Combined Plate-Pile Foundations Settlement Calculation Under Cyclic Loading

Ilizar T. Mirsayapov and Marat I. Shakirov
1Kazan State University of Architecture and Engineering, Kazan, Russia
E-mail: mirsayapov1@mail.ru

Abstract. The purpose of the study is to develop a method for calculating the settlement of a combined plate-pile foundation, with taking into account the effect from the repetitive cyclic loads in the process of construction and operation of buildings and structures. Experimental researches on plate-pile foundations were conducted in laboratory tanks and the field in order to find basic laws of such foundations behavior at cyclic loading. A method has been developed for calculating the estimated subsidence of the soil base of slabs-piles, taking into account the complex stress-strain state in the system of “plate grillage - ground between the piles - ground base” under cyclic loading. The improved method for calculating the settlement of plate-pile foundations under the cyclic load action allows to increase reliability, design bearing capacity, reduce the settlement, and as a result to obtain more cost-effective design solutions by saving materials and time during the construction of this type foundations.

Keywords: cyclic loads, plate-pile foundation, weak soil, base settlement, efforts, deformations.

1 Introduction
In the modern world, the compacted urban building development has formed a trend to the construct buildings and structures with increased number of storeys and to develop construction sites with weak physical and mechanical characteristics of soils that were previously not suitable for construction. In such cases, using the combined plate-pile foundations is one of the most effective ways to increase the bearing capacity and reduce the foundations ground base settlement of buildings and structures [1-6].

Based on this, there is a need to develop a method for calculating the settlement and bearing capacity of combined plate-pile foundations taking into account the complicated stress-strain state between the elements of the foundation and the ground base during cyclic loading [7-11].

Existing methods for calculating the settlement of the plate-pile foundations ground base and the bearing capacity are mainly developed for short-term static loads. [12-16] At the same time, the influence of cyclic loading on plate-pile foundations during the construction and operation of buildings and structures is insufficiently explored [17-22].

2 Materials and methods
The conducted experimental researches have made it possible to set major model changes in forces and deformations in the system “plate grillage – ground between the piles – ground base”.

During the researches, a settlement increase of the ground base under the cyclic loads action was observed throughout the tests. In the graphs of settlement S from load F and settlement S from the number of cycles N (figure 1 a, b), the settlement develops intensively during the first 500 cycles of cyclic loading, after which the settlement growth is significantly reduced. An analysis of the change in
the base settlement shows that after a different number of loading cycles, an increase in settlement occurs due to the increase in their residual part (figure 1a). Moreover, during one cycle, the settlement value varies slightly.

![Figure 1](image1.png)

Figure 1. Foundation settlement development during cyclic loading: a) settlement from load; b) settlement from number of cycles.

However, as the number of loading cycles increases during testing, changes in these (“elastic”) settlements are recorded. These settlements decrease during the first 20-50 cycles. The decrease in the value of “elastic” settlements caused due to the fact of reduction in pore volume soil compaction occurs. In development speed it is faster than the decrease in shear deformations, the shear modulus between piles and the ground in the between-pile space.

3 Results
From the experimental researches results, it can be seen that in the initial period of cyclic loads the greatest ground compaction occurs. After that the “elastic” settlements of the bases begin to increase after the first 50-100 loading cycles. If the limit state of the base is not reached, relative stabilization occurs at the time of 1000 loading cycles (figure 1a).

Ground base settlement changes during cyclic loading, the deformation of the ground between the piles changes as well. At the same time, an increase in ground base settlement compared to the first loading cycle can be up to 30%.

Figure 2 shows the force changes in piles. As the number of cycles increases, the efforts in the piles increase due to the fact that there is redistribution of deformations and stresses from the ground in the between-pile space into the piles. It should be noted that the greatest efforts occur in ordinary and corner piles, and the least in central ones. This is explained by the fact that in the middle zone of the
conditional foundation, the central piles compress the most compacted soil, and the corner and ordinary piles interact with areas of less compacted ground outside the grillage plate.

Figure 2. The efforts in piles after a different number of cycles, N ($P_{\text{min}}=12.5$ tons, $P_{\text{max}}=25$ tons).

At plate-pile foundation cyclic loading, deformations in the ground of the between-pile space decrease throughout the test (figure 3). Thus, a significant decrease in general deformations is observed under the plate part of the plate-pile foundation (up to 2 times) [23].

