Introduction

Cardiogenic shock (CS) is one of the most serious complications of acute myocardial infarction (AMI). In spite of great progress in its therapy (early revascularisation, use of intra-aortic balloon counter-pulsation etc.), there are some questions concerning its pathophysiology which remain to be elucidated. One of them is immune system activation and its role in the myocardial ischemia-reperfusion process in the course of AMI complicated with cardiogenic shock.

The activated neutrophils and their interaction with endothelial cells and myocytes are believed to play the key role in the pathophysiology of the ischemia and reperfusion process by producing free oxygen radicals, arachidonic acid derivatives and proteolytic enzymes (5,6,8). Entman et al. (5) showed that cytokines and adhesion molecules are involved in this process. In his hypothesis the injured myocardial cells initially release the products that promote chemotaxis, neutrophil shape change, enhanced neutrophil surface expression of CD11/CD18 adhesion heterodimers, and upon adherence, release of granular contents and production of oxygen free radicals. The secretary and migratory functions of neutrophils require adherence of CD11/CD18 to the intercellular adhesion molecule 1 (ICAM 1). At least one additional ligand (E-selectin, CD62E) is suggested to be involved in this process. E-selectin is expressed on the cell surface over a period of 2-6 h after stimulation of the endothelial cells with interleukin 1 and TNF α. Once neutrophils are bound to the endothelium in the capillary venules, they can migrate into the extracellular space. Previous studies have shown that the effect of neutrophil on the cardiac myocyte also requires expression of the adherence complex of CD11/CD18 and ICAM 1, and that these processes are mediated by cytokines (12).

We have shown the elevation of plasma interleukin and adhesion molecules levels in the course of AMI in our previous studies (9,10). Furthermore, the negative haemodynamic effects of cytokines, IL 1β and TNF α, have been described in previous studies in patients with chronic heart failure. But little is known about the impact of CS on the plasma cytokine and adhesion molecule levels in the course of AMI.

The aim of this observation is to evaluate the plasma interleukin and adhesion molecule levels in the patient with AMI, complicated by fatal cardiogenic shock.

Report of a Case

A 60 year old man with no previous history of coronary artery disease was admitted for typical chest pain 3 h after onset of the symptoms. Physical examination revealed dys-
system activation, and the accumulation of activated neutrophils at the site of infarction are regulated by cytokines, and that neutrophil-endothelium, and neutrophil-myocyte

Plasma ICAM 1 and E-selectin levels in cardiogenic shock (normal value of ICAM 1 189.05 ng/ml, SD 42.32 ng/ml, E-selectin 29.1-63.4 ng/ml).

The plasma IL 8 level was elevated throughout the time of observation. Its rapid increase was caused by progression of CS (max. value 1652 pg/ml, vs. normal value <30 pg/ml) - Fig. 2.

The plasma IL 6 level was continually increasing during the observation because of cardiogenic shock (the last TNF α level could be a marker of acute left ventricular dysfunction and cardiogenic shock.

In contrast to these observations, our results could support the hypothesis that elevated plasma TNF α level levels in cardiogenic shock

The soluble adhesion molecule levels (E-selectin and ICAM 1) were elevated throughout the period of observation without any significant peak - Fig. 3.

The plasma TNF α level reached two significant peaks, the first increase at 6 h after onset of the symptoms (80.11 pg/ml vs. normal value 4.35 pg/ml SD 21.3 pg/ml), and it was caused by AMI. After this period of significant decrease, the TNF α level was increasing until the end of the observation because of cardiogenic shock (the last TNF α level was 204.1 pg/ml) - Fig. 1.

Blood samples were taken at 3-hour intervals. The blood was immediately centrifuged, aliquots of plasma were stored at -20°C overnight, and then until the assessment of the parameters the plasma samples were stored at -70°C.

The patient was enrolled into the study after obtaining of informed consent according to ethical standards of our institution.

Results

The plasma TNF α level reached two significant peaks, the first increase at 6 h after onset of the symptoms (80.11 pg/ml vs. normal value 4.35 pg/ml SD 21.3 pg/ml), and it was caused by AMI. After this period of significant decrease, the TNF α level was increasing until the end of the observation because of cardiogenic shock (the last TNF α level was 204.1 pg/ml) - Fig. 1.

The plasma IL 1β level was continually increasing during the observation period and reached a maximal level 32.1 pg/ml (normal value <10 pg/ml) - Fig. 1.

The plasma IL 6 level reached the first peak caused by AMI (362.85 pg/ml, normal value <30 pg/ml) nine h after the onset of the symptoms. Because of CS, after the short period of decrease, the plasma IL 6 level was increasing until the end of the observation (the last IL 6 level was 859.61 pg/ml) - Fig. 2.

