Measurement of $^4\Lambda$H and $^4\Lambda$He binding energy in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV

The STAR Collaboration

A B S T R A C T

Measurements of mass and Λ binding energy of $^4\Lambda$H and $^4\Lambda$He in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclear systems with atomic number $A = 4$. The Λ binding energies are measured to be 2.22 ± 0.06 (stat.) ± 0.14 (syst.) MeV and 2.38 ± 0.13 (stat.) ± 0.12 (syst.) MeV for $^4\Lambda$H and $^4\Lambda$He, respectively. The measured Λ binding-energy difference is 0.16 ± 0.14 (stat.) ± 0.10 (syst.) MeV for ground states. Combined with the γ-ray transition energies, the binding-energy difference for excited states is -0.16 ± 0.14 (stat.) ± 0.10 (syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ binding-energy difference in $A = 4$ hypernuclear systems are consistent with the theoretical calculations that result in $\Delta B^{\Lambda}_{\Lambda}(1^+_{\text{exc}}) \approx -\Delta B^{\Lambda}_{\Lambda}(0^+_{\text{g.s.}}) < 0$ and present a new method for the study of CSB effect using relativistic heavy-ion collisions.

1. Introduction

Nuclei containing strange quarks, called hypernuclei, are ideal hyperon-baryon bound systems for studying the hyperon-nucleon (YN) interactions and have therefore been the subject of intense study [7, 5, 14, 4]. The Λ binding energy B_Λ (also called the Λ separation energy) of a hypernucleus is defined as the difference between the mass of the hypernucleus, and the sum of the masses of the nucleon core and the Λ:

$$B_\Lambda = (M_\Lambda + M_{\text{core}} - M_{\text{hypernucleus}}) c^2. \quad (1)$$

The determination of Λ binding energies can aid in the understanding of YN interactions and the equation of state (EOS) of hypernuclear matter with a potential connection to neutron-star studies [29, 17]. And it has been the subject of theoretical calculations and experimental measurements [32, 36, 27, 2]. Recent results from the STAR Collaboration [6] have shown the Λ binding energy of the hypertriton to be larger than zero, challenging previous results [24]. Precision measurements of Λ binding energies of heavier hypernuclei than the hypertriton are expected to improve our understanding of the YN interactions between Λ and heavier nuclei.

The charge symmetry of the strong interaction predicts that the Λp and the Λn interaction should be identical, because Λ is charge neutral. The binding-energy difference between a pair of mirror nuclei, whose numbers of protons and neutrons are exchanged, originates from the difference of the Coulomb interactions and the mass difference of the up and down quarks [30]. Furthermore, the Λ binding energy of mirror hypernuclei such as $^4\Lambda$H (triton + Λ) and $^4\Lambda$He (3He + Λ) should be equal according to charge symmetry. However, the measured difference in binding energy between the triton and 3He demonstrates the breaking of charge symmetry. With the removal of the contributions from Coulomb interactions, the value of the binding energy difference between the triton and 3He is 67 ± 9 keV [30]. On the other hand, measurements in nuclear emulsion experiments reported a Λ binding-energy difference $\Delta B^{\Lambda}_{\Lambda}(0^+_{\text{g.s.}}) = 350 \pm 50$ keV [24] between $^4\Lambda$H and $^4\Lambda$He in their ground states, which is larger than the binding-energy difference in nuclei, representing a puzzle since reported [24].

