

10Be/7Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O3 variation observed on the Tibetan Plateau

ZHENG XiangDong1*, SHEN ChengDe2, WAN GuoJiang3, LIU KeXin4, TANG Jie1 & XU XiaoBin1

1 Chinese Academy of Meteorological Sciences, Beijing 100081, China; 2 Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 3 State Key Laboratory of Environment Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; 4 State Key laboratory of Nuclear Physics and Technology & Institute of Heavy Ion Physics, Peking University, Beijing 100871, China

Received July 7, 2010; accepted September 19, 2010

10Be/7Be is a stratospheric sensitive tracer. In this paper, measurements of 10Be/7Be and surface O3 from October 2005 to May 2006 at Mt. Waliguan (hereafter WLG, 100.898°E, 39.287°N, 3810 m, a.s.l.), China global atmospheric watch (GAW) observatory, are introduced and used to investigate the stratosphere-troposphere transport (STT) and its impact on surface O3 on the Tibetan Plateau. The results show that the magnitude of STT is weak in winter, followed by strengthening from the end of winter to the middle of spring (from mid February to mid April) with large increases in 10Be, 7Be, 10Be/7Be and surface O3. At the end of spring (from the end of April to mid May in this paper), the STT weakened, and the continuous increase of surface O3 at WLG is produced by tropospheric photochemistry reactions.

Citation: Zheng X D, Shen C D, Wan G I, et al. 10Be/7Be implies the contribution of stratosphere-troposphere transport to the winter-spring surface O3 variation observed on the Tibetan Plateau. Chinese Sci Bull, 2011, 56: 84~88, doi: 10.1007/s11434-010-4211-3

7Be and 10Be are produced mainly from collisions of cosmic rays with oxygen and nitrogen atoms in the upper atmosphere, including the upper troposphere and stratosphere. Both 7Be and 10Be are absorbed easily by sub-micrometer-size aerosol particles once produced. 7Be as a natural tracer of downward transport from the upper atmosphere had been gradually established since the 1960s, and the first application of 10Be/7Be as a stratospheric tracer was addressed by Rasebeck et al. [1] in 1981. The half-lives of 7Be and 10Be are 53.3 d and 1.5×106 a, respectively, while the average age of the stratospheric air mass is ~1.5 a. In the stratosphere, although the initial production rate of 10Be is lower than that of 7Be, the 10Be/7Be increases as the 7Be isotope naturally decays to a lower concentration until reaching its equilibrium concentration, resulting in higher 10Be/7Be. In the troposphere, the ratio of 10Be/7Be is little influenced by wet deposition scavenging of aerosol particles because they are from the same source, making the ratio a more sensitive tracer of stratosphere than using 7Be or 10Be alone. Research on 10Be measurements is mainly conducted in the field of paleoclimatology. However, as a natural stratospheric tracer, 10Be/7Be effectively indicates the contribution of Stratosphere-Troposphere Transport (STT) to surface-level O3 variations as observed in the European Alps and Arctic regions [2,3]. Jordan et al. [4] reported latitudinal distribution of 10Be/7Be values in the upper troposphere and lower stratosphere over several regions through analysis of extensive aircraft aerosol samples. However, publications of at-
mospheric 10Be measurements are still limited because of the complexities in 10Be target preparation and 10Be detection by Accelerator Mass Spectrometry (AMS). Shen et al. [5] reported short-term 10Be concentrations in dust deposition sampled in Beijing and Ningbo. Measurements of 10Be/7Be in atmospheric aerosol samples have not yet been reported in China.

Tropospheric O_3 is a significant trace gas due its oxidation and greenhouse characteristics. Tropospheric photochemical production and the direct or indirect STT are the two primary sources of tropospheric O_3. The debate on which source is dominant is ongoing, especially on the extensive spring peaks in surface O_3 in the northern hemisphere [6]. With respect to atmospheric circulation, the seasonally intensified downward transport branch (presented as STT) of the stratospheric Brewer-Dobson circulation in the northern hemisphere increases the fraction of stratospheric O_3 in troposphere, contributing to the rise of surface O_3 [7]. However, atmospheric chemistry suggests that as the solar radiation seasonally increases in spring, tropospheric O_3 may be largely produced in the short-term through photochemical reactions with precursors, such as NOx, which are emitted in significant amounts in winter [8].

