The Aging Degree Analysis of EPR Cable Insulation Based on Hardness Retention Rate Measurement

Meng Xiao-Kai1*, Han Pei-Jie2, Liu Xinyuan1 and Jin Tao1

1State Grid Shanxi Electric Power Research Institute, Shanxi, China
2State Grid Shanxi Electric Power Corporation, Shanxi, China

Abstract

Based on the accelerated thermal aging analysis of Ethylene-Propylene Rubber (EPR) cables, the theoretical relationship between elongation at break retention rate (EAB\%) and hardness retention rate was deduced from the mathematical principles of hardness test. The relation curve was compared with the measurement values, and the result shows that there is high coincidence degree between theoretical curve and measurement values. After researching on the experimental data of EAB\% and hardness retention rate, combining the “time-temperature shift factors” with Arrhenius equation, the lifetime termination index on account of hardness retention rate is analyzed when the EAB\% reduced to 30%-50\%. According to comparing theoretical values with the experimental results, hardness retention rate decreased to 10\% was proposed as the lifetime termination index of EPR cable.

Keywords: Ethylene-propylene rubber cable; Elongation at break retention rate; Hardness retention rate; Time-temperature shift factor

Introduction

As the core of energy transfer in the process of power transmission and distribution, power cables are the key equipments to ensure the normal operation of power facilities [1-3]. Under the normal operation condition, cables may be exposed to high heat, humidity, thermal and mechanical shock, which will lead to lose their characteristics earlier than expected and accelerate their aging [4-6]. Because of the restriction of installation condition, most cables are laid in bundle and on suspension, which also will lead heat hard to disperse and cause temperature rising [7]. How to accurately assess the aging and insulation state of power cables is important practically so as to ensure the safe reliable operation of the ships.

Domestic and international research results show, it is remarkable that the surface hardness measurement of insulating material is used to reflect the aging rule. The work by Giannakopoulos and Suresh [8] has clearly shown that the hardness is proportional to the aging time. The authors [9,10] have demonstrated that there is correlativity between the elongation at break and hardness. Wang Hx [7] has presented the cable life could be tested by the remaining hardness retention rate, but the computational process needs to know the initial hardness. The initial hardness of products from different companies in different years may be different, which will cause errors in the calculation results.

In the paper, 0.6/1kV EPR cables were studied and the ageing process was simulated vastly. Then the EAB\% and Hardness Retention Rate of the specimens after aging were measured. Combining with theoretical calculations and experimentation, the correlation between EAB\% and hardness retention rate was derived. The life prediction in view of hardness retention rate was analyzed by judgments standard of EAB\%. Experimental life index was basically consistent with the value by EAB \%, which proves the feasibility of the method and provides theoretical basis for non-destructive and online monitoring of the cables.

Experimental Methods

Accelerated thermal aging

According to the IEC 60811-1-1:2001, IDT, the shape and dimension of dumb-bell specimens were shown in Figure 1. According to American power station specifications and IEC 60216, the accelerated thermal aging temperatures were selected for 120\°C, 135\°C, 150\°C and 165\°C. Electric ovens with air circulating fans were used to accelerate specimens aging. Five cable samples were located at every temperature for different periods of time, which were shown in Table 1.

Tensile testing

According to IEC60216-6: 2004, the sample should be exposed to the lowest temperature for 48 ± 6 hours before measuring the initial performance. In this paper, 10 dumb-bell specimens were exposed to minimum temperature of 120\°C for 48 hours before aging and cooled in vacuum bags for 16 hours. The JDL-1000 micro-electronic tensile testing machine (tensile speeds of 50 mm/min) was used to measure the initial elongation at break. Eight specimens of each sampling period at every temperature were taken as a group and data in line was considered qualified after stretching, and the average value of the group was the actual measurement. As shown in Figure 2, sample 1-3 were qualified and sample 4 is invalid.

