EXTREMALITY OF TRANSLATION-INVARIANT GIBBS MEASURES FOR THE POTT-SOS MODEL ON THE CAYLEY TREE

M. M. RAHMATULLAEV, M. A. RASULOVA

Abstract. In this paper, we consider the Potts-SOS model where the spin takes values in the set \{0, 1, 2\} on the Cayley tree of order two. We describe all the translation-invariant splitting Gibbs measures for this model in some conditions. Moreover, we investigate whether these Gibbs measures are extremal or non-extremal in the set of all Gibbs measures.

Key words. Cayley tree, configuration, Potts-SOS model, translation-invariant splitting Gibbs measure, extreme measure, tree-indexed Markov chain, Kesten-Stigum condition, extremality.

1. Introduction

One of the central problems in the theory of Gibbs measures (GMs) is to describe infinite-volume (or limiting) GMs corresponding to a given Hamiltonian. The existence of such measures for a wide class of Hamiltonians was established in the ground-breaking work of Dobrushin (see, e.g., [2]). However, a complete analysis of the set of limiting GMs for a specific Hamiltonian is often a difficult problem.

In this paper, we consider the Potts-SOS model, with spin values 0, 1, 2 on the Cayley tree (CT). Models on a CT were discussed in Refs. [3] and [5]-[8]. A classical example of such a model is the Ising model, with two values of spin \(-1\) and 1. It was considered in Refs. [1], [3], [8], [17], [18] and became a focus of active research in the first half of the 90s and afterwards; see Refs. [1], [9]-[15].

In [19] all translation-invariant splitting Gibbs measures (TISGMs) for the Potts model on the CT are described. In [20], [21] periodic Gibbs measures, in [22]-[24] weakly periodic Gibbs measures for the Potts model are studied.

In [25], [26] translation-invariant and periodic Gibbs measures for the SOS model on the CT are studied.

Model considered in this paper (Potts-SOS model) is generalization of the Potts and SOS (solid-on-solid) models. In [16] some translation-invariant Gibbs measures for the Potts-SOS model on the CT are studied. Periodic Gibbs measures are studied for the Potts-SOS model on the CT in [25]. In this paper we will study all the TISGMs for this model under some conditions. Next we investigate whether these Gibbs measures are extremal or non-extremal in the set of all Gibbs measures.
2. Main definitions and known facts

The Cayley tree Γ^k (See [1]) of order $k \geq 1$ is an infinite tree, i.e., a graph without cycles, from each vertex of which exactly $k + 1$ edges issue. Let $\Gamma^k = (V, L, i)$, where V is the set of vertices of Γ^k, L is the set of edges of Γ^k and i is the incidence function associating each edge $l \in L$ with its endpoints $x, y \in V$. If $i(l) = \{x, y\}$, then x and y are called nearest neighboring vertices, and we write $l = < x, y >$.

The distance $d(x, y)$, $x, y \in V$ on the Cayley tree is defined by the formula

$$d(x, y) = \min \{d | \exists x = x_0, x_1, ..., x_{d-1}, x_d = y \in V \text{ such that } < x_0, x_1 >, ..., < x_{d-1}, x_d >\}.$$

For the fixed $x^0 \in V$ we set $W_n = \{x \in V \mid d(x, x^0) = n\}$, $V_n = \{x \in V \mid d(x, x^0) \leq n\}$, $L_n = \{l = < x, y > \in L \mid x, y \in V_n\}$. (1)

Denote $|x| = d(x, x^0)$, $x \in V$.

A collection of the pairs $< x, x_1 >, ..., < x_{d-1}, y >$ is called a path from x to y and we write $\pi(x, y)$. We write $x < y$ if the path from x^0 to y goes through x.

It is known (see [1]) that there exists a one-to-one correspondence between the set V of vertices of the Cayley tree of order $k \geq 1$ and the group G_k of the free products of $k + 1$ cyclic groups $\{e, a_i\}$, $i = 1, ..., k + 1$ of the second order (i.e. $a_i^2 = e$, $a_i^{-1} = a_i$) with generators $a_1, a_2, ..., a_{k+1}$, see Figure 1.

Figure 1. The Cayley tree τ^2 and elements of the group G_2 representation of vertices
Denote the set of "direct successors" of \(x \in G_k \) by \(S(x) \). Let \(S_1(x) \) be the set of all nearest neighboring vertices of \(x \in G_k \), i.e. \(S_1(x) = \{ y \in G_k : < x, y > \} \) and \(\{ x \downarrow \} = S_1(x) \setminus S(x) \).

3. THE MODEL AND A SYSTEM VECTOR-VALUED FUNCTIONAL EQUATIONS

Here we shall give main definitions and facts about the model. Consider model where the spin takes values in the set \(\Phi = \{ 0, 1, 2, ..., m \} \), \(m \geq 1 \). For \(A \subseteq V \) a spin configuration \(\sigma_A \) on \(A \) is defined as a function \(x \in A \rightarrow \sigma_A(x) \in \Phi \); the set of all configurations coincides with \(\Omega_A = \Phi^A \). Denote \(\Omega = \Omega_V \) and \(\sigma = \sigma_V \).

