Abstract. We study Hamiltonian \(R \)-actions on symplectic orbifolds \([M/S]\), where \(R \) and \(S \) are tori. We prove an injectivity theorem and generalize Tolman and Weitsman’s proof of the GKM theorem \([TW]\) in this setting. The main example is the symplectic reduction \(X//S \) of a Hamiltonian \(T \)-manifold \(X \) by a subtorus \(S \subset T \). This includes the class of symplectic toric orbifolds. We define the equivariant Chen-Ruan cohomology ring and use the above results to establish a combinatorial method of computing this equivariant Chen-Ruan cohomology in terms of orbifold fixed point data.

1. Introduction

There has been a flurry of recent work computing a variety of algebraic invariants for orbifolds. In the present paper, we consider equivariant invariants of an orbifold equipped with a group action. Our orbifolds arise as global quotients \([M/S]\) of a manifold by a torus acting with finite stabilizers, and our actions of a torus \(R \) on \([M/S]\) arise as extensions of the action of \(S \) on \(M \). We will discuss ordinary and stringy equivariant invariants, and relate our results to the current literature. We include several explicit examples coming from the symplectic reduction construction in symplectic geometry.

Let \(T \cong S^1 \times \cdots \times S^1 \) be a compact torus and \(S \subset T \) a subtorus, with the quotient torus \(R := T/S \). Let \(M \) be a \(T \)-manifold such that \([M/S]\) is a compact \(R \)-Hamiltonian orbifold in the sense of \([LT]\). We note that topological invariants of the orbifold \([M/S]\) should be \(S \)-equivariant invariants of \(M \). Hence the \(R \)-equivariant cohomology of the orbifold \([M/S]\) is defined to be

\[H^*_R([M/S], \mathbb{Z}) := H^*_T(M, \mathbb{Z}). \]

Note that on the level of topological spaces, \(H^*_T(M, \mathbb{Q}) = H^*_R(M/S, \mathbb{Q}) \) but over \(\mathbb{Z} \) they are not equal in general. See \([H]\) for this kind of comparison.

The main application comes from symplectic reduction. Let \((X, \omega)\) be a connected, Hamiltonian \(T \)-manifold with moment map \(\mu_T : X \to t^* \), where \(t \) denotes the Lie algebra of \(T \). We assume that \(\mu_T \) has a component that is proper and bounded below. For a subtorus \(S \subset T \), containing the proper component, we have the natural inclusion \(s \hookrightarrow t \) of Lie algebras, and we let \(\pi_S : t^* \to s^* \) denote the dual projection. Then \(X \) is also

The first author gratefully acknowledges the support of the NSF through Grant DMS-0835507. The second author is supported by the National Research Foundation of Korea (NRF) through Grants No. 2012-0000795 and 2011-0001181 funded by the Korea government (MEST).
a Hamiltonian S-manifold with the induced moment map $\mu_S = \pi_S \circ \mu_T : X \to s^\ast$. For a regular value $a \in s^\ast$, we let $M := \mu_S^{-1}(a)$ be the level set of the S moment map. The symplectic reduction $X//S := [M/S]$ of X by the action of S at a is a compact symplectic orbifold which is Hamiltonian with respect to the residual torus action of $R := T/S$, in the sense of [LT].

Classically, if Y is a compact Hamiltonian T-manifold satisfying the GKM conditions, the GKM theorem [GKM] computes the T-equivariant cohomology of Y in terms of the fixed point data. Our first main result is to generalize the GKM theorem to compute $H^*_R([M/S], \mathbb{Z})$ by adopting the proof in [TW] to our setting as follows. Please note that the complete technical hypotheses of the theorems appear in the main body of this paper as noted.

Theorem A (Theorems 4.10 and 5.5 below). Let $[M/S]^R$ be the suborbifold consisting the 0-dimensional R-orbits in $[M/S]$, and let $[M_1/S]$ the orbifold 1-skeleton, the suborbifold consisting of the 0- and 1-dimensional R-orbits in $[M/S]$. We have the following diagram of R-equivariant natural inclusions

$$
\begin{array}{ccc}
{[M/S]} & \longrightarrow & {[M_1/S]} \\
\downarrow i & & \downarrow j \\
{[M/S]^R} & \longrightarrow & \\
\end{array}
$$

When we take R-equivariant cohomology, the image of the injection

$$i^* : H^*_R([M/S], \mathbb{Q}) \rightarrow H^*_R([M/S]^R, \mathbb{Q})$$

is the same as the image of

$$j^* : H^*_R([M_1/S], \mathbb{Q}) \rightarrow H^*_R([M/S]^R, \mathbb{Q}).$$

The map i^* is injective in cohomology with integer coefficients, and the images of i^* and j^* coincide in cohomology with integer coefficients, when the stabilizer subgroups are connected and the isotropy weights are primitive.

Applying this theorem to compact symplectic toric orbifolds, we obtain the following.

Theorem B (Theorem 6.1 below). Let S be an $(m - n)$-dimensional subtorus of the m-dimensional torus T which acts on \mathbb{C}^m canonically coordinate-wise. Let Δ be the moment polytope of the compact toric orbifold obtained as the symplectic reduction $\mathbb{C}^m//S$ at a regular value. Then

$$H^*_R(\mathbb{C}^m//S, \mathbb{Z}) \cong \text{SR}(\Delta)$$

where $\text{SR}(\Delta)$ is the Stanley-Reisner ring of the polytope Δ. Note that this Stanley-Reisner description depends only on the combinatorial type of Δ.

In the second part of this paper, we introduce the R-equivariant version of the Chen-Ruan orbifold cohomology ring, denoted $H_{\text{orb},R}([M/S])$, for a Hamiltonian R-orbifold
We use our orbifold GKM theorem to compute \(H_{\text{orb}, R}([M/S]) \) in terms of fixed point data. Our definitions coincide with those found in the literature; we discuss this further at the end of Section 7.

As a vector space, the \(R \)-equivariant Chen-Ruan orbifold cohomology is defined to be

\[
H_{\text{orb}, R}([M/S]) := \bigoplus_{g \in S} H^{*}_R([M^g/S]).
\]

As a graded ring, we must add a shifted grading and define a twisted product given by the usual pull-cup-push formula (see, for example, [FG, GHK, JKK])

\[
\eta \circ \xi := e_*(e_1^*\eta \cup e_2^*\xi \cup c_M(g,h)) \quad \text{for } (\eta, \xi) \in H^*_R([M^g/S]) \times H^*_R([M^h/S]),
\]

where \(e_1, e_2, e \) are the obvious inclusions of \(M^{g,h} := M^g \cap M^h \) to \(M^g, M^h \), and \(M^{gh} \) respectively. Here we adapt the formula from [BCS, EJK] to define the virtual class \(c_M(g,h) \). Namely, for \((g,h) \in S \times S\), let \(TM_{M^{g,h}} = \bigoplus_{\lambda \in \text{Hom} (H,S)} W_{\lambda} \) be the weight decomposition of the tangent bundle of \(M \) restricted to \(M^{g,h} \) where \(H \) is the subgroup of \(S \) generated by \(g \) and \(h \). Then the obstruction bundle on \([M^{g,h}/S]\) is the \(T \)-equivariant vector bundle

\[
\mathcal{R}_M(g,h) = \bigoplus_{a_1(g) = a_2(h) = a_3(gh^{-1}) = 2} W_{\lambda}
\]

and the corresponding virtual class \(c_M(g,h) \) is defined as the \(T \)-equivariant Euler class of \(\mathcal{R}_M(g,h) \)

\[
c_M(g,h) := e_T(\mathcal{R}_M(g,h)) \in H_T(M^{g,h}).
\]

The associativity of this product follows immediately from the excess intersection formula and the projection formula, as in [GHK, JKK]:

Theorem C (Theorem 7.1 below). *The ring \(H_{\text{orb}, R}([M/S]) \) with the twisted product is associative.*

To apply our GKM theorem to the computation of the equivariant Chen-Ruan cohomology, we introduce a new ring \(\mathcal{N} \mathcal{H}_R(\nu[M/S]^R), \star \). As a vector space,

\[
\mathcal{N} \mathcal{H}_R(\nu[M/S]^R) := \bigoplus_{g \in S} H^*_T(\nu(F^g \subset M)),
\]

where \(F \) is the \(S \)-invariant submanifold such that \([M/S]^R = [F/S]\), and \(\nu(F^g \subset M) \) denotes the normal bundle to \(F^g \) in \(M \). The product \(\star \) is defined in Section 8 using the isotropy data for the \(T \)-action on each \(\nu(F^g \subset M) \). We then prove the following two results.

Theorem D (Theorem 8.2 below). *The ring \(\mathcal{N} \mathcal{H}_R(\nu[M/S]^R), \star \) is associative.*
Theorem E (Theorem 8.4 below). The natural restriction map

$$H_{orb,R}([M/S]) \to N\mathcal{H}_R(\nu[M/S]^{\mathbb{N}})$$

is a homomorphism of graded associative rings.

Thus when this map is injective over $$\mathbb{Q}$$ or $$\mathbb{Z}$$, we may apply our orbifold GKM theorem to compute $$H_{orb,R}([M/S])$$ using only local isotropy data at the fixed orbifold points.

In the final section, we compute the $$\mathbb{R}$$-equivariant Chen-Ruan cohomology for the toric orbifolds and conclude with two presentations of the ring, first as a quotient ring, and second as a subring of a direct sum of polynomial rings.

Acknowledgements. The authors graciously thank Rebecca Goldin, Eugene Lerman, Frank Moore, Reyer Sjamaar, and Ed Swartz for many helpful conversations throughout the course of this project. The first author thanks the Mathematical Sciences Research Institute for its hospitality and support in Spring 2010. The second author would like to express his gratitude to the Algebraic Structure and its Application Research Institute at KAIST for providing him an excellent research environment in 2011-2012.

2. Local normal forms

In this section, we recall basics from [LT] adapted to our setting. Our main focus is to provide a local normal form for a Hamiltonian $$\mathbb{R}$$-orbifold $$[M/S]$$. Generically to define the Chen-Ruan invariants, it is best to think of orbifolds as stacks. As we are interested in global quotients, though, we do not need to use this full machinery.

A locally free action of a group $$G$$ on a space $$X$$ is one where the stabilizer subgroup $$G_x$$ of a point $$x$$ is finite for each $$x \in X$$. An orbifold $$[M/S]$$ in this paper is defined as the quotient of a manifold $$M$$ by a locally free action of a compact torus $$S$$. An orbifold chart for $$[M/S]$$ may be given as follows: let $$x \in M$$ and let $$S_x$$ be the finite stabilizer of $$x$$ in $$S$$. The group $$S_x$$ acts on $$T_xM$$ and acts trivially on $$T_x(S \cdot x)$$. Hence the orbifold chart around $$[x/S_x]$$ is given by $$\frac{T_xM}{T_x(S_x)}$$ with the induced action of $$S_x$$. A symplectic orbifold $$([M/S], \omega)$$ is an orbifold $$[M/S]$$ together with an $$S$$-invariant 2-form $$\omega \in \Omega^2(M)^S$$ such that for each $$x \in M$$, $$\omega$$ induces the $$S_x$$-invariant 2-form $$\omega_x$$ on the chart $$\frac{T_xM}{T_x(S_x)}$$, which is closed at the origin and non-degenerate, i.e. the kernel of $$\omega_x : T_xM \to T_x^*M$$ is $$T_x(S_x)$$. A torus $$\mathbb{R}$$ acts on a symplectic orbifold $$([M/S], \omega)$$ if there is a short exact sequence $$S \hookrightarrow T \twoheadrightarrow \mathbb{R}$$ of compact tori, and the group $$T$$ acts on $$M$$ extending the action of $$S$$, and $$\omega \in \Omega^2(M)^T$$ is a $$T$$-invariant 2-form.

The $$\mathbb{R}$$-action on $$([M/S], \omega)$$ is Hamiltonian if there is a $$T$$-invariant map $$\mu : M \to \mathfrak{t}^*$$ where $$\mathfrak{t} := \text{Lie } \mathbb{R}$$, satisfying the Hamiltonian condition, i.e. for each $$\xi \in \mathfrak{t}$$, the infinitesimal vector field $$\xi_M$$ and $$d\mu^\xi$$ are related by

$$\omega(\xi_M, -) = d\mu^\xi$$

where $$\mu^\xi : M \to \mathbb{R}$$ is the component of the moment map given by $$x \mapsto \langle \mu(x), \xi \rangle$$. This is well-defined since $$\mathfrak{t}^* = \text{Ann } s \subset \mathfrak{t}^*$$.
For a function \(f : M \to \mathbb{R} \) and a critical point \(x \in M \) of \(f \), the **Hessian** of \(f \) is the map \(H(f)_x : T_xM \to T_x^*M \) defined by \(w \mapsto d_x(\mathcal{L}_w f) \), where \(w \) is any local vector field around \(x \) such that \(w|_x = w_x \). Note that \(H(f)_x \) does not depend on a local extension of \(w_x \) to a vector field.

A function \([f] : [M/S] \to \mathbb{R}\) on an orbifold \([M/S]\) is given by an \(S \)-invariant function \(f : M \to \mathbb{R} \). An orbifold point is given by \([S \cdot x/S] = [x/S_x]\). An orbifold point \([x/S_x] \in [M/S]\) is a **critical orbifold point for** \([f]\) if \(d_x f = 0 \), i.e. \(x \) is a critical point for \(f \). This is a well-defined notion since \(f \) is \(S \)-invariant. Indeed if \(d_x f = 0 \), then \(\forall y \in S \cdot x, d_y f = 0 \). Let \(F := \text{Crit}(f) \subset M \) be the set of critical points for \(f \). Then the \(S \)-action preserves \(F \) and therefore, if \(F \) is a submanifold of \(M \), then \([F/S]\) is a **critical suborbifold** of \([M/S]\). When extending Bott’s version of Morse theory to orbifolds, a key hypothesis will be that the critical set is a suborbifold of \([M/S]\).

