Studying the $P_c(4450)$ resonance in J/ψ photoproduction off protons

Astrid N. Hiller Blin

Johannes Gutenberg-Universität Mainz
hillerbl@uni-mainz.de

Tuesday 22nd August, 2017

PRD 94 (2016) 034002
1606.08912 [hep-ph]

JPAC co-authors:
César Fernández-Ramírez Vincent Mathieu Alessandro Pilloni
Andrew Jackura Victor Mokeev Adam Szczepaniak
Pentaquark-like structure

Discovery in 2015 of exotic resonances in $J/\psi\; p$ channel:

LHCb collaboration, PRL 115 (2015) 072001

Narrow 39 MeV, at 4.45 GeV
Broad 205 MeV, at 4.38 GeV
Pentaquark-like structure

Discovery in 2015 of exotic resonances in J/ψ p channel:

LHCb collaboration, PRL 115 (2015) 072001

Narrow 39 MeV, at 4.45 GeV
Broad 205 MeV, at 4.38 GeV

- Favored spin-parity assignment for $P_c(4450)$: $3/2^−$ or $5/2^+$
- Excellent candidate for J/ψ photoproduction off protons
 - Wang et al., PRD 92 (2015), 034022; Karliner and Rosner, PLB 752 (2016), 329
- Probing this approved for JLab Hall C with A rating
 - Meziani et al., arXiv:1609.00676
Advantages of study in J/ψ photoproduction

- The structure appears close to threshold: low background
Advantages of study in J/ψ photoproduction

- The structure appears close to threshold: **low background**
- Sneak preview:

![Graph showing $d\sigma/dt$ vs E_γ with 1σ band and mean value data points.]

- Photoproduction constrains the nature of the structure
Nature of the structures

- Triangle singularities (rescattering effects): **not a resonance**
 - Mikhasenko, arXiv:1507.06552
 - Liu et al., PLB 757 (2016) 231
 - Guo et al., EPJA 52 (2016) 318
 - Guo et al., PRD 92 (2015) 071502
 - ...

- Quark degrees of freedom
 - Anisovich et al., arXiv:1507.07652
 - Lebed, PLB 749 (2015) 454
 - Maiani et al., PLB 749 (2015) 289
 - ...

- Meson-baryon molecules or bound states
 - He, PLB 753 (2016) 547
 - Eides et al., PRD 93 (2016) 054039
 - Meißner and Oller, PLB 751 (2015) 59
 - Roca et al., PRD 92 (2015) 094003
 - Chen et al., PRL 115 (2015) 172001
 - ...

\[P_c(4450) \] in \(J/\psi \) photoproduction would exclude scenarios of kinematical effects!
Reaction model

\[\gamma \rightarrow J/\psi \]

\[p \rightarrow p \]
Reaction model

\[
\frac{d\sigma}{d \cos \theta} \sim \sum_{\lambda_\gamma, \lambda_p, \lambda_\psi, \lambda_{p'}} |\langle \lambda_\psi \lambda_{p'} | T_r | \lambda_\gamma \lambda_p \rangle|^2
\]

- Resonant amplitude — Breit-Wigner ansatz
- Non-resonant contribution — Pomeron exchange
Breit-Wigner s-channel contribution: hadronic couplings

\[\langle \lambda_\psi \lambda_{p'} | T_r | \lambda_\gamma \lambda_p \rangle = \frac{\langle \lambda_r | T_{em}^\dagger | \lambda_\gamma \lambda_p \rangle \langle \lambda_\psi \lambda_{p'} | T_{dec} | \lambda_r \rangle}{M_r^2 - W^2 - i\Gamma_r M_r} \]

- Three independent (parity) helicity amplitudes \(\sim g_{\lambda_{p'}, \lambda_\psi} \):
 - \(\lambda_\psi = \pm 1, 0, \lambda_p = \pm \frac{1}{2} \) \(\rightarrow \) in total 6 helicity amplitudes
 - Assumption: \(g_{\lambda_{p'}, \lambda_\psi} = g \)
 - \(g \) extracted from hadronic decay width

\[\Gamma_{\psi p} = B_{\psi p} \Gamma_r = B_{\psi p} 39 \text{ MeV} \]
Breit-Wigner s-channel contribution: photocouplings

\[\langle \lambda_{\psi} \lambda_{p'} | T_r | \lambda_{\gamma} \lambda_p \rangle = \frac{\langle \lambda_r | T_{em}^{\dagger} | \lambda_{\gamma} \lambda_p \rangle \langle \lambda_{\psi} \lambda_{p'} | T_{dec} | \lambda_r \rangle}{M_r^2 - W^2 - i\Gamma_r M_r} \]

