environment 468, 376-383.

Keller, A.B., Phillips, R.P., 2019. Leaf litter decay rates differ between mycorrhizal groups in temperate, but not tropical, forests. New Phytol. 222, 556-564.

Koele, N., Dickie, I.A., Oleksyn, J., Richardson, S.J., Reich, P.B., 2012. No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytologist 196, 845-852.

Laganiere, J., Angers, D.A., Pare, D., 2010. Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Global Change Biology 16, 439-453.

Lee, K.E., 1985. Earthworms: their ecology and relationships with soils and land use. Academic Press Inc., London, UK.

Lefcheck, J.S., 2016. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution 7, 573-579.

Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528, 60-68.

Lin, G., McCormack, M.L., Ma, C., Guo, D., 2017. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. New Phytol. 213, 1440-1451.

Lindahl, B.D., Tunlid, A., 2015. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytologist 205, 1443-1447.

Mao, Z., Corrales, A., Zhu, K., Yuan, Z., Lin, F., Ye, J., Hao, Z., Wang, X., 2019. Tree mycorrhizal associations mediate soil fertility effects on forest community structure in a temperate forest. New Phytol. 223, 475-486.

Mayer, M., Prescott, C.E., Abaker, W.E., Augusto, L., Cécillon, L., Ferreira, G.W., James, J., Jandl, R., Katzensteiner, K., Laclau, J.-P., 2020. Influence of forest management activities on soil organic carbon stocks: a knowledge synthesis. For. Ecol. Manage. 466, 118127.
Mueller, K.E., Hobbie, S.E., Chorover, J., Reich, P.B., Eisenhauer, N., Castellano, M.J., Chadwick, O.A., Dobies, T., Hale, C.M., Jagodziński, A.M., 2015. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123, 313-327.

Nave, L.E., Vance, E.D., Swanston, C.W., Curtis, P.S., 2009. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N-mineralization. Geoderma 153, 231-240.

Nuccio, E.E., Hodge, A., Pett-Ridge, J., Herman, D.J., Weber, P.K., Firestone, M.K., 2013. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental microbiology 15, 1870-1881.

Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., 2011. A large and persistent carbon sink in the world’s forests. Science 333, 988-993.

Pawlowska, T.E., Błaszkowski, J., Rühling, Å., 1997. The mycorrhizal status of plants colonizing a calamine spoil mound in southern Poland. Mycorrhiza 6, 499-505.

Phillips, R.P., Brzostek, E., Midgley, M.G., 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41-51.

Prescott, C.E., Vesterdal, L., 2013. Tree species effects on soils in temperate and boreal forests: emerging themes and research needs. Forest Ecology and Management 309, 1-3.

R Core Team, 2019. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Read, D., Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol. 157, 475-492.

Resh, S.C., Binkley, D., Parrotta, J.A., 2002. Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5, 217-231.

Schelfhout, S., Mertens, J., Verheyen, K., Vesterdal, L., Baeten, L., Muys, B., De Schrijver, A., 2017. Tree species identity shapes earthworm communities. Forests 8, 85.
Soudzilovskaia, N.A., van der Heijden, M.G., Cornelissen, J.H., Makarov, M.I., Onipchenko, V.G., Maslov, M.N., Akhmetzhanova, A.A., van Bodegom, P.M., 2015. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol. 208, 280-293.

Tamura, M., Tharayil, N., 2014. Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems. New phytologist 203, 110-124.

Vesterdal, L., Clarke, N., Sigurdsson, B.D., Gundersen, P., 2013. Do tree species influence soil carbon stocks in temperate and boreal forests? Forest Ecology and Management 309, 4-18.

Vesterdal, L., Schmidt, I.K., Callesen, I., Nilsson, L.O., Gundersen, P., 2008. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management 255, 35-48.

Wagg, C., Pautler, M., Massicotte, H.B., Peterson, R.L., 2008. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae. Mycorrhiza 18, 103-110.

Walmsley, A., Vachová, P., Hlava, J., 2019. Tree species identity governs the soil macrofauna community composition and soil development at reclaimed post-mining sites on calcium-rich clays. European Journal of Forest Research 138, 753-761.

Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., Van Der Putten, W.H., Wall, D.H., 2004. Ecological linkages between aboveground and belowground biota. Science 304, 1629-1633.

Wright, I.J., Reich, P.B., Cornelissen, J.H., Falster, D.S., Groom, P.K., Hikosaka, K., Lee, W., Lusk, C.H., Niinemets, Ü., Oleksyn, J., 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14, 411-421.

Yue, K., Fornara, D.A., Yang, W., Peng, Y., Li, Z., Wu, F., Peng, C., 2017. Effects of three global change drivers on terrestrial C: N: P stoichiometry: a global synthesis. Global Change Biology 23, 2450-2463.

Yue, K., García-Palacios, P., Parsons, S.A., Yang, W., Peng, Y., Tan, B., Huang, C., Wu, F., 2018. Assessing the temporal dynamics of aquatic and terrestrial litter decomposition in an alpine forest. Functional Ecology 32, 2464-2475.
Yue, K., Peng, Y., Peng, C., Yang, W., Peng, X., Wu, F., 2016. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis. Scientific Reports 6, 1-10.

Zhang, D., Hui, D., Luo, Y., Zhou, G., 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology 1, 85-93.

Zhao, F., Zhang, L., Ren, C., Sun, J., Han, X., Yang, G., Wang, J., 2016. Effect of microbial carbon, nitrogen, and phosphorus stoichiometry on soil carbon fractions under a black locust Forest within the central loess plateau of China. Soil Science Society of America Journal 80, 1520-1530.
SUPPORTING INFORMATION FOR

Tree species effects on soil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability

Table S1 Raw data used in this study that were extracted from the 143 primary studies

