Electrostatic superlattices have been known to significantly modify the electronic structure of low-dimensional materials. Studies of graphene superlattices were triggered by the discovery of moiré patterns in van der Waals stacks of graphene and hexagonal boron nitride (hBN) layers a few years ago. Very recently, gate-controllable superlattices using spatially modulated gate oxides have been achieved, allowing for Dirac band structure engineering of graphene. Despite these rapid experimental progresses, technical advances in quantum transport simulations for large-scale graphene superlattices have been relatively limited. Here, we show that transport experiments for both graphene/hBN moiré superlattices and gate-controllable superlattices can be well reproduced by transport simulations based on a scalable tight-binding model. Our finding paves the way to tuning-parameter-free quantum transport simulations for graphene superlattices, providing reliable guides for understanding and predicting novel electric properties of complex graphene superlattice devices.
Hexagonal boron nitride (hBN), one of the most popular dielectric materials due to its atomic flatness, has been playing a crucial role in studying two-dimensional materials using so-called van der Waals heterostructures. The graphene/hBN moiré pattern arising from the large-scale lattice interference led to the discovery of graphene superlattices. First experiments revealing new transport phenomena, such as the emergence of the Hofstadter butterfly, were reported in 2013. In the following years, other exciting transport experiments have been reported, as well as a dynamic band structure tuning. More recently, another approach for inducing a superlattice potential in graphene has been demonstrated by using patterned dielectrics, allowing for mini-band structure engineering. On the theory side, most works related to graphene superlattices focus either on calculations for the superlattice-induced mini-band structures, or on predicting transport properties by solving the Dirac equation with simplified superlattice model potentials. Quantum transport simulations considering realistic experimental conditions have been relatively rare in the literature, to mention a theory work combining transport simulations and mini-band structure calculations, together with transport experiments.

This article aims at providing a straightforward method to perform reliable quantum transport simulations for graphene superlattices. As shown in the following, our transport simulations based on the real-space Green’s function method for two-terminal structures with the superlattice potential arising either from the graphene/hBN moiré pattern or from periodically modulated gating are consistent with transport experiments as well as mini-band structures based on the continuum model. Our method is applicable equally well to multi-terminal structures for simulating, for example, four-probe measurements using the Landauer–Büttiker approach.

**Results**

**Superlattice on a scaled graphene lattice.** To perform quantum transport simulations for graphene working in real-space, the scalable tight-binding model has been proved to be a very convenient numerical tool: the physics of a real graphene system can be captured by a graphene lattice scaled by a factor of \( s \) such that the lattice spacing and nearest-neighbor hopping parameter are given by \( a = sa_0 \) and \( t = t_0/s \), respectively, where \( a_0 = 0.142 \text{ nm} \) and \( t_0 = 3 \text{ eV} \) are the tight-binding parameters for a graphene lattice. The scaling is justified as long as \( a \) remains much shorter than all important physical length scales in the considered graphene system.

In dealing with graphene superlattices (such as the one sketched in Fig. 1a), the newly introduced physical length scale not previously considered is the periodicity \( \lambda \) of the superlattice. The advantage of the scaling can be easily appreciated by comparing Fig. 1b, c: The latter considers a genuine graphene lattice involving lots of carbon atoms, while the former depicts a scaled graphene lattice (here \( s = 2 \) for illustrative purposes) involving a strongly reduced number of lattice sites that down-scales with \( s^2 \). As long as \( a \ll \lambda \) is satisfied, a reasonably large area covering enough superlattice periods can be implemented in real-space quantum transport simulations (see Methods) to reveal transport properties arising from the superlattice effects.

In the following, we demonstrate the reliability of transport simulations for graphene superlattices based on scaled graphene lattices, considering both graphene/hBN moiré superlattices and gate-controlled superlattices.

