Data regarding the type, frequency, and distribution of tick-borne pathogens and bacterial agents are not widely available for many tick species that parasitize persons in the southern United States. We therefore analyzed the frequency and identity of pathogens and bacterial agents in ticks removed from humans and subsequently submitted to the Texas Department of State Health Services, Zoonosis Control Program, from October 1, 2004, through September 30, 2008. The data showed associations of bacterial agents and potential vectors. Tick-related illnesses may pose unidentified health risks in areas such as Texas, where incidence of human disease related to tick bites is low but well above zero and where ticks are not routinely suspected as the cause of disease. Cause, treatment, and prevention strategies can be better addressed through collecting sufficient data to establish baseline assessments of risk.

Data concerning the full distribution of tick-borne agents and their potential relationship to both emerging and characterized illnesses in the southern United States are not widely available. Persons who become ill after a tick bite may be at increased risk because a tick bite may not be considered as the source of the pathogen and because of the length of time that febrile illness may elude effective treatment. Detailed knowledge of the causative agents, their distribution, and their relationship to potential vectors is also lacking. Most tick survey data for microorganisms in the genera *Borrelia*, *Rickettsia*, and *Ehrlichia* have been collected in areas where the associated diseases are considered endemic. Lyme disease, Rocky Mountain spotted fever, or human monocytotrophic ehrlichiosis are not considered to be endemic to Texas. Studies of microorganisms carried in ticks in non–disease-endemic areas might provide information about potentially pathogenic organisms, their vectors, and reservoirs. These data might also provide an opportunity to examine the ecology of emerging zoonoses for which different ecologic determinants for disease transmission may be present.

In 2000, the 77th Texas Legislature Subcommittee on Administration prepared a report addressing the potentially severe nature of tick-borne disease in Texas. As of October 1, 2004, the Tick-Borne Disease Research Laboratory at the University of North Texas Health Science Center (UNTHSC) became the primary facility for testing ticks submitted to the Texas Department of State Health Services (TX DSHS).

Methods

From October 1, 2004, through September 30, 2008, tick specimens were submitted to UNTHSC through the Zoonosis Control Program of the TX DSHS. Only ticks that had been attached to a person were submitted to UNTHSC, where they were screened for the genera *Borrelia*, *Rickettsia*, and *Ehrlichia* with genus-specific PCRs. Ticks were identified to the species level by TX DSHS entomologists before being transferred to UNTHSC (1–3). Poor condition of some specimens made identification by morphologic examination difficult. Unidentified ticks were conclusively identified by molecular methods developed at UNTHSC, which used amplification of 12S rDNA (Table 1) and sequence determination (data not shown). Additionally, the identity of any tick containing an organism not previously reported in that species was also confirmed by the same molecular methods. Of all tick specimens, 10% were screened
by the same molecular identification technique to verify the accuracy of morphologic identification.

Ticks were bisected laterally by using aseptic technique and a sterile scalpel blade. For independent verification of results, half of each tick was stored in 100% ethanol at −80°C. For larvae and nymphs, the entire tick was used for DNA extraction. Total DNA was isolated from the second half by using an E.N.Z.A. Mollusc DNA Isolation Kit (Omega Bio-Tek, Inc., Norcross, GA, USA) according to manufacturer’s recommended protocol. Extracted DNA was subjected to PCR that used primers for the amplification of the tick’s 12S rDNA or Borrelia spp., Ehrlichia spp., and Rickettsia spp. genes (Table 1).

The locations of PCR setup and PCR product handling were physically separated. Reaction setup was performed in a class II type B2 biological safety cabinet that had been cleaned with 0.6% sodium hypochlorite daily and UV irradiated for 30 min before and after each use. To minimize risk for contamination, pipettor sets were dedicated to specific functions, i.e., reagent dispensing, template isolation, PCR setup, and template handling. Certified DNA/RNase-free filter barrier tips were used to prevent aerosol contamination. PCR setup was never performed in the presence of isolation materials, and reagent handling was separated both physically and temporally from templates. PCR assays were performed in duplicate with appropriate controls.

