Simulation of the kinetics of the curing process of polymer composite materials based on epoxy binders

Yangyang Chen¹, Pyi Phy Maung², G V Malysheva³ and A A Paduchin ⁴

¹,²,³ Bauman Moscow State Technical University, Moscow, Russia Federation
⁴ K.A. Kerimov School №1583, Moscow state budget educational institution, Moscow, Russia Federation

E-mail: ¹yangyangchen@mail.ru, ²pyaephyo@mail.ru, ³malyin@mail.ru, ⁴a@inginirium.ru

Abstract. This article investigated the kinetics of the curing process of composite material based on epoxy binders under different conditions of heat transfer. A technique for determining the heat capacity and thermal conductivity depending on the degree of cure of epoxy binders was carried out. The kinetic parameters of the binders used to describe the exothermic effects of binders in the chemical reaction were determined. Taking into account the phase state changes and their exothermic effects of the binders during curing, the simulation of curing process of glass fiber reinforced plastics (GFRP) was carried out. Experimental results of determination of heat capacity, thermal conductivity and kinetic parameters of epoxy binders were used as initial inputs for modeling the curing process of polymer composite materials. The influence of the heat transfer coefficient on the temperature state of GFRP was investigated. It was found that the heat transfer condition strongly affects the temperature state of fiberglass during their curing.

1. Introduction
Modern glass fiber reinforced plastics (GFRP) and carbon fiber reinforced plastics (CFRP) are used as structural materials in the manufacture of products in mechanical engineering, aviation, aerospace and many other industries [1-3]. It is known that technological errors can be inherited, but for parts made of composites based on thermosetting binders, their quality is finally formed during the technological operation — curing [4-6].

The problem of studying the kinetics of curing processes is given much attention, especially in the development of the technology for forming large-sized and complex geometrical shaped products, in which the curing processes proceed unevenly, is solved [7-10]. In the technical literature [11-12], the study of the temperature field of products in the curing process of epoxy (and other thermosetting) materials only in the solid aggregate state is given. The researchers do not take into account the kinetics of changes in thermal properties during heating, which leads to a large error in the study of the temperature state of parts from GFRP during their curing. The curing of polymer composites is carried out, as a rule, in autoclaves or electric furnaces [13-15]. With different heating technologies during curing, the heat transfer coefficients vary from 5 to 200 W/(m²·K). For conditions of free air convection, the heat transfer coefficient is 5-25 W/(m²·K). In forced convection, the heat transfer
The coefficient is 10-200 W/(m²·K). In the process of curing GFRP products, heat transfer conditions between the environment and the sample must be taken into account. The aim of this work is to study the curing process of products taking into account the phase change and exothermic effects of the binders in the curing process under different convection conditions.

2. Determination of the thermophysical properties of resins
As an object of research used epoxy binder hot curing, consisting of an epoxy resin and a hardener based on aromatic amine.

In the process of curing composite materials based on epoxy binders, the thermophysical properties of the binders vary depending on the degree of cure. The heat capacity (Table 1) of the binders, depending on the curing degree, is determined by the differential calorimeter method. The thermal conductivity (Table 1) of the binders, depending on the degree of curing, is determined by the laser flash method. The feature of these tests was the use of a sample in a liquid state, which did not allow to withstand the required dimensions. In addition, the composition used is an optically transparent material for laser radiation. A special crucible was used to measure the thermal conductivity of the material in the liquid state of aggregation.

Degree of curing, %	\(C_p, J/(kg·K) \)	\(\lambda, W/(m·K) \)
0	1973	0.08
5	1973	0.08
16	1921	0.14
28	1820	0.19
75	1406	0.22
87	1338	0.25
100	1300	0.27

It is established that with increasing the degree of curing the heat capacity increases and the thermal conductivity decreases.

3. Determination of cure kinetic parameters of resins
To study the thermal effect of the chemical reaction during the curing of the binders, a differential scanning calorimeter (DSC) was used. Using the DSC method, the curve of the thermal effect of epoxy binders was obtained for different heating rates of 1, 2, 3, 5 K/min (Figure 1). The amount of heat during the chemical reaction is determined by the peak area of the DSC curve.

![Figure 1. DSC curve at the heating rate of 1 K/min (1), 2 K/min (2) 3 K/min (3), 5 K/min (4).](image)
The equation for describing the curing process of these binders is:

$$ C \frac{d\beta}{dT} = A \exp \left(- \frac{E}{RT} \right) \beta^m (1 - \beta)^n $$

(1)

where C – heating rate in the curing mode, K/s; β – degree of curing, %; m, n – the orders of the chemical reaction; A – frequency factor, s$^{-1}$; E – activation energy, J/mol; T – absolute temperature, K; R – universal gas constant, J/(mol·K).