Let \([f] : [M/S] \to \mathbb{R}\) be a function and \([x/S_x] \in [M/S]\) a critical point. Then \(H(f)_x(w_x) = d_x(\mathcal{L}_w f) = 0 \) for \(w_x \in T_x(Sx) \), since \(\mathcal{L}_w f = 0 \) on a neighborhood of \(x \) by the \(S \)-invariance of \(f \). Hence \(H(f)_x \) factors through

\[
H(f)_x : T_xM \to \frac{T_xM}{T_x(S \cdot x)} \to T_x^*M.
\]

Furthermore, the image of \(H(f)_x \) is contained in \(\text{Ann} \ T_x(S \cdot x) \). Thus we can define the induced **orbifold Hessian** for \([f]\) as the \(S_x \)-equivariant map

\[
\overline{H(f)}_x : \frac{T_xM}{T_x(S \cdot x)} \to \left(\frac{T_xM}{T_x(S \cdot x)} \right)^* = \text{Ann} \ T_x(S \cdot x).
\]

A critical suborbifold \([F/S]\) is **non-degenerate** if \(\forall x \in F \),

\[
\ker \overline{H(f)}_x = \frac{T_xF}{T_x(S \cdot x)}.
\]

It is obvious that \([F/S]\) is non-degenerate if and only if \(F \) is non-degenerate, since \(F \) is non-degenerate when \(\ker H(f)_x = T_xF \) for all \(x \in F \).

Since our orbifold is presented as a global quotient by a torus, we may explicitly write down the slice theorem and the local normal form, following [LT]. Let \([M/S]\) be a compact, connected Hamiltonian \(\mathbb{R} \)-orbifold where \(S \hookrightarrow T \twoheadrightarrow \mathbb{R} \) is the torus extension such that \(T \) acts on \(M \). The corresponding maps of Lie algebras are \(s \hookrightarrow t \twoheadrightarrow \mathbb{R} \). We summarize what this implies as follows:

1. the class \(\omega \in \Omega^2(M)^S \) is actually \(T \)-invariant;
2. the \(S \)-action on \(M \) is locally free;
3. the map \(\mu : M \to \mathfrak{t}^* \) is a \(T \)-invariant map;
4. we have the Hamiltonian condition \(\omega(\xi_M, -) = d\mu^\xi \), \(\forall \xi \in \mathfrak{t} \); and
5. \(\forall x \in M, \omega_x : T_xM \to T_x^*M \) induces an isomorphism

\[
\overline{\omega}_x : T_xM/T_x(S \cdot x) \to (T_xM/T_x(S \cdot x))^* = \text{Ann} \ T_x(S \cdot x).
\]

For each $x \in M$, let T_x denote the stabilizer in T of the point x, and $t_x := \text{Lie}(T_x)$ its Lie algebra.

Remark 2.1. For a form $\alpha \in \Omega^*(M)^T$ to induce an R-equivariant form on the orbifold $[M/S]$, it must be S-basic, i.e. $i_x^* \alpha = 0$ for each $x \in S$. If we define R-equivariant forms on $[M/S]$ as suggested in [LM], this coincides with the space of T-equivariant forms on M that are S-basic.

We now turn to the linear algebra background needed to describe the local normal form for a Hamiltonian R-action on the orbifold $[M/S]$.

Lemma 2.2. For every point $x \in M$, there is a (non-canonical) T_x-equivariant isomorphism

$$T_x M \cong \text{Ann}(s \oplus t_x) \oplus (T_x(Tx))^\perp_{\omega_x},$$

where the T_x-action on $\text{Ann}(s \oplus t_x)$ is the coadjoint action (and so is trivial, as T_x is abelian). Thus we have a T_x-equivariant isomorphism

$$\frac{T_x M}{T_x(Tx)} \cong \frac{\text{Ann}(s \oplus t_x) \oplus (T_x(Tx))^\perp_{\omega_x}}{T_x(Tx)}.$$

Proof. If $\xi \in t_x$, then the vector field $\xi M|_x = 0$, which implies that $d_x \mu^\xi = 0$ by property (4) above. Thus for any tangent vector v_x, we have $d_x \mu(v_x) \in \text{Ann} t_x$ since $\langle d_x \mu(v_x), \xi \rangle = \langle d_x \mu^\xi, v_x \rangle$ for every $\xi \in t_x$. Therefore the image of $T_x M$ under the map $d_x \mu$ lies in

$$\text{Ann } s \cap \text{Ann } t_x \subseteq \text{Ann } (s \oplus t_x).$$

The map $d_x \mu$ is actually a surjection. Using property (4), $d_x \mu^\xi = 0$ implies $\xi M|_x \in T_x(Sx)$. The dual map is $(d_x \mu)^* : T/(s \oplus t_x) \to T_x M$. Let $\tilde{t}_x := \{ t \in T \mid t_x \in Sx \}$ and then it follows that $\text{ker}(d_x \mu)^* = \tilde{t}_x/(s \oplus t_x)$. We can show that $\tilde{T}_x = S \cdot T_x$ and so $\tilde{t}_x = s \oplus t_x$. In fact, if $st \in S \cdot T_x$ then $stx \in Sx$ and conversely if $tx \in Sx$ (i.e. $tx = sx$ for some $s \in S$), then $t^{-1}s \in T_x$ and so $t \in S \cdot T_x$. Thus $d_x \mu : T_x M \to \text{Ann } (s \oplus t_x)$ is surjective. By definition, $\text{ker}(d_x \mu) = \{ v \in T_x M \mid \omega_x(\xi M|_x, v) = 0, \forall \xi \in t \} = (T_x(Tx))^\perp_{\omega_x}$. By choosing a T_x-invariant splitting of the surjection $d_x \mu$, we have the isomorphism. The second claim follows from $T_x(Tx) \subset (T_x(Tx))^\perp_{\omega_x}$. Indeed, $\omega_x(\xi M|_x, \eta M|_x) = \langle d_x \mu^\xi, \eta M|_x \rangle = \eta M(\mu^\xi)|_x = 0$ for each $\xi, \eta \in t$ where the last equality follows since $\mu^\xi : M \to \mathbb{R}$ is constant along T_x and $\eta M|_x \in T_x(Tx)$. \[
\]

The following results are applications of standard results from the theory of Lie group actions. They are discussed further in [LT], and we have adapted them to our setting here.

Theorem 2.3 (Slice theorem for the T-action on M). For each point $x \in M$, there is a T-invariant neighborhood U of the orbit $T \cdot x$ and a T-equivariant isomorphism

$$U \cong T \times_{T_x} \frac{T_x M}{T_x(Tx)},$$
where T_x acts on $T \times \frac{T_M}{T_x(T_x)}$ by $(t, [\nu_x]) \mapsto (ts^{-1}, [s, \nu_x])$.

As a corollary of Lemma 2.2 and the Slice Theorem 2.3, we obtain

Corollary 2.4 (Local normal form for the T-action on M). For each point $x \in M$, there is a T-invariant neighborhood U of $T \cdot x$ such that we have a T-equivariant isomorphism

$$\Psi : U \cong T \times_{T_1} \left(\text{Ann } (s \oplus t_x) \oplus \frac{(T_x(T_x))^{1_{S_x}}}{T_x(T_x)} \right).$$

Both Theorem 2.3 and Corollary 2.4 may be rephrased as an orbifold slice theorem and an orbifold local normal form theorem, as in [LT].

Theorem 2.5 (Orbifold slice theorem for the R-action on $[M/S]$). For every point $[x/S_x] \in [M/S]$, there is an R-invariant orbifold neighborhood $[U/S]$ of $[x/S_x]$ such that we have an R-equivariant isomorphism

$$[U/S] \cong ([T \times_{T_x} W]/S) = R \times_{R_{[x/S_x]}} [W/S_x],$$

where $R_{[x/S_x]} := T_x/S_x$ and $W := \frac{T_M}{T_x(T_x)}$.

Corollary 2.6 (Orbifold local normal form for the R-action on $[M/S]$). For each $[x/S_x] \in [M/S]$, there is an R-invariant orbifold neighborhood $[U/S]$ of $[M/S]$ such that we have an R-equivariant isomorphism

$$[U/S] \cong R \times_{R_{[x/S_x]}} \left(T_1^* (R/R_{[x/S_x]}) \oplus \frac{(T_x(T_x))^{1_{S_x}}}{T_x(T_x)} / S_x \right),$$

where $R_{[x/S_x]} = T_x/S_x$.

Remark 2.7. We can define and derive everything in this section by letting S be a subgroup of T, not necessarily a (connected) subtorus.

3. Orbifold fixed points and the orbifold 1-skeleton

In this section, we use the local normal form of Corollary 2.6 to determine the **orbifold fixed points** and **orbifold 1-skeleton** of $[M/S]$.

3.1. Orbifold fixed points $[F/S]$.** The set $[M/S]^R$ of fixed orbifold points in $[M/S]$ with respect to the R-action is a symplectic suborbifold, cf. [LT] p. 4206. If we let $F := \{ x \in M \mid T_x = S_x \}$, then $[F/S] = [M/S]^R$. Moreover, since S acts on M locally freely, we have that $x \in F$ if and only if $t/(s \oplus t_x) = 0$. Thus the T-equivariant local normal form at a point $x \in F$ becomes $U_x \cong T \times_{T_x} W$ where $W := \frac{T_M}{T_x(T_x)}$. In this section, we compute F explicitly by using this normal form.

Let $T_{x,1}$ be the connected component of T_x containing the identity element. Then $T_x = T_{x,1}S_x$. In fact, for all $t_x \in T_x$, there are $t_{x,1} \in T_{x,1}$ and $s \in S$ such that $t_x = t_{x,1}s$ since $T = T_{x,1}S$. Therefore $s \in T_x \cap S = S_x$.
Lemma 3.1. For \(\alpha \in \text{Hom}(T_x, S^1) \), define \(\overline{\alpha} \) to be the induced map \(T_x/S_x \to S^1/\alpha(S_x) \). Then for \(\alpha, \beta \in \text{Hom}(T_x, S^1) \),

\[
\alpha|_{T_x,1} = \beta|_{T_x,1} \iff \overline{\alpha - \beta} = 0.
\]

Proof. Since \(T_x = T_{x,1} \cdot S_x \), every element \(t \in T_x \) can be written as \(t = t_1 \cdot s \) for some element \(t_1 \in T_{x,1} \) and \(s \in S_x \). Thus, if \(\alpha|_{T_x,1} = \beta|_{T_x,1} \), we have

\[
\alpha(t)(\beta(t))^{-1} = \alpha(s)(\beta(s))^{-1} \in (\alpha - \beta)(S_x).
\]

On the other hand, if \((\alpha - \beta)(T_{x,1}) \subset (\alpha - \beta)(S_x) \), then \((\alpha - \beta)(T_{x,1}) = 1 \) since \(T_{x,1} \) is connected and \(S_x \) is discrete.

Recall that in the local normal form, we may identify \(W := \frac{T_xM}{T_x(T_x)} = \frac{(T_x(T_x))^{iso}}{T_x(T_x)} \). This vector space is equipped with a \(T_{x,1} \)-action. Let

\[
W = \bigoplus_{\lambda \in \text{Hom}(T_{x,1}, S^1)} \overline{W}_\lambda
\]

be the weight decomposition of the \(T_{x,1} \)-action on \(W \).

Lemma 3.2. Under the \(T \)-equivariant local normal form isomorphism \(\Psi \), for each point \(x \in F \), we have

\[F \cap U_x \cong T \times_{T_x} \overline{W}_0. \]

In particular, \(F \) is a manifold.

Proof. Recall that \(T \) acts on \([r, v] \in T \times_{T_x} W\) by \(t \cdot [r, v] = [tr, v] \). Moreover, two equivalence classes \([r_1, v_1] = [r_2, v_2]\) are equal if and only if there is some \(t_x \in T_x \) such that \((r_2t_x^{-1}, t_0v_2) = (r_1, v_1)\), or equivalently if and only if \(r_2t_x^{-1} \in T_x \) and \((r_2t_x^{-1})v_2 = v_1\).

