Gene Expression

Automatic identification of relevant genes from low-dimensional embeddings of single cell RNAseq data

Philipp Angerer1,2, David S. Fischer1,2, Fabian J. Theis1, Antonio Scialdone1,2,4,* and Carsten Marr1,*

1Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, 85764, Germany,
2TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany,
3Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, 85764, Germany, and
4Institute of Functional Epigenetics, Helmholtz Zentrum München – German Research Center for Environmental Health, München, 81377, Germany.

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Dimensionality reduction is a key step in the analysis of single-cell RNA sequencing data and produces a low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear techniques are most suitable to handle the intrinsic complexity of large, heterogeneous single cell data. With no linear relation between genes and embedding however, there is no way to extract the identity of genes most relevant for any cell's position in the low-dimensional embedding, and thus the underlying process.

In this paper, we introduce the concepts of global and local gene relevance to compute an equivalent of principal component analysis loadings for non-linear low-dimensional embeddings. While global gene relevance identifies drivers of the overall embedding, local gene relevance singles out genes that change in small, possibly rare subsets of cells. We apply our method to single-cell RNAseq datasets from different experimental protocols and to different low dimensional embedding techniques, showing our method’s versatility to identify key genes for a variety of biological processes.

To ensure reproducibility and ease of use, our method is released as part of destiny 3.0, a popular R package for building diffusion maps from single-cell transcriptomic data. It is readily available through Bioconductor.

1 Introduction

Single cell RNA sequencing (scRNAseq) has massively improved the resolution developmental trajectories and allowed unprecedented insights into the heterogeneity of complex tissues. On the flip side, new challenges have arisen due to the amount of data that needs to be processed, higher levels of technical and biological noise, and identification and interpretation of known and novel cell types. To exploit the new opportunities and deal with the new challenges, a large number of algorithms and tools have been developed.

Dimension reduction methods create a low dimensional embedding of the high dimensional gene expression space and are widely used. Such embeddings serve as a visual overview of the data on which gene expression profiles and per-cell or per-cluster statistics can be compared. Embeddings can also serve as inputs for further downstream computational analysis. E.g., principal component analysis (PCA) is a popular technique to identify orthogonal linear combinations of genes that explain variance in the data. PCA loadings quantify the contribution of genes to each principal component and help to understand the genetic drivers of the underlying molecular processes. However, linear methods are often not able to capture the complexity of high-dimensional datasets, which is why nonlinear dimension reduction methods (see e.g. t-SNE, diffusion maps) for further downstream computational analysis.
2 Results

We define gene relevance as a measure of how much a gene contributes to the cell-to-cell variability in a low-dimensional embedding of a scRNAseq dataset as a function of this embedding (see Fig 1b-c). It can be interpreted as a generalization of PCA loadings to non-linear dimensionality reduction techniques. Note that PCA loadings are constant with respect to the PC space while feature importance in a non-linear embedding is naturally a non-constant function of this embedding. A ranking of genes based on their relevance is built for every cell of the embedding. These rankings, then, can be combined to obtain a measurement of the “local” or “global” relevance of each gene (see Fig 1d-e and Methods), which highlight genes relevant in small or large cell subpopulations, respectively. To explore and visualize the results further, the method also provides a “gene relevance map”, where the locally most relevant genes are displayed along with the corresponding region of the embedding (see Fig 1f).

We demonstrate our method on a scRNAseq dataset of blood progenitors and blood cells from mouse embryos (Scialdone et al. 2016) (see Fig 2a and Methods for more details). In the original publication, this data was used to reconstruct a trajectory representing primitive erythropoiesis, along which blood marker expression increases and other markers (such as endothelial cells) decrease. There, an ad-hoc method was devised to find important genes in the 2D diffusion map embedding of the data. Here we show how our method can be used “out of the box” to rank genes based on their local and global relevance.
First, we ranked all highly variable genes according to their global gene relevance (see Fig. 2). As expected, the high-ranking genes are mostly associated with blood development, including the hemoglobin genes Hba-a1, Hba-x, Hbb-bh1, and the erythrocyte membrane genes Gypa and Cited4. Yahata et al. observed that genes Cytf1 and Haph1 are involved in extracellular matrix and important for development of the cardiovascular system. Lassueur et al. (2001). The top of the list has a good overlap with the ad-hoc method of Reczakite et al. (2016). A genes are shared between the top ten of both lists, and we find a Rank-Based Overlap of RBOp = 0.48, where we used $p = 0.9$, which assigns ~86% of the weight to the first 10 genes. Webber et al. (2019).

