Data Release

Sand fly (Diptera: Psychodidae: Phlebotominae) records in Acre, Brazil: a dataset

Rodrigo Espindola Godoy1*, Andrey José de Andrade2, Paloma Helena Fernandes Shimabukuro3 and Andreia Fernandes Brilhante4

1 Independent Researcher, Brazil
2 Universidade Federal do Paraná, ACF Centro Politécnico, Jardim das Américas, 81531980 - Curitiba, PR 19031, Brazil
3 Fundação Oswaldo Cruz – Centro de Pesquisas René Rachou, FIOCRUZ, Avenida Augusto de Lima - 1715, Barro Preto, Belo Horizonte, MG 30190002, Brazil
4 Universidade Federal do Acre, Departamento de Ciências da Saúde e Educação Física. Universidade Federal do Acre, Distrito Industrial, Rio Branco, AC 69920900, Brazil

ABSTRACT

Amazonian phlebotomine sand fly fauna is one of the most diverse in the world. The Amazon region is also the most prevalent for leishmaniasis in Brazil and South America. The state of Acre, in this region, also stands out in terms of the diversity of sand fly fauna, as well as the occurrence of American tegumentary leishmaniasis. In this context, the present dataset comprises a bibliographic review of sand fly species recorded in Acre state, Brazil. A total of 1,094 observations from material citations and two of preserved specimens are presented using 33 variables according to Darwin Core terms. The bibliographic review was performed in PubMed, Google Scholar, SciELO, Biblioteca Virtual em Saúde, and references cited in related scientific articles. Thus, this report will be valuable for further studies on sand flies in Acre and other Amazon states.

Subjects Ecology, Biodiversity, Taxonomy

DATA DESCRIPTION

Here, we present a dataset comprising a bibliographic review of sand fly species recorded in Acre state, Brazil. A total of 22 articles/books, published between 1964 and 2022, were used to obtain the data. As a result, 1,096 observations (including two from preserved specimens) were recorded for the state of Acre. Records were obtained from eight municipalities, namely: Acrelândia, Assis Brasil, Brasiléia, Bujari, Cruzeiro do Sul, Feijó, Rio Branco and Xapuri. In these, 116 species of 15 genera of sand flies were identified. Therefore, according to all the studies carried out on phlebotomine fauna, the state of Acre has 116 reported species.

The genera with most species were: Evandromyia (18), Psychodopygus (18), Psathyromyia (17), Lutzomyia (10), Nyssomyia (9), Trichophoromyia (9), Micropygomyia (9), Pintomyia (6), Pressatia (4), Scioemyia (4), Bichromomyia (3), Brumptomyia (3), Trichopygomyia (2), Viannamyia (2), Migonemyia (1). Note that 12 observations were reported as Trichophoromyia sp., because females of the two species Trichophoromyia auraensis (Mangabeira, 1942) and Trichophoromyia ruifreitasi Oliveira, Teles, Medeiros, Camargo & Pessoa 2015 cannot be distinguished by morphology.
In terms of diversity, the municipalities with the most species recorded were: Assis Brasil (78), Rio Branco (68), Xapuri (58), Bujari/Xapuri/Rio Branco (50), Cruzeiro do Sul (30), Brasíliéia (20), Feijó (14), Acrelândia (12) (table in GigaDB [1]).

Note that the number of species for Rio Branco and Xapuri may be different from that shown here (table in GigaDB [1]). This is because one of the articles clustered the results for both municipalities. Therefore, we had to group all species records (for this specific article) under the same name (Bujari/Rio Branco/Xapuri) (table in GigaDB [1]). The species Psychodopygus corossoniensis (Le Pont & Pajot, 1978) was only recorded once in the state, but because the author did not name the municipality in which specimens were collected (the only location reference is “AC Highway Km 22”), the county for this observation is NA.

The chronological table provided in GigaDB [1] presents the scientific data used to compile the dataset by municipality, author and species names.

CONTEXT
Phlebotomine sand flies (Diptera, Psychodidae) are insects of great medical interest since they can transmit pathogens such as leishmaniasis, bartonellosis and some arboviruses [2]. In the Americas, 547 sand fly species have been recorded, with most in tropical areas. The Amazon region shows the greatest diversity and species richness for these insects [3, 4]. Located in the Amazon region, the state of Acre exhibits great richness of phlebotomine sand fly species, with recent reports of new records and descriptions of new species [3–7].