Reference	Latitude	Longitude	Altitude	MAT	MAP	Species type	Mycorrhizal association	N-fixing ability	layer	Litter	Cs	Na	pH	NN	NH4	NO3	PAP	MBC	MBN	MBP	Respir ras	pH		
Son & Gower 1992	43.867	-91.85	240	7	819	f.	ECM	non-N-fixing	forest floor	NA	NA	0.079	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	forest floor	NA	NA	0.26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	forest floor	NA	NA	0.259	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	forest floor	NA	NA	0.306	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	forest floor	NA	NA	0.225	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	forest floor	NA	NA	0.306	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	forest floor	NA	NA	0.225	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Son & Gower 1992	43.867	-91.85	240	7	819	f.	ECM	non-N-fixing	mineral	29.38	3.19	9.2	8.3	0.9	NA	NA	20.6	NA	NA	NA	NA	NA	5.4	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	mineral	31.48	3.29	9.6	8.6	0.9	NA	NA	35.7	NA	NA	NA	NA	NA	5.3	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	mineral	28.18	2.93	9.6	7.7	0.8	NA	NA	41.4	NA	NA	NA	NA	NA	5.4	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	mineral	36.97	3.66	10.1	10.1	1	NA	NA	28.2	NA	NA	NA	NA	NA	5.5	
Son & Gower 1992	43.867	-91.85	240	7	819	conifer	ECM	non-N-fixing	mineral	43.73	3.73	11.7	12.9	1.1	NA	NA	21.2	NA	NA	NA	NA	NA	5.2	
Koch et al. 2018	36.617	51.433	215	15.7	1035	f.	ECM	non-N-fixing	mineral	55.97	5.48	10.3	3.9	50.6	29.13	22.61	667.37	55.18	68.18	0.42	6.16			
Vesterdal et al. 2018	36.617	51.433	215	15.7	10135	boreal f	EOM	non-fixing	mineral	NA	49.13	2.62	19.1	45.9	2.4	24.37	20.39	13.48	546	43.55	54.12	0.41	6.48	
Vesterdal et al. 2018	36.617	51.433	215	15.7	10135	conifer	AM	non-fixing	mineral	NA	59.17	3.38	17.2	41.2	2.4	22.85	18.18	15.73	501.68	45.24	44.75	0.4	6.45	
Rachdl et al. 2013	-22.767	-43.683	13	23.4	1250	boreal f	EOM	non-fixing	mineral	NA	NA	NA	12.85	4.49	0.35	1.4815	0.0287	NA	NA	NA	NA	NA	NA	5.45
Rachdl et al. 2013	-22.767	-43.683	13	23.4	1250	boreal f	EOM	N-fixing	mineral	NA	NA	NA	12.92	4.15	0.32	2.0201	0.459	NA	NA	NA	NA	NA	5.36	
Rachdl et al. 2013	-22.767	-43.683	13	23.4	1250	boreal f	EOM	non-fixing	mineral	NA	NA	NA	12.72	6.43	0.51	1.6816	0.3443	NA	NA	NA	NA	NA	NA	5.73
Rachdl et al. 2013	-22.767	-43.683	13	23.4	1250	boreal f	EOM	N-fixing	mineral	NA	NA	NA	12.92	7.38	0.56	1.2688	2.7684	NA	NA	NA	NA	NA	NA	5.88
Xu et al. 2006	36.6	139	1014	9.8	1536	conifer	AM	non-fixing	mineral	NA	NA	NA	14	118.5	8.4	10.2	11.5	NA	8005.61	NA	NA	31.9902	5.1	
Xu et al. 2006	36.6	139	1014	9.8	1536	conifer	EOM	non-fixing	mineral	NA	NA	NA	18.1	198.8	9.4	13.9	4.6	NA	3487.67	NA	NA	65.4322	4.8	
Chodak et al. 2015	66.433	29.45	274	-0.8	554	conifer	EOM	non-fixing	forest floor	NA	NA	NA	46.7	345	7.5	NA	NA	NA	3575	NA	NA	3.6		
Chodak et al. 2015	66.433	29.45	274	-0.8	554	conifer	EOM	non-fixing	forest floor	NA	NA	NA	44.6	362	8.6	NA	NA	NA	3518	NA	NA	3.7		
Chodak et al. 2015	66.433	29.45	274	-0.8	554	boreal f	EOM	non-fixing	forest floor	NA	NA	NA	26.3	360	14.1	NA	NA	NA	3391	NA	NA	4.6		
Chodak et al. 2015	66.433	29.45	274	-0.8	554	conifer	EOM	non-fixing	mineral	NA	NA	NA	23.5	12.5	0.48	NA	NA	NA	237	NA	NA	4.3		
Chodak et al. 2015	66.433	29.45	274	-0.8	554	conifer	EOM	non-fixing	mineral	NA	NA	NA	22.6	22.3	0.82	NA	NA	NA	199	NA	NA	4.4		
Chodak et al. 2015	66.433	29.45	274	-0.8	554	boreal f	EOM	non-fixing	mineral	NA	NA	NA	26.2	31.9	1.21	NA	NA	NA	208	NA	NA	4.8		
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	AM	non-fixing	forest floor	2.7	1.48	0.027	53.9	NA										
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	EOM	non-fixing	forest floor	3.08	4.7	0.15	31.2	NA										
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	EOM	non-fixing	forest floor	3.12	1.473	0.041	34.93	NA										
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	EOM	non-fixing	forest floor	3.6	1.472	0.04327	34.01	NA										
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	AM	non-fixing	forest floor	3.54	3.192	0.12306	25.94	NA										
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	conifer	EOM	non-fixing	forest floor	4.2	15.12	0.56352	26.83	NA										
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	EOM	non-fixing	forest floor	4.01	1.1	1.26	38.7	2.87	NA									
Vestenlal et al. 2008	55.134	12.036	11	7.5	703	boreal f	EOM	non-fixing	mineral	NA	14.1	1.1	12.8	36.7	2.44	NA	NA	NA	NA	NA	NA	3.4		
Source	Year	Treatment	Forest floor	Mineral floor	Non-fixing	Fixing	Non-																	
Chatterjee et al. 2008	44	-104	2060	4	509	conifer	ECM	non-fixing	mineral	NA	20.9	1.21	17.3	NA										
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
Chatterjee et al. 2008	40	-106	2060	2	501	conifer	ECM	non-fixing	mineral	NA	18.3	0.66	27.7	NA										
Chatterjee et al. 2008	40	-106	2060	2	501	conifer	ECM	non-fixing	mineral	NA	22.2	0.85	26.1	NA										
Malchair & Carnol 2009	50.017	4.4	333	8.8	881	boradkes	ECM	non-fixing	mineral	NA	NA	NA	26.3	120.98	4.6	190	NA	NA	2374.19	166.67	NA	1.47241	4.1	
Malchair & Carnol 2009	50.017	4.4	333	8.8	881	boradkes	ECM	non-fixing	mineral	NA	NA	NA	23.2	129.92	5.6	590	NA	NA	2219.35	222.22	NA	1.68004	4	
Malchair & Carnol 2009	50.567	6.016	350	8.8	1043	boradkes	ECM	non-fixing	mineral	NA	NA	NA	24.6	228.78	9.3	900	NA	NA	2529.03	225.69	NA	2.0257	3.9	
Malchair & Carnol 2009	50.567	6.016	350	8.8	1043	boradkes	ECM	non-fixing	mineral	NA	NA	NA	24	230.4	9.6	2100	NA	NA	3174.19	350.69	NA	2.60432	4.1	
Malchair & Carnol 2009	50.567	6.016	350	8.8	1043	boradkes	ECM	non-fixing	mineral	NA	NA	NA	29.2	230.68	7.9	0	NA	NA	2612.9	208.33	NA	2.2786	3.8	
Malchair & Carnol 2009	50.3	5.967	400	8	1072	boradkes	ECM	non-fixing	mineral	NA	NA	NA	22	129.8	5.9	100	NA	NA	1957.1	180.56	NA	1.88333	4	
Malchair & Carnol 2009	50.3	5.967	400	8	1072	boradkes	ECM	non-fixing	mineral	NA	NA	NA	23.4	154.44	6.6	3000	NA	NA	2141.94	167.5	NA	1.92874	4	
Malchair & Carnol 2009	50.3	5.967	400	8	1072	boradkes	ECM	non-fixing	mineral	NA	NA	NA	30.2	199.32	6.6	11400	NA	NA	1935.48	166.67	NA	2.18335	3.9	
Malchair & Carnol 2009	50.3	5.967	400	8	1072	boradkes	ECM	non-fixing	mineral	NA	NA	NA	27.7	182.82	6.6	0	NA	NA	1806.45	159.72	NA	1.9274	3.8	
Malchair & Carnol 2009	49.817	5.713	503	7.9	1042	boradkes	ECM	non-fixing	mineral	NA	NA	NA	22.4	161.28	7.2	0	NA	NA	1858.06	163.19	NA	1.20775	3.9	
Malchair & Carnol 2009	49.817	5.713	503	7.9	1042	boradkes	ECM	non-fixing	mineral	NA	NA	NA	24.5	198.45	8.1	700	NA	NA	1832.26	180.56	NA	1.55478	3.7	
Malchair & Carnol 2009	49.817	5.713	503	7.9	1042	boradkes	ECM	non-fixing	mineral	NA	NA	NA	29.4	267.54	9.1	1600	NA	NA	2993.55	208.33	NA	2.69823	3.7	
Malchair & Carnol 2009	49.817	5.713	503	7.9	1042	boradkes	ECM	non-fixing	mineral	NA	NA	NA	284	198.8	0.7	2400	NA	NA	2296.77	121.53	NA	1.22867	3.7	
Huang et al. 2011	-43.65	172.7	50	11.8	724	conifer	ECM	non-fixing	mineral	NA	18.5	1.7	1.1	42	39	NA								
Huang et al. 2011	-43.65	172.7	50	11.8	724	conifer	ECM	non-fixing	mineral	NA	21.5	1.7	1.3	50	39	NA								
Huang et al. 2011	-43.65	172.7	50	11.8	724	conifer	ECM	non-fixing	mineral	NA	19.1	1.8	1.1	44	41	NA								
Huang et al. 2011	-43.65	172.7	50	11.8	724	conifer	ECM	non-fixing	mineral	NA	23.3	1.9	1.3	54	43	NA								
Huang et al. 2011	-43.65	172.7	50	11.8	724	conifer	ECM	non-fixing	mineral	NA	19.1	1.7	1.2	46	40	NA								
Huang et al. 2011	-43.65	172.7	50	11.8	724	conifer	ECM	non-fixing	mineral	NA	21.9	1.7	1.3	52	41	NA								
Huang et al. 2011	43.65	172.7	50	11.8	724	conifer	ECM	non-Ni-fixing	mineral	NA	70.1	6.4	11	NA	NA	NA	NA	NA	NA	5.2				
-------------------	-------	-------	----	------	-----	--------	-----	--------------	---------	----	------	----	----	----	----	----	----	----	----	----				
Huang et al. 2011	43.65	172.7	50	11.8	724	conifer	ECM	non-Ni-fixing	mineral	NA	74.3	6.4	11.6	NA	NA	NA	NA	NA	NA	5.2				
Huang et al. 2011	43.65	172.7	50	11.8	724	boradlea f	ECM	non-Ni-fixing	mineral	NA	71.6	6.6	10.8	NA	NA	NA	NA	NA	NA	5.2				
Huang et al. 2011	43.65	172.7	50	11.8	724	boradlea f	ECM	non-Ni-fixing	mineral	NA	77.6	6.8	11.4	NA	NA	NA	NA	NA	NA	5.4				
Huang et al. 2011	43.65	172.7	50	11.8	724	conifer	AM	non-Ni-fixing	mineral	NA	71.6	6.5	11	NA	NA	NA	NA	NA	NA	5.3				
Huang et al. 2011	43.65	172.7	50	11.8	724	conifer	AM	non-Ni-fixing	mineral	NA	70.6	6.2	11.4	NA	NA	NA	NA	NA	NA	5.5				
Huang et al. 2013	26.8	117.967	267	19.1	1673	boradlea f	AM	non-Ni-fixing	mineral	9.5	18.57	1.03	18	39.5	2.2	NA	NA	NA	NA	4.3				
Huang et al. 2013	26.8	117.967	267	19.1	1673	conifer	AM	non-Ni-fixing	mineral	4.3	14.5	0.91	15.9	30.2	1.9	NA	NA	NA	NA	4.6				
Huang et al. 2014	22.167	106.833	360	21.3	1344	boradlea f	ECM	non-Ni-fixing	mineral	NA	NA	NA	2.3	16.9	7.2	2.03	0.39	NA	346.05	NA	NA	NA		
Fu et al. 2015	26.73	115.05	139	17.9	1489	conifer	ECM	non-Ni-fixing	mineral	4.94	NA	NA	12.6	14.833	1.179	NA	NA	NA	NA	4.47				
Fu et al. 2015	26.73	115.05	139	17.9	1489	conifer	ECM	non-Ni-fixing	mineral	3.25	NA	NA	11.6	12.791	1.105	NA	NA	NA	NA	4.49				
Fu et al. 2015	26.73	115.05	139	17.9	1489	conifer	AM	non-Ni-fixing	mineral	2.86	NA	NA	14.2	21.145	1.486	NA	NA	NA	NA	4.07				
Kang et al. 2018	31.683	121.467	6	15.5	1039	boradlea f	AM	non-Ni-fixing	mineral	NA	NA	NA	1.2	23.8	20	1.5	11.7	NA	NA	7.78				
Kang et al. 2018	31.683	121.467	6	15.5	1039	conifer	AM	non-Ni-fixing	mineral	NA	NA	NA	1.4	13.8	10	1.89	6.7	NA	NA	7.8				
Kang et al. 2018	31.683	121.467	6	15.5	1039	conifer	AM	non-Ni-fixing	mineral	NA	NA	NA	1.3	21.4	16	2.73	13.7	NA	NA	7.77				
Kang et al. 2018	31.683	121.467	6	15.5	1039	conifer	AM	non-Ni-fixing	mineral	NA	NA	NA	1.2	20.7	17	3.48	15.3	NA	NA	7.81				
Joziłkowska et al. 2017	50.336	21.345	155	7	650	conifer	ECM	non-Ni-fixing	mineral	NA	NA	NA	13.4	13.4	1	NA	NA	NA	NA	6.2				
Joziłkowska et al. 2017	50.336	21.345	155	7	650	boradlea f	ECM	non-Ni-fixing	mineral	NA	NA	NA	16.7	13.1	0.7	NA	NA	NA	NA	7.2				
Joziłkowska et al. 2017	50.336	21.345	155	7	650	boradlea f	ECM	non-Ni-fixing	mineral	NA	NA	NA	10.4	19.7	1.9	NA	NA	NA	NA	6.8				
Joziłkowska et al. 2017	50.144	19.251	238	8	700	conifer	ECM	non-Ni-fixing	mineral	NA	NA	NA	35	7	0.2	NA	NA	NA	NA	6				
Joziłkowska et al. 2017	50.144	19.251	238	8	700	boradlea f	ECM	non-Ni-fixing	mineral	NA	NA	NA	40.5	8.1	0.2	NA	NA	NA	NA	6.5				
Joziłkowska et al. 2017	50.144	19.251	238	8	700	boradlea f	ECM	non-Ni-fixing	mineral	NA	NA	NA	68	6.8	0.1	NA	NA	NA	NA	6.1				
Jozefowska et al. 2017	51.132	19.257	240	7.6	580	conifer	ECM	non-Nitrogen	mineral	NA	NA	NA	37	7.4	0.2	NA	6.5							
------------------------	--------	--------	-----	-----	-----	--------	-----	-------------	---------	----	----	----	---	----	----	----	----	----	----	----	----	----	----	----
Jozefowska et al. 2017	51.132	19.257	240	7.6	580	boraldea f	ECM	non-Nitrogen	mineral	NA	NA	NA	49	4.9	0.1	NA	6.4							
Jozefowska et al. 2017	51.132	19.257	240	7.6	580	boraldea f	ECM	non-Nitrogen	mineral	NA	NA	NA	20.9	20.9	1	NA	5.9							
Hagen-Thorn et al. 2004	54.75	24.067	90	6.3	622.7	boraldea f	AM	non-Nitrogen	mineral	NA	28.62	1.854	15.5	26.2	1.691	NA	NA	18.5	NA	NA	NA	NA	5.1	
Hagen-Thorn et al. 2004	54.75	24.067	90	6.3	622.7	boraldea f	ECM	non-Nitrogen	mineral	NA	27.82	1.695	17.3	25.9	1.497	NA	NA	27.5	NA	NA	NA	NA	4.7	
Hagen-Thorn et al. 2004	54.75	24.067	90	6.3	622.7	boraldea f	ECM	non-Nitrogen	mineral	NA	24.79	1.452	17.3	21.7	1.253	NA	NA	23.8	NA	NA	NA	NA	5	
Hagen-Thorn et al. 2004	54.75	24.067	90	6.3	622.7	conifer	ECM	non-Nitrogen	mineral	NA	27.38	1.69	16.2	23.2	1.43	NA	NA	20.4	NA	NA	NA	NA	5.5	
Hagen-Thorn et al. 2004	54.75	24.067	90	6.3	622.7	boraldea f	ECM	non-Nitrogen	mineral	NA	26.44	1.543	16.4	25.1	1.533	NA	NA	23.8	NA	NA	NA	NA	5.1	
Hagen-Thorn et al. 2004	54.75	24.067	90	6.3	622.7	conifer	ECM	non-Nitrogen	mineral	NA	31.39	1.543	20.2	24.8	1.23	NA	NA	41.2	NA	NA	NA	NA	4.3	
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	forest floor	NA	48.5	NA	NA	245	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	boraldea f	ECM	non-Nitrogen	forest floor	NA	11.06	NA	NA	149	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	forest floor	NA	24.62	NA	NA	193	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	forest floor	NA	29.64	NA	NA	326	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	forest floor	NA	26.33	NA	NA	240	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	forest floor	NA	26.65	NA	NA	240	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	boraldea f	ECM	non-Nitrogen	mineral	NA	43.89	NA	NA	34	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	boraldea f	ECM	non-Nitrogen	mineral	NA	39.51	NA	NA	37	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	boraldea f	ECM	non-Nitrogen	mineral	NA	59.69	NA	NA	43	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	mineral	NA	66.42	NA	NA	52	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	mineral	NA	45.36	NA	NA	36	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	conifer	ECM	non-Nitrogen	mineral	NA	47.4	NA	NA	35	NA									
Schulp et al. 2008	52.25	5.683	64	9.4	860	boraldea f	ECM	non-Nitrogen	mineral	NA	68.27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Study	Mycorrhizal Type	Location 1	Location 2	Location 3	Location 4	Location 5	Location 6	Location 7	Location 8	Location 9	Location 10	Location 11	Location 12	Location 13	Location 14	Location 15	Location 16	Location 17	Location 18					
-----------------------	------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------					
Schulp et al. 2008	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4					
He et al. 2013	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4					
Wang et al. 2013	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4					
Diaz-Pines et al. 2011	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4	860	5.683	64	9.4					
Reference	Material Type	Sample Size	Mineral Type	Non-Host	NA	19	562	NA	NA	76.8	6.5													
----------------	---------------	-------------	--------------	----------	----	----	----	----	----	----	----	----	----	-----	----	----	-------	-----						
Frouz et al. 2013	50.233 12.683 473 6.8 650	boradella f	ECM	non-Ni-baring	mineral	NA	38	NA	NA	95	NA	NA	NA	19	562	NA	NA	76.8	6.5					
Frouz et al. 2013	50.233 12.683 473 6.8 650	boradella f	ECM	non-Ni-baring	mineral	NA	16.5	NA	NA	59	NA	NA	NA	11	240	NA	NA	88.8	6.9					
Frouz et al. 2013	50.233 12.683 473 6.8 650	conifer	ECM	non-Ni-baring	mineral	NA	23.1	NA	NA	65	NA	NA	NA	14.8	237	NA	NA	86.4	6.9					
Wen et al. 2014	28.1 113.033 50 17.2 1422	conifer	ECM	non-Ni-baring	mineral	NA	13.67	1.5	9.18	13.95	1.53	NA	NA	NA	270.103	30.103	NA	NA	4.4					
Wen et al. 2014	28.1 113.033 50 17.2 1422	boradella f	AM	non-Ni-baring	mineral	NA	16.15	1.47	11.08	17	1.55	NA	NA	NA	340.206	65.567	NA	NA	4.37					
Wen et al. 2014	28.1 113.033 50 17.2 1422	conifer	ECM	non-Ni-baring	mineral	NA	21.02	1.42	15.1	13.92	0.94	NA	NA	NA	140.206	23.98	NA	NA	4.14					
Wen et al. 2014	28.1 113.033 50 17.2 1422	boradella f	AM	non-Ni-baring	mineral	NA	24.38	1.94	13.25	17.93	1.43	NA	NA	NA	204.124	40.925	NA	NA	4.51					
Wen et al. 2014	28.1 113.033 50 17.2 1422	conifer	ECM	non-Ni-baring	mineral	NA	18.29	1.46	12.41	12.36	1	NA	NA	NA	113.402	18.969	NA	NA	4.21					
Wen et al. 2014	28.1 113.033 50 17.2 1422	boradella f	AM	non-Ni-baring	mineral	NA	26.34	1.66	17.19	19.37	1.22	NA	NA	NA	195.676	39.588	NA	NA	4.27					
Song et al. 2017	41.55 118.617 886 6.5 462	conifer	ECM	non-Ni-baring	mineral	NA	54	6.3	8.7	12	1.4	NA												
Song et al. 2017	41.55 118.617 886 6.5 462	boradella f	ECM	non-Ni-baring	mineral	NA	52.27	5.62	8.88	12.1	1.3	NA												
Song et al. 2017	41.55 118.617 886 6.5 462	boradella f	AM	non-Ni-baring	mineral	NA	45.99	6.13	7.99	10.5	1.4	NA												
Wang et al. 2017	45.717 126.617 145 3.6 600	boradella f	ECM	non-Ni-baring	mineral	NA	35.6	1.2	30.2	13.3	0.44	NA	NA	NA	5.84	NA	NA	NA	6.27					
Wang et al. 2017	45.717 126.617 145 3.6 600	conifer	ECM	non-Ni-baring	mineral	NA	21.2	0.74	28.5	7.4	0.26	NA	NA	NA	5.79	NA	NA	NA	6.37					
Wang et al. 2017	45.717 126.617 145 3.6 600	conifer	ECM	non-Ni-baring	mineral	NA	44.7	1.52	29.5	16.5	0.56	NA	NA	NA	10.95	NA	NA	NA	7.11					
Wang et al. 2017	45.717 126.617 145 3.6 600	conifer	ECM	non-Ni-baring	mineral	NA	37.4	1.48	25.4	13.7	0.54	NA	NA	NA	8.38	NA	NA	NA	6.6					
Wang et al. 2017	45.717 126.617 145 3.6 600	boradella f	AM	non-Ni-baring	mineral	NA	44.2	1.5	29.5	16.8	0.57	NA	NA	NA	6.18	NA	NA	NA	7.01					
Wang et al. 2017	45.717 126.617 145 3.6 600	boradella f	AM	non-Ni-baring	mineral	NA	34.5	1.39	24.5	12.5	0.51	NA	NA	NA	2.7	NA	NA	NA	6.32					
Wang et al. 2017	45.717 126.617 145 3.6 600	conifer	ECM	non-Ni-baring	mineral	NA	35.9	1.24	29.1	13.1	0.45	NA	NA	NA	6.33	NA	NA	NA	6.36					
Wang et al. 2017	45.717 126.617 145 3.6 600	boradella f	ECM	non-Ni-baring	mineral	NA	28	0.92	30.5	9.76	0.32	NA	NA	NA	6.1	NA	NA	NA	6.6					
Wang et al. 2017	45.717 126.617 145 3.6 600	boradella f	AM	non-Ni-baring	mineral	NA	41.4	1.54	27	15.4	0.57	NA	NA	NA	8.27	NA	NA	NA	6.93					
Wang et al. 2017	45.717 126.617 145 3.6 600	boradella f	ECM	non-Ni-baring	mineral	NA	31.9	1.19	27.1	11.1	0.41	NA	NA	NA	5.86	NA	NA	NA	6.8					
Neirynck et al. 2000	Wang et al. 2017	Alriksson & Eriksson 1998	Wang et al. 2017	Alriksson & Eriksson 1998	Wang et al. 2017																			
---------------------	-----------------	-------------------------	-----------------	-------------------------	-----------------																			
45.717	126.617	145	3.6	600	conifer																			
non-fixing	ECM	mineral	NA	38.7	1.42																			
4.12		27.3	15	0.55	4.96																			
0.86		6.39																						
45.717	126.617	145	3.6	600	boradlea f																			
non-fixing	AM	mineral	NA	44.4	1.67																			
26.6	16.2	6.39																						
6.51		6.58																						
45.717	126.617	145	3.6	600	boradlea f																			
non-fixing	ECM	mineral	NA	37.2	1.26																			
forest floor		29.8	13.7	0.46																				
6.5		6.48																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	26.7	320																			
forest floor		320	12	NA	NA																			
4.5		4.9																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	29.2	350																			
forest floor		350	12	NA	NA																			
4.4		4.4																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	30.7	430																			
forest floor		430	14	NA	NA																			
4.5		5.2																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	15.9	59																			
mineral		59	3.7	NA	NA																			
4.6		5.1																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	15.1	53																			
mineral		53	3.5	NA	NA																			
5		5.0																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	15.6	53																			
mineral		53	3.4	NA	NA																			
4.7		5.2																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	17.6	65																			
mineral		65	3.7	NA	NA																			
4.8		5.4																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	16.9	9.3																			
mineral		9.3	0.55	NA	NA																			
5.4		5.4																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	17.2	11																			
mineral		11	0.64	NA	NA																			
5.4		5.4																						
63.9	20.5	35	2.9	662	conifer																			
non-fixing	ECM	mineral	NA	15.9	14																			
mineral		14	0.86	NA	NA																			
5.3		5.3																						
Nairynck et al. 2000	50.7	4.3	149	9.9	780																			
non-fixing	ECM	mineral	NA	16.57	1.29																			
12.7	41	3.35	NA	NA	NA																			
4.45		4.5																						
Nairynck et al. 2000	50.7	4.3	149	9.9	780																			
non-fixing	ECM	mineral	NA	19.51	1.56																			
13.5	43	3.43	NA	NA	NA																			
3.63		3.6																						
Nairynck et al. 2000	50.7	4.3	149	9.9	780																			
non-fixing	ECM	mineral	NA	22.35	1.71																			
13.5	56	4.28	NA	NA	NA																			
3.9		3.9																						
Nairynck et al. 2000	50.7	4.28	149	9.9	780																			
non-fixing	ECM	mineral	NA	12.89	1.34																			
11.5	44	4.59	NA	NA	NA																			
3.85		3.8																						
Neirynck et al. 2000	50.7	4.283	149	9.9	780	boradlea f	ECM	non-fi-bing	mineral	NA	20.33	1.48	14.1	53	3.87	NA	3.65							
Neirynck et al. 2000	50.7	4.267	149	9.9	780	boradlea f	AM	non-fi-bing	mineral	NA	21.17	2.04	11.7	52	5	NA	3.95							
Neirynck et al. 2000	50.7	4.267	149	9.9	780	boradlea f	ECM	non-fi-bing	mineral	NA	19.32	1.28	16.6	47	3.11	NA	3.82							
Chodak et al. 2015	50.267	19.433	290	8	700	boradlea f	AM	N-fi-bing	forest floor	NA	NA	NA	18	384	21.7	NA	3.8							
Chodak et al. 2015	50.267	19.433	290	8	700	boradlea f	ECM	non-fi-bing	forest floor	NA	NA	NA	26	381	14.8	NA	4.6							
Chodak et al. 2015	50.267	19.433	290	8	700	confer	ECM	non-fi-bing	forest floor	NA	NA	NA	36	338	9.4	NA	3.2							
Chodak et al. 2015	50.267	19.433	290	8	700	confer	ECM	non-fi-bing	forest floor	NA	NA	NA	38	359	9.5	NA	3.3							
Chodak et al. 2015	50.267	19.433	290	8	700	boradlea f	AM	N-fi-bing	mineral	NA	NA	NA	15	18.1	1.07	NA	3.5							
Chodak et al. 2015	50.267	19.433	290	8	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	24	7.9	0.33	NA	4.1							
Chodak et al. 2015	50.267	19.433	290	8	700	confer	ECM	non-fi-bing	mineral	NA	NA	NA	33	5.4	0.17	NA	3.8							
Chodak et al. 2015	50.267	19.433	290	8	700	confer	ECM	non-fi-bing	mineral	NA	NA	NA	34	6.1	0.18	NA	4.1							
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	AM	non-fi-bing	mineral	NA	NA	NA	8.2	6.8	0.83	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	8.3	4.8	0.58	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	8.3	5	0.6	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	AM	non-fi-bing	mineral	NA	NA	NA	8.8	5.7	0.65	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	10.9	3.8	0.35	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	7.1	4.2	0.59	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	8.4	4.8	0.57	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	11.2	2.9	0.26	NA								
Kaur et al. 2000	29.983	76.85	256	23.9	700	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	10	3.2	0.32	NA								
García & García-Oliva 2004	19.5	-105.083	106	24	746	boradlea f	ECM	non-fi-bing	mineral	NA	NA	NA	8.6	31.74	3.67	NA	NA	740	850	86	NA	NA		
García & García-Oliva 2004	19.5	-105.083	106	24	746	boradlea f	AM	non-fi-bing	mineral	NA	NA	NA	11.3	35.42	3.14	NA	NA	530	330	87	NA	NA		
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	boradlea	ECM	non-fixing	forest floor	NA	NA	NA	38.79	490.2	12.9	NA	NA	650	NA	NA	NA	NA	NA	
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	boradlea	ECM	non-fixing	forest floor	NA	NA	NA	35.31	494.4	14.4	NA	NA	690	NA	NA	NA	NA	NA	
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	conifer	ECM	non-fixing	forest floor	NA	NA	NA	40.81	493.4	12.3	NA	NA	690	NA	NA	NA	NA	NA	
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	boradlea	ECM	non-fixing	forest floor	NA	NA	NA	38.4	512.6	13.6	NA	NA	560	NA	NA	NA	NA	NA	
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	boradlea	ECM	non-fixing	mineral	NA	NA	NA	8.6	17.2	2	NA	NA	1.2	NA	NA	NA	5.4		
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	boradlea	ECM	non-fixing	mineral	NA	NA	NA	10.3	41.2	4	NA	NA	1.7	NA	NA	NA	4.6		
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	conifer	ECM	non-fixing	mineral	NA	NA	NA	10.5	21	2	NA	NA	0.6	NA	NA	NA	4.5		
Gartzia-Bengoetxea et al. 2016	43.167	-2.85	410	14	1200	boradlea	ECM	non-fixing	mineral	NA	NA	NA	11.4	68.4	6	NA	NA	3.9	NA	NA	NA	6.2		
Yu et al. 2008	42.717	122.367	246	6.2	450	conifer	ECM	non-fixing	mineral	NA	NA	NA	1.62	3.9	0.395	0.51	0.74	101	82.09	10.59	NA	NA	6.37	
Yu et al. 2008	42.717	122.367	246	6.2	450	conifer	ECM	non-fixing	mineral	NA	NA	NA	1.65	3.97	0.415	0.61	0.93	111	82.04	9.86	NA	NA	6.67	
Yu et al. 2008	42.717	122.367	246	6.2	450	conifer	ECM	non-fixing	mineral	NA	NA	NA	1.68	4.73	0.327	0.57	0.47	82	73.77	8.34	NA	NA	6.62	
Yang et al. 2018	46.267	131.35	283	3.4	620	conifer	ECM	non-fixing	mineral	NA	NA	NA	5.3812	5	16.267	2.983	NA	NA	170.52	3	NA	NA	5.37	
Yang et al. 2018	46.267	131.35	283	3.4	620	conifer	ECM	non-fixing	mineral	NA	NA	NA	11.287	5	37.158	3.311	NA	NA	291.77	9	NA	NA	6.2	
Yang et al. 2018	46.267	131.35	283	3.4	620	conifer	ECM	non-fixing	mineral	NA	NA	NA	6.1687	5	18.664	3.033	NA	NA	290.37	NA	NA	NA	5.57	
Yang et al. 2018	46.267	131.35	283	3.4	620	conifer	ECM	non-fixing	mineral	NA	NA	NA	9.2312	5	20.206	2.194	NA	NA	189.13	2	NA	NA	5.66	
Wang et al. 2015	25.05	102.767	1995	15	979	conifer	ECM	non-fixing	mineral	NA	NA	NA	10.67	NA										
Wang et al. 2016	25.05	102.767	1995	15	979	boradlea	ECM	non-fixing	mineral	NA	NA	NA	12.46	NA										
Watherpoon et al. 2014	43.533	-80.2	332	7.2	833	boradlea	ECM	non-fixing	mineral	NA	NA	NA	19.1	NA										
Watherpoon et al. 2014	43.533	-80.2	332	7.2	833	conifer	ECM	non-fixing	mineral	NA	NA	NA	19	NA										
Watherpoon et al. 2014	43.533	-80.2	332	7.2	833	boradlea	ECM	non-fixing	mineral	NA	NA	NA	18.7	NA										
Watherpoon et al. 2014	43.533	-80.2	332	7.2	833	boradlea	ECM	non-fixing	mineral	NA	NA	NA	17.7	NA										
Watherpoon et al. 2014	43.533	-80.2	332	7.2	833	conifer	ECM	non-fixing	mineral	NA	NA	NA	20.4	NA										