In 2015, the J-PARC E13 γ-ray spectroscopy experiment measured the γ-ray transition energy for the 1^+ first excited state of $^4\Lambda$He to be 1406 ± 2 (stat.) ± 2 (syst.) keV [38]. The E13 Collaboration then combined the Λ binding energies of ground states from emulsion experiments in the 1970s [24], the γ-ray transition energy for $^4\Lambda$H measured in 1976 [11], and their new γ-ray transition energy measurement for $^4\Lambda$He to determine the difference in excited states as $\Delta B^{\Lambda}_{\Lambda}(1^+_{\text{exc}}) = 30 \pm 50$ keV [38]. This is roughly a factor of ten smaller than that in the ground states [24]. It was also suggested that the CSB effect may have a significant spin dependence which is larger in ground states than in excited states [38]. In 2016, the A1 Collaboration at the Mainz Microtron used spectrometers to make a new measurement of the ground state Λ binding energy of $^4\Lambda$H [16, 33]. Combining their new measurement with the previous Λ binding energy of $^4\Lambda$He [24] and the measurements of the γ-ray transition energies for $^4\Lambda$H [11] and $^4\Lambda$He [38], the binding-energy differences were updated to be $\Delta B^{\Lambda}_{\Lambda}(0^+_{\text{g.s.}}) = 233 \pm 92$ keV and $\Delta B^{\Lambda}_{\Lambda}(1^+_{\text{exc}}) = -83 \pm 94$ keV [16, 33].

Many theoretical model calculations have failed to reproduce the experimental results, with most of them underestimating the CSB effect in both the ground and excited states [32, 22, 31, 15]. It has been proposed that Λ–Σ mixing can account for the large CSB [18]. In 2016, the ab initio calculation using chiral effective field theory hyperon-nucleon potentials plus a CSB Λ–Σ^0 mixing vertex of $\Lambda = 4$ hypernuclei achieved a large CSB in both ground and excited states, and also concluded that $\Delta B^{\Lambda}_{\Lambda}(1^+_{\text{exc}}) \approx -\Delta B^{\Lambda}_{\Lambda}(0^+_{\text{g.s.}}) < 0$ [19]. Independent experiments are needed to test these calcula-
More accurate values of the Λ binding-energy splitting in ground and excited states are needed to constrain the Λ interaction [21].

To study the QCD matter in the high-baryon-density region, the STAR detector acquired data for collisions at the lowest available energy of the BES-II program. In 2018, STAR collected over 3×10^7 events at a center-of-mass energy of $\sqrt{s_{NN}} = 3$ GeV. The UrQMD-hydro hybrid model predicts that the production yields of hypernuclei is at a maximum around $\sqrt{s_{NN}} = 5$ GeV with high baryon chemical potential [35]. Therefore, $\sqrt{s_{NN}} = 3$ GeV collisions collected with the STAR experiment provide an opportunity to study the Λ binding energies of 4_AH and 4_AHe in the same experiment to address the CSB problem.

2. Analysis Details

2.1. The STAR Detector

This work is based on a high-statistics data set of Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV taken in fixed-target mode using the STAR detector in 2018. A 0.25 mm thick stationary gold target was mounted inside the beam pipe 2 m to the west of the center of the Time Projection Chamber (TPC) [10]. In the collider mode, the lowest $\sqrt{s_{NN}}$ for Au+Au collisions that RHIC can run with usable luminosity is 7.7 GeV, whereas in the fixed-target mode this low energy limit can be extended to 3 GeV. A gold beam incident from the west at laboratory kinetic energy 3.85 A GeV produces collisions at $\sqrt{s_{NN}} = 3$ GeV in the center-of-mass frame. The collision vertices are selected to be within 2 cm of the gold target’s position in the longitudinal (beam) direction and also within 2 cm of the average position of collision vertices in the transverse plane. With these selections, 317 million events with minimum bias trigger [1] are analyzed in this paper.

The particle identification (PID) is achieved with the TPC and the Time-of-Flight (TOF) detector [28]. The TPC data allow the reconstruction of the paths of emitted particles and provides particle identification via the measurement of energy loss, dE/dx. Figure 1(a) presents the distribution of tracks versus dE/dx and magnetic rigidity, p/q, using the TPC. A 0.5 T magnetic field is applied along the TPC’s cylindrical axis causing the charged tracks to follow helical paths, the curvatures of which reveal the track rigidity. The dotted curves are calculations of the Bichsel function [13] for the indicated particle species. The PID for π^-, proton, 3He, and 4He are firstly achieved by selecting the measured dE/dx within 3 standard deviations of their expected values by Bichsel function. These tracks are also required to have more than 15 space points in the TPC.