Figure 3. Ground deformations in the between pile space after different number of cycles, kPa ($P_{\text{min}}=12.5$ tons, $P_{\text{max}}=25$ tons).

4 Discussion

For an analytical description of the vibrocreep ground deformation influence on the plate-pile foundations settlement increase, additional stresses in the ground and in piles in accordance with [24] are determined.

Figure 4. Interaction schemes: a) plate-pile foundation with a ground base; b) single pile with a homogeneous ground mass $2A \times 2B$.
A design scheme which consists from a pile, its surrounding ground and part of a plate grillage per one pile has been accepted. The stress-strain state main components behavior of the such a cell will correspond to the behavior of piles in the plate-pile foundation (figure 4 a, b). The cell dimensions are $2A \times 2B \times L$, the pile sizes are $2a \times 2b \times l$.

To solve the task, we use the system of forces equilibrium equations (1) necessary to determine 4 unknowns – p_1, p_2, p_3 and t_0:

$$
\begin{align*}
\sum \mathbf{F} &= \sum \mathbf{F}_a \quad \sum \mathbf{M} = \sum \mathbf{M}_a \\
p\cdot AB &= p_1(N) \cdot AB - p_2(N) \cdot AB \\
p_1(N) \cdot ab &= p_1(N) \cdot ab - 4(a + b) \cdot \frac{\tau_0(N)}{\alpha} \cdot \epsilon^{uz} + (a + b) \cdot \frac{\tau_s(N)}{\alpha} \\
p_2(N) \cdot \beta \cdot E_p \cdot L &= k_1 \cdot \tau_s(N) \cdot (A - a) + k_2 \cdot \tau_s(N) \cdot (B - b) \\
p_2(N) \cdot \beta \cdot E_p \cdot L &= \frac{3G_p(N)}{3G_p(N)} + \frac{3G_p(N)}{3G_p(N)} = \frac{G_p(N)}{G_p(N)} - \frac{G_p(N)}{G_p(N)} \\
\tau_s(N) \cdot (a + b) \cdot \epsilon^{uz} &= p_1(N) - \frac{G_p(N)}{E_p} + \frac{G_p(N)}{E_p} \\
\tau_s(N) &= \frac{G_p(N)}{E_p} \\
\tau(N) &= \tau_0(N) \cdot e^{\alpha z} \\
\alpha &= \frac{5}{l} \\

\end{align*}
$$

Here

$$
\begin{align*}
p_1(N) &= \sigma_{uz}^{max} (N) - \Delta \sigma_{uz} (N) , \\
p_2(N) &= \sigma_{uz}^{max} (N) + \Delta \sigma_{uz} (N) , \\
p_3(N) &= \sigma_{uz}^{max} (N) - \Delta \sigma_{uz} (N) , \\
\tau(N) &= \tau_0(N) \cdot e^{\alpha z} , \\
\tau(z) &= \tau_0(N) \cdot e^{\alpha z} , \\
\alpha &= \frac{5}{l}.
\end{align*}
$$

Figure 5. The ultimate shear stress and mobilized shear stress diagrams as the number of cycles increases.

The ultimate equilibrium zones are determined by the intersection point of the mobilized shear stress ($\tau(N)$) diagram with the limit shear stress diagram (Figure 5), herewith takes into account the rigidity of the pile material:

$$
\tau' = \gamma \cdot z \cdot \tan \phi + c \cdot N \quad \text{ (8)}
$$

where, $c(N)$ – is the ground specific adhesion under cyclic loading, taken in accordance with [25]:

$$
C(N) = C \cdot m(t \tau) \cdot \lambda(t \tau) \cdot \frac{k \cdot \tau}{k(t) + \frac{1}{k(t)} \cdot c(t \tau)}.
$$

(9)
In the case of increasing the pile length, its lateral surface area increases and changes the proportion of the load to the pile heel level.

Stresses in the ground under the plate grillage are determined by the formula:

\[p_1(N) = \frac{p \cdot AB - p_2(N) \cdot ab}{AB - ab} \] \hspace{1cm} (10)

Stresses in the upper plane of the head in the pile are represented in the form:

\[p_1(N) = \frac{p \cdot G(N) \cdot 2ab (a+b) \cdot l \cdot \beta_2 (1 - \frac{L}{L})}{a \cdot \alpha (1-v) \cdot 4(1-\nu) \cdot \beta_2 (1 - \frac{L}{L}) \cdot E(N) \cdot L} \]

\[+ \frac{4.33 \cdot \tau_0(N)}{4(1-\nu) \cdot \beta_2 (1 - \frac{L}{L}) \cdot E(N) \cdot L} \]

\[- 0.33 \cdot \tau_1(N) \cdot (A-a) \cdot L \cdot \beta_2 (1 - \frac{L}{L}) \cdot E(N) \cdot L \]

where, \(G = \frac{E}{2(1+\nu)} \) – ground shear modulus.

