Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation

González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel

DOI: https://doi.org/10.1371/journal.pone.0174725

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-139738
Published Version

Originally published at:
González-Domínguez, Beatriz; Studer, Mirjam S; Hagedorn, Frank; Niklaus, Pascal A; Abiven, Samuel (2017). Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation. PLoS ONE, 12(4):e0174725.
DOI: https://doi.org/10.1371/journal.pone.0174725
Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation

Beatriz González-Domínguez¹,², Mirjam S. Studer¹, Frank Hagedorn³, Pascal A. Niklaus², Samuel Abiven¹ *

¹ Soil Science and Biogeochemistry, Department of Geography, University of Zurich, Zurich, Switzerland,
² Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland,
³ Forest Soils and Biogeochemistry, Swiss Federal Institute for Snow, Forest and Landscape Research WSL, Birmensdorf, Switzerland

* samuel.abiven@geo.uzh.ch

Abstract

Laboratory soil incubations provide controlled conditions to investigate carbon and nutrient dynamics; however, they are not free of artefacts. As carbon and nitrogen cycles are tightly linked, we aimed at investigating whether the incubation-induced accumulation of mineral nitrogen (N_{min}) biases soil organic carbon (SOC) mineralisation. For this, we selected two soils representative of the C:N ratio values found in European temperate forests, and applied two incubation systems: ‘closed’ beakers and ‘open’ microlysimeters. The latter allowed leaching the soil samples during the incubation. By the end of the 121-day experiment, the low C:N soil significantly accumulated more N_{min} in beakers (5.12 g kg⁻¹ OC) than in microlysimeters (3.00 g kg⁻¹ OC) but there was not a significant difference in SOC mineralisation at any point of the experiment. On the other hand, N_{min} did not accumulate in the high C:N soil but, by the end of the experiment, leaching had promoted 33.9% more SOC solubilisation than beakers. Therefore, we did not find evidence that incubation experiments introduce a bias on SOC mineralisation. This outcome strengthens results from soil incubation studies.

Introduction

Laboratory soil incubations have been extensively applied in various areas of research [1,2] and are commonly used to investigate the potential mineralisation of soil organic carbon (SOC) under optimum conditions for microbial activity [3]. Compared to field experiments, laboratory incubations have the advantages of standardising soil samples (e.g. particle size, bulk density) and controlling environmental drivers of mineralisation (e.g. temperature, moisture content). During the decomposition of soil organic matter, ammonification transforms organic nitrogen into NH_4^+, which is transformed into NO_2^- and NO_3^- through nitrification. Ammonification is part of the decomposition process of soil organic matter and leads to a net production of CO_2, even though the chemoautotrophic oxidation of NH_4^+ requires CO_2. In
the field, mineral nitrogen (N\textsubscript{min}) is susceptible to being leached down the profile. However, in beakers, the ‘closed’ and most frequently used incubation system [4], this removal does not occur. As a result, N\textsubscript{min} may accumulate in the soil sample potentially affecting SOC mineralisation. In an attempt to minimise this incubation-induced accumulation of N\textsubscript{min}, in this study we applied an ‘open’ incubation system, referred to as microlysimeter [5–7], that permits the leaching of soil samples during the experiment.

Most incubation studies with N-amended soils apply the treatment at the beginning of the experiment and have shown that increases in N\textsubscript{min} concentrations typically decrease native SOC mineralisation [8,9]. Potential reasons for this decrease are the decline in N-mining by soil microbial communities [10] and the suppression of extracellular enzymes [11]. However, there are also incubation studies that have shown no effect [12] or a positive effect of N\textsubscript{min} on SOC mineralisation in cases of soils with severe N limitation [13]. As the availability of N\textsubscript{min} is influential on substrate decomposition [14], bulk soil C:N ratios can contribute to explain the dynamics of these two elements in soils.

In this study, we compared ‘closed’ (i.e beakers) and ‘open’ (i.e. microlysimeters) incubation systems and tested whether N\textsubscript{min} accumulation occurred and whether it had an effect on SOC mineralisation. We hypothesise that the effect of the incubation-induced accumulation of N\textsubscript{min} on SOC mineralisation depends on the C:N ratio of the soil, with suppressed and stimulated mineralisation in low and high C:N soils respectively. This hypothesis is of particular relevance to laboratory incubation studies. If proved true, C mineralisation measured in these experiments could be differently biased depending on the C:N ratio of the incubated sample.

