IMRT for head and neck cancer: reducing xerostomia and dysphagia

XiaoShen Wang1 and Avraham Eisbruch2*

1Department of Radiation Oncology, Cancer Hospital, Fudan University, 270 Dong’an Road, Shanghai, 200032, China
2Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, UH B2C490, Ann Arbor, Michigan 48109–0010, USA
*Corresponding author. Department of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, UH B2C490, Ann Arbor, Michigan 48109–0010, USA Tel: +1-734-936-9337; Fax: +1-734-763-7370; Email: eisbruch@umich.edu
Received February 3, 2016; Revised March 17, 2016; Accepted March 26, 2016

ABSTRACT

Dysphagia and xerostomia are the main sequellae of chemoradiotherapy for head and neck cancer, and the main factors in reducing long-term patient quality of life. IMRT uses advanced technology to focus the high radiation doses on the targets and avoid irradiation of non-involved tissues. The decisions about sparing organs and tissues whose damage causes xerostomia and dysphagia depends on the evidence for dose–response relationships for the organs causing these sequellae. This paper discusses the evidence for the contribution of radiotherapy to xerostomia via damage of the major salivary glands (parotid and submandibular) and minor salivary glands within the oral cavity, and the contribution of radiotherapy-related effect on important swallowing structures causing dysphagia. Recommendations for dose limits to these organs, based on measurements of xerostomia and dysphagia following radiotherapy, are provided here.

INTRODUCTION

Due to the complicated anatomic relationship between the tumor and normal structures in the head and neck (HN), and the importance of organ preservation in maintaining the patient’s quality of life (QoL), considerations of intensifying therapy must be balanced with increased toxicity of intensive treatment regimens. Radiotherapy (RT) has always played an important role in the treatment of head and neck cancers (HNCs) [1], and in recent years an increasing role for systemic chemotherapy and molecular targeted therapy for locally advanced disease has evolved [2–10]. Intensification of RT for locally advanced HNC has led to significantly improved locoregional control and survival compared with conventional RT [3–10]. However, these improvements are accompanied with increased toxicity [8–10].

Currently, besides improving tumor control rate, another important goal is to reduce the probability of radiation-induced complications in order to improve the survivors’ QoL. The application of 3D conformal radiation therapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) signified a major improvement over conventional 2D RT. Using 3D treatment-planning systems (TPSs), both the target volume and organs at risk (OARs) can be contoured on the planning CT, and the spatial relationship between target volume and OARs can be clearly demonstrated in 3D. Using IMRT, the radiation beams can be optimized to deliver a higher dose to specified target volumes, while reducing the dose to adjacent OARs. Using IMRT to treat HNC is especially attractive due to its unique ability to treat the concave target shapes, the close vicinity of the targets and many dose-limiting and non-involved OARs, and because of the lack of breathing-related motion in these tumors.

As IMRT allows highly conformal dose distributions to target volumes of almost any shape, appropriate selection and accurate delineation of the target volumes and the avoidable organs becomes of critical importance [11]. Over the past few years, some authors have made recommendation guidelines for selection of the clinical target volume (CTV) for both the primary tumors and neck nodal areas [12–16]. Besides appropriate selection of normal organs, the other important item is to set dose constraints when designing IMRT plans so as to spare OARs. At present, most available data about the tolerance dose of normal tissues are based on retrospective analyses or expert opinion [17, 18]. Because of these drawbacks, these analyses might not allow definitive conclusions.

Xerostomia and dysphagia are both the main acute and late complications that result in decreased QoL during and after radiotherapy. This chapter describes the efforts to prevent the above-mentioned therapy-related complications by presenting state of the art evidence regarding organ-sparing by advanced RT technology.
XEROSTOMIA

Xerostomia (dry mouth) is the most common and prominent complication during and after radiotherapy for HNC as a result of damage to the salivary glands. Radiation-induced injury to the salivary glands alters the volume, consistency and pH of secreted saliva [19]. Because the severity of the damage to the salivary glands is dependent both on the total radiation dose and on the volume of irradiated tissue, current studies on organ-preserving RT have focused on sparing the salivary glands from unnecessary irradiation [20].