The first published study was carried out by Martins and Silva [8] on the sand fly fauna in the capital Rio Branco. They recorded 30 species, with Pintomyia nevesi (Damasceno & Arouck, 1956) being dominant. In the early 1980s, Arias and Freitas [9] carried out research in the municipalities of Cruzeiro do Sul, Feijó and Rio Branco, finding 50 species, with Trichophoromyia auraensis the most frequent. In the late 2000s, Azevedo et al. [10] conducted research in the municipalities of Rio Branco, Bujari and Xapuri, and found a predominance of Nyssomyia whitmani (Antunes & Coutinho, 1939), Nyssomyia antunesi (Coutinho, 1939) and Th. auraensis. At the same time, in rural areas of the municipality of Acrelândia, Silva-Nunes et al. [11] found a predominance of Ny. whitmani and Ny. antunesi. Similar observations have also been made in peri-urban and forest areas of Rio Branco [7, 12]. In Assis Brasil, 67 species were collected, with three new records for Acre, Evandromyia georgii (Freitas & Barret 2002), Lutzomyia evanglistai (Martins & Fraiha 1971) and Psychodopygus complexus (Mangabeira, 1941), with the most abundant species being Trichophoromyia spp. (Th. auraensis/Th. ruifreitasi) and Psychodopygus davisi (Root, 1934) both found with Leishmania braziliensis (Vianna, 1911) and Leishmania guyanensis (Floch, 1954) by molecular techniques [13]. In this same locality, two species were described: Lutzomyia naiffi (Teles et al. 2013) and Th. ruifreitasi (Oliveira et al. 2015), with the latter females being indistinguishable from several others of the genus Trichophoromyia. In addition, Assis Brazil has recently unveiled new records of sand fly species [14–16].

Recent studies carried out on the Brazilian–Bolivian border (Brasiléia and Xapuri municipalities) highlighted the richness and diversity of sand fly species, with Nyssomyia shawi (Fraiha, Ward & Ready, 1981) and Trichophoromyia sp. being the most frequent. These species were also found to be infected with Leishmania DNA [4]. In addition, these studies verified the occurrence of the great diversity of species vectors, captured in both domiciliary and forest environments. Noteworthy in this locality is the description of a new species and the revalidation of some taxa [17–19].
Acre state is a hotspot of American tegumentary leishmaniasis in the Amazon biome. It affects people regardless of their gender or age; however, there is an increase in notifications in women and children, which suggests different transmission cycles occurring in the region [20, 21]. All species of the *Leishmania* parasite subgenus *Viannia* have been described as circulating in humans in this region (with the exception of *Leishmania lindenbergi* Silveira, Ishikawa & de Souza, 2002) and *Leishmania amazonensis* (of the subgenus *Leishmania*) [13, 21, 22].

METHODS

Study area

The state of Acre state is situated in the north of Brazil and is part of the Amazon region, corresponding to 1.92% of the Brazilian territory. The population is about 900,000 inhabitants. The economy is based mainly in the extraction of forest materials, particularly rubber and Brazilian chestnut for exportation. Its vegetation is tropical forest, and it has humid and hot equatorial climate. The average annual temperature is 31.5 °C and rainfall is 2100 mm [23].

Geographically, the state is divided into two meso-regions named Juruá and Acre Valley, which are subdivided into five microregions: Rio Branco, Sena Madureira and Brasiléia belonging to Acre Valley, and Cruzeiro do Sul and Tarauacá belonging to Juruá Valley [23] (see Figure 1).

Preserved specimens

The records of two preserved sand fly specimens were included in the dataset. These insects were captured using CDC/Shannon traps. After capture, the insects were screened, separated, and identified along with their capture location. The insects were identified using the procedure proposed by Forattini [25]. After the identification process, specimens were mounted between slide and cover slip in Enece medium [26] and identified according to Galati [3].
Table 1. All variables used in the dataset with its name, details and how they were subset.

