Interconversion of exceptional points between different orders in non-Hermitian systems

Hongfei Wang1, Yi-Xin Xiao1,2, Zhao-Qing Zhang2,∗, C T Chan2,∗ and Dangyuan Lei1,∗

1 Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, People’s Republic of China
2 Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People’s Republic of China
3 These authors contributed equally to this work.
∗ Authors to whom any correspondence should be addressed.
E-mail: phzzhang@ust.hk, phchan@ust.hk and dangylei@cityu.edu.hk

Abstract
Singularities of non-Hermitian systems typified by exceptional points (EPs) are critical for understanding non-Hermitian topological phases and trigger many intriguing phenomena. However, it remains unexplored what happens when EPs meet one another. Here, in a typical four-level model with both touching and crossing intersections of EP hypersurfaces, we report the interconversion mechanisms between EPs of different orders. By examining both the eigenvalues and eigenvectors, we show analytically that all EPs of higher orders are formed at the touching intersections of two different types of EP hypersurfaces of lower orders. Contrarily, the crossing intersection of EP structures lowers the order of EPs. The mechanisms of the increase and decrease in defectiveness discovered here are expected to hold for EPs of any order in various non-Hermitian systems, providing a comprehensive understanding of EPs and inspiration toward advanced applications such as biosensing and information processing.

1. Introduction

The topological physics of matter has been investigated intensively over the past few decades in condensed matter physics. Within the Hermitian framework, various topological invariants have been used to characterize different types of nodal singularities (e.g. Dirac and Weyl points) of topological semimetals [1, 2–4], robust edge states of topological insulators [5–11] and Majorana zero modes of topological superconductors [12–14]. Recently, considerable efforts have been devoted to uncovering non-Hermitian topological phases [15–26] in a broad range of wave systems, such as photonic, phononic and mechanical devices [27–35]. Exotic features of non-Hermitian systems that have no counterparts in Hermitian systems challenge our current understanding of topological physics.

Different from Hermitian systems where degeneracies frequently originate from symmetry, the occurrence of non-Hermitian degeneracies such as exceptional points (EPs) is ubiquitous and their existence does not require special symmetries. At the EPs, the Hamiltonian matrix becomes defective and two or more eigenvalues and their corresponding eigenvectors coalesce [25, 36–39]. In the vicinity of EPs, self-intersecting Riemann surfaces can emerge resulting in a fractional topological invariant [38]. The presence of EPs not only enriches the topological classification in the existing non-Hermitian framework providing more profound understandings of non-Hermitian degeneracies [40–44], but also enables practical applications, such as lasing [45–47], enhanced sensing [30, 33, 48, 49], mode switching [28, 50–52] and photonic routing [53]. To date, the most discussed in the literature are EPs of order two/three (EP2/EP3). EPs of higher orders are difficult to achieve. An EP3 has been created by adding non-Hermiticity to a Hermitian system possessing triple degeneracy [54, 55]. It was also found in three-level systems subject to PT symmetry [29, 56]. More
Generally, an EP of higher order can be created at the intersection of EPs of lower orders [46, 54–58]. However, we are not aware of any a priori reason why intersecting EPs should result in a higher-order EP. Understanding what will happen when EPs meet one another will deepen our understanding of the interconnection between non-Hermitian degeneracies of different orders and types.

To facilitate our discussion, we consider a typical four-level non-Hermitian model with five degrees of freedom (DOFs) in the parameter space. The system supports EP4s in the form of curves in a five-dimensional (5D) parameter space (figure 1(a)). The appearance of EP4 curves is made possible by the presence of sublattice symmetry (SLS) in the system [59]. In addition, the system supports two types of EP2s. We shall call one type 'single EP2s', at which two eigenvectors with zero eigenvalues coalesce (the middle panel of figure 1(b)), and the other type 'paired EP2s', where the eigenvalues of two EP2s are opposite in sign (the right panel of figure 1(b)).

