The risk factors of intracranial infection in patients with intracerebral hemorrhage undergone hematoma puncture: what should we care

Haijing Han†, Yu Li†, Li Liu, Ningning Liu, Ying Wang and Min Zhang*

Abstract

Background: Intracranial infection after puncture of cerebral hematoma in patients with intracerebral hemorrhage is very common in the department of neurosurgery, yet the relevant risks remain unknown. We attempted to analyze the risk factors of intracranial infection after puncture of cerebral hematoma, to provide insights into the management of patients with intracerebral hemorrhage after puncture of cerebral hematoma.

Methods: Patients with intracerebral hemorrhage after puncture of cerebral hematoma treated in our hospital from January 2017 to January 2020 were selected, the related characteristics of intracranial infection and no infection patients were compared. Logistic regression analyses were conducted to analyze the risk factors for intracranial infection after puncture of cerebral hematoma.

Results: A total of 925 patients with puncture of cerebral hematoma were included. The incidence of postoperative intracranial infection was 7.03%. There were significant statistical differences between the infected group and the no infection group in the American Association of Anesthesiologists (ASA) grade, length of hospital stay, consecutive operation, duration of surgery, extra-ventricular drainage (EVD) use (all \(p < 0.05 \)). There was statistically significant difference in the duration of EVD between the infection and no infection groups (\(p = 0.002 \)), and there was no significant difference in the frequency of EVD insertion between the two groups (\(p = 0.094 \)). The length of hospital stay \(\geq 10 \) days (OR1.832, 1.062–3.158), consecutive operation (OR2.158, 1.358–3.430), duration of surgery \(\geq 4 \) h (OR1.581, 1.031–2.425), EVD use (OR1.694, 1.074–2.670), and duration of EVD \(\geq 7 \) days (OR2.699, 1.689–4.311) were the risk factors of intracranial infection in patients with intracerebral hemorrhage after puncture of cerebral hematoma (all \(p < 0.05 \)).

Conclusion: Clinical medical workers should take corresponding preventive measures against the different risk factors for prevention of intracranial infection in patient with puncture of cerebral hematoma.

Keywords: Intracranial infection, Puncture, Hematoma, Risk, Treatment, Nursing, Surgery
Background
Cerebral hemorrhage is one of the common clinical symptoms of cardiovascular and cerebrovascular diseases [1]. It has the characteristics of high disability rate and mortality [2]. According to statistical reports [3, 4], death and disability caused by cerebral hemorrhage account for 33.7% patients with stroke in China. At the same time, the patient's mortality within one month of cerebral hemorrhage was as high as 40% [5]. Although most patients can be effectively treated clinically, they often suffer severe consequences due to neurological damages after surgery. It’s been reported that more than 70% of survivors have different degrees of nerve injury after surgery, and the degree of disability varies [6]. As the proportion of the elderly population worldwide increases year by year, cardiovascular and cerebrovascular diseases represented by cerebral hemorrhage gradually invade the health of the elderly, which seriously impair their quality of life, and pose a serious threat to their later life [7, 8]. Therefore, more and more people are gradually paying attention to the prevention and treatment of cardiovascular and cerebrovascular diseases.

Hematoma puncture and drainage after cerebral hemorrhage is one of the most-commonly used surgical treatments. Intracranial infection related to hematoma puncture and drainage are common complications, which can lead to increased morbidity [9]. According to reports [10, 11], the incidence of intracranial infections related to hematoma puncture and drainage ranges from 1.84 to 6.09%. However, the potential related risk factors remain unclear. Previous studies have reported that the department of neurosurgery is a department with higher incidence of hospital infections. Early intervention treatment of patients with postoperative infections is of great significance. Therefore, we aimed to evaluate the characteristics of patients with intracerebral hemorrhage after puncture of cerebral hematoma, to analyze the potential risk factors of intracranial infection after puncture of cerebral hematoma, thereby providing evidences for the management of neurosurgery.

Method
Ethical issues
Our study has been verified and approved by the ethics committee of Xi’an International Medical Center Hospital (EC17090184), and written informed consents have been obtained from all the included participants.