A typical, initial PCR was performed in a 25-μL reaction volume by using 5 pmol/L of each appropriate primer in conjunction with a final reaction concentration of 1× GeneAmp PCR Buffer II (Applied Biosystems, Foster City, CA, USA), 160 ng/μL bovine serum albumin, 1.0 mmol/L MgCl₂, 200 μmol/L of each dNTP, 1.25 U AmpliTaq (Applied Biosystems), and 10 μL of template. To establish the species of the tick specimen, we amplified 12S rDNA with

Primer name	Gene	Primer sequence (5′ → 3′)	Specificity	Screen	Tm	Reference
Tick DNA						
85F	12S	TTAAGCTTTTCAGAGGATTTGCTC	Unknown	Primary	54.0	This study
225R	12S	TTTTWWGCTGCACCTTGACTTAA	Unknown	Primary	52.7	This study
Borrelia spp.						
FlaLL	flaB	ACATTTTCACTGCAAGGATGTT	Genus	Primary	58.3	(4)
FlaRL	flaB	GCACTCATACGGATTCAATTTG	Genus	Primary	58.9	(4)
FlaLS	flaB	AAGCAGTTCAAGGTTGAATG	Genus	Primary	57.5	(4)
FlaRS	flaB	CTTTGTGACAATTCCATTTG	Genus	Primary	53.3	(4)
BL-Fla 522F	flaB	GCTTATTTTGATCAATTTG	Genus	Primary	58.4	(4)
BL-Fla 1182R	flaB	GCACTTGATTTGGATTG	Genus	Primary	60.4	(4)
BL-Fla 662F	flaB	CTGAGATTTGATGAAATCACTGC	Genus	Primary	62.8	(4)
BL-Fla 860R	flaB	GAGCTAACTCCACCTTGGT	Genus	Primary	61.2	(4)
BL-Fla 341F	flaB	AGCAGTTCAAGAGCTTGT	Genus	Alternate	63.2	This study
BL-Fla 730R	flaB	GCTTATGTGCTGCTGATG	Genus	Alternate	64.1	This study
BL-16S 227F	16S	TCACATGTGAACTGATCAGT	Genus	Alternate	62.1	This study
BL-16S 920R	16S	GATTCACAAATGCACTGCTGC	Genus	Alternate	61.0	This study
BL-HSP 71F	groEL	CTATGTTGGAAGAGGATCATTTGA	Genus	Alternate	55.6	This study
BL-HSP 271R	groEL	CAATATCCTTCGACAATATAGCAAGG	Genus	Alternate	58.2	This study
Rickettsia spp.						
Rr.190 70P	rompA	ATGGCGGAATATTTTCCAAA	Genus	Primary	52.5	(5)
Rr.190 602N	rompA	AGTGCGAGCTGCTGCCCTCCCT	Genus	Primary	64.9	(5)
BG1–21	rompB	GCCATTTAATATGCTGAGC	Genus	Alternate	55.6	(6)
BG2–20	rompB	GATTCAGCAGCAGCTGCTG	Genus	Alternate	55.2	(6)
RrCS 372	gltA	TTTTATGATTTTCACTTATTTGC	Genus	Alternate	59.0	(7)
RrCS 898	gltA	CCCAATGACTTATGCTGCTG	Genus	Alternate	57.5	(7)
Primer 1	17kDa	GCTTCTTCAAAATGCAATTTGCT	Genus	Alternate	52.3	(8)
Primer 2	17kDa	CATTTGTGCAATGTTGGCG	Genus	Alternate	57.9	(8)
Ehrlichia spp.						
Ehr DSB 330F	dsb	GATGATGTTGCTAAGGATGAAAACAAAT	Genus	Primary	55.5	(9)
Ehr DSB 728R	dsb	GATGATGTTGCTAAGGATGAAAACAAAT	Genus	Primary	56.6	(9)
ECC-F	16S	AGAAAGACCGTGCGCCAGCC	Genus	Alternate	61.0	(10)
ECB-R	16S	GCTTATCACGCACGCTGCG	Genus	Alternate	65.6	(10)
ECAN-F	16S	ATTATAGCCTTGCCCTAGAG	E. canis	Alternate	54.9	(11)
HE1-F	16S	CAATGTGTTGTAACCATTTTGTGAT	E. chaffeensis	Alternate	55.6	(12)
EE72-F	16S	ATTATGCTGTTAATACCTTGT	E. ewingii	Alternate	52.6	(11)
HE3-R	16S	TATAGTGCAATGTTGGCG	Genus	Alternate	57.6	(13)