A configuration that is invariant with respect to all shifts is called translational-invariant.

The Hamiltonian of the Potts-SOS model with nearest-neighbor interaction has the form

\[
H(\sigma) = -J \sum_{<x,y> \in L} |\sigma(x) - \sigma(y)| - J_p \sum_{<x,y> \in L} \delta_{\sigma(x)\sigma(y)},
\]

where \(J, J_p \in \mathbb{R} \) are nonzero coupling constants.

It is known [16] that any SGM of the model (2) corresponds to a solution of the following equation:

\[
h^*_x = \sum_{y \in S(x)} F(h^*_y, m, \theta, r)
\]

where \(x \in V \setminus \{ x^0 \} \),

\[
\theta = \exp(J \beta), \quad r = \exp(J_p \beta)
\]

and also \(\beta = 1/T \) is the inverse temperature. Here \(h^*_x \) represents the vector \((h_{0,x} - h_{m,x}, h_{1,x} - h_{m,x}, ..., h_{m-1,x} - h_{m,x})\) and the vector function \(F(., m, \theta, r) : \mathbb{R}^m \rightarrow \mathbb{R}^m \) is defined as follows

\[
F(h, m, \theta, r) = (F_0(h, m, \theta, r), F_1(h, m, \theta, r), ..., F_{m-1}(h, m, \theta, r)),
\]

where

\[
F_i(h, m, \theta, r) = \ln \left(\frac{\sum_{j=0}^{m-1} \theta^{i-j} \rho \delta_{h_j} e^{h_j} + \theta^{m-i} \rho \delta_m e^{h_m}}{\sum_{j=0}^{m-1} \theta^{m-j} \rho \delta_m e^{h_j} + r}\right),
\]

\(h = (h_0, h_1, ..., h_{m-1}), i = 0, 1, 2, ..., m - 1 \).

Namely, for any collection of functions satisfying the functional equation (3) there exists a unique splitting Gibbs measure, the correspondence being one-to-one.

4. TRANSLATION-INvariant Gibbs measures

Definition 1. For a SGM \(\mu \), if \(h_{j,x} \) is independent from \(\{ x : h_{j,x} \equiv h_j, x \in V, j \in \Phi \} \), \(\mu \) is called translation-invariant (TI).
Let $m = 2$, that is $\Phi = \{0, 1, 2\}$. In this case, for the TISGMs has the form
$$h = kF(h, \theta, r),$$
where $h = (h_0, h_1)$. Introducing the notation $l_0 = e^{h_0}, l_1 = e^{h_1}$, we obtain the following system of equations

$$
\begin{cases}
l_0 = \left(\frac{r l_0 + \theta l_1}{\theta l_0 + \theta l_1 + r}\right)^k, \\
l_1 = \left(\frac{r l_0 + \theta l_1}{\theta l_0 + \theta l_1 + r}\right)^k.
\end{cases}
$$

Let $k = 2$. Denote $\sqrt{l_0} = x, \sqrt{l_1} = y$. Then from (6) we get

$$
\begin{cases}
x = \frac{r x^2 + \theta y^2 + \theta^2}{\theta x^2 + \theta y^2 + r}, \\
y = \frac{\theta x^2 + r y^2 + \theta}{\theta x^2 + \theta y^2 + r}.
\end{cases}
$$

After simplifying above the system of equations, we have

$$
\begin{cases}
\theta^2 x^3 - rx^2 + (\theta y^2 + r)x - \theta y^2 - \theta^2 = 0, \\
\theta y^3 - ry^2 + (\theta^2 x^2 + r)y - \theta x^2 - \theta = 0.
\end{cases}
$$

The system of equations can be rewritten as

$$
\begin{cases}
(x - 1)(\theta^2 x^2 + \theta^2 x + \theta^2 - rx + \theta y^2) = 0, \\
\theta y^3 - ry^2 + (\theta^2 x^2 + r)y - \theta x^2 - \theta = 0.
\end{cases}
$$

Obviously, the solutions of are the solutions of the following system of equations

$$
\begin{cases}
x - 1 = 0, \\
\theta y^3 - ry^2 + (\theta^2 x^2 + r)y - \theta x^2 - \theta = 0,
\end{cases}
$$

or the solutions of the following system of equations

$$
\begin{cases}
\theta^2 x^2 + \theta^2 x + \theta^2 - rx + \theta y^2 = 0, \\
\theta y^3 - ry^2 + (\theta^2 x^2 + r)y - \theta x^2 - \theta = 0.
\end{cases}
$$

Let us consider. Substituting $x = 1$ into the second equation of we get

$$
\theta y^3 - ry^2 + (\theta^2 + r)y - 2\theta = 0.
$$

For

$$y = z + \frac{r}{3\theta},$$
we reduce (12) to the equation
\[z^3 + \left(\frac{r}{\theta} + \theta - \frac{r^2}{3\theta^2}\right) z + \left(\frac{r}{3} + \frac{r^2}{3\theta^2} - \frac{2r^3}{27\theta^3} - 2\right) = 0. \] (14)

Denote
\[p = \frac{r}{\theta} + \theta - \frac{r^2}{3\theta^2}, \quad q = \frac{r}{3} + \frac{r^2}{3\theta^2} - \frac{2r^3}{27\theta^3} - 2. \] (15)

After solving the equation \(p = 0 \) in terms of \(r \), we have the solutions \(r_{1,2} = \frac{3+\sqrt{9+12\theta}}{2} \). Since \(r > 0, \theta > 0 \), we get \(r_1 = \frac{3+\sqrt{9+12\theta}}{2} \). Putting \(r_1 \) into \(q \) in (15) and solving the equation \(q = 0 \) in terms of \(\theta \), we have the solution \(\theta_1 = 3\sqrt{2}(\sqrt{2} - 1) \).