PAROTID GLANDS

Limiting the volume of the parotid glands receiving a high radiation dose has long been recognized as a major factor in reducing the severity of xerostomia. For most HNCs, especially squamous cell carcinoma, the necessity of treating the bilateral level II lymph nodes makes it difficult to spare the parotid glands using standard, laterally opposed RT techniques. However, with 3D-CRT or IMRT, it is possible to partly spare at least one parotid gland in selected patients. A high dose is delivered to only a small part of the parotid gland that is located closest to the target volumes, while the rest of the parotid receives a low dose or no dose at all [20, 21]. Thus the salivary function is partially preserved and can increase over time via a compensatory response on the part of the parotid that received a low dose [20, 22].

Over the past 10 years, an increasing body of data has demonstrated the ability of 3D-CRT and IMRT to deliver dose distributions that allow partial preservation of parotid function, assessed by either salivary flow measurements or salivary gland scintigraphy (Table 1). A growing number of prospective clinical trials have demonstrated that parotid-sparing IMRT is sufficient to reduce long-term xerostomia without jeopardizing local-regional control for nasopharyngeal cancer (NPC) (Table 2). Although IMRT for HNC is promising in terms of local tumor control and improvement of salivary function according to single institution studies, these data need to be validated in randomized multi-institutional studies. Recently, several randomized clinical trials have further confirmed that IMRT for NPC could reduce the severity of xerostomia without jeopardizing the tumor control rate compared with conventional RT [39, 43, 44]. In oropharyngeal cancer, it has also been demonstrated that IMRT preserved salivary flow in two prospective multi-institutional studies [32, 33, 45].

The practice guidelines must be made for appropriate preservation of the parotid function, because overemphasis on parotid sparing might lead to geographical miss and unexpected patterns of failure. In recent years, emerging data on locoregional failures after 3D-CRT or IMRT has facilitated the development of practice guidelines for parotid-sparing IMRT for HNC. In patients with negative lymph nodes, at least one, but usually both, parotid glands can be safely spared, depending on the location of the primary cancer. In patients with unilateral neck disease, sparing of the contralateral parotid gland dose not result in increased marginal failures [46, 47]. However, sparing of the ipsilateral parotid gland should be given lower priority especially if there are involved lymph nodes at level II [14, 20, 48]. In patients with extensively involved bilateral nodal disease, meaningful preservation of the parotid function should never be considered at the cost of underdosing the target volume, because locoregional failure is the worst treatment outcome. In addition, more detailed proposals have been given about the cranial border of level II, as it has clear relevance to the possibility of sparing the parotid [49]. For patients without nodal disease, the upper boundary of level II is placed at the caudal edge of the lateral process of the first vertebra [16]. For patients with involved nodal disease, level II on the involved

Table 1. Overview of prospective trials on parotid-sparing radiotherapy

Author (year)	No.	Site	Stage	RT technique	Constraint (mean dose, Gy)	Objective endpoint	Subjective endpoint
Eisbruch (1996) [21]	15	All	I–IV	3D	21 ± 8 SF	XQ	
Eisbruch (1999) [33]	88	All	I–IV	3D	≤26 (stimulated) ≤24 (unstimulated) SF	NS	
Chao (2001) [23]	41	All	II–IV	3D/IMRT	≤32 SF	XQ	
Eisbruch (2001) [34]	84	All	I–IV	3D/IMRT	≤26 SF	XQ	
Henson (2001) [25]	20	All	II–IV	3D	≤26 SF	NS	
Maes (2002) [26]	39	All	I–IV	3D	≤20 SGS	VAS	
Munter (2004) [27]	18	All	I–IV	IMRT	≤26 SGS	NS	
Parliament (2004) [28]	23	All	I–IV	IMRT	≤26 SF	XQ	
Saarilahti (2005) [29]	17	OP/NP	II–IV	IMRT	≤25.5 SF	NS	
Blanco (2005) [30]	65	All	I–IV	3D/IMRT	≤25.8 SF	NS	
Scrimger (2007) [31]	47	All	I–IV	IMRT	≤26 SF	XQ	
Eisbruch (2010) [32]	69	OP	I–II	IMRT	<26 SF	XQ	

No. = number, IMRT = intensity-modulated radiotherapy, SF = salivary flow, XQ = xerostomia questionnaire, NS = not stated, SGS = salivary gland scintigraphy, VAS = visual analogue scale, OP = oropharynx, NP = nasopharynx, All = all subsites.
neck side is extended to the skull base and includes the retrostyloid space [50].