Materials and methods

Ethics statement

Sites from where soils for this study were sampled are part of the Swiss Federal Institute of Forest, Snow and Landscape Research network. All necessary permits were obtained before sampling. This study did not involve endangered or protected species.

Selection, sampling and characterization of study soils

To test our hypothesis, we selected two soils (Table 1) from the database of the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL) [15]. In May 2014, this database contained data on 1,050 soil profiles spread across Switzerland. The C:N ratio of the two soils selected (12.51 ± 0.03 and 17.43 ± 0.17, mean ± s.e.m.) was representative of the values most

| Table 1. Characteristics of the two mineral forest soils (upper 20 cm) used in this study. |
|---------------------------------|-----------------|-----------------|
| Coordinates (WGS84) | Low C:N soil | High C:N soil |
| | 46.680°N, 6.898°E | 46.268°N, 7.436°E |
| Forest type | Beech | Pine |
| Soil type | Phaeozem | Calcisol |
| Soil C:N ratio (g kg-1) | 12.51 ± 0.03 | 17.43 ± 0.17 |
| Soil total organic C (g kg-1) | 36.70 ± 2.15 | 36.63 ± 3.81 |
| Soil total N (g kg-1) | 2.93 ± 0.17 | 2.10 ± 0.21 |
| Soil pH (CaCl\textsubscript{2}) | 6.74 ± 0.02 | 5.83 ± 0.06 |
| Clay (%) | 24.36 | 15.83 |
| Texture class (USDA) | Loamy | Silty-loamy |
| Fe (NH\textsubscript{4}Cl extraction, mmol, kg-1) | 0.0044 | 0.0037 |
| Al (NH\textsubscript{4}Cl extraction, mmol, kg-1) | 0.0000 | 0.0235 |

https://doi.org/10.1371/journal.pone.0174725.t001

Competing interests: The authors have declared that no competing interests exist.
commonly found in European temperate forest mineral soils [16]. But at the same time, these two soils were different within the range of probability distribution of C:N values in Swiss forest soils (2nd and 7th decile); therefore, representing soils of contrasting N_{min} dynamics.

In August 2014, we collected three soil composites within a 40×40 m2 plot at each site. Each composite was the product of mixing eight 0–20 cm depth soil cores collected from one of three non-overlapping areas of the plot. This sampling strategy enabled us to account for spatial variability. Each composite constituted an experimental replicate. Soil samples were collected with a 5 cm diameter Humax corer. After collection, samples were transported in portable fridges to the lab where they were freshly sieved by hand (≤ 2 mm) and stored at 3.5˚C until the beginning of the experiment in March 2015.

We measured soil pH on 40˚C dried composite subsamples. Part of these dried soil subsamples were also milled and fumigated with HCl to measure total organic carbon and total nitrogen with an Elemental Analyser (vario MICRO cube, Elementar, Germany). The rest of data in Table 1 is part of the WSL database [15,17].

Incubation experiment

We incubated fresh soil (sieved to ≤ 2 mm; 40 g equivalent dry mass; adjusted to 0.8 g cm$^{-3}$ bulk density) in sterilised glass beakers and microlysimeters. Soil samples in both incubation systems were placed separately into 2 litre airtight glass jars that contained 20 ml of distilled water to ensure the headspace was moist. Lasting 121 days, the experiment was conducted under aerobic conditions, in the dark and at 25˚C. The experiment started after a 10-day pre-incubation which was run under the same conditions as in the incubation assay.

During the course of the experiment, we repeatedly measured SOC mineralisation and the concentration of N_{min} and organic carbon (OC) in two types of soil water extracts (SWE). The CO$_2$-C product of the mineralisation of SOC was captured in 20 ml NaOH (1M) traps placed into the 2 liter glass jars. Subsequently, the amount of C trapped was determined by the change of conductivity of the NaOH [18]. Mineral N (NO_3^- and NO_2^-) in SWE was quantified with a continuous flow analyser (San++, Skalar, Breda, the Netherlands). We also measured NH$_4^+$ but the concentrations were below the detection limit (1 ppm) and are not reported. Finally, OC in SWE was determined with a TOC analyser (DIMA TOC-2000 Dimatex, Essen, Germany).