The presence of rich singularity structures allows us to study the interconnection between EPs of different orders and types. By analyzing both the eigenvalue and eigenvector, we find the interconversion mechanisms of EPs between different orders. For the increase in defectiveness (i.e. EP order), we show analytically that all EP4s in the system are created at the touching intersections of two EP2 hypersurfaces of different types at which two eigenvectors of the EP2s further coalesce. As for the decrease in defectiveness, we find that the crossing intersection of four EP4 curves gives rise to a degenerate EP2 pair, and the crossing intersection of two EP2 hypersurfaces of the same type produces nondefective degeneracies.

2. Non-Hermitian model with EP4 curves

We start with a four-level non-Hermitian system comprising nearest-neighbor coupled entities (labeled as 1–4), as shown in figure 1(a). Onsite gain and loss are employed to induce non-Hermiticity [58]. Its Hamiltonian can be written as

\[
H = \begin{pmatrix}
-M_1 & \kappa & 0 & 0 \\
\kappa & -M_0 & \beta\kappa & 0 \\
0 & \beta\kappa & M_0 & \kappa \\
0 & 0 & \kappa & M_1
\end{pmatrix},
\]

where \(M_{0,1} = m_{0,1} + i\gamma_{0,1}\) denote complex onsite energies, with \(\gamma_{0,1}\) being the gain/loss parameters. In practice, differential loss is usually used as a surrogate for gain/loss without changing the physics, noting that gain is difficult to implement. \(\kappa\) represents the coupling coefficient while \(\beta\) is a coupling detuning parameter. The system can be realized by resonant cavities [60, 61], waveguides [62–65] or superconducting qubits [66, 67]. For example, in coupled acoustic resonators, complex onsite energies, couplings and loss can be conveniently engineered by tuning the size of resonators, coupling tubes and absorbing materials (e.g. sponge), respectively [68]. Without loss of generality, we assume that \(\kappa = 1\) and is real. The system has five DOFs denoted by \(P = (m_0, \gamma_0, m_1, \gamma_1, \beta)\). The Hamiltonian \(H\) respects SLS defined by

\[
\Gamma H(P) \Gamma^{-1} = -H(P),
\]
where \(\Gamma = \sigma_x \otimes \sigma_y \) with \(\sigma_x, \sigma_y \) being the Pauli matrices. Hence the eigenvalues of \(H \) appear in \((-\lambda, \lambda)\) pairs, and \(\lambda = \pm \sqrt{g_1 \pm \sqrt{g_2}} \), where \(g_{1,2} \) are given as

\[
g_1 = \left[M_0^2 + M_1^2 + \beta^2 + 2 \right] / 2 \text{and } g_2 = g_1^2 - (M_0^2 + \beta^2) M_1^2 + 2M_0M_1 - 1. \tag{3}
\]

SLS also guarantees three types of non-Hermitian singularities, namely, EP4s, single EP2s and paired EP2s, as displayed in figure 1(b). EPs of order \(\mu \) can be located by requiring the characteristic polynomial \(f_\mu(\lambda) = \det [H(P) - \lambda] \) and its successive derivatives \(f_\mu'(\lambda) := \partial f_\mu / \partial \lambda \) with \(j = 1, 2, \ldots, \mu - 1 \) to vanish simultaneously (section I in the supplemental material [69]). A general conclusion is that the number of constraints for an EP\(\mu \) to exist can be reduced from \(2\mu - 2 \) to \(\mu - 1 \) for even (odd) \(\mu \) by the presence of SLS [69]. For our system, the number of constraints on the existence of EP4s is reduced to 4 [69]. Therefore, EP4 curves are expected to occur since we have five DOFs. The hypersurface of general single EP2s in this system is given by

\[
(M_0M_1 - 1)^2 + \beta^2 M_1^2 = 0, \tag{4}
\]

which is obtained by substituting \(g_1^2 = g_2 \) into equation (3), while the hypersurface of paired EP2s fulfills \(g_2 = 0 \) (section I in the supplemental material [69]). The constraints on EP4s can be derived as \(g_{1,2} = 0 \), which is mathematically equivalent to forming touching intersections of two hypersurfaces of single EP2s and paired EP2s (section II in the supplemental material [69]). Thus, all EP4s are associated with \(\lambda = 0 \) due to SLS and lie at the touching intersections of two hypersurfaces, given by

\[
g_2 = 0 \text{ and } g_1^2 = g_2. \tag{5}
\]

