Abstract

We present a polynomial-time $9/7$-approximation algorithm for the graphic TSP for cubic graphs, which improves the previously best approximation factor of 1.3 for 2-connected cubic graphs and drops the requirement of 2-connectivity at the same time. To design our algorithm, we prove that every simple 2-connected cubic n-vertex graph contains a spanning closed walk of length at most $9n/7 - 1$, and that such a walk can be found in polynomial time.

1 Introduction

The Travelling Salesperson Problem (TSP) is one of the most central problems in combinatorial optimization. The problem asks to find a shortest closed walk visiting each vertex at least once in an edge-weighted graph, or alternatively to find a shortest Hamilton cycle in a complete graph where the edge weights satisfy the triangle inequality. The Travelling Salesperson Problem is notoriously hard. The approximation factor of $3/2$ established by Christofides [4] has not been improved for 40 years despite a significant effort of many researchers. The particular case of the problem, the Hamilton Cycle Problem, was among the first problems to be shown to be NP-hard. Moreover, Karpinski, Lampis and Schmied [11] have recently shown that the Travelling Salesperson Problem is NP-hard to approximate within the factor $123/122$, improving the earlier inapproximability results.
of Lampis [13] and of Papadimitriou and Vempala [19]. In this paper, we are concerned with an important special case of the Travelling Salesperson Problem, the graphic TSP, which asks to find a shortest closed walk visiting each vertex at least once in a graph where all edges have unit weight. We will refer to such a walk as a TSP walk.

There have recently been a lot of research focused on approximation algorithms for the graphic TSP, which was ignited by the breakthrough of the $3/2$-approximation barrier in the case of 3-connected cubic graphs by Gamarnik, Lewenstein and Sviridenko [8]. This was followed by the improvement of the $3/2$-approximation factor for the general graphic TSP by Oveis Gharan, Saberi and Singh [17]. Next, Mömke and Svensson [15] designed a 1.461-approximation algorithm for the problem and Mucha [16] showed that their algorithm is actually a 13/9-approximation algorithm. This line of research culminated with the 7/5-approximation algorithm of Sebő and Vygen [20].

We here focus on the case of graphic TSP for cubic graphs, which was at the beginning of this line of improvements. The $(3/2 - 5/389)$-approximation algorithm of Gamarnik et al. [8] for 3-connected cubic graphs was improved by Aggarwal, Garg and Gupta [1], who designed a 4/3-approximation algorithm. Next, Boyd et al. [2] found a 4/3-approximation algorithm for 2-connected cubic graphs. The barrier of the 4/3-approximation factor was broken by Correa, Larrése and Soto [5] who designed a $(4/3 - 1/61236)$-approximation algorithm for this class of graphs. The currently best algorithm for 2-connected cubic graphs is the 1.3-approximation algorithm of Candráková and Lukoťka [3], based on their result on the existence of a TSP walk of length at most $1.3n - 2$ in 2-connected cubic n-vertex graphs. We improve this result as follows. Note that we obtain a better approximation factor and Theorem 2 also applies to a larger class of graphs.

Theorem 1. There exists a polynomial-time algorithm that for a given 2-connected subcubic n-vertex graph with n_2 vertices of degree two outputs a TSP walk of length at most

\[
\frac{9}{7}n + \frac{2}{7}n_2 - 1.
\]

Theorem 2. There exists a polynomial-time $9/7$-approximation algorithm for the graphic TSP for cubic graphs.

At this point, we should remark that we have not attempted to optimize the running time of our algorithm. Also note that our approximation factor matches the approximation factor for cubic bipartite graphs in the algorithm Karp and Ravi [10], who designed a $9/7$-approximation algorithm for the graphic TSP for cubic bipartite graphs. However, van Zuylen [21] has recently found a 5/4-approximation algorithm for this class of graphs. Both the result of Karp and Ravi, and the result of van Zuylen are based on finding a TSP walk of length
of at most $9n/7$ and $5n/4$, respectively, in an n-vertex cubic bipartite graph. On the negative side, Karpinski and Schmied [12] showed that the graphic TSP is NP-hard to approximate within the factor of $535/534$ in the general case and within the factor $1153/1152$ in the case of cubic graphs.

Our contribution in addition to improving the approximation factor for graphic TSP for cubic graphs is also in bringing several new ideas to the table. The proof of our main result, Theorem 1, differs from the usual line of proofs in this area. In particular, to establish the existence of a TSP walk of length at most $9n/7 - 1$ in a 2-connected cubic n-vertex graph, we allow subcubic graphs as inputs and perform reductions in this larger class of graphs. While we cannot establish the approximation factor of $9/7$ for this larger class of graphs, we are still able to show that our techniques yields the existence of a TSP walk of length at most $9n/7 - 1$ for cubic n-vertex graphs. In addition, unlike in the earlier results, we do not construct a TSP walk in the final reduced graph by linking cycles in a spanning 2-regular subgraph of the reduced graph but we consider spanning subgraphs with vertices of degree zero and two, which gives us additional freedom.

We conclude with a brief discussion on possible improvements of the bound from Theorem 1. In Section 5, we give a construction of a 2-connected cubic n-vertex graph with no TSP walks of length smaller than $5n/4 - 2$ (Proposition 31) and a 2-connected subcubic n-vertex graph with $n_2 = \Theta(n)$ vertices of degree two with no TSP walks of length smaller than $5n + 1/4n_2 - 1$ (Proposition 29); the former construction was also found independently by Mazák and Lukot’ka [14]. We believe that these two constructions provide the tight examples for an improvement of Theorem 1 and conjecture the following. We also refer to a more detailed discussion at the end of Section 5.

Conjecture 1. Every 2-connected subcubic n-vertex graph with n_2 vertices of degree has a TSP walk of length at most

$$\frac{5}{4}n + \frac{1}{4}n_2 - 1.$$

We would like to stress that it is important that Conjecture 1 deals with simple graphs, i.e., graphs without parallel edges. Indeed, consider the cubic graph G obtained as follows: start with the graph that has two vertices of degree three that are joined by three paths, each having 2ℓ internal vertices of degree two, and replace every second edge of these paths with a pair of parallel edges to get a cubic graph. The graph G has $n = 6\ell + 2$ vertices but no TSP walk of length shorter than $8\ell + 2$.

2 Preliminaries

In this section, we fix the notation used in the paper and make several simple observations on the concepts that we use.
All graphs considered in this paper are simple, i.e., they do not contain parallel edges. When we allow parallel edges, we will always emphasize this by referring to a considered graph as a multigraph. We will occasionally want to stress that a graph obtained during the proof has no parallel edges and we will do so by saying that it is simple even if saying so is superfluous. The underlying graph of a multigraph H is the graph obtained from H by suppressing parallel edges, i.e., replacing each set of parallel edges by a single edge.

If G is a graph, its vertex set is denoted by $V(G)$ and its edge set by $E(G)$. Further, the number of vertices of G is denoted by $n(G)$ and the number of its vertices of degree two by $n_2(G)$. If w a vertex of G, then $G - w$ is a graph obtained by deleting the vertex w and all the edges incident with w. Similarly, if W is a set of vertices of G, then $G - W$ is the graph obtained by deleting all vertices of W and edges incident with them. Finally, if F is a set of its edges, then $G \setminus F$ is the graph obtained from G by removing the edges of F but none of the vertices.

A graph with all vertices of degree at most three is called subcubic. We say that a graph G is k-connected if it has at least $k + 1$ vertices and $G - W$ is connected for any $W \subseteq V(G)$ containing at most $k - 1$ vertices. If G is connected but not 2-connected, then a vertex v such that $G - v$ is not connected is called a cut-vertex. Maximal 2-connected subgraphs of G are called blocks. Note that a vertex of a graph is contained in two or more blocks if and only if it is a cut-vertex. A subset F of the edges of a graph G is an edge-cut if the graph $G \setminus F$ have more components than G and F is minimal with this property. Such a subset F containing exactly k edges will also be referred to as a k-edge-cut. An edge forming a 1-edge-cut is called a cut-edge. A graph G is k-edge-connected if it has no ℓ-edge-cut for $\ell \leq k$. Note that a subcubic graph G with at least two vertices is 2-connected if and only if it is 2-edge-connected.

A θ-graph is a simple graph obtained from the pair of vertices joined by three parallel edges by subdividing some of the edges several times. In other words, a θ-graph is a graph that contains two vertices of degree three joined by three paths formed by vertices of degree two such that at most one of these paths is trivial, i.e., it is a single edge. In our consideration, we will need to consider a special type of cycles of length six in subcubic graphs, which resembles θ-graphs. A cycle $K = v_1 \ldots v_6$ of length six in a subcubic graph G is a θ-cycle, if all vertices v_1, \ldots, v_6 have degree three, their neighbors x_1, \ldots, x_6 outside of K are pairwise distinct, and if $G - V(K)$ has three connected components, one containing x_1 and x_2, one containing x_4 and x_5, and one containing x_3 and x_6. See Figure 1 for an example. The vertices v_3 and v_6 of the cycle K will be referred to as the poles of the θ-cycle K.

We say that a multigraph is Eulerian if all its vertices have even degree; note that we do not require the multigraph to be connected, i.e., a multigraph has an Eulerian tour if and only if it is Eulerian and connected. A subgraph is spanning if it contains all vertices of the original graphs, possibly some of them as isolated vertices, i.e., vertices of degree zero. It is easy to relate the length of the shortest
TSP walk in a graph G to the size of Eulerian multigraphs using edges of G as follows. To simplify our presentation, let $tsp(G)$ denote the length of the shortest TSP walk in a graph G.

Observation 3. For every graph G, $tsp(G)$ is equal to the minimum number of edges of a connected Eulerian multigraph H such that the underlying graph of H is a spanning subgraph of G.

Proof. Let W be a TSP walk of length $tsp(G)$, and let H be the multigraph on the same vertex set as G such that each edge e of G is included to H with multiplicity equal to the number of times that it is used by W. In particular, edges not traversed by W are not included to H at all. Clearly, the multigraph H is connected and Eulerian, the number of its edges is equal to the length of W and its underlying graph is a spanning subgraph of G.

We next establish the other inequality claimed in the statement. Let H be a connected Eulerian multigraph whose underlying graph is a spanning subgraph of G, and H has the smallest possible number of edges. A closed Eulerian tour in H yields a TSP walk in G (just follow the tour in G) and the length of this TSP walk is equal to the number of edges of H. Hence, $tsp(G)$ is at most the number of edges of H. \qed

We now explore the link between Eulerian spanning subgraphs and the minimum length of a TSP walk further. For a graph G, let $c(F)$ denote the number of non-trivial components of F, i.e., components formed by two or more vertices, and let $i(F)$ be the number of isolated vertices of F. We define the *excess* of a graph F as

$$exc(F) = 2c(F) + i(F).$$

If G is a subcubic graph, we define

$$\text{minexc}(G) = \min \{exc(F) : F \text{ spanning Eulerian subgraph of } G\}.$$
Note that any subcubic Eulerian graph F is a union of $c(F)$ cycles and $i(F)$ isolated vertices, i.e., the spanning subgraph F of a subcubic graph G with $\text{exc}(F) = \text{minexc}(G)$ must also have this structure. The values of $\text{minexc}(G)$ for simple-structured graphs are given in the next observation (note that the condition $k_2 \neq 0$ implies that the θ-graph is simple).

Observation 4. The following holds.

1. If G is a cycle, then $\text{minexc}(G) = 2 < \frac{n(G) + n_2(G)}{4} + 1$.

2. If $G = K_4$, then $\text{minexc}(G) = 2 = \frac{n(G) + n_2(G)}{4} + 1$.

3. If G is θ-graph with k_1, k_2, and k_3 vertices of degree two on the paths joining its two vertices of degree three and $k_1 \leq k_2 \leq k_3$ and $k_2 \neq 0$, $\text{minexc}(G) = 2 + k_1 \leq \frac{n(G) + n_2(G)}{4} + 1$.

We next relate the quantity $\text{minexc}(G)$ to the length of the shortest TSP walk in G.

Observation 5. Let G be a connected subcubic n-vertex graph, and let F be a spanning Eulerian subgraph F of G. There exists a polynomial-time algorithm that finds a TSP walk of length $n - 2 + \text{exc}(F)$. In addition, the minimum length of a TSP walk in G is equal to

$$\text{tsp}(G) = n - 2 + \text{minexc}(G).$$

Proof. Let F be a spanning Eulerian subgraph of G. We aim to construct a TSP walk of length $n - 2 + \text{exc}(F)$. The subgraph F has $c(F) + i(F)$ components. Since F is subcubic, each of the $c(F)$ non-trivial components of F is a cycle, which implies that F has $n - i(F)$ edges. Since G is connected, there exists a subset S of the edges of G such that $|S| = c(F) + i(F) - 1$ and F together with the edges of S is connected. Clearly, such a subset S can be found in linear time. Let H be the multigraph obtained from F by adding each edge of S with multiplicity two. Since H is a connected Eulerian multigraph whose underlying graph is a spanning subgraph of G, the proof of Observation 3 yields that it corresponds to an Eulerian tour of length

$$|E(H)| = |E(F)| + 2|S| = n - i(F) + 2(c(F) + i(F) - 1) = n - 2 + \text{exc}(F),$$

which can be found in linear time. In particular, it holds that $\text{tsp}(G) \leq n - 2 + \text{exc}(F)$. Since the choice of F was arbitrary, we conclude that $\text{tsp}(G) \leq n - 2 + \text{minexc}(G)$.

