Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean

Joanna Pilczynska 1, 2, Silvia Cocito 3, Joana Boavida 4, 5, Ester A Serrão 4, Jorge Assis 4, Eliza Fragkopoulou Corresp., 4, Henrique Queiroga 1

1 Departamento de Biologia and CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Aveiro, Portugal
2 Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
3 Italian Agency for New Technologies, Energy and Sustainable Economic Development – ENEA, Marine Environment Research Centre, La Spezia, Italy
4 CCMAR- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
5 Mediterranean Institute of Oceanography - MIO, Aix Marseille Université, Marseille, France

Corresponding Author: Eliza Fragkopoulou
Email address: efragkopoulou@ualg.pt

Background. In the ocean, the variability of environmental conditions found along depth gradients exposes populations to contrasting levels of perturbation, which can be reflected in the overall patterns of species genetic diversity. At shallow sites, resource availability may structure large, persistent and well-connected populations with higher levels of diversity. In contrast, the more extreme conditions, such as thermal stress during heat waves, can lead to population bottlenecks and genetic erosion, inverting the natural expectation. Here we examine how genetic diversity varies along depth for a long-lived, important ecosystem-structuring species, the red gorgonian, Paramuricea clavata.

Methods. We used five polymorphic microsatellite markers to infer differences in genetic diversity and differentiation, and to detect bottleneck signs between shallow and deeper populations across the Atlantic Ocean and the Mediterranean Sea. We further explored the potential relationship between depth and environmental gradients (temperature, ocean currents, productivity and slope) on the observed patterns of diversity by means of generalized linear mixed models.

Results. An overall pattern of higher genetic diversity was found in the deeper sites of the Atlantic Ocean and the Mediterranean Sea. This pattern was largely explained by bottom temperatures, with a linear pattern of decreasing genetic diversity with increasing thermal stress. Genetic differentiation patterns showed higher gene flow within sites (i.e., shallow vs. deeper populations) than between sites. Recent genetic bottlenecks were found in two populations of shallow depths.

Discussion. Our results highlight the role of deep refugial populations safeguarding higher and unique genetic diversity for marine structuring species. Theoretical regression modelling demonstrated how thermal stress alone may reduce population sizes and diversity levels of shallow water populations. In fact, the examination of time series on a daily basis showed the upper water masses repeatedly reaching lethal temperatures for P. clavata. Differentiation patterns showed that the deep richer populations are isolated. Gene flow was also inferred across different depths, however, not in sufficient levels to offset the detrimental effects of surface environmental conditions on genetic diversity. The identification of deep isolated areas with high conservation value for the red gorgonian represents an important step in the face of ongoing and future climate changes.
Genetic diversity increases with depth in red gorgonian populations of the Mediterranean Sea and the Atlantic Ocean

Joanna Pilczynska1,2, Silvia Cocito3, Joana Boavida4,5, Ester A. Serrão4, Jorge Assis4, Eliza Fragkopoulou4, Henrique Queiroga1

1Departamento de Biologia and CESAM - Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, 3810-193 Aveiro, Portugal.

2Department of Earth and Environmental Sciences, University of Pavia, Strada Nuova, n. 65 – 27100, Pavia, Italy.

3Italian Agency for New Technologies, Energy and Sustainable Economic Development – ENEA, Marine Environment Research Centre, P.O. Box 224, 19100 La Spezia, Italy.

4CCMAR - Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal.

5Aix Marseille Université, Mediterranean Institute of Oceanography (MIO) UM 110, 13288 Marseille, France.

Corresponding author:
Eliza Fragkopoulou4

Email address: efragkopoulou@ualg.pt
ABSTRACT

Background. In the ocean, the variability of environmental conditions found along depth gradients exposes populations to contrasting levels of perturbation, which can be reflected in the overall patterns of species genetic diversity. At shallow sites, resource availability may structure large, persistent and well-connected populations with higher levels of diversity. In contrast, the more extreme conditions, such as thermal stress during heat waves, can lead to population bottlenecks and genetic erosion, inverting the natural expectation. Here we examine how genetic diversity varies along depth for a long-lived, important ecosystem-structuring species, the red gorgonian, Paramuricea clavata.

Methods. We used five polymorphic microsatellite markers to infer differences in genetic diversity and differentiation, and to detect bottleneck signs between shallow and deeper populations across the Atlantic Ocean and the Mediterranean Sea. We further explored the potential relationship between depth and environmental gradients (temperature, ocean currents, productivity and slope) on the observed patterns of diversity by means of generalized linear mixed models.

Results. An overall pattern of higher genetic diversity was found in the deeper sites of the Atlantic Ocean and the Mediterranean Sea. This pattern was largely explained by bottom temperatures, with a linear pattern of decreasing genetic diversity with increasing thermal stress. Genetic differentiation patterns showed higher gene flow within sites (i.e., shallow vs. deeper populations) than between sites. Recent genetic bottlenecks were found in two populations of shallow depths.

Discussion. Our results highlight the role of deep refugial populations safeguarding higher and unique genetic diversity for marine structuring species. Theoretical regression modelling demonstrated how thermal stress alone may reduce population sizes and diversity levels of shallow water populations. In fact, the examination of time series on a daily basis showed the upper water masses repeatedly reaching lethal temperatures for P. clavata. Differentiation patterns showed that the deep richer populations are isolated. Gene flow was also inferred across different depths, however, not in sufficient levels to offset the detrimental effects of surface
environmental conditions on genetic diversity. The identification of deep isolated areas with high conservation value for the red gorgonian represents an important step in the face of ongoing and future climate changes.

