Introduction

Mosquitoes have been known for hundreds of years as the crucial arthropod vectors for pathogen transmission, which cause fatal diseases to millions of people worldwide. Malaria, dengue fever, Zika, and filariasis are some of the threads of public health transmission through mosquito bites. Aedes aegypti has been known as the dengue vector, yellow fever, and chikungunya and is extensively found in tropical and subtropical regions [1]. Dengue fever is a re-emerging disease in most tropical areas, posing nearly a third of the human population at risk of infection [2]. In Indonesia, dengue fever incident is still high in ratio, especially in the rainy season. Since 1948, Indonesia has experienced a 700-fold increase in incidence over 45 years [3]. Thus, the research of vector control in Indonesia is definitively vital.

One of the features of mosquitoes’ life cycles is the immature aquatic stage. This phase is essential in mosquito control strategy using larvicidal. Various synthetic larvicidal kinds are already used in the trial, ranging from direct applications to insect growth regulators [4]. However, there are several threads using synthetic insecticides, such as environmental pollution and insect resistance [5], [6]. Natural insecticides are more sustainable and have been used widely as the latest option for insect control. For decades, the interest to develop natural-environmentally friendly insecticides has significantly increased, followed by the development of biogradable, cheap, and safe for humans [7]. Many studies have resulted in insect repellents derived from plant extracts, such as Eucalyptus citriodora (E. citriodora), Cymbopogon nardus, Cymbopogon citratus (C. citratus), Curcuma longa, Pogostemon cablin (P. cablin), and some more, have been proven its efficiency against Aedes spp., Culex spp. and Anopheles spp [8], [9], [10], [11].

Lemongrass (C. citratus) has known for its toxic effect on mosquito larvae. This effect relates to the citronella chemical compound inside the stalk and leaves, which reaches 35% and becomes the densest chemical compound inside lemongrass. Citronella

The Effect of Lemongrass Leaves and Stalks Extracts using Methanol as The Eco-friendly Larvicides on Fourth Instar Aedes aegypti Larvae

Tjut Mariam*, Ade Oktiviyari†, Ahmad Yamin Harahap‡

1Department of Parasitology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia; 2Department of Oral Biology, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia

Abstract

BACKGROUND: Aedes aegypti is one of the most vicious mosquitoes, known for its role in several deadly diseases, including dengue fever and Zika. Several strategies have been developed over decades to prevent vector-borne diseases; one of them is insecticide to control the mosquito population. However, this strategy would not last long due to the elevation of resistance, environmental problem, and some issues regarding human health. Natural products have become major options to combat the glitches. Lemongrass (Cymbopogon citratus) has known for its toxic effect on mosquito larva.

AIM: The objective of this study was to assess the effect of C. citratus extract against fourth instar of A. aegypti larvae.

METHODS: Three extract concentrations, 2.5%, 5%, and 7.5%, were used. The larvicide activity was evaluated at 2, 4, and 6 h. Our data indicated that all concentrations contributed to increase larvae mortality.

RESULTS: Lethal Concentration (LC) 50 and LC90 were achieved at 2.5% and 4.1% of extract, respectively.

CONCLUSION: C. citratus extract has a larvicide activity against fourth instar of A. aegypti.
affects the mosquito through direct contact. The mosquito in contact with citronella would lose its body fluid and die [12]. *C. citratus* has no effect on first instar larvae but did inhibit growth and increase mortality in *A. aegypti*’s later developmental stages [13]. In this study, lemongrass leaves were extracted using methanol. The extracts were tested against fourth instar *A. aegypti* larvae to observe its larvicidal effect.

Methods

Study setting

All treatments were replicated 4 times.

Larvae

The laboratory F-21 strain was obtained from the Faculty of Veterinary Universitas Syiah Kuala, Banda Aceh. The fourth instar larvae were reared in plastic containers containing a sterilized diet (40 mesh chick chow powder/yeast, 80:20).

Extraction of *C. citratus* extract

Leaves and stalks of *C. citratus* (3 kg), obtained from a traditional Banda Aceh market, were crushed and extracted twice using 90% methanol (10 L) at room temperature then filtered after 24 h. The extracts then were concentrated to dryness using a rotary evaporator at 50°C. The result was 30 ml of pure extract; then, the extract was diluted using aquadest and stored at 4°C.