To finish the proof, we need to show that $n - 2 + \text{minexc}(G) \leq \text{tsp}(G)$. By Observation 3, there exists a connected Eulerian multigraph H with $|E(H)| = \text{tsp}(G)$ such that its underlying graph is a spanning subgraph of G. By the
minimality of $|E(H)|$, every edge of H has multiplicity at most two (otherwise, we can decrease its multiplicity by 2 while keeping the multigraph Eulerian and connected). Similarly, removing any pair of parallel edges of H disconnects H (as the resulting multigraph would still be Eulerian), i.e., the edge in the underlying graph of H corresponding to a pair of parallel edges is a cut-edge. Let F be the graph obtained from H by removing all the pairs of parallel edges. The number of components of F is equal to
\[c(F) + i(F) = \frac{|E(H)| - |E(F)|}{2} + 1. \]
Since F is subcubic, it is a union of $c(F)$ cycles and $i(F)$ isolated vertices, which implies that $|E(F)| = n - i(F)$. Consequently, we get that
\[c(F) + i(F) = \frac{|E(H)| - (n - i(F))}{2} + 1, \]
which yields the desired inequality
\[n - 2 + \text{minexc}(G) \leq n - 2 + \text{exc}(F) = n - 2 + 2c(F) + i(F) = |E(H)| = \text{tsp}(G). \]

3 Reducions

In this section, we present a way of reducing a 2-connected subcubic graph to a smaller one such that a spanning Eulerian subgraph of the smaller graph yields a spanning Eulerian subgraph of the original graph with few edges. We now define this process more formally. For subcubic graphs G and G', let
\[\delta(G, G') = (n(G) + n_2(G)) - (n(G') + n_2(G')). \]
We say that a 2-connected subcubic graph G' is a reduction of a 2-connected subcubic graph G if $n(G') < n(G)$, $\delta(G, G') \geq 0$, and there exists a linear-time algorithm that turns any spanning Eulerian subgraph F' of G' into a spanning Eulerian subgraph F of G satisfying
\[\text{exc}(F) \leq \text{exc}(F') + \frac{\delta(G, G')}{4}. \tag{1} \]
For the proof of our main result, it would be enough to prove the lemmas in this section with $\frac{1}{4}$ replaced by $\frac{2}{7}$ in (1). However, this would not simplify most of our arguments and we believe that the stronger form of (1) can be useful in an eventual proof of Conjecture [1].

The reductions that we consider involve altering a subgraph K of a graph G such that K has some additional specific properties. This subgraph sometimes
needs to be provided as a part of an input of an algorithm that constructs G'. We say that a reduction is a *linear-time reduction with respect to a subgraph K* if there exists a linear-time algorithm that transforms G to G' given G and a subgraph K with the specific properties. We will say that a reduction is a *linear-time reduction* if there exists a linear-time algorithm that both finds a suitable subgraph K and performs the reduction. If a graph G admits such a reduction, we will say that G has a linear-time reduction or that G has a linear-time reduction with respect to a subgraph K.

The reductions that we present are intended to be applied to an input subcubic 2-connected graph until the resulting graph is simple or it becomes having a special structure. A subcubic 2-connected graph is *basic* if it is a cycle, a θ-graph, or K_4. A subcubic 2-connected graph that is not basic will be referred to as *non-basic*. We say that a 2-connected subcubic graph G is a *proper* graph if G is non-basic, has no cycle with at most four vertices of degree three, and has no cycle of length five or six with five vertices of degree three. In Subsection 3.1, we will show that every non-basic 2-connected subcubic graph that is not proper has a linear-time reduction. In addition to proper 2-connected subcubic graph, we will also consider clean 2-connected subcubic graphs. This definition is more complex and we postpone it to Subsection 3.4.

3.1 Cycles with few vertices of degree three

In this subsection, we show that a non-basic 2-connected subcubic graph that is not proper has a linear-time reduction, i.e., every graph containing a cycle with at most four vertices of degree three or a cycle of length five or six containing five vertices of degree three has a linear-time reduction. We present the reductions in Lemmas 6–9 assuming that such a cycle is given. We remark that such a cycle can be found in linear time (if it exists) using the following argument: a subcubic n-vertex graph G has at most $3 \cdot 2^{k-1} n$ cycles containing at most k vertices of degree three. Indeed, suppressing all vertices of degree two in G results in a cubic multigraph, its cycles of length at most k one-to-one correspond to cycles with at most k vertices of degree three in G, and it is possible to list all cycles of length at most k in a cubic multigraph in linear time. The fact that we can list all such cycles in linear time is important for Lemmas 6 and 9 where we need to choose a cycle with at most k vertices of degree three with some additional properties.

Lemma 6. Every non-basic 2-connected subcubic graph G that contains a cycle K with at most two vertices of degree three has a linear-time reduction.

Proof. Since G is neither a cycle nor a θ-graph, it follows that $V(G) \neq V(K)$. Since G is 2-connected, K contains exactly two vertices of degree three, say v_1 and v_2. Let x_1 and x_2 be their neighbors outside of K, and let k_1 and k_2 be the number of the internal vertices of the two paths between v_1 and v_2 in K. We can assume that $k_1 \leq k_2$ by symmetry. If $x_1 = x_2$, then either G is a θ-graph
or \(x_1 \) is incident with a cut-edge; since neither of these is possible, it holds that \(x_1 \neq x_2 \).

Suppose that \(k_1 = 0 \) and \(k_2 = 1 \), i.e., \(K \) is a triangle. Let \(z \) be the vertex of \(K \) distinct from \(v_1 \) and \(v_2 \), and let \(G' = G - z \). Note that \(G' \) is a 2-connected subcubic graph. We claim that \(G' \) is a reduction of \(G \). Since \(n(G') = n(G) - 1 \) and \(n_2(G') = n_2(G) + 1 \), it follows \(\delta(G, G') = 0 \). Consider a spanning Eulerian subgraph \(F' \) of \(G' \). If \(F' \) contains the edge \(v_1v_2 \), then let \(F \) be the spanning Eulerian subgraph of \(G \) obtained from \(F' \) by removing the edge \(v_1v_2 \) and adding the path \(v_1zv_2 \). If \(F' \) does not contain the edge \(v_1v_2 \), i.e., \(v_1 \) and \(v_2 \) are isolated vertices of \(F \), then let \(F \) be the spanning Eulerian subgraph of \(G \) obtained from \(F' \) by adding the cycle \(K \). It holds that \(\text{exc}(F) = \text{exc}(F') \) in both cases.

It remains to consider the case \(k_1 + k_2 \geq 2 \). Let \(G' \) be obtained from \(G - V(K) \) by adding a path \(x_1wx_2 \) where \(w \) is a new vertex; note that \(w \) has degree two in \(G' \) and \(\delta(G, G') = 2(k_1 + k_2) \). Since \(x_1 \neq x_2 \), \(G' \) is simple. We show that \(G' \) is a reduction of \(G \). Let \(F' \) be a spanning Eulerian subgraph of \(G' \); we will construct a spanning Eulerian subgraph \(F \) of \(G \). If \(F' \) contains the path \(x_1wx_2 \), then let \(F \) be obtained from \(F' - w \) by adding the vertices of \(K \) and the edges \(x_1v_1, x_2v_2 \), and the path in \(K \) between \(v_1 \) and \(v_2 \) with \(k_2 \) internal vertices. Note that the \(k_1 \) vertices of the other path between \(v_1 \) and \(v_2 \) in \(K \) are isolated in \(F \). Observe that

\[
\text{exc}(F) = \text{exc}(F') + k_1 \leq \text{exc}(F') + \frac{k_1 + k_2}{2},
\]

since \(k_1 \leq k_2 \). If \(w \) is an isolated vertex of \(F' \), then let \(F \) be obtained from \(F' - w \) by adding the cycle \(K \). In this case, we get that

\[
\text{exc}(F) = \text{exc}(F') + 1 \leq \text{exc}(F') + \frac{k_1 + k_2}{2}.
\]

Since it holds that \(\text{exc}(F) \leq \text{exc}(F') + \frac{1}{4} \delta(G, G') \) in both cases, the proof of the lemma is finished.

In the next lemma, we consider cycles containing three vertices of degree three.

Lemma 7. Every non-basic 2-connected subcubic graph \(G \) that contains a cycle \(K \) with three vertices of degree three has a linear-time reduction.

Proof. Let \(v_1, v_2 \) and \(v_3 \) be the three vertices of degree three of \(K \). Since \(G \) is 2-connected, each of the vertices \(v_1, v_2 \) and \(v_3 \) has a neighbor outside the cycle \(K \); let \(x_i \) be such a neighbor of the vertex \(v_i \), \(i \in \{1, 2, 3\} \). Further, let \(P_i \) denote the path between \(v_{i+1} \) and \(v_{i+2} \) in \(K \) that does not contain \(v_i \) for \(i \in \{1, 2, 3\} \) (indices are taken modulo three), and let \(k_i \) be the number of its internal vertices. By symmetry, we can assume that \(k_1 \leq k_2 \leq k_3 \). Since \(G \) is not basic, in particular, \(G \neq K_4 \), we can assume that \(x_2 \neq x_3 \) if \(k_1 = k_2 = k_3 = 0 \).
Let G' be obtained from $G - V(K)$ by adding a vertex z and paths Q_1, Q_2 and Q_3 joining z with x_1, x_2, and x_3, respectively, such that Q_1 has $k_1 + 1$ internal vertices, Q_2 has k_2 internal vertices, and Q_3 has k_3 internal vertices. Note that the graph G' is simple since if $k_2 = k_3 = 0$, then $x_2 \neq x_3$. Also note that $\delta(G, G') = 0$.

We now show that G' is a reduction of G. Let F' be a spanning Eulerian subgraph of G'. If the vertex z is isolated in F', then let F be obtained from F' by removing z and the internal vertices of Q_1, Q_2, and Q_3 (all of these are isolated vertices in F') and adding the cycle K. Observe that $c(F) = c(F') + 1$ and $i(F) = i(F') - 2 - k_1 - k_2 - k_3$ in this case. If F' contains paths Q_i and Q_j, $i \neq j, i, j \in \{1, 2, 3\}$, then let F be obtained from F' by removing the vertex z and the internal vertices of Q_1, Q_2, and Q_3, adding the vertices of K, edges x_iv_i and x_jv_j, and the edges of the paths P_i and P_j. We have $c(F) = c(F')$ and $i(F) \leq i(F')$ in this case. In both cases, it holds $\text{exc}(F) \leq \text{exc}(F')$, which finishes the proof of the lemma. □

In the final two lemmas of this subsection, we will present several possible reductions of a configuration K and choose the one that is 2-connected. Since it is possible to test 2-connectivity of a graph in linear time, the reductions presented in Lemmas 8 and 9 are linear-time.

Lemma 8. Every non-basic 2-connected subcubic graph G that contains a cycle K with four vertices of degree three has a linear-time reduction.

Proof. Choose a shortest cycle K of G that contains four vertices of degree four, and let v_1, \ldots, v_4 be these vertices listed in the cyclic order around K. Since K is the shortest possible and all cycles in G contain at least four vertices of degree three by Lemmas 8 and 9, every vertex v_i has a neighbor x_i outside the cycle $K, i \in \{1, \ldots, 4\}$. In addition, it holds that $x_i \neq x_{i+1}$ (indices are taken modulo four). Let P_i denote the path between v_i and v_{i+1} in K (again, indices are taken modulo four), and let k_i be the number of internal vertices of P_i. Finally, let $k = k_1 + \cdots + k_4$.

We present two possible reductions parameterized by $j \in \{1, 2\}$. Let G_j be the graph obtained from G by removing the edges and internal vertices of the paths P_j and P_{j+2}. Suppose that neither G_1 nor G_2 is 2-connected. In particular, the vertices of G_1 can be partitioned into non-empty sets A and B such that there is at most one edge between A and B of G_1. If $x_1 \in A$ and $x_4 \in B$, then this edge is contained in $P_4 + x_1v_1 + x_4v_4$; by symmetry, we can assume that $x_2, x_3 \in B$, which yields that the edge v_1x_1 is a cut-edge in G, which is impossible. Hence, it must hold that $x_1, x_4 \in A$ and $x_2, x_3 \in B$. Since G is 2-connected, there exists a path between x_1 and x_4 using only the vertices of $A \setminus V(K)$ and a path between x_2 and x_3 using only the vertices of $B \setminus V(K)$. The symmetric argument applied to G_2 yields the existence of such paths between x_1 and x_2, and between x_3 and x_4, which is impossible since there is at most one edge between A and B. It
follows that at least one of the graphs G_1 and G_2 is 2-connected. By symmetry, we assume that G_1 is 2-connected in the rest of the proof.

We first consider the case that $k_1 = k_3 = 0$. Let G' be the graph obtained from $G - V(K)$ by adding paths $x_1z_1x_4$ and $x_2z_2x_3$, where z_1 and z_2 are new vertices, each having degree two in G'. Note that G' is isomorphic to a graph obtained from G_1 by suppressing some vertices of degree two; in particular, G' is 2-connected. Also note that $\delta(G, G') = 2k$. We next show that G' is a reduction of G. Consider a spanning Eulerian subgraph F' of G'. We distinguish several cases based on whether the vertices z_1 and z_2 are isolated in F'.

- If both vertices z_1 and z_2 are isolated in F', then let F be obtained from $F' - \{z_1, z_2\}$ by adding the cycle K. Note that $\text{exc}(F) = \text{exc}(F')$ in this case.

