Abstract Neutrinos are the second most ubiquitous Standard Model particles in the universe. On the other hand, they are also the ones least likely to interact. Connecting these two points suggests that when a neutrino is detected, it can divulge unique pieces of information about its source. Among the known neutrino sources, core-collapse supernovae in the universe are the most abundant for MeV-energies. On average, a single collapse happens every second in the observable universe and produces 10^{58} neutrinos. The flux of neutrinos reaching the Earth from all the core-collapse supernovae in the universe is known as diffuse supernova neutrino background. In this Chapter, the basic prediction for the diffuse supernova neutrino background is presented. This includes a discussion of an average neutrino signal from a core-collapse supernova, variability of that signal due to the remnant formed in the process, and uncertainties connected to the other astrophysical parameters determining the diffuse flux, such as cosmological supernova rate. In addition, the current experimental limits and detection perspectives of diffuse supernova neutrino background are reported.

1 Introduction

The night sky has always been a subject of humans’ interest. Since the first observations through the naked eye centuries ago, humans have developed a myriad of telescopes that allowed us to witness photos from the whole range of the electromagnetic spectrum - these observations permitted us to decode pieces of information about multiple astrophysical objects. But only in the last century have new observation channels opened through cosmic rays (Hess, 1912) and neutrinos (Cleveland
et al, 1998). The latter ones are the second most abundant particles in the Universe. The Earth is submerged in a neutrino background spanning several orders of magnitude in energy (Koshiba, 1992; Haxton and Lin, 2000; Becker, 2008; Lunardini, 2010; Beacom, 2010; Spiering, 2012; Gaisser and Karle, 2017; Vitagliano et al, 2020). But neutrinos interact much more rarely than photons, they do not lose as much information on their way to the Earth as photons or charged particles. Consequently, they can provide insights beyond the ones that photons carry. A part of this ubiquitous neutrino background is comprised of neutrinos produced by the centers of all the past core-collapse supernovae in the Universe commonly named diffuse supernova neutrino background (DSNB) (Bisnovatyi-Kogan and Seidov, 1984; Krauss et al, 1984; Wilson et al, 1986; Ando and Sato, 2004); for more recent reviews see, e.g., (Beacom, 2010; Lunardini, 2010; Kresse et al, 2021; Horiuchi et al, 2021). This neutrino flux bears information of the entire core-collapse supernova population. The rest of this chapter is organized as follows; Section 2 outlines a short description of the DSNB calculation and discusses the uncertainty of the astrophysical parameters entering the calculation. Section 3 discusses the current experimental limits on the DSNB and the future sensitivities.

2 Diffuse supernova neutrino background

The most basic prediction of the DSNB involves an average neutrino emission per core-collapse supernovae and the rate of the collapses expected in the universe. The former is discussed in Section 2.1 and the latter in 2.2.

2.1 Average neutrino emission per core-collapse

Core-collapse supernovae (CCSNe) are one of the most efficient neutrino sources known so far (Alexeyev et al, 1988; Hirata et al, 1987; Bionta et al, 1987). In the centers of massive stars, the densities and temperatures are tremendously high, which permits the production of numerous amounts of neutrinos from electron capture on free protons and nuclei (Bethe et al, 1979; Fuller et al, 1982; Fuller, 1982; Bruenn, 1985; Martinez-Pinedo et al, 2012), deexcitation and thermal interactions of nuclei (Fuller and Meyer, 1991; Fischer et al, 2013; Martinez-Pinedo et al, 2012). These neutrinos carry almost the entire gravitational binding energy of the star within approximately tens of seconds (Burrows and Lattimer, 1986).

The initial picture of the core-collapse explosions assumed that the bounce shock that ceases the rapid infall of the inner core was energetic enough to lead to an observable in photons explosion. However, detailed calculations together with numerical simulations have shown that the bounce shock loses a significant fraction of its energy to photodissociation of heavy nuclei and ram pressure of the still infalling core. Due to that loss, the shock stalls after traveling only tens to hundreds
of kilometers. (Colgate and White, 1966) and (Bethe and Wilson, 1985) postulated and explained how neutrinos streaming from the inner core could interact within the shock and reenergize it, leading to a supernova explosion. Initially, especially in spherically symmetric simulations, explosions were not achievable after including neutrino heating for massive progenitor stars. But the modern state-of-the-art 3D simulations (Burrows, 2000; Janka, 2012; Ott et al, 2013; Janka et al, 2016; Vartanyan et al, 2019; Burrows and Vartanyan, 2021) demonstrate that the delayed neutrino heating mechanism aided by the hydrodynamical instabilities and convection-driven turbulence can lead to successful explosions (Blondin et al, 2003; Tamborra et al, 2014; Couch and Ott, 2015).

The distribution of energies emitted by the core-collapse has been found to be representable by the fit (Keil, 2003; Keil et al, 2003; Tamborra et al, 2012) of the

$$\phi_{\nu_i}(E_{\nu_i}, t) = \delta_{\nu_i}(t) \left(\frac{E_{\nu_i}}{\langle E_{\nu_i}(t) \rangle} \right)^{\alpha_{\nu_i}(t)} \exp \left(- \left(\frac{\alpha_{\nu_i}(t) + 1}{E_{\nu_i}(t)} \right) \right), \quad (1)$$

where \(E_{\nu_i}\) is the neutrino energy, \(\langle E_i(t) \rangle\) is the average energy, and the normalization factor \(\delta_{\nu_i}(t) = \left(\int dE_{\nu_i} \phi_{\nu_i}(E_{\nu_i}, t) \right)^{-1}\). The pinching parameter \(\alpha_{\nu_i}(t)\) which tells how much the spectrum differs from a pure Fermi-Dirac distribution; which is recovered in this form when \(\alpha_{\nu_i}(t) \equiv \alpha = 2.3\) and the mean energy is connected to the temperature by \(\langle E_i(t) \rangle = 3.15 T_{\nu_i}(t)\). The differential flux of neutrinos \(\nu_i \in \{\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau\}\) can be then expressed by the relation

$$f_{\nu_i}(E_{\nu_i}, t) = \frac{L_{\nu_i}(t)}{\langle E_{\nu_i}(t) \rangle} \frac{\phi_{\nu_i}(E_{\nu_i}, t)}{4\pi D^2} = \frac{F_{\nu_i}(E_{\nu_i}, t)}{4\pi D^2}, \quad (2)$$

where \(L_i(t)\) is the luminosity and \(D\) is the distance to the supernova.

