Value of Information Aware Opportunistic Duty Cycling in Solar Harvesting Sensor Networks

Jianhui Zhang
College of Computer Science and Technology, Hangzhou Dianzi University, 310018 China.
Email: jhzhang@ieee.org

The energy-harvested Wireless Sensor Networks (WSNs) may operate perpetually with the extra energy supply from ambient natural energy, such as solar energy. Nevertheless, the harvested energy is still limited so it’s not able to support the perpetual network operation with full duty cycle. To achieve the perpetual network operation and process the data with high importance, measured by Value of Information (VoI), the network has to operate under partial duty cycle and to improve the efficiency to consume the harvested energy. The challenging problem is how to deal with the stochastic feature of the natural energy and the variable data VoI. We consider the energy consumption during storing and the diversity of the data process including sampling, transmitting and receiving, which consume different power levels. The problem is then mapped as the budget-dynamic Multi-Arm Bandit (MAB) problem by treating the energy as the budget and the data process as arm pulling. This paper proposes an Opportunistic Duty Cycling (ODC) scheme to improve the energy efficiency while satisfying the perpetual network operation. ODC chooses the proper opportunities to store the harvested energy or to spend it on the data process based on the historical information of the energy harvesting and the VoI of the processed data. With this scheme, each sensor node need only estimate the ambient natural energy in short term so as to reduce the computation and the storage for the historical information. It also can distributively adjust its own duty cycle according to its local historical information. This paper also conducts the extensive analysis on the performance of our scheme ODC, and the theoretical results validate the regret, which is the difference between the optimal scheme and ours. Our experimental results also manifest the promising performance of ODC.

Index Terms—Opportunistic Duty-cycling; Energy Harvesting; Wireless Sensor Networks; Multi-armed Budget

I. INTRODUCTION

As a promising technique, the great success of Wireless Sensor Networks (WSNs) has been witnessed over a variety of critical applications in recent years [1]. One common constraint, impeding the wider application of this kind of networks, is the limited energy supply. To extend the network life or even to support the perpetual network operation, two major techniques have been severally applied to WSNs: energy harvesting [2][3][4] and duty cycling [5]. Energy harvesting can supply the sensor node with the extra energy from the ambient energy resources while the duty cycling technique can save energy so as to extend the network lifetime. But the tiny energy-harvesting module in the solar sensor networks cannot harvest enough energy to support the network with full duty cycle normally [6][7]. Some existing works combine the energy harvesting and duty cycling techniques to achieve the permanent network operation, i.e., meeting the energy neutral operation [8][9]. These existing works estimate the amount of the active time for a period in advance, such as at the initialization phase of the period [4][9], or the average amount of the active time for some periods over a long duration, such as a season [10]. However, there are several facts ignored by the existing works.

1) Imperfect charge efficiency. In practice, the charge efficiency of the battery for the solar powered sensor node is often less than 75% [11], which means that it indirectly wastes 25% energy if using the stored energy. Another choice, capacitor, suffers high leakage [12].

2) Variable data importance. In WSNs, the data redundancy is the common phenomenon. Meanwhile, if introducing the Value of Information (VoI) for the processed data [1], the more important data has higher VoI. It can obtain higher energy efficiency to process the more important data.

3) Random natural energy. Some natural energy, such as solar or wind energy, is shown to be random [6][7][13], so as hard to accurately predict the profiles of the future energy for long term because of the unpredictable weather and disturbance.

Section II illustrates some detailed technical evidences and examples to illustrate the above observations. We find that it is still an open problem to improve the efficiency to exploit the ambient energy. Notice that the energy consumption caused by the imperfect charge efficiency can be decreased if the harvested energy is directly used rather than stored in the battery. Considering the data importance, the sensor node can arrange right moments to process data and to harvest energy so as to improve the energy efficiency, which is defined as the average VoI obtained per unit energy consumption in this paper. To do this, we propose the Opportunistic Duty Cycling (ODC) scheme to catch the features: the dynamic profile of the energy harvesting, the variable VoI of the data, and the easiness to estimate the harvested energy in short term. Meanwhile, ODC considers the diversity of the data process including three actions: data sampling, transmitting and receiving, which consume different power since they have much impact on the energy efficiency. This paper then maps the opportunistic duty cycling as the gambling game: Multi-Arm Bandit (MAB) [14]. In the game, the sensor node is treated as the gambler. The gambler decides

1In this paper, the data process or to process data means sampling, receiving and transmitting data.
its next action (sampling, receiving, transmitting or storing energy) step by step based on its estimation for the harvested energy and the VoI of the data to process in the subsequent time.

In the real applications of the energy-harvesting WSNs, the data process and energy harvesting are highly dynamic. Under the MAB game, each sensor node can determine its next state according to its historical information in short term so as to deal with the dynamic feature. The goal of the gambling game is to maximize the energy efficiency for each sensor node. Clearly, in order to achieve this goal, each sensor node should carefully decide its next action while adhering to the energy constraint. Notice that to meet the energy neutral operation and to improve the energy efficiency usually contradict to each other when adjusting the duty cycle. The former goal requires each sensor node to short its duty cycle while the later requires longer one to obtain the overall VoI as much as possible. To achieve the bi-criteria object, this paper adjusts the VoI threshold according to the historical information.

Contributions. The contributions of this paper include:

1) This paper adjusts the duty cycle by considering the imperfect charge efficiency and the VoI of the data while meeting the energy neutral operation. We map the new duty cycling problem as the budget-dynamic MAB problem. To our best knowledge, this is the first work to formulate and study the problem.

2) This paper designs ODC scheme to achieve the bi-criteria object. With ODC, each sensor node can distributively determine the action to take for the next time slot by running the MAB with the previous reward and harvested energy. An algorithm, called ODC, is designed to implement the ODC scheme. We theoretically analyze the performance of ODC by measuring the regret, the difference between the optimal scheme and ODC.

3) The extensive experiments are also conducted to evaluate the performance of our scheme. In the experiments, because of the hardness to find the optimal scheme, we propose two baseline approaches: a Centralized and Off-line duty cycling Algorithm (COA), and a Simple Duty Cycling (SDC). COA has the complete knowledge of the natural energy and the data VoI in advance. SDC predicts the energy to harvest and calculates the duty cycle in advance as the algorithm given in the reference [4]. The experimental results show that the average energy efficiency achieved by our scheme is only 16.02% lower than that of COA, and 69.09% higher than that of SDC.

Road map. The following context of the paper is organized as follows. Section II describes the motivation based on our preliminary experiments, and formulates the opportunistic duty cycling problem in Section III. The problem is mapped as the budget-dynamic MAB problem, and ODC is presented in Section IV with its performance analysis in Section V while the experimental results are discussed in Section VI. In Section VII we review the related works on the energy harvesting module and the duty cycling schemes for WSNs and conclude this paper in Section VIII.

![Fig. 1. Current indicates the amount of the harvested energy. (a) Energy profile diverse with time. (b) Different sensor nodes has different profiles.](image-url)
20 × 0.75 = 15 mA, \(\text{given } \lambda = 0.75 \), which means that 5 mA harvested energy is wasted. The power of the stored energy is thus too low to support the normal operation of the sensor node.

B. Vol of Data

The limitation of the harvested energy compels each sensor node to preferentially process the data with high Vol. According to Information Theory, the data importance can be indicated by the Vol, denoted by \(\mathcal{I} \) \[Eq. (17) \]. The Kullback-Leibler (KL) divergence measure can calculate the Vol by qualifying the difference between two probability distributions: \(p_1(t) \) and \(p_2(t) \) as follows.

\[
\mathcal{I}_{KL}(p_1(t), p_2(t)) = \int p_1(t) \log \frac{p_1(t)}{p_2(t)} \, dt
\]

With the concept of Vol, the sensor node chooses the important data (i.e. with high Vol) to process. The times to process data then can be decreased so much energy can be saved while the overall Vol is preserved. For example, when reducing the times to sample the luminous intensity from Figure 1(b) to Figure 2 about 92% energy is saved while the overall Vol lose is preserved under 5%.

