Two Flavonoids From Stem Bark of *Casimiroa edulis* and Their Antidiabetic and Antioxidant Activities

K N W Tun1,2, N S Aminah3,*, A N Kristanti3, R Ramadhan3, Y Takaya4
1 Ph.D. Student of Mathematics and Natural Sciences, Fac. Of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, Indonesia
2 Dept. of Chemistry, Taunggyi University, Shan State (South), Myanmar
3 Dept. of Chemistry, Fac. Of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, Indonesia
4 Fac. Of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503 Japan

* nanik-s-a@fst.unair.ac.id

Abstract: *Casimiroa edulis* Llave et Lex (Rutaceae), popularly known as white sapote. The main aim of this study is to isolate and investigate the bioassay of the stem bark of *Casimiroa edulis*. Two flavonoids were isolated from the methanolic fraction of the stem bark of *Casimiroa edulis*. The isolated compounds can be identified as 6,7-dimethoxyflavone (1) and 5,6,2’-trimethoxyflavone (2) by using advance spectroscopic methods, including FT-IR, UV, 1D NMR, 2D NMR. Compounds 1 and 2 were evaluated for their antidiabetic and antioxidant activities. The result revealed that the two compounds did not have antidiabetic activity and antioxidant activity. This is the first phytochemical study of 6,7-dimethoxyflavone from the genus *Casimiroa*.

Key words: *Casimiroa edulis*, white sapote, Rutaceae, flavonoids

1. Introduction
Natural products are used as medicines for treating and preventing various diseases since prehistoric times. According to the record of fossil, human use of plants as medicines for their diseases may be traced back at least 60,000 years.[11; 18]

Casimiroa is a tree belongs to the family of Rutaceae, found in the tropical and subtropical areas of Central America and Mexico, the Caribbean, the Mediterranean region, India, Southeast Asia, South Africa, Australia, and New Zealand. The best-known species is *Casimiroa edulis* [14; 17]. It has been widely used as sedative for the treatment of anxiety and dermatological problem. The early pharmacological studies of an aqueous extract and alcohol extracts of the seeds and leaves of *C. edulis* exhibited the cardiovascular, anticonvulsant, sedative, anti-inflammatory, anti-mutagenic, diuretic, hypnotic, anti-hypertension, anti-inflammatory, muscle relaxant and contractile activities [4; 15]. In Myanmar, local people used this for the treatment of stomach problem.

Many of the phytochemical analysis have been done on the leaves, fruits, seeds and bark of *Casimiroa edulis*. The previous studies indicated that this plant contains flavonoids, coumarin, alkaloids, and limonoids [1-3, 5-9; 12]. In this study, two flavonoids namely, 6,7-dimethoxyflavone (1) and 5,6,2’-trimethoxyflavone (2) have been isolated from the stem bark of *Casimiroa edulis*. Their structures have been elucidated through FT-IR, UV, 1H-NMR, 13C-NMR, and 2D NMR. Furthermore, the antidiabetic and antioxidant activity of isolated compounds were investigated against α-glucosidase inhibition and DPPH assay.

2. Experimental Methods
2.1 General
UV spectra were recorded on UV-Vis Shimadzu spectrometer. IR spectra were recorded on FT IR-8400 spectrophotometer. NMR spectra were recorded in CDCl3 by using a JEOL ECA-500 (1H: 500 MHz and 13C: 125MHz). Positive mode HRFABMS was obtained by using a JEOL JMS HX-110 mass spectrometer. Column chromatography was carried out on silica gel (BW-820H). Analytical TLC was performed on silica
on pre-coated Kieselgel silica gel 60 F254 aluminium sheets. Melting points were measured by melting point apparatus and are uncorrected.

2.2 Plant material
The stem bark of *Casimiroa edulis* Llave et Lex was collected in Namp-see Village, Taunggyi (Shan State), Myanmar during the month of August 2016.

2.3 Extraction and isolation
The air-dried sample of the stem bark of *Casimiroa edulis* (1000 g) was extracted with methanol (3000 mL). Then the methanolic extract was concentrated at room temperature to give MeOH crude extract 250 g. The dried MeOH extracts 250 g were fractionated by partitioning with n-hexane : methanol (v/v) (100 mL × 3). The MeOH extract was evaporated under reduced pressure at 40°C using a rotary evaporator to give the methanolic crude extract 50 g. A methanol extract (50 g) was subjected to VLC separation using 100 g silica gel 60H eluted with a gradient solvent system of n-hexane in Et- OAc (100:0, 95:5, 90:10, 80:20, 70:30, 60:40, 0:100) to afford 28 Fractions (1-28). Based on TLC analysis, the fractions can be grouped to be CF-1, CF-2, CF-3, CF-4, CF-5 and CF-6. Fraction CF-6 (6.19 g) was further fractionated by silica gel column chromatography with a gradient solvent system of n-hexane in acetone (100:0, 95:5, 90:10, 80:20, 0:100) to give 70 subfractions. Each fraction was checked by TLC and UV lamp. Then, the sub- fractions of the same Rf value were combined and 5 combined fractions (Fra-1 to Fra-4) were obtained. Among them, Fra-2, and Fra-4 gave only one spot on TLC and UV active. The pure compound white crystalline solid form of compound (1) and compound (2) were obtained.