The core collapse of a massive star can also lead to a direct black hole formation (Fryer, 1999; Sekiguchi and Shibata, 2004b,a; Zhang et al, 2008; Fischer et al, 2009; O’Connor and Ott, 2011a); plausibly without the observable electromagnetic radiation. In these cases, neutrinos may be the only detectable messengers from such an event. The directly black hole-forming progenitors are expected to produce more energetic neutrino spectra as the proto-neutron star masses are larger, leading to hotter and denser environments. In the case of neutron-star-forming core-collapse models, the mean energies of neutrinos tend to be between 10-18 MeV (Mirizzi et al, 2016), depending on the flavor. In the case of black-hole-forming models, the mean energies can grow to more than 20 MeV (Mirizzi et al, 2016).

2.2 Core-collapse frequency in the Universe

Core-collapse occurs for relatively massive stars \((8 \ M_\odot \lesssim M \lesssim 125 \ M_\odot)\) (Heger et al, 2003) which are characterized by short lifetimes (approximately \(10^6\) yr) on a cosmic scale. Due to this, the frequency of core-collapse events can be calculated directly using the star formation rate (SFR, \(\rho_*\)) and initial mass function (IMF, \(\xi\)).
These two parameters tell respectively about the speed of the formation of stars per co-moving volume and the distribution of stars’ masses at their births. Using them, the core-collapse supernova rate (CCSNR, \(R_{CC} \)) can be calculated as

\[
R_{CC}(z, M) = \frac{\dot{\rho}_*\(z\) \xi}{\int_{1.25}^{125} \frac{dM}{M_{\odot}} dM \xi}.
\] (3)

Employing this method means that any uncertainties impacting the measurements of the SFR and IMF will propagate to the CCSNR, and consequently DSNB; see, e.g., (Horiuchi et al, 2009; Lunardini and Tamborra, 2012; Mathews et al, 2014; Horiuchi et al, 2011; Møller et al, 2018; Singh and Rentala, 2021; Suliga et al, 2022; Ziegler et al, 2022).

Another way of determining the core-collapse rate is by identifying the frequency of the supernova events using electromagnetic observations (Mattila et al, 2012; Dahlen et al, 2012; Strolger et al, 2015; Petrushevskaya et al, 2016). This method also has its challenges. One of them is the fact that these are low-frequency events at small redshifts (Beacom, 2010). Moreover, the observations can underestimate the rate if not all core-collapse lead to an observable explosion, for example, when the star instead evolves directly into a black hole or a significant dust obscuration prevents clean observation (Mattila et al, 2012).

The percentage of progenitors evolving into black holes found by theoretical calculations and numerical simulations varies between a few to tens of percent (O’Connor and Ott, 2011b; Sukhbold et al, 2016; Sukhbold and Woosley, 2014; Ertl et al, 2016). There is also an effort to identify these stars by astronomical observations. Until now, two candidates have been found, among 27 nearby galaxies, which set the black hole-forming fraction to between approximately 4-40\% (Kooleank et al, 2008; Lien et al, 2010; Gerke et al, 2015; Adams et al, 2017b,a; Davies and Beasor, 2020; Neustadt et al, 2021).

On a separate note, (Horiuchi et al, 2011) identified a tension by a factor of two between the supernova rate calculated using the IMF and SFR and the one obtained directly from the observations of core-collapse explosions. This uncertainty propagates into DSNB modeling as well.

Looking from the other side, the DSNB measurement is an independent indirect probe of the SNR and fraction of back-hole-forming progenitors (Lunardini, 2009; Keehn and Lunardini, 2012; Horiuchi et al, 2011; Nakazato, 2013; Nakazato et al, 2015; Priya and Lunardini, 2017; Horiuchi et al, 2018; Møller et al, 2018; Kresse et al, 2021; Singh and Rentala, 2021; Horiuchi et al, 2021; Libanov and Sharofeev, 2022; Ekanger et al, 2022).

Observational evidence points out that most stars reside in binary systems (Sana et al, 2012; Zapartas et al, 2021), which opens up the possibility of binary interactions and introduces additional uncertainty in the DSNB. The binary interactions of massive stars can lead to redistribution of masses in the supernova population due to the mass transfer or changes in the number of stars undergoing core collapses by mergers. If two progenitors that were not expected to undergo supernovae form a star massive enough to undergo core collapse, the number of CCSN increases. On
the other hand, if both stars before the merger were expected to undergo CCSN, the mergers decreased the number of CCSN. Convolving these arguments with the IMF leads to the conclusion that the number of CCSN after including binary interactions increases. The effect of binary interactions on the DSNB can lead to a 0-75% increase in the flux (Horiuchi et al, 2021). The exact details depend on the modeling of the common envelope, in particular, how easy it is to unbind it and whether rotation effects are taken into account. The latter can lead to the development of more massive cores, which result in a larger neutrino flux (Horiuchi et al, 2021).

2.3 Diffuse supernova neutrino background estimates

The diffuse supernova background for sum of all neutrino flavors can be calculated with the expression

\[\Phi(E_\nu) = \frac{c}{H_0} \int_0^{\zeta_{\text{max}}} \frac{1}{\sqrt{\Omega_\text{M}(1+z)^3 + \Omega_\Lambda}} \int_{8 M_\odot}^{125 M_\odot} dM F'_\nu(E'_\nu, M) R_{\text{CC}}(z, M), \]

where \(c \) is the speed of light, \(H_0 \) is the Hubble constant, \(z \) is the cosmological redshift, \(E'_\nu = E_\nu(1+z) \), \(\Omega_\text{M} \) and \(\Omega_\Lambda \) are respectively the fractions of the energy density in matter and dark energy, and \(F'_\nu(E'_\nu, M) \) is the time-integrated flux from a single core-collapse supernova in all flavors.