At the touching point it can be shown that the tangents of two hypersurfaces are identical in all directions, forcing the two coalescing eigenvectors on each hypersurface to become parallel to each other, therefore, coalesce into the only eigenvector of EP4. Thus, the tangential intersection can be considered as the mechanism of achieving a higher-order EP. The mathematical derivation as well as the physical explanation of the phenomenon is given in section II of the supplemental material [69]. This upward process from EP2s of different types to EP4 applies to all EP4s.

To see the downward process, we can consider two parameter subspaces, i.e. \((m_0, \gamma_0, \beta)\) and \((m_1, \gamma_1, \beta)\), as the projections of the 5D parameter space. The solution of equation (5) is illustrated in figures 2(a) and (b). There are totally eight EP4 curves in the 5D parameter space, accompanied by two crossing intersections located at \(P = (0, \pm 1, 0, \mp 1, 0) \), which are marked by two stars. Three representative cross sections are displayed in the insets of figures 2(a) and (b). At the stars with \(\beta = 0 \), the system is decoupled into two independent subsystems. Each subsystem supports an EP2 with zero eigenvalue. We call these two EP2s as degenerate EP2 pairs. Thus, a crossing intersection of higher-order EP curves yields lower-order EPs. The tangents at these crossing intersections cannot be uniquely identified, causing the only eigenvector of EP4s to be preserved as two noncoalescing eigenvectors (section III in the supplemental material [69]). This downward process from EP4s to EP2s applies to the entire parameter space.

To characterize the topological properties of EP4s and degenerate EP2 pairs, we study their winding numbers based on both eigenvalues and eigenvectors [68, 70–75]. We find that each EP4 (degenerate EP2 pair) carries a quantized winding number of eigenvalues 1 (2) and fractional winding number of eigenvectors 3/4 (1/2) (section III in the supplemental material [69]). Besides, we note that these EP4 curves preserve mirror symmetries: \(m_{0,1} \rightarrow -m_{0,1}, \gamma_{0,1} \rightarrow -\gamma_{0,1} \) and \(\beta \rightarrow -\beta \), which is also reflected in system eigenvectors, i.e. \(|\psi^R_1\rangle = (\phi_1, \phi_2)^T \) with \(\phi_1(\beta) = \phi_1(-\beta) \) and \(\phi_2(\beta) = -\phi_2(-\beta) \) (section VI in the supplemental material [69]). Figures 2(c) and (d) illustrate eigenvector behaviors on eight curves along two opposite directions with respect to \(\beta \), where different colors denote independent eigenvectors. Four EP4 curves meet at each ‘star’ point for positive (negative) \(\beta \), which manifests as a crossing in the neighborhood of \(\beta = 0^+ \) (\(\beta = 0^- \)). At an EP4, four eigenvectors coalesce into one. At a crossing intersection of two EP4 paths, each EP4 path contributes to one eigenvector, therefore two noncoalescing eigenvectors are generated indicating the occurrence of EP2 pairs. Specifically, one ‘star’ point has two eigenvectors \(|\psi^R_1\rangle, |\psi^R_2\rangle = (i, -i, \pm i, \pm 1)^T \), while the other one has two eigenvectors \((|\psi^R_1\rangle)^* \) and \((|\psi^R_2\rangle)^* \). This allows only one degenerate EP2 pair to exist at an intersection, where the fourfold spectral degeneracy is protected by SLS (section V in the supplemental material [69]). To conclude, it is the presence of crossing intersections that reduces the order of EPs from 4 to 2.