2.4 α-Glucosidase inhibition assay and DPPH assay
The α-glucosidase inhibition of two compounds was analyzed according to the method reported by Ramadhan & Phuwapraisirisan [13]. Antioxidant activity of two compounds was measured against DPPH radical scavenging activity. The IC50 values of the compound were measured by the linear regression.

2.5 Spectra data
6,7-dimethoxyflavone (1)
White crystalline solids (CHCl3) (1): UV (MeOH) λmax: 271 nm; IR (νmax, KBr, cm⁻¹): 3070, 2999, 1647, 1571, 1496, 1367, 1288, 1178, 1078, 958, 775; 1H NMR (CDCl3, 500 MHz, δ, ppm, J/Hz) : 7.89 (dd, J = 7.7, 1.9 Hz, H-2’ and H-6’), 7.51 (m, H-3’, H-4’ and H-5’'), 7.32 (s, H-5 and H-8), 6.69 (s, H-3), 3.98 (s, OCH3), 3.94 (s, OCH3); 13C NMR (CDCl3, 125 MHz, δ, ppm): 178.0 (C-4), 161.6 (C-2), 151.6 (C-9), 150.0 (C-7), 148.0 (C-6), 131.7 (C-1’), 131.4 (C-4’, 129.0 (C-3’), 126.1 (C-6’), 119.3 (C-10), 119.1 (C-8), 113.4, 108.0 (C-3), 61.9 (7-OCH3), 57.2 (6-OCH3).

5,6,2′-trimethoxyflavone
White crystalline solids (CHCl3) (2): UV (MeOH) λmax: 329, 267, 235 nm; IR (νmax, KBr, cm⁻¹): 3128, 3078, 2972, 2837, 1631, 1612, 1570, 1481, 1357, 1284, 1188, 1083, 964, 744; 1H NMR (CDCl3, 500 MHz, δ, ppm, J/Hz) : 7.85 (1H, dd, J = 7.8, 1.7 Hz, H-6’), 7.46 (ddd, J = 8.4, 7.4, 1.8 Hz, H-4’), 7.30 (1H, d, J = 9.2 Hz, H-7’), 7.27 (1H, d, J = 9.2 Hz, H-8’), 7.09 (1H, d, J = 7.7, 1.0 Hz, H-5’), 7.03 (1H, d, J = 8.0 Hz, H-3’), 6.98 (1H, s, H-3), 3.98 (3H, s, 2′-OCH3), 3.93 (6H, s, 5-OCH3 and 6-OCH3), NMR (CDCl3, 125 MHz, δ, ppm): 178.4 (C-4), 159.1 (C-1’), 158.0 (C-5), 151.9 (C-9), 149.7 (C-6), 147.9 (C-2’), 132.2 (C-4’), 129.1 (C-6’), 120.8 (C-1’), 120.7 (C-5’), 119.2 (C-8’), 119.1 (C-10), 113.4 (C-7), 113.1 (C-3’), 111.7 (C-3’), 61.9 (2-OCH3), 57.3 (5-OCH3), 55.7 (6-OCH3).

3. Results and discussion
6,7-dimethoxyflavone (1), and 5,6,2′-trimethoxyflavone (2) were isolated from the methanolic extract of the stem bark of *C. edulis*. 6,7-dimethoxyflavone was the first phytochemical study of this plant. The isolated compounds identified by interpretation of their 1H NMR and 13C NMR spectral data by comparisons to those available in the literature.