- Assume that z_1 is not isolated, i.e., the edges x_1z_1 and x_4z_1 are contained in F', but z_2 is isolated in F'. We consider two spanning Eulerian subgraphs F_1 and F_2 of G. The subgraph F_1 is obtained from $F' - \{z_1, z_2\}$ by adding the vertices of K, the edges x_1v_1 and x_4v_4, and edges of the path P_4. The subgraph F_2 is obtained from $F' - \{z_1, z_2\}$ by adding the vertices of K, the edges x_1v_1 and x_4v_4, and the edges of the paths P_1, P_2, and P_3. Note that $\text{exc}(F_1) = \text{exc}(F') + k_1 + k_2 + k_3 + 1 = \text{exc}(F') + k_2 + 1$ and $\text{exc}(F_2) = \text{exc}(F') + k_4 - 1$. Let F be one of the subgraphs F_1 and F_2 with the smaller excess. Since $\text{exc}(F_1) + \text{exc}(F_2) = 2\text{exc}(F') + k$, we get that $\text{exc}(F) \leq \text{exc}(F') + k/2$.

- The case that z_1 is isolated in F' but z_2 is not is symmetric to the case that we have just analyzed.

- If neither z_1 nor z_2 is isolated in F', then let F be obtained from $F' - \{z_1, z_2\}$ by adding the vertices of K, the edges x_iv_i for $i \in \{1, \ldots, 4\}$, and the edges of the paths P_2 and P_4. Since $k_1 = k_3 = 0$, we get that $\text{exc}(F) = \text{exc}(F')$.

In all the cases we have found a spanning Eulerian subgraph F of G with $\text{exc}(F) \leq \text{exc}(F') + k/2 = \text{exc}(F') + \delta(G, G')/4$.

We can assume that $k_1 + k_3 \geq 1$ in the rest of the proof. Note that this implies that neither x_1x_4 nor x_2x_3 is an edge of G (otherwise, G would contain a cycle with at most four vertices of degree three that is shorter than K).

We now distinguish two cases: $k \geq 2$ and $k = 1$. We first consider the case that $k \geq 2$. Let G' be the graph obtained from $G - V(K)$ by adding edges x_1x_4 and x_2x_3. Since G' can be obtained from G_1 by suppressing vertices of degree two, it follows that G' is 2-connected. Also note that G' is simple since neither x_1x_4 nor x_2x_3 is an edge of G, and that $\delta(G, G') = 2k + 4$. We next verify that G' is a reduction of G. To do so, consider a spanning Eulerian subgraph F' of G' and distinguish four cases based on the inclusion of the edges x_1x_4 and x_2x_3 in F' to construct a spanning Eulerian subgraph F of G.

• If neither the edge x_1x_4 nor the edge x_2x_3 is in F, then let F be obtained from F' by adding the cycle K. Note that $\text{exc}(F) = \text{exc}(F') + 2$.

• If the edge x_1x_4 is in F' but the edge x_2x_3 is not, then we consider two spanning Eulerian subgraphs F_1 and F_2 of G, and choose F to be the one with the smaller excess. The subgraph F_1 is obtained from F' by removing the edge x_1x_4 and by adding the vertices of K and the edges x_1v_1 and x_4v_4, and the edges of the path P_4. The subgraph F_2 is obtained from F' by removing the edge x_1x_4 and by adding the vertices of K and the edges x_1v_1 and x_4v_4, and the edges of the paths P_1, P_2, and P_3. Note that $\text{exc}(F_1) = \text{exc}(F') + k_1 + k_2 + k_3 + 2$ and $\text{exc}(F_2) = \text{exc}(F') + k_4$. Hence, if F is the one of the subgraphs F_1 and F_2 with the smaller excess, then $\text{exc}(F) \leq \text{exc}(F') + \frac{k}{2} + 1$.

• The case that the edge x_1x_4 is not contained in F' but the edge x_2x_3 is is symmetric to the case that we have just analyzed.

• The final case is that both the edges x_1x_4 and x_2x_3 are in F'. We again construct two spanning Eulerian subgraphs F_1 and F_2 of G, and choose F to be the one with the smaller excess. We start with removing the edges x_1x_4 and x_2x_3 from F' and adding the vertices of K together with the edges x_iv_i for $i \in \{1, \ldots, 4\}$. To create the subgraph F_1, we also add the edges of the paths P_2 and P_4, and to create the subgraph F_2, we add the edges of the paths P_1 and P_3. Note that the latter can result in either creating or merging two cycles of F', in particular, $c(F_2) \leq c(F') + 1$. Hence, we get that $\text{exc}(F_1) = \text{exc}(F') + k_1 + k_3$ and $\text{exc}(F_2) \leq \text{exc}(F') + k_2 + k_4 + 2$. Since F is the one of the subgraphs F_1 and F_2 with the smaller excess, we get that $\text{exc}(F) \leq \text{exc}(F') + \frac{k}{2} + 1$.

Since $k \geq 2$, the excess $\text{exc}(F)$ of the spanning Eulerian subgraph F of G is at most $\text{exc}(F') + \frac{k}{2} + 1 = \text{exc}(F') + \delta(G, G')/4$ in all the four cases.

The final case to consider is that $k = 1$. Since $k_1 + k_3 \geq 1$, we can assume by symmetry that $k_1 = 1$ and $k_2, k_3, k_4 = 0$. In this case, we consider the graph G' obtained from $G - V(K)$ by adding the edge x_1x_4 and a path x_2xz_3, where z is a new vertex of degree two. Again, G' is isomorphic to a graph obtained from G_1 by suppressing some vertices of degree two, in particular, G' is 2-connected. Also note that $\delta(G, G') = 4$. To show that G' is a reduction of G, one considers a spanning Eulerian subgraph F' of G' and distinguish four cases based on whether the edge x_1x_4 and the path x_2xz_3 are contained in F'. If neither of them is, we construct a spanning Eulerian subgraph F of G by removing the vertex z and including the cycle K; note that $\text{exc}(F) = \text{exc}(F') + 1$ in this case. If one of them but the other is not, we construct a spanning Eulerian subgraph F by removing the edge x_1x_4 and the edges of the path x_2xz_3, adding the vertices of K together with the edges x_iv_i for those $i \in \{1, \ldots, 4\}$ such that the degree of
Lemma 9. Every non-basic 2-connected subcubic graph G that contains a cycle K of length at most 6 with five vertices of degree three has a linear-time reduction.

Proof. By Lemmas 6–8, we can assume that every cycle of G contains at least five vertices of degree three. Let K be a cycle of length five or six that contains five vertices of degree three. If G contains such cycles of length five or six, choose K to be a cycle of length five. By symmetry, we can assume that the vertices v_1, \ldots, v_5 of degree three of K form a path $v_1v_2v_3v_4v_5$; if K has length five, then v_5v_1 is an edge, and if K has length six, then there is a vertex z of degree two such that v_5zv_1 is a path in G. Let x_i be the neighbor of v_i outside the cycle K for $i \in \{1, \ldots, 5\}$. The vertices x_1, \ldots, x_5 are pairwise distinct (otherwise, G would contain a cycle with at most four vertices of degree three). Since G has no cycle with at most four vertices of degree three, G does not contain the edge x_ix_{i+1} for any $i \in \{1, \ldots, 5\}$ (indices are taken modulo five).

Let G_1 be the graph obtained from $G - V(K)$ by adding the edge x_5x_1 and a new vertex w that is adjacent to the vertices x_2, x_3 and x_4. Note that $\delta(G, G_1) \in \{4, 6\}$. If F' is a spanning Eulerian subgraph of G_1, then there exists a spanning Eulerian subgraph F of G with $c(F) = c(F')$ and $i(F) \leq i(F') + 1$, i.e., with $\text{exc}(F) \leq \text{exc}(F') + 1$. Hence, if G_1 is 2-connected, it is a reduction of G.

Suppose that G_1 is not 2-connected. Hence, the vertices of G_1 can be partitioned to non-empty sets A and B such that there is at most one edge between A and B in G_1. Since the original graph G is 2-connected, both x_1 and x_5 belong to the same set, say A, and the vertex w to the other set, i.e., the set B. In addition, at most one of the neighbors of w in G_1 belongs to A (there is at most one edge between A and B) and G_1 contains at most one of the edges x_1x_4 and x_2x_5 (for the same reason). By symmetry, we assume that G_1 does not contain the edge x_2x_5. If x_1x_4 is an edge of G_1, then either the edge wx_4 or the edge x_1x_4 is the edge between A and B and the vertex x_2 must belong to B. If x_1x_4 is not an edge of G_1, then at least one of the vertices x_2 and x_4 is in B and we can assume by symmetry that this vertex is x_2. In either case, we have arrived at the conclusion that x_2 is in B and x_2x_5 is not an edge of G. Since there is
at most one edge between A and B and the original graph is 2-connected, there exist disjoint paths Q_1 and Q_2, where Q_1 connects the vertices x_1 and x_5 (and is fully contained in A) and Q_2 connects the vertex x_2 with the vertex x_j for $j = 3$ or $j = 4$ (and this path is fully contained in B).

Let G_2 be the graph obtained from $G - V(K)$ by adding the edge x_2x_5 and a vertex y that is adjacent to the vertices x_1, x_3, and x_4. Note that G_2 is simple since x_2x_5 is not an edge of G. If the length of K in G is six, we subdivide the edge x_3y in addition. Since $\delta(G,G_2) = 4$ and every spanning Eulerian subgraph F' of G_2 can be transformed to spanning Eulerian subgraph F of G with $\text{exc}(F) \leq \text{exc}(F') + 1$, we get that G_2 is a reduction of G unless G_2 is not 2-connected. We show that G_2 must be 2-connected in the rest of the proof.

Suppose that G_2 is not 2-connected, i.e., the vertices of G_2 can be partitioned to non-empty sets C and D such that there is at most one edge between C and D in G_2. The path Q_1 from x_1 to x_5, the edge x_5x_2, the path Q_1 from x_2 to x_j and the path from x_j to x_1 through y form a cycle in G_2. This implies that all the four vertices x_1, x_2, x_j and x_5 are in the same set and we can assume by symmetry that they are in the set C. Consequently, the remaining vertex x_7-j must be in D (note that $7-j$ is either 3 or 4), which implies that the edge x_7-jv_7-j is a cut-edge in G, which is impossible. \hfill \square

3.2 Cycles of length six

Lemmas 6–9 imply that every non-basic 2-connected subcubic graph G that is not proper has a linear-time reduction. In this subsection, we focus on proper 2-connected subcubic graphs that contain a cycle of length six that satisfies some additional assumptions. Note that such all the six vertices of such a cycle must have degree three, each of them has a neighbor not contained in the cycle and these neighbors are pairwise distinct.

In Lemmas 10–19 that we establish in this subsection, we assume that a cycle K with the properties stated in the lemmas is given. The properties asserted by the lemmas can be checked in linear time. In Lemma 17, this follows for the fact that every cycle of length six in a subcubic graph can be intersected by at most a constant number other cycles of length six. Since all cycles of length six can be listed in linear time (see the arguments given at the beginning of Subsection 3.1), it is possible to find a cycle of length six with the properties given in one of the lemmas or conclude that such a cycle does not exist in quadratic time.

Lemma 10. Let G be a proper 2-connected subcubic graph, let $K = v_1v_2v_3v_4v_5v_6$ be a cycle of length six in G, and let x_i be the neighbor of v_i not contained in K for $i = 1, \ldots, 6$. Let A, B be a partition of the vertices of $G - V(K)$ such that $x_1, x_3, x_5 \in A$ and $x_2, x_4, x_6 \in B$. If $G - V(K)$ has no edge between A and B, then G has a linear-time reduction with respect to K.

Proof. Let G' be the graph obtained from $G - V(K)$ by adding the paths $x_1z_1x_2$, $x_3z_2x_4$ and $x_5z_3x_6$, where z_1, z_2, and z_3 are new vertices, each having degree two in G'. Note that the graph G' is simple since the vertices x_1, \ldots, x_6 are pairwise distinct as G is proper. In addition, G' is 2-connected since G is 2-connected, and $\delta(G, G') = 0$.

Let F' be a spanning Eulerian subgraph of G'. We show that F' can be transformed to a spanning Eulerian subgraph F of G with $\text{exc}(F) \leq \text{exc}(F')$. Since there are no edges between A to B, either one or three of the vertices z_1, z_2 and z_3 are isolated in F'. If all of the three vertices are isolated in F', then F is obtained from $F' - \{z_1, z_2, z_3\}$ by adding the cycle K including its edges. Note that $\text{exc}(F) = \text{exc}(F') - 1$ in this case. Suppose that only one of the vertices is isolated, say z_3. Since there are no edges between A and B, the cycle of F' that contains z_1 consists of the path $x_1z_1x_2$, a path from x_2 to x_4 inside B, the path $x_4z_2x_3$, and a path from x_3 to x_1 inside A. Let F be the spanning Eulerian subgraph of G obtained from $F' - \{z_1, z_2, z_3\}$ by adding the paths $x_2v_3x_3$ and $x_4v_4v_5v_6v_1x_1$; we have $c(F) = c(F')$ and $i(F) = i(F') - 1$, and hence $\text{exc}(F) = \text{exc}(F') - 1$. We conclude that G' is a reduction of G. □

Note that unlike in all the other lemmas in this section, we consider a partition of the vertices of the original graph G in the next lemma since $G \setminus E(K)$ contains all the vertices of G.