Substituting \(r_1, \theta_1 \) into the equation (14) we get the equation \(z^3 = 0 \). It follows that the equation (12) has one positive solution.

From (15), we obtain
\[Q(r, \theta) = \left(\frac{p}{3}\right)^3 + \left(\frac{q}{2}\right)^2 = \frac{1}{27} \left(\frac{-1}{3\theta^2} + \frac{r}{\theta} + \theta\right)^3 + \frac{1}{4} \left(\frac{-2}{27\theta^3} + \frac{1}{3\theta^2} + \frac{1}{3} \right)^2 = \]
\[= -\frac{1}{108\theta^4} \left(r^4 + 2r^3 \theta^2 + r^2 \theta^4 - 12r^3 \theta - 12r^2 \theta^3 - 12\theta^5 r - 4\theta^7 + 36\theta^2 r^2 + 36\theta^4 r - 108\theta^4 \right). \] (16)

For \(\theta = \theta_1 = 3\sqrt{2}(\sqrt{2} - 1) \) we have
\[Q(r, \theta_1) = \frac{116 + 73\sqrt{2} + 92\sqrt{2} + 34992}{27} \left(-r^2 + 36(1 - 2\sqrt{2} + \sqrt{4})r + 324(13 - 4\sqrt{2} - 5\sqrt{4})\right). \]

Using Cardano’s formula one can prove the following

Lemma 1. Let \(\theta = 3\sqrt{2}(\sqrt{2} - 1) \). There exists \(r_0 \) (\(\approx 4.221293186 \)) such that
- If \(r \in (0, r_0) \) then the equation (12) has one positive solution.
- If \(r = r_0 \) then the equation (12) has two positive solutions.
- If \(r \in (r_0, \infty) \) then the equation (12) has three positive solutions.

Now we consider (11). From (11) we get
\[x = \frac{\theta y(\theta^2 - y + ry - r)}{-\theta^3 y + \theta^2 + \theta ry - r}. \] (17)

Substituting (17) into the first equation of (11), we obtain
\[f(y, r, \theta) = \theta^2(\theta + 1)(r^2 - 2\theta r + \theta^3 - \theta^2 + \theta)y^4 - \theta(r - \theta^2)(r^2 + (\theta^2 + 1)r - 3\theta^2)y^3 + \]
\[+ ((\theta + 1)r + \theta^3)(r - \theta^2)^2 y^2 - (r + \theta^2)(r - \theta^2)^2 y + \theta(r - \theta^2)^2 = 0. \] (18)

The equation (18) can be rewritten as
\[f(y, r, \theta) = (ay^2 + by + c)(dy^2 + ey + f), \]
where
Lemma 2. Let \(A = \theta^2(\theta + 1)(r^2 - 2\theta r + \theta^3 - \theta^2 + \theta), \)

\[
\begin{align*}
ac + bd &= -\theta(r - \theta^2)(r^2 + (\theta^2 + 1)r - 3\theta^2), \\
af + be + cd &= ((\theta + 1)r + \theta^3)(r - \theta^2)^2, \\
bf + ce &= -(r + \theta^2)(r - \theta^2)^2,
\end{align*}
\]

\(cf = \theta(r - \theta^2)^2. \)

Let \(D_1(r, \theta) = b^2 - 4ac \) and \(D_2(r, \theta) = c^2 - 4df. \)

We denote the following sets

- \(B_1 = \{(r, \theta) \in \mathbb{R}_+^2 : D_1(r, \theta) > 0, D_2(r, \theta) > 0\}, \)
- \(B_2 = \{(r, \theta) \in \mathbb{R}_+^2 : D_1(r, \theta) > 0, D_2(r, \theta) = 0 \lor D_1(r, \theta) = 0, D_2(r, \theta) > 0\}, \)
- \(B_3 = \{(r, \theta) \in \mathbb{R}_+^2 : D_1(r, \theta) = 0, D_2(r, \theta) = 0 \lor D_1(r, \theta) > 0, D_2(r, \theta) < 0 \lor \}

 \lor D_1(r, \theta) < 0, D_2(r, \theta) > 0\}, \)
- \(B_4 = \{(r, \theta) \in \mathbb{R}_+^2 : D_1(r, \theta) = 0, D_2(r, \theta) < 0 \lor D_1(r, \theta) < 0, D_2(r, \theta) = 0\}, \)
- \(B_5 = \{(r, \theta) \in \mathbb{R}_+^2 : D_1(r, \theta) < 0, D_2(r, \theta) < 0\}. \)

Thus we can prove the following

Lemma 2. Let \(\theta = 3\sqrt{2}(\sqrt{2} - 1), \) then the following assertions hold

- If \(r \in B_1(r) \) then the equation \((15) \) has four solutions which are positive.
- If \(r \in B_2(r) \) then the equation \((15) \) has three positive solutions.
- If \(r \in B_3(r) \) then the equation \((15) \) has two positive solutions.
- If \(r \in B_4(r) \) then the equation \((15) \) has one positive solution.
- If \(r \in B_5(r) \) then the equation \((15) \) has no solution.