Second, we created a local gene relevance map (Fig. 3). Five out of the six locally most relevant genes (see Fig. 3) are among the ten most globally relevant ones. Interestingly, AlexSap is included only in the local gene relevance map, because its contribution is confined to a small region of the diffusion space (bottom right panel in Fig. 3) and hard to detect at the level of gene expression (see Suppl. Fig. 1). This gene was not discovered by the ad-hoc method of Reczakite et al. (2016), but it has been recently found to be important in early blood development Barra-Soria et al. (2018). Locally and globally relevant genes can also be inferred in other embeddings such as t-SNE Maaten and Hinton (2008) and UMAP Becht et al. (2018), with a high overlap of relevant genes (RBOp = 0.53, 4 of the top ten relevant genes are identical. See Suppl. Fig. 2).

Applied to other scRNAseq data sets, we showcase versatility and ease of application of our method. In a data set of human endocrine cells Neren et al. (2019), gene relevance maps detect genes driving the separation of subpopulations in the embedding (see Suppl. Fig. 3), in accordance to the markers identified in the original paper. In human brain organoid cells Gray Camp et al. (2015), we detect relevant genes different from the markers specified in the paper. The reason seems to be a low density region between mesenchymal cells and neurons/neural progenitors (see Suppl. Fig. 3). The found genes therefore seem to mostly drive the difference between progenitors and neurons: TXNRD1 plays a vital role for neuron progenitor cells Soerensen et al. (2006), the selenoprotein SELT protects neurons against oxidative stress in mouse models Boudhizar et al. (2016), and CRABP1 modulates the neuronal cell cycle in mice Lin et al. (2017).

Finally, we applied gene relevance to mouse embryonic stem cells grown in different culture media Kondrashyuk et al. (2019). As expected for cells in a relatively homogeneous pluripotent steady state, the relevant genes were enriched for cell cycle and other housekeeping gene ontology processes (see Suppl. Fig. 5).

As a sanity check, we apply gene relevance to scRNAseq data from embryonic stem cells cultured in three different pluripotency retaining media. We expected to find a homogenous, steady state cell population. Indeed the relevant genes for diffusion map embedding of all three media turned out to be involved in housekeeping, metabolic and proliferation pathways (see Suppl. Fig. 3).

3 Discussion

We presented a method that is able to reliably detect relevant genes from low dimensional embeddings of scRNAseq data. More specifically, our method computes both a global and a local gene relevance score: global gene relevance identifies the main drivers of the cell-to-cell variability in the whole embedding; local gene relevance picks up genes relevant in smaller regions of the embedding, e.g. to identify important genes in rare cell sub-populations. In addition to a gene ranking based on global relevance, the method also provides graphic tools to visualize the local gene relevance (see Fig. 3) and the changes in gene expression levels within the embedding (see Fig. 2 and Suppl. Fig. 1). It can be used for any single cell data set and any dimensionality reduction technique.

We applied our method to three datasets, including one from mouse embryonic blood progenitors, where we show that it performs comparably to a technique custom-made for the dataset. Interestingly, our method identifies AlexSap (Fig. 2), a gene that was recently shown to be important for blood development in a later publication Barra-Soria et al. (2018). In two other examples, we used human cells, embryonic Neren et al. (2019) and from brain organoids Gray Camp et al. (2015), showing that the method works robustly in varied conditions.

Other methods to identify important genes from scRNAseq data exist, but most of them aim to find marker genes that can best distinguish different cell types Metzney et al. (2019). Conversely, the method we presented is unsupervised and does not rely on cell type annotation.

Recently, two computational methods have been developed to identify variable genes in spatial RNAseq datasets, trendseeker and SpatialDE Edgard et al. (2019); Svensson et al. (2018). While these methods were designed to find patterns in spatial transcriptomic datasets, they can also be used to identify relevant genes in low-dimensional embeddings of scRNAseq datasets (see Suppl. Fig. 3) in Edgard et al. (2018). We compared our approach to trendseeker and found similar genes (see Suppl. Fig. 3). Our method completed in 6.5 seconds while trendseeker needed 1080 seconds and only ran successfully on the exact data provided in its R package. SpatialDE returned a perfect score for a too large number of genes to be useful. This is probably related to both methods being optimized towards identifying spatial patterns. Moreover, neither method allows estimation of local gene relevance.

To summarize, our gene relevance method is a fast and versatile exploratory tool that can help identify the biological processes and reveal the presence of potentially rare cell sub-populations. It is available online, easily applicable, and faster than model fitting approaches. While we focussed our discussion on scRNAseq datasets, our method can be applied to virtually any kind of dataset where low-dimensional embeddings are obtained, including, for instance, single-cell epigenomic Shena et al. (2018) and mass cytometry data Spitzer and Nolan (2016).

4 Methods

Single cell RNA sequencing data. We used count data from 271 cells mostly from the neural plate (embryonic day 7.5) and head fold (embryonic day 7.75) development stages of mouse embryos, published in Scialdone et al. (2013). There, the libraries were constructed using the Smart-seq2 protocol, read counts were obtained via HTseq-count Scialdone et al. (2016). The 271 cells we used correspond to the clusters annotated as “blood progenitor” and “primitive erythroid” in the original publication. We selected highly variable genes using the method of Brennecke et al. (2013) because of its stable performance Yip et al. (2018), and embedded the log-transformed data using the diffusion map implementation destiny Angerer et al. (2019).

Neighborhoods. If a k nearest neighbor (kNN) search has been performed as part of the embedding, it can be efficiently used for estimating the gene relevance. To perform the kNN search, destiny offers the choice between euclidean distance, cosine distance, and spearman rank correlation distance. The latter was used in all analyses performed for this paper.

Local gene relevance. We define local gene relevance of gene $g \in \{1, \ldots, G\}$ in cell $c \in \{1, \ldots, C\}$, $LB(g,c)$, as the Frobenius norm $F(d_{gc})$ of the differential d_{gc}.
The differential d_{gc} of gene g in cell c describes the change in gene expression x_{gc} along a change in embedding coordinates s_{gc}, where $p \in \{1, \ldots, P\}$ is the embedding dimension and d_{gc} corresponds to the partial derivatives of the gene expression with respect to each embedding coordinate:

$$d_{gc} = \frac{\partial x_{gc}}{\partial s_{c1}}, \ldots, \frac{\partial x_{gc}}{\partial s_{cP}}$$

We estimated d_{gc} from the cells’ neighborhood $NN(c)$ in gene expression space, approximating using finite differences:

$$d_{gc}^p = \left\{ \begin{array}{ll} NA, & \text{if } x_{gc} = 0 \\ \text{median}_{k \in NN(c), k \neq c} \frac{x_{gc} - x_{ck}}{s_{gc} - s_{ck}}, & \text{otherwise} \end{array} \right.$$

Global gene relevance. In each cell c, genes can be ranked according to their local relevances LR_{gc}, from most to least relevant. Given the ranks $r_{gR_{gc}}$ of gene g and a rank cutoff $r_{R_{gc}}$, we define global gene relevance $GR_{R_{gc}}(g)$ of gene g as:

$$GR_{R_{gc}}(g) = \sum_{c=1}^{C} \frac{r_{gR_{gc}} - r_{R_{gc}}}{C}$$

with the Iverson bracket notation

$$[P] = \begin{cases} 1, & \text{if } P \text{ is true} \\ 0, & \text{otherwise} \end{cases}$$

Gene relevance maps. For a set of genes of interest $\Omega \subseteq \{1, \ldots, G\}$ (which can be chosen, e.g., among those with highest global relevance) and each cell c, we define the locally most relevant gene l^c_m after a number of smoothing steps m:

$$l^c_m = \arg\max_{g \in \Omega} \left\{ LR_{gc} \right\} = \sum_{c=1}^{C} \frac{r_{gR_{gc}} - r_{R_{gc}}}{C}$$

During a smoothing iteration, we replace the local gene relevance score of cell c and gene g with the fraction of neighbours that have g as the most relevant gene.

5 Availability of data and materials

The datasets analysed within this publication are available from their original publications as follows. The differentiating mouse embryonic stem cell data [Scialdone et al. (2016)] is available at http://gastrulation.stemcells.cam.ac.uk/scialdone2016 the pluripotent mouse embryonic stem cell data [Koboldt et al. (2015)] at https://www.ebi.ac.uk/keichmann-srv/expresodo the human brain organoids data [Camp et al. (2015)] [ENST5740] and the human endocrine cell data [Veres et al. (2019)] at [EST114412].

6 Competing interests

The authors declare that they have no competing interests.

7 Authors’ contributions

PA designed the analysis, implemented the method. AS interpreted the results and wrote the paper with AS and CM. DF contributed to the mathematical description of the gene relevance concept. FT contributed the initial idea of gene relevance. CM supervised the study.

Acknowledgements and Funding

D.S.F. acknowledges financial support by a German research foundation (DFG) fellowship through the Graduate School of Quantitative Biosciences Munich (QBM) (GSC 1006) and by the Joachim Herz Stiftung. FT and CM acknowledge support from the DFG funded collaborative research center SFB 1243.

References

Angerer, P., Haghverdi, L., Butcher, M., Theis, F. J., Marr, C., and Buettner, F. (2016). destiny: diffusion maps for large-scale single-cell data in R. *Bioinformatics*, 32(8), 1241–1243.

Angerer, P., Simon, L., Tritzschler, S., Alexander Wölf, F., Fischer, D., and Theis, F. J. (2017). Single cells make big data: New challenges and opportunities in transcriptomics.

Baron, M., Veres, A., Wolock, S. L., Faust, A. L., Gaujoux, R., Vetere, A., Ryu, J. H., Wagner, B. K., Shen-Or, S. S., Klein, A. M., Melton, D. A., and Yanai, I. (2016). A Single-Cell transcriptomic map of the human and mouse pancreas reveals intra- and inter-cell population structure. *Cell Syst.* 3(4), 346–360.e4.

Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W. H., Ng, L. G., Ginhoux, F., and Newell, E. W. (2018). Dimensionality reduction for visualizing single-cell data using UMAP. *Nat. Biotechnol.*

Boukhzar, L., Hamieh, A., Carter, D., Tanguy, Y., Alsharif, I., Castex, M., Arabo, A., El Haji, S., Bonnet, J.-J., Erzani, M., Falluel-Morel, A., Chagraoui, A., Lührmann, I., and Ansat, Y. (2016). Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of parkinson’s disease.

Brennecke, P., Anders, S., Kim, J. K., Kolodziejczyk, A. A., Zhang, X., Proserpio, V., Buying, B., Bens, V., Teichmann, S. A., Marioni, J. C., and Heiser, M. G. (2013). Accounting for technical noise in single-cell RNA-seq experiments. *Nat. Methods*, 10(11), 1093–1095.

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., and Zucker, S. W. (2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data. *Diffusion maps.*

Delaney, C., Schael, A., Cammarata, L. V., Yao-Smith, A., Regev, A., Kuchroo, V. K., and Singer, M. (2019). Combinatorial prediction of gene-marker panels from single-cell transcriptomic data.

Edgård, D., Johnsson, P., and Sandberg, R. (2018). Identification of spatial expression trends in single-cell gene expression data. *Nat. Methods*, 15(5), 339–342.

Gray Camp, J., Bashda, F., Florio, M., Kanton, S., Gerber, T., Wülsc-Brauning, M., Lewitus, E., Sykes, A., Hevers, W., Lancaster, M., Kooblich, J. A., Lachmann, R., Paibao, S., Hutten, W., and Treutlein, B. (2015). Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. *Proc. Natl Acad. Sci. U. S. A.*, 112(51), 15672–15677.

Haghverdi, L., Buettner, F., and Theis, F. J. (2015). Diffusion maps for high-dimensional single-cell analysis of differentiation data. *Bioinformatics*, 31(18), 2989–2998.

Husnain, M., Missen, M., Muntau, S., Luqman, M., Coustaty, M., and Ogier, J.-M. (2019). Visualization of High-Dimensional data by pairwise fusion matrices using t-SNE.
Ibarra-Soria, X., Jawaad, W., Pijuan-Sala, B., Ladopoulos, V., Scialdone, A., Jorg, D. J., Tyser, R. C. V., Calero-Nieto, F. J., Mulas, C., Nichols, J., Vallier, L., Stroeva, S., Simons, B. D., Götgens, B., and Marioni, J. C. (2018). Defining marrow organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat. Cell Biol., 20(2), 127–134.

Islam, S., Kjällquist, U., Moliner, A., Zajac, P., Fan, J.-B., Lönnerberg, P., and Linnarsson, S. (2011). Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res., 21(7), 1160–1167.

Kohłdziejczyk, A. A., Kim, J. K., Tsang, J. C. H., Illicic, T., Henriksson, J., Nataraajan, K. N., Tuck, A. C., Gao, X., Buhler, M., Liu, P., Marioni, J. C., and Teichmann, S. A. (2015). Single cell RNA-Sequencing of pluripotent states unlocks modular transcriptional variation. Cell Stem Cell, 17(4), 471–485.

Latinkič, B. V., Mo, F.-E., Greenspan, J. A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Ross, S. R., and Lau, I. F. (2001). Promoter function of the angiogenic inducer Cyr61Gene in transgenic mice: Tissue specificity, inducibility during wound healing, and role of the serum response element. Endocrinology, 142(6), 2549–2557.

Lin, Y.-L., Persaud, S. D., Niarea, J., and Wei, L.-N. (2017). Cellular retinolic Acid-Binding protein 1 modulates stem cell proliferation to affect learning and memory in male mice. Endocrinology, 159(9), 3004–3014.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach. Learn. Res., 9(Nov), 2579–2605.

McInnes, I., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: Uniform manifold approximation and projection.

Pliner, H. A., Shendure, J., and Trapnell, C. (2019). Supervised McInnes, L., Healy, J., Saul, N., and Großberger, L. (2018). UMAP: Uniform manifold approximation and projection.

Qiu, Y., Meléndez, C., and Macosko, E. Z. (2017). Towards a single cell-resolution genome atlas of the mouse. Nature, 544, 195–203.

Shema, E., Bernstein, B. E., and Buenrostro, J. D. (2018). Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet., 51(1), 19.

Soerensen, J., Jakupovski, C., Beck, H., Förster, H., Schmidt, J., Schmahl, W., Schweizer, U., Conrad, M., and Brielmeier, M. (2008). The role of thioredoxin reductases in brain development. PLoS One, 3(3).

Spitzer, M. H. and Nolan, G. P. (2016). Mass cytometry: Single cells, many features. Cell, 165(4), 780–791.

Svensson, V., Teichmann, S. A., and Stegle, O. (2018). SpatialDE: identification of spatially variable genes. Nat. Methods, 15(5), 343–346.

Tritschler, S., Theis, F. J., Luckett, H., and Böttcher, A. (2017). Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Mol Metab, 6(9), 974–990.

Vento-Tormo, R., Erefnova, M., Bottig, R. A., Turco, M. Y., Vento-Tormo, M., Meyer, K. B., Park, J.-E., Stephenson, E., Polatski, K., G oncàlves, A., Gardner, L., Holmquist, S., Henriksson, J., Zou, A., Sharkey, A. M., Millar, B., Innes, B., Wood, L., Wilbury-Clark, A., Payne, R. P., Ivarsson, M. A., Logan, S., Filya, A., Rowitch, D. H., Bulmer, J. N., Wright, G. J., Stubbington, M. J. T., Haniffa, M., Moiffet, A., and Teichmann, S. A. (2018). Single-cell reconstruction of the early maternal-fetal interface in humans. Nature, 563(7731), 347–353.

Veres, A., Faust, A. L., Bushnell, H. L., Engquist, E. N., Kenny, J. H.-R., Harb, G., Poh, Y.-C., Sintov, A., Gürtler, M., Pagliuca, F. W., Peterson, Q. P., and Melton, D. A. (2019). Charting cellular identity during human in vitro β-cell differentiation. Nature, 569(7756), 368–373.

Webber, W., Moffat, A., and Zobel, J. (2010). A similarity measure for indefinite rankings.

Yahata, T., Takeda, H., Dunwoodie, S. L., Braganza, J., Swingler, T., Withington, S. L., Hur, J., Coser, K. R., Isselbacher, K. J., Bhattacharya, S., and Shioda, T. (2002). Cloning of mouse cited4, a member of the CITED family p300/CBP-binding transcriptional coactivators: induced expression in mammary epithelial cells. Genomics, 80(6), 601–613.

Yip, S. H., Sham, P. C., and Wang, J. (2018). Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data. Brief Bioinform.

Yuan, G.-C., Cai, L., Elowitz, M., Enver, T., Fan, G., Guo, G., Irizarry, R., Kharchenko, P., Kim, J., Orkin, S., Quackenbush, J., Saadatpour, A., Schroeder, T., Shivasasani, R., and Tirosh, I. (2017). Challenges and emerging directions in single-cell analysis. Genome Biol., 18(1), 84.

Zappia, L., Phipson, B., and Oshlack, A. (2018). Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput. Biol., 14(6), e1006245.