Data Article

Peptide data on the disulfide bond analysis of baculovirus produced Pfs25 by LC-MSMS

Shwu-Maan Lee *, Jordan L. Plieskatt, C. Richter King

PATH Malaria Vaccine Initiative (MVI), 455 Massachusetts Avenue NW, Suite 1000, Washington, DC 20001-2621, USA

A R T I C L E I N F O

Article history:
Received 17 November 2017
Received in revised form
29 January 2018
Accepted 6 March 2018
Available online 12 March 2018

Keywords:
Pfs25
Disulfide
Mass spectrometry
Malaria
LC-MSMS

A B S T R A C T

This article contains the peptide data obtained while performing disulfide bond mapping of the recombinant Plasmodium falciparum protein, Pfs25, produced from the baculovirus expression system. Pfs25 is a malaria transmission-blocking vaccine candidate, with a compact and complex structure including 22 cysteines. This supplementary data is related to the research “Disulfide bond mapping of Pfs25, a recombinant malaria transmission blocking vaccine candidate” (Lee et al., 2018) [1]. In brief, Pfs25 was digested with trypsin/Lys-C and derived peptides separated by High Performance Liquid Chromatography (HPLC) and analyzed by mass spectrometry (MS) by MS E fragmentation. The theoretical peptides and their respective masses along with disulfide bond locations with linked peptides are presented here alongside the mass spectrometry analysis. The raw mass spectrometry data is made available through the Mass Spectrometry Interactive Virtual Environment (MassIVE) with identifier: MSV000081982.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Chemistry, Biology.
More specific subject area	Disulfide bond analysis by liquid chromatography and mass spectrometric analysis
Type of data	Tables, figures
How data was acquired	Data was generated using liquid chromatography (Waters 2695 Separations Module and Waters 2489 UV/Vis Detector) and mass spectroscopy (Waters QTOF Premier mass spectrometer)
Data format	Collated data from analysis with Waters BiopharmaLynx 1.3 and MassLynx
Experimental factors	Recombinant Pfs25 digested with 20 µg of trypsin/Lys-C at 37 °C overnight and subsequent further digestion by additional 20 µg of trypsin/Lys-C for 3–4 hours at 37 °C
Experimental features	Identification of the proper pairing of 11 disulfide bonds in Pfs25 through digestion of peptides and LC-MS/MS
Data source location	Mass spectrometry data acquired in Middleton, WI, USA
Data accessibility	Data is provided within this article and RAW MS files have been deposited in the Mass Spectrometry Interactive Virtual Environment (MassIVE) with identifier: MSV000081982 (ftp://massive.ucsd.edu/MSV000081982). MassIVE is a member of the ProteomeXchange Consortium

Value of the data

- The derived peptides and mass spectrometry data is provided here for further details from the disulfide bond analysis of Pfs25.
- The disulfide bond locations and linked peptides are discussed alongside the mass spectrometry analysis here and data made accessible to the scientific community.
- Pfs25 is a compact and complex 17.9 kDa protein with 22 cysteines (11 disulfide bonds) that has presented difficulty in prior disulfide bond analysis
- A method was developed to map the disulfide bonds of a complex and compact protein, which may be applicable to other proteins, an important step in recombinant protein development for vaccines.

1. Data

The Pfs25 disulfide bond mapping peptides are discussed in further detail in this manuscript to further support the elucidation of disulfide bonds of Pfs25 as discussed in [1]. Further, the mass spectrometry RAW files have been deposited in the Mass Spectrometry Interactive Virtual Environment (MassIVE). Theoretical peptides, produced from Trypsin/Lys-C digestion of Pfs25, are presented in Table 1.

Utilizing BiopharmaLynx 1.3 the mass spectral data was analyzed and compared to the theoretical peptides to obtain the localization of the 11 disulfide bonds present in the recombinant Pfs25. The disulfide bond locations and linked peptides (including theoretical and observed) masses are presented in Table 2. Each disulfide bond (referenced by nomenclature SS#) is further presented with the peptide information and mass spectrometry (MS) and MSMS data obtained during the analysis in the subsequent figures and tables presented in this manuscript.
2. Disulfide bond SS1

A total of 30 fragments were observed, with 20 fragment ions of this peptide consistent with the linkage of Cys10 and Cys24. The remaining ten fragment ions were consistent with constituent peptides (Table 3, Fig. 1).

3. Disulfide bond SS2

A total of 39 fragment ions of this peptide were observed with 36 fragment ions consistent with the linkage of Cys26 and Cys38. Three additional fragments were consistent with constituent peptides (Table 4, Fig. 2).