The plasma IL 8 level was elevated throughout the time of observation. Its rapid increase was caused by progression of CS (max. value 1562 pg/ml vs. normal value <30 pg/ml) - Fig. 2.

Discussion

Recent studies (4-6, 8-9, 10, 12) have shown that immune system activation, and the accumulation of activated neutrophils at the site of infarction are regulated by cytokines, and that neutrophil-endothelium, and neutrophil-myocyte interactions require the expression of adhesive molecules (ICAM 1, E-selectin etc.).

Our observation showed the elevation of proinflammatory cytokines during the course of AMI, and, after a short period of decrease, the second elevation of TNF α IL 6 and IL 8, which is very likely to be caused by CS. Two peaks of TNF α plasma concentration were noticed. The first elevation was caused by AMI and the second one was caused by cardiogenic shock. Although TNF α cytokine has a pleiotropic effect, it is also known to have cardio-depressant properties. The mechanism of TNF α elevation is not yet clear, but Brunkhorst et al. (3) showed, that exposure to bacterial endotoxin, perhaps due to bowel congestion or ischemia and altered gut permeability, which may result in immune activation that is characteristic for patients with severe heart failure. Also Ankert et al. (12) hypothesized that in patients with heart failure mesenteric venous congestion leads to increased bowel permeability, bacterial translocation, and thereby endothelin release, which is responsible for immune system activation and increased TNF α production. However, these observations have been found in groups of patients with chronic heart failure. The study of Riemdijk et al. (11) showed local myocardial production of these cytokines by myocytes and endothelium (7), and that the TNF α system is deregulated in the course of acute left ventricular failure. A positive correlation is found between the severity of heart failure and TNF α levels in patients with chronic heart failure.

In contrast to these observations, our results could support the hypothesis that elevated plasma TNF α level could be a marker of acute left ventricular dysfunction and cardiogenic shock.

Conclusion

This study confirms the excessive overproduction of interleukins with a predominantly negative effect on the cardiovascular system in the course of CS.

This observation also reveals a possible target for future therapeutic interventions with the aim of improving the survival of patients with cardiogenic shock.

Achnowledgements

The study was supported by a grant from The Ministry of Health of the Czech Republic, No. 19442.

References

1. Ankert S, Egerer KR, Völz HD, Fox WJ, Poole-Wilson PA, Cosin AJ. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1998;82:259-63.

2. Ankert S, Völz HD, Egerer KR, Poole-Wilson PA, Cosin AJ. TNF soluble receptor alpha is a predictor of impaired peak leg flow blood flow in patients with chronic heart failure. QJM 1998;91:393-9.

3. Brunkhorst FM, Alles A, Forchheimer P, Andrizky S, Pudil S, Pudilova V. Pyrexia, procalcitonin, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. Intens Care Med 1999;25:324-34.

4. Dogan A, Beckert S, Seil T, Paul E, Eisenhardt S, Rasch S, Eisele C. Mucosal safety and efficacy of a soluble p75 tumor necrosis factor receptor (Enbrel). Transplantation in patients with advanced heart failure. Circulation 1999;99:3244.

5. Entman ML, Michael L, Rosen RR, Dreyer WJ, Anderson DC, Taylor AA, Smith CW. Inflammation in the course of myocardial ischemia. JAMA 1991;265:25-9.

6. Evers AI, Murray K, Miskin J, Lishman JD, Newell LM. Effects of endogenously produced leukotriene, thromboxane and prostaglandins on coronary vascular resistance in rabbit myocardial infarction. J Clin Invest 1987;79:925-34.

7. Ferretti R, Barchetti T, Costarini R. Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 1992;86:1479-86.

8. Fischetti JT, Zwickl RL. Role of oxygen radicals in myocardial reperfusion injury: experimental and clinical evidence. Klin Wochenschr 1991;69:1061-5.

9. Padre R, Flamm V, Kenk J et al. Cytokines and adhesion molecules in the course of acute myocardial infarction. Clin Cardiol 1999;22:125-210.

10. Padre R, Flamm V, Kenk J, Grogger J, Machy M, André C. Effect of reperfusion on the plasma cytokines and adhesion molecule levels in the course of acute myocardial infarction. Cor Vasa 1999;30:106-72.

11. Riemdijk-van Overbeeke RC, Baan CC et al. The TNFα system in heart failure and after heart transplantation. Eur Heart J 1998;19:534-41.

12. Youker KA, Smith CW, Anderson DC et al. Neutrophil adherence to isolated adult cardiac myocytes: induction by cardiac lymph collected during ischemia and reperfusion. J Clin Invest 1993;92:952-9.

Submitted April 2001. Accepted November 2001.