Lemma 11. Let G be a proper 2-connected subcubic graph and let $K = v_1 \ldots v_6$ be a cycle of length six in G. If there exists a partition of the vertex set of $G \setminus E(K)$ into two sets A and B such that $v_1, v_2 \in A$, $v_2, v_4, v_5, v_6 \in B$, and there is at most one edge between A and B, then G has a linear-time reduction with respect to K.

Proof. Let G_A and G_B be the subgraphs of $G - E(K)$ induced by A and B, respectively. Since G is 2-connected, the graph G_A is connected, and the graph G_B has at most two components.

First suppose that G_B is connected or has two components each containing two of the vertices v_2, v_4, v_5 and v_6. We consider the spanning forest of G_B and derive that G_B contains two disjoint paths between with the end-vertices being the neighbors of v_2, v_4, v_5 and v_6. Let Q_1 be a path from v_1 to v_3 with all internal vertices in A, and let Q_2 and Q_3 be the paths between two disjoint pairs of vertices v_2, v_4, v_5 and v_6 such that their all internal vertices are in B. By symmetry, we can assume that neither Q_2 nor Q_3 connects v_5 and v_6.

Suppose that G_B has two components such that one contains one and the three of the vertices v_2, v_4, v_5 and v_6. Let C be the former component. If C contains the vertex v_5, then the edge between A and B joins a vertex of A and a vertex of C, and we can apply Lemma 10. Hence, we can assume that C does not contain the vertex v_5, and let v_j be the vertex contained in C. By symmetry, we can assume that $j \neq 6$, i.e., $j = 2$ or $j = 4$. Let Q_1 be a tree in G such that its leaves are the vertices v_1, v_3 and v_j and all its vertices belong to A or C, and
let Q_2 be a tree in G such that its leaves are the vertices v_{6-j}, v_5 and v_6 (note that $6-j$ is 2 or 4) and all its vertices belong to the component of G_H different from C.

Let G' be the graph obtained from $G \setminus E(K)$ by identifying the vertices v_1 and v_5 to a single vertex z_{15}, identifying v_2 and v_4 to a single vertex z_{24}, and identifying v_3 and v_6 to a single vertex z_{36}. The paths and trees Q_i, which we have constructed in the previous two paragraphs, yield that the graph G' is 2-connected. Note that $\delta(G', G') = 0$.

We establish that G' is a reduction of G. Let F' be a spanning Eulerian subgraph of G'. If all three vertices z_{15}, z_{24} and z_{36} are isolated in F', then we can extend F by adding a cycle K to an Eulerian spanning subgraph F of G with $\text{exc}(F) = \text{exc}(F') - 1$. If two of the vertices z_{15}, z_{24} and z_{36} are isolated in F', then we can extend by rerouting one of the cycles of F' through the cycle K to an Eulerian spanning subgraph F of G with $\text{exc}(F) \in \{\text{exc}(F') - 1, \text{exc}(F')\}$. Finally, if one of the vertices z_{15}, z_{24} and z_{36} is an isolated vertex in F', it is possible to reroute the cycle(s) of F' containing the two of the vertices z_{15}, z_{24} and z_{36} to get an Eulerian spanning subgraph F such that the number of non-trivial components of F does not exceed that of F' and the same is true for the number of isolated vertices, i.e., $\text{exc}(F) \leq \text{exc}(F')$. Hence, none of the vertices z_{15}, z_{24} and z_{36} isolated in F'.

If the vertices z_{15}, z_{24} and z_{36} are contained in at least two different cycles of F', it is possible to complete the three paths of $F' - \{z_{15}, z_{24}, z_{36}\}$ to an Eulerian spanning subgraph F of G in a way that there are at most two cycles of F passing through the cycle K and none of the vertices of K is isolated in F. In particular, $\text{exc}(F) \leq \text{exc}(F')$. Consequently, we can assume that all the vertices z_{15}, z_{24} and z_{36} are contained in the same cycle of F'. Let R, R' and R'' be the paths of this cycle after removing the vertices z_{15}, z_{24} and z_{36}.

Observe that one of the paths is fully contained in A and connects the neighbors of the vertices v_1 and v_3; let R be this path. Since the paths R, R' and R'' together with the vertices z_{15}, z_{24} and z_{36} form a cycle, it follows that neither the path R' nor the path R'' connects the neighbors of the vertices v_5 and v_6. Hence, G contains a cycle formed by the paths R, R', R'', the edges joining v_1, \ldots, v_6 to their numbers outside K and the edges v_1v_2, v_3v_4 and v_5v_6. Replacing the cycle of F' containing the vertices z_{15}, z_{24} and z_{36} with this cycle yields an Eulerian spanning subgraph F of G with $\text{exc}(F) = \text{exc}(F')$. This finishes the proof that G' is a reduction of G. \qed

In the next two lemmas, we show that two different types of cycles of length six that are not θ-cycles can be reduced.

Lemma 12. Let G be a proper 2-connected subcubic graph, let $K = v_1v_2v_3v_4v_5v_6$ be one of its cycles of length six, and let z_i be the neighbor of v_i not contained in K for $i = 1, \ldots, 6$. Let A, B be a partition of the vertices of $G - V(K)$ such that
$x_1, x_2 \in A$, $x_3, x_4, x_5, x_6 \in B$, and there is no edge between A and B. If K is not a θ-cycle, then G has a linear-time reduction with respect to K.

Proof. Since G is proper, the vertices x_1, \ldots, x_6 are pairwise distinct. Let G_A and G_B be the subgraphs of G induced by A and B. The 2-connectivity of G implies that G_A is connected and G_B has at most two components, each containing two vertices among x_3, \ldots, x_6. If G_B contains an edge-cut of size at most one separating $\{v_3, v_5\}$ from $\{v_4, v_6\}$, then a reduction of G can be obtained using Lemma [11] which we apply with one of the sides of this cut in G_B playing the role of A and the rest of the vertices outside the cycle B playing the role of B in the statement of Lemma [11]. We conclude that $G - V(K)$ contains three disjoint paths Q_1, Q_2, and Q_3 such that Q_1 connects x_1 with x_2, Q_2 connects x_3 with x_4 or x_6, and Q_3 connects x_5 with the other of the vertices x_4 and x_6.

Let G_1 be the graph obtained from $G - V(K)$ by adding paths $x_1z_1x_4$, $x_2z_2x_5$, and $x_3z_3x_6$, where z_1, z_2 and z_3 are new vertices, each having degree two in G_1. Note that $\delta(G, G_1) = 0$. We show that G_1 is a reduction of G assuming that G_1 is 2-connected. Let F_1 be a spanning Eulerian subgraph of G_1. If at least two of the vertices z_1, z_2 and z_3 are isolated in F_1, then it is easy to construct a spanning Eulerian subgraph F of G with $\text{exc}(F) \leq \text{exc}(F_1)$. Hence, assume that $\delta(G, G_1) = 0$. Let G_1 be the graph obtained from $F_1 - \{z_1, z_2, z_3\}$ by adding the paths $x_1v_1v_6v_5x_5$ and $x_2v_2v_3v_4x_4$. Note that $\text{exc}(F) = \text{exc}(F_1) - 1$ in this case. If z_3 is not isolated in F_1, i.e., the path $x_3z_3x_6$ is contained in a cycle of F_1, then let F be obtained from $F_1 - \{z_1, z_2, z_3\}$ by adding the paths $x_1v_1v_6x_6$, $x_2v_2v_3x_3$ and $x_4v_4v_5x_5$. Observe that $c(F) = c(F_1)$, which implies $\text{exc}(F) = \text{exc}(F_1)$. We conclude that G_1 is a reduction of G if G_1 is 2-connected.

It remains to consider the case that G_1 is not 2-connected. This implies that the path Q_2 connects x_3 with x_6, and the path Q_3 connects x_4 with x_5. In addition, the vertices of the subgraph G_B can be split into two parts B' and B'' such that B' contains the vertices x_3 and x_6, B'' contains the vertices x_4 and x_5, and there is at most one edge between B' and B''. Since K is not a θ-cycle, there must be at least one edge between B' and B'', i.e., there is exactly one edge between B' and B''. Let e be this edge.

Let G_2 be the graph obtained from $G - V(K)$ by adding the edges x_2x_3, x_1x_4 and x_5x_6, and by subdividing e by one new vertex w. Observe that G_2 is 2-connected and $\delta(G, G_2) = 4$. In addition, G_2 is simple since G is proper. We show that G_2 is a reduction of G. Let F_2 be a spanning Eulerian subgraph of G_2. If w is an isolated vertex in F_2, then F' contains either none or all of the edges x_2x_3, x_1x_4 and x_5x_6. In the former case, let F be the spanning Eulerian subgraph of G obtained from F' by adding the cycle K. In the latter case, let F be the subgraph obtained from F' by removing the edges x_2x_3, x_1x_4 and x_5x_6.
and adding the paths $x_2v_2v_3x_3$, $x_4v_4v_5x_5$ and $x_6v_6v_1x_1$. Since $c(F) = c(F_2) + 1$ and $i(F) = i(F_2) - 1$ in either of the cases, it follows that $\text{exc}(F) = \text{exc}(F_2) + 1$.

If w is not an isolated vertex, then the subgraph F_2 either contains the edge x_5x_6 or it contains the edges x_2x_3 and x_1x_4. In the former case, let F be the spanning Eulerian subgraph of G obtained from F' by removing the edge x_5x_6 and adding the path $x_6v_6v_1 \cdots v_5x_5$. In the latter case, let F be the spanning Eulerian subgraph of G obtained from F' by removing the edges x_2x_3 and x_1x_4, and adding the paths $x_2v_2v_3x_3$ and $x_1v_1v_6v_5x_4$. In both cases, we get that $c(F) = c(F_2)$ and $i(F) = i(F_2)$, which yields that $\text{exc}(F) = \text{exc}(F_2)$. This concludes the proof that G_2 is a reduction of G.

Lemma 13. Let G be a proper 2-connected subcubic graph, let $K = v_1v_2v_3v_4v_5v_6$ be one of its cycles of length six, and let v_i be the neighbor of v_i not contained in K for $i = 1, \ldots, 6$. If K is not a θ-cycle and the vertices x_1 and x_4 are in different components of $G - V(K)$, then G has a linear-time reduction with respect to K.

Proof. Let A and B a partition of the vertices of $G - V(K)$ such that $x_1 \in A$ and $x_4 \in B$, and there is no edge between A and B. By symmetry, we can assume that $|A \cap \{x_1, \ldots, x_6\}| \leq 3$. If $x_3 \in A$ or $x_5 \in A$, then the reduction exists by Lemma 11. Otherwise, if $x_3 \in A$, apply the lemma with $A = \{v_1, v_3\}$ playing the role of the set A and with $A = \{v_4, v_5, v_6\}$ playing the role of the set B from the statement of the lemma. If $A = \{x_1, x_2, x_6\}$, then the reduction also exists by Lemma 11. Applying the lemma with $A = \{v_6, v_2\}$ playing the role of the set A and with $B \cup \{v_1, v_3, v_4, v_5\}$ playing the role of the set B. We conclude that $A \subseteq \{x_1, x_2, x_6\}$ and $|A| = 2$. By symmetry, we can assume that $A = \{x_1, x_2\}$ and $B = \{x_3, x_4, x_5, x_6\}$. The existence of the reduction now follows from Lemma 12.

Lemmas 12 and 13 yield the following.

Lemma 14. Let G be a proper 2-connected subcubic graph. If G contains a cycle K of length six that is not a θ-cycle and that contains an edge in 2-edge-cut, then G has a linear-time reduction with respect to K.

Proof. Let v_1, \ldots, v_6 be the vertices of the cycle K. By symmetry, we can assume that the edge v_1v_2 is contained in a 2-edge-cut. The 2-edge-cut must contain another edge e of the cycle K. Since G is 2-connected, this edge e is neither v_1v_6 nor v_2v_3. If the edge e is v_3v_4 or v_5v_6, then the reduction exists by Lemma 12. Otherwise, the edge e is the edge v_4v_5 and the reduction exists by Lemma 13.

Lemma 15. Let G be a proper 2-connected subcubic graph, let $K = v_1v_2v_3v_4v_5v_6$ be one of its cycles of length six, and let x_i be the neighbor of v_i not contained in K for $i = 1, \ldots, 6$. If the edge v_1x_1 is not contained in a 2-edge-cut, then G has a linear-time reduction unless

- all the edges v_2x_2, v_3x_3, v_5x_5, and v_6x_6 are contained in 2-edge-cuts, and
• there exists a partition A and B of the vertices of $G - V(K)$ such that $x_1, x_2, x_6 \in A$, $x_3, x_4, x_5 \in B$, $G - V(K)$ contains exactly one edge between A and B, and both the subgraphs induced by A and B are connected.

Proof. The cycle K is not a θ-cycle since all edges incident with a θ-cycle are contained in 2-edge-cuts. Since the edge v_1x_1 is not contained in a 2-edge-cut, the degree of x_1 is three, in particular, its degree in $G - V(K)$ is two. Note that $G - V(K)$ contains a path Q_{25} connecting the vertex x_2 with the vertex x_5, a path Q_{36} connecting x_3 with x_6, and a path Q_{14} connecting x_1 with x_4 (the three paths need not be disjoint) since otherwise the existence of the reduction of G follows from Lemma 13.