Table 1
Theoretical Fragments for Trypsin/Lys-C Digestion of Pfs25.

| Peptides | | Peptide Label | Theoretical Mass (Da) |
|----------|---------------------------------|----------------------|
| DAK | Position 1–3 | T1 | 332.17 |
| VTVDTVK | Position 4–11 | T2 | 863.44 |
| R | Position 12–12 | T3 | 174.11 |
| GIFLQMSGHLECK | Position 13–25 | T4 | 1461.71 |
| CENDIVLNEETCEEK | Position 26–41 | T5 | 1865.80 |
| VLK | Position 42–44 | T6 | 358.26 |
| CDEK | Position 45–48 | T7 | 493.18 |
| TVNKPGDFS | Position 49–59 | T8 | 1194.57 |
| CIK | Position 60–62 | T9 | 362.20 |
| IDGNPVSYACK | Position 63–73 | T10 | 1165.54 |
| CNLGYDMVNVNCIPNECK | Position 74–91 | T11 | 2027.86 |
| QVTCGNGK | Position 92–99 | T12 | 805.38 |
| CILDTSNPV | Position 100–109 | T13 | 1088.55 |
| TGVCSCNIGK | Position 110–119 | T14 | 980.44 |
| VPNVQDQNK | Position 120–128 | T15 | 1040.53 |
| CSK | Position 129–131 | T16 | 336.15 |
| DGETK | Position 132–136 | T17 | 548.24 |
| CSLK | Position 137–140 | T18 | 449.23 |
| CLK | Position 141–143 | T19 | 362.20 |
| ENETCK | Position 144–149 | T20 | 722.29 |
| AVDGIYK | Position 150–156 | T21 | 764.41 |
| CDCK | Position 157–160 | T22 | 467.15 |
| DGFIHQESSICTTHHHHHH | Position 161–179 | T23 | 2248.98 |

Table 2
Disulfide bond locations for Pfs25 including theoretical and observed masses of fragments.

Disulfide Bond	Linked Cysteines	Tryptic Peptide	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (ppm)
SS1	Cys10-Cys24	T2 + T4	2323.1375	2323.1152	9.6
SS2	Cys26-Cys38	T5	1863.7866	1863.7752	6.1
SS3	Cys45-Cys56	T7 + T9	853.3674	853.3656	2.1
SS4	Cys54-Cys72	T8 + T10	2358.0670	2358.0799	5.5
SS5	Cys24-Cys85	T11 + T13	3112.3796	3112.3534	8.4
SS6	Cys90-Cys100	T12 + T14 + T16	2117.9326	2117.9182	6.8
SS7	Cys95-Cys113	T18 + T20	1169.5056	1169.4970	7.3
SS8	Cys115-Cys129	T19 + T22 + T23	3074.3003	3074.2795	6.8
4. Disulfide bond SS3

A total of nine fragments were observed, with six fragment ions of this peptide consistent with the linkage of Cys45 and Cys60. Three fragment ions were consistent with constituent peptides (Table 5, Fig. 3).

5. Disulfide bond SS4

A total of 68 fragments were observed, with 45 fragment ions of this peptide consistent with the linkage of T8 to T10 through Cys54 and Cys72. The remaining 23 fragments were consistent with constituent peptides (Table 6, Fig. 4).

6. Disulfide bonds SS5 and SS6

A total of 90 fragments were observed and four fragment ions (1/b12, 1/b13, 1/b15, and 1/b16) were consistent with an internal disulfide bond linkage between Cys24 and Cys30. Thirty-three fragment ions were consistent with the linkage of Cys90 and Cys100. An additional 44 fragments of this
Fig. 1. Disulfide bond SS1.
peptide were consistent with the combined linkages of Cys74 to Cys85 and Cys90 to Cys100 and nine fragments consistent with constituent peptides (Table 7, Fig. 5).

7. Disulfide bonds SS7 and SS8

A total of 39 fragments were observed. Three fragment ions (1/b7-2/b5, 1/y6-2/a4, and 1/y6-2/b4) were specific to the linkage between T12 and T14 and confirmed the Cys85 to Cys113 linkage. Four fragment ions (2/y5-3/b2, 2/y5-3/y3, 2/y6-3/a2, and 2/y6-3/b2) were specific to the linkage between T14 and T16 and confirmed the linkage of Cys115 to Cys129. A further 21 fragment ions were consistent with the linkage of T12, T14, and T16 and remaining 11 fragments consistent with constituent peptides (Table 8, Fig. 6).
8. Disulfide bond SS9

A total of 35 fragment ions were observed with 25 fragment ions of this peptide consistent with the linkage of T18 to T20 through Cys137 and Cys148. Ten fragments were consistent with constituent peptides (Table 9, Fig. 7).
Table 5
Disulfide bond SS3 (Cys45-Cys60) peptides.