![Figure 1: Dimension of a dumb-bell specimen (mm).](image-url)

*Corresponding author: Meng Xiao-Kai, State Grid Shanxi Electric Power Research Institute, Shanxi, China, Tel: 86258930; E-mail: mengxiaokai870616@163.com

Received April 01, 2017; Accepted April 27, 2018; Published May 02, 2018

Citation: Xiao-Kai M, Pei-Jie H, Xinyuan L, Tao J (2018) The Aging Degree Analysis of EPR Cable Insulation Based on Hardness Retention Rate Measurement. J Electr Electron Syst 7: 260. doi: 10.4172/2332-0796.1000260

Copyright: © 2018 Xiao-Kai M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Hardness retention rate

When the surface of the cables was pressed vertically with a steel probe, the hardness retention of the cables was measured and the method of aging evaluation is nondestructive.

According to Chinese national standard of GB/T531.1-2008, ISO 7619-1:2004 Shore AM durometer was used to test the hardness. The hardness values of eight samples were measured at each temperature and time, and five different measurement points were selected for each sample as shown in Figure 3. The average value was taken as the actual measurement value.

On basis of property variation rate during aging in the regulation of GB/T 3512-2014, the hardness retention was proposed in this paper and the equation was described as:

\[
P = \frac{100 - X}{100} \times 100\%
\]

Where: \(P\) = hardness retention rate, \(X\) = the hardness value after aging.

The initial average values of EAB(%) hardness and P are shown in Table 2.

The Relationship between EAB% and P

The hardness value is determined by the degree of compression deformation, and the EAB% is determined by the tensile stress. The relationship between EAB% and P was analyzed from the aspect of mechanics and molecular conformation theory in this paper.

Mechanics theory

In terms of measurement principle of Shore AM durometer, the pressure head of which is shown in Figure 4, the hardness value is determined by the depth pressed into the sample.

\[
H = 100 - \frac{h}{0.0125}
\]

Where: \(H\) = hardness, \(HA\), \(h\) = depth, mm.

In Figure 4, point E, F, and B are the cross point of pressure head and the sample, point A is the center of section \(S_{\text{AEF}}\). Point C is the center of pressure head arc, D is the center of projection plane, and the depth pressed into the sample is \(h\).

\[
S_{\text{AEF}} = 2\pi R_{\text{EF}} t
\]

Where: \(t\) is the thickness of unit area in the direction of tensile test.

It is assumed that the volume of the sample remains constant during the compression process, and the sphere at the top of the head is approximated to a plane.

\[
\pi(R_{\text{EF}} + r)\sqrt{(R_{\text{EF}} - r)^2 + h^2} = \pi R_{\text{EF}}^2 t_0
\]

Where, \(t_0\) is the initial thickness, \(r = SR/2 \cdot \cos 15^\circ\).

Simultaneous eqns. (3) and (4),

Table 1: Experimental temperatures and sampling periods.

Temperature	120°C	120	192	264	456	648	1108	1440	2088
Periods/h	648	96	192	240	360	456	648	1108	1272
150°C	24	96	144	192	240	288	312	324	
Periods/h	48	48	60	72	84	96	108		

Table 2: The initial data of the aging experiment.

Number	1	2	3	4	5	6	7	8	Average
Hardness (HA)	61	63	64	61	61	61	62	63	62
P (%)	39	37	36	36	39	39	38	37	38
EAB (%)	698.73	703.21	710.38	696.23	698.71	691.98	699.14	703.22	700.2

Where, λ_1, λ_2, λ_3 is draw ratio in three directions, $\lambda_1 \lambda_2 \lambda_3 = 1$, ΔS is total entropy, N is total number of chain, k is gas constant.

Because the length and width of the samples remain constant during the compression process, it is considered that there is only uniaxial deformation in the direction of thickness. Therefore, $\lambda_1 = \lambda_2 = \lambda_3$, where λ is uniaxial tension ratio.

$$\Delta S = -\frac{1}{2} Nk(2 + \lambda^2 - 3)$$ \hspace{1cm} (10)

As the internal energy of the cross-linked network keeps constant during deformation, work done by external forces is equal to the increment of free energy ΔF.

$$W = \Delta F = -T \Delta S$$ \hspace{1cm} (11)

$$dW = f dt$$ \hspace{1cm} (12)

$$f = \frac{dW}{dt} = \frac{dW}{d\lambda} \cdot \frac{d\lambda}{dt} = \frac{1}{NkT}(\lambda - \frac{1}{\lambda^3})$$ \hspace{1cm} (13)

$$\sigma = \frac{F \cos(\delta)}{\pi b t_0} = \frac{F \cos(\delta) R_0}{2 \pi R_0 t_0}$$ \hspace{1cm} (14)

Where, f is tensile force along the thickness, T is the absolute temperature, t is thickness after stretching, A is pressure area, N_1 is chain number per unit volume.