Let G_1 be the graph obtained from $G - V(K)$ by adding the edge x_2x_6 and a vertex z adjacent to x_3, x_4, x_5. Note that $\delta(G, G_1) = 4$. Since G is proper, the vertices x_2 and x_6 are not adjacent in G. Hence G_1 is a simple subcubic graph. Observe that any spanning Eulerian subgraph F_1 of G_1 can be transformed to a spanning Eulerian subgraph F of G with $\text{exc}(F) \leq \text{exc}(F_1) + 1$. Hence, G_1 is a reduction of G unless G_1 is not 2-connected.

In the rest of the proof, we assume that G_1 is not 2-connected. This implies that there exists a partition of vertices of G_1 to non-empty sets A and B such that there is at most one edge between A and B. By symmetry, we can assume that x_2 is contained in A. Note that the edge x_2x_6 and the paths Q_{36}, x_3zx_5 and Q_{25} contain a cycle passing through the edge x_2x_6 and a cycle passing through the path x_3zx_5; note that their union need not be a cycle since the path Q_{36} and Q_{25} need not be disjoint. This implies that $x_6 \in A$, and either $\{x_3, x_5\} \subseteq A$ or $\{x_3, x_5\} \subseteq B$. If $\{x_3, x_5\} \subseteq A$, then either G is be 2-connected (if $x_1 \in A$), or the edge v_1x_1 is contained in a 2-edge-cut in G (if $x_1 \in B$). Since both these conclusions are impossible, we get that $\{x_3, x_5\} \subseteq B$. Hence, there is an edge between A and B and this edge is contained in both paths Q_{25} and Q_{36}. Let e_0 be this edge. Observe that e_0 is not incident with the vertex z, which does not exist in G. In particular, both the vertices z and x_4 belong to B. If $x_1 \in B$, then Lemma 14 yields the existence of a reduction of G. So, we can assume that $x_1 \in A$. This yields that the path Q_{14} also contains the edge e_0.

Since all paths Q_{14}, Q_{25}, and Q_{36} must contain the edge e_0, we conclude that $G - V(K) - e_0$ has exactly two components; one of the two components has the vertex set A, in particular, it contains the vertices x_1, x_2 and x_6, and the other component has the vertex set $B \setminus \{z\}$ and contains the vertices x_3, x_4 and x_5. If v_3x_i is not contained in a 2-edge-cut for some $i \in \{2, 3, 5, 6\}$, say $i = 2$, then consider the graph G_2 obtained from $G - V(K)$ by adding the edge x_1x_3 and a new vertex z adjacent to x_4, x_5, and x_6. If the graph G_2 were not 2-connected, it is easy to see that G would not be 2-connected. Hence, G_2 is a reduction for G (note that the edge v_3x_i can play the role of the edge v_1x_1 at the beginning of our proof).
Lemma 16. Let G be a proper 2-connected subcubic graph, let $K = v_1v_2v_3v_4v_5v_6$ be one of its cycles of length six, and let x_i be the neighbor of v_i not contained in K for $i = 1, \ldots, 6$. If neither v_1x_1 nor v_4x_4 is contained in a 2-edge-cut, then G has a linear-time reduction with respect to K.

Proof. Lemma 15 yields that there either exists a reduction of G or a partition A and B of the vertices of $G - V(K)$ such that $x_1, x_2, x_6 \in A$ and $x_3, x_4, x_5 \in B$, $G - V(K)$ contains exactly one edge e between A and B, and both subgraphs of $G - V(K)$ induced by A and B are connected. In the former case, the proof of the lemma is finished. So, we focus on the latter case.

Let G' be the graph obtained from $G - V(K)$ by adding the edges x_2x_3 and x_5x_6, and by subdividing the edge e twice. Observe that G' is a 2-connected simple subcubic graph and $\delta(G, G_1) = 0$. Let F' be a spanning Eulerian subgraph of G'. If F' does not contain the path corresponding to the edge e or one of the edges x_2x_3 and x_5x_6, then F' does not contain any of the edges x_2x_3 and x_5x_6, and G has a spanning Eulerian subgraph F such that $c(F) = c(F') + 1$ and $i(F) = i(F') - 2$, i.e., $\text{exc}(F) = \text{exc}(F')$. If F' does not contain the path corresponding to the edge e but contains both the edges x_2x_3 and x_5x_6, then G has a spanning Eulerian subgraph F such that $c(F) = c(F')$ and $i(F) = i(F')$, i.e., $\text{exc}(F) = \text{exc}(F')$. Finally, if F' contains the path corresponding to the edge e, then F' contains one of the edges x_2x_3 and x_5x_6, and G has a spanning Eulerian subgraph F such that $c(F) = c(F')$ and $i(F) = i(F')$, i.e., $\text{exc}(F) = \text{exc}(F')$. In all the case, it holds that G has a spanning Eulerian subgraph F with $\text{exc}(F) \leq \text{exc}(F_1)$. We conclude that G' is a reduction of G. \hfill \Box

We now combine Lemmas 14, 15 and 16.

Lemma 17. Let G be a proper 2-connected subcubic graph and let K and K' be two distinct cycles of length six in G. If the cycles K and K' intersect and at least one of them is not a θ-cycle, then G has a linear-time reduction with respect to $K \cup K'$.

Proof. We can assume that K is not a θ-cycle by symmetry. Since the cycles K and K' are distinct, the cycle K is incident with at least two edges of K' not contained in K. None of these edges is contained in a 2-edge-cut by Lemma 14. By Lemma 15, these two edges must be incident with the opposite vertices of K. Finally, the existence of the reduction follows from Lemma 16. \hfill \Box

We finish this subsection with two additional lemmas on edges incident with cycles of length six that are contained in 2-edge-cuts.

Lemma 18. Let G be a proper 2-connected subcubic graph, let $K = v_1v_2v_3v_4v_5v_6$ be one of its cycles of length six, and let x_i be the neighbor of v_i not contained in K for $i = 1, \ldots, 6$. If K is not a θ-cycle, and there exists $i < j$ such that $j - i \neq 3$ and $\{v_i, v_j, v_j\}$ is a 2-edge-cut, then G has a linear-time reduction with respect to K.

20
Proof. By symmetry, we can assume that \(j - i \) is equal to 1 or 2. If \(j - i = 1 \), then the existence of the reduction follows from Lemma 14, and if \(j - i = 2 \), then its existence follows from Lemma 11.

Lemma 19. Let \(G \) be a proper 2-connected subcubic graph, let \(K = v_1v_2v_3v_4v_5v_6 \) be one of its cycles of length six, and let \(x_i \) be the neighbor of \(v_i \) not contained in \(K \) for \(i = 1, \ldots, 6 \). If there exists \(1 \leq i < j \leq 3 \) such that both \(\{v_ix_i, v_{i+3}x_{i+3}\} \) and \(\{v_jx_j, v_{j+3}x_{j+3}\} \) are 2-edge-cuts in \(G \), then \(G \) has a linear-time reduction with respect to \(K \).

Proof. Since \(G \) is 2-connected, \(G - V(K) \) has three components \(C_1, C_2, \) and \(C_3 \), and the vertices \(x_i \) and \(x_{i+3} \) are contained in \(C_i \) for \(i \in \{1, 2, 3\} \). Let \(G' \) be the graph obtained from \(G - V(K) \) by adding the edges \(x_1x_5 \) and \(x_2x_6 \), and the path \(x_3wx_4 \), where \(w \) is a new vertex, which have degree two in \(G' \). Note that \(G' \) is a simple 2-connected subcubic graph and \(\delta(G, G') = 4 \). Let \(F' \) be a spanning Eulerian subgraph of \(G' \). The subgraph \(F' \) either contains none of the edges \(x_1x_5, x_2x_6, x_3w \) and \(x_4w \), or it contains all of them. In the former case, \(G \) has a spanning Eulerian subgraph \(F \) with \(c(F) = c(F') + 1 \) and \(i(F) = i(F') - 1 \), i.e., \(\text{exc}(F) = \text{exc}(F') + 1 \). In the latter case, \(G \) has a spanning Eulerian subgraph \(F \) with \(c(F) = c(F') \) and \(i(F) = i(F') \), i.e., \(\text{exc}(F) = \text{exc}(F') \). It follows that \(G' \) is a reduction of \(G \).

3.3 Cycles of length seven

In this subsection, we establish two lemmas concerning the reductions involving cycles of length seven. As in Subsection 3.2 we assume that a cycle \(K \) with the properties stated in the lemmas is given. Since the properties asserted by Lemmas 21 and 22 can be checked in linear time and all cycles of length seven can be listed in linear time, it is possible to find a cycle of length seven with the properties given in one of Lemmas 21 and 22 or conclude that such a cycle does not exist in quadratic time.

To prove the first of the lemmas, we need to use the Splitting Lemma of Fleischner [7], which we now state. Let us introduce some additional notation. We say that the graph \(G' \) is obtained from a graph \(G \) by splitting off the edges \(u_1v \) and \(u_2v \) if the graph is obtained by removing the edges \(u_1v \) and \(u_2v \) and adding the edge \(u_1u_2 \). We will always apply this operation to edges incident with the same vertex. We can now state the Splitting Lemma.

Lemma 20 (Splitting Lemma). Let \(G \) be a 2-edge-connected graph and let \(v \) be a vertex of degree at least 4.

- If \(v \) is a cut-vertex and \(e_1 \) and \(e_2 \) are two edges incident with \(v \) that belong to different blocks of \(G \), then splitting off \(e_1 \) and \(e_2 \) results in a 2-edge-connected graph.

21
• If \(v \) is not a cut-vertex and \(e_1, e_2, \) and \(e_3 \) are edges incident with \(v \), then splitting off \(e_1 \) and \(e_2 \) or splitting off \(e_2 \) and \(e_3 \) results in a 2-edge-connected graph.

We are now ready to prove the first lemma of this subsection.

Lemma 21. Let \(G \) be a proper 2-connected subcubic graph. If \(G \) has a cycle \(K \) of length seven that contains a vertex of degree two, then \(G \) has a linear-time reduction with respect to \(K \).

Proof. Since \(G \) is proper, \(K \) is an induced cycle and at most two vertices of \(K \) have degree two. Let \(v_1, \ldots, v_k \) be the vertices of \(K \) of degree three in order around the cycle; note that \(k \) is five or six. Further, let \(x_i \) be the neighbor of \(v_i \) outside of \(K \); \(i \in \{1, \ldots, k\} \). Since \(G \) is proper, the vertices \(x_1, \ldots, x_k \) are pairwise distinct. Moreover, if \(i \neq j \) and either \(|i-j| \leq 2 \), or \(|i-j| \geq k-2 \), then \(x_ix_j \) is not an edge of \(G \). Let \(G' \) be the graph obtained from \(G \) by contracting the cycle \(K \) to a single vertex \(w \). By Lemma 20 and symmetry, we can assume that the graph \(G'' \) obtained from \(G' \) by splitting off \(wx_1 \) and \(wx_2 \) is 2-edge-connected.

We first deal with the case that \(k = 5 \). Note that \(G'' \) is a simple 2-connected subcubic graph and \(\delta(G, G'') = 8 \). Let \(F' \) be a spanning Eulerian subgraph of \(G'' \). If the vertex \(w \) is isolated in \(F' \) and \(F' \) does not contain the edge \(x_1x_2 \), then there exists a spanning Eulerian subgraph \(F \) of \(G \) with \(c(F) = c(F') + 1 \) and \(i(F) = i(F') - 1 \). If either the vertex \(w \) is isolated and \(F' \) contains the edge \(x_1x_2 \), or the vertex \(w \) is not isolated and \(F' \) does not contain the edge \(x_1x_2 \), then there exists a spanning Eulerian subgraph \(F \) of \(G \) with \(c(F) = c(F') \) and \(i(F) \leq i(F') + 1 \). Finally, if the vertex \(w \) is not isolated and \(F' \) contains the edge \(x_1x_2 \), then there exists a spanning Eulerian subgraph \(F \) of \(G \) with \(c(F) = c(F') \) and \(i(F) \leq i(F') + 3 \), and if there is no such subgraph \(F \) with \(i(F) \leq i(F') + 2 \), then there is also a spanning Eulerian subgraph \(F \) with \(c(F) \leq c(F') + 1 \) and \(i(F) = i(F') \). In all the cases, we conclude that there is a spanning Eulerian subgraph \(F \) of \(G \) with \(\text{exc}(F) \leq \text{exc}(F') + 2 \).

We now deal with the case \(k = 6 \). If \(G' \) is not 2-connected, then \(w \) must be a cut-vertex and \(G' \) has two blocks, each containing two neighbors of \(w \). Regardless whether \(w \) is a cut-vertex, Lemma 20 implies that splitting off \(wx_3 \) with either \(wx_4 \) or \(wx_5 \) and suppressing \(w \) yields a 2-connected subcubic graph \(G'' \). Note that \(G'' \) is simple and \(\delta(G, G'') = 8 \).