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
9 Fragments					
Const. Pep.3					
1/y1	147.1133	147.115	−0.0017	163	K
1/y2	276.1559	276.158	−0.0002	84	EK
1/y3	391.1829	391.2075	−0.0246	47	DEK
Cys45 and Cys60					
1/a1−2/a2	262.1048	262.0183	0.0865	22	C=Cl
1/b1−2/b3	421.0852	421.1291	−0.0439	117	C=CIK
1/b2−2/y3	579.2271	579.2261	0.001	67	CD=CIK
1/y4−2/a2	680.2748	680.2768	−0.002	23	CDEK=CIK
1/y4−2/b2	708.2697	708.2832	−0.0135	126	CDEK=Cl
1/y4−2/y3	854.3752	854.3748	0.0004	3305	CDEK=CIK

Fig. 3. Disulfide bond SS3.
Table 6

Disulfide bond SS4 (Cys54-Cys72) peptides.

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
68 Fragments					
Constituent Peptides	23 Fragments				
1/a2	173.129	173.129	−0.0007	4507	TV
1/a3	287.179	287.0969	0.075	897	TVN
1/a4	415.2669	415.2224	0.0445	28	TVN
1/b2	201.1239	201.1235	0.0004	2754	TVN
1/b3	315.1668	315.0896	0.0722	51	TVN
1/b4	443.2618	443.2626	−0.0008	248	TVN
1/y1	147.1133	147.0623	0.0124	1146	TVN
1/y2	234.1454	234.1455	−0.0001	700	SK
1/y3	381.2138	381.2014	0.0124	1146	TVN
1/y4	496.2407	496.2404	0.0003	153	DFK
1/y5	553.2622	553.2604	0.018	564	GDFSK
2/a3	258.1454	258.1545	−0.0092	78	TVN
2/a4	327.1883	327.1927	−0.0044	300	IDGN
2/a5	469.2411	469.2278	0.0132	76	IDGN
2/a6	568.3094	568.3065	0.0029	91	IDGNPV
2/a7	818.4048	818.3653	0.0396	129	IDGNPVSY
2/b1	114.0919	114.041	0.0509	18	I
2/b2	229.1188	229.119	−0.0002	1962	TVN
2/b3	286.1403	286.1415	−0.0012	727	IDN
2/b4	400.1832	400.1889	−0.0057	1203	TVN
Cys54 and Cys72	45 Fragments				
1/a6-2/y5	1183.5604	1183.541	0.0198	1608	TVN
1/a6-2/y7	1379.6815	1379.694	0.0073	143	TVN
1/a8-2/y7	1531.73	1531.666	0.0636	108	TVN
1/a9-2/b10	1951.8682	1951.823	0.0454	93	TVN
1/b10-2/a10	2038.9003	2038.993	0.0012	727	TVN
1/b6-2/y2	497.236	497.2373	−0.0013	252	TVN
1/b6-2/y8	961.4599	961.4065	0.0534	124	TVN
1/b8-2/y3	1521.1719	1521.674	0.0449	161	TVN
1/b8-2/y7	1464.6979	1464.675	0.0228	47	TVN
1/b8-2/y10	1865.8162	1865.827	−0.0106	68	TVN
1/b8-2/y11	1978.9003	1978.891	0.0092	579	TVN
1/b8-2/y2	1062.4712	1062.441	0.0303	364	TVN
1/b8-2/y6	1482.6721	1482.651	0.021	137	TVN
1/b8-2/y7	1579.7249	1579.69	0.0347	456	TVN
1/b9-2/y5	1530.6721	1530.667	0.0054	180	TVN
1/b9-2/y7	1726.7932	1726.741	0.0527	66	TVN
1/b9-2/y10	2246.0222	2246.022	0.0005	2740	TVN
1/b9-2/y11	2359.1062	2359.109	−0.0027	57983	TVN
1/b10-2/a10	1645.699	1645.775	−0.0062	368	TVN
1/b10-2/y11	1819.7994	1819.795	0.0044	57	TVN
1/b10-2/y4	1137.4708	1137.472	−0.0007	738	TVN
1/b10-2/y6	1420.624	1420.613	0.0114	404	TVN
1/b10-2/y7	1770.7467	1770.722	0.0243	43	TVN
1/b11-2/y1	1916.8523	1916.848	0.0339	3031	TVN
1/b11-2/y2	1000.4232	1000.424	−0.0004	627	TVN
1/b11-2/y3	1071.4603	1071.461	−0.0007	825	TVN

S.-M. Lee et al. / Data in Brief 18 (2018) 209–233 217
9. Disulfide bonds SS10 and SS11

A total of 65 fragments were observed. Eleven fragment ions were specific to the linkage of T19 and T22, and confirmed the linkage of Cys141 to Cys157. Three fragment ions were specific to the linkage between peptides T22 and T23 and confirmed the linkage of Cys159 to Cys172. Thirty-two fragment ions were consistent with the linkage of T12, T14, and T16 and an additional 19 fragments were consistent with constituent peptides (Table 10, Fig. 8).

10. Experimental design, materials and methods

10.1. Sample preparation

Baculovirus Pfs25 [2] was denatured and digested as described in [1].

