Evaluation of the prevalence of sexually transmitted bacterial pathogens in Northern Cyprus by nucleic acid amplification tests, and investigation of the relationship between these pathogens and cervicitis

Kuzey Kıbrıs'ta cinsel yolla bulaşan bakteriyel patojenlerin prevelansının nükleik asit amplifikasyon testleri ile incelenmesi ve bu patojenlerin servisitle olan ilişkilernin araştırılması

© Copyright 2019 by Turkish Society of Obstetrics and Gynecology

Turkish Journal of Obstetrics and Gynecology published by Galenos Publishing House.

Abstract

Objective: To evaluate the prevalence of pathogens, Chlamydia trachomatis, Neisseria gonorrhoea and Trichomonas vaginalis, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum, and Ureaplasma parvum in women via multiplex-polymerase chain reaction (PCR)-deoxyribonucleic acid (DNA).

Materials and Methods: Cervical swabs of 273 women in reproductive age who underwent gynecologic examination in our outpatient clinic were evaluated using the multiplex-PCR-DNA method. The presence of cervicitis, contraceptive methods, marital status, and the number of partners were evaluated.

Results: One hundred six (39%) of the 273 women had at least one bacterium, 25 women (9.8%) had two bacteria, and three women (1%) had three bacteria. U. urealyticum was the most frequently encountered bacterium (13.9%), followed by M. hominis (12.8%), U. parvum (12.4%), C. trachomatis (5.4%), M. genitalium (2.9%), N. gonorrhoea (2.5%), and T. vaginalis (0.3%). Bacterial infection was detected more frequently in women aged <25 years, single, who had multiple partners, and clinically diagnosed with cervicitis. The cervicitis rate was 39% in our study. M. genitalium was significantly more frequent in women with cervicitis than in women without cervicitis (5.6 vs. 1.2%, p=0.005). C. trachomatis and N. gonorrhoea, which are often associated with cervicitis, were comparable in women with and without cervicitis.

Conclusion: Women with clinically diagnosed cervicitis or even with a normal-appearing cervix should be tested using multiplex-real-time PCR-nucleic-acid-amplification tests on suspicion of such an infection. M. genitalium is an emerging bacterial agent for cervicitis along with C. trachomatis and N. gonorrhoea.

Keywords: Chlamydia, neisseria, trichomonas, mycoplasma, ureaplasma

Öz

Amaç: Kadınlarda multipleks-polimeraz zincir reaksiyonu (PCR)-deoksiribonükleik asit (DNA) ile Chlamydia trachomatis, Neisseria gonorrhoea ve Trichomonas vaginalis, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum ve Ureaplasma parvum patojenlerinin görülme sıkalığı değerlendirilerek ve klinik olarak servis tanısı konulan kadınlarda bu bakterilerin rolünü incelenmesi.

Gereç ve Yöntemler: Polikliniklikle alınan servikçili swabs, multipleks-PCR-DNA yöntemiyle incelendi. Servis tanısı konulan kadınlarda bu bakterilerin rolünü incelendi. Servis varlığı, kontraseptif yöntemler, evlilik durumu ve partner sayısı değerlendirildi.

Bulgular: Iki yüz yetmiş üç kadınnın %39’u en az bir bakteri tespit edildi. En sıklık sırasına göre M. hominis (%12.8), U. parvum (%12.4), C. trachomatis (%5.4), M. genitalium (%2.9), N. gonorrhoea (%2.5), T. vaginalis (%0.3) oranlarında tespit edildi. Genitalium daha sık tespit edildi. Cervicitis tespit edilen kadınlarda M. genitalium’in prevalansı %5.4 ve cervicitis olmayan kadınlarda %1.2 olarak belirlendi (p=0.005). C. trachomatis ve N. gonorrhoea, cervicitis tanısı konulan kadınlarda comparable olarak tespit edildi.

Sonuç: Kadınlarda cervicitis tanısı konulmuş veya cervicitis tanısı olmayan normal-appear cervix’lerde tespit edilen patojenlere yönelik multiplex-polimeraz zincir reaksiyonu testleri kullanılarak cervicitis patojenlerinin prevalansı değerlendirilmeli ve klinik olarak servis tanısı konulan kadınlarda bu bakterilerin rolü araştırılmalıdır.

