Copper-Catalysed Suzuki-Miyaura Cross-Coupling of Highly Fluorinated Aryl Boronate Esters with Aryl Iodides and Bromides and Fluoroarene–Arene \(\pi \)-Stacking Interactions in the Products

Yudha P. Budiman,[a, b] Alexandra Friedrich,[a] Udo Radius,*[a] and Todd B. Marder*[a]

A combination of copper iodide and phenanthroline as the ligand is an efficient catalyst for Suzuki-Miyaura cross-coupling of highly fluorinated boronate esters (aryl–Bpin) with aryl iodides and bromides to generate fluorinated biaryl in good to excellent yields. This method represents a nice alternative to traditional cross-coupling methods which require palladium catalysts and stoichiometric amounts of silver oxide. We note that \(\pi-\pi \) stacking interactions dominate the molecular packing in the partly fluorinated biaryl crystals investigated herein. They are present either between the arene and perfluoroarene, or solely between arenes or perfluoroarenes, respectively.

Introduction

The conversion of highly fluorinated aromatics into fluorinated arylboronates is desirable as arylboronates esters are useful building blocks for organic synthesis.[1] We recently reported the successful defluoroborylation of polyfluorinated aromatics using an NHC nickel complex (NHC = N-Heterocyclic Carbene) as a catalyst and the diboron(4) compound B\(_2\)pin (pin = pinacolato) as the boron source.[2] Having a good source of fluorinated aryboronates in hand, we were interested to explore the chemistry of these electron poor aromatics, especially in Suzuki-Miyaura cross-coupling reactions which are employed in various fields, from the synthesis of natural products to materials chemistry, including large-scale production.[3] Applications of polyfluorobiphenyls are quite numerous including medicinal chemistry,[4] organic light emitting diodes,[5] electron-transport materials,[6] crystal engineering,[7] metal-organic frameworks (MOFs),[8] and supramolecular chemistry.[9]

However, Suzuki-Miyaura cross-coupling of highly fluorinated boronates, especially pentfluorophenyl boronates is highly challenging under typical palladium catalysed Suzuki-Miyaura conditions,[10] as the transfer of C\(_5\)F\(_5\) to the palladium centre in the transmetalation step is usually inefficient.[11] In many cases, stoichiometric amounts of costly silver oxide (Ag\(_2\)O) were added in addition to the palladium catalyst to enhance the transmetalation step and thus to obtain the desired coupling product in fair to good yield.[5] In 1987, it was initially reported by Kishi et al. that Ag\(_2\)O can accelerate the rate of palladium-catalysed Suzuki-Miyaura cross-coupling of alkene-aryl halides with aryl iodides with the relative rate being 30 times faster than that using common bases such as KOH.[12] Inspired by that, in 2002, Adonin et al. used 1.2 equivalents of Ag\(_2\)O to enhance the efficiency of Pd(OAc)\(_2\)/PPh\(_3\)/K\(_2\)CO\(_3\) to catalyse the Suzuki-Miyaura cross-coupling of C\(_5\)F\(_5\)B(OMe)\(_3\) to catalyse the Suzuki-Miyaura cross-coupling of C\(_5\)F\(_5\)B(OMe)\(_3\) or C\(_5\)F\(_5\)BF(O) with aryl iodides in toluene. In 2005, Korenaga et al.[11f] reported an effective method for coupling of C\(_5\)F\(_5\)BF(OH)\(_2\)) with aryl iodides using Pd[PPh\(_3\)]\(_2\)/K\(_2\)CO\(_3\) or Pd[Pd(dba)]\(_2\)P(Ph)\(_3\) in DMF and for coupling with aryl bromides using Pd(dba)\(_2\)P(Ph)\(_3\)/CsF in DMF and in both cases requiring 1.2 equivalents of Ag\(_2\)O. In 2005, Adonin et al. extended their previous studies[11g] to the coupling of C\(_5\)F\(_5\)BF(OH)\(_2\) with aryl bromides instead of iodides employing Pd(OAc)\(_2\)/P(Ph)\(_3\)/K\(_2\)CO\(_3\) in toluene, but this was still only effective in the presence of 1.2 equivalents of Ag\(_2\)O.[11h] Osakada et al.[11i] reported that Ag\(_2\)O has the ability to replace the halide ligand of the catalyst to generate an hydroxy–palladium species, which shows higher reactivity in the transmetalation step with aryl boronates. The reaction of trans-[Pd(PPh\(_3\)]\(_2\)(C\(_5\)F\(_5\))I with Ag\(_2\)O in toluene–water, for example, generates the complex trans-[Pd(PPh\(_3\)]\(_2\)(C\(_5\)F\(_5\))O)(OH)], which undergoes transmetalation with the boronic acid 4-MeOC\(_3\)H\(_2\)B(OH)\(_2\).[11j] In 2010, Buchwald et al.[11k] reported the precatalyst XPhos–Pd–G2 to solve the problem, and this works without additional Ag\(_2\)O to catalyse the coupling of C\(_5\)F\(_5\)BF(OH)\(_2\)) with aryl chlorides, bromides, and triflates but, interestingly, did not work for aryl iodides.[11l] However, this...
palladium catalyst is quite expensive or at least requires a multistep synthesis.