Stresses arising under the lower end of the pile can be calculated by the formula:

\[p_1(N) = \frac{p_2(N) \cdot 4ab + 4(a+b) \cdot l \cdot \frac{\tau_0(N)}{\alpha} - 4(a+b) \cdot l \cdot \frac{\tau_s(N)}{\alpha} \cdot e^{-\alpha}}{4ab} \] \hspace{1cm} (12)

The tangential stress along the lateral surface of the piles \(\tau_0(N) \) can be determined based on the expression:

\[\tau_0(N) = \frac{a \cdot b \cdot (p_1(N) - p_2(N))}{(a+b) \cdot l \cdot \frac{1}{\alpha} (4e^{-\alpha} - 1)} \] \hspace{1cm} (13)

After stresses determining calculated settlement. The settlement of the plate-pile foundation is calculated by the formula:

\[S(N) = S_e(N) + \Delta S_e(N) + \Delta S_e(N) \] \hspace{1cm} (14)

The settlement of the conditional foundation is calculated based on the following design scheme:

Figure 6. Settlement calculation schemes:

- a) ground base stress state scheme of the conditional foundation under cyclic loading;
- b) the design scheme for determining the settlement of the ground base during cyclic loading.
Herewith the ground base volumetric stress state of the conditional foundation is accepted (figure 6a). Dividing the compressible thickness of the ground base into layers, for each layer based on design scheme (figure 6 a, b) we determine the strains corresponding to the vertical pressure value, and then the strain values within the compressible thickness are summed [26].

The conditional foundation settlement during cyclic loading, taking into account the volumetric ground stress-strain state, can be determined by the formula:

\[
S_{ef}(N) = \sum_{i=1}^{n} \left(\varepsilon_{z,i}(t,t_0) \right) h_i,
\]

where \(\varepsilon_{z,i}(t,t_0) \) is the axial strain increment of the \(i \) th layer under the cyclic load action \(t \) [27];
\(n \) – the number of layers which the ground base compressible thickness is divided into;
\(t \) – is the time corresponding to the moment of observation and to the loading cycles number \(N \);
\(t_0 \) – is the load application time corresponding to the first cycle;
\(h_i \) – is the thickness of the \(i \) th layer.

The additional settlement value due to the pile shaft compression and due to the pile punching to the conditional foundation sole depends on the fulfillment of conditions Eq. (16), (17) and (18). These settlements occur irregularly as conditions are violated:

\[
\tau (N) \leq \tau^* (N),
\]

\[
p_1(N) \leq \sigma_{in} (N),
\]

\[
p_3(N) \leq \sigma_{in} (N)
\]

The function \(\sigma_{ud}(N) \) is taken:

\[
\sigma_{ud}(N) = 4 \left[\sigma_{u} (t,t_0,N) \cdot A_p \cdot \cos \alpha \cdot (t,t_0,N) + \sigma_{u} (t,t_0,N) \cdot A_p \cdot \sin \alpha \cdot (t,t_0,N) \right]
\]

Settlement due to the pile shaft compression is determined by the formula:

\[
\Delta S_p(N) = \frac{\sigma_{ud}(N)(l-a)}{E_g(N)} \cdot \frac{E_p(N)(l-a)}{1 + \frac{E_p(N)}{E_g(N)} \cdot \frac{A_p}{A_p}}.
\]

The additional settlement value \(\Delta S_p \) due to punching piles is determined by the formula:

\[
\Delta S_p(N) = \alpha_p \left[\frac{P_p(N)}{G(N)} \left(\frac{P_p(N) + 2P_p(N)\cos B}{3} \right) \frac{3K_n(N) - G(N)}{3K_n(N) - G(N)} \right]
\]

where, \(E_p(N) \) – piles concrete deformation modulus under cyclic loads;
\(E_g(N) \) – ground deformation modulus under cyclic loading;
\(\varepsilon_{v}^{in}(N) \) – ground vibrocreep deformation [28];
\(K_n(N) \) – volumetric ground deformation modulus under cyclic loading;
\(G(N) \) – ground shear modulus under cyclic loading;
\(\sigma_{ud}^{in}(N) \) – maximum stresses in the pile section;
\(\alpha_p \) – the pile cross section size.