As seen in Fig. 1(a), the particle species are not completely separated by the TPC. The TOF detector measures a particle’s time of flight from the collision vertex to the TOF location, and offers species separation to higher momentum than dE/dx alone. As evident from Fig. 1(b), 3He and 4He are separated clearly. By selecting the 3He and 4He tracks within the ranges from 1.4 to 2.5 (GeV/c2)2 and from 2.5 to 4.5 (GeV/c2)2 of their m^2/q^2 respectively, their purities can both reach 95%. This information is only used in the identification of 3He and 4He when the relevant TOF signals are matched to TPC tracks. Otherwise only the TPC information is used.

2.2. Signal reconstruction

In this analysis, the 4_AH is reconstructed via its two-body decay channel, 4_AH \rightarrow 4He + π^-, and 4He is reconstructed via its three-body decay channel, 4_AHe \rightarrow 3He + p + π^-. The discussion on 3_AH three-body decay channel can be found in Section III. The daughter particles are identified according

Figure 1: (a): The mean energy loss in the TPC versus rigidity, p/q, where p is the momentum of the particle and q is its electric charge in units of the electron charge. The dashed curves represent the expected values calculated by the Bichsel function for each particle species. (b): The square of the ratio of mass and charge, m^2/q^2, versus rigidity in the TOF detector. The dashed curves represent the expected values for 3He and 4He.
to the methods described in Section II A. The KFP

Figure 2: Invariant-mass distributions for ³⁴H (a) and ³⁴He (b) reconstructed with KFP

The STAR Collaboration: Preprint submitted to Elsevier
corrections for 4He, 3He and proton. Similar to the method performed in Ref. [3], STAR simulation and embedding for 4H and 4He samples are used to study these corrections. By comparing the difference between the measured momentum magnitude p_{meas} and the Monte Carlo (MC) input momentum magnitude p_{MC}, the momentum-loss effect as a function of the p_{meas} can be determined. The red circles in Fig. 3 represent the average momentum-loss effect versus p_{meas} of 4He as an example. It is clear that the momentum-loss effect for 4He is significant in the low-momentum region.

![Figure 3: The average difference between the measured momentum and the MC input momentum as a function of the measured momentum for 4He. The red circles represent the energy loss without any corrections and the black curve is the fit for them. The blue triangles are the energy loss with energy-loss correction applied on the measured momentum.](image)

The momentum-loss effect versus the measured momentum can be fitted with the correction function:

$$p_{\text{meas}} - p_{\text{MC}} = \delta_0 + \delta \left(1 + \frac{m^2}{(p_{\text{meas}})^2}\right)^\alpha,$$

(2)

where m is the mass of the particle and δ_0, δ, and α are fitting parameters. The fit results shown in Table 1 are then used to correct the momenta of 4He, 3He, and proton before performing the 4H and 4He reconstruction.

Another correction is applied when we verify that the correct Λ mass is reconstructed. All track momenta are scaled by the factor 0.998 to make the measured mass of Λ match the PDG value [39]. This discrepancy could be caused by differences between the true and nominal current which controls the magnetic field strength in STAR detector. With this correction, the invariant-mass distribution of reconstructed Λ, which is discussed in Section II D, is peaked at the appropriate PDG value [39].

Table 1

Particle	δ_0	δ	α
4He	0.072±0.007	-0.039±0.005	0.757±0.040
3He	0.036±0.003	-0.020±0.002	0.882±0.039
proton	0.024±0.002	-0.021±0.002	0.396±0.027

2.4. Systematic uncertainties

Since the uncertainties on the masses of Λ, triton, and 3He used in the calculations for Λ binding energies are quite small [39, 37], the systematic uncertainties for the Λ binding energies are the same as them for the measured masses of the hypernuclei in this analysis. These systematic uncertainties mainly come from the aforementioned corrections.