Previously, Osakada et al.\(^{11}\) showed that 2,4,6-trifluorophenyl-B(OH)_2 reacts with trans-[Pd(C,F_3)(PET)_3]I in the presence of Ag_2O in toluene and H_2O (Scheme 1), but the reaction stops with generation of the stable intermediate trans-[Pd(C,F_3)(2,4,6-C,F,H)](PET)_3]I as reductive elimination was not observed for this complex. Thus, for palladium complexes [L, Pd(Ar)(Ar')], if both Ar and Ar' are highly electron deficient, the reductive elimination step becomes much more difficult, as the Pd–Ar bonds are strong.\(^{14}\) Those reports show the current challenge for the palladium-catalysed Suzuki-Miyaura cross-coupling of C_F_3–boronates with fluorinated aryl halides (Ar–X), especially if the C–X bond flanked by two C–F bonds.

Polyfluorinated biaryls can be synthesised via Suzuki-Miyaura cross-coupling of polyfluorinated aryl boronic acid esters and polyfluorinated aryl iodides, as reported by Bulfield and Huber\(^{10d}\) using palladium catalysts. They employed both fluoroaryl boronate and fluoroaryl halide substrates as coupling partners using a combination of palladium sources and various phosphine ligands. Although this reaction works in some cases, they had to optimise each reaction separately for the corresponding aryl boronate and aryl halide, using different types of expensive phosphine ligands. Those reactions all required long reaction times (over 60 hours) and a procedure that would work for C_F_3B(OH)_2 was not developed.

Recently, research to replace precious metal catalysts with cheaper and Earth-abundant metals\(^{15}\) as well as metals of lower toxicity\(^{16}\) has attracted much attention. Several groups have developed Cu(I) catalysts for Suzuki-Miyaura cross-coupling reactions.\(^{15}\) For example, Li et al. have developed a copper/DABCO ligand catalyst system, but the reaction, however, does not work for sterically hindered and electron-deficient aryl boronic acids.\(^{17a,b}\) Brown et al. reported that a combination of CuCl with Xantphos can effectively catalyse Suzuki-Miyaura cross-coupling of aryl iodides with aryl boronic acid neopentylglycol ester (Bneop)\(^{17h}\) and later using Cy_3PCuCl catalyst for a cross-coupling of aryl–Bpin with heteroaryl bromides.\(^{17m}\) Other systems involve the use of copper nanoclusters\(^{17c}\) or copper powder in polyethylene glycol solvents.\(^{17o}\) Giri et al. reported an efficient system employing Cu and (o-di-tert-butylphosphino)-N,N-dimethylaniline (PN) as the ligand for efficient Suzuki-Miyaura cross-coupling of aryl–Bneop with aryl iodides\(^{17n}\) and extended with electron deficient aryl bromides.\(^{17n}\) However, to the best of our knowledge, there are no reports of copper-catalysed Suzuki-Miyaura cross-coupling reaction of electron deficient, highly fluorinated aryl boronate esters, and only a few examples of the use of aryl bromides in Cu-catalysed Suzuki-Miyaura reactions.\(^{17n,a}\)

On the other hand, the optimised conditions for Cu-catalysed Suzuki-Miyaura cross-coupling employing aryl–Bpin and aryl iodide as coupling partners is still challenging, as Brown et al.\(^{17a}\) and Giri et al.\(^{17b}\) reported that their optimised methods to employ aryl–Bpin instead of aryl–Bneop only afforded fair yields.

Herein, we report Suzuki-Miyaura cross-coupling of aryl iodides and bromides with highly fluorinated arylboronate esters (Ar–Bpin), catalysed by phenanthroline-ligated copper complexes. Notably, Cu(I)-catalysed Suzuki-Miyaura cross-coupling of C_F_3Bpin does not require the addition of silver oxide to achieve quantitative yields.