Not every parameter point that satisfies the above constraint equations of single EP2s or paired EP2s exhibits non-Hermitian degeneracies with coalescing eigenvectors. Nondefective degeneracy points (NDPs) occur when two hypersurfaces of single EP2s or paired EP2s cross each other with \(\beta = 0 \). At the crossing point two hypersurfaces have different tangents, leading to two independent eigenvectors, therefore, making
degenerate eigenvalues of H with larger geometric multiplicities and producing single NDPs or paired NDPs (section VI in the supplemental material [69]). This downward process is opposite to the upward process discussed earlier where two hypersurfaces of different types touch with the same tangent making degenerate eigenvalues of H with smaller geometric multiplicities.

To obtain the condition of single NDPs, we set $\beta = 0$ in the constraint of $g_2 = g_2$ and obtain $M_0 M_1 = 1$. For the paired NDPs, we set $\beta = 0$ in the constraint of and obtain $M_0 + M_1 = 0$. When, the system becomes Hermitian, single (paired) NDPs reduce to single (paired) generalized diabolic points (GDPs). In figure 3(a), we display the curves of single GDPs (orange) and paired GDPs (green) for $\gamma_0, \gamma_1 = 0$. Since these two curves do not intersect, there is no fourfold degeneracy in the Hermitian limit. However, it is easy to show that single NDPs and paired NDPs do meet when $M_0 = \pm i$ and $M_1 = \mp i$, which are exactly degenerate EP2 pairs marked by two stars (figure 3(b)).

We note that the formation of degenerate EP2 pairs is not due to the crossing of single NDPs and paired NDPs. At the crossing point each of two eigenvectors in a subsystem coalesces with the other eigenvector in the same subsystem forming an EP2, giving rise to a degenerate EP2 pair. This process holds separately for single NDPs and paired NDPs (section VI in the supplemental material [69]).

3. EP4s in reduced parameter subspaces with four DOFs

To further reveal hierarchical EP4s, we study EP4 structures in reduced parameter spaces with four DOFs by fixing one of five DOFs. Five fixed parameters uncover various allowable numbers of EP4s and degenerate EP2 pairs as displayed in table 1. According to Abel–Ruffini theorem, equation (5) can be reduced to polynomials of degree four with solutions in radicals (section VII in the supplemental material [69]) [76]. A rigorous derivation based on equation (5) proves that for M_0, $\lim_{\beta \to \pm \infty} |m_0| = 0$ and $\lim_{\beta \to \pm \infty} |\gamma_0| = \pm \infty$ always hold. For, $\lim_{\beta \to \pm \infty} |m_1| = \pm \infty$ and $\lim_{\beta \to \pm \infty} |\gamma_1| = 0$ or $\pm \infty$ always hold (section VIII in the supplemental material [69]). Assisted by known EP4 curves in figures 2(a) and (b), we have an infinity.
Figure 3. GDPs and NDPs. (a) The curves of single GDPs (orange) and paired GDPs (green) for $\gamma_0,1=0$. (b) The curves of single NDPs (red) and paired NDPs (blue) for $m_0,1=0$.

Table 1. Allowable numbers of EP4s (I) and degenerate EP2 pairs (II) in reduced parameter spaces with four DOFs. Different numbers of I and II are obtained by fixing one of five different parameters.

Fixed parameters	m_0	γ_0	m_1	γ_1	β
Nos. of I	0,4,8,EP4 lines	2,4,8	4,EP4 lines	0,2,6	0,8
Nos. of II	0,2	0,1	0,2	0,1	0,2

number of EP4s if and only if $m_0=0$ or $m_1=0$ in reduced parameter spaces with four DOFs. Besides, there is no EP4 in the system if and only if $|m_0| \gtrsim 0.47$ or $\gamma_1=0, \pm 1$ [69]. Except for above two cases, only a discrete and limited number of EP4s is allowed in reduced parameter spaces with four DOFs.