C. Call for Online Energy Allocation

Since both of the data process and energy harvesting are random processes, each sensor node can make online decision on how to allocate the harvested energy. The example in Figure 3 illustrates the necessity of the online energy allocation to maximize the overall Vol by carefully scheduling the energy consumption. In this example, the sensor node \(v_i \) can harvest 20 mA energy at the time slots marked with “white” color solar status, and cannot harvest energy at the “black” time slots. Suppose that \(v_i \) requires at least 20 mA energy to support its normal operation at each time slot, and that the charge efficiency \(\lambda = 0.75 \). When time \(t \) goes to \(\tau_1 \), \(v_i \) can use the harvested 20mA energy directly to process the first data with 20 unit Vol. After \(t \) goes to \(\tau_2 \), \(v_i \) has two choices. The first choice is that \(v_i \) uses the harvested energy at \(\tau_2 \) to process the second data, and then obtains 10 unit Vol. At \(\tau_4 \), \(v_i \) stores the harvested 20mA energy, and obtains 15mA energy because \(\lambda = 0.75 \). At \(\tau_5 \), \(v_i \) cannot process data since the stored energy is not sufficient. The Vol per unit energy that \(v_i \) obtained by the first choice is \(\frac{20 \times 10}{20 + 10} = 0.75 \). The second choice is that \(v_i \) stores the 40mA energy harvested at \(\tau_3 \) and \(\tau_4 \) and obtains 30mA energy. It then processes the second data at \(\tau_3 \) and \(\tau_5 \), and obtains 50 unit Vol. The Vol per unit energy that \(v_i \) obtained by the second choice is \(\frac{20 + 50}{20 + 30} \approx 1.4 \). Obviously, the second choice can result in higher energy efficiency, i.e., the Vol per unit energy, than the first one.

D. Opportunistic Duty Cycling

From the above facts, we find that the processes of the data process and energy harvesting are highly dynamic. It can greatly improve the energy efficiency to wake up the sensor node to process data and to hibernate them for storing energy at proper moments. These facts motivate us to propose the novel opportunistic duty cycling scheme, under which the sensor nodes can catch the right opportunities to process data or to store the harvested energy. Existing works on duty cycling adjust only the duty cycle, i.e., roughly the ratio of the active time to the period as shown in Figure 4. Under the opportunistic duty cycling, the slots to be active are also considered as the example in Figure 5 where the period composes of 8 slots. The set of slots to be active may be different as the cases \(a \) and \(b \) in Figure 5 although the duty cycles under both cases are same, i.e., \(\frac{3}{4} \). The reason to adjust the duty cycle in this way is that it may result in different energy efficiency to be active in different slots. The goal of the opportunistic duty cycle is to adjust the duty cycle and the moments to be active so that the energy efficiency can be improved under the constraint of the energy neutral operation.

"There is a fault voltage to support the normal operation of the sensor node, such as 3 V for the TelosB and MICA nodes. This paper ignores the voltage for simplicity, and thus represents the power by the unit: mA."
III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network and Energy Model

Given the network with a sink and some nodes \(v_i \), \(i = 1, 2, \ldots \), each node is assumed to have at least one stable route leading to the sink. A period \(T \) composes of \(|T| \) time slots \(\tau_i \), \(i = 1, \ldots, |T| \). Each node is equipped with a micro-scale energy-harvesting module, and its antenna works under the half-duplex mode. It cannot receive and transmit data at the same time. It is equipped with one battery to store energy with the initial energy \(e_0 \). Because of the limited hardware, the battery cannot support the operation of the sink node when it is being charged by the energy-harvesting \[1\][12][16]. Meanwhile, the power of the micro-solar panel is also too low to support the normal operation of the sensor node and the battery charging simultaneously in most time as the experimental result in Figure 1. We thus assume that the limited harvested power cannot support the normal operation of the sensor and antenna simultaneously.

For each sensor node \(v_i \), the different power levels are required to support data sampling, receiving, transmitting and storing the harvested energy, respectively denoted by \(e^a \), \(e^r \), \(e^c_1 \) and \(e^c_2 \). \(e^a \) and \(e^r \) are constant and same over all sensor nodes. The VoI, denoted by \(I_s(\tau) \), is measured by Equation (1). Denote the amount of energy harvested by a single sensor node at time slot \(\tau \) by \(e^h(\tau) \). The harvested energy \(e^h(\tau) \), \(\tau \in T \), over a period can be modelled as the first-order stationary Markov process \[13\][18]. The processed data is the same. Each solar panel can support its node’s normal operation or can charge its node’s battery if and only if its harvested energy is over a threshold \(e_\theta \). Let \(\theta = 1 \) if the power of the harvested energy is over the threshold, and 0 otherwise.

\[
\max \sum_{\tau \in T} I_s(\tau) \tag{2}
\]

where \(I_s(\tau) \) denotes the VoI received by the sink at \(\tau \). At the time slots in the sets \(s^a \), \(s^r \) and \(s^t \), the sensor node \(v_i \) samples, receives and transmits data respectively. At the time slots in the set \(s^\theta \), \(v_i \) stores the harvested energy into its battery and thus \(\theta = 1 \) at every slot in \(s^\theta \). To maintain the perpetual operation, the consumed energy should be less than the harvested.

\[
|s^\theta|e^\theta + |s^a|e^a + |s^r|e^r + |s^\theta|e^\theta \leq \sum_{\tau \in T} e^h(\tau) \tag{3}
\]

According to the assumption in the subsection III-A, the antenna is half-duplex so the sets \(s^r \), \(s^t \) has no common element. Meanwhile, the four sets: \(s^\theta \), \(s^a \), \(s^r \), and \(s^t \) have no common element because of the limited hardware and harvested energy. The four sets thus satisfy the following condition.

\[
\begin{align*}
\{ s^\theta \cup s^a \cup s^r \cup s^t = T \\
\{ s^r \cap s^t = \emptyset \} \text{ and } s^r \cap s^\theta = \emptyset \text{ and } s^t \cap s^\theta = \emptyset
\end{align*}
\]

The core of ODC scheme is to find these four subsets: \(s^a \), \(s^r \), \(s^t \) and \(s^\theta \), so as to solve the optimal problem in Equation (2) under the constraint in Equation (3) and (4).

IV. OPPORTUNISTIC DUTY CYCLING

This section formulates the opportunistic duty cycling as the budget-dynamic MAB problem \[19\], and then presents our duty cycling scheme: ODC.

A. Budget-dynamic MAB Problem

Let us look into the detailed process of the opportunistic duty cycling in the energy harvested WSNs. With the harvested energy, each node has two ways to deal: consuming or storing it. To store the energy means some energy consumption because of the imperfect charge efficiency, i.e., \(\lambda < 1 \). Otherwise, it spends the harvested energy on the data process. When no energy to harvest, it must spend the energy in its battery on the data process, or sleep so as to lose the chance to process data. Obviously, each node has to choose one of the four actions: sampling, receiving, transmitting data and storing energy (i.e. sleeping), as shown in Figure 6(a) by consuming the harvested or stored energy at each time slot. To maximize the energy efficiency, the node need choose the best action by learning the historical information of the energy harvesting and data process. Since the energy harvesting and data process are the Markov process, the conditional probability (given the historical information) that the harvested energy and VoI of the data are at certain levels at the beginning of slot \(\tau \) is a sufficient statistic for the design of the optimal actions in the slot \(\tau \) \[20\]. Each node thus need not record the long historical information, and can estimate the VoI for the next time slot by counting the probability that the power and VoI of the data are at certain levels during the previous time slots in short term.

If treating the sensor node as the gambler, the harvested energy is the budget of the gambler and the four actions represent the four arms of the bandit machine as shown in Figure 6 the opportunistic duty cycling can be formulated as the budget-dynamic MAB problem. Pulling the arms \(a_1 \), \(a_2 \), \(a_3 \) and \(a_4 \) are the four actions: data receiving, sampling, transmitting and energy storing. In the MAB problem, the gambler pulls one of the bandit machine’s arms by costing some budget. The bandit machine then returns the gambler with some reward each time. For simplicity, we take the VoI of the processed data as the reward. For example, the node receives a data, whose VoI is \(I \), and then the reward returned to the node is \(I \). The goal of the gambler is to maximize the overall reward under its budget constraint by a series of arm pullings. In this paper, the harvested energy, i.e. the budget, is dynamic, so the problem in this paper is a new variation of the classical stochastic MAB problem: the budget-dynamic MAB problem. By mapping the opportunistic duty cycling...
problem to the MAB problem, the goal to maximize the energy efficiency is equivalent to maximizing the reward given the budget.