Therefore

\[
[r, v] \text{ is in the image of } F \cap U_x \text{ under } \Psi
\]

\[
\iff \forall t \in T_x \exists s \in S_x \text{ such that } t \cdot [r, v] = s \cdot [r, v], \quad \text{by definition of } F
\]

\[
\iff \forall t \in T_x \exists s \in S_x \text{ such that } st^{-1} \in T_x \text{ and } (st^{-1})v = v
\]

\[
\iff \forall t_x \in T_x, \exists s_x \in S_x \text{ such that } (t_x, s_x)_v = v.
\]

For the \((\Leftarrow)\) of the last equivalence, we observe that for a given element \(t \in T_x \), the element \(s \in S \) such that \(s^{-1}t \in T_x \) is unique up to \(S_x = S \cap T_x \). Let

\[
W_F := \{ v \in W \mid \forall t_x \in T_x, \exists s_x \in S_x \text{ such that } (t_x, s_x)_v = v \}.
\]

Let \(W = \bigoplus_{\alpha \in \text{Hom}(T_x, S^1)} W_\alpha \). Then we can also write as \(W = \bigoplus_{\alpha \in \text{Hom}(T_x, S^1)} W_\alpha \), where the direct sum runs over \(\alpha \in \text{Hom}(T_x, S^1) \) such that for each \(t_x \in T_x \), there is an \(s_x \in S_x \) such that \(\alpha(t_x, s_x) = 1 \). However this condition is equivalent to \(\alpha(T_x) = \alpha(S_x) \), that is, \(\overline{\alpha} = 0 \). Thus by Lemma 3.1 \(W_F = \overline{W}_0 \), as desired. \(\square \)
Remark 3.3. We may also write F as

$$F = \left\{ x \in M \mid \xi_M|_x \in T_x(Sx), \forall \xi \in \mathbb{t} \right\}$$

$$= \left\{ x \in M \mid [\xi_M|_x] = 0 \text{ in } \frac{T_xM}{T_x(Sx)}, \forall \xi \in \mathbb{t} \right\}.$$

We will need the following technical lemma to prove Theorem 4.10.

Lemma 3.4. Let $y \in F \cap U_x$ for $x \in F$, then $T_y = \bigcap_{i \neq 1} \ker \alpha$, where $[t, v] \in T \times T_y \overline{W}_0$ corresponds to y under the local normal form Ψ, and v_α is the α-component of v in the weight decomposition

$$W = \bigoplus_{\alpha \in \text{Hom}(T_x, S^1)} W_\alpha.$$

In particular, $T_{x,1} = T_{x',1}$ for all x' in the connected component of F containing x.

Proof. It suffices to show this in the case when $v = v_\alpha \neq 0$. If $r \in T_y$, then $r \cdot [t, v] = [rt, v] = [t, v]$. Therefore $r \in T_x$ and $\alpha(r) = 1$, i.e. $r \in \ker \alpha$. If $r \in \ker \alpha \subset T_x$, then $r \cdot [t, v] = [rt, v] = [t, \alpha(r)v] = [t, v]$, so $r \in T_y$. This proves the first claim.

Since $\alpha|_{T_{x,1}} = 0$, $T_{x,1}$ must be contained in every T_y, where y is in the neighborhood U_x. For any $x, x' \in F$ such that $\exists y \in U_x \cap U_{x'}$, $T_{x,1}$ and $T_{x',1}$ are the connected component of T_y containing 1, so they coincide. This proves the latter claim. \hfill \Box

3.2. Orbifold 1-skeleton $[M_1/S]$. The union of 1-dimensional orbits in $[M/S]$ corresponds to the union of $(\dim S + 1)$-dimensional orbits in M: let M_1^o be the set of all points $x \in M$ such that T_x is $(\dim S + 1)$-dimensional, so that $[M_1^o/S]$ is the union of 1-dimensional orbits. The orbifold 1-skeleton is by definition $[(M_1^o \cup F)/S]$. In this section, we calculate M_1^o explicitly using the normal form and show that the closure M_1 of M_1^o is $M_1^o \cup F$. We then demonstrate that the closure N of a connected component N^o of M_1^o is a manifold and $[N/S]$ is a Hamiltonian \mathbb{R}-orbifold. Since $x \in M_1^o$ if and only if $t/(s \oplus t_x)$ is one-dimensional, the T-equivariant isomorphism Ψ becomes $U_x \cong T \times T_x (\text{Ann } (s \oplus t_x) \oplus W)$ where $W := \{\frac{(\overline{T}(t_x)(s \oplus t_x))}{\overline{T}((t_x \mathbb{t})^+)\text{-equiv.}}\}$. We recall that

$$W = \bigoplus_{\lambda \in \text{Hom}(T_{x,1}, \mathbb{Z})} \overline{W}_\lambda = \bigoplus_{\alpha \in \text{Hom}(T_x, \mathbb{Z})} W_\alpha$$

are the weight decompositions with respect to the actions of $T_{x,1}$ and T_x respectively.

Note that the notation W_α denotes a T_x representation, whereas \overline{W}_λ denotes a representation of its identity component $T_{x,1}$.

Lemma 3.5. For $x \in M_1^o$, the isomorphism Ψ induces

$$M_1^o \cap U_x \cong T \times T_x \left(\text{Ann } (s \oplus t_x) \oplus \overline{W}_0\right).$$

In particular, $[M_1^o/S]$ is a Hamiltonian \mathbb{R}-orbifold.
Proof. If \(v \in W_\alpha \) with \(\alpha|_{T_x} \neq 0 \), then \(T_x \cdot v \) is at least one dimensional. Therefore \(T \cdot [t, a, v] = T \times_{T_x} ([a] \oplus T_x v) \) is at least \((\dim S + 2)\)-dimensional. If \(v \in W_\alpha \) with \(\alpha|_{T_x} = 0 \), then \(T \cdot [t, a, v] = T \times_{T_x} (a \oplus v) = T \times_{T_x} ([a] \oplus \mathcal{a}(T_x) \cdot v) \) is exactly \((\dim S + 1)\)-dimensional since \(\mathcal{a}(T_x) \) is discrete. The second claim follows from the fact that the symplectic structure of \(W \) restricts to the symplectic structure on \(\overline{W_0} \). \(\square \)

Lemma 3.6. Let \(M^1_1 \) be the closure of \(M^*_1 \) in \(M \). Then \(M^1_1 = M^*_1 \cup F \).

Proof. For each \(x \in F \), every neighborhood of \(x \) in \(U_y \) contains a point in \(M^*_1 \), namely \([t, v]\) where \(v \in W_\alpha \) and \(\alpha|_{T_x} \neq 0 \). And so the orbit of \([t, v]\) is \((\dim S + 1)\)-dimensional. Indeed \(T \cdot [t, v] = T \times_{T_x} \mathcal{a}(T_x) v \). Thus \(F \subseteq M^1_1 \). If \(x \in M^1_1 \setminus (M^*_1 \cup F) \), then the \(T \) - orbit of \(x \) is at least \((\dim S + 1)\)-dimensional. However, if \(y \in M \) has an \(m \)-dimensional \(T \) - orbit, then for every point in \(U_y \), its \(T \) - orbit is at least \(m \)-dimensional. This leads to a contradiction, and so we must have \(M^1_1 \subseteq (M^*_1 \cup F) \). \(\square \)

Remark 3.7. For \(x \in F \), let \(N \) be the closure of a connected component of \(M^*_1 \) such that \(x \in N \), then \(N \cap U_x \cong T \times_{T_x} [\overline{W_0} \oplus \overline{W_A}] \) for some \(\alpha \neq 0 \in \text{Hom}(T_{x, 1}, S^1) \). This implies that \([N/S]\) is a Hamiltonian \(R \)-orbifold.

4. The Morse-Bott property and Injectivity

We continue to use the notation from Section 2. \([M/S]\) is a Hamiltonian \(R \)-orbifold with an \(R \)-invariant moment map \([\mu] : [M/S] \to \mathbb{R}^*\). Let \(\xi \in \mathfrak{t} \) be a rational element and let \(R_1 \subset R \) be the image of \(T_1 := \{\exp(t\xi), t \in \mathbb{R}\} \subset T \) in \(R \). In this section, we show that \(\mu^\xi : M \to \mathbb{R} \) is Morse-Bott for every rational \(\xi \in \mathfrak{t} \) such that \(\dim R_1 = n + 1 \). This naturally leads to the injectivity theorem for compact Hamiltonian \(R \)-orbifolds.

Lemma 4.1. For any rational element \(\xi \in \mathfrak{t} \), the map \(\mu^\xi : M \to \mathbb{R} \) is a Morse-Bott function.

Proof. In order to show that \(\text{Crit}(\mu^\xi) \) is a submanifold of \(M \), by Lemma 3.2 it suffices to prove that \(\text{Crit}(\mu^\xi) \) coincides with the submanifold which yields the \(R_1 \)-fixed suborbifold in \([M/S]\). That is, following Remark 3.3 we must show that

\[Q := \text{Crit}(\mu^\xi) = \{x \in M : \xi_{M|x} \in T_x(Sx)\} \].

By definition, \(\text{Crit}(\mu^\xi) = \{x \in M : d_x \mu^\xi = 0\} \). The equation \(d_x \mu^\xi = 0 \) implies that \([\xi_{M|x}] = \omega^{-1}_x(d_x \mu^\xi) = 0 \) in \(T_{x, M(Sx)} \). Therefore the claim follows.

Now we turn to non-degeneracy. The function \(\mu^\xi \) is non-degenerate if its Hessian satisfies

\[\ker H(\mu^\xi)_x = T_x Q \].

The Hessian is evaluated at a tangent vector \(v_x \in T_x Q \) by

\[H(\mu^\xi)_x(v_x) = d_x(L_v \mu^\xi) = L_v(d_x \mu^\xi)|_x = 0 \],
since $d\mu|_Q = 0$ and $v_x \in T_xQ$. Thus $\ker H(\mu^\ell)_x \supset T_xQ$. On the other hand, we may identify

$$T_xQ = \{ v_x \in T_xM \mid [\xi_M, v]|_x \in T_x(Sx) \} = \{ v_x \in T_xM \mid [\xi_M, v]|_x = 0 \},$$

where ξ_M and v are the local vector fields induced on T_xM. Since $\xi_M = \omega - 1(d\mu \xi)$, we have $[\xi_M, v]|_x = (L_v \omega - 1(d\mu \xi)|_x)$. Therefore if $v_x \in \ker H(\mu^\ell)_x$, then $[\xi_M, v]|_x = 0$, i.e. $\ker H(\mu^\ell)_x \subset T_xQ$.

Remark 4.2. In particular, $[\mu^\ell] : [M/S] \to \mathbb{R}$ is an orbifold Morse-Bott function. By this, we mean that $\text{Crit}([\mu^\ell]) = [M/S]^\mathbb{R}$ is an orbifold, and $[\mu^\ell]$ is non-degenerate.

Remark 4.3. A further discussion of the local normal form for symplectic toric orbifolds may be found in [GHH, Section 2]. The ideas developed there motivated this project. In the case when M is the level set for an S-moment map on a Hamiltonian T-space X, our Lemma 4.1 is exactly [GHH, Lemma 2.2]. The remarks in the footnote following the local normal form theorem in [GHH, Section 2] also apply here.

The following two lemmata are well-known.

Lemma 4.4 (Atiyah-Bott over \mathbb{Q}, c.f. Lemma 7.1 [TW2]). Let $E \to F$ be a T-equivariant complex vector bundle over a connected T-space F. Let D and S be the T-equivariant disk and sphere bundle corresponding E with a choice of a T-invariant metric. Assume that

1. there is a subtorus $T_1 \subset T$ that fixes F pointwise, and acts non-trivially on the fibers.

Then the T-equivariant Euler class $e_T(E, \mathbb{Q})$ is a non-zero divisor. In particular, we have the short exact sequence over \mathbb{Q}:

$$0 \to H^i_T(D, S; \mathbb{Q}) \to H^i_T(D; \mathbb{Q}) \to H^i_T(S; \mathbb{Q}) \to 0 \quad \text{mod } \text{Hom}$$

The same claim holds over \mathbb{Z} under a stronger assumption on the action of T_1;

1. there is a subtorus $T_1 \subset T$ that fixes F pointwise, and each weight $\lambda \in \text{Hom}(T_1, S^1) \cong \mathbb{Z}$ is primitive whenever $W_1 \neq 0$.

Here recall that an element λ of a \mathbb{Z}-module R is primitive if and only if $\lambda = a\lambda'$ for $a \in \mathbb{Z}$ and $\lambda' \in R$ implies $a = \pm 1$.

Example 4.5. If axiom $(\mathbb{Z}1)$ is not satisfied, then the Euler class $e_T(E, \mathbb{Z})$ may be a torsion class in equivariant cohomology with integer coefficients. Let F be the Klein bottle, or any other space with 2-torsion in its integral cohomology ring. Consider the trivial bundle $E = \mathbb{C} \times F \to F$, equipped with the circle action $t \cdot (z, f) = (t^2 \cdot z, f)$, for $z \in \mathbb{C}$ and $f \in F$, which fixes the base pointwise and spins each fiber at double speed. Then $H^*_T(F; \mathbb{Z}) = H^*(F; \mathbb{Z}) \otimes \mathbb{Z}[x]$ and under this identification we have $e_T(E, \mathbb{Z}) = 1 \otimes 2x$. Let $\alpha \in H^*(F; \mathbb{Z})$ be a 2-torsion class (i.e. $2\alpha = 0$), then $\alpha \otimes 1$ is an equivariant class, and

$$\alpha \otimes 1 \cup e_T(E, \mathbb{Z}) = \alpha \otimes 1 \cup 1 \otimes 2x = \alpha \otimes 2x = 2\alpha \otimes x = 0.$$

Thus, $e_T(E, \mathbb{Z})$ is a zero divisor.

Lemma 4.6 (c.f. Lemma 4.4. [LT]). Let $f : M \to \mathbb{R}$ be a T-invariant Morse-Bott function on a compact manifold M equipped with an action of T. Choose $[a, b] \subset \mathbb{R}$ which contains a unique critical value c. Let F be the critical submanifold such that $f(F) = c$. Let E^- be its T-equivariant negative normal bundle and D and S be the corresponding T-equivariant disk and sphere bundles. Then (M^-_b, M^-_a) can be retracted onto the pair (D, S) so that we have

$$\cong_{MB} : H^*_T(M^-_b, M^-_a; \mathbb{Z}) \cong H^*_T(D, S; \mathbb{Z})$$

where $M^-_a := f^{-1}(-\infty, a)$.