Patients
Patients with puncture of cerebral hematoma treated in a traditional tertiary hospital from January 2017 to January 2020 were selected as the research participants. The inclusion criteria were: (1) The patient was diagnosed as intracerebral hemorrhage and underwent emergency puncture of cerebral hematoma; (2) The age was ≥ 18 years old; (3) The patient’s relevant clinical data was complete and the follow-up of 3 months after discharge were successful; (4) Patients were informed and agreed to participate in this study. The exclusion criteria were: (1) age < 18 years; (2) patients with inflammation and abscesses in the meninges, ventricles, or intracranial; (3) patients did not agree to participate in this present study.

According to whether the patient’s intracranial infection occurred after surgery, we divided the patient into an infection group and a no infection group.

Hematoma volume determination
We used Siemens, SOMATOM, Definition, and 128 rows of CT for hematoma volume determination, the patients were routinely placed in the supine position, the head was advanced, the baseline was calibrated with the OM line, and the conventional axial tomography. Scanning parameters: layer thickness 5 mm, layer spacing 5 mm, rotation speed 0.3 s/rev, detector 128X0.6, tube current 370 mA, tube voltage 120 kV, pitch 1:1, standard value width 20 mm, bed speed 35.5 mm rotation. We performed a reorganization with a layer thickness of 0.75 mm and an interval of 0.5 mm, and transferred to the post-processing station, then we opened the “Volume” program, delimited the hematoma area, click “Start Evaluation” to measure the volume of the hematoma, and perform pseudocolor staining to obtain hematoma volume data.

Definition of intracranial infection
The judgment of intracranial infection referred to the relevant diagnostic criteria [12, 13], and the competent doctor makes the judgment based on the patient’s clinically relevant symptoms and laboratory test results. The specific diagnostic criteria were: (1) The patient had clinical manifestations of various intracranial infections such as postoperative fever, headache, or neck stiffness. (2) The patient’s cerebrospinal fluid test showed inflammatory index changes, which met one of the following: white blood cell count> 0.01 × 10⁹/L; cerebrospinal fluid protein > 4.50 g/L; cerebrospinal fluid glucose < 2.50 mmol/L. (3) The peripheral blood white cell count was> 10 × 10⁹/L.

Data collection
Based on the literature review, relevant neurosurgery expert recommendations and the clinical practice, we considered the potentially relevant risk factors related to the occurrence of intracranial infection in patients with puncture of cerebral hematoma. We made uniformed forms to collect the related information. We screened our hospital’s infection monitoring system, related surgical anesthesia system and patient medical records to organize and collect relevant information. The collected items in this present study included: patient’s age, gender, related surgical
conditions, drug use, length of hospital stay, American Association of Anesthesiologists (ASA) classification, preoperative antimicrobial related use of patients, extraventricular drainage (EVD).

Statistical analysis
All collected data were analyzed using SPSS 23.0 statistical software. Relevant continuous data were expressed as “mean ± standard deviation”, and t test was used for comparison between two groups; categorical data was expressed as percentage, and Chi-square test or Fisher’s exact probability method is used for comparison between groups. In addition, we conducted univariate comparative analysis on the clinical data of infection and no infection groups. If the single-factor test comparison was statistically significant, it was further included for the multi-factor analysis. In this study, \(p < 0.05 \) was considered statistically significant.

Results
The characteristics of included patients
A total of 925 patients with intracerebral hemorrhage undergone hematoma puncture were included, with 449 male patients and 476 female patients. The patients were varied from 21 to 88 years old, with an average age of (63.8 ± 6.95) years old (Table 1).

The characteristics comparison of infection and no infection groups
Of the 925 surgical patients included, 65 patients had postoperative intracranial infection, and the incidence of intracranial infection was 7.03%. As shown in Table 2, there were significant statistical differences between the infected group and the no infection group in the ASA grade, length of hospital stay, consecutive operation, duration of surgery, EVD use (all \(p < 0.05 \)). No significant differences on the gender, BMI, complicated diseases, bleeding location, use of immunosuppressants, ICU stay, antibiotics use before surgery and estimated hematoma volume were found between two groups (all \(p > 0.05 \)).