Keywords: Chlamydia, Neisseria, Trichomonas, Mycoplasma, Ureaplasma

Address for Correspondence/Yazışma Adresi: Onur Güralp, MD, Carl von Ossietzky Oldenburg University Faculty of Medicine, Obstetrics and Gynecology, Klinikum AöR, Oldenburg, Germany

Phone: +49 441 403 22 88 E-mail: dronur@hotmail.com ORCID ID: orcid.org/0000-0002-3517-3046

Received/Geliş Tarihi: 24.05.2019 Accepted/Kabul Tarihi: 12.10.2019

© Copyright 2019 by Turkish Society of Obstetrics and Gynecology

Turkish Journal of Obstetrics and Gynecology published by Galenos Publishing House.

242
Introduction

Every year, more than 1 million people are infected with sexually transmitted diseases (STDs)(1). *Chlamydia trachomatis*, *Neisseria gonorrhoeae* and *Trichomonas vaginalis* are the very well-known sexually transmissible pathogens, whereas *Mycoplasma genitalium* has recently gained importance in the pathogenesis of cervicitis(2). These bacteria are either asymptomatic or present themselves with mild symptoms, which may easily be overlooked(1). These bacterial STDs may lead to tubal infertility and extrauterine pregnancy as well as chronic pelvic pain, which is associated with a severe socioeconomic burden(3). Besides *Mycoplasma hominis* and *Ureaplasma urealyticum*, *Ureaplasma parvum* may be commensally colonized in the cervix. However, some authors suggest that such colonization may be associated with poor obstetric outcome, postpartum sepsis, and neonatal infections(3). The serologic diagnosis or traditional culture media may not be sufficient for diagnosis(2,4). In some cases, the presence of multiple agents makes it even more difficult to diagnose the actual agents(4). For that reason, due to their high sensitivity and specificity for the diagnosis of STDs, as well their ability to diagnose more than one pathogen at once, multiplex real-time polymerase chain reaction (PCR) nucleic acid amplification tests (NAAT) have gained popularity over conventional microbiologic culture methods(4-6). In this study, we aimed to evaluate the prevalence of pathogens including *C. trachomatis*, *N. gonorrhoeae* and *T. vaginalis*, *M. hominis*, *M. genitalium*, *U. urealyticum* and *U. parvum* in women via multiplex PCR DNA tests, and to assess the role of these bacteria in women with clinically diagnosed cervicitis who were admitted to our outpatient clinic in Near East University for gynecologic examinations.

Material and Methods

In this study, the cervical swabs of 273 women in reproductive age who were admitted for gynecologic examinations with symptoms of vaginal discharge or who asked for a screening of sexually transmitted infections without any symptoms to the outpatient clinic of Near East University, Department of Obstetrics and Gynecology, between 2014 and 2016, were examined using the multiplex PCR DNA method. The results were retrospectively evaluated. The study was approved by the Ethics Committee of Near East University on March 31st, 2016 (number: 2016/36-266). Informed and signed consent was obtained from all participants. Inclusion criteria were apparently healthy, sexually active women aged >18 years without pelvic pain or fewer, who were not pregnant, and had not received antibiotic recently for a gynecologic infection. Women with pelvic inflammatory disease (PID) were excluded from the study. All women had a gynecologic examination, and the presence of cervicitis, contraceptive methods, marital status, and the number of partners were documented.

Cervicitis was described as the presence of purulent or mucopurulent discharge and/or hyperemic, edematous and friable (bleeding even with a light touch of a cervical swab) cervix(7,8). The cervical swabs from participants were taken by gynecologists using a single-use speculum with the manufacturer’s kits and were sent to the genetic laboratory.

Nucleic Acid Isolation Procedure

Nucleic acid isolation was performed in accordance with the manufacturer’s instructions (GeneAll RibospinTM vRD). Swab samples were obtained from the cervix and then transferred to the Medical Genetics Laboratory of Near East University Hospital. The following steps were performed: Centrifugation at 5000 rpm for 15 minutes, addition of buffer (VL, 500 µL), incubation for 10 min at 25 °C, addition of buffer (700 µL RB1), and vortexing. Preparation of the spin column. Removal of residual buffer by centrifugation of the mixture at 12,000 g. Addition of nuclease-free H2O. Re-centrifugation at over 10,000 g for 60 seconds. The purified nucleic acid was kept at 4 °C for direct analysis and kept at -70 °C for subsequent analysis.