43
Frouz et al. 2009	50.233	12.683	469	6.8	650	bordonlea f	AM	non-fixing	forest floor	NA	NA	NA	NA	290	NA
Frouz et al. 2009	50.233	12.683	469	6.8	650	bordonlea f	ECM	non-fixing	forest floor	NA	NA	NA	NA	236	NA
Frouz et al. 2009	50.233	12.683	469	6.8	650	bordonlea f	ECM	non-fixing	forest floor	NA	NA	NA	NA	211	NA
Frouz et al. 2009	50.233	12.683	469	6.8	650	conifer	ECM	non-fixing	forest floor	NA	NA	NA	NA	308	NA
Frouz et al. 2009	50.233	12.683	469	6.8	650	bordonlea f	AM	non-fixing	mineral	NA	27.69	NA	71	NA	
Frouz et al. 2009	50.233	12.683	469	6.8	650	bordonlea f	ECM	non-fixing	mineral	NA	34.58	NA	95	NA	
Frouz et al. 2009	50.233	12.683	469	6.8	650	bordonlea f	ECM	non-fixing	mineral	NA	25.66	NA	67	NA	
Frouz et al. 2009	50.233	12.683	469	6.8	650	conifer	ECM	non-fixing	mineral	NA	15.06	NA	42	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	conifer	ECM	non-fixing	forest floor	NA	10.24	NA	8.3	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	AM	non-fixing	forest floor	NA	1.429	NA	8.6	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	AM	non-fixing	forest floor	NA	2.381	NA	11.9	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	ECM	non-fixing	forest floor	NA	8.81	NA	10.9	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	ECM	non-fixing	forest floor	NA	26.24	NA	12.3	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	ECM	non-fixing	forest floor	NA	8.571	NA	10.9	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	conifer	ECM	non-fixing	forest floor	NA	13.33	NA	8.2	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	conifer	ECM	non-fixing	forest floor	NA	17.62	NA	16.7	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	conifer	ECM	non-fixing	forest floor	NA	24.52	NA	7.7	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	conifer	ECM	non-fixing	forest floor	NA	20.48	NA	10.4	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	conifer	ECM	non-fixing	forest floor	NA	11.19	NA	13.4	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	ECM	non-fixing	forest floor	NA	7.857	NA	11	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	ECM	non-fixing	forest floor	NA	22.62	NA	8.5	NA	
Mueller et al. 2012	51.233	18.1	179	8.2	573	bordonlea f	ECM	non-fixing	forest floor	NA	2.381	NA	7.8	NA	
Study	System	Year	Sp	Aggregon	Forestry	Method	Non Fixing-	Mineral	N	R	p	N	R	p
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	19.9	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	14.2	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	27	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	23.4	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	25.5	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	25.1	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	19.7	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	28.8	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	18.5	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	24.6	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	25.1	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	24.8	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	20.5	NA	NA	NA	NA
Mueller et al. 2012	51.230	18.1	179	8.2	573	conifer	ECM	mineral	NA	16.8	NA	NA	NA	NA
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	2.826	4.695	5	6	2.03	0.34
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	3.547	6.986	2	5.1	2.58	0.51
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	1.878	3.315	9	5.7	1.32	0.24
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	2.386	4.391	2	5.4	1.77	0.33
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	2.172	4.653	1	4.7	0.75	0.17
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	2.511	5.887	9	4.3	0.93	0.22
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	1.59	4.127	4	3.9	0.56	0.15
Wei et al. 2010	38.817	110.383	1120	8.4	437	conifer	ECM	mineral	1.364	3.902	5	3.5	0.5	0.15

45
Langenbruch et al. 2012	51.1	10.517	288	7.5	670	boreál for	ECM	non-fixing	forest floor	NA	0.42	0.016	26.4	NA	468.34								
Langenbruch et al. 2012	51.1	10.517	288	7.5	670	boreál for	AM	non-fixing	forest floor	NA	0.16	0.007	24.1	NA									
Langenbruch et al. 2012	51.1	10.517	288	7.5	670	boreál for	ECM	non-fixing	forest floor	NA	0.2	0.009	21.7	NA									
Langenbruch et al. 2012	51.1	10.517	288	7.5	670	boreál for	ECM	non-fixing	mineral	NA	50.7	2.2	13.9	NA									
Langenbruch et al. 2012	51.1	10.517	288	7.5	670	boreál for	AM	non-fixing	mineral	NA	37.1	2.7	13.5	NA									
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	forest floor	NA	6.79	NA	22.29	329.8	16.6	NA							
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	forest floor	NA	26.25	NA	23.65	354.8	14.2	NA							
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	41.73	1.43	21.94	27.9	1.3	NA							
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	41.93	1.32	21.73	26.1	1.2	NA							
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	49.06	15.77	19.85	3.37	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	87.76	14.73	21.09	3.54	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	94.46	16.12	21.27	3.63	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	79.08	14.16	17.65	3.16	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	84.76	14.69	19.62	3.4	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	23.88	NA	25.42	27.86	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	26.48	NA	27.59	27.86	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	26.15	NA	27.24	27.86	NA								
Wang & Zhong 2016	49.317	16.717	505	7.2	592	boreál for	ECM	non-fixing	mineral	NA	47.24	NA	47.24	27.86	NA								
Wang et al. 2015	45.4	127.47	486	2.8	629	conifer	ECM	non-fixing	mineral	NA	23.38	NA	NA	25.977	NA	NA	NA	NA	283.551	NA	NA	NA	NA
----------------	------	--------	-----	-----	-----	---------	-----	-----------	---------	----	------	----	----	--------	----	----	----	----	--------	----	----	----	----
Wang et al. 2015	45.4	127.47	486	2.8	629	conifer	ECM	non-fixing	mineral	NA	24.47	NA	NA	24.713	NA	NA	NA	NA	338.381	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	boraldea f	AM	non-fixing	forest floor	NA	81	5.55	15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	boraldea f	AM	non-fixing	forest floor	NA	81	5.632	14.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	boraldea f	AM	non-fixing	forest floor	NA	87	5.896	15.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	boraldea f	EC	non-fixing	forest floor	NA	82	4.629	16.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	boraldea f	EC	non-fixing	forest floor	NA	94	5.077	19.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	conifer	ECM	non-fixing	mineral	NA	37.31	14.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	conifer	ECM	non-fixing	mineral	NA	36.43	13.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	conifer	ECM	non-fixing	mineral	NA	39	17.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	conifer	ECM	non-fixing	mineral	NA	35.51	17.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	boraldea f	EC	non-fixing	mineral	NA	37.58	19.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Fordi et al. 1998	42	-73.25	277	7.3	1218	conifer	ECM	non-fixing	mineral	NA	39.48	19.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lu et al. 2017	-25.933	153.083	25	21.1	1445	conifer	ECM	non-fixing	mineral	NA	19.9	0.55	36.1	19.7	0.54	NA	25.72	116.29	15.07	NA	4.51		
Lu et al. 2017	-25.933	153.083	25	21.1	1445	conifer	ECM	non-fixing	mineral	NA	12.97	0.6	21.68	10.9	0.5	NA	28.94	62.5	8.49	NA	6.03		
Lu et al. 2017	-25.933	153.083	25	21.1	1445	conifer	ECM	non-fixing	mineral	NA	11.48	0.6	18.92	9.9	0.52	NA	31.35	147.63	24.59	NA	6.45		
Ndlovu et al. 2013	0	38	684	23.3	658	boraldea f	AM	non-fixing	mineral	NA	NA	NA	NA	2.034	NA	NA	NA	NA	NA	NA	NA	NA	5.99
Ndlovu et al. 2013	0	38	684	23.3	658	boraldea f	AM	non-fixing	mineral	NA	NA	NA	NA	2.6827	NA	NA	NA	NA	NA	NA	NA	NA	6.41
Ndlovu et al. 2013	0	38	684	23.3	658	boraldea f	AM	non-fixing	mineral	NA	NA	NA	NA	2.8527	NA	NA	NA	NA	NA	NA	NA	NA	6.43
Ndlovu et al. 2013	-0.07	37.18	2470	14	1176	boradlea f	AM	non-fixing	mineral	NA	NA	NA	NA	2.4533	NA	NA	NA	NA	NA	NA	NA	NA	6.1
Ndlovu et al. 2013	-0.07	37.18	2470	14	1176	boradlea f	AM	non-fixing	mineral	NA	NA	NA	NA	2.9077	NA	NA	NA	NA	NA	NA	NA	NA	6.38
Publication	Species	Treatment Type	Fixation	AM	ECM	Mineral																	
-------------	---------	----------------	----------	----	-----	---------																	
Nádovu et al. 2013	0.05	0.05	0.05	0.05	0.05	0.05																	
Chaiyasen et al. 2017	36.517	36.517	36.517	36.517	36.517	36.517																	
Zhou et al. 2017	-25.933	-25.933	-25.933	-25.933	-25.933	-25.933																	
Zhou et al. 2017	-25.933	-25.933	-25.933	-25.933	-25.933	-25.933																	
Zhou et al. 2017	-25.933	-25.933	-25.933	-25.933	-25.933	-25.933																	
Chaiyasen et al. 2017	16.033	16.033	16.033	16.033	16.033	16.033																	
Chaiyasen et al. 2017	16.2	16.2	16.2	16.2	16.2	16.2																	
Chaiyasen et al. 2017	14.267	14.267	14.267	14.267	14.267	14.267																	
Chaiyasen et al. 2017	18.967	18.967	18.967	18.967	18.967	18.967																	
Chaiyasen et al. 2017	19.233	19.233	19.233	19.233	19.233	19.233																	
Chodak & Niklinska 2010	50.267	50.267	50.267	50.267	50.267	50.267																	
Chodak & Niklinska 2010	50.267	50.267	50.267	50.267	50.267	50.267																	
Chodak & Niklinska 2010	50.267	50.267	50.267	50.267	50.267	50.267																	
Chodak & Niklinska 2010	50.267	50.267	50.267	50.267	50.267	50.267																	