Comparison on the EVD use between two groups
As shown in Table 3, there was statistically significant difference in the duration of EVD between the infection and no infection groups (\(p < 0.002 \)), and there was no significant difference in the frequency of EVD insertion between the two groups (\(p = 0.094 \)).

Multivariate logistic regression analysis on the risk factors of intracranial infection
As shown in Table 4, multivariate logistic regression analysis suggested that length of hospital stay \(\geq 10 \) days (OR 1.532, 1.062–3.158), consecutive operation (OR 2.158, 1.53–3.430), duration of surgery \(\geq 4 \) h (OR 1.694, 1.074–2.670), and duration of EVD \(\geq 7 \) days (OR 0.296, 1.689–4.311) were the risk factors of intracranial infection in patients with intracerebral hemorrhage undergone hematoma puncture (all \(p < 0.05 \)).

Discussions
The surgical characteristics of neurosurgery are associated with the relatively high risk of infection complicated with surgery. The results of this study indicate that the incidence of intracranial infection in patients with puncture of cerebral hematoma is 7.03%, which is consistent with previous reports of related studies. In view of the high incidence of postoperative intracranial infection, it is of great clinical significance to explore the associated risk factors of intracranial infection after puncture of cerebral hematoma. The results of this study suggest that length of hospital stay \(\geq 10 \) days, consecutive operation, duration of surgery \(\geq 4 \) h, EVD use, and duration of EVD \(\geq 7 \) days were the risk factors of intracranial infection in patients with intracerebral hemorrhage undergone hematoma puncture. Patients with performance should focus on the prevention and treatment of intracranial infection to improve the patient’s prognosis.

The postoperative infections in patients with neurosurgical craniocerebral surgery are mostly happens in the body cavity or intracranial parts [14]. It’s been reported that postoperative infection in patients with cerebrovascular diseases, craniocerebral trauma and craniocerebral tumors is relatively high, and its possible causes are closely related to the types of surgery, surgical methods and the characteristics of surgery in patients with this disease [15].
Factors	Infection group (n = 65)	No infection group (n = 860)	χ^2/F	p
Gender				
Male	31 (47.69%)	418 (48.60%)	0.745	0.190
Female	34 (53.31%)	442 (51.40%)		
BMI (kg/m2)				
< 24	33 (50.77%)	435 (50.58%)	0.905	0.117
≥ 24	32 (49.23%)	425 (49.42%)		
Complicated diseases				
Diabetes	18 (27.69%)	219 (25.47%)	0.215	0.092
Hypertension	29 (44.61%)	370 (43.02%)		
Hyperlipidemia	15 (23.08%)	183 (21.28%)		
Use of immunosuppressants				
Yes	16 (24.62%)	201 (23.37%)	0.741	0.121
No	49 (75.38%)	659 (76.63%)		
Bleeding location				
Basal ganglia	35 (53.85%)	422 (49.07%)	1.128	0.093
Thalamus	19 (29.23%)	268 (30.66%)		
Brain lobe	4 (6.15%)	64 (7.44%)	1.374	0.093
Ventricle	4 (6.15%)	64 (7.44%)		
Cerebellum	2 (3.08%)	38 (4.36%)		
Brain stem	1 (1.54%)	12 (1.39%)		
ASA grade				
I-II	26 (40.00%)	680 (79.07%)	8.911	0.015
III-IV	39 (60.00%)	180 (20.93%)		
ICU stay				
Yes	22 (33.81%)	256 (29.77%)	0.948	0.101
No	43 (66.19%)	604 (70.23%)		
The length of hospital stay (days)				
≥ 10	37 (54.62%)	387 (45.00%)	0.590	0.012
< 10	10 (15.38%)	573 (55.00%)		
Consecutive operation				
Yes	54 (83.08%)	408 (47.44%)	2.405	0.008
No	11 (16.92%)	452 (52.56%)		
Duration of surgery (hours)				
≥ 4	50 (76.92%)	437 (50.81%)	0.155	0.021
< 4	15 (23.08%)	423 (49.19%)		
Antibiotics use before surgery				
Yes	48 (73.85%)	612 (71.17%)	3.087	0.094
No	17 (26.15%)	248 (28.83%)		
EVD				
Yes	52 (80.00%)	508 (59.07%)	0.152	0.026
No	13 (20.00%)	172 (40.93%)		
Estimated hematoma volume				
>45 ml	32 (49.23%)	416 (48.37%)	1.048	0.083
≤ 45 ml	26 (50.77%)	444 (51.63%)		
Patients with cerebrovascular diseases and craniocerebral injuries mainly undergo emergency surgery in clinical settings, and there are often insufficient pre-operative preparations and incomplete debridement during surgery [17]. Therefore, patients have a relatively high risk of intracranial infection. Previous studies [18, 19] have shown that the incidence of postoperative infection in patients undergoing emergency surgery is significantly higher than that in patients undergoing elective surgery.