INTRODUCTION

Extreme environmental conditions may change the distribution of intra-specific biodiversity (Provan & Bennett, 2008). However, responses may differ significantly between environments and ecological groups. The trends in genetic diversity of mountain plants and vertebrates along altitudinal gradients are a well-known example, varying from decreased diversity with altitude due to drift and bottlenecks during vertical range expansion, to increased diversity associated with selective pressures at higher altitudes (Giordano, Ridenhour & Storfer, 2007; Ohsawa & Ide, 2008).

In the marine environment, environmental gradients are known to affect the genetic diversity levels of the populations (e.g. Costantini 2011; Costantini et al., 2016; Johannesson and André 2006). Particularly, the exposure to limiting niche conditions may reduce population sizes, leading to genetic erosion through bottlenecks and drift (Eckert, Samis & Lougheed, 2008). Conversely, where conditions are stable for long time, populations may persist and retain ancient genetic diversity (i.e., climatic refugia; Maggs et al., 2008; Provan & Bennett, 2008). Even small populations of species with reduced dispersal potential may harbour distinct ancient genetic diversity if persisting in refugial areas (e.g., Diekmann & Serrão, 2012; Assis et al., 2016).

In the coastal zone, depth gradients are associated with increased environmental variability due to the stratification of wind-induced turbulence, light attenuation, nutrient availability, sedimentation and the presence of thermoclines and haloclines (Garrabou, Ballesteros and Zabala, 2002; Assis et al., 2017b). Together, they underpin well-structured gradients of species occurrences, abundances and genetic diversity. While extreme conditions experienced in shallow waters can be detrimental to genetic diversity, deep waters are relatively more stable and can provide genetic refugia (e.g. Smith et al., 2014; Assis et al., 2016). The hypothesis of deep
populations harbouring higher and unique genetic diversity is of great conservational, biogeographical and evolutionary relevance. The loss of such genetically rich populations poses disproportionate risks for the species as a whole, considering the loss of adaptive variation for selection (Hampe & Petit, 2005). While there is increased evidence of deep populations not being directly affected by events of extreme environmental conditions (e.g. Cerrano et al., 2005; Linares et al., 2005; Smith et al., 2014), these are not immune to disturbances (Bavestrello et al., 2014; Frade et al., 2018). Furthermore, the hypothesis that deeper reefs may be more fecund (Holstein et al., 2015), serving as a source of recruits for the recovery of shallower reefs is controversial between species (Bongaerts et al., 2010, 2017), but also within the same species (Mokhtar-Jamaï et al., 2011; Van Oppen et al., 2011; Pilczynska et al., 2016).

The red gorgonian Paramuricea clavata (Risso) lives on shadowed rocky substrates down to 120 m in the Mediterranean Sea (Salomidi et al., 2009; Bo et al., 2012) and to 100 m in the Atlantic Ocean (Boavida et al., 2016a). Shallow populations in the Mediterranean have recently suffered massive mortality events caused by thermal stress (Perez et al., 2000; Romano et al., 2000; Garrabou et al., 2009). Damage intensity have been reported to decrease with depth, with communities dwelling below the thermocline of 25 to 30 m being less affected (Cerrano et al., 2005; Linares et al., 2005). In the Atlantic Ocean, temperature-driven mortality events are presumed to be less frequent as water masses are usually mixed due to summer upwelling (Relvas et al., 2007). However, there are sporadic events of upwelling relaxation, with raising temperatures persisting for several days, responsible for the mortality of shallow water gastropod populations (Lima et al., 2006) and marine forests (Araújo et al., 2016), which eventually may reach levels that could become limiting for the red gorgonian. Here we investigate changes in the genetic diversity levels of P. clavata across populations in different depth ranges from the Mediterranean Sea and the Atlantic Ocean. Considering the different potential effect of temperature extremes between different depths, we hypothesize that shallow populations have lower genetic diversity when compared to deeper ones. We further explore the observed patterns of diversity using generalized linear mixed models with environmental information (temperature, current velocity, primary productivity and slope).
MATERIALS & METHODS

We sampled 2 populations at different depths (shallow vs. deeper) in 3 sites of the Atlantic Ocean (Portuguese coast) and 2 sites of the Mediterranean Sea (Italy coast; Fig. 1; S1) by means of SCUBA diving. Atlantic samples were located between 12 m and 60 m depth, while those in the Mediterranean were between 20 m and 30 m. At each population, 10 cm apical branches were collected haphazardly from well-separated colonies to avoid clones, as the species can have asexual reproduction, though negligible (Coma, Zabala & Gili, 1995; Pilczynska *et al*., 2017). The branch tip from each colony was stored individually in plastic tube underwater and, after transportation to the lab, the samples were preserved in 96% ethanol until DNA extraction.

Sampling permissions for the Mediterranean sites were authorised by Cinque Terre Marine Protected Area and the Regional Natural Park of Porto Venere (Pilczynska *et al*., 2016). For the Atlantic sites, permission was authorized by the Institution for Conservation of Nature and Forest (ICNF, Portuguese governmental body responsible for the management of Protected Areas).

Genomic DNA was extracted with a CTAB protocol (Winnepenninckx, Backeljau & De Wachter, 1993), using proteinase K, with purification by standard chloroform:isoamyl alcohol (24:1) followed by DNA precipitation. Samples were genotyped at five microsatellite loci: Parcla 09, Parcla 10, Parcla 12, Parcla 14, Parcla 17 (Mokhtar-Jamaï *et al*., 2011). PCR conditions were as described in Mokhtar-Jamaï *et al*., (2011) with minor modifications (1.5 mM MgCl2, cycle: 95°C 3 min, 94°C 20 sec, 45°C 20 sec, 72°C 20 sec for 40 cycles, final extension 72°C 10 min).