Compound (1) was obtained as white crystalline solid with melting point at 236-248°C. IR spectrum of compound (1) displayed the absorption band for methoxy (3431 cm⁻¹), sp² hydrocarbon (3070 cm⁻¹) sp³
hydrocarbon (2999-2839 cm⁻¹), carbonyl (1647 cm⁻¹) and aromatic (1639, 1571 cm⁻¹) groups. The UV spectrum showed an absorption band with λmax 271 nm. According to the ¹H NMR spectrum, compound (1) showed the presence of 14 protons. One singlet sharp peak at δH 6.69 indicates the presence of H-3. Furthermore, the H-3 proton showed the correlation with the peak at δC 161.6 (C-2), 178.0 (C-4), 131.7 (C-1’) and 119.3 (C-10) in HMBC spectrum. Another two sharp singlets peak at δH 3.94 and 3.98 (each, 3H, s) indicate the presence of two methoxy groups on the aromatic ring. Moreover, one singlet sharp peak at δ 7.32 (2H, s) indicates the presence of H-5 and H-6 protons. One doublet-doublet at δH 7.89 ppm (2H, J = 7.7, 1.9 Hz) indicate the presence of H-2’ and H-6’ protons. The other remaining one multiplet at δ 7.51 (3H, m) indicates the presence of H-3’, H-4’ and H-5’ protons. The ¹³CNMR and DEPT spectra of compound (1) showed 17 carbon atoms for the comprising of eight sp² methine, two oxygenated sp³ and seven sp² quaternary carbons. Therefore, base above information the compound (1) was identified as 6,7-dimethoxyflavone [16].

Compound (2) was obtained as white crystalline solid with melting point at 144-156°C. IR spectrum of compound (2) displayed the absorption band for methoxy (3128 cm⁻¹), sp² hydrocarbon (3078 and 3003 cm⁻¹), sp³ hydrocarbon (2972-2837 cm⁻¹), carbonyl (1631 cm⁻¹) and aromatic (1612, 1600 and 1570 cm⁻¹) groups. The UV spectrum showed absorption band with λmax 329, 267 and 235 nm. According to the ¹H NMR spectrum, compound (2) showed the presence of 16 protons. One singlet sharp peak at δH 6.98 (1H, s) indicates the presence of H-3 proton. Furthermore, the H-3 proton showed the correlation with the peak at δC 159.1 (C-2), 178.4 (C-4), 119.1 (C-1’) and 120.8 (C-10) in HMBC spectrum. Two doublets at δH 7.27 and 7.30 ppm (each, 1H, J = 9.2 Hz) indicates the presence of H-7 and H-8. Two singlet sharp peaks at δH 3.93 (3H, s) and 3.98 ppm (6H, s) indicate the presence of three methoxy groups on the aromatic ring. One doublet-doublet at δH 7.85 (1H, J = 7.8, 1.7 Hz) indicates the presence of H-6’ proton. One doublet-doublet-doublet at δH 7.46 (1H, J = 8.4, 7.4, 1.8 Hz) indicates the presence of H-4’ proton. One triplet-doublet at δH 7.09 (1H, J = 7.7, 1.0 Hz) indicates the presence of H-5’ proton. One doublet at δH 7.03 (1H, J = 8 Hz) indicates the presence of H-3’ proton. The ¹³CNMR and DEPT spectra of compound (2) showed 18 carbon atoms for the consisting of seven sp² methine, three oxygenated sp³ and eight sp² quaternary carbons, respectively. Therefore, base above information the compound (2) was identified as 5,6,2’-trimethoxyflavone [10].

3.1 Anidiabetic and Antioxidant activity

Two compounds were isolated from MeOH fraction of the stem bark of Casimiroa edulis were screened for antidiabetic and antioxidant activity against α-glucosidase inhibition and DPPH assay. According to the Table (1), these two compounds did not showed antidiabetic and antioxidant activity.

Table 1. Antioxidant and α-glucosidase inhibition activities of isolated compounds

Compound	IC₅₀ mM	Yeast	DPPH
6,7-dimethoxyflavone (1)		NI	NI
5,6,2’-trimethoxyflavone (2)		NI	NI
Acarbose	0.1030		

NI = No Inhibition
4. Conclusion
Two compounds were isolated from the stem bark of *Casimiroa edulis*. From their spectroscopic data, these two compounds can be identified as 6,7-dimethoxyflavone (1), and 5,6,2′-trimethoxyflavone (2). The isolated compounds were evaluated for antidiabetic and antioxidant activities. The result revealed that these two compounds did not have antidiabetic activity and antioxidant activity. Base on our knowledge, 6,7-dimethoxyflavone is isolated for the first time from the genus *Casimiroa*.