Mt. Waliguan (hereafter WLG) is located on the northeast margin of the Tibetan Plateau. It was selected as a site for China’s Global Atmospheric Watch (GAW) observatory. Long-term observations reveal that surface O_3 at WLG increases from winter to spring, reaching its maximum in June. There are several publications presenting possible mechanisms of the summer O_3 maximum at WLG [9–13]. However, the mechanisms for winter and spring surface variations at WLG require elucidation. In this paper, weekly concentrations of 7Be and 10Be measured on aerosol samples obtained from October 2005 to May 2006 at WLG are presented, and 10Be/7Be is used as a sensitive stratospheric tracer to investigate the STT and its contribution to winter-spring variation in surface O_3.

1 Measurements and data set

Measurements of 7Be and 210Pb analysis were described in an earlier study [14]. Every aerosol particle sample was continuously collected over one week by a pump with flow rate of ~1.3 m3 min$^{-1}$. The collector is a three-layered polypropylene filter. The sampled filters were then sent to the State Key Laboratory of Earth Geochemistry (SKLEG), Chinese Academy of Sciences, to measure 7Be and 210Pb. The total relative measurement errors are from ±1.4% to ±6.4% [14]. Complying with the standard operation procedures issued by the World Meteorological Organization (WMO), surface O_3 at WLG is routinely measured by UV absorption analyzers (Thermal Environment, Model 49C) with a precision of ±2×10$^{-9}$ volume mixing ratio [15]. The long-term surface O_3 data is also periodically audited by the assigned WMO laboratory with stringent inter-comparison measurements [16].

After 7Be and 210Pb were analyzed, the aerosol samples were sent to the Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, for target preparation for AMS 10Be analysis. The detailed procedures for making 10Be targets have been described in other references [5,17]. Briefly, the filters were alternately pulverized and leached to extract final 10Be residues in BeO. The 10Be AMS target was made by mixing Nb powder with the BeO. These targets were sent to the 6 MeV EN tandem AMS system, National Key Laboratory of Nuclear Physics and Technology, Peking University for 10Be measurements. The detection limit of 10Be in the AMS system is $6×10^{-15}$. The standard, 10Be/9Be, is $2.67×10^{-11}$ with a precision higher than 5‰, and was imported from the US National Institute of Standards and Technology [18]. The total relative error for the 10Be determination is estimated to within ±5%, including errors caused by the efficiency of leaching filters and 10Be measurements [17].

2 Results and analysis

Figure 1 shows the weekly concentrations of 7Be, 10Be and 210Pb at WLG from October 2005 to May 2006. Because precipitation is the most significant sink for the Be and Pb isotopes, weekly precipitation and occurrence fog are also shown in Figure 1. The variations in 7Be and 10Be concentrations are generally consistent. 10Be concentration was lower than that of 7Be before February 2006, and then rose, exceeding 7Be concentration. After mid April, both 10Be and 7Be concentrations began to decrease. The weekly variations in Be isotope concentration are somewhat associated with synoptic processes indicated by precipitation and fog records. Be isotope concentration increased almost continuously during two periods with little precipitation, one was from circa December 2005 to February 2006, another was from circa mid of March to mid of April in 2006. However, in the second dry period, Be concentrations increased as a result of STT (Figure 2). Be isotope concentrations began to reduce after mid April as precipitation increased.

The main source of 210Pb is from land surface emission. Figure 1 shows that 210Pb concentration in the spring did not increase as did Be isotopes. When maximum 210Pb concentrations occurred in winter, concentrations of Be isotope did not rise correspondingly. These comparisons suggest that dust or soil emissions have little impact on variation in Be isotope concentration at WLG, and the cause of spring 10Be and 7Be enhancement is only the intensified STT. The temporal increases of 210Pb, 10Be and 7Be concentration during the two non-precipitation periods are due to weak wet scavenging. To some extent, the general decreasing trend of 210Pb concentration from winter to spring is associated with
seasonal increase in precipitation.