PCR products were analysed on an ABI 3730XL Genetic Analyser using an internal size standard (GeneScan 600 LIZ; Applied Biosystems). STRand version 2.2.30 was used to score alleles (Locke *et al*., 2000) and the R package MsatAllel_1.02 (Alberto, 2009) allowed to visualise, track and reanalyse putative scoring errors.

Additional genetic data for the same microsatellite loci were compiled from Mokhtar-Jamaï *et al*., (2011). Extra sites were chosen when comprising 2 populations at different depths (shallow vs. deeper). The new data (5 sites) were located in the Spanish and French Mediterranean coasts, between 15 m and 40 m depth (Fig. 1; S1).

The shallow and deeper populations sampled in the Atlantic and Mediterranean do not coincide with the same exact depths, as vertical distribution limits varied between sites. Thus,
comparisons of genetic diversity levels between shallow and deeper populations were made at
the site scale, and not between sites. Allelic richness, number of private alleles and gene diversity
(expected heterozygosity) per population (shallow and deeper) were standardized to the smallest
sample size found within sites using 10^4 randomizations. Significant differences in mean
diversity levels within each site were tested using a non-parametric Wilcoxon signed-rank test
with 10^4 randomizations (Assis et al., 2018).

To infer the drivers shaping genetic variation among sites, genetic diversity estimates were
standardized to the smallest size of all samples using 10^4 randomizations. The estimates of
diversity were modelled with linear regression against depth (null model) and a set of important
environmental predictors affecting the physiology of *P. clavata* (Maximum bottom temperature;
Boavida et al., 2016b) and proxies of essential resources (minimum bottom productivity,
minimum bottom current velocity and slope, for food intake; Boavida et al., 2016b). Other
important predictors were not considered since (1) they did not vary between sampling sites
(e.g., salinity) or (2) were correlated with productivity (e.g., inorganic nutrients such as nitrates
and phosphates). The predictors were developed with three-dimensional profiles of monthly data
compiled from the Global Ocean Physics Reanalysis (ORAP; www.marine.copernicus.eu) and
the Biogeochemistry Non-Assimilative Hindcast Simulation (PISCES;
www.marine.copernicus.eu). Bottom environmental data for each population was obtained using
trilinear interpolation (Assis et al., 2017b) weighting location (longitude and latitude) and depth.
Long-term minimum (productivity and currents) and maximum (temperature) extremes were
averaged for the years 2000-2014. Slope was computed using the “terrain” function of the R
package “raster” (3.5.2 version; R Foundation for Statistical Computing, 2018) in bathymetry.

Given the sampling design (no precise coincidence of depths between sites) we adopted the
Generalized Linear Mixed Models (GLMM; Bolker et al., 2009) framework. This is suitable for
modelling unbalanced designs (Zhang and Chen, 2013) and complex spatial and temporal
correlation structures since it accounts for dependencies within hierarchical groups by
introducing random effects (Bolker et al., 2009). While these effects generally comprise the
blocking in experimental treatments, they can be used to encompass variation among
geographical regions (Dormann et al., 2007). Accordingly, “site” was included in the models as a
random effect term (Zuur, Ieno and Smith, 2007; Ludwig et al., 2012). The best-fit selection
between the null and the environmental models followed the relative Akaike Information Criterion (AIC), while goodness-of-fit was inferred with the R2GLMM algorithm from Edwards et al. (2008). Partial dependence plots were also produced to illustrate the effect of predictors on the response of models, by accounting for the mean effect of all other predictors (Elith, Leathwick and Hastie, 2008). All models were performed in the R environment (3.5.2 version; R Foundation for Statistical Computing, 2018).

To infer larval dispersal potential, pairwise genetic differentiation was estimated between and within sampled populations (i.e., shallow vs. deeper populations) using F_{ST} estimator and an analysis of molecular variance (AMOVA) based on allele frequencies, computed with Genodive (Meirmans and Van Tienderen, 2004) under 10^4 randomizations (Assis et al., 2013).

Evidence of genetic bottlenecks were inferred by testing for heterozygosity excess (Piry, Luikart and Cornuet, 1999). This is rooted on the assumption that populations that have recently experienced a bottleneck event are predicted to temporarily reduce allelic diversity at a faster rate than heterozygosity. Such an excess in heterozygosity rate was tested for each population with the software Bottleneck (Piry, Luikart and Cornuet, 1999) using 10^4 simulations. We used the suggested and more appropriate (realistic) parameters for microsatellites: the Two-Phase Model (TPM) (Luikart and Cornuet, 1998; Piry, Luikart and Cornuet, 1999) with a step in mutations of 0.9 (ps) and a variance in mutations of 12 (Piry, Luikart and Cornuet, 1999; Busch, Waser and DeWoody, 2007). Because the genetic dataset has less than 20 loci, we used the Wilcoxon test to address the null hypothesis of no heterozygosity excess (on average) across loci (Cornuet and Luikart, 1996; Luikart and Cornuet, 1998).

RESULTS

Genetic diversity as allelic richness (A) and number of private alleles (PA) was consistently higher in deeper populations, with the exception of only one site (Petit Congloue; Fig 2a,b). The greatest difference in A and PA between shallow and deeper populations was observed in Pharillions and Sagres (A: 2.7 and 2.07; PA: 13.52 and 10.33, respectively), while the smallest
was observed in Livorno (A: 0.09 and PA: 0.43). The variation in expected heterozygosity (He) did not follow a clear pattern, with only one sampling site (Grotte Peres) having a higher He in its deeper population (Fig 2c).