4. Various singularities in reduced parameter subspaces with three DOFs

As the parameter space is reduced to three DOFs, both non-Hermitian and Hermitian degeneracies emerge intuitively. Parameter spaces with three DOFs can be obtained by fixing two of five DOFs. An intuitive way is to select specific parameter points in $\mathcal{M}_{0,1}$ to study the remaining DOFs. By projecting all solutions of equation (5) to $\mathcal{M}_{0,1}$, we show the possible number of EP4s and degenerate EP2 pairs in fixed parameter spaces with two DOFs: (a) the points on \mathcal{M}_0 (figure 4(a)) allow the absence of EP4s, two EP4s, two EP4s and one degenerate EP2 pair, and four EP4s; (b) the points on \mathcal{M}_1 (figure 4(c)) allow the absence of EP4s, one degenerate EP2 pair, and two EP4s.

We further study detailed singularity structures in a reduced parameter space with three DOFs. All scenarios can be categorized as a combination of four cases: (a) the curves of single EP2s cross themselves to form single NDPs (or single GDPs); (b) the curves of paired EP2s cross themselves to form paired NDPs (or paired GDPs); (c) the curves of single EP2s and paired EP2s touch to form an EP4; (d) single NDPs and paired NDPs merge together to form degenerate EP2 pairs. In this sense, panels (A) (figure 4(b)) and (E) (figure 4(d)) can be understood as the simultaneous appearance of (a) and (b). Panel (B) (figure 4(b)) is read as the simultaneous appearance of (b) and (c). Panel (C) (figure 4(b)) corresponds to the simultaneous appearance of (c) and (d) [77]. Panels (D) (figure 4(b)) and (F) (figure 4(d)) show the single appearance of (c) and (d), respectively. Panels (G) (figure 4(d)) and (H) (figure 4(d)) reveal the single appearance of (d) and the simultaneous appearance of (a), (b) and (c), respectively. These abundant results reflect the reconfiguration of different degeneracies, spanning non-Hermitian and Hermitian degeneracies, as well as low-order and higher-order non-Hermitian degeneracies.

Notably, the crossing intersection of non-Hermitian degeneracies always raise the number of noncoalescing eigenvectors due to the presence of non-unique tangents (e.g. the formation of single NDPs, paired NDPs and degenerate EP2 pairs), while the touching intersection of non-Hermitian degeneracies of different types always causes the eigenvectors to coalesce because of sharing the same tangent (e.g. the formation of EP4s) (section II in the supplemental material [69]). This clarifies the interconversion
mechanism of various non-Hermitian and Hermitian degeneracies and provides guidance for the constructions of other complex degeneracies.

5. Discussion

Using a typical four-level non-Hermitian model with SLS, we have presented the interconversion mechanisms of EPs between different orders with five DOFs in the parameter space. Such a system can be implemented by modulating relative losses in four coupled optical or acoustic cavities. Under this minimal model with touching and crossing intersections simultaneously, we demonstrated that the touching intersection of lower-order EP structures of different types leads to higher-order EPs, whereas the crossing intersection of higher-order EP structures always gives rise to lower-order EPs. EPs of different orders can be identified with winding numbers of eigenvalues and eigenvectors. The self-crossing intersection of single (paired) EP2 structures always yields single (paired) NDPs or GDPs. These processes reveal that the touching (crossing) behavior of EPs allows the upward (downward) process of non-Hermitian degeneracies with
different orders. Our findings constitute a fundamental understanding of non-Hermitian topological physics with high DOFs, promising for implementing sensitivity-tunable sensing in one system and robust chiral mode conversions for information technologies [33].

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This work was supported by the Research Grants Council (RGC) of Hong Kong (Grant No. C6013-18G, N_HKUST608/17, and PDS2122-1504) and the City University of Hong Kong (Project No. 9610434).