Since one sensor node is treated as one gambler in the MAB problem, it means that the solution to the problem is implemented distributively. The challenge to solve the problem is to prove the distributive scheme can guarantee the global maximization of the overall Vol. Recall that the goal is to maximize the overall Vol of the processed data as given in Equation (2). Thus, the straightforward idea is to maximize the Vol of the data processed by each node including the data sampling, receiving and transmitting. The Vol caused by the three actions is denoted by \(I^a \), \(I^r \) and \(I^t \) respectively. Meanwhile, the overall Vol of the data received by the sink can be maximized only if each node transmits its sampled or received data to the neighbors in the next-hop as much as possible. In the following context, we consider the more general case than that given in Equation (4) to state the straightforward idea. Notice that the case in Equation (4) is covered by the following statements. Let \(M(\tau) \) denote the overall Vol of the data remaining in \(v_k \)’s memory till the end of time slot \(\tau \). Recall that each node cannot receive and transmit data simultaneously as the constraint in Equation (4). When the node takes the action to transmit data in \(\tau \), there is a balance that is \(M(\tau) = M(\tau - 1) + I^r(\tau) - I^t(\tau) \) at time slot \(\tau \), where \(I^r(\tau) \) is the Vol of the sampled data at the slot \(\tau \). We have the following equation:

\[
I^t(\tau) = M(\tau - 1) - M(\tau) + I^a(\tau) \tag{5}
\]

Similarly, we have the following equation when the node takes the receiving action.

\[
M(\tau) = I^r(\tau - 1) + M(\tau - 1) + I^s(\tau - 1) \tag{6}
\]

where \(I^r(\tau - 1) \) is the Vol of the received data at time slot \(\tau - 1 \) respectively. \(I^s(\tau - 1) \) and \(I^r(\tau - 1) \) may be zero since the action: data transmitting or energy storing, may be zero. Considering the special case that only one of the four items: \(I^t(\tau), I^r(\tau), I^s(\tau) \) and \(I^t(\tau) \) can be the value over zero, Equation (5) and (6) satisfy the constraints in Equation (4).

Recall that each node has at least one routing connecting with the sink as the statement in Section III-A. Let \(\mathcal{L}_k \) denote the set of nodes that are \(k \) hops away from the sink, \(k = 1, 2, \ldots \). The overall reward of the whole network can be calculated as

\[
\sum_{\tau \in T} I_{s\text{ink}}(\tau) = \sum_{\tau \in T} \sum_{v_i \in \mathcal{L}_1} I_i^r(\tau) \text{ in the period } T,
\]

where \(I_i^r(\tau) \) is the Vol of the data transmitted by the node \(v_i \) at the time slot \(\tau \). The following theorem proves that \(\sum_{\tau \in T} I_{s\text{ink}}(\tau) \) can be maximized through maximizing the overall reward of each single node. This paper decomposes the overall reward of the whole network to that of each node by the following theorem.

Theorem 1: Assume each node has at least one route connect to the sink, the total reward of all nodes accumulated over the overall period equals to the total reward received by the sink over the same period.

Proof: The intuitive idea of the proof is that all of the data received by the sink must be sent or relayed by the intermediate nodes in the network. Let \(v_0 \) denote the sink, and suppose that the network starts at the time slot \(\tau = 0 \). When \(\tau = 0 \), i.e., the network does not begin to run, each node \(v_i \) does not receive or sample any data so \(M_i(\tau = 0) = 0 \). In an arbitrary time slot \(\tau > 0 \), the Vol of the data received by the sink is that the relay node \(v_i \in \mathcal{L}_1 \) transmits at the same slot. That is

\[
I_{s\text{ink}}(\tau) = \sum_{v_i \in \mathcal{L}_1} I_i^r(\tau)
\]

Thus, to maximize \(I_{s\text{ink}}(\tau) \) is equivalent to maximizing the data traffic of each node away one-hop from the sink when the time slot \(\tau \). According to Equation (5), the right side of the above equation can be rewritten as the following:

\[
I_i^r(\tau) = M_i(\tau - 1) - M_i(\tau) + I_i^a(\tau), v_i \in \mathcal{L}_1 \tag{7}
\]

Notice that any data sampled or received at time slot \(\tau \) can be transmitted after \(\tau \). The transmitted data \(I_i^r(\tau) \) must come from the remaining data \(M_i(\tau - 1) \). The last two items \(M_i(\tau) \) and \(I_i^a(\tau) \) have no contribution to \(I_i^r(\tau) \). Before the time slot \(\tau \), \(v_i (v_i \in \mathcal{L}_1) \) must receive or sample the data to record it in \(M_i(\tau' - 1) \). Otherwise, it has no data to transmit in \(\tau \). The data that the sensor node chooses to transmit at time slot \(\tau \) must be received or sampled in some time slot \(\tau' \) before \(\tau \), i.e., \(\tau' < \tau \). When the sensor node transmits the data in \(\tau \), the time \(\tau - 1 \) or \(\tau' \) (\(\tau' < \tau - 1 \) at which the data is received or sampled has no affection on the transmission of the data. For easy to understand the proof, we can assume that the data that the sensor node chooses to transmit at time slot \(\tau \) is received or sampled in \(\tau - 1 \). Meanwhile, the data received by the sensor nodes in the layer \(\mathcal{L}_k \) must be transmitted by those in the layer \(\mathcal{L}_{k+1} \) so we have the following equation:

\[
\sum_{v_i \in \mathcal{L}_k} I_i^r(\tau) = \sum_{v_j \in \mathcal{L}_{k+1}} I_j^r(\tau) \tag{8}
\]

According to Equation (6) and (7), the Vol of the data received by the sink till time slot \(\tau \) is:

\[
I_{s\text{ink}}(\tau) = \sum_{v_i \in \mathcal{L}_1} I_i^r(\tau) = \sum_{v_i \in \mathcal{L}_1} [M_i(\tau - 1) - M_i(\tau) + I_i^a(\tau)]
\]

\[
= \sum_{v_i \in \mathcal{L}_1} M_i(\tau - 1) - \sum_{v_i \in \mathcal{L}_1} [M_i(\tau) + I_i^a(\tau)]
\]

\[
= \sum_{t=0}^{\tau - 2} \sum_{v_j \in \mathcal{L}_2} I_j^r(t) + \sum_{t=0}^{\tau - 2} \sum_{v_i \in \mathcal{L}_1} I_i^r(t) - \sum_{v_i \in \mathcal{L}_1} M_i(\tau) \tag{9}
\]
In the last equality of the above equation, the first item is the sum of the V_oI of the data transmitted by the sink, i.e., I_{sink}(\tau) during time slot \tau - 1. In other words, the V_oI of each sensor node \nu_j \in \Lambda_k must be maximized in \tau - 1 before the overall V_oI of the sink in the period \tau. The last two items have no contribution to I_{sink}(\tau) in \tau - 1 according to the statement below Equation (5).

Similarly, we can deduce I_{sink}(\tau) in Equation (5) back to the sum of the V_oI of the data transmitted by the sensor nodes in the layer \Lambda_k during time slot \tau - k + 1. Therefore, the overall V_oI of the sink in the period \tau, i.e., \sum_{l=1}^{T} I_{sink}(\tau), can be maximized by maximizing the V_oI of the data transmitted by each sensor node in each layer over a series of time slot \tau, \tau \in T.

B. ODC

This block presents the detailed design of our scheme: ODC. In order to achieve the energy neutral operation, a parameter, called V_oI threshold \bar{I}_{d}, is introduced to control the amount of energy that each sensor node can consume in each time slot. Because of the randomness of the harvest energy, \bar{I}_{d} should be updated continuously. The Adaptive V_oI Adjustment (AVA) algorithm is designed to update the threshold \bar{I}_{d}.

1) ODC algorithm

Recall that the goal of ODC is to maximize the V_oI of each sensor node, i.e., to solve the budget-dynamic MAB problem. So, the overall V_oI can be maximized according to Theorem 1 Imagine that taking an action corresponds to placing an item into the knapsack. The expected reward by taking the action equals to the item’s value and the energy consumption for the action is the item’s weight. The total harvest energy till \tau is then the weight capacity of the knapsack at \tau. Therefore, the budget-dynamic MAB can be reduced to the unbounded knapsack problem at each time slot \tau. We borrow the idea of the density-ordered greedy algorithm [21] to solve the problem.