The null linear regression models using depth alone were outperformed by the models using environmental predictors (environmental models showed lower AIC and higher R^2; Table 1). Both approaches found significant relationships while fitting the predictors against standardized allelic richness and number of private alleles (Table 1), however, they failed to explain the variability in expected heterozygosity. The environmental models showing better fitting were mostly explained by temperature alone (Table 1). This predictor produced a negative response on the models, with lower allelic richness and private alleles with increasing bottom temperatures (Fig 3).

Genetic differentiation (F_{ST}) was higher between than within sampling sites, with two exceptions for Sagres and Riou Sud (Fig 4). The former site (i.e., Sagres) showed the highest differentiation of all pairwise comparisons at the site scale (i.e., shallow vs. deeper sample; $F_{ST} \approx 0.4$; S2). No significant differentiation was found within 7 Mediterranean sites (Punta Mesco, Livorno, Pota Del Llop, Grotte Peres and Petit Congloue; S2) and between the two populations of Grotte Peres and the deeper population of Petit Congloue (S2), which are approximately 2 km far apart.

Bottleneck events (heterozygosity excess) were detected in the shallow populations of Berlengas and Punta Mesco (Table 1; S3). All remaining populations showed no heterozygosity excess (on average) across loci (Table 1; S3).

DISCUSSION

The distribution of genetic diversity corroborated the expectations associating extreme environmental changes with the reduction of effective population sizes and genetic diversity levels (Garrabou et al., 2009). Our model species $P. \ clavata$ consistently showed less allelic richness, a smaller number of private alleles and bottleneck signs (for two sites) in shallow waters populations. This pattern found across the Atlantic Ocean and Mediterranean Sea was explained by the negative relationship between thermal stress and depth, and not by the proxies
used of essential resources (i.e., productivity, current velocity and slope). In fact, the
examination of daily time series of bottom temperatures for each site and depth range (S4) shows
shallow water masses recurrently surpassing the physiological threshold of 24-25°C from which
mortality occurs (Previani et al., 2010; Pairaud et al., 2014; Boavida et al., 2016b), particularly in
the Mediterranean Sea. This is in line with previous studies linking mass-mortality events of *P.
clavata* with marine heatwaves, which reported increased mortality in more shallow
environments (Cerrano et al., 2005; Linares et al., 2005). Still, the observed differences in
genetic diversity may have resulted from additional factors beyond temperature changes, not
considered in our study. For instance, the scarcity of favourable rocky bottoms may strongly
reduce population sizes of *P. clavata* (Linares et al., 2008; Boavida et al., 2016b). This could be
a plausible explanation for the one exception found in the diversity levels of deep populations.
The lower diversity in the deeper population of Petite Congloue may result from a smaller and
patchier distribution of individuals, if the availability of rocky bottoms is limited. In a particular
survey, Gori et al. (2011) found the density of *P. clavata* decreasing with depth, as populations
were highly dependent on the presence of rocky vertical walls in shallower waters. In our study,
the availability of rocky bottoms was not considered, although slope may be considered as a
proxy for such environmental factor at biogeographical scales (e.g. Boavida et al., 2016b), it
might not have reflected site scale habitat changes between our sampling depths. Further,
competition with other species, such as photosynthetic algae (Zabala and Ballesteros, 1989),
together with higher hydrodynamics regimes and human induced disturbances (e.g. anchoring,
scuba diving), may further help explaining the overall pattern found, restricting large, continuous
and richer populations to deeper sites (Harmelin and Marinopoulos, 1994; Cúrdia et al., 2013).
Contrarily to allelic richness and number of private alleles, gene diversity (i.e., expected
heterozygosity) did not correlated with depth, nor with the additional predictors considered in
regression analyses. Gene diversity is not as sensitive as allelic richness to detecting historical
population changes (Leberg, 1992; Petit, Mousadik & Pons, 1998; Spencer et al., 2000) since
drift resulting from population size reductions theoretically affects more the rare alleles than the
frequent ones (Nei, Maruyama & Chakraborty, 1975). Accordingly, the diversity pattern found in
deeper populations implies persistence without significant population reduction, raising the
hypothesis of deep refugia for *P. clavata*. These cryptic populations may play an important role
in buffering the loss of diversity in shallow waters, as reported for other corals (Bongaerts et al.,
Similar to terrestrial elevational refugia, the stability of deep environments may be an important mechanism safeguarding regional genetic diversity for the species as a whole (Epps et al., 2006; Assis et al., 2016; Lourenço et al., 2016).

While diversity levels of *P. clavata* followed the patterns of thermal stress, the bottleneck tests did not provide a strong empirical support of recent bottlenecks in shallow populations (exceptions for Berlengas e Punta Mesco). Although recent environmental changes may account for genetic diversity losses, the fluctuations of past climate changes may further shape the genetic structure of marine species, both latitudinally and along depth gradients (Maggs et al., 2008; Provan 2013; Assis et al., 2014; 2016; 2018; Neiva et al., 2016). The lower diversity found in shallow populations could have resulted from past climate extremes, an historical effect that cannot be detected with tests based on heterozygosity excess (Peery et al., 2012). Also, one cannot discard the limited statistical power of these tests when using small sample sizes, as in our case (small number of individuals and loci; Piry et al., 1999; Peery et al., 2012). Our approach could have overlooked actual population declines. For instance, previous studies on *P. clavata*, with similar sample sizes, drew unambiguous conclusions by failing to detect bottlenecks in populations that actually suffered mass-mortality events (Pilczynska et al., 2016; Padron et al., 2018).