With respect to \((15) \) and \((14) \) we denote the following sets

- \(A_1 = \{(r, \theta) \in \mathbb{R}_+^2 : r \leq 3\theta^2, Q > 0\} \cup \{(r, \theta) \in \mathbb{R}_+^2 : r \leq 3\theta^2, p = 0, q = 0\}, \)
- \(A_2 = \{(r, \theta) \in \mathbb{R}_+^2 : r \leq 3\theta^2, Q = 0\} \cap \{(r, \theta) \in \mathbb{R}_+^2 : p \neq 0 \lor q \neq 0\}, \)
- \(A_3 = \{(r, \theta) \in \mathbb{R}_+^2 : r \leq 3\theta^2, Q < 0\}, \)
- \(A_4 = \{(r, \theta) \in \mathbb{R}_+^2 : r > 3\theta^2, Q > 0\}, \)
- \(A_5 = \{(r, \theta) \in \mathbb{R}_+^2 : r > 3\theta^2, Q = 0\} \cap \{(r, \theta) \in \mathbb{R}_+^2 : p \neq 0 \lor q \neq 0\}, \)
- \(A_6 = \{(r, \theta) \in \mathbb{R}_+^2 : r > 3\theta^2, Q < 0\}. \)

Let \(N \) be the number of TISGMs for the Potts-SOS model.
Theorem 1. Let $k = 2, m = 2$. The following statements hold for the N

\[
N = \begin{cases}
1, & \text{if } (r, \theta) \in A_1, \\
2, & \text{if } (r, \theta) \in A_2 \cup (A_4 \cap B_4) \cup (A_5 \cap B_5), \\
3, & \text{if } (r, \theta) \in A_3 \cup (A_4 \cap B_3) \cup (A_5 \cap B_4), \\
4, & \text{if } (r, \theta) \in (A_4 \cap B_3) \cup (A_5 \cap B_4), \\
5, & \text{if } (r, \theta) \in (A_4 \cap B_2) \cup (A_5 \cap B_3) \cup (A_6 \cap B_4), \\
6, & \text{if } (r, \theta) \in (A_4 \cap B_1) \cup (A_5 \cap B_2) \cup (A_6 \cap B_3), \\
7, & \text{if } (r, \theta) \in (A_5 \cap B_1) \cup (A_6 \cap B_2), \\
8, & \text{if } (r, \theta) \in A_6 \cap B_1.
\end{cases}
\]

(19)

Proof. We consider the first equation of (11). We write this in the following form

\[
\theta^2 x^2 + (\theta^2 - r)x + \theta^2 = -\theta y^2. \tag{20}
\]

RHS of (20) is negative, thus

\[
\theta^2 x^2 + (\theta^2 - r)x + \theta^2 < 0. \tag{21}
\]

For LHS of (21), we calculate its discriminant $D = (\theta^2 - r)^2 - 4\theta^4$. If the discriminant is positive, then the inequality (21) has real solutions. Therefore, we should solve

\[
(-r - \theta^2)(3\theta^2 - r) > 0.
\]

Since $-r - \theta^2 < 0$, it follows that $r > 3\theta^2$.

Inequality (21) has positive solution as soon as $\theta^2 - r < 0$ or $r > \theta^2$. If $r > 3\theta^2$, then $r > \theta^2$ also holds. If $r > 3\theta^2$, the solutions of the inequality (21) belong to

\[
\left(\frac{r - \theta^2 - \sqrt{D}}{2\theta^2}, \frac{r - \theta^2 + \sqrt{D}}{2\theta^2}\right).
\]

Moreover, (20) holds in this interval.

Consequently, if $r > 3\theta^2$ then the first equation of (11) has a positive real solution, if $r \leq 3\theta^2$ then the first equation of (11) cannot have a positive solution, i.e., any positive real pair (x, y), which is solution of the first equation of (11), does not satisfy $r \leq 3\theta^2$. Then TISGMs corresponding roots of (11) do not exist under condition $r \leq 3\theta^2$.

According to the Descartes theorem, the number of positive roots of equation (12) is at least 1 and at most 3.

If $Q > 0$, then the equation (14) has one positive real root and two conjugate complex roots; If $Q = 0$, the all roots of the equation (14) are positive real and two of them are equal or if $p = q = 0$, then (14) has one positive real root (one real zero of multiplicity three); If $Q < 0$, then the equation (14) has three distinct positive real roots. Hence, we can say about the number of TISGMs corresponding positive roots of the equation (12).