Result and Discussion

We began our investigation using the most electron deficient compound, C_F_3Bpin (1a), which was synthesised via an Ir-catalysed C–H borylation reaction.\(^{18}\) Coupling of C_F_3Bpin with phenyl iodide (2a) to give 2,3,4,5,6-pentafluorobiphenyl (3a) was chosen as a model reaction. Giri et al.\(^{17b}\) studied the mechanism of Cu(I)-catalysed Suzuki-Miyaura cross-coupling and showed that, after the formation of [(PN)CuI], the addition of CsF led to the formation of [(PN)CuF], which then yielded

Scheme 1. Recent challenges for Pd-catalysed Suzuki-Miyaura cross-coupling to achieve polyfluorinated biaryls.
[(PN)CuPh] after transmetalation with an aryl–Bneop reagent. Inspired by that work, we screened Cu(I) salts with different ligands, bases and solvents.

As Giri et al. demonstrated that the combination of CuI and (o-di-tert-butylphosphino)-N,N-dimethylaniline (PN), CsF, in DMF/dioxane solvent at 130 °C was efficient for the Suzuki-Miyaura cross-coupling of ary–Bneop with aryl iodide,[17b,g] we initially tried to employ these conditions to cross-couple C₆F₅Bpin with phenyl iodide, but obtained only a 5% isolated yield of the biaryl product after 18 h (Table 1, entry 1). The absence of either CsF or CuI resulted in a poor yield of 3% (Table 1, entry 12). Toluene and THF were ineffective solvents at temperatures close to their boiling points (Table 1, entries 11 and 12). It is interesting to note that without any additional ligand, the copper catalyst still gave a 26% yield (Table 1, entry 13) and was more active than the system employing PN as the ligand (Table 1, entry 1). The absence of either CsF or CuI resulted in no product formation, indicating that both base and catalyst are required. A combination of Cu and phenanthroline generates [(Phen)CuI] as using preformed [(Phen)CuI] gave an excellent yield (Table 1, entry 16). CsF reacts as a nucleophile and exchanges the halide ligand at Cu(I) to generate a CuF complex,[15b] which reacts more readily with the aryl boronate ester in the transmetalation step and thus accelerates the transfer of the aryl group to the metal.[19b] CuI gave better results than CuBr or CuI afforded the product in only 29% yield (Table 1, entry 8). Non-fluoride bases such as K₂PO₄ resulted in a poor yield of 3% (Table 1, entry 10).

Table 1. Suzuki-Miyaura cross-coupling of C₆F₅Bpin with PhI.[4]

Entry	Cu catalyst	Ligand	Base	Solvent	Time	Yield [%]
1	Cu	PN	CsF	DMF/dioxane	18	5
2	Cu	bpy	CsF	DMF	24	42
3	Cu	dtbpy	CsF	DMF	24	57
4	Cu	phenanthroline	CsF	DMF	18	99
						99²
5	Cu	DMAP	CsF	DMF	24	21
6	CuCl	phenanthroline	CsF	DMF	24	55
7	CuBr	phenanthroline	CsF	DMF	24	36
8	Cu	phenanthroline	KF	DMF	24	68
9	Cu	phenanthroline	NMe₂F	DMF	24	29
10	Cu	phenanthroline	K₂PO₄	DMF	24	3
11	Cu	phenanthroline	CsF	Toluene	24	0
12	Cu	phenanthroline	CsF	THF	24	0
13	Cu	–	CsF	DMF	24	26
14	Cu	phenanthroline	–	DMF	24	0
15	–	phenanthroline	CsF	DMF	24	0
16	(Phen)Cu	–	CsF	DMF	18	94

[a] General conditions: 1a (0.4 mmol), 2a (0.6 mmol), Cu catalyst (10 mol%), ligand (10 mol%), base (2 equiv.), solvent (3 mL), under argon, [b] Isolated yield after flash chromatography, [c] C₆F₅BF₄K instead of C₆F₅Bpin, [d] T = 100 °C, [e] T = 110 °C, [f] T = 60 °C.

Thus, we also demonstrated that the combination of CuI and (o-di-tert-butylphosphino)-N,N-dimethylaniline (PN), CsF, in DMF/dioxane solvent at 130 °C was efficient for the Suzuki-Miyaura cross-coupling of C₆F₅Bpin with aryl iodide using a Pd-catalyst. Using KF instead of CsF also gave a good yield of 68% (Table 1, entry 7), whereas NMe₂F afforded the product in only 29% yield (Table 1, entry 8). The highest yield for the Suzuki-Miyaura cross-coupling of C₆F₅Bpin with aryl iodide was observed that CsF gave the highest yield for the Suzuki-Miyaura cross-coupling of C₆F₅Bpin with aryl iodide. The use of organotrifluoroborates is attractive as these are inexpensive and more stable towards air and moisture than organoboronate substrates.[21] Thus, we also employed C₆F₅BF₄K for the Suzuki-Miyaura cross-coupling.