Population differentiation was found higher between than within sampled sites. This is in line with the low dispersal potential of the species, posing highly structured gene pools throughout the Atlantic Ocean and the Mediterranean Sea (Linares et al., 2007; Mokhtar-Jamai et al., 2011; Pilczynska et al., 2016; Padrón et al., 2018). At the site scale, the non-significant differentiation levels (Punta Mesco, Livorno, Pota Del Llop, Grotte Peres and Petit Congloue) suggest that gene flow and admixture occurs along depth ranges. While summer thermoclines were thought to be a major force structuring genetic diversity of gorgonian species (Constantini 2011; Constantini et al., 2016), our results do not support such hypothesis. The shallow populations of *P. clavata* harbouring lower diversity levels are not in complete isolation from those in deep richer areas, as previously suggested for the species (Cerrano and Bavestrello, 2008). However, contrasting patterns of coral gene flow can occur across different environments (e.g. Van Oppen et al., 2011; Mokhtar-Jamai et al., 2011; Pilczynska et al., 2016). For instance, the higher within site differentiation in Sagres can result from the alongshore coastal circulation regime in the Gulf of
Cadiz that extends to the Sagres region (Garel et al., 2016), promoting high connectivity levels along deep neighbouring populations, or from the fact that the shallow population of Sagres was located within a cave, possibly, further hindering connectivity. This was an exception though, as the overall connectivity pattern found is one of restricted connectivity between deeper populations. Thus, their diversity levels may have resulted from persistence alone, and not by admixture processes, as also suggested by the number of private alleles. The differentiation pattern further allows concluding that connectivity along depth ranges (within site) does not seem to completely offset the more detrimental effects occurring in shallow water populations, reducing genetic diversity of *P. clavata*, as observed.

Our findings of deep isolated richer populations have significant conservation value for the species as a whole. Future environmental changes are predicted to produce a major redistribution of marine biodiversity in the Atlantic Ocean and the Mediterranean Sea (Albouy et al., 2013; Assis et al., 2017a), particularly in the business as usual climate scenario (RCP8.5; Assis et al., 2017). The reduction of biodiversity through the loss of rich and distinct gene pools found in deep populations may contribute to the loss of genes responsible for the species adaptation and evolution (Hughes & Stachowicz 2004; Hampe & Petit, 2005; Reusch et al., 2005). The identified genetically rich populations of *P. clavata* represent an important baseline for Climate Change Integrated Conservation Strategies for phylogeographic lineages (Hannah, Midgley and Millar, 2002).

CONCLUSIONS

This study demonstrates that deeper marine populations can consistently harbour higher genetic diversity than those in shallower environments. Theoretical regression modelling using environmental data showed that such genetic pattern may arise from thermal stress alone, reducing population sizes and diversity levels. These findings raised the hypothesis of deep refugia for *P. clavata*, with deeper populations in more stable environments safeguarding the species biodiversity across the Mediterranean and Atlantic populations. In fact, the analyses of temperature time-series showed shallow populations exposed to temperatures surpassing the species thermal tolerance, often for as long as over 2 months, while deep populations were
almost never exposed to such conditions. The patterns of population differentiation revealed that
gene flow occurs between shallow and deeper populations, although not in sufficient levels to
homogenise depth differences in diversity levels. Empirical evidence is provided for deep
persistent populations of gorgonians with the potential to safeguard richer and unique gene pools.
While additional genetic data could better support the major findings, particularly by increasing
the power of bottleneck tests (more molecular markers and sampling sites), this study represents
a timely baseline to conserve populations with higher conservation value in risk of disappearing.

REFERENCES

Alberto, F. (2009) ‘MsatAllele-1.0: An R package to visualize the binning of microsatellite
alleles’, Journal of Heredity, 100, 394-397.

Albouy C, Guilhaumon F, Leprieur F, Lasram FBR, Somot S, Aznar R, Velez L, Le Loch F,
Mouillot D. (2013). Projected climate change and the changing biogeography of coastal
Mediterranean fishes. Journal of Biogeography, 40, 534–547.

Araújo RM, Assis J, Aguillar R, Airoldi L, Bábara I, Bartsch I, Bekkby T, Christie H, Davoult
D, Derrien-Courtel S, Fernandez C, Fredriksen S, Gevaert F, Gundersen H, Le Gal A, Lévêque
L, Mieszkowska N, Norderhaug KM, Oliveira P, Puente A, Rico JM, Rinde E, Schubert H,
Strain EM, Valero M, Viard F, Sousa-Pinto I. (2016). Status, trends and drivers of kelp forests in
Europe: an expert assessment. Biodiversity and Conservation, 25, 1319–1348.

Assis, J., Castilho Coelho, N., Alberto, F., Valero, M., Raimondi, P., Reed, D., & Alvares Serrão,
E. (2013) High and Distinct Range-Edge Genetic Diversity despite Local Bottlenecks. PLoS
ONE, 8, 1–11.

Assis, J., Serrão, E. A., Claro, B., Perrin, C., & Pearson, G. A. (2014). Climate-driven range
shifts explain the distribution of extant gene pools and predict future loss of unique lineages in a
marine brown alga. Molecular Ecology, 23, 2797–2810.
Assis J, Coelho NC, Lamy T, Valero M, Alberto F, Serrão EA. (2016). Deep reefs are climatic refugia for genetic diversity of marine forests. *Journal of Biogeography*, 43, 833–844.

Assis J, Araújo BM, Serrão EA. (2017a). Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. *Global Change Biology*, 24, e55-e66.

Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O. (2017b). Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. *Global Ecology and Biogeography*, 27, 277–284.

Assis, J., Álvares, E., Nelson, S., Coelho, C., Tempera, F., Valero, M., & Alberto, F. (2018) Past climate changes and strong oceanographic barriers structured low- latitude genetic relics for the golden kelp *Laminaria ochroleuca*. *Journal of Biogeography*, 45, 2326-2336.