Nowadays, definition of dose/volume–response relationships for the parotid glands has been well established from the data regarding correlation of residual salivary function with radiation dose. The consensus has been reached that xerostomia can be substantially reduced by limiting the mean parotid gland dose to <26–30 Gy as a planning criterion [51]. By reducing the mean dose to at least one parotid gland, salivary function can be partially preserved, and it improves gradually over time. Thus both the prevalence and extent of dry mouth can be greatly reduced over time. This effect has been demonstrated in several clinical studies [25, 28, 37, 43]. However, the improvement in objective parotid function as measured by salivary flow is not always accompanied with improved patient-reported xerostomia [28, 31, 44]. One study indicated that the observer-based grades underestimated the severity of xerostomia compared with the patient self-reported scores [52]. We suggest that not only the objective parotid function, but also patient’s subjective scores should be the main end points in evaluating xerostomia. Because xerostomia is mainly an issue of QoL, symptoms reported by patients are more suggestive of its true severity.

SUBMANDIBULAR GLANDS

Under stimulated status, 60–65% of saliva is produced by the parotid glands, 20–30% by the submandibular glands (SMGs), and 2–5% by the sublingual glands. However, in the non-stimulated state, the SMGs contribute up to 90% of the salivary output [53]. Moreover, the saliva secreted by the parotid glands is purely serous, whereas saliva from the SMGs also contains mucins, which chiefly contribute to the patient’s subjective sense of moisture [20]. Therefore, it is also important to protect the function of the SMGs.

One study demonstrated that by surgical transfer of the SMGs to the submental space before RT, thus avoiding them being irradiated, can significantly prevent xerostomia, confirming the important role of the SMGs [54]. However, this surgical technique has not been widely applied due to its drawbacks. It is reasonable to infer that the severity of xerostomia can be reduced by sparing the SMGs from radiation. A prospective non-randomized study has revealed the feasibility of sparing the contralateral SMGs [58].

The data regarding dose–response relationship of the SMGs came from Tsujii [56]. He used 99mTc-pertechnetate scintigraphy to measure salivary gland function and reported an unexpected improvement in SMG function as the dose increased from 10 to 30 Gy, followed by a steep decline after 50 Gy. He also demonstrated that the parotid glands were more sensitive to radiation than the SMGs at 0–3 months following 20–70 Gy. Recently, the dose–response relationship for the SMGs has been established on the basis of patients who underwent salivary flow measurements selectively from Wharton’s duct before and after RT. The function of the SMGs was shown to be dependent on the mean radiation dose, with recovery over time up to a mean dose of 39 Gy [57]. A recent study showed clinical benefit from sparing the contralateral SMGs [58].

Table 2. Results of non-randomized studies on IMRT in the treatment of NPC

Author (year)	No.	Stages III + IV (%)	CT (%)	FU (months)	LRC/RC	OS	DMFS	Xerostomia (%)
Sultanem (2000)	35	72	91	21.8	100 (4 y)	94 (4 y)	57 (4 y)	(At 2 years) Grade 0: 50, Grade 1: 50
Lee (2002)	67	70	75	31	98 (4 y)	88 (4 y)	66 (4 y)	(At 2 years) Grade 0: 66, Grade 1: 32, Grade 2: 2
Kam (2004)	63	57	30	29	92 (3 y)	90 (3 y)	79 (3 y)	(At 2 years) Grade 1–2: 23
Wu (2006)	75	56	NA	23.8	87 (2 y)	87 (2 y)	82 (2 y)	(At 39 months) Grade 1: 24, Grade 2: 18.6, Grade 3: 1
Wolden (2006)	74	77	93	35	91 (3 y)	83 (3 y)	78 (3 y)	(At 1 year) Grade 0: 25, Grade 1: 42, Grade 2: 32
Lee (2009)	68	59	84	31	93 (2 y)	80 (2 y)	85 (2 y)	(At 1 year) Grade 2: 13.5, Grade 3: 3.1
Tham (2009)	195	63	57	36.5	93 (3 y)	94.3 (3 y)	89.2 (3 y)	Grade 0–2: 97, Grade 3: 3
Lin (2009)	323	80.5	91.3	30	95 (3 y)	90 (3 y)	90 (3 y)	(At 24 months) Grade 0: 5.4, Grade 1: 86.8, Grade 2: 7.8
Lin (2009)	370	83.2	90.3	31	95 (3 y)	86 (3 y)	89 (3 y)	(At 24 months) Detectable xerostomia: 7.8%, Grade 3–4: 0

No. = number of patients, CT = chemotherapy, FU = follow-up, LRC/RC = locoregional control/regional control, OS = overall survival, DMFS = distant metastatic-free survival, NA = not available, y = year.
Reduction of the radiation dose to the SMG might be potentially dangerous owing to its close proximity to the base of tongue, tonsil, and level IIa lymph nodes. Therefore, when trying to preserve the function of the SMGs, we must take into account the potential risk of reducing local regional tumor control. At present, available evidence regarding the efficacy and safety of SMGs-sparing IMRT is extremely limited.