Figure 2 presents weekly variations of surface O₃ concentration, ¹⁰Be/⁷Be, and ⁷Be/²¹⁰Pb. ⁷Be/²¹⁰Pb is considered to be a tracer unaffected by wet scavenging processes. The STT during the period from 15 February to the end of April is evidenced by the simultaneous elevations of surface O₃ and ¹⁰Be/⁷Be. However, for the last five samples starting from the end of April, the clear reductions of ¹⁰Be/⁷Be reveal a weakening of STT. At the same time, the continuous increase of surface O₃ at WLG supports dominant tropospheric photochemical O₃ production. This transfer is consistent with estimations of monthly average surface O₃ budget using the ⁷Be observation alone. In that study, the contribution from STT to the surface O₃ budget in May 2003 was concluded to be less than that in April and June, and the input from tropospheric chemical production was dominant for the surface O₃ budget [19].

Using high values of ⁷Be/²¹⁰Pb, studies have plausibly interpreted that summer surface O₃ at WLG is influenced by downward transport from the upper atmosphere [12,13]. However, the last four samples in Figure 2 demonstrate the different physical processes implied by ⁷Be/²¹⁰Pb, and ¹⁰Be/⁷Be. Obviously, the implication of strengthening downward transport from the stratosphere is not reasonable based on the observed increase of ⁷Be/²¹⁰Pb alone. Due to differences in the source distribution, ²¹⁰Pb is more sensitive to wet scavenging than Be isotopes [20], and this caused a higher ⁷Be/²¹⁰Pb ratio at the end of spring and even throughout the summer at WLG, but a corresponding strengthening STT did not occur.

The inter-comparisons of ¹⁰Be, and ¹⁰Be/⁷Be ratio between WLG and the other sites are given in Table 1. It has been noted that ⁷Be concentrations tend to have the highest values in comparisons with data obtained at the sites with elevations or latitudes similar to WLG [23]. In Table 1, ¹⁰Be also tends to have the highest concentration at WLG, but the case for ¹⁰Be/⁷Be is much different given the fact that WLG is located at lower latitude. Although being at high elevation,
O3 may also influence the interpretation of 10Be/7Be. To reside in aerosol particles, and the fact that behavior of fluorine is influenced by wet scavenging. However, because Be isotopes are generally higher than those measured at other sites. In winter the relatively lower 10Be/7Be and surface O3 concentration demonstrates the weakness of STT and its impact on surface O3. From the end of winter to the middle of spring (from mid February to mid April), continuous elevations of 10Be, 7Be, and surface O3 concentration and 10Be/7Be support the seasonal intensified STT and its positive contribution to the surface O3 budget. At the end of spring (from the end of April to mid of May in this study), the reductions of 10Be and 7Be concentration and 10Be/7Be suggest weakening of the STT, while the continuous increase of surface O3 at WLG is from the positive input of tropospheric photochemical reactions.

3 Discussion

Some transport processes at time scales of less than one week would be smoothed in the data because of the fixed weekly sampling for 10Be/7Be determination, especially in the case of deep STT that generally persists for just 1–2 d or less. For an individual sampling week with a lasting precipitation event, the correlations between surface O3 and 10Be/7Be were generally higher than those measured at other sites. However, in winter the relatively lower 10Be/7Be and surface O3 concentration demonstrates the weakness of STT and its impact on surface O3. From the end of winter to the middle of spring (from mid February to mid April), continuous elevations of 10Be, 7Be, and surface O3 concentration and 10Be/7Be support the seasonal intensified STT and its positive contribution to the surface O3 budget. At the end of spring (from the end of April to mid of May in this study), the reductions of 10Be and 7Be concentration and 10Be/7Be suggest weakening of the STT, while the continuous increase of surface O3 at WLG is from the positive input of tropospheric photochemical reactions.