During solving the budget-dynamic MAB problem by the density-ordered greedy algorithm, the key step is to estimate the V_oI that each action will obtain at the next time slot \tau, so that the sensor node \nu_j can take those actions with the highest energy efficiency. Auer introduced the Upper Confidence Bound (UCB) to calculate the estimated V_oI of each action [22]. The most popular UCB, called UCB-1, relies on the upper-bound V_oI \hat{I}_j(\tau) + \delta_j^*(\tau) obtained by taking the action a_j, where \delta_j^*(\tau) is a padding function. A standard expression of the function is \delta_j^*(\tau) = \tilde{I} \sqrt{\frac{e}{\ln \Psi(\tau)}}, where \tilde{I} is the upper-bound on the reward/V_oI, e > 0 is some appropriate constant, \Psi(\tau) is the number of taking action a_j till \tau, and \hat{I}_j(\tau) is the estimation of the action a_j’s expected reward for the slot \tau at the end of the slot \tau - 1. In order to improve the energy efficiency, the upper-bound V_oI per unit cost can be calculated as \hat{I}_j(\tau) + \delta_j(\tau) = (\hat{I}_j(\tau) + \delta_j^*(\tau))/c_j by taking the cost c_j into consideration. We have \hat{I}_j(\tau) = \frac{\hat{I}_j(\tau)}{c_j} and \delta_j(\tau) = \tilde{I} \sqrt{\frac{e}{\ln \Psi(\tau)}}/c_j^2, where \epsilon = e/c_j^2. Notice that the remaining energy \varepsilon(\tau) till time slot \tau composes of the energy remained in its battery \bar{E}(\tau) and possibly harvested energy at \tau, i.e., \varepsilon(\tau) = \bar{E}(\tau - 1) + \theta(\tau)c_h(\tau).

The most popular UCB, called UCB-1, relies on the upper-bound V_oI per unit cost can be calculated as the following problem with the time-dependent energy bound \bar{E}(\tau).

\begin{equation}
\max \sum_{j=1}^{K} \chi_j(\tau)(\hat{I}_j(\tau) + \epsilon_j) \tag{10}
\end{equation}

\begin{equation}
\text{s.t. } \sum_{j=1}^{K} \chi_j(\tau)c_j \leq \bar{E}(\tau), \forall j, \tau : \chi_j(\tau) \in \{0, 1\} \tag{11}
\end{equation}

where \chi_j(\tau) is a bool indicator. \chi_j(\tau) = 1 if the action a_j is taken at \tau, and otherwise \chi_j(\tau) = 0, c_j is the energy consumption to pull the arm a_j once. The constraint in Equation (11) means that the energy consumption at time slot \tau is constrained by \bar{E}(\tau). \hat{I}_j(\tau) can be calculated as the average reward received by pulling arm a_j till \tau - 1.

\begin{equation}
\hat{I}_j(\tau) = \frac{\tau - 1}{\sum_{t=1}^{\tau - 1} \chi_j(t)I_s(t)\bar{E}_j(\tau - 1)} \tag{12}
\end{equation}

The problem defined in Equation (10) is NP-hard so this paper uses the density-ordered greedy method [21] to find a near-optimal selection of the sets s^*, s', and \bar{s} to find the optimal action \chi_j(\tau) so that Equation (10) is maximized (see step 12 in Algorithm 1).

The capacity of the memory is limited. Each sensor node thus should keep balance between its output: the transmitted data and its input: the received and sampled data in the long term. In other words, the times to take the action: the data transmitting, i.e., pulling the arm a_j, is expected to equal to the sum of the times to take the actions: the data sampling and receiving, i.e., pulling the arms a_1 and a_2. To do this, we assign each action with some probability. Let \chi_j^*(\tau) be the solution to the problem in Equation (10) by the density-ordered greedy method at the time slot \tau. ODC takes the next action \chi_j(\tau) with some probability, which is determined by the following equation (see step 13 in Algorithm 1).

\begin{equation}
p(a(\tau) = a_j) = \begin{cases}
\chi_j^*(\tau)/\sum_{j=1}^{K} \chi_j^*(\tau), & j = 1, 2 \\
2\chi_j^*(\tau)/\sum_{j=1}^{K} \chi_j^*(\tau), & j = 3
\end{cases} \tag{13}
\end{equation}

where \(K\) is the number of the arms of the bandit machine. Notice that the arm with the higher upper bound V_oI will have higher probability in Equation (13) since the times that it is pulled is higher than others. ODC is presented in Algorithm 1 and its performance will be theoretically analyzed on its regret bound in the next section. In this algorithm, c(\tau) is the energy consumed at time slot \tau. For example, if the arm a_j is pulled and the consumed energy is c_j in \tau, then c(\tau) = c_j.

2) AVA

The intuitive idea behind AVA is that each sensor node dynamically estimates the V_oI threshold for the next time slot according to the harvested energy and the consumed energy in
In this system, the problem. This system can be described by the following
threshold determining problem as the linear-quadratic tracking
energy by Equation (14). To find the proper
period,
period T. The optimal control law to minimize the tracking error is (23):
\[I_d(\tau) = [e^h(\tau) - (\alpha + \beta)c(\tau) + \gamma e^h(\tau)]/\beta \] (16)

The coefficients \(\alpha, \beta \) and \(\gamma \) are not known in advance, and
and can be estimated online in our problem by using the
standard gradient descent techniques [23]. Firstly, we define a parameter vector \(A_\tau \triangleq (\alpha + \gamma, \beta, \gamma)^T \), and a feature
vector \(B_\tau \triangleq (c(\tau), I_d(\tau), -e^h(\tau))^T \). By the two vectors, the
optimal control law in Equation (16) can be expressed as
\(B_\tau^T A = e^h(\tau) \). The estimated parameter vector \(\hat{A} \) for \(A \) then
can be defined by the gradient descent update rule as given by
\[\hat{A}_{\tau+1} = \hat{A}_\tau + \mu B_\tau(c_{\tau+1} - B_\tau^T \hat{A}_\tau)/(B_\tau^T B_\tau) \] (17)
where \(\mu \) is a positive constant step-size parameter.

Because each sensor node need store its harvested energy in its battery, the initial energy level \(c_0 \) would better be about
half of its full capacity. The choice of the \(\hat{A}_\tau \)'s initial value \(\hat{A}_0 \)
greatly affects the converge speed of the parameter estimation
in Equation (17). \(\hat{A}_0 \) can be set precisely according to
preliminary experimental results. Examining the system in
Equation (15), the increment of the control \(I_d \) results in less
data being received or sampled, so less energy consumption.
\(b \) should be negative. Set \(B_0 = (c_0, I_d(0), -e^h(\tau)) \).

Algorithm 2 AVA

Input: The harvested energy \(e^h(\tau) \) and the consumed energy
\(c(\tau) \) of \(v_i \) till \(\tau, \tau = 0. \)
Output: The updated threshold \(I_d(\tau + 1) \)
1: if \(\tau = 0 \) then
2: \(\hat{A}_\tau = \hat{A}_0 \) and set \(B_0 \);
3: end if
4: Update the parameter vector \(\hat{A}_{\tau+1} \) by Equation (17);
5: Update the feature and parameter vectors \(B_\tau, \hat{A}_\tau \);
6: Output \(I_d(\tau + 1) \) using Equation (16).

Considering a special case in which each sensor node can harvest enough solar energy. Thus, the harvested energy can support each sensor node to operate at each time slot. However, each sensor node cannot harvest sufficient energy usually so \(I_d(\tau) \) prevents each sensor node from working at every time slot, i.e. by reserving some energy at some time slots. So the harvested energy is stored and will not be consumed completely at every time slot, i.e., \(E(\tau) \geq 0. \)

C. Common Activity

A concerned issue is how about the common active time among neighboring nodes under ODC, which is implemented in the distributive mode. By Algorithm 1 each node chooses the transmitting and receiving arms with some probability and thus each node has common active, i.e. simultaneous waking up, with some probability in each time slot. This section shows the probability that one node has common active time with its neighbor theoretically and experimentally. If the node can communicate with at least one of its neighbors, we say that it has common active time with its neighbor. Figure 7 illustrates
the theoretical probability that the neighboring nodes have common active time. When each node has some probability to wake up, i.e., active probability, the common active probability can be easily computed as the y-coordinate. More neighbors the node has or higher probability it wakes up, it has higher probability to communicate with its neighbor in Figure 7.

Figure 8 illustrates the experimental results when one node has two neighbors. The experimental setting is given in Section VII.