**Graphene/hBN moiré superlattice model potential.** Formation of the moiré pattern due to the stacking of hBN and graphene lattices has been understood in one of the earliest experiments. Following their model, the moiré pattern results in a triangular periodic scalar potential described by

\[
U_s(r) = V \sum_{j=1,3} \cos \left( \mathbf{G}_j \cdot r \right),
\]

where \( V = 0.06 \text{ eV} \) is the amplitude of the model potential and \( \mathbf{G}_j(\lambda, \theta) = \mathbf{G}_j(\lambda_0, \theta) \) is the reciprocal primitive vector of the moiré pattern corresponding to the primitive vector \( \mathbf{L}_j(\lambda_0, \theta_0) = \lambda(\cos \theta_0, \sin \theta_0) \) in real space. The orientation angle \( \theta \) and wavelength \( \lambda \) are related to those in real-space through \( \theta = \theta_0 + \pi/2 \) and \( \lambda = 4\pi/\sqrt{3}\lambda_0 \). The other two reciprocal vectors are given by \( \mathbf{G}_1(\lambda, \theta) = \mathbf{G}_2(\lambda, \theta + \pi/3) \) and \( \mathbf{G}_3(\lambda, \theta) = \mathbf{G}_2(\lambda, \theta + 2\pi/3) \). Following Moon and Koshino with the zigzag lattice direction arranged along the \( x \) axis, the moiré wavelength \( \lambda \) and the orientation angle \( \theta \) of the pattern are given by

\[
\lambda = \frac{1 + \epsilon}{\sqrt{\epsilon^2 + 2(1 + \epsilon)(1 - \cos \phi)}} \lambda_0
\]

and

\[
\theta = \arctan \frac{-\sin \phi}{1 + \epsilon - \cos \phi}
\]

respectively, where \( \lambda_0 = \sqrt{3}a_0 \approx 0.246 \text{ nm} \) is the graphene lattice constant, \( \epsilon = (a_{hBN} - a_0)/a_0 = 1.81\% \) is the lattice constant mismatch with \( a_{hBN} = 0.2504 \text{ nm} \) the hBN lattice constant, and \( \phi \) is the twist angle of the hBN lattice relative to the graphene lattice. An illustrative example with \( \phi = 5^\circ \) is sketched in Fig. 2a, where an overlay of \( U_s(x, y) \) given by Eq. (1) is shown to match perfectly the lattice structure of the resulting graphene/hBN moiré pattern.

For self-containment, \( \lambda \) and \( \theta \) as functions of the twist angle \( \phi \) are plotted in Fig. 2b, c, respectively, where the hollow squares mark
The $\phi = 5^\circ$ example of Fig. 2a and the hollow circles mark the $\phi = 0.9^\circ$ case corresponding to our transport experiments and simulations to be elaborated below.

### Transport experiment

To confirm the validity of our simulation scheme illustrated above, the most convincing way is to fabricate a real device, perform a transport measurement, and finally simulate the experiment. Our single-gated two-terminal device was fabricated with a graphene/hBN stack (see the inset of Fig. 2d and Methods) and measured at low temperature ($\sim 4.1$ K), using standard low-frequency ($\sim 13$ Hz) lock-in technique. Figure 2d shows the two-terminal differential conductance of our sample as a function of the back gate voltage $V_{bg}$. Conductance dips at around $-60$ and $+58$ V are basic characteristics of the moiré superlattice potential, showing that our graphene and hBN lattices are nearly aligned. By analyzing from the Brown–Zak oscillation, the moiré wavelength $\lambda \approx 10.9$ nm of our graphene/hBN sample was deduced. Note that although our graphene sample was encapsulated by two hBN layers, the single dip structure (in each of the electron and hole branches) of our conductance measurement (Fig. 2d) suggests that only one hBN layer exhibits a measurable moiré superlattice effect arising from a small twist angle, contrary to a recent report on doubly aligned hBN/graphene/hBN heterostructures. In the following simulations, therefore, we model our experiment with graphene/hBN, instead of hBN/graphene/hBN.

### Transport simulation

To simulate such a conductance measurement, we have calculated the transmission $T(E)$ as a function of Fermi energy $E$ at zero temperature, and hence the conductance $G(E) = 2e^2/hT(E)$, based on an $s = 4$ tight-binding model Hamiltonian, for a two-terminal device similar to Fig. 1a with $L = W = 500$ nm (see Supplementary Fig. 1 and Supplementary Note 1 for sample size dependence), implementing the moiré model potential (1) with a twist angle $\phi$. To compare with the experiment on the same voltage axis, we adopt the parallel-plate capacitor formula to convert from the conductance measurement to the gate voltages; see Supplementary Note 2 for the conversion. With the chosen $\phi = 0.9^\circ$ for the moiré model potential Eq. (1) corresponding to $\lambda \approx 10.4$ nm consistent with the experimentally deduced value, the simulated conductance $G(V_{bg})$ transformed from $G(E)$ and reported in Fig. 2e is found to show excellent agreement with the experiment, Fig. 2d, in the positions of the conductance dips. Note that the red curve reported in Fig. 2e considers leads with on-site and Fermi energies identical to those at the lattice sites attached to the leads; see Fig. 1a. In this way, the Fermi energy in the leads “floats” with that in the scattering region such that the interface between the lead and the scattering region is as transparent as possible. Compared to Fig. 2d, the electron–hole asymmetry is less pronounced due to the simple model of Eq. (1) from Yankowitz et al.