© 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA

ChemCatChem 2019, 11, 5387–5396 www.chemcatchem.org 5389 © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
and found that this also produced C₆F₇-C₆H₅ in an almost quantitative yield of 99% (Table 1, entry 4).

While the use of aryl bromides and aryl boronate substrates for Cu-catalysed Suzuki-Miyaura cross-coupling has been reported,[17g] the reaction of aryl bromides with electron-deficient aryl boronate substrates was found to be difficult.[17h] We found that phenyl bromide was effective in reactions with C₆F₅Bpin in a mixed solvent system such as DMF : toluene (1:1) by increasing the loading of Cu/phenanthroline to 30 mol%, generating the cross-coupling product in 87% yield (Scheme 2).

Having determined the optimal conditions for both phenyl iodides and bromides, we next investigated the scope of the reaction of C₆F₅Bpin with different aryl iodides and bromides (Table 2). Aryl iodides bearing electron donating groups as well as aryl bromides (Table 2) gave fair to moderate yields (77–95%) whereas aryl iodides bearing electron withdrawing substituents, such as 2-methoxyphenyl iodide (2d), 2-methoxyphenyl iodide (2h), and mesityl bromide (2m) gave fair to moderate yields (57–71%). Aryl iodides bearing electron withdrawing substituents, such as 4-iodobenzoate (2i), 4-iodotrifluorotoluene (2j), and 4-fluorophenyl iodide (2k), gave very good to excellent yield (86–93%).

In palladium catalysis, if both ArF–Bpin and ArF-X have two ortho-fluoro substituents, reductive elimination has been reported to be difficult.[13] Scheme 3, but in our case, 1,3-difluoro-2-iodobenzene (2l) also provided a good yield (77%). Naphthalene and anthracene derivatives are interesting for application in blue organic light-emitting diodes (OLED).[23] Thus, we employed 2-bromonaphthalene (2n) and 9-bromoanthracene (2o) in our reaction, and these substrates generated 75% and 78% isolated yields of the corresponding perfluoro phenyl naphthalene and anthracene products, respectively.

Furthermore, we varied the number of fluoro substituents on the aryl–Bpin reagent in coupling reactions with phenyl iodide or bromide. Thus, reaction of other fluorinated aryl–Bpin such as 2,6-difluorophenyl–Bpin (4a), 2- or 2,5-difluorophenyl–Bpin (4b, 4c), 2,3,4-trifluorophenyl–Bpin (4d), 2,3,4,5-tetrafluorophenyl–Bpin (4e), can be coupled with an aryl iodide affording good to excellent yields (Table 3, entries 1–5). In term of coupling with an aryl bromide, 2,6-difluorophenyl–Bpin (4a) proceeded nicely to give the coupling product in 85% yield (Table 3, entry 1). However, if the aryl–Bpin has one or two fluoro substituent, 50 mol% of Cu/phenanthroline is required to couple nicely with an aryl bromide (Table 3, entries 2–5). Another type of electron deficient aryl boronate ester, namely 3,5-bis(trifluoromethyl)phenyl–Bpin (4f), also coupled nicely with phenyl iodide, but its coupling with phenyl bromide proved difficult (Table 3, entry 6). On the other hand, electron-rich 3,5-dimethylphenyl–Bpin (4g) coupled well with phenyl iodide, but was not viable for phenyl bromide (Table 3, entry 7), indicating that in this system, aryl bromides only couple efficiently with electronic deficient aryl–Bpin compounds. However, our results show that aryl iodides can be coupled not only with electron deficient aryl–Bpin compounds but also with electron rich ones.

Notably, when 2,4,6-trifluorophenyl–Bpin (4h) and 2,3,5,6-tetrafluorophenyl–Bpin (4i) were employed, besides good yields of the expected coupling products, we also observed C–H arylation by-products generated in small (<10%) amounts after C–Bpin arylation occurred (Table 4, entries 1 and 2). It is known that the high acidity of the C–H bonds flanked by two C–F groups can be used in direct arylation.[23] However, our results show that even though both carbons are electron deficient, the C–Bpin group is more reactive than the C–H moiety as an arylation target.
Generally, aryl halides bearing electron-withdrawing groups are more reactive and give better yields compared to aryl halides bearing electron-donating groups. We compared the reactivities of electron-poor and electron-rich aryl halides by reacting a 1:1 mixture of 4-trifluoromethyliodobenzene and 4-iodotoluene with C$_6$F$_5$Bpin (Scheme 3). Trifluoromethylphenyl iodide was more reactive, resulting in a 3:1 ratio of the trifluoromethyl to methyl-substituted pentafluorobiphenyl compounds.