Since the beginning of the experiment, NaOH traps were taken out and replaced for fresh ones on days 4, 13, 30, 63 and 121. On these five days, microlysimeters were leached (SWE$_l$) and beakers and microlysimeters were destructively extracted with water (SWE$_e$); hence we obtained two types of SWE samples. To produce SWE$_l$ samples, 30 ml of nutrient solution [19] without N or P were added to each microlysimeter. Subsequently, after equilibration for 30 minutes, the systems were leached by applying a suction of -20 kPa for 25 minutes. To obtain SWE$_e$ samples, three replicates of each combination of soil and incubation system ($n = 12$) were extracted with distilled water (1:5 soil:water) after shaking for 30 minutes at 100 rpm. SWE$_l$ and SWE$_e$ samples were filtered (1.6 μm MGA glass microfibre, Sartorius) before analysis of N_{min} and OC.

Until the time of a given leaching date, the total quantity of N_{min} or OC solubilised ($[\text{SWE}_l]^i$) for samples in microlysimeters, was the sum of the quantity of N_{min} or OC found in the SWE of the destructed sample ($[\text{SWE}_e]^i$), plus the cumulative quantity of N_{min} or OC removed in previous leaching cycles ($\sum_{i=1}^{i-1} [\text{SWE}_l]^i$) (Eq 1).

$$[\text{SWE}_l]^i = [\text{SWE}_e]^i + \sum_{i=1}^{i-1} [\text{SWE}_l]^i$$ (Eq 1)

Eq 1 does not apply to samples incubated in beakers. As ‘closed’ systems were not flushed, their total quantity of N_{min} or OC solubilised is equal to SWE$_e$.

[15] and [17] refer to the WSL database sources.
Data analysis
Statistical analysis was performed with the R software (version 3.3.2) [20]. Incubation data (i.e. $SWE_e-N_{\text{min}}, SWE_e-OC$, OC mineralised) were normalised relative to the total OC content of the bulk soil at the beginning of the experiment. Incubation systems and soil types were compared by Student’s t-tests. Results can be found in the Supplementary Material section. Errors given in the text, tables and graphs are standard errors of the mean. All data produced in this study is open access [21].

Results
Soluble mineral nitrogen
Results show that the concentration of soluble N_{min} in the incubated samples related to the C:N ratio of the soil (Fig 1A, S1 Table). In both incubation systems, the low C:N soil accumulated N_{min} non-linearly over the incubation period, but by day 121 this accumulation was significantly smaller in microlysimeters compared to beakers ($p < 0.05$, t-test). In the high C:N soil, N_{min} remained constant in both incubation systems (Fig 1A). When examining the total N_{min} produced (Fig 1B, S1 Table), there was no significant difference between beakers and microlysimeters for any of the two soils.

Soluble organic carbon
Soluble OC did not accumulate in any soil or incubation system (Fig 2A, S2 Table). However, when considering the total soluble OC produced over the incubation period (Fig 2B, S2 Table), we observe that by day 121, the high C:N soil released more OC in microlysimeters than in beakers ($p = 0.07$, t-test). Additionally, the cumulative OC leached from microlysimeters represented about $0.96 \pm 0.13\%$ and $1.79 \pm 0.10\%$ of the cumulative CO$_2$-C released, in the low and high C:N soil respectively.

Soil organic carbon mineralisation
By day 121, there was no significant difference in the cumulative C mineralised between soils or incubation systems (Fig 3, S3 Table). Quantitatively, the C mineralised by the low C:N soil was

![Fig 1. Soluble mineral nitrogen (NO$_3^-$-N and NO$_2^-$-N) relative to total soil organic carbon (OC). Soluble mineral nitrogen (NO$_3^-$-N and NO$_2^-$-N) relative to total soil organic carbon (OC) over a 121-day incubation. (a) Measured in 1:5 soil water extracts (SWE_e) and (b) calculated (Eq 1) for the total soil water extract as the sum of extracted and leached N_{min} (SWE_T), for two soils (i.e. high and low C:N ratios) and two incubation systems (i.e. leached microlysimeters and un-leached beakers). Error bars represent the standard error of the mean (n = 3).](https://doi.org/10.1371/journal.pone.0174725.g001)
90.52 ± 4.00 g kg\(^{-1}\) OC in beakers and 92.23 ± 5.89 g kg\(^{-1}\) OC in microlysimeters. The high C:N soil mineralised 87.30 ± 2.62 g kg\(^{-1}\) OC in beakers and 90.39 ± 1.80 g kg\(^{-1}\) OC in microlysimeters.