10.2. Chromatography

Digested peptides were separated with a 2695 Separations Module (Waters Corporation; Milford MA) and a 2489 UV/Vis Detector (Waters Corporation; Milford, MA) set at 214 nm. An XBridge (Waters Corporation; Milford, MA) BEH 300 C18 (2.1×250 mm, 5 µm) was used at a column temperature of 37 °C and gradient with 0.1% Trifluoroacetic acid (TFA) in purified water (Mobile Phase A) and 0.1% TFA in acetonitrile (Mobile Phase B) as described in [1].

10.3. Mass spectrometry

MS analysis was done with a QTOF Premier mass spectrometer (Waters Corporation; Milford, MA) equipped with an electrospray source as described in [1]. MS data was acquired in MS² mode using MassLynx v4.1 (Waters Corporation; Milford, MA). RAW MS files have been deposited in the Mass Spectrometry Interactive Virtual Environment (MassIVE) with identifier: MSV000081982.

10.4. Analysis of mass spectra

The mass spectral data was analyzed using BiopharmaLynx 1.3 (Waters Corporation; Milford, MA) as described in [1].
Fig. 4. Disulfide bond SS4.
Table 7
Disulfide bond SS5 (Cys74-Cys85) and SS6 (Cys90-Cys100) peptides.

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
90 Fragments					
Cys74 and Cys85 4 Fragments					
1/b12	1324.513	1324.516	−0.0031	1267	CNLGYDMVNNVC (Internal)
1/b13	1437.597	1437.596	0.0006	3004	CNLGYDMVNNVC1 (Internal)
1/b15	1648.692	1648.71	−0.0175	311	CNLGYDMVNNVCIPN (Internal)
1/b16	1777.735	1777.728	0.007	105	CNLGYDMVNNVCIPNE (Internal)
Constituent Peptides					
9 Fragments					
1/y1	147.1133	147.1123	0.001	2902	K
2/y2	246.1818	246.1842	−0.0024	789	VK
2/y3	343.2345	343.1509	0.0836	258	PVK
2/y4	457.2774	457.2771	0.0003	855	NPVK
2/y5	544.3095	544.3134	−0.0039	711	SNPVK
2/y6	645.3572	645.3581	−0.0009	3696	TSNPVK
2/y7	760.3841	760.3795	0.0046	2330	DTSNPVK
2/y8	873.4681	873.4631	0.0051	2651	LDTSNPVK
2/y9	986.5522	986.5494	0.0029	381	ILDTSNPVK
Cys90-Cys100 33 fragments					
1/a17-2/a7	2569.065	2569.078	−0.0127	433	CNLGYDMVNNVCIPNEC=CILDTSN
1/y18-2/b2	2240.927	2240.983	−0.0564	114	CNLGYDMVNNVCIPNECK=CID
1/y18-2/b4	2469.038	2469.068	−0.03	1446	CNLGYDMVNNVCIPNECK=CILDTS
1/y18-2/b6	2657.118	2657.106	0.012	90	CNLGYDMVNNVCIPNECK=CILDTS
1/y2-2/a8	1063.492	1063.406	0.0859	167	CK=CILDTSNP
1/y2-2/b1	351.1161	351.204	−0.0879	78	CK=C
1/y2-2/b2	464.2001	464.2095	−0.0094	359	CK=CIL
1/y2-2/b3	577.2842	577.284	0.0002	142	CK=CIL
1/y2-2/b4	692.3112	692.2997	0.0115	322	CK=CILDTS
1/y2-2/b7	994.4338	994.4278	0.006	837	CK=CILDTSN
1/y2-2/y10	1336.661	1336.634	0.027	664	CK=CILDTSNPVK
1/y3-2/b1	480.1587	480.1505	0.0081	107	ECK=C
1/y3-2/b4	821.3538	821.3419	0.0118	460	ECK=CILDTS
1/y3-2/b5	922.4014	922.3771	0.0244	283	ECK=CILDTSN
1/y3-2/b8	1220.524	1220.519	0.0098	340	ECK=CILDTSNP
1/y3-2/b9	1319.598	1319.584	0.0138	987	ECK=CILDTSNPV
1/y4-2/a1	566.2067	566.2282	−0.0215	232	NECK=C
1/y4-2/a2	679.2908	679.3111	−0.0203	202	NECK=C
1/y4-2/a7	1209.524	1209.502	0.0221	927	NECK=CILDTSN
1/y4-2/b3	820.3697	820.3667	0.003	154	NECK=CIL
1/y4-2/b4	935.3967	935.3924	0.0043	481	NECK=CILD
Fragment	m/z (Da)	Matched m/z (Da)	Mass Error (ppm)	Intensity (arb. units)	Comment
----------	---------	-----------------	-----------------	-----------------------	---------
Cys74 to Cys85 and Cys90 to Cys100	1732.59	1732.579	0.0105	789	NVCIPNECK = C = CI
	2594.151	2594.122	0.0295	85	NVCIPNECK = CILDTSNPV = CNLGY
	2003.83	2003.83	0.0873	148	VNNVCIPNECK = CNL = CILD
	2525.993	2525.993	0.084	186	VNNVCIPNECK = CNLGY = CILDTS
	2093.895	2093.895	0.0625	298	MVNVNCIPNECK = CI = CNLGY
	2492.059	2492.059	0.0166	490	DMVNVNCIPNECK = C = CILDTSNPV
	1992.847	1992.854	-0.0063	826	DMVNVNCIPNECK = CN = CIL
	2190.948	2190.909	0.0388	313	DMVNVNCIPNECK = CIL = CNL
	2208.922	2208.922	-0.0498	102	DMVNVNCIPNECK = CILD = CN
	2525.986	2525.986	0.0891	573	YDMVNNVCIPNECK = C = CILDTSNPV
	2882.266	2882.266	0.0254	1679	YDMVNNVCIPNECK = CILDTSNPV = CNL
	2684.165	2684.074	0.0908	230	YDMVNNVCIPNECK = C = CILDTSNPV
	2854.198	2854.166	0.0322	311	YDMVNNVCIPNECK = CN = CILDTSNPV
	1121.425	1121.524	-0.0988	3609	CIPNECK = C = CIL