For the energy loss corrections, the correction parameters with their statistical uncertainties σ are obtained from the fits with Eq. (2). The parameters are varied from $+1\sigma$ to -1σ to investigate their influences on the measurements. The average difference of the measurements with these variations are taken as the systematic uncertainties.

The systematic uncertainty of the momentum scaling factor 0.998 is evaluated by measuring the Λ hyperon mass via its two body decay channel $\Lambda \rightarrow p + \pi^-$ in the same data set. With the energy-loss correction for the proton and the momentum scaling factor being applied, the extracted Λ mass is still a function of its momentum, but remains within 0.10 MeV/c^2 of the PDG value 1115.683 ± 0.006 MeV/c^2 [39]. Thus, the 0.10 MeV/c^2 difference is propagated to the systematic uncertainties for 4H and 4He by scaling it with the ratio of the difference between the hypernuclei masses with and without the 0.998 scaling factor to the difference between the Λ masses with and without the 0.998 factor. The resulting systematic uncertainties for 4H and 4He masses are both calculated to be 0.11 MeV/c^2.

Variations of the measured mass by the change of BDT response cuts are also considered as a source of systematic uncertainty. The BDT response cut was varied in a large range and the final mass result is the average value of several fitting results of the invariant mass distributions with different cuts. The half of the maximum change in the mass is regarded as the systematic uncertainty. We also checked the fit of the signal after the combinatorial background was subtracted via the rotational-background method and found that the changes in the results are negligible. Table 2 summarizes the systematic uncertainties from various sources for 4H and 4He.

Table 2

Uncertainty source	4H	4He
Momentum scaling factor	0.11	0.11
Energy loss correction	0.08	0.05
BDT response cut	0.03	0.01
Total	0.14	0.12

When measuring the Λ binding-energy difference between 4H and 4He, the systematic uncertainties from the momentum scaling factor will largely be canceled out, but the cancellation will not be complete due to their different decay phase spaces. We applied the 0.998 factor in the simulation data and found that it brings a 0.02 MeV change to the Λ binding-energy difference. Thus this 0.02 MeV is considered as a systematic uncertainty for the Λ binding-energy measurement.
difference. The systematic uncertainties from other sources are added in quadrature to obtain the total systematic uncertainties of the \(\Lambda \) binding-energy difference, summarized in Table 3.

Table 3

Systematic uncertainties for the difference of \(\Lambda \) binding energies between \(^3\text{H} \) and \(^4\text{H} \) in the ground state in MeV.

Uncertainty source	Uncertainty
Momentum scaling factor	0.02
Energy loss correction	0.09
BDT response cut	0.03
Total	0.10

3. Results and discussions

The signal and the background in the invariant-mass distributions of \(^4\Lambda\text{H} \) and \(^4\Lambda\text{He} \) are fitted by a Gaussian distribution and a double-exponential function, respectively:

\[
f(x) = \frac{A}{\sqrt{2\pi}\sigma} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right) + p_0 \exp \left(-\frac{x - p_1}{p_2} \right) + p_3 \exp \left(-\frac{x - p_3}{p_4} \right) + p_5.
\]

The fitting result of \(\mu \) is the mass of the interested hypernucleus. The fitting results are shown as the black dashed curves in Fig. 2. Using the methods which has been described in Section II, we have measured \(m(^4\Lambda\text{H}) = 3922.38 \pm 0.06 \text{(stat.)} \pm 0.14 \text{(syst.)} \text{MeV}/c^2 \) and \(m(^4\Lambda\text{He}) = 3921.69 \pm 0.13 \text{(stat.)} \pm 0.12 \text{(syst.)} \text{MeV}/c^2 \). We can extract the \(\Lambda \) binding energies of \(^4\text{H} \) and \(^4\text{He} \) according to Eq. 1. The mass of \(\Lambda \) \((m(\Lambda) = 1115.68 \text{ MeV}) \) is taken from the PDG [39], and the masses of triton \((m(t) = 2808.92 \text{ MeV}) \) and \(^3\text{He} \) \((m(^3\text{He}) = 2808.39 \text{ MeV}) \) are from CODATA [37]. With the mass measurements in this analysis, the \(\Lambda \) binding energies of \(^4\Lambda\text{H} \) and \(^4\Lambda\text{He} \) are \(B_{\Lambda}(^4\Lambda\text{H}) = 2.22 \pm 0.06 \text{(stat.)} \pm 0.14 \text{(syst.)} \text{MeV} \) and \(B_{\Lambda}(^4\Lambda\text{He}) = 2.38 \pm 0.13 \text{(stat.)} \pm 0.12 \text{(syst.)} \text{MeV} \). These results are illustrated in Fig. 4.