* Tm, melting temperature, °C.
the following cycle parameters: 95°C for 5 min; then 40 cycles each consisting of 95°C for 30 s, 45°C for 30 s, 72°C for 60 s; and a final 72°C extension for 5 min. Thermal cycling parameters for the initial PCRs of bacterial genes were 95°C for 5 min; then 40 cycles each consisting of 95°C for 60 s, 55°C for 60 s, 72°C for 30 s; and a final 72°C extension for 5 min. Nested PCR was performed by using the same reaction setup and 1.0 μL of amplified PCR mix as template. Nested PCR setup was performed in a dedicated dead air space cabinet that had been decontaminated in the same manner as the class II type B biosafety cabinet. The thermal cycling profile for the nested reactions was 95°C for 5 min; then 30 cycles each consisting of 95°C for 60 s, 55°C for 60 s, 72°C for 30 s; and a final 72°C extension for 5 min.

Verification of amplification was performed by agarose gel electrophoresis, followed by staining with 1X SYBR Green I (BioWhittaker Molecular Applications ApS, Rockland, ME, USA). Amplicons were examined with a UVP EC3 Imaging System (UVP, LLC, Upland, CA, USA) and subsequently analyzed by VisionworksLS Image Acquisition and Analysis Software (UVP, LLC). Secondary PCR systems (Table 1) were used to confirm positive results and did not contain primers that would amplify control DNA commonly used in the laboratory. Unincorporated primers were removed from samples producing amplicons before sequence determination by using ExoSAP-IT (USB Corporation, Cleveland, OH, USA).

DNA sequencing was performed for both strands of the PCR amplicons by using a BigDye Terminator Cycle Sequencing Kit, version 3.1 (Applied Biosystems). Unincorporated dye terminators were removed before electrophoresis by using Performa DTR Gel Filtration Cartridges (Edge BioSystems, Gaithersburg, MD, USA). Capillary electrophoresis was performed by using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems). Final sequence analysis and editing was performed by using Sequencer 4.7 (Gene Codes Corporation, Ann Arbor, MI, USA). Using BLASTN, version 2.2.10 (www.ncbi.nlm.nih.gov/blast/Blast.cgi), we then compared edited sequence data with genetic sequences from characterized examples of Borrelia spp., Rickettsia spp., and Ehrlichia spp. published in GenBank.

Results

A total of 903 ticks, representing 11 tick species, were submitted to UNTHSC from 138 of 254 Texas counties. Of these, 144 ticks contained the DNA of at least 1 of the agents in the genera Borrelia, Ehrlichia, or Rickettsia (Table 2). The most common tick species submitted were Amblyomma americanum, followed by Dermacentor variabilis. Spotted fever group Rickettsia spp. (SFGR) were the most common bacteria detected. Genetic material from SFGR was identified in A. americanum, A. cajennense, D. variabilis, Isodes scapularis, and Rhipicephalus sanguineus ticks. Of all tick species submitted, minimum SFGR infection rates (MIRs) were highest for A. americanum (20.98%) and D. variabilis (47.37%) ticks. The most predominant SFGR sequences amplified were identical to those of Candidatus Rickettsia amblyommii (AY062007). Some contained a single-nucleotide difference relative to AY062007 (data not shown). SFGR amplicons produced from Isodes spp. ticks were identical to those of I. scapularis endosymbiont isolates (EU544296, EF689740, EF689737) and shared ≥99% identity with Candidatus Rickettsia cookeyi (AF031535) (14) or an uncharacterized rickettsial endosymbiont previously reported for I. scapularis (AB002268) ticks (15). Amplicons with a DNA sequence identical to that of R. parkeri strains (U43802) (16), (EF102238) (17), and (FJ986616) were produced by 4 D. variabilis and 1 Rh. sanguineus tick samples. Amplicons identical to R. peacockii (CP001227) were produced by 2 A. americanum, 2 D. variabilis, and 1 I. scapularis tick samples. Amplicons identical to R. rhipicephali (U43803) and at least 99% similar to other R. rhipicephali strains (EU109175, EU109177, EU109178) (18) were produced by 1 Rh. sanguineus tick sample.