In the experiment, the common active probability tends to 0.22, and the average data Vol obtained by each action tends to about 0.57. In each time slot, the node can guarantee a certain probability to communicate with its neighbors. The probability is not quite high but the obtained Vol is not low since the node catches the most important time to communicate. Next section analyzes that Vol difference of the data processed by the optimal solution and our scheme ODC.

\[
\text{Fig. 7. Theoretical common active time.}
\]

\[
\text{Fig. 8. Experimental common active time.}
\]

\section*{V. Performance Analysis}

This section analyzes the theoretical performance of ODC by the metric: regret. Let \(I_X(E)\) be the total Vol returned by a given algorithm \(X\) under the constraint of the variable harvested energy \(E\) over a fixed period \(T\). The expectation of \(I_X(E)\) is denoted by \(\mathbb{E}[I_X(E)]\). This paper always sticks a superscript \(*\) to any instance that is the optimum. Suppose that \(X^*\) is the optimal algorithm for the problem, i.e.

\[
X^* = \arg \max_X \mathbb{E}[I_X(E)]
\]

Thus, the regret \(R_X(E)\) of the algorithm \(X\) can be formally defined as \(22\):

\[
R_X(E) = \mathbb{E}[I_{X^*}(E)] - \mathbb{E}[I_X(E)]
\]

where is represented by the expectation of the arm with the maximal reward, i.e., \(\mathbb{E}[I_{X^*}(E)] = \max_{a=1,2,3} \mathbb{E}[I_{a}(E)]\), because of the hardness to find the optimal scheme.

In the following context, we analyze the regret of our scheme ODC. The Hoeffding inequality will be applied in the following analysis, and stated as below:

The Hoeffding inequality—Let \(x_1, \ldots, x_n\) be random variables with common range \([0,1]\) and such that \(\mathbb{E}[x_i] = \mathbb{E}[x_{i-1}] = \mu\). Let \(S_n = \frac{1}{n}(x_1 + \cdots + x_n)\). Then for the constant \(a > 0\), the probability \(p(S_n \geq \mu + a) \leq e^{-2na^2}\) and \(p(S_n \leq \mu - a) \leq e^{-2na^2}\).

Recall that the power of the harvested energy must be higher than the threshold \(\varepsilon_t\), and then it can support the normal operation of the sensor node. Denote by \(T^t\) the time slot set in which the harvested energy is higher than the threshold \(\varepsilon_t\). \(T^t\) is determined by the energy harvesting process, and its expectation can be determined easily if its state transition probability is previously known. By the algorithm \(2\) the Vol threshold is continuously adjusted so the sensor node may choose to sleep (i.e., to store the harvested energy) in some slots when the harvested energy is higher than the threshold \(\varepsilon_t\). Because of the charging efficiency \(\lambda < 1\), the amount of the time slots, denoted by \(|T_a|\), in which the harvested energy can support the normal operation of the sensor node under the algorithm \(2\) must be not higher than \(|T^t|\). Thus, we have \(|T_a| \leq |T^t| \leq |T|\).

Firstly, we analyze the expected times that the arm \(a_j, j = 1,2\) or 3 is pulled. The arm \(a_4\) (storing energy) is not included since it does not return any reward. This is given in the following lemma. We prove the following lemma based on the idea of the reference \(24\) and consider the cost of each arm \(c_j, j = 1,2,3\).

\textbf{Lemma 2:} For an arbitrary arm \(a_j, j = 1,2,3\), the expected times that it is pulled in the period \(T\), is:

\[
\mathbb{E}[\varphi_j(T)] < \frac{c_{\max}}{c_{\min}} \cdot \frac{\varepsilon}{\Delta_j} + 2
\]

where \(\Delta_j\) is the difference of the expected reward between the optimal algorithm \(X^*\) and the arm \(a_j\), \(c_{\max} = \max_{j=1,2,3} c_j\) and \(c_{\min} = \min_{j=1,2,3} c_j\).

\textbf{Proof:} Recall that the step \(9\) of the algorithm \(1\) indicates that each arm \(a_j, j = 1,2,3\), is pulled once in the first \(K\) slots. Thus, the times to pull \(a_j\) is \(\varphi_j(T_a) = 1 + \sum_{\tau=K+1}^{T_a} \chi_j(\tau)\), where \(\tau \in T_a\). Since the algorithm \(1\) is a greedy algorithm, the selected arm has the higher upper-band Vol per unit cost over other arms including the optimal one in each slot \(\tau \in T_a\). So we have the following condition: \(I_j(\tau) + \delta_j(\tau) \geq \hat{I}^*(\tau) + \delta^*(\tau), \ i.e. \ (I_j(\tau) + \delta_j(\tau))/c_j \geq (\hat{I}^*(\tau) + \delta^*(\tau))/c^*\). In order to satisfy the condition with high probability, at least one of the following inequalities must be satisfied.

\[
\hat{I}^*(\tau) + \delta^*(\tau) \leq u^*
\]

\[
\hat{I}_j(\tau) + \delta_j(\tau) \geq u_j
\]

\[
u^*/c^* < (u_j^* + \delta_j^*(\tau))/c_j
\]

where \(u^*\) and \(u_j^*\) are the reward expectation of the optimal algorithm and the arm \(a_j\) by our algorithm, which is unknown to the sensor node. \(u^* = u^*/c^*\) and \(u_j = u_j^*/c_j\). By using the Hoeffding inequality, the probability that the inequalities in Equation \(21\) and \(22\) are satisfied is given as follows:

\[
p(\hat{I}^*(\tau) \leq u^* - \delta^*(\tau)) \leq e^{(4\ln \Psi(\tau))^{-1}}
\]

\[
p(\hat{I}_j(\tau) \geq u_j - \delta_j(\tau)) \leq e^{(4\ln \Psi(\tau))^{-1}}
\]

Recall that \(c_j > 0\) and \(u^*, u_j^* \geq 0\), and then the inequality in Equation \(23\) implies:

\[
c_j u^* < c^*(u_j^* + \delta_j^*(\tau)) \Rightarrow \varphi_j(\tau) < \frac{c_j u^* - c^* u_j^*}{c_j c^* \ln \Psi(\tau)}
\]

\[
\Rightarrow \varphi_j(\tau) < \left\{ \begin{array}{ll}
\frac{\varepsilon \ln \Psi(\tau)}{c_j c^* \ln \Psi(\tau)} & c_j \geq c^* \\
\frac{\varepsilon c^* \ln \Psi(\tau)}{c_j c^* \ln \Psi(\tau)} & c_j < c^*
\end{array} \right.
\]

(25)
where $\Delta_j = u^{*'} - u_j$.

By Equation (24) and (28), the expectation of the times to pull the arm a_j thus can be given as follows:

$$E[\varphi_j(T)] = 1 + \sum_{\tau = K+1}^{T_a} \chi_j(\tau)$$

$$< 1 + \max\left\{ \frac{\varepsilon' \ln \Psi(T_a)}{\Delta_j^2}, \frac{\varepsilon^2 \varepsilon' \ln \Psi(T_a)}{(c_j \Delta_j)^2} \right\}$$

$$+ \sum_{\tau = K+1}^{T_a} \{ p(\bar{I}_j(\tau) \leq u^* - \delta_j(\tau)) + p(\bar{I}_j(\tau) \geq u_j + \delta_j(\tau)) \}$$

$$\leq 1 + \frac{c_j \varepsilon' \ln \Psi(T_a)}{(c_j \Delta_j)^2} + \sum_{\tau = K+1}^{T_a} 2\Psi(\tau)^{-4}$$

$$\leq \left(\frac{c_{\max}}{c_{\min}} \right)^2 \frac{\varepsilon' \ln |T|}{\Delta_j^2} + 2 \left(|T_a| \leq |T'| \right)$$

(26)

where $c_{\max} = \max_{a_j = 1, 2, 3} c_j$ and $c_{\min} = \min_{a_j = 1, 2, 3} c_j$ and $\varepsilon' \geq 1$. Notice that $\Psi(T')$ is the total number of times to pull all arms and only one arm can be pulled in each time slot so $\Psi(T') = |T'|$.

Similarly, we can obtain that the expected times to pull the arm a_4.

Lemma 3: The expected times to pull the arm a_4 in the period T, is:

$$E[\varphi_4(T)] < \left(\frac{c_{\max}}{c_{\min}} \right)^2 \frac{2 \varepsilon' \ln |T'|}{\Delta_4^2} + 1$$

(27)

where $\Delta_4 = \min_{j=1,2,3} \Delta_j$.