Location	Lat., Long., and altitude a.s.l.	Location Lat., Long., and altitude a.s.l.
Jungfraujoch	46.533°N, 7.983°E, 3.58 km	WLG (Fall and Winter) 36.287°N, 100.89°E, 3.81 km
Zugspitze	47.416°N, 10.983°E, 2.962 km	WLG (for all samples) 36.287°N, 100.89°E, 3.81 km
Alert	2.5°N, 62.3°W	PEM-B, Flight#17 39°–44°N, 136°–139°E, troposphere
Ljungbyhed	56.08°N, 13.23°E,	SONEX, Flight#8 55°–68°N, 5.4°W–11.9°E, troposphere
Visby	57.63°N, 18.32°E,	Northern Hemisphere North to 50°N, West Pacific Ocean
Kiruna	67.84°N, 20.34°E,	Southern Hemisphere South to 60°S, Pacific Ocean
Antarctica	South Pole, 2.8 km	N/A
WLG	3.81 km	N/A
WLG (for all samples)	36.287°N, 100.89°E, 3.81 km	7.53–25.4
WLG (Fall and Winter)	36.287°N, 100.89°E, 3.81 km	7.53–12.3
PEM-B, Flight#17	39°–44°N, 136°–139°E, troposphere	0.9–3.6 [4]
SONEX, Flight#8	55°–68°N, 5.4°W–11.9°E, troposphere	1.1–126 [4]
Northern Hemisphere	North to 50°N, West Pacific Ocean	N/A
Southern Hemisphere	South to 60°S, Pacific Ocean	N/A

4 Conclusion

Winter and spring concentrations of 10Be and 7Be at WLG are generally higher than those measured at other sites. However, in winter the relatively lower 10Be/7Be and surface O3 concentration demonstrates the weakness of STT and its impact on surface O3. From the end of winter to the middle of spring (from mid February to mid April), continuous elevations of 10Be, 7Be, and surface O3 concentration and 10Be/7Be support the seasonal intensified STT and its positive contribution to the surface O3 budget. At the end of spring (from the end of April to mid of May in this study), the reductions of 10Be and 7Be concentration and 10Be/7Be suggest weakening of the STT, while the continuous increase of surface O3 at WLG is from the positive input of tropospheric photochemical reactions.

We thank Dr. H. N. Lee from the Environmental Measurements Laboratory, Department of Homeland Security, New York, USA for providing instruments for in-situ aerosol sampling. We acknowledge the operational work done at Mt. Waliguan, China Global Atmospheric Observatory. This work was supported by the National Science Foundation of China (40575013, 40175032 and 40830102).