Figure 1 shows the DSNB estimated using (Salpeter, 1955) IMF, nominal SFR taken from (Horiuchi et al, 2011), and assuming that all the CCSNe emit the Fermi-Dirac neutrino spectrum characterized by the temperature \(T_\nu \) and total energy emitted by all flavors is \(3 \times 10^{53} \) erg. The figure highlights how one of the uncertainties - the shape of the neutrino spectrum emitted from CCSN - modifies the DSNB. It also points out that higher fraction-of-black-hole forming stars in the entire CCSN population increases the high energy tail of the DSNB (Lunardini, 2009), as these stars are expected to produce hotter spectra. The shaded bands labeled Reactor, Solar, and Atmospheric indicate in which energy regions these irreducible neutrino backgrounds affect the DSNB measurement (see Section 3).

While propagating through the supernova medium, neutrinos undergo flavor conversions due to their self-interactions and coherent forward scattering of the medium particles. The neutrino conversions may affect the DSNB flavor content. The solution to the neutrino flavor evolution inside the core-collapse supernova is yet to be found. The main difficulty, compared to neutrino flavor evolution in the Sun, is the possibility of the neutrino self-interactions which may lead to highly non-linear flavor evolution (Duan et al, 2010; Balantekin and Pehlivan, 2007; Chakraborty et al, 2016; Tamborra and Shalgar, 2020). Thus, detecting the DSNB in all flavors is vital to disentangle the astrophysical uncertainties from the effect of neutrino flavor conversions.
Fig. 1 The DSNB for sum of all flavors assuming the Fermi-Dirac spectrum described by the temperature \(T_\nu \) and the total energy emitted in all flavors \(3 \times 10^{53}\) erg. Different \(T_\nu \) reflect how one source of uncertainty - the spectrum emitted from CCSN - can modify the DSNB. The shaded bands labeled by the Reactor, Solar, and Atmospheric mark the regions where these three nonreducible backgrounds affect the DSNB measurement.

3 Detection of the diffuse supernova neutrino background

The weak interaction nature of neutrinos is simultaneously a blessing and a curse. On the one hand, neutrinos can travel large distances undisturbed, but on the other hand, it is incredibly challenging to detect them. A way of mitigating the difficulty of observing astrophysical neutrinos is building large detectors with many targets and shielding these detectors from large fluxes of particles interacting strongly and electromagnetically. Here we describe some of the neutrino detectors sensitive to MeV energies, suitable for diffuse supernova neutrino background measurement in various neutrino flavors.

3.1 Detection of the electron antineutrino component

The diffuse supernova neutrino background has not been observed so far. But Super-Kamiokande (SK), one of the existing large-scale water Cherenkov detectors, is the leader in setting the upper limits on the \(\bar{\nu}_e \) component of the DSNB. The latest results, from the DSNB search at SK, indicate that \(\Phi_{\bar{\nu}_e} < 2.7 \text{ cm}^{-2} \text{ s}^{-1} \), for \(\bar{\nu}_e \) energies larger than 17.3 MeV (Bays et al, 2012; Zhang et al, 2015; Abe et al,
Fig. 2 Limits on the $\bar{\nu}_e$ component of the DSNB from SK (Bays et al, 2012; Zhang et al, 2015; Abe et al, 2021) and KamLAND (Abe et al, 2022) (colored markers) together with theoretical predictions grey lines). Figure extracted from Ref. (Abe et al, 2021).

2021). This limit is still a factor of approximately 2-3 above the values obtained in most current theoretical estimates, as illustrated by Figure 2.

3.1.1 Water Cherenkov detectors

Water Cherenkov detectors operate utilizing the fact that charged particles that move at speeds higher than the speed of light of the detector medium emanate Cherenkov radiation. The detector then registers this light by photomultiplier tubes and detects the moving particle. But since neutrinos do not have an electric charge, to register their presence in the detector, they need to interact with the detector targets either by the momentum transfer or creation of a charged particle. In water, for neutrinos with energies close to $\mathcal{O}(10)$ MeV, $\bar{\nu}_e$ have the largest probability of interaction with free protons through the Inverse Beta Decay (IBD)

$$\bar{\nu}_e + p \rightarrow n + e^+.$$ \hspace{1cm} (5)

Ultimately, because the number of the hydrogen (proton) targets surpasses twice the number of the oxygen targets, the threshold for IBD reaction is low ($E_{th} = 1.806$ MeV), and both products of the reaction can be identified IBD is the primary DSNB observation channel in water Cherenkov detectors.

To reduce the backgrounds preventing the DNSB detection, SK has been adding gadolinium sulfate (GdCl$_3$) (Beacom and Vagins, 2004) to the water in the tank since 2020. To understand how the addition of GdCl$_3$ will help the background...
Fig. 3 Schematic of tagging the inverse beta decay in water with dissolved gadolinium sulfate (Figure based on the one from Ref. (Beacom and Vagins, 2004)).

suppression, let us take a closer look at how SK identifies the IBD events. In an IBD reaction, two products are made: a neutron and a positron. The positron emits Cherenkov radiation by which it can be identified. Unfortunately, in the DSNB energy window, several backgrounds emit Cherenkov radiation, e.g., decay electrons from invisible (with energies below the Cherenkov threshold) atmospheric muons. To distinguish the signal from background events, coincident detection of neutron and positron is required.

A way of doing so is looking for Cherenkov radiation followed up shortly by γ cascades, which come from excited by neutrons nuclei. This neutron-tagging procedure demands a target element that is both efficient neutron capturer and deexcites by emission of well-measured and observable γ cascade. So far this has been done using free protons. But it turns out that gadolinium has a cross section for thermal neutron capture,

$$n + \text{Gd} \rightarrow \text{Gd}^* \rightarrow \text{Gd} + \gamma,$$

$\approx 4.9 \cdot 10^4$ barn (Wolfram Research, 2022) (it is 10^5 times higher than thermal capture on free protons) and deexcites fast by a γ cascade with the total energy of 8 MeV which is much easier to observe in SK than 2.2 MeV deexcitation from protons. Addition of 0.1% GdCl$_3$ to the water in SK should reduce the invisible muon background by almost a factor of 5 and leave only single spallation product (^9Li) as background for the DSNB search (Beacom and Vagins, 2004; Abe et al, 2021). SK enriched with Gd might provide 3σ detection for the DSNB detection already after 5-10 years (Beacom and Vagins, 2004).
3.1.2 Liquid scintillator detectors

Another class of detectors which may measure the $\bar{\nu}_e$ component of the DSNB are the liquid scintillator detectors. This type of detectors can identify the IBD interaction by detecting both the prompt scintillation light coming from positron annihilation and its kinetic energy with coincidence by the delayed γ rays from the neutron capture on proton.