MUDr. Radek Pudil, Ph.D., Charles University in Prague, Faculty of Medicine in Hradec Kralové, 2nd Department of Medicine, Porážkova 360, 500 05 Hradec Králové, Czech Republic, e-mail: pudilr@ yahoo.com
The soluble adhesion molecule levels (E-selectin and ICAM 1) were elevated throughout the period of observation without any significant peak - Fig. 3.

Discussion
Recent studies (4.6.8.9.10.12) have shown that immune system activation, and the accumulation of activated neutrophils at the site of infarction are regulated by cytokines, and that neutrophil-endothelium, and neutrophil-myocyte interactions require the expression of adhesion molecules (ICAM 1, E-selectin etc.). Our observation showed the elevation of proinflammatory cytokines during the course of AMI, and, after a short period of decrease, the second elevation of TNF α, IL 6, and IL 8, which is very likely to be caused by CS. Two peaks of TNF α plasma concentration were noticed. The first elevation was caused by AMI and the second one was caused by cardiogenic shock. Although TNF α cytokine has a pleiotropic effect, it is also known to have cardio-depressant properties. The mechanism of TNF α elevation is not yet clear, but Brunkhorst et al. (3) showed, that exposure to bacterial endotoxin, perhaps due to bowel congestion or ischaemia and altered gut permeability, may result in immune activation that is characteristic for patients with severe heart failure. Also Anker et al. (1.2) hypothesized that in patients with heart failure mesenteric venous congestion leads to increased bowel permeability, bacterial translocation, and thereby endotoxin release, which is responsible for immune system activation and increased TNF α production. However, these observations have been found in patients with chronic heart failure. The study of Riemsdijk et al. (11) showed local myocardial production of these cytokines by myocytes and endothelium (7), and that the TNFα system is deregulated in the course of acute left ventricular failure. A positive correlation is found between the severity of heart failure and TNF α levels in patients with chronic heart failure.

In contrast to these observations, our results could suggest the hypothesis that elevated plasma TNF α level could be a marker of acute left ventricular dysfunction and cardiogenic shock.

Conclusion
This study confirms the excessive overproduction of interleukins with a predominantly negative effect on the cardiovascular system in the course of CS. This observation also reveals a possible target for future therapeutic interventions with the aim of improving the survival of patients with cardiogenic shock.

References
1. Anker S, Egerer KJ, Voll HD, Fox WJ, Poole-Wilson PA, Coats AJ. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1992;69:562-5.
2. Anker S, Egerer KJ, Voll HD, Fox WJ, Poole-Wilson PA, Coats AJ. Tumor necrosis factor alpha in a producer of impaired peak leg blood flow in patients with chronic heart failure. QJM 1994;88:393-395.
3. Brunkhorst FM, Alcrame CR, Forchot ZT, Anker SD. Pyrolysis, pyrone, immune activation and survival in cardiogenic shock: the potential importance of bacterial translocation. Int J Cardiol 1999;72:15-16.
4. Dando A, Borkert R, Bova P, Perl T. Endotoxinemia, Severe ACS, Bouchier C, Mearns DL. Safety and efficacy of a soluble p75 tumor necrosis factor receptor (Enbrel) in elderly transplanted patients with advanced heart failure. Circulation 1999;99:3254-3261.
5. Entman ML, Michael L, Ronen RD, Detzer WJ, Andersen DM, Taylor AA, Smith CW. Inflammation in the course of systolic myocardial ischemia. JACC 1999;12:1233-1237.
6. Evans AE, Murphy B, Saffite JE, Johannessen, BA. The TNF-α system in heart failure. Circulation 1999;99:929-938.
7. Firth SA, Rumsfeld SJ. Tumor necrosis factor soluble TNF receptors in patients with various degrees of congestive heart failure. Circulation 1997;95:1071-1076.
8. Flaherty JT, Zawar JL. Role of oxygen radicals in myocardial reperfusion injury: experimental and clinical evidence. Klin Wochenschr 1991;69:1661-1668.
9. Padil RP, Patrak C, Kopp J et al. Cytokines and adhesion molecules in the course of acute myocardial infarction. Clin Chim Acta 1999;280:127-134.
10. Padil RP, Padil V, Kruck J, Glaunsinger B, Andrich C. Effect of reperfusion on the plasma cytokines and adhesion molecule levels in the course of acute myocardial infarction. Cor Vasa 1999;40:96-102.
11. Riemsdijk-van Overbeeke RC, Baan CC et al. The TNF-α system in heart failure and after heart transplantation. Eur Heart J 1999;20:1543-1544.
12. Youkou KA, Smith CW, Anderson DC et al. Neutrophil adherence to isolated adult cardiac myocytes: induction by cardiac lymph collected during ischemia and after heart transplantation. J Clin Invest 1999;103:953-961.