Bavestrello, G., Bo, M., Canese, S., Sandulli, R., & Cattaneo-Vietti, R. (2014) The red coral populations of the gulfs of Naples and Salerno: human impact and deep mass mortalities. *Italian Journal of Zoology*, 81, 552–563.

Bo, M., Canese, S., Spaggiari, C., Pusceddu, A., Bertolino, M., Angiolillo, M., Giusti, M., Loreto, M.F., Salvati, E., Greco, S., & Bavestrello, G. (2012) Deep Coral Oases in the South Tyrrhenian Sea. *PLoS ONE*, 7, e49870.

Boavida J, Paulo D, Aurelle D, Arnaud-Haound S, Marschal C, Gonçalves JMS, Serrão EA (2016a) A well-kept treasure at depth: Precious red coral rediscovered in Atlantic deep coral gardens (SW Portugal) after 300 years. *PLoS ONE*, 11, e0150654.

Boavida J, Silva I, Assis J, Serrão EA. (2016b). Overlooked habitat of a vulnerable gorgonian revealed in the Atlantic and Mediterranean by niche modelling. *Scientific Reports*, 6, 36460.

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., & White, J.S.S. (2009) Generalized linear mixed models: a practical guide for ecology and evolution. *Trends in Ecology and Evolution*, 24, 127–135.

Bongaerts, P., Ridgway, T., Sampayo, E.M., & Hoegh-Guldberg, O. (2010) Assessing the “deep reef refugia” hypothesis: Focus on Caribbean reefs. *Coral Reefs*, 29, 1–19.
Bongaerts, P., Riginos, C., Brunner, R., Englebert, N., Smith, S.R., & Hoegh-Guldberg, O. (2017) Deep reefs are not universal refuges: Reseeding potential varies among coral species. *Science Advances*, 3, e1602373.

Busch, J.D., Waser, P.M., & DeWoody, J.A. (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). *Molecular Ecology*, 16, 2450–2462.

Cerrano C, Arillo A, Azzini F, Calcinaï B, Castellano L, Muti C, Valisano L, Zega G, Bavestrello G. (2005). Gorgonian population recovery after a mass mortality event. *Aquatic Conservation*, 15, 147–157.

Cerrano, C. & Bavestrello, G. (2008) Medium-term effects of die-off of rocky benthos in the Ligurian Sea. What can we learn from gorgonians? *Chemistry and Ecology*, 24, 73–82.

Coma R, Zabala M, Gili JM. (1995). Sexual reproductive effort in the Mediterranean gorgonian *Paramuricea clavata*. *Marine Ecology Progress Series*, 117, 185-192.

Cornuet, J.M. & Luikart, G. (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. *Genetics*, 144, 2001-2004.

Costantini, F. (2011) Low connectivity and declining genetic variability along a depth gradient in Corallium rubrum populations. *Coral Reefs*, 30, 991-1003.

Costantini, F., Gori, A., Lopez-González, P., Bramanti, L., Rossi, S., Gili, J.M., & Abbiati, M. (2016) Limited genetic connectivity between gorgonian morphotypes along a depth gradient. *PLoS ONE*, 11, 1–20.

Cúrdia, J., Monteiro, P., Afonso, C.M.L., Santos, M.N., Cunha, M.R., & Gonçalves, J.M.S. (2013) Spatial and depth-associated distribution patterns of shallow gorgonians in the Algarve coast (Portugal, NE Atlantic). *Helgoland Marine Research*, 67, 521–534.

Diekmann OE, Serrão EA. (2012). Range-edge genetic diversity: Locally poor extant south southern patches maintain a regionally diverse hotspot in the seagrass Zostera marina. *Molecular Ecology, 21*, 1647–1657.
Dormann C. F., McPherson J. M., Araújo M. B., Bivand R., Bolliger J., Carl G, Davies R. G., Hirzel A., Jetz W., Kissling D. W., Kühn I., Ohlemüller R., Peres-Neto P. R., Reineking B., Schröder B., Schurr F. M. & Wilson, R. (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. *Ecography*, 30, 609–628.

Edwards, L.J., Muller, K.E., Wolfinger, R.D., Qaqish, B.F., & Schabenberger, O. (2008) An R2 statistic for fixed effects in the linear mixed model. *Statistics in Medicine*, 27, 6137-6157.

Elith, J., Leathwick, J.R., & Hastie, T. (2008) A working guide to boosted regression trees. *Journal of Animal Ecology*, 77, 802–813.

Eckert CG, Samis KE, Lougheed SC. (2008). Genetic variation across species’ geographical ranges: The central-marginal hypothesis and beyond. *Molecular Ecology*, 17, 1170–1188.

Epps CW, Palsboll PJ, Wehausen JD, Roderick GK, McCullough DR. (2006). Elevation and connectivity define genetic refugia for mountain sheep as climate warms. *Molecular Ecology*, 15, 4295-302.

Frade, P.R., Bongaerts, P., Englebert, N., Rogers, A., Gonzalez-Rivero, M., & Hoegh-Guldberg, O. (2018) Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. *Nature Communications*, 9, 1–8.

Garel, E., Laiz, I., Drago, T., & Relvas, P. (2016) Characterisation of coastal counter-currents on the inner shelf of the Gulf of Cadiz. *Journal of Marine Systems*, 155, 19–34.

Garrabou, J., Ballesteros, E., & Zabala, M. (2002) Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. *Estuarine, Coastal and Shelf Science*, 55, 493–508.