From Lemma 1 and Lemma 2 we can see that

\[
\left\{(r, \theta) \in R^2 : \theta = 3\sqrt{2}(\sqrt{2} - 1), r \in (r_c, \infty) \cap B_1(r) \right\} \subset A_6 \cap B_1.
\]
Thus the set \(A_6 \cap B_1 \) is not empty, i.e., the number of TISGMs corresponding positive solutions of (8) for the Potts-SOS model is up to seven. □

Remark 1. Note that Theorem 1 (for \(k = m = 2 \)) generalizes results of [19] and [27].

If \(J = 0 \), then Potts-SOS model changes to Potts model. In this case Theorem 1 can be restated as follows

Theorem 2. Let \(k = 2, m = 2 \). The following statements hold for the number \(n \) of the TISGMs for the Potts model

\[
n = \begin{cases}
1, & \text{if } r \in (0, 1 + 2\sqrt{2}), \\
4, & \text{if } r = 1 + 2\sqrt{2} \text{ or } r = 4, \\
7, & \text{if } r \in (1 + 2\sqrt{2}, 4) \cup (4, \infty).
\end{cases}
\]
(22)

(see [19] for more details).

If \(J_p = 0 \), then Hamiltonian (2) of Potts-SOS model changes to Hamiltonian of SOS model. In this case Theorem 1 can be restated as follows

Theorem 3. Let \(k = 2, m = 2 \). The following statements are appropriate for the number \(n \) of the TISGMs for the SOS model

\[
n = \begin{cases}
1, & \text{if } \theta \in (\theta_2, \infty), \\
3, & \text{if } \theta = \theta_2, \\
5, & \text{if } \theta \in (\theta_1, \theta_2), \\
6, & \text{if } \theta = \theta_1, \\
7, & \text{if } \theta \in (0, \theta_1),
\end{cases}
\]
(23)

where \(\theta_1 \approx 0.1414 \) and \(\theta_2 \approx 0.2956 \).

(see [27] for more details).

Now we study the extremality of the TISGMs for the Potts-SOS model. In general, a complete analyses of extremality or non-extremality of the TISGMs is a difficult problem. Therefore, we assume \(r = \theta^2 \).

Lemma 3. Let \(r = \theta^2 \). There exists a unique \(\theta_c (\approx 7.729814) \) such that

- If \(\theta \in (0, \theta_c) \) then system (7) has one positive root.
- If \(\theta = \theta_c \) then system (7) has two positive roots.
- If \(\theta \in (\theta_c, \infty) \) then system (7) has three positive roots.

Proof. Substituting \(r = \theta^2 \) into (7) we have

\[
\begin{align*}
x &= 1, \\
y &= \frac{2 + \theta y^2}{2\theta + y^2}.
\end{align*}
\]
(24)
Simplifying the second equation of (24), we obtain the cubic equation

\[y^3 - \theta y^2 + 2\theta y - 2 = 0. \]

(25)

We calculate its discriminant

\[D = 4(\theta^4 - 10\theta^3 + 18\theta^2 - 27). \]

(26)

Denote \(\theta_c \approx 7.729814 \). If \(D < 0 \) (\(\theta < \theta_c \)) the equation (25) has one real and two conjugate complex roots. If \(D = 0 \) (\(\theta = \theta_c \)) then all roots of equation (25) are real, which two of them are equal. If \(D > 0 \) (\(\theta > \theta_c \)) then the equation (25) has three distinct real roots (see Fig. 2). Obtained real roots are positive due to the Descartes theorem (see [6]).

\[\square \]

Figure 2. The graphs of functions \(y_i = y_i(\theta), i = 1, 2, 3 \). Lower curve is \(y_1 \), middle curve is \(y_2 \), upper curve is \(y_3 \).

Using Lemma 3, we have the following
Theorem 4. Let $k = m = 2$. If $r = \theta^2$ then the following statements hold for the N

$$
N = \begin{cases}
1, & \text{if } \theta \in (0, \theta_c), \\
2, & \text{if } \theta = \theta_c, \\
3, & \text{if } \theta \in (\theta_c, \infty),
\end{cases}
$$

(27)

where $\theta_c \approx 7.729814$.

Remark 2. Note that the Theorem 4 is a particular case of the Theorem 1.

We denote obtained TISGMs corresponding to y_i in the Theorem 4 by $\mu_i, i = 1, 2, 3$, respectively.

5. Tree-indexed Markov Chains of TISGMs

A tree-indexed Markov chain is defined as follows. Suppose we are given with vertices set V, a probability measure ν and a transition matrix $P = (p_{i,j})_{i,j \in \Phi}$ on the single-site space which is here the finite set $\Phi = \{0, 1, ..., m\}$. We can obtain a tree-indexed Markov chain $X : V \rightarrow \Phi$ by choosing $X(x_0)$ according to ν and choosing $X(v)$, for each vertex $v \neq x_0$, using the transition probabilities given the value of its parent, independently of everything else. See Definition 12.2 in [5] for a detailed definition.