The surgical incisions in neurosurgery are mainly level I surgical incisions, which have relatively strict requirements on the environment, and air quality of the operating room [20, 21]. During the operation, the mobility of medical staff is relatively large, and the door of the operating room is opened and closed more frequently, so the static pressure difference in the operating room is significantly reduced and the effect of air purification is significantly reduced [22]. Various activities such as the cleaning behavior of the operating room, resulting in a significant increase of the amount of planktonic bacteria in the operating room [23]. To a certain extent, the number of bacteria colonized in the surgical incision site of the patient is increased, and the risk of intracranial infection is increased [24]. Previous studies [25–27] have shown that the more the number of surgical procedures, the greater the number of related colonies in the air. The results of this study suggest that the risk of intracranial infections increases significantly with the duration extension of the operation. The reason may be that the longer the clinical operation time, the greater the traumatic exposure to the patient, and the number of related colonization bacteria exposed also increased accordingly [28, 29]. At the same time, the longer the operation time, the greater the potential bleeding during the operation, hence the risk of infection is increased [30].

In our study, the prolonged hospitalization was associated with infections. It must be noted that the stratification between surgical site infections acquired during the surgical procedures and those acquired during the hospital stay should be concerned. Since the retrospective design of the study, it is very difficult to retrieve this aspect. A variety of pathogenic microorganisms can be found in the hospital environment, which can be spread through the contact between medical workers and patients and their families, and the risk of cross infection is relatively high [31]. Previous studies [32, 33] have shown that the longer the hospital stay of patients is, the higher the risk of being infected by related pathogens. Furthermore, the prolonged prophylaxis is associated with increased risk of infection [34, 35]. In our study, all the punctures of cerebral hematoma were emergency surgery, and it’s not recommended to take advanced antimicrobial prophylaxis before or after surgery, therefore the related data were incomplete. Besides, NIHSS is the routine neurological assessment method in our department, we attempted to collect those data, yet some of related data were missing, we could not include it for analysis. Future studies on infections type and duration of antimicrobial prophylaxis were needed in the future. The skin preparation should be perfected before the operation, the incision and drainage port should be closed appropriately to prevent the leakage of cerebrospinal fluid.

The use of EVD and the duration of EVD ≥ 7 days were the independent risk factors for intracranial infection in patients with puncture of cerebral hematoma. Previous studies [36, 37] reported that in the patients with EVD placement, the risk of infection increases with the duration of EVD, which is consistent with the findings of this study. At the same time, the retention of EVD and the duration extension of drainage increase the risk of exposure to a certain extent [38]. Moreover, failure to aseptic operations and improper EVD care may cause intracranial infection, suggesting that EVD use should be highlighted in clinical setting [39].