C.-M. Lee et al. / Data in Brief 18 (2018) 209–233
Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
1/y7-2/a1-1/a2	1066.394	1066.391	0.0034	286	CIPNECK = C = CN
1/y7-2/a1-1/a8	1744.699	1744.779	−0.0803	1284	CIPNECK = C = CNLGYDMV
1/y7-2/a2-1/a7	1758.715	1758.619	0.0957	156	CIPNECK = CI = CNLGYDM
1/y7-2/a3-1/a9	2084.91	2084.817	0.0925	164	CIPNECK = CIL = CNLGYDMVN
1/y7-2/a5-1/a3	1621.721	1621.642	0.0795	207	CIPNECK = CILDT = CNL
1/y7-2/a9-1/a11	2911.292	2911.285	0.0068	205	CIPNECK = CILDTSNPV = CNLGYDMVNN
1/y7-2/a9-1/a8	2584.138	2584.076	0.062	990	CIPNECK = CILDTSNPV = CNLGYDMV
1/y7-2/b1-1/a3	1207.473	1207.5	−0.027	508	CIPNECK = C = CNL
1/y7-2/b1-1/a6	1542.585	1542.666	−0.0806	928	CIPNECK = C = CNLGYD
1/y7-2/b2-1/b4	1405.574	1405.526	0.0474	125	CIPNECK = CI = CNLG
1/y7-2/b3-1/b4	1518.658	1518.643	0.015	197	CIPNECK = CIL = CNLG
1/y7-2/b4-1/a10	2341.975	2341.988	−0.0132	340	CIPNECK = CILD = CNLGYDMVNN
1/y7-2/b6-1/a10	2530.054	2529.985	0.0696	102	CIPNECK = CILDTS = CNLGYDMVNN
1/y7-2/b8-1/b3	1975.839	1975.88	−0.0417	245	CIPNECK = CILDTSNP = CNL
1/y8-1/a1-2/a5	1493.663	1493.629	0.0336	182	VCIPNECK = C = CILD
1/y8-2/b9-1/a3	2145.981	2145.931	0.0496	164	VCIPNECK = CILDTSNPV = CNL
1/y9-1/b1-2/b5	1663.695	1663.662	0.0337	104	NVCPNECK = C = CILD
1/y9-2/b1-1/a6	1755.696	1755.718	−0.0212	658	NVCPNECK = C = CNLGYD
1/y9-2/b1-1/b1	1221.453	1221.521	−0.068	782	NVCPNECK = C = C
	2496.067	2496.051	0.0159	634	NVCPNECK = CILDTSNP = CNLGYD
Pair	Score1	Score2	p	N	Mutation
-------	--------	--------	---	-----	----------
1/y9-2/b8-1	2260.023	2259.99	0.0334	668	NVCIPNECK=CILDTSNPV=CNL
2/y10-1/y12-1/b2	2665.192	2665.097	0.0942	258	CILDTSNPV=MVNVCIPNECK=CN
2/y10-1/y7-1/b10	3014.319	3014.31	0.0088	1407	CILDTSNPV=CIPNECK=CNLGYDMVNN
2/y10-1/y7-1/b11	3113.388	3113.393	−0.0056	120269	CILDTSNPV=CIPNECK=CNLGYDMVNNV
3/y10-1/y9-1/b6	2556.124	2556.095	0.0291	1309	CILDTSNPV=CIPNECK=CNLGYD
2/y10-1/y9-1/a4	2463.15	2463.093	0.0574	609	CILDTSNPV=NVCIPNECK=CNLG
2/y10-1/y9-1/a5	2626.214	2626.114	0.0999	654	CILDTSNPV=NVCIPNECK=CNLGY
2/y10-1/y9-1/b3	2434.124	2434.059	0.0645	571	CILDTSNPV=NVCIPNECK=CNL
Fig. 5. Disulfide bonds SS5 and SS6.
Table 8
Disulfide bond SS7 (Cys95-Cys113) and SS8 (Cys115-Cys129) peptides.