Because the tensile stress and compressive stress of rubber material are equal in a certain range, the relationship between tensile ratio and pressed depth can be calculated according to eqns. (8) and (14).

$$h = \frac{2\pi(-r)}{2\pi(-r)} NkT(\lambda - \frac{1}{\lambda^3}) \cdot (\cos(\delta) r)^2$$ \hspace{1cm} (15)

The relationship between tensile ratio and EAB% is

$$\lambda = \frac{l_0 + \Delta l}{l_0} \times 100\%$$ \hspace{1cm} (16)

The formulas of the EAB% are

$$\text{EAB} = \frac{E'}{E}$$ \hspace{1cm} (17)

$$E = \frac{\Delta l}{l_0} \times 100\%$$ \hspace{1cm} (18)

$$E' = \frac{\Delta l'}{l_0}$$ \hspace{1cm} (19)

Therefore,

$$\lambda = 1 + \text{EAB}\% \times E$$ \hspace{1cm} (20)

Where, $l_0=20$ mm, Δl is the marking spacing variation before breaking, E is the initial value of EAB%, E' is EAB% after aging, $\Delta l'$ is the marking spacing variation before breaking after aging.

There are elastic and plastic deformation in sequence during tensile process, but tensile ratio only includes elastic deformation, so that the actual value of E' is greater than $\lambda - 1$. The eqn. (15) can be expressed as

$$b = \frac{2\pi(-r)}{2\pi(-r)} NkT[1 + \text{EAB}\% \times E] \cdot (\cos(\delta) r)^2$$ \hspace{1cm} (21)

Then taking the initial value of Table 2 into eqn. (21), it could be known that $C=0.02954$. And the relationship between EAB% and P can
be deduced on the basis of the relationship between indentation depth and EAB%.

\[P = 2.3632 \times 0.3021 \times (1 + 7.002EAB\%)^2 \times \left(\frac{1}{1 + 7.002EAB\%} \right)^2 - 0.02176 \]
\[\alpha_{\text{i}} = \frac{L_{\text{i}}}{T_{\text{i}}} \]
\[\lg \alpha_{\text{i}} = E_a \left(\frac{1}{T_{\text{r}}} - \frac{1}{T_{\text{i}}} \right) \]
\[S_{xx} = \sum_{i=1}^{m} \sum_{j=1}^{n} (\alpha_{\text{i}} \cdot t_{\text{j}})^2 - \frac{1}{\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{\text{i}}^2 \cdot t_{\text{j}}^2} \]
\[S_{xy} = \sum_{i=1}^{m} \sum_{j=1}^{n} (w_{\text{j}})^2 - \frac{1}{\sum_{i=1}^{m} \sum_{j=1}^{n} w_{\text{j}}^2} \]
\[S_{yy} = \sum_{i=1}^{m} \sum_{j=1}^{n} (\alpha_{\text{i}} \cdot t_{\text{j}} \cdot w_{\text{j}})^2 - \frac{1}{\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha_{\text{i}} \cdot t_{\text{j}} \cdot w_{\text{j}}^2} \]

Where: \(\alpha_{\text{i}}\) is the insulation property variation rate, \(t_{\text{i}}\) is the aging time, \(w_{\text{j}}\) is the insulation property variation rate, \(EAB\%\) is the aging degree, \(T_{\text{r}}\) is the reference temperature, \(T_{\text{i}}\) is the aging temperature, \(E_a\) is the activation energy.

Experimental Data Analysis and Life Prediction

Above all, EAB% and P have high similarity in life prediction of cables. Since there are not national standards of the lifetime termination in view of hardness retention rate, this paper aimed to propose the lifetime termination index of hardness retention rate according to the experimental data after aging.