### Density of states and mini-band structures

Without transforming to the gate voltage axis, the original conductance data of Fig. 2e as a function of energy is reported in Fig. 2f with a wider energy range up to $\pm 0.4$ eV. Compared to the density of states (Fig. 2g) and the band structure (Fig. 2h) which are calculated based on the same moiré superlattice model potential but within the continuum model (see Methods), consistent features in the energy spectrum can be seen. In view of Fig. 2d–h, our calculations significantly capture basic properties of the graphene/hBN moiré superlattice, at least at zero magnetic field.

### Dependence on moiré orientation angle

In all the transport simulations for the moiré superlattice shown in the main text of this article, we have considered realistic moiré orientation angle $\theta$ prescribed by Eq. (2b), relative to the zigzag direction. We have further tested that the simulation results are insensitive to $\theta$. See Supplementary Fig. 2 and Supplementary Note 3.
Eq. (3), where

$$G = G(e^2/h)$$

This suggests that the neglected higher-order terms of a more

associating the Peierls phase $28,36$ to the hopping

from the experiment (theory) showing magnetic

exactly to the horizontal line cuts at

Fig. 3 with the full range. Within the gate voltage range of about

and the same gate voltage range as Fig. 2d (e), which corresponds

within the gate voltage range marked by yellow background.

Magnetotransport experiment and simulation. We continue

our comparison of the experimentally measured and theoretically

calculating conductance $G(V_{bg})$ with finite magnetic field $B$

perpendicular to the graphene plane, which can be modeled by

associating the Peierls phase $28,36$ to the hopping $t \rightarrow t e^{i \phi}$ in

Eq. (3), where $\Phi = (e/\hbar) \int A \cdot dr$, choosing the Landau gauge

$A = (-yB, 0, 0)$ for the vector potential $\mathbf{A}$; see the axes shown in

Fig. 1. Conductance maps of $G(V_{bg}, B)$ are reported in Fig. 3a (b)

from the experiment (theory) showing conductance up to 5 T

and the same gate voltage range as Fig. 2d (e), which corresponds

exactly to the horizontal line cuts at $B = 0$ in Fig. 3a (b). The original

data of the calculated conductance as a function of Fermi energy

and magnetic field, $G(E, B)$, is shown in Supplementary

Fig. 3 with the full range. Within the gate voltage range of about

$-45 V \leq V_{bg} \leq +45 V$, typical relativistic Landau fans can be seen in

both experiment and theory. To compare further, we magnify

the regions marked by the black dashed box in Fig. 3a (b) in

Fig. 3c (d) painted by a different color code to highlight the

quantized conductance plateaus. Numbers $-6, -10, \ldots, -38$ on

Fig. 3d label the filling factor $\nu$ on the corresponding plateau with

the expected conductance $|\nu|e^2/h$. Good agreement between

experiment (Fig. 3a, c) and theory (Fig. 3b, d) within the main

Dirac cone can be seen.

Unobserved 12-fold quantum Hall plateaus. At gate voltages

$|V_{bg}| \gtrsim 45 V$, transport properties are dominated by the extra

Dirac cones arising from the modulating moiré superlattice.

Discrepancies between the experiment and theory are evident.

This suggests that the neglected higher-order terms of a more

complete model Hamiltonian $21-23$ become important when the

magnetic field is strong. Interestingly, we note that in the theory

map of Fig. 3b, some unusual plateaus in the energy range around

the electron-branch secondary Dirac point can be observed. We

magnify this region in Fig. 3e with a horizontal line cut shown in

Fig. 3f, where the gate voltage range showing quantized con-

ductance plateaus is highlighted by a yellow background.

This $V_{bg}$ range, transformed back to the energy through Eq.