48
Authors	Year	Species	Site	Treatment	Functional Group	Methodology	Non-fixing	Fixing	Mineral	Forest Floor	AM	ECM	Conifer	Boradlea f	NA	NA	32.55	5.393	0.168	NA	NA	0.10020	NA	NA	0.585561	NA										
Chodak & Niklinska	2010	conifer	ECM	non-fixing	boradlea f	AM	NA	NA	NA	14.93	16.18	1.064	NA	NA	NA	NA	0.14807	NA	NA	0.818182	NA															
Chodak & Niklinska	2010	conifer	ECM	non-fixing	boradlea f	AM	NA	NA	NA	23.67	7.6202	0.318	NA	NA	NA	NA	0.21342	NA	NA	1.17914	NA															
Chodak & Niklinska	2010	conifer	ECM	non-fixing	boradlea f	AM	NA	NA	NA	34.06	6.2023	0.176	NA	NA	NA	NA	0.12169	NA	NA	0.57754	NA															
Liang et al. 2006	46.217	420	18	578	boradlea f	ECM	NA	NA	NA	41.43	3.08	13.46	51.03	2.31	NA	NA	NA	NA	NA	NA	NA	NA	NA													
Wang et al. 2013	26.875	109.666	318	16.5	1200	conifer	ECM	non-fixing	mineral	53.76	3.23	16.71	29.14	1.75	NA	NA	NA	NA	NA	NA	NA	NA	NA													
Wang et al. 2013	26.875	109.666	318	16.5	1200	boradlea f	AM	non-fixing	mineral	45.88	3.41	NA	20.3	1.51	NA	NA	0.24	550	NA	75.9322	4.27															
Wang et al. 2013	26.875	109.666	318	16.5	1785	boradlea f	AM	non-fixing	mineral	66.24	5.14	NA	27.6	2.14	NA	NA	0.32	415.38	NA	67.7966	4.46															
Deng et al. 2010	28.25	116.917	46	17.8	1785	conifer	ECM	non-fixing	mineral	55.93	3.95	NA	23.9	1.69	NA	NA	0.21	484.61	NA	67.3446	4.38															
Deng et al. 2010	28.25	116.917	46	17.8	1785	boradlea f	AM	non-fixing	mineral	35.83	2.11	NA	35.83	2.11	NA	NA	390	740	NA	4.16	NA	NA														
Deng et al. 2010	28.25	116.917	46	17.8	1785	boradlea f	AM	non-fixing	mineral	31.2	2.07	NA	31.2	2.07	NA	NA	510	500	NA	4.75	NA	NA														
Deng et al. 2010	28.25	116.917	46	17.8	1785	boradlea f	AM	non-fixing	mineral	45.46	3.05	NA	45.46	3.05	NA	NA	380	830	NA	4.07	NA	NA														
Deng et al. 2010	28.25	116.917	46	17.8	1785	conifer	ECM	non-fixing	mineral	11.6	1.11	NA	11.6	1.11	NA	NA	340	230	NA	4.19	NA	NA														
Deng et al. 2010	28.25	116.917	46	17.8	1785	boradlea f	AM	non-fixing	mineral	11.9	1.04	NA	11.9	1.04	NA	NA	430	200	NA	4.65	NA	NA														
Deng et al. 2010	28.25	116.917	46	17.8	1785	boradlea f	AM	non-fixing	mineral	17.26	1.25	NA	17.26	1.25	NA	NA	350	260	NA	4.3	NA	NA														
Kara et al. 2016	40.567	39.283	1120	9.4	461	conifer	ECM	non-fixing	mineral	14.9	14.9	NA	14.9	14.9	NA	NA	165.885	NA	NA	20.2314	7.65															
Kara et al. 2016	40.567	39.283	1120	9.4	461	boradlea f	ECM	non-fixing	mineral	18.5	18.5	NA	18.5	18.5	NA	NA	211.158	NA	NA	16.644	7.68															
Vesterdal et al. 1998	54.783	11.367	18	8.7	590	conifer	ECM	non-fixing	mineral	2.85	0.072	39.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA														
Vesterdal et al. 1998	54.783	11.367	18	8.7	590	boradlea f	ECM	non-fixing	mineral	2.57	0.093	27.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA														
Vesterdal et al. 1998	54.783	11.367	18	8.7	590	conifer	ECM	non-fixing	mineral	16.11	0.431	37.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA														
Vesterdal et al. 1998	54.783	11.367	18	8.7	590	conifer	ECM	non-fixing	mineral	4.02	0.155	25.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4	NA	NA											
Vesterdal et al. 1998	54.763	11.367	18	8.7	590	boreal f	ECM	non-fixture	forest floor	NA	0.72	0.026	27.7	NA	4.13																					
Vesterdal et al. 1998	54.763	11.367	18	8.7	590	conifer	ECM	non-fixture	forest floor	NA	6.33	0.249	25.4	NA	4.42																					
Vesterdal et al. 1998	54.763	11.367	18	8.7	590	conifer	ECM	non-fixture	forest floor	NA	12.76	0.422	30.2	NA	3.87																					
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	ECM	non-fixture	forest floor	NA	1.88	0.046	39.2	NA	5																						
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	ECM	non-fixture	forest floor	NA	2.92	0.101	28.9	NA	5.05																						
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	ECM	non-fixture	forest floor	NA	16.67	0.434	38.4	NA	3.46																						
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	conifer	ECM	non-fixture	forest floor	NA	2.34	0.065	27.5	NA	4.39																					
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	boreala f	ECM	non-fixture	forest floor	NA	1.51	0.055	27.5	NA	4.27																					
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	ECM	non-fixture	forest floor	NA	4.54	0.166	27.3	NA	5.02																						
Vesterdal et al. 1998	54.233	11.483	18	8.9	582	ECM	non-fixture	forest floor	NA	7.21	0.263	27.4	NA	4.1																						
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	conifer	ECM	non-fixture	forest floor	NA	3.26	0.102	32	NA	4.62																					
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	ECM	non-fixture	forest floor	NA	3.43	0.135	25.4	NA	4.62																						
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	ECM	non-fixture	forest floor	NA	20.86	0.595	35.1	NA	3.51																						
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	ECM	non-fixture	forest floor	NA	7.46	0.288	25.9	NA	3.89																						
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	boreala f	ECM	non-fixture	forest floor	NA	2.25	0.072	31.3	NA	4.2																					
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	conifer	ECM	non-fixture	forest floor	NA	11.09	0.394	28.1	NA	4.27																					
Vesterdal et al. 1998	55.967	12.35	10	8.1	595	ECM	non-fixture	forest floor	NA	7.44	0.239	31.3	NA	4.08																						
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	ECM	non-fixture	forest floor	NA	12.68	0.585	21.7	NA	3.46																						
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	ECM	non-fixture	forest floor	NA	15.2	0.672	22.6	NA	3.73																						
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	ECM	non-fixture	forest floor	NA	18.25	0.517	35.3	NA	3.36																						
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	ECM	non-fixture	forest floor	NA	11.43	0.54	21.2	NA	3.54																						
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	boreala f	ECM	non-fixture	forest floor	NA	8.19	0.401	20.4	NA	4.04																					
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	conifer	ECM	non-fixing	forest floor	NA	20.79	0.887	23.4	NA	3.34																					
Vesterdal et al. 1998	56.467	10.533	36	7.8	659	conifer	ECM	non-fixing	forest floor	NA	16.56	0.716	23.1	NA	3.71																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	conifer	ECM	non-fixing	forest floor	NA	2.38	0.072	33.1	NA	4.92																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	boreal	ECM	non-fixing	forest floor	NA	3.5	0.131	26.7	NA	5.28																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	conifer	ECM	non-fixing	forest floor	NA	14.9	0.446	33.4	NA	3.57																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	conifer	ECM	non-fixing	forest floor	NA	5.85	0.214	27.3	NA	4.41																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	boreal	ECM	non-fixing	forest floor	NA	1.08	0.057	29.2	NA	3.36																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	conifer	ECM	non-fixing	forest floor	NA	5.97	0.23	26	NA	4.85																					
Vesterdal et al. 1998	56.713	10.017	33	7.7	648	conifer	ECM	non-fixing	forest floor	NA	6.68	0.194	34.4	NA	4.5																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	conifer	ECM	non-fixing	forest floor	NA	2.69	0.1	26.9	NA	4.75																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	boreal	ECM	non-fixing	forest floor	NA	3.86	0.115	33.6	NA	4.89																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	conifer	ECM	non-fixing	forest floor	NA	18.19	0.504	36.1	NA	3.51																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	conifer	ECM	non-fixing	forest floor	NA	9.48	0.342	27.7	NA	3.93																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	boreal	ECM	non-fixing	forest floor	NA	0.73	0.02	36.5	NA	3.98																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	conifer	ECM	non-fixing	forest floor	NA	9.14	0.311	29.4	NA	4.38																					
Vesterdal et al. 1998	55.133	8.833	9	8.3	839	conifer	ECM	non-fixing	forest floor	NA	7.43	0.257	28.9	NA	4.15																					
Vesterdal et al. 1998	56.263	8.433	9	8.7	862	conifer	ECM	non-fixing	forest floor	NA	14.95	0.54	27.7	NA	3.61																					
Vesterdal et al. 1998	56.263	8.433	9	8.7	862	boreal	ECM	non-fixing	forest floor	NA	19.26	0.866	22.2	NA	3.82																					
Vesterdal et al. 1998	56.263	8.433	9	8.7	862	conifer	ECM	non-fixing	forest floor	NA	16.16	0.533	30.3	NA	3.36																					
Vesterdal et al. 1998	56.263	8.433	9	8.7	862	conifer	ECM	non-fixing	forest floor	NA	15.92	0.685	23.2	NA	3.7																					
Vesterdal et al. 1998	56.263	8.433	9	8.7	862	boreal	ECM	non-fixing	forest floor	NA	6.1	0.301	20.3	NA	3.79																					
Vesterdal et al. 1998	56.263	8.433	9	8.7	862	conifer	ECM	non-fixing	forest floor	NA	19.78	0.797	24.8	NA	3.53																					
Reference	Species	Location	Date	Percent	Type	Treatment	Fixed N (%)	Fixed P (%)	Fixed K (%)	Fixed Ca (%)	Fixed Mg (%)	Fixed Fe (%)	Mineral (%)	Forest floor (%)	Non-fixing (%)	Fixed N (%)	Fixed P (%)	Fixed K (%)	Fixed Ca (%)	Fixed Mg (%)	Fixed Fe (%)	Mineral (%)	Forest floor (%)	Non-fixing (%)												
----------------------	---------	----------	------	---------	--------	-----------	-------------	-------------	-------------	--------------	--------------	--------------	-------------	-----------------	----------------	-------------	-------------	-------------	--------------	--------------	--------------	-------------	-----------------	-----------------												
Vesterdal et al. 1998	56.283	8.433	9	8.7	conifer	ECM	non-fixing	20.69	0.818	25.3	NA	NA	NA	NA	NA	NA	NA	NA	3.52	2.81	1.49	0.17	NA	NA												
Bell et al. 2017	37.4285	83.1709	368	12.1	conifer	ECM	non-fixing	1385	NA	NA	NA	NA	NA	6.79	45.848	NA	NA	NA	NA	6.2	6.8	4.5	2.2	1.49	0.17											
Bell et al. 2017	37.4285	83.1709	368	12.1	conifer	ECM	non-fixing	1385	NA	NA	NA	NA	NA	7.79	43.848	NA	NA	NA	NA	5.72	6.2	4.5	2.2	1.49	0.17											
Bolet et al. 2015	41.617	32.75	602	9.1	conifer	ECM	non-fixing	490	2.37	21.3	NA	NA	NA	48.3	41.3	2	NA	NA	NA	5.4	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	9.5	conifer	ECM	non-fixing	490	8.2	6.2	NA	NA	NA	78.8	12.6	1.5	NA	NA	NA	5.4	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	9.5	conifer	ECM	non-fixing	490	8.2	6.2	NA	NA	NA	41.1	31.8	4.4	NA	NA	NA	5.4	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	9.5	conifer	ECM	non-fixing	490	8.2	6.2	NA	NA	NA	67	25.1	3.9	NA	NA	NA	5.7	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	11.5	conifer	ECM	non-fixing	550	8.2	6.2	NA	NA	NA	43	35.4	2.7	NA	NA	NA	5.9	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	11.5	conifer	ECM	non-fixing	550	8.2	6.2	NA	NA	NA	70.9	28	2.3	NA	NA	NA	5.9	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	11.5	conifer	ECM	non-fixing	550	8.2	6.2	NA	NA	NA	38.1	31.4	3.1	NA	NA	NA	5.9	5.7	4.5	2.2	1.49	0.17											
Sariyildiz et al. 2015	41.383	33.767	870	11.5	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	61.3	24.2	2.7	NA	NA	NA	5.7	5.7	4.5	2.2	1.49	0.17											
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	19.1	158	8.2	NA	NA	NA	5.77	5.7	4.5	2.2	1.49	0.17											
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	21.8	171	7.8	NA	NA	NA	4.97	4.5	2.2	1.49	0.17												
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	20	118	5.9	NA	NA	NA	5.87	5.7	4.5	2.2	1.49	0.17											
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	21.7	241	11	NA	NA	NA	5.13	4.96	4.5	2.2	1.49	0.17											
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	22.6	234	10.3	NA	NA	NA	4.96	4.5	2.2	1.49	0.17												
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	22.4	287	12.8	NA	NA	NA	4.23	4.5	2.2	1.49	0.17												
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	15.2	49	3.2	NA	NA	NA	4.88	4.5	2.2	1.49	0.17												
Oostra et al. 2006	56.033	12.683	40	8.2	conifer	ECM	non-fixing	568	8.2	6.2	NA	NA	NA	15.5	43	2.8	NA	NA	NA	4.23	4.5	2.2	1.49	0.17												
Oostra et al. 2006	56.032	12.683	40	8.2	56.8	boradale f	AM	non-fixing	mineral	NA	NA	NA	14.6	51	3.5	NA	5.87																			
-------------------	--------	--------	----	-----	------	-----------	----	------------	--------	----	----	----	------	----	-----	----	----	----	----	----	----	----	----	----	----	----	----	----								
Oostra et al. 2006	56.032	12.683	40	8.2	56.8	boradale f	ECM	non-fixing	mineral	NA	NA	NA	15.7	45	2.8	NA	4.48																			
Oostra et al. 2006	56.032	12.683	40	8.2	56.8	boradale f	ECM	non-fixing	mineral	NA	NA	NA	17.1	64	3.8	NA	4.53																			
Oostra et al. 2006	56.032	12.683	40	8.2	56.8	boradale f	ECM	non-fixing	mineral	NA	NA	NA	20.6	54	2.6	NA	3.76																			
Cheng et al. 2013	33.433	108.433	1746	8.3	830	conifer	ECM	non-fixing	mineral	NA	40.05	2.07	19.32	37.08	1.92	14.01	3.02	400	772.355	97.674	NA	13.1969	6.06													
Cheng et al. 2013	33.433	108.433	1746	8.3	830	conifer	ECM	non-fixing	mineral	NA	23.53	1.5	15.71	26.44	1.69	20.87	2.65	340	845.531	123.01	NA	9.897672	3.95													
Cheng et al. 2013	22.45	108.467	1746	21.6	1576	conifer	ECM	non-fixing	mineral	NA	20.08	1.44	13.98	18.09	1.3	18.86	3.13	320	505.695	61.884	NA	6.59844	5.93													
Cheng et al. 2013	22.45	108.467	1746	21.6	1576	conifer	ECM	non-fixing	mineral	NA	51.82	4.06	12.74	48.89	3.85	20.1	2.57	1140	914.721	80.648	NA	15.45427	5.86													
Yu et al. 2015	34.483	107.983	699	10.8	601.6	boradale f	AM	non-fixing	mineral	NA	31.3	5.38	5.79	16.3	2.8	574.91	7	58.923	2	NA	35.3431	16.634	NA	6.86												
Koch et al. 2018	36.35	53	559	15.5	808	boradale f	AM	non-fixing	mineral	NA	31.37	4.35	7.3	16.6	2.3	584.25	7	56.792	4	NA	29.2209	17.998	NA	6.67												
Koch et al. 2018	36.35	53	559	15.5	808	boradale f	AM	non-fixing	mineral	NA	57.3	4.58	12.69	20	1.6	620.40	6	53.017	8	NA	17.6471	11.338	NA	6.16												
Koch et al. 2018	36.35	53	559	15.5	808	conifer	AM	non-fixing	mineral	NA	44.89	2.09	20.28	25.8	1.2	623.68	4	52.525	2	NA	16.6864	10.253	NA	5.84												
Lejon et al. 2005	47.3	4.067	618	9	1300	boradale f	ECM	non-fixing	mineral	NA	NA	NA	18.2	67	3.7	NA	NA	NA	NA	904	NA	NA	3.6													
Lejon et al. 2005	47.3	4.067	618	9	1300	conifer	ECM	non-fixing	mineral	NA	NA	NA	19.5	72	3.6	NA	NA	NA	NA	773	NA	NA	3.6													
Lejon et al. 2005	47.3	4.067	618	9	1300	conifer	ECM	non-fixing	mineral	NA	NA	NA	19.1	77	4	NA	NA	NA	NA	699	NA	NA	3.6													
Li et al. 2015	24.717	102.567	1974	14.7	918	boradale f	ECM	non-fixing	mineral	NA	NA	NA	40.58	22.72	0.56	NA	NA	9182.2	9	NA	NA	NA	6.9													
Li et al. 2015	24.717	102.567	1974	14.7	918	boradale f	ECM	non-fixing	mineral	NA	NA	NA	22.3	16.28	0.73	NA	NA	7945.0	4	NA	NA	NA	6.2													
Li et al. 2015	24.717	102.567	1974	14.7	918	conifer	AM	non-fixing	mineral	NA	NA	NA	23.39	18.01	0.77	NA	NA	3914.2	2	NA	NA	NA	5.7													
Li et al. 2015	24.717	102.567	1974	14.7	918	conifer	ECM	non-fixing	mineral	NA	NA	NA	33.14	24.86	0.75	NA	NA	1746.7	1	NA	NA	NA	6.2													
Li et al. 2015	24.717	102.567	1974	14.7	918	conifer	AM	non-fixing	mineral	NA	NA	NA	24.31	33.79	1.39	NA	NA	1829	NA	NA	NA	6.2														
Li et al. 2015	24.717	102.567	1974	14.7	918	conifer	ECM	non-fixing	mineral	NA	NA	NA	21.06	20.85	0.99	NA	NA	21234.7	2	NA	NA	NA	6.2													
Authors	Date	Carbonized Area (m²)	N Fixing (%)	N Content (mg/kg)	Mo Content (mg/kg)	Fe Content (mg/kg)	B Content (mg/kg)	Zn Content (mg/kg)	Mn Content (mg/kg)																											
------------------	------------	----------------------	--------------	------------------	-------------------	-------------------	------------------	-------------------	-------------------																											
Li et al. 2015	2015	24.717	102.567	14.7	918	Boreal f	ECM	non-fixer	mineral																											
Li et al. 2015	2015	24.717	102.567	14.7	918	Conifer	AM	non-fixer	mineral																											
Li et al. 2015	2015	24.717	102.567	14.7	918	Boreal f	ECOM	non-fixer	mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Boreal f	AM	non-fixer	mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Boreal f	ECOM	non-fixer	mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Conifer	ECOM	non-fixer	mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Boreal f	AM	non-fixer	mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Conifer	ECOM	non-fixer	mineral																											
Galicia & Garcia-Oliva 2011	2011	19.5	-105.083	62	24	746	Conifer	ECOM	Non-fixer																											
Galicia & Garcia-Oliva 2011	2011	19.5	-105.083	62	24	746	Boreal f	AM	Non-fixer																											
Galicia & Garcia-Oliva 2011	2011	19.5	-105.083	62	24	746	Boreal f	AM	Non-fixer																											
Galicia & Garcia-Oliva 2011	2011	19.5	-105.083	62	24	746	Boreal f	AM	Non-fixer																											
Galicia & Garcia-Oliva 2011	2011	19.5	-105.083	62	24	746	Boreal f	AM	Non-fixer																											
Lupina et al. 2016	2016	40.017	1199	11.9	595	Conifer	ECOM	Non-fixer	Mineral																											
Lupina et al. 2016	2016	40.017	1199	11.9	595	Conifer	ECOM	Non-fixer	Mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Conifer	ECOM	Non-fixer	Mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Conifer	ECOM	Non-fixer	Mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Conifer	ECOM	Non-fixer	Mineral																											
Luo et al. 2016	2016	22.167	106.7	23	1400	Conifer	ECOM	Non-fixer	Mineral																											
Mareschel et al.	2010	47.3	4.083	657	9	638	Conifer	ECOM	Non-fixer																											
Mareschel et al.	2010	47.3	4.083	657	9	638	Conifer	ECOM	Non-fixer																											
Mareschel et al.	2010	47.3	4.083	657	9	638	Boreal f	ECM	Non-fixer																											
Mareschel et al.	2010	47.3	4.083	657	9	638	Boreal f	ECM	Non-fixer																											
Melvin & Goodale 2013	2013	42.45	-76.417	448	7.8	430	Conifer	ECOM	Non-fixer																											
Melvin & Goodale 2013	2013	42.45	-76.417	448	7.8	430	Conifer	ECOM	Non-fixer																											
Melvin & Goodale 2013	2013	42.45	-76.417	448	7.8	430	Conifer	ECOM	Non-fixer																											
Melvin & Goodale 2013	2013	42.45	-76.417	448	7.8	430	Conifer	ECOM	Non-fixer																											
Melvin & Goodale 2013	2013	42.45	-76.417	448	7.8	430	Conifer	ECOM	Non-fixer																											
Melvin & Goodale 2013	42.45	-76.417	448	7.8	483	brodela	f	AM	non-fixing	mineral	NA	NA	NA	13.37	44.38	3.33	NA	4.24																		
----------------------	-------	---------	-----	-----	-----	--------	---	-----	-----------	---------	-----	-----	-----	------	------	------	----	-----	-----------	---------	-----	-----	-----	------	------	------	----	-----	-----------	---------	-----	-----	-----	------	------	------
Thomas & Prescott 2000	50.8	-119.433	981	5.9	483	conifer	ECM	non-fixing	forest floor	2.148	NA	NA	24.37	449.5	18.5	NA	NA	1400	NA																	
Thomas & Prescott 2000	50.8	-119.433	981	5.9	483	conifer	ECM	non-fixing	forest floor	2.376	NA	NA	21.88	455.1	20.9	NA	NA	1400	NA																	
Thomas & Prescott 2000	50.8	-119.433	981	5.9	483	conifer	ECM	non-fixing	forest floor	3.773	NA	NA	28.51	464.6	16.5	NA	NA	1200	NA																	
Laik et al. 2009	25.983	85.8	70	24.8	1300	brodela	f	AM	N-fixing	mineral	5.15	10.95	NA	5.33	NA	NA	NA	134.42	NA	NA	NA	8.58														
Laik et al. 2009	25.983	85.8	70	24.8	1300	brodela	f	AM	N-fixing	mineral	8.32	16.48	NA	8.08	NA	NA	NA	110.39	NA	NA	NA	8.38														
Laik et al. 2009	25.983	85.8	70	24.8	1300	brodela	f	AM	N-fixing	mineral	6.25	13.04	NA	6.21	NA	NA	NA	113.27	NA	NA	NA	8.47														
Laik et al. 2009	25.983	85.8	70	24.8	1300	brodela	f	ECM	non-fixing	mineral	8.46	17.09	NA	8.26	NA	NA	NA	180.86	NA	NA	NA	8.37														
Laik et al. 2009	25.983	85.8	70	24.8	1300	brodela	f	AM	non-fixing	mineral	5.85	12.26	NA	5.6	NA	NA	NA	127.83	NA	NA	NA	8.56														
Laik et al. 2009	25.983	85.8	70	24.8	1300	brodela	f	AM	non-fixing	mineral	8.2	17.34	NA	8.5	NA	NA	NA	194.4	NA	NA	NA	8.37														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	brodela	f	ECM	non-fixing	mineral	NA	NA	NA	18.63	5.35	NA	NA	650	NA	NA	NA	6.03														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	brodela	f	ECM	non-fixing	mineral	NA	NA	NA	20.4	4.6	NA	NA	858	NA	NA	NA	5.97														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	brodela	f	ECM	non-fixing	mineral	NA	NA	NA	12	4.4	NA	NA	760	NA	NA	NA	6.2														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	brodela	f	ECM	non-fixing	mineral	NA	NA	NA	18.3	7.2	NA	NA	769	NA	NA	NA	5.97														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	brodela	f	ECM	non-fixing	mineral	NA	NA	NA	18.8	4.7	NA	NA	670	NA	NA	NA	6.53														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	brodela	f	ECM	non-fixing	mineral	NA	NA	NA	16.8	3.2	NA	NA	577	NA	NA	NA	5.97														
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	conifer	ECM	non-fixing	mineral	NA	NA	NA	20.4	4.7	2.3	NA	500	NA	NA	NA	4.97															
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	conifer	ECM	non-fixing	mineral	NA	NA	NA	20.8	2.7	1.3	NA	350	NA	NA	NA	5.2															
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	conifer	ECM	non-fixing	mineral	NA	NA	NA	12.2	11	0.9	NA	135	NA	NA	NA	4.87															
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	conifer	ECM	non-fixing	mineral	NA	NA	NA	22.5	18	0.8	NA	343	NA	NA	NA	5.37															
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	conifer	ECM	non-fixing	mineral	NA	NA	NA	12.7	14	1.1	NA	443	NA	NA	NA	5.53															
Giardina et al. 2001	39.64	-104.33	1705	9.2	382	conifer	ECM	non-fixing	mineral	NA	NA	NA	18.9	17	0.9	NA	228	NA	NA	NA	5.57															
Sevgi et al. 2011	41.15	28.91	31	12.8	1074	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	349	NA	4.63																			
Sevgi et al. 2011	41.15	28.91	31	12.8	1074	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	310	NA	5.29																			
Sevgi et al. 2011	41.15	28.91	31	12.8	1074	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	293	NA	5.72																			
Sevgi et al. 2011	41.15	28.91	31	12.8	1074	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	255	NA	6.04																			
Sevgi et al. 2011	41.15	28.91	31	12.8	1074	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	208	NA	6.84																			
Sevgi et al. 2011	41.15	28.91	31	12.8	1074	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	19.89	NA	4.84																			
Lagnariere et al. 2011	49.130	-78.767	305	0.7	890	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	46.3	2.5	18.8	37.5	2	NA	4.3															
Lagnariere et al. 2011	49.130	-78.767	305	0.7	890	conifer	ECM	non-fil-	ECM	non-fil-	forest	NA	NA	NA	34.7	2.4	14.6	26.6	1.8	NA	4.7															
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	15.08	26.652	1.9	1.42	0.0424	NA	NA	NA	NA	NA	NA	6.1										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	16.09	30.571	1.9	0.85	0.0220	NA	NA	NA	NA	NA	NA	6.52										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	18.64	26.096	1.4	0.52	0.0284	NA	NA	NA	NA	NA	NA	5.84										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	20.93	36.076	1.9	1.61	0.0172	NA	NA	NA	NA	NA	NA	5.73										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	15.8	31.6	2	1.22	0.0170	NA	NA	NA	NA	NA	NA	6.02										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	19.35	40.635	2.1	0.59	0.0140	NA	NA	NA	NA	NA	NA	5.33										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	17.92	26.88	1.5	1.06	0.0142	NA	NA	NA	NA	NA	NA	5.83										
Taylor et al. 2016	33.883	-63.35	170	16.5	1270	conifer	ECM	non-fil-	ECM	non-fil-	mineral	NA	NA	NA	23.06	34.59	1.5	1.42	0.0091	NA	NA	NA	NA	NA	NA	5.36										
Study	Year	Treatment	Species	Location	Biofilm Type	N	N	Fixing	N	N	Fixing	N	N	Fixing																						
------------------------	------	------------	----------	----------	--------------	---	---	--------	---	---	--------	---	---	--------																						
Wan et al. 2015	2015	non-fixing	boreal f	117.967	AM	9.5	NA	NA	24.4	469.3	19.3	NA	NA	NA																						
Wan et al. 2015	2015	non-fixing	conifer	117.967	AM	4.3	NA	NA	57.7	513.6	8.9	NA	NA	NA																						
Wan et al. 2015	2015	non-fixing	boreal f	117.967	AM	19.3	NA	NA	39.5	2.2	13.0	0.49	NA	NA																						
Wan et al. 2015	2015	non-fixing	conifer	117.967	AM	19.3	NA	NA	30.2	3.9	12.2	3.86	NA	NA																						
Lavery et al. 1995	1995	non-fixing	boreal f	34.2	ECM	14.4	678	1.09	NA	34.8	1.7	NA	NA	5.8																						
Lavery et al. 1995	1995	non-fixing	conifer	34.2	ECM	14.4	678	0.12	NA	12.9	1.1	NA	NA	4.9																						
Lavery et al. 1995	1995	non-fixing	boreal f	34.2	ECM	14.4	678	0.23	NA	43.7	1.7	NA	NA	5.7																						
Lavery et al. 1995	1995	non-fixing	conifer	34.2	ECM	14.4	678	0.74	NA	54.7	4.0	NA	NA	5.4																						
Michelsen et al. 1993	1993	non-fixing	conifer	8.867	ECM	18.2	1019	12.74	NA	36.08	2.68	NA	NA	4.91																						
Michelsen et al. 1993	1993	non-fixing	conifer	8.867	ECM	18.2	1019	13.44	NA	33.53	2.74	NA	NA	5.0																						
Michelsen et al. 1993	1993	non-fixing	conifer	8.867	ECM	18.2	1019	12.97	NA	39.76	3.37	NA	NA	17.6																						
Lemma et al. 2006	2006	non-fixing	conifer	7.55	ECM	19.4	1517	10.05	NA	54.7	4.0	NA	NA	6.5																						
Lemma et al. 2006	2006	non-fixing	conifer	7.55	ECM	19.4	1517	14.5	NA	56.3	4.0	NA	NA	5.6																						
Lemma et al. 2006	2006	non-fixing	conifer	7.55	ECM	19.4	1517	23.6	NA	91.5	4.0	NA	NA	5.9																						
Kasel et al. 2011	2011	non-fixing	boreal f	-36.833	AM	14	434	27.78	NA	49.15	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	boreal f	-36.833	AM	14	434	40.91	NA	79.92	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	conifer	-36.833	ECM	14	434	32.16	NA	49.85	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	boreal f	-36.833	ECM	14	434	26.91	NA	52.62	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	boreal f	-37.117	AM	13.5	463	30.63	NA	43.62	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	boreal f	-37.117	AM	13.5	463	44.84	NA	64.38	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	conifer	-37.117	ECM	13.5	463	29.97	NA	40.15	NA	NA	NA	NA																						
Kasel et al. 2011	2011	non-fixing	boreal f	-37.117	ECM	13.5	463	35.66	NA	51.23	NA	NA	NA	NA																						
Author(s)	CellID	Status	Osmosis	Ecotype	Osmosis																															
---------------------	--------	--------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------																			
Kasel et al. 2011	-36.933	144.283	551	12.9	487	f	AM	non-fi-	lining	mineral	NA	45.5	NA	114.09	NA	NA	NA																			
Kasel et al. 2011	-36.933	144.283	551	12.9	487	f	AM	non-fi-	lining	mineral	NA	51.84	NA	130.76	NA	NA	NA																			
Kasel et al. 2011	-36.933	144.283	551	12.9	487	conifer	ECM	non-fi-	lining	mineral	NA	46.81	NA	86.26	NA	NA	NA																			
Kasel et al. 2011	-36.933	144.283	1287	221.3	1287	f	ECM	non-fi-	lining	mineral	NA	35.66	NA	77.23	NA	NA	NA																			
Kasel et al. 2011	-37.033	144.75	383	13.4	482	f	AM	non-fi-	lining	mineral	NA	30.63	NA	54.26	NA	NA	NA																			
Kasel et al. 2011	-37.033	144.75	383	13.4	482	f	AM	non-fi-	lining	mineral	NA	43.09	NA	84.17	NA	NA	NA																			
Kasel et al. 2011	-37.033	144.75	383	13.4	482	conifer	ECM	non-fi-	lining	mineral	NA	35.22	NA	59.13	NA	NA	NA																			
Kasel et al. 2011	-37.033	144.75	383	13.4	482	f	ECM	non-fi-	lining	mineral	NA	36.09	NA	72.95	NA	NA	NA																			
Lu et al. 2012	-25.933	153.083	1287	21.3	1287	conifer	ECM	non-fi-	lining	mineral	NA	20.18	0.56	35.9	19.4	0.54	22.4																			
Lu et al. 2012	-25.933	153.083	1287	21.3	1287	conifer	AM	non-fi-	lining	mineral	NA	14.5	0.66	21.9	12.5	0.57	22.9																			
Lu et al. 2012	-25.933	153.083	1287	21.3	1287	conifer	AM	non-fi-	lining	mineral	NA	12.53	0.6	20.8	10.8	0.52	21.4	8.02	NA	NA	NA	NA	NA	NA												
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	forest	floor	5.18	5.18	0.14	NA																					
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	forest	floor	4.9	4.9	0.11	NA																					
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	forest	floor	4.08	4.08	0.08	NA																					
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	forest	floor	3.22	3.22	0.1	NA																					
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	mineral	NA	20.3	0.44	NA																						
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	mineral	NA	37.6	1.12	NA																						
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	mineral	NA	13.98	1.19	NA																						
Quideau et al. 1998	34.283	-117.633	678	14.4	678	conifer	ECM	non-fi-	lining	mineral	NA	9.02	0.59	NA																						
Tempier et al. 2003	41.983	-74.383	842	4.3	1530	f	ECM	non-fi-	lining	mineral	NA	NA	NA	18.36	343.1	18.6	69.4	11	NA	236.082	NA	NA	NA													
Tempier et al. 2003	41.983	-74.383	842	4.3	1530	conifer	ECM	non-fi-	lining	mineral	NA	NA	NA	20.04	485.5	23.3	61.5	6.3	NA	186.586	NA	NA	NA													
Tempier et al. 2003	41.983	-74.383	842	4.3	1530	f	ECM	non-fi-	lining	mineral	NA	NA	NA	20.74	358.6	17.4	56.4	1.3	NA	141.613	NA	NA	NA													
Reference	Sample Size	Sample	Site	AM	ECM	Fixing	Mineral	N 17.29	N 24.9	N 51.2	N 53.6	N 128.013	N 41.983	N 2.6	N 145.58	N 3943	N 124.783	N 35.6	N 454	N 13.2	N 452	N 81	N 8	N 443	N 13.2											
--------------------------------	-------------	--------	------	----	-------	--------	---------	----------	--------	---------	---------	-------------	-----------	------	----------	-------	-------------	--------	------	--------	-------	------	----	------	--------											
Templer et al. 2003	41.983	-74.383	842	4.3	1530	boralea f	AM	non-fixing	mineral	NA	NA	NA	17.29	427.1	24.9	51.2	53.6	NA	NA	NA	NA	NA	NA	NA												
Templer et al. 2003	41.983	-74.383	842	4.3	1530	boralea f	AM	non-fixing	mineral	NA	NA	NA	19.54	434.7	22.3	81	8	NA	NA	NA	NA	NA	NA	NA												
Grayston & Prescott 2005	48.817	-124.783	853	8.8	3943	conifer	AM	non-fixing	mineral	NA	NA	NA	37	483	13.6	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Grayston & Prescott 2005	48.817	-124.783	853	8.8	3943	conifer	ECM	non-fixing	mineral	NA	NA	NA	47	484	11.4	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Grayston & Prescott 2005	48.817	-124.783	853	8.8	3943	conifer	ECM	non-fixing	mineral	NA	NA	NA	34	474	14.4	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Grayston & Prescott 2005	48.817	-124.783	853	8.8	3943	conifer	ECM	non-fixing	mineral	NA	NA	NA	35.6	454	13.2	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	AM	non-fixing	mineral	NA	NA	NA	81.9	5.4	15.17	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	AM	non-fixing	mineral	NA	NA	NA	92.7	5.9	15.71	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	AM	non-fixing	mineral	NA	NA	NA	83.9	5.5	15.25	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	AM	non-fixing	mineral	NA	NA	NA	85.4	5.6	15.25	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	AM	non-fixing	mineral	NA	NA	NA	98.4	4.9	20.08	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	64.5	3.1	20.81	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	83.5	5	16.7	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	67.7	3.1	21.64	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	88.7	5.7	15.56	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	57.3	3	19.1	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	109.3	5.7	19.18	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Naabimana et al. 2009	-2.6	29.733	1743	19.1	1246.4	boralea f	ECM	non-fixing	mineral	NA	NA	NA	85.7	4.4	19.48	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Hoogmoed et al. 2014	-36.86	145.58	243	14.1	650	boralea f	AM	non-fixing	forest floor	NA	NA	32.1	439	14.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Hoogmoed et al. 2014	-36.86	145.58	243	14.1	650	boralea f	AM	non-fixing	forest floor	NA	NA	35.4	446	13.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Hoogmoed et al. 2014	-36.86	145.58	243	14.1	650	boralea f	ECM	non-fixing	forest floor	NA	NA	45.6	443	10.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Hoogmoed et al. 2014	-36.86	145.58	243	14.1	650	boralea f	ECM	non-fixing	forest floor	NA	NA	47.9	446	9.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA												
Authors	Study Year	Study Code	Image	Type	Distance	pH	N	P	Ca	Mg	Fe	EC	EC	EC	EC	EC																				
--------------------	------------	------------	-------	------	----------	----	-----	-----	-----	-----	-----	------	------	------	------	------	------																			
Lemenih et al. 2004	-36.86	145.58	243	14.1	650																															
Lemenih et al. 2004	-36.86	145.58	243	14.1	650	AM																														
Smith et al. 2002	-2	-54	2	26	1900																															
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Smith et al. 2002	-2	-54	2	26	1900	AM																														
Smith et al. 2002	-2	-54	2	26	1900	ECM																														
Lemenih et al. 2004	7.333	38.75	2106	20	1300	conifer																														
Lemenih et al. 2004	7.333	38.75	2106	20	1300	AM																														
Reference	Year	Duration	Species	Ecosystem	Habitat	Biomass	Nitrogen	BCD	HED	NDF	Total C	Total N																								
--------------	------	----------	---------	-----------	---------	---------	----------	-----	-----	-----	---------	---------																								
Zheng et al.	2005	2005	112.3	114	17.9	1237	non-fixing	mineral	NA	NA	NA	14.83	8.01																							
Zheng et al.	2005	2005	112.3	114	17.9	1237	conifer	ECM	NA	NA	NA	14.62	10.67																							
Zheng et al.	2005	2005	112.3	114	17.9	1237	conifer	AM	NA	NA	NA	14.3	10.58																							
Raich et al.	2007	2007	993	25.8	4900	f boradlea f	AM	non-fixing	forest floor	11.7	5.9	0.169	34.91	NA																						
Raich et al.	2007	2007	993	25.8	4900	f boradlea f	AM	non-fixing	forest floor	10.3	5.3	0.208	25.48	NA																						
Raich et al.	2007	2007	993	25.8	4900	f boradlea f	AM	non-fixing	forest floor	10.5	5.0	0.157	36.5	NA																						
Zheng et al.	2008	2008	112.3	143	17.9	1237	conifer	ECM	NA	NA	NA	576.61	NA																							
Zheng et al.	2008	2008	112.3	143	17.9	1237	conifer	AM	NA	NA	NA	438.3	NA																							
Zheng et al.	2008	2008	112.3	143	17.9	1237	conifer	AM	NA	NA	NA	492.8	NA																							
J ohnsson et al.	2013	2013	34	18.9	1257	f boradlea f	AM	non-fixing	mineral	62.2	2.82	24	79.4	3.7																						
J ohnsson et al.	2013	2013	34	18.9	1257	f boradlea f	AM	non-fixing	mineral	59.3	2.02	141	72.5	2.5																						
Tang & Li	2014	2014	1181	21.6	634.3	f boradlea f	AM	Ni-fixing	mineral	3.22	18.29	1.74	10.51	7.67																						
Tang & Li	2014	2014	1181	21.6	634.3	f boradlea f	AM	non-fixing	mineral	2.9	16.66	1.64	10.19	7.03																						
Tang & Li	2014	2014	1181	21.6	634.3	f boradlea f	AM	non-fixing	mineral	0.95	10.99	0.94	11.67	4.55																						
Tang & Li	2014	2014	1181	21.6	634.3	f boradlea f	AM	non-fixing	mineral	1.91	13.88	1.02	13.6	5.71																						
Tang & Li	2014	2014	1181	21.6	634.3	f boradlea f	AM	non-fixing	mineral	1.41	12.32	0.92	13.34	5.07																						
Jiang & Xu	2006	2006	119.7	15.9	1424	f boradlea f	AM	non-fixing	mineral	2.05	NA	NA	15.97	NA																						
Jiang & Xu	2006	2006	119.7	15.9	1424	conifer	ECM	non-fixing	mineral	3.26	NA	9.1	0.92	0.101																						