ORAL CAVITY AND MINOR SALIVARY GLANDS

The minor salivary glands, which are dispersed throughout the oral cavity, produce up to 70% of the total mucins secreted by the salivary glands [55]. Thus it is reasonable to anticipate that limiting the radiation dose to the oral cavity might contribute to the reduction of patient-reported xerostomia. Moreover, sparing the oral cavity from unnecessary radiation might have additional benefits in preventing mucositis and taste loss [59]. Therefore, the uninvolved oral cavity should be delineated as an OAR, and be given dose constraint in designing the IMRT plan whenever possible. At present, the mean non-involved oral cavity dose was set to be ≤30 Gy in the Department of Radiation Oncology, University of Michigan, although with very low priority.

DYSPHAGIA

Dysphagia has a devastating effect on patient daily life, and can even lead to life-threatening complications, such as aspiration pneumonia [60]. Radiotherapy for HNC inevitably results in appreciable dose delivery to some of the critical structures necessary for normal deglutition, such as the tongue, soft palate, and pharyngeal and laryngeal muscles, which leads to unavoidable mucositis and swallowing difficulty [8–10].

Dysphagia can be evaluated by both objective and subjective methods. As for xerostomia, one study also indicated that patient-reported symptoms were not representative of findings from objective evaluation of swallowing [61]. To date, many researchers have carried out clinical trials to analyze the relationship between irradiated structures and dysphagia, and the findings of published studies are nearly consistent regarding the crucial structures associated with swallowing dysfunctions (Table 3). Both the mean dose to the pharyngeal constrictor muscles and the larynx, as well as the volume of these structures receiving 50–60 Gy, have been shown to correlate remarkably with the prevalence of dysphagia [61–70]. These findings imply that limiting the dose to the crucial swallowing structures might decrease both the incidence and severity of radiation-induced dysphagia.

In order to reduce dysphagia using IMRT, it is important to identify and delineate the dysphagia- and aspiration-related structures (DARS). Eisbruch et al. [70] first reported that radiation damage to the pharyngeal constrictors and the glottic/supraglottic larynx were implicated in post-RT dysphagia. They suggested that reducing the radiation dose to the DARS may lead to improved swallowing outcomes. Following this, a series of trials have been initiated to establish whether dose reduction to DARS can improve swallowing outcomes for HNC treated by IMRT. The results of these studies are consistent and show that increased radiation dose to a larger volume of the pharyngeal constrictors results in worse dysphagia [61–71]. A dose–risk ratio has been suggested by several investigators. Levendag et al. [63] reported a 19% increase in the probability of dysphagia with every additional 10 Gy to the superior and middle constrictor muscles. Li et al. [71] suggested that in order to reduce the risk of prolonged gastrostomy feeding tube use, the dose constraint should be a mean dose of <55 Gy to the inferior constrictor muscle, and a maximum dose of <60 Gy to the cricopharyngeal inlet.

However, no clear volume or dose constraints can be determined from the current literature. At present, the best way is to keep the radiation dose to these structures as low as possible. Prospective, longitudinal studies, including baseline evaluation with pre-determined follow-up assessment at different time points, are still needed to better understand the relationship between dose/volume and dysphagia.