Variable name	Variable detail	Variables subset
datasetName	Name of the dataset	Dataset name and information of the revised data
basisOfRecord	Type of material used to obtain the data	
bibliographicCitation	DOI or link for the citation used	
individualCount	Number of specimens recorded	Condition and quantity of captured sand flies
sex	Sex of the specimen	
lifeStage	Development stage of captured specimens	
preparation	Type of mount solution used to preserve the specimens	Capture: location, type of trap and preparation details
samplingProtocol	Type of trap used to capture the insects	
samplingEffort	Total time spent capturing in hours	
habitat	Type of environment where the trap was located	
continent	Continent where the study was conducted	
country	Country where the study was conducted	
countryCode	International code for the country	
stateProvince	State where the study was carried out	
county	Municipality where the study was carried out	
locality	Additional information about the location where the insect was captured	
locationRemarks	Specific area or condition where the insect was captured	
decimalLatitude	Capture site latitude in decimal degrees	
decimalLongitude	Capture side longitude in decimal degrees	
identifiedBy	Name of author(s) that identified the specimens	Species Identification: name of authors, year of identification and taxonomic detail of sand fly specimens
dateIdentified	Year when the record was published	
scientificName	Species name and authorship	
kingdom	Kingdom that the species belongs to	
phylum	Phylum that the species belongs to	
class	Class that the species belongs to	
order	Order that the species belongs to	
family	Family that the species belongs to	
genus	Genus that the species belongs to	
subgenus	Subgenus that the species belongs to	
specificEpithet	Species-specific name	
infraspecificEpithet	Species sub-specific name	
taxonRank	Taxonomic level of the specimen	
ScientificNameAuthorship	Author and year of species description	

Bibliographic review

To review bibliographic material, the following online databases were used: PubMed, Google Scholar, SciELO, BVS - Biblioteca Virtual em Saúde. The following search terms were used: “Acre” AND (“sand fly” OR “sandfly” OR “sandflies” OR “sand flies” OR “Phlebotominae”). Bibliographic references cited in scientific articles were also used as data sources.

All scientific articles/books were assessed to obtain data from 33 standardized variables of Darwin Core terms [27] (Table 1). These variables were grouped into four subsets to identify the dataset; to describe essential information about specimen condition and quantity; capture location and methods; and taxonomic status for each observation (Table 1).

DATA VALIDATION AND QUALITY CONTROL

Data were collected and checked with the aid of other bibliographical references [3]. Names were checked by experienced taxonomists, and data were validated via the GBIF data validator tool upon submission of the data [24].

REUSE POTENTIAL

We have assembled the most exhaustive scientific data on sand flies in Acre, Brazil that have been published until now. This dataset provides important knowledge on the distribution, identification, and taxonomic status of the sand fly species already recorded in
the state, and will form a solid reference for future studies on sand fly ecology, epidemiology and taxonomy in the area.

DATA AVAILABILITY

Phlebotomine sand fly species registered by municipality in Acre state, and chronological records of phlebotomine sand fly species by author and municipality (built from the cited literature and [27–32]) are both available in the GigaScience GigaDB repository [1]. The dataset used in this manuscript was deposited in the Sistema de Informação sobre a Biodiversidade Brasileira (SiBBr) integrated publishing toolkit (IPT) [24].

EDITOR’S NOTE

This paper is part of a series of Data Release articles working with GBIF and supported by the Special Programme for Research and Training in Tropical Diseases (TDR), hosted at the World Health Organization [33].

LIST OF ABBREVIATIONS

IPT: Integrated publishing toolkit; SiBBr: Sistema de Informação sobre a Biodiversidade Brasileira; TDR: Special Programme for Research and Training in Tropical Diseases

ETHICAL APPROVAL

Not applicable.

CONSENT FOR PUBLICATION

Not applicable.

COMPETING INTERESTS

The authors declare that they have no competing interests.

FUNDING

Not applicable.

AUTHORS’ CONTRIBUTIONS

REG: compilation, organization of data, and writing of the manuscript; AJA: data revision and writing of the manuscript; PHFS: data revision and writing of the manuscript; AFB: sample collecting, identification, data revision and writing of the manuscript.

ACKNOWLEDGEMENTS

We would like to thank Clara Baringo Fonseca for her help in the preparation of the Darwin Core spreadsheet.

REFERENCES

1 Espindola Godoy R, de Andrade AJ, Fernandes Shimabukuro PH et al. Supporting data for “Sand fly (Diptera: Psychodidae: Phlebotominae) records in Acre, Brazil: a Dataset”. GigaScience Database. 2022; http://dx.doi.org/10.5524/102227.