Discussion

‘Closed’ systems promoted the accumulation of \(N_{\text{min}}\) in the low C:N soil, but this accumulation did not significantly affect SOC mineralisation.

Although we measured an increase of 2 and 3 times the initial \(N_{\text{min}}\) concentration in microlysimeters and beakers respectively by the end of the incubation of the low C:N soil (Fig 1A), we...
did not observe a significant effect of these two levels of N$_{\text{min}}$ on SOC mineralisation (Fig 3). Therefore, this result contradicts our initial hypothesis, even considering that the increase of N$_{\text{min}}$ in this soil in beakers (140.27 ± 3.70 μg N$_{\text{min}}$ g$^{-1}$ soil) was the same magnitude as that treatments applied in N-amended incubations and where a negative effect on SOC mineralisation was found [9]. One explanation for this result could be that the concentrations of N$_{\text{min}}$ were not high enough to inhibit decomposition enzymes [22]. A second explanation could be that N-amended incubations are commonly short-term assays (i.e. hours, days) that apply a unique treatment at the beginning of the experiment [9, 12, 13, 23]. Contrary to these experiments, the accumulation of N$_{\text{min}}$ in this study was gradual and hence, soil microorganisms may have progressively adapted to the increasing N$_{\text{min}}$ concentrations [23].

Mineral N did not accumulate in the high C:N soil and leaching did not induce N limitation

In the high C:N soil in beakers, we observed a constant concentration of N$_{\text{min}}$ (Fig 1A). This was probably due to a steady state between the production and the immobilisation of N$_{\text{min}}$ by soil microorganisms [24, 25]. Leaching did not induce N$_{\text{min}}$ limitation in the high C:N soil. This conclusion is supported by the fact that the total N$_{\text{min}}$ produced over the incubation period (Fig 1B) was not significantly larger in microlysimeter than in beakers.

Leaching promoted the solubilisation of SOM in the high C:N soil

Leached OC represented on average only ~1% of the SOC mineralised as CO$_2$; therefore, it is unlikely that the depletion of labile C from leaching had a significant effect on the mineralisation of SOC. We did not observe an accumulation of soluble OC over the incubation period in any soil or incubation system, but a stable concentration within the range of 2.8–4.5 g kg$^{-1}$ OC (Fig 2A). This dynamic reflects an equilibrium between the solid and the aqueous phases of soil organic matter [24–28]. This explanation is also supported by the higher solubilisation of SOC in the leached high C:N soil compared to the un-leached system (Fig 2B).

Conclusions

In this study, we aimed at investigating whether the incubation-induced accumulation of N$_{\text{min}}$ biases SOC mineralisation. We selected two soils that (i) were representative of the C:N ratio values found in European temperate forests, and (ii) differed on their net nitrogen mineralisation. Results demonstrated that the progressive accumulation of N$_{\text{min}}$, which only occurred in the low C:N soil, did not have a significant effect on the mineralisation of SOC. In parallel, N$_{\text{min}}$ did not accumulate in the high C:N soil, but leaching promoted higher solubilisation of SOC. Our results are based on two representative European temperate forest soils, but incubations are applied to a wider range of soil types. Therefore, to test whether the results of this study hold independently of the characteristics of the incubated samples (e.g. pH, texture), future work should be undertaken with a broader range of soils, also including strongly N-limited ones.

