Research Article

Dental Caries Pattern and Treatment Needs among Ugandan Adolescent Students: A Cross-Sectional Study

Barbara Ndagire,1 Catherine L. Mwesigwa,1 Juliet M. Ntuulo,1 Harriet Mayanja-Kizza,2 Damalie Nakanjako,2 and Charles M. Rwenyonyi1

1Department of Dentistry, College of Health Sciences, Makerere University, Kampala, Uganda
2Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda

Correspondence should be addressed to Barbara Ndagire; barbarandagire@yahoo.com

Received 28 October 2019; Revised 19 December 2019; Accepted 5 February 2020

Academic Editor: Andrea Scribante

Copyright © 2020 Barbara Ndagire et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Dental caries is still a major public health problem owing to its high prevalence and incidence in several regions. Planning and development of effective preventive and treatment modalities for the management of dental caries demand information on disease pattern and treatment needs of the populations. However, there is a paucity of this information in Uganda. The aim of the present study was to identify the dental caries pattern and treatment needs among Ugandan adolescent students. This was a descriptive cross-sectional study conducted among 11- to 19-year-old adolescents attending two secondary schools in Kampala and Mukono districts of Uganda. At both schools, random sampling was used to select the participating classes and the adolescents. Decayed teeth and treatment needs were recorded using the World Health Organization Basic Oral Health Survey criteria. A total of 406 adolescents comprising of 249 female and 157 male students participated in the study. Data were analysed using STATA, version 12.0. The prevalence of decayed teeth (DT) was expressed as a percentage of individuals with DT score ≥ 1. The treatment needs were categorised into three groups. Associations between dependent and independent variables were evaluated using cross-tabulation, chi-square test, and Poisson regression analysis. The overall prevalence of decayed teeth was 62.6% and mean DT was 1.7 ± 2.3. A total of 696 decayed teeth were observed, and the molar teeth, particularly the second molar (50.6%), were the most significantly affected. The prevalence of caries was higher in the mandible (51.4%) compared to the maxilla though the difference was not statistically significant. Decayed teeth were significantly (p < 0.05) associated with difficulty in chewing, history of dental pain in the past 12 months, poor perception of tooth state, and the female participants. Majority (59.4%) of the study participants required restorations of teeth. About 83.2% (n = 579) of the teeth needed restorations, while 44 needed extractions. In conclusion, the prevalence of decayed teeth was high among the study population. It is recommended that school health programmes should include oral health preventive and curative interventions to achieve optimum health.

1. Introduction

Worldwide, dental caries and periodontal diseases still constitute a major public health problem due to their high prevalence and significant impact on general health [1, 2]. In Africa, previous reports indicated that the prevalence and severity of dental caries have been low [3, 4]. However, there is now evidence of a rise in the prevalence of dental caries in some countries [5, 6]. The rise has been attributed to the growing consumption of refined sugars and inadequate use of fluoride [3, 7]. An increase in the prevalence of dental caries in the developing countries including Uganda places a bigger burden on the limited resources available for oral health [8]. Oral healthcare services in Uganda are provided at both government and private facilities by two cadres: the public health dental officers and dentists [9]. According to the Ministry of Health, basic oral health services are supposed to be free in government health units. However, due to gross shortages of materials, supplies, equipment, and manpower, patients have to seek and pay for the basic treatment elsewhere [9]. Combined with lack of a universal health coverage insurance scheme in Uganda today, the
burden of financing health services is often borne by patients [10]. Decayed teeth lead to pain, loss of school hours, and diminished general health and quality of life of the affected individuals [3, 11, 12]. In Africa, data on dental caries pattern and treatment needs are scarce. Much of the available information focuses on epidemiological data with respect to the incidence and prevalence of dental caries in specific populations. Additionally, Uganda has limited oral health data for the adolescents, though they constitute a substantial percentage (26%) of the population [13]. Adolescence is a critical age important in oral health prevention because many oral health behaviours, beliefs, and attitudes develop during this period [14].