Improved methods for calculating ground base settlement and bearing capacity take into account changes in the stress-strain state of a plate-pile foundation, an increase in deformations, stresses and efforts, as well as their redistribution between the ground and piles during cyclic loading. Determining the influence of cyclic loading on plate-pile foundations will make it possible to obtain more profitable design solutions for the buildings and structures construction on foundations this type in the future.

References
[1] Katzenbach R, Leppla S, Ramm H, Seip M, Kuttig H 2013 Design and construction of deep foundation systems and retaining structures in urban areas in difficult soil and groundwater conditions Procedia Engineering (57), pp 540-548. doi: 10.1016/j.proeng.2013.04.069
[2] Katzenbach R et al 2013 Soil-structure-interaction of Tunnels and Superstructures During
Construction and Service Time *Procedia Engineering*. (57) pp 35-44. doi: 10.1016/j.proeng.2013.04.007

[3] Bhaduri A, Choudhury D 2020 Serviceability-Based Finite-Element Approach on Analyzing Combined Pile-Raft Foundation *International Journal of Geomechanics* 2 (20), pp 43-51. doi: 10.1061/(ASCE)GM.1943-5622.0001580

[4] Boudaa S, Khalifallah S, Bilotta E 2019 Static interaction analysis between beam and layered soil using a two-parameter elastic foundation *International Journal of Advanced Structural Engineering* 1 (11), pp 21-30. doi: 10.1007/s40091-019-0213-9

[5] Mirsayapov Ilizar T, Koroleva I V 2016 Long-term Settlements Assessment of High-rise Building Groundbase Based on Analytical Ground Deformation Diagram *Procedia Engineering* (165), pp 519-527. doi: 10.1016/j.proeng.2016.11.728

[6] Siraziev L F 2018 Experimental studies of the stress-strain state of layered soil bases under the center of the stamp during short-term tests *Innovations and Investments* 11, pp 225-228.

[7] Mirsayapov Ilizar T, Koroleva I V 2016 The strength and deformability of clay soils under the regime spatial stress state in view of cracking *Grounds, foundations and soil mechanics* 1, pp 16-23. doi: 10.1007/s11204-016-9356-x

[8] Mirsayapov Ilizar T, Shakirov M I 2016 1st International conference on energy geotechnics. In: *CRC Press. CONFERENCE 2016*, ICEGT, vol. 724, pp 423-428 Kiel., Germany.

[9] Mirsayapov Ilizar T, Koroleva I V 2016 Changes in physical and mechanical characteristics of soil under triaxial loading. In: *CRC Press. CONFERENCE 2019*, GFAC, vol. 466, pp. 193-196. doi: 10.1201/9780429058882-37

[10] Mirsayapov Ilizar T, Aysin N N Influence of a deep construction pit on a technical condition of surrounding buildings. In: *CRC Press. CONFERENCE 2019*, GFAC, vol. 466, pp 197-201. doi: 10.1201/9780429058882-38

[11] Mirsayapov Ilizar, Koroleva I 2019 Calculation models of bearing capacity and deformation of soil foundations with vertical elements reinforced under regime cyclic loading *Springer Series in Geomechanics and Geoengineering*, pp 502-507. doi: 10.1007/978-3-19-99670-7_62

[12] Mirsayapov Ilizar, Sabirzyanov D 2018 Bearing capacity of foundations base under combined alternating long-term static and cyclic loading. In: *CRC Press. CONFERENCE 2018*, IOP, vol. 700, pp 43-51. Moscow, Russia. doi: 10.1088/1757-899X/365/4/042082

[13] Mirsayapov Ilizar T, Koroleva I V 2017 Settlements assessment of high-rise building groundbase using transformed ground deformation diagram. In: *IACMAG. CONFERENCE 2017*, IACMAG, vol. 914, pp 784-792. Wuhan, China. doi: 10.1016/j.proeng.2016.11.728