DNA sequences consistent with those of Borrelia spp. were derived from A. americanum, A. cajennense, D. variabilis, and I. scapularis ticks. The most commonly encountered Borrelia genetic material demonstrated at least 99% sequence identity or was identical to that of previously sequenced Candidatus Borrelia lonestari isolates (AY850063, AF538852) (19). Additionally, a borreliae flaB sequence was generated from 1 D. variabilis tick, which had 94% sequence similarity with that of Candidatus Borrelia texensis (AF264901) (20) and sequences amplified from an uncultured Borrelia sp. from the bat tick Caros kelleyi (EF688577, EF688579) (21) and (EU492387). The flaB sequence contained 11 single-nucleotide polymorphisms relative to the corresponding section of AF264901. The Borrelia sp. 16S rDNA sequence generated from the same D. variabilis tick was also identical to that published for Candidatus B. texensis (AF467976) (20,22). This tick was submitted from Webb County, the same Texas county from which the borreliae that produced GenBank sequence AF264901 were isolated. A single I. scapularis specimen produced the flaB sequence, which had 99% identity with B. burgdorferi (AE000783) (23).

Genetic data consistent with those from Ehrlichia spp. were observed for A. americanum, A. cajennense, and A. maculatum ticks. Amplicons produced from A. americanum and A. maculatum ticks were 99% similar to the homologous region of the E. chaffeensis disulfide oxidoreductase gene (dsh) sequences in GenBank (CP000236) (24). A single sample from A. cajennense ticks produced a DNA sequence that was 97% similar to that of the CP000236 se-
sequence and contained 8 single-nucleotide polymorphisms relative to the similar sequence. Several single-nucleotide polymorphisms locations are at the same position as nucleotide differences identified between the dsb gene of *E. ewingii* (AY428950) (25) and *E. canis* (AF403710) (26). The nucleotide polymorphisms found within the dsb gene did not change the predicted amino acid sequence in relation to *E. chaffeensis* (data not shown).

Discussion

By screening a diverse group of Texas tick species for a range of microorganisms and potential pathogens, we identified several novel associations: *Candidatus* *B. lonestari* in *A. cajennense* ticks, *E. chaffeensis* in *A. cajennense* ticks, and *A. maculatum*, and *R. parkeri* in *D. variabilis* ticks (Table 3). Because the geographic distribution of diseases caused by the agents is generally characterized by the distribution of the tick vectors, these findings provide insights regarding the distributions and endemicity of several potential emerging tick-borne agents.

SFGR were the most commonly observed agents in this survey. Both *Candidatus* *R. amblyommii* and *Candidatus* *R. cooleyi* are not well studied and are of undetermined pathogenicity. Current average SFGR seropositivity in Texas residents is also unknown, yet prior estimates indicate that it is higher than would be assumed from cases of Rocky Mountain spotted fever reported to the TX DSHS (27). Transmission through blood products has been noted previously (28, 29). Unreported subclinical infections might cause concern about local blood products and could potentially compromise immunodeficient transfusion recipients. Additionally, detection of *R. amblyommii* in questing *A. americanum* larvae suggests transovarial transmission of the microbe, and the likelihood of pathogen transmission...

Table 2. Number and identity of ticks submitted to University of North Texas Health Science Center by the Texas Department of State Health Services Zoonosis Control Program, October 1, 2004, to September 30, 2008