The activation energy for epoxy resin is defined by equation Kissinger-Akahira-Sunose (KAS)

$$ \frac{d}{dt} \ln \left(\frac{\beta}{T_p^2} \right) = - \frac{E}{R} $$

(2)

where T_p – temperature at the peak of the DSC curve, K.

The kinetic parameters of the binders used were determined from the equations for describing the curing process (1) (2) and the results of DSC (Table 2).

Parameter	Value
Activation energy E, J/mol	61844
Frequency factor A, s$^{-1}$	3.6$ \times $104
m	0.12
n	0.62

The obtained kinetic parameters will be used to determine the exothermic effects of binders during the curing process.

4. Simulation of the curing process

During the curing process of composite materials, the thermophysical and kinetic properties of the binders, the efficiency of convection in the heat transfer process affects the temperature state of the sample. To analyze heat transfer during curing, the equations [19, 20] were used:

$$ \rho C_p(\beta) \frac{dT}{dt} = Q_a + Q_v + Q_x $$

(3)

$$ Q_a = \lambda_{xx} \frac{\partial^2 T}{\partial x^2} + 2\lambda_{xz} \frac{\partial^2 T}{\partial x \partial z} + \lambda_{zz} \frac{\partial^2 T}{\partial z^2} $$

(4)

$$ Q_a = \alpha (T_0 - T) \frac{S_h}{V} $$

(5)

$$ Q_v = \rho H_v \frac{d\beta}{dt} $$

(6)
where \(\rho \) – density of GFRC, kg/m\(^3\); \(C_p \) – specific heat, J/(kg·K); \(T \) – absolute temperature, K; \(t \) – time, s; \(Q_3 \) – heat flux with thermal conductivity, W/m\(^3\); \(\lambda_{xx}, \lambda_{xz}, \lambda_{zz} \) – thermal conductivity of anisotropic material, W/(m·K); \(Q_{\alpha} \) – convective flow to the free surface of the sample, W/m\(^3\); \(\alpha \) – heat transfer coefficient, W/(m\(^2\)·K); \(T_0 \) – the ambient temperature, K; \(\text{Sh} \) – the area of action of convective flow, m\(^2\); \(Q_v \) – heat dissipation, W/m\(^3\); \(H_r \) – the total amount of heat released during the curing process, J/kg.

The ESI PAM-RTM software was used to simulate the curing process. All calculations were carried out on samples with a size of 25x25x25 mm. As the initial data for modeling, the above determined results of the heat capacity of thermal conductivity and kinetic parameters were used. In the curing mode rate of temperature rise is 2 K/min. The curing process (Figure 2, 3) was simulated taking into account the change in the phase state and their exothermic effects of the binders in the ideal case, under conditions of free air convection (heat transfer coefficient: 10 W/(m\(^2\)·K)), with forced convection (heat transfer coefficient 20, 100 W/(m\(^2\)·K)). The temperature state depending on the curing time for different convection coefficients was shown in figure 2. The table 3 shows the temperature gradient under different heat transfer conditions.

![Figure 2](image_url)

Figure 2. The temperature field on the surface of the sample in the ideal case (1) (the given curing mode) and when the convection coefficient is 100 (3), 20 (5), 10 (7); the temperature field in the center of the sample in the ideal case (2) and when the convection coefficient is 100 (4), 20 (6), 10 (8).
Figure 3. The curing degree on the surface of the sample in the ideal case (1) and when the convection coefficient is 100 (3), 20 (5), 10 (7); the degree of curing in the center of the sample in the ideal case (2) and when the convection coefficient is 100 (4), 20 (6), 10 (8).

Table 3. The temperature gradient under different heat transfer conditions

Option Number	Heat transfer coefficient (W/m²·K)	Maximum temperature gradient (°C)
1	10	16.2
2	20	21.8
3	100	26.9
4	∞	27.5

It was found that in the first section of the curing process, the temperature on the surface of the sample is higher than the temperature in the center of the sample. Due to the exothermic effects of binders, in the third section of the curing process the gradient of the temperature at the surface and in the center of the sample decreases. At the temperature rise section of the curing mode there is a moment where the temperature inside the sample is higher than the temperature on the surface of the sample. The temperature of the sample reaches its maximum value in the fourth section. In this area, heat release strongly affects the temperature field of the sample. The exothermic effect of the binders can lead to overheat in the fourth section of the curing mode. When the heat transfer coefficient has a larger value (100 and ∞) at the end of the curing process, there is a place where the degree of cure on the surface is higher than the degree of cure in the center of the sample.