In order to counteract the potential increase in the prevalence of dental caries in developing countries and to meet 2020 global targets of the World Health Organization (WHO)/International Dental Federation (FDI) [15], there is need to have current epidemiological data depicting the disease pattern and treatment needs for specific populations [16, 17]. Such data are important for the effective planning and design of dental services, as well as choosing interventions appropriate to the local circumstances targeting those at great risk [16–18]. Without such evidence on the population needs, there arises the danger of a top-down approach in providing health services [19].

The aim of the present study was to identify the pattern and treatment needs of dental caries among Ugandan adolescents attending secondary schools.

2. Materials and Methods

2.1. Study Design and Sample Selection. This was a cross-sectional study conducted in February and March 2018 in two secondary schools in Uganda. The schools are located in the urban setting of the two districts: Kampala and Mukono in the central region of Uganda. Kampala is the capital city of Uganda and the most densely populated urban centre, while Mukono town is the capital town of Mukono district and is located about 23 kilometres east of Kampala city. In both towns, simple random sampling was used to select one school from the list of schools provided by the respective District Education Offices. Mukono High School was selected from Mukono town while Kitebi Secondary School was selected from Kampala city. During the study period, a total of about 3,000 and 2,035 students were enrolled in senior one to six classes in the two schools, about 34 participants were required in each school. The number of students required were categorized into three types of basic needs: those relating to dental caries, traumatic dental injuries, and caries preventive treatment. The specific treatment needs for the decayed teeth were divided into three groups: category 1: filling; category 2: pulp therapy; and category 3: extraction. A decayed tooth was considered for extraction if it was severely damaged by decay that only retained roots were present or there was irreparable damage to the crown. Two trained research assistants administered a modified version of the standardised WHO Oral Health Questionnaire for adults [16]. Among other variables, the sociodemographic data, perceived state of their teeth, and oral health habits were captured. The participants were asked about the state of their teeth, and the responses were recorded on a five-point Likert...
The prevalence of decayed teeth (DT) was 62.6% (n = 254), and the mean DT was 1.7 ± 2.3. Majority (63.0%) of the students with a DT score >1 had more than one decayed tooth (Table 2). Significantly more decayed teeth were recorded in female students compared to their male counterparts (p = 0.031). However, there was no significant difference in the number of decayed teeth across gender among the students (p = 0.806) (Table 2). The molar teeth were the most affected in both jaws while the incisors and canines were the least affected teeth (Figure 1). The second molars were significantly more affected compared to first molars (p < 0.001). The prevalence of caries was higher (51.4%) in the mandible than the maxilla although the difference was not statistically significant (p = 0.460). Based on multivariate analysis, decayed teeth were significantly associated with difficulty in chewing (95% CI: 1.03–1.46, p = 0.022), history of dental pain in the past 12 months (95% CI: 1.55–2.26, p < 0.001), poor perception of tooth state (95% CI: 1.17–1.82, p = 0.001), and the female participants (95% CI: 0.71–0.97, p = 0.017) (Table 3). More than half (59.4%) of the students needed restorative treatment, whereas 13.3%...
and 9.1% needed pulp therapy and extractions, respectively (Table 4). About 2.7% of the participants needed treatment for traumatic dental injuries (Table 4). Most (83.2%, n = 579) of the decayed teeth needed restorative treatment (Table 5). Among the 10- to 13-year-olds, most (50/55) decayed teeth needed restorative treatment while the older age groups needed more extractions or endodontic treatment (Table 5).

4. Discussion

The overall prevalence of decayed teeth was high. In both dental arches, the molar teeth were the most affected and decayed teeth were significantly more prevalent in the second molars. However, no significant differences in the prevalence of decayed teeth in either arch were observed in this study. The decayed teeth were found to be significantly associated with difficulty in chewing, history of dental pain in the past 12 months, poor perception of tooth state, and the female gender. Restorations were the main treatment required by the study participants.