These conditions can be used to prepare polyfluorinated biaryl products on a gram scale. Thus, the coupling of C$_6$F$_5$Bpin with 1,2,3-trifluoro-5-iodobenzene (3 o) was conducted without any difficulty using the standard conditions to provide a 98% yield of the unsymmetrical octafluoro biphenyl product (Scheme 4).

Table 2. Cu-catalysed cross-coupling of C$_6$F$_5$Bpin with Ar–X (X = I or Br).$^{[2]i}$	Table 3. Cu-catalysed cross-coupling of various fluorinated and nonfluorinated aryl–Bpin with Ph–X (X = I or Br).$^{[2]i}$						
Entry	Ar–X	Product	Yield [%]$^{[3]}$	Entry	Ar–Bpin	Product	Yield [%]$^{[3]}$
1	2b	3b	90	1	4a	5a	99 85
2	2c	3c	88	2	4b	5b	95 59 (80)$^{[3]}$
3	2d	3d	67	3	4c	5c	94 73$^{[3]}$
4	2e	3e	88	4	4d	5d	93 54 (70)$^{[3]}$
5	2f	3f	95	5	4e	5e	81 42$^{[3]}$
6	2g	3g	91	6	4f	5f	92 35
7	2h	3h	71	7	4g	5g	95 trace
8	2i	3i	86				
9	2j	3j	93				
10	2k	3k	77				
11	2l	3l	57 (80)$^{[3]}$				
12	2m	3m	75				
13	2n	3n	75				
14	2o	3o	78				

$^{[a]}$ Standard conditions: C$_6$F$_5$Bpin (0.4 mmol), Ph–X (0.6 mmol), Cu/phenanthroline (10 mol% if X = I; 30 mol% if X = Br), CsF (0.8 mmol), DMF (3 mL, if X = I) or DMF/toluene (1:1, 4 mL, if X = Br), T (130°C if X = I; 140°C if X = Br), t (18 h if X = I; 36 h if X = Br), under argon, $^{[b]}$ Isolated yield after flash chromatography $^{[c]}$ Cu/phenanthroline (50 mol%).
Molecular and Crystal Structures:
Intermolecular $\pi\cdots\pi$ Stacking Interactions

The crystal structures of the polyfluorinated biaryls $3d$, $3n$, $3o$, and $5d$ were analysed using single-crystal X-ray diffraction. A comparison of the molecular geometries of these compounds in their crystal structures (Figure 1) shows a small influence of the steric demand of the hydrogenated aryl group in the vicinity of the C–C bonds joining the rings and, hence, of the repulsion between both groups of the biaryl units on their

Table 4. Cross-coupling of 2,4,6-F$_3$C$_6$H$_2$Bpin and 2,3,5,6-F$_4$C$_6$HBpin with PhX (X = I or Br).

Entry	Ar_-Bpin	Product and Yield [%]
1	$4h$	$5h$: I (75%), Br (70%)
2	$4i$	$5i$: I (74%), Br (69%)

[a] Standard conditions: 0.4 mmol of Ar_-Bpin, 0.4 mmol of PhX, CuI/phenanthroline (10 mol% if X = I or 30 mol% if X = Br), CsF (0.8 mmol), DMF (3 mL, if X = I) or DMF/toluene (1:1, 4 mL, if X = Br), T (130 °C if X = I; 140 °C if X = Br), t (18 h if X = I; 36 h if X = Br), under argon. [b] Isolated yield after flash chromatography.

Scheme 4. Gram scale reaction. Reaction conditions: C$_6$F$_5$Bpin (1.47 g, 5 mmol), 1,2,3-trifluoro-5-iodobenzene (1.80 g, 7 mmol), (95 mg, 0.50 mmol, 10 mol%), phenanthroline (90 mg, 0.50 mmol, 10 mol%), CsF (1.52 g, 10 mmol, 2 equiv), and DMF (30 mL), 130 °C, 18 h, under argon. [b] Isolated yield after column chromatography.