By Lemma 4.1, the following generalization of [TW, Proposition 2.1] obviously follows from Lemmata 4.4 and 4.6.

Proposition 4.7. Let $c \in \mathbb{R}$ be a critical value for μ^T and let F_c be the set of critical points contained in $(\mu^T)^{-1}(c)$. Assume that

(Q2) for each connected component F'_c of F_c, there is a subtorus of T, that fixes F'_c pointwise and acts non-trivially on the negative normal bundle $E^{-}_{F'_c}$.

\[\nabla\]
Let $\epsilon \geq 0$ such that c is the only critical point in $[a, b] := [c - \epsilon, c + \epsilon]$. Then we have the short exact sequence over \mathbb{Q}:

$$
0 \longrightarrow H^1_\Gamma(M_b^-, a^-; \mathbb{Q}) \longrightarrow H^1_\Gamma(M_b^-, b^-; \mathbb{Q}) \longrightarrow H^1_\Gamma(M_a^-, b^-; \mathbb{Q}) \longrightarrow 0
$$

where E_c^- is the negative normal bundle for F_c and D_c and S_c are the corresponding T-equivariant disk and sphere bundles.

The claim also holds over \mathbb{Z} if we assume

($\mathbb{Z}2$) for each connected component F'_c of F_c, there is a subtorus of T that fixes F'_c pointwise and acts on the negative normal bundle $E^-|_{F'_c}$ in such a way that each weight $\lambda \in \text{Hom}(T_1, S^1) \cong \mathbb{Z}^r$ is primitive ($r \geq 1$).

Remark 4.9. Note that the hypothesis ($\mathbb{Q}2$) implies ($\mathbb{Q}1$), and ($\mathbb{Z}2$) implies ($\mathbb{Z}1$).

Remark 4.10. Let $F := \{ x \in M \mid T_x = Sx \}$ so that $[M/S]^R = [F/S]$, and let $i : F \hookrightarrow M$ be the inclusion map. Then the induced map $i^* : H^1_\Gamma(M, \mathbb{Q}) \hookrightarrow H^1_\Gamma(F, \mathbb{Q})$ is injective. Equivalently, the induced map $i^* : H^q_\Gamma([M/S], \mathbb{Q}) \hookrightarrow H^q_\Gamma([F/S], \mathbb{Q})$ is injective.

Moreover, if

($\mathbb{Z}3$) for each connected component F' of F, each weight of the action of $T_{F'}$ on the normal bundle $\nu(F' \subset M)$ is primitive

then $i^* : H^1_\Gamma(M, \mathbb{Z}) \hookrightarrow H^1_\Gamma(F, \mathbb{Z})$ is also injective.

Although the proof is analogous to the proof given in [TW], we include the complete proof of injectivity here so that we may observe that the proof works in this orbifold set-up, and under certain conditions, it holds with \mathbb{Z}-coefficients.

Proof. For each connected component F' of F, the group $T_{F'} := T_{x, 1}$, for some $x \in F'$, is the maximal global isotropy subtorus of T for F' by Lemma 3.4. Each weight of the action of $T_{F'}$ on the negative normal bundle $E^-|_{F'}$ is non-trivial, which implies the condition ($\mathbb{Q}2$) in Proposition 4.7. Therefore all lemmata and proposition in this section hold for our setup.

Let ξ is a generic element in \mathfrak{t} and $c_1 < \cdots < c_n$ the critical values for μ^ξ. Choose a small $\epsilon > 0$ such that c_i is the only critical value in $[a_i, b_i] := [c_i - \epsilon, c_i + \epsilon]$, $\forall i$.

Let $M_{a_i}^- := (\mu^k)^{-1}(-\infty, a_i)$, $M_{b_i}^- := (\mu^k)^{-1}(-\infty, b_i)$, and $F_{c_i} := F \cap (\mu^k)^{-1}(c_i)$. We will prove that the restriction map $H^{i}_c(M_{b_i}^-) \to H^{i}_T(F \cap M_{b_i}^-)$ is injective for all i and then the theorem follows from the case $i = n$, i.e. $M_{b_n}^- = M$. We have the following commutative diagram with the exact horizontal rows:

\[
\begin{array}{ccc}
0 & \to & H^{i}_1(M_{b_i}^-, M_{a_i}^-) \\
\gamma_i | & & | \beta_i \\
0 & \to & H^{i}_1(F \cap M_{b_i}^-, F \cap M_{a_i}^-) \\
H^{i}_1(F_{c_i}) & \oplus_{i=1}^n H^{i}_1(F_{c_i}) & \oplus_{i=1}^n H^{i}_1(F_{c_i})
\end{array}
\]

The top sequence is exact by Proposition 4.7 and the second is clearly exact. The vertical maps are restriction maps and we prove that they are injective by induction. The base case of the induction is trivial since $M_{a_i}^-$ is empty. Now, the last column can be identified with $H^{i}_1(M_{b_{i+1}}^-) \to H^{i}_1(F \cap M_{b_{i+1}}^-)$ by using $H^{i}_c(M_{b_{i+1}}^-) \simeq \text{homot} H^{i}_c(M_{a_i}^-)$. The map γ_i is injective because it is the map in the Proposition 4.7

\[
\begin{array}{ccc}
H^{i}_1(M_{b_i}^-, M_{a_i}^-) & \longrightarrow & H^{i}_1(M_{b_i}^-) \\
\equiv_{MB} | & & | \\
H^{i}_1(D_c, S_c) & \longrightarrow & H^{i}_1(D_c) \\
\equiv_{\text{Thom}} | & \equiv_{\text{Homot}} | \\
H^{i-1}_T(F_{c_i}) & \cup_{\gamma T(E_c)} & H^{i}_1(F_{c_i})
\end{array}
\]

The map β_i in Diagram (4.1) is injective by the induction hypothesis. Hence, by the Five Lemma, the middle map is injective.

If (Z3) is satisfied, then Proposition 4.7 holds with \mathbb{Z} coefficients, and the above argument carries through with \mathbb{Z} coefficients. This completes the proof. \qed

Remark 4.11. We will show that the toric orbifolds with the maximal torus \mathbb{R}-action satisfies the condition (Z3), and so Theorem 4.10 holds over \mathbb{Z}. Following Example 4.5, if we let F be any manifold with 2-torsion in its integral cohomology, and let S^1 act on $F \times \mathbb{C}P^1$ by fixing F pointwise and rotating $\mathbb{C}P^1$ at double speed, then (Z3) fails, as in Example 4.5, a certain Euler class will be a zero-divisor and

\[i^* : H^{i}_S(F \times \mathbb{C}P^1; \mathbb{Z}) \to H^{i}_S((F \times \mathbb{C}P^1)^{S^1}; \mathbb{Z}) \]

is not injective. Indeed, if α is any 2-torsion class in $H^*(F; \mathbb{Z})$, then

\[\alpha \otimes 1 \in H^*(F; \mathbb{Z}) \otimes H^{i}_S(\mathbb{C}P^1; \mathbb{Z}) \Rightarrow H^{i}_S(F \times \mathbb{C}P^1; \mathbb{Z}) \]

is in the kernel of i^*.

5. Generalizing Tolman and Weitsman’s proof of the GKM theorem

We need the following technical lemma, which generalizes Lemma 3.2. \cite{TW}.

Lemma 5.1. Let E be a T-equivariant complex vector bundle over a manifold F with an action of T. Assume that $[F/S]$ is an orbifold and $\forall x \in F$, $T = T_x \cdot S$. Assume that $T_{x,1}$ is independent of $x \in F$. Let $E := \bigoplus_{\alpha} E_{\alpha}$ be the weight decomposition of the $T_{x,1}$-action. Then over \mathbb{Q}, for each $\eta \in H^*_T(F)$, we have

If η is a multiple of $e_T(E_{\alpha})$ for all α, then η is a multiple of $\bigcup_{\alpha} e_T(E_{\alpha}) = e_T(E)$.

If we assume T_x is connected for all $x \in F$, this statement also holds over \mathbb{Z}.

Proof. First we prove in the case when $[F/S]$ is 0-dimensional. Over \mathbb{Q}, we have the sequence of isomorphisms,

$$
H^*_T(F) = H^*(ETF_T) = H^*(BT_x \times E(S/S_x) \times S/S_x, F) = H^*(BT_x/S_x) = \text{Sym} \left(\text{Hom}(T_{x,1}, S^1) \otimes \mathbb{Q} \right) = \mathbb{Q}[\alpha_1, \ldots, \alpha_n].
$$

The equality in the second line holds because S/S_x acts freely on F. Via this identification, $e_T(E_{\alpha}) = \alpha^{n_{\alpha}}$ where n_{α} is the rank of E_{α}. Since α’s are all distinct and non-zero, all $e_T(E_{\alpha})$’s are pairwise relatively prime. Hence η must be a multiple of $\bigcup_{\alpha} e_T(E_{\alpha})$ since $\mathbb{Q}[\alpha_1, \ldots, \alpha_n]$ is a unique factorization domain over \mathbb{Q}. Over \mathbb{Z}, the same argument works as long as we have $H_T(F, \mathbb{Z}) \cong \text{Sym} \left(\text{Hom}(T_{x,1}, S^1) \right) = \mathbb{Z}[\alpha_1, \ldots, \alpha_n]$. This happens precisely when T_x is connected.

When $[F/S]$ is not 0-dimensional, we still have, over $\mathbb{Q},$

$$
H^*_T(F) = H(ETF_T) = H(BT_{x,1} \times E(S/S_{x,1}) \times S/S_{x,1}, F) \cong H_{T_{x,1}}(pt) \otimes H(F/S).
$$

Define the F-degree by $H^*_T(F) = \bigoplus_a H_{T_{x,1}}(pt) \otimes H^*(F/S)$, $a = \sum_i a_i$. Then $e_T(E_{\alpha})_0 = \alpha^{n_{\alpha}}$ since the class is determined by pulling back E_{α} via $\{x\} \hookrightarrow F$. The remainder of the proof is purely algebraic and so the argument in \cite{TW} p. 8 can be followed verbatim.

Over \mathbb{Z}, the above arguments works if $H^*_T(F) \cong H_{T_{x,1}}(pt) \otimes H(F/S)$. This happens exactly if T_x is connected for all $x \in F$. \square

Let $[M/S]$ be a compact, connected Hamiltonian R-orbifold where $S \hookrightarrow T \hookrightarrow R$ is the torus extension such that T acts on M extending the S-action. The corresponding maps of Lie algebras are $s \hookrightarrow t \hookrightarrow r$. Let $i : F \hookrightarrow M$ and $j : F \hookrightarrow M_1$ be the inclusion maps.
Remark 5.2. Let \(N^\circ \) be a connected component of \(M_1^\circ \), and let \(N \) be its closure. Then \([N/S]\) is a Hamiltonian \(\mathbb{R}\)-orbifold with the moment map induced by the map \(\mu|_N : N \to \mathfrak{t}^* \), the restriction of the original \(\mu : M \to \mathfrak{t}^* \) (see Remark 3.7). If the injectivity theorem holds over \(\mathbb{Q} \) (resp. over \(\mathbb{Z} \)) for \(M \), then it also holds over \(\mathbb{Q} \) (resp. \(\mathbb{Z} \)) for \(N \). This is because the conditions (Q2) (resp. (Z2)) for \(M \) imply the ones for \(N \).

We now turn to the constraints on a class restricted to the fixed point set. Using a component of the moment map to order the critical values, at the first fixed set where a class is non-zero, its restriction must be a multiple of the equivariant Euler class of the negative normal bundle.

Proposition 5.3. Choose a generic \(\xi \in \mathfrak{t} \) and let \(F_c \) be a connected component of the intersection \(F \cap f^{-1}(c) \), where \(f := \mu^\xi \) and \(c \in \mathbb{R} \) is a critical value for \(\mu^\xi \). Let \((a, b)\) be an open interval containing the single critical value \(c \). Let \(M_{1,b}^{-} := M_1 \cap f^{-1}(-\infty, b) \) and \(F_a^{-} := F \cap f^{-1}(-\infty, a) \). Then if \(\eta \in H^*_T(M_{1,b}^{-}, \mathbb{Q}) \) satisfies \(\eta|_{F_a^{-}} = 0 \in H^*_T(F_a^{-}, \mathbb{Q}) \), we must have that \(\eta|_{F_c} \) is a multiple of \(e_T(E_{c}^{-}) \in H^*_T(F_c, \mathbb{Q}) \), where \(E_{c}^{-} \) is the \(T \)-equivariant negative normal bundle of \(F_c \) in \(M \).

Moreover, the claim holds with integer coefficients if

(\(\mathbb{Z}4 \)) the isotropy group \(T_x \) is connected for all \(x \in F \), and each weight of the \(T_x \)-action on the normal bundle to \(F \) at \(x \) is primitive for all \(x \in F \)

(i.e. (\(\mathbb{Z}3 \)) is satisfied).

Remark 5.4. The hypothesis that \(T_x \) be connected is a natural one. This hypothesis may be exploited to extend a variety of rational cohomology results to integral cohomology in equivariant symplectic geometry. This is discussed in work in progress by the first author and Tolman \([HT]\). This hypothesis also arises in the work of Franz and Puppe \([FP]\) Theorem 1.1; and Examples 5.3 and 5.4.