Overall, decayed teeth were more prevalent in the mandible than the maxillae though the difference was not statistically significant. This finding is contrary to previous reports that observed significant differences between the two dental arches [22–24]. We recorded significantly more molars with decay compared to all the other teeth (Figure 1) in support of previous studies [22, 25]. The carious lesions were significantly more prevalent in the second molars compared to the first molars, which corroborates with studies from African populations [22, 26–28]. In contrast, other studies [23, 29, 30] from developing countries reported the first molars to be more frequently involved with caries compared to the second molars. Various reasons have been proposed for the differing caries susceptibilities of teeth including tooth anatomical features, eruption times, post-eruptive enamel maturation of the surfaces, and the individual’s age of exposure to high cariogenic diet [31, 32]. The higher susceptibility of the second molars to decay in the present study might be due to exposure of the second molar to high cariogenic diet on eruption before maturation as suggested by Loto et al. [28]. The mean age at which all the four second molars erupt ranges from 10.6 to 11.1 years in the Ugandan population [33], a critical period in which the risk for dental caries remains high especially due to adolescent diet, which is typically characterised with a high consumption of refined sugars [34, 35]. In the present study,

Table 2: Distribution of decayed teeth according to gender among the students.

Variable	Categories	Male, N (%)	Female, N (%)	Total, N (%)	p value
Decayed teeth (n = 406)	No	69 (43.9)	83 (33.3)	152 (37.4)	0.031
	Yes	88 (56.1)	166 (66.7)	254 (62.6)	
Number of decayed teeth (n = 254)	1	29 (33.0)	65 (39.2)	94 (37.0)	0.806
	2–3	34 (38.6)	59 (35.5)	93 (36.6)	
	4–6	20 (22.7)	33 (19.9)	53 (20.9)	
	7–8	5 (5.7)	9 (5.4)	14 (5.5)	

n: number; p values: chi-square test.

Figure 1: Frequency distribution of decayed teeth according to tooth types and jaws among the participants (n = 696 teeth).
most of the students with decayed teeth had several teeth affected. These findings are comparable to previous reports [26,35] for adolescents from urban and periurban settings of Uganda that reported high mean DMFT score values. Some reports [26, 35, 36] have indicated that students in urban areas of Uganda experience poor oral health outcomes due to the high cost of dental care, ignorance of established preventive oral health practices, and shortage of dental professionals.

It is noteworthy that restorative treatment was the main dental care needed by the students and tooth extractions increased with age (Table 5). Assuming that the rate of progression of caries takes 3–4 years before it gets to pulpitis requiring extraction, it is probable that for most of the participants, the initial tooth decay occurred in the early adolescent years (10–12 years). It would therefore be beneficial to target the adolescents aged 10–12 years with preventive oral health programmes. Decayed teeth (DT)

Table 3: Bivariate and multivariate Poisson regression analysis of decayed teeth (DT) and independent variables among participants (N = 406).

Variable	DT (Mean (SD))	Unadjusted	Adjusted				
	Rate ratio	95% CI	*p value	Rate ratio	95% CI	*p value	
Gender							
Female	1.79 (2.32)	1	1	1	1	1	
Male	1.60 (2.13)	0.89	0.77-1.04	0.150	0.83	0.71–0.97	0.017
Frequency of cleaning teeth							
At least once a day	0.72 (2.26)	1	1	—	—	—	
Never/occasionally	1.67 (2.04)	0.97	0.72–1.31	0.837	—	—	
Perception of tooth status							
Good	1.31 (1.56)	1	1	1	1	1	
Average	1.82 (2.29)	1.39	1.17–1.65	<0.001	1.05	0.88–1.26	0.606
Poor	2.70 (3.38)	2.06	1.68–2.53	<0.001	1.46	1.17–1.82	0.001
Dental pain in the past 12 months							
No	1.09 (1.43)	1	1	1	1	1	
Yes	2.38 (2.72)	2.19	1.87–2.57	<0.001	1.87	1.55–2.26	0.000
Difficulty in chewing							
No	1.30 (1.75)	1	1	1	1	1	
Yes	2.29 (2.69)	1.77	1.52–2.05	<0.001	1.23	1.03–1.46	0.022

Rate ratio: the DT ratio of each group versus reference group; n: number; CI: confidence interval; *p values: Poisson analysis; 1: reference value.

Table 4: The frequency distribution of the participants according to treatment needs, gender, and age group (n = 406).