Jiangmen Underground Neutrino Observatory (JUNO) (JUN, 2022), under construction, and THEIA (Askins et al, 2020), proposed, are the large-scale detectors which aim to measure the $\bar{\nu}_e$ component of DSNB within the next decades. Using the pulse shape discrimination techniques (Möllenberg et al, 2015; Dunger and Biller, 2019), these detectors are expected to suppress large neutral current atmospheric neutrino backgrounds and leave only the reactor and low energy atmospheric $\bar{\nu}_e$ fluxes as the backgrounds sources in the DSNB search window. JUNO is expecting to provide 3σ evidence for the DSNB detection after approximately 10 years of running (JUN, 2022) and THEIA after 1 year thanks to its large volume (Askins et al, 2020). THEIA would use a novel water-based liquid scintillator to get both scintillation and Cherenkov light, aiming to be the best of both worlds.

3.2 Detection of the electron neutrino component

Water Cherenkov and scintillator detectors cannot detect the ν_e component of the DSNB due to lower cross sections and high backgrounds present in the relevant energy range. Currently, the best upper limit on the ν_e component of the DSNB comes from the Sudbury Neutrino Observatory (SNO), which employed heavy water. The upper limit placed by SNO is $\Phi_{\nu_e} < 19 \text{ cm}^{-2} \text{s}^{-1}$, for ν_e energies between 22.9 MeV and 36.9 MeV (Aharmim et al, 2020), which is approximately a factor of 20 above the majority of the theoretical predictions. There are multiple challenges that made the measurement nonfeasible, including the large solar neutrino rate and decaying muon background.

3.2.1 Time projection chamber - Deep Underground Neutrino Experiment

The Deep Underground Neutrino Experiment (DUNE) is a planned neutrino experiment that will include a large-scale Liquid Argon Time Projection Chamber (40 ktons fiducial volume) (Abed Abud et al, 2021). In this type of detector the main detection channel of the DSNB neutrinos is the charge-current interaction of ν_e with argon targets ($\nu_e + {^{40}\text{Ar}} \rightarrow e^- + {^{40}\text{K}^+}$). The large sensitivity to electron neutrinos is a feature that distinguishes DUNE from the water Cherenkov and liquid scintillator detectors; it introduces a new channel of observation for the DSNB.

The ν_e is identified by its interaction products, in a similar manner as $\bar{\nu}_e$ in water Cherenkov and scintillator detectors. The detector registers the ionization track and
the scintillation light coming from the electron together with the γ cascade from the deexcitation of potassium nuclei. If the spallation backgrounds can be efficiently reduced (Zhu et al, 2019) and DUNE operates on tens of years timescale, there is a possibility of detecting DSNB. In optimistic scenarios, 3σ could be achieved after 10 years of running (Møller et al, 2018).

3.3 Detection of the non-electron neutrino component

While the prospects for detecting the ν_e and $\bar{\nu}_e$ components of the DSNB seem optimistic, to fully capture all the physics and astrophysics involved with the DSNB the measurement of the non-electron flavors ($\nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$ - that are commonly described as ν_x in supernova due to their similarity) is also necessary. From the perspective of bare fluxes, the situation seems similar to ν_e and $\bar{\nu}_e$; the fluxes are comparable, and the detection window is nearly the same. Detecting MeV-scale non-electron neutrinos, however, is challenging because they cannot produce a charged lepton in their interactions as the lowest thresholds for the charged-current reactions are at least as high as the charged lepton masses. Due to this, the detection of the ν_x component of DSNB requires neutral-current channels.

A potential detection channel could be the elastic scattering of neutrinos on electrons, but it is not feasible since the signal cannot be distinguished from the ample backgrounds without the possibility to tag both products of the reactions in the detectors described in previous sections. The existing upper limit on the ν_x component of the DSNB is a thousand times worse than most of the theoretical models (Lunardini and Peres, 2008).

3.3.1 Direct dark matter detectors - coherent elastic neutrino-nucleus scattering detectors

Another possibility for observing non-electron neutrino component of the DSNB is the recently opened channel of neutrino detection – the coherent elastic neutrino-nucleus scattering (CEvNS) (Akimov et al, 2017). This process has nearly the same cross section for all neutrino flavors (Freedman, 1974), and the coherence condition is satisfied within the detection window of DSNB for most nuclei employed by the CEvNS experiments. The detectors solely focused on measuring the neutrinos from accelerators (Akimov et al, 2017), and nuclear reactors (Akimov et al, 2013; Agnolet et al, 2017; Strauss et al, 2017; Hakenmüller et al, 2019; Aguilar-Arevalo et al, 2019) are too small to register even a single DSNB event over tens of years. However, large-scale direct dark matter detectors such as XENON & LZ, DARWIN, PANDA (Aalbers et al, 2016; Aprile et al, 2017; Akerib et al, 2019; Aprile et al, 2018, 2020; Akerib et al, 2020; Meng et al, 2021) can. These detectors maintain extremely low background levels as their primary goal is to detect dark matter caused nuclear recoils. Because of it, it is not necessary to register both interaction
Fig. 4 The calculated sensitivity to the non-electron neutrino component of the DSNB in xenon-based CEvNS detectors. The y-axis (E_{ν_x}) is the total energy emitted by one non-electron neutrino flavor, whereas the x-axis ($\langle E_{\nu_x} \rangle$) shows the average neutrino energy. In addition, the current SK limit on $\bar{\nu}_e$ (Abe et al, 2021) and the SNO limit on ν_e (Aharmim et al, 2020), the SN 1987A limit on ν_x (Suliga et al, 2022), and the average emission per collapse in nominal theoretical DSNB models (Møller et al, 2018) are shown.

products to register a neutrino interaction. While the completed detectors (Aprile et al, 2018) can only match the upper limits from neutrino electron elastic scattering, the currently running and planned detectors (Aalbers et al, 2016; Aprile et al, 2020; Akerib et al, 2020; Meng et al, 2021) can improve these limits approximately by two orders of magnitude (Strigari, 2009; Suliga et al, 2022); see Figure 4. In addition, depending on the exact exposure and the status of the uncertainty of the low energy atmospheric neutrino flux, this could potentially lead to detection.