Polymerase Chain Reaction

PCR was conducted for detecting the STD panel. The fast track diagnostic urethritis plus real-time PCR kit was used for analysis, which examines *C. trachomatis*, *N. gonorrhoeae*, *T. vaginalis*, *M. hominis*, *M. genitalium*, *U. urealyticum*, and *U. parvum*. The DNA amplification reactions were performed using Qiagen Rotor-gene Q. After the DNA amplification, the results were interpreted according to the given fluorescence trace of the positive samples. The results were examined using the data supplied by the manufacturer.

Statistical Analysis

Continuous parametric variables are given as mean and standard deviation. Categorical variables are expressed as number or percentage. T-test or analysis of variance were used for the comparison of parametric variables. Categorical variables were compared using the chi-square (χ^2) test. Statistical calculations were performed using Statistical Package for Social Sciences (SPSS 15.0, Chicago, IL, USA). P<0.05 was accepted as significant.
Results

A total of 273 women were included in this study. The demographic and clinical features of the patients are given in Table 1. The mean age of the women was 31.03±9.20 years. The study group consisted mainly of married women (70%), with a single partner (85%); 39.5% of the women had cervicitis. One hundred six (39%) of the 273 women had at least one bacterium, 25 women (9.8%) had two bacteria, and 3 women (1%) had three bacteria. Among the 273 women, U. urealyticum was the most frequently encountered bacterium in the cervix (13.9%), followed by M. hominis (12.8%), U. parvum (12.4%), C. trachomatis (5.4%), M. genitalium (2.9%), N. gonorrhea (2.5%), and T. vaginalis (0.3%). The infection rates according to the age, marital status, number of partners, the presence of cervicitis, and type of contraceptive method are presented in Table 2. Bacterial infection was detected more frequently in women aged <25 years, those who were single, who had multiple partners, and clinically diagnosed with cervicitis. Bacterial infection was detected less frequently in women who used a condom as a contraceptive method. M. hominis was the most commonly seen bacterium in women aged under 25 years. M. hominis and U. urealyticum were significantly more common in women with multiple partners. The cervicitis rate

Table 1. The demographic and clinical features of the patients

	Number of women	percent (%)
Age groups		
<25 years	83	30.40
26-30 years	78	28.57
31-35 years	48	17.58
>36 years	64	23.44
Marital status		
Single	81	29.67
Married	192	70.33
Number of partners		
One	233	85.35
Multiple	40	14.65
Deliveries		
No	122	44.69
Yes	151	55.31
Vaginal discharge		
Absent	231	84.62
Present	42	15.38
Cervicitis		
absent	165	60.44
present	108	39.56
Contraceptive method		
Condom	17	6.23
Withdrawal (coitus interruptus)	160	58.61
Oral contraceptives	63	23.08
Intrauterine device	33	12.09

Chi-square test, p<0.05 was accepted as statistically significant

Table 2. The infection rates according to the age, marital status, number of partners, vaginal mucopurulent discharge, presence of cervicitis and type of contraceptive method

	No detectable bacteria		Bacteria positive		P
Age groups	n (%)	n (%)			
<25 years	42 (50.60)	41 (49.40)	0.09		
26-30 years	50 (64.10)	28 (35.90)			
31-35 years	30 (62.50)	18 (37.50)			
>36 years	45 (70.31)	19 (29.69)			
Marital status					
Single	36 (44.44)	45 (55.56)	<0.001**		
Married	131 (68.23)	61 (31.77)			
Number of partners					
One	155 (66.52)	78 (33.48)	<0.001**		
Multiple	12 (30.00)	28 (70.00)			
Parity					
No	65 (53.28)	57 (46.72)	0.02*		
Yes	102 (67.55)	49 (32.45)			
Complaint					
Asymptomatic	147 (63.64)	84 (36.36)			
Vaginal mucopurulent discharge	20 (47.62)	22 (52.38)	0.05*		
Cervicitis					
Absent	110 (66.67)	55 (33.33)	0.02*		
Present	57 (52.78)	51 (47.22)			
Contraceptive method					
Condom	16 (94.12)	1 (5.88)	0.03*		
Withdrawal (coitus interruptus)	93 (58.13)	67 (41.88)			
Oral contraceptives	36 (57.14)	27 (42.86)			
Intrauterine device	22 (66.67)	11 (33.33)			

Chi-square test, p<0.05 was accepted as statistically significant
was 39% among the 273 women in our study. Among women with cervicitis, M. genitalium was significantly more frequent in women with cervicitis than in those without cervicitis (5.6% vs. 1.2% \(p<0.005 \)). C. trachomatis and N. gonorrhoea, which are often associated with cervicitis, were comparable in women with and without cervicitis. In 55 (33%) of 165 women with no clinical cervicitis, at least one bacterium was detected, and 15 (9%) women had at least one of the bacteria known to be associated with cervicitis, such as C. trachomatis, N. gonorrhoea, M. genitalium or T. vaginalis. By contrast, among 108 women with clinical cervicitis, the rate of the bacteria known to be associated with cervicitis was 14.9% (9% vs. 14.9%; \(p=0.133 \)). The rates of simultaneous infections with multiple bacteria were comparable between women with and without cervicitis (9.3% vs. 11.5%, \(p=0.565 \)).

Discussion

In our study, 39% of women had at least one bacterium. Among the 273 women, *U. urealyticum* was the most frequently encountered bacterium in the cervix (13.9%), followed by *M. hominis* (12.8%), *U. parvum* (12.4%), which showed a balanced distribution. The detection rate of bacteria was reported to vary between 30.7 and 49% in previous screened populations.\(^{(4,5)}\) Yamazaki et al.\(^{(10)}\) screened 799 Korean women and detected at least one bacterium in 49% of women. Contrary to our study, *U. parvum* was the most frequently (32.5%) found bacterium, followed by *U. urealyticum* (3.5%) and *M. hominis* (1%). Lee et al.\(^{(4)}\) screened 304 women and detected bacteria in 36.5%, most frequently *U. urealyticum* (14.5%), followed by *M. hominis* (13.8%). In south Italy, Del Prete et al.\(^{(8)}\) screened 1272 women and detected at least one bacterium in 30.7% of women. The most commonly detected bacterium was by far *U. parvum* (25.9%). In our study, we detected the bacterial colonization of *U. parvum* with a rate of 12.4%. Yamazaki et al.\(^{(10)}\) reported high detection rates of *U. parvum* as 41.7%. Yamazaki et al.\(^{(10)}\) suggested that the high prevalence of the latter two bacteria might be attributed to the region, culture, and tendency to nightlife. Camporiondo et al.\(^{(4)}\) performed a screening study in 309 Italian women and detected no *C. trachomatis, M. genitalium* or *N. gonorrhoea*, but *U. parvum* (28.8%), *M. hominis* (3.9%) and *U. urealyticum* (4.5%). McIver et al.\(^{(11)}\) evaluated 175 sexually active Australian women and detected *U. parvum* (53%), *M. hominis* (7.4%), and *U. urealyticum* (3.4%) in descending order. Simultaneous infection rates with *U. parvum + M. hominis, U. urealyticum + M. hominis* and *U. urealyticum + U. parvum* were 7.4%, 1.1%, and 2.9%, respectively. In our study *U. urealyticum, M. hominis*, and *U. parvum* were among the most commonly detected bacteria in the cervix. They are accepted as genital commensalistic organisms and found in healthy women.\(^{(10)}\) Routine screening and treatment of the latter three bacteria are controversial.\(^{(10)}\) Some authors suggest that colonization with *U. urealyticum* and *U. parvum* in high density is associated with non-specific cervicitis,\(^{(12)}\) whereas others suggest that there is not enough evidence to suggest that these bacteria cause cervicitis or PID.\(^{(13)}\) However, several studies in pregnant women showed that the presence of these bacteria in amniotic-fluid or membranes might be associated with preterm labor, preterm premature rupture of membranes (PPROM), and neonatal infections.\(^{(14-24)}\) Abele-Horn et al.\(^{(21)}\) showed that *U. urealyticum* was associated with preterm labor. Kataoka et al.\(^{(22)}\) evaluated 877 pregnant women under 11 gestational weeks (GW) and detected the prevalence rates of *U. urealyticum, M. hominis*, and *U. parvum* as 52.0%, 11.2%, and 8.7%, respectively. Despite the higher prevalence of *U. urealyticum* in the latter study, *U. parvum* had a stronger association with late abortion and preterm labor compared with *U. urealyticum*.\(^{(22)}\) One hundred eighty-four pregnancies complicated with preterm labor and PPROM were evaluated in a prospective study and coinfection with *M. hominis, and U. urealyticum* was shown to be associated with poorer pregnancy outcomes compared with infection with *U. urealyticum* alone.\(^{(24)}\) In another study, vaginal *U. urealyticum* and *U. parvum* colonization were also shown to be associated with choioamnionitis in pregnancies under 28 GW complicated with PPROM.\(^{(24)}\) Rumyantseva et al.\(^{(25)}\) recently evaluated 1773 women and observed that the isolation rates of *U. parvum* and *M. hominis* in women with bacterial vaginosis were significantly higher in women with altered vaginal microflora compared with women with normal vaginal flora. Chlamydia is known to be the most common STD,\(^{(26,27)}\) and it is one of the major organisms causing cervicitis and PID, even if it is asymptomatic. In our study, the prevalence of *C. trachomatis* was 5.4%, which was more frequent than other sexually transmissible bacteria such as *M. genitalium* (2.9%), *N. gonorrhoea* (2.5%) and *T. vaginalis* (0.3%). Chlamydia prevalence, along with the prevalence of other STDs, may vary according to the age, race, region, and socioeconomic status.\(^{(26,28)}\) The prevalence of chlamydia was reported as 0.6% in Australia,\(^{(11)}\) 2.6% in the Netherlands,\(^{(29)}\) 2.3% in China,\(^{(30)}\) and as high as 14.2% in South Africa.\(^{(31)}\) The prevalence of chlamydia in the United States of America (USA) was reported to be 4.2% in the general population, but as high as 10% in Mexicans living in the USA.\(^{(26)}\) In a systematic review and meta-analysis, the prevalence of chlamydia in Europe and developed countries such as Canada, Australia, and New Zealand was reported as 3.0-5.3%\(^{(28)}\), which is also concordant with the values in our study. In the present study, the prevalence of gonorrhea was 2.5%. Gonorrhea is the second most common sexually transmitted bacterial infection following chlamydia.\(^{(29)}\) According to the World Health Organization report in 2012, the global gonorrhea prevalence varies between 0.3% and 1.7%.\(^{(11)}\) In our study, the prevalence of gonorrhea was significantly over the global average. Nevertheless, the prevalence of STD may vary according to the country or even to the region in the same country. Kim et al.\(^{(5)}\) evaluated 799 Korean women and detected no gonorrhea, whereas Lee et al.\(^{(9)}\) evaluated 304 Korean women and detected gonorrhea in 3.3% of the screened population, which was even higher than...
in our study group. Gaydos et al. (32) evaluated a group of 324 women comprising mainly young African-American women in Baltimore, USA, and detected the rate of gonorrhea as 4.6%. The high rates of gonorrhea in our study may be attributed to the presence of nightclubs in our region. In our study, the rate of M. genitalium infection was 2.9%. The global M. genitalium infection rate is reported as 1.6-2.2% (33). Nevertheless, prevalence rates as high as 19.2% have also been reported (32). Nowadays, since the widespread use of NAATs in recent years, M. genitalium counts as one of the most important bacteria, following N. gonorrhoeae and C. trachomatis, causing cervicitis (34). The prevalence of T. vaginalis was 0.3% in our study. T. vaginalis is the most common non-viral sexually transmissible infection in the USA and may cause urethritis in men and women, and vaginitis and cervicitis in women (35). It is hard to determine the true prevalence of T. vaginalis because the feedback is not so efficient as with other STD pathogens. According to the Centers for Disease Control and Prevention, the prevalence of T. vaginalis in non-Hispanic women in the USA is 1.8% (2). Moreover, in hitherto literature, prevalences of T. vaginalis as low as 0.1% have been reported (3).

Cervicitis

In our study, the cervicitis rate was 39% among 273 women, which is similar to the 41% among 324 women reported by Gaydos et al. (32). Gaydos et al. (32) detected that C. trachomatis and M. genitalium were associated with cervicitis; however, only M. genitalium had a significant association with cervicitis in multiple regression analysis. In our study, the M. genitalium infection rate was significantly elevated in women with clinical cervicitis compared with women without cervicitis, which supports recent data about the importance of M. genitalium as an emerging pathogen of cervicitis. The clinical diagnosis of cervicitis is not always suggestive for a sign of bacterial infection. It has been shown that no infectious pathogen is detectable in cervicitis is not always suggestive for a sign of bacterial infection. There was no significant difference regarding simultaneous infection with multiple bacteria between women with and without cervicitis.

Table 3. Studies about the detection rates of infectious agents causing vaginitis and cervicitis

Agent	Present Study %	Lee et al. (4)	Kim et al. (5)	McIver et al. (11)	Camporiondo et al. (6)	Del Prete et al. (9)	Choe et al. (39)	Gaydose et al. (32)
U. urealyticum	13.9	14.1	7.6	6.1	4.5	5.1	40.3	-
M. hominis	12.8	13.8	9.9	13.7	3.9	5.9	14.9	-
U. parvum	12.4	-	42	57	28.8	24.9	52.7	-
C. trachomatis	5.4	3.0	1.1	0.6	-5.9	1.8	4.0	11.1
M. genitalium	2.9	0.3	1.0	1.3	-0.3	0.3	4.0	19.2
N. gonorrhoeae	2.5	3.3	0.0	0.0	-0.1	0.1	1.5	4.6
T. vaginalis	0.3	2.0	0.1	4.0	1.3	1.4	1.0	15.3
Ethics

Ethics Committee Approval: The study was approved by the Ethics Committee of the Near East University in 31.03.2016 with the number of 2016/36-266.

Informed Consent: Informed and signed consent was obtained from all participants.

Peer-review: Internally peer-reviewed.

Authorship Contributions

Concept: O.G., Data Collection or Processing: O.G., B.K., Analysis or Interpretation: O.G., A.B., E.O.B., Literature Search: O.G., M.S.S., Writing: O.G.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.