Table 3 Comparison on the EVD use between two groups

Factors	Infection group (n = 52)	No infection group (n = 508)	χ^2	p	OR	95%CI
Duration of EVD (days)						
< 7	6 (11.54%)	317 (62.40%)	9.037	0.002	2.699	1.689–4.311
7–14	41 (78.85%)	173 (34.05%)	10.592	0.001	2.158	1.358–3.430
> 14	5 (9.61%)	18 (3.55%)	4.408	0.036	1.581	1.031–2.425
Frequency of EVD insertion						
1	41 (78.85%)	403 (80.28%)	1.225	0.094	1.694	1.074–2.670
> 1	11 (21.15%)	99 (19.72%)				

Table 4 Multivariate logistic regression analysis on the risk factors of intracranial infection

Factors	β	s	χ	p	OR	95% CI
The length of hospital stay ≥ 10 days	0.605	0.278	4.741	0.029	1.832	1.062–3.158
Consecutive operation	0.769	0.236	10.592	0.001	2.158	1.358–3.430
Duration of surgery ≥ 4 h	0.458	0.218	4.408	0.036	1.581	1.031–2.425
EVD use	0.527	0.232	5.147	0.023	1.694	1.074–2.670
Duration of EVD ≥ 7 days	0.993	0.239	17.256	0.000	2.699	1.689–4.311
should be paid to observation of postoperative drainage in clinical nursing. Evaluation and nursing care to remove EVD as early as possible are needed to reduce the potential risk of intracranial infection [40].

There are many deficiencies in this study that should be concerned. First of all, the sample size of this study is relatively small, and it may be not sensitive enough to detect the potential risk factors related to intracranial infection. Secondly, previous study [41] has reported that the national-nosocomial-infection-surveillance-risk-index (NNIS) may be an influencing factor for infection in neurosurgery patients, limited by the clinical data, we failed to include NNIS and other possible influencing factors for stratified analysis. Thirdly, we did not have the information regarding pathogens involved, it’s necessary to evaluate the number of gram-positive vs gram-negative infections, and the predictors of infections could be different, further investigations on those issues are needed in the future. In addition, this study was a retrospective analysis design, and the sample size was small, and the number of included patients among different years was different, the incidence per person per year might be biased. Future study with prospective design with larger sample size are warranted.

Conclusions

In summary, the length of hospital stay ≥ 10 days, consecutive operation, duration of surgery ≥ 4 h, EVD use, and duration of EVD ≥ 7 days were the risk factors of intracranial infection in patients with intracerebral hemorrhage undergone hematoma puncture. Therefore, for patients with puncture of cerebral hematoma, the duration of hospital stay should be shortened, as much as possible the duration of surgery, and strengthen EVD management and assessment on the possibility of early extubation of EVD.

Abbreviations

ASA: American association of anesthesiologists; EVD: Extra-ventricular drainage

Acknowledgments

N/A

Authors’ contributions

H H, M Z designed research; H H, Y L and L L conducted research; Y L, N L and Y W analyzed data; H H and M Z wrote the first draft of manuscript; M Z had primary responsibility for final content. All authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Ethics approval and consent to participate

Our study has been verified and approved by the ethics committee of Xi’an International Medical Center Hospital (EC17090184), and written informed consents have been obtained from all the included participants.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 6 July 2020 Accepted: 18 November 2020