Another potential channel for detecting the ν_x component of the DSNB is the elastic scattering of neutrinos on protons in liquid scintillator detectors such as JUNO (Tabrizi and Horiuchi, 2021). This detection channel, however, has considerable challenges, a vast number of background events originating from solar neutrinos, radioactive decays of detector material, and cosmogenic backgrounds (An et al, 2016).

Summary The diffuse supernova neutrino background is a guaranteed neutrino flux that encodes information about the entire core-collapse supernova population in the observable universe. Its detection can serve as an independent indirect measurement of the core-collapse supernova rate, the fraction of black-hole-forming
supernova progenitors, and the average neutrino flux per progenitor. Due to the unknowns connected to the neutrino flavor evolution in the dense environments and potential physics beyond the Standard Model in the neutrino sector, as well as uncertainties of the astrophysical parameters, to extract the most information, it is vital to detect diffuse supernova neutrino background in all flavors. The prospects for detecting the $\bar{\nu}_e$ and ν_e are optimistic. New strategies for detecting the non-electron flavor component are needed.

Acknowledgements
Research by the author was supported by National Science Foundation (Grant No. PHY-2020275). The author also would like to thank Kavli Institute for Theoretical Physics (KITP) for the hospitality during this work. KITP is supported in part by the National Science Foundation (Grant No. NSF PHY-1748958).

Cross-References

Weak Interactions in Evolving Stars
Reaction Rate Uncertainties and Stellar Evolution
Neutrino charged and neutral current opacities in the decoupling region
Nuclear Physics Constraints on Neutrino Astrophysics
Neutrinos and Heavy element nucleosynthesis
Entanglement and Many-Body effects in core-collapse supernovae
Recent developments in neutrino collective oscillations in supernovae
Nuclear weak processes in astrophysical plasma
Explosive nucleosynthesis in core-collapse supernovae
Nucleosynthesis in neutrino-heated ejecta and neutrino-driven winds of core-collapse supernovae; neutrino-induced nucleosynthesis
Electron-capture rates for stars and supernovae

References

(2022) JUNO physics and detector. Prog Part Nucl Phys 123:103,927, DOI 10.1016/j.ppnp.2021.103927
Aalbers J, et al (2016) DARWIN: towards the ultimate dark matter detector. JCAP 11:017, DOI 10.1088/1475-7516/2016/11/017, 1606.07001
Abe K, et al (2021) Diffuse supernova neutrino background search at Super-Kamiokande. Phys Rev D 104(12):122.002, DOI 10.1103/PhysRevD.104.122002, 2109.11174
Abe S, et al (2022) Limits on Astrophysical Antineutrinos with the KamLAND Experiment. Astrophys J 925(1):14, DOI 10.3847/1538-4357/ac32c1, 2108.08527
Abed Abud A, et al (2021) Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report. Instruments 5(4):31, DOI 10.3390/instruments5040031, 2103.13910
Adams S, Kochanek C, Gerke J, Stanek K (2017a) The search for failed supernovae with the Large Binocular Telescope: constraints from 7 yr of data. Mon Not Roy Astron Soc 469(2):1445–1455, DOI 10.1093/mnras/stx898, 1610.02402
Adams S, Kochanek C, Gerke J, Stanek K, Dai X (2017b) The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star. Mon Not Roy Astron Soc 468(4):4968–4981, DOI 10.1093/mnras/stx816.

Agnolet G, et al (2017) Background Studies for the MINER Coherent Neutrino Scattering Reactor Experiment. Nucl Instrum Meth A 853:53–60, DOI 10.1016/j.nima.2017.02.024.

Aguilar-Arevalo A, et al (2019) Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment. Phys Rev D 100(9):092,005, DOI 10.1103/PhysRevD.100.092005.

Aharmim B, et al (2020) Search for hep solar neutrinos and the diffuse supernova neutrino background using all three phases of the Sudbury Neutrino Observatory. Phys Rev D 102(6):062,006, DOI 10.1103/PhysRevD.102.062006.

Akerib DS, et al (2019) Results of a Search for Sub-GeV Dark Matter Using 2013 LUX Data. Phys Rev Lett 122(13):131,301, DOI 10.1103/PhysRevLett.122.131301.

Aharonian F, et al (2016) Neutrino Physics with JUNO. J Phys G 43(3):030,401, DOI 10.1088/0954-3899/43/3/030401.

Ando S, Sato K (2004) Relic neutrino background from cosmological supernovae. New J Phys 6:170, DOI 10.1088/1367-2630/6/1/170.

Aprile E, et al (2017) The XENON1T Dark Matter Experiment. Eur Phys J C 77(12):881, DOI 10.1140/epjc/s10052-017-5326-3.

Aprile E, et al (2018) Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys Rev Lett 121(11):111,302, DOI 10.1103/PhysRevLett.121.111302.

Aprile E, et al (2020) Projected WIMP sensitivity of the XENONnT dark matter experiment. JCAP 11:031, DOI 10.1088/1475-7516/2020/11/031.

Askins M, et al (2020) THEIA: an advanced optical neutrino detector. Eur Phys J C 80(5):416, DOI 10.1140/epjc/s10052-020-7977-8.

Bahcall JN, Davis R (1976) Solar Neutrinos - a Scientific Puzzle. Science 191:264–267.

Balantekin AB, Pehlivan Y (2007) Neutrino-Neutrino Interactions and Flavor Mixing in Dense Matter. J Phys G 34:47–66, DOI 10.1088/0954-3899/34/1/004.

Beacom JF (2010) The Diffuse Supernova Neutrino Background. Ann Rev Nucl Part Sci 60:439–462, DOI 10.1146/annurev.nucl.010909.083331.

Beacom JF, Vagins MR (2004) GADZOOKS! Anti-neutrino spectroscopy with large water Cherenkov detectors. Phys Rev Lett 93:171,101, DOI 10.1103/PhysRevLett.93.171101.

Becker JK (2008) High-energy neutrinos in the context of multimessenger physics. Phys Rept 458:173–246, DOI 10.1016/j.physrep.2007.10.006.

Bethe HA, Wilson JR (1985) Revival of a stalled supernova shock by neutrino heating. Astrophys J 295:14–23, DOI 10.1086/163343.