Let \(e, e' \) and \(e'' \) be the edges of \(G'' \) not contained in \(G \). Consider a spanning Eulerian subgraph \(F' \) of \(G'' \). If \(F' \) uses none of the edges \(e, e' \) and \(e'' \), then there exists a spanning Eulerian subgraph \(F \) of \(G \) with \(c(F) = c(F') + 1 \) and \(i(F) = i(F') \). If \(F' \) uses exactly one of the edges \(e, e' \) and \(e'' \), then there exists a spanning Eulerian subgraph \(F \) with \(c(F) = c(F') \) and \(i(F) \leq i(F') + 2 \). If \(F' \) uses exactly two of the edges \(e, e' \) and \(e'' \), then there exists a spanning Eulerian subgraph \(F \) with \(c(F) \leq c(F') + 1 \) and \(i(F) \leq i(F') + 1 \), and if there is no such subgraph \(F \) with \(c(F) < c(F') + 1 \) or \(i(F) < i(F') + 1 \), then there is also a
Lemma 22. Let G be a proper 2-connected subcubic graph and let $K = v_1v_2 \ldots v_m$ be a cycle in G of length at most 7. If each of the edges v_1v_m and v_2v_3 is contained in a 2-edge-cut but the edges v_1v_m and v_2v_3 themselves do not form a 2-edge-cut, then G has a linear-time reduction with respect to K.

Proof. Since G is proper, the length of K is at least six, i.e., $m \geq 6$. If $m = 6$, then the existence of a reduction of G follows from Lemma 14. Hence, we can assume that $m = 7$. In addition, all the vertices of K have degree three (otherwise, Lemma 21 yields the existence of a reduction). For $i = 1, \ldots, 7$, let x_i be the neighbor of the vertex v_i outside of K. Let e_{17} be an edge forming a 2-edge-cut with the edge v_1v_7, and let e_{23} be an edge forming a 2-edge-cut with the edge v_2v_3. Note that the edges e_{17} and e_{23} must be edges of the cycle K. Moreover, since G is 2-connected and the edges v_1v_7 and v_2v_3 do not form a 2-edge-cut, it follows that e_{17} is one of the edges v_3v_4, v_4v_5 and v_5v_6 and e_{23} is one of the edges v_4v_5, v_5v_6 and v_6v_7.

For $(i, j) \in \{(1, 7), (2, 3)\}$, let U_{ij} and V_{ij} be the two sides of the 2-edge-cut formed by the edges $v_i v_j$ and e_{ij}; by symmetry, we can assume that $v_i \in U_{ij}$. Since neither e_{17} nor e_{23} is the edge v_1v_2, we have $v_1, v_2 \in U_{17} \cap U_{23}$. Since $e_{17} \neq v_2v_3$ and $e_{23} \neq v_1v_7$, we have $v_3 \in U_{17} \cap V_{23}$ and $v_7 \in U_{23} \cap V_{17}$. Finally, since $e_{23} \neq v_3v_4$, we have $v_4 \in V_{23}$, and the symmetric arguments yields that $v_6 \in V_{17}$.

Suppose that the vertex v_5 is contained in V_{17}. If v_4 were also contained in V_{17}, then the edge v_4v_5 would be a cut-edge in G, which is impossible. If v_4 were not contained in V_{17}, i.e., it were contained in U_{17}, then the edges v_1v_7 and v_2v_3 would form a 2-edge-cut, which is also impossible. Hence, the vertex v_5 must be contained in U_{17}. The symmetric argument yields that v_5 is contained in U_{23}. Consequently, the edge e_{17} is the edge v_5v_6 and the edge e_{23} is the edge v_4v_5. It follows that $G - V(K)$ has three components with vertex sets $A = (U_{17} \cap U_{23}) \setminus V(K)$, $B = (U_{17} \cap V_{23}) \setminus V(K)$, and $C = (U_{23} \cap V_{17}) \setminus V(K)$. Note that $x_1, x_2, x_3 \in V(A), x_3, x_4 \in V(B)$, and $x_6, x_7 \in V(C)$.

Let G' be obtained from G by removing v_1 and v_2, adding edges v_4x_1 and v_7x_2, and by subdividing the edge v_5x_5 once; let w be the new vertex of degree
two. The graph G' is a simple 2-connected subcubic graph and $\delta(G, G') = 0$. Let F' be a spanning Eulerian subgraph of G'. Let F'' be the spanning Eulerian subgraph of G obtained from F' as follows. First, include the vertices v_1 and v_2 as isolated vertices. If F' contains the path v_5wx_5, then replace it with the edge v_5x_5; otherwise, remove the vertex w. If F' contains the edge v_3x_1, include the edges x_1v_1 and v_3v_2, and if F' contains the edge v_7x_2, include the edges x_2v_2 and v_7v_1. Finally, include the edge v_1v_2 if the vertices v_1 and v_2 have odd degree so far. Note that the resulting graph F'' is a spanning Eulerian subgraph of G, $c(F'') = c(F')$, $i(F'') \leq i(F') + 1$, and if $i(F'') = i(F') + 1$, then all the three vertices v_1, v_2 and v_5 are isolated in F''. If $i(F'') \leq i(F')$, set $F = F''$; otherwise, set F the be the spanning Eulerian subgraph of G with the edge set equal to the symmetric difference of $E(F)$ and $E(K)$. In the latter case, $c(F) \leq c(F')$ and $i(F) = i(F') - 2$. It follows that G' is a reduction of G. \hfill \square

3.4 Clean subcubic graphs

We now summarize the facts that have been established in this section. We will call a non-basic 2-connected subcubic graph G clean if none of the lemmas that we have proven can be applied to G. Formally, a 2-connected subcubic graph G is clean if it is proper and

1. (CT1) no cycle of length at most 7 in G contains a vertex of degree two,
2. (CT2) every cycle of length six in G that is not a θ-cycle is disjoint from all other cycles of length six,
3. (CT3) every cycle $K = v_1 \ldots v_m$ of length $m \leq 7$ in G satisfies that if each of the edges v_1v_m and v_2v_3 is contained in a 2-edge-cut, then the edges v_1v_m and v_2v_3 themselves form a 2-edge-cut, and
4. (CT4) every cycle $K = v_1 \ldots v_6$ of length six in G satisfies at least one of the following
 1. K is a θ-cycle, or
 2. each edge exiting K is contained in a 2-edge-cut but no two of them together form a 2-edge-cut, or
 3. each edge exiting K is contained in a 2-edge-cut, and there exists exactly one pair i and j with $1 \leq i < j \leq 6$ such that the edges v_ix_i and v_jx_j form a 2-edge-cut, and this pair satisfies $j - i = 3$, or,
 4. precisely one edge exiting K, say v_1x_1, is not contained in a 2-edge-cut, and there exists a partition A and B of the vertices of $G - V(K)$ such that $x_1, x_2, x_6 \in A, x_3, x_4, x_5 \in B$, there is exactly one edge between A and B, and both A and B induce connected subgraphs of $G - V(K)$,
where \(x_i \) is the neighbor of the vertex \(v_i \) outside the cycle \(K, i \in \{1, \ldots, 6\} \).

Summarizing the results of this section, we get the following.

Theorem 23. There exists an algorithm running in time \(O(n^3) \) that constructs for a given \(n \)-vertex 2-connected subcubic graph \(G \) reduction of \(G \) that is either basic or clean.

Proof. We show that if \(G \) is neither basic nor clean, then one of Lemmas 6–22 applies. As discussed in Subsections 3.1–3.3, it is possible to check the existence of a reduction as described in these lemmas, to find the corresponding subgraph and to perform the reduction in quadratic time. Since each step results in decreasing the sum \(n(G) + n_2(G) \), the algorithm stops after at most \(O(n) \) steps, which yields the claimed running time.

If \(G \) is basic, then there is nothing to prove. If \(G \) is not proper, a reduction exists by Lemma 9. If \(G \) is proper and fails to satisfy (CT1), the existence of a reduction follows from Lemma 21 (note that \(G \) cannot have a cycle of length at most six containing a vertex of degree two since it is proper). If \(G \) is proper and does not satisfy (CT2), then a reduction exists by Lemma 17, and if it does not satisfy (CT3), then a reduction exists by Lemma 22. Finally, if \(G \) is proper and fails to not satisfy (CT4), then a reduction exists by one of Lemmas 15, 16, 18 or 19.

4 Main result

We need few additional results before we can prove Theorem 1. The first concerns the structure of cycles passing through vertices of a cycle of length six in a clean 2-connected subcubic graph. Let \(v \) be a vertex of degree three in a graph \(G \), and let \(x_1 \), \(x_2 \) and \(x_3 \) be its neighbors. The type of \(v \) is the triple \((\ell_1, \ell_2, \ell_3)\) such that \(\ell_1, \ell_2 \) and \(\ell_3 \) are the lengths of shortest cycles containing paths \(x_1v x_2 \), \(x_1v x_3 \) and \(x_2v x_3 \). In our consideration, the order of the coordinates of the triple will be irrelevant, so we will always assume that the lengths satisfy that \(\ell_1 \leq \ell_2 \leq \ell_3 \). A type \((\ell'_1, \ell'_2, \ell'_3)\) dominates the type \((\ell_1, \ell_2, \ell_3)\) if \(\ell'_i \geq \ell_i \) for every \(i = 1, 2, 3 \). If \(K \) is a cycle in a graph \(G \) and each vertex of \(K \) has degree three, then the type of the cycle \(K \) is the multiset of the types of the vertices of \(K \). Finally, a multiset \(M_1 \) of types dominates a multiset \(M_2 \) types if there exists a bijection between the types contained in \(M_1 \) and \(M_2 \) such that each type of \(M_1 \) is dominates the corresponding type in \(M_2 \).

We can now prove the following lemma (note that all vertices of the cycle \(K \) in the lemma must have degrees three since \(G \) is assumed to be clean).

Lemma 24. Let \(G \) be a clean 2-connected subcubic graph and let \(K = v_1v_2 \ldots v_6 \) be a cycle of length six in \(G \). If \(K \) is not a \(\theta \)-cycle, then the type of \(K \) dominates at least one of the following multisets:
• \{(6, 7, 7), (6, 7, 7), (6, 8, 8), (6, 8, 8), (6, 8, 8), (6, 8, 8)\},
• \{(6, 7, 7), (6, 7, 8), (6, 7, 8), (6, 8, 8), (6, 8, 8), (6, 8, 8)\}, or
• \{(6, 7, 7), (6, 7, 8), (6, 7, 9), (6, 7, 9), (6, 8, 8), (6, 8, 8)\}.

Proof. Let \(x_i\) be the neighbor of \(v_i\) outside of \(K\), \(i = 1, \ldots, 6\). Since \(G\) is clean, the cycle \(K\) satisfies one of the four conditions in (CT4). As \(K\) is not a \(\theta\)-cycle, it must satisfy (CT4)(b), (CT4)(c) or (CT4)(d). We analyze each of these three cases separately.

Suppose that the cycle \(K\) satisfies (CT4)(b), i.e., each edge \(v_ix_i\), \(i = 1, \ldots, 6\), is contained in a 2-edge-cut but no two of them together form a 2-edge-cut. Let \(K'\) be a cycle in \(G\) containing the edge \(v_1x_1\). If the intersection of \(K\) and \(K'\) is not a path, then the length of \(K'\) is at least ten by (CT2). In the rest, we assume that the intersection of \(K\) and \(K'\) is a path and that the cycles \(K\) and \(K'\) share a path \(v_1v_2\ldots v_k\). If \(k = 2\), then the length of \(K'\) is at least 8 by (CT3) since both \(v_1x_1\) and \(v_2x_2\) are contained in a 2-edge-cut. If \(x_1\) or \(x_k\) has degree two, then the length of \(K'\) is also at least 8 by (CT1). Hence, we assume that \(k \geq 3\) and that both the vertices \(x_1\) and \(x_k\) have degree three.

Let \(C_1\) and \(C_2\) be the blocks of \(G - V(K)\) containing the vertices \(x_1\) and \(x_k\), respectively, and let \(e_1\) and \(e_2\) be the cut-edges of \(G - V(K)\) that are contained in \(K'\) and that are incident with \(C_1\) and \(C_2\), respectively. Note that \(C_1\) and \(C_2\) are vertex-disjoint and \(e_1 \neq e_2\) since the edges \(v_1x_1\) and \(v_kx_k\) do not form a 2-edge-cut by (CT4)(b). In addition, \(e_1\) is not incident with \(x_1\) and \(e_2\) is not incident with \(x_k\) since the vertices \(x_1\) and \(x_k\) have degree three and \(G\) is 2-connected. We conclude that the cycle \(K'\) has at least five vertices outside the cycle \(K\): the vertices \(x_1\), \(x_k\) and the end vertices of \(e_1\) and \(e_2\). Hence, the length of the cycle \(K'\) is at least \(k + 5 \geq 8\).

Since \(K'\) was an arbitrary cycle containing the edge \(v_1x_1\) and the symmetric argument applies to each of the edges \(v_ix_i\), \(i = 1, \ldots, 6\), we conclude that the type of each vertex of \(K\) dominates \((6, 8, 8)\). In particular, the type of \(K\) dominates the first multiset from the statement of the lemma.

Suppose next that \(K\) satisfies (CT4)(c), i.e., each edge \(v_ix_i\), \(i = 1, \ldots, 6\), is contained in a 2-edge-cut, and there exists exactly one pair \(i\) and \(j\) with \(1 \leq i < j \leq 6\) such that the edges \(v_ix_i\) and \(v_jx_j\) form a 2-edge-cut, and this pair satisfies \(j - i = 3\). By symmetry, we can assume that the edges \(v_1x_1\) and \(v_4x_4\) form a 2-edge-cut. Let \(K'\) be an arbitrary cycle containing an edge \(v_ix_i\) for \(i = 1, \ldots, 6\). The length of \(K'\) is at least seven by (CT2), which implies that the type of \(v_i\) dominates \((6, 7, 7)\). If \(i \in \{2, 3, 5, 6\}\), then the arguments presented in the analysis of the case (CT4)(b) yield that the length of \(K'\) is at least eight, i.e., the type of \(v_i\) dominates \((6, 8, 8)\). We conclude that the type of \(K\) dominates the first multiset from the statement of the lemma.