Proof: According to the step 2 of Algorithm 1 the arm a_4 will be pulled when $\bar{I}(\tau) < I_4(\tau)$, which means that at least one of the following inequalities must be satisfied with high probability.

$$\bar{I}_j(\tau) + \delta_j(\tau) < u_j, \quad \forall j = 1, 2, 3$$

(28)

$$u^*/c^* > (u_j^* - \delta_j(\tau))\mid c_j, \quad \forall j = 1, 2, 3$$

(29)

By using the Hoeffding inequality, the probability that the inequality in Equation (28) is satisfied is given as follows:

$$p(\bar{I}_j(\tau) < u_j - \delta_j(\tau)) < e^{-4 \ln \Psi(T_a)} = \Psi(T_a)^{-4}$$

(30)

The inequality in Equation (29) implies:

$$c_j u^*/c^* > c^*(u_j^* - \delta_j(\tau)) \Rightarrow \varphi_4(\tau) < \frac{c_j \varepsilon' \ln \Psi(T_a)}{(c_j \Delta_j)^2} c_j \geq c^*$$

(31)

$$\Rightarrow \varphi_4(\tau) < \left\{ \frac{\varepsilon' \ln \Psi(T_a)}{\Delta_j^2}, \frac{\varepsilon^2 \varepsilon' \ln \Psi(T_a)}{(c_j \Delta_j)^2} \right\} c_j < c^*$$

According to the step 1 of Algorithm 1 the conditions given in Equation (28) and (29) should be satisfied for all arms a_j, $j = 1, 2, 3$ simultaneously. Therefore, by Equation (30) and (31), the expectation of the times to pull the arm a_4 thus can be given as follows:

$$E[\varphi_4(T)] = \sum_{\tau = K+1}^{T_a} \chi_4(\tau)$$

$$< \max_{j=1,2,3} \left\{ \frac{\varepsilon' \ln \Psi(T_a)}{\Delta_j^2}, \frac{\varepsilon^2 \varepsilon' \ln \Psi(T_a)}{(c_j \Delta_j)^2} \right\}$$

$$+ \sum_{\tau = K+1}^{T_a} \prod_{j=1}^{3} p(\bar{I}_j(\tau) < u_j + \delta_j(\tau))$$

$$\leq \max_{j=1,2,3} \frac{c_j \varepsilon' \ln \Psi(T_a)}{(c_j \Delta_j)^2} + \sum_{\tau = K+1}^{T_a} \Psi(\tau)^{-16}$$

$$\leq \left(\frac{c_{\max}}{c_{\min}} \right)^2 \frac{\varepsilon' \ln |T|}{\Delta_4^2} + 1 \quad \left(|T_a| \leq |T'| \right)$$

(32)

where $a_4 = \min_{j=1,2,3} \Delta_j$, and $\varepsilon' \geq 1$.

Recall that the harvested energy can support the normal operation of the sensor node in at most $|T'|$ slots, $T' \subseteq T$. By the lemma 2 and 3 we can analyze the reward regret of Algorithm 1.

Theorem 4: For the dynamic energy budget $E(T) > 0$, the expectation of ODC’s regret is at most:

$$\sum_{j=1}^{K-1} \left[\frac{c_{\max}}{c_{\min}} \frac{2 \varepsilon' \ln |T|}{\Delta_j^2} + 2 \Delta_j \right] + u^*/c^* \left[\frac{c_{\max}}{c_{\min}} \frac{2 \varepsilon' \ln |T'|}{\Delta_4^2} + 1 \right]$$

(33)

where $\varepsilon' \geq 1$ is a constant, and u^* is the reward expectation of the optimal algorithm.

Proof: Algorithm 1 can operate at the time slots in the set T_a, where $|T_a| \leq |T'|$. Suppose that $T_a = T_1 \cup T_2$. In the period T_1, the arm a_j, $j = 1, 2, 3$, are pulled, and in the period T_2, the arm a_4 is pulled. Suppose that the optimal algorithm operates at the time slots in the set T^*, $|T^*| \leq |T'|$ and $|T_a| \leq |T'|$ because the charging efficiency $\lambda < 1$. The expected regret of ODC is:

$$R_{ODC}(E) = E[I_X, (E)] - E[I_{ODC}(E)]$$

$$= E[I^*_s(\tau) - E[I^*_s(\tau)] = E[I^*_s(\tau)] - E[I(\tau)]$$

$$= \sum_{\tau = 1}^{T_a} I^*_s(\tau) - I_s(\tau)$$

$$+ \sum_{\tau = 1}^{T_a} (I_s(\tau) - I_4(\tau))$$

$$+ \sum_{\tau = T_a}^{T_a + T - T_2} I^*_s(\tau) - I_s(\tau)$$

$$\leq \sum_{\tau = 1}^{T_a} (I^*_s(\tau) - I_s(\tau)) + \sum_{\tau = 1}^{T_a} (I_s(\tau) - I_4(\tau))$$

$$\leq \sum_{\tau = 1}^{T_a} \sum_{j=1}^{K-1} (I^*_s(\tau) - I_s(\tau)) + \sum_{\tau = 1}^{T_a} (I_s(\tau) - I_4(\tau))$$

$$= E[I^*_s(\tau)] - E[I_s(\tau)]$$

$$+ E[I_s(\tau) - I_4(\tau)]$$

$$\leq E[I^*_s(\tau)] - E[I_s(\tau)]$$

$$+ E[I_s(\tau) - I_4(\tau)]$$

$$= E[I^*_s(\tau)] - E[I_s(\tau)]$$

$$+ E[I_s(\tau) - I_4(\tau)]$$

$$\leq E[I^*_s(\tau)] - E[I_s(\tau)]$$

$$+ E[I_s(\tau) - I_4(\tau)]$$

$$= E[I^*_s(\tau)] - E[I_s(\tau)]$$

$$+ E[I_s(\tau) - I_4(\tau)]$$
< \sum_{j=1}^{K-1} \left[\frac{(c_{\text{max}}/c_{\text{min}})^{2} \varepsilon \ln |T'|}{\Delta_j} + 2\Delta_j \right] + u^2 \left[\frac{(c_{\text{max}}/c_{\text{min}})^{2} \varepsilon \ln |T'|}{\Delta_4^2} + 1 \right]

where \(\alpha(\tau) \) denotes the arm pulled at \(\tau \), and the reward of the arm \(\alpha_4 \) is \(\Delta_4 \), which is zero since to store energy cannot process data. This finishes the proof.

VI. Experiment Results

This section depicts our experiments established on the real data obtained from the real solar harvesting module: SolarMote [2]. A series of experiments are designed and implemented to validate the performance of our scheme ODC by comparing with two baseline algorithms: COA and SDC, which are designed because of the hardness to find the optimal algorithm for the opportunistic duty cycling. The strong assumption behind COA is that the VoI of the data to process and the harvested energy can be previously known while no extra energy is consumed to store energy. COA is a centralized and off-line algorithm. Thus, the performance of COA should be closer to the optimal algorithm than ODC and SDC. SDC predicts the amount of energy to harvest in the form of a Gaussian probability distribution with the expectation 1 and the slot 0 to 200. In the three experiments, there is one data are uniformly and randomly distributed into the period from experiment, the energy 1mAh is divided into 180 units, which are assigned to one phase.

A. Single Node Scenario

This subsection simulates the scenario consisting of only one sensor node \(v_1 \) and the sink. \(v_1 \) samples data from its surrounding, and transmits its data to the sink. The scenario contains four experiments and is set up to evaluate the impact of the chance to harvest energy by excluding the impact of other factors occurring in the large scale networks, such as the packet loss. Each experiment evaluates the reward performance of the three algorithms: COA, ODC and SDC.

In the first experiment, the fixed amount 1mAh of energy is previously assigned in the phase from the time slots 0 to 10. In the second experiment, the 1mAh energy is divided into two equivalent parts. One part is assigned to the sensor node in the phase from the time slots 0 to 5 while the other is assigned in the phase from the time slots 90 to 95. In the third experiment, the energy 1mAh is divided into 180 units, which are uniformly and randomly distributed into the period from the slot 0 to 200. In the three experiments, there is one data available in each time slot, and its VoI is assumed to follow the Gaussian probability distribution with the expectation 1 and the variance 0.5. In the fourth experiment, the data to process and the energy to harvest are the real data collected by the energy harvesting module SolarMote: the luminous intensity and harvested energy in the first sub-figure of Figure 1(b)

Assume that there is 20mAh initial energy in the sensor node’s battery. The simulations for each of the experiments are repeatedly run for 100 times so each data point in Figure 9-12 is the average of this amount of trials.