Figure 1. The solid-state molecular structures of $3d$, $3n$, $3o$, and $5d$ determined by single-crystal X-ray diffraction at 100 K. All ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity. Colours: white (carbon), green (fluorine).
geometries. The central C–C bond is in the range 1.483(4)–1.495(2) Å (Table 5) which is typical of biphenyl compounds. It is slightly longer in compounds 3d and 3o than in 3n and 5d, although only within 1–2 su. The twist between the aryl moieties of the biaryl is slightly stronger in compounds 3d and 3o (61.66(5) and 64.28(5)) than in 3n and 5d (51.23(15) and 49.76(7)) (Table 5). These small differences are likely due to the substitution at the ortho position of the non-fluorinated phenyl ring. In 3d, a methyl group is bonded at the ortho position and in 3o, the central phenyl ring of the anthracene moiety is bonded to the fluorinated phenyl ring. This increases the bulkiness of these aryl moieties in close vicinity to the central C–C bond and, hence, to the respective fluorinated phenyl rings. Large twist angles are also reported in the bulky biaryl compounds with a pentafluorophenyl group bonded to benzo[h]quinoline (67°)3,29e in 9,10-bis(pentafluorophenyl)anthracene (68°),3,29e and in 5-perfluorophenyl-11-phenyltetracene (72°).29e

 Particularly interesting in the crystal structure analyses are the intermolecular interactions and, hence, molecular packing in these compounds. The presence of both fluorinated and nonfluorinated aryl groups leads to the formation of opposite multipoles of these moieties due to the differences in electronegativity of hydrogen and fluorine atoms with respect to the carbon atoms. This often results in attractive multipole forces between the aromatic and perfluoroaromatic groups, also called the arene–perfluoroarene interaction, and, hence, in face-to-face π-stacking with mean interplanar distances between 3.3 and 3.6 Å.26 This type of interaction is mostly found in co-crystals of arenes and perfluoroarenes, which form highly oriented, π-stacked systems.26c,27 However, also self-complementary compounds that contain both perfluorinated and nonfluorinated aryl groups, such as 2,3,4,5,6-pentafluorobiphenyl and 1-pentafluorophenyl-2-phenylacetylene, form arene–perfluoroarene interactions.27e,28e This is also the case in the polyfluorinated biaryl compounds 3n and 5d in which the arene–perfluoroarene interaction determines the packing of the molecules (Table 6).

In compound 3n the biaryl columns of offset face-to-face π-stacked naphthalene and perfluorophenyl moieties along the b axis. Due to the large twist angle of ca. 51° of the biaryl, the columnar stacks are cross-like formed (Figure 2). Similar

| Table 5. Selected bond lengths (Å) and angles (°) of 3d, 3n, 3o, and 5d. |
|-----------------|-----------------|-----------------|-----------------|
| | 3d | 3n | 3o |
| C₆H₅(3)–C₆H₅(7) | 1.495(2) | 1.484(7) | 1.490(2) |
| C₆H₅(3)–C₆H₅(2) | 1.495(2) | 1.490(2) | 1.483(4) |
| C₆H₅(3)–C₆H₅(5) | 61.66(5) | 51.23(15) | 62.48(5) |
| C₆H₅(3)–C₆H₅(4) | 49.76(7) | | |

Table 6. Aryl–aryl (π–π) distances (Å) in crystals of 3d, 3n, 3o, and 5d at 100 K: centroid-centroid distance, interplanar separation, and offset shift.

Compound	Aryl–Aryl	Centroid-centroid distance	Interplanar separation	Offset shift
3d	Aryl(F)–Aryl(F)	3.9121(15)	3.4489(16)	1.846(2)
3n	Aryl(F)–Aryl(H)	3.823(3)	3.398(5)/3.473(4)	1.753(7)/1.599(6)
3o	Aryl(H)–Aryl(H)	3.767(3)	3.408(4)/3.354(5)	1.605(6)/1.714(7)
5d	Aryl(F/H)–Aryl(H)	4.2171(19)	3.4043(18)	1.879(2)

[a] The offset shift, also called inter-centroid shift, is the distance within a plane of an aryl ring between the centroid of the respective aryl ring and the intersection point with the normal to the plane through the centroid of the other aryl ring.