Proof. There is a connected component \(N^\circ \) of \(M_1^\circ \) such that its closure \(N \) contains \(F_c \), since if \(F_c \cap N \neq \emptyset \), then \(F_c \subset N \) by Lemma 3.6. If \(\eta|_{F_a^{-}} = 0 \), then \(\eta|_{N \cap F_a^{-}} = \eta|_{F \cap N_a^{-}} = 0 \).

In the proof of Theorem 4.10 for the \(\mathbb{R} \)-action on \([N/S]\), in the middle of the induction step we have the injection \(H^*_T(N_a^{-}) \hookrightarrow H^*_T(F \cap N_a^{-}) \). Hence \(\eta|_{F \cap N_a^{-}} = 0 \) implies \(\eta|_{N_a^{-}} = 0 \).

Apply Proposition 4.7 to the \(T \)-action on \(N \): we obtain a short exact sequence and a commutative diagram

\[
0 \longrightarrow H^*_T(N_b^{-}, N_a^{-}) \longrightarrow H^*_T(N_b^{-}) \xrightarrow{\beta} H^*_T(N_a^{-}) \longrightarrow 0
\]

where \(E_{N,c}^{-} \) is the \(T \)-equivariant negative normal bundle of \(F_c \) in \(N \). The exactness and the commutativity of those diagram implies that any element in the kernel \(\ker \beta \) is a multiple of the equivariant Euler class \(e_T(E_{N,c}^{-}) \) when it is restricted to \(F_c \). Thus by Lemma
We have now established the preliminaries necessary to prove the orbifold version of Tolman and Weitsman’s version of the GKM theorem.

Theorem 5.5. In the diagrams

\[
\begin{array}{c}
M \xrightarrow{i} M_1 \\
F \xrightarrow{j} \quad \quad \quad \quad \\
\downarrow \\
H_T(M) \xrightarrow{i^*} H_T(M_1) \\
\downarrow \\
H_T(F) \xrightarrow{j^*}
\end{array}
\]

we have \(\text{Im} \, i^* = \text{Im} \, j^* \) over \(\mathbb{Q} \). In particular, \(H_T^*(M) \cong \text{Im} \, j^* \). If we assume that \(T_x \) is connected for all \(x \in F \) and that the weights of the \(T_{x,1} \)-action on the negative normal bundle (for a generic \(\mu \xi \)) are primitive for all \(x \in F \), the claim also holds over \(\mathbb{Z} \).

Proof. We have proved all the preliminary claims needed, so the proof goes through exactly as in [TW] p. 8–9. We proceed by induction on the index \(i = 1, \cdots, n \), where the critical values \(c_i \) are ordered so that \(c_1 < \cdots < c_n \). Let \((a, b) \) be an open interval containing only \(c_i \). Consider the following map of short exact sequences, using the notation from Proposition 5.3:

\[
\begin{array}{c}
0 \longrightarrow H_T^*(M_{1,a}^-, M_a^-) \longrightarrow H_T^*(M_b^-) \longrightarrow H_T^*(M_1^-) \longrightarrow 0 \\
\downarrow \\
0 \longrightarrow \text{ker} \, r^* | \text{Im} \, j_{b^*}^- \longrightarrow \text{Im} \, j_{b^*}^- \longrightarrow \text{Im} \, j_{a^*}^- \longrightarrow 0
\end{array}
\]

where \(r : M_{1,a}^- \rightarrow M_{1,b}^- \) is the obvious inclusion. The third vertical map is surjective by the inductive assumption. The surjectivity of the first vertical map follows from Proposition 5.2. The surjectivity of the middle vertical map then follows by a diagram chase analogous to the one in the Five Lemma. \(\square \)

6. **GKM Computations for Toric Orbifolds**

In this section, we compute the \(\mathbb{R} \)-equivariant cohomology of \([M/\mathcal{S}] \) for compact symplectic toric orbifolds. We show that it is isomorphic, with \(\mathbb{Z} \)-coefficients, to the Stanley-Reisner ring of the corresponding moment polytope. This generalizes the case of smooth toric manifolds. This result should also follow from an argument using the moment angle complex, since the moment angle complex only depends on the combinatorial type of the polytope (see [BP], [P]). Nonetheless, we will now apply our techniques to obtain the following.

Theorem 6.1. Let \(\mathcal{S} \) be an \((m - n)\)-dimensional subtorus of the \(m \)-dimensional torus \(T \) which acts on \(\mathbb{C}^m \) coordinate-wise, and let \(\mu_{\mathcal{S}} : \mathbb{C}^m \rightarrow s^\circ \) be the induced moment map of the \(\mathcal{S} \)-action, so that \(M := \mu_{\mathcal{S}}^{-1}(\eta) \) is a compact manifold, for a regular value \(\eta \in s^\circ \).
Let Δ be the moment polytope of the compact toric orbifold obtained as the symplectic reduction $\mathbb{C}^n//\mathbb{S} = [M/\mathbb{S}]$ at the regular value η. Then

$$H^*_\mathbb{R}(\mathbb{C}^n//\mathbb{S}, \mathbb{Z}) \cong SR(\Delta)$$

where $SR(\Delta)$ is the Stanley-Reisner ring of the polytope Δ.

The (ordinary) Chow of an algebraic toric orbifold has been computed by Iwanari \cite{I} as the quotient of the Stanley-Reisner ring by linear terms. The ordinary integral cohomology $H^*(X; \mathbb{Z})$ need not be the quotient of the Stanley-Reisner ring by linear terms. As discussed in \cite{H} after the proof of Theorem 4.2, the integral cohomology of a direct product of two identical weighted projective spaces has torsion in odd degrees, whereas the Stanley-Reisner ring can only contribute to even degrees. This is explored further in \cite{LMM}.

6.1. **Stanley Reisner ring and the direct sum decomposition.** Let Δ be a simple polytope of n-dimension. We let K_Δ denote the associated simplicial complex whose vertices are the facets of Δ, and a collection of vertices is a simplex in K_Δ if and only if the corresponding collection of facets in Δ has non-empty intersection. The Stanley-Reisner ring $SR(\Delta)$ of Δ is defined as the Stanley-Reisner ring $SR(K_\Delta)$ of the simplicial complex K_Δ associated to Δ. Namely,

$$SR(\Delta) := \frac{\mathbb{Z}[x_1, \cdots, x_m]}{\langle \prod_{i \in \sigma} x_i \mid \sigma \notin K_\Delta \rangle}$$

where m is the number of facets of Δ. We define the ring

$$R := \bigoplus_{v \text{ vertex of } \Delta} \mathbb{Z}[x_1, \cdots, x_n \mid v = H_{i_1} \cap \cdots \cap H_{i_n}]$$

$$= \bigoplus_{v \text{ vertex of } \Delta} \mathbb{Z}[x_1, \cdots, x_n \mid H^*_v = \{i_1, \cdots, i_n\}]$$

where $\{H_1, \cdots, H_m\}$ is the set of facets of Δ and H^*_v is the facet of K_Δ corresponding to the vertex v of Δ. We define a subring of R by

$$R_\Delta := \left\{ (p_{v_1}, \cdots, p_{v_\ell}) \in R \bigg| \begin{array}{l} p_v|_{x_j=0} = p_{v'}|_{x_j=0} \\ \forall \text{ edge } (v, v') \text{ in } \Delta, \text{ where } j \in H^*_v \setminus H^*_{v'} \text{ and } i \in H^*_v \setminus H^*_{v'} \end{array} \right\}.$$

This ring R_Δ is the algebra of continuous piece-wise polynomial functions on the fan canonically defined by the simplicial complex K_Δ and is well-known to be isomorphic to $SR(\Delta)$ via

$$x_i \mapsto (p^I_{v_1}, \cdots, p^I_{v_\ell}), \text{ where } p^I_v = \begin{cases} 0 & \text{if } i \notin H^*_v \\ x_i & \text{if } i \in H^*_v \end{cases}.$$

See, for example, \cite[§1.3]{Br}, \cite{BR} or \cite{Bl}.
6.2. **Injectivity over \(\mathbb{Z} \) for toric orbifolds.** We recall the construction of symplectic toric orbifolds in [LT]. Let \(\Delta \) be a simple integral polytope in \(\mathbb{R}^n \). We may identify \(\mathbb{R}^n \cong \mathbb{R}^* \). Let \(\mathcal{H} = \{ H_1, \ldots, H_m \} \) be the set of facets and \(\rho_1, \ldots, \rho_m \in \mathbb{Z}^n \) the primitive inward normal vectors to facets and let \(b_1, \ldots, b_m \in \mathbb{Z}_{>0} \) be positive integers that label the facets of \(\Delta \) in the sense of [LT]. The polytope is given by

\[
\Delta = \{ v \in \mathbb{R}^n \mid \langle b_i \rho_i, v \rangle + \eta_i \geq 0, \quad i = 1, \ldots, m \}
\]

for some \(\eta := (\eta_i) \in \mathbb{R}^n \). Let \(B := [b_1 \rho_1 | \cdots | b_m \rho_m] \in \text{Mat}_{n \times m}(\mathbb{Z}) \). Suppose that the transpose \(^t B : \mathbb{Z}^n \to \mathbb{Z}^m \) has free cokernel so that we have a short exact sequence

\[
0 \longrightarrow \mathbb{Z}^{m-n} \xrightarrow{\Delta} \mathbb{Z}^m \xrightarrow{B} \mathbb{Z}^n \longrightarrow 0.
\]

The matrix \(A \in \text{Mat}_{m,m-n}(\mathbb{Z}) \) is given by choosing a basis of \(\ker(B) \). Now applying \(\text{Hom}(\mathbb{Z}, T^1) \), we get an exact sequence of tori

\[
1 \longrightarrow S^{(m-n)} \xrightarrow{\bar{A}} T^{(m)} \xrightarrow{\bar{B}} R^{(n)} \longrightarrow 1.
\]

and the corresponding exact sequence of Lie algebras

\[
0 \longrightarrow s^{(m-n)} \xrightarrow{A} t^{(m)} \xrightarrow{B} \mathfrak{r}^{(n)} \longrightarrow 0.
\]

Let \(\bar{\rho} : \mathbb{C}^m \to \mathfrak{s}^* \) be the moment map for the action of \(S \) defined by the standard \(T \)-action on \(\mathbb{C}^m \) through the exact sequence above. This sends \((z_1, \ldots, z_m) \in \mathbb{C}^m \) to

\[
z = (z_1, \ldots, z_m) \mapsto \begin{bmatrix} |z_1|^2 \\ \vdots \\ |z_m|^2 \end{bmatrix} = \begin{bmatrix} a_{11}|z_1|^2 + \cdots + a_{1m}|z_m|^2 \\ \vdots \\ a_{1,m-n-1}|z_1|^2 + \cdots + a_{1,m-n}|z_m|^2 \end{bmatrix},
\]

where \(^t A = ^t(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m-n} \). The orbifold \([M/S^{(m-n)}] \) corresponding to the labeled polytope \((\Delta, b) \) is given by reduction at \(\eta' := ^t A \cdot \eta \in \mathfrak{s}^* \). Namely,

\[
M = \mu^{-1}(\eta') = \{ z \in \mathbb{C}^m \mid ^t A \cdot |z|^2 = \eta' \}.
\]

Lemma 6.2 ([LT], proof of Theorem 8.1). Let \(v = H_{i_1} \cap \cdots \cap H_{i_n} \in \mathfrak{s}^* \cong \mathbb{R}^n \) be a vertex of \(\Delta \). Then the corresponding fixed orbifold point in \([M/S] \) is given by \([F_v/S] \) where

\[
F_v = \{ (z_1, \ldots, z_m) \in \mathbb{C}^m \mid |z_i|^2 = \langle B \cdot v + \eta, \cdot \rangle, \quad i = 1, \ldots, m \},
\]

and \(\langle B \cdot v + \eta, \cdot \rangle = 0 \) if and only if \(i = i_1, \ldots, i_n \). For each \(x \in F_v \), the isotropy group \(T_x \) is a subtorus of \(T \)

\[
T_x = \{ (t_{i_1}, \ldots, t_{i_m}) \in T \mid t_i = 1 \quad \forall i \in [m] \backslash \{i_1, \ldots, i_n\} \}.
\]

In particular, the isotropy \(T_{F_v} \) of \(F_v \) equals \(T_x \) for every \(x \in F_v \).

Proof. This follows from the proof of Theorem 8.1 in [LT]. Since a vertex \(v \in \Delta \subset \mathbb{R}^n \) is given by \(n \) equations \(\langle b_i \rho_i, v \rangle + \eta_i = 0, \ldots, \langle b_i \rho_i, v \rangle + \eta_i = 0 \), we have \(\langle B \cdot v + \eta, \cdot \rangle = 0 \) if and only if \(i = i_1, \ldots, i_n \). \(\square \)
The local normal form around a point \(p_v \) in \(F_v \) is given by

\[
U_{p_v} \cong T \times_{T_{F_v}} W, \quad \text{where} \quad W \cong \mathbb{C} \cdot \frac{\partial}{\partial z_i} \oplus \cdots \oplus \mathbb{C} \cdot \frac{\partial}{\partial z_m}
\]

and the weight of \(\mathbb{C} \cdot \frac{\partial}{\partial z_i}, k = 1, \cdots, n \) is \(\lambda_{i_k} \in \text{Hom}(T_{F_v}, S^1) \) defined by \(\lambda_{i_k}(t) = t_{i_k} \) for all \(t \in T_{F_v} \). Therefore, the action satisfies hypothesis \((\mathbb{Z}2)\). Thus Theorem \[5.5\] holds over \(\mathbb{Z} \).