(S1) of Supplementary Note 2, corresponds to an energy window

where part of the electron branch of the secondary Dirac cones at

$M$ points of the superlattice mini-Brillouin zone are completely

isolated. The respective energy window is highlighted also by

yellow in Fig. 2h. Since there are effectively three such Dirac

cones (six cones on six $M$ points within each mini-Brillouin zone

but each cone shared by two neighboring mini-Brillouin zones),

the degeneracy factor is expected to be $3 \times 2 \times 2 \times 2 = 12$ with

accounting for spin and another $x2$ for valley. Indeed, in the

quantum Hall regime, the calculated conductance is quantized to

$6, 18, 30, 42 e^2/h$ as shown in Fig. 3f. Outside this energy (and

hence back gate voltage) range, the higher-order Dirac cones are

always mixed with background bands, so that no quantized

conductance is observed. However, such a special energy window

leading to the 12-fold-degeneracy of the Landau levels at the

secondary DP is never observed in transport experiments with

graphene/hBN moiré superlattices $24,25-27$, including ours shown in

Fig. 3a, indicating once again that the simplified model $13$ of

Eq. (1) containing only the electrostatic scalar potential term is

not sufficient to capture transport properties of graphene/hBN

moiré superlattices at higher magnetic fields.

At this stage it is clear that the periodic scalar potential enters the tight-binding model.

Hamiltonian through the on-site magnetic

field up to $5 \text{T}$, transport properties are dominated by the extra

Dirac cones arising from the modulating moiré superlattice. To observe any superlattice

effects in graphene, the mean free path must exceed enough

periods of the superlattice potential. This means that either

the sample quality must be extraordinary, or the superlattice peri-

odicity must be short enough. When the periodicity is too short,

however, the resulting extra Dirac cones appear at too high

energy, exceeding the experimentally reachable range. This is why

the discovery of the graphene/hBN moiré pattern $2$ led to studies on

the graphene superlattice of its first kind—the periodicity corresponding to small twist angles turns out to be naturally in a suitable range for experiments; see Fig. 2b. A more flexible approach to design artificial graphene superlattice structures for band structure engineering was pursued with the realization of electrostatic gating schemes $19$. To create an externally controllable periodic potential, the most intuitive way is to pattern an array of periodic fine metal gates on top of the graphene sample $37,38$. However, due to technical difficulties such as instabilities of nanometer-scale local gates, the low adhesion between metal gates and the inert hBN, etc., such superlattice graphene devices often suffer the problem of very low sample yield $19$. The basic idea of the new technical breakthrough is to keep the hBN/graphene/hBN sandwich intact, while periodically modulating the gate capacitance. This can be achieved either by using few-layer graphene as a local gate which is subsequently etched with a periodic pattern $9,9,40$, or by etching the dielectric layer with a periodic pattern using a standard uniform back gate underneath the modulated substrate $16$. In the following, we revisit the experiment of the latter by Forsythe et al. $15$ and reproduce the observed transport features by our transport simulations.

Electrostatic simulation. Following the geometry of the device subject to a square superlattice potential with periodicity $\lambda = 35 \text{nm}$ presented in the work by Forsythe et al. $16$, we have performed our own electrostatic simulation to obtain the back gate capacitance showing periodic spatial modulation. We consider an hBN/
Fig. 4 Gate-controlled square superlattice on graphene. a Inverse transmission $1/T$ as a function of top-gate-contributed carrier density $n_{tg}$ and back gate voltage $V_{bg}$ for the simulated virtual device similar to one of those reported by Forsythe et al.\textsuperscript{16}. Upper inset: Device geometry with the modulated back gate capacitance profile $C_{bg}$ showing a spatial modulation of periodicity $\lambda = 35\, \text{nm}$. The boxed region is magnified in the lower inset with the color bar calibrating the value of $C_{bg}$ in units of $10^{10}\, \text{cm}^{-2}\, \text{V}^{-1}$. The three horizontal color lines marked on the main panel of (a) correspond to the line cuts shown in (b–d).

b-g Mini-band structures based on the continuum model, showing six bands closest to the main Dirac point, labeled from high to low energy by $f_1$, $f_2$, and $f_3$ (red), $v_1$, $v_2$, and $v_3$ (orange), and $v_4$ (purple), implementing $U_{tg}(x, y)$ displayed over a range of $2\lambda \times 2\lambda$ above each main panel. Panels (e–g) correspond to $(n_{tg}, V_{bg})$ configurations labeled by the left, middle, and right black arrows marked in (b), respectively. The black dashed boxes mark the $E = 0$ Fermi level hosting low-bias transport, where the intersected sub-band Fermi contours are shown below the corresponding mini-band configurations labeled by the left, middle, and right black arrows marked in (b), respectively. The diagonal dark thick line along the diagonal dark thick line for the corner points, and $X$ for the midpoints on the edges) are labeled in a way that avoids disturbing the Fermi contours shown.