The results of the first and second experiments are respectively illustrated in Figure 9 and 10. These experiment results indicate the impact of the energy harvesting access on the total VoI. When the energy is assigned at the fixed phases, the sensor nodes tend to spend the energy timely at these phases by ODC since some extra energy must be consumed to store the energy. In Figure 9, the growth rate of \(v_1 \)'s total VoI by ODC is higher than those of COA and SDC at the initial phase. Although the total VoI under ODC slows down its growth in the first experiment in Figure 9 after the initial phase, the finally total VoI of ODC is 28.25% higher than SDC, and 28.86% lower than that of COA. In the second experiment, the fixed energy is assigned at two phases. At the two phases, the growth rate of total VoI by ODC suddenly increases since the two phases are considered to be good chance to use the energy by ODC. The finally total VoI of ODC 34.62% higher than SDC, and 24.02% lower that of COA as shown in Figure 10.

The results of the third experiment is illustrated in Figure 11. The total VoI of all algorithms grows almost linearly with time. Till the time slot 200, the total VoI obtained by COA, ODC and SDC are 166.14, 143.195 and 105.509 respectively. ODC is 16.02% lower than COA, and 35.72% higher than SDC. Because the fixed energy 1mAh is distributed in the whole period from the slot 0 to 200 uniformly, there are much more chances that each sensor node need not store the harvested energy but to consume it directly. The three algorithms thus can obtain much more VoI than those in the first and second experiments.

In the fourth experiment, we adopt the real data harvested by SolarMote [2] including the luminous intensity and the harvested energy as shown in the first subgraph of Figure 1(b). Thus, the data that the sensor node \(v_1 \) will process is the luminous intensity. In each time slot, \(v_1 \) can harvest different amount of energy and luminous intensity, and cannot know the exact information of the luminous intensity in the future time slots. As shown in Figure 12, the experiment results illustrate that the finally total VoI of ODC is 18.18% lower than that of COA, and 69.09% higher than that of SDC. Different from the previous experiments, the accesses to harvest energy and the data are inhomogeneous over time. Compared to the results in the third experiment, the performance of ODC is better than SDC. Because of the inhomogeneous accesses, ODC loses some better chances to process the data and its performance

\[\text{Fig. 9. The fixed energy is assigned to one phase.} \]

\[\text{Fig. 10. The fixed energy is assigned equally to two phases.} \]
decreases compared to the result in the third experiment. In the four experiments, the occasions that the sensor node \(v_1 \) can harvest energy increase from one short phase as the first experiment to multiple moments as the third and fourth ones. In the third experiment, \(v_1 \) has uniformly possibility to harvest energy at each time slot while having the heterogeneous possibility in the fourth experiment. Through the four experiments, we find that the distribution of the accesses to harvest energy and to process data have much impact on the performance of the duty cycling scheme. The overall performance of ODC is closer to that of the centralized algorithm COA than SDC when the access to harvest energy and to process data distribute more uniformly. In the four experiments, the reward regret of ODC are given by comparing to the performance of COA because of the hardness to find the optimal scheme. The numerical values of the regret are presented in the form of the percentage in the above analysis.

B. Network Scenario

The node density has also obvious impact on the performance of these algorithms. This block simulates the network scenario composed of a several numbers of the sensor nodes with the fixed deploy area of \(100 \times 100 \) \text{m}^2. Each sensor node runs the IEEE 802.15.4 protocol to assign wireless channel and deal with the interference among the sensor nodes. All sensor nodes have the same receiving and minimal transmitting range as far as 50 meters. Each data point represents the average VoI when the network scale is a specific number of the sensor nodes. For example, the most left data point in Figure 13 represents the average VoI when the network has 50 sensor nodes. The simulation time is set to be 200 time slots and every slot is one minute. Two experiments are designed and implemented. In the first one, the energy 1mAh is assigned to each sensor node at the initial phase from the time slot 0 to 10. In the second one, the energy 1mAh is divided equally into 180 units and distributed to the 200 time slots uniformly and randomly. The simulation results of the two experiments are respectively shown in Figure 13 and 14. In these figures, each data point is the average of 10 trials.

From the results of both experiments in Figure 13 and 14 it is easy to notice that the increase of the node density results in the much decrease of VoI per sensor node. In the first experiment, the average VoI under the algorithms: COA, ODC and SDC drop 82.35\%, 72.54\% and 57.92\% respectively when the number of the sensor nodes increases from 50 to 1000. Similarly, the average VoI drops 82.35\%, 48.95\% and 43.897\% respectively in the second experiment. In spite of the VoI degression with the increasing of the node density, the performance of ODC is over that of the SDC. The average VoI of ODC can be 47.01\% of COA while SDC is at most 32.08\% of COA in the first experiment. The average VoI of ODC is at least 67.89\% of that by COA while SDC is at most 35.96\% of COA in the second experiment.

The section evaluates the performance of our algorithm ODC by comparing with the centralized algorithm COA and the algorithm SDC representing the typical duty cycling scheme. The results show that the ODC has stable performance over the existing scheme. Although its performance is not as good as the centralized algorithm COA, ODC has acceptable performance as a distributed online algorithm. Through the experiments in the section, we found that the access to process data and to harvest energy have much impact on the performance of the duty cycling scheme, and thus the energy efficiency. ODC, as the first work, shows the impact under the requirement of the energy neutral operation, and has promising performance.

VII. Related Work

This section reviews the existing energy harvesting modules and the duty cycling schemes in the energy harvesting WSNs. Energy harvesting technique and applications for WSNs have been widely studied [25][26][27] and they designed different modules to harvest energy.

Energy harvesting module. Some typical modules, such as Prometheus [4] and Helimote [28], were designed for the sensor node to harvest solar, vibration and wind energy [29][30]. Most of existing modules can harvest the solar energy by the micro-scale photovoltaic power system. Actually, duty cycling is still necessary in the energy harvesting WSNs because some works [4][6] found that nodes had not intensive enough energy to sustain the continuous full duty cycle operation of sensor nodes yet although they could harvest ambient energy. For example, the solar panel in the module Prometheus requires at least 4 hour hard light each day if the node’s duty cycle is 10\% [4]. Some modules were designed to store the harvested energy into their batteries while others took capacitor as the primary buffer and battery as the second buffer [4]. Battery suffers from low charge efficiency and long charging duration, capacitor has the high leakage [12]. For example, the 2000F ultra-capacitor has the high leakage rate up to 43.8\% during the first month [12].
Although the sensor network can obtain the environmental energy from time to time, the harvested energy is not enough to support full duty cycle. This paper notices the phenomenon and argues to spend the harvested energy on the proper time so that the energy efficiency can be improved while each node has enough energy to support the energy neutral operation.

Duty cycling. Duty cycling has been constantly researched as a promising technique to improve energy efficiency and prolong network life because of the energy limitation. We can group these previous techniques into two classes: classical and adaptive duty cycling, according to the way under which the networks are powered. In WSNs, the classical duty cycling based on the preliminary assumption that each sensor has limited energy, i.e., no extra energy is supplemented. So the goal of the classical duty cycling is to save energy as much as possible. In the energy harvesting WSNs, each sensor node can be supplemented extra energy continuously by the energy harvesting modules. Only a few works were engaged in adjusting duty cycle according to the weather conditions to achieve high energy efficiency. However, they did not consider that the energy harvesting is a random process, and the energy profile of each sensor node is time-varying and different from others. Furthermore, these previous works adjusted duty cycle only according to the predicted amount of the harvested energy in a duration, and did not consider the impact of network demand and the occasion to implement the demand on duty cycling.

Different from the previous works, this paper addresses the duty cycling with the dynamic harvested energy to avoid the complex prediction or rough estimation of the duty cycle. We consider the spatiotemporal dynamic of the harvested energy and our scheme ensures that each sensor node adjusts its duty cycle according to its local information on the energy harvesting and data process.