Bioassay

Concentrations of the extracts, 2.5%, 5%, and 7.5%, were prepared by serial dilution of a stock extract. In each plastic container, 40 early fourth-instar larvae of *A. aegypti* were placed into a with each test solution (50 ml). Negative controls received the aquadest only and positive control groups received abate powder with three different concentrations (2.5%, 5%, and 7.5%). Treated and control larvae were detained at the same conditions. The larvicidal activity was evaluated 3 times in 2, 4, and 6 h after treatment. Larvae were defined dead if the appendages did not move when prodded with a wooden dowel. No mortality was detected in the negative control group.

Statistical analysis

The percentage of mortality of each group was compared using analyze variance test.

Results

Methanolic extract of *C. citratus* had larvicidal activity. The mortality rate was observed every time frame used: 2, 4, and 6 h after treatment (Table 1). It induced 100% mortality at 7.5% extract concentration, 95% at 5%, dan 55% at 2.5% extract concentration (Figure 1).

![Figure 1: The effect of *Cymbopogon citratus* extract on mortality of fourth instar *Aedes aegypti* larvae](image)

The lethal concentration (LC) 50 and LC90 achieved at a concentration of 2.5% and 4.1% of lemongrass extract, respectively. Lemongrass extract of *C. citratus* at a concentration of 2.5% and 4.1% were effective as a larvicide.

Discussion

Our study showed that *C. citratus* had significant larvicidal activity against the fourth-instar larvae of *A. aegypti*. Since *C. citratus* is eco-friendly and may serve as a suitable alternative to synthetic larvicides, as it is safe, low-priced, and widely available in Indonesia. Furthermore, this information might initiate the broader screening of the compounds responsible for different bioactivities and assess their molecular mechanism of action.

In a previous study, *C. citratus* oil was effective against the immature stages of *A. aegypti* and the larvicidal properties were reported in LC50, means the mortality of larvae reach 50% after treatment compared with control group [14]. *C. citratus* has five major compounds: citral (14.4%), citronellal (15.1%), eucalyptol (4.7%), limonene (13.1%), and myrcene (27.5%) [14], [15].

Table 1: Mortality Rate of Fourth Instar *A. aegypti* Larvae per hours after *C. citratus* Extract Treatment

Concentrate (%)	Experiment Number	Time	Mortality (n)	Percentage	
2.5	1	2 h	1	22	55
		4 h	3		
		6 h	3		
5	1	2 h	1	38	95
		4 h	4		
7.5	1	2 h	9	0	40
		4 h	1	0	100

A. aegypti: *Aedes aegypti*, *C. citratus*: *Cymbopogon citratus*.

https://oamjms.eu/index.php/mjms/index
One of the crucial compounds is citronella, which has larvicidal properties and can be used as a repellant in essential oil form [15]. A study using the citronella extract found that the LC50 on Anopheles mosquito larvae was 2.590 ppm (0.2590%) and LC90 at 111.123 ppm (11.11%) [16]. Another study demonstrated that C. citratus exhibited LC50 at 69 ppm (0.0069%) on third and fourth A. aegypti larvae [17]. It might be related directly to the larvicidal effect of C. citratus. Other compounds might have similar or better effects on larvicide, as well as the combination of the major compounds. The variability of the concentrations among studies might depend on the method and part of the plant used for the experiment.

Cavalcanti et al. (1991) conveyed that C. citratus caused significant growth inhibition and mortality in the later developmental stages of A. aegypti [17]. Further experiments are warranted to determine the major compound fraction of C. citratus as the larvicide.

Conclusion

This study demonstrated the larvicidal potential of the lemongrass extracts (C. citratus) against the dengue vector A. aegypti. The results showed that C. citratus extract has a larvicide activity against fourth instar of A. aegypti. This study is significant to develop eco-friendly larvicide from C. citratus to curb mosquito larva which can provide an alternate to synthetic chemical insecticides.