Time-temperature superposition method

Correspondence between the time and the temperature can be achieved by time-temperature shift [13-15] with suitable shift factors \(\alpha_{\text{i}}\), it could be described as eqn. (23):

\[\alpha_{\text{i}} = \frac{L_{\text{i}}}{T_{\text{i}}} \]
\[\lg \alpha_{\text{i}} = E_a \left(\frac{1}{T_{\text{r}}} - \frac{1}{T_{\text{i}}} \right) \]
\[L^2 = \frac{S_{xx}^2}{S_{xx} \cdot S_{yy}} \]

Where:

Figure 7: The theoretical relation between EAB% and P.
exp()\[aEkA\]RT−= ⋅ (30)

Where \(E_a\) is the Arrhenius activation energy, \(R\) is the gas Moore constant (8.314 J/mol-K), \(T\) is the absolute temperature and \(A\) is the pre-exponential factor (eqn. 30).

As the reaction time \(t\) is inversely proportional to \(k\) and \(a_t\) is inversely proportional to \(t\), any activation energy in temperature range \((T_1-T_2)\) can be determined via eqn. (32).

\[k_t = \frac{1}{t} \times a_{t_i}\] (31)

\[\frac{a_{t_i}}{a_{t_i}} = \frac{A^n \exp\left(\frac{-E_a}{RT}\right)}{A^n \exp\left(\frac{-E_a}{RT_i}\right)} = \exp\left(\frac{E_a}{R} \left(\frac{1}{T_i} - \frac{1}{T}\right)\right)\] (32)

When \(a_{t_2}=1, T_2=120^\circ\text{C}=393 \text{ K},\)

\[\ln a_t = \frac{E_a}{R} \left(\frac{1}{393} - \frac{1}{T}\right)\] (33)

To demonstrate the suitability of fitting curve in view of eqn. (33), the accelerative shift factors were re-examined. The data can be fitted as shown in Figure 11 and activation energy of EAB% and P are 120.02 4 kJ/mol and 118.890 kJ/mol respectively.

Life prediction

Traditional Arrhenius analysis of EAB% usually picks out the time corresponding to a certain amount of 30%-50% degradation, but hardness test has no approved standard. In order to provide standard to determine the life through the hardness test, this paper correlates hardness retention rate with EAB% data to assess current condition and useful life of cables.

According to eqn. (29) and activation energy, the lifetime of cables under different temperatures as shown in Table 4. It can be seen that the errors between EAB% and P at different temperatures were very small. When EAB% were selected for 50%, 40% and 30% degradation, the termination index of P were 10.8%, 8.52% and 6.12%. And it shown that when the working temperatures were 70\(^\circ\text{C}\), 75\(^\circ\text{C}\), 80\(^\circ\text{C}\) and 85\(^\circ\text{C}\), the maximum difference were 2.3a, 1.1a, 0.5a and 0.2a. It was proved
Due to non-destructive testing, combining comprehensive theoretical curve and actual measurement results, taking account of safety margin, the hardness retention rate reduced to 10% is used as lifetime termination index. As long as the hardness retention and operating temperature of the same type of cables are provided under current condition for on-site test, the life of the cables can be quickly deduced from the formulas, which provides new ideas for life assessment of cables.

Conclusions

In this paper, marine ethylene-propylene rubber cables were studied and hardness retention rate was used for thermal aging assessment. The following conclusions can be drawn:

- The relationship between EAB% and P is deduced by combining the theories and experiments. Meanwhile, it demonstrates that hardness retention rate can be used to predict the lifetime well.
- As the termination index that EAB% was reduced to 50%, hardness retention rate was 10.8%. Taking the other factors into consideration, 10% of hardness retention rate was chosen as the termination index.
- In this paper, the detection method of hardness retention rate is nondestructive for cables. It only needs to know the hardness retention rate in the process of test, so that the remaining life of the cables could be calculated.

Acknowledgements

The authors would like to appreciate support from the international science and technology cooperation program of China, the doctoral start fund of Liaoning province, and the fundamental research funds for the central universities.