Finally, suppose that \(K\) satisfies (CT4)(d), i.e., the edge \(v_1x_1\) is not contained in a 2-edge-cut while each of the edges \(v_ix_i\), \(i = 2, \ldots, 6\), is contained in a 2-
edge-cut, there exists a partition A and B of the vertices of $G - V(K)$ such that $x_1, x_2, x_6 \in A$, $x_3, x_4, x_5 \in B$, there is exactly one edge between A and B, and both A and B induce connected subgraphs of $G - V(K)$. Note that the structure of $G - V(K)$ implies that no two of the edges v_1x_1, \ldots, v_6x_6 form a 2-edge-cut.

Let K' be an arbitrary cycle containing an edge incident with the cycle K. The length of K' is at least seven by (CT2). If the intersection of the cycles K and K' is not a path, then the length of K' is at least eight. If the cycle K' does not contain the edge v_1x_1, then the analysis of the case (CT4)(b) yields that the length of K' is at least eight. Hence, the length of K' is at least eight unless K' contains the edge v_1x_1 and the intersection of K and K' is a path $v_1v_2 \ldots v_k$ with $k \leq 4$ (if $k = 5$ or $k = 6$, then the length of K' is at least nine by (CT2)).

If every cycle of length seven intersects the cycle K only in two vertices, then the type of v_1 dominates $(6, 7, 7)$, the types of v_2 and v_6 dominate $(6, 7, 8)$, and the types of v_3, v_4, and v_5 dominate $(6, 8, 8)$. Consequently, the type of K dominates the second multiset from the statement of the lemma.

In the rest of the proof, we assume that there exists a cycle K' of length seven such that the intersection of K and K' is a path $v_1v_2 \ldots v_k$ with $k = 3$ or $k = 4$. Let C be the block of $G - V(K)$ containing the vertex x_k, and let $e = zz'$ be the cut-edge incident with C that is contained in K'. Note that $V(C) \subset B$, in particular, $x_1 \not\in V(C)$. Since each of the edges v_3x_3, v_4x_4, v_5x_5 is contained in a 2-edge-cut and the subgraph of $G - V(K)$ induced by B is connected, both the end-vertices of e are in B, i.e., e is not the edge between A and B. By (CT1), the degrees of x_k is three, which implies that e is not incident with x_k. We conclude that $k = 3$: otherwise, K' contains the four vertices v_1, \ldots, v_4, the vertices x_1 and x_4, and the two end-vertices of e. Moreover, the cycle K' is the cycle $v_1v_2v_3x_3zz'x_1$. Note that since $k = 3$, the type of v_4 dominates $(6, 8, 8)$.

Since both the end-vertices z and z' of the edge e are contained in B, the edge $z'x_1$ is the unique edge between A and B. Since the edge v_3x_3 is contained in a 2-edge-cut, G is 2-connected and the degree of x_3 is three, if follows that the edges v_3x_3 and zz' form a 2-edge-cut in G. If G had a cycle of length seven passing through the vertex v_5, then the symmetric argument would yield that the edges v_5x_5 and $z''z'$ form a 2-edge-cut in G, where z'' is the neighbor of z' different from z and x_1. Since this is impossible since the edge v_4x_4 is contained in a 2-edge-cut and the subgraph of $G - V(K)$ induced by B is connected, we conclude that the vertex v_5 is contained in no cycle of length seven. Hence, we have established that the type of v_5 dominates $(6, 8, 8)$. Also note that the type of v_3 dominates $(6, 7, 8)$ since any cycle of length seven containing v_3 contains the path $v_2v_3x_3$.

Consider now a cycle K'' in G containing the path $v_3v_2x_2$. If K'' contains only the vertices from $V(K) \cup A$, then K'' contains at least five vertices of K and at least four vertices of A; otherwise, there would be a cycle of length six intersecting the cycle K, which is excluded by (CT2). If the cycle K'' contains some vertices from the set B, then it contains at least two vertices of the cycle.
K, five vertices of A (otherwise, the path of K'' from x_2 to x_1 together with the path $x_2v_3v_1x_1$ would form a cycle of length six intersecting K) and two vertices in B (the vertices x_3 and z' cannot coincide since the edge v_3x_3 is contained in a 2-edge-cut). In both cases the length of K'' is at least nine. We conclude that the type of the vertex v_2 dominates $(6,7,9)$. The symmetric argument yields that the type of v_6 dominates $(6,7,9)$. Since the type of v_1 dominates $(6,7,7)$, it follows that the type of K dominates the third multiset from the statement of the lemma.

The following lemma follows from the description of the perfect matching polytope by Edmonds [6] and the fact that the perfect matching polytope has a strong separation oracle [18]; see e.g. [9] for further details.

Lemma 25. There exists a polynomial-time algorithm that for a given cubic 2-connected n-vertex graph outputs a collection of $m \leq n/2 + 2$ perfect matchings M_1, \ldots, M_m and non-negative coefficients a_1, \ldots, a_m such that $a_1 + \cdots + a_m = 1$ and

$$\sum_{i=1}^{m} a_i \chi_{M_i} = (1/3, \ldots, 1/3) \in \mathbb{R}^{E(G)},$$

where $\chi_{M_i} \in \mathbb{R}^{E(G)}$ is the characteristic vector of M_i.

Lemma 25 gives the following.

Lemma 26. There exists a polynomial-time algorithm that for a given 2-connected n-vertex subcubic graph outputs a collection of $m \leq n/2 + 2$ spanning Eulerian subgraphs F_1, \ldots, F_m and probabilities $p_1, \ldots, p_m \geq 0$, $p_1 + \cdots + p_m = 1$ that satisfy the following. If a spanning Eulerian subgraph F is equal to F_i with probability p_i, $i = 1, \ldots, m$, then $\Pr[e \in E(F)] = 2/3$. In particular, a vertex of degree three is contained in a cycle of F with probability one and a vertex of degree two is isolated with probability $1/3$.

Proof. Let G be the input 2-connected n-vertex subcubic graph, and let G' be the 2-connected cubic graph obtained from G by suppressing all vertices of degree two. Apply the algorithm from Lemma 25 to G' to get a collection of m perfect matchings M_1, \ldots, M_m and non-negative coefficients a_1, \ldots, a_m with the properties stated in the lemma. Note that $m \leq n/2 + 2$. Let F'_i be the 2-factor of G' consisting of the edges not contained in M_i, and let F_i be the spanning Eulerian subgraph of G consisting of the edges contained in paths corresponding to the edges of F'_i, $i = 1, \ldots, m$. It is easy to see that the lemma holds for F_1, \ldots, F_m with $p_i = a_i$, $i = 1, \ldots, m$.

We now combine Lemmas 24 and 26.
Lemma 27. There exists a polynomial-time algorithm that given a clean 2-connected subcubic graph G outputs a spanning Eulerian subgraph F of G such that

$$\text{exc}(F) \leq \frac{2n(G) + 2n_2(G)}{7}.$$

Proof. We first apply the algorithm from Lemma 26 to get a collection of $m \leq n/2 + 2$ spanning Eulerian subgraphs F_1, \ldots, F_m and probabilities p_1, \ldots, p_m. We show that

$$\mathbb{E} \text{exc}(F) \leq \frac{2n(G) + 2n_2(G)}{7},$$

which implies the statement of the lemma since the number of the subgraphs F_1, \ldots, F_m is linear in n and the excess of each them can be computed in linear time. In particular, the algorithm can output the subgraph F_i with the smallest $\text{exc}(F_i)$.

We now show that (2) holds. We apply a double counting argument, which we phrase as a discharging argument. At the beginning, we assign each vertex of degree three charge of $2/7$ and to each vertex of degree two charge of $4/7$. Let $c_1(v)$ be the initial charge of a vertex v. Note that the sum of the initial charges of the vertices is the right side of the inequality (2).

We next choose a random spanning Eulerian subgraphs F among the subgraphs F_1, \ldots, F_m with probabilities given by p_1, \ldots, p_m. The charge of each vertex that is isolated in F is decreased by one unit, and the charge of each vertex contained in a cycle of length k by $2/k$ units. Let $c_2(v)$ be the new charge of a vertex v. Observe that the total decrease of charge of the vertices is equal to $\text{exc}(F)$, i.e.,

$$\text{exc}(F) = \sum_{v \in V(G)} c_1(v) - c_2(v).$$

Hence, it is enough to prove that

$$\mathbb{E} \sum_{v \in V(G)} c_2(v) \geq 0.$$

To prove (3), we consider the expectation of $c_2(v)$ for individual vertices v of G.

If v is a vertex of G of degree two, then every cycle of G that contains v has length at least eight by (CT1). With probability 1/3, the vertex v is isolated and looses one unit charge; with probability 2/3, it is contained in a cycle and looses at most $2/8 = 1/4$ units of charge. We conclude that

$$\mathbb{E} c_2(v) \geq \frac{4}{7} - \frac{1}{3} - \frac{2}{3} \cdot \frac{1}{4} = \frac{1}{14} > 0.$$

If v is a vertex of G of degree three with type (ℓ_1, ℓ_2, ℓ_3), we proceed as follows. Since each edge incident with v is contained in F with probability 2/3, v is
contained in a cycle of F with a particular pair of its neighbors with probability $1/3$. It follows that the expected value of $c_1(v)$ is at least

$$
\mathbb{E} c_2(v) \geq \frac{2}{7} - \frac{1}{3} \left(\frac{2}{\ell_1} + \frac{2}{\ell_2} + \frac{2}{\ell_3} \right).
$$

Since G is clean, the type of v dominates $(6,6,6)$. If the type of v dominates $(7,7,7)$, then $\mathbb{E} c_1(v) \geq 0$. Hence, we focus on vertices contained in cycles of length six in G in the rest of the proof.

Let $K = v_1 \ldots v_6$ be a cycle of length six in G. Since G is clean, each vertex of K has degree three. Suppose that K is not a θ-cycle. By (CT2), K is disjoint from all other cycles of length six in G. Observe that

- if the type of v_i dominates $(6,8,8)$, then $\mathbb{E} c_2(v_i) \geq \frac{1}{126}$,
- if the type of v_i dominates $(6,7,7)$, then $\mathbb{E} c_2(v_i) \geq -\frac{1}{63}$,
- if the type of v_i dominates $(6,7,8)$, then $\mathbb{E} c_2(v_i) \geq -\frac{1}{252}$, and
- if the type of v_i dominates $(6,7,9)$, then $\mathbb{E} c_2(v_i) \geq \frac{1}{189}$.

Since the type of the cycle K dominates one of the three multisets listed in Lemma 24, it holds that

$$
\mathbb{E} c_2(v_1) + \cdots + c_2(v_6) \geq 0.
$$

It remains to analyze the case that K is a θ-cycle. By symmetry, we can assume that the vertices v_1 and v_4 are its poles. Let x_i be the neighbor of v_i outside of K, $i = 1, \ldots, 6$. Further, let $P = x_6v_6v_1v_2x_2$, $P_1 = x_6v_6v_1$ and $P_2 = x_2v_2v_1$. Since each of the paths P_1 and P_2 is contained in F with probability $1/3$, the subgraph F contains the path P with probability at most $1/3$; let p be this probability. Since G is clean (and so proper), the distance between x_2 and x_3 in $G - V(K)$ is at least three; likewise, the distance between x_5 and x_6 in $G - V(K)$ is at least three. Hence, any cycle containing P_1 or P_2 has length at least 10, and any cycle containing P has length at least 14. Since F contains the path P with probability p, the path P_1 but not P with probability $1/3 - p$, the path P_2 but not P with probability $1/3 - p$, and neither P_1 nor P_2 with probability $1/3 + p$, it follows that

$$
\mathbb{E} c_2(v_1) = \frac{2}{7} - p \cdot \frac{1}{7} - 2 \left(\frac{1}{3} - p \right) \cdot \frac{1}{5} - \left(\frac{1}{3} + p \right) \cdot \frac{1}{3} = \frac{13}{315} - \frac{8}{105} p \geq \frac{1}{63}.
$$

The symmetric argument yields that $\mathbb{E} c_2(v_4) \geq \frac{1}{63}$. Since every cycle in G containing the path P_2 has length at least 10, the type of v_2 dominates $(6,6,10)$ and thus $\mathbb{E} c_2(v_2) \geq -\frac{1}{315}$. The same holds for vertices v_3, v_5 and v_6.

30
Let Q_1 be the set of all poles of θ-cycles in G, and let Q_2 be the set of vertices contained in θ-cycle that are not a pole of a (possibly different) θ-cycle. Since each vertex of Q_2 has a neighbor in Q_1, it follows $|Q_2| \leq 3|Q_1|$. The previous analysis yields that

$$E \sum_{v \in Q_1 \cup Q_2} c_2(v) \geq |Q_1| \left(\frac{1}{63} - 3 \cdot \frac{1}{315} \right) = \frac{2}{315}|Q_1| \geq 0.$$

Since the set $Q_1 \cup Q_2$ and the vertex set of cycles of length six that are not θ-cycles are disjoint, the inequality (3) follows.

We are ready to prove Theorems 1 and 2.