Published online: 11 December 2020

References

1. Kuthara N, Suzuki H, Kato Y, Rikimaru H, Kato A, Uenoohara H. Hemorrhage owing to cerebral cavemosmal malformation imaging, clinical, and histopathological considerations. J Neurol Neurosurg Psychiatry. 2004;75(1):11–9.
2. de Oliveira Manoel AL, Surgery for aneurysmal intracerebral hemorrhage. Crit Care. 2020;24(1):45.
3. Li W, Jin C, Vaidya A, Wu Y, Hoerde K, Zhang X, Gurol ME, Ma C, Wu S, Gao X. Blood pressure trajectories and the risk of Intracerebral hemorrhage and cerebral infarction prospective study. J Hypertension. 2017;7(3):508–14.
4. Tian JN, Yang CY, Lin JD, Wang G, Shi XD, Wang XK, Zhu YL. Cerebral small-vessel disease diagnosis of acute cerebral hemorrhage in northeastern China: a retrospective study. J Biol Regul Homeost Agents. 2019;33(1):749–54.
5. Huang HW, Song B, Liao Z, Cheng D, Chen L, Lu G, Yu L. Clinical characteristics of acute cerebral hemorrhage in patients with systemic malignancy. Zhonghua Yi Xue Za Zhi. 2016;96(17):1336–40.
6. Chen R, Wang X, Anderson CS, Robinson T, Lavados PM, Lindley RI, Geherings J, Delcourt C. Infratentorial Intracerebral hemorrhage. Stroke. 2019; 50(4):1257–9.
7. Kim BJ, Lee EJ, Kwon SJ, Park JH, Kim YJ, Hong KS, Wong LK, Yu S, Hwang HY, Lee JS, et al. Prevention of cardiovascular events in Asian patients with ischaemic stroke at high risk of cerebral haemorrhage (PICASSO): a multicentre, randomised controlled trial. Lancet Neurol. 2018;17(6):509–18.
8. Shibli H, Saliari M, Azzamdeh E, Khineh A, Chaghazardi S. Culture-negative endocarditis with neurologic presentations and dramatic response to heparin: a case report. BMC Infect Dis. 2020;20(1):476.
9. Balarni JS, White PM, McMeekin PJ, Ford GA, Buchan AM. Complications of endovascular treatment for acute ischemic stroke: prevention and management. Int J Stroke. 2018;13(4):348–61.
10. Whitelaw A, Lee-Kelland R. Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev. 2017;4:CD002216.
11. Zhao X, Jiang H, Liu G, Wang T. Efficacy analysis of 33 cases with epidural hematoma treated by brain puncture under CT surveillance. Turk Neurosurg. 2014;24(3):323–6.
12. Yu L, Li HJ. Diagnostic and prognostic value of procalcitonin for early intracranial infection after craniotomy. Braz J Med Biol Res. 2017;50(5):e6021.
13. Sonnevile R, Magalhaes E, Meyfroidt G. Central nervous system infections in immunocompromised patients. Curr Opin Crit Care. 2017;23(2):128–33.
14. Wang H. Higher Procalcitonin level in cerebrospinal fluid than in serum is a feasible Indicator for diagnosis of intracranial infection. Surg Infect. 2020;20:35–43.
15. Krishnan M, Walijee H, Jesusa A, De S, Sinha A, Sharma R, Donne A. Clinical outcomes of intracranial complications secondary to acute mastoiditis: the Alder hey experience. Int J Pediatr Otorhinolaryngol. 2020;128:109675.
16. Lee T, Buletko AB, Matthew J, Cho SM. Bloodstream infection is associated with subarachnoid hemorrhage and infectious intracranial aneurysm in left ventricular assist device. Perfusion. 2020;35(2):117–20.
17. Zhai T, Fu ZL, Qiu YB, Chen Q, Luo D, Chen K. Application of combined cerebrospinal fluid physicochemical parameters to detect intracranial infection in neurosurgery patients. BMC Neurol. 2020;20(1):213.
18. van der Velden FJS, Batterby A, Pareja-Cebrian L, Ross N, Ball SL, Emons M. Paediatric focal intracranial suppurative infection: a UK single-Centre retrospective cohort study. BMC Pediatr. 2019;19(1):130.
19. Shi ZH, Xu M, Wang YZ, Luo XY, Chen GQ, Wang X, Wang T, Tang MZ, Zhou JX. Post-craniotomy intracranial infection in patients with brain tumors: a retrospective analysis of 5723 consecutive patients. Br J Neurosurg. 2017;31(1):5–9.
20. Yao J, Liu D. Logistic regression analysis of risk factors for intracranial infection after multiple craniofacial craniotomy and preventive measures. J Craniofac Surg. 2019;30(7):1946–8.
21. Gao JG, Ye Y. Clinical manifestations and risk factors of poor prognosis of Acinetobacter baumannii intracranial infection. Zhonghua Yi Xue Za Zhi. 2018;98(37):2973–7.

22. Lin C, Zhao X, Sun H. Analysis on the risk factors of intracranial infection secondary to traumatic brain injury. Chin J Traumatol. 2015;18(2):81–3.

23. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen PA, Lortholary O, Nguyen MH, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322.