We note that a TISGM corresponding to a vector $v = (x, y) \in \mathbb{R}^2$ (which is solution to the system (7)) is a tree-indexed Markov chain with states $\{0, 1, 2\}$ and transition probabilities matrix:

$$
P = \begin{pmatrix}
x^2 + \theta y^2 & \theta y x + \theta^2 y^2 & \theta^2 x^2 + \theta^2 y^2 + \theta^2 \\
x^2 + \theta y^2 & \theta y x + \theta^2 y^2 & \theta^2 x^2 + \theta^2 y^2 + \theta^2 \\
x^2 + \theta y^2 & \theta y x + \theta^2 y^2 & \theta^2 x^2 + \theta^2 y^2 + \theta^2
\end{pmatrix}.
$$

(28)

Since (x, y) is a solution to the system (7) this matrix can be written in the following form

$$
P = \frac{1}{Z} \begin{pmatrix}
x & \frac{\theta y}{x} & \frac{\theta^2 x}{x} \\
\frac{\theta y}{y} & \frac{\theta y}{x} & \frac{\theta y^2}{y} \\
\frac{\theta^2 x^2}{x^2} & \frac{\theta y^2}{y^2} & \frac{\theta^2 x^2}{x^2} + \theta y^2 + r
\end{pmatrix},
$$

(29)

where $Z = \theta^2 x^2 + \theta y^2 + r$.

Simple calculations show that the matrix (29) has three eigenvalues: 1 and

$$
\lambda_1(x, y, \theta, r) = \frac{(x + y + 1)r - Z + \sqrt{D^*}}{2Z}, \quad \lambda_2(x, y, \theta, r) = \frac{(x + y + 1)r - Z - \sqrt{D^*}}{2Z},
$$

(30)

where λ_1 and λ_2 are solutions to

$$
Z^2 \lambda^2 + (Z - (1 + x + y)r)Z \lambda + (2\theta^4 - \theta^4 r - 2\theta^2 r + r^3)xy = 0
$$

(31)

and $D^* = ((1 + x + y)r - Z)^2 - 4xyZ^{-1}(2\theta^4 - \theta^4 r - 2\theta^2 r + r^3)$.

5.1. Conditions of Non-Extremality. In this subsection we are going to find the regions of the parameter θ where the TISGMs $\mu_i, i = 1, 2, 3$ are not extreme in the set of all Gibbs measures (including the non-translation invariant ones).

It is known that a sufficient condition (Kesten-Stigum condition) for non-extremality of a Gibbs measure μ corresponding to the matrix P on a Cayley tree of order $k \geq 1$ is that $k\lambda_{\text{max}}^2 > 1$, where λ_{max} is the second largest (in absolute value) eigenvalue of P [28]. We are going to use this condition for TISGMs $\mu_i, i = 1, 2, 3$ in Theorem 4. We have all solutions of the system (7) in condition $r = \theta^2$ (see Theorem 4) and the eigenvalues of the matrix P in the explicit form.

Let us denote

$$\lambda_{\text{max},i}(\theta, r) = \max\{|\lambda_1(x_i, y_i, \theta, r)|, |\lambda_2(x_i, y_i, \theta, r)|\}, i = 1, 2, 3.$$

Using a computer we have

$$\lambda_{\text{max},i}(\theta) = \begin{cases} |\lambda_2(1, y_1, \theta)|, & \text{if } i = 1, \theta < 1, \\ |\lambda_1(1, y_1, \theta)|, & \text{if } i = 1, \theta > 1, \\ |\lambda_1(1, y_i, \theta)|, & \text{if } i = 2, 3. \end{cases}$$

Denote

$$\eta_i(\theta) = 2\lambda_{\text{max},i}(\theta) - 1, i = 1, 2, 3.$$

Let $\theta < \theta_c$. Using the Cardano formula, we solve the equation (25). It has one real solution

$$y_1 = \frac{1}{3} \left(\theta + \sqrt[3]{\theta^3 - 9\theta^2 + 27 + 1.5\sqrt{-3D}} + \frac{\theta^2 - 6\theta}{\sqrt[3]{\theta^3 - 9\theta^2 + 27 + 1.5\sqrt{-3D}}} \right),$$

(32)

where D is defined in [26]. In this case, we are aiming to check the Kesten-Stigum condition of the non-extremality of the measure μ_1. To determine the non-extremality interval of TISGM μ_1, we should check the condition

$$2\lambda_{\text{max},1}^2 - 1 > 0.$$

Using a Maple program, one can see that the last inequality holds for $\theta \in (0, \theta_1)$ ($\theta_1 \approx 0.1666993311$), which implies that the TISGM μ_1 is not-extreme in this interval (see Fig. 3).

To check that the TISGM $\mu_i, i = 2, 3$ are non-extreme, we should solve the following inequality: $\eta_i(\theta) > 0, i = 2, 3$. (see Fig. 4).

Proposition 1. Let $r = \theta^2$. Then the following statements hold

a) There exists $\theta_1(\approx 0.1666993311)$ such that the measure μ_1 is non-extreme if $\theta \in (0, \theta_1)$;

b) There exists $\theta_2(\approx 9.706301628)$ such that the measure μ_2 is non-extreme if $\theta \in (\theta_2, \infty)$.