References

1. Hales S, de Wet N, Maidonald J, Woodward A. Potential effect of population and climate changes on global distribution of dengue fever: An empirical model. Lancet. 2002;360(9336):830- 4. https://doi.org/10.1016/s0140-6736(02)09964-6 PMid:12243917
2. Chen R, Vasilakis N. Dengue--quo tu et quo vadis? Viruses. 2011;3(9):1562-608. https://doi.org/10.3390/v3091562 PMid:21994796
3. Khetarpal N, Khanna I. Dengue fever: Causes, complications, and vaccine strategies. J Immunol Res. 2016;2016:6803098. https://doi.org/10.1155/2016/6803098 PMid:27525287
4. Yang YC, Lee SG, Lee HK, Kim MK, Lee SH, Lee HS. A pipedinamide amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito larvae. J Agric Food Chem. 2002;50(13):3765-7. https://doi.org/10.1021/jf011708f PMid:12059157
5. Senthil-Nathan S. A review of resistance mechanisms of synthetic insecticides and botanicals, phytochemicals, and essential oils as alternative larvicidal agents against mosquitoes. Front Physiol. 2020;10:1591. https://doi.org/10.3389/fphys.2019.01591 PMid:32158936
6. Vivekanandhan P, Swathy K, Kalaimurugan D, Ramachandran M, Yuvaraj A, Kumar AN, et al. Larvicidal toxicity of Metarhizium anisopliae metabolites against three mosquito species and non-targeting organisms. PLoS One. 2020;15(5):e0232172. https://doi.org/10.1371/journal.pone.0232172 PMid:32365106
7. Bahia CA, Xue Y, McCreary CM, Schaafsma AW, Hallett RH. Choosing organic pesticides over synthetic pesticides may not effectively mitigate environmental risk in soybeans. PLoS One. 2010;5(6):e11250. https://doi.org/10.1371/journal.pone.0011250 PMid:20582315
8. Choochote W, Chaithong U, Kamak S, Jitpakdi A, Tippawangkosol P, Tuetun B, et al. Repellent activity of selected essential oils against Aedes aegypti. Fitoterapia. 2007;78(5):359-64. https://doi.org/10.1016/j.fitote.2007.02.006 PMid:17512681
9. Gokulakrishnan J, Kuppusamy E, Shannmugam D, Appavu A, Kaillyamoorti K. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pac J Trop Dis. 2013;3(1):26-31. https://doi.org/10.1016/j.aptd.2012.11.006-7
10. Nerio LS, Olivero-Verbel J, Stashenko E. Repellent activity of essential oils: A review. Bioceres Technol. 2010;101(1):372-8. https://doi.org/10.1016/j.biotech.2009.07.048 PMid:19729299
11. Phasomkusolsil S, Soonwera M. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J Trop Med Public Health. 2011;41(4):831-40. https://doi.org/10.1016/j.aptd.2012.11.006-7
12. Bossou AD, Mangelinckx S, Yedomonhan H, Boko PM, Akogbelo MC, De Kimpe N, et al. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasit Vectors. 2013;6:337. https://doi.org/10.1186/1756-3305-6-337 PMid:24298981
13. Sukumar K, Perich MJ, Boobar LR. Botanical derivatives in mosquito control: A review. J Am Mosq Control Assoc. 1991;7(2):210-37. https://doi.org/10.16015z
14. Soonwera M, Phasomkusolsil S. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res. 2016;115(4):1691-703. https://doi.org/10.1007/s00436-016-4910-z PMid:26796022
15. Hsu WS, Yen JH, Wang YS. Formulas of components of citronella oil against mosquitoes (Aedes aegypti). J Environ Sci Health B. 2013;48(11):1014-9. https://doi.org/10.1080/03601234.2013.816813 PMid:23998314
16. Senthilkumar N, Varma P, Gurusubramanian G. Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res. 2009;104(2):237-44. https://doi.org/10.1007/s00436-008-1180-4 PMid:18787842
17. Cavalcanti ES, de Moraes SM, Lima MA, Santana EW. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004;99(5):541-4. https://doi.org/10.1590/S0074-027620040000500015 PMid:15543421