The \(\Lambda \) binding energies of \(^4\text{H} \) and \(^4\text{He} \) in this analysis correspond to the ground states, reconstructed via their weak-decay channels. The \(\Lambda \) binding energies in excited states can be obtained according to the \(\gamma \)-ray transition energies of the excited \(^4\text{H} \) and \(^4\text{He} \). Combined with the \(\gamma \)-ray transition energies obtained from previous measurements, \(E_{\gamma}(^4\Lambda\text{H}) = 1.09 \pm 0.02 \text{ MeV} \) [11] and \(E_{\gamma}(^4\Lambda\text{He}) = 1.406 \pm 0.003 \text{ MeV} \) [38], the \(\Lambda \) binding-energy differences between \(^4\Lambda\text{H} \) and \(^4\Lambda\text{He} \) are \(\Delta B_{\Lambda}(1^+_{\text{exc}}) \approx (0^+_{\text{g.s.}}) = 0.16 \pm 0.14 \text{(stat.)} \pm 0.10 \text{(syst.)} \text{MeV} \) and \(\Delta B_{\Lambda}(1^+_{\text{exc}}) = -0.16 \pm 0.14 \text{(stat.)} \pm 0.10 \text{(syst.)} \text{MeV} \).

Figure 5 presents a compilation of current measurements together with early measurements [24, 38, 16, 33, 11, 12] and theoretical model calculations [18, 19, 32, 22, 31, 15] for the \(\Lambda \) binding-energy differences. The solid blue square markers in Fig. 5 show results from nuclear emulsion experiments in 1970s, in which a positive binding-energy difference in the excited states with a magnitude similar to the ground states was measured. This similarity arises because the \(\gamma \)-ray transition energy for \(^4\Lambda\text{He} \) was measured to be \(E_{\gamma}(^4\Lambda\text{He}) = 1.15 \pm 0.04 \text{ MeV} \) at that time [12], which is comparable to that of \(^4\Lambda\text{H} \) [11]. With a precise measurement of the \(\gamma \)-ray transition energy for \(^4\Lambda\text{He} \) in 2015 [38], which shows a larger \(\gamma \)-ray transition energy for \(^4\Lambda\text{He} \) than for \(^4\Lambda\text{H} \), the \(\Lambda \) binding energy difference in excited states was calculated to be around zero, and it is much smaller than that in ground states. As discussed in the introduction and shown as solid black circle markers in Fig. 5 with black dots, most of the theoretical calculations predict small \(\Lambda \) binding-energy differences in both ground states and excited states [32, 22, 31, 15]. Reference [19] (denoted as PRL116(2016)) predicts large values of \(\Lambda \) binding energy differences in both ground states and in excited states with opposite sign, i.e. \(\Delta B_{\Lambda}(1^+_{\text{exc}}) \approx -\Delta B_{\Lambda}(0^+_{\text{g.s.}}) \). Within current uncertainties, this prediction matches our measurements. This may indicate that the CSB effect is comparable and has the opposite sign in ground states and excited states in \(A = 4 \) hypernuclei which has not been shown in previous measurements. An accurate measurement of the \(\gamma \)-ray transition energy for excited \(^4\Lambda\text{H} \) is important as it directly impacts the deduced \(\Lambda \) binding energy for the excited state. Currently, our results are based on the \(\gamma \)-ray transition energy for \(^4\Lambda\text{H} \) from the experiments in the 1970s which show a large difference from the recent measurements in the \(\gamma \)-ray transition energy for \(^4\Lambda\text{He} \) [12, 38].