Bethe HA, Brown GE, Applegate J, Lattimer JM (1979) Equation of state in the gravitational collapse of stars. Nucl Phys A 324:487–533, DOI 10.1016/0375-9474(79)90596-7.
Bionta RM, et al (1987) Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud. Phys Rev Lett 58:1494, DOI 10.1103/PhysRevLett.58.1494
Bisnovatyi-Kogan GS, Seidov ZF (1984) Supernovae, neutrino rest mass, and the middle-energy neutrino background in the universe. Annals of the New York Academy of Sciences 422:319–327, DOI 10.1111/j.1749-6632.1984.tb23362.x
Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye toward core collapse supernovae. Astrophys J 584:971–980, DOI 10.1086/345812, astro-ph/0210634
Bruenn SW (1985) Stellar core collapse - Numerical model and infall epoch. Astrophysical Journal Supplement Series 58:771–841, DOI 10.1086/191056
Burrows A (2000) Supernova explosions in the universe. Nature 403:727–733, DOI 10.1038/3501501
Burrows A, Lattimer JM (1986) The birth of neutron stars. Astrophys J 307:178–196, DOI 10.1086/164405
Burrows A, Vartanyan D (2021) Core-Collapse Supernova Explosion Theory. Nature 589(7840):29–39, DOI 10.1038/s41586-020-03059-w, 2009.14157
Chakraborty S, Hansen R, Izaguirre I, Raffelt G (2016) Collective neutrino flavor conversion: Recent developments. Nucl Phys B 908:366–381, DOI 10.1016/j.nuclphysb.2016.02.012, 1602.02766
Cleveland BT, Daily T, Davis R Jr, Distel JR, Lande K, Lee CK, Wildenhain PS, Ullman J (1998) Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys J 496:505–526, DOI 10.1086/305343
Colgate SA, White RH (1966) The Hydrodynamic Behavior of Supernovae Explosions. Astrophys J 143:626, DOI 10.1086/148549
Couch SM, Ott CD (2015) The Role of Turbulence in Neutrino-Driven Core-Collapse Supernova Explosions. Astrophys J 799(1):5, DOI 10.1088/0004-637X/799/1/5, 1408.1399
Dahlen T, Strolger LG, Riess AG, Matilla S, Kankare E, Mohasher B (2012) The Extended Hubble Space Telescope Supernova Survey: The Rate of Core Collapse Supernovae to z=1. Astrophys J 757:70, DOI 10.1088/0004-637X/757/1/70, 1208.0342
Davies B, Beasor E (2020) ‘On the red supergiant problem’: a rebuttal, and a consensus on the upper mass cut-off for II-P progenitors. Mon Not Roy Astron Soc 496(1):L142–L146, DOI 10.1093/mnrasl/slaa102, 2005.13855
Duan H, Fuller GM, Qian YZ (2010) Collective Neutrino Oscillations. Ann Rev Nucl Part Sci 60:569–594, DOI 10.1146/annurev.nucl.012809.104524, 1001.2799
Dungr J, Biller SD (2019) Multi-site Event Discrimination in Large Liquid Scintillation Detectors. Nucl Instrum Meth A 943:162,420, DOI 10.1016/j.nima.2019.162420, 1904.00440
Ekanger N, Horiiuchi S, Kotake K, Sumiyoshi K (2022) Impact of late-time neutrino emission on the Diffuse Supernova Neutrino Background. 2206.05299
Ertl T, Janka HT, Woosley SE, Sukhbold T, Ugliano M (2016) A two-parameter criterion for classifying the explosibility of massive stars by the neutrino-driven mechanism. Astrophys J 818(2):124, DOI 10.3847/0004-637X/818/2/124, 1503.07522
Fischer T, Whitehouse SC, Mezzacappa A, Thielemann FK, Liebendorfer M (2009) The neutrino signal from protoneutron star accretion and black hole formation. Astron Astrophys 499:1, DOI 10.1051/0004-6361/200811055, 0809.5129
Fischer T, Langanke K, Martínez-Pinedo G (2013) Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations. Phys Rev C 88(6):065,804, DOI 10.1103/PhysRevC.88.065804, 1309.4271
Freedman DZ (1974) Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current. Phys Rev D 9:1389–1392, DOI 10.1103/PhysRevD.9.1389
Fryer CL (1999) Mass limits for black hole formation. Astrophys J 522:413, DOI 10.1086/307647, astro-ph/9902315
Fuller GM (1982) Neutron Shell Blocking of Electron Capture During Gravitational Collapse. Astrophys J 252:741–764, DOI 10.1086/159598
Diffuse supernova neutrino background