Table 3. Overview of studies assessing crucial structures for late dysphagia

Author (year)	Sample	Site	Dysphagia endpoint	Dosimetric factors correlated with dysphagia
Feng (2007) [61]	36	OP/NP	VF, UW QOL	PCMs (mean dose, V50, V60, V65) and larynx (mean dose, V50)
Levendag (2007) [62]	56	OP	H&N 35	Superior and middle PCMs (mean dose)
Jensen (2007) [60]	25	Pharynx	H&N 35	Supraglottic larynx (mean dose, median dose, V60, V65)
Teguh (2008) [63]	81	OP/NP	H&N 35	Superior and middle PCMs (mean dose)
Teguh (2008) [64]	20	OP	FEES	Superior PCMs (mean dose)
Caglar (2008) [65]	96	All	VF	Inferior PCMs (mean dose, V50, D60) and larynx (mean dose, V50, D60)
Caudell (2009) [66]	83	All	VF	Inferior PCMs (V60, V65) and larynx (mean dose, V55, V60, V65, V70)
Dirix (2009) [67]	53	All	H&N 35	Middle PCMs (mean dose, V50) and supraglottic larynx (mean dose)
Feng (2010) [68]	73	OP	VF, UW QOL	PCMs (mean dose, V50, V60, V65) and larynx (mean dose, V50)
Eisbruch (2004) [69]	26	All	VF	PCMs (V50) and the glottic and supraglottic larynx (V50)

OP = oropharynx, NP = nasopharynx, VF = videofluoroscopy, UW QOL = University of Washington Quality of Life Scale, PCMs = pharyngeal constrictor muscles, V50 = volume receiving ≥50 Gy, V60 = volume receiving ≥60 Gy, V65 = volume receiving ≥65 Gy, H&N 35 = EORTC Head and Neck 35 swallowing symptom score, FEES = fiberoptic endoscopic evaluation of swallowing, All = all subsites, D60 = minimum dose received by 60% of a structure, V70 = volume receiving ≥70 Gy.
swallowing outcomes. In Feng’s study, significant correlations were observed between aspirations and the mean doses to the pharyngeal constrictor (PC) and glottic supraglottic larynx (GSL), as well as the partial volumes of these structures receiving 50–65 Gy [62]. Using these dose–volume parameters as initial IMRT optimization goals, a prospective clinical trial was carried out, and the results suggest that chemo-IMRT aiming to reduce dysphagia can be performed safely for oropharyngeal cancer [69]. At present, we try to keep the mean dose to the non-involved PC and GSL ≤50 Gy at the University of Michigan. However, avoiding underdosing to the targets in the vicinity of the swallowing structures should be the highest priority.

Another approach to sparing the swallowing structures is selective delineation of the nodal volume, especially avoiding the delineation of the medial retropharyngeal lymph nodes. These nodes are located between the PC muscles and the prevertebral fascia near the midline, and their exclusion from the elective nodal target volume might significantly contribute to sparing the PC muscles [20, 62].

Recently, a multicenter prospective study demonstrated that RT in conjunction with cetuximab improved tumor control without increasing common RT–associated toxicities, such as dysphagia, and did not have a negative effect on patients’ QoL compared with RT alone [4, 72]. Therefore, it is inferred that cetuximab could potentially decrease treatment-related toxicity by replacing more toxic chemotherapy without jeopardizing survival. However, to date, there are no phase III clinical trials that directly compare cetuximab and RT to standard chemotherapy and RT. Moreover, cetuximab is not without toxicity. According to a retrospective study, concomitant cetuximab with IMRT resulted in an ∼10-fold increase in the rate of Grade 3/4 transient dermatitis compared with the use of concomitant cisplatin (34% vs 3%) [73]. The currently available data are insufficient to warrant changing the standard practice of concurrent chemoradiotherapy to cetuximab and RT in order to reduce dysphagia.

CONCLUSIONS

QoL may be improved by the application of IMRT without compromising tumor control for HNC. When treating HNC with IMRT or 3D-CRT, it is important to contour the target volume accurately, as well as to delineate all relevant normal structures at risk, and the available radiation-dose constraints must be taken into account. Currently, xerostomia can be successfully prevented or reduced by restricting the maximum mean dose threshold to 26 Gy for at least one parotid gland as well as making an effort to reduce the doses to the contralateral SMG and to the minor salivary glands in the oral cavity. Late dysphagia can be reduced by keeping the mean dose to the non-involved PC muscles and the larynx ≤50 Gy. However, prospective collection of dosimetric data, along with the corresponding functional outcomes, is still needed in order to establish more precise dose–response curves.