Model calculations predict that the yields of \(^4\Lambda\text{H} \) and \(^4\Lambda\text{He} \) should be similar in heavy-ion collisions [35, 20]. However, the number of analyzed \(^4\Lambda\text{H} \) is much less than the number of analyzed \(^4\Lambda\text{He} \) due to the lower acceptance in STAR for three-body decays, leading to the statistical uncertainty on the \(^4\Lambda\text{He} \) mass driving the statistical uncertainties on the \(\Lambda \) binding-energy differences. Besides, the \(\Lambda \) binding energy difference between \(^4\text{H} \) and \(^4\text{He} \) from the experiments in the 1970s was measured both in their three-body decay channels [25]. To
compare with it, it may be more reasonable for us to address the CSB effect also in their three-body decay channels, which requires a reconstruction of $^4\Lambda$H via its three-body decay channel $^4\Lambda$H $\rightarrow t + p + \pi^-$. However, the three-body decays have lower acceptance than two-body decays in STAR and a smaller branching ratio [1]. Furthermore, due to the +1 charge of the triton, the dE/dx of the triton usually mixes with other particles with +1 charge as shown in Fig. 1. These conditions lead to the statistics of $^4\Lambda$H reconstructed via the three-body decay channel being much lower than $^4\Lambda$H two-body decay and $^4\Lambda$He three-body decay. Therefore, we did not consider the three-body decay channel of $^4\Lambda$H in this analysis. STAR has collected more statistics in the fixed-target mode. Within a few years for data production and analysis, the precision of current binding-energy measurements will be improved. The $^4\Lambda$H three-body decay channel analysis may also become possible, and one may also have the chance to study the YNN interaction via the momentum correlation between Λ and light nuclei [21, 34].

4. Summary

In summary, the masses and the Λ binding energies of the mirror hypernuclei, $^4\Lambda$H and $^4\Lambda$He, are measured in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV. By using the γ-ray transition energies of the excited states from previous measurements [11, 38], the Λ binding energies of them in excited states are also extracted. The CSB effect in Λ = 4 hypernuclei are then studied by measurements of the Λ binding-energy differences between the ground states of $^4\Lambda$H and $^4\Lambda$He or their excited states. In comparison with other experimental measurements and theoretical studies, our results with a positive $\Delta B_{\Lambda}^4(0^+)$ and a negative $\Delta B_{\Lambda}^4(1^+)$ energies of comparable magnitudes within uncertainties, are consistent with the calculation using chiral effective field theory YN potentials plus a CSB effect. Although the statistical uncertainties are large, our approach provides a new avenue to study the CSB in heavy-ion collision experiments.

5. Acknowledgement

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

References

[1] Abdallah, M., et al. (STAR Collaboration), 2022. Measurements of $^3\Lambda$H and $^3\Lambda$He Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region. Phys. Rev. Lett. 128, 202301. doi:10.1103/PhysRevLett.128.202301, arXiv:2110.09513.
Measurement of 4H and 4He binding energy in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV

[2] Abdurakhimov, A.U., et al., 1989. Experimental Study of Relativistic Hypernuclei Using the Hyb Spectrometer. Nuovo Cim. A 102, 645–652. doi:10.1007/BF02734881.

[3] Abelev, B.I., et al. (STAR Collaboration), 2009. Systematic Measurements of Identified Particle Spectra in pp, 4He and Au+Au Collisions from STAR. Phys. Rev. C 79, 034909. doi:10.1103/PhysRevC.79.034909, arXiv:0808.2041.

[4] Abelev, B.I., et al. (STAR Collaboration), 2010. Observation of an Antimatter Hypernucleus. Science 328, 58–62. doi:10.1126/science.1183980, arXiv:1003.2036.