Variable	Specific treatment need				
	Caries preventive treatment	Traumatic dental injuries	Decayed teeth		
	Fluoride application, n (%)	Fillings, n (%)	Filling, n (%)	Pulp therapy, n (%)	Extraction, n (%)
Overall	17 (4.2)	241 (59.4)	54 (13.3)	37 (9.1)	
Gender	Male (n = 157)	7 (4.5)	84 (53.5)	18 (11.46)	12 (7.6)
	Female (n = 249)	10 (4.0)	157 (63.1)	36 (14.5)	25 (10.4)
Age (in years)	11–13 (n = 65)	0 (0.0)	27 (41.5)	3 (4.6)	2 (3.1)
	14–16 (n = 179)	12 (6.7)	99 (55.3)	23 (12.8)	17 (9.5)
	17–19 (n = 162)	5 (3.1)	115 (71.0)	28 (17.3)	18 (11.1)

n: number; cross-tabulations of treatment needs by variables.

Table 5: The frequency distribution of the decayed teeth according to specific treatment needs, gender, and age group (n = 696).

Variable	Specific treatment needs for decayed teeth			
	Filling, n (%)	Pulp therapy, n (%)	Extraction, n (%)	
Overall	579 (83.2)	44 (6.3)	696	
Gender	Male	216 (86.0)	13 (5.2)	251
	Female	363 (81.6)	31 (6.9)	445
Age (in years)	11–13	50 (90.9)	2 (3.6)	55
	14–16	231 (80.8)	21 (7.3)	286
	17–19	298 (83.9)	21 (5.9)	355

n: number; cross-tabulations of treatment needs for decayed teeth by gender.
were significantly associated with difficulty in chewing, history of dental pain in the past 12 months, poor perception of tooth state, and the female gender (Table 3), which corroborates with other studies \[37, 38\]. Due to these negative consequences, several reports \[37, 39, 40\] have documented the negative impact of decayed teeth on the quality of life, general health, nutrition, growth, and body weight of the affected individuals.

5. Conclusion and Recommendation

The prevalence of decayed teeth was high in the present study, and in order to satisfy the oral health needs of the population, it is recommended that health programmes in schools should include both oral health preventive and curative interventions to achieve optimum health.

6. Strengths and Limitations

The study provided baseline data on dental caries treatment needs for the Ugandan adolescent population. This study was carried out in field conditions, without use of radiographs or artificial light, which made it likely that the prevalence of decayed teeth and hence treatment needs could have been underestimated. The findings of the present study may not be generalised to all adolescents in Uganda due to the limited sample of schools and adolescents drawn from one region of Uganda.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Disclosure

The contents are solely the responsibility of the authors and do not necessarily represent the official views of the supporting offices.

Conflicts of Interest

The authors report no conflicts of interest.

Acknowledgments

The authors are grateful to the authorities of the schools visited and adolescents who participated in the study. This work was supported by the Office of the Director, National Institutes of Health (OD), National Institute of Dental and Craniofacial Research (NIDCR), National Institute of Neurological Disorders and Stroke (NINDS), National Heart, Lung, and Blood Institute (NHLBI), Fogarty International Center (FIC), and National Institute on Minority Health and Health Disparities (NIMHD) (Grant no. D43TW010132).

References

[1] N. J. Kassebaum, A. G. C. Smith, E. Bernabé et al., “Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the global burden of diseases, injuries, and risk factors,” Journal of Dental Research, vol. 96, no. 4, pp. 380–387, 2017.

[2] M. A. Peres, L. M. D. Macpherson, R. J. Weyant et al., “Oral diseases: a global public health challenge,” The Lancet, vol. 394, no. 10194, pp. 249–260, 2019.

[3] P. E. Petersen, D. Bourgeois, H. Ogawa, S. Estupinan-Day, and C. Ndiaye, “The global burden of oral diseases and risks to oral health,” Bulletin of the World Health Organization, vol. 83, pp. 661–669, 2005.

[4] C. Van Wyk and P. J. Van Wyk, “Trends in dental caries prevalence, severity and unmet treatment need levels in South Africa between 1983 and 2002: scientific,” South African Dental Journal, vol. 65, pp. 310–314, 2010.

[5] A. Abid, F. Maatouk, L. Berrezouga et al., “Prevalence and severity of oral diseases in the Africa and Middle East region,” Advances in Dental Research, vol. 27, no. 1, pp. 10–17, 2015.