Figure 3. The graphs of functions $\eta_1(\theta)$ for $\theta \in (0, 1)$ (left) and for $\theta \in (1, \infty)$ (right).

Figure 4. The graphs of functions $\eta_2(\theta)$ (left) and $\eta_3(\theta)$ (right).
5.2. Conditions for Extremality. In [27], [29] the key ingredients are two quantities, \(\kappa \) and \(\gamma \), which bound the rates of percolation of disagreement down and up the tree, respectively.

For two measures \(\mu_1 \) and \(\mu_2 \) on \(\Omega \), \(\|\mu_1 - \mu_2\|_x \) denotes the variation distance between the projections of \(\mu_1 \) and \(\mu_2 \) onto the spin at \(x \), i.e.,

\[
\|\mu_1 - \mu_2\|_x = \frac{1}{2} \sum_{i=0}^{2} |\mu_1(\sigma(x) = i) - \mu_2(\sigma(x) = i)|.
\]

Let \(\eta^{x,s} \) be the configuration \(\eta \) with the spin at \(x \) set to \(s \). Following [27], [29] define

\[
\kappa \equiv \kappa(\mu) = \sup_{x \in \Gamma^k, x \neq s, s'} \max \|\mu^x_{\tau_x} - \mu^s_{\tau_x}\|_x;
\]

\[
\gamma \equiv \gamma(\mu) = \sup_{A \subset \Gamma^k} \max \|\mu^y_A - \mu^{y,s'}_A\|_x,
\]

where the maximum is taken over all boundary conditions \(\eta \), all sites \(y \in \partial A \), all neighbors \(x \in A \) of \(y \), and all spins \(s, s' \in \{0, 1, 2\} \).

The criterion of extremality of a TISGM is \(k\kappa\gamma < 1 \) [27], [29]. Note that \(\kappa \) has the particularly simple form \(\kappa = \frac{1}{2} \max_{i,j} \sum_{1}^{2} |P_{i,j} - P_{j,i}| \) and \(\gamma \) is a constant which does not have a clear general formula.

Let \(r = \theta^2 \). For the solution \((1, y)\), we shall compute \(\kappa \)

\[
\kappa = \frac{2 \cdot |1 - \theta y| + y^2 \cdot |\theta - y|}{2y(2\theta + y^2)}. \tag{33}
\]

For \(\theta < 1 \) from the system (7) we get the following inequalities

\[
1 - \theta y = \frac{\theta(1 - \theta^2)y^2}{Z} > 0, \quad y - \theta = \frac{2\theta(1 - \theta^2)}{Z} > 0.
\]

Using these inequalities, we obtain

\[
\kappa = \begin{cases}
\frac{y^2 - \theta y^2 - 2\theta y^2 + 2}{2y(2\theta + y^2)}, & \text{if } 0 < \theta < 1, \\
\frac{-y^2 + \theta y^2 + 2\theta y^2 - 2}{2y(2\theta + y^2)}, & \text{if } \theta \geq 1.
\end{cases}
\]

For the solution \((1, y)\), we shall calculate \(\gamma \).

\[
\gamma = \max \left\{ \|\mu^{\eta^{y,0}}_A - \mu^{\eta^{y,1}}_A\|_x, \|\mu^{\eta^{y,0}}_A - \mu^{\eta^{y,2}}_A\|_x, \|\mu^{\eta^{y,1}}_A - \mu^{\eta^{y,2}}_A\|_x \right\},
\]

where

\[
\|\mu^{\eta^{y,0}}_A - \mu^{\eta^{y,1}}_A\|_x = \frac{1}{2} \sum_{s \in \{0, 1, 2\}} |\mu^{\eta^{y,0}}_A(\sigma(x) = s) - \mu^{\eta^{y,1}}_A(\sigma(x) = s)| = \frac{\gamma^3 - \gamma^2 - \theta \gamma + 2}{2y(2\theta + y^2)}, \text{ if } 0 < \theta < 1,
\]

\[
= \frac{-\gamma^2 + \theta \gamma^2 + 2\theta \gamma - 2}{2y(2\theta + y^2)}, \text{ if } \theta \geq 1.
\]
The extremality interval of TISGMs

The function U Let Proposition 2.

a) There exists $\theta_1 \approx 0.1666993311$ such that the measure μ_1 is extreme if $\theta \in (\theta_1, \infty)$;

b) There are values $\theta^* \approx 7.729813675$ and $\theta_2 \approx 9.706301628$ such that the measure μ_2 is extreme if $\theta \in [\theta^*, \theta_2]$;

c) The measure μ_3 is extreme (where it exists, that is $\theta \in (\theta^*, \infty)$).

From Proposition 1 and Proposition 2 we have the following
Figure 5. The graph of function $U_2(\theta)$

Figure 6. The graphs of functions $U_1(\theta)$ (left) and $U_3(\theta)$ (right)
Theorem 5. Let \(r = \theta^2 \). Then the following statements hold

a) There exists \(\theta_1 (\approx 0.1666993311) \) such that the measure \(\mu_1 \) is non-extreme if \(\theta \in (0, \theta_1) \) and is extreme if \(\theta \in (\theta_1, \infty) \);

b) There are values \(\theta^* (\approx 7.729813675) \) and \(\theta_2 (\approx 9.706301628) \) such that the measure \(\mu_2 \) is extreme if \(\theta \in [\theta^*, \theta_2) \) and is non-extreme if \(\theta \in (\theta_2, \infty) \);

c) The measure \(\mu_3 \) is extreme (where it exists, that is \(\theta \in [\theta^*, \infty) \)) (see Fig. 7).