[5] Acharya, S., et al. (ALICE Collaboration), 2019. 3He and 4He lifetime measurement in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV via two-body decay. Phys. Lett. B 797, 134905. doi:10.1016/j.physletb.2019.134905, arXiv:1907.06996.

[6] Adam, J., et al. (STAR Collaboration), 2020. Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton. Nature Phys. 16, 409–412. doi:10.1038/s41567-020-0799-7, arXiv:1804.18528.

[7] Adamczyk, L., et al. (STAR Collaboration), 2018. Measurement of the 4He lifetime in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 97, 054909. doi:10.1103/PhysRevC.97.054909, arXiv:1710.08436.

[8] Adler, C., et al. (STAR Collaboration), 2002. Midrapidity Lambda and anti-Lambda Production in Au + Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Phys. Rev. Lett. 89, 092301. doi:10.1103/PhysRevLett.89.092301, arXiv:nucl-ex/0203016.

[9] Agostinelli, S., et al. (GEANT4), 2003. GEANT4–a simulation toolkit. Nucl. Instrum. Meth. A 508, 250–303. doi:10.1016/S0168-9002(03)01368-8.

[10] Anderson, M., et al., 2003. The Star time projection chamber: A Unique tool for studying high multiplicity events at RHIC. Nucl. Instrum. Meth. A 499, 659–678. doi:10.1016/S0168-9002(02)01964-2, arXiv:nucl-ex/0301015.

[11] Bedijedian, M., et al. (CERN-Lyon-Warsaw Collaboration), 1976. Observation of a gamma transition in the 4H Hypernucleus. Phys. Lett. B 62, 467–470. doi:10.1016/0370-2693(76)90866-9.

[12] Bedijedian, M., et al. (CERN-Lyon-Warsaw Collaboration), 1979. Further Investigation of the γ Transitions in 4H and 4He Hypernuclei. Phys. Lett. B 83, 252–256. doi:10.1016/0370-2693(79)90397-x.

[13] Bichsel, H., 2006. A method to improve tracking and particle identification in TPCs and silicon detectors. Nucl. Instrum. Meth. A 562, 154–197. doi:10.1016/j.nima.2006.03.009.

[14] Chen, J., Keane, D., Ma, Y.G., Tang, A., Xu, Z., 2018. Antinuclei in Heavy-Ion Collisions. Phys. Rept. 760, 1–39. doi:10.1016/j.physrep.2018.07.002, arXiv:1706.09615.

[15] Coon, S.A., Han, K.H., Carlson, J., Gibson, B.F., 1998. Particle mixing and charge asymmetric Lambda N forces, in: 7th International Conference on Mesons and Light Nuclei 98. arXiv:nucl-th/9803034.

[16] Esser, A., et al. (Al Collaboration), 2015. Observation of 4H Hydrogen by Decay-Pion Spectroscopy in Electron Scattering. Phys. Rev. Lett. 114, 232501. doi:10.1103/PhysRevLett.114.232501, arXiv:1501.06223.

[17] Fortin, M., Avancini, S.S., Providência, C., Vidana, I., 2017. Hypernuclei and massive neutron stars. Phys. Rev. C 95, 065803. doi:10.1103/PhysRevC.95.065803, arXiv:1701.00373.

[18] Glässer, S., Kireyev, V., Voronyuk, V., Aichelin, J., Blume, C., Bratkovskaya, E., Coci, G., Kolesnikov, V., Winn, M., 2022. Cluster and hypercluster production in relativistic heavy-ion collisions within the parton-hadron-quantum-molecular-dynamics approach. Phys. Rev. C 105, 014908. doi:10.1103/PhysRevC.105.014908, arXiv:2106.14839.

[19] Haidenbauer, J., Meißen, U.G., Nogga, A., 2021. Constra...
Measurement of 4_H and $^4_{\Lambda}He$ binding energy in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV