The genome sequence of the tapered dronefly, *Eristalis pertinax* (Scopoli, 1763) [version 2; peer review: 2 approved]

William Hawkes¹, Karl Wotton¹
University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK

Abstract

We present a genome assembly from an individual male *Eristalis pertinax* (the tapered dronefly; Arthropoda; Insecta; Diptera; Syrphidae). The genome sequence is 487 megabases in span. The majority of the assembly (95.23%) is scaffolded into seven chromosomal pseudomolecules, with the X and Y sex chromosomes assembled. The complete mitochondrial genome was also assembled and is 17.2 kilobases in length.

Keywords

Eristalis pertinax, tapered dronefly, genome sequence, chromosomal

This article is included in the Tree of Life gateway.
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Brachycera; Muscomorpha; Syrphoidea; Syrphidae; Eristalinae; Eristalini; Eristalis; Eristalis pertinax (Scopoli, 1763) (NCBI:txid1572519).

Introduction
The tapered dronefly, *Eristalis pertinax*, is a fairly large hoverfly separated from others in the *Eristalis* genus by the presence of yellow tarsi on their front and middle legs. *E. pertinax* mimics the general shape and colouring of a honeybee, *Apis mellifera*, to gain protection against bird predation through Batesian mimicry. Their mimicry of their model species extends beyond simple colouration, as *E. pertinax* has been shown to spend similar times foraging and flying to that of *Apis mellifera* (Golding & Edmunds, 2000), as well as acoustic mimicry through ‘defence buzzes’ (Moore & Hassall, 2016).

E. pertinax is widespread in the British Isles, occurring in a range of habitats, perhaps favouring woodlands and wetlands. They can be found on the wing between March and November. Throughout the year, *E. pertinax* shows seasonal polyphenism through two distinct morphs (a larger, long-haired morph in the spring, and a smaller, short haired morph in the summer), presumably adaptive to the different seasonal temperatures (Mielczarek et al., 2016).

Male *E. pertinax* hoverflies are highly territorial, defending sunny patches of woodland rides or gardens where females are likely to rest or forage for food. These hoverflies feed on nectar from a wide variety of flowers, but hogweed (*Heracleum* sp.) and bramble (*Rubus* sp.) are thought to be their preferences (Herkenrath, 2014).

Their larvae are colloquially known as rat-tailed maggots and live in a wide array of organically rich pools. The larvae feed on decaying organic matter and therefore play a highly important ecological role in terms of decomposition (Hurtado et al., 2008).

This is the first production of a high-quality *E. pertinax* genome; we believe that the sequence described here, generated as part of the Darwin Tree of Life project, will further aid understanding of the biology and ecology of this hoverfly.

Genome sequence report
The genome was sequenced from a single male *E. pertinax* collected from Wytham Great Wood, Oxfordshire, UK (latitude 51.772, longitude -1.339) (see Figure 1 for an example photograph of *E. pertinax*). A total of 29-fold coverage in Pacific Biosciences single-molecule long reads and 73-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 181 missing/misjoins, reducing the scaffold number by 32.45%, and increasing the scaffold N50 by 185.38%.

The final assembly has a total length of 482 Mb in 257 sequence scaffolds with a scaffold N50 of 77.5 Mb (Table 1). The majority, 95.23%, of the assembly sequence was assigned to seven chromosomal-level scaffolds, representing five autosomes (numbered by sequence length), and the X and Y sex chromosomes (Figure 2–Figure 5; Table 2). The assembly has a BUSCO v5.1.2 (Simão et al., 2015) completeness of 96.3% using the diptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.
Methods

A male (idEriPert2) and a female (idEriPert1) *E. pertinax* sample were collected from Wytham Great Wood, Oxfordshire, UK (latitude 51.772, longitude -1.339) by Will Hawkes, University of Exeter on 1 August 2019 (idEriPert2) and 7 August 2019 (idEriPert1). The specimens were caught with a net, snap-frozen on dry ice and stored using a CoolRack.

DNA was extracted at the Tree of Life laboratory, Wellcome Sanger Institute (WSI). The idEriPert2 sample was weighed and dissected on dry ice with tissue set aside for Hi-C sequencing. Head/thorax tissue was cryogenically disrupted to a fine powder using a Covaris cryoPREP Automated Dry Pulveriser, receiving multiple impacts. Fragment size analysis of 0.01–0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA was removed from a 200-ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing; a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12–20 kb in a Megaruptor 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and

Table 1. Genome data for *Eristalis pertinax*, idEriPert2.1.

Project accession data
Assembly identifier
Species
Specimen
NCBI taxonomy ID
BioProject
BioSample ID
Isolate information

Raw data accessions
PacificBiosciences SEQUEL II
10X Genomics Illumina
Hi-C Illumina
Illumina PolyA RNAseq

Genome assembly
Assembly accession
Accession of alternate haplotype
Span (Mb)
Number of contigs
Contig N50 length (Mb)
Number of scaffolds
Scaffold N50 length (Mb)
Longest scaffold (Mb)
BUSCO* genome score

*BUSCO scores based on the diptera_odb10 BUSCO set using v5.1.2. C=complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/idEriPert2.1/dataset/CAJSMF01/busc.
Figure 2. Genome assembly of *Eristalis pertinax*, idEriPert2.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 482,092,357 bp assembly. The distribution of scaffold lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (135,593,448 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 scaffold lengths (77,495,269 and 72,030,237 bp), respectively. The pale grey spiral shows the cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the diptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehub.org/view/idEriPert2.1/dataset/CAJSMF01/snail.

Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.

RNA was extracted from abdomen tissue of idEriPert1 in the Tree of Life Laboratory at the WSI using TRIzol (Invitrogen), according to the manufacturer’s instructions. RNA was then
eluted in 50 μl RNAse-free water and its concentration assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Poly(A) RNA-Seq libraries were constructed using the NEB Ultra II RNA Library Prep kit. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi), Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were generated from abdomen tissue of idEriPert2 using the Arima v2 Hi-C kit in the Tree of Life laboratory and sequenced at the Scientific Operations core on HiSeq X.

Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longeranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021), which performed annotation using MitoFinder (Allio et al., 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.
Figure 4. Genome assembly of *Eristalis pertinax*, idEriPert2.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/idEriPert2.1/dataset/CAJSMF01/cumulative.

Figure 5. Genome assembly of *Eristalis pertinax*, idEriPert2.1: Hi-C contact map. Hi-C contact map of the idEriPert2.1 assembly, visualised in HiGlass. Chromosomes are arranged in size order from left to right and top to bottom.
Table 2. Chromosomal pseudomolecules in the genome assembly of *Eristalis pertinax*, idEriPert2.1.

INSDC accession	Chromosome	Size (Mb)	GC%
OU026145.1	1	135.59	41.3
OU026146.1	2	79.22	42.7
OU026147.1	3	77.5	43
OU026148.1	4	73.96	43
OU026149.1	5	72.03	42.7
OU026150.1	X	14.45	41.7
OU026151.1	Y	3.19	39.4
OU026152.1	MT	0.02	18.8
-	Unplaced	26.15	44

Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.12	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	1	Uliano-Silva et al., 2021
gEVAL	N/A	Chow et al., 2016
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextView	0.1.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.2	Challis et al., 2020

Data availability

European Nucleotide Archive: *Eristalis pertinax* (tapered dronely). Accession number PRJEB44981; https://identifiers.org/ena.embl/PRJEB44981.

The genome sequence is released openly for reuse. The *E. pertinax* genome sequencing initiative is part of the Darwin Tree of Life (DTol) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated using the RNA-Seq data and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Acknowledgements

Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.4789929.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893704.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.5377053.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.
Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013542.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783559.

References

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905.

Challis R, Richards E, Rajan J, et al.: BlobToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74.

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with HiFiasm. Nat Methods. 2021; 18(2): 175–75.

Chow W, Brugger K, Caccamo M, et al.: gEVAL—a Web-Based Browser for Evaluating Genome Assemblies. Bioinformatics. 2016; 32(16): 2508–10.

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.2012; 3907.

Ghurye J, Rhee A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273.

Golding YC, Edmunds M: Behavioural Mimicry of Honeybees (Apis Mellifera) by Droneflies (Diptera: Syrphidae: Eristalis Spp.). Proc Biol Sci. 2000; 267(1446): 903–9.

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896–98.

Herkenrath P: The Hoverflies (Syrphidae) of Fen Drayton Lakes. Plate 1

Fenland Flora Coverage Mid-December 2013 How Many Species Recorded since 2006? 2014.

Hurtado P, Pérez-Bañón C, Gladis T, et al.: Biology of Saprophagous Hoverflies (Diptera, Syrphidae) and Its Role in Degradation of Pig Slurry. In XXIII International Congress of Entomology, Durban (South Africa). 2008.

Kerpedjiev P, Abdemour N, Lekschas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125.

Mielczarek LE, Oleksa A, Meyza K, et al.: Seasonal Polyphenism in Eristalis Pertinax (Diptera: Syrphidae). Eur J Entomol. 2016; 113: 489–96.

Moore CO, Hassall C: A Bee or Not a Bee: An Experimental Test of Acoustic Mimicry by Hoverflies. Behav Ecol: Official Journal of the International Society for Behavioral Ecology. 2016; 27(6): 1767–74.

Rao SSP, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7): 1665–80.

Simão FA, Waterhouse RM, Ioannidis P, et al.: BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics. 2015; 31(19): 3210–12.
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Reviewer Report 14 December 2022

https://doi.org/10.21956/wellcomeopenres.19392.r53696

© 2022 Friedrich M. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Markus Friedrich
Department of Biological Sciences, Wayne State University, Detroit, MI, USA

This manuscript reports on the genome draft for the biologically highly interesting and, therefore, significant dipteran species Epistrophe pertinax. Data generation and analysis are exemplary.

Minor points:
1. "This is the first production of a high-quality E. pertinax genome; we believe that the sequence described here, generated as part of the Darwin Tree of Life project, will further aid understanding of the biology and ecology of this hoverfly."

 I would separate the two sentences by a regular period.

2. "a minimum of 50 ng DNA was submitted for 10X sequencing..."

 Why not state the actual amount?

3. A sentence about whether gene order in the mitochondrial genome was conserved or different from other Diptera would be useful.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes
Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Comparative genomics

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 03 November 2021

https://doi.org/10.21956/wellcomeopenres.19085.r46882

© 2021 Lanfear J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jerry Lanfear ⭑

ELIXIR Hub, Hinxton, UK

This paper describes the generation of a high quality, chromosome level genome of the tapered droneyfly (*Eristalis pertinax*). The layout, strategy and methods adopt the approach used by the Tree of Life Project for several other recently sequenced species. It is clear to understand what’s been done within this species and to compare across other species, so it makes a lot of sense. Overall this is a quality paper and merits approval for publication.

That said, I think there is a typographical error, which must be corrected prior to publication: In the section "Data availability" the second sentence refers to the genome of *G. alexis*, I think this should say *E. pertinax*?

I also have a couple of minor suggestions for the introduction:

- First, the ID characters and distribution data could be referenced e.g. to the guidebook, Britain’s Hoverflies (Ball and Morris) or to the [UK Hoverfly Recording Scheme](https://www.ukhoverflies.org/).

- Second, it might be useful to put *E. pertinax* in context with other members of the *Eristalis* genus, and any genome data that has been generated previously (for instance, I think there is some genome data available for *E. dimidiata*, a North American species?). It’s not made clear that this is not just the first published high quality genome for *E. pertinax* but I think for any species in this important genus.

Is the rationale for creating the dataset(s) clearly described?
Yes
Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, Biodiversity

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Comments on this article

Version 1

Reader Comment 07 Nov 2021

Łukasz Mielczarek, Krakow Municipal Greenspace Authority, Kraków, Poland

The *E. pertinax* is a very interesting species in terms of its morphological variability, which was also pointed out by authors. Due to the variability of species the photography of *Epistrophe eligans* taken by first author and attached in this publication which not only belongs to different genus but also subfamily may affect the doubt if the specimen used for sequencing was in fact true *E. pertinax*. It is essential to know that identification of sequenced specimens was correct. In the abstract, there is a mistake in writing family name (Syriphidae) it should be corrected. Also, the sentence "as well as on milder winter days when the warm temperatures rouse adults from their hibernation" is true for females of *E. tenax* but very doubtful for *E. pertinax* to occur.

Competing Interests: No competing interests were disclosed.