[6] D. A. Smit, R. B. Barrie, and A. J. Louw, “The burden of dental caries in the Western Cape and a recommended turn-around strategy,” South African Dental Journal, vol. 72, pp. 360–365, 2017.

[7] P. E. Petersen and H. Ogawa, “Prevention of dental caries through the use of fluoride—the WHO approach,” Community Dental Health, vol. 33, pp. 66–68, 2016.

[8] L. B. Muhirwe, “Oral health in Uganda: the need for a change in focus,” International Dental Journal, vol. 56, no. 1, pp. 3–6, 2006.

[9] Ministry of Health Uganda, National Oral Health Policy, Ministry of Health Uganda, Kampala, Uganda, 1st edition, 2007.

[10] Uganda Government, National Health Insurance Scheme Bill, Vol. CXII, The Uganda Gazette, Entebbe, Uganda, 1st edition, 2019.

[11] S. L. Jackson, W. F. Vann Jr., J. B. Kotch, B. T. Pahel, and J. Y. Lee, “Impact of poor oral health on children’s school attendance and performance,” American Journal of Public Health, vol. 101, no. 10, pp. 1900–1906, 2011.

[12] H. Benzian, B. Monse, R. Heinrich-Weltzien, M. Hobdell, J. Mulder, and W. van Palenstein Helderman, “Untreated severe dental decay: a neglected determinant of low Body Mass Index in 12-year-old Filipino children,” BMC Public Health, vol. 11, pp. 558, 2011.

[13] Uganda Bureau of Statistics, Young People: The Untapped Resource for Development, Uganda Bureau of Statistics, Kampala, Uganda, 2017.

[14] J. Bertness, Promoting Oral Health in Schools: A Resource Guide, National Maternal and Child Oral Health Resource Center, Washington, DC, USA, 2009.

[15] M. Hobdell, P. E. Petersen, J. Clarkson, and N. Johnson, “Global goals for oral health 2020,” International Dental Journal, vol. 53, no. 5, pp. 285–288, 2003.

[16] World Health Organisation Press, Oral Health Surveys: Basic Methods, World Health Organisation Press, Geneva, Switzerland, 5th edition, 2013.

[17] F. Terwindt, D. Rajan, and A. Soucat, “Priority-setting for national health policies, strategies and plans,” Strategizing national health in the 21st century: a handbook, Vol. 71, World Health Organisation, Geneva, Switzerland, 2016.

[18] I. A. Bani, “Health needs assessment,” Journal of Family and Community Medicine, vol. 15, pp. 13–20, 2008.

[19] J. Wright, R. Williams, and J. R. Wilkinson, “Health needs assessment: development and importance of health needs assessment,” BMJ, vol. 316, no. 7140, pp. 1310–1313, 1998.
[20] S. N. Kiwanuka and A. N. Åstrøm, “Self-reported dental pain and associated factors in Ugandan schoolchildren,” *Norsk Epidemiologi*, vol. 15, pp. 175–182, 2005.

[21] World Medical Association, “Declaration of Helsinki: ethical principles for medical research involving human subjects,” *Journal of the American College of Dentists*, vol. 81, pp. 14–18, 2014.

[22] A. Kutesa, A. Mwanika, and M. Wandera, “Pattern of dental caries in mulago dental school clinic, Uganda,” *African Health Sciences*, vol. 5, pp. 65–68, 2005.

[23] O. B. Braimoh, A. U. Umanah, and N. A. Ilochonwu, “Caries distribution, prevalence, and treatment needs among 12–15-year-old secondary school students in port harcourt, rivers state, Nigeria,” *Journal of Dental Surgery*, vol. 2014, ArticleID 483760, 6 pages, 2014.

[24] A. Mehmood Khan, S. Mariyum, S. Ali Shah, S. Ur Rehman, and S. Masood Tirmazi, “Frequency and distribution of dental caries in teeth and arches of patients examined at Punjab Dental Hospital, Lahore,” *Pakistan Oral & Dental Journal*, vol. 35, 2015.