Figure 2. Crystal structure of 3n projected along (left) an axis close to the a axis and (right) along the c axis, at 100 K. Perfluorophenyl and naphthalene moieties are π-stacked along the b axis via arene–perfluoroarene interactions. The intramolecular angle between the planes of the perfluorophenyl and naphthalene moieties is 51° leading to the formation of cross-like stacks (right). All ellipsoids are drawn at the 50% probability level, and H atoms are omitted for clarity. Colours: white (carbon), green (fluorine).
cross-like columnar stacks are observed in 2,3,4,5,6-pentafluorobiphenyl, 1,2,4,5-tetrafluoro-3-phenyl-6-trifluoromethylbenzene, and 4-bromo-2,3,5,6-tetrafluorobiphenyl-4-carbonitrile, which show biphenyl twist angles of 52, 50, and 41°, respectively. In compound 5d only part of one phenyl ring is fluorinated. Still, the arene–perfluoroarene interaction leads to π-stacking between phenyl and 2,3,4-trifluoro phenyl rings. However, the phenyl and partly fluorinated phenyl rings are π-stacked with different neighbouring molecules. Hence, they do not form a columnar arrangement but instead, zig-zag like chains along the c axis (Figure 3). The packing of the molecules in compound 3d follows a similar pattern as in 5d (Figure 4). However, the type of π···π interactions is different as there is no arene–perfluoroarene interaction present. Instead, neighbouring perfluorophenyl moieties are π-stacked via perfluoroarene–perfluoroarene interactions and neighbouring tolyl moieties are offset-stacked forming zig-zag chains along the a axis.

Finally, in compound 3o the intermolecular packing is dominated by π-stacking arene–arene interactions between the anthracene moieties, which form stacks along the a axis (Table 6, Figure 5). Similarly, offset π···π stacking is observed between the tetracene moieties of the compound 5-perfluorophenyl-11-phenyltetracene. 9,10-bis(pentafluorobiphenyl)anthracene was reported as a host system with benzene or 1,4-dioxane guest molecules. In these structures, no π···π
interactions are observed, but C–F···π interactions are dominant for the molecular arrangement in the crystal structures. In contrast, the bulky 5-pentafluorophenyl-benz[h]quinoline exhibits both arene–perfluoroarene and arene–arene π-stacking interactions in the crystal structure.[25a]

Conclusion

In summary, a combination of copper (I) iodide with phenanthroline as the ligand is an efficient catalyst for Suzuki-Miyaura cross-coupling reactions of electron deficient C₅F₅Bpin with aryl iodides and bromides in up to quantitative yield. Thus, the reaction proceeds using a non-toxic and inexpensive Earth-abundant metal catalyst, replacing the traditional palladium catalysts which require large amounts of silver oxide as an additive. This reaction is also viable for cross-coupling a wide range of fluorinated phenyl boronic acid pinacol esters with aryl iodides or bromides. Notably, for aryl iodides, it can be used not only for coupling with electron deficient fluoroaryl boronates, but also for electron rich aryl boronates giving excellent yields.

A diverse range of π···π stacking interactions is observed in the partly perfluorinated biaryl compounds investigated herein, ranging from arene–perfluoroarene interactions (3n, 5d) to arene–arene (3o) and perfluoroarene–perfluoroarene (3d) interactions. Other applications of highly fluorinated aryl boronate substrates are under investigation in our laboratory.

Experimental Section

General procedure for the coupling reactions: unless otherwise noted, inside a glovebox, fluorinated phenyl boronic acid pinacol ester (0.4 mmol), the arylhalide (Ar–X) (0.6 mmol), Cul (10 mol% if X = iodide; 30–50 mol% if X = bromide), phenanthroline (10 mol% if X = iodide; 30–50 mol% if X = bromide), CsF (0.8 mmol, 2 equiv), were added to a Schlenk flask that equipped with a stirring bar. The flask was capped and taken out of the glovebox. Solvent (DMF 3 mL if X = iodide; 1/1 mixture of DMF and toluene, 4 mL if X = bromide) were added under an argon atmosphere using a Schlenk vacuum line. The reaction was heated and stirred at 130 °C for 18 h if X = iodide or at 140 °C for 36 h if X = bromide. After cooling to room temperature, the resulting mixture was extracted with ethyl acetate (3 × 20 mL). The organic phase was dried over MgSO₄, filtered, and concentrated in vacuo. The residue was finally purified by flash column chromatography on silica gel (hexane). After concentrating the fractions containing the product, the residue was dried under reduced pressure to yield the pure product. Full experimental details as well as characterisation data and spectra of the products are provided in the Supporting Information.