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
39 Fragments					
Constituent Peptides 11					
1/a2	200.1399	200.141	−0.0011	247	QV
1/a3	301.1876	301.1464	0.0412	100	QVT
1/b1	129.0664	129.0653	0.0011	33	Q
1/y1	147.1133	147.1145	−0.0012	1258	K
1/y3	318.1777	318.1789	−0.0012	47	NGK
1/y4	375.1992	375.2	−0.0008	52	GNGK
2/a2	131.082	131.0274	0.0546	30	T
2/b1	102.0555	102.0558	−0.0003	107	T
2/b2	159.077	159.0768	0.0002	140	TG
2/y2	204.1348	204.0705	0.0643	30	GK
2/y4	431.2618	431.2624	−0.0006	72	NGK

Cys95 to Cys113 3 Fragments
1/b7-2/b5	1105.441	1105.43	0.0109	157	QVTGNG = TGVC
1/y6-2/a4	909.3923	909.4301	−0.0378	58	TCGNGK = TGVC
1/y6-2/b4	937.3871	937.3987	−0.0115	257	TCGNGK = TGVC

Cys115 to Cys129 4 Fragments
2/y5-3/b2	722.2966	722.3025	0.0059	45	CNIGK = CS
2/y5-3/y3	868.4021	868.3544	0.0477	103	CNIGK = CSK
2/y6-3/a2	781.3337	781.4172	−0.0835	21	SCNIGK = CS
2/y6-3/b2	809.3286	809.3259	0.0027	90	SCNIGK = CS

T12, T14, and T16 linkage 21 Fragments
1/a4-2/a6-3/a1	997.3728	997.3982	−0.0254	39	QVTGVCSC = C
1/a4-2/a6-3/a2	1084.405	1084.434	−0.0294	146	QVTGVCSC = CS
1/a4-2/a8-3/b2	1339.527	1339.585	−0.0582	210	QVTGVCSCNI = CS
1/a4-2/y8-3/y3	1558.685	1558.64	0.0449	111	QVTGVCSCNIK = CSK
1/a5-2/a6-3/a1	1054.394	1054.432	−0.0376	60	QVTGVCSC = C
1/a6-2/y8-3/y3	1729.749	1729.66	0.089	51	QVTGVCSCNIK = CSK
1/a7-2/a7-3/b1	1367.497	1367.472	0.0244	33	QVTGVCSCNIK = CSK
1/b5-2/a9-3/b2	1481.565	1481.493	0.0713	35	QVTGVCSCNIK = CSK
1/b6-2/a7-3/b1	1338.47	1338.53	−0.0596	72	QVTGVCSCNIK = CSK
1/b6-2/b9-3/y3	1769.708	1769.651	0.0566	1155	QVTGVCSCNIK = CSK
1/y5-2/b6-3/y3	1360.512	1360.561	−0.0047	249	CNGK = TGVCSC = CSK
1/y5-2/b9-3/b1	1411.523	1411.599	−0.0076	348	CNGK = TGVCSCNIK = CS
1/y5-2/y8-3/a1	1371.564	1371.529	0.035	254	CNGK = VCSCNIK = CS
1/y5-2/y8-3/b2	1486.591	1486.645	−0.0536	270	CNGK = VCSCNIK = CS
1/y6-2/y10-3/y3	1891.814	1891.761	0.0521	105	TCGNGK = TGVCSCNIK = CSK
Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
1/y7-2/b8-3/b2	1641.649	1641.631	0.0188	78	VTGNK = TGVCSCNI = CS
1/y7-2/y10-3/y3	1990.882	1990.798	0.0837	124	VTGNK = TGVCSCNIGK = CSK
1/y7-2/y8-3/b2	1686.707	1686.75	−0.0424	6211	VTGNK = VSCNIGK = CS
1/y8-2/b8-3/b1	1682.676	1682.723	−0.0466	32	QVTGNK = TGVCSCNI = C
1/y8-2/b9-3/y3	1972.835	1972.819	0.0156	407	QVTGNK = TGVCSCNIG = CSK
1/y8-2/y10-3/y3	2118.94	2118.932	0.0085	4955	QVTGNK = TGVCSCNIG = CSK
Fig. 6. Disulfide bonds SS7 and SS8.
Table 9
Disulfide bond SS9 (Cys137-Cys148) peptides.