VIII. Conclusion

This paper investigates the process of the energy harvesting in the solar sensor networks, and finds the phenomenon that it can greatly improve the energy efficiency of the harvested energy to catch right chance to use it. We formulate it as the budget-dynamic MAB problem, and propose the new scheme: ODC, to exploit the harvested energy fully while satisfying the energy neutral operation. The theoretical performance for the scheme are analyzed, and the experimental analysis is also designed and implemented. We are the first to study the phenomenon, and will go on studying the problem in the following aspects. Because of the simplicity of the sensor node hardware, it needs more simple and feasible schemes. Furthermore, the scheme of this paper involves some frequent update the probability to choose arms. Our future work will reduce the computation frequency and design even simple scheme requiring a few frequency to update the probability. Thirdly, the synchronization and communication coordination among nodes are quite helpful to improve the channel utilization. In the coming work, we will consider the coordination among sensor nodes.

References

[1] Alan Maimwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John Anderson. Wireless sensor networks for habitat monitoring. In Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications (WASA), pages 88–97. ACM, 2002.

[2] Xiafing Shen, Cheng Bo, Jianhui Zhang, and et al. SolarMote: a low-cost solar energy supplying and monitoring system for wireless sensor networks. poster. In Proceedings of the 7th Conference on Embedded Networked Sensor Systems (SenSys), pages 413–414, Berkeley, California, USA, Nov. 4-6 2009. ACM.

[3] S.J. Tang, X.Y. Li, X. Shen, Jianhui Zhang, G. Dai, and S.K. Das. Cool: On coverage with solar-powered sensors. In Proceedings of the 31st International Conference on Distributed Computing Systems (ICDCS), pages 488–496, Minneapolis, Minnesota, USA, June 20-24 2011. IEEE.

[4] X. Jiang, J. Polastre, and D. Culler. Perpetual environmentally powered sensor networks. In Proceedings of the 4th International Conference on Information Processing in Sensor Networks (IPSN), pages 463–468, (UCLA) Los Angeles, CA, USA, April 25-27 2005. ACM/IEEE.

[5] G. Ghidini and S.K. Das. An energy-efficient markov chain-based randomized duty cycling scheme for wireless sensor networks. In Proceedings of the 31st International Conference on Distributed Computing Systems (ICDCS), pages 67–76, Minneapolis, Minnesota, USA, June 20-24 2011. IEEE.

[6] Y. Gu, T. Zhu, and T. He. ESC: Energy synchronized communication in sustainable sensor networks. In Proceedings of the 17th International Conference on Network Protocols (ICNP), pages 52–62, Princeton, New Jersey, USA, Oct. 13-16 2009. IEEE.

[7] Jianhui Zhang Shaojie Tang Xufei Mao Guojun Dai Xingfa Shen, Cheng Bo. Energy Flow control for sustainable wireless sensor networks. Elsevier Ad Hoc Networks, 11(4):1421C1431, 2013.

[8] A. Kansal, J. Hsu, S. Zahedi, and M.B. Srivastava. Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems, 6(4):32, 2007.

[9] C. Moser, L. Thiele, D. Brunelli, and L. Benini. Adaptive power management for environmentally powered systems. IEEE Transactions on Computers, 59(4):478–491, 2010.

[10] Bernhard Buchli, Felix Sutton, Jan Beutel, and Lothar Thiele. Dynamic power management for long-term energy neutral operation of solar energy harvesting systems. In Proceedings of the 12th Conference on Embedded Networked Sensor Systems (SenSys), pages 31–45, Memphis, TN, USA, Nov. 3-6 2014. ACM.

[11] Y. Ding, R. Michelson, and C. Stanciul. Battery state of charge detector with rapid charging capability and method, July 25 2000. US Patent 6,094,033.

[12] T. Zhu, Z. Zhong, Y. Gu, T. He, and Z.L. Zhang. Leakage-aware energy synchronization for wireless sensor networks. In Proceedings of the 7th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pages 319–332, Krakow, Poland, June 22-25 2009. ACM.

[13] C.K. Ho, P.D. Khou, and P.C. Ming. Markovian models for harvested energy in wireless communications. In Recent Advances in the International Conference on Control Systems and Their Applications, pages 311–315. ACM, 2010.

[14] Qing Zhao Keqin Liu. Distributed learning in multi-armed bandit with multiple players. IEEE Transactions on Signal Processing, 58(11):5667 – 5681, 2010.

[15] A. Kansal, D. Potter, and M.B. Srivastava. Performance aware tasking for environmentally powered sensor networks. In ACM SIGMETRICS Performance Evaluation Review, volume 32, pages 223–234, 2004.

[16] C. Park and P.H. Chou. Ambimax: Autonomous energy harvesting platform for multi-supply wireless sensor nodes. In Proceeding of the 3rd Annual Communications Society on Sensor and Ad Hoc Communications and Networks (SECON), pages 168–177, Hyatt Regency, Reston, VA, USA, Sep. 25 - 28 2006. IEEE.

[17] P. Padhy, R.K. Dash, K. Martinez, and N.R. Jennings. A utility-based adaptive sensing and multihop communication protocol for wireless sensor networks. ACM Transactions on Sensor Networks, 6(5):27, 2010.

[18] J. Ventura and K. Chowdhury. Markov model of energy harvesting body sensor networks. In Proceeding of the 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pages 2168–2172, Toronto, Canada, Sept. 11-14 2011. IEEE.

[19] J. Gittens, K. Glaizebrook, and R. Weber. Multi-armed bandit allocation indices. Wiley, 2011.

[20] Richard D Smallwood and Edward J Sondik. The optimal control of partially observable markov processes over a finite horizon. Operations Research, 21(5):1071–1088, 1973.
[21] Rajeev Kohli, Ramesh Krishnamurti, and Prakash Mirchandani. Average performance of greedy heuristics for the integer knapsack problem. European Journal of Operational Research, 154(1):36–45, 2004.

[22] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2):235–256, 2002.

[23] Panqanamala Ramana Kumar and Pravin Varaiya. Stochastic systems: estimation, identification and adaptive control. Prentice-Hall, Inc., 1986.

[24] OMNeT++. http://www.omnetpp.org/. Accessed: Nov.22nd, 2014.

[25] Shibo He, Jiming Chen, David KY Yau, Huanyu Shao, and Youxian Sun. Energy-efficient capture of stochastic events under periodic network coverage and coordinated sleep. IEEE Transactions on Parallel and Distributed Systems, 23(6):1090–1102, 2012.

[26] Shibo He, Jiming Chen, Fachang Jiang, David KY Yau, Guoliang Xing, and Youxian Sun. Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10):1931–1942, 2013.

[27] Yongmin Zhang, Shibo He, and Jiming Chen. Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. In Proceeding of the 10th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pages 273–281, New Orleans, USA, June 24-27 2013. IEEE.

[28] J. Hsu, A. Kansal, J. Friedman, V. Raghunathan, and M. Srivastava. Energy harvesting support for sensor networks. the Sensor Platforms, Tools and Design Methods (SPOTS) track at the 4th International Conference on Information Processing in Sensor Networks (IPSN), April 25-27 2005.

[29] R.S. Liu, K.W. Fan, Z. Zheng, and P. Sinha. Perpetual and fair data collection for environmental energy harvesting sensor networks. IEEE/ACM Transactions on Networking, 19(4):947–960, 2011.

[30] Omur Ozel and Sennur Ulukus. Achieving AWGN capacity under stochastic energy harvesting. IEEE Transactions on Information Theory, 58(10):6471–6483, 2012.

[31] Zhenjiang Li, Mo li, and Youhao Liu. Towards energy-fairness in asynchronous duty-cycling sensor networks. In Proceeding of the 31st Annual IEEE International Conference on Computer Communications (INFOCOM), pages 801–809, Orlando, Florida USA, March 25-30 2012. IEEE.

[32] Lijie Xu, Haipeng Dai, and Guihai Chen. A low–delay energy–efficient decision strategy in duty–cycled wireless sensor networks. International Journal of Sensor Networks, 17(2):82–92, 2015.

[33] S. Guo, S.M. Kim, T. Zhu, Y. Gu, and T. He. Correlated flooding in low-duty-cycle wireless sensor networks. In Proceeding of the 19th International Conference on Network Protocols (ICNP), pages 383–392, Vancouver, Canada, October 17-20 2011. IEEE.

[34] C.M. Vigorito, D. Ganesan, and A.G. Barto. Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In Proceeding of the 4th Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), pages 21–30, San Diego, California, USA, June 18-21 2007. IEEE.