REFERENCES

1. Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010. CA Cancer J Clin 2010;60:277–300.
2. Argiris A, Karamouzis MV, Raben D, et al. Head and neck cancer. Lancet 2008;371:1695–709.
3. Pignon JP, le Maitre A, Maillard E, et al. Meta-analysis of chemortherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009;92:4–14.
4. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006;354:567–78.
5. Cohen EE, Haraf DJ, Kunnavekkam R, et al. Epidermal growth factor receptor inhibitor gefitinib added to chemoradiotherapy in locally advanced head and neck cancer. J Clin Oncol 2010;28:3336–43.
6. Brizel DM, Esalamado R. Concurrent chemoradiotherapy for locally advanced, nonmetastatic, squamous carcinoma of the head and neck: consensus, controversy, and conundrum. J Clin Oncol 2006:24:2612–7.
7. Posner MR, Hershock DM, Blajman CR, et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 2007;357:1705–15.
8. Nyuts S, Dirix P, Clement PM, et al. Impact of adding concomitant chemotherapy to hyperfractionated accelerated radiotherapy for advanced head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2009;73:1088–95.
9. Garden AS, Harris J, Trotti A, et al. Long-term results of concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: a phase II trial of the radiation therapy oncology group (RTOG 99–14). Int J Radiat Oncol Biol Phys 2008;71:1351–5.
10. Manikantan K, Khode S, Sayed SI, et al. Dysphagia in head and neck cancer. Cancer Treat Rev 2009;35:724–32.
11. Harari PM. Beware the swing and a miss: baseball precautions for conformal radiotherapy. Int J Radiat Oncol Biol Phys 2008;70:657–9.
12. Cannon DM, Lee NY. Recurrence in region of spared parotid gland after definitive intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2008;70:660–5.
13. Chao KS, Wippold FJ, Ozzyigit G, et al. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int J Radiat Oncol Biol Phys 2002;53:1174–84.
14. Eisbruch A, Marsh LH, Dawson LA, et al. Recurrences near base of skull after IMRT for head-and-neck cancer: implications for target delineation in high neck and for parotid gland sparing. Int J Radiat Oncol Biol Phys 2004;59:28–42.
15. Eisbruch A, Foote RL, O’Sullivan B, et al. Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin Radiat Oncol 2002;12:238–49.
16. Grégoire V, Levendag P, Ang KK, et al. CT-based delineation of lymph node levels and related CTVs in the node negative neck: AHANCA, EORTC, GORTEC, RTOG consensus guidelines. Radiother Oncol 2003;69:227–36.
17. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 2010;76:S10–9.
18. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991;21:109–22.
19. Dirix P, Nyuts S, Van den Bogaert W. Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer 2006;107:2525–34.
20. Dirix P, Nyuts S. Evidence-based organ-sparing radiotherapy in head and neck cancer. Lancet Oncol 2010;11:85–91.
21. Eisbruch A, Ship JA, Martel MK, et al. Parotid gland sparing in patients undergoing bilateral head and neck irradiation: techniques and early results. *Int J Radiat Oncol Biol Phys* 1996;36:469–80.

22. Li Y, Taylor JM, Ten Haken RK, et al. The impact of dose on parotid salivary recovery in head and neck cancer patients treated with radiation therapy. *Int J Radiat Oncol Biol Phys* 2007;67:660–9.

23. Chao KS, Deasy JO, Markman J, et al. A prospective study of salivary function sparing in patients with head-and-neck cancers receiving intensity-modulated or three-dimensional radiation therapy: initial results. *Int J Radiat Oncol Biol Phys* 2001;49:907–16.

24. Eisbruch A, Kim HM, Terrell JE, et al. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. *Int J Radiat Oncol Biol Phys* 2001;50:695–704.

25. Henson BS, Inglehart MR, Eisbruch A, et al. Preserved salivary output and xerostomia-related quality of life in head and neck cancer patients receiving parotid-sparing radiotherapy. *Oral Oncol* 2001;37:84–93.

26. Maes A, Weltens C, Flamen P, et al. Preservation of parotid function with uncomplicated conformal radiotherapy. *Radiother Oncol* 2002;63:203–11.

27. Münter MW, Karger CP, Hoffner SG, et al. Evaluation of salivary gland function after treatment of head-and-neck tumors with intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. *Int J Radiat Oncol Biol Phys* 2004;58:175–84.

28. Parliament MB, Scrimger RA, Anderson SG, et al. Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. *Int J Radiat Oncol Biol Phys* 2004;58:663–73.

29. Saariluht I, Kouri M, Collan J, et al. Intensity modulated radiotherapy for head and neck cancer: evidence for preserved salivary gland function. *Radiother Oncol* 2005;74:251–58.