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
35 Fragments	constituent peptides 10 Fragments				
1/y2	260.1974	260.2041	-0.0067	262	LK
1/y3	347.2294	347.2299	-0.0005	129	SLK
2/a1	102.0555	102.0559	-0.0004	754	E
2/a2	216.0984	216.1371	-0.0387	65	EN
2/a4	446.1887	446.2249	-0.0362	20	ENET
2/b1	130.0504	130.0469	0.0035	17	E
2/b2	244.0933	244.0929	0.0004	367	EN
2/b3	373.1359	373.1376	-0.0017	171	EN
2/b4	474.1836	474.1958	-0.0122	88	ENET
2/y1	147.1133	147.1133	0	1131	K

Cys137 and Cys148 25 Fragments

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
1/a1-2/y2	323.1212	323.1008	0.0204	15	C=CK
1/a1-2/y4	553.2114	553.2058	0.0056	53	C=ETCK
1/a1-2/y5	667.2544	667.2748	-0.0204	59	C=NETCK
1/a2-2/y2	410.1532	410.1623	-0.0091	36	CS=CK
1/a2-2/y4	640.2435	640.2652	-0.0217	34	CS=ETCK
1/a3-2/y3	624.2849	624.2893	-0.0044	27	CSL=CKT
1/a3-2/y5	867.3705	867.3508	0.0197	89	CSL=NETCK
1/b1-2/a5	650.1914	650.2377	-0.0463	130	C=ENETC
1/b2-2/a5	737.2234	737.2545	-0.0311	139	CS=ENETC
1/b1-2/y2	351.1161	351.1717	-0.0556	207	C=CK
1/b1-2/y3	452.1638	452.1826	-0.0188	23	C=CKT
1/b2-2/y2	438.1481	438.1512	-0.0031	139	CS=CK
1/b2-2/y3	539.1958	539.2008	-0.005	166	CS=CKT
1/b2-2/y5	782.2813	782.3434	-0.0621	180	CS=NETCK
1/b3-2/y2	551.2322	551.2324	-0.0002	219	CSL=CK
1/y4-2/y2	697.3377	697.3329	0.0048	465	CSLK=CK
1/y4-2/a5	961.413	961.4069	0.0061	130	CSLK=ENETC
1/y4-2/b5	1024.408	1024.4126	-0.0046	502	CSLK=ENETC
1/y4-2/y3	798.3854	798.3802	0.0052	553	CSLK=CKT
1/y4-2/y4	927.428	927.4216	0.0064	223	CSLK=ETCK
1/y4-2/y5	1041.4709	1041.4377	0.0332	94	CSLK=NETCK
1/y4-2/y6	1170.5134	1170.511	0.0024	25002	CSLK=ENETCK
1/a1-2/y6	796.2969	796.3787	-0.0818	646	C=ENETC
1/b2-2/y6	911.3239	911.2963	0.0276	155	CS=ENETC
1/y4-2/z3	781.3588	781.3229	0.0359	77	CSLK=CKT
Fig. 7. Disulfide bond SS9.
Table 10
Disulfide bond SS10 (Cys141-Cys157) and SS11 (Cys159-Cys172) peptides.

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
65 Fragments					
	Constituent Peptides 19 fragments				
1/y1	147.1133	147.1126	0.0007	1153	K
1/y2	260.1974	260.2021	-0.0047	167	LK
3/a2	145.0613	145.0646	-0.0033	400	DG
3/a5	518.2979	518.296	0.0018	109	DGFII
3/a8	890.426	890.3921	0.0339	84	DGFIIIDQEQ
3/a9	977.458	977.3666	0.0914	120	DGFIIIDQES
3/b1	116.0348	116.0532	-0.0184	28	D
3/b2	173.0562	173.0561	0.0001	645	DG
3/b3	320.1246	320.1256	-0.0010	6533	DGF
3/b4	433.2087	433.2064	0.0023	1906	DGFII
3/b5	546.2927	546.2884	0.0043	325	DGFII
3/b6	661.3197	661.3064	0.0133	295	DGFIIID
3/b9	1005.453	1005.383	0.0699	237	DGFIIIDQES
3/y1	156.0773	156.0769	0.0004	4578	H
3/y2	293.1362	293.1368	-0.0006	1684	HH
3/y3	430.1951	430.1913	0.0038	1430	HHH
3/y4	567.254	567.2552	-0.0012	1460	HHHH
3/y5	704.3129	704.3094	0.0035	1025	HHHHH
3/y7	942.4196	942.4053	0.0143	588	THHHHHH