Garrabou J, Coma R, Bensoussan N, Chevaldonné P, Cigliano M, Diaz D, Harmelin LG, Gambi MC, Kerstingk DK, Ledoux JB, Lejeunes C, Linares C, Marschal C, Pérez T, Ribes M, Romano JC, Serrano E, Teixido N, Torrents O, Zabala M, Zuberer F, Cerrano C. (2009). Mass mortality in NW Mediterranean rocky benthic communities: effects of the 2003 heat wave. *Global Change Biology*, 15, 1090–1103.
Giordano AR, Ridenhour BJ, Storfer A. (2007). The influence of altitude and topography on genetic structure in the long-toed salamander (*Ambystoma macrodactylum*). *Molecular Ecology*, 16, 1625-1637.

Hampe A, Petit Rj. (2005). Conserving biodiversity under climate change: The rear edge matters. *Ecology Letters*, 8, 461-467.

Hannah, L., Midgley, G.F., & Millar, D. (2002) Climate change-integrated conservation strategies. *Global Ecology and Biogeography*, 11, 485–495.

Harmelin, J.-G. & Marinopoulos, J. (1994) Population structure and partial mortality of the gorgonian *Paramuricea clavata* (Risso) in the north-western Mediterranean (France, Port-Cros Island). *Marine Life*, 4, 5–13.

Holstein, D.M., Smith, T.B., Gyory, J., & Paris, C.B. (2015) Fertile fathoms: Deep reproductive refugia for threatened shallow corals. *Scientific Reports*, 5, 1–12.

Hughes AR, Stachowicz JJ. (2004). Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. *Proceedings of the National Academy of Sciences of the United States of America*, 101, 8998-9002.

Johannesson, K. & André, C. (2006) Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. *Molecular Ecology*, 15, 2013–2029.

Leberg PL. (1992). Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. *Evolution*, 46, 477-494.

Lima FP, Queiroz N, Ribeiro PA, Hawkins SJ, Santos AM. (2006). Recent changes in the distribution of a marine gastropod, *Patella rustica* Linnaeus, 1758, and their relationship to unusual climatic events. *Journal of Biogeography*, 33, 812–822.

Linares C, Coma R, Diaz D, Zabala M, Hereu B, Dantart L. (2005). Immediate and delayed effects of a mass mortality event on gorgonian population dynamics and benthic community structure in the NW Mediterranean Sea. *Marine Ecology Progress Series*, 305, 127–137,
Linares C, Doak DF, Coma R, Díaz D, Zabala M. (2007). Life history and viability of a long-lived marine invertebrate: the octocoral Paramuricea clavata. Ecology. 88, 918-928.

Linares, C., Coma, R., Garrabou, J., Díaz, D., & Zabala, M. (2008) Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. Journal of Applied Ecology, 45, 688–699.

Locke M, Baack E, Toonen R. (2000). STRand. Version 2.2.30. Veterinary Genetics Lab. University of California, Davis, CA.

Lourenço CR, Zardi GI, McQuaid CD, Serrão EA, Pearson GA, Jacinto R, Nicastro KR. (2016). Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. Journal of Biogeography, 43, 1595–1607.

Ludwig, M., Schlinkert, H., Holzschuh, A., Fischer, C., Scherber, C., Trmka, A., Tscharntke, T., & Batáry, P. (2012) Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecologica, 45, 50–56.

Luikart, G. & Cornuet, J.M. (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology, 12, 228-237.

Maggs, C.A., Castilho, R., Foltz, D., Henzler, C., Jolly, M.T., Kelly, J., Olsen, J., Perez, K., Stam, W., Vainola, R., Viard, F., & Wares, J. (2008) Evaluating Signatures of Glacial Refugia for North Atlantic Marine Organisms. Ecology, 89, S108–S122.

Meirmans, P.G. & Van Tienderen, P.H. (2004) GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes, 4, 792–794.

Mokhtar-Jamaï K, Pascual M, Ledoux Jb, Coma R, Féral Jp, Garrabou J, Aurelle D. (2011). From global to local genetic structuring in the red gorgonian Paramuricea clavata: The interplay between oceanographic conditions and limited larval dispersal. Molecular Ecology, 20, 3291–3305.

Nei M, Maruyama T, Chakraborty R. (1975). The bottleneck effect and genetic variability in populations. Evolution 29, 1–10.
Neiva, J., Serrão, E., Assis, J., Pearson, G., Coyer, J., Olsen, J., ... Valero, M. (2016). Climate oscillations, range shifts and phylogeographic patterns of North Atlantic Fucaceae. In Z.-M. Hu, & C. Fraser (Eds.), Sea-weed phylogeography (pp. 279–308). Netherlands: Springer.

Ohsawa, T., Ide, Y. (2008). Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. *Global Ecology and Biogeography*, 17, 152-163.

Padrón, M., Costantini, F., Bramanti, L., Guizien, K., & Abbiati, M. (2018). Genetic connectivity supports recovery of gorgonian populations affected by climate change. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 28, 776–787.

Pairaud, I.L., Bensoussan, N., Garreau, P., Faure, V., & Garrabou, J. (2014). Impacts of climate change on coastal benthic ecosystems: assessing the current risk of mortality outbreaks associated with thermal stress in NW Mediterranean coastal areas. *Ocean Dynamics*, 64, 103–115.

Peery, Z. M., Kirby, R., Reid, B.N., Stoelting, R., Doucet-Béer, E., Robinson, S., Vásquez-Carrillo, C., Pauli, J.N., & Palsboll, P.J. (2012). Reliability of genetic bottleneck tests for detecting recent population declines. *Molecular Ecology*, 21, 3403–3418.

Perez, T., Garrabou, J., Sartoretto, S., Harmelin JG, Francour P, Vacelet J. (2000). Mass mortality of marine invertebrates: an unprecedented event in the Northwestern Mediterranean. *Comptes Rendus de l’ Académie des Sciences Paris*, 323, 853–865.