2 Shaw JJ, de Rosa AT, Cruz AC et al. Brazilian phlebotomines as hosts and vectors of viruses, bacteria, fungi, protozoa (excluding those belonging to the genus Leishmania) and nematodes. In: Rangel EF, Shaw J (eds), Brazilian Sand Flies. Biology, Taxonomy, Medical Importance and Control. Springer, 2018; pp. 417–441. doi:10.1007/978-3-319-75544-1_9.
Gigabyte, 2022, DOI: 10.46471/gigabyte.60

3 Galati EAB. Phlebotominae (Diptera, Psychodidae): classification, morphology and terminology of adults and identification of American taxa. In: Rangel EF, Shaw JJ (eds), Brazilian Sand Flies: Biology, Taxonomy, Medical Importance and Control. Springer, 2018; pp. 9–212. doi:10.1007/978-3-319-75544-1_2.

4 Brilhante AF, Lima L, de Ávila MM et al. Remarkable diversity, new records and Leishmania detection in the sand fly fauna of an area of high endemicity for cutaneous leishmaniasis in Acre state, Brazilian Amazonian forest. Acta Trop., 2021; 223: 106103.

5 de Oliveira AFJ, Teles CBG, Medeiros JF et al. Description of Trichophoromyia farifreitasi, a new phlebotomine species (Diptera, Psychodidae) from Acre State, Brazil. ZooKeys, 2015; 526: 65–73.

6 Brilhante AF, Sábio PB, Galati EAB. A new species of Sand Fly Psathyromyia elizabethdorvalae sp. n. (Diptera: Psychodidae: Phlebotominae), from Brazil. J. Med. Entomol., 2017; 54(1): 76–81.

7 de Ávila MM, Brilhante AF, Galati EAB et al. Sciopemyia vattiera (Le Pont & Desjeux, 1992) (Diptera, Psychodidae: Phlebotominae): new record from Acre state, Brazil. Check List, 2018; 14(4): 585–589.

8 Martins AV, Silva JE. Notas sobre os flebotomíneos do estado do Acre, com a descrição de duas espécies novas (Diptera: Psychodidae). Rev. Bras. Biol., 1964; 24: 127–138.

9 Arias JR, Freitas RA. The known geographical distribution of sand flies in the State of Acre, Brazil (Diptera: Psychodidae). Acta Amazon., 1982; 401–408.

10 Azevedo ACR, Costa SM, Pinto MCG et al. Studies on the sandfly fauna (Diptera: Psychodidae: Phlebotominae) from Acre, Brazil: areas of American Cutaneous Leishmaniasis in state of Acre, Brazil. Mem. Inst. Oswaldo Cruz, 2008; 103(8): 760–767.

11 da Silva-Nunes M, Cavasini CE, da Silva NS et al. Epidemiologia da Leishmaniose Tegumentar e descrição das populações de flebotomíneos no município de Acrelândia, Acre, Brasil. Rev. Bras. Epidemiol., 2008; 11: 241–251.

12 Araujo-Pereira T, Fuzari AA, Filho JDA et al. Sand fly fauna (Diptera: Psychodidae: Phlebotominae) in an area of leishmaniasis transmission in the municipality of Rio Branco, state of Acre, Brazil. Parasites Vectors, 2014; 7(1): 360.

13 Teles CBG, dos Santos AP de A, Freitas RA et al. Phlebotomine sandfly (Diptera: Psychodidae) diversity and their Leishmania DNA in a hot spot of American Cutaneous Leishmaniasis human cases along the Brazilian border with Peru and Bolivia. Mem. Inst. Oswaldo Cruz, 2016; 111(7): 423–432.

14 Borges DA, Molina SMG, Pinto MC et al. First record of Lutzomyia (Lutzomyia) longipalpis (Diptera: Psychodidae: Phlebotominae) on the Trinational Frontier (Brazil-Peru-Bolivia) of South-Western Amazonia. J. Med. Entomol., 2017; 54(5): 1425–1429.

15 Ortiz DGS, Borges DA, Trinca LA et al. Comparison of BG-Lure and BG-Sweetscents attractants for field sampling of phlebotomine sand flies. Acta Trop., 2020; 202: 105224.

16 Ortiz DGS, Pinto MC, Cesario M et al. Three new records of the genus Lutzomyia of the subgenus Heilococyrtomyia (Diptera: Psychodidae: Phlebotominae) from Southwestern Brazilian Amazonia. Acta Trop., 2019; 197: 104778.