Graphene/hBN sandwich (showing no measurable moiré superlattice effects) gated by a global top gate contributing a uniform carrier density $n_{tg}$ and a bottom gate at voltage $V_{bg}$ with a pre-patterned SiO$_2$ substrate in between. See Figure 1 of Forsythe et al.\textsuperscript{16}. The bottom gate capacitance therefore shows a spatial modulation with a square lattice symmetry, as shown in the lower left inset of Fig. 4a.

With the electrostatically simulated position-dependent back gate capacitance per unit area $C_{bg}(x, y)$, contributing carrier density $n_{bg}(x, y) = |C_{bg}(x, y)/e|V_{bg}$ together with the uniform $n_{tg}$, the resulting superlattice potential is given by $U_{tg}(x, y) = -\text{sgn}(n(x, y))\lambda \sqrt{\pi |n(x, y)|}$ with $n = n_{tg} + n_{bg}$ in order to set the global transport Fermi level at zero\textsuperscript{41}. Slightly different from the case of the graphene/hBN moiré superlattice where the model potential $U_{tg}(x, y)$ given by Eq. (1) is independent of the gating, we consider $U(x, y) = U_{tg}(x, y)$ for the on-site energy term (4), and implement it in the tight-binding Hamiltonian (3) with $s = 6$ (such that $a = s\lambda_0 = 0.85\, \text{nm} \ll 35\, \text{nm}$) to perform quantum transport simulations over a two-terminal structure with $L = 420\, \text{nm}$ and $W = 385\, \text{nm}$; see the upper right inset of Fig. 4a.

Transport simulation. To compare with the resistance measurements reported by Forsythe et al.\textsuperscript{16}, we plot the inverse transmission $1/T$ as a function of $n_{tg}$ and $V_{bg}$ in the main panel of Fig. 4a, where most areas show high transmission (white regions correspond to low $1/T$). Along the diagonal thick line showing high $1/T$ values due to the main Dirac point, multiple satellite peaks can be seen when increasing $|V_{bg}|$ and hence the magnitude of the square superlattice potential, signifying the emerging multiple extra Dirac points due to the gate-controlled square superlattice potential. Exemplary line cuts are plotted in Fig. 4b–d to show clearly the single- and multiple-peak structures, in excellent agreement with the experiment (see Figure 2b of Forsythe et al.\textsuperscript{16}). Note that the peak positions of the secondary Dirac points at the electron and hole side seen in Fig. 4b, d are not symmetric due to the asymmetric superlattice potential shape obtained from the electrostatic simulation. When implementing a model periodic function symmetric in its potential profile, the density spacing from the main Dirac point to the secondary Dirac points at electron and hole sides becomes identical (not shown).

Gate-dependent mini-band structures. We have also checked the consistency between the calculated mini-band structures and the simulated inverse transmission. Overall, we obtain band structures similar to those reported in the work by Forsythe et al.\textsuperscript{16}, but since each $(n_{tg}, V_{bg})$ point corresponds to a different $U_{tg}(x, y)$ profile and hence a different mini-band structure, an overview consistency-check like in Fig. 2F–h is technically not possible. Instead, the consistency can be checked by comparing the $1/T$ peaks and their corresponding mini-band structure around $E = 0$. We have chosen three particular $(n_{tg}, V_{bg})$ configurations corresponding to the three black arrows in Fig. 4b marking three of the $1/T$ peaks, at which the $E = 0$ Fermi level is expected to hit either the main or the extra Dirac points.