References

1. http://www.who.int/news-room/fact-sheets/detail/sexually-transmitted-infections-(STIs) accessed at 27.11.2018.
2. Centers for Disease Control and Prevention. Diseases characterized by urethritis and cervicitis. https://www.cdc.gov/std/tg2015/urethritis-and-cervicitis.htm. Accessed October 26, 2017.
3. Rodrigues MM, Fernandes PA, Haddad JP, Paiva MC, Souza MC, Andrade TC, et al. Frequency of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Mycoplasma hominis and Ureaplasma species in cervical samples. J Obstet Gynaecol 2011;31:237-41.
4. Lee SJ, Park DC, Lee DS, Choe HS, Cho YH. Evaluation of Seeplex® STD6 ACE Detection kit for the diagnosis of six bacterial sexually transmitted infections. J Infect Chemother 2012;18:494-500.
5. Kim Y, Kim J, Lee KA. Prevalence of sexually transmitted infections among healthy Korean women: implications of multiplex PCR pathogen detection on antibiotic therapy. J Infect Chemother 2014;20:74-6.
6. Camporiondo MP, Farchi F, Ciccuzi M, Denaro A, Gallone D, Marachioni F, et al. Detection of HPV and co-infecting pathogens in healthy Italian women by real-time multiplex PCR. Infez Med 2016;24:12-7.
7. Workowski KA, Bolan GA, Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep 2015;64:1.
8. Marrazzo JM, Martin DH. Management of women with cervicitis. Cln Infect Dis 2007;S102.
9. Del Prete R, Ronga L, Lestini M, Addati G, Angelotti UF, Di Carlo D, et al. Simultaneous detection and identification of STI pathogens by multiplex Real-Time PCR in genital tract specimens in a selected area of Apulia, a region of Southern Italy. Infection 2017;45:469-77.
10. Yamazaki T, Matsumoto M, Matsuo J, Abe K, Minami K, Yamaguchi H. Frequency of Chlamydia trachomatis in Ureaplasma- positive healthy women attending their first prenatal visit in a community hospital in Sapporo, Japan. BMC Infect Dis 2012;12:82.
11. McVier CJ, Rimanto N, Smith C, Naing ZW, Rayner B, Lusk MJ, et al. Multiplex PCR testing detection of higher-than-expected rates of cervical mycoplasma, ureaplasma, and trichomona and viral agent infections in sexually active australian women. J Clin Microbiol 2009;47:1358-63.
12. Liu L, Cao G, Zhao Z, Zhao F, Huang Y. High bacterial loads of Ureaplasma may be associated with non-specific cervicitis. Scand J Infect Dis 2014;46:637-41.
13. Horner P, Donders G, Cusini M, Gomborg M, Jensen JS, Unemo M. Should we be testing for urogenital Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum in men and women? - a position statement from the European STI Guidelines Editorial Board. J Eur Acad Dermatol Venereol 2018;32:1845-51.
14. Donders GGG, Ruban K, Bellen G, Petricivic L. Mycoplasma/ Ureaplasma infection in pregnancy: to screen or not to screen. J Perinat Med 2017;45:505-15.
15. Taylor-Robinson D, Lamont RF. Mycoplasmas in pregnancy. BJOG 2011;118:164-74.
16. Ollikainen J, Heiskanen-Kosma T, Korppi M, Katila ML, Heinonen K. Clinical relevance of Ureaplasma urealyticum colonization in preterm infants. Acta Paediatr 1998;87:1075-8.
17. Permi SC, Vardhana S, Korneeiva I, Tuttle SL, Paraskevas LR, Chasen ST, et al. Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: association with amniotic fluid cytokine levels and pregnancy outcome. Am J Obstet Gynecol 2004;191:1382-6.
18. Kundsin RB, Leviton A, Allred EN, Poulin SA. Ureaplasma urealyticum infection of the placenta in pregnancies that ended prematurely. Obstet Gynecol 1996;87:122-7.
19. Cassell GH, Waites KB, Watson HL, Crouse DT, Harasawa R. Ureaplasma urealyticum intrauterine infection: role in prematurity and disease in newborns. Clin Microbiol Rev 1993;6:69-87.
20. Witt A, Berger A, Gruber CJ, Petricivec L, Apfalter P, Worda C, et al. Increased intrauterine frequency of Ureaplasma urealyticum in women with preterm labor and preterm premature rupture of the membranes and subsequent cesarean delivery. Am J Obstet Gynecol 2009;193:1663-9.
21. Abele-Horn M, Wolff C, Dressel P, Pfaff F, Zimmermann A. Association of Ureaplasma urealyticum urethritis with the clinical outcome for neonates, obstetric patients, and gynecological patients with pelvic inflammatory disease. J Clin Microbiol 1997;35:1199-202.
22. Kataoka S, Yamada T, Chou K, Nishida R, Morikawa M, Minami M, et al. Association between preterm birth and vaginal colonization by mycoplasmas in early pregnancy. J Clin Microbiol 2005;44:51-5.
23. Varol F, Er N, Sut N, Sayin CN. A Local Study on Antenatal Features of Preterm Births at 26-32 Versus 33-36 Weeks of Pregnancy. Gynecol Obstet Reprod Med 2018;24:1-6.
24. Suzuki Y, Horie K, Yada Y, Kono Y, Hirashima C, Usui R, et al. Vaginal Ureaplasma species increase chorioamnionitis in very preterm infants with preterm premature rupture of the membranes and subsequent cesarean delivery. Am J Obstet Gynecol 2019;220:1-6.
25. Andrade TC, et al. Frequency of Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Mycoplasma hominis and Ureaplasma urealyticum in preterm infants. Acta Paediatr 1998;87:1075-8.
26. Cassell GH, Waites KB, Watson HL, Crouse DT, Harasawa R. Ureaplasma urealyticum intrauterine infection: role in prematurity and disease in newborns. Clin Microbiol Rev 1993;6:69-87.
27. Witt A, Berger A, Gruber CJ, Petricivec L, Apfalter P, Worda C, et al. Increased intrauterine frequency of Ureaplasma urealyticum in women with preterm labor and preterm premature rupture of the membranes and subsequent cesarean delivery. Am J Obstet Gynecol 2009;193:1663-9.
28. Abele-Horn M, Wolff C, Dressel P, Pfaff F, Zimmermann A. Association of Ureaplasma urealyticum urethritis with the clinical outcome for neonates, obstetric patients, and gynecological patients with pelvic inflammatory disease. J Clin Microbiol 1997;35:1199-202.
29. Kataoka S, Yamada T, Chou K, Nishida R, Morikawa M, Minami M, et al. Association between preterm birth and vaginal colonization by mycoplasmas in early pregnancy. J Clin Microbiol 2005;44:51-5.
30. Varol F, Er N, Sut N, Sayin CN. A Local Study on Antenatal Features of Preterm Births at 26-32 Versus 33-36 Weeks of Pregnancy. Gynecol Obstet Reprod Med 2018;24:1-6.
31. Suzuki Y, Horie K, Yada Y, Kono Y, Hirashima C, Usui R, et al. Vaginal Ureaplasma species increase chorioamnionitis in very preterm infants with preterm premature rupture of the membranes and subsequent cesarean delivery. Am J Obstet Gynecol 2019;220:1-6.
32. Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2016. Atlanta, GA: US Department of Health and Human Services; 2017.
33. O’Connell CM, Ferone ME. Chlamydia trachomatis Genital Infections. Microb Cell 2016;3:390-403.
34. Redmond SM, Alexander-Kisslig K, Woodhall SC, van den Broek IV, van Bergen J, Ward H, et al. Genital chlamydia prevalence in...
Europe and non-European high-income countries: systematic review and meta-analysis. PLoS One 2015;23;10:e0115753.