Figure 7. The graphs of functions \(y_i(\theta), i = 1, 2, 3 \). The bold curves correspond to regions of the functions where the corresponding TISGM is extreme. The thin curves correspond to regions of the functions where the corresponding TISGM is non-extreme.

Acknowledgements

The authors are greatly indebted to Professor U.A. Rozikov for suggesting the problem and for many stimulating conversations.

References

[1] U.A. Rozikov, Gibbs measures on Cayley trees. World scientific, (2013).
[2] Ya. G. Sinai, *Theory of Phase Transitions: Rigorous Results*, Pergamon, (1982).
[3] C. Preston, *Gibbs States on Countable Sets*, Cambridge Univ. Press, (1974).
[4] V. A. Malyshev and R. A. Minlos, *Gibbs Random Fields*, Nauka, (1985).
[5] H. O. Georgii, *Gibbs Measures and Phase Transitions*, Walter de Gruyter, (1988).
[6] A. G. Kurosh, *Nauka*. 9, (1968).
[7] S. Zachary, *Ann. Probab.* 11:4, 894–903, (1983).
[8] S. Zachary, *Stoch. Process. Appl.* 20:2, 247–256, (1985).
[9] P. M. Bleher and N. N. Ganikhodjaev, *Theor. Probab. Appl.* 35, 216–227, (1990).
[10] P. M. Bleher, *Commun. Math. Phys.* 128, 411–419, (1990).
[11] P. M. Bleher, J. Ruiz and V. A. Zagrebnov, *J. Stat. Phys.*, 79, 473–482, (1995).
[12] P. M. Bleher, J. Ruiz and V. A. Zagrebnov, *J. Stat. Phys.* 93, 33–78, (1998).
[13] D. Ioffe, *Lett. Math. Phys.* 37, 137–143, (1996).
[14] D. Ioffe, *Extremality of the disordered state for the Ising model on general trees*, Prog. Probab. Vol. 40, pp. 3–14, (1995).
[15] P. M. Bleher, J. Ruiz, R. H. Schonmann, S. Shlosman and V. A. Zagrebnov, *Moscow Math. J.* 3, 345–363, (2001).
[16] H. Saygili, *Asian Journal of Current Research* V. 1, N 3, 114–121, (2017).
[17] M. M. Rahmatullaev, *Russian Mathematics*, 59:11, 45–53, (2015).
[18] M. M. Rahmatullaev, *Uzb. Mat. Zh.*, 2, 144–152, (2009).
[19] C. Kulske, U. A. Rozikov, R. M. Khakimov, *Description of the Translation-Invariant Splitting Gibbs Measures for the Potts Model on a Cayley Tree*. *Jour. Stat. Phys.* 156:1, 189–200, (2014).
[20] U.A.Rozikov and R.M.Khakimov, *Theor. Math.Phys.*, 175, 699–709, (2013).
[21] R.M.Khakimov, *Uzb. Mat. Zh.*, 3, 134–142, (2014).
[22] M.M.Rahmatullaev, *Theor. Math. Phys.*, 180, 1019–1029, (2014).
[23] M.M.Rahmatullaev, *Journal of Mathematical Physics, Analysis, Geometry*, vol. 12, N. 4, 302–314, (2016).
[24] M.M.Rahmatullaev, *Ukrainian Mathematical Journal*, Vol. 68, N. 4, 598–611, (2016).
[25] M. A. Rasulova, *Theor. Math. Phys.* 199(1), 586–592, (2019).
[26] U.A.Rozikov, Y.M.Suhov, *Infinite Dimensional Analysis, Quantum Probability and Related Topics.*, Vol.9, N. 3, 471–488, (2006).
[27] C. Kulske, U. A. Rozikov, *Extremality of translation-invariant phases for a three-state SOS-model on the Binary tree*, *J. Stat. Phys.* 160, 659–680, (2015).
[28] H. Kesten, B. P. Stigum, *Additional limit theorems for indecomposable multi-dimensional Galton-Watson processes*, *Ann. Math. Stat.* 37, 1463–1481, (1966).
[29] F. Martinelli, A. Sinclair, D. Weitz, *Fast mixing for independent sets, coloring and other models on trees*, *Random Struct. Algoritms.* 31, 134–172, (2007).

M. M. RAHMATULLAEV, UZBEKISTAN ACADEMY OF SCIENCES V.I.ROMANOVSKY INSTITUTE OF MATHEMATICS, NAMANGAN, UZBEKISTAN.

Email address: mrahmatullaev@rambler.ru

M. A. RASULOVA, NAMANGAN STATE UNIVERSITY, NAMANGAN, UZBEKISTAN.

Email address: m_rasulova_a@rambler.ru