Petit, R.J., El Mousadik, A., Pons, O. (1998). Identifying populations for conservation on the basis of genetic markers. *Conservation Biology*, 12, 844-855.

Pilczynska, J., Cocito, S., Boavida, J., Serrão, E., Queiroga, H. (2016). Genetic Diversity and Local Connectivity in the Mediterranean Red Gorgonian Coral after Mass Mortality Events. *PLoS ONE*, 11, e0150590.

Pilczynska, J., Boavida, J., Cocito, S., Lombardi, C., Peirano, A., Queiroga, H. (2017). Low clonal propagation in Atlantic and Mediterranean populations of the red gorgonian *Paramuricea clavata* (Octocorallia). *Scientia Marina*, 81,103-110.

Piry, S., Luikart, G., & Cornuet, J.M. (1999). BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. *Journal of Heredity*, 90, 502-503.
Prevati, M., Scinto, A., Cerrano, C., & Osinga, R. (2010) Oxygen consumption in Mediterranean octocorals under different temperatures. *Journal of Experimental Marine Biology and Ecology*, 390, 39-48.

Provan J, Bennett KD. (2008). Phylogeographic insights into cryptic glacial refugia. *Trends in Ecology and Evolution*, 23, 564-571.

Provan, J. (2013). The effects of past, present and future climate change on range-wide genetic diversity in northern North Atlantic marine species. *Frontiers of Biogeography*, 5, 60–66.

Relvas P, Barton ED, Dubert J, Oliveira PB, Peliz A, Da Silva JCB, Santos AMP. (2007). Physical oceanography of the western Iberia ecosystem: latest views and challenges. *Progress in Oceanography*, 74, 149-173.

Reusch TB, Ehlers A, Hämmerli A, Worm B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. *Proceedings of the National Academy of Sciences of the United States of America*, 102, 2826-2831.

Romano JC, Bensoussan N, Younes WA, Arlhac D. (2000). Anomalie thermique dans les eaux du golfe de Marseille durant l’été 1999. Une explication partielle de la mortalité d’invertébrés fixés? *Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie*, 323, 415-427.

Salomidi, M., Smith, C., Katsanevakis, S., Panayotidis, P., & Papanastassiou, V. (2009) Some observations on the structure and distribution of Gorgonian assemblages in the Eastern Mediterranean Sea. *Proceedings of the 1st symposium on conservation of the coralligenous bioconcretions (Tabarka 16–19 January)*, 242–245.

Smith TB, Glynn PW, Maté JL, Toth LT, Gyory J. (2014). A depth refugium from catastrophic coral bleaching prevents regional extinction. *Ecology*, 95, 1663–1673.

Spencer CC, Neigel JE, Leberg PL. (2000). Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. *Molecular Ecology*, 9, 1517-1528.

Van Oppen, M.J.H., Bongaerts, P., Underwood, J.N., Peplow, L.M., & Cooper, T.F. (2011) The role of deep reefs in shallow reef recovery: An assessment of vertical connectivity in a brooding coral from west and east Australia. *Molecular Ecology*, 20, 1647–1660.
Winnepenninckx B, Backeljau T, De Wachter R. (1993). Extraction of high molecular weight DNA from molluscs. *Trends in Genetics* 9, 407.

Zabala, M. & Ballesteros, E. (1989) Surface-dependent strategies and energy flux in benthic marine communities or, why corals do not exist in the Mediterranean. *Scientia Marina*, 53, 3–17.

Zhang, G. & Chen, J.J. (2013) Adaptive Fitting of Linear Mixed-Effects Models with Correlated Random-effects. *Journal of statistical computation and simulation*, 83, 2291-2314.

Zuur, A.F., Ieno, E.N., & Smith, G.M. (2007) *Analyzing Ecological Data*. Springer-Verlag New York.
Figure 1

Sampling sites of the red gorgonian (*Paramuricea clavata*) populations in the Atlantic Ocean and the Mediterranean Sea. The exact coordinates of each sampling site are available in the supplementary information (S1).

Map source “©OpenStreetMap contributors”, available under the Open Database License. This figure is published under CC BY SA, https://www.openstreetmap.org/copyright.
Figure 2

Genetic diversity (mean ±SD) as a) allelic richness, b) private alleles and c) expected heterozygosity of *Paramuricea clavata* in shallow (light grey) and deeper (dark grey) populations.

Asterisks indicate significant differences in diversity levels (P<0.05). Sampling site name, depth (m) and number of samples (n) are described for each population.
Figure 3

Partial dependence functions depicting the effect of bottom temperature on a) allelic richness, b) private alleles and c) expected heterozygosity.
Figure 4

Pairwise genetic differentiation F_{ST} (mean±SD) within sampling site (i.e., shallow vs. deeper populations; light grey) and between sampling sites (dark grey).

Asterisks indicate significant differences in genetic differentiation levels (P<0.05).
Table 1 (on next page)

Summary of linear regression models testing genetic diversity indices against depth and a set of environmental predictors.

Akaike Information Criterion, R-squared and p-value scores are shown for each model. Bold represents higher values when comparisons were made.
Model type	Predictors	Allelic richness		Private alleles		Expected heterozygosity				
-----------------	-----------------	------------------		-----------------		------------------------				
		AIC	R²	p-value	AIC	R²	p-value	AIC	R²	p-value
Null	Depth	71.05	0.22	0.01	92.84	0.60	0.01	-35.26	0.01	0.77
Environmental	Model effect	46.83	0.63		74.31	0.62		-39.33	0.43	
	Min. current velocity	0.98		0.45		0.29				
	Min. productivity	0.99		0.95		0.81				
	Slope	0.72		0.56		0.13				
	Max. temperature	0.01		0.01		0.53				