These mini-band structures, along with the actual $U_{tg}(x, y)$ profiles implemented individually in the continuum model (see Methods) are shown in Fig. 4e–g. Going from low to high $n_{tg}$ (left, middle, and right black arrow in Fig. 4b), the highest filled energy rises relative to the main Dirac point, corresponding to the sinking of the whole band structure due to our choice of fixing the Fermi level at $E = 0$ (Fig. 4e–g). As expected, the highest peak in
leading to the transmission function

\[
T(E) = \text{Tr}[\Gamma_y(E)G_y(E)[\Sigma(E)[E]]],
\]

where \(\Gamma_y = (\Sigma_y - \Sigma_y')\) with \(j = 1, 2\) is the broadening function. In the low-
temperature low-bias limit, the conductance across the modeled scattering region is
given by the Landauer formula \(G = (2e^2/h)T\), where the factor of 2 accounts for the
spin degeneracy. For a pedagogical introduction to the above outlined real-space
Green's function, see, for example, Datta.\(^{29}\) Note that in most simulations, the full
matrix of Eq. (5) is not needed, suggesting that a partial inversion should be
implemented in the numerics to avoid wasting computer memories and CPU time.
On the other hand, the matrix version of the Fisher–Lee relation (6) can be
implemented as the way it reads.

**Device fabrication.** Our two-terminal device contains a hBN/graphene/hBN stack
on a Si/SiO\(_2\) substrate, where the crystallographic axis of the graphene flake is
aligned with respect to one of the hBN flakes. Electric contact to the graphene is
made from the edge of the mesa\(^{47}\) with self-aligned Ti/Al electrodes. We use the Si
wafer as an overall back gate with a two-layer dielectric consisting of SiO\(_2\) with
thickness \(d_{\text{SiO}_2} = 300 \text{ nm}\) and the bottom hBN flake with thickness \(d_{\text{hBN}} = 20 \text{ nm}\).
A typical exemplary junction similar to the measured device is shown by the
atomic-force microscope (AFM) image in the inset of Fig. 2d and marked by the
white dashed boxed.

**Continuum model for mini-bands and density of states.** To calculate the mini-
band structure of graphene in the presence of a superlattice potential \(U(r)\), we
consider an infinitely large two-dimensional pristine graphene described by \(\mathcal{H}_0\)
in \(k\)-space. Following Park et al.\(^{27}\), we start with the continuum model Hamiltonian
near the \(K\) valley:

\[
\mathcal{H}(k) = h v_F \left( \begin{array}{cc} 0 & -i k_x - k_y \\ i k_x - k_y & 0 \end{array} \right) + U(r) \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array} \right),
\]

where the first term is \(\mathcal{H}_0\) and superlattice potential in the second term is treated as
a perturbation. In Eq. (7), the product of the reduced Planck constant \(h\) and Fermi
velocity \(v_F\) is related to the tight-binding parameters through \(h v_F = (3/2)\sqrt{3}\), and
the two-dimensional wave vector \((k_x, k_y) = k\) is small relative to the \(k\) point. Using the
eigenstates of \(\mathcal{H}_0(k)\) as a new basis, we solve the eigenvalue problem of Eq. (7) to
obtain a set of linear equations:

\[
\begin{align*}
E - \epsilon(k) |\psi(k)\rangle = & \sum_{\alpha \beta} \frac{1}{2} \text{sgn}\left(k - \alpha\right) G_{\alpha\beta}(k, -k) \\
& \times \left\langle \psi(k) | \psi(\alpha) \right\rangle |\alpha\rangle,
\end{align*}
\]

where \(E\) is the energy eigenvalue of the graphene superlattice, \(\epsilon(k) = h v_F k\) is the
energy eigenvalue of the graphene superlattice, \(\psi(k) = h v_F k\) is the
eigenenergy of \(\mathcal{H}_0(k)\) associated with the \(s\) branch \((s = 1\) for electron above the
Dirac point and \(s = -1\) for hole below the Dirac point), \(G(\alpha, \beta)\) is the Fourier
component of \(U(r)\) with the reciprocal lattice vector \(G = m_1 G_1 + m_2 G_2\) of the
superlattice potential, \(\theta_{k, -k}\) is the angle from \(k\) to \(-k\) and \(c(k)\) are the
expansion coefficients of the pristine graphene eigenstates.

The infinite-dimensional matrix spanned by the states with wave vectors \(\Sigma_{m_1, m_2} = k + m_1 G_1 + m_2 G_2\) in Eq. (8) allows for solving for \(E\) and hence calculating
the band structure. Since we focus on the low-energy region, a matrix involving
states with \(|m_1| \leq 3\) and \(|m_2| \leq 3\) is found to be sufficient to attain the convergence
of the band structure. With the eigenenergies obtained, the density of states \(D\) as a
function of energy can be calculated by

\[
D(E) = \frac{2}{(2\pi)^2} \int_{\mathbb{BZ}} \delta(E - \epsilon) d\xi d\eta,
\]

where the integration is taken over the first Brillouin zone.