5. Conclusion
As the result of simulation, it was found that the increasing the values of the heat transfer coefficients, the difference in temperature state from the set mode is higher. With increasing heat transfer coefficient, the maximum temperature gradient on the surface and in the center of the sample does not increase very much. The value of the heat transfer coefficient strongly affects the temperature state of the sample, and not so much affects the temperature difference on the surface and in the center of the sample.
Acknowledgement
The research results were partially obtained within the framework of the Russian Foundation for Basic Research (RFBR) grant No. 18-29-19034 / 18 “Development of theoretical and technological foundations for the manufacture of high-strength carbon plastics with a set of new functional properties based on metallized fibers”

References
[1] Zorin V A, Baurova N I and Shakurova A M 2014 Investigation of the structure of an encapsulated anaerobic adhesive J Polymer Science Series D vol 7(4) pp 303-305.
[2] Baurova N I, Zorin V A and Prikhotko V M 2016 Manifestation of a synergistic effect in technological heredity Polymer Science Series D vol. 9(2) pp 209-211.
[3] Maung P P, Malysheva G V and Gusev S A 2016 A study of the effect of network angle of fabrics on kinetics of impregnation upon molding of articles made from carbon plastics Polymer Science Series D vol 9(4) pp 407-410.
[4] Sergeev A Y., Turusov R. A., Baurova N. I. 2016 Strength of the joint of an anisotropic composite and a cylindrical element of the exhaust system of road vehicles Mechanics of Composite Materials vol. 52(1) pp. 89-98.
[5] Yangyang C, Malysheva G 2019 Method for Determining the Rational Regimes of Curing Products from Polymer Composite Materials Materials Today: Proceedings vol 11 pp 128-133.
[6] Nelyub V., Borodulin A., Kobets L., Malysheva G. 2017 Viscous hysteresis in filled siloxane binders Polymer Science – Series D. vol. 10(1) pp. 19-22.
[7] Reznik S V, Timoshenko V P, Shulyakovsky AV and Denisov O V 2013 Thermal-vacuum tests of hollow composite rods intended for structures in space Polymer Science Series D vol. 6(3) pp. 242-245.
[8] Reznik S V, Prosuntsov P V, Azarov A V 2015 Modeling of the temperature and stressed-strained states of the reflector of a mirror space antenna Eng Phys Thermophy vol 88(4) pp 978–983.
[9] Prosuntsov P V, Reznik S V, Mikhaylovskii K V and Belenkov E S 2018 Multiscale modeling of the binder polymer composite materials heating using microwave radiation Journal of Physics Conference Series vol 1134(1) p 012048.
[10] Reznik, S V, Timoshenko, V P, Prosuntsov, P V and Mial’ L V 2014 Theoretical Principles of Determining the Longitudinal Thermal Conductivity of Thin-Walled Structural Elements from Composite Materials Eng. Phys. Thermophy vol 87(4) pp 864–870.
[11] Phyo Maung, Malysheva G, Romanova I 2016 Optimization of the rheological properties of epoxy resins for glass and carbon reinforced plastics IOP Journal Conference series Materials scienceandengineering vol 153(1) p 6.
[12] Phyo Maung, Malysheva G and Tatyanikov O 2016 Optimization of the curing process of a sandwich panel IOP Journal Conference series Materials science and engineering vol 153(1) p 6.
[13] Borodulin A S, Marycheva A N, Malysheva G V 2015 Simulation of impregnation kinetics of fabric fillers in the production of fiberglass articles Glass Physics and Chemistry vol 41(6) pp 660-664.
[14] Mantell S C 1995 Cure Kinetics and rheology models for ICI fibertite 977-3 and 977-2 thermosetting resins Journal of reinforced plastics and composites vol 14(8) pp 847-865.
[15] Hickey C M D 2013 Cure kinetics and rheology characterisation and modelling of ambient temperature curing epoxy resins for resin infusion, VARTM and wet layup applications Journal of materials science vol 8 pp 690-701.
[16] Kamal M R and Sourour S 1973 Kinetics and thermal characterization of thermoset cure Polymer Engineering & Science 1973 vol 13(1) pp 59-64.
Kissinger H E 1957 Reaction kinetics in differential thermal analysis *Analytical chemistry*. vol 29(11). pp 1702-1706.

Akahira T and Sunose T T 1971 Joint Convention of Four Electrical Institutes *Chiba Institute of Technology* 1971 vol 16 pp 22-31.

Liang J Z, Li F H 2007 Simulation of heat transfer in hollow-glass-bead-filled polypropylene composites by finite element method *Polymer Testing* vol 26(3) pp 419-424.

Sonmez F O and Hahn H T 1997 Modeling of heat transfer and crystallization in thermoplastic composite tape placement process *Journal of Thermoplastic Composite Materials* vol 10(3) pp 198-240.