Proposition 6.3. The restriction map \(H^*_v(M, \mathbb{Z}) \to H^*_v(F, \mathbb{Z}) \) is injective where \(F \) is the union of \(F_v \)'s for all vertices \(v \in \Delta \) and its image coincides with the image of \(H^*_v(M_1, \mathbb{Z}) \to H^*_v(F, \mathbb{Z}) \).

6.3. The 1-skeleton and GKM computations

Recall that \(H^*_v \) is the facet of the associated simplicial complex \(K_\Lambda \) corresponding to a vertex \(v \) of \(\Delta \). For each edge \((v, u)\) of \(\Delta \), we have \(|H^*_v \cap H^*_u| = n - 1 \). Letting \(\{a\} = H^*_v \setminus H^*_u \) and \(\{b\} = H^*_u \setminus H^*_v \), the corresponding component of the 1-skeleton is

\[
N_{v, u} = \big\{ (z_1, \cdots, z_m) \in \mathbb{C}^m \big| |z_k|^2 = s \bar{v}_k + (1 - s) \bar{u}_k, \ s \in [0, 1] \big\},
\]

where \(\bar{v} = \text{'}B \cdot v + \eta \). Therefore, \((z_1, \cdots, z_m) \in N_{v, u}\) is given by

\[
|z_k|^2 = 0 \quad \forall k \in H^*_v \cap H^*_u,
|z_k|^2 = s \bar{v}_k \neq 0,
|z_k|^2 = (1 - s) \bar{u}_k \neq 0,
|z_l|^2 = s \bar{v}_l + (1 - s) \bar{u}_l \neq 0 \quad \forall l \notin H^*_v \cup H^*_u.
\]

By getting rid of the parameter \(s \), we can also write \(N_{u, v} \) as

\[
|z_k|^2 = 0 \quad \forall k \in H^*_v \cap H^*_u,
|z_k|^2 = 2 \bar{u}_k \bar{v}_b \neq 0,
|z_l|^2 = \frac{|z_l|^2}{\bar{v}_l} \bar{v}_l + (1 - \frac{|z_l|^2}{\bar{v}_l}) \bar{u}_l \neq 0 \quad \forall l \notin H^*_v \cup H^*_u.
\]

The pair \((\mathbb{C}^m, N_{v, u})\) is \(T \)-equivariantly homotopic to the pair \((\mathbb{C}^m, \{0\}^{n-1} \times S^3 \times (S^1)^{m-n-1})\).

We have the following short exact sequence (cf. Theorem 4.2 \[11\])

\[
0 \to H^*_{(S^1)^k}(\mathbb{C}^k, S^{2k-1}) \to H^*_{(S^1)^k}(\mathbb{C}^k) \to H^*_{(S^1)^k}(S^{2k-1}) \to 0.
\]

By applying the Künneth formula, we obtain a surjection \(H^*_v(\mathbb{C}^m) \to H^*_v(N_{v, u}) \).

Lemma 6.4. The inclusion \(\pi^! : N_{v, u} \hookrightarrow \mathbb{C}^m \) induces a surjective map

\[
\pi^* : H^*_v(\mathbb{C}^m) \to H^*_v(N_{v, u}).
\]
Furthermore, since \mathbb{C}^m equivariantly retracts to $\{0\}$, by the commutativity of the diagram

\[
\begin{array}{ccc}
E_T \times_T \mathbb{C}^m & \xrightarrow{\pi^*} & BT \\
\downarrow{\text{homot}} & & \\
E_T \times_T N_{v,u} & \xrightarrow{\pi} & BT
\end{array}
\]

π^* is surjective.

Now consider the diagram

\[
\begin{array}{ccc}
E_T \times_T (N_{v,u}) & \xrightarrow{\pi} & BT \\
\downarrow{i} & & \\
E_T \times_T F_v \sqcup E_T \times_T F_u & \xrightarrow{\rho^*} & E_T \times_T (N_{v,u})
\end{array}
\]

Taking cohomology with \mathbb{Z} coefficients, we obtain

\[
\begin{array}{ccc}
H_T(N_{v,u}) & \xrightarrow{\pi^*} & \mathbb{Z}[x_1, \ldots, x_m] \\
\downarrow{\rho^*} & & \\
\mathbb{Z}[x_{i_1}, \ldots, x_{i_{n-1}}, x_a] \oplus \mathbb{Z}[x_{i_1}, \ldots, x_{i_{n-1}}, x_b]
\end{array}
\]

where $H_v^i = \{i_1, \ldots, i_{n-1}, a\}$ and $H_u^i = \{i_1, \ldots, i_{n-1}, b\}$. The image of i^* consists (p_v, p_u) such that $p_v|_{x_a} = p_u|_{x_b} = 0$. Thus the image of $H_T^i(M_1)$ in $H_T(F)$ is

\[
\left\{(p_v, \ldots, p_v) \in R \left| \begin{array}{c}
\forall \text{ edge } (v, v') \text{ in } \Delta \n(p_v|_{x_j} = 0 = p_{v'}|_{x_i} = 0, \ n_{v'} \in H_v^i \setminus H_v^j, \ n_i \in H_v^i \setminus H_v^j)
\end{array} \right. \right\}
\]

which coincides with R_Δ defined in Section 6.1. Thus we may conclude that the \mathbb{R}-equivariant cohomology of the toric orbifold $[M/S]$ is isomorphic to the Stanley-Reisner ring of Δ. This completes the proof of Theorem 6.1.

7. \mathbb{R}-EQUIVARIANT CHEN-RUAN ORBIFFOLD COHOMOLOGY OF $[M/S]$*

We now turn to \mathbb{R}-equivariant Chen-Ruan theory. When \mathbb{R} is the trivial group, our definitions agree with the usual non-equivariant ones [CR]. After defining the \mathbb{R}-equivariant Chen-Ruan orbifold cohomology ring of the \mathbb{R}-orbifold $[M/S]$, we survey the literature on this topic which motivates our definitions and results. The inertia manifold for the locally free S-action on M is defined by $I_S M := \bigsqcup_{g \in S} M^g$, where M^g is the set of fixed points by the subgroup $\langle g \rangle$ generated by g. This disjoint union is a finite union, since M is compact and the S-action is locally free. There is also an induced T-action on M, which allows us to define the Hamiltonian \mathbb{R} action on the orbifold

\[
I[M/S] := \bigsqcup_{g \in S} [M^g/S],
\]
called the **inertia orbifold**. We may then define the R-equivariant Chen-Ruan cohomology of $[M/S]$, as a vector space, to be

$$H_{orb,R}([M/S]) := H_T(I_S M) = \bigoplus_{g \in S} H_T(M^g) = \bigoplus_{g \in R} H_R([M^g/S]).$$

Let $M^{g,h} := M^g \cap M^h$. The normal bundle $N_{M^g \subset M}$ of M^g in M is then a T-equivariant complex vector bundle, with weight decomposition

$$N_{M^g \subset M} = \bigoplus_{\lambda \in \text{Hom}(g),S^1} W_\lambda.$$

Define an element S_g of the T-equivariant (topological) K-theory $K_T(M^g) \otimes \mathbb{Q}$ of $M^{g,h}$ over \mathbb{Q} by

$$S_g = \bigoplus_{\lambda \in \text{Hom}(g),S^1} a_\lambda(g) W_\lambda$$

where $a_\lambda(g) \in [0,1)$ is the age, defined by $\lambda(g) = e^{2\pi i a_\lambda(g)}$. Following [EFK, JKK], define the **equivariant virtual bundle** $R_M(g,h)$ as an element of $K_T(M^{g,h}) \otimes \mathbb{Q}$

$$R_M(g,h) := \otimes N_{M^{g,h} \subset M} \otimes S_g|_{M^{g,h}} \otimes S_h|_{M^{g,h}} \otimes S_{(g,h)^{-1}}|_{M^{g,h}}.$$

Since $H := \langle g, h \rangle$ acts on each tangent space $T_x M$ and $T_x M/T_x M^{g,h}$ for $x \in M^{g,h}$, we have the decomposition

$$N_{M^{g,h} \subset M} = \bigoplus_{\lambda \in \text{Hom}(H,S^1)} W_\lambda.$$

Since the T-action commutes with the H-action, this decomposition is T-stable; that is, each W_λ is a T-equivariant complex vector bundle. Then we may show that

$$R_M(g,h) = \bigoplus_{a(g),a(h) + a(g,h)^{-1} = 2} W_\lambda.$$

Thus $R_M(g,h)$ is actually represented by a T-equivariant complex vector bundle. This is the version of the obstruction bundle introduced in [BCS]. Since $R(g,h)$ is a T-equivariant complex vector bundle on $M^{g,h}$, we take the T-equivariant Euler class to define

$$c_M(g,h) := e_T(R_M(g,h)) \in H_T(M^{g,h}),$$

called the **virtual class**. We define the R-equivariant orbifold product on $H_{orb,R}([M/S])$ by the usual pull-up-push formula. Namely for $\eta \in H_T(M^g)$ and $\xi \in H_T(M^h)$,

$$\eta \circ \xi := e_+ (e_1^* \eta \cup e_2^* \xi \cup c_M(g,h)),$$

where e_1, e_2, and e are the obvious inclusions of $M^{g,h}$ into M^g, M^h, and $M^{g,h}$ respectively. For the definition of the equivariant pushforward e_+, see for example [AB] Section 2. The associativity of this product follows immediately from the proof of the corresponding associativity in non-equivariant case in [BCS, GHK, JKK]. For $\eta \in H_R^{|\eta|}(M^g)$, the rational grading is assigned by $\deg_{\mathbb{Q}} \eta = |\eta| + 2 \cdot \text{age}(g)$, where $\text{age}(g) := \text{rank} S_g$. It
follows immediately that the product is rationally graded. If one of \(g \), \(h \), or \(gh \) is the identity, then the obstruction bundle has rank 0 and so it is easy to see that \(H^*_T(M) \) sits in \(H^*_{orb, R}(\lfloor M/S \rfloor) \) as a subalgebra. In particular, \(H^*_{orb, R}(\lfloor M/S \rfloor) \) is a \(H^*_T(pt) \)-algebra.

Theorem 7.1. \(H^*_{orb, R}(\lfloor M/S \rfloor) \) is a rationally graded, associative, \(H^*_T(pt) \)-algebra.

The usual Chen-Ruan orbifold cohomology groups of an algebraic orbifold \(X \) are defined as a vector space by \(H^*(IX) \), where \(IX \) is the inertia orbifold. The orbifold product is the usual cup product which is then deformed by the Euler class of the obstruction cup product for the corresponding Gromov-Witten theory [AGV, Section 6]. The obstruction bundle for algebraic toric orbifolds has been computed by [BCS] and adopted for symplectic orbifolds by [GHK] following the original definitions in [CR]. The most recent formula for algebraic orbifolds that are global quotients by algebraic groups can be found in [EJK].

If \(X \) is an algebraic \(G \)-orbifold, there is an induced action on the obstruction bundle defined in [AGV], and the \(G \)-equivariant Chen-Ruan cohomology ring can be defined as the equivariant cohomology groups of the inertia orbifold together with the orbifold cup product deformed by the equivariant Euler class of the obstruction bundle [J, Section 2.2.1]. On the other hand, the obstruction bundle defined in [CR] for a symplectic \(G \)-orbifold is also naturally \(G \)-equivariant. In the case of the symplectic \(R \)-orbifolds considered in this paper, the formula in [GHK] derived from the definition in [CR] is \(R \)-equivariantly valid. The argument in [GH, Appendix A] can be made equivariant. It is also possible to verify that the computation done in [BCS] is valid \(R \)-equivariantly.

8. **Injectivity theorem for equivariant Chen-Ruan orbifold cohomology**

The ring \(H^*_{orb, R}(\lfloor M/S \rfloor) \) is not functorial: a map between spaces may not induce a map on Chen-Ruan orbifold cohomology rings. In particular, the inclusion of the fixed points \([F/S] \hookrightarrow [M/S] \) does not induce a map in Chen-Ruan orbifold cohomology. Thus we introduce a new ring \(\mathcal{NH}_R^*(v[F/S]) \). Recall from Section 3.1 that

\[
F := \{ x \in M \mid T \cdot x = S \cdot x \}
\]

is a submanifold of \(M \), and the suborbifold \([M/S]^R \) of \(R \)-fixed orbifold points of \([M/S] \) is exactly \([F/S] \). The ring \(\mathcal{NH}_R^*(v[F/S]) \) will be defined for the normal bundle of \([F/S] \) in \([M/S] \). This new ring is defined only using the fixed points and isotropy data at the fixed points.

Definition 8.1. As a vector space, we define

\[
\mathcal{NH}_R^*(v[F/S]) := \bigoplus_{g \in S} H_T(F^g).
\]

The rational grading is defined with an age shift, exactly as in the previous section. We have the natural restriction map from \(H^*_{orb, R}(\lfloor M/S \rfloor) \) to \(\mathcal{NH}_R^*(v[F/S]) \) and in order to make it a ring homomorphism, the product must be defined appropriately in
\(\mathcal{N} \mathcal{H}_R(\nu[F/S]) \) using a push-cup-pull formula. Let \(\mathcal{E}(g, h) \) be the excess intersection bundle \(\mathcal{E}(g, h) = N_{M^{g,h} \subset M^{g,h}} |_{F^{g,h}} \cap N_{F^{g,h} \subset F^{g,h}} \) for the diagram

\[
\begin{array}{ccc}
M^{g,h} & \rightarrow & M^{g,h} \\
\uparrow & \square & \uparrow \\
F^{g,h} & \rightarrow & F^{g,h}
\end{array}
\]

Define
\[
\mathcal{R}'_F(g, h) := \mathcal{R}_M(g, h) |_{F^{g,h}} \oplus \mathcal{E}(g, h), \quad c'_F(g, h) := e_T(\mathcal{R}'_F(g, h)).
\]

The product \(* \) on \(\mathcal{N} \mathcal{H}_R(\nu[F/S]) \) is defined for \(a \in H_T(F^g) \) and \(b \in H_T(F^h) \) by \(a * b := f_* (f_1^* a \cup f_2^* b \cup c'_F(g, h)) \) where \(f_1, f_2, f \) are the obvious inclusions of \(F^{g,h} \) into \(F^g, F^h \) and \(F^{g,h} \).