Proof of Theorem 1. By Observation 5, it is enough to construct a spanning Eulerian subgraph F of G with

$$\text{exc}(F) \leq \frac{2(n(G) + n_2(G))}{7} + 1.$$

If G is basic, such a subgraph F exists by Observation 4 and can easily be constructed in polynomial time. If G is not basic, we can find a reduction G' of G that is either basic or clean in polynomial time by Theorem 23.

If G' is basic, then we find a spanning Eulerian subgraph with

$$\text{exc}(F') \leq \frac{2(n(G') + n_2(G'))}{7} + 1$$

as in the case when G itself is basic. If G' is clean, then Lemma 27 yields that we can construct in polynomial time a spanning Eulerian subgraph F' of G' such that

$$\text{exc}(F') \leq \frac{2(n(G') + n_2(G'))}{7}.$$

Since G' is a reduction of G, we can find in polynomial time a spanning Eulerian subgraph F of G such that

$$\text{exc}(F) \leq \text{exc}(F') + \frac{\delta(G, G')}{4} \leq \text{exc}(F') + \frac{2\delta(G, G')}{7} \leq \frac{2(n(G') + n_2(G'))}{7} + 1,$$

which finishes the proof of the theorem.

Proof of Theorem 2. Let G be an input cubic graph and let n be the number of its vertices. We assume that G is connected since G would not have a TSP walk otherwise. Let F be the set of bridges of G, which can be found in linear time using the standard algorithm based on DFS. Further, let G' be the graph obtained from G by removing the edges of F, and let n_0 and n_2 be the number of its vertices of degree zero and two, respectively. Note that G' has no vertices of degree one since if two edges incident with a vertex v in a cubic graph are
bridges, then the third edge incident with \(v \) is also a bridge. Finally, let \(k \) be the number of non-trivial components of \(G' \), i.e., the components of \(G' \) that are not formed by a single vertex. Observe that the number of vertices of degree two in \(G' \) is at most \(2k - 2 \), i.e., \(n_2 \leq 2k - 2 \).

We next apply the algorithm from Theorem 1 to each non-trivial component of \(G' \), and obtain a collection of \(k \) TSP walks such that the sum of their lengths is at most

\[
\frac{9}{7}(n - n_0) + \frac{2}{7}n_2 - k.
\]

These \(k \) TSP walks can be connected by traversing each of the edges of \(F \) twice, which yields a TSP walk in \(G \) of total length at most

\[
\frac{9}{7}(n - n_0) + \frac{2}{7}n_2 - k + 2|F| \leq \frac{9}{7}(n - n_0) + 2|F|.
\] (4)

The inequality in (4) follows from the inequality \(n_2 \leq 2k - 2 \), which we have observed earlier in the proof. Since any TSP walk in \(G \) must have length at least \((n - n_0) + 2|F|\), the upper bound in (1) on the length of the constructed TSP walk is at most the multiple of \(9/7 \) of the length of the optimal TSP walk in \(G \), which yields the desired approximation factor of the algorithm.

\[\square \]

5 Lower bounds

In this section, we provide two constructions of 2-connected subcubic graphs that illustrate that the bound claimed in Conjecture 1 would be the best possible. The constructions are based on two operations that we analyze in Lemmas 28 and 30.

Lemma 28. Let \(G \) be a 2-connected subcubic graph, let \(v \) be a vertex of \(G \) that has exactly two neighbors, and let \(x \) and \(y \) be its two neighbors. Further, let \(G' \) be the graph obtained from \(G \) by removing the vertex \(v \), adding a cycle \(v_1v_2v_3v_4 \) and edges \(xv_1 \) and \(yv_3 \) as in Figure 2. The graph \(G' \) is a 2-connected subcubic graph and it holds that \(n(G') = n(G) + 3 \), \(n_2(G') = n_2(G) + 1 \) and \(\text{minexc}(G') = \text{minexc}(G) + 1 \).
Proof. It is clear that G' is a 2-connected subcubic graph such that $n(G') = n(G) + 3$ and $n_2(G') = n_2(G) + 1$. So, we need to show that $\minexc(G') = \minexc(G) + 1$. We start with showing that $\minexc(G') \leq \minexc(G) + 1$. Let F be a spanning Eulerian subgraph of G with $\exc(F) = \minexc(G)$. We now construct a spanning Eulerian subgraph F' of G'. If v is an isolated vertex in F, then F' contains all the edges of F and the cycle $v_1v_2v_3v_4$. Note that $c(F') = c(F) + 1$ and $i(F') = i(F) - 1$, Otherwise, v has degree two in F and we let F' contain the edges $xv_1, v_1v_2, v_2v_3, v_3y$ and all the edges of F except for vx and vy. In this case, we have that $c(F') = c(F)$ and $i(F') = i(F) + 1$. In both cases, we get that $\exc(F') = \exc(F) + 1 = \minexc(G) + 1$, which implies that $\minexc(G') \leq \minexc(G) + 1$.

We next prove that $\minexc(G) \leq \minexc(G') - 1$. Consider a spanning Eulerian subgraph F' of G with $\exc(F') = \minexc(G')$. We reverse the transformation described in the previous paragraph. By symmetry, we can assume that F' contains either the cycle $v_1v_2v_3v_4$ or the path $xv_1v_2v_3$. In the former case, let F be the spanning Eulerian subgraph of G containing all the edges of F' except for the edges of the cycle $v_1v_2v_3v_4$. In the latter case, let F be the spanning Eulerian subgraph of G containing the edges vx, vy and all the edges of F' except for the edges $xv_1, v_1v_2, v_2v_3, v_3y$. In both cases, it holds that $\exc(F) = \exc(F') - 1$, which implies that $\minexc(G) \leq \minexc(G') - 1$ as desired. \qed

Repeated applications of the operation described in Lemma28 starting with the graph $K_{2,3}$ yields the following.

Proposition 29. For every integer $n \geq 5$, $n \equiv 2 \mod 3$, there exists a 2-connected subcubic n-vertex graph G such that

$$\minexc(G) = \frac{n(G) + n_2(G)}{4} + 1.$$

The second operation is more involved. A diamond in a graph G is an induced subgraph isomorphic to K_4^-, i.e., the graph K_4 with one edge removed.

Lemma 30. Let G be a 2-connected cubic graph containing a diamond D. Let v_1, v_2, w_1 and w_2 be the vertices of the diamond as depicted in Figure3 and let x_1 and x_2 be the neighbors of v_1 and v_2 outside of the diamond D. Further, let G' be the graph obtained from G by removing the vertices of the diamond D and inserting the subgraph depicted in Figure3. The graph G' is a 2-connected cubic graph with $n(G') = n(G) + 8$ and $\minexc(G') = \minexc(G) + 2$. Moreover, the graph G' contains at least two diamonds.

Proof. As in the proof of Lemma28, the only non-trivial assertion of the lemma is that $\minexc(G') = \minexc(G) + 2$. Let the labels of the vertices be as in Figure3. We start with showing $\minexc(G') \leq \minexc(G) + 2$. Consider a spanning Eulerian subgraph F of G with $\exc(F) = \minexc(G)$. By symmetry,
we can assume that the subgraph \(G \) contains either the path \(x_1v_1w_1v_2x_2 \) or the cycle \(v_1w_1v_2 \). In the former case, let \(F' \) be the spanning subgraph of \(G' \) that contains the path \(x_1z_1u_1v_1'w_1'w_2'v_2'x_2 \) and the cycle \(v_1^2w_1^2v_2^2w_2^2 \) instead of the path \(x_1v_1w_1v_2x_2 \). In the latter case, \(F' \) is the spanning subgraph of \(G' \) that contains the cycles \(z_1u_1v_1'w_1'v_2'v_2' \) and \(v_1^2w_1^2v_2^2w_2^2 \) instead of the cycle \(v_1w_1v_2x_2 \). In both cases, it holds that \(c(F') = c(F) + 1 \) and \(i(F') = i(F) \), which implies that \(\minexc(G') \leq \exc(F') = \exc(F) + 2 = \minexc(G) + 2 \).

We next prove the opposite inequality \(\minexc(G) \leq \minexc(G') - 2 \). Let \(F' \) be a spanning Eulerian subgraph of \(G' \) with \(\exc(F') = \minexc(G') \). A simple case analysis using that \(F' \) has the minimum possible excess yields that we can assume that \(F' \) contains either the path \(x_1z_1u_1v_1'w_1'w_2'v_2'x_2 \) and the cycle \(v_1^2w_1^2v_2^2w_2^2 \) or the cycles \(z_1u_1v_1'w_1'v_2'v_2' \) and \(v_1^2w_1^2v_2^2w_2^2 \). In both cases, we can reverse the operation described in the previous paragraph to get a spanning Eulerian subgraph \(F \) of \(G \) with \(\exc(F) = \exc(F') - 2 \). It follows that \(\minexc(G) \leq \exc(F) = \exc(F') - 2 = \minexc(G') - 2 \) as desired.

Consider the cubic graph formed by two diamonds and two edges joining the vertices of degree two in different diamonds, and repeatedly apply the operation described in Lemma \[30\].

Proposition 31. For every integer \(n \geq 8 \), \(n \equiv 0 \mod 8 \), there exists a 2-connected cubic \(n \)-vertex graph \(G \) with \(\minexc(G) = n/4 \).

Propositions \[29\] and \[31\] and Observation \[5\] yield that neither the coefficient \(5/4 \) nor the coefficient \(1/4 \) in Conjecture \[1\] can be improved. Indeed, for every \(\alpha < 5/4 \), there exist infinitely many 2-connected cubic graphs \(G \) with \(\tsp(G) > \alpha n(G) + o(n(G)) \) by Proposition \[31\]. Likewise, for every \(\beta < 1/4 \), there exist infinitely many 2-connected subcubic graphs \(G \) with \(\tsp(G) > \frac{3}{4}n(G) + \beta n_2(G) + o(n(G)) \). While neither of the two coefficient in Conjecture \[1\]...
can be improved in general, it may be possible to prove better bounds under some additional structural assumptions. In particular, Conjecture 1 asserts that \(\text{tsp}(G) \leq \frac{3n(G)}{2} \) for 2-connected subcubic graph while Boyd et al. proved that \(\text{tsp}(G) \leq \frac{4n(G)}{3} \) for such graphs \(G \), which is tight up to an additive constant.

References

[1] N. Aggarwal, N. Garg, and S. Gupta, \textit{A 4/3-approximation for TSP on cubic 3-edge-connected graphs}, arXiv e-prints, 1101.5586 (2011).

[2] S. Boyd, R. Sitters, S. van der Ster, and L. Stougie, \textit{The traveling salesman problem on cubic and subcubic graphs}, Mathematical Programming, 144 (2014), pp. 227–245.

[3] B. Cadráková and R. Lukot’ka, \textit{Cubic TSP – a 1.3-approximation}, arXiv e-prints, 1506.06369 (2015).

[4] N. Christofides, \textit{Worst-case analysis of a new heuristic for the travelling salesman problem}, tech. rep., DTIC Document, 1976.

[5] J. Correa, O. Larré, and J. A. Soto, \textit{TSP tours in cubic graphs: beyond 4/3}, SIAM Journal on Discrete Mathematics, 29 (2015), pp. 915–939.

[6] J. Edmonds, \textit{Maximum matching and a polyhedron with 0, l-vertices}, J. Res. Nat. Bur. Standards B, 69 (1965), pp. 125–130.

[7] H. Fleischner, \textit{Eularian graphs and related topics, part 1}, Ann. Discrete Math., 45 (1990).

[8] D. Gamarnik, M. Lewenstein, and M. Sviridenko, \textit{An improved upper bound for the TSP in cubic 3-edge-connected graph}, Operations Research Letters, 33 (2005), pp. 467–474.

[9] M. Grötschel, L. Lovász, and A. Schrijver, \textit{Geometric algorithms and combinatorial optimization}, vol. 2, Springer Science & Business Media, 2012.

[10] J. Karp and R. Ravi, \textit{A 9/7-approximation algorithm for graphic TSP in cubic bipartite graphs}, arXiv e-prints, 1311.3640 (2013).

[11] M. Karpinski, M. Lampis, and R. Schmied, \textit{New inapproximability bounds for TSP}, Journal of Computer and System Sciences, 81 (2015), pp. 1665–1677.
M. Karpinski and R. Schmied, *Approximation hardness of graphic TSP on cubic graphs*, RAIRO Operations Research, 49 (2015), pp. 651–668.

M. Lampis, *Improved inapproximability for TSP*, Lecture Notes in Computer Science, 7408 (2013), pp. 243–253.

J. Mazák and R. Lukot’ka, *Simple cubic graphs with no short travelling salesman tour*, manuscript (2016).

T. Mömke and O. Svensson, *Approximating graphic TSP by matchings*, in Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, IEEE, 2011, pp. 560–569.

M. Mucha, *13/9-approximation for graphic TSP*, Theory of Computing Systems, 55 (2014), pp. 640–657.

S. Oveis Gharan, A. Saberi, and M. Singh, *A randomized rounding approach to the traveling salesman problem*, in Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, IEEE, 2011, pp. 550–559.

M. W. Padberg and M. R. Rao, *Odd minimum cut-sets and b-matchings*, Mathematics of Operations Research, 7 (1982), pp. 67–80.

C. H. Papadimitriou and S. Vempala, *On the approximability of the traveling salesman problem*, Combinatorica, 26 (2006), pp. 101–120.

A. Sebő and J. Vygen, *Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs*, Combinatorica, 34 (2014), pp. 597–629.

A. van Zuylen, *Improved approximations for cubic and cubic bipartite TSP*, arXiv e-prints, 1507.07121 (2015).