- Photocouplings \(A_{1/2}, A_{3/2} \) estimated with VMD:
 - Karliner and Rosner, PLB 752 (2016) 329
 - \(J/\psi \) exchange dominates radiative decays
 - Electromagnetic width \(\Gamma_{\gamma} \) related to hadronic width:

\[\Gamma_{\gamma} = \Gamma_{\psi p} \left(\frac{e f_{\psi}}{M_{\psi}} \right)^2 \left(\frac{p_i}{p_f} \right)^{2\ell+1} \times \frac{4}{6} \Rightarrow A_{1/2}, A_{3/2} \] fixed by \(\mathcal{B}_{\psi p} \)
Pomeron t-channel exchange

\[p p \xrightarrow[\gamma]{\text{IP}} p' \gamma J/\psi \]

- Background described by Pomeron exchange

\[iA \left(\frac{s - s_t}{\text{GeV}^2} \right)^{\alpha_0 + \alpha't} e^{b_0(t - t_{\text{min}})} \delta \lambda_p \lambda_{p'} \delta \lambda_\psi \lambda_\gamma \]

- \(A, b_0, s_t, \alpha_0, \alpha' \) fitted to world \(J/\psi \) photoproduction data from threshold up to 300 GeV

- **Simultaneous** fit with branching ratio \(B_{\psi p} \)
Background fit to high-energy data...

Chekanov et al. [ZEUS], EPJC 24 (2002) 345
Aktas et al. [H1], EPJC 46 (2006) 585
...simultaneously to low-energy data

Spin-3/2 vs. spin-5/2

Camerini et al., PRL 35 (1975) 483

Two points closest to threshold: unpublished SLAC data
(only forward direction!) Ritson, AIPCP 30 (1976) 75; Anderson, SLAC-PUB-1741 (1976)

Relevant to constrain pentaquark peak and branching ratio!
First results: no smearing due to experimental resolution
Different smearing scenarios

\[\sigma_s = 60 \text{ MeV}, J_r = 3/2 \]

\[\sigma_s = 120 \text{ MeV}, J_r = 3/2 \]

\[\sigma_s = 60 \text{ MeV}, J_r = 5/2 \]

\[\sigma_s = 120 \text{ MeV}, J_r = 5/2 \]
Branching ratio and photocouplings

- Branching ratio $P_c(4450) \to J/\psi p$ not yet known

 We gave a first prediction for its upper limit!

σ_s (MeV)	0	60	120
Spin-3/2 case	$\leq 29\%$	$\leq 30\%$	$\leq 23\%$
Spin-5/2 case	$\leq 17\%$	$\leq 12\%$	$\leq 8\%$

- Status: data at peak scarce and only for forward direction
- At JLab the **angular distributions** at the $P_c(4450)$ energy are to be studied
- Excellent opportunity to fix the **photocouplings**!
Angular dependence of the differential XS

\[
\frac{d\sigma}{dt} \, [\text{nb GeV}^{-2}] = 0 \text{ MeV}, J_r = 3/2
\]

\[
A_{1/2} = A_{3/2}
A_{3/2} = 0
A_{1/2} = 0
\]

\[
\alpha_s = 0 \text{ MeV}, J_r = 3/2
\]

\[
\alpha_s = 60 \text{ MeV}, J_r = 3/2
\]

\[
\alpha_s = 120 \text{ MeV}, J_r = 3/2
\]

\[
\alpha_s = 0 \text{ MeV}, J_r = 5/2
\]

\[
\alpha_s = 60 \text{ MeV}, J_r = 5/2
\]

\[
\alpha_s = 120 \text{ MeV}, J_r = 5/2
\]

Relax VMD condition on \(A_{1/2} \) and \(A_{3/2} \):

Angular behavior and choice of **photocouplings** strongly related!
Our work: mean value
Our work: 1σ band
Two-gluon exchange
S. J. Brodsky et al., PLB 498 (2001) 23
Summary

▶ The narrow resonance **might have escaped detection**: we estimate the upper limit of the **branching ratio**

▶ $P_c(4450)$ in J/ψ **photoproduction** to **confirm** resonance: **JLab Hall C** experiment

▶ Strong correlation **angular distributions ↔ photocouplings**: helps fixing them **experimentally**!

▶ Code and **interactive** website (own parameter choices) available at **www.indiana.edu/~jpac/**

Outlook

▶ Extension to J/ψ **electro**production (approved: JLab Hall A)

▶ To obtain **SDMs**: upgrade CLAS12 to **muon detection**
Additional material
Comparing with previous work

\[E_\gamma = E_r = 10.1 \text{ GeV} \]
\[\beta_{\psi p} = 10\% \]
\[J = 3/2 \]
\[\text{no background} \]

For \(\sigma(\gamma \ p \rightarrow \ J/\psi \ p) \approx 14 \text{ nb} \)

Karliner and Rosner, PLB 752 (2016) 329
Integrated cross section in the different best-fit scenarios

\[\sigma_{\text{tot}} \text{ [nb]} \]

\[E_{\gamma} \text{ [GeV]} \]

- \(J_r = \frac{5}{2}, \sigma_s = 0 \text{ MeV} \)
- \(\frac{5}{2}, 60 \text{ MeV} \)
- \(\frac{5}{2}, 120 \text{ MeV} \)
- \(\frac{3}{2}, 0 \text{ MeV} \)
- \(\frac{3}{2}, 60 \text{ MeV} \)
- \(\frac{3}{2}, 120 \text{ MeV} \)
Couplings and widths for the spin-3/2 case