61
Devi et al. 2013	28.117	113.033	59	17.2	1422	conifer	AM	non-Ni-fixing	mineral	3.66	NA	NA	18.2	2.31	0.127	NA	4
Devi et al. 2013	28.117	113.033	59	17.2	1422	conifer	ECM	non-Ni-fixing	mineral	3.41	NA	NA	9.9	0.95	0.096	NA	4.1
Devi et al. 2013	28.117	113.033	59	17.2	1422	conifer	ECM	non-Ni-fixing	mineral	3.79	NA	NA	8.7	1.43	0.164	NA	4
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	non-Ni-fixing	forest floor	3.098	5.86	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	conifer	ECM	non-Ni-fixing	forest floor	6.79	7.19	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	forest floor	4.52	12.69	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	forest floor	3.33	5.66	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	forest floor	2.99	8.34	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	Ni-fixing	forest floor	2.88	6.6	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	non-Ni-fixing	forest floor	3.6	7.7	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	non-Ni-fixing	forest floor	4.03	3.01	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	non-Ni-fixing	mineral	NA	60.7	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	conifer	ECM	non-Ni-fixing	mineral	NA	53.41	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	mineral	NA	64.06	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	mineral	NA	50.12	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	mineral	NA	49.16	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	Ni-fixing	mineral	NA	49.8	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	non-Ni-fixing	mineral	NA	40.03	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	non-Ni-fixing	mineral	NA	49.8	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	ECM	non-Ni-fixing	mineral	NA	165	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	conifer	ECM	non-Ni-fixing	mineral	NA	165	NA					
Devi et al. 2013	30.833	77.133	1179	19	1100	boradlea f	AM	Ni-fixing	mineral	NA	18	NA					
Study	Year	Site	Plot	Soil Moisture	Functional Group	AM Test	N Fixing	Mineral Test	N Fertilization	Treatment Type	N Fertilization	N Fertilization	N Fertilization	N Fertilization
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	195	N-fixing	NA	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	163	N-fixing	NA	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	ECOM	NA	213	N-fixing	NA	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	ECOM	non-N-fixing	164	N-fixing	NA	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	non-N-fixing	207	N-fixing	NA	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	10.18	N-fixing	26.26	2.56	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	12.12	N-fixing	34.67	2.86	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	13.41	N-fixing	24.3	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	10.31	N-fixing	17.9	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	8.26	N-fixing	13.5	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	15.5	N-fixing	32.7	NA	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	25.9	N-fixing	455.5	17.6	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	32	N-fixing	486.8	15.2	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	32	N-fixing	438.6	14.6	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	27.3	N-fixing	493.1	18.3	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	22.8	N-fixing	462.7	20.3	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	26.3	N-fixing	476.4	18.1	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	25.8	N-fixing	483.3	18.7	NA	NA
Ovington et al. 2013	2013	30.833	77.133	19	1100	Brachytes f	AM	NA	18.04	N-fixing	36.8	2.04	NA	NA