ORCID iD

Hongfei Wang @ https://orcid.org/0000-0002-9725-2655

References

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene Nature 438 197–200
[2] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates Phys. Rev. B 83 205101
[3] Lu B Q et al 2015 Experimental discovery of Weyl semimetal TaAs Phys. Rev. X 5 031013
[4] Armitage N P, Mele E J and Vishwanath A 2018 Weyl and Dirac semimetals in three-dimensional solids Rev. Mod. Phys. 90 015001
[5] Kane C L and Mele E J 2005 Z2 topological order and the quantum spin Hall effect Phys. Rev. Lett. 95 146802
[6] Kane C L and Mele E J 2005 Quantum spin Hall effect in graphene Phys. Rev. Lett. 95 226801
[7] Hasan M Z and Kane C L 2010 Colloquium: topological insulators Rev. Mod. Phys. 82 3045
[8] Lu L, Joannopoulos J D and Soljačić M 2014 Topological photonics Nat. Photon. 8 821–9
[9] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Classification of topological quantum matter with symmetries Rev. Mod. Phys. 88 035005
[10] Xie B Y, Wang H F, Zhu X Y, Lu M H, Wang Z D and Chen Y F 2018 Photonics meets topology Opt. Express 26 24531–50
[11] Wang H, Gupta S K, Xie B and Lu M 2020 Topological photonic crystals: a review Front. Optoelectron. 13 50–72
[12] Fu L and Kane C L 2008 Superconducting proximity effect and Majorana fermions at the surface of a topological insulator Phys. Rev. Lett. 100 096407
[13] Qi X L and Zhang S C 2011 Topological insulators and superconductors Rev. Mod. Phys. 83 1057
[14] Zhang P et al 2018 Observation of topological superconductivity on the surface of an iron-based superconductor Science 360 182–6
[15] Bender C M 2007 Making sense of non-Hermitian Hamiltonians Rep. Prog. Phys. 70 947
[16] Feng L, El-Ganainy R and Ge L 2017 Non-Hermitian photonics based on parity–time symmetry Nat. Photon. 11 752–62
[17] El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S and Christodoulides D N 2018 Non-Hermitian physics and PT symmetry Nat. Phys. 14 11–19
[18] Shen H, Zhen B and Fu L 2018 Topological band theory for non-Hermitian Hamiltonians Phys. Rev. Lett. 120 146402
[19] Shen H and Fu L 2018 Quantum oscillation from in-gap states and a non-Hermitian Landau level problem Phys. Rev. Lett. 121 026403
[20] Yao S and Wang Z 2018 Edge states and topological invariants of non-Hermitian systems Phys. Rev. Lett. 121 086803
[21] Yao S, Song F and Wang Z 2018 Non-Hermitian Chern bands Phys. Rev. Lett. 121 136802
[22] Takata K and Notomi M 2018 Photonic topological insulating phase induced solely by gain and loss Phys. Rev. Lett. 121 213902
[23] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Topological phases of non-Hermitian systems Phys. Rev. X 8 031079
[24] Yokomizo K and Murakami S 2019 Non-Bloch band theory of non-Hermitian systems Phys. Rev. Lett. 123 066404
[25] Mici A and Alià A 2019 Exceptional points in optics and photonics Science 363 12
[26] Ashida Y, Gong Z and Ueda M 2020 Non-Hermitian physics Adv. Phys. 69 249–435
[27] Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Parity–time-symmetric whispering-gallery microcavities Nat. Phys. 10 394–8
[28] Doppler J, Maillybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Dynamically encircling an exceptional point for asymmetric mode switching Nature 537 76–79
[29] Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N and Khajavikhan M 2017 Enhanced sensitivity at higher-order exceptional points Nature 548 187–91