Crystallographic Details

Crystal data collection and processing parameters are given in the Supporting Information. CCDC-1917134 (3d), 1917135 (3n), 1917136 (3o), and 1917137 (5d) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Acknowledgement

Y.P.B. thanks the Indonesia Endowment Fund for Education (LPDP) for a Ph.D. scholarship. T.B.M. and U.R. thank the Julius-Maximilians-Universität Würzburg and the Deutsche Forschungsgemeinschaft (DFG; U.R.: Ra720/12-2) for support. We thank AllyChem Co. Ltd. for a generous gift of B₂pin₂.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: homogeneous catalysis · boron · boronate · fluorine · fluoroarene
a) Synthesis and Application of Organoboron Compounds (Eds.: E. Fernandez, A. Whiting), Springer, Berlin, 2015; b) Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine (Eds.: D. G. Hall), Wiley-VCH, Weinheim, 2006; c) I. A. I. Mikhailid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev. 2010, 110, 890.

[2] a) J. Zhou, M. W. Kunte-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem. Soc. 2016, 138, 5250; b) Y.-M. Tian, X.-N. Guo, M. W. Kunte-Fechner, I. Krümmenacher, H. Braunschweig, U. Radius, A. Steffen, T. B. Marder, J. Am. Chem. Soc. 2018, 140, 17612.

[3] a) M. Miyaura, S. M. Huber, S. Z. Tasker, E. A. Standley, T. F. Jamison, J. Am. Chem. Soc. 2010, 132, 14073.

[4] a) A. Zahn, C. Brotschi, C. Leumann, P. Hunt, C. Isted, M. Lucas, R. M. McKernan, A. Mitchinson, K. W. Moore, Synthesis and Application of Organoboron Compounds Chem. Rev. 2004, 104, 1749; b) J. Uenishi, J. M. Beau, R. W. Armstrong, Y. J. Kishi, J. Am. Chem. Soc. 2004, 126, 1832; c) T. B. Marder, U. Radius, A. Steffen, T. B. Marder, J. Am. Chem. Soc. 2017, 139, 5675.

[5] a) V. A. Montes, G. Li, R. Pohl, J. Shinar, P. Anzenbacher, Angew. Chem. Int. Ed. 2000, 39, 1; b) A. S. Batsanov, S. W. Watt, S. J. Clark, C. Viney, J. A. K. Howard, W. Clegg, CrystEngComm 2010, 12, 1483; c) J. C. Collings, A. S. Batsanov, J. A. K. Howard, T. B. Marder, J. Am. Chem. Soc. 2012, 134, 12470.

[6] a) H. Q. Do, O. Daugulis, J. Am. Chem. Soc. 2007, 129, 12404; b) M. Lafrance, C. N. Rowley, T. K. Woo, K. Fagnou, J. Am. Chem. Soc. 2006, 128, 8754; c) M. Lafrance, D. Shore, K. Fagnou, Org. Lett. 2006, 8, 5097; d) Y. Song, Z. J. Fu, Q. H. Xiong, Z. J. Li, J. H. Cai, J. Iran. Chem. Soc. 2016, 13, 1931.

[7] a) F. H. Allen, O. Daugulis, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans 2 1987, 51.

[8] a) T. Dahl, Acta Chem. Scand. 1998, 42, 1; c) J. C. Collings, K. P. Roscoe, R. L. Thomas, A. S. Batsanov, L. M. Stimson, J. A. K. Howard, T. B. Marder, New J. Chem. 2001, 25, 1410.

[9] a) A. Salazar, J. A. K. Howard, T. B. Marder, E. G. Robins, Acta Crystallogr. 2005, C57, 1303; b) J. C. Collings, K. P. Roscoe, E. G. Robins, A. S. Batsanov, L. M. Stimson, J. A. K. Howard, S. J. Clark, T. B. Marder, New J. Chem. 2002, 26, 1740; c) J. C. Collings, A. S. Batsanov, J. A. K. Howard, T. B. Marder, Acta Crystallogr. 2002, E63, 238; p) C. Dai, P. Nguyen, T. B. Marder, E. G. Robins, Acta Crystallogr. 2017, 73, 1145; q) H.-J. Frohn, N. Y. Adonin, V. V. Bardin, V. F. Starchenko, J. Fluorine Chem. 2003, 122, 195; h) J. C. Collings, A. S. Batsanov, J. A. K. Howard, T. B. Marder, Acc. Chem. Res. 2007, 40, 1141; i) A. S. Batsanov, J. C. Collings, J. A. K. Howard, T. B. Marder, Acta Crystallogr. 2006, 62, m229; l) J. C. Collings, J. M. Burke, R. L. Thomas, J. C. Collings, C. Viney, J. W. T. Wink, Acc. Chem. Res. 2015, 48, 1777; n) J. C. Collings, A. S. Batsanov, J. A. K. Howard, T. B. Marder, Acta Crystallogr. 2015, E71, o347.