Tick	No. positive/no. tested	Borrelia spp.	Ehrlichia spp.	Rickettsia spp.	Total
Amblyomma americanum					
Adult male	0/0	1/116	0/1	0/0	0/0
Adult female	0/0	1/109	0/11	0/0	0/0
Nymph	0/0	1/92	1/27	0/0	0/0
Larva	0/0	0/11	0/0	0/0	0/0
A. cajennense					
Adult male	0/0	0/44	0/2	0/0	0/0
Adult female	0/0	1/56	0/3	0/0	0/0
Nymph	0/0	0/52	0/3	0/0	0/0
Larva	0/0	0/12	0/0	0/0	0/0
A. maculatum					
Adult male	0/0	0/7	0/0	0/0	0/0
Adult female	0/0	0/1	0/1	0/0	0/0
Nymph	0/0	0/1	0/0	0/0	0/0
Larva	0/0	0/1	0/0	0/0	0/0
Dermacentor variabilis					
Adult male	0/1	0/71	0/1	0/0	0/0
Adult female	0/3	1/84	0/16	0/0	0/0
Nymph	0/0	0/0	0/0	0/0	0/0
Larva	0/0	0/0	0/0	0/0	0/0
Ixodes scapularis					
Adult male	0/0	0/4	0/0	0/0	0/0
Adult female	0/0	0/41	0/22	0/0	0/0
Nymph	0/0	0/1	0/1	0/0	0/0
Larva	0/0	0/0	0/0	0/0	0/0
Rhipicephalus sanguineus					
Adult male	0/0	0/23	0/0	0/0	0/0
Adult female	0/2	0/35	0/6	0/2	0/2
Nymph	0/0	0/5	0/15	0/0	0/0
Larva	0/0	0/0	0/1	0/0	0/0
Total	0/6	6/772	1/112	0/6	111/772

*Testing by PCR. Only tick species that showed evidence of containing Borrelia, Ehrlichia, or Rickettsia spp. are shown. Seven specimens of Otobius megnini, 2 of Amblyomma inornatum and Dermacentor albipictus, and 1 each of Dermacentor andersonii and Dermacentor nigrolineatus ticks were submitted during the project period. After clarification with the submitter of the *D. andersonii* specimen, it was concluded that the tick attachment may have occurred in Colorado. UNE, unengorged; PE, partially engorged; E, engorged.*

444 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 16, No. 3, March 2010
E. ewingii provided several additional associations. These ticks have been associated with A. cajennense and may indicate the presence of uncharacterized borreliae strains in Texas tick populations. A. cajennense ticks have been associated with E. ruminantium (33) and spotted fever group Rickettsia spp. (34). According to seropositivity in a human population in Argentina, these ticks have also been suspected of transmitting ehrlichiosis (35). The presence of E. chaffeensis in an A. cajennense tick seems novel. Long et al. (13) suggest an E. ewingii MIR of 7.6% in southcentral Texas A. americanum ticks. Similar results for Ehrlichia spp. in A. cajennense tick populations may be plausible.

Screening ticks for a range of bacterial agents has provided several additional associations. These findings provide insights regarding the distributions and endemicity of potentially pathogenic and emerging tick-borne agents. Some of these tick-borne agents may pose an unknown health risk. Because of the wide distribution of these ticks, accurate assessments of the frequency of bacterial agents in these tick populations, their potential for causing human disease, and the ability for these tick species to act as competent vectors are warranted. Continued study and monitoring will play a vital role in public health assessment for related disease risks.

Acknowledgments

We thank Chris Paddock and Bruce Budowle for their review of the manuscript.

This project was supported by the State of Texas.

Dr Williamson is an assistant professor in the Institute of Investigative Genetics at the University of North Texas Health Science Center and director for the Tick-borne Disease Research Laboratory in the Center for Biosafety and Biosecurity. His primary research focus is the development of methods and tools for rapid assessment of disease outbreak and the study of efficient mechanisms for researching the epidemiology, genetics, and associated clinical manifestations of emerging pathogens.