24. Kou YF, Killeen D, Whittemore B, Farzal Z, Booth T, Swift D, Berg E, Mitchell R, Shah G. Intracranial complications of acute sinusitis in children: the role of endoscopic sinus surgery. Int J Pediatr Otorhinolaryngol. 2018;110:147–51.

25. Wang F, Yao XY, Zou ZR, Yu HL, Sun T. Management of Pyogenic Cerebral Ventriculitis by Neuroendoscopic surgery. World Neurosurg. 2017;98:6–13.

26. Wang J, Ji Y, Jiang L, Zhao X, Guan S, Yang P, Yu J, Liu Y, Zhang H. Analysis of factors influencing hospital-acquired infection in postoperative patients with intracranial aneurysm. BMC Neurol. 2019;19(1):332.

27. Carneiro TS, Aseyev L, Dobrilovic N, Fagan MA, Kimmel S, Krumel RE. Neurological complications of infective endocarditis: a multidisciplinary review with focus on surgical decision making. Semin Neurol. 2019;39(4):495–506.

28. Berger RL, Li LT, Hicks SC, Davila JA, Kao LS, Liang MK. Development and validation of a risk-stratification score for surgical site occurrence and surgical site infection after open ventral hernia repair. J Am Coll Surg. 2013;216(6):1235–42.

29. Garcia-Cabrera E, Fernandez-Hidalgo N, Almirante B, Ivanova-Georgieva R, Nourreddine M, Plata A, Lomas JM, Galvez-Acebal J, Hidalgo-Tenorio C, Ruiz-Morales J, et al. Neurological complications of infective endocarditis: risk factors, outcome, and impact of cardiac surgery: a multicenter observational study. Circulation. 2013;127(23):2272–B4.

30. Loggini A, Monono ME, Johnson WD. Management of infective complications of otitis media in resource-constrained settings. J Pediatr Infect Dis. 2020;33(3):174–81.

31. Bhutta MF, Monono ME, Johnson WD. Management of infective complications of otitis media in resource-constrained settings. J Pediatr Infect Dis. 2020;33(3):174–81.

32. Alkhaibary A, Alharbi A, Abbas M, Algarni A, Abdullah AM, Almandour W, Khairy L, Alkhai A, Alozai A, Khairy S. Predictors of surgical site infection in autologous Cranioplasty: a retrospective analysis of simultaneity preserved bone flaps in abdominal pockets. World Neurosurg. 2017;102:267–32.

33. Nonaka M, Moriishi T, Yamada K, Fujioka S, Joo MA, Tsukai Y, Abe H, Inoue T. Surgical management of adverse events associated with deep brain stimulation: a single-center experience. J Stroke Cerebrovasc Dis. 2020;29(1):105348.

34. Fried HI, Nathan BR, Rowe AS, Bihm LM, Alkhaibary A, Alam M, Singh JM. The impact of surgical site infection on the outcome of patients with intracranial pressure monitoring: gold standard and recent innovations. J Clin Cases. 2019;13(13):1535–53.

35. Ulloque-Caamano L, Mo-Carrascal J, Maraby J, Narvaez-Rojas A, Quintana-Pajaro L, Ramos-Villegas Y, Moscote-Salazar LR. Ventriculitis associated with extraventricular drainage: etiology, diagnosis and treatment focused on neurocritical care units. Crit Care. 2019;23(7):230–40.

36. DeWitt M, Sonti SV, Kamin A, Alkhaibary A. Antiepileptic drug use and intracranial pressure monitoring. Epilepsia Open. 2011;11:133.

37. Ulloque-Caamano L, Mo-Carrascal J, Maraby J, Narvaez-Rojas A, Quintana-Pajaro L, Ramos-Villegas Y, Moscote-Salazar LR. Ventriculitis associated with extraventricular drainage: etiology, diagnosis and treatment focused on neurocritical care units. Crit Care. 2019;23(7):230–40.

38. Gao JG, Ye Y. Clinical manifestations and risk factors of poor prognosis of Acinetobacter baumannii intracranial infection. Zhonghua Yi Xue Za Zhi. 2018;98(37):2973–7.