30. Blanco AI, Chao KS, ElNaqa I, et al. Dose–volume modelling of salivary function in patients with head-and-neck cancer receiving radiotherapy. *Int J Radiat Oncol Biol Phys* 2005;62:1055–69.

31. Scrimger R, Kanji A, Parliament M, et al. Correlation between saliva production and quality of life measurements in head and neck cancer patients treated with intensity-modulated radiotherapy. *Am J Clin Oncol* 2007;30:271–7.

32. Eisbruch A, Harris J, Garden AS, et al. Multi-institutional trial of accelerated hyperfractionated intensity-modulated radiotherapy for early-stage oropharyngeal cancer (RTOG 00–22). *Int J Radiat Oncol Biol Phys* 2010;76:1333–8.

33. Eisbruch A, Ten Haken RK, Kim HM, et al. Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. *Int J Radiat Oncol Biol Phys* 1999;45:577–87.

34. Sultanem K, Shu Hk, Xia P, et al. Three-dimensional intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: the University of California–San Francisco experience. *Int J Radiat Oncol Biol Phys* 2000;48:711–22.

35. Lee N, Xia P, Quivey JM, et al. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: an update of the USCF experience. *Int J Radiat Oncol Biol Phys* 2002;53:12–22.

36. Kam MK, Teo PM, Chau RM, et al. Treatment of nasopharyngeal carcinoma with intensity-modulated radiotherapy: the Hong Kong experience. *Int J Radiat Oncol Biol Phys* 2004;60:1440–50.

37. Wu S, Xie CY, Jin X, Zhang P. Simultaneous modulated accelerated radiation therapy in the treatment of nasopharyngeal cancer: a local center’s experience. *Int J Radiat Oncol Biol Phys* 2006;66:540–6.

38. Wolden SL, Chen WC, Pfister DG, et al. Intensity-modulated radiation therapy (IMRT) for nasopharyngeal cancer: update of the Memorial Sloan-Kettering experience. *Int J Radiat Oncol Biol Phys* 2006;64:57–62.

39. Lee N, Harris J, Garden AS, et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: radiation therapy oncology group phase II trial 0225. *J Clin Oncol* 2009;27:3684–90.

40. Tham IW, Hee SW, Yeo RM, et al. Treatment of nasopharyngeal carcinoma using intensity-modulated radiotherapy—the National Cancer Centre Singapore experience. *Int J Radiat Oncol Biol Phys* 2009;75:1481–6.

41. Lin S, Pan J, Han L, et al. Nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy: report on the 3-year outcome of a prospective series. *Int J Radiat Oncol Biol Phys* 2009;75:1071–8.

42. Lin S, Lu JJ, Han L, et al. Sequential chemotherapy and intensity-modulated radiation therapy in the management of locoregionally advanced nasopharyngeal carcinoma: experience of 370 consecutive cases. *BMC Cancer* 2010;10:39.

43. Pow EH, Kwong DL, McMillan AS, et al. Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. *Int J Radiat Oncol Biol Phys* 2006;66:981–91.

44. Kam MK, Leung SF, Zee B, et al. Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. *J Clin Oncol* 2007;25:4873–9.

45. Braam PM, Terhaard CH, Roesink JM, et al. Intensity-modulated radiotherapy significantly reduces xerostomia compared with conventional radiotherapy. *Int J Radiat Oncol Biol Phys* 2006;66:975–80.

46. Feng M, Jabbari S, Lin A, et al. Predictive factors of local-regional recurrences following parotid sparing intensity modulated or 3D conformal radiotherapy for head and neck cancer. *Radiother Oncol* 2005;77:32–8.

47. Daly ME, Lieskovsky Y, Pawlicki T, et al. Evaluation of patterns of failure and subjective salivary function in patients treated with intensity modulated radiotherapy for head and neck squamous cell carcinoma. *Head Neck* 2007;29:211–20.

48. David MB, Eisbruch A. Delineating neck targets for intensity-modulated radiation therapy of head and neck cancer. What have we learned from marginal recurrences? *Front Radiat Ther Oncol* 2007;40:193–207.

49. Astreinidou E, Dehnad H, Terhaard CH, et al. Level II lymph nodes and radiation-induced xerostomia. *Int J Radiat Oncol Biol Phys* 2004;58:124–31.