Cys141 to Cys157 11 Fragments

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
1/a1-2/a1	149.0207	149.1165	-0.0958	16	C=C
1/a2-2/a1	262.1048	262.1324	-0.0276	39	CL=C
1/a2-2/a2	377.1317	377.1469	-0.0152	258	CL=CD
1/a2-2/b1	290.0997	290.1243	-0.0246	45	CL=C
1/a2-2/b2	405.1266	405.1262	0.0005	230	CL=CD
1/y3-2/a12	551.2322	551.2063	0.0259	62	CL=C
1/b1-2/a2	292.0426	292.0312	0.0114	82	C=CD
1/b1-2/b1	205.0106	205.0966	-0.086	154	C=C
1/b2-2/b1	318.0946	318.0872	0.0074	36	CL=C
1/y3-2/b1	464.2001	464.214	-0.0139	41	CLK=C
1/y3-2/b2	579.2271	579.2289	-0.0018	1027	CLK=CD

Cys159 to Cys172 3 fragments

Assignment	Theoretical Mass (Da)	Observed Mass (Da)	Mass Error (Da)	Intensity (counts)	Identification
2/y2-3/a12	1527.682	1527.653	0.0291	242	CK=DGFIIIDQESSIC
2/y2-3/y19	2497.089	2497.066	0.0227	994	CK=DGFIIIDQESSICTHHHHHHH
2/y3-3/a12	1642.709	1642.633	0.0763	69	DCK=DGFIIIDQESSIC
Linkage Fragments	Mass (Da)	Delta Mass (Da)	p-Value	CID	
-------------------	----------	----------------	---------	-----	
T12, T14, and T16					
1/a1–2/a3-3/a16	2156.8411	0.0266	37	CDC	
1/a1–2/a3-3/y10	1609.5782	0.0193	132	CDC	
1/a1–2/y4-3/y18	2673.0967	-0.0608	74	CDC	
1/a1–2/y4-3/y8	1583.5625	-0.0533	363	CDC	
1/a2-2/a3-3/a16	2269.9225	0.0051	921	CDC	
1/a2-2/a3-3/a18	2544.043	0.0193	132	CDC	
1/a2-2/y4-3/a15	2306.9666	0.0623	74	CDC	
1/b1–2/b3-3/a12	1700.6064	-0.0505	100	CDC	
1/b1–2/b3-3/y14	2124.7283	-0.0476	72	CDC	
1/b1–2/y4-3/a14	2054.8186	-0.0437	85	CDC	
1/b2-2/b3-3/b13	1942.7332	-0.0597	95	CDC	
1/b2-2/b3-3/y8	1578.536	-0.0721	228	CDC	
1/b2-2/y4-3/a14	2197.9026	-0.0066	671	CDC	
1/b2-2/y4-3/b17	2637.042	0.0576	233	CDC	
1/b2-2/y4-3/y10	1924.7576	-0.0524	84	CDC	
1/b2-2/y4-3/y16	2610.0859	-0.0017	407	CDC	
1/y3-2/y4-3/a18	2892.2439	0.0803	403	CDK	
1/y3-2/y4-3/b14	2372.0332	-0.0352	341	CDK	
1/y3-2/y4-3/b18	2920.2388	-0.0088	1160	CDK	
1/y3-2/y4-3/y11	2157.8953	0.0024	922	CDK	
1/y3-2/y4-3/y13	2414.9963	-0.011	897	CDK	
1/y3-2/y4-3/y14	2530.0232	-0.0046	2415	CDK	
1/y3-2/y4-3/y16	2756.1914	-0.0088	1421	CDK	
1/y3-2/y4-3/y18	2960.2812	0.043	911	CDK	
1/y3-2/y4-3/y19	3075.3081	0.0005	42471	CDK	
1/y3-2/y4-3/y8	1870.7471	-0.0212	131	CDK	
1/y3-2/y4-3/z14	2512.9968	-0.0657	102	CDK	
1/y3-2/y4-3/z8	1853.7205	-0.0724	66	CDK	
Acknowledgements

The authors thank Ashley Birkett and Merribeth Morin of PATH’s Malaria Vaccine Initiative (MVI) for their support and assistance. The authors thank Steven Becht, Ying-Hua Chang and Jie Ding from PPD GMP Lab in Middleton, WI for work on the LC-MS/MS method for peptide mapping analysis. The authors thank the project team at Syngene International, a Biocon company, in Bangalore, India for cloning, production, and preliminary characterization of the baculovirus-expressed Pfs25. The work

Fig. 8. Disulfide bonds SS10 and SS11.
was supported by the Bill & Melinda Gates Foundation (OPP1108403). The views expressed herein are solely those of the authors and do not necessarily reflect the views of the Foundation.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.03.034.

References

[1] S.M. Lee, J.L. Plieskatt, C.R. King, Disulfide bond mapping of Pfs25, a recombinant malaria transmission blocking vaccine candidate, Anal. Biochem. 542 (2018) 20–23.
[2] S.M. Lee, C.K. Wu, J. Plieskatt, D.H. McAdams, K. Miura, C. Ockenhouse, C.R. King, Assessment of Pfs25 expressed from multiple soluble expression platforms for use as transmission-blocking vaccine candidates, Malar. J. 15 (2016) 405.