References

1. United States Department of Agriculture. Ticks of veterinary importance. Agriculture Handbook no. 485. Rockville (MD): The Department; 1976. p. 21–35.
2. Cooley RA, Kohls GM. The genus Ixodes in North America. Washington: US Government Printing Office; 1945. p. 7–11.
3. Keirans JE, Litwak TR. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida: Ixodoida), east of the Mississippi River. J Med Entomol. 1989;26:435–48.
4. Barbour AG, Maupin GO, Teltow GJ, Carter CJ, Piesman J. Identification of an uncultivable Borrelia species in the hard tick Amblyomma americanum: possible agent of a Lyme disease-like illness. J Infect Dis. 1996;173:403–9.
5. Regnery RL, Spruill CL, Plikaytis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:1576–89.
6. Eremeeva M, Yu X, Raoult D. Differentiation among spotted fever group rickettsiae species by analysis of restriction fragment length polymorphism of PCR-amplified DNA. J Clin Microbiol. 1994;32:803–10.
7. Kollars TM Jr, Kengluecha A. Spotted fever group Rickettsia in Dermacentor variabilis (Acari: Ixodidae) infesting raccoons (Carnivora: Procyonidae) and opossums (Marsupialia: Didelphimorphidae) in Tennessee. J Med Entomol. 2001;38:601–2. DOI: 10.1603/0022-2585-38.4.601
8. Webb L, Carl M, Malloy DC, Dasch GA, Azad AF. Detection of murine typhus infection in fleas by using the polymerase chain reaction. J Clin Microbiol. 1990;28:530–4.
9. Doyle CK, Labruna MB, Breitschwerdt EB, Tang YW, Coevert RE, Hegarty BC, et al. Detection of medically important Ehrlichia by quantitative multicolor TaqMan real-time polymerase chain reaction of the dsb gene. J Mol Diagn. 2005;7:504–10.
10. Dawson JE, Stalknecht DE, Howerton EW, Warner C, Biggie K, Davidson WR, et al. Susceptibility of white-tailed deer (Odocoileus virginianus) to infection with Ehrlichia chaffeensis, the etiologic agent of human ehrlichiosis. J Clin Microbiol. 1994;32:2725–8.
11. Dawson JE, Biggie KL, Warner CK, Cookson S, Levine JF, et al. Polymerase chain reaction evidence of Ehrlichia chaffeensis, an etiologic agent of human ehrlichiosis, in dogs from southeastern Tennessee. Am J Vet Res. 1996;57:1175–9.
12. Anderson BE, Sumner JW, Dawson JE, Tzianabos T, Greene CR, Olson JG, et al. Detection of the etiologic agent of human ehrlichiosis by polymerase chain reaction. J Clin Microbiol. 1992;30:775–80.
13. Long SW, Pound JM, Yu XJ.
14. Billings AN, Teltow GJ, Weaver SC, Walker DH. Molecular characterization of a novel Rickettsia species from Ixodes scapularis in Texas. Emerg Infect Dis. 1998;4:305–9. DOI: 10.3201/eid0402.980221
15. Weller SJ, Baldridge GD, Munderloh UG, Noda H, Simser J, Kurtti TJ. Phylogenetic placement of rickettsiae from the ticks Amblyomma americanum and Ixodes scapularis. J Clin Microbiol. 1998;36:1305–17.
16. Roux V, Fournier PE, Raoult D. Differentiation of spotted fever group rickettsiae by sequencing and analysis of restriction fragment length polymorphism of PCR-amplified DNA of the gene encoding the protein rOmpA. J Clin Microbiol. 1996;34:2058–65.
17. Silveira I, Pacheco RC, Szabo MP, Ramos HG, Labruna MB. Rickettsia parkeri in Brazil. Emerg Infect Dis. 2007;13:1111–3.
18. Wikkswo ME, Hu R, Dasch GA, Krueger L, Aragay A, Jones K, et al. Detection and identification of spotted fever group rickettsiae in Dermacentor species from southern California. J Med Entomol. 2008;45:509–16. DOI: 10.1603/0022-2585-2008.45[509]:DA1O0SF2.0.CO;2
19. Moore VA IV, Varela AS, Yabsley MJ, Davidson WR, Little SE. Detection of Borrelia lonestari, putative agent of southern tick-associated rash illness, in white-tailed deer (Odocoileus virginianus) from the southeastern United States. J Clin Microbiol. 2003;41:424–7. DOI: 10.1128/JCM.41.4.424-427.2003
20. Lin T, Gao L, Seyfang A, Oliver JH Jr. ‘Candidatus Borrelia texasensis’ from the American dog tick Dermacentor variabilis. Int J Syst Evol Microbiol. 2005;55:685–93. DOI: 10.1099/ijs.0.02864-0
21. Gill JS, Ullmann AJ, Loftis AD, Schwan TG, Raffel SJ, Schrumpf ME, et al. Novel relapsing fever spirochete in bat tick. Emerg Infect Dis. 2008;14:522–3. DOI: 10.3201/eid1403.070766
22. Lin T, Oliver JH Jr, Gao L. Comparative analysis of Borrelia isolates from southeastern USA based on randomly amplified polymorphic DNA fingerprint and 16S ribosomal gene sequence analyses. FEMS Microbiol Lett. 2003;228:249–57. DOI: 10.1016/S0378-1097(03)00763-8