63
Ovington 1956	51.075	0.45	25	9.9	705	conifer	ECM	non-fixing	mineral	NA	NA	NA	16.01	40.5	2.53	NA							
Ovington 1956	51.075	0.45	25	9.9	705	conifer	ECM	non-fixing	mineral	NA	NA	NA	23.48	42.5	1.81	NA							
Ovington 1956	51.075	0.45	25	9.9	705	conifer	ECM	non-fixing	mineral	NA	NA	NA	22.98	57	2.46	NA							
Ovington 1956	51.075	0.45	25	9.9	705	conifer	AM	non-fixing	mineral	NA	NA	NA	17.37	42.2	2.43	NA							
Ovington 1956	51.075	0.45	25	9.9	705	conifer	ECM	non-fixing	mineral	NA	NA	NA	19.31	42.1	2.18	NA							
Ovington 1956	51.075	0.45	25	9.9	705	conifer	ECM	non-fixing	mineral	NA	NA	NA	17.93	33	1.84	NA							
Ovington 1956	51.075	0.45	25	9.9	705	boradlea f	ECM	non-fixing	mineral	NA	NA	NA	15.45	47.9	3.1	NA							
Ovington 1956	51.075	0.45	25	9.9	705	boradlea f	ECM	non-fixing	mineral	NA	NA	NA	16.75	45.4	2.71	NA							
Ovington 1956	51.075	0.45	25	9.9	705	boradlea f	ECM	non-fixing	mineral	NA	NA	NA	19.22	39.4	2.05	NA							
Dehleri et al. 2011	43	-71.517	19	8.2	942	conifer	ECM	non-fixing	mineral	NA	NA	NA	6.97	23	3.3	NA	NA	24	NA	NA	NA	NA	NA
Dehleri et al. 2011	43	-71.517	19	8.2	942	boradlea f	AM	non-fixing	mineral	NA	NA	NA	11.67	35	3	NA	NA	26	NA	NA	NA	NA	NA
Asadiyan et al. 2013	36.217	36.167	85	11.9	858	boradlea f	ECM	non-fixing	mineral	NA	NA	NA	9.95	54.5	5.7	22	17.43	NA	NA	NA	NA	NA	6.54
Asadiyan et al. 2013	36.217	36.167	85	11.9	858	conifer	ECM	non-fixing	mineral	NA	NA	NA	10.02	30.1	3.2	24.19	17.72	NA	NA	NA	NA	NA	6.95
Asadiyan et al. 2013	36.217	36.167	85	11.9	858	boradlea f	AM	non-fixing	mineral	NA	NA	NA	7.86	61.4	8.5	45.4	21.09	NA	NA	NA	NA	NA	7.4
Koch et al. 2012	36.467	52.233	58	16.8	733	boradlea f	ECM	non-fixing	mineral	NA	103.2	9.96	11.35	19.7	1.9	NA							
Koch et al. 2012	36.467	52.233	58	16.8	733	boradlea f	ECM	non-fixing	mineral	NA	121.4	7.71	15.07	24.08	1.53	NA							
Koch et al. 2012	36.467	52.233	58	16.8	733	conifer	ECM	non-fixing	mineral	NA	168.2	7.95	19.53	33.63	1.59	NA							
Christiansen et al. 2010	55.95	9.617	75	7.3	825	boradlea f	AM	non-fixing	forest floor	NA	2	0.03	64	NA	5.4								
Christiansen et al. 2010	55.95	9.617	75	7.3	825	boradlea f	ECM	non-fixing	forest floor	NA	5.3	0.2	33	NA	4.5								
Christiansen et al. 2010	55.95	9.617	75	7.3	825	boradlea f	ECM	non-fixing	forest floor	NA	1.3	0.03	44	NA	4.9								
Christiansen et al. 2010	55.95	9.617	75	7.3	825	boradlea f	AM	non-fixing	forest floor	NA	1.7	0.03	55	NA	4.8								
Christiansen et al. 2010	55.95	9.617	75	7.3	825	boradlea f	ECM	non-fixing	forest floor	NA	4	0.2	27	NA	4.3								
Christiansen et al. 2010	Wang et al. 2010	Christiansen et al. 2010																		
55.95	9.617	75	7.3	825	conifer	ECM	non-fixing	forest floor	NA	8.9	0.3	29	NA	NA	NA	NA	NA	NA	4.4	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	forest floor	NA	5.9	0.2	27	NA	NA	NA	NA	NA	NA	4.3	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	forest floor	NA	1.5	0.04	34	NA	NA	NA	NA	NA	NA	5	
55.417	12.05	47	7.8	631	boradlea f	AM	non-fixing	forest floor	NA	1	0.03	38	NA	NA	NA	NA	NA	NA	4.9	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	forest floor	NA	3.5	0.1	24	NA	NA	NA	NA	NA	NA	4.6	
55.417	12.05	47	7.8	631	conifer	ECM	non-fixing	forest floor	NA	19.8	0.8	25	NA	NA	NA	NA	NA	NA	3.5	
55.95	9.617	77	7.3	825	boradlea f	AM	non-fixing	mineral	NA	68	5.6	12	NA	NA	NA	NA	NA	NA	4.8	
55.95	9.617	77	7.3	825	boradlea f	ECM	non-fixing	mineral	NA	52	4.2	12	NA	NA	NA	NA	NA	NA	4.3	
55.95	9.617	77	7.3	825	boradlea f	ECM	non-fixing	mineral	NA	67	5.6	12	NA	NA	NA	NA	NA	NA	4.7	
55.95	9.617	77	7.3	825	boradlea f	AM	non-fixing	mineral	NA	59	5	12	NA	NA	NA	NA	NA	NA	4.7	
55.95	9.617	77	7.3	825	boradlea f	ECM	non-fixing	mineral	NA	72	5.7	13	NA	NA	NA	NA	NA	NA	4.5	
55.95	9.617	77	7.3	825	conifer	ECM	non-fixing	mineral	NA	67	5.1	13	NA	NA	NA	NA	NA	NA	4.5	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	mineral	NA	61	3.4	18	NA	NA	NA	NA	NA	NA	3.8	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	mineral	NA	70	3.8	18	NA	NA	NA	NA	NA	NA	3.9	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	mineral	NA	57	3.9	14	NA	NA	NA	NA	NA	NA	4.4	
55.417	12.05	47	7.8	631	boradlea f	ECM	non-fixing	mineral	NA	75	4.1	18	NA	NA	NA	NA	NA	NA	3.8	
55.417	12.05	47	7.8	631	conifer	ECM	non-fixing	mineral	NA	63	3.4	18	NA	NA	NA	NA	NA	NA	3.7	
Wang et al. 2010	22.567	112.833	40	21.7	1700	boradlea f	ECM	Nb-flooding	mineral	NA	34.72	0.61	33.2	78.9	1.39	NA	NA	NA	NA	3.81
Wang et al. 2010	22.567	112.833	40	21.7	1700	boradlea f	ECM	Nb-flooding	mineral	NA	38.17	0.59	37.4	73.4	1.13	NA	NA	NA	NA	3.85
Wang et al. 2010	22.567	112.833	40	21.7	1700	boradlea f	ECM	non-fixing	mineral	NA	22.84	0.41	32.1	50.2	0.91	NA	NA	NA	NA	3.88
Wang et al. 2010	22.567	112.833	40	21.7	1700	boradlea f	AM	non-fixing	mineral	NA	24.95	0.42	33.8	49.4	0.84	NA	NA	NA	NA	3.87
Peng et al. 2013	25.363	101.583	40	21.5	700	boradlea f	AM	Nb-flooding	mineral	NA	38.34	2.38	16.14	14.2	0.88	NA	23.2	NA	NA	6.85
Authors	Year	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9	Site 10	Site 11	Site 12	Site 13	Site 14	Site 15	Site 16	Site 17	Site 18	
------------------	------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	
Kulakova et al.	2012	25.383	101.583	40	21.5	790	20	1.42	19.23	10	0.52	NA	NA	NA	21.8	NA	NA	NA	NA	
Wei et al.	2009	18.383	108.733	452	19.7	3000	1.42	19.23	10	0.52	NA	NA	NA	0.77	109.8	NA	NA	NA	4.94	
Wei et al.	2009	18.383	108.733	452	19.7	3000	2.18	20.47	17.4	0.85	NA	NA	NA	0.83	86.8	NA	NA	NA	4.43	
Yang et al.	2004	26.183	117.433	204	19.1	1749	2.09	19.73	14.4	0.73	NA	NA	NA	4.7	NA	NA	NA	NA	4.8	
Yang et al.	2004	26.183	117.433	204	19.1	1749	3.1	12.9	17.7	1.37	NA	NA	NA	5.6	NA	NA	NA	NA	5.1	
Yang et al.	2004	26.183	117.433	204	19.1	1749	4.25	2.97	13.6	1.29	NA	NA	NA	6.8	NA	NA	NA	NA	5.1	
Yang et al.	2004	26.183	117.433	204	19.1	1749	37.62	2.46	15.3	1.12	NA	NA	NA	5.9	NA	NA	NA	NA	5.3	
Garcia-Montiel &	1998	19.5	-155.25	21	4000	37.62	2.46	15.3	1.12	NA	NA	NA	12.0	125.07	10.27	NA	NA	NA	NA	
Binkley																			NA	
Garcia-Montiel &	1998	19.5	-155.25	21	4000	37.62	2.46	15.3	1.12	NA	NA	NA	15.22	112.68	7.39	NA	NA	NA	NA	
Binkley																			NA	
Garcia-Montiel &	1998	19.5	-155.25	21	4000	37.62	2.46	15.3	1.12	NA	NA	NA	11.82	135.21	11.31	NA	NA	NA	NA	
Binkley																			NA	
Garcia-Montiel &	1998	19.5	-155.25	21	4000	37.62	2.46	15.3	1.12	NA	NA	NA	13.33	134.09	10.12	NA	NA	NA	NA	
Binkley																			NA	
Garcia-Montiel &	1998	19.5	-155.25	21	4000	37.62	2.46	15.3	1.12	NA	NA	NA	11.95	125.07	10.41	NA	NA	NA	NA	
Binkley																			NA	
Jiang et al.	2010	26.733	115.067	82	18.6	1726	0.81	16	8.5	0.5	8.9	1.4	143.68	20.63	NA	NA	NA	NA	4.3	
Jiang et al.	2010	26.733	115.067	82	18.6	1726	1.28	16	12.3	0.79	12.4	0.6	74.21	9.76	NA	NA	NA	NA	4.4	
Kulakova	2012	49.417	46.767	24	7.6	298	4.38	13.1	103.2	7.9	NA									
Kulakova	2012	49.417	46.767	24	7.6	298	4.38	13.1	103.2	7.9	NA									
Kulakova	2012	49.417	46.767	24	7.6	298	4.38	13.1	103.2	7.9	NA									
Kulakova	2012	49.417	46.767	24	7.6	298	4.38	13.1	103.2	7.9	NA									
Ladvicia et al.	2012	37.55	13.917	471	17.8	460	1.35	14.8	34.1	2.3	NA									
Ladvicia et al.	2012	37.55	13.917	471	17.8	460	1.35	14.8	34.1	2.3	NA									
Ladvicia et al.	2012	37.55	13.917	471	17.8	460	1.35	14.8	34.1	2.3	NA									

66
Study	Year	Site	Elevation	Temperature	pH	Ammonium	Nitrite	Nitrate	Density	Distance	Soil Type	Rooting	Mycorrhizal Type	Mycorrhizal Type	Results	
Lugo et al. 2012	1990	7.283	2264	15.5	973	non-fixing	mineral	NA	NA	8.8	13.2	1.5	NA	ECM	non-fixing	11.94
Demessie et al. 2012	2012	7.283	2264	15.5	973	non-fixing	mineral	NA	NA	6.8	493	70	NA	ECM	non-fixing	11.94
Demessie et al. 2012	2012	7.283	2264	15.5	973	non-fixing	mineral	NA	NA	49.5	467	9	NA	ECM	non-fixing	11.94
Demessie et al. 2012	2012	7.283	2264	15.5	973	non-fixing	mineral	NA	NA	49.3	473	10	NA	ECM	non-fixing	9.68
Demessie et al. 2012	2012	7.283	2264	15.5	973	non-fixing	mineral	NA	NA	28.1	462	7	NA	ECM	non-fixing	6.43
Demessie et al. 2012	2012	7.283	2264	15.5	973	conifer	mineral	NA	NA	64.8	390	14	NA	ECM	non-fixing	6.07
Demessie et al. 2012	2012	7.283	2264	15.5	973	conifer	mineral	NA	NA	43.3	458	18	NA	ECM	non-fixing	4.94
Lemma 2012	2012	7.1	1745	19.5	1240	conifer	mineral	NA	NA	12.5	57.5	4.6	NA	ECM	non-fixing	12.5
Lemma 2012	2012	7.1	1745	19.5	1240	conifer	mineral	NA	NA	10.4	58.3	5.6	NA	ECM	non-fixing	10.4
Li et al. 2014	2014	30.3	285	14.8	1630	conifer	mineral	NA	NA	13.71	26.59	1.94	61.22	ECM	non-fixing	13.71
Li et al. 2014	2014	30.3	285	14.8	1630	conifer	mineral	NA	NA	12.64	27.43	2.17	67.38	ECM	non-fixing	12.64
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	27.06	14.3	2.3	NA	ECM	non-fixing	27.06
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	32.94	17	4.4	NA	ECM	non-fixing	32.94
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	41.18	13.6	4.2	NA	ECM	non-fixing	41.18
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	36.47	12.5	4.2	NA	ECM	non-fixing	36.47
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	28.24	11.9	4.3	NA	ECM	non-fixing	28.24
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	32.94	15.2	4.8	NA	ECM	non-fixing	32.94
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	30	10.4	5.5	NA	ECM	non-fixing	30
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	35.86	13.4	3.7	NA	ECM	non-fixing	35.86
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	23.53	11.5	5.1	NA	ECM	non-fixing	23.53
Lugo et al. 1990	1990	18.275	750	23	3800	conifer	mineral	NA	NA	27.65	12.3	4.7	NA	ECM	non-fixing	27.65
Aleyu et al. 2011	2011	11.2	2686	21	2350	conifer	mineral	NA	NA	22.95	2.61	2.9	NA	ECM	non-fixing	22.95

- **ECM** refers to *arbuscular mycorrhizal* fungi.
- **non-fixing** indicates that the plants do not fix atmospheric nitrogen.
- **fixing** indicates that the plants fix atmospheric nitrogen.
| | | | | | | | | | | | | | | | | | | | | | | |
|---|
| | | | | | | | | | | |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 211.8 | NA | NA | NA | NA | NA | 3.94 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | AM | non-N-fixing | mineral | NA | NA | NA | NA | 172.9 | NA | NA | NA | NA | NA | 4.11 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | AM | non-N-fixing | mineral | NA | NA | NA | NA | 58.8 | NA | NA | NA | NA | NA | 4.67 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | AM | non-N-fixing | mineral | NA | NA | NA | NA | 45.3 | NA | NA | NA | NA | NA | 4.95 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | AM | non-N-fixing | mineral | NA | NA | NA | NA | 80.6 | NA | NA | NA | NA | NA | 4.16 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | AM | non-N-fixing | mineral | NA | NA | NA | NA | 45.9 | NA | NA | NA | NA | NA | 5.56 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | conifer | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 238.4 | NA | NA | NA | NA | NA | 3.81 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 278.8 | NA | NA | NA | NA | NA | 4.21 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | conifer | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 237.1 | NA | NA | NA | NA | NA | 4.06 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 59.4 | NA | NA | NA | NA | NA | 5.93 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | boradlea f | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 58.2 | NA | NA | NA | NA | NA | 4.83 |
| Phillips & Fahey 2006 | 42.45 | 76.417 | 450 | 7.8 | 874 | conifer | ECM | non-N-fixing | mineral | NA | NA | NA | NA | 134.7 | NA | NA | NA | NA | NA | 3.94 |
| Saha et al. 2007 | 25.683 | 91.917 | 961 | 19.5 | 2208 | conifer | ECM | non-N-fixing | mineral | 6.215 | 11.04 | NA | NA | 3.54 | NA | NA | NA | NA | NA | NA |
| Saha et al. 2007 | 25.683 | 91.917 | 961 | 19.5 | 2208 | conifer | ECM | non-N-fixing | mineral | 4.7375 | 10.53 | NA | NA | 3.22 | NA | NA | NA | NA | NA | NA |
| Saha et al. 2007 | 25.683 | 91.917 | 961 | 19.5 | 2208 | conifer | ECM | non-N-fixing | mineral | 3.4175 | 8.52 | NA | NA | 2.31 | NA | NA | NA | NA | NA | NA |
| Saha et al. 2007 | 25.683 | 91.917 | 961 | 19.5 | 2208 | conifer | ECM | non-N-fixing | mineral | 5.125 | 10.58 | NA | NA | 3.36 | NA | NA | NA | NA | NA | NA |
| Singh et al. 2000 | 26.75 | 80.883 | 126 | 25.7 | 920 | boradlea | AM | non-N-fixing | mineral | 40.95 | 2.47 | 16.6 | 7.8 | 0.47 | NA | NA | NA | NA | NA | 8.95 |
| Singh et al. 2000 | 26.75 | 80.883 | 126 | 25.7 | 920 | boradlea | ECM | non-N-fixing | mineral | 31.99 | 2.12 | 15.1 | 6.2 | 0.41 | NA | NA | NA | NA | NA | 8.71 |
| Russell et al. 2007 | 10.433 | -83.983 | 43 | 25.8 | 3960 | boradlea f | AM | non-N-fixing | mineral | 51.03 | 3.79 | 13.5 | 49.3 | 3.66 | NA | NA | 3.3 | NA | NA | 4.31 |
| Russell et al. 2007 | 10.433 | -83.983 | 43 | 25.8 | 3960 | boradlea f | AM | non-N-fixing | mineral | 40.05 | 3.16 | 12.7 | 44.5 | 3.51 | NA | NA | 4.2 | NA | NA | 4.15 |
| Russell et al. 2007 | 10.433 | -83.983 | 43 | 25.8 | 3960 | conifer | ECM | non-N-fixing | mineral | 52.07 | 3.93 | 13.2 | 44.5 | 3.36 | NA | NA | 4.2 | NA | NA | 4.36 |
| Study | Unix | -83.983 | 43 | 25.8 | 3960 | boradlea f | AM | non-fixing | mineral | NA | 49.1 | 3.78 | 13 | 46.1 | 3.55 | NA | 4.7 | NA | NA | NA | NA | 4.3 |
|---------------|------|---------|----|------|------|------------|----|------------|---------|----|------|------|---|------|------|----|----|----|----|----|----|----|
| Russell et al. 2007 | 10.433 | -83.983 | 43 | 25.8 | 3960 | boradlea f | AM | non-fixing | mineral | NA | 42.15 | 3.23 | 13.1 | 55.1 | 4.22 | NA | 4.2 | NA | NA | NA | NA | 4.47 |
| Russell et al. 2007 | 10.433 | -83.983 | 43 | 25.8 | 3960 | boradlea f | AM | non-fixing | mineral | NA | 46.3 | 3.67 | 12.6 | 50.6 | 4.01 | NA | 3.2 | NA | NA | NA | NA | 4.48 |
| Melier et al. 2013 | 41.867 | -100.333 | 870 | 8.4 | 561 | conifer | AM | non-fixing | mineral | NA | 6.43 | 0.65 | 9.9 | NA | 7.12 |
| Melier et al. 2013 | 41.867 | -100.333 | 870 | 8.4 | 561 | conifer | AM | non-fixing | mineral | NA | 3.7 | 0.61 | 6.1 | NA | 6.37 |
| Melier et al. 2013 | 41.867 | -100.333 | 870 | 8.4 | 561 | conifer | ECM | non-fixing | mineral | NA | 4.96 | 0.34 | 11.9 | NA | 4.98 |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | conifer | ECM | non-fixing | mineral | 2.318 | 46.9 | 2.58 | 18.2 | NA | NA | 4.9 | 1.85 | NA | NA | NA | NA | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | boradlea f | ECM | non-fixing | mineral | 2.719 | 49.61 | 3.28 | 15.2 | NA | NA | 5.16 | 2.35 | NA | NA | NA | NA | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | boradlea f | AM | non-fixing | mineral | 2.423 | 54.51 | 3.29 | 16.7 | NA | NA | 5.39 | 2.35 | NA | NA | NA | NA | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | boradlea f | AM | non-fixing | mineral | 3.123 | 51.46 | 3.32 | 15.5 | NA | NA | 3.75 | 3.24 | NA | NA | NA | NA | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | conifer | ECM | non-fixing | mineral | NA | 29.2 | NA | 26.8 | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | boradlea f | ECM | non-fixing | mineral | NA | 32.6 | NA | 29.7 | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | boradlea f | AM | non-fixing | mineral | NA | 34.9 | NA | 31.3 | NA |
| Wang et al. 2010 | 22.167 | 106.833 | 373 | 21 | 1400 | boradlea f | AM | non-fixing | mineral | NA | 34.4 | NA | 31.8 | NA |
| Zhang et al. 2012 | 22.567 | 112.833 | 373 | 22.5 | 1534 | boradlea f | ECM | Hi-fixing | mineral | NA | NA | NA | 13.8 | 22.1 | 1.6 | 16 | 17.8 | 1.8 | 254 | 41.4 | NA | 3.83 |
| Zhang et al. 2012 | 22.567 | 112.833 | 373 | 22.5 | 1534 | boradlea f | ECM | Hi-fixing | mineral | NA | NA | NA | 10.3 | 15.5 | 1.5 | 13.4 | 13.6 | 1.6 | 288 | 45.9 | NA | 3.91 |
| Ushio et al. 2008 | 6.08333 | 116.55 | 1560 | 18 | 3980 | conifer | AM | non-fixing | forest floor | NA | NA | NA | 21.8 | 350 | 15.8 | NA | NA | NA | NA | NA | 3.94 |
| Ushio et al. 2008 | 6.08333 | 116.55 | 1560 | 18 | 3980 | boradlea f | AM | non-fixing | forest floor | NA | NA | NA | 25.4 | 456 | 18.1 | NA | NA | NA | NA | NA | 3.83 |
| Ushio et al. 2008 | 6.08333 | 116.55 | 1560 | 18 | 3980 | boradlea f | ECM | non-fixing | forest floor | NA | NA | NA | 23.4 | 358 | 15.2 | NA | NA | NA | NA | NA | 4.08 |
| Ushio et al. 2008 | 6.08333 | 116.55 | 1560 | 18 | 3980 | boradlea f | AM | non-fixing | forest floor | NA | NA | NA | 21.8 | 379 | 17.2 | NA | NA | NA | NA | NA | 4.02 |
| Ushio et al. 2008 | 6.08333 | 116.55 | 1560 | 18 | 3980 | boradlea f | ECM | non-fixing | forest floor | NA | NA | NA | 24.1 | 370 | 15.3 | NA | NA | NA | NA | NA | 4.13 |
| Wu et al. 2014 | 26.3166 | 117.6 | 455 | 20.1 | 1670 | boradlea f | ECM | non-fixing | mineral | 5.91 | NA | NA | 15.1 | 29.84 | 1.97 | NA | NA | NA | NA | NA | 4.4 |