Theorem 8.2. \((\mathcal{N} \mathcal{H}_R(\nu[F/S]), *)\) is an associative graded ring.

Proof. Let \(g, h, m \in S \). Denote all relevant inclusions by

\[
\begin{array}{ccc}
F^g & \leftarrow & F^{g,h} \\
f_1 & \downarrow & f \\
F^{g,h} & \rightarrow & F^{g,h} \\
\phi & \downarrow & f_3 \\
F^h & \leftarrow & F^{g,h,m} \\
\psi & \downarrow & l \\
F^{g,h,m} & \rightarrow & F^{ghm} \\
f_3 & \downarrow & f_3 \\
F^m & \leftarrow & F^{g,h,m}
\end{array}
\]

and

\[
\begin{array}{ccc}
F^g & \leftarrow & F^{g,h} \\
\overline{f}_1 & \downarrow & \overline{f}_2 \\
F^{g,h} & \rightarrow & F^{g,h} \\
\phi & \downarrow & \overline{f}_3 \\
F^h & \leftarrow & F^{g,h,m} \\
\psi & \downarrow & l \\
F^{g,h,m} & \rightarrow & F^{ghm} \\
\overline{f}_3 & \downarrow & f_3 \\
F^m & \leftarrow & F^{g,h,m}
\end{array}
\]
Let us calculate

\[(a \star b) \star c = l_* (f_1^* f_2^* (f_1^* a \cup f_2^* b \cup c'_f (g, h)) \cup f_3^* c \cup c'_f (gh, m))\]

by definition;

\[= l_* (\psi_* (\phi^* f_1^* a \cup f_2^* b \cup c'_f (g, h)) \cup e) \cup f_3^* c \cup c'_f (gh, m))\]

by the excess intersection formula;

\[= l_* (\psi_* (\phi^* f_1^* a \cup f_2^* b \cup \phi^* c'_f (g, h) \cup e) \cup f_3^* c \cup c'_f (gh, m))\]

because pull-back commutes with cup product;

\[= l_* (\psi_* (\overline{f_1} a \cup \overline{f_2} b \cup \phi^* c'_f (g, h) \cup e)) \cup f_3^* c \cup c'_f (gh, m))\]

because \(\overline{f_1} = f_1 \circ \phi\) and \(\overline{f_2} = f_2 \circ \phi\);

\[= l_* (\psi_* (\overline{f_1} a \cup \overline{f_2} b \cup \overline{f_3} c \cup \phi^* c'_f (g, h) \cup e)) \cup \psi^* c'_f (gh, m))\]

by the projection formula;

\[= l_* (\psi_* (\overline{f_1} a \cup \overline{f_2} b \cup \overline{f_3} c \cup \phi^* c'_f (g, h) \cup e) \cup \psi^* c'_f (gh, m))\].

In the last line, we denote \(e := e_T (E)\) where the bundle

\[E := N_{E,g,h} \subset E \oplus N_{E,h,m} \subset E\]

is the excess intersection bundle corresponding to the square in above diagram. Now \(\phi^* c'_f (g, h) \cup e \cup \psi^* c'_f (gh, m)\) is the T-equivariant Euler class of

\[
\phi^* (R_M (g, h)|_{E,g,h} \oplus E (g, h)) \oplus E \oplus R_M (g, h)|_{E,h,m} \oplus E (gh, m)) \\
= \oplus N_{E,h,m} \oplus N_{M,h,m} \oplus S_g \oplus S_h \oplus S_m \oplus S_{(gh, m)\rightarrow 1},
\]

where we omit \(|_{F,g,h,m}\) everywhere, and the only non-obvious cancellation uses

\[S_g \oplus S_{g\rightarrow 1} = TM \oplus T M_e.\]

The final form is symmetric in \((g, h, m)\), establishing the associativity of \(\star\). \(\square\)

The following is an immediate generalization of the product to an \(n\)-fold product.

Corollary 8.3. For \(a_i \in H_T (F^{g_i}), i = 1, \cdots, n\), we may define an \(n\)-fold product by

\[a_1 \star a_2 \star \cdots \star a_n = f_* (\overline{f_1} a_1 \cup \overline{f_2} a_2 \cup \cdots \cup \overline{f_n} a_n) \cup e_T (R'_F (g_1, \cdots, g_n))\]

where \(\overline{f_i} : F^{g_1, \cdots, g_n} \to F^{g_i}\) and \(f : F^{g_1, \cdots, g_n} \to F^{\prod g_i}\) are obvious inclusions and the obstruction bundle is given by

\[R'_F (g_1, \cdots, g_n) := \oplus N_{F, \prod g_i, \subseteq \prod g_i} \oplus N_{M, \prod g_i, \subseteq M} \oplus \bigoplus_{i=1}^n S_{g_i} \oplus S_{(\prod g_i)\rightarrow 1}.\]
The inclusions \(i : F^g \rightarrow M^g \) for all \(g \in S \) altogether induce a rationally graded linear map \(I : H_{orb,R}([M/S]) \rightarrow N\mathcal{H}_R(\nu[F/S]) \). Consider the diagram of obvious inclusions:

\[
\begin{array}{ccc}
M^g \times M^h & \xrightarrow{\Delta_M} & M^{g,h} \\
\downarrow (i_1,i_2) & & \downarrow \circ \circ \downarrow i \\
F^g \times F^h & \xrightarrow{\Delta_F} & F^{g,h}
\end{array}
\]

The map \(I \) is a graded ring homomorphism if

\[
i^*(e_*(\Delta_M^*(\eta \otimes \xi) \cup c_T(g,h))) = f_*(\Delta_F^*(i_1,i_2)^*(\eta \otimes \xi) \cup c_T'(g,h)) = f_*(j^*\Delta_M^*(\eta \otimes \xi) \cup c_T'(g,h)).
\]

Since \(c_T'(g,h) = j^*(c_T(g,h)) \cup e_T(E(g,h)) \), the equality follows exactly from the excess intersection formula. Thus, combined with the injectivity theorem, we obtain

Theorem 8.4. The natural map \(I : (H_{orb,R}([M/S]), \circ) \rightarrow (N\mathcal{H}_R(\nu[F/S]), \bullet) \) is a graded ring homomorphism. If the \(T \)-action on \(M \) satisfies the condition \((Q2)\) (resp. \((Z2)\)), then this homomorphism is injective over \(\mathbb{Q} \) (resp. over \(\mathbb{Z} \)).

9. Examples: compact symplectic toric orbifolds

9.1. Pullback and pushforward maps for inclusions of polytopes.

In this section, we collect the notions of pullback and pushforward maps of Stanley-Reisner rings. Let \(\Delta \) be a simple polytope with \(m \) facets \(H_1, \ldots, H_m \). For \(\tau \in K_\Delta \), let \(G = \cap_{i \in \tau} H_i \) be an \((n - r)\)-dimensional face of \(\Delta \). Then \(G \) is also a simple polytope and the corresponding simplicial complex \(K_G \) is isomorphic to the link \(K_{\Delta,\tau} \) of \(\tau \) in \(K_\Delta \), namely, \(K_{\Delta,\tau} := \{ \sigma \subset [m] \mid r \subseteq \sigma \cup \tau \in K_\Delta \} \). Let \(\tilde{K}_{\Delta,\tau} * \tau \) be the joint of \(K_{\Delta,\tau} \) with the simplex \(\tau \), namely \(\tilde{K}_{\Delta,\tau} * \tau := \{ \sigma_1 \sqcup \sigma_2 \mid \sigma_1 \in \tilde{K}_{\Delta,\tau} \) and \(\sigma_2 \subset \tau \}. Then

\[
\mathcal{S}R(G) := \mathcal{S}R(K_{\Delta,\tau} * \tau) \cong \frac{\mathbb{Z}[x_1, \ldots, x_m]}{(x^\sigma \mid \sigma \subset [m] \setminus \tau, \sigma \cup \tau \in K_\Delta)} \cong \mathcal{S}R(G) \otimes \mathbb{Z}[x_i, i \in \tau],
\]

where \(x^\sigma := \prod_{i \in \sigma} x_i \). If \(G' = \cap_{i \in \tau} H_i \) be a non-empty face contained in \(G \), i.e. \(\tau \subset \tau' \), then naturally \(\tilde{K}_{\Delta,\tau} * \tau' \) is a subcomplex of \(K_{\Delta,\tau} * \tau \). Thus there are natural pullback and pushforward maps on the Stanley-Reisner rings:

\[
(i_{G,G'})^* : \mathcal{S}R(G) \rightarrow \mathcal{S}R(G'), \quad x_i \mapsto x_i, \quad (i_{G,G'})_* : \mathcal{S}R(G') \rightarrow \mathcal{S}R(G), \quad 1 \mapsto x^{\tau' \setminus \tau}.
\]

The pushforward is determined by the image of 1 since the pullback map is a surjective ring homomorphism and the pushforward is a homomorphism as \(\mathcal{S}R(G) \)-module where the module structure on \(\mathcal{S}R(G') \) is induced by the pullback map.
9.2. Equivariant Chen-Ruan orbifold cohomology. We use the notation from Section 6. Let \(\mu : M \to \mathfrak{t}^* \) be the moment map for the toric orbifold \([M/S]\) so that \(\mu(M) = \Delta \). Recall from \([\text{LT}]\) that \(B \cdot (\cdot) + \eta \) embeds \(\Delta \) into \(\mathfrak{t}^* \), and \(M \) is defined as the preimage of \(\Delta' := B(\Delta) + \eta \) under the standard moment map \(\mu : \mathbb{C}^m \to \mathfrak{t}^* \). The moment map \(\mu \) is the composition of \(\overline{\mu} \) with the inverse of \(B \cdot (\cdot) + \eta \) restricted to \(\Delta' := B(\Delta) + \eta \). The faces of \(\Delta' \) are given by the intersections of \(\Delta' \) and the coordinate planes in \(\mathfrak{t}^* \equiv \mathbb{R}^n \).

Lemma 9.1. Let \(G := H_{j_1} \cap \cdots \cap H_{j_r} \) be an \((n-r)\)-dimensional face. The global stabilizer \(T_{\mu^{-1}(G)} \) of \(\mu^{-1}(G) \) in \(T \) is

\[
T_{\mu^{-1}(G)} = \{(t_1, \cdots, t_m) \in T \mid t_1 = 1, \forall i \in [m]\{j_1, \cdots, j_r\}\} = \bigcap_{\nu \text{ vertex of } G} T_{F_{i,}.}
\]

Furthermore \(H_T(\mu^{-1}(G)) \equiv \overline{\text{SR}}(G) \).

Proof. By definition, we have \(\mu^{-1}(G) = \{z \in \mathbb{C}^m \mid |z_i|^2 = (B \cdot v + \eta)i\}, 1 \leq i \leq m, v \in G \). Thus \(z \in \mu^{-1}(G)^\circ \) if and only if \(z_i = 0 \) for \(i \in \{j_1, \cdots, j_r\} \), where \(G^\circ \) is the relative interior of \(G \). The second claim follows from the similar calculation as in Section 6 \(\square \)

Let \(g := (g_1, \cdots, g_m) \in S \subset T \). By the lemma above, \(M^g = \mu^{-1}(G_g) \) where \(G_g \) is the union of faces \(G \) such that \(T_{\mu^{-1}(G)} \) contains \(g \). Let \(\overline{g}_g := \{i \mid g_i = 1\}, \overline{b}_g := \{i \mid g_i \neq 1\} \subset \{1, \cdots, m\} \). Then \(g \in T_{\mu^{-1}(G)} \) if and only if \(\overline{b}_g \subset \{j_1, \cdots, j_r\} \). Therefore we have

Lemma 9.2. \(G_g = \bigcap_{i \in \overline{b}_g} H_i \). In particular, \(H_T^*(M^g) = \overline{\text{SR}}(G_g) \).