23. Fraser CM, Casjens S, Huang WM, Sutton GC, Clayton R, Lathigra R, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390:580–6. DOI: 10.1038/37551
24. Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006;2:e21. DOI: 10.1371/journal.pgen.0020021
25. Labruna MB, McBride JW, Camargo LM, Aguiar DM, Yabsley MJ, Davidson WR, et al. A preliminary investigation of Ehrlichia species in ticks, humans, dogs, and capybaras from Brazil. Vet Parasitol. 2007;143:189–95. DOI: 10.1016/j.vetpar.2006.08.005
26. McBride JW, Ndip LM, Popov VL, Walker DH. Identification and functional analysis of an immunoreactive DsbA-like thio-disulfide oxidoreductase of Ehrlichia spp. Infect Immun. 2002;70:2700–3. DOI: 10.1128/IAI.70.5.2700-2703.2002
27. Taylor JP, Tanner BW, Rawlings JA, Buck J, Elliott LB, Dewlett HJ, et al. Serological evidence of subclinical Rocky Mountain spotted fever infections in Texas. J Infect Dis. 1985;151:367–9.
28. Arguin PM, Singleton J, Rotz LD, Marston E, Treadwell TA, Slater K, et al. An investigation into the possibility of transmission of tick-borne pathogens via blood transfusion. Transfusion-associated Tick-borne Illness Task Force. Transfusion. 1999;39:828–33. DOI: 10.1046/j.1537-2995.1999.39080828.x
29. McQuiston JH, Childs JE, Chamberland ME, Tabor E. Transmission of tick-borne agents of disease by blood transfusion: a review of known and potential risks in the United States. Transfusion. 2000;40:274–84. DOI: 10.1046/j.1537-2995.2000.40030274.x
30. Stromdahl EY, Williamson PC, Kollars TM Jr, Evans SR, Barry RK, Vince MA, et al. Evidence of Borrelia lonestari DNA in Amblyomma americanum (Acari: Ixodidae) removed from humans. J Clin Microbiol. 2003;41:5557–62. DOI: 10.1128/JCM.41.12.5557-5562.2003
31. Taft SC, Miller MK, Wright SM. Distribution of borreliae among ticks collected from eastern states. Vector Borne Zoonotic Dis. 2005;5:383–9. DOI: 10.1089/vbz.2005.5.383
32. Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, et al. Prevalence of Ehrlichia, Borrelia, and rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol. 2006;43:1261–8. DOI: 10.1603/0022-2585(2006)43[1261:POARAP2.0.CO;2
33. Mahan SM, Peter TF, Simbi BH, Koean K, Camus E, Barbet AF, et al. Comparison of efficacy of American and African Amblyomma ticks as vectors of heartwater (Cowdria ruminantium) infection by molecular analyses and transmission trials. J Parasitol. 2000;86:44–9.
34. de Lemos ER, Machado RD, Coura JR, Guimaraes MA, Freire NM, Davidson WR, et al. Comparative analyses and transmission trials. J Parasitol. 1997;83:181–5.
35. Ripoll CM, Remondegui CE, Ordonez G, Arazamendi R, Fusaro H, Hyman MA, et al. Evidence of rickettsial spotted fever and ehrlichial infections in a suburban territory of Jujuy, Argentina. Am J Trop Med Hyg. 1999;61:350–4.

Address for correspondence: Phillip C. Williamson, University of North Texas Health Science Center, Institute of Investigative Genetics, 3500 Camp Bowie Blvd, Fort Worth, TX 76107-2699, USA; email: phwilliam@hsc.unt.edu

Search past issues of EID at www.cdc.gov/eid

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 16, No. 3, March 2010