69
Reference	Year	Density	Width	Length	Species	AM/ECM	mineral	FA (%)	S/FA (%)	Mineral	AM%	ECM%
Wu et al. 2014		117.6	455	20.1	1670	conifer	AM	3.4	NA	NA	15.2	22.9
Song et al. 2013	27.5	114.5	617	16.5	1591	conifer	AM	NA	NA	NA	14.68	21.43
Song et al. 2013	27.5	114.5	617	16.5	1591	boralea	AM	non-fixing	NA	NA	12.28	21.98
Pereira et al. 2011	41.5	6.501944	750	12	555	boralea	AM	non-fixing	NA	NA	12.56	12.15
Pereira et al. 2011	41.5	6.501944	750	12	555	boralea	ECM	N-fixing	11.18	11.23	1	NA
Chen et al. 2015	26.1916	117.4333	201	19.1	1749	boralea	AM	non-fixing	4.51	21.45	NA	19.57
Chen et al. 2015	26.1916	117.4333	201	19.1	1749	boralea	AM	N-fixing	2.57	23.06	NA	20.536
Chen et al. 2015	26.1916	117.4333	201	19.1	1749	conifer	AM	non-fixing	3.19	19.74	NA	17.816
Chen et al. 2015	26.1916	117.4333	201	19.1	1749	conifer	AM	non-fixing	2.15	20.61	NA	18.383
Forrester et al. 2013	-37.5833	149.1667	158	17.8	1009	boralea	AM	non-fixing	3.29	36.11	1.15	31.4
Forrester et al. 2013	-37.5833	149.1667	158	17.8	1009	boralea	AM	N-fixing	81.07	1.987	40.8	
Forrester et al. 2013	-37.5833	149.1667	158	17.8	1009	boralea	ECM	non-fixing	2.43	30.05	0.712	42.2
Forrester et al. 2013	-37.5833	149.1667	158	17.8	1009	boralea	ECM	non-fixing	67.04	1.493	44.9	
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	conifer	ECM	non-fixing	22.28	1.14	19.5	30.8
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	AM	non-fixing	28.14	1.59	17.5	44.5
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	ECM	non-fixing	31	1.52	20.2	39.3
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	AM	non-fixing	30.34	1.56	19.5	45.6
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	ECM	non-fixing	29.64	1.49	19.7	42.6
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	AM	non-fixing	35.97	1.71	21.2	53
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	ECM	non-fixing	37.22	1.79	20.7	49.1
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	AM	non-fixing	56.22	1.97	28.5	82.3
Boyle et al. 1990	44.6666	-123.3333	300	10.5	1300	boralea	ECM	non-fixing	25.04	1.28	19.5	28.9
Boyle et al. 1990	2012	2010	2012	2010								
-------------------	------	------	------	------								
44.6896	4.6896	10.5	1300	123.333								
7	-	300	-	-								
Ramesh et al. 2012	26.733	121	18.6	1726								
Jiang et al. 2012	26.733	121	18.6	1726								
Jiang et al. 2012	26.733	121	18.6	1726								
Jiang et al. 2012	26.733	121	18.6	1726								
Perez-Bejarano et al. 2010	38.3633	851	15.8	260								
Perez-Bejarano et al. 2010	38.3633	851	15.8	260								
Perez-Bejarano et al. 2010	38.3633	851	15.8	260								
Perez-Bejarano et al. 2010	38.3633	851	15.8	260								
Ramesh et al. 2013	25.691	980	18.7	2208.5								
Ramesh et al. 2013	25.691	980	18.7	2208.5								
Ramesh et al. 2013	25.691	980	18.7	2208.5								
Turner et al. 1993	44.333	349	11.5	1210								
Turner et al. 1993	44.333	349	11.5	1210								
Turner et al. 1993	44.333	349	11.5	1210								
Wang et al. 2013	22.1	350	19.6	1400								
Wang et al. 2013	22.1	350	19.6	1400								
Wang et al. 2013	22.1	350	19.6	1400								
Wang et al. 2013	22.1	350	19.6	1400								
Wang et al. 2013	22.1	350	19.6	1400								
Wang et al. 2013	22.1	350	19.6	1400								

boronl8l f	boronl8l f	boronl8l f	boronl8l f															
AM	AM	AM	AM															
non-fishing	non-fishing	non-fishing	non-fishing															
mineral	mineral	mineral	mineral															
29.37	1.76	17	35.8															
2.1	NA	NA	NA															
14	115.0667	21.9	1.55															
75.58	NA	NA	NA															
64.42	NA	NA	NA															
87.524	NA	NA	NA															
91.441	NA	NA	NA															
5.1245	NA	NA	NA															
23.336	NA	NA	NA															
3.5392	NA	NA	NA															
4.7675	NA	NA	NA															
6.253	NA	NA	NA															
21.9	1.55																	
22.125	NA	NA	NA															
21.9	1.55																	
71	28.58	26.46	31.242															
23.336	22.125	21.9	1.55															
217	12.5																	
217	12.5																	
217	12.5																	
316	15.4																	
316	15.4																	
316	15.4																	
12.3	0.79																	
13.5	0.94																	
21.9	1.55																	
75.58	NA	NA	NA															
64.42	NA	NA	NA															
87.524	NA	NA	NA															
91.441	NA	NA	NA															
5.1245	NA	NA	NA															
23.336	NA	NA	NA															
3.5392	NA	NA	NA															
4.7675	NA	NA	NA															
6.253	NA	NA	NA															
21.9	1.55																	
22.125	NA	NA	NA															
21.9	1.55																	
71	28.58	26.46	31.242															
23.336	22.125	21.9	1.55															
217	12.5																	
217	12.5																	
217	12.5																	
316	15.4																	
316	15.4																	
316	15.4																	
12.3	0.79																	
13.5	0.94																	
21.9	1.55																	
75.58	NA	NA	NA															
64.42	NA	NA	NA															
87.524	NA	NA	NA															
91.441	NA	NA	NA															
5.1245	NA	NA	NA															
23.336	NA	NA	NA															
3.5392	NA	NA	NA															
4.7675	NA	NA	NA															
6.253	NA	NA	NA															
21.9	1.55																	
22.125	NA	NA	NA															
21.9	1.55																	
71	28.58	26.46	31.242															
23.336	22.125	21.9	1.55															
217	12.5																	
217	12.5																	
217	12.5																	
316	15.4																	
316	15.4																	
316	15.4																	
12.3	0.79																	
13.5	0.94																	
21.9	1.55																	
75.58	NA	NA	NA															
64.42	NA	NA	NA															
87.524	NA	NA	NA															
91.441	NA	NA	NA															
5.1245	NA	NA	NA															
Li et al. 2012	31.65	119.2833	300	17.5	1149	conifer	AM	non-Ni-fixing	mineral	NA	NA	NA	13.36	24.71	1.87	NA	4.4	
Li et al. 2012	31.65	119.2833	300	17.5	1149	borodinea	f	ECM	non-Ni-fixing	mineral	NA	NA	NA	13.21	36.84	2.8	NA	4.36
Li et al. 2012	31.65	119.2833	300	17.5	1149	conifer	ECM	non-Ni-fixing	mineral	NA	NA	NA	13.52	16.2	1.21	NA	4.5	

Litter: annual litter production (); Cs: C stock; CN: C :N ratio; Ns: forest floor N stock; Nc: mineral soil N concentration; PAP: plant available phosphorus; MBC: microbial biomass C; MBN: microbial biomass nitrogen; MBP: microbial biomass phosphorus; respiration: soil base respiration.
Table S2 Estimates of the linear mixed models assessing the effects of tree species type, mycorrhizal association, and N-fixing ability on mineral soil chemical and biotic properties. Values in bold indicate statistically significant difference between broadleaf and conifer, AM and ECM, or N-fixing and non-N-fixing. The corresponding statistical results are shown in Table 1.

Soil properties	Tree species effect on soil properties					
	Species type	Mycorrhizal association	N-fixing ability			
	Broadleaf	Conifer	AM	ECM	N-fixing	non-N-fixing
NH$_4^+$ (mg kg$^{-1}$)	214.8	575.9	309.1	411.2	327.5	377.5
NO$_3^-$ (mg kg$^{-1}$)	14.7	13.2	17.2	11.9	17.2	14.0
PAP (mg kg$^{-1}$)	312.1	463.8	293.9	447.8	246.3	391.4
MBC (mg kg$^{-1}$)	599.8	577.7	684.8	535.9	560.7	594.8
MBN (mg kg$^{-1}$)	85.7	57.2	76.4	73.5	70.8	75.2
MBP (mg kg$^{-1}$)	26.4	15.4	19.8	24.9	23.3	23.4
Basal respiration (mg CO$_2$ g$^{-1}$ day$^{-1}$)	27.6	29.4	24.2	29.7	27.1	28.8
Appendix 1: List of the 143 primary articles from which the data were extracted for this study

1. Son, Y., & Gower, S. T. (1992). Nitrogen and phosphorus distribution for five plantation species in southwestern Wisconsin. Forest Ecology and Management, 53(1-4), 175-193.

2. Kooch, Y., Tavakoli, M., & Akbarinia, M. (2018). Microbial/biochemical indicators showing perceptible deterioration in the topsoil due to deforestation. Ecological Indicators, 91, 84-91.

3. Rachid, C. T. C. C., Balieiro, F. C., Peixoto, R. S., Pinheiro, Y. A. S., Piccolo, M. C., Chaer, G. M., & Rosado, A. S. (2013). Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biology and Biochemistry, 66, 146-153.

4. Xu, X., Inubushi, K., & Sakamoto, K. (2006). Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils. Geoderma, 136(1-2), 310-319.

5. Chodak, M., Klimek, B., Azarbad, H., & Jaźwa, M. (2015). Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia, 58(2-3), 81-88.

6. Vesterdal, L., Schmidt, I. K., Callesen, I., Nilsson, L. O., & Gundersen, P. (2008). Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 255(1), 35-48.

7. Baum, C., Fienemann, M., Glatzel, S., & Gleixner, G. (2009). Overstory-specific effects of litter fall on the microbial carbon turnover in a mature deciduous forest. Forest ecology and management, 258(2), 109-114.

8. Olsson, B. A., Hansson, K., Persson, T., Beuker, E., & Helmisaari, H. S. (2012). Heterotrophic respiration and nitrogen mineralisation in soils of Norway spruce, Scots pine and silver birch stands in contrasting climates. Forest Ecology and Management, 269, 197-205.
9. Smolander, A., & Kitunen, V. (2002). Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species. Soil Biology and Biochemistry, 34(5), 651-660.

10. Selmants, P. C., Hart, S. C., Boyle, S. I., & Stark, J. M. (2005). Red alder (Alnus rubra) alters community-level soil microbial function in conifer forests of the Pacific Northwest, USA. Soil Biology and Biochemistry, 37(10), 1860-1868.

11. Chatterjee, A., Vance, G. F., Pendall, E., & Stahl, P. D. (2008). Timber harvesting alters soil carbon mineralization and microbial community structure in coniferous forests. Soil Biology and Biochemistry, 40(7), 1901-1907.

12. Malchair, S., & Carnol, M. (2009). Microbial biomass and C and N transformations in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biology and Biochemistry, 41(4), 831-839.

13. Huang, Z., Davis, M. R., Condron, L. M., & Clinton, P. W. (2011). Soil carbon pools, plant biomarkers and mean carbon residence time after afforestation of grassland with three tree species. Soil Biology and Biochemistry, 43(6), 1341-1349.

14. Huang, Z., Wan, X., He, Z., Yu, Z., Wang, M., Hu, Z., & Yang, Y. (2013). Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China. Soil Biology and Biochemistry, 62, 68-75.

15. Huang, X., Liu, S., Wang, H., Hu, Z., Li, Z., & You, Y. (2014). Changes of soil microbial biomass carbon and community composition through mixing nitrogen-fixing species with Eucalyptus urophylla in subtropical China. Soil Biology and Biochemistry, 73, 42-48.

16. Fu, X., Yang, F., Wang, J., Di, Y., Dai, X., Zhang, X., & Wang, H. (2015). Understory vegetation leads to changes in soil acidity and in microbial communities 27 years after reforestation. Science of the Total Environment, 502, 280-286.

17. Kang, H., Gao, H., Yu, W., Yi, Y., Wang, Y., & Ning, M. (2018). Changes in soil microbial community structure and function after afforestation depend on species and age: case study in a subtropical alluvial island. Science of The Total Environment, 625, 1423-1432.
18. Józefowska, A., Pietrzykowski, M., Woś, B., Cajthaml, T., & Frouz, J. (2017). Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter. European Journal of Soil Biology, 80, 102-109.

19. Hagen-Thorn, A., Callesen, I., Armolaitis, K., & Nihlgård, B. (2004). The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management, 195(3), 373-384.

20. Schulp, C. J., Nabuurs, G. J., Verburg, P. H., & de Waal, R. W. (2008). Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3), 482-490.

21. Díaz-Pinés, E., Rubio, A., Van Miegroet, H., Montes, F., & Benito, M. (2011). Does tree species composition control soil organic carbon pools in Mediterranean mountain forests?. Forest Ecology and Management, 262(10), 1895-1904.

22. Hansson, K., Olsson, B. A., Olsson, M., Johansson, U., & Kleja, D. B. (2011). Differences in soil properties in adjacent stands of Scots pine, Norway spruce and silver birch in SW Sweden. Forest Ecology and Management, 262(3), 522-530.

23. Wang, H., Liu, S., Wang, J., Shi, Z., Lu, L., Zeng, J., ... & Yu, H. (2013). Effects of tree species mixture on soil organic carbon stocks and greenhouse gas fluxes in subtropical plantations in China. Forest Ecology and Management, 300, 4-13.

24. He, Y., Qin, L., Li, Z., Liang, X., Shao, M., & Tan, L. (2013). Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. Forest ecology and management, 295, 193-198.

25. Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., ... & Šimáčková, H. (2013). Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 309, 87-95.

26. Wen, L., Lei, P., Xiang, W., Yan, W., & Liu, S. (2014). Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age. Forest Ecology and Management, 328, 150-158.
27. Song, W., Liu, Y., & Tong, X. (2017). Newly sequestrated soil organic carbon varies with soil depth and tree species in three forest plantations from northeastern China. Forest Ecology and Management, 400, 384-395.

28. Wang, W., Lu, J., Du, H., Wei, C., Wang, H., Fu, Y., & He, X. (2017). Ranking thirteen tree species based on their impact on soil physiochemical properties, soil fertility, and carbon sequestration in Northeastern China. Forest Ecology and Management, 404, 214-229.

29. Alriksson, A., & Eriksson, H. M. (1998). Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. Forest Ecology and Management, 108(3), 261-273.

30. Neirynck, J., Mirtcheva, S., Sioen, G., & Lust, N. (2000). Impact of Tilia platyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy topsoil. Forest Ecology and Management, 133(3), 275-286.

31. Chodak, M., Pietrzykowski, M., & Sroka, K. (2015). Physiological profiles of microbial communities in mine soils afforested with different tree species. Ecological engineering, 81, 462-470.

32. Kaur, B., Gupta, S. R., & Singh, G. (2000). Soil carbon, microbial activity and nitrogen availability in agroforestry systems on moderately alkaline soils in northern India. Applied soil ecology, 15(3), 283-294.

33. Galicia, L., & García-Oliva, F. (2004). The effects of C, N and P additions on soil microbial activity under two remnant tree species in a tropical seasonal pasture. Applied Soil Ecology, 26(1), 31-39.

34. Gartzia-Bengoetxea, N., Kandeler, E., de Arano, I. M., & Arias-González, A. (2016). Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Applied soil ecology, 100, 57-64.
35. Zhan-Yuan, Y. U., Fu-Sheng, C. H. E. N., De-Hui, Z. E. N. G., Qiong, Z. H. A. O., & Guang-Sheng, C. H. E. N. (2008). Soil inorganic nitrogen and microbial biomass carbon and nitrogen under pine plantations in Zhanggutai sandy soil. Pedosphere, 18(6), 775-784.

36. Yang, N., Ji, L., Yang, Y., & Yang, L. (2018). The influence of tree species on soil properties and microbial communities following afforestation of abandoned land in northeast China. European journal of soil biology, 85, 73-78.

37. Wang, S., Wang, H., & Li, J. (2016). Does tree species composition affect soil CO2 emission and soil organic carbon storage in plantations?. Trees, 30(6), 2071-2080.

38. Wotherspoon, A., Thevatham, N. V., Gordon, A. M., & Voroney, R. P. (2014). Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario, Canada. Agroforestry systems, 88(4), 631-643.

39. Frouz, J., Pižl, V., Cienciala, E., & Kalčík, J. (2009). Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry, 94(2), 111-121.

40. Mueller, K. E., Eissenstat, D. M., Hobbie, S. E., Oleksyn, J., Jagodzinski, A. M., Reich, P. B., ... & Chorover, J. (2012). Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry, 111(1-3), 601-614.

41. Wei, X., Shao, M., Fu, X., & Horton, R. (2010). Changes in soil organic carbon and total nitrogen after 28 years grassland afforestation: effects of tree species, slope position, and soil order. Plant and Soil, 331(1-2), 165-179.

42. Langenbruch, C., Helfrich, M., & Flessa, H. (2012). Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 352(1-2), 389-403.

43. Wang, Q., & Zhong, M. (2016). Composition and mineralization of soil organic carbon pools in four single-tree species forest soils. Journal of forestry research, 27(6), 1277-1285.

44. Andivia, E., Rolo, V., Jonard, M., Formánek, P., & Ponette, Q. (2016). Tree species identity mediates mechanisms of top soil carbon sequestration in a Norway spruce and European beech mixed forest. Annals of Forest Science, 73(2), 437-447.
45. Wang, X., Wang, C., & Han, Y. (2015). Effects of tree species on soil organic carbon density: a common garden experiment of five temperate tree species. Chinese Journal of Plant Ecology, 39(11): 1033-1043. (in Chinese with English abstract)

46. Finzi, A. C., Van Breemen, N., & Canham, C. D. (1998). Canopy tree–soil interactions within temperate forests: species effects on soil carbon and nitrogen. Ecological applications, 8(2), 440-446.

47. Lu, S., Zhang, Y., Chen, C., Xu, Z., & Guo, X. (2017). Plant–soil interaction affects the mineralization of soil organic carbon: evidence from 73-year-old plantations with three coniferous tree species in subtropical Australia. Journal of soils and sediments, 17(4), 985-995.

48. Ndlovu, E., Ngamau, K., Muthuri, C. W., & Muriuki, J. K. Alteration of soil carbon and pH by selected common tree species on farms in Eastern Highlands of Kenya.

49. Aponte, C., Matías, L., González-Rodríguez, V., Castro, J., García, L. V., Villar, R., & Marañón, T. (2014). Soil nutrients and microbial biomass in three contrasting Mediterranean forests. Plant and soil, 380(1-2), 57-72.

50. Zhou, X., Guo, Z., Chen, C., & Jia, Z. (2017). Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations. Biogeosciences, 14(8): 2101-2111.

51. Chaiyasen, A., Douds, D. D., Gavinlertvatana, P., & Lumyong, S. (2017). Diversity of arbuscular mycorrhizal fungi in Tectona grandis Linn. f. plantations and their effects on growth of micropropagated plantlets. New forests, 48(4), 547-562.

52. Chodak, M., & Niklińska, M. (2010). The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biology and Fertility of Soils, 46(6), 555-566.

53. Liang, C., Fujinuma, R., Wei, L., & Balser, T. C. (2007). Tree species-specific effects on soil microbial residues in an upper Michigan old-growth forest system. Forestry, 80(1), 65-72.
54. Wang, Q., Xiao, F., Zhang, F., & Wang, S. (2013). Labile soil organic carbon and microbial activity in three subtropical plantations. Forestry, 86(5), 569-574.

55. Deng, H., Zhang, B., Yin, R., Wang, H. L., Mitchell, S. M., Griffiths, B. S., & Daniell, T. J. (2010). Long-term effect of re-vegetation on the microbial community of a severely eroded soil in sub-tropical China. Plant and soil, 328(1-2), 447-458.