Fuller GM, Meyer BS (1991) High-Temperature Neutrino-Nucleus Processes in Stellar Collapse. The Astrophysical Journal 376:701, DOI 10.1086/170317
Fuller GM, Fowler WA, Newman MJ (1982) Stellar Weak Interaction Rates for Intermediate Mass Nuclei. 2. A = 21 to A = 60. Astrophys J 252:715–740, DOI 10.1086/159597
Gaisser T, Karle A (eds) (2017) Neutrino Astronomy: Current Status, Future Prospects. World Scientific, DOI 10.1142/9964
Gerke J, Kochanek C, Stanek K (2015) The Search for Failed Supernovae with The Large Binocular Telescope: First Candidates. Mon Not Roy Astron Soc 450(3):3289–3305, DOI 10.1093/mnras/stv776, 1411.1761
Hakenmüller J, et al (2019) Neutron-induced background in the CONUS experiment. Eur Phys J C 79(8):699, DOI 10.1140/epjc/s10052-019-7160-2, 1903.09269
Haxton WC, Lin W (2000) The Very low-energy solar flux of electron and heavy flavor neutrinos and anti-neutrinos. Phys Lett B 486:263–271, DOI 10.1016/S0370-2693(00)00764-4, nucl-th/9911090
Horiuchi S, Beacom JF, Dwek E (2009) The Diffuse Supernova Neutrino Background is detectable in Super-Kamiokande. Phys Rev D 79:083013, DOI 10.1103/PhysRevD.79.083013, 0812.3157
Horiuchi S, Beacom JF, Kochanek CS, Prieto J, Stanek KZ, Thompson TA (2011) The Cosmic Core-collapse Supernova Rate Does Not Match the Massive-star Formation Rate. The Astrophysical Journal 738(2):154, DOI 10.1088/0004-637X/738/2/154, 1102.1977
Horiuchi S, Sumiyoshi K, Nakamura K, Fischer T, Summa A, Takiwaki T, Janka HT, Kotake K (2018) Diffuse supernova neutrino background from extensive core-collapse simulations of 8-100M⊙ progenitors. Mon Not Roy Astron Soc 475(1):1363–1374, DOI 10.1093/mnras/stx3271, 1709.06567
Horiuchi S, Kinugawa T, Takiwaki T, Takahashi K, Kotake K (2021) Impact of binary interactions on the diffuse supernova neutrino background. Phys Rev D 103(4):043003, DOI 10.1103/PhysRevD.103.043003, 2012.08524
Janka HT (2012) Explosion Mechanisms of Core-Collapse Supernovae. Ann Rev Nucl Part Sci 62:407–451, DOI 10.1146/annurev-nucl-102111-044747, 1206.2503
Janka HT, Melson T, Summa A (2016) Physics of Core-Collapse Supernovae in Three Dimensions: a Sneak Preview. Ann Rev Nucl Part Sci 66:341–375, DOI 10.1146/annurev-nucl-102115-044747, 1602.05576
Keihm JG, Lunardini C (2012) Neutrinos from failed supernovae at future water and liquid argon detectors. Phys Rev D 85:043011, DOI 10.1103/PhysRevD.85.043011, 1012.1274
Keil MT (2003) Supernova neutrino spectra and applications to flavor oscillations. Other thesis, astro-ph/0308228
Keil MT, Raffelt GG, Janka HT (2003) Monte Carlo study of supernova neutrino spectra formation. Astrophys J 590:971–991, DOI 10.1086/375130, astro-ph/0208305
Kochanek C, Beacom J, Kistler M, Prieto J, Stanek K, Thompson T, Yuksel H (2008) A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae. Astrophys J 684:1336–1342, DOI 10.1086/590053, 0802.0456
Koshiba M (1992) Observational neutrino astrophysics. Phys Rept 220:229–381, DOI 10.1016/0370-1573(92)90083-C
Krauss LM, Glashow SL, Schramm DN (1984) Anti-neutrinos Astronomy and Geophysics. Nature 310:191–198, DOI 10.1038/310191a0
Kresse D, Ertl T, Janka HT (2021) Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background. Astrophys J 909(2):169, DOI 10.3847/1538-4357/abd54e, 2010.04728
Libanov A, Sharofeev A (2022) The Diffuse Supernova Neutrino Background in the Standard and Double Collapse Models. ArXiv e-print 2202.01206
Lien A, Fields BD, Beacom JF (2010) Synoptic Sky Surveys and the Diffuse Supernova Neutrino Background: Removing Astrophysical Uncertainties and Revealing Invisible Supernovae. Phys Rev D81:083,001, DOI 10.1103/PhysRevD.81.083001, 1001.3678
Lunardini C (2009) Diffuse neutrino flux from failed supernovae. Phys Rev Lett 102:231,101, DOI 10.1103/PhysRevLett.102.231101, 0901.0568
Lunardini C (2010) Diffuse supernova neutrinos at underground laboratories. Astropart Phys 79:49-77, DOI 10.1016/j.astropartphys.2016.02.005, 1007.3252
Lunardini C, Peres OL (2008) Upper limits on the diffuse supernova neutrino flux from the SuperKamiokande data. JCAP 08:033, DOI 10.1088/1475-7516/2008/08/033, 0805.4225
Lunardini C, Tamborra I (2012) Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. JCAP 07:012, DOI 10.1088/1475-7516/2012/07/012, 1205.6292
Martinez-Pinedo G, Fischer T, Lohs A, Huther L (2012) Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys Rev Lett 109:251,104, DOI 10.1103/PhysRevLett.109.251104, 1205.2793
Mathews GJ, Hidaka J, Kajino T, Suzuki J (2014) Supernova Relic Neutrinos and the Supernova Rate Problem: Analysis of Uncertainties and Detectability of ONeMg and Failed Supernovae. Astrophys J 790:115, DOI 10.1088/0004-637X/790/2/115, 1405.0458
Mattila S, Dahlen T, Efstathiou A, Kankare E, Melinder J, Alonso-Herrero A, Perez-Torres MA, Ryder S, Vaisanen P, Ostlin G (2012) Core-collapse supernovae missed by optical surveys. Astrophys J 756:111, DOI 10.1088/0004-637X/756/2/111, 1206.1314
Meng Y, et al (2021) Dark Matter Search Results from the PandaX-4T Commissioning Run. Phys Rev Lett 127(26):261,802, DOI 10.1103/PhysRevLett.127.261802, 2107.13438
Mirizzi A, Tamborra I, Janka HT, Saviano N, Schulberg K, Bollig R, Hudepohl L, Chakraborty S (2016) Supernova Neutrinos: Production, Oscillations and Detection. Riv Nuovo Cim 39(1-2):1–112, DOI 10.1393/ncr/i2016-10120-8, 1508.00785
Möllenberg R, von Feilitzsch F, Hellgartner D, Oberauer L, Tippmann M, Zimmer V, Winter J, Wurm M (2015) Detecting the Diffuse Supernova Neutrino Background with LENA. Phys Rev D 91(3):032,005, DOI 10.1103/PhysRevD.91.032005, 1409.2240
Möller K, Suliga AM, Tamborra I, Denton PB (2018) Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background. JCAP 05:066, DOI 10.1088/1475-7516/2018/05/066, 1804.03157
Nakazato K (2013) Imprint of Explosion Mechanism on Supernova Relic Neutrinos. Phys Rev D 88(8):083,012, DOI 10.1103/PhysRevD.88.083012, 1306.4526
Nakazato K, Mochida E, Niino Y, Suzuki H (2015) Spectrum of the Supernova Relic Neutrino Background and Metallicity Evolution of Galaxies. Astrophys J 804(1):75, DOI 10.1088/0004-637X/804/1/75, 1503.01236
Neustadt JMM, Kochanek CS, Stanek KZ, Basinger CM, Jayasinghe T, Garling CT, Adams SM, Gerke J (2021) The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11 yr of data. Mon Not Roy Astron Soc 508(1):516–528, DOI 10.1093/mnras/stab2605, 2104.03318
O’Connor E, Ott CD (2011a) Black Hole Formation in Failing Core-Collapse Supernovae. Astrophys J 730:70, DOI 10.1088/0004-637X/730/2/70, 1010.5550
O’Connor E, Ott CD (2011b) Thermal Effects on Black Hole Formation in Failed Core-Collapse Supernovae 1103.2117
Ott CD, Abdikamalov E, Mösta P, Haas R, Drasco S, O’Connor EP, Reisswig C, Meakin CA, Schnetter E (2013) General-Relativistic Simulations of Three-Dimensional Core-Collapse Supernovae. Astrophys J 768:115, DOI 10.1088/0004-637X/768/2/115, 1210.6674
Diffuse supernova neutrino background