[25] M. D. Macek, E. D. Beltran-Aguilar, S. A. Lockwood, and D. M. Malvitz, “Updated comparison of the caries susceptibility of various morphological types of permanent teeth,” *Journal of Public Health Dentistry*, vol. 63, no. 3, pp. 174–182, 2003.

[26] I. Okullo, A. N. Åstrøm, S. Mariyum, S. Ali Shah, S. Ur Rehman, and S. Masood Tirmazi, “Variation in caries experience and sugar intake among secondary school students in urban and rural Uganda,” *Acta Odontologica Scandinavica*, vol. 61, no. 4, pp. 197–202, 2003.

[27] C. M. Rwenyonyi, J. M. Birkeland, O. Haugejorden, and K. Bjorvatn, “Dental caries among 10- to 14-year-old children in Ugandan rural areas with 0.5 and 2.5 mg fluoride per liter in drinking water,” *Clinical Oral Investigations*, vol. 5, no. 1, pp. 45–50, 2001.

[28] O. A. Loto, A. Oyapero, A. O. Awoatile, O. A. Adenuga-Taiwo, L. L. Enoe, and I. N. Menakaya, “An update on the relative vulnerability of the first and second permanent molars to caries in urban Nigerians,” *Journal of International Oral Health*, vol. 11, p. 274, 2019.

[29] O. O. Denloye, D. M. Ajayi, and B. O. Popoola, “Dental caries prevalence and bilateral occurrence in premolars and molars of adolescent school children in Ibadan, Nigeria,” *Odonto-Stomatologique Tropicale*, vol. 38, pp. 46–50, 2015.

[30] D. C. Umesi-Koleoso, “Dental caries pattern of first and second permanent molars and treatment needs among adolescents in Lagos,” *Nigerian Dental Journal*, vol. 15, pp. 78–82, 2007.

[31] R. J. M. Lynch, “The primary and mixed dentition, post-eruptive enamel maturation and dental caries: a review,” *International Dental Journal*, vol. 63, no. 2, pp. 3–13, 2013.

[32] M. Demirci, S. Tuncer, and A. A. Yuceokur, “Prevalence of caries on individual tooth surfaces and its distribution by age and gender in university clinic patients,” *European Journal of Dentistry*, vol. 4, no. 3, pp. 270–279, 2010.

[33] A. Kutesa, E. M. Nkamba, L. Muwazi, W. Buwembo, and C. M. Rwenyonyi, “Weight, height and eruption times of permanent teeth of children aged 4-15 years in Kampala, Uganda,” *BMC Oral Health*, vol. 13, no. 1, 2013.

[34] R. F. Majewski, “Dental caries in adolescents associated with caffeinated carbonated beverages,” *Pediatric Dentistry*, vol. 23, pp. 198–203, 2001.

[35] J. Cheng and K. Campbell, “Caries and dental erosion: are Soroti children and adolescents at risk from increased soft-drink availability in Uganda?,” *African Health Sciences*, vol. 16, pp. 943–946, 2016.

[36] V. Batwala, E. M. Mulogo, and W. Arubaku, “Oral health status of school children in Mbarara, Uganda,” *African Health Sciences*, vol. 7, pp. 233–238, 2007.

[37] A. Mehta and S. Bhalla, “Assessing consequences of untreated carious lesions using pufa index among 5-6 years old school children in an urban Indian population,” *Indian Journal of Dental Research*, vol. 25, no. 2, p. 150, 2014.

[38] N. Decker, E. Nicolas, and M. Hennequin, “Chewing deficiences in adults with multiple untreated carious lesions,” *Caries Research*, vol. 47, no. 4, pp. 330–337, 2013.

[39] S. C. Leal, E. M. Bronkhorst, M. Fan, and J. E. Frencken, “Untreated cavitated dentine lesions: impact on children’s quality of life,” *Caries Research*, vol. 46, no. 2, pp. 102–106, 2012.

[40] A. Bani Hani, C. Deery, J. Tounbma, T. Munyombwe, and M. Duggal, “The impact of dental caries and its treatment by conventional or biological approaches on the oral health-related quality of life of children and carers,” *International Journal of Paediatric Dentistry*, vol. 28, no. 2, pp. 266–276, 2018.