56. Kara, O., Babur, E., Altun, L., & Seyis, M. (2016). Effects of afforestation on microbial biomass C and respiration in eroded soils of Turkey. Journal of Sustainable Forestry, 35(6), 385-396.

57. Vesterdal, L., & Raulund-Rasmussen, K. (1998). Forest floor chemistry under seven tree species along a soil fertility gradient. Canadian journal of forest research, 28(11), 1636-1647.

58. Bell, G., Sena, K. L., Barton, C. D., & French, M. (2017). Establishing pine monocultures and mixed pine-hardwood stands on reclaimed surface mined land in eastern Kentucky: Implications for forest resilience in a changing climate. Forests, 8(10), 375.

59. Bolat, I., Kara, Ö., Sensoy, H., & Yüksel, K. (2015). Influences of Black Locust (Robinia pseudoacacia L.) afforestation on soil microbial biomass and activity. iForest-Biogeosciences and Forestry, 9(1), 171.

60. Sariyildiz, T., Savaçi, G., & Kravkaz, I. S. (2015). Effects of tree species, stand age and land-use change on soil carbon and nitrogen stock rates in northwestern Turkey. iForest-Biogeosciences and Forestry, 9(1), 165.

61. Oostra, S., Majdi, H., & Olsson, M. (2006). Impact of tree species on soil carbon stocks and soil acidity in southern Sweden. Scandinavian Journal of Forest Research, 21(5), 364-371.

62. Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., ... & Zhang, S. (2013). Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS One, 8(6).
63. Yu, X., Liu, X., Zhao, Z., Liu, J., & Zhang, S. (2015). Effect of monospecific and mixed sea-buckthorn (Hippophae rhamnoides) plantations on the structure and activity of soil microbial communities. PloS one, 10(2).

64. Kooch, Y., Sanji, R., & Tabari, M. (2018). Increasing tree diversity enhances microbial and enzyme activities in temperate Iranian forests. Trees, 32(3), 809-822.

65. Lejon, D. P., Chaussood, R., Ranger, J., & Ranjard, L. (2005). Microbial community structure and density under different tree species in an acid forest soil (Morvan, France). Microbial Ecology, 50(4), 614-625.

66. Li, C., Shi, L. L., Ostermann, A., Xu, J., Li, Y., & Mortimer, P. E. (2015). Indigenous trees restore soil microbial biomass at faster rates than exotic species. Plant and soil, 396(1-2), 151-161.

67. Galicia, L., & Garcia-Oliva, F. (2011). Litter quality of two remnant tree species affects soil microbial activity in tropical seasonal pastures in Western Mexico. Arid land research and Management, 25(1), 75-86.

68. Lucas-Borja, M. E., Candel, D., Jindo, K., Moreno, J. L., Andrés, M., & Bastida, F. (2012). Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant and soil, 354(1-2), 359-370.

69. Luo, D., Cheng, R., Shi, Z., Wang, W., Xu, G., & Liu, S. (2016). Impacts of nitrogen-fixing and non-nitrogen-fixing tree species on soil respiration and microbial community composition during forest management in subtropical China. Ecological Research, 31(5), 683-693.

70. Mareschal, L., Bonnaud, P., Turpault, M. P., & Ranger, J. (2010). Impact of common European tree species on the chemical and physicochemical properties of fine earth: an unusual pattern. European Journal of Soil Science, 61(1), 14-23.

71. Melvin, A. M., & Goodale, C. L. (2013). Tree species and earthworm effects on soil nutrient distribution and turnover in a northeastern United States common garden. Canadian Journal of Forest Research, 43(2), 180-187.
72. Thomas, K. D., & Prescott, C. E. (2000). Nitrogen availability in forest floors of three tree species on the same site: the role of litter quality. Canadian journal of forest research, 30(11), 1698-1706.

73. Laik, R., Kumar, K., & Das, D. K. (2009). Organic carbon and nutrient build-up in a calcioorthent soil under six forest tree species. Forests, Trees and Livelihoods, 19(1), 81-92.

74. Giardina, C. P., Ryan, M. G., Hubbard, R. M., & Binkley, D. (2001). Tree species and soil textural controls on carbon and nitrogen mineralization rates. Soil Science Society of America Journal, 65(4), 1272-1279.

75. Sevgi, O., Makineci, E., & Karaoz, O. (2011). The forest floor and mineral soil carbon pools of six different forest tree species. Ekoloji, 20(81), 8-14.

76. Laganière, J., Angers, D. A., Paré, D., Bergeron, Y., & Chen, H. Y. (2011). Black spruce soils accumulate more uncomplexed organic matter than aspen soils. Soil Science Society of America Journal, 75(3), 1125-1132.

77. Taylor, M. K., Lankau, R. A., & Wurzburger, N. (2016). Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. Journal of Ecology, 104(6), 1576-1584.

78. Wan, X., Huang, Z., He, Z., Yu, Z., Wang, M., Davis, M. R., & Yang, Y. (2015). Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations. Plant and Soil, 387(1-2), 103-116.

79. Ulery, A. L., Graham, R. C., Chadwick, O. A., & Wood, H. B. (1995). Decade-scale changes of soil carbon, nitrogen and exchangeable cations under chaparral and pine. Geoderma, 65(1-2), 121-134.

80. Michelsen, A., Lisanework, N., & Friis, I. (1993). Impacts of tree plantations in the Ethiopian highland on soil fertility, shoot and root growth, nutrient utilisation and mycorrhizal colonisation. Forest Ecology and Management, 61(3-4), 299-324.

81. Lemma, B., Kleja, D. B., Nilsson, I., & Olsson, M. (2006). Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma, 136(3-4), 886-898.
82. Kasel, S., Singh, S., Sanders, G. J., & Bennett, L. T. (2011). Species-specific effects of native trees on soil organic carbon in biodiverse plantings across north-central Victoria, Australia. Geoderma, 161(1-2), 95-106.

83. Lu, S., Chen, C., Zhou, X., Xu, Z., Bacon, G., Rui, Y., & Guo, X. (2012). Responses of soil dissolved organic matter to long-term plantations of three coniferous tree species. Geoderma, 170, 136-143.

84. Quideau, S. A., Graham, R. C., Chadwick, O. A., & Wood, H. B. (1998). Organic carbon sequestration under chaparral and pine after four decades of soil development. Geoderma, 83(3-4), 227-242.

85. Templer, P., Findlay, S., & Lovett, G. (2003). Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biology and Biochemistry, 35(4), 607-613.

86. Grayston, S. J., & Prescott, C. E. (2005). Microbial communities in forest floors under four tree species in coastal British Columbia. Soil Biology and Biochemistry, 37(6), 1157-1167.

87. Nsabimana, D., Klemedtson, L., Kaplin, B. A., & Wallin, G. (2009). Soil CO2 flux in six monospecific forest plantations in Southern Rwanda. Soil Biology and Biochemistry, 41(2), 396-402.

88. Hoogmoed, M., Cunningham, S. C., Baker, P., Beringer, J., & Cavagnaro, T. R. (2014). N-fixing trees in restoration plantings: effects on nitrogen supply and soil microbial communities. Soil Biology and Biochemistry, 77, 203-212.

89. Mertens, J., Van Nevel, L., De Schrijver, A., Piesschaert, F., Oosterbaan, A., Tack, F. M., & Verheyen, K. (2007). Tree species effect on the redistribution of soil metals. Environmental Pollution, 149(2), 173-181.

90. Yin, R., Deng, H., Wang, H. L., & Zhang, B. (2014). Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. Catena, 115, 96-103.
91. Smith, C. K., de Assis Oliveira, F., Gholz, H. L., & Baima, A. (2002). Soil carbon stocks after forest conversion to tree plantations in lowland Amazonia, Brazil. Forest Ecology and Management, 164(1-3), 257-263.

92. Lemenih, M., Olsson, M., & Karlén, E. (2004). Comparison of soil attributes under Cupressus lusitanica and Eucalyptus saligna established on abandoned farmlands with continuously cropped farmlands and natural forest in Ethiopia. Forest ecology and Management, 195(1-2), 57-67.

93. Zheng, H., Ouyang, Z. Y., Wang, X. K., Fang, Z. G., Zhao, T. Q., & Miao, H. (2005). Effects of regenerating forest cover on soil microbial communities: a case study in hilly red soil region, Southern China. Forest Ecology and Management, 217(2-3), 244-254.

94. Raich, J. W., Russell, A. E., & Bedoya-Arrieta, R. (2007). Lignin and enhanced litter turnover in tree plantations of lowland Costa Rica. Forest Ecology and Management, 239(1-3), 128-135.

95. Zheng, H., Ouyang, Z., Xu, W., Wang, X., Miao, H., Li, X., & Tian, Y. (2008). Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management, 255(3-4), 1113-1121.

96. Johnsen, K. H., Samuelson, L. J., Sanchez, F. G., & Eaton, R. J. (2013). Soil carbon and nitrogen content and stabilization in mid-rotation, intensively managed sweetgum and loblolly pine stands. Forest ecology and management, 302, 144-153.

97. Tang, G., & Li, K. (2014). Soil amelioration through afforestation and self-repair in a degraded valley-type savanna. Forest Ecology and Management, 320, 13-20.

98. Zhao, Q., Zeng, D. H., & Fan, Z. P. (2010). Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil. Applied Soil Ecology, 46(3), 341-346.

99. Jiang, P. K., & Qiu-Fang, X. U. (2006). Abundance and dynamics of soil labile carbon pools under different types of forest vegetation. Pedosphere, 16(4), 505-511.
100. Yan, W. D., Xu, W. M., Chen, X. Y., Tian, D. L., Peng, Y. Y., Zhen, W., ... & Xu, J. (2014). Soil CO_2 flux in different types of forests under a subtropical microclimatic environment. Pedosphere, 24(2), 243-250.

101. Devi, B., Bhardwaj, D. R., Panwar, P., Pal, S., Gupta, N. K., & Thakur, C. L. (2012). Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India. Annals of Forest Research, 56(1), 123-135.

102. JAHED, R. R., & HOSSEINI, S. M. (2014). The effect of natural and planted forest stands on soil fertility in the Hyyrcanian region, Iran. Biodiversitas Journal of Biological Diversity, 15(2), 206-214.

103. Riestra, D., Noellemeyer, E., & Quiroga, A. (2012). Soil texture and forest species condition the effect of afforestation on soil quality parameters. Soil science, 177(4), 279-287.

104. Ovington, J. D. (1953). Studies of the development of woodland conditions under different trees: II the forest floor. Journal of Ecology, 41(1), 71-80.

105. Ovington, J. D. (1956). Studies of the development of woodland conditions under different trees: IV. The ignition loss, water, carbon and nitrogen content of the mineral soil. The Journal of Ecology, 41(1), 171-179.

106. Defrieri, R. L., Sarti, G., Tortarolo, M. F., Escobar-Ortega, J., García de Salamone, I., D’Auria, F., & Effron, D. (2011). Biochemical and microbiological properties of Argentinean Patagonia soil with implanted forest species. Journal of Soil Science and Plant Nutrition, 11(3), 111-124.

107. Asadiyan, M., Hojjati, S. M., Pourmajidian, M. R., & Fallah, A. (2013). Impact of land-use management on nitrogen transformation in a mountain forest ecosystem in the north of Iran. Journal of forestry Research, 24(1), 115-119.

108. Kooch, Y., Hosseini, S. M., Zaccone, C., Jalilvand, H., & Hojjati, S. M. (2012). Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (North of Iran) case study. Journal of Environmental Monitoring, 14(9), 2438-2446.
109. Christiansen, J. R., Vesterdal, L., Callesen, I., Elberling, B., Schmidt, I. K., & Gundersen, P. (2010). Role of six European tree species and land-use legacy for nitrogen and water budgets in forests. Global Change Biology, 16(8), 2224-2240.

110. Wang, F., Li, Z., Xia, H., Zou, B., Li, N., Liu, J., & Zhu, W. (2010). Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Science & Plant Nutrition, 56(2), 297-306.

111. Peng, S., Chen, A., Fang, H., Wu, J., & Liu, G. (2013). Effects of vegetation restoration types on soil quality in Yuanmou dry-hot valley, China. Soil Science and Plant Nutrition, 59(3), 347-360.

112. Wei, Y. C., Ouyang, Z. Y., Miao, H., & Zheng, H. (2009). Exotic Pinus caribaea causes soil quality to deteriorate on former abandoned land compared to an indigenous Podocarpus plantation in the tropical forest area of southern China. Journal of Forest Research, 14(4), 221-228.

113. Yang, Y. S., Guo, J. F., Chen, G. S., Xie, J. S., Cai, L. P., & Lin, P. (2004). Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Annals of Forest Science, 61(5), 465-476.

114. Garcia-Montiel, D. C., & Binkley, D. (1998). Effect of Eucalyptus saligna and Albizia falcataria on soil processes and nitrogen supply in Hawaii. Oecologia, 113(4), 547-556.

115. Jiang, Y. M., Chen, C. R., Liu, Y. Q., & Xu, Z. H. (2010). Soil soluble organic carbon and nitrogen pools under mono- and mixed species forest ecosystems in subtropical China. Journal of Soils and Sediments, 10(6), 1071-1081.

116. Kulakova, N. (2012). Impact of plant species on the formation of carbon and nitrogen stock in soils under semi-desert conditions. European Journal of Forest Research, 131(6), 1717-1726.

117. Laudicina, V. A., De Pasquale, C., Conte, P., Badalucco, L., Alonzo, G., & Palazzolo, E. (2012). Effects of afforestation with four unmixed plant species on the soil–water
interactions in a semiarid Mediterranean region (Sicily, Italy). Journal of Soils and Sediments, 12(8), 1222-1230.

118. Demessie, A., Singh, B. R., Lal, R., & Strand, L. T. (2012). Leaf litter fall and litter decomposition under Eucalyptus and coniferous plantations in Gambo District, southern Ethiopia. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(5), 467-476.

119. Lemma, B. (2012). Soil chemical properties and nutritional status of trees in pure and mixed-species stands in south Ethiopia. Journal of Plant Nutrition and Soil Science, 175(5), 769-774.

120. Li, Y. C., Liu, B. R., Li, S. H., Qin, H., Fu, W. J., & Xu, Q. F. (2014). Shift in abundance and structure of soil ammonia-oxidizing bacteria and archaea communities associated with four typical forest vegetations in subtropical region. Journal of Soils and Sediments, 14(9), 1577-1586.

121. Lugo, A. E., Cuevas, E., & Sanchez, M. J. (1990). Nutrients and mass in litter and top soil of ten tropical tree plantations. Plant and Soil, 125(2), 263-280.

123. Phillips, R. P., & Fahey, T. J. (2006). Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology, 87(5), 1302-1313.

124. Saha, R., Tomar, J. M. S., & Ghosh, P. K. (2007). Evaluation and selection of multipurpose tree for improving soil hydro-physical behaviour under hilly eco-system of north east India. Agroforestry Systems, 69(3), 239-247.

125. Singh, B., Tripathi, K. P., Jain, R. K., & Behl, H. M. (2000). Fine root biomass and tree species effects on potential N mineralization in afforested sodic soils. Plant and soil, 219(1-2), 81-89.

126. Russell, A. E., Raich, J. W., Valverde-Barrantes, O. J., & Fisher, R. F. (2007). Tree species effects on soil properties in experimental plantations in tropical moist forest. Soil Science Society of America Journal, 71(4), 1389-1397.
127. Mellor, N. J., Hellerich, J., Drijber, R., Morris, S. J., Stromberger, M. E., & Paul, E. A. (2013). Changes in ecosystem carbon following afforestation of native sand prairie. Soil Science Society of America Journal, 77(5), 1613-1624.

128. Wang, H., Liu, S., Mo, J., & Zhang, T. (2010). Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species. Plant and soil, 335(1-2), 213-227.

129. Wang, H., Liu, S. R., Mo, J. M., Wang, J. X., Makeschin, F., & Wolff, M. (2010). Soil organic carbon stock and chemical composition in four plantations of indigenous tree species in subtropical China. Ecological Research, 25(6), 1071-1079.

130. Zhang, W., Zhu, X., Liu, L., Fu, S., Chen, H., Huang, J., ... & Mo, J. (2012). Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with N-fixing tree species and non-N-fixing tree species. Journal of Geophysical Research: Biogeosciences, 117(G4).

131. Ushio, M., Wagai, R., Balser, T. C., & Kitayama, K. (2008). Variations in the soil microbial community composition of a tropical montane forest ecosystem: does tree species matter? Soil Biology and Biochemistry, 40(10), 2699-2702.

132. Wu, J., Yang, Z., Liu, X., Xiong, D., Lin, W., Chen, C., Wang, X. (2014). Analysis of soil respiration and components in Castanopsis carlesii and Cunninghamia lanceolata plantations. Chinese Journal of Plant Ecology, 38(1), 45-53. (in Chinese with English abstract)

133. Song, Q., Yang, Q., Yu, D., Fan, K., Zhao, G., Yu, S. (2013). The effects of forest conversion on soil N mineralization and its availability in central jiangxi subtropical region. Acta Ecologica Sinica. 33(22): 7309-7318. (in Chinese with English abstract)

134. Pereira, E. L., Santos, S. A., Arrobas, M., & Patrício, M. D. S. (2011). Microbial biomass and N mineralization in mixed plantations of broadleaves and nitrogen-fixing species. Forest systems, 20(3), 516-524.
135. Chen, G. S., Yang, Y. S., Xie, J. S., Guo, J. F., Gao, R., & Qian, W. (2005). Conversion of a natural broad-leafed evergreen forest into pure plantation forests in a subtropical area: effects on carbon storage. Annals of Forest Science, 62(7), 659-668.

136. Forrester, D. I., Pares, A., O’hara, C., Khanna, P. K., & Bauhus, J. (2013). Soil organic carbon is increased in mixed-species plantations of Eucalyptus and nitrogen-fixing Acacia. Ecosystems, 16(1), 123-132.

137. Fried, J. S., Boyle, J. R., Tappeiner II, J. C., & Cromack Jr, K. (1990). Effects of bigleaf maple on soils in Douglas-fir forests. Canadian Journal of Forest Research, 20(3), 259-266.

138. Jiang, Y., Chen, C., Xu, Z., & Liu, Y. (2012). Effects of single and mixed species forest ecosystems on diversity and function of soil microbial community in subtropical China. Journal of Soils and Sediments, 12(2), 228-240.

139. Pérez-Bejarano, A., Mataix-Solera, J., Zornoza, R., Guerrero, C., Arcenegui, V., Mataix-Beneyto, J., & Cano-Amat, S. (2010). Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil. European Journal of Forest Research, 129(1), 15-24.

140. Ramesh, T., Manjaiah, K. M., Tomar, J. M. S., & Ngachan, S. V. (2013). Effect of multipurpose tree species on soil fertility and CO₂ efflux under hilly ecosystems of Northeast India. Agroforestry Systems, 87(6), 1377-1388.

141. Turner, D. P., Sollins, P., Leuking, M., & Rudd, N. (1993). Availability and uptake of inorganic nitrogen in a mixed old-growth coniferous forest. Plant and soil, 148(2), 163-174.

142. Wang, W., Shi, Z., Luo, D., Liu, S., & Lu, L. (2013). Characteristics of soil microbial biomass and community composition in three types of plantations in southern subtropical area of China. Chinese Journal of Applied Ecology, 24(7), 1784-1792. (in Chinese with English abstract)
143. Li, P., Wang, G., Zheng, A., Shen, Y., Zhao, Q., Wang, L., Jiang, R., Li, L., & Ruan, H. (2012). The variations of soil labile organic carbon in four plantations in south of Jiangsu Province. Journal of Nanjing Forestry University (Natural Science Edition), 36(4), 79-83.