Petrushevska T, et al (2016) High-redshift supernova rates measured with the gravitational telescope A 1689. Astron Astrophys 594:A54, DOI 10.1051/0004-6361/201628925,

Priya A, Lunardini C (2017) Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the O(10) kt scale. JCAP 11:031, DOI 10.1088/1475-7516/2017/11/031,

Salpeter EE (1955) The Luminosity Function and Stellar Evolution. Astrophysical Journal 121:161, DOI 10.1086/145971

Sana H, de Mink SE, de Koter A, Langer N, Evans CJ, Gieles M, Gosset E, Izzard RG, Bouquin JBL, Schneider FRN (2012) Binary interaction dominates the evolution of massive stars. Science 337:444, DOI 10.1126/science.1223344,

Sekiguchi Yi, Shibata M (2004a) Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation. Phys Rev D 71:084013, DOI 10.1103/PhysRevD.71.084013,

Sekiguchi Yi, Shibata M (2004b) New criterion for direct black hole formation in rapidly rotating stellar collapse. Phys Rev D 70:084005, DOI 10.1103/PhysRevD.70.084005,

Singh R, Rentala V (2021) Neutrinos from the cosmic noon: a probe of the cosmic star formation history. JCAP 08:019, DOI 10.1088/1475-7516/2021/08/019,

Spiering C (2012) Towards High-Energy Neutrino Astronomy. A Historical Review. Eur Phys J H 37:515–565, DOI 10.1140/epjh/e2012-30014-2,

Strauss R, et al (2017) The ν-cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering. Eur Phys J C 77:506, DOI 10.1140/epjc/s10052-017-5068-2,

Strigari LE (2009) Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors. New J Phys 11:105,011, DOI 10.1088/1367-2630/11/10/105011,

Strolger LG, Dahlen T, Rodney SA, Graur O, Riess AG, McCully C, Ravindranath S, Mobasher B, Shahady AK (2015) The Rate of Core Collapse Supernovae to Redshift 2.5 From The CANDELS and CLASH Supernova Surveys. Astrophys J 813(2):93, DOI 10.1088/0004-637X/813/2/93,

Sukhbold T, Woosley S (2014) The Compactness of Presupernova Stellar Cores. Astrophys J 783:10, DOI 10.1088/0004-637X/783/1/10,

Sukhbold T, Ertl T, Woosley S, Brown JM, Janka HT (2016) Core-Collapse Supernovae from 9 to 120 Solar Masses Based on Neutrino-powered Explosions. Astrophys J 821(1):38, DOI 10.3847/0004-637X/821/1/38,

Suliga AM, Beacom JF, Tamborra I (2022) Towards probing the diffuse supernova neutrino background in all flavors. Phys Rev D 105(4):043,008, DOI 10.1103/PhysRevD.105.043008,

Tabrizi Z, Horuchi S (2021) Flavor Triangle of the Diffuse Supernova Neutrino Background. JCAP 05:011, DOI 10.1088/1475-7516/2021/05/011,

Tamborra I, Shalgar S (2020) New Developments in Flavor Evolution of a Dense Neutrino Gas DOI 10.1146/annurev-nucl-102920-050505,

Tamborra I, Muller B, Hudepohl L, Janka HT, Raffelt G (2012) High-resolution supernova neutrino spectra represented by a simple fit. Phys Rev D 86:125,031, DOI 10.1103/PhysRevD.86.125031,

Tamborra I, Hanke F, Janka HT, Muller B, Raffelt GG, Marek A (2014) Self-sustained asymmetry of lepton-number emission: A new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys J 792(2):96, DOI 10.1088/0004-637X/792/2/96,

Vartanyan D, Burrows A, Radice D, Skinner AM, Dolence J (2019) A Successful 3D Core-Collapse Supernova Explosion Model. Mon Not Roy Astron Soc 482(1):351–369, DOI 10.1093/mnras/sty2585,

Vitagliano E, Tamborra I, Raffelt G (2020) Grand Unified Neutrino Spectrum at Earth: Sources and Spectral Components. Rev Mod Phys 92:45,006, DOI 10.1103/RevModPhys.92.045006,
Wilson JR, Mayle R, Woosley SE, Weaver T (1986) Stellar core collapse and supernova. Annals N Y Acad Sci 470:267–293, DOI 10.1111/j.1749-6632.1986.tb47980.x
Wolfram Research I (2022) Neutron cross section of the elements. URL http://periodictable.com/Properties/A/NeutronCrossSection.html
Zapartas E, de Mink SE, Justham S, Smith N, Renzo M, de Koter A (2021) Effect of binary evolution on the inferred initial and final core masses of hydrogen-rich, Type II supernova progenitors. Astron Astrophys 645:A6, DOI 10.1051/0004-6361/202037744, 2002.07230
Zhang H, et al (2015) Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV. Astropart Phys 60:41–46, DOI 10.1016/j.astropartphys.2014.05.004, 1311.3738
Zhang WQ, Woosley SE, Heger A (2008) Fallback and Black Hole Production in Massive Stars. Astrophys J 679:639, DOI 10.1086/526404, astro-ph/0701083
Zhu G, Li SW, Beacom JF (2019) Developing the MeV potential of DUNE: Detailed considerations of muon-induced spallation and other backgrounds. Phys Rev C 99(5):055,810, DOI 10.1103/PhysRevC.99.055810, 1811.07912
Ziegler JJ, Edwards TDP, Suliga AM, Tamborra I, Horiuchi S, Ando S, Freese K (2022) Non-Universal Stellar Initial Mass Functions: Large Uncertainties in Star Formation Rates at $z \approx 2 – 4$ and Other Astrophysical Probes 2205.07845