29. Götz HM, van Bergen JE, Veldhuijzen IK, Broer J, Hoebe CJ, Steyerberg EW, Coenen AJ, de Groot F, Verhooren MJ, van Schaik DT, Richardus JH. A prediction rule for selective screening of Chlamydia trachomatis infection. Sex Transm Infect 2005;81:24-30.

30. Huai P, Li F, Li Z, Sun L, Fu X, Pan Q, et al. Prevalence, risk factors, and medical costs of Chlamydia trachomatis infections in Shandong Province, China: a population-based, cross-sectional study. BMC Infect Dis 2018;18:334.

31. Kularatne RS, Niit R, Rowley J, Kufa-Chakezha T, Peters RPH, Taylor MM, et al. Adult gonorrhea, chlamydia and syphilis prevalence, incidence, treatment and syndromic case reporting in South Africa: Estimates using the Spectrum-STI model, 1990-2017. PLoS One 2018;13:e0205863.

32. Gaydos C, Maldeis NE, Hardick A, Hardick J, Quinn TC. Mycoplasma genitalium as a contributor to the multiple etiologies of cervicitis in women attending sexually transmitted disease clinics. Sex Transm Dis 2009;36:598-606.

33. Cazanave C, Manhart LE, Bébér C. Mycoplasma genitalium, an emerging sexually transmitted pathogen. Med Mal Infect 2012;42:381-92.

34. Allen M. Identifying acute cervicitis in an era of less-frequent routine gynecologic examinations. JAAPA 2018;31:50-53.

35. Meites E, Gaydos CA, Hobbs MM, Kissinger P, Nyirjesy P, Schwebke JR, et al. A Review of Evidence-Based Care of Symptomatic Trichomoniasis and Asymptomatic Trichomonas vaginalis Infections. Clin Infect Dis 2015;58:37-48.

36. Marrazzo JM. Mucopurulent cervicitis: No longer ignored, but still misunderstood. Infect Dis Clin North Am 2005;19:333-49.

37. Paavonen J, Critchlow CW, DeRouen T, Stevens CE, Kiviat N, Brunham RC, et al. Etiology of cervical inflammation. Am J Obstet Gynecol 1986;154:556-64.

38. Brunham RC, Paavonen J, Stevens CE, Kiviat N, Kuo CC, Critchlow CW, et al. Mucopurulent cervicitis—the ignored counterpart in women of urethritis in men. N Engl J Med 1984;311:1-6.

39. Choe HS, Lee DS, Lee SJ, Hong SH, Park DC, Lee MK, et al. Performance of Anyplex™ II multiplex real-time PCR for the diagnosis of seven sexually transmitted infections: comparison with currently available methods. Int J Infect Dis 2013;17:e1134-40.

40. Whiley DM, Tapsall JW, Sloots TP. Nucleic acid amplification testing for Neisseria gonorrhoeae: an ongoing challenge. J Mol Diagn 2006;8:3-15.