Now the intersection of \(M^g \) and \(M^h \) is given by \(M^g \cap M^h = \overline{\mu}^{-1}(G_g \cap G_h) \) where \(G_g \cap G_h = \bigcap_{i \in \overline{b}_g \cup \overline{b}_h} H_i \). Thus the normal bundle of \(M^{g,h} \) in \(M \) is given by \(\bigoplus_{i \in \overline{b}_g \cup \overline{b}_h} \mathbb{C} \cdot \frac{\partial}{\partial z_i} \)

Let \(\lambda_i \in \text{Hom}(T, S^1) \) such that \(\lambda_i(t) = t_i \) and define \(0 \leq \tilde{\lambda}_i(g) < 1 \) by \(\lambda_i(g) = e^{2\pi i \lambda_i(g)} \)

Thus the obstruction bundle and the virtual class are

\[
R(g, h) = \bigoplus_{i \in \overline{b}_g \cup \overline{b}_h} \mathbb{C} \cdot \frac{\partial}{\partial z_i}, \text{ and } c_T(g, h) = \prod_{i \in \overline{b}_g \cup \overline{b}_h} x_i.
\]

The normal bundle of \(M^{g,h} \) in \(M^h \) is given by \(\bigoplus_{i \in \overline{b}_g \cup \overline{b}_h} \mathbb{C} \cdot \frac{\partial}{\partial z_i} \), and its Euler class is \(\prod_{i \in \overline{b}_g \cup \overline{b}_h} x_i \). The equivariant Chen-Ruan cohomology space is \(H_{R,\text{orb}}([M/S]) = \bigoplus_{g \in S} \overline{\text{SR}}(G_g) \) where \(\overline{\text{SR}}(G_g) := 0 \) if \(G_g = \phi \). Since the pullback and pushforward maps of the equivariant cohomology agree with the ones on the Stanley-Reisner rings, we find that the product is given by

\[
1_g \otimes 1_h = \left(\prod_{i \in \overline{b}_g \cup \overline{b}_h} x_i \right) \cdot \left(\prod_{i \in \overline{b}_g \cup \overline{b}_h} \overline{\text{SR}}(G_g) \right) \cdot 1_{gh},
\]

in the virtual class

Euler class of normal bundle
where \(1_g, 1_h\) and \(1_{gh}\) are the identities in the corresponding Stanley-Reisner ring. The product \(\cdot\) on the right-hand side can be defined as the product in \(\mathbb{Z}[x_1, \cdots, x_m]\), and each sector is generated by the identity element as a \(\mathbb{Z}[x_1, \cdots, x_m]\)-algebra. Thus the above formula is enough to compute the general product.

9.3. **Demonstration of computations.** In this section, we present two computations, namely the weighted projective spaces in dimension 2, with weights \((1, 1, 2)\) and \((1, 2, 4)\).

9.3.1. **The weighted projective space** \(\mathbb{P}^2_{(1,1,2)}\). Consider the following polytope with facets \(H_i\), facet labels all (implicitly) 1, and the corresponding primitive inward-pointing normal vectors \(\rho_i\) to the facets.

The polytope is given by

\[
\Delta = \{ v \in \mathbb{R}^2 \mid \langle \rho_i, v \rangle \geq -\eta_i, \; i = 1, 2, 3 \}
\]

where \((\eta_1, \eta_2, \eta_3) = (0, 2, 0)\). The corresponding matrix \(B\) is \[
\begin{pmatrix}
0 & -2 & 1 \\
1 & -1 & 0
\end{pmatrix}
\]
and \(A = \begin{pmatrix} 1 \\ 2 \end{pmatrix}\).

Thus \(M\) is given by \(|z_1|^2 + |z_2|^2 + 2|z_3|^2 = 2\) in \(\mathbb{C}^3\) and \(S = \{ (t, t, t^2) \mid t \in U(1) \} \subset T = U(1)^3\).

The only elements \(g\) of \(S\) such that \(G_g\) is not empty are

\[
(1, 1, 1) \quad (-1, -1, 1)
\]
and the corresponding \(\hat{\rho}_g, G_g, K_{G_g}, K_{G_g} \ast \hat{b}_g, \hat{\lambda}_i\) and ages are given in the following table.

\(g\)	\(\hat{b}_g\)	\(G_g\)	\(K_{G_g}\)	\(K_{G_g} \ast \hat{b}_g\)	\(\hat{\lambda}_1\)	\(\hat{\lambda}_2\)	\(\hat{\lambda}_3\)	\(2\text{age}\)
\(1 := (1, 1, 1)\)	\(\phi\)	\(\Delta\)	\(K_\Lambda\)	\(K_\Lambda\)	0	0	0	0
\(\sigma := (-1, -1, 1)\)	\([1, 2]\)	\(\bullet\)	\(\phi\)	\(\bullet\bullet\)	\(1/2\)	\(1/2\)	0	2

(9.1)

Thus

\[
H_{CR,R}([M/S]) = \frac{\mathbb{Z}[x_1, x_2, x_3]}{\langle x_1 x_2 x_3 \rangle} \oplus \frac{\mathbb{Z}[x_1, x_2, x_3]}{\langle x_1 \rangle}.\]

The following is the table of the multiplications between \(1_1\) and \(1_\sigma\).

\(1_1\)	\(1_\sigma\)	\(1_\sigma\) \(1_1\)
\(1_1\)	\(1_1\)	\(1_\sigma\)
\(1_\sigma\)	\(1_\sigma\) \(1_1\) \(1_\sigma\) \(1_1\)	
9.3.2. The weighted projective space $\mathbb{P}^2_{(1,2,4)}$. Consider the following polytope with facets (H_1, H_2, H_3) and with the labels $(1, 1, 2)$ respectively, and the corresponding primitive inward-pointing normal vectors ρ_i of facets.

The corresponding matrix B is $\begin{pmatrix} 0 & -2 & 1 \\ 2 & -1 & 0 \end{pmatrix}$ and A is $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$. The hyperplanes defining Δ is still given by $(\eta_1, \eta_2, \eta) = (0, 2, 0)$. Thus $S = \{(t, r^2, r^4)\}$ and M is given by the equation $|z|^2 + 2|z_2|^2 + 4|z_3|^2 = 4$. The corresponding $\tilde{b}_g, G_g, K_g, K_g * \tilde{b}_g, \bar{\lambda}_i$ and ages are computed in the following table.

g	\tilde{b}_g	G_g	K_g	$K_g * \tilde{b}_g$	$\bar{\lambda}_1$	$\bar{\lambda}_2$	$\bar{\lambda}_3$	2age
$1 = (1, 1, 1)$	ϕ	Δ	K_Δ	K_Δ	0	0	0	
$\xi = \sqrt{1}, -1, 1$	$\{1, 2\}$	\bullet	ϕ	\bullet	$1/4$	$1/2$	0	$3/2$
$\xi^2 = (-1, 1, 1)$	$\{1\}$	\bullet	\bullet	\bullet	$1/2$	0	0	1
$\xi^3 = (-\sqrt{1}, -1, 1)$	$\{1, 2\}$	\bullet	ϕ	\bullet	$3/4$	$1/2$	0	$5/2$

Thus

$$H_{CR,R}([M/S]) = \frac{\mathbb{Z}[x_1, x_2, x_3]}{\langle x_1 x_2 x_3 \rangle} \oplus \frac{\mathbb{Z}[x_1, x_2, x_3]}{\langle x_3 \rangle} \oplus \frac{\mathbb{Z}[x_1, x_2, x_3]}{\langle x_2 x_3 \rangle} \oplus \frac{\mathbb{Z}[x_1, x_2, x_3]}{\langle \xi \rangle}.$$

The following is the table of the multiplications of $1_1, 1_\xi, 1_\xi^2, 1_\xi^3$:

$g \cdot h$	1_1	1_ξ	1_ξ^2	1_ξ^3
1_1	1_1	1_ξ	1_ξ^2	1_ξ^3
1_ξ	1_ξ^2	$(1) \cdot (x_2) \cdot 1_\xi^2$	1_ξ^3	$(1) \cdot (x_1 x_2) \cdot 1_1$
1_ξ^2	1_ξ^2	1_ξ	$(1) \cdot (x_1) \cdot 1_1$	$(x_1) \cdot (1) \cdot 1_\xi$
1_ξ^3	1_ξ^3	$(1) \cdot (x_1 x_2) \cdot 1_1$	$(x_1) \cdot (1) \cdot 1_\xi$	$(x_1) \cdot (x_2) \cdot 1_\xi^3$

9.4. Presentations of $H_{R, orb}([M/S])$ as a subring. From our main result, $H_{R, orb}([M/S])$ is a subring of

$$\mathcal{N} H_{R}([F/S]) = \bigoplus_{g \in S} \bigoplus_{v \in G_g} \mathbb{Z}[x_i, i \in v] = \bigoplus_{g \in S} \left\{ p_v \mathbb{Z}_g \cdot p_v \in \mathbb{Z}[x_i, i \in v] \right\}.$$
where v corresponds to v by $v = \bigcap_{i \in v} H_i$. Note that $v \in G_g \iff b_g \subset v$. The product

$$(p_v)_{b_g \subset v} \ast (p_w)_{b_h \subset w} \in \bigoplus_{b_{gh} \subset u} \mathbb{Z}[x_i, i \in u]$$

can be computed by its u-component

$$ (p_v)_{b_g \subset v} \mid_u \left(\prod_{\lambda_i \in (b_g \cup b_h) \setminus (b_{gh})} x_i \right) $$

if $b_g \cup b_h \subset u$ and otherwise is zero.

References

[AGV] D. Abramovich, T. Graber and A. Vistoli, *Algebraic orbifold quantum products* in Orbifolds in Mathematics and Physics (Madison, Wisc., 2001), Contemp. Math. 310, Amer. Math. Soc., Providence, 2002, 1 – 24.

[ALR] A. Adem, J. Leida, and Y. Ruan, *Orbifolds and stringy topology*, Cambridge Tracts in Mathematics, 171. Cambridge University Press, Cambridge, 2007. xii+149 pp.

[AB] M. Atiyah and R. Bott, *The moment map and equivariant cohomology*, Topology 23 (1984), no. 1, 1–28.

[Br] M. Brion, *Piecewise polynomial functions, convex polytopes and enumerative geometry*, Parameter spaces (Warsaw, 1994), 2544, Banach Center Publ., 36, Polish Acad. Sci., Warsaw, 1996.

[Bl] L. J. Billera, *The algebra of continuous piecewise polynomials*. Adv. Math. 76 (1989), no. 2, 170–183.

[BCS] L. Borisov, L. Chen and G. Smith, *The orbifold Chow ring of toric Deligne-Mumford stack*, J. Amer. Math. Soc. 18 (2005), no. 1, 193–215.

[BP] V. Buchstaber and T. Panov, *Torus actions and their applications in topology and combinatorics*, University Lecture Series, 24. American Mathematical Society, Providence, RI, 2002.

[BR] L. J. Billera, and L. Rose *Modules of piecewise polynomials and their freeness*. Math. Z. 209 (1992), no. 4, 485–497.

[CR] W. Chen and Y. Ruan, *A new cohomology theory of orbifold*, Commun. Math. Phys. 248 (1) (2004) 1–31.

[EJK] D. Edidin, T. Jarvis and T. Kimura, *Logarithmic trace and orbifold products*, Duke Math. J. 153 (2010), no. 3, 427–473.

[FG] B. Fantechi and L. Göttsche, *Orbifold cohomology for global quotients*, Duke Math. J. 117 (2003), no. 2, 197–227.

[FP] M. Franz and V. Puppe, *Exact cohomology sequences with integral coefficients for torus actions*. Transform. Groups 12 (2007), no. 1, 65–76.

[GH] R. Goldin and M. Harada, *Orbifold cohomology of hypertoric varieties*. Internat. J. Math. 19 (2008), no. 8, 927–956.

[GHH] R. Goldin, M. Harada and T. Holm, *Torsion in the full orbifold K-theory of abelian symplectic quotients*. Preprint [http://arxiv.org/abs/0907.5170]{arXiv:0907.5170}.

[GHK] R. Goldin, T. Holm and A. Knutson, *Orbifold cohomology of torus quotients*, Duke Math. J. 139 (2007), no. 1, 89–139.

[GKM] M. Goresky, R. Kottwitz and R. MacPherson, *Equivariant cohomology, Koszul duality, and the localization theorem*, Invent. Math. 131 (1998) 25–83.
[H] T. Holm, *Orbifold cohomology of abelian symplectic reductions and the case of weighted projective spaces*, Poisson geometry in mathematics and physics, 127–146, Contemp. Math., 450, Amer. Math. Soc., Providence, RI, 2008.

[HT] T. Holm and S. Tolman, *Integral Kirwan Surjectivity for Hamiltonian T-manifolds*, in preparation.

[I] I. Iwanari, *Integral Chow rings of toric stacks*. Int. Math. Res. Not. **2009** (2009) no. 24, 4709–4725.

[HT] T. Holm and S. Tolman, *Integral Kirwan Surjectivity for Hamiltonian T-manifolds*, in preparation.

[LM] E. Lerman and A. Malkin, *Hamiltonian group actions on symplectic Deligne-Mumford stacks and toric orbifolds*. Adv. Math. **229** (2012), no. 2, 984–1000.

[LT] E. Lerman and S. Tolman, *Hamiltonian torus actions on symplectic orbifolds and toric varieties*, Trans. Amer. Math. Soc. **349** (1997), no. 10, 4201–4230.

[LMM] S. Luo, T. Matsumura, and F. Moore. *Moment Angle Complexes and Big Cohen-Macaulayness*. Preprint [arXiv:1205.1566](http://arxiv.org/abs/1205.1566).

[P] T. Panov, *Cohomology of face rings, and torus actions*. Surveys in contemporary mathematics, 165–201, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008.

[TW] S. Tolman and J. Weitsman, *On the cohomology rings of Hamiltonian T-spaces*, Northern California Symplectic Geometry Seminar, 251–258, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999.

[TW2] S. Tolman, J. Weitsman, *The cohomology rings of symplectic quotients*, Comm. Anal. Geom. **11** (2003), no. 4, 751–773.

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

E-mail address: tsh@math.cornell.edu

Department of Mathematical Sciences, ASARC, KAIST, Daejeon, South Korea

E-mail address: tomoomatsumura@kaist.ac.kr