Supporting information

S1 Table. Results of Student’s t-tests to compare two incubation systems (i.e. leached microlysimeters and un-leached beakers) in two soils (i.e. high and low C:N ratios). Data tested are soluble mineral nitrogen (NO$_3^-$-N and NO$_2^-$-N) relative to total soil organic carbon (Fig 1A and 1B) over the 121-day incubation (g kg$^{-1}$ OC). SWE$_{T-N_{\text{min}}}$ was measured in 1:5 soil water extracts (Fig 1A) and SWE$_{T-N_{\text{min}}}$ was calculated (Eq 1) for the total soil water extract as
the sum of extracted and leached N_{min} (Fig 1B). Cell values: Significance code based on p-values (‘‘1, ‘‘0.1, ‘‘‘‘0.05, ‘‘‘‘‘‘0.01, ‘‘‘‘‘‘‘‘0.001), t-value, $p = p$-value.

(DOCX)

S2 Table. Results of Student’s t-tests to compare two incubation systems (i.e. leached microlysimeters and un-leached beakers) in two soils (i.e. high and low C:N ratios). Data tested are soluble organic carbon (OC) relative to total soil organic carbon (Fig 1A and 1B) over the 121-day incubation (g kg$^{-1}$ OC). SWEe-OC was measured in 1:5 soil water extracts (Fig 2A) and SWET-OC was calculated (Eq 1) for the total soil water extract as the sum of extracted and leached OC (Fig 2B). Cell values: Significance code based on p-values (‘‘1, ‘‘0.1, ‘‘‘‘0.05, ‘‘‘‘‘‘0.01, ‘‘‘‘‘‘‘‘0.001), t-value, $p = p$-value.

(DOCX)

S3 Table. Results of Student’s t-tests to compare: in row-1, two incubation systems (i.e. leached microlysimeters and un-leached beakers) in two soils (i.e. high and low C:N ratios) and in row-2, two soils when incubated in two incubation systems. Data tested are cumulative carbon mineralised relative to total soil organic carbon (Fig 3) over the 121-day incubation (g kg$^{-1}$ OC). Cell values: Significance code based on p-values (‘‘1, ‘‘0.1, ‘‘‘‘0.05, ‘‘‘‘‘‘0.01, ‘‘‘‘‘‘‘‘0.001), t-value, $p = p$-value.

(DOCX)

Acknowledgments

We thank the Geography Department of the University of Zurich for their support. We also thank the Swiss Federal Institute for Forest, Snow and Landscape Research, their team on the Long-term Forest Ecosystem Research Programme and specially Lorenz Walthert and Stephan Zimmermann, for giving us access to the research sites and to the database. We thank Rebecca Navarro, René Husi and Miguel Jales Hon for their technical assistance. Finally, we thank two anonymous reviewers for their helpful comments on this manuscript.

Author Contributions

Conceptualization: BGD SA FH.

Data curation: BGD.

Formal analysis: BGD SA.

Funding acquisition: SA PAN.

Investigation: BGD.

Methodology: BGD SA.

Project administration: BGD.

Resources: SA, PAN.

Software: BGD.

Supervision: BGD SA.

Validation: BGD SA MS FH PAN.

Visualization: BGD.

Writing – original draft: BGD.
Writing – review & editing: BGD SA MS FH PAN.