References
[1] Awaad, A. S., Al-Jaber N. A., Soliman, G. A., Al-Outhman, M. R., Zain, M. E., Moses, J. E., El-Meligy, R. M. 2012 New biological activities of *Casimiroa edulis* leaf extract and isolated compounds *Phytotherapy Research* 26 452–457.
[2] Awaad A. S., Derek, J., Maitland, D. J., & Moneir S. M. 2007 New alkaloids from *Casimiroa edulis* fruits and their pharmacological activity *Chemistry of Natural Compounds* 43 5 576–580.
[3] Awaad, A. S., El-Sayed, N. H., Maitland, D. J., & Mabry T. J. 2006 Phenolic antioxidants from *Casimiroa edulis* leaves *Pharmaceutical Biology* 44 4 258–262.
[4] Bertina, R., Garcia-Argaézb, A., Martinez-Vázquez, M. & Froldia, G. 2011 Age-Dependent Vasorelaxation of Casimiroa edulis and Casimiroa pubescens Extract in rat Caudal Artery in Vitro. *Journal of Ethnopharmacology* 137 1 934-936.
[5] Dreyer, L. 1968 Citrus Bitter Principles. IX. Extractives of *Casimiroa edulis* Lluve et Lex. The Structure of Zapoterin *Journal of Organic Chemistry* 33 9 3577–3582.
[6] Ito, A., Shamon, L. A., Yu, B., Mata-Greenwood, E., Kook, L. S., van Breemen, R. B., Mehta, R. G., Farnsworth, N. R., Fong H. H. S., Pezzuto, J. N., & Kinghorn A. D. 1998 Antimutagenic constituents of *Casimiroa edulis* with potential cancer chemopreventive activity *Journal of Agriculture and Food Chemistry* 46 9 3509–3516.
[7] Khaleel, A. E. M. 2002 2-Phenyl-4-quinolinone alkaloids from *Casimiroa edulis* Llave et Lex (Rutaceae) *Monatshfte fur Chemie* 133 183–187.
[8] Kind, F. A, Romo, J., Rosenkranz, & Sondheimer, F. 1956 The Constituents of *Casimiroa edulis* Llue et Lex. Part I. The Seed *Journal of the chemical society* 4163-4169.
[9] Magos, G. A., Vidrio, H., Reynolds, W. F., & Enri, G. 1999 Pharmacology of *Casimiroa edulis* IV Hypotensive effects of compounds isolated from methanolic extracts in rats and guinea pigs *Journal of Ethnopharmacology* 64 35–44.
[10] Meyer, B. N, Wall, M. E, Wani, M. C, and Taylor, H. L (1985). Plant antitumor agents, 21. Flavones, coumarins, and an alkaloid from *Sargentia greggii*. Journal of Natural Produtrs, VOL. 48, No. 6, 952-956.
[11] Mamun-or-rashid, A N M., Hussain, S., Hassan, N., Dash, B. K., Sapon Md, A, & Sapa, M. K. 2014 A Review on Medicinal Plants with Antidiabetic Activity. *Journal of Pharmcognosy and Phytochemistry* 3 4 149–159.
[12] Nagai, H., Tanaka, T., Goto, T., Kusudo, T., Takahashi, N., & Kawada, T. 2014 Phenolic compounds from leaves of *Casimiroa edulis* showed adipogenesis activity *Bioscience, Biotechnology and Biochemistry* 78 2 296-300.
[13] Ramadhana, R & Phuwapraisirisarb, P. 2015 Arylalkanones from *Horsfieldia macrobotrys* are Effective Antidiabetic Agents Achieved by α-Glucosidase Inhibition and Radical Scavenging, Natural Product Communications 10 2 325-328.
[14] Satheesh, N. 2015 Review on distribution, nutritional and medicinal values of *Casimiroa edulis* llave- an underutilized fruit in Ethiopia *American-Eurasian Journal of Agricultural & Environmental Sciences* 15 8 1574-1583.
[15] XU Ya-Ming, XU., Maria del C. Ramirez-Ahumada, M., del C., Valeriote, F. A., & Gunatilaka, A. A. L. 2011 Solid Tumor Inhibitory and Other Constituent of *Casimiroa Tetrameria*. *Chinese Journal of Natural Medicines* 9 5 334-337.
[16] Yamamoto, M., Tomita, T., Onjo, M., & Ishihata, K. 2007 Genetic diversity of white sapote (*Casimiroa edulis* Llave & Lex) demonstrated by intersimple sequence repeat analysis *Hortscience* 42 6 1329-1331.
[17] Yoon, H., Eom, S., Hyun, J., Jo, G., Hwang, D., Lee, S., Yong, Y., Park, J. C., Lee, Y. H., & Lim, Y. 2011 1H and 13C NMR data on hydroxy/methoxy flavonoids and the effects of substituents on chemical shifts. Bulletin of the Korean Chemical Society 32 6 2101-2104.

[18] Yuan, H., Ma, Q., Ye, L., & Piao, G. 2016 The Traditional Medicine and Modern Medicine from Natural Products. Molecule 21 559 1-18.

Acknowledgment
KNWT acknowledges financial support from Universitas Airlangga, Surabaya, Indonesia. The authors are thanks to the Professor, Dr Yoshiaki Takaya, for providing NMR spectra data.