17 Sábio PB, Brilhante AF, Quintana MG et al. On the Synonyms of Psathyromyia (Psathyromyia) shannoni (Dyar, 1929) and Pa. bigeniculata (Floch & Abonnenc, 1941) and the Resuscitation of Pa. pifanoi (Ortiz, 1972) With the Description of Its Female (Diptera: Psychodidae: Phlebotominae). J. Med. Entomol., 2016; 53(3): 1140–1147.

18 Godoy RE, Galati E. Revalidation of Nyssomyia frañai (Martins, Falcão & Silva 1979) (Diptera: Psychodidae). J. Med. Entomol., 2016; 53(6): 1303–1311.

19 Brilhante AF, de Ávila MM, de Souza JF et al. Attractiveness of black and white modified Shannon traps to phlebotomine sandflies (Diptera, Psychodidae) in the Brazilian Amazon Basin, an area of intense transmission of American cutaneous leishmaniasis. Parasites, 2017; 24: 20.

20 Melchior LAK, Brilhante AF, Chiavaratti-Neto F. Spatial and temporal distribution of American cutaneous leishmaniasis in Acre state, Brazil. Infect. Dis. Poverty, 2017; 6(1): 99.

21 Tojal da Silva AC, Cupolillo E, Volpini AC et al. Species diversity causing human cutaneous leishmaniasis in Rio Branco, state of Acre, Brazil. Trop. Med. Int. Health, 2006; 11(9): 1388–1398.

22 de Araujo-Pereira T, de Pita-Pereira D, Moreira RB et al. Molecular diagnosis of cutaneous leishmaniasis in an endemic area of Acre State in the Amazonian Region of Brazil. Rev. Soc. Bras. Med. Trop., 2018; 51: 376–381.
23 **Instituto Brasileiro de Geografia e Estatística (IBGE)**. Database: IBGE Cidades. 2021; https://www.ibge.gov.br/ of subordinate document. Accessed 20 December 2021.

24 Espíndola Godoy R, Fernandes Brilhante A, José de Andrade A et al. Sand fly (Diptera: Psychodidae: Phlebotominae) records in Acre, Brazil: A literature Review. Version 1.6. Sistema de Informação sobre a Biodiversidade Brasileira - SiBBr. Occurrence dataset. 2022; https://doi.org/10.15468/c9arun.

25 Forattini OP. Entomologia Médica IV. Psychodidae. Phlebotominae, Leishmaniose e Bartonelose, vol. VIII, São Paulo: Ed. Edgard Blucher Ltda, 1973; 658pp.

26 Cerqueira NL. Um novo meio para montagem de pequenos insetos em lâmina. *Mem. Inst. Oswaldo Cruzeiros*, 1943; **39**: 37–41.

27 Core terms defined by Darwin Core. http://rs.tdwg.org/dwc/terms/.

28 Arias JR, Miles MA, Naiff RD et al. Flagellate infections of Brazilian sand flies (Diptera: Psychodidae): isolation in vitro and biochemical identification of Endotrypanum and Leishmania. *Am. J. Trop. Med. Hyg.*, 1985; **34**(6): 1098–1108.

29 Bermúdez C, Guillermo E. *Lutzomyia* sand flies in the Brazilian Amazon basin (Diptera: psychodidae). Brasil: Editora INPA, 2009.

30 Araujo-Pereira T, de Pita-Pereira D, Baia-Gomes SM et al. An overview of the sandfly fauna (Diptera: Psychodidae) followed by the detection of Leishmania DNA and blood meal identification in the state of Acre, Amazonian Brazil. *Mem. Inst. Oswaldo Cruzeiros*, 2020; **115**: e200157.

31 Ávila MM, Brilhante AF, de Souza CF et al. Ecology, feeding and natural infection by Leishmania spp. of phlebotomine sand flies in an area of high incidence of American tegumentary leishmaniasis in the municipality of Rio Branco, Acre, Brazil. *Parasites Vectors*, 2018; **11**(1): 54.

32 Martins AV, Williams P, Falcão AL. American sand flies (Diptera: Psychodidae, Phlebotominae). Rio de Janeiro: Academia Brasileira de Ciencias, 1978; OCLC: 6562036.

33 Vectors of human disease series. GigaByte. 2022; https://doi.org/10.46471/GIGABYTE_SERIES_0002.