**Data availability**

The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Received: 27 October 2019; Accepted: 15 March 2020;
Published online: 28 April 2020

**References**

1. Dean, C. R. et al. Boron nitride substrates for high-quality graphene
electronics. *Nat. Nano* 5, 722–726 (2010).

2. Geim, A. K. & Grigorieva, I. V. *Van der Waals heterostructures*. Nature 499,
419–425 (2013).

3. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on
hexagonal boron nitride. *Nat. Phys.* 8, 382–386 (2012).

4. Ponosmarenko, L. et al. Cloning of Dirac fermions in graphene superlattices.
*Nature* 497, 594–597 (2013).

---

**Discussion**

We have shown that quantum transport simulations based on the scalable tight-binding model\(^{25}\) correctly capture transport properties of electrostatic graphene superlattices. In the case of graphene/hBN moiré superlattice, the consistency of our simulation and experiment at zero and low magnetic field is rather satisfactory but breaks down at too strong magnetic field due to the adopted simple moiré model potential\(^{2}\) that neglects higher order terms. In the other case of gated superlattices, without such higher order terms the simulations are expected to be precise for all magnetic field range. Compared to the recent transport experiment on a gate-controlled square superlattice device reported by Forysythe et al.\(^{19, 20}\), our simulations show an excellent agreement in revealing the emergence of multiple extra Dirac cones at zero magnetic field. Transport simulations at finite magnetic field for the gated superlattices are expected to reveal also consistent behaviors compared to the experiment, but are left as future work.

Our finding significantly lowers the computation burdens and hence paves the way to tuning-parameter-free quantum transport simulations for graphene superlattices, providing reliable guides for understanding and predicting novel electric properties of complex graphene superlattice devices. We note some recent studies working on developing numerical techniques that allow large-scale efficient transport simulations\(^{42–44}\), but properly scaling the graphene lattice seems to be of least technical complexity and is readily applicable to anyone who is familiar with quantum transport, for example, real-space Green’s function methods\(^{28}\) or the open-source python package KWANT\(^{45}\).

**Methods**

**Real-space Green’s function method.** The model Hamiltonian including the
superlattice potential \(U(x, y)\) using the scaled graphene lattice can be written as

\[
H = -t \sum_{i, j} c_i^\dagger c_j + \sum_j U(\mathbf{r}_j) c_j^\dagger c_j,
\]

where the operator \(c_i^\dagger\) (\(c_i\)) annhilates (creates) an electron at site \(i = (x_i, y_i)\). The first term in Eq. (3) represents the clear part of the Hamiltonian which contains nearest neighbor hoppings summing over site indices \(i\) and \(j\) with \(i, j\) standing for \(\mathbf{r}_i - \mathbf{r}_j = \mathbf{a}_i\), and the second term is the on-site energy

\[
U(x, y) = U_0(x, y) + U_1(x, y),
\]

containing the superlattice potential \(U_0(x, y)\) smoothed by a model function \(F(x, y) = f(x, -L/2 + d/2) f(-x, L/2 - d/2) f(y, -W/2 + d/2) f(-y, W/2 - d)\) with
\(d = \left(\frac{1 + \text{tan}(\sqrt{3} / 2) h v_F k}{\sqrt{3} v_F k / 2}\right)\), where \(F\) is a smoothing parameter typically taken as \(\ell = \lambda / 4\). The purpose of smearing off the superlattice potential function \(U_0\) to zero at a distance \(d\) (typically taken as \(\lambda\) ) away from the edges and the leads (see Fig. 1a and its inset) is to avoid any spurious effects due to the combination of the superlattice potential and the physical edges of the graphene lattice, as well as to avoid oversized unit cells for the lead self-energies. Any contributions to the on-site energy term other than the superlattice potential are collected in the \(U_0\) term in Eq. (4).

With the model Hamiltonian Eq. (3) constructed, together with self-energies \(\Sigma_1\) and \(\Sigma_2\) describing the attached two leads (following, for example, Wimmer\(^{49}\)), the retarded Green’s function at energy \(E\) is given by

\[
G_r(E) = \frac{1}{E - [H + \Sigma_2(E) + \Sigma_1(E)]},
\]