[14] Mirsayapov Ilizar T, Koroleva I V 2017 Calculation models of bearing capacity and deformation of soil foundations with vertical elements reinforced under cyclic loading. In: *ICSMGE. CONFERENCE 2017*, ICSMGE, vol. 3254, pp 2599-2602. Seoul, Korea. doi: 10.1007/978-3-319-99670-7_62

[15] Mirsayapov Ilizar T, Koroleva I V 2016 Strength and Deformability of Clay Soil Under Different Triaxial Load Regimes that Consider Crack *Soil Mechanics and Foundation Engineering* 53 (1), pp 5-11. doi: 10.1007/s11204-016-9356-x

[16] Mirsayapov Ilizar, Koroleva I 2016 Long-term Settlements Assessment of High-rise Building Groundbase Based on Analytical Ground Deformation Diagram *Procedia Engineering* 165, pp 519-527. doi: 10.1016/j.proeng.2016.11.728

[17] Mirsayapov Ilizar T, Koroleva I V, Sabirzyanov D D 2016 Calculation model of foundation base settlement at the static and cyclic regime loading. In: *ICEGT. CONFERENCE 2016*, ICEGT, vol. 756, pp. 429-434. Kiel, Germany. doi: 10.1201/b21938-68

[18] Mirsayapov Ilizar T, Koroleva I V 2015 Computational Model of the Carrying Capacity of a Reinforced Foundation with Cyclic Loading *Soil Mechanics and Foundation Engineering* 52 (4), pp 198-205. doi: 10.1007/s11204-015-9328-6

[19] Mirsayapov Ilizar T, Koroleva I V 2015 Sediments foundation bases under long-term regime
loading. In: *ARC. CONFERENCE 2015*, ARC, vol. 1596, pp. 1398-1401. Fukuoka, Japan. doi: 10.3208/jgssp.KAZ-17

[20] Mirsayapov Ilizar T, Koroleva I V 2015 Bearing capacity of foundations under regime cyclic loading. In: *ARC. CONFERENCE 2015*, ARC, vol. 1596, pp. 1214-1217. Fukuoka, Japan. doi: 10.3208/jgssp.KAZ-18

[21] Mirsayapov Ilizar T, Koroleva I V 2015 Clayey soils rheological model under triaxial regime loading. In: *ECSMGE. CONFERENCE 2015*. ECSMGE, vol. 3976, pp. 3249-3254. Edinburgh, UK.

[22] Mirsayapov Ilizar T, Koroleva I V 2015 Fourteenth International Symposium on Soil Rheology Prospective Trends in Theoretical and Practical Development in Rheology and Soil Mechanics *Soil Mechanics and Foundation Engineering* 51 (6), pp 315-316. doi: 10.1007/s11204-015-9296-x

[23] Mirsayapov Ilizar T, Koroleva I V 2015 Experimental and theoretical studies of bearing capacity and deformation of reinforced soil foundations under cyclic loading. In: *IACMAG. CONFERENCE 2014*, IACMAG, vol. 1525, pp 737-742. Kyoto, Japan.

[24] Mirsayapov Ilizar T, Shakirov M I 2016 Bearing capacity and settlement of raft-pile foundations under cyclic loading. In: *ICEGT. CONFERENCE 2016*, ICEGT, vol. 756, pp. 423-428. Kiel, Germany. doi: 10.1201/b21938-67

[25] Mirsayapov Ilizar T, Koroleva I V, Mirsayapova I I 2015 Evaluation of seismic stability of layered soil bases in areas that are composed of clays and water-saturated sandstones. In: *ARC. CONFERENCE 2015*, ARC, vol. 1596, pp. 719-722. Fukuoka, Japan. doi: 10.3208/jgssp.OTH-29

[26] Mirsayapov Ilizar T, Koroleva I V 2014 Bearing capacity and deformation of the base of deep foundations' ground bases. In: *ISSMGE. CONFERENCE 2014*, ISSMGE, vol. 1962, pp 401-404. Seoul, Korea.

[27] Mirsayapov Ilizar T, Koroleva I V 2011 Prediction of deformations of foundation beds with a consideration of long-term nonlinear soil deformation *Soil Mechanics and Foundation Engineering*, 48 (4), pp 148-157. doi: 10.1007/s11204-011-9142-8

[28] Mirsayapov Ilizar T 2009 A study of stress concentration zones under cyclic loading by thermal imaging method *Strength of Materials*, 41 (3), pp 339-344. doi: 10.1007/s11223-009-9121-8