References
1. Niklewski B. Bodenbakteriologische Beobachtungen als Mittel zur Beurteilung von Böden. Zentralblatt für Bakteriol. 1912; 32: 209–217.
2. Bracho R, Natali S, Pegoraro E, Crummer KG, Schädel C, Celis G, et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biol Biochem. 2016; 97: 1–14.
3. Paul EAA, Morris SJJ, Böhm S. The determination of soil C pool sizes and turnover rates: biophysical fractionation and tracers. In: Lal R, Kimble JM, Follett RF, Stewart BA, editors. Assessment methods for soil carbon. 1st ed. Boca Raton, FL, USA: CRC Press; 2001. pp. 193–206.
4. ISO/DIS 14239. Soil quality—Laboratory incubation systems for measuring the mineralization of organic chemicals in soil under aerobic conditions. 2nd ed. 2016.
5. Nadelhoffer KJ. Microlysimeter for measuring nitrogen mineralization and microbial respiration in aerobic soil incubations. Soil Sci Soc Am J. 1990; 54: 411–415.
6. Hagedorn F, Saurer M, Blaser P. A 13C tracer study to identify the origin of dissolved organic carbon in forested mineral soils. Eur J Soil Sci. 2004; 55: 91–100.
7. Lavoie M, Mack MC, Schuur EAG. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J Geophys Res. 2011; 116: G03013.
8. Janssens IA, Dieleman W, Luysseart S, Subke J-A, Reichstein M, Ceulemans R, et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci. Nature Publishing Group; 2010; 3: 315–322.
9. Ramírez KS, Craine JM, Fierer N. Nitrogen fertilization inhibits soil microbial respiration regardless of the form of nitrogen applied. Soil Biol Biochem. Elsevier Ltd; 2010; 42: 2336–2338.
10. Craine JM, Morrow C, Fierer N. Microbial nitrogen limitation increases decomposition. Ecology. 2007; 88: 2051–2113. PMID: 17824441
11. Fog K. The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev. 1988; 63: 433–462.
12. Keuskamp JA, Schmitt H, Laanbroek HJ, Verhoeven JTA, Hefting MM. Nutrient amendment does not increase mineralisation of sequestered carbon during incubation of a nitrogen limited mangrove soil. Soil Biol Biochem. Elsevier Ltd; 2013; 57: 822–829.
13. Hopkins DW, Sparrow AD, Elberling B, Gregorich EG, Novis PM, Greenfield LG, et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem. 2006; 38: 3130–3140.
14. Recous S, Robin D, Darwis D, Mary B. Soil inorganic N availability: Effect on maize residue decomposition. Soil Biol Biochem. 1995; 27: 1529–1538.
15. Lorenz W, Stefan Z, Marco W, Peter J, Flurin S. Forest-site ecology. In: Swiss Federal Institute for Forest, Snow and Landscape Research Website [Internet]. 2013 [cited 29 Dec 2017]. Available: http://www.wsl.ch/fe/boden/schwerpunkte/standortkunde/index_EN
16. Persson T, Oene van H, Harrison AF, Karlsson PS, Bauer GA, Cerny J, et al. Experimental sites in the NIPHY/CANIF Project. In: Schulze E-D, editor. Carbon and nitrogen cycling in European forest ecosystems. 1st ed. Berlin Heidelberg: Springer-Verlag; 2000. pp. 14–46.
17. Walthert L, Zimmermann S, Blaser P, Luster J, Lüscher P. Waldböden der Schweiz. Band 1 Grundlagen und Region Jura. 1st ed. Bern, Switzerland: Hep Verlag; 2004.
18. Wollum A, Gomez J. A conductivity method for measuring microbiologically evolved carbon dioxide. Ecology. 1970; 51: 155–156.
19. Nadelhoffer KJ, Fry B. Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Sci Soc Am J. 1988; 52: 1633–1640.
20. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2016.
21. González-Dominguez B, Studer MS, Hagedorn F, Niklaus PA, Abiven S. Database—Leaching of soils during laboratory incubations does not affect soil organic carbon mineralisation but solubilisation [Internet]. 2017 [cited 2 Jan 2017].
22. Kim H, Kang H. The impacts of excessive nitrogen additions on enzyme activities and nutrient leaching in two contrasting forest soils. J Microbiol. 2011; 49: 369–375. https://doi.org/10.1007/s12275-011-0421-x PMID: 21717320
23. Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Chang Biol. 2012; 18: 1918–1927.

24. Schimel JP, Bennett J. Nitrogen mineralization: challenges of a changing paradigm. Ecology. 2004; 85: 591–602.

25. Andresen LC, Bjo rsne AK, Bodé S, Klemmedtsson L, Boeckx P, Rütting T. Depolymerization and mineralization—investigating N availability by a novel 15N tracing model. Soil Discuss. 2016; 2016: 1–21.

26. Kalbitz K, Schmerwitz J, Schwesig D, Matzner E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma. 2003; 113: 273–291.

27. Kaiser K, Kalbitz K. Cycling downwards—dissolved organic matter in soils. Soil Biol Biochem. Elsevier Ltd; 2012; 52: 29–32.

28. Tipping E, Woof C. The Distribution of Humic Substances between the Solid and Aqueous Phases of Acid Organic Soils—a Description Based on Humic Heterogeneity and Charge-Dependent Sorption Equilibria. J Soil Sci. 1991; 42: 437–448.