[30] Chen W, Özdemir Ş K, Zhao G, Wiersig J and Yang L 2017 Exceptional points enhance sensing in an optical microcavity Nature 548 192–6
[31] Merkel A, Romero-Garcia V, Groby J P, Li J and Christensen J 2018 Unidirectional zero sonic reflection in passive PT-symmetric Willis media Phys. Rev. B 98 201102(R)
[32] Ghatak A, Brandenbourger M, van Wezel J and Coulaud C 2020 Observation of non-Hermitian topology and its bulk correspondence in an active mechanical metamaterial Proc. Natl Acad. Sci. USA 117 29561–8
[33] Budich J C and Bergholtz E J 2020 Non-Hermitian topological sensors Phys. Rev. Lett. 125 180403
[34] Wang H, Zhang X, Hua J, Lei D, Lu M and Chen Y 2021 Topological physics of non-Hermitian optics and photonics: a review J. Opt. 23 123001
[35] Gao H, Xue H, Gu Z, Liu T, Zhu J and Zhang B 2021 Non-Hermitian route to higher-order topology in an acoustic crystal Nat. Commun. 12 1888
Rotter I 2009 A non-Hermitian Hamilton operator and the physics of open quantum systems J. Phys. A: Math. Theor. 42 153001
Heiss W D 2012 The physics of exceptional points J. Phys. A: Math. Theor. 45 444016
Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Observation of bulk Fermi arc and polarization half charge from paired exceptional points Science 359 1009–12
Bergholtz E J, Budich J C and Kunst F K 2021 Exceptional topology of non-Hermitian systems Rev. Mod. Phys. 93 015005
Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S-L, Joannopoulos J D and Soljačić M 2015 Exceptional topology of non-Hermitian systems Nature 525 354–8
Xu Y, Wang S T and Duan L-M 2017 Weyl exceptional rings in a three-dimensional dissipative cold atomic gas Phys. Rev. Lett. 118 045701
Cerjan A, Huang S, Wang M, Chen K P, Chong Y and Rechtsman M C 2019 Experimental realization of a Weyl exceptional ring Nat. Photon. 13 623–8
Zhou H, Lee J Y, Liu S and Zhen B 2019 Exceptional surfaces in PT-symmetric non-Hermitian photonic systems Optica 6 190–3
Wang H, Xie B, Gupta S K, Zhu X, Liu L, Liu X, Lu M and Chen Y 2019 Exceptional concentric rings in a non-Hermitian bilayer photonic system Phys. Rev. B 100 165134
Liertzer M, Ge L, Cerjan A, Stone A D, Türeci H E and Rotter S 2012 Pump-induced exceptional points in lasers Phys. Rev. Lett. 107 175901
Peng B, Özdemir Ş K, Rotter S, Yilmaz H, Liertzer M, Monifi F, Bender C M, Nori F and Yang L 2014 Loss-induced suppression and revival of lasing Science 346 328–32
Parrot M, Wittke S, Hodaei H, Harari G, Bandres M A, Ren J, Rechtsman M C, Segew M, Christodoulides D N and Khajavikhan M 2018 Edge-mode lasing in 1D topological active arrays Phys. Rev. Lett. 120 113901
Zhang M, Sweeney W, Hsu C W, Yang C, Stone A D and Jiang L 2019 Quantum noise theory of exceptional point amplifying sensors Phys. Rev. Lett. 123 180501
Wang H, Lai Y-H, Yuan Z, Suh M-G and Vahala K 2020 Petermann-factor sensitivity limit near an exceptional point in a Brillouin laser gyroscopes Nat. Commun. 11 1610
Hasan A U, Zhen B, Soljačić M, Khajavikhan M and Christodoulides D N 2017 Dynamically encircling exceptional points: exact evolution and polarization state conversion Phys. Rev. Lett. 118 093902
Yoon J W et al 2018 Time-asymmetric loop around an exceptional point over the full optical communications band Nature 562 86–90
Zhang X-L, Jiang T and Chan C T 2019 Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes Light. Sci. Appl. 8 88
Zhou H, Qiao X, Wu T, Midya B, Longhi S and Feng L 2019 Non-Hermitian topological light steering Science 365 1163–6