1 Raisbeck G M, Yuou F, Fruneaou M, et al. Cosmogenic 10Be/Be as a probe or atmospheric transport processes. Geophys Res Lett, 1981, 8: 1015–1018
2 Dibb J E, Meeker L D, Finkel R C, et al. Estimation of stratospheric input to the Arctic troposphere: 10Be and 7Be in aerosols at Alert, Canada. J Geophys Res, 1994, 99: 12855–12864
3 Zanis P E, Gerassopoulos A, Priller, et al. An estimate of the impact of stratosphere-troposphere transport (STT) on the lower free tropospheric ozone over the Alps using 10Be and 7Be measurements. J Geophys Res, 2003, 108: 8520, doi:10.1029/2002JD002604
4 Jordan C E, Dibb J E, Finkel R E. 10Be/Be tracer of atmospheric transport and stratosphere-troposphere exchange. J Geophys Res, 2003, 108: 4234
5 Shen C D, Ding P, Wang N, et al. 10C and 10Be in the samples of dust deposition obtained in Beijing—Celebration of Prof. Liu Dongsheng’s 90th Birthday (in Chinese). Quat Sci, 2007, 27: 919–921
6 Vingarzan R. A review of surface ozone background levels and trends. Atmos Environ, 2004, 38: 3431–3442
7 Levy H, Mahlmann J D, Moxim W J, et al. Tropospheric ozone: The role of transport. J Geophys Res, 1985, 90: 3753–3772
8 Penkett S A, Brice K A. The spring maximum in photooxidants in the Northern Hemisphere troposphere. Nature, 1986, 319: 655–657
9 Ma J Z, Zheng X D, Xu X D. Comment on Why does surface ozone
peak in summertime at Wa Liguan?" by Bin Zhu et al. Geophys Res Lett, 2005, 32: 01805
10 Ding A, Wang T. Influence of stratosphere-to-troposphere exchange on the seasonal cycle of surface ozone at Mount Waliguan in western China. Geophys Res Lett, 2006, 33: L03803, doi:10.1029/2005GL024760
11 Liang M C, Tang J, Chan C Y, et al. Signature of stratospheric air at the Tibetan Plateau. Geophys Res Lett, 2008, 35: L20816
12 Zheng X D, Wan G J, Tang J, et al. 7Be and 210Pb radioactivity and implications on sources of surface ozone at Mt. Waliguan. Chinese Sci Bull, 2005, 50: 167–171
13 Lee H N, Tositti L, Zheng X D, et al. Analyses and comparisons of variations of 7Be, 210Pb, and 10Be/210Pb with ozone observations at two Global Atmospheric Watch stations from high mountains. J Geophys Res, 2007, 112: D05303
14 Wan G J, Zheng X D, Lee H N, et al. A comparative study on seasonal variation of 7Be concentrations in surface air between Mt. Waliguan and Mt Guanfeng (in Chinese). Geochemica, 2006, 35: 257–264
15 Tang J, Li X S, Zhao Y C, et al. Preliminary analysis on the surface ozone observed at Mt. Waliguan (in Chinese). Variations of Ozone Over China and Its Impacts on Climate and Environment (I). Beijing: Meteorological Press, 1996, 19–29
16 Klausen J, Christoph Z, Bringitte B, et al. Uncertainty and bias of surface ozone measurements at selected Global Atmospheric Watch sites. J Geophys Res, 2003, 108: ACL17 1–11
17 Shen C D, Beer J, Ivy-Ochs S, et al. 3He, 14C distribution, and soil production rate in a soil profile of a grassland slope Heshan hilly land, Guandong. Radiocarbon, 2004, 46: 445–454
18 Liu K X, Gao H L, Zhou L P, et al. AMS measurements of 3He concentration in Chinese loess using PKUAMS. Nucl Instr Methods Phys Res (B), 2004, 223: 168–171
19 Zheng X D, Wang G J, Tang J. Source characteristics of O3 and CO2 at Mt. WaLiguan Observatory, Tibetan Plateau implied by using 7Be and 210Pb. Sci China Earth Sci, 2011, 56, doi: 10.1007/s11434-010-4121-x
20 Huh C A, Su C C, Shiu L J. Factors controlling temporal and spatial variations of atmospheric deposition of 7Be and 210Pb in northern Taiwan. J Geophys Res, 2006, 111: D16304, doi: 10.1029/2006JD007180
21 Aldahan A, Possnert G, Vintersved I. Atmospheric interactions at northern high latitudes from week Be-isotopes in surface air. Appl Radiat Isotopes, 2001, 54: 345–353
22 Nagai H, Tada W, Kobayashi T. Production rates of 7Be and 10Be in the atmosphere. Nucl Instr Methods Phys Res (B), 2000, 172: 781–796
23 Zheng X D, Wan G J, Chen Z Y, et al. Measurement and meteorological analysis of 7Be and 210Pb in aerosol at Waliguan Observatory, Adv Atmos Sci, 2008, 24: 404–416
24 Hsu J, Prather M J, Wild O. Diagnosing the stratosphere to troposphere flux of ozone in a chemistry transport model. J Geophys Res, 2005, 110: D19305, doi:10.1029/2005JD006045
25 Langford A O, Aikin K C, Eubank C S, et al. Stratospheric contribution to high surface ozone in Colorado during springtime. Geophys Res Lett, 2009, 36: L12801
26 Thiemens M H, Jackson T, Mauersberger K, et al. Oxygen isotope fractionation in stratospheric CO2. Geophys Res Lett, 1991, 18: 669–672