50. Grégoire V, Eisbruch A, Hamoir M, et al. Proposal for the delineation of the nodal CTV in the node-positive and the post-operative neck. *Radiother Oncol* 2006;79:15–20.

51. Chambers MS, Garden AS, Rosenthal D, et al. Intensity-modulated radiotherapy: is xerostomia still prevalent? *Curr Oncol Rep* 2005;7:131–6.
52. Meirovitz A, Murdoch-Kinch CA, Schipper M, et al. Grading xerostomia by patients or by physicians after intensity-modulated radiotherapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys 2006;66:445–53.

53. Eisbruch A, Rhodus N, Rosenthal D, et al. How should we measure and report radiotherapy-induced xerostomia? Semin Radiat Oncol 2003;13:226–34.

54. Jha N, Seikaly H, McGaw T, et al. Submandibular salivary gland transfer prevents radiation-induced xerostomia. Int J Radiat Oncol Biol Phys 2000;46:7–11.

55. Saarilahti K, Kouri M, Collan J, et al. Sparing of the submandibular glands by intensity modulated radiotherapy in the treatment of head and neck cancer. Radiother Oncol 2006;78:270–75.

56. Tsujii H. Quantitative dose–response analysis of salivary function following radiotherapy using sequential RI-sialography. Int J Radiat Oncol Biol Phys 1985;11:1603–12.

57. Murdoch-Kinch CA, Kim HM, Vineberg KA, et al. Dose–effect relationships for the submandibular glands and implications for their sparing by intensity modulated radiotherapy. Int J Radiat Oncol Biol Phys 2008;72:373–82.

58. Wang ZH, Yan C, Zhang ZY, et al. Impact of salivary gland dosimetry on post-IMRT recovery of saliva output and xerostomia grade for head-and-neck cancer patients treated with or without contralateral submandibular gland sparing: a longitudinal study. Int J Rad Onc Biol Phys 2011;81:1479–87.

59. Scuibba JJ, Goldenberg D. Oral complications of radiotherapy. Lancet Oncol 2006;7:175–83.

60. Eisbruch A, Lyden T, Bradford CR, et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2002;53:23–8.

61. Jensen K, Lamberts K, Grau C. Late swallowing dysfunction and dysphagia after radiotherapy for pharynx cancer: frequency, intensity and correlation with dose and volume parameters. Radiother Oncol 2007;85:74–82.

62. Feng FY, Kim HM, Lyden TH, et al. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose–effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 2007;68:1289–98.

63. Leevadag PC, Teguh DN, Voet P, et al. Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose–effect relationship. Radiother Oncol 2007;85:64–73.

64. Teguh DN, Leevadag PC, Noever I, et al. Treatment techniques and site considerations regarding dysphagia-related quality of life in cancer of the oropharynx and nasopharynx. Int J Radiat Oncol Biol Phys 2008;72:1119–27.

65. Teguh DN, Leevadag PC, Sewnaik A, et al. Results of fiberoptic endoscopic evaluation of swallowing vs radiation dose in the swallowing muscles after radiotherapy of cancer in the oropharynx. Radiother Oncol 2008;89:57–64.

66. Caglar HB, Tishler RB, Othus M, et al. Dose to larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 2008;72:1110–18.

67. Caudell JJ, Schaner PE, Desmond RA, et al. Dosimetric factors associated with long-term dysphagia after radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 2010;76:403–9.

68. Dirix P, Abbeel S, Vanstraalen B, et al. Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose–effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys 2009;75:385–92.

69. Feng FY, Kim HM, Lyden TH, et al. Intensity-modulated chemoradiotherapy aiming to reduce dysphagia in patients with oropharyngeal cancer: clinical and functional results. J Clin Oncol 2010;28:2732–8.

70. Eisbruch A, Schwartz M, Rasch C, et al. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT? Int J Radiat Oncol Biol Phys 2004;60:1425–39.

71. Li B, Li D, Lau DH, et al. Clinical–dosimetric analysis of measures of dysphagia including gastrostomy-tube dependence among head and neck cancer patients treated definitively by intensity-modulated radiotherapy with concurrent chemotherapy. Radiat Oncol 2009;4:52.

72. Bonner JA, Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 2010;11:21–8.

73. Studer G, Brown M, Salgueiro EB, et al. Grade 3/4 dermatitis in head and neck cancer patients treated with concurrent cetuximab and IMRT. Int J Radiat Oncol Biol Phys 2010;81:110–7.