Lin Z, Pick A, Lončar M and Rodriguez A W 2016 Observation of PT-symmetric exceptional points and their experimental realization Phys. Rev. Lett. 117 107402
Xiao Y X, Ding K, Zhang R Y, Hang Z H and Chan C T 2020 Exceptional points make an astroid in non-Hermitian Lieb lattice: evolution and topological protection Phys. Rev. B 102 245144
Tang W, Jiang X, Ding K, Xiao Y X, Zhang Z Q, Chan C T and Ma G 2020 Exceptional nexus with a hybrid topological invariant Science 370 1077–80
Xiao Y X, Zhang Z Q, Hang Z H and Chan C T 2019 Anisotropic exceptional points of arbitrary order Phys. Rev. B 99 241403(R)
Zhong Q, Kou J, Özdemir Ş K and El-Ganainy R 2020 Hierarchical construction of higher-order exceptional points Phys. Rev. Lett. 125 205302
Delplace P, Yoshida T and Hatsugai Y 2021 Symmetry-protected multifold exceptional points and their topological characterization Phys. Rev. Lett. 127 186602
Cao H and Wiersig J 2015 Dielectric microcavities: model systems for wave chaos and non-Hermitian physics Rev. Mod. Phys. 87 61
Zhang D, Luo X Q, Wang Y P, Li T F and You J Q 2017 Observation of the exceptional point in cavity magnon–polaritons Nat. Commun. 8 1368
Klaiman S, Günther U and Moiseyev N 2008 Visualization of branch points in PT-symmetric waveguides Phys. Rev. Lett. 101 080402
Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Observation of PT-symmetry breaking in complex optical potentials Phys. Rev. Lett. 103 093902
Xu J and Chen Y 2015 General coupled mode theory in non-Hermitian waveguides Opt. Express 23 22619–27
Xia S, Kaltus D, Song D, Komis I, Xu J, Szameit A, Buljan H, Makris K G and Chen Z 2017 Nonlinear tuning of PT symmetry and non-Hermitian topological states Science 372 72–76
Naghiloo M, Ababei M, Joglekar Y N and Murch K W 2019 Quantum state tomography across the exceptional point in a single dissipative qubit Nat. Phys. 15 1232–6
Chen W, Ababei M, Joglekar Y N and Murch K W 2021 Quantum jumps in the non-Hermitian dynamics of a superconducting quantum circuit Phys. Rev. Lett. 127 140504
Ding K, Ma G, Xiao M, Zhang Z Q and Chan C T 2016 Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization Phys. Rev. X 6 021017
See supplemental material at url for more details on our analytical model, which includes references [55, 70]
Jin L, Wu H C, Wei B B and Song Z 2020 Hybrid exceptional point created from type-III Dirac point Phys. Rev. B 101 045130
Kawabata K, Resho T and Sato M 2019 Classification of exceptional points and non-Hermitian topological semimetals Phys. Rev. Lett. 123 066405
Hu H and Zhao E 2021 Knots and non-Hermitian Bloch bands Phys. Rev. Lett. 126 010401
Berry M V 1995 Two-state quantum asymptotics Ann. New York Acad. Sci. 755 303–17
Leykam D, Bliokh K Y, Huang C, Chong Y D and Nori F 2017 Edge modes, degeneracies, and topological numbers in non-Hermitian systems Phys. Rev. Lett. 118 040401
Yang Z, Schnyder A P, Hu J and Chiu C K 2021 Fermion doubling theorems in two-dimensional non-Hermitian systems for Fermi points and exceptional points Phys. Rev. Lett. 126 086401
Alekseev V B 2004 Abel’s Theorem in Problems and Solutions: Based on the Lectures of Professor VI Arnold (Dordrecht: Springer) (https://doi.org/10.1007/978-0-8176-4849-7)
King R B 2009 Beyond the Quartic Equation (Boston, MA: Birkhäuser) (https://doi.org/10.1097/978-0-8176-4849-7)
Ding K, Zhang Z Q and Chan C T 2015 Coalescence of exceptional points and phase diagrams for one-dimensional PT-symmetric photonic crystals Phys. Rev. B 92 235310