J^P_r	$3/2^-$			
σ_s (MeV)	0	60	120	
$B_{\psi p}$	\leq 29%	\leq 30%	\leq 23%	
g (GeV)	\leq 2.1	\leq 2.2	\leq 1.9	
Γ_γ (keV)	\leq 14.4	\leq 14.9	\leq 11.0	
$A_{1/2,3/2}$ (GeV$^{-1/2}$)	\leq 0.007	\leq 0.007	\leq 0.006	
$\frac{d\sigma}{dt}	_{E_{\gamma}=E_r,t=t_{\text{min}}}$ (nb GeV$^{-2}$)	\leq 21.8	\leq 7.2	\leq 3.1
$\sigma_{\text{tot}}	_{E_{\gamma}=E_r}$ (nb)	\leq 120	\leq 38	\leq 14
Couplings and widths for the spin-5/2 case

J^P_r	5/2$^+$			
σ_s (MeV)	0	60	120	
$B_{\psi p}$	$\leq 17\%$	$\leq 12\%$	$\leq 8\%$	
g (GeV)	≤ 2.0	≤ 1.5	≤ 1.4	
Γ_γ (keV)	≤ 56.9	≤ 33.5	≤ 26.8	
$A_{1/2,3/2}$ (GeV$^{-1/2}$)	≤ 0.017	≤ 0.013	≤ 0.012	
$\frac{d\sigma}{dt} \big	_{E_\gamma=E_r, t=t_{\text{min}}}$ (nb GeV$^{-2}$)	≤ 95.8	≤ 11.3	≤ 3.9
$\sigma_{\text{tot}} \big	_{E_\gamma=E_r}$ (nb)	≤ 396	≤ 44	≤ 14
Branching ratio and fit results

Branching ratio $P_c(4450) \rightarrow J/\psi p$ not yet known

We gave the first prediction for its upper limit!

σ_s (MeV)	0	60	120
A	$0.156^{+0.029}_{-0.020}$	$0.157^{+0.039}_{-0.021}$	$0.157^{+0.037}_{-0.022}$
α_0	$1.151^{+0.018}_{-0.020}$	$1.150^{+0.018}_{-0.026}$	$1.150^{+0.015}_{-0.023}$
α' (GeV$^{-2}$)	$0.112^{+0.033}_{-0.054}$	$0.111^{+0.037}_{-0.064}$	$0.111^{+0.038}_{-0.054}$
s_t (GeV2)	$16.8^{+1.7}_{-0.9}$	$16.9^{+2.0}_{-1.6}$	$16.9^{+2.0}_{-1.1}$
b_0 (GeV$^{-2}$)	$1.01^{+0.47}_{-0.29}$	$1.02^{+0.61}_{-0.32}$	$1.03^{+0.49}_{-0.31}$
$B_{\psi p}$ (95% CL)	$\leq 29\%$	$\leq 30\%$	$\leq 23\%$

Spin-3/2 case
Branching ratio and fit results

Branching ratio $P_c(4450) \rightarrow J/\psi p$ not yet known

We gave the first prediction for its upper limit!

σ_s (MeV)	0	60	120
A	$0.152^{+0.032}_{-0.024}$	$0.150^{+0.043}_{-0.034}$	$0.150^{+0.044}_{-0.041}$
α_0	$1.154^{+0.020}_{-0.020}$	$1.156^{+0.027}_{-0.028}$	$1.156^{+0.033}_{-0.028}$
α' (GeV$^{-2}$)	$0.120^{+0.064}_{-0.052}$	$0.125^{+0.076}_{-0.089}$	$0.126^{+0.077}_{-0.105}$
s_t (GeV2)	$16.6^{+1.6}_{-1.1}$	$16.6^{+2.2}_{-1.5}$	$16.6^{+2.1}_{-2.0}$
b_0 (GeV$^{-2}$)	$0.95^{+0.51}_{-0.51}$	$0.90^{+0.85}_{-0.65}$	$0.90^{+1.00}_{-0.69}$
$B_{\psi p}$ (95% CL)	$\leq 17\%$	$\leq 12\%$	$\leq 8\%$

Spin-5/2 case
The meson sector: \(XYZ \)

- Many unexpected structures decaying into \(c\bar{c} + \) light
 \(\rightarrow \) Hardly reconciled with quarkonium interpretation
 See talk by A. Pilloni

- It is not possible to explore \(c\bar{c}q\bar{q} \) mesons at JLab
 But: \(s\bar{s}q\bar{q} \) yes. \(Y(2175), \ldots \)
Resonances beyond the 3-constituent quark models

- After observing a new state: study the Q^2 dependence of the electrocouplings and the hadronic decays
- Complex interplay:
 - 3 constituent quarks ↔ meson-baryon cloud $(q\bar{q})(qqq)$
- Strongly dependent on N^* quantum numbers